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Abstract

Persona! communication services (PCS) is one of the fastest growing sectors in telecom­

munications. PCS can be provided by wireless cellular communication systems, that

operate in radio environments characterized as multipath fading channels. This the­

sis addresses the subject of signal detection and performance analysis over multipath

Ricean/Rayleigh fading channels, when the multipath delays are known and the path

resolvability assumption is not satisfied. The path resolvability condition asserts that

the signal autocorrelation function vanishes ("strict" ) or it is small ( "approximate") at

inter-path delays. The strict path resolvability assumption is rarely satisfied, and even

the approximate path resolvability condition is not always satisfied in practice. For

example, the approximate path resolvability is not satisfied for narrow-band systems

such as aSNI, 1S136, or their third generation derivatives and it is neither satisfied for

wide-band systems, such as 1S95 or \V-CONIA, in indoors due to the relatively small

multipath delays of these environments.

Existing demodulation schemes for multipath fading channels, such as Rake re­

ceivers, provide diversity gains but they are based on the path resolvability assump­

tion. This thesis shows the severe limitations of the classical Rake receiver over

unresolved multipath fading channels, and generalizes the Rake concept to improve

performance. The optimal receiver that assumes knowledge of the specular component

(specular coherent), and the optimal scheme that assumes knowledge of the specular

component magnitudes ooly (non-coherent), are derived for unresolved Ricean multi­

path fading channels. It is shown that both include an orthogonalization (or decor­

relation) stage that vanishes when the multipath is resolved. This thesis presents

explicit forms of the Minimum NIean-Square Error estimator of the likelihood ratio

estimator-correlator forms, and shows that the decorrelation operation is present in

the estimation process. Based on the insight provided by these optimal schemes,

suboptimal receivers more suitable for implementation are proposed.

Performance analysis results, for severa! binary modulation formats, demonstrate

the importance of the decorrelation operation in yielding diversity gains and elimi­

nating error Boors under multipath unresolvability conditions. It is aIso shown that

the knowledge of the specular component phase does not provide significant gains at

high SNR for orthogonal FSK. Finally, it is shown that SNR gains can be obtained

by exploiting the knowledge of the specular component magnitude.



•

ii

Sommaire

Le domaine des services de communications personnelles (PCS) est l'un des secteurs

des télécommunications ayant un taux de croissance des plus élevés. Les PCS peu­

vent être fournis par des systèmes de communications cellulaires. Ces systèmes opèrent

dans des environnements qui peuvent être décrits comme des canaux à évanouissements

multiples ("multipath fading channels"). Cette thèse porte sur la détection de sig­

naux et l'analyse de performance à travers des canaux à évanouissements multiples

de Ricean ou de Rayleigh lorsque les retards des trajets sont connus et l'hypothèse

de trajets multiples séparés (''path resolvability assumption:7) n'est pas satisfaite.

L'hypothèse de trajets multiples séparés suppose que la fonction d'autocorrêlation

du signal évaluêe aux retards entre deux trajets, est nulle ("stricte') ou faible ('ap­

proximative'). L'hypothèse de trajets multiples séparés stricte est rarement satisfaite,

et même l'hypothèse de trajets multiples séparés approximative n'est pas toujours

satisfaite en pratique. Par exemple, l'hypothèse de trajets multiples séparés approx­

imative n'est pas satisfaite pour des systèmes à bande étroite tels que GSM, IS136

ou les systèmes équivalents de troisième génération. L'hypothèse de trajets multiples

séparés approximative n'est pas non plus satisfaite pour des systèmes à large bande,

tels que 1895 ou W-CDMA, dans des environnements à l'intérieur des bâtiments à

cause des retards relativement faibles de ces environnements.

Les systèmes existants de démodulation pour des canaux à évanouissements mul­

tiples tels que les récepteurs de type Rake, fournissent des gains en diversitê mais

supposent l'hypothèse de trajets multiples séparés. Cette thèse montre les limites

sévères du récepteur Rake classique pour les canaux à évanouissements multiples non

séparés et généralise le concept du Rake afin d'améliorer la performance. Ce docu­

ment présente le récepteur optimal qui connait les valeurs des amplitudes et phases

du composant fixe ("specular coherent") ainsi que le récepteur optimal qui dispose

simplement de la valeur des amplitudes du composant fixe (''non-coherent''). Ces

deux récepteurs optimaux sont calculés pour des canaux à évanouissements multi­

ples de Ricean. Cette thèse montre que les deux récepteurs effectuent un processus

d'orthogonalisation (ou de décorrélation) qui disparaît dans le cas où le canal est

séparé. Ce document donne des expressions explicites de l'estimateur qui est présent

dans la forme estimation-correlation du rapport de vraisemblance, où l'estimateur

minimise l'erreur quadratique moyenne. fi est aussi montré que l'opération de décor-



•

iii

rélation est présente dans le processus d'estimation. Cette thèse propose également

des récepteurs sous-optimaux plus appropriés pour une conception pratique, obtenus

à partir des connaissances acquises lors de l'étude des récepteurs optimaux.

Des résultats d'analyse de performance pour plusieurs modulations binaires mon­

trent à quel point l'opération de décorrélation est importante afin d'obtenir des gains

en diversité et d'éliminer les seuils d'erreurs lorsque le canal n'est pas séparé. Cette

thèse montre également que la connaissance de la phase du composant fixe n'apporte

pas de gains significatifs pour des rapports signal-sur-bruit élevés et une modulation

par variation de fréquence orthogonale ("orthogonal Frequency-Shift Keying"). il est

montré finallement qu'il est possible d'obtenir des gains du rapport signal-sur-bruit

en tirant bénéfice de la connaissance de l'amplitude du composant fixe.
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Chapter 1

Introduction

In the last decade we have witnessed a phenomenal interest in Personal Communi­

cation Services (PCS). The aim of PCS is to provide communications in the form of

voice, data and video services anywhere and anytime. This objective can be achieved

by wireless cellular communication systems that operate in indoor and outdoor radio

environments. In such environmeots, the transmitted signal reaches the receiver not

only by a direct line-of-sight but by ways of many paths, due to refiection, diffraction

and scattering of radio waves by terrains, buildings and walls. Therefore, the received

signal consists of the SUIn of multiple delayed and attenuated versions of the trans­

mitted signal in addition to the thermal noise present in any practical communication

systems [1, 2}. Generally, due to time variations of the environment (motion of vehi­

cles, people, ...), the attenuations and delays in this multipath propagation model are

time-variant, resulting in a fading phenomenon. Fading is the terminology used to

denote any random amplitude variations (in this case, in the received signal). These

amplitudes variations in the received signal are created by the successive constructive

or destructive vector additions of the multiple attenuated and delayed versions of the

transmitted signal.

The effect of multipath fading, and consequently the choice (or validity) of a partic­

ular channel model, depends on the signal transmission bandwidth. For narrow-band

transmission (compared to the channel coherence bandwidth), the multiple versions

of the transmitted signal cannot he distinguished one from another; thus they are aIl

combined together (constructively or destructively) resulting in a fiat fading channel.

ln this case, the noiseless received signal is simply a randomly attenuated and car­

rier phase-shifted version of the transmitted signal. Optimal detection over snch a
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channel in the presence of additive white Gaussian noise and Rayleigh fading results

in bit-error probabilities inversely proportional to the Signal-t~NoiseRatio (SNR),

yielding no diversity gains.

For wide-band transmission, different frequency components of the transmitted

signal undergo different attenuations and phase shifts yielding the so.-called frequency

selective channels. Two classical models are investigated in detail in Section 2.1.1

of Chapter 2, one that assumes band-limited signaIs and the other one that assumes

known multipath delays. When the transmitted signal is assumed to be strictly hand­

limited, a tapped-delay Une model with tap spacing at multiples of the reciprocal of

the signal bandwidth is obtained by using the sampling theorem [2]. The sampling

model does not make any assumption on the channel multipath delays, but is valid

ooly for strictly band-limited signals and has, in theory, an infinite number of taps.

Practically, due to the finite multipath spread of the channel, the tapped-delay Hne

can he truncated to a finite length. When the multipath delays are known at the

receiver (in practice estimated), a multipath fading channel model lS obtained with

paths at each known multipath delay. Each path is composed of the sum of suh-paths

which cannot be separated (Le. cannot be resolved).

It is weIl known that diversity gains (illustrated by bit-error probabilities inversely

proportional to higher powers of the SNR) can be obtained for these wide-band sys­

tems by the use of Rake receivers [3, 4, 5]. However Rake structures are based on

the path resolvability assumption in one form or another. A detailed description of

the various forms of the path resolvability, their implications and use in the literature

is provided in Section 2.2 of Chapter 2. The classical Rake receiver [51, implicitly

based on the sampling model, assumes a very large bandwidth yielding very narrow

signal autocorrelation functions that do Dot overlap when time-shifted by the channel

multipath delays. This mst form of the path resolvability condition ensures proper

estimation of the amplitudes and phases of the multipath components that are used to

form a replica of the noiseless received signal. Since this estimated signal is composed

of several versions of the transmitted signal, it provides a diversity effect.

Rake receivers based on the known multipath channel model [4] assume that the

signal autocorrelation function vanishes at inter-path delays! a condition satisfied if

the inter-path delays are larger than the signal autocorrelation time1• Equivalently,

IThe signal autocorrelation time is defined as the width of the signal autocorrelation function.
More details on those two definitioDS are given in Section 2.2.1.
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this second form of path resolvability says that any two versions of the transmitted

signal that are time-shifted by two different multipath delays are orthogonal. For

wide-band signaIs, path resolvability is often stated as the inter-path delays being

much larger than the reciprocal of the signal bandwidth since their autocarrelation

time is appraximately equal ta the inverse of their bandwidth. After matched filter­

ing ta the transmitted signal, a weighted sum of time-shifted versions of the signal

autocorrelation function plus noise is obtained. Sampling the matched filter out­

put at the multipath delays yields samples that can be cambined to generate a higher

SNR. Therefore, Rake receivers combat multipath by exploiting the inherent diversity

provided by the time-shifted versions of the transmitted signal.

The path resolvability assumption when the multipath delays are known is gen­

erally satisfied for spread-spectrum systems in outdoor environments but cannot he

ensured in indoor environments due to smaller inter-path delays (order of tens to

hundreds of nanoseconds [6, 7]). Numerical examples based on existing standards

showing that the path resolvability assumption is not always satisfied are provided

in Section 2.3.1. For example, a bandwidth of 50~IHz would be needed to resolve an

indoor multipath fading channel [8].

Assuming known multipath delays, the objective of this thesis is to derive receiver

structures that yield diversity gains without the path resalvability assumption over

multipath fading channels. Notice that the multipath delays can be estimated with a

time resolution greater than the reciprocal of the information signal bandwidth. Such

a time resolution can be achieved by using a sounding signal of bandwidth larger than

that of the information signal, or by using super-resolution techniques [9]-[19J. The

concepts of this thesis are applicable to existing as well as future generation wide-band

systems in indoor and outdoor environments. They are also applicable to narrow-band

systems that "see" a fiat fading channel provided that the channel multipath delays,

identified with wide-band signals, are known. A detailed formulation of the problem

is given in Section 2.3.1.

In this thesis, the multipath gains are assumed to be Ricean distributed; Rayleigh

fading is viewed as a special case of Ricean. For Ricean fading, each path can be con­

sidered as the phasor sum of a Rayleigh component with a uniformly distributed phase

and a fixed (specular) component. Two classes of detection techniques are considered:

specular coherent and non-coherent. Specular coherent detection assumes knowledge

of the specular component magnitudes and phases. Non-coherent detection assumes



• 1 Introduction 4

•

knowledge of the specular component magnitudes only. Part of this work bas been

previously published in [20]. This thesis also includes a thorough literature review

(Section 2.1.2) of existing detection techniques over multipath fading channels, with

an emphasis on the assumptions related to path resolvability used in the derivation

and performance analysis of receiver structures. The issue of path resolvability and its

effects on receiver structures for fading multipath channels has not been given proper

attention in existing literature surveys. Fina1ly, since this thesis considers multipath

fading channels models that assume known multipath delays, existing sounding tech­

niques are also reviewed (Section 2.2.3).

1.1 Original Contributions

The main contribution of this thesis is the derivation of the specular coherent and

non-coherent optimal receiver structures, respectively SPECCOH and OPT, over 00­

resolved Ricean multipath fading channels, and identification of multipath decorrela­

tion as essential to eliminating error Hoors. These novel structures are generalizations

of the Rake receiver to unresolved multipath fading channels. This thesis aIso presents

explicit forms of the Minimum Mean-Square Error (M~ISE) estimate included in the

estimator-correlator structure [21] of the SPECCOH as weIl as in the OPT, and pro­

vides an interpretation of the operations performed by these schemes. Based on the

insight provided by these optimal structures, non-coherent suboptimal receivers im­

plementing the decorrelation operation, such as the Quadratic Decorrelation Receiver

(QDR), are derived. These receivers cao be used in narrow-band and wide-band sys­

tems in indoor and outdoor environments since they are especially designed to handle

path unresolvability. The results illustrate that diversity gains cao he obtained on

multipath fading channels without spreading the signal bandwidth. A list of the

original contributions of this thesis follows:

Detection over unresolved multipath fading channels; generalization of the Rake:

• Derivation of the specular coherent and non-coherent optimal receiver struc­

tures (SPECCOH and OPT) over unresolved Ricean multipath fading channels

(respectively Section 3.2.1 and Section 3.3.1) .

• Identification of an orthogonalization (or decorrelation) stage as crucial to elim­

inating error floors over unresolved multipath fading channels (Sections 3.2.2,
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3.3.2 and Sections 4.2.2-4.2.3, 4.3).
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•

• Derivation of a simpler quadratic non-coherent suboptimal receiver implement­

ing the decorrelation operation, over mixed mode Ricean/Rayleigh channe1s2 ,

with performance close to optimal at high SNR: the Quadratic Decorrelation

Receiver (QDR) (Section 3.7.2).

Estimator-correlator interpretation; presence of the decorrelation operation:

• Derivation of explicit forms of the M~ISE estimates (conditional means) for the

SPECCOH and OPT schemes, and relation of these structures to a multipath

channel (respectively Section 3.2.3 and Sections 3.3.3, 3.4.3).

• Interpretation of the QDR as an estimator-correlator with a linear estimate

(Section 3.7.3).

• Derivation of the linear j\tI~ISE estimate (Section 3.7.6).

Performance analysis (one-shot transmission):

• Presentation of asymptotically tight upper and lower-bounds to the bit-error

probabilities of OPT (methodology: Section 4.1, results: Section 4.2.2).

• Numerical evaiuation of the bit-error probabilities of SPECCOH, QDR and

various receivers previously derived, over mixed mode RiceanfRayleigh and

Rayleigh fading channels for binary Frequency-Shift Keying (FSK) and variants

of Differential Phase-Shift Keying (DPSK) (SPECCOH: Section 4.2.2, QDR:

Section 4.2.3).

• Identification of the cases where knowledge of the specular component phase

shifts provides significant gains and where it does not, with emphasis on the

comparison of two quadratic schemes, SPECCOH and QDR (effect of the mod­

ulation scheme choice) (Section 4.2.2: Table 4.4, Section 4.2.3).

• Demonstration that SNR gains can be obtained by the knowledge of the specular

component magnitude that assumes an intermediate value, for FSK and variants

of DPSK (Section 4.2.3) .

2A channel is said to be mixed mode RiœanfRayleïgh if the first path is Riœan distributed and
the other paths gains are Rayleigh distributed.
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1.2 Outline of the thesis
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•

• Chapter 2 reviews the modeling of multipath fading channels and existing detec­

tion techniques. Assumptions related to path resolvability used in the derivation

and performance analysis of receivers structures are elucidated. A detailed de­

scription of the varions forms of the path resolvability assumption and their

implications is provided. Since this thesis considers multipath fading channels

models that assume known multipath delays, existing sounding techniques are

aIso reviewed. Then the objectives and methodology of the thesis are formu­

lated.

• Chapter 3 presents the channel model and then derives optimal and subopti­

mal receiver structures without the path resolvabilityassumption. The inter­

pretation as an estimator-correlator is investigated and explicit forros of the

estimators are derived.

• Chapter 4 analyses the one-shot transmission performance of the receivers de­

veloped in Chapter 3 for commonly used binary modulation schemes such as

FSK and variants of DPSK over mixed mode Ricean/Rayleigh and Rayleigh

fading channels. The effects of path unresolvability and the effectiveness of the

decorrelation operation to eliminate error Boors is demonstrated.

• Chapter 5 discusses practical applications of results and gives possible extension

of the work.

• Chapter 6 presents a summary and conclusions to this thesis.

• Appendices A-G present the mathematical details of this thesis.
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Chapter 2

Background and Rationale

2.1 Receivers for multipath fading channels

2.1.1 Modeling of multipath fading channels

This section presents models for multipath fading channels and the influence of the

transmission bandwidth on the choice of a particular mode!. ~Iultipath fading is a

common phenomenon present in many different types of environments, such as land

cellular [8, 22] as weIl as indoor cellular communication systems (1), short-wave ion~

spheric radio communications in the 3 - 30lVIHz frequency band (HF), ionospheric

forward scatter in the 30 - 300~IHz frequency band (VHF), and tropospheric scatter

(beyond-the-horizon) radio communications in the 300 - 3000MHz frequency band

(UHF) and 3 - 30GHz frequency band (SHF) [2]. Finally, multipath fading affects

microwave line-of-sight links [2, 23, 24], and one-path fading affects satellite commu­

nications [25]-[28}.

A multipath fading channel cau be modeled as a linear time-varying filter with

low-pass complex impulse response given by [1, 2, 29, 30]

hc(T, s) = E ak(s)eiBk(s)6(T - Tk(S))
k

(2.1)

•
where s and s - T are respectively the observation time1and application time of the

impulse, {ak(s)}, {Tk(S)} and {6k(S)} are therandom time-varyingamplitude, arrival-

lThe notation s is used throughout tbis thesis as the observation time instead of the classical
letter t since this letter is reserved to denote an arbitrary finite observation interval [0, t].
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time and phase sequences. In other words, if the signal Sm(S) = ~ {Sm(s)&WcS} is

transmitted over the channel, the noiseless received signal is vm(s) = ~ {vm(s)eiwc"}

where

The coefficients {ak (s) }, {Tk(s)} and {Bk (s)} cau he estimated and characterized sta­

tistically. The most common statistical characterization of the channel is obtained

under the assumptions that the impulse response hc(T, s) is wide sense stationary and

the scattering is uncorrelated [31]-[33]. The term Wide-Sense Stationary Uncorrelated

Scattering (WSSUS) channels is generally used. A WSSUS channel cau he described

either in the time or frequency domain by severa! correlation functions, coined Bello

functions [31, 34], as shown in Fig. 2.1.

As seen in Fig. 2.1, the autocorrelation of the impulse response of a WSSUS

channel is given by

The multipath intensity profile of the channel or the delay power spectrum denoted

in Fig. 2.1 by Rh (T) is obtained by setting ~s to zero in Rh(T, ~s). The range of

values of T over which Rh(T) is essentially non-zero is called the multipath spread of

the channel and is denoted by Tm [2, ch. 7]. The Fourier transform of the multipath

intensity profile is denoted RH(~f) in Fig. 2.1. The range of values of a/ over which

RH(af) is essentially non-zero is called the coherence bandwidth of the channel and

is denoted (f).f)c' Due to the Fourier transform relationship between Rh(T) and

RH (~f), the coherence bandwidth is approximately equal to the reciprocal of the

multipath spread. The autocorrelation of the transfer function HeC/, s) of a WSSUS

channel is called the spaced-frequency spaced-time correlation function of the channel

and is denoted in Fig. 2.1 by RH(f).f, ~s). When ~f = 0, its Fourier transform

with respect to ~s is called the Doppler power spectrum and is denoted S(A) in

Fig. 2.1. The range of values of À over wmch S(A) is essentially non-zero is called

the Doppler spread of the channel and is denoted by Bd. The range of values of as
over which RH(f).s) is essentially non-zero is called the coherence time of the channel

and is denoted by {~s)c' The coherence time is approximately equal ta the reciprocal
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• 2 Background and Rationale 10

of the Doppler spread. Relationships between the multipath intensity profile and the

Doppler power spectrum exist via the so-called scattering function SeT, À) which is the

Fourier transform of Rh (T, Âs) with respect to Âs. Other methods of obtaining the

scattering function through Fourier transform relationships are illustrated in Fig. 2.l.

The channel coherence time and bandwidth along with the transmission bandwidth

and the duration of the signaling waveform provide a way to classify fading channels.

Common classifications of fading channels are frequency selective versus fiat fading

(frequency nonselective) and slow versus fast fading [2].

If the signaling waveform is time-limitedand its duration T is such that T « (Âs)e'

the channel attenuation, delay and phase shift of each path are essentially fixed for

the duration of at least one signaling illterval and the channel is slowly varying. In

that case the channel becomes linear time invariant with low-pass complex impulse

response given by [1]

he(T) = LakeiSk6(T - Tk)
k

(2.2)

•

If the transmitted signal bandwidth ~V is :iuch that W « (dl)e' the channel is

said to he fiat or frequency nonselective. In that case the noiseless received signal is

simply the transmitted signal multiplied by a complex-valued random process as seen

in the following [2]

Um(S) = i}e(T, s)sm(s - T)dT = 1:HeU, s)SmU)eP"'Sdf

w w

= i:HeU, s)Sm(f)ei2,,'sdf ~ He(O, s)1: SmU)ei2"'Sdf = He(O, s)sm(S)
2 2

where He(O,s) = Fr {Ekak(S)ei6A:(S)8(T-Tk(S» } 1,=0= Lkak(s)ei6A:(s) and Sm(f)

is the Fourier transform of sm(s). When the number of paths is large, He(O, s) is

Gaussian by virtue of the central limit theorem. If HeCO, s) is modeled as a zero

mean Gaussian process, its magnitude IHe(O, s) 1 is Rayleigh distributed for any fixed

sand its phase arg [He(O, s») is uniformly distributed between -1r and 1r. In that case

the channel is said to undergo Rayleigh fading. If He(O, s) is modeled as a non-zero

mean Gaussian process, its magnitude IHe(O, s) 1 is Ricean distributed for any fixed s

resulting in a Ricean channel.
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When W» (df)e, the channel is said to be frequency selective since the Fourier

transform of the transmitted signal is subject ta different gains and phase shifts across

the frequency band. Note that according to this definition no channel classification is

given when W is of the arder of (~f)e. Some authors define a channel as frequency

selective if W is of the order of or exceeds (dj)e [35, p. 338]. For convenience

in the following, the second definition for frequency selective channels will be used

with an explicit mention of the more strict assumption whenever required. Several

models can he derived for frequency selective channels depending whether or not the

transmitted signal is strictly band-limited, the fading is slow and the multipath delays

are characterized deterministically or statistically.

Let us first derive the sampling channel model that assumes a strictly band-limited

transmitted signal. This model based on the sampling theorem is vaUd regardless of

the channel temporal variations and does not explicitly characterize the multipath

delays. Let sm(s) be the transmitted signal strictly band-limited to W. Then sm(s),

its complex envelope, is strictly band-limited to W /2 and an equivalent channel model

can be obtained by introducing an ideal low-pass filter HLPF(!) as ilIustrated in

Fig. 2.2 [31].

Sm(S) --d]:l srn(s) he(T, s) urn(s)-- -
-W!2 W!2 /

He(j,s)

Sm(S~ hW(T, s} Vm(~
-

Hw(f,s)

Fig. 2.2 Equivalent band-limited channel model

The equivalent filter hw (T, s) is band-limited with transfer function given by

Hw{f,s) = Hc(f,s)rect (~)

where rect(u) is defined as

•
{

l lui <!'
rect(u) = 0

else•
(2.3)
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Using the sampling theorem, the band-limited channel impulse response is given by

(2.4)

where the equality in (2.4) is in the mean square sense [36] and sinc(x) = sin~1r%). Using

the convolution in the T variable hw('i, s) = hLPF(T) *hc(T, s), hLPF(T) = Wsinc(W-r)

and (2.1) yields

(2.5)

•

From (2.4), the transfer function of the band-limited channel is given by

Hw(f,s) = Fdhw(T,s)} = ~ n~oc hw (;;',s) e-
j2

"'wrect (~)

Define

Hcw(f,s) = ~ f: hw (;;',s) e-j2"'!V (i.e. Hcw(j, s) = Hw(f, s) Ifl < ~)
n=-OCl

hcw(T, s) A Fï L {Hcw(f, s)} =~ f: hw (;;., s) <5 (T - ;;.) (2.6)
n=-oc

From (2.6), whenever the transmitted signal is strictly band-limited to W, the chan­

nel cao he modeled as a tapped-delay-line with tap spacing IjW and tap weight

coefficients {hw (~, s)} [2, 37}. In other words, the resolution in time delay of the

model is 1jW. Note that such a model requires an infinite observation interval and

an infinite number of taps. However in practice, if the multipath delay spread is Tm,
the channel model can be approximated by truncation at N = [TmW} + 1, resulting

in the low-pass complex impulse response

N

hcW(T, s) = ~ Ehw C;;', s) 8 CT - ;;.)
n=l

where [TmW} is the integer part of TmW. From the central limit theorem evoked in

(2.5), hw (~, s) for ail n can he statistically modeled as jointly Gaussian random
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processes in the 8 variable when the number of paths is large.

Channel models for slowly fading or time-invariant multipath fading channels are

considered next. These channels are assumed to be time-invariant over at least one

symbol duration with low-pass complex impulse response given by (2.2). The mul­

tipath delays in (2.2) can be characterized statistically or assumed known at the re­

ceiver. The first proposed distribution of the sequence of path arrivai times {"rk - To}~
was Poisson [1, 38]. However, inadequacy of tms distribution has been observed.

Therefore, a modified Poisson distribution, the so..called A - K model was subse­

quently proposed [1},[38}-[40]. Such a model takes into account the clustering property

of paths caused by the grouping property of scatterers.

Other types of models assume that the multipath delays are known at the receiver.

In principle, such a model is given by (2.2), where the multipath delays are assumed

to be known. In practice, however, the multipath delays are estimated with a finite

resolution in time (or finite time resolution). The minimum resolution time of an

estimation method Tn corresponds to the minimum required time difference between

two multipath delays (Le. minimum inter-path delays) so that the estimator iden­

tifies these two time delays as distinct. ~Iethods of estimation are summarized in

Section 2.2.3. In order to estimate aU the inter-path delays present in (2.2), where

some of them could he arbitrarily small, one needs to sound the channel with an

impulse received with an infinite bandwidth yielding an infinite time resolution (i.e

TR = 0). In that case, all the multipath delays can be estimated or equivalently the

multipath is completely resolved and the output of the channel to 5(8) is given by (2.2)

and illustrated in Fig. 2.3(a). However only a finite time resolution or equivalently

f············1 f············1[····..······1
Power
(dB)

-
Power
(dB)

'1
Il

• 1
• 1·., ,, ,, ,

T

Fig. 2.3 Channel impulse responses•
(a) Channel impulse response
(infinite time resolution: 'TR = 0)

(h) Channel impulse response (fi­

Dite time resolution: r~ > 0)



• 2 Background and Rationale 14

a non-zero minimum resolution time T~ > 0 can be obtained in practice. Classical

sounding techniques using pulse compression (for example the convolution matched­

flIter technique) [41, 42] yield a time resolution of l/W where W is the bandwidth

of the sounding pulse. However super-resolution techniques may yield a time res­

olution hetter than 1/W but still finite [9]-[191. Note that in models found in the

literature, the time resolution is usually considered ta be 1/W [1, 43]. This finite

time resolution, specific to each estimation technique, has to he taken into account

in the representation of channels with known delays yielding the classical model of

multipath fading channels. Rewriting (2.2) with a double summation the noiseless

received signal vrn(s) = R {vm(s)eiw<:S} can he expressed as (see Fig. 2.3)

where all the '~sub-paths" within a cluster, which cannot he resalved (when ITk.l - Tk.rl
, 6 ~ -6« TR ) are grouped together. Therefore ak = LJl aide} t.1 and Tk ~ Tk,l are respectively

the complex gain and the time delay of the k th "resolved" multipath component. The

low-pass complex impulse response of the channel is then given by

L-l

hc(r) = E ak6 (T - Tk)

k=O

(2.7)

For band-limited signals, the channel model given by (2.7) is completely equivalent

to the linear time-invariant version of the tapped-delay-line model (2.6) given by

(2.8)

where the tap weight coefficients of the tapped-delay-line are given by

(2.9)

•
since hW(T) = hLPF(T) * hc(T) = Et~ akWsinc [W (T - Tk)l·

In both models, the amplitudes and phases of the path gains can be assumed

known or characterized statistically. Several amplitude distributions can be chosen to
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characterize the path gains. Well-accepted models employ the Rayleigh and Ricean

distributions with the Rayleigh distribution modeling the small-scale rapid amplitude

fluctuations in absence of a strong received component and the Ricean distribution

modeling the presence of a strong path [1]. Their justification comes from the central

limit theorem which states that the SUIn of a large number of random variables tends

ta a Gaussian random variable. ~Ieasurementsin indoor environments showed good fit

to Rayleigh and Ricean at various frequencies, Le. 9OOl\'IHz, 1.5GHz, 2.3-2.4GHz and

60GHz [l, 44, 45]. Measurements in micro-cellular urban radio environment showed

good fit to Rayleigh and Ricean at 1.8GHz [46]. Gaod fit ta Ricean was also observed

in straight sections of tunnels environment at 900MHz and l.SGHz [47]. However

other measurements studies showed better fit to log-normal distributions even for

local areas data [40]. Other amplitude distributions include Nakagami [48}, Suzuki

[39}, extended Suzuki [49J and the new so-called POCA distribution [50}.

2.1.2 Detection techniques for multipath fading channels

Detection techniques over multipath fading channels have been thoroughly stuwed

since the fifties. In this work, only the subject of single-user systems is addressed.

Fundamentals of single-user detection over multipath fading channels are weIl covered

in several reference books [29, 30, 35,51, 52}. A more recent literature review of this

subject is presented in [53J.

Two basic types of single-user receivers can be identified, one-shot receivers and

multi-shot receivers. One-shat receivers assume that a single symbol signal is trans­

mitted. The decision regarding the transmitted signal is based on an observation

interval that spans the duration of the received signal corresponding to the single

transmitted symbal [51, p. SO]. Over Gaussian or one-path fading channels, the

observation interval is the transmitted signal duration; however over multipath chan­

nels, the observation interval should be chosen to be longer ta take into account the

multipath spread. The key assumption of one-shot receivers is that the transmitter

is idle outside the transmitted signal interval. Performance analysis of one-shot re­

ceivers yields single-pulse performance or matched filter baunds. lt is equivalent to

neglecting any Inter-Symbol Interference (ISI) and hence provides a lower-bound on

bit-errar probabilities if ISI is present. Multi-shot receivers assume that a sequence

of symbol signais is transmitted and make decisions concerning aIl the transmitted

symbols [51, p. 80].
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Optimality of a receiver is defined with respect to a criteria such as minimization

of a cost, or risk, function (Bayes criterion). In detection theory, common optimality

criteria is minimization of the average probability of symbol error. Any receiver

structure (optimum or suboptimum) depends on knowledge of channel parameters.

For example, a receiver may know some parameters exactly or may know only their

second order statistical description.

One-shot receivers for multipath fading channels, optimum in the minimum aver­

age probability of symbol error sense, have been first presented in [3]-[5], including the

weil known Rake receiver [5]. In [3], the channel is time-varying, multipath delays are

assumed to he arbitrary but known and the path gains are zero mean Gaussian ran­

dom variables (Rayleigh fading). Representing the continuous time transmitted and

received signais using the sampling theorem, the likelihood ratio is expressed in terms

of filters defined by integraI equations. These integral equations are solved in closed­

form only for special cases such as the slowly fading multipath and the single path

channels. Using Neumann's series expansion of the integral equations, a structure has

heen proposed using a tapped-delay-line that approximates the optimum decision rule

at low SNR. In [4], optimal receivers are derived assuming that the multipath delays

are known at the receiver and satisfy the resolvability condition defined by

where W is the transmission bandwidth. The resolvability condition implies that the

signal autocorrelation function is approximately zero at inter-path delays (i.e at Il-i"

for example). Path gains are assumed to he Ricean or Rayleigh distributed and the

phases of the specular term are assumed to be either known or uniformly distributed.

A one-shot optimum receiver using the same resolvability assumption was derived in

[48] with Nakagami distributed multipath gains. Essentially, these receivers employ

the Rake technique [5]. The optimal receiver that assumes a statistical characteriza­

tian of the multipath delays, was derived in [4] with Ricean or Rayleigh path gains,

and in [48) with Nakagami gains. In [48], structures assuming a statistical charac­

terization of the multipath delays were derived under the assumption that with high

probability l'Tl - 1,,1 > 5 for alll ::F k, where cS is approximately the reciprocal of the

transmission bandwidth.

The weil known Rake receiver was first introduced in [5], although its concept has
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been used already in the suboptimal structure of [3]. Optimality of the Rake receiver

was studied in detai1 in [54]. The approximate finite tapped-delay-line mode1 obtained

from the sampling theorem was implicitly used to obtain the Rake structure in [5]. In

the original Rake structure, the amplitudes and phases of the multipath components

are mst estimated based on the received signal and then the estimates are used to fonn

a replica of the noiseless received signal. Once this replica has been formed, detection

is equivalent to the detection of a known signal in white Gaussian noise which is

basically a correlation of the received signal with the repliea. The estimation of the

channel coefficients or its channel impulse response is accomplished using correlation.

In the absence of noise, the correlation of the received signal with the sum of both

possible transmitted waveforms yields the channel impulse response when the long­

term cross-correlation function of the transmitted signais is zero for all T shifts and

each transmitted signal autocorrelation function is approximately equaI ta a delta

function. Practically, the second condition yields very narrow signal autocorrelation

functions that do not overlap when time-shifted by the channel multipath delays. The

signal is then said to resolve the multipath. This "resolvability" condition, defined

more rigorously in Section 2.2.1, is satisfied for wide-band signais of sufficiently large

bandwidth.

Fig. 2.4 illustrates an example of the mt.h hypothesis black diagram of a Rake

receiver with weighted combining that employs matched filtering. The actual receiver

is composed of several such blocks, one for each possible transmitted signal followed

by a decision device that takes the largest output. The combining weights can be

either equal to the estimated values of the amplitudes and phases of the multipath

components as in [5], or based on the channel statistical characterization as in [4].

The received signal is passed through a matched tilter associated with the m th possible

transmitted signal. The output of the matched filter is passed through a tapped-delay­

tine (Fig. 2.4), whose tap outputs, corresponding to inter-path delays, are combined

and the result sampled. Basically, the receiver attempts ta collect the signal energy

present at each of the tap outputs, hence the name Rake (2). In other words, it com­

bats multipath by exploiting the inherent channel diversity yielding diversity gains.

In addition to being essential for channel estimation, the reso1vability condition (i.e.

non-overlapping of time-shifted versions of the signal autocorre1ation function) has

important implications for the interpretation of the Rake receiver. Whenever the

resolvability condition is satisfied, the multipath channel provides severa! replicas of
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Fig. 2.4 Rake receiver: black diagram for the mth hypathesis using complex
envelope notation.

the transmitted signal at the corresponding tapped-delay-line outputs. Therefore the

Rake receiver can be viewed as a time diversity combiner. This shows that results

in multichannel or diversity reception aver fading channels are applicable to resolved

multipath channels [55]-[57], providing ways of combining the tapped-delay-line out­

puts.

Linear diversity techniques for fading channels have been studied in detail since

the fifties. In [58], Selection diversity (SC), ~Iaximal-Ratio Combining (MRC) and

Equal-Gain Combining (EGC) were compared based on their SNRs. As expected,

rvIRC yielded the highest output SNR. Non-coherent and coherent diversity combining

techniques were derived in [59], and analyzed in terms of their bit-error probabilities

when the amplitudes are Rayleigh distrihuted (Rayleigh fading). In [59] the term non­

coherent refers to the receiver absence of knowledge of the phases and instantaneous

signal amplitudes. Coherent diversity assumes that such a knowledge is available to

the receiver. It was shown that square-Iaw comhining is the optimum non-coherent

combining for Rayleigh fading. ~IRC, similar to [58], was found to be the optimum

coherent diversity technique. The optimal one-shot diversity receiver for Ricean fad­

ing, assuming only a statistical characterization of the channel with a known specular

term, was derived in [55]. This receiver represents a generalization of the square-Iaw

combiner of [59]. It was also derived in [60] for a more general channel based on a
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sampling model. Performance of the receiver derived in [55] was analyzed in [56] when

no specular term is present. Minimum error rates achievable by optimization of the

number of diversity branches have been determined for predetection lvIRe and post­

detection EGC with frequency and time-diversity [61]. For both combining schemes,

detection was performed using bandpass matched filters followed by square-envelope

detectors (non-coherent). It was shown that the minimum required transmitted power

for a gjven error rate is strictly larger than zero for both diversity techniques (even

if an infinite number of diversity branches is used). MRC \\ith correlated diversity

branches and arbitrary average powers in each was studied in [62] in term of the

probability density function (pdf) of the combined power. In [63], the probability dis­

tribution of the post-combination SNR is calculated for SC, rvIRC, EGC and constant

combining without assuming equal mean SNR on the various diversity branches. Bi­

nary error probabilities of square-Iaw combiners and differentially coherent diversity

receivers with EGC were studied in [64] for a frequency selective multi-channel. The

existence of an irreducible error probability due to the selective fading was demon­

strated. Results were later extended in [65] to multi-channels with a specular term.

Error probabilities for the optimum coherent receiver over Ricean/Rayleigh fading

multi-channels were derived in [57] for signals with identical cross-correlation coef­

ficients on each diversity channel. Error probabilities for orthogonal signaling were

also derived for a (non-coherent) square-law combiner. Extension of these results to

nonorthogonal signaling was done in [66]. Square-law envelope diversity combining

was studied in [67] for FSK and DPSK where each channel is composed of two spec­

ular terms and a scatter (diffuse) term. Adaptive diversity receivers using a noisy

reference signal derived either from the previously received signal or from a pilot sig­

nal, were analyzed in [68]. Closed-form expressions for the probabilities of error of

these diversity receivers with lvI-phase signaling and Rayleigh fading in each diversity

branch were given. Equivalent results were derived for Ricean channels with 2-4 phase

signaling.

More recently, analysis of the performance of equal-gain diversity receivers with

coherent 1 differentially coherent and non-coherent detection on Nakagami fading chan­

nels was performed using a Chemoff-bound type of approximation [69]. One method

to determine the average bit-error probability consists of averaging the conditional

error rate, conditioned on the predetection SNR. For EGC, the predetection SNR is

equal to 'YEGC = [E~~ latl] 2 /(2LNo) where L is the number of diversity channels,
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No is the noise power of one channel and 1ak1 are Nakagami random variables corre­

sponding to the signal amplitudes at the output of each diversity channel. Therefore,

the first step is the computation of the pdf of L;:~ lakl. In [69], such a pdf is approx­

imated within a specified accuracy by the convergent infinite series derived in [70].

Bit-error probabilities of an equal-gain combiner with coherent detection over Rayleigh

fading channels were derived in [71] in the form of one-fold integrals. Error probabili­

ties for MRC and post-detection combining over Nakagami fading channels were also

studied by the same author [72, 73]. A unified approach to the performance analysis

of digital communications over slow fading multi-links channels, possibly correlated

was proposed in [74, 75]. This framework allows eva1uation of the average bit-error

rate either in closed-form or in the form of a single integral with finite limits readily

calculable numerica1ly. The results included ~[RC and EGC with coherent detection

as well as square-Iaw combining. Error probabilities with square-Iaw combining were

computed over fast Ricean fading channels in [76]. Symbol error probabilities for var­

ious coherent 8-ary and 16-ary modulations were computed in [77] for slow Rayleigh,

Ricean and Nakagami fadings with SC, ~[RC and EGC. These results enabled accu­

rate optimization of modulation constellation parameters. In particular it was shown

that the CCITT V.29 constellation can be improved by adjusting the amplitude ratios

of the constellation points.

Another implementation of the Rake receiver using a channel estimator based on

periodic integration approximated by a first order recursive structure (re-circulation

loop) was given in [78]. It was assumed that the signal and noise autocorrelation

functions are essentially zero at all inter-paths delays (i.e. at Tl - Tk)' Variations of

the Rake receiver were later derived. For example, an optimum receiver for reception

of Direct-Sequence Spread-Spectrum (DSSS) signais on WSSUS fading channels was

presented in [79]. A discrete-time multipath channel model (with a discrete set of

Rayleigh-faded paths) was derived and resulted in a receiver very similar to [4]. Since

the paths are assumed to he Rayleigh fading (zero mean signal component), the

obtained optimum receiver is quadratic and hence non-coherent. The obtained channel

model can be viewed as a discrete-time version of the continuous-time tapped-delay­

tine model derived from the sampling theorem. Although the channel was formed

by a continuum of multipaths, the spread-spectrum processing produced the discrete

multipath components (delayed versions of the transmitted signal). Because Pseud<r

Noise (PN) codes with ideal autocorrelation properties are assumed, the discrete-time
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delayed versions of the input signal fonn orthogonal sequences. In other words, the

discrete-time delayed versions of the input are resolvable similar to the resolvability of

the continuous-time delayed versions of the input signal from [5]. An optimum non­

coherent one-shot receiver for detection of band-limited DSSS signaIs over Rayleigh

multipath fading channels was derived in [80] using chip rate sampling of the received

signal. Non-coherent here means that the receiver knows the channel statistics rather

than the channel impulse response. A DSSS coherent Rake receiver that estimates

the phases and combining factors of the receiving paths was presented in [81]. The

inter-paths delays were assumed to he larger than the length of a code chip. The effect

of imperfect phase estimates of a coherent Rake receiver that employs a Phase Lock

Loop for phase recovery was studied for DSSS signaling in [82]. The channel model of

[82] is a sampling model (finite-length tapped-delay-line) where the tap weights are

assumed to be perfect estimates of the channel parameters. Self noise arising from

non ideal PN sequences is neglected.

In [83], the "partially coherent" binary optimum receiver for multipath Rayleigh

fading channels under uniform orthogonality conditions was derived. This receiver

knows the multipath coefficient phases but has only statistical knowledge of their

magnitudes (the term "partially coherent" is not accurate here, and the receiver should

be called coherent). Uniform orthogonality means that the complex envelopes of the

transmitted signals Sm (s) satisfy

Rmp(n - 11:) Il. {},;"(U)Sp(U - (n - Tk))du = [~-;,.(u - Tk)Sp(U - Tt}dU = Èm t5/k t5mp

(2.10)

where du: is the Kronecker delta (V 1 #: k tSlk = 0 and c5ll = 1). As seen previously,

optimal receivers over multipath fading channels that are related to Rake structures

have always assumed resolved multipath. The optimal one-shot receiver for multipath

Rayleigh channels with known delays without the path resolvability assumption has

been derived in [84]. The analysis included a Doppler phase shift fp, and the set

{bp ( s) = e.i27r/p~Sm (s - Tp ) } p was assumed to be linearly independent over the obser­

vation interval. Later, optimal receivers over twO-path Rayleigh channels were derived

with known delays and different levels of channel knowledge assuming "uniform au-
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tocorrelation" without path resolvability [85]. Uniform autocorrelation is defined as

independent of m (2.11)

Optimum receivers, even of one-shot type, may he difficult to implement or dif­

ficult to analyze; therefore suboptimum receivers are often considered. A quadratic

suboptimum receiver structure over tw~path Rayleigh channels with known delays

was derived in [86] for signals with uniform orthogonality for the cross-correlation

function, Le.

(2.12)

•

Such a condition states that the signai cross-correlation function is zero at the channel

inter-path delays. The decision variable of the proposed receiver is an optimum (in the

minimum probability of error sense) linear combination of two quadratic forros. The

first quadratic form is the sum of the outputs of two envelope detector receivers with

filters matched respectively to the first and second possible transmitted signais. The

second quadratic form is equivalent to the first one, except that filters are matched

to the delayed versions of the possible transmitted signals. "Partially coherent" and

non-coherent BiQuadratic and Bilinear, suboptimal receivers were derived in [83, 87]

for uniformly orthogonal signals as defined by (2.10).

Since performance analysis of one-shot receivers (matched filter bound) assumes

no ISI, it provides in general a lower-bound to the bit or symbol error performance.

Nevertheless, snch anaIysis is important ta provide benchmarks. Analytical matched

filter bounds of the optimal receiver for resolved multipath Rayleigh fading channel

have heen derived in [88] for uniformly orthogonal signais. The result was equivalent

to the one found in [59] in the context of multi-channel reception. It was shown

that for a resolved multipath channel diversity gains can he obtained by using the

contributions of aIl paths. Furthermore, it was shown that even a low power path

should not be discarded in the decision variable. Sînce the optimum decision variable

in that case is a Hermitian quadratic form in complex Gaussian random variables, the

bit-error probahility is found by inverting the characteristic function of the quadratic

form [88]- [92]. This method of computing the bit-error probability applies to any

quadratic receiver. New methods based on the evaluation of the Laplace transform of
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the pdf of the difference between the metrics of two competing signal sequences have

been proposed in [93, 94]. For diversity detection, the unified approach proposed in

[74, 75] can be used. In [48], analytical bit-error probabilities over Nakagami multipath

fading channels were only obtained for suboptimal receivers and under the assumption

of uniform orthogonal signais and complete resolvability, equivalent to the following

assumptions:

R 12(r) I:J. 1.: Si(U)S2(U - r)du = 0 "Ir

11.: Sî(U)Sl(U - r)dui = 11.: s;(u).Mu - r)dui (i.e. IR1(r)1 = IR2(r)l) "Ir

11.: s;"(u)sm(u - r + r/)dull1.: s;"(u)sm(u - r + rk)dU! = 0 1# k, m~1.2 "Ir

It was shawn that diversity gains are obtained even for suboptimum receivers. Diver­

sity gains were also pointed out in [79]-[81] for Spread-Spectrum single-user transmis­

sion with receivers based on Rake structures. In [95], both single-user and multi-user

transmissions employing a single-user Rake receiver with perfect measurement of the

channel parameters (coherent multipath combining) were considered. The channel

is characterized as a linear time-invariant filter with randomly distributed complex

gains and multipath delays. Based on approximations to the average bit-error proba­

bility using SNRs, diversity gains were observed for single-user transmission, however

large performance degradations were observed for multi-user transmission. Although

in the receiver design no particular assumption was made on the inter-path delays,

in the performance analysis, the probability that the inter-path delays are less than

the chip duration was assumed to be very small. In [96], based on a Gaussian ap­

proximation, performance of DSSS Rake receivers with random spreading sequences,

several diversity combining schemes and two finger assignment strategies, was as­

sessed. It was assumed that the inter-path delays are larger than the chip duration.

For diversity combining it was shown that instantaneous amplitude-based finger as­

signment is much better than the average power-based finger assignment. This was

ta be expected since instantaneous amplitude-based finger assignment corresponds to

a complete (instantaneous) knowledge of the channel, whereas power-based finger as­

signment corresponds to a statistical characterization of the channel. More recently,

the impact of the number of Rake fingers, spreading bandwidth and multipath spread
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on the total Rake receiver output SNR for Spread-Spectrum systems was assessed in

[97]. A representative result indicates that for Spread-Spectrum systems with 5MHz

bandwidth and a constant power delay profile channel having 5Jls, increasing the num­

ber of Rake fingers from one to three yields 3.8dB SNR gain and 1.5dB if the number

of Rake fingers is further increased by two.

Performance of the optimum receiver for unresolved multipath Rayleigh fading

channels based on bounds to the bit-error probability was considered in [98] for binary

widely orthogonal signais. Binary signais are said to be widely orthogonal if any time­

Doppler-shifted version of one signal is orthogonal to any time-Doppler-shifted version

of the other, Le.

(2.13)

The channel was modeled as a linear time-invariant filter composed of L discrete paths

with complex amplitudes equal to a,. Let B m and C be L x L matrices with lkth

entries equal to

[Bml lk = f smeu - TI)ei2"fl"~eu - Tk)e-i2lrf• udu

[C)'k = E [(al - ad (ak - akt] = 2uf6'k (C is a diagonal matrix)

(2.14a)

(2.14b)

•

Upper and lower spectral bounds on the error probability were derived assuming

that the spectra of the matrices BmC, m = 1,2 are narrowabout the nominal value

i. When B m is diagonal or approximately diagonal (i.e. L:'~k I[Bm],kl « 1) and
C ~ uI, these bounds are found to be sharp. Note that the sharpness of the bounds

depends on the spread of the spectrum of Bme, and only results with small values

of this spread have been presented in [98]. Results for the special case of resolvable

signaIs, Le. any time-Doppler-shifted version of a signal is orthogonal to any version of

itself (Bm = I), in addition to the widely orthogonality assumption, were a1so briefly

compared to previous diversity results [56]. In [85], bit-error probabilities correspond­

ing to the optimum receiver are evaluated for two-path Rayleigh fading channels with

known delays under the assumption of "uniform autocorrelation" defined by (2.11).

Two-fold diversity-like effects in the performance of envelope orthogonal FSK and vari­

ants of chirp or linear frequency sweep modulation were observed. In [86], bit-error

probabilities of the suboptimum quadratic receiver mentioned previously have only
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been derived over two-path unresolved Rayleigh fading channels under the assumption

of uniformly orthogonality for the cross-correlation function defined by (2.12). This

receiver also achieves diversity-like effects using the same type of modulation schemes

as in [85]. Similarly bit-errar prababitities (BEP) and asymptotical BEP were derived

in [S7, 99] for suboptimal receivers under the assumption of unifonn orthogonality.

AlI these performance results are matched filter bounds associated with receivers

that know the channel anly partially. Some authars define the matched filter bound

as the performance of the optimal receiver that assumes perfect equalization (no

ISI) and perfect channel estimation [100, 101]. Assuming single transmission, the

considered receiver is composed of filters matched ta ail possible noiseless received

signais. The matched filter performance bound assuming the channel to be known

exactly provides a ultimate lower-bound on the probability of error and can be found

without the resolvability assumption. ~Iatched filter bounds have been evaluated

for two-path Rayleigh fading channels in [102], for multipath Rayleigh channels in

[100, 101],[103]-[106] and for mixed mode Ricean/Rayleigh fading channels2 in [107].

Ali matched filter baunds showed that diversity-like improvement can be achieved at

high SNR. Performance degradation due to noisy channel estimation in the adapted

matched filter receiver was 85sessed in [IDS] for various channel estimation techniques

assuming no ISI. Bit-errar probability of a matched filter receiver assuming perfect

channel estimation in a multipath Rayleigh fading channel that includes the effects of

Inter-Path Interference (IPP) and ISI, was determined for a binary antipodal system

[109].

Since decisions of optimal one-shot receivers are based only on the CUITent re­

ceived symbol and assume single transmission, the performance of these receivers is

not optimal if the channel has memory or if ISI is present (introduced by the channel

or by the type of modulation used). ~Iemory for a multipath fading channel means

that the fading coefficients, over two consecutive symbol intervals or more, are cor­

related. Transmission over multipath fading channel mast often results in ISI due to

the channel multipath spread, Tm- The only case where ISI can be neglected occurs

when spread spectrum signals of duration much larger than Tm are used [33]. In
that case only a small portion of adjacent symbols (in the arder of numbers of chips)

interferes with the detection of a particular symbol. However, frequently ISI is taken

2A mixed mode Ricean/Rayleigh fading channel denotes a multipath channel where the first path
gain is Ricean distributed and all the other path gains are Rayleigh distributed.
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into account in Spread-Spectrum Code Division Multiple Access (CDMA) systems

along with other type of interference such as Multiple Access Interference (MAI), see

for example [110]. Performance degradation due channel memory and ISI may he

overcome by using sequentiaI detection, i.e multi-shot receivers, or equalizers [2].
One can distinguish between two types of multi-shot receivers: symhol-by-symbol­

decision structures, including equalizers, and sequence detection structures. Symbol­

by-symbol decision receivers make an individual decision on each transmitted symbol

based on the entire received sequence. The optimal symbol-by-symbol decision re­

ceiver, in the sense of minimizing the probability of symbol error, is the Maximum A

Posteriori (MAP) Symbol Detector (MAPSD) [2, 51, Ill]. Two types of ~IAPSD al­

gorithms were developed at the end of the sixties; a forward and backward recursions

algorithm [112J, and a forward recursions only algorithm [113]. Later a algorithm

similar in concept to the one proposed in [112] was derived for the decoding of error

control codes [114]. Recentlya new MAP algorithm has heen derived [115] that gen­

erates optimum soft-outputs; it requires only a forward recursion and memory that

increases only linearly with the decision delay.

Sequence decision receivers make a decision on the transmitted sequence based on

the received signal. The optimal sequence detector in the sense of minimizing the

probability of sequence error when the data sequence a-priori probabilities are equal!

is the Maximum-Likelihood (~IL) sequence detector (~[LSD) [33, 53, 116]. l\JILSDs

for a known time-invariant deterministic channel causing ISI have been studied in the

seventies [117J-[119]. The detection technique employed the Viterbi algorithm [120].
Unification of these receivers and extension to time-varying known as weIl as unknown

channels with decision-directed channel estimation was considered in [121J. An exten­

sion of the MLSD from [119] to linear time-varying dispersive channels with diversity

appeared in [122]. The resulting receiver is optimum only for ideal Channel State

Information (CSI) but can aIso he used with high-quality CSI estimates. The l\JILSD

when the channel is completely unknown (blind l\JILSD) was considered in [123J. In

[124] the MLSD was derived for linear modulations with band-limited signais over

a frequency selective Rayleigh fading channel with a known continuous time multi­

path intensity profile (second-order statistical characterization of the channel). The

received signai was filtered and sampled according to the sampling theorem yielding

a discrete channel mode!. An irreducible error floor due to ISI was observed. The

Maxîmum-Likellhood sequence estimation (MLSE) was achieved by using Kalman fil-
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tering and the Viterbi algorithm. MLSO receivers were analyzed either analytically

[118, 119, 1221 or by using simulations [118, 121, 124]. In [125], a combined MLSE

equalizer and decoder was analyzed analytically for slowly time-varying frequency se­

lective Rayleigh fading channels. A new upper-bound on the decoded bit-error proba­

bility was derived. Pairwise probability of sequence or event errors of the MLSO with

perfect knowledge of the impulse response of a WSSUS channel was later derived in

closed-fonn without any resolvability assumption [126]. Union bounds and approxi­

mations were used to obtain the total average probability of error. Slow fading was

assumed and sequence by sequence reception was performed making this structure

eqlÙvalent to a one-shot receiver where each sequence is considered as a symbol.

Since both the MAPSO and the ~ILSO receivers are computationally complex,

suboptimum symbol-by-symbol and sequence decision receivers have also been de­

rived. One can distinguish between two suboptimal detection methods applicable for

multipath fading channels and any dispersive channel in general. The tirst method

consists of using an equalizer followed by a one-shot decision [127]; the purpose of the

equalizer is to remove the effect of ISI on the received signal. The second method

consists of using a suboptimal symbol-by-symbol detector, or a suboptimal sequence

detector. These suboptimal detectors are derived either by approximating the op­

timum decision rule [128] or by imposing a type of structure on the receiver (for

example reduced complexity channel estimator [129], sequential sequence estimation

[124], decision feedback [130, 131]) or by combining both methods [132].

Literature reviews of adaptive equalizatioD are given in [33,53, 133, 134]. Equal­

izers can be linear or nonlinear, although linear equalizers are usually not used in

multipath fading channels since they do not perform weil due to spectral nulIs in

channel frequency-response characteristics [33]. A popular nonlinear equalizer for

multipath fading channels is the Decision Feedback Equalizer (OFE) [127, 135]. The

ISI caused by previously detected symbols can be estimated using the previous deci­

sions and removed from the received signal before detection of the present symbol [2}.

In [127}, a DFE consisting of a feed-forward and a feedhack filter, assuming absence

of decisioD errors and optimized for a l'Jr~ISE criterion was derived. Although the

MMSE criterion may yield higher probability of error than the minimum probability

of error criterion, in many situations both criteria yield close performance. !\ilore often

than Dot, linear modulation is assumed when equalizers are employed. An adaptive

receiver that does not require any training sequence nor statistical estimation was also
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proposed for unknown slowly time-varying channels (decision-directed scheme). The

achieved error probabilities in a dispersive channel were lower than the non-dispersive

fading channel error probahilities, showing that diversity gains are abtained by the

equalizer in absence of decision errors. The DFE is attractive due ta its relatively

low complexityand has been extensively studied [135] (see aIso references in [53]).
However it has limitations as shown for example in (136] where the impact of channel

estimation errors on its performance is studied. The principle of DFE can also be

combined with ~[AP or MLSD detection techniques. For example, a generalized DFE

related to the MAPSD has been proposed independently in [116] and [130] and ana­

lyzed in dispersive mobile radio channels [131]. A jointly adaptive fractionally spaced

DFE and diversitycombiner was derived in [137]. The current estimates of the channel

impulse response at each diversity branch are used to compute the receiver param­

eters periodically. The performance is limited at high SNR by the channel impulse

response estimation. In [138], diversity reception and various adaptive equalization

techniques are combined. A MMSE criterion is used and expressions for the attainable

MMSE's as weIl as upper-bounds to average probabilities of errar are presented. An

adaptive nonIinear equalizer for fast time-varying multipath channels that consists of

a symbol-by-symbol detector and a single Kalman-type nonIinear channel estimator

was presented in [1391. Another type of equalizer is based on channel precoding or

pre-equalization. The transmitted signal is precoded to achieve an ISI-free received

signal [140]. This is feasihle ooly in slow fading muItipath channels since the channel

characteristic has to be known.

Usua1ly, suboptimum receivers are designed using a combination of concepts. For

example in [132], the MAP aIgorithm of Ahend and al [113] was combined with an

Extended Kalman FUter aIgorithm (EKF) to jointly estimate the multipath coeffi­

cients, the symbol timing and the data sequence in a TDrvlA system. The system

included a training mode followed by a hlind equalization mode. Due to the expo­

nential complexity of the EKF-MAPSD, approximate algorithms were proposed. A

suboptimal sequence estimation receiver was derived in [1291 for frequency selective

channels with linearly modulated signais. The proposed receiver consists of a sequence

estimator implemented using the Viterbi algorithm with a parallel channel estimator.

Sîmilar to the Bat fading channel estimator, the channel estimator employs linear pre­

dictive filters instead of Kalman filters. Jointly maximum-likelihood synchronization,

equalization and detection of linearly modulated signais over a time-varying frequency
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selective Ricean channel were studied in [141]. An approximation of the MLSD was

presented in [124] in the fonn of a Sequential Sequence Estimator (SSE). The SSE has

a much lower computational complexity than the ~ILSD while giving almost identical

error performance.

Most equalizers presented earlier are designed to combat ISI that OCClUS even in

the presence of a single user. Receivers may aIso he designed to take into account the

presence of severa! users and they are referred as multi-user receivers. In the context

of COMA systems that suifer from MAI, popular suboptimal multi-user receivers are

the tinear multi-user decorrelating receivers [142, 143]. Multi-user decorrelating prin­

ciples have been later applied to asynchronous COMA slow fading frequency selective

channels [144, 145]. A K users sampling channel model composed of L resolvable

paths (each separated by the reciprocal of the signal bandwidth) was assumed. The

front-end of the multipath decorrelating receiver consists of K L filters, matched to

the (K) users normalized signature waveforms delayed by the (L) channel inter-paths

delays. Note that the term multipath decorrelating receiver is used since the users are

decorrelated. However no decorrelation of the multipath samples is performed. When

the sequence length tends to infinity (infinite horizon detector), the vector formed of

the K L matched filters output sampled at bit rate cau be written as the sum of a

signa! vector component and a noise vector component. The signa! vector component

can be viewed as the output of a linear time-invariant filter when the input is the vec­

tor of the K users data scaled by the complex channel multipath gains. The principle

of the decorrelating receiver is to pass this output vector through the corresponding

inverse filter (decorrelating filter) in order ta decouple the contribution of each user

in the received signal. Coherent or differentially coherent single-user structures can

then he used ta fonn the decisioDS.

The interpretation of optimum receivers as estimator-correlators will conclude this

literature review. This will provide directions for design of suhoptimum receivers. In
[146], it was shawn that the optimum receiver over a Gaussian random linear time­

varying channel of finite memory can be interpreted as an estimator-correlator. Over a

detenninistic channel with additive white Gaussian noise, the receiver cross-correlates

the received signal with aIl possible noiseless received signais. For a random channel,

the receiver uses the same decision rule, except that it employs estimates of the

noiseless received signais. This result was also shown in [3] for a single path channel

and was verified in [111] for multipath time-varying fading channels modeled using
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the sampling theorem. The MAP symbol detector was also derived in [111] and it was

shown that if the number of samples representing each symbol is large and aIl possible

transmitted symbols are of equal energy, the approximately MAP symbol detector has

also an estimator-correlator interpretation. The estimator-correlator interpretation

from [146], explained earlier in this paragraph, was generalized to any random channel

in the presence of additive noise with a Gaussian component [21]. The estimate of the

noiseless received signal is the l\'IMSE estimate or conditional mean. Furthermore,

the cross-correlation operation involves a special stochastic integral called the Itô

integral and denoted f in this thesis. In [21], the structure of the estimator-correlator

is illustrated for purely random amplitude and purely random phase channels with

conditional means that are relatively simple to find in c1osed-form. A tutorial on the

subject is presented in [147].

The interpretation of the optimum receiver in Gaussian noise has severa! implica­

tions in terms of the implementation of optimal as weIl as the design of suboptimal

receivers. In principle, the estimator-correlator structure can be implemented, how­

ever the number of sequence waveform estimator and log-likelihoods to he evaluated

grows exponentially with the message length N. If a random dispersive channel has

a finite memory of duration L in the sense that the channel output causal Ml\'ISE

estimate at any given time is a function of only the mast recent LT seconds of obser­

vations, a reduced complexity implementation of the optimal receiver can be derived

[148]. The channel output sequence can be treated as a finite state process having 2L +1

states. Furthermore, the 2N waveform estimates required in the implementation of

the estimator-correlator structure can be pieced together using only 2L+1 subsequence

estimators. A Viterbi algorithm having only 2L metrics can be employed to determine

the transmitted sequence. Therefore the complexity of the optimal receiver has been

reduced from exponential in N (message length) to exponential in L (channel memory

independent of N). In [149], optimal and suboptimal receivers that have an estimator­

correlator structure have been derived for linearly phase modulated signals over a fiat

Rayleigh fading channeL Optimal receivers in additive white Gaussian noise have an

estimator-correlator structure, inc1uding a MMSE estimator. Often such a structure

is difficult to implement especially the estimation part of the receiver. But this struc­

ture leads naturally to suboptimum. receivers that can be obtained by using a simpler

approximation to the l\'IMSE estimator. Such design examples will be proposed in

this thesis.
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The assumptions used in the design and performance evaluation of receivers in

relation ta path resolvabilityare summarized in Tables 2.2 and 2.3. For example the

authors in [5] assumed a large transmission bandwidth. The inter-path delays were

assumed to be (much) larger than the recipracal of the transmission bandwidth in

[4, 48, 81, 88, 95, 96]. In [78, 83, 86, 87, 99] the signal autocorrelation function was

assumed to be essentially zero at aIl inter-paths delays. In fact ail these assumtr

tions are equivalent and represent the scrcalled path resolvability assumption defined

in Section 2.2.1. This assumption yields important simplifications in the derivation

of receiver structures for multipath fading channels and their performance analysis.

However it is not always satisfied, hence optimal receivers derived assuming path re­

solvability are often suboptimal. The aim of this thesis is to derive receiver structures

without assuming path resolvability. To start with, the various forms of the path

resolvability assumption are studied next. For purpose of comparison and complete­

ness, references based on sampling models such as [79, 80, 82] and classic references

related ta the thesis results have aIso been iDcluded in Tables 2.2 and 2.3.

2.2 Path resolvability in multipath fading channels

2.2.1 Definitions of path resolvability

In this thesis, on1y receiver structures that assume knowledge of the channel inter­

path delays over slow fading multipath channels are studied. Therefore discussion of

path resolvability will he carried out in that framework. As seen in Section 2.1.1,

two different models can he used to describe a multipath fading channel: the c1assical

wide-band model (2.7) and the sampling model (2.8) that is valid anly for band-limited

signals. However, for band-limited signals these models are equivalent and the path

resolvability assumptions are the same.

Let us first consider the classical wide-band model that yields a channel impulse

response given by (2.7). Let sm(S} he the m th possible transmitted signal and let

To, . •• ,TL-l he the L distinct delays of the multipath fading channel. Mathemati­

cally the strict path resolvability assumption is defined by the following orthogonality

condition

• m = 1, ... ,}.JI (2.15)
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where [a, bl is the observation interval. The term. strict has been introduced to dis­

tinguish the rigorous path resolvability assumption from the approximate path re­

solvability that is defined next (2.19). Note from (2.15) that the path resolvability

condition depends on the observation interval. Let us show that assumptions from the

literature are equivalent to the orthogonality condition (2.15). From (2.10), it is seen

that a uniform orthogonality condition implies the path resolvability condition for an

infinite observation interval. Therefore, any result obtained under the assumption of

uniform orthogonal signals implicitly implies the path resolvability assumption as in

[83]. The signal (time) autocorrelation function is given by

(2.16)

The transmitted signaIs cao be either time-limited or band-limited. Assume first

that the transmitted signaIs are time-limited to [0, T]. Let the observation interval

be chosen to be sufficiently long to include all the received signal energy, Le. [a, b] =

[0, T + max, Tl}. Then, (2.15) can be equivalently expressed as

l =F k m = 1, ... ,!vI (2.17)

which is satisfied if the absolute values of the inter-path delays are larger than the

autocorrelation time Tkm
), defined as the width of the autocorrelation function, i.e

Rm(T) = o. (2.18)

•

Since sm(s) is tïme-limited, Tkm
) is weIl defined and is less or equal to 2:1'. Therefore

(2.17) gives the second definition of the path resolvability. Equivalently, for time­

limited signais, the multipath is said to be resolved if the inter-path delays are larger

than the autocorrelation time.

Consider now signals band-limited to W (in theory of infinite duration). Therefore,

to exploit ail the received signal energy, the observation interval needs to be infinite

([a, b] = (-00, (0». The strict multipath resolvability is still given by (2.15) or

(2.17). Since the signals are not time-limited, the autocorrelation is also not time­

limited, therefore there is no T~m) such that (2.18) is satisfied. Assume that the
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autocorrelation function is composed of a main lobe and lower side lobes. Let T,m1
be

defined as the minimal time after which the autocorrelation is essentially zero, Le.

IHm(i)! < E

where E is a small number determined by the application and the design requirements.

The approximate path resolvability assumption is defined as

L=F k m = 1, ... ,M. (2.19)

(2.20)

•

Such approximate path resolvability condition is often found in the literature for

band-limited signais although receivers are usually designed assuming strict path re­

solvability. For spread-spectrum signais, W is very large and Tkm
) ~ Jo. Renee for

wide-hand signais, the multipath is said to be (approximately) resolved if the inter­

path delays are much larger than the reciprocal of the signal bandwidth. Such a

definition appears for example in [4, 48]. The approximate path resolvability assump­

tion can also be visualized graphica1ly as follows. From (2.7) under Hm, the complex

envelope of the noiseless received signal is given by vm(s) = LZ~~ akSm(S - ik). As­

suming that Sm (s) is transmitted, the output of the matched filter matched to the

m th possible transmitted signal sm(t) ("mth matched filter output") is given br

Urn(s) = i: r(u)sm(-s + u)du

= i: [!R {(~akSm(U - Tk») eiW
•

U
} + n(u)] !R{sm(-s + u)d"'·<-<+u) }du

Neglecting integrals containing double frequency terms (from Lemma C.I) and as­

suming no noise, Um (s) is given by

1 {L-l }Urn(s) ~ ï R E akR:n(s - ik)eitAlcS

1-=0

3The notation Uni(S) is used since um(Tt) = ~ {Ulm&WcTl+}where the variables {U,m},=O.... •L-l'

first stage of the optimum receivers, are given by (3.18b), Ëm is the energy of sm(s) and the obser­
vation interval is (-00, (0).
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where Rm(s) is the autocorrelation function of sm(s) given by (2.16). The complex

envelope of Urn(s) is illustrated in Fig. 2.5 for a tw~path noiseless channel. Fig.2.5(a)

jlIt:. (s - TO)

. TR:n(s -~d

TO

(a) Resolved multipath,
ITl - Toi ~ 'IR'

(b) Unresolved multipath,
ITl - Toi ~ Tir

•

Fig. 2.5 Complex envelope of the noiseless m th matched filter output assuming
that Sm(s) is transmitted. The autocorrelation time T~m} is the width of the
autocorrelation function.

shows that if ITl - 'Toi > Tkm
}, the two autocorrelation functions approximately do not

overlap. In other words, the two paths are separated or resolved and one can be

distinguished from the other. Such a terminology is used in [5]. Furthermore, for

fixed inter-path delays, separation (or path resolvability) can be obtained by choosing

W sufficiently large since Tkm
} ~ J, for wide-band signais. Snch visualization of

the path resolvability is aIso used in [5]. Fig. 2.5 could also correspond to the first

stage of a channel estimator based on pulse compression ("convolution method").

Fig. 2.5 clearly shows that if the path resolvability assumption is satisfied, the inter­

path delays and amplitude path gains can be easily estimated whereas if the path

resolvability assumption is not satisfied, no straightforward estimation is possible.

This shows the importance of the path resolvability (Le. of large bandwidth) in early

days of detection theory as recognized by Priee and Green in [5].

Let us consider now strict path resolvability for sampling channel models. The

channel is modeled as a tapped-delay-line with equally spaced taps at ~ and an im­

pulse response given by (2.8). But recall that this model isjust another representation

of a wide-band channel model given by (2.7) valid for the case of band-limited signais
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only. Therefore, the path resolvability assumption can still he expressed as (2.15)

or (2.17); however, the signaIs are band-limited. In other words, for resolvability,

the inter-paths delays must correspond to zero-crossings of the signal autocorrelation

function. For example if Sm(s) = sine (Ws), frOID Parseval theorem applied to (2.16),

its autocorrelation function is given by

Therefore from (2.17), strict path resolvability is satisfied in that case if and only if

the inter-path delays are integer multiples of ,,~ ('l - 'A: = l'tr).

Conditions where path resolvability is satisfied are summarized in Table 2.1.

Table 2.1 Conditions where path resolvability is satisfied

Time-limited signals Band-limited signals4

autocorrelation time T,m)
Rm(T) = 0

T,m)
IRm(T)1 < €(Tkm ») '11,1>+ '11,1>+

strict path resolvability
Rm (Tl - TA:) = 0, l :1: k Rm(Tl - Tk) = 0, l :1: k

or ITl - TA:I > Tkm
) for specifie values of {Tl}1

approximate path

resolvability

1* 1Rm (Tl - Tk) 1 < €

1 * l'l - Îkl > Tkm
)

* ITI - Îkl < Tkm
) for

specific values of {Tl}, such
that IRm (Tl - Tk)1 < €

•

2.2.2 Path resolvability assumption in the literature

Comparing results of Tables 2.2 and 2.3 with the conditions where the path resolvabiI­

ity is satisfied summarized in Table 2.1, shows that path resolvability is often assumed

in the literature although sometimes not mentioned explicitly. A receiver structure

depends mainly on two factors, the channel model and its level of knowledge. One can

"For wide.band signais band-limited to W, Tkm
) ~ ~. Thus the approximate path resolvability

assomption in that case may also expressed as l'Tl - Tkl ~ ~. Sînce Tkm
) is only approximately equal

te ~, ITl - Tkl » ,~ is often mentioned in the literature for safe guard purpose.
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distinguish between perfect channel knowledge and knowledge of channel statistics.

The optimum receiver assuming perfect channel knowledge includes filters matched to

all possible noiseless received signais (including the channel filtering effects), regard­

less of whether path resolvability is assumed or note Therefore papers that assume

perfect channel knowledge do not assume path resolvability [100]-[109], [126]. This ap­

plies both to wide-band and sampling channel models. Note that papers that include

the channel estimator in their receiver design such as [5, 78] assume path resolvability

(large W in [5], Rm(Tl - Tk) ~ 0 l:F k in [78]). These resolvability assumptions

are only required for the channel estimator. Sometimes path resolvability is assumed

even with perfect channel knowledge in order to simplify performance anaIysis [95].

In [81], path resolvability is assumed to derive an equivalent discrete time model with

sampies at the symhol rate.

For knowledge of channel statistics, wide-band and sampling channel models have

to he considered separately. For wide-band channel models, path resolvabilityassump­

tion yields simpler optimum and suboptimum structures and aIso simpler performance

anaIysis. Therefore such assumption has often been considered in the literature under

various forms (see Tables 2.2 and 2.3). For example, Rake and Rake-type receivers

presented in [4, 48, 96] assume that the inter-path delays are (much) larger than the

reciprocal of the transmission bandwidth. Uniform orthogonality which implies path

resolvability was assumed in [83}. Receivers without the path resolvability asSUIDp..

tion have been derived in [3], [84]-[86] for Rayleigh fading. The Ricean fading was

not studied. The path resolvability assumption is aIso often assumed in performance

anaIysis. For example (Tl - Tkl » l/W is assumed in [88} , uniform orthogonality

was assumed in [87, 99]. In [98] path resolvability is not assumed, but uniform or­

thogonality for the cross-correlation function (including the Doppler shift), (2.13), is

requested. Furthermore, sharp bounds to the bit-error probabilities are obtained only

if the matrix BmC, m = 1,2 (see (2.14» has a narrow spectra. This assumption is

not related to path resolvability but imposes additional constraints on the channel

and the transmitted signais in addition to the unifonn orthogonality for the cross­

correlation function. Recently, performance analysis of non-coherent and coherent

delay lock loop chip time trackers in the presence of unresolved multipath compo­

nents has been presented [150]. In [150], path unresolvability snch that the multipath

delays satisfy 0 < it < 1.5 is considered. It was shown that the non-coherent delay

lock loop outperforms the coherent one in tenns of demodulated signal power 1055.
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Table 2.2 Various assumptions round in the literature in receiver design and
performance analysis, W is the signal bandwidth.
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Cluumel Slow

Reference Modulation knowlt.'tlge
Fading

Sc Fast
One Resolvnbility

(amplitude/phase)
distributiolL'l

fading
shot l'-'iStUnptiOIL'l

zero mean
[31 Price( 1956) M.ary second order

Gaussiall
S/F X arbitrary known delays

st.'Cond order with

[41 Turin( 1956) M.ary knowll or lUlkllown GIlIL~iw. S X
kllOWIl delays satisfying

s(lt!l:ular phase shift ITI - Till;:,> I/W. [ # k

Priee Binary perfect
[51 S X large \V

&: Grt.'tm( 1958) FSK mcnsurement

'n'rill( 1959) second arder with

[88] (perfonnallce Binary kllown spt.'Cular GllIlShian S X
kllOWIl delays satisfying

evnluntion) plu,"'iC shift ITI - Titi ;:,> I/W. [ :F k

[78)
Su..'ilSlIUUl Binary perfect

(1960) wide-band
S X R(Tt -1\) ::::: 0.[ # k

measurement

Kailath second order discrett...tillle nlOdel
[541 (1963)

M-ary
with known mean

Gal1."iSian F
<=> Slullpling model

[84]
zero mcan I1rhitnuy known delays

Aiken( 1961) M-ary second ordt!r
Gaussian

S X
with Dopplt~r slùfts

Aiken( 1001) Binary f St(u - TdeJ21ff' lI •

[98) (perfomuulcC widely Sl.'t:Ond order
zero meall

S X si(u - TIl}e-J21ff·lIdu = 0
Gaussian

evn1untion) orthogonal Ilarrow spt.·ctra

known or kt'OWll and randolll delays

[481
Clarash

M-ary unknown am- Nakngami S X with
(191fJ)

plitudes &: phases PI' [lTt - Tlrl > bJ ::::: 1. l # k

BPSK
discrete-tilnc model

Ochsner zero lIlean
rt.'Ct. spreud. fooction c(t)

[19] second order S J-l

(1981) (DSSS) Gaussiull ~ cUT)c(U + k)T) = C~1r
J=O

Lehnert PSK(B.Q) P [lTt - ni < Tel 4:: 1
[95) &: Pursley MSK

perfect
S (llssl1med for

(1981) (DSSS)
measuremellt

performance only)
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Table 2.3 Various assumptions round in the literature in receiver design and
performance analysis (cont.)
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Cballnel Slow
Reference Modulation knowlcdgc

Fading
&: Fa.o;t

One R~lvability

(wllplitudefphase)
distributions

fading
sbot I~umptions

Hagnlanns M-ary zero lIIeWl salllpling llloeiel
[SOl k Hespclt(l9'J4) (DSSS)

second order
Gaus.sian

S X
hwul·lilllitt.'C1 signais

M-PSK
ML phase esti- IT, - TA:I ~ 7::, 1 :F k

[81] Fawer( 1994) IlJation u.sswlling GmlSSian S .!CluivuJent
(DSSS)

known amplitudes discrett.'-timc model

Abdel·Glmffar Binary unknowll Zllro lIlenll Rm(Tt - nr) = O. l~t.m::z:l.2

[831 &: Pasupathy 1OOfonnly amplitudes &: GIl1L~iIUI S X RI2 (Tt - TA:) =O. '~Ic

(1994) orthogonal known phases (2-path) (crOtiS correlation f'Ulet.)

• St.'Cond order

Alles&: • pcrft.'Ct direct zero OleWI
arhitrary known dela)'M

[851 POb1.lpathy Binary path meosurement Gau.~iWl S X
such that

(l994) Envelope • perfcct (2-path)
IRm (Tl - To)1

orthogonal mea:mresDent
L.. independent of m

Alle! &: FSK • IRm(Tl - To)1 ind. of m

[861 PH.'mpnthy &: Clûrp St.'Cond order
zero lUenn

X S • Rmp (Tl - To) = 0

(1994)
Gau:iSiwl

m..... l.2;m"p(for Pt! only)

Ahdel-Gbaffar M-ary • perft.'Ct Rm(Tt - Tt) =O. 1 :F k
(871 & Pnsupathy ulÙfonnly meOb'Ul'ement Gau.""'iWl S X R12(Tt - nr) = 0.1 :F k

(I9fJ5), (perf.) orthogonal • kJlown wnplitude «:rOtiS (.'orrelation Cunet.)

Abdel-Ghaffar • perfect
&: Pasupathy

M.ary
mellb'Urement

Rm(Tt -n:) = 0, 1# k
[99]

(1995)
ulÙfomlly

• kllown phase
Gaussian S X R12(Tt - nr) =o. 1 :F k

(perfonnancc)
orthogonal

• second order
(crUiS (:orrelation runct.)

Eng
BPSK

perfect amplitude sampling moelel

[82] & Milstein &: llnperft.'et pha- Rayleigh S IEJCjCj~A:1 < IEJ~I
(1997)

(DSSS)
se lIIcnsurement:; {cJ}: code sequt'.nce

BPSK known plwses

[96] Cbeun(1997) QPSK knoWIl or unknown Rayleigh S
latown delays sneh that

(DSSS) IUIlplitlldes !Tt - 1\1 > Te, 1 :F k
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But no tracking scheme designed to handle the path unresolvability was proposed.

Sampling channel models are usually represented in the literature [2, pp. 728-731],

[80, 82, 145] by (2.8) without referring to (2.9). In other words, the multipath delays

are not generally specified. Therefore, the derived structures using those models do

not use the knowledge of the multipath delays. Hence the issue of path resolvability

defined by (2.15) is irrelevant for the derivation of the receiver. Receivers designed

to minimize the probability of error are optimal but only if the transmitted signals

are strictly band-limited since the sampling channel model holds only in that case.

If the observation interval is finite (ex. [a, bD, the so..called optimal receivers are in

fact suboptimal since band-limited signals are of infinite duratian. Path resolvability

yields simplifications in receiver design. An equivalent assumption for purpose of

simplification with the sampling channel model is

m = 1, ... ,!v!

•

which is far example assumed in [2] to simplify performance analysis of the Rake re­

ceiver. Similar assumption in the cantext of DSSS transmission ( lEi CiCj+kl « lEi c;1
<==> 1Lj CjCi+k 1~ 0, where {ci} is the code sequence) is considered in [82]. In [79],

the dispersive WSSUS channel is reduced to a discrete-time multipath fading channel

with samples at the chip rate and path resolvability defined by (2.15) is irrelevant.

However a discrete-time condition similar to path resolvability (L:~~ c(jT)c «j + k )T)

= C«5ok), where c(t) is the spreading function composed of rectangular chips) has been

assumed. Finally note the discrete-time model used in [54] can be obtained by sam­

pling the channel output at ~ as explained in [111]t so it is equivalent to the sampling

channel mode!.

When the channel is modeled as a dispersive ISI channel, the received signal

is generally mst passed through a matched filter, matched ta the channel impulse

response and sampled at the bit rate, to yield an equivalent discrete-time mode!. Such

operation assumes that the channel is known to the receiver and as already mentioned

in that case the path resolvability assumption does not affect the receiver design. In
other cases, since the channel impulse response is unknown, the received signal is

passed through a filter with rectangular low-pass transfer function and sampled at bit

rate yielding a discrete-time signal that depends on the samples of the channel impulse

response. Therefore similarly ta the sampling channel model, the path resolvability
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assumption is irrelevant in the design of equalizers.

As seen in Table 2.1, path resolvability is closely related to the channel inter­

path delays assumed known to the receiver. Those inter-path delays are in practice

estimated using sounding techniques. A summary of the principal sounding methods

for radio channel estimation, including the more recent super-resolution techniques is

given next.

2.2.3 Channel sounding techniques

Multipath fading channels are characterized by their impulse responses snch as (2.7).

However a channel can also be characterized by its frequency domain transfer func­

tion. Based on these two characterizations, one can identify two classes of sounding

techniques: those that estimate the channel impulse response in the time domain and

those that estimate the channel transfer function. When a narrow-band characteriza­

tion of the channel is required, the estimation is often done in the frequency domain.

The most common technique consists of exciting the channel by an un-modulated

radio frequency carrier (single-tone) and measuring the amplitude and phase of the

received signal [42]. By sequentially stepping the tone across a band of frequen­

cies, measurements of the channel transfer function can be obtained (frequency-sweep

methods). A similar method (multi-tone) is based on simultaneous transmission of

multiple independently generated sinusoids [41]. Multiple receivers cau then be used

ta measure the amplitude and phase of each reeeived tone. These methods are mainly

used for narrow-band characterization; for wide-band measurements, the number of

tones must be large to maintain good frequency resolution. Therefore, the single-tone

method is time consuming for wide-band measurements and cannot he used in fast

fading environments sinee the characteristics of the channel may have changed by the

time the last tone of the frequency sweep is transmitted. The multi-tone or frequency­

sweep methods yield a very complex receiver for wide-band measurements. Therefore

for wide-band channel characterization, time domain wide-band sounding techniques

snch as pulse methods, are preferable.

In the time domain, two types of pulses can be used, either periodic short duration

pulses (simulating delta functions) or long puises that have an autocorrelation function

with a very narrow central peak that contains mast of the energy (pulse compression) .

The major drawback of short duration pulses is their inefficient use of transmission

power. Their total energy has ta he sufficiently high such that the SNR at the output
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of the matched filter is high. For a narrow pulse, this requirement translates into a

high amplitude peak. Therefore, pulse compression methods with lower amplitude

peaks for the same received SNR are usually preferred.

Pulse compression techniques are based on the principle that the impulse response

of a system can be obtained by cross--correlating the output of the channel excited by

white noise with a delayed replica of the input [42]. Usually pseudo-random sequences

are used to replace the white noise that is not implementable. This method is usually

implemented using a matched filter matched to the sounding waveform (convolution

matched-filter technique) or a sliding correlator [17, 151]. Assume that the channel to

he estimated is a tinear time-invariant system with low-pass complex impulse response

given by (2.7) and that estimates of the amplitudes and multipath delays are requirecL

Let Se (s) be the complex envelope of a wide-band sounding signal of handwidth W

(for example a pseudo-random sequence as illustrated in Fig. 2.6(a». SimiIar to the

-+------for~+----+-rA+----S

1--_--..11 ,'------'

s

-- ,---- ro-

~ ~ L-- L--

'Üe (s) (noiseless)
yR;(s - Td

(a) Complexenvelope of the sound­
ing signal (time domain)

Cb) Complex envelope of the noise­
less output of the matched filter t

matched to the sounding signal

Fig. 2.6 Sounding signal and its matched filter output

steps yielding (2.20), the noiseless output of a filter matched to the sounding signal

seCs) is given by

•
(2.21)

where He(s) is the autocorrelation function of sees). When the inter-path delays are

much larger than the autocorrelation time or the reciprocal of the sounding signal
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bandwidth (resolved multipath), the complex envelope of the noiseless output of the

matched filter üe(s) exhibits peaks at Tk with amplitudes proportional to the multi­

path gains amplitudes as illustrated in Fig. 2.6(b). And the straightforward approach

to determine the amplitudes and multipath delays is to use the amplitudes and loca­

tions of the peaks of the matched filter output [152}. Snch approach is not optimal

unless the individual peaks are separated by times greater than the autocorrelation

time (such as in Fig. 2.6(b)). In that special case, the obtained values correspond to

the ML estimates calculated by considering each path separately. This pure convo­

lution method provides accurate estimates of ak and Tk only if the path resolvability

assumption is satisfied for the sounding signal. For sma1ler inter-path delays, errors

into the amplitudes and delays occur due to the overlapping of the matched filter

outputs associated with each path.

Better accuracy of the amplitudes and delays can he obtained from another time

domain method based on the ~rL approach considering aIl the paths together [152].

Modifying results of [152] to consider the channellow-pass complex impulse response

given by (2.7) instead of a real impulse response, the ~[L estimates of the amplitudes

and multipath delays are obtained by

[âk, Tk] = arg max {A [r, {ak, Tk} ;Ta]} = argmax {InA [r, {ak, Tk}; Ta]}
a.bTIc at,Tt

where A [r, {ak, Tk} ;Ta], the likelihood ratio over the observation interval [0, Ta] as­

suming known ak and Tk, is given by

Since this method does not require multipath resolvability, it can be used to im­

prove accuracy in case overlapping of the delayed path responses occurs due to very

small inter-path delays. However it requires knowledge of the number of paths. In
[152}, a suboptimum procedure is proposed ta determine the number of multipath

components. Fust estimates of the amplitudes and multipath delays are determined

successively assuming there is only one path, two paths and 50 on. Secondly the
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smaller number of paths that gives an integrated Mean-Square Error (MSE) between

the actual and the estimated signal approximately equal to the ~ISE due to noise

alone, is chosen.

In the more general case of an arbitrary time invariant channel impulse response,

sounding methods are equivalent to deconvolution techniques. The purpose of sound­

ing methods is to solve the following problem: find the system real impulse response

hcR(T) from the channel output r(s) given by

r(s) = 1: heR(s - T)S.(T)dT + n(s) = 1: heR(T)S.(S - T)dT + n(s) (2.22)

•

where Se (s ), the sounding signal is known, and n(s) is a random process (noise). From

(2.22), it is seen that the convolution of hcR('T) with SeCT) yields T(S). The problem

of deconvolution is then to find hcR(r) given r(t) and SeCT) [153]. Several solutions

to perform deconvolution have been derived. For example, a discrete-time solution

based on constrained linear regression has been derived in [153]. If deconvolution is

transposed in the frequency domain, then the problem becomes inverse filtering [152,

154]. In the absence of noise the straightforward approach is to use an inverse filter but

in the presence of noise the "ideal" inverse filter may not be suitable since it amplifies

the noise. Therefore an estimate of the system real impulse response is given by

neR (s) = r(s)*f(s) where the linear estimating filter f(s) is chosen such that the ~ISE,

E [ ( 1ïci (s) - hcR(s) )2] ,is minimized and a known sounding signal Se(s) is transmitted

(i.e. r(s) = hcR(s)*se(S)+n(s» (Wiener theory) [152]. The solution is usually given in

the frequency domain. Note this does not provide a M~ISE estimate of the amplitudes

and multipath delays. However, multipath resolvability is not required. Once the

channel transfer function has been reconstructed, the amplitudes and multipath delays

could be retrieved from it by using an adapted version of Prony's method [155].

As shown in the following, multipath fading channel estimation in the frequency

domain is closely related to the estimation of the amplitudes, phases and frequen­

cies of sums of f-complex sinusoids (i.e. f-exponentials), the multipath delays being

interpreted as the frequencies of the sinusoids. Let us assume that the low-pass com­

plex impulse response hc(T) = E;:::~ ak5(T - Tk) is to he estimated. Equivalently the

low-pass complex channel transfer function He(f) = F {hc(T)} = Et"~ ake-i21r/TIc

needs to be estimated where the Tk'S appear as frequencies. Let x[n] = He(n) +n' (n),

n = 0, 1, ... , N - 1 be N observations of He(f) in complex additive white Gaussian
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noise. Assuming L known and widely separated frequencies, the ML frequencies esti­

mates of Hc(n) in complex additive white Gaussian noise correspond to the frequen-

cies at which the periodogram, liN \E~~lx[n] exp (-i21r,!n) \2, attains its maximum

[156]. However for closely spaced sinusoids, the periodogram cannot be used and op­

timal ML estimation approaches are not practical yielding to the use of suboptimal

methods hased on spectral estimation techniques. Spectral estimation techniques are

methods that estimate the power spectral density of a stationary signal based on a fi­

nite set of observations from that process. Three types of modem spectral estimation

methods can be used for frequencyestimation [156], AutoRegressive (AR) spectral

methods such as the ~Iaximum Entropy ~Iethod (ME~I) [157], principal component

frequency estimation, and noise subspace frequency estimation such as the rvlUltiple

SIgnal Classification method (rvIUSIC) [158]. If the SNR is high enough, the peaks

of the cstimated AR power spectral density provide good estimate of the frequencies

[156].

The MEM is based on the principle that the spectral estimate must he the most

random (or equivalently have the maximum entropy) among all power spectra which

are consistent with the measured data. It was shown that for Gaussian random

processes and known samples of the autocorrelation function, the maximum-entropy

process is an AR process. The solution is obtained by solving linear Yule-Walker

equations [159]. The rvIEM method gives accurate AR spectral estimates for truly AR

data but has difficulties such as phase dependence of the peak locations for sinusoidal

data [156, p. 231]. A better AR spectral method less sensitive to sinusoidal phases and

peaks shifts due to noise effects is the modified covariance method [156, pp. 225-228].

Principal component frequency estimation retains only the principal eigenvector

components (Le. associated with large eigenvalues) in the estimate of the observations

autocorrelation matrix, thus eliminating noise eigenvectors [156, pp. 425-428].

Noise subspace frequency estimation methods are based on the eigendecomposition

of the observation covariance matrix into orthogonal signal and noise subspaces. One

of them, the MUSIC method, generates an estimated power spectrum P~ru(f) that

becomes by definition infinity at the sinusoidal frequencies [156, 158]. Therefore,

the frequencies estimates are found as the frequencies corresponding to the L largest

peaks of PMU(!), where PMU(f) is the inverse of the Euclidean distance from the

vector V = [1, ei2tr/, ••• ,ei2tr/(L-l)] T 1VI to the signal subspace. In general, the

multipath amplitudes are estimated using another method. For example, once the
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multipath delays are determined, the Least-Squares Error (LSE) MUSIC (14) can be

used to estimate the multipath amplitudes. Many other spectral estimation methods

do exist, additional references on the subject can be found in (156, 160].

To summarize, it is seen that earlier sounding techniques such as the convolution

method [41, 42] could only achieve a time resolution equal ta 1jW the reciprocal

of the sounding signal bandwidth. However super-resolution techniques may yield a

time resolution better than 1jW [9]- [19). Similar ta classical sounding techniques,

super-resolution techniques can operate in time domain or frequency domain. In

general they achieve better time resolution by combining severa! methods based on

the classical sounding techniques. For example, a sounding technique yielding better

resolution than correlation and inverse filtering techniques combines Wiener filtering

similar ta [153] and windowing [9].

A time domain technique that combines the concept of convolution and inverse

filtering, called ~Iatched Filter Deconvolution (MFD) and including sequentia! bin

tuning, is proposed in [14]. The multipath delays and amplitudes are estimated in

twa steps. First, the Dominant Paths (DP) are extracted by minimizing the sum of

the square-errors between the received signal samples and the output samples of a

preliminary channel impulse estimate excited by the sounding signal (LSE method).

The preliminary estimate is obtained by applying a moving amplitude threshold ta a

combined function formed by the matched filter and the matched filter deconvolution

(based on inverse filtering) channel estimates. The LSE method yields a preliminary

approximation of the OP and forms the core of MFD techniques. The DP amplitudes

are determined more accurately using a sequential bin tuning algorithm also based on

LSE but applied on a reduced channel response obtained by removing the dominant

paths. The second step is the extraction of the lower amplitude paths (reinforcement

tuning). The main concept of the second iterative step is to form a reduced channel

estimate by removing the paths that have already been estimated and redo LSE to

identify lower amplitude paths. A minimum resolution time (T~), lower than the

chip duration, was obtained with good performance. Improvement in accuracy was

observed compared to the MEM and MUSIC methods. However ~IFD techniques

yields deconvolution noise that has ta be compensated [15, 161] to eliminate the SNR

floor.

Severa! super-resolution techniques have an initial matched filtering stage similar

to pulse compression methods [10, Il, 13]. For example, higher resolution can be
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obtained by sampling the matched fllter output at K discrete delay times and apply­

ing principles of the MUSIC algorithm to the data vector formed with the samples

[10]. Another technique involves the direct Least-Squares (LS) estimation of the am­

plitudes and the multipath delays [13]. The initial matched filtering stage enables

the identification of the regions of potential presence of multipath delays (region with

large energy). Then LS estimation of the amplitudes and multipath delays is per­

formed using an error function based on the positive frequency part of the discrete

signal spectra.

The time domain super-resolution technique presented in [11] employs matched

filtering, set-theoretic deconvolution and AR modeling. Similar to pulse compression

methods, the received signal is passed through a matched filter, matched to the sound­

ing signal. Signais with autocorrelation functions having narrow main lobes and low

side lobes are used to facilitate the deconvolution stage. The output of the matched

filter is the sum of the convolution of the signal autocorrelation function (known

function) with the channel impulse response and a noise component. Deconvolution

methods give an estimate of the channel impulse response from which estimates of

the multipath parameters cao he obtained. Here deconvolution is performed using

the method of projections onto convex sets. This method is an iterative technique

that yields a solution satisfying a set of predetermined constraints (variance of the

residual, amplitude, support and reaI-valuedness constraints). The solution is found

by successively projecting an initial estimate on the constraint sets. The mtùtipath

parameters are then estimated from the final channel impulse response estimate using

a simple thresholding or using an AR model with the Prony algorithm. Comparïsons

with matched filtering and inverse filtering techniques showed improvement in the

time resolution of multipath delays that were very close to each other. This method

was later extended for use in DS-CDhJIA communications by replacing the variance of

the residual constraint with a modified residual covariance constraint which is based

on the exact statistic of the noise at the output of the matched fllter [19].

Recently a super-resolution technique based on substrative deconvolution is com­

pared with a modified inverse filtering technique [18]. The main idea of the substrative

deconvolution algorithm is similar to the sequential bin tuning of [14] in the sense that

initial multipath estimates are made and dominant paths are iteratively subtracted

from the received signal to generate a residual signal that is used in the next estima­

tion iteration. However the estimation in [18] is obtained by correlating the residual
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signal with a band-limited replica of the sounding pulse that includes the distortion

induced by the transmitter and the receiver. Amplitudes and locations of the peaks at

the output of the correlator give the amplitudes and multipath delays estimates. The

modified inverse filtering technique does not consider spectral nulls of the sounding

pulse in its frequency transfer function estimation. For both algorithms, the obtained

impulse response is reduced by keeping only the significant peaks. The amplitudes

and multipath delays left are then optimized using a M~ISE criterion. It was shown

that although the inverse filtering technique performs better in the absence of noise,

deconvolution performs better in the presence of noise before the l\iI~ISE optimiza­

tion step. However after the MMSE optimization step, the modified inverse filtering

technique gives better results.

Super-resolution techniques operating in the frequency domain can make use of the

Root-MUSIC algorithm [12]. In [16], a super-resolution modeling of the indoor radio

propagation channel that matches the measured channel frequency response Hc(f)

(i.e. Hc(f) = E~:~ ake-i21rfTk) to the tra.nsfer function of a tinite impulse response

(FIR) filter HF (ei21r/) (Le. HF (ei21r/) = e-i21rTb EZ~~l bke-i21r/k) , where the delay

term e -j21rfTb is used to lower the filter order. The filter tap weights bk are obtained by

solving an over-determined system of N equations in the least squares sense similar

to the one used in the extended Prony7s method.

Although the information conveying signal bandwidth may be equal to W, inter­

path delays smaller than I/W can be estimated by using super-resolution sounding

techniques. In this case, the receiver can have a super-resolution model of a multi­

path fading channel that is not resolved by the information conveying signal. The

implication of this observation on detection techniques is the general subject of this

thesis.

2.3 The subject of this thesis

2.3.1 Formulation of the problem

As seen in Section 2.1.1, the effect of multipath fading depends on the signal transmis­

sion bandwidth. For narrow-band transmission, i.e when the transmission bandwidth

is much less than the channel coherence bandwidth, the channel can be modeled as

fiat fading. Without any diversity technique, the bit error rate will he inversely pro..
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portionaI to the SNR [2]. This occurs for example in GSM5 or IS1366 (digital AMPS7)

[162] systems with signai bandwidths of 200kHz and 30kHz respectively. Typical val­

ues of the channel root-mean-square (rms) delay spread, (jT are 3f.lS in urban areas,

O.5J18 in suburban areas, less than O.21ls in open areas and less than O.1f.lS in office

buildings [6]. These values depend on the transmission frequency band and site. For

example, the delay spread in office buildings at 850MHz was measured ta be 270ns

maximum [7]. Using a common rule of thumb, (i~f)c ~ 1/(5 * O'T) [163], the coher­

ence bandwidths of the urban, suburban, open areas and office buildings channels are

roughly equal ta 67kHz, 400kHz, 1000kHz and 2000kHz. Therefore, suburban, open

areas and office building channels appear as fiat fading for the GSM and 18136 signais.

In arder to decrease the bit error probability, various forms of diversity techniques such

as time, frequency, spatial~ polarization diversity or frequency hopping can be used.

Other powerful techniques such as interleaving and error correction corling can also be

combined with diversity. AlI of these techniques, excluding error correction coding,

involve severa! transmissions of the same signal and require additional equipment.

When a wide-band signal is transmitted, the channel becomes frequency selective, a

form of time diversity that can be exploited without severa! transmissions of the same

signal (Rake receiver). It is widely believed that this inherent time diversity can only

be taken advantage of, using a wide-band signal [2, 164, 165], but is it sa ? This yields

the following question:

When a narrow-band signal is transmitted over a channel that "appears" to be fiat

fading, is it possible to exploit the channel inherent time diversity that is identified

with wide-band transmission ?

With wide-band signaling, this inherent channel time diversity cao be exploited

by a class of detectioD structures known as Rake receivers. As seen in Section 2.1.2,

Rake receivers assume path resolvability (either strict or approximate although the

literature does not really differentiate between the two). But strict path resolvability

(orthogonality condition (2.15) is rarely satisfied and even approximate path resolv­

ability (defined by (2.19» is Dot always satisfied in practice. For example, for band­

limited signaIs the classical assumption that the inter-path delays are much larger

than the reciprocal of the signal bandwidth [4] implies only approximate path resolv-

5G5~1: Global System for Mobile communications
615136: Interim Standard 136
7 AMPS: Advanced Mobile Phone Service
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ability since the reciprocal of the signal bandwidth takes into consideration only the

main lobe of the autocorrelation function. However practical autocorrelation func­

tions have low side lobe(s) that generates IPP [109]. Therefore optimum receiver

structures derived under the strict path resolvability assumption are in fact not op­

timum under these realistic conditions in the sense that they neglect IPP. Optimum

receivers designed without the path resolvability by definition take into consideration

the IPP and thus could improve performance. Up to now, analyses that include the

effect of IPP have been done only for matched filter receivers, Le. receivers that have

complete knowledge of the channel [100, 102, 105, IDS, 109].

Let us give examples of situations where even the (approximate) path resolvability

is not satisfied. Consider first the 1895 standard, that is based on COMA [162]. The

basic user channel rate is 9.6kb/s or 14.4kb/s for the IS95 second generation. Band­

width spreading yields a channel chip rate of 1.2288 tvIchïp/s, of bandwidth 1.25MHz.

For wide-band signais, the autocorrelation time is approximately the reciprocal of the

bandwidth that is 0.8ttS. The outdoor inter-path delays are in the order of magnitude

of 1 - lOlts [S], thus the approximate path resolvability assumption is satisfied. How­

ever, indoor inter-path delays are of the order of magnitude of tens to hundreds of

ns, which prevents the approximate path resolvability from being satisfied. In fact a

bandwidth of SOMHz will he required to resolve the multipath in an indoor environ­

ment [8]. Thus even third generation ''wideband'' CO~IA systems [166] (CDMA2000

[167], UTRA8 [168], W-COl\'IA9 [169]) employing 5 - 15l\'IHz signais will not be able

to resolve the indoor multipath. For GS~I and 18136 systems based on Time Division

Multiple Access (TDl\'IA) that have even smaller bandwidths, approximate path re­

solvability assumption cannot be ensured to be satisfied in the outdoor as well as the

indoor environment. Therefore, it is seen that neither strict nor approximate path

resolvabilityare aIways satisfied, thus making Rake receivers not necessarilyoptimaL

This yields the following questions:

In a frequency selective channel, what is the optimal structure when the path

resolvability is not satisfied ? Can diversity gains still be obtained without the path

re501vability? These are issues that will he addressed in this thesis.

8UTRA: UTMS Terrestrial Radio Access
9W-CDMA: Wide-CD~1A
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The mst goal of this thesis is to derive optimal (in the minimum probability of error

sense) one-shot receivers for multipath fading channels that do not satisfy the path

resolvability condition (strict and approximate) and to provide insight in the opera­

tions performed by these receivers. In particular, this thesis foeuses on the estimator­

correlator interpretation of receivers and studies the effect of path un-resolvability on

their structures. The second goal is to assess performance of the optimal receivers

and to show that diversity gains can be obtained even without path resolvability.

Optimal receivers provide the best performance. However they are not necessarily

implementable or cost effective. Therefore, the final goal of this thesis is to derive

suboptimal receivers more suitable for implementation that can also yield diversity

gains, and to assess their performance.

2.3.3 Methodology

In this thesis, slow fading is assumed. The assumption of stationarity or quasi­

stationarity of the indoor channel in a time span of a few seconds is reasonable for

residential buildings or office environments in which small movements are expected

yielding a small Doppler spread (order of a few Hz in the SOOj900MHz) [1]. The

channel is not assumed to be fully tracked, while the multipath gains follow Rayleigh

and Ricean distributions. Two classes of deteetion techniques will be considered;

specular coherent and non-coherent. Specular coherent receivers assume knowledge

of the magnitudes and phases of the specular component. Non-coherent receivers

assume knowledge of the specular component magnitudes only. Therefore t in order

to design non-coherent receivers, the channel impulse response will be given by (2.7),

except that the multipath gains ak will be replaced by akei6k , where {8k}k=O.....L-l

are independent uniformly distributed phases between -tr and 1r. Whenever the 8k's

are known, the new model will represent a multipath fading channel model that im­

plicitlyassumes that the specular components magnitudes and phases are known at

the receiver (specular coherent deteetion). The path gains ak are independent circu­

larly complex Gaussian random variables [170] with arbitrary means, modeling Ricean

as weil as Rayleigh fading. To illustrate results, this thesis will consider two ehan­

nels of practical interest: the Rayleigh channel and the mixed mode RiceanfRayleigh

channel. The Rayleigh channel corresponds to wireless transmission with no line-of-
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sight [1]. The mixed mode Ricean/Rayleigh channel is characterized by having its

mst path gain Ricean distributed and all the other path gains Rayleigh distributed.

This channel corresponds to wireless transmission with a line-of-sight [1] and appears

in the literature. For example, one of the typicaI channel impulse responses sug­

gested by GSM standard, the so-called Rural environment (RA), is a mixed mode

Ricean/Rayleigh channel with six paths equally spaced, the first one being Ricean

distributed [171]. Additive white Gaussian noise will be assumed. A detailed channel

model appears in Chapter 3.

Let {sm (t) }m=l,... ,kt denote the complex envelopes of the possible transmitted finite

energy bandpass signais. In this thesis, path resolvability assumption is defined by

the orthogonality condition

l:F k

•

which corresponds to what was called previously strict path resolvability where [0, Ta]
is the observation interval. This assumption was very often implicitly used for receiver

design in the literature [4] while the ~'stated" assumption was only approximate path

resolvability. In this thesis, this assumption is Dot used, instead it is assumed that

the delayed signais Sm(t-TO), srn(t-rt}, ... ,Srn(t-TL-d are linearly independent over

the observation interval, [0, Ta]. This linear independence condition is a much weaker

constraint compared to orthogonality as will be shown in Chapter 3. Because the path

resolvability assumption is not made, the results of this thesis apply to narrow-band

as weIl as wide-band signals. For narrow-band signal detection, the use of a wide­

band channel model with known (in practice estimated) multipath delays will result

in structures yielding diversity gains that could not be obtained if a narrow-band

channel model (fiat fading) would be used. The wide-band multipath estimates can

be obtained either by sounding the channel with a puIse of much larger bandwidth

than the information conveying signal or by using super-resolution techniques. In
both cases, the achieved time resolution of th~ estimation method is better than the

reciprocal of the information conveying signal bandwidth. For wide-band signals, path

unresolvability enables to take into account IPP.

The optimal receivers (specular coherent and non-coherent) in the minimum proh­

ability of error sense are derived for general Ricean channels using classical statistical

theory tools. They form the likelihood ratio between each of the hypotheses corre-
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sponding to the possible transmitted signals and a null hypothesis. The decision is

made in the favor of the largest likelihood ratio [172, p. Il]. For Ricean channels, the

specular coherent optimal receiver is quadratic. Unlike the specular coherent optimal

scheme, the non~coherentoptimal receiver is nonlinear and involves a quadratic form

and infinite series of Bessel functions. For Rayleigh channels it becomes quadratic. It

is weIl known that these receivers can be interpreted as estimator-correlators provided

that the "correlation" integral is interpreted as an Itô integral. The estimate is the

causal lVlMSE estimate of the signal from the observation. These lVlMSE estimates,

generally difficult to express in closed-form, have been found ooly for the general

Gaussian channel [173] and the random phase non-fading channel [21]. In this thesis

using Itô differentiation of the likelihood ratio, closed-form expressions are found for

the MMSE estimate for mhced mode Ricean/Rayleigh with known and random phase

as well as Rayleigh channels.

Single-pulse performance of these receivers is assessed. This corresponds to ne­

glecting any ISI, a reasonable assumption for small inter-path delays. For mixed

mode Ricean/Rayleigh channels, the receiver structure is nonlinear, therefore, its

performance is assessed by upper and lower bounding the bit-error probability. These

upper and lower-bounds are obtained by considering performance of quadratic re­

ceivers that can he evaluated more easily. For Rayleigh channels, the receiver struc~

ture is quadratic, hence exact bit error probabilities can be evaluated numerically.

The importance of the knowledge of the Ricean specular term phase will be assessed.

Since the non~coherentoptimal structure for mhced mode Ricean/Rayleigh chan­

nels is not easily implementable, non-coherent quadratic suboptimal structures more

suitable for implementation such as the Quadratic Decorrelation receiver (QDR) and

the Quadratic Receiver (QR) are considered. Based on the insight provided by the

special case of Rayleigh channels, these suhoptimal receivers are obtained by replacing

the nonlinear parts of the non~coherent optimal receivers (unresolved and resolved)

with quadratic forms. Exact single pulse bit-error probabilities of these suboptimal

receivers are evaluated numerically.

The receiver structures in this thesis are derived for l\J[-ary modulations without

assuming specifie modulation format, except the continuity of the signaling waveforms

on the observation interval. The receiver performances will be assessed for binary

FSK, DPSK and SDPSK [174]. These modulations schemes have been chosen because

they are simple and commonly used.
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Chapter 3

Receiver structures

3.1 Channel modeling

Assume transmission of one of ~l possible bandpass signaIs of finite energy over

a fading multipath channel. For convenience, the ~l possible transmitted signaIs

will he represented by their complex envelope Sm (s). Assume furthermore that

Vk = 0, ... ,L - 1, sm(s - Tk) is continuous on the observation interval [0, Ta]. The

continuity hypothesis is not too limiting since any square-integrable function can

be approximated arbitrarily closely in the Euclidean norm by a continuous function

[175, p. 71]. As will be seen in Section 3.2.1, the continuity assumption ensures the

mean square continuity of the noiseless received signal required for the existence of

its Karhunen-Loève expansion. Equivalently instead of the continuity hypothesis of

the transmitted signal, the random process defined by the noiseless received signal

could have been assumed to be second order and mean square continuous. The mean

square continuity assumption is also not tao limiting since any random process mea­

surable in (s, w) and square integrable on (IR x n) where n denotes the sample space

of a probability space can be approximately arbitrarily closely (in mean square) by

a mean square continuous process [176]. However since continuity of Sm(s - Tk) has

severa! other implications, such assumption will be used in this thesis. For example

continuity of the signais sm(s - Tk) implies that they are aIso bounded on [0, Ta] [177,

p. 72] for any finite Ta- In this thesis, R {-} denotes the real part, and 9 {.} denotes

the imaginary part of the argument. Under hypothesis Hm, the received signal is



• 3 Receiver structures

given by

54

m = 1,2, ... , Ail

(3.1)

•

where ak are independent circularly complex Gaussian random variables [170] with

mean E rakI = Ok, variance E[(ak - Qk)(ak - Ok)- /2] = O'~, and 8k, the multipath

component phase shifts~ are either fixed and known, or unknown independent uni­

formly distributed random variables between -tr and tr. The multipath delays Tk

are assumed to be known and Tk :F Tj if k :F j. The effect of the channel noise is

modeled by an additive zero mean White Gaussian process w(s) (w(s) is a Wiener

process) satisfying E[w(u)ÙJ(s)] = 'd'(u - s). Dot notation is used for w(s) and

z(s) to facilitate conversion to the integrated Corro, e.g. z(s) = Jos vm(T)dT + w(s)

used in subsequent sections. For example z(s) and ÙJ(s) replace the more common

notation T(s) and n(s) used in Chapter 2. For Ricean multipath channels each path

can be considered as the phasor sum of two components: a Rayleigh component with

a uniformly distributed phase, and a fixed (specular) component. In arder to design

receivers that do not have any reference phase information (non-coherent detection),

an additional completely random phase needs to be added to each multipath comp~

nent, akSm(S - Tk)~ yielding the model (3.1). By definition the complex gains present

in (3.1), akej8", can be expressed as akei81c = a~ + Qkej8" where a~ = (ak - Qk) ej8".

Since {ak - Qk}k=O,... ,L-l are zero mean circularly complex Gaussian random variables,

a~ and ak - Qk are identically distributed. Therefore, whenever the 8k 's are known,

(3.1) represents a multipath Ricean fading channel model that implicitlyassumes that

the specular component phases and amplitudes are known at the receiver (specular

coherent detection). For ail m, conditioned on 80 ,81, •.• ~ 8L-I, the signal process

Vm (s) = R { [L~==-~ akei8" Sm (s - Tk)] eir.t.lcs} is Gaussian, and has a finite mean-square

value on the observation interval [0, To]. Furthermore, the signal is assumed to be

statistically independent of tiJ(s) and a non-anticipating process measurable in (s,w)

[178, p. 90]. Note that a non-anticipating signal vm(s) is statistically independent of

future values of the Wiener process {w(u), u > s} (if s is considered to he the present)

[179, p. 22), [180, p. 72J, [181]. In this thesis statistical independence with respect

to past values is a1so required. Since by continuity assumption sm(s - Tk) is bounded
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[ r~ . r~ .
on 0, To], Jo a IR {Sm(s - Tk)e1Wc:"}1ds < 00 and Jo 0 I~ {srn(s - Tt)e1Wc:"}1 ds < 00. It

is shown below that this implies that /[0 E Ivm(s)1 ds < 00.

L-l
E I-urn(s) 1 = E L [R {Sm(5 - Tk)eiwc:S

} R {akei8fc
} - ~ {sm(s - Tk)eiwc:S

} 9 {akei8k }]

k=O
L-l

< L [IR {Sm(s - Tk)e?wc:S
} 1E IR {akei8fc

} 1+ I~ {Sm(S - Tk)eiwcs } 1E I~ {ake.i8fc
} 1]

k=O
L-l

< LElakl [IR {Sm(S - Tk)e1WCS
} 1+ I~ {Sm(S - Tk)ei'"-'cS

} 1] (3.2)
k=O

l T

• Elvm(slJds

L-l [ {To (Ta ]
< ~ E lakl Jo IR {Sm(S - Tkle.i"'c

S
} 1ds + Jo I~ {Sm(S - ""lei"'cS }1 ds < 00

Furthermore the delayed signaIs Sm(s - To), Sm (s - Tl), . .. ,Sm (5 - TL-l) are assumed

to be linearly independent over the observation interval [0, To] (called L-order lin­

ear independency assumption). Let's recall from Chapter 2 that the resolvabil­

ity condition requires that all time-shifted versions of the signais are orthogonal,

(J[o sm(s - Tk)S:nCS - Ti)ds = 0, k =F j). In this thesis, only linear independency

is required that is a much weaker constraint compared to orthogonality as shown in

the following. Note also that although a finite observation interval [0, To] is assumed

throughout this thesis, receiver structures derived in Section 3.2.1 and Section 3.3.1

are still vaUd for infinite observation intervals with only slight modifications in the

matched filtering implementation of the decision variables {ulmh=o,....L-l provided

that the signaIs Sm (s - Tk) are assumed bounded and the L-order linear independency

condition is satisfied. To assess what the L-order linear independency assumption

implies, let us first define three types of observation intervals.

Definition 3.1.1. Let f(s) be a square integrable complex signal of energy È ­

J:C If(5)12 ds. Let n E lN. An observation interval ru, t] is said to he "long" (with

respect to f(s) and {Tk > O}k) if the signais fCs - To), fCs - Td,· .. ,fCs - Tn-r} are

contained within the observation interval, i.e.

• 'ri k = 0, ... ,n - l 'ri s E (-00,00)
(

8 u+t)
f(s - Tk) rect -"""'2 = f(s - Tt)

t-u,
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2€k(U, t) = -:- If(8 - Tk)1 d8 = 1
E u
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where from (2.3) rect (s~.!") is a unit magnitude rectangular pulse spanning the

interval [u, tl.
An observation intervai ru, tI is said to he "intermediate" if

Vk = 0, ... ,n-l fk(U,t) > 0 and 3ko E {O, ... ,n-l} fko(u,t) < 1

An observation interval ru, tI is said to be "short" if

3 ko E {O, . . . , n - 1} fko(U, t) = 0

These definitions are relative to the number of time-shifted signaIs, the vaIues

of the time shifts and depend on the signal itself. An observation interval can be

long for one waveform and short for another, long for some time shifts and short

for others. For example from Lemma B.I, it can be shown that for a continuous

waveform time-limited to [0, Tl (Le. f(8) = 0 for 8 ~ [0, Tl) and ordered time delays

(To < Tl < ... < Tn-d an observation intervalofthe form [0, tI is long ifft > T' +Tn-l,

intermediate iff T' + Tn-l < t < T" + Tn-l and short iff t < T' + Tn-l, where T' and

T" are the "initial" and ''final'' times of the waveform defined mathematically as

T = ~p {v E./R, i~ If(s)1
2

ds = o}
TU = ix:r {v E./R, [oc If(s)f ds =i: If(sW ds}

(3.3)

(3.4)

•

The "times" T' and T'are defined to take into consideration the case where the m

possible transmitted signais, although time-limited to [0, TJ, or [0, 2T] do not have the

same "initial" or ''final'' times (as in return-tc:rzero or biphase signaling for example).

Nevertheless, using the continuous approximations of FSK, DPSK and SDPSK [174J

considered in Chapter 4 of this thesis, for FSK T' = 0, and T' = T, while for (S)DPSK

T = 0 and T' = 2T.
It is shown in Theorem B.l that a square integrable complex signal that has a

non-zero energy will satisfy the L-order linear independency condition over a long

observation interval ru, tl for any arbitrary non-zero integer L and distinct multipath
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delays. Consider a second case where Sm(s) is time-limited to [0, T] such that Èm =
J; ISm(s)12 ds =F 0 and the L delays {Tk}k=O.....L-l are distinct and sorted in increasing

order (TO < Tl < ... ). Let [0, Ta] be an observation interval where Ta > T' + TL-1

corresponding to a long or intermediate observation interval. Then Theorem B.2

shows that the signaIs sm(s-TO), ... , Sm(S-TL-r) are linearly independent over [0, Ta).
Therefore the L-order linear independency condition assumed in receiver design's

sections such as Section 3.2.1 and Section 3.3.1 is not too restricting.

However results from Section 3.2.1 and Section 3.3.1 do not apply to short ob­

servation intervals since one of the time-shifted signaIs has zero energy failïng the

linear independency assumption. But receiver structures for short observation inter­

vals can be easily deduced from Sections 3.2.1, 3.3.1 results in the special case of

time-limited waveforms. In that case, Section 3.2.3 (topic: "Eigenvalues and eigen­

functions of Km(s, u) ... ") shows that the L-path channel model (3.1) assuming a

short observation interval, [0, t] can be reduced to a multipath channel model similar

ta (3.1) except that it includes a smaller number of paths. And the reduced set of

time-shifted waveforms forros a linear independent set. Therefore results obtained in

Sections 3.2.1, 3.3.1 can be readily applied using the reduced channel mode!.

In this thesis the following notation is used: Bold capital letters denote matrices

and bold lowercase letters denote vectors, T, • and t denote respectively the trans­

position, complex conjugation and Hermitian conjugation of a matrix or vector. The

klh entry of a matrix B is denoted as [B]ki' and the kth entry of a vector v is

denoted as [V]k' The diagonal matrLx composed of the main diagonal entries of B

is denoted by {B}d' and the lower triangular matrix composed of the lower trian­

gular elements of B with zero main diagonal entries is denoted by {Bh. Let us

define 6 = [80, 8r, ... ,8L_dT, 6k = [90 ,81",. ,8k]T for k$L-l where 6_ L = [.) (null

set) by convention. Let Ëm = J~ ISm(s)12 ds be the baseband signal energy under

Hm. The energies of the signals sm(s - Tk) over the interval [0, tJ are defined as frac­

tions of their total energy, Le. J~ ISm(s - Ik)12ds = Ekm(t)Ëm where 0 < Ekm(t) < 1.

The duration of time-limited signaling waveforms is denoted by T. Furthermore,

Pk~(t), (r.t e {1.2,... ,~I } ,k,; e {0.1._.. .L-1}) denotes the complex cross-correlation coeffi­

cient between Sr(S-Tk) and St(S-Ij), Pk~(t) = v' _- 1 f~ Sr(S-Tk)S;(S-Tj)ds.
ErEL~kr(t)EjL(t)

Then the signaI cross-correlation matrix between the hypothesis Hr and Hl, r rt(t) is

defined as [rrl(t)]k; = Pk~(t). The correlation matrix. of the signal under Hm, r met)
is defined as [rm(t)]ki = pkj(t) where plj(t) = pljm(t) = _ ..; 1 f~ Sm(S -

'1 Sm t"kJn(t)t"jm(t)
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Tk)S~(S-Ti)ds. Let Em(t) be the diagonal matrix with kth diagonal entry €km(t) , and

C be the covariance matrix of the channel defined as [C]ki = E [(ak - Qk) (ai - Qir].
Since the path gains are uncorrelated, C is diagonal with kth diagonal entry 20'~. For

sake of simplicity, whenever the L-order linear independency condition is assumed

over an observation interval [0, To], the index To in €km(To), Em(To), Pk~(To), r ri (To)

and r m (To) will be omitted.

3.2 Specular coherent optimal decision rule for an L-path

Ricean channel

3.2.1 L-path Ricean specular coherent optimum receiver structure
(SPECCOH)

Let us consider an observation interval [0, To] such that the L-order linear indepen­

dency condition is satisfied. From Section 3.1, [0, Tol is necessarily long or interme­

diate as defined in Definition 3.1.1. The specular component phases and amplitudes

are assumed to be known at the receiver hence the term specular coherent detec­

tion. In this thesis the specular coherent optimal receiver is denoted the SPEC­

COH scheme. As explained in Section 3.1, known specular component phases is

equivalent to assuming that 9 is known. The likelihood ratio associated with the

SPECCOH scheme corresponds to the conditionallikelihood ratio (given 9) associ­

ated with the non-coherent optimal receiver. Multipath Ricean channels, when 8

is fixed yield the classical problem of detecting a continuous time Gaussian random

signal vm(s) = ~ {[E;:~ akei6ll:sm (s - Tk)] ei""'C&} in additive white Gaussian noise

[172, pp. 419-421]. A minimum probability of error receiver fonns the ükelihood ratio

between each one of the hypotheses Hm : i(s) = vm(s) + w(s), m=1.2••••A.t and a null

hypothesis Ho : .t(s) = mes). With equiprobable hypotheses, the decision is made in

the favor of the largest likelihood ratio [172, p. Il]. The discrete representation of

z(s) when 9 is held fixed, follows from Karhunen-Loève expansion and exists since

given 9 the signal V m (s) is a second-order mean square continuous random process

[182, p. 86}, [183, p. 271} as shown in the following:

From Appendix B.2.1, the covariance function of the bandpass signal process Vm (s)

under Hm given 9 is
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Km(s, u) = IR {~.c...(S' u)ei"'c<s-u) }

where ~(s,u), the covariance function of the complex signal process vm(s) =
Et;~ ak&Oksm(s - TA:) with 6 held fixed, is given by
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(3.5)

~(S,u) ~ E[(vm(s) - E[vm(s) 16]) (vm(u) - E[vm(u)16])ï6]
L-l

=E 20'~sm(s - TA:)S:n(U - TA:) (3.6)
k-=O

Since from Section 3.1 Vk = 0, ... ,L - 1, sm(s - TA:) is bounded, (3.5-3.6) yield

'v' (s, u) E [0, To]2 Km(s, u) < 00, and vm(s) is a second order process when 6 is held

fixed [182, p. 74]. Since Vk = 0, ... ,L - 1 sm(s - TA:) is continuous, Km (S, u) given

by (3.5) is also continuous. Therefore from [182, p. 77], [183, p. 226], "Urn(s) is mean

square continuous.

From (3.6), it is recognized that ICm(s, u), the covariance function of the complex

signal process vm(s), is independent of 6 and it is a finite dimensional kernel with well

known eigenvalues and eigenfunctions [184, p. 55] . Notice that in this thesis the defi­

nition of the eigenvalues is similar to [172, pp. 379-380]. As shown in Appendix 8.2.2

1(".(s, u), given by (3.6), bas at most L positive eigenvalues {Àlm}l=O.l .... .L-l and L cor­

responding eigenfunctions. Its eigenvalues are tbose of the matrix ËmEmCr~,where

C is the channel covariance matrix, and r m is the signal correlation matrix defined

in Section 3.1. Since K.m(s, 'u) in (3.6) is a finite dimensional kemel, its eigenfunctions

{<Plm(S)}l=O.... ,L-b that fonn an orthogonal set, are given by

°< s < To 1= 0, . .. ,L - 1 (3.7)

IThe superscript mis not an exponent and reCers to the hypothesis Hm.

l is the L x L identity matrix and Dm denotes the L x L diagonal matrix of the•

where1 x~ = [Xm]lk' X m is an L x L matrix that satisfies the equations:

x* r* X T =Im m m

Emcr:nX;: =X~Dm
(3.8a)

(3.8b)
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energy normalized eigenvalues of 1Cm(s, u), defined by [Dm]kk = Àkm / Ëm.

Furthermore (3.5) and the signal narrow-band assumption imply that the eigenval­

ues Kim and eigenfunctions T lm (s) of the handpass signal process covariance function

Km (s, u) can be expressed in terms of the eigenvalues and eigenfunctions of the c~

variance function of the complex signal process vm(s). It is shown in Appendix B.2.3

that Km(s, u) has 2L eigenvalues and 2L eigenfunctions given by

T,m(s) = ~ { v'2tPlm(S)ei"'c"}

T,m(S) = ~ { v'2tPl-Lm(S)ei"'c"}

l=O••..•L-l

l=L•...•2L-l

. d . h Àlmassoclate Wlt l't:lm = 4

. d . h Àl-Lmassoclate Wlt Kim = 4

(3.9a)

(3.9b)

The detailed mathematical derivation of the conditionallikelihood ratio associated

with the non-coherent optimal receiver can he found in Appendix. B.3.!. Here only

the final result is presented. By substituting nm = NoI + +Dm , no = NoI and

(B.25) into (B.30), the conditionallikelihood ratio or the SPECCOH likelihood ratio

Am (i(s); s E [0, To]lS) or Am (i; ToIS) for short is given by

Am (i; TaiS) = [det (1 + 'i'mDm)] -1 exp {-atC-la}.

exp { 'Ym (rm + 'Y~ X;,,c-le;;.1/2(l(8)rqm (rm + 'Y~X;'C-1
e;;.I/2(l(8)) }

(3.10)

where Î'm is the SNR given by

•

Èm
'i'm = 2No
(8) [ ...i80 ~j8L-l] T

(J = Oot:"' , ••• ,OL-lt:"'

Ct = [00, ... ,0L_l]T

the vector r m is defined as

A 21Ta
.[r ] - - ,A,.. (s'e-J"'c"dz(s)

m,-~ 0 If'lm 1

=J_2 {[z",h - j [zmll+L}
Em

l = 0, ... ,L - 1

l = 0, ... ,L-l

(3.11)

(3.12)

(3.13)

(3.14)
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(3.15)l = 0, ... ,2L-li
Ta

6-
[zm], = 0 T,m(s)dz(s) = Zlm

and the integrals in (3.14) and (3.15) are Wiener integrals (see Appendix A.l). The

matrix Qm is given by

(3.16a)

(3.16b)

where (3.16h) is obtained from (3.16a) by using (3.8). Using (3.8b) and (3.16b), the

SPECCOH likelihood ratio is also given by

Am (i; TaiS) = [det (1 + lmEmCr~)] -1 exp {-atC-la} .

exp {"Y~ (um+ "Y~C-1E;.1/2(!(8)Y [(EmC)-l + "Ymr;.r
1 (Un. + "Y~C-1E;.1/2(!(8)) }

(3.17)

where

l = 0, ... ,L - 1

(3.18a)

(3.18b)

The decision variable Ulm (3.18b) can be obtained by using a bank of matched filters.

For example, the following bank of matched filter {s;m(S)},=O.....L-l can be used with

a sampling time at Tel = Ta + Tl

else.

•
Since the term exp {-atC-la} is independent of the hypothesis Hm, an equivalent

decision variable A:n (i; Ta19) is obtained by removing this term from (3.17). When

the observation interval [0, Ta] is assumed to he much longer than the multipath delays

(Ta » Tl for alll) and €lm = 1 for alll, s;m(s) ~ s:n(s) = 2s~ (Ta - s) e1wc(s-To) / Èm for
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o< s < Ta. Then the receiver illustrated in Fig. 3.1 is obtained. In this special case,

the decision variable Ulm can be generated by sampling the output of the matched

fi1ter s~ (s) at Ta + Tl, as shawn in Fig. 3.1, or by using a tapped-delay-line after the

matched filter.

3.2.2 SPECCOH: a quadratic decorrelator

As seen in Section 3.2.1, the likelihood ratio of the SPECCOH scheme is given by

(3.10) or by (3.17). The second fonn of the likelihood (3.17) is convenient to use

when the multipath is resolved. The first fonn of the likelihood (3.10) provides an

important insight to the operations performed by the optimal specular coherent re­

ceiver. Recall that under the mth hypothesis, the received signal is given by (3.1). In

Section 3.2.1 a linear transformation on the signais "m(s - Tk), (3.7), is performed to

obtain an orthogonal basis {tPlm(S)},. Therefore the m th hypothesis can he equiva­

lentlyexpressed (since the linear transformation (3.7) is invertible) as

(3.19)

•

where yr:; = [X;l] kl' èi'm (9) = E;~~ ake
iB

" ~Ykl, while v'€lmÊmif>lm(S) are orthog­
onal signais of same energy as Sm(s - Tl). When 9 is held fixed, under each hypothesis

the new random vector [aom (9) , ... ,àL-lm (9)]T is Gaussian with mean Ilm (9) =

e;1/2DmX:nc- l e;1/2Q (9) and covariance C:n = e;lDmas shown in the following.

L-l ..;e;;;;;; L-l ..;e;;;;;;
[,l m (9)],0 ~ E [alm (9) 19} = LE [ak} eiBk :;;'yr:; = L Q:keiBk :;;'y;:;

k=O V €lm k=O V €lm

= [e;1/2 (X;l)T e~2Q(9)],0

= [e-1
/
2 (r- XT)t el

/
2

" (8)] using (3.8a)m m m m 10

= [e;1/2DmX:nc-le;1/2,,(8)],o using (3.8b)
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[c~]rl [j. E[(arm (8) - E [arm (8) 18]) (atm (8) - E [alm (8) 18]) ï 8]

L-l L-l

= E E E [(ak - ak) (ai - 0ir] ei (81c-8j) v'fkmyk:. JEjm (yjl)*
k=Oj=O JEnn v'Elm

Hence
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[c~] =~20'~ fkm y;::' (yr,r
ri k=O v'€rm v'flm

= [(x;.le;;1/2)T EmC (X;;/)· E;.l/2]rl

= [e-1/2(XT ) -1 e cr- x T e-1/2] using (3.8a)
m m m m m m ri

= [e~l/2Dme~1/2] rl = [e;;/Dm] ri = 0 if r :F l using (3.8b) (3.20)

Therefore, under each hypothesis, the received signal can he represented as a lin­
ear combination of orthogonal functions weighted by uncorrelated cïrcularly complex

Gaussian random variables, similar to the resolvable multipath case. Substituting

X m = 1, r m = 1 into (3.17), yields the likelihood ratio for a resolved multipath

Ricean fading channel with specular coherent detection given by

Am (i; To18) = [det (1 + imEmC )] -1 exp {-atC-1a}.

exp { "Y~ (Un. + "Y~C-1e;..1/2Q(8)Y[(emC) -1 + "YmIr 1 ( U m+ "Y~C- 1e;;;1{2Q(8))}
(3.21)

where 11 (8)r given by (3.12), and C, given by [C)kj = 20'~6ki' can also be defined as

•

Note that (3.21) with €m = 1 is presented in [4, 88]. Using (3.8) with severa! matrix

manipulations, the first form of the likelihood ratio when the multipath is unresolved

(3.10) can he rewritten as
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•

From (3.21) and (3.22) it is seen that the Ricean channel specular coherent optimal

receiver for unresolved multipath channels consists of an orthogonalization (or decor­

relation) stage that transforms U m into r m = X~Um and then implements a resolved

multipath channel specular coherent optimal decision rule for r m • The new random

variable èi'm (9) is referred as the lth multipath gain of the equivalent decorrelated

(resolved) channel (on [0, Ta] when 9 is held fixed). Note that the term decorrelation

is employed sinee besicles the orthogonalization of the signais {sm(s - Tk)}k=O....•L-l'

the matrix X m also performs a statistical decorrelation stage in the sense that the

new variables {[rm],},=O.... ,L-l' unlike {Ulm 6. [Um],} 1=0....•L-l' are uncorrelated as co­

efficients of the Karhunen-Loève expansion of z(s).

The decorrelation in (3.10) vanishes if the instantaneous values of the multipath

gains ak are known to the receiver in addition to the specular component phases as

shown in the following. It is ta be expected since in that case, the problem reduces

to the detection of a known signal in additive white Gaussian noise. It is weil known

that the optimum receiver consists of a matched filter, matched to the signal filtered

by the known channel. A receiver that has knowledge of the instantaneous values of

the multipath gains ak is obtained by setting O'k = 0 for all k yielding ak = Ok. For

sake of simplicity all O'k are assumed equal, therefore C 6. ul where u = 20". Then

[(EmC)-l + '"Ymr:n] -1 reduces to

[(EmC)-l + '"Ymr~] -1 = U [1 + U'"YmEmr~]-l Em

and (3.17) is given by

Am (z; Ta 18) = [det (I + U"YmEmr~) ] -1 exp{ U"Y;'u;" [I + U"YmEmr~r 1Em1.Im

+ '"Ymll(8)E~1/2 [1 + U'"YmEmr:a]-l Emum+ "Ymutn [1 + C1"YmEmr~]-l E::,{2Q(8)

+ ~"t(8) [E;.1/2 (I + U"YmEm r:,)-l E~2 - I] ,,(8) }
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(3.23)

where vm(s) = ~ {vm(s)ei c.l
e8} , um(s) = E~::~ akeiSkSm(S - Tk) and (3.23) is obtained

by using (3.12) with GA: = ak and (3.l8b). From (C.l) in Lemma C.I, (3.23) is also

given by

(3.24)

wwch is the classical estimator-correlator fonn of the likelihood ratio of a known

channel corrupted by additive white Gaussian noise. IoTa vm(s)dz(s) corresponds to

the correlation of the signal filtered by the known channel with the received signal or

equivalently to a matched filtering operation. From (3.24) it is seen that when ait: and

8k are known, there is no decorrelation since the matrices X m or r m are Dot present

in the decision rule. It is known that the estimator-correlator form applies also for

random channels in additive white Gaussian noise [173]. Snch a form derived next

will give further insight on the operations of the specular coherent optimum receiver.

3.2.3 Specular coherent estimator-correlator for an L-path Ricean

channel

The mathematical background used in this section appears in Appendix A and the

mathematical details appear in Appendix D.

Since vm(t) has a finite mean-square value on the observation interval [0, Ta] and

J:o E Ivm(t)1 dt < 00 (see Section 3.1), from Appendix A, under each hypothesis (in­

cluding Ho) the received signal is an Itô process [181] that can he written as

dz(t) = vm(t)dt + dw(t) 0 < t < Ta m = 0, ... ,!vI (3.25)

•
with vo(t) = o. Furthermore, note that the detection problem Hm : z(t) = vm(t)+tiJ(t)

with E [w(t)ÙJ(u») = ~()(t - U) is equivalent to Hm : 1f. = Jf + n with



E [:i* jPi] = ti(t - u). Therefore, from [21], the likelihood ratio Am (Z; T.18) can

he expressed as
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Am (z; T.llI) = exp {~o [tD

iim(tlll) dz(t) - ~ faTo ii;' (tlll) dt] } (3.26)

where vm(tIS) A E [vm(t)lz(s), 0 < s < t, Hm, 8]. In other words, vm (tI8) is the con­

ditional mean (or equivalently the l\'1l'JISE estimate) of vm(t) from the observations

z(s) (given Hm) on the interval [0, t] when 8 is known. This iUustrates the inter­

pretation of the L-path Ricean channel specular coherent optimum receiver as an

estimator-correlator with a MlVISE estimator. The mathematical derivation of the

conditional mean is carried out in Appendix D.l. From (0.7), the conditional mean

for an L-path Ricean channel with specular coherent detection is given by

iim (tlll) =l' h",(t, s)dy;;'(s) + lR { (~IOkl ei9~Sm(t - Tk») ei",.t} (3.27a)

= IR { (21' 7-t;.(s, t, t)e-;"'''dy;;'(s) +~ IOkl ei9~Sm(t - Tk») ei",.t}

(3.27b)

where hm(t, s) = ~ {21t:nCs, t, t)ei"'c{t-,,)} is the unique square integrable solution of

the Wiener Hopf equation

2 lt
2hm(t, s) + No a hm(t, r)Km(r, s)dr = No Km(t, s) O~s<t<oo (3.28)

and y~(s), the unknown part of the received signal, is given by2

(3.29)

•
where 8~ = 8k + arg [Ok]. It is seen from (3.27a) that the Ml'JISE signal estimate

for a multipath fading channel with known Ricean specular component is obtained by

filtering the unknown part of the received signal by a linear time-varying filter hm(t, s) .

2The superscript c is not an exponent.
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From (3.28), since Km(s, u) is a finite dimensional kemel (3.5-3.6), hm(t, s) ean he

expressed in terms of the eigenfunetions and eigenvalues of Km(s, u) over an arbitrary

observation interval [0, t]. However, since over [0, t] the time-shifted signaIs sm(s - Ik)

are not necessarily linearly independent (see Appendix B.l), it is not possible to

find closed-form solutions for these eigenfunctions and eigenvalues vaUd for arbitrary

waveforms. But such closed-form solutions can be obtained for the special case of

time-limited waveforms yielding additional insight on the physical interpretation of

the M~ISEestimate. The M possible transmitted signais {sm (s)}m=1....•M are assumed

to be time-limited to [0, T] for the remainder of this section (Section 3.2.3).

Eigenvalues and eigenfunctions of Km(s, u) over an arbitrary observation

interva1 [0, t], t > Tm + 10 assuming that sm(s) is time-Iimited

Let us assume that the multipath delays Tk are ordered as follows 0 < 10 < Il < ... <
TL-l' Following (3.3-3.4) let r:n and T'';' be defined as

Tn. = s~p {v E IR, L~ ISm(s)1
2

ds = o}
r.:. =i~ {v E IR, [oc ISm(s1l2 ds =L: ISm(s)1

2
ds}

(3.30)

(3.31)

•

Reeall that in Section 3.2.1 (and Appendix B.2), the eigenfunctions tPlm(S) and eigen­

values Àlm of the covariance function K:m(s, u) of the eomplex signal proeess

um (s) = L~:~ akej8kSm(s - Tk) are derived under the L-order linear independency

condition (i.e. the time-shifted signais Sm(s - To), sm(s - rd, ... ,sm(S - TL-d are

linearly independent over [0, To]). This assumption ensures that K:m(s, u) has L eigen­

functions. However, as seen in Appendix B.1, over an arbitrary observation interval

[0, t], the signaIs sm(s - To), Sm(S -'l), ... ,Sm(S - TL-l) are not necessarily linearly

independent and actually the number of linear independent time-shifted signals de­

pends on t. This is to be expected sinee as the observation interval is decreased,

some time-shifted signaIs have no contribution on the observation interval (i.e. are

identieally zero on [0, t», thus they cannot be part of a linear independent set.

Over [0, t], the covariance function of the complex signal process Um(S), given by
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L-l

lCm(s, u) = L 20'~sm(s - Tk)S~(U - Tk), reduces t03

k=O
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Îe-l

A:::a(s, u) =L 20'~sm(s - nJs~(u - Tk)
k=O

o~ s, u ~ t Tm + To < t < 00 (3.32)

where i t \ defined in (B.3) of Appendix 8.1.2 with T' replaced by r:n given by (3.30),

is the number of non-zero multipath tïme-shifted signais in [0, t]. Similarly, over [0, t]
the received signal (3.1) reduces to

z(s) = !Ji { [~ akei9'Sm(S - Tt)] eiW
.'} + w(s) 0 ~ s < t m = 1,2, ..., M (3.33)

Furthermore, from Theorem 8.2 the signais Sm(S-TO), sm(s-Td, ... , Sm(S-Tit-d are

linearly independent on [0, t]. Thus comparing (3.33) with (3.1) shows that for time­

limited transmitted signais and an arbitrary observation interval [0, t], t > Tm +To, an

L-path channel model (3.1) that satisfies the L-order linear independency condition

can be reduced to an equivalent it-path channel model (3.33) that satisfies the i t ­

order linear independency condition. Therefore, it is seen that the methods used

in Appendi'"< 8.2 and Appendix B.3 to derive the eigenfunctions, eigenvalues and

likelihood ratios can he also used in this section except that the number of signais is

if. instead of L where 1 < ir. < L. In particular, modifying results from Section 3.2.1

(or Appendix 8.2), 'fit > r:n + To, over [0, t], the covariance function lCm(s, u) A

A:~(s, U) has if. eigenvalues, A:;,.(t) which are the eigenvalues of the if. x if. matrix

ËmEiem(t)Cier;em(t), and has i t eigenfunctions 4>:;"(s, t) given by5

l = 0, ... ,ir. - 1 (3.34)

•
3The superscript i e is Dot an exponent: x:~ is just a designation for the function X:::. (s, u) whose

value at (s, u) is E~:: 2aism(s -1"ë)~(u -1"k) •

4Generally ie depends on Hm through T;", however, for most modulation schemes T;" is indepen­
dent of Hm. Thus to simplify notation the index m will he omitted in it.

SThe superscript ie in À;:" (t) and cP;:'"(s, t) is not an exponent.



• 3 Receiver structures 70

X:em(t)r;em(t)X[m(t) = lie

eiem(t)Cier:em(t)X~m(t)= X~m(t)Diem(t)

(3.35a)

(3.35b)

lie is the i t x if. identity matrix, D iem (t) denotes the i t x i t diagonal matrix with

[Ditm(t)]kk = A~(t)/Èm, ~em(t) is the i t x i t diagonal matrix with [eiem(t»)kk =
ekm(t) = -t: f~ ISm(s - Tk)1 2 ds, Cie is the i t x i t diagonal matrix with [Citlkk = 2lT~

and riem(t) is the itxit correlation matrix of the signal under Hm when the observation

interval is [0, t] with kjth entry equal to pkj(t), Le.

(3.36)

Since the integer function i t is a staircase function (see Appendix 8.1.2), the

eigenvalues {À::n (t) l,=O.....ie-l and the functions {X;km(t) l l.k=O.....it-l are defined on
(Tm + To, +00). Grouping the results together, functions {Âlm(t)},=O.....L_l and

{ ::~:}x~(t) },.k=O.....L-l can he defined on (0, +00) as follows:

{
,\::n(t) r:n + To < t < 00 l = 0, ... ,it - 1,

Â1m(t) =
o else.

À1m(t) x~(t) = { ~l:~:~X:km(t) r:n + Ta < t < 00 l, k = 0, ... , if. - 1,
fkm(t) 0 1e se.

(3.37)

(3.38)

•

where À:::(t) = Ëm [Ditm(t)]ll' X;km(t) = [Xitm(t)l'k and {Diem(t), Xiem(t)} satisfy
(3.35).

Similarly, the eigenfunctions {4J::n(s, t) l,=O.....it-l are functions of (s, t) defined

on [0, t] x (~ + TO, +00). Grouping the results together, functions
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{ y'Àlm(t}tPlm(S, t} } can be defined on [0, +(0) x [0, +(0) as follows:
I=O•...•L-l
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O<s<t
tn' - -t l = 0, ... , i t - 1,
lm+To< <00

else.

(3.39a)

1 L-l

=-~
~k=0

Àlm (t ) m ( ) _ ( )

( )
XII: t Sm S - Tk

Elan t
O<S<t
O<t<oo

(3.39b)

where tP~:n(s, t) and ~~:~gxœ(t) are given by (3.34) and (3.38). Using the inverse

linear transformation of (3.34)6, sm(s - Tk) can be expressed in terms of tPlm(S, t) as

{

1 ",it-1 Àie ( ) [ iem( )]. A.i, () 0 < S < t
_ ( ) 2 2 yi (t)Ë LJl=O lm t X,k t o/lm S, t r:. + 'Ti0 <t < 00Sm S - Tk = ale (km m m

o ~~

(3.40a)

O<s<t
O<t<oo

(3.40b)

Furthermore it is shown in Appendix C (C.I4-C.18) that the unique solution of
(3.28), hm(t, s), can he written hm(t, s) = Hm(s, t, t) = R {21t~(SI t, t)ei"lc(t-s)} where

the kemels 1tm(T, s, t) = 1i:nCs, T, t} and Hm (T, s, t) = Hm(s, T, t) are given by

{

L_l ..\'m(t) 0 < < t
'IJ ( ) 6 ~ 1 2~ tPlm(r, t)tPîm(s, t) 0 <~' ~~
nm T,s,t - 1=0 + 2No -

o else.

{

2L_l 2 ( )
No "'lm t 0 < T, s < t

H. ( )
~ ~ 1 + .2.. Ct) llm(T, t)llm(S, t) 0 < t < 00

m T,S,t - 1=0 No Kim -

o e~~

(3.41)

(3.42)

•
6Tbe inverse linear transformation of (3.34) involves the matrix X~~(t). It can he shown using

(3.35) that Xi:~(t) = (Eiem(t)Cic)-l Xtm(t)Dicm(t) .



• 3 Receiver structures

and for l = 0, . .. ,L - 1
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Klm(t) = >'In;.(t) KI+l.m(t) = Àln;.(t) (3.43)

yiKlm(t)'flm(S, t) = !R { J>'I~(t) </>lm(S, t)ei"'·B }

(3.44)

yiKI+l.m(t)'fI+l.m(S, t) = ~ { JÀl~(t) </>lm(S, t)ei"'·B }

where ""m(t) and JÀlm(t)tPlm(S, t) are given by (3.37) and (3.39).

Next section will focus on giving physical interpretations of the expression for the

conditional mean estimator vm (tIB).

Interpretation of the expression for the conditional mean estimator vm (tIB)

In order to understand the expression of 'um (tIB), let us first investigate the signal

that it estimates, that is the noiseless received signal, vm(t). From (3.1), the noiseless

received signal is given by

(3.45)

•

, 6 '(}' [ lwhere ak = (ak - Ok) el le and 8k = 8k + arg Ok' Since ak - Ok, k=O.... ,L-l are

zero mean circularly complex Gaussian variables, a~ and ak - Ok are identically dis­

tributed for k=O,... ,L-l. From (3.45), it is seen that the signal vm(t) = EZ::~ a~sm(t ­

Tk) + Et~ IOklei(}~sm(t - Tk) is to he estimated. Since the 8~'s are known, ooly

Et'~ a~sm(t - Tk) has to he estimated. From (3.41)
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Replacing viÀlm(t)tPlm(t, t) with (3.39b) yields
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(3.47)

where ;~ (tl8) , estimates of a~ with known 8 based on the observation interval [0, t),
are defined as

2 L-l Àlm(t) l t

~18) - J "2io
(t) xlk(t) t/J'm(s, t)e-j"'esdy~(s)

- L.." 1 + -!.œ-. 0€4-m(t)Em 1=0 2No

= 2lT~ l t
IZm(s, t) -jwcsd C ( )

lU Ile Ym s
HO 0 (.tk

where y~(s) is given by (3.29), for k = 0, ... ,L - 1, lkm(s, t) is given by

(3.48a)

(3048b)

(3.49)

and À1m(t), :~:f~~Xlk(t) and VÀ1m(t)t/Jlm(S, t) are given by (3.37), (3.38) and (3.39).

Substituting (3.47) into (3.27b) yields

(3.50)

•

-----where a~ (tI8) are given by (3.48). Comparing (3.50) and (3.45) shows that the

~IMSE estimate of a random amplitude multipath signal has the same "'multipath"

fonn with the amplitudes replaced by estimates. From (3.48b) it is seen that the

amplitude estimates are obtained by filtering the unknown part of the received ~ig­

naI (3.29) using the filter ~'i'a~t)e-jwcs
• This filter takes into account both the

multipath unresolvability and fading as seen in the following.

Similarly to (3.19) except that an observation interval [0, t] is considered and the

phases 9k have been included in a~, by substituting (3.40b) into (3.45), the noiseless
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received signal can be rewritten as
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(3.51)

with zero mean path gains of the equivalent decorrelated (resolved) channel defined

as

l = 0, ... f L - 1 (3.52)

Furthermore, substituting (3.39b) into (3.51) and comparing with (3.45) yields

L-l

a~=L
I=O

(3.53)

which constitutes the inverse linear transformation of (3.52). Since X~l(To) =
[Em(To)C]-l X~(To)Dm(To), from (3.52) aIm(S) defined in Section 3.2.2, satisfies

alm (9)-E[alm (S)IS] = a;:n(To) where [0, To] is an interva1such that the L-order linear

independency condition holds. Note that the random processes {a~:n(t) },=O,...•L-l are

correlated, but similarly to {a,m (8)},=0,... ,L-l' the random variables {a~:n(t) },=O.... ,L-l
obtained when t is fixed are uncorrelated. Substituting (3.46) iuto (3.2ib), the con-

ditional mean vm (tI8) can be rewritten as

where

..\fm(t) t

-;; (tIS-) - 2 ~ l,A,.- ( t) -jWcsd C ( )a'm - ~ 'f'lm s, e Ym s
V€lm(t)Ëm 1 + ~No 0

(3.54)

•
From (3.54) it is seen that ~ (tlli) , the gain estimate of a;m(t), employs only the

information related to the [th path of the decorrelated channel. Furthermore although

the random processes { -;;:m (tj9) }1=0,... ,L-l are correlated, the corresponding random
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variables obtained by fixing t are uncorrelated. Comparing (3.48a) with (3.54) yields

(3.55)

~ ---consistent with (3.53). Note that "ri 1= ie, ... ,L-l a;m (tIB) = o. Thus the estimate----of the kth zero mean gain of the unresolved multipath channel, a~ (tIB) is obtained

by passing the zero mean path gain estimates of the decorrelated (resolved) mul-

tipath channel, {~ (tlB) h=O.....it-1 through the matrix E:;~(t)Xitm(t)E~~2(t)=

€:;~ (t )Cic (X;tm (t) ) -1Dt;:n (t) E;;';(t), yielding correlated random processes- - ----{ a~ (tIB) }k=O.....L-l· Unlike {a~}k=O.... ,L-l' {a;:n(t) }l=O.... ,L-1 and { a~:n (tIB) }t=O,....L-l

(with t fixed) , the random variables { ~ (tlB) }k=O.....L-l' obtained by fixing t, are cor­

related. Since a~ = (ak - Ok) ei8k are uncorrelated random variables with E [a~a~· /2] =
O'~, from (3.52) the variance of a;m(t) is given by

(3.56)

•

where the last step is obtained using (C.24). For an l E {O, ... ,it - I}, if the average

energy of the complex signal a;:n(t) Jflm(t)ËmrPlm(S, t) over [0, tl is much smaller than

the noise power density, Le.

or equivalently using (3.56) and the orthonormality of {rPim(S, t) = rP~~(s, t)}i=O.....ic-1
on [0, tl

Àlm(t) «2No

then from (3.54) ~m (tlB) ~ 0 = E [a;m(t)]. Since the noise level is high, observa­

tions are very likely to he unreliable thus the best estimate bases its estimation on

a-priori knowledge (in this case the a-priori mean which is equal to 0 since E [a~] = 0),

and it reduces the effect of this noisy component. If Àlm(t) »2NOt then ~ (tlB) is
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based on the observations and from (3.54) is approximately
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-"i, -- 2 ft . 2 J~ JElm(t)ËmtPim(s, t)e-jwcady':,.(s)
alm (t18) ~ _ Jo tP;m(s, t)e-JWcSdy~(s) = 2

VElm(t)Em 0 f: 1VElm(t) Ëmr/lim(S, t)1 ds

(3.57)

where the second equation in (3.57) valid for l = 0, . .. ,it - 1 is obtained using the

orthonormality of {tP;m(s, t) = tPJi.~(S, t)}. . on [0, tl. Rence from (3.57) it is seen
J<&t

that ;;:n (ij9) is the correlation of the unknown part of the received signal with the

signal JElm ( t )Èm rPlm ( s, t) associated with the lth path of the decorrelated channel,

normalized by its energy (f:·1 VElm(t)Ëm r/llm (S. t) 1

2 ds). Since {r/l;m(S, t)};=O.....L-l

are "orthogonal" on [0, t] (C.20), in the limit when no noise is present (ili(s) = 0),----from (3.45), (3.52), (3.54) and (3.40b) under Hm a;:n (t18) = a;:n(t).

Let us study next the special case of resolved multipath over [0, t].

Conditional mean when the multipath is resolved

From (2.15), the resolvability assumption is satisfied over [0, t] if

m = 1, ... ,.\t/ (3.58a)

or equivalently if

where Rm (T, t) is the partial autocorrelation function defined as

R",(T, t) =l' s;'(u)sm(u - T)du

(3.58b)

•
assuming that Sm (s) = 0, VS < O. Let us investigate conditions when (3.58b) holds.

Let T~(t) and Ti (t) denote respectively the "positive" and "negative" autocorrelation
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time functions defined as

TJ!(t) = inf {T > 0; Rm(T, t) = O}
r

TR(t) = sup {T < 0; Rm(T, t) = R:n(-T, t - T) = O}
r
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The autocorrelation time function is defined as TR(t) = 2sup (Tt.(t), ITR(t)I) and

'ri ITI ~ T~(t) 1 Rm(T, t) = o. Note that TR(t) can be infinity. From (3.58b) if

'ri l :f: k, ITI - TA:I > max {TR(t - T,), TR(t - TA:)} the resolvability assumption is sat­

isfied over [0, tl. When signais, time-limited to [0, Tl, are considered, a simplified

sufficient condition of path resolvability over [0, tl can be obtained. By definitions of

T;" and T~ given respectively in (3.30) and (3.31)

hence if 'ri l #: k, ITI - 'rA:I > T~ - r:n, the path resolvabilityassumption is satisfied on

[0, tl.
Whenever (3.58) is satisfied, from (3.36), ritm(t) = lit' hence from (3.35), Ditm(t) =

E.;tm(t)Cit and Xitm(t) = lit. Therefore from (3.37-3.38)

{

2CT'fElm(t)Ëm r:n + To < t < 00 1= 0, ... ,it - 1
""m(t) = ° e~e.

Àlm(t) me) _ { 2a?:~:~~~Èm5lA: ~ + TO < t < 00 l, k = 0, ... ,it - 1
-----xiA: t -
Ekm(t) 0 else.

(3.59)

(3.60)

•

and from (3.39b)
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since "10 < S < t, "Il > i t sm(s - Tt} = o. Substituting (3.59-3.61) into (3.4Ba) yields

hence whenever the multipath is resolved over [0, t], there is no need for decorrelation,

the estimate of the kth zero mean multipath gain a~(t) employs only the information

related to that k th multipath gain and the effect of fading is taken into account

similarly to the unresolved case (3.54) with the signal Sm(S-Tk)/J€km(t)Èm replacing

tPkm(s, t).
The next section will consider non-coherent optimal detection that does not assume

knowledge of the Ricean specular component phases.

3.3 Non-coherent optimal decision rule for an L-path Ricean

channel

3.3.1 L-path Ricean non-coherent optimum receiver structure (OPT)

Similarly to Section 3.2.1, let us consider an observation [0, To] such that the L-order

linear independency condition is satisfied. Such observation interval is necessarily

long or intermediate. In this section the phases 8" are assumed uniformly distributed

between -1r and 11" modeling a receiver that does not have any reference phase infor­

mation (non-coherent receiver). The non-coherent optimum receiver is denoted OPT

in this thesis. From Section 3.2.1 the conditional likelihood ratio with 9 held fixed

8SSOCiated with the OPT scheme is given by (3.10). The likelihood ratio Am(.z; To )

is obtained by integrating successively (3.10) over all components of the vector 9 he­

tween -1r and 1r. To do the integration, terms inside (3.10) that are independent of 9

are grouped together and after simplification the conditionallikelihood ratio can also

be written as (see (B.31)).

•
(3.62)
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where by substituting (B.28) into (B.32) and using (3.8) Jm is given by
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(3.64)

•

Jm = [det(I + "YmDm)] -1 exp{ "YmrtnQmrm - a t {(x:n)-1 QmX:n}d C-1a}

(3.63a)

or equivalently using (3.8), (3.16b) and (3.18a)

Jm = [det(I + "YmEmcr:n)]-1

. exp{"Y~u~ [(Em C)-1 + i'mr:n] -1 U m - Qt {(X:n)-lQmX :'}de-la}

(3.63b)

and from (B.34) Im(8) is given by

{

L-1Il}
fm(B) = exp L 2~lbkm(Bk-dl cos(lh - 'Pl'm(Bk-Il)

k=O uk fkm

bkm (8k-d = [X~Qmrm - {X~Qm (X~) -le:,{2}, Q(8)]k bnm = [X~Qmrm]o

(3.65)

(3.66)

where "Ym is given by (3.11), Dm and X m are given by (3.8), Qm is given by (3.16),

a and Q(8) are respectively given by (3.13) and (3.12), r m and U m are respectively

given by (3.14) and (3.18a). Integrating successively (3.62) over all components of

the vector 8 between -1r and 'Ir, the log-likelihood ratio ln [Am (i; Ta)] is given by

where Jmand lm (8) are respectively given by (3.63) and (3.64).

From (3.63-3.67) it is seen that the OPT scheme uses the SaIne decision variables

{Ulm},=O""tL- l (3.18b) as the SPECCOH scheme does. Implementation of Ulm can be
found in Section 3.2.1. In particular when the observation interval [0, To] is assumed

to be much longer than the inter-path delays (Ta » Îl for all l), and Elm = 1 for

alll, the decision variable Ulm (3.18b) can be generated by sampling the output of

the matched filter s:n(s) = 2s~ (Ta - s) e.iwc(s-To } / Êm at Ta + Tl, Then the receiver



• 3 Receiver structures 80

illustrated in Fig. 3.2 is obtained.

The mst term in the right side of (3.67), lnJm , is a biased quadratic form of

the input signal samples. In this thesis a biased quadratic fonn refers to the sum

of a quadratic fonn and a bias term. The second term in the right side of (3.67),

however, is nonlinear and depends on the multi-dimensional integral of the function

fm(8) defined in (3.64). Section 3.4.1 shows how a closed-form solution for the inte­

gral of fm(6) can be found for L-path channels with one Ricean path (mixed mode

Ricean/Rayleigh channels) in terms of a modified Bessel function of zero order. Simi­

lady Appendix B.3.2 shows how a closed-form solution for the integral of fm(6) can be

found for L-path channels with two Ricean paths (2 Ricean/L-2 Rayleigh channels)

in terms of an infinite series of products of Bessel and trigonometric functions. The

technique used in Appendix B.3.2 can he extended to provide a closed-form solution

for the integral of fm(6) for the L-path case. For the L-path Ricean channel, an L-fold

path integral need to he solved since Im(8) is to be integrated over (Jo, ••. 1 (JL-I. First

integration with respect to I}L-I is performed yielding /0 ( i rQ~ IbL-lm(6L- 2 )1).
O'L_l f;L-lm

Theo integration with respect to 1}L-2 is done as follows. Let us define

(3.68a)

(3.68b)

(3.69a)

(3.69b)

(3.69c)

(3.69d)

•
iThe superscript m in eb is not an exponent.
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,,
1
1

•,,,
1

------------------------------------------------~

a t { (X;nrl QrnX;"}~ C-1a
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such that
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(3.70)

(3.71)

where lkm (s) is given by

Nt 1 1 L-l ~
l () - 0 ak ~ 2No (m)*,;. ()

A:m S - _ L... ~ X,k 'film S
ulv'fkm Em l=O 1+ 2No

(3.72)

•

(3.68b) is obtained by straightforward substitution of (3.14) and (3.l6a). Equations

(3.69b) and (3.69c) can be derived using (3.8) and the fact that the eigenfunctions

tPlm(S) are orthonormal. A similar proof is done in Appendix C for (C.29a) and

(C.29b). Equation (3.69d) is obtained from (3.69c) by neglecting integrals containing

double frequency terms (use conjugate of (C.l) in Lemma C.l). Comparison between

(3.68b) and (3.69d) shows that (3.68b) is the correlation of the received signal with

lkm(s)ejwc~ and (3.69d) is the correlation of the specular term R {Ianl sm(s - 'in)eiWc"}

with lkm(s)eiwc". From (3.70)

where rSL- 2 = arg [aL-2]' Rence (11 IQ~bL-lm(9L-2) can be expressed as the differ-
L-l fL-lm

ence of a eomplex term dependent on 9L-3 and a complex term independent of 9 L-3 r~

tated by ()L-2 +6L - 2• By applying Neumann's addition theorem (D.34a) [185, p. 358],

10 ( 2 IQ~ IbL-lm(9L-2)1) is replaced 50 that its dependenee on 8L - 2 appears only
(1L_l fL-lm

in cosine terms. Renee integration with respect to 8L-2 can be performed, and the

result involves modified Bessel functions of integer orders. Integration with respect

ta 8L-3 is quite sunilar ta the previous integration. AU Bessel functions arguments

that depend on 9L-3 should he expressed as the difIerence of a eomplex term de­

pendent on 8 L- 4 and a complex term. independent of 8L-4 rotated by ()L-3 + dL-3.

Then Graf's generalization of Neumann's theorem (D.34b-D.34c) [185, p. 361] should

be applied individually ta aIl Bessel functions that depend on 8 L-3. The depen­

dence on 8L-3 appears then in cosine or sine terms and integration with respect ta
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8L-3 can be performed. By performing similar steps for integration over 8L-4 and

so on, it can be shown that the closed-form solution of the integral of f m (9) for the

L-path Ricean channel is the sum of multi-dimensional infinite series of products of

Bessel and trigonometric functions that depends on Vkm , iJkm, k = 0, ... , L - l and

Vb , iJb ,k = 0, ... , L - 1, n = 0, ... , k - 1, where

(3.73)

(3.74)

(3.75)

(3.76)

and alternative expressions of dkm and e~ cao be found in (3.68) and (3.69). Therefore

from (3.67) the L-path Ricean likelihood ratio can be written as

(3.77)

•

where Jm is given by (3.63), dm = [VOm , ••• , VL - 1m , t9Om, ••• ,t?L_lmJT and

9 (dm) 6 (2~)L f:1r' .. f~1r fm(B)d9. Table 3.1 summarizes the various expressions

of 9 (dm) for multipath Ricean channels.

Table 3.1 Expression of g(dm) = (2~)L ~1r'. ·f~1rfm(9)d8

sum of multi-dimensional infinite series of products of
L-path Ricean channel Bessel and trigonometric functions that depends on

{Vkm1 iJkm}k=O.....L-l and {Vk;:, iJbh:=o.....L-l.n=O....k-l

L-path channel k(VOm)k(~)~(~m)+
oc

with two Ricean paths ~(-I)P1p(VOm)lp(~)lp(Vim)cos (p(t?Om + d~ - t?lm))
p=l

L-path channel 10 (VOm )
with one Ricean path

Note that although the phase of Ok appears in (3.66), the optimum non-coherent re-
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ceiver does not require the knowledge of the phases of the specular term since they are

integrated out. In fact cancellation of the phases occurs after the integration of fm(9)

(see example of likelihood for 2 Ricean/L-2 Rayleigh channels in Appendix B.3.2).

Notice that when the multipath is resolved, Dm reduces to EmC, X m is the identity

matrix and bkm(9k-d is independent of 9 and equals ta (Qmrmlk. If in addition to

path resolvability, a long observation interval is assumed, the matrix Em is indepen­

dent of the hypothesis and equal ta l, the optimal receiver reduces to that derived in

[4] when the multipath is assumed to be resolved, yielding the classical Rake receiver.

The behavior of the SPECCOH and OPT schemes at high SNR is illustrated in the

following proposition.

Proposition 3.3.1. The SPECCOH and OPT scheme log-likelihood ratios ;'converge 1
'

almost surely (a.s.) ta the same term as 'Ym goes ta infinity, i. e.

This asymptotical property will also be confirmed analytically and numerically in

terms of the receivers performance in Chapter 4.

Proof of Proposition 3.3.1. Xm, C and (J(S) are independent of '"'(m. Therefore

since the term _1x:nc- t e;.I/2f1(S) is deterministic, r m+ _1x:nc- l e;1/2(J(S) con-
'lm 'lm

verges a.s. to r m as 'Ym tends to infinity. Furthermore, from (3.16a)

(3.78)

Renee from (3.10) the log-likelihood ratio for the SPECCOH scheme satisfies

(3.79)

•

From (3.63a) and (3.78) ln (Jm ) in (3.67) satisfies

(3.80)

The function lm (9) given by (3.64) depends on the Gaussian random vector r m •
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Using the joint pdf of r m , from (B.33) it ean he shown that
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r m
k = J::X~r~E~e(8} Omk = ~k x~r~Ek"CEk"r~kX~ + Nol

,l' (9) = QmX:ne~1/2c-l(J (9) b' (9) = R {Qt(9)2e~1/2c-l {X~qmx~-le~2}, (J(9)}

Therefore \:19 E [-1r,1r]L, E[lfm(9)119, Hk] < 00 and

\:Il = 0, . .. ,L - 1

Furthermore sinee fm(9) is measurable in (80, w) when fh, ... ,8L- 1 are held fixed and

\:Il = 0, ... ,L - 2 J~1r'" J~1r fm(9)d9, is measurable in (8,+1,W) when 8,+b ••• ,8L - 1

are held fixed, the integral J:1r'" J:1r fm(9)d9 cau he defined as a Lebesgue integral

of the sample funetions of !m(9) for almost aIl sampIe funetions [182, p. 45]. From

(3.16a) 'V l =0, ... ,L - 1 0 < [QmJll < 1, therefore

from (3.70)

from (3.68a)

from (3.69a)

from (3.64)

•
where for any matrix BIBI is defined in this thesis as (Isll'i ~ \[B]lj \ and lm is

independent of "Ym and given by
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Since l'rn is independent of 'Ym and I~1r'" J':1r If:nl d6 = (21r)L fm < 00, from the
Lebesgue dominated convergence theorem

1 l 1r l 1r

1 l'1r l1r

li~oc a.s. (2 )L . . . lm (6) d6 = (2 )L . . . ~oc a.s. lm (6) dB
"Ym 'Ir -1r -1r 1r -1r -1r "Ym

1 1'Ir l 1r {t=! lall 1[ T ] 1 ( ')} from (3.78)= (2'1r)L -1r'" -1r exp ~ UfVe'm Xmrm 1 cos B, - CP'm dB & (3.64-3.66)

L-1 ( 1 1 )
= II 10 2~ 1[X~rmJII < 00

1=0 u, e'm

where ~~m = arg[[X~rmL] -arg [a,). Hence from (3.67) and (3.80) the log-likelihood

ratio for the 0 PT scheme satisfies

Comparing (3.79) and (3.81) completes the proof.

3.3.2 OPT: a decorrelator

(3.81)

Q.E.D

•

From (3.63), it is seen that the first term in the right side of (3.67), ln (Jm ), is

a biased quadratic fonn of the input signal samples and includes the matrix X m

acting on the matched filter samples U'm. Section 3.2.2 showed that this matrix

has an interpretation as a decorrelating matrÎX. Such an interpretation will aIso

he given in Section 3.5.2 for Rayleigh fading channels. Therefore from (3.67) it is

seen that the optimum non-coherent receiver performs a decorrelation on the in­

put samples as weIl as nonlinear operations related to the Ricean specular term.

Note that for low 'Ym, from (3.16b) and (3.8a) regardless of Q, {(X~)-1QmX~}d~

'Ym {r:nemC}d = 'YmEmC, thus from (3.63b) ln(Jm) ~ 'Y~utn€mCUm -'YmatEma.
Similarly the equations X~Qmrm= 'Ym [(EmC)-1 + 'Ymr~] -1 Um ~ 'YmEmCum and

X~Qm (X~) -1 E~2 ~ 'YmEmCr~E:,{2are obtained from (3.16b), (3.18a) and (3.8a)

thus from (3.65) bkm(6k-d ~ ['YmEmCUm -'Ym {Emcr~E~2hQ(9)]k' Thus it is

seen that at low 'Ym, for the Ricean channel optimal receiver the decorrelation op­

eration on the input signal vanishes. This is to be expected since a side effect

of the decorrelation operation is to enhance the white background channel noise.

The decorrelating matrix is still used in the bias term 'Ym {Emcr;.E:,{2}1 Q(B) =
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1'm {X~Dm (X~) -1 e:,{2}10(8).

Section 3.3.3 will give further insight on the operations of the optimum non­

coherent receiver. The mathematical framework appears in Appendix A.

3.3.3 Non-coherent estimator-correlator for an L-path Ricean channel

Likelihood ratio expressed in an estimator-correlator form

Independently of the characterization of 9 (known or random), Vm (t) has a finite

mean-square value on the observation interval [0, ToJ and JoTo E Ivm(t}/ dt < 00 (see

Section 3.1). Therefore, from Appendix A, under each hypothesis (including Ho)

when 8 is random the received signal is an Itô process [181J and can be written as

(3.25) with vo(t) = o. Similar to Section 3.2.3 from [21J, the likelihood ratio Am (i;To )

can be expressed as

Am (z; Ta) = exp {~o Lto

Vm (t) dz(t) - ~lTo

v;' (t) dt]} (3.82)

•

where vm(t} is the conditional mean or eqlÙvalently the ~Il\IISE estimate of vm(t)

from the observations i(s) (given Hm) on the interval [0, tJ. This illustrates the

interpretation of the L-path Ricean channel non-coherent optimum receiver as an

estimator-correlator with a MMSE estimator.

The conditional mean can he found by two methods. The first method consists

of using its definition. This requires finding conditional probability density functions

which depend on the likelihood ratio and conditional likelihood ratios, all of them

considered over an observation interval [0, tJ. The second method derived from (3.82)

involves Itô differentiation with respect to t of the likelihood ratio considered over

an observation interval [0, tl. Therefore, both methods require the expression of the

likelihood ratio considered over an arbitrary observation interval [0, tl. This issue is

considered next for continuous time-limited waveforms. For waveforms of infinite du­

ration, no closed-form solution of the likelihood ratio has been found for an arbitrary

observation interval [0, tJ and an arbitrary waveform since time-shifted versions of an

infinite duration signal are not necessarily independent over an observation interval

[0, tl (see Appendix B.1). Hence the fonn of the eigenfunctions of the covariance func­

tion lCm(s, u) over [0, tl is waveform specifie in that case. The At! possible transmitted

signaIs {sm(s) } m=1••.. •i"l are assumed to be time-limited to [0, Tl for the remainder of
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this section (Section 3.3.3).
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Likelihood ratio over an arbitrary observation interva! [0, tl assuming that

sm(s) is time-limited

In this section, the likelihood ratio over an arbitrary finite observation interva! [0, tI
(0 < t < (0) is derived when the !vI possible transmitted signais {sm(S)}m=I M
are time-limited to [0, Tl and continuous on [0, tl. Let us assume that the multipath

delays Tk are ordered as follows Ta < Tl < ... < TL-I' Let Tm be defined as (3.30).

If °< t :5 r:n + TOI from Lemma B.2 'V S E [0, tl, 'V k = 0, ... ,L - l, Sm(S - Tic) = 0,
therefore the likelihood ratio is given by

where the t denotes the dependence of the likelihood ratio on the observation interval.

Let us assume now that t > T:n + Ta. As seen in Section 3.2.3 (tapie: "Eigenvalues

and eigenfunctions of Km(s, u) over an arbitrary observation interval [0, tl, t > r:n +To

assuming that sm(s) is time-limited"), for time-limited transmitted signais, when

the observation interval is [0, tl, t > r:n + TO, an L-path channel model (3.1) that

satisfies the L-order linear independency condition can be reduced to an equivalent

it-path channel model (3.33) that satisfies the it-order linear independency condition.

Therefore, it is seen that the methods previously used ta derive the likelihood ratios8

can be aIso used in this section except that the number of signais is i t instead of L
where 1 < i t ::; L. àtlodifying the results from Section 3.3.1 (and Appendix 8.3.1)

from (3.77) 'Vr:n + To < t < 00, the likelihood ratio associated with an observation

interval equal to [0, tI is given by

m = 1, ... , j\l1

•

where from (3.72-3.76) the vector ~tm(t) is defined as9

(3.83)

8For the derivation of likelihood ratios on [0, tl, continuity of the signaIs sm(s - Tk) needs also to
be assumed on [0, t] to ensure existence of the associated Karhunen-Loève expansion.

9The superscript it in (3.83-3.88) is not an exponent.
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17itm(t) = [d~(t), ... ,1?::_1m(t)]T

0bn (t) = /cfkm(t)l

t9~(t) = arg [cf';"(t)]

ttim(t) =~ ft (l::m(s,t)]* e-iwc.tdz(s) k = 0, ... ,it -1No Jo
N. 1 1 it-1 .\::"(t)

lit (s t) = 0 ok ~ 2N? [xitm(t)] * f/Ji t (s t) 0 < s < t
km ' _1 - L.. .\'t (t) lk lm'

(j~V €km(t)Em 1=0 1 +~

and from (3.63a), (3.16a) and (3.35) Jitm(t) is given by10

89

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

•

Jitm(t) = [det(lit+~Ditm(t»)]-1

• exp{ -olt ~{E;;:n(t)C~1X1;m(t)D~tm(t)[lit +fR:;Ditm(t)] -1Xitm(t)} liC~lQit}

{
Et Ë (1 È )-1 }• exp ~ritm(t)~Ditm(t) it+~Ditm(t) r'tm(t)

= Di,m(t) exp {-li,m(t)} expU~oZi,m(t)}

where

it-1 ( Ait Ct}) -1 2it-1 (2 )-1/2

ITitm(t) = Il 1 + ~ = II 1 + MK,~(t)
k=0 0 k=O 0

1. (t) _ i,-1 (Al:"(t»2 ;,-1 IQkI2Ixl~m(tW

"m - ~ 2No (1 + À~~:)) t; (2ul)2fkm(t)Ë",

it-1 Ëm. .\~(t) I[r- (t)] 12 2it -1 ~",it (t) (Zit (t»)2
z,. Ct) - ~ 2 2No 'tm k _ ~ No km km

Itm - L.. .\im (t) - L.. 1 + .L",it (t)
k=0 1+ ~ ~o ~ ~

[ri,m(t)lk = k [' [,p~(s, t)]* e-ftJ,Sdz(s) = J! {z~(t) - jZ~+i,m(t)}
Em Jo Em

z~(t) =l'Tb-,(s, t)dz(s) k = 0, .. , ,2i. - 1 (3.89)

I<"it (t) = A~(t) I<"it. (t) = A~(t) k 0 . 1
"'km 4 nrk+ltm 4 = , ... , le -

10The subscript i t indicates that the dimension of a vector or a matrix is i t instead of L. For
example ait = [00," - t (tit_I]T whereas Q = [00, .. ' ,(tL_I]T.
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•

where À~(t) = Èm [Ditm(t)]kkt cP~(St t) is given by (3.34). The function9it (tlïtm(t) , t)
is given by

1

l
1r 111' {ît

-l 1 Ilbit (9' t)1 }ak km k-l , î' ,
9it (clïtm(t), t) = (2 li, ... exp L 2.) () cos(9k - 'P~(9k-l' t)) d8i .-1

1r -1r -11' k=O (jk fkm t

where

(3.90)

8~ is given by (3.71) and from (C.29)

eîem(t) 6 "V lakllanl [X'!' (t) [D~1 (t) + "V [.] -1 (X'!' (t») -1 e~/2 (t)]
kn lm (j~Jfkm(t) lem lem lm le ltm ltm I...n

= ~o l' l~m(s, t) 10kl 5;'(S - Tk)ds = ~o l' [1~(S.t)nOnl Sm(S - Tn)ds

(3.91)

Similar ta results obtained in Section 3.3.1, the function 9ît (~tm(t), t) is the sum

of multi-dimensional infinite series of products of Bessel and trigonometric functions

associated with the likelihood ratio of an it-path Ricean channel. For example, mod­

ifying results from Table 3.1 91 (d 1m(t) t t) and g2 (d2m(t), t) are given byu

VTo < t - T:n < Tl l 91 (dlm(t), t) = lo(V~(t» (gl (d1m(t), t) depends only on V~(t»

VTt < t -T:n < T2, 92(d2m(t),t) = lo(V~(t»)lo(V1~(t»)Io(Vi~(t»
(Xl

+ L(-1)PIp(V~(t))Ip(V1~m(t))Ip(V1~(t))cos (p(1?~(t) + d~~(t) -1?~m(t)))
1'=1

Remark. The energy Èm is independent of t since Ëm = f: ISm(s)12ds. The term

llThe superscripts are not exponents.
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Jitm(t) is equivalent to Jm given in (3.63a) except that the observation interval is

considered to be [0, t] instead of [0, Ta], Lis replaced by i t and the bias tenn has been

written diJferently using (3.35). Similarly (3.87), (3.88) and (3.89) are equivalent

respectively to (3.68b), (3.72) and (3.15) except for the newobservation interval [0, t]
that is specified explicitly as a new parameter t and it that replaces L.

Since the integer function i t is a staircase function of t, the likelihood ratio over

[0, t] is a function of t defined piecewise. Grouping the piecewise definitions together,

the likelihood ratio is given by

Am (i; t) = Jm (t)g(cIm(t), t) 0 < t < 00

where Jm(t) is given by

m = 1, ... ,M (3.92)

and g(dm(t), t) is given by

O:5t<oo (3.93)

The vector dm (t) is defined as

•

dm(t) = [(Vm(t»T, (dm(t»T]T

V met) = [VOm(t), , VL_1m(t)]T

ilm(t) = [dOm(t), ,dL_1m(t)]T

Vkm(t) = Idkm(t) 1

dkm(t) = arg [dkm(t»)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)
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(3.100)

laklblma(8~_1' t) = dlma(t) - f ez:.(t)ei8~
C7~JEkm(t) n=O

e,okm(9~_I't) = arg [bkm(9~_1't)] - arg [Ok]

and eb(t) is given by

100IbQm(t) = dom(t) (3.101)
C75JEOm(t)

'l'Om(t) = arg [bOm(t)] - arg [00]

{
e~m(t) r:n +'0 < t < 00 k,n = 0, ... ,it -1,

ek:a(t) =
o else.

= ~o l' lnm(s, t) lakl 8;"(S - Tk)ds 0 < t < 00

= ~o l' lk",(s, t) lanl 8m (S - Tn)ds

2 lt . { . }~ No 0 lirnt(s, t)e-]WcSR IQnlsm(s - 'n)e1'"'cs ds

(3.1D2a)

(3.102b)

(3.102c)

where (3.102c) is obtained by taking the conjugate of (C.l) in Lemma C.L This

approximation corresponds to neglecting integrals containing double frequency terms.

For k = 0, ... , L - 1 lkm(s, t) is given by12

{

ll:m(S' t) ml 0 < s :5
t

t k = 0, ... , i t - l,
lkm(s,t) = lm +'0 < < 00

o else.

1\.T 1 1 L-l Atm(t)
HO Ok ~ 2N. 0 < S < t

- . / __ L...J A;m(t) [xék(t)r cPlm(S, t) 0 < t < 00
C7~V Ekfn(t)Em 1=0 1 + 2No

(3.103a)

(3.103b)

12Note that lkm(St t) defined as (3.103a) is equal to the lkm(s, t) defined as (3.49) in Section 3.2.3.
For convenience (3.49) is reprint as (3.103b) .•
where Àlm(t), JÀlm(t)4>lm(S, t) are respectively given by (3.37),
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(3.38) and (3.39b). The terms of Jm(t) in (3.93) are defined as

93

O<t<oo

O<t<oo

O<t<oo

(3.104)

(3.105)

(3.106)

k = 0, . .. , 2it - 1,

For k = 0, ... ,2L - 1 VKkm(t)Zkm(t} is given by

_J () ( {JK.~(t)z::m(t) Tm + To < t < 00
V Kkm t Zk-m t) =

o else.

= v'/tkm ( t)l'T km(s, t )dz(s)

where Kkm(t) and v'Itkm(t)ïkm(S, t) are given by (3.43) and (3.44).

(3.107)

•

Computation of the conditionai mean using its deflnition

Due to the properties of conditional expectations, the conditional mean vm (t) can be

found by using the equations:

vm(t) 6 E[vm(t)lz(s),O < s < t,Hm] = E,}' [VL-lm(t, S') (Z(S), 0 < s < t,Hm]

= E9'o [vOm(t, 8~) lies), 0 < s < t, Hm] (3.108)
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where (3.108) is obtained by using iteratively the property of conditional expectation

E [Y) = E(E [YIX]], and 9', 8~, VL-lm(t, S') and VOm{t, 8~) are def1ned as follows:

, [, ,]T , ,
9 = 80 , ••• , 8L - 1 (= 9 L-d 8, = 8, + arg [azl l=O,••••L-l

VL-lm(t,9') = Ea [vm(t)IS' ~ z(s), 0 ~ s < t, Hm] l:J. vm(tIS) (3.109)

a = [ao, ... ,aL_l]T

vam (t, 8~) l:J. VOm (t ,S~)

ih-lm(t,S;_l) = Eo; [Vlm(t,S;)18~_1'Z(S),O < s ~ t,Hm] l=l •...•L-l L2:2 (3.110)

S~ is given by (3.90), E(·IY) denotes expectation with respect to a and S' given Y~

and Ez ( ·IY) denotes expectation with respect to x, given Y. By definition VL-lm(t, S')

is the specular coherent conditional mean vm (tIS) whose derivation can be found in

Appendix 0.1. Appendix 0.2 presents an iterative method to derive vlm (t,9;) for

general L-path Ricean channels. Complete derivation of the conditional mean using

(3.108) can be found in Appendix 0.3 and Appendix 0.4 for the special cases of mixed

mode Ricean/Rayleigh channels and 2 RiceanlL-2 Rayleigh channels. From (0.20)

the conditional mean for a mixed mode Ricean/Rayleigh channel is given by

Vm (t) =R { (21t
1l:,.(s, t, t)e-j..,c.dz(s) + Vom(t) ei":'"Ct) lom(t, t )ei"....(t) ) ei..,ct

}

(3.111)

where 1tm(r, s, t) is given by (3.41), lOm(t, t) is given by (3.103), Vam(t) and t?Om(t)
are given by (3.98) and (3.99), V~(t)ei1f~(t) is given by

89 (clm(t), t) 1 89 (dm(t), t)

~' (t)ei1f~Jn(t) = aVkm(t) . Vkm(t) âdkm(t)
km 9 (dm(t), t) + J 9 (dm(t), t)

V~(t): real, positive.
k = 0, ... , L - 1

(3.112)

•
and g(dm(t) , t) = lo(Vam(t» while dm(t) is given by (3.95). From (0.44) the condi-
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tionaI mean for a 2 Ricean/L-2 Rayleigh channel is given by

95

iim (t) = !R { (21' 'H:"(s, t, t)e-i"'·'dz(s) + i~ v'km(t)d"~me')lkm(t, t)d"...e'l) dOl.' }

(3.113)

where V~(t)ei"~(t) is given by (3.112) and g(dm(t), t) is given by

g(dm(t), t) = 10 (VOm(t)) 10 (V10(t) )1o(V1m(t))
oc

+ E(-1)P Ip(Vam(t)) 1p(Vl7:(t))1p (V1m(t) ) cos (p(dOm(t) + dw(t) - d1m(t)))
p=l

where Vi~(t), dkm(t) are given by (3.98) and (3.99),

Vk::(t) = le~(t)1 = 1~o [lnm(S, t) IOkl s:"(s - Tk)dsl

d:;:'(t) = arg[e:;:'(t)] = arg [~o l' lnm(s,t) IOkl s:"(s - Tk)dS]

(3.114)

(3.115)

•

and alternative expressions of ek;.(t) can be found in (3.102). Extrapolating the ex­

pressions of the conditional mean for these two special cases (3.111-3.113), it is to be

conjectured that the expression of the conditional mean for an L-path Ricean channel

is given by

iim(t) = R{(21' 'H:"(s, t, t)e-i"'.5dz(s) + l~ v'km (t)d"~me')lkm(t, t)d".me.») dOl.'}

(3.116)

where 1tm (r, 8, t) is given by (3.41), lkm(t, t) is given by (3.103), dkm(t) is given by

(3.99), V';"'(t)ei~~(t) is given by (3.112) and g(dm(t), t) of (3.112) is the function

present in Am (i; t) that is formed by multi-dimensional infinite series of products

of Bessel and trigonometric functions that depends on {Vlan (t), ilkm(t) } k=0,••.•L-l and

{V~(t),d~(t)}k=O.....L-l.n<k given respectively by (3.98-3.99) and (3.114-3.115). Note
that the validity of (3.116) for a general L-path Ricean channel using the direct

method has not been proven. Nevertheless (3.116) has been derived by using the

Itô differentiation method as seen next (3.124a). The Itô differentiation method re­

quires stronger assumptions, but the fact that (3.116) is still accurate for mixed mode
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and 2 Ricean/L-2 Rayleigh channels without those extra assumptions motivates the

conjecture that (3.116) is valid for any number of paths even without those stronger

assumptions.

Computation of the conditional mean by using Itô differentiation of the
likelihood ratio

Provided that the likelihood ratio is known over any observation interval [0, t] (denoted

Am (i; t»), the conditional mean vm(t) can be obtained by the formula [186]

'"' (Fi;dAm Ci; t) 1 No dAm Ci; t)
vm(t) = V"2 Am (t; t) Vif = 2 Am (t; t) dz(t) (3.117)

•

where d(·) denotes the Itô differential (see Appendix A). Equation (3.117) is obtained

by Itô differentiating the log-likelihood ratio over an observation [D, tl given by

ln Am (t; t) = ~o [[ vm(s)dz(s) - ~l'v;,(S)dS]

For convenience differentiation of a slightly more general function than the likeli­

hood ratio is performed such that the obtained results can be used for optimum as weil

as suboptimum receivers. Specifically a function of the following type is considered.

:Fm (i; t) = Jm(t)g(clm(t), t)

where Jm(t) is given by (3.93), the vector cim(t) is given by (3.95) and g(dm(t), t) is

an arbitrary scalar function of dm(t) and t satisfying g(dm(D), 0) = 1 that possesses

continuous first and second order partial derivatives with respect to any components

of dm(t) and a continuons first order partial derivative with respect to t. As seen

earlier in this section (topie: "Likelihood ratio over an arbitrary observation interval

[0, t] assuming that sm(s) is time-limited"), when:Fm Ci; t) is the mth likelihood ratio

for an L-path Ricean channel, 9 (dm(t), t) is the sum of multi-dimensional infinite se­

ries of products of Bessel and trigonometric functions. Suboptimal receiver structures

are derived in subsequent sections. For example modifying results from Section 3.7.2

to take into account the arbitrary observation interval [0, t], from (3.174) it can be

shown that Fm Ci; t) represents the mt/a decision variable for the Quadratic Decor-
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relation Receiver (QDR) scheme over mixed mode Ricean/Rayleigh channels when

g(dm(t), t) = exp{cV~(t)}. Since the decision variable Jm(t) exp{cV~(t)} for the

QDR scheme is not a likelihood ratio, it does not have an estimator-correlator fonn as

defined in (3.82), however, a quasi estimator-correlator fonn, as called in this thesis,

can be defined based on the fol1owing proposition.

Proposition 3.3.2. Assume that an arbitrary function Fm (z; t) can he written as

dFm (z; t) = Fm(t)dt + :F'~(t)dz(t) (3.118)

where d(·) represents the Itô differentiation of :Fm (Z; t), :Fm(t) and Fr:. (t) are non­

anticipating processes jointly measurable in (t, w) satisfying ~ t E [0, To]

J; E IFm(s)1 ds < 00, f; E 1Fr:a(s) 12 ds < 00 and z(t) is an Itô process of the form

dz(t) = vm(t) + dw(t), m=O,... ,L-1. Then if:Fm (Z; 0) = 1

{
2 [i Ta

--- liTa ( )2 No l Ta F- (t) ]}
Fm (Z; To) = exp No k vm(t) dz(t) - 2 0 vm(t) dt +"2 0 :FmCz; t) dt

(3.119)

h th t · t ---(t)· 1 t &. ,F'':Ct} d b bt· d /.r. ~ (' t) bw ere e es ama e Vm as equa 0 2 Fm{z;t) an can e 0 aane JI am..Tm Z; y

using

---- No [ dFm(i; t) :Fm(t)dt ]
vm(t) = T :Fm (i; t) dz(t) - Fm (i; t) dz(t) (3.120)

ln this thesis (3.119) is called the quasi estimator-cofTelator form of a receiver (sub­

optimum as weil as optimum) whose m th decision variable is equal ta Fm (Z; t). If

:Fm (Z; t) is a likelihood ratio, from [21/, it can expressed as (3.82) which is the true

estimator-correlatoT form of any optimum receiver. ln that case foTa ~Ü~l) dt = 0 and----vm(t) = vm(t) is the MM8E estimatoT.

Proof. Substituting dz(t) = vm(t)dt + dw(t) into (3.118) yields

•
(3.121)
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---- F..'Let vm(t) = ~Fm'1~~~)' from (3.118)

dFm (z; t) 2 ---- :Fm(t)
F, C· ) = I\T vm(t) dz(t) + :r: C. )dt

m z, t no m z, t

which is a symbolic notation for

f. TO dFm (i; t) 2 f.To --- . i To :Fm(t)
:Ft (" ) = 1\ T Vm ( t) dz l t) + :F. ('. )dto m z, t HO 0 0 m z, t
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(3.122)

Using (3.121) and the Itô differentiation rule (A.13) on ln (Fm (z; t»), the left-end side

of (3.122) can also he written as

(3.123)

•

--- F..'U Fm (z; 0) = l, substituting (3.122) into (3.123) and using vm(t) = ~Fm'1~~i) yields

(3.119) the quasi estimator-correlator form for an arbitrary receiver whose decision

variable under Hm is given by Fm (i; t). Q.E.D

The Itô differentiation of Fm(z; t) = Jm(t)g(dm(t), t) present in (3.117) and

(3.120) is carIied out in Appendix E under the following assumptions

1. Vr = 1,... , L there exists functions13 { xik(t) h.k=O.... .r-l continuously differ­

entiable on (r:n + Tr-l, Tm + Tr ] such that the r x r matrix X Tm (t) defined

as [Xrm(t)]lk = xik(t) satisfies the equations X~(t)r~(t)X~(t)= Ir and

Erm(t)Crr:m(t)X~(t)= X~(t)DTm(t) where Ir is the r x r identity matrix,

Drm(t) is an r x r diagonal matrix whose diagonal entries are the eigenvalues of

Erm(t)Crr~(t),Erm(t) and Cr are r x r diagonal matrices such that [Erml ll =
€lm(t) = t:: J~ ISm(s - ïl)1 2 ds, [Cr]ll = 2ur, r rm(t) is the r x r signal correlation

matrixdefined by13 [rrm(t»)'k = pik(t) = J l - J: Sm(S-ïc)S:n(S-ïk)ds.
ECm(t)Ekm(t}Em

2. Vr = 1, ... , L the eigenvalues of Enn(t)ËmCrr~(t), {,\,m(t)}l=o.....r-l are

distinct.

These assumptions are Dot too restrictive. For example it is shown in Appendix E.3.2

that they are satisfied in the case of non-degenerate twc:rpath channels (Le. 20'5 :F
13The superscripts are Dot exponents.
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•

0, 20'~ =F 0) such that Tlt > T:n + 'l, the complex correlation coefficient between the

signaIs sm(s - TO) and sm(s - Td pôî(t) over any observation interval [0, t] is non-zero.

More precisely tlt E (Tm + TO,~ + Tl] 1 there is only one eigenvalue Àfnn(t) that is

necessarily distinct and there exists at least one continuously differentiable function

xâtf(t) satisfying conditions described in Assumption l, namely x~(t) = 1. Assume

that Vt >~ + Tb pôî(t) :f: O. Then E2m(t)Ëm C 2r;m(t) has two distinct eigenvalues

{À1m(t)}'::0.1 given for example by (E.56)14. There aIso exists continuously differen­

tiable functions {xrr(t)}',k=O,l (given by (E.58» satisfying conditions described in

Assumption 1. The assumption that Vt > Tm +'1, Pm(t) :f: 0 is not too restricting. It

can be shown for example that for FSK, Pm (t) =°necessarily implies that Tl - TO > T
which corresponds to resolved multipath. Similarly it can he shown that for DPSK

or SDPSK, p3Ht) = 0 necessarily implies that Tl - TO > zr which corresponds to

resolved multipath for that modulation.

Assumption 1 ensures that the eigenfunctions {4>~:n(s, t) }'=O""'Ît-l defined by (3.34)
can be chosen to be differentiable. Since i t is a t-staïrcase function defined by (B.3),

there are only a finite number of eigenfunctions denoted 4>im(s, t), {(j>rm(s, t) h=o,1 , ••• ,

{ (j>fm (s, t) }1=0•... ,L-l' These functions are expressed in terms of xtr(t), {xrt: (t) } l,k::O.l 1

••• 1 {xfkm(t)},.k=O.... ,L_l which are not unique. If TIr = 1, ... ,L, the chosen func­

tions {xr;: (t )}"k=O.... •r-l are continuously differentiable then {4>'m (s, t) }l=O,... •r-l are
also continuously differentiable. Assumption 1 ensures that snch a choice is pos­

sible. Assumption 2 is used for consistency since differentiabilityof the functions

{xW(t)}'.k=O,... ,r-l is very likely not to be guaranteed whenever the corresponding
eigenvalues À'm (t) are not distinct even for the simple case of tw~path Ricean chan­

nels.

The L-path Ricean channels likelihood ratio, Am (z; t), is of the fonn Jm (t)9 (dm (t), t)
where g{cIm{t), t) is the sum of multi-dimensional infinite series of products of Bessel

and trigonometric functions. Hence results of Appendix E can be used. From (E.53)

the Itô derlvative of Am (z; t) is of the fonn (3.118) where Fm(t) = 'R2m(t)Am (z; t).

Since Am (z; t) is a likelihood ratio, /{o ~(~J)dt = 0 (symbolically R 2m(t) = 0). Com­

bining (3.117) and (E.53) with 'R.2m (t) = 0, Tlt >~ + To the conditional mean vm(t)

14The expression of the set {'\1m(t)},=o,1 is unique but the numbering of the elements in the set
is not, (E.56) is an example of numbering.
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for an Irpath Ricean channel with non-coherent detection is given byiS
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Vm(t) = lR { (21'1'l:'(s, t, t)e-jw.,dz(s) +~V';'" (t)e1"~mCtl 11cm(t, t)ei"....C.I) ei"'.t}
(3.124a)

where 'H.m(s, t, t) is given by (3.41), V~(t)ei"~m(t) is given by (3.112), lkm(t, t) is given

by (3.103) and 1?km(t) is given by (3.99). Note that (3.124a) obtained by Itô differen­

tiation reduces ta (3.111) for mixed mode Ricean/Rayleigh channels and (3.113) for

2 Ricean/L-2 Rayleigh channels, both obtained by the direct method. Substituting

hm(t, s) = ~ {21t:n(s, f, t)eiwcCt- s)} into (3.124a) yields

where hm(t, s) = Hm(s, t, t) = Hm(t, s, t) is given by (3.42).

Substituting (C.27) into (3.124b) and using hm(t, s) = Hm(t, s, t) yield

(3.125a)

•

and y~(s) is given by (3.126). Substituting hm(t, s) = ~ {21t~(s, t, t)eiwc(t-s)} into

(3.125a) and using that y~(s) is real yield

vm(t)

= lR { (21' 1t;,.(s, t, t)e-;w·'dy;::'(s) +ElaklV'1cm(t)ei"~m(tlei""'Ctlsm(t - Tk)) e1""" }

(3.125b)

15Sinœ for t < Tm + To, vm(t) = 0 then vm(t) = O. Therefore (3.124) is valid for any t ~ O.
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where y:(s) is given by16
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(3.126)

(3.127)

1-lm (s, t, t) is given by (3.41), V~(t)ei"~m(t) is given by (3.112) and dkm(t) is given by

(3.99).

The next section will focus on giving physical interpretations of the expression for

the conditional mean estimator vm (t).

Interpretation of the expression for the conditional mean estimator vm (t)

An interpretation of y~(s) is as follows: let us define the estimate of ej8~ based on an----observation on [0, tL ej8~(t) as

~ = V~(t)ei"~(t)ei"km(t)

where V~(t)ei"~m(t) and t?km(t) are given by (3.112) and (3.99). Theo (3.126) is also

given by

(3.128)

•

From (3.128) it is seen that y~(s) represents the remaining unknown part of the

observation (or received signal) after the specular component phasors17 {ej8~}k have

been estimated. From (3.41)

t t L-l ~hn(t)

211-l~(S't, t)e-ic..rc"dy~(s) = 21 L 2~ 4J;m(S, t)4Jlm(t, t)e-jc..re"dy~(s)
o 0 1=0 1 + 2No

(3.129)

16The superscript ne is Dot an exponent.

l'TThe k th specular component phasor is defined in this thesis as ei9~ where 8~ = Bk + arg [Ok) is
the k th specuJar component phase.
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Replacing J"'m(t)4>lm(t, t) with (3.39b) yields
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(3.130)

---where a~(t), estimate of a~ based on the observation interval [0, t], is defined as

(3.13la)

(3.13lb)

while lkm(s, t) and y::ac(s) are respectively given by (3.103) and (3.128). Substituting

(3.127) and (3.130) into (3.125b) yields

{ (

L-l L-l )}
vm(t) = R E~ sm(t - Tk) + E 10kl ej8~(t) Sm(t - Tk) ei~ct

k=0 k=O

(3.132)

•

--- ---;--where a~(t) and ei8k (t) are respectively given by (3.131) and (3.127). From Sec-

tion 3.2.3 the noiseless receivedsignal is given by (3.45). Comparing (3.132) and (3.45)

shows that the MMSE estimate of a multipath fading signal has the same "multipath"

fonn with the amplitudes {a~}k and specular component phasors { ej8~ }k replaced by

estimates. From (3.13lb) it is seen that the amplitude estimates are obtained by fU-

r unkn f h al ( ) h
2172 ,. (8 t) .

tering 0 the own part 0 t e received sign 3.128 by t e filter ~ 1aki e-)WcJl.

Sîmilarly to Section 3.2.3 the filter takes into account both the multipath unresolv­

ability and fading as seen in the following.

From Section 3.2.3 the noiseless received signal can be rewritten as (3.51). Substi­

tuting (3.129) and (3.127) into (3.125b), the conditional mean vm Ct) can be rewritten

as
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where

___ .\'m(e) t

" Ct) 2 2No 1A." C t) -iWcSd ne ( )a1m = J - AI_Ct) 'l'lm S, e Ym S
flm(t)Em 1 + 2No 0
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(3.133)

•

Comparing (3.133) with (3.54) and (3.131) with (3.48) shows that the multipath

amplitude estimations for specular coherent and non-coherent detection are similar,

except that the remaining unknown part of the observation for specular coherent de­

tection, (3.29), is obtained by subtracting the known specular term from the received

signal, whereas for non-coherent detection (3.128) is obtained by subtracting an esti­

mate of the specular term. This was to be expected since the non-coherent estimator

does Dot have the knowledge of the specular component phases, thus it uses an esti-
-;-- -;;---

mate of the specular terme From (3.131a) and (3.133), ak (t) and alm (t) are linked---- -----by the same equation as (3.55) links a~ (tI9) and a7m (tI8). The estimates of the

unresolved multipath fading channel gains {a~} k are formed by first transforming the

unresolved multipath channel into an equivalent decorrelated channel with zero mean

multipath gains given by (3.52), and then estimating the zero mean path gains of the

decorrelated multipath channel {a;m(t) } 1 by matched filtering as for a resolved multi-----path channel. From (3.133) it is seen that the gain estimate a;m(t) employs only the

information related to the [th path of the decorrelated multipath channel. At low SNR----a-priori information is used and a;:nCt) ~ 0 which corresponds to the mean of a~:n(t).

At high SNR, a-posteriori information is used as in Section 3.2.3. In the limit of no
--;--- ,

noise (w(s) = 0) and perfect phasor estimation (Le. Vk ej9k (t) = ei9k ), from (3.40b),

(3.45), (3.52), (3.133) and the orthogonality of {4>lm(S, t) = 4J::n(s, t) h=O.....it-l' under
• --;;--- 1/

Hm V[ = 0, ... ,le - 1 alm(t) = a,m(t).
The MMSE estimate of the specular term composed of the sum of random phase

fixed amplitude signais is a little more complexe From (3.132) it is seen that the lVIMSE

specular component estimate is obtained not by estimating individually the random

specular component phases {8~}k but by estimating the specular component phasors

{ej9~}k. Equation (3.127) shows that the k th specular component phasor estimate

involves a phase estimator of the kth random phase (in this case 19km(t) + d~ (t»)
that is substituted for the kth random phase 8~. But the k th obtained signal esti­

mate is then scaled by the factor Vkm(t) that takes into account the presence of aIl

the other randomly phase-shifted specular components since the multipath is ume-
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solved. By definition the MM8E estimate for a signal minimizes the error between

the estimate and the actual signal. Hence it can be expected that the scaling term

Vkm(t) reduces the difference between the signal estimate and the actual phasor in

case the phase estimate is far from the actual value. In order to pravide insight ta----ej9~(t) = V~(t)ej(I7:n(t)+t7m(t» let us cansider a simple random phase channel with re-

ceived signal Z(8) = R {vA(s)ei6ei"'cs } + tires), 0 < s ~ TOl where VA(S) is a known

complex low-pass function and E [w(s)tiJ(u)] = 5(8 - u).

Modifying results from [21], the MMSE estimate (conditional mean) of v(t) ­

R {vA(t)ej9ei,,",ct } is given by

where VA (t) is a real non-negative function obtained from

(3.134)

Hence the conditional mean of a random phase channel can be written as

v(t) = ~ {VA(t) ;iii(t) ei"'c t
}

where

(3.135)

•

From (3.134) it is seen that VA(t) and iJA(t) are obtained by taking respectively the

amplitude (or absolute value) and phase of the correlation of the preenvelope (complex

analytic) of the noiseless received signal excluding the random phase 8, vA(s)ei"'c",

with the received signal.

Compared ta the simple random phase channel, two difficulties appear in the case

of an unresolved multipath Ricean channel. First the multipath is unresolved which

implies that the phases of each path specular component cannot he estimated indi­
vidually. This can be observed from (3.127) where the term V~(t)ejl7~(t) given by

(3.112) depends on aIl the multipath components. As will he seen later, when the



multipath is resolved this term reduces to ~~~~:~:n which corresponds to the non­

fading random phase channel (3.135). Secondly, besides the unresolvability difficulty,

the received signal has a fading component part. The simpler approach ta take into

account the channel fading in the phase estimation is to consider the Rayleigh com­

ponent as noise and whiten it. This approach is followed by the phase estimator as

shown by the presence of the filter ~o lirna(s, t)e-iwc.s in the expression of Vkm(t) and

dkm(t) (see 3.98-3.100).

From (3.45) the received signal can he rewritten as
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(3.136)

where vtmCs) (the specular component excluding the kth path) is given byls

(3.137)

and neCs) is a zero mean colored Gaussian noise defined as

nc(s) L> !R { (~a~sm(s - Tr)) eJwcs } + w(s)

The covariance function of neCs) is given by

(3.138)

•

Since neCs) is not white, a new equivalent estimation problem cau he obtained by

passing the received signal through a whitening filter H.m(s, u, t) such that [187, pp.

290-297]

where n.c(s) 6 J~ H.m(s, u, t)nc(u)du. From (3.136) the whitened received signal

18The superscript d is not an exponent.
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z.(s) is given by

106

z.(S) L;. l'H....(s. u. t)dz(u) (3.139a)

= l'H.m(s. u. t)IR { (lat1s...(u - Tt)eil.) ei"'eu} du + V~t(s) + n.c(s)

(3.139b)

= IR { (1' H....(s. u, t) latl sm(u - Tt)ei",e(U-SldU) ei8~ei"'es} + ~t(s) + n.c(s)

(3.139c)

where from (3.137) V:k(S) is given by

v:t(s) L;. f H.m(s, u. t)vt...(u)du

= f H.m(s, u, t) IR { (~Iarl Sm(u - Tr)ei8~) ei",eu} du

(3.140a)

(3.140b)

One interpretation of the phase estimator is obtained by using a whitening ap­

proach for V:k(s) + n.c(s) that is generally a non Gaussian random process due to the

presence of 9' (see (3.140b)). Another simpler interpretation of the phase estimator

follows. Considering the new received signal z.(s) - v:,,(s), (3.139c) is similar to the

random phase channel. Since the term v:k(s) is unknown, the phase estimator uses---an estimate of that signal, V:k(s). The simplest estimate of a random process is----its a-priori mean. Bence V~k(S) = E [V~k(S)] = o. Recall that the phasor estimate

(3.127) depends nonlinearlyon the terms Vkm(t) and dkm(t). From (C.27)

:0lZm(u, t)e-i"'eU = :0 [Iatls~(u - Tt)e-i<JeU-latl1' ~(v - Tt)e-i"'eUHm(u, v, t)dV]

= l'Q....(u, v, t) latl ~(v - Tt)e-i"'eUdv (3.141)

•
where Q.m(u, v, t) given by

Q....(u, v, t) = :0 [5(u - v) - Hm(u, v, t)] o<u,v< t (3.142)
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and Bm(u, v, t) is given by (3.42). Substituting (3.141) into (3.100) yields

dl....(t) = Vkm(t)ei"...<I) = l [l Q.m(u, v, t) lakl s;.(v - Tk)e-i",evdV] dz(u) (3.1438)

= 11 (l H.m(s, v, t) lakl s;.(v - Tk)e-i",evdv ) (l H.m(s, u, t)dZ(U)) ds (3.143b)

where (3.143b) is obtained by ooting that Q.m(U, v, t) in (3.142) is the so-c.a11ed inverse

kemel satisfying [187, pp. 290-297]

6(s - u) = 11 Kcm(v, s)Q.m(U, v, t)dv

and given by

(3.144)

•

and B.m(s, u, t) is the whitening filter for nc(s) with Kcm(v, s) given by (3.138).

Since Km(s, u) is positive semi-definite (3.144) can be easily obtained from (3.142)

by using (C.18). Thus from (3.141) the filter ~o lkm(u, t)eiwcu can be interpreted

as the concatenation of the inverse kemel (3.144) with a fllter matched to the kth

specular component. Similar to (3.134) valid for the random phase channel, from

(3.139c) it is seen that (3.143b) is the correlation of the preenvelope of the whitened

noiseless received signal (excluding the random phase) with the whitened received

signal i.(s) - ~k(;r 1). z.(s) = J: B.rn(s, u, t)dz(u).

Now that the impact of signal fading on the specular phasor estimate has been

c1arified, let us consider the difficulty associated with path unresolvability. Path

unresolvability induces a fonn of interaction between the specular components asse­

ciated with different paths. It is to expected that the kth phasor estimate depends

on the information related to the other paths, and indeed substituting (3.112) into

(3.127) shows that the kth specular component phasor estimate depends on "cross­

correlation" factors snch as {Vb (t), d~(t) } k=o••..•L-l,n=O•... ,k-l given respectively by
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(3.114) and (3.115). Substituting (3.141) into (3.102c) yields
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eh(t) = V'k::(t)e'''t'n(t)

= l' [1' Q.m(u, v, t) lakl s:'(v - Tk)e-i"'<UdV] R {Ianl sm(u - Tn)ei"'<U} du (3.145a)

= l' (l' H.m(s, v, t) lakl s:'(v - Tk)e-i"'<UdV)

. ([ H.m(s, u, t)R {janl Sm(U - Tn)ei"'<U} dU) ds (3.145b)

where Q.m(s, u, t) is given by (3.144). From (3.145b), similar to the interpretation of

(3.143b), Vb:(t) and t?k:a(t) are obtained by taking the amplitude and phase of the

correlation between the preenvelope of kth whitened specular component (excluding

the random phase) and the nth whitened specular component.
Further insight on the nonlinear function V~(t)ej[d~JR(t)+dkm(t)J can be obtained in

the special case of resolved multipath.

Conditional mean when the multipath is resolved

From Section 3.2.3 (topie: "Conditional mean when the multipath is resolved"), the

resolvabilityassumption is satisfied over [0, tl if (3.58) is satisfied. In that case -"lm(t),

~;:~gxik(t) and v'-"lm(t)rPlm(S, t) are respeetively given by (3.59), (3.60) and (3.61).
Substituting (3.59-3.61) into (3.131a) and (3.103b) yields

(3.146)

(3.147)

(3.148)

(3.149)

•

Therefore substituting (3.147) into (3.102a) and (3.101) and using (3.58) yield

Vk # n ek:.(t) = ~o l' lnm(s, t) lakl s:'(s - Tk)ds = 0

IQklbkm(6~_1' t) = dkm(t)
0':v'€km(t)



,
From (3.149) IQA:I::i(9k

-
1 ,t) is independent of 9~-1' therefore, from (3.94) g(clm(t), t)

CT" Ekmet)

reduces to
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where Vkm(t) is given by (3.98). Bence the funetion g(dm(t), t) is independent of
, a~~(t).t)

iJ,-(t) and from (3 112) ~' (t)ei"km et) = .... (1) EquivalentIy~' (t) - h(Vk7R(t»
"'-"1 ., km g(dm(t).t) • km - IO(Vkm(t»--- --;---and d~(t) = 0 and vm(t) is given by (3.132) where a~(t) is given by (3.146), ei6k (t)

is given by

(3.150)

•

Vkm(t) and iJkm(t) are given by (3.98) and (3.99) and lkm(s, t) is given by (3.147).

Henee whenever the multipath is resoived over [0, t], no decorrelation is performed

sinee the signais {Sm (s - Tk) } k=O•... ,L-l are already orthogonal. The estimate of a~ em­

ploys only the information related to the kth path and the effect of fading is taken into

account similarly to the unresoived case (3.133) with the signal Sm(S-Tk)/J€km(t)Èm

replacing l/Jkm(s, t).

From (3.150) ooly the tenns Vkm(t) and dkfn(t) are involved in the estimation of

the phasor. In that case Vkm (t)eit7"met ) ean he interpreted as the correlation of the

preenvelope of the whitened noiseless received signal (excluding the random phase)
~

with the whitened received signal z.(s) - v:k(s) (instead of z.(s) - V:k(S) ) as shown

in the following. From (3.139a), (3.140a) and (3.144)

l' (1' H'mes, v, t) IOkl s~ev - Tk)e-;WcVdV) [zoes) - V~keS)]ds

=l' [l' Q,meu, v, t) IOkl s~ev - Tk)e-iwcVdv] [dzeu) - vtmeu)du]

=Vkm (t)ei"lrm(t} from (3.143a)

since the term {f~ [f~Q.m(u, v, t) IOkl sm(v - Tk)ei",c:vdv] vtm(u)du}· = 0 as shown

in Appendix F.l.
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The value of Vkm (t) gives an indication on the accuracy of the phase estimate

dkm(t). Assume that Vkm (t)ei17A:m(t) = K e.i8~ +E eirP and aU quantities are deterministic

for these explanations, then it can he shown that if IVkm(t)1 » lEI, dkm(t) ~ (J~. Since

the terms are in fact random, the larger Vkm(t) is, the more likely the phase estimate

is goad. In order to take into account the possible cases of very bad phase estimates,,
the estimate of the signal ei8• is obtained by scaling ei17lcm (t). The scaling factor

:~~~::{:H acts as a soft limiter whose value is always less than 1. Indeed using Taylor

expansion and approximation expansion of /o(x) and /1(X), yields the following; if

1 11(Z) z d if 1 hez) 1 Thi f t· ··U d· F· 3 3x« 'Io(z) ~ '2 an x», /o(z) ~. s une Ion 1S 1 ustrate ID Ig. ..
The purpose of the soft limiter is ta reduce the amplitude of the phasor estimate in

0.8

0.6

0.4

0.2

50 100

•

F - 3 3 The functl·on liez}Ig. . lo(z)

case Vkm(t) is small and the phase estimate is likely to be far from the actual value

of (J~. Thus as seen by Fig. 3.4, the soft limiter reduces the difference hetween the

phasor estimate and the actual phasor when the phase estimate is poor. There are

relationships between Vkm(t) and the SNRof the whitened receivedsignal z.(S)-'V~k(S)

where v~k(S) is given by (3.140). The evaluation of E [~~(t)IHm] is carried out in

Appendix F.2 for unresolved multipath. From (3.148) when the multipath is resolved,

'ri k ~ n eb(t) = 0, hence from (3.102a) E [V~(t)IHml given by (F.7) reduces ta

E [V~(t)lHm]

= ~o l' 'km(s, t) lakl 8;.(s - Tk)ds + 1~o l' 'km(s, t) lakl 8;.(s - Ti:)d{ (3.151)

where lkm(s, t) is given by (3.147). From (3.139b) the whitened received signal z.(s)-



• 3 Receiver structures

V~k(s) is given by
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where f~ H.m(s, u, t)~ { (Iakl sm(u - Tk)ei9~) eiwcu
} du is the signal component and

n.c(s) is a white Gaussian noise with unit power spectral density. Therefore the SNR

of i.(s) - V~k(S) is given by

(3.153)

d9 (actual phase)

•

The evaluation of the average signal energy of z.(s) - v~k(s) is carried out in A~

pendix F.3. Substituting (F.S) into (3.153), the SNR of i.(s) - v~k(S) is given by

_1 ft l,-(u t) lakl s· (u - Tk)du 1 l t

SNR No Jo lIo~m' m l ( t) 1 1-. ( )d
k = 1 = No 0 It..-m U, Ok Sm U - Tk U

Therefore from (3.151) at high SNR (SNRk » 1), E [V~(t)IHml » 1. Since Vkm(t) >
O 'th hi h b b'l' If' (t) 1 cl h(Vk_(t}) 1,W1 a g pro a 1 Ity vkm » an /O(Vkm(t» ~ •

1\

ei9
(estimated

phase)
I----::l........r---~

a<:b

Fig. 3.4 Phasor diagram

To conclude this section on resolved multipath, substituting (3.150) into (3.132)

shows that the conditional mean for a resolved multipath channel is the sum of L

terms. Each term, R { (-;;~(t) sm(t - Tk) + IOkl ~~~~::~:Be.i~km(t)Sm(t - Tk») eiwct } is
the conditional mean of a one-path Ricean channel with complex path gain ak.

Next three channels of practical interest will he considered, the mixed mode

Ricean/Rayleigh channel that may represent transmission with a line-of-sight, the

purely Rayleigh channel that may represent transmission without a line-of-sight and
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•

fina1ly the 2 Ricean/L-2 Rayleigh channel that may represent transmission with a

line-of-sight and a strong reflection. Besides their practical interests, these channels

will provide much insight on the operations performed by the optimum receiver for

Ricean channels.

3.4 Non-coherent optimal decision rule for a mixed mode

RiceanjRayleigh channel

3.4.1 Mixed mode Ricean/Rayleigh log-likelihood

A multipath fading channel is said to he mixed mode Ricean/Rayleigh if the first

path gain is Ricean distributed and the other path gains are Rayleigh distributed, i.e.

a = [ao, 0, ... ,O]T. For a mixed mode Ricean/Rayleigh channel, since 'ri k # 0, Cik = 0

(3.64) reduces to fm(8) = exp {IQf~ cos(8o - CPQm)} where bOm and :,oDm, given
0'0 EOm

respectively by (3.65) and (3.66), are independent of 8. Since fm(8) is independent

of 81" •• ,8L-l the log-likelihood ratio (3.67) reduces to

ln [Am (z; Ta)1= ln (Jm) + ln [2~ i: exp { I:~~I cos(60 - 'l'Om) } dlJa]

= ln (Jm ) +ln [la (':;~I)] = ln(Jm) + In [/a(VOm)] (3.154)

where VQm is given by (3.73) and Jm is given by (3.63). Equation (3.154) is obtained

by using the integral definition of the modified Bessel function and noting from (3.70)

and (3.73) that IOf~ = YOm' Using (3.73) with (3.68a), YOm can also be written asao EOm

(3.155)

since (C]kk = 2CT~ and a has only one non-zero element. Similarly to results obtained

in Section 3.3.2, for low im regardless of a, ln(Jm) ~ i;'ufnEmCUm - [matErna,

X~Qmrm ~ imEmCUm, hence VOm ~ 2im [u:ne~2Qate~2Um]1/2. This shows

that the decorrelation operation on the input signal (present through the matrix

Xml vanishes at low SNR. Note that for mixed mode Ricean/Rayleigh, the bias



• 3 Receiver structures 113

term "Ym {X~Qm (X;:) -1 E:,(2}1Cl (8) or equivalently its high SNR approximation

"Ym {Emcr~E:,{2}1 ,,(8) do not appear in the likelihood ratio. This tenn is part of

the decorrelation perfonned on the specular component of the received signal before

the averaging over the random phases. In a mixed mode Ricean/Rayleigh channel,

the specular component is composed of only one random phase signal hence no further

decorrelation is needed on the specular component.

3.4.2 Limiting forms of the log-likelihood ratio

Substituting (3.688) into (3.73) with k = 0 shows that YOm is proportional to 1001.
Therefore, assume that 1001is small, then YOm is small and using the first terms of

the Taylor t s series expansion of the modified Bessel function of the first kind, (3.154)

can be approximated by

(3.156)

Assume now that 1001 is large in (3.154), then VOm is large and the asymptotic

expansion of the modified Bessel function of the first kind, yields ln (10 (VOm ) ) ~ VOm •

If "Ym is small then YOm » ln (Jm ) and the log-likelihood ratio can be approximated

by VOm • An equivalent decision rule cao be based on

(3.157)

If "Ym is large then ln(Jm ) » VOm and the log-likelihood ratio cao be approximated by

(3.158)

•

The limiting forms of the log-likelihood ratio will help to design suboptimum struc­

tures as will be seen in Section 3.7. Similarly to the non-coherent optimum receiver

for general Ricean channels, the mixed mode non-coherent optimum receiver can be

interpreted as an estimator-correlator which will he investigated next.
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(3.160)

•

3.4.3 Non-coherent estimator-correlator for a mixed mode

RiceanjRayleigh channel

Interpretation of the MMSE estimate (mixed mode Ricean/Rayleigh chan­
nels)

For a mixed mode Ricean/Rayleigh channel, from (D.15) the likelihood ratio over

[0, tJ is given by

Am (z; t) = Jm(t)Io(VOm(t))

where Jm(t) is given by (3.93) and VQm(t) is given by (3.98). Hence g(dm(t), t) A

~:f~:f) = g(VQm(t» = IO(VQm(t»). From [21], the likelihood ratio Am(z;To ) can he

expressed as (3.82) where from (3.111) (direct method) or from (3.124a, 3.125b) as­

suming ctl = ... = ctL-l = 0 and g(VOm(t» = Io(VOm(t)) (Itô differentiation), the

conditional mean for a mixed mode Ricean/Rayleigh channel is given by

Um(t) = lR {(21' 1t;.(s, t, t)e-i"c'dz(s) + ~:~~:~:~~ IOm(t, t)ei""'C')) ei"c'}

(3.159a)

= R{(21' 1t;.(s, t, t)e-i"c'dy~(s) + laol ~:~~:~:~~ ei-C')Sm(t - TO)) ei"c,}

(3. 159b)

where from (3.128) y~(s) is given by

dy~(s) = dz(s) -lR e:~~:~:~~ ei"",C'1 laol sm(s - TO)ei"'c' } ds

and 1im (s, t, t), VOm(t), lOm(t, t) and 19Qm(t) are respectively given by (3.41), (3.98),

(3.103) and (3.99).

Following the methodology used in Section 3.3.3, from (3.132) the conditional

mean can be viewed as

(3.161)



--- --;--
where a~(t) is given by (3.131) and from (3.127) ei8o (t) = ~~~~:~:Hei"Orn(t) since---g(flm(t), t) = 10 (VOm(t». The amplitude estimate a~(t) is obtained by filtering----of the unknown part of the received signal z(s) - R{lool ei8~(t) sm(s - To)eiwcs }

2~ ,. (s t) . ( ,. (s t)by the filter :A lEm • e-1WcS • Note from 3.103b) that TI k km' is independent of
No latl ' la,:1

Ok 50 is weil defined. As shown in Section 3.3.3 this filter takes into account both

the multipath unresolvability and fading. First the effect of unresolvability is removed

yielding a decorrelated channel with zero mean path gains {a~:n(t) }1=0•...•L-l' and then
estimation of the zero mean path gains {a;:n(t) } 1 is done as for a resolved multipath

channel.

As seen in Section 3.3.3, the MMSE estimate of the specular component is obtained

by estimating the specular component phasors. Each specular component phasor

estimate involves a phase estimator of the k th random phase that is substituted for

(J~. But the kth obtained signal estimate is then scaled by a factor V~(t) that takes

into account the presence of all the other randomly phase shifted specuIar components

since the multipath is not resolved. For a mixed mode RiceanfRayleigh channel,

however, only one phasor has to be estimated (ei8~) so no other specuIar components

have to be taken into account. Therefore the phasor scaling factor has the same fonn

as the one obtained when the multipath is resolved (Le. ~~~~:~:n). The scaling factor

for resolved multipath does not take into account the presence of the other specular

components. As seen in the study of resolved multipath in Section 3.3.3 that term acts

as a soft limiter whose value is always less than 1. The purpose of the soft limiter is

to reduce the amplitude of the phasor estimate whenever YOm (t) is small which occurs

when the phase estimate is likely to be far from the actual value. Similarly to results

obtained in Section 3.3.3 for L-path Ricean channels, the filter ~olOm(s, t)eiwcs can be

interpreted as the concatenation of the inverse kernel (3.144) with a filter matched

ta the first specular component ("oth n path). Since only the first path has a specular

component, from (3.14Gb) v~k(S) = 0 and the whitened received signal z.(s) - v~k(S)

defined in Section 3.3.3 is equal to i.(s). Since Vk "# 0, lakl = 0, from (F.6)

• 3 Receiver structures 115

•
E (V~(t)IHml = ;0 [lam(S, t) 10:01 ~(s - To)ds + 1~o [lames, t) 10:01 s~(s - TO)dsI

2

(3.162)

and from (3.139b) and (F.S) the SNR of the whitened received signal z.(s) is given
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E [J~ [J~ H....(s, u, t)!R {(IaolSm(u - TO)e:id.) eiw•
u

} dur ds]
SNRo = 1

= ~o l' lnm(u, t) laol s:"(u - To)du

Therefore from (3.162) at high SNR (SNRo » 1), E ["'<»~(t) 1Hm] » 1. Hence since

VOm(t) > 0, with a high probability VOm(t) » 1 and ~~~~:~:B ~ 1.

Structure of the MMSE estimate for mixed mode RiceanjRayleigh chan­

nels

The mixed mode Ricean/Rayleigh channel ~[l\'[SE estimator vm(t), given by (3.159),

can conceptually he implemented as illustrated in Fig. 3.5, where VRm(t) denotes the

tenn of the conditional mean corresponding to the Rayleigh part of the channel,

(3.163)

•

the filter 'Hm (S, t, t) is given by (3.41) and y~(s) is given by (3.160), and vsm(t)

denotes the term of the conditional mean corresponding to the specular component

.... () n { (1 1/1 (VOm(t» _117Om(t) - ( ») _iwct}
VSm t = n \ 00 /0 (VOm(t» ~ Sm t - /0 ~ .

---As seen in Fig. 3.5, implementationof vm(t) requires {VOm(t}; t?Om(t)} and a~(t) (or

equivalently f~ 1t~(s, t, t)e-jwc"dy~(s» defined respectively in (3.98-3.99) and (3.131).

Therefore the system uses the linear time varying filters 'Hm(s, t, t) and Q.m(s, v, t) =

;0 [8(s - v) - Hm(s, v, t)]. Since 'V s, v > t, Hm(s, v, t) = 0 and 1tm(s, t, t) = 0,

1im(s, t, t) and Q-m(s, v, t) are causal and hence physically realizable. The struc­

ture of Fig. 3.5 works as follows. First the conditional mean corresponding to the

specular component vsm(t) is calculated at a certain time ta by passing the received

signal z(s) through the causallinear time varying filter with complex impulse response

;0 lÔm(s, t)e-iWlc", and extracting the magnitude and phase from its output. The phase

dOm(t) is passed through the complex exponential device with transfer function eiO to

generate its associated phasor. The magnitude is passed through a nonlinear device
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~{.}

laol Sm(t - To)eiwct

t90m (t) eJf)om(t)

~---, VRm(t)
2'H:n(s, t, t)e-jwcS~ ~ {. }1------_

1
1

1

~L-l -r--() _ ( " )
L.Jk=O ak t sm t - Tk ejwct

\
\

\
\

\
\
\

:Li· (s t)e-iwcs
No Om ,

~-----------. iJ~(s)
O<s<tz(s)

O<S<t

Q*m(S, V, t)

10 01 S~(V - TO)e- jwcv

Fig. 3.5 Structure of vm(t) for a mixed mode Ricean/Rayleigh channel, where
rtm(s, t, t) is given by (3.41) .

•



with transfer function ~~g and multiplied by the phasor ei"Om(t) and the specular com­

ponent laol Sm(t-To)ejwct. The filter ~o lÔm(s, t)e-iwc.s is obtained by passing the conju­

gate of the specular component (Iaol s~(v - To)e-iWcV ) through the causallinear filter

Q.m(s, v, t) (inverse kemel of Kcm(v, s)). ACter these operations {Vsm(S) , 0 < s < t}

is stored in memory. The second stage consists of subtracting vSm (t) from the re­

ceived signal, yielding iI:{t) and then {y~(s),0 < 8 < t} is stored in memory. Note

the occurrence of a delay since the bottom operations and the top operations in

Fig. 3.5 cannot be done in parallel. The third stage consists of passing the signal

y:;::(s) = i(8) - vsm(s) through the causallinear time varying filter 21t:n(s, t, t)e-iwc.s,

multiplying the output byeiwct and then taking its real part. This real part is then

added to vsm(t), hence the reason for holding the value vsm(t). For convenience COUl­

plex filters such as 'H.:n(s, t, t)e-iwc(s-t) are used in Fig. 3.5 but a completely equivalent

structure can he derived using only real filters. For example for the first stage, the

structure can be expressed in terms of hm(t, s) = 2~ {'H:n(s, t, t)e-iwc(.s-t)}.

The conditional mean when the multipath is resolved has been derived in Sec­

tion 3.3.3 for L-path Ricean channels. ~Ibced Ricean/Rayleigh channels are a special

case of L-path Ricean channels when Qi = Q2 = ... = QL-l = O. Therefore results

for mixed mode Ricean/Rayleigh channels can he easily deduced.
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Expression of the conditional mean when 'fi k CT~ = 0

For sake of simplicity, all CTl are assumed equal, therefore Vr = 1, ... ,L - 1 Cr A

CTIr , where CT = 2CT~. Defining Vt > Tm + TO D~tm(t) = Di~m(t), (3.35b) reduces

to eitm(t)r;tm(t)X~m(t)= X~m(t)D~tm(t). Let À~(t) be the k th diagonal entry of
l ,. Àit (t) , À Ct)

D Îtm (t), then Àk:n(t) =~ which is independent of CT. Let us define Àkm (t) = :è",
where Àkm(t) is given by (3.37). Then À~(t) is also independent of CT as weIl as xik(t).

Renee 'fi t > 0 (3.131a) reduces to

Therefore

(3.164)
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Furthermore, (3.103b) reduces to

From (C.12)

L-l L-l

K.m(s, r) = L ~jm(t)4>jm(s, t)4>jm(r, t) = L CT)..~m(t)Ëm4>jm(S, t)4>jm(r, t)
j=O j=O

Therefore from (C.25)

119

1 ft
lm(s, t) = ICkklSm(s - 'ïk) - 2NoJo ~(s, r)lkm(r, t)dr

L-l L-l 1 1 )..' (t).t.m.
l ,- ( ) ~ \' ()E- ~ Ok lm 2No [me )]-= Ok Sm S - 'ïk - L...J CTI\jm t m LJ _ 'E X lk t

j=O 1=0 V€km(t)Em 1 + U)..lm(t)W;

.l' c/Jjm(S, t)c/Jjm(r, t)c/Jlm(r, t)dr

L-l 1 1 - ()..' (t»)2 §m._ 1 1- ( ) ~ Ok Em lm 2No [m(t)]- A. ( t)- Ckk Sm S -'ïk -u~ È Xlk 'film S,

l=O Y€km(t)Èm 1 + u)..;m(t)~

Hence

where from (3.98-3.99) and (3.165)

.., (t) 2 ft . 2 ft .
Vom(t}e1 Om = No Jo lOm(s, t)e-1Wc~dz(s) = No Jo 10018;'(S - To)e-1Wc~dz(s)•

From (3.164) the conditional mean (3.161) reduces to

V (t) = R {[I(VOm(t» 10 18 (t - Ti )e!t7Otn(t)e!wct}
m [o(VOm(t» 0 m 0

(3.165)

(3.166)
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When C = CT1 = 0, the path gains are not random anymore and are equal to their

mean; only the mst path gain has non-zero mean, hence from (3.1) the received signal

is given by

(3.167)

•

This a typical received signal over a random phase channel. As expected (3.166)

corresponds to the conditional mean found in [21] for a signal corrupted with a random

phase and an additive Gaussian noise such as (3.167).

The limiting case when the specular components vanish resulting in Rayleigh chan­

nels will he investigated next. Section 3.2.2 showed that the matrix X m is a decor­

relating matrix in the case of specular coherent detection. From (3.67), it is seen

that the matrix X m is present in the non-coherent likelihood ratio associated with

the general Ricean channel since r m = X:nUm. Furthermore the dependence on Km
is maintained when the specular components vanish (Rayleigh channels). Therefore

the study of Rayleigh channels will provide confirmation of the decorrelation purpose

of the matrix X m and generally much insight on the operations performed by the

non-coherent optimum receiver for Ricean channels. Furthermore Rayleigh channels

are of significant interest since they model transmission without a line-of-sight, and

as such they represent a severely fading channel.

3.5 Non-coherent optimal decision rule for an L-path

Rayleigh channel

3.5.1 L-path Rayleigh log-likelihood

For a Rayleigh multipath channel, 00 = QI = ... = OL-l = o. The log-likelihood ratio

(3.67) reduces to

In[Am (z; Ta)] = ln (Jm) = 'Y;'u~ [(EmC)-1 + 'Ymr:n] -1 Um -ln[det(I + imEmcr;,.)]

(3.168a)
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(3.168b)

From (3.168a) and (3.168b) , it is seen that the non-coherent optimum receiver for

a multipath Rayleigh fading channel, denoted R OPT, is quadratic in the sampled

matched filter output U m or equivalently in the transform of these samples r m . The

first forro of the log-likelihood (3.168a) is essentially the receiver derived in [84], as­

suming a zero Doppler path shift and Em = J. Similarly to the results of Section 3.2.2

for the SPECCOH scheme, the second form (3.168b) provides an important iDSight

to the operations performed by the non-coherent optimal receiver as seen next.

3.5.2 R OPT over Rayleigh channels: a quadratic decorrelator

For a Rayleigh multipath channel, TI k = 0, ... ,L-l Ok = O. Therefore from (3.45) an

equivalent model for such a channel is given by Hm : z(s) = R {Lt:~ a~Sm(S - Tk)eiwcs }

+w(s), m = 1,2, ... ,!vI, where a~ are zero mean circularly complex Gaussian random

variables with variance E [a~a~· /2] = O'l. Similar to (3.19), the m th hypothesis can

be equivalently expressed (since the linear transformation (3.7) is invertible) as

(3.169)

•

h m (X-1] 19 d" ",L-1' y(lem m N h "l:i. Il (T.)w ere Ykl = m kl an aCm = L,.,k=O a k ";(lm Ykl' ote t at atm = aCm 0

where a~:n(t) is given by (3.52). Under each hypothesis the new random vector

[a~, ... ,a~-1m]T is Gaussian with zero mean and covariance E;;,,1Dm as shawn in

the following, using the proof of (3.20):

19The superscript mis nat an expanent and reCers ta the hypothesîs Hm.



• 3 Receiver structures 122

Therefore, under each hypothesis, the received signal can he represented as a linear

combination of orthogonal functions weighted by uncorrelated Gaussian random vari­

ables, similar to the resolvable multipath case. The log-likelihood ratio for a resolved

multipath Rayleigh fading channel is given by

1'~utn [(EmC)-l + "'(ml] -1 U m -ln [det(l + 1'mEmC )] (3.170)

Note that (3.170) with Em = 1 is presented in [4, 88]. From (3.168b) and (3.170) it is

seen that the Rayleigh channel non-coherent optimal receiver for unresolved multipath

channels consists of an orthogonalization (or decorrelation) stage that transfonns Um

into r m = XmUm and then implements a resolved multipath channel non-coherent

optimal decision rule for r m.

3.5.3 Non-coherent estimator-correlator for an L-path Rayleigh channel

A Rayleigh multipath channel can be viewed as a limiting form of a mixed mode

Ricean/Rayleigh channel, when 0'0 = 0 in addition to al = 02 = ... = oL-l = O.

Hence results of Section 3.4.3 apply. From [21], the likelihood ratio Am(.z; To ) can

he expressed as (3.82) where the conditional mean (3.159a) reduces to

Vm(t) = !R { (2l'1t;"(s, t, t)e-iWCBdZ(S)) el"'c! } =l' h".(t, s)dz(s)

where 1tm(s~ t, t) is given by (3.41) and hm(t, s) = R {21t:n(s, t, t)&"'c(t-s)} is the

unique square integrable solution of (3.28). Following the same method as in Sec­

tion 3.3.3, from (3.161) the conditional mean is also given by

-where from (3.131) and (3.160) a~(t) is given by

•
(3.171a)

(3.171b)
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Since l;jQ~t) is independent of Ok, (3.171b) is weIl defined. Since the problem is

Gaussian, the conditional mean is linear and the estimates of the path gains are MAP

or MMSE estimators. The interpretation of the Rayleigh channel conditional mean is

similar to the interpretation given in Section 3.3.3 and Section 3.4.3 for the Rayleigh

part of Ricean and mixed mode Ricean/Rayleigh channel conditional means except

that the remaining unknown part of the observation y~(s) is equal to the received

signal since there is no specular component.

3.6 Non-coherent optimal decision rule for a 2 Ricean/L-2

Rayleigh channel

3.6.1 2 Ricean/L-2 Rayleigh likelihood

A multipath fading channel is said to be a 2 Ricean/L-2 Rayleigh channel if the

first two path gains are Ricean distributed and the other path gains are Rayleigh

distributed, i.e. ct = [00,01,0 ... ,O]T. For a 2 Ricean/L-2 Rayleigh channel, from

Appendix 8.3.2, the likelihood ratio is given by

Am (z; Ta) = Jm[la (VOm ) la (V{;I) la (Vim)
oc

+ 2 LC -1)PIp (VOm ) Ip (Vi'3) Ip (Vim) cos (p(t?om + t9~ - t9 1m»] (3.172)
p=l

where Jm is given by (3.63), Vkm and {)km are given by (3.73) and (3.74), Vi'lI and t9iô
are given by (3.75) and (3.76). It is seen that the likelihood ratio is independent of

the phase of ct.

3.6.2 Non-coherent estimator-correlator for a 2 Ricean/L-2 Rayleigh
channel

From (0.21) the likelihood ratio over [0, t] for a 2 Ricean/L-2 Rayleigh channel is

given by

Am (z; t) = Jm(t) [10 (VOm(t)) la (v;;: (t»/o(Vlm(t»
oc

+ 2L(-1)PIp(VOm(t» Ip(VW(t)) Ip(Vim(t» cos [p(t9amet)+ 19~(t) - t9 lm(t»)]]
p=l
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•

where Jm(t) is given by (3.93), Vkm(t) and dkm(t) are given by (3.98) and (3.99),

Viëi(t) and 19ib(t) are given by (3.114) and (3.115). From [21}, the likelihood ratio

Am(z; To) can be expressed as (3.82) where from (3.113) (direct method) or from

(3.124a, 3.125b) assuming 02 = ... = OL-l = 0 (Itô differentiation), the conditional

mean for a 2 Ricean/L-2 Rayleigh channel is given by

Vm(t) = !R { (2l rt;. (s, t, t)e-;e.tc·dz(s) + i~ v'km(t)ei";.,..(·)lkm(t, t)ei".m(.)) eie.tc' }

(3. 173a)

= !R { (21' 7-l;'(s, t, t)e-iwc'dy;::'(s)

+ t 10 101 V~(t)ei"~m(·)ei"·m(') sm(t - Tk)) e!wct}
k=O

(3. 173b)

where dy:;i(s) = dz(s) - !R {~Z=o 10,,1 V~(t)ejd~rn(t)ejt1km(t)Sm(S - i")&WCS} ds,

1-lm(s, t, t) is given by (3.41), Vl~(t)ejt1~m(t) is given by (3.112), lkm(t, t) is given by

(3.103) and t9km(t) is given by (3.99).

The interpretation of vm (t) for a 2 Ricean/L-2 Rayleigh channel follows the same

lines of thought as in Section 3.3.3 for an L-path Ricean channel.

3.7 Non-coherent suboptimal receiver structures for a mixed

mode RiceanjRayleigh channel

3.7.1 The SPECCOH over resolved Ricean channels (SPECCOHR)

To assess the improvement due to the decorrelation stage for specular coherent detec­

tion, a receiver similar to SPECCOH except that it does not perform decorrelation

is considered. This is the specular coherent optimum receiver over resolved Ricean

channels (SPECCOHR) whose decision variable is given by (3.21).

3.7.2 The Quadratic Decorrelation Receiver (QDR)

The limiting forms of the log-likelihood ratio of the 0 PT scheme for a mixed mode

RiceanfRayleigh channel help ta design suboptimum structures. Such a structure is
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derived in the following. For extreme values of laol the decision variables (3.156)­

(3.158) can be viewed as linear combinations of ln (Jm ) and V~. Therefore a suboJr

timal receiver based on the functional

(3.174)

is proposed in this thesis where c is a constant to be determined, Jm is given by (3.63)

and YOm = laollbOmI/(u5v'fOm). For large values of 1001, the constant c should vanish

as 1'm increases since in that case the log-likelihood ratio can be approximated by

ln (Jm ). The simplest function achieving this goal is c oc 1';/J. With this, the decision

variable Xm (i; Ta) tends to the true log-likelihood ratio as laol assumes small or large

values. Furthermore since ct has only one non-zero element, YOm cau be written as

(3.155) hence V~ is a quadratic fonn. Thus a family of receivers of the fonn (3.174)

called Quadratic Decorrelation Receivers (QDR) whose decision variables are given

by

(3.175a)

(3. 175b)

•

is obtained. These receivers exploit the decorrelation performed on the input samples

similar to the non·coherent optimal receiver. However, the nonlinear term due to the

specular component is replaced by a quadratic fonn that is more suitable for impIe­

mentation and analysis of performance. Furthermore the QDR requires knowledge of

laol only. It is to be noted that the QDR reduces to Aiken's receiver [84] when the

path magnitudes are Rayleigh distributed and Em = 1.

When the observation interval [0, Ta] is assumed to be much longer than the inter­

path delays (Ta »Tl for alll) and e'm = 1 for alll, the QDR receiver is illustrated in

Fig. 3.6. Calcu1ation of the probability of error for several values of f3 shows that a

good choice is {3 = l.3 [188]. This value gives a low probability of error at high SNR

as well as at low SNR.

The QDR decision variable depends only on ln(Jm ) and YOm. At low 1'm, YOm ~

21'm [utnEU2QtQE~2Um] 1/2, thus it can be seen that the QDR, although suboptimal,

has the property that the decorrelation on the input signal vanishes at low 1'm. Sim­

ilarly to Proposition 3.3.1 in Section 3.3.1, it can he shown that the QDR decision
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variable and the OPT scheme log-likelihood ratio converge almost surely ta the same

term as Tm goes to infinity, Le.

This asymptotical property will also be confirmed analytically and numerically in

terms of the receivers performance in Chapter 4.

3.7.3 The linear estimator-correlator form for the QDR

Over the observation interval [0, To], the decision variable Xm (i; Ta) is given by (3.175a).

Therefore considering an observation intervalof [0, t] instead of [0, Ta], exp {Xm (z; t)} =
Jm(t)g(dm(t),t), where g(dm(t),t)= exp{"Y;I3V~(t)}. Therefore results from Ap­

pendix E can be applied. Let us denote X:n (z; t) = exp {Xm (.i; t)}. Similarly to

the optimum decision rule over mL'"{ed mode Ricean/Rayleigh channels, the function

g{cI.m(t), t) does not depend directly on t, and does not depend either on Vkm(t) ,k =
l, ... ,L - 1 and t9km(t), k = 0, ... , L - l, thus from (3.112), Vl~(t)ej"~m(t) is given

by

V~(t)ei"~m{t} = 0 k = l, ... ,L - 1

8g (dm(t), t) 1 8g (clm(t) , t)

~' ( )ei"~{t) = 8VOm(t) . VOm(t) 8t9Om(t) = 2-lfr (t)
am t 9 (dm(t), t) + J 9 (dm(t), t) ~ Om

i.e. v'Om{t) = -in. VOm{t) d:m,{t) = 0

(3.176a)

(3.176b)

•

Substituting (3.176) into CE.53) yields

dX:" (z; t) = ~oX:" (z; t) [!R{ (2f 'H.;,.{s, t, t)e-i<Jc"dz{s)

+ -in. VOrn(t )lOm{t, t )ei"....(1) ) e1"'c l } ] dz{t) + 'R.2m(t) X:" (z; t) dt (3.177)
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where 1-lm(s, t, t) and lames, t) are respectively given by (3.41) and (3.103) and by

substituting (C.36) and (E.3) into (E.50) 'R.2m (t) is given by

since X:n (.i; t) = Jm(t) exp {"Y,;.BV~(t)}. Therefore from (3.177) dX~ (i; t) is of the

form (3.118), so from Proposition 3.3.2 in Section 3.3.3 and using (3.176b), the linear

estimator of the signal associated with the QDR scheme is given by

t;;;;(t) = R{(21' 1t~(s, t, t)e-i"'''''dz(s) +~ VOm(t)lOm(t, t)ei"om(t)) ei",et}

(3.179a)

= R { (21' 11,;.(s, t, t)e-i"'csdz( s)) ei"'c'} from (3.98-3.100) (3.179b)

where

~(r, s, t) = 1tm (r, s, t) + _~ ~ lOm(r, t)l~(s, t)
lm 0

From (3.178), neglecting integrals containing double frequency terms yields

J. TO 2l To [1 ( 1 ) 1]o 'R.2m (t)dt = No 0 IlOm(t, t)1
2
~ 1 + ~V~(t) - 4 dt

(3.180)

(3.181)

•
Therefore from (3.119) and (3.177), the quasi estimator-correlator form of the QDR

is given by

{
2 rlTo

---- 11To
( )2 M lTo

]}x:n (i; Ta) = exp No lh vm(t) dz(t) - 2 0 vm(t) dt + f 0 'R.2m(t)dt
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or equivalently

2 ri Ta
--- 1 {Ta ( ) 2 N. {Ta ]

Xm (i; To) = No lh vm(t) dz(t) - 2 Jo vm(t) dt + -;} Jo R 2rn(t)dt

129

----where vm(t) is given by (3.179) and R 2m(t) is given by (3.181). From (3.179b) it

is seen that the obtained estimator is linear. Comparing (3.179a) with the lVIMSE----estimate given by (3.159a) shows that vm(t) is obtained by linearizing the nonlinear

scaling factor ~~~~:f:H in (3.159a), yielding a linear estimator (3.179b). Specifically

~~~:~ has been replaced by l, which is equivalent to the approximation

(3.182)

•

sinee II(x) = I~(x). Note that (3.182) has been used to approximate the term

ln [/0 (VOm )] in the log-likelihood ratio of the mixed mode RiceanjRayleigh channel

to obtain the QDR decision variable Xm (z;To). Therefore to each approximation of

the likelihood ratio corresponds an approximation to the ~rrvlsEestimate that yields a

suboptimum estimate. The decision variable obtained by approximation of the likeli­

hood ratio can he expressed as a quasi-estimator-correlator form where the estimate is

given by the corresponding approximation of the MMSE estimate. In general the new

decision variable is not a likelihood ratio. Other suboptimum decision variables can be

obtained by substituting the MMSE estimate in the estimator-correlator form of the

likelihood ratio by an approximation. For example it is shown in Section 3.7.5 that

the decision variable of R 0 PT is obtained when the ~rMSE estimate is replaced by

the linear estimate J~ hm(t, s )dz(s). The linear N[rvISE (LNIMSE) estimator-correlator

over Ricean channels is derived in Section 3.7.6.

To provide insight on the linear estimate used by the QDR scheme, let us consider

its limiting forro when the path resolvability assumption is satisfied over [0, t] (i.e.---(3.58) holds). In that case vm(t) is given by (3.179b) where substituting (3.59-3.61)
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and (3.147) into (3.180) yields
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•

11. ( t t) = ï: 2ulElm(thm sm(s -'Tl) s;"(t - Til
m S, , 1=1 1 + 2ulElm(thm VElm(t)Êm VElm(t)Êm

2CT~€Om(t)im (1 41aol 2
) Sm(S - TO) s:n(t - TO)

+ 1 + 2U6Eam(thm + ,e,2U6(1 + 2U6Eam(thm) VEQm(t)Êm VEam(t)Êm

(3.183)

Snch a linear estimator will he compared to the linear estimator of the L~IMSEscheme

derived in Section 3.7.6.

3.7.4 The Quadratic Receiver (QR)

In arder to assess the performance improvement due to the decorrelation operation

for non-coherent detection, receivers that are very similar ta QDR except that they

do not employ decorrelation are considered. Therefore simple Quadratic Receivers

(QR) that are a limiting fonn of the QDR (3.175) when the multipath is resolved (Le.

when X m = r m = 1) are aIso studied in this thesis. The decision variable for the QR

is then

" . ) 1 2Xm (z;To) = m(Jm +~ YOm

=Î~utn [(Eme) -1 + i ml]-l

.[1 + ,e,~1 (E;{2c)-1 QQt (E;{2Cr1'Ym [(Em C)-1 + 'YmIr1] Um

- Qtim [(EmC)-l +iml]-l C-1a -ln[det(1 +imEmC)] (3.184)

where YOm = laol\ [,m [(EmC)-l +1'ml ]-l Um]ol / (CT5v'€am). The QR's schemes can
he considered as suboptimum receivers with respect to Turin's resolved multipath

optimum receiver [4]. When the path magnitudes are Rayleigh distributed, they

reduce to the optimum receiver for a resolved multipath Rayleigh fading channel.

Calculation of the bit error probabilities shows that for QR, {3 = 0 is best [188] .
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3.7.5 The non-coherent optimal receiver over Rayleigh channels (R OPT)

The non-coherent optimal receiver over Rayleigh multipath channels cau be viewed

as a suboptimal receiver for mixed mode Ricean/Rayleigh channels. Its decision rule

is given by (3.168). Since the Itô differentiation of any Fm(z; t) is independent of

whether the fading is Ricean or Rayleigh, the estimator-correlator fonn obtained

in Section 3.5.3 by Itô differentiation is also vaUd for Ricean cbannels. From Sec­

tion 3.5.3, it is seen that the likelihood ratio Am (z; To) given by (3.l68) can aIso be

expressed as

{
2 [.jTo -- I1TO (---)2 ]}Am (i; T o ) = exp No Jo vm(t) dz(t) - 2 a vm(t) dt

---where vm(t) is a linear estimator given by

where 1tm (s, t, t) is given by (3.41). Note however that for Ricean channels,

f~ hm(t, s)dz(s) is not the wIMSE estimator.

3.7.6 The linear MM8E estimator-correlator (LMM8E)

In this section, the linear MMSE estimator-correlator over Ricean channels is inves­

tigated. This receiver has the following decision rule

{ ~ rJTo
Am (i; To ) = exp No Lk 1ûm(t)lz(s),O $ s $ t, H,;Jdz(t)

-~l To

( "fvm(t)lz(s), 0 < s S t, H"J" Ydt] }

(3.185)

where Tvm(t)lz(s),O < s < t, H;;r is the l\tIMSE linear estimator of vm(t) based on

the observation {z(s),O < s < t}, where z(t) = vm(t) + w(t). Here a form similar to

(3.82) employing the Itô integral is considered.
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Proposition 3.7.1. The linear MM8E estimator-correlator for Ricean channels de­

cision variabLe is given by (3.185) where

lûm(t)ji(s),O < s < t, H;r = l' h;;'(t, s)dz(s) (3.186a)

= !Il { (21'14:(s, t, t)e- jw..dz (s») ei"'e' } (3.186b)
h~(t, s) is the unique square integrable solution of the Wiener Hopf equation

(3.187)

and K~(u,v) 6. E [vm(u)vm(v)] is given by

(3.188)

where K.':n (u, v) 6- E [iim(u)ii~(v)] satisfies

L-l

K.~(u,v) = lCm(u, v) + K::n(u, v) = E(lokl2 + 2unsm(u - Tk)S~(V - Tk) (3.189)
k=O

(3.190)

It can be shown that h~(t, s) = !R {21t,;(s, t, t)eiwc<t-s)} where 1t~(T, s, t) is given by

Ufith ..x;:nCt) and cP;'m(s, t) defined similar to "'m(t), (3.37), and cPlm(S, t), (3.99), except

that they are associated with K:~(T, s) instead of ICm(T, s).•

" 6-1lm (ï, s, t) =

L-l .\;:"Ct)

E 2No A." ( t)A."* ( t)
-~"-""lm T, ""'m S,
1+~l=O 2No

o

o<T,S< t
O<t<oo

else.

(3.191)
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It is seen from (3.189) that the LMMSE estimator-correlator scheme treats the

randomly phase-shifted specular component as an additional Gaussian component

whose power is added to the Rayleigh component.

Proof. As seen in Appendix F.2, the random process vm(s) is zero mean with covari­

ance function K~(r, s) given by

where Km(r, s) is given by (3.5) and from (F.1) K:nCr, u) is given by (3.190).

Following [189, p. 67] and [187, pp. 198-202], a linear estimate of vm('r) at time r

based on the values of the received signal under Hm for the interval of time [0, t] can

be written as

Ttim(T)lZ(S) , 0 < s ~ t, HRJ = Io'It:n(T, s, t)z(s)ds = 10' lt';'(T, s, t)dz(s) (3.192)

where d;"'(r, s, t) is a linear filter and the dependence on the observation interval t

has been introduced as an extra parameter to the filter. The linear l\JIl\tISE estimate

satisfies [187, p. 201], [189, p. 67]

No rr' 1t
rr' " "-nm(r, s, t) + nm(r, u, t)Km(u, s)du = Km(r, s)

2 0

Setting r = t into (3.192) yields

o<r,s< t

Ttlm(t)lz(s) , 0 < s < t, H;;;r = 10' h::'(t, s)dz(s)

where h':n(t, s) a H;"'(t, s, t) satisfies the Wiener Hopf equation (3.187). Q.E.D

•

To compare the linear estimators of the LMMSE and the QDR schemes, let us

consider the special case of resolved mixed mode Ricean/Raleigh channels, where a

simple closed-form solution of H'':'(r, s, t) cau be found. When the path resolvability-----assumption is satisfied on [0, t] (Le. (3.58) holds), vm(t) is given by (3.186b) where
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1t~(s, t, t) is given by

134

(3.193)

•

Equation (3.193) is obtained by noting that since the signaIs Sm(S-TI) are orthogonal,

from (3.189) the eigenvalues and eigenfunctions of ~~(s,u) are respectively equal to

{ (Iod2 + 2ol) f1m(t)Ëm} and { Sm S-Tl} } . Camparing (3.193) with
1=0.....L-l flm(t)Em 1=0•... •L-L

(3.183) shows how the QDR handles the specuJar component close ta the way that

the LMMSE scheme does. Basically the weighting factor in front of the eigenfunction

associated with the first path is different. It is seen that at high SNR, both factors

converge ta one showing that the QDR and the LM~[SE schemes perform the same

operations on the received signal at high SNR and thus yield sunHar performance. At

low SNR however, the factor for the QDR tends ta 4 . €Om(t) 10012 ;~-,8 whereas the

L~IMSE factor tends ta (la ol 2 + 20'5) €Om{t);m.

3.8 Non-coherent suboptimal receiver structure for an

L-path Rayleigh channel: the QR over resolved Rayleigh

channels (R QR)

To assess the improvement due ta the decorrelation stage over Rayleigh channels. a

receiver similar ta R OPT except that it does not perform decorrelation is considered.

This is the Quadratic Receiver for Rayleigh fading channels (R QR) whose decision

variable is based on (3.170). Note that (3.170) is also obtained by setting Ct = 0 into

the QR decision variable (3.184).

Performance of the variaus receivers studied in this chapter will he presented next

aver the two channels of focus, Le. over two-path mixed mode RiceanfRayleigh and

two and three-path Rayleigh channels assuming a long observation intervai and signais

time-limited to [0, Tl .
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Chapter 4

Performance analysis with binary

modulation schemes (F8K, DP8K)

4.1 Performance evaluation

4.1.1 Performance evaluation of the OPT scheme over mixed mode

RiceanjRayleigh channels

The non-linearities of the non-coherent optimum receiver (OPT) for Ricean multi­

path channels, (3.67), make its performance analysis very tedious, if not impossible.

Therefore, upper and lower-bounds for the bit-error probabitity of the OPT scheme

are employed. Upper-bounds are obtained by evaluating the performance of subopti­

mum quadratic receivers such as the QDR (for various fJ), R OPT or QR schemes. For

each SNR, the lowest probability of error among all suboptimum receivers is retained

to provide the tightest upper-bound. An example that considers FSK with frequency

deviation fI - f2 = 1/2T is illustrated in Fig. 4.1. The bit-error probabilities of the

various suboptimum receivers considered in this case are calculated as a function of

the received SNR per bit Eb/No over a two-path mixed mode Ricean/Rayleigh fading

channel. Then, for each value of Eh/No, the minimum among the calculated curves is

used to form the upper-bound for the bit-error probability of the OPT scheme with

FSK signaling. The considered channel is characterlzed by three parameters, S â ~,
C72

K A ';;f and T = Tl - TO. For convenience K is expressed in decibels (dB) and T is

expressed as a percentage of the duration of the signaling waveform, T. More details

on channellabeling are given in Section 4.2.
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---- Bounds for OPT
.-._._.- ROPT

- - - - - QDR (1' = 0.5;1;1.3;1.5)

............. QR (1' =0)

- - OPT over a Gaussian channel
_. - SPECCOH

s= 1, K= 15

10-2

10 15 20 25 30 35 45 50 55

•

Fig.4.1 Performance of FSK signaling with Il - /2 = I/2T over a 2-path mixe<!
mode Ricean/Rayleigh channel (T = O.IT, s = 1 and K = I5dB)

Lower-bounds are obtained by evaluating the performance of the non-coherent

optimum receiver over a Gaussian non-fading channel, and the performance of the

optimum receiver that assumes perfect knowledge of the amplitude and phase of the

specular term over the considered mixed mode Ricean/Rayleigh multipath fading

channel (SPECCOH) from Section 3.2.1. For each SNR, the highest prohability of

error is retained ta provide the tightest lower-bound as seen by the example of Fig 4.1.

Fig 4.1 shows that the lower-bound is equal to the bit-error probability of the Gaussian

channel non-coherent optimum receiver for low SNR, and to the SPECCOH one for

high SNR. This rule is quite general for the cases of this thesis, although the SNR

"threshold" varies with the channel parameters and modulation schemes. For example

for low values of the Ricean parameter, since the SNR "threshold" is very low, the

lower-bound is equal to the performance of the SPECCOH scheme for the entire

range of SNR considered in this thesis. As seen in Section 3.2.1, the SPECCOH
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scheme is aIso quadratic. Therefore, the technique of upper and lower bounding the

performance of the OPT receiver for the various modulation schemes requires the

evaluation of quadratic receivers performance.

4.1.2 Performance evaluation of quadratic receivers

This section presents the method used to compute the bit-error probability of any

quadratic receivers with a Gaussian statistic. This method can he applied to the

SPECCOH, SPECCOHR, QDR, R OPT and QR schemes. Let Xm(z; To ) A Xm he

the decision variable under hypothesis Hm associated with the considered receiver.

When the receiver is coherent as for the SPECCOH and SPECCOHR schemes, the

decision variables employ 8. When the receiver is non-coherent as for the QDR,

R OPT and QR schemes, the decision variables do not use 8. However, in both cases

they may depend on 8 through the received signai. With equiprobable equal energy

hinary signais, the prohability of error (bit-error probability) with 8 held fixed is

1
Pe (8) = 2 (Pr Ctl < X2IHI , 8] + Pr [X2 < XdH2, 9])

1
= 2 (Pr [Xl - X2 < 01H17 8] + Pr [x2 - Xl < OIH2, 8])

1
= 2(Pr[Ll < AI Hl, 8] + Pr[Ll > AIH2 , 8]) (4.1)

where Xl - X2 = Ll - A, a A r t (Q'l 0,) r is a Hermitian quadratic form in jointly
o -Q2

Gaussian random variables, and A is a bias term. The probability of error, Pe is then

obtained by averaging (4.1) over the phases 8. The expressions of Q~,m = 1, 2 and

r for the various receivers studied in this thesis assuming equal energy and a long

observation interval are presented in Table 4.1. The expressions of the bias term A

are presented in Table 4.2.

It is weil known that (4.1) cao be evaluated by inverting the characteristic function,

rp6I Hk(jt) A E [eit~IHk, 8], of Ll [88],
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Table 4.1 Characterization of the quadratic form Â associated with the proba­
bility of error of the various quadratic receivers.
Qm, X m, Q(9), Cl, r m, Um, m = 1,2 are respectively given by (3.16), (3.8), (3.12),
(3.13), (3.14) and (3.18a).

receivers

SPECCOH

SPECCOHR

QDR

ROPT

QR

q'm, m = 1,2

C" = 'Y (C-1+ 'YI }-1

Qm (1 + .,:+1X;'C-laatC-lX?;.Qm )

where 'Y = 'YI = 'Y2

r

(;~)

(;~)

(:~)

The pdf of a is given by the Fourier transform of 'PtiIHtc(jt), and Pr[a < AIBI ,8],

Pr[~ > AIH2 , 9] are obtained by integrating this pdf:

(4.3)

(4.4)

•
where a small positive number E has been inserted in arder to move the path of

integration away from the singularity at z = 0 and allows for the interchange in

the order of integration. The contours Cl and C2 can be closed ta include the left­

half plane without changing the value of the integral (see Fig. 4.2). For Rayleigh
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Table 4.2 Expression of the bias A for the various quadratic receivers.
Dm, m = 1,2 is given by (3.8).
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receivers

SPECCOH

SPECCOHR

QDR

ROPT

QR

A

.!. In (det (1 + "'{Dt})
'Y det (1 + "'{D2 )

o

.!. [ln (det (1 + "(Dl))
Î det (1 + "(D2 )

+CttC-1 {X[V1Q1Xi -XIV2Q2XiLC-ICt]

.!:.ln (det (1 + "'{Dd)
'Y det (1 + "'{D2 )

o

•

channels (Le. r" = 0, "=1.2), 'PAIHk(jt) = [clet (1 - jtR"Q)]-l. Hence in this case

within those positively oriented closed contours Cl and C2 and on those contours

the functions {hk (z) } k=I.2 are analytic except for a finite number of isolated singular

points, namely the eigenvalues of the matrices (RkQ)-l, k = 1,2 plus the pole z = o.
Therefore for Rayleigh channels, the integrals (4.3) and (4.4) can be evaluated by

using the residue theorem [190, p. 89]. The residue theorem states that the integral

of a complex function over a contour is equal ta 21rj times the sum of its residues at

the singular points interior to the contour [190, p. 89]. Then from (4.3) and (4.4)

Pr[a < AIHl ,9] = - E res (h1(z), z = 11;1)
r

,,;1<0

Pr[a > AIH2 ,9] = E res (h2(z), z = T/~-1)
r

,,~-1$0

where 11;1 and TI~-1 are respectively the singular points of h1(z) and h2(z). Moreover,

since all the singular points of hl (z) and h2( z) are in fact finite order poles, the residues
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at those points are easy to evaluate by use of the following fonnula [190, p. 90].
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(h () - ) lim { 1 d!'-l [( )nh ( )]} where n is the orderres k Z ,Z-Zo = Z-Zo k Z
Z-ZQ (n - 1)! dzn - 1 of the pole Zo

Furthermore, since for Rayleigh channels, Q(6) = [0, ... ,O]T, A is independent of 9 for

all the receivers considered in this thesis (coherent and non-coherent) and integration

over the phases 9 is not needed to evaluate the probability of error.

_--_ ~{z}
,.,..- ............, ..,,,,

" Contour Cl .....,,
: Il Il - Il ...

\ TJ;J.-1TJ;/'-:J TJ;l'1~l 1];1 TJ;l 1];/.-z 1];/'

\"- J
------

______ ..: {z}
,,,,,

" Contour C2 .•...,,
R{z}'.' .. - .....

1

1 T/' - l T/' - 1 TI:s' - 1 n'l- T/' - 1TJ' - 1 ' - 1 ' - 1
1 Zl.-l zt.-a ., z -& '1Zl.-Z TJzl.

\'-- .t
------

R {z}

•

Fig. 4.2 Contours Cl and C2 of the residue method used in performance evalu­
ation over Rayleigh channels

In fact in the numerical routine used in tms thesis, Pr[a < AlBI] is not evaiuated

directly. Instead Pr[a' > A'lHtl = Pr[a < AIHI ] is evaluated where a' = -a and

A' = -A. The residues were found using the lVIATLAB routine '"residue". Such

routine can he applied to the ratio of two polynomials. First the poles are found

then the residues are determined by evaluating the polynomial with individual roots

removed.

When rk :f= 0, k = 1,2 (i.e. for Ricean channels), two difficulties arise. First the

probahility of error is generally difficult to obtain analytically because of the compli­

cated nature of the exponential factor in the characteristic function, CP~IHk(jt). Sec­

ondly CP~IHk(jt)generally depends on the phases 8 through the mean rk ~ E [rlHk1 9],

thus in order to evaluate the probability of error, the pdf of ~ needs to be integrated

over a and over the phases 9.

A characteristic function CP~IHk(jt) of the fonn (4.2) may be diagonalized by use
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of the transformation Vk = S'kIr" [89]. For sake of simplicity, the index k will be

omitted in the following, but dependence of Vk on 8 is specified explicitly. The matrix

S is to be chosen such that it diagonalizes the matrix RQ while satisfying S st = R.
Since R is Hermitian, there exists an unitary matrix U 1 which diagonalizes R (Le.

ulRu1 = ReJ). Let R sq be the square root of~ (~= RsqR~q)' R sq exists since R

is positive definite. Form the Hermitian matrix N = R~qUtQU1Rsq. Let U 2 denote

the unitary matrix which diagonalizes the matrix N, U~NU2 = Nd and TIr 6. [Ndl".
The matrix S is gjven by S = U 1RsqU2. The matrices R and Q satisfy R = sst,
Q = (st) -1 N dS- 1 and RQ = SNdS- I

• The diagonalized characteristic function

is given by

(4.5)

•

where v(8) = S-1r and vr(8) = [v(6)]r·
In theory, (4.3-4.4) cao be evaluated by using the residue method. However, as

shown in Appendix G.!, such a method is not practical in that case sinee each residue

eonsists of an infinite series. Therefore, when the multipath component magnitudes

are Ricean distributed, the probability of error will be evaluated by performing nu­

merical inversion of the characteristic funetion.

Now let's consider the dependency of 'P~IHk(jt) on the phases 9. This dependency

is via the mean r. Note that even for the SPECCOH and SPECCOHR schemes, Ris
independent of 8. For a mixed mode Ricean/Rayleigh channel when ooly one single

multipath eomponent is Ricean, it will be shown that 'P6IHk(jt) is independent of 8.

It can he shown that the mean r A E [rIHk , 8] for the SPECCOH, SPECCOHR,

QDR, R OPT and QR schemes is given by the expressions written in Table 4.3.

When all a r are null but one (for example the one eorresponding to the r~h path,

Le. oro # 0), Q(8) = [0, ... ,0, Ctro exp{j8ro}, 0, ... ,OlT, and a,.o exp{j8ro } can be

factored out in r. Then vr(8) satisfies vr(8) 6. [S-1r ]r = [S-l (ara exp{j8ro}r')]r =

ara exp{j8,.o} [S-lr']r where fi is independent of 8. Since Ivr (8)12 is independent of

8, the characteristic function ÎS, in this special case ouly, independent of 8 and from
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Table 4.3 Mean r ~ E [rIHk, 8] of the various quadratic receivers. rkl and rk2

are Lx L matrices defined by [rkzlrj =~ J[o Sk(t - Tr)S'i(t - Tj)dt.
VE"E,
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SPECCOH

(4.5) it is given by

SPECCOHR QDR&ROPT QR

(4.6)

Therefore in order to evaluate the probability of error for the mixed mode channel

it is not necessary to integrate over the phases and, the numerical inversion method

proposed by Imhof in [90] can be used. Instead of the standard inversion formula
Pr[a > AIH21 = ~ fj,,:,,+~ CPAIHa(Z) e-zAd." Imhof uses

2"1 -]OC+~ Z - ,

(4.7)

Substituting (4.6) into (4.7) and using the relations

arg [(1 - jbt)-l] = tan-1(bt)

1(1 - jbt)-ll = (1 + b2t2)-1/2

[ {
jat}] at

arg exp 1 _ jbt = 1 + b2t2

1
{

jat } 1 {abt
2

}
exp 1 _ jbt = exp - 1 + b2t2

the pairwise probability of error Pe2 can be rewritten as

(4.8)

•
where
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2L-l {I 1222}
8 (t) = II (1 + fJ2t2) 1/2 exp Vr Tlr

t
2 ~ r 1+~~
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It is seen that the problem of evaluating a tine integral over a contour is reduced to

evaluating an improper integral of a real funetion (4.8). Furthermore, it appears that

the function Si~~(~~» is quite suitable for numerical integration. An example of sueh

a function is plotted in Fig. 4.3 for the performance of QDR scheme for orthogonal

FSK over a tw<rpath mixed mode Ricean/Rayleigh channel for various reeeived SNR

per bit, Eb/No. Moreover the point at t = 0 is a removable singularity sinee the

function Sj~~~(~~» has a finite limit when t -. o. Sïnce the function t82(t) increases

monotonically towards +00, the integration is carried over a finite range 0 < t < T.

The error of truncation is given by

and can be bounded above by Er, where

T is chosen snch that the error of truncation Er is less than the desired absolute

error. In this thesis, an absolute error of 10-9 is considered. The probability of errar

obtained numerically using (4.8) differs from the true probability of error by the sum

of two errors (not counting rounding-off errors):

• the errar of truncatian eT due to the fact that the truncated integral
.1 rT sin(9t (t» dt is computed instead of the integral 1. roc sio(91 (t» dt
1r Jo t92(t) 1r Jo t92(t) •

• the error of integration e'r due to the fact that the truncated integral is numer­

ically calculated.

To be more precise, the true value of the probability of error can be written as follows:

where lerl < 10-9 , [comp is the numerical value of the truncated integral and e'r is the

absolute error of integration. The value of this error depends on the method used to
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evaluate numerically the truncated integral.

sin(91(t»
t Sit)

-100

delay 't=O.lT, .r= l, K= 13

QDR<1l =1.3)

-150~-"""'-"---"---~-----"-----------~--...Io 0.05 0.1 0.15 0.2 0.25 0.3 0.35 o.~ o.~ 0.5

t
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Fig. 4.3 Graph of the function si~e~lt~) for orthogonal FSK signaliog over a
2-path mixed mode Ricean/Rayleigh channel (T = O.lT, s = 1 and K = 13dB)

As shown in Fig. 4.3 the function Si~~~(g)) contributes to the integral mostly around

t = 0, thus it is appropriate to use non-uniform sub-intervals for integration. The inte­

gration interval [0, Tl is subdivided into sub-intervals chosen by inspection such they

take into consideration the shape of si~~~(g». These sub-intervals depend on T. For

example ifT = 1, the sub-intervals are defined as follows, [0,0.001], [0.001,0.002], ... ,

[0.009,0.01], [0.01,0.03], [0.03; 0.05], [0.05,0.1], [0.1, 0.3}, [0.3; 0.5], [0.5, 1]. H 10 < T <
100, then the first sub-intervals are identical to those with T = 1 and the Iast are

[1, 2], [2, 4), [4, 10], [10, Tl. The MATLAB numerical routine "quad8" is used to eval­

uate all the integrals over the sub--intervals. The probability of error is then the

summation of aIl the sub--integrals. The routine "quad8" uses a adaptive recursive

Newton-Cotes 8 panel rule. The sub--intervals are chosen such that the recursion Ievel

limit of ten is never reached in each of the sub-intervals. The pairwise probability of
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error Pe2 is given by

1 1 N(T) 1 N(T) ,

Pe2 = 2+ ;: L In + ;: L In en + eT
n=l n=l
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where N(T) is the number of su~intervals, In is the computed value of
(Tn+l sin(S (t»lm t8

2
(t) dt (integral over the nth sub--interval) and e~ represents the relative

error associated with calculation of J;'n+l si~~~(g» dt. An estimate of Pe2 is therefore

given by

The absolute error corresponding to the calculation of Pe2 is given by

since lerl < 10-9
• Given the choice of su~intervals, E:lf> IInl < 2.17. This result

was checked numerically for all the curves plotted in this thesis. The program is

designed such that 'V n , 1e~ 1 < 10-9 , hence

N(T)
1 1 ~ 2.17 -9 -9 9

Pe2 - -2 - - LJ In < --·10 + 10 < 1.7 ·10-
"Ir n=l 1r

Therefore the absolute error corresponding to the calculation is less than 1.7 . 10-9 •

Now that the method of evaluation of the probability of error of quadratic receivers

has been explained, let us study (4.8). From (4.8) the probability (cumulative) distri­

bution function (cdf) of a Hermitian quadratic fonn a in Gaussian random variables,

taken at A, is expressed as the SUIn of a constant and an improper integral of a real

function. Beside the advantage of being more suitable for numerical calculation, this

fonn enables us to draw conclusions on the error probabilities of the various schemes

at high SNR as sho\\'"D next.
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4.1.3 High SNR performance comparison of the SPECCOH, OPT, QDR

and R OPT schemes derived from the performance evaluation
analysis

Recall from (3.16) and (3.8) that Qm = 'Y (D;,1 + 'YI) -1, and X m and Dm are

independent of i. Therefore Table 4.1 shows that, as 'Y tends to infinity, the matrix

Q'"., m = 1,2 of the SPECCOH, QDR and R OPT schemes converges to the same

matrix, namely J. Similarly sinee the term ~X:aC-1Q(8),m = 1,2 is deterministic,

as i tends to infinity the vector r of the SPECCOH, QDR and R OPT schemes

converges almost surely to the same vector, namely (~~). Therefore as 'Y tends to

infinity, a for the SPECCOH, QDR and R OPT schemes converges almost surely to

the same quadratic forro a"" = rt ( ~ _~)r = rtr, - r~r2. From (182, p. 20], a""
converges also in probability. Let F..,(x) and Foc{x) be respectively the probahility

distribution functions (edf's) of Â and ~oc' Then at every continuity point x of Foc( . )

the following limit is satisfied [182, p. 23]

lim F.,(x) = Foc(x)..,-oc

which says that ~ converges in distribution. Note that the convergence will be uniform

in any closed interval of continuity of FOQ [191, p. 9]. Considering aoc , and following

the same steps as in Section 4.1.2, similar to (4.8), it can he shown that

where e~ (t, x) and a; (t) are given by

2L-1 [ 1"1 2 " ]" -1" Vr ~t
al (t, X) = L tan (TIr t) + 1 "2 2 - tx

r=O + l1r t

2L-1 {I "12"2 2}a"e )= Il (1 "2 2)1/2 Vr 'TIr t
2 t + TIr t exp 1 + "2t2

r=O TIr

a~ (t, x) is continuous on [0,00) x (-00, (0) and a;(t) is continuous on [0, (0), hence
Sin{ei' (t,z» . t' (0) ( ) H . sincei'(t,z» h fini

te~{t) 15 con muous on ,00 x -00,00. owever smce te;{t) as a te
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limit when t tends to zero, sin~:~ ~:~)) is also continuous on [0,(0) x (-00,00). Let us

show now that 1000 sin~:~~:;%»dt is uniformly convergent for x E [-Aup, Aup], and hence

the continuity of the function Foc(x) on [-AUP1 Aup], where from Appendix G.2

1
(

' ) 1 1 12 L-l"'1 max 00 1 2 '2 2 2 '2
A.p = L ln ~uûn + {2u3J2~ [Ix.ol ~l + IX.oI ~2]

1<Xl sin(S7Ct,x)) -11 sin(S7(t,x)) d ],OC sin(a'; (t, x))
Sil() dt - S"( ) t + ail () dto t 2 t 0 t 2 t 1 t 2 t

(4.10)

Since sin~:~ ~:;Z» has a limit when t tends to zero, the first integral is not an improper

integral. The function te; (t) is continuous for 1 < t < 00, for each x E (-00, 00)

sin~:~ ~:;Z» is continuous in t for 1 < t < 00 and satisfies

sin (e'; (t, x) ) < 1

te~(t) - ta;(t)
where

],

00 dt
1 te; (t) converges

•

hence from [192, p. 454J, fl°O sin~:~~:;Z»dt is uniformly convergent for x E (-00,00).

Note that the convergence of flOC te!(t) cornes from the fact that, since x > y implies

x2(1 + X 2)-1 > y2(1 + y2)-1 ~ ft' te~t(t) can be bounded above by

{
2L-l [V;1 2TJ;2} 1 [2L-l ,,] -1

exp - L 1 +"2 2L II /1Jrl
r=O TJr r=O

For clarity, let us denote A from Table 4.2 as A-y. 1t is shown in Appendix G.2

that for aU Î > 1, A., satisfies lA.,/ < Aup where Aup is given by (4.10). Let us
'd h 1 cl . rval [A A] S· r<Xl sin(e~'(t,z» dt' .__ :1: rml

COnsl er t e c ose rote - up, up' mce JI te; (t) lS WlllO y convergent

Co ( ) d rI sin(e" (t'Z»d • . . al roo sin(e"(t'Z»dLor x E -00,00 an Jo te: Ct) t 15 not an Improper rotegr 'Jo te: (t) t

is uniformly convergent for x E [-Aup, Aup}. Furthermore sin~:~~:;Z» is continuons

on [0,00) x [-Aup, Aup], therefore from (4.9) the function Foo(x) is continuous on

[-Aup, Aup] [192, p. 454]. Hence the convergence of F-y(x) as "Y tends to infinity, is
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uniform. [191, p. 9].

F..,(x) converges uniformly ta Foo(x) on [-Aup, AupJ, for aIl 'Y > 1, A.., E [-Aup , Aup]

and Foo(x) is continuous on [-Aup , Aup], hence

lim F.., (A..,) = FOQ(O)"'-00..,>1

since from Table 4.2 the bias term A.., of the SPECCOH, QDR and R OPT schemes

converges to 0 as "Y tends ta infinity. Therefore the probabilities of error for the

SPECCOH, QDR and R OPT schemes converge ta the same value as 'Y tends ta

infinity. Since the bit-error probabilities of SPECCOH and R OPT are respectively

lower and upper-bounds to the bit-error probabilities of OPT, the bit-error probabil­

ities of SPECCOH and OPT also converge ta the same value as 'Y tends ta infinity.

In other words performance of the SPECCOH! OPT, QDR and R OPT schemes is

similar at high SNR. This behavior is observed on the curves plotted in Section 4.2

when K is not too large. The larger is K, the larger the required SNR ta see this

trend. Note that this asymptoticaI result was aIready illustrated in Section 3.3.1 by

showing that the log-likelihood ratios of the SPECCOH and OPT schemes converge

to the same decision variable as 'Y goes to infinity. Similar proofs can be derived for

the convergence of R OPT and QDR ta OPT.

4.2 Performance over mixed mode Ricean/Rayieigh channeis

for binary FSK and DPSK

Performance of all the receivers studied in this thesis is assessed by calculating their

bit-error probabilities as functions of the received SNR per bit, EhfNo. This section

considers mixed mode RiceanfRayleigh channels. Let us recall from Section 3.4.1

that in such a channel the first path gain is Ricean distributed with fixed component

00 and the second path gain is Rayleigh distributed. Renee for a two-path mixed

mode RiceanfRayleigh fading channel, the received SNR is given by ~ = (2CT5 +
2CTr + 1(012)~ = 20'5(1 + s + K)~ where s = ;f, is the relative Rayleigh component

strength between the first and second path, K = [Q20~2 is the Ricean parameter and ehao
is the energy per bit of the real signal. AIl tw~path mixed mode Ricean/Rayleigh

channels are labeled by the values of their parameters s and K, and the relative delay

between the first and the second path T. For convenience T = Tl - Ta is expressed as
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a percentage of T and K is expressed in dB. Severa! values of one parameter pointing

to the same curve show that corresponding curves overlap or are very close to each

other. For clarity only one of those curves is plotted.

4.2.1 Modulations format

In this thesis commonly used modulation schemes such as variations of FSK and

DPSK are considered. Under Hm, m=1,2 the complex envelope of a FSK binary signal

is

m= 1,2

where lm « le (carrier frequency). FSK modulation with frequency separation fl - 12
is denoted as FSK(v), where v = (fl - f2)T. This thesis will focus particularly on

FSK(I), which is orthogonal FSK, and FSK(1/2). For FSK the observation interval

is equal to T plus the maximum of the channel inter-path delay which corresponds to

a long observation interval of minimum duration. The energy per bit of FSK signais

is given by eb = Èm /2, m = 1,2, Le. ~ = 20'5{1 + s + K)"'(. Both DPSK and SDPSK

[174] will be considered in this section. Under Hl and H2 the complex envelope of a

DPSK binary signal over a tw~symbol interval is

T < t < 2T.

•

Under Hl and H2 the complex envelope of a SDPSK binary signal over a two-symbol

interval is

_ {J2;b O<t<T,
S2(t) = f-

. 2eb T t<2T
J T < - .

Since with DPSK and SDPSK, the transition between the carrier phase of consecutive

bits carnes the information, the observation interval needs to he equal to twice the

symbol duration. Therefore for DPSK and SDPSK, eb = Èm /4, m = 1, 2, Le. l =
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20'5(1 + s + K)t. Note that the present definitions of FSK and DPSK waveforms are

not continuous on the observation interval since they present discontinuities at t = 0

and t = T. However they can be approximated arbitrarily close in terms of Euclidean

distance by continuous complex waveforms on IR with compact support since they

are square integrable functions [175, p. 71]. The support of a complex function f on

a topological space X is the closure of the set {x : f (x) :f: O}. Note finally that the

performance analysis of all quadratic receivers does not use the continuity assumption.

4.2.2 Performance of the SPECCOH, SPECCOHR and OPT schemes

This section considers the performance of the specular coherent optimum

receiver (SPECCOH) and the non-coherent optimum receiver (OPT) over two..path

mixed mode Ricean/Rayleigh channels. Performance of the specular coherent opti­

mum receiver when the multipath is resolved (SPECCOHR) is aIso presented to show

the improvement due to the decorrelation stage. Numerical results are presented in

Figs 4.4-4.13. Figs. 4.4-4.7 consider unresolved two..path mixed mode Ricean/Rayleigh

channels with T = O.IT and various values of the Ricean parameter K. Recall that

the bit-error probability of the OPT scheme cannot be computed exactly. Instead

upper-bounds and lower-bounds are obtained (see Section 4.1.1). These bounds are

represented by solid Unes in Figs. 4.4-4.7, 4.9-4.13. The bit-error probabilities of the

non-coherent optimum receiver over a tw~path Rayleigh channel with s = 1 and

T = O.IT and over a single path non-fading Gaussian channel are added as refer­

ences (respectively dot-dashed and long dashed Unes in Figs. 4.4-4.7, 4.10-4.11). The

SPECCOH scheme bit-error probabilities over two..path mixed mode Ricean/Rayleigh

channels are represented by short dashed lines in Figs. 4.4-4.7. Note that when no

dashed lines appear on the curves, it means that the SPECCOH scheme bit-error

probability is equal to the lower-bound ta the OPT bit-error probability on the entire

range of received SNR presented in this thesis.

The OPT scheme assumes knowledge of the specular term only in terms of its

magnitudes, while the SPECCOH scheme assumes knowledge of the magnitudes and

phases of the specular term. Therefore the importance of the knowledge of the Ricean

specular term phase will be assessed by comparing performance of the SPECCOH and

OPT schemes. The influence of the parameter s is considered in Section 4~3. The

performance analysis of this section will be restricted to channels where the Rayleigh

components of the path gains have equal strengths (i.e. s = 1). For most of the graphs,



4 Performance analysis with binary modulation schemes 151

55504540

delay t =O.lT, s= 1
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Fig.4.4 Performance of the SPECCOH and OPT schemes with FSK(l) signaling
over 2-path Ricean/Rayleigh channels (T = O.IT, s = I and K = 5-20dB)
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the inter-path delay is chosen to he O.IT corresponding to a completely unresolved

channel. The influence of the parameter K and the modulation scheme on the bit-error

probabilities over a channel with an inter-path delay equal to O.05T is quite close to

the results observed with T = O.IT, therefore only a few examples with T = O.05T

will be provided.

Figs 4.4-4.7 show that the performance of the optimum receivers (SPECCOH and

oPT) improves as the Ricean path dominates the Rayleigh path but is still worse

than the performance over a Gaussian channel. Such behavior was to he expected

since as K increases the channel fluctuations in amplitude are more dominated by the

Ricean specular component of the first path; tending to a Gaussian channel. It is

seen that when K is less than 5dB relatively small gains are obtained as compared

to the performance over a two--path Rayleigh fading channel. On the other hand

when K is larger than 20dB the bit-error prohabilities are very close to that of the
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Gaussian channel. Therefore sets of curves where K is held fixed will he presented for

intermediate values of Kt in the range 10-15dB.

To assess the effect of the decorrelation operation on the performance of specular

coherent receivers, the bit-error probabilities of the SPECCOHR scheme are pre­

sented in Fig. 4.8 for FSK(lj2) and DPSK with K = 10, 15dB with dashed tines.

For purpose of comparison, corresponding bit-error probabilities of the SPECCOH

scheme are plotted using solid lines in Fig. 4.8. Fig. 4.8 shows that with FSK(lj2)

and DPSK the SPECCOHR scheme yields error floors which are eliminated by the

SPECCOH scheme. This shows the importance of the decorrelation operation to

handle path unresolvahility for specular coherent detection. From Figs 4.4-4.7, the

bit-errar probabilities of the OPT scheme have no error floor similar to the bit-error

prohabilities of SPECCOH. This suggests that the decorrelation operation may also

eliminate error Boors for optimum non-coherent detection. As shown later in Sec-
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tion 4.2.3 such observation is verified for suboptimum non-coherent detection, where

curves of the QDR and QR schemes, two suboptimal receivers respectively with and

without decorrelation, are presented.

Next let us assess the effect of the knowledge of the Ricean specular term phase

on performance by comparing the bit-error probabilities of the OPT and SPECCOH

schemes. Table 4.4 provides typical examples of the SNR gains that can he obtained

by using SPECCOH instead of the OPT scheme. For a given bit-error probability

of the SPECCOH scheme (Pe ), the numbers in Table 4.4 quantify the maximal SNR

gains evaluated based on the upper-bounds ta the bit-error probabilities of the OPT

scheme. Using exact bit-error probabilities of OPT, these numbers would be less. SNR

gains greater than 2dB are set in boldface indicating cases where specular component

phase estimation may yield significant improvement. Three bit-error probabilities are

considered, 10-3 typical of speech transmission error tolerance and 10-6 , 10-8 appli-
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Fig. 4.7 Performance of the SPECCOH and OPT schemes with SDPSK signaling
over 2-path Ricean/Rayleigh channels (T = D.IT, s = 1 and K =5-2DdB)

cable for data transmission. Table 4.4 and Figs. 4.4, 4.6 show that little performance

gains can be obtained for FSK(l) and to a lesser extent for DPSK by using a receiver

that assumes knowledge of the magnitude and phase of the specular tenn instead of

the knowledge of only its magnitude (for example maximal gain of ~ 0.2-0.7dB for

FSK(l) and 0.8-1.2dB for DPSK at Pe = 10-6 ). As the probability of error decreases

(or equivalently as the received SNR per bit increases) lower gains are obtained. Lower

gains are aIso obtained for lower values of K. These observations along with the diffi­

culties inherent to phase estimation further justify the use of non-coherent detection

for FSK(l) or DPSK especially at high SNR. It may be argued here that the forro.

of the OPT scheme is much more complex than the SPECCOH scheme. However, as

shown by Table 4.4, the 1055 in performance obtained with the QDR scheme compared

ta SPECCOH is also small. And the QDR scheme is a much simpler non-coherent

scheme that is quite suitable for implementation and aIso does not assume knowledge
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of the specular term phase. Table 4.4 and Figs. 4.5, 4.7 show, however, that significant

gains can be obtained for FSK(I/2) and SDPSK by the knowledge of the specular

component phase (for example maximal gain of 3dB at Pe = 10-3 with K = 13dB and

1.8dB at Pe = 10-6 with K = 15dB for FSK(I/2), 1.5dB at Pe = 10-3 with K = 10dB

and 1.8dB at Pe = 10-8 with K = 13dB for SDPSK). Significant gains larger than

3dB are also obtained for FSK(I/2) with K = 20dB showing that the use of coherent

detection may be justified for FSK(lj2).

Note that sunHar results (observation of little performance gains with specular

term phase estimation at high SNR and lower gains with lower values of K) had been

already obtained over one-path Ricean channels for binary signaling with complex

cross-correlation coefficient magnitude ClpààD varying from 0 to 0.95 [193J and for bi­

nary orthogonal signaling (pM = 0) [194]. The convergence of specular coherent and

non-coherent performance at high SNR was explained as follows [194]. The noiseless
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Table 4.4 SNR gains (in dB) obtained by SPECCOH compared to OPT and
QDR. K is expresse<! in dB. For the comparison between the OPT and the SPEC­
COB schemes, these gains are "best case" gains since they are obtained using the
upper-bounds to the bit-error probabilities of the OPT scheme.

156

1 SNR gains in dB 1 FSK(l) 1

1 1~e •~ - 1 10 13 15 1 10

FSK(I/2)

13 15 20 10

DPSK 1 SDPSK

13 15 1 10 13 15

•

10-3 0.5 1.2 1.3 1.3 3.0 3.6 4.1 1.4 1.4 1.3 1.5 1.4 1.3
SPECCOH 10-6 0.2 0.7 0.5 0.5 0.8 1.8 3.7 0.8 1.2 1.2 1.2 1.5 1.2

/OPT 10-8 ~O 0.4 0.6 0.2 0.1 0.9 3.5 0.3 0.9 1 0.4 1.8 1.4

10-3 0.5 1.2 1.3 1.5 3.2 4 4.3 1.4 1.4 1.3 1.6 1.4 1.4
SPECCOH 10-6 0.2 0.9 0.5 0.6 1.3 1.9 4.3 0.9 1.5 1.3 1.2 1.7 1.2
/QDR(1.3) 10-8 ~O 0.4 0.6 0.2 1.1 0.9 4.3 0.3 1.4 1 0.4 1.8 1.4

received signal over the Ricean channel is the sum of a fixed component with a fixed

phase and a random component with a uniform phase. Therefore the phase of the

received signal has a contribution from the random component, 50 knowledge of the

phase of the specular term provides ooly partial information. The two detection tech­

niques provide closer performance results at high SNR since in that case the fading is

causing the most degradation. Note that in [193}, the convergence is said to be better

for large Ip~l. It can be shown by plotting the bit-error probabilities for FSK with

severa! cross-correlation coefficients that the convergence for FSK(lj3) (lpMI ~ 0.8)

is better than the convergence for FSK(lj2) (Ipâàl ~ 0.6) illustrating this statement.

However a similar plot for FSK(l), FSK(2j3) and FSK(lj2) shows that the conver­

gence for FSK(l) (lpMI = 0) is better than the convergence for FSK(2j3) (lpMI ~ 0.4)

itself better than the convergence for FSK(lj2) (lpMI ~ 0.6). Such observations agree

with results found for mixed mode RiceanjRayleigh channels, ",here the convergence

for FSK(l) was shown to be much better than the convergence for FSK(lj2).

Fig. 4.9 presents the upper and lower-bounds to the bit-error probabilities of

the OPT scheme with FSK(l), FSK(1/2) and OPSK over a two-path mixed mode

RiceanjRayleigh channel. For clarity, the bit-error probabilities of SOPSK which are

very close to those of OPSK are not plotted in Fig. 4.9. Performance of the QDR
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scheme ({3 = 1.3) is added as an indication to the performance of a receiver more

suitable for implementation. A more thorough study of the QDR scheme will he done

in Section 4.2.3. It is seen that DPSK (and SDPSK) detected with the OPT scheme

give the best performance. At high SNR DPSK gives at least 3.6dB improvement

compared to FSK(1/2) and at least 4.2dB compared to FSK(1) in the error probabil­

ity range 10-5 - 10-8 • However 3dB are gained because the observation interval used

with DPSK is twice the one used with FSK. From Fig. 4.9, it is seen that at high

SNR (Eb/No > 23dB), performance of the OPT scheme is better with FSK(1/2) than

with FSK(1). On the other hand, for lower SNR (Eb/No < 19dB) FSK(l) performs

better. For a SNR between 19dB and 23dB, the lower and upper-bounds for FSK(1)

and FSK(1/2) yield ranges of possible values of the bit-error probabilities that overlap

thus no conclusion can be made on which frequency deviation gives better results.

Fig. 4.9 a1so shows that the two bounds for the probability of error of OPT are
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less tight for FSK(I/2) than for FSK(I). This can be explained intuitively as follows.

When considering one-path Ricean channels, the probability of error for coherent de­

tection depencls only on the real part of the cross-correlation coefficient [193]. Hence

FSK(I) and FSK(I/2) with coherent detection have the same probabilities of er­

ror. Furthermore at high SNR, the best modulus of the signal cross-correlation for

non-coherent detection based on numerical performance curves is zero [193]. There­

fore FSK(1/2), that has a non-zero signal cross-correlation, performs worse than

FSK(l) with non-coherent detection. Consequently the gap between coherent and

non-coherent detection over one-path Ricean channels is smaller for FSK(1) than for

FSK(1/2). Over two-path mixed Ricean/Rayleigh channels, one can extrapolate that

a similar behavior occurs with respect to the knowledge of the Ricean specular term

phase. Comparing in Fig. 4.9 the lower-bounds to the OPT scheme bit-error pro~

abilities with its upper-bounds at high SNR shows that this is the case. Note that

based on Fig. 4.9 comparison can be done only at high SNR since in that case the

performance curves of the SPECCOH scheme match the lower-bounds. Here high

SNR means EblNo > 8dB for FSK(I) and Eb/No > 14dB for FSK(I/2). Further­

more, this comparison provides ooly partial information since the upper-bounds are

bit-error probabilities of non-coherent suboptimum receivers that yield higher bit­

error probabilities than the OPT scheme. Therefore the gap between the OPT and

the SPECCOH bit-error probabilities will he smaller than seen in Fig. 4.9. For all the

modulation schemes considered here, although it is dearer for FSK's, there is always

a regjon of intermediate SNRs where the bounds are less tight. This regjon corre­

sponds to the range of SNRs where the suboptimum receivers derived in this thesis

are the most suboptimum compared to the OPT scheme. Therefore the proposed

upper-bounds are less tight in that regjon. Furthennore as seen in Section 3.3, the

SPECCOH and the OPT schemes tend to the same receiver at high SNR, hence the

lower-bounds are also more tight at high SNR.

Fig. 4.10 and Fig. 4.11 present the bounds to the OPT scheme bit-error probabili­

ties for FSK(l) and DPSK when the inter-path delay is equal to O.05T. These figures

should be viewed in the same context as Fig. 4.4 and Fig. 4.6. They show that the

bit-error probabilities with T = O.05T are quite similar to those with T = O.IT with a

similar influence of the Ricean parameter K.

Fig. 4.12 presents the bounds to the OPT scheme bit-errar probability for FSK(l)

over twO-path mixed mode Ricean/Rayleigh fading channels with K = 13dB and
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Fig. 4.10 Performance of the OPT scheme with FSK(l) signaling over 2-path
Ricean/Rayleigh channels (T = O.05T, s = 1 and K = 5-20dB)

varions inter-path delays T. A resolved channel corresponds to T = T. From Fig. 4.12,

it is seen that for Eb/No < 17.3dB, the hounds are not sufliciently tight hence no

conclusion can he made on the influence of T on the bit-error probabilities. In the

following discussion, Eb No > 17.3dB will be considered. Fig. 4.12 shows that the

bounds are very tight for very sma1l inter-path delays such as O.IT. When the channel

inter-path delay is increased, the bounds hecome looser and looser until T = O.5T is

reached. If the channel inter-path delay is further increased, the bounds become

tighter; however even for resolved multipath channels they are less tight than for very

small inter-path delays. From Fig. 4.12, it is seen that performance improves as the

inter-path delay increases. This was to be expected since as the channel inter-path

delay increases, the interference between the direct path and the first echo decreases

leading to an improvement in performance. Fig. 4.12 also shows that the performance

improvement is not linear. Considerable gains are obtained when the inter-path delay
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Fig. 4.11 Performance of the OPT scheme with DPSK signaling over 2-path
Ricean/Rayleigh channels (T = O.OST, s = 1 and K = 5-20dB)
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increases from O.IT to 0.3T (a minimum of 7dB gains at Pe = 10-7), but less gains are

obtained as the inter-path delay increases from 0.5T to T. For example at Pe = 10-7

an unresolved channel with ï = 0.77' requires at most an additional 1.5dB SNR

gain compared to a resolved channel (ï = T). For clarity of Fig. 4.12, curves with

T = 0.7T are not plotted. Lower degradation between O.IT and 0.3T is obtained with

FSK(1j2) (less than 1.7dB). This nonlinear improvement with the channel inter-path

delay is related to the expression of the cross-correlation coefficients and the way

they influence the expression of the bit-error probability. The very low performance

improvement as the channel inter-path delay increases from 0.5T to T has also been

obtained in [85, 102] for tw~path Rayleigh channels and varions degrees of channel

knowledge. It is seen from Fig. 4.12 that the bending of the curves for FSK(1) is

due to unresolvability sinee for ï > O.5T, the bending disappears. Fig. 4.13 presents

the bounds to the OPT scheme bit-errar probability for DPSK over tw~path mixed
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Fig. 4.12 Performance of the OPT scheme with FSK(I) signaling over 2-path
Ricean/Rayleigh fading channels (T =O.IT - T, s = 1 and K = 13dB)

mode Ricean/Rayleigh channels with K = 13dB and several inter-path delays. Since

the observation interval for DPSK is twice that of FSK, T = 2T corresponds to a

resolved multipath channel. Sîmilarly ta FSK(1), there are some SNR ranges where no

conclusion can he made. For example for Eb/ No < 18.3dB, Fig. 4.13 does not enable

us to compare the performance of the OPT scheme for T = Q.05T with its performance

for 1 = O.IT. Fig. 4.13 shows that the bounds are loose for very small inter-path delays

such as O.05T or O.lT. When the channel inter-path delay is increased, the bounds

become tighter and tighter until T ~ lAT is reached. If the channel inter-path delay is

further increased, the bounds become 1005er. Fig. 4.13 shows that the influence of the

inter-path delay on DPSK performance is quite similar to that previously observed

for FSK(l) (nonlinear performance improvement as the inter-path delay increases).

More important, it is seen that the degradation in performance to unresolvability is

not very severe (less than 2.1dB at Pe = 10-4 and less than 2.5dB at Pe = 10-7 ) for
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DPSK with T > 0.5T. Similar behavior was ohserved for SDPSK (less than 2.1dB at

Pe = 10-4 and less than 2.9dB at Pe = 10-7).
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Fig. 4.13 Performance of the OPT scheme with DPSK signaling over 2-path
Ricean/Rayleigh fading channels (T =O.OST - 2T, s = 1 and K = 13dB)
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To summarize, it is seen that similar to the SPECCOH scheme, the OPT scheme,

that assumes knowledge of the specular term magnitude but not of its phase, pr~

vides good performance over unresolved multipath mixed mode Ricean/Rayleigh fad­

ing channels without any error floor. For FSK(l) and to a lesser extent for DPSK,

at sufficiently high SNR, the loss in performance due to the lack of knowledge of the

specular term phase is quite small (O.2-0.7dB 10ss with FSK(l) and 0.8-1.2 dB loss

with DPSK, at Pe = 10-6 ), not justifying the use of additional complex phase esti­

mation processing. The higher the SNR, the smaller the degradation. For FSK(1/2)

and SDPSK the degradation in performance is overalliarger (0.5-1.8dB for FSK(1/2)

and 1.2-1.5dB for SDPSK at Pe = 10-6 ). Furthermore losses greater than 2dB are

ohtained at Pe = 10-3 for FSK(1/2). Therefore the OPT scheme could he of interest
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for modulation schemes such as FSK(I) and DPSK. If the system is operating at very

high SNR it could also he of interest for FSK(lj2) and SDPSK. However the OPT

receiver is difficult ta implement. Performance of suboptimum receivers more suitahle

for implementation, such as the QDR schemes is studied next.

4.2.3 Performance of the QDR, R OPT and QR schemes

This section considers the various non-coherent suboptimum receivers derived in

Chapter 3 namely the QDR, R OPT and QR schemes. Numerica! results are pre­

sented in Figs. 4.14-4.23. As seen in Sections 3.7.2 and 3.7.4, the QDR and QR

schemes depend on a parameter {J. Figs. 4.14-4.17 present the probability of error of

the various modulations schemes with QDR and QR for severa! values of the param­

eter {J. To give an indication on the impact of K on the effect of /3, Fig. 4.14 and

Fig. 4.15 consider a channel with K = 13dB whereas Fig. 4.16 and Fig. 4.17 consider

K = 15dB. The error range is chosen ta be 10-2 - 10-8 since outside this range

aIl QDRs perform the same. The probability of error with R OPT is included as a

reference. The importance of the choice of the parameter {3 is shown by Figs. 4.14­

4.17. From these figures it is seen that there is no single value of /3 that gives the

best performance over the entire range of SNR. However Fig. 4.14 and Fig. 4.15 show

that {J should not be chosen too small (Le. less than unitY) since in that case the

R OPT scheme which does not use the knowledge of the specular term outperfonns

the QDR scheme. Assuming a fixed value of {3, the best that could be found for the

QDR schemes is /3 = 1.3. This value gives a low probability of error at high as weil as

at low SNR for aIl the modulations schemes considered. The value /3 = 1.3 is chosen

such that the performance degradations of the QDR scheme (/3 = 1.3) with respect

to the best QDR scheme for each received SNR per bit are as low as possible. For

example {3 = 0.5 is not a suitable value since for intermediate value of the received

SNR, the 10ss with respect ta QDR ({3 = 1, 1.3, 1.5) is Dot negligible as seen from

Fig. 4.14. Note that the choice of {3 is more important for middle range of the Ricean

parameter K such as K = 13dB. For example, Fig. 4.16 and Fig. 4.17 show that the

probability of error is less dependent on the value of the parameter {3 for K = 15dB

than for K = 13dB in the error range of 10° - 10-8 considered in this thesis. It is to

be anticipated that {3 has a greater influence for higher SNR. Similarly, as K decreases

(i.e. the channel tending towards a Rayleigh channel), the term in the QDR schemes

decision rule that depends on {3 decreases, hence the value of {3 is also less important
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in that case. The dashed lines in Figs. 4.14-4.17 show that the performance of the QR

scheme improves as {3 decreases thus the best that could be found for the QR scheme

is /3 = o. In the following, when the QDR and QR schemes are considered (assuming

fixed {3), {3 are respectively set to these two "best" values ({3 = 1.3 and /3 = 0).
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Fig. 4.14 Performance of QDR schemes (/3 =0 - 1.5) with FSK(I/2) signaling
over a 2-path Ricean/Rayleigh fading channel CT =O.IT, s = 1 and K = 13dB)
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If the parameter {3 is allowed, however, ta assume severa! values, a receiver with

improved performance can be designed. Specifically, let us consider the multi-receiver

scheme (MQDR), composed of the QDR (with the possible values of /3: 0.5, 1, 1.3, 1.5),

the R OPT and the QR ({3 = 0) schemes, that can select a particular scheme for

each received SNR per bit (Eb/ No). Tables 4.5-4.8 give guidelines for selecting the

appropriate scheme for each E,,/No with the four modulations schemes considered in

this thesis. These tables are closely related to the upper-bounds curves of Figs. 4.4­

4.7, since the upper-bounds curves were calculated by selecting for each received

SNR per bit the scheme that gave the lowest probability of error. Tables 4.5-4.8
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indicate, for each value of K and for each received SNR expressed in dB, which scheme

should he selected. The maximum received SNR per bit considered in these tables

corresponds either to the SNR where the bit-error probability reaches 10-8 - 10-9

similarly to the graphs or to 45dB (whichever is lower). For some particular received

SNRs per bit, severa! receivers are indicated in the tables. Explanations follow. Recall

from Section 4.1.2 that the bit-error probabilities are numerically evaluated with an

absolute error less than 1.7.10-9 • Let us consider two receivers REC1 and REC2 with

respectively exact bit-error probabilities P; and P:. Let P; and P;' be the computed

values of P; and P;'. HP; - p;' > 3.4 . 10-9 , then P; - P;' > 0 and REC2 should be

selected. Similarly if P; - P;' < -3.4· 10-9
, then P; - P;' < 0 and REC1 should be

selected. However if 1fi; - P;' 1 < 3.4 . 10-9 , due to the presence of an absolute error,

the numerical results do not enable us to conclude which re':eiver is better. In that

case both receivers are indicated for that particular received SNR per bit since based
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Fig. 4.16 Performance of QDR schemes ({3 = 0 - 1.5) with FSK(l) signaling
over a 2-path RiceanfRayleigh fading channel (T =O.IT, s = 1 and K = 15dB)

on the accuracy of this thesis computation, theyare equally good. The receiver name

is set in boldface if the receiver to be chosen has a bit-error probability lower than

the bit-error probability of the next best receiver by at least 10%. More precisely, let

us assume that REC1 is the best receiver and REC2 is the next best receiver. REel
is set in boldface if P; and p~' satisfy

-, -ff -9
Pe < 0.9Pe -1.7· 10 ·2.1 or equivalently

Aff -, -II -9
Pe - Pe > O.lPe + 3.57 ·10

•
This ensures that the exact probabilities satisfy

In case severa! schemes should be selected for a particular received SNR (Le. for

1p~ - P~k) 1 < 3.4· 10-9
t k = 1, 2, ... ), all these schemes are considered equivalent
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Fig. 4.17 Performance of QDR schemes «(3 = 0 - 1.5) with SDPSK signaling
over a 2-path RiceanjRayleigh fading channel (T =O.lT, s = 1 and K = 15dB)

•

and comparison is with the next best receiver, excluding the equivalent ones. If

these receivers perform better than the next best receiver by 10%, all of them are

set in boldface. And one of the boldface receivers can be arbitrarily selected. For

convenience, a QDR scheme with {J = 0.5 is denoted as QDR ({J = 0.5) or QDR (0.5)

for short. Inside the tables, the name of the receiver is written in smaller font when

it is selected by the MQDR scheme for less than two consecutive received SNR per

bit values.

Tables 4.5-4.8 show that for all the modulations schemes except for DPSK and

SDPSK with K = 5dB, the best receiver at low SNR (roughly for a received SNR

per bit up to the value of K) is the QR scheme. However the performance of

QR ({3 = 0) is less than 10% better than the other receivers (QR (0) is not in bold­

face). As shown in Section 3.4.1 at low SNR the decorrelation operation vanishes for

the mixed mode Rice'W 'Rayleigh non-coherent optimum receiver (OPT). This may
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EblNo (dB) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 43 45
K:::: SdB 1 QDR (0.5) 1 QDR's &. ROPT

QR (0) QDR (1.5)
QDR

K= 15dB
(1.3,1.5)

QR (0)
QDR's

ailK = 20dB QR (0)

K = IOdB QDR (1) QDR (0.5) QDR's &. R OPT

K = 13dB QDR (1) QDR (1)
QDR (1,1.3,1.6)

QDR's &. R OPT
ROPT

K :::: 15dB
QDR (1,1.3,1.5) QDR (1,1.3,1.6)

QR (0) ft OPT AI: QR (0)

Table 4.5 Selection of the suboptimum receiver in MQDR as a function of Eb/No for FSK(I)
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Eb/No (dB) 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 43 45
K = 5dB 1 QDR (0.5) f QDR (0.5,1) 1 QDR's &. ROPT

K= 5dB QR (0) QDR (1.5)
QDR

QDR (1) QDR (0.5)
( 1.3)
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QDR QDR QDR
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K = I3dB QR (0) QR (0)
QDR Qoa QDR QDa QDR

QDR (1)
(1.5) (1.5) (1.3) (1.3) (1)

K = I5dB QR (0) QR (0) QDa (1.5)
QOR QDR

(1.3,1.5) (1.3)
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Eb/No (dB) 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 44 45

K =5dB 1 QDR (0.5) 1 QDR's 1 QDR's & ROPT 1
K = IOdB r QDR (0.5) r QDR (0.5) , QDR's f QDR's &. R OPT ,

QDR QOR

K= 5dB
(1.5)

QDR (1) QDR (0.5)
( l.3)

K = IOdB QR (0) QDR (1.5)
QOR QDR QOR QDR QOR QDR
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(1.3) (1) (1 ) (1) (1 ) (0.5)
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( I.J) (1 ) (0.5,1)

K = 15dB QR (0) QR (0)
QR

QDR (1.5)
QDa QOR QOR

(0) (1.3,1.5) (I.J) ( 1,l.3)

K = 20dB QR (0) QR (0)
QDR'.

ROPT. QR (0)

Table 4.7 Selection of the suboptimum receiver in MQDR as a function of Eh/No for DPSK
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Table 4.8 Selection of the suboptimum receivcr in MQDR as a functioJl of Eh/No for SDPSK

Eb/No (dB) 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 43 45
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explain why the QR outperforms the QDR schemes in some cases since the QR does

not employ decorrelation. As Eb/No increases, the QDR schemes outperform the QR

scheme for all the modulations schemes, and the best QDR scheme becomes suc­

cessively, QDR (P = 1.5), QDR ({3 = 1.3), QDR ({3 = 1) and QDR ({3 = 0.5). The

corresponding SNR ranges of each scheme depend on both K and the modulation

scheme. For larger values of K, the threshold SNR from which QDR ({3 = 1.5) out­

performs QR (f3 = 0) is higher. For example for FSK(1), this threshold is equal ta

9dB for K = 5dB and to 13dB for K = 10dB. At very high SNR (for example

FSK(1): Eb/No > 37dB for K = 5dB and Eb/No > 38dB for K = 10dB or DPSK:

Eb/No > 32dB for K = 5dB and Eb/No > 3IdB for K= 10dB), all the QDR schemes

and the R 0 PT scheme perform the same (given the tolerance error of the results)

and they all outperform the QR scheme by a large value. This gives another indi­

cation of the importance of using receivers specially designed to handle multipath

non-resolvability siDce the QDR and R OPT schemes include the decorrelation opera­

tion whereas the QR does note These similar performances were to be expected since

at high SNR, the QDR's receivers and the R OPT scheme converge to the same re­

ceiver structure. Let us cODsider Dext the case of DPSK or SDPSK with K = 5dB and

low SNR. From Tables 4.7 and 4.8, it is seen that at low SNR (Eb/No ~ 5-6dB) the

best receiver is not QR ({3 = 0) but QDR ({3 = 1.5). This is due to the fact that a low

SNR for (S) DPSK with K = 5dB means a received SNR per bit lower than the value

of K. But as the received SNR per bit increases, the selection of the best suboptimal

receiver for (S) DPSK follows the same pattern as the other modulation schemes or

as (S) DPSK with other values of K follow (i.e. as Eb/No increases the best receiver is

QDR ({3 = 1.3), QDR ({3 = 1) and QDR ({3 = 0.5». Note that sunHar tables consider­

ing the QDR schemes alone show that except for K = 5dB, as Eb/No increases, the best

QDR scheme becomes successively QDR ({3 = 0.5), QDR ({3 = 1.5), QDR ({3 = 1.3),

QDR (f3 = 1) and QDR (P = 0.5). At high SNR, aU the QDR schemes perform the

same, 50 the choice of {3 is not important in this case. For K = 5dB, the best re­

ceiver among the QDR schemes is QDR ({3 = 1.5) and as Eb/No increases, the best

receiver is successively QDR (P = 1.3), QDR (f3 = 1) and QDR (P = 0.5) similarly to

the sequence for other values of K.

Fig. 4.18 presents the bounds to the bit-error probabilities of the OPT scheme and

the exact bit-error probabilities of QDR ({3 = 1.3) with FSK(l) and DPSK signaling

over tw~path mixed mode Ricean/Rayleigh channels with K = 10, I5dB. Fig. 4.19
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Fig. 4.18 Performance of FSK(l) and DPSK signaling over 2-path
Ricean/Rayleigh fading channels (T =O.lT, s = 1 and K = 10, 15dB)

•

presents similar curves for FSK(1j2) and SDPSK. Figs. 4.18-4.19 confirm the design

specifications of the QDR scheme, particularly the fact that the QDR converges to

the OPT scheme at high SNR as is explained in Section 3.7.2. However the required

received SNR per bit increases with increasing K and depends on the modulation

scheme. In the range of error probabilityof 10° - 10-8
t the QDR is doser to OPT

for sma1ler values of K and for FSK(l) and DPSK. Table 4.9 gives the SNR losses (in
dB) yielded by the QDR ({3 = 1.3) compared to OPT at probabilities of error of 10-3 ,

10-6 and 10-8 • Note that these losses are calculated with respect to the lower-bounds

to the bit-error probabilities of the OPT scheme. Since the true bit-error probabilities

of the OPT scheme lie between the two bounds, the actuallosses are smaller. SNR

losses greater than 2dB are set in boldface.

Fig. 4.18 shows that for FSK(I) and DPSK the losses yielded by QDR C{3 = 1.3)

compared to the OPT scheme are not tao severe at moderate high SNR (for exampie
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for Eb/No > 15dB maximum losses of IdB for FSK(I) and 1.4-1.6dB for DPSK).

However as shown in Fig. 4.19 and Table 4.9, QDR (/3 = 1.3) exhibits larger losses

compared to the OPT scheme for FSK(I/2) (2.8dB{Pe = 10-3 , K = 13dB} and

l.8dB{Pe = 10-6 , K = 15dB}) and SDPSK (1.8dB{Pe = 10-6 ,10-8 , K = 13dB}).

But due to the looseness of the bounds for FSK(I/2), its degradation is difficult to

assess (see bounds in Fig. 4.19 for Pe ~ 10-5 ). Nevertheless at very high SNR (yield­

ing probability of error of the order of 10-8 ) the QDR relative loss compared to OPT

for FSK(1/2) reaches acceptable values of the order of IdB.

10-1

~ 10~

10'"

10'"

10-7

SDPS~ K= 15
la'"

5 la 15

--- OPT
- - - - - QDR (l! = 1.3)

delay 1: =O.lT, s= 1

FSK(lI2). K= 15

/ SDPSK. K= 10

\/

50 55

•

Fig. 4.19 Performance of FSK(l/2) and SDPSK signaling over 2-path
Ricean/Rayleigh fading channels (T = O.IT, s = 1 and K =10, 15dB)

As seen in Section 4.2.2, the knowledge of the specular component phase shift

does Dot provide significant gains at high SNR for FSK(l) and to a lesser extent for

DPSK. However the OPT scheme, that does Dot use this knowledge, is Dot suitable for

implementation. Therefore it is of interest to compare the performance of the QDR

scheme with the SPECCOH scheme. Snch comparison is provided by Table 4.4. From



• 4 Performance analysis with binary modulation schemes

Table 4.9 SNR losses (in dB) yielded by QDR compared to OPT. K is expressed
in dB. These losses are worse cases since they are obtained using the lower-bounds
to the bit-error probabilities of the OPT scheme.

175

1 SNR losses in dB 1 FSK(I) FSK(lj2)

1 1~e • ~ - 1 10 13 15 10 13 15 20

DPSK 1 SDPSK

10 13 15 1 10 13 15

•

QDR(1.3)
10-3 0.5 1.1 1.3 1.4 2.8 2 0.5 1.4 1.6 lA 1.6 1.4 1.4
10-6 0.1 1 0.5 0.6 1.2 1.8 1.4 0.9 1.5 lA 1.3 1.8 1.2

/OPT 10-8 ~O 0.5 0.6 0.2 0.9 0.9 2.3 0.4 1.4 1 0.9 1.8 1.4

Table 4.4 it is seen that similar to the OPT scheme, the losses yielded by the QDR with

respect to SPECCOH are very small at high SNR for FSK(l) « O.6dB st Pe = 10-8

for K = lo-15dB). Larger losses are obtained with DPSK reaching 1.4dB values even

at a very low probability of error. And losses close to 2dB are obtained for FSK(I/2)

and SDPSK at mgh SNR. At very low SNR (Eb/No ~ 5-6dB) aU modulation schemes

yield significant losses (FSK(I):2.5dB for K = IOdB, FSK(I/2):4.6dB for K = lOdB,

(S) DPSK:2.2dB for K = 10dB and 1.8dB for K = 15dB). These losses are calculated

from figures similar to Figs. 4.18-4.19 but with SPECCOH bit-error probabilities

instead of the lower-bounds to the bit-error probabilities of the OPT scheme. These

may seem large but they represent the losses yielded by QDR (/3 = 1.3) with respect to

SPECCOH assuming perfect estimation of the Ricean specular term phase. However

it is likely that at such low SNR, the specular term phase estimate will not be perfect

and this will degrade the performance of the SPECCOH scheme thus lowering the

losses of QDR (/3 = 1.3) with respect to SPECCOH. Nevertheless, if FSK(I/2) is

employed at low SNR, additional complexity required to track the Ricean specular

term phase is worthwhile sinee significant SNR gains can be obtained.

The remainder of tms section will focus on performance of implementable receivers

specially designed to handle unresolvability such as the QDR (/3 = 1.3) scheme. Com­

paring the performance of the QDR scheme with the QR will show the improvement

due to the decorrelation stage. Secondly, comparing the performance of the R OPT

scheme with the QDR will assess the improvement yielded by the knowledge of the
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Ricean specular term magnitude. Since for high SNR, the QDR performance is very

close ta that of OPT, the suboptimum receivers will only be compared among them.

Comparison of R OPT and QR with OPT can he extrapolated from QDR curves.
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Fig. 4.20 Performance of the QDR, R OPT and QR schemes with FSK(l) signal­
ingover 2-path Ricean/Rayleigh fading channels CT = O.lT, s = 1 and K = 5-20dB)

•

From Figs. 4.20-4.23 it is seen that the QDR scheme performs hetter than the

R OPT scheme over mixed mode Ricean/Rayleigh channels. Quantitatively, the QDR

scheme with FSK(1) and FSK(1/2) yields up to ~ IdB gain with respect to the R OPT

scheme at an error probability of 3 .10-5 for K = 13dB and at an error probability

of 10-1 for K = 15dB. From Fig. 4.22 it is seen that the QDR scheme with DPSK

yields up to 1dB gain with respect to R OPT for K = 13dB in the error probability

range of 10-5 - 10-8 and up to 1.7dB for K = 15dB at an error probability of 10-8 •

For SDPSK O.SdB gain is obtained at an error probability of 10-8 for K = 15dB and

O.7dB is obtained at an error probability of 2 . 10-5 with K = 13dB (see Fig. 4.23).

This shows that SNR gains can be obtained by the use of receivers which exploit the
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knowledge of the specular component magnitude.

Note that although it may appear on Figs. 4.20-4.23 that the QDR scheme yields

asymptotically diversity-like gains of order higher than two, this is not actually the

case. It has been verified that at sufficient1y low probability of error the QDR over a

two-path mixed mode Ricean/Rayleigh channel behaves asymptotically as a two-fold

diversity system.

5550
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201510
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Fig. 4.21 Performance of the QDR, R OPT and QR schemes with FSK(1/2)
signaling over 2-path Ricean/Rayleigh fading channels (T = O.IT, s = 1 and K =
5-20dB)

•

Figs. 4.20-4.23 also show the superiority of the QDR scheme over the QR at high

SNR, Le. for Eb/No > 25dB. Furthermore Fig. 4.21 and Fig. 4.22 show that with

FSK(1/2) and DPSK the QR scheme yields error floors which are eliminated by the

QDR. At low SNR, the QR scheme performs the same or better than the QDR.

However, the performance degradation of the QDR is in general small compared with

the SNR gains which can he achieved by this scheme with respect to R OPT or

QR at high SNR. For example, the QDR yields O.36dB 1055 for K = 13dB at an
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Fig. 4.22 Performance of the QDR, R OPT and QR schemes with DPSK signal­
ing over 2-path Ricean/Rayleigh fading channels (T =O.lT, s = 1 and K = 5-20dB)

•

error probability of 5 . 10-3 for FSK(1f2) and 0.3dB 1055 for K = 20dB for DPSK

at an error probability of 10-8 • Note that for K = 2OdB, the QR scheme with

FSK(1f2) outperforms the QDR scheme over the entire range of error probabilities

considered in this thesis (~ 0dB at Pe = 10-3 , 0.5dB at Pe = 10-6 and 0.9dB at

Pe = 10-8
). As shown in Section 3.4.1, at low SNR the decorrelation vanishes for

the mixed mode RiceanfRayleigh non-coherent optimum receiver. This may explain

why the QR outperforms the QDR in some cases sinee the QR does not employ

deeorrelation. Nevertheless eonsidering the fact that the QDR eliminates the error

fioors, overall the superiority of the QDR over mixed mode RiceanfRayleigh ehannels

is elear.

To summarize, it is seen that similar to the non-coherent optimum receiver (OPT),

the proposed quadratic suboptimum receiver, namely the QDR scheme, provides good

performance over unresolved mixed mode RiceanfRayleigh fading channels. At high
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Fig. 4.23 Performance of the QDR, R OPT and QR schemes with SDPSK signal­
ing over 2-path Ricean/Rayleigh fading channels (T =O.IT, s = 1 and K = 5-20dB)

SNR (Eh/No > 15dB), QDR ({3 = 1.3) yields the following lasses with respect ta

OPT: up ta O.9dB for FSK(l), 3dB for FSK(1/2), 1.5dB for DPSK, and 1.8dB for

SDPSK. However for FSK(lj2) losses are difficult to assess precisely since the lower

and upper-bounds of OPT are not tight. SA the actual degradation may be smaller.

Smaller lasses are obtained for higher SNR where the bounds are tighter. Similar

ta the OPT scheme, the QDR scheme assumes knowledge of only the magnitude of

the specular term and includes the decorrelation operation. It eliminates the error

floor and provides SNR gains compared to R OPT, scheme that does not assume

knowledge of the specular term (up to 1.7dB SNR gain). Since the QDR scheme

is much more suitable for implementation, it represents an interesting alternative to

the non-coherent optimum receiver. Furthermore it does not require the knowledge

of the specular term phase. And its 1055 in performance compared to the optimum

receiver that assumes complete knowledge of the specular term (SPECCOH) in the
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range of bit-error probability Pe = 10° -10-8 was found to be small at high SNR for

FSK(l) (up to 0.9dB when Eb/No > 15dB, K = 5-2OdB) and to a lesser extent for

DPSK (up to 1.4dB when Eb/ No > 15dB, K = 5-15dB)), justifying further the use of

non-coherent detection over multipath fading channels for those modwation schemes.

For FSK(1/2) with large K(> 15dB) and SDPSK with K = 13dB, the degradation

is significant in the order of 2dB (SDPSK) ta 4dB (FSK(lj2)), making the use of

Ricean specular phase estimation worthwhile in those cases. Since QDR reduces to

R OPT (the unresolved Rayleigh fading channels non-coherent optimum receiver),

when the fading becomes Rayleigh, the QDR will also perform weIl over Rayleigh

fading channels as will be seen next.

4.3 Performance of the R OPT ( = OPT = QDR) and R QR

schemes over Rayleigh fading channels

This section considers the performance of the non-coherent optimum receiver (R OPT

= OPT = QDR) and the R QR scheme over unresolved Rayleigh fading channels.

Numerical results are presented in Figs. 4.24-4.27. Fig. 4.24 and Fig. 4.25 present

the performance of the R OPT (= QDR) and R QR schemes over two-path Rayleigh

fading channels, characterlzed by T and s. These parameters are defined in Section 4.2.

Comparing the solid Hnes with the dot-dashed lines in Figs. 4.24-4.25, it is seen that

the performance degradation of the R OPT due to unresolvability is between 3 and

8.5dB in the error probability range of 10-5
- 10-8 without error floors for the various

modulation schemes.

Fig. 4.24 and Fig. 4.25 show that the R OPT (= QDR) scheme provides two-fold

diversity-like gains even when the multipath is unresolved. Moreover from Fig. 4.24

it is seen that for FSK(lj2) and DPSK the R QR scheme has a marked error floor,

while the R OPT (= QDR) eliminates this effect. This shows the importance of

the decorrelation operation on the input samples for Rayleigh channeIs. This effect

was aIso observed over mixed mode Ricean/Rayleigh fading channels. Therefore it is

seen that the decorrelation operation is very important to combat error floors over

multipath fading channels when the multipath is not resolved. Speciallzing again to

Rayleigh fading channels, Fig. 4.24 and Fig. 4.25 aIso show that the best performance

is obtained for equal path strength channels (Le. s = 1). However from Fig. 4.25

it is seen that even a low power second path (for example s = 0.1) should not be
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discarded in the detection process hecause the R OPT (= QDR) scheme may give

some additional gain at high SNR compared to a simple non-coherent receiver, that

does not exploit the second path. This is especially true for FSK(1/2}, DPSK and

SDPSK.

By comparing the performance of R OPT with DPSK and FSK over Rayleigh

channels, remarks similar to what was noticed about the performance of OPT with

DPSK and FSK over mixed mode Ricean/Rayleigh channels can he made. For ex­

ample, from Fig. 4.24 it is seen that DPSK and SDPSK detected with R OPT give

the best performance. At high SNR DPSK gives 4dB improvement compared to

FSK(1/2) and between 10 and 13dB compared to FSK(l) in the error probability

range 10-5 -10-8 • However as explained in Section 4.2.2, DPSK by definition gains

3dB compared to FSK because the observation interval used with DPSK is twice the

one used with FSK. When the SNR is below 20dB, FSK(l) outperforms FSK(1/2)
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but FSK(I/2) gives better performance at higher SNR. This is similar to the behavior

of FSK over mixed mode Ricean/Rayleigh channels.

Fig. 4.24 and Fig. 4.25 confirm that the performance of the R QR over two-path

channels with a small inter-path delay depends heavilyon the modulation schemes.

For FSK(I) and SDPSK the R QR scheme performs reasonably well giving even

diversity-like gains. With FSK(I/2) and DPSK, however, the R QR scheme has er­

ror Boors. These error Boors are eliminated by the R OPT (= QDR) scheme. The

improved performance of the R OPT (= QDR) scheme can be explained as follows.

Over an equal path strength channel, the performance of the R QR scheme simi­

larIy to the R OPT scheme depends on the correlation matrices ri and r 2 and the

cross-correlation matrix r 12. The kjth entry of r m, m = 1, 2 is given by piJm, where

Pk~ = V~ - foTo Sr(t - Tk)Si(t - Tj)dt. The kjth entry of r 12 is pL~. These matrices
BrE,

are closely related to the shape of the signaIs and the inter-path delay of the channel.
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For SDPSK and FSK, the correlation matrices are conjugate ta each other having

identical eigenvalues. On the other hand, for DPSK the two correlation matrices have

different eigenvalues. Let's recall that the R OPT scheme uses the eigenvalues of the

matrices cr~,m = 1,2, which are equal for SDPSK and FSK and the R QR scheme

uses the eigenvalues of the matrix C. The relatively good performance of the R QR

scheme for SDPSK can then be partly explained by the fact that although the R QR

scheme does not use the appropriate eigenvalues, it uses an identical set of eigenval­

ues for both hypothesis similar ta R 0 PT. The fonn of the cross-correlation matrix

r 12 has aIso an important raIe since although the R QR scheme uses the same set of

eigenvalues for FSK(1/2) as R OPT, it yields some error fioor.

The results for a two-path channel show that the performance of the R 0 PT (=

QDR) scheme is aIways better than the performance of the R QR scheme. It is to

be expected that the gains and the superiority of the R OPT (= QDR) scheme over

R QR are even higher over a three-path channel as can be inferred from Fig. 4.26 and

Fig. 4.27. With a notation similar to the two-path case, for a three-path channel, the

receivedSNR is given by ~ = (2q5+2lTr+2lTi)~ = 2lT5(1+s+s')~ where s' = ~.

The relative delay between the first and the third path, " = '2 - '0, is expressed as

a percentage of T. The three-path Rayleigh fading channel is characterized by the

value of the parameters s (defined as for the two-path case) and s' which represents the

Rayleigh path's strength of the third path relative to the first. Fig. 4.26 and Fig. 4.27

show that the R OPT (= QDR) scheme gives higher diversity-like gains over the three­

path channel. For sufficiently high SNR, the R OPT (= QDR) bit-error probability

decreases by an order of magnitude for an increase of 3.5dB in Eb/ No, and thus yields

diversity gains of order three. Furthermore from Fig. 4.26 and Fig. 4.27, it is seen

that unlike over the two-path channel, the performance of R QR for FSK(l) has an

error floar over the three-path channel. This shows that the error floor phenomenon

in the performance of the R QR scheme is emphasized over the three-path channel.

However this error floar is removed by the R OPT (= QDR). Therefore it is seen that

all the effects observed over the two-path channel are enhanced over the three-path

channel. It is ta he expected that the same trend exists as the number of paths is

increased showing that the improvement of the R OPT (= QDR) scheme might be

even higher.

To summarize, it is seen that the non-coherent optimum receiver CR 0 PT), iden­

tical to the QDR scheme in this case performs weIl over unresolved Rayleigh fading
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channels yielding diversity gains at high SNR even if the multipath is unresolved. Due

to its decorrelation operation, the R OPT (= QDR) eliminates error floors. Look­

ing at the results on mixed mode Ricean/Rayleigh and Rayleigh fading channels as

a whole, it is seen that the specular coherent and non-coherent optimum receivers

yield diversity gains at high SNR and eliminate error floors over unresolved multipath

fading channels. Furthermore, it was shown that the proposed non-coherent subopti­

mum receiver (the QDR scheme), optimum over Rayleigh channels, exhibits the same

type of error Hoor free performance with diversity gains, while being much more suit­

able for implementation. Two results should be emphasized, 1) the importance of the

decorrelation operation to handie unresolvability, 2) the smallioss in performance due

to the absence of knowledge of the specular term phase at high SNR for FSK(l) and

to a lesser extent for DPSK. It can be noted however that SNR gains can be obtaïned

by knowledge of the specular term magnitude.
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Chapter 5

A discussion on practical

applications of results and

extensions

The structures considered in Chapter 3 and the performance analysis of Chapter 4

show that it is possible to obtain path diversity gains without expanding bandwidth.

The key to this is a decorrelation stage before Rake combining. This chapter considers

key issues for practical applications of the thesis'results as weIl as possible extensions.

5.1 Multipath decorrelation: a "must" in detection and

estimation over unresolved multipath channels

It was shown in Chapter 3 that the optimal receivers (specular coherent and non­

coherent) over unresolved multipath fading channels perform an initial decorrelation

(or orthogonalization) stage indicated by the presence of the decorrelating matrix

Km. The effect of the decorrelation was studied in Chapter 4. It was shown that the

decorrelation operation yields diversity gains over unresolved multipath channels and

is essential to avoid error floors. These diversity gains can be observed, for example, in

Fig. 4.18. The error Boor phenomenon occurring with receivers that do not implement

the decorrelation, for example the QR scheme with FSK(1/2) is shown in Fig. 4.21.

Such error Boor phenomenon may yield huge performance degradation, for example

when K = 10dB, a received SNR per bit of 30dB yields a bit-error probabilityof



• 5 A discussion on practical applications of results and extensions 187

•

~ 7· 10-7 for the QDR scheme (with decorrelation) and a bit-error probability of

~ 2.5 . 10-4 for QR (without decorrelation).

In Chapter 2, it was shown that the path resolvability assumption is not satisfied in

an indoor environment for signals based on the 1895 standard. Currently 1895 systems

employ Rake receivers [162] that do assume path resolvability. However f as shown in

this thesis, these receivers yield error Boors in an unresolved multipath environment.

Therefore receivers implementing the decorrelation operation designed in Chapter 3

could be used ta replace the existing schemes in 1895 systems in an indoor environ­

ment. Furthermore even in an outdoor environment the path resolvabilityassumption

is ooly approximately satisfied, sa these decorrelating receivers could aIso he used ta

yield additional performance gains. In particular, the OPT or QDR schemes could

he used on the reverse link (mobile-to-base or uplink) since non-coherent detectioD is

suggested. On the forward link (base-to-mobile or downlink:) a pilot signal is provided

suggesting the use of coherent detection sa the 8PECCOH scheme could be used.

GSM was initially designed for outdoor wireless transmissions. For test purposes f

the GSM standards define three channel power delay profiles, RA250 f TU50 and

HT100 illustrated in [34, p. 2441 representing rural areas, typical urban cases and

hiUy terrain respectively. Furthermore, GSM includes a training sequence in the mid­

die of each time slot suggesting the use of an equalizer. For HT100, the multipath

spread is greater then 20% of the symbol duration, thus the use of the equalizer is

mandatory (according ta the 20% common rule of thumb [162]). For RA250 and

TU50 f tms is not the case 50 an equalizer is Dot needed. For indoor environments,

the multipath delays are even smaller than those of typical urban areas, making the

use of an equalizer even less required. Because of the smaller bandwidth of GS~[

systems compared to 1895, the multipath channel appears flat yielding no diversity

gains. One tool provided by G8~I ta yield diversity is the frequency hopping feature

(changing frequency from time slots ta time slots). If base stations use different hop­

ping patterns, interference and fading diversity can he obtained. However, this feature

may greatly complicate transmitters and receivers. An alternative solution ta obtain

diversity gains for narrow-band systems is provided by the multipath decorrelating

schemes presented in this thesis that yield multipath diversity gains. Similarly those

decorrelating receivers cao also be used in 18136 systems, where an equalizer is even

less required than in G8M systems due to the larger symbol duration.

DECT (Digital European CordIess Telecommunications) is a cordless standard
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that is quite similar to a cellular system [162]. It has a large bandwidth of 1728kHz

with a symbol duration of 868ns. Typically DECT uses antenna diversity but detec­

tion schemes presented in this thesis could also be used to yield multipath diversity

gains. 8ince cordIess services aim at low complexity handsets, non-coherent subopti­

mal schemes such as the QDR scheme would be suitable.

Receivers designed in Chapter 3 can also be used in third generation wireless sys­

tems proposaIs such as CDMA2000, Wide-CDl'.'IA (W-CDMA) and EDGE (Enhanced

Data Rates for Global Evolution). CDMA2000 proposed by the North American

CDMA Development Group (CDG) [167} is a third generation wireless system pro­

posaI that is backward compatible to 1895. Two proposaIs based on WCDMA have

been made, UTRA [168] proposed by ETSI (European Telecommunications Stan­

dards Institute) and W-CDMA proposed by ARIB (Association of Radio Industries

and Businesses) [169] of Japan. These third generation proposais differ from 1895,

among other factors, by their (possible) higher bandwidth usage and data rates, and

their demodulation methods.

CDMA2000 system can operate with two modulation techniques, single carrier

with the usuaI spreading of the message signal (Direct Spread) and multi-carrier where

the message signal is demultiplexed into N information signals which are then spread

on a different carrier (Multi-Carrier). IfDirect Spread is used, then the possible signai

bandwidths are 1.25MHz, 3.75MHz, 7.5~IHz, 11.25MHz and 15MHz corresponding to

chips rate of N x 1.2288Mcps, N = 1, 3, 6, 9, 12. If the Multi-Carrier mode is used,

the demultiplexed signal bandwidth is 1.25MHz. ARIB W-CDl'.'IA systems use usual

spreading techniques (equivalent to Direct Spread) with a variable spreading fac­

tor. The ARIB W-COl'.'IA signal bandwidths are 1.25MHz, 5MHz, lOMHz or 20l'.'IHz

corresponding respectively to chips rates of 1.024Mcps, 4.096Mcps, 8.192Mcps and

16.384Mcps. The UTRA bandwidth is 5MHz if the nominal chip rate of 4.096Mcps

is used, but cao be increased to 10MHz or 20lVIHz if two times or four times higher

chip rates are considered.

Hence all these third generation systems may operate with larger bandwidths than

the 1895 bandwidth of 1.25IVIHz. But as explained in Chapter 2, even these large

bandwidths are not large enough to resolve the multipath in an indoor environment.

Hence classical Rake receivers may yield error fioors in this case. Performance can be

improved by using the schemes derived in this thesis. Since pilot symbols are included

on both uplinks and downlinks, coherent demodulator snch as the SPECCOH scheme
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could be used. Similar to the Rake receiver tested in [168], a SPECCOH scheme

that uses a fixed number of fingers after the decorrelation could also be used. Such a

receiver would perform the decorrelation on all the known multipath components but

only the strongest paths will be used in the combining stage. Note that picking up the

strongest paths from the matched filter output sampies before decorrelation (um ) and

then doing the decorrelation would result in performance degradation. Furthermore,

when the multipath is not resolved, it is very likely that no strong peaks can be

identified from the matched filter outputs samples since even without noise the peaks

cannot be resolved by assumption. Methods for estimating the multipath delays

without the path resolvability assumption have been discussed in Section 2.2.3 (see

for example the ML approach).

EDGE [195, 196} is a TDMA data transmission standard resulting from the har­

monization of technicaI studies on TDMA systems with higher data rates and packet

data services of TIA (Telecommunications Industry Association) and ETSI. It uses a

200kHz carrier and a 8PSK modulation hased radio interface. Therefore, similar to

GSM and IS136 systems, multipath diversity gains can be obtained by the multipath

decorrelating schemes presented in this thesis.

Multipath decorrelation cao also he used as a mean to estimate the multipath

component gains of an unresolved channel. As shown in Chapter 2, one of the meth­

ods for estimating the multipath gains (152} consists of passing the received signal

through a matched filter matched to the sounding signal. li the inter-path delays are

larger than the reciprocal of the sounding signal bandwidth (resolved multipath), the

amplitudes of the peaks of the matched filter output are estimates of the multipath

gains. Such method yields inaccuracy if the multipath is not resolved. However, as

shown in this thesis, provided that the multipath delays are known, an equivalent

resolved channel model (3.19) or (3.169) can be obtained by considering transformed

transmitted signais and multipath gains (decorrelated multipath gains). Then esti­

mates of the decorrelated multipath gains cao be obtained employing the method

previously mentioned using the transformed transmitted signais. Estimates of the

multipath gains are then obtained from the decorrelated multipath gains estimates

using the inverse linear transformation (proportionaI to X m) .
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It is known that the optimal receiver of any random channel corrupted by additive

white Gaussian noise has an interpretation as an estimator-correlator [21], where the

estimate is provided by a MMSE estimator. Suboptimal receivers can be obtained by

replacing the MMSE estimate in the estimator-correlator form of the likelihood ratio

by other estimates that are simpler to obtain. The R OPT scheme of Section 3.7.5 is

one such example where the MMSE estimate for Ricean channels has been replaced

by the MMSE estimate for Rayleigh channels. The MMSE estimate for Rayleigh

channels is simpler since it is linear. Another example is the linear ~lrvlSE estimator­

correlator (LMMSE) presented in Section 3.7.6 where the nonlinear rvl~ISE estimate

for Ricean channels has been replaced by the ·'best" (in the MMSE sense) linear

estimate. These two suboptimal receivers are more suitable for implementation since

they are quadratic.

5.2.2 Approximating optimal decision variables: the quasi

estimator-correlator and other estimator-correlator forms

Another method to design simpler suboptimal receivers consists of directIy approxi­

mating the log-likelihood ratio by simpler functionals. In that case, a quasi estimator­

correlator is obtained which has a similar form as the estimator-correlator up to a

correction term. The QDR scheme presented in this thesis is an example of this

method for mixed/mode Ricean/Rayleigh channels. Its counterpart for 2 Ricean/L-2

Rayleigh channels could be a subject of future research although an approximation

of an infinite series is needed that may present difficu1ties and/or may yield further

performance degradations.

Let us give two examples of known suboptimal receivers for hinary DPSK that

are obtained by approximating the resolved multipath Rayleigh non-coherent optimal

receiver. Denoted R QR in this thesis, this Rake receiver has a log-likelihood. ratio

given by (3.170). Let us assume a long observation interval (Le. €na = 1). From

Section 4.2.1, the two possible transmitted signais for binary DPSK can be rewritten



as 81,2(S) = .fif. [P(s) ±p(s - T)] where p(s) = rect (~ - ~) is a rectangular pulse1

of duration T. From (3.170) and (3.18b) the decision rule is given by
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or equivalently dividing by*and substituting Sl.2(8)

Note that the integration limits 0 and Ta cau be changed ta -00 and 00 since by

definition p(8 - Tt) = 0 for 5 < Tt and 8 > T + Tk' Assuming that the carrier

frequency is a multiple of ~ the decision for the symbol transmitted between 0 and T
can be rewritten then as2

where .1(8) is given by

J' (s) =

!R { (2i!(v - s + '7:1') e;iw.(v-,+XI')dz(V)) (2i!*(U - 5+T)e-jw.(u-o+T)dz(U)) }

and Tm is the multipath spread of the channel. Hence the R QR for DPSK modulation

can be represented by Fig. 5.ICa), where the receiver makes the decision that Sl(S) is

transmitted when the output of the sampler is positive and makes the decision that

52(8) is transmitted when the output of the sampler is negative. Fig. 5.I(a) shows

that J'F(s) for the R QR is abtained by multiplYing J' (s) with a delayed estimate

of the channel impulse response featuring the known channel multipath delays with

1The function rect(t) is a rectangular pulse centered at the origin defined in (2.3) .
2The term eiIMcTIc in 2L lXl p(v-(2T+Tk) +2T)e1lMc(1I-(2T+ri,}-2T)dz(u) cancels with its conjugate

present in 2 LlXlP·(U - (2T +Tk) + T)e1 lMc(U-(2T+1"Ir)-ndz(u) and eiwcT = L
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estimates of the multipath gains (1~1T:). This operation ensures that the decision

variables take into consideration only the portions of ./(s) that include signal energy.

In other words, it masks the other portions of JI (s) in the window corresponding to

the multipath spread.

When the multipath deIays are unknown but the multipath spread is known, are­

ceiver similar to R QR can be used except that it includes all the energy corresponding

to the duration of the multipath spread (the "mask" Et~~ l~~~ld(S-(t-Tm+7"k)) has

been replaced by 1. This is the Post-Detection Integrating receiver (POl) [43, 197]

illustrated in Fig. 5.1(b). However the POl includes more noise samples than the

R QR. Better suboptimal receivers can be obtained by correlating JI (s) with a signal

that approximates Et"~ l~~~ld(S-(t-Tm+Tk))'Such signal could be obtained from
JI(S) as illustrated in Fig. 5.l(c) where f(.) is a nonlinear function. Such receivers

will be referred as l\'Iasked Post-Detection Integrating receivers (lVIPDI) to follow the

terminology used in [198J. One such example is the Sidelobe-Masked PDI CSl\'IPDI)

that was originally designed for DPSK commutation signaling [197, 198J. In that case

f (J:n(s») = IJ:nCs - NT)\\J:n(s - NT)\, ./m(s) is given by

Jm(s) =

!R { (2 ['!:m-l (v - s + 'l:I') e!"'.lv-S+2T)dz(v)) (2 ['!:;,. (u - s +T)e-iw.I..-s+T)dz(U») }

and Pm (t) is the m eh commutation signaling codeword.

Fig. 5.1 shows that the POl and (S)lVIPDI receivers can be obtained by "approx­

imating" (not necessarily a tight approximation) the R QR receiver. Note that the

same type of approximations of the QDR scheme for unresolved multipath is not fea­

sible as will be shown in Section 5.5.2 due to the fact that the contributions of each

multipath component cannot be decoupled. Similar to the PDl's schemes, the QDR

scheme was designed by approximating an optimal receiver (the OPT scheme). It was

shown how the QDR decision variable could be put in a quasi estimator-correlator

form by Itô differentiating the corresponding decision variable expressed as a function

of the observation interval. In principle, such technique could he applied to the deci­

sion variables of the PDI and (S)MPDI receivers to show that theyalso have a quasi

estimator- correlator fonn. However the difficulty lies in finding the expression of the

decision variable when an observation interval smaller than the symbol duration is
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(b) Post-detection integrating receiver (POl) witb binary DPSK signaling

(a) Non-coherent optimum receiver for a resolved L-path Rayleigh channel (R QR) with binary DPSK signaling
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considered. For some suhoptimal receivers such as the POl or SMPDI, the dependence

of the decision variable on the chosen observation interval is not straightforward. In

that case, one may want to try to find simpler ·'estimator-correlator" interpretations

of those receivers.

For example, the dotted part of the R QR scheme illustrated in Fig. 5.1(a) can be

interpreted as an estimator-correlator where a channel impulse response estimate is

correlated with J' (s). The correlation J' (s) corresponds to the part of the matched

filtering outputs for DPSK that is hypothesis dependent. The correlation of J' (s)

with the channel estimate is equivalent to matched filtering to the estimated channel

impulse response (a basic detection technique to improve performance). Similarly

the PDI receiver cao be interpreted as an estimator-correlator where the channel

estimate is equal to a rectangular pulse of duration equal to the multipath spread.

Such estimate is very simple but may not be very good. The SlvIPDI receiver is similar

to the POl scheme but with a better estimate. For DPSK commutation signaling the

SMPDI estimate is equal to a nonlinear function f (J;" (s») such that J~(s) has lower

sidelobes. The optimal decision rule CR QR) by definition automatically discards the

sidelobes. Then by lowering sidelobes, the S~IPDI is doser to the optimal receiver

than the POl is, thus yields better performance.

5.3 The issue of ISI induced by multipath

Golyone-shot receivers have been studied in this thesis and their single-pulse per­

formance has been assessed. This corresponds ta neglecting any ISI, a reasonable

assumption for small inter-path delays. This is especially true for Spread-Spectrum

systems where the multipath spread inducing ISI represents a sma1l number of chips.

ISI can also he neglected if commutation signaling is used [197} , sinee no signal is

reused until the mainlobe response of its associated matched filter corresponding to

its previous use has died out. Commutation signaling can be obtained by using for

each symbol a set of different frequencies or a set of various Spread-Spectrum codes.

Study of ISI effects such as error Boors phenomenons [199, 200] and the design of

sequence detectors for unresolved multipath fading channels is beyond the scope of

this thesis but may be a subject of future research. However, since the modulation

schemes presented in this thesis are nonlinear, such a study may be quite involved.

Practically, the bit-error probabilities curves of this thesis represent upper-bounds to
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the true bit-error probabilities in the presence of ISI. How small the inter-path delays

should be to yield tight upper-bounds to the bit-error probability will have to he

investigated.

5.4 Implementations issues

It was mentioned in Section 5.1 that the multipath decorrelation yields diversity gains

over unresolved multipath channels. However perfect multipath delays estimation has

been assumed throughout this thesis. In practice such accuracy cannot be achieved,

which is one of the implementation issues that remain to be considered.

5.4.1 Time delay estimation

The optimal receivers presented in this thesis have been derived assuming perfect

multipath delay estimation. They yield the best performance but they do not usu­

ally provide the best rohustness to delay estimation errors. Therefore performance

under delay mismatch conditions should be investigated. It is to be expected that

performance degradations will be small if the multipath delays errors are small since

the receiver decorrelating matrix will nearly decorrelate the multipath components

in that case. How small the multipath delays errors should he, or equivalently, how

accurate the time delay estimation must be, remains an open issue that needs further

investigation and will he the aim of future research.

In [201], an improved MMSE multi-user receiver for mismatched delay channels is

presented. The conventional MMSE (C~IMSE) multi-user receiver for the demodu­

lation of DS-CDMA signais in additive white Gaussian noise is based on the decision

rlÙe

(5.1)

•

where bl (0) is the bit estimate of the Oth bit of user 1, C is an N x 1 vector rninimizing

the MSE E [(c!r - bl (O»)2] and r is the vector composed of the N samples of the

received signal at the output of the chip matched filter synchronized with the esti­

mated delay of user 1 Tl. Equivalently c satisfies EIJ.n [(c!r - bl(O» r] = 0 where

0= [0,0, ... ,O]T, b = [bl(-1), bleO), bI (1), ... ,bK(-1), bK(O), bK(l)]T, n is the chan­

nel noise vector (noise component of r), K is the number of users and EIJ.f& represents
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an average over aIl possible bit combinations and the noise process. The improved

MMSE (IMMSE) is obtained by choosing c such that Ebtn..~T [(c:rr - b1(0) r] = 0,

where ~T = [Tl - fl, ... ,TK - fK]T represents the multi-user delay error and fic is

the estimated delay of user k. It is seen that the difference between the CMMSE and

the IMMSE is the additional average over the multi-user delay error.

In this thesis, due to the fading and the possible nonlinear modulation used, the

decision variables are not equal to an estimate of the transmitted bits directly, 50

a MMSE type of decision similar to (5.1) cannot he derived. However, from the

estimator-correlator interpretation of the optimal receiver, a receiver more rohust

to time delay estimation errors can he ohtained based on an approach similar to

[201]. Assume that the multipath delays are known at the receiver with a certain

uncertainty. Equivalently they are modeled as random variables with given joint

probability density functions, their width with respect to the mean representing the

degree of uncertainty. The larger the width, the higher is the uncertainty of the

multipath delay. The optimal receiver assuming random deIays has also an estimator­

correlator fonn [21] with MMSE estimate vm(t) = f ({z(s), 0 < s < t, Hm}), where f(·)

is a function that minimizes E [(vm(t) - vm(t))2IHm], and the average is performed

over aU the random parameters of the channel, including the random multipath de­

lays. Similarly to the difference between the C~I~ISE and the I~IMSE, the difference

between the optimal receiver assuming known multipath delays and the optimal re­

ceiver assuming random multipath delays resides in the additional averaging over the

multipath delays. It is weil known that the MMSE estimate is the conditional mean

vm(t) = E[vm(t)lz(s),O < s < t,Hm] [202, p. 175]. When the multipath delays are

known, al! quantities calculated in this thesis such as likelihood ratios and conditional

means can be interpreted as conditional over the multipath delays. Therefore the

conditional mean studied in this thesis renamed here Vm(tIT) for clarity is given by

definition by Vm(tIT) = E [vm(t)!z(s), 0 :s s < t, 'T, Hm] where 'T = [TO,' .• ,'iL_l]T. It

is seen that in order to obtain a receiver more robust to time delay estimation errors,

the conditional mean estimate Vm(tIT) in the estimator-correlator form of the receiver

likelihood ratio has to be replaced by its average over T. The obtained estimate is also

equal to the MMSE estimate assuming random delays. Therefore, snch a receiver is

the best receiver that can be obtained under knowledge of the multipath delays prol>­

ability density function. Analysis of snch a scheme, which is possibly quite involved,

could be the topic of future research. Another research direction along the saIne lines
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is to design receivers under unresolvability conditions that combine time delay esti­

mation and detection or that adaptively update the coefficients of the decorrelating

matrices.

5.4.2 Discrete time implementation

The optimal and suboptimal receivers derived in this thesis have been presented in two

forros, the "likelihood ratio" forro (for example (3.10) or (3.67)) and the "estimator­

correlator" forro (for example (3.26) or (3.119)). The "likelihood ratio" forro does

not present any particular implementation difficulties except for the non-coherent

optimum receiver for general Ricean channels that involves infinite series not suitable

for implementation. The mixed mode Ricean channels non-coherent optimum receiver

involves a modified Bessel function of the first kind that also can present a difficulty,

although such function is weIl known and tabulated. AlI the likelihood ratio forms

depend on the variable Um resulting from matched filtering of the received signal. If

the transmitted signais contain most of their energies in a bandwidth W, from the

sampling theorem they can be approximately represented by their samples. Then the

matched filtering or correlation required ta get Um can be implemented in discrete­

time, possibly with sorne modest oversampling. The vector r m is obtained from Um

through a matrix multiplication.

The "estimator correlator" form is more involved due to the presence of the Itô

integral and the linear and nonlinear time-varying functions. The Itô integral yields

difficulties since it does not obey ordinary differential rules of calculus. However,

such a problem can be solved as explained in the following. Itô integrals present

in the estimator-correlator form. of optimum receivers cao be avoided by rewriting

their estimator-correlator forms in tenus of a Stratonovich integral (integral that does

obey ordinary differential rules of calculus) and a correction tenu [203]. Note that

transformation of [203] is possible only for a likelihood ratio function, hence does not

apply to the quasi estimator-correlator form. More generally, it was shown in [204]

that Itô integrals with respect to Wiener processes or with respect to Itô processes

can be expressed as the limit of ordinary integrals minus a corrective integral closely

related to the additional term of the Itô differential rule. Such method does not require

the integrand to he a conditional mean, thus it applies to the estimator-correlator as

weIl as the quasi estimator-correlator forms.

Once a method has been found to bypass the problem of the Itô integral, it re-
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mains to evaluate the conditional mean. A conceptual implementation structure of

the conditional mean vm(t) has been given in Fig. 3.5. This structure is not a real

time structure due to the presence of the phase detector which hides, intrinsically,

a system with a certain amount of delay such as, for example, a Phase-Lock-Loop

[205, p. 336], [206]. Furthermore, as presented, the conditional mean is obtained for a

specified duration of the observation interval, [0, t] and the solution must be entirely

re-calculated if the length of the observation interval changes (for example to [0, t+f]).
In [207], an invariant imbedding numerical method for Fredholm integral equations

of the second kind with degenerate kemels is proposed. The principle of invariant

imbedding is used to derive a differential equation by regarding the solution at a fixed

point as a function of the interval of integration. The knowledge of the solution for

one integration interval combined with the differential equation yields solution for

other integration intervals. Such a technique could he applied to yield a solution

more suitable for real time implementation to compute rimes, t, t) (C.17) needed for

the evaluation of VRm(t) (see (3.163». It cao also be used to compute lOm(s, t) (C.25)

present in the expression of VOm(t) (see (3.98». It remains to find a real time solution

for the calculation of dOm (t) which will be the topie of future research.

5.4.3 Receiver complexity: coherent versus non-coherent detection

Since aU the receive structures presented in this thesis assume known delays and a

statistical characterization of the channel impulse response, it implicitly implies the

presence of a channel estimator at the receiver front end. Estimation of the multipath

delays and the multipath gains statistical characteristic have been largely discussed

in the literature (see Section 2.2.3). A more difficult task consists of estimating the

specular component phases since phases usually do change rapidly [1, 43]. This thesis

showed that for FSK(I), and to a lesser extent for DPSK, such estimation is not needed

since performance degradation of non-coherent detection (using for example the QDR

scheme) compared to specular coherent detection (using the SPECCOH scheme) is

sma1l at high SNR for mixed mode Ricean/Rayleigh fading channels. Quantitatively,

compared to the SPECCOH scheme, the QDR scheme yields 0.2-0~7dB SNR losses

for FSK(I) and O.8-1.2dB SNR lasses for DPSK, at Pe = 10-6 with K = lo-l5dB.

Excluding the specular component phase estimator, these two quadratic receivers are

of comparable complexity. The QDR scheme is simpler than the SPECCOH, since

it does not use a phase estimator for the specular component, and thus offers an
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interesting solution for FSK(I) and DPSK. For FSK(lj2) or SDPSK however this

thesis showed that significant gains cau he obtained by the use of specular coher­

ent detection instead of non-coherent detection especially for large K (for example

FSK(lj2):0.6-0.9dB with K = 10-15dB at Pe = 10-6 and 4.3dB with K = 20dB,

SDPSK: 1.2-1.7dB with K = 10-15dB). As seen from Section 3.3.1 and Section 4.1.3

for any modulation schemes, specular coherent and non-coherent detection yield same

performance at sufficiently high SNR. However for FSK(lj2) and SDPSK, the SNR

needs to be very large to see this trend. Similar high SNR convergence between spec­

ular coherent and non-coherent detection techniques has been observed for one-path

Ricean channels for orthogonal binary signaling [194] and various binary signaling

[193].

5.5 Extension of thesis'results ta different levels of channel

knowledge

Although this thesis considers only a statistical knowledge of the channel parameters

with known multipath delays, results can be easily extended to the cases of

(i) known multipath gain magnitudes lail and delays; unknown multipath phases

(ii) unknown multipath delays

thereby generalizing results of [43]3that were derived assuming the path resolvability

assumption given by IT" - Til> ~ k =F l, and

1
Itl> W (5.2)

•

where E = f{o 1Sm(T) 1
2 dT for all m and W is the transmission bandwidth.

5.5.1 Known multipath gains magnitudes and delays; unknown multipath

phases

The likelihood ratio assuming known multipath gain magnitudes and delays with uni­

formly distributed multipath phases (between -1r and 'Ir) can be obtained by replacing

3 As mentioned by G.L. Turin in [43} "optimal" receivers structures derived in that paper assuming

(5.2) are in ract optimal only if 1TA: - Tli > *and If:" ~(T)Sm(T - t)dTI = 0, Itl > k.
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IOkl by lakl, 20'~ by 0' (Le. C = ul) in (3.67) and taking the limit when u goes to zero.

Following the technique used in Section 3.4.3 (topie: "Expression of the eonditional

mean when \il k O'~ = 0"), DLm(Ta) = Dm can be expressed as Dm = uD:n where

D:n and X m satisfies the equations

X· r· X T =1m m m (5.3)

and are independent of u. Therefore replacing lakl by lakl

~ Jm = exp { -loft {(X:n)-11mD~X:n}d lai}

lim llan(s, Ta) = lim lm(s) = lakl Sm(S - Tk)
eT-O 11-0

from (3.63a)

from (3.165)

•

where lai A [Iaol ,... ,laL-ll]T. Thus from (3.67), the log-likelihood ratio for known

multipath gain magnitudes and known multipath delays is given by

and {2;}L f~1r··· J~1r lm (6) dB is the SUIn of multi-dimensional infinite series
of products of Bessel and trigonometrie functions that depends on

{Vkm = Idm \ , 19km = arg[dkm]}k=O.....L_l and {Vb: = le~1 ,d~ = arg[ei::tl}k=o.....L-l.n<k'

where by replacing IOkl by lakl in (3.68b-3.69b) and lm(s) by lak\ sm(s - Tk),

It is seen that the deeorrelation is still performed as seen from the presence of

the matrix X m (5.3) in the log-likelihood ratio. Sinee {2:)L J:1r ... J:1r lm (6) d6 is the

SUIn of multi-dimensional infinite series, the non-coherent optimum decision rule when

the multipath is unresolved is not easily implementable even if the multipath gain

magnitudes are known. For mixed mode Rieean/Rayleigh fading channels, the SUIn of

multi-dimensional infinite series reduces to one term. Then, a similar approximation

to the one that yielded the QDR scheme could be used to obtain a suboptimal receiver

more suitable for implementation.
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5.5.2 Unknown multipath delays

201

Assume that the channel model is given by (3.1) but that the L multipath delays

TO, ••• ,TL-l are unknown at the receiver and characterized by their joint pdf p-r(z).
Then the likelihood ratio assuming unknown delays is obtained by averaging the

likelihood ratio assuming known delays using the joint pdf of the multipath delays:

A;;. (i; To ) =f ...f PT (z)Am (i; To) da: (5.4)

•

Therefore when the multipath is not resolved and an arbitrary joint pdf for the multi­

path delays is considered, the likelihood ratio is an L-fold integral. It was shown in [43}

that when the multipathdelays are independent and identically distributed (Le. P'T(z)

= I1t=~l p(xt}) and the multipath is resolved in the sense that Pr (ITk - Til < ~) is

small, the L-fold integral can be written as the product of L identical one-dimensional

integrals as seen at the end of this section. Since the L integrals are positive, an

equivalent decision is obtained by using only one of them yielding to a decision rule

independent of the number of paths [43}. As shown in the following, such equiva­

lent decision rule independent of the number of multipath delays cannot be found

when the multipath is not resolved. This has two consequences; first, it means that

the number of multipaths needs to be estimated when the multipath is not resolved.

Since mast estimation techniques estimate jointIy the values of the inter-path delays

and their number, in practice the multipath delays will be known st the receiver and

results of this thesis can be used. Secondly, the presence of an L-fold integral renders

approximate decision mIes in the line of the POl [43] and SrvlPDI [198] very difficult

ta find.

Let us show that the L-fold integral (5.4) cannot be simplified when the multipath

is not resolved. For sake of simplicity, the case of Rayleigh fading channels will be

considered but same principles apply to Ricean channels. Let us consider a long ob­

servation interval, [0, Ta] (Le. Em = 1), using (3.16a) the Rayleigh channels likelihood

ratio assuming known multipath delays (3.168b) can be rewritten as

where [rm], is given by (3.14). From (3.1), 4>'m(S) is a function of To, •.• ,TL-l via
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S'm(S - Tk) and x~ hence so is each [rm],. Therefore even if p-r(z) = nf=~l p(xz)

(independent and identically distributed multipath delays), the L-fold integral (5.4)

cannot he expressed as the product of L identical one-dimensional integrals. On

the other hand, when the multipath is resolved, tPlm(S) = â"Jf!), so !rom (3.14)
Ern

[rm], = f(T}) where f(x) = --k- foTo
j;~Y:Z)e-jWcSdz(s) is independent of l and "'m =

VErn Ern

2ulËm ~ 2a2(rl)Ëm , where eT(·) is a function independent of l defined sucb that

Vl = 0, ... , L - 1, u(rl) = Ul. Hence the L-fold integral (5.4) can be expressed as

the product of L identical integrals. Since all the integrals are positive an equivalent

decision rule is obtained by considering oo1y one of them.
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Chapter 6

Summary and Conclusions

This thesis has addressed the subject of detection techniques and performance analysis

over multipath Ricean/Rayleigh fading channels, when the path resolvability assump­

tion is not satisfied. Two types of path resolvability conditions have been defined in

Section 2.2.1, strict and approximate path resolvability. The strict path resolvability

assumption asserts that the signal autocorrelation function for a given observation

interval vanishes at inter-path delays. It is equivalent to assuming that any two ver­

sions of the signal, time-shifted by different multipath delays, are orthogonal. The

approximate path resolvability assumption says that the signal autocorrelation func­

tion evaluated at inter-path delays is small. For wide-band signaIs it is equivalent

to assuming that the inter-path delays are much larger than the reciprocaI of the

bandwidth. As shown in Section 2.3.1, the strict path resolvability assumption is

rarely satisfied and even the approximate path resolvability condition is not always

satisfied in practice. For example, the later does not hold in indoor and outdoor

environments for narrow-band systems such as GSlVl, IS136, or their third generation

derivatives. Approximate path resolvability assumption is generally Dot satisfied in

indoor environments for wide-band systems such as 1895 or the third generation sys­

tems WCDl\tIA and CDMA2000 due to the relatively small multipath delays of these

environments (arder of tens to hundreds of nanoseconds [6, 7]).

As a first step in the design of receivers suitable for multipath Ricean/Rayleigh

fading channels with neither the strict nor the approximate path resolvability as­

sumptions, this thesis derived the specular coherent (8PECCOH) and non-coherent

(OPT) optimal receiver structures for these unresolved channels. It was shown that

they both include an orthogonalization (or decorrelation) stage that disappears when
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the multipath is resolved. The decorrelation stage associated with one of the possi­

ble transmitted signals consists of a linear transformation of the samples that would

be obtained at the tap outputs of the tapped-delay line used in classical Rake re­

ceivers (corresponding ta the considered transmitted signal), and of an equivalent lin­

ear transformation of the channel multipath gains. Such linear transformation yields

uncorrelated samples when the matched transmitted signal is sent. Applied to the

multipath time-shifted versions of the transmitted signal, this linear transformation

creates an orthogonal set similar to the one obtained over resolved multipath fading

channels. For the SPECCOH scheme, the next and final stage following this decor­

relation operation consists of a resolved multipath channel specular coherent optimal

decision rule for the transformed samples and channel.

The importance of the decorrelation operation in yielding diversity gains and elim­

inating error Boors was demonstrated for commonly used binary modulation schemes

such as FSK and variants of DPSK over unresolved mixed mode Ricean/Rayleigh and

Rayleigh fading channels. It was shawn that classical Rake receivers such as the re­

solved multipath Ricean fading channels specular coherent optimum receiver (SPEC­

COHR) and the resolved multipatb Rayleigh fading channels non-coherent optimum

receiver (R QR) yield error Boors over unresolved mixed mode Ricean/Rayleigh and

Rayleigh fading channels. Such e1fects were a1so observed for suboptimal receivers that

do not implement the decorrelation operation. This demonstrates the importance of

deriving receivers especially designed ta handle path unresolvability.

This thesis bas proposed one snch suboptimal receiver derived for unresolved mixed

mode Ricean/Rayleigh fading channels, the Quadratic Decorrelation Receiver (QDR).

Similar ta the OPT scheme, this non-coherent suboptimal receiver implements the

decorrelation operation and yields diversity gains. Unlike the OPT scheme that is

nonlinear, this receiver is quadratic making it more suitable for implementation. Fur­

thermore, the performance degradation of the QDR compared to OPT was found ta

he small at high SNR for binary FSK(1) (orthogonal FSK) (ex. 0.5dB with K = 15dB

at Pe = 10-6 ) and ta a lesser extent for conventional DPSK. Higher degradation was

observed for FSK(1/2) (frequency deviation equal to half the symbol duration) and

symmetrical DPSK (SDPSK).

Furthennore, this thesis showed that the knowledge of the specular component

phase shifts does not provide significant gains over two.path mixed mode

Ricean/Rayleigh fading channels at high SNR for FSK(1) and, ta a lesser extent,
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for DPSK. However t significant diversity gains can be obtained for FSK(lj2) espe­

cially for large K. For SDPSK, the SPECCOH scheme yields larger gains than for

DPSK and yields also larger gains compared to FSK(lj2) at very high SNR. Similar

numbers are obtained for the SNR losses of QDR compared to SPECCOH t except

for FSK(I/2) where some losses may be even larger. This justifies the use of non­

coherent detection and in particular non-coherent suboptimal schemes such as QDR

for FSK(I) and DPSK. It was also shown that SNR gains may be obtained byex­

ploiting the knowledge of the specular component magnitude.

This thesis provided an interpretation as estimator-correlators for all the receivers

that were derived. Generalization of the principle of optimal detection of a known

signal in additive white Gaussian noise ta random channels in additive white Gaus­

sian noise asserts that a receiver first performs an estimation of the noiseless received

signal and then correlates the estimate with the received signal. For optimum re­

ceivers, this estimator-correlator interpretation is well-known [21]. It was shown that

the correlation involves an Itô integral and the estimate is the causal MMSE es­

timate of the signal from the observation. This thesis gave explicit forms of this

estimate for the SPECCOH and OPT schemes. Furthermore t this thesis introduced

an equivalent estimator-correlator farm, denoted quasi estimator-correlatar, for sev­

eral suboptimal receivers as weIl. It was shown that suboptimal receivers do have

an estimator-correlator form also involving the Itô integral but with an additional

corrective term. The estimator type depends on the criteria chosen to design the sub­

optimal receiver. For optimal and suboptimal receivers, it was shown that the LVI1vISE

estimate of the noiseless received signal substitutes the multipath gains and the spec­

ular component phasors1 byestimates. For specular coherent detection the specular

component phasors are known, and thus they are not estimated. For non-coherent

optimum. detection, which corresponds to a case where the noiseless received signal is

non-Gaussian, the phasor estimates are obtained by whitening the sum of the Rayleigh

term and the additive white Gaussian noise term before proceeding ta the estimation.

The resulting causal MMSE signal estimate is non-lïnear in the observation. The

decorrelation operation, characteristic of optimal detection over unresolved multipath

fading channels appears in the multipath gains estimates, transforming the multipath

channel into an equivalent decorrelated (resolved) one. Each multipath gain of the

IThe k th specular component phasor is defined in this thesis as ei8~ where 9~ is the kth specular
component phase.
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equivalent channel is estimated by classical matched filtering or correlation techniques

applied to the "remaining unknown" part of the observations. The ''remaining un­

known" part of the observations denotes the difference between the received signal

and either the Ricean specular component (specular coherent detection) or the Ricean

specular component estimate (non-coherent detection). The insight obtained on the

operations performed by the MMSE estimate may help to the design of suboptimal

receivers employing approximations to the MMSE estimate. As an example, three

suboptimum receivers (LMMSE, R OPT and QDR) having a linear estimator of the

noiseless received signal in their estimator-correlator forms (Ll'vIMSE and R OPT) or

their quasi estimator-correlator form (QDR), have been presented.

Due to its non-linearities, the performance of the non-coherent optimum receiver

(OPT) was assessed by lower and upper bounding its bit-error probabilities. Upper­

bounds are obtained by evaluating the bit-error probabilities of the various subopti­

mum receivers considered in this thesis and retaining the lowest bit-error probability

for each SNR. Lower-bounds to the bit-error probabilities of the OPT scheme are ol:r

tained by evaluating the bit-error probabilities of SPECCOH over Ricean multipath

fading channels, and 0 PT over a non-coherent non-fading Gaussian channel, and re­

taining the highest bit-error probability. It was shown analytically and numerically

that the lower and upper-bounds are asymptotically tight since they converge at high

SNR.

Finally, practical applications of results to existing second and future third gen­

eration cellular systems have been considered. Several issues that are important for

practical applications were identified as possible continuations of this work: study of

receiver robustness to delay estimation errors, discrete time implementation, effects of

various levels of channel knowledge, effects of ISI introduced by the channel multipath

spread.

Path resolvability has been traditionally ensured by using signals of large band­

width. This thesis, that does not assume path resolvability, has shown that diversity

gains can be obtained over multipath fading channels without the need of spreading

signal bandwidth to resolve the multipath. This is achieved by a decorrelation oper­

ation of the samples before Rake combining. This generalization of the Rake receiver

technique is important for indoor wireless systems where the required bandwidth to

ensure path resolvability is very large.
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Appendix A

Stochastic integrals

This appendix presents a short overview of two types of stochastic integrals, the

Wiener integral and the Itô integral (Sections A.I-A.2), as weil as two non-standard

properties of Wiener integrals (Sections A.1.4-A.1.5), and the proofs (Section A.3).

A.l Wiener integrals

A.I.I Definition of Wiener integrals

Let A be a set and let XA denote the characteristic function defined as

{

1 sE A,
XA(S) =

o else.

Let w(s) be a Brownian motion satisfying E[w(s)w(u)) = "min(s, u) and let b(s)

be a real-valued Lebesgue measurable function square-integrable on I, where l is a

finite or an infinite interval of /R. The mean square stochastic integral (or second­

order stochastic integral) of b(s) with respect to w(s) on l is called a Wiener integral

[173, 181], [208, p. 97] and was first introduced by Wiener [209]. The Wiener integral

is defined as follows [182, pp. 98-99], [191, pp. 426-433]:

1. H there exist times sa, SI, .•• ,Sn, such that -00 < Sa < SI < ... < Sn < 00 and

n-l

b(s) = L b(Sk)X[.f,.:>.fk+d{S)
k=0
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where X[o,b) is the characteristic function of [a, b), then b(s) is called a step function

on (-00, (0) and the Wiener integral of b(s) with respect to w(s) is defined by

2. For a general Lebesgue measurable function b(s) satisfying J::' Ib(s)12ds < 00,

there exists a sequence of step functions {bn(s)} such that b(s) is the limit of the

sequence of step functions, that is

(A.l)

•

It then follows that f~ bn(s)dw(s) converges in mean square (or in the mean) and

this mean square limit (denoted l.i.m.) is the same for any sequence of steps functions

satisfying (A.l). Rence the Wiener integral of b(s) with respect to w(s) is defined as

1°c 6 100

-oc b(s)dw(s) = l~~~. -oc bn (s)dw(s)

where {bn (s)} is any sequence of steps functions satisfying (A.l).

3. Let a,b E IR such that a < b

lb b(s)dw(s) = 1: b(sh~[a,b)(s)dw(s)

Therefore for f: b(s)dw(s) ta exist, b(s) needs ta be square integrable only on [a, bl
(Le. f: Ib(s)12 ds < (0).

4. If b(s) is continuous on [a, bl then 1: b(s)dw(s) is also defined as [191, p. 429]

h fi h ... T. { (n) (n) (n) b} ~w ere, or eac posItIve mteger n, n = a = So < SI < ... < Sn = 10rms

a partition of [a, bl such that limn- oc ma.xo$k$n-l (1 si~1 - sin) 1) = 0, and ~kn) E

[sin) ,Sk~l] for k = 0, ... ,n - 1. This latter definition will be sufficient for the scope

of this thesis.
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A.l.2 Definition of a Wiener integral with respect to a process z(t) given

by dz(t) = a(t)dt + dw(t) and a(t) is a non-anticipating real process

jointly measurable in the product q-algebra l, ® F

Let (n, F, P) be a complete probability space, consisting of a sample space, a 0'­

algebra of subsets of n, and a probability measure P [178, pp. 11-12]. Let w(s) be a

Brownian motion satisfying E[w(s)w(u)] = , min(s, u). Let tE [a, b]. Let:Ft be the

smallest a-algebra containing all the events {w(s) < x, x E 1R} for each s E [0, t]. A

random function b(t) is said to be non-anticipating if for each t it is measurable with

respect to Fr. [178, p. 90], [180, p. 72]. In particular, a non-anticipating function b(t)

is independent of w(t + s) - w( t) for all s > 0 [180, p. 72]. It depends statistically

at most on w(s) for s < t, that is, on the "past" only but is statistically independent

of future values {w(s), s > t} [179, p. 22], [181] (if t is considered to be the present).

Note that in [181], the term admissible is used instead of non-anticipating.

Let l, be the u-algebra of Lebesgue measurable sets in [0, b]. Let a(s) be a non­

anticipating real process jointIy measurable in the product O'-algebra l, ® :F (i.e.

measurable in (s,w». Let t E [a, bl, 0 < a < b and let f(s) he a deterministic

real-valued square integrable function on [0, t] satisfying

l' If(s)IEla(s)1 ds < 00

Let z(t) be a process given by

z(t) = z(a) +l' a(s)ds +l'dw(s)

dz(t) = a(t)dt + dw(t) (symbolic differential fonn)

The Wiener integral of f(s) with respect to z(s) given by (A.2) is defined as

l' f(s)dz(s) A l' f(s)a(s)ds +l' f(s)dw(s)

(A.2)

(A.3)

•
where the first integral in the right side of (A.3) is a Lebesgue integral of the sample

functions of f(s)a(s) defined for almost aIl sample functions and the second integral in

the right side of (A.3) is a Wiener integral defined as in Appendix A.l.I. Note that if

a(s) is a1so a second order mean square continuous process and f(s) is continuous, then



f: f(s)a(s)ds can also be defined as a mean square integral. Both integrals coincide

[210, p. 186].

Finally let f(s) be a complex valued function such that the Wiener integrals

f; lR {f(s) } dz(s) and f: 9 {f(s)} dz(s) exist. Then the Wiener integral of f(s) with

respect to z(s) given by (A.2) is defined as
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i
t Ait ita f(s)dz(s) = a lR{f(s)}dz(s) + j a ~{f(s)}dz(s)

A.l.3 Properties of the Wiener integral related to expectation [191, pp.

427-428]

i) E [J.' b(S)dW(S)] = 0

ii) E [J.' bt(s)dw(s) J.' ~(T)dW(T)] = ~o J.' bl(S)~(s)ds
A.l.4 Time differentiation of a Wiener integral with respect to a

Brownian motion

Assume for sake of simplicity that all functions are real. In the following, the function

f(s) depends also on the observation interval [0, t] where t E [a, b] hence is denoted as

f(s, t).

Proposition A.l. Let f(s, t) be a deterministic real-valued function defined on a

closed domain ~b of JR2 described by

where a >0. Let us assume that f(s, t) is continuous on R:b and is continuously
ôf

differentiable wïth respect to t on n.:b (i.e. t(s, t) A ât (s, t) exists and is continuous

1 ) A lt. i t

on 'R;.ab • Then 'ft E [a, bl, e(t) = 0 f(s, t)dw(s) satisfies a E leCu)1 du < 00 and

the Wiener integrall(t) = lt f(s, t)dw(s) can be written as follows:

• I(t) = I(a) + J.' [f f(u, S)dW(U)] ds + J.' f(s, s)dw(s)

(A.4)

(A.5)
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which can be written in symbolic differential notation as

dI(t) = [1' (s, t)dW(S)] dt + f(t, t)dw(t)

211

•

where dI(t) represents the ordinary (time) differentiation or the Itô differentiation of

I(t) since they both coïncide due to the fact that f(s, t) is deterministic. The outer

integral in the iterated multiple integral of (A.5) can be uiewed either as a Lebesgue

integral of the sample functions of f; f(u, s)dw(u) defined for almost aU sample func­

tians or as a mean square integral. There is no contradiction since these two integrals

coincide due ta the differentiability and continuity properties of f( s, t) . The inner

integral and the second integral in (A.5) are Wiener integrals.

Proof of Proposition A.1 is given in Appendix A.3.!.

Remarks.

• ( is defined as the first order partial derivative of f with respect to the second
. .' A 8f 1varIable, I.e. f(s, u) = at (s, t) t=u

• The continuity of f(s, t) ensures the existence of the Wiener integrals f~ f(s, t )dw(s)

and f: f(s, s)dw(s).

• The continuity of tes, t) ensures the existence of the Wiener integral c(t).

Since f(s, t) is continuous on R:b which is a compact set on the real surface JR2,

f(s, t) is bounded and hence 'Vt E [a, b], f~ If(s, t)12 ds < 00. This ensures the existence

of the Wiener integral f~ f(s, t)dw(s). Since f(s, t) is continuous on R:b and hence

on 1) = {(s, t) E 'R.:b; s = t}, f(s, s) viewed as a function of s is continuous on [a, bl
which is a compact set on the realline IR, hence f(s, s) is bounded and thus square

integrable. This ensures the existence of the Wiener integral f: f(s, s)dw(s). For each

t E [a, bl, (s, t), viewed as a function of s, is continuous on [0, tl which is a compact
. t • 2

set of IR. Therefore for each t E [a, hl, f(s, t) is bounded and fo (f(s, t» ds < 00.

Hence c(t) = J~ {(s, t)dw(s) is weIl defined.

• A result along the same lines of Proposition A.1 has been obtained in [211, p.

111] for the mean square derivativeof astochastic integral I(t) = f: (t, s)«s)ds

(considered as a mean square integral or equivalently as a Riemann integral
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of sample functions) where {(Cs), sE [a, bl} is a zero mean stochastic process

that has a covariance function continuous on [a, bj2, and (t, s) is defined and

continuous on [a, b]2 such that a:: exists and is continuous on [a, b]2. The main

differences between this result and Proposition A.l are as follows:

- (t, s) is defined on [a, b]2 whereas f(s, t) is defined only if 0 < s < t.

- The result of [211] requires the continuity of the covariance of the stochas-

tic process (t) wmch is not satisfied for white noise since its covariance

function is a delta function.

A.l.S Time differentiation of a Wiener integral with respect to z(t) given

by dz(t) = a(t)dt + dw(t)

Proposition A.2. Let z(t) be a process written in symbolic difJerential/orm as

dz(t) = a(t)dt + dw(t)

where a(t) is a real non-anticipating second arder process jointly measurable in (t, w)

and mean square continuous on [0, bl. Let f(s, t) be a deterministic real-valued function

defined on a closed domain 'R:b described by the inequalities

where a >0. Let us assume that f(s, t) satisfies

a) "It E [a, b] llf(s. t)1 E la(s)1 ds < 00

b) f(s, t) is continuous and continuously differentiable with respect to t on 'R:b •

Consider the Wiener integral o/f(s, t) with respect ta z(s)

•
1

t 6.1' l'let) = 0 f{s, t)dz{s) = 0 f(s, t)a(s)ds + 0 f(s, t)dw(s)

Then l (t) can he written as

dI(t) = (l t(s, t)dz(s») dt + f(t, t)dz(t)

(A.6)

(A.7)



l(t) = l(a) +l' (1' f(u, S)dZ(U») ds +l' f(s. s)dz(s) (A.8)
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where dl(t) represents the ordinary differentiation of I (t) as weil as the Itô differen­

tiation of I(t), since they both coincide due to the fact that f(s, t) is deterministic.

The outer integral in the iterated multiple integral of (A.8) is a Lebesgue integral of

sample functions, the inner integral and the second integral are Wiener integrals with

respect to z(t). Although f(s, s) is a deterministic function, by abuse of language I{t)

will also be referred as an Itô process with differential representation (A. 7).

Proof of Proposition A.2 is given in Appendix A.3.2.

A.2 Itô stochastic integral

A.2.1 Definition of the Itô stochastic integral

Itô provided a definition for the integral of non-anticipating random processes

{b(s); a < s S t, t E [a, b]}, jointly measurable in (t, w) satisfying

(A.9)

This special integral is called Itô integral and denoted by

[ b(s,w)dw(s,w) or for short l b(s)dw(s)

•

where f represents Itô integration. Omitting the dependence on w for sake of sim­

plicity of notation, the Itô integral is defined as follows [182, pp. 141-144]:

1. If there exist times sa, Sl," . ,Sn independent of w, such that a = sa < Sl <
... < Sn = t and

n-l

b(s) = E b(Sk)X[sluSA:+I)(s)
k=O

where X(a.b) is the characteristic function of [a, b) then b(s) is called an (w, t)-step

function on [a, t]. For any non-anticipating (w, t)-step function on [a, t], b(s) satisfying
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(A.9), the stochastic integral is defined by

214

Note that the value of b(s) is taken at the left endpoint of the partition interval.

2. For a general non-anticipating b(s) satisfying (A.9), it can be shown [182,

p. 142] that there exists a sequence {bn(s)} of non-anticipating (w, t)-step functions

satisfying (A.9) such that

nl!.~l' E Ib(s) - bn(s)1
2

ds = 0 (A.lO)

•

It then follows that J; bn (s )dw(s) converges in mean square and this mean square

limit is the same for any sequence of steps functions satisfying (A.lO). Rence the Itô

integral of b(s) with respect to w(s) is defined as

tt 6. ttb(s)dw(s) = l.i.m. bn(s)dw(s)
a n-OCl a

where {bn(s)} is any sequence of steps functions satisfying (A.lO).

When b(s) is a second order mean square continuous process, an approximating

sequence of step functions {bn(s)} can be constructed by partitioning the interva1

[a, t] and sampling the function b(s). The Itô stochastic integral can be then defined

as the following mean-square limit.

where, for each positive integer n, Tn = {a = s~n) < sin) < ... < s~n) = t} forros a

partition of [a, t] such that liIDn-oc maxoSk$n-l (IS~~l - s~n) 1) = o.
When b(s) is purely deterministic, the Itô integral reduces to the Wiener integral

defined in Appendix A.1.l [181] .
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A.2.2 Properties of the Itô integral

Assume for sake of simplicity that aU processes are real, from [181], [212, p. 149]

i) E [l b(S)dW(S)] = 0

ii) E [l b1(S)dw(s)l b2(T)dW(T)] = ~o l' E [b1(s)b2(s)] ds

A.2.3 Itô process

A process that can he written in the forro

z(t) = z(a) +l' a(s)ds + l b(s)dw(s) a <t ::; b

dz(t) = a(t)dt + b(t)dw(t) (symbolic differential form) (A.11)

i(t) = a(t) + b(t)w(t) (equivalent notation when b(t) is a deterministic process)

where a(t) and b(t) are non-anticipating processes jointly measurable in (t, w) satis­

fying'v't E [a,b], f: Ela(s)lds < 00, J; Elb(s)12 ds < 00, and fis the Itô integral, is

called an Itô process [181]. Note that in this notation d(-) and f are inverse operators.

Let {z(t), tE [a, bl} he an Itô process given by (A.11). Let f(t) be a non-anticipating

process jointly measurable in (t, w) such that for each t E [a, b]

l' E If(s)a(s)1 ds < 00 and l'E If(s)b(s)1
2 ds < 00

The stochastic integral over the Itô process z(t) (also referred as an Itô integral) is

defined as [212, p. 161J, [213, p. 67]

•

jt Ait lt
I(t) =Ta f(s)dz(s) = a f(s)a(s)ds +Ta f(s)b(s)dw(s) a < t < b

Note that I (t) is also an Itô process that can be written symbolically as

dI(t) = f(t)a(t)dt + f(t)b(t)dw(t)

(A.12)
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A.2.4 The Itô differential rule

216

•

Suppose f(u, t) is a continuous function with continuous first order partial derivatives,

ft(u, t) and fu(u, t), on (-oc, (0) x [a, b] and continuous second-arder partial derivative,

fuu(u, t), on (-00,00) x [a, b]. Then if z(t) is an Itô process written as (A.11), Itô's

differential rule states that f{z{t), t) is also an Itô pracess defined by [181]

df(z(t), t) = (ft(z, t) + a(t)f=(z, t) + ~ ~Of:z(z, t)b2(t)) dt + b(t)f.(z, t)dw(t)

(
1 No 2)= fe{z, t) + 22fzz(z, t)b (t) dt + f:(z, t)dz(t)

l f.(z, s)dz(s) = f(z(t), t) - f(z(a), a) -[ (fs(Z' s) + ~ ~of==(Z, S)b2(s») ds

(A.13)

A.2.5 The vector Itô differential rule

A N -vector process which can be written as

dz(t) = a(t)dt + B(t)dw(t)

where a(t) is a column N-vector of non-anticipating processes, {[a(t)]k} k==1, ... ,N'

jointly measurable in (t,w), B(t) is a N x K matrix af non-anticipating processes

jointly measurable in (t,w), {[B(t)]ki} k=l,....Ni=l.... ,K' satisfying for all t E [a,bJ

and w(t) is a column K-vector of îndependent Wiener pracesses, Wk(t), k = 1, ... K

is called a vector Itô process [181]. Assume furthermore that all Wk(t) have the same

variance ,. Let feu, t) be a continuous scalar function of a calumn N-vector u and

a scalar t. Let fu(u, t) (column vector) and ft(u, t) (scalar) be the first order partial

derivatives of feu, t). Assume that the components of fu(u, t), {[fu(u, t)]k}k=l.....N
and ftCu, t) are continuous on (-00, OO)N X [a, bl. Let fuu(u, t) (matrix) be the second

order partial derivative of f(u, t) with respect to u. Assume that the elements of

fuu(u, t), {[fuu(u, t)]ki} k.j=l.....N are continuous on (-00, OO)N X [a, b]. Then fez, t)



• A Stochastic integrals 217

is aIso a vector Itô process and the vector Itô differential rule is [181], [208, p. 112]

df(z, t) = fIez, t)dt + fiez, t) . (a(t)dt + B(t)dw(t» + ~~Otr[BT(t)fzz(z, t)B(t)]dt

= (f,(z, t) + ~ ~Otr[BT(t)fn(Z, t)B(t)]) dt + fiez, t)dz(t) (A.14)

where tr(·) denotes the trace of a matrix.

A.3 Time differentiation of Wiener integrals: proofs

In the incoming proofs, the Lebesgue dominated convergence theorem and the ~Iinkowski's

inequality with p = 2 are extensively used and can be found respectively in { [214, p.

39), [182, pp. 17-18J, [212, p. 22] } and [212, p. 33].

A.3.l Proof of Proposition A.l

Let t E [a, b].

Proof that c(t) l> l' (s, t)dw(s) is a second order process satisfying

L' Elc(u)ldu < 00. Since w(s) is a Brownian motion, c(t) is a Gaussian random

process with zero mean and variance given by

Since f(s, t) is continuous on 'R.:b: t'Cs, t) is bounded on 'R.:b hence E[c2 (t)] < 00.

Furthermore, since c(t) is a zero mean Gaussian process, Elc(t)1 is given by

Hence

2 {2N; (lt 2 ) 1/2
Eic(t)1 = ;E[c2(t)] = V;i 0 (((s, t») ds

ft {2N; ft (lU 2 ) 1/2la E Ic(u)1 du = V;-/: la 0 (f(s, u») ds du < 00 Q.E.D

•
In order to prove (A.5) the following lemmas are needed.

Lemma A.l. Let {gn(t)} he a sequence of deterministic square integrable functions

on [a, b], converging to g(t) for almost ail t E [a, bl. Assume there exists a determin-
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•

istic function rjJ(t) square integrable on [a, bl for which TI n Ign(t)12 < 14>(t)12 • Then

l.i.m.l
b

gn(s)dw(s) = lb g(s)dw(s)
n-oo a a

Proof of Lemma A.t.

l

b b 1
2

E 1g,,(s)dw(s) -1 g(s)dw(s)

= E Il Ignes) - g(s)1 dW(S)r = ~o llgn(s) - g(s)l2 ds

using property ii) of Section A.l.3. Note that for any complex number Zl! Z2,

IR {ZlZ2ll :5 Izd IZ21, hence

Ign(S) - g(s)12 < Ign(s)12 + Ig(S}/2 + 21R {gn(s)g*(s) li
< Ign(s)12+ Ig(s)1 2 + 2Ign(s)llg(s)1 < 414>(s)l2

since Ign(s)12 < 1q,(s)12 and limn_oogn(S) = g(s) implies Ig(s)12 < 1q,(s)12
• Further­

more J: IcP(s)1 2 ds < 00 and liron-oc Ign(s) - g(s)1 2 = 0, thus from Lebesgue domi­

nated convergence theorem (interchange of integration and limit) [214, p. 39]

1!.~ llgn(s) - g(s)1
2

ds = 0

Therefore

lim E 11bgn(s}dw(s) -lb g(s)dw(s) 1

2

= 0 Le. l.i.m.l
b

gn(s)dw(s) = lb g(s)ds
n-oo 1 a a n-oc a a

Q.E.D
~ u'Lemma A.2. eCu) = Jo f(s, u)dw(u), u E [a, bl is a second order process mean square

continuo'US hence mean square integrable.

Proof of Lemma A.2. As proved at the beginning of this section, eCu) is a second

order process. Since (s, u) is defined only if 0 < s < u, right and left mean square

continuity of e(u) have ta he considered separately. Let us first consider the right

mean square continuity. Let h > 0 such that u + h E [a, bl. Note that if u = b! only
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the left mean square continuity of c(u) has to be verified.
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•

E ILu

+
h

(s, u + h)dw(8) - LU (8,U)dW(8f

= E ILU

(((8, U+ h) - (8, u») dw(s) + l U

+\ (8, u+ h) dW(8)r

= ~o [h(h, u) + 12(h, u)] (A.15)

where 11(h, u) and 12(h, u) are given by

I1(h, u) = LU (((s, u + h) - f(s, u)f ds

l
U+h 2

12(h, u) = U (( (8, U+ h») ds

and (A.15) is obtained from property ii) of Section A.l.3 and since [0, u}n[u, u+h] = u

(set of zero measure).

Since i' (s, t) is continuous on the bounded domain R:b , sUP($.t)E'R:
b
f (s, t) is finite

and therefore by the Lebesgue dominated convergence theorem

lim I1(h, u) = ru lim (i' (s, u + h) - i' (s, U))2 ds = 0
h-O Jo h-O
h~O h~O

From the mean value theorem for integrals, 3 (h, u) E [u, u + hl such that

The continuity of i' (s, t) on 1tab and lim (h, u) = u yields lim (f «((h, u), u + h»)2 =
h-O h-O
h>O h>O

(i' (u, u»)2 and lim 12(h, u) = o. Ther~ore from (A.15) -
h-O
h~O

11U+h lU 1
2

lim E f(s, u + h) dw(s) - i' (s, u) dw(s) = 0
h-O 0 0
h~O

Similarly let us check the left mean square continuity of cCu). Let h < 0 such that

u + h E [a, b]. Note that if u = a only the right mean square continuity of c(u) has to
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he checked.

1

ru lU+h 1
2

E Jo f (s, u) dw(s) - 0 f (s, u + h) dw(s)

Ilu+h lU 1
2

= E 0 (f(s,u) -f(s,u+h)) dw(s) + u+h f(s,u)dw(s)

No [ , ,]= 2 Il(h, u) + 12(h, u) (A.16)

where I~(h, u) and 1;(h, u) are given by

rU+h 2
~(h,u)= Jo (f(s,u)-f(s,u+h)) ds

, lU (. )212(h, u) = f (s, u) ds
u+h
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and (A.16) is obtained from property ii) of Section A.1.3 and since [0, u + hl n [u +
h,u] = u+h (set of zero measure). Let u E [a,b] he fixed. Define the function F(s,x)

on the closed domain R~ described by

(A.17)

•

2 (u+h
as F(s,x) = (f(s,u) -f(s,x») such that I;.(h,u) = Jo F(s,u+h)ds. Since

f (s, t) is continuous on R:b , F(s, x) is continuous on 'R~, then for 0 < x < u,

J: F(s,x)ds is a continuous function of x [192, p. 230]. Rence

lim I~(h, u) = ru F(s, u)ds = 0
h-O Jo-u$h$O

since F(s, u) = o. Since f (s, t) is continuous on R:b, from the mean value theorem

for integrals, 3 ç' (h, u) E [u + h, uI such that

The continuity of f(s, t) on 1tab and lim ç' (h, u) = u yields
h-O

-u$h$O
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~~ (f (Ç' (h, u), u)) 2 = (f (U, u») 2 and l~ l~(h, u) = o. Therefore from (A.16)
-uShSO -uSh~O

l~ Ellu

+
h

f(s,u+h)dw(s) _[f(S,U)dW(S)1
2

=0
-u~h~O 0 0

and eCu) is mean square eontinuous and henee mean square integrable [182, pp. 77,

80], [208, p. 671. Q.E.D

Proof of (A.S). Let Tn = {a = t~n) < t~n) < ... < t~n) = t} he a partition of [a, t]

sucb that liIIln-CXl maxo~kSn-l (Iti~l - tin) 1) = 0 and t E [a, bl· Then

n-l
let) = ICa) +L [I (t~~l) - l (tin))] (vaUd for any funetion l(t»

k=O

= [(a) + }: [l~~l f (s, ti~l) dw(s) -l~') f (s, tiR») dW(S)]

= I(a) + Sl(n) + S2(n) (A.18)

where

(A.19)

(A.20)

•

and (A.20) is obtained from the mean value theorem, sinee f(s, t) is differentiable with

respect to t on ~b' and vrn
)(s) E [0, 1]. Let n E N. Reeall that the interval [a, tJ is

partitioned into n sub-intervals such that

n-2

ra t) = U [t{n) teR) ) u [teR) t(n)]
~ , Ir: , k+l n-l' R

k=O

The last sub-interval is eonsidered closed to include t. Let gn (s) he the function
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defined on [a, t) as follows: 'V s E [a, t), s belongs to one of the sub-intervals of the

partition Tn, i.e. 3 k(n) 6. kn E {D, . .. ,n - 1} such that s E [tk:> ,tk:~1) and

f (s, tt>+l) for all s E [a, t) {!en is such that s E [tk:> ,tk:~l) },
gn(s) 6. f (s, t~n») for s = t,

D else.

Let s E [a, t]. Since f(s, t) is continuous on 'R'a", f(s, t) is continuous on

1) = {(s, t) E 'R:b ; s = t}, thus

'Ve > D 36> 0 S.t. Vlhl2 + Ih'12< 6 ==> If(s + h, s + h') - f(s, 8)1 < e

(A.21)

'V n ~ no 'V k = 0, . .. ,n - 1
I
t(n) - t(n> 1 < tS

k+1 k

li s E [a, t), then 3 ken) 6. kn E {D, ... ,n - 1} such that s E [tt), tk:~l) and

•

Hence from (A.21), (h = 0, h' = tk:~l -s), If (s, ti:>+l) - f(s, s)l < e. But f(s, tt>+l)
= gn(s), hence lim gn(s) = f(s, s). If s = f, then the same principle applies, s E

n-OC)

[t~~l' t~n>] and lim gn(t) = f(t, t).
n-OC)

Furthermore 19,.(sW < sup If(s, tW and '<It Ela, bJ.[ sup If(s, tWds < 00
(s.t)E'R.:b 0 (s.t)E'R.:,.

since sup If(s, t)1 is finite by continuity of f(s, t) on 'R:b• Therefore by Lemma A.l
(s.t)E'R.:6

l.i.m.iL

gn(s)dw(s) = iL f(s, s)dw(s)
n-OC) a a
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But by additivity property of Wiener integrals

Hence from (A.19)

. . En -
l
itL~l ( (n)) l tl.l.m.Sl(n) = l.l.m. f s, tk+1 dw(s) = f(s, s)dw(s)

n-oc n-OCl teR)
k=O k a

223

(A.22)

Note that since f(s, t) is continuous on 1), 'rit E [a, bl, J; If(s, s)1 2ds < 00, and

J: f(s, s)dw(s) is weil defined.

Since f(s, t) is continuous on R~b

therefore from (A.20)

n-l

1. S () l'E( (n) (R)) (n}).l.m. 2 n = .l.m. tk+ l - t k C tkn-oc R-OO
k=O

(A.23)

6 t·
where c(t) = fa f(s, t)dw(s). Note that 'rit E [a, bl, c(t) is weIl defined due to the

continuityof (s, t) on R:". The sum E~~ (ti~l - tiR») c (tin») is a regular Riemann

sum of sample functions. Since f: E IcCu)1du < 00 (proved earlier), f; c(u )du 6

f: [1: f(s, u )dw(s)] du exists for almost a1l sample functions. Therefore

ï: (ti~l - tin») c(tin» converges almost surely to l t
[[ (s, u) dW(S)] du

~ ~n~oo a 0

where f: [Jou ((s, u) dw(s)] du is defined as an integral «:f the sampIe functions.

By Lemma A.2, c(u) is mean square integrable hence

•
(A.24)



where f: [I; f (s, u) dw(s)] du is defined as a mean square integral. Thus from (A.23)

and (A.24),

• A Stochastic integrals 224

(A.25)

where the integral can be defined either as a Lebesgue integral of the sample functions

defined for almost all sample functions or as a mean square integral. Note there is no

contradiction since the mean square continuity of c (u), or equivalently the continuity

of its autocorrelation function E [c(u)c(s)} [208, p. 61}, [182, p. 77} implies that the

mean square integral and the integral of the sample functions coincide [210, p. 186].

Grouping (A.22) and (A.25) with (A.18) yields (A.5). Q.E.D

A.3.2 Proof of Proposition A.2

(A.6) can he rewritten as

l(t) = l' f(s, t)a(s)ds + ll(t)

where flet) is given by

ll(t) = l' f(s, t)dw(s)

(A.26)

The deterministic function f(s, t) satisfies aU the assumptions required for Proposi­

tion A.1 to hold. Therefore from Proposition A.1, flet) can he written as

li(t) = la f(s,a)dw(s) + l ([ f(u,S)dW(U)) ds +l f(s,s)dw(s) (A.27)

•

It remains to find an eqtùvalent expression for f~ f(s, t)a(s)ds which is obtained from

the following lemmas.

Lemma A.3. Let f(s, t) he a deterministic real-valued fu.nction continuo'US on R.:a"
described by (A.4), where a > O. Let a(s) he a real second order mean square contin­

uous process on [O,b]. Thenfor each tE [a,b}, f(s,t)a(s) defined as a process of s is

a second order mean square continuous process on [0, t].
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Lemma A.4. Let f(s, t) and a(s) be respectively a deterministic function and a ran­

dom process that satisJy aIL the assumptions of Proposition A.2. The integral

J: f(s, t)a(s)ds (defined either as Lebesgue integral of the sample functions or as a

mean square integral) is mean square differentiable with respect to t and its mean

square partial derivative is given by

~ {1' f(s, t)a(s)ds } = f(t, t)a(t) +l' f(s, t)a(s)ds (A.28)

(A.29)

•

where the integral in the right side of (A.28) is defined as a mean square integral.

Lemma A.5. L" f(s, t)a(s)ds is mean square continuous. Therefore as defined in

Lemma A.4, :t {L" f(s, t)a(S)ds} is mean square continuous and hence mean square

integrable.

For convenience, proofs of Lemmas A.3-A.5 are placed after the proof of Proposi­

tion A.2. Since from Lemma A.5 :s {J; feu, s)a(u)du} is mean square integrable, the

Fundamental Theorem of mean square calculus [208, p. 69], [210, p. 186] yields

l' %s {L' feu, S)a(U)du} ds = l' feu, t)a(u)du - [' feu, a)a(u)du

with probability 1. Substituting (A.28) of Lemma A.4 into (A.29) and reordering

terms yields

l' f(s, t)a(s)ds = LG

f(s, a)a(s)ds + l' (f(S, s)a(s) + L' feu, S)a(U)du) ds

= LG

f(s, a)a(s)ds + l' f(s, s)a(s)ds + l' [L' feu, S)a(U)du] ds

(A.30)

where ail integrals are mean square integrals. Substituting (A.27) and (A.30) into

(A.26) and reordering terms yields

I(t) =LG

f(s, a)a(s)ds + [ f(s,a)dw(s) +l' (L' feu, s)a(u)du) ds

+ /.' (L' feu, S)dw(U)) ds +l' f(s, s)a(s)ds +l' f(s, s)dw(s)
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=[(a) +l' (1' f(u,s)a(u)du+ 1'f(u,S)dW(U)) ds

+l' f(s, s)a(s)ds + l' f(s, s)dw(s)

226

(A.31)

•

Since f(s, t) is continuous on 'R:b and a(s) is mean square continuous, by Lemma A.3

tes, t)a(s) is a mean square continuous second order process. Hence J: feu, s)a(u)du

defined as a mean square integral coincides with J: f(u, s)a(u)du defined as the integral

of the sample functions [210, p. 186]. Furthermore by Lemma A.5 J; feu, s)a(u)du

is mean square continuous and hence mean square integrable. Therefore the mean

square integral f: [1: feu, s)a(u)du] ds can also he defined as a Lebesgue integral of

sample functions [210, p. 186]. Similarly since f(s, s) is continuous and a(s) is mean

square continuous, f(s, s)a(s) is mean square continuous and J: f(s, s)a(s)ds exists

also as an integral of the sample functions and the sample and mean square integrals

coincide. By definition (see (A.I2», (A.3I) can also be written as (A.8). Q.E.D

Proof of Lemma A.3. The function f(s, t) is continuous on 'R:b which is a compact

set of JR2. Therefore its range is also a compact set of JR2. But the compact sets

of F are the sets of F that are closed and bounded. Hence f(s, t) is bounded on

~:b. Since a(s) is a second order mean square continuous process, E [a(s)a(u)] < 00.

Hence for each t E [a, bl, E If(s, t)a(s)1 2 < 00 and f(s, t)a(s) is a second order process.

E [lf(s + h, t)a(s + h) - f(s, t)a(s) 1
2

]

= If(s + h, t)12 E [Ia(s + h)1 2
] + If(s, t)1 2 E [la(s)12

] - 2f(s, t)f(s + h, t)E [a(s)a(s + h)]

Sînce a(s) is mean square continuons on [0, t], E [a(s)a(u)] is continuous on [0, t]2.

Furthermore f(s, t) is also continuons on ~:b1 hence

lim E [lf(s + h, t)a(s + h) - f(s, t)a(s)/2] = °
h-O

Q.E.D

Proof of Lemma A.4. (A.28) is equivalent to

l~E I~ [1'+;(S, t + h)a(s)ds -i'f(S, t)a(S)dS] - (f(t, t)a(t) + i'f(S, t)a(S)ds)r= 0



Since a(s) is mean square continuous and tes, t) is continuous on 'R:b, from Lemma A.3,

for each t E [a, b], f(s, t )a(s) viewed as a process of s is mean square continuous. Bence

the mean square integral f: (s, t)a(s)ds exists [208, p. 67], [210, p. 186]. Since f{s, t)

is defined only if 0 < s < t, right and left mean square partial differentiability of

J: f(s, t)a(s)ds have ta he considered separately. Let us first consider the right mean

square partial differentiability. Let h > 0 sucb that t + h E [a, b]. If t = b, only the

left mean square differentiahility has to he considered.
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•

El ~ [l+1& f(s, t + h)a(s)ds-l f(s, t)a(S)ds] - (f(t, t)a(t) + l f(s, t)a(S)ds) 1

2

= EII2(h, t) + I 3 (h, t) 1
2

(expanding integrals and reordering terms)

< ( JE\h(h, t)1
2 + JElh(h, t)1

2
) 2 (Minkowski's inequality, p = 2, [212, p. 33])

where I 2(h, t) and I3(h, t) are defined as

Ift+h
12(h, t) = h t f(s, t + h)a(s)ds - f(t, t)a(t)

13 (h, t) = l [f(S, t + h~ - f(s, t) - f(s, t)] a(s)ds

a(s) is mean square continuous on [0, b], hence the deterministic function of two vari­

ables E [a(s)a(u)] is continuons on [0, b]2. Furthermore f(s, t) is continuous on R:b

hence EII2(h, t) 1
2

is given by

1 I t

+
h [l t

+
h

]EII2(h, t)1
2 = h2 t f(s, t + h) t f(u, t + h)E [a(s)a(u») du ds

21t
+

h

+ f2(t, t)E [a2(t)] - h t f(s, t + h)f(t, t)E [a(s)a(t)} ds

Since feu, t)E [a(s)a(u)] is continuous in u, from the mean value theorem for integrals,

3 (h, t), t'Ch, t) E [t, t + hl such that

1 ft+h
EII2(h,t)1

2 = h2 t f(s,t+h){hf«(h,t),t+h)E[a(s)a(((h,t))]}ds

2+ Pet, t)E [a2 (t)] - h h f(t'(h, t), t + h)f(t, t)E [a(t'(h, t»a(t)]
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•

Since f(s, t + h)E [a(s)a«((h, t»] is continuous in s, from the mean value theorem for

integrals, 3 e(h, t) E [t, t + h] such that

E\I2(h, t)1
2 = ~h f(E(h, t), t + h)f«(h, t), t + h)E [a(e(h, t))a«(h, t»]

+ f2(t, t)E [a2 (t)] - 2f(v(h, t), t + h)f(t, t)E [a(v(h, t»a(t)}

Since liIIlh_o «h, t) = limh_O v(h, t) = liIllh-o E(h, t) = t and feu, r) and E [a(u)a(r)]
h>O h>O h>O

are respectively continuous-on R:b and on [0, b]2,

Since f(s, t) and t(s, t) are continuous on 'R,~b and E [a(s)a(u)] is continuous at [0, b]2,

EII3 (h, t)1 2
is given by

Ella(h,t)i2 = l C(S,t+h
h

-f(s,t) -f(S,t))

.[l C(U, t + hh - f(u, t) - (u, t)) E [a(s)a(u)) dU] ds

From the mean value theorem, 3 TJ(h, t) E [t, t + hl such that

f(s, t + hh - f(s, t) _ f(s, t) = (s, 1](h, t)) - (s, t)

Therefore since tes, t) is continuous on R:b, t(s, t) is bounded on 1tab and hence sa
is f(s.t+hl-f(s.t) - f(s, t). Since a(s) is a second order mean square continuous process,

. f(s,t+h) -f(s,t) .
E [a(s)a(u)] < 00. Furthennore for each t E [a, bl, lim h - f(s, t) = 0,

h-O
h2:0

hence by the Lebesgue dominated convergence theorem

Let us consider now the left mean square partial differentiability of f~ f(s, t)a(s)ds.

Let h < 0 such that t + h E [a, b]. If t = a~ only the right mean square differentiability

has to he considered.



El hl [l f(s, t)a(s)ds -l+h f(s, t + h)a(S)ds] - (f(t, t)a(t) +l (s, t)a(s)ds) 1

2

=EII;(h, t) + I~(h, t)1
2

(expanding integrals and reordering terms)

< ( JEII;(h, t)1
2 + JEII;(h, t)1

2
) 2 (Minkowski's inequa1ity, p = 2)
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•

where I;(h, t) and I~(h, t) are defined as

l'Ch ) -1.t
f(s, t)a(s)d f( ) ( )2 , t - h s - f, t a t

t+h -

I;(h, t) = [H f(s, t) - ~~s, t + h) a(s)ds _ [(S, t)a(s)ds (A.32)

Since E [a(s)a(u)] is continuous on [0, b]2 and f(s, t) is continuous on n.:bt EII;(h, t) 1
2

is given by

E\4(h,t)\2 = :2 [' f(s,t) [ft f(U,t)E[a(S)a(U)]du] ds
Jt+h lt+h

21.t

+ f2(t, t)E [a2(t)] + h f(s, t)f(t, t)E[a(s)a(t)] ds
t+h

Since feu, t)E [a(s)a(u)] is continuous in u, from the mean value theorem for integrals,

3 <' (h, t), v' (h, t) E [t + h, t] sucb that

EII;(h, t)1
2

= :2 [' f(s, t) { -h f(c' (h, t), t)E [a(s)a«(' (h, t))]}ds
lt+h

+ t2(t, t)E [a2(t)] - ~h f(v' (h, t), t)f(t, t)E [a(v' (h, t))a(t)]

Since f(s, t)E [a(s)a«' (h, t»] is continuous in s, from the mean value theorem for

integrals, 3 e' (h, t) E [t + h, t] such that

1
ri 12 l, , [, ,]E 1 2(h, t) = h h f(e: (h, t), t)f(Ç (h, t), t)E a(e: (h, t»a« (h, t»

+ f2(t, t)E [a2(t)] - 2f(v' (h, t), t)f(t, t)E [a(v' (h, t»a(t)]

Since lim h-O (' (h, t) = lim h-O v' (h, t) = lim h-O e' (h, t) = t and feu, r) and
a-t$h$O a-t$h$O a-t$h$O
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E [a(u)a(r)] are respectively continuous on 'R~b and on [0, b]2,

230

\:It E [a, b] lim E II;(h, t)\2 = 0
h-O

a-t$h$O

•

Expanding integrals and reordering terms in (A.32), EII~(h, t) 1
2

is aIso given by

EII;(h, t) 1
2 = EII~(h, t) + I~(h, t)1

2

< ( JEII~(h, t)1
2 +..;EII~(h, t)1

2
) 2 (Minkowski's inequality, p = 2)

where (.(h, t) and I;(h, t) are given by

4(h, t) = l'+h [((S, t) - ~~' t + h) - f(s, t)] a(s)ds

I~(h, t) = i t

f(s, t)a(s)ds (A.33)
t+h

Since f(s, t) and (s, t) are continuous on 1lab and E (a(s)a(u)] is continuous at [0, b]2,
EII~(h, t)1 2

is given by

EII~(h,t)12= l'+h e(S,t) -~~,t+h) -f(s,t))

.[lt+h eCu, t) - ~~u, t + h) _ feu, t») E [a(s)a(u» dU] ds

Let tE [a, b] he fixed. Define the function F(s, x) on the closed domain 'R; described

(
f(S t) - f(s x) . ) 1%by(A.17) as F(s, x) = '-h ' -f(s,t) 0 G(u,s,x)du,whereG(u,s,x) =

eCu, t) :.:(u, x) _ feu, t») E [a(s)a(u» is defined on the closed domain 'Ti' described

by

'R" = {(u, s, x) E JEf; 0 < u < x 0 < s < x 0 < x < t} (A.34)

1
t+h

such that EI~(h, t) 1
2 = 0 F(s, t + h)ds. Sînce f(s, t) and f (s, t) are continuous on

R~b and E[a(s)a(u)] is continuous on [O,t]2, G(u, s,x) is continuous on 'R", then for
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•

(s, x) E 7<.~ f: G(u, s, x)du is a continuous function of (s, x) [192, pp. 228-234]. Hence

since f(s, t) and f (s, t) are continuous on R.:band E (a(s)a(u)] is continuous on [0, t]2,

F(s, x) is continuous on ~ and fo% F(s, x)ds is a continuous function of x on [0, t].
Therefore

lim EII~(h, t)1
2 = ft F(s, t)ds =°

h-O Jo
a-t$h$O

since F(s, t) = 0 as seen in the following. Since F(s, x) is continuous in x

F(s, t) 6 l~ {C(S' t) -~~' t + h) - f(s, t»)} ëà {1'+h G(u, S, t + h)dU}
a-t$h$O a-t$h$O 0

Since f; G(u, s, x)du is continuous in (s, x) and G(u, s, x) is continuous at (u, s, t),

~ {l'+h G(u,s,t+h)dU} = l' G(U,s, t)du
a-t$h::50 0 0

= l' ~ C(u,t) -~ku,t+h) -f(U,t») E [a(s)a(u)] du =0
o a-t$h$O

From (A.33) since E [a(s)a(u)] is continuous on [0, b]2 and tes, t) is continuous on 'R:6

EII~(h,t)12 = It t(s,t) [lt t(u, t)E[a(s)a(u)] dU] ds
t+h t+h

From the mean value theorem for integrals, 3 T/ (h, t) E [t + h, t] such that

Ell~(h,t)(2 = l' (s, t)( -h)f (ri (h, t), t) E [a(s)a (,.,' (h, t»)] ds
t+h

Since tes, t)E [a(s)a (11' (h, t»] is continuous in s, 3,' (h, t) E [t + h, t] such that

Therefore since t'(s, t) is continuous on 7<.:6' E (a(s)a(u)] is continuous on [0, b]2 and
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lim h-o r/ (h, t) = lim h-O '1' (h, t) = t,
a-tShSO a-tShSO

lim EII~(h, t) 1
2 = 0

h-O
a-tSh$O

232

(A.35)

Q.E.D

•

Proof of Lemma A.S. Similarly ta the proof of Lemma A.3, it can he shown that

f(t, t)a(t) is mean square continuous on [a, bl since f(s, t) is continuous on R~b and

a(s) is mean square continuous on [0, bl. Let us first consider the right IDean square

continuity of l' f(s, t)a(s)ds. Let h > 0 such that t + h E [a, b]. If t = b, only the left

mean square continuity has to be considered.

E IIo'+h f(s, t + h)a(s)ds -10' f(s, t)a(S)d{ = EI/4(h, t) + /5(h, t1l
2

:s; ( JEI/4(h, t) 1
2 + JEI/5(h, t)1

2r (Minkowski's inequality, p = 2)

where EI14(h, t) 1
2

and E\I5(h, t)\2 are given by

1

t+h 1
2

EI/4(h, t)1
2 = E [ f(s, t + h)a(s)ds

[ t+h [[t+h ]= t f(s,t+h) t f(u,t+h)E[a(s)a(u)]du ds

EI/5(h, t)1
2 = E 110' (f(s, t + h) - f(s, t)) a(s)dSr

= 10' (f(s, t + h) - ((s, t)) [10' (f(u, t + h) - (u, t)) E [a(s)a(u)] dU] ds

Sînce f(s,t) is continuous on 1tab and E[a(s)a(u)] is continuous on [O,b]2, using the

mean value theorem for integrals twice

Due ta its continuity, f(s, t) is bounded on R:b• E [a(s)a(u)] is continuous on [0, b]2
hence is bounded on [0, b]2. Furthermore lîmIl-o fCu, t+h) -feu, t) = 0, hence

h~O
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lim EIIs(h, t)\2 = 0 (Lebesgue dominated convergence theorem)
h-O
h~O
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•

Let us consider now the left mean square continuity. Let h ~ 0 such that t+h E [a, bl.
If t = a, only the right mean square continuity has to be considered.

E Il f(s, t)a(s)ds -l+h f(s, t + h)a(S)d{ = Elis(h, t) + l~(h, tW

< ( JEII~ (h, t) 1
2 +JEII~ (h, t) 1

2r (Minkowski's inequality, p = 2)

where I~(h, t) is gjven by (A.33) and EII~(h, t) 1
2

is given by

1

(t.+h 1
2

EII~(h, t) 1
2 = E Jo (f(s, t) - (s, t + h») a(s)ds

{t.+h [ {t+h ]
= Jo (((s,t)-f(s,t+h») Jo (f(u,t)-f(u,t+h»)E[a(s)a(u)]du ds

Define the function F(s, x) on the closed domain R~ described by (A.17) as

1
% (t+h

F(s, x) = (f(s, t) - f(s, x») 0 G(u, s, x)du such that EII~(h, t)j2 = Jo F(s, t + h)ds,

where G(u, s, x) = (f(u, t) - feu, x») E[a(s)a(u)] is defined on the closed domain 'R"

described by (A.34). Since f (s, t) is continuous on 'R:b and E [a(s)a(u)] is contin­

uous on [0, t]2, G(u, s, x) is continuous on R:', then for (s, x) E ~ 10% G(u, s, x)du

is a continuous funetion of (s, x) [192, pp. 228-234]. Hence sinee f (s, t) is continu­

ous on R:b and E [a(s)a(u)] is continuons on [0, t]2, F(s, x) is continuous on R~ and

J: F(s, x )ds is a continuons function of x on [0, t]. Therefore similarly to the proof of

lim h-O E II~(h, t) 1
2

, F(s, t) = 0 and
a-t$hSO

lim EI~(h, t) 1
2 = {t F(s, t)ds = 0

h-O Jo
a-tSh$O

Furthermore from (A.35), lim EII~(h, t)12 = O. Hence J~f(s, t)a(s)ds is mean
h-O

a-t<h<O

square continuons and from (A.28), ~ {I~f(s,t)a(s)ds} is mean square continuons

as a SUIn of two mean square continuous processes. Q.E.D
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Appendix B

Receiver Structures

B.I Linear independency of time-shifted signaIs

Let n E IN be fixed. This appendix considers the conditions under which a set of

time-shifted signais f(s - Ta), f(s - Td, ... , f(s - Tn-d is linearly independent over

an observation interval I. Long observation intervals of the form [u, tH (u, t) E JR),

intermediate and short observation intervals of the form [0, t] (t > 0), as defined in

Definition 3.1.1, will be considered.

B.1.1 Linear independency of n different time-shifted versions of a square

integrable signal over a "long" observation interval

Theorem B.I. Consider a square integrable complex function f(s) with

f~oo If(s)12ds :F o. Let ru, t] be a 'Olong" observation interval as defined in Defini­

tion 3.1.1. Then the set of n different time-shifted versions of the signal: f(s ­

Ta), f(s - T2), ... ,f(s - Tn-d is linearly independent on [u, t].

Proof. The proof is by contradiction. Suppose that there exists [ao t ••• ,an-Il =F

[0, ... ,0] such that

Since f(s) is square integrable, it has a Fourier transform (denoted as F(f». The

intervai ru, t] being "long" in the sense of Definition 3.1.1, it follows that fa (·) vanishes

everywhere and its Fourier transform Fa(f), almost everywhere. Taking the Fourier•
n-I

f(l(s) 6 L akf(s - Tk) = 0
k=0

Tf s E [u, t] (B.1)
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transform on both sides of (B.I) yields

Fa(f) = H(j21r f)F(f) = 0

where

n-l
H(z) = L ake-:r/c

k=O

v f E IR
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But H(·) is entire, and therefore possesses at most finitely many zeros in any bounded

region of the plane [175, p.225] (Theorem 10.18). So one is forced to conclude that F(·)

itself must vanish almost everywhere, violating the requirement that f bas non-zero

energy [215, p.194]. Q.E.D

B.1.2 Linear independency of n different time-shifted versions of a

continuons signal, time-limited to [0, T], over an arbitrary

observation interval of the form [0, t], t > 0

Theorem B.2. Let f(s) be a continuous complexfunction on IR, time-limited to [0, Tl
(i.e. f(s) = 0 fors ~ [0, TU tuith Ë = kT If(s)12 ds ~ O. Let {Tk}k=O•...•n-l be n distinct

delays sorted in increasing order (TO < Tl < ... ), where n is an arbitrary non-zero

integer. Consider the interval [0, tl with t > o. Let the scalar T'and the staircase

t-function i t be defined as follows:

T =~P{VElR, i~lf(s)12ds=O}

0, 0 <t< T +TO

i t = k, T + Tk-l < t :::; T + Tk

n, t> T + Tn-l

(8.2)

(8.3)

•

An example of the graph of the function i t is illustrated in Fig. B.l for n = 3.

If 0 < t < T' + TO, the time-shifted versions of the signal, ({fCs - Tk) }fc={)....n-l)'
vanish on [0, tl.

If t > T' + To, then i t > 1. Since Vk > it, 'Vs E [0, t], f(s - Tk) = 0, 011er [0, tl any

fu,nctional of the signaLs f(s-To), ... ,f(S-Tn-d reduces ta afunctional of the signais

f(s - TO), •• ' ,f(s - Tit-d only. Furthermore the signais f(s - To), f(s - Td, ... ,f(s-
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3

2

1

~------_-.-

T' + '0 T' + 'l 1" + '2
t

Fig. B.l Graph of the function i t with n = 3, corresponding for example to a
3-path channel

lit-d are linearly independent on [0, t]. Hence if t > 1" + 'n-l, the signals f(s - 10),

f(s - ,d, ... 1 f(s - 'Tn-d are linearly independent on [0, t].

Note that T' represents the 'initial time" of a wavefonn. For example if f(s) =

sin(671"'-~;Tp )rect (,-~), T' = T - Tp • For the continuous approximations of

FSK, DPSK and SDPSK modulations defined in Section 4.2.1, 1" = o. To prove

Theorem 8.2, the following lemmas are needed.

Lemma B.l. Let f(s) satisfy the assumptions of Theorem 8.2.

Define the set A as A = {v E [0, Tl, lV If(s)12 ds = o}
Define the set B as B = {v E [0, 00), lV If(s)\2 ds = È}
where 1" is defined as (8.2) and T' is defined as

then A = [0, Tl

then B = [T", 00)

(B.4)

•
Proof of Lemma B.l. Define E'(V) = i I:oo If(5)12 ds. Let us first show that A is a

eonnected subset of IR. A is non-empty sinee 0 E A. Assume that A is not connected,

then 3 Vi, \'2 open sets in JR such that

AnVin\t2=0
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•

A ~ Vi, then 3 V2 E V2 n A such that V2 ~ Vi. Similarly 3 Vl EVin A sueh that

Vi ;t \12. For k = 1, 2, Vk E A so f' (Vk) = o. Let us assume without loss of generality

that Vl < V2, then Vv E [Vi,V2], 0 <f'(V) < f'(V2) = 0, henee f'(V) = o. Therefore

the interva! [Vit V2] ç A. Furthermore

[Vi, V2] ç Vi U V2 (sinee [Vi, V2] C A)

[Vit V2] n Vi n V2 ç A n Vi n \t2 = 0 ==> [Vi, V2] n Vi n V2 = 0

Henee sinee the interval [Vil V2] is eonneeted, either [Vi, V2] ç Vi or [Vi, V2] C V2, whieh

eontradicts either that VI ;t \12 or V2 ~ Vi. Therefore A is a eonneeted subset of IR.

Let us show DOW that A is a closed set of IR. Let {vn } be a sequence of elements

of A eonverging to v in IR. Sinee 1f (s )1
2 is eontinuous on IR, the function f' ( v) is

continuous on IR. Therefore lillln-oo f' (vn ) = fr (v), but Vn E N, f' (vn ) = 0 since

vn E A, hence liIIln-oo fr (vn ) = o. Therefore fr (v) = 0 and V E A. This is true for any

sequence {vn } sa A is closed.

A is a non-empty conneeted subset of IR, therefore A is an interval, i.e. .A = [a, b],

a < b (it is the only closed interval type). Clearly 0 < a < b < T sinee .A C [0, Tl,
oE A sa a = o. Let v E A, then v < b, sa b is an upper-bound for A, therefore T' < b

as lowest upper-bound of .A (see (B.2». Sinee b E A, b :5 1" hence b = T'.
Similarly, it ean be shawn that B is aIso a non-empty eonnected subset of IR.

Henee B is an interval, i.e. 8 = (a, b), [a, b), (a, b], [a, b], a < b where a or b can he 00.

Clearly 0 < a < b sinee B ç [0, (0). Let V E 8, then 'u > a, 50 a is a lower-bound

for B, and T" > a as greatest lower-bound of B (see (8.4». Since a E B, a > T"
hence a = T". Since Vs ~ [0, T] f(s) = 0, Vv > T, f' (v) = 1 50 [T, 00) C 8, hence

b = 00. Q.E.D

Lemma B.2. Let f(s) satisfy the assumptions of Theorem 8.2.

1. If 0 < t < T' + 'r, then Vk > r Vs E [0, t] f(s - Tk) = 0

2. If t > T' + Tr then 3ar(t), br(t) E (T' + Tr, t] ,ar(t) < br(t) such that Vs E

(ar(t) , br(t» f(s - Tr) ;af 0

Proof of Lemma B.2. Let r E {O, ... , n - 1}
1. Let t E [Tr , T' + Tr ] then from Lemma B.1 t - Tr E A. Furthermore f(s) is
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time-limited to [0, Tl, therefore
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Let t E [0, Tr ), then t-Tr < 0 and sinee f(s} is time-limited to [0, Tl, f~ If(s - Tr )12 ds =

O. Therefore if t E [0, T' + Tr ] f(s - Tr ) is the "zero" function in the Hilbert space of

continuous function on [0, tl which is equivalent to

'V r = 0, ... ,n - 1 if 0 < t < T' + Tr then Tf s E [0, tl f(s - Tr } = 0 (B.5)

•

Since 0 < t < 1" + Tr ==> 'Vk > T, 0 < t < 1" + Til:l applying result (B.5) for the

index k completes the proof of ' 1.'.

2. t > T' +Tr ==> t-Tr > T' => t-Tr ft A => t-Tr ft [0, Tl or {t - Tr E [0, Tl
and f/(t - Tr } ;af o} where t:'(t) = [J~ If(s)1 2 ds] /Ë. Let us assume that t-Tr ft [0, Tl,
since t - Tr > T' ~ 0 it means that t - Tr E (T, 00), but then f/(t - Tr ) ~ f'eT) > 0,

so in all cases t:' (t - Tr ) =F O. Since f(s - Tr ) is continuous on JR, from the mean value

theorem for integrals 3 br(t) E (1" + Tr, t) such that

Rence f (br (t) - Tr) :F O. Furthermore continuity of f(s - Tr) aIso implies that 36 > 0

sneh that Vs E (br(t) - 6, br(t) + 8), f(s - Tr) ;af O. Define a,.(t) = br(t) - 8. Q.E.D

Proof of Theorem 8.2. From'1.' of Lemma B.2

o< t < T' + TO => Vk = 0, ... , n - 1 Vs E [0, tl f(s - Til:) = 0

If t > T' + TO, 3 i t E {l, ... ,n} illustrated in Fig. B.1 snch that 1" + Tit-l < t <
1" + Tit (with the convention that 1" + Tn = oo) sinee the delays Til: are aIl distinct

and ordered. From' 1.' of Lemma B.2

hence over [0, tl any functional of the signais f(s - To), ... ,f(s - Tn-d reduees to a

funetional of the signais f(s -TO), ••• , f(s -Tit-Il only. Let us consider {all:}Ii:=O•...•it-l
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snch that

it-l

'ri s E [0, t] Lakf(S - Ik) = 0
k=O
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(B.6)

Recall that t E (1" + lit-l, 1" + lic ], the observation interval [0, t] can be written as

ic

[0, t] = UI k where
k=O

I o = [O,T+Io]
I k = (T + Tk-l, 1" + Ik] k = 1, ... i t - 1

~t = (1" + lit-l, t]

From'1.' of Lemma B.2 with t = T + 111 'ri s E Il 'ri k > 1 f(s - Ik) = 0 and on Il

(8.6) reduces to

'ri s E Il aof(s - 10) = 0

From '2.' of Lemma B.2 with t = 1" + Il, 3ao(t), bo(t) E II, ao(t) < bo(t) such that

TI s E (ao(t), bo(t») ~ Il f(s - la) # 0

hence choosing sa E (ao(t), bo(t)) yields aD = 0 since f(so - la) :F O. Substituting

ao = 0 into (B.6) yields the new equation

ic-l

TI sE [0, t] Lakf(s - Ik) = 0
1..-=1

(B.7)

•

Doing the same steps with I 2 (i.e. applying Lemma B.2 with t = T + 12) using

(B.7) yields al = O. Such iteration can he applied successively ta each interval Ik,
k = 1, ... ,it starting from k = 1, yielding ak-l = o. Renee the signais f(s - TO),

f(s - Id, ... f(s - lic-d are linearly independent on [0, t]. If T > T' + 'n-l, from

(B.3) it. = n hence f(s -10), ... , f(S-Tn-d are linearly independent on [0, t]. Q.E.D
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B.2 Eigenvalues and eigenfunctions of the signal process

covariance functions Km(s, u) and ICm(s, u) assuming

L-order linear independency

B.2.1 Expressions of Km (S, u) and ~(s,u)

240

The signal process Vm(S) can be expressed in terms of its complex envelope as vm(s) =
! [vm(s)eiwc.f + v~(s)e-iWc.f], where vm(s) = EZ::-~ alcei8lcsm(S - Tic). Therefore its co­

variance function under Hm, when 6 is held fixed, is given by

Km(s,u) i). E[(um(s) - E[vm(s)18])(vm(u) - E[vm (u)16D\B]

= HE(vm(s) - E[vm(s)16])(vm(u) - E [iim(u)16]) 16]ei<J«'+U)

+ E[(vm(s) - E [Vm(S) 18]) (vm(u) - E [vm(u)l6Dï6]eiWC<s-U)

+ E[(vm(s) - E[vm(s)16])-(iim(u) - E[vm(u)16D\6]e-iWc(S-U)

+ E((iim(s) - E [iim(s)161)"{iim(u) - E [iim(u) 1( 1)ï6]e-j<Jds+u
) }

Since alc are circularly complex Gaussian uncorrelated random variables, when 8

is held fixed, iim(s) is a cïrcularly complex Gaussian random process. Therefore

E [(iim(s) - E [vm(s)IBJ) (iim(u) - E [vm(u)18J) 16] = 0 and Km(s, u) reduces to (3.5).

8.2.2 Eigenvalues and eigenfunctions of A:m(s, u)

The eigenfunctions {<t>lm(S)}1=0•.•. ,00 of A:m(s, u) are solutions of the integral equation

•

where from (3.6) Km(s, u) is given by

L-l

lCm(s, u) = L 2oism(s - TIc)S~(U - Tic)
k=o

o<s,u< Ta

(B.8)

(B.9)
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If Àm = 0, (B.8) reduces to
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(B.10)

Since the signaIs sm(s - 'io), ... ,sm(S - 'iL-d are linearly independent over [0, Tol
(L-order linear independency assumption), (8.10) implies

TI k = 0, ... , L - 1

The eigenfunctions associated with zero eigenvalues are the functions that are orthog­

onal ta {s:n (u - 'ik)} k=O,... ,L-l over [0, Ta]. Rence if "m = 0, the projection of the signal

process vm(s) on <Pm(s) is zero. Moreover, for detection in white noise, the projection of

the received signal only on the signal space is used in the decision rule [216]. Therefore

the eigenfunctions associated with zero eigenvalues are irrelevant. Since ~(s, u) given

by (B.9) is a finite dimensional kemel, the eigenfunctions associated with non-zero

eigenvalues will be a linear combination of sm(s - 'io), sm(s - 'id,.·. ,sm(s - 'iL-d

[184, p. 56]. For convenience the eigenfunctions {tPlm(S) }1=O,....oo are defined as

(B.11)

and z; = [xtô, x~, ... ,xi2._dT . Substituting (B.11) into (B.8) and equating the co­

efficients of Sm(s - 'ik) due to their linear independency gives (omitting the index l)

Àmxk = Ëm ~ol 2CTl€km(p~)·x~. Then the solution of (B.8) may be put into matrix

form sunHar ta Matthew [103], Le. Àm and zm are solution of the algebraic system

(8.12)

•

Moreover as shown in [184, p. 57] 1 there is a complete equivalence between the integral

equation (B.8) and the algebraic system (B.12) which is a classical eigenvalue problem.

It is seen that the non-zero eigenvalues in the Karhunen-Loève expansion for vm(s)

are the eigenvalues of the finite dimensional matrix Ëmemcr~.

Although the matrices Eme and r m are Rermitian, their product is not in gen­

eral Hermitian. However, provided that at least one of them is positive definite, the
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product has eigenvalues that have the same characteristics as eigenvalues of Hermi­

tian matrices [217, p. 232]. The matrix Ëm€:,{2rm€:,{2 is the Grammian for the L2

inner product. Since the signals Sm(S-TO), ... , Sm(S-TL-d are linearly independent,

Ëm €:,{2rm€:,{2 is positive definite Hermitian [217, p. 74]. Since e:,{2 is a diagonal

matrix with positive diagonal entries, it is invertihle and positive definite. Further­

more €:,{2rmE:,{2 is positive definite. Therefore it can he easily shown that r mis also

positive definite. The covariance matrix of the channel C is diagonal with positive

diagonal entries (equal to 20'f), thus C is Hermitian positive definite.

Since Eme and r~ are both Hermitian positive definite, emcr:a has L real

positive eigenvalues and L corresponding linearly independent eigenvectors [217, p.

232]. Let Dm denote the diagonal matrix with [Dm]u = Àlm/ Ëm and let us define the

matrix X mas [Xml'r = x~, then (B.12) is equivalent to

(8.13)

Because of the equivalence of the integral equation and the algebraic system, the

eigenfunctions will be uniquely determined by the solutions zm of (8.12) which are

exactly the eigenvectors of the matrix ËmEmcr~. Since r:n is positive definite,

the eigenvalue prohlem (B.12) is equivalent ta the generalized eigenvalue problem

t:-(r:n)-lz' = EmCz' where z' = r:nzm • From [217, p. 231], it is known that

this generalized eigenvalue prohlem has L linearly independent eigenvectors that can

he chosen to he orthogonal (or orthonormal) in the inner product defined by (r~)-l.

Therefore z~, z~, ... ,Z~_l can he chosen such that (z;)t(r:n)-lz~= ,s'p. Equivalently

zW, zi, ... , zr-l can be chosen such that z~tr:nz~ = cS'p. In conclusion, the

eigenvectors can he chosen ta he orthonormal in the inner product defined by r:a. It

can be easily shown that this choice of eigenvectors yields orthonormal eigenfunctions.

Furthermore one can show that this is equivalent to

X· r- X T =1m m m (8.14)

•
B.2.3 Eigenvalues and eigenfunctioDS of Km(s, u)

Since Km(s, u) = R {lK:m(s, u)eiwc:C.f-u)}, the eigenvalues and eigenfunctionsof Km(s, u)

can he expressed in tenns of the eigenvalues and eigenfunctions of !Cm(s, u) as shown

in the following. Let us write Tm(s) = R(tPm(s) exp{j(wes + p)}) where p is an arhi-
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trary number between 0 and 21r. Snbstituting into~Tm(s) = J:o Km(s, u)Tm(u)du

and using Km(s, u) = R {~~(s, u)eiColc:Cs- u )} yields

KmR { tPm(s )ei(CoIc.t+P)}

= ~ l T
• [K:m(s, 'Il)ei"'e(.-U) + K:;' (s, u)e-jc.Ie('-U)l . [tPm ('Il)ei(<JeU+p) + 4>:'('Il)e-j(<JeU+P)l du

= ~ {ei(<Je.+p)l T
• K:m(s, u)tPm(u)du + e-j("'eHP) l T

• K:;'(s, 'Il)4>:'('Il)du}

+ ~lR { e-j("'e'-P) l T

• K:;'(s, 'Il)4>m('Il)e2jc.1eu du } (B.15)

Under each hypothesis Hm, the signal process Smes) is narrow-hand, thus its complex

envelope Sm(S) is slowly varying in s with respect to WC. Rence K:~(s,u) is slowly

varying in S and u with respect to WC. This also implies that its eigenfunctions are

slowly varying with respect to WC' Therefore the last term in (B.15) can he neglected,

yielding

KmlR {tPm(S)ei(<JeHP)} = lR Uei("'''+P)lT
• K:m(s, u)4>m(U)du}

lR { Km tPm(S )ei(<Je'+P)} = lR { "; 4>m(s)eiC"'eHP) } (B.16)

If K.m = ~ is required then (B.16) will he satisfied for any p. Therefore to each eigen­

value and eigenfunction of the complex process corresponds an eigenvalue and a family

of eigenfunctions of the bandpass process (Le. Tm (s) = R {rPm (s )ei(wcs+p) }P=O•...•21r)·

In fact only two of these can he linearly independent. By choosing p = 0 and p = -i,
assuming that q.,lm (s) are orthonormal, the 2L orthonormal eigenfunctions and 2L

eigenvalues of the bandpass signal are given by

•

T,m(s) = R(V2tPlm(S)eiColcS ) I=O,...•L-l

T lm(s) = 9(V2f/Jl-Lm(S}eiColcS ) I=L•... •2L-l

. val Àlmelgen ne: Kim = 4

. val À,-Lm
elgen ne: Klm = 4

(B.17a)

(B.l7b)
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B.3 Derivation of non-coherent receiver structures assuming

L-order linear independency

B.3.1 Likelihood ratio for an L-path Ricean channel

Conditionallog-Ukelihood ratio

Recall that for detection in white noise, the projection of the received signal only on

the signal space is used in the decision mIe. As seen in Appendix 8.2, the dimension­

ality of the signal space is 2L. Let %m he an 2L-dimensional vector whose components

are the projections of z(s) on the eigenfunctions {Tlm (s) }1=0•...•2L-l associated with
the covariance function of the handpass signal process vm(s), Le.

l = 0, ... ,2L - 1 (B.18)

•

where the integral in (B.18) is a Wiener integral (see Appendix A.l) and T,m(s) is

given by (B.17). Since Tir = 0, ... ,L-1, Sm(S-Tr) is continuous on [0, Ta], from (B.11)

and (B.17), 4>lm(S) and T,m(s) are also continuous on [0, Ta]. Therefore 4>lm(S), T,m(s),

~ {Sm(S - TI)ei ,,",c
5
}, 9 {Sm(S - Tl)ei,,",c5

} are bounded [177, p. 72] and consequently

square integrable. Furthermore from (3.2)

Therefore from Appendix A.1.2, the Wiener integral in (B.18) is weIl defined (T,m(s)

is square integrahle and /{o IT,m(s)1 E Ivm(s}1 ds < (0).

Conditioned on 8, under each hypothesis, including Ho, z(s) is a Gaussian random

process. Therefore %m forms a Gaussian random vector [172, pp. 383-384]. From [187,
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p. 98] and [170] the conditionallikelihood ratio given 8 is found to he

The covariance matrices 1:0 and E m are given by
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(B.19)

where 12L denotes the 2L x 2L identity matrix, and "'m is the mean of Zm when 8 is

held fixed. The mean of the bandpass signal process under Hm given 8, lIm(S, 8), is

vm(s.9) A E[vm(s)19) = !R([~ Qkei9' Sm(S - Tk)] ei"'CS} A !R {/Lm(S, 9)ei"'cs}

(B.21)

Expression of &lm

From (B.18),

[Vm)l A E([zmh 19] = l T

• Vm(S, 9)T1m(s)ds

Substituting (B.17) and (B.21) into (B.22) yields

l = 0, ... ,2L-1 (B.22)

•

[Vmh = l T
.!R {/Lm (S, 9)ei"'cS}!R { v'2<Plm(5)ei"'cs} ds 1= O•. " •L - 1 (B.23a)

=l T
.!R {/Lm(S, 8)ei"'cs} ~ { v'2<PI_Lm(S)ei"'cs} ds 1= L, ... ,2L - 1 (B.23b)

Since Sm(s) is slowly varying with respect to Wc, Ilm(s, 8) is also slowly varying with

respect to WC. As seen in Appendix B.2.3, <Plm(S) is slowly varying with respect to
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l = 0, ... ,L - 1

l = L, ... ,2L - 1

WC' Therefore from Lemma C.1, integrals containing double frequency terms can be

neglected in (B.23) yielding

["mll = ~R{lTa

IIm(S, 9),pim(S)dS}

= ~~{lTa

IIm(S, 9),pi_r..m(s)ds}

Let us define the vector Pm snch that [Pm], 6 1:° J.Lm(s, 9)q,im(s)ds, then

(8.24)

(B.25)

where e(8) = [ooej80 ,... , QL-lejfh- 1 ] and €:,{2 is a diagonal matrix with k th diagonal

entry equal to ..j€km'

Conditional log-likelihood ratio

The conditionallog-likelihood ratio (8.19) is given by

ln [Am(z; Ta18)]

_ ln ( IEo\1/2 ) 1 [ t (~-l ~-l) + t ~-l t ~-l t ~-l ]- IE
m

11/2 + '2 zm ""0 - ~m Zm vm""m Zm + zm""m V m - vm~m V m

•
For convenience let us define r m as

1 = 0, ... L - 1 (B.26)
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where the integral is a Wiener integral of a eomplex function (see Appendix A.1.2).

SunHar to the praof for (B.18), it can be shown that 4Jim(s)e-it61c5 is square integrable

and J: 14J'm(s)e-j
e.r

c51E Ivm(s)1 ds < 00. Therefore from Appendix A.1.2, the Wiener

integral in (B.26) is weIl defined. Substituting (8.17) into (B.18) yields

(B.27)

and also eonfirms that r m is weIl defined. Let us denote

A
{lo = Nol =E [~ ( Jt:rm ) ( Jt:rmyIHo] (B.28a)

= E[~ (Jt:rm - #m) ( Jt:rm - #my18 , Hm]
(B.28b)

Note that Pm defined as [Pml, A f{o f.lm(S, 8)4Jlm(s)ds can be also viewed as the mean

of ~rm under Hm, given 8. From (B.20), (B.24) and (8.27)

t (~-1 ~-l) E- t (n-1 n-1)zm ,wo -.wm Zm = mrm ~'o - ~lim r m

t ~-1 _ (;:-E-~{ t n-1 } _ v'Êm { t n-1 t n-1 }zm,wm"m - V~m:n. rm~'m P.m - 2 P.m~'m r m+rm~'m P.m

t ~-1 _ t n-1
IIm~m IIm - Pm~lim Pm

where Om and 0 0 are given by (B.28). Renee in terms of r m and Pm' the conditional

log-likelihood ratio is given by

•

( .. 1) - ln ( 100 1) Êm t (n-1 _ n-1)lnAmz, Ta 8 - 10mi + 2 r m ~'o ~'m r m

~{ t n-1 t n-1 } 1 t n-l+ 2 pmollim r m + rm~'m Pm - 2Pm~lim Pm (8.29)
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= Ëm ( + (0-1 _ 0-1) -1 0 - 1 Pm ) t (0-1 _ 0-1)2 r m 0 m m r;=;- 0 m
vEm

. ( + (0-1 _ 0-1) -1 0-1 Pm )r m 0 m m ~
vEm

_ !lLt 0-1 (1 + (0-1 - 0-1)-1 0-1) IL + ln (10 01) (B.30)
2r-m m 0 m m r-m IOm\

Substituting (B.28) into (B.30) and using (B.13-B.14) yields (3.10).

Likelihood ratio

The likelihood ratio Am(z; Ta) is obtained by integrating successively the conditional

likelihood ratio Am(.z; TaiS) over all components of the vector 9 between -1t" and 1r.

To simplify the integration, it is convenient to isolate the terms inside the conditional

likelihood ratio that are independent of 9 and write

(B.31)

•

where f m (9) is the function that includes all factors involving 9 and Jm is everything

left over. From (B.25), it is seen that the dependence on 8 of the conditionallikelihood

ratio is via the mean vector Pm. From (B.29), it is seen that the mean is present in

the terms rrnn;;lpm and ptnn;;.1pm. The second term is Hermitian, therefore it can

be decomposed as a term dependent of 6 and a term independent of 9 as shown in

the following. From (B.25)

where B = E 1/ 2r* X T 0-1x* r* E I/ 2 Let us write B as the SUDl of a matrixmmmm mmm·

composed of its diagonal elements {B}d' a matrix composed of its upper triangular

elements {B}u and a matrix composed of its lower triangular elements {Bh. Since

B is Hermitian, {B}u = {B}:. Therefore

IL
t a-IlL = Ë [f/f(S) {E1/ 2r* XTO-IX· r* E I / 2 } e(9)r-mmr-m m mm mm mmm d

+ 2lR{Qt(B) {E~2r:,x~{};;;1x:.r:'E~2}1 Q(8) }]
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where { }d and { h are ''matrix operators" defined in Section 3.1 and the real part,

R {.}, cames from interchanging the order of summation in f;l (9) {B}: Q (9) and

grouping the terms Qt (9) {B}, Q (9) and Qt (9) {B}l Il (9) together. Since

{e1/ 2r· XT 0-1X· r- e1/ 2} is diagonal n t(6) {e1/ 2r· X T 0-1X· r- E1/ 2} fI(8)mmmmmmmd 'Ir mmmmmmmd
is independent of 8 and given by a t { EU2r:ax~n;;lX:ar:nE:,{2}d0, where ct is

defined by (3.13). Hence from (B.29)

ln,], = ln ( 100
1 ) - Èmrt (0-1 - 0-1) r - Èmot {e1/ 2r· X T 0-1X· r· E1/ 2 } am 10mi 2 m m 0 m 2 m m m m m m m d

(B.32)

ç (9) [~ { t n-l t n-l }
Jm = exp 2 rmil'm Pm + Pm~'m r m

-Ëm!R{ ,l(9) {E:,(2r;.x~n;.1 x;.r:'E:,(2}, e(9)}] (B.33)

= exp [ÈmR{ Il (9) [E:,(2r;.x~n;;;trm - { E:,(2r:,x~n;.1x:,r:,E~2},e(9)] } ]

Substituting (B.28) into (B.32) and using (B.13-B.14) yields (3.63a) and

where Qm is given by (3.16a), bkm(9k-d and 'Pkm(9k-l) are given by (3.65) and

(3.66). The likelihood ratio Am(z; Ta) is obtained by integrating successively (B.31)

with (B.34) over all components of the vector 6 between -7r and 7r.

(B.35)

•
where Jm is given by (3.63) and Im(8) is given by (B.34) .
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B.3.2 Likelihood ratio for a 2 Ricean/L-2 Rayleigh channel

Let us define
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IOkl [XTQ ] em = IOkllonl [XTQ (XT)-l E1/ 2]dkm = 2 ~ m mrm l.. ........ 2 ~ m m m m
UkV €km /II; A;n CTkV €km kn

V/cm = Idkml dm = arg [dkml (8.36)

Yb: = lebl 19k:t = arg [ebl (B.37)

hn = arg [on]

such that

(B.38)

•

For a 2 Ricean/L-2 Rayleigh channel, (B.34) reduces to

fm(8) = exp{ Yom cos (80 + 60 - dOm) } exp {IQ~~b~o)1 cos (91 + 61 - arg [b1m(80)]) }

and (B.35) yields (after integration with respect to 8d

From (B.38)

IOlllb1m(80 )\ -
UrV€lm

Hence applying Neumann's addition theorem (D.34b) [185, p. 358]

10 ( ;~lblm(8o)l)
CTl €lm

oc

= Jo (Vim) 10 (~) + 2 Le-l)PIp (Vim) Ip (VI';;) cos(p(80 + ho - dOm + ?/lm»)
FI

where V/cm and dkm are given by (B.36), V{ô and diô are given by (B.37) and 1/Jm =
dOm + 19% -191m (independent of the phase of (0). Then (B.39) yields (3.172) (after

integration with respect to 80 ) •
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Appendix C

Collection of identities

This appendix presents a collection of identities and properties that will be used

throughout this thesis.

C.I Identities obtained by neglecting integrals containing

double frequency terms

Lemma C.l. Let f(s, t) and g(s, t) be complez fu,nctions slowly varying in s with

respect to Wc over the observation interval [0, tl.

(C.I)

•
Proof of Lemma C.1.

l
t

{ .} . 1o ft f(s, t)eJ~c5 g(s, t)e1~c·ds = 2[flet) + 12(t)] (C.6)
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where II(t) and I2(t) are given by

h(t) = l' f(s, t)g(s, t)ei'lwcOds

/2(t) = l' f"(s, t)g(s, t)ds
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(C.7)

(C.B)

Neglecting integrals containing double frequency terms in (C.B) (Le. neglecting h(t))
yields (C.I). Taking the real part of both sides of (C.I) yields (C.2). Similarly taking

the imaginary part of both sides of (C.I) yields (C.3).

where [let) and I 2(t) are given by (C.7) and (C.B). Neglecting integrals containing

double frequency terms in (C.9) (Le. neglecting [l(t» yields

which is identical ta (C.4). Taking the conjugate of (C.I), multiplying it by eiwct and

taking its real part yields (C.5). Q.E.D

For the rest of this appendix, Sm (s) is assumed continuous on [0, t] and time-limited

to [0, Tl, r;,. is defined as (3.30) and the index m (indicating Hm) is omitted.

C.2 Definition of the resolvent kernels

From section 3.2.3 (topic: "Eigenvalues and eigenfunctions of Km(s, u) over an arbi­

trary observation interval [0, t], t > r:n +To assuming that sm(s) is time-limited"), the

covariance function of the complex signal process 'Ù(s) = LZ;~ ak&fJlc s(s - Tk) can be

written as l

•
{

o 0 < T, S < t 0 < t < 1" + TO
~(T,S) = .

~~t (T, s) 0 < T, S < t T' + To < t < 00

IThe superscript i t is Dot an expoDent.

(C.IO)
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where K:it(T, s) = E~:-~ 20'~S(T - Tk)S·(S - Tk) has eigenfunctions t/J:t(s, t) given by

(3.34) and eigenvalues ,\~t(t). From Mercer's theorem [182, p. 85]

it-l
K:it(T, s) = L À:t(t)rP:t(T, t) [rP:t(s, t)]* 0 <T, s < t 1" + TO < t < 00 (C.l1)

1=0

Therefore substituting (C.l1) into (C.10) yields

L-l

K:(T, s) = L À1(t)t!>I(T, t)t!>i(s, t)
1=0

o <i,S< t O<t<oo (C.12)

where v'À1(t)t/>I(S,t) is given by (3.39). Using K(T,S) = ~{jK:(T,s)ejWc(T-S)} and

(3.44), K(r, s) is similarly given by

2L-l

K(T, s) = L KI(t)y,(r, t)T,(S, t)
1=0

o<i,S< t O<t<oo (C.13)

where v'K,Ct)Y,(S, t) is given by (3.44). Let us define the kernels ?-l(i, S, t) and

H(i, s, t) as

{
~ ~ O<T,S<t

'!J( ) A ~ 1 ;,Ct) cPl(r, t)cP;(s, t) 0 < t < 00
ri. T, s, t - 1=0 + 2No

o e~e.

{

2L_l ..1.._ (t)

L N "'1 0 < T, S < t
A O 2 () Y,(T, t)T,(s, t) 0

H(r,s,t)= l=ol+ No Klt <t<oo

o e~e.

(C.14)

(C.15)

(C.16)

where À,Ct), v"À,(t)t!>,(S, t), K,(t) and y'",,(t)y,(t) are respectively given by (3.37),

(3.39), (3.43) and (3.44). It can he easily verified by straight forward substitutions of

(C.12) and (C.14) that

• 1 1 l t

2N
o
~(T, s) = 1-l(T, S, t) + 2N

o
0 K:(T, r)?-l(r, s, t)dr o<T,S < t (C.17)
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(C.1S)o<T,S< t2 2 J.tNo K(T, s) = H(T, S, t) + No 0 H(T, r, t)K(r, s)dr

Similarly (C.lS) can be checked using (C.13) and (C.15). Therefore 1t(T, s, u) and

H(T, s, u) are the resolvent kemels of /C(s, u) and K(s, u) on [0, tl [2lS, pp. 141,162].

C Collection of identities•
Proof of CC.16). Recall that since /C(T, s) is Hermitian, VT + To < t < 00,

{Â:t(t)},=O,... ,it_1 are real, hence {Âl(t)},=O,....L_l are also real. For 0 < T,S < t,
from (C.14)

where the last equation is obtained using (3.43-3.44). Q.E.D

C.3 Integral equations identities and others

C.3.! Identities

Let H(T, S, t) be the unique square integrable function satisfying (C.IS) where K(s, u)

is symmetric, continuous and non-negative definite on JR or an interval of IR. Then

H(T, s, t) satisfies the weIl known Siegert identity [52, p. 20], [219], [220]:

•
aH
ôt (T, S, t) = -H(T, t, t)H(s, t, t) = -H(t, T, t)H(t, s, t) (C.19)



For 0 < s < t &. 0 < t < 00, the functions {vi)..,(t)ifJl(S, t) } l=O.... •L-l satisfy the

following identities, 'V l, j = 0, . .. ,L - 1

• C Collection of identities

ses - Tl) can he expressed in terms of ifJj(s, t) as2
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(C.20)

(C.21)

(C.22)

The functions {).., (t )}1=0•... •L-l satisfy

O<S<t
O<t<oo

(C.23)

(C.24)

The complex functions lt(T, t) and let) satisfy the following identities, VO < ; :5 t

•

l ltlk(T, t) = lakls(T - Tic) - 2N
o

0 A:(T, s)lt(s, t)ds

= lakls(T - Tk) -,akll s(u -Ti,)1i(T, u, t)du

lk(T, t )e!",cT = lakls(T - Tk)e!",cT
- lakIl s(u- Tk )e!"'cU H (T, U, t )du

L-l 1 Ilt

let) = L 2~ lk(T, t)S·(T - Tt)dT
k=O 0 0

Similar to (3.69), VT + TO < t < 00,

2Note that (C.23) is identical ta (3.4Gb) and reprinted in this appendix for convenience.

(C.25)

(C.26)

(C.27)

(C.28)
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1 l t

.= No 0 l;:(s, t) IOkl 8-(S - Tk)ds

1 i t

[ . ]*= No 0 l~(s, t) IOnl ses - Tn)ds

where l~(s, t) is given by (3.88).

C.3.2 Proofs

Proof of (C.20)

256

(C.29a)

(C.29b)

•

• Assume 0 :5 t < T + To:

From (3.37) 'V i, j = 0, •.. ,L -1, -"l(t) = Aj(t) = 0 and from (3.39a) 'VD < s < t,

JÀI(t)4>,(S, t) = J>"j(t)rj)j(s, t) = 0, hence

VÀI(t)À;(t)l'<Ms, t)</l;(s, t)ds =l'Ods = 0 =0.6,; =VÀ,(t)À;(t)5,;

• Assume t > T + TO and l e {D, ... ,L - Ih j e {i t , ••• ,L - 1}:

From (3.37) Àj(t) = 0, and from (3.39a) 'VO < s < t, JÀj(t)rj)j(s, t) = 0, hence

VÀ,(t)À;(t)l' </l,(s, t)</l;(s, t)ds = l'o· VMt)</lI(S, t)ds

= 0 =°.JÀl(t)dli = Jr-ÀI-(t-)À-,-.(t-)6Ij

• Assume t > T + TO and l e {itt ••. ,L - I}, j e {O, ... , L - I}:

From (3.37) Àl(t) = 0, and from (3.39a) 'VO < s < t, ~rj)l(S, t) = 0, hence

VÀj(t)À;(t)l' </l,(s, t)</l;(s, t)ds = 0 = VÀ,(t)À;(t)5,;

• Assume t > T +To and l,j e {O, ... ,it -I}, from (3.39a)

JÀI(t)À;(t)l' </l,(s, t)</l;(s, t)ds = À:'(t)ÀJ(t)l' </l~'(s, t) [</lJ(s, t)]* ds

- À:t(t)>"~t(t)6Ij = JÀI(t)Àj (t)6'j
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sinee the eigenfunctions 4>~t(Sl t) are orthonormal on [0, tl.
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Q.E.D

Equations (C.2I) and (C.22) can be proved similarly using (3.39a) and (3.37- 3.38).

Proof of (C.24)

• Assume "0 ~ t < T' + To" or "t > T' + To and l E {i t , ••• , L -I}":

From (3.38) 'V k, ~f:~XlA~(t) = 0, and from (3.37) ÀI(t) = 0 hence

• Assume t > T' +To and lE {O, ... ,it -I}:

From (3.38) and (3.37)

f: À?(t) IX lk(t2 12 =1: [À:'(t)]2I x:kY)1
2

= À:'(t) = Àl(t)
k=O 2lTlEk(t)E k=O 2C1lfk(t)E

•

Proof of (C.25)

From (3.103b) and (C.12)

1 l t

AT K(T, S)lk(S, t)ds
2Ho 0

1 1 L-1 L-l À,(t) • Ct) l t

= ;:2 EE 2N~ J'k _Àj(t)t/Jj(T, t) t/JI(S, t)t/Jj(s, t)ds
k 1=0 j=o 1 + 2No fk(t)E 0

1
L-l "'l(t)

= lak
2
E 2Nki xik(t) t/JI(T, t) from (C.21)

2uk 1=0 1 + 2No JEk(t)Ë

_ jOkl~ "l(t) (1 + ~~: -1) xik(t) A. ( )

- 2 LJ ~ 'f'l T, t
2lTk 1=0 1 + 2~o JEk(t)È

Q.E.D
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Then substituting (3.103b) and (C.23) yields (C.25).

Proof of (C.26)

From (C.25)
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Q.E.D

lakllt s(u - Tk)'H(T, u, t)du

=l'H(T, U, t) [lk(U, t) + 2~o l K(u, S)lk(S, t)dS] du

= l'H'(U' T, t)lk(U, t)du + llk(S, t) [2~o l K'(s, u)'H' (u, T, t)dU] ds

= l'H'(U' T, t)lk(U, t)du + llk(S, t) [2~oK(s, T) -'H(s, T, t)r ds from (C.17)

1 lt

= 2N
o

0 ~(T, S)lk(S, t)ds

Then (C.25) yields (C.26).

Proof of (C.27)

Taking the real part of (C.26) yields

Q.E.D

•

R {lk(T, t)e.1WcT
}

=R {Iak Is(T - Tk)ei"'or} - lakIllR{s(U - Tk) ['H(T, u, t )ei"'or]} du

::::: R {Iakls(T - Tk)é'or} - lakIlR {s(U - 'Tl:)ei"'o"} R {2 ['H(T, u, t )ei"'or] e-i"'o"} du

where the second equation is obtained by neglecting integrals containing double fre­
quency terms (see (C.2»). Using (C.16) yields

R { lk(T, t )ei"'or} = IR {Iakls(T - Tk)ei"'or} - lakll R {S(U - 'Tl:)ei"'c" } H (T, U, t )du

(C.30)
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Similarly, taking the imaginary part of (C.26) and neglecting integrals containing

double frequency terms (see (C.3» yield

9 {lk(T, t )eiCJcT
}

= ~ {Iakls(T - Tk)ei"'eT
} - lakIl~ {s(u - Tk) [1l(T, u, t )ei"'eTj} du

::::: ~ { lakls(T - Tk )ei"'eT
} - lakIl~ {s(u - Tk)é'eU

} !R {2 [1l(T, u, t )ei"'eT
] e-jwe

U
} du

= ~ {lakls(T - Tk)} -,ak'l ~ {s(u - Tk)ei"'eU
} H(T, u, t)du (C.31)

Adding (C.3D) and (C.31) multiplied by j yields (C.27) since H(T, u, t) is real. Q.E.D

Proof of (C.28)

From (3.105) and (C.22)

hence (C.28) is obtained using (3.1D3b) and (C.23).

Proof of (C.29)

Q.E.D

•
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Since {4>;l(S, t) }'=O,... ,it-l are orthonormal, (C.32) is also given by
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Hence (C.2ga) is obtained using (3.40a) and (3.88). Similarly, (C.32) is also given by

Hence (C.29b) is obtained using (3.40a) and (3.88). Q.E.D

•

C.4 Continuity and differentiability of the fonctions Àlm(t)

and Klm(t)

Assume that To < Tl < ... < TL-l, then \f r = 1, ... ,L 'V l = 0, ... ,r - 1 if
t E (T' + Tr-l, T' + Tr ], then t > T' + Tl and from '2.' of Lemma 8.2 applied to

ses), there exists a,(t), b,et) such that \f s E (al(t), b,(t)) , ses - Tt) t= o. Therefore

€t(t) > -i J~'g; Is(s _11)12 ds > o. Since ses - Tl) is continuous on [0, t], €l(t) =
-El !co

t
Is(s - Tt)1 2 ds and Plj(t) = -..; 1 J~ ses - Tl)S*(S - Tj)ds are differentiable

E f"I(t)~j(t)

(with respect to t). Therefore 'Vr = 1, ,L the matrix Er(t)ËCrr;(t) is differen-

tiable on (T' + Tr-i, T' + Tr ]. "Ir = 1, ,L \ft E (T' + Tr-lt T' + Tr] , the matrLx

E,.(t)Ëcrr;(t) is diagonalizable as product of two Hermitian positive matrices and
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•

is an r x r matrne. Therefore similarly to results found in Appendix 8.2.2, it has

r real positive eigenvalues. Let ("oCt), À1Ct), ... , ~_l(t)]T represent a r-tuple of the

repeated eigenvalues of Er(t)ÈCrr;(t), then there exists r functions {À,(t)},=Ot....r-l

representing the repeated eigenvalues of Er(t)Ëcrr;(t), which are single-valued and

düIerentiable on (T' + Tr-l, T' + Tr ] [221, pp. 110-115]. From (3.37) Vr = 1, ... ,L

Vt E (T' + Tr-l, T + Tr ] , if. = r, hence Vr = 1, ... , L Vt E (T' + Tr-l, T' + Tr ]

VI = r, ... , L - 1 Àl(t) = 0 (differentiable) and 'V l = O~ ... , r - l, Al(t) = À,(t)

(differentiable [221, pp. 110-115]). Therefore'Vl = O, ... ,L -1 'Vr = l, ,L the

functions Àl(t) is differentiable on (T' + Tr-l, T' + Tr ] • From (3.43), 'Il = 0, ,L-l
'Ir = 1, ... ,L the function Kl(t) is also differentiable on (T' + Tr-l, T' +Tr ] .

c.s Identities assuming continuously differentiable

{xir(t)h,k=O,... ,r-l and distinct {ÀiCt)}l=O,... ,r-l 'Ir = 1, ... , L

The identities presented in Appendix C.2 and Appendix C.3 are vaUd for any con­

tinuous signal Sm (s) time-limited to [0, T]. This section presents identities that are

proved only under the assumptions

1. Vr = 1,... ,L, there exists functions {X[k (t) } l.k=O....•r-l continuously differ­
entiable on (T' + Tr-l, T' + Tr ] such that the r x r rnatrix Xr(t), defined as

[Xr(t)]'k = Xlk(t) , satisfies the equations X;(t)r;(t)X;(t) = Ir and

Er(t)Crr;(t)X;(t) = X;(t)Dr(t).

2. 'V r = 1, ... ,L, the eigenvalues of Er(t)ËCrr;(t), {Àl(t) },=o.....r-l are distinct.

These assumptions ensure the continuity and differentiability properties of sorne of

the kemels and functions previously defined. Furthermore they are not too restrictive.

As shown in Appendix E.3.2, they are satisfied in the case of non-degenerate tw<rpath

channels (Le. 20'5 #: 0,20't #: 0) such that Vt > T' +Tlt POl(t) #: O.

C.S.l Differentiability of the functions JÀlm(t)tPlm (s, t) and ..;Klm(t)Tlm(s, t)

Let us assume that Assumptions 1-2 are satisfied. Let {x1k(t)},tk=o.... tr-l be the cor­

responding functions continuously differentiable on (T' +Tr-l, T' + Tl" ]. Recalling

that if. is an integer staircase function of t, from (3.34) and (3.35), the eigenfunc­

tions {tP,(s, t)} r=l•...•L can be expressed in terms of those continuously differentiable
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1 r-l r ( )

,p/(s,t) = ~L ~S(S -Tk) 0 <s< t
V E k=O €k(t)

Let 'Rr be the domain of JR2 described by

r = 1, , L
l = 0, , r - 1
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(C.33)

'Rr = {(s, t) E JR2; 0 < s ::; t T' + Tr-L < t < 1" +Tr }

•

Since ses - Tk) is continuous on [0, t), from (C.33) "tir = 1, ... , L the functions

{ y'''I(t)4>r(s, t) h=o.....r-l are continuous on 'R". and differentiable with respect to t
on 'Rr. From (B.3), \fr = 1, ... ,L 'v' (s, t) E R,. i t = r. Thus from (3.39a) 'v' r =
1, ... ,L \f l = 0, ... , r - 1 VA,(t)4>I(S, t) = v'Af(t)4>Hs, t) and 'v' l = r, ... , L - 1

V",(t)4>,(S, t) = O. Therefore 'v'r = 1, ... , L the functions { v'Al(t)cPl(S, t) h=O.....L-l

are continuous on 'R.r and differentiable with respect to t on 'R,.. From (3.44),

'v'r = 1, ... , L the functions {VK:I(t)T,(s, t) },=O.....2L-L are also continuons on R,­

and differentiable with respect to t on Rr.
If the functions {xlk(t)} l.k=O.....r-l are assumed to he continuously differentiahle

on (T' + Tr-l, T + Tr] , the functions {VA,(t)cP,(S, t) },=o.....r-l are continuously dif­

ferentiable with respect to t on 'Rr as shown in the following. Let r E {1,... ,L},

(B.3) and (3.39a) yield

If l E {r, ... ,L - 1}, 'v' (s, t) E 'Rr V"l(t)cPl(S, t) = 050 : (VA,(t)cPl(S, t)) =
o and ;t (viAl (t )4>l(s, t)) is continuous on 'Rr.

If l E {O, ... , r - 1}, 'v' (s, t) E Rr

~ ( v'À/(t),pI(S, t») = ~ ( J>,[(t),pi(s, t»)

1 Er -
1 a [vArCt) r ( )] _( ) 0 < S < t= - - Xlk t S S - Tk ""' from (3.34)VE k=O at V€k(t) Tr-l < t - l <Tr

- ~ {[ "'fk(t) x r (t) + J"r(t)xr Ct)] 1 _ J"T(t)Xr (t) Ék(t) } ses - Tk)- ~ 2VAr(t) lk l lk Vfk(t) l lk 2f~/2(t) VE
(C.34)

'v' k = 0, ... , L -1 €k(t) is differentiable with derivative given by Ék(t) = ls(t - Tk)12
,

set - Tk) are continuous on [0, t], by assumption xlk(t) are continuous on



(T' + Tr-b T' + Tr-r] hence from (C.34), :t (y'>-'I(t)t/JI(S, t)) is continuous on Rr.

From (3.44), 'Ir = 1, ... ,L the functions {VI\:I(t)T,(s, t) },:O.....L-l are also con­

tinuously differentiable with respect to t on n.,..
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C.S.2 Differentiability of lkm(T, t)eiWcT

Proposition C.l. Let e > 0 and let 'Rr(f) be the domain of JR2 described by

, 1 }T + Tr-l + € ~ t < T + Tr

For any f > 0, "t r = 1, ... , L, 'V k = 0, ... , L - 1 l,,(T, t)eiWcT is continuous on 'R..,.(€)

and difTerentiable with respect to t on 'R.r (e) with partial derivative given by

(C.35)

Proof of Proposition C.I. Let € > O. As seen in Appendix CA, 'Ir = 1, ... L

the functions {I~I(t)}'=O.....L-l are continuous on [T' + Tr-l + f, T' + Tr ]

since [T' + Tr-l + f, T' + Tr ] C (T' + Tr-l, T' + Tr ] , and the functions

{ VKl(t)TI(S, t) },=O.... ,2L-l are continuous and differentiable with respect to t on Rr(f)
sinee 'R.r(e) C 14. Therefore from (C.15), "tr = 1, ... , L the kemel H(T, s, t) is eon­

tinuous on 'R.; (e), where 'R.; (e) is the domain of JR:1 deseribed by

•

Therefore from [192, p. 230], "Ir = 1, ... L the right side of (C.27) is eontinuous

on 'R.r(e) hence Vk = 0, ... ,L - 1 the function 1,,(T, t)e.1WcT is continuous on 'R.r(e).

Furthermore from [220} H(T, S, t) is differentiable with respect to t with partial deriva­

tive given by (C.19). Rence "Ir = l, ... L the kemel aH~,s,t) is continuous on 'R.;(e).

Therefore from Leibnitz's Rule [192, p. 258] Tf r = 1, ... L the right side of (C.27)

is differentiable with respect to t on 'R.,.(€) hence li k = 0, ... ,L - 1 the function

l,,(T, t)&WcT is differentiable with respect to ton Rr(e) with first order partial deriva­

tive given by
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Using (C.19) yields

~ (lA,(T, t)ei"1c~) = - H(T, t, t)laA,1 [S(t - TA,)ei"'·t -1' s(u - TA,)ei"'·uH(t, u, t)dU]

= -H(T, t, t)lk(t, t)ei"'ct from (C.27)
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Note that lk(T, t) = lk(T, t)ei"'cT
• e-i"'cT

, hence \fr = l, ... ,L \f k = 0, ... ,L -1 the

function lA: (T, t) is also differentiable with respect to t on 'R; (E) with partial derivative
given by 8l~;.t) = -H(T, t, t)lk(t, t)&"'c(t-T) Q.E.D

C.S.3 Differentiability of lm(t)

Proposition C.2. For any E > 0, 'Vr = 1, ... , L, I(t) is differentiable on

[T' + Tr-l + e, T' + Tr ] with derivative given by

i(t) = Ë IlA,(t, tW
k=O 2No

(C.36)

Proof of Proposition C.2. Let E > O. \f k = 0, ... , L - l, s(S - TA:) is continuous

on [0, tl. From Proposition C.l 'Vr = l, ... L \f k = 0, ... ,L - 1 the function lk(S, t)

is continuons on 'R.r(e) and differentiable with respect to t on R,.(e). Furthermore

'V r = 1, , L the kemel H(s, t, t) is continuons on 14(e). Renee 'V r = 1, ... L

\f k = 0, ,L - 1 the partial derivative 811cJ:.t) is continuous on 'R.,.(e). There-

fore from Leibnitz's Rule \fr = 1, ... L the right side of (C.28) is differentiable on

[T' + Tr-l + E, T' + Tr ], so let) is differentiable on [T' + Tr-l + E, T' + Tr ] with deriva­

tive given by

I·() ~ 10kl [lt BlA:(s, t) -*C )d l ( ) --C )]t = L...J 2N. ôt S S - Tk S + li: t, t s t - TA:
k=0 0 0

Using (C.35) yields

•
i(t) = Ë ~~llA,(t, t) [S*(t - TA:) -ltH(s, t, t)ei"'c(t-..)S*(s - Tk)dS]

11:=0 0 0

Using (C.26) yields (C.36). Q.E.D
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Appendix D

Direct derivation of the specular

coherent and non-coherent MM8E

estimates

D.I Specular coherent MMSE estimate for an L-path Ricean

channel

The specular coherent Ml'JISE estimate, or equivalently, the conditional mean assum­

ing that the specular component phases are known, is derived for an L-path Ricean

channel based on the definition and properties of the conditional mean. For specular

coherent detection, the conditional mean is defined as

(D.l)

where the expectation is with respect to a = [ao, ... ,aL_l]T. Over the observation

interval [0, tI, under Hm the received signal is given by

(D.2)

•
When 8 is held fixed, the noiseless received signal Vm (s) ­
R {E;;~ akei9lr sm (s - Tk)eic.lC.9} is Gaussian with mean vm(s,8) li. E [Vm(S) 18] -

R {E~;~ IQklei(J~Sm(S - Tk)eic.lC.9} and covariance function Km(s, u), where 9~ = Bk +
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arg(Qk)' From (D.l) the specular coherent conditional mean vm (tI9) is given by
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Vm(tI9) = E [(vm(t) - Llm(t, 9» + Llm(t, 9)19, i(s), 0 < s < t, Hm]

=E [vm(t) - lIm(t, 8)19, z(s), 0 < s < t, Hm] + IIm(t, 9) (0.3)

But from (0.2)

E [vm(t) - Llm(t, 9)18, z(s), 0 < S < t, Hm]

= E [vm(t) - IIm(t, 8)18, z(s) - Llm(S, 9) = vm(s) - Llm(S, 9) + w(s), 0 < S < t]

= E [Vm(t) - Llm(t, 8)19, li~(s), 0 < S < t, Hm] (D.4)

where dyc;,. (s) = dz(s) - Vm (S, 9)ds and the hypothesis Hm is defined as H'm : yc;,. (s) =

vm(s) -lIm(S, 8) + w(s) For sake of simplicity let us introduce a new hypothesis HOm
defined as HOm : li~(s) = w(s). When 8 is held fixed, vm(s) - Llm(S, 8) is a Gaussian

process with zero mean and covariance function Km(s, u). Therefore, considering the

hypotheses HOm and H'm from [173]

where hm(t, s) is the unique square integrable solution of the Wiener Hopf equation

given by

2 ft 2
hm(t, s) + No Jo hm(t, T)Km(T, S)dT = No Km(t, s)

Substituting (D.4) into (D.3) with (0.5) yields

(0.6)

•
(D.7)
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Using that hm(t, s) is real and that hm(t, s) = Hm(t, s, t) (see (C.18) and (0.6»
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Vm(tIB) = [ h",(t, s)dz(s)

+ lR{r~ lakleis~ [sm(t - Tk)ei"'c' -[Hm(t, s, t)sm(s - Tk)ei"/C&dS] }

= ~ { (21' 11;.(s, t, t)e-i"'c&dz(s) + Ê l!:m(t, t)eiS~) e;illJct.} (0.8)
o k=O

where 1lm (s, t, t) is given by (3.41), lkm(t, t) is gjven by (3.49) and the last equality

comes from (C.27) and hm(t, s) = Hm(t, s, t) = lR {21t:n(s, t, t)eillJc(t.-s)}.

D.2 Non-coherent MMSE estimate for an L-path Ricean

channel

Section 3.3.3 (topie: "Computation of the conditional mean using its definitiont
') pre­

sented the prineiples of an iterative method to derive the non-coherent conditional

mean corresponding to L-path Rieean channels hased on (3.110). This method in­

volves the successive computation of conditional means. Details on how to compute

these eonditional means are given in this section.

Let Am (z; tI8~) he the conditional likelihood ratio when 8; is held fixed and the

observation interval is [0, t]. By modifying results from Appendix B.3.1 to take into

account the observation interval, [0, t], and using Section 3.3.3 (topic: "Likelihood

ratio over an arbitrary observation interval [0, t] assuming that sm(s) is time-limited")

the conditional likelihood ratios are given by

where (0.9) is obtained from (3.92) and

•

(0.9)

(0.10)

(0.11)
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ek:,(t) = ~o i'lnm(S' t) lakl s;'(s - Tk)ds (D.12)

'Pkm(6~-I' t) = arg [bkm(8~_I't)] - arg [Ok] 'Pam(t) = arg [bOm(t)] - arg [00]

(D.13)

dkm(t) is given by (3.100) and 8~ is given by (3.90). Obviously, the likelihood ratio

Am (z; t) is given by

1 JlI' ( ,), 1 J1r ( ,) ,Am (.i; t) = -2 Am z; tl80 d80 = -2 Am z; tlBo d80
~ -11' ~ -11'

Then, from (3.110), Bayes' rule and the statistica1 independence of the 8~'s, the

conditionalmeangiven8; Vlm (t,8;) A E [VL_Im(t,8')18;,z(s),O < s < t,Hm] isgiven

iteratively by

(0.14)

•

with the convention that V-lm = vm(t) (see (3.108», 8'-1 = [·l (nul! set) and

Am(z; t(8~1) = Am Ci'; t). The first conditional mean 'UL-Im(t, 8~_1)' (3.109) is by

definition the specular coherent conditional mean vm (tI8), (D.1), and is computed

in Appendix D.1. Use of (D.14) is illustrated in Appendix D.3 and Appendix D.4,

where the conditional mean vm (t) is calculated for the special cases of mixed mode

Ricean/Rayleigh and 2 Ricean/L-2 Rayleigh channels.

Remark. H tÎlm(t, 9~) is independent of 8;, substituting (D.10) into (D.14) yields

VI-lm (t, 8;_1) = Vlm (t, 8~) .
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D.3 Non-coherent MMSE estimate for a mixed mode

RiceanjRayleigh channel
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Similar to (3.154), sinee TI k = l, ... , L Qk = 0, the likelihood ratio over (0, t] (3.92)

reduces to

(0.15)

where Jm(t) is given by (3.93) and VOm{t) is given by (3.98). For a mixed mode

Ricean/Rayleigh channel, 'V k =1= 0 Qk = 0, henee from (3.103b) TI k =1= 0 lkm (s, t) = O.

Therefore in that case (0.8) reduees ta

Vm (tlS) 6 VL-lm(t, 8~-d

= IR { (2i' ?t;..(s, t, t)e-i<Jc'C:~(s)+ IOm(t, t)ei8~) ei<Jc' } (0.16)

•

As seen from (0.16), ih-lm(t, 9~_1) is independent of 8~, ... ,8~_1' hence from (0.16)

and the remark at the end of Appendix 0.2

1 1 ,

VQm(t, 80) = Vlm(t, 8 1) = ... = VL-lm(t, SL-l)

= !R { (2[ 1t;'(s, t, t)e-i<Jc,dz(S») e1"'c' } + IR {IOm(t, t)ei8~ei<Jc'} (D.17)

Substituting (D.17) into (D.14) yields
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•

For a mixed mode Ricean/Rayleigh channel, 'V k ~ 0 Ok = 0, hence (0.9) reduces ta

Am (z; tI8~_1) = Jm(t) exp {loollbom(t)1 cos(80 - '1'Om(t»)}
(T~JEQm(t)

= Jm(t) exp {VOm(t) cos{(J~ - t?Om(t» }

Substituting (0.19) inta (0.18) yields

Vm(t) = R { (21'1i;"(S, t, t)e-i",.sdz(s) + ~:~~:~:~~ IOm(t, t)eiil....(.l) ei"'.'}
=R { (21' 1i;"(s, t, t)e-iw<4dz(s) + VOm(t)ei":"'(')IOm(t, t)ei"....(.l) eiw·'}

(D.20)

where 'H.m(s, t, t) is given by (3.41) and lkm(t, t) is given by (3.103),

89 (dm(t), t) 1 8g (dm(t), t)

\/,' (t)ei17~(t) = I1(VOm(t)) + ·.0 = aVQm(t) . VOrn(t) 81?Om(t)
Dm Io(VQm(t)) J 9 (dm(t), t) + J 9 (dm(t), t)

lThe second equality is obtained by expanding the real part of a product. Two integrals are then
obtained, one with a cosine and another with a sine, however the integral with the sine is equal ta
zero since the integrand is odd.



and g(dm(t), t)= ~:ti~) = /o(VOm(t». It is seen that (0.20) is identical to the condi­

tionaI mean expression found by Itô differentiation (see (3.124a) assuming llm(S, t) =
... = lL-lm(S, t) = 0, a property of mixed mode Ricean/Rayleigh channels).
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D.4 Non-coherent MM8E estimate for a 2 Ricean/L-2

Rayleigh channel

Modifying results of Section 3.6.1 to take into account the new observation interval

[0, t} and using techniques of Section 3.3.3, from (3.172) the likelihood ratio over [0, t}
for a 2 Ricean/L-2 Rayleigh channel is given by

Am (i; t) = Jm(t)g(dm(t) , t) = Jm(t){ Io(VOm(t»/o(Viô(t»/o(V1m(t»
00

+ 2 LC-l)PIp(VOm(t))/p(\Ii~(t))Ip(Vim(t))cos [p(dOm{t) + 'd~(t) - d1m(t»]}
p==l

(0.21)

where Jm(t) is given by (3.93), Vkm(t) is given by (3.98)~ Vk-m(t) is given by (3.99)~

V~(t) = lek:t(t)l, t?~(t) = arg[ebt(t)l and ek:t(t) is given by (0.12).

D.4.1 2 Ricean/L-2 Rayleigh conditional mean when 8~ is held fixed

( vOm(t, 8~) )

For a 2 Ricean/L-2 Rayleigh channel, Vk = 2, ... , L-1 Ok = 0, hence from (3.103b),

Vk #: 0, 1Im (s, t) = O. Therefore in that case (0.8) reduces to

Vm (tI9) l:i. VL-Im(t, 9~_1)

= !R { (21'1C'm(S, t. t)e-i""'dz(s) +~ l!:m(t, t)eiB~) ei""'} (0.22)

•
As seen from (0.22), VL-lm(t, 8~_1) is independent of 8;, ... , 8~_1' hence from (D.22)

and the remark at the end of Appendix 0.2



Vlm(t, ,'1) = IR {(2i'1i;.(s, t, t)e-iwc'dz(s) + lOm(t, t)~) ei"'c.}
+ ~ {Llmet , t)e?6~e?tMet} (0.23)
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•

Substituting (0.23) into (D.14) and simplifying yield

For a 2 Ricean/L-2 Rayleigh channel, TI k ;f; 0, 1 Ok = 0, therefore (0.9) reduces to

since from (0.11) ~J6om(t} = dom(t) = VOm(t)ejdQm(t). Since Am(z; tI8~_1) is inde­
o (Om(t)

pendent of 0;, ... ,8~_l' Am(z; tI8~_1) = Am(z; tI8~) and from (0.10)

Using (D.26), and Am(z; tI9~) = Am(z; tI9~_l) with (0.25), yield
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(D.27)

(D.28)

•

where 61 = arg [al] and (D.27) is obtained by expanding the real part of a product.

Two integrals are then obtained, one with a cosine and another with a sine, hawever

the integral with the sine is equal ta zero since the integrand is odd. Substituting

(0.28) into (D.24) yields

vOm(t, 9~) = iiom(t, 9~) = IR { (21' 1t~(s, t, t)e-i",c'dZ(S») ei"'c.}

+ ~ {lOm(t, t)ei8~eiWc:t} + R {ft (I~J:~;;;)I) llm(t, t)ei"'m(9~")ei61ei"'c'}
l (ladlblmeeQ,tH)
o c1fv'€tm(t)

(D.29)

where blm(8~, t) and CPlm(8~, t) are given by (D.11) and (D.13) and dl = arg [ad.

D.4.2 2 Ricean/L-2 Rayleigh MMSE estimate (vm ( t) ): averaging of

varnet, 8~) over 8~

Substituting (D.29) inta (0.14) and simplifying yield

where l~(t) and l~m(t) are given by

(D.31)
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Omitting t wherever there is no ambiguity, suhstituting (D.21) and (0.26) into (0.31)

yieid

where g(dm, t) = Aj~fg) can he ohtained from (0.21). From [185, pp. 358,361]

oc

Io(w) = Io(Z)Io(z) + 2L(-l)PIp(Z)Ip(z) cosPtP
p=l

oc

In(w) cosn'l/J = L (-l)P In+p(Z)Ip(z) cosptP
p=-oc

oc

In (w) sin n1/J = L (-l)P1n+p(Z)lp(z) sin]X/J
p=-oc

where n is an integer and Z, z, tP, w and 'rj; are complex numbers satisfying

(D.34a)

(D.34b)

(D.34c)

w = JZ2 + Z2 - 2ZzcostP wcos'l/J = Z - z cos tP w sin 1/1 = z sin tP

, ,
Recall from (0.11) IQà!b~p} = dlm - eïôei8o, then substituting (0.34a) with w =

1 ~lm

IQ1I1blm(9~}1 Z t T t Tm d A.. 0' _am {) • t (0 33) . Ids
~~' = v lm, Z = v 10 an 'f' = 0 +u10 - lm ID 0 . yte

1 ~lm

(0.35)

•
where Ao is given by
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and A p (p > 1) is given by2
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(D.36)

Ap = 2
1 j" IR {IOm(t, t)ei8~ei"'o'} cos (p(8~ + t?~ - t?lm») eVOmcOS(I,,-80m) d8~
1r -1r

= !..!- [ ~ {lOm(t, t)eiwcteiP("W,-171m ) ei(P+l)8~} eVo-C08(8~-"o.n) d8~
221r -1r
+ L~ f~ IR { IOm (t, t )ei"'o'e-jp(8ro-8,_) e-j(P-l)8~ } eYOm coo(8~-8Om) dÛo

= ~IR { lam(t, t) ei"'o'ei80m e1p(8ro-8 1_+8Om)} lpH (VOm)

+ ~!R { lam(t, t) ei"'o'ei80m e-jp(8ro -81_ +8Om)} I p - l (VOm)

= IR {IOm(t, t)ei"''''ei8Om } cos(p(1?~ -1?lm + 1?Om») ôla~Om)

- ~ {IOm(t, t)ei"'c·ei8
.... } (-p) sin(p(1?~-1?lm + 1?Om») lp~) (D.37)

since [185, p. 79]

•

Substituting (0.36) and (0.37) into (D.35) and simplifying yield

89 (dm, t) 1 89 (dm, t)

[' (t) = R {l (t t)e!17o.ne!wct} 8VOm - 9 {l (t t)e:i17o-eiwct } YOm éHJOm
Dm Om , 9 (dm, t) Om , 9 (dm, t)

(0.38)

where g(dm, t) is obtained from (0.21). Substituting (D.21) and (0.26) into (0.32)

yields

1 (lalllblm(8~)I)
t (t) = -!- j1r R {l (t t)eirplm(8~)ei61eiWct} 1 t7t~ eVOmc08(8~-"o-) d8'
lm 21r -11" lm, 9 (dm, t) 0

2The third equality is obtained by ooting that the real part ofa complex oumber can be expressed
in tenns of a cosine and by using the trigonometric expansion of a product of cosine.
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= R {Llm(t, t)ei~lmeiWct} 1J'Ir 1 (IQlllblm(lJ~)I) (iJ _t5 _ (8'»)
(~ t) 2 1 2 ~ COS lm 1 f,Olm 0

9 u.m, 'Tf" -n' Uly€lm

. exp {VOm cos(8~ - iJOm) } d8~

+ 9 {llm(t, t)eJ~lmeiWct} 1 j'lr 1 (IQlllblm(8~)I) . (iJ _t5 _ (8'»)
(~ t) 2 1 2 Iz- sin lm 1 f,Olm 0

9 ~, 1r -1r Ul y €lm

. exp { YOm COS(8~ - iJOm) } d9~ (D.39)

Substituting (O.34b) and (0.34c) with p = l, w = IQtI~b~~)I, Z = V1m , Z = V{ô,
cri tlm

t/J = iJ lm - 61 - CPlm((J~) and 4> = 8~ + iJïô -19lm into (0.39) yields

where A' is given by

lX) J'Ir eVOmcOS(8~-t70m)
A' = L (-I)Plp+l (Vlm) Ip (vtô) _Ir cos (p{IJ~ + 0w - Olm») 21r dffa

p=-oc

=Il (V1m ) 10 (Vt';t) 10 (VOm )

oc

+L(-l)PIp (~) Ip (VOm ) cos(p(t?~ - t?lm + dOm» [Ip+ 1 (Vlm ) + [P-l (Vim)]
p=l

(0.41)

•

and Ali is given by

lX) Jn' VOmc08(8~-I7Om)
A" = L (-1)PIp+1 {Vim} Ip (v;;:) _ sin (p(8~ + t?~ - iJ1m») e 2'Tf" d8~

p=-oc 'Ir
lX)

= LC-l)PIp (~) 11' (VOm ) sin(p(iJ~ - iJ lm + iJOm»[lp+1 (Vim) - Ip- 1 (Vim)]
p=l

= 2f( -1)Plp (tr;::) lp (VOm) lp~m) (-p)(-1) sin(p(t?w - t11m + t1am» (0.42)
p=l lm
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8g (dm, t) 1 89 (dm, t)

( (t) = ~ {l (t t)eJfJ1me;iWJct} 8\1im - ~ {l (t t)ei"'lme;iWJct } Vim 8iJ lm
lm lm , g(dm,t) lm , g(dm,t)

(D.43)

where g(d"., t) is obtained from (D.21). Substituting (0.38) and (0.43) into (0.30)

and simplifying yield

Vm(t) = !R { (21' 'H;"(s, t, t)e-i "'c8dz(s) +t V~(t)el";"'(')lkm(t, t)el".m('») el"'c'}
(0.44)

where Vkm(t)ejfJ~m(t) is given by (3.112). It is seen that (D.44) is identical to the condi­

tional mean expression found by Itô differentiation (see (3.124a) assuming l2m(S, t) =

... = lL-lm(S, t) = 0, a property of 2 Ricean/L-2 Rayleigh channels).

Note that the iterative method presented in Section D.2 can be used for any

number of paths using similar derivation as in this section. An increasing number

of infinite series of product of Bessel and trigonometric functions is obtained as the

number of Ricean paths increases.
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Appendix E

Derivation of the non-coherent

MM8E and other estimates by Itô
differentiation of an m th decision

variable of the form

:Fm (z; t) = Jm(t)g(dm(t), t)

In this appendix, following Section 3.3.3 (tapie: "Computation of the conditional

mean by using Itô differentiation of the likelihood ratio"), Assumption 1 and As­

sumption 2 are made, i.e.

1. Vr = 1, ... ,L, there exists functions {x[k (t) }"k=o.... ,r-l continuously differ­

entiable on (Tm + Tr-l, Tm + Tr] such that the r x r matrix X Tm (t) defined

as [Xrm(t)]'k = xW(t) satisfies the equations X~(t)r:m(t)X~(t)= Ir and

Enn(t)ÈmCrr~(t)X~(t)= X~(t)Drm(t).

2. Vr = 1, ... , L, the eigenvalues of Erm(t)ËmCrr~(t), {;\lm(t)h=o,....r-l are dis­
tinct.

Therefore aIl identities derived in Appendix C are valid. For sake of simplicity the

index m indicating the hypothesis will be omitted in this appendix.
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E.l Preliminaries

E.l.1 Dependence of Fm{z; t) on a vector Itô process œ: Proposition E.l

Let :F(z; t) he defined as

F (z; t) = J(t)g(d(t), t) (E.l)

where Jet) is given by (3.93), 9 is an arbitrary function of d(t) and t that possesses

continuous first and second order partial derivatives with respect to any components

of d(t) and a continuous first order partial derivative with respect to t, and the vector

d(t) is given by (3.95). The general expression of the Itô derivative of F(z; t) is linked

to the following proposition.

Proposition E.l. Let E > O. Let w = [d(t) Z(t)]T where d(t) and Z(t) are given

by (3.95) and (3.106), then 'rIr = 1, ... ,L 'rit E [T' + Ir-l + E, T' + Tr ], œ is a

vector Itô process that can be 'Ulritten as

(

ql (t») (l Ct»)
dw = q" (t) dt + l' Ct) dw(t)

q(t) let)

•

where

, (t) = [Éo(t), . .. '(L-l (t )r
2

tk(t) = No IlkCt, t)1 cos (wct + tPk(t, t) + dk(t»)

= 1..Jl {lk(t, t)ei"'ctei17k(t)}
No

,.(t) = [t;;(t), ... '(~-l(t)r
d' 2 Ilk(t, t)1 . ( ( »)
tk(t) = No Vk(t) sm wct + 1/Jk(t, t) + dk t

= :09' { lk(t, t)ei"'c1ei'" ('l }

f(t) = 21' h(t, s)dz(s)

k = 0, ... , L-1

k = 0, ... ,L-1

(E.2)

(E.3)

(E.4)

(E.S)

(E.6)

(E.7)

(E.8)
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{

2L_l 2 l'i. (t) 0 < <L ~ 2' Tl(t, t)T,(s, t) - T, S - t
h(t, s) = H(s, t, t) = l=O 1 + Na",(t) 0 < t < 00 (E.9)

o ~~

llt:(s, t) is given by (3.103), t/J,,(s, t) = arg [1k(S, t)], VIt:(t) and dk(t) are given by (9.98)

and (3.99), and

, [ , ,]T
q (t) = qo(t), ... , qL-l(t)

'II ' 1 Ilk(t,t)1 2

qlt:Ct} = [,,(t) v(t) + Pk(t) + 2N
o

VIt:{t) k = 0, ,L - 1

Pk(t) = -lk(t) (1' h(t, S)dz(s)) k = 0, ,L - 1

"[,, ,,]Tq Ct) = qo Ct), ... ,qL-lCt)

q;(t) = t~(t) v(t) + p~(t) k = 0, ,L - 1

p~(t) = -l~(t) (1' h(t,S)dZ(S)) k =0, ,L-l

~ O(t) lt. ft.
q(t} = f(t)v(t) - 21fI(t) - 0 Jo h(t, T)h(t, s)dz(s)dz(r)

and fI(t) is given by (3.104).

CE.IO)

CE.11)

(E.12)

(E.13)

(E.14)

CE.15)

(E.16)

Since F (z; t) can be viewed as a scalar function of œ and t, from Proposition E.l

F (i; t) can be Itô differentiated by using the vector Itô differential rule (A.14).

E.l.2 Proof of Proposition E.l: Lemmas E.I-E.4

To prove Proposition E.1, the following lemmas are needed.

Lemma E.l. Let € > 0 and

then Vr = 1, ... ,L, Vt E [T' + rr-l + €, T' + Tr ] 1 Vit: = [V{(t) V:(t)]T is a vector•
2 lt.V:(t) = R {dk(t)} = No 0 Il,,(s, t)1 cos(wcs + tPk(S, t»dz(s)

2 I I

vt(t) = 9 {dk(t)} = No 0 111t:(s, t)1 sin(wcs + tPlt:(s, t))dz(s)

/t:=o•••••L-l

/t:=O•••••L-l

CE.17)

CE.IB)
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Itô process that can he written as

d (
dVk) (~ IlA:(t, t)1 cos (wct + 1/Jk(t, t))v(t) + Pk(t» d ( ) d ()

VA: = = 0 t + Vktv t w t
dV: ;0 11A:(t, t)/ sin(wct + Wk(t, t) )v(t) + p~(t)

where

2 ft
Pk(t) = - No Ilk(t, t)1 cos(wct + tPk(t, t») Jo H(s, t, t)dz(s)

2 ft
Pk(t) = - No Ilk(t, t)1 sin(wct + 1/Jk(t, t)) Jo H(s, t, t)dz(s)

[
2 2 ]T

'Vkw(t) = No IlA:(t, t)1 cos (wct + tPk(t, t») No IlA:(t, tH sin(wct + Wk(t, t»

(E.l9)

(E.20)

(E.21)

Lemma E.2. 'ri r = 1, ... , L, 'ri t E [T' + ir-l + f, T' + i r], VA:(t) is an Itô process

that can he wrïtten as

(E.22)

where q~(t) and lA:(t) are given by (E.ll) and (E.3).

Lemma E.3. \fr = 1, ... , L, 'rit E [T' + Tr-l + f, T' + i r ], t9k (t) is an Itô process

that can be written as

(E.23)

where q~(t) and (~(t) are given by (E.14) and (E.6).

Lemma E.4. \fr = 1, ... ,L, 'Vt E [T' + ir-l + e, T' + 'Tr ], Z(t) is an Itô process

that can he wrïtten as

dZ(t) = q(t)dt + l(t)dw(t)

where q(t) and lCt) are given by (E.16) and (E.8).

(E.24)

•
Proof of Proposition E.l. By lemmas E.2- E.4,

'V r = 1, ... ,L, 'ri t E [1" + 'Tr-l + f, 1" + 'Tr ], œ is a vector Itô process (see Ap-
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pendix A.2.5) since

d'CD = [dVO(t) dVi(t) ... dVL-1(t) d19o(t) dih(t) ... dtJL-l(t) dZ(t)]T

(E.25)

where TI k = 0, ... 1 L - 1, ltk(t), dk(t) and Z(t) are Itô processes. Substituting (E.22­

E.24) into (E.25) yields the result of Proposition E.l. Q.E.D

For the rest of this appendix, k denotes an arbitrary integer number between 0 and

L-l.

E.l.3 Proof of Lemma E.l

To prove that Vk is a vector Itô process, it is sufficient to prove that V{(t) and Vk'(t)

are Itô proeesses, sinee Vk is given by

(E.26)

From Section 3.3.3 under each hypothesis (including Ho) the received signal is an Itô

proeess [1811 and can he written as

dz(t) = vm(t)dt + dw(t) m = 0, ... l}\t[ (E.27)

where by convention vo(t) = o. Let us eonsider mst V{(t). Br assumptions (see

Section 3.1), under each hypothesis, v(t) is a real non-antieipating second order

jointIy measurable in (t,w) and mean square eontinuous process on [0, To]. Let € > 0,

'TIr = 1, ... ,L from (3.l03b), Ilk(S, t)1 eos(wcs+tPk(S, t» is a deterministic real-valued

function defined on the closed domain R".(€) described by

, , }T + Tr-l + E < t < T + Tr

•
Let us show that Tir = 1, ... 1 L

a) \ft E [1" + Tr-l + E, 1" + Tr ] l' \'k(s, t) cos(wcs + 1/Jk(S, t»)1 E Iv(s) 1da < oc

b) Ilk(S, t)1 eos(wct + 1/Jk(t, t» is continuous and continuously differentiable with

respect to t on 'Rr(E) •
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Proof of a). Let us show a slightly more general result:

Lemma E.S.

For any function f(s, t) satisfying l' If(s, t)I2 ds < 00 then l' If(s, t)\ E Iv(s)1 ds < 00.

From (3.2)

1' lf(s,t)!E 1v(s)ldS

< f E lall [ ft If(s, t)IIR {s(s - Tt}e.ïwc8
} 1ds + ft If(s, t)ll~ {s(s - Tt}e.ïWt:8

} 1dS]
1=0 Jo Jo

<~ E lail (1' lf(s, t)I2 ds) 1/2 [ (1' pR {s(s - rr)ei"'.'W ds) 1/2

+ ([ 1~ { s(s - rdei"'·· }1
2

ds) 1/2] < 00 (Cauchy's Schwarz inequality)

sinee ses - Tl) is continuous on [0, t] and hence bounded and by assumption f(s, t)

satisfies J~ If(s, t)12 ds < 00. In particular from Proposition C.I (Appendix C.5.2)
l,,(s, t)eiwt:s is continuous on 'R.r(€) and hence is bounded on 'R.,.(€). Therefore L,,(s, t)

satisfies f~ Il,,(s, t) cos(wcs + 1/J,,(s, t») 1
2

ds < 00. Q.E.D

Proof of b). From Proposition C.I, L,,(s, t)eiWC8 is continuous and differentiable with

respect to ton 'R.,.(€), hence Il,,(s, t)1 cos (wcs +tPk(S, t» A R {lk(S, t)eiWc8
} is also con­

tinuons and differentiable with respect to t on 'R.,.(€). Using (C.35),

:e (Ilk(SI t)1 cos(wcs + tP,,(s, t))) is given by

; (i1k(s, t)l cos(wcS + 1/Jk(S, t») ) = ; (R {lk(s, t)ei"'··}) = R { :t (lk(s, t)ei"'·') }

= -R {H(s, t, t)l,,(t, t)eiCAlct
}

= -H(s, t, t)ll,,(t, t)1 cos(wct + tPk(t, t» (E.28)

since R(s, t, t) is real. As seen in the proof of Proposition C.I, H(s, t, t) is continuons

on R,.(€), hence from (E.28) :e (rlk(S, t)1 cos(wcs + 1/Jk(S, t))) is continuons on 'R.,.(€) •
Q.E.D
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Proof of Lemma E.l (cont.)

Ilk(S, t)1 cos(WcS + t/Jk(S, t)) in (E.17), satisfies the assumptions required for Proposi­

tion A.2 to hold. Hence from Proposition A.2, \lkC(t) is an Itô process that can be

written as

where

2
dV:(t) = pt(t)dt + No Ilk(t, t)1 cos(wct + t/Jk(t, t»dz(t) (E.29)

Noting that Ilk(S, t)1 sin(wcs + 1/Jk(S, t») = ~ {lk(St t)eiColcS
} , by using similar arguments

as for IlkCS, t)1 sin(wcs + 'l/Jk(S, t}), Proposition A.2 also holds for Ilk(S, t)l sin(wcs +
-rPk(S, t». Therefore Proposition A.2 applied to (E.IS) yields

(E.30)

•

where

2 l'1ft(t) = No 0 (-H(s, t, t)11k(t, t)1 sin(Wct + tPk(t, t)) )dz(s)

Noting from (E.26) that dVk = [dV{(t) dV:(t)]T and substituting (E.27) into (E.29)

and CE.30) complete the praof of Lemma E.L Q.E.D

E.l.4 Proof of Lemma E.2

From (3.98)

where V{(t) and V:(t) are given by (E.17) and CE.IB). Thus Vk(t) can be viewed as a

scalar function of the vector Itô process VA: = [V:(t) V:(t)]T with partial derivatives
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given by

lt;(t) = 0

The function f([xl, X2]T, t) = Jxï + x~ is continuons and has continuons first order

partial derivatives and continuous second order partial derivatives with respect to

œ = [Xh X2]T on IR. Using Lemma E.l, the vector Itô diHerential rule (A.14) can be

applied to \tk(t) = f(Vk, t) yielding

1 No [ T( ] V{(t) C V:(t) s
d~(t} = 22tr Vkw t) v.,,,(t) Vkw(t) dt + Vk(t) dVk (t) + \tk(t) dVk (t)

Let us simplify tr [VkwT(t) Vvv(t) Vktu(t)]. From (E.21)

CE.31)

(E.32)

•

where dk(t) = arg [dk(t)] = - tan-1 [V:Ct)/lIkC(t)], V{(t) = \tk(t) cost9k(t). Substitut­

ing (E.29-E.30) and (E.32) into (E.31) yields

where froID (E.19-E.20)

, 6 C V:(t) s V:(t)
Pk(t) = Pk(t) \tk(t) + Pk(t) Vk(t)

= - :0 (lH(S, t, t)dz(S)) [!R {lk(t, t)ei"""} cos dk(t) - 9' {lk(t, t)eiWet
} sindk(t)]
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= - ~o (1' H(s, t, t)dZ(S)) Ilk(t, t)1 cos(wct + tPk(t, t) + dk(t))

After substitution of (E.3) and (E.9), p~(t) is given by (E.12) . Substituting (E.27)

into (E.33) shows that Vk(t) is an Itô process which can be written as (E.22) where

q~(t) = lk(t) v(t) + p~(t) + 2~o Ilk(t, t)12 /Vk(t) [1 - cos (2 [wct + t/Jk(t, t) + dk(t)])] and
lk(t) is given by (E.3). Recall from Appendix A.2.3 that (E.22) is a symbolic notation

for

(E.34)

Renee assuming that Wc is very large, integrals containing double frequency terms ean

he neglected in (E.34) which completes the proof of Lemma E.2. Q.E.D

E.l.S Proof of Lemma E.3

From (3.99)

(E.35)

where Vk(t) and V:(t) are given by (E.17) and (E.1S). Thus dk(t) can be viewed as

a scalar function of Vk = [\tkC(t) Vk(t)}T with partial derivatives given by

The function f([XI' X2}T, t) = - tan- l [i;] is continuons and has eontinuous first order

partial derivatives and continuous second order partial derivatives with respect to

z = [Xl, X2]T on 1R. Using Lemma E.1, the veetor Itô differential rule (A.14) can be

applied to dk(t) = f(Vk, t) yielding

•
(E.36)
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Let US simplify tr [VkwT(t) 1?.,.,(t) Vkw(t)]. From (E.21)

(E.37)

where 19k (t) is given by (E.35). Substituting (E.29-E.30) and (E.37) into (E.36) yields

where from (E.19-E.20)

" 6 c V:(t) s \lkC(t)
Pk(t) = Pk(t) V

k
2(t) - Pk(t) V

k
2(t)

= - ;0 (1' H(S,t,t)dZ(S))

. [R{l (t t)e?r..Jct} -sint?k(t) -~{l (t t)eir..Jct} cos 19k (t)]
k , Vk(t) k , Vk(t)

= ;0 (1' H(s, t, t)dZ(S)) 1[~t(t;J1 sin(wet + t/Jk(t, t) + t?k(t))

After substitution of (E.6) and (E.9), p;(t) is given by (E.15). Substituting (E.27)

into CE.38) shows that 19k (t) is an Itô process which can be written as (E.23) where

q;(t) = (~(t) v(t) + p;(t) + ~o 11k(t, t)12/Vk2(t) sin (2 [wct + 1/Jk(t, t) + dk(t)]) and (~(t)

is given by (E.6). Recail from Appendbc A.2.3 that (E.23) is a symbolic notation for

Hence assuming that Wc is very large, integrals containing double frequency terms can

be neglected in (E.39) which completes the proof of Lemma E.3. Q.E.D•
l1k(t) =l' q~(s)ds +[ e'~(s)dw(s) (E.39)
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E.l.6 Proof of Lemma E.4

From (3.106), Z(t) is a scalar function of z' (t), where

Hence in order to prove Lemma E.4 using the vector Itô differential rule, the first step

consists to prove that z~(t) = v'Kk(t)Zk(t) are Itô processes. Recall from (3.107)

(E.40)

•

From Section 3.3.3 that under each hypothesis(including Ho) the received signal is an

Itô process [lBl} and can be written as (E.27). Byassumptions (see Section 3.1). under

each hypothesis, v(t) is a real non-anticipating second order jointly measurable in (t, w)

and mean square continuous process on [0, To]. Let € > 0, 'V r = l, ... ,L from (3.44),

'V k = 0, ... 1 2L -1 JKk(t)Tk(S, t) is a deterministic real-valued function defined on

the closed domain 'R.,.(€). Let us show that 'Vr = 1, ... ,L 'V k = 0, ... ,2L - 1

a) "It E [7" + Tr-l + E, 7" + Tr ] l' 1JKk(t)Tk(S, t)1 E Iv(s)1 ds < 00

b) viI\':t(t)T k(s, t) is continuous and continuously differentiable with respect to t on

'R,.(€).

Proof. From Appendix C.5.l, 'V k = 0, ... ,2L - 1 JI\':k(t)Tk(S, t) is continuous

on n.,.(€) since n.,.(€) C 'Rr and hence bounded. Therefore y'Kk (t )T k (s, t) saUsfies

f~ 1y'l\':k(t)Tk(s, t)1
2

ds < 00. Renee using Lemma E.5, proof of a) is completed. From

Appendix C.5.1, y k = 0, ... ,2L - 1 y'Kk(t)Tk(s, t) is continuons and continuously

differentiable with respect to t on 'R.,.(€). Q.E.D

Proof of Lemma E.4 (cont.)

'V k = 0, ... ,2L - 1 JKk(t)Tk(s, t) in (E.40) satisfies the assumptions required for

Proposition A.2 to hold. Renee from Proposition A.2, 'V k = 0, ... , 2L - 1 z~(t) is
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an Itô process that can he written as

dz~(t) = (l %t ( y'''k(t)Tk(S, t)) dZ(S)) dt + y'"k(t)Tk(t, t)dz(t)

Therefore using (E.27), z' (t) is a vector Itô process that can be written as

viKo(t)To(t, t)v(t) + J~ : (J Ko(t)To(s, t») dz(s)

dz' Ct) = dt

JK2L-l(t)T2L- 1(t, t)v(t) + I~ :t (VK2 L-l(t)T2L-l(S, t») dz(s)

+ z~(t)dw(t) (E.41)

where z~(t) = [VKo(t)io(t, t), ... , VK2L-l(t)T2L-1(t, t)]T. From (3.106), Z(t) is a

scalar function of z' and t with partial derivatives given by

oo

o o

and

•
where K.,,(t) denotes the derivative of Kk(t) with respect to t. By applying the vector

Itô differential IUle (A.14) to Z(t) and using (E.41), Z(t) is an Itô process that can
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be written as (E.24) where q(t) and let) are given by

(E.42)

(E.43)

Substituting (E.40) into (E.42) and using Kk(t) = Kk(t)T~(t, t) [187, pp. 204-20S}

yield

_ 2~1 kk(t)
-LJ 2

k=0 1 + No Kk(t)

L
t Lt {) (2L-l ..!.. )+ ôt E 1 () v'Kk(t)Tk(r,t)v'~k(t)Tk(S,t) dz(s)dz(r)

o 0 '- 1 + li. ~k t..=0 0



•

•

E Non-coherent MMSE and other estimates of an mth decision variable of
the form Fm (i; t) = Jm(t)g(dm(t) , t) (by Itô differentiation) 291

Using (3.104) and (3.42)

q(t} -l(t)v(t) = _2 No Ii(t) + ft ft aB(r, s, t) dz(s)dz(r) (E.44)
2 II(t) Jo Jo at

By using the Siegert identity (C.tg) in (E.44) with (E.9), q(t) is aIso given by (E.16).

Substituting (E.40) into (E.43) with (E.9) yields (E.8). Q.E.D

E.2 Itô derivative of Fm (i; t)

F (i; t) given by (E.l) is a scalar function of 'ta = [d(t) Z(t)]T = [V(t) 17(t) Z(t)}

and t with partial derivatives given by

[(
aF)T (aF)T aF]T [(Ê.i.)T (i!1L)T aJ]T

Far (i;t) = av ai} 8Z = F(z;t) g(~,t) g(~,t) ;(~)

:~'i A zËL
g(d,t) g(d.t) g(d.t) J(t)

a'lF a2F (}2F = -r (z· ., t) --et. :;~ à !il.Fœar (i; t) = a"av ~ a"az or ~ .J11L~a" g(d,t) g(d.t) g(d.t) J(t)

a'lF a'lF ô'lF 0 a a2J
FZiiV aza;; 1fZ'E .if-1i Ji...1i az2

g(d.t) J(t) g(d.t) J(t) J(t)

. 8F . [Ii(t). 9(d, t)]
Ft (z; t) = aï = oF (z; t) rICt) -let) + 9 (d, t)

where 9 (d(t), t) (or for short g(d, t» is an arbitrary function of d(t) and t that pos­

sesses continuous mst and second arder partial derivatives with respect to any com­

ponents of d(t) and a continuous mst order partial derivative with respect to t. The

vector d(t) is defined as d(t) = [V(t) 17(t)]TCsee 3.95-3.100), J(t), rI(t) and Z(t) are

respectively given by (3.93), (3.104) and (3.106). From Proposition E.l and using the

vector Itô differential rule (A.14) F (z; t) = Fe'Cfj, t) is an Itô process which can he

written as

dF (z; t) = F (i; t) { [ÏI(t) _ i(t) + 9 (d, t) +!. No tr (l~(t).r_lF(t»)+ <IV( •(t)
I1(t) g(d,t) 2 2 F(zjt) g(d,t)q

(~)T aJ] ( (~)T (~)T aJ) }+ éHJ q" (t) + az q(t) dt + av t Ct) + éHJ t"Ct) + az let) dw(t)
9 (d, t) J(t) 9 (d, t) 9 (d, t) J(t)
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where lF(t) = [rt' (t)r [l' (t)rl(t)r· Substituting lF(t) and using (E.27) yields

.) ( (2JL)T (!!L)T aJ)
dF(z; t = av l (t) + ad l' (t) + az i(t) dz(t) + R.(t)dt
F (z; t) 9 (d, t) 9 (d, t) J(t)

where R(t) is given by

(E.45)

•

and q(t), i(t), q' (t), l (t), q" (t), l' (t) are respectively given by (E.IB), (E.8), (E.IO),

(E.2), (E.13) and (E.5).

Simplification of 'R(t)

Recall that (E.45) is a symbolic differential notation for

thus double frequency terms can be neglected in R(s) sinee when integrated they are

vanishing if the carrier frequency is large. Note from (3.93) that :~ = i ~ J and
:2 0

:~{ = (~~o) J. Substituting (E.I0), (E.13), (E.2) and (E.5) into (E.46) yields



• E Non-coherent MMSE and other estimates of an m th decision variable of
the form Fm Ci; t) = Jm(t)g(clm(t), t) (by Itô differentiation) 293

where 'R.1(t), 'R.~(t), 1<.~(t) and 1<.2(t) are given by

(E.47)

(E.48)

(E.49)

~]}+U (t)e'.~(t) aVka"i
Il: J g(d,t)

(E.50)

where the term - 2~o Il~:{W:Z has been artificially iotroduced in 'R.~(t) for coovenience,

and its equivalent positive term has been iocluded in 'R.2 ( t). Theo as shawn in the

following, 'R.I(t), 'R.~(t) and 'R.~(t) are equal to zero.

Proof that 'RI (t) = o. Substitutiog (E.16) and (E.8) inta (E.47) yields

1 2 { N. net) l t
[t 1 (l t )2}'R.I(t) = 2No -21 II(t) - 0 Jo h(t, T)h(t, s)dz(s)dz(T) + 44 0 h(t, s)dz(s)

ÎI(t) _ 0
+ fi(t) -

Q.E.D

Proof that 'R.~(t) = o. Substituting (E.ll) and (E.8) ioto (E.48) yields

using (E.l2)

•

Q.E.D

Proof that 'R.;(t) = o. Substituting (E.14) and (E.8) inta (E.49) yields

using (E.l5)

Q.E.D
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Itô derivative of :F (i; t) with simplified 'R(t)

Substituting (E.2), (E.5) and (E.8) into (E.45) and using 'R(t) = 'R2 (t) yield

~(~~;t;) = ~(t)dt + [~ (9 ~t)(k(t) + 9~t) (~(t)) + ~ ~o l(t)] dz(t) (E.5I)

where 'R2(t) is given by (E.50). Define V~ (t)e.i"~(t) as1

V~(t): real, positive.

8g (d, t) 1 8g (d, t)

\r.'( )ei17~(t) = 8Vk(t) . \Ik(t) 8t9k (t)
k t 9 (d, t) + J 9 (d, t)

Substituting (E.4)! (E.7) and (E.8) into (E.51) yields

CE.52)

•

dF Ci; t) = 'R (t) dt
F (z; t) 2

+ ;0 [10' h(t, s)dz(s) + !Il { (~~(t)ei"~(·)lk(t. t)ei"'('») ei""'}] dz(t)

Using (E.9) and h(t, s) = ~ {21i'" (s, t, t)&wc(t-.!)}

d.T (i; t) = 'R (t)dt
:F (z; t) 2

+ ;0 !Il { (210' 'Jt·(s, t, t)e-i<J"dz(s) +EV~(t)ei"~(')lk(t, t)ei"'<'») eI"'" } dz(t)

(E.53)

Note that (E.53) is valid 'ri € > 0, 'rIr = 1, ... ,L 'rit E (T + Tr-l + €, 1" + Tr ]. Since €

can he arbitrarily small, (E.53) is aIso valid 'ri r = 1, ... ,L and 'ri t E (T + Tr-l, 1" + Ir] •

From (3.117) in Section 3.3.3, it is seen that whenever :F (z; t) is a likelihood ratio~

'R2(t) = 0 and , Ft:1)~tt) is equal to the conditional mean or ~IMSE estimate. As

an example, verification that 'R.2(t) for mixed mode Ricean/Rayleigh channels is pre­

sented next.

l(E.52) is identical ta (3.112) and reprinted here for convenïence.
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E.3 Consistency of results
,

E.3.1 Verification that 'riE> 0, 'rIr = 1, ... ,L -1 J;':::_l+E 'R2(t)dt = 0 for

the likelihood ratio of a mixed mode Ricean/Rayleigh channel

From (0.15) the ükelihood ratio over [0, t] for a mixed mode Ricean/Rayleigh channel

is given by

A (z; t) = J(t)Ia(VO(t»

Renee 9 (d, t) l::J. A5:;~) = g(\IO) = Ia(VO). For a mixed mode Ricean/Rayleigh channel,

'ri k = 1, ... , L - 1 Ok = 0, hence from (3.103b), (3.98- 3.100) and (3.102b) 'ri k :F 0

lk(S, t) = 0, Vk(t) = 0, dk(t) = 0 and ekn(t) = O. Therefore using Proposition C.2

(E.50) reduces ta

1 No {( ) 2 :~~ (')2 :~! 'a~~~o }
'R2 ( t) = 22" ~ (t) 9 (d, t) + l'a (t ) 9 (d, t) + 2l'0(t )l'a (t) 9 (d, t)

Ila(t,t)l2 ~ Ilo(t,t)1 2 g(d,t) (E.54)
+ 2No 9 (d, t) VO(t) - 2Na + 9 (d, t)

where (oCt) and {~(t) are given by (E.3) and (E.6). Since for mixed mode Ricean/Rayleigh

channels 9 (d, t) is independent of t besides the dependence through VO(t), iJ (d, t) = O.

Similarly 9 (d, t) is independent of do, thus ~ = a~~o = O. Therefore substituting

(E.3) and (E.6) and omitting the index t for clarity, (E.54) reduces to

2 a2 / o(vo}1Na ( 2) 1 ) 2 2 ( () ( ») avJ'R.2 (t) = 22 Na to(t, t 1cos wct + 1/10 t, t + 190 t /0 (VO)

+ /1 (1tO) Ilo(t, t)1
2

_ -l- lla(t t)1 2

/0 (VO) 2NaVO 2No '

l
T' +'T,. 1 lT'+T.. L (l/,) - ft (Vo)

)12 0 0 Vo
'R2 (t)dt = 21\r Ita(t, t L (\Ir) dt

T+Tr_l+E .uo T+T.._l+E a a

+ 1 /1 (VO) Ilo(t, t)1
2

_ -l- llo(t t)1 2 = 0 (E.55)
2Na /0 (\JO) \tG 2No '

where (E.55) is obtained by neglecting integrals containing double frequency terms

and using a
2::J6:) = /0 (x) - ft~%) [185, p. 19].
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The validity of the assumptions of continuously diHerentiable xkl (t) and distinct

Àk(t) is studied next for the special case of two-path Ricean channels.

E.3.2 Continuous diff'erentiability of the functions {xl:a(t)h,k=O,....r_l

(r = 1,2) for a two-path Ricean channel

In this appendix, a two-path Ricean channel is considered with ordered multipath

delays To < Tl. The signais are assumed to be time-limited to [0, Tl and continuous

over any finite observation [0, tI (0 < t < 00).

Existence of functions x~(t) continuously differentiable on (T' + Ta, T + Tl]

Assume that T' + TO < t ~ T' + Tl. From (B.3), i t = 1 and from (3.32) the covariance
function K:it(s, u) A K:l(s, u) is given by2

Using Mercer's theorem [182, p. 85] (K:l(s, u) = ÀÔ(t).pÔ(s, t) [iPÔ(u, t)r), the only non­

zero eigenvalue ÀÔ(t) and its corresponding eigenfunction iPÔ(s, t), found by inspection,

are given by

À~(t) = 2q5€0(t)Ë

.J.1( ) _ ses - Ta)
'Po s, t - -r=::::::::JË€o(t)

1" + Ta < t < 1" + Tl

1" + To < t < T' + Tl

•

Comparing with (3.34) yields x~(t) = 1.

Existence offunctions {XTk(t)}l.k=O.l continuously differentiableon (T' + Tl, (0)

Assume that T' + Tl < t < 00. From (B.3), i t = 2 and the 2-dimensional matrices

rit Ct) Â r 2 Ct) and EitCt)ËCitrit Ct) l:i. E2Ct)ÈC2r;(t) are given by

2The superscript 1 is not an exponent.
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where Pal(t) = Ëv'EO~t)El(t) J~ ses - TO)S·(S - Tdds. Hence the eigenvalues of

E2(t)ËC2r;(t), {,,:t(t) 6 "l(t)} , satisfy the equation3

l=I.2

(20'5eo(t)Ë - ..\) (20'~el(t)Ë - ..\) - 2CT5eo(t)Ë20'~el(t)Ë IPol(t)12 = 0

..\2 _ È (2CT5eo(t) + 2CT~el(t»..\ + 2CT5eo(t)Ë2CT~el(t)È (1 -lpOl(t)12
) = 0

and can be expressed as

ÀMt) = ~ [2q~fO(t) + 2q~fl(t) + ..;~2(t)]

À~(t) = ~ [2q~fO(t) + 2u~fl(t) - ..;~2(t)]

where a2(t) is defined as

(E.56a)

(E.56b)

•

If'v't E (T' +ïl'oo), IpOl(t)1 =F 0, then Tlt E (T' +T1'oo), from (E.57) a2(t) # 0 and

the eigenvalues "5(t) and "T(t) are distinct. Furthermore IPotl 2 is differentiable on

(T' + TI, 00). From CE.57) and (E.56), "5(t) and "T(t) are continuously differentiable

on (1" + TI, (0).
li Tlt E (T' + Tl, (0) ,lpOl(t)1 # 0, then it can be shown that the functions

{ X;k(t) A xlk(t)} such that the matrix X 2(t) = (:r~:~ ~l~:~) satisfies (3.35),
l.k=O.l 10 11

are given up ta phase rotation by

(E.58a)

(E.58b)

(E.58c)

(E.58d)

3The superscript 2 of {~l(t)h=O.l is not an exponent.



•

•

E Non-coherent MMSE and other estimates of an m th decision variable of
the form Fm Ci; t) = Jm(t)g(dm(t), t) (by Itô differentiation) 298

'2() >"1(t) {2 ( )} . b 4where VI = 0, 1,...\, t = È and ~'k t 1,k=O,l are gIven :y

~&(t) = (2U~EO(t) - >..~2(t) - 2U~Eo(t) 1POl (t)1 2
) 2+ (2U5Eo(t))

2
IPol(t)12 (1 - IAn(t)12)

~~l(t) = (2U~El(t) - ,\~2(t) - 2UrEl(t) IpOl(t)12) 2 + (2UrEl(t»2IPol(t)12 (1 - IpOl(t)12)

~~o(t) = (2a~Eo(t) - ,\~2(t) - 2u5Eo(t) 1POl (t)12
) 2 + (2U5EO(t))2IPol(t)12 (1 -IPol(t)12

)

~~l(t) = (2atEl(t) - '\'l2(t) - 2UrEl(t) IpOl(t)12)2 + (2Urel(t»2IPol(t)12 (1-lpOl(t)12)

Sinee Ta :F Tl and s(s) are time-limited, IPol(t)12 :F 1, therefore sinee IPol(t)1 :F 0 aIl
denominators are strictly positive. Note that without the continuous differentiability

condition, valid funetions {Xrk(t) h,k=O.l satisfying (3.35) can he obtained by phase

rotation of (E.58) according to the following rule. If x~(t) is phase rotated, x51(t)

should be rotated by the same phase and the opposite also holds. Similarly, if xïo(t)

is phase rotated, x~1(t) should be rotated by the same phase and vice versa. And

x~(t) and x~o(t) ean be rotated by two different phases.

Recall that sinee 'V, t E (1" + Tl, (0) ,IPol(t)! :F 0, the arguments of the square

root present in the denominators of xrk(t) are strietly positive. Furthermore Pol (t),

El (t) and ,\?(t) are continuously diHerentiable on (T + To, 00) therefore {xrk (t) }1.k=O,1
given by (E.58) are continuously differentiable on (T + TO, (0) .

"The superscript 2 of {â1t(t)}"k=O.1 is Dot an exponent.
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Appendix F

Interpretation of the MM8E

estimate (mathematical details)

In this appendix, only the first section assumes path resolvability.

F.I Proof of f~ [f~ Q.m(u, v, t) IOkl sm(v - Tk)&wevdv] v~(u)du = 0
when the multipath is resolved

This section shows that when the multipath is resolved the term

f; [1; Q.m(U, v, t) lerkl Sm(V - Tk)eiwc:vdv] vtm(u)du vanïshes regardless of the nature

of {8~}r~k (known or random). From (3.137)

lThis approximation corresponds to neglecting integrals containîng double frequency tenns.
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t L-l 1 1-..!..1 ~ 1 1-.. ( - ) -i8~ Ok - ( - )d- 1" L..J Or Sm U Tr e 1 2 2 () Sm U Tk U
.nO 0 r=O + U kEkm t 'Ym

r~k

1 1
L-l t

l Qk '" 1 1 -jfl 1-( )-. ( )d 0= l\T l 2 2 () '-.J Qr e ,. Sm U - Tk Sm U - TT U =
J.YO + trkEkm t 'Ym r=O 0

~k

F.2 Close form expression of E [Vk
2
m (t)IHm ]

from (3.147)

from (3.58a)

•

From Section 3.2.1 when 9 is held fixed, vrn(s) = R {Lt"~ akei8lcsm(s - Tk)ejWCtl
}

has a covariance function Km(s, u) given by (3.5) and a mean given by E [Vm(S) 19] =
R { (E~~ Okei81c Sm(s - Tk») eiwcs }. Rence V rn (s) has zero mean since {8k} Tc are uni­

formly distributed between -1r and 1r. Therefore the covariance function of 'Um (s) is

given by2

K;;'(s, u) ~ E [(vrn(s) - VmeS») (vm(u) - vm(u»)] = E[vm(s)Vm(u)]

= E[E[vm (s)vm(u)18]]

=E(E[(Vrn(S) - vrn(s, 8» (vm(u) - vm(U, 8»)18]) + E[vm(s, 8)vm (u, 8)]

= E(Km(s, u)] + E[lR {~ll:kë"sm(s - Tk)ei"'c' } !Il {~ll:rei8rsm(u - Tr)ei"'cu
}]

= Km(s, u) + !Il {~K:~(S' U)ei",cl.-U
)} (F.I)

L-l

where3 K::"Cs, U) = E IOkl2 Sm(S - Tk)S~(U - Tk) (F.2)
k=O

and (F.I) is obtained since Km(s, U) given by (3.5) is independent of 9 and {8k}k are

independent uniformly distributed between -'Ir and 1r. Under hypothesis Hm, since

2vm (S, B) ~ E [vm(s)IBJ (500 Appendix B).
3The superscript s in (F.2) is not an exponent and indicates that ~ {!K:~(s,u)ei'"'cC.-u >} is the

specular component part of K;;'(s, u) .
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•

E [vm(u)] = 0 from (3.98-3.100)

E [V~(t)lHm] = (~J2llltan(s,t)ei"'.'lk..,(U,t)e-j"'.UE[dZ(S)dZ(U»)

(
2 ) 2 ft ft . . {I/ No }= No Jo Jo lm(s, t)e1wcs lZm(u, t)e-Jwcu Km(s, u) + 2 5(s - u) dsdu

= (~J 2 [lllkm(S, t)ei"'··lk..,(u, t)e-i"'.uK';'(s, u)dsdu + ~o lllkm(S, t)12 ds]

CF.3)

l' lltan(S, t)ei"'··lk..,(u, t)e-j"'·UK';' (s, u)ds du

= lltan(S, t)ei"'·· [l !R{ [~K;'(s, u)e-j",••] ei"'·u }lk.., (u. t)e-jw.Udu] ds

+ lltan(S, t)ei"'·· [l !R{ [~[K~(s, u)j"e-j"',,] ej"'·u } lk.., (u, t)e-iw.Udu] ds

(F.4)

where (FA) is obtained from (F.1) and (3.5). Applying conjugate of (C.I) to the inner

integrals of (FA) and substituting (FA) into CF.3) yields

E [V~(t)IHm] ::::: ~o llltan(S, t)12 ds (i.e. neglecting double frequency integrals)

+ (~J2l'km(S, t)ei"'·· Ul [~K:'(s. u)e-''''.'] lk..,(u, t)dU} ds

+ (~J2l 1km(S, t)ei"''' Ul [~[K~(S'u)re-jw••] lk..,(u, t)du} ds

= ~o lllkm(s,t)1
2

ds + ~ (~J2l lkm(S, t) [llk..,(u,t)K:'(S, U)dU] ds

+~ (~J2llkm(S,t) [llk..,(U,tl[K~(s,u>rdU] ds

= ~o lllkm(s,tWds + ~ (~J2l 1km(S, t)2No[lokl 5;'(S - Tk) -lk..,(s,t)]ds

+ ~ (~orEIOrl2 [llkm(s,t)s;.(S - Tr)ds] [llk..,(U,t)5m(U - Tr)du]

(F.S)
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2 l t
L-l Il l t

1
2

= 1" lkfn(s, t) \Ok\ s:nCs - Tk)ds +L J\T llan(s, t) larl s~(s - Tr)ds
JYO 0 r=O HO a

L-l L-l

=2eZk(t) +LI [ek;.(t)]ï
2 = 2eù(t) +L \ek;.(t)1

2

r=O r=O

where (F.5) is obtained from (C.25) and (F.2) and ei::-(t) is given by (3.102).
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(F.6)

(F.7)

•

F.3 Average signal energy of the whitened received signal

z.(s) - V~k(S)

Since {8~}k are uniformly distributed between -7r and 7r, from (3.152) the expected

value of the energy of z.(s) - V~k(S) is given by

E [1' [1' H.m(s, u, t)lR {(Iakl sm(u - Tk)ei9~) ei"'CU
} dUrds]

= l'II H....(s, U, t)H....(S,II, t)E [!Il {Iakl sm(u - Tk)ei9~ei"'cU}

. R{IOkl sm(v - Tk)ei8~eiWc:V } ] du du ds

l
t l t l t

1= 0 0 0 H.m(s, u, t)H.m(s, v, t)2!1l{ lakl2 sm(u - Tk)S~(V - Tk)ei"'cCu-v) }dudvds

1lt l t

.= 2 a a Q.m(U, v, t)R{lo kI2 sm(u - Tk)S~(V - Tk)e1weCu
-

v
) }dudv from (3.144)

1lt l t
. .= 2 0 0 Q....(u, v, t) [lR{lakl sm(v - Tk)eJ",cU}lR{lakl sm(u - Tk)eJ"'cU}

+ ~{Iakl sm(v - Tk)eiwc:V}~{lokl sm(u - Tk)eiwcU
} ]dudv

=l ~o lR{lkm(u, t)ei"'cu}!Il{lakl sm(u - Tk)ei"'cu}du

+l' ~o9{lkm(u, t)ei"'cu}9{ lak\ sm(u - Tk)ei"'cu }du from (3.141)

1 l t

1 l t

= No 0 lR{lkm(U' t) lakl s:,(u - Tk) }du = No 0 lkm(u, t) lakl s:,(u - T,,)du

(F.S)

since from (3.102), f: lkm(u, t) lak\ s:.(u - Tk)du is real.
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Appendix G

Performance analysis

G.I Proof that the residues of hk(Z) cODsist of infinite series

for an L-path Ricean channel

As seen in Section 4.1.2, the probability of error of the SPECCOH, SPECCOHR,

QDR, R OPT and QR schemes involves the evaluation of integrals (4.3-4.4) over a

contour. In theory these integrals can be evaluated by using the residue method.

However as shown in this appendix, such a method is not practical in the case of

Ricean channels since each residue consists of an infinite series.

Proof. Omitting for sake of simplicity the dependence on 6 and the index k repre­

senting the hypothesis considered, from (4.3-4.5) 1 the function to integrate is given

by

h(z) ~ ~a(z)e-zA = f,(z)ll(z)
Z

(G.1)

•

where aIl terms not defined at Z = 11,1 have been included in one function f,(Z),

and Il(z) is everything left over

-.;A 2L-1

Il(z) = =-;- II fj(z)
j30
i~l
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Note that the function g,(z) is analytic at the point z = 11,-1. For sake of simplicity, all
TI, will be assumed distinct, however, similar reasoning may he followed with eigenval­

ues of multiplicity greater than one, provided that the part of h(z) with singularities

is isolated from the analytical part as done in (G.1). From (G.1), it is seen that h(z) is

the product of two analytic functions on the entire complex plane with the exception

of a finite number of isolated points, corresponding, similar to the zero mean case,

to the eigenvalues of the matrix (RQ)-l, {TI,- 1
},=0•...•2L-l. For Ricean channels, the

Laurent series of f,(z) in the neighhorhood of ",,-1 is given by

2 ~ (Ivtl 2 )S
f,(z) = exp {-Iv" } L.J (1 _ ).9+1 ,

.9=0 ZTlI S.
(G.2)

which reduces to f,(z) = 1_1%111 for Rayleigh channels. From (G.2) it is seen that the

principal part of the Laurent series of f,(z) at z = 11,-1 has an infinite number of

non-zero tenns, hence the points z = ",,-1 are not poles but essential singular points

[190, pp. 83-93}. By expanding the function g,(z) in a Mac Laurin series in the

neighborhood of z = ",,-1 and using (G.2), the Laurent series of h(z) is given by

00 (1 12)8 oc (n)( -1)( -l)n
h(z) = exp {-lvtl2 } ~ V, •"I, "" z -111

LJ (_1/,).9+1(Z - 1/-1).5+1 S! L..i n!
6=0 l n=O

00 00 (n) ( -1) (1 12)5
{ 1 12}~~ l, 1/1 Vl

= exp - V, ~ L..J (-l)"+l.n"+ln !s!(Z _ 'J1 -1)s-n+1
n=O 6=0 ", "l

where g~n)(z) denotes the nth derivative of g,(z). The residue of h(z) at the essential

singular point z = 1/,-1 is the coefficient of the term (z - 1/1-1)-1 of the Laurent series

of h(z) in a neighborhood of that point [190, p. 92} and is given by

•
which is an infinite series. Q.E.D
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•

G.2 Bounding the bias term A for the SPECCOH, QDR and

R OPT schemes

To emphasize the dependence of the bias term A on "Y t let us denote A as Ar. From
Table 4.2, the bias term A 6 Ay of the SPECCOH, QDR and R OPT schemes satisfies

Substituting the values of Ct [Clr; = 2u~dr;' Dm, [Dmlr; = >'W8ri 6 ",:.m6r ; (where
6ri is the Kronecker operator) and ct = [000 ... OlT yields

Substituting Qm and X m yields

where À~max = maxrÀ~l and À;min = minr~2' Since Iln(~:::)1 < Iln(i)\, for al!

x > 0, /Ar /< Aup
t where Aup is given by

1

1
(

\' ) 1 / /2 L-lAl max 00 1 2'2 2 2 '2
A.p = L ln À~1Din + (2u~)2 ~ [lxrOl ~l + IxrOl ~2]

Therefore
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