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Abstract

Invasive species are an ongoing concern for countries in which natural resources 

play a vital economic and social role. In Canada, species such as the Asian long-horned 

beetle,  Dutch  elm  disease,  sudden  oak  death  and  the  Asian  gypsy  moth  threaten 

forests and the sectors of industry that profit from them. The economic risk is estimated 

at  up  to  $800M  annually.  Machine  learning  methods  that  quickly  and  accurately 

determine the taxon, geographic origin, and pathogenic fitness of biological samples 

from genomics data would constitute a valuable tool for risk reduction. 

In  this  thesis,  we  reviewed  concepts  of  population  genetics,  phylogenetic 

networks,  genotype  data  and  current  methods  for  genetic  population  assignment.  

Having identified a number of the shortcomings of current methods, we propose a new 

machine  learning  approach  called  Mycorrhiza  aimed  at  predicting  the  geographical 

origin of a sample from its genotype in which phylogenetic networks are used as feature 

engineering tools, followed by a Random Forests classifier. The classification accuracy 

of  our  method was compared to  widely  used assessment  tests  or  mixture  analysis 

methods in  population genetics such as STRUCTURE and Admixture,  as well  as a 

variant where a PCA is used in place of the phylogenetic network. Multiple published 

SNP,  microsatellite  or  consensus  sequence  datasets  with  wide  ranges  in  size,  

geographical distribution and populations were used for this purpose. 

The phylogenetic network and PCA methods show a marked improvement in 

classification accuracy and definable advantages compared to the existing approaches. 
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As is to be expected, STRUCTURE and Admixture fall short on almost all datasets with 

a considerable deviation from the Hardy Weinberg equilibrium. The same can be said 

for Admixture on datasets with a large expected heterozygosity. Moreover, Mycorrhiza 

consistently estimates mixture proportions more accurately than the PCA variant. Our 

approach will be useful in the rapid and accurate prediction of geographical origin from 

genotype samples without the restrictions inherent to currently used methods. 
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Résumé

Les espèces invasives sont une préoccupation constante pour les pays dans 

lesquels les ressources naturelles jouent un rôle économique et social  essentiel.  Au 

Canada,  des espèces  telles  que  le  longicorne  asiatique,  la  maladie  hollandaise  de 

l'orme, la mort subite du chêne et la spongieuse asiatique menacent les forêts et les 

secteurs industriels qui en profitent. Le risque économique est estimé à 800 millions de 

dollars par année. Des méthodes d'apprentissage machine qui déterminent rapidement 

et  précisément  le  taxon,  l'origine  géographique  et  la  capacité  pathogène  des 

échantillons  biologiques  à  partir  de  données  génomiques  constitueraient  un  outil  

précieux pour la réduction des risques.

Dans  cette  thèse,  nous  avons  examiné  des  concepts  de  la  génétique  des 

populations, des réseaux phylogénétiques, des données génotypiques et des méthodes 

actuelles d'attribution de population. Après avoir identifié un certain nombre de lacunes 

des  méthodes  actuelles,  nous  proposons  une  nouvelle  approche  d'apprentissage 

machine nommée Mycorrhiza visant à prédire l'origine géographique d'un échantillon à 

partir de son génotype dans laquelle des réseaux phylogénétiques sont utilisés comme 

une  étape  de  transformation  des  données  suivie  d'un  classificateur  forêt  d’arbres 

décisionnels. La précision de classification de notre méthode a été comparée à des 

méthodes  d’assignation  génétique  ou  d'analyse  de  mixture  largement  utilisées  en 

génétique des populations, telles que STRUCTURE et Admixture, ainsi qu’à celle d'une 

variante où une analyse en composantes principales est utilisée à la place du réseau 
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phylogénétique.  Des jeux de données de SNP, de microsatellites ou de séquences 

consensus publiées avec de larges gammes de taille, distribution géographique et de 

populations ont été utilisées à cette fin.

Le réseau phylogénétique et les méthodes APC montrent une nette amélioration 

de  la  précision  de  classification  et  des  avantages  définissables  par  rapport  aux 

approches  existantes.  Comme  on  peut  s'y  attendre,  STRUCTURE  et  Admixture 

échouent sur presque tous les jeux de données avec un écart moyen important par 

rapport à l'équilibre de Hardy Weinberg. La même chose peut être dite pour Admixture 

sur  des ensembles  de  données  avec  une grande hétérozygotie  attendue.  De  plus, 

l'approche  du  réseau  phylogénétique  estime  les  proportions  du  mélange  avec 

systématiquement  plus  de  précision  que  la  variante  APC.  Enfin,  l'approche 

phylogénétique gagne en précision par rapport à la variante APC lorsque les prédictions 

résultant de multiples sous-ensembles ordonnés des données sont moyennées.
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Chapter 1 

Introduction

1.1 Motivation

Invasive species are of growing concern for countries in which natural resources 

play a vital  economic and social  role  [1]. Their ecological and economic impact has 

been known for many decades and the expansion of global trade only aggravates the 

problem [2]. In Canada, where forests are an important portion of industrial and touristic 

revenue, species such as the Asian long-horned beetle, Dutch elm disease, sudden oak 

death and the Asian gypsy moth pose an immediate threat to the economy and jobs. 

The economic risk is estimated at up to $34.5 billion CND annually  [3]. In the United 

States  of  America  this  also  ranges  in  the  billions  [1,2].  The  implementation  of 

countermeasures is indispensable to protect not only the prosperity of a large portion of  

the population, but also an invaluable natural wealth.

Alien species enter Canada through a multitude of anthropogenic and natural 

vectors. In some cases, containment measures can be put in place by the appropriate 

government agencies if  the taxon,  geographical  origin  and introduction pathway are 

determined rapidly. However, current methods of risk assessment relying on phenotypic 

traits  alone  are  highly  inadequate  for  this  purpose  as  different  strains  of  the  same 

species  can  be  indistinguishable  in  appearance.  Moreover,  these  can  be  highly 

dependent on sex or environmental pressures  [4].  Methods based on genomics are 

currently too slow or costly for large-scale implementation. The development of rapid 
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Chapter 2 

Literature review

2.1 Population genetics

Population genetics is a branch of evolutionary biology that studies the genetic 

composition  of  populations  at  many different  scales  [6,7].  The  theory  and methods 

established in the field serve to answer a wide range of biological questions in a number 

of different contexts and generalization levels. 

2.1.1 Populations

Consequently,  a  number  of  different  definitions  are  used  for  the  term 

“population”, some of which are subjective [6,8]. In fact, as we shall later consider, these 

can sometimes be purely arbitrary. Additionally, linguistic, cultural or physical characters 

can also be used as measures of differentiation or similarity between individuals to infer 

populations. 

In  general,  a  distinction  can  be  made  between  statistical  definitions  of 

populations, which simply refer to an aggregate of entities from which we draw samples 

and make inferences, and biological definitions, which refer to collections of individuals 

that share genomic or phenotypic attributes [6]. For the purpose of this research, we are 

interested  in  geographical  sampling  location  of  specimens  and  thus  view  the 

populations  as  aggregates  delimited by boundaries  we have yet  to  define,  such as 

country or state borders. We will later discuss how these boundaries also correspond to 

populations in the genetic sense and both definitions can be used interchangeably for 

our purpose. Furthermore, we are mainly concerned with population observed on an 
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ecological timescale, rather than an evolutionary one, on the order of one to a thousand 

generations [5,6,9].

To avoid ambiguities, unless specified, we will use the term “origin” to refer to 

geographical origin, in other words “the totality of individual observations about which 

inferences are to be made, existing within a specified sampling area limited in space 

and time”  and the term “natural population” to refer to a population that “can only be 

bounded by natural ecological or genetic barriers” [6]. Therefore, the term “population” 

alone will be used in a more general sense and will refer to both concepts previously 

stated. Additionally, the term “specimen” will refer to a single individual and the term 

“sample” to a set of specimens. 

We shall now give an overview of a few concepts in populations genetics such as 

hybridization, introgression, heterozygosity and indices of population differentiation that 

will be referred to later in our study. 

2.1.2 Hybridization

Hybridization can be defined simply as the interbreeding of individuals from two 

populations or groups of populations distinguishable by one or more heritable character 

[10,11]. The resulting offspring must be viable and fertile for the term to be applicable. 

Hybridization is generally deemed rare at the level of the individuals, but widespread at  

the level of the species [12]. In other words, hybrid individuals are rare, but the number 

of species that hybridize is high and the evolutionary consequences are important. The 

process  can  result  from  both  anthropogenic  and  natural  causes,  often  from 

environmental  disturbances  causing  habitats  to  overlap  or  the  creation  of  artificial  

bridges between habitats.
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The result of hybridization is admixture. As such, the genome of an admixed or 

hybrid individual is the mixture of alleles from different ancestries. In rare cases where 

no admixture is present, each individual can only have originated from only a single 

population. In the case where there is admixture each individual can be a mixture of two 

or more populations.

With  the  intensification  of  global  trade  and  travel,  chances  for  hybridization 

between populations or species otherwise separated by impassible natural barriers are 

becoming more common  [13].  This  is  not  without  ecological  consequences.  In  fact, 

hybridization and other reticulate evolutionary events have been shown to be one of the 

mechanisms stimulating invasiveness and to  influence pathogenicity  of  a  number of 

species [14,15]. Moreover, backcrossed individuals are often impossible to differentiate 

morphologically from the parental populations [12]. As such, tests for hybridization are 

almost exclusively based on genetics.

2.1.3 Introgression

Introgression,  or  introgressive  hybridization,  is  the  incorporation  of  alleles  or 

genes from one species, or population, into the gene pool of  another as a result of 

hybridization [10]. Importantly, a locus is said to be introgressed relative to another. In 

other words, two recognizably distinct and persistent populations must exist for the term 

to be applicable. Understandably, the genetic boundary between species or populations 

in which introgression has occurred does not have to extend over the whole genome. 

As  such,  these  intra-  or  interspecific  boundaries  are  sometimes  said  to  be 

“semipermeable”, where some loci are more likely to introgress according to selective 

pressures. Introgression is also referred to as gene flow between populations.
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additional improvements were made to the model and algorithm, but these are of minor 

importance for our purpose and will not be discussed here [27,28].

2.2.2.2 Shortcoming of STRUCTURE and Bayesian models in general

A number of studies have identified shortcomings to the STRUCTURE statistical 

model  and  inference  algorithm.  Unsurprisingly,  some  are  related  to  linkage 

disequilibrium and deviations from the Hardy-Weinberg equilibrium, but other stem from 

unbalanced sampling sizes, mutation rates and selective pressure [22]. In some cases, 

unsampled  “ghost”  populations  can  lead  to  incorrect  inferences  about  population 

structure  [6,29].  Furthermore,  the  ability  of  Bayesian  methods  in  general  to  detect 

population structure depends on accurately estimating allelic frequencies, which in turn 

depends on large sample sizes and large quantities of markers [22]. We present here a 

few  empirical  studies  on  the  performance  of  STRUCTURE  faced  with  purposefully 

designed datasets.

In  a study based on simulated data,  for  which the phylogenetic  relationships 

between populations are known, it  was noted that STRUCTURE failed to recognize 

populations  partitions  accurately  when  sample  sizes  are  unbalanced  [30].  In  some 

extremely unbalanced sampling cases, it even failed to resolve the correct number of 

populations.  Moreover,  STRUCTURE  tended  to  incorrectly  merge  phylogenetically 

distant  populations  when  both  had  smaller  sample  sizes  compared  to  other  closer 

populations. Finally, authors noted that due to the stochastic nature of the algorithm, 

results varied considerably between runs. 

Another  study  based  on  simulated data  came to  the  same conclusions  [31]. 

Again, STRUCTURE failed to recognize the correct number of populations when the 
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difficult to assess how confident we should be that the clusters obtained in this way are 

meaningful;  and  it  is  difficult  to  incorporate  additional  information  such  as  the 

geographic sampling locations of  individuals.”  [8].  Some efforts  have been made to 

overcome  these  limitations  by  relying  on  genetic  distances  rather  than  allelic 

frequencies, without considerable success [34].

2.2.2.5 Principal component analysis approaches

PCA and PCA based methods have been used to cluster individuals of similar 

genetic  ancestry  together  and  are  generally  computationally  efficient  even on large 

dataset  [25]. However, as we shall later discuss in Chapter 3, these methods are not 

without  their  shortcomings.  Some  population  characteristics  that  will  cause  these 

methods to  fail  include the  presence  of  closely  related  subpopulations  or  a  distant 

subpopulation.

2.3 Machine learning and genomics data

Genomics  data  possesses  complex  underlying  structure  that  is,  most  often, 

difficult  to capture to make inferences  [36].  True signal is often obscured by limited 

samples sizes, noise or high dimensionality. With this in mind, in a recent workshop on 

genomic data analysis, expert contributors shared several key ideas to explore novel 

approaches to deal with current roadblocks [36]. (1) The first is that inherent properties 

of  the  data  can help  in  choosing unsupervised learning  methods to  expose hidden 

structure. (2) The second is combining different data types and sources is beneficial. (3)  

The third is that giving meaning to the output of machine learning models, in analogy to 

a p-value for example, is not straightforward, but nonetheless possible. (4) The fourth is 
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that results from complex machine learning models are difficult to interpret. (5) Finally,  

and unsurprisingly, computational efficiency is still an issue. 

2.3.1 Challenges of using SNP data for genotype assignment

In this study, we are mostly concerned with SNP, microsatellite and other similar 

types of  data.  SNP data poses the problem of high dimensionality.  With most such 

genomics datasets the number of features is considerably larger than the number of 

specimens. Other challenges posed by large-scale SNP datasets include redundancy 

and the wide range of data formats employed in different fields [37].

As a consequence, information-conserving ways of reducing the feature space 

must be employed, but no single method is applicable and appropriate to all questions 

being asked from the data. The methods used to preprocess SNP data for geographical  

origin prediction will not necessarily provide satisfying results for disease prediction, for  

example. We can easily assume that solving these problems relies on capturing very 

different patterns in the data.

A  considerable  number  of  methods  used  to  reduce  the  dimensionality  of  

genomics data have been published. Also known as feature space reduction methods, 

these can either be categorized as feature selection or feature engineering. Here we 

present  a  few such methods that  have been applied to  SNP data for  a number of  

different problem types. 

2.3.1.1 Informative SNP subset selection

Feature  selections  methods  are  mainly  divided  into  filter,  wrapper  and 

embedding types [37]. Filter methods are in essence unsupervised learning (or are said 

to not incorporate learning at all). These methods select a subset of features based on  
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some  statistical  score  reflecting  their  correlation  with  the  outcome  variable.  Filter  

methods are generally fast but ignore possible interactions between loci  [37]. Wrapper 

methods are simply supervised learning, essentially ranking and shortlisting loci that will  

be used to build the final classifier. Embedding methods are a variation on the latter, 

where  feature  selection  is  done simultaneously  with  learning  the  classification  task. 

Here  we  present  two  cases  of  supervised  SNP  selection  methods  applied  to 

geographical origin classification and disease prediction.

A combination of PCA and Random Forests has been used successfully to select 

a  subset  of  informative SNPs for population origin classification  [38].  PCA was first 

applied to the whole dataset and the first two components were used to reduce the 

number of SNPs. To achieve this, a score is calculated for each marker by squaring and 

its values along the principal components and summing them. A number of the highest  

scoring  markers  are  then  conserved for  each autosome.  Following this,  a  Random 

Forest classifier was trained on the data to further reduce the number of SNPs based on 

the mean Gini index and the mean accuracy decrease. 

Random  Forests  have  also  been  used  to  select  SNPs  in  Genome-wide 

association studies. In one such approach Random Forests classifiers are repetitively 

trained on permuted sets of SNPs and their labels to calculate a p-value from the Gini 

indices  [39]. Only SNPs below a certain threshold are kept and used to train a final 

Random Forests classifier that will serve to make predictions on new specimens. In this 

study, the limited subsets of informative SNPs outperformed the full set of features in 

classification of Alzheimer’s and Parkinson’s patients. It must be noted however that the 

process is computationally inefficient.
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2.3.1.2 Feature space engineering for SNP data

SNP  selection  methods  have  been  shown  to  be  effective  in  reducing  the 

dimensionality  of  the  data,  however  they  are  prone  to  overfitting  and  tend  to  be 

computationally  inefficient  if  done in a supervised manner  [40,41].  Compressing the 

entirety of the data, while preserving a maximum of information, generally provides a 

reduced feature space that allows good generalization to new samples. Importantly, this 

should be done in a way mindful to the pattern we hope to capture in the data. In the 

case  of  geographical  origin  prediction  or  population  assignment  we  can  expect 

phylogenetic relationships between the samples to be of interest. 

2.4 Phylogenetic networks

Phylogenetic  trees  are  widely  used  to  represent  and  analyze  evolutionary 

relationships at every taxonomic rank. However, evolution rarely occurs in a perfectly 

tree-like  manner,  making  other  less  restrictive  models  and  heuristics,  such  as  a 

network, more appropriate for complex evolutionary histories  [42].  In fact, reticulate 

evolution, whereby new lineages with novel combinations of phenotypes are created, 

often  precedes  patterns  of  vertical  descent  with  modification  and  most  of  the  time 

multiple evolutionary mechanisms are active simultaneously [43]. Moreover, it has been 

suggested that the very concept of a tree of life is inappropriate to describe prokaryotic  

evolution [44].

Phylogenetic  networks,  on  the  contrary,  are  a  generalization  of  phylogenetic 

trees under  which other  types of  networks better  suited to  account  for  evolutionary 

events such as hybridization, horizontal  gene transfer, recombination, symbiosis and 

symbiogenesis are also included  [43,45]. Many different network types, differing from 
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of weakly compatible or circular splits from a pairwise distance matrix or dissimilarity 

matrix, in this case phyletic distances. 

2.4.2.1 Split decomposition

The  first  method  to  be  introduced  is  called  split  decomposition,  which 

decomposes  the  distance  matrix  as  a  sum  of  weakly  compatible  split  metrics,  or 

weighted splits, plus a residue known as the split-prime residue [46,52,59]. A major part 

of random noise tends to end up contained in this residue [59]. Split decomposition is 

however  computationally  inefficient  and  thus  limited  to  very  small  datasets  of  100 

individuals or less. 

Moreover, the algorithm tends to produce overly complicated split systems and 

phylogenetic networks. This may seem like a purely visual consideration, but akin to the 

problem of overfitting in machine learning, networks containing more incompatible splits 

will always fit the data at least as well as purely tree-like split systems [60]. Parsimony is 

thus an important consideration in the inference of a split  system. Take the case of 

lateral  gene  transfer,  for  example.  Other,  sometimes  highly  unlikely,  evolutionary 

scenarios such as convergent evolution or multiple independent gene loss events can 

serve to represent the data equally well [60]. 

2.4.2.2 The NeighborNet algorithm

The NeighborNet algorithm is an agglomerative method derived from the familiar 

neighbor joining that produces weighted, circular sets of splits. It tends to produce sets 

of  splits  of  higher  resolution  than  split  decomposition  and  is  more  computationally 

efficient  [47,61,62]. Importantly, the algorithm is consistent, producing a network that 

exactly  represents  the distances if  they are circular  and a tree if  the distances are 
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additive  [62,63]. It has however been stated that NeighborNet is sensitive to distorted 

metrics, such as when the sequences used to calculate the dissimilarity matrix are too 

distantly related [64].

The first step of the algorithm is to produce a linear ordering of the taxa following 

a process analogous to neighbor joining. It is more appropriate to describe NeighborNet 

as a greedy algorithm for finding circular split  systems that best describes the input 

distance matrix  [65]. Nonetheless, in an agglomerative manner, a criterion is used to 

merge nodes and the distance matrix is reduced accordingly. The major difference with 

neighbor joining is that triples of nodes are merged instead of pairs, ultimately producing 

a  linear  ordering  of  the  taxa.  At  this  stage,  the  split  system is  produced  from the  

ordering  by  taking  all  splits  that  respect  circularity.  Other  similar  algorithms  use  a 

reverse agglomeration process [66].

Following the production of a circular ordering, split weights are then computed 

for all splits respecting circularity using a non-negative least squares regression. Finally, 

splits weighted under a certain threshold are eliminated and the remaining splits form 

the weighted split system.

2.4.2.3 MC-Net algorithm

The MC-Net algorithm is also a distance-based method that proceeds in a way 

similar to the NeighborNet algorithm by first finding a circular ordering of the taxa and 

then weighing the obtained splits  [67]. However, MC-Net uses a heuristic to find the 

circular ordering instead of an agglomerative rule. An initial ordering is first produced 

following  a  greedy  algorithm.  This  ordering  is  then  optimized  following  a  standard 

Monte-Carlo algorithm. The energy function simply defined as the sum of distances 
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between neighbors in the ordering. Finally, the splits of a weighted in the same way as  

the Neighbor-Net algorithm.

The authors found the energy score of orderings produced by MC-Net are lower 

than those produced by NeighborNet. Furthermore, the split systems obtained through 

MC-Net  are  generally  simpler,  containing  fewer  splits,  than  those  obtained  through 

NeighborNet.

2.4.3 Algorithmic use of phylogenetic networks and trees

The most common application of phylogenetic networks is visualization for the 

purpose of exploratory data analysis. In this sense, they are a type of agglomerative 

hierarchical clustering, sometimes referred to as fuzzy clustering, allowing each taxon to 

simultaneously be a member of many clusters  [68]. However, phylogenetic networks 

and  their  inference  can  serve  to  extract  unknown  patterns  from  the  data  in  an 

unsupervised way, but also to provide a compact representation of a dataset.  They 

have  been  shown  to  possess  many  of  the  good  features  of  multivariate  data 

summarisation techniques such as PCA, without their known mathematical limitations 

that produce unwanted artefacts  [68]. Here we present a few examples of problems 

where  phylogenetic  networks  or  trees  are  being  used  successfully  as  a  data 

transformation step in various algorithms or methods. 

Metagenomics  data  can  serve  to  discriminate  healthy  subjects  from affected 

ones in  a number of  diseases.  In  a recent  study,  metagenomics data from the gut 

microbiota was used to identify and classify Inflammatory Bowel Disease patients [69]. 

A Convolutional Neural Network (CNN) model was employed for this purpose and the 

operational taxonomic units present in the microbiota served as features, each sample 
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presenting different levels. To transform the input space to something recognizable by a 

CNN, a phylogenetic tree was inferred for all operational taxonomic units and served as 

a measure of similarity, similar to the concept of neighborhood for pixels in a image.

In  another  type of  problem,  phylogenetic  diversity  and phylogenetic  networks 

were combined to obtain a measure of biodiversity. Split diversity is a score calculated 

from the set of splits, applicable to a number of taxon selection problems  [70]. Other 

biodiversity or isolation indices considers both the internal structure of the network and 

the set of subtrees they contain [71,72].

Phylogenetic  networks  have  also  been  used  as  a  visual  aid  for  manual 

classification  of  the  Ferritin-like  Superfamily  proteins  [73].  In  this  case,  sequence 

similarity  among  types  of  proteins  was  too  low  to  allow  for  inference  of  function. 

However, constructing phylogenetic networks from structural alignments of the proteins 

yielded  considerable  improvement  in  the  resolution  of  functional  relationships  and 

enabled  the  authors  to  classify  the  proteins  in  a  way  that  was  not  possible  from 

sequences alone.

Interestingly, phylogenetic networks have been applied to non-genetic datasets 

that exhibit evolutionary structure such as languages [74,75] and cultural artefacts [76]. 

The term phylomemetic has been coined as a combination of meme (ideas and cultural  

phenomena  [77]),  and  phylogenetics  to  describe  such  relationships.  Lateral  gene 

transfer  and hybridization obviously  have parallels  in  language.  These are,  it  would 

seem, considerably more common than their biological counterparts [78].
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Chapter 3 

Mycorrhiza: combining phylogenetic networks and Random 

Forests for prediction of ancestry from multilocus genotype data

3.1 Preface

In this study we present the result of our efforts to develop a machine learning 

method aimed at predicting the geographical origin of biological samples in accordance 

with the requirements of the BioSAFE project. The method which can be applied to a 

wide  range  of  data  types,  including  SNP  and  microsatellites,  is  of  trivial  runtime 

considering the use case and performs equivalently, or better than currently accepted 

and widely used Bayesian methods. 

Having reviewed the challenges posed by high dimensional SNP data and the 

shortcomings of Bayesian methods, we propose an algorithm based on dimensionality 

reduction  and  phylogenetic  relationships.  As  has  been  previously  discussed,  the 

ancestry of individual biological samples representing an ecological risk of invasion are 

most  likely  marked  by  reticulate  evolutionary  events.  Consequently,  phylogenetic 

networks are used here as a feature space reduction method that captures the structure 

inherent to events such as hybridization, lateral gene transfer and recombination. The 

reduced feature set, in the form of a split system, is then inputted to a Random Forests 

classifier. We termed our method Mycorrhiza, a word defined “a symbiotic association 

between a fungus and the roots of a vascular host plant.” [79].
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3.2 Abstract

The genotype assignment problem consists of predicting, from the genotype of 

an individual, which of a known set of populations it originated from. The problem arises 

in  a  variety  of  contexts,  including  wildlife  forensics,  invasive  species  detection,  and 

biodiversity monitoring. Existing approaches perform well under ideal conditions but are 

sensitive to a variety  of  common violations of the assumptions they rely on. In  this 

paper,  we  introduce  Mycorrhiza,  a  machine  learning  approach  for  the  genotype 

assignment problem. Our algorithm makes use of phylogenetic networks to engineer 

features that encode the evolutionary relationships among samples.  Those features are 

then used as input  to  a Random Forests classifier.  The classification accuracy was 

assessed on multiple published SNP, microsatellite or consensus sequence datasets 

with wide ranges of size, geographical distribution and population structure. It compared 

favorably against widely used assessment tests or mixture analysis methods such as 

STRUCTURE and Admixture, and against another machine-learning based approach 

using PCA for dimensionality reduction. Mycorrhiza yields particularly significant gains 

on datasets with a large average FST or deviation from the Hardy Weinberg equilibrium. 

Moreover,  the  phylogenetic  network  approach  consistently  estimates  mixture 

proportions more accurately than the PCA variant. Mycorrhiza is released as an easy to 

use open-source python package on GitHub at github.com/jgeofil/mycorrhiza.
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3.3 Introduction

3.3.1 Assignment methods

Assignment methods are a group of closely related methods that use genetic 

information to determine the population membership of individuals from a given species.  

For this purpose, the term “population” generally refers to a group of individuals in close 

geographical  proximity  whose  probability  of  interbreeding  is  higher  than  that  of 

interbreeding with other groups [4]. These approaches are thus mostly concerned with 

events  occurring  on relatively  short  timescales,  on  the  order  of  one to  a  thousand 

generations [5,9]. In one version of the problem, called the assignment test, one aims to 

estimate the probabilities that a multilocus genotype of unknown origin came from each 

of a fixed set of known populations. This is equivalent to the classification problem in 

machine learning. In another version, called genetic mixture analysis or genetic stock 

identification, the objective is to estimate both mixture proportions and posterior source 

probabilities for each individual. In this paper we present and evaluate a new machine 

learning algorithm for genetic assignment based in part on phylogenetic networks.

Assignment  methods  have  been  used  for  a  variety  of  applications,  including 

wildlife  forensics  [80–84],  understanding  migratory  patterns  and  geographical 

boundaries for conservation efforts [85] and the identification of hybrid individuals for the 

management of invasive species [86–90]. Despite their wide range of applications in a 

variety  of  fields  and  a  number  of  well  know  software  tools  implementing  various 

algorithms (see below), little consensus exists about their use in classical supervised 

classification  problems.  Furthermore,  few  of  these  software  packages  implement 

machine learning standards and practices, such as cross-validation.
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low-dimensional  projection  they  produce.  Alternative  clustering  methods,  such  as 

discriminant analysis of principal components (DAPC) [105], have been developed with 

the aim of providing fast and flexible exploratory tools that produce easily interpretable 

results [105]. However, these methods either only allow for hard clustering [105,106] or 

provide questionable admixture results with soft-clustering  [107]. Multivariate analysis 

approaches  are  nonetheless  prone  to  mathematical  artefacts,  leading  to  spurious 

conclusions about population structure [108–111].

A number of R packages have been developed with the goal of offering machine 

learning solutions for genomics. The package Adegenet was developed with the aim of  

bridging the gap between multivariate data analysis solutions and genomics packages 

by implementing a number of clustering algorithms such as snapclust and discriminant 

analysis of principal components [104,112,113]. The package can calculate a number of 

population statistics and perform spatial genetics analyses [114–116]. It  must be noted 

that,  snapclust  [113],  the  algorithm  for  population  assignment  implemented  in  the 

package, is also based on the same assumptions about Hardy-Weinberg equilibrium as 

Bayesian methods.

Overall, no existing software addresses all  of the shortcomings and limitations 

mentioned above. In this paper,  we set  out to develop a new method for genotype 

assignment  and  mixture  analysis  rooted  in  machine  learning  principles  that  would 

address  these  problems,  while  keeping  in  mind  and  taking  advantage  of  the 

phylogenetic structure present in genomics datasets. 
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3.3.2 Phylogenetic networks as feature engineering

SNP data poses the problem of  high dimensionality,  otherwise known as the 

“curse  of  dimensionality”  in  the  machine  learning  field  [117],  where  the  number  of 

features  (SNPs)  exceeds  the  number  of  training  examples  (labeled  specimens). 

Unchecked,  this  often  leads  to  overfitting  and  poor  classifier  performance.  A  first 

dimensionality  reduction approach is  to  select  a  subset  of  features based on some 

criteria or score. A large number of such supervised and unsupervised feature selection 

methods  have  been  applied  to  SNP  data  [41,118–120].  However,  some  of  these 

methods are themselves prone to overfitting and it has been demonstrated that this can 

easily lead to inflated estimation of prediction accuracy. As a matter of fact, is has been 

noted that a number of genomics studies have overlooked the need for cross-validation 

[40,41]. 

Another possible solution is to project the data into a lower dimensional space 

while preserving as much information as possible.  PCA is probably the best known 

dimensionality  reduction  method  and  is  commonly  applied  to  genotype  data  [121]. 

However, PCA was not designed to account for phylogenetic structure in populations. 

The  familiar  phylogenetic  tree  can undoubtedly  be  employed  as  a  means  of 

dimensionality reduction (see below). Unfortunately, the model assumes evolutionary 

histories dominated by speciation and descent with modification. This is not appropriate 

in population genetics settings where populations are inter-fertile and exchange genetic 

material.  Phylogenetic networks have been introduced to capture and represent non 

tree-like evolution [42,45]. Those that allow for hybrid nodes, or reticulations, are better 

suited to account for more complex evolutionary events such as hybridization, horizontal 
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training set. For example, to achieve 5-fold cross-validation, five files are outputted with 

identical  genotype  data,  but  each  with  a  different  set  of  samples  for  which  the 

supervised learning flag is enabled. The program is then run on each of these files 

separately. For Admixture, supervised analysis was enabled with the --supervised flag 

[137], and default settings were used otherwise. For STRUCTURE, supervised analysis 

was enabled with the POPFLAG and USEPOPINFO flags. These parameters tell the 

program that  the  input  file  contains  a  column of  population  identifiers  and  another  

column indicating for which samples the population information should be taken into 

account. The burn-in period was set to 20 000, the number of MCMC repetitions to 100 

000 and all other parameters were left in their default state. 

3.4.7 Datasets

We collected a number of  published geotagged genotype datasets (Table 1). 

Ebola  data  was  obtained  from  the  NIAID  Virus  Pathogen  Database  and  Analysis 

Resource (ViPR) [138]. Rice data was obtained from the Rice Diversity Project website 

[139].  A.  thaliana data  were  produced by  the  Weigel  laboratory  at  the  Max Planck 

Institute  for  Developmental  Biology  [140].  S.  musiva data  were  obtained  from  the 

authors [141]. Human data were obtained from the 1000 genomes project. All other data 

were obtained from the Data Dryad database [142].

Most datasets had been quality-controlled for their respective publications and 

were thus used unchanged. Some authors proposed a selected set of markers deemed 

to be informative for their classification task. To avoid any possible biases, we instead 

used the full set of markers. SNP datasets were filtered for a minor allele frequency of 
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PCA+RF performed nearly equally well  on most datasets.  The only exception is the 

Barnacle data, for which Partitioned Mycorrhiza provided a 39% increase in accuracy 

over the second best method. 

3.5.2 Number of loci and partitioning parameters

We evaluated the impact of the number of loci used as input for all methods by 

executing them on randomly downsampled data sets (Figure 4). With SNP data, the 

accuracy of Mycorrhiza and PCA+RF (either with or without partitioning), as well  as 

Admixture gradually increases with the number of loci, generally plateauing after 10,000 

loci. Interestingly, the number of loci at which the plateau in accuracy is reached with 

SNP data seems to depend on number of populations present in the dataset.

Results are similar for microsatellites and sequence data, although most datasets 

are too small to reach a plateau in accuracy, suggesting that the inclusion of additional  

loci  would further improve classification performance. Note that we expect that non-

random loci  selection would allow reaching a similar accuracy with much fewer loci. 

Surprisingly, the results obtained with STRUCTURE were somewhat more erratic. 
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We also assessed the extent to which loci partitioning improves performance for 

Mycorrhiza and PCA+RF (Supplementary Figure 1). Setting the number of partitions to 

between 10 and 50 provided a consistent but moderate improvement in accuracy on 

nearly all SNP datasets, with the notable exception of the Human dataset, where best 

results were obtained without partitioning. Accuracy gains obtained by partitioning are 

most striking for the microsatellite datasets,  where a number of  partition around 10, 

corresponding to  partitions  of  only  1  or  2  microsatellites  each,  yields  a  30 to  50% 

improvement in accuracy. Results for sequence data were not as consistent and did not 

indicate strong trends, although setting the number of partitions to 10 is near-optimal for  

all  datasets  except  for  the  oriental  fruit  moth.  Based  on  these  results,  the  default 

number of partitions for Partitioned Mycorrhiza was set to 10 for all data types.

3.5.3  Impact  of  population  structure  statistics  on  prediction 

accuracy

We next studied how population structure parameters (expected and observed 

heterozygosity, deviation from the Hardy-Weinberg equilibrium and the fixation index of  

subpopulations)  differentially  impact  prediction  accuracy  of  both  Mycorrhiza  and 

Partitioned  Mycorrhiza  compared  to  STRUCTURE  and  Admixture  (Figure  5).  As 

expected, population differentiation and levels of heterozygosity influence the ability of 

STRUCTURE  and  Admixture  to  capture  population  structure.  Both  variants  of 

Mycorrhiza  performed better  than  these two  tools  on  SNP datasets  for  which  sub-

populations had a high fixation index. The advantage of our methods also increases 

proportionally to the level of heterozygosity of the total population and deviation from the 

Hardy-Weinberg  equilibrium,  but  decreases  proportionally  to  the  average  sub-
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population heterozygosity. With microsatellite and sequence data, the trends are not as 

clear and, consequently, more datasets would be needed to draw conclusions. 

a

b

Figure 5 - Difference in assignment accuracy on SNP datasets only between (a) Mycorrhiza and  
STRUCTURE  or  Mycorrhiza  and  Admixture  and  between  (b)  Partitioned  Mycorrhiza  and  
STRUCTURE  or  Partitioned  Mycorrhiza  and  Admixture,  as  a  function  of  the  expected  
heterozygosity  (He),  observed  heterozygosity  (Ho)  and  deviation  from  the  Hardy-Weinberg  
equilibrium HW), and average population fixation index, calculated from heterozygosity (FST)(𝚫  
and from genetic distances (FSTd). 
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3.5.4 Estimation of mixture proportions

Although Mycorrhiza and Partitioned Mycorrhiza was not specifically designed to 

estimate population mixture proportions, we observe that the population membership 

probabilities it  outputs closely resemble those obtained with  STRUCTURE, which is 

widely acknowledged to be accurate at estimating population mixture proportions. An 

example output representing mixture proportions obtained by all methods from the  S. 

musiva dataset with 800 loci is shown in Figure 6. Notice also how PCA+RF appears to 

overestimate the contribution of secondary populations, even on datasets for which it 

performs well in terms of classification accuracy.
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Figure 6 - Representative output of mixture proportions estimated by all methods applied to the S.  
musiva dataset with 800 loci. 
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Figure 7 - Runtime of Mycorrhiza on each dataset analyzed, as a function of the number of loci,  
samples and populations.

3.6 Discussion and Conclusion

We  introduce  Mycorrhiza,  a  machine  learning  method  making  use  of 

phylogenetic networks to assign multilocus genotypes to their geographical origin. 

Mycorrhiza  proved  to  be  highly  flexible,  outperforming  or  equaling  the  other 

methods on all data types. On a side note, this flexibility will likely allow for Mycorrhiza 

to  be  applied  to  other,  non-genetic,  data  types  possessing  tree-like  relationships. 

Indeed, phylogenetic networks have in fact been used to model relationships between 

languages [74,75] and cultural artifacts [76].

Mycorrhiza proved to be highly accurate, flexible and robust, outperforming or 

equaling in accuracy the most popular existing methods (STRUCTURE, Admixture) on 
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a variety of datasets based on SNPs, microsatellites, and sequence. The consistency of 

results  produced by Mycorrhiza  provides a considerable advantage for  the method: 

default parameters will  provide near-optimal results in almost all  cases. Mycorrhiza’s 

accuracy  improves  gradually  as  the  number  of  markers  available  increases,  to 

eventually plateau, but never decrease. Furthermore, methods such as STRUCTURE 

and Admixture depend on assumptions about population structure that are often unmet 

in practice. Mycorrhiza is not directly dependent on these assumptions, and indeed, the 

data sets where populations exhibit high fixation index or strong deviation from Hardy-

Weinberg  equilibrium  are  those  where  the  benefit  of  Mycorrhiza  is  most  striking. 

Unsurprisingly, Admixture and, to a lesser extent, STRUCTURE performed poorly on 

sequence data due to the fact that allelic frequencies of diploid or polyploid genotypes 

are  impossible  to  estimate  from a  reduced  sequence.  Mycorrhiza,  being  based  on 

distances  rather  than  allelic  frequencies,  is  seemingly  less  affected  by  this  loss  of 

information. Finally, although it is not explicitly designed for that purpose, Mycorrhiza 

produces admixture proportion estimates qualitatively similar to those of STRUCTURE, 

although additional work would be needed to quantify the accuracy of those estimates. 

Mycorrhiza is thus a tool that is simple and straightforward to use, requiring little or no 

parameter optimization, and exhibiting a high degree of robustness to the type of data at 

hand and the parameters of the population structure. Mycorrhiza would, in particular, be 

a  tool  of  choice  when  dealing  with  geopolitically,  rather  than  genetically,  defined 

populations.  For example,  this  is  necessary when assignment test  must  be used in  

international  trade  discussions  or  to  coordinate  risk  mitigation  of  invasive  species 

between countries. 
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Although we limited our performance comparison to the two most widely used 

approaches in  the  field,  some of  the  data  sets  analyzed here  had been previously 

analyzed  by  their  authors  using  other  tools.  This  provides  additional  points  of 

comparison, albeit in a less rigorous framework. Picq  et al. analyzed their gipsy moth 

data sets using DAPC [105], reporting 100% classification accuracy with all 2327 SNPs, 

as  well  as  with  a  selected set  of  48  SNPs. We produced similar  results,  obtaining 

perfect accuracy with as few as 200 randomly selected SNPs (99% with 100 randomly 

selected  SNPs  and  97%  with  50).  Results  obtained  for  the  yellow  fever  mosquito 

microsatellite data set are also consistent with the authors’ analyses. Using GeneClass2 

[156] on 10 non-problematic loci, the authors reported 87.7% classification accuracy. In 

our  hands,  STRUCTURE  obtained  a  similar  performance  (88.9%),  but  Partitioned 

Mycorrhiza did much better, obtaining an accuracy of 98.4%.

3.6.1 Future work

While already fast and accurate, several directions would be worth investigating 

to  improve  Mycorrhiza  and  further  broaden  its  range  of  applications.  Firstly,  only 

phylogenetic networks built using the NeighborNet algorithm were used in this study.  

Although this algorithm is known to produce well resolved and simple networks in most 

conditions, it would be interesting to study whether other network building algorithms 

could perform better, and under what conditions. Similarly, classifiers other than random 

forests,  such as deep neural  networks, may be advantageous for data sets with an 

extremely large number of samples; replacing our random forest predictor by such an 

alternative would be straightforward. Finally, Mycorrhiza currently makes no use of the 
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weights assigned to splits by NeighborNet. Those weight could instead be used, e.g. to  

bias the sampling of the corresponding features by the random forest algorithm.

It is also worth noting that Mycorrhiza is applicable not only to genotypic data, but 

also to  any other  type of  population-specific  traits.  All  that  would be needed is  the  

definition of  a  suitable phenotypic  distance measure.  In  fact,  phylogenetic  networks 

have even been used to  model  relationships among languages  [74,75] and cultural 

artifacts [76], and Mycorrhiza may be applicable to these data types as well.

In conclusion, by combining sophisticated phylogenetic network reconstruction 

algorithms with machine learning approaches, Mycorrhiza represents a novel solution to 

the genotype assignment problem. Its  accuracy,  scalability,  and most  importantly its  

robustness to data types and sizes, and properties of underlying population structure, 

should make it an attractive solution for a wide array of population genetics researchers. 
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3.7 Supplementary material

Figure 8 - Linear interpolation of the classification accuracy versus the number of loci and the  
number of partitions for Mycorrhiza on datasets (a) A. thaliana, (b) Brown rat, (c) Human, (d) rice,  
(e) S. musiva, (f) Gipsy moth, (g) Asian ladybird, (h) M fijiensis, (i) Oriental fruit moth, (j) Yellow  
fever mosquito, (k) Barnacle, (l) Ebola, (m) HIV (n) Seabird tick. 
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Chapter 4 

Discussion and conclusion

The BioSAFE project aims to deploy genomics tools to reduce the risk posed by 

invasive species in Canada. Central to the effort of this project was the development of 

a machine learning algorithm to predict the geographical origin of biological samples. 

We presented Mycorrhiza, a machine learning algorithm-based dimensionality reduction 

of the feature space and phylogenetic relationships.

Mycorrhiza and Partionned Mycorrhiza meet all the requirements put forth by the 

BioSAFE project by capturing reticulate evolutionary events and being computationally 

efficient.  Moreover,  we tested our  method for  classification accuracy and admixture 

analysis on a variety of real-world datasets in comparison with two of the most used 

assessment methods in the field. Having identified the shortcomings and properties of 

Bayesian  assignment  algorithms,  were  able  to  demonstrate  quantitatively  in  which 

cases Mycorrhiza possess an advantage in comparison with currently used methods. 

Moreover, by also replacing the phylogenetic network inference with a PCA analysis, we 

also  demonstrated  that  Mycorrhiza  and  Partitioned  Mycorrhiza  do  in  fact  capture 

phylogenetic structure, and consequently provide better classification accuracy. 

Notably, by replacing model-based algorithms with a model-free algorithm our 

work  inscribes  itself  in  a  paradigm  shift  in  the  biological  sciences  engendered  by 

modern developments in the machine learning field [157].  In addition to its role in the 

BioSAFE project, we released Mycorrhiza as an open-source in hopes of stimulating 

interest in the method and encouraging further improvements.  
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4.1 Directions for future work

As previously stated, it would be interesting to determine if Mycorrhiza can be 

successfully  applied  to  different  types  of  data  presenting  phylomemetic  structure. 

Obvious examples include languages and cultural artefacts, but we can also imagine 

how the algorithm could aid in predicting binding affinities of small molecules in drug 

discovery for example. The reconstruction of evolutionary relationships from sequences 

in genomic and proteomic databases has already been used to generate leads in drug 

discovery [158]. 

In fact, many different examples of phylogenetic structure being harnessed to aid 

in prediction of certain traits can be found. In one case, it was shown that producing a  

phylogeny  from  ethnomedicinal  biological  responses  can  aid  in  the  predicting  the 

medicinal  properties  of  plants  [159].  In  another  similar  case,  the  authors  found 

interesting correlations when the medicinal uses of plant families were mapped onto the 

corresponding molecular phylogeny [160]. In yet another case, the phylogenetic profiles 

of  gene  conservation  were  used  to  aid  in  predicting  the  subcellular  localization  of 

proteins [161]. However, in each of these cases phylogenetic trees are employed as 

opposed to phylogenetic networks. It would thus be interesting to see if Mycorrhiza can 

be applied successfully to this type of problem or, more generally, phenotype prediction 

problems from molecular or not-molecular based phylogenies. As a matter of fact, with 

the  need  for  pathogenicity  and  risk  prediction,  the  BioSAFE  project  presents  an 

exceptional opportunity to extend the applicability of Mycorrhiza.

Currently,  there  are  no  methods  to  insert  one  or  more  taxa  into  an  existing 

phylogenetic network. Developments in this direction could prevent the need to retrain 
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Mycorrhiza  on  the  entirety  of  the  data  when  predictions  need  to  be  done  on  new 

examples. In informal tests, we achieved interesting results for the insertion of a taxa in 

an existing phylogenetic network by employing simulated annealing and evolutionary 

algorithms. This would allow for a phylogenetic network to be built from only the training 

samples. The insertion algorithm could then be used to produce a split placement for 

the  testing  samples,  which  would  be  used  as  input  the  trained  model  to  make 

predictions. The concern here is not to avoid potential overfitting, but for cases where 

predictions are done “online”, from a stream of new samples. In such cases, eliminating 

the  need  to  retrain  the  model  for  each  new  sample  would  provide  considerable 

efficiency improvement.
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