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M.Se. MATHEMATICS
Raymond P. Mercier
THE APPLICATION OF MELLIN TRANSFORMS TO STATISTICS

The product of independent random variables is
studied through products of Mellin transforms. Although
the frequency function for the product had often been
calculated, the use of Mellin transforms was first
introduced by Epstein.

In the present essay the theory of this
application is developed and many examples are dlscussed.
The theory, originally developed for positive random
variables only, is made to ineclude any real variable.
This is done by replacing the product of Mellin transforms
by the product of certain 2x2 matrices whose elements
are Mellin transforms.

Some functional equations between frequenocy
functions and between Mellin transforms are solved,
sometimes using arguments drawn from Statisties.

The problem of interpolating hetween the moments
to find the Mellin transform is solved, in the case

where all the moments exist.
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Introduction

The use of Mellin transforms in the field df Statistics
as given in this essay, parallels somewhat the use of Fourier
transforms in this field. In the latter case the addition of
random variables is studied in terms of the corresponding
characteristic functions which are the Fourier transforms
of the frequency functions. The characteristic funotion of
a sum of independent random variables is the product of the
characteristic functions of the random variables making up
the sum.

The product 6f independent random variables is
studied in a similar way through products of Mellin transforms.
Although the frequency function for the product had often
been caloculated ( e.g., in Student's "t" distribution) the
use of Mellin transforms was first introduced by Epsteinl.

In the present essay the theory of this application
is developed and many examples are discussed. The theory,
originally developed for positive random variables only,
is made to inoclude any real variable. This is done by
replacing the product of Mellin transforms by the product
of certain 2¥2 matrices whose elements are Mellin transforms.

Some functional equations betweén frequency functions

and between Mellin transforms are solved, sometimes using

(1) Bpstein, 1948. See Bibliography on p.35
i
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arguments drawn from Statistics. The random variable 3’“ is
discussed, and the closure of a certain set of random
variables is shown to hold under the operations f,"_', z%,
where § and §, are in the set. The examples given ind 22
show the results of multiplying random variables from

well known distributions.

The Mellin transform of a frequency function is a
moment of arbitrary complex order. The problem of inter-
polating between the moments to find the Mellin transform
1s solved, in the case where all the moments exist, in

example vi of §22,




Chapter 1

Positive Random Variables

In order to discuss the relation betwseen the theory
of Mellin transforms and Mathematical Statistiecs, it will
be necessary to give a brief discusdsibon of these subjects.
The proofs of the properties of the Mellin transform are to
be found in Titchmarsh's work (l). In that text the properties
are derived from those of the Fourier transform, for the
Mellin and Fourier integrals differ essentially by a change
of variable and a different line of integration. The
discussion of Probability and Statistics is more self-
contained since proofs may be indicated without difficulty.

l, The Mellin transform and its properties

All the integrals that will be used are lLebesgue
integrals, and a knowledge of the classes L( Ll), L2, ete.,
is assumed. Consider a funetion of the real variable x, f(x)
which is such that f(x)xk'le?L(Ogﬂ), for some real k. Then
the Mellin transform F(s) of f(x) is defined as follows

o0 =1
F(s) - [ F(x) < dx R(s), the real part of s,=k
A ,
It is shown by Titchmarsh§ 1.29 that the following inversion
k 4 0@
formula holds f(x) . E-r:’—l /‘ Fis) x Sds
K-ved

An example is provided by f(x)=ze~X, F(s)=M(s). In
this case k> 0. For purposes of calculation parameters may

(1) Titchmarsh, 1948




be introduced into known pairs of Mellin transforms in order
to extend their range. The only three formulae which seem to

be needed in practice are, 9‘(8) being the Mellin transform
of f(x), 1) F(x) = T (s =/

1) F(5) 2% F

111) *NFlx) FEN)

The operations of inserting these parameters are not com-

mutatkve and must be done in the order given. The result of
axrts Ju-.s'
the three is > FL(E)] F(ZF)

Lot

The numbers «{,a , A\ are not specified and the only require-
ment is that “f[( %)d]xke-l‘.(O,o") for some real k.

The integral of the product of two functions may be
expressed as an integral of the product of their Mellin
transforms. The result may be deduced from the ecorresponding
theorem for Fourier transforms and i1s as follows:

2., Convolution Theorem If xkg(x) and xkf(x)eL(O,oD)
and 1f A(x): ﬁ(«)g(%} "‘713 then xh(x)<L(04°) and the Mellin
transform of oh(x) HNi6)is equal to F(9 T(‘/
o [T lse (0300 %

Using formula 1) a‘tzove this may be written
* (0P

;lrr T(‘) J(-s) < s - [’;3‘('1/ 9 (x4)dq
The proof is given by Titchmarsh in$ 2.7.

3. Random Variables and Distribution Functions

The notion of probability must be introduced in terms
of a finite set. If f is a variable which may equal any
member of the set, and x is a given element, then the

probability that € takes the value x is defined to be the




number of times x appears in the set, divided by the total
number of elements in the set. The variable § is called a
random variable. The sets we shall deal with are sets of
real numbers., If the set is countable, but infinite, or
uncountable, another measure of the number of elements in
the set must be lntroduced and in the case of the real
numbers this is always taken to be the Lebesgue measure of
the set.

The distribution function F(x) is the probability
that-—»¢f<x where § is a random variable defined over the
set. Since the measure of a point is zero some other means
must be used to indicate the incidence of a single element.
This is similar to the problem of a continuous distribution
of mass in a solid, and in this case also the notion of
density is introduced, The probability that € lies between
X, x+§x, viz., F(xséx)=-F(x), is divided by dx. The 1limit as
§x>0 1is called the frequency function of the set and is
denoted by f(x). Thus f£(x)=F'(x). The probability that §
lies between a and b is f%(ﬁd‘x .

&
e The Fundamental Laws

The following are the fundamental laws of probability:
i) If P(A), P(B) are the probabilities of elements
A, B respectively, then P(A or B)=P(A)+ P(B), if A and B
are mutually exclusive.
ii) P(A and B)=P(A)P(B) if P(A) does not depend on
B, and P(B) does not depend on A.




4

Clearly, the probability of an unspecified element
is 1. In the case of the real numbers
o0
P( any element ) = f:HxHu = |
~o0
Since f(x)Z 0, F(x) is monotone increasing.

5. Bivariate Distributions

It is possible to consider morethan one random
variable, e.g., the pair €, 7% . The distribution function
F(x,y) is defined as the probability that-o <« $<x and
—o# <% <y , The frequency function is defined as f(x,y)
f(x,y) = ?_3%__(""'} Extending ii) above to this joint freguency
function, we gind that f(x,y)= f,(x)£(y), where ;ﬁ,(x)sg(x,H/Jf,

fulu) - [a‘(x,««)lx , in the case where ¥ and » are independent.
The probability that §and % € E, a set in the space of all
pairs (x,y), is L:Hx,w)dxdc, .
6. TFrequency functions of £4 and §/5 .

We will now find the frequency function of the random
variable $% . It is necessary to find the distribution

function. Let E be the set of (x,y) such that xy<z. Then

P(§%<3)- LJ’("/«)Jqu : f* [034‘}4,&)4« + L‘l‘t é/.‘f'("/‘l}Jx
"

The frequency function of $7§7% is the derivative of this

with respect to z. j- dy & H 2,4) + qu( -L);[r(__,w}

[ o $( 3 = q)dy

In a similar way the frequency funetion of f/o( may be found,

[wlt«l F(34,4)dy




It is the similarity of these formulae to the ones given above
on page 2 that leads to the applications with which this essay
deals.

M
7. Distribution of £

When the frequency function ef# f(x) of § is known, it
may be desir-able to have the frequency function of §m',
where n 1s an integer. There are four cases, according to
whether n is an even or odd, positive or negative integer.

Let fp(x) be the frequency function of ?m. Recall that
P($<x)= F(x)- [;(e)Jt

1) n positive, even P ( §“< 0) o
1
xze P(FT<x) P(§<x;”-‘)= F(x™)
fu(x) = 6 x<o

S g
f.0x) = L xT fl=™) xp,

ii) n positive, odd P($"<x) = P(S5< x,"m)) —ef L X <op
. i
fulx)e A =™ f(=27) o<
1ii) n negative, even P($"<co)=0
4 L 1
x 3o P($"<x) = P($2x™ s 1-P($<x = (-F(=Y
f(x_): o X < 0
Lo 4
fux) = =L ox (=™ x3,

m pmxwz o~ fo(x)so0 <o
i ful) s 2y 2™ ) X

iv) n negative, odd P( §™« x) = P( £> xi“) —el s X & oD
= = p(fo*‘)=(— F( x.'&*/
1
-S-M(x).-: —i—)(‘ “f(x-k‘)
1 {
P‘W it 9T O B (:c"‘) —al L x LoD
~ W,oﬂ ‘f“bc) Imi x"
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8. Mean Values and Moments

The mean value of a function g(x), defined over the
set in consideration, is Zs PCse) 3 (%)
e for countable sets
or J[;nyf(xJJx for the set of all real numbers.
These are-:;metimes called the expedtation of g(x) and are

th moment of a set is defined as E(xn).

written E(g(x)). The n
We will caloulate the moments of the product and

ratio of two independant random variables § and % . Let

these have frequency functions fl(x) and fz(x), and moments

th moments of

#~m and 4. , respectively. Let . and £~ be the n
fx and §4 , respectively. In order to calculate 7, and fa we
may use the frequency functions found on page 4, Or we may

caleculate the n®P moment of xy, x/y using the joint distribution
of P
fi(x)faly)e ://(Kﬁ}mf'(x) F(4) & =dq
—&-op

< =
: j»c”‘f,(x)u .fe“f,(«)dq Y,
L o ‘ oo

Thus T,: /4 . In & similar it may be shown that £, X X, .

In the next section we shall require that these last equations
be true for a complex variable s instead of the integer n.

It is only necessary to restrict the real part of s so that

the integrals converge.
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9, The Use of Mellin Transforms

For the rest of chapter 1 we shall consider positive
rrandom variables only. The Mellin transform Fl9 of the

frequency function f(x) of thepositive random variable § is
of )
.3‘(:): [f(x).)(. dx = Mooy

The results of the last section may be written in terms of
Mellin transforms.-Let f3(x), fo(x) be the frequency functions
of §,% ; let hy(x), hp(x) be the frequency functions of £,
§/% . Since§ % are positive, so are 7 f/;, . Thus
hl(x)=0; ho(x)=0 for x<0. The Mellin transforms of these
functions are F(s/, F. (5 , MN,(5) , H.(s) .

Nos)s me, = Moy Mooy = T0() T, 05

N, (S)z Cs-t = Mo, Mg = F,(0) Fi(2-5)

Kt Cor _ o° 0 J-&
f.(%)- ﬁ'_zfms)ms)x’ls s [f,(t) h(E)E

K-¢ o0

+ E°

k
ho () = 5';:“-"/37(5)3:(:-:);545- ff F,(6) F(x€)dT

k-¢o#
Here we have used the convolution theorem given on page 2.
These are speclial cases of the formulae found using elementary
considerations on page 4. The advantage of using Mellin
transforms is that the products and ratios of any number of
random variables may be handled with equal ease. The elementary
method requires the use of multiple integrals. If the positive
independent random variables § §,-,%,%,--lead to the Mellin
transforms J; (s, 7, (s)... §,(s) 4,(s)-», then the Mellin transformsfor the

variables £& % 4, , S .-~  are F. ) F05) - §,(509,(s) - -
',‘11! o

amd T F G- F(a-58, (35 - -




10. An example in the use of Mellin transforms will now

be given, using the deistribution. Let xy have the frequency
»z

functionr;_"-' e * s+ then the positive random variable

£t o

x; 't

az rl3)

The integer VvV is called the number of degrees of freedom.

(1} 3

X s/ = has the frequency functionl £(%)=

We will now find the frequency functions of the product and
ratio of the independent positive variables X, ¥: ; each
one has a')(‘distribution where the number of degrees of

freedom is v and A , respectively. Thus fjk), fo(x) are given

y ot o % A, -= Y
by £(x): X : £ (x) x> _€ Jxize

2% pCE) ’ 22 pc2) hlde
We may calculate F¢Jdirectly:

K45 P° Yogd == s~

G s ! X
. S - A () @ td(F) . 2 rCars)
Fits) = [&‘ Gl 2% F oD f.(‘) rC )

N )
Y
PC2)

According to our theory the Mellin transform of the frequency

Similarly, &, (s)- 2

function of X.°Y: is 2s8-2 v . _ A e
2 2 pPl= *+s t)[?(-a-+5 )

4 =
H9F0) PCE) P(2)

In order to invert this, i.e., to find the frequency function
itself, we will make use of a formula:.given by Titchmarsh in eq.
7.9.12. Throughout this essay we shall have occasion to use

the large number of pairs of Mellin transforms calculated by

Titchmarsh. Eq., 7.9.12 is

x "Ry, (%) seia P(LEs) p(Ls+r ) R(SI>anay(o,-av)
N *V “: + ‘.:'V"'L' .
whene  Kolx) = B8 T (00 = L GTT(T (0w ) (0]

J,(x) , VY,(x) are the Bessel functions of the first and second
kind, respectively, of order V.

(1) Weatherburn § 74




In order to obtain the desired pair of functions, we make use

of the formulae given on page 2.

4 4 as +v-i
Change 8 to 2s: x?® k,,(x") , 2 n(s) °(s+v)
, (,+'7~ ) Y 2SEN+V-3 A N
Change s to s+2-1: x® k. (x?) , 2 P(s+ 2 ~1)p(s+v+R—y)
V"% %.'.y
— as+2 0 3
- +
Change v to =2 : x N (x,t/ a2 Tp(s+ 2oy p(sr K-)
| - 2;*_! 2 1 25-2
Multiply by a constant: & & > % KV—m(""}) 2  p(s+do)p(sri-y
v A) —Z
PCx) P( 5 > PCE) (D)

2
Thus the frequency function of XX, is

.S A V+7~‘ "
2 <

2 X k V-)—(.x L)
Pl E) PL2) s

This takes a simple form when v~N is an odd integer, for then

K. 1s a finite sum. In particular, when v~ Wwe have

A o<
<2l %

e ——————————————

2 (=)
2 .
The frequency function of the ratio 7(/1 is the inverse of the

Mellin transform - )\
p( E+5-) (5 +1- s)
F () F; (2-5)= E) [7( x)

We start with eq.7.7.9 in Titehmarsh: —— )Mf)
Q+x)® P(a)

We find as in the above case the frequency function
A-H/] x%"'

P(f}ﬂ(%)(t+ ) B
This is occasionally used in practice and is known as the F

distributiont

1) See Bennet and Franklin, 1954
Weatherburn f92
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11, The Distribution of fm

If £(x) is the frequency function of £ and is such
that £(x)=0,%< 0 ( § is a positive random variable ),
then the frequency function of fm, as found on page 5, is

J. 4
£ (%) m x™ F(x™) for all integral values of n.

It ?(‘) is the Mellin transform of f(x), then the Mellin
transform of fn(x) is ?(MS-M‘”) « In particular the
frequency function of /¥ is L, (), whose Mellin transform
is F(a-s) .

We will now consider the c¢lass of positive random
variables each of which has the same frequency function as
its reeiprocal. Ifyf has the same frequency function f(x)
as ' ¢, then £(x) satiafies the functional equation

F(=)= & $(2) (1)
This functional equation is equivalent to the one involving
the Mellin transforms of these functions, viz.,

F(s)= F(a-3) (2)
for #7(s) converges on the line s= /+i7 , then so does F(?-3),
Every frequency function has a Mellin transform convergent

on this line since

ffl’ﬂx)ac"'fd’x - ﬁ:‘(x)llxs"'um [f(*)IxWHX-'[ﬂx)Jm(

-1
Therefore f(x)x €L(9%°) | If £(x) is of bougded variation

in the neighbourhood of x the inversion formula holdsl

(1) Titchmarsh § 1.29




1+ (0P
7(( ):27;'—- F(s)x ds
1- (@O

We may solve equn.(l) in two ways, both of which give all the
solutions.
1) Let ?(x-} be any function such that
4 (x) 20 o< x5

g (x)=e X<o , x>/ (3)
j;“}(x)Jau 3
Then a solution of (1) is f(x).- 3("‘) ~oP < X< | (4)
o) X
for, X< ;‘1, (%) - ;‘, xt9(x): 9lx)= £(x)
R R T L A

!
Clearly fHx)z0 | r‘-’{'(x)c‘x-' fé(x)clx--\‘ﬁ.')(i)ix=—;+{3(=¢)¢Lx_= |
- ol Y o

Some examples will now be given.

3(:():_-"_342 65< |
3 £
K
20 Xco, x| :H)
3
a
° ' x 2
g (=1 T<xg|
=0 xel x| :f(x/
2
!
6 L v *
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Any solution of eqn.(1l) which is the frequency function
of a positive random variable may be given in the form (4),
where the function g(x) has the properties (3). Suppose f(x)

is such a solution. Then define
hix) = (=) =—oF<xg

= O x>/
Then  */ fl)e L () = Lh(E)
We see that /(x) has the properties (3):
hix) 20 o¢xg<|
hix) = 6 x<o, x>/

ol ] )
/< f:f(x)cl:c = [{_l(x)clx +/‘:‘j, _}l(i)dx . :If‘ hix)d x
—r ¢ |

Thus we have the following result:

Theorem 1 In order that the equation (1) have a solution

which is a frequency function of a positive random variable
it 1s necessary and sufficient that there be a function g(x)

such that g(x) 2 s 6S X< |
a(x)_—o Xco, X3¢

! 1
L%(.x)c‘x= 2

where the solution is given by Flx)= g(x) -2 < x5
= xL‘ 3( ",'2) x>/

The Mellin transform of f(x) may be expressed in
&~ s / -1
terms of that of a(x). Write  J(s)= [g(x)’ dx= [ 9(x)x" dx
F . C)
Then Tls)e [ el dx < ):;L(x)x'me-b §7%50x) "

S~ * 8~
[0 he o [TH B

n

- Ycs)+ f;‘;(x) xz-s‘-/Jx = j(-")"l"g(a"-"j (5)
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We have shewn that the existence of ¥(¢) implies that of § (2-/.

Clearly F(Jsatisries eqn.(2)
F(a-8) = Y(a-s)+ Y(s) = F(5)
The second solution of eqn.(1l) will now be given.

ii) Let A4(>) be any function such that

hix) 2o } o <X Loe
h(:L}: h(—")

o0 (6)
f hix) do =/
Low

A solution to (1) is given by  F(x): L h(tux) x=s }
(7)

J_/a)s flo+o) fix)=o0 X4
for, o_«,:-?' f(sle = Lz x li(-'LK i) = iz‘:(--enx) = ;E h('tnx)= f(>c)

13

Clearly, F(x) 2s
o
fo\;‘(x)c!x = /‘?lx}o(x - [ ;‘;_ h(Anx) dx = [j(q)‘(q =/
2 o 2

Any solution may be put in the form (7), where k(x)
satiafies (6). Suppose f(x) 1s a solution. Then define
’é(x)= e f(e™
We see thatf(x) has the properties (6):

4(x) =0 el £ Lo®
hl-x)« e “F(e™) = Zu f(E) = e He™): 4ix)
P 7 P
[k(x)a(oc = fex;(v[ex)cl;x = f j—/q/Jq oy
F — (3

Theorem 2 In order that the equation (1) have a solution
which is the frequency function of a positive random variable

it is necessary and sufficient that there be a funotion h(x)

such that hise)>o } -0 & X oo
h(3<)= h(~x)

f:mux -

where the solution is given by (7).
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The Mellin transform (%) of f(x) may be written in

terms of h(x). .
< s~ ot S-2 afs-)
5"(5}:[.’)‘(:4)9( dx [/I(th}x d s = _/J("/" 4

of o’
- [-J'
= /A(«)-cqu Uy + //v(«) < }Jq
> 3

The convergence of these integrals is required on the line
S=1+¢T ., On account of (6) h(x)e L(0p°), so that convergence
is assured. Therefore
F(s5): H(1-s)+ H($-() (8)

where H(s/ is the Laplace transform of h(y).

Clearly F(5) satisries (2),
I(s)= Hi-s) + H(s-Y = T (2-5)

We may obtain all the solutions to the equation (2).
If §(5) is an even function of s, then 9(¢/-5/is a solution.
However, we cannot infer from this the solution of (1).
The difficulty is that we do not know what properties of (s
are important if f(x) is to be non-negative. The problem is
nowhere broached in the literature and the present author
cannot make any progress. To determine the class of Mellin
transforms whose inverses are frequency functions is the
most important problem in the theory of the application of
Mellin transforms to Statistiocs.

12, The Multiplication of Random Variables

We have so far considered two types of multiplication
between random variables. These have bemn denoted by & & -- $ne
and $7°, In one case the multiplication is between independent
variables, and in the other the variables are dependent, in

fact, identical. The difference may be illustrated in the
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case of the Gaussian variable, We shall anticipate the method
of Chapter 2 and give the results. Let £, and § have the

2
o6
Flx) = = @ T o scon

e

frequeney funection

Then §, fz, the product of independent variables, has frequency

function
}(x)z—. —TJ_; Ko (3¢) < ovc scsa0
R0 ling - £ (o)
. t), . ’ N - (LX) -« ¢ ¢ ¢
wherel Ko(x): I ph'loy= ML fon SiTo St

5,2 , the product of dependent variables, has the freqguency

4
a

function his) = |, x>p

ltamrx) 2

* 0 X <0

Let us consider the set of positive random varlables
each of which has the same frequency function as its reciprocal.
Denote it by R. We shall show that R 1s c¢losed under both
types of multiplication.

Theorem 3 If % ¢R, §, €& then £ §,¢€R and £ §™<cr ,
where n is a positive or negative integer.

Proof: Let £, %, lead to the Mellin transforms J,(s), 3¢,
FTi(2a-s)

¥, (2-5)

"

Then £, (s)
2 (s)

(9)

(]

§ %, leads to the Mellin transform J(s)- J,(s) F.(s) and
from (9) we see that
S(s) = §(s)T, (s5): FTi(2-5)Tla-5) = J(a-s)
Therefore § %, €R,
We have in § 11. found that 5 leads to the Mellin
trensform §(s)< T, (ms-~+¢) . Now, from (9),

(1) Watson 1922, §3.61, §3.7
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1]

ﬁ(S) .‘77(&8-m+()= T la-(ms=-m+1)) = ’;-’(M‘MS'F(/

g','(m(a-:}—m-i-{) = j[ 2.-—$/

"

Therefore § ¢ R ,

13. The Delta Function as a Frequency Function

Consider the problem of inverting Fs)z/. The integral

C+ Lo
-5
f" d s does not converge.
c_‘.')‘ D( -5 -~
‘SJ _ X I
However | x ds= "0 = T .7 and this belongs to
] criee
L2(-2¢«9, assuming that ¢ <1l. Let G(x) =;——r’r—5f:’i, ds , x>0
Y
= 0, x£0

It is clear that G(x) converges conditionally whenlx|[#1.
When 0<x <1, we may close the contour of integration on the
left and exclude the pole at s=1; then G(x)= 0. When

1<x, we may close the contour on the right, including the
pole; then G(x)=1. If we coild differentiate under the
integral sign G'(x) would be the desired inverse. However,
we shall interpret the inverse of ¥(s/-/as the formal
derivative of G(x). Since G(x) is a step function the

derivative at x=1 does not exist.
(#Coﬂxl-j

! = 8lx-~
F(x) = ﬁa"c L-‘:o’ S ds §lx~1) >0

= O )X S o

-~

The derivative of a step function is known as a delta funection.

It has the following properties: §{x~J=0 xg/
= P =/

-fo‘(x—l) .

In terms of Statistics é(x—)is the frequency function 0% a
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set all of whose members equal one; that is, a unit point
mass distribution at x=1.

In general the inverse of ¥ (s)= 2 ' 1ig taken to

e rie? 1—-S
. od x) . . > -
be Filx)= I it Z;_;:::;-Js 2 flx-a) | (11)

§(x-a) is a unit point mass distribution at x= a. The
derivative of the integral exists at all points except x= a,
where £(x) is considered to be a formal derivative.

1,4, Some Funetional Equations Leading to Frequency Functions

The following functional equations are between the
Mellin transforms of frequency functions.

1) T(s): [F))” (12)
There are two obvious solutions: J(s)z0 #(x/):o

F(s)=r  4lx): d(=~1)

Only the latter 1s a frequency function.
11) TG) Jls) =/ (13)
This states that the product of dispersed disgributions is
a point distribution at x =1, This is impossible. Thus the
only solution is that f(x), g(i) are point distributions.
T(s) = a7 F(x)= d(>-a)
4(s) = '’ 3(x) = (- L), >0
111) If §. all have the same frequency function f(x),
can §%.--§.. ever have the same frequency function as §,?
This leads to the equation
[7a]s Tms-ms) (14)
We shall find the coefficients in the Taylor series for J(s&/
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-

at s=1, Let F(s)= Z (o™ (aws T
Differentiate (14) indefinitely and in each case put s=1,
using the fact that J (/) - [’of(x)-/x =/
m [ T)I T s) = mF msemn)
- FUy s T = a, ,MM
-0 T) YR TU) )P+ [ F) T 2 m T U ms- sy

-- (ot-1) a + RV, ° MG,

<- Qz: Q-/Z
P ;=2 @)
Moy} G, (5=t s~/ Q@
?(g)=§ QqM(s=0)" . L% ). a e
> /!

Thus f(x) = §(x¢-a/ . Thus the answer is that the two products
have different frequency functions unless all have point

distributions.




Chapter 2

Extension of the Theory and Examples

15, The Use of Mellin Transforms With Frequency Functions

Defined Over the Entire Real Axis

Let the random variables §, §, have the frequency
functions fy(x), fo(x) respectively. Let h(x) be the
frequency function of §§, . Then, by £6

b = 5 ok ()
taf ./

o0
(15)
[Ehlad ()4 ¢ [T 4 (- 2y
Let f(x)= §,(x) + 4, (x) where £ (x):0 x«o
F ()= 4 (X)+ £,(x) fia (¥ z0 x>0
h ()L) = h,()g)-f hz (x) le[‘x}:o x <o
Far (x)=0
(16)
h (x):0 x<o
h,_()(,}.:a p oy
Let 7,(s) be the Mellin transform of #£,(x)
J;, (S} n f/z(_x}
3:‘(5} n _ 7(2(("’(')
3';.1(5) n fn (—x) (17)
HI(S/ " h,[}(_)
NZC’—} n hx ("X)

Then it follows from (i5) and § 2 that
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M ()= Tu(s) T, (5)+ T, (s) T2als)

RO ENOENCEEACENT, (18)
e+ LoD
hix) 2 =P a9 ds =20
e~(op
e t+Co® (19)
= 1,-:5 ¥, (s) (-x)qJS X <o
- cod .
The frequency function of g’/f; is given by (19) if we
change (18) to X,(8)= T.(5) T2, (a-5)+ T () Bo(-5) 201
20

Mas) = Tu(s) B, (a-8) + F,() T3y (2~

16, The Use of Matrices

In order to obtain the results for the product of
three random variables & %, §3 the previous results will be
written in a more tractable form. Let the following
matrices be defined:

}T<5>=(Hl (s) Hz(‘)) f(s)=( 36) 4;3(5)) 3_;(5):( $.05) 32, (s)
Haols) W, (5] 5205) Tu(s)] 7 5o (s) £, (s)
Then it is clear from (18) that
q(s)= T(9 5. (s)
where the multiplication is ordinary matrix multiplication.

(21)

For the random variable ¥/¥, we make the calculation
W (s)= T T (a-s)
The general rule is now clear. In order to find the frequency
functlon of the rendom variable % : U5 %77 )/(s', Si---)
where$; has the frequency functionf.(> and §: has the
frequency function 3;(x/, we caloculate the matrix product
Nes|= T T050 - -~ §(a-5) 7, (3-s5)-- (22)

and the frequency function of % is h(x) given by (19).
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These 2 X2 matrices are commutative and maLy be multiplied
in any order. The proof of (22) is carried out by the
repeated use of (18) and (20).

17. The Matrix for the Delta Function Distrbution

Let ¥ have the frequency function f£(x)>d(x-2), In
order to calculate ?(5) we must consider two cases, > 0

and a4 0. Let Flx)= £(x)+ f,(x/ as in (15).

i) a0 F(x) = §(x~a)
+1(X): J(x*a)
J"1.(-"‘-): 6

According to §13 3.(s) - o> , T(s)= 0

S=~1

a 5
Therefore I (s) » (o as—:) (23)
- I o
In partiocular, if a=1, F(s) = (M} , the identity matrix.
11) a<o $(x): §(5-a)
F(x): o

$,(x): dlx-a)

s/
According to §13 T (s)z0, Fo(5)= (-2

S~/

— o (-a)
Therefore Fs) - ( ) (24)

(-a)*"! o

Consider a variable 7t with frequency function 9(x)
The matrix for§7% is (a—H o)( 9.6) 9.(s) (a.’-lﬁ, () a.’-ljz(S/)

(a>0) SN .09 9.9/ | &%) @79t

By the rule in §l concerning parameters in Mellin transforms

o

i© 2C,
we see that the frequency function of§% is £ 9(3. If ac 0
we may show that the frequeney function is-L 3(;—7.
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18, The Matrix for the Distribution of &

If the frequency function f(x), of § , 18 not zero
for x<0, as we are assuming in this chapter, the consideration

of ?m leads to two cases, depending on whether n be odd

or even. Let F(x) = (%) + £(x)
where $,(x) o x<o , F,(x)z=0 x>0
For §™ .let S () = o, (2) + Fay (%)
where fmlo)z 0 xco  f,,(x)=6 x>0
,(s5) T.(s)

Let the matrix of § be J (5) = ( 56s) Tl

T (3) J"A;(S)

M =
Let the matrix of § be Fls) = ( Tois (5) Trul)

i) n even S, (3¢) = ‘M x = flx™) ( $1)

-+M1 [.x.) = 0
Gui(s) = T (ms-m+) , Tarls)= o
= T (rs-m+1) o :
Fols) = ( o f,(ms—m-ﬂ)) (25)
1, L
1) n odd Four () = 1 LYY

g n
fama () = —'; s ™ Flx ™
Fai () = 3 (ms=pri) ; Tz (s)= T (ms—n+i)

T (ms—m+) f,_(m:—/uﬂ})

Fouls) = ( I (ms-m+) T, (ms-m+1) (26)

In particular the matrix for '[f is
f ( ) g: ( 2-—5} T;(R—S}
v (s) =
‘ T2 (3-5) $i(3-9)
The problem we considered earlier, on page 10,

may be generalized now to include random variables in
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general. Thus § has the same frequency function as ’/3' ir

and only if f(5/= %f, (s) . This leads to the two equations
I,ls)= T(a-5)
J5(s): Fa(3-5)

These may be solved by the methods given in é'll.

Let the set of random variables each of which has

the same frequency function as its reciprocal be denoted

by Rl. Then the closure of Rl may be shewn to hold for

both types of multiplication (¢ 12 ) in the case of positive

and negative random variables.

Theorem L4 Let §,€R , §.¢R, then $,%5,€R and §™ € ¢ R,

if n is a positive or negative integer.
Proof: Let 9,(s), F (s) be the matrices for £, £, .
Then ¥ (s) = 7,(s %, (s/ is the matrix for § %, .

G(s) = () Tuls) = T, (2-5) T (2-5) = §(a-5)
Therefore £ §, €R, .

T (s) - T (mS-mxt) Figlms-pmsy)
Let N (s) (?,; (MS-M-H) T (ms-m+y)
n being odd. ( Toulms-met) Folas-ms)

)be the matrix for §™

A (s)

¥ (fKS'—r-\+() T (rn S=r+1)
( $.[2- (ms-mt)) T o [2-ImS~ms o))
} g)z{ 2"(0!5-9014-()] ?l([a-(MS'M"’()]

) (r..w-«sﬂ) m«-m“‘)): H (2-5)

Tia(m=ms+) i (m-as+y)
Therefore §, €R, , When n i1s odd. If n is even then the 7.

elements are put equal to zero and the proof follows in

the same way.
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19. The Moments of the Distribution Over the Whole Axis

The moments of the frequency function f(x)/ —~0Ps <P

may be written in terms of the Mellin transforms. Let

Flxl = $(x)+ 4, (x)

as usual;

J,(s) 1s the Mellin transform of f,(x)
"

T2 (s) " fa (-o¢)

Then /. , the n®? moment or f(x) is

fm ’/me(x)c{x = /‘;M;F(.x)lx + /.:cﬂ:f/x}lx
s A

LoP

= Ti(m+) + (-'l)m'o x™ §(-2)dx

pa: Filmt) v (07T, (msr) (27)
20, Diagonalization of the Matrices
The matrix 4- (7;}

Thus the normal form is (o' _°() « It 1s found that the

matrix giving the implicit change of basis vectors is
] 4 a
((' _J which has the inverse (1 :1) . Thus
T 3

B0 - <G A
AR
e(Lt)e ML)

(")

Thus if we multiply the following equation on the left by
1]

satisfies the equation 4 %= J .

1

1!

A

I
(,’ ‘,) and on the right by (‘ “) , two scalar equations
T 73 -
may be obtained.

Nisl = T F()--- G, (25 4, (a-5)---
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The form after the diagonalization is

Rlst Hels) 6y (8(59+3,() o (354 93 (2-5) s
( o ”:!S)-H,lf)) { s 8,(s)- r,,(:)) ” ( o ﬁ,,(avs)-j,,/z-s})
which gives the two scalar equations
W (S) Wy ls)= [ F(8)« (99~ - £ 9.+ 9u(a-50] 5 - - -
N, ()~ Hals) = (T ()~ Tl - { Shlg»f)s- dip(a-5)]x - (28)
These may be solved for MN,(s) and N¥.(s/ . At present no
meaning is known for N.(s]+ N.(S.
Since the Mellin transforms considered are always non-
negative, no interpretation can be given the matrix ("_’,
Since Mu =T (m+id + (<) " Tplrett) we may regard (28) as
the general form of the result that the moment of the
product of independent random variables is the product of

the moments (§8)
21, Symmetrical Distributions

A symmetrical distribution is one for which f(x)
is even, f(x)=f(-x). In the usual manner we have
f(x) = £(x)+ f5(x), where , since f(x) is even, f;(x)=1f(-x).
Thus F7(s) = 32(5) , The matrix of the distribution is .

—_ 3}(3) ?z-(-r) e
(s) = ( T (S) TS which has a dterminant equal to zero.
| Bl = (T) -GFus =02

This 1is clearly a sufficient condition that f£(x) = f(-x).
Theorem 5 The necessary and sufficient condition that a
distribution be symmetric is that the matrix have zero

determinant.
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22. Examples
Some examples of the use of the various formulae
will now be given.

i) The gaussian distribution with mean zero.
T

> ot
z J K x ! 4-36—12
s A
> _ abz_z _ i S-3 _
g_’l(s):s_lr;];_/\e a oy .)Ls ’JDC - TT~23a67$ IP(%/ (29)
! °
371(5): 370(5) 53
-4 2= -
5o (5) = Fuals) = " FAX & p(3)

In order to find the frequency function of § £, we will
caloculate XN, (S), ¥.(s/ using (18)
~ 52 s-1 z
Hils) = Ho () = w2 (o63)7 [ P(S)]
.
Using 7.9.11. in Titchmarsh: K.(>), 2° “{ r(%)]}

. l -~
we have. hl(y) ey K,(c,(;),‘od¢u;<e° (30)
In order to find the frequenc¢y function of %4: g/fzwe use (20)
M(s)2 Kals) = (m)” (200 %) per- £)
= L&)’-, |
&2 R
b 2% s o
Using 7.7.8. in Titchmarsh: _ L., & T
I+ AV v )
we have h 1l &3 ( (31)
(“() = T 67, |+ Gt )2
(=]

which is the Cauchy distrbution. If =63 , —h(«)
satisfies the equations k()= :‘(, h(f) and hilw) = —&;k,(i‘z}
80 that the distribution of U is the same as that of '/a
when &= ¢,

It is important to note that none of the moments

of the Cauchy distribution exist. Consider the ratio of
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two Gaussian variables having any mean, and standard
deviation. We shall prove the following theorem,
Theorem 6 None of the moments of the ratio of two Gaussian

variables exist. z

(- ~’)
o & ,*

Proof: Let § have the frequency function f(x)*G;};
_ LD‘- /Ul”)z

Let gz " £, (x) = ‘J__.e aey?
Let 4, (x)= fu(x)+ #2(x), $,(x) =4, (x)+ %,(x) In the usual way.
Let h(x) be the frequency function of'L/g; The n®2 moment

{~ ©of h(x) is from (27), (20)

L X, (m+) + (—l)sz("‘*"}

= r,:(/“-"") z((" m) + 372 (m¥1) 2;,(/"/"')
(VT (mrd T3, (1mm) + Q™ T ) (1o

Cx /UI” )

f -m a2 o
Consider ?;((l—m) * e x e + dx
o

This does not converge at x=0 for any integral n >0. In fact
none of the Mellin transforms of argument l-n converge.
Thus ¥m does not exist for any n>0.

When there is a measure of dependence between the
Gaussian variables the ratio still has no moments, as was

shewn by E. C. Fiellerl

, who actually found the frequency
function of the ratio- a very complicated expression. The
difficulty lies in the assumption of a non-zero probability
of a Gaussian variable no matter how large the mean. This
is physically untrue, and Fieller considers the so-called

(1) Fieller, Biometrika, 24
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curtailed distribution which has a frequency function equal
to zero beyond a certaln interval containing the mean. As
this interval is inereased the moments of the ratio tend

to practical values, but if the interval is infinite so are
the moments.

Example 1i) The Resolution 6f the Gaussian variable into

the product of two independent variables may be carried out
using the duplication theorem for the Gamms funetion. The
distributions are assumed to be symmetric. Let h(x) be
resolved into fl(x) and f,(x), with the same notation as

already used for the Mellin transforms.

N,s) = 23,9 Fy(s) T50(8)= F7a(8)
N (5) - A 3‘//(-‘) ﬁz(s/ ﬁz(‘/ = &30S8/
The produot distribution is Gaussian so that
Nis)s 3 252 5 p(f)
-1 3 s-t
- A eE 2T plF) xpsF AT p(EE3)

M()= M, () + M ()= ) Thus for a symmetric distribution

_H,(‘): H;((): bL , Ag = ”~l 2-’/3
S~/

Tuils): 4 lae)F P(F)

T8 § (20)7F prit2

But 7,(): T.(): * thus = , E=
u () MO A T € ar’(é—)
q
= .._._._8—_..____ -'x—z
$ilx) P(é)(:s;#z'e ha
a x? ~«i):j=
*z(X)z 3/2 <

P[_%] (>6)
It 1s seen that a distribution with two peaks may give
rise to a distribution with only one peak.
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The functions h(x), fy(x), f(x) are sketched below for the

case o—= 1l.

*‘0-5‘ o8

f(x) h (?‘)

Example iii) The Cauchy distribution is

I _ -~ o0 L B & O

CH"] T+ 2 sa,'me;
A variable £ having this distribution has thepdistribution
as ’/f . Let g(x) be frequency function of the product £S5,
of independent Cauchy variables. g(x) is also the frequenocy

function of §,/¢, . Using the result of § 6 we have

= 4 - | i
39 T )l o (A xR
-
T
= ’z.____zgfh_‘i__ ~ o€ <Y L oP
Tr Q-1

None of the moments of this distributioh exist. The Mellin

transform matrix is

] | 2 { {

g

_ 29uTs asmls - [ 2saEs 2 & Fg
g(s):
\ | l \

23~Es  asuls 2 5°%s asutls/ -
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The function g(x) is drawn below.

< o.ﬁ.

! 0 — A

~2 -1 o l 2

It is easier to evaluate the integral for g(x) directly

praved
than to use the Mellin inversion formula. We have ot':,he

inversion of ¥,(s) to be

t+ ol
-5 k4
' 4T ds = L _Ama
- = 2
awd 2 st Is m y *=1
I~ o

Example iv) Student's Distribution

Consider the variable t = ’“U_F

, Where u is
distributed normally with mean zero and standard deviation
one, and v has a 7(2 distribution with # degrees of
freedom. The random variable t has what is known as a
Student's distribution. We shall find the frequency function
of ¢t using the method of Mellin transforms. The frequency

function of Jv« is s ©
Jn(xl: rz—;‘r—;‘ < ar—oﬂé-‘f{&ﬂ

The corresponding matrix elements are ( see (29))
1 S~/ S~ 3

T(s)= F.(s)= m* v T 273 p(i)

2 k.o~ %
The frequency function of v™ is f(x)= x*" € 5o
272 peky
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The frequency function of v is, according to §7, # (x): 2 $(x*/
lp( £+ s-4)
The Mellin transform of f(x), x20, is 2 a T oY

p( &
Therefore the matrix elements of v are >/
S-1 ¥ . S-t
3:‘(5); 273 Mt s 3';,_(5)=b
p( %)

The matrix elements of t are, according to (20)

R O e s -5
T T3 a7 plx) P(ﬁ""i‘}

Pl ¥)

31(5)5 ):‘ZCS)’:

The inverse Mellin transform may be found using the pair
( p(s) P(a~s)

7.7.9 in Titchmarsh: Gy~ (e » Whence
the frequency function of ¢ is
+1
PC5%) T {
Ll(X): = 14y — P L ) Lol (32)

_— , FRLda
PeE) VT (e 22)3

This exemplifies the fact that the ratio or product of
a symmetriocal and a positive variable is symmetrically
distributed.

Example v) There are two distributions which are not so
well known, but which are related in an interesting way
with the X © distribution.

Beta Distr;butionl

o Mt ~~ s _
Flx) = r(~3=) Ve *-'((—-ac)’ l o< < |
PLT) n( %) (33)
- o X <o, dX>|
o ) PLE + S
Lo - p( 24 0-0) eC 2F) Tarm e (34)

This is given by the equations following 7.8.6 in
Titchmarsh, The Beta distribution is frequently used in

(1) See Weatherburn Chapter VIII
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Blological Statisties.

"Bessel®" function distribution

AP plr-p) -Z ~ x
Let Fx) < (jr) n'l rO+vepr) pl-%-») e T I Z) (35)

'J'>0/~'¥70,ﬂ4':,§, AV D=/

4 bt -
—3riTe Lne

where I ,(x): - Ty (o ),-n'< oes 3L G
The Mellin transform of f(x) may be obtained from the pair

7.10.7 in Titchmarsh _x r(s+v) P t-s)
e Z,(x)

2°n 7t pl 1rv-s)

- _ Loy

2 (5) - (54/5/ Pv=F)  plSs+rtv) w (36)
PCL+ V-~ p-S) PlI+ v+m) P-4 -»)

A distribution very similar to f(x), viz., the case

p=Vv  has been considered by A. T. McKayl. In that case the

x _e%g
/4' is replaced by - , €2/ . The Mellin

factor <
transform is much more complcatedy and the case will not
be considered here.

Now consider the ratio of a 7(1 variable to a Beta

A X
variable: x‘;"&- a
At A A degrees of freedom
a¥2 ()
s~/ AL o
Tis): 2 sl
Pe %)
B = 8u(s)* F(M;M ) P2+ 5-0)

P( A

= +s=) rl F)
250 A rs-1) P( +1-5) p( ZFF
PC3) PE) P+ i-s)

In the speclial case where sz A+ ~« this is the Mellin

T () F,(a-5)+

transform of the "Bessel"™ distribution with parameters

] —
A e D

(1) A. T. McKay 1932, p. 39
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Example vi) Orthonormal Seriesl

In certain cases it is possible to expand in a
convergent or asymptotic series the given frequency function.

It is usual to use the orthonormal Hermite or Laguerre
a‘2

—
3

polynomials which have the weighting factors oy and

e respectively. The Gram-Charlier series uses the
Hermite polynomials and this is the series which is used
when the random variable takes both positive and negative
values. However, in our present work where the frequency
function is decomposed into the functions fl(x) and fy(x),
it is permissible to use the Laguerre polynomials, which

lead to somewhat simpler results.

The Laguerre polynomial2 is defined as follows:

(o) _ e 5% M - mF
Lo’ (%)= — Qé} (e x ) w>=/
The orthogonality relation is
P =Xy (a) let) P mrat)
[ 7T L) Lad () dx - ] St s

where d, 0 =/ Mmzam

=0 m¥ta
A function f(x) may be expanded in a series of the following

form Flx)z S0 @ LW (x) <2 (37)

where Q. * Pt

£f(x) L% () dx

P A+ ott+t)
If the series (37) is uniformly convergent for
x2 0 the Mellin transform £¢5/ may be found by term-by-term

integration.

(1) See M. G. Kendall p. 147
(2) sSee G. Szego £5.1
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- g+ (m) th
Let g(x): = > s & (x) be the n ~ derivative of g(x) and

4(s) the Mellin transform of g(x). We require the Mellin.
transform of ,',“L; 3(M)(>‘)= ,‘51 ﬁ)ﬂ( &) (38)
Consider i?(”)/x/xg'/dx . We may integrate by parts until
g(x) appears under the integral sign. The behaviour of (38)
as x>0 and x-?® insures that the integrated parts vanish.

The Mellin transform of (38) is
(0™ ($s-0)(s-2) - - - (S~m) P(S+et)
p{m+y)

Thus
i’ o ($-1)--= (S-)
(($le)ul s £ pissrfac+S, (0”2 Y (39)

-

The N®P moment is given by
V4 m _
Lo = TAV+) = p[A/+d+,)Zq°+MZ’; - "@ U)oV mf/)} (40)

~f

With these formulae, we are in a position to find the
Mellin transform (s when we know only I\(##); i.e., to
interpolate between the moments. Even 1f not all the
moments exist we may still approximate to the Mellin

transform. Eq.(40) may be solved for a,:
] E‘”‘ CY M () (-t
Qa =2,
b Plarn+1) 2!
We may then find 7$) in terms of £ (.
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