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THE APPLICATION OF MELLIN TRANSFORMS TO STATISTICS 

The produot of independant random variables is 

studied through products ot Mellin transforma. Although 

the trequency function tor the produot had otten been 

caloulated, the use of Mellin transforma was first 

introduoed by Epstein. 

In the present essay the theory ot this 

application is developed and many examples are disoussed. 

The theory, originally developed for positive random 

variables only, is made to inolude any real variable. 

This is done by replaoing the produot of Mellin transforma 

by the produot of certain 2~2 matrices whose elements 

are Mellin transforma. 

Some tunctional equations between frequenoy 

functions and between Mellin transforma are sol•ed, 

sometimes using arguments drawn from Statistios. 

The problem ot interpolating between the moments 

to find the Mellin transform is solved, in the oase 

where all the moments exist. 
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Introduction 

The use or Mellin transforma in the field of Statistics 

as given in this essay, parallels somewhat the use of Fourier 

transforma in this field. In the latter case the addition of 

random variables is studied in terms of the oorresponding 

oharaoteristio funotions whioh are the Fourier transforma 

ot the trequency funotions. The oharacteristic funotion of 

a sum ot independant random variables is the produot of the 

characteristic funotions of the random variables making up 

the sum. 

The produot ôt independant random variables is 

studied in a similar way through products of Mellin transforma. 

Although the frequenoy tunotion tor the produot had often 

been caloulated ( e.g., in Student's "t" distribution) the 

use of Mellin transforma was first introduced by Epstein1 • 

In the present essay the theory of this application 

is developed and many examples are discussed. The theory, 

originally developed tor positive random variables only, 

is made to inolude any real variable. This is done by 

replaoing the product ot Mellin transforma by the produot 

of certain 2~2 matrices whose elements are Mellin transforma. 

Some tunctional equations between frequenoy functions 

and between Mellin transforma are solved, sometimes using 

(1) J»atein, 1948. See Bibliography on p.35 
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arguments drawn from Statistios. The random variable !',.... is 

disoussed, and the olosure ot a certain set of random 

variables is shown to hold under the operations !,~ f, f. 

where ~ and f.,. are in the set. The examples given in/ 22 

show the resulta of multiplying random variables from 

well known distributions. 

The Mellin transform of a frequenoy funotion is a 

moment of arbitrary oomplex order. The problem ot inter-

polating between the moments to find the Mellin transtorm 

is solved, in the case where all the moments exist, in 

exa.mple vi off 22. 



Chapter 1 

PositiTe Random Variables 

In order to disouss the relation between the theory 

or Mellin transtorms and Mathematioal Statistios, it will 

be neoessary to give a brier discusSbn or these subjects. 

The proors or the properties ot the Mellin transtorm are to 

be round in Titchmarsh's work (1). In that text the properties 

are derived from those or the Fourier transform, tor the 

Mellin and Fourier integrale ditfer essentially by a change 

of variable and a different line of integration. The 

discussion of Probability and Statistics is more selt-

contained sinoe proofs may be indicated without difficulty. 

1. The Mellin transtorm and its properties 

All the integrale that will be used are Lebesgue 

integrale, and a knowledge or the classes L( Ll), L2, etc., 

is assumed. Consider a tunotion or the real variable x, f(x) 

which is such that t(x)xk-lé'L( 0 ,GO), tor some real k. Then 

the Mellin transform~(s) or t(x) is detined as tollows 

[

ol) s-. 1 
'f'(S') ~ f(x.) x.- Jx R( s), the real part of s,-:::: .k 

0 

It is shown by Titchmarsh§ 1.29 that the tollowing inversion 

formula holds 
l< + ··oO 

f (x.) = __.!_ [ T(s-J x.-s Js-
2. rr & 

~· .:.o 
An exa.mple is provided by r(x)=e-x, .11s):.r(s). In 

this case k > 0. For pur poses or calculation para.meters .may 

(1) Titchmarsh, 1948 
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be introduoed into known pairs ot Mellin transforma in order 

to extend their range. The only three tormulae whioh seem to 

be needed in praotice are, :J"( s) 

ot t(x), 1) f(:x.o4) 

11) f{ ;.) 

111) >(.Â f( :!1(.} 

being the Mellin transform 

t~t 1 CJ.) 
as TCs) 

.!'(S'+?\.) 

The operations ot inserting these parameters are not oom-

mutatlve and must be done in the order given. The result ot 
X f o(J Q. 'X 1-S T ( _:>...or.!) 

the three is >C. [ ( !) ~ot.l 7 ct 

The numbera !X, a , ')-.. are not speoitied and the only require-

aent is tha.t :t<."f.[ { :r)x.l<iL( o ,oD) tor some real k. 

The integral or the produot of two tunotions may be 

expressed as an integral or the produot ot their Mellin 

transtorms. The result may be deduoed from the eorresponding 

theorem tor Fourier transtorms and is as tollows: 

2. Convolution Theorem If ~g(x) and xkt{X)éL(O,o) 

and it Atx.)= [1{'1)3(~}~ then xkh(x)éL(O,oP) and the Mellin 

transfor.m. of h(x) ,t/l8}1s equal to t(s} '{(.r). 
l [ ~-+CeD [oD X <J 

;.--;:;:' j (s) :J (,) ~s J.s :: :fl ct} J ( -;;-} ~ 
k-~~ • 

Using formula 1) above this .may be written 
k+~~ 0 --.!..:- ( {"(s) 1(~-s) x.-5 js.: '1 -}('1) d (x't)J'f 

;1 ,., ) k~c.OD • 

The proof is given by Titchmarsh in§ 2.7. 

). Rando.m. Variables and Distribution Funotions 

The notion or probability must be introduced in terme 

ot a finite set. If E is a variable whioh may equal any 

member or the set, and x is a given element, then the 

probability that i takes the value x is defined to be the 



number ot times x appears in the set, divided by the total 

number of elements in the set. The variable f is oalled a 

random variable. The sets we shall deal with are sets of 

real numbers. If the set is countable, but infinite, or 

uncountable, another measure ot the number ot elements in 

the set must be introduced and in the case ot the real 

numbers this is always taken to be the Lebesgue measure ot 

the set. 

The distribution function F(x) is the probability 

that-~~f~~ where f is a random variable detined over the 

set. Since the measure of a point is zero some other means 

must be used to indicate the incidence ot a single element. 

This is similar to the problem ot a continuous distribution 

ot maas in a solid, and in this oase also the notion of 

density is introduoed. The probability that ~ lies between 

x, x+Jx, viz., F(:x: .. Jx)-F(x), is divided by J x. The limit as 

S x 7 0 is called the frequenoy function of the set and is 

denoted by t(:x:). Thus t(x)=F'(x). The probability that f 
((,. . ci lies between a and b is Jo. .f (x.) .><. • 

4. The J.Pundamental Laws 

The following are the fundamental laws of probability: 

1) It P(A), P(B) are the probabilities ot elements 

A, B respectively, then P(A or B) == P(A) + P(B), if A and B 

are mutually exclusive. 

11) P(A and B)==P(A)P(B) if P(A) does not depend on 

B, and P(B) does not depend on A. 



Clearly, the probability of an unspeoified element 

is 1. In the oase of the real numbers 
oP 

P( any element ) = J f(Jf.) d~ = 1 
-oP 

Since f(x)~ o, F(x) is monotone increasing. 

5. Bivariate Distributions 

It is possible to consider mor~than one random 

variable, e.g., the pair f,~ • The distribution function 

F(x,y) is defined as the probability that-o' < fL x and 

-ol' c:. ~ L '1 • The frequency function is defined as f(x,y) 

f(x,y)-: ~-zF(:~C,"f}. Extending 11) above to this joint frequenoy 
'b :>t ~'1 [] 

function, we find that f( x, y)= f(x) f (y) , where f, l~J = 1-{x., .... )J 'r 
oP 1 2 

f~.l~.t):: [ .f(x,~.t)J x. , in the case where f and 1z are independe.nt. 
-~ 

The probability that! and ?t ê E, a set in the space of all 

pairs (x,y), is ~fl;)(_,'f)dxd~ • 

6. Frequenc,y functions of 1~ and f(?r • 

We will now find the frequenc,y function of the random 

variable ~~ • It is necessar,y to find the distribution 

function. Let E be the set of (x,y) such that xy~z. Then 

p( 1~<: }J= [f{;,c,tcJJ~J'1 = {jx fl~~=c,Lt)J'i ~ f 0

J'1 [<Df(~/'fJd;,c. 
~ t) • ~ lJf.,. 

The frequenc,y function of "!::- f?t is the derivative of this 

with respect to z. 

In a similar way the frequency function of 11~ may be found, 
oJ) r /'111 ( }Y,"t)J'f 

--a.o 
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It is the similarity of these formulae to the ones given above 

on page 2 that leads to the applications with which this essay 

deals. 

7. Distribution or SM. 
When the frequency tunotion e~ f(x} or f is known, it 

M. may be desir< able to have the frequenoy function of r ' 
where n is an integer. There are four cases, according to 

whether n is an even or odd, positive or negative integer. 

Let fn(x) be the frequenoy funotion of f~. Reoall that 

p( f-' ~) = F (x) c [f(-i:)Jt 
-..o 

1) n po si ti ve, even p ( ~ l"l < ~) = o 
.L J. 

x~~ P( t""'<::x.) = p ( 'f < x.M) = F (x.'""} 

1 

p ( 1"'<: x) : p ( j'- .x:."M ~ - e.P~~ <oP 11) n positive, odd 
.1_, .1) f 1'1 ( x) :: .:. ::L ""' f ( ;;C. ..... - .JI .t: >' ..::. _, 

iii) n negative, even r l 1"'<= o) = () 
.1 .1 .1 

.x. ~ D P ( f "'c:: x) -.:o P ( !~ x:"') " (- P(1<- x."'-)= l- F(:;e."') 

iv) n negative, odd 
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s. Mean Values and Moments 

The mean value or a function g(x), defined over the 

set in consideration, is ~ P(~'J ' } (~} 
,)CEE' 

tor countable sets 
oO 

or J~(xJJ(x:)Jx. for the set or all real numbers. 
-oD 

These are sometimes called the expeàtation of g(x) and are 

written E(g(x)). The nth moment of a set is defined as E(xD). 

We will oaloulate the moments of the product and 

ratio or two independant random variables s and ~ • Let 

these have frequency tunctions r1 (x) and r 2(x), and moments 

y,.,.. and J/l. , respecti v ely. Let~ and f,., be the n th moments or 

f'Jt and f/'>t , respeotively. In order to caloulate 1'1;.. and f,.,. we 

may use the frequency functions round on page 4, or we may 

calculate the nth moment ot xy, x/y using the joint distribution 
ol'c;P 

fl(x)f2(y) • rr~ cff (x <t) At f,(x) j-JCI.} J ~J'1 
-cf) -oD 

<:tl' .:P 

= [ ;>C"ff,(xJJ:<.. • f '1""f"t.('1}d"f :: . #,.. )J~ 
-oP . -o&> 

Thus TÇ..,= f/.-..1'..! • In a similar it .may be shown that f ""=fi,.. .P-~. 

In the next section we shall require that these last equations 

be true tor a oomplex variable s instead of the integer n. 

It is only necessary to restrict the real part or s so that 

the integrale converge. 
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9. The Use of Mellin Transforma 

For the rest of chapter 1 we shall consider positive 

random variables only. The Mellin transform ~~of the 

frequenoy funotion f(x) or thepositive random variable f is 

f ol' S'-1 
-3'" (J"): f{x) :>L J x. = /-'s- t 

• 

The resulta of the last section may be written in terms of 

Mellin transforma. Let t1(x), r 2(x) be the frequency functions 

or f ,?( ; let h1(x), h2(x) be the frequenoy functions or !?cJ 

!l'If.. • Sincef~l7( are positive, so are!"'(., 14. Thus 

h1(x)=O, h2{x):::-O tor x<O. The Mellin transforma or these 

tunctions are !F,(s// f".,,(s) 
1 

J-1, (s) ~ J:l.,. (s') • 

N, {J') ~ 'Tf.r- 1 = X-, ,.v}_, : :J: {sJ 1: C.s-J 

}t{z(S): es-1 ~ Ys-1 "':-.l: !', (.r) 1':.{:J.:.S) 
., 

! .,,)J-t: f, ( t J fa ( t :C 
6 

Here we have used the convolution theorem given on page 2. 

These are special oases of the tormulae round using elementary 

considerations on page 4. The advantage of using Mellin 

transforma is that the products and ratios of any number or 

random variables may be handled with equal ease. The elementary 

method requires the use of multiple integrale. If the positive 

independant random variables f,,J f, .. 1 ?r, .. ~,--~lead to the Mellin 

transforma 1'; {r},~ ~ {t} •.. j',(sl ,,(t)-,/ then the Mellin transtormç for the 

variables f,fr···"'r,'f,··· , f,'f, ·· · are 1", (s) 1;_(t) --· ,,(s),,(s) -· -
' \, 1, ... 

.r, (r) 1: ( ,, -- . ,,(~-s) ,.,. (~-s) -· · • 
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10. An example in the use of Mellin transforma will now 
z. 

be gi ven, using the X dis tri but ion. Let :xi have the frequency 
;,(.& 

function.-'. ~ -r 
' l." 

; then the positive random variable ~ 
JI, f-t .: 'i 

has the frequency function1 f(")= " ( ~J 
,.~ r a -

The integer v is called the number of degrees of freedom. 

We will now find the frequency functions of the product and 

ratio of the inde pendent positive variables ;t',".~ 1(~ ; each 
~ 

one has a X distribution where the number of degrees of 

freedom is v and À, respectively. Thus f1~), f2(x) are given 

by 
JC 1 -~ ?:_, _:!:, 

-'() ;;,c ~- -4t z. f ( ~~ ..e. z. 
.,, ;,(. : v v " x.) = ....:;;;,.~...-----

Si.milarly, 

~ "i" {'( ;;;} ~ ~ P( ~} 

;l,_, f' ( ~ +- ,_ t} 

p( 1-J 

S-t ,t:: 
;2 ()( z. +S-c) 

P( ~) 

According to our theory the Mellin transform of the frequency 
'l 'Z 

function of X. Y z. is -' s- :l v } ( "' ) :1 ('( 'î ~S-t p ~ +S-t 

5; ls) S: (s) = p( ~} P( ~) 

In order to invert this, i.e., to find the frequency function 

itself, we will ma.ke use of a formula.;given by Titchmarsh in eq. 

7.9.12. Throughout this essay we shall have occasion to use 

the large number of pairs of Mellin transforms calculated by 

Titchmarsh. Eq. 7.9.12 is 

.J. • ' • , \."'"" l•J • ~vrrc.( ,) K.,(.x.) ~ ~ -.t. 1-/11 Ux) co~ \4. J"~(,·><] ~ t:Y, (t';,c)j 
2 ~ 

3v C~<-) J 'lv (x} are the Bessel functions of the first and second 

kind, respeotively, of order V. 

( 1) Weatherburn / 74 
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In order to obtain the desired pair of functions, we make use 

of the formulae given on page 2. 

Change s to 2s: 1 

~s +v-• 
:2 f1(S) f'(S.,. v) 

"'+-..,.._, .1. 
Change s to s+~-1: ;~:. -r K., (x"") 1 

,254-À,+V-! 
::2 l'( S+ ~ - 1) P(S+ V+ :}-1) 

Chanoe V to "-" 
0 -r 

Multiply by a constant: 
1- "--+ v ~-1 l :z.s-.2 

.;l A .)' + ~ .,__)\. (:t. -,.)) ;2 f?(S-t-~ -•) f1(Sr~-f} 
P(f)p(~) ~ P(.lfJ17C~) 

Thus the frequency function of 7(,-z..?(,.-z.is 
1-~" ~ 

:1 a :x. "t -c ~ v-?- ( ~ ±-) 
p( ~) p( ~) --; > 

This takes a simple form when v-~is an odd integer, for then 

is a finite sum. In particular, when v.--x: 1 we have 
7\ .!.. 

::J(; 1i" _, "-(!.- "" z 

~ P( ~) 

The frequenoy function of the ratio 7<.~: is the inverse of the 

Mellin transfor.m ( v ) p( À+ s} --r- ( .\ '7"' ( () ~ + ,_, . ~ 1-
-:T. r1 0 .. ;~-s) = 

1 ~ rCfJ P( }) 

PüJ r(Q.-&) )----
{? (Cl) 

We start with eq.7.7.9 in Titchmarsh: \ 
(l+X:)'l. 

We find as in the above case the frequency funotion 
v 

P( ~:"'} X. ;r-I 
]\~V 

P ( ~} P( ~ ) ( 1 -t- >C.) ----:î 
This is oocasionally used in practice and is known as the F 

distribution~ 

1) See Bennet and Franklin, 1954 

Weatherburn j92 
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11. The Distribution of !M. 
If t(x) is the frequenoy tunotion of F and is such 

that t(x) = 0, x< 0 ( f is a positive random variable ) , 

"" then the frequency function of! , as round on page 5, is 
.L_, .L 

-fife(~): 1~ 1 ~"' J(~"') for all integral values ot n. 

If Er~) is the Mellin transtorm of f(x), then the Mellin 

transfor.m of fn(x) is 1"( ntS-1)\.+\) • In particular the 

frequency function of !/1 is ~ ~ f(:l.}, whose Mellin transfor.m 

is 1""(~-s) • 

We will new consider the class of positive rando.m 

variables each of which has the sa.me frequency function as 

its reciprocal. IfVf has the same trequenoy tunction t(x) 

as ~ f , then t(x) satiafies the functional equation 

(1) 

This functional equation is equivalent to the one involving 

the Mellin transforma of these functions, viz., 

(2) 

for ijT(s) converges on the line S-= 1+ c,.. , then so does 4(-,.-.s). 

Every frequency funotion has a Mellin transfor.m convergent 

on this line since .::>D 

ll&C~)C.s-r/d"":: tff(xJll~-1 /dx:a [f(ac.)}xt1"[J;,c:: jf(:r.}dx.= { 
• )b' 0 6 

S-1 
Therefore flx):x. c: L(o,oO) • If f(x) is of boUV,ded variation 

in the neighbourhood ot x the inversion formula holds1 

(1) Titchmarsh§ 1.29 
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J+Ï~ 

f(x) :: z~;.j r(s}:x.-S d S 

,_ .. ti'<' 

We may solve eqn.(l) in two ways, both or whioh give all the 

solutions. 

1) Let t(~} be any runotion suoh that 

3 l ~) ~ ~ 0 ~ :J( s 1 

,. (:Ji.) = 0 x < 0 1 ;,t. > 1 

~1i(x)d~.: {' 

Then a solution or (1) is f (x) : ~ ( ..l(.) - ol' ~ x .S 

for, 

= .!.. q ( 1) x;> ( 
~a (} ;)' 

~ f i ( .;.) : ;, ~ l.' ( x.)~ dl :J();: f{~) 

.1. f( :;; : .ll ~ ( -;J.: t (:)(.) 
~· ;:1. 

(3) 

( 4) 

Clearly J j)c><~d" : f. 3c·.J" .... 0· ' ( i ).L.: • ~· [' c~J.t..c= 
Some examples will now be given. 

f{$.) 

4-(:x.)::.l i~xfl 

"' 0 x..:. -i 1 x ;;>f 

1 

0 L 
z. 
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Any solution or eqn.(l) which is the trequency tunction 

ota positive random variable may be given in the torm (4), 

where the tunction g(x) has the properties (3). Suppose t(x) 

is such a solution. Then define 
~ (x.} = f( ~) - cP <:. ~ * 1 

Then :f(} .l f(')= !-.h.,. (~) x= x~ x -· .,... 
We see that hlx} has the properties ( 3): 

h {:x.} ? D () ~ -" ~ ( 

)cl xl ~ t:J x.:::. t> J x :> ( 

oO 

1 c f .f(.x.)dx. :: 
-J 

[;(;,:)cl~ + J1, #( iJ d~ • ~ .f 1 
h(x)d :t<. 

• 1 

Thus we have the tollowing result: 

Theorem 1 In order that the equation (1) have a solution 

which is a trequency tunotion or a positive random variable 

it is neoessary and suttioient that there be a tunotion g(x) 

such that d {x.) ~ IJ , s X'~ ( 

d(x) = t:J xc::.t>, x>t 

.i'~(.x}Jx., 5 
where the solution is given by f(x} = ~(x) -oP~ .x:5 1 

a ~~ ~( ~) X>( 

The Mellin transform ot f(x) may be expressed in 
ot' 1 

l(S'):: ['(x) ;-:J J( = [~{x.) xs-'Jx. 

:: [fl)(.JxS'''Jx.+ J.ooll'f{x} x..r- 1Jx 
0 1 

terms of that ot g(x). Write 

iel' S'·/ 1 
Then :j(s): o f(:.t.)x. dX 

1 cP ,_,J + f .l._ i.( -};) v~~ Il .., :. t d ( ~) x x. 1 ~- 8 - .... d-
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We have shewn that the existence of~(~ implies that of St~-~. 

Clearly J'(.sj satisfies eqn. { 2) 
J'"'(Dl-.S)::: :/(d--S)+- :J(.r) -= J""{.S) 

The second solution of eqn.(l) will now be given. 

ii) Let h C><-J be any function auch that 
h (x) ?> o 

Jd>c.) = /,. (->'-) 

~ 
[ ft (>C} IÎ:x.. :; f _.,., 

A solution to (1) is given by 
}/e.) ... ft~+e>) 

.J(.x.):: .L~(~x} .><:::::>o 
;x. 

f(:x)-=~ ;)(..0:..11 

tor, 

Clearly, :f- (:x) 71'6 

fJ(;,c") cl~ :: rftx.} d x. .. 
;....,.p A. -r 

( 6) 

Any solution may be put in the form {7), where h(x) 

satiafies (6). Suppose f(x) is a solution. Then define 

1t;,<.)~ ~;x..f(~X.} 

We see that~l~Jhas the properties (6): 

; !)(. -f ( ~>'-) "' e ~ .f-1 ~ x.) = -le (:x.) 

..,,Il f f/'1.)d'1 :.j 

" 
Theorem 2 In order that the equation (1) have a solution 

which is the frequency function ot a positive random variable 

it is necessary and sufficient that there be a function h(x) 

auch that ht~}?ro ( -oD~X~oD 
h(:X.)= la{-:x) 5 

oD f hCx.JJx = 1 
-cP 

where the solution is gi ven by ( 7). 
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The Mellin transform ErC~ of f(x) may be written in 

termB of h(x). 
dl' S-t fol .r- 2 

-j'" ( ~) • j f( x.) ~ J >L " }, ( ./.., :~C.) x J x = 
• 0 

i oP 'f(S-•j !oJ' 'f{t-.f} 
~ J.{ IC} ~ ~ '1 .,_ h ( '1) ~ J '1 

~ . 
The convergence ot these integrals is required on the line 

s~~~~~ • On acoount of (6) h(x)eL(O~), so that convergence 

is assured. Therefore 
res): ).1(1-s)+ H(S-t} (8) 

where J-Us) is the Laplace transtor.m ot h(y). 

Clearly 1'{s) satisfies (2), 
.j(s): H ( 1-s) +- J.J (s-c}: T /7- -$) 

We .may obtain all the solutions to the equation (2). 

It a(s) is an even function ot s, then '(t-s} is a solution. 

However, we oannot inter from this the solution of (1). 

The difficulty is that we do not know what properties ot 1(s) 

are important it t(x) is to be non-negative. The proble.m is 

nowhere broached in the literature and the present author 

cannot make any progress. To determine the class of Mellin 

transforma whose inverses are rrequency tunctions is the 

most important problem in the theory of the application ot 

Mellin transforma to Statistios. 

12. The Multiplication of Rando.m Variables 

We have so far considered two types ot multiplication 

between random variables. The se have bean denoted by ! !., · ·· ~~ 

and f 1'\(. • In one case the multiplication is between independe.nt 

variables, and in the other the variables are dependent, in 

faot, identioal. The difference may be illustrated in the 
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oase ot the Gaussian variable. We shall antioipate the method 

or Chapt er 2 and gi ve the results. Let t, and f~ have the 

frequeney funotion 

Then ~s., the produot ot independant variables, has frequenoy 

funotion 

fT .: 1 1 lt) { • } -
- ,..,., (.lt -

- vn~ 
rt t: ~ J- vf i ~J- <.. :T ~ 1 ~,-J,) 

.;>. ;~, V-7e> t: ~v T7 
1. !, , the produot ot dependent variables, bas the frequenoy 

tunotion 

Let us oonsider the set of positive random variables 

eaoh of whioh has the same frequenoy tunotion as its reciprooal. 

Denote it by R. We sha11 show that R is olosed under both 

types of multiplication. 

where n is a positive or negative integer. 

Proof: Let ( .. fz. lead to the Mellin transfor.ms :f;Csl_.. 3';. ü). 

Then ~1 (s) = g'",(~-s) 
-r z {.s) : :Sz. (:J- s) 

( 9) 

!, 1z 1eads to the Mellin transtorm j Cs):: ~ (s} ; ... (.r) and 

from (9) we see that 
'{s) .. j,(!>}'f2 (s)= 3',(:!-S)f"z.l~-s).; '(;J-S} 

Therefore S, 11 é R • 

We have in f 11. found that f,l'ttleads to the Mellin 

transform 'j(~} ~ ~ (~ s- - + t} • Now, from { 9), 

(1) Watson 1922,} ).61, J 3.7 
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j(s).: ~ ( 111.S-/Jt+c)"" j, { ~-{~S-I'tt-tt)): .J,( ~- n.cs+t) 

: j,( M{~-&}-M+t} :0: '( '--S) 

Therefore !, 1: R • 

13. The Delta Function as a Frequency Function 

Consider the problem of inverting 5rt~=f• The integral 

does not converge. 
èl( 1-S 1-c-ç;'l'" 

f -S J .)(. ;x. 
However x. dS : ~ :: ,_ c _ c:,. and this belongs to 

• (. +- ,;.-4 
t-S 

---'- (~ J.s - •rr'- ), '-:s 
'-~1>'1 

L2 (-ot~, assuming that o ~ 1. Let G(x) , x;> 0 

:: 0, x~ 0 

It is clear that G(x) converges conditionally whenlx/*1. 

When oc::...x <::::.1, we .may close the contour of integration on the 

left and exclude the pole at s = 1; then G(x) = o. When 

1 ~x, we may close the contour on the right, including the 

pole; then G(x)=l. If we could differentiate under the 

' integral sign G (x) would be the desired inverse. However, 

we shall interpret the inverse of ~{sj ... ; as the forma1 

derivative of G(x). Sinoe G(x) is a step function the 

derivative at x.::: 1 does not exist. 
t. 1- c.'oD 1-s 

flx) # ..!l-L ( ~cf S = d(x-t) 
J,e ~lT~ )c.-.:ol' t-S 

.... () .x ~0 

The derivative of a step function is known as a delta 

It has the fol1owing properties: s(x-t}=o ~ :t= 1 
::::..!:>P :le = 1 

.0 J Üx-t} = J 
-c:' 

In ter.ms of Statisiics 6{)<.-i) is the frequenoy function 

function. 

ot a 
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set all of whose members equal one; that 1s, a unit point 

mass distribution at x= 1. 

In general the inverse of arc~= 

be 

S'-1 
a. is taken to 

(11) 

J ()(.-tt) is a unit point .mass distribution at x:. a. The 

derivative of the integral exists at all points except x= a, 

where f(x) is considered to be a formal derivative. 

14. Soma Functional Equations Leading to Frequency Functiona 

The following functional equations are between the 

Mellin transforma of frequency funetions. 

1) 

There are two obvious solutions: j(s)~o 

{(.&} =-t 

Only the latter is a frequency function. 

11) g"(s) ){s) =/ 

( 12) 

f(x}~ o 

-1 {x):: J 1 >'- t} 

(13) 

This states that the product of dispersed d1s»r1butions is 

a point distribution at x ~1. This is impossible. Thus the 

only solution is that f(x), g(x) 
Ç{'(s)= a.s-1 

'{s}=Cl.. 
,_ s 

are point distributions. 
f (.x J = J ( :>l - q_) 

d { :JC./ = J ( ~- ;i-) " 'l' :>o 

iii) If!.: all have the same frequency function f(x), 

can !,'t ·-· f111. ever have the same frequency function as §,1&1.? 

This leads to the equation 

[res}]': ?'" ( 111. :r - rt1. ... 1) (14.) 

We shall find the coefficients in the Taylor series for j'( s) 
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at s = 1. Let 
J' 

t ts) = 2 ,.... .. a....- ( "' - S-1) 
~! 

Differentia te ( 14) 1ndetinite1y and in eaeh case put s = 1, 
oP 

using the tact that 1" (1} " [ f {:x.} J :x ~ 1 
JI 

M r r t s ; 1 ~- 1 ;- ' ( ~; = ~ r 't /"f s- fl1. ... ,) 

~'(1}= [1(,): q, 1 ~ 

{fl'l ,,;[ J't.sJ J'tt- 2 
[ {"'(s)] l. + [ j'(sJ]~-, {"ts) = ~ T''{""'.r-~ .... ~J 

-- l~ - 1) 4:t 1'1- + <l 2 :: IJt. q. a 

~~ 
q~""(s-1)/'H.: 

nt~ 

q z. .: ct.,z 
~.; ~ Cl/. 

Q't(S-t) 
~ :: 

Thus f(x) ... J(t>C-a) • 'l'hus the answer is that the two products 

have different frequenoy functions un1ess a11 have point 

distributions. 



Chapter 2 

Extension ot the Theory and Examples 

lS. The Use ot Mellin Transforma With Frequenoy Funotions 

Detined Over the Entire Real Axis 

Let the random variables ~Jf~ have the frequenoy 

functions t1(x), t2(x) respectively. Let h(x) be the 

.frequency .funotion ot ~' f., • Then, by /6 

h { x.) : 0 ~ 1 J., ( '<} di l ~ ) J '1 
-c-~~ 

(15) 

Let .J., (x.) :; fi/. (x} + f, 'l (x.} where JI/ ( Jt.j ~ {) :>{.4() 

f z. ( .x..) ::. -!;. 1 ( x.} + /;'l(:x..j ~ z. ("') = t> x ::>o 

h ()t.} = Jt, {x}+ hz. (x) f"' ( {:x.)=() x <..() 

fu (.x..}= tJ x>&> 
(16) h, {x): D x ~t> 

h.,.(x..).::() x:>tJ 

Let 1,; (s) be the Mellin transtorm ot f,, {:x.) 

!,z.(s) " f,z. {-x) 

~~ (s} " fl({x.) 

3;,_Cs) " f22 ( - x ) ( 17) 

):.11 (sj " h, (:x.} 

>:~ z. u·; n h2 (-x) 

Then it .follows .from (15) and§2 that 
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).1, ( s) = 3"., (.s) ~ 1 (.s) + J',z (J) ~"1 (s} 

~ ,_ ( S) :: f,, ( $) !22 ( S) f j, 2 ( S) 1;_ r (s) 
C.+- (.oD 

1 ( ) 1 J -.s 1 ~ x. :: ~ ):t (s) x. oS 
l).rr.. ' 

c.-,;oP 

1 eJt-C:-" -s' 
=- ;:;z- Pl -z. (s) (-x.) a~ x' o 

c..- ,;o/) 

The frequency function or~/~1 is given by (19) if we 

change (18) to PL,(J)~ t.,(.r)'{,(~-s)+{"-a.(~) !;,(J.-sj 

)ft.(') = fi, (s) diz (,.-s) + T,r{>) ~~ ( :> -JJ 

16. The Use of Matrices 

( 18) 

(19) 

(20) 

In order to obtain the results tor the product of 

three random variables t~f3 the previous resulta will be 

written in a more tractable form. Let the tollowing 

matrices be detined: 

)./ (s)= J'".(s):. vz s): 
_ ()/.1(s} H~.ls)J - ( ?,,($) !,,(>}) ~{. (!; 1 {s} !;2 (~}) 

J:J-z.(s) ):J,{sJ) 
1 

r,,(s) !f;,(s) j !;_z.(s}j:
2
/sJ 

(21) 

Then it is clear from (18) that 

~(s):: f,(s) ~U) 

where the multiplication is ordinary matrix multiplication. 

For the random variable l, l'fz we make the calcul.ation 

~ {_s) : T, (s) ff:. (:t-s) 

The general rule is now clear. In order to find the frequency 

fonction of the rando.m variable '1t = l ~' ~1 
• •• Yc~( ~., ___ ) 

where l;; has the frequenoy fun.otion f4(x) and fe: has the 

frequency tunotion 'J;{xj, we calculate the matri:x: produet 

~ ( s J = r. ( .r J ~ (J 1 - - · f, ( J-s J f.. ( J - r) - -· · ( 2 2 ) 

and the frequenoy function ot?t 1s h(x) given by (19). 
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The se 2 x 2 .matrices are oomm.utati ve and .may be .m.ul tiplied 

in any order. The proof of (22) is oarried out by the 

repeated use of {18) and (20). 

17. The Matrix for the Delta Function Distrbution 

Let 'f have the frequenoy function f(x) =- J(~t-~. In 

order to calcula te '! (s) we must consider two cases, a.:> 0 

and al.. O. Let f(ll(.J: 5-,{:~t.)+ f,{1 as in (16). 

i) a~O f(x:) '=" /(x-q_} 

Aocording to § 13 

Therefore 

-f-,(:x) = J(x-ct.) 

1-,. (x) : 6 

S-t ,..,. ;r, ( .s) = a. 1 ::Il (.s) = " 

(23) 

In particular, if a= 1, f<s) = ( ~ 1°} , the identity .matrix. 

ii) a-' 0 Jl x.)= [(:>'-et) 

f, (:x-) : (> 

.J..
1
(x): J(x-a) 

According to f 13 ) --r ( ) '- "")s -J ~1 ( s = 0 ' . ;::1 z. .s .: l -

Theretore 1" (s) = (24) 

Considera variable~ with frequency function ~(x). 

matrix fors'>l is (~s-ts~~)(~,(.s} ~ .. tsJ)-=(a,:~:~(s} a:~:'als}) · 
( q; >P) o a. 'z.(s} 'J,(s)/ a 'Js) a J,t,s) 

The 

By the rule in§l ooncerning para.m.eters in Mellin transforma 

we see that the frequency tunction otf'Zf is ± it:iJ. If a< 0 

we may show that the frequency function is -~ jl~. 
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18. The Matrix for the Distribution ot ! ~ 
It the trequency function f(x), off , is not zero 

tor x< 0, as we are assum.ing in this chapt er, the consideration 

of '1/M. leads to two cases, depending on whether n be odd 

or even. Let -.f l~J :: f, { ~J +- f.,(x) 

where 5-,(x}=o x.::.o / .J,. (x}= o x >o 

For r "',~ -let fM {';,<) :: i,.., (:.t} + t111 -a. ( x) 

where f_.., {x)= o x (. t> f,....,. { >c.),. 0 X>o 
1 

Let the mat rix of ! be g-(s):: ( !!; ( <) 
1i_ (S) 

J',(S)) 
f",(S) 

.M r ( s ) ;. ( ~. { s) fr/>\). (s) ) Let the mat rix of ! be 
l"( f~ 1 (S) !f ,...., ( I) 

1) n even 5 "'' ( )l) ..L .l._'.fl .J.J ( § 1) : ~M ~,.. 

'"'' f .... 't l:x.) ::. t> 

;-~ (s) ( T,("<S- ... +•1 • ) 
: (25) 

C> 3', (1'1. S-/'1-~t) 

11) n odd 1 /tt, {x} = ...L x~-/ f ( >' ~) 
( /1) 

!l'tt/ J -· .l. 
f,wz. (x) "' _L. )Co 

114 f ( )C ""~) 
1 /If 1 

;',.,.
1 

( f j :: 3"; ( "1 S- M.+ 1) 
1 

1>..,z. ( S} :. ~ .. (""' S- /Of.+t} 

_ . ( J',{l"'fS-,.,.-1-t) f"~{.ll'fS-M-t-1}) 
f,....{s)-:: d').{nH-tw•l} !"",(I"'S-1'1-t-•) (26) 

In particular the .matrix for '/-r is 

( 
J";(~ -s) !'a.(~-S)) 

!:.,(~):: 
q'-'1.(~-~) 1";(~-S) 

The problem we considered earlier, on page 10, 

may be generalized now to include random variables in 
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general. Th us 5 has the same frequenoy function as 1 lt if -and only if ! (s) = fr.., (s) • This leads to the two equations 

;r, Ls) = ~, t ;1 -s} 

d~ (S) .: 3"""~ ( ;t- S) 

These may be solved by the .methods given in j 11. 

Let the set of rando.m variables each of which has 

the sa.me frequency function as its reciprocal be denoted 

by R1 • Then the closure of R1 may be shewn to hold for 

both types of multiplication (j 12 ) in the case of positive 

and negative random variables. 

Theorem 4 Let {, ~ R,) f '2 é- !e, then t ~~ é-l< and ~~~ 1;'-é R, , 

if n is a positive or negative integer. 

Proof: Let t.< s)" ~ (s) be the matrices for ~u $,. • 

Then 'f (s) ::::- f", (s) ~ (s} is the .matrix for f, 'f'l.. 
1-(s):: f:(s) !.,.ts}: ~ {~-s) f~{.;L-s}:: ~(;z-s) 

Therefore ~. f ~ é je, • 

Let 

n being 
( 

f,, (MS-1"\+t) g:;, (11cS-Mt •)) 

s, 1 {l"t r-,., + 1) 4 .. ( 1'1 s-/"1.-+ 1) 

= ( !,, ['- (")fS-.t'f.tfl)j .;r,, (.2 -(111S""Y'1t••>J 
1,, [ ;1-(IJC;S'-ntt-I)J Til ( ~-(1'1'\S-M+t)] 

: ( r. , l ""- 11<4 s 't- , J r. 1. ( tlt -""" s + , J ) = ~ ( 2 _ s 1 
f,.,_(t~t-M.S-t-1} 1'11 (M.-~S+I) 

Therefore ~,"'é R, , when n is odd. It n is even then the f; '1. 

elements are put equal to zero and the proo:f follows in 

the same way. 
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19. The Moments of the Distribution Over the Whole Axis 

The .moments of the frequenoy runotion r(x} -r>f'" :x. ~oD 
1 

.may be written in ter.ms or the Mellin transforma. Let 

J {x} :: J., { x} + .J ~ (x) as usual; 

is the Mellin transrorm ot 
tt 
tt 

Then p. , the nth moment or t(x) is 

l'"' • L: ~ f(,.JJx • .{x- fi.:.} i" r {i- "J(x.).i>< 

~ g-, (l"'t-+ 1) of- l-l)-(xM.J(-~)d.x 

20. Diagonalization of the Matrices 

(27) 

The .matrix ,.t ~ ( ~ ~} satisfies the equation A~.:. J • 

Thus the normal form is ( 1 0
} • It is round that the 

C> -( 

.matrix giving the implioit ohange or basis vectors is 

( : _') whioh has the inverse ( t -\) . Thus u -~) ( z :) (: ~.) : « u !t ){ ~ ; ) ( ~ _',) 
+ ), { t !~ ) ( ~ o

1 
} ( ~ _', } 

- Q ( l" ~) + Ar( ~ -~J 

'::. (a.. .. k ") 
0 tA ,Jr 

Thus if we multiply the following equation on the left by (! !t.) and on the right by ( : ~.} , two soalar equations 

may be obtained. 

ij, ( ;l- s) :~: ( 2 - s) , - -
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The form after the diagonalization is 

(
J4,[sJ+-')/,_ls) 6 ) {3;,(s)+~1 (sJ 6 ) (~,(11-s}4-~1 .,(;z-s) 6 ) 

o ~.(s}-)l.,{s) = " J;,ü)- r,z.ts) 7l ••• o ,,(~-s)-,,l-/:1-s)j 
whioh gives the two scalar equations 

H, (S) 1- f:l~ (S) ... [ j,,(s)~ J";~ {S)],.. - ·· [,,/if~ 5,.,.{.2-S)).,- .. 

Pl U) -):/., Ls):; { ;T,,(s)- r:.,.Cs)J "- · ·· [ ~,l/)- ,,~.f;;~-sJ].,~ · · · , ~-s 

(28) 

These may be solved for ):l, (s) and Jrf,.{s} • At present no 

meaning is known for )J,(s) :1:: ):l.~(s). 

Since the Mellin transforma considered are always non-

negative, no interpretation can be given the m.atri:x ( ,'-~) 

Since }',., ::j,(/11tt).,.. {-t);lfJ;_(~+-t) we may regard (28) as 

the general form of the result that the moment of the 

product of independant random variables is the produot of 

the mo.ments ( §. 8) 

21. Symmetrical Distributions 

A symmetrioal distribution is one for whioh f(x) 

is even, f(x):: f( -x). In the usual manner we have 

f(x).:: fl {x) + f2(x), where , sinoe f(x) is even, .fl(x) == t2{-x). 

Thus ;;r, ( s) = T,..( S) • The matrix ot the distribution is . 
_ ( 3. (s) 'J\. (s )) a. 
r(s)::. r,.(s) ~(S} which has a dter.minant equal to zero. 

'Z '1. 
/ ~ (s) { ::. ( f'.(s}) - (r.,_(SJ) = D 

This. is clearly a su.ffioient condition that f{x)~ f(-x). 

Theorem 5 The neoessary and sufficient condition that a 

distribution be symmetrio is that the .matrix have zero 

deter.minant. 
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22. Examples 

Some examp1es of the use of the various formu1ae 

will now be given. 

1) The gaussian distribution with mean zero. 

'rp.{5}= ~,{s) 

r~, (s) - ~ 'Tz 'l. {.sJ ~ 
s-3 

n-i ~ ~ <Ss-• P( s) 
- ~ ;:L 

In order to find the frequency function of ~, 'fz we will 

ca1cu1ate )1, {s) 1 Ji -z (ti'} using ( 18) 
s-a s z. }:/., { .s) -:. )::1 z. ( .$) :::. ïT - '. .;2. ( <r, 6""z.) _, [ p ( ~ ) J 

s o:l s oz. Using 7. 9 .11. in Ti tcb.marsh: 1<,. (x.) , .;1 - [ rL ;t)) 

h l '1) ~ 1 
- k 0 ( ~) - o4 ' ~ < oJI> 

" <r ' o-z.. ~, c~ 1 

to find the frequency :function of 'l,! "1-rwe In order 

we have 

)l' ( s) -a Jdl.t s) ~ - (). n)_, ( ~~)s-• P( .!.} f'( ,_ ~) 
,_, 

:: liS"') 1 
o-z; ~ ~ n::s 

~ 

Using 7.7.8. in Titchmarsh: · o!;~· 1 t -\- .x: 
we have h 1 ~ ( l "t J = rr -<Sf , "t- 0:. ô--;;, ) ~ 
which is the Cauchy distrbution. If ()', = <>'1. 

(30) 

use (20} 

(31) 

satisfies the equations ~~l~J~ ~1-k,(~) and lt1.C4)-=- {-1-~1{ i{} 

so that the distribution of ~ is the same as that of ·/~ 

when 6"' \-:. cs-'1. 

It is important to note that none- o:f the moments 

ot the Cauchy distribution exist. Consider the ratio of 
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two Gaussian variables having any mean, and standard 

deviation. We shall prove the following theorem. 

Theorem 6 None of the moments of the ratio of two Gaussian 

variables exist. 1 " z - ~,..x- ""'' ) 
Proof: Let f. have the frequency function f,{x):: <S';.._~ ., ..-,-& 

fi/Z1f 11 )t 
(?'- p, 

Let f"' " 
Let J, (x)= f,,(~)+- f,z.(x) J 5-,.(:t:.)-: i;,{:t) +- izzfx) in the usual way. 

Let h(x) be the frequency function of ~lfz The nth moment 

f~ ot h(x) is from (27), (20) 

f111 = }oi.,(M+t) +- (-1)"'t>t~(A1-rt) 

= r .. t M+f) q;, (1-.1'11.} -i- ~z. r/Oi+') a;z. (!-/J.f.) 

+ l-t),44. T,, 1 /Ji·h) ;;.l (t--"1) + (-t)-""« 3; -z.( /J1.1-L) 1;, {t-~ 

Consider 

This do es not converge at x : 0 tor any integral n >0. In tact 

none of the Mellin transforma or argument 1-n converge. 

Thus f~~~t does not exist for any n >o. 
When there is a measure or dependence between the 

Gaussian variables the ratio still has no moments, as was 

shewn byE. C. Fieller1 , who actually round the frequency 

function of the ratio- a very complicated expression. The 

diffioulty lies in the assumption or a non-zero probability 

of a Gaussian variable no matter how large the mean. This 

is physically untrue, and Fieller considers the so-called 

(1) Fieller, Biometrika, ~ 
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curtailed distribution which has a rrequency runction equal 

to zero beyond a certain interval eontaining the mean. As 

this interval is inereased the moments or the ratio tend 

to practical values, but if the interval is infinite so are 

the moments. 

Example 11) The Resolution Of the Gaussian variable into 

the produot or two independant variables may be oarried out 

using the duplication theorem tor the Gamma runction. The 

distributions are assumed to be symmetrio. Let h(x) be 

resolved into r 1 (x) and t 2(x), with the same notation as 

already used tor the Mellin transtorms. 
J-l,(s)= ~T.,(sJr.,_,(s} 

)J., f_s) = .:t J',, (s} r; J. (sj 

The produot distribution is Gaussian so that 
.,L S-:J S'-t S' 

)::1, (S) :: rr-., :2--::& o-' l' ( ~) 
,._, s .. $-1 s "' 
~ - ( ... } - - s 1- ~; = A ~--;:- .:z."'" l' 4f- x r cs- .a ~.... p( ~ • 

J-/(1): ;.t,(1) + )el~-{1)= 1 Thus tor a symmetric distribution 

:H,(t}: }t:l.,.(t}= } , ,4 8 ~ TT~ 1 ;l_s;~ 
S-1 1. 

3'";, ($): ,f {:! r) ~ l'{.,_) 
_s-1 

Ji, ( s-) = B { :z cr ) -;a P( s ; ) 

But 1;; (,):: 1';,(t) = f th us 

It is seen that a distribution with two peaks may give 

rise to a distribution with only one peak. 
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The tunctions h(x), r 1(x), t2(x) are sketched below tor the 

case o-= 1. 

Example iii) The Cauchy distribution is 

..1./:t} - _L 1 
o- - " . 1 + ->'-z s G<- '»1. ~ 

A variable f having this distribution bas theAdistribution 

as Y~ . Let g( x) be frequency funotion of the product f,! '& 

ot 1ndependent Cauchy variables. g(x) is also the trequenoy 

tunction ot sr/[~ • Using the result or f 6 we have 

r+-xl. 

J.. 
lTZ. 

None or the moments or this distr1butioa exist. The Mellin 

transform matrix is 

2 1 

~ s..- lr s ~ ~Jt. ~ ;2 ~&Jr ~ ~ .. :~ ~s - ;~S 

f (s} = 
;. ,. -

~~It 5 ~ JA-1t:s: .2 Si-& JJ:. s ~ lM... a. It:s 
;1. , .:J ~ 
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The function g(x) is drawn below. 

-2. -1 

It is easier to evaluate the integral for g(x) directly 
fJI.Dvd 

than to use the Mellin inversion formula. We have: the 

inversion of ~~ (s) to be 

_ 1 

TT 
'&. 

Example iv) Student•s Distribution 

Consider the variable t :: ...u JV 
V' 

, where u is 

distributed normally with mean zero and standard deviation 

one, and v2 bas a ;x~ distribution wi th v degrees of 

freedom. The random variable t has what is known as a 

Student•s distribution. We shall find the frequency function 

of t using the method of Mellin transforma. The frequency 

funotion of fv,.u is 1. 
.,)C. --J (x} = 1 - -e .l ,. 

' f.:z rrv 

The corresponding matrix elements are ( see (29)} 
.J. J'-1 s~~ 

T,. {.S) :: 3";',_ (S) : TT-.,. t" T ;17:"' p( 1) 
The frequenoy function of v2 is 
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The trequency function of v is, according to § 7, J~ (x)= 2 ~ fl~'&) 

The Mellin · transtorm of f(x), x~ 0, is ~S-I t'{~+ S-t) 

Thererore the .matrix elements of v are 
p( ~} 

s-! P( .1!. ~ .!=..!-) tl""() "'.a :a. ... :;,1 1 s : 
re~ J 

The .matrix elements of t are, according to (20) 

>1 1 (s) = ~ , (s) .: 
TT - i v .!r ~ -l p( ! ) P( ~ +-

1
;) 

The inverse Mellin transform .may be found using the pair 

7.7.9 in Titchmarsh: 1 ~ , 
(_ \+.x} 

rL.s) p(a.-s} 
(>(A) 

, whenoe 

the frequency runotion of t is 

J1( ~) IT" 1 
Lt (:x.) : , ( ~) J Tl (-,-+---~-~-) 1 :.,. 

This exemplifies the faot that the ratio or product or 

a sym.metrioal and a positive variable is sym.metrioally 

distributed. 

()2) 

Exa.mple v) There are two distributions which are not so 

well known, but which are related in an interesting way 
1. with the X distribution. 

1 Beta Distribution 
p( ~:~} -=::_, '; -1 

J {.x.} .a - X. ' ( 1-:x..) ~>.:... ;;,c<. ( 

PL ':) fJ( "':,) ( 33) 
':. () :JL-'.D"-.;)l.>( 

This is given by the 

f>( ~ + s-1) 
re.~} 

equations following 7.8.6 in 

(34) 

Titchmarsh. The Beta distribution is trequently used in 

(1) See Weatherburn Chapter VIII 
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Biologioal Statistios. 

"Bessel" function distribution 

Let 

where 

The Mellin transform of f(x) may be obtained from the pair 

7.10.7 in Titchmarsh -~ 
-e. I,{x.) 

f?(S+-v) l'( f.-s) 

;~.-' 11 '/"" f1( ~~ v- .t) 

/~ }S-t P( v- P) 
';(S) = ~ P( Ir V- ,u-s) 

f'lS f-,)/+V) 

l'( 1+ v~ ,u) 

!'{ t -#-.r) 
P(- .J. -..#) 

l. 

(36) 

A distribution very similar to f(x), viz., the case 

)'-=-v has been 

factor -ë"l-lr is 

1 considered by A. T. MoKay • In that case the 
-~~ 

replaced by ~ , <:. -:>f • The Mellin 

transform is much more complcated~ and the case will not 

be considered here. 

Now consider the ratio of a 7( variable to a Bata 

variable: 
;;t1. 

,.. ~ __ , - ::l 
x..~ ..e, · f, {x/:: ---
;~V:t f"'( ~) 

~ degrees of freedom 

'r,(s) = 

.:. 

J.S-I f'l ~+S-/) 
fi( ~) 

r( ~:AA. ) P< T ~ s- 'J 
p( ~::-- +S-1) p( '7-J -

'r,Ls) ~ ( ,.-s] = 
~s-1 p( ~ +-~- 1) f?( ~ -r r- s) f'( ~) 

p( ;:-) P( ~) N M+~ • ,_ s) 

In the special case where M = ?\.-~< """" this is the Mellin 

transform of the "Bessel" distribution with parameters 
1 

1 ,P :: --~ / v: 

(1) A. T. McKay 1932, p. 39 
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Example vi) Orthonormal Series1 

In certain cases it is possible to expand in a 

convergent or asymptotic series the given trequency tunction. 

It is usual to use the orthonormal Hermite or Laguerre 
~z 

polynomiale which have the weighting factors ~-tr and 
-x 

~ respectively. The Gram-Charlier series uses the 

Hermite polynomiale and this is the series which is used 

when the random variable takes both positive and negative 

values. However, in our present work where the trequency 

runction is decomposed into the tunctions rl(x) and r2(x), 

it is permissible to use the Laguerre polynomiale, which 

lead to somewhat simpler resulta. 

The Laguerre polynomial2 is defined as tollows: 
( ) x -ol L: {x} ::: 4 :x. f .J ) l't ( -e -~x,.....~«) 01 >- 1 

M} l_J;;oe. 

The orthogonality relation is 
rLCJIO...e-~xo< L~1 {x) L'::.itx) d)(. = I'{.M~«."'-t) ,!,...,~ 
J~. 1?(-"'ltlj 

where J/k ~ -= r _, -::""""' 
= 0 11-t :f" /k.( 

A function f(x} may be expanded in a series of the tollowing 
ç-01" LoLJ - :J( 0( form f(~):c::...)> a""L-- {x)~ x. (37} 

where 

If the series (37} is uniformly convergent tor 

X? 0 the Mellin transform g'ts) may be round by term-by-term 

integration. 

(1) See M. G. Kendall p. 147 

(2) See G. Szego /5.1 
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-"" ""+-~ Let d {:x)= ~ ~ 
(/l'f.} th ·3 c~; be the n derivative of g(x) and 

'-(s} the Mellin transfor.m of g(x). We require the Mellin 
_.1,. {M}() .l/ (.A.)"'(.(·~:I(v""-"fooot) 

transfor.m of "'·, d " .:: - - / 1 • • /11 • J..,t (38) 

Consider {';{~01)/x) J(,r~t J ;x:. • We may integra te by parts un til 

g(x) appears under the integral sign. The behaviour of (38) 

as x~ 0 and x~~ insures that the integrated parts vanish. 

The Mellin transform of (38) is 
(-1}1"1 {S-<)(S-~). - . (_S~-"'t)P{S-4--rK) 

r>( ~+\) 
Thus 

oP { ~ -"1 q/1( ts-1)--- ts--J 2 ( 39) f. J {:;t.}Jtf-j Jx " ~{ S): f'(S-J.ol) q. +-M~I (-t) ~ J s 
The Nth .moment is given by 

PA/= !f'(#-1-(}.:: P{A/1-cl+l){qo+C:.t-IJ~,...,-v(N'-l) , . . (A/-/Ht-1) J (40) 
hl 1 1"'11/ 

With these for.mulae, we are in a position to find the 

Mellin transfor.m 1'(s) when we know only j'(N+t); i.e., to 

interpolate between the .moments. Even if not all the 

moments exist we may still approximate to the Mellin 

transform. Eq.(40) may be solved for ~: 
"""' ~ •) - ~ (- 1) ~-t. /"'t ( ...... - l) --- ("""' -/l..+l{ a. ;tot ~ z_ ' ___ -=-, _ _:_ _ _:___...:...----

..t,. • f' (ci ~ /t + 1) A ! 
We may then fi nd f{ s) in term.s of f'" {..v.;. l) 
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