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Abstract

Invasive species are an ongoing concern for countries in which natural resources
play a vital economic and social role. In Canada, species such as the Asian long-horned
beetle, Dutch elm disease, sudden oak death and the Asian gypsy moth threaten
forests and the sectors of industry that profit from them. The economic risk is estimated
at up to $800M annually. Machine learning methods that quickly and accurately
determine the taxon, geographic origin, and pathogenic fitness of biological samples
from genomics data would constitute a valuable tool for risk reduction.

In this thesis, we reviewed concepts of population genetics, phylogenetic
networks, genotype data and current methods for genetic population assignment.
Having identified a number of the shortcomings of current methods, we propose a new
machine learning approach called Mycorrhiza aimed at predicting the geographical
origin of a sample from its genotype in which phylogenetic networks are used as feature
engineering tools, followed by a Random Forests classifier. The classification accuracy
of our method was compared to widely used assessment tests or mixture analysis
methods in population genetics such as STRUCTURE and Admixture, as well as a
variant where a PCA is used in place of the phylogenetic network. Multiple published
SNP, microsatellite or consensus sequence datasets with wide ranges in size,
geographical distribution and populations were used for this purpose.

The phylogenetic network and PCA methods show a marked improvement in

classification accuracy and definable advantages compared to the existing approaches.



As is to be expected, STRUCTURE and Admixture fall short on almost all datasets with
a considerable deviation from the Hardy Weinberg equilibrium. The same can be said
for Admixture on datasets with a large expected heterozygosity. Moreover, Mycorrhiza
consistently estimates mixture proportions more accurately than the PCA variant. Our
approach will be useful in the rapid and accurate prediction of geographical origin from

genotype samples without the restrictions inherent to currently used methods.



Résumé

Les especes invasives sont une préoccupation constante pour les pays dans
lesquels les ressources naturelles jouent un réle économique et social essentiel. Au
Canada, des espéces telles que le longicorne asiatique, la maladie hollandaise de
I'orme, la mort subite du chéne et la spongieuse asiatigue menacent les foréts et les
secteurs industriels qui en profitent. Le risque économique est estimé a 800 millions de
dollars par année. Des méthodes d'apprentissage machine qui déterminent rapidement
et précisément le taxon, l'origine géographique et la capacité pathogéne des
échantillons biologiques a partir de données génomiques constitueraient un outil
précieux pour la réduction des risques.

Dans cette thése, nous avons examiné des concepts de la génétique des
populations, des réseaux phylogénétiques, des données génotypiques et des méthodes
actuelles d'attribution de population. Aprés avoir identifié un certain nombre de lacunes
des méthodes actuelles, nous proposons une nouvelle approche d'apprentissage
machine nommée Mycorrhiza visant & prédire I'origine géographique d'un échantillon a
partir de son génotype dans laquelle des réseaux phylogénétiques sont utilisés comme
une étape de transformation des données suivie d'un classificateur forét d'arbres
décisionnels. La précision de classification de notre méthode a été comparée a des
méthodes d’assignation génétigue ou d'analyse de mixture largement utilisées en
génétique des populations, telles que STRUCTURE et Admixture, ainsi qu’a celle d'une

variante ou une analyse en composantes principales est utilisée a la place du réseau



phylogénétique. Des jeux de données de SNP, de microsatellites ou de séquences
consensus publiées avec de larges gammes de taille, distribution géographique et de
populations ont été utilisées a cette fin.

Le réseau phylogénétique et les méthodes APC montrent une nette amélioration
de la précision de classification et des avantages définissables par rapport aux
approches existantes. Comme on peut s'y attendre, STRUCTURE et Admixture
échouent sur presque tous les jeux de données avec un écart moyen important par
rapport a I'équilibre de Hardy Weinberg. La méme chose peut étre dite pour Admixture
sur des ensembles de données avec une grande hétérozygotie attendue. De plus,
I'approche du réseau phylogénétique estime les proportions du mélange avec
systéematiquement plus de précision que la variante APC. Enfin, l'approche
phylogénétique gagne en précision par rapport a la variante APC lorsque les prédictions

résultant de multiples sous-ensembles ordonnés des données sont moyennées.
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Chapter 1

Introduction

1.1 Motivation

Invasive species are of growing concern for countries in which natural resources
play a vital economic and social role [1]. Their ecological and economic impact has
been known for many decades and the expansion of global trade only aggravates the
problem [2]. In Canada, where forests are an important portion of industrial and touristic
revenue, species such as the Asian long-horned beetle, Dutch elm disease, sudden oak
death and the Asian gypsy moth pose an immediate threat to the economy and jobs.
The economic risk is estimated at up to $34.5 billion CND annually [3]. In the United
States of America this also ranges in the billions [1,2]. The implementation of
countermeasures is indispensable to protect not only the prosperity of a large portion of
the population, but also an invaluable natural wealth.

Alien species enter Canada through a multitude of anthropogenic and natural
vectors. In some cases, containment measures can be put in place by the appropriate
government agencies if the taxon, geographical origin and introduction pathway are
determined rapidly. However, current methods of risk assessment relying on phenotypic
traits alone are highly inadequate for this purpose as different strains of the same
species can be indistinguishable in appearance. Moreover, these can be highly
dependent on sex or environmental pressures [4]. Methods based on genomics are

currently too slow or costly for large-scale implementation. The development of rapid
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and inexpensive genomic methods accurate in the determination of taxon, geographic
origin, and pathogenic fitness would therefore be a valuable tool for risk reduction. The
BioSAFE project aims to address these goals by implementing a risk mitigation system
on an unprecedented scale. Central to this effort is the development of machine
learning methods for the rapid and accurate classification of outbreak samples from
genomics data.

Within the context of the BIoSAFE project, the goal of this research was to
develop and/or evaluate the accuracy of various machine learning methods for
predicting the geographic origin of specimens from their genotype. In the field of
population genetics the tools for this are referred to as assignment tools or methods [5].
Accordingly, the tools and algorithms designed for this purpose are referred to as
assignments tests or assignment methods.

We shall consider for our study the use of existing population genetics tools,
weigh their strengths and shortcomings, examine their implementation from a machine
learning point of view and explore avenues for new algorithms based on our findings. As
we are interested in ancestry and, consequently evolutionary events happening on a
relatively short timescale, reticulate events such as hybridization, recombination and
lateral gene transfer must be taken into account throughout our analysis and algorithm

development.

1.2 Problem definition

The problem is defined as follows. We are given a number of biological samples
for which the genotype and population of origin, or geographical sampling location, is

known. Let M be the number of loci forming the genotype, K the number of discrete

2
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populations we wish to account for, and U the number of sampled individuals of known
origin. We wish to train a machine learning model from the genotype and origin of the U
known samples. This model will take as input the genotype of a sample of unknown

origin and output a probability distribution L over the K populations.



Chapter 2

Literature review

2.1 Population genetics

Population genetics is a branch of evolutionary biology that studies the genetic
composition of populations at many different scales [6,7]. The theory and methods
established in the field serve to answer a wide range of biological questions in a number

of different contexts and generalization levels.

2.1.1 Populations

Consequently, a number of different definitions are used for the term
“population”, some of which are subjective [6,8]. In fact, as we shall later consider, these
can sometimes be purely arbitrary. Additionally, linguistic, cultural or physical characters
can also be used as measures of differentiation or similarity between individuals to infer
populations.

In general, a distinction can be made between statistical definitions of
populations, which simply refer to an aggregate of entities from which we draw samples
and make inferences, and biological definitions, which refer to collections of individuals
that share genomic or phenotypic attributes [6]. For the purpose of this research, we are
interested in geographical sampling location of specimens and thus view the
populations as aggregates delimited by boundaries we have yet to define, such as
country or state borders. We will later discuss how these boundaries also correspond to
populations in the genetic sense and both definitions can be used interchangeably for

our purpose. Furthermore, we are mainly concerned with population observed on an
4
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ecological timescale, rather than an evolutionary one, on the order of one to a thousand
generations [5,6,9].

To avoid ambiguities, unless specified, we will use the term “origin” to refer to
geographical origin, in other words “the totality of individual observations about which
inferences are to be made, existing within a specified sampling area limited in space
and time” and the term “natural population” to refer to a population that “can only be
bounded by natural ecological or genetic barriers” [6]. Therefore, the term “population”
alone will be used in a more general sense and will refer to both concepts previously
stated. Additionally, the term “specimen” will refer to a single individual and the term
“sample” to a set of specimens.

We shall now give an overview of a few concepts in populations genetics such as
hybridization, introgression, heterozygosity and indices of population differentiation that

will be referred to later in our study.

2.1.2 Hybridization

Hybridization can be defined simply as the interbreeding of individuals from two
populations or groups of populations distinguishable by one or more heritable character
[10,11]. The resulting offspring must be viable and fertile for the term to be applicable.
Hybridization is generally deemed rare at the level of the individuals, but widespread at
the level of the species [12]. In other words, hybrid individuals are rare, but the number
of species that hybridize is high and the evolutionary consequences are important. The
process can result from both anthropogenic and natural causes, often from
environmental disturbances causing habitats to overlap or the creation of artificial

bridges between habitats.


https://paperpile.com/c/bhoxAW/Md5e
https://paperpile.com/c/bhoxAW/eQsR+gUdF
https://paperpile.com/c/bhoxAW/HCEd
https://paperpile.com/c/bhoxAW/HCEd+5U47+S1D2

The result of hybridization is admixture. As such, the genome of an admixed or
hybrid individual is the mixture of alleles from different ancestries. In rare cases where
no admixture is present, each individual can only have originated from only a single
population. In the case where there is admixture each individual can be a mixture of two
or more populations.

With the intensification of global trade and travel, chances for hybridization
between populations or species otherwise separated by impassible natural barriers are
becoming more common [13]. This is not without ecological consequences. In fact,
hybridization and other reticulate evolutionary events have been shown to be one of the
mechanisms stimulating invasiveness and to influence pathogenicity of a number of
species [14,15]. Moreover, backcrossed individuals are often impossible to differentiate
morphologically from the parental populations [12]. As such, tests for hybridization are

almost exclusively based on genetics.

2.1.3 Introgression

Introgression, or introgressive hybridization, is the incorporation of alleles or
genes from one species, or population, into the gene pool of another as a result of
hybridization [10]. Importantly, a locus is said to be introgressed relative to another. In
other words, two recognizably distinct and persistent populations must exist for the term
to be applicable. Understandably, the genetic boundary between species or populations
in which introgression has occurred does not have to extend over the whole genome.
As such, these intra- or interspecific boundaries are sometimes said to be
“semipermeable”, where some loci are more likely to introgress according to selective

pressures. Introgression is also referred to as gene flow between populations.
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2.1.4 Population statistics

The Hardy-Weinberg model [16,17] is one of the simplest models in population
genetics. A number of more complex models incorporate it in their derivation. Simply
put, the model describes allele and genotype frequencies in a population for loci under
no evolutionary pressure. The model makes a number of simplifying assumption about
the mechanisms of producing gametes [4]. Notably, a single isolated population is
assumed and mating within this population is random. We show here how to calculate
the Hardy-Weinberg equilibrium from allelic frequencies.

For simplicity, let us limit ourselves to bi-allelic loci. Let P be the frequency of
allele A and ¢ the frequency of allele « in the total population, with » + ¢ = 1. Then the

genotype frequencies are expected to be:

Gaa = p*
Gaa - q2
Gaa = 2pq

where Gaa and Gu. are the frequencies of homozygous genotypes and Ga. is the
frequency of heterozygous genotypes. Deviation from these values is generally the
results of evolutionary events such as selective pressure or migration between
populations. We can extend this model to cases where there can be more than two
alleles at any given locus to calculate the expected heterozygosity for the total

population H., according to Nei’s unbiased estimate:

Mo,

1 2N(1 =32 72)
H,— — \ g ““me s
M Z 2N —1

m=1

where Tni is the frequency of allele i at locus m and I is the total number of alleles at

locus m [18]. The same equation can be applied to each of the K sub-populations
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individually to calculate H{ The observed heterozygosity for the total population H, and

for each of the K subpopulations H; can simply be calculated as the average ratio of
heterozygous loci for each individual. Deviation from the Hardy-Weinberg equilibrium
can be calculated as the average inbreeding coefficient over all subpopulations fis,
given by:

HS o HS
‘HS

e

AHW = Fig =

S S : .
where X7 and H; are the averages of H{ and H) over all subpopulations [19].

2.1.4.1 F-Statistics

The three F-statistics introduced by Wright are measures of population
differentiation used to explain the structure of genetic variation within and among diploid
subpopulations of a total population [20]. Originally, these measures were defined as
correlations between uniting gametes. The first, the departure from panmixia in the total
population is defined as “the correlation between gametes within an individual relative to
the entire population” and is noted as Fi7 [20,21]. The second, the genetic divergence
among subdivisions is defined as “the correlation between gametes within an individual
relative to the subpopulation to which it belongs” and is noted as F1s [20,21]. The third,
the departures from panmixia within subpopulations is defined as “the correlation
between gametes chosen randomly from within the same subpopulation relative to the
entire population” and is noted as Fsr [20,21]. The latter, also known as the fixation
index, is widely used in population genetics studies and a number of other fields
including disease association and forensic science [20]. The F-statistics are hard to

calculate in practice and are usually estimated in a number of ways.
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The Fis is directly related to the Hardy-Weinberg equilibrium. For a given
subpopulation £, it can be estimated as:

Hf — H}
where H! is the expected heterozygosity and H. the observed heterozygosity for

subpopulation k [19]. As such the average F1s over all subpopulations is estimated as:

1« H* — H*
Fis =)~

k: =
The Fsr reflects the distribution of allelic frequencies among populations and is
directly related to their variance. In other words, the larger the value of Fsr, the greater

the allelic differences within each population. A simple way to estimate this parameter

for a population % is given by:

where H. is the expected heterozygosity of the total population [19]. The average fsr
over all subpopulations can be calculated in the same way as for the £7s. As we shall
now see, assignment methods based on Bayesian analysis make use of these

population statistics and assumptions to infer population structure.

2.2 Assignment methods and mixture analysis

2.2.1 Assignment methods

The goal of assignment methods is to classify individuals, more specifically their
genotype, into a number of defined or undefined populations from which they could
have originated. They can serve to solve a wide range of biological problems and

guestions. In some studies the goal is to infer population structure, and consequently

9
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the most probable value for K, from a number of individuals for which the geographical
sampling location may be known [5,22]. In others, it is to classify a number of individuals
of unknown geographical origin into previously defined populations.

There are two main types of assignments methods: distance and model-based
[8]. With distance-based methods, a pairwise dissimilarity matrix is calculated for
specimens based on some metric. Standard clustering or PCA based methods can then
be applied to the result. With model-based methods, specimens are assumed to be
drawn from some parametric model. The parameters corresponding to each cluster in
this model and population membership of the specimens must be inferred
simultaneously using some statistical model. Examples of model-based methods
include maximum-likelihood or Bayesian approaches.

A further distinction between assignments methods is in the estimation of local
[23,24] or global parameters [25]. In this study, we mostly concentrate on global
methods, which estimate average ancestry over the whole genome. Nonetheless, we
could also be interested in inferring ancestry for subsets or partitions of the genome,

such as individual chromosomes or genes.

2.2.2 Algorithms and methods

2.2.2.1 Bayesian methods

STRUCTURE is a model-based clustering method for population assignment and
inference of admixture proportions from multilocus genotype data [8,22]. It is currently,
without a doubt, the most widely used algorithm for inferring population structure and is

typically the first step in analyzing population genetics data sets [22].

10
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The model, in which the number of populations K is user-defined, is based on
Bayesian probabilities. For this, each of the K populations are characterized by specific
allelic frequencies at each locus. Importantly, the model makes two strong assumption
about the data. The first is that all loci are unlinked and at linkage equilibrium. The
second is that the populations are at Hardy-Weinberg equilibrium. We will return to
these assumptions and discuss their implications later in section 2.2.2.1.1. Instead, we
first present the basic model and inference algorithm for STRUCTURE, taken from the
original publication [8], to give the reader a general understanding of the algorithm and
why it depends on the Hardy-Weinberg equilibrium. Let it be noted that the algorithm
briefly described below is for the model without admixture.

As previously stated, let N be the number of individuals and M the number of loci
and K the number of populations. Furthermore, let VV be the number of samples for
which the population of origin is unknown, and N =U +V be the total number of
samples. Let us first assume that the individuals are diploid and that their origin or
ancestry is unknown, such that N = V. Furthermore, let X be the genotypes, Y be the
populations of origin and Z the allelic frequencies in the populations. We have:

(2D 22 ihe genotype of individual » at locus m

wheren=1,2,... Nand m=1,2,.... M
Yn the origin or ancestry of individual n
Zkmi the frequency of allele i at locus m in population &
where I, is the number of distinct alleles at locus m. Accordingly, the probability of

having sampled a specific allele = for a specimen, knowing its source population and the

allelic frequencies for this population at locus m, is given by I7(z, " =ilZ.Y) = 2 ;.

11
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For simplification let us assume that before observing the genotypes, the prior
probability that an individual came from any of the populations is I’7(yn = k) = 1/K
Finally, the allelic frequencies are simply initialized according to a Dirichlet distribution,
such that zem ~ D(A1, A2, .., A1) with Av = A2 = ... = Ay = 1.0, which gives a uniform
distribution.

The parameters of the model are then updated for a predetermined number of
iterations according to a standard Markov-Chain Monte-Carlo procedure. Typical runs
are set to 100 000 iterations to detect finer population structure and to obtain accurate
estimates of the allelic frequencies. Nonetheless, as few as 1 000 iterations can give
meaningful results in some cases [22].

The model with admixture further introduces a parameter ¢ representing the
admixture proportions and the existing parameter Y is expanded to allow for each
observed loci of a specimen to have been derived from a different population. Moreover,
the model can be expanded to allow some individuals to have been sourced from a
specific population with high probability. This allows the learning process to be
supervised for these individuals. This is especially useful when very few loci are used or
when population structure is known to be weak [25].

The original model disregarded the possibility of correlation between loci. In other
words, the values in ¥ within each individual were assumed independent. It was later
updated to account for some, but certainly not all, linkage disequilibrium [26]. As such,
the authors note that the model still depends on the presence of several weakly linked,
or unlinked genetic regions. As a consequence, it is necessary that markers be taken

from many different genomic regions and that linkage remains moderate. A few
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additional improvements were made to the model and algorithm, but these are of minor

importance for our purpose and will not be discussed here [27,28].

2.2.2.2 Shortcoming of STRUCTURE and Bayesian models in general

A number of studies have identified shortcomings to the STRUCTURE statistical
model and inference algorithm. Unsurprisingly, some are related to linkage
disequilibrium and deviations from the Hardy-Weinberg equilibrium, but other stem from
unbalanced sampling sizes, mutation rates and selective pressure [22]. In some cases,
unsampled “ghost” populations can lead to incorrect inferences about population
structure [6,29]. Furthermore, the ability of Bayesian methods in general to detect
population structure depends on accurately estimating allelic frequencies, which in turn
depends on large sample sizes and large quantities of markers [22]. We present here a
few empirical studies on the performance of STRUCTURE faced with purposefully
designed datasets.

In a study based on simulated data, for which the phylogenetic relationships
between populations are known, it was noted that STRUCTURE failed to recognize
populations partitions accurately when sample sizes are unbalanced [30]. In some
extremely unbalanced sampling cases, it even failed to resolve the correct number of
populations. Moreover, STRUCTURE tended to incorrectly merge phylogenetically
distant populations when both had smaller sample sizes compared to other closer
populations. Finally, authors noted that due to the stochastic nature of the algorithm,
results varied considerably between runs.

Another study based on simulated data came to the same conclusions [31].

Again, STRUCTURE failed to recognize the correct number of populations when the
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sampling scheme was unbalanced. The authors went as far as to suggest that
published studies based on data with clearly uneven sampling sizes should be
reevaluated. Here the most sampled populations ended up being differentiated from
each other and the least samples clustered together, although correction could be

applied.

2.2.2.3 Admixture and other Bayesian methods

Admixture is another popular Bayesian method for population inference and
assignment based on the same model. However, it uses maximum likelihood and a
block relaxation approach to estimate the model parameters [25,32]. This yields
considerable improvements in computational efficiency and, the authors argue,
comparable accuracy in estimating mixture proportions [25,33]. A number of other
Bayesian methods are available; however, most were developed for specific problems

or questions and lack the wide-scale applicability of STRUCTURE or Admixture [22].

2.2.2.4 Distance based and other methods

In the simplest form of distance-based methods, individuals are assigned to the
closest population based on some genetic measure of distance, averaged over all
members of the given population [34]. The k-nearest neighbor algorithm has also been
adapted for the purpose of genetic assignment [35]. With this approach, an unknown
individual is assigned to the majority vote of the £ closest individuals of known origin
(note that k£ here refers to the number of neighbors, not populations).

The developers of the widely used assignment algorithm STRUCTURE however
state that: “the clusters identified [by distance based methods] may be heavily

dependent on both the distance measure and graphical representation chosen; it is
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difficult to assess how confident we should be that the clusters obtained in this way are
meaningful; and it is difficult to incorporate additional information such as the
geographic sampling locations of individuals.” [8]. Some efforts have been made to
overcome these limitations by relying on genetic distances rather than allelic

frequencies, without considerable success [34].

2.2.2.5 Principal component analysis approaches

PCA and PCA based methods have been used to cluster individuals of similar
genetic ancestry together and are generally computationally efficient even on large
dataset [25]. However, as we shall later discuss in Chapter 3, these methods are not
without their shortcomings. Some population characteristics that will cause these
methods to fail include the presence of closely related subpopulations or a distant

subpopulation.

2.3 Machine learning and genomics data

Genomics data possesses complex underlying structure that is, most often,
difficult to capture to make inferences [36]. True signal is often obscured by limited
samples sizes, noise or high dimensionality. With this in mind, in a recent workshop on
genomic data analysis, expert contributors shared several key ideas to explore novel
approaches to deal with current roadblocks [36]. (1) The first is that inherent properties
of the data can help in choosing unsupervised learning methods to expose hidden
structure. (2) The second is combining different data types and sources is beneficial. (3)
The third is that giving meaning to the output of machine learning models, in analogy to

a p-value for example, is not straightforward, but nonetheless possible. (4) The fourth is
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that results from complex machine learning models are difficult to interpret. (5) Finally,

and unsurprisingly, computational efficiency is still an issue.

2.3.1 Challenges of using SNP data for genotype assignment

In this study, we are mostly concerned with SNP, microsatellite and other similar
types of data. SNP data poses the problem of high dimensionality. With most such
genomics datasets the number of features is considerably larger than the number of
specimens. Other challenges posed by large-scale SNP datasets include redundancy
and the wide range of data formats employed in different fields [37].

As a consequence, information-conserving ways of reducing the feature space
must be employed, but no single method is applicable and appropriate to all questions
being asked from the data. The methods used to preprocess SNP data for geographical
origin prediction will not necessarily provide satisfying results for disease prediction, for
example. We can easily assume that solving these problems relies on capturing very
different patterns in the data.

A considerable number of methods used to reduce the dimensionality of
genomics data have been published. Also known as feature space reduction methods,
these can either be categorized as feature selection or feature engineering. Here we
present a few such methods that have been applied to SNP data for a number of

different problem types.

2.3.1.1 Informative SNP subset selection

Feature selections methods are mainly divided into filter, wrapper and
embedding types [37]. Filter methods are in essence unsupervised learning (or are said

to not incorporate learning at all). These methods select a subset of features based on
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some statistical score reflecting their correlation with the outcome variable. Filter
methods are generally fast but ignore possible interactions between loci [37]. Wrapper
methods are simply supervised learning, essentially ranking and shortlisting loci that will
be used to build the final classifier. Embedding methods are a variation on the latter,
where feature selection is done simultaneously with learning the classification task.
Here we present two cases of supervised SNP selection methods applied to
geographical origin classification and disease prediction.

A combination of PCA and Random Forests has been used successfully to select
a subset of informative SNPs for population origin classification [38]. PCA was first
applied to the whole dataset and the first two components were used to reduce the
number of SNPs. To achieve this, a score is calculated for each marker by squaring and
its values along the principal components and summing them. A number of the highest
scoring markers are then conserved for each autosome. Following this, a Random
Forest classifier was trained on the data to further reduce the number of SNPs based on
the mean Gini index and the mean accuracy decrease.

Random Forests have also been used to select SNPs in Genome-wide
association studies. In one such approach Random Forests classifiers are repetitively
trained on permuted sets of SNPs and their labels to calculate a p-value from the Gini
indices [39]. Only SNPs below a certain threshold are kept and used to train a final
Random Forests classifier that will serve to make predictions on new specimens. In this
study, the limited subsets of informative SNPs outperformed the full set of features in
classification of Alzheimer’s and Parkinson’s patients. It must be noted however that the

process is computationally inefficient.
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2.3.1.2 Feature space engineering for SNP data

SNP selection methods have been shown to be effective in reducing the
dimensionality of the data, however they are prone to overfitting and tend to be
computationally inefficient if done in a supervised manner [40,41]. Compressing the
entirety of the data, while preserving a maximum of information, generally provides a
reduced feature space that allows good generalization to new samples. Importantly, this
should be done in a way mindful to the pattern we hope to capture in the data. In the
case of geographical origin prediction or population assignment we can expect

phylogenetic relationships between the samples to be of interest.

2.4 Phylogenetic networks

Phylogenetic trees are widely used to represent and analyze evolutionary
relationships at every taxonomic rank. However, evolution rarely occurs in a perfectly
tree-like manner, making other less restrictive models and heuristics, such as a
network, more appropriate for complex evolutionary histories [42]. In fact, reticulate
evolution, whereby new lineages with novel combinations of phenotypes are created,
often precedes patterns of vertical descent with modification and most of the time
multiple evolutionary mechanisms are active simultaneously [43]. Moreover, it has been
suggested that the very concept of a tree of life is inappropriate to describe prokaryotic
evolution [44].

Phylogenetic networks, on the contrary, are a generalization of phylogenetic
trees under which other types of networks better suited to account for evolutionary
events such as hybridization, horizontal gene transfer, recombination, symbiosis and

symbiogenesis are also included [43,45]. Many different network types, differing from
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trees only by the presence of reticulation nodes, fit under the definition of a phylogenetic
network, but a major distinction can be made in the type representation they offer of
evolutionary history [42,45].

Reticulate networks, generally depicted as a rooted phylogenetic tree with
additional edges offer an explicit representation of evolutionary history where each node
represents an ancestral species (see Figure 1). Their inference is however difficult and

algorithms for inferring them are not practical and widely used [46].

(@) @ ¢ (b)

b c b a c

Figure 1 (a) Unrooted phylogenetic network, in which internal nodes do not necessarily represent
an ancestral state. (b) rooted phylogenetic network, in which internal nodes represent an
ancestral species. [47]

Split networks, on the other hand, usually drawn unrooted, offer an implicit
representation of evolutionary history where each node does not necessarily represent
an ancestral species or individual (see Figure 1) [45]. Such networks can be better
intuited if seen to be expressing affinity relationships, rather than genealogical ones,
wherein genetically similar individuals are arranged to be in close proximity [42,48]. A
number of well-established algorithms are available for computing them. Here we will

concentrate on split networks and the set of splits describing them.
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Split networks are in fact a graphical representation of an underlying split system
Y, composed of a number of splits. A split S is simply the weighted bipartition of the
taxon set X into non—empty and disjoint subsets A and B [46,49,50]. The components A
and B are equivalent to those obtained from the deletion of a single edge of a
phylogenetic tree T [46,49,50]. The notation © = A|B is used to represent a split. The
size of a split is defined as siz¢(S) = min{|A[,[B[} and a split of size one is said to be
trivial. It must be noted that many different split networks can represent the same set of
splits, but the contrary is not true. A weighted split system, in which each split is
assigned a positive weight corresponding to a measure of phylogenetic distance,

contains all the information needed to build a split network.

2.4.1 Splits systems

The distinction between a split system describing a phylogenetic tree and one
describing a phylogenetic network is that the former is said to be compatible, while the
latter is said to be incompatible, weakly compatible, or circular [46]. Two splits
S1 = A1|B1 and S2 = A2[B> are compatible if one of the intersections A1 N Az, A N By,
B1N Az and B1 M Bz is empty. In other words, a pair of compatible splits could be
represented by, or combined into, a single tree without reticulation nodes. A set of splits
Y. is said to be compatible if all pairs of split it contains are compatible and there exists
an unrooted phylogenetic tree 7' that represents X..

Phylogenetics networks are described by sets of splits that may or may not be
compatible. However, in practice, allowing for full incompatibility in a set of splits tends
to produce unnecessarily complicated networks [46]. Weakly compatible and circular

sets of splits were introduced to prevent this and have the added benefit of producing
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planar, or close to planar, outer-labeled networks. Such split systems cannot, of course,
be represented as a phylogenetic tree. Other types of split systems have also been
defined, such as octahedral split systems [51], but here we concentrate on weakly
compatible and circular split systems.

Three splits S1 = Ai|Bi1, S> = As2[B> and 53 = 43|Bs are said to be weakly
compatible if at least one of the intersections A1 N A2 N Az AN BaN B, BiN AN By
and B1 N BN Az is empty. A set of splits X is said to be weakly compatible if any three

splits it contains are weakly compatible. Interestingly, this set is linearly independent

and its cardinality does not exceed (];[) where N is the number of taxa [52].

A set of splits ¥ on X is said to be circular, if the taxa in X can be placed in a
circle such that every split in > can be represented by a line through the circle diving the
taxa into two sets. Equivalently, if there exists a cyclic permutation ™ = (21, .-, Zn) of the
taxa in X such that each split in ¥ has the form S = {Zp: Zp1, 2o HAX — {2p, Tp1a,, 24}
and 1 <p < ¢ <n [50]. As such, let °(7) the set of splits that can be obtained by a
bisecting line segment on the plane where the elements of = have been sequentially
placed in a circle [49]. Similarly, ¥ is circular if = S X°(7), There are (N — 1)! circular
orderings [53]. Unlike weakly compatible sets of splits which can contain crossing
edges, circular sets of splits can always be represented as planar, outer labelled

networks. Moreover, circular sets of splits are always weakly compatible.

2.4.2 Inferring phylogenetic networks
A phylogenetic network can be inferred from a set of trees [54], quartets [55-58]

or pairwise distances. Here we will concentrate on the algorithms used to produce a set
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of weakly compatible or circular splits from a pairwise distance matrix or dissimilarity

matrix, in this case phyletic distances.

2.4.2.1 Split decomposition

The first method to be introduced is called split decomposition, which
decomposes the distance matrix as a sum of weakly compatible split metrics, or
weighted splits, plus a residue known as the split-prime residue [46,52,59]. A major part
of random noise tends to end up contained in this residue [59]. Split decomposition is
however computationally inefficient and thus limited to very small datasets of 100
individuals or less.

Moreover, the algorithm tends to produce overly complicated split systems and
phylogenetic networks. This may seem like a purely visual consideration, but akin to the
problem of overfitting in machine learning, networks containing more incompatible splits
will always fit the data at least as well as purely tree-like split systems [60]. Parsimony is
thus an important consideration in the inference of a split system. Take the case of
lateral gene transfer, for example. Other, sometimes highly unlikely, evolutionary
scenarios such as convergent evolution or multiple independent gene loss events can

serve to represent the data equally well [60].

2.4.2.2 The NeighborNet algorithm

The NeighborNet algorithm is an agglomerative method derived from the familiar
neighbor joining that produces weighted, circular sets of splits. It tends to produce sets
of splits of higher resolution than split decomposition and is more computationally
efficient [47,61,62]. Importantly, the algorithm is consistent, producing a network that

exactly represents the distances if they are circular and a tree if the distances are
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additive [62,63]. It has however been stated that NeighborNet is sensitive to distorted
metrics, such as when the sequences used to calculate the dissimilarity matrix are too
distantly related [64].

The first step of the algorithm is to produce a linear ordering of the taxa following
a process analogous to neighbor joining. It is more appropriate to describe NeighborNet
as a greedy algorithm for finding circular split systems that best describes the input
distance matrix [65]. Nonetheless, in an agglomerative manner, a criterion is used to
merge nodes and the distance matrix is reduced accordingly. The major difference with
neighbor joining is that triples of nodes are merged instead of pairs, ultimately producing
a linear ordering of the taxa. At this stage, the split system is produced from the
ordering by taking all splits that respect circularity. Other similar algorithms use a
reverse agglomeration process [66].

Following the production of a circular ordering, split weights are then computed
for all splits respecting circularity using a non-negative least squares regression. Finally,
splits weighted under a certain threshold are eliminated and the remaining splits form

the weighted split system.

2.4.2.3 MC-Net algorithm

The MC-Net algorithm is also a distance-based method that proceeds in a way
similar to the NeighborNet algorithm by first finding a circular ordering of the taxa and
then weighing the obtained splits [67]. However, MC-Net uses a heuristic to find the
circular ordering instead of an agglomerative rule. An initial ordering is first produced
following a greedy algorithm. This ordering is then optimized following a standard

Monte-Carlo algorithm. The energy function simply defined as the sum of distances
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between neighbors in the ordering. Finally, the splits of a weighted in the same way as
the Neighbor-Net algorithm.

The authors found the energy score of orderings produced by MC-Net are lower
than those produced by NeighborNet. Furthermore, the split systems obtained through
MC-Net are generally simpler, containing fewer splits, than those obtained through

NeighborNet.

2.4.3 Algorithmic use of phylogenetic networks and trees

The most common application of phylogenetic networks is visualization for the
purpose of exploratory data analysis. In this sense, they are a type of agglomerative
hierarchical clustering, sometimes referred to as fuzzy clustering, allowing each taxon to
simultaneously be a member of many clusters [68]. However, phylogenetic networks
and their inference can serve to extract unknown patterns from the data in an
unsupervised way, but also to provide a compact representation of a dataset. They
have been shown to possess many of the good features of multivariate data
summarisation techniques such as PCA, without their known mathematical limitations
that produce unwanted artefacts [68]. Here we present a few examples of problems
where phylogenetic networks or trees are being used successfully as a data
transformation step in various algorithms or methods.

Metagenomics data can serve to discriminate healthy subjects from affected
ones in a number of diseases. In a recent study, metagenomics data from the gut
microbiota was used to identify and classify Inflammatory Bowel Disease patients [69].
A Convolutional Neural Network (CNN) model was employed for this purpose and the

operational taxonomic units present in the microbiota served as features, each sample
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presenting different levels. To transform the input space to something recognizable by a
CNN, a phylogenetic tree was inferred for all operational taxonomic units and served as
a measure of similarity, similar to the concept of neighborhood for pixels in a image.

In another type of problem, phylogenetic diversity and phylogenetic networks
were combined to obtain a measure of biodiversity. Split diversity is a score calculated
from the set of splits, applicable to a number of taxon selection problems [70]. Other
biodiversity or isolation indices considers both the internal structure of the network and
the set of subtrees they contain [71,72].

Phylogenetic networks have also been used as a visual aid for manual
classification of the Ferritin-like Superfamily proteins [73]. In this case, sequence
similarity among types of proteins was too low to allow for inference of function.
However, constructing phylogenetic networks from structural alignments of the proteins
yielded considerable improvement in the resolution of functional relationships and
enabled the authors to classify the proteins in a way that was not possible from
sequences alone.

Interestingly, phylogenetic networks have been applied to non-genetic datasets
that exhibit evolutionary structure such as languages [74,75] and cultural artefacts [76].
The term phylomemetic has been coined as a combination of meme (ideas and cultural
phenomena [77]), and phylogenetics to describe such relationships. Lateral gene
transfer and hybridization obviously have parallels in language. These are, it would

seem, considerably more common than their biological counterparts [78].
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Chapter 3

Mycorrhiza: combining phylogenetic networks and Random

Forests for prediction of ancestry from multilocus genotype data

3.1 Preface

In this study we present the result of our efforts to develop a machine learning
method aimed at predicting the geographical origin of biological samples in accordance
with the requirements of the BioSAFE project. The method which can be applied to a
wide range of data types, including SNP and microsatellites, is of trivial runtime
considering the use case and performs equivalently, or better than currently accepted
and widely used Bayesian methods.

Having reviewed the challenges posed by high dimensional SNP data and the
shortcomings of Bayesian methods, we propose an algorithm based on dimensionality
reduction and phylogenetic relationships. As has been previously discussed, the
ancestry of individual biological samples representing an ecological risk of invasion are
most likely marked by reticulate evolutionary events. Consequently, phylogenetic
networks are used here as a feature space reduction method that captures the structure
inherent to events such as hybridization, lateral gene transfer and recombination. The
reduced feature set, in the form of a split system, is then inputted to a Random Forests
classifier. We termed our method Mycorrhiza, a word defined “a symbiotic association

between a fungus and the roots of a vascular host plant.” [79].
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3.2 Abstract

The genotype assignment problem consists of predicting, from the genotype of
an individual, which of a known set of populations it originated from. The problem arises
in a variety of contexts, including wildlife forensics, invasive species detection, and
biodiversity monitoring. Existing approaches perform well under ideal conditions but are
sensitive to a variety of common violations of the assumptions they rely on. In this
paper, we introduce Mycorrhiza, a machine learning approach for the genotype
assignment problem. Our algorithm makes use of phylogenetic networks to engineer
features that encode the evolutionary relationships among samples. Those features are
then used as input to a Random Forests classifier. The classification accuracy was
assessed on multiple published SNP, microsatellite or consensus sequence datasets
with wide ranges of size, geographical distribution and population structure. It compared
favorably against widely used assessment tests or mixture analysis methods such as
STRUCTURE and Admixture, and against another machine-learning based approach
using PCA for dimensionality reduction. Mycorrhiza yields particularly significant gains
on datasets with a large average FST or deviation from the Hardy Weinberg equilibrium.
Moreover, the phylogenetic network approach consistently estimates mixture
proportions more accurately than the PCA variant. Mycorrhiza is released as an easy to

use open-source python package on GitHub at github.com/jgeofil/mycorrhiza.
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3.3 Introduction

3.3.1 Assignment methods

Assignment methods are a group of closely related methods that use genetic
information to determine the population membership of individuals from a given species.
For this purpose, the term “population” generally refers to a group of individuals in close
geographical proximity whose probability of interbreeding is higher than that of
interbreeding with other groups [4]. These approaches are thus mostly concerned with
events occurring on relatively short timescales, on the order of one to a thousand
generations [5,9]. In one version of the problem, called the assignment test, one aims to
estimate the probabilities that a multilocus genotype of unknown origin came from each
of a fixed set of known populations. This is equivalent to the classification problem in
machine learning. In another version, called genetic mixture analysis or genetic stock
identification, the objective is to estimate both mixture proportions and posterior source
probabilities for each individual. In this paper we present and evaluate a new machine
learning algorithm for genetic assignment based in part on phylogenetic networks.

Assignment methods have been used for a variety of applications, including
wildlife forensics [80-84], understanding migratory patterns and geographical
boundaries for conservation efforts [85] and the identification of hybrid individuals for the
management of invasive species [86—90]. Despite their wide range of applications in a
variety of fields and a number of well know software tools implementing various
algorithms (see below), little consensus exists about their use in classical supervised
classification problems. Furthermore, few of these software packages implement

machine learning standards and practices, such as cross-validation.
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3.3.1.1 Implementations and limitations of assignment methods

Assignment methods have mostly been implemented with frequentist, maximum
likelihood or Bayesian analysis algorithms [5]. Most approaches assume that the loci
used as features are at Hardy-Weinberg equilibrium and in linkage equilibrium
[5,8,26,91]. In other words, these methods essentially clusters individuals in Hardy-
Weinberg and linkage equilibrium populations, creating groups with distinct allelic
frequencies. In real-world populations, these assumptions are rarely fully satisfied for
the total set of available loci. They can even become meaningless if the boundaries of
natural populations are forced to accommodate geopolitical borders, rather than
reproduction boundaries. This may become necessary when assignment tests are
employed as a tool in legal cases opposing countries, in coordinated international
recovery efforts, or for the management of invasive species, for example [85,86,92].
Efforts have been made to overcome these limitations by relying on genetic distances
rather than allelic frequencies, without considerable success [34].

The widely used STRUCTURE [8,93] program is a model-based, Bayesian
clustering method for explicitly inferring population structure and probabilistically
assigning individuals to K populations [8,26]. Although originally introduced as an
unsupervised clustering approach, the method has since been enhanced with a semi-
supervised model in which some of the individuals can be pre-assigned to their known
population of origin [22,94]. This capability can also be used to emulate what is known
as supervised learning in the machine learning field. Unfortunately, STRUCTURE
suffers from its high computational complexity when applied to large SNP datasets, in

which case runtime can be on the order of days or even weeks [95]. As an alternative,
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FastSTRUCTURE improves the computational efficiency of STRUCTURE using a
variational Bayesian framework, thereby making it two orders of magnitude faster [95].
However, unlike STRUCTURE, it cannot account for linkage disequilibrium.

Admixture [33] is another tool for maximum likelihood estimation of individual
ancestry. It is based on the same statistical model as STRUCTURE but optimized with a
block relaxation algorithm [32]. According to the authors, it is as accurate as
STRUCTURE, but with the added advantage of being much more computationally
efficient. In practice however, STRUCTURE is sometimes more accurate than
Admixture as it can partially account for linkage disequilibrium between markers [26].

Bayesian clustering methods in general come with many known limitations. They
are, for example, known to lose their ability to detect subpopulations at very low levels
of population differentiation. Some suggest FST values under 0.02 will cause them to
fail to resolve all populations [96], while others suggest values in the 0 to 0.05 range
[34]. Nonetheless, STRUCTURE has been shown to perform well at levels of population
differentiation as low as 0.02 [96]. Studies have also shown that when the parameter K
is smaller than the actual number of populations, STRUCTURE can produce clusters
inconsistent with their evolutionary history [91]. This can also happen when the size of

populations is unbalanced [30,31,91,97].

3.3.1.2 Other approaches

Methods based on Principal component analysis (PCA) or other multivariate
analysis methods have long been used as fast and efficient tools to analyse structure in
genomics data sets [98—-104]. When used simply as a visualization tool, these methods

do not however, allow for straightforward interpretation of individual ancestry from the
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low-dimensional projection they produce. Alternative clustering methods, such as
discriminant analysis of principal components (DAPC) [105], have been developed with
the aim of providing fast and flexible exploratory tools that produce easily interpretable
results [105]. However, these methods either only allow for hard clustering [105,106] or
provide questionable admixture results with soft-clustering [107]. Multivariate analysis
approaches are nonetheless prone to mathematical artefacts, leading to spurious
conclusions about population structure [108-111].

A number of R packages have been developed with the goal of offering machine
learning solutions for genomics. The package Adegenet was developed with the aim of
bridging the gap between multivariate data analysis solutions and genomics packages
by implementing a number of clustering algorithms such as snapclust and discriminant
analysis of principal components [104,112,113]. The package can calculate a number of
population statistics and perform spatial genetics analyses [114-116]. It must be noted
that, snapclust [113], the algorithm for population assignment implemented in the
package, is also based on the same assumptions about Hardy-Weinberg equilibrium as
Bayesian methods.

Overall, no existing software addresses all of the shortcomings and limitations
mentioned above. In this paper, we set out to develop a new method for genotype
assignment and mixture analysis rooted in machine learning principles that would
address these problems, while keeping in mind and taking advantage of the

phylogenetic structure present in genomics datasets.
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3.3.2 Phylogenetic networks as feature engineering

SNP data poses the problem of high dimensionality, otherwise known as the
“curse of dimensionality” in the machine learning field [117], where the number of
features (SNPs) exceeds the number of training examples (labeled specimens).
Unchecked, this often leads to overfitting and poor classifier performance. A first
dimensionality reduction approach is to select a subset of features based on some
criteria or score. A large number of such supervised and unsupervised feature selection
methods have been applied to SNP data [41,118-120]. However, some of these
methods are themselves prone to overfitting and it has been demonstrated that this can
easily lead to inflated estimation of prediction accuracy. As a matter of fact, is has been
noted that a number of genomics studies have overlooked the need for cross-validation
[40,41].

Another possible solution is to project the data into a lower dimensional space
while preserving as much information as possible. PCA is probably the best known
dimensionality reduction method and is commonly applied to genotype data [121].
However, PCA was not designed to account for phylogenetic structure in populations.

The familiar phylogenetic tree can undoubtedly be employed as a means of
dimensionality reduction (see below). Unfortunately, the model assumes evolutionary
histories dominated by speciation and descent with modification. This is not appropriate
in population genetics settings where populations are inter-fertile and exchange genetic
material. Phylogenetic networks have been introduced to capture and represent non
tree-like evolution [42,45]. Those that allow for hybrid nodes, or reticulations, are better

suited to account for more complex evolutionary events such as hybridization, horizontal
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gene transfer and recombination [52,122,123]. One such type of network, the split
network, can be interpreted as a combinatorial generalization of unrooted phylogenetic
trees [45]. Since split networks are at the core of Mycorrhiza, we provide additional
background information on this type of network.

Split networks. Both phylogenetic trees and networks are composed of a set of
splits, referred to as a “split system”. A split S, of the form S = AlB|is a bipartition of the
set of taxa (or specimens) into two nonempty subsets A and B [25]. The distinction
between a split system describing a phylogenetic tree and one describing a
phylogenetic network is in the rules that the set of splits must satisfy. Two splits
S1 = A1|B1 and S2 = A2[B> are compatible if one of the intersections A1 N Az, Ay N By,
B1 N Az and B1 N B2 is empty. A set of splits ¥ is said to be compatible if all pairs of split
it contains are compatible; in that case, there exists an unrooted phylogenetic tree T
that represents >. Phylogenetic networks are based on a set of splits that are not
necessarily compatible, but may instead be weakly compatible, or circular [26]. Three
splits S1 = A1[B1, S2 = A2|Bs and S3 = As|Bs are said to be weakly compatible if at least
one of the intersections A1 N Ay N A3, AiNBaN B3 BiNAyNByand BiNBxNA;sis
empty. A set of splits ¥ is said to be weakly compatible if any three splits it contains are
weakly compatible. A set of splits > on X is said to be circular, if the taxa in X can be
placed in a circle such that every split in X can be represented by a line through the
circle diving the taxa into two sets. Unlike weakly compatible sets of splits which can
contain crossing edges, circular sets of splits can always be represented as planar,
outer labelled networks [47,124,125]. Moreover, circular sets of splits are always weakly

compatible.
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Figure 2 - Example phylogenetic network and corresponding split system. a) Phylogenetic
network. The taxa are denoted by the letters A to E and splits are numbered from 1 to 10. Each
unique split is represented by one line (trivial split, e.g. split 2, in blue) or multiple parallel lines
(e.g. split 6, in red). b) Split system. Each taxon is placed on either side of the splits, as indicated
by a binary flag.

A split network, or phylogenetic network, is a graphical representation of an
underlying split system. An example phylogenetic network, along with the associated
split system represented by a binary matrix is shown in Figure 2. Samples are

represented by the letters A to E and splits by the number 1 to 10. Samples with the
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same boolean flag (O or 1) are placed on the same side of the split. For example, in
split 6 samples A and E are on one side of the bipartition and samples B, C and D are
on the other. Splits for which one of the subsets is of size one (e.g. split 2, in blue) are
said to be trivial. Trivial splits represent genetic divergence that is unique to the lone
sample.

In the graphical representation of a split system, each split is represented by one
or more parallel edges. Split 6, for example, is represented by the 3 red edges. Note
that an edge can be associated with only one split. In most cases a weight,
corresponding to a dissimilarity measure is associated to each split. This dissimilarity
measure can be a measure of evolutionary distance for example. The evolutionary
distance between two taxa is thus the sum of the weights of all splits that place these
taxa in different subsets.

Split networks can be inferred from pairwise distances between the set of taxa.
The NeighborNet algorithm will produce a split system that perfectly fits the input

distance matrix, provided it is circularly decomposable [63,65]. The running time of

NeighborNet is O(ng), making it is suitable for large data sets with thousands of samples
and millions of loci.

Phylogenetic networks are generally used for visualisation, data mining and
exploratory data analysis as a means of fuzzy clustering [68]. Interestingly, there also
exists a few recent cases of network inference being used as a data transformation
algorithm [69—72]. This makes sense considering that the splits of a circular split system
are linearly independent and very little information is lost when resolving a distance

matrix [126]. We therefore propose the use of split system decomposition as a feature
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space reduction method. For our purpose, the reduced feature set is then inputted to a
Random Forest classifier for geographical origin prediction. We named this approach
Mycorrhiza, a term defined as the symbiotic association between a fungal network and
the roots of host plants [127].

We first compared the assignment accuracy of our approach with the commonly
used Bayesian assignment methods STRUCTURE and Admixture and a variant where
split system decomposition is replaced by PCA. We then analysed the effect of marker
type, sample size, number of populations, population differentiation and other
population statistics on classification accuracy. Overall, we show that Mycorrhiza is
more accurate than competing approaches, in particular in cases where population
differentiation is high. Finally, we considered the implications of computational efficiency

and flexibility of the different methods.

3.4 Methods

Mycorrhiza is composed of two main steps. In the first step, a phylogenetic split
system is inferred from the genotype data of all individuals (of both unknown and known
origin). In the second step, the placement in the split system of individuals of known
origin, along with their categorical label corresponding to geographical origin, is used to
train a Random Forest classifier. Following this, the trained model is used to make

predictions from the split placement of individuals of unknown origin.

3.4.1 Step 1: Split system inference
To produce a split system, pairwise genetic distances are calculated for all N
individuals over M loci. For SNP and sequence data, the Jukes-Cantor distance was

calculated with MEGA-CC [128]. For microsatellite data, the distance was calculated as
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the number of loci with different copy number. Following this, a phylogenetic split
system is built from the pairwise distances. Based on this matrix, the NeighborNet
program from the SplitsTree4 (version 4.14.6) package [45] is used to obtain a circular
phylogenetic split system. Only splits with a weight above 10~ are considered. Although
both the labeled and unlabeled examples are used to build the split system, this is done
in an unsupervised fashion, without knowledge of the categorical population labels.
Finally, feature vectors of length S — N are extracted from the S dimensional split
system, to be used in the learning and prediction step. Each individual is represented by
a binary vector corresponding to its placement on either side of each of the non-trivial
splits. In Figure 2, sample A, for example, would be represented as with feature vector
[1,1,0,0,0], Trivial splits are ignored because they do not have any discriminatory power.
In practice, a split system can contain up to a few thousand splits, depending on the

number of samples and the complexity of the population structure.

3.4.2 Step 2: Training and predictions

The feature vectors built based on the split system in step 1 are used as input to
a Random Forest classifier [129]. The scikit-learn implementation of a Random Forest
was used for this purpose with default parameter settings, except for the number of
estimators which was set to 60 (this value was determined on an ad-hoc basis, see
discussion) [129]. Alternate families of classifiers such as fully connected neural
networks were also evaluated, but they proved less accurate in this context.

The trained model is then used to make predictions for unlabeled examples,
based on their split vector. The output of Mycorrhiza corresponds to the probability that

a sample belongs to each of the K populations, as estimated by the random forest
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predictor. If the desired output is a hard classification to a single population, each
sample is attributed the population label that has the highest probability. Alternately, the
probability distribution can be interpreted as the individual's mixture proportions over the

K populations.

3.4.3 Partitioned Mycorrhiza

In machine learning, ensemble methods, which combine the output of multiple
classifiers trained on different subsets of the features, have been shown to reduce
generalization error [130]. This is, in fact, the strategy behind Random Forests [131].
We thus developed a variant of Mycorrhiza called Partitioned Mycorrhiza in which P
different Mycorrhiza predictors are trained, each on disjoint subsets of loci. This is also
known as feature set partitioning and multiple strategies have been explored on how to
build the subsets [132]. We presumed that building the subsets sequentially, preserving
the order of the loci in the genome, would help capture finer local phylogenetic structure
that would otherwise be lost by using the complete feature set. In fact, ancestry
proportions are known to vary along the genome and a number of assignment methods
are focused on detecting population structure for individual chromosomal segments
[23,24]. The final output is obtained by averaging the P predictions. By default, P is set

to 10.

3.4.4 PCA variant

For the PCA variant, the first step of the algorithm is replaced by a standard PCA
analysis [133]. Here, the placement of a sample in the D-dimensional principal
component space yields its feature vector. We used the scikit-learn implementation of
PCA for this purpose. After evaluating different choices of values for the number of
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components D, it became clear that no improvement in accuracy was obtained beyond
D =50, and that the results were quite robust to that parameter. We thus set
D =min(N,50) for all data sets. If needed, this hyper-parameter could easily be

optimized on a per-dataset basis, e.g. using standard cross-validation procedures

3.4.5 Implementation and software package
Mycorrhiza is released as an easy to use open-source python package on

GitHub at github.com/jgeofil/mycorrhiza. The package depends on the SplitsTree

software [134]. Data can be inputted in a number of commonly used formats in
population genetics. Partitioning parameters can be used in their default setting or
optimized with predefined procedures. Common cross-validation methods are
implemented to calculate classification accuracy, but static training and testing sets can
also be used. Estimated mixture proportions can be outputted as a text file or as a figure

similar to those produced by distruct [135,136].

3.4.6 Comparison against STRUCTURE and Admixture

For comparison, we also performed the same classification tasks using
Mycorrhiza, Partitioned Mycorrhiza, PCA+RF, Partitioned PCA+RF, Admixture V1.3.0
[32,33] and STRUCTURE V2.3.4 [8,26-28]. Classification accuracy was evaluated
using 5-fold cross-validation. For the two Mycorrhiza and PCA variants, dimensionality
reduction was performed first, with all training and testing examples, but in an
unsupervised manner, followed by standard 5-fold cross-validation of the Random
Forests predictors. For Admixture and STRUCTURE, cross-validation was emulated as
follows. Both programs include an option for supervised learning, by which the
population of origin can be fixed for certain individuals, effectively using them as the
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training set. For example, to achieve 5-fold cross-validation, five files are outputted with
identical genotype data, but each with a different set of samples for which the
supervised learning flag is enabled. The program is then run on each of these files
separately. For Admixture, supervised analysis was enabled with the --supervised flag
[137], and default settings were used otherwise. For STRUCTURE, supervised analysis
was enabled with the POPFLAG and USEPOPINFO flags. These parameters tell the
program that the input file contains a column of population identifiers and another
column indicating for which samples the population information should be taken into
account. The burn-in period was set to 20 000, the number of MCMC repetitions to 100

000 and all other parameters were left in their default state.

3.4.7 Datasets

We collected a number of published geotagged genotype datasets (Table 1).
Ebola data was obtained from the NIAID Virus Pathogen Database and Analysis
Resource (VIPR) [138]. Rice data was obtained from the Rice Diversity Project website
[139]. A. thaliana data were produced by the Weigel laboratory at the Max Planck
Institute for Developmental Biology [140]. S. musiva data were obtained from the
authors [141]. Human data were obtained from the 1000 genomes project. All other data
were obtained from the Data Dryad database [142].

Most datasets had been quality-controlled for their respective publications and
were thus used unchanged. Some authors proposed a selected set of markers deemed
to be informative for their classification task. To avoid any possible biases, we instead

used the full set of markers. SNP datasets were filtered for a minor allele frequency of

40


https://paperpile.com/c/bhoxAW/yUED
https://paperpile.com/c/bhoxAW/0See
https://paperpile.com/c/bhoxAW/CH83
https://paperpile.com/c/bhoxAW/mjTh
https://paperpile.com/c/bhoxAW/kJol
https://paperpile.com/c/bhoxAW/8lTy

0.05 and disallowing any sites for which data is missing for certain individuals. These

are the A. thaliana, human, S. musiva and rice datasets.

3.4.8 Number of loci and partitioning parameters

To investigate the effect of feature set size on classification accuracy, the
number of loci used as input was varied by randomly downsampling to the desired
number of loci m. Assignment accuracy was evaluated with 5-fold cross-validation. This
was repeated 5 times and the results were averaged. For SNP data, m was varied from
50 to M by powers of 2. For microsatellite data, m was varied from 2 to M by
increments of 2. For sequence data, the values of m were chosen more arbitrarily,
depending on M which varied greatly between datasets.

For Partitioned Mycorrhiza, the same procedure was applied to evaluate the
effect of the number of partitions on classification accuracy. The m loci were further
divided into psubsets and classification accuracy was averaged over five runs for every
combination of m and p. For SNP data, P was set to 1, 2, 10, 50, 100 or 500. For
microsatellite data, P was set to every value between 1 and to M. For sequence data,

the values of » were again chosen more arbitrarily.

3.4.9 Population statistics

Expected heterozygosity was calculated according to Nei’'s unbiased estimate

[18] for the total population (/1c) and each of the K subpopulations (Hf). The estimate is

thus given by

M
1 SR 2N(1 =372 )
HP — 72 M
7D DT
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where M is the number of loci, N is the number of samples and T is the frequency of
allele i at locus m. Observed heterozygosity was calculated as the average ratio of
heterozygous loci for each sub-population. Deviation from the Hardy-Weinberg
equilibrium was calculated as the average inbreeding coefficient over all
subpopulations, given by

HS — H?
HS

e

AHW = Fig =

where H? and H; are the averages of H and H} over all subpopulations [19]. The
fixation index was calculated in two ways. The first, appropriate for diploid genotypes, is
given by

HT o HS
HT

e

Fsr =

where H. is the expected heterozygosity of the total population [19]. The second,
appropriate for both haploid and diploid genotypes, according to Hudson’s [143]

estimate based on genetic distances, is given by

H,
For=1—-—
b

where H., is the mean number of differences between sequences sampled from the
same subpopulation and s is the mean number of differences between sequences

sampled from different subpopulations.

3.5 Results

We analysed several datasets of different types (SNP, microsatellite, sequence)

and ploidy. Summary statistics for these datasets are presented in Table 1. Mycorrhiza,
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Partitioned Mycorrhiza, PCA+RF, Partitioned PCA+RF, STRUCTURE and Admixture

were applied in turn to each of these datasets to evaluate classification accuracy.

Table 1 - Summary statistics of the datasets on which assignment methods were tested

#Samples | pop

Dataset Type Ploidy #Loci #Pop #Samples min max FST FSTd
Arabidopsis thaliana [140] SNP D 458 075 10 979 28 243 0.15 0.24
Brown Rat [144] SNP D 32127 8 185 12 40 0.11 0.32
Gipsy Moth [145] SNP D 2 327 8 90 10 12 0.37 0.56
Human [146] SNP D 530973 26 780 30 30 0.10 0.14
Rice [147] SNP D 458 475 20 740 20 50 0.16 0.29
Septoria musiva [141] SNP H 519848 8 83 7 19 NA 0.31
Asian Ladybird [148] STR D 18 6 1318 87 501 0.03 0.05
Mycosphaerella fijiensis [149] STR  H 21 21 678 12 66 NA 0.52
Oriental Fruit Moth [150] STR D 13 16 376 8 72 0.19 0.29
Yellow Fever Mosquito [151] STR D 12 13 1152 30 185 0.16 0.23
Barnacle [152] SEQ S 694 12 434 26 57 NA 0.14
Ebola [138] SEQ P 18985 3 794 239 300 NA 0.09
HIV [153] SEQ S 3287 5 628 28 150 NA 0.19
Seabird tick [154] SEQ S 456 7 432 5 131 NA 0.62

D = diploid, H = haploid, P=polyploid, S=consensus sequence of diploid organism

3.5.1 Assignment accuracy

Figure 3 shows the accuracies obtained by each tool on each dataset. Overall,
Mycorrhiza and Partitioned Mycorrhiza, both of which were run with the same set of
default parameters for each dataset, correctly assigned individuals to their populations
of origin with greater accuracy than both STRUCTURE and Admixture on the majority of
tested datasets. Furthermore, when compared only to their PCA counterparts,

Mycorrhiza and Partitioned Mycorrhiza perform similarly or better on all tested datasets.
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Figure 3 - Classification accuracy estimated using 5-fold cross-validation for the tested
assignment methods.

With SNP data, Partitioned Mycorrhiza provided a slight advantage over
Mycorrhiza and both PCA counterparts on the A. thaliana, Brown rat, S. musiva and
Rice datasets. Generally, STRUCTURE and Admixture attained lower accuracy, with
the exception of the human dataset for which Admixture outperformed our methods.
With microsatellite loci, Partitioned Mycorrhiza considerably outperformed all other
methods on all tested datasets, by a margin ranging from 9 to 27% in accuracy. Finally,

with sequence data, Mycorrhiza, Partitioned Mycorrhiza, PCA+RF and Partitioned
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PCA+RF performed nearly equally well on most datasets. The only exception is the
Barnacle data, for which Partitioned Mycorrhiza provided a 39% increase in accuracy

over the second best method.

3.5.2 Number of loci and partitioning parameters

We evaluated the impact of the number of loci used as input for all methods by
executing them on randomly downsampled data sets (Figure 4). With SNP data, the
accuracy of Mycorrhiza and PCA+RF (either with or without partitioning), as well as
Admixture gradually increases with the number of loci, generally plateauing after 10,000
loci. Interestingly, the number of loci at which the plateau in accuracy is reached with
SNP data seems to depend on number of populations present in the dataset.

Results are similar for microsatellites and sequence data, although most datasets
are too small to reach a plateau in accuracy, suggesting that the inclusion of additional
loci would further improve classification performance. Note that we expect that non-
random loci selection would allow reaching a similar accuracy with much fewer loci.

Surprisingly, the results obtained with STRUCTURE were somewhat more erratic.
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Figure 4 - Accuracy versus the number of randomly selected loci for Mycorrhiza, Partitioned
Mycorrhiza, PCA+RF, Partitioned PCA+RF, STRUCTURE and Admixture. SNP (*), microsatellite (1)
and sequence (o) datasets. STRUCTURE did not terminate within the allocated time on the A
thaliana, rice and human datasets when the number of loci, and model complexity, were too high.
Partitioned Mycorrhiza and Partitioned PCA+RF can only be executed with 1 or more locus per
partition on the microsatellite datasets.
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We also assessed the extent to which loci partitioning improves performance for
Mycorrhiza and PCA+RF (Supplementary Figure 1). Setting the number of partitions to
between 10 and 50 provided a consistent but moderate improvement in accuracy on
nearly all SNP datasets, with the notable exception of the Human dataset, where best
results were obtained without partitioning. Accuracy gains obtained by partitioning are
most striking for the microsatellite datasets, where a number of partition around 10,
corresponding to partitions of only 1 or 2 microsatellites each, yields a 30 to 50%
improvement in accuracy. Results for sequence data were not as consistent and did not
indicate strong trends, although setting the number of partitions to 10 is near-optimal for
all datasets except for the oriental fruit moth. Based on these results, the default

number of partitions for Partitioned Mycorrhiza was set to 10 for all data types.

3.5.3 Impact of population structure statistics on prediction
accuracy

We next studied how population structure parameters (expected and observed
heterozygosity, deviation from the Hardy-Weinberg equilibrium and the fixation index of
subpopulations) differentially impact prediction accuracy of both Mycorrhiza and
Partitioned Mycorrhiza compared to STRUCTURE and Admixture (Figure 5). As
expected, population differentiation and levels of heterozygosity influence the ability of
STRUCTURE and Admixture to capture population structure. Both variants of
Mycorrhiza performed better than these two tools on SNP datasets for which sub-
populations had a high fixation index. The advantage of our methods also increases
proportionally to the level of heterozygosity of the total population and deviation from the

Hardy-Weinberg equilibrium, but decreases proportionally to the average sub-
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population heterozygosity. With microsatellite and sequence data, the trends are not as

clear and, consequently, more datasets would be needed to draw conclusions.
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Figure 5 - Difference in assignment accuracy on SNP datasets only between (a) Mycorrhiza and
STRUCTURE or Mycorrhiza and Admixture and between (b) Partitioned Mycorrhiza and

STRUCTURE or Partitioned Mycorrhiza and Admixture,

as a function of the expected

heterozygosity (He), observed heterozygosity (Ho) and deviation from the Hardy-Weinberg
equilibrium (AHW), and average population fixation index, calculated from heterozygosity (FST)
and from genetic distances (FSTd).
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3.5.4 Estimation of mixture proportions

Although Mycorrhiza and Partitioned Mycorrhiza was not specifically designed to
estimate population mixture proportions, we observe that the population membership
probabilities it outputs closely resemble those obtained with STRUCTURE, which is
widely acknowledged to be accurate at estimating population mixture proportions. An
example output representing mixture proportions obtained by all methods from the S.
musiva dataset with 800 loci is shown in Figure 6. Notice also how PCA+RF appears to
overestimate the contribution of secondary populations, even on datasets for which it

performs well in terms of classification accuracy.
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3.5.5 Runtime

The runtime of Mycorrhiza with 5-fold cross-validation on each dataset is
presented in Figure 7. Time was calculated with no partitions on a single core of a
standard laptop computer (Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz). All runtimes
were under an hour and most were under 10 minutes. They increase cubically with the
number of samples, and linearly with the number of loci, although under approximately
10 000 loci only the former has a significant impact. The number of populations in the
datasets had no discernable impact on runtime. Partitioned Mycorrhiza with P partitions
takes approximately P times longer to run than Mycorrhiza. For comparison, the runtime
of STRUCTURE was at least five times larger, resulting in certain datasets taking
several days, weeks or months to analyze. Admixture, is considerably faster than
STRUCTURE and was comparable to Mycorrhiza in execution time (under an hour),

although slightly slower.
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Figure 7 - Runtime of Mycorrhiza on each dataset analyzed, as a function of the number of loci,
samples and populations.

3.6 Discussion and Conclusion

We introduce Mycorrhiza, a machine learning method making use of
phylogenetic networks to assign multilocus genotypes to their geographical origin.

Mycorrhiza proved to be highly flexible, outperforming or equaling the other
methods on all data types. On a side note, this flexibility will likely allow for Mycorrhiza
to be applied to other, non-genetic, data types possessing tree-like relationships.
Indeed, phylogenetic networks have in fact been used to model relationships between
languages [74,75] and cultural artifacts [76].

Mycorrhiza proved to be highly accurate, flexible and robust, outperforming or
equaling in accuracy the most popular existing methods (STRUCTURE, Admixture) on
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a variety of datasets based on SNPs, microsatellites, and sequence. The consistency of
results produced by Mycorrhiza provides a considerable advantage for the method:
default parameters will provide near-optimal results in almost all cases. Mycorrhiza’'s
accuracy improves gradually as the number of markers available increases, to
eventually plateau, but never decrease. Furthermore, methods such as STRUCTURE
and Admixture depend on assumptions about population structure that are often unmet
in practice. Mycorrhiza is not directly dependent on these assumptions, and indeed, the
data sets where populations exhibit high fixation index or strong deviation from Hardy-
Weinberg equilibrium are those where the benefit of Mycorrhiza is most striking.
Unsurprisingly, Admixture and, to a lesser extent, STRUCTURE performed poorly on
sequence data due to the fact that allelic frequencies of diploid or polyploid genotypes
are impossible to estimate from a reduced sequence. Mycorrhiza, being based on
distances rather than allelic frequencies, is seemingly less affected by this loss of
information. Finally, although it is not explicitly designed for that purpose, Mycorrhiza
produces admixture proportion estimates qualitatively similar to those of STRUCTURE,
although additional work would be needed to quantify the accuracy of those estimates.
Mycorrhiza is thus a tool that is simple and straightforward to use, requiring little or no
parameter optimization, and exhibiting a high degree of robustness to the type of data at
hand and the parameters of the population structure. Mycorrhiza would, in particular, be
a tool of choice when dealing with geopolitically, rather than genetically, defined
populations. For example, this is necessary when assignment test must be used in
international trade discussions or to coordinate risk mitigation of invasive species

between countries.
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With the increasing throughput and affordability of DNA sequencing, genotype
assignment problems are quickly becoming very large, both in terms of the number of
samples and number of loci they contain. Computationally efficient algorithms are thus

more necessary than ever. Mycorrhiza’s running time, which is dominated by that of the

O(n’) NeighborNet algorithm [61], remains moderate (less than one hour) on even the
largest datasets available today. Moreover, improvements to the NeighborNet algorithm
are published on a regular basis, including a recent report of 2-fold speed-up and 6-fold
reduction in the memory footprint [155]. Notably, unlike for Bayesian methods, the
numbers of loci and of populations in the dataset have a negligible effect on runtime.
Obviously, running Partitioned Mycorrhiza with a large number of partitions increases
running time proportionally, but the process is easily parallelized. Overall, Mycorrhiza
not only provides better classification accuracy in most datasets tested, but also
reduces computation time considerably.

The difference in accuracy between Mycorrhiza and STRUCTURE is particularly
strong for microsatellite data. This could be due to several factors. First is the higher
information content of each microsatellite locus, on average approximately 14 alleles
per locus for the data used in our study compared to 2 for the SNP datasets. Second,
microsatellites are mostly non-coding, whereas SNP are mostly coding. These genetic
marker types are thus under very different levels of selective pressure. Lastly, all
studies from which the microsatellite data were taken are mainly about population
genetics and the markers were chosen accordingly. The same cannot be said about

most of the SNP datasets used in this study.
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Although we limited our performance comparison to the two most widely used
approaches in the field, some of the data sets analyzed here had been previously
analyzed by their authors using other tools. This provides additional points of
comparison, albeit in a less rigorous framework. Picq et al. analyzed their gipsy moth
data sets using DAPC [105], reporting 100% classification accuracy with all 2327 SNPs,
as well as with a selected set of 48 SNPs. We produced similar results, obtaining
perfect accuracy with as few as 200 randomly selected SNPs (99% with 100 randomly
selected SNPs and 97% with 50). Results obtained for the yellow fever mosquito
microsatellite data set are also consistent with the authors’ analyses. Using GeneClass2
[156] on 10 non-problematic loci, the authors reported 87.7% classification accuracy. In
our hands, STRUCTURE obtained a similar performance (88.9%), but Partitioned

Mycorrhiza did much better, obtaining an accuracy of 98.4%.

3.6.1 Future work

While already fast and accurate, several directions would be worth investigating
to improve Mycorrhiza and further broaden its range of applications. Firstly, only
phylogenetic networks built using the NeighborNet algorithm were used in this study.
Although this algorithm is known to produce well resolved and simple networks in most
conditions, it would be interesting to study whether other network building algorithms
could perform better, and under what conditions. Similarly, classifiers other than random
forests, such as deep neural networks, may be advantageous for data sets with an
extremely large number of samples; replacing our random forest predictor by such an

alternative would be straightforward. Finally, Mycorrhiza currently makes no use of the
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weights assigned to splits by NeighborNet. Those weight could instead be used, e.g. to
bias the sampling of the corresponding features by the random forest algorithm.

It is also worth noting that Mycorrhiza is applicable not only to genotypic data, but
also to any other type of population-specific traits. All that would be needed is the
definition of a suitable phenotypic distance measure. In fact, phylogenetic networks
have even been used to model relationships among languages [74,75] and cultural
artifacts [76], and Mycorrhiza may be applicable to these data types as well.

In conclusion, by combining sophisticated phylogenetic network reconstruction
algorithms with machine learning approaches, Mycorrhiza represents a novel solution to
the genotype assignment problem. Its accuracy, scalability, and most importantly its
robustness to data types and sizes, and properties of underlying population structure,

should make it an attractive solution for a wide array of population genetics researchers.
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3.7 Supplementary material
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Figure 8 - Linear interpolation of the classification accuracy versus the number of loci and the
number of partitions for Mycorrhiza on datasets (a) A. thaliana, (b) Brown rat, (c) Human, (d) rice,
(e) S. musiva, (f) Gipsy moth, (g) Asian ladybird, (h) M fijiensis, (i) Oriental fruit moth, (j) Yellow
fever mosquito, (k) Barnacle, (I) Ebola, (m) HIV (n) Seabird tick.
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Chapter 4

Discussion and conclusion

The BioSAFE project aims to deploy genomics tools to reduce the risk posed by
invasive species in Canada. Central to the effort of this project was the development of
a machine learning algorithm to predict the geographical origin of biological samples.
We presented Mycorrhiza, a machine learning algorithm-based dimensionality reduction
of the feature space and phylogenetic relationships.

Mycorrhiza and Partionned Mycorrhiza meet all the requirements put forth by the
BioSAFE project by capturing reticulate evolutionary events and being computationally
efficient. Moreover, we tested our method for classification accuracy and admixture
analysis on a variety of real-world datasets in comparison with two of the most used
assessment methods in the field. Having identified the shortcomings and properties of
Bayesian assignment algorithms, were able to demonstrate quantitatively in which
cases Mycorrhiza possess an advantage in comparison with currently used methods.
Moreover, by also replacing the phylogenetic network inference with a PCA analysis, we
also demonstrated that Mycorrhiza and Partitioned Mycorrhiza do in fact capture
phylogenetic structure, and consequently provide better classification accuracy.

Notably, by replacing model-based algorithms with a model-free algorithm our
work inscribes itself in a paradigm shift in the biological sciences engendered by
modern developments in the machine learning field [157]. In addition to its role in the
BioSAFE project, we released Mycorrhiza as an open-source in hopes of stimulating

interest in the method and encouraging further improvements.
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4.1 Directions for future work

As previously stated, it would be interesting to determine if Mycorrhiza can be
successfully applied to different types of data presenting phylomemetic structure.
Obvious examples include languages and cultural artefacts, but we can also imagine
how the algorithm could aid in predicting binding affinities of small molecules in drug
discovery for example. The reconstruction of evolutionary relationships from sequences
in genomic and proteomic databases has already been used to generate leads in drug
discovery [158].

In fact, many different examples of phylogenetic structure being harnessed to aid
in prediction of certain traits can be found. In one case, it was shown that producing a
phylogeny from ethnomedicinal biological responses can aid in the predicting the
medicinal properties of plants [159]. In another similar case, the authors found
interesting correlations when the medicinal uses of plant families were mapped onto the
corresponding molecular phylogeny [160]. In yet another case, the phylogenetic profiles
of gene conservation were used to aid in predicting the subcellular localization of
proteins [161]. However, in each of these cases phylogenetic trees are employed as
opposed to phylogenetic networks. It would thus be interesting to see if Mycorrhiza can
be applied successfully to this type of problem or, more generally, phenotype prediction
problems from molecular or not-molecular based phylogenies. As a matter of fact, with
the need for pathogenicity and risk prediction, the BioSAFE project presents an
exceptional opportunity to extend the applicability of Mycorrhiza.

Currently, there are no methods to insert one or more taxa into an existing

phylogenetic network. Developments in this direction could prevent the need to retrain
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Mycorrhiza on the entirety of the data when predictions need to be done on new
examples. In informal tests, we achieved interesting results for the insertion of a taxa in
an existing phylogenetic network by employing simulated annealing and evolutionary
algorithms. This would allow for a phylogenetic network to be built from only the training
samples. The insertion algorithm could then be used to produce a split placement for
the testing samples, which would be used as input the trained model to make
predictions. The concern here is not to avoid potential overfitting, but for cases where
predictions are done “online”, from a stream of new samples. In such cases, eliminating
the need to retrain the model for each new sample would provide considerable

efficiency improvement.
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