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Abstract

Personal communication services (PCS) is one of the fastest growing sectors in telecom-
munications. PCS can be provided by wireless cellular communication systems, that
operate in radio environments characterized as multipath fading channels. This the-
sis addresses the subject of signal detection and performance analysis over multipath
Ricean/Rayleigh fading channels, when the multipath delays are known and the path
resolvability assumption is not satisfied. The path resolvability condition asserts that
the signal autocorrelation function vanishes (“strict”) or it is small ( “approximate”) at
inter-path delays. The strict path resolvability assumption is rarely satisfied, and even
the approximate path resolvability condition is not always satisfied in practice. For
example, the approximate path resolvability is not satisfied for narrow-band systems
such as GSM, IS136, or their third generation derivatives and it is neither satisfied for
wide-band systems, such as [S95 or W-CDMA, in indoors due to the relatively small
multipath delays of these environments.

Existing demodulation schemes for multipath fading channels, such as Rake re-
ceivers, provide diversity gains but they are based on the path resolvability assump-
tion. This thesis shows the severe limitations of the classical Rake receiver over
unresolved multipath fading channels, and generalizes the Rake concept to improve
performance. The optimal receiver that assumes knowledge of the specular component
(specular coherent), and the optimal scheme that assumes knowledge of the specular
component magnitudes only (non-coherent), are derived for unresolved Ricean multi-
path fading channels. It is shown that both include an orthogonalization (or decor-
relation) stage that vanishes when the multipath is resolved. This thesis presents
explicit forms of the Minimum Mean-Square Error estimator of the likelihood ratio
estimator-correlator forms, and shows that the decorrelation operation is present in
the estimation process. Based on the insight provided by these optimal schemes,
suboptimal receivers more suitable for implementation are proposed.

Performance analysis results, for several binary modulation formats, demonstrate
the importance of the decorrelation operation in yielding diversity gains and elimi-
nating error floors under multipath unresolvability conditions. It is also shown that
the knowledge of the specular component phase does not provide significant gains at
high SNR for orthogonal FSK. Finally, it is shown that SNR gains can be obtained
by exploiting the knowledge of the specular component magnitude.




Sommaire

Le domaine des services de communications personnelles (PCS) est I'un des secteurs
des télécommunications ayant un taux de croissance des plus élevés. Les PCS peu-
vent étre fournis par des systémes de communications cellulaires. Ces systemes opérent
dans des environnements qui peuvent étre décrits comme des canaux a évanouissements
multiples (“multipath fading channels”). Cette thése porte sur la détection de sig-
naux et ’analyse de performance a travers des canaux a évanouissements multiples
de Ricean ou de Rayleigh lorsque les retards des trajets sont connus et I’hypothése
de trajets multiples séparés (“path resolvability assumption”) n’est pas satisfaite.
L’hypothése de trajets multiples séparés suppose que la fonction d’'autocorrélation
du signal évaluée aux retards entre deux trajets, est nulle (‘stricte’) ou faible (‘ap-
proximative’). L’hypothése de trajets multiples séparés stricte est rarement satisfaite,
et méme 'hypothése de trajets multiples séparés approximative n'est pas toujours
satisfaite en pratique. Par exemple, I’hypothése de trajets multiples séparés approx-
imative n’est pas satisfaite pour des systémes a bande étroite tels que GSM, IS136
ou les systémes équivalents de troisiéme génération. L’hypothése de trajets multiples
séparés approximative n’est pas non plus satisfaite pour des systémes a large bande,
tels que IS95 ou W-CDMA, dans des environnements a l'intérieur des batiments a
cause des retards relativement faibles de ces environnements.

Les systémes existants de démodulation pour des canaux a évanouissements mul-
tiples tels que les récepteurs de type Rake, fournissent des gains en diversité mais
supposent I'hypothése de trajets multiples séparés. Cette thése montre les limites
séveres du récepteur Rake classique pour les canaux a évanouissements multiples non
séparés et généralise le concept du Rake afin d’améliorer la performance. Ce docu-
ment présente le récepteur optimal qui connait les valeurs des amplitudes et phases
du composant fixe (“specular coherent”) ainsi que le récepteur optimal qui dispose
simplement de la valeur des amplitudes du composant fixe (“non-coherent”). Ces
deux récepteurs optimaux sont calculés pour des canaux a évanouissements multi-
ples de Ricean. Cette thése montre que les deux récepteurs effectuent un processus
d’orthogonalisation (ou de décorrélation) qui disparait dans le cas ou le canal est
séparé. Ce document donne des expressions explicites de 1'estimateur qui est présent
dans la forme estimation-correlation du rapport de vraisemblance, ou l’'estimateur
minimise I’erreur quadratique moyenne. Il est aussi montré que 1'opération de décor-
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rélation est présente dans le processus d’estimation. Cette thése propose également
des récepteurs sous-optimaux plus appropriés pour une conception pratique, obtenus
a partir des connaissances acquises lors de 1’étude des récepteurs optimaux.

Des résultats d’analyse de performance pour plusieurs modulations binaires mon-
trent & quel point l'opération de décorrélation est importante afin d’obtenir des gains
en diversité et d’'éliminer les seuils d’erreurs lorsque le canal n’est pas séparé. Cette
thése montre également que la connaissance de la phase du composant fixe n’apporte
pas de gains significatifs pour des rapports signal-sur-bruit élevés et une modulation
par variation de fréquence orthogonale (“orthogonal Frequency-Shift Keying”). Il est
montré finallement qu'’il est possible d’obtenir des gains du rapport signal-sur-bruit
en tirant bénéfice de la connaissance de I’amplitude du composant fixe.
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Chapter 1
Introduction

In the last decade we have witnessed a phenomenal interest in Personal Communi-
cation Services (PCS). The aim of PCS is to provide communications in the form of
voice, data and video services anywhere and anytime. This objective can be achieved
by wireless cellular communication systems that operate in indoor and outdoor radio
environments. In such environments, the transmitted signal reaches the receiver not
only by a direct line-of-sight but by ways of many paths, due to reflection, diffraction
and scattering of radio waves by terrains, buildings and walls. Therefore, the received
signal consists of the sum of multiple delayed and attenuated versions of the trans-
mitted signal in addition to the thermal noise present in any practical communication
systems [1, 2]. Generally, due to time variations of the environment (motion of vehi-
cles, people, ...), the attenuations and delays in this multipath propagation model are
time-variant, resulting in a fading phenomenon. Fading is the terminology used to
denote any random amplitude variations (in this case, in the received signal). These
amplitudes variations in the received signal are created by the successive constructive
or destructive vector additions of the multiple attenuated and delayed versions of the
transmitted signal.

The effect of multipath fading, and consequently the choice (or validity) of a partic-
ular channel model, depends on the signal transmission bandwidth. For narrow-band
transmission (compared to the channel coherence bandwidth), the multiple versions
of the transmitted signal cannot be distinguished one from another; thus they are all
combined together (constructively or destructively) resulting in a flat fading channel.
In this case, the noiseless received signal is simply a randomly attenuated and car-
rier phase-shifted version of the transmitted signal. Optimal detection over such a
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channel in the presence of additive white Gaussian noise and Rayleigh fading results
in bit-error probabilities inversely proportional to the Signal-to-Noise Ratio (SNR),
yielding no diversity gains.

For wide-band transmission, different frequency components of the transmitted
signal undergo different attenuations and phase shifts yielding the so-called frequency
selective channels. Two classical models are investigated in detail in Section 2.1.1
of Chapter 2, one that assumes band-limited signals and the other one that assumes
known multipath delays. When the transmitted signal is assumed to be strictly band-
limited, a tapped-delay line model with tap spacing at multiples of the reciprocal of
the signal bandwidth is obtained by using the sampling theorem [2]. The sampling
model does not make any assumption on the channel multipath delays, but is valid
only for strictly band-limited signals and has, in theory, an infinite number of taps.
Practically, due to the finite multipath spread of the channel, the tapped-delay line
can be truncated to a finite length. When the multipath delays are known at the
receiver (in practice estimated), a multipath fading channel model is obtained with
paths at each known multipath delay. Each path is composed of the sum of sub-paths
which cannot be separated (i.e. cannot be resolved).

It is well known that diversity gains (illustrated by bit-error probabilities inversely
proportional to higher powers of the SNR) can be obtained for these wide-band sys-
tems by the use of Rake receivers (3, 4, 5. However Rake structures are based on
the path resolvability assumption in one form or another. A detailed description of
the various forms of the path resolvability, their implications and use in the literature
is provided in Section 2.2 of Chapter 2. The classical Rake receiver [5], implicitly
based on the sampling model, assumes a very large bandwidth yielding very narrow
signal autocorrelation functions that do not overlap when time-shifted by the channel
multipath delays. This first form of the path resolvability condition ensures proper
estimation of the amplitudes and phases of the multipath components that are used to
form a replica of the noiseless received signal. Since this estimated signal is composed
of several versions of the transmitted signal, it provides a diversity effect.

Rake receivers based on the known multipath channel model [4] assume that the
signal autocorrelation function vanishes at inter-path delays, a condition satisfied if
the inter-path delays are larger than the signal autocorrelation time!. Equivalently,

IThe signal autocorrelation time is defined as the width of the signal autocorrelation function.
More details on those two definitions are given in Section 2.2.1.
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this second form of path resolvability says that any two versions of the transmitted
signal that are time-shifted by two different multipath delays are orthogonal. For
wide-band signals, path resolvability is often stated as the inter-path delays being
much larger than the reciprocal of the signal bandwidth since their autocorrelation
time is approximately equal to the inverse of their bandwidth. After matched filter-
ing to the transmitted signal, a weighted sum of time-shifted versions of the signal
autocorrelation function plus noise is obtained. Sampling the matched filter out-
put at the multipath delays yields samples that can be combined to generate a higher
SNR. Therefore, Rake receivers combat multipath by exploiting the inherent diversity
provided by the time-shifted versions of the transmitted signal.

The path resolvability assumption when the multipath delays are known is gen-
erally satisfied for spread-spectrum systems in outdoor environments but cannot be
ensured in indoor environments due to smaller inter-path delays (order of tens to
hundreds of nanoseconds [6, 7]). Numerical examples based on existing standards
showing that the path resolvability assumption is not always satisfied are provided
in Section 2.3.1. For example, a bandwidth of 50MHz would be needed to resolve an
indoor multipath fading channel [8].

Assuming known multipath delays, the objective of this thesis is to derive receiver
structures that yield diversity gains without the path resolvability assumption over
multipath fading channels. Notice that the multipath delays can be estimated with a
time resolution greater than the reciprocal of the information signal bandwidth. Such
a time resolution can be achieved by using a sounding signal of bandwidth larger than
that of the information signal, or by using super-resolution techniques [9]-[19]. The
concepts of this thesis are applicable to existing as well as future generation wide-band
systems in indoor and outdoor environments. They are also applicable to narrow-band
systems that “see” a flat fading channel provided that the channel multipath delays,
identified with wide-band signals, are known. A detailed formulation of the problem
is given in Section 2.3.1.

In this thesis, the multipath gains are assumed to be Ricean distributed; Rayleigh
fading is viewed as a special case of Ricean. For Ricean fading, each path can be con-
sidered as the phasor sum of a Rayleigh component with a uniformly distributed phase
and a fixed (specular) component. Two classes of detection techniques are considered:
specular coherent and non-coherent. Specular coherent detection assumes knowledge
of the specular component magnitudes and phases. Non-coherent detection assumes
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knowledge of the specular component magnitudes only. Part of this work has been
previously published in [20]. This thesis also includes a thorough literature review
(Section 2.1.2) of existing detection techniques over multipath fading channels, with
an emphasis on the assumptions related to path resolvability used in the derivation
and performance analysis of receiver structures. The issue of path resolvability and its
effects on receiver structures for fading multipath channels has not been given proper
attention in existing literature surveys. Finally, since this thesis considers multipath
fading channels models that assume known multipath delays, existing sounding tech-
niques are also reviewed (Section 2.2.3).

1.1 Original Contributions

The main contribution of this thesis is the derivation of the specular coherent and
non-coherent optimal receiver structures, respectively SPECCOH and OPT, over un-
resolved Ricean multipath fading channels, and identification of multipath decorrela-
tion as essential to eliminating error floors. These novel structures are generalizations
of the Rake receiver to unresolved multipath fading channels. This thesis also presents
explicit forms of the Minimum Mean-Square Error (MMSE) estimate included in the
estimator-correlator structure [21] of the SPECCOH as well as in the OPT, and pro-
vides an interpretation of the operations performed by these schemes. Based on the
insight provided by these optimal structures, non-coherent suboptimal receivers im-
plementing the decorrelation operation, such as the Quadratic Decorrelation Receiver
(QDR), are derived. These receivers can be used in narrow-band and wide-band sys-
tems in indoor and outdoor environments since they are especially designed to handle
path unresolvability. The results illustrate that diversity gains can be obtained on
multipath fading channels without spreading the signal bandwidth. A list of the
original contributions of this thesis follows:

Detection over unresolved multipath fading channels; generalization of the Rake:

e Derivation of the specular coherent and non-coherent optimal receiver struc-
tures (SPECCOH and OPT) over unresolved Ricean multipath fading channels
(respectively Section 3.2.1 and Section 3.3.1).

o Identification of an orthogonalization (or decorrelation) stage as crucial to elim-
inating error floors over unresolved multipath fading channels (Sections 3.2.2,
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3.3.2 and Sections 4.2.2-4.2.3, 4.3).

e Derivation of a simpler quadratic non-coherent suboptimal receiver implement-
ing the decorrelation operation, over mixed mode Ricean/Rayleigh channels?,

with performance close to optimal at high SNR: the Quadratic Decorrelation
Receiver (QDR) (Section 3.7.2).

Estimator-correlator interpretation; presence of the decorrelation operation:

e Derivation of explicit forms of the MMSE estimates (conditional means) for the
SPECCOH and OPT schemes, and relation of these structures to a multipath
channel (respectively Section 3.2.3 and Sections 3.3.3, 3.4.3).

e Interpretation of the QDR as an estimator-correlator with a linear estimate
(Section 3.7.3).

e Derivation of the linear MMSE estimate (Section 3.7.6).
Performance analysis (one-shot transmission):

e Presentation of asymptotically tight upper and lower-bounds to the bit-error
probabilities of OPT (methodology: Section 4.1, results: Section 4.2.2).

e Numerical evaluation of the bit-error probabilities of SPECCOH, QDR and
various receivers previously derived, over mixed mode Ricean/Rayleigh and
Rayleigh fading channels for binary Frequency-Shift Keying (FSK) and variants
of Differential Phase-Shift Keying (DPSK) (SPECCOH: Section 4.2.2, QDR:
Section 4.2.3).

o Identification of the cases where knowledge of the specular component phase
shifts provides significant gains and where it does not, with emphasis on the
comparison of two quadratic schemes, SPECCOH and QDR (effect of the mod-
ulation scheme choice) (Section 4.2.2: Table 4.4, Section 4.2.3).

e Demonstration that SNR gains can be obtained by the knowledge of the specular
component magnitude that assumes an intermediate value, for FSK and variants
of DPSK (Section 4.2.3).

2A channel is said to be mixed mode Ricean/Rayleigh if the first path is Ricean distributed and
the other paths gains are Rayleigh distributed.
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1.2 Outline of the thesis

Chapter 2 reviews the modeling of multipath fading channels and existing detec-
tion techniques. Assumptions related to path resolvability used in the derivation
and performance analysis of receivers structures are elucidated. A detailed de-
scription of the various forms of the path resolvability assumption and their
implications is provided. Since this thesis considers multipath fading channels
models that assume known multipath delays, existing sounding techniques are
also reviewed. Then the objectives and methodology of the thesis are formu-
lated.

Chapter 3 presents the channel model and then derives optimal and subopti-
mal receiver structures without the path resolvability assumption. The inter-
pretation as an estimator-correlator is investigated and explicit forms of the
estimators are derived.

Chapter 4 analyses the one-shot transmission performance of the receivers de-
veloped in Chapter 3 for commonly used binary modulation schemes such as
FSK and variants of DPSK over mixed mode Ricean/Rayleigh and Rayleigh
fading channels. The effects of path unresolvability and the effectiveness of the
decorrelation operation to eliminate error floors is demonstrated.

Chapter 5 discusses practical applications of results and gives possible extension
of the work.

Chapter 6 presents a summary and conclusions to this thesis.

Appendices A-G present the mathematical details of this thesis.




Chapter 2

Background and Rationale

2.1 Receivers for multipath fading channels

2.1.1 Modeling of multipath fading channels

This section presents models for multipath fading channels and the influence of the
transmission bandwidth on the choice of a particular model. Multipath fading is a
common phenomenon present in many different types of environments, such as land
cellular [8, 22] as well as indoor cellular communication systems (1], short-wave iono-
spheric radio communications in the 3 — 30MHz frequency band (HF), ionospheric
forward scatter in the 30 — 300MHz frequency band (VHF'), and tropospheric scatter
(beyond-the-horizon) radio communications in the 300 — 3000MHz frequency band
(UHF) and 3 — 30GHz frequency band (SHF) [2]. Finally, multipath fading affects
microwave line-of-sight links [2, 23, 24], and one-path fading affects satellite commu-
nications [25]-[28].

A multipath fading channel can be modeled as a linear time-varying filter with
low-pass complex impulse response given by [1, 2, 29, 30]

he(r,s) = Y aw(s)eB 5 (r — ni(s)) (2.1)
k

where s and s — 7 are respectively the observation time!and application time of the
impulse, {ax(s)}, {7x(s)} and {8«(s)} are the random time-varying amplitude, arrival-

!The notation s is used throughout this thesis as the observation time instead of the classical
letter ¢ since this letter is reserved to denote an arbitrary finite observation interval [0, t].
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time and phase sequences. In other words, if the signal s,(s) = R{3n(s)e?*} is
transmitted over the channel, the noiseless received signal is vy, (s) = R {Um(s)e?=*}
where

Dm(8) = /w he(r,8)8m(s — T)dr = Eak(S)ejﬁk(S)§m(S —~ 7x(s))
—oo s

The coefficients {ax(s)}, {7x(s)} and {Bx(s)} can be estimated and characterized sta-
tistically. The most common statistical characterization of the channel is obtained
under the assumptions that the impulse response h.(7, s) is wide sense stationary and
the scattering is uncorrelated [31]-[{33]. The term Wide-Sense Stationary Uncorrelated
Scattering (WSSUS) channels is generally used. A WSSUS channel can be described
either in the time or frequency domain by several correlation functions, coined Bello
functions [31, 34], as shown in Fig. 2.1.

As seen in Fig. 2.1, the autocorrelation of the impulse response of a WSSUS
channel is given by

E [h;(-r, s)hc('r', s+ As)/?] = Ru(7, As)d(r - ‘r')

The multipath intensity profile of the channel or the delay power spectrum denoted
in Fig. 2.1 by Rj(7) is obtained by setting As to zero in Ri(7,As). The range of
values of 7 over which Rx(7) is essentially non-zero is called the multipath spread of
the channel and is denoted by Ty, [2, ch. 7]. The Fourier transform of the multipath
intensity profile is denoted Ry(Af) in Fig. 2.1. The range of values of A f over which
Ry(Af) is essentially non-zero is called the coherence bandwidth of the channel and
is denoted (Af).. Due to the Fourier transform relationship between R,(7) and
Ry(Af), the coherence bandwidth is approximately equal to the reciprocal of the
multipath spread. The autocorrelation of the transfer function H.(f, s) of a WSSUS
channel is called the spaced-frequency spaced-time correlation function of the channel
and is denoted in Fig. 2.1 by Ry(Af,As). When Af = 0, its Fourier transform
with respect to As is called the Doppler power spectrum and is denoted S(\) in
Fig. 2.1. The range of values of A over which S({\) is essentially non-zero is called
the Doppler spread of the channel and is denoted by B;. The range of values of As
over which Ry(As) is essentially non-zero is called the coherence time of the channel
and is denoted by {As),. The coherence time is approximately equal to the reciprocal
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of the Doppler spread. Relationships between the multipath intensity profile and the
Doppler power spectrum exist via the so-called scattering function S(7, A) which is the
Fourier transform of R,(7, As) with respect to As. Other methods of obtaining the
scattering function through Fourier transform relationships are illustrated in Fig. 2.1.
The channel coherence time and bandwidth along with the transmission bandwidth
and the duration of the signaling waveform provide a way to classify fading channels.
Common classifications of fading channels are frequency selective versus flat fading
(frequency nonselective) and slow versus fast fading [2].

If the signaling waveform is time-limited and its duration T is such that T « (As),,
the channel attenuation, delay and phase shift of each path are essentially fixed for
the duration of at least one signaling interval and the channel is slowly varying. In
that case the channel becomes linear time invariant with low-pass complex impulse
response given by [1]

he(t) = Zakejﬁ“é(r - k) (2.2)
k

If the transmitted signal bandwidth W is such that W « (Af),, the channel is
said to be flat or frequency nonselective. In that case the noiseless received signal is
simply the transmitted signal multiplied by a complex-valued random process as seen
in the following (2]

Um(s) = -/—cohc(‘l', 8)8m(s = )dr = /;ch(f, S)S,m(f)ejzarfsdf

= [ L8, 93m( 517 = H0,5) [ | Sm($eIodf = H{0,)im()

where H.(0,s) = F» {Zk ak(s)ejﬁk(’)J(T - Tk(s))} l = 3 ak(s)eBx) and S,(f)
is the Fourier transform of 5.(s). When the numbfe—t of paths is large, H.(0,s) is
Gaussian by virtue of the central limit theorem. If H.(0,s) is modeled as a zero
mean Gaussian process, its magnitude |H,.(0, s)| is Rayleigh distributed for any fixed
s and its phase arg [H.(0, s)] is uniformly distributed between —m and #. In that case
the channel is said to undergo Rayleigh fading. If H.(0, s) is modeled as a non-zero

mean Gaussian process, its magnitude [H.(0, s}| is Ricean distributed for any fixed s
resulting in a Ricean channel.
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When W > (Af)., the channel is said to be frequency selective since the Fourier
transform of the transmitted signal is subject to different gains and phase shifts across
the frequency band. Note that according to this definition no channel classification is
given when W is of the order of (Af).. Some authors define a channel as frequency
selective if W is of the order of or exceeds (Af). [35, p. 338]. For convenience
in the following, the second definition for frequency selective channels will be used
with an explicit mention of the more strict assumption whenever required. Several
models can be derived for frequency selective channels depending whether or not the
transmitted signal is strictly band-limited, the fading is slow and the multipath delays
are characterized deterministically or statistically.

Let us first derive the sampling channel model that assumes a strictly band-limited
transmitted signal. This model based on the sampling theorem is valid regardless of
the channel temporal variations and does not explicitly characterize the multipath
delays. Let sp,(s) be the transmitted signal strictly band-limited to W. Then $n(s),
its complex envelope, is strictly band-limited to W/2 and an equivalent channel model
can be obtained by introducing an ideal low-pass filter Hppp(f) as illustrated in
Fig. 2.2 [31].

Sm(s) o Heee (D | Sm(s) | he(r,s) |Tm(S) 3m(S) | Aw(r,s) |¥m(s)
— o > e ——

“wiz . wiz ¢ He(f,s) Hw(f,s)

Fig. 2.2 Equivalent band-limited channel model

The equivalent filter hAw (7, s) is band-limited with transfer function given by

Hw (f,s) = H.(f, s)rect (%)

where rect(u) is defined as

1 <4,
rect(u) = el < 2 (2.3)
0 else.
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Using the sampling theorem, the band-limited channel impulse response is given by

hw(r,s) = i hw (%, .9) sinc [W (‘r - %)] (2.4)

n=-—

where the equality in (2.4) is in the mean square sense [36] and sinc(z) = ﬂ'ﬂ—”l Using
the convolution in the 7 variable hw (7, 8) = hLpr(7) * he(T, 8), hLpr(T) = Wsmc(W-r)
and (2.1) yields

hw (% 3) =Y au(s)e!B I Wsinc [W (7’:,- - Tk(s))] (2.5)
k

From (2.4), the transfer function of the band-limited channel is given by

Hw(f,s) = Fr {hw(r,3)} = VV- i hw ( ) =327 % rect (_vf‘;,)

Define

Har(f,s)= 5 3 hw (g08) 7% (i.e. Hav(f,s) = Hw(f,s) |f < E)

n=-—0oQ

hawtr,0) & 77 (Har £ = 3 3 b ()8 (7= 1) 26)

From (2.6), whenever the transmitted signal is strictly band-limited to W, the chan-
nel can be modeled as a tapped-delay-line with tap spacing 1/W and tap weight
coefficients {hw (%.5)} (2, 37]. In other words, the resolution in time delay of the
model is 1/W. Note that such a model requires an infinite observation interval and
an infinite number of taps. However in practice, if the multipath delay spread is T;,,

the channel model can be approximated by truncation at N = [T,,W] + 1, resulting
in the low-pass complex impulse response

a9 = 3 (35,98 )

where [T;,W] is the integer part of T;,,W. From the central limit theorem evoked in
(2.5), hw (r"‘,—, s) for all n can be statistically modeled as jointly Gaussian random
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processes in the s variable when the number of paths is large.

Channel models for slowly fading or time-invariant multipath fading channels are
considered next. These channels are assumed to be time-invariant over at least one
symbol duration with low-pass complex impulse response given by (2.2). The mul-
tipath delays in (2.2) can be characterized statistically or assumed known at the re-
ceiver. The first proposed distribution of the sequence of path arrival times {7x — 70}]"
was Poisson [1, 38]. However, inadequacy of this distribution has been observed.
Therefore, a modified Poisson distribution, the so-called A — K model was subse-
quently proposed [1],[38]-[40]. Such a model takes into account the clustering property
of paths caused by the grouping property of scatterers.

Other types of models assume that the multipath delays are known at the receiver.
In principle, such a model is given by (2.2), where the multipath delays are assumed
to be known. In practice, however, the multipath delays are estimated with a finite
resolution in time (or finite time resolution). The minimum resolution time of an
estimation method 7p corresponds to the minimum required time difference between
two multipath delays (i.e. minimum inter-path delays) so that the estimator iden-
tifies these two time delays as distinct. Methods of estimation are summarized in
Section 2.2.3. In order to estimate all the inter-path delays present in (2.2), where
some of them could be arbitrarily small, one needs to sound the channel with an
impulse received with an infinite bandwidth yielding an infinite time resolution (i.e
Tr = 0). In that case, all the multipath delays can be estimated or equivalently the
multipath is completely resolved and the output of the channel to 4(s) is given by (2.2)
and illustrated in Fig. 2.3(a). However only a finite time resolution or equivalently

he(T) he(T)
Power § i Power
“ 1L ] “ 4
L -
Tr TR
(a) Channel impulse response (b) Channel impulse respounse (fi-

(infinite time resolution: 7r = 0) nite time resolution: T4 > 0)

Fig. 2.3 Channel impulse responses
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a non-zero minimum resolution time 75 > 0 can be obtained in practice. Classical
sounding techniques using pulse compression (for example the convolution matched-
filter technique) [41, 42] yield a time resolution of 1/W where W is the bandwidth
of the sounding pulse. However super-resolution techniques may yield a time res-
olution better than 1/W but still finite [9]-[19]. Note that in models found in the
literature, the time resolution is usually considered to be 1/W [1, 43]. This finite
time resolution, specific to each estimation technique, has to be taken into account
in the representation of channels with known delays yielding the classical model of
multipath fading channels. Rewriting (2.2) with a double summation the noiseless
received signal v, (s) = R {Um(s)e’<*} can be expressed as (see Fig. 2.3)

vm(8) = ?R{ (Lz—:l i ak,gejB"-‘s?m(s - Tk,l)) ej“’"} ~R { (Lz_:l akdm(s — -rk)) ej“’"}

k=0 l=-~0c0 k=0

where all the “sub-paths” within a cluster, which cannot be resolved (when |7i; — 7¢.r|
<« Tg) are grouped together. Therefore a; 2 P ax.e38 and 7, ~ 7y, are respectively
the complex gain and the time delay of the &** “resolved” multipath component. The
low-pass complex impulse response of the channel is then given by

L-1

he(T) = aid(r ~ i) 2.7)

k=0

For band-limited signals, the channel model given by (2.7) is completely equivalent
to the linear time-invariant version of the tapped-delay-line model (2.6) given by

ratr) =g 3 o (35)5 (= ) 2

where the tap weight coefficients of the tapped-delay-line are given by

L-1
hw (%) = Z axWsinc [W (-% - 'rk)] (2.9)
k=0
since hw (7) = hLpp(T) * he(T) = ,’;;J axWsine [W (17 — 7)]-

In both models, the amplitudes and phases of the path gains can be assumed
known or characterized statistically. Several amplitude distributions can be chosen to
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characterize the path gains. Well-accepted models employ the Rayleigh and Ricean
distributions with the Rayleigh distribution modeling the small-scale rapid amplitude
fluctuations in absence of a strong received component and the Ricean distribution
modeling the presence of a strong path [1]. Their justification comes from the central
limit theorem which states that the sum of a large number of random variables tends
to a Gaussian random variable. Measurements in indoor environments showed good fit
to Rayleigh and Ricean at various frequencies, i.e. 300MHz, 1.5GHz, 2.3-2.4GHz and
60GHz [1, 44, 45]. Measurements in micro-cellular urban radio environment showed
good fit to Rayleigh and Ricean at 1.8GHz [46]. Good fit to Ricean was also observed
in straight sections of tunnels environment at 300MHz and 1.8GHz [47]. However
other measurements studies showed better fit to log-normal distributions even for
local areas data [40]. Other amplitude distributions include Nakagami [48], Suzuki
[39], extended Suzuki [49] and the new so-called POCA distribution [50].

2.1.2 Detection techniques for multipath fading channels

Detection techniques over multipath fading channels have been thoroughly studied
since the fifties. In this work, only the subject of single-user systems is addressed.
Fundamentals of single-user detection over multipath fading channels are well covered
in several reference books [29, 30, 35, 51, 52|. A more recent literature review of this
subject is presented in [53].

Two basic types of single-user receivers can be identified, one-shot receivers and
multi-shot receivers. One-shot receivers assume that a single symbol signal is trans-
mitted. The decision regarding the transmitted signal is based on an observation
interval that spans the duration of the received signal corresponding to the single
transmitted symbol [51, p. 80]. Over Gaussian or one-path fading channels, the
observation interval is the transmitted signal duration; however over multipath chan-
nels, the observation interval should be chosen to be longer to take into account the
multipath spread. The key assumption of one-shot receivers is that the transmitter
is idle outside the transmitted signal interval. Performance analysis of one-shot re-
ceivers yields single-pulse performance or matched filter bounds. It is equivalent to
neglecting any Inter-Symbol Interference (ISI) and hence provides a lower-bound on
bit-error probabilities if ISI is present. Multi-shot receivers assume that a sequence
of symbol signals is transmitted and make decisions concerning all the transmitted
symbols [51, p. 80).
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Optimality of a receiver is defined with respect to a criteria such as minimization
of a cost, or risk, function (Bayes criterion). In detection theory, common optimality
criteria is minimization of the average probability of symbol error. Any receiver
structure (optimum or suboptimum) depends on knowledge of channel parameters.
For example, a receiver may know some parameters exactly or may know only their
second order statistical description.

One-shot receivers for multipath fading channels, optimum in the minimum aver-
age probability of symbol error sense, have been first presented in [3]-[5], including the
well known Rake receiver [5]. In [3], the channel is time-varying, multipath delays are
assumed to be arbitrary but known and the path gains are zero mean Gaussian ran-
dom variables (Rayleigh fading). Representing the continuous time transmitted and
received signals using the sampling theorem, the likelihood ratio is expressed in terms
of filters defined by integral equations. These integral equations are solved in closed-
form only for special cases such as the slowly fading multipath and the single path
channels. Using Neumann's series expansion of the integral equations, a structure has
been proposed using a tapped-delay-line that approximates the optimum decision rule
at low SNR. In (4], optimal receivers are derived assuming that the multipath delays
are known at the receiver and satisfy the resolvability condition defined by

1
n-l > LAk

where W is the transmission bandwidth. The resolvability condition implies that the
signal autocorrelation function is approximately zero at inter-path delays (i.e at 71 — 7%
for example). Path gains are assumed to be Ricean or Rayleigh distributed and the
phases of the specular term are assumed to be either known or uniformly distributed.
A one-shot optimum receiver using the same resolvability assumption was derived in
(48] with Nakagami distributed multipath gains. Essentially, these receivers employ
the Rake technique [5]. The optimal receiver that assumes a statistical characteriza-
tion of the multipath delays, was derived in [4] with Ricean or Rayleigh path gains,
and in [48] with Nakagami gains. In {48], structures assuming a statistical charac-
terization of the multipath delays were derived under the assumption that with high
probability |7, — 7| > 9 for all [ # k, where § is approximately the reciprocal of the
transmission bandwidth.

The well known Rake receiver was first introduced in [5], although its concept has
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been used already in the suboptimal structure of [3]. Optimality of the Rake receiver
was studied in detail in [54]. The approximate finite tapped-delay-line model obtained
from the sampling theorem was implicitly used to obtain the Rake structure in [5]. In
the original Rake structure, the amplitudes and phases of the multipath components
are first estimated based on the received signal and then the estimates are used to form
a replica of the noiseless received signal. Once this replica has been formed, detection
is equivalent to the detection of a known signal in white Gaussian noise which is
basically a correlation of the received signal with the replica. The estimation of the
channel coefficients or its channel impulse response is accomplished using correlation.
In the absence of noise, the correlation of the received signal with the sum of both
possible transmitted waveforms yields the channel impulse response when the long-
term cross-correlation function of the transmitted signals is zero for all = shifts and
each transmitted signal autocorrelation function is approximately equal to a delta
function. Practically, the second condition yields very narrow signal autocorrelation
functions that do not overlap when time-shifted by the channel multipath delays. The
signal is then said to resolve the multipath. This “resolvability” condition, defined
more rigorously in Section 2.2.1, is satisfied for wide-band signals of sufficiently large
bandwidth.

Fig. 2.4 illustrates an example of the m** hypothesis block diagram of a Rake
receiver with weighted combining that employs matched filtering. The actual receiver
is composed of several such blocks, one for each possible transmitted signal followed
by a decision device that takes the largest output. The combining weights can be
either equal to the estimated values of the amplitudes and phases of the multipath
components as in [5], or based on the channel statistical characterization as in {4].
The received signal is passed through a matched filter associated with the m*® possible
transmitted signal. The output of the matched filter is passed through a tapped-delay-
line (Fig. 2.4), whose tap outputs, corresponding to inter-path delays, are combined
and the result sampled. Basically, the receiver attempts to collect the signal energy
present at each of the tap outputs, hence the name Rake [2]. In other words, it com-
bats multipath by exploiting the inherent channel diversity yielding diversity gains.
In addition to being essential for chanunel estimation, the resolvability condition (i.e.
non-overlapping of time-shifted versions of the signal autocorrelation function) has
important implications for the interpretation of the Rake receiver. Whenever the
resolvability condition is satisfied, the multipath channel provides several replicas of
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Fig. 2.4 Rake receiver: block diagram for the m** hypothesis using complex
envelope notation.

the transmitted signal at the corresponding tapped-delay-line outputs. Therefore the
Rake receiver can be viewed as a time diversity combiner. This shows that results
in multichannel or diversity reception over fading channels are applicable to resolved
multipath channels [55]-[57], providing ways of combining the tapped-delay-line out-
puts.

Linear diversity techniques for fading channels have been studied in detail since
the fifties. In [58], Selection diversity (SC), Maximal-Ratio Combining (MRC) and
Equal-Gain Combining (EGC) were compared based on their SNRs. As expected,
MRC yielded the highest output SNR. Non-coherent and coherent diversity combining
techniques were derived in [59], and analyzed in terms of their bit-error probabilities
when the amplitudes are Rayleigh distributed (Rayleigh fading). In [59] the term non-
coherent refers to the receiver absence of knowledge of the phases and instantaneous
signal amplitudes. Coherent diversity assumes that such a knowledge is available to
the receiver. It was shown that square-law combining is the optimum non-coherent
combining for Rayleigh fading. MRC, similar to [58], was found to be the optimum
coherent diversity technique. The optimal one-shot diversity receiver for Ricean fad-
ing, assuming only a statistical characterization of the channel with a known specular
term, was derived in [55]. This receiver represents a generalization of the square-law
combiner of [59]. It was also derived in [60] for a more general channel based on a
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sampling model. Performance of the receiver derived in {55] was analyzed in [56] when
no specular term is present. Minimum error rates achievable by optimization of the
number of diversity branches have been determined for predetection MRC and post-
detection EGC with frequency and time-diversity [61]. For both combining schemes,
detection was performed using bandpass matched filters followed by square-envelope
detectors (non-coherent). It was shown that the minimum required transmitted power
for a given error rate is strictly larger than zero for both diversity techniques (even
if an infinite number of diversity branches is used). MRC with correlated diversity
branches and arbitrary average powers in each was studied in (62] in term of the
probability density function (pdf) of the combined power. In [63], the probability dis-
tribution of the post-combination SNR is calculated for SC, MRC, EGC and constant
combining without assuming equal mean SNR on the various diversity branches. Bi-
nary error probabilities of square-law combiners and differentially coherent diversity
receivers with EGC were studied in [64] for a frequency selective multi-channel. The
existence of an irreducible error probability due to the selective fading was demon-
strated. Results were later extended in [65] to multi-channels with a specular term.
Error probabilities for the optimum coherent receiver over Ricean/Rayleigh fading
multi-channels were derived in [57] for signals with identical cross-correlation coef-
ficients on each diversity channel. Error probabilities for orthogonal signaling were
also derived for a (non-coherent) square-law combiner. Extension of these results to
nonorthogonal signaling was done in [66]. Square-law envelope diversity combining
was studied in [67] for FSK and DPSK where each channel is composed of two spec-
ular terms and a scatter (diffuse) term. Adaptive diversity receivers using a noisy
reference signal derived either from the previously received signal or from a pilot sig-
nal, were analyzed in [68]. Closed-form expressions for the probabilities of error of
these diversity receivers with M-phase signaling and Rayleigh fading in each diversity
branch were given. Equivalent results were derived for Ricean channels with 2-4 phase
signaling.

More recently, analysis of the performance of equal-gain diversity receivers with
coherent, differentially coherent and non-coherent detection on Nakagami fading chan-
nels was performed using a Chernoff-bound type of approximation [69]. One method
to determine the average bit-error probability consists of averaging the conditional
error rate, conditioned on the predetection SNR. For EGC, the predetection SNR is

2
equal to Ygec = [Z,f;; [akl] /(2LNy) where L is the number of diversity channels,
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Np is the noise power of one channel and |a;| are Nakagami random variables corre-
sponding to the signal amplitudes at the output of each diversity channel. Therefore,
the first step is the computation of the pdf of E,f‘;g |ak|. In [69], such a pdf is approx-
imated within a specified accuracy by the convergent infinite series derived in [70].
Bit-error probabilities of an equal-gain combiner with coherent detection over Rayleigh
fading channels were derived in [71] in the form of one-fold integrals. Error probabili-
ties for MRC and post-detection combining over Nakagami fading channels were also
studied by the same author {72, 73|. A unified approach to the performance analysis
of digital communications over slow fading multi-links channels, possibly correlated
was proposed in [74, 75]. This framework allows evaluation of the average bit-error
rate either in closed-form or in the form of a single integral with finite limits readily
calculable numerically. The results included MRC and EGC with coherent detection
as well as square-law combining. Error probabilities with square-law combining were
computed over fast Ricean fading channels in [76]. Symbol error probabilities for var-
ious coherent 8-ary and 16-ary modulations were computed in [77] for slow Rayleigh,
Ricean and Nakagami fadings with SC, MRC and EGC. These results enabled accu-
rate optimization of modulation constellation parameters. In particular it was shown
that the CCITT V.29 constellation can be improved by adjusting the amplitude ratios
of the constellation points.

Another implementation of the Rake receiver using a channel estimator based on
periodic integration approximated by a first order recursive structure (re-circulation
loop) was given in [78]. It was assumed that the signal and noise autocorrelation
functions are essentially zero at all inter-paths delays (i.e. at 7, — 7). Variations of
the Rake receiver were later derived. For example, an optimum receiver for reception
of Direct-Sequence Spread-Spectrum (DSSS) signals on WSSUS fading channels was
presented in [79]. A discrete-time multipath channel model (with a discrete set of
Rayleigh-faded paths) was derived and resulted in a receiver very similar to [4]. Since
the paths are assumed to be Rayleigh fading (zero mean signal component), the
obtained optimum receiver is quadratic and hence non-coherent. The obtained channel
model can be viewed as a discrete-time version of the continuous-time tapped-delay-
line model derived from the sampling theorem. Although the channel was formed
by a continuum of multipaths, the spread-spectrum processing produced the discrete
multipath components (delayed versions of the transmitted signal). Because Pseudo-
Noise (PN) codes with ideal autocorrelation properties are assumed, the discrete-time
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delayed versions of the input signal form orthogonal sequences. In other words, the
discrete-time delayed versions of the input are resolvable similar to the resolvability of
the continuous-time delayed versions of the input signal from [5]. An optimum non-
coherent one-shot receiver for detection of band-limited DSSS signals over Rayleigh
multipath fading channels was derived in (80] using chip rate sampling of the received
signal. Non-coherent here means that the receiver knows the channel statistics rather
than the channel impulse response. A DSSS coherent Rake receiver that estimates
the phases and combining factors of the receiving paths was presented in [81]. The
inter-paths delays were assumed to be larger than the length of a code chip. The effect
of imperfect phase estimates of a coherent Rake receiver that employs a Phase Lock
Loop for phase recovery was studied for DSSS signaling in [82]. The channel model of
(82] is a sampling model (finite-length tapped-delay-line) where the tap weights are
assumed to be perfect estimates of the channel parameters. Self noise arising from
non ideal PN sequences is neglected.

In [83], the “partially coherent” binary optimum receiver for multipath Rayleigh
fading channels under uniform orthogonality conditions was derived. This receiver
knows the multipath coefficient phases but has only statistical knowledge of their
magnitudes (the term “partially coherent” is not accurate here, and the receiver should
be called coherent). Uniform orthogonality means that the complex envelopes of the
transmitted signals §,,(s) satisfy

Rmp(n — ) £ / og;;(uﬁp(u ~(n—7))du = _/ og;(u — 7%)8p(u — 1)du = EpikOmp
(2.10)

where d;. is the Kronecker delta (VI # k 6. = 0 and dy = 1). As seen previously,
optimal receivers over multipath fading channels that are related to Rake structures
have always assumed resolved multipath. The optimal one-shot receiver for multipath
Rayleigh channels with known delays without the path resolvability assumption has
been derived in [84]. The analysis included a Doppler phase shift f,, and the set
{by(s) = e 25, (s — 1) }p was assumed to be linearly independent over the obser-
vation interval. Later, optimal receivers over two-path Rayleigh channels were derived
with known delays and different levels of channel knowledge assuming “uniform au-
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tocorrelation” without path resolvability [85]. Uniform autocorrelation is defined as
| R (71 — 7o) 2 |/ 5m(u)dm(u — (1 — 10))du independent of m (2.11)
)

Optimum receivers, even of one-shot type, may be difficult to implement or dif-
ficult to analyze; therefore suboptimum receivers are often considered. A quadratic
suboptimum receiver structure over two-path Rayleigh channels with known delays
was derived in (86] for signals with uniform orthogonality for the cross-correlation
function, i.e.

o
Rump(mi = 70) & / S (Weu—(rn—mo)du=0 mp=12 m#p (2.12)
—-0o0
Such a condition states that the signal cross-correlation function is zero at the channel
inter-path delays. The decision variable of the proposed receiver is an optimum (in the
minimum probability of error sense) linear combination of two quadratic forms. The
first quadratic form is the sum of the outputs of two envelope detector receivers with
filters matched respectively to the first and second possible transmitted signals. The
second quadratic form is equivalent to the first one, except that filters are matched
to the delayed versions of the possible transmitted signals. “Partially coherent” and
non-coherent BiQuadratic and Bilinear, suboptimal receivers were derived in [83, 87}
for uniformly orthogonal signals as defined by (2.10).

Since performance analysis of one-shot receivers (matched filter bound) assumes
no ISI, it provides in general a lower-bound to the bit or symbol error performance.
Nevertheless, such analysis is important to provide benchmarks. Analytical matched
filter bounds of the optimal receiver for resolved multipath Rayleigh fading channel
have been derived in (88] for uniformly orthogonal signals. The result was equivalent
to the one found in [59] in the context of multi-channel reception. It was shown
that for a resolved multipath channel diversity gains can be obtained by using the
contributions of all paths. Furthermore, it was shown that even a low power path
should not be discarded in the decision variable. Since the optimum decision variable
in that case is a Hermitian quadratic form in complex Gaussian random variables, the
bit-error probability is found by inverting the characteristic function of the quadratic
form [88]- [92]. This method of computing the bit-error probability applies to any
quadratic receiver. New methods based on the evaluation of the Laplace transform of
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the pdf of the difference between the metrics of two competing signal sequences have
been proposed in [93, 94]. For diversity detection, the unified approach proposed in
[74, 75) can be used. In [48], analytical bit-error probabilities over Nakagami multipath
fading channels were only obtained for suboptimal receivers and under the assumption
of uniform orthogonal signals and complete resolvability, equivalent to the following
assumptions:

o0

Rip(r) & / S (w)s(u—1)du=0 V7

—00

|/_: §1(u)3y(u — 1)du

/on §3(u)s2(u — 7)du

-0

(ie. [Ry(7)| = |Re(7)]) VT

‘/ §p(u)3m(u — 7+ 7)du
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/w S (u)dm(u — 7 + 7 )du

—00
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It was shown that diversity gains are obtained even for suboptimum receivers. Diver-
sity gains were also pointed out in [79]-[81] for Spread-Spectrum single-user transmis-
sion with receivers based on Rake structures. In [95], both single-user and multi-user
transmissions employing a single-user Rake receiver with perfect measurement of the
channel parameters (coherent multipath combining) were considered. The channel
is characterized as a linear time-invariant filter with randomly distributed complex
gains and multipath delays. Based on approximations to the average bit-error proba-
bility using SNRs, diversity gains were observed for single-user transmission, however
large performance degradations were observed for multi-user transmission. Although
in the receiver design no particular assumption was made on the inter-path delays,
in the performance analysis, the probability that the inter-path delays are less than
the chip duration was assumed to be very small. In [96], based on a Gaussian ap-
proximation, performance of DSSS Rake receivers with random spreading sequences,
several diversity combining schemes and two finger assignment strategies, was as-
sessed. It was assumed that the inter-path delays are larger than the chip duration.
For diversity combining it was shown that instantaneous amplitude-based finger as-
signment is much better than the average power-based finger assignment. This was
to be expected since instantaneous amplitude-based finger assignment corresponds to
a complete (instantaneous) knowledge of the channel, whereas power-based finger as-
signment corresponds to a statistical characterization of the channel. More recently,
the impact of the number of Rake fingers, spreading bandwidth and multipath spread
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on the total Rake receiver output SNR for Spread-Spectrum systems was assessed in
[97]. A representative result indicates that for Spread-Spectrum systems with 5MHz
bandwidth and a constant power delay profile channel having 5us, increasing the num-
ber of Rake fingers from one to three yields 3.8dB SNR gain and 1.5dB if the number
of Rake fingers is further increased by two.

Performance of the optimum receiver for unresolved multipath Rayleigh fading
channels based on bounds to the bit-error probability was considered in [98] for binary
widely orthogonal signals. Binary signals are said to be widely orthogonal if any time-
Doppler-shifted version of one signal is orthogonal to any time-Doppler-shifted version
of the other, i.e.

/El(u — n)e??™ g3 (u — 7 )e I rtdy = 0 (2.13)

The channel was modeled as a linear time-invariant filter composed of L discrete paths
with complex amplitudes equal to a;. Let By, and C be L x L matrices with [k
entries equal to

(Bmly = /Em(u — 1)l G, (u — i )e I kidy (2.14a)

[Clik = El(a — @) (ax — @)°] =20} (C is a diagonal matrix) (2.14b)

Upper and lower spectral bounds on the error probability were derived assuming
that the spectra of the matrices B,,C,m = 1,2 are narrow about the nominal value
1. When B, is diagonal or approximately diagonal (i.e. 3. |[Bm]yl < 1) and
C = o1, these bounds are found to be sharp. Note that the sharpness of the bounds
depends on the spread of the spectrum of B,,C, and only results with small values
of this spread have been presented in [98]. Results for the special case of resolvable
signals, i.e. any time-Doppler-shifted version of a signal is orthogonal to any version of
itself (B,, = I), in addition to the widely orthogonality assumption, were also briefly
compared to previous diversity results (56]. In {85], bit-error probabilities correspond-
ing to the optimum receiver are evaluated for two-path Rayleigh fading channels with
known delays under the assumption of “uniform autocorrelation” defined by (2.11).
Two-fold diversity-like effects in the performance of envelope orthogonal FSK and vari-
ants of chirp or linear frequency sweep modulation were observed. In [86], bit-error
probabilities of the suboptimum quadratic receiver mentioned previously have only
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been derived over two-path unresolved Rayleigh fading channels under the assumption
of uniformly orthogonality for the cross-correlation function defined by (2.12). This
receiver also achieves diversity-like effects using the same type of modulation schemes
as in [85]. Similarly bit-error probabilities (BEP) and asymptotical BEP were derived
in [87, 99| for suboptimal receivers under the assumption of uniform orthogonality.

All these performance results are matched filter bounds associated with receivers
that know the channel only partially. Some authors define the matched filter bound
as the performance of the optimal receiver that assumes perfect equalization (no
ISI) and perfect channel estimation [100, 101]. Assuming single transmission, the
considered receiver is composed of filters matched to all possible noiseless received
signals. The matched filter performance bound assuming the channel to be known
exactly provides a ultimate lower-bound on the probability of error and can be found
without the resolvability assumption. Matched filter bounds have been evaluated
for two-path Rayleigh fading channels in {102], for multipath Rayleigh channels in
(100, 101),[103]-[106] and for mixed mode Ricean/Rayleigh fading channels? in [107].
All matched filter bounds showed that diversity-like improvement can be achieved at
high SNR. Performance degradation due to noisy channel estimation in the adapted
matched filter receiver was assessed in [108] for various channel estimation techniques
assuming no ISI. Bit-error probability of a matched filter receiver assuming perfect
channel estimation in a multipath Rayleigh fading channel that includes the effects of
Inter-Path Interference (IPP) and ISI, was determined for a binary antipodal system
[109].

Since decisions of optimal one-shot receivers are based only on the current re-
ceived symbol and assume single transmission, the performance of these receivers is
not optimal if the channel has memory or if ISI is present (introduced by the channel
or by the type of modulation used). Memory for a multipath fading channel means
that the fading coefficients, over two consecutive symbol intervals or more, are cor-
related. Transmission over multipath fading channel most often results in ISI due to
the channel multipath spread, T,,. The only case where ISI can be neglected occurs
when spread spectrum signals of duration much larger than T, are used [33]. In
that case only a small portion of adjacent symbols (in the order of numbers of chips)
interferes with the detection of a particular symbol. However, frequently ISI is taken

2 A mixed mode Ricean/Rayleigh fading channel denotes a multipath channel where the first path
gain is Ricean distributed and all the other path gains are Rayleigh distributed.
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into account in Spread-Spectrum Code Division Multiple Access (CDMA) systems
along with other type of interference such as Multiple Access Interference (MAI), see
for example [110]. Performance degradation due channel memory and ISI may be
overcome by using sequential detection, i.e multi-shot receivers, or equalizers [2].

One can distinguish between two types of multi-shot receivers: symbol-by-symbol-
decision structures, including equalizers, and sequence detection structures. Symbol-
by-symbol decision receivers make an individual decision on each transmitted symbol
based on the entire received sequence. The optimal symbol-by-symbol decision re-
ceiver, in the sense of minimizing the probability of symbol error, is the Maximum A
Posteriori (MAP) Symbol Detector (MAPSD) (2, 51, 111]. Two types of MAPSD al-
gorithms were developed at the end of the sixties; a forward and backward recursions
algorithm [112], and a forward recursions only algorithm [113]. Later a algorithm
similar in concept to the one proposed in [112] was derived for the decoding of error
control codes [114]. Recently a new MAP algorithm has been derived [115] that gen-
erates optimum soft-outputs; it requires only a forward recursion and memory that
increases only linearly with the decision delay.

Sequence decision receivers make a decision on the transmitted sequence based on
the received signal. The optimal sequence detector in the sense of minimizing the
probability of sequence error when the data sequence a-priori probabilities are equal,
is the Maximum-Likelihood (ML) sequence detector (MLSD) [33, 53, 116]. MLSDs
for a known time-invariant deterministic channel causing ISI have been studied in the
seventies [117]-[119]. The detection technique employed the Viterbi algorithm [120].
Unification of these receivers and extension to time-varying known as well as unknown
channels with decision-directed channel estimation was considered in [121]. An exten-
sion of the MLSD from [119)] to linear time-varying dispersive channels with diversity
appeared in [122]. The resulting receiver is optimum only for ideal Channel State
Information (CSI) but can also be used with high-quality CSI estimates. The MLSD
when the channel is completely unknown (blind MLSD) was considered in [123]. In
[124] the MLSD was derived for linear modulations with band-limited signals over
a frequency selective Rayleigh fading channel with a known continuous time multi-
path intensity profile (second-order statistical characterization of the channel). The
received signal was filtered and sampled according to the sampling theorem yielding
a discrete channel model. An irreducible error floor due to ISI was observed. The
Maximum-Likelihood sequence estimation (MLSE) was achieved by using Kalman fil-
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tering and the Viterbi algorithm. MLSD receivers were analyzed either analytically
[118, 119, 122] or by using simulations [118, 121, 124]. In [125], a combined MLSE
equalizer and decoder was analyzed analytically for slowly time-varying frequency se-
lective Rayleigh fading channels. A new upper-bound on the decoded bit-error proba-
bility was derived. Pairwise probability of sequence or event errors of the MLSD with
perfect knowledge of the impulse response of a WSSUS channel was later derived in
closed-form without any resolvability assumption [126]. Union bounds and approxi-
mations were used to obtain the total average probability of error. Slow fading was
assumed and sequence by sequence reception was performed making this structure
equivalent to a one-shot receiver where each sequence is considered as a symbol.

Since both the MAPSD and the MLSD receivers are computationally complex,
suboptimum symbol-by-symbol and sequence decision receivers have also been de-
rived. One can distinguish between two suboptimal detection methods applicable for
multipath fading channels and any dispersive channel in general. The first method
consists of using an equalizer followed by a one-shot decision [127]; the purpose of the
equalizer is to remove the effect of ISI on the received signal. The second method
consists of using a suboptimal symbol-by-symbol detector, or a suboptimal sequence
detector. These suboptimal detectors are derived either by approximating the op-
timum decision rule [128] or by imposing a type of structure on the receiver (for
example reduced complexity channel estimator [129], sequential sequence estimation
[124], decision feedback [130, 131]) or by combining both methods [132].

Literature reviews of adaptive equalization are given in [33, 53, 133, 134]. Equal-
izers can be linear or nonlinear, although linear equalizers are usually not used in
multipath fading channels since they do not perform well due to spectral nulls in
channel frequency-response characteristics [33]. A popular nonlinear equalizer for
multipath fading channels is the Decision Feedback Equalizer (DFE) [127, 135]. The
ISI caused by previously detected symbols can be estimated using the previous deci-
sions and removed from the received signal before detection of the present symbol [2].
In [127], a DFE consisting of a feed-forward and a feedback filter, assuming absence
of decision errors and optimized for a MMSE criterion was derived. Although the
MMSE criterion may yield higher probability of error than the minimum probability
of error criterion, in many situations both criteria yield close performance. More often
than not, linear modulation is assumed when equalizers are employed. An adaptive
receiver that does not require any training sequence nor statistical estimation was also
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proposed for unknown slowly time-varying channels (decision-directed scheme). The
achieved error probabilities in a dispersive channel were lower than the non-dispersive
fading channel error probabilities, showing that diversity gains are obtained by the
equalizer in absence of decision errors. The DFE is attractive due to its relatively
low complexity and has been extensively studied [135] (see also references in [53]).
However it has limitations as shown for example in {136] where the impact of channel
estimation errors on its performance is studied. The principle of DFE can also be
combined with MAP or MLSD detection techniques. For example, a generalized DFE
related to the MAPSD has been proposed independently in [116] and [130] and ana-
lyzed in dispersive mobile radio channels {131]. A jointly adaptive fractionally spaced
DFE and diversity combiner was derived in [137]. The current estimates of the channel
impulse response at each diversity branch are used to compute the receiver param-
eters periodically. The performance is limited at high SNR by the channel impulse
response estimation. In [138], diversity reception and various adaptive equalization
techniques are combined. A MMSE criterion is used and expressions for the attainable
MMSE'’s as well as upper-bounds to average probabilities of error are presented. An
adaptive nonlinear equalizer for fast time-varying multipath channels that consists of
a symbol-by-symbol detector and a single Kalman-type nonlinear channel estimator
was presented in [139]. Another type of equalizer is based on channel precoding or
pre-equalization. The transmitted signal is precoded to achieve an ISI-free received
signal [140]. This is feasible only in slow fading multipath channels since the channel
characteristic has to be known.

Usually, suboptimum receivers are designed using a combination of concepts. For
example in {132], the MAP algorithm of Abend and al [113] was combined with an
Extended Kalman Filter algorithm (EKF) to jointly estimate the multipath coeffi-
cients, the symbol timing and the data sequence in a TDMA system. The system
included a training mode followed by a blind equalization mode. Due to the expo-
nential complexity of the EKF-MAPSD, approximate algorithms were proposed. A
suboptimal sequence estimation receiver was derived in [129] for frequency selective
channels with linearly modulated signals. The proposed receiver consists of a sequence
estimator implemented using the Viterbi algorithm with a parallel channel estimator.
Similar to the flat fading channel estimator, the channel estimator employs linear pre-
dictive filters instead of Kalman filters. Jointly maximum-likelihood synchronization,
equalization and detection of linearly modulated signals over a time-varying frequency
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selective Ricean channel were studied in [141]. An approximation of the MLSD was
presented in [124] in the form of a Sequential Sequence Estimator (SSE). The SSE has
a much lower computational complexity than the MLSD while giving almost identical
error performance.

Most equalizers presented earlier are designed to combat ISI that occurs even in
the presence of a single user. Receivers may also be designed to take into account the
presence of several users and they are referred as multi-user receivers. In the context
of CDMA systems that suffer from MAI, popular suboptimal multi-user receivers are
the linear multi-user decorrelating receivers {142, 143]. Multi-user decorrelating prin-
ciples have been later applied to asynchronous CDMA slow fading frequency selective
channels [144, 145]. A K users sampling channel model composed of L resolvable
paths (each separated by the reciprocal of the signal bandwidth) was assumed. The
front-end of the multipath decorrelating receiver consists of KL filters, matched to
the (K') users normalized signature waveforms delayed by the (L) channel inter-paths
delays. Note that the term multipath decorrelating receiver is used since the users are
decorrelated. However no decorrelation of the multipath samples is performed. When
the sequence length tends to infinity (infinite horizon detector), the vector formed of
the KL matched filters output sampled at bit rate can be written as the sum of a
signal vector component and a noise vector component. The signal vector component
can be viewed as the output of a linear time-invariant filter when the input is the vec-
tor of the K users data scaled by the complex channel multipath gains. The principle
of the decorrelating receiver is to pass this output vector through the corresponding
inverse filter (decorrelating filter) in order to decouple the contribution of each user
in the received signal. Coherent or differentially coherent single-user structures can
then be used to form the decisions.

The interpretation of optimum receivers as estimator-correlators will conclude this
literature review. This will provide directions for design of suboptimum receivers. In
[146], it was shown that the optimum receiver over a Gaussian random linear time-
varying channel of finite memory can be interpreted as an estimator-correlator. Over a
deterministic channel with additive white Gaussian noise, the receiver cross-correlates
the received signal with all possible noiseless received signals. For a random channel,
the receiver uses the same decision rule, except that it employs estimates of the
noiseless received signals. This result was also shown in {3] for a single path channel
and was verified in [111] for multipath time-varying fading channels modeled using
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the sampling theorem. The MAP symbol detector was also derived in [111] and it was
shown that if the number of samples representing each symbol is large and all possible
transmitted symbols are of equal energy, the approximately MAP symbol detector has
also an estimator-correlator interpretation. The estimator-correlator interpretation
from [146], explained earlier in this paragraph, was generalized to any random channel
in the presence of additive noise with a Gaussian component [21]. The estimate of the
noiseless received signal is the MMSE estimate or conditional mean. Furthermore,
the cross-correlation operation involves a special stochastic integral called the Ité
integral and denoted { in this thesis. In [21], the structure of the estimator-correlator
is illustrated for purely random amplitude and purely random phase channels with
conditional means that are relatively simple to find in closed-form. A tutorial on the
subject is presented in [147].

The interpretation of the optimum receiver in Gaussian noise has several implica-
tions in terms of the implementation of optimal as well as the design of suboptimal
receivers. In principle, the estimator-correlator structure can be implemented, how-
ever the number of sequence waveform estimator and log-likelihoods to be evaluated
grows exponentially with the message length N. If a random dispersive channel has
a finite memory of duration L in the sense that the channel output causal MMSE
estimate at any given time is a function of only the most recent LT seconds of obser-
vations, a reduced complexity implementation of the optimal receiver can be derived
[148]. The channel output sequence can be treated as a finite state process having 2-+!
states. Furthermore, the 2¥ waveform estimates required in the implementation of
the estimator-correlator structure can be pieced together using only 2¢+! subsequence
estimators. A Viterbi algorithm having only 2% metrics can be employed to determine
the transmitted sequence. Therefore the complexity of the optimal receiver has been
reduced from exponential in NV (message length) to exponential in L (channel memory
independent of N). In [149)], optimal and suboptimal receivers that have an estimator-
correlator structure have been derived for linearly phase modulated signals over a flat
Rayleigh fading channel. Optimal receivers in additive white Gaussian noise have an
estimator-correlator structure, including a MMSE estimator. Often such a structure
is difficult to implement especially the estimation part of the receiver. But this struc-
ture leads naturally to suboptimum receivers that can be obtained by using a simpler

approximation to the MMSE estimator. Such design examples will be proposed in
this thesis.
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The assumptions used in the design and performance evaluation of receivers in
relation to path resolvability are summarized in Tables 2.2 and 2.3. For example the
authors in [5] assumed a large transmission bandwidth. The inter-path delays were
assumed to be (much) larger than the reciprocal of the transmission bandwidth in
{4, 48, 81, 88, 95, 96]. In (78, 83, 86, 87, 99| the signal autocorrelation function was
assumed to be essentially zero at all inter-paths delays. In fact all these assump-
tions are equivalent and represent the so-called path resolvability assumption defined
in Section 2.2.1. This assumption yields important simplifications in the derivation
of receiver structures for multipath fading channels and their performance analysis.
However it is not always satisfied, hence optimal receivers derived assuming path re-
solvability are often suboptimal. The aim of this thesis is to derive receiver structures
without assuming path resolvability. To start with, the various forms of the path
resolvability assumption are studied next. For purpose of comparison and complete-
ness, references based on sampling models such as [79, 80, 82] and classic references
related to the thesis results have also been included in Tables 2.2 and 2.3.

2.2 Path resolvability in multipath fading channels

2.2.1 Definitions of path resolvability

In this thesis, only receiver structures that assume knowledge of the channel inter-
path delays over slow fading multipath channels are studied. Therefore discussion of
path resolvability will be carried out in that framework. As seen in Section 2.1.1,
two different models can be used to describe a multipath fading channel: the classical
wide-band model (2.7) and the sampling model (2.8) that is valid only for band-limited
signals. However, for band-limited signals these models are equivalent and the path
resolvability assumptions are the same.

Let us first consider the classical wide-band model that yields a channel impulse
response given by (2.7). Let 5,(s) be the m*® possible transmitted signal and let
To,-.. ,TL—1 be the L distinct delays of the multipath fading channel. Mathemati-

cally the strict path resolvability assumption is defined by the following orthogonality
condition

b
/ Sm(u—-7)38,,(u = Ti)du =0 l#k m=1,... M (2.15)
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where [a,b] is the observation interval. The term strict has been introduced to dis-
tinguish the rigorous path resolvability assumption from the approximate path re-
solvability that is defined next (2.19). Note from (2.15) that the path resolvability
condition depends on the observation interval. Let us show that assumptions from the
literature are equivalent to the orthogonality condition (2.15). From (2.10), it is seen
that a uniform orthogonality condition implies the path resolvability condition for an
infinite observation interval. Therefore, any resuit obtained under the assumption of
uniform orthogonal signals implicitly implies the path resolvability assumption as in
[83]. The signal (time) autocorrelation function is given by

(s ¢]

Ro(7) = f 5% ()im(n — 7)du (2.16)

-0C

The transmitted signals can be either time-limited or band-limited. Assume first
that the transmitted signals are time-limited to {0, T]. Let the observation interval
be chosen to be sufficiently long to include all the received signal energy, i.e. (a,b] =
[0,T + max; 7;]. Then, (2.15) can be equivalently expressed as

Rn(n—m)=0 [l#k m=1,... M (2.17)

which is satisfied if the absolute values of the inter-path delays are larger than the
autocorrelation time T,(Tm), defined as the width of the autocorrelation function, i.e

T(m)
Vit > —"2-— Rm(7) =0. (2.18)

Since §p,(s) is time-limited, T,(t'") is well defined and is less or equal to 27". Therefore
(2.17) gives the second definition of the path resolvability. Equivalently, for time-
limited signals, the multipath is said to be resolved if the inter-path delays are larger
than the autocorrelation time.

Consider now signals band-limited to W (in theory of infinite duration). Therefore,
to exploit all the received signal energy, the observation interval needs to be infinite
([a,b] = (—o0,00)). The strict multipath resolvability is still given by (2.15) or
(2.17). Since the signals are not time-limited, the autocorrelation is also not time-
limited, therefore there is no Tf{") such that (2.18) is satisfied. Assume that the
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(m)
autocorrelation function is composed of a main lobe and lower side lobes. Let z%— be
defined as the minimal time after which the autocorrelation is essentially zero, i.e.

T("‘)
Yir| > —g— [Rn(T)| < €

where ¢ is a small number determined by the application and the design requirements.
The approximate path resolvability assumption is defined as

[Rm (11— )| <€ l#k m=1,..., M. (2.19)

Such approximate path resolvability condition is often found in the literature for
band-limited signals although receivers are usually designed assuming strict path re-
solvability. For spread-spectrum signals, W is very large and T,({") = # Hence for
wide-band signals, the multipath is said to be (approximately) resolved if the inter-
path delays are much larger than the reciprocal of the signal bandwidth. Such a
definition appears for example in [4, 48]. The approximate path resolvability assump-
tion can also be visualized graphically as follows. From (2.7) under H,,, the complex
envelope of the noiseless received signal is given by op,(s) = Zf;ol arSm(s — 7). As-
suming that s, (s) is transmitted, the output of the matched filter matched to the
mth possible transmitted signal §,(¢) (“m** matched filter output”) is given by3

un(s) = [ r(wsm(=s +u)du
oo L-1
= [?R { (Z akSm(u - Tk)) ejw;u} + n(u)] §R{§m(-s + u)ejwc(—s+u) }du
—oe k=0

Neglecting integrals containing double frequency terms (from Lemma C.1) and as-
suming no noise, un,(s) is given by

L-1
Um(s) = -;-ER {z ap R (s — Tk)ej‘*"} (2.20)

k=0

3The notation u, () is used since up(n) = R {u;mef“=" %'»} where the variables {uim};_q 1

first stage of the optimum receivers, are given by (3.18b), E., is the energy of 3,(s) and the obser-
vation interval is (—oo, co).
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where Rn,(s) is the autocorrelation function of 3,(s) given by (2.16). The complex
envelope of u,(s) is illustrated in Fig. 2.5 for a two-path noiseless channel. Fig. 2.5(a)

F Ry (s~ m)
T #RR(s-n)

i

7o ot To Ti1

(a) Resolved multipath, {(b) Unresolved multipath,
|71 — 70| 2 TR [T — 10| TR

Fig. 2.5 Complex envelope of the noiseless m** matched filter output assuming

that s,,(s) is transmitted. The autocorrelation time T}{") is the width of the
autocorrelation function.

shows that if |1, — 75| > T,({"), the two autocorrelation functions approrimately do not
overlap. In other words, the two paths are separated or resolved and one can be
distinguished from the other. Such a terminology is used in [5]. Furthermore, for
fixed inter-path delays, separation (or path resolvability) can be obtained by choosing
W sufficiently large since Tg") ~ ;- for wide-band signals. Such visualization of
the path resolvability is also used in [5]. Fig. 2.5 could also correspond to the first
stage of a channel estimator based on pulse compression (“convolution method”).
Fig. 2.5 clearly shows that if the path resolvability assumption is satisfied, the inter-
path delays and amplitude path gains can be easily estimated whereas if the path
resolvability assumption is not satisfied, no straightforward estimation is possible.
This shows the importance of the path resolvability (i.e. of large bandwidth) in early
days of detection theory as recognized by Price and Green in [5].
Let us consider now strict path resolvability for sampling channel models. The
channel is modeled as a tapped-delay-line with equally spaced taps at 3 and an im-
‘ pulse response given by (2.8). But recall that this model is just another representation
of a wide-band channel model given by (2.7) valid for the case of band-limited signals
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only. Therefore, the path resolvability assumption can still be expressed as (2.15)
or (2.17); however, the signals are band-limited. In other words, for resolvability,
the inter-paths delays must correspond to zero-crossings of the signal autocorrelation
function. For example if §p,(s) = sinc (W's), from Parseval theorem applied to (2.16),
its autocorrelation function is given by

o0 - - R 1 2 %V_ ) 1
Bn(r)= [ S0Sae = () [ ey = gysine ()
Therefore from (2.17), strict path resolvability is satisfied in that case if and only if
the inter-path delays are integer multiples of 3i: (1 — 7 = W)
Conditions where path resolvability is satisfied are summarized in Table 2.1.

Table 2.1 Conditions where path resolvability is satisfied

|  Time-limited signals | Band-limited signals® |

autocorrelation time Tim) tm)

Rp(ri—7)=0,l#k Rn(n—-7)=0,l#k
or | — 7| 2 T for specific values of {71},

| |* |Bm(m—m)l<e | l
« |n—ml 2TV |Ron (11— T)| < €

strict path resolvability

approximate path
x |m—Tk| < T,(zm) for
specific values of {n}, such or | —me| =TI
that |R,, (1, — )| < €

resolvability

2.2.2 Path resolvability assumption in the literature

Comparing results of Tables 2.2 and 2.3 with the conditions where the path resolvabil-
ity is satisfied summarized in Table 2.1, shows that path resolvability is often assumed
in the literature although sometimes not mentioned explicitly. A receiver structure
depends mainly on two factors, the channel model and its level of knowledge. One can

4For wide-band signals band-limited to W, T{™ ~ #- Thus the approximate path resolvability

assumption in that case may also expressed as [ — 7i| 2 T{,— Since T,(z"') is only approximately equal
to 3, [ — Tk| > 77 is often mentioned in the literature for safe guard purpose.



2 Background and Rationale 36

distinguish between perfect channel knowledge and knowledge of channel statistics.
The optimum receiver assuming perfect channel knowledge includes filters matched to
all possible noiseless received signals (including the channel filtering effects), regard-
less of whether path resolvability is assumed or not. Therefore papers that assume
perfect channel knowledge do not assume path resolvability [100]-[109],[126]. This ap-
plies both to wide-band and sampling channel models. Note that papers that include
the channel estimator in their receiver design such as (5, 78] assume path resolvability
(large W in [5], Rm(mi — ™) = 0 [ # k in [78]). These resolvability assumptions
are only required for the channel estimator. Sometimes path resolvability is assumed
even with perfect channel knowledge in order to simplify performance analysis [95].
In [81], path resolvability is assumed to derive an equivalent discrete time model with
samples at the symbol rate.

For knowledge of channel statistics, wide-band and sampling channel models have
to be considered separately. For wide-band channel models, path resolvability assump-
tion yields simpler optimum and suboptimum structures and also simpler performance
analysis. Therefore such assumption has often been considered in the literature under
various forms (see Tables 2.2 and 2.3). For example, Rake and Rake-type receivers
presented in (4, 48, 96] assume that the inter-path delays are (much) larger than the
reciprocal of the transmission bandwidth. Uniform orthogonality which implies path
resolvability was assumed in [83]. Receivers without the path resolvability assump-
tion have been derived in [3],{84]-[86] for Rayleigh fading. The Ricean fading was
not studied. The path resolvability assumption is also often assumed in performance
analysis. For example [r; — 7i| > 1/W is assumed in [88], uniform orthogonality
was assumed in [87, 99]. In [98] path resolvability is not assumed. but uniform or-
thogonality for the cross-correlation function (including the Doppler shift), (2.13), is
requested. Furthermore, sharp bounds to the bit-error probabilities are obtained only
if the matrix B,,C,m = 1,2 (see (2.14)) has a narrow spectra. This assumption is
not related to path resolvability but imposes additional constraints on the channel
and the transmitted signals in addition to the uniform orthogonality for the cross-
correlation function. Recently, performance analysis of non-coherent and coherent
delay lock loop chip time trackers in the presence of unresolved multipath compo-
nents has been presented [150]. In [150], path unresolvability such that the multipath
delays satisfy 0 < .’I'-!: < 1.5 is considered. It was shown that the non-coherent delay
lock loop outperforms the coherent one in terms of demodulated signal power loss.
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Table 2.2 Various assumptions found in the literature in receiver design and
performance analysis, W is the signal bandwidth.

Channel Fudi Slow o R .
Reference Modulation knowledge i ::)1n'g & Fast hm m)lvnb-lhty
(amplitude/phase) | * stributions fading shot assumptions
Z€ro mean
[3] Price(1956) M.ary second order Gaussian S/F X arbitrary known delays
second order with L
[4] Turin(1956) M-ary known or unknown | Gaussian S X known delays satisfying
specular phase shift 7= nl > L/W. L £ k
Price Binary perfect
(4 >
5] & Green(1958) FSK measurenient § X large W
Turin(1959) second order with k .
(88] | (performance Binary known specular Gaussian S X nown delays satisfying
evaluation) phase shift I —nl > 1/W.1#k
Sussman Binary perfect
(78] (1960) wide-band measurement S X Rin—-n)=0.1#k
54 Kailath M secand order Conssi F discrete-time model
(54] (1963) -ary with known mean aussian <> sampling model
) zero mean arbitrary known delays
(84] | Aiken(1967) M-ary second order Gaussian S X with Doppler shifts
Aiken(1967) Binary ero mean [ 31(u — m)e*f.
(98] | (performance widely second order ZG ) S X S3(u ~ eJeI?=fundy = 0
evaluation) orthogonal ussian narrow spectra
a Y known or known and random delays
[48] mr?z:s M-ary unknown am- Nakngami S X with
(1979) plitudes & phases Priln-n|> &= L1£k
liscrete-tin lel
Ochsner BPSK Zero mean Feree-tine m(-x ¢
(79} { ord rect. spread. function c(t)
secotid order S I~1
(1987) (DSSS) Gaussian 3 ciTe(G +K)T) = Coue
=0
Lehnert PSK(B.Q) et Pln-nm|l<T]<x1
95] | & Pursley MSK perfee S (assumed for
(1987) (DSSS) measurement performance only)
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Table 2.3 Various assumptions found in the literature in receiver design and
performance analysis (cont.)

Channel . Slow .
Reference Modulation knowledge Fading & Fast One Resolvability
. distributions . shot assumptions
(amplitude/phase) fucling
Hagmanns M-ary ZEro mean sampling model
B0 | ¢ Hespelt(1904) | (DSSS) secoukd order Gawsian | S | X | bandlimited signals
ML phase esti- Im-7nl 2T, L #k
[81] Fawer(1994) M-PSK mation assuming Gaussian S equivalent
(DSSS) known amplitudes discrete-time model
Abdel-Ghaifar Binary unknown Zero mean Run(n = 1) = 0. takm=1.2
[83] & Pasupathy uniformly amplitudes & Gmussian S X JRua(n—-1)=0, 15
(1994) orthogonal known phases {2-path) (cross correlation funct.)
» second order .
Alles & s perfect cirect Zero mean arbitrary known delays
[85} Pasupathy Binary path measurement Gaussian S X such that
(1994) Envelope | » perfect (2-path) | B (71 = 7o)
is independent of m
orthogonal measurement
Alles & FSK * |Rpy(1 — 7)] ind. of m
(86] Pasupathy & Chirp second order aero m.eun X S | s Rpp(ri—m)=0
(1994) Guussian mp=tzmap(for P, only)
Abdel-Ghaffar M-ary » perfect Ru(n—-7n)=0.1%k
(87] | & Pasupathy uniformly measurement Gaussian S X |RaAn—-n)=0.l#k
(1995), (perf.) | orthogonal | » known amplitude (cross correlation funct.)
Abdel-Ghaffar M = perfect
) & Pasupathy f‘m measurement Gausi s Rn(m : ) ~ 0.1#k
[09] (1995) uniformly + known phase aussian X Riz(n — ) = 0, l#k
(performance) orthogonal s second order (cross correlation funce.)
Eng perfect amplitude sampling model
(82] | & Milstein BPSK | ¢ unperfect pha- | Rayleigh s =, cose| < |2, €
(DSSS)
(1997) se measuretnents {c,}: code sequence
BPSK known phases
[96] | Cheun(1997) QPSK | known or unknown | Rayieigh s known delays such that
(DSSS) amplitudes m—nf>T. l#k
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But no tracking scheme designed to handle the path unresolvability was proposed.

Sampling channel models are usually represented in the literature [2, pp. 728-731],
(80, 82, 145] by (2.8) without referring to (2.9). In other words, the multipath delays
are not generally specified. Therefore, the derived structures using those models do
not use the knowledge of the multipath delays. Hence the issue of path resolvability
defined by (2.15) is irrelevant for the derivation of the receiver. Receivers designed
to minimize the probability of error are optimal but only if the transmitted signals
are strictly band-limited since the sampling channel model holds only in that case.
If the observation interval is finite (ex. [a,b]), the so-called optimal receivers are in
fact suboptimal since band-limited signals are of infinite duration. Path resolvability
yields simplifications in receiver design. An equivalent assumption for purpose of
simplification with the sampling channel model is

5 ny _, k
_/asm(t-W)s"‘(t_W)dt—O n#k m=1,... M

which is for example assumed in [2] to simplify performance analysis of the Rake re-
ceiver. Similar assumption in the context of DSSS transmission( lZJ c,-c,-+ki < IZ ; cf‘

= IEJ CjCj+k| ~ 0, where {c;} is the code sequence) is considered in [82]. In [79],
the dispersive WSSUS channel is reduced to a discrete-time multipath fading channel
with samples at the chip rate and path resolvability defined by (2.15) is irrelevant.
However a discrete-time condition similar to path resolvability ( ‘J{;(} c(jT)ec((F + K)T)
= Cdor), where ¢(t) is the spreading function composed of rectangular chips) has been
assumed. Finally note the discrete-time model used in {54] can be obtained by sam-
pling the channel output at % as explained in [111], so it is equivalent to the sampling
channel model.

When the channel is modeled as a dispersive ISI channel, the received signal
is generally first passed through a matched filter, matched to the channel impulse
response and sampled at the bit rate, to yield an equivalent discrete-time model. Such
operation assumes that the channel is known to the receiver and as already mentioned
in that case the path resolvability assumption does not affect the receiver design. In
other cases, since the channel impulse response is unknown, the received signal is
passed through a filter with rectangular low-pass transfer function and sampled at bit
rate yielding a discrete-time signal that depends on the samples of the channel impulse
response. Therefore similarly to the sampling channel model, the path resolvability
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assumption is irrelevant in the design of equalizers.

As seen in Table 2.1, path resolvability is closely related to the channel inter-
path delays assumed known to the receiver. Those inter-path delays are in practice
estimated using sounding techniques. A summary of the principal sounding methods
for radio channel estimation, including the more recent super-resolution techniques is
given next.

2.2.3 Channel sounding techniques

Multipath fading channels are characterized by their impulse responses such as (2.7).
However a channel can also be characterized by its frequency domain transfer func-
tion. Based on these two characterizations, one can identify two classes of sounding
techniques: those that estimate the channel impulse response in the time domain and
those that estimate the channel transfer function. When a narrow-band characteriza-
tion of the channel is required, the estimation is often done in the frequency domain.
The most common technique consists of exciting the channel by an un-modulated
radio frequency carrier (single-tone) and measuring the amplitude and phase of the
received signal [42]. By sequentially stepping the tone across a band of frequen-
cies, measurements of the channel transfer function can be obtained (frequency-sweep
methods). A similar method (multi-tone) is based on simultaneous transmission of
multiple independently generated sinusoids [41]. Multiple receivers can then be used
to measure the amplitude and phase of each received tone. These methods are mainly
used for narrow-band characterization; for wide-band measurements, the number of
tones must be large to maintain good frequency resolution. Therefore, the single-tone
method is time consuming for wide-band measurements and cannot be used in fast
fading environments since the characteristics of the channel may have changed by the
time the last tone of the frequency sweep is transmitted. The multi-tone or frequency-
sweep methods yield a very complex receiver for wide-band measurements. Therefore
for wide-band channel characterization, time domain wide-band sounding techniques
such as pulse methods, are preferable.

In the time domain, two types of pulses can be used, either periodic short duration
pulses (simulating delta functions) or long pulses that have an autocorrelation function
with a very narrow central peak that contains most of the energy (pulse compression).
The major drawback of short duration pulses is their inefficient use of transmission
power. Their total energy has to be sufficiently high such that the SNR at the output



2 Background and Rationale 41

of the matched filter is high. For a narrow pulse, this requirement translates into a
high amplitude peak. Therefore, pulse compression methods with lower amplitude
peaks for the same received SNR are usually preferred.

Pulse compression techniques are based on the principle that the impulse response
of a system can be obtained by cross-correlating the output of the channel excited by
white noise with a delayed replica of the input [42]. Usually pseudo-random sequences
are used to replace the white noise that is not implementable. This method is usually
implemented using a matched filter matched to the sounding waveform (convolution
matched-filter technique) or a sliding correlator [17, 151]. Assume that the channel to
be estimated is a linear time-invariant system with low-pass complex impulse response
given by (2.7) and that estimates of the amplitudes and multipath delays are required.
Let 5.(s) be the complex envelope of a wide-band sounding signal of bandwidth W
(for example a pseudo-random sequence as illustrated in Fig. 2.6(a)). Similar to the

5e(s) ie(s)(noiseless)
FR(s—7)

s $R:(s — 7o)

i it "

n
(a) Complex envelope of the sound- (b) Complex envelope of the noise-
ing signal (time domain) less output of the matched filter,

matched to the sounding signal

Fig. 2.6 Sounding signal and its matched filter output

steps yielding (2.20), the noiseless output of a filter matched to the sounding signal
Se(s) is given by

L-1
u(s) = %ZR {Z arR:(s — Tk)ej“°’} (2.21)
k=0

where R.(s) is the autocorrelation function of S.(s). When the inter-path delays are
much larger than the autocorrelation time or the reciprocal of the sounding signal
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bandwidth (resolved multipath), the complex envelope of the noiseless output of the
matched filter @.(s) exhibits peaks at 7, with amplitudes proportional to the multi-
path gains amplitudes as illustrated in Fig. 2.6(b). And the straightforward approach
to determine the amplitudes and multipath delays is to use the amblitudes and loca-
tions of the peaks of the matched filter output [152]. Such approach is not optimal
unless the individual peaks are separated by times greater than the autocorrelation
time (such as in Fig. 2.6(b)). In that special case, the obtained values correspond to
the ML estimates calculated by considering each path separately. This pure convo-
lution method provides accurate estimates of a; and 7 only if the path resolvability
assumption is satisfied for the sounding signal. For smaller inter-path delays, errors
into the amplitudes and delays occur due to the overlapping of the matched filter
outputs associated with each path.

Better accuracy of the amplitudes and delays can be obtained from another time
domain method based on the ML approach considering all the paths together [152].
Modifying results of [152] to consider the channel low-pass complex impulse response

given by (2.7) instead of a real impulse response, the ML estimates of the amplitudes
and multipath delays are obtained by

(@, 7] = argmax {A [r, {ak, Tk} ; To|} = arg max {In A [r, {ax, 7} ; To]}
Gk Th Gk Tk
where A [r, {ak, Tk} ;T,|, the likelihood ratio over the observation interval [0, T,] as-
suming known a; and T, is given by

Afr {ae 7} ; Ty = exp{ 130 0T° r(t) {(Z ot — 'rk))e-“‘"‘}dt

k=0

__/T" [ {(Eakse(t—n))e’%‘}rdt}

Since this method does not require multipath resolvability, it can be used to im-
prove accuracy in case overlapping of the delayed path responses occurs due to very
small inter-path delays. However it requires knowledge of the number of paths. In
(152], a suboptimum procedure is proposed to determine the number of multipath
components. First estimates of the amplitudes and multipath delays are determined
successively assuming there is only one path, two paths and so on. Secondly the
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smaller number of paths that gives an integrated Mean-Square Error (MSE) between
the actual and the estimated signal approximately equal to the MSE due to noise
alone, is chosen.

In the more general case of an arbitrary time invariant channel impulse response,
sounding methods are equivalent to deconvolution techniques. The purpose of sound-
ing methods is to solve the following problem: find the system real impulse response
her(7) from the channel output r(s) given by

r(s) = /_oo her(s — T)se(T)dT + n(s) = /;m her(T)se(s — T)dT + n(s) (2.22)

where s.(s), the sounding signal is known, and n(s) is a random process (noise). From
(2.22), it is seen that the convolution of h.gr(T) with s.(7) yields r(s). The problem
of deconvolution is then to find h.gr(7) given r(t) and s.(7) [153]. Several solutions
to perform deconvolution have been derived. For example, a discrete-time solution
based on constrained linear regression has been derived in [153]. If deconvolution is
transposed in the frequency domain, then the problem becomes inverse filtering [152,
154]. In the absence of noise the straightforward approach is to use an inverse filter but
in the presence of noise the “ideal” inverse filter may not be suitable since it amplifies
the noise. Therefore an estimate of the system real impulse response is given by
her (s) = r(s)*f(s) where the linear estimating filter f(s) is chosen such that the MSE,
E [( her (s)—-th(s))z] , is minimized and a known sounding signal s.(s) is transmitted
(i-e. 7(s) = hcr(s)*se(s)+n(s)) (Wiener theory) [152]. The solution is usually given in
the frequency domain. Note this does not provide a MMSE estimate of the amplitudes
and multipath delays. However, multipath resolvability is not required. Once the
channel transfer function has been reconstructed, the amplitudes and multipath delays
could be retrieved from it by using an adapted version of Prony’s method [155].

As shown in the following, multipath fading channel estimation in the frequency
domain is closely related to the estimation of the amplitudes, phases and frequen-
cies of sums of f-complex sinusoids (i.e. f-exponentials), the multipath delays being
interpreted as the frequencies of the sinusoids. Let us assume that the low-pass com-

plex impulse response h.(7) = Zi‘;& ard(T — T) is to be estimated. Equivalently the
low-pass complex channel transfer function H.(f) = F {he(r)} = 2L are=27/m

needs to be estimated where the 7;'s appear as frequencies. Let z[n] = H.(n) +n'(n),
n=201,..., N—1be N observations of H.(f) in complex additive white Gaussian
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noise. Assuming L known and widely separated frequencies, the ML frequencies esti-
mates of H.(n) in complex additive white Gaussian noise correspond to the frequen-
cies at which the periodogram, 1/N IZ:’:_OI z[n]exp (—j27 fn)lz, attains its maximum
[156]. However for closely spaced sinusoids, the periodogram cannot be used and op-
timal ML estimation approaches are not practical yielding to the use of suboptimal
methods based on spectral estimation techniques. Spectral estimation techniques are
methods that estimate the power spectral density of a stationary signal based on a fi-
nite set of observations from that process. Three types of modern spectral estimation
methods can be used for frequency estimation [156], AutoRegressive (AR) spectral
methods such as the Maximum Entropy Method (MEM) [157], principal component
frequency estimation, and noise subspace frequency estimation such as the MUltiple
SIgnal Classification method (MUSIC) [158]. If the SNR is high enough, the peaks
of the estimated AR power spectral density provide good estimate of the frequencies
[156].

The MEM is based on the principle that the spectral estimate must be the most
random (or equivalently have the maximum entropy) among all power spectra which
are consistent with the measured data. It was shown that for Gaussian random
processes and known samples of the autocorrelation function, the maximum-entropy
process is an AR process. The solution is obtained by solving linear Yule-Walker
equations [159]. The MEM method gives accurate AR spectral estimates for truly AR
data but has difficulties such as phase dependence of the peak locations for sinusoidal
data [156, p. 231]. A better AR spectral method less sensitive to sinusoidal phases and
peaks shifts due to noise effects is the modified covariance method [156, pp. 225-228].

Principal component frequency estimation retains only the principal eigenvector
components (i.e. associated with large eigenvalues) in the estimate of the observations
autocorrelation matrix, thus eliminating noise eigenvectors [156, pp. 425-428].

Noise subspace frequency estimation methods are based on the eigendecomposition
of the observation covariance matrix into orthogonal signal and noise subspaces. One
of them, the MUSIC method, generates an estimated power spectrum Pyy(f) that
becomes by definition infinity at the sinusoidal frequencies [156, 158]. Therefore,
the frequencies estimates are found as the frequencies corresponding to the L largest
peaks of Pyu(f), where Pyu(f) is the inverse of the Euclidean distance from the
vector V = (1,672, .. e ““”]T/\/-L- to the signal subspace. In general, the
multipath amplitudes are estimated using another method. For example, once the
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multipath delays are determined, the Least-Squares Error (LSE) MUSIC [14] can be
used to estimate the multipath amplitudes. Many other spectral estimation methods
do exist, additional references on the subject can be found in {156, 160].

To summarize, it is seen that earlier sounding techniques such as the convolution
method [41, 42] could only achieve a time resolution equal to 1/W the reciprocal
of the sounding signal bandwidth. However super-resolution techniques may yield a
time resolution better than 1/W [9]- [19]. Similar to classical sounding techniques,
super-resolution techniques can operate in time domain or frequency domain. In
general they achieve better time resolution by combining several methods based on
the classical sounding techniques. For example, a sounding technique yielding better
resolution than correlation and inverse filtering techniques combines Wiener filtering
similar to [153] and windowing {9].

A time domain technique that combines the concept of convolution and inverse
filtering, called Matched Filter Deconvolution (MFD) and including sequential bin
tuning, is proposed in [14]. The multipath delays and amplitudes are estimated in
two steps. First, the Dominant Paths (DP) are extracted by minimizing the sum of
the square-errors between the received signal samples and the output samples of a
preliminary channel impulse estimate excited by the sounding signal (LSE method).
The preliminary estimate is obtained by applying a moving amplitude threshold to a
combined function formed by the matched filter and the matched filter deconvolution
(based on inverse filtering) channel estimates. The LSE method yields a preliminary
approximation of the DP and forms the core of MFD techniques. The DP amplitudes
are determined more accurately using a sequential bin tuning algorithm also based on
LSE but applied on a reduced channel response obtained by removing the dominant
paths. The second step is the extraction of the lower amplitude paths (reinforcement
tuning). The main concept of the second iterative step is to form a reduced channel
estimate by removing the paths that have already been estimated and redo LSE to
identify lower amplitude paths. A minimum resolution time (), lower than the
chip duration, was obtained with good performance. Improvement in accuracy was
observed compared to the MEM and MUSIC methods. However MFD techniques
yields deconvolution noise that has to be compensated [15, 161] to eliminate the SNR
floor.

Several super-resolution techniques have an initial matched filtering stage similar
to pulse compression methods [10, 11, 13]. For example, higher resolution can be
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obtained by sampling the matched filter output at K discrete delay times and apply-
ing principles of the MUSIC algorithm to the data vector formed with the samples
[10]. Another technique involves the direct Least-Squares (LS) estimation of the am-
plitudes and the multipath delays [13]. The initial matched filtering stage enables
the identification of the regions of potential presence of multipath delays (region with
large energy). Then LS estimation of the amplitudes and multipath delays is per-
formed using an error function based on the positive frequency part of the discrete
signal spectra.

The time domain super-resolution technique presented in [11] employs matched
filtering, set-theoretic deconvolution and AR modeling. Similar to pulse compression
methods, the received signal is passed through a matched filter, matched to the sound-
ing signal. Signals with autocorrelation functions having narrow main lobes and low
side lobes are used to facilitate the deconvolution stage. The output of the matched
filter is the sum of the convolution of the signal autocorrelation function (known
function) with the channel impulse response and a noise component. Deconvolution
methods give an estimate of the channel impulse response from which estimates of
the multipath parameters can be obtained. Here deconvolution is performed using
the method of projections onto convex sets. This method is an iterative technique
that yields a solution satisfying a set of predetermined constraints (variance of the
residual, amplitude, support and real-valuedness constraints). The solution is found
by successively projecting an initial estimate on the constraint sets. The multipath
parameters are then estimated from the final channel impulse response estimate using
a simple thresholding or using an AR model with the Prony algorithm. Comparisons
with matched filtering and inverse filtering techniques showed improvement in the
time resolution of multipath delays that were very close to each other. This method
was later extended for use in DS-CDMA communications by replacing the variance of
the residual constraint with a modified residual covariance constraint which is based
on the exact statistic of the noise at the output of the matched filter [19].

Recently a super-resolution technique based on substrative deconvolution is com-
pared with a modified inverse filtering technique [18]. The main idea of the substrative
deconvolution algorithm is similar to the sequential bin tuning of [14] in the sense that
initial multipath estimates are made and dominant paths are iteratively subtracted
from the received signal to generate a residual signal that is used in the next estima-
tion iteration. However the estimation in [18] is obtained by correlating the residual



2 Background and Rationale 47

signal with a band-limited replica of the sounding pulse that includes the distortion
induced by the transmitter and the receiver. Amplitudes and locations of the peaks at
the output of the correlator give the amplitudes and multipath delays estimates. The
modified inverse filtering technique does not consider spectral nulls of the sounding
pulse in its frequency transfer function estimation. For both algorithms, the obtained
impulse response is reduced by keeping only the significant peaks. The amplitudes
and multipath delays left are then optimized using a MMSE criterion. It was shown
that although the inverse filtering technique performs better in the absence of noise,
deconvolution performs better in the presence of noise before the MMSE optimiza-
tion step. However after the MMSE optimization step, the modified inverse filtering
technique gives better results.

Super-resolution techniques operating in the frequency domain can make use of the
Root-MUSIC algorithm [12]. In [16], a super-resolution modeling of the indoor radio
propagation channel that matches the measured channel frequency response H.(f)
(i.e. H.(f) = SE are 92! "") to the transfer function of a finite impulse response

(FIR) filter Hp (e??"f) (i.e. Hp (e%f) = e~ )2t by e=32f "), where the delay
term e~72"/™ is used to lower the filter order. The filter tap weights b, are obtained by
solving an over-determined system of NV equations in the least squares sense similar
to the one used in the extended Prony’s method.

Although the information conveying signal bandwidth may be equal to W, inter-
path delays smaller than 1/W can be estimated by using super-resolution sounding
techniques. In this case, the receiver can have a super-resolution model of a multi-
path fading channel that is not resolved by the information conveying signal. The
implication of this observation on detection techniques is the general subject of this
thesis.

2.3 The subject of this thesis

2.3.1 Formulation of the problem

As seen in Section 2.1.1, the effect of multipath fading depends on the signal transmis-
sion bandwidth. For narrow-band transmission, i.e when the transmission bandwidth
is much less than the channel coherence bandwidth, the channel can be modeled as
flat fading. Without any diversity technique, the bit error rate will be inversely pro-
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portional to the SNR [2]. This occurs for example in GSM?® or 1S136° (digital AMPS?)
[162] systems with signal bandwidths of 200kHz and 30kHz respectively. Typical val-
ues of the channel root-mean-square (rms) delay spread, o, are 3us in urban areas,
0.5us in suburban areas, less than 0.2us in open areas and less than 0.1us in office
buildings [6]. These values depend on the transmission frequency band and site. For
example, the delay spread in office buildings at 850MHz was measured to be 270ns
maximum [7]. Using a common rule of thumb, (Af). =~ 1/(5 = o,) [163], the coher-
ence bandwidths of the urban, suburban, open areas and office buildings channels are
roughly equal to 67kHz, 400kHz, 1000kHz and 2000kHz. Therefore, suburban, open
areas and office building channels appear as flat fading for the GSM and IS136 signals.
In order to decrease the bit error probability, various forms of diversity techniques such
as time, frequency, spatial, polarization diversity or frequency hopping can be used.
Other powerful techniques such as interleaving and error correction coding can also be
combined with diversity. All of these techniques, excluding error correction coding,
involve several transmissions of the same signal and require additional equipment.
When a wide-band signal is transmitted, the channel becomes frequency selective, a
form of time diversity that can be exploited without several transmissions of the same
signal (Rake receiver). It is widely believed that this inherent time diversity can only
be taken advantage of, using a wide-band signal [2, 164, 165], but is it so ? This yields
the following question:

When a narrow-band signal is transmitted over a channel that “appears” to be flat
fading, is it possible to exploit the channel inherent time diversity that is identified
with wide-band transmission ?

With wide-band signaling, this inherent channel time diversity can be exploited
by a class of detection structures known as Rake receivers. As seen in Section 2.1.2,
Rake receivers assume path resolvability (either strict or approximate although the
literature does not really differentiate between the two). But strict path resolvability
(orthogonality condition (2.15)) is rarely satisfied and even approximate path resolv-
ability (defined by (2.19)) is not always satisfied in practice. For example, for band-
limited signals the classical assumption that the inter-path delays are much larger
than the reciprocal of the signal bandwidth [4] implies only approximate path resolv-

5GSM: Global System for Mobile communications
61S136: Interim Standard 136
7 AMPS: Advanced Mobile Phone Service
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ability since the reciprocal of the signal bandwidth takes into consideration only the
main lobe of the autocorrelation function. However practical autocorrelation func-
tions have low side lobe(s) that generates IPP [109]. Therefore optimum receiver
structures derived under the strict path resolvability assumption are in fact not op-
timum under these realistic conditions in the sense that they neglect IPP. Optimum
receivers designed without the path resolvability by definition take into consideration
the IPP and thus could improve performance. Up to now, analyses that include the
effect of IPP have been done only for matched filter receivers, i.e. receivers that have
complete knowledge of the channel [100, 102, 105, 108, 109].

Let us give examples of situations where even the (approximate) path resolvability
is not satisfied. Consider first the IS95 standard, that is based on CDMA [162]. The
basic user channel rate is 9.6kb/s or 14.4kb/s for the IS95 second generation. Band-
width spreading yields a channel chip rate of 1.2288 Mchip/s, of bandwidth 1.25MHz.
For wide-band signals, the autocorrelation time is approximately the reciprocal of the
bandwidth that is 0.8us. The outdoor inter-path delays are in the order of magnitude
of 1 — 10us (8], thus the approximate path resolvability assumption is satisfied. How-
ever, indoor inter-path delays are of the order of magnitude of tens to hundreds of
ns, which prevents the approximate path resolvability from being satisfied. In fact a
bandwidth of 50MHz will be required to resolve the multipath in an indoor environ-
ment [8]. Thus even third generation “wideband” CDMA systems [166] (CDMA2000
[167], UTRAS [168], W-CDMA? [169]) employing 5 — 15MHz signals will not be able
to resolve the indoor multipath. For GSM and [S136 systems based on Time Division
Multiple Access (TDMA) that have even smaller bandwidths, approximate path re-
solvability assumption cannot be ensured to be satisfied in the outdoor as well as the
indoor environment. Therefore, it is seen that neither strict nor approximate path
resolvability are always satisfied, thus making Rake receivers not necessarily optimal.
This yields the following questions:

In a frequency selective channel, what is the optimal structure when the path
resolvability is not satisfied ? Can diversity gains still be obtained without the path
resolvability ? These are issues that will be addressed in this thesis.

SUTRA: UTMS Terrestrial Radio Access
IW-CDMA: Wide-CDMA
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2.3.2 Goals

The first goal of this thesis is to derive optimal (in the minimum probability of error
sense) one-shot receivers for multipath fading channels that do not satisfy the path
resolvability condition (strict and approximate) and to provide insight in the opera-
tions performed by these receivers. In particular, this thesis focuses on the estimator-
correlator interpretation of receivers and studies the effect of path un-resolvability on
their structures. The second goal is to assess performance of the optimal receivers
and to show that diversity gains can be obtained even without path resolvability.
Optimal receivers provide the best performance. However they are not necessarily
implementable or cost effective. Therefore, the final goal of this thesis is to derive
suboptimal receivers more suitable for implementation that can also yield diversity
gains, and to assess their performance.

2.3.3 Methodology

In this thesis, slow fading is assumed. The assumption of stationarity or quasi-
stationarity of the indoor channel in a time span of a few seconds is reasonable for
residential buildings or office environments in which small movements are expected
yielding a small Doppler spread (order of a few Hz in the 800/900MHz) [1]. The
channel is not assumed to be fully tracked, while the multipath gains follow Rayleigh
and Ricean distributions. Two classes of detection techniques will be considered;
specular coherent and non-coherent. Specular coherent receivers assume knowledge
of the magnitudes and phases of the specular component. Non-coherent receivers
assume knowledge of the specular component magnitudes only. Therefore, in order
to design non-coherent receivers, the channel impulse response will be given by (2.7),
except that the multipath gains a; will be replaced by ae?®, where {6}, ,_,
are independent uniformly distributed phases between —7 and . Whenever the 6;’s
are known, the new model will represent a multipath fading channel model that im-
plicitly assumes that the specular components magnitudes and phases are known at
the receiver (specular coherent detection). The path gains a; are independent circu-
larly complex Gaussian random variables [170] with arbitrary means, modeling Ricean
as well as Rayleigh fading. To illustrate results, this thesis will consider two chan-
nels of practical interest: the Rayleigh channel and the mixed mode Ricean/Rayleigh
channel. The Rayleigh channel corresponds to wireless transmission with no line-of-
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sight {1]. The mixed mode Ricean/Rayleigh channel is characterized by having its
first path gain Ricean distributed and all the other path gains Rayleigh distributed.
This channel corresponds to wireless transmission with a line-of-sight [1] and appears
in the literature. For example, one of the typical channel impulse responses sug-
gested by GSM standard, the so-called Rural environment (RA), is a mixed mode
Ricean/Rayleigh channel with six paths equally spaced, the first one being Ricean
distributed [171]. Additive white Gaussian noise will be assumed. A detailed channel
model appears in Chapter 3.

Let {5m(t)},n=1... ar denote the complex envelopes of the possible transmitted finite
energy bandpass signals. In this thesis, path resolvability assumption is defined by
the orthogonality condition

To
/ Sm(u — )8, (v~ T )du =0 l#k
0

which corresponds to what was called previously strict path resolvability where (0, T,)
is the observation interval. This assumption was very often implicitly used for receiver
design in the literature [4] while the “stated” assumption was only approximate path
resolvability. In this thesis, this assumption is not used, instead it is assumed that
the delayed signals §,n(t —70), Sm(t—T1), - . - , Sm(t —Tr—1) are linearly independent over
the observation interval, [0, T,]. This linear independence condition is a much weaker
constraint compared to orthogonality as will be shown in Chapter 3. Because the path
resolvability assumption is not made, the results of this thesis apply to narrow-band
as well as wide-band signals. For narrow-band signal detection, the use of a wide-
band channel model with known (in practice estimated) multipath delays will result
in structures yielding diversity gains that could not be obtained if a narrow-band
channel model (flat fading) would be used. The wide-band multipath estimates can
be obtained either by sounding the channel with a pulse of much larger bandwidth
than the information conveying signal or by using super-resolution techniques. In
both cases, the achieved time resolution of the estimation method is better than the
reciprocal of the information conveying signal bandwidth. For wide-band signals, path
unresolvability enables to take into account IPP.

The optimal receivers (specular coherent and non-coherent) in the minimum prob-
ability of error sense are derived for general Ricean channels using classical statistical
theory tools. They form the likelihood ratio between each of the hypotheses corre-
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sponding to the possible transmitted signals and a null hypothesis. The decision is
made in the favor of the largest likelihood ratio [172, p. 11]. For Ricean channels, the
specular coherent optimal receiver is quadratic. Unlike the specular coherent optimal
scheme, the non-coherent optimal receiver is nonlinear and involves a quadratic form
and infinite series of Bessel functions. For Rayleigh channels it becomes quadratic. It
is well known that these receivers can be interpreted as estimator-correlators provided
that the “correlation” integral is interpreted as an Ito integral. The estimate is the
causal MMSE estimate of the signal from the observation. These MMSE estimates,
generally difficult to express in closed-form, have been found only for the general
Gaussian channel [173] and the random phase non-fading channel [21]. In this thesis
using Ito differentiation of the likelihood ratio, closed-form expressions are found for
the MMSE estimate for mixed mode Ricean/Rayleigh with known and random phase
as well as Rayleigh channels.

Single-pulse performance of these receivers is assessed. This corresponds to ne-
glecting any ISI, a reasonable assumption for small inter-path delays. For mixed
mode Ricean/Rayleigh channels, the receiver structure is nonlinear, therefore, its
performance is assessed by upper and lower bounding the bit-error probability. These
upper and lower-bounds are obtained by considering performance of quadratic re-
ceivers that can be evaluated more easily. For Rayleigh channels, the receiver struc-
ture is quadratic, hence exact bit error probabilities can be evaluated numerically.
The importance of the knowledge of the Ricean specular term phase will be assessed.

Since the non-coherent optimal structure for mixed mode Ricean/Rayleigh chan-
nels is not easily implementable, non-coherent quadratic suboptimal structures more
suitable for implementation such as the Quadratic Decorrelation receiver (QDR) and
the Quadratic Receiver (QR) are considered. Based on the insight provided by the
special case of Rayleigh channels, these suboptimal receivers are obtained by replacing
the nonlinear parts of the non-coherent optimal receivers (unresolved and resolved)
with quadratic forms. Exact single pulse bit-error probabilities of these suboptimal
receivers are evaluated numerically.

The receiver structures in this thesis are derived for M-ary modulations without
assuming specific modulation format, except the continuity of the signaling waveforms
on the observation interval. The receiver performances will be assessed for binary
FSK, DPSK and SDPSK [174]. These modulations schemes have been chosen because
they are simple and commonly used.
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Chapter 3

Recelver structures

3.1 Channel modeling

Assume transmission of one of M possible bandpass signals of finite energy over
a fading multipath channel. For convenience, the M possible transmitted signals
will be represented by their complex envelope §,,(s). Assume furthermore that
Vk=0,...,L -1, §,(s — 1) is continuous on the observation interval [0, T,]. The
continuity hypothesis is not too limiting since any square-integrable function can
be approximated arbitrarily closely in the Euclidean norm by a continuous function
[175, p. 71]. As will be seen in Section 3.2.1, the continuity assumption ensures the
mean square continuity of the noiseless received signal required for the existence of
its Karhunen-Loéve expansion. Equivalently instead of the continuity hypothesis of
the transmitted signal, the random process defined by the noiseless received signal
could have been assumed to be second order and mean square continuous. The mean
square continuity assumption is also not too limiting since any random process mea-
surable in (s,w) and square integrable on (IR x 2) where §2 denotes the sample space
of a probability space can be approximately arbitrarily closely (in mean square) by
a mean square continuous process [176]. However since continuity of §,(s — 7x) has
several other implications, such assumption will be used in this thesis. For example
continuity of the signals 3,,(s — 7) implies that they are also bounded on [0, T,] [177,
p. 72| for any finite T;,. In this thesis, R {-} denotes the real part, and S {-} denotes
the imaginary part of the argument. Under hypothesis H,,, the received signal is
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given by

L-1
z(s) = ER{ [2 are®*5m (s — Tk)] ej“’"} + w(s) 0<s<T, m=12,... M
k=0

(3.1)

where a; are independent circularly complex Gaussian random variables [170] with
mean F [a;] = ayx, variance Ef(ar — ar)(ar — ax)*/2] = o}, and 6, the multipath
component phase shifts, are either fixed and known, or unknown independent uni-
formly distributed random variables between —7 and w. The multipath delays 7i
are assumed to be known and 7 # 7; if £ # j. The effect of the channel noise is
modeled by an additive zero mean White Gaussian process w(s) (w(s) is a Wiener
process) satisfying F [u’z(u)u'l(s)] = A;‘Hs(u — s). Dot notation is used for w(s) and
#(s) to facilitate conversion to the integrated form, e.g. z(s) = [ vm(T)dr + w(s)
used in subsequent sections. For example 2(s) and w(s) replace the more common
notation r(s) and n(s) used in Chapter 2. For Ricean multipath channels each path
can be considered as the phasor sum of two components: a Rayleigh component with
a uniformly distributed phase, and a fixed (specular) component. In order to design
receivers that do not have any reference phase information (non-coherent detection),
an additional completely random phase needs to be added to each multipath compo-
nent, a;3, (s — k), yielding the model (3.1). By definition the complex gains present
in (3.1), axe?®, can be expressed as are’® = a, + arei® where a; = (a; — ax) e,
Since {ar — ax};—q _ ,_, are zero mean circularly complex Gaussian random variables,
a; and a; — a; are identically distributed. Therefore, whenever the 6,'s are known,
(3.1) represents a multipath Ricean fading channel model that implicitly assumes that
the specular component phases and amplitudes are known at the receiver (specular
coherent detection). For all m, conditioned on 6g,0,,...,0,_;, the signal process
Un(s) =R { [Zf;,l are?% 5, (s — Tk)] ej“’=’} is Gaussian, and has a finite mean-square
value on the observation interval [0,T,]. Furthermore, the signal is assumed to be
statistically independent of w(s) and a non-anticipating process measurable in (s,w)
[178, p. 90]. Note that a non-anticipating signal v,,(s) is statistically independent of
future values of the Wiener process {w(u),u > s} (if s is considered to be the present)
(179, p. 22], [180, p. 72|, [181]. In this thesis statistical independence with respect
to past values is also required. Since by continuity assumption 3,,(s — 7x) is bounded
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on [0, ], [ |R{3m(s — Te)e™*}|ds < 0o and [°|S {Gm(s — 7&)e?=*}|ds < 0. It
is shown below that this implies that [° E |un(s)| ds < co.

L-1
Elom(s)l = E [3_[R {3m(s = m)e™*} R {are™ } — S {m(s = e)e™=*} & {anei®® }
k=0
L-1
< Yo [1R {5m(s = e} B[R {ase’® }| + |3 {3m(s = mi)e™=}| E | {are’®} ]
k=0
L-1
< Y Elal [|R {m(s — ri)e™=*}| + |3 {5m(s = m)e}| (3.2)
Tok=0
E |vm(s)|ds

L-1 To ) T, )
< gg E |a| UO IR {5m(s — re)e™=*}| ds +/0 1S {3m(s — )} ds] <

Furthermore the delayed signals §;,(s — 70), Sm(s — T1),... ,8m(s — TL—)) are assumed
to be linearly independent over the observation interval [0,7,] (called L-order lin-
ear independency assumption). Let’s recall from Chapter 2 that the resolvabil-
ity condition requires that all time-shifted versions of the signals are orthogonal,
(Jo ° Sm(s — T)3},(s — 75)ds = 0,k # j). In this thesis, only linear independency
is required that is a much weaker constraint compared to orthogonality as shown in
the following. Note also that although a finite observation interval [0, T,] is assumed
throughout this thesis, receiver structures derived in Section 3.2.1 and Section 3.3.1
are still valid for infinite observation intervals with only slight modifications in the
matched filtering implementation of the decision variables {um},_o ., provided
that the signals 3,,(s — 7%) are assumed bounded and the L-order linear independency
condition is satisfied. To assess what the L-order linear independency assumption
implies, let us first define three types of observation intervals.

Definition 3.1.1. Let f(s) be a square integrable complex signal of energy £ =
S22 If(s)|*ds. Let n € IN. An observation interval [u, ] is said to be “long” (with
respect to f(s) and {7 > 0},) if the signals f(s — 75),f(s — 11),... ,f(s — Th—1) are
contained within the observation interval, i.e.

- utt

Vk=0,...,n—-1 Vs&(—oc,o00) f(s — 1) rect (st_; ) = f(s — %)
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t
hence ex(u,t) = %/ If(s = m)Pds =1

—uke

where from (2.3) rect (s—t—_ﬁ—) is a unit magnitude rectangular pulse spanning the
interval [u, t].

An observation interval [u, t] is said to be “intermediate” if

Yk=0,...,n—1 ex(u,t) >0 and ko€ {0,...,n =1} e (u,t)<1

An observation interval [u, t] is said to be “short” if
dko € {0,... ,n—-1} €k, (u,t) =0

These definitions are relative to the number of time-shifted signals, the values
of the time shifts and depend on the signal itself. An observation interval can be
long for one waveform and short for another, long for some time shifts and short
for others. For example from Lemma B.1, it can be shown that for a continuous
waveform time-limited to [0, T] (i.e. f(s) =0 for s ¢ [0,T]) and ordered time delays
(To <71 < ... < Tn—1) an observation interval of the form [0, t] is long iff t > T" +7,,_,,
intermediate iff T + Th—; <t < T" + 7To_, and short iff t < T + 7,_;, where T" and
T" are the “initial” and “final” times of the waveform defined mathematically as

T’ = sup {v €R, /_ m IF(s)[2 ds = 0} (3.3)
T" = inf {v €R, [ ) ds = /_ Z [f(s)lzds} (3.9)

The “times” T and T~ are defined to take into consideration the case where the m
possible transmitted signals, although time-limited to [0, T}, or [0, 2T'] do not have the
same “initial” or “final” times (as in return-to-zero or biphase signaling for example).
Nevertheless, using the continuous approximations of FSK, DPSK and SDPSK [174]
considered in Chapter 4 of this thesis, for FSK 7" = 0, and T" = T, while for (S)DPSK
T =0and T" =2T.

It is shown in Theorem B.1 that a square integrable complex signal that has a
non-zero energy will satisfy the L-order linear independency condition over a long
observation interval [u, t] for any arbitrary non-zero integer L and distinct multipath
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delays. Consider a second case where 3p(s) is time-limited to [0, T] such that £, =
_[OT |3m(s)|* ds # 0 and the L delays {r},_o  ,_, are distinct and sorted in increasing
order (1o < 7, < ...). Let [0,T;] be an observation interval where T, > T" + 77,
corresponding to a long or intermediate observation interval. Then Theorem B.2
shows that the signals §,,(s—7o),. .. , §m(s—7L-1) are linearly independent over [0, T,).
Therefore the L-order linear independency condition assumed in receiver design'’s
sections such as Section 3.2.1 and Section 3.3.1 is not too restricting.

However results from Section 3.2.1 and Section 3.3.1 do not apply to short ob-
servation intervals since one of the time-shifted signals has zero energy failing the
linear independency assumption. But receiver structures for short observation inter-
vals can be easily deduced from Sections 3.2.1, 3.3.1 results in the special case of
time-limited waveforms. In that case, Section 3.2.3 (topic: “Eigenvalues and eigen-
functions of K,,(s,u) ... ") shows that the L-path channel model (3.1) assuming a
short observation interval, [0, t] can be reduced to a multipath channel model similar
to (3.1) except that it includes a smaller number of paths. And the reduced set of
time-shifted waveforms forms a linear independent set. Therefore results obtained in
Sections 3.2.1, 3.3.1 can be readily applied using the reduced channel model.

In this thesis the following notation is used: Bold capital letters denote matrices
and bold lowercase letters denote vectors, 7, * and ' denote respectively the trans-
position, complex conjugation and Hermitian conjugation of a matrix or vector. The
kjt* entry of a matrix B is denoted as [B],,. and the k*h entry of a vector v is
denoted as [v],. The diagonal matrix composed of the main diagonal entries of B
is denoted by {B},, and the lower triangular matrix composed of the lower trian-
gular elements of B with zero main diagonal entries is denoted by {B}, Let us
define @ = [0, 6,,... ,00-1]T, Ox = [00,01,... ,0k]T for k<s-1 where 8_; = [] (null
set) by convention. Let E, = f_c’; |5m(s)[* ds be the baseband signal energy under
Hp,. The energies of the signals 5,,,(s — 7%) over the interval [0,t] are defined as frac-
tions of their total energy, i.e. j; 13m(s ~ Tk)[2ds = €xm(t) Em where 0 < €m(t) < 1.
The duration of time-limited signaling waveforms is denoted by T. Furthermore,
Pei(t), (ri € {12...m}, k5 € {0.1...L.-1}) denotes the complex cross-correlation coeffi-
cient between §,.(s —7x) and §i(s—T;), p','c‘j(t) = \[E,.E‘,e:,.(z)e,,(c) fot §;(s—~Tk)3; (s —T1j)ds.
Then the signal cross-correlation matrix between the hypothesis H, and H;, I',(¢t) is
defined as [[r(t)],; = £i;(t). The correlation matrix of the signal under Hpm, T'm(t)

is defined as [['m(t)],; = pi3(t) where pi(t) = g™ (t) = = \/&:(t)ejmm Jg 5m(s —
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k)8 (s — 7j)ds. Let €,(t) be the diagonal matrix with k** diagonal entry €, (t), and
C be the covariance matrix of the channel defined as [C],; = E [(ax — ax) (aj — ;)]
Since the path gains are uncorrelated, C is diagonal with k** diagonal entry 207. For
sake of simplicity, whenever the L-order linear independency condition is assumed
over an observation interval [0, T;], the index T, in €xm(7T,), €m(Tb), Pei(To), Tr(To)
and ', (T,) will be omitted.

3.2 Specular coherent optimal decision rule for an L-path
Ricean channel

3.2.1 L-path Ricean specular coherent optimum receiver structure
(SPECCOH)

Let us consider an observation interval [0, T,] such that the L-order linear indepen-
dency condition is satisfied. From Section 3.1, [0, T,] is necessarily long or interme-
diate as defined in Definition 3.1.1. The specular component phases and amplitudes
are assumed to be known at the receiver hence the term specular coherent detec-
tion. In this thesis the specular coherent optimal receiver is denoted the SPEC-
COH scheme. As explained in Section 3.1, known specular component phases is
equivalent to assuming that 6 is known. The likelihood ratio associated with the
SPECCOH scheme corresponds to the conditional likelihood ratio (given 6) associ-
ated with the non-coherent optimal receiver. Multipath Ricean channels, when @
is fixed yield the classical problem of detecting a continuous time Gaussian random
signal v,(s) =R { [21[;;(: ared®%3, (s — Tk)] ej“"} in additive white Gaussian noise
[172, pp. 419-421]. A minimum probability of error receiver forms the likelihood ratio
between each one of the hypotheses H,, : z(s) = vpn(s) + w(s), m=1,2..M and a null
hypothesis Hy : z(s) = w(s). With equiprobable hypotheses, the decision is made in
the favor of the largest likelihood ratio [172, p. 11]. The discrete representation of
2(s) when 0 is held fixed, follows from Karhunen-Loéve expansion and exists since
given 0@ the signal vn,(s) is a second-order mean square continuous random process
(182, p. 86], [183, p. 271] as shown in the following:

From Appendix B.2.1, the covariance function of the bandpass signal process vm(s)
under H,, given @ is

Knm(s,u) & E'[(vm(s) — E [um(5)16]) (vm(u) — E [om(u)6]) |a]
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Kn(s,u) = R {%x:m (s, u)ej“’C(’"“)} (3.5)

where K, (3, u), the covariance function of the complex signal process om(s) =
o) akei% (s — 1) with @ held fixed, is given by

Ken(s,8) £ E[(im(s) = Elom(5)16]) (3m(w) — Elom(w)16])"|6]
L-1
= Z 20%5m(s — )85 (v — Ti) (3.6)
k=0
Since from Section 3.1 V& = 0,...,L — 1, 3,(s — 7&) is bounded, (3.5-3.6) yield
Y (s,u) € [0,To)> Km(s,u) < o0, and vy,(s) is a second order process when 8 is held
fixed (182, p. 74]. Since Vk=0,... ,L —1 3§n(s — 7%) is continuous, K, (s, u) given
by (3.5) is also continuous. Therefore from (182, p. 77|, [183, p. 226], vm(s) is mean
square continuous.

From (3.6), it is recognized that K,,(s, u), the covariance function of the complex
signal process 9,,(s), is independent of 8 and it is a finite dimensional kernel with well
known eigenvalues and eigenfunctions [184, p. 55]. Notice that in this thesis the defi-
nition of the eigenvalues is similar to [172, pp. 379-380]. As shown in Appendix B.2.2
K.n(s,u), given by (3.6), has at most L positive eigenvalues {A\;n }i=0.1.... .21 and L cor-
responding eigenfunctions. Its eigenvalues are those of the matrix £,,€,CT?:, , where
C is the channel covariance matrix, and I';, is the signal correlation matrix defined
in Section 3.1. Since K,,(s, ) in (3.6) is a finite dimensional kernel, its eigenfunctions
{#tm(8) }i=o0....,L-1, that form an orthogonal set, are given by

bim(s) = Z"‘k Sm(s—7) 0<s<T, l=0,...,L-1 (3.7

where! [} = [X ], Xm is an L x L matrix that satisfies the equations:

XXt =1 (3.8a)
€.CT.. XT = XT D, (3.8b)

I is the L x L identity matrix and D,, denotes the L x L diagonal matrix of the

IThe superscript m is not an exponent and refers to the hypothesis H;,.
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energy normalized eigenvalues of Ko, (s, u), defined by [Dm)i = Mem/ Epn.

Furthermore (3.5) and the signal narrow-band assumption imply that the eigenval-
ues Ky and eigenfunctions T, (s) of the bandpass signal process covariance function
K, (s, u) can be expressed in terms of the eigenvalues and eigenfunctions of the co-
variance function of the complex signal process on,(s). It is shown in Appendix B.2.3
that K,,(s,u) has 2L eigenvalues and 2L eigenfunctions given by

Tim(s) =R {\/2_¢zm(8)ej“"} I=0...,.L-1  associated with ki, = :\—Z—"— (3.9a)

Tim(s) =S {\/§¢;_Lm(s)ej“’°’} I=L...2L-1 associated with K;;, = /\'-4["" (3.9b)

The detailed mathematical derivation of the conditional likelihood ratio associated
with the non-coherent optimal receiver can be found in Appendix B.3.1. Here only
the final result is presented. By substituting 9, = NoI + %mDm, Qo = Nol and
(B.25) into (B.30), the conditional likelihood ratio or the SPECCOH likelihood ratio
Am (3(s);s € [0,T,)|@) or Am (2;T,|0) for short is given by

-1
Am (3,T,|0) = [det (I+'ymDm)] exp{—-a'C 'a}-

t
exp{ (rm ;{‘—xac-‘e;‘/ﬂe(e>) Q.. (rm + }x:nc-‘e,;‘”a(o)) }

(3.10)
where v, is the SNR given by
En
Yo = A (3.11)
0(0) = [aee™, ... ,ar_e%-1]" (3.12)
a=[ag,...,ar)" (3.13)
the vector r,, is defined as
2 T
[rm], Brn(s)e™9*dz(s) l=0,...,L-1 (3.14)

f{[zmll ilZmlies ) 1=0,...,L—1
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To
[Zmli = |  Yim(s)dz(s) £ 2tm 1=0,...,20—1 (3.15)
0

and the integrals in (3.14) and (3.15) are Wiener integrals (see Appendix A.1). The
matrix Q,, is given by

Q. = m [D;! + 7,"1] -t (3.16a)
= m (XT) ' [(€nC) ™" + 1ml5] ™ (X5) ™ (3.16b)

where (3.16b) is obtained from (3.16a) by using (3.8). Using (3.8b) and (3.16b), the
SPECCOH likelihood ratio is also given by

Am (£:T|6) = [det I+ ymemcr:,,)] " exp{-alCla}-

;

exp { (um %0"16;‘/29(6)) [(€mC)™" + Y] -t (um + ’YLC-IG;VQQ(G)) }
(3.17)

where

(x ) T™m = [u()"h Ulmy--- uL—lm]T (3.188—)

To g» S(s—m) "

Ja¥
82 dz(s) 1=0,...,L—1 (3.18b)
V En / V Emeéim

The decision variable u;, (3.18b) can be obtained by using a bank of matched filters.
For example, the following bank of matched filter {s;,,(s)}i=o.....L-1 can be used with
a sampling time at T, = T, + 7

2 &, (T, — s) eieeta=Tom)

sim(s) = \/— \/};tm

n<s<T,+mn,

else.

Since the term exp {—~a'C~'a} is independent of the hypothesis Hm, an equivalent
decision variable A, (2;7T,|@) is obtained by removing this term from (3.17). When
the observation interval [0, T,] is assumed to be much longer than the multipath delays
(T, > m for all ) and e, = 1 for all I, s;,,(s) = s,,(s) = 25%, (T — 8) e?(s-To) / E,,, for
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0 < s < T,. Then the receiver illustrated in Fig. 3.1 is obtained. In this special case,
the decision variable u;, can be generated by sampling the output of the matched

filter s,,(s) at T, + 7, as shown in Fig. 3.1, or by using a tapped-delay-line after the
matched filter.

3.2.2 SPECCOH: a quadratic decorrelator

As seen in Section 3.2.1, the likelihood ratio of the SPECCOH scheme is given by
(3.10) or by (3.17). The second form of the likelihood (3.17) is convenient to use
when the multipath is resolved. The first form of the likelihood (3.10) provides an
important insight to the operations performed by the optimal specular coherent re-
ceiver. Recall that under the m®® hypothesis, the received signal is given by (3.1). In
Section 3.2.1 a linear transformation on the signals s,,(s — 7%), (3.7), is performed to
obtain an orthogonal basis {¢in(s)};. Therefore the m** hypothesis can be equiva-
lently expressed (since the linear transformation (3.7) is invertible) as

L-1 ' — L-1
. {z axei® [\/Z ) \/emyzmm(s)} ef“'=’} + 1(s)
=0

k=0

=0

L-1
= {Za‘m ©) ezmémgblm(s)ej“ﬂ}m(s) (3.19)

where y = [X;}],; @m (8) = S E) ared® %y,’c’}, while \/ €y Erdim(s) are orthog-
onal signals of same energy as §,,(s — ;). When 8 is held fixed, under each hypothesis
the new random vector [dom (6),...,dc-1m (0)]T is Gaussian with mean g ,, (8) =
€;12D,, X:.C'€;/%@(0) and covariance C,, = €;!D,, as shown in the following.

llt>

(@' m (8], £ Etim (6) 6] —ZE[akl ef“* Za e Yom \/_ o

k=0

[6—1/2 (x l) 61/29(9)]
= [€x12 (T2XT)' €0 (0)] using (3.8a)
= [€5°DnX;,C'€,%0(0)] , using (3.8b)
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Fig. 3.1 Specular coherent optimum receiver for an L-path Ricean channel (SPECCOH)
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= Ellar — a )] i(0x—0;) Y Ekm m VEIm . m
s [( k k) (a'J ]) ]e \[Er_m'ykr ﬁ;(yjl)

Hence

1 _Nmo 2 YR R
[Cm] "o §2Ukekm Verm Vem
- [( x:! 6;,‘/2)T €.C ( X;ll)‘ 6,;1/2]

= [€:/2 (X%) ™ €nCT; X €17

rl

using (3.8a)

ri

= [€;'*Dn€,?] = [€;'Dm],, =0 ifr#! using (3.8b) (3.20)

Therefore, under each hypothesis, the received signal can be represented as a lin-
ear combination of orthogonal functions weighted by uncorrelated circularly complex
Gaussian random variables, similar to the resolvable multipath case. Substituting

Xm =1, Tn = I into (3.17), yields the likelihood ratio for a resolved multipath
Ricean fading channel with specular coherent detection given by

-1
Am (3:T|6) = [det I+ 7,,,6,,,0)] exp {~alC'a}-

m

t
exp {73,. (um + ,-YI-C“‘e;."’a(O)) [(EnC) ™" +vml] ™ (um + %C“G;" 29(45’)) }
(3.21)

where @ (@), given by (3.12), and C, given by [C],; = 20%4i;, can also be defined as

g

Note that (3.21) with €,, = I is presented in [4, 83]. Using (3.8) with several matrix

manipulations, the first form of the likelihood ratio when the multipath is unresolved
(3.10) can be rewritten as

(0Ol 2 E[ae™(8]  [Cly 2 E[(axe™ ~ [0@)lio) (216" ~ [0(@)}0)"

. Am (3 To|0) = [det (1 + 7,,.6,,,5“,,,)] ~ exp {-g',,, @) (C:,.) e (0)} :
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=P {”'2" ("’“ +=(Cn) &, (‘9))T [(e,,.dm)“ o ,] o
' (r"‘ * 7%,, (cn ) €. %0 m (9))} (3.22)

From (3.21) and (3.22) it is seen that the Ricean channel specular coherent optimal
receiver for unresolved multipath channels consists of an orthogonalization (or decor-
relation) stage that transforms u,, into r,, = X, u,, and then implements a resolved
multipath channel specular coherent optimal decision rule for r,,. The new random
variable Gy, (@) is referred as the {* multipath gain of the equivalent decorrelated
(resolved) channel (on [0, T;] when @ is held fixed). Note that the term decorrelation
is employed since besides the orthogonalization of the signals {5 (s — T&)},_o

=0,....L—1"
the matrix X,, also performs a statistical decorrelation stage in the sense that the

new variables {[rm),},_o_ ,_;» unlike {mm = [%],}‘_o ,_» are uncorrelated as co-
efficients of the Karhunen-Loéve expansion of 2(s). o

The decorrelation in (3.10) vanishes if the instantaneous values of the multipath
gains ax are known to the receiver in addition to the specular component phases as
shown in the following. It is to be expected since in that case, the problem reduces
to the detection of a known signal in additive white Gaussian noise. It is well known
that the optimum receiver consists of a matched filter, matched to the signal filtered
by the known channel. A receiver that has knowledge of the instantaneous values of
the multipath gains a, is obtained by setting ox = 0 for all k yielding ax = a. For
sake of simplicity all ox are assumed equal, therefore C 2 I where ¢ = 20%. Then
[(€nC)™" + ¥mIy] ~! reduces to

[(EnC)™ +AmT] ™ =0 (I + 0YmEnls] ™ €n

and (3.17) is given by

An(2;T,|0) = [det I +d'ym6ml":n)] exp{m/mu [I + 0Ym€ml's] ™!
+ Y@ (0)€Y2 I + 0vm€mIL] ™! €ntim + Ymul [I + 07 €I ] " €/20(0)

+ Lo [€22U + omments) €2~ 1] ol0)]



3 Receiver structures 66

Hence
lim A (2 Tol8) = exp{29m® (0! ()€ un] — 1me () €XTrE20(6) }

=e 3-/‘Tofv (s)dz(s)—-—l—-
R VW S 2No Jo

where vp(s) = R {im(3)e™<*}, Bm(s) = T r2 arei®5p(s — 1) and (3.23) is obtained
by using (3.12) with ax = ax and (3.18b). From (C.1) in Lemma C.1, (3.23) is also
given by

To

lf»m(s)r*ds} (3.23)

To Ta
lim An (5 T5/60) = exp {-13—0 [ [o um(8)dz(s) ~ % v?n(s)ds] } (3.24)

which is the classical estimator-correlator form of the likelihood ratio of a known
channel corrupted by additive white Gaussian noise. j;)T" Um(s)dz(s) corresponds to
the correlation of the signal filtered by the known channel with the received signal or
equivalently to a matched filtering operation. From (3.24) it is seen that when a; and
0: are known, there is no decorrelation since the matrices X, or I';;, are not present
in the decision rule. It is known that the estimator-correlator form applies also for
random channels in additive white Gaussian noise [173]. Such a form derived next
will give further insight on the operations of the specular coherent optimum receiver.

3.2.3 Specular coherent estimator-correlator for an L-path Ricean
channel

The mathematical background used in this section appears in Appendix A and the
mathematical details appear in Appendix D.

Since vm(t) has a finite mean-square value on the observation interval {0, T,] and
fOT" E [um(t)| dt < oo (see Section 3.1}, from Appendix A, under each hypothesis (in-
cluding Hy) the received signal is an It6 process [181] that can be written as

dz(t) = up(t)dt +dw(t) 0<t<T, m=0,..., M (3.25)

with up(t) = 0. Furthermore, note that the detection problem H,, : 2(t) = v, (t)+uw(t)
with E [w(t)w(u)] = 22(t — u) is equivalent to Hp, : 7‘%_% "7"‘“ {8, with
2

N
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o [%%] = §(t — u). Therefore, from [21], the likelihood ratio A, (2;7,]0) can
V3
be expressed as

Am (2 To|8) = exp {Nz‘; [ ]ﬁn B (£10) d2(t) — % /0 "2 o) dt] } (3.26)

where ¥, (|0) SE [um(t)]|2(s),0 < s £ t, Hy, 0). In other words, ¥y, (¢|@) is the con-
ditional mean (or equivalently the MMSE estimate) of v,,(t) from the observations
#(s) (given Hy) on the interval [0,¢] when @ is known. This illustrates the inter-
pretation of the L-path Ricean channel specular coherent optimum receiver as an
estimator-correlator with a MMSE estimator. The mathematical derivation of the
conditional mean is carried out in Appendix D.1. From (D.7), the conditional mean
for an L-path Ricean channel with specular coherent detection is given by

¢t L-1 ,
'Um (tIO) = ‘/(; hm(t, S)dy,cn(S) + gR { (Z Iak[ eJokgm(t — Tk)) ejwct} (3.273)
t £ L-1 ,
-® { (2/ Hy,(s,t, e erdys, (s) + 3 loce| % St — rk)) e"“’“}
0 k=0

(3.27b)

where hm(t,s) = R {2H},(s,t,t)e?<=9} is the unique square integrable solution of
the Wiener Hopf equation

hm(t,s) + 2 ft hm(t, 7)Kn(T, s)dr = 2 m(t,s) 0<s<t<o (3.28)
No Jo No

and y¢,(s), the unknown part of the received signal, is given by?

L-1
dy; (s) =dz(s) - R {Z lak| ej"LEm(s - Tk)ej"""} ds (3.29)

k=0

where 6, = 6 + arg[ax]. It is seen from (3.27a) that the MMSE signal estimate
for a multipath fading channel with known Ricean specular component is obtained by
filtering the unknown part of the received signal by a linear time-varying filter h,(t, s).

2The superscript c is not an exponent.
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From (3.28), since Kn(s,u) is a finite dimensional kernel (3.5-3.6), h,,(¢,s) can be
expressed in terms of the eigenfunctions and eigenvalues of K, (s, u) over an arbitrary
observation interval [0, t]. However, since over [0, t] the time-shifted signals §(s — 7i)
are not necessarily linearly independent (see Appendix B.l), it is not possible to
find closed-form solutions for these eigenfunctions and eigenvalues valid for arbitrary
waveforms. But such closed-form solutions can be obtained for the special case of
time-limited waveforms yielding additional insight on the physical interpretation of
the MMSE estimate. The M possible transmitted signals {3 (s)},,=, _ », are assumed
to be time-limited to [0, T'] for the remainder of this section (Section 3.2.3).

Eigenvalues and eigenfunctions of K,,(s,u) over an arbitrary observation
interval [0,t],t > T,, + 7o assuming that 35,(s) is time-limited

Let us assume that the multipath delays 7, are ordered as follows0 < o <1 < ... <
71-1. Following (3.3-3.4) let T}, and T}, be defined as

T, = Sl:p {v € R, /:; |5m(s)|? ds = 0} (3.30)
T, = inf {v € R, /; |5m(s)2ds = /_: |§m(s)|2ds} (3.31)

Recall that in Section 3.2.1 (and Appendix B.2), the eigenfunctions ¢, (s) and eigen-
values A;, of the covariance function K,,(s,u) of the complex signal process

Um(s) = ,f;; are’% 35, (s — 1) are derived under the L-order linear independency
condition (i.e. the time-shifted signals §n(s ~ 7o), 3m(s — 71),... ,8m(s — 7L—)) are

linearly independent over [0, T,]). This assumption ensures that K (s, u) has L eigen-
functions. However, as seen in Appendix B.1, over an arbitrary observation interval
[0,¢], the signals $.(s — 7o), 3m(s — T1),... , Sm(s — TL-1) are not necessarily linearly
independent and actually the number of linear independent time-shifted signals de-
pends on t. This is to be expected since as the observation interval is decreased,
some time-shifted signals have no contribution on the observation interval (i.e. are
identically zero on [0, t]), thus they cannot be part of a linear independent set.

Over [0, t], the covariance function of the complex signal process #,,(s), given by
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L-1
Kn(s,u) = z 203 5m(s — 7%)8%,(u — &), reduces to®
k=0
fe—1

Kit(s,u) = 220',35,,,(3 — Ti)Sm(u — Ti) 0<su<t T,+m<t<oo (3.32)
k=0

where i;%, defined in (B.3) of Appendix B.1.2 with T replaced by T, given by (3.30),
is the number of non-zero multipath time-shifted signals in [0, t]. Similarly, over [0, ¢]
the received signal (3.1) reduces to

te—1
2(s)=R { [E are?% 5, (s — 'rk)] ej“’"} +u(s) 0<s<t m=1,2,..,.M (3.33)

k=0

Furthermore, from Theorem B.2 the signals §,,(s—75), 5n(S—71), . .- , Sm(8—73,-1) are
linearly independent on [0, t]. Thus comparing (3.33) with (3.1) shows that for time-
limited transmitted signals and an arbitrary observation interval [0,¢], t > T,',, + 7o, an
L-path channel model (3.1) that satisfies the L-order linear independency condition
can be reduced to an equivalent i,-path channel model (3.33) that satisfies the ;-
order linear independency condition. Therefore, it is seen that the methods used
in Appendix B.2 and Appendix B.3 to derive the eigenfunctions, eigenvalues and
likelihood ratios can be also used in this section except that the number of signals is
i, instead of L where 1 < i, < L. In particular, modifying results from Section 3.2.1
(or Appendix B.2), Vt > T, + To, over [0, t], the covariance function Km(s,u) =
Kt (s,u) has i, eigenvalues, Al (t) which are the eigenvalues of the i, x i, matrix
E,,.e.,m(t)c,, :m(t), and has i, eigenfunctions ¢ ¢ (s,t) given by®

lg'-l |.m
Bita(5:8) = Z T ) o (s-m) 0<s<t  1=0...i-1 (3.34)

2 Vemml®) "

3The superscript i, is not an exponent: K is just a designation for the function K (s, u) whose
value at (s,u) is ¥ 0 2025m(s — k)35, (u — i)
. 4Generally i; depends on Hy, through T, however, for most modulation schemes T, is indepen-
dent of H,,. Thus to simplify notation the index m will be omitted in 4,.
5The superscript i, in A, (t) and ¢}% (s, t) is not an exponent.
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where zji™(t) = [ ,-,m(t)] et Xiem(t) is an 7, x i, matrix that satisfies the equations:

X)X (t) = I (3.35a)
izm(t)cit tgm(t)xum(t) = X:,m(t)Ditm(t) (335b)

I;, is the i; x i, identity matrix, D;,n(t) denotes the i, x i, diagonal matrix with
[Diim ()i = AL, (t)/Em, €im(t) is the i, x i, diagonal matrix with [€;m(t)]. =
eem(t) = -E-}; f[; |5m(s — 7)]* ds, Ci, is the i, x i, diagonal matrix with [Ci)ix = 202
and I, (t) is the i, X7, correlation matrix of the signal under H,, when the observation
interval is [0, t] with kj** entry equal to pf}(2), i.e.

r :.m(t)],q 2 \/—_t)—e_(t—./ Sm(s —m)sy (s—Tj)ds k,j=0,....,3—1

(3.36)

Since the integer function i, is a staircase function (see Appendix B.1.2), the
eigenvalues { A\, (t)},_, , _, and the functions {z{"(t)},,_, , _, are defined on

(T;, + To, +00). Groupmg the results together, functions {A\m(t) hi=o.. -, and
{\/ i\-;ﬂn%x;',;(t) }t.k=0.... L, Con be defined on [0, +00) as follows:

Mim(t) =

w () T.+To<t<oo [=0,...,i—1,
{lm() m 0 t (337)

0 else.

A (‘) z - 1
() m ey ‘/%m zi"(t) Tp+m<t<oo Lk=0,...,i—1, (3.38)

€em(t) 0 else.

where ’\um(t) = [ lcm(t)]ll’ Ium(t) [ iem(t)]lk and {Ditm(t)rxizm(t)} Sa'tiSfy

(3.35).
Similarly, the eigenfunctions {¢},(s,t)},_, . _, are functions of (s,t) defined

on [0,t] x (T,, + To,+00). Grouping the results together, functions
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{\/ Aim(t)Ptm(s, t) }l=0 o can be defined on [0, +00) x [0, +00) as follows:

0<s<t
Al (£)git (s, 8) 1=0,...,5—1,
VA () im(s, t) = Tn+mo<t<oo

0 else.

(3.39a)

Aim () 0<s<t
T = \/ — R Oomls =) 'y T (3.39b)

where ¢}t (s,t) and ::"'g;x,k(t) are given by (3.34) and (3.38). Using the inverse
linear transformation of (3.34)%, 5m(s — 7x) can be expressed in terms of @im(s,t) as

1 de—1 yie iem 0 <s S t
Sm(s — ) = 202 V/ekm (0 Em Zio N [# (O] (s, ) T +70<t<oo
0 else.
(3.40a)

0<s<t

Z,\,,,.(t R @) bim(sit) o 2, (3.40b)
20’,:\/ km(t) Em 1=0 St<x

Furthermore it is shown in Appendix C (C.14-C.18) that the unique solution of
(3.28), hm(t, s), can be written hm(t, s) = Hm(s,t,t) = R {2H}, (s, t, t)e?(t=2} where
the kernels Hn(7,s,t) = H; (s, 7,t) and Hn(T,s,t) = Hn(s, 7,t) are given by

( L— /\lmsq
0<rs<t
2No - ly9 =
¢hn(7' t)brm(s. t)
Hum(7,5,8) £ ¢ Z_.; A=ll) " 0<t<oo (3.41)
kO else.
(2L-1
N Klm( ) 0 S 7,8 S t
= T T. ) Tim(s,
Hn(r,8,6) 2§ 5 1+ him m(m %m0 o<t <o (3.42)
LO else.

6The inverse linear transformation of (3.34) involves the matrix X -1 m(t)- It can be shown using
(3.35) that X L.(t) = (€:m(t)Cs,) ' X! () Di,m(t).
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and for/ =0,...,L -1

wim(t) = 2 isim(t) = 22 (3.43)
Vo T im(s, t) =5R{ A8 (s t)ew}
(3.44)

VErim() Tivim(s, t) =S { Alm(t) dm (s, t)e"""}

where Ai,(¢) and / \im(t)dim(s, t) are given by (3.37) and (3.39).
Next section will focus on giving physical interpretations of the expression for the
conditional mean estimator ¥y, (¢|@).

Interpretation of the expression for the conditional mean estimator 7, (¢/0)

In order to understand the expression of ¥, (t|@), let us first investigate the signal
that it estimates, that is the noiseless received signal, v(¢t). From (3.1), the noiseless
received signal is given by

L-1
um(t) = R { (z are?® 5m(t — Tk)) ej“’“}

k=0
L-1 L-1 ., ‘
=" { (Z(ak — o) 5, (t — i) + Z | |e 5 (t — ‘rk)) e"""}
k=0 k=0
L-1
{ (2 @ 5m(t — 7)) + Z |ak]e”ksm(t - ‘rk)) e-""“} (3.45)
k=0 k=0
where a, 2 ar — ax)e?® and 6, = 6. + arglax]. Since ar — ak,k=o....L-1 are
k k

zero mean circularly complex Gaussian variables, a; and e, — a4 are identically dis-

tributed for k=o....,.-1. From (3.45), it is seen that the signal o,,(t) = zi‘_(} a;3m(t —

k) + Zf_‘; Iaklej°;=§m(t — 1) is to be estimated. Since the 6,'s are known, only
+ =) ai3m(t — i) has to be estimated. From (3.41)
. t L 1 Am(t)
2 [ oty () = 2 / — o ge (5, )m(t, e H0dS, (5)
o A O

(3.46)
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Replacing \/Aim(t)@um(t,t) with (3.39b) yields

2 [ ot 0 (5) = S @) dnlt - ) (3.47)

k=0

—— e —
where a, (t|@) , estimates of a, with known 6 based on the observation interval [0, ¢],
are defined as

L S A;N: ( ( 3]
ay, (t|0) = — Tik / Dim(s, t)e ™ dyg (s) (3.482)
V ekm(t)E A‘ (t)
202 /"l" (s t) o=
= e dyr (s 3.48b
v [ = () (3.48b)

where y£ (s) is given by (3.29), for k =0,... ,L — 1, lgm(s,t) is given by

Nolew| & 2 0<s<t
lim(s, t) = ___gl__lcl___z 21:? o [ER®)] dm(sit) = T

(3.49)
o/ €em(t) Em 1= 1+ 5% 0st<oo

and Aim(t), /2283 27(t) and \/Nim (t)im(s, t) are given by (3.37), (3.38) and (3.39).
Substituting (3.47) into (3.27b) yields

L-1 ___ L-1 ., .
I (£]0) = R { (Z ay, (£10) 5m(t = 1) + D lok] e sm(t — rk)) eJ““} (3.50)

k=0 k=0

where a, (t|@) are given by (3.48). Comparing (3.50) and (3.45) shows that the
MMSE estimate of a random amplitude multipath signal has the same “multipath”
form with the amplitudes replaced by estimates. From (3.48b) it is seen that the
amplitude estimates are obtained by filtering the unknown part of the received .ig-

nal (3.29) using the filter 24'?5*"-(’—‘1 —Jwes . This filter takes into account both the

Jakl
multipath unresolvability and fading as seen in the following.
Similarly to (3.19) except that an observation interval (0, ¢] is considered and the

phases 6 have been included in a,, by substituting (3.40b) into (3.45), the noiseless
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received signal can be rewritten as

L-1
Um(t) = {(Z B1yn () \/ €tm(t) Emim (£, £) + Z loxt| €% Gim(t — n)) eJ‘"“‘} (3.51)

=0

with zero mean path gains of the equivalent decorrelated (resolved) channel defined
as

L-1

"o _ Am@) RO aa 1=0 L- 2
@ (£) ; 202 Jerm D) eim(t) B bl (3:52)

Furthermore, substituting (3.39b) into (3.51) and comparing with (3.45) yields

ak—z Qm(t lk(t )aim(t) (3.53)

which constitutes the inverse linear transformation of (3.52). Since X '(T,) =
[€Em(TH)C] ™! X! (To) Dm(T,), from (3.52) Gm(@) defined in Section 3.2.2, satisfies
i1m(0) — E [41m(0)|6] = a,,,,(T,) where [0, T,] is an interval such that the L-order linear
independency condition holds. Note that the random processes {a,(t)} i=o....[— are€
correlated, but similarly to {@n(6)},_s__ ;_,, the random variables {a;,()},_, ,_
obtained when t is fixed are uncorrelated. Substituting (3.46) into (3.27b), the con-

ditional mean ¥, (£}@) can be rewritten as

L-1
Um (¢10) = { (E a1 (t10) \/ €tm(t) Emim(t, ) + Y _ lou| €% 3pm(t — r,)) efwct}
=0

=0
where

2 Aim(8)

2Ng

T aa [ tints ez @50
€m(t

o (£16) =

- o "
From (3.54) it is seen that a,, (£|@) . the gain estimate of a,,(t), employs only the
information related to tl}gl’"‘_&th of the decorrelated channel. Furthermore although
the random processes { a;,, (t0) },_, _,_, are correlated, the corresponding random
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variables obtained by fixing t are uncorrelated. Comparing (3.48a) with (3.54) yields

A € t ,—I;—’\

2, (10) -Z Vem® o) o, (216) (3.55)
= €xm(2)

‘77’\
consistent with (3.53). Notethat VI =4,,... ,L—1 a,,(¢t|@) = 0. Thus the estimate
—— e

of the k** zero mean gain of the unresolved multipath channel, a, (¢|@) is obtained

by passing the zero mean path gain estimates of the decorrelated (resolved) mul-

) SR 1/2 _ -1/20y _

tipath channel, { a.,m (t10) },o.. ;. through the matrix €;/;(t)Xm(t)€;,.°(t) =

11‘/"21 (t)Ci (X:m(t)” D,'m t)€E :‘/,i(t) yielding correlated random processes

- e " PRy
{ a'k (t|6) }k=0.... £L-1 Unlike {ak}k=o,:£-£jalm(t) }l=0.....L—l and { ay, (£16) }z=o.... L-1
(with ¢ fixed), the random variables { a, (t|6) },_, ,_,, obtained by fixing ¢, are cor-

related. Since a; = (ax — ax) e/% are uncorrelated random variables with E [a,a;*/2] =
o, from (3.52) the variance of a;, () is given by

o o 2] = Ma®) RO Am(t)
E [lalm(t)‘ ] - g QUEELm(t)Qm(t)E?n - Glm(t)E-'m (3’56)

where the last step is obtained using (C.24). Foran ! € {0, ... ,%¢, — 1}, if the average

energy of the complex signal a;,,(t)\/ €im(t) Eméim(s, t) over [0, t] is much smaller than
the noise power density, i.e.

E [ /0 t () €t (t) Emim (s, )

or equivalently using (3.56) and the orthonormality of {¢;m(s, t) = ¢, (s, t) }j=0 el
on [0, ¢]

2

dS] <4 2No

/\lm (t) < 2N0

PRy ”
then from (3.54) ay, (t/8) = 0 = E [a;,(t)]. Since the noise level is high, observa-
tions are very likely to be unreliable thus the best estimate bases its estimation on
a-priori knowledge (in this case the a-priori mean which is equal to 0 since E [a,] = 0),

o
and it reduces the effect of this noisy component. If Ayq(t) > 2Ny, then q,, (¢|0) is
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based on the observations and from (3.54) is approximately

Jo V eim(8) Emin(s, t)e 7= dy5, (s)
2
N \/ €im (t) Emdi (s, t)

ds
(3.57)

—f’\
Qi (tlo) =

t ) 2
2 [ Gnls ey (s) =
\/E{m(t)Em 0

where the second equation in (3.57) valid for [ = 0,... ,4, — 1 is obtained using the

orthonormality of {¢jm(s,t) = &3, (s, t)}j<,-, on [0,t]. Hence from (3.57) it is seen
a——— e,

that a,, (t|@) is the correlation of the unknown part of the received signal with the

signal \/elm(t)E‘mgb;m(s,t) associated with the [** path of the decorrelated channel,

2
V elm(t)-ém‘plm(s’ t) dS) . Since {¢jm(s1 t)}j=0,__.,L-1

are “orthogonal” on [0,t] (C.20), in the limit when no noise is present (i)(s) = 0),
— e —
from (3.45), (3.52), (3.54) and (3.40b) under H,, a,(t|0) = a,,(t).
Let us study next the special case of resolved multipath over [0, t].

normalized by its energy fOT"

Conditional mean when the multipath is resolved

From (2.15), the resolvability assumption is satisfied over [0, ¢] if
t
Vi#k / Sm(u—T7)8,(u — T)du =0 m=1,... M (3.58a)
0
or equivalently if
Vi#k Rn(m—Tit—7)=0 or R, (e—m,t—m)=0 (3.58b)
where R,,(7,t) is the partial autocorrelation function defined as
t
Rn(7,t) = / 5y (u)8m(u — )du
0

assuming that §,(s) = 0,Vs < 0. Let us investigate conditions when (3.58b) holds.
Let T7 (t) and TR (t) denote respectively the “positive” and “negative” autocorrelation
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time functions defined as

TE(t) = u}f{‘r > 0; R (7, t) = 0}
Tz (t) =sup {7 < 0; Ryn(7,t) = Ry, (—T,t —7) =0}

The autocorrelation time function is defined as Tr(t) = 2sup (T#(t), |Tz(t)|) and
Vir| > B2 R.,(r,t) = 0. Note that Tg(t) can be infinity. From (3.58b) if
VI # k,|n — 7| = max {Tr(t — 1), Tr(t — 7:)} the resolvability assumption is sat-
isfied over [0,t]. When signals, time-limited to [0, T}, are considered, a simplified
sufficient condition of path resolvability over [0, ¢| can be obtained. By definitions of
T,, and T, given respectively in (3.30) and (3.31)

0<s<T, or T,,;SSST Sm(s)=0

hence if VI # k, |1 — 7| > T, — T}, the path resolvability assumption is satisfied on
[0, ]

Whenever (3.58) is satisfied, from (3.36), [';,,.(t) = I;,, hence from (3.35), D;,m(t) =
€;,m(t)C;, and X;,n(t) = I,. Therefore from (3.37-3.38)

202eim(t)Em T <t< [=0,...,5:—1
Am(t) = { 2216m () m ¥ 70 > " (3.59)
else.

() gy = { V ™o Th+m<t<oo Lk=0....i-1 (3.60)

ekm(t) * 0 else. .
and from (3.39b)

1 = 2afe¢m(t)E'm - L
V Atm(t)Pum(s, t) = E kz:; W&ksm(s — Tk) 1;{ (1 - d5)

= /20%3m(s — 1) (3.61)
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since V0 < s <t,VI>1i S§n(s—7)=0. Substituting (3.59-3.61) into (3.48a) yields

m - 2 202 €1m (t)Ym / Sm(s— ) Tk)
k m_l + 202€xm(t)¥m / em(D)E

hence whenever the multipath is resolved over [0, t], there is no need for decorrelation,
the estimate of the k** zero mean multipath gain () employs only the information
related to that k** multipath gain and the effect of fading is taken into account
similarly to the unresolved case (3.54) with the signal 5, (s—7¢)/\/ €km(t) Em replacing
Dem(s, t).

The next section will consider non-coherent optimal detection that does not assume
knowledge of the Ricean specular component phases.

"‘“"dyfn(s)

3.3 Non-coherent optimal decision rule for an L-path Ricean
channel

3.3.1 L-path Ricean non-coherent optimum receiver structure (OPT)

Similarly to Section 3.2.1, let us consider an observation [0, T,] such that the L-order
linear independency condition is satisfied. Such observation interval is necessarily
long or intermediate. In this section the phases 6 are assumed uniformly distributed
between —7 and m modeling a receiver that does not have any reference phase infor-
mation (non-coherent receiver). The non-coherent optimum receiver is denoted OPT
in this thesis. From Section 3.2.1 the conditional likelihood ratio with @ held fixed
associated with the OPT scheme is given by (3.10). The likelihood ratio A,,(2;T,)
is obtained by integrating successively (3.10) over all components of the vector 8 be-
tween —m and w. To do the integration, terms inside (3.10) that are independent of 8
are grouped together and after simplification the conditional likelihood ratio can also
be written as (see (B.31)).

Am (2,T,|0) = Jmfm(6) (3.62)
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where by substituting (B.28) into (B.32) and using (3.8) J,, is given by

Jm = [det(Z + YnDm)] " exp{ 1P Qurm — o' {(X7) ' QuX 7}, C '}
(3.63a)
or equivalently using (3.8), (3.16b) and (3.18a)
Jm = [det(I + Ym€mCT},)] ™

exp{ 1% ul, [(€nC) ™" +9mln] ™ um — o' {(X5)'Qn X1}, C e}

(3.63b)
and from (B.34) f,,(@) is given by
L-1
fm(0) = exp {Z% gj’iwm(ok_l)] cos(Ok — Prm(Ok-1)) } (3.64)
bim(8-1) = [ XEQurm = { X5Qm (XT) €2} 0(6)]  bom = [XEQuTm,
(3.65)
Prm(Or—1) = arg [bim(Ok-1)] — arglok] wom = arg (bom| — arg(c] (3.66)

where ~,, is given by (3.11), D,, and X, are given by (3.8), @Q,, is given by (3.16),
a and @(0) are respectively given by (3.13) and (3.12), r,, and u,, are respectively
given by (3.14) and (3.18a). Integrating successively (3.62) over all components of
the vector 8 between —r and 7, the log-likelihood ratio In [A,, (2;T,)] is given by

ln[Am(é;To)]=ln(Jm)+ln[(2 T /_ ] f f,,,(e)da] (3.67)

where J,, and f,, () are respectively given by (3.63) and (3.64).

From (3.63-3.67) it is seen that the OPT scheme uses the same decision variables
{wm}i—o . 11 (3-18b) as the SPECCOH scheme does. Implementation of w;m can be
found in Section 3.2.1. In particular when the observation interval [0, T,] is assumed
to be much longer than the inter-path delays (7, > 7 for all {), and ¢, = 1 for
all /, the decision variable u;, (3.18b) can be generated by sampling the output of
the matched filter s,,(s) = 25, (T, — s) e™<(*~To) /E, at T, + 7. Then the receiver
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illustrated in Fig. 3.2 is obtained.

The first term in the right side of (3.67), InJy,, is a biased quadratic form of
the input signal samples. In this thesis a biased quadratic form refers to the sum
of a quadratic form and a bias term. The second term in the right side of (3.67),
however, is nonlinear and depends on the multi-dimensional integral of the function
fm(0) defined in (3.64). Section 3.4.1 shows how a closed-form solution for the inte-
gral of f,(0) can be found for L-path channels with one Ricean path (mixed mode
Ricean/Rayleigh channels) in terms of a modified Bessel function of zero order. Simi-
larly Appendix B.3.2 shows how a closed-form solution for the integral of f,,(@) can be
found for L-path channels with two Ricean paths (2 Ricean/L-2 Rayleigh channels)
in terms of an infinite series of products of Bessel and trigonometric functions. The
technique used in Appendix B.3.2 can be extended to provide a closed-form solution
for the integral of f,,(0) for the L-path case. For the L-path Ricean channel, an L-fold

path integral need to be solved since f,(@) is to be integrated over 6, ... , @;_,. First
integration with respect to 6._, is performed yielding /o (;% IbL_lm(GL-2)|) .

Then integration with respect to 6,_, is done as follows. Let us define

_ || T
dim = P [XmQmTm], (3.68a)
T,
=2 I; (s)e™ 3 dz(s) (3.68b)
No Jo
and’
e™ = Iak“aﬂl [XTQ (xT)‘1 61/2] (3 693)
kn a’;:\/am— m%m m m |in :
To
= L [ () el 50 (s = T)ds (3.69b)
No o
1 [T
=5 lim (8) lan| 3m(s — Ta)ds (3.69¢)
0
2 oTo . .
~ ——/ Lim(s)e R {|an|3m(s — Tn)e™*} ds (3.69d)
No 0

"The superscript m in e, is not an exponent.
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Fig. 3.2 Non-coherent optimum receiver for an L-path Ricean channel (OPT)
assuming T, > & €y, =1 forall!
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