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Abstract - English

The complex biochemical composition and nanoscale nature of extracellular vesicles (EVs) pose
significant challenges in developing efficient and uniform analytical techniques. Surface-enhanced
Raman Spectroscopy (SERS) offers a promising solution by providing detailed molecular
fingerprints of vesicles in a label-free manner. The MoSERS platform, developed in Mahshid lab,
enables the probing of EVs at the single-vesicle level with reduced sample processing and volume
requirements. This capability allows for the specific examination of tumor-derived EVs carrying
disease biomarkers, amongst a diverse background of biovesicles. However, standardized
protocols for decoding SERS spectra are still lacking due to the heterogeneous nature of EVs,
resulting in overlapping peaks with thousands of features per spectrum. Machine learning (ML)
presents a potential solution, as its statistical models can capture underlying patterns within
complex datasets. This study employed a ResNet-based Convolutional Neural Network (CNN) for
its natural feature extraction capabilities via convolutional layers. The study was designed to
account for the reduced representation of patient samples using a larger number of healthy samples
(n=16) compared to two different types of brain tumor patients (n = 8, each). A SERS data library
of single EV spectra was collected in the lab. The feasibility of increasing binary classification
accuracy between the two populations through direct adjustments of the sample train/test
distribution was explored. An optimal ratio between the healthy and patient training sets was
determined for the two cancer paradigms, respectively. Four dimensionality reduction
techniques—spectra resampling, bio-inactive region removal, unsupervised Autoencoder (AE)
learning, and Gradient-weighted Class Activation Mapping (Grad-CAM)—were investigated to
further improve classification accuracy. Ultimately, the resampling approach yielded a significant
accuracy improvement of ~10% compared to the baseline for both cancer models. This supports
the hypothesis that the height and relative position of SERS peaks are critical in guiding the
model’s predictions. Additionally, the proposed resampling method proved effective across two
cancer models and follows a standardized data treatment protocol, suggesting its potential

applicability in other SERS-based EV studies for facilitating cancer diagnosis.
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Abstract - French

La composition biochimique complexe et la nature nanométrique des vésicules extracellulaires
(EVs) posent des défis importants pour le développement de techniques analytiques efficaces et
uniformes. La spectroscopie Raman exaltée de surface (SERS) offre une solution prometteuse en
fournissant des empreintes moléculaires détaillées des vésicules de manicre sans marquage. La
plateforme MoSERS, développée dans le laboratoire Mahshid, permet l'exploration des EVs au
niveau de la vésicule unique avec une réduction du traitement des échantillons et des volumes
requis. Cette capacité permet un examen spécifique des EVs dérivées de tumeurs portant des
biomarqueurs de maladies, au sein d’un arriere-plan diversifié de biovésicules. Cependant, les
protocoles standardisés pour l'interprétation des spectres SERS font encore défaut en raison de la
nature hétérogéne des EVs, entrainant des pics qui se chevauchent avec des milliers de
caractéristiques par spectre. L'apprentissage automatique (ML) présente une solution potentielle,
car ses modeles statistiques peuvent capturer les motifs sous-jacents dans des ensembles de
données complexes. Cette étude a utilisé un réseau de neurones convolutifs (CNN) basé sur ResNet
pour ses capacités naturelles d'extraction de caractéristiques via des couches convolutives. L'é¢tude
a €t¢ congue pour tenir compte de la représentation réduite des échantillons de patients en utilisant
un plus grand nombre d'échantillons sains (n = 16) par rapport a deux types différents de patients
atteints de tumeurs cérébrales (n = 8 chacun). Une bibliothéque de données SERS des spectres
d'EV uniques a été collectée en laboratoire. La faisabilit¢ d'augmenter la précision de la
classification binaire entre les deux populations par des ajustements directs de la distribution des
échantillons d'entrainement/test a ¢été explorée. Un ratio optimal entre les ensembles
d'entrainement sains et patients a été déterminé pour les deux paradigmes du cancer,
respectivement. Quatre techniques de réduction de dimensionnalit¢é — rééchantillonnage des
spectres, suppression de la région bio-inactive, apprentissage non supervisé par autoencodeur (AE)
et cartographie d'activation par classe pondérée par gradient (Grad-CAM) — ont été étudiées pour

améliorer davantage la précision de la classification. Finalement, 1'approche de rééchantillonnage



a conduit a une amélioration significative de la précision d'environ 10 % par rapport a la ligne de
base pour les deux modeles de cancer, soutenant I'hypothése selon laquelle la hauteur et la position
relative des pics SERS sont essentielles pour guider les prédictions du mod¢le. De plus, la méthode
de rééchantillonnage proposée s'est avérée efficace dans deux modeles de cancer et suit un
protocole standardisé de traitement des données, suggérant son applicabilité¢ potentielle dans

d'autres études sur les EVs basées sur SERS pour faciliter le diagnostic du cancer.

Mots-clés : Apprentissage profond, Spectroscopie Raman exaltée de surface, Réduction de

dimensionnalité, Vésicules extracellulaires
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1 Introduction

The integration of artificial intelligence (AI) and machine learning (ML) into biosensors
has revolutionized the field of medical data analysis. By enabling the rapid and accurate processing
of vast and complex datasets, these technologies significantly reduce the time and effort
traditionally required for diagnosis. Machine learning algorithms, with their ability to learn and
adapt to new data in an automatic manner with little-to-no human intervention, can identify subtle
patterns and correlations that might be overlooked by human analysts. This capability is
particularly valuable in detecting early indicators of disease, predicting patient outcomes, and
tailoring treatment plans to individual patients. By leveraging these technologies, biosensors can
now provide deeper insights and more robust analyses, enhancing their utility and effectiveness in

both research and clinical applications.

This thesis aims to explore the use of ML and dimensionality reduction techniques in
analyzing spectral data for single extracellular vesicles (EVs) acquired using surface-enhanced
Raman spectroscopy on the patented MoSERS nanostructure platform [1]. Specifically, a ResNet-
based convolutional neural network (CNN) will serve as the base algorithm, supplemented by
customized dimensionality reduction modules. CNN-based deep learning is widely applied in
spectral analysis due to its ability to handle complex datasets and uncover subtle connections
among individual peaks. However, with the surge in the number of features per spectrum—
approaching 3,000—the CNN model faces challenges from the "curse of dimensionality." These
challenges include increased computational resource demands, insufficient generalization across
populations, and potential performance degradation in high-dimensional spaces. Therefore, this
thesis will investigate how dimensionality reduction techniques can mitigate these issues,

improving model performance with limited data and resources.

This thesis begins with a comprehensive literature review on recent developments in
commonly employed optical biosensors and the integration of ML in spectral data analysis for
biosensors (Section 2). Next, the body of the thesis aims to strengthen the customizing process of
ML for clinical applications (Section 3). To simulate a more realistic clinical setup and to better

tailor the model for potential future integration into diagnostic workflows, the analysis will first
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address data imbalances where healthy samples greatly outnumber patient samples. Techniques to
overcome this challenge include optimizing the distribution of training and testing sets and
employing the “leave-one-out” cross-validation approach. Following this, four dimensionality
reduction methods—spectrum resampling, bio-inactive region removal, Autoencoder (AE), and
Gradient-weighted Class Activation Mapping (Grad-CAM )—will be implemented and compared.
Their effectiveness will be evaluated based on the improvement in binary classification accuracy
between the healthy and diseased groups relative to the baseline. Lastly, a comprehensive

discussion of findings and potential future pathways are included in Section 4.

2 Review of Relevant Literature: Optical Sensors and Machine
Learning Assisted spectral data processing and analysis for
Extracellular Vesicle Characterization

2.1 Introduction

Intercellular communication via the release of membrane-bound particles, also known as
extracellular vesicles (EVs), is a relatively new discovery that has revolutionized the field of cell
biology [2]. EVs are a heterogenous family of vesicles derived from endosome or plasma
membranes and can be found in all biofluids, including blood, saliva, urine, and cerebrospinal fluid.
EV is a general name for these vesicles, but based on their structure and biogenesis, EVs can be
further categorised into three main types following a decreasing order in average size: apoptotic
bodies (50-5000 nm), microvesicles (100-1000 nm), and exosomes (30-100 nm). Detailed
information on EV subtypes has been discussed extensively in previous reviews [3], [4], [5], [6],
[7]. Briefly, apoptotic bodies are released by dying cells and are formed through a separation of
the plasma membrane from the cytoskeleton. In contrast, microvesicles are formed by direct
outward budding of the plasma membrane. Exosomes are one of the most studied EV subtypes
and typically originate from the inward budding of the membrane of early endosomes. Since
exosomes and microvesicles cannot be distinguished by size alone and their overlapping protein
densities further complicate the stratification, the general term EVs will be used to describe these
populations unless their cells of origin can be defined [3], [8], [9]. The composition of EVs

typically includes lipids, proteins, nucleic acids, and biomarkers of certain diseases depending on
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their designated pathways. Regardless of the cells of origin, a set of proteins known as “marker
proteins” involved in the EV formation process can always be expected to be found and have been
used extensively for the efficient targeting of EVs. Furthermore, EVs can effectively shield their
cargo from enzymatic degradation by the extracellular environment. Therefore, the molecular
cargo carried by EVs may be used as an indicator of the pathological state of parental cells. This
prompts their exploration as potential biomarkers for the early detection and monitoring of cancer
[10], [11]. The uptake of EVs by the recipient cell can trigger further intercellular signalling,
potentially leading to modification of the physiological state or microenvironment of recipient
cells [6], [7]. Numerous studies have suggested that EVs play an important role in disease
progression, including cancer metastasis. Moreover, EVs also hold therapeutic potential in
controlled drug delivery [12], [13]. Thus, further investigation on both the morphology and

biochemical compositions of EVs is imperative for advanced clinical applications.

Based on the extensive morphological heterogeneity characteristic of EVs, no single
detection technique to date can capture the full-size range of EVs, let alone a single uniform
protocol across different studies[9]. A 2016 international survey showed vast differences in
techniques used for both isolation and characterization of EVs, where the choice of method may
impact the amount, type, and purity of the recovered EVs [14], [15]. In response to these emerging
challenges, numerous biosensors such as electrochemical, photoelectrochemical, and optical
sensors have been used for studying EVs. In particular, optical sensors offer the advantage of real-
time measurement with high sensitivity, stability, and resistance to background noise [12], [13],
[16]. The combination with customized nanostructure and machine learning (ML) assisted mass

data analysis enables highly sensitive and cost-effective diagnosis based on EVs.

2.2 Optical sensors for EV identification and characterization

Optical sensors can be divided into two subcategories: labelled and label-free. The former
requires additional molecular tags such as fluorescent dyes or lipophilic tracer dyes and can be
quite effective for the detection of target molecules with low abundance in the sample. However,
due to the vast heterogeneity and limited understanding of EVs’ surface chemistry, it can be

challenging to find an appropriate label. Moreover, the aggregation of labels due to non-EV
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particles may lead to contradictory results. In contrast, label-free optical sensors allow for non-
invasive EV probing with greatly reduced wet lab processes and a minimum effect from false-

positive results [17], [18], [19].

With the numerous modern techniques developed for EV detection and characterization, a
single technique is still not capable of capturing the full landscape of the complete spectrum of EV
properties [14]. The rather recent emergence of optical methods for EV detection may shed light
onto new pathways for identifying EV surface receptors and membrane proteins, in addition to
their internal content with the potential of probing at single-vesicle level. The following section
describes the general working principle of two commonly employed label-free EV characterization
techniques: Surface Plasmon Resonance (SPR) and Surface-Enhanced Raman Spectroscopy
(SERS). Several examples of their implementations in EV studies are provided to demonstrate

their wide applications.
2.2.1 Surface Plasmon Resonance (SPR)

Surface plasmon resonance (SPR) occurs when an incident electromagnetic wave (i.e light)
propagates from a medium with a relatively higher refractive index (RI) to one with a lower RI. In
a commercial configuration, a Kretschmann geometry setup is usually employed using a high-
reflective index glass prism with the attenuated total reflection (ATR) method and a thin metal
surface with a relatively low RI [20], [21]. Reflection, especially total internal reflection (TIR),
tends to occur at the interface of the two media, rather than refraction. At a certain incident angle,
a portion of the energy from the fully reflected light will be transferred into the medium with the
lower RI and increases the intensity of the local electric field. The resulting collective oscillation
of the electrons that propagate along the surface is known as the surface plasmon. The defined
SPR angle where resonance occurs is dependent on the refractive index of the medium near the
metal surface. Consequently, any small changes in the sensing medium, such as biomolecular
binding interactions between an immobilised ligand and analyte, can lead to a shift in the intensity
of incident light, which is calculated as a function of the incident angle [22], [23]. Conventional

SPR platforms are used to perform bulk measurements and typically have a limit of detection
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(LOD) on the order of 10°~107 EVs/mL. Metallic nanostructures or nanoparticles can also enhance

SPR signals to reach a LOD as low as 5 x 10° EVs/mL [24].

Localised surface plasmon resonance (LSPR) refers to the special case where the light
wave is trapped within conductive nanoparticles (NPs) that are smaller than the wavelength of
incident light. This situation leads to coherent localised plasmon oscillations and can be fine-tuned
based on the size, structure, and interparticle separation of NPs. For example, Ag NPs can be
electrodeposited over PDMS for increased EV detection sensitivity [25]. However, even minimal
variations in nanostructure dimensions could potentially affect the optical resonance conditions
and thus the sensitivity and reproducibility of the assay outcome. The increase in chip costs due to
the fabrication of intricate nanostructures should also be considered, especially during the

translation into clinical studies [9], [23].

One of the most renowned EV-SPR studies was carried out by the Im group termed the
nano-plasmonic exosome (nPLEX) sensor, where they proposed sensor included periodic
nanohole arrays patterned over a gold film [26]. Building upon their previous studies on the nPLEX
platform, the same group has further advanced their technology to achieve single-EV resolution
utilizing plasmon-enhanced fluorescence detection combined with periodic gold nanowell
structures, referred to as FLEX (Figure 2.1 (A)) [27]. With their established protocol, the gold
wafers were batch fabricated and the optimal diameter for each gold nanowell was determined to
be 200 nm for additional long-range surface plasmon resonance enhancement. The resonance
wavelengths can be conveniently tuned by adjusting the periodicity of the arrays. When compared
to a flat gold surface, FLEX demonstrated a 6-fold increase in the number of sEVs detected from
a cholangiocarcinoma (CCA) cell line. Such signal amplification not only facilitated precise EV
subpopulation identification but also mitigated potential biases from the analysis of aggregated
EVs with more intense signals. Clinical studies were conducted using bile samples from both CCA
patients (n = 17) and benign cases (n = 8). A distinct differential pattern from marker-positive
tumor-derived EVs was observed between the two groups using three pre-determined biomarkers
(EpCAM, MUCI, and EGFR). Another study that utilized similar concepts was produced by Hu’s
group, where they also applied an antibody microarray printed on gold films for exosome capture

and detection in combination with SPR, shown in Figure 2.1 (B) [22]. However, the microfluidic
17



compartment is rather simple and only serves as a sample delivery unit to the SPR platform.
Regardless of the setup, this assay was able to identify unpurified EVs from cell culture supernatant
(CCS) without enrichment. Moreover, the assay showed a clear distinction between two human
hepatocellular carcinoma cell lines with different metastatic potentials based on the abundance of

surface proteins and lipid mass.

It is noteworthy that in the SPR biosensors discussed above, the microfluidic components
are primarily comprised of a single chamber connected to a straight microchannel, where the sole
function of this structure is to deliver pre-processed samples to the sensing platform. While these
designs serve the fundamental purpose of delivering samples to the sensor and may increase the
multiplicity of the device by incorporating additional channels, they contribute relatively little
value to the overall setup. The integration of optical sensors with microfluidic sample processing

units is still a largely unexplored area in the field of EV biosensors.
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Figure 2.1 Optical platforms for EV profiling and characterization with SPR and SERS.

(A) Fluorescence-amplified extracellular vesicle sensing technology (FLEX) can capture immunolabelled EVs on a
plasmonic gold surface. The finite-difference time-domain (FDTD) simulation shows the enhanced electromagnetic
fields near the embedded nanowell structure, which leads to amplified fluorescence signals. EpCAM, MUCI, and
EGFR were used as Cholangiocarcinoma (CCA) markers. Reproduced with permission from [27]. Copyright 2023,
Advanced Science. (B) Schematic view of SPR imaging platform combined with specific antibody microarrays for
the detection of EVs in cell culture supernatant. The antibodies are immobilized over an ultrathin gold film and the
optical path is preset at a fixed angle of incidence for capturing changes in the refractive index upon binding.
Reproduced with permission from [28]. Copyright 2014, Analytical Chemistry (C) MoS2-Plasmonic Nanocavities
(MoSERS) platform for label-free single EV SERS profiling. The microchip can achieve up to 97% single EV
confinement using less than 10uL sample as a combined effect of embedded MoS2 monolayer and optimized
nanocavity dimension. SEM and fluorescent micrographs show EV loaded individually into cavities. Combined with
machine learning algorithms. Reproduced with permission from [10]. Copyright 2023, American Chemical Society.
(D) Schematic diagram of the proposed PO nanoprobe biosensor, where the cells’ production of reactive oxygen
species (ROS) and antioxidants under programmed apoptosis leads to shift in surface plasma resonance. Reproduced
with permission from [29]. Copyright 2022, Biosensors and Bioelectronics.

2.2.2 Surface enhanced Raman Spectroscopy (SERS)

First discovered by C.V. Raman in 1928, Raman scattering only accounts for a very small
fraction of scattered light and occurs when an excitation leads to scattered photons with a different

frequency compared to that of the incident photon [30], [31]. This inelastic scattering of laser light
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leads to the vibration of chemical bonds in the incident medium, and some photons are scattered
with a particular shift in energy levels as a function of both the structural and chemical
characteristics of the sample. The frequency can be subsequently recorded and processed into the
form of a Raman spectrum, which can be regarded as biochemical “fingerprints” that correspond
to the molecular-level composition of the analyte. This technique has been used to characterize the
distribution of various cellular components with high spatial resolution [5], [9]. As mentioned
previously, the molecular content of EVs may serve as potential biomarkers for liquid biopsy. Thus,
the non-destructive and label-free nature of Raman spectroscopy makes it an ideal technique for
studying the subtle differences in EV membrane properties and molecular content. Although it is
not as commonly used in comparison to previously discussed techniques, Raman spectroscopy has
been adapted for characterizing both the soluble and the vesicular components of cell secretions
from conditioned medium (CM) [32]. This characterization may provide more insight into the

soluble factors that synergistically cooperate with EVs as part of the regenerative effect of CM.

As approximately 1 in 107 incident photons will undergo inelastic scattering, Raman
spectroscopy is inherently limited by extremely low signal intensity. Consequently, this limitation
needs to be balanced with either increased laser power, prolonged scanning duration, or higher
sample concentration. Therefore, surface-enhanced Raman spectroscopy (SERS) was developed
in 1974, whereby the Raman signal can be enhanced dramatically up to 1014 times [33], [34]. This
is achieved by placing the sample molecules between the gaps of certain nanomaterials (also
known as “hot spots”). The increase in signal intensity stems from the SPR phenomenon
mentioned previously, which is the oscillation of electrons at the vicinity of a metal or
semiconductor structure that leads to an enhanced electric field upon interaction with the incident
electromagnetic waves. Thus, SERS not only retains the advantages of Raman spectroscopy in that
1t maintains the vibrational modes of molecules, but also overcomes its aforementioned limitations
[35]. This improvement is particularly important for studying EVs as the populations of disease
related EVs are scarce compared to healthy ones. When combined with customised platforms or
enhancement probes, SERS has the potential to perform EV profiling with single-molecule level

resolution and is thus one of the most extensively used techniques in the field of EVs [36].
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A recent publication from the Mahshid lab featured a label-free sEV plasmonic assay in
combination with SERS, named the MoSERS platform (Figure 2.1 (C)) [37]. The platform had a
novel structure consisting of a plasmonic silver/ ZnO bilayer with an embedded single-layer MoS;
floor and plasmonic cavity arrays at the surface. The MoS: monolayer provided natural physical
attraction forces to the lipid bilayer, specifically Coulomb and van der Waals forces, facilitating
the nanoconfinement of EVs without any biological recognition elements. The EV trapping ability
of the MoSzlayer was further confirmed by examining fluorescently labelled EVs under TEM,
where the fluorescent intensity (i.e. number of captured EVs) was twice the intensity from the
nanocavities without MoS,. The photonic cavities had an optimized diameter at 250 nm to host
precisely one single EV, providing sufficient electromagnetic field enhancement for obtaining
sEV-resolution SERS spectra. The platform’s sEV profiling capability was validated using
Glioblastoma (GBM) cell lines, where MoSERS successfully identified the presence of EGFRVIII
oncogenic mutation with the detection limit being as low as 1.23%. Furthermore, when interfaced
with a convolutional neural network (CNN) ML algorithm, MoSERS achieved an 8§7% diagnostic
accuracy using plasma samples with complex backgrounds from GBM patients (n=12) and healthy

controls (n=8), successfully detecting GBM signature mutations in all patients.

Most of the SERS platforms made with noble metals are not tunable due to prefixed
morphology, which may lead to low compatibility with ambient refractive index (RI) and other
complementary detection techniques such as colorimetry. Meanwhile, certain semiconductors,
such as TiO; and ZnO, demonstrated significantly improved biocompatibility. However, they are
also limited by insufficient electron transfer due to a lack of free ions and require a strong
electromagnetic field during operation. The increased laser intensity may also damage the
structural integrity of samples [38], [39]. This may be overcome by the development of novel
Raman probes. For example, a novel Raman probe was developed using ultra-thin degenerate
molybdenum oxide doped with H+, a type of “plasmonic oxide” (PO) material [40] (Figure 2.1
(D)). The free electron concentration can be adjusted based on the level of H+ doping, and the
subsequent reaction with redox products from specific cancer EVs can lead to an observable
variation in spectra intensity. The proposed “nanoflake” structure exhibited a homogeneous

increase in plasma resonance at the edge. This system was combined with a serpentine-shaped
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microfluidic chip with engraved grooves to hydrodynamically separate individual molecules from
the suspension and minimise possible interference from the liquid background. The device
successfully differentiated between the THP-1 and HEK-293 cell lines based solely on their SERS
patterns with an accuracy of over 90%. However, more advanced studies with clinical samples and

rapid on-chip cell immobilization have yet to be conducted.
2.2.3 Other Optical-based Biosensors

Apart from the more commonly studied optical biosensors, nanophotonic resonators follow
a similar working principle to SPR but operate using refractometric sensing, where the interactions
between the analyte and surface-immobilized capture molecules lead to a change in the dielectric
properties of the resonators. This change can be translated into a shift in resonance wavelength
and used for the quantification of biological interactions. Jahani et al. addressed the possibility of
tracking the red shift of the resonance spectrum upon target binding over a narrow window instead
of the entire bandwidth, which eliminated the need for cumbersome and expensive spectrometers
(Figure 2.2 (A)) [41]. They also employed diatomic metasurfaces with quasi-bound states in the
continuum (BICs), where the light wave remains completely localised in the vicinity of the surface.
When combined with a customized image processing system, their device detected on average
0.41 nanoparticles/um?. Real-time quantification of ovarian cancer-related EV binding was
performed with an LOD as low as 1.23x108 particles/mL. This study demonstrated a new path for
label-free biomolecular studies but focused on the mechanism and setup of the assay, while the

detection of EVs was used as a proof-of-concept.

Based on a similar principle of detecting changes in RI, Wang and his group proposed a
label-free photonic crystal (PC) biosensor for EV detection shown in Figure 2.2 (B) [42]. This
biosensor consists of a narrowband optical reflector that reflects a particular wavelength upon
excitation. Moreover, the PC surface is patterned with one-dimensional subwavelength gratings,
which facilitates phase matchings between the excitation light and the PC resonances and leads to
narrowband reflection. The PC detector was integrated with a four-channel microfluidic chip to
increase the throughput, where each channel was designed for the host, parasitic, positive, and
negative reference samples, respectively. Compared to the conventional SPR devices discussed
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previously, PC offers the unique advantage of reduced fabrication cost with comparable sensitivity
and does not have the need for signal enhancers due to the naturally narrow line width of the PC
resonance. However, current PC studies remain at a preliminary stage since only one type of EV
surface protein was used. As a result, future investigations are needed to fully validate its

application in clinical settings.

On the other hand, a unique method of sEV entrapment, termed geometry-induced
electrohydrodynamic tweezer (GET), was achieved by generating an electrohydrodynamic
potential using a finite circular array of gold nanoholes with a void region in the middle [43].
Shown in Figure 2.2 (C), the applied opposing alternating current (a.c.) electro-osmotic flows can
form a stagnation zone at the central void region with minimum electrohydrodynamic potential.
The interaction between the EV’s charged double lipid layer and its image charge in the conduction
plane contributes to the localization of particles in a parallel manner. Single vesicle entrapment
was ensured by finding the optimal A.C. frequency at 3.5 kHz using a void region of 4 um diameter,
where the dipole-dipole repulsion force overcomes the drag force generated by the elect