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Abstract  

Background: Advancements in technologies for the analysis of gait enable efficient, 

costeffective, and remote gait analysis that allows personalized, real-time assessments within 

the comfort of a person’s home. However, in clinical practice, gait analysis remains anchored 

to traditional observational methods that focus on performance in a controlled environment, 

failing to accurately assess a person’s true motor competence. For instance, a person with PD 

at an early stage may be able to cover an optimal distance while walking when assessed in a 

clinic but may not necessarily exhibit an efficient gait pattern, increasing the risk of falls. It is 

thus important to assess gait capacity and gait quality parameters in daily life. Although digital 

technologies are poised to fill this gap, their limited integration into clinical practice is due to 

uncertainties related to their comparability and reliability with methods used in clinical 

practice.  

Objective: The overall aim is to contribute evidence as to the comparability of 3 methods of 

remote gait assessment in individuals with Parkinson’s Disease. Specifically, the purpose is to 

estimate the extent to which values on gait metrics are similar/different among 3 different 

methods of assessing gait quality (1) Observational analysis by physiotherapists; (2) Wearable 

sensor - Heel2ToeTM sensor; (3) Pose estimation – MediaPipe Pose. Secondarily, the aim is to 

identify challenges encountered with each of these methods.  

Methods: A cross-sectional, multiple case series study was conducted remotely recruiting adult 

members of Parkinson Quebec with mild to moderate gait deficits. After screening for 

eligibility, 20 participants submitted videos of them performing a modified TUG test at home/in 

their neighbourhood with the Heel2ToeTM sensor. A checklist for observational analysis of gait 

specific to PD was developed for this study. Each video was subsequently analyzed by six 

raters using the checklist who were allotted videos at random. The same videos were then 

analyzed using a customized program with the MediaPipe Pose library.   

Results: Crude agreement over individual items on the checklist ranged between 71-100%. 

Scores created by summing the item scores (maximum 35) given by the raters yielded an ICC 

of 0.78 indicating reliability sufficient to compare groups of people but not sufficient for 

within-individual change. The quality of the videos significantly affected the overall 

agreement, where a video with ‘excellent’ quality had an estimated association of 13.7 (0.0013) 

points higher than a video of poor quality. Agreement on ‘excellent’ quality videos was 96%. 

The values from the wearable sensor and observational ratings were compared pairwise to the 

inter-rater agreement results. The observational ratings agreed with the wearable sensor on 
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accurately detecting the heel strike 64% of the time and 28.5% of the time on detecting the 

push-off. Agreed 35.7% of the time on detecting foot clearance and 85% of the time on 

detecting cadence. A Spearman’s rank correlation of 0.32 (p = 0.260) for heel strike and -0.22 

(p = 0.386) for push-off was calculated from the comparison between pose estimation and 

wearable sensor; a correlation coefficient of -0.28 (p = 0.225) for heel strike and 0.15 (p = 

0.514) for push-off was calculated from the comparison between pose estimation and 

observational ratings. Thus, values for heel strike and push-off obtained from pose estimation 

had a weak correlation with both the wearable sensor and observational ratings.   

Conclusion: A combination of digital technologies for remote gait analysis, such as wearable 

sensors and pose estimation, can detect subtle nuances in gait impairments that may be 

overlooked by the human eye, offering greater accuracy and reducing variability among raters.   
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Résumé  

Contexte: Les progrès des technologies d'analyse de la marche, permettent une analyse 

efficace, rentable et à distance de celle-ci ce qui permet des évaluations personnalisées en temps 

réel dans le confort du domicile d'une personne. Cependant, dans la pratique clinique, l'analyse 

de la marche reste ancrée dans les méthodes d'observation traditionnelles qui se concentrent 

sur la performance dans un environnement contrôlé, ce qui ne permet pas d'évaluer avec 

précision la véritable compétence motrice d'une personne. Par exemple, une personne atteinte 

de la maladie de Parkinson (MP) à un stade précoce peut être capable de parcourir une distance 

optimale en marchant lorsqu'elle est évaluée en clinique, mais ne présente pas nécessairement 

un schéma de marche efficace, ce qui augmente le risque de chutes. Il est donc important 

d'évaluer la capacité de marche et les paramètres de qualité de la marche dans la vie 

quotidienne. Bien que les technologies numériques visent à combler cette lacune, leur 

intégration limitée dans la pratique clinique est due aux incertitudes liées à leur comparabilité 

et fiabilité avec les méthodes de la pratique clinique.  

Objectif: L'objectif général est d'apporter des preuves de la comparabilité de 3 différentes 

méthodes d'évaluation à distance de la marche chez les personnes atteintes de la MP. Il s'agit 

d'estimer dans quelle mesure les valeurs des paramètres de la marche sont similaires/différentes 

entre ces méthodes (1) analyse observationnelle par des physiothérapeutes; (2) capteur - 

Heel2ToeTM; (3) estimation de pose (EP) - MediaPipe Pose. Le second objectif est d'identifier 

les difficultés rencontrées avec chacune de ces méthodes.  

Méthodes: Une étude transversale de séries de cas multiples a été menée à distance pour 

recruter des membres adultes de Parkinson Québec présentant des déficits de marche légers à 

modérés. Après vérification de l'admissibilité, 20 participants ont soumis des vidéos d'eux 

effectuant un test TUG modifié à la maison ou dans leur quartier équipé du capteur portable 

(CP). Une liste pour l'analyse observationnelle de la marche (AOM) spécifique à la MP a été 

élaborée pour cette étude. Chaque vidéo a ensuite été analysée par 6 évaluateurs à l'aide de 

ladite liste, qui se sont vu attribuer des vidéos au hasard. Ces vidéos ont ensuite été analysées 

par l'EP.   

Résultats: L'accord brut sur les éléments individuels de liste de l'AOM se situait entre 71 et 

100 %. Les scores créés en additionnant ceux des éléments donnés par les évaluateurs ont 

donné un ICC de 0,78 indiquant une fiabilité suffisante pour comparer des groupes de 

personnes mais insuffisante pour un changement intra-individuel. La qualité des vidéos a eu 

une incidence significative sur l'accord global, une vidéo d’excellente qualité ayant un score 
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estimé de 13,7 (0,0013) points de plus qu'une de mauvaise qualité. L'accord sur les vidéos 

d'excellente qualité était de 96%. Les valeurs du CP et de l'AOM ont été comparées deux à 

deux pour obtenir les résultats de l'accord inter-évaluateur. Les AOM étaient en accord avec le 

CP pour détecter avec précision la frappe du talon (FT) dans 64% des cas et dans 28,5% des 

cas pour la détection de la poussée. Elles ont concordé dans 35,7% des cas pour la détection 

du dégagement du pied et dans 85% des cas pour la détection de la cadence. Une corrélation 

de rang de Spearman de 0,32 (p = 0,260) pour la FT et de -0,22 (p = 0,386) pour la poussée a 

été calculée à partir de la comparaison entre l'EP et le CP, un coefficient de corrélation de -0,28 

(p = 0,225) pour la FT et de 0,15 (p = 0,514) pour la poussée a été calculé à partir de la 

comparaison entre l'EP et l'AOM.   

Conclusion: Une combinaison de technologies numériques pour l'analyse à distance de la 

marche, telles que les CP et EP, peut détecter des nuances subtiles dans les déficiences de la 

marche qui peuvent être négligées par l'œil humain, offrant ainsi une plus grande précision et 

réduisant la variabilité entre les évaluateurs.   
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Preface  

The purpose of this master’s program is to acquire the skills necessary for conducting 

research and to effectively apply both established and emerging methods and tools in the 

field of rehabilitation.  

Evolution and Development of Research Project   

Analysis of gait forms an integral part of understanding human locomotion, diagnosis of 

conditions with gait impairments and designing rehabilitation interventions. With the 

availability of newer technology, it is now possible to obtain very precise measures of a 

person’s motor activity during everyday tasks such as walking.  However, in clinical practice, 

gait analysis continues to remain anchored to methods of broad classification based on 

observations by clinicians. A systematic review published by Ridao-Fernandez et al in 2019 on 

measures for observational gait assessment brought to light the variability among measures 

such as on parameters assessed and the lack of standardized protocol to assess gait in a clinical 

setting. This led me to question the limited integration of existing techniques into clinical 

practice, which was also the motive that drove this thesis. Leveraging my experience as a 

physiotherapist, I aimed to explore possible obstacles that contributed to this limitation. This 

journey of exploring obstacles and limitations was filled with engaging challenges primarily 

the uncertainty of comparing parameters from three distinct methods based on different 

measuring scales, which was made possible solely through the expertise of Dr. Mayo. Many 

lessons were learned during this process and experiences ranged from embracing mistakes 

made and learning from feedback to triumphant moments of obtaining results that resonated 

with theory and clinical experience.   

The process of designing this study commenced with an investigation of the available literature 

under the guidance of my supervisor on various methods and tools available for gait 

assessment. The methods were then grouped based on the setting they were utilized. 

Technology in the field of remote assessment was confined to the research setting except those 

available commercially used in the sports sector or by the general population.  

The reason for choosing PD as an example for this study was gait impairment is a distinguishing 

feature of PD, yet no standardized method is available for a comprehensive analysis of all 

relevant gait parameters. This challenge was dealt with by developing a checklist based on the 

existing literature and then comparing the results of this approach to the common parameters 
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recorded using the wearable sensor (Heel2ToeTM) and the method of pose estimation 

(MediaPipe Pose).  

Contribution of Authors   

This thesis was embedded in the larger ongoing trial on implementing the wearable sensor – 

Heel2ToeTM among people with PD to change gait patterns, walking behaviours, and 

motivational, functional and quality of life indicators over 3 months (PI: Nancy Mayo, Etienne 

De-Villers Sidani). As supervisor, Dr. Mayo oversaw all aspects of this thesis. As there was no 

specific measure consisting of all gait quality parameters essential for being assessed in PD, a 

bespoken checklist was developed as part of the first component of this study which required 

an investigation of the literature, performed by the master’s student (NH) under the thorough 

supervision of Dr. Mayo. All raters Kedar Mate, Jennifer Wai, Ezinne Ekediegwu, Eren 

Timurtas, Adriana Venturi, Ayse Kuspinar, Lois Finch, Ahmed Abou-Sharkh, Helen Dawes and 

Nancy Mayo analyzed 8-10 gait videos and provided insights and feedback on the checklist 

that led to 5 iterations of the checklist. The analysis of agreement and reliability was performed 

by NH under the thorough supervision of Dr. Mayo and Lyne Nadeau. The program for pose 

estimation using MediaPipe Pose was developed by Dr Edward Hill. He ran multiple 

experiments using the program to tailor it to extract gait parameters similar to the ones listed 

in the checklist. Finally, a comparison across the three methods was performed by NH under 

the guidance of Dr. Mayo.   

Organization of the thesis   

This thesis comprises seven chapters in total, which is in line with the Graduate and Post 

Doctoral Studies (GPS) regulations for a chapter-based traditional thesis. It begins with an 

introduction and ends with an overall discussion and conclusion. A brief outline of the thesis is 

as follows.  

Chapter 1 consists of an overview of normal gait and covers in detail the various methods of 

gait analysis followed by its relevance and importance in PD  

Chapter 2 covers the rationale which drove this thesis and lists the objectives specific to the 

study  
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Chapter 3 details the overall methodology used for testing the three methods for remote gait 

analysis (observation, wearable sensor and pose estimation) and the sample size estimate.   

Chapter 4 provides details of the development and iterations of the observational checklist 

specific to PD along with the analysis for agreement and reliability. This chapter concludes 

with a final recommendation for an observational checklist after five iterations.  

Chapter 5 details an overview of the wearable sensor used in the second component of this 

study. It describes in detail the gait parameters analyzed using the sensor and concludes with 

pairwise comparison between the common gait parameters recorded using the sensor and the 

ratings given by raters.  

Chapter 6 provides details of the technology used for pose estimation, and development of the 

tailored program using the MediaPipe Pose library. It further describes the gait parameters that 

were possible to estimate using this method and concludes with the challenges and comparison 

between the common gait parameters across all three methods of remote gait analysis.   

Chapter 7 is the overall discussion and conclusion based on the previous chapters included in 

this thesis. It also highlights the implications of this work  

Corresponding tables and figures are presented at the end of each chapter. The references for 

all chapters have been provided at the end.   
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Chapter 1: Background  

The restrictions placed on in-person contacts, even for health-related reasons, during the 

COVID-19 pandemic amplified the need for remote assessments and telerehabilitation 

(Nguyen et al., 2023; Arntz et al., 2023). In physical rehabilitation, there is a strong focus on 

gait and mobility traditionally assessed only in person. (Zanin et al., 2022; Bernhardsson et al., 

2023). Gait is the manner of walking (Ali et al., 2012). Normal gait is described as a systematic, 

cyclical and rhythmic pattern with coordinated movement of the limbs and the trunk that 

enables locomotion (Perry & Burnfield., 2010). The extent to which this pattern occurs would 

indicate gait quality (Hulleck et al., 2022). Walking is a rhythmic dynamic activity involving 

large muscles (Morris & Hardman, 1997). Walking can be further classified according to 

capacity and performance using the ICF (Okochi et al., 2013). Capacity can be measured by 

testing in a clinical setting usually quantified as walking speed (Hendriks et al., 2022). At the 

same time, performance in the real-world setting is often quantified as steps per day and 

walking bouts (Ainsworth et al., 2011; Mate & Mayo, 2020). Capacity and performance 

quantify walking (Brandes et al., 2008).  

Good gait quality is the foundation for both walking capacity and performance, making gait 

assessment and gait training the primary activities of physical rehabilitation (Mate et al., 2019; 

Hausdorff et al., 2018; Keren et al., 2021). Methods for remote gait assessment became 

increasingly important during the pandemic period as illustrated by the number of publications 

in the area, especially those using digital technology (Micó-Amigo et al., 2023). Figure 1.1 

shows results from a PubMed search revealing a 77.3% surge in articles published in the field 

starting after 2019. This digital revolution stems from the need to provide assessment and 

monitoring that is closely equivalent to that when done in person (Abernethy et al., 2022). In 

addition, rehabilitation interventions can often be moved out of the clinic to the person’s home 

making them much more personalized and cost-effective (Gurchiek et al., 2019; Mayo, 2016) 

necessitating technology to keep pace.  Specifically, the opportunity afforded by the increased 

interest in real-time remote monitoring and telerehabilitation has stimulated digital 

technologies specifically for gait analysis (Arntz et al., 2023).  

1.1 Gait Analysis   

The analysis of gait originates from the earliest studies of bipedal gait (Lovejoy et al., 1973;  
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Winter et al., 1990). Gait analysis can be defined as a set of procedures to observe, record, 

analyze and interpret movement patterns performed while walking (Baker et al., 2016). 

Different applications of gait analysis are illustrated in Figure 1.2.  

A wide array of methods are available for analyzing gait, and one method will not fit all 

purposes. It is crucial for diagnostic purposes, guiding treatment, and understanding 

mechanisms of optimal and pathological gait (Kyriazis., 2001). At one end of the spectrum are 

simple, inexpensive, and commonly used methods involving direct observation by an expert. 

At the other end are complex, costly, technologically aided methods, some of which require 

extensive infrastructure and specialized personnel. In addition, these measures are based on 

different measurement properties affecting the measurement scale and the quantification of 

various gait parameters (Rudisch et al., 2021). This section presents various gait analysis 

methods, including the specific gait-related parameters assessed. The section begins with the 

description of gait as it forms the basis of understanding deviations from the standard pattern. 

This section is followed by methods of assessment that require no equipment and progresses 

to more elaborate techniques.  

1.1.1 Normal Gait  

Gait is a term used to describe the pattern of walking which is a fundamental component of 

mobility (Webber & Raichlen, 2016; Ataullah & De Jesus, 2024). Gait has been studied 

extensively by many researchers over the past 100 years (Braune & Fischer, 1987; Burnfield, 

2010; Isman & Inman, 1969; Marey, 1894). Normal gait is a generalized pattern considered 

optimal for walking (Morris & Hardman, 1997). Gait consists of multiple repetitions of 

sequential patterns, each forming a cycle (Kirtley., 2006). Each cycle begins when the foot 

contacts the ground also known as the heel strike and continues until the heel strike of the same 

foot in preparation for the next stride (Pirker & Katzenschlager., 2017) shown in Figure 1.3. 

The core variables that describe a cycle and are essential for gait analysis such as step length, 

stride length and step width are also illustrated in Figure 1.3. The gait cycle is divided into 

stance (60%-62% of the cycle) and swing phase. The stance phase comprises five phases: initial 

contact (heel strike), loading response (foot-flat), midstance, terminal stance (heel-off) and 

preswing (toe-off). The swing is divided into the initial swing (acceleration), midswing and 

terminal swing (deceleration) (Burnfield, 2010; Coutts, 1999; Pirker & Katzenschlager, 2017) 

explained in Figure 1.4.   
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Some of the features of normal gait include alternating movement of the limbs, clear heel to 

toe pattern to avoid scuffing, proper pre-positioning, sufficient step length and natural 

anteroposterior sway of the trunk (Akl, 2014). The core elements of gait assessment: temporo-

spatial, kinematic, and kinetic parameters, are described in Table 1.1.   

1.1.2 Gait - An indicator of motor competency  

Independent bipedal walking is a major milestone of motor development, occurring during the 

early stages of childhood. Motor development is one of the concepts encompassed within the 

broader umbrella of motor competency (Bardid et al., 2019). Walking is a complex motor task 

(Verghese et al., 2009), hence an indicator of motor competency as it requires a synchronized 

interplay of the musculoskeletal, cardiorespiratory, central (CNS) and peripheral nervous 

systems (PNS) (Pirker & Katzenschlager., 2017). The number and complexity of the events 

needed to master this basic capacity are shown in Figure 1.5.   

Motor competency signifies performance and participation in daily activities and is categorized 

into locomotor (e.g., walking), object control (e.g., control of body movements and 

coordination) and stability (e.g., balance). Thus, motor competency refers to an individual’s 

proficiency while performing a motor task underpinning their ability and quality of movement 

(Cattuzzo et al., 2016; Hulteen et al., 2018). Gait is one of the most frequently assessed 

indicators of motor competency and gait assessment guides rehabilitation interventions (Pohl 

et al., 1996; Dasgupta et al., 2021). Proficient gait comprises covering an adequate distance 

essential for daily activities with an optimal number of steps at an optimal pace but also the 

ability to produce good quality steps. The link between gait quality and walking quantity is 

well known (Kaneko et al., 1991; Mate et al., 2019; Mayo et al., 2023). The ability to 

competently and safely navigate the community is called walking competency. Walking speed 

and walking distance are some of the elements that explain walking competency (Salbach et 

al., 2004) while the extent of heel strike, swing at the hip and toe push-off are some of the 

elements that describe the quality of steps (Ginis et al., 2017; Mayo et al., 2023).   

1.1.3 Methods of Gait Analysis  

The diverse methods available for gait analysis are distinguished by the parameters assessed 

and the settings in which they are applied, whether in-person or remotely. Methods specific to 

different settings are listed in Table 1.2.   
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In a clinical setting, the direct observation method by a clinician is most widely used. In 

measurement terminology, this falls under the rubric Clinical Outcome Assessment (COA).   

COA can rely on different sources of information: Clinician Reported Outcomes (ClinRO) and 

Performance Outcomes (PerFOs) (Mayo et al., 2017; McLeod et al., 2011; Berg et al., 2024). 

ClinROs typically include a structured checklist (Powers et al., 2017). The checklists list 

various gait parameters, including those related to movements of the trunk, pelvis, hip, knee, 

and ankle, the quality of which is rated by an expert clinician (Rancho Los Amigos Medical 

Center Professional Staff et al., 1989). PerfOs on the other hand rate a person’s performance 

on a standardized test such as the 10-meter walking test (10MWT), Timed-Up and Go (TUG), 

or the 6-min walking test (6MWT). The results are interpreted as an individual’s capacity to 

walk or move (Mate & Mayo, 2020).    

Another rapidly advancing and evolving stream of outcome measures is those assessed using 

technology (TechO) (Mayo et al., 2017) such as instrumented gait analysis which can be done 

using non-wearable or wearable technologies (Muro-De-La-Herran et al., 2014). Wearable 

technologies can be used both clinically (or research) and for remote monitoring (Liao et al., 

2019). However, the non-wearable systems are not optimized for remote monitoring. These 

systems comprise marker-based motion capture systems, instrumented walkways (GAITRite), 

and force plates. Both wearable and non-wearable technologies can measure spatial, temporal, 

kinematic, and kinetic parameters. Non-wearable technologies are highly accurate and have 

been considered as the research gold standard (Shanahan et al., 2018). The drawback of using 

these technologies is that they are fixed, expensive, and need extensive infrastructure, including 

trained personnel to operate and manage data from these systems. A newer technology based 

on markerless motion capture (e.g. pose estimation using digital software) arose from the 

animation industry (Ferrari et al., 2009) and is suitable for remote monitoring as it takes 

advantage of video recording. This system detects movements by tracking anatomical 

landmarks such as those when a person is walking which can be used to calculate temporal, 

spatial and kinematic parameters that underpin gait analysis.  

Since this thesis focuses on comparing different methods of remote gait assessment, the 

following sections will describe in greater detail the observational, wearable, and pose-

estimation methods.  
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1.1.3.1 Observational Methods (ClinROs/PerfOs)  

Observational or visual gait analysis is the simplest method of analysis made by the unaided 

human eye the results of which are documented using a checklist. The checklists used for 

observational analysis in various settings are inspired by the one developed by (Rancho Los 

Amigos Medical Center Professional Staff et al., 1989). The structured method for 

observational analysis that is most relevant today is attributed to Dr J Perry (Perry, 1992). The 

ratings used in these checklists can be binary (e.g., present or absent) or graded using ICF 

qualifiers (e.g., no problem, mild problem, moderate problem, severe problem, complete 

problem, not specified or not applicable) (Organization, 2007; Stucki et al., 2002). In addition 

to the checklist, certain observation-based performance tests listed above (PerfOs) are also 

widely used. This assessment can be conducted in a clinical setting or remotely via video.  

All observational methods are limited by expertise and by the eye that cannot observe subtle 

nuances in movement that occur at a rapid pace. The reliability of measures of observational 

gait analysis has been summarized in Table 1.3. Of the 12 measures listed in the table, eight 

measures included the kinematics of the leg, only four scales included arm swing, only five 

scales included both spatial and temporal parameters and only one scale included the evaluation 

of symmetry of spatial and temporal parameters (Ridao-Fernández et al., 2019).   

Observational methods are best suited for judging spatial gait parameters including posture.  

However, the observer has the benefit of a three-dimensional view of the client when in person. 

Research has shown variability in the ratings across observers indicating moderate inter-rater 

reliability of observational method of analysis (Brunnekreef et al., 2005). Despite limitations, 

this is the most widely used method in a clinical setting (Anwary et al., 2020)  

Remotely, the observational method is used to analyze videotaped gait. The idea of videotaping 

originated in the 1990s; however, now images are produced through direct digital recording 

devices. The advancements in digital recording have now made monitoring gait in daily life 

(outside a clinic or lab) possible. The person need not repeat trials to aid in the evaluation, and 

the image can provide valuable feedback to the client. To overcome the limitations of high-

speed movements, the video can be slowed down, but the sophistication of the recording 

device, the technical skill of the person making the recording, and the two-dimensional view 

of the client remain limitations (Hulleck et al., 2022).   
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One component of the research in this thesis uses a combination of a ClinRO and a PerfO. The 

ClinRo is a structured observational checklist completed while viewing a video of a person 

with PD performing the ‘Timed Up and Go’ (TUG) test with a modification to extend the 

walking distance.  This test times how long it takes the participant to stand up from sitting, 

walk 3 meters (approximately 10 meters for the video recording), turn and return to the chair 

and sit down.  The TUG is widely used in clinical and research settings as it integrates, in a 

functional task, changing position against gravity, balance, gait speed, and turning (Okumiya 

et al., 1998).   

1.1.3.2 Wearable Technologies (TechO)   

As the name suggests, wearable technologies are designed to be worn.  Wearable technologies 

burst onto the health and fitness industries (Tao et al., 2012) owing to the availability and 

miniaturization of internal measurement units (IMUs) that report raw inertial body movements 

using three-axis accelerometers (for linear acceleration), three-axis gyroscopes (for rotational 

velocities), and magnetometers (for magnetic field strength concerning the earth’s axes). The 

history of wearables can be traced back to the 19th century when a wearable camera was 

developed in 1907 and used on pigeons to capture aerial images (Ometov et al., 2021). One of 

the earliest wearable sensors was the Galvanic Skin Response (GSR) invented before World 

War II to detect lying using pulse rate and blood pressure (Vicianova, 2015).  

Today, most wearable sensors available in the market are lightweight, cheap, and can be used 

to collect data without disturbing daily life activities. New generation wearables connect to 

smartphone devices and IMUs are also part of every smartphone now that track steps, stairs 

climbed, movement time, and even some aspects of gait such as stride length, unsteadiness, 

and asymmetry, making smartphone-based human motion assessment feasible (Guk et al., 

2019). Some examples of wearable sensors include pedometers, smart watches, posture meters, 

attachable sensors for any part of the body, insoles, flexible goniometers, electromagnetic 

tracking systems, and sensing fabric (Tao et al., 2012).   

Wearable sensors can be attached anywhere on the body but for gait analysis, they are placed 

at the waist, hip, knee, ankle, and/or foot or worn as a sock or an insole. Chizeck deployed a 

flexible goniometer and attached it to the hip, knee, and ankle joints to record joint angles 

(kinematic parameter) during different phases of the gait cycle (Chizeck, 1997) and Slavelberg 
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and Lange used foot pressure insoles with sensors embedded in the insole of the footwear to 

estimate ground reaction forces (Savelberg & De Lange, 1999).  

With increasing sophistication, the data generated from IMUs can be stored in the device for 

long periods. They provide post-performance information on the quantity of movement, for 

example, steps taken when walking, as well as on some temporal, spatial, kinematic, and 

kinetic parameters, depending on where the sensor is worn.  Recent wearables available in the 

market not only help detect movement related to gait but are also capable of providing realtime 

feedback on gait parameters (Hulleck et al., 2022; Muro-De-La-Herran et al., 2014).  

Mate et al. (2023) conducted a review of these wearable technologies that have feedback 

capability and are aimed at promoting a safer and more normal gait pattern. The wearables 

chosen for review were those commercially available to the public and not just for use in a 

clinical or research setting, indicating emerging evidence of their effectiveness (Mate et al., 

2023).    

Another component of this study makes use of a wearable sensor, Heel2ToeTM, that comprises 

a 3-axial linear accelerometer, gyroscope, and magnetometer designed to detect the angular 

velocity of the ankle joint during walking. It is a smart wearable as it was developed to provide 

real-time auditory feedback for a “good” step, one in which the step is initiated with a strong 

heel strike.  The Heel2ToeTM sensor has been shown to detect these “good” steps with a high 

degree of accuracy (Vadnerkar et al., 2014). In clinical populations, the angular velocities 

generated during walking are associated with cadence and falls (Mayo et al., 2023). In healthy 

participants, Tomita et al. showed a single bout of training with the Heel2ToeTM on the right 

leg produced changes to the gait pattern on the trained and untrained leg (Tomita et al., 2024).    

1.1.3.3 Pose Estimation / Markerless Motion Capture (TechO)  

Pose estimation is a markerless method of gait analysis that uses advanced computer vision 

techniques and algorithms to detect anatomical landmarks from an image or video frame, that 

can then be tracked during movements of joints and limbs during a series of “poses” that make 

up a functional activity like walking. This method can analyze 2D images or videos recorded 

using a smartphone camera or a professionally mounted camera. It can also analyze 3D 

representations captured using precise yet cumbersome and expensive systems like 

monochrome CMOS sensor and infrared projector; DARI motion system (uses eight highspeed 

cameras placed around the subject and a computer vision engine); and 4DBODY System (uses 
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a single frame structured light illumination) (Connie et al., 2022; Hii et al., 2023). Detection of 

movement patterns facilitates the analysis of different gait parameters like step length, gait 

speed and joint angles.  This avoids the time-consuming process of placing markers and sensors 

over the body and using a series of cameras to detect motion (Vun et al., 2024).   

Like wearable sensors, pose estimation provides an opportunity for remote assessment and real-

time assessment of gait in daily life (Mroz et al.). Some common libraries for pose estimation 

are OpenPose, AlphaPose and MediaPipe Pose. These libraries are often open source, but data 

processing requires an expert in coding to help extract various gait parameters increasing their 

accessibility and cost. Before the advent of these libraries, analyzing video data involved 

experts watching video playback, noting the times and locations of specific events, and 

converting the footage into a series of 2D images. This process was followed by separating the 

background from the subject in the video ultimately leading to a frame-by-frame analysis. This 

was a time-consuming activity, requiring expert knowledge of the motion to be analyzed, and 

thus was prone to analyst variability (David & Perona, 2014).  

Pose estimation is used in the sports sector to detect the positions of body segments during 

athletic activities. The analysis of body segments provides valuable feedback for improving 

athlete performance (Stenum, Cherry-Allen, et al., 2021). However, recent literature highlights 

the use of this method in the health sector for video-based analysis of the gait pattern. For 

example, to analyze human gait, Stenum et al. used a 2D video-based approach deploying the 

OpenPose library to analyze temporal and spatial gait parameters (Stenum, Rossi, et al., 2021). 

Ramesh and Lemaire implemented an observational gait assessment measure (Edinburgh 

Visual Gait Score) using the OpenPose library on a video recorded using a handheld 

smartphone to make gait analysis more accessible (Ramesh et al., 2023). Tony Hii et al. 

compared three different markerless pose estimation libraries viz. OpenPose, MMPose, and 

MediaPipe Pose. Their ability to assess lower limb kinematics was compared and it was 

concluded that MediaPipe Pose was the optimal platform for analyzing lower limb joint 

kinematics with minimal error (Hii et al., 2023). The third and last component of this study 

deploys the MediaPipe Pose library for gait analysis.   

1.2 Relevance of Gait Analysis in Parkinson’s Disease (PD)  

PD is a progressive, neurological, movement disorder caused by the degeneration of nerve cells 

in the substantia nigra situated in the basal ganglia. The loss of cells in the substantia nigra 
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reduces the amount of dopamine available for controlling movement, and for regulating mood, 

judgement and decision-making. The four cardinal dopaminergic motor symptoms of PD are 

resting tremor, bradykinesia, postural instability and rigidity. 90% of those affected also exhibit 

a wide array of non-motor symptoms which include neuropsychiatric, autonomic, sleep and 

sensory symptoms (Grimes & Bulman, 2002). Nevertheless, one of the most serious 

consequences of PD is falls and fractures, most of which occur during walking (Creaby & Cole,  

2018). People with PD are 2.5 times more likely than a peer group to sustain a hip fracture  

(Leslie et al., 2010). While most are diagnosed over the age of 60, ≈10% develop symptoms 

before the age of 50 (Ferguson et al., 2016). Even within 5 years of diagnosis, 60% have trouble 

walking and experience postural instability leading to a fall. Out of those living with PD, ≈78% 

experience symptoms of impaired gait, and 68% fall each year, leading to fractures that result 

in significant healthcare costs (Schrag et al., 2002). PD is reported to have the 3rd highest level 

of direct health care costs (Albarmawi et al., 2022). In 2019, the Michael J. Fox Foundation 

estimated the annual cost of PD in America to be $51.9 billion every year, with $25.4 billion 

attributable to direct medical costs (e.g., hospitalizations, medication) and $26.5 billion in 

nonmedical costs like missed work, lost wages, early forced retirement and family caregiver 

time. In Canada, estimates in today’s currency would be almost $1 billion.   

PD begins with subtle and gradual motor changes with a distinctive gait pattern. As PD is 

degenerative, those affected may exhibit asymmetric, reduced, or no arm swing, shuffling gait 

characterized by short steps and foot scuffing leading to trips and falls (Kim et al., 2018). There 

is also a forward flexion of the body including the trunk, neck and extremities. Lateral trunk 

flexion presenting as asymmetry of the trunk is very common and is seen in up to 80% of those 

affected. The rigidity of the trunk is also evident when turning. The person turns in a block due 

to the loss of the craniocaudal sequence while turning. Furthermore, bradykinesia is commonly 

manifested; for example, by trouble getting up from a chair, needing more than one attempt or 

their arms as support. Additionally, walking and standing occur with a narrow base of support 

which grows narrower as the disease progresses. This distinctive presentation of gait and 

postural impairments typical of PD facilitates the comparison of gait metrics (parameters) 

generated across different remote methods (Raccagni et al., 2020).   

1.3 Epidemiological burden of Parkinson’s Disease (PD)  

A disease commonly diagnosed in the elderly and middle-aged, PD has become a huge public 

health concern (Xu et al., 2024). According to the analyses of the Global Burden of Disease 
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study, 2016 the prevalence of PD has doubled with the rise in the aging population. It is the 

second most common neurodegenerative disease (Dorsey et al., 2018). According to Stats 

Canada, approximately four million people worldwide are living with PD, out of which 

100,000 are Canadians. This is projected to increase by 65% by 2031. As the population of 

those living with PD grows, the demand for PD-related therapies will increase (Bennett et al., 

1996; Bronstein et al., 2009).   

Prevalence and risk of mortality of PD are known to be higher in men than women by a ratio 

of 4:1 (Cerri et al., 2019). Africa, Asia and Latin America report lower prevalence of the disease 

when compared to Europe and North America (Abbas et al., 2018). The EUROPARKINSON 

study reported that 54% of those living with PD above the age of 65 were under-diagnosed (De 

Rijk et al., 1997).   

1.4 Physiology behind gait impairment in Parkinson’s Disease (PD)  

The physiology underlying gait and postural impairment in PD is complex and involves 

dysfunction at the cortical and subcortical levels within the locomotor network. The locomotor 

network comprises the spinal central pattern generators, brainstem mesencephalic and 

cerebellar locomotor regions, and cortico-striatal input projecting to the primary motor cortex. 

Execution of the complex motor task of walking is partially dependent on this network (Bohnen 

et al., 2022). Dopamine depletion disrupts the equilibrium between the events and systems 

required by the locomotor network. This disruption leads to tremors, rigidity, bradykinesia, and 

impaired balance and coordination resulting in impaired gait. In addition to this, people with 

PD also lose the ability to modulate gait due to difficulty recruiting cortical motor areas, 

particularly the frontoparietal and supplementary areas. Normally walking in adults is 

automatic and requires minimal use of attention. However, in PD due to loss of dopaminergic 

input in the posterior putamen that is known to be associated with automatic behavior, there is 

more difficulty walking without consciously paying attention (Wu et al., 2015).   

1.5 Emphasis on analyzing gait impairments in Parkinson’s Disease (PD)  

Gait impairments are closely linked to posture and balance impairments and are the most 

prevalent core axial symptoms of PD. Gait impairments have a debilitating consequence on the 

person’s quality of life and self-efficacy (Di Biase et al., 2020; Tosin et al., 2024)   
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In 1817, James Parkinson emphasized the need for gait evaluation by stating, “Observation of 

patients begins while they are walking into the office”. Thus, gait is a potential biomarker for 

detecting the progress of PD, calibrating appropriate medication doses, and measuring response 

to therapies (Goetz, 2011).  

There is evidence that dopaminergic medication (L-dopa) improves both episodic symptoms 

like freezing and those that persist during daily activities such as short step length and increased 

gait speed. There is also evidence that these medications can further impair gait leading to 

fluctuations in motor response, gait variability, impaired rhythmic movement, and dyskinesia 

(Smulders et al., 2016). Hence, a person with PD might be able to cover optimal distance while 

walking in the earlier stages but they may not necessarily walk with a safe and efficient pattern 

rendering walking more tiring and less enjoyable (Lamont et al., 2012).  Thus, it is essential 

that not only the person’s walking capacity is assessed but also that a robust assessment of the 

gait quality parameters that explain walking capacity is carried out. Despite this need, most 

clinical gait assessments for PD are restricted to measures of walking capacity and performance 

with measures such as the Unified Parkinson Disease Rating Scale (UPDRS), Movement 

Disorder Society MDS-UPDRS, Freezing of Gait Questionnaire (FOG-Q), Parkinson Disease 

Quality of Life Questionnaire (PDQ-39), 10 Minute Walk test, 6 Minute Walk test, Timed Up 

and Go test (TUG), Berg Balance Scale (BBS) and Dynamic Gait Index (DGI) focusing on 

capacity and performance of gait (Bloem et al., 2016; Holden et al., 2016).   

The next chapter outlines the rationale and objectives for this thesis.   
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Figure  1 .2   Applications of gait analysis: Reproduced from (Sethi et al., 2022)   
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Figure  1 .3   Terminology describing gait cycle: Reproduced from  ( Pirker & Katzenschlager,  

2017)   
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Figure 1.4   Illustrates phases of the gait cycle: Reproduced from (Pirker & Katzenschlager,  

2017)   
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Table 1.1. Core Elements of Gait Assessment  

Elements  Description  Gait parameters  

Temporal and 

Spatial (often 

referred to as 

temporospatial)  

Movement and positioning of body 

segments in space and time during 

walking 

Temporal parameters are 

cadence, speed, step and stride 

time. 

Spatial parameters include step 

length, step width and stride 

length, while (Lohman, 2011) 

Kinematic  

Motion of the body segment relative 

to the other during different phases of 

gait without considering the forces 

acting on the body 

Angular velocity, stride 

velocity, joint angles 

(Habersack, 2022) 

Kinetic  Forces acting on bodies 

Ground reaction force, impulse, 

active and passive propulsion 

(Habersack, 2022) 
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Figure 1.5   Sequence of events that occur for walking to occur   
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Table 1.2. Methods of Gait Assessment that are feasible in different settings. Those crossed 

out indicate methods that aren’t feasible under the specific setting  

Clinical and Research Setting  Remote Setting  

Observational Analysis Observational Analysis 

Instrumented Walkways Instrumented Walkways 

Marker-based motion capture system Marker-based motion capture system 

Marker-less motion capture (e.g. Pose 

Estimation) 

Marker-less motion capture (e.g. Pose 

Estimation) 

Wearable Sensors Wearable Sensors 

  

     



 

  36  

Table 1.3. Summary of reliability of measures used for observational analysis of gait  

  Measure  Reliability  Reference  

1  
RVGA   

(Rivermead Visual Gait Assessment)  
Moderate  (Lord et al., 1998)  

2  
GAIT   

(Gait Assessment and Intervention Tool)  
Substantial  (Daly et al., 2009)  

3  
OGS   

(Observational Gait Scale)  
Moderate  

(Mackey et al.,  

2003)  

4  
GABS  

 (Gait and Balance Scale)  
Moderate  

(Thomas et al.,  

2004)  

5  
VGAS   

(Visual Gait Assessment Scale)  
Moderate to perfect  

(Dickens & Smith,  

2006)  

6  
EVGS   

(Edinburgh Visual Gait Score)  
Excellent  (Uysal et al., 2023)  

7  

BAWI   

(Bath Assessment of Walking  

Inventory)  

Substantial  
(Clarke &  

Eccleston, 2009)  

8  
VAHG   

(Visual Assessment of Hemiplegic Gait)  
Moderate  

(Hughes & Bell,  

1994)  

9  
SGS   

(Standardised Gait Score)  
Substantial  (Macri et al., 2012)  

10  

SCI-FAI  

 (Spinal Cord Injury Functional  

Ambulation Inventory)  

Moderate  
(Field-Fote et al.,  

2001)  

11  
FGA   

(Functional Gait Assessment)  

Moderate to  

Substantial  

(Wrisley & Kumar, 

2010)  

  

12  
CHAGS   

(Chamorro Assisted Gait Scale)  
Substantial  

(Chamorro-Moriana  

et al., 2016)  
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Chapter 2: Rationale and Objectives   

2.1 Rationale  

People with PD have a typical gait pattern, characterized by stooped posture and short shuffling 

steps with the center of mass too far forward to be safe. This pattern is disabling and dangerous 

and negatively impacts their quality of life, making gait impairment the leading reason for 

individuals with PD to seek physical rehabilitation. The recent Canadian Guideline for 

Parkinson’s Disease states, "Physiotherapy specific to PD should be offered to people 

experiencing balance or motor function problems” (Grimes et al., 2019). However, there is a 

huge discrepancy between what should be and what currently exists. According to the Canadian 

Institute for Health Information (2021), only 1.5% of home care visits in Canada are attributed 

to PD. At best, a person may see a therapist for an assessment at a regular medical visit. 

According to the Global Burden of Disease study, 2016 the prevalence of PD has doubled with 

the rise in the aging population (Dorsey et al., 2018). Thus, the demand for individualized gait 

assessment and therapy will greatly exceed available resources and technology is poised to fill 

this gap.   

Gait assessments in clinical practice primarily focus on walking competency as reported by the 

person themselves (or family member), measured using performance tests (such as gait speed, 

or TUG), or observed by the clinicians during a walking task. Rarely do clinical assessments 

include measures of gait quality as represented by temporal, spatial, kinematic and kinetic gait 

parameters.   

These episodic assessments often fail to provide a comprehensive and accurate picture of a 

person’s walking behaviours in daily activities. Technology can readily provide data for all 

these measurement situations and can be used outside of the clinic. The question that now 

emerges is the extent to which the different methods of obtaining information on how a person 

with PD walks are comparable across different methods of obtaining these clinically relevant 

data.    

2.2 Specific Objectives  

The overall aim is to contribute evidence as to the comparability of 3 methods of remote gait 

assessment in individuals with Parkinson’s Disease.   

Specifically, the purpose is to estimate the extent to which values on gait metrics are 

similar/different among 3 different methods of assessing gait quality:   
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(1) Observational analysis by physiotherapists  

(2) Wearable sensor – Heel2ToeTM sensor  

(3) Pose estimation – MediaPipe Pose library  

Secondarily, the aim is to identify challenges encountered with each of these methods.  
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Chapter 3: Methodology   

The methods of analysis of gait-related data using three methods are explained in this chapter 

and the subsequent chapters. Data was acquired remotely and analyzed at McGill University  

Health Centre Research Institute (RI-MUHC), Montréal, Canada on a sample of people with 

PD who submitted video recordings while performing a modified Timed Up and Go Test 

(TUG) at home or in their neighborhood. This study is embedded in the larger ongoing study 

on implementing the wearable sensor – Heel2ToeTM among people with PD to change gait 

patterns, walking behaviors, and motivational, functional and quality of life indicators over 3 

months. MedTeq, Mitacs, and Healthy Brains, Healthy Lives (HBHL) have funded this study 

through a partnership with PhysioBiometrics Inc. (McGill spin-off company dedicated to 

developing practical and accessible innovations for people with movement and posture 

vulnerabilities) and McGill University. Ethical approval for this study was obtained from The 

Institutional Review Board of McGill University.   

3.1 Study Design   

The study in this thesis follows a cross-sectional, multiple-case series design.  

3.2 Participant Recruitment   

To recruit participants Parkinson Quebec sent a newsletter announcing the study. Those 
interested responded by email and were sent a REDCap® link to consent and complete  

questionnaires for participation in the implementation trial. All communication regarding the 

study, including consent forms and questionnaires, were in both English and French. Videos 

submitted by the participants were stored on McGill’s secure OneDrive portal and screened 

based on eligibility. Only adult members of Parkinson’s Quebec with mild to moderate gait 

deficits equivalent to Hoen and Yahr grade 3 or less and those able to perform the TUG test 

independently with a minimum of 10 steps were included. In contrast, those unable to recover 

their balance from a perturbation during the TUG test, those unable to reinitiate movement 

without assistance, or those lost balance during a freezing episode while performing the TUG 

were excluded.   

3.3 Sample Size   

The sample size was estimated based on the number of probable observations in pairs or 

person-measures using MedCalc. For example, with 3 parameters: Heel strike, Push-off and 

Poor Foot clearance across two methods if there were 14 videos (participants) there would be 
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3*14 observations or 42 person-measures. Considering agreement on only half of these person 

measures, the confidence interval around this rate of 5 per 10 person-measures changed only 

marginally with increasing sample size. For example, N=14 95% CI 3.0 to 7.6 per 10 person 

measures, N=20 95% CI 3.3 to 7.1, N=30 95% CI 3.6 to 6.7. However, with 14 participants if 

excellent agreement (9 similarities per 10 person-measures) was presumed the 95% confidence 

interval was 6.4 to 12.4. Hence considering the feasibility, a sample size of 20 with 95% CI 

6.7-11.7 was estimated.  

3.4 Data Acquisition and Analysis  

Data was collected remotely using the REDCap® platform operational on the Brain Health 

Outcomes Platform (bhop.mni@mcgill.ca). It was stored and analyzed using the SAS® 

software exclusively accessible through the RI-MUCH (McGill University Health Centre 

Research Institute) research network.  

Three methods were compared: observational gait analysis of the video recordings, metrics of 

ankle angular velocity from the Heel2ToeTM sensor, and joint angle parameters obtained from 

pose estimation of the video recordings extracted using MediaPipe Pose. Pairwise comparisons 

between methods across common gait parameters were conducted, and the number of 

agreement pairs was counted, results for which are presented in the following chapters. Table 

3.1 presents these gait parameters acquired from the three methods and illustrates the 

commonality of parameters across methods.   
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Table 3.1. Commonality of parameters assessed across the three different remote gait 

analysis methods  

Gait Metrics 
assessed during 
modified TUG 
test  

Observational  
Analysis by 

Physiotherapists  

Data from  
Hee2toeTM 

wearable sensor  

Pose Estimation 
using MediaPipe  

Pose library  

Freezing     

Base of Support     

Poor foot clearance     

Unsteady while 
walking     

Variable Pace 
dynamics     

Heel Strike     

Push Off     

Cadence     

Swing at the hip     

Gait Symmetry     

Symmetry of arms 
while swinging     

Forward and 
backward arm 
swing  

   

Posture     

Tremor     

Dyskinesia     

Rotated trunk     

Ability to pivot     
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Chapter 4: Inter-rater Agreement for Observational Gait Analysis  

Chapter 1, section 1.1.3.1 discusses the challenges with using observational methods for gait 

analysis, particularly that there is variation across raters (see Table 1.3). As a bespoke checklist 

was developed for this study of people with PD, it was important to assess inter-rater agreement 

and modify as needed before proceeding further. This chapter will provide information on the 

development of the checklist, the video material rated, the characteristics of the raters, the 

results, and modifications made as a consequence of ratings.   

4.1 Development of the Checklist  

Sources from the literature were used to develop an initial checklist shown in Figure 4.1. 

(Eastlack et al., 1991; Guo et al., 2022; Krebs et al., 1985; Ridao-Fernández et al., 2019; 

Thomas et al., 2004). 34 gait parameters relevant to PD were identified from the literature. The 

structure and gradings in the checklist were inspired by the observational checklist developed 

at the Rancho Los Amigos Medical Center (Rancho Los Amigos Medical Center Professional 

Staff et al., 1989) and the ICF qualifiers (Organization, 2007). This version of the checklist was 

reviewed, piloted, and revised by 9 raters assessing one video. Raters entered their ratings on 

the REDCap® platform. Figure 4.2 presents the crude agreement across all raters where the 

average crude agreement was 84.9% with 13 out of 34 items having an agreement of 100%. 

The item related to side-of-arm symmetry had the lowest agreement (3/9 raters: 33.3%). 

Agreement results across items have been summarized in Table 4.1 below. Based on the 

consensus of this developmental assessment, items with agreement of less than 80% were 

reviewed and rephrased to improve clarity using a cognitive debriefing approach. 

(EggerRainer, 2019). Six iterations were needed until at least two members approved the final 

version. During the process, the items for the side of the asymmetric arm swing, movement of 

the trunk as a block, and hip extension were deleted (n=3) while the item for foot clearance 

was merged with scuffing. An additional item for co-ordination of the arms with legs was added 

to prevent confusion between symmetry and coordination. These amendments were based on 

feedback from the raters, culminating in the final checklist comprising 31 parameters illustrated 

in Figure 4.3.   

4.2 Video Recording Material  

Chapter 3 presented the methods for this thesis. Participants received a comprehensive list of 

instructions for recording the video with an example video recorded by the research team as 
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reference. Participants were asked to record both lateral and frontal views performing the 

modified TUG test between 30 minutes to 2 hours of taking their medication 

(Levodopa/Carbidopa). The research team assessed the videos for walking safety as the 

Heel2Toe training was delivered remotely. The videos varied by setting and quality of the 

recording. As shown in Figure 4.4, 27 videos were screened and 7 were deemed of insufficient 

quality based on the extent of visibility, clarity and completeness of the test for rating gait 

quality parameters.   

All participants were instructed to submit both frontal and side views of themselves performing 

the modified TUG (with a clear view of them getting up from a chair, walking a minimum of 

15 steps (if possible) instead of the standard 3 meters, turning around, walking back and sitting 

on the chair), thereby ensuring all gait parameters are vividly visible and easy to assess. 

However, only 4 out of 20 participants shared both frontal and lateral views, the rest only shared 

a lateral view or a combination of frontal and lateral views.   

4.3 Participant Characteristics   

Of the 20 participants, 10 were male and 10 were female, with a mean age of 69.9 years (SD =  

6.34). The participants’ ages ranged from 56 to 81 years.  

4.4 Raters  

A diverse group of 10 raters, all experienced physiotherapists, analyzed videos using the final 

version of the checklist. Six raters were internationally educated, and their clinical experience 

varied widely, ranging from 2.5 to 30 years. Raters underwent a training session with the final 

checklist before commencing the process of analyzing the videos.  

4.5 Process of Rating  

Each of the 20 videos of adequate quality was analyzed by 6 randomly assigned raters, as 

shown in Table 4.2 below. Ratings were entered on the REDCap® platform. While assessing 

the videos, raters could pause, reduce the playback speed and replay the video multiple times. 

Each item on the checklist was accompanied by a short description. The checklist comprised 

spatial, temporal and kinematic parameters where spatial and temporal parameters were rated 

on a dichotomous scale and the kinematic parameters were rated on a trichotomized scale 

(Krebs et al., 1985). The items in the checklist encompassed both positive and negative 

phrasing and hence the raters were warned to be vigilant in discerning the nuances within the 



 

  44  

items. The maximum number of points available was 35 with a higher score indicating better 

gait quality.   

4.6 Results from Inter-rater agreement   

Inter-rater reliability for the checklist was calculated using the percent agreement method. 

Additionally, to account for agreement by chance, Fleiss’ Kappa was calculated for each of the 

31 items. Both methods were analyzed using the SAS® software and results have been  

presented in Table 4.3. The table presents a matrix of percent agreement values across 20 videos 

(V1-V20) and 31 items (I1-I31) with Weighted Kappa values for each item and their 

interpretation. The column labelled ‘Avg’ shows the average agreement for each item. The 

matrix has 2 missing values labelled as ‘MCAR’ (Missing Completely at Random) 

corresponding to video 17 for items 30 and 31 as the end of the video was not clear enough to 

score the two items, as reported by the raters unanimously.   

Item 1 (Freezing while getting up), Item 5 (Freezing while walking) and Item 29 (Freezing 

while sitting down) show the highest average agreement of 100%. While Item 4 (Narrow base 

of Support) shows the lowest percent agreement of 71%. Items 10 (Heel strike), 11 (Push off), 

13 (Hip swing), 14 (Gait Symmetry), 17 (Forward arm swing), 18 (Backward arm swing), 21 

(One shoulder lower than other) and 22 (Forward lean of head) show an average agreement 

ranging between 71 and 80% which indicates moderate agreement. However, the general trend 

of average agreement is above 80 and 90%. For Kappa values, items 2 (Needs arms as support 

to get up), 3 (More than 1 tries to get up), 30 (Uses arms as support to sit), 31(Unable to control 

descent) and 6 (Looks at feet while walking) show substantial to almost perfect agreement. 

Items 10 (Heel strike), 16 (Coordination of arms with legs), 17 (Forward arm swing), 18 

(Backward arm swing), 20 (Rounded shoulders), 24 (Dyskinesia), 25 (Rotated trunk) and 27 

(Unable to pivot) show moderate agreement. Lastly, item 4 (Narrow base of support) has the 

lowest kappa showing slight agreement.   

4.7 Reliability of scores given by raters and influence of video quality  

Each item in the checklist had a binary or three-point ordinal rating scale, that when summed 

yielded a total score with a maximum of 35 points where a higher score indicated better gait 

quality. The scores given by each rater for individual videos was analyzed using the Intraclass 

Correlation Coefficient (ICC) to provide estimates of reliability using the random effects 

model, (Liljequist et al., 2019); the ICC was 0.78 indicating reliability sufficient for comparing 
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groups of people but insufficient for estimating within-person change for which the reference 

value is 0.90 (Norman & Streiner, 2008).  

Additionally, the effect of video quality on overall agreement and total scores was estimated. 

Table 4.4 shows the average crude agreement, the total score given by majority raters for 

individual videos, and their corresponding video quality, where video quality ratings were 

based on the angle of the camera, vividness, level of accuracy of the frames and details 

captured. V4 with ‘excellent’ quality showed the highest level of average crude agreement 

(96%). For each video, the average crude agreement was regressed on video quality using 

simple linear regression. A second model regressed total gait quality scores on video quality.   

Table 4.5 shows the results of the first regression model with ‘poor’ quality videos as a 

reference. According to the results, the average crude agreement differed across categories of 

video quality. For example, agreement was higher by 13.7% (p=0.0013) among videos 

considered to be of ‘excellent’ quality, 5.6% (p=0.0120) higher.  among videos of ‘good’ 

quality., and 3.25% (p=0.1123) for videos of ‘fair’ quality. Table 4.6 shows the results of the 

second regression model with ‘poor’ quality videos as a reference as there was only one 

‘excellent’ quality video it was grouped with ‘good’ quality videos. The estimates in the output 

from the regression were interpreted based on the standard deviation (SD) values of the scores 

by raters (6) and ½ SD (3) was considered to be a clinically important difference (CID). Thus, 

according to the results, for every one category difference in video quality, the overall scores 

differed by 5 units, an amount considered clinically relevant using the ½ SD criterion.   

4.8 Comparison between checklist scores assigned by raters and experts   

The agreement results summarized above were reviewed item by item by the senior-most rater 

on the team along with the principal investigator of the study, focusing on items with 

disagreements. All 20 videos were re-analyzed by the two members and items with less than 

100% agreement were rescored where the new score was considered as the consensus or score 

given by experts. Comparison of scores given by raters and experts have been illustrated using 

the Bland-Altman plot in Figure 4.5, the mean of scores was plotted on the x-axis and the y 

axis shows the difference between scores given by most raters and experts. Most points on the 

plot lie within the 95% CI bounds except for one outlier. The bias i.e. mean of differences 

between scores is -0.7 which indicates there is not much discrepancy between scores given by 

most raters and experts. Although the 95% CI ranges from -6.3 and 4.9, most points are 

clustered between 1 SD indicating scores given by most raters and experts are almost 
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equivalent. It was noticed that although the overall scores did not show much difference there 

were disagreements on individual items. Thus, cumulative differences at the item level have 

been shown in Figure 4.6. The graph shows the number of times expert opinion differed from 

the opinion of most raters and whether the scores improved or reduced. V6 exhibited the 

highest number of disagreements. In each of these cases, the scores were consistently lowered 

compared to what most raters agreed upon, which is highlighted in orange on the graph.  

During the review of scores, the experts discussed probable reasons for disagreements. This 

collaborative effort led to the development of a modified checklist aimed at improving 

interrater reliability. The revised checklist recommended for the observational analysis of gait 

specific to PD based on the results is presented in Figure 4.7 below. Modifications and additions 

to the checklist have been highlighted in green and one item that was deleted is highlighted in 

red.    
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Figure 4.1 Initial version of the checklist for 

video-based observational analysis of gait  
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Figure 4.2   Results from Pilot review of one video showing crude agreement among 9 raters   
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Table 4.1. Agreement across items in the initial checklist  

Agreement  
(High to low)  

Item 
Number  

Name of Item  

100%  2  Needs arms as support while getting up from the chair  
100%  3  More than one tries to get up from the chair  
100%  6  Looks at feet  
100%  8  Unsteadiness while walking  
100%  9  Variable pace while walking  
100%  11  Toe Push-Off  
100%  25  Arm tremor  
100%  26  Dyskinesia  
100%  27  Rotated trunk  
100%  31  Unable to turn and sit in one motion  
100%  32  Freezes while trying to get up from the chair  
100%  33  Uses arms as support to sit  
100%  34  Unable to control descent  
88.8%  1  Freezing while getting up from chair  
88.8%  5  Freezing while walking  
88.8%  7  Foot Scuffing  
88.8%  12  Fast cadence  
88.8%  20  Backward arm swing  
88.8%  22  Rounded shoulders  
88.8%  23  One shoulder lower than the other  
88.8%  24  Forward lean of head  
77.7%  4  Narrow Base of Support  
77.7%  10  Heel Strike  
77.7%  13  Swing at hip  
77.7%  19  Forward arm swing  
77.7%  21  Flexed at hip  
66.6%  14  Hip extension  
66.6%  15  Poor foot clearance  
66.6%  16  Gait Symmetry  
66.6%  28  Moves as a block  
66.6%  29  Anteroposterior movement of the trunk  
66.6%  30  Unable to pivot  
55.5%  17  Symmetry of arms while swinging  

33.3%  18  If arm swing is asymmetric, Right 
> Left or Left > Right  
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Figure 4.3   Final version of the checklist  

used for analyzing 20 videos   
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Figure 4.4   Flowchart showing the inclusion of videos based on their quality   
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Table 4.2. Random allotment of videos to raters   

Video Raters  

  No of 

ratings 

per 

video 

V1 R1 R2 R3   R6 R7  R9  6 

V2 R1 R2 R3   R6 R7  R9  6 

V3 R1  R3 R4 R5   R8  R10 6 

V4 R1 R2 R3 R4  R6 R7    6 

V5 R1 R2   R5 R6 R7   R10 6 

V6 R1   R4 R5   R8 R9 R10 6 

V7 R1 R2  R4  R6 R7 R8   6 

V8 R1   R4  R6 R7  R9 R10 6 

V9 R1 R2  R4 R5   R8  R10 6 

V10 R1 R2 R3   R6 R7  R9  6 

V11 R1  R3  R5   R8 R9 R10 6 

V12 R1   R4 R5 R6  R8  R10 6 

V13 R1 R2   R5   R8 R9 R10 6 

V14 R1   R4 R5   R8 R9 R10 6 

V15 R1 R2   R5 R6 R7  R9  6 

V16 R1 R2  R4   R7 R8 R9  6 

V17 R1   R4 R5 R6 R7 R8   6 

V18 R1  R3 R4  R6 R7   R10 6 

V19 R1 R3  R5 R6 R7 R8    6 

V20 R1 R3 R4  R6 R7  R9   6 

  
  



 

  53  

Table 4.3. Crude interrater agreement results alongside Weighted Kappa for each item across 

20 videos with the interpretation of Kappa scores (Landis and Koch 1977)  

 
    

  

Where V = ‘video’, I = ‘item’, NE = ‘not estimable’, Avg = Average, MNAR = ‘Missing Not  

At Random’   
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Table 4.4. Video Quality and overall percent agreement (%)  
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Table 4.5. Results from simple linear regression: Average percent agreement for each video 

regressed over video quality 

Parameter Estimates 
  

DF  Estimate  
Standard 

Error  T value  Pr > |t|  

Intercept  1  82.25  1.57  52.08  .0001  

Excellent  
Quality  
Videos  
(n=1)  

1  13.75  3.53  3.89  0.0013  

Good  
Quality  
Videos  
(n=7)  

1  5.60  1.97  2.83  0.0120  

Fair Quality  
Videos  
(n=8)  

1  3.25  1.93  1.68  0.1123  

Poor  
Quality  
Videos  
(n=4)  

0  Referent  

  

y = average percent agreement, x = video quality; reference as ‘poor’ video quality  
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Table 4.6. Results from Multiple Linear Regression: Overall scores of each video regressed 

over video quality and average percent agreement for each video  

Parameter Estimates    

Parameter  DF  Estimate  
Standard 

Error  T value  Pr > |t|  

Intercept  1  1.23  33.13  0.04  0.9707  

Good  
Quality  
Videos  
(n=8)  

1  5.06  4.49  1.13  0.2761  

Fair Quality  
Videos  
(n=8)  

1  5.17  3.85  1.34  0.1981  

Poor  
Quality  
Videos  
(n=4)  

0  Referent  

  

Percent 
Agreement 
(n=20)  

1  0.21  0.40  0.54  0.5979  

y = total scores, x = video quality, overall percent agreement; reference = ‘poor’ quality video 
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Figure 4.5   Bland - Altman Plot summarizing the difference between scores by experts and  

majority raters   
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Figure 4.6   Overview of the number of items for each video where expert opinion differed  

from majority scores by raters   
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Figure 4.7   Recommended Checklist  

based on the results   
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Chapter 5: Comparison of Gait Parameters from Observational Checklist with the  

Wearable Sensor  

This chapter provides greater detail about the wearable sensor and the kinematic parameters 

recorded using the sensor, followed by the methodology specific to this component of the study 

and concludes with a comparative analysis of the gait parameters recorded by the sensor to 

those analyzed using the observational method described in the previous chapter. As mentioned 

in Chapter 3, only common gait parameters can be compared. Therefore, the agreement pairs 

for four out of the 31 parameters discussed in Chapter 4, were counted to verify comparability 

between the two methods.  

5.1 Overview of the wearable sensor technology used in the study  

This study utilizes the Heel2ToeTM, a small, wireless, inexpensive and lightweight wearable 

sensor that clips to the side of the shoe shown in Figure 5.1. It was developed through a 

collaborative effort of the research team comprising physiotherapists, software and biomedical 

engineers at McGill University and PhysioBiometrics Inc., under the guidance of Prof Nancy 

Mayo. The algorithm used in the sensor analyzes in real-time, the angular velocity at the ankle 

joint in the sagittal plane and provides positive feedback at the same time in the form of a beep 

for every good step (one that is initiated with a strong heel strike) provided the angular velocity 

at the ankle crosses a certain threshold. These are features that set it apart from other wearable 

sensors, mostly designed for assessing the gait of healthy individuals. Furthermore, the 

Heel2ToeTM sensor has been successfully tested among individuals with Parkinson’s Disease 

demonstrating optimal efficacy, feasibility and potential in the population (Carvalho et al., 

2020; Mayo et al., 2024)  

The Heel2ToeTM can used for both assessment and training purposes, it is programmed at a 

sensitivity of 96.2% at an operating point of 75% specificity. The Inertial Measurement Unit  

(IMU) of this sensor forms the sensing module for detection of heel strike comprising a tri-

axial accelerometer (Range ± 6g, sensitivity 200mV/g), gyroscope (Range ± 500deg/s, 

sensitivity 2mV/deg/sec), magnetometer and an eight-channel microcontroller.   

To start recording gait parameters, the sensor is first calibrated using the Heel2toe Step 

Analyzer Android application platform shown in Figure 5.2. The sensor connects with the 

application using Bluetooth. Raw data is transmitted to an Android phone or computer and the 

feature extraction algorithm then analyzes the raw data displaying results from the recorded 

session shown in Figure 5.3. The development of the hardware and algorithm has been reported 
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(Vadnerkar et al., 2014) The Step Analyzer application includes features for personalizing the 

walk time and step threshold, allowing the client to adjust the intensity of the training session. 

When the beep is turned off, the sensor operates solely in ‘assessment mode’, which was the 

mode used for data collection in this study.   

5.2 Gait profile and kinematic parameters recorded by the wearable sensor  

The Heel2ToeTM records the angular velocity of the heel strike (initial contact), toe push-off, 

and power generated from heel strike to push-off along with speed and power during the swing 

phase of the gait cycle further described in Table 5.1. These parameters are recorded over the 

medial-lateral axis of the foot over the z-axis of the gyroscope. The angular velocity at heel 

strike is a distinguishing feature between good and bad steps. The angular velocities of heel 

strike, push-off, and power cycle are displayed as negative values, as they are recorded when 

the ankle pivots clockwise first toward the ground and then away from it. More negative values 

indicate larger angular velocity, better foot clearance and a ‘good’ step. Lower values (e.g., 

angular velocities for heel strike and push off  -120/sec) indicate a higher risk of fall. The 

angular velocities of the foot swing and the balance phase are displayed as positive values, as 

they occur in the counterclockwise direction and higher values indicate greater angular 

velocity, better single-leg stance and balance. Lastly, the coefficient of variation indicates 

regularity of the gait pattern and optimally ranges between 10-15%, a high coefficient of 

variation implies inconsistent gait which is fatiguing and can increase fall risk. All numeric 

values obtained from the analysis were categorized for ease of interpretation by the lay user. 

Table 5.2 presents values for only the common gait parameter recorded at the ankle and their 

corresponding categories and interpretations used for comparison with the items from the 

observational checklist. These categorizations were based on proprietary data from 83 healthy 

McGill students who helped test the sensor. The application also has a feature for summarizing 

the results over multiple sessions presented in Figure 5.4. In addition to mapping the overall 

gait profile, the algorithm plots the overall best and worst steps of the client in comparison to 

the optimal requirement illustrated in Figure 5.5.  

5.3 Method used for collecting data using the wearable sensor  

As described in Chapter 4, all those considered safe for the remote trial based on their submitted 

video performing the modified TUG test and willingness to continue the study were sent a short 

technology readiness survey electronically consisting of five binary questions explaining 

willingness and ability to use and adapt to the sensor: Wi-Fi access, an Android smartphone, 
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use a smartphone and applications installed on it with/without aid, positive about learning new 

things,  and last but not least able to walk outdoors on most days weather permitting. Eligibility 

for this component of the study was based on participants positively endorsing all 5 questions.  

Out of 20 participants, six were deemed ineligible for this component of the study since they 

did not have a phone with an Android operating system compatible with the sensor. Thus, 14 

eligible participants were mailed the Heel2ToeTM sensor with a comprehensive bilingual user 

manual as part of the larger implementation study on Parkinson’s Disease. They received 5 

online training sessions with a physiotherapist on using the sensor along with 5 basic exercises 

and were advised to use the sensor for a minimum of 3 months for 10 minutes twice every day, 

the Heel2ToeTM sensor which currently costs 150 CAD was given to the participants to keep 

after the trial was over.   

In an idealistic scenario of comparing two different methods of gait analysis, the gait 

parameters must be recorded simultaneously using both methods. Hence, participants were 

instructed to submit a similar video of them performing a modified TUG test, however, this 

time with the sensor clipped on in ‘assessment’ mode with the session time set at two minutes. 

However, out of the 14 participants, 10 were unable to record a video simultaneously while 

using the sensor due to reasons of travel, injury, lack of interest in the study or technical 

difficulties with using the sensor illustrated in Figure 5.6. For participants who were not able 

to share videos while actively using the sensor, the session recorded with the sensor closest in 

date and time to the shared video was used for comparison. Given that Parkinson’s disease is a 

chronic condition, with relatively slow progression, major changes in gait pattern were not 

expected in a short time frame.   

5.4 Comparison of metrics from the observational checklist and the wearable sensor  

As mentioned in Chapter 3, only common items from the observational checklist corresponding 

to heel strike and push-off, rated on a three-point ordinal scale as ‘optimal/weak/absent’, and 

those corresponding to poor foot clearance and fast cadence rated on a binary scale ‘yes/no’ or 

‘present/absent’, were compared pairwise to parameters recorded using the Heel2ToeTM sensor. 

These comparisons were possible due to the categorization of the numerical values obtained 

from the sensor, shown in Table 5.2. For ease of comparison of heel strike and push-off, 

categories ‘excellent/very good’ were considered equivalent to ‘optimal’; ‘good’ was 

considered equivalent to ‘weak’; and ‘fair/poor’ was considered equivalent to ‘absent’. For foot 

clearance categories ‘excellent/very good’ i.e. foot clearance greater than 400°/sec was 
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considered equivalent to ‘no – foot clearance not poor’ and all values below that corresponding 

to ‘good/fair/poor’ were considered equivalent to ‘yes – poor foot clearance’. Lastly, for the 

presence or absence of fast cadence, a step count of over 120 steps per minute recorded by the 

sensor was considered as ‘present’. The category cut-offs for comparison were determined in 

consultation with the senior rater on the team, considering normative values and thresholds for 

fall risk.   

Agreement pairs for each parameter were counted and have been presented in the contingency 

tables below. Majority ratings were considered for comparison. In cases where the overall 

ratings by most raters could not be determined i.e. in cases of a tie between responses, ratings 

given by experts as presented in section 4.8 were used as consensus. Ratings for heel strike and 

push-off were compared using a 3-way comparison while ratings from foot clearance and 

cadence were compared using a 2-way comparison in Table 5.3. The table shows agreement 

pairs for heel strike, push-off, foot clearance and cadence; where the first column of the table 

represents ratings from the observational checklist and the first row represents categorical 

equivalents from the Heel2ToeTM sensor grouped into three segments. For heel strike out of 14 

times, raters agreed with the sensor 9 times (64.2%). Out of the 9 times, raters were able to 

detect an optimal heel strike 3 times and a weak heel strike 6 times. For instance, the sensor 

recorded angular velocity at the heel strike as -378°/sec (excellent) and the majority rated that 

heel strike as optimal. In another case, the sensor recorded a heel strike of -120°/sec (fair), rated 

as weak. For push-off raters agreed with the sensor 4 out of 14 times (28.5%), detecting 2 

optimal and 2 weak push-offs. For example, when the angular velocity at push-off recorded by 

the sensor was -439°/sec (very good), most raters rated that push-off as optimal. On the other 

hand, a push-off -320 (good) was rated as optimal by raters. However, with a push-off of -

390°/sec (good), the majority rated it as weak. For foot clearance, where raters agreed with the 

sensor 3 times on detecting a good foot clearance and 2 times on detecting a poor foot clearance 

(35.7%). For example, when the sensor recorded foot clearance of -290°/sec (poor) it was rated 

as ‘no’ by the majority. However, in another case foot clearance of -495°/sec (excellent) was 

rated as ‘no’ by the majority. For agreement on cadence, raters were able to identify correctly 

the absence of fast cadence 12 out of 14 times (85%). However, one of the cases with a cadence 

of 263 steps/minute (fast cadence) was rated by the majority as an ‘absent fast cadence’.    
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Figure 5.1 Heel2ToeTM sensor clipped to the right shoe  
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Icon for  calibration   

Feature for  
selecting the side of  
the foot the sensor  

The threshold for  
minimum angular  
velocity of heel  
strike can be  

Figure 5.2   Snapshot of the application page for calibrating and  

personalizing the settings of the sensor   
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Figure 5.3   Snapshot of the results displayed on the application in real - time   
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Table 5.1. Gait parameters and metrics that can be recorded using the Heel2ToeTM  

Gait Parameter and metrics  Description  

1  
Angular velocity at heel 

strike (HeelStrikeAV)  

The speed at which the foot moves from dorsiflexion when the 

heel strikes the ground to neutral when the foot is flat on the 

floor. It is measured in °/sec. It is the clockwise movement of 

the ankle at the pivot which is recorded as a negative value by 

the sensor.   

2  

Angular velocity at 

pushoff 

(HeelOffPowerAV)  

The speed at which the heel lifts off the floor to propel the body 

forward. It is a clockwise movement around the pivot point of 

the ankle and is recorded as a negative value by the sensor.  

3  
Power cycle 

(PowerPhaseAUCAV)  

The phase of the gait cycle from heel strike to push off that 

essentially generates the power to propel the body forward. It is 

calculated by summing the areas under the zero line on the 

graph. It is recorded as a negative value and is measured in 

(°/sec)2  

4  

Angular velocity of foot 

clearance  

(FootSwingAV)  

The speed at which the foot pivots around the ankle joint from 

plantarflexion at push-off to dorsi-flexion when the leg is 

preparing to position the foot to make a heel strike. A certain 

angular speed is needed to clear the toes from the ground, or the 

person can stumble and fall. As the movement is 

counterclockwise, the value is positive.  

5  
Balance cycle 

(BalancePhaseAACAV)  

The swing phase of the gait cycle when one foot is in the air 

swinging forward and the other foot is on the ground. The 

height and duration of the swing creates an area measured in 

(°/sec)2. The magnitude of this area depends on the person 

being able to stand on one leg, termed single leg stance.   

6  

Coefficient of variation  

HeelStrikeAVCV  

HeelOffPowerAVCV  

FootSwingAVCV  

PowerPhaseAUCAVCV  

BalancePhaseAACAVCV  

The sensor generates gait metrics for each step. When the 

person takes many steps, as in a walking test, the average value 

is one summary metric as well as the variability (standard 

deviation) around the mean. The coefficient of variation is the 

ratio of the standard deviation of angular velocity to the average 

value, indicating how consistently a person walks.  
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Table 5.2. Categorization of the range of values of common gait parameters recorded from  

the Heel2ToeTM sensor on a sample of 83 health professional students  

Parameters 
/Category 
ratings  

Excellent  Very Good  Good  Fair  Poor  

|Maximum|  25th or 75th 
percentile  

Median  25th or 75th 
percentile  

|Minimu 
m|  

Heel strike  
(°/sec)  -400 to < -320  -320 to < -280  -280 to < -200  -200 to < -120  < -120  

CV%  10 to < 20  20 to < 25  25 to < 30  30 to < 50  ≥ 50  

Push-off  
(°/sec)  -600 to -481  -480 to -421  -420 to -301  -300 to -121  -120 to 0  

CV%  5 to < 15  15 to < 25  25 to < 30  30 to < 50  ≥ 50  

Foot 
clearance  
(°/sec)  

600  400  360  340  200  

CV%  5 to < 10  10 to < 15  15 to < 20  20 to < 30  ≥ 30  

Note: For heel strike, and push-off the more negative the number the stronger the step; for 

foot clearance the more positive the number the stronger the step 
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Figure 5.4   Example dashboard generated for a client showing metrics for each gait parameter   

recorded   
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Figure 5.5   Client’s best and worst steps graphed against the optimal step requirement   
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Figure 5.6   Eligible participants and drop - outs from the wearable component of the study   
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Table 5.3. Agreement pairs for 14 participants with common gait parameters between the 

observational checklist and the wearable sensor  

Ratings from the 
observational 

checklist  

Categorical gradings for numeric data from the Heel2ToeTM 
sensor  

Heel Strike  Excellent/Very 
Good  

Good  Fair/Poor  Total  

2 (Optimal)  3  2  0  5  

1 (Weak)  2  6  1  9  

0 (Poor)  0  0  0  0  

Total  5  8  1  14  

Crude Agreement  64.%  

Push Off  Excellent/Very 
Good  

Good  Fair/Poor  Total  

2 (Optimal)  2  2  0  4  

1 (Weak)  3  2  4  9  

0 (Poor)  0  1  0  1  

Total  5  5  4  14  

Crude Agreement  28.5%  

Foot Clearance  Excellent/Very 
Good  

Good/Fair/Poor  Total  

1 (Not poor)  3  8  11  

0 (Yes poor)  1  2  3  

Total  4  10  14  

Crude Agreement  35.7%  

Fast Cadence  Slow/Purposeful/ 
Moderate/Brisk  

Fast  Total  

1 (Absent)  12  1  13  

0 (Present)  1  0  1  

Total  13  1  14  

Crude Agreement  85%  
Note: Agreement pairs are highlighted in green  
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Chapter 6: Application of MediaPipe Pose in real-world Gait Observations: Challenges 

and Solutions  

The third and final method tested for application for remote gait analysis in this study was the 

pose estimation method (section 1.1.3.3). A PubMed® search on pose estimation in gait analysis 

revealed 128 papers published since 1999. A large number of studies relied on the labor-

intensive process of separating the background from the subject in the video and manually 

identifying anatomical landmarks. However, with advancements in technology, there are now 

more open-source libraries that streamline and automate these tasks. Nevertheless, coding is 

still required to extract gait parameters from the identified landmarks. This chapter provides 

greater details about implementing such an open-source library, MediaPipe Pose with a tailored 

program to estimate gait parameters. Also addressed are the challenges encountered by 

applying this method to videos recorded in the real world and some suggestions for estimating 

specific parameters. Finally, a comparison of matching gait parameters across all three methods 

is presented.   

6.1 Overview of the technology used for pose estimation  

The MediaPipe Pose Landmarker task, developed by Google, was used to analyze gait videos 

using the Python PyPI package. The Pose Landmarker model uses the convolutional neural 

network to map human pose by estimating 33 3-dimensional (x, y, z) landmarks also called 

anatomical landmarks in real-time, as shown in Figure 6.1. The x-coordinate represents the 

normalized horizontal position of the landmark, the y-coordinate represents the normalized 

vertical position of the landmark, and the z-coordinate represents the normalized depth of the 

landmark. This library can identify both anatomical landmarks and world coordinates. It 

processes RGB video frames i.e. frame-by-frame analysis of a video using a model that 

represents images in terms of red, green and blue channels with a whole-body background 

segmentation mask, which is a binary mask that separates the subject from the background in 

an image or video frame. Compared to other open-source libraries, MediaPipe is relatively fast 

and shows high accuracy. It has been tested for reliability in gait analysis and the detection of 

motor impairments in PD. Studies done so far using the MediaPipe Pose library for gait analysis 

have reported detecting: heel strike, push-off, step length, stance time, swing time and double 

support time (Latreche et al., 2023; Hii et al., 2023).  
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6.2 Attempt to tailor the program to suit the requirements of the study  

To meet the need for detecting a broader range of temporal, spatial, and kinematic gait 

parameters for a comprehensive analysis best suited for clinical interpretation, a program 

inspired by the studies on pose estimation (Connie et al., 2022; Ramesh et al., 2023; Yang et 

al., 2021) was customized specifically to the observational checklist developed in this study, 

described in Chapter 4. The script for the program was created by the software engineer (EH) 

on our team in collaboration with the senior rater (NM) and principal investigator (NH). We 

aimed to identify as many gait parameters as possible. In the process, each gait parameter was 

first defined, and the relevant anatomical landmarks were listed. After running multiple 

experiments attempting to estimate angles and distances on the videos shared by the 

participants, we were limited to estimating 5 out of the 31 parameters from the checklist. This 

limitation was due to challenges of lack of an estimate of the ground, inconsistencies in distance 

covered during the modified TUG test, fluctuating angles of the camera, inconsistent 

resolution, and unsteady recording leading to variability in the video frames captured. The 

parameters thus possible to estimate were: (i) heel strike and push-off; (ii) swing at the hip; and 

(iii) forward and backward arm swing.   

6.3 Overview of the tailored program  

The libraries and modules used in the program were: the OpenCV library, SciPy library, 

NumPy, Pandas and the ‘os’ module. The parameters were estimated using the method of (i) 

the relative distance, (ii) the angle at the joint and angular velocity, or (iii) a combination of 

relative distance and angles. Where relative distances were measured in pixels, angles in 

degrees (°) and angular velocities in degrees/second (°/sec). An outline of the program with the 

initial output has been shown in Figure 6.2.  

Relative distances were estimated using the Euclidean distance formula, where ‘d’ the distance 

between points,  

√(𝑥2 − x1)2 + (𝑦2 − 𝑦1)2 

x1 and y1 are the coordinates of the first point and x2 and y2 of the second, x represents the 

horizontal position and y represents the vertical.   

The angle at the joint was estimated using the dot product formula for two vectors,  

𝑎 . 𝑏 =∥ 𝑎 ∥ ∥ 𝑏 ∥ cosθ 

where  is the angle between a and b, ∥a∥ ∥b∥ is the magnitude of the vectors a and b.  
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The angular velocity was estimated using the formula,  

𝜔 =  ∆𝜃 /∆𝑡 = ∆𝜃 ×  𝑓𝑝𝑠 

Where 𝜔 is the angular velocity, ∆𝜃 is the change in angle calculated using,  

∆𝜃 =  n + 1 −  n 

∆𝑡 is the time interval between frames, ∆𝑡 = 1/𝑓𝑝𝑠 where fps is frames per second.   

All 20 videos included were analyzed at 60 frames per second resulting in an output of 600 to 

900 frames per participant. Methods for data collection and inclusion of videos have been 

detailed in Chapters 3 and 4. All videos were converted to the MP4 format for analysis. This 

tailored program was first tested and validated on a video with no gait impairments. The 

process of extracting gait parameters was structured using this test video. An overview of the 

method used for estimating heel strike and push-off has been shown in Figure 6.3. A similar 

method was used for estimating arm swing, except instead of angular velocity, the angle at the 

shoulder that corresponded to the one frame of the best optimally viewed forward and 

backward arm swing was considered best for clinical relevance and comparison to the 

observational method as discussed with the senior rater. For swing at the hip, the average value 

of angle at the hip throughout one gait cycle with the standard deviation was suggested for 

comparison with the observational method. The method used has been explained in Figure 6.4.  

6.4 Estimate of Heel Strike and Push-off from Participant Videos   

The process of identification of gait parameters commenced by identifying the landmarks to 

estimate heel strike and push-off as they are the key events of a gait cycle shown in Figure 6.5. 

It was found that both parameters could be measured using the relative distance between the 

hip and the foot index (refer figure 6.1), where the distance between the hip and the foot index 

was expected to be the smallest at push-off and largest at heel strike. A graph plotting the 

relative distances showing values of heel strikes and push-offs from the video with no gait 

impairments is shown in Figure 6.6, where peaks represent heel strikes and troughs are push-

offs. The other possible method was to measure the angle and angular velocity at the ankle, 

where the angle and angular velocity at the heel strike were expected to be lower when 

compared to the angle and angular velocity at push-off. The landmarks for relative distance 

used were 24, 32 and 23, 31 while those for the angle at the ankle were 26, 28, 32 and 25, 27, 

31 as shown in Figure 6.1. When tested on the video with no gait impairments, the angle for 

the best heel strike was recorded as 103.1° with an angular velocity of -293.1°/sec and a 

normalized relative distance of 0.3246.  
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The angle for the best push-off was 116.6°, with an angular velocity of 497°/sec and a 

normalized relative distance of 0.2568.   

6.4.1 Challenges encountered during the process and solutions  

Most videos submitted by the participants had inconsistent camera angles with views 

fluctuating from frontal to lateral and posterior. Due to the small size of the foot, variable angles 

and focus of the camera lens, there was a lack of clarity and consistency in tracking the 

landmarks at the ankle. These errors led to ambiguity in angular velocity values, producing 

both negative and positive values for the same parameter. Estimating the angular velocity 

accurately from the calculated angles using the MediaPipe Pose library was difficult. Contrary 

to our hypothesis, the minimum and maximum angles at the ankle from the individual manually 

identified gait cycles did not correspond to a heel strike or push-off. For example, the maximum 

angle recorded was at the foot flat phase of the gait cycle. Additionally, the relative distances 

varied with the angle and distance of the camera from the person in the video. Thus, for ease 

of interpretation and comparative analysis, the most optimally viewed frame of the best heel 

strike and push-off was identified by observation by the principal investigator. The angular 

velocity corresponding to that frame was reported. As the above method was based on one 

frame only and did not capture the variability in steps, a second method was used as a proof-

of-concept. Instead of analyzing only the one best frame, all frames showing an optimally 

viewed heel strike and push-off were identified and the values of angular velocity of heel strike 

and push-off averaged. The data from each of these methods was used to derive heel strike and 

push-off parameters as shown in Table 6.1 and Table 6.2 respectively, along with ratings given 

by observers using the checklist, and angular velocity measured using the Heel2ToeTM sensor 

and averaged over all recorded steps.  

6.4.2 Results   

Table 6.1 shows that for Video 14 (V14) the optimally viewed method showed an angular 

velocity of heel strike of -364°/sec; the observers rated this participant’s heel strike as weak; 

the measured angular velocity from the sensor was -311°/sec which is “excellent/very good” 

using our normative data (see Chapter 5). For Video 20 (V20) the optimally viewed method 

using MediaPipe showed an angular velocity of -223°/sec which was rated as optimal by the 

observers and the value recorded by the sensor was -216°/sec which is “good” (see Chapter 5). 

Finally, in Video 6 (V6) the average angular velocity for the heel strike calculated was 20°/sec 
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with a standard deviation of 66.2°/sec while the optimally viewed method showed an angular 

velocity of 139.5°/sec; observers rated the heel strike as weak and measurements from 

Heel2ToeTM -240°/sec indicated a rating of “good”.   

The Spearman’s rank correlation between the angular velocity at heel strike from the optimally 

viewed value using pose estimation (column 2, Table 6.1) and that recorded from the sensor 

(column 5, Table 6.1) was 0.32 (p = 0.260), considered non-significant weak correlation. The 

difference in the paired observations between the two methods was neither consistent nor 

significant as shown by the Wilcoxon Signed Rank Test value of 27.5 (z-value: 0; p = 1.0). 

Additionally, the Spearman’s rank correlation between the angular velocity at heel strike from 

the optimally viewed value using pose estimation (column 2, Table 6.1) and the ratings by 

raters (column 4, Table 6.1) was -0.28 (p = 0.225), considered non-significant weak and 

negative correlation. The difference in the paired observations between the two methods was 

significant as shown by the Wilcoxon Signed Rank Test value of 7 (z = -3.658, p = 0.0002).  

Table 6.2 shows the same information for push-off. For Video 3 (V3) the optimally viewed 

method showed an angular velocity of push-off was 327.9°/sec which was rated optimal by the 

raters and the measured angular velocity recorded by the sensor was -439°/sec which is 

“excellent/very good” based on our normative data (see Chapter 5). Similarly, for Video 6 (V6), 

the average angular velocity for push-off calculated was 138.2°/sec with a standard deviation 

of 57.6°/sec, while the optimally viewed method showed an angular velocity of 205.8°/sec, 

which was rated weak by the raters, and measurements from Heel2Toe of -390°/sec indicating 

“good” (see Chapter 5). The Spearman’s rank correlation between the angular velocity at push-

off from the optimally viewed value using pose estimation (column 2, Table 6.2) and that 

recorded from the sensor (column 5, Table 6.2) was -0.22 (p = 0.386); considered 

nonsignificant weak and negative correlation. The mean difference of ranks between the two 

methods was significant as shown by the Wilcoxon Signed Rank Test value of 5 (z-value: 2.98; 

p = 0.00144). Additionally, the Spearman’s rank correlation between the angular velocity at 

push-off from the optimally viewed value using pose estimation (column 2, Table 6.2) and the 

ratings by raters (column 4, Table 6.2) was 0.15 (p = 0.514), considered non-significant weak 

correlation. The difference between paired observations between the two methods was neither 

significant nor consistent as shown by the Wilcoxon Signed Rank Test value 86 (z = -0.709, p 

= 0.477).  
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6.5 Estimate of swing at hip  

The metric of interest here is whether the participant showed movement at the hip during a gait 

cycle. Especially with PD, rigidity can result in very little hip movement and more knee 

flexion/extension to advance the foot. It was found that swing at the hip could be measured by 

calculating the change in angle (∆𝜃) at the hip for one gait cycle as shown in Figure 6.4. The 

landmarks used to calculate the angle at the hip joint were 26,24,12 and 25,23,11 as shown in 

Figure 6.1. When tested on the video with no gait impairments as shown in Figure 6.7, the 

angle at the hip during a heel strike, during forward hip swing of leg (Panel A), was 156.9° and 

push-off during backward swing of the leg (Panel B) was 152.9°, with a difference of 

approximately 4°. The neutral angle is 180° and the mean angle at the hip averaged over all 

frames on one gait cycle including both forward and backward movements was 165.7° ± 8.89 

with an average difference in angle of 0.32° degrees yielding a standard deviation of 2.8° (range 

-7.78° to 8.05°). As this angle is measured proximally, it indicates a much larger excursion of 

the foot, and it is the standard deviation that represents change of movement at the hip.  

6.5.1 Challenges encountered during the process and solutions  

The hip being a larger joint and typically closer to the camera, made it vivid and easier to track 

compared to the ankle joint. Consequently, there were fewer errors when tracking the angle at 

the hip. The trunk lean affected the angles at the hip demonstrating problems of using the torso 

instead of the pelvis to calculate the angle at the hip. Additionally, challenges due to the 

inconsistency of frames and variable views while recording the videos as mentioned earlier led 

to some ambiguities in results. Thus, frames of one complete gait cycle vividly visible and 

optimally recorded were identified manually and the Mean±SD of angles at the hip for that 

segment was reported. Table 6.3 presents the Mean±SD of the angle at the hip for all 20 videos 

estimated using MediaPipe, alongside their corresponding ratings by majority raters from the 

observational checklist. As the sensor was limited to recording parameters at the ankle, no 

values were available for the swing phase at the hip.  

6.5.2 Results  

As shown in the table the Mean±SD of the angle at the hip for one gait cycle for video 18 (V18) 

was 171.9°±6.5°; rated as optimal by the raters; the value for video 17 (V17) was 125.5°±1.8°; 

rated as poor by the raters and the value for video 3 (V3) was 177.3°±1.1°, rated as optimal by 

the raters. The Spearman’s rank correlation between the SD of the angles at the hip recorded 
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for one gait cycle using pose estimation (column 2, Table 6.3) and ratings from raters (column 

3, Table 6.3) was 0.228 (p = 0.332), considered a non-significant weak correlation. There was 

a significant difference between the angles at the hip recorded using pose estimation and the 

ratings as shown by the Wilcoxon Signed Rank Test value of 4.5(z-value: -3.75; p = 0.0018).  

6.6 Estimation of forward and backward arm swing  

In individuals with no gait impairments, an alternating gait pattern is observed, the arm 

alternates with the foot at heel strike exhibiting maximal forward swing and exhibiting 

maximal backward swing when the foot is pushing off. It was found that arm swing like heel 

strike and push-off could be measured using relative distance, angle and angular velocity at the 

shoulder. The relative distance between the shoulder and the wrist was expected to be largest 

during the maximum forward swing of the arm and comparatively smaller for the backward 

arm swing in the opposite direction. The landmarks used to detect relative distance were 12,16 

and 11,15 and those used to measure the angle at the shoulder were 14,12,24 and 23,11,13 as 

shown in Figure 6.1. Based on clinical experience the angle and angular velocity at the 

shoulder, for the forward arm swing was expected to be greater compared to the angle and 

angular velocity during the backward swing of the arm. The side of the trunk served as an axis 

in between the arm swings. When this method was tested on a video with no gait impairments, 

the angle for the manually identified, best optimally viewed forward arm swing was 58.93° 

with an angular velocity of 80.3°/sec with the relative distance between the shoulder and the 

wrist as 0.1534. Whereas the angle for the best-viewed backward arm swing was 40.98  with 

an angular velocity of -23.9°/sec and a relative distance of 0.1042. Relative distances between 

the shoulder and the wrist indicating arm swing for both left and right side (peaks = forward 

arm swing, troughs = backward arm swing) recorded from the video with no gait impairments 

have been graphed with relative distances of heel strike and push-off for the left and right foot  

(peaks = heel strike, troughs = push-off), as shown in Figure 6.8  

6.6.1 Challenges encountered during the process and solutions  

The challenge with reporting the angular velocities for arm swing is that these vary with gait 

speed (Plate et al., 2015). The gait speed of participants in this study was variable as the videos 

were recorded in a real-world setting, making values of angular velocity unreliable for 

comparisons and relative distance was not clinically relevant. The shoulder joint was 

comparatively vivid, however, issues such as a rotated trunk, or fluctuating lateral, frontal and 
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posterior views of the person in the video led to the aforementioned challenges. The relative 

distances were difficult to translate clinically. Additionally, the output generated recorded all 

angles at the shoulder without distinguishing the gait parameter. The lack of automation for 

identifying gait parameters using the program led to the tedious labor-intensive process of 

manually segregating, identifying and isolating frames based on individual gait events. 

Consequently, the angles of the best optimally viewed forward and backward arm swing were 

chosen to be the metric reported. Tables 6.4 and 6.5 present angles of using the optimally 

viewed method for forward and backward arm swing respectively alongside corresponding 

ratings given by raters using the observational checklist. As the wearable sensor (Heel2ToeTM) 

was limited to recording gait parameters at the level of the foot, there were no values recorded.   

6.6.2 Results  

Table 6.4 shows that for video 1 (V1) the angle recorded using the optimally viewed 

(representative of the best angle for forward arm swing) was 39.3°, rated as optimal by the 

raters; for video 17 (V17) the angle recorded was 2.6°, rated as absent by the raters and for 

video 3 (V3) the angle recorded was 16.9°, rated as weak by the raters. The Spearman’s rank 

correlation between the angle of the optimally viewed forward arm swing using pose estimation 

and corresponding ratings was 0.426 (p = 0.06), indicating a non-significant but moderate 

correlation. There was a significant difference between angles at forward arm swing estimated 

using pose estimation and the ratings by raters as shown by the Wilcoxon Signed Rank Test 

value 0 (z = -3.919, p = 0.00008).  

Table 6.5 shows that for video 20 (V20) the angle for the backward arm swing recorded using 

the optimally viewed method was 29.1°, which was rated optimal by the raters whereas an 

angle of 17° for video 13 (V13) was rated absent by the raters and video 7 (V7) with an angle 

of 11.4° was rated weak by the raters. The Spearman’s rank correlation between the angle of 

the optimally viewed backward arm swing using pose estimation and corresponding ratings 

was 0.574 (p = 0.008), indicating a large significant correlation. There was a significant 

difference between angles at backward arm swing estimated using pose estimation and the 

ratings by raters as shown by the Wilcoxon Signed Rank Test value 0 (z = -3.6214, p = 0.0003).  

6.7 Summary of results  

The correlation for parameters such as heel strike and push-off was found to be weak and not 

significant when angular velocity estimated using pose estimation was compared to both the 
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wearable sensor and the ratings from the observational method. Moreover, the correlation for 

the parameter of swing at hip was also weak and not significant when the standard deviation 

of the angle at the hip during one gait cycle estimated from pose estimation was compared to 

the ratings from the observational analysis. Only the parameters of forward and backward arm 

swing showed moderate to strong correlation which was significant only in the case of 

backward arm swing when angles estimated using pose estimation were compared to the 

observational ratings by raters. Arm swing likely showed a better correlation to the other 

parameters due to its greater vividness in the video and the proximity of the shoulder joint to 

the camera. Table 6.6 presents an overview of the correlation coefficients for the five 

parameters estimated using the method of pose estimation when compared to the other two 

methods of gait analysis used in this study.   
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Figure 6.1   Anatomical landmarks tracked by the MediaPipe Pose Landmarker task. This  

image has been reproduced from (Bazarevsky et al., 2020)   
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Figure 6.2 Outline of the program and initial output  
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Figure 6.3   Overview of the workflow for estimating heel strike and push - off   
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Figure 6.4   Overview of the workflow for estimating swing at the hip   
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Figure 6.5   Video frames frozen at heel strike (above)  

and push - off (below) for the right ankle   
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Figure 6.6   Graph showing the relative distance between hip and foot index on the right side  

for a modified TUG video with no gait impairments, where distance is measured in pixels   
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Table 6.1. Comparison of angular velocity at heel strike to observational ratings of videos of 

people with Parkinson’s Disease  

Videos  Angular Velocity of 
the best optimally 
viewed heel strike  

(°/sec)  

Proof of 
concept  

Mean ± SD   
(°/sec)  

Ratings given 
by raters 
using the  

observational 
checklist  

Average Angular  
Velocity over all steps 

recorded during 
walking session  

Heel2ToeTM sensor  
(°/sec)  

V14  -364.0  --  Weak  -311  

V13  -339.0  --  Weak  --  

V18  -289.1  --  Weak  -350  

V3  -267.0  --  Optimal  -301  

V11  -264.0  --  Optimal  --  

V1  -239.0  --  Optimal  -212  

V15  -223.5  --  Optimal  -346  

V20  -223.0  --  Optimal  -216  

V16  -177.6  --  Weak  -120  

V8  -156.1  --  Weak  -234  

V5  -140.5  --  Weak  --  

V2  -120.0  --  Optimal  -378  

V10  -116.4  --  Weak  -264  

V12  -100.3  --  Weak  -204  

V4  -83.9  --  Weak  --  

V7  -55.3  --  Weak  -226  

V17  -30.0  --  Weak  -227  

V6  139.5  20.1 ± 66.2  Weak  -240  

V9  -264.3  -136 ± 172  Weak  --  

V19  -213.3  
-109.4 ± 

118.3  Weak  --  
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Table 6.2 Comparison of angular velocity at push-off to observational ratings of videos of 

people with Parkinson’s Disease  

 

  

Videos  Angular Velocity 
of the best  

optimally viewed 
push-off  
(°/sec)   

Proof of 
concept  

Mean ± SD   
(°/sec)  

Ratings given 
by raters 
using the  

observational 
checklist  

Average Angular  
Velocity over all steps 

recorded during walking 
session Heel2ToeTM 

sensor (°/sec)  

V3  327.9  --  Optimal  -439  

V15  272.4  --  Weak  -504  

V1  232  --  Optimal  -389  

V10  206.1  --  Weak  -519  

V2  186.6  --  Optimal  -320  

V17  127.3  --  Weak  -304  

V16  -100.5  --  Weak  -219  

V4  -121.3  --  Weak  --  

V5  -132.4  --  Weak  --  

V8  -134.2  --  Absent  -416  

V7  -163.8  --  Weak  -442  

V12  -180.4  --  Weak  -349  

V13  -188.4  --  Weak  --  

V11  -222  --  Optimal  --  

V20  -233.7  --  Weak  -240  

V18  -270  --  Optimal  -600  

V14  -388  --  Weak  -233  

V6  205.8  138.2±57.6  Weak  -390  

V19  -253.2  -83.4±240.1  Weak  --  

V9  -100.6  -68±46.1  Weak  --  
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Figure 6.7   Snapshot of the frames showing angle at the hip during heel strike and push - off  

recorded for a video with no gait impairments   
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Table 6.3 Comparison of swing at the hip to corresponding observational ratings of people 

with Parkinson’s Disease  

Videos Mean±SD () 
(neutral = 180°) 

Ratings given by raters using the 
observational checklist 

For the angle at the hip 
V8 177.5±1.4 Poor 
V3 177.3±1.1 Optimal 
V11 175.9±3.1 Optimal 
V6 175.2±2.7 Poor 
V19 174.9±2.3 Poor 
V5 174.6±2.3 Optimal 
V4 174.4±3.8 Poor 
V12 174.1±1.9 Poor 
V9 173.1±2.7 Poor 
V14 172.8±2.3 Poor 
V13 172.5±3.7 Poor 
V20 172.1±2.7 Poor 
V18 171.9±6.5 Optimal 
V15 169.3±4.7 Optimal 
V7 168.6±7.3 Poor 
V16 169.4±2.7 Poor 
V10 168.5±8.2 Poor 
V2 168.5±6.6 Optimal 
V1 166.1±7.6 Optimal 
V17 125.5±1.8 Poor 
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Figure 6.8   Relative distances of arm swing and foot showing forward and backward arm  

swings and heel strikes and push - offs on either side during the modified TUG test   
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Table 6.4 Comparison of the angle at forward arm swing to corresponding observational 

ratings of people with Parkinson’s Disease  

Videos  Angle at forward arm 
swing () 

Ratings given by raters using the 
observational checklist  

V1  39.3  Optimal  

V15  28  Weak  

V14  25.3  Weak  

V18  25.1  Weak  

V5  24.9  Weak  

V20  23.2  Optimal  

V2  23  Optimal  

V13  23  Weak  

V11  22.1  Optimal  

V4  22  Absent  

V7  21.2  Weak  

V19  20  Weak  

V12  19.2  Optimal  

V8  18.6  Weak  

V6  18.5  Optimal  

V3  16.9  Weak  

V16  12.8  Absent  

V10  12.4  Weak  

V17  2.6  Absent  

V9  0.82  Absent  
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Table 6.5. Comparison of the angle at backward arm swing to corresponding observational 

ratings of people with Parkinson’s Disease  

Videos  Angle at backward arm swing () Ratings given by raters using the 
observational checklist  

V20  29.1  Optimal  

V3  17.9  Weak  

V6  17.7  Optimal  

V13  17  Absent  

V5  16.2  Weak  

V19  16.2  Weak  

V12  15.8  Optimal  

V11  15.8  Optimal  

V16  12.4  Absent  

P41  12  Weak  

V7  11.4  Weak  

V18  10.5  Weak  

V15  10  Absent  

V10  9.5  Weak  

V2  9.1  Weak  

V14  8.5  Absent  

V1  2.27  Weak  

V4  0  Absent  

V9  0  Absent  

V17  0  Absent  
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Table 6.6. Summary of Results of correlation between Pose Estimation parameters and 

matching Observational Ratings and metrics from the Heel2ToeTM sensor  

Gait Parameter  Pose Estimation –
Observational Ratings  
r (p-value)  

Pose Estimation – 
Wearable Sensor  
r (p-value)  

Heel Strike  -0.28 (p = 0.225)  0.32 (p = 0.260)  

Push-Off  0.15 (p = 0.514)  -0.22 (p = 0.386)  

Swing at Hip  0.228 (p = 0.332)  --  

Forward Arm Swing  0.426 (p = 0.06)  --  

Backward Arm Swing  0.574 (p = 0.008)  --  
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Chapter 7: Overall Discussion  

The COVID-19 pandemic catalyzed the widespread development of affordable and easily 

accessible technology allowing for therapeutic activities to be conducted with patients at home.  

In the context of telerehabilitation, these activities included gait assessment and monitoring 

triggering a paradigm shift in clinical practice toward remote assessments. This chapter 

provides insights into challenges encountered and summarizes the lessons learned in the 

attempt to test available technology in comparison with the traditional method in a scenario 

that closely simulates real-world remote clinical practice.  

The subsequent sections detail the challenges encountered by each method used in this study.    

7.1 Challenges encountered with the remote observational method  

The observational checklist’s structure required raters to provide a single overall rating for each 

gait parameter, regardless of the side that was being assessed. This approach caused confusion, 

particularly in cases of asymmetry, a common occurrence in PD. For instance, if a participant 

exhibited an absent arm swing on one side but optimal on the other, they would still get a point. 

Additionally, the rating categories did not provide an option for raters to indicate when a 

parameter was not observable. The inconsistencies in the phrasing of questions in the checklist 

with a mix of positive and negative statements led to difficulties interpreting the questions. 

Although the process of observational analysis is predominantly used due to its ease of use and 

simple data interpretation, it is tedious, time-consuming and only moderately reliable to detect 

impairments. Each rater took on average 15 minutes to rate one video. A minimum of 8 videos 

were assigned to each rater, which made the analysis cumbersome and fatiguing for them. 

Finally, inconsistencies in camera resolution, angle and frequency of recording, insufficient 

lighting, and clutter in the environment, led to obstruction of the full view of the participant. 

This culminated in difficulties in observing certain gait parameters, given some parameters 

such as arm symmetry are best viewed frontally while swing at the hip and heel strike are best 

viewed laterally.   

7.2 Challenges encountered while using the wearable sensor remotely  

Although the inertial measurement units in the Heel2ToeTM sensor accurately detect 

movements, the main challenge encountered with the wearable sensor used in this study was 

its unreliable Bluetooth connectivity and its exclusive compatibility with the Android operating 
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system. This led to multiple exclusions and dropouts. Additionally, connectivity issues during 

the test contributed to the loss of data. Furthermore, certain participants struggled to record 

videos while wearing the sensor which hindered simultaneous assessments using the different 

methods.   

7.3 Challenges encountered while using the method of Pose Estimation   

The pose estimation method was tested on the same videos used for observational analysis, 

utilizing the MediaPipe Pose library. Among the three methods, this proved to be the most 

challenging in terms of clinical integration, data extraction and interpretation.  The challenges 

were encountered although this method is known to provide accurate values of most gait 

parameters when used under perfect conditions, especially when videos are recorded using a 

multiple-camera system in a controlled environment. Accurately capturing the true joint angle 

using this method relies on depth estimation, triangulation of joints and the combination of 

triangulation of multiple pairs of cameras. However, this study was performed in a ‘real-world’ 

set-up, where only one camera was used and recordings had variable camera angles as 

caregivers used their smartphones to record the modified TUG test. According to Dill et al., 

2023, the accuracy of pose estimation using MediaPipe is highly dependent on the camera 

angle and the activity being evaluated. Our study confirmed these findings, revealing multiple 

instances of overestimation and underestimation of landmarks that were tracked using the 

library. Another challenge encountered was the absence of an estimate of the ground due to 

variable walking paths and distances walked by the participants limiting the estimation of gait 

parameters. However, the motive behind this study was to explore ‘real-world’ applications 

that are far from optimal scenarios. Additionally, the lack of automation of our program to 

identify gait events made the process labour-intensive and time-consuming. Although pose 

estimation libraries like MediaPipe are free, their implementation requires hiring skilled 

software engineers to develop tailored programs.   

7.4 Recommendations and Lessons Learned  

The most significant lesson learned from this journey is that the accuracy of remote gait 

analysis is influenced not only by the method used but also by the environment and quality of 

the videos. To achieve better quality videos optimal for remote analysis, a comprehensive list 

of instructions must be provided, comprising ways to avoid clutter while filming the video, 

ensuring the person is completely visible throughout, appropriate lighting, specified aperture, 
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minimum camera resolution, distance of the camera from the person and fixed walking 

distance. As some videos submitted were of suboptimal quality, a reference video filmed by 

the research team was sent to the participants which improved the quality of videos that were 

received later. Additionally, timely assistance should be provided to address any technical 

issues participants may encounter. While technology may seem easy to use in a controlled 

setup, it becomes considerably challenging in real-world scenarios explaining their poor 

integration into a clinical setup despite being proven valid and reliable. For future practice, a 

combination of both methods, the wearable sensor and pose estimation would be ideal for 

comprehensive analysis as the sensor although highly accurate is limited to recording 

parameters at the level of the foot. These technological methods have the potential to detect 

subtle nuances missed by the human eye and overcome the challenge of variability in ratings. 

Further research is needed in the field of pose estimation to make the estimates obtained 

comparable and reliable to the gold standard and automate programs to identify gait events 

accurately despite variable camera angles.   

7.5 Conclusion  

When comparing the three methods, it seems at the moment, the wearable sensor has the most 

promise for regular clinical use as it was possible for patients to use themselves and the data is 

readily interpretable by both the patient and clinician.  Newer versions of the Heel2ToeTM have 

eliminated the need for a Bluetooth connection to an Android smartphone. It does, however, 

provide a limited set of gait parameters. The observational checklist is too time-consuming and 

unreliable for individual assessment of change. Media Pipe pose requires too much expertise 

for the average clinician to use on a regular basis but certainly provides rich data when used 

optimally. Advances in automating the program for estimating a variety of gait parameters and 

in image processing could change its real-world applications.   
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