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In this g}osis it is demonstrated that the structure of rectilinear polygons can be

.

~exploited to solve a varicty of gcometric problems efficiently. These problems include.

(1) recogmzing polygonal properties, such as .star-shapedncss, monotonicity, and edge- '

o visibi\lity, . oo .‘ ‘ S ’
(2) removing hidden lines, - o . ' ' ) N Lo
(3) constructing the rectilinear convex hull, . T S
A - ~ ‘ Lo e T e ' T
t4) "ddcomposing rectilinear polygons into simpler components, and~ . T
. g 7 , - -t - . ) o , . . \
{5) placing guards in rectilincar polygons. - ‘ . . § " -
' ’ ' . ‘ N < .. C .

_* A new tool for computational geometry is introduced which extracts information '

.

about thé, winding properties of rectilincar polygons: Employing ,'L‘his tool as a

[Srépx;o'cessing step, efficient and conceptually clear algorithms for the above problems -

B

M 3 -
have been designed. .
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- 'permet de resoudre toute une gammec de problémes gepmetriques associes a ce
N . + . - . R ‘ R

f

.

polygones. En particulier, nous etudierons:

N ~
-

. : f

'visibilite d'une aréte

' . . )
g ‘

* . {2) lasuppression des lignes cachees

(N
. . .

. (4)" la decomposition en corps simples . . . .

N

I'insértion de “survei”an\}ts” a Pinterienr
1]

\

. (5).

- . Nous presentons un

f

(1) la verification de proprietes telles-la configuration en etoile, Ia
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d'un polyg(;né.
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- efficaces ont ete¢ developpes en utilisant cet outil comme €tape initiale.
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" . " 13) lacofistruction d’une re’gioix convexe et rectiligne qui contient le polygone choisi -

outi] gometrique qui accumule des, renscignements au suje

g

monotonicite et b
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o Dans cette these nous demontrons que la.'structure des polygones rectilignes.
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’ des proprietes “circulaires” des polygones rectilignes. Plusieurs algorithines clairs et
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J : S ' Chapter 1

Introduction

L
. -

1.1. Computational Geometry, some Terminology and

Methodology ’

- . 'Gebmetry is a subject that has inspired Man for thousands of years. It has played

an jntegral role i the origin of mathematics and other related sciences. Geometrical

problems arise in such areas as computer graphics, pattern recognit.j‘gn, image analysis,

: B - PR @

" robotics and:VLSI. Consequently, geometrical algorithms have been developed in_these
[ . R ‘ L T

Tields. As a discipline of ,its own computational gcometry did not become recognized

v “until after the dissertation of M. Shamqs\in 1978 [Sh77]. Shamos showed that the
: S available knowledge in c‘_lassical geometry docs not always provide us with the right
,“ammux.}ition” to solve certain Rroblcms efficiently. The aim of computational
geometry is to design effi;'ient and.possibly optimal algorithms for solving geometrical
Co s . ,..prx;l)lcnis. a oo ’

' .

13

‘ S The efficicncy-of a solution for a given geometrical problem isroften dependent on
. - e ; )
.. - " the specific .nature of the objects involved. Knowledge of the type of objects is

n ' 1frpquti'mrly a‘vailnblei when 2 geometrical problem arises in a particular environment. A

' first distinction i w,]wliwr the objects are given as sets of points or as polygons .\

more detailed analysis might reveal structural knowledge to Flo(ornﬁnc into which class

of pc;lygons, if any, the objects fall. Often algorithms for structured polygoqs are easier
, ;

\, to write, thus easier to prove correct, and exhibit lower sphce/tlme complexities. We

8 illustrate these points by first considering a problem which is harder for a set of points

than for a polygon. We then demonstrate that it might be easier to design algorithms

. ) for certain réstricted classes of polygons rather than for arbitrary simple, i.c. not self-

- b
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‘ polygon h.;s beencxplonted S SO _:'» R

intersccting polygons.
4 / B
L 4 > . . .
Consider —tbe task of determining the convex hull of an.arbitrary set df points

versus that of a simple polygdn conndcting these pomts A polygon is convez if-all its
)

internal angles are less than 180°, The convez hull of a set, points is deflned as thc

a

minimum area convex polygon enclosing all points, {see Figure 1.1). The vertices of the

convex hull are points of the set. The convex hull of a simple pdlygoﬁ is defined

analogously. The convex hull of a set of n points can be determined 1n O(nnlo'g n) time

and this is optimal [Sh77, YaT79, Gr72]. Klrl\patnck and Seidel ﬂ\1583] the recently

shown that the convex hull of a set.of B pomLs can be dctermmcd in" O(n log h) lee

where h is Lhe number of vertices on the convex hull,

for computmg “tlie convex bull—of a'skn ple polygon exist [McA?‘) ],08'34 (‘rY83 BhERT]

To obtain” thcse bounds, the |mphc1b order of - tlm vertices along the boundary “of thc

Figure 1.1 . o

The convex hull of 4 set of points. .

-

However, hnear time a‘lgorrt.hms -

~
- o .

A
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oo i)}}uﬁdary.' Similarly we define the outside.
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: I?not otherwise mentioned, we will assume all objects considered in this thesis are
simple polygons. Furthermofe, we specify .a polygon P by its vertices (py,...,p,) listed in
clockﬁise order. Each vertex is specified by its ‘Cz;rtesian coordinates. An edge ¢, of P

is the line-segment joining p, -1 to p, (we identily py with p, and use modulo operations

on all index operations),” Polygons' are assumed to be in standard-Torm, i.e. no three

-+ - consecutive vertices are collinear and e, is the edge with maximum y-value. }

- - The Jordan Curve '\The'orem' for polygons statcs that a simple polygon partitions
- the plane into two disjoint regions, the interior and the exterior, which are separated by

- nti’h”e*bqundal_'y of the polygon. The inside of the polygon is the interi‘of together with its

-

i

- .

"

.2

Before 'ling)cccdilxg we define several structural prépe}ties of polygons, illustrated.in

" Figwe12. . o

v - .~ A polygonal chain C, ;8 sequence ‘of €onsecutive vertices PP, 6T P. A

- 4 poxlygoxnalycha.i‘p is monotone with respect to a line € if the projec‘tions of py,

- n N ; ’ e

o r=i,...,j'op € are ardered in exactly the same way as the vertices in O, 1
L1 ) : L
2. A polygon is monotone if there exists a line € s.t. the boundary of P can be

' R L0 > e N .
- " partitioned into two chains C, , and C | “cach of which is morotone with °
>0 4 Yespecet to £, L ) S .
; : - Ch
/

A point x in‘P sces B point' y in P; if the open line segment joining 'x and y
o lies inside P. In case that a'vertex p, sees a vertex p,,.the line segment

wp PPy if inserted into P, is called (internal) diagonal of P. In case that the

. open line segdent pp, hes completely in ‘th(“oxt.(‘rior\of P, we refer to p,p,

as an external diagonalof P. =~ !
J ‘ - ‘ .

A polygon'P is star-shaped if there exists ‘at least one point X ‘inside P such .

: .+ that x can ‘see the entire polygon. The gél of all points x from which the -

-7 A

o nl

E v
- .

ey

\;‘;" o Sy,
y



- )
entire polyéon'is visible is called the kernel.
‘A polyéon is weakly visible from an edge pq of P if for-every point x in P
there exists a point y on pq such that y sees x. A polygon is edge-vistble if

there exists an edge from which the polygox; is weakly visible.

A polygon P is rectslinearly convex if every pair of points ’ip P having the

same y-coordinate or x-coordinate is visible. It should be clear that every

> convex_polygon is rectilinearly convex but that the converse is not
necessarily true. -
We are given the task of solving a cgﬂ@jn geometrical problem involving polygons.

I the polygons have 'specific structural propertie\s\, it may often’ be possible to exploit

=~ N v

by :considoring the t’riang’ulatio'n problem' where the task is to insert diagonals into‘a

[N

given n- -vertex polygon p such that I’ is p'xrtmoncd into. trmng]os wnbh normnterbcctmg

'

'mterlors In linear- txme one can tmangulaté star-shaped, monotone, edge-visible, and
t\:\onvcx polygons (sce the "algonthms dcscrlbcd i [(‘JP’I78 ScL80 TOA82 "To83]). In

. contrast (g bhls any simple polygon can be erngulaﬁed in.O(n log n) Lune IGJP’I 78,

‘. ~

(RN

Ch82 Chig3). However, this has not yct heen sl]own to ‘be’ optlmal, i.e. no non-trivial

lower -bound on this problem exists. Other examples of problemé for which fast

algorlthms exist for restricted polygon classes include point mclusmn in convex or star-

e
’

shaped, polygons [Sh77),. medial axis of i convex polygor [Pr??], and intersections

-between convex or stur-shaped polygons [Ch80, MF'8~2].

4

- e [ 4 . - -
Note that all complexity results stated In this thesis are worst-case analyses with

the underlying .machine model of a real RAM, as described in [AHU74]. Unless:

. ptherwise stated, all complexities stated in this thesis are functions in the number of .

vertices of the polygons under consideration.

Imagine -now an environmieny in which little or no knowledge about the specific

i

these to obtain a clearer algorithm design or to gain efficiency. We now illustrate this

"
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, (a) .
A monotone polygon

(c)
An edge-visible polygon

‘

Various types of polygons.

. (b)

A rectilinearly convex pelygon

.

Figure 1.2 .o
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" structure of the input to the geometric task is available. Even in under these

circumstances, we may still be able to usewf the efficient algorithms which work
; -

correctly only on restricted classes of polygons. To achieve this, the usual strategy is

to decompose the polygon into sim\ple componentssolve the problem on each

component using a specialized algorithm, and then combine ‘the partial solutions

[C.IPT78, ScL80, MF82, AT81]. This strategy is a primary motivation for the

development of efficient decomposition techniques.
\

Polyéons ,a;'e typxcaﬁ} decomposed into convex, star-shapgd, monotone, or edge-
visible poly'gops. We say that two polygons arelrnar}-oucrlappz:ng if their interiors are
non-intersecting. A decomposition is called a partitioning if the object is decomposed
into -non-overlapping pieces. If overlapping picces are-allowed, the decomposition-is
called a covering. Algori’vhms' to partition arbitrary simple /polygons into convex
polygons [F‘eP75 ChD79, Ch82], star-shaped polyg()ns [AT8$7 monotone polygons
[GIPT78), erngloa [GJP' ‘78, 011183] and Lrapczon(ls [AA83] have appeared in the

hterature. leen an n-vertex sxmple polygon, thesc decomposition techniques t,yplcully

exhibit a worst-case run-time of O(n log n). For a survey of polygon decomposition

techniques see [T080, KS84]. °

Decomposing a polygonal objoct, into s 7implcr component parts can be done with or
without mtroducmg add:tloml vc1tlccs “hlch are called: Sterner pomt.s tht,her or not

Steiner pomts arc allowed often makes a big dnfl'eroucc in Lhe solumon of a problqm

Clearly some problems are only solvable if Steiner points are gﬂlowed. ‘

These decomposition’ techniques have also reccived attention in such' areas as |

"

" pattern recognition and image analysis [Sk70, FeP75) In pattern recognition, one

extracts information from an object in order to identify or classify it. A description of
an object can be an enumeration of its simple components, and a characterization of

the relation among them [FeP75,Pa77].

From the practical as well as theoretical point ‘of view, the class of rectilinear



i

Ry

polygons merits attention. Rectilinear polygons are defined as polygons whose edges
are parallel to either of two given orthogonal directions. In ord(zr to 6btain shorter
algorithm descriptions, we assume that in any rectilinear polygon considered, t;o two
horizontal (vertical) edges have, thcf same  y-coordinate (x-coprdinatc‘).‘ In image

processing, the boundaries of objects are stored on a grid which usually implies that

digitized images are rectilinear polygons. Other Lyp‘ical domains where rectilinear

polygons naturally occur are VLSI design and processing of satelhite data. We see

rectilinearity as another source of stru’cture in polygons, 'whicb originates l"rom the
specific hardware being used. We will call the computational geomctr)'{ which deals
with rectilinear polygons, rectilinear computational geometry (some authors [Wo84|
prefer isothetic instead of rectilinear). ' _ . M

1.2. Thesis Results Related to the Literature ,

Y

“In this thesis, we show hoéw to exploit the rectilinear structure for the design of

efficient algorithms. Most of the results obtained in this thesis are directly or indirectly

tied to visibility problcr\hs in reetilincar polygons In the . first part ofthe thesis we

" introduce a new tool in rectilincar computational geometry, ealled the labeling scheme.

We found this tool useful for almost all aspects of rectilinear geometry discussed in this

-thesis. In Section 3,1 we give a construction for generating rectilinear pelygons

algorithmicz;lly. Besides a theoretical aspect, also discussed in Section 3.1, this has the

practical benefit of being able t,(,) ”gcncrrate n-vertex rectilinear polygons for any choice of
n.

. As'm‘er‘xtioncd above, an important aspect in the design of efficient algorithms is
the presence or abscnce of stricture in polygons. In Section 3.2 we therefore turn our

attention to the design of efficient algorithms for testing rectilinear polygons for

structural propertics. We can test rectilincar polygons for star-shapedness, -

monotonicity, rectilinear convexity and edge-visibility in linear time. Previously the

v

best algorithm for testing a polygon for edge-visbility had been quadratic in the

s



number of vertices [AT81a). Linear-time algorithms for testing a polygon for

monot(%nicfty [PrS81] or star-shapedness [LeP79] had been known previously. The

rectilinear structure allows us to develop more cfficient algorithms. Efficiency is of

particular import:mce' in rectilinear geometry since the rectilinear images produced by
today's-scanning devices typically contain large quagtities of points.‘

In Chapter 4 we present efficient linear-time hidden-line elimination. algorithms for
several models of visibility. Prior to the work.'described in this thesis, the best
algorithm for ldden-line elimination in polygons wa:; linear and utihzed three stacks
[C1A81). The hidden-line algorithm presented here exhibits the same worst-case time
complexity but uses only one stack and is conceptually simpler [Sa83]. Reccntly’, Lee
[LeB3] ‘indcpchdcntly obtainc%l a similar algorithm. The newly developed tool allows for
a unified, succinct approach tbosolving theke r(;ctllnnegr computatiqnal' geometry‘
problems. In’ Chapte‘r 5 we show further applications of the labeling-scheme to a .’
shortest path problem, and a convex hull problem rclevant to rectilinear gecometry, the

¢

determination of the rectilinear convex hull.

: )
The last chapter of this thesis.is devoted to decomposition problems in rectilinear

computational geometry. As an application of a particular partitioning problem, we

“discuss the guard-placement problem for rectilinear polygons “The problem description

v

in its more general form 1s due to Klee [1076] in 1973. It can be stated as follows.

What is the minimum number of guards always sufficient to see the inside of an n-

¥

vertex polygon? Guards are placed on fixed locations. The first solution is due to V.

o

guards are always sufficient (and sometimes necessary)

N

’ n
Chvdtal who showed that l;

[Ch75]. A simpler ;;roof‘ based on triangulation was later given by Fisk [Fi178]. Kahn,

1

Klawe and Kleitman [KIKK83] showed that in the case of rectilinear polygons, [—’:—’

guards suffice. This bound is also tight in the sense that for some rectilinear polygons,

-’

b
'
]
H
i
H
!
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{;— guards are also necessary. As #ill be illustrated in Chapter 6, the main step in

~

their "proof is to show that rectilinear ‘polygons can be partitioned into convex

quadrilaterals. A partitioning of a polygon P into convex quadrilaterals will be called a

. (convex) quadrilaterization of P. Their primary concern was to show the existence of a

convex quadrilaterization for rectilinear polygons, whereas our interest is in developing

efficient algorithms to actually perform such a task.

The basic building units in,designing our algorithms are a special class of‘edge-

'visible rectilincarly convex polygons, which we will call pyramids. First we demonstrate

how to quadrilaterize pyramids Next we present an algorithm to quadrilaterize

“

rectilinear star-shaped polygons by first partitioning them mto pyramids, then

quadrilaterizing these and subécqucntly merging the resulting solutions. We then show

how to extend these results to rectilinear polygons which are monotone in some

dircction. We employ the same basic methodology of partitioning the polygon into -

pyramids and merging the resulting pyramid quadrilaterizations. Both algorithms are

‘optimal, i.c. the run-time is hinear in the number of vertices. Subsequently we show how

. to partftion an arbitrary rectilinear polygon.into monotone pieces. Noti

¢

- that not every deccomposition of a rectilinear polygon into monotone pieces will produce

'

“polygons that are rectilinear As not every arbitrary monotone polygon is

quadrilaterjzable, the decomposition step has to ensure that only those monotone

components are created - that do admit a quadnlaterization. The run-time "of

' partitioning an n-vertex rectilincar polygon into monotone polygons admitting

quadrilaterization turns out to be O(n log n). Thus the entire task to quadnlaterize an

n-vertex rectilinear polygon can be performed n O(n log n) time.

; %
" Often when dealing with a decomposition, one is interested in minimizing either its

weight or the number. of piecces created by the decomposition. The weight~of a

v decom position may be defined as the sum of the edge-lengths (usuajlly Euclidean) of all

3
~

—~l

£
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diagonals/ Klincsek [K‘IBO] describes "an O(n‘al)‘ algorithm for the minimum-weight

.

triangulation of a simple n-vertex polygon. In a joint work with M. Keil, weshowed -
how to solve the minimum-weight quadrilaterization problem in O(n*) time [KS81].
7 N N } 7 -
The algorithms -presented in this thesis were implemented in part by Shigeo Inoue
as a Master’s Project under G.’T. Toussaint at McGill University, Montrcal, and in_part.
by James' Dean, Kai Ng and Mark Waldvogel as course projects in CS-95-590 at
N i
Carleton University, Ottawa under the author’s supervision. TMhé‘sis presents and
analyses the algorithms from a’ theoretical point of view. A discussion of
)- * “‘ .

implo;nen'tation considerations 'may be found in [In82] and [DN'W84]. —

1.3. Summary of Results : . o o

. . L]
The main results of the thesis can be briefly summarized as follows:
(1) A new tool, the labeiing scheme, for rectilinear polygons ts introduced and ,
analyzed. The technique captures information ‘about the winding properties of .

rectilinear polygons, making processing in"subsequent algorithms simpler.

(2) A linear-time algorsthm for detecting whether a grven rectilinear polygon is edge- "
‘ visible is presented. This improves the O(n?) algorthm for arbitrary polygons
suggested in [AT81al. A variety of classes of rectilinear polygons are

" " characterized.

s

(3) Improvement in the efficiency .of algorithm - for detecting. monotonicity and "
rectilinear converily of rectilinear polygons. .

{4) New, efficient algorithms, based or;\ﬂ]e lab(;llng scheme, for hidden-line

elimination for rectilinear polygons have been tgned. DBased on these

algorithms, an algorithmr for the construction of the conveX hull of a rectilincz;,

polygon and.an algorithm for a shortest rectilincar path-};}ﬁﬂem has been ‘

\

designcd'

(5) Algorithms  for 'quadrilaterali‘zation of rectilinear polygons have been designed.
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. Chépter 2
A New Tool for Computational Geometry

In this chapter we introduce a new tool for designing efficient algorithms in
recilinear ‘covlm)utn(i_olml geometry, The key idea 15 to eatract inf(_)r;nnlmu about the
. “winding properties™ of a given rectilinear polygon. We can see this tool as &
preprocessing step 't‘o subséquc;nt algo'rit.hn‘ls. This preprocessing step serves a dual
purp’dsc.“ In the présence of structural information, certain algorithms may gain in
efficiency. Secondly, a variety of cases and subcasés are often tested imside the body of
algorithms, which may lead to complex program structures as well as to*_*l’in"olvod proofs
of correctness, if not even to faulty algorithms. Having knowletige about the winding
pr(;p(‘rl i(".s of the polygon, the number of such cases -and subcases may b;\\‘ recduceed,

leb(%g to clear and conceptually simple solutions. To illustrate this point, we will

‘
t

present a hidden-line algorithm which has the simplicity of a one stack algorithm,

t

similar ta Sklansky's convex hull algoritlim [Sk70] and whose run-time is linear. For a
discussion of Sklansky's convex hull algerithm, see [ToA82]. The gain in efficiency by
using .this preprocessing step is even greater if several algorithms subsequently utihze

v

the structural information so extracted.

2.1. The Labeling-Scheme
Informally, the new tool 1s a specific way of labeling the edges of a given rectilinear -
polygon P, where the labels are dependent on the ‘‘turns™ exhibited during a clockwise
traversal of P. Before giving a formal definition,” we will introduce some terminology.
-Let a, denote the clockwise outer angle from edge ¢, to edge ¢ 4, at a vertex p,. The

exlertor angle #, at p, is defined as ap — 7. We speak of a right-turn at a vertex p, if

s
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Figure 2.1 .

A1
Exterior angle 0, at p;.

.t
. ‘
s N
' * A

0,>0and of a left—turn-ot-herwisc (sce Figure

2.1).

~
i

We now generalize the notion of lefi-turn and right-turn defined at vertices, to

that.of turns of polygonni chains, C¢={p,,p,+l,...,p}}. The angular turn t',, of a

11
polygonal chain C, , for i<] is defined as }]0,.

In qasé that 1>j, t', , 18 defined as -
ke '

gr—t',,. It ;>0 we say that the chain C, | performs a right-turn and C, | performs
3 left-turir in case t',  <O0. v ‘

. r .

Exterior angles at_vertices of rectilinear polygons take one of two possible values:

)

vy

Therefore in rectilinear computational geometry turns between edges are

integer multiples of 21 This implies thdt we can assign to each edge ¢, an integer label !
£, as follows:

I
'

€,:= 0 (* the edge with maximum y-value is arbitrarily labeléd 0 *)

4
€:=.1

=l for 1<i=n | '
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An alternative definition of the labeling-scheme is given below: = ' -<eg™ © .
R . . _ -, - At
=10 - Lo .- . - )
- . . ~ v ' ‘ h o -
e v b=+l il p,, py4q 18 aTight-turn o o S N
. - ’ _ ) , - . . ) . -
¢, .,= ¢, ~1 otherwise. . ' ST AN . o
/
- B [ f/ . . o , I \ .- .

~f

This equivalent definition suggests immediatély an algorithm -to determine the

to v ) - ,

labels of a rectilinear polygon. We define the (integer) turn ., between ¢, and ¢, as the
’ ! ! v f \ - e ! ’ P

2 . ‘ ‘ '
angular turn ;—t’w. We will speak-of an even turn between two edges 6, and ¢, f the 57 .

- aY 4 . ,

. ,‘ ~ ’..‘ . o~ -
corresponding integer {; ; 1s evep, otherwise the turn is édd. - The nel-turn betweaht two , .
' ~ N N . 4
v o~ . -t ! ‘v .
- 3 * ¢ - ! N ’ !
edges ¢ and e, Iy defindd as ¢, ,. modulo i, We usc the term r-edge to denote all edges ‘
? . \ »
. R . . .

that no -

- »
1

labeled i. For implementation considerations, it i§‘ interesting fo,note

>

computations involving angles are needed in order to deterinine the labels. -

.

We recall now that the vertices of polygon P are-given in clockwise order An edge |

- ¢

c of a polygon P is called a top-edge, bottom-edge, left-edge, ar right-edge, if the interior

of I” is below, above, to the right, orto the loft of 2 ]inc;o“inour with ¢, respectively

)

This defines four types of cdges. We say that two edges arce oriented inthe same way if

they are of the same type. ' T ; ,
S v

o

2.2. Some Properties of the Labeling-Scheme R

Before studying the propertics of the labeling-scheme, it is convenient, to state the
R * i . B P
following Theorem of Turning Tangents known m differential geometry [K1i78, Ca76]. It ’

is often referred to by its German name Umlau fsatz. A complete clockwise traversal of

.

a simple polygon describes a 27 revolution. In the labeling-scheme, this is reflected by

f

4
o e

the fact that for a complete turn: ¢ 4, =4. An immediate consequence, also ) '

»

observed by O'Rourke [OR83], is thai the number of reflex vertices'in any n-vertex
»11 : * ! B

rectilincar polygon is exactly 5 2. We can similarly observe that the number of

vertices in any rectilinear polygon is even.




£

v -
“ =~

By induction we assume that ¢, . is cven Between ¢ Pand €,+2 are exactly two exterior

N

- “angles (‘omvribylingmo:vgh 1or -1 to the fabeling thus {, ., 15 also even. As the label €,

- ‘
t

-t T ..@;i'}lfqual to t, -the correctness of Properly-2.1 follows. ™ : v
~e - 0 - = K. - . - N

-~ L~
- R _ R
“tas “ . oo -
e - — PS - -
“ e N e - f e

- “ ey - . -

o ., - - T ) T .
. -Property 2.2. . The net-turn. betwéen paralel edges oriented in the same direction is
-~ : - .,.hm»\ - I “ o= . T . _‘— -"““ - »'_ - - - e ] 4
- Zero.. 7 ™. e e T
- Praiof’:__ﬂctty_qqlr parilel edges orented i the same way a (clochwise) traversil of a
i ‘ T - - . EU SN _ o -
- pokygon performs_a Zm net-tura ' As each 2—-turn contributes adding +1 to the labeling,
- “y -, - . - »‘ _ a o : g
: .~ the resul( follows. W _ .- 7 T .t e v -
« .7~ 2.3. Rectilinear Cuts, . -~ .~ . -~ 7~ 7
S.. = -We definea horizontal cut h through a rectilinear polygon P, as a horizontal line
b e wixich intersects.all those vertical cdges-of P-haying the same y-coordinate as h. We
© - T-assumé thal no harizontal “cut, has_the same y-value as any horizontal edge in P. By °
. % - ~ 7~ o - ’ . .
Lo (c";, T é;k), we.denote. the sorted-list of all k edges intersected by b, where ¢, is the
. r. - T e s L )
", leftmost such.cdge and: e, the rightmost e(}’gé. The corresponding label-list, denoted by
* - ¥ - - - .
T, e €)1 called a horizontal cut-sequence of length k. In a similarly way we can
: I G . - W
¥ & * e -~ . - e ) . . . B N
- “defime cerlical cut-sequences. A rectilinear cul 15 a cul which is either I‘OK'IZOHIM or
© "< verdicul. “Similarly™ a réctelinear ling 1s defined as a hne that is cither -vertical or
© horizontal.” The main fse of the cut cancept is the follewing important Property 2.3
' , AR T ~ .. - -

: _
~ LR M -
‘0 - P ° .>. ".D
v . ‘ . ~ - . -~
- A N L4 -

R T et TN . -;,m-« . “:“ L Tt e k' . ,A.f;,,,‘_’#,;;:.,\:,\,- w g,.;f'-w,:,w{g-a PSRN EYRPLT s e -
- ) ) P oo . . N S . . a , . - .
- . S - . - - an T . - '
. - - - 2 ~ e - < . Lo
%& . T bl - b - e ® s . ’
k3 hi - -t - = - - = -
L . - ~ e R 15
~ i P e w - - - .t '
A Progerty 2.1+~ Labels of horizontal edges arc even, while those of vertical edges are
T otiiedd. Ui T - .-
" \: - ) ~-- s : ~ ) ' e : ’
- S - . - - eya . ‘.
T Proof: We note that in a rectilinear polygon, horizontal and vertical edges alternate.
. L . ~ ) [ » - . B )
- ", . We restrict ourselves to proving the result for the set of horizontal edges {e, e, .. ,
. -~ € —;}.- We ‘will show. by induction on the index j=1,3,.,n—] that for all horizontal
, -7 ellges-¢; the turn.t; betWeen ¢, and ¢, 1s even. "Let j=3 then by inspection verify that
- R —~ o e ' N h 4 .
- - . . A R
Do Tyl eithér’0 or 2. Therefore'let 3 < j =< n-2. We cam write t) 1o as &, +1, 3,
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‘ and Theorem 2.1.

Let h be a rectilinear line intersecting a rectilinear polygon P and let ¢,, c; be two - )
edges with labels ¢, €, respectively, adjacent in the correspanding rectilinear cut.-Let

4,9, be the open line-scgment of h connecting-¢, and ¢,. "Tlie function sig}x(x) _returns

~1if its argument x is negative and +1 if x is positive.

Property 2.3.
(8)q,q, is inside Piff € ~¢ =+2+s1gn()~1), and - .

(b)g,q, is oulside Piff €,=8;== oasign(j=i) -

Proof: We assume w.lo.g. that the line b inters ting:P is horizontal.
Fa—""

(a): An implication of the Jordan Curve Theorem is that edges which are adjacent -in -
any rectilinear cut have opposite orientation. Ta prove {a) we introduce Steiner poiuts‘F

Gy at t_,hc points of interscction between h and € o8, respeetively Tet 49, b(' an

(\4 idernal linc-segment connecting'g,.and g,. W.Lo.g..let e, be to the left of ¢,, then ¢, is )

_aleft edge and ¢, is a right edge. (Refer to Figure 2.2) The line-segment q,q, partitions

L )
P into two polygons Q,={q.,p,,...,p1,q1} and Q,={q,.p,,...,8,~1.0,} n @, and Q, both

exterior- angles at g, and g, are identical, thus 1, ,=t,,=2, We conclude that ‘(it) il 1<), - -

then f, = €,— €, = 2 and (i} il i>] then 4, = €,~€, = 2, thus j,=¢, = =2. (b}

¢ lf‘q‘qJ is an external line-segment, joining ¢, and q,- Conversely, 10.(21_')11]}(‘:Oj:l,(‘lllitll()uh

N e . R

.ol"thc cdges ¢, and ¢, are reversed and thus are the two-cases. Therefore (1€ then
I“J=€]—€‘=—, 2. 11>y th(‘l} t“=€,—‘€J=—.‘Z implying.tlilxt £ - {"":‘Z l -

3

Al * - i

Theorem 2.1. Let {C.l, o £, ) be a horizontal cu!-seqﬁence of,lcné{_h k then - 7.0

) (') | E'J = eu,,_l[ = 2; and o ' .. : . T S
) (”)fnl=‘31 glk='.{l . ,. B A ." - -
( N ’ Proof' (i) Follows from Property,2.3. - '

- (i) Let (£, .., €,,)°be a horizontal cut-sequence of tength k ;lc}ermincq'by a horizontal
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- I Partitioning of a polygon by an internal _line.segment,.

- ~ - -

" cut"h. We now prove that the label €, ; of the rightmost edge intersected by h is equal
to-1. Since cdge e, is adjacent to the y-max edge e\l.:its-»l:xbcl is'1. Let ¢, be the

S rfghtmés& edge intersected by h whose corresponding label is €,. By the Jordun Curve .
- . -Theorem ¢, and e, have the same orientation thus by Property 2.2. ¢, modq4=0.1f . ’

LS . the turnt, from e, toe

; is zero then the result follows; otherwise (YQJ describes at

= = feast one_ full revolution between e, and e, This however contradicts either the

- 1

- - )

.= = ~implicity o-P or the fact that ¢, is the rightmost edge intersected by h, see Figure 2.3

J
- . . ab, respectively. In' a similar way we can show that,the leftmost edge in any horizontal
- ) . e . C A ;
- ‘cut-sequence is labeled 3. = .

3 ' - L ' ) ? ' ; - !
- . We now turn our attention to partitfonixlgs of the plane induced by inserting
oot v 12
interior.or external line-segments into a polygon P su’g‘l: that points on the boundary of

I’ are connccted. Any such interior line-sefment partitions the polygon I’ iuto two.

regions. In the case that d is an external linc-segment of P, a different situation arises.

man s I A -



Figureé.%(a) B Figure 2.3(b) -

Figure 2.3
If edgé e; is-visible and the turn from e, to edge c} is a full revolution, then either (a)
the simplicity is violated or (b) ¢, is not visible.

\
3

-

f 0

We' can describe this as d inducing a partitioning of a plane having a polygonal hole P.

One such component 1s bounded while the other is unbounded. The following Theorem

characterizes which of the two fegions ‘is bouﬂd_cd and which is unbounded. This is

c

illustrated in Fighre 2.4. ' :

Theorem 2.2. Let 4,9, bean e:fterfzhl line-segment connecting the edges e, and e, of

¢

P R

(t) [n’tllci case that €, -€]'—'——2‘,' the bouided region tnduced by d i3 the 'polygon{qy,,

L3R}

s
e

Por oty o Py-1h 4)h ' o

i) In the case that € —£ == 2, the bounded region s described by the polygon
LI N p
{(lw P.—p p.—g: ) P1+1: (IJ}- ’ }

?
<«

o 1
[
H
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A baunded region and an unbounded region are created by inserting the external diago-

s

nal q,q,.

Proof: As a conscquence of the Jordan Curve Theorem, the bounded region 1s

_ obtained By connecting g, to ¢, by a polygonal chain of P being oriented oppositely to

the. clockwise orientation of P. To ‘rmq this chain, we apply the previously derived

" Property 2.3 and obtain that as q,q, }s.an external line-segment, £, — £, ==~ 2*sign(j—i).

“Therefore, if €;=€ =2 theu sign(j~i)=1, implying that i<j. The bounded region is

therefore {q,, p,—y, P;—2s - Py+1» Piy 6,1 The converse holds for the case (1i) that j<i

and thus the bounded polygoniis {g,, p,—1s Py —ps ~ Py pj' AN -

i T -
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We sketch a consequence resulting from Theorem 2.2. Take any two points p, q

located in the exterior of P. By the Jordan Curve Theorem, p and q can be joined by a
simply connected polygonal path, path(p,q), which does nat intersect the boundaer of P
roporly If now exactly one of the points falls within a bounded region as constructed
sa.bove t,hen path(p,q) has to intersect the external line- -segment separating: the regions.

This ,result is used in Chapter 5, when we consxder a shortest path problem.

2.4. Generalized Cuts.

\

We will now generalize the notion of horizontal cut-sequences by defining

-

generalized cut-sequences. Let £ denote an oriented line intersecting a rect,ilinear

polygon P. Let ( " ) denote the sorted hst of edges mtersccted by £ in the ordcr in

“which they are lintersccted by 2. Edge €, is g,he first and e,k the last such edge. The

corresponding label-sequence is called a (generalized) ctit-sequence and is denoted by

LY

(€ ,..8) - . L

Y tk

Theorerh 2.3. Let (‘ell,...,fuj be a generalized c;t_t-scqucncc; then

|€; - 6']] = 8, for j=1, k- 1.

fag!

Proof: Let € be a line whose induced cut-sequence with respect to P is (€, 1"""6'*)‘ For

~

casc of no'tation let e, ¢, be two odgcs.whiclx.aro ailjag:ent m a g(‘nernh%cd cut.
Furthermore let the intcrscction point o’f» , with ¢ be denoted by éI, aud that of e; be
denoted by ¢,. W.lo.g. assume that e, is horizontal. We consider two polygons defined
as Q’,:—'—=(q,,p‘,...,qu,q1) and Q,: (qj,pj, P, -1,q,). I e, is horizonial then ‘the

discussion is analogous to that of Theorem 2.1. Otherwise, e, is vertical. The sum of -the

. Co .o 3 c . . .
interior angles at q, and q,in either Q, or @, is -~ or —r In case that i<j we consider

2 2

’ i

_ the polygon Q. A clockwise traversal of @, from g, to g, performs a Qn—{a‘-—nj)

- revolution,. which is by the above

(i) The point g, is above e, As the interiof of P is above e, the segment g,q, of £ is

n
—_—

A r i s oo

REPUSIPPNY VISR SN

R S,

S U
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inside P. In this case if j<i then €, €,=—3 and if i< theti €,—£,=1.
(ii) The point g, is below e]‘. As the exterior of P is below'e,, conversely to case (i), we
get for j<i, €,—¢€,==1 while for j>i, £,—£,==3. Similarly to the.proof-of-the
e . corresponding. lemma for horizontal cut-sequences, the simplicity of P forbids .

" other cases.

(b) The case that ¢, is a top-edge is similar-to (a) and is thus omitted. ®

) Coroilary' 2.2. Under the ussumptions of Theorem 2.8, ©

. (a) Let q,q, be inside P.C, | isa right-turn i f and 01;19 tf1<y.

0

.

(b) Let q,q, be outside P.C, | isaleft-turnif and only 1fi<y.
Theorem 2.4. The label ﬁifferc‘nce €= ¢, is positive if and only i f{q,, p]'_,—, P,
o Pya1s Por 0.} 18 a bounded polygonal region. Similarly, the label di fference £,—¢, is
negativé ifand only if{q, p,—y, P2y -+ Py+10 Py qj}js a bounded polygonal region.

Proof: The result is a straight forward generalization of the-corresponding Theorem |

2.2 for rectilinear cuts. We therefore omit its proof. ®

In this chapter we have introduced the labeling-scheme for rectilinear polygons. .
Several properties which we will use throughout the remainder of this thesis have been

— . derived. The next chapter will now investigate structural propertics of the rectilinear

0

polygons.



‘ - :Chapter 3

- Structural Properties of Rectilinear Polygons

A

N

In this chapter we will .design several c,fﬁcient/algorithms for testing a r"ccmlir,xear
pc;lygdn for structural propertics. The algorithms are based on the labeling-scheme as

1 N

" iptroduced in the previous chapter, | \ oo - o

3.1. Construction of Rectilinear Polygons’

¢

We will characterize a rectilinear polygon P by its label-sequence. The label-

sequence is' defined as the concatenalion of all labels encountered in a clockwise
traversal of P'starting with label £,. It is important to note that a given label-sequence

does not uniquely characterize a rcctl‘linéar polygon. However two stmple rectilinear

polygons with the same label-sequences are soméwhat “similar”. We thercfore say that -

two simple rectilinear polygons are sinufar if ther corresponding label-sequences are

v

identical

“~

Given an arbitrary ‘sequence of integers, a ‘rectilinear polygon, whose label-

sequence is s, may not necessarily exist. We are therefore mterested in characterizing

)

those sequences of integers that are label-sequence for some’ rectilinear polygon. This

characterization will be given using a formal language-hke approach  We will use this
characterization to ‘generate one representative for each class of similar rectilinear

' _'polygons. Furthermore a necessary condition for simplicity of a rectilinear polygon is

[

.

given, which can be determined-in hinear time.

In order to describe the label-sequence formally, we now introduce some notation

which is analogous to the characterization of languages in formal language theory, see

5

LY

[lloU?@].}‘ We will establish a correspondence between rectilinear polygons and strings -

generated by a grammar. Structural proi)e'rties\ of rectiimedr polygons .can then be*

f
\ B - ' [
f \
- . '
3

22 coC

et L
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v

. -

‘detected by parsing the ;:orrésponding strings. We define a grammar G=(N, T, P, S),

where N={A, S} is the set of nonterminal symbols, T={integers numbers} is the set of

terminal symbols, and S is the start-symbol of the grammar. We use i as a variable to

denote integers. The production set P of G is defined as follows: we have used the

notion grammrar in a more general sense, by allowing an infinite number of terminal

‘ symbols as well as productions.

(a}S. ->01 A-
(b)iA->i i+l A
()iA->ii-1 A

((l) 39A -> 3

/

o We give an example. The label-scquence for the rectilinear palygon of Figure 3.1 is

0101 23. It.is generated by applying the productions (a) (c) (b) (b) (b) (d) in sequence.

0
: — *
T N
2, ,
.. 3 ' 0 9 .
‘ _— 1
2

Figure 3.1

L3

-

. Label-sequénce 01 0.1 2 3 generated by aﬁplying productions () {e){b) (D) (b) ().

"
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‘Property 3.1..Al label-sequences for simple rectilinear polygons can be generated by

the above grammar G

. . U

Proof We show that for a given simple rectilinear polygon P, lts Iabcl-scqucnee can

“be gcneratcd by the grammar G. The ]abel scquencc for any rectanglc is 0 1 2 3. 'Thxs
sequence can be geherated by applying productno'u rules (a), (b), (b) and (d) in that
order. Furthermore, ‘\by Theorem 2.1, we know that lnbcl-scqucnc;:s of simple rectilinear
polyéo‘ns start with O,l‘l and end with 3. Since the pro‘(\luctlon (a) and’(d) are apphed the

initial and final productions, respectively, any word created by the grammar also has

this propexty. Both these productions are applied exactly once The difference between 4

any two consecutive labels in the label-sequence is either 1 or —1 depcndmg on whether

the turn at the vertex adjacent to both cdges is a right-turn or left turn, respectively.

In the }abel-se(;ue}xcc this corresponds to applying productions {b) or (c), respectively. ®m

&
I

Property 3.2. lor each word s-generated by G there exists a stmple réctihnear .

. < e - .
polygon whose label-sequence 1s s. ;

+

Proof: Let s be a word generated by the grammar G.. Let [s| denote the length of s.°°

We show by induction on |s| how to generate the rectilinear polygon whose Jabel-

sequence is s. We first observe that tlie length of s is equal to the number of vertices in

the polygon whose labcl~scquen—cc is s. The shortest word gencfatcd by G is 0123

- Any rectangle has this label-sequence and thus the evistence follows for this case Now'

we assume that for any word s' and even number n>4, for which |s|=n—2, we_can

construct a rectilinear polygon whose label-sequence is s'. We have to show that for

any word s with |s|==n, we can construct a rectilinear polygon P, s.t. the label-sequence
of P is s. In a derivation of s, say at steps j—1 and j, productmm"(b) and (c) are

applied either in the order (b) followed by ¢), .or (¢) l'ollowcd by (b) ‘If we now apply

.

all productjons used for s except those at steps j, j+1 then a shorter word s' of length

4

n—2 is generated by G. We demonstrate how }5' 1s used to construct the desired
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" satislying the following properties: -

s

A . -
" polygon P. W.lo.g. assume that the edge ¢  in P! inserted at step j is-a right cdge.

Otherwise a similar construction can be given Let d denote the minimum

\ , -
perpendicular -distance between any . pair of parallel edges in P Now construct a pomnt

' o - .od ) y g
whose distance from p, is —. Furthermore let. R, be a rectangle

 Joeated
P ocatcd on €, 2

‘

(i) width=d, height=2-
C (1) the edges of .the rectangle are parallel to ’t,h‘e polygonal edges, i
(ii’i) the line segment p 'pjﬂ is a symme;Ty axis of R.' '
,‘v,\’eilabcl the four corner points of R n a clockwise-fashion by r, 5, b, st.:u:ting with

the top, rightmost corner point as r. The construction is illustrated in Figure 3.2.

A4

Figure 3.2

* An example of the creation of new edges. P, P, P 4, 1s replaced here by Py P,
u,‘t,‘PJ'_*,l.' B ’ ‘

i
.
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As the distance between any two parallel edges is at lcast d so-is the length of any

cdge and no edge of P, except ¢ intersects the interior of R. Fdge e, and the_boundary

st of R arc ¢ollinear  We only discuss the case that the turmat p, in P is a right-turn.
. * ' 4 O ~ - ° .

A smilar argument. can be made otherwise. Next, we incorporate the two production
y P . . " .

rules {b), (c), we previously eliminated. Two cases arise depending on the.order in

which, in_the derivation of s at steps j=1 and j, the productions (b), (c) are applied.

- (i) Production (b) is followed by (c). In this case we replace vertex p;byp i

u, t This has the effect that the chamn Pyt » Py Py 18 replaced by 1’;—1’\

*
PLu L pyy.

(ii) Production (c) is followed by (b). In this case we replace vertex p, by p Y

" r,s. This has the cffect that the chain P,~1s Py P+ is Teplaced by p,_,,
<, o , \
p,ns, p;+l‘

L]
»

The construction of P is completed by making all other vertices of P! also vertices of P.

“Thie label“sequences s and s’ differ exactly at the two positions determining the two new

vertices. Therefore the total number of vertices in P is n. As the rectangle R possesses -

the intersection properties discussed above,-P is a simple rectilinear polygon Lastly,
the right-turn at p, is maintained, as a right-turn at cither t or s, depending on whether
case (i) or (i1)-applies. We have thus constructed a simple rectilinear.polygon P with n

vertices whose label-sequence 1s s, ®

3.2. Algorithms for Detection of Structure in Rectilinear

Polygons

In this section we will sketeh further applications of the-labeling-scheme in relation .

to detecting structural propertics of rectilinear polygoné. We will show in Chapter 6,
how rectilinear polygons with specific properties can de¢ convexly quadrilaterized in

linear time. Classes of rectilinear polygons which can be quadrilaterized in linear time

. i

P R TP T Ty gy
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include monotone, star-shaped and edge-visible polygons. For arbitrary simiple,

P oYY

‘f’(*clilixlct:;{', n-vcrllex‘ polygons, such o purlril.ioninlg into convex quadrilaterals takes O(n
log n) ﬁime'. In order to apply any of these linear time algorithms, we must first
lcstnbl‘isl Lhait the'givcn rectilinear polygon has any one of these stg'l‘lctu;'al propertics. If
the test took O(n Iog' n) time then clearly little would be gained. We will therefore
present efficient linear-time al’go'ril.hm’s for testing i rt‘(lt.iiinmr polygon for structural
properties. These algorithins deteet star-shapedness, rectilinear convexity, monotonicity
and edge-visibility.  We start by discussing @ necessary condition for determining
whcth/or a given rectilinear polygon is simple or not. | !

3.2.1. A Necessary Condition for Simplicity

N 1

A scemingly difficult open problem in computational geometry is to find a linear-
time algorithm or an (2(n log n) lower bound proof on the problem of deciding ‘\‘i'hot‘hf-r
a given polygon is simple. Sb:zx;xos showed that for a given n-verl,c‘.\' po‘lygon, O(n loé n)
is upper. bound for this problem fSh’/'7,]. ‘His'solut,ion is obtained by considering each
polygo‘nnal edge as a line-segment by itsell anﬂd subsequently testing whether any two
linc-segments so obtai‘ne"d intersect. {2(n log n)‘is —Iowcr bound for the problem of
testing whether any two of n linc-segment intersect. However t!nc edges of a polygon u;'c

" not simply a collection of line-segments. Therefore this lower bound docs not hold qu

the problem of testing whether 2 given polygon is simple or not. Rather than

‘ developing another O(n log n) algorithm for testing a rectilinear polygon for sim-plicity,
Dwe present a necéssary condition fo;' simplicity. This couditilon can be verified in linear

time, ’since from Property 3.1 it follows Ll_J’at if a rectilinear polygon P is simple, its label

sequence can be generated by G.

We give an example for a rcg\bilinoar polygon which is not simple and show that its
{ -label-sequence cannot be generated by G. The label-sequence s for tlie rectilinear

polygon shown in Figure'3.3 iss = 01 23 4 56 7. As this sequence ends with 7, it
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cannot possibly be generated by G -
:| i N - , ,\ \
0 AR
4 —9 ;
4 .
1
7 3 5
e ‘ -
2

- S

Figure 3.3" ‘

The y;ol:ygbn has label sequence 0123458 7 and thus i$ not s.hnple.

o

—
4 ¢

The fact that the label-sequence oll'dm arbitrary rectilinear. polygon P ls‘.gcn("r:n(:(l by G;
does not necessarily imply that P s simple Figyre 3‘.51 il[ustyrales such a situation, We
will al{vuys detect, in linear time, that a rectilinéar polygon is not simple, if a Lljavcrsa‘l
of P does not perform a 27 revolution and thus i’ts‘ label sequencclc.ammt be g’cneratcd.“,
For example a traversal of tile polygon in _F‘igure 3.3 performs a 47 revolution. It
remains ar; open problem wthh(:r sitnplicity ofaa,polygpq which performs a 2r-turn, can

’

be tested for in lincar time.

-

We will next discuss algorithms_to test polygons for star-shapedness, rectilinear

convexity, monotonicity and edge-visibility. . o N

3.2.2. Star-Shapedness Test

. Recall that the kernel of a simple polygon P is'phex'set of all point‘s.in P which can

each.see the entire polygon. Each edge ¢ of P splits the plane into two half-planes, a .,

'

o “at .8 . g w20t U T I S TN ‘..51«,,,.“@)4',‘,'»4‘,, [V «,3%(41;,‘»”‘ .
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L . Al_though the label sequence is legal, the polygon is not -simple. )
- ~'-~ - . SR ) b e .
oL - L. o -

‘positive -and a negative one..The positive half plane contains all points on” the plane

- - . \ . -
p -

located to the right of the hne through e, and oriented in the same way ase,. The
. - ' ) 4

kernel of o polygon P can b constructed by intersecting all positsve hall- plines deéfined

by.cdges of P. Although not mftim;d, this procedure demonstrates thal the kernel can

- .

‘be ‘constructed by intersecting convex regions and is thus itsell convex. lice and

‘ Préparat.a [LeP76] dcsi'_r:i-be an algorithm which uses the order of the edges as givén' by

‘the. polygon to™ comstruct the kernel in linear time. Their procedure can casily be

" simphfied [or rectilincar polygons as we will demonstrate below, see also [Tol481).

, . - -

, ’ v ) G ' ) ' ol
- 7O JYC - . H AINs ' L . -
o Consider  the- four- ‘extremal chains €y .\, , €, . Cy 0 O, - —of

s . : ) N
"rectilinear palygon P. These ‘extremal chains are ecither disjont or meet at an edge.,

‘

’ -

We call two extremal chans adjacent chains if they share a common edge. We say

A . . . . , .
that a chain C, | is emply if j=i+1, otherwise C, , is non-empty. We, define a slair as a
“rectilinear polygonal chain monotone in both the x-dircction and y-diection. In this

-

=
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- reflex vertex i C, . Similarly, p is located above of the lrighest. reflex vertexin C, .
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section we only consider stairs which are extremal chains of a given rectilinear polygon.

. Recall that an edge ¢, is completely visible from 'a point p if each poipt on e, is

visible from p. Similarly a polygonal c!laiq C,,is said to be *camplct’cly'_ visible from a

point p if all edges on C,  are completely visible from p. We continue by examining

»

properties of stairs:

-

Prop'erf,ky 3.3. It 1s necessary and suffiesent for a stasr C,,J.”,tb ’66 gompletely visible
- fron; a p;)int P thqt the endpoints p,, p, ;, of the fir:sé edge and p;_,,, P, ofih_c last edge
are visthle from p. ‘ ' .
Pro.of: The ‘nccessilvy 15 obvious. To prove the sufficiency we assume that theretexists
a point p which sees the endpoints of the First and last edge ‘of. C. .We com ;il(‘n(‘(' by
recalling a result by Avis and Toussaix’]tl [AT81a), stating that an edge is completely
Visiblc~ from a.point if and only if both its endpoints are visible from this point. We will - N
br‘ov(‘ the result for C“-’:Cymwzmu' The other stairs (;:'ln be ]lﬂ‘n;”(‘d‘éimil:l]‘ly. W.lo.g "'

“( let C, ,, be & stair of qltcrxlztl.illg top and -right-cdges. 'In this cu.‘;(', (', ,is a chainof ° -

vertices with monotonically decreasing y-vilues and increasing a-values. As p sees the

" endpoint of the lowest edge of the stair, p must be located to the right of the rightmost

We assume now that a point q located oh some edge ¢, i= k=j, is not visible from p, Co ?i
- then thére-exists some edge e,, 1ntersecting the line-segment -pq. The intersection point

of e, with pq must be between p and q Two cases arise () m>k and (b) m<k. (a)

case that m>k the chain €| ,, is not monotonically mereasing in the. _v-diroc(‘i(b-n_ In
. . 2
case (b), m<k, the chain C,,, is not monotonically decreasing in the x-direction In

cither case, P is not a stair which is a contradiction. m
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N 1

Property 3.4. The extremal edges of rectilinear star-shaped polygons are connected

by statrs.

’

. Proof: The proof is straight forward and thus omited. ®

'

. In Figure 3.5 .we give an example of a rectilinear star-shaped polygbn’.

¢

. A o " Figure 3.5 ’ L

T A rectilincar star-shaped polygon.

. - . —t
- . .. . C N
. The structural properties of rectilinear polygons, are now .reliated "to  label-

‘

“sequences. We show that label-sequences provide a congcise notation, for structural

‘.

properties. As strings defining label-sequences can be parsed efficiently, we will express

structural properties using label-scquences. We use the Kleene star-to demote zero or

ey e - ¢ y Cp= [t ‘e -
more repetitions of labels, 1e. (@b} =abababababab. ., {sce [lIoU79]). The symbol “+"

. . - o * . L -
-is used to denote one or more repetitions of the letters, i¢. (ab)ti= (ab)ab).

i
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Fact: A rectilinear polygon P with label-sequence s is star-shaped iff (i)
s=201)+(21)'(23j+(43)', and (i) the jy,, -edge sees the y  -edge and the z,,-edge sees

the T .-edge.

"

Proof: (i) Edges on Cy sz, Dave alternating labels 0 or 1, starting with O as the label

of ¢, and ‘ending with 1 as label of ¢, The sequence (21)° characterizes the possibly

empty stair Cp . . (In case that the stair is empty its description is the empty string,

*denoted by €). (23)T describes Cy 2 and similarly, (43)" describes the possibly empty

stair G, .
mn

(i) ) Let ep=tel,, ¢ ==rr1, e, =b.be and e =l Furt;hcrmore let
’[a,?b]:"=[ini1f{y-value of £,, y-value of r;}, max{y-value of £;, y-value of r,}] and [c,d}:=
[m‘—ax{x-va)ue of tg, x-value of b}, min{x-value’ of ¢, x-vz‘alule of b,}]. Let p#q denote the
point with ‘horizontal coordinate equal to that of p and vertical coordinat;a equal to that
of q, analogously q#p is defined, sce Figure 3.6 for illustration Now consider the
rectangle defined as ‘R:‘= c#a, c#b, d#b, d#a. Each point p ’inside R sees both
endpoints of each of the four extremal edge. Thus by Property 3.3 p sees each stair
com pletely, implying that p is inside the kernel. Any point q outside R will not -be able
to sce at least one of the endpoints of an extremal edge, therefore q cannot be inside

the kernel. Thus we conclude that the kerncl is precisely the rectangle R as defined

. above. ®

This suggests an algorithm to test whether a rectilinear polygon P is star-shaped,
sec also [Toli81]. Once we have verified that P is star-shaped, the kernel of P is readily
constructed using only the extremal edges. It follows that the kernel of a rectilinear

polygon is a rectangle. The steps are given below.
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Algorithm 3.1: Test for Star-Shapedness - _ et '
Input: A rectilinear polygon P. & s

Outpul: ‘Yes', if P is star-shaped; ‘No’, otherwise.

Construct the label-se iuence 3 for I’

+if's is of the form (01)™ ( 23)* (43)
then
begin B
construct the rectangular shaped ]\crnol R
if R is non-cmpty s
then n ¢ v
' repart ‘Yes', oxit
end

report ‘No'. »

p#Q . qJ

, ] o ‘,
p"‘""‘"“qafp -
)

R . Figure 3.6

The point with vertical coordinate equal to that of q and horizontal coordinate equal to
that of p is denoted by p#q.
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3.2.3. Monotonicity Test
/

We will prove a theorem enabling us to design an algorithm for testing whether or

‘not a simple rectilinear polygon is mondtone. The existing algorithm for testing a

simple polygon for monotonicity is due lto Preparat;l and Supowit [PrS81]. Their
algorithm exhibits the same worst case complexity as the algorithm proposed here. Due
to the rectilinear structure, our algorithm is conceptually simple, and efficient. Both ’
algor.it,hms are capable not only of detecting whether a polygon is monotone, but also of

reporting all directions of monotonicity for P. Let £ be any line and its orientation be

described by the counterclockwise angle » formed by € and the x axis (sce Figure 3.7). -

' R ,

Figure 3.I7 ) | . Ce

1

The counter clockwise angle is formed by line £ and the x-axis.

3

Our algorithm will follow immediately once we have characterized monotone
rectilincar polygons. To obtain this characterization let us first define several terms.

We say that a polygonal chain, C\y= p,,...,p,, .., py changes the monotonicity with

respect to a given line €, at an edge e, if the order of the projections of

»
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;

pJ_l,pJ{pJ+1,p] +o onto £ differ from the polygonal order. An example is given in Figure

1

3.8.

.

Figure 3.8 . '

+ The monotonicity with respect to £ changes at edge e,

3

_Property 3.5. If a rectilinear polygon P is monotone with respect to any one line g

Jor which w 1s ¢n (0, —g—), {w in (2£,ﬂ)}, then P is monotone with respect to all lines £

with w in [0, g—], {w tn [g',ﬂ’]}.

Proof: Let a rectilinear polygon P be monotone with respect to some line €, for which

[

.. - . .
w is in (5—’”) Furthermore let y_ .., ¥, denote indices of the edges with maximum
and minimum y-value, respectively. The monotonicity with respect to € is clearly

changed at the edges ey and €y W.1 o.ga let e, = PuP) and ey = PpPr+y- IfPis

monotone with respect to €, then both chains must be monotone with respect to £.

rh L A e

The chajns can not contain any edges changing the monotonicity. Therefore, as P is .
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monotone with respect to £, all horizontal edges on the left ehain are bottom edges and

<

all horizontil edges on the right cham are top-edges (see Figure 3.9). But polygons

whose extremal chains have this property are monotone with respect to any line € with

T
:z_y

). The proof for the case when P is monotone with respect to a line € with w

w in |

: T, . : .
in (0,-2—) is similar and can be obtained by rotation of the polygon by QL "

‘
\
. ~

Fig{xre 3.9

A polygon monotone. with respect to all lines £, whose counter clotkwise angle formed

. L . m
with the x-axis is in the interval [72-,%].
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We call ‘thc X-axis and Lhe,‘y-axis the two major ares in rectilinear’ geometry and
refer to the directions defined by them, {'lS the’ major directiong’ From .Property 3 5, it
follows -that a rectilinear polygon I is monotone, then it is monotone with respect to,
one of the two major axes We will 'sm?v this result i Corollary :‘3.1 for subscquent use.
Furthermore, if P is monotone to any line not parallel (o one of the two m::jo'r'a\cs.
tl;on,P is monotone to all lines € for which either w m [0,5] or o is in [g-,rr].
Corollary " 3.1. Any monotone rectilinear polygon is monotone with respect to at

least one o f the two major axes.

We can therefore assume w.lo.g. that every monotone rectilinear polygon is
monotone with respect’ to the y-axis Any.rectiinear polygon monotoue in the x-

.dircction can be rotated in O(n) time to be monotone in the y-direction

Let all vertical edges be directed from top to bottom, although this is s‘tricthly
quakmg a directed graph, we maintain the n6kion polygon. Given a rectilinear [Sol.ygon
P al;d a horizontal edge e we can denote the number of incoming (outgoing) edges into
(out oH.') e by In(c), (Out(e)), respectively As Pis a simple polygon In(e) + Out(e) = 2,

- for all horizontal cdges e in P. A bottom-edge ¢ is called a bottomn-peak, if Oute) = 2

»

and is called a bottom-valley if In(c) = 2 A top-edge is called a top-peak, if Infe) == 2,
and is called a top-valley is Out(e) = 2, see Figure 3.10 for illustrations. A peak is

either a top-peak or a bottom peak. A valley is either a top-valley or a bottom valley.

Remark 3.1. An edge e, =p, _,p, tn a rectalinear polygon is a valley i f the turns-at
p,—, and al p, are both right-turns. An edge e, is a peak if the turnsat p, _, and p, are
. both left-turns. Thus peaks and valleys can be dctccte;i by examining the labels o;:{ both
edges adjacent to e,. We define left péaks, right peaks and valleys, similarly. Top‘ and

botlom p\ca/:s are called horizontal peaks, left and right peaks are called vertical peaks.
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Figure 3.10

Top-valleys and top-peaks.

' ) .
. i

A

. o .
_Property 3.6.’/Let P be a rectilinear polygon, and T,, T,, be the number of top

valleys and top peaks; respectively. Let B,, B,, be the number of -bottom peaks and

2]

bottom valleys, respectively, then .

T, =17,-1B, =08, -1
Proof: We will show by induction on the number, n, of vertices in P that T,=T,-1,
the other part B,=D,=1 is similar The class of rectilinear p(;lygons with four vertices

is the rectangle. For this polygon obviously T,=0 and T, =1, therefore Tp=-\‘T,,- 1.
, N ‘

Now we assume that P has more than four vertices. Then there exists at least one
reflex vertex p, and we can w.l o.g assume that p, is as depicted in Figure 3.11, i.e. p,

is adjacent to both a Jeft and a bottom edge. If the reflex vertex is not of the type as

FPar
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‘ Figure 3.11

Partitioning a rectilineur polygon I’ into Py, I, to show that the number of top-valleys

. minus one cquals the number of top-peaks.

R

in the I"lgur(‘: 3.11 then’a similar argument can be givcr;. The horizontal extension ;>f P,
towards the interior of P intersects P, the first ;uch intersection point will be called s,
say located at edge e,. We define two polygons P, = (3, p, 41, Py 400 pj_'l), and Pyi=
(S, Py Pytyr v Py) Let T, denot,(; the number of t.op-vall(')l's is polygons P, i=1,2.
Similarly Ty Bu, and B, aré defined. The newly created edge p,s is a top cdtgc in P,
having two outgoing edges, ther;:fore T, = T",,i +T,-1,and T, =T, +7T,. Now we
apply the induction hypothesis to conclude that TPM= T, +T,=(T, - 1)+(T, -

1)=T,~-1. m

-
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.
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Corollary 3.2. “The number of horizontal peaks and the number .of horizontal

valleys di[fer by exactly two. The total number of horizontal and vertical peaks

a
X

combined di ffers from the totel number of such valleys by exactly four.
Theorem 3.1. Let P be a rectilinear polygon. :
(i) P does not contain any horizonlal peaks if and only.if P is monotone with
respect to the y-direction.
"(ii) I’ does nol contain any vertical peaks if and only if P is nionofone with

A

" respect lo the r-direelion.
Proof: (i) We first notice that the monotonicity in the ‘y-direction changes when a

horizontal peak or horizontal valley is present. The extremal edges in the y-direction

are both horizontal valleys. The y . -edge is a top-edge and the y -edge a bottom-

edge. Therefore by using Property 3.6, the two extremal chams connecting these edges

contain a horizontal peak if and only if they contamm a horizontal valley. As only

" horkzontal peaks or valleys can change the monotomcity in the y-direction the result

follows., ‘
(ii) Similarly we gan show that P is monotone in, the x-direction if and only if P contains -
2 - .
- anc

.2

- -

no vertical peaks. Alternatively, we can prove the result by rotating P by

-

/ applying (i) = -
Corollary 3.3. A rectilinear polygon is monotone in both major directions if and

only i f il conlains no peaks.
We continue our investigation of monotone rectilinear polygons by characterizing

—

rectilinearly convex polygons. Recall that a polygon P is called rectilinearly conver if

] B

every two points in P having the same horizontal or vertical coordinate are visible from
each other. In the traditional sense of convexity the class of convex rectilinear polygons

The notion rectilinearly convex is more

is restricted to contamning only rectangles
appropriate in the context of rectilinear computational geometry.




e

. horizontal edges on C',
mex

4

- Theorem 3.2. A rectilinear polygon is reclilinearly convez if and only if it is
‘monotone in both major directions. i
Proof: “=>" Proof by contradiction. We assume that P is.not monotone in ope of

the major directions Thus P contains a peak, say the edge c'=p,;lp,. Wlo.g. we

assume that ¢, is a bottom peak Now we take any pair of points in the interiors of ¢, .,

t .

and ¢, 4, having the same y-coordinate. As these two points are not (internally) visible

the polygon P is not rectilinearly convex.

“<="If a polygon is monotone with respect to some line £ then any two points with
identical projections onto £ are visible. Thus as P is monotone in both major

directions, any two points with the same x-coordiniate or y-coordinate are visible and

~the result follows. m

‘

Theorem 3.3. A rectilinear polygon Pis rectilinearly conver if and only i f

(a) P’ is monotone with respect to all lines £ with w in {0, 5] or

P - . : : LT
“(b) P is monolone with respect to all lines £ with w tn | “E‘,TI'] or

”
(c) P 1s a monotone to only the two major directions and no other direction.

Proof: “<=" Follows from Theorem 3.2 and Property 3.5

“=>"By Theorem 3.2 and Corollary 3.3, a rectdincarly convex polygon P contains no

<

peaks. By Property 3.6, P contains exactly two horizontal and two vertical valleys.
These valleys are the four extremal edges in both major directions. These valleys are -
either adjacent edges in P, or they are connected by non-empty stairs. We distinguish

. ) {
between three cases: (a) The chains -C and C,

)
z mn y i

g are empty. In this case, all
mnn

) are bottom
n n [

are top-edges. All horizontal-edges on Cy.mr'zm

edges. The resulting polygon is monotone with respect to any direction in [?, r,

(b) The chains Cy

1%

_-and Cy ,, are empty. Wc get, analogously to (i), that the

B N v 9 - . . . T
polygon is monotone with respect to all directions in [0, ok
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(c} In any other case, there exist two adjacent extremal chains C, j» C,x which are

PR -
. ~ -

non-cmpty. W.lo.g. assume that j=I1. The monotonicity changes at e, for any

r

direction of monotonicity. Take any direction d, in (O, 2—) theq‘ C, 4 is not monotone

) -

with respect to that direction. Similarly for any direction in (§-, m) C;, is not

. -

monotone. As P is rectilinearly convex we conclude that P is monotone in the two
y A

major dircctions and in no other dircction. Se¢ Figure 3.12 as illustration. ®

v

Corollary 3.4. Rectilinear star-shaped polygons are rectilinearly convex.

As a conscquo’ncc of Theorems 3.1 to 3.3 we obtajn a lnear-time algorithm for

testing whether a rectilinear polygon 13, monotone. 1t will also report all- directions of

.

‘

contain any horizontal pcaks, then P is monotone in the y-direction. If P does not
contain any vertical peaks, then P is monotone in the x-direction. If P is mon_oione in
the x-direction and P is monotone in the y-direction then P is foctilinourlyéonvo,\. In

that case the algorithm performs a constant tme test to delermine whether P s

N '

nionotone to all lines for which o is in {0, -5] (or [7,71']) or I’ is monotone only to both

’ -

major directions. . . - - . ;

P ‘ g B g . ~ ey - - - . - Ap e A 4
DR L IRt R e A A A i
. i . i .

: L , a2

monotonicity. In O(n)time we can test whether P contains any peaks. If I does not
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Algorithm 3.2: Test for Monotonicity
Input: A rectilinear polygon P.
. Output.‘ All directions with respect to which P is monotone.

. ”— 1 ~ g -
monotone m_y = true, ’
monotone_in_x*:== {rue; :
whilei < =n and (monotonc in_x or monotone_ ln_y) do : - -

begin ‘
ife isa horlzontal peak '
then o
mornotone_in_y .= false
else
if e, 1s a vertical peak

- then '

monotone_in_x := false;

~ it=1i+1 -t
end (* while *); :

if monotone_in_y and monotone_in_x T ,

then
begin ' Ce
if ¥.x-cdge is adjacent to z, -edge
and y, -edge is adjacent to a:mx-edge
. then : v
“P is monotone to all lines ¢ w:th w i [;,n‘]”
if y_, -edge is adjacent to z,,,-cdge ,
and y,; -edge is adjacent to z_ -edge’
then
- “P is monotone to all lines € with w in [0,’;—1-']"
end : 2
else ' .
begin -
if monotone_in_y . o
then “P is monotonc in y"; AR
. if monotone_in:x _ + ‘
then “P is mopotone in x"
.end.

2

b .
Clearly the run-time of this algorithm is linear in the number of 'q(;lé(_*s:',-\"\ick therefore

N
i
1
f

have shown that: ' ' S
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"Theorem 3.4. All directions of monotonicity for a given rectilinear polygon can be

found in linear time. S
. ‘

Simrilarly to star-shaped polygons, we can also express monotone polygons by their

Ial?el-seque;xces: ) ‘

(i) P is rectilinearly‘co;véx_ iff 5 13 in .(0,1)+(2:1)‘(2,3)4'(4,3)‘. .

(i) P is/inonotone“with respect‘:t,'o all lines between g— and 7 iff s is in
(0,1)”;,(2,/3)*“. : o~

) S Y.
/ -

., . .
(iii) P is monotonef with fespect to all lines between 0

Ziffsis in

2

O @ 3N43)

(iv) P is monotone ‘with respect to the y-direction iff ((0,1)(2,1)")*((2,3)(4,3)")

The monotonieity in the x-direction can be expressed analogously.

s ~
t

3.24. Edge-Visibility Test
+ Recall that a polygon P is weakly visible from a specified edge ¢, if for each point

'p in P there exists a point q on e, that sees p. Avis and Toussaint presented a linear,

T

-and thus o'pt’imal, algorithm for (lc?t,ermining whether or no}: a given polygon is weakly
visible from a specified edge (sec [AT81a]). An interesting problém which is directly
related has been posed by Toussaint [T080]: Given a simple polygon, does there exist an
edge from which the polygon is edge-visible? In case that such an edge“cxists the

polygon is said to be (weakly) edge-visible.

A straight forwgrd approach for testing a polygon for edge-visibility fs to apply the .
algorithm of Avis and Toussaint to cach edge in _Lurn, yielding an O(n?) algorithm. It is
. »
an open problem whether a better upper bound can be achieved. Here we present a
Iix;car-tixlxc algorithm to test a given rectilinear polygon for edge-visibility. To achieve.
this we will sho\\\' that :;ny edge-visible rectilinear polygon admits a partitioning into
rectilinear polygons called histograms and pyramids, whose structures we will next

©

define.
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Edelsbrunner et al. use the term vertical histogram to denote a rectilinear polygon
that has one horizontal edge, called the base, equal in length to the sum of lengths of

all the other horizontal edges [EOWB83]. Analogously; horizontal histograms can be

“ defined. A histogram is a rectilincar polygon which is a horizontal or vertical histogram.

Pyramids have been defined in [SaT81] as a rectilinear, edge-visible, star-shaped
polygons with two (possibly empty) stairs. Here we give an altgrnate shorter definition.
A pyramid is a rectilinearly convex histogram. It is readily verified that the two

. el . *
definitions are equivalent.

Property 3.7. Any histogram is weakly visible from"its base.

Proof: Follows immediately from the definition of histogram. =

We now give a characterization of edge-visible rectilinear polyg_g\ns.

Property 3.8. A rectilinear polygon P is edge-visible if and only i f there-exists an
edge ¢, such that P can be partitioned into two pyramids, one of which 1s completely

visible from p,, the other comgpletely visible from p,_,, and into a histogram with base

€ . -

.

Proof: “<=" Using the assumption, P can'be partitioned inta three components: two
g I s I
pyramids and a histogram. By assumption the two pyramids are completely visible from

e,. By Property" 3.7 the histogram is weakly visible from e,. Therefore the entire

polygon I’ is weakly visible from e,.

M=>" We assume that the edge from which e, 1s weakly visible is a horizontal to
g ' P

cdge. Lixtend e, to-the left and right towards the iterior until P is intersected at

points u,r, respcctivély. This is illustrated in Figure 3.13. Consider nowsthe resulting

polygon P,={p,,...,r} of points in P which are not below p, and not to the left of p,. In

by
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Figure 3.13
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An edge-visible rectilincar polygon
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the trivial case P,={p,}, otherwise we show that P, is a pyramid with one empty stair.

For this observe that no point in the interior of P, is visible from any point except from

py. As P is weakly visible from e,, P, must be completely visible from p,. P, is therefore
a rectilinear star-shaped polygon. We know from<frevious sections that -rectilinear
star-shaped polygons consist of four stairs cach of which may be empty. The vertex pp

-

has minimum y-coordinate and minimum x-coordinate within P,. As it 1s located inside
the kernel of P,, three of the four stairs are emply and thus p',_,_l,...,r is a single stair.
We summarize the intermediate result that P, is completely visible from p, and the
chain p, 4, is. a single stair. By an analogous argument follows that u,...,p, _, is a
stair completely visible from p, _,. Now consider the remaining unexamined polygonal
chain C, ,. By Theorem 2.3, all horizontal edges on C,, arew bottom-edges. Any
vertical peak, however, contains a top-edge and a bottom-edge. Conequanly Cr 4
cannot possibly contain any vertical peaks. By the characterization of monotone
polygons given in Theorem 3.1, the chain C, , is therefore monotone in the x-direction.
We now extend the edge ¢ ., towards the interior of P and denote the intersection
point with the boundary of P by s, sce Figure 3.13. In a si‘milar fashion create the
Steiner point t by extending p, . This defines two (possibly empty) chains, one from r

to s, called C,, and the other from s to u, called €y ,u. By Theorem 2.3 all vertical

edges in C, , are right-edges. The chain C, , consists of right-edges and bottom-edges

8

and is therefore monotone in both major directions and is thus a stair. Combining the
above results }iclds that {p,,p, +1,--,8} is a pyramid consisting of two stairs, both
completely visible from p,. Similarly it can‘ be shown that {t,...p, _,} is a pyramid
completely visible from p,_; It remains td be shown Lha,.t. the ‘%)olygo;
H:={p,_,,p,,s, ,t} is a histogram By Theorem 2.3, C,, contains no top-cdges and
thus docs not contains any vertical peak. This implies that 11 i:ﬁb monotone is the x-

direction. In this case the length of the edge e, is equal to the length of the other

extremal chain C,,, implying that H is a histogram. The histogram and the two



Y
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pyramids cover P and do not intersect each other properly. Therefore P is partitioned
into two pyramids visible from p, and p, _;, respectively and a histogram whose base is

c. B

Corollary 3.5. Edge-visible rectilinear polygons are monotone. . b

We now present a linear-time algorithm for testing whether a rectilinear polygon is
edge-visible. The algorithm is based on the characterization of edge-visible polygons as
given above. We saw that rectilinem" edge-visible polygons are monotone in a direction
parallel to the edge from which they are weakly visible. Let us assume that the edge of

visibility, if it exists at all, ié a horizontal edge In case that this edge s vertical, rotate
T . . . . Y
P by 5 Let € be the index of the edge with minimum x-coordinate and r the index of

the edge with maximum x-coordinate. The two resulting upper and lower monotone

chains are Cg, and C,, r:espectively. Notice that a rectilinear polygon can be

/

reconstructed if only a list of its verticayéa*gés is given.

Algorithm 3.3: Test for Edge-Visibility

Input: A rectilinear polygon P monotone in the x-direction. Should P be monotone in

the y-direction, P must first be rotated by -271

Output: All edges from which P is weakly visible; no edge is prmted in case P is not
edge-visible.

create a list L of all vertical edges in the upper
and lower chains C, and C, , sorted by x-coordinate;
scan L from left to right until tlxe first right edge,
say €,, is encountered,
if {during the scan no cdge from the upper chain
has been encountered}
then , : P
candidate,,,.=p,
else
if ¢, is on the upper chain 3
then ,
candidate,, | .=p
if {during the scan no edge from the lower chain
has been encountered}



then
candidate,,, :=p; _,
else
_if e, is on the lower chain
then ’

candidale,,, :=p,_;;
call the rectilinear polygon constructed
. of all edges scanned so far Py
scan L from right to left until the first left edge,
say e, is cncountered;
if {during the scan no edge from the upper chain
has been encountered}
then
cana'idateu,{:z::p,_1
else )
if ¢, is on the upper chain
then
' can(hdatc:u’p,‘_,:=p1_l '
if {during the scan no edge from the lower chain}
has been encounte{;ed}

then \
candidate;,, ,:=p,
else
if ¢, is on the lower chain
then

candidale;,, ,==p ;

P

r

for k:=up, low do
begin

if candidate, |, candidate;, are endpoints of the same edge, say e,

then
if candidate,, is in kernel(Py)
and candidate,, is in kernel(P,)
then P is edge-visible from e ;

end.

:== the rectilincar polygon constructed of all edges scanned;

50

Theorem 3.5. In linear time, a rectilinear polygon can be tested for edge-visibility.

Proof: Initially the rectilinear n-vertex polygon P is tested for monotonicity in the x-

direction or y-direction. By Theorem 3.4 this requires at most O(n) time. Assume that

P is monotone in the x-direction. Both the upper cham as well as the lower chain of

oy
o

vertical edges of P are sorted by their x-coordinates

1

Merging these chains to obtain L

requires therefore O(n) time. To find the candidate vertices for an edge ¢, from w‘lﬁgh

»
7

P is edge-visible, this list is scanned at most twice. Subsequently the two pyramids P,

.
P

e e N Ak dta

PO
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and P, located to the left and to the right of ¢, are tested for complete visibility from

the respeetive endpoints of e,. This test is performed by first determining the hernel of
the pyramids (see Chapter 3.2.2). Subsoquontjly the endpoints can be tested for point
inclusion in the kernel. Both operations require at most lincar time. The algorithm
therefore locates both pyramids and also checks whether they are visible from the
respective endpoints of ¢, which is performed in O(n) time. By the initial test P is

monotone in the x-direction and therefore all vertices which are not located in either of

the pyramids, are vertices of the histogram 1. This completes the proof. =

3.2.5. Related Concepts

In [OR&2a] O'Rourke introduced the related concept of the signature of a curve I'
as a fux;cl.ion associating with cach point p of I' the length of I' to the left of or on the
line tangent to I' at this point. le shows that for arbitrary simple closed curves the
siggnnt,uro does not uniquely describe the curve. However, for the case of rectilincar
curves the curve is unmquely determined by the values of the signature. This again
shows that rectilincar polygons are more structured than arbitrary simple polygons. It

might be fruitful to test both the signature and the label-sequence of an object as

combined features in a pattern recognition systcm.

Recently Chazelle ¢t al. [Chi83] defined the concept of the sinuosity s of a simple
polygon. We will illustrate the concepts introduced by them wusing the terminology
developed in this thesis. They decompose polygonal chains into subchains according to
the following rule. Traverse the polygon and start a new chain every time a full 27-
turn (—2n-turn) is completed. The sinuosity of a polygon is defined as the number of

such chains obtained. We now state their main result:

Theorem 3.8, It is possible to triangulate a simple n-sided polygon in Ofn log s)

“time and O(n) space [ChI83].

Proof: The proof can be'found in [ChIR3).m *
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This result is nice, since by using their technique very efficient structure dependent
Lri:mgul';tlions can be obtained. The worst-case performance of their algorithmn is
nevertheless O(n log n) for certan polygons and thus the problem of whether an
arbitrary simple n-vertex polygon can be trinnguluiod in lincar time remains open. It is
interesting to note that these two concepts are related. In fact “’{e can derive the

sinuosity from the label-sequence, since the labeling-sequence contains the sinuosity
/
)

%

. v
information

The computational geometry literature contains many algorithms which perform a

given tash efficiently provided the mput polygons have certam structural properties. In

the content of this thesis, quadrilaterization algorithms discussed in Chapter 6 serve as
example. The main part of this chapter therefore dealt with the design of efficient,

linear-time algorithms for testing a given rectilincar polygon for such structural

properties, as star-shapedness, monotonicity or edge-visibility.

e, S




Chapter 4

Hidden-Line Removal in Rectilinear Polygons

Py
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4.1. Literature . (;.{f:a,:'
«t *
"' ; %@4‘0‘3
. Problem description: For a given sc.gpe {u)d a given posxt,lon called the viewpoint
.6"“ * 1

and a viewing direction of an obsetver, one wants to eliminate all edges (f4ces) or parts
of edges (faces) which the observer cannot sce.

This hidden-line (surface) %li’mii{a‘tion problem is of fundamental importance in the

A
“area of computer gru[;hics whcr‘q"g‘ frequently performed task is to render a realistic
picture of an object dis'playcd om :'g‘raphics device. The practical relevance of the
problem has stimulated the (lcvololément ‘of a large number of hidden-line and hidden-

surface elimination algorithms. For survey articles on hidden-line and hidden-surface

algorithms see [SSS74, OWW82].

. LS
From a computational geometty point-of-view, the precision of any computation

and thus that of the solution, should not depend on thie resolution of the graphics
output device. We therefore restrict our attention to object-space algorith;ns, i.e.
algorithms which perform all computations in the same coordinate-system in which
objects are stored. )We ‘brieﬂy survey the existing results according to the following

‘

.criteria: L

(aA) What is the dimensionality of the objects and the object-space?

(b) How many objects ax:e.in the given scene? |

(c) What is the spccifiq nature of the underlying objects?

{ . We wili first sketch results obtained for 2-dimensional projections of 3-dimensi(;nal

scencs. Ottmann et al. [OWW82] showed how a planc-sweep techniques can be

53
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employed to eliminate all hidden surfaces of a given 3-dimcnsic;nal scene of arbitrary
polyhedra consisting of n edges. If k denotes the number of edge intersections in the
specific 2-dimensional projection, then their algorithm exhibits an O((n+k} log u) time-
complexity using O(n log n) spacc. Other object-space algorithms restrict the class of
input polygons considered. Yao defines elernentary objects as the Cartesian product of a
simple polygon with an interval along the z-axis. The idea of Yao's [Ya&0] algorithm is
to assign priority numbers to cach one of n given faces and,subscqucntly defining an
ordering among them. The final step in her solution to the hidden-surface problem is
simply tlo display the faces in this order, thereby achieving the desired overlay e.fl'e(‘t.

Yao proves that such an ordering can be found in O(n log n)-time, given the restriction

on the class of polygons considered :

In addition to 1'o.sn'i('lling the elass of polygons, one can also restrict the number of
clements in the seene to consider the hidden-line problem for single objects. Rappaport
[Ra82] considers single monotdgne slabs as input polygons. A monotone slabl is the

~ '::r.t,giifm product of a monotone polygon along the z-axis. Using this restriction, he
obtains a lincar-time algorithm for ecliminating hidden-surfaces in a monotone slab.
ElGindy and Avis [IFIA81] presented a hidden-line elimmation algorthm for single
simple polygons in the plane Their algorithm runs in lincar time, but utilizes three
stacks and is rather complicated. In this the:;ix we present a simple and cfficient
hidden-line elimination algorithm for rectilinear polygons. Our algorithm utilizes one
stack and -exhibits a linear run-time [Sa83]. It is based on the labeling-scheme as
introduced in Chapter 2. Recently, Lee independently obtained a similar algorithm
[1.83]. Rappaport and Toussaint restricted the problem further to finding a simple

hidden-line algorithm for star-shaped polygons [RaT83). .

4.2. Models of Visibility

Following the terminology of Yao [Ya80], we characterize visibility of objects by
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adopting cither a perspective model or a parallel model.

4.2.1. Perspective Model

t

In the perspective model, the viewpoint is located anywhere on the plane. A

solution to the hidden-line problem consists of finding all those points of P that are

visible from the viewpoint. As the viewpoint might be located either inside or outsid&\_

the polygon, we distinguish between two kinds of visibility: internal and external
visibility.
Internal visibility: We say that a line-segment lies inside P il the interior of the

line-segmment lies in the interior of P. Two.points are said to be tnlernally visible if the

" line-segment. joining them lies inside P. The hidden-line problem from a point v inside P

“

is to determine all those points of P that are internally visible from v.

vrternal vistbility: We say that a line-segment lfes outside P if the interior of the
linc-segment lies in the exterior of P. T'wo points are said to be erternally visible if the
line-segment joining them lies outside P. The hidden-line problem from a point v

outside I’ is to determine all those points of I that are externally visible from v.

It is known that the internal and external hidden-line problems are related in that

v

usually any algorithm capable of solving one hidden-line problem is, in principle, capable

of solving the other (only minor changes to the algorithms are necessary).

4.2.2. Parallel Model

In the parallel model, we assume rays to emanate from a source located at infinity.
All rays formn a fixed, clockwise angle @ with the x-axis Thé interior of the ray ©op from
© {o a point p, is defined as the (;peu half-line from ® to };, excluding the point p. A
paint p is said to be visihle from o il the ray op lies outside P. The hidden-line

problem in the parallel model is to determine all those points of P that are visible from

‘o, Alternatively we refer to this problem as the hidden-line problem form a point at
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infinity.
*  We will say that a point is visible if it is clear from the context whether internal
visibility, external visibility, or visibility from % is meant. Similarly an edgc‘c| is said

to be visible if there exists a point on e, that is visible. An edge e, is completely visible

if each point on ¢, is visible.

e

As is commonly done, we will give the solution for the hidden-line problem as a
polygonal chain, referred to as the visibility chain VC. VC is obtained by connecting all
segments on the boundary of P that contain exclusively visible point~ In VC the

. polygonal order is preserved.

- 4.2.3 Overview of Algorithms

It has been shown that hidden-line elimination in the parallel model and

perspective model are equivalent in the sense that a solutién obtained for one model

1

can be transformed into a solution for the other model [NeS79). However this is not the
casc in rectilinear geometry, as the transformations apphed do not preserve the
rectilinearity. For solving the hidden-line problems in rectilinear geometry, we give
efficient and conceptually simple algorithms in this chapter.

First, we show how to solve the Hiddén=line problem for rectilinear polygons in the

parallel model. The main points will be illustrated for the case that all rays are parallel

. - . . . ) - »//
to the x-axis. We extend these results to points at infinity not necessarily paralel to
~

-
’ -

+ P
one of the axes. Then we show how to solve the hidden-line problem in the perspective
- B

. . . . » . ’ "y
model for the case that the viewpoint is located m_s/ulc/{.‘ We will place a rectilinear

coordinate system at the viewpoint and letthe axes of the coordinate system be parallel

-

— *

-

to the edges of the rectilinear polygon. Hereby an arbitrary rectilinear polygon can be
split into four chains. A solution for the hidden-line problem in the perspective model

can thus be obtained by determining the visibility for each chain.
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4.3. Al%orith_ni fo/r Hidden-line Elimination:; Parallel
Model ' "

4.3.1. Rays Parallel to one of the Major Axes .

; ’ Throughout Ll{l; {pctlon we will assume that all rays are parallel to one of the
major axes. Wé assume w.l.o.g. that this axis is the x-axis. Phrased in a dlfferent way,
we say that the point of visibility is located at infinity, @, on the positive x-axis. This
case is not omly attractive for illustrating the man points nicely, but also it is of
relevance for rey‘tilincar gecometry, as “;lll be demonstrated below. The folowing

Lemma 4.1 fows directly from the definition of visibility from .

7

Lemma4.1. The vistbilily chain is rectilinear s f the rays of visibility are parallel to
0

one6f the axes. S

{ / Remark 4.1. The converse of Lemmna 4.1 15 nol necessarily true as fllusirated in
- Figure 4.1. The polygonal chatn from the y , =edge to the x . -edge {5 monotone with

<

/, respect 1o both the r and y-direction and 1s thus identical to the visibility chain.

We have defined visibility of a point with respect to a polygon P. This notion is
now gencralized to vistbility of a point with respect to a polygenal chain. A point p is

visible from o, with respect to a polygonal chain C',,, if the interior of the,h:nll'-chn

line-segment from ® to p does not intersect any edge in (',

\We now define when a point is behind a polygonal chain. A point p is behind a
polygonal chain C if the di}gccted open half-line «p intersects C. We extend this
dcfiu‘ition to when an edge is bcliiml a chain C. An cdge ¢, i)s behind a chain C if for all

p<;int,s p one,, p is bebind C. If for a point p the ‘directc:_d open hail’-linc from @ through
p first intersects p before intersecting C, we say that pis sn front of C. An edge ¢, is
( ) ‘in Jront of a chain C, if for all points ;3 on ¢, p is infront of C. The definitions can be-G

canonically extended to edge-segments. In the following Lemma 4.2, we state a
*

! -
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Algorithm 4.1: Hidden-Liné Problem in the Parallel Model

Input: A rectilinear polygon P. *

Qutput. The visibility chain as scen from a point at infinity.

VC:= empty; (* initialize the visibility chain *)
for each l-edge ¢, in P do
if ¢, is not behind VC
then -
begin ‘ ' \
if any portion of VC is obscured by e,
then remove that portion from VC;
augment VC by the portion of ¢; that is visible
. with respect to C |
end,

-

Algoritﬁm 4.1 examings the 1-edges of P according to their polygonal order.

Elaboration is required on how to implement the step testing whether an edge e, is

-

behind the visibihty chain so far constructed. Figure 43 illustrates that a test based

PN

exclusively on the x-coordinates and y-coordinates of TOP and p, _,, p, is not sufficient.

-
The test of whether e, is behind VC can, however, be performed by a binary seatch on

- VC. This is possible because at any time during the executiqn of the algorithm, the

[S

I

visibility c}min vVC ls monotone. The i)roof for the monotonicity of VC is similar to
that of Lemma 4.4 stated below and we~ca‘n omit it here. We conclude that the wor\st
case run-t,imm&){ Algori@hm 4.1, if 50 implemented, is O(n + k log k), where k is the
number of l—cdéo:« in P. The algorithm, performs well if k is small 'compared to n.

v

However, in case that k=0(n) the worst-case time complexity is O(n log n).

To find a worst-case lincar-time algorithm we utilize the winding information
. . . ,
provided by the labeling scheme. For this purpose, we introduce the concept of an
antagonist for an edge. Consider a point p visible from the viewpoint v and located on

edge e, Let a>i denote the smallest edge-index s.t. the edge e, crosses the hne vp We

call e, antagonist for e,. We note that this definition of antagonist is independent of

r “

" S '
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Figure 4.3

Testing the top_of_stack called TOP and the Il-cdge ¢, does not give cnough
information to determine whether or not e; is hidden.
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the model of visibility. Furthermore, one edge Way have several antagonists and
scveral edges may share the same antagonist (seec Figure 4.4). For a point located on a
1-edge, we can define a unique antagonist (if it exists at all). The antagonist of a point
q located on a 1-cdge e, is the antagonist of ¢, with smallest index that has the same y-

coordinate as q. Lemma 4.3 characterizes antagonists.

Lemima 4.3. Antagomsts for 1-edges are — 1-edges.
®
Proof: With the properties of the labeling scheme derived in Lemma 4.2 and Theorem

2.1. the result follows immediately. = . ‘

x Using Lemmas 4.2 and ;1.3, we are able to design a linear-time algorithm,ﬂ
Ngorithm 4.2, for solving the hidden-line problem from a viewpoint located at  on the
x-axis. The algorithm efficiently skips all edges not labeled either 1 or ~ I’. For ease of
description, we assume that cach cdgc‘ e, of P is already labe]cswith £, \h maintain a
stack, S, containing the visibility chain of all edges so far considered. The points in S
are stored in order of decreasing y-coordinaies, where the lowest point is at the top of
the stack, referred to as TOP. We say that a point', pis to the right of a point q, if the
x-coordinate of p is greater than the x-coordinzate of q. Similarly, we use the
cxpressions to the. left of, higher than, and lower than. For two given points p, q, we
have used p#q to “denote the point whose x-coordinate 1s that of p and whose y-
coordinate is that of q (sce Figure 3.6). To dotermine the visibility chain from ;’0 “;e

only need to examine the chain C; . connecting p, to the vertex p,, with minimum y-

coordinale.
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Algorithm 4.2: Hidden-Line Problem in Parallel Model
Inpul : The polygonal chain C’i,m,C'ymn = C, , of a rectilinear polygon P. ¢
Qulpul: The vistbility chain as seen from a point at infinity.

(* stack imtiahization *)
Si= emply,
TOP = p,;
fori.= 2 to mstep 2 do s .
if £, =1 and p, is below TOP and p,_, is not below TOP
then
begin
(* The visible part of ¢, is pushed *)
if TOP< > p, #TOP then PUSHI(p, #TOP);
PUSH(p, )
end
else
if £, = —1 and p, _, 15 not higher than TOP
then (* ¢, may be antagonist *)

begin
while p, is to the right of TOP and abpve TOP d? r .
begin
(* shrink the visibility chain to the level of p, *)
LASTTOP:=TOP;
POP; \ ’
end
if p, is below TOP ' ‘
then PUSH(LASTTOP#p, )

end.

*

An example illustrating Algorithm 4.2 is giveg] in Figure 4.5. To prove the
cor;'ectness of Algorithm 4.2, we introduce some additional notation. VC(i)‘ {s defined as
the visibility chain constructed by the aigorithm after edge e, has been processed.” We
also use af time ¢ to denote the exccution of the loop-body for edge e,. For ease of
nota(,ih;)n, let TOP(1) contain the value of TOP after cdge e, hasﬁb('(‘n processed. In an ,

implementation of Algorithm 4.2 TOP_is a single pointer variable pointing the

top_of_stack.
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Lemma 4.4. The chasn VC(fi)is monotonic in the y-direction.

Proof: Initially, VC(2) contains the single edge e, and is thus monotone in the y-
direction. Sllb(‘]lfl;nﬂ of monotone chains are ‘I;lonotone. Thus if, at any time i, the
stack content is popped, clearly VC(i) remains monotone. We assume that for i>3,
VC(i~2) is monotone. We now examine the case that the visibility chain is augmented
at time |I. l;x that case, the first operation, PUSH(p, #TOP), is executed. This
guarantees that VO is contiguous. As p, is below TOP(i—2) the sccond operation,

L5 i
PUSH(/ ), ensure that VC(i) also remains monotone M ‘

Corollary 4.1. The visibility chain VC(i) congtructed by Algorithm 4.2 is monotone
and rectilinear. 8

-
o g
Corollary 4.1 and Lemma 4.1 illustrate that if the viewpoint is located on one of
the axis, then all chains created are rectilinear. This visibility problem is therefore of
4
.

particular relevance for rectilinear computational geometry. In Chapter 5, when

discussing rectilinear hull problems, we will refer back to this point.
- "

Lemma 4.5. Let p, be the verter with lowest y-value on the chain C, “then

a

TOP(j)=p,

Proof: We claim that p, is visible with respect to C; ,. Refer to Figure 4.6. As p,is
the lowest vertex in ¢, , it is always possible to complete C,,, to form a simple polygon
{p,-»p,.ar} by adding two more edges p q and qr without intersecting any edge so far
considered. By Property 2.3, the edge qr is a 3-edge and p q is a 2-edge, implying that
e, is a l-cdge. Furthermore p, is lower than TOP(;—2) and thus p, is pushed at time j,

J

whereby the result follows.

We say that an edge-segment is on VC(i), if both its endpoints are on VC(1).  As an
edge-segment may be the cntire edge, the definition. encompasses edges A point q is
said to be on VC(1) if there exists an cdge-gegmcnt on VC(i) containing the point. An

edge-segment is removed from VC(1) if both its endpoints are popped from the stack. A

I
A

L2

LTS
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It is always possible to ‘complete’ a polygon from the lowest vertex p, considered so far.
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point is removed from VC(i) if the edge-segment containing it is removed from VC(i).

o

Lemma 4.6. Let a point q be on VC(k). Then point q 8 popped iff q podsesses an

t

antagonisl. ) . .
. . , \
Proof: Let  be lorated on an edge ¢,. As q is on VC(k), point q is pushed onto the

visibility chain at time i. Thus, by Lemma 4.5, TOP(i)=p,.

“<="1If ¢ has an ant;igonist, ex, with y-value as high as q tl;cn byl
definition’ of antagonist, ¢ is the ﬁrstﬂcdgc on C, 4, intersccting the half-line q .
We want to show by induction on the length of the chain C, ¢ that q is popped when ¢
is encountered.  Trivially, if k=i4+2 then ¢ is removed from the stack at Limo k.
Otherwise, since ¢ is antaggonis"t, for ¢, q is not removed from the visibility chain before
e, is encountered. This implies: .
(a) 'I‘OP(_i) is not above q for all j‘wit,h' i<j<k, and (b) no 1-cdge ¢, with endpoint p;

above q is pushed between times i and k. We show that for any l-edge e, with

endpoint p,, ~; below'OP(i) there exists an antagonist e, such that i<ask. This is

v s v 3 H ! - - v M
verified by observing that for each sucl‘x l-edge e, on C, ) the (urn form e, to ¢ is

~m and thus there exists an edge intersecting p,, . The smallest such index defines

m—1- 1 a<k then by induction on the chain €, ; all 1-edges e,

the antagonist e, for p

arc completely removed. Subsequently at time k, e, will force ¢ to be removed.

-

\ “=>" TFollows directly from the description of the algorithm and the

N ?
definition of antagomst. ™ -

Lemma 4 6 characterized under what conditions a point is popped from the stack.

We now characterize the conditions under which a point is pushed onto the stack.

Lemma 4.7. Denote by e,=qr an edge-seyme{g{ of an edge e, with endpoints q,r. The

lower endpoint r of e, is not pushed iff (a) e, is behind VC(i—2), or (b) q is below

: . Yy
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»

Pg‘oof: Recall fx“om the algorithm description that a segment e,=qr of an cdge ¢, is
pushed if and onl; ier is below TOP(i—2) and q is not below TOP(i— 2).

“<="If ¢ither (a) or (b) is true then by the algorithm r is not pushed.

“=>" We assume now that ¢, is not pushed. If q is below TOP(i—2) then
(b) is_true and the proof is completed. Therefore let q be above TOP(i-2). Since r is
not pushed, r must be above TOP(i—2). We must show that e, is behind VC(i—2). We
assume the contrary, i.c. ¢, is not behind VC(i—2). Since TOP(i—2) is a point located
on a I-edge, say ¢, by Property 2.2’. the turn from e, to e, is 0. Edge ¢, is above
TOI;(i—2) and thus an antagonist e,, t<a<i, exists which intersects the half-line
TOP(i—2) ». However, by Lemma 4.0 this edge ¢; would have forced TOP{i~2) to be
popped before €, was encountered, which is a*contradiction to the choice of TOP(i—2).

3

. ' .

'

Lemma 4.8. If a segment e,=qr of an_edge e, is visible then its lower endpoint r is

pushed on the gtack.

Proof: We prove this Lemma by contradiction, showing that if the lower endpoint r of

asegment e, of an edge ¢, is not pushed then ¢ is not vigble. From Lemma 4.7 follows -
g 8 g 1 e e N

that 1f an edge is not pushed then it is (a) either behind VC(i—2) or (b) ¢ is below

TOP(i—2). If an edge-segment is behind a chain then by definition of behind, it is not

visible. Consider thercfore case (b) when q is below TOP(i—2). Let TOP(i~2) be

contained in some edge ¢,. As q is not pushed the endpoint p, _, of ‘edge e, is not on the

visibility chain and thus i>142. As q is below TOP{1—=2} there exists at least one 1-

I4

¢ . . . . P
edge on the chain conneeting ¢, and ¢, The lowest endpoint. of this edge is pushed when
N
encountered and must have been removed from the stack before e, _, was examined,

. j
thus there exists an antagonist e, k<i, s.t. TOP(k)=TOP(i—2). The edge e, lies inside

the polygon defined by {TOP(i—2), p,,...p;} and is thus not visible. Figure 4.7.
&

N

illustrates this construction. m

PRI e
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. SE— ,
. Figure 4.7

Illustrates that an edge ¢, = qr is not visible if its upper end point ¢ is below the
top_ol_stack. .

rd
o

Lemma 4.9. If a scgment of an edge is completely visible then both its endpoints

are on Lhe visibility chain. .
Proof: By Lemma 1.8 if an cdge-segment is visible then i}ﬁiowcr cndpoint is pushed

onto the stack. Thus it remains to be shown that in case the cdge-segment e,=q, is
L ‘ /

L~
completely visible then also the upper endpoint q is stacked. We assume this is not

true. If ¢ is behind VG{i~2) then clearly q is not visible violating the property that e, is
(‘Oll_lp‘l(‘('(‘ly visible. Therefore q is in front of V((i=2). This case is similar to Lemma

1.7 and we therefore omit its discussion here. ® . ) '
. , .

Lemma 4.10. If the upper endpoint of an edge-segment is popped then the entire

°

edge-segment 18 not visible.

Proof: By Liemma 4 6 a point q is popped ﬁ'pm the stack if there exists an antagonist

v

&
for ¢ As P is simply connected and the turn from the segment to its antagonist is —x °

Q

the entire edge-segment is not visible. &’
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Lemma 4.11. If an edge-segment e,, is on_the visibility chain VC(m), then e, is

3
A

completely visible. ‘ ,

Proof: We give a proof by contradiction assuming that a scgment ¢,==qr of a l;edge
e, is not completely visible but located on VC(m). If the segment ¢, is not visible then

by Theorem 2.1. there exists a-z on ¢, and a cut-s¢quence (c,‘l, oy € Cgy ), >0 as

high as z. Recall that the edges in the cut-sequence are listed in order of increasing

distances from the point of visibility and that €, is the edge closest to the viewpoint. If
there exists a —1-edge ¢, such that kp>iand 0<€=<}, then there exists a ~1-cdge ¢,

closer to the viewpoint then e, which is encountered after e,. Thus z posses an
'ant',agonist and by Lemma 4.6 ¢, is not o'n\VC(m). }f there exists no such ~ I-edge then
by Theorem 2.1. for for all indices ko, with 0<€=s}j, and k,>i ‘the corresponding edge

labels €, are positive. The edge ¢, closest to the viewpoint is obViously visible along a
ray with vertical coordinate as high as 2. The point on e, with vértical coordinate cqual

to that of z is according to Lemma 4.8 pushed onto VC(k,). By Lemma 4.10 this point
is never popped. Consequently the edge-segment qz is behind VC(i—2). By Lemma 4.7 2

is not pushed on the stack which implies that it e, is not on VC(m). ®

‘
)

Thgorem 4.1. An edge-segment e, is on VC(m)iffe, 13 completely visible,

"Proof: “=>"1If an edge e, is on VC(m) then b{Lemma 4.11 it is completely visible.

.oe="1f e, is completely Visible then by Lemma 4.8 it is pushed on the stack S and by

Lemma 1.10 no portign of ¢, is ever popped from S. & '

]

3

Theorern 4.2. In this parallel model of visib¥lity, Algorithm 4.2 solves the l?id(lc_n-

Ly

line problem for rectilinear polygons in linear time.

Proof: The time-compleaity of the algorithm is hnear, since cach-edge is examined

exactly once. The correctness folows from the Theorem 4.1. ®

)
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We have shown how to design and analyze a simple and efficient hidden-line

,~algori(.hm for removing hidden lines in rectilinear polygons. The concept of a visible

label and of an antagonist was introduced. Depending on the model of visibility, these

*sets differ. Therefore the main step for developing other hidden-line algorithms based

on the labeling-scheme is to determine the set of all labels for visible edges and their
antagonists, We will focus on this, since the resulting algorithms have a similar basic

program structure. , .

(PP P

9

4.3.2. Parallel Rays of Arbitrary Orientation

i

We now turn our attention to rays that are not parallel to’on of the axes but still

"
.

parallel to each other. Let S, denote the unit circle in the x-y coordinate-system. A

" untt vector can be specified i)_y its clockwise angle formed with the (positive) x-axis. We

' . T — T
denote the half-open interval of unit vectors, 0sa< -, by I,, similarly 12=[§—’")’

5

3w 3r - . . .
]3;9;[”7 7), ’:m(] 1,1:\[—2—,2”). l‘lyxc angle «, of an (‘orlcmcd) ray T is dcflnc\k:?s the

nr}jglc a of the unit vector vhat 1s parallel to r and has the same orientation as r. “To

oblamn 2 concise notation, we say that the point of visibility, at e, is in interval 1,1 the
P o

angle of the corresponding unit vector falls in the interval /,. The direction of wisibility

i8 d}c[incd as the orientations of the rays.

A rectilincar polygon P can be spht into its four extremal chains defined as

GII; from the r, -cdge to the y  -edge,

max

n)lll-C(]go’ ‘ »

C1i, from the ﬁikmm-o(lgc( to the z

0 Cf{, from the r, -edge to the y . -edge,

min

-edge ,

max

Cl, from the y,, -cdge to the z

[

s

Let Vi denote the set of labels for wisible edges located on chain, CI,, and A, denote

the corresponding set of antagomstic labels  An edge is potentially visible if its label is

in V,. Hepending one the location of the viewpoint v, different edges are visible.

f
“, -
’

—
~/
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¢

Lemma 4.12. For a given direction of visibility and a chain CHy, the number of

)

labels 1n V| is at most two.

< .

P‘l‘oof: Consider for any extremal chain CHy the subchain of all those edges that are

N

visible from the viewpoint v. The resulting visibility chain is monotone in the direction

perpendicular to the orientation of the rays of visibility. In Chapter 3.2 we have seen

"that such a ﬁlonqtone chain contains only edges labeled with at most three distinct

labels and these labels are consecutive integers. Since no parallel rays can see both a

«

left edge and a right edge, or both a top edge and a bottom edge, from any given

Q(l

viewpoint at most two distinctly labeled edges -are visible. Thus from each viewpoint

|V.] <2 and in case that |V, |=2, V,=={i,i+1}, for somei. ®
k k k

$
We observe that for a given direction of visibility either at least one of the

endpoints of a cham CIJ, 1s visible or none of the edges on CH, are visible. More
preciscly, for v in I, none of the cdges of CII, are visible if |j— k| =2; whereas both

extremal edges of C'H | are visible, in case j==k. Ior all other locations of-v exactly onc

v

of the endpoints of CIf, is visible. For example for v in I, both extremal edges of CH |

4

. are potcnt@y visible, exactly one of the extremal cdges of CH, and CH,, but none of
K’\ .

ghe edges-of CH\; are.

]
Lemma 4.13. If the set of visible ¢ geclabels 'V, ‘s i, i 41} then the set of

antagonistic labels 1s Ay s {i—1, {— 2}

1

Proof: Let the potentially visible i-edges be horizontal. Since in a rectilinear polygon

H

horizontal anq%:{or(,lml cdges alternate, it follows that (1+1)-cdges are vertical. As, by

assuzn}’zhon, both i-édges and (i+1}-edges are potentially visible the point of visibility is

located erther in 7, or 1. If the view-point is located in I, then i-edges are top-edges

i

g . . . .
and antagomsts are either vertical (i—1)-edges or horizontal (i—2)-edges, corresponding
’ T . . v A . "
1o turns of = Y and — FTCR])S‘(‘II\'(‘L\'. Sce Iigure 1 8 for illustration. These edges are
7y K . i

! >

0
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I'e

" ' \ also antagonists for (i+1)-edges. In case the view-point is located in I, the antagonists
are (i~ 1)-edges or (i-2)-edges. The casc that i-edges are vertical can be handled in a
similar way. ®

We have determined the sets of visiblg labels and antagonist/are known for each of

ar” ) the four extremal chain. An algorithm similar to Algorithm 4.2 can be developed for

-

solving this hidden-line problem We omit its description.

v

We summarize the results obtained for extremal chains in Figure 4.9.

- 4.4, Algorithm :for Hidden-line Elimination: Perspective
Model )

Throughout this section, the model of visibility is the perspective model as

-

described carlier.  We will describe an algorithm to solve the hidden-line problem of a
rectilinear polygon from a view-point located 1nside P. Let h=(x~x;)+y,, x=z, be an
( ' inﬁnit%honzonml hall-linc originating at p with the same orientation as the posiitivc X-
axis. As pisinside P, b intersects P at at least onc point. The point being closest to p

is referred to as the cast edge for p. In an analogous way the north, sputh and west

edges are deflined. We will refer to these edges as e, €,,ns Copun, 304 €, -cdges,

S

respectively.

[

We defific four canonical chains connccting the edges north to cast, cast to south,
south to west, and west to north, respectively. In each chain we maintain the order

s C

p and e

cas

v , P . 1
given by P, cg. the chamn connecting ¢, .,

north cat M morth < cast.

P : i . . . .
Otherwise 1t is C'ppy orp For a given canomical chain C, | we say that e, ¢, are the

defimng cdges.

. Lemma 4.14. Ifthe c.,y 15 labeled i then
! - .
7 (1) €. nuin =141 1] south>east and 1— 3 otherwise, s
A) Y ()€,  =1+21fwest >east and 1— 2 otherwise,

(111) €, op = t+3 1 north >east and 1~ 1 otherwise.

-
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i—1, i+ 2 edges are antagonists for i, i+1 edges. :
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Labels of visible edgcs‘ for different viewing directions.

.

Ll

[od

’ ' .. 3m T .
Proof: The turn from e to e is either = or — = depending on whether, jn a
casl north P g \

2 2

traversal of P, e,,,, is encountered before ¢,,,;, or after e, ,;, respectively. Thus the

corresponding labels take on the values i+3 or i—1, respectively. An analogous
A

-

argument holds for'the other pairs of cdges m

r

Lemma 4.15. If an edge located on a canonical chain C, | is visible then its label s
‘ {

determined by the labels € or €.

Proof: The line of visibility originating at a point p, performs a turn between 0 and r)

while scanning the canonical cham C, , for visibility of its edges. Let C,, be a
canonical chain with definmng edges ¢,, ¢,.

(a) i<y: Let ¢ be an edge on chain C, |, i<k=j The turny , from e,%g‘o e,, 1s either

v.7!

0, 1n case ¢ and e, are parallel, or equal to 1, otherwise. In particular, for k=],

€,=¢,+1. Therefore the labels of visible edges on a canomical chain are equal to the

labels of its defining edges

\

Py

ﬁ
i
1
1
i
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(b) 1>j: Depending on whether k is encountered- before, or after ¢, the value of £
differs, since at ¢, the labeling is restarted with €,=0. Using the notation of Chapter
2.1, if 1=sk=, Ll;cn €=t +t,, = £ + {0 or 1}. This implies that £,=¢, or
&=¢,~1. Otherwise, i.e isks=n, £, = t; 4+, (=£+{0 or 1} and thus &=¢{ or
{,=¢,+1 The l:;’i)ols of Lhci defining edges €, and £, are related by £, =€ +3:

Thus in both cases the labels of the defining edges determine the label of visible edges.

N

. ¥

We have noticed in the above proof to Lemma 4.15 that the label of any visible
edge located on a chain C, | takes any one value n {€,, €., € _, £} For at lcast
three of the four canonical chains this reduces to' {€,,€ }. In case there exists a chain for
which i>j, €, and £, arc related by €,=¢,~3. Four labels would have to be checked
for, when designing a visibility algorithm. However, if we define €,: = £, +4 for I1sksx)

and €,:=€k, for 1sk<=n, then the sct of viuble labels to consider is reduced to {¢£,,
. \

. . \ ro .
f;}. This allows for a unique treatment of all four chains when presenting the

algorithm.
’ .

Recall that an antagonis;(, for an edge ¢, is an cedge with smallest index k s. ¢, the

& (8]

oriented half-line from a poin’t p, ou ¢,, to @ intersects ¢. It is an important difference

pi
between visibility from the inside and visibility from the outside that the antagonistic
labels arc greater than the labels of cdges which they obscure, in case of interior

visibility. Antagonistic labels are smaller than visible labels in case of exterior visibility

To relate antagonistic labels to visible labels, we state the following result:

Lemma 4.18. Let e, be antagonist for e, then Isfa-{"-'&‘? ©
Proof: The line-segment of £ connecting e, and e, 1s inside P, since we are cousidering

visibility from inside P. By Theorem 2.2 the label difference between €, and €, is

greater then O and less than or equal to 3. ®
~— .

]




Lemma 4.17. Corresponding to each pair of visible lubels (€, LsHfe pair of

o

antagonists (€, +2, e;-f-?}.

Proof: Let C, | be a canonical chain. Antagonists for €,-edges are £, +2-cdges and

A

¢, +3-edges, since the corresponding turns are m and

&

3

5 Antagonists for £€ -edges are

" . ‘ . T -
¢, +1-cdges and £,+2-edges, since the corresponding turns are 3 and m. Since, by

!

Memma 111 and the definition of f;, the dil’f('rcncc 8;— €, is cqual to 1 The result

follows. m

We will now describe the algorithm for hidden-line elimination in the perspective
model. Let V be defined as the sct of visible labels V .= {e‘,e]‘}. I A be defined as
the set of antagonistic labels A := {¢,+ 2,6;-*—2}. Assume that the poimnt of visibility, p, )

is located at (z,,y,) Let € be an infinite half-line originating at p. Let MOVE_€(q) be

- t

a procedure which moves the half-lme £ teo imtersect q If two lines or ine-segments €,
and £, mtersect at a point we denote this mtersection point by €, @¢,. Furthermore
let line(u,t) denote the line-segment joining u and t  Note that the lm«g £ is oricntcd,(\ “
and»t,h(-rcfore‘ﬂwc can speak of the “left” of €, and the “rnight” of €. .

b
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Algorithm 4.3& Hidden-Line Problem in Perspective Model

Input- A rectilinear polygon P and a point of visibility p, inside P. , ‘ , B
N i
Oulput: The visibility polygon from p .
find canonical chams €,
< B4
for each canonical chain (, , do '
begm N £
Ll = {infimte hall-line origin ating at p and intersecting ¢, perpendicularly}
L= {infinite half-line orlg,matmg at p and intersecting ¢, perpendicularly}
f ""I * \\

i

P Usll(f#e,)
fork '=ito] do
if C, 4 intersecls [, an odd number of times
and ¢, does noL lie completely outside the quadrant formed by L, and L,
) then
begin
* if fk ¢ Vand ¢ intersects £
then
& begin
if TOP <> £@e¢;
then PUSH({@e¢; )
\ if e, intersects
J then PUSH(L @¢)
A nlse
PUSII(p;)
end .
else "\ n §
if € ¢ A ¢ :
and ¢; intersects line(p, TOP)
then
begin
while line(p,T OP) is intersected by ¢; do
begin L,
PREVIOUS_TOP:= TOP ‘
POP; -
- end :
(* MOVE_£(p,)
if TOP is to the left of
then

g PUSH(Line(TOP,PREVIOUS_TOP)@¢)

else j

MOVE_¢(TOP)
end

end

end
join the four visibility chains constructed.

.\
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Theorem 4.3. Algorithm 4.9 solves the hidden-line prdblem in the perspective model
tn Linear. {ime * - %

Proof: I'or a given view-pomt, v, the algorithm sphits a rectilinear polygon I into the

3

four canonteal chains with respeet to v This operation can be performed i linecar time
The Tabels of both edges definmg a canomical cham were related in Lemma 111, lwng
¢ s
o b N

Lemma 4%15 we can construct the set of all visible labels for cach canonical chai>-
Using Lerimas "4.16 and. 4.17, we can determine the antagomstic label set can be
determined. Therefore, in lincar time, the sets V, of visible labels and A, of antagonists
are constructed In the main loop of the algorithm cach edge is examimed exactly once
Since for cach edge at most one PUSH-operation and one POP-operation 1s executed,
4

the entire procedure requires hnear time  With the development of vigble labels \and
I | I 1 |

antagonists the proof of correctness 1s stmlar to Theorem 4 2 It is omitted here m

—

We have shown how the labeling-scheme can be used in the design of efficient
algorithms for oIimmulmé hidden-lings m rectilinear polygons. For some applications, it
might be necessary to cenerate many different views of the same object. Algorithm 13
can be adapted to peiform such a task efficiently  As an initial step, performed Nonly
once, we will label the edges of P using the labehing-scheme. This step will keep, for
each distinct label 1, a Iinked hst of all edges labeled i Subscpqucnt,ly, for each view-

5 e .
point, the algorithm determines the facing edges of the four canonical chains. This
operation is petformed in linear time If we allow O(n log n) pr(;proccssmg, this task
can be performed in O(log n) time. (This point-location problem has been studied by
many researchers in the area of computational geometry, see for example Kirkpatrick
[K183], Lee and Preparata [LLeP79], or Preparata [Pr81]). Since we heep hinked-list for
all distinct labels, we have determined, in O(log n) time, all thosc edges that are either
potentially visible or antagonistic. Thus often the total number of edges to be examined

ts reduced. Tis results in substantial savings in particular if the polygon contains

many spirals
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_ Chapter 5
Further Applications of the Labeling Scheme

i
5.1. Construction of the Rectilinear Convex Hull

One of the most extensively studhed problems in computational geometry is the

v
construction of the convex hull of a simple polygon or of a set of points  \We recall that
the conver hull of a sct of points is defined as the minimum area convex set containing
)

the original set. Lower bounds of A(n log n) for the convex hull of a set of n points

have been derived for various models of computation [Sh77, Av79, EmB80, Ya79)

Since it costs O(n log n) time to construct a simple polygon “from a set of points,
polygons are moie structured than sets of points This has been eaploited to develop

linear-time convex hull algorithms for simple polygons [McA79, Le83a, BhISRI, GrY'83).

The history of geometric algorithms reveals the great difficulty-of {inding simple,

elegant, but correct solutions for obtaining linear-time convex hull algorithms for simple’

polygons The simplest algorithm s due to Sklansky [Sk70]. It has been pointed out
that his algorithm can fail to correctly determine the convex hull for arbitrary simple
p,olygons Toussamt and Avis [ToA82] proved, however, that Sklanshy's algonthm will
correctly determine the convex hull, if the input polygon is weakly externally visible.
Since ViSil)’lllLy chains are weakly externally visible, any algorithm capable of computing
the hidden-line problem can be used, in conjunction with Sklansky's. algorithm, to solve
the convex hull problem [EAT83] In Chapter 4 several efficient algorithm for hidden-
line elimmation in rectilinear polygon have been presented. Thus, in combining
Algorithm 14 2 with Si{l:m%ky's algorithm, a conceptually simple and efficient convex hull
algorithm for rectilinear polyg;f)ns 1s obtamned. We now discuss a variant of the convex
hull problem and modify this idea to =olve this variant. An alternate solution was

~

81 '

*



presented in [MI°82a).

In the context of rectilinear 'goomct.ry we are interested in determining the
rectilincar conver hull of a rectilinear polygon, defined as the minimum area
rectilincarly convex polygon enclosing P. See Figure 6.1 for illustrutlk;n. Instead of
rectilincar convex hull we will frequently use the term rectilinear hull. Similarly the y-
bull (or x-hull) of a rectilincar polygon is the minimum :nr(‘:; rectilincar p()l‘_\gon‘
monotone in the y-direcction (or s-direction) and enclosing ', The solution to the
hidden-line problem from a \:I(‘\\‘-])oilll exterior to P is czn]lc;l ‘lh(‘ visthility hull of a
polygon. It has been observed that the convex hull of a simple polygon 1s the union of

, o
visibility hulls over all directioiis of visibility [To§84]. For the rectilinear hull this

reduces to determining the union of the xg.hull and the y-hull: The y-hull of a rectilincar

polygon I’ can be determined as follows.

Algorithm 5.1: Algorithm for Computing the y-Hull .
Input.: A rectilinear polygon P

Output: The y-hull of P

»

use Algorithm 4 1 to
‘compute C, the visibility hull from 4+ on the x-axis,
compute Cp, the visibility hull from - on the x-axis,

join the chains at the extreme edges in the y-direction.

£l
~

Similarly the x-hull can be determined The x-hull of a rectilinear polygon P is denoted
by x-hull(P), similarly is the y-hull of P denoted by y-hull(P). We tan now state the

algorithm for computing the rectilinear hull of a rectilinear polygon. ,
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Oulput : The rectilinear hull of P

Algorithm 5.2: Algorithm for Computing the Rectilinear Hull

fn;)li,t.‘ A rectilinear polygon P

P,.=y-hull(P);
" rectilinear hull of Pr==x-hull(P,)

Y

G

Lemma 5.1. Algorithm 5.2 correctly determines the rectilinear hull of a rcdi&ricar

polygon, in linear time. «

Proof: By Theorem 1.2 computing the x-hull and y-hull takes linear time, thus the

¢ “

run-time of Algorithm 5.2 is lmear. We will now show the correctness of this procedure.
We show that the umoen of y-hull(P) and x-huli(P) can be computed by determining x-
hull(y-hull(P)) or alternatively y-hull(x-hull(P)). In order to prove that x-hull{y-hull{P))

“ . o -
= "union(x-hull(?), y-hull(P’)) we show the contabument in both directions  We first.

' show that union(x-hull. y-hull(P)} is contained in x-hulliy-hul{{(P)) The x-hull- or y-hull

~

. of a polygon always contains the polagon Thus P s contined in y-hull(P) and ~-hall(1)

-~

is 1 x-hull(y-hull(P)) and consequently y-hull(P) is tn x-hull(y-halli{P)). We now <how the
opposite (‘llrcrlion, 1ef a pomt p is in x-hull(y-hull(P’)) then p s 0 uuion(\:-hull(l’). y-
hull{P)).  Let a point p be in x-hull(y-hull(P}) then p is cither in y-hull(P), in which case
we are done, or p is in the set difference between x-hull(y-hull(P)) and y-hull{P’}) The

point p is Olfts,i(le P and visible from +® on the x-axis, but not visible from +o on the
y-axis. Thus pis in x-hull(P), scc Figure 5.2. =
We have shown how to apply the results of Chapter 4 for the design of simple

algorithms to determine hulls of -rectihnear polygons. In tlis thesis we focus on

computational geometry problems for single rectilinear polygons Several authors have

“recently studied the definitton and construction of the rectilinear hull of 4 set of points,

°
-

and of a collection of rectilmear polygons [NLLW83, MIF&2a, OSW83]. A discussion of

2




R

Figure 5.2 ° ' < ‘ .
Point p is in x-hull(P) but not in y-huli(P).

L .,

the resulting problems and some algorithms are surveyed in [OSW8&3a]  The rectilinear

[

. . A4 . .
geometry of collections of rectihnear objects is beyond the scope of this thesis
N

5.2. Movement of Robots in a Rectilinear Environment

¢ .
e

Let a floor plan of a rectilmear building (traditional art-gallery) be stored as an n- |

vertex rectilinear polygon . Ior two points located anywhere on thd plane, we ask
‘ e o .

whether they can be connected by a rectilinear path which does not'intersect any edge
- 7

0

a

of . This problem 15 equivalent to ashing whether both two points lie in the same-
connected component with respect to P, 1.e whether the points are either both 1gside or

both outside P. The problem has reccived . considerable attention from- both
- t

9 ' -
-

*a -
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mathemalicians as well as computer scientists Jordan has solved this question by
noting that a polygon partitions the plane into two connected components the inside of

P and its exterior. For simple closed curves this fact is known as the Jordan Curve

A . . )
Theorem We will use his result as expressed for polygons

Lemma 5.2. A point p is tnside P if and only +f for every horitontal half-line
ortginaling al p the number of tntersections with P 1s odd

Proof: The proof follows directly from the Jordan Curve Theorem and the Lemma has

been stated elsewhere e.g. in [Sh77] ®

) When counting the number of intersections some precaution has tg be taken if the

3
’ line hntersects P at a vertex or if h concides with an edge efof P. If hintersects P at

a vertes, we count the intersection Lwice, in case that both edges, incident to the
-~

vertex, lie on the same side of h, otherwise, we count the intersection once. If h and any

»

cdge ¢, comncide then we count this as two interscctions Thus a point can be tested for
inclusion in a polygon in Ofn) time If the point location query is to be performed
repeatedly then it might be advantageous to invest preprocessing time in order to
obtain faster query times This approach has been examined by a many rescarchers, for

example see [Sh77, LeP79, LIT77, LiT774, Pr81, Ki&3]

Throughout this chapter we are interested m movements of robots and thus our

£

model of computation 1s different from the models used in the above point location
algorithms. We assume that a camera is attached to the robot enabling the robot to
sce. From a given location the robot can determine in constant time, the facing edges
and its Tabels as defined m Chapter £ For short we say that the robot can sce to its
left and to its mght  Furthermore, we nssume that the robot has a sensor to prevent o
from hitting walls. No global knowledge of the polygon will be required by the robot.

If the robot is outside the polygon P, it may happen that in one of the four rectilinear

—

directions no edge is visible, in which case we say that = is seen, or that this fucing

)

edge 1s ©. Note that if the robot is inside the rectilinear hull of P, at most one of the

g

RN

W it A

R,
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.

four facing edges is ®. We now present an easy test for determining )vhe(,her arobot R
<

is inside or outside a polygon P

L4

Lemma 5.3. Let (we) be the pair of labels for the west! east edges as seen by the
robot 7.

(a) R 15 inside Pif (w,e) mod 4=(3,1), :

.(b) Ris outside P1f (w,e) mod §4=(1,3)

Proof: R is inside P if and only if the east-edge 15 a down-edge and the west-edge 1s an
u;a(lge R is outside P otherwise By Theorem 2.1 wexq\l:tam that !w—ol =2. If R secs
the pair (3,1) as (w,e), then R is inside P, since 1-cdges are down-cdges and 3-cdges are
up-cdges By Property 2 2 the net-turn between parallel edges of equal orwnlatlo'n 15 0.
We obtain that for all pairs (w,c¢) for which (w,e) mod 4=(3,1), the robot 1s inside P. In

a similar way (b) can be shown m

We will now assume that R is located at a point p inside the rectilinear hull of P,
but exterior to P JLeL P, P,y j>1+1, be two vertices of P. If the edge p,p, is an edge
of the rectilinear hu!l(e)f P then p,p, s called a li(l/})w corresponding polygonal chan
P, is called a i)’or/.'c( We study the question of how to determine the shortest
rectihnear path from a point p in the mterwr of a. pocket to the corresponding hid. The
piath may not intersect an; cdges of P In other words, we ask if the robot s working
inside the 1;1::70 delined by the exterior of I, what 1s the sho:tost path to leave the
maze without “gomg” through walls? The llll(](‘l"l_\'lng distance metric used here 15 the
Manhatian Metric,1 ¢ for points ])=(]11,py) and q=(q,, q,) the Manhattan distance s
defined as d(pgl=|p,—q,| + I]Jy-(/yl Note that 1h|~: metrie the shortest path

between any two pomnts with distinet s-coordinates and y-coordinates is non-unique

Yeferring to the notation m Figure 53, both p, p#q, q and p, q#p, q arc shortest




N

|

| | |

d#b d

Figure 5.3

In the ““Manhattan-metric the shortest path from p to q
p.p#q.q ltis therefore not umque

‘

Before <olving this guestion we examine an easier problem

is reahized by p,q#p. q or

paths

»

f.et a2 robot R be

located at a point p, inside the rectihinear hull, but in the exterior of a polygon P. We

assume that somebody erects a horizontal wall from the east-edge to the west-edge
4

-

.

througzh or close to point p  Such a_wall is an®%fernal line-segment for P, By Theorem
2 2 any such wall decomposes the outside of P into a bounded and an unbounded region.

We say that R oas locked i af R s inside the bouwded region and I is free otherwise

By a stmilar construction i Vertical wall could be erected.

Problern If 2 wall s <o constructed determine the movement of [2 such that B s free.

S5 Wibe ke B 4 A I
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The solution will be given as an instruction of the form ‘‘go up”, ‘‘go down", ‘‘go left",
or “go right”, the semantics of which is dpparent Let (w,e) and (n,s) denote the label-

pair of the (west-edge, cast-edge) and (north-edge, south-edge), respectively.

. h ) a
Instruction sel:
A3

In case the wall is horizontal do: if w < ¢ “‘go down", otherwise *‘go up’'.

—
In case the wall 1s verticaf do-if n < s "go left”, otherwise “‘go right’’.

Lemma 5.4. Whenever a wall 1s constructed, using the instructions the robot will

\

correctly move to free itself.

Proof: A wall represents a segment of a rectilinear cut through the location of R at p
We can therefore apply Theorem 2.1 yielding that the label difference between the
west-edge and the seast-edge is always two in absolute value. As the segment joining
the west-edge and the east-edge 1s an external line-segment the west-edge is an down-
edge and the east-edge a up-edge We have to dgtcrminc if the bounded region is
located above or below the wall. Theorem 2.2 in Chapter 2 deals with this situation.
We get that if w>e, in particular if w—e=2, then the bounded region'is below the wall
The correct move is therefore ‘go up’, which 1s indeed what the instruction says. In
case that w<e, n particular if S — 2, the bounded region.is, by Theorem 2.2,

above the wall. Therefore the correct movement is to walk ‘go down’. ®

L}

Lemma 5.5. The shortest rectilincar paih is not unique.
Proof: The proof follows from the example given in Figure 5.3. ®

We solve the shortest r(*(“tihncar path problem as described above. The robot
moves only in one of the four rectiinear directions A change of direction is from a

horizontal movement to a vertical movement and vice versa. ,

A \
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Algorithm 5.3: Shortest Rectilinear Path
: Input: Rectilinear polygo‘n and position of robot R. /

Qutput: The shortest rectilinear path to free R.

¢ .
Pick an arbitrary orientation (vertical or horizontal);
repeat ?
if one of the facing edges is labeled ‘
then
. go towards that edge and exit. '
else
begin
execute instruction v
move until side edges change labels or you ‘hit’ a wall g
then .
change orientation .
end -

until free.

Lemma 5.8. Let R be located inside a convez deficiency of P. Then at most onc of
the facing edges is w. .
Proof: The result, follows directly from the fact that the rectilivear hull is the union of

L

the x-hulkand y-hull. =

Lem)ma 5.7. The algorithm Shortest Rectilinear Path correctly finds the sltorl;ast
rectilinear path from p lo the exterior o f the rectilinear hull.

Proof: If the robot R sees © then R moves in the direetion towards . By the
previous Lemma 5.6 the path is, in this case; unique and thus clearly minimal. We
assume pow that R is in itﬁ ini.t,ial position and docs not see . 'I};hﬁﬂ‘R cannot reach
the lid without changing the‘ direction of movubility at least once. The shartest
rectilinear path is therefore non-umique and R can choose an arbitrary starting
orientation, i.e. either horizontal or vertical. No,w let the current position of R be, ;
Pm—1- We nowkass'ume that p,;...,pm_,, is a shortest rectilinear ;;a'th; which can be 3%

" extended to a shortest path from p to the lid. We will show how to extend this path to
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a shortest path form p to the lid. For this, we construct a wall perpendicular to
Py —2oPm -3 and intersecting p. _,. The endpoints of the walls are located on the edges
facing R at p,,_,. By Theorem 2.2, tlﬁs/ wall splits‘the outside of P into two regions
one of them is boun(lcg, while the other is unbounded. As the path fromp, to p,, _, is
minimal, the robotgill not go back into the same direction form which it came, ie it
will not enter the bounded region. If at p_, _, the facing edge-labels do not change then
the robot continues walking in the same direction since it remains in the unbounded
region. H:é, however, the facing fdg‘e-labels change then we can interpret this situation
as having two parallel walls,’gne of them joining the previous facmg\ edges, the other
one joining the new facing edges. Both walls enclose bounded regions one located
dire¢tly above the wall, the other directly below the wall. Thus R is forced to change
its ori‘entation. By Lemma 5.4, R will choose the right direction orientation and thus a
unique c;(tension of py,...p,, —; to a minimal path from p, to p,, extendible to the lid is
found™ The situation when R encounters (‘hits’) a wall can be scen in exactly the sameR

way as a change of label. ®

In.this chapter, we have discussed an application of the Jabeling-scheme in the area
of robotics. The solution obtained was ‘expressed as a simple set of instructions. We
have used the labeling-scheme to solve a problem, whenever winding propertics and
visibility aspects were relevant to its solution. A related movability problem has been
studied by L. Majocchi and G. R. Sechi [MS84]. The task is to free a mouse from a
rectilincar maze by a sequence of rectilinear moves. In their model the mouse has only
local perception obtained by using sensors. The nose and its whiskers are used' for
.detecting lateral and frontal pressure. Their objective is to find a rectilinear path that
avoids eqtcring 'blind alleys’ and loops. Their primary interest is in the area of problem
so{ving and learning. ’l‘his,[a; they call it, ‘Mousc in a Maze'-problem, appca/rs to be a

i

fruitful topic in this context. They study the prgblcm not under a computational
\ .

complexity point of view, but under the aspect. of learning from previous experiences,
. v .
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‘ ’ J - . Chapter 6

Decomposition Techniques for Re(':tilir;\ear Polygons

|

6.1. Guard Placement Problems

The remainder of this thesis is devoted to the discussion o\f some decompo;;i'tlon
problems occurring 1n rectilinear geometry. In the introductory chapter, pattern
recognition and shape analysis gery/ mentioned as possible areas of application of
decompositions techniques. primary interest in these techmques is their
computational geometry aspect, where often a problem is solved efficiently by

> decomposing it into well defined smaller subproblems, which are subsequently merged to
obtain a solution for the ent,n'c c_problem. As we will show, this task occurs when solving
guard placement problcms in traditional art-galleries, i.c. art-galleries whose floor plan
can be described by rectilinear polygons. This problem, as studied by [KKK83], is a
variant of the (general) art-gallery problem* due to Victor Klee, mentioned in the
introductory chapter. In its general form, the question can be posed as follows: how
many guards are always sufficient and s9metimcs necessary to sce the inside of an n-
vertex simple polygon P, where guards are assumed to be located at stationary points

L]

inside P. Guards ‘‘scc” in the sense of internal visibility as defined previously.

V. Chviial [Ch75] has shown that the answer for an arbitrary simple n-vertex

a

polygon is l—;—] Later Fisk [Fi78] gave a simple*‘ argument for the sufficiency based on

the fact that 'the graph obtained by triangulating a simple polygon is three colorable.
Any triangulation can be scen as a partitioning of the polygon into convex picces. Each
triangle contains vertices of each color. Therefore by placing guards at all vertices

i . . . . .
having the same color, it is cnsured that the entire polygon. is seen, Fisk completes his

93
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argument by picking the color occurring least frequently. {

)

In a somewhat similar way Kahn et al. [KKIK83] showed that guards are

always sufficient and for some examples also necessary to guard any rectilinear polygon.

AVe refer to this result as the Rectilincar Art Gallery Theorem The idea pursued in
- / . .

[KIK83] 15 to construct a four-colorable graph with the property that placing guards at

all vertices of any chosen color will solve the guard placement problem. Then by picking
the least frequently occurring color, the [—:—J bound on the sufficiency of the number of

guards is obtained. The four-colorable graph is readily obtained from a (convex)

‘quadrilat.erization of the rectilinear polyéon. We givg the construction: nsert a pair of
intersecting diagonals into all convex quadrilaterals as illustrated in Figure 6.1. Within
each quadrilateral, each vertex is connected to all other vertices, implying that at least
four colors are necded. The sufficicncy of fotwlors follows by a simple inductive

9
argument. Notice that the convexity of the quadrilaterals is crucial to ensure that an

entire quadrilateral is scen if a guard is placed on any of its vertices. We pointed out 7‘

previously that not every simple polygon admits a-decomposition into ‘convex
quadrilaterals. The hard part of their [Ki(KSB] rather lengthy proof is therefore to show
the existence of a quadrilaterization for any rectilinear polygon. Quoting from their
paper [KKK83 p. 197]: “In many places in our paper our proofs depend on certain
configurations having particular properties which appear to fg‘llow obviously from the
relevant definitions. .... However, as is oft,en“ true in geometrical problems, despite their
“obvious truth” is seems both time-consuming and tricky to provide rigorous proofs of
these assertions.”

We found another aspect of the quadrilaterization problem rather‘intrigui g:
Whercas it is casy to triangulate a simple. polygon ‘by hand’, it is much harder to find a

convex quadrilaterization of rectilinear polygons. Where is the problem? Solving the

-

S
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Figure 6.1

A four-coloring of a’ graph obtained by inserting a pair of intersecting diagonals 1n each
convex quadrilateral.

problem manually, even for rectilinear polygons with a small number of vertices, we
often end up with triangles or concave quadrilaterals, in which case we might lé.ve to
backtrack, possibly even to the first diagonal inserted. O’Rourke ~[OR83]\_compares
quadrilaterization to a manual guard placement pointing™out: It is quite difficult to

find a convex quadrilaterization by hand, whereas it is a simple procedure to place

guards by hand and eye on evea quite large rectilinear polygons™.
¢

P
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While Kahn et al. mainly proved the existence of a convex quadrilaterization for
rectilinear polygons, we are primarily interested in giving efficient algorithme for solving
this problem. As a by-product of our discussion we will obtain an existence proof. Before
presenting our algorithing, we will give an overview of their proof. They first introduce
the concept of reducibility: “'A (finite) rectilinear region R is reducible if whenever every
smaller Ninite rectilinear region is convexly quadrilaterizable then so is R". By ‘smaller’
they mean, in this case, fewer vertices, Next they giveseveral reductions for rectibinear
polygons These reductions are being performed by recognizing certium configurations
Thside the pglygon. Their proof is completed inductively by showing the existence of at

least one such configuration in any given rectilincar polygon with more than four

vertices.

6.2. Quadrilaterization of Rectilinear Star-Shaped

Polygons .

l

In this section, a linear-time algorithm is presented for decomposing rectilinear
star-shaped polygons (RSP) into convex quadrilaterals. Recall that a polygon P is star-
shaped if there exists at least one point in P which can see the entire polygon.
Arbitrary star-shaped polygons can be triangulated in linear time [ScL80]. The obvious
way of quadrilaterizing RSPs, namely to triangulate the polygon and then to remove
every other edge, fails. The reason for this is that such a decomposition may contain
concave quadrilaterals, as illustrated in Figure 6.2a A correct quadrilaterization of the
polygon in Figure 6.23,‘ is illustrated in Figure q.Zb. Our approach is to partition the
polygon P into two simpler components, 1e. pyramids, both admitting

quadrilaterization.

W

D
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Figure 6.2a

Only if we allow swapping of diagonals, a convex quadrilaterization can be obtained
from the given triangulation .

6.2.1. Partitioning Rectilinear - Star-Shaped Polygons into

Pyramids .

-

First we recall some properties of rectilincar star-shaped polygons and introduce
some notation. Denote the vertices of the extreme cdges as in Figure 6.3, also let y(p)
denote the y-coordinate of point p We have defined a stair as a polygonal chain
monotone 10 both the x and y-direction. Furthermore, we have shown that the extreme
edges of any rectilinear star-shaped polygon are connected by stairs. If we extend the
horizontal and vertical cdges at a reflex vertex towards the interior of the pplyg(;n, we
get the shaded area in Figure 6.4 Schachter [Sc78] calls this area~the snfer cone. A
reflex vertex v i1s up-looking, if the inner cone is not below the horizontal line through v,

else v is down-looking. In Figure 0.4 (a) v is an up-looking reflex vertex, whereas in'(b)

-y
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.- EY

- ' Figure 6.2b

"

A convex quadrilateralization of the polygon in Figure 6.2a.

v is a down-looking reflex vertex.

a

We defined a pyramid as a rectilinearly- convex histogram ancd showed that a

s

pyramid has two stairs. Now we illustrate how to decompose an RSP into two

pyramids. First we find s kernel; this is straightforward once the extreme points yre

known, sec Chapter 3 2.2. The kernel contains at least one point x. Then we construct

a horizontal line through x. This line intersects the polygon P at two points say p and

q. Because P is star-shaped p and q are located on the z ., r .. edges. With these

c

two Steimer points p and’q we can split the polygon into two pyramids (sec Figure, 6.5).

”

The two pyramids arc (p, ..., tg t,, .., q) and (q, .., b, by, ..., p). In Chapter 3.2.2 we

.

“

presented a procedure to determine the kernel of a rectilinear polygon in linear time. To

compute the intersection points p, q is then trivial, so that the entire procedure can be

executed in linear time. . .
B
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br.

Figure 6.3

by

. A rectilinear star-shaped polygon.

N

!

e

(a)
An up-looking reflex vertex

¢

~

-~

Figure 6.4

(b)

“ A down-looking reflex vertea
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Figure 8.5

Partitioning a rectilinear star-shaped polygon into pyramids. !
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6.2.2. Quaarilaterization of Pyramids

In this section we show how to partition a pyramid into convex quadrilaterals.
Without loss of generality we assume that the pyramid is oriented in such a manner
L s

that pq is the top edge. Let L= ¢£¢,, ., £, and R = r,, ., r_ be two lists of vertices

with n,m elements, respectively.

Algorithm 8.1: Pyramid Quadrilaterization

Inpul- A pyramd P. \

QOutput* A convex quadrilaterization of(P. /

Step 1:
Starting at the gy edge rs construct two lists L, R:
L := all reflex vertices on the left stair
such that y(€,) < ... < y(£,);
R = All reflex vertices on the right stair
such that y(r,) < .. < y(r,,),
Step 2:
1.=1; j:=1; (* initialize *)
while (i = n and j=m) do .
begin
join £, and r ,
it y(e,) < y(r)

then i:=i+1
else j;:=j+1 ¥
end
Step 8-
if i>n
then join all points r , .., r, to p;

if j>m : o

then join all points £,, , £ to q

Remark 6.1. In Algorithm 61,1 f y(r J<y(€ )<y(€, +;)<... .. <yl8y)<ylr,+,) then
all points €,. .., &, are joined'lor, .\, as tllustrated in Figure 6.6.

1
N

Lemma 6.1. Pyramids can be quadrilateri zed in linear time.
N LR . . !
Proof: If both stairs are empty, the polygon is already a convex quadrilateral and the

4
~
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Figure 6.8

' All reflex vertices between ¢, and €, are joined to r_,.

—

Y

algorithm stops. Let the polygon have at least one non-cmpty stair. The algorithm

creates polygons, say @, ..., @4.

We have to show that:
(i) @,, ..., @, are quadrilaterals. .
(i} @y, ..., @, are convex. ,
(1) No two polygons @,, @, intersect (properly).
(iv) The union of all @, ..., @, is cqual to the polygon.
(v) The algorithm runs in linecar time.

(i) From the algorithm it is clear that every pair of consecutive reflex vertices in the left

hl

(right) stair is joined to a common vertex in the right (left) stair, therefore the

components are quadrilaterals
1]

(11) Let v be a reflex vertex on the left stair and refer to Figure 6.7. The concavity at v
is broken by any diagonal iocated in region B. The algorithm produces a
diagonal vw such that |
(a) w is located on the other stair; therefore vw is not located in region A. -

(b) y(v) = y(w); therefore vw is not located in region C.

All other reflex vertices are handled in a similar way. Since all other angles in

. . ™ . =
the quadrilaterals are either 3 or less, the quadrilaterals are convex.
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Figure 6.7

The concavity of v is broken by inserting any diagonal lgcated in region B.

(i) Since the vertices are scanned in order by increasing y-coordinates, it fol‘lows
trivially that no two quadrilaterals intersect.

(iv) Each reflex vert‘e,\' s contained in at least two quadrilaterals. Each convex vertex
(except r, s (p, q) the bottom (top) vertices) is located between two rchex
vertices and is therefore contained in the respective quadrilatgmi. The \'crﬁce’s

- rs (pq) arc included in the lowest (highest) quadrilateral. Therefore the .ur;ion

over all quadrilaterals is equal to the entire polygon.

(v) The funning-time of Step 1 is proportional to the sum of the number of elemeﬂ_gs in
both lists and is therefore O(n). For Step llno sorting is needed as tie stairs are

. . ) * - 7 .
monotone. Adding an cdge in Step 2 and 3 takes cons me aifd is executed

O(n) times. Therefore the total run-\tixpc is O(n). m

a
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Remark 6.2. Let v be the verter (on the left stair) joined top and let r be the vertex
fon the right stair) joined to q. If y(v)> y(r) the algorithm joins reflex vertices to q.
Otherwise y(v) < y(r) and the ealgorithm joins reflex vertices to p. This follows

immediately from the algorithm.

Remark 6.3. We now describe a generalization of a pyramid which will be useful in
the next section for merging decomnposed pyramids. Let P be a pyramid with pq and sr
as top and bollom edges, respectively. Let LS(r,p) and RS(q,s) denote the left and right
stairs, respectively, of P. In a pyramid any horizontal edge p,p, is such that Y,) =
y(p,) We can generalize these pyramids to worn-down pyramids by allowing y(p,) <
y(p]) in LS’{r,gZand letting y(pj) =< y(p,) in RS(q,s) for-any top edge p,p, in P. We also
allow lhc“’ba.sc-cdgc of the pyramid, i.c. the y,, -edge, Lo be non-horizontal, provided that
both its endpoints remain below the lowest reflex vertex in P. See Figu‘rc 6.8 for

illustration. To obtain a concise nolation let us call the resulting polygonal chains

worn-down &tairs. It'is easy to see that with Algorithm 6.1 these worn-down pyramids’

can also be decomposed into convex quadrilaterals since the interior angles that were

L ; ’ .
previously 5 are still less than n and are therefore convez. It follows that worn-doun

pyramids are rectilinearly convex, edge-visible polygons with an alternating sequence of

vertical edges and possibly slanted edges.

8.2.3. Algorithm and Proof of Correctness

In this section we present an algorithm that soives the problem of'decomposing a

»

rectilinear star-shaped polygon P into convex quadrilaterals. This result was the first

known algorithm to quadrilaterize any class of rectilinear polygons. We state it in its

formulation as given in [SaT81].

L B e
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hFigure 8.8

A worn-down pyramid.

Algorithm 8.2: Quadrilaterization of Star-Shaped Rectilinear

Polygons ) : .
Input: A rectilincar star-shaped polygon P.
Output: A convex quédrilaterization of P. ’ ’
Step 1:
- Decompose the polygon P into two pyramids.
Step 2:

Decompose the pyramids obtained in Step 1 into convex quadrilaterals.
Step 8:
Merge the decompositions (the details are given below).




P

@ A L9te » 4
T R AR RSP L SRS g ™ PPN S 2 el ki r T
T Sl - TR A . f

106

Theorem 8.1. The Algorithm 6.2 partitions a given rectilinear n-vertex star-shaped

polygon into conver quadrilaterals in Ofn) time. —

Proof: It was shown previously that the partitioning step into pyramid, Step I, can be

" donc in O(n) time. In Step 2 we apply Algorithm 6.1 to both polygons rosjull,ing from

Step 1. Using Lemma 6.1 this takes lincar time. According to Step 3 we have to merge
)

the two decompositions obtained in Step 2. As the polygon P is star-shaped there are

only two cases to be considered: (a) The intervals [y(€,), y(€,)] and [y(r,), y(r,)] arc

such that neither is contained in the other, and (b) One of the intervals [y(¢,). y(€,)),

[¥(r,) . ¥(r;)] is contained in other.

(a) Without loss ongEI)cr:tlit,y let, y(ej,) > y(r,) and y(£,) > y(r,), and refer to Figurc
6.9. We have noticed previously that in this ;aso the top polygon-decomposition

contiains edges from p, to p for some values of i. Similarly the bottom polygon-

dccomposition contains edges from g, to q for some j.

o Figure 6.9 '

'

The quadrilateralizations of the top and bottom pyramids.
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Now replace all edges p,p in the top polygon by p, €, and all edges g q.in

3
the bottom polygon by ¢,r,. N

( : : Figure 6.10

A quadrilateralization after merging the partial quadrilateralization of Figure 6.9.

By doing this ‘'we replace in ecach of the concerned quadrilaterals, located above

and, below pq, exactly one vertex, thus obtaining a new quadrilateral. As £y is
below p and r, is aboiw q, these quadrilaterals remain convex and cannot ;
intersect. Fu;'tlwrmore, the hexagon formed by deleting pq, namely (p, v, r,, q,
u, €;), clearly becomes a convex quadrilateral, sinec it containg two parallel ‘cdgcs
€yu and vr,. This procedure applied to the polygon of Figure 6.9 yields the
decompositilon—of Figure 6.10.

(b) Without loss of gencrality let [y(£,), y(€,)] be contained in {y(r,), y(r;)] and rcf(;, to
Figlur(;. 6.11. In this case y(€,) = y(r,) and y(£,) > y(r,), and with the Remark

4 '
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. Figure 8.11

A worn-down pyramid P’ outlined in bold, is created.

K
i

6.2. we sce that in each pym’mi(l one or more reflex vertices are joil;i‘(l toq. In
the top poly@;on, let ¢ be the highest vertea ‘joinod to q, and let u be the lowest
vertex joined to t (u is nob equal to q). In the bottom pyramid, let w be the
lowest ‘vex:t,ex joined to q, and let v be the highest vertex joined to w {v s not

equal to q). Delete all decomposition-edges to q. Furthermore delete p, q and pq.

Then consider the polygon P*=(u, r,, ry, v, W, ..., t). As v is not located above
POIyg Ty

. * ., . ’ 37?
w, and u is not located below ¢, /7 is a worn-down pyramid. Rotate > by —

'2
(clockwise) and quadrilaterize it. (In practice one would implement Algorithm
6.2 such that the rotation is avoided). The bot,t'om-to-t,op approach of Algorithm
6.2° would become a left-to-right (or right-to-left) approach.) The new

decomposition edges inside P’ cannot interfere with the decompositions outside
p .

P Applying this procedure to the decomposition of Figure 6.11 }iclds’ that

e N w4 g

N ,MMW
R =
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Figure 8.12

v

After merging the quadrilateralizations of Figure 6.11.

# shown in Figure 6.12. The merging step is, thercfore, either straightforward or
applies Lemma 6.1 to P" In both cases the run-time is O(n). We can conclude
therefore that the total time required to decompose a rectilinear star-shaped

 polygon into convex quadrilaterals is O(n) =

6.3. Quadrilaterization of Monotone Rectilinear

Polygons

In this section we extend the results of Section 6.1 and 6 2 by developing a lincar-

time algorithm for finding a convex quadrilaterization of a monotonc rectilinear polygon

P. The following algorithm results from merging algorithms designed by [K182] and the

-author. Recall from Section 3.2.3 that any monotone rectilinear polygon is monotone in

the x-direction or the y-direction. W.lo.g we assume this direction to be the y-

direction. The-two resulting extremal chains are referred to as the left chain and right

-

chain, respectively. An edge pq of ;\simple polygon is called a top-segment if by
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replacing pq by pq#p and qq#p one vertical edge and one top-edge are created (see

Figure 6.13). This generalizes the notion of a top-edge in a rectilinear polygon. In a

similar fashion, we can define bottom-segments. We will refer to bottom-segments and
top-segments as segments of the polygon. Note that we consider top-edges and
bottom-edges as top-segment, bottom-segments, respectively, however, a vertical edge

»

is not a segment.

o %ure 8.13 .

e

A top-segment pg; pq#p is a top-edge and q#pq is a vertical edge.

6.3.1. Algorithm and Proof of Correctness

We will first sketch the algorithm. The algorithm creates a list, €,,...,e,, of all

horizontal edges in P, sorted by decreasing y-coordinates. The edges in this/fist are

examined one by one starting with the edge of maximum y-value. In case that a top- -

< [l

edge is encountered, it is pushed onto a stack, S. In case that a bottom-edge ¢, is
encountered depending on the relative position of the top of stack edge and ¢, onc or

two diagonals are inserted. These diagonals partition P into two or three polygons,

B

GotsgpsRNaTn e b1 -
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respectively. One such polygon will be shown to be a worn-dpwn p?}%d. For this
pyramid a quadrilaterization is obtained by applying Algorithm 6.1. The remaining
polygon will be shown to be quadrilaterizable. The top_of_stack-edge is cither an edge
of P or a diagonal inserted into Pata previous stage. We will store the items in S as
pairs of the form [d, f] The first ficld d, 1s eéither an edge or a diagonal. The second
field f, takes a value in {L, R, B}, depending on whether the endpoints of the segment
belong to the feft, right, or both chains respectively The field-value of an edge e, 1s
denoted by f,. Let d, d, be two diagonals with rightmost endpoints located on the
right chain. Then d exte;gls Jurther inside P than d, if its leftmost endpoint 1s further
to the left than the leftmost endpoint of d,. Similarly, for diagonafs whose leftmost

endpoints are located on the left chain, We are now able to state the algorithm,

4

Algorithmm 6.3: Quadrilaterization of Monotone Rectilinear

Polygons
Input: A monotone rectilinear polygon P.
.()ulpll(.' A quadrilaterization of P

H

sort. the horizontal edges of P by y-coordinates,
lclj €, -, €, berthe rf*b(xlt.ixlg sorted edge-hst,
Initialize the stack S"=[1, BJ;

(* The top cdge of the first pyramid is pushed *)
(* its field-value'indicates that it be‘lgi)gs to both chains *)

.

i'=2,
whilei <> nor S <> empty do
begin

“ if i=n then - .
call pyramid decomposition algorithm for stack content and e, enit,

if ¢, 15 @ top-segment then

(* case {a) ¥) J
begin N
(* augment the pyramid contained i S *)
S == [1, respective field-value], .
1= 1+] .
end '
else
if ¢, is a bottom-segment then
begin '
[e. f] :== ROP(S), ‘ ‘ 7 =
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{* the top of stack is popped *) -
if f=Db or {e and ¢, are on the same chain } then "
(* case (b) *)
' begin ) '
join e and ¢, by a diagonal d;
\ (* A convex quadrilateral is out off *);
if e is further inside P than e,
or e has field value B then
begin
S == [d, roNpective field-value];
- (* pyramids are wearing down *)
’ ' 1= 141 .
end

R

T PRI S ST S

T

end
else J
(* case (c) *)
e, e, are on opposite chains *)
begin
join e and ¢, to form a convex quadrilateral; L
(* Two diagonals, called the higher and the lower, are inserted*)
S := [the higher diagonal, respective field-value];
(* A pyramid is cut off from the rcmaining polygon *)
1
S

z
o K AT s g

= i+l,
= [the lower diagonal, field-value B]

end -«
end (* if ¢, is a bottom segment *)

end (* while loop *).

[P LMwuv.va

Theorem 6.2. Algorithm 6.2 quadrildterizes monotone rectilinear polygons sn

FUCTAPe—

linear time.

Proof: Since Algorithm 6 3 examines each edge at most a constant number of times,

the linearity of the time-complexity follows. We show the correctness of the algorithm.

We first define the stack property, called property (X). Then we show that after cach

% iteration through the main loop of the above algorithm, the stack property is

maintained. The stack property (X) is defined as,
(i) The stack S contains the left and right chain of a2 worn-down pyramid and no 1
i

other edges. ) M e , o

(1) No two segments in S contain points with the same y-value.

(iii) If ¢, is the next edge (or scgment) examined in the while-loop of Algorithm

6.3, then e, is connected by a vertical line to the lowest edge in S located on the | o

]
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same chain as ¢,.

We will motivate the definition of the stack property (X). If (X) holds then if at
some time during the executilon of the algorithm, both endpoints of the two chains
contained in the stack are joined, a worn-down pyramid is complé?ed. By Remark 6?3

*these worn-down pyramids are quadrilaterizable. A call to' Algorithm 6.2 has the effect

of quadrilaterizing this pyramid, thereby emptying the stack contents. The last edge

examined by Algorithm 8.3, is the edge with mmimum y-coordinate. Since this edgc‘

_jomns the cndpoints of the monotone chains stored 1n S, by the above, Algorithm 6 3 will
always be able to terminate with an empty stack The main step of the proof 1s to
show that the stack property holds after each iteration of the main while-loop. We give

an inductive apgumentBn the edge number, 1, in MOrtcd list of horizontal cdges in P.

Initially, when 1=1, the edge e,, with maximum y-coordinate, is pushed onto $ 1t
should be clear that in this case the stack propcrgty (Xmolds. Now Ic‘i for i-1, S
“satisfy (X) We have to -show that after ¢, has been examined, (X) is still satisfied. For
this we distinguish between the cases: case (a): ¢, 18 a top-edge; case (b) and {c): ¢, 15 a
bottom-edge. The casc enumeration corresponds ta the algorithm description. Without

” J
loss of generality let us assume that the current edge ¢, is located on the right chain.

(a) Edge ¢,=p,;_;p, 15 a Lop-cdgl:. Consider the lowest vertex, p;, m S which is
¥
located on the right chain. By stack property (in), p,—; and p; are connected by a
vertical line. The algorithin will push the edge e, onto S. As ¢ is- a top-edge and the
edges are examined in sorted order, properties (i) and (ii) hold. The next horizc;mz:l
edge on the right chain is €, 4o l"n é rectilinear polygon horizontal and vertical g‘(lgos are
\ A .

alternating t@us property (iit) also remains true.

(Y

s a bottom-cdge. Let the top_ol_stack segment be pq. I pqis a




It

and q are on the left chain. All other placements of p and q onto the chains are
illustrated in Figure 6.14. As p and q arc on opposite chains, by the initial remark, the
stack w’as empty before pq was 'pushed. Thus abfter popping pq, S is again empty. The
diagonal pp, is inserted i‘nto P to form a convex quadrilateral p, q, p,_;, p,. The
algorithm subsequently pushes pp, and thus, similar, to the initialization Step, (i=1),

the stack property (X) holds. In other words after pushing the segment a new pyramid
is initialized.
g

We now examine the case that both p and q are on the right chain. By induction,

property (iii) holds and thus p,, p, q, p, -, form a convex quadrilateral. The algorithm,

If this

in this case, correctly inserts the diagonal pp, cutling of a convex qlladrilatc;'al.

diagonal is a top-segment, a fact that the algorithm detects by verifying ‘that p, is to
\ : [ 4
the right of p, then the stack is augmented by a push-operation PUSH(pp,) thercby

satisfying (i). Otherwise, in the case that pp, is a bottom-ségment, the algorithm does

not push any segment or edge. Furthermore, for the next execution of the main while-

loop, ¢, is merely replaced by pp,. It remains to show that for both situations

Yo

properties (ii) and (iii) hold. ) l'

‘<

By induction, property (ii) holds and thus no point in § located on a segment or *

3 \ »

vertical edge on the left chain has a/y-coordimale -hetween that-of p and q. . The
- ! ad . : . “
4 11 . ° -

diagonal (cdge) with minimum distance in 3«9@0%(“1;:\1& to’ ¢; is. pq, thus no segment

other than pp, contains a point with “yn-&‘,oondinatc between that of p,andtpll. Property

-(i1) is thus satisfied -either in cqse:,that the segment pp, is-inserted into S or that ¢; is

replaced by pp,. ‘ln a rectilincar polygon, hor‘izontul aqld vertical c'dgcs alternate. In

l.ho case llnl pp is pushnd ¢, 41 satisfics propcrtv (m) Othcl‘wiw no edge is pushed,

.md lhus in the main loop, pp, replaces ¢,. Féls by m(luﬂuon prt)por(y (ii1) must stlll

remain true, - N S ~

o . , -~ o '3 Y i .
(¢) We now examine the case that both p and q are located on the left chain,

r 1
' .
v
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" Figure 6.14

Placement of p,q when q is on the righ/t{hain.
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Figure 8.15

Both p, q are on the left chain. The shaded areas are empty.

-

P N VI

D T SN

4 et Vot e b, o o =



. 117

(Figure 6.15). DBy induction, property (ii), the quadrilaterallp,)p,_,#p, Po—1#q q is
empty. (lnkcasc that pq is a horizontal edge the quadrilateral collapses and is therefore
trivially empty). As ;)q is the top_of_stack segment also p,_,#p, p,_;, P#p,_,p is
empty. Since pq is a Lop-‘segmenh the vertices p,_,, p,, p, q form a convex quadrilateral.
By inserting the segment qp, _, the algorithms completes a worn-down pyramid stored
in S. This worn-down pyramid is subsequently quadrilaterized by calling the pyramid
(lpadrilzx‘tcrization algorithm., As q, p,_,#q, p,—,, p#p, is empty, pp, is a top-scgment
of a new worn-down pyramid to be stored in S. The validity of Properties (i) and (ii)
follows. Both p and p, are link(:d to the unexamined chains of P by vertical edges thus
(iii) holds. m J

The following remark is important for Section 6.4.

Remark 8.4. Recall that the horizontal edges of P are sorted according lo the y-
coordinates. Let the resulling sorted list of edges be ¢y, .., e,.. Let e;, € 4, be two
‘bbtlom-edgce consecutive in the list and adjacent on the same chain. Algorithm 6.3

creates conver quadrilaterals, one of which contains the rcflcz;xyeg'ticcs of both e, and

€ +1-

L

Proof: As ¢, is a bottom-edge, a diagonal d joining cl‘ and some vertex p, is inscrted
by Algorithm ‘6‘.3, depending on w!let,her cases {b) or (c) apply, respectively. According
to the description »of Algorjthm 8.3 this diagonal d is popped as soon the next bottom
cdge, e, 44, is considered. As‘c, and €, 4+, arc-on the same chain, d and the edge ¢, 4, are
joined by a diagonal to form a convex quadrilateral. Thus the reflex vertices of e, and

¢, +; arc located in the same quadrilateral. =

@
i

6.3.2. Polygons with the Alternating Rectilinear Probgrty

We will define a class of monotone polygons, not necessarily rectilinear, which
, : {

admit quadrilaterization. A polygon with the alternating rectilinear property is defined

as.a monotone polygon with these 'properties:
f - Lo-

'
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(1) Every even edge ey, ..., €, is vertical,
(2) Let p, g be two points located on the boundary of P st. p, q.are visible from

each -other along a horizontal line-segment. If p is located on a non-rectilinear

segment then'q is on a vertical edge of P,

1

Lemma 6.2. Monotone polygons with the alternating rectilinear properly can be

quadrilaterized in linear time.

Proof: We show that the Algorithm 6.3 can be employed, with only minor

~ modification, to quadrilaterize monotone polygons with the alternating rectilinear

property. Let m=1 denote the ‘number of bottom~’scgments in P. We give a proof by
induction on m. In the case that m==1, P is a worn-down, pyramid, since by Property
(QW:LI] endpointg of the‘bottom-sbgm;:nb are below any reflex vertex and all other
edges belong to the §tairs of a worn-down pyramid. We know that such a pyramid is
quadrilaterizable. The a}\gorithm per_form's the quadrilaterization byt stacking all edges
until the bottom-segment is encountered jth~en the call to the Algorithm 6.2 completes
the procedure i-n this cﬂase:

pet us x;ow assume that' any monstone polygon with the alternating rectilinear
p‘roper'ty" containiné ‘m-121. boti‘ém-seg;nénts is quadrilaterizable. The highest
bottom-scgment\ in a monotone polygon with the alternating rectilinear property and
with m bottom-segments is den;Led by ¢,. Note that the definition of a
quadrilaterizable monotone polygon allows us to speak of a highest bottom-segment, as

the bottom-segmem;ﬁ have non-overlapping y-coordinates. The digcussion is analogous

. to cases (b) and (c) in Theorem 6,2. We only point out that in case (c), where a top-

@

segment and a, bottom-segmeént must be joined to form, a convex quadrilateral, it is

crucial that the segments have non-overlapping y-coordinates. Otherwise, as illustrated

in Figure 6.16, as concave quadrilateral may be created. The property (2) forbids such

[RCIL
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will be shown to be O(n log n).- Recall that an edge e is visible from a point x if there

s ' : , 119

Figure 6.18 v

All non-rectilinear segments must have distinct y-values otherwise a convex
quadrilateralization may not be achievable.

a situation. W
t b °

6.4. Partitioning’ Rectilinear l?’olygons into Monotone

Polygons

In this section, w‘}* describe an algonthm to partition a rectilinear n-vertex polygon

into monotone polygons adlmttmg quadrilaterizatioh. ’I‘hc run-tlme of the algorithm

1

exists a point y on e, s.t, x sees y. An edge’e is strongly visible from a point x if for all

a

-y one,x sces y.' An edge s is strongly visible from an edge t if there exists,a point x on

]

¢ from which s is stroi;gly visible. An edge s is completcly visible from an edge t if for

all x on t the edge s is strongly visible from x. Complete visibility is symmetrical.

Tufq.t v
Gl T
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Lemma 6.3. [.llt;is, Toussaini] Let gp be any edge of a simple polygon, and let x be a

point in I If both ¢ and p see z, then x is visible from the entire edge qp [AT81a).

Lemma 6.4. Let pq be any bottom-phak in a rectilinear polygon P. The edge with
minimum distance under all horizonta¥ edges located above pg and visible from either p
.or q, 18 called ab. Then,

(t) 1f edge ab is a boftom-edge then edge qp 18 strongly visible from one of

the endpoints of ab.

(i1) 1f ab is a top-edge then ab and qp are completely visible from each other.

"Proof’: (i) We first discuss the case that ab is a bottom-edge. By assumption ab is
. visible from p or q and ab is above pg. Assume that the vertex from which ab is visible

is p. Thcx} exactly one point,ran endpoint of ab, is visible from p. We assume that this

o

ehdpoint is a, otherwise a symmetric argument holds. By Lemma 6.3, it suffices to

show that both p and q a)c visible from a. Now consider the triangle T = {a,p,q} and

refcr to Figure 6.17, If T hes mSIde P then p sees a. Otherwnse, qa is intersected by a

polygonal edge and as pq is a bottom-peak this edge is not adjacent to pq. Therefore

-

ihere exists'a vertex p, inside ;I‘. As P is simple T is intersected by a horizontal edge

with y-coordinatq between those of qp and ab. The lowest such edge is visible from p,

s
2

contradicting the choice of ab.

Hoevr PR FEENN TLLTTE 0 R B

°

" (b) Lei ab be a top—eﬂge being visible from p. Then there exists a point x on ab

that is visible from p. To show that ab and pq are completely visible from each ‘other,

it suffices to prove Lhat (i) g is visible from z and (ii) for all points y on ab, p sees y.
(i) can be shown in the same way as (a), we therefore omit this part,. For (i), we

show that, for all pomts y on ab, p sees y. Assume that y is a point on ab that is not

vzslble from p. The Ime segment py is thus intersected by at least one polygonal edge.

If Lhere is exactly one such edge, then this edge is adjacent to ab and by the Jordan

Curve Theorem ab c,anr_xot be a top-edge. If more than one edges intersect py, then

there exists, similar to (a), a horizontal edge intersecting the tfiangle T={y,p,p}. This is

> e
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Figure 8.17 ' '

Let ab be an edge with minimum distance in y-coordinate and visible from p. If p is
visible from a then pq is completely visible from a, otherwise a contradiction occurs.

‘

! . ' 5
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illustrated in Figure 6.18. Again the lowest such edge must be visible from p,
contradicting the choice of ab. Similarly, it can be shown that ab is strongly visible

from p%ge‘sult then follows by applying Lemma 6.3. ®

We conclude that if ab is a bottom-edge, then the edge pq is strongly.visible from
‘exactly one endpoint of ab. Otherwise, if ab is a top-edge, then the edges ab and pq are

completely visible from each other.

a 'y

Figure 6.18

Let ab be a top-edge with minimum distance in y-coordinate and visible from ¢. If ab
and pq are not completely visible from each other, a contradiction occurs.

. ®
" Remark 6.5. Let the assumptions be as in Lemma 6.4. Then, i f abis a boltom-
. 4

edge, ab lies either completely to the left of q or comf:letely‘to‘ the right of p and the

endpoint ¢ of the adjacent edge facing pq, 1's lower than pq (see Figurc 6.19).

Remark 6.6. Let pg be a bottom-peak and ab an edge with minimum distance under

all horizontal edges visible from pq. Then ab is visible from one-of the eryr.lpointez of pq.
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Figure 6,19

The bottom edge ab with minimum distance in y-direction visible from pq lies m(hor
completely to the left of g or completely to the right of p

-

s
L4

Corollary 6.1. Under the usswmplions of Lenuna 6 4, the rectangles (a#q.a.ry)"

and (a,.x.y.a#q) are emply (Figures 6 20 (a) and 6 20 (b)),

. 8.4.1. Algorithm and Proof of Correctness

We are now able to state the algorithm for decomposing a rectilinear polygon P
into quadrilaterizable monotone polygons. The algorithm uses a modification of the
regularization technique developed by Lee and Preparata {1.eP76]. Let the horizattal
edges of P he sorted i)_V y-coordinates s.t. the edges are labeled ¢y, ..., ¢,, where e, is

. . : C ¢
the highest edge, and e, is the lowest edge, and e, is higher than ¢, 4,. We sketch the

of ~0
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P S

'(a)' - : (b)

- ‘ Figure 6.20 :
“dge abis the closest edge visible from pg. The interiors of the rectangular regions .
. R, are empty. , .
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idea behind the algorithm. Tl;e herizontal list of edges is scanned in the same order
from the highest to the lowest edge. Wi]en a peak ¢, is encountered, the edge ¢ w‘it.h
minimum distance in y-coordinatg, from which e, is visible, is found'. If e and e, aré
completely visible from eac}; otht;r, then e and e, are joined by connecting their
endpoints to form a convex quadrilateral. If e and ¢, are not completely visible from
each other, but ¢, and e are s-trongly visible, then the endpoints of ¢, and e having the

minimum Fuclidean: distance from each other are joined. We will show that this

eliminates all peaks and leaves quadrilaterizable polygons.

Algorithm 8.4: Overview of Partitioning into Monotone Polygons
'4
Inpul: A rectilinear polygon P with n vertices

n -

Outpul: A partitioning into monotone polygons admitting quadrilaterization

Step 1: R
Sort the horizontal edges by y-coordinates, s.t. if ¢;, ..., em is Lhe ordered
¢dge-sequence, then ¢, =y " . ¢ =y, and ¢, is hlghcr then € 4
Step 2: . .
for cach bottom (top)-pcak e, do
Find among all horizontal edges above (bclow) e, and visible from e,
the one with minimum distance in y- coordmatc call this Cdg(‘ e .
ifeis a top (bottom) edge .
then jomn the cndpomts of e, and e to form a convex (]lld(ll‘l]d((‘l’dl
else
join the endpoint of e, that is visible from ¢, to
the closest (Euchdcan distance) endpoint ol' €, -

6

¢

To achieve the desired cfficiency, we will implement Step 2 using a modification of
v f >

lee's and Prepara”ta,'s' reg‘ularizatién tec hnique. ‘

After Step 1 has been executed, t.h('a‘horizon(,u'l edges are sorted by .\i-coor(ﬁnn(m
The data structure used for the decomposition algaritlm is a balanced tree (AVL or 2-3
tree ), where nodes are ‘rcc‘or(ls contvuini‘r;g' a vertical and_ a horizontal edge (or poin(m_‘;a

to them) plus a ficld with values true or falsé. Let g, be a vertical line at =oo. Let

H(j), V(j) be two ficld containing one herizontal and vertical edges, respectively. Let

¥
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F(j) be a field in récord J, then F(j) is true if H(j) is a top-peak and no horizontal edge
lower than H(j) and visible from H(j) has been encountered by the algorithm. FG) is
false, ot herwise. UA node(j) is therefor:a triple‘ [V(3), H(j), F(j)]. The in-order traversal
of the tree T always yields a sequence node(0), .., node(k) thought of as comsecutive

array-elements. Between the vertical edges V(j) and V(j+1) the minimum ordinate edge

LY e S T Y L I O 0 M i s e

is stored in H(j). Each horizontal edge ¢, is adjacent to two vertical edges, the left one,—-

e'(e,), the right one, e"(e,). A bgttom-peak e, is encountered, if In(e;) = 0; for this an

inscrtion into the tree is made. If ¢, is inserted between H(J) and H(j+1) then ¢ is

assigned the value of max(H(j), H(J+1)). The reader may initially ignore the third field,

.

F(J), and consider bottom-peak and top-peak elimination in two separate passes through
¥

" the polygon The additional field has been introduced to gain efficiency in that only one

pass through the polygon is required. As we are scanning the ;')ol‘ygon from top to .

bottom, top-peaks are encountered before they can be resolved. Therefore any

unresolved top-pezk is flagged (true) until its closest edge visible from it and below it is

encountered. Then the appropriate diagonal(s) is (are) inserted and the field is reset to

false.

Algorithm 8.5: Details of Partitioning into Monotone Polygons

Input: A sorted list of horizontal edges ey,...,¢,, of palygon P as produced by Step 1 in
Algorithm 6.4 ‘ . .

Qulpul : A partitioning of P into monotone polygons, admitting quatrilaterization.

Initially ) )
H(0) == (1) := 1}(2) = e,; . ’ )
V(0) == g,; » ¥
V(1) = efe;); c \
V@) = ey
Let T be an_initially empty AVLztree (or 2-3 tree), insert [V(0),H(0),f], {V(1).110).1],
[V(2),1{2).f] into the tree T using the x-coordinates V(i), i=0,1,2 as the key. '
= 2 : . -
whilei < i do \ f_ o e
begin ' . LT

- R N v T
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) = smallest integer so that e, is not to the left of V(j);
e := nil;
if ¢, is a bottom-peak
then e := H(j)
else
if F(3) and V(j)=¢/e,)
then ¢ := H(}) g . ;
elge ;
if F(j+1) and V(j+1)=¢"(e,) .
. thene := l(j+1), ’ )
if e <>'nil
then F(j) := F(j+1) := false;
if ¢;"is a top (bottom) edge .
and e is a bottom (top) edge i
then ‘
join the endpoints of,e, and e to form a convex quadrilateral
else
, Jjoin the endpoint of e closest to ¢, to the closest endpoint of e, ;
if ]n(f,/}JQ or Oute, )=0 ' o
en ) i ( ‘
- begin c 7 o
H(j+2) = ¢,; o
Delete node(j) and node(j+1)in T;
"Af €, is a top-peak " .
-* " then
begin
. P(j<1) := true;
F(j+2) := true
end
. : nd -
' “else v '
SifTn(e,) = 1 :
then - ¢
begin -
, H(j) = ¢; ¢
H(j—1) = ¢,; R
V(j) := outgoing edge of ¢, oy
end )
else '
if In(e,) =0
' then — ~
begin ‘
. INSERT [e(e, )., ,false] and [e"(e,).e, false] L\J\\
between node(j) and node(g+1) in T
end; . .
b= i+1
end.
\

hd
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v

Lemma 8.5. Algorithm 6.4 decomposes, in Ofn log n) time, a .simple, .n-verlex
rectilinear polygon into monotone polygons admilling quadrilpteri:imtion. ‘

Pi‘oofz l"oripnsc of notation, we will assume for the remaininginrt of t'his scc't,ion that
monotonicily stands for monotonicity in the y-dircctim‘l‘ Similnil;, closest stands for
minimum tdistancc in y-direction. Let P be a polygon with the following p'ropcrl',).', (X):
P is rectilinear cxcept for the edges located above the highest ho;'izontal peak in P. These
f(lgcs are ‘mon'olor!c chains witli//tlc/ alternaling rectilinear property. We show by
induction on the number, k, of horizontal peaks in P that Algorithm 0.4 dccomposcs P
into monotone polygens that sre qnndnlatcnmblc. IT k=0 then P is'a monotone

polygon mlh thc altcrh’itmg rccmhncar propcrty and thus P is qu'xdrlhtcnzablc We

assume that all polygons wnth k-1 horizontal pcaks satisfying propcrt;y (‘() can .be

'pnrl,lt»lon(‘d into monotonc polygons admlttmg qu'ldnlatcnzatlo“n if Algorlthm 64 is

‘ 'xpphed Now Iet P be a polygqu satlsfymg property- (‘() rcdntammg k horlzont'ﬂ peal\w

Let e, =pq bc Lho lnghcst such peak. W.la.g. assume that e, is a bottom-peak. A stmilar

. , v - : '
- arguhent can be made otherwise. Algorithm 6.4 first determines the closest edge, ¢,,
vi%ible'frggn e;. Two cases arise depending on whcthcr e;=ab is a top or bottom-"

segment, respccbivclj. Refer to Figure 6.21 (a), (b).. The pomt x,y are obtalned by

intersccting ‘horizontal lines Lhrough both a and. b thh the edge oppos:te Lo ab. The

alternating rectilinear property cnsures Llnt both xand y are on’ thc same vertical edge.
.Y

Analogously to Corollary 6.1 we can show th.at- the arc;ls R=(b,x,y,y#p,a#q,a) are:

_cinpty. : - C o .

B

Case (a): The .scgmc'nt ab is a top-scgment see Flgurc 6.21a. As a.i) is a top—scgmcut

_and pq a botlom peak, the nlgomhm inserts two dmgonalq aq and pb Smce the rcgum

R is cmpty none of the two dmgonals intersect :my edgé in P. Both p and ¢ are,’

loc.;(od below ab thus ab P form a convex qu.ulrll.n(cr.d By inserting the two'

dingonals forming the -qmulrﬂnlorgi, Algorithin 6.1 creates two polygons Pp:=(b,....p)
. s . , .

and Pai==(q,...,4). By the choice of ¢, to.be the highest pon“k, all horizontal peaks in

-
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‘ (a) .(b)

ab is a top-segment ab is a bottom segment

Figure 8.21
A
Partitioning of arectilinear polygon into monotone polygons admitting quadrilaterization.

these polygons are below e, thus P, and P, preserve property (X). Since these polygons
( ‘ : contain fewer horizontal pcai&s the induction hypothesis applies and a decomposition

into. monotone polygons admitting. quadrilaterization is obtained. This case is
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analogous to one of the partitioning steps in [KKK]. . .

Case' (b): The segment ab i3 a bottom-segment, sce Figure 6.21b. By 'an arguxgcnt
similar to that of Remark 6.5, ab lies either entirely to the left of q, or enurely to the
right if 'p. The algorithm inscrts the diagonal qa or pb,&lepeuding on whether ab is to
the left of q or to thp right of p, respectively. Assume for this discussion that ab is to
the left of q. By inserting the diagonal qa, P is partionred int® two polygons P,={a,...,q}
ana P,={q,...,a}. Both P, "'P.d‘Pz have less than k horizontal peaks. As the region‘ R
deﬁneca] above is empty, p(ilygon P, satisfies property (X). The other polygon P, does
not immediately satisly property (X), since not cvery other edge in P; 1s vertical.
However, by a simple transformation this caln be realized. This transformation converts
P,=(a,...,.q) inLo P':=(a#q,a,‘...p) a polygon satislying pru(perty‘ (X). P* differs from Py
in that the vertex q is replaced by a#q. P’ contains fewer than k horizontal peaks. By

applying the induction hypothesis to P P is partitioned into monotone pieces

admitting quadrilaterization. 1t remains to show that not only P”. but also P, admits

quadrilaterization. The Steiner-point a#(i is a concave vertex located on a bottom-

edge. All peaks in P’ are below pa#q. Thus the part‘itioning step of P’ into monotone

components does not introduce any diagonals with endpoint a#q. Therelore p,a#q,a

are adjacent vertices on a monotone chain. No vertex on the right chain is located

begween p and a, therefore by Remark 0.4, these vertices. wll fotm a convex

quadrilateral p,a#q,a,z in a tiuadrilatcrization of P’ as produced by Algorithm 6.3.
From this quadrilaterization, a qrx:ia’rilat,erization\ of P, is found, by replacing Lhi:?
yuadrilateral by p,q,a,z. ’ ' ' -

Complcm:i&y-analysit;: S;,cp 1, the sorting (;f the horizontal edges, can )2 done in

O(n log n) time. The algorithm visits, while executing Step 2, each edge exactly once.

As there are O(n) edges and the tree depth is worst-case O(log n} each update, insert,

o

or delete takes O(log n) time and the total complexity is O(n log n) worst case. ®
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6.5. Quadrilaterization of Simple Rectilinear Polygons

We are now able to combine the results derived in Sections 6.2 and 6,3, to solve the

quadrilaterization problem for sim ple rectilinear polygons.

Theorem 8.3. A simple, n-vertex rectilinear polygon can be quadrilaterized in

O(n log n} time. ‘ .

Proof: In Lemma 6.5 it was shown that a partitioning of rectilinear polygons into
monotone }')olegons admitting convex quadrilaterization can be performed in O(n log n)
time. By\Theorem 6.2 and Lemma 6.2 these polygons can b; quadrilaterized in linear
time. The total complexit‘y for decomposing an arbitrary simple rectilinexr polygon

into convex quadrilaterals is therefore O(n log n). ®

-

In this chapter we have prescnted several efficient algorithms for solving the
quadrilaterization problem for rectilinear polygons. Since arbitrary simple polygons do
not necessarily admit quadrilaterization, this partitioning problem is of \particular ]
relevance to rectilinear geometry. As was shown by Kahn, Klawe and Kleitman it. has
direct applications .while sc&lving‘ the Rectilinear Art Gallery Problem [KKK83].
Recently two more proofs of the Rectilinear Art Gallery Theorem have been presented
by O'Rourke [OR83]rand Mannila, Wood [MaW84]. It is interesting to observe that all
three proofs are diffcrel?t in nature. Kahn et al. usc an argument via quadrilaterization.

O'Rourke’s proof is direct except for one graph-theoretical argument. Mannila and

Wood's proaf is purely geometrical.

v
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6.6. Minimum Weight Quadrilaterization of Rectilinear
Polygons |

We complete our discussion of the éuadrilat.crization prob,lcom by cxamining the
problem of finding the minimum weight quadrilaterization for rectilinear polygons. In
some applications a decomposition that minimizes the total length of the diagonals used
to form thq decomposition is useful. In a joint work with M. Keil, we presented an
O(n') time algorithm for finding ti)e mintmum edge length quadrilaterization of a
rectilinear polygon [KS84]. The result is an extension of Klincsek's approach for finding
the minimum weight triangulation of a simple polygon [KI80]. Note that a brute force

approach would require examining in worst case an exponential number of possible

quadrilaterizations for a given rectilinear polygon.

+ The main tool used for solving-minimum edge length polygonal decomposition

problems is dynamic programming [Ke83, LPRS82] and we make use of it here. We let
W(i,j) be the weight of the minimum weight quadrilaterizatioﬁ of the subpolygon F,, of

P cut off from p, to p, (i.e. p,.p, 415-p,) The idea is to build up minimum ‘weight

quadrilaterizations of larger and larger subpolygons and solve the problem using
-dynamic programming. Let Q(i,j) store thezverti\ces of the quadrilaterization that

- contains ‘the diagonal p,p, in the mipimum weight quadrilaterization of FP;,. Define d,,

to be the Euclidean distance from p, to p, il p, and p, are visible from each other and

o otherwise.
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Algorithm 6.6: Minimum Weight Quadrilaterization
Input: A rectilinear polygon P.

Output: The weight of the minimum weight' quadrilaterization and the
quadrilaterization itself are stored in W(1,n) and Q respectively.

for k :=1to n-1do
fori:=1 to n-k do
begin
ji=1i+k
begin
ifk=1
’ then W(i,j) ;=0
else
- if k is even
then W(i,j) := +o0
else
begin
W(i,j) :==d,, + min(W(i,¢) + W(€,m) + W(m,j))
' \ (* where the minimumw is taken over all € and m such that
® , 1<€<m<j, and p,, py, Py, p; form
' - a convex quadrilateral *)
( Q(i,j) := (¢&,m)
~ (* indices of vertices exhibiting the minimum are stored.in Q *}

end ,
end :
end

-

" To print out all the diagonals of the minimumy weight quadrilaterization call the
procedure PRINT(1,n) defined as follows: \

Procedure PRINT(i,j) . -
begin
‘ if p,p; is not an edge of P
¥ ‘ then output segment I F ‘ .
where Q(i,j) = (¢,m) do - .
- begin . - .. , .
’ ' call PRINT(1,€); 3
‘ call PRINT(€,m); - . ‘
¢ ) . call PRINT (m,j)
end o
end. )
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Theorem 6.3. Algorithm 6.6 solves the minimum weight qmulrilalcri:a’{zdn
problem for rectilinear polygmlzs in O(n?) time.

Proof: Algorithm 6.6 is a straight-forward application of dynamic programming, we
therefore omit the proof of correctness. Complexity Analysia: The values of du can be
computed in a preprocessing step in O(n?) time. There are O(n?) values of \W(i,j) to be
calculated. Each of these requires examining O(n®) pairs of candidates for p; and p,,.

The total ran time of the algorithm is therefore O(n'). m

In this chapter we have presented sceveral algorithms to  solve the
quadrilaterization problem for rectilinear polygons. This partitioning problem is of
particular relevance in the context of rectilinear geometry, since rectilinear polygons, in
contrast to arbitrary simple polygons, always admit qumlrila}c\rizat,iou. Once a
quadrilaterization of a rectilinear polygon is available, a solution to the rectilinear
guard placement problem s obtained. Complexity results obtained for triangulation
and quadrilaterization problems are comparable, cxccp‘?‘for the respective minimum
weight partitioning problems. In O(n?) a minimum weight triangulation can be

obtained, whereas quadrilaterization takes O(n?) time.
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Concluding Remarks

The mai~n objective of this thesis has been to use the inherent structure of rectilinear
polyvgons in the design of g‘conw(.ric algorithms. A particular emphasis was placed on
gaining sin;plicit.y and efficiency, as exemplified in the algorithms fo|1; detecting whether
a giver; rectilinear polygon is star-shaped, monotone or edge-visible. Furthermore, a
unifying approach to many algorithms in rectilinear computational geometry has been
achieved through the labeling-scheme. The labeling scheme counsists of a pre-processing
step Tor many. algorithms. Based on the structural iui’ormmion oxll':xc(;*(l in this \(("p.‘
mxlmcqﬁcnt processing becomes simple ‘and conceptually clear.  The benefits of

unification became apparent when solving visibility problems (hidden-line elimination,

v '
. H

shortest rectilinear path and rectilinear convex hull).” ©

While this thesis has restricted itself to describing 'the labeling scheme for
rectilinear polygons, the scheme is not restricted to this domain. The Iaimling ‘sgheme

has been generaliz ¥ o arbitrary simple polygons, and algorithms using the tool are
L 4 .t '

Al ’ -

currently under investigation by the author.

The thesis has presented solutions to several guard placement problems for a -

'

variety of classes of rectilinear polygons. Since these solutions were first presented

~[SaT81], [Sa82], a number of other solutions to this and related problems have appeared

in the literature, eg. [OR82], [EOW83], [Wo84]. The entire thesis has concerned itself
" with analyzing algorithms for processing one object modeled by rectilinear polygons, at .
- . a time. Some work has been done on designing algorithms for processing more than one

rectilinear object, see for example [E‘LOWBS], [EOW83a), [NiP82], or [Wo84]. In

general we observe a growing interest in problems in rectilinear geometry.
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problems still remain open. These include: ‘

. : J S 1136

+ -

While solving some problems in rectilincar computational geometry, many’

.

(1) Is £2n log n) lower bound for quadrilateralization of simple rectilinear pc')lygons?
b : ) A

\

(2) We have establishéd a necessary condition for a given rectilinear polyéon to be

Several aspects of the guard problem remain unsolved:

simple, which is based on the labeling scheme. Can a sufficient condition for

simplicity be established, which can similarly be tested in linear time? Or is

XAnlogn) lower bound for this problem?

1

(3) The algorithm for plaéing guards in an n-vertex rectilinear polygon as presented in

»

n . .
/ Chapter 6 always places T guards, even if less guards would suffice for.a given
/) N L

(4).

()

~

polygon. To the author's knowledge, no polynomial-time algorithm is-known for
computing the .minimum number of guards necessary for a given rectilinear

polygon, nor for placing these guards.

‘

n' . B . . . ' .‘.
[TJ guards are sometimes necessary and always sufficient to guard any rectilinear

a4 ‘ -

a
Y]

g
N
B

polygon., For simple polygons l;;—l guards are always sufficient and sometimes

g

nccessary. Can one characterize the largest class of simple polygons for which

! L

n .. .
T guards are always sufficient? I
. .

i
1

Given a convex quadrilateralization of a rectilinear polygon, a triangulation can
always be obtained by inserting one diagonal in each convex quadrilateral. By just
rem;)\‘(ing diagonals from an arbitrary triangulation of a rectilinear pdlygon, it is
naot always possible to form a convex ﬁuadrilateralization: Does there: exist an

independent characterization of triangulations, for which this would always be

ke

.

possible? . ' .
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