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Abstract

The metro is indispensable for the urban transportation system. As the world enters the
era of informatization and digitalization, data generated from smart card fare collection
systems (smart card data) have played an important role in the planning and operation of
metro systems. A large body of research uses smart card data to understand passenger
travel behavior in metro systems; it has been found that individual mobility in metro
systems is highly regular with interpretable patterns. Besides, smart card data have also
been extensively used in assisting the operation and control of metro systems, such as
inferring trip origins/destinations and forecasting passenger demand. However, a lack
in existing research is the connection between the above two aspects—how to use the
unique travel behavior characteristics of metro passengers to establish better data-driven
applications. To fill this gap, this thesis aims to develop travel-behavior-based inference
and forecasting models in metro systems.

The three contributions of this thesis, enclosed in three scientific papers, are (1) trip
destination inference, (2) real-time boarding demand forecasting, and (3) real-time origin-
destination (OD) matrices forecasting. All models developed in the thesis are tested
by real-world smart card data from Guangzhou, China. First, this thesis develops a
probabilistic topic model to infer trip destination from tap-in only smart card system.
The probabilistic topic model is learned from passengers’ historical travel behavior and
can predict the most likely destination of a trip given the origin and the departure time.
Complementing existing trip-chain-based destination inference methods, the proposed
model is particularly useful for isolated trips where conventional methods fail. Besides
destination inference, latent topics learned by the probabilistic model can be used to
analyze passengers’ travel behavior patterns. Second, this thesis aims to incorporate travel
behavior regularity into passenger boarding demand/flow forecasting. Utilizing the strong
regularity rooted in individuals’ travel behavior, a new concept named “returning flow” is
proposed to capture the generative mechanism of boarding flow. The returning flow is
highly correlated to the boarding flow and can be used as a covariate in a time series model
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to improve the boarding flow forecasting. Extensive experiments show the effectiveness
of using the travel behavioral feature boarding flow forecasting. The Last part of this
thesis addresses the real-time OD matrices forecasting problem in metro systems. Using
the low-rank property of OD data, the forecasting is formulated into a low-rank vector
autoregression (VAR) problem and is solved by dynamic mode decomposition (DMD).
Next, a forgetting ratio is introduced to exponentially reduce the weights for historical data.
Moreover, an online update algorithm is developed to update the model efficiently without
storing historical data or retraining. Experiments show the proposed model significantly
outperforms baseline models in forecasting both OD matrices and boarding flow.

In summary, this thesis uses travel behavioral characteristics to improve inference and
forecasting models in metro systems. The proposed models and solutions are beneficial
to the intelligent operation of metro systems. The three tasks of destination inference,
boarding flow forecasting, and OD matrices forecasting correspond to individual-level,
station-level, and-network level applications, respectively. By these three levels, this
thesis demonstrates the considerable potential of using travel behavior in various metro
applications.
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Résumé

Le métro est indispensable dans plusieurs systèmes de transport urbain. Alors que le
monde est entré dans l’ère de l’informatisation et de la numérisation, les données générées
par les systèmes de perception par cartes à puce peuvent jouer un rôle important dans la
planification et l’exploitation des systèmes de métro. De nombreux travaux de recherche
utilisent les données des cartes à puce pour comprendre les comportements de déplacement
des passagers dans les réseaux de métros ; on y constate que la mobilité individuelle dans
les métros est souvent très régulière, suivant des patrons interprétables. En outre, les
données des cartes à puce peuvent également être utilisées pour aider à l’exploitation et au
contrôle des systèmes de métro, via par exemple la déduction des origines/destinations
des déplacements des passagers et la prévision de l’achalandage. Cependant, une lacune
de la recherche existante concerne le lien entre ces deux aspects — comment utiliser
les caractéristiques de comportement des déplacements des passagers du métro pour
établir de meilleurs outils de planification basés sur ces données. Afin d’y apporter une
contribution, cette thèse vise à développer des modèles d’inférence et de prévision basés
sur les comportements de déplacement des passagers dans les systèmes de métro.

Les trois contributions spécifiques, chacune intégrée dans cette thèse sous la forme
d’un article scientifique, sont (1) l’inférence de la destination du voyage, (2) la prévision
de l’achalandage en temps réel et (3) la prévision des matrices origine-destination (OD) en
temps réel. Tous les modèles développés dans la thèse sont testés sur des données de carte
à puce du système de métro de Guangzhou, en Chine. Tout d’abord, cette thèse développe
un modèle de sujet probabiliste (modèle thématique) pour déduire la destination des
voyages dans un système de carte à puce à entrée unique (transaction à l’embarquement
seulement). Le modèle de sujet probabiliste se base sur le comportement historique des
passagers et peut prédire la destination la plus probable d’un voyage compte tenu de son
origine et de son heure de départ. En complément des méthodes existantes d’inférence de
destination basées sur la séquence de transaction, le modèle proposé est particulièrement
utile pour les trajets isolés où les méthodes conventionnelles échouent. Outre l’inférence
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de destination, les sujets latents appris par le modèle probabiliste peuvent être utilisés
pour analyser les modèles comportementaux des passagers. Deuxièmement, cette thèse
propose d’intégrer la régularité des comportements de déplacement dans les prévisions
d’achalandage (demande/flot d’embarquement des passagers). Utilisant la forte régularité
enracinée dans le comportement de voyage des individus, un nouveau concept nommé
“flot de retour” est proposé pour capturer le mécanisme générateur du flot d’embarquement.
Le flot de retour est fortement corrélé au flot d’embarquement et peut être utilisé comme
covariable dans un modèle de série chronologique pour améliorer la prévision du flot
d’embarquement. Des expériences approfondies montrent l’efficacité de l’utilisation de
cette prévision du flot d’embarquement des caractéristiques de comportement de voyage.
La dernière partie de cette thèse aborde le problème de prévision des matrices origine-
destination (OD) en temps réel dans les systèmes de métro. En utilisant la propriété de
bas rang des données OD, la prévision est formulée dans un problème d’autorégression
vectorielle de bas rang (VAR) et résolue par décomposition en mode dynamique (DMD).
Ensuite, un taux d’oubli est introduit pour réduire de façon exponentielle les poids des
données historiques. De plus, un algorithme de mise à jour en ligne est développé pour
mettre à jour le modèle efficacement sans stocker de données historiques ni se recycler. Les
expériences montrent que le modèle proposé surpasse considérablement les modèles de
base pour la prévision à la fois des matrices OD et du flot d’embarquement.

En résumé, cette thèse utilise les caractéristiques comportementales des déplacements
pour améliorer les modèles d’inférence et de prévision dans les systèmes de métro. Les
modèles et solutions proposés sont bénéfiques pour le fonctionnement intelligent des
systèmes de métro. Les trois contributions d’inférence de destination, de prévision des
flots d’embarquement et de prévision des matrices OD correspondent respectivement
aux applications au niveau individuel, au niveau de la station et au niveau du réseau.
Par ces trois niveaux, cette thèse démontre le potentiel considérable de l’utilisation du
comportement de déplacement dans diverses applications du métro.
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Chapter 1

Introduction

1.1 Background

As an efficient, high-capacity, and green transportation mode, the metro is playing an
ever-important role in shaping future sustainable transportation. By the end of 2017, there
were metros in 178 cities and 56 countries, carrying on average 168 million passengers per
day (Union Internationale des Transports Publics (UITP), 2018). These numbers are still
growing rapidly, especially in Asia-Pacific, Latin America, the Middle East, and North
Africa. The rapid growth of metro ridership and infrastructure brings new challenges to
metro operations, which calls for better management strategies and a better understanding
of the system. In the meanwhile, new technologies, concepts, and uncertainties (e.g.,
autonomous driving, mobility as a service, COVID-19 pandemic) constantly change our
vision for the future of transportation.

Smart card systems have been widely adopted as automatic fare collection systems
for metros and general public transit. Aside from fare collection, smart card systems also
record refined trip-level information, such as trip start/end locations and times. As a result,
data in metro systems are becoming much more accessible than ever before. Smart card
data has been extensively used in counting passenger flow, evaluating system performance,
planning, and operation. With the advances of intelligent transportation systems (ITS), it
is now possible to collect and use data from other devices, such as Wi-Fi, Bluetooth, and
video camera. Meanwhile, transit agencies and users desire more timely and accurate
access to data (e.g., real-time passenger demand, vehicle location, congestion, and accident
information) to support their decision-making and trip planning. The ways of collecting
and analyzing data are becoming more and more automated and intelligent. In such an era
of rapid technological advancement, utilizing the massive data for better metro services is
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of great importance.
The keys to successful data-driven transit service include three progressive levels

(Ceder, 2016): (1) collecting and understanding data, (2) planning and decision-making,
and (3) operations and control. Located in the first level, understanding passengers’
travel behavior in metro systems is a fundamental task—this is not only an engineering
problem but also a scientific problem. Typical research for metro travel behavior includes
analyzing the regularity (Sun et al., 2013), the variability (Morency et al., 2007), or the
evolvement (Briand et al., 2017) of travel behavior. These studies have greatly enhanced
our understanding of travelers’ mobility patterns. For instance, we now know individuals’
metro trips are often highly regular; a significant portion of passengers repeat similar trips
as they did in the past (Ma et al., 2013). In terms of trip variability, the rank-frequency
distribution of an individual’s visited locations approximately follows a power law (Hasan
et al., 2013). However, despite that our knowledge of metro travel behavior has grown
significantly, the road to transforming the knowledge into concrete applications to improve
metro services (i.e., the second and the third levels) is still long. In other words, the current
practice in the second and third levels does not fully exploit the knowledge we obtained
from the first level.

There is still a lack of recognition for the role of travel behavior in supporting metro
planning and operation. Taking real-time passenger demand forecasting—a crucial task
in metro operation—as an example. Most existing models (such as statistical time series
models (Ding et al., 2017), machine learning models (Chen et al., 2011), and deep learning
models (Liu et al., 2019b)) overlook the fact that passenger flow consists of trips from each
individual traveler with strong regularity rooted in their travel behavior. A commuter’s
work trip in the morning can help predict their home trip in the evening, while this travel
behavior cannot be explicitly encoded in current forecasting models. Current forecasting
methods don’t “understand” how the ridership is generated, and little research evaluates
the impact of individuals’ travel behavior on the aggregated ridership. Broadly speaking,
the function and the potential of travel behavior patterns in metro operation and planning
are not well recognized.

Given the weak connection between the “understanding of travel behavior” and the
“application of data”, it is essential to explore whether and to what extent we can use
the travel behavior characteristics to improve data-driven applications in a metro system.
Therefore, a major motivation of this thesis is to build a link between the two isolated
parts: using travel-behavior characteristics to improve existing and develop new and better
data-driven applications in metro systems. The two specific applications studied in this
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thesis are: (1) trip destination inference for tap-in only smart card systems and (2) real-time
passenger demand forecasting. For the first application, collecting passenger’s origin
and destination (OD) has always been a critical step in the long-term planning of metros.
For the second application, real-time passenger demand forecasting is a foundation of
short-term operation and monitoring (e.g., temporary increasing supply to satiate a sudden
demand surge, informing passengers of real-time metro congestion information).

1.2 Research Scope and Objectives

Smart card data are no doubt still the largest and the most detailed data available in metro
systems. All models and methods developed in this thesis are tested on the anonymous
smart card data from Guangzhou or Hangzhou, China. The scope of travel behavior
and data-driven applications in smart card data is too general; this thesis particularly
focuses on the behaviors and applications related to “mobility”, i.e., passengers’ movement
characterized by time and locations. The basic unit of mobility in this thesis is a trip of a
passenger. More refined travel behavior and phenomena, like the route choice behavior
within a trip, are not in the scope of the thesis.

1.2.1 Travel behavior features

Passengers’ travel behavior characteristics have been extensively studied using smart card
data (refer to the review in Section 2.1). I extract four main travel behavioral features of
metro systems as follows. These travel behavioral features are used to assist the inference
and forecasting models developed in this thesis.

• Feature 1: Regularity. Research has shown that passengers traveling in metro
systems are highly regular (e.g., Sun et al., 2013; Goulet-Langlois et al., 2017). A
passenger usually repetitively visits similar locations at a similar time of the day. For
example, a student travels every day from home to school by metro at around 8:00
a.m. In the meanwhile, human behavior comes with randomness, the regularity is in
a statistical sense.

• Feature 2: Chained travels. In metro systems, a passenger’s boarding station is
usually identical to the alighting station of their previous trip, especially when the
interval between two trips is short. This property has been widely used in literature
(e.g., Barry et al., 2002; Trépanier et al., 2007; Zhao et al., 2007) for trip destination
inference.
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• Feature 3: Power law. A power law relationship between two quantities means
the value of a quantity is inversely proportional to the power of the other quantity
(Newman, 2005). A power law depicting a rank-frequency relationship is also
named Zipf’s law. Many quantities in metro systems appear to follow a power
law. For example, the frequency with which stations are visited by a passenger (see
Figure 3.2 (a)), the flow distribution between different origin-destination (OD) pairs
(see Figure 5.3).

• Feature 4: Aggregate effect. Many macroscopic quantities in metro systems are the
aggregate effect of individual travelers. For instance, a metro system’s passenger
flow/demand consists of the movements of all individual travelers; the boarding
demand at a metro station is the summation of the OD demand from this station to
all other stations.

1.2.2 Smart card data applications

Metro smart card data have a wide range of applications (Pelletier et al., 2011). Certainly,
some applications are related to passengers’ travel behavior while others are not. This
thesis addresses two specific types of applications: trip destination inference and short-
term passenger demand forecasting.

• Application 1: Trip destination inference. Many smart card systems only require
passengers to tap their smart card at the origin station. As a result, trip destination—a
critical piece of information in transportation planning—is not recorded in these
tap-in-only smart card systems. Traditional destination inference methods (based on
the chained travel feature) cannot properly estimate the destinations of isolated trips.
Therefore, this thesis aims to develop a probabilistic model based on travel regularity
for trip destination inference. The probabilistic model can improve the destination
inference accuracy for isolated trips.

• Application 2: Passenger demand forecasting. Short-term (from minutes to days)
passenger demand forecasting is crucial for real-time metro operation and monitoring.
This thesis focuses on the forecasting of boarding passenger demand (1) at metro
stations and (2) in OD matrices. Particularly, the travel behavior characteristics
listed in Section 1.2.1 will be used to address the challenges of multi-step forecasting,
forecasting under special events, and OD matrices forecasting.
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Figure 1.1: Summary of scope and objectives

A large body of literature has proposed solutions to the above two applications (see
Section 2.2 and Section 3.3.1) given their great importance. The major purpose is not to
claim methods developed in this thesis are better than those in the literature; comparisons
are always conditional. The value of this thesis is proposing a new way of thinking—from
a travel behavioral perspective—to the above inference and forecasting tasks. Integrating
travel behavior to inference and forecasting achieves certain effects and advantages that
other methods do not have.

1.2.3 Objectives

The overall objective of the thesis is to develop better inference and forecasting methods
for metro planning and control with travel behavior characteristics. The two major focuses
are utilizing the domain knowledge from travel behavior and achieving good performance
in inference and forecasting problems. All models developed in the thesis utilize certain
types of travel behavioral characteristics listed in Section 1.2.1. The links between travel
behavioral features and their corresponding applications are shown in Figure 1.1.

As shown in Figure 1.1, Chapter 3 to Chapter 5 develop different applications using
certain types of travel behavior features. The research targets in these applications lift
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from an individual level to a station level, and finally to a network level. I summarize the
objectives of each chapter as follows:

• Objective 1: Develop a probabilistic model for trip destination inference. Passen-
gers’ trip destination is important information for the planning and evaluation of
metro systems. However, the trip destination is not available in tap-in-only smart
card systems. Although most trips’ destinations can be estimated by the origin of
the immediate next trip, there lacks an effective method to infer the destinations of
isolated unlinked trips. Therefore, Chapter 3 aims to develop a probabilistic model
to infer the destinations of unlinked trips by learning travel patterns from historical
trips. The trip destination inference is an individual-level application.

• Objective 2: Use travel behavior regularity to improve passenger flow forecasting.
Forecasting the short-term passenger demand at each metro station has always been
an important and popular topic. Previous studies mainly model passenger flow as
time series by aggregating individual trips and then forecasting based on the values in
the past several steps. However, this approach overlooks the fact that passenger flow
consists of trips from each individual with predictable travel behavior. Chapter 4 thus
attempts to incorporate travel behavior regularity into passenger flow forecasting for
improved performance.

• Objective 3: Develop a forecasting model for high-dimensional OD matrices. The
ridership among OD pairs contains more refined details than the station-level pas-
senger demand. However, forecasting OD ridership is notoriously difficult due to
the high-dimensional, sparse, noisy, and skewed nature of OD matrices. In response
to these challenges, Chapter 5 focuses on developing an applicable and accurate OD
matrices forecasting model. Using the proposed model as a bottom-up approach for
station-level boarding flow forecasting is also a meaningful attempt.

1.3 Thesis Contributions

The detailed contributions of each model/application are provided individually in each
chapter. The following are the high-level summary of the contributions of this thesis:

• Contribution 1: This thesis bridges travel behavior patterns and certain data-driven
applications in metro systems; results show using the travel behavior features can
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significantly enhance the performance of inference and forecasting models for the in-
dividual, station, and network levels applications in smart card data. Compared with
previous research that implicitly/sporadically uses travel behavior characteristics
in their models, the contribution of this thesis is providing a holistic and systematic
view of the critical role of travel behavior in the planning and operation of metro
systems. This new perspective has broad application scenarios and creates a new
future research direction.

• Contribution 2: This thesis proposes several inference and forecasting models for
smart card data with improved accuracy. Specifically, the probabilistic topic model
in Chapter 3 improves the inference accuracy of unlinked trips’ destinations. The
travel-behavior-based boarding flow forecasting method in Chapter 4 enhances the
accuracy of multi-step forecasting and the forecasting under special events, and a
paired t-test shows the improvement is significant. The forecasting model proposed
in Chapter 5 achieves a good forecasting performance in both OD matrices and
boarding flow forecasting. With these better models, this thesis helps enhance the
service and intelligence of metro systems.

• Contribution 3: This thesis addresses the scalability and model maintenance issue
in a practical forecasting model. Chapter 5 proposes to use dynamic mode decompo-
sition (DMD) to address the scalability issue in OD matrices forecasting. Moreover, a
tailored online update algorithm is developed to update the coefficients of a forecast-
ing model efficiently without storing historical data or retraining, which maintains
the model performance over the long term at low costs.

1.4 Thesis Organization

This is a manuscript-based thesis with six chapters, where Chapter 3 to Chapter 5 are
based on articles that were either published or accepted by peer-reviewed journals. The
follows are the chapter-level organization of the thesis:

• Chapter 1 introduces the background, motivation, objectives, and contributions of
this thesis. The links between each chapter are also explained.

• Chapter 2 gives an overall literature review of smart card data from three aspects:
(1) travel behavior patterns, (2) data inference and imputation, and (3) passenger
demand forecasting.
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• Chapter 3 presents a probabilistic topic model to infer the destinations of unlinked
trips for tap-in-only smart card systems. This Chapter also uses the probabilistic
model for travel behavior pattern analysis and passenger clustering.

• Chapter 4 proposes a travel-behavior-based feature—returning flow. This chapter
shows using the returning flow in a forecasting model can significantly improve
the passenger flow forecasting under various scenarios (one-step, multi-step, under
special event).

• Chapter 5 formulates real-time OD matrices forecasting into a high-order vector au-
toregression problem and proposes a dynamic mode decomposition (DMD) approach
to solve the problem.

• Chapter 6 summarizes the thesis with final conclusions and future directions.
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Chapter 2

Literature Review

The core of this thesis is incorporating travel behavior characteristics into forecasting
models in metro smart card data. Accordingly, the literature review consists of two parts:
Section 2.1 reviews research on modeling individual travel behavior patterns by smart card
data, and Section 2.2 summarizes three levels of forecasting (individual mobility, station
passenger demand, and OD matrices) in metro systems. The purpose of this chapter is
not to gather all the related articles, but to summarize the methodological development
in this field through comparison and classification of representative studies. Most of the
literature in this chapter is from the past two decades, after the widespread adoption of
smart card automatic fare collection systems in public transit. Readers are referred to a
great review by Pelletier et al. (2011) for the history and early-stage application of smart
card systems in public transit. This chapter focuses on summarizing the overall research
development and trend; more detailed reviews for destination inference and OD matrices
forecasting are supplemented in Section 3.3 and Section 5.3, respectively.

2.1 Travel Behavior Patterns in Smart Card Data

Measuring individuals’ travel regularity and discovering common mobility patterns from
the population are critical for various applications. Travel survey is the traditional ap-
proach to study travel behavior (e.g., Kitamura, 1990; Axhausen et al., 2002). In recent
years, smart card data have largely replaced survey data in studying the travel behavior of
public transit users. Although it only contains limited types of information (e.g., origin,
destination, time, and card type), smart card data enables recording long-term and large-
scale passenger mobility data, bringing new methods and applications in travel behavioral
studies. Section 2.1.1 and Section 2.1.2 summarize research on measuring travel behavior
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patterns and corresponding applications using transit smart card data, respectively.

2.1.1 Measuring travel behavior patterns

Passengers’ travel in metro systems is highly regular (Sun et al., 2013; Hasan et al., 2013).
Although there is not a unified definition for travel behavior patterns in metro systems, a
large number of methods have been developed to extract, measure, and understand mean-
ingful facts/routines encoded in smart card transactions. These methods are categorized
into the following two types.

• Using handcrafted features: In an early work, Morency et al. (2007) designed in-
dicators, such as the number and the frequency of stations used for boarding, to
measure passengers’ spatial and temporal variability. A k-means algorithm was then
conducted to cluster passengers. Ma et al. (2013) defined spatial travel pattern as
“transit rider repeatedly visits the same or adjacent places on a multi-day basis” and
temporal travel pattern as “transit rider repeatedly starts (and/or finishes) his/her
daily trip during the same time period”. Density-based spatial clustering of applica-
tions with noise (DBSCAN) algorithm was used to identify these repeated patterns. A
similar definition was also used in a few follow-up studies (Bhaskar et al., 2014; Kieu
et al., 2015; Ma et al., 2017). Zhao et al. (2017) defined spatial pattern and temporal
patterns by designing statistics on how often a passenger repeatedly takes metro trips
in certain stations and times. Ghaemi et al. (2017) proposed a projection method to
project smart card transactions to a polar axis, in which the spatiotemporal closeness
can be conveniently measured Euclidean distance, bringing benefits to pattern visu-
alization and clustering. Goulet-Langlois et al. (2017) proposed to use entropy rate to
measure individual travel regularity. The aforementioned handcrafted approaches
are very flexible for specific analyses and are intuitively straightforward. However,
using handcrafted features often requires proficient expertise and the result can
be subjective. Besides, this approach is usually limited to discovering superficial
phenomena.

• Using learned latent patterns: Recent research started using algorithms to automat-
ically extract latent representations (also called embedding) from smart card data
to understand travel behavior patterns. This approach learns shared latent features
from a population rather than independent individuals, discovering intrinsic patterns
that cannot be defined by a human expert. Matrix/tensor factorization is a primary
method for latent pattern discovery. For example, Goulet-Langlois et al. (2016) used
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principal component analysis (PCA) to extract eigen-patterns from passengers’ multi-
week activity sequences. Du et al. (2019) developed a coupled factorization on a
(originˆ trans f erˆ destination) tensor and a (originˆ destination) matrix to extract
mobility patterns from transit data. Developing probabilistic models with latent
variables is another approach for latent pattern discovery. For instance, Mohamed
et al. (2014) used a mixture of unigrams to capture passengers’ weekly travel profiles.
Sun and Axhausen (2016) proposed a probabilistic tensor factorization to extract mo-
bility patterns from smart card data. Briand et al. (2016) developed a mixed Gaussian
model to extract latent features to mining passengers’ temporal travel patterns. Zhao
et al. (2020b) extended Latent Dirichlet Allocation (LDA) to discover spatiotemporal
patterns from smart card data. Chapter 3 of this thesis is also a variant of LDA.

Beyond the scope of smart card data, similar methods have been developed to in-
vestigate latent mobility patterns in other human mobility data sources, such as the cell
phone data (Farrahi and Gatica-Perez, 2009), location-based social media data (Hasan and
Ukkusuri, 2014), and license plate recognition data (Sun et al., 2021).

2.1.2 Applications of travel behavior patterns

Understanding passengers’ travel behavior itself is an important “application”. The
incentive of many studies is simply answering certain interesting questions, such as how
often users travel (Morency et al., 2007)? How loyal are users (Trépanier et al., 2012)?
Is there any common law for users’ travel (Hasan et al., 2013)? Essentially, nearly all
articles reviewed in this charter, to some extent, enhance the understanding of the metro
system and users’ travel behavior. Besides enhancing understanding, applications of
travel behavior patterns in smart card data are categorized by the following five aspects.
There are intersections among different applications because the following aspects share
similarities.

• Passenger clustering: Having represented each passenger’s travel behavior by either
handcrafted or learned features, an immediate application is passenger clustering (or
segmentation), allowing transit agencies to understand the composition of different
types of users. In fact, most models reviewed in Section 2.1.1 can be used to provide
features for passenger clustering. Commonly used cluster algorithm includes the
K-means (Morency et al., 2007; Ma et al., 2013) and hierarchical clustering (Ghaemi
et al., 2017; He et al., 2020). An extra clustering step is sometimes unnecessary when
using latent class models (e.g., Mohamed et al., 2014, 2016; Sun and Axhausen, 2016;
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Briand et al., 2016), because the learned latent patterns can be regarded as cluster
centroids and each passenger’s travel behavior is characterized by a mixture of
clusters.

• Analyze pattern evolvement: Many researchers investigated how travel patterns
change over time by long-term data, where a travel pattern extraction and a clustering
step are often combined with. For example, Trépanier et al. (2012) used a hazard
model to analyze the influential factors to the survival (keep using their smart cards)
of different types of users. Using the mixed Gaussian model developed in (Briand
et al., 2016), Briand et al. (2017) analyzed the pattern changes by a five-year smart
card data collected in Gatineau, Canada. Similar research includes (Deschaintres
et al., 2019; Viallard et al., 2019). Zhao et al. (2018a) developed a Bayesian approach
to detect pattern changes in individual travel behavior. (Ma et al., 2020) evaluated
the behavioral response of different groups of passengers to promotion in public
transport. Gao et al. (2022) evaluated passengers’ travel behavior before and after
a transit service adjustment. It is worth mentioning a recent study by Mützel and
Scheiner (2021) investigated changes in metro mobility patterns under the impact of
COVID-19.

• Data imputation: Smart card data lack information like trip purpose, passengers’
social demographic, or even trip destinations. To impute trip purpose from smart
card data, Han and Sohn (2016) proposed to use continuous hidden Markov model
(CHMM) to derive clusters of activities and transition probabilities between clusters;
each cluster was then attached to an activity pattern (e.g., home, work). Mo et al.
(2021) used input-output hidden Markov model (IOHMM) to infer and interpret
activities patterns. The spatiotemporal topic model developed by Zhao et al. (2020b)
also reveals meaningful latent activities. Alsger et al. (2018) combined travel behavior
patterns with land use and survey data to impute trip purpose from smart card data.
Besides, there is a large body of research that uses trip-chain continuity property to
infer trip destination from smart card data (e.g., Barry et al., 2002; Trépanier et al.,
2007); a detailed review on this topic is organized in Section 3.3.1.

• Individual mobility prediction: Individual mobility prediction in smart card data
refers to predicting the origin, destination, and time of a passenger’s next metro
trip. The idea is to forecast individuals’ future travel based on their historical travel
patterns, such as in the articles by Zhao et al. (2018c); Mo et al. (2021). A detailed
review on this topic is organized in Section 2.2.1.
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• Anomaly detection: Abnormal travel behavior can be identified after understanding
normal travel patterns. Du et al. (2018) defined several criteria as abnormal travel
behavior, and proposed an unsupervised anomaly detection model and a supervised
classification model to identify pickpocket suspects from smart card transactions.
Similarly, Xue et al. (2020) treated frequent entry and exit from a station as a suspected
travel behavior. Zhang et al. (2021c) identified invalid fare machine association (e.g.,
wrongly associate a fare machine of station A to station B in Automatic Fare Collection
(AFC) database) by detecting abnormal transaction behavior.

2.2 Forecasting Using Smart Card Data

This section reviews short-term (from minutes to days) forecasting models in metro smart
card data. Unlike long-term planning, the purposes of short-term forecasting are fine-
grained operation, control, monitoring, and providing real-time services. The literature is
organized by three levels of forecasting: (1) individual mobility prediction, (2) station-level
passenger demand forecasting, and (3) network-level OD matrices forecasting. Individual
mobility prediction centers on learning individual behavioral patterns; station-level pas-
senger demand forecasting models focus more on capturing spatiotemporal correlations;
OD matrices forecasting methods have to handle the high-dimensionality challenge. Ref-
erences reviewed in this section are summarized in Table 2.1, from which we can see an
increasing trend of research items year by year.

2.2.1 Individual mobility prediction

Predicting the location and time of an individual’s future movement has received great
attention because of its critical role in trip recommendation and demand forecasting. A
fundamental assumption of individual mobility prediction is that an individual follows
the same travel behavior pattern in the past and future. Sequential models, like Markov
models and recurrent neural networks (RNN), are commonly used in individual mobility
prediction. For example, Hasan et al. (2013) proposed a simple model that chooses among
home, work, and others (with fixed probabilities) as an individual’s next trip destination,
and the stay duration at each location is modeled by a hazard function. Because the
frequency of visiting different metro stations of an individual follows a power law, Hasan
et al. (2013) showed even this simple model makes reasonable forecasting. Zhao et al.
(2018c) used Bayesian n-gram model to simultaneously predict the origin, destination, and
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Table 2.1: Literature of short-term metro passenger flow forecasting.

Author year Forecast objective(s) Method Remarks

(Wei and Chen, 2012) Boarding EDM, MLP N/A
(Hasan et al., 2013) Next destination, duration Heuristic, hazard function Individual mobility
(Sun et al., 2015) Boarding Wavelet analysis, SVM N/A
(Ni et al., 2016) Boarding Linear regression, SARIMA Events
(Toqué et al., 2016) OD matrices LSTM N/A
(Ding et al., 2017) Boarding ARIMA, GARCH N/A
(Li et al., 2017) Alighting Multi-scale RBF network Events
(Toqué et al., 2017) Boarding LSTM, random forest N/A
(Ren and Xie, 2017) OD Tensor decomposition Dimensionality reduction
(Dai et al., 2018) Boarding, alighting KNN, Adaboost, N/A
(Wang et al., 2018) Boarding Linear regression N/A
(Tang et al., 2018) Boarding SVM, ARIMA, linear regression A comparison
(Ma et al., 2018) Boarding CNN, Bi-LSTM Spatiotemporal correlation
(Noursalehi et al., 2018) Boarding Dynamic Factor Models Event
(Zhao et al., 2018c) Next origin, destination, time n-gram model N/A
(Guo et al., 2019) Boarding, alighting SVM, LSTM N/A
(Han et al., 2019) Boarding, alighting GCN Spatiotemporal correlation
(Liu et al., 2019b) Boarding, alighting LSTM N/A
(Hao et al., 2019) Alighting Bi-LSTM, Seq2Seq Multi-step forecasting
(Wang et al., 2019a) Boarding SARIMA Events
(Zhang et al., 2019b) OD LSTM Skewed and sparse OD
(Chen et al., 2020a) Boarding, alighting ARIMA, GARCH Events
(Sha et al., 2020) Boarding LSTM, GRU, MLP N/A
(Chen et al., 2020b) Boarding, alighting GCN, GRU, Seq2Seq Spatiotemporal correlation
(Zhao et al., 2020a) Boarding, alighting LSTM, Holt-Winters N/A
(Gong et al., 2020) OD Matrix factorization Dimensionality reduction
(Shen et al., 2021) OD Gravity Model + deep learning N/A
(Yang et al., 2020) Boarding Attention mechanism Spatiotemporal correlation
(Zhao et al., 2021) Boarding LSTM, RF, gradient boosting Events
(Cheng et al., 2021a) Boarding SARIMA Behavioral feature,

events
(Wang et al., 2021) Boarding Hypergraph GCN Spatiotemporal correlation
(Ye et al., 2021) OD GCN, Transformer Spatiotemporal correlation
(Noursalehi et al., 2021) OD Wavelet transform + CNN Spatiotemporal correlation
(Zhang et al., 2021b) OD CNN Spatiotemporal correlation
(Cheng et al., 2022) OD, boarding Dynamic mode decomposition Dimensionality reduction

Online update
(Zúñiga et al., 2021) OD MLP N/A
(Mo et al., 2021) Next origin, destination, time IOHMM Individual mobility
(Wu et al., 2021) Next origin, destination, time Neural temporal point processes Individual mobility
(Xue et al., 2022) Boarding CNN, MLP Events
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time of the next trip. Mo et al. (2021) developed an IOHMM model to predict individuals’
next trip; an advantage of this model is that trip purposes can be interpreted by meaningful
latent activity patterns. Wu et al. (2021) proposed a deep learning approach that uses
attentive marked temporal point processes (AMTPP) for individual mobility; results show
AMTPP significantly improves the forecasting of the trip start time. Besides using smart
card data, individual mobility prediction has also been widely studied in GPS and cell
phone data (e.g., Gambs et al., 2012; Feng et al., 2018).

2.2.2 Station passenger flow forecasting

The passenger flow in this section refers to the number of boarding (or alighting) pas-
sengers at a metro station per unit time (usually from minutes to hours for short-term
forecasting). Passenger flow is an aggregated quantity of individuals’ travel. In contrast
to modeling users’ behavior regularity in individual mobility prediction, passenger flow
forecasting is often formulated into time series models, and the core is capturing the
temporal (also spatial when multivariate time series) correlation/dependencies in the time
series. In general, short-term metro passenger flow forecasting methods can be categorized
into statistical time series models, (shallow) machine learning models, and deep learning
models.

• Statistical time series models: Statistical time series forecasting assumes time se-
ries follows certain structures (such as a stochastic process), representative models
include exponential smoothing model, autoregressive integrated moving average
(ARIMA). The book by Box et al. (2015) is a great reference for this class of models.
Statistical time series models have been widely used in general traffic forecasting
problems (e.g., Williams, 2001; Williams and Hoel, 2003) and are often jointly used
with other models. For example, Ni et al. (2016) applied a linear regression model to
capture the correlations between passenger flow and social media data; the regression
was embedded into a seasonal ARIMA (SARIMA) to better forecast the passenger
flow under special events. Combined with ARIMA, much research applied general-
ized autoregressive conditional heteroskedasticity (GARCH) model to forecast the
passenger flow under special events (Ding et al., 2017; Chen et al., 2020a); results
show GARCH gives more accurate forecasting and confidence interval. Noursalehi
et al. (2018) used a dynamic factor model for station passenger flow forecasting
considering the impact of special events. Based on travel behavior, Cheng et al.
(2021a) (Chapter 4 of this thesis) proposed a concept called “returning flow” and
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used it as an external covariate in a SARIMA model; results show the behavior-based
variable can significantly improve the forecasting. In addition to being used alone,
models like ARIMA and exponential smoothing were used as a component in more
sophisticated models to improve the forecasting (Sun et al., 2020; Zhao et al., 2020a).

• Machine learning models: Machine learning-based passenger flow forecasting uses
non-linear/non-parametric regression functions to capture the complex spatiotempo-
ral correlations. This class of models usually focuses more on minimizing regression
errors but does not impose assumptions on the process/dynamic of time series.
Examples include multilayer perceptron (MLP) (Wei and Chen, 2012; Li et al., 2017),
k-nearest neighbors (KNN) (Dai et al., 2018), support vector machine (SVM) (Sun
et al., 2015; Tang et al., 2018; Guo et al., 2019), random forest (Toqué et al., 2017; Dai
et al., 2018), and adaptive boosting (AdaBoost) (Dai et al., 2018). The forecasting per-
formance is usually largely determined by the quality of input features. For instance,
Wei and Chen (2012) decomposed passenger flow into intrinsic mode functions (IMF)
by empirical mode decomposition (EMD). The meaningful IMFs were extracted as
inputs for an MLP. Sun et al. (2015) applied wavelet analysis to passenger flow and
used a support vector machine (SVM) model to forecast the resulting signature; the
final results were reconstructed to passenger flow. Tang et al. (2018) established a
spatial feature based on OD matrix and used the feature as an input for an SVM
model. Li et al. (2017) used the boarding flows of 18 transfer stations as the input of
multi-scale radial basis function (RBF) networks to forecast the alighting flow of a
crucial station. Wang et al. (2018) used the flow of loyal travelers as a variable for
a linear regression model to forecast passenger flow. Zhao et al. (2021) applied a
synthetic minority oversampling technique (SMOTE) to alleviate the imbalanced
data sample to improve the forecasting under special events.

• Deep learning models: Recent years have seen a surge of research using deep
learning for metro passenger flow forecasting. Compared with traditional machine
learning methods, deep learning does not require manually designed features, rather
extracting features automatically through deep artificial neural networks. Moreover,
Traditionally models are usually station-specific, while deep learning models can
take the passenger flow of multiple stations as a vector and forecast their ridership
in a batch. Long short-term memory (LSTM) networks gated recurrent unit (GRU)
networks are two primary RNN structures used for passenger flow forecasting (e.g.,
Toqué et al., 2017; Sha et al., 2020). These structures are special recurrent neural net-
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works (RNN) that can avoid the gradient vanishing or exploding gradient problems.
Ma et al. (2018) combined bi-directional LSTM (Bi-LSTM) with convolutional neural
networks (CNN) to learn spatiotemporal correlations of ridership at different sta-
tions. Results show the deep learning framework outperforms traditional forecasting
methods. Liu et al. (2019b) used three LSTM modules to learn the weekly, daily, and
recent trends, respectively. The three trends were then fused together to produce
the final forecast. Hao et al. (2019) applied attention to a sequence to sequence
(Seq2Seq) LSTM network to perform a multi-step forecast of alighting flow. Some
recent research in deep learning (e.g., Vaswani et al., 2017) found that an attention
mechanism or CNN in some cases can be as good as or even outperform RNN in
modeling sequential data. Therefore, Yang et al. (2020) developed an attention-based
neural network to forecast metro passenger flow. Besides temporal correlations,
researchers have also developed innovative methods to capture spatial correlations
among stations (Ma et al., 2018; Han et al., 2019; Wang et al., 2021), where CNN
and Graph convolutional neural networks (GCN) are extensively used for learning
spatial correlations.

In addition to learning spatiotemporal correlation, using/designing appropriate co-
variates to incorporate the influence of exogenous factors is also critical for forecasting. In
this perspective, much research has shown that using social media data (Ni et al., 2016;
Xue et al., 2022), weather information (Tang et al., 2018), event information (Zhao et al.,
2021), time of a day (Liu et al., 2019b), metro timetable (Liu et al., 2019b), metro network
structure (Wang et al., 2021), and returning flow from previous trips (Cheng et al., 2021a)
can be helpful for metro passenger flow forecasting.

2.2.3 Origin destination matrices forecasting

Forecasting the short-term ridership among a metro system’s origin-destination pairs (OD
matrix) has become a new research hotspot. This is because OD matrices contain richer
information and have wider application than station-level ridership. For example, we
can obtain station-level passenger flow through aggregating ridership in OD pairs that
have the same origin station, and we can also assign an OD demand to a network to
further forecast the congestion of trains/lines. However, OD matrices forecasting is highly
challenging due to the high-dimensional and skewed nature of OD matrices. Specifically,
the number of OD pairs is the square of the number of stations, and the demand among OD
pairs is power-law distributed (highly skewed). Most station-level forecasting methods
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do not scale well to OD matrices forecasting. Significant effort has been made to tackle
the high-dimensionality issue; two major types of approaches are (1) using matrix/tensor
factorization for dimensionality reduction (Ren and Xie, 2017; Dai et al., 2018; Gong et al.,
2020; Cheng et al., 2022), and (2) using CNN or GCN to replace the fully connected layer in
deep neural networks to reduce the parameters space (Shen et al., 2021; Chen et al., 2020b;
Noursalehi et al., 2021; Zhang et al., 2021b; Ye et al., 2021). Section 5.3 of this thesis gives a
more detailed review of these OD matrices forecasting methods.

2.3 Summary of existing research

This chapter presents a literature review on metro smart card data from two perspectives:
(1) travel behavior pattern mining and (2) forecasting using smart card data. As categorized
in Section 2.1.1, designing handcrafted features and learning latent patterns from data
are two types of methods to measure travel behavior patterns. Handcrafted features are
more flexible for specific purposes, but how to choose such a feature can be subjective
and usually requires proficient expertise. On the other hand, learning latent patterns from
data can discover intrinsic mobility patterns (through techniques like matrix factorization
and topic models) that human experts cannot define; this approach is more demanding
in data quality and quantity and, therefore, less flexible. In Section 2.1.2, we present
various applications that are closely related to travel behavior. However, most existing
passenger demand forecasting models reviewed in Section 2.2 are time series models
without utilizing unique travel behavior characteristics in metro systems. Therefore, one
of the aims of this thesis is to enhance passenger demand forecasting with travel behavior
properties.

For passenger demand forecasting, we can find an increasing trend in the complexity
of models. However, a problem occurs that many studies appear to be too homogeneous:
it is not difficult to use a new model for passenger demand forecasting, but a new model
is not equal to making contributions to this problem. See Section 6.2.3 for a discussion
about what is good research on transportation forecasting. Besides, despite prosperous
forecasting models, implementations of these models in real-world metro systems are
rare. The difficulties in implementation are twofold. Technologically, the data quality of
many smart card systems is insufficient, and the data transmission and process speed do
not satisfy the requirement of real-time forecasting. Methodologically, passenger demand
forecasting, as an “upstream” model, should be combined with a “downstream” control
model to maximize its utility. Future research on passenger demand forecasting should
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focus more on its practical implications.
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Chapter 3

Probabilistic Model for Trip Destination
Inference

This chapter is an article published in Transportation:

• Cheng, Z., Trépanier, M., Sun, L., 2021. Probabilistic model for destination inference
and travel pattern mining from smart card data. Transportation 48(4), 2035-2053.

This chapter corresponds to the travel-behavior-based inference method of this thesis. The
probabilistic model learns latent travel behavior patterns from individuals’ historical trips
and can be used to infer the probabilities of unknown destinations given the trip’s origin
and departure time.
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3.1 Abstract

Inferring trip destination in smart card data with only tap-in control is an important
application. Most existing methods estimate the trip destination based on the continu-
ity of trip chains, while the destinations of isolated/unlinked trips cannot be properly
handled. We address this problem with a probabilistic topic model. A three-dimensional
Latent Dirichlet Allocation (LDA) model is developed to extract latent topics of departure
time, origin, and destination among the population; each passenger’s travel behavior
is characterized by a latent topic distribution defined on a three-dimensional simplex.
Given the origin station and departure time, the most likely destination can be obtained by
statistical inference. Furthermore, we propose to represent stations by their rank of visiting
frequency, which transforms divergent spatial patterns into similar behavioral regularities.
The proposed destination estimation framework is tested on Guangzhou Metro smart card
data, in which the ground-truth is available. Compared with benchmark models, the topic
model not only shows increased accuracy but also captures essential latent patterns in
passengers’ travel behavior. The proposed topic model can be used to infer the destination
of unlinked trips, analyze travel patterns, and passenger clustering.

3.2 Introduction

Origin and Destination (OD) Matrix is an essential input for transit planning and operation.
Most transit agencies have been relying on travel surveys to collect representative OD
information. However, conducting such a survey with a reasonable scale is not only costly
but also time-consuming. With the recent advances of intelligent transportation systems,
researchers and practitioners have started taking advantage of the transit operation data
and smart card data for better planning and operation practices (Pelletier et al., 2011).

Smart card systems are initially designed for the purpose of Automatic Fare Collection
(AFC). When the system has both tap-in and tap-out controls (e.g., using a distance-based
transit fare scheme), the full itinerary (boarding time/station and alighting time/station)
of each trip can be registered. However, most smart card systems across the world adopt a
single fare scheme with only tap-in validation, and the alighting information (time/station)
is essentially unknown. Inferring the alighting stations is a crucial problem in obtaining
the OD matrix from these smart card systems.

Trip destination estimation in smart card data has always been a hot issue. Barry
et al. (2002) proposed two assumptions to address this issue: (1) the alighting station
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of a trip is very likely to be the boarding station of the immediate next trip; (2) the last
alighting station of a day is usually the first boarding station of the same day. This type
of “rule-based” model soon became the workhorse algorithm for smart card destination
estimation. Depending on the data, current algorithms can obtain around 60% to 85%
trips’ destinations; these trips are often called linked trips in the literature, and the rest un-
inferred trips are referred to as unlinked trips. Without the information from consecutive
trips, the destination estimation of unlinked trips is more challenging. Existing methods
address this problem by seeking similar trips in the passenger’s historical trips; we refer
to them as individual-history-based models. Such as He and Trépanier (2015) used the
spatial and temporal kernel density probability of passengers’ trips and get an additional
10% estimation for unlinked trips.

The prediction of unlinked trips is challenging without the help of the trip-chain
continuity information. The solution lies in the regularity of human mobility. As explained
by González et al. (2008) and Song et al. (2010), human movement follows certain regularity
and is highly predictable. However, there still lacks an appropriate framework to infer the
missing destination using mobility regularity. To address this issue, this paper attempts to
build an integrated model that estimates the missing destinations drawing on the common
mobility patterns among the population. We establish a probabilistic topic model for smart
card data by making an analogy with the Latent Dirichlet Allocation (LDA) model (Blei
et al., 2003). We assume transit trips among the population can be summarized in a few
latent topics over departure time, origin, and destination. Every passenger is characterized
by a latent topic distribution and the whole population share the topic-word distributions
for departure time, origin and destination. To share more information among different
passengers, we represent each station by each passenger’s rank of visiting frequency, as
against to directly using the station ID. A case study is performed on Guangzhou Metro
data, where the tap-out data is used as the ground truth to test different models. Results
show our topic model has improved accuracy compared with individual-history-based
models. We further demonstrate passengers’ latent topic distribution is a useful feature for
passenger clustering, commuter identification, and travel pattern mining.

The remainder of the paper is organized as follows. Section 3.3 briefly reviews the
current research on smart card data destination inference and transit pattern mining.
Section 3.4 elaborates the topic model for transit trips, the Gibbs sampling for model
inference, and the destination inference in ranked stations. The case study on Guangzhou
Metro will be shown in Section 3.5, where the destination inference will be compared with
individual-history-based models; the model interpretation and the passenger clustering
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will be demonstrated in Section 3.5. Finally, conclusions and discussions are summarized
in Section 3.6.

3.3 Literature Review

3.3.1 Destination inference in smart card data

Destination inference is an important problem in smart card data. Existing methods pri-
marily take advantage of the continuity of trip chains, and infer the destinations based on
assumptions or rules. In a very first study, Barry et al. (2002) proposed that the destination
of a trip can be inferred by the origin of the immediate next trip, and they assumed the
last destination of a day is often the first origin in the same day. Since then, many refined
models have been proposed based on similar assumptions. Trépanier et al. (2007) imposed
a distance constraint between consecutive trips, and they further assumed the last destina-
tion of a day can also be inferred by the first origin in the next day. Munizaga and Palma
(2012) proposed to use generalized time instead of distance in destination inference. Fur-
ther, Sánchez-Martínez (2017) constructed a generalized disutility minimization objective
to determine the paths and transfers between the origin and destination. Research based
on similar rule-based methodology has become the mainstream, and more research can
be found in Zhao et al. (2007), Wang et al. (2011), Gordon et al. (2013), and (Nunes et al.,
2016). Depending on the data, the rule-based method can accomplish around 60% to 85%
of the destinations; trips of which the destinations can be inferred by the rule-based model
are often called linked trips.

For the O-D of unlinked trips, whose destination cannot be inferred by rule-based
models, one treatment is to scale the O-D of linked trips by some methods (e.g., Munizaga
and Palma, 2012; Gordon et al., 2018). This approach assumes the destination distribution
of unlinked trips at each origin is the same as the linked trips, which is unverified. On
the other hand, the destinations of unlinked trips can be estimated by similar historical
trips (individual-history-based model), similar to supervised learning with labeled data.
For example, Trépanier et al. (2007) defined a similar trip as a trip on the same route
with similar departure time in the previous several days. He and Trépanier (2015) used
spatial and temporal kernel density probability estimated by historical trips to infer the
destination of unlinked trips. Zhang et al. (2015) conducted an interesting study, where a
collaborative space alignment framework was presented to reconstruct smart card trips.
Recent studies attempted to use (deep) neural networks to infer trip destinations (Jung and
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Sohn, 2017; Assemi et al., 2020). These studies were based on smart card systems with full
information and extensive features (e.g., time and location, land-use features of stations).
Experiments showed promising results, while a large number of labeled destinations are
essentially unavailable for a real tap-in-only system.

To summarize, existing research has developed various algorithms based on the trip
continuity feature to estimate the destination of linked trips. The destination estimation of
unlinked trips relies on similar historical trips. This paper provides a whole new approach
to infer the destination of unlinked trips by a topic model. The proposed model is not
only a prediction model but also a generative model that captures individuals’ behavioral
patterns.

3.3.2 Transit pattern mining

There has been a large body of literature on passengers’ travel behavior patterns. The
travel patterns are usually characterized by certain features. A series of analyses (such
as commuter identification, passenger clustering, and pattern evolving) can then be con-
ducted using these features. Next, we briefly review related literature based on how these
features are obtained.

In many studies, the features for travel patterns are designed based on domain knowl-
edge. For example, Morency et al. (2007) defined two indicators to measure passengers’
spatial and temporal variability. Then a k-mean algorithm was conducted to cluster pas-
sengers. In another research, Ma et al. (2013) designed four features based on how often
did a passenger repeatedly visits the same or adjacent places on a multi-day basis; these
features can be used to identify regular passengers. A similar approach is also applied in
Ma et al. (2017). Mohamed et al. (2014) established a temporal profile by passengers’ travel
time on a weekly basis to analyze the travel patterns. He et al. (2020) directly used time
series on transit smart card activities’ data as features, and used the distance between time
series for passenger clustering.

On the other hand, the travel patterns can also be represented by latent features that are
learned from data; the topic model developed in this paper also falls in this category. For
example, Goulet-Langlois et al. (2016) used principal component analysis (PCA) to extract
eigen-patterns from passengers’ multi-week activity sequences. Briand et al. (2016) applied
a mixed Gaussian model to extract latent features to mining passengers’ temporal travel
patterns. Based on the same method, Briand et al. (2017) further analyzed the year-to-year
pattern changes in a public transportation system. Zhao et al. (2018b) applied a topic
model to discover latent activity patterns from smart card data, which is very relevant to
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our research. (Zhao et al., 2018c) and this paper both extend the LDA for travel behavior
mining. The main difference is that we organize the latent features in a three-dimensional
manner, which captures the interaction of spatial and temporal topics.

Besides the public transportation domain, topic models have been widely applied
for mobility mining. For example, Hasan and Ukkusuri (2014) classified individuals’
activity patterns by applying LDA to geo-location data collected from Twitter. Sun and
Axhausen (2016) applied a probabilistic tensor factorization to smart card transactions
to understand urban mobility patterns. Fan et al. (2016) applied LDA to mobile phone
call data, and further developed a Hidden Markov Model for complete missing mobility
data. Sun et al. (2021) developed a two-dimensional LDA on license plate recognition data,
where the spatial and temporal topics are modeled separately, and their interactions are
characterized in a two-dimensional simplex. This research applies the same methodology
as Sun et al. (2021) and extends it to smart card data with three-dimensional features
(origin, destination, and time).

3.4 Methodology: Topic Model for Destination Inference

This section details the probabilistic topic model for trip destination inference in smart card
data. The objective is to infer the unknown trip destination in a tap-in-only system. A large
portion of the destinations of linked trips could be inferred by rule-based models (Barry
et al., 2002; Trépanier et al., 2007; Munizaga and Palma, 2012); some trip surveys could
also provide a sample of complete trip information (MTL Trajet, 2019). We can train the
proposed topic model by those trips with complete (ground truth or inferred) itineraries.
Next, the destinations of unlinked trips could be inferred by the trained topic model.

3.4.1 Model formulation

A smart card trip could be characterized by a three-element tuple (wt, wo, wd) representing
the departure time, origin, and destination, where wt is assumed to be a discrete variable
in one-hour intervals. Then, all the historical trips of a passenger u can be represented
as wu = t(wt

i , wo
i , wd

i ) : i = 1, . . . , Nu; wt
i P t1, ¨ ¨ ¨ , Tu; wo

i , wd
i P t1, ¨ ¨ ¨ , Suu; where Nu is the

total number of trips for passenger u, T is the number of possible departure hours, and S
is the number of boarding/alighting locations.

The LDA model in NLP assumes there are several topics (e.g., sport, and cooking)
among the corpus, the probability for each word’s occurrence varies from topic to topic
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(e.g., the probability for the word “basketball” occurs in the sports topic is higher than
which in the cooking topic). A document is characterized by a mixture of topics, which
explains the probability of each word’s occurrence in the document. By making an analogy
to the LDA model, we treat each trip (wt, wo, wd) as a word and wu as a document (a bag
of words). Thus, all the trips belonging to a passenger compose a document with each trip
being regarded as a word, each passenger’s trips are characterized by a mixture of latent
topics.

The traditional LDA cannot directly model metro trips, because of the three interde-
pendent attributes of a trip (i.e. time, origin and destination). A common solution is to
combine different attributes into one dimension with the vocabulary size of Tˆ Sˆ S, such
as in Hasan and Ukkusuri (2014) and Fan et al. (2016). The main drawback of this approach
is that it considerably increases the vocabulary size, while the new combined words are
sparse with many unobserved/unlikely trips. Moreover, the interdependency between
original attributes is lost (e.g., two trips with the same origin and destination but different
times can become unrelated words). To address this problem, we use an innovative method
that expands the latent topics into a three-dimensional tensor, similar to the probabilistic
tensor factorization as in Sun and Axhausen (2016) and Sun et al. (2021). By increasing the
dimension of latent topics, we have three types of topic-word distributions, which avoid
the large vocabulary set and capture inter-dependencies of different types of words in the
latent space.

The latent topic is organized as a three-dimensional tensor Z P RJˆKˆL, where J, K,
and L are the number of latent topics of time, origin, and destination, respectively. The
element zj,k,l of tensor Z corresponds to the jth temporal topic zt

j, the kth origin topic zo
k,

and the lth destination topic zd
l . Each passenger’s trips are characterized by a Multinomial

distribution over latent topics Z (the topic distribution), parameterized by θu. Given a
latent topic zj,k,l, the topic-word distributions for departure time, origin, and destination
are Multinomial distributions parameterized by ϕzt , ψzo , and ωzd , respectively. The overall
picture of the model can be clearly depicted by a graphical model shown in Figure 3.1;
where α, β, γ, and η are parameters for Dirichlet priors; U is the number of passengers.
We describe the generative process in Figure 3.1 follows:

• Draw topic distribution for each passenger θu „ DirichletJˆKˆL(α).

• Draw topic-time distribution for each time topic ϕj „ DirichletJ(β).

• Draw origin distribution for each origin topic ψk „ DirichletK(γ).

• Draw destination distribution for each destination topic ωl „ DirichletL(η).
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Figure 3.1: Plate notation for the graphical model.

• For each passenger u, for each trip record:

– Draw latent topic z „ Multinomial(θu).

– Obtain zo, zd, and zt by z.

– Draw wt „ Multinomial(ϕzt).

– Draw wo „ Multinomial(ψzo).

– Draw wd „ Multinomial(ωzd).

We apply Multinomial distribution to departure time by discretizing time into one-hour
intervals. This is a reasonable simplification and has been widely used in literature (Hasan
and Ukkusuri, 2014; Sun and Axhausen, 2016; Sun et al., 2021). Continuous distributions,
such as Normal and Log-Normal distributions (Zhao et al., 2018b), are more refined in time
representation, but they are also more computational costly and to some extent restrictive
in the shape of the distribution. Considering one-hour resolution is normally enough to
distinguish different travel/activity patterns, this paper uses the discrete representation of
time.

3.4.2 Model inference

The model inference involves estimating the parameters for latent topic distribution of
each passenger and the topic-word distribution of each topic. In the generative process,
each trip is generated from a latent topic z, which is unobserved. We use a collapsed Gibbs
sampling algorithm Griffiths and Steyvers (2004) to iteratively sample the topic for each

27



CHAPTER 3 TRIP DESTINATION INFERENCE

trip by the conditional probability shown in Eq. (3.1):

P(zt
i = j, zo

i = k, zd
i = l|wt

i = t, wo
i = o, wd

i = d, zt
´i, zo

´i, zd
´i, wt

´i, wo
´i, wd

´i)9

Nwt=t
zt=j + β

Nzt=j + Tβ
ˆ

Nwo=o
zo=k + γ

Nzo=k + Sγ
ˆ

Nwd=d
zd=l + η

Nzd=l + Sη
ˆ

Nu
zt=j,zo=k,zd=l + α

Nu + JKLα
. (3.1)

Where w(¨)
´i and z(¨)

´i are trip attributes and latent topics for all other trips except trip i;

N(¨)
(¨)

denotes the number of trips that satisfy the condition listed in the subscript and the
superscript. Note that the current trip i is excluded when counting N.

The sampling procedure will converge after sufficient iterations, and by then we can
estimate the parameters in topic distributions and topic-word distributions by Eq. (3.2):

ϕt,j =
Nwt=t

zt=j + β

Nzt=j + Tβ
,

ψo,k =
Nwo=o

zo=k + γ

Nzt=k + Sγ
,

ωd,l =
Nwd=d

zd=l + η

Nzt=l + Sη
,

θu,j,k,l =
Nu

zt=j,zo=k,zd=l + α

Nu + JKLα
.

(3.2)

3.4.3 Destination inference and station-to-rank transformation

Having estimated all the parameters in the model, we can infer the missing destination
for a trip with only the origin and the departure time observed. According to the Bayes’
theorem, the probability for passenger u alighting at a location d given the departure time
t and the boarding location o takes the form:

P(wd = d|wt = t, wo = o; u)9P(wt = t, wo = o, wd = d; u)

=
J
ÿ

j=1

K
ÿ

k=1

L
ÿ

l=1

P(wt = t|zt
j)P(wo = o|zo

k)P(wd = d|zd
l )P(zt

j, zo
k, zd

l ; u). (3.3)

Next, the most likely destination of a trip is the one that takes the highest probability in
Eq. (3.3).

By now we have shown the complete topic model for destination inference, but there is
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a final impediment that prevents the model from giving a good destination estimation—
the giant heterogeneity among passengers’ spatial patterns. In essence, the topics of
an LDA model are learned from the word co-occurrences across different documents.
However, the origin-destination set is generally diverse from person to person (few word
co-occurrences), which means a very large number of spatial topics are required to capture
the spatial heterogeneity of the entire population. The large latent space not only fails
to extract representative patterns among individuals but also increases the number of
unknown parameters.

To address this problem, we do not use unique IDs for stations; instead, we label
locations by the frequency-rank in each passengers’ historical trips. Studies have shown
the frequency of individuals’ historical locations follows Zipf’s law (González et al.,
2008), indicating most of the trips of a passenger are between several frequently visited
locations. Therefore, the first several ranks can well characterize a person’s travel behavior.
Specifically, denote ri

u to be the rank (by the order of visiting frequency) of station si in
all the historical origins of passenger u. We transform each passenger’s visited locations
into the rank representation and store a mapping function Mu(ri

u) Ñ si to restore real
stations. By doing this, the diverse spatial patterns are essentially transformed into similar
behavioral regularities (e.g., travel from the most visited station to the second most visited
station). The same-ranked location for different passengers’ does not correspond to the
same real stations, but represents a similar degree of importance of these stations to these
passengers. We build the topic model and infer the destination in the ranked reference; the
estimation for the real destination is then retrieved by the mapping function Mu.

3.5 Case study

We use the Guangzhou Metro smart card data—a tap-in and tap-out system—to examine
the proposed topic model. As the topic model requires a portion of complete itineraries
(training set) to learn passengers’ travel patterns, we will investigate our model under two
scenarios:

1. using a ground truth training set;

2. using an estimated training set.

In scenario 1, we randomly select 70% trips and preserve the real destinations, as a training
set; the destination inference is tested on the rest 30% data. Scenario 2 is a more realistic
case where the ground truth destinations are unknown. We train the model with the
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destinations inferred by the rule-based model as in Trépanier et al. (2007) and demonstrate
our model’s performance under the “noisy” training set. The case study part is organized
as follows: we will first introduce the data set, hyperparameters, and baseline models;
next test the destination inference accuracy, interpret the latent patterns; finally present an
application of passenger clustering.

3.5.1 Guangzhou Metro data

Guangzhou Metro is one of the busiest metro systems in the world. As of August 2019,
Guangzhou Metro has 14 operating lines with a total length of 478 kilometers. It is the third-
largest metro system in China, after Beijing and Shanghai. The average daily ridership
exceeds 8.6 million, taking over 50% of the ridership in the public transportation system
of Guangzhou city (Guangzhou Metro, 2019). Except for line 9, 14, APM, and THZ1,
our data covers the rest 11 lines of Guangzhou Metro with 159 stations from July 1st to
September 30th, 2017. The metro operates 19 hours per day from 5:00 to 24:00. Therefore,
the vocabulary size for time is 19, for origin and destination is 159.

Guangzhou Metro is a tap-in and tap-out system with both origin and destination
registered, we can compare the estimated destination with the real destination to test
the inference accuracy. There are single pass, day pass, Yang Cheng Tong and Lingnan
pass (including various subclasses for students, elderly and disabled people), and digital
tickets on smartphone apps. Around 1/3 trips are accomplished by single or day pass,
and the destinations of these short-term users are barely estimable because of the lack
of information. We only focus on the passengers with a minimum of 20 observations in
the three months; later we will discuss the effect of the number of observations on the
estimation accuracy. We showcase our model in 10000 randomly selected passengers. The
total number of selected trips is 667,033, which means on average each person took 67 trips
in the three months.

As discussed in Section 3.4.3, instead of station IDs, we train our model by each
passenger’s rank of stations. A preliminary analysis of the data shows that the first several
ranks can capture most of the trips. Figure 3.2 (a) shows the rank r of stations and the
visiting probabilities p(r) in a log-log plot. It can be found that the visiting probability
drops significantly as the rank gets large. Further, the relation can be approximated by the
Zipf’s law p(r) „ r´η with the exponent term η relates to the number of visited stations N
(Hasan et al., 2013). When applying η = 3.57N´0.38, p(r) and r can be approximated by a
single distribution, shown in the inserted figure. Similar to Hasan et al. (2013), the rank 2
station deviates from this relation, showing higher visiting probability. This indicates that
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there is a bi-central mobility pattern in metro usage compared to the common Zipf’s law
(González et al., 2008).
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Figure 3.2: The probability of visiting different stations. (a) For passengers that have been
observed to visit 5 10, 20, and 30 different stations, the rank of the stations (in the order
of the visit frequency) and the visiting probabilities in a log-log scale. The insert figure
shows that the four groups of p(r) can be well approximated by p(r) „ r´η , when applying
η = 3.57N´0.38. (b) The histogram for the number of different stations visited by each
passenger, in the 10000 passengers.

Figure 3.2 (b) shows the histogram for the number of different stations visited by each
passenger. We can find most passengers visited between 5 to 20 different metro stations in
the three-month period; the number of people who visited more than 20 stations tails off.
Therefore, we cut off the frequency-rank at 20, marking all stations ranked larger than 20
as 20. By doing this, each passenger’s spatial vocabulary size is aligned at 20. Because the
possibility of choosing cut stations is very low, as long as the cut-off point is not too small,
the choice of cut-off point has little effect to the performance of our model. Representing
stations by rank significantly decreases the number of latent topics needed on the spatial
dimension.

3.5.2 Hyperparameters

There are two types of hyperparameters in our models—the number of latent topics and
Dirichlet priors. In literature, the number of latent topics is often determined by perplexity,
which measures the average likelihood of the test data set (Blei et al., 2003; Hasan and
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Ukkusuri, 2014). In our context, we use the destination inference accuracy in the test set to
select the number of topics. We perform a grid search over J = [3, 4, 5] and K, L = [2, 3, 4, 5]
and select the best configuration by the minimal destination inference error, and we prefer
a smaller model when the errors are close. Based on the result, we choose J = 4 and
K = L = 4 for scenario 1, J = 4 and K = L = 3 for scenario 2; more topics do not
contribute to the inference accuracy. Note that the number of spatial topics for scenario
2 is less than scenario 1. This is because the training set of scenario 2 is estimated from
the rule-based models, and the noisy training set prevents the model from learning more
patterns.

There are four Dirichlet priors in our model. These hyperparameters affect the smooth-
ness of the Multinomial distribution; a larger value will increase the smoothness. Besides,
we found hyperparameters (within a range) have little effect to destination inference accu-
racy, which is more relevant to the peak rather than the smoothness of distributions. We
adopt the typical value in NLP and set β = γ = η = 0.1 (Griffiths and Steyvers, 2004). The
hyperparameter α affects the smoothness of individuals’ topic distribution. Considering it
is rare for an individual to possess a wide range of travel patterns; we apply a small value
α = 5/(J ˆ Kˆ L) to learn a relatively sparse topic distribution that captures individual’s
specific character. Note a typical setting for α in NLP is 50/(number of topics) (Griffiths
and Steyvers, 2004).

3.5.3 Benchmark models

We compare our topic model with five benchmark models. For the first four benchmark
models, we predict the destination by the most visited destination in a passenger’s histori-
cal similar trips. The four kinds of “similar trips” are defined as follows:

• (SO) Trip with the same origin.

• (ST) Trip with the same departure time (one-hour interval).

• (SOT_O) Trip with the same origin and departure time; if no such trip, use SO.

• (SOT_T) Trip with the same origin and departure time; if no such trip, use ST.

We adopt the method proposed by He and Trépanier (2015) as the fifth benchmark
model, where the destinations of unlinked trips are predicted by the multiplication of
spatial and temporal kernel density at potential destinations. This method was developed
for bus systems with all potential destinations on the same bus line as the origin. Because
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the potential destinations of metro systems could be on different lines, we extend the
potential destinations with historical destinations that have the same origin as the current
trip, and replace the spatial kernel density by the visiting frequency. We choose 1 hour
as an appropriate bandwidth for the temporal kernel density estimation after comparing
different alternatives. We refer to this model as the “kernel-based” method in the following
text. When any of the above benchmark models fails, the destination is predicted by the
most visited destination of the corresponding passenger.

3.5.4 Scenario 1: using ground truth training set

In scenario 1, we randomly select 70% of the trips as the training set, where the ground truth
destinations are known. Table 3.1 shows the destination inference accuracy of different
models in both training and test sets. As the Gibbs sampling depends on the initial value,
the accuracies of topic models are means of 50 runs and the standard deviations are
shown in parentheses. It can be found that our rank-based topic outperforms the best
benchmark models (SOT_O) around 2% in the test set. On the other hand, the no-rank
topic model—directly uses station ID in the model—has the worst accuracy, even under
a very large number of topics. Our station-to-rank preprocessing greatly improves the
inference accuracy and reduces the latent parameters. As expected, the accuracy of the
training set is slightly higher than the test set.

Table 3.1: The destination inference accuracy of scenario 1.

Method Accuracy (test set) Accuracy (training set)

SO 67.38% - -
ST 63.49% - -
SOT_O 67.75% - -
SOT_T 64.90% - -
Kernel-based 67.15% - -
Rank topica 69.78% (0.14%) 73.24% (0.14%)
No-rank topicb 31.15% (0.19%) 35.30% (0.18%)

a The number of topics J = 4 and K = L = 4.
b The number of topics J = 5 and K = 10, L = 100.

As the topic model requires some historical trips for training, we want to evaluate
the effect of an individual’s number of training trips on the prediction accuracy. Besides,
it is also interesting to investigate the relationship between destination inference and
individuals’ travel regularity. There are many metrics to measure individual’s travel
regularity, such as entropy (Scheiner, 2014), actual entropy (Song et al., 2010), and entropy
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Figure 3.3: Bottom left: the 2D histogram of the number of passengers, gridded by the
number of trips of each passenger in the training set and the entropy of their trips. Bottom
right: the destination inference accuracy of two models for passengers at different entropy
levels and the histogram of entropy. Top: the destination inference accuracy of two models
for passengers with different numbers of trips in the training set and the histogram of the
number of trips in the training set. (Accuracies are shown by means.)

rate (Goulet-Langlois et al., 2017). Entropy measures the randomness of a probability
distribution. In metro trips, the entropy of passenger u is defined as

Eu = ´

Nu
ÿ

i=1

pu(i) log2 pu(i),

where pu(i) is the historical probability that location i was visited, Nu is the total number
of visited stations. The larger the entropy value is, the more random the distribution is,
and the harder the prediction task becomes. Unlike the actual entropy and the entropy
rate, the order of the trips does not affect the entropy. As the LDA is a bag-of-words model
regardless of the order of words, we use entropy to reflect an individual’s travel regularity
and evaluate its relation to the accuracy of destination inference.

Figure 3.3 illustrates the destination inference accuracy under different numbers of
training trips and entropy levels. Overall, the number of training trips concentrates on
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the small end, with most passengers having 10 to 25 training trips. On the contrary, the
entropy distribution is centered in the middle level with a decreasing trend in the high
and low levels. From the bottom right of Figure 3.3, it is conspicuous that the prediction
accuracy steadily increases with the decrease of the entropy, this is because more regular
travelers are easier to predict. With this in mind, it is not hard to understand the relation
between the number of training trips and prediction accuracy. The group with around 110
training trips has the highest prediction accuracy, this is because this group has the lowest
entropy level (see bottom left of Figure 3.3). It is not hard to conclude that the changes
in the prediction accuracy are mainly caused by the entropy rather than the number of
training trips. The most predictable people are those that have around 110 training trips
(around 110/0.7=157 trips with test set) in the three months; this number indicates that
these people are very likely to be regular commuters. The SOT_O and the rank-based topic
model follow the same trend under different numbers of training trips and entropy levels,
but our topic model always has higher accuracy.

3.5.5 Scenario 2: using estimated training set

Scenario 2 imitates the real-world tap-in only system, where the ground truth destinations
are unknown. We first use rule-based models to infer the destinations of all linked trips
as a training set, and then train our topic model using the estimated training set. The
rule-based model that we applied is similar to Trépanier et al. (2007):

• Rule 1: predict the destination as the origin of the next trip on the same day.

• Rule 2: predict the last destination of a day as the first origin of the same day.

• Rule 3: predict the last destination of a day as the first origin of the next day.

The next rule will be only applied when the previous rule is not applicable to a trip. Note
that any two metro stations can be connected by transfers; therefore, we do not need to
verify whether the origin of the next trip is in the vicinity of the first Metro line, which is
different to the bus network in Trépanier et al. (2007).

The accuracy and the coverage of the three rules are shown in Table 3.2. The assump-
tions of these rules have been indirectly verified by cordon count data (Barry et al., 2002)
and survey data (Barry et al., 2002; Munizaga et al., 2014), only a few studies examined
these workhorse assumptions by ground-truth destinations (Alsger et al., 2016). We can tell
from Table 3.2 that Rule 1 using the consecutive trips could reach 86% accuracy. Although
destinations inferred by Rule 2 and Rule 3 are less reliable, they are indispensable parts for
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the training set, because they represent the other side of passengers’ travel patterns (e.g.,
returning home at night). The three rules together handle 85.26% of the trips.

Table 3.2: The destination inference accuracy and coverage of scenario 2.

Coverage Cumulative
coverage Method Accuracy

(test set)
Accuracy

(training set)

Linked trips
44.44% 44.44% Rule 1 86.33% - -
35.49% 79.93% Rule 2 76.80% - -
5.34% 85.26% Rule 3 60.50% - -

Unlinked trips 14.74% 100.00%

SO 49.63% - -
ST 43.02% - -
SOT_O 48.93% - -
SOT_T 44.19% - -
Kernel-based 50.51% - -
Rank topica 51.43% (0.14%) 66.48%(0.16%)
No-rank topicb 31.14% (0.20%) 35.48%(0.18%)

a The number of topics J = 4 and K = L = 3.
b The number of topics J = 5 and K = 10, L = 100.

We then infer the destinations of unlinked trips by our rank-based topic model. Note
that for scenario 2, we only use the origins for the ranking. Because the real destinations
are unknown and the frequency of destinations is roughly the same as the origins if a
passenger uses the smart card to and from. The destination inference results of the topic
models and four benchmark models are shown in Table 3.2, and the standard deviations
are shown in parentheses. It can be found that the best benchmark model is the kernel-
based method with 50.51% accuracy, and our rank-based topic model performs slightly
better than the kernel-based method with around 51.43% accuracy in the test set. It is
noteworthy that the accuracy of the training set is significantly higher than the test set,
despite they are both trained by the noisy data. This is because the training set and the test
set are not randomly partitioned; there are some differences in the distributions of linked
trips and unlinked trips. Besides the lack of ground truth, this difference further impacts
the accuracy of scenario 2.

3.5.6 Interpreting latent topics

In the proposed topic model, each topic is characterized by a distribution over time (T),
origin (O), or destination (D). By looking at these topic-word distributions, we can endow
semantic meanings to latent topics. Therefore, we illustrate the topic-word distribution
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of scenario 1 by Figure 3.4. For time topics in Figure 3.4 (a), we can find topic T2 and T4
have very high probabilities of traveling in the morning, and could be interpreted as early
and late morning peaks topics, respectively. Contrarily, topic T1 indicates trips in the night
and T3 takes the rest of the day. For spatial topics shown in Figure 3.4 (b) and (c), it can be
found that O4 and D1 take an almost 1 probability for the ranked 1st station, representing
boarding and alighting at the most visited station, respectively. Meanwhile, O2 and D3
represent boarding and alighting at the second most visited station; O1 and D2 represent
boarding and alighting at the third most visited station. For O3 and D4, the probabilities
peak at the ranked 4th station and then gradually tail off. Moreover, we found the topic-
word distribution is quite stable across different runs. Although the order of topics could
switch, the shapes of the topic-word distributions maintain unchanged. This suggests
the model is insensitive to initial values and the latent topics are good representations for
travel patterns.
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Figure 3.4: Topic-word distributions. (a) The departure time distributions of the four time
topics. (b) The origin distributions of the four origin topics. (c) The destination distributions
of the four destination topics.

It is worth mentioning that although the probability of alighting at a station after rank
4 is not zero, it is impossible to predict the destination of a trip as a station ranked after 4
by Eq. (3.3). Because Eq. (3.3) always predicts the destination as the most likely one, which
is always the most likely destination (peak) in a particular latent destination topic. This
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limitation causes the accuracy of ranked 4th destination being compromised by stations
after rank 4; Luckily, these trips are sparse and with high randomness, the first three
destinations make up the majority.
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Figure 3.5: The latent topic distribution of a passenger.

After model training, each passenger is assigned with a distribution over topics, rep-
resenting to what extent the passenger belongs to each topic. This topic distribution is a
high-level summary of a passenger’s travel pattern. For example, Figure 3.5 shows the
latent topic distribution of a passenger. Each matrix represents the probabilities over origin
and destination topics under a time topic. Although we don’t know the exact mapping
relation between the rank of a station and its real function (e.g., home/work), we can easily
understand these travel patterns by common sense. It is conspicuous that there are two
latent topics with significantly higher probability, indicating a possible commuting pattern.
The most significant latent topic is [T2, O4, D3]; according to the semantic meaning shown
in Figure 3.4, [T2, O4, D3] represents this passenger frequently departure from the most
visited station to the second most visited station in the early morning, indicating a possible
home-work behavior. Similarly, the second significant topic [T1, O2, D1] represents travel-
ing from the second most visited station to the most visited location in the night, which
could be the work-home trip. Besides, [T1, O3, D1] also has a high probability, which could
be backing home from the third most visited location (such as a shop) at night. Other
noticeable topics are mostly in T3 and have relatively low probabilities; these could be
recreational activities. Further, we can find this passenger often uses metro in the early
morning (T2), night (T1), and afternoon (T3), but seldom uses it between 8:00 AM to 10:00
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AM (T4).

3.5.7 Passenger clustering

Passenger clustering is important for personalized service, improving demand models,
and various applications. The latent topic distribution is an excellent feature for passenger
clustering. There has been a large body of research that uses smart card data for passenger
clustering and travel pattern mining. Most existing methods capture either spatial or
temporal features. Ma et al. (2013) clustered passengers based on spatial and temporal
features, but the two kinds of features are independently defined and then combined. Our
latent topic distribution jointly captures the spatial and temporal patterns in a compact
manner, which provides a useful approach for investigating people’s travel behaviors.

The feature used for clustering is passenger’ latent topic distribution. Jensen-Shannon
divergence (JSD) is a metric of measuring the similarity between two probability distri-
butions; we apply the square root of the JSD as the distance between two latent topic
distributions. Next, we select 500 passengers and apply hierarchical clustering to illustrate
common travel behaviors among the population. Hierarchical clustering is a useful way
to visualize the structure of the clustering component. It is also useful in providing the
centroid and the number of clusters for faster clustering methods, such as K-means.

The hierarchical clustering of 500 passengers by their latent topic distribution is shown
in Figure 3.6. Noticeably, passengers on the left half of the figure (From 0 to around 275)
show distinct two travel directions: one from the rank 1 station to the rank 2 station and
the other from the rank 2 to the rank 1 station, indicating a commuting pattern. More
specifically, the temporal topic within R1R2 and R2R1 are different in each cluster, showing
these passengers regularly leave from a place at a certain time and then come back at
another time, the time at which passengers leave and back distinguishes different clusters.
On the other hand, passengers on the right half of Figure 3.6 (around 275 to 500) do not
have an as significant commuting pattern as those on the left part, and therefore correspond
to non-commuters. The latent topic distributions of non-commuters show more diverse
interactions between different topics, especially between rank 1 stations and others. It is
also interesting to find that the early morning topic (in the top minor tick between two
major ticks, corresponding to T2 in Figure 3.4) mostly belongs to the commuters; most
metro trips from non-commuters are in the late morning, afternoon, and night. The distinct
pattern between commuters and non-commuters validates the returners and explorers
dichotomy in human mobility (Pappalardo et al., 2015). By utilizing the proportion of
people under different clusters, a potential application of our topic model is to generate
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Figure 3.6: Top: the dendrogram of the hierarchical clustering on 500 passengers. Bottom:
the feature matrix for the clustering; each column in the matrix is a vectorized latent topic
distribution of one passenger. The tick labels on y-axis represent the semantic meanings of
latent topics: such as, R1R2 means the origin topic that peaks at ranked 1st station and the
destination topic that peaks at ranked 2nd station. The four temporal topics are separated
by the minor ticks between every two major ticks and ordered from early morning topic to
night topic.
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synthetic itineraries of the population for transit simulation.

3.6 Conclusions and discussion

This paper uses a probabilistic topic model for smart card data destination estimation
and travel pattern mining. We establish a three-dimensional LDA model that captures
the time, origin, and destination attributes in smart card trips. Moreover, we introduce
a station-to-rank preprocessing that reduces the spatial divergence among passengers
to discover more compact latent topics. The case study of Guangzhou Metro shows
our model outperforms individual-history-based model by around 2% more accurate, in
both scenarios with ground-truth or estimated training set. As a probabilistic model, the
destination estimation accuracy is more related to an individual’s travel regularity than
the number of trips in the training set. Other than a prediction model, the proposed topic
model is also a generative model that explains the probability of a trip by the individual’s
latent topics (i.e. the probability of traveling from rank o station to rank d station under
time topic t) and can be used for travel pattern analysis, and passenger clustering, and trip
generation.

For the spatial topics, we introduce a station-to-rank transformation that enhances
word co-occurrences among passengers and greatly improves the inference accuracy. The
limitation of rank representation is the loss of spatial information. As shown in Figure 3.4
(b) (c), each spatial topic actually corresponds to one rank, rather than a mixture of words.
Therefore, the topic model cannot be used for spatial clustering as to the vocabulary
clustering in natural language processing. Indeed, related research (Hasan and Ukkusuri,
2014; Zhao et al., 2018b) primarily focused on passengers’ pattern rather than the spatial
similarity. How to derive spatial/region similarity from individuals’ transit itineraries
is an interesting direction, such as (Du et al., 2019). Besides, representing stations by
labels (home/work/shop) could further improve the model interpretability; incorporating
geographical and land use features could be promising future research. Finally, the effect
of our model in the denser bus network is also worth exploring.

There is also improvement space for temporal topics. Firstly, distinguishing weekdays
and weekends could be helpful to the prediction. Secondly, how to transform the topic
model to a time-varying version is an interesting direction, such as Fan et al. (2016). A
problem with our smart card data is that it is a coarse sample for individuals’ life trajectory.
Even in our sampled 10000 “frequent” users, around 50% of passengers use metro no more
than four times a week; it is hard to utilize connections between neighboring trips under
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such big travel intervals. Finally, similar to Yin et al. (2017), we can include extraneous
variables to improve prediction accuracy. Out of the context of smart card data, it is
promising to extend our model for a more general mobility prediction, such as next trip
prediction (Zhao et al., 2018c).
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Chapter 4

Using Travel Behavior for Boarding Flow
Forecasting

This chapter is an article published in Transportation Research Part C: Emerging Technologies:

• Cheng, Z., Trépanier, M., Sun, L., 2021. Incorporating travel behavior regularity into
passenger flow forecasting. Transportation Research Part C: Emerging Technologies 128,
103200.

The appendix of the original publication is added to Section 4.4.7 of this Chapter for fluent
writing. This chapter corresponds to the travel-behavior-based forecasting method of this
thesis. This chapter and the previous Chapter 3 both utilize the regularity and chained trips
in passengers’ travel behavior. Chapter 3 is an application on disaggregated individuals’
trips while this chapter raises to an aggregated level about station passenger demand. Both
chapters show the important role of travel behavior in metro operation and management.
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4.1 Abstract

Accurate forecasting of passenger flow (i.e., ridership) is critical to the operation of urban
metro systems. Previous studies mainly model passenger flow as time series by aggregat-
ing individual trips and then perform forecasting based on the values in the past several
steps. However, this approach essentially overlooks the fact that passenger flow consists
of trips from each individual traveler. For example, a traveler’s work trip in the morning
can help predict his/her home trip in the evening, while this causal structure cannot
be explicitly encoded in standard time series models. In this paper, we propose a new
forecasting framework for boarding flow by incorporating the generative mechanism into
standard time series models and leveraging the strong regularity rooted in travel behavior.
In doing so, we introduce returning flow from previous alighting trips as a new covariate,
which captures the causal structure and long-range dependencies in passenger flow data
based on travel behavior. We develop the return probability parallelogram (RPP) to sum-
marize the causal relationships and estimate the return flow. The proposed framework is
evaluated using real-world passenger flow data, and the results confirm that the returning
flow—a single covariate—can substantially and consistently improve various forecasting
tasks, including one-step-ahead forecasting, multi-step-ahead forecasting, and forecasting
under special events. And the proposed method is more effective for business-type sta-
tions with most passengers coming and returning within the same day. This study can be
extended to other modes of transport, and it also sheds new light on general demand time
series forecasting problems, in which causal structure and long-range dependencies are
generated by the user behavior.

4.2 Introduction

Recent years have witnessed the rapid development of metro systems and the continued
growth of metro ridership worldwide (Union Internationale des Transports Publics (UITP),
2018). As an efficient and high-capacity transportation mode, the metro is playing an ever-
important role in shaping future sustainable transportation. Given the growing importance
of metro systems, it is critical to have a good understanding of passenger demand patterns
to support service operation. A key task is to make accurate and real-time forecasting of
passenger demand/ridership, which plays a vital role in a wide range of applications,
including service scheduling, crowd management, and disruption response, to name but a
few.
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Short-term passenger flow forecasting typically focuses on forecasting the passenger
flow in the next few minutes to several hours, and has been extensively studied in public
transportation research. Most existing studies formulate passenger flow data as time
series and follow similar methods as those applied in traffic flow forecasting. For ex-
ample, statistical time series models have been widely applied to ridership forecasting
problems, including autoregressive integrated moving average (ARIMA) (Williams and
Hoel, 2003; Ding et al., 2017; Chen et al., 2020a), exponential smoothing (Tan et al., 2009),
and state-space/Kalman filter (Stathopoulos and Karlaftis, 2003; Jiao et al., 2016). Most
of these classical time series models are linear by nature; to better characterize the non-
linearity in time series data, non-linear versions or ensemble extensions of these models
have also been studied (e.g., Jiao et al., 2016; Carrese et al., 2017). Recent research starts
regarding the forecasting a supervised machine learning problem. On this track, some
representative supervised learning models have been applied, such as support vector
machine (SVM) (Chen et al., 2011; Sun et al., 2015), artificial neural network (ANN) (Vla-
hogianni et al., 2005; Tsai et al., 2009; Li et al., 2017), random forest (Toqué et al., 2017),
and recurrent neural network (RNN)/long short-term memory (LSTM) as emerging deep
learning approaches (Hao et al., 2019; Liu et al., 2019b). The aforementioned research
mainly focuses on modeling a univariate time series for a single metro station. However,
the metro system is a network in which stations exhibit strong spatial and temporal corre-
lations/dependencies. To extend the univariate analysis to network-wide passenger flow
forecasting, some state-of-the-art models have been proposed to better characterize the
complex spatiotemporal patterns and dynamics. For example, Gong et al. (2020) proposed
matrix factorization models to estimate passenger flow data for each origin-destination
(OD) pair; Li et al. (2020) introduced local smoothness prior based on auxiliary information
(e.g., flow correlation, network typology, and POI composition) into tensor completion
models to forecast passenger flow; Chen et al. (2020b) developed graph convolutional
network (GCN) models to capture the complex spatiotemporal dependencies in a metro
network. These new machine learning-based models have shown superior performance
over traditional time series models, and they are more effective in capturing the complex
patterns by incorporating domain knowledge and external features such as weather, event,
time of day, and day of week.

In all the studies mentioned above, passenger flow data is generally modeled as an
aggregated count time series obtained by counting the number of unique card IDs in
smart card transactions. Despite the simplicity and effectiveness of these models, we
would argue that the most important characteristic of passenger flow is overlooked due
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to the aggregation: passenger flow consists of the movement of individuals with strong
regularity rooted in their travel behavior. For instance, if a passenger alights at a metro
station for work in the morning, he/she will probably depart at the same station when
he/she goes home in the evening. If he/she does not travel in the morning, it becomes
less likely we will observe a corresponding return trip. This example clearly shows that
past trips should be utilized to predict future demand, and individual travel behavior
actually can result in causal structure and long-range dependencies in passenger flow time
series data. Some recent studies have shown that travel behavior plays a substantial role
in dynamic traffic assignment (Cantelmo and Viti, 2019) and online demand estimation
(Cantelmo et al., 2020). This effect is particularly true for metro systems where passengers’
travel patterns are highly regular (Sun et al., 2013; Goulet-Langlois et al., 2017; Zhao et al.,
2018c). Therefore, when developing a passenger flow forecasting model, it is essential to
integrate this type of behavior-driven and long-range dependencies in addition to the local
input (e.g., the past n steps in the time series).

The goal of this study is to explore the potential of incorporating an additional travel
behavior component into the forecasting of passenger flow time series. Specifically, we
propose a new scheme to forecast boarding/incoming passenger demand at a station
by integrating historical alighting time series at the same station. We define returning
passengers as those who finish their first trip at station s and also start their second trip
at the same station. In other words, returning passengers refer to the individuals who
stay at station s to perform an activity (e.g., home and work). In general, these return
trips are not random and often exhibit strong regularity due to the activities performed.
This motivates us to forecast the incoming/boarding demand from these “returning
passengers” using the information on their previous trips. To achieve this, we introduce a
new concept of return probability parallelogram (RPP) to better estimate returning flow,
and we find that the estimated returning flow highly correlates with the overall boarding
demand in a real-world data set. To further quantify the benefits of incorporating this
returning flow measure, we evaluate the proposed models for one-step-ahead forecasting,
multi-step-ahead forecasting, and forecasting under special events. Our results show
that incorporating returning flow as an additional variable will consistently improve the
accuracy of forecasting.

The idea of leveraging trip-level information has been introduced and examined in
some recent studies, which predict the alighting flow of a station using the recent boarding
flow from other related stations (see e.g., Li et al., 2017; Hao et al., 2019; Liu et al., 2019b).
However, the large number of boarding-alighting station pairs makes it difficult to learn
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an informative model at a trip level, and eventually these studies develop deep neural
networks to learn the correlation from the aggregated count data in a purely data-driven
approach. Our model, instead, uses the alighting of “this trip” to predict the boarding of
the “next trip”, where the alighting and the boarding stations are usually the same (Barry
et al., 2002; Trépanier et al., 2007). We examine this idea on a boarding flow forecasting
application, which is more important to service operation and planning. The “returning
flow” proposed in this paper is solely based on the intrinsic travel regularity of travelers,
and it does not require external information/knowledge. Our work is closely related to
Zhao et al. (2018c), which proposes a probabilistic model to predict the next trip for an
individual based on his/her trip history. However, instead of predicting individual trips,
our primary goal is to forecast the overall passenger flow to support the decision-making in
service operation. In doing so, we estimate the returning flow in an aggregated approach;
therefore, the framework does not require individual-based data sets that are confidential
and sensitive for privacy reasons. The main contribution of this work is summarized as
follows.

• We define returning flow to characterize the causal structure and long-range depen-
dencies in passenger flow data, which are essentially overlooked in previous time
series-based studies.

• We integrate returning flow as an additional covariate into standard time series
models, and the proposed behavior-integrated model shows consistently improved
performance in our case studies based on a real-world data set.

• Our model also provides a new approach to forecast passenger flows under special
events.

To the best of our knowledge, this is the first research that incorporates a travel behavior
component into the longstanding passenger flow forecasting problem. The remainder of
the paper is organized as follows. Section 4.3 introduces the concept of returning flow and
return probability parallelogram as the tool to integrate travel behavior regularity into the
passenger flow forecasting framework. In Section 4.4, we develop case studies based on
real-world smart card data and demonstrate the effectiveness of the proposed models in
different scenarios. Finally, Section 4.5 concludes our research and discusses future work.
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4.3 Methodology

In this section, we introduce returning flow and the return probability parallelogram as two
fundamental building blocks in the behavior-based boarding flow forecasting framework.
The proposed forecasting models are constructed by integrating returning flow as a new
feature/covariate into traditional time series forecasting models. We start with a brief
description of the passenger flow forecasting problem.

4.3.1 Problem description

Suppose that in a metro system we have access to all smart card transactions, i.e., we know
the anonymous ID of passengers, the time and the locations/stations of both boarding
(tapping-in) and alighting (tapping-out) for each trip. In this case, a station s will generate
two passenger flow time series: the alighting/arriving flow for passengers with station s
as their destination, and the boarding/incoming flow for passengers who start their trips
from station s. We denote by ys

t and ms
t the boarding flow and the alighting flow at station

s in time interval t, respectively.
We focus on the case of forecasting the boarding flow ys

t . Given some recent observa-
tions ys

1, . . . , ys
t´1, ys

t , our goal is to predict the values of ys
t+1, ys

t+2, . . . , ys
t+L in the next L

time steps/intervals. This is a standard time series analysis problem on which traditional
statistical models such as ARIMA can be applied. In this paper, we aim to achieve better
forecasting results over the traditional models by integrating additional information of the
behavioral regularity of passengers associated with alighting flow ms

t .

4.3.2 Returning flow

We begin our model by introducing the concept of the “returning flow”. To facilitate model
development, we divide all the passengers associated with stations s (both boarding and
alighting) into two groups (see Figure 4.1):

(G1) Passengers who alight at station s;

(G2) Passengers who board at station s without a previous trip alighting at s.

With this definition, we can model the total boarding flow ys
t by combining the boarding

flow in the two groups. The passengers in G1 can be further separated into two subgroups
given if they have their next trip originating from station s within a certain time window.
We define the subgroup with a following trip as G1A and the other as G1B. Thus, G1A
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Group t´ h . . . t´ 2 t´ 1 t t + 1 t + 2 . . . t + L

G1
A

˝ ‚

˝ ‚

˝ ‚

˝ ‚

˝ ‚

˝ ‚

B
˝

˝

sum ˝ in G1 ms
t´h . . . ms

t´2 ms
t´1 ms

t

G2
‚

‚

sum ‚ in G1+G2 ys
t´h . . . ys

t´2 ys
t´1 ys

t ŷs
t+1

˝ represents alighting, ‚ represents boarding,
ÝÑ represents observed trip chain, 99K represents trip chain to be predicted.

Figure 4.1: Illustration of two passenger groups (G1/2) and the boarding demand forecasting
problem at station s.

actually consists of those passengers who conduct certain activities (e.g., home/work)
around station s. We define “returning flow” at time t as the number of people in G1 who
will finish their activities and start their return trips at time t by station s, denoted by rs

t . In
fact, these chained trips (with departing station being identical to the alighting station of a
previous trip) make up a substantial proportion of all trips. As shown in Figure 4.2, for
the Guangzhou metro in our case study, the returning flow accounts for over 50% of all
boarding demand. We thus hypothesize that having the “returning flow” as an additional
variable will enhance the forecasting of ys

t+1. We refer to the forecasting model with rs
t+1

as a covariate as M2:
M2 : ŷs

t+1 = f
(
ys

1:t, rs
t+1
)

. (4.1)

It should be noted that we do not have access to rs
t+1 (i.e., those dashed arrows in

Figure 4.1), as the returning flow in G1 is only observed up to time t (i.e., those solid
arrows in Figure 4.1). Therefore, in practice, we need to first estimate r̂s

t+1 and then use it
as a proxy for rs

t+1 in M2. On the other hand, a possible alternative is to use rs
t—which we

have access in real-time—instead of r̂s
t+1 as the covariate. We define this alternative model

as M1 and use it as a baseline model:

M1 : ŷs
t+1 = f (ys

1:t, rs
t) . (4.2)

We also consider a standard time series model without any additional variables as a
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G1A: returning flow 51.4%

G2: one-way tickets

20.0%

G2: different previous
alighting station

18.2%

G2: no recent trip

10.4%

Figure 4.2: The composition of the boarding flow in Guangzhou metro. Based on the smart
card data from July 21 to 28, 2017.

baseline (M0):
M0 : ŷs

t+1 = f (ys
1:t) . (4.3)

Note the returning flow (G1A) in this paper does not cover the G2 part of the boarding
flow (Figure 4.2). Because it is hard to forecast the one-way tickets or standalone trips
in G2 by data solely from a metro system. However, a metro ride can be one trip in
an activity chain or even one mode in a multi-modal trip; it is possible to infer the G2
part if we have complete trip chain information supported by other data sources, which
will be greatly helpful for the boarding flow forecasting. Like in most cases, we have no
complete trip/activity chain information. We thus establish the returning flow concept
upon consecutive metro trips with the first destination and the next origin overlapped.
This is a specific subset of activity chains. Luckily, we can obtain a very accurate estimation
for the future returning flow (G1A) and it already takes a substantial part of the total
boarding flow; using the returning flow as a covariate is still beneficial for the boarding
flow forecasting.

4.3.3 Return probability parallelogram (RPP)

In this subsection, we propose a method to estimate the returning flow. We only consider
the returning flow within a time window H when we define G1A. For the current and past
returning flow, rs

t can be readily obtained by

rs
t =

t´1
ÿ

ta=t´H

rta,t, (4.4)
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where rta,t is the number of passengers that come (alight) at station s at ta and return
(board) at t. Using Eq. (4.4), rs

t can be obtained in real-time and used in M1.
However, M2 requires a returning flow in the future that cannot be accessed by Eq. (4.4).

Therefore, we propose a method to estimate r̂s
t+1 based on the returning flow generalization

mechanism. Our fundamental assumption is that there exists a universal distribution
ps (τboarding

ˇ

ˇ τalighting
)

characterizing the conditional probability that a passenger in G1
who alights at time τalighting will start his/her returning trip at time τboarding. Note that we
define ps on the whole group G1, so the subgroup G1B is also modeled in this distribution.
For the passengers who alight at time ta we have:

ta+H
ÿ

t=ta+1

ps (τboarding = t
ˇ

ˇ τalighting = ta
)
+ ps (τboarding = NA

ˇ

ˇ τalighting = ta
)
= 1, (4.5)

in which the term ps (τboarding = NA
ˇ

ˇ τalighting = ta
)

represents the conditional probability
of an arriving passenger does not return within the time window H (i.e., subgroup G1B).

If the conditional distribution ps (τboarding
ˇ

ˇ τalighting
)

is available for all τalighting, we
can estimate the expectation of the returning flow rs

t+1 at time t + 1 by:

r̂s
t+1 =

H
ÿ

h=1

ms
t´h+1ps (τboarding = t + 1

ˇ

ˇ τalighting = t´ h + 1
)
. (4.6)

It is important to note that the estimation of r̂s
t+1 using Eq. (4.6) is very different from

predicting r̂s
t+1 using a time series model based on past observations. This is because a

simple time series model such as ARIMA cannot characterize the unique generative mech-
anisms (e.g., come-and-return) and the corresponding long-range dependencies/causal
structure provided by these mechanisms in the passenger flow data.

The time window length H is an additional parameter to be determined before ap-
plying Eq. (4.6). To choose an appropriate H, we quantify the inter-trip time/duration(

τboarding ´ τalighting
)

for all those passengers with both the alighting trip and the next
boarding trip at the same station. We conduct this analysis on the Guangzhou metro data
set. Figure 4.3 shows the distribution of the inter-trip time of two representative stations
in a commercial area and a residential area, respectively. The distribution is obtained
by aggregating all alighting records on a typical Monday, and we track the returning
flow within 48 hours after the alighting. The return time intervals in both stations are
characterized by a bi-modal pattern. The first peak (less than 3 hours) corresponds to
certain short-duration activities (e.g., dining and shopping). The longer peaks largely

51



CHAPTER 4 BOARDING FLOW FORECASTING

0 10 20 30 40
Return time interval (hours)

0.00

0.05

0.10

0.15

0.20

P
ro

ba
bi

lit
y

Commercial area
Residential area

Figure 4.3: The density histogram of the return time interval (τboarding ´ τalighting) of two
example stations.

correspond to “work” activities (9-12 hours) in the commercial area and “home” activities
(10-16 hours) in the residential area, respectively. Relatively few activities take around
6 hours, and thus the return time intervals in both stations exhibit a “U” shape pattern.
More importantly, as we can see, almost of the return trips start within a 24-hour window
after finishing previous trips. Therefore, for simplicity, we only take the alighting flow
within the past 24 hours into account when estimating r̂s

t+1.
Having determined H, the next step is to obtain a good estimate of the conditional

probability distribution ps (τboarding
ˇ

ˇ τalighting
)
. However, the current formulation involves

a set of conditional probabilities for each value of τalighting, making it difficult to estimate.
For simplicity, we assume that the conditional distributions are universal across different
days:

ps (τboarding = tb
ˇ

ˇ τalighting = ta
)
= ps

0 (future window(tb) | window of day(ta))

= ps
0 (window of day(ta) + tb ´ ta | window of day(ta)) ,

(4.7)

where we refer to the reduced distribution ps
0 as the return probability parallelogram

(RPP). As the new conditional distribution ps
0 is defined given the time of day of ta, we can

estimate it using historical trip data of passengers in group G1A (i.e., the solid arrows in
Figure 4.1). Denote rs

ta,tb
to be the number of passengers that come (alight) at station s at ta
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and return (board) at tb. For a time window w of day, ps
0 can be estimated by

ps
0(w + h|w) =

ř

window of day(ta)=w
tb´ta=h

rs
ta,tb

ř

window of day(ta)=w ms
ta

(h = 1, 2, ¨ ¨ ¨ , H). (4.8)
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Figure 4.4: The return probability parallelogram (RPP), the alighting flow ms
t , and the

returning flow rs
t for two representative stations: (a) A typical station in commercial areas.

(b) A typical station in residential areas.

We use Figure 4.4 to illustrate the idea of RPP. Panel (a) and (b) show two sets of
conditional distributions for a commercial area and a residential area, respectively, in
Guangzhou metro. The resolution for time slot is set to half an hour, and the range is
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from 6:00 to 24:00 (operation time of the metro system). Note that in this parallelogram
representation we concatenate the 24:00 of day k and the 6:00 of day k + 1 on the horizontal
axis. There are two blank triangles in this diagram: the one on the left corresponds to
the tb ď ta, where the distribution is not defined; the one on the right corresponds to the
conditional probability with tb ą ta + H (H = 48 for 24 hours), which is also ignored for
simplicity. It should be noted that in RPP the sum of each row is less than 1, as it does
not include the passengers in G1B (with no returning trips, i.e., τboarding = NA). With this
formulation, we can replace ps (τboarding = t + 1

ˇ

ˇ τalighting = t´ h + 1
)

in Eq. (4.6) by the
corresponding conditional probability in RPP.

As shown in Figure 4.4, it is obvious that different stations exhibit different RPP patterns.
For example, for the commercial station in Figure 4.4(a), most trips arrive (alight) in the
morning and return in the evening on the same day, which essentially captures work
activities. It is very rare to see returning trips on the next day. As for the station in a
residential area in Figure 4.4(b), on the contrary, we can see that the distribution mainly
characterizes home activities, where alighting flow generally peaks in the evening and
the returning flow concentrates in the morning of the next day. The RPP representation
demonstrated in Figure 4.4 further suggests that the unique come-and-return dynamics
for a station should be considered in passenger flow forecasting applications.

4.4 Experiments

In this section, we conduct numerical experiments to evaluate the effectiveness of the
proposed behavior-integrated models. We choose the standard SARIMA model as the core
model for time series forecasting (M0). On top of this model, we create two regression
with SARIMA error models—M1 and M2—by simply incorporating the observed rs

t and
the estimated r̂s

t+1 as additional covariates, respectively. We evaluate the performance
of these models in three scenarios: (1) one-step-ahead forecasting, (2) multi-step-ahead
forecasting, and (3) forecasting under special events. Besides, we also test using Support
Vector Regression (SVR) and Multi-Layer Perceptron (MLP) as M0 in Section 4.4.7 and
observe consistent results with the SARIMA.

4.4.1 ARIMA model

We choose seasonal ARIMA as the main baseline model—M0. ARIMA is a well-established
time series forecasting model which has been widely used in traffic/passenger flow
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forecasting (Williams and Hoel, 2003; Ding et al., 2017; Chen et al., 2020a). Considering
the strong periodicity from day to day, we apply Seasonal ARIMA (SARIMA) to model
passenger flow. Here we give a brief introduction of the SARIMA model, and we refer
readers to the book by Hyndman and Athanasopoulos (2018) for a comprehensive review
of time series models. A SARIMA model is usually denoted by ARIMA(p, d, q)(P, D, Q)[m],
where p, d, and q represent the order of autoregressive, differencing, and moving-average;
P, D, and Q are the order of autoregressive, differencing, and moving-average for the
seasonal part; and m is the number of period in each season. For a time series y1, . . . , yT,
the ARIMA(p, d, q)(P, D, Q)[m] model (M0) takes the form

Φ(B) (1´ Bm)D φ(B)(1´ B)dyt = θ(B)Θ(B)et, (4.9)

where B is the backshift notation defined by

Bayt = yt´a,

Φ(B) =
(

1´Φ1Bm
´ ¨ ¨ ¨ ´ΦPBPˆm

)
,

φ(B) =
(
1´ φ1B´ ¨ ¨ ¨ ´ φpBp) ,

θ(B) =
(
1 + θ1B + ¨ ¨ ¨+ θqBq) ,

Θ(B) =
(

1 + Θ1Bm + ¨ ¨ ¨+ ΘQBQˆm
)

;

Φi, Θi, φi, and θi are ARIMA coefficients to be estimated; et is an error assumed to follow a
white noise process (i.e., zero mean and iid).

When incorporating the returning flow r1, . . . , rT, as a covariate, the forecasting model
(M2) becomes

yt = βrt + ηt,

Φ(B) (1´ Bm)D φ(B)(1´ B)dηt = θ(B)Θ(B)et.
(4.10)

Where β is the regression coefficient, ηt is a regression error term that follows the ARIMA
procedure. Note the regression coefficient and the ARIMA coefficients are estimated in
one step, rather than estimated separately. All ARIMA models in this study are estimated
using the forecast package for R (Hyndman et al., 2020).

55



CHAPTER 4 BOARDING FLOW FORECASTING

4.4.2 Model selection and evaluation

We apply the same order of SARIMA to the demand time series for all the stations. The
seasonal frequency is set to m = 36 (i.e., daily, from 6:00 to 24:00, as we use half an hour as
the temporal resolution). For most stations, after a seasonal differencing, the Augmented
Dickey-Fuller (ADF) test (Dickey and Fuller, 1979) indicates no further differencing is
required to make the time series stationary, we thus set D = 1 and d = 0. We search over
possible models and finally select ARIMA(2, 0, 1)(1, 1, 0)[36] as the baseline M0, which
is shown to be appropriate for most stations. Indeed, we can achieve better forecasting
results by designing station-specific models with different orders. However, as our goal is
to evaluate the effect of using the returning flow as a covariate, we still select a universal
model for all stations for simplicity.

We use the root mean square error (RMSE) and the symmetric mean absolute percentage
error (SMAPE) to evaluate model accuracy:

RMSE =

g

f

f

e

1
N

N
ÿ

t=1

(ys
t ´ ŷs

t)
2,

SMAPE =
2
N

N
ÿ

t=1

|ys
t ´ ŷs

t |

|ys
t |+ |ŷ

s
t |
ˆ 100(%),

where ys
t and ŷs

t are the real boarding flow and the predicted boarding flow, respectively.
In addition to RMSE and SMAPE, we also use the Akaike information criterion (AIC)
(Akaike, 1998) to measure the trade-off between the goodness of fit and the complexity of
a model. A smaller AIC suggests a better model.

4.4.3 Data

We use the passenger flow data retrieved from Guangzhou metro in China as a case study.
The smart card data set covers 159 stations from July 24 to September 8 in 2017. Note that
the data on weekends are not included in our analysis (i.e., we concatenate Friday with
the next Monday), as the RPP has different patterns on weekends. We divide the whole
data set into three parts:

(D1) July 24 to August 4 (two weeks): estimate the RPP ps
0 for a station s (for M2 only);

(D2) August 7 to August 25 (three weeks): estimate model parameters for all the three
SARIMA models (training set);
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(D3) August 28 to September 8 (two weeks): evaluate model performance (test set).
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Figure 4.5: The boarding flow and the estimated returning flow. As marked by red arrows,
the returning flow reflects the irregular increases/drops of the boarding flow: (a) Tiyu Xilu
station, (b) Luoxi station, (c) Changshou Lu station, and (d) Huijiang station. The green
curves represent demand time series ys

t and the orange curves correspond to the estimated
returning flow time series r̂s

t .

After estimating RPP from D1, we compute r̂s
t+1 on data sets D2 and D3 following

Eq. (4.6). Before estimating the SARIMA models, we first empirically examine the relation-
ship between the time series of returning flow r̂s

t and the time series of incoming demand
ys

t . Figure 4.5 shows the demand time series ys
t and the estimated returning flow time series

r̂s
t on data set D2/D3 for four representative stations. Station (a) and (d) are commercial

areas, where the boarding flows concentrate in the afternoon and evening. Station (b) is a
residential area that has an extremely high morning peak. Station (c) has high boarding
flow in both the morning and afternoon peaks. We can see that the estimated returning
flow r̂s

t matches ys
t for all types of stations very well. Notably, the returning flow r̂s

t makes
up a large proportion of the total boarding demand, and it can correctly characterize the
temporal dynamics in ys

t . More importantly, as marked by the red arrows in panels (a),
(c) and (d), the returning flow can even reproduce some irregular increases/drops (i.e.,
anomalies) of the boarding flow, which are very difficult to capture using conventional
time series models with ys

t alone.
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4.4.4 One-step-ahead forecasting

We use data set D2 to estimate model parameters and apply the model to D3 for evaluation.
Table 4.1 shows the results of one-step-ahead forecasting for the four stations in Figure 4.5.
Compared with M0, M2 consistently reduces the RMSE and SMAPE of both training and
test sets of the four stations by incorporating r̂t+1. Meanwhile, M2 is also superior with a
larger log-likelihood and a lower AIC. However, with the observed rs

t as input, M1 per-
forms almost the same with M0. This might be due to the fact that rs

t correlates highly with
ys

t (the observation at the last step), since the returning flow covers a considerable propor-
tion of the overall boarding flow. Thus, the amount of additional information brought by
this term is rather marginal. While on the contrary, r̂s

t+1 estimated externally by combining
RPP and the alighting time series ms

t actually encodes the generative mechanisms and
long-range dependencies, and thus M2 produces much better forecasting results.

Table 4.1: The one-step boarding flow forecasting of four stations.

Stations Model
RMSE
(train)

RMSE
(test)

SMAPE
(train)

SMAPE
(test)

Log-likelihood AIC

(a) Tiyu Xilu
M0 398.09 363.06 11.89% 11.63% -3747.19 7504.37
M1 396.95 362.00 12.36% 12.22% -3745.76 7503.52
M2 372.94 319.60 10.59% 9.29% -3713.9 7439.79

(b) Luoxi
M0 64.06 71.61 9.51% 9.93% -2830.25 5670.49
M1 64.06 71.61 9.51% 9.93% -2830.25 5672.49
M2 63.92 71.37 9.48% 9.89% -2829.25 5670.48

(c) Changshou Lu
M0 93.78 94.34 10.36% 11.88% -3018.66 6047.31
M1 93.64 95.16 10.31% 11.99% -3017.84 6047.67
M2 90.02 92.74 9.39% 10.83% -2998.07 6008.15

(d) Huijiang
M0 37.32 47.37 14.05% 14.27% -2557.94 5125.88
M1 37.29 47.29 14.05% 14.25% -2557.61 5127.21
M2 36.67 38.61 13.49% 13.91% -2549.47 5110.93

To further evaluate whether the improvement of M2 is statistically significant, we apply
paired t-test to compare the absolute forecast errors on the test set D3. For each station,
denote the forecast error of model M to be a random variable εM = ŷ´ y. When comparing
M2 and M0, the null hypothesis H0 : µ (|εM2| ´ |εM0|) = 0 means no significant difference
between the absolute forecast error of M2 and M0. We use the lower-tailed alternative
hypothesis Ha : µ (|εM2| ´ |εM0|) ă 0, which means the absolute forecast error of M2 is
smaller than M0. We also compare M2 with M1 in the same way. Based on the p-values in
Table 4.2, we reject H0 for stations (a)(c)(d). Therefore, M2 indeed improves the forecast
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for stations (a)(c)(d). Although M2 also reduces the RMSE and SMAPE for station (b),
Table 4.2 shows the improvement is not significant at the 0.05 level.

Table 4.2: Paired t-test p-values for absolute forecast errors.

(a) Tiyu Xilu (b) Luoxi (c) Changshou Lu (d) Huijiang

H0 : µ (|εM2| ´ |εM0|) = 0
Ha : µ (|εM2| ´ |εM0|) ă 0

ă 0.001˚ 0.065 0.016˚ 0.003˚

H0 : µ (|εM2| ´ |εM1|) = 0
Ha : µ (|εM2| ´ |εM1|) ă 0

ă 0.001˚ 0.061 0.013˚ 0.003˚

˚ Significant at 0.05 level.

The results in Table 4.1 and Table 4.2 indeed show that M2 gives improved accuracy;
however, it should be also noted that the improvement varies across different stations. To
further explore this variation, we cluster the 159 stations based on their RPPs. In doing so,
we transform each RPP into a vector of 36ˆ 36 = 1296 and perform hierarchical clustering
using the Euclidean distance between paired vectors; the distances between clusters are
calculated by the Ward’s method (Ward Jr, 1963). In the meanwhile, we measure the effect
of r̂s

t+1 by the difference in SMAPE:

Ds = SMAPEs
M2 ´ SMAPEs

M0, (4.11)

where SMAPEs
M2 and SMAPEs

M2 are SMAPE values of M2 and M0, respectively, on the
test data set D3. A negative Ds means M2 improves the forecasting accuracy.

The dendrogram for the hierarchical clustering is shown in Figure 4.6. We cut the
clustering tree at the half-height, which divides the 159 stations into three major clusters
(with one station in exception). The cluster centroids (the average RPP for the cluster) for
the three clusters are shown in Figure 4.7, where we also show the probabilities of returning
on the same day and the next day. From Figure 4.7, we can see cluster 1 corresponds to
business-type areas where more passengers return on the same day, such as the Tiyu Xilu
station in Figure 4.4 (a). For cluster 2, the probability of returning on the next day is higher
than returning on the same day, exhibiting the feature of residential areas, such as the
Luoxi station in Figure 4.4 (b). Cluster 3 is a combination of cluster 1 and 2, which has a
relatively balanced returning flow in both the current and the next day. The bottom panel
of Figure 4.6 shows the Ds values for all stations following the same order as the clustering
result. As can be seen, Ds values are negative for most stations, confirming the effectiveness
of model M2. It should be noted that the effect of r̂s

t+1 is different among clusters. The
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Figure 4.6: Top: the dendrogram for the hierarchical clustering based on RPP. Bottom: the
test set SMAPE differences between M2 and M0; green and negative values means using r̂s

t+1
improves the boarding flow forecast in the test set.

reduction of the SMAPE is the most profound for cluster 1 (with two exceptions, which
we will discuss in detail in Section 4.4.6), while visually the least significant for cluster 2.
We use the above paired t-test to check if the improvement of M2 compared with M0 is
statistically significant. Using the 0.05 significance level, we find the improvements for 23
out of 51 stations (45.1%) in cluster 1 are significant, 1 out of 41 stations (2.4%) in cluster 2
are significant, and 9 out of 66 stations (13.6%) in cluster 3 are significant. These results
suggest the returning flow r̂s

t+1 is more effective for the forecast of business-type stations.
The reason could be that the duration for work/shop activities is more fixed than the home
activity, so the return flow estimation is more accurate for business-type stations.

4.4.5 Multi-step-ahead forecasting

Even with strong seasonality, multi-step-ahead forecasting is still a challenging task be-
cause the errors will accumulate with the rolling forecasting process. A unique advantage
of model M2 is that the estimation of returning flow r̂s

t+L suffers less from this error ac-
cumulation problem thanks to the long-range dependencies, and even the alighting flow
in many steps ago could still dominate the future returning flow. For example, as shown
in Figure 4.4 (a), the alighting flow in the morning (7:00-10:00) plays an important role in
determining the returning flow of the evening (17:00-19:00). Therefore, using returning
flow as an additional feature in M2 could potentially alleviate the error accumulation
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Figure 4.7: The cluster centroids. (a), (b), and (c) correspond to the cluster centroids of cluster
1, 2, and 3, respectively.

problem in multi-step-ahead forecasting.
For an L-step boarding flow forecasting that predicts ys

t+L by ys
1:t, M2 requires a series

of returning flow r̂s
t+1, . . . , r̂s

t+L as input. However, in order to estimate r̂t+L, Eq. (4.6)
requires the alighting flow series ms

t+1:t+L´1, which are not available. In this case, we use
the average alighting flow at the same window of historical days as the approximation
of future alighting flow ms

t+1 . . . ms
t+L´1. This approximation for the future alighting flow

should only bring minor errors to the estimation of returning flow in Eq. (4.6), since it only
contributes to the last L´ 1 components in the summation.

We examine the multi-step-ahead forecasting using a time series cross-validation
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method that is known as “evaluation on a rolling forecasting origin” (Hyndman and
Athanasopoulos, 2018, Chapter 3). For an L-step-ahead forecasting, we train a model for
each observation in data set D3 using a training set from the first observation in data set
D2 to the observation L steps prior to that observation. The error is only evaluated at the
Lth step, and the overall error is the average error over the test set.

Table 4.3 shows the result of 1, 2, 4, and 6 steps forecasting for M0 and M2. Compared
with M0, M2 offers substantially enhanced forecasting in stations (a), (c), and (d), and
the errors increase much slower with the growing step L. Especially, in station (a), the
RMSE of M0 increases 252.55 (75.6%) form 1-step forecast to 6-step forecast, the number is
only 174.66 (60.4%) for M2. For the residential (cluster 2) station (b), the effect of M2 in
multi-step-ahead forecasting is less significant, which validates the different contributions
of returning flow among different clusters. Overall, we can see that multi-step-ahead
forecasting tasks can benefit substantially from the long-range dependencies encoded in
M2 and r̂s

t+1.

Table 4.3: The multi-step boarding flow forecasting of four stations by time series cross-
validation (30-min resolution).

Station Model
30 mins (L = 1) 1 hour (L = 2) 2 hours (L = 4) 3 hours (L = 6)

RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE

(a) Tiyu Xilu
M0 334.06 12.92% 435.16 15.30% 547.35 19.88% 586.61 19.23%
M2 290.43 9.87% 328.90 12.60% 403.20 10.82% 465.09 11.71%

(b) Luoxi
M0 75.94 10.64% 79.53 11.70% 88.49 12.14% 90.16 12.51%
M2 76.10 10.60% 79.43 11.65% 88.49 12.08% 89.97 12.38%

(c) Changshou Lu
M0 97.92 10.28% 126.65 14.42% 154.58 16.74% 168.33 15.89%
M2 84.80 7.85% 103.84 8.84% 129.53 10.37% 153.12 11.58%

(d) Huijiang
M0 50.27 14.50% 54.09 15.52% 56.16 16.22% 56.30 17.33%
M2 39.76 13.95% 41.13 14.70% 42.76 15.00% 43.52 15.69%

The estimation of the returning trip closely relates to the inter-trip duration. It is thus
worth analyzing the effect of time resolution—especially a more refined resolution—to
the forecasting performance. We apply a 15-min resolution to further test the impact of
the returning flow to the multi-step forecasting. The results are shown in Table 4.4, where
the baseline model M0 is ARIMA(2,0,1)(1,1,0)[72]. We can see using the returning flow
still greatly alleviates the error accumulation in multi-step forecasting, and the forecasting
improvement is the most significant for station (a), (c), and (d), which is consistent with
Table 4.3 and Section 4.4.4.
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Table 4.4: The multi-step boarding flow forecasting of four stations by time series cross-
validation (15-min resolution).

Station Model
15 mins (L = 1) 30 mins (L = 2) 1 hour (L = 4) 1.5 hour (L = 6)

RMSE SMAPE RMSE SMAPE RMSE SMAPE RMSE SMAPE

(a) Tiyu Xilu
M0 169.57 11.63% 210.38 13.95% 248.59 16.02% 283.43 18.86%
M2 163.43 10.35% 190.49 11.44% 197.12 13.38% 206.92 13.24%

(b) Luoxi
M0 41.70 12.45% 44.31 12.79% 46.53 13.61% 48.68 14.29%
M2 41.72 12.46% 44.33 12.77% 46.48 13.58% 48.71 14.25%

(c) Changshou Lu
M0 52.20 12.29% 60.30 14.26% 72.18 17.44% 79.66 19.55%
M2 47.79 9.52% 52.76 10.16% 60.42 10.45% 66.06 11.45%

(d) Huijiang
M0 29.22 17.36% 30.56 17.85% 31.90 18.14% 32.42 19.07%
M2 25.55 17.21% 25.90 17.52% 26.54 17.87% 26.90 18.63%

4.4.6 Forecasting under special events

As shown in Figure 4.6, M2 is less effective only for a few stations. A main reason is that
these stations in general have a large variation in RPP from day to day. For these stations,
r̂s

t+1 will be less accurate and less informative in supporting the forecasting. Therefore, M2
with r̂s

t+1 estimated by a universal RPP will not benefit as much, if not more, than M0 and
M1.
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Figure 4.8: The alighting, boarding, and the estimated returning flow of Luogang station
under an event (August 30).

This is particularly the case for forecasting under special events, since the RPP cannot
be well estimated using historical data, and it will involve large variations in nature. For
example, as a metro station next to the Guangzhou International Sports Arena, Luogang
often experiences surging demand because of large sports events and concerts. Figure 4.8
shows that the come-and-return dynamics under the special event is very different from
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normal days. The event on August 30 brought a period of unusually high alighting flow.
After the event, the returning passengers caused another peak in the boarding flow. If
we adopt a universal RPP estimated by aggregating historical data, we will end up with
erroneously distributing the returning flow to the next morning (the morning peak of
r̂s

t on August 31). To address this problem, we propose to build two separate RPPs for
normal and event-induced passengers, respectively. For the passengers alight at time ta,
the probability of returning at t becomes the weighted sum of the two parts:

ps (τboarding = t
ˇ

ˇ τalighting = ta
)
=

ms,e
ta

ms
ta

ps,e (τboarding = t
ˇ

ˇ τalighting = ta
)
+

ms,n
ta

ms
ta

ps,n (τboarding = t
ˇ

ˇ τalighting = ta
)

, (4.12)

where we use superscript e and n to denote variables for event and normal conditions,
respectively, and thus the alighting flow is ms

ta
= ms,e

ta
+ ms,n

ta
. When the event-induced

alighting flow ms,e
ta

= 0, Eq. (4.12) reduces to the normal RPP.
In practice, we have a few approaches to estimate the event-induced alighting flow

ms,e
ta

and RPP under events, such as looking into the passenger flow of the specific gate to
the event venue or using the time information of an event. When such information is not
available, we propose to apply the following method to estimate the RPP under events
(assuming all events in station s follow the same RPP). First, a period with alighting flow
larger than a threshold is identified as an event period. For each time window in a day, we
use Q3 + 1.5IQR as the threshold, where Q3 is the third quartile and IQR the interquartile
range. Next, the normal RPP can be estimated by the non-event periods. Subtracting the
normal alighting (use median) and the normal returning flow from the part identified as
event periods, the rest data in event periods are used to estimate the RPP under special
events. By separating event and normal flow, we also prevent the normal RPP from being
influenced by the event flow.

Using the data from July 1 to August 24, 2017 (weekends included), Figure 4.9 shows
the event RPP of Luogang station. It is conspicuous that two types of events exist in this
venue—one ends in the afternoon and the other ends in the evening. The returning time
for each type of event is more concentrated than the alighting time and is mostly on the
same day of the alighting time. Although the RPP is estimated from different events (8
days with significant events), the return probability of these events shows regular and
predictive patterns.

Figure 4.10 shows the re-estimated returning flow of Luogang station. Compared
with Figure 4.8, we can find the returning flow in Figure 4.10 can now correctly reflect
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Figure 4.9: The RPP for passenger flow induced by events in Luogang station. Probabilities
are set to zero for time windows without event.
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Figure 4.10: The boarding and the returning flow (using Eq. (4.12)) of Luogang station.

the peak and trend of the boarding flow under the special event. Note that the days in
Figure 4.10 are different from the days used for event RPP estimation, which shows the
come-and-return dynamic of different events in this station follows similar patterns.

Considering that these events are occasional, we use the non-seasonal ARIMA with
the order ARIMA(2, 0, 1) as our baseline model M0. The data separation is the same as
Section 4.4.3, except that we use a longer period for the event RPP estimation. We denote
by M2’ the model that uses the “adjusted” returning flow as a covariate. The forecasting
results are shown in Table 4.5. To highlight the forecasting performance under events,
we only use event periods (when the boarding flow exceeds Q3 + 1.5IQR) to calculate
the RMSE and the SMAPE, respectively denoted by RMSEe and SMAPEe. We can see
M2’ with the “adjusted” returning flow has the best performance under all criteria. The
results further show that the returning flow offers substantial improvement even for the
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forecasting under special events. Although the simple ARIMA may not be the best model
for a time series with apparent “outliers” such as these events, the returning flow could be
easily integrated into other models (such as the generalized autoregressive conditional
heteroskedasticity, GARCH) for a better prediction.

Table 4.5: The boarding flow forecasting under special events for Luogang stations.

Model
RMSEe
(train)

RMSEe
(test)

SMAPEe
(train)

SMAPEe
(test)

Log-likelihood AIC

M0 392.64 1003.29 24.55% 46.62% -2984.11 5978.22
M1 408.15 1043.25 27.19% 45.34% -2972.46 5956.92
M2 397.14 1018.88 25.95% 46.79% -2909.38 5830.76
M2’ 255.46 535.63 23.16% 36.30% -2821.29 5654.58

4.4.7 Experiments in other models

To further test if the returning flow can also improve other ridership forecast models, we
use two popular machine learning models–Support Vector Regression (SVR) and Multi-
Layer Perceptron (MLP)–to repeat the experiment in Section 4.4.4. We rescale data to [0, 1]
by min-max normalization as a preprocessing, and we use the scikit-learn python package
to implement these models.

The SVR model is similar to a previous work by Tang et al. (2018), except that we have
no external features like the weather. The input features for M0 are the boarding flow at
time t and t´ 1, and 36 dummy variables representing the time of a day. We add rs

t to
M1 and r̂s

t+1 to M2 as an additional feature. We tune hyperparameters by cross-validation
using M0 and select C = 0.274 and ε = 0.016; other hyperparameters are the default setting
of the scikit-learn package. The forecast results of the four stations by SVR are shown in
Table 4.6 and the significance tests are shown in Table 4.7.

The MLP uses the same features as the SVR. We tune hyperparameters by cross-
validation using M0 and select the hidden layer size to be 150 and use the identity activation
function; other hyperparameters are the default setting of the scikit-learn package. The
forecast results of the four stations by MPL are shown in Table 4.8 and the significance
tests are shown in Table 4.9.

In Table 4.6 and Table 4.8, M2 has lower forecast RMSE and SMAPE in the test set
than M0 and M1 for stations (a)(c)(d). The hypothesis tests in Table 4.7 and Table 4.9
for these stations also show that the absolute forecast error of M2 is less than M0 and
M1. On the other hand, the effect of using the returning flow is not significant for station
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Table 4.6: The one-step boarding flow forecasting of four stations by SVR

Stations Model
RMSE
(train)

RMSE
(test)

SMAPE
(train)

SMAPE
(test)

(a) Tiyu Xilu
M0 288.00 337.02 11.27% 11.60%
M1 286.54 337.75 11.59% 11.76%
M2 280.32 306.79 11.12% 11.45%

(b) Luoxi
M0 64.61 80.66 11.30% 13.41%
M1 65.81 78.45 11.37% 13.39%
M2 64.86 78.34 11.47% 13.53%

(c) Changshou Lu
M0 72.80 111.81 6.00% 9.72%
M1 72.91 109.99 6.13% 9.51%
M2 65.71 103.83 6.06% 9.33%

(d) Huijiang
M0 31.95 45.37 13.53% 15.75%
M1 31.98 44.46 13.61% 15.83%
M2 31.64 42.53 13.46% 15.75%

Table 4.7: Paired t-test p-values for SVR absolute forecast errors.

(a) Tiyu Xilu (b) Luoxi (c) Changshou Lu (d) Huijiang

H0 : µ (|εM2| ´ |εM0|) = 0
Ha : µ (|εM2| ´ |εM0|) ă 0

ă 0.001˚ 0.403 ă 0.001˚ 0.022˚

H0 : µ (|εM2| ´ |εM1|) = 0
Ha : µ (|εM2| ´ |εM1|) ă 0

ă 0.001˚ 0.768 ă 0.001˚ 0.011˚

˚ Significant at 0.05 level.

Table 4.8: The one-step boarding flow forecasting of four stations by MLP

Stations Model
RMSE
(train)

RMSE
(test)

SMAPE
(train)

SMAPE
(test)

(a) Tiyu Xilu
M0 312.23 332.87 12.08% 13.52%
M1 309.10 333.81 11.12% 13.08%
M2 296.60 307.57 10.68% 12.45%

(b) Luoxi
M0 59.86 74.89 9.92% 11.68%
M1 71.42 82.27 13.57% 15.56%
M2 72.66 80.54 14.30% 15.92%

(c) Changshou Lu
M0 74.03 108.54 7.28% 13.37%
M1 77.38 105.13 9.19% 13.60%
M2 65.50 95.31 7.41% 12.35%

(d) Huijiang
M0 32.50 43.08 12.62% 15.59%
M1 34.64 43.85 14.03% 15.59%
M2 31.39 35.86 14.02% 15.20%

67



CHAPTER 4 BOARDING FLOW FORECASTING

Table 4.9: Paired t-test p-values for MLP absolute forecast errors.

(a) Tiyu Xilu (b) Luoxi (c) Changshou Lu (d) Huijiang

H0 : µ (|εM2| ´ |εM0|) = 0
Ha : µ (|εM2| ´ |εM0|) ă 0

ă 0.001˚ 0.999 ă 0.001˚ 0.031˚

H0 : µ (|εM2| ´ |εM1|) = 0
Ha : µ (|εM2| ´ |εM1|) ă 0

ă 0.001˚ 0.607 0.003˚ ă 0.001˚

˚ Significant at 0.05 level.

(b)—a residential type station. In summary, the returning flow can improve the boarding
flow forecast of SVR and MLP, and the improvement is more significant for business-type
stations with more passengers returning on the same day (i.e., station (a)(c)(d)). These
results are consistent with the SARIMA model.

Finally, we apply SVR and MLP to all stations and use the paired t-test described in
Section 4.4.4 to test if the improvement of M2 is significant compared with M0. Results are
shown in Table 4.10, where the clusters are the same as Figure 4.6. The results of different
models are consistent, and the proposed returning flow is more effective for business-type
stations.

Table 4.10: The number of significant stations in the paired t-test between M2 and M0 (0.05
significance level).

Cluster 1
(business-type)

Cluster 2
(residential-type)

Cluster 3
(combined-type)

Number of stations 51 41 66
SARIMA 23 (45.1%) 1 (2.4%) 9 (13.6%)

SVR 22 (43.1%) 4 (9.8%) 13 (19.7%)
MLP 29 (56.8%) 4 (9.8%) 13 (19.7%)

4.5 Conclusions and Discussion

In this paper, we propose a new framework for forecasting passenger flow time series in
metro systems. In contrast to some previous studies that capture temporal dynamics in a
data-driven way, we try to incorporate the generative mechanisms rooted in travel behavior
into modeling passenger flow time series. For that purpose, we introduce returning flow as
a new covariate/feature into standard time series models. This returning flow is estimated
as the expected returning boarding demand given previous alighting trips; thus, it encodes
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the causal structure and long-range dependencies in passenger flow data. We estimate the
return probability by aggregating historical data, thereby working around the sensitivity
issues and privacy concerns accompanying individual-based data and models as in Zhao
et al. (2018c). We examine the proposed framework on a real-world passenger flow data set
collected from Guangzhou metro in China. The proposed framework with the returning
flow demonstrates superior performance in all three tested scenarios, namely one-step-
ahead forecasting, multi-step-ahead forecasting, and forecasting in special events. And we
found the returning flow is more useful for the boarding demand forecast of business-type
stations, where most returning trips are within the same day. On the contrary, the model
does not bring much improvement for residential stations. This result suggests that “home”
activity duration demonstrates a higher variance than that of “work” activities. In addition,
the experiments in Section 4.4.7 show the returning flow also improves the forecast of
machine learning models like SVR and MLP. In fact, the returning flow (as a covariate)
and the idea of regularity-based long-range dependency can be used in a diverse range of
prediction models (e.g., time series model, machine learning models, deep learning).

There are several directions for future research. First, this study assumes that both the
boarding and the alighting time series are available (i.e., both tapping-in and tapping-out
are registered by the smart card system), while metro in some cities may have a tapping-in
only system. In this case, one should integrate a destination inference model (see e.g.,
Barry et al., 2002; Trépanier et al., 2007; Cheng et al., 2021b) into the proposed framework.
Estimating the returning probability by other data sources, such as survey, Bluetooth,
and call detail records, is also worth exploring. Second, the come-and-return pattern and
RPP of a station may change over time. How to detect the pattern changes (Zhao et al.,
2018a) and develop time-varying models should be studied. The current constant RPP is a
simplified assumption; further utilizing the returning flow’s auto-correlation is a possible
approach to improve the returning flow estimation. There is still space to improve the
model by advanced statistical time series and deep learning-based sequence models. Third,
the models developed in the current framework are station-specific, while travel behavior
regularity is ubiquitous and different stations may share similar patterns. Therefore, the
RPP formulation can be generalized using parametric model, approximation, and dimen-
sionality reduction techniques such as principal component analysis and matrix/tensor
factorization (Sun and Axhausen, 2016) to extract common patterns for RPPs across differ-
ent stations. This can be particularly useful when only limited data are available. Fourth,
we should relax the assumption that the returning flow must have the same boarding
station as the previous alighting station, because there could be multiple destinations or
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multiple transportation modes in one’s activity chain (Bowman and Ben-Akiva, 2001). It is
possible to improve and extend the forecasting by multi-modal trips since the metro system
is often combined with other transportation modes; a route/mode choice model can be
integrated into the multi-modal forecasting framework. Sufficient data is a prerequisite
for this direction. Lastly, we can extend this framework to other transport modes with
non-random and chained travel patterns, such as private vehicles, taxis, and ride-hailing
services. This paper also sheds new light on other behavior-driven demand forecasting
problems, in which the causal structure and the long-range dependencies play a substantial
role. For instance, integrating purchasing behavior into the demand forecasting of retail
products.
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Chapter 5

Origin-Destination Matrices Forecasting
with Dynamic Mode Decomposition

This chapter is an article accepted by Transportation Science:

• Cheng, Z., Trépanier, M., Sun, L., 2022. Real-time forecasting of metro origin-
destination matrices with high-order weighted dynamic mode decomposition. Trans-
portation Science (in press) doi: 10.1287/trsc.2022.1128.

This chapter and the previous Chapter 4 both focus on the short passenger demand
forecasting in metro systems. Chapter 4 builds station-specific models while this chapter
uses a single model to forecast the OD matrices of the entire metro network. The station-
level boarding flow forecasting can also be obtained from the OD matrices forecasting.
Thanks to the strong regularity and the pow law characteristic of OD matrices, we can use
a low-rank model to solve the high-dimensional OD matrices forecasting problem.
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5.1 Abstract

Forecasting short-term ridership of different origin-destination pairs (i.e., OD matrix) is
crucial to the real-time operation of a metro system. However, this problem is notoriously
difficult due to the large-scale, high-dimensional, noisy, and highly skewed nature of OD
matrices. In this paper, we address the short-term OD matrix forecasting problem by
estimating a low-rank high-order vector autoregression (VAR) model. We reconstruct this
problem as a data-driven reduced-order regression model and estimate it using dynamic
mode decomposition (DMD). The VAR coefficients estimated by DMD are the best-fit (in
terms of Frobenius norm) linear operator for the rank-reduced full-size data. To address
the practical issue that metro OD matrices cannot be observed in real-time, we use the
boarding demand to replace the unavailable OD matrices. Moreover, we consider the
time-evolving feature of metro systems and improve the forecast by exponentially reducing
the weights for historical data. A tailored online update algorithm is then developed for
the High-order Weighted DMD model (HW-DMD) to update the model coefficients at a
daily level, without storing historical data or retraining. Experiments on data from two
large-scale metro systems show that the proposed HW-DMD is robust to noisy and sparse
data, and significantly outperforms baseline models in forecasting both OD matrices and
boarding flow. The online update algorithm also shows consistent accuracy over a long
time, allowing us to maintain an HW-DMD model at much low costs.

5.2 Introduction

The metro is a green and efficient travel mode that plays an ever-important role in urban
transportation. An accurate real-time ridership/demand forecast is crucial to the efficiency
and reliability of metro systems. With the wide application of smart card systems and
diverse types of sensors, forecasting real-time metro ridership has become an emerging
research question in recent years. Existing research mainly focuses on forecasting the short-
term (e.g., 15 or 30 minutes) boarding or alighting ridership at metro stations, such as Wei
and Chen (2012), Sun et al. (2015), Li et al. (2017), Chen et al. (2020a), Liu et al. (2019b), and
Zhang et al. (2020). In contrast, forecasting the short-term ridership at origin-destination
(OD) pairs of a metro system receives little attention. The ridership among all OD pairs
of a metro system can be organized into a matrix. For simplicity, an “OD matrix” in this
paper refers to such ridership matrix at a certain (short) time interval.

Forecasting metro OD matrices has much broader applications than the station-level
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ridership forecast. For example, by assigning OD matrices to a metro network, we can pre-
dict and thus regulate the crowdedness of each train. The station-level boarding/alighting
flow also can be calculated as the row and column sums of the OD matrix. However, the
real-time forecast of metro OD matrices is extremely difficult for the following reasons. (1)
The first challenge is the high dimensionality. The number of OD pairs of a metro system is
the square of the number of stations, often tens of thousands in practice. (2) Short-term OD
matrices of a metro system are often sparse, and the ridership/flow distribution within an
OD matrix is highly skewed (see e.g., Figure 5.3). (3) Unlike the boarding or alighting flow,
a metro system’s OD matrices cannot be obtained in real-time (delayed data availability).
Because an OD matrix only becomes available after all the trips belonging to the OD
matrix have reached their destinations. Lastly, (4) the complex dynamics of a metro system
are time-evolving; a well-tuned model may have a short “shelf life” and has expensive
retrain/re-tune costs in long-term maintenance. Although a few studies tried to forecast
the real-time metro OD matrices by matrix factorization methods (Gong et al., 2018, 2020)
or deep learning models (Toqué et al., 2016; Zhang et al., 2021b; Shen et al., 2021), no
existing solution overcomes all the four challenges above.

This paper utilizes Dynamic Mode Decomposition (DMD) (Schmid, 2010) – a recent
advance in the fluid dynamics community – to address the above challenges in real-time
metro OD matrix forecasting problem. DMD is a dimensionality reduction technique that
extracts dominating dynamics (modes) from a sequence of high-dimensional vectors. The
uniqueness of DMD is that it identifies the best-fit (in terms of Frobenius norm) linear
operator that advances a high-dimensional vector sequence forward in time (Tu et al., 2014).
We extend the original DMD model by a high-order vector autoregression to incorporate
long-term temporal correlations. In dealing with the delayed data availability problem,
we replace the latest OD matrices, which are unavailable, with snapshots of boarding
flow. We also consider the time-evolving dynamics and introduce a forgetting ratio to
reduce the weights of past data exponentially. We name the proposed model High-order
Weighted Dynamic Mode Decomposition (HW-DMD). Moreover, we develop a tailored
online update algorithm that updates an HW-DMD’s coefficients daily without storing
historical data or retraining the model, which greatly reduces the model maintenance costs
for long-term implementations. Finally, the proposed model is tested on a Guangzhou
metro data set with 159 stations and an Hangzhou metro data set with 80 stations. Our
experiments show that HW-DMD can excellently handle the sparse, skewed, and noisy OD
data and significantly outperforms baseline models in forecasting both the OD matrices
and the boarding flow. The online update algorithm also shows consistent accuracy in
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updating an HW-DMD model over a long period. Although the online HW-DMD model
is applied to the metro OD matrix forecasting problem, it can be readily applied to general
(high-dimensional) traffic flow forecast problems, such as in recent studies about DMD-
based traffic flow forecasting (Avila and Mezić, 2020; Yu et al., 2020). We summary main
contributions of this paper as follows:

• This paper proposes an HW-DMD model that addresses various difficulties of the
real-time metro OD matrix forecasting. Experiments show the forecast of HW-DMD
is significantly better than existing models.

• The time-evolving dynamics of a transportation system and the maintenance/update
of a forecasting model are often ignored in the literature. This paper considers the
time-evolving feature of a metro system by reducing the weights for past data and
shows improved performance. An online update algorithm is proposed to reduce
the long-term maintenance cost of the HW-DMD model in a time-evolving metro
system.

• We propose a DMD-based estimation and online update algorithm for large-scale
high-order vector autoregression models with external covariates. The DMD-based
estimation produces a best-fit linear operator for rank-reduced full-size data and is
particularly useful for the forecast of high-dimensional data with low-rank properties.

The remainder of this paper is organized as follows. We review related work on short-
term OD matrix forecasting in Section 5.3. Next, a description of the metro OD matrix
forecasting problem is presented in Section 5.4. Section 5.5 briefly introduces the DMD
algorithm, which serves as the base for the proposed HW-DMD model. Section 5.6 is the
core part of this paper, where the model specification, estimation, and the online update
method for HW-DMD are elaborated. In Section 5.7, we conduct numerical experiments on
the two metro data sets. Conclusions and future directions are summarized in Section 5.8.

5.3 Related Work

In the literature, only a few studies have explored the real-time OD matrix forecasting
problem for a “metro” system. Therefore, we extend the range to OD demand forecasting
for general road transportation modes, such as the ride-hailing system and the highway
tolling system. Note that for a ride-hailing system, the origins and destinations are often
defined as zones on a grid.
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Matrix/tensor factorization is an effective method to tackle the high-dimensionality
problem of OD matrix forecasting. For example, Ren and Xie (2017) applied Canonical
Polyadic (CP) decomposition to an originˆ destinationˆ vehicle_typeˆ time tensor from
highway tolling data. Time series models were then built on the latent temporal matrix
to forecast OD matrices. Dai et al. (2018) and Liu et al. (2020) used principal component
analysis (PCA) to reduce the dimensionality of OD data and applied several machine
learning models to the reduced data for OD flow forecasting. Gong et al. (2020) developed
a matrix factorization model to forecast the OD matrices of a metro system. Their work
highlights a solution to the delayed data availability problem and various spatial and
temporal regularization techniques are introduced to improve the forecast. In summary,
the matrix/tensor factorization-based OD matrix forecasting consists of two components:
(1) a dimensionality reduction by factorization and (2) a forecasting model applied to the
reduced data.

Deep learning is another mainstream method for OD matrix forecasting. In an early
study, Toqué et al. (2016) used Long Short-Term Memory (LSTM) networks to forecast the
OD matrices of a transit network. They only applied the model to selected high-flow OD
pairs because of the high dimensionality and sparsity problems. Convolutional Neural
Networks (CNN) and Graph Convolutional Networks (GNN) are two deep learning
models that greatly reduce the model size compared with a fully connected neural network.
Recently, using CNN/GCN to capture spatial correlations and LSTM to capture temporal
correlations started to become the “standard configuration” for deep learning-based OD
matrix forecasting. For example, Chu et al. (2019) used multi-scale convolutional LSTM
to forecast the real-time taxi OD demand, and Wang et al. (2019c, 2020) used multi-task
learning to improve the OD flow forecast of GCN+LSTM networks. A large body of
literature focused on better utilizing the spatial/semantic correlations by optimizing
the GNN structure or incorporating side information. Such as the local spatial context
used by Liu et al. (2019a), the Spatio-Temporal Encoder-Decoder Residual Multi-Graph
Convolutional network (ST-ED-RMGC) proposed by Ke et al. (2021), and the Dynamic
Node-Edge Attention Network (DNEAT) developed by Zhang et al. (2021a). Some studies
combined deep learning models with other models to complement each other. In this
direction, (Xiong et al., 2020) combined GCN with Kalman filter to forecast the OD matrices
of a Turnpike network. Shen et al. (2021) mixed CNN with a Gravity model to forecast OD
matrices of a metro system. Hu et al. (2020) considered the travel time between OD pairs
as a stochastic variable, and developed a stochastic OD matrix forecasting model based on
tensors factorization and GCN. Noursalehi et al. (2021) used discrete wavelet transform
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to decompose OD matrices into frequency domain; the outputs were fed into CNN and
Convolutional-LSTM networks for forecasting.

The performances of deep learning models are often impaired by the noise in sparse
metro OD matrices. To reduce the impact of the noise, Zhang et al. (2019b, 2021b) developed
a metric called OD attraction degree (ODAD) to mask insignificant OD pairs. Zhang et al.
(2019b) showed that masking near-zero OD pairs improves the forecasting accuracy of
an LSTM. Based on ODAD, Zhang et al. (2021b) developed a Channel-wise Attentive
Split-CNN (CAS-CNN) model for metro OD matrix forecasting. Another merit of this
work is they considered the delayed data availability problem.

In summary, matrix/tensor factorization, CNN, and GCN all aim to reduce model size
while maintaining spatial/temporal correlations/dependencies. The HW-DMD model
proposed in this paper belongs to the matrix factorization category. Although some
ride-hailing systems may not have the delayed data availability problem, most research
essentially omitted this problem for simplicity. Particularly, RNN-based deep learning
models can barely work without the most recent OD matrices as inputs. In dealing with
the delayed data availability problem, existing solutions (Gong et al., 2020; Zhang et al.,
2021b; Xiong et al., 2020) used alternative quantities (e.g., boarding ridership, link flow)
to compensate for the unavailable OD information. We also adopt this approach in the
proposed model.

5.4 Problem Description

Many modern metro systems record passengers’ entry and exit information using smart
cards. We thus know the origin and destination stations, the start and end time for every
trip in such a system. Given a fixed time interval (30 minutes in this paper), we denote by
ot,i,j the number of trips that depart from station i at the t-th interval to station j. We call
ot,i,j an OD flow. Next, we can describe the number of trips between every OD pair in the
system at the t-th time interval by an OD matrix

Ot =


ot,1,1 ¨ ¨ ¨ ot,1,s

... . . . ...
ot,s,1 ¨ ¨ ¨ ot,s,s

 P Rsˆs,

where s is the number of metro stations. The diagonal elements of a metro OD matrices
are always zero. We keep these zero elements because they have a negligible effect on the
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forecast. In our model, OD matrices are organized in a vector form

ft = vec(Ot) = [ot,1,1, ¨ ¨ ¨ , ot,s,1, ot,1,2, ¨ ¨ ¨ , ot,s,2, ¨ ¨ ¨ , ot,1,s, ¨ ¨ ¨ , ot,s,s]
J
P Rn,

where n = s ˆ s is the number of OD pairs. For convenience, we refer to ft as an OD
snapshot.

Note that OD snapshots are aggregated by the time when passengers enter the system;
the exit time might be in a different time interval. Therefore, the true OD snapshot for
interval t can only be obtained after all those passengers entered at interval t have reached
their destinations; it cannot be observed in real-time (i.e., the delayed data availability).
In other words, we often do not have access to ft when forecasting ft+1. In contrast,
the boarding (entering) flow–another important quantity–is observable in real-time. We
denote by bt,i the number of passengers entering station i at interval t. In fact, we have
bt,i =

ř

j ot,i,j. We define a boarding snapshot as a vector bt = [bt,1, bt,2, ¨ ¨ ¨ , bt,s]J.
The OD matrices/flow forecasting problem is to forecast future OD snapshots ft+1, ft+2,

¨ ¨ ¨ , ft+L given a sequence of available historical OD snapshots f1, f2, ¨ ¨ ¨ , ft and boarding
snapshots b1, b2, ¨ ¨ ¨ , bt. The reason for using boarding snapshots is to compensate for the
delayed data availability problem of recent OD snapshots.

5.5 Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD, Schmid, 2010) is developed by the fluid dynamic
community to extract dynamic features from high-dimensional data. To better illustrate
our forecasting model, we briefly introduce DMD in this section.

Consider using a linear dynamical system fi « Afi´1 for OD flow forecasting. Similar
to many fluid problems, n is huge for an OD snapshot and even storing A P Rnˆn can
be prohibitive. Therefore, DMD outputs the (leading) eigenvalues and eigenvectors of A
without calculating the expensive A. The eigenvectors of A are referred to as the DMD
modes and have clear physical meaning. Each DMD mode is associated with an oscillation
frequency and a decay/growth rate determined by its eigenvalue. DMD is also connected
to Koopman theory and can model complex non-linear systems by constructing proper
measurements (Rowley et al., 2009). There are many variant algorithms for DMD. We only
present the exact DMD proposed by Tu et al. (2014), which is closely related to this paper.

We arrange OD snapshots into m-column matrices Yi = [fi´m+1, fi´m+2, ¨ ¨ ¨ , fi] P Rnˆm.
Typically, m ! n. The linear dynamical system follows Yt « AYt´1. The exact DMD seeks
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Figure 5.1: The singular values of a ten-day-length Yt´1 collected from Guangzhou metro
smart card system.

the leading eigenvalues and eigenvectors of the best-fit linear operator A by the following
procedure.

1. Compute the truncated singular value decomposition (SVD) of Yt´1 « UΣVJ, where
U P Rnˆr, Σ P Rrˆr, and V P Rmˆr and r ! m.

2. Instead of computing the full matrix A = YtY+
t´1 « YtVΣ´1UJ.1 We define a reduced

matrix Ã = UJAU « UJYtVΣ´1 P Rrˆr. It can be proved that Ã and A have the
same nonzero leading eigenvalues (Tu et al., 2014).

3. Compute the eigenvalue decomposition ÃW = WΛ. The entries of the diagonal
matrix Λ are also the eigenvalues of the full matrix A.

4. The DMD modes (eigenvectors of A) can be obtained by Φ = YtVΣ´1W.

Figure 5.1 shows the singular values of a ten-day-length Yt´1 from the Guangzhou
metro system. A few leading singular values explain a significant portion of the variance,
confirming the low-rank feature of OD snapshots data. DMD-based model can thus greatly
reduce the dimensionality/complexity of such a dynamic system. However, the exact
DMD has some limitations for the OD flow forecasting problem. Firstly, the complex
temporal correlation of OD flow cannot be well captured by a linear dynamical system.
Moreover, using the last OD snapshot is impractical since OD snapshots cannot be observed
in real-time. To address these problems, we propose our solution in the next section.

1(¨)+ denotes the Moore-Penrose inverse of a matrix.
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5.6 High-order Weighted Dynamic Mode Decomposition

5.6.1 Model specification

The forecasting formula of an exact DMD amounts to a high-dimensional vector autoregres-
sion of order 1. However, the latest OD snapshots are unknown at the time of forecasting.
Therefore, we use the two latest snapshots of the boarding flow as a replacement. We
regard OD snapshots of three or more intervals ago as available; because we find more
than 96% trips in our data set are completed within one hour (two lags). And we can use a
high-order vector autoregression to capture the long-term correlations in OD snapshots.
The forecasting model follows

fi « At,1fi´q1 + At,2fi´q2 + ¨ ¨ ¨+ At,hfi´qh + At,b1bi´1 + At,b2bi´2 @i P tqh + 1, qh + 2, ¨ ¨ ¨ , tu,
(5.1)

where time lags for OD snapshots are positive integers satisfying 3 ď q1 ă ¨ ¨ ¨ ă qh ă t.
Note that coefficient matrices At,1, ¨ ¨ ¨ , At,h P Rnˆn and At,b1, At,b2 P Rnˆs are estimated
using the data up to the latest (t-th) time interval; they are re-estimated when new data
become available. This allows model coefficients to be time-varying. We will introduce
how to update coefficient matrices using new observations without storing historical data
in Section 5.6.3.

To express Eq. (5.1) in a concise matrix form, let Yi = [fi´m+1, fi´m+2, ¨ ¨ ¨ , fi] and
Bi = [bi´m+1, bi´m+2, ¨ ¨ ¨ , bi], where m = t´ qh is the number of target snapshots. Then,
Eq. (5.1) is equivalent to

Yt « At,1Yt´q1 + At,2Yt´q2 + ¨ ¨ ¨+ At,hYt´qh + At,b1Bt´1 + At,b2Bt´2 (5.2)

= [At,1, At,2, ¨ ¨ ¨ At,h, At,b1, At,b2]



Yt´q1

Yt´q2
...

Yt´qh

Bt´1

Bt´2


(5.3)

= GtXt, (5.4)

where Gt P Rnˆ(hn+2s) and Xt P R(hn+2s)ˆm are augmented matrices for coefficients and
data, respectively. Note that with this approach, we model forecasting as a regression
problem without considering the inter-sequence dependence.
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We next introduce a forgetting ratio ρ (0 ă ρ ď 1) that assigns small weights on
snapshots to past days. This is because the dynamics of the system may change over time
and we prefer to use the most recent dynamics to achieve accurate forecasting. The matrix
Gt can be solved by the following optimization problem

min
Gt

m
ÿ

i=1

ρday(m)´day(i)
}yi ´ Gtxi}

2
F, (5.5)

where yi and xi are the i-th column of Yt and Xt, respectively; day(i) represents the day of
the snapshot yi. We assign the same weight for snapshots of the same day. The weight
ρday(m)´day(m) = ρ0 = 1 for the latest OD snapshot. For a snapshot in j days ago, the
weight is ρj, which decreases exponentially. This weighting idea is similar to works by
Alfatlawi and Srivastava (2020), Zhang et al. (2019a), and Kwak and Geroliminis (2020).
For convenience, we define σ =

?
ρ and the weighted version of Yt and Xt as

Yw
t = [σday(m)´day(1)y1, σday(m)´day(2)y2, ¨ ¨ ¨ , ym],

Xw
t = [σday(m)´day(1)x1, σday(m)´day(2)x2, ¨ ¨ ¨ , xm].

Then, the optimization problem in Eq. (5.5) becomes an ordinary least squares problem

min
Gt
}Yw

t ´ GtXw
t }

2
F . (5.6)

Figure 5.2 summarizes the overall structure of the proposed higher-order weighted
DMD (HW-DMD) framework. The underlying forecasting model is a high-order vector
autoregression with the boarding flow as extra inputs. A forgetting ratio is introduced to
decrease the weights of past data exponentially on a daily basis. In Section 5.6.2, we will
introduce a dimensionality reduction technique based on DMD to find a low-rank solution
for this large model (w.r.t. number of parameters). Instead of full matrices At,(¨), we seek
Ãt,(¨)—much smaller matrices—to capture the system’s dynamic. Finally, an online update
method is proposed in Section 5.6.3 to update the model coefficients incrementally without
storing historical data. This provides a memory-saving solution that maintains an up-to-
date model. Note that the same model framework can be easily extended to incorporate
higher-order boarding flow or other external covariates (e.g., days of the week, alighting
flow, holidays). For example, we can represent days of the week by one-hot encoding
wi P R7ˆ1 and add an additional regression term At,wwi to Eq.(5.1) to incorporate the
weekly pattern. This paper only presents the model specified in Eq. (5.1) for illustration.
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Figure 5.2: Model framework for HW-DMD. Model input X contains hn rows for lagged OD
snapshots and 2s rows for lagged boarding snapshots. Columns in Y and Ŷ are, respectively,
real and forecasted snapshots for OD flow. Model coefficients are estimated by weighted
historical data (Xw

t and Yw
t ) and updated daily whenever new data come.

5.6.2 Model estimation

We prefer a low-rank approximation of Gt over a full matrix of the optimal solution of
Eq. (5.6). This is because storing the large full matrix is prohibitive, and the optimal
solution often leads to overfitting problems, especially for the sparse and noisy OD data.
Luckily, we can find a pretty good approximation thanks to the inherent low-rank nature
of OD data.

Similar to the exact DMD, we first compute the truncated SVD on the weighted aug-
mented data matrix Xw

t « UXΣXVJX , where we keep the rX (rX ! m) largest singular
values and UX P R(hn+2s)ˆrX , ΣX P RrXˆrX , VX P RmˆrX . As shown in Figure 5.1, a few
leading singular values can well capture the entire data. Therefore, an approximation for
coefficient matrices is

Gt = Yw
t Xw+

t « Yw
t VXΣ´1

X UJ
X , (5.7)

[At,1, ¨ ¨ ¨ At,h, At,b1, At,b2] «

[Yw
t VXΣ´1

X UJ
X,1, ¨ ¨ ¨ , Yw

t VXΣ´1
X UJ

X,h, Yw
t VXΣ´1

X UJ
X,b1, Yw

t VXΣ´1
X UJ

X,b2], (5.8)
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where UJ
X = [UJ

X,1, ¨ ¨ ¨ , UJ
X,h, UJ

X,b1, UJ
X,b2], UX,1, ¨ ¨ ¨ , UX,h P RnˆrX , and UX,b1, UX,b2 P

RsˆrX . This step uses the result from a truncated SVD to replace the original Xw
t , which

reduces the impact of the noise in the data.
The results computed from Eq. (5.7) and Eq. (5.8) are still prohibitive. Therefore, for

each column in Yw
t , we seek a transformation yw

i Ñ ỹw
i such that ỹw

i P RrY with rY ! n. In
doing so, we compute another rank-rY truncated SVD of the target matrix Yw

t « UYΣYVJY .
The columns of UY form an orthonormal basis; thus, the transformation ỹw

i = UJ
Y yw

i
compute the coordinates of yw

i on this basis, which compresses yw
i from Rn to RrY . We can

project coefficient matrices onto the same basis UY to greatly reduce the dimensionality:

Ãt,i = UJ
Y At,iUY « UJ

Y Yw
t VXΣ´1

X UJ
X,iUY, @i P t1, 2, ¨ ¨ ¨ , hu, (5.9)

Ãt,bj = UJ
Y At,bj « UJ

Y Yw
t VXΣ´1

X UJ
X,bj, @j P t1, 2u, (5.10)

where Ãt,i P RrYˆrY and Ãt,bj P RrYˆs. Finally, we can write the model of Eq. (5.2) in the
reduced-order subspace

Ỹt « Ãt,1Ỹt´q1 + Ãt,2Ỹt´q2 + ¨ ¨ ¨+ Ãt,hỸt´qh + Ãt,b1Bt´1 + Ãt,b1Bt´2,

where Ỹi = UJ
Y Yi. The final forecast of an OD snapshot ŷi can be calculated by transforming

back to the original basis by ŷi = UYỹi. With the reduced coefficient matrices Ãt,(¨) and
projection bases UY, we avoid calculating and storing the giant coefficient matrices At,(¨).

DMD-based estimation is different from common dimensionality reduction techniques
in several ways. For many matrix-factorization-based models and dynamic factor models,
a forecasting model is estimated after performing dimensionality reduction (e.g., Ren and
Xie, 2017), or latent factors are constructed by keeping the most temporal dynamics (e.g.,
Forni et al., 2000; Lam et al., 2011; Yu et al., 2016); the forecast ability is designed on the
latent (size-reduced) data for these models. In contrast, DMD-based methods first estimate
a forecasting model by a least-square fit of rank-reduced full-size data (i.e., Eq. (5.7)), next
reduce the dimensionality of the linear operator by projecting to leading SVD modes (i.e.,
Eq. (5.9)–(5.10)); the resulting linear operator captures the dynamics of the rank-reduced
full-sized data. Although the forecast value ŷi by an HW-DMD is restricted on the column
space of UY, it is already the best approximation in RrY (in terms of Frobenius norm (Eckart
and Young, 1936)) because the basis is determined by leading singular vectors. Besides, the
rank truncation for the data also eases the noise and the overfitting problem. As noted by
Schmid (2010), accurate identification of more than the first couple modes can be difficult
on noisy data sets without this truncation step.
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The major computational cost in parameter estimation of HW-DMD is the SVD part.
Current numerical software can solve large-scale SVD very efficiently. Therefore, esti-
mating the HW-DMD model is very fast. We can further derive the eigenvalues and
eigenvectors of coefficient matrices At,i (Proctor et al., 2016). But this step is not necessary
for our task, since they are not used to generate the forecast and there is no clear physical
meaning for eigenvectors in a high-order vector autoregression.

5.6.3 Online update

A model trained by dated data may not reflect the recent dynamic in a system. Instead
of retraining using entire data, we develop an online algorithm that updates HW-DMD
day by day with new observations without storing historical data, as shown in Figure 5.2.
Similar algorithms for online DMD have been developed by Hemati et al. (2014), Zhang
et al. (2019a), and Alfatlawi and Srivastava (2020). We extend the online DMD update
algorithm to a high-order weighted version.

To illustrate the update algorithm, we need to reorganize Eq. (5.7)–(5.10). Let X̃w
i =

UJ
X Xw

i and Ỹw
i = UJ

Y Yw
i be the projection of data to the coordinates of UX and UY, respec-

tively. Using the fact (UXX̃w
t )

+ = VXΣ´1
X UJ

X , we can rewrite Eq. (5.7) as

Gt « Yw
t (UXX̃w

t )
+

= Yw
t X̃wJ

t

(
X̃w

t X̃wJ
t

)+
UJ

X .

Therefore, Eq. (5.9) and (5.10) becomes

Ãt,i « Ỹw
t X̃wJ

t

(
X̃w

t X̃wJ
t

)+
UJ

X,iUY = PQ+
XUJ

X,iUY @i P t1, ¨ ¨ ¨ , hu, (5.11)

Ãt,bj « Ỹw
t X̃wJ

t

(
X̃w

t X̃wJ
t

)+
UJ

X,bj = PQ+
XUJ

X,bj @j P t1, 2u, (5.12)

where P = Ỹw
t X̃wJ

t P RrYˆrX and QX = X̃w
t X̃wJ

t P RrXˆrX .
To facilitate the online update, we define an additional matrix QY = Ỹw

t ỸwJ
t P RrYˆrY .

After the reorganization, model coefficients are represented by three “core” matrices P,
QX, QY and two projection matrices UX, UY. Note these matrices are also time-varying.
For simplicity, we omit the t subscript and regard they are always “up-to-date”. Moreover,
there are two important properties for the core matrices.

Theorem 1. Given new observations Ynew P Rnˆd and Xnew P R(hn+2s)ˆd from a new day, where
d is the number of snapshots per day. Under the same projection matrices, the new core matrices
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can be updated by

P Ð ρP + ỸnewX̃Jnew, (5.13)

QX Ð ρQX + X̃newX̃Jnew, (5.14)

QY Ð ρQY + ỸnewỸJnew, (5.15)

where X̃new = UJ
X Xnew and Ỹnew = UJ

Y Ynew.

Proof. Given new observations Ynew P Rnˆd and Xnew P R(hn+2s)ˆd from a new day, Under
the same projection matrices, the new core matrix P can be computed by

Ỹw
t+dX̃wJ

t+d = [σỸw
t , UJ

Y Ynew][σX̃w
t , UJ

X Xnew]
J

= [σỸw
t , Ỹnew][σX̃w

t , X̃new]
J

= σ2Ỹw
t X̃wJ

t + ỸnewX̃Jnew

= ρP + ỸnewX̃Jnew.

Therefore, P can be updated by P Ð ρP + ỸnewX̃Jnew. Similar proof applies to QX and
QY.

Theorem 2. Denote by Ȳw
t = UYỸw

t the recovered data from the reduced data. If vi is the i-th
eigenvector of QY, then UYvi is the i-th left singular vector of Ȳw

t . The same property applies to
QX and X̄w

t = UXX̃w
t .

Proof. Compute SVD Ȳw
t = ŪΣ̄V̄J, then

Ȳw
t ȲwJ

t = ŪΣ̄V̄JV̄Σ̄JŪJ = Ū (Σ̄Σ̄) ŪJ, (5.16)(
Ȳw

t ȲwJ
t

)
Ū = Ū (Σ̄Σ̄) = ŪΛ̄. (5.17)

Therefore, columns of Ū are the eigenvectors of Ȳw
t ȲwJ

t and the left singular vectors of Ȳw
t .

Substitute Ȳw
t ȲwJ

t = UYQYUJ
Y to Eq. (5.17), we have(

UYQYUJ
Y

)
Ū = ŪΛ̄,

QY

(
UJ

Y Ū
)
=
(

UJ
Y Ū
)

Λ̄.

Define V = UJ
Y Ū. Then, each column vi in V is a eigenvector for QY and UYvi =

UY
(
UJ

Y ūi
)
= ui is a singular vector of Ȳw

t .
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Theorem 1 is used to update the core matrices in a memory-saving way. Theorem 2
indicates we can use the eigenvectors of QY to approximate the left singular vectors of Yw

t

(because Yw
t « Ȳw

t ), which is crucial for updating the projection matrices. Based on these
properties, we summarize the online update algorithm in the following three steps.

1. Expand projection matrices. Let EY = Ynew´UYUJ
Y Ynew and EX = Xnew´UXUJ

X Xnew

be the residuals that cannot be represented by the column space of UX and UY. To
incorporate these residuals, we expand projection matrices by UX Ð [UX, UEX ] and
UY Ð [UY, UEY ], where UEX and UEY are the orthonormal bases (obtained by SVD or
QR factorization) of EX and EY, respectively.

2. Update core matrices. To align dimensions, we first pad P, QX, and QY with zeros
on the dimensions where UX and UY expanded. Then update core matrices by
Eq. (5.13)–(5.15).

3. Compression. The first two steps incorporate all new information at the cost of
expanding dimensions. Next, we compress the model based on Theorem 2. Denote
VX and VY to be matrices composed by the leading rX and rY eigenvectors of QX and
QY, respectively. We can compress projection matrices by UX Ð UXVX, UY Ð UYVY

to keep the leading singular vectors of X̄w
t+d and Ȳw

t+d. The core matrices can be
compressed accordingly by QX Ð VJX QXVX, QY Ð VJY QYVY, P Ð VJY PVX.

Besides the daily update, a more general setting can be updating the model for every
k intervals or only doing the compression step when rX or rY exceeds a threshold. This
paper adopts the daily update described above because metro systems often have a
one-day periodicity. In terms of computational efficiency, the online update algorithm
computes the SVD for d-column data matrices and eigenvalue decomposition of QX

and QY. The computation has a constant cost every day and it is significantly faster
than retraining using entire data. In terms of memory efficiency, historical data are not
required when updating the model. All we need to store are three “core” matrices and two
projection matrices. Regarding the error, the online algorithm does not take into account
the previously truncated part. This impact is negligible because the truncated part contains
mostly noise, and past data are forgotten exponentially. Our experiments in section 5.7.6
show the online algorithm performs pretty close to or even slightly better than retraining.
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5.6.4 Connections with other DMD models

The proposed HW-DMD is closely related to Hankel-DMD (Brunton et al., 2017; Arbabi
and Mezić, 2017; Avila and Mezić, 2020) and DMD with control (DMDc, Proctor et al.,
2016). Hankel-DMD uses Hankel data matrices as input and output to model a non-
linear dynamical system by a linear model; its DMD modes approximate to the Koopman
modes. There is another model also named Higher Order DMD (HODMD, Le Clainche
and Vega, 2017), which requires Hankelizing data in its estimation and is essentially similar
to Hankel-DMD. Instead, the proposed HW-DMD uses raw snapshots as the output (the
left side of Eq. (5.2)) without using the Hankel structure. This formula is equivalent to a
high-order vector autoregression model, which is neater and more suitable in the context
of forecasting. Moreover, our model can use non-continuous orders and external variables
(e.g., the boarding flow). Essentially, the external variables of our model can be regarded
as the control term of a DMDc model.

The three-step online update algorithm for HW-DMD in this paper inherits from
the work of Hemati et al. (2014). The original algorithm was developed for the exact
DMD introduced in Section 5.5. Besides, the online DMD proposed by (Zhang et al.,
2019a) considers the decaying weight of data, but the constant projection matrix in their
assumption restricts the update effect. (Alfatlawi and Srivastava, 2020) proposed an online
algorithm for weighted DMD using incremental SVD, which is a different technique from
our method. Our contribution is extending the algorithm proposed by Hemati et al. (2014)
to a high-order weighted version with the consideration of external regression covariates.

5.7 Experiments

In this section, we compare the proposed HW-DMD with other forecasting models using
real-world data. We begin with an introduction to data and experimental settings. Next,
we compare model performances by forecasting the OD matrices and the boarding flow
derived from the OD matrices. Finally, we examine the long-term effect of the online
HW-DMD update algorithm. The code for experiments is available from https://github.

com/mcgill-smart-transport/high-order-weighted-DMD.

5.7.1 Data and experimental settings

We examine HW-DMD using the metro smart card data from two cities, Guangzhou and
Hangzhou. Both data sets record the origin, destination, and entry and exit time of each
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metro trip. We focus on the forecast of workdays and connect each Friday to the next
Monday. Details of the two data sets are as follows:

• Guangzhou metro data: This data set covers around 301 million trips among 159
metro stations in Guangzhou from July 1st to Sept 30th, 2017. Guangzhou metro
operates from 6:00 to 24:00. We use the first twenty weekdays (July 3rd to July
28th) as the training set, the following ten weekdays (July 31st to Aug 11th) as the
validation set, and the following ten weekdays (Aug 14th to Aug 25th) as the test set.
There are additional one-month data after the test set; we use these data to study the
long-term effect of the online HW-DMD update algorithm.

• Hangzhou metro data2: This is an open data set that covers 80 effective stations of
Hangzhou metro from Jan 1st to Jan 25th, 2019. The operation hours are from 5:30 to
23:30. We use the first ten weekdays (Jan 1 to Jan 14) for training, the following four
weekdays (Jan 15 to Jan 18) for validation, and the rest five weekdays (Jan 21 to Jan
25) for testing.

We aggregate OD snapshots by a 30-minute time interval, which means 36 snapshots
per day for both cities. Note that a small interval may result in sparse OD matrices; we
choose the 30-minute interval to balance the practical requirements. Figure 5.3 shows the
distribution of oi,j from an OD snapshot of a typical morning peak in Guangzhou. The
distribution roughly follows a power law, with most OD pairs having small volumes while
a few of them are significantly larger. The highly skewed distribution is very difficult to be
properly handled by conventional forecasting models.

The performance of a model is quantified using the root-mean-square error (RMSE), the
weighted mean absolute percentage error (WMAPE), and the coefficient of determination
(denoted as R2):

RMSE(α, α̂) =

g

f

f

e

1
N

N
ÿ

i=1

(αi ´ α̂i)2,

WMAPE(α, α̂) =

řN
i |αi ´ α̂i|
řN

i |αi|
ˆ 100%,

R2(α, α̂) = 1´
řN

i=1 (αi ´ α̂i)
2

řN
i=1 (αi ´ ᾱ)2 ,

where α and α̂ are, respectively, the real and predicted values; ᾱ is the average value of α;
N is the total number of elements under different time intervals and locations. The three

2https://doi.org/10.5281/zenodo.3145404
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Figure 5.3: The histogram of oi,j in an OD snapshot of a morning peak in Guangzhou.

performance metrics are computed for both OD flow o and boarding flow b (forecasted by
b̂t,i =

ř

j ôt,i,j).

5.7.2 Hyperparameters

We use the online update algorithm for HW-DMD if not otherwise specified. Hyperparam-
eters for HW-DMD include time lags q1, ¨ ¨ ¨ , qh, the SVD truncation rank rX, rY, and the
forgetting ratio ρ. These parameters are determined in a sequential order.

We use the Guangzhou data set as an example to elaborate the hyperparameter tuning
procedure. We first set rX = rY = 100 and ρ = 1 and select time lags in a greedy manner.
For time lags within one day (3 ď qi ď 36), we repeatedly add a “currently best” time
lag based on the RMSE of the validation set until a new lag brings no improvement or
the number of lags reaches ten. This procedure selects {3, 4, 8, 14, 19, 28, 30, 33, 35, 36}
as time lags. The considerable high-order time lags in the result indicate long-term auto-
correlations of OD time series. For example, the lag 19 roughly equals a typical work
duration (9.5 hours), which can be explained as a strong correlation between the departure
trips for commuters in the morning and the returning trips in the afternoon (Cheng et al.,
2021a). The metro OD flow is also highly regular; the largest several lags (e.g., 33, 35, and
36) capture the one-day periodicity. Next, we determine rX and rY by a grid search from
20 to 100 at an interval of 10. The best rY is 50. A larger rX than 100 still brings a marginal
improvement, but we truncate rX at 100 to restrict the model size (rX affects the size of UX

in the online update). Lastly, we set ρ to be 0.92 based on a line search from 0.8 to 1. As
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Figure 5.4: The effect of ρ to the forecast OD RMSE in the validation set of the Guangzhou
data.

shown in Figure 5.4, we can see assigning smaller weights for old data indeed improves
the forecast. Because 0.928 « 0.51, using ρ = 0.92 is roughly equivalent to halving the
weight every eight days.

The hyperparameter tuning for the Hangzhou data set follows the same procedure.
The selected hyperparameters for the Hangzhou data set are time lags={3, 4, 6, 14, 18, 19,
28, 32, 35, 36}, rY = 40, rX = 100, and ρ = 0.92.

5.7.3 Benchmark models

We compare HW-DMD with the following benchmark models:

• HA: Historical Average. For the OD flow at a certain period (e.g., 7:00–7:30) of the
day, HA uses the average OD flow at that period in the training set as the forecast
value.

• TRMF: Temporal Regularized Matrix Factorization (Yu et al., 2016). TRMF is a matrix
factorization model that imposes autoregression (AR) processes on each temporal
factor. We use time lags [1, ¨ ¨ ¨ , 10] for the AR processes. We search over {100, 300,
500, 1000, 1500, 2000, 2500, 3000} for the best regularization parameter and search
from 30 to 150 with an interval of 10 for the best number of factors.

• ConvLSTM: Convolutional LSTM (Shi et al., 2015). It is a deep recurrent neural
network model that forecasts future frames of matrix time series (e.g., videos). Here
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we use it to forecast future OD matrices by the most recent ten OD matrices. Fol-
lowing the work by Zhang et al. (2021b), we apply a three-layer LSTM structure
with eight, eight, and one filter, respectively, and set the kernel size to be 3ˆ 3 for all
convolutional layers in the model.

• FNN: A two-layer Feedforward Neural Network. We use the OD snapshots of 3-10
lags ago and the boarding flow snapshot of 1-2 lags ago as the input features. We
perform a grid search over the type of activation functions (linear, sigmoid, and relu)
and the number of hidden layers (from 10 to 100 at an interval of 10) for the best
model setting.

• SARIMA: Seasonal AutoRegressive Integrated Moving Average. We only use SARI-
MA to forecast the boarding flow since SARIMA only handles one-dimensional time
series. We use the order ARIMA(2, 0, 1)(1, 1, 0)[36] for all the stations and fit 159
separate models. This model configuration is the same as Cheng et al. (2021a) and
was tested to be suitable for most metro stations.

Applying TRMF, ConvLSTM, and FNN to the original data (or after a normalization)
can hardly obtain a forecast better than HA. This phenomenon was also found by Gong
et al. (2018, 2020). This is because the OD data are high-dimensional, sparse, noisy, and
highly skewed. To improve the forecast of these models, we apply TRMF, ConvLSTM, and
FNN to the residuals after subtracting the HA from the original data. This “mean-removal”
processing also weakens the data’s periodicity; therefore, we do not use seasonal lags
in these models. Besides, because the standard TRMF and ConvLSTM cannot use the
boarding flow as extra inputs, we ignore the delayed data availability problem for these
models and assume all historical OD snapshots are available.

5.7.4 Forecast result

We apply trained models to the test set and forecast OD matrices of the next three steps
at each time interval. Note OD snapshots of 1-2 lags ago are unknown; they are replaced
by previously forecasted OD snapshots when doing multi-step rolling forecasting by HW-
DMD/FNN. Next, the boarding flow can be calculated from OD matrices. We compare
the forecast accuracy of models in terms of OD flow and boarding flow.

Table 5.1 shows the results of OD flow forecast. We can see HW-DMD with a forgetting
ratio ρ = 0.92 outperforms other models in all evaluation metrics. Even the three-step
forecast of HW-DMD is better than the one-step forecast of other models. The advantage
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of HW-DMD over other models is more significant in the Hangzhou data set. Although
TRMF, FNN, and ConvLSTM are trained on the residuals after subtracting the HA from
the original data, the improvement of these models compared with HA is limited. In
contrast, HW-DMD is directly applied to the original data but provides a significantly
better forecast, demonstrating its strong prediction power in handling the sparse, noisy,
and high-dimensional OD data. Besides, the performance of the “unweighted” HW-DMD
(ρ = 1) is slightly behind the weighted version, but still better than other models.

Table 5.1: Models’ performance for OD flow forecasting.

Method Criterion
Guangzhou Hangzhou

One-step Two-step Three-step One-step Two-step Three-step

HW-DMD
ρ = 0.92

RMSE 3.05 3.09 3.11 3.36 3.41 3.44
WMAPE 29.65% 29.77% 29.79% 31.76% 31.96% 31.84%

R2 0.957 0.956 0.955 0.934 0.932 0.931

HW-DMD
ρ = 1

RMSE 3.08 3.12 3.14 3.40 3.45 3.48
WMAPE 29.71% 29.87% 29.91% 31.94% 32.22% 32.13%

R2 0.956 0.955 0.954 0.933 0.930 0.929

TRMF
RMSE 3.22 3.24 3.26 3.80 3.89 3.96

WMAPE 30.61% 30.72% 30.79% 34.02% 34.48% 34.82%
R2 0.952 0.951 0.951 0.916 0.912 0.908

FNN
RMSE 3.15 3.16 3.18 3.97 4.01 4.05

WMAPE 30.23% 30.28% 30.32% 33.58% 33.63% 33.65%
R2 0.954 0.953 0.953 0.908 0.906 0.904

Conv-LSTM
RMSE 3.25 3.26 3.27 4.04 4.06 4.08

WMAPE 30.11% 30.18% 30.23% 32.96% 32.92% 33.04%
R2 0.951 0.950 0.950 0.905 0.904 0.903

HA
RMSE 3.43 3.43 3.43 4.34 4.34 4.34

WMAPE 31.21% 31.21% 31.21% 34.28% 34.28% 34.28%
R2 0.945 0.945 0.945 0.890 0.890 0.890

Examining the aggregated boarding flow is important because it reflects if the forecast
errors in OD matrices’ are properly distributed, which is crucial when using OD matrices
in traffic assignments. Moreover, the boarding flow itself is of interest to many applications.
Table 5.2 shows the boarding flow forecasting; all models except SARIMA calculate board-
ing flow by OD matrices. The two HW-DMD models are the best models in most cases.
The only exception is that FNN slightly outperforms HW-DMD for the three-step forecast
of the Guangzhou data set. Importantly, HW-DMD is the only model that outperforms
SARIMA, a well-established boarding flow forecasting model, in both data sets, showing
that the forecast of HW-DMD accurately reflects the marginal distribution of OD matrices.

The magnitude of OD flow in a metro system varies significantly in time and space
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Table 5.2: Models’ performance for boarding flow forecasting.

Method Criterion
Guangzhou Hangzhou

One-step Two-step Three-step One-step Two-step Three-step

HW-DMD
ρ = 0.92

RMSE 93.99 102.61 107.58 50.08 54.14 56.32
WMAPE 6.09% 6.68% 6.98% 7.38% 8.05% 8.12%

R2 0.991 0.989 0.988 0.989 0.988 0.987

HW-DMD
ρ = 1

RMSE 94.51 102.46 106.55 51.28 55.66 58.45
WMAPE 6.18% 6.74% 6.98% 7.54% 8.29% 8.43%

R2 0.991 0.989 0.988 0.989 0.987 0.986

TRMF
RMSE 126.03 127.87 128.65 77.70 81.19 83.12

WMAPE 7.92% 8.07% 8.13% 10.00% 10.55% 10.81%
R2 0.983 0.983 0.983 0.975 0.972 0.971

FNN
RMSE 101.93 104.00 106.06 67.16 68.83 70.77

WMAPE 6.44% 6.58% 6.69% 9.00% 9.22% 9.50%
R2 0.989 0.989 0.988 0.981 0.980 0.979

Conv-LSTM
RMSE 117.16 121.22 123.40 71.46 75.75 78.07

WMAPE 6.87% 7.19% 7.35% 8.83% 9.63% 9.98%
R2 0.985 0.984 0.984 0.978 0.976 0.974

HA
RMSE 136.56 136.56 136.56 88.25 88.25 88.25

WMAPE 8.38% 8.38% 8.38% 11.09% 11.09% 11.09%
R2 0.980 0.980 0.980 0.967 0.967 0.967

SARIMA
RMSE 110.23 120.60 126.52 55.59 60.97 64.66

WMAPE 7.15% 7.65% 7.93% 7.86% 8.28% 8.50%
R2 0.987 0.985 0.983 0.987 0.984 0.982

92



CHAPTER 5 ORIGIN-DESTINATION MATRICES FORECASTING

dimensions. Therefore, we further compare HW-DMD with other models under different
scenarios. Figure 5.5 (a) and (c) show the forecast RMSE at different times of a day. We
can see the RMSE of HW-DMD is the smallest in most time slots, particularly for the
Hangzhou data set. Other models, such as Conv-LSTM, perform slightly better in the early
morning and late night, but the difference is close, and the total network OD flow of these
periods is pretty small. Figure 5.5 (b) and (d) show the forecast RMSE for OD pairs with
different flow magnitudes. The forecast RMSE of HW-DMD is considerably lower than
other models for high-flow OD pairs (average half-hour OD flow larger than 24). Note
the number of OD pairs drops exponentially with the increase of OD flow, showing the
superior forecast capability of HW-DMD for highly skewed data.
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Figure 5.5: The RMSE of OD flow forecasting at different times and different OD pairs. (a)
and (c) shows the RMSE of OD matrix forecasting at every 30-minute interval, along with
the total OD flow in the network. Using 2i as boundaries, we divide OD pairs into groups
according to their average half-hour OD flow; the forecast RMSE at each group and the
number of OD pairs of each group are shown in (b) and (d).

Finally, we show the real and one-step forecast of OD flow at four representative OD
pairs of Guangzhou metro in Figure 5.6. The OD flow exhibits a clear daily periodicity,
explaining why HA already works reasonably well. Compared with FNN, HW-DMD is
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better at forecasting the fluctuation of high-flow OD pairs, as shown in Figure 5.6 (a) and
(b). In Figure 5.6 (a), the forecast of HW-DMD is often lower than the real value; this is
hard to avoid since there is a two-lag delay when collecting the real OD flow. More OD
pairs in the system are like Figure 5.6 (c) and (d) with a low flow but high noise. Under
such high volatility, the forecast by HW-DMD reflects a smooth average value. In fact, the
performances of other models are often undermined by noise. The SVD truncation to the
data greatly enhances HW-DMD’s ability in handling the noise data (Figure 5.1). Overall,
HW-DMD achieves a great balance between forecasting and noise reduction, which is
particularly hard for such a high-dimensional system with diverse flow magnitudes.
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Figure 5.6: The real and forecasted time series of four selected OD pairs of Guangzhou metro.
(a) is the busiest OD pair in the Guangzhou metro data set. (a) to (d) are in a flow decreasing
order.

5.7.5 Effect of the low-rank assumption

The demands of majority OD pairs are small and sparse by nature, making it difficult
for a forecasting model to distinguish random fluctuation (noise) and intrinsic dynamic
patterns. Taking the OD pair shown in Figure 5.6 (d) as an example, the randomness in
this OD pair is quite large compared with its average flow (low signal-to-noise ratio). A
good forecasting should be robust to the noise while maintaining accurate cumulative
effects of OD pairs in total (e.g., the boarding flow). This section evaluates the impact of
using the low-rank assumption on forecasting and noise filtering.
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According to Section 5.6.2, the forecast of HW-DMD is always on the column space
of UY. Therefore, the best possible value of an OD snapshot ŷi calculated by HW-DMD
is the rank-reduced full-size data, i.e., UYUJ

Y yi, which is the upper bound of an HW-
DMD’s forecast ability. Figure 5.7 shows how well this low-rank approximation fits the
original data. We can see the low-rank approximation keeps most information for the
high-demand OD pair of Figure 5.7 (a). In contrast, most fluctuations in the sparse-demand
OD pair of Figure 5.7 (b) are truncated. By comparing with HA, we can see the low-rank
approximation reflects the average daily pattern of the sparse-demand OD pair, which is a
reasonable approximation when considering the cumulative effects of OD pairs. Therefore,
the rank truncation is crucial for filtering the noise in a large number of sparse-demand
OD pairs.
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Figure 5.7: Comparing OD flow with its low-rank approximation in two Guangzhou metro
OD pairs. (a) and (b) corresponds to the (a) and (d) in Figure 5.6, respectively.

Table 5.3: The difference between original data and the low-rank approximation.

Variable Criterion Guangzhou Hangzhou

OD flow
RMSE 2.82 3.00

WMAPE 28.80% 30.65%
R2 0.963 0.947

Boarding flow
RMSE 64.15 36.89

WMAPE 4.69% 5.95%
R2 0.996 0.994

Table 5.3 further quantitatively evaluates the differences between the original OD data
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and its low-rank approximation. The results in Table 5.3 are the forecast upper bound of
HW-DMD under the current rank-reduced space. By comparing Table 5.3 with the forecast
of HW-DMD in Table 5.1 and Table 5.2, we can see that a significant portion of the forecast
error of HW-DMD essentially attributes to the rank truncation, but there is still space to
improve the current HW-DMD model (e.g., by higher order, larger rX, more regression
covariates).

In choosing the rank-reduced space, the two rank parameters in HW-DMD balance
the trade-off between forecast accuracy and model complexity. Based on the results of
hyperparameter tuning, a further increase in rank rY may result in overfitting (bringing the
noise into the rank-reduced target data). We can further slightly improve the forecasting
accuracy of HW-DMD by increasing the rank rX (related to the rank-reduced input data),
but we here prefer a compact model with a smaller rX at the cost of slight accuracy loss.
Lastly, the current HW-DMD chooses the rank-reduced space purely based on the leading
singular values, which may be sensitive and not optimal when encountering significant
data anomalies and failures (Duke et al., 2012). Using optimized DMD (Chen et al., 2012) or
combined with an anomaly detection algorithm (Scherl et al., 2020) could further improve
the current HW-DMD.

5.7.6 Effect of the online update

The online update algorithm proposed in Section 5.6.3 can update HW-DMD’s parameters
daily without storing historical data, which is computationally more efficient. On the
Guangzhou metro training set, it takes 18.7˘ 0.43 seconds to train an HW-DMD model,
while the online update only takes 1.0˘ 0.03 seconds for each day3 Besides the training
time, we particularly care about if errors will accumulate if we keep using the online
update algorithm for a long time. Therefore, we apply the online update algorithm to
all the two-month data after the training set of the Guangzhou data set to evaluate its
long-term effect. In comparison, we retrain two HW-DMD models (with ρ=0.92 and 1,
respectively) every day using all historical data up until the latest. The results are shown
in Figure 5.8. We summarize the key findings for Figure 5.8 as follows:

• The RMSE of a constant model gradually increases over time. This indicates the
metro system’s dynamics are time-evolving; thus, forecasting models should be
updated/retrained regularly for better performance.

3We report the mean ˘ standard deviation of 20 runs. Tests were run on a computer with Intel® CoreTM

i7-8700 Processor and 24 gigabytes of RAM. Other benchmark models have much longer training time than
HW-DMD (more than 1 minute for FNN and more than 20 minutes for TRMF and Conv-LSTM).
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Figure 5.8: The evolvement of forecast RMSE under different HW-DMD update methods
(Guangzhou data set). Each marker represents the RMSE of forecasted OD flow during a day.
Numbered dates in the horizontal axis are Mondays; weekends are skipped.

• The RMSE curve of the online update algorithm clings to the model (ρ = 0.92)
retrained every day by entire historical data, showing the online HW-DMD update
algorithm works consistently well in long-term applications. For a large training
set (e.g., after September in Figure 5.8), the online update approach even performs
slightly better than retraining.

• Properly reducing the weight for old data improves the forecast. Compare ρ = 0.92
with ρ = 1 for the two retrained models; the benefits of forgetting the old data
become more significant as the training data increases.

• The OD flow of certain weekdays can be harder to forecast. Especially for the forecast
of September. The RMSEs on Fridays are significantly higher on than other weekdays.

Many forecasting models do not consider the time-evolving dynamics of a metro
system. Regular retraining can be prohibitive, especially for complicated models (e.g.,
deep learning models). This experiment shows the online update algorithm for HW-DMD
is a memory-saving and accurate approach to keep an HW-DMD model up to date.
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5.8 Conclusions and Discussion

This paper proposes a high-order weighted dynamic mode decomposition (HW-DMD)
model to solve the real-time short-term OD matrix forecasting problem in metro systems.
Experiments show that HW-DMD significantly outperforms common forecasting models
under the high-dimensional, sparse, noisy, and skewed OD data. Particularly, we address
the delayed data availability problem and the time-evolving dynamics of metro systems,
which are often ignored in the literature. The idea of the forgetting rate and online
update in dealing with a time-evolving system is also beneficial for other forecasting
models. Moreover, the implementation of HW-DMD is simple, and the computation is
very efficient, providing a promising solution to general high-dimensional time series
forecasting problems.

We discuss several future research directions. (1) Current HW-DMD reshapes OD
matrices into vectors for dimensionality reduction. However, performing dimensionality
reduction directly on OD matrices may better utilize the column/row-wise correlations
and produce more concise models (Chen et al., 2021; Gong et al., 2020). A difficulty in
this direction is that the low-rank feature in metro OD matrices is relatively weak because
the diagonal elements of metro OD matrices are all zeros. (2) Another future direction
is to use a non-linear model instead of the current linear model in the reduced space,
such as the deep factor model (Wang et al., 2019b). But a limitation for a non-linear
model is that an online update method may be difficult to derive or even impossible.
(3) Lastly, current HW-DMD uses external features, such as the boarding flow, simply
as covariates. Incorporating more general features (e.g., weather, events) and network
structure to improve the HW-DMD is worth investigating.
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Chapter 6

Final Conclusion & Future Work

6.1 Summary of Results

With the increased availability of data in metro systems, there has been much research on
understanding travel behavior patterns and developing data-driven planning/operation
in metro systems. This thesis incorporates travel behavioral characteristics into the destina-
tion inference and the passenger demand forecasting problems in metro systems. Results
show that the travel behavior is beneficial to a wide range of planning/operational tasks,
from an individual-level trip destination inference, to a station-level passenger demand
forecasting, to a network-level OD matrices forecasting.

In Chapter 3, a probabilistic model based on a three-dimensional LDA model is pro-
posed. The travel behavior of each passenger is characterized by a three-dimensional
latent tensor, with each dimension representing patterns of time, origin, and destination,
respectively. Using the power law property, a station-to-rank preprocessing is proposed to
transfer the diverse spatial patterns to similar behavioral regularities, which enhances the
accuracy of destination inference. This model has two usages, (1) inferring the destinations
of unlinked trips in tap-in only smart card systems. (2) discovering latent travel behavior
patterns for passenger clustering. The proposed destination estimation framework is
tested on Guangzhou Metro smart card data, in which the ground truth is available. Com-
pared with an individual-history-based model, the topic model not only shows increased
accuracy by around 2% but also captures essential latent patterns in passengers’ travel
behavior. The destination inference can also be regarded as a kind of individual-level
forecasting: forecast the most likely destination given the current origin and time. Besides,
the proposed topic model is also a generative model that explains the probability of a
trip by individual’s latent topics, and can be used for travel pattern analysis, passenger
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clustering, and trip generation.
Chapter 4 focuses on forecasting the short-term passenger demand at metro stations.

Unlike traditional passenger flow forecasting approaches based on time series or machine
learning, the returning flow (a covariate) proposed in Chapter 4 is reasoned from passen-
gers’ travel behavior. The future returning flow of a metro station can be estimated by the
past alighting flow and the return probability parallelogram (RPP), which does not rely on
external information. The returning flow explains where and why the passenger demand
is generated and thus captures the long-range dependencies between the alighting flow
and the boarding flow of a metro station. The effect of returning flow on passenger flow
forecasting is tested in the metro smart card data of Guangzhou; the results confirm the
returning flow—a single covariate—can consistently improve the passenger flow fore-
casting under various conditions, including one-step-ahead forecasting, multi-step-ahead
forecasting and forecasting under special events. Moreover, paired t-tests show the im-
provement is significant for most business-type stations, and the results under different
models (SARIMA, SVR, and MLP) further demonstrate the effectiveness of returning flow
to general passenger flow forecasting methods.

Chapter 5 continues the short-term passenger demand forecasting to an OD ma-
trices level. Major challenges of real-time OD matrices forecasting include (1) high-
dimensionality, (2) skewed flow distribution within an OD matrix, (3) delayed availability
of recent OD snapshots, and (4) the model maintenance problem caused by time-evolving
dynamics. We formulate the OD matrices forecasting problem by a high-order VAR model.
To solve the first two challenges, we reconstruct the VAR model as a reduced-order re-
gression model and estimate it using dynamic mode decomposition (DMD). The VAR
coefficients estimated by DMD are the best-fit (in terms of Frobenius norm) linear operator
for the rank-reduced full-size data. Station boarding demand is used as a covariate in the
VAR to replace the available recent OD snapshots. We consider the time-evolving dynam-
ics of metro systems and improve the forecast by exponentially reducing the weights for
historical data. A tailored online update algorithm is then developed for the High-order
Weighted DMD model (HW-DMD) to update the model coefficients at a daily level, with-
out storing historical data or retraining. Experiments on data from two large-scale metro
systems show that the proposed HW-DMD is robust to noisy and sparse data, and signifi-
cantly outperforms baseline models in forecasting both OD matrices and boarding flow.
The online update algorithm also shows consistent accuracy over a long time, allowing us
to maintain an HW-DMD model at a much lower cost.
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6.2 Discussion

6.2.1 Practical implications

The probabilistic destination inference model developed in Chapter 3 requires a portion
of complete itineraries (either ground truth or an estimated training set, see Section 3.5.5)
to learn passengers’ travel patterns. Therefore, the target trips of the proposed model
are unlinked trips whose destination cannot be estimated by conventional trip-chain-
based methods. Besides missing data imputation, destination recommendation is another
practical usage of the proposed model. For example, recommending a list of possible
destinations to a user when he/she uses a web/mobile navigation service, given his/her
travel history, current location, and time. As a generative model, we can also use the model
developed in Chapter 3 to generate synthetic trips. The synthetic trips can serve as inputs
of agent-based urban simulation (Horni et al., 2016) without confidentiality. As the current
model does not capture the order of synthetic trips, a sequential extension (e.g., Mo et al.,
2021; Yin et al., 2017) could be developed to model the correlations between trips.

Chapter 4 and Chapter 5 develop models for short-term passenger demand forecast-
ing. The practical implication of these forecasting models is twofold. From passengers’
perspective, real-time/projected demand/congestion at stations or trains/buses can help
them make travel plans (Cats et al., 2011). The real-time information can be made available
through navigation Apps or electronic station boards. In fact, companies like transit app
and Google are providing such services. From the perspective of transit agencies, it is
possible to dynamically adjust the supply of services according to demand forecasting,
making the system more efficient and economical. Traditional public transit uses a static
timetable that remains unchanged for months (Ceder, 2016), or only makes some adjust-
ments under special events. However, real-time passenger forecasting will become much
more important when the public transit schedule becomes demand responsive with the
development of intelligent transportation (Peled et al., 2021).

6.2.2 Limitations

Besides chapter-specific limitations as summarized in the conclusion section of each
chapter, there are some general limitations in this research. First, the passenger demand
forecasting models proposed in Chapter 4 and Chapter 5 require knowing both boarding
and alighting demands. However, smart card data in many cities other than Guangzhou do
not record alighting information. Data availability is a major problem when applying the
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proposed methods to other cities. This limitation could be alleviated with the development
of infrastructure and technologies. Second, this research focuses more on verifying ideas
than fine-tuning models. Therefore, this research did not incorporate external factors like
weather, holidays, and land-use properties. From an academic perspective, we exclude
external factors to highlight the effect of the research subject (travel behavior). From a
practical perspective, however, the performance of forecasting and destination inference
could be further improved by considering these external factors. Third, the inference and
forecasting are “upstream” models that should be combined with effective “downstream”
models. For example, optimizing transit supply using demand forecasting would rely
on dynamic timetable/route design algorithms (e.g., Iliopoulou and Kepaptsoglou, 2019;
Peled et al., 2021), forecasting passenger loads on trains requires combining the OD
matrices forecasting with a traffic assignment model. Forecasting is a component in the
family of applications in public transportation; there is still a long way to go in integrating
these applications for a better public transportation system.

6.2.3 Forecasting in transportation

As reviewed in Section 2.2, there has been a surge in research on (short-term) passenger
flow forecasting (including this thesis) in recent years. A closely related but even more
popular topic is forecasting in a broader transportation context (e.g., traffic flow/speed
forecasting, ride-hailing demand forecasting). The surge of research interest in trans-
portation forecasting is because the available data sets, the computational capability, the
types of models, and the vision for intelligent transportation have been increasing rapidly.
However, a problem occurs that many studies tend to be too homogeneous. It is thus
important to discuss what is good research on forecasting in transportation. Good research
on transportation forecasting should have at least one of the following qualities:

1. Demonstrate significant improvements in forecasting accuracy with sufficient ev-
idence. Accuracy is the most widely used criterion when claiming the contribution
of a forecasting model. However, making a fair comparison in forecast accuracy
between models is difficult; a critical reason is the lack of widely acknowledged
benchmark data sets and forecasting tasks. Forecasting models were proposed for
assorted tasks and tested under different data sets. A model designed for a specific
task often is not transferable to another study. Moreover, scientific articles usually
contain insufficient details to replicate the model and the experiments. Even the
same model can have diverse performances under different hyperparameters, train-
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ing procedures, or even initialization values, especially for complex models (e.g.,
deep learning models). Because of the above reasons, there are debates on whether
new forecasting methods really improve traffic forecasting (Nair and Dekusar, 2020;
Manibardo et al., 2021). Therefore, sufficient evidence must be shown to demonstrate
the superiority of a new model/method.

2. Utilize knowledge/features of the transportation domain and make methodologi-
cal contributions. Transportation is a comprehensive domain that includes people,
vehicles, and roads. Incorporating domain knowledge into forecasting is meaningful.
For example, incorporating behavior characteristics of passengers into metro board-
ing flow forecasting (Chapter 4) and leveraging network topology in traffic flow
forecasting (e.g., Yu et al., 2018; Kwak et al., 2021). The value of this type of research
lies not in more accurate forecasting (though they usually are), but in providing a
new way of thinking, enhancing the understanding of the system, and unlocking
future potentials.

3. Analyze/resolve problems that have practical significance. A forecasting model is
only a small step in achieving a real-world forecasting project. The “leap forward” in
traffic forecasting models has not been widely applied to actual projects; a critical
reason is that the improvement in accuracy does not worth the extra computational
cost and investment. It is thus important to discuss practical issues, such as the
benefit and the lifecycle cost, of a forecasting model. For example, Peled et al. (2021)
analyzed the reduction of trip time using forecasting models in demand-responsive
transit, Chapter 5 developed an online update algorithm to reduce the model’s
maintenance cost. Research in this direction reduces the gap between practice and
theory.

Based on the above three aspects, there are a few suggestions that will be helpful for
research on transportation forecasting. (1) Make statistical tests instead of presenting
a single experiment’s results. (2) Open source code and data for reproducible research
(Zheng, 2021). (3) Understand and use the characteristics of the transportation system. (4)
Always put the practical requirements in mind while perfecting the model.

6.3 Future Research

The future research is summarized by the following two aspects: (1) improvements to the
current research and (2) new related directions.
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There is space to improve the models presented in this thesis. The models and ex-
periments in this thesis are designed in a relatively simple manner to highlight core
contributions. For example, we did not differentiate weekdays and weekends, and we only
consider smart card data in a closed metro system without considering other transportation
modes. More refined work should be done for practical use, similar models/ideas could
be extended to include other data sources (e.g., call detail record data) and transporta-
tion modes (e.g., buses). We use a station-to-rank transformation to enhance the word
co-occurrences among passengers in Chapter 3; we can try to design a spatial model to
replace this transformation, which allows the model to characterize the passenger’s spatial
patterns. We can also try to use the information of previous trips to build a sequential
model to further improve the inference accuracy (e.g., consider the order of activities, Mo
et al., 2021). For Chapter 4 that uses returning flow in the passenger flow forecasting, a
more ingenious approach to forecast the future returning flow should be developed. For
example, adjusting the current RPP-based forecasting with the recent observations of real
returning flow. Moreover, passengers’ travel behavior should have a great potential to
alert the surge of boarding demand during special events. Besides, it is very interesting
and promising to study the effect of travel behavior in enhancing the forecasting in other
transport modes with chained travel patterns, such as private vehicles and ride-hailing
services. For example, drivers of private vehicles may also have similar chained trips when
commuting or in other activities. For the OD matrices forecasting model in Chapter 5, it
is worth trying to make forecasts directly on matrices without a vectorization operator,
which preserves column/row-wise correlations (e.g., Chen et al., 2021; Hsu et al., 2021).
Because of the hierarchical structure of OD matrices, it is also interesting to explore and
eliminate the spatial/temporal correlations the forecasting errors.

In terms of new related directions, There is no doubt that travel behavior has much
broader application scenarios. The COVID-19 pandemic has significantly changed pub-
lic transit and passengers’ travel behavior, bringing new prospects and research needs
(Tirachini and Cats, 2020). It is essential to evaluate how users’ travel behavior adapts to
regulations, policies, and information. Real-time forecasting of passenger loads/congestion
in public transit becomes a critical topic with social distancing and capacity limitations.
Moreover, deep learning has produced revolutionary breakthroughs in many fields and
has also been attempted in public transit, such as forecasting and control (e.g., Wang and
Sun, 2020). An exciting direction closely related to deep learning and travel behavior is
mobility synthesis, where deep generative models are used to learn and create artificial
but identically distributed mobility data. The synthetic mobility data can compensate for
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the limitations (such as privacy concerns and missing values) of real-world data and serve
as essential inputs for agent-based urban simulation (e.g., Feng et al., 2020). Passengers’
travel behavior is constantly evolving with the advance of technologies and society, and
research must keep up with the development to provide better public transportation.
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Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D., et al., 2009. Spectral
analysis of nonlinear flows. Journal of fluid mechanics 641, 115–127.

115



BIBLIOGRAPHY

Sánchez-Martínez, G.E., 2017. Inference of public transportation trip destinations by
using fare transaction and vehicle location data: Dynamic programming approach.
Transportation Research Record 2652, 1–7.

Scheiner, J., 2014. The gendered complexity of daily life: effects of life-course events on
changes in activity entropy and tour complexity over time. Travel Behaviour and Society
1, 91–105.

Scherl, I., Strom, B., Shang, J.K., Williams, O., Polagye, B.L., Brunton, S.L., 2020. Robust
principal component analysis for modal decomposition of corrupt fluid flows. Physical
Review Fluids 5, 054401.

Schmid, P.J., 2010. Dynamic mode decomposition of numerical and experimental data.
Journal of fluid mechanics 656, 5–28.

Sha, S., Li, J., Zhang, K., Yang, Z., Wei, Z., Li, X., Zhu, X., 2020. RNN-based subway
passenger flow rolling prediction. IEEE Access 8, 15232–15240.

Shen, L., Shao, Z., Yu, Y., Chen, X., 2021. Hybrid approach combining modified gravity
model and deep learning for short-term forecasting of metro transit passenger flows.
Transportation Research Record 2675, 25–38.

Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c., 2015. Convolutional
lstm network: A machine learning approach for precipitation nowcasting. Advances in
neural information processing systems 28, 802–810.

Song, C., Qu, Z., Blumm, N., Barabási, A.L., 2010. Limits of predictability in human
mobility. Science 327, 1018–1021.

Stathopoulos, A., Karlaftis, M.G., 2003. A multivariate state space approach for urban traffic
flow modeling and prediction. Transportation Research Part C: Emerging Technologies
11, 121–135.

Sun, L., Axhausen, K.W., 2016. Understanding urban mobility patterns with a probabilistic
tensor factorization framework. Transportation Research Part B: Methodological 91,
511–524.

Sun, L., Axhausen, K.W., Lee, D.H., Huang, X., 2013. Understanding metropolitan patterns
of daily encounters. Proceedings of the National Academy of Sciences 110, 13774–13779.

116



BIBLIOGRAPHY

Sun, L., Chen, X., He, Z., Miranda-Moreno, L.F., 2021. Routine pattern discovery and
anomaly detection in individual travel behavior. Networks and Spatial Economics .

Sun, S., Yang, D., Feng, G., Guo, J.e., 2020. Adaensemble learning approach for metro
passenger flow forecasting. arXiv preprint arXiv:2002.07575 .

Sun, Y., Leng, B., Guan, W., 2015. A novel wavelet-SVM short-time passenger flow
prediction in beijing subway system. Neurocomputing 166, 109–121.

Tan, M.C., Wong, S.C., Xu, J.M., Guan, Z.R., Zhang, P., 2009. An aggregation approach
to short-term traffic flow prediction. IEEE Transactions on Intelligent Transportation
Systems 10, 60–69.

Tang, L., Zhao, Y., Cabrera, J., Ma, J., Tsui, K.L., 2018. Forecasting short-term passenger flow:
An empirical study on shenzhen metro. IEEE Transactions on Intelligent Transportation
Systems 20, 3613–3622.

Tirachini, A., Cats, O., 2020. Covid-19 and public transportation: Current assessment,
prospects, and research needs. Journal of Public Transportation 22, 1–21.

Toqué, F., Côme, E., El Mahrsi, M.K., Oukhellou, L., 2016. Forecasting dynamic public
transport origin-destination matrices with long-short term memory recurrent neural
networks, in: 2016 IEEE 19th international conference on intelligent transportation
systems (ITSC), IEEE. pp. 1071–1076.

Toqué, F., Khouadjia, M., Come, E., Trepanier, M., Oukhellou, L., 2017. Short & long term
forecasting of multimodal transport passenger flows with machine learning methods, in:
IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp.
560–566.

Trépanier, M., Habib, K.M., Morency, C., 2012. Are transit users loyal? Revelations from
a hazard model based on smart card data. Canadian Journal of Civil Engineering 39,
610–618.

Trépanier, M., Tranchant, N., Chapleau, R., 2007. Individual trip destination estimation in a
transit smart card automated fare collection system. Journal of Intelligent Transportation
Systems 11, 1–14.

Tsai, T.H., Lee, C.K., Wei, C.H., 2009. Neural network based temporal feature models for
short-term railway passenger demand forecasting. Expert Systems with Applications
36, 3728–3736.

117



BIBLIOGRAPHY

Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N., 2014. On dynamic
mode decomposition: Theory and applications. Journal of Computational Dynamics 1,
391–421.

Union Internationale des Transports Publics (UITP), 2018. World metro figure 2018–statistic
brief. https://www.uitp.org/publications/world-metro-figures/. Accessed: 2020-
03-20.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need, in: Advances in neural information
processing systems, pp. 5998–6008.

Viallard, A., Trépanier, M., Morency, C., 2019. Assessing the evolution of transit user
behavior from smart card data. Transportation Research Record 2673, 184–194.

Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C., 2005. Optimized and meta-optimized neural
networks for short-term traffic flow prediction: A genetic approach. Transportation
Research Part C: Emerging Technologies 13, 211–234.

Wang, H., Li, L., Pan, P., Wang, Y., Jin, Y., 2019a. Early warning of burst passenger flow in
public transportation system. Transportation Research Part C: Emerging Technologies
105, 580–598.

Wang, J., Kong, X., Zhao, W., Tolba, A., Al-Makhadmeh, Z., Xia, F., 2018. Stloyal: A spatio-
temporal loyalty-based model for subway passenger flow prediction. IEEE Access 6,
47461–47471.

Wang, J., Sun, L., 2020. Dynamic holding control to avoid bus bunching: A multi-agent
deep reinforcement learning framework. Transportation Research Part C: Emerging
Technologies 116, 102661.

Wang, J., Zhang, Y., Wei, Y., Hu, Y., Piao, X., Yin, B., 2021. Metro passenger flow predic-
tion via dynamic hypergraph convolution networks. IEEE Transactions on Intelligent
Transportation Systems .

Wang, S., Miao, H., Chen, H., Huang, Z., 2020. Multi-task adversarial spatial-temporal
networks for crowd flow prediction, in: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pp. 1555–1564.

118

https://www.uitp.org/publications/world-metro-figures/


BIBLIOGRAPHY

Wang, W., Attanucci, J., Wilson, N., 2011. Bus passenger origin-destination estimation and
related analyses using automated data collection systems. Journal of Public Transporta-
tion 14, 131–150.

Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Foster, D., Januschowski, T., 2019b. Deep
factors for forecasting, in: International conference on machine learning, PMLR. pp.
6607–6617.

Wang, Y., Yin, H., Chen, H., Wo, T., Xu, J., Zheng, K., 2019c. Origin-destination matrix
prediction via graph convolution: a new perspective of passenger demand modeling,
in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1227–1235.

Ward Jr, J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the
American statistical association 58, 236–244.

Wei, Y., Chen, M.C., 2012. Forecasting the short-term metro passenger flow with empirical
mode decomposition and neural networks. Transportation Research Part C: Emerging
Technologies 21, 148–162.

Williams, B.M., 2001. Multivariate vehicular traffic flow prediction: evaluation of arimax
modeling. Transportation Research Record 1776, 194–200.

Williams, B.M., Hoel, L.A., 2003. Modeling and forecasting vehicular traffic flow as a sea-
sonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation
Engineering 129, 664–672.

Wu, Y., Cheng, Z., Sun, L., 2021. Individual mobility prediction via attentive marked
temporal point processes. arXiv preprint arXiv:2109.02715 .

Xiong, X., Ozbay, K., Jin, L., Feng, C., 2020. Dynamic origin–destination matrix prediction
with line graph neural networks and kalman filter. Transportation Research Record 2674,
491–503.

Xue, G., Liu, S., Gong, D., 2020. Identifying abnormal riding behavior in urban rail transit:
A survey on“in-out”in the same subway station. IEEE Transactions on Intelligent
Transportation Systems .

Xue, G., Liu, S., Ren, L., Ma, Y., Gong, D., 2022. Forecasting the subway passenger
flow under event occurrences with multivariate disturbances. Expert Systems with
Applications 188, 116057.

119



BIBLIOGRAPHY

Yang, J., Dong, X., Jin, S., 2020. Metro passenger flow prediction model using attention-
based neural network. IEEE Access 8, 30953–30959.

Ye, J., Zheng, F., Zhao, J., Ye, K., Xu, C., 2021. Multi-view trgru: Transformer based
spatiotemporal model for short-term metro origin-destination matrix prediction. arXiv
preprint arXiv:2108.03900 .

Yin, M., Sheehan, M., Feygin, S., Paiement, J.F., Pozdnoukhov, A., 2017. A generative model
of urban activities from cellular data. IEEE Transactions on Intelligent Transportation
Systems 19, 1682–1696.

Yu, B., Yin, H., Zhu, Z., 2018. Spatio-temporal graph convolutional networks: a deep
learning framework for traffic forecasting, in: Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 3634–3640.

Yu, H.F., Rao, N., Dhillon, I.S., 2016. Temporal regularized matrix factorization for high-
dimensional time series prediction, in: Advances in neural information processing
systems, pp. 847–855.

Yu, Y., Zhang, Y., Qian, S., Wang, S., Hu, Y., Yin, B., 2020. A low rank dynamic mode
decomposition model for short-term traffic flow prediction. IEEE Transactions on
Intelligent Transportation Systems .

Zhang, D., Xiao, F., Shen, M., Zhong, S., 2021a. DNEAT: A novel dynamic node-edge
attention network for origin-destination demand prediction. Transportation Research
Part C: Emerging Technologies 122, 102851.

Zhang, F., Yuan, N.J., Wang, Y., Xie, X., 2015. Reconstructing individual mobility from
smart card transactions: a collaborative space alignment approach. Knowledge and
Information Systems 44, 299–323.

Zhang, H., Rowley, C.W., Deem, E.A., Cattafesta, L.N., 2019a. Online dynamic mode
decomposition for time-varying systems. SIAM Journal on Applied Dynamical Systems
18, 1586–1609.

Zhang, J., Che, H., Chen, F., Ma, W., He, Z., 2021b. Short-term origin-destination demand
prediction in urban rail transit systems: A channel-wise attentive split-convolutional
neural network method. Transportation Research Part C: Emerging Technologies 124,
102928.

120



BIBLIOGRAPHY

Zhang, J., Chen, F., Cui, Z., Guo, Y., Zhu, Y., 2020. Deep learning architecture for short-
term passenger flow forecasting in urban rail transit. IEEE Transactions on Intelligent
Transportation Systems 22, 7004–7014.

Zhang, J., Chen, F., Wang, Z., Liu, H., 2019b. Short-term origin-destination forecasting in
urban rail transit based on attraction degree. IEEE Access 7, 133452–133462.

Zhang, P., Ma, Z., Weng, X., 2021c. Detecting invalid associations between fare machines
and metro stations using smart card data. Journal of Advanced Transportation 2021.

Zhao, J., Qu, Q., Zhang, F., Xu, C., Liu, S., 2017. Spatio-temporal analysis of passenger travel
patterns in massive smart card data. IEEE Transactions on Intelligent Transportation
Systems 18, 3135–3146.

Zhao, J., Rahbee, A., Wilson, N.H., 2007. Estimating a rail passenger trip origin-destination
matrix using automatic data collection systems. Computer-Aided Civil and Infrastruc-
ture Engineering 22, 376–387.

Zhao, Y., Ma, Z., Jiang, X., Koutsopoulos, H.N., 2021. Short-term metro ridership prediction
during unplanned events. Transportation Research Record 2676, 132–147.

Zhao, Y., Ma, Z., Yang, Y., Jiang, W., Jiang, X., 2020a. Short-term passenger flow prediction
with decomposition in urban railway systems. IEEE Access 8, 107876–107886.

Zhao, Z., Koutsopoulos, H.N., Zhao, J., 2018a. Detecting pattern changes in individual
travel behavior: A bayesian approach. Transportation research part B: methodological
112, 73–88.

Zhao, Z., Koutsopoulos, H.N., Zhao, J., 2018b. Discovering latent activity patterns from hu-
man mobility, in: The 7th ACM SIGKDD International Workshop on Urban Computing.

Zhao, Z., Koutsopoulos, H.N., Zhao, J., 2018c. Individual mobility prediction using transit
smart card data. Transportation Research Part C: Emerging Technologies 89, 19–34.

Zhao, Z., Koutsopoulos, H.N., Zhao, J., 2020b. Discovering latent activity patterns from
transit smart card data: A spatiotemporal topic model. Transportation Research Part C:
Emerging Technologies 116, 102627.

Zheng, Z., 2021. Reasons, challenges, and some tools for doing reproducible transportation
research. Communications in Transportation Research 1, 100004.

121



CHAPTER 6 BIBLIOGRAPHY

Zúñiga, F., Muñoz, J.C., Giesen, R., 2021. Estimation and prediction of dynamic matrix
travel on a public transport corridor using historical data and real-time information.
Public Transport 13, 59–80.

122


	Abstract
	Résumé
	Acknowledgments
	Contribution of Authors
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Research Scope and Objectives
	Travel behavior features
	Smart card data applications
	Objectives

	Thesis Contributions
	Thesis Organization

	Literature Review
	Travel Behavior Patterns in Smart Card Data
	Measuring travel behavior patterns
	Applications of travel behavior patterns

	Forecasting Using Smart Card Data
	Individual mobility prediction
	Station passenger flow forecasting
	Origin destination matrices forecasting

	Summary of existing research

	Probabilistic Model for Trip Destination Inference
	Abstract
	Introduction
	Literature Review
	Destination inference in smart card data
	Transit pattern mining

	Methodology: Topic Model for Destination Inference
	Model formulation
	Model inference
	Destination inference and station-to-rank transformation

	Case study
	Guangzhou Metro data
	Hyperparameters
	Benchmark models
	Scenario 1: using ground truth training set
	Scenario 2: using estimated training set
	Interpreting latent topics
	Passenger clustering

	Conclusions and discussion

	Using Travel Behavior for Boarding Flow Forecasting
	Abstract
	Introduction
	Methodology
	Problem description
	Returning flow
	Return probability parallelogram (RPP)

	Experiments
	ARIMA model
	Model selection and evaluation
	Data
	One-step-ahead forecasting
	Multi-step-ahead forecasting
	Forecasting under special events
	Experiments in other models

	Conclusions and Discussion

	Origin-Destination Matrices Forecasting with Dynamic Mode Decomposition
	Abstract
	Introduction
	Related Work
	Problem Description
	Dynamic Mode Decomposition
	High-order Weighted Dynamic Mode Decomposition
	Model specification
	Model estimation
	Online update
	Connections with other DMD models

	Experiments
	Data and experimental settings
	Hyperparameters
	Benchmark models
	Forecast result
	Effect of the low-rank assumption
	Effect of the online update

	Conclusions and Discussion

	Final Conclusion & Future Work
	Summary of Results
	Discussion
	Practical implications
	Limitations
	Forecasting in transportation

	Future Research

	Bibliography

