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Abstract - English  

The complex biochemical composition and nanoscale nature of extracellular vesicles (EVs) pose 

significant challenges in developing efficient and uniform analytical techniques. Surface-enhanced 

Raman Spectroscopy (SERS) offers a promising solution by providing detailed molecular 

fingerprints of vesicles in a label-free manner. The MoSERS platform, developed in Mahshid lab, 

enables the probing of EVs at the single-vesicle level with reduced sample processing and volume 

requirements. This capability allows for the specific examination of tumor-derived EVs carrying 

disease biomarkers, amongst a diverse background of biovesicles. However, standardized 

protocols for decoding SERS spectra are still lacking due to the heterogeneous nature of EVs, 

resulting in overlapping peaks with thousands of features per spectrum. Machine learning (ML) 

presents a potential solution, as its statistical models can capture underlying patterns within 

complex datasets. This study employed a ResNet-based Convolutional Neural Network (CNN) for 

its natural feature extraction capabilities via convolutional layers. The study was designed to 

account for the reduced representation of patient samples using a larger number of healthy samples 

(n = 16) compared to two different types of brain tumor patients (n = 8, each). A SERS data library 

of single EV spectra was collected in the lab. The feasibility of increasing binary classification 

accuracy between the two populations through direct adjustments of the sample train/test 

distribution was explored. An optimal ratio between the healthy and patient training sets was 

determined for the two cancer paradigms, respectively. Four dimensionality reduction 

techniques—spectra resampling, bio-inactive region removal, unsupervised Autoencoder (AE) 

learning, and Gradient-weighted Class Activation Mapping (Grad-CAM)—were investigated to 

further improve classification accuracy. Ultimately, the resampling approach yielded a significant 

accuracy improvement of ~10% compared to the baseline for both cancer models. This supports 

the hypothesis that the height and relative position of SERS peaks are critical in guiding the 

model’s predictions. Additionally, the proposed resampling method proved effective across two 

cancer models and follows a standardized data treatment protocol, suggesting its potential 

applicability in other SERS-based EV studies for facilitating cancer diagnosis.  
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Abstract - French  

La composition biochimique complexe et la nature nanométrique des vésicules extracellulaires 

(EVs) posent des défis importants pour le développement de techniques analytiques efficaces et 

uniformes. La spectroscopie Raman exaltée de surface (SERS) offre une solution prometteuse en 

fournissant des empreintes moléculaires détaillées des vésicules de manière sans marquage. La 

plateforme MoSERS, développée dans le laboratoire Mahshid, permet l'exploration des EVs au 

niveau de la vésicule unique avec une réduction du traitement des échantillons et des volumes 

requis. Cette capacité permet un examen spécifique des EVs dérivées de tumeurs portant des 

biomarqueurs de maladies, au sein d’un arrière-plan diversifié de biovésicules. Cependant, les 

protocoles standardisés pour l'interprétation des spectres SERS font encore défaut en raison de la 

nature hétérogène des EVs, entraînant des pics qui se chevauchent avec des milliers de 

caractéristiques par spectre. L'apprentissage automatique (ML) présente une solution potentielle, 

car ses modèles statistiques peuvent capturer les motifs sous-jacents dans des ensembles de 

données complexes. Cette étude a utilisé un réseau de neurones convolutifs (CNN) basé sur ResNet 

pour ses capacités naturelles d'extraction de caractéristiques via des couches convolutives. L'étude 

a été conçue pour tenir compte de la représentation réduite des échantillons de patients en utilisant 

un plus grand nombre d'échantillons sains (n = 16) par rapport à deux types différents de patients 

atteints de tumeurs cérébrales (n = 8 chacun). Une bibliothèque de données SERS des spectres 

d'EV uniques a été collectée en laboratoire. La faisabilité d'augmenter la précision de la 

classification binaire entre les deux populations par des ajustements directs de la distribution des 

échantillons d'entraînement/test a été explorée. Un ratio optimal entre les ensembles 

d'entraînement sains et patients a été déterminé pour les deux paradigmes du cancer, 

respectivement. Quatre techniques de réduction de dimensionnalité — rééchantillonnage des 

spectres, suppression de la région bio-inactive, apprentissage non supervisé par autoencodeur (AE) 

et cartographie d'activation par classe pondérée par gradient (Grad-CAM) — ont été étudiées pour 

améliorer davantage la précision de la classification. Finalement, l'approche de rééchantillonnage 
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a conduit à une amélioration significative de la précision d'environ 10 % par rapport à la ligne de 

base pour les deux modèles de cancer, soutenant l'hypothèse selon laquelle la hauteur et la position 

relative des pics SERS sont essentielles pour guider les prédictions du modèle. De plus, la méthode 

de rééchantillonnage proposée s'est avérée efficace dans deux modèles de cancer et suit un 

protocole standardisé de traitement des données, suggérant son applicabilité potentielle dans 

d'autres études sur les EVs basées sur SERS pour faciliter le diagnostic du cancer. 

Mots-clés : Apprentissage profond, Spectroscopie Raman exaltée de surface, Réduction de 

dimensionnalité, Vésicules extracellulaires 
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1 Introduction  

The integration of artificial intelligence (AI) and machine learning (ML) into biosensors 

has revolutionized the field of medical data analysis. By enabling the rapid and accurate processing 

of vast and complex datasets, these technologies significantly reduce the time and effort 

traditionally required for diagnosis. Machine learning algorithms, with their ability to learn and 

adapt to new data in an automatic manner with little-to-no human intervention, can identify subtle 

patterns and correlations that might be overlooked by human analysts. This capability is 

particularly valuable in detecting early indicators of disease, predicting patient outcomes, and 

tailoring treatment plans to individual patients. By leveraging these technologies, biosensors can 

now provide deeper insights and more robust analyses, enhancing their utility and effectiveness in 

both research and clinical applications. 

This thesis aims to explore the use of ML and dimensionality reduction techniques in 

analyzing spectral data for single extracellular vesicles (EVs) acquired using surface-enhanced 

Raman spectroscopy on the patented MoSERS nanostructure platform [1]. Specifically, a ResNet-

based convolutional neural network (CNN) will serve as the base algorithm, supplemented by 

customized dimensionality reduction modules. CNN-based deep learning is widely applied in 

spectral analysis due to its ability to handle complex datasets and uncover subtle connections 

among individual peaks. However, with the surge in the number of features per spectrum—

approaching 3,000—the CNN model faces challenges from the "curse of dimensionality." These 

challenges include increased computational resource demands, insufficient generalization across 

populations, and potential performance degradation in high-dimensional spaces. Therefore, this 

thesis will investigate how dimensionality reduction techniques can mitigate these issues, 

improving model performance with limited data and resources. 

This thesis begins with a comprehensive literature review on recent developments in 

commonly employed optical biosensors and the integration of ML in spectral data analysis for 

biosensors (Section 2). Next, the body of the thesis aims to strengthen the customizing process of 

ML for clinical applications (Section 3). To simulate a more realistic clinical setup and to better 

tailor the model for potential future integration into diagnostic workflows, the analysis will first 
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address data imbalances where healthy samples greatly outnumber patient samples. Techniques to 

overcome this challenge include optimizing the distribution of training and testing sets and 

employing the “leave-one-out” cross-validation approach. Following this, four dimensionality 

reduction methods—spectrum resampling, bio-inactive region removal, Autoencoder (AE), and 

Gradient-weighted Class Activation Mapping (Grad-CAM)—will be implemented and compared. 

Their effectiveness will be evaluated based on the improvement in binary classification accuracy 

between the healthy and diseased groups relative to the baseline. Lastly, a comprehensive 

discussion of findings and potential future pathways are included in Section 4. 

2 Review of Relevant Literature: Optical Sensors and Machine 

Learning Assisted spectral data processing and analysis for 

Extracellular Vesicle Characterization  

2.1 Introduction  

Intercellular communication via the release of membrane-bound particles, also known as 

extracellular vesicles (EVs), is a relatively new discovery that has revolutionized the field of cell 

biology [2]. EVs are a heterogenous family of vesicles derived from endosome or plasma 

membranes and can be found in all biofluids, including blood, saliva, urine, and cerebrospinal fluid. 

EV is a general name for these vesicles, but based on their structure and biogenesis, EVs can be 

further categorised into three main types following a decreasing order in average size: apoptotic 

bodies (50-5000 nm), microvesicles (100-1000 nm), and exosomes (30-100 nm). Detailed 

information on EV subtypes has been discussed extensively in previous reviews [3], [4], [5], [6], 

[7]. Briefly, apoptotic bodies are released by dying cells and are formed through a separation of 

the plasma membrane from the cytoskeleton. In contrast, microvesicles are formed by direct 

outward budding of the plasma membrane. Exosomes are one of the most studied EV subtypes 

and typically originate from the inward budding of the membrane of early endosomes. Since 

exosomes and microvesicles cannot be distinguished by size alone and their overlapping protein 

densities further complicate the stratification, the general term EVs will be used to describe these 

populations unless their cells of origin can be defined [3], [8], [9]. The composition of EVs 

typically includes lipids, proteins, nucleic acids, and biomarkers of certain diseases depending on 
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their designated pathways. Regardless of the cells of origin, a set of proteins known as “marker 

proteins” involved in the EV formation process can always be expected to be found and have been 

used extensively for the efficient targeting of EVs. Furthermore, EVs can effectively shield their 

cargo from enzymatic degradation by the extracellular environment. Therefore, the molecular 

cargo carried by EVs may be used as an indicator of the pathological state of parental cells. This 

prompts their exploration as potential biomarkers for the early detection and monitoring of cancer 

[10], [11]. The uptake of EVs by the recipient cell can trigger further intercellular signalling, 

potentially leading to modification of the physiological state or microenvironment of recipient 

cells [6], [7]. Numerous studies have suggested that EVs play an important role in disease 

progression, including cancer metastasis. Moreover, EVs also hold therapeutic potential in 

controlled drug delivery [12], [13]. Thus, further investigation on both the morphology and 

biochemical compositions of EVs is imperative for advanced clinical applications. 

Based on the extensive morphological heterogeneity characteristic of EVs, no single 

detection technique to date can capture the full-size range of EVs, let alone a single uniform 

protocol across different studies[9]. A 2016 international survey showed vast differences in 

techniques used for both isolation and characterization of EVs, where the choice of method may 

impact the amount, type, and purity of the recovered EVs [14], [15]. In response to these emerging 

challenges, numerous biosensors such as electrochemical, photoelectrochemical, and optical 

sensors have been used for studying EVs. In particular, optical sensors offer the advantage of real-

time measurement with high sensitivity, stability, and resistance to background noise [12], [13], 

[16]. The combination with customized nanostructure and machine learning (ML) assisted mass 

data analysis enables highly sensitive and cost-effective diagnosis based on EVs. 

2.2 Optical sensors for EV identification and characterization 

Optical sensors can be divided into two subcategories: labelled and label-free. The former 

requires additional molecular tags such as fluorescent dyes or lipophilic tracer dyes and can be 

quite effective for the detection of target molecules with low abundance in the sample. However, 

due to the vast heterogeneity and limited understanding of EVs’ surface chemistry, it can be 

challenging to find an appropriate label. Moreover, the aggregation of labels due to non-EV 
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particles may lead to contradictory results. In contrast, label-free optical sensors allow for non-

invasive EV probing with greatly reduced wet lab processes and a minimum effect from false-

positive results [17], [18], [19]. 

With the numerous modern techniques developed for EV detection and characterization, a 

single technique is still not capable of capturing the full landscape of the complete spectrum of EV 

properties [14]. The rather recent emergence of optical methods for EV detection may shed light 

onto new pathways for identifying EV surface receptors and membrane proteins, in addition to 

their internal content with the potential of probing at single-vesicle level. The following section 

describes the general working principle of two commonly employed label-free EV characterization 

techniques: Surface Plasmon Resonance (SPR) and Surface-Enhanced Raman Spectroscopy 

(SERS). Several examples of their implementations in EV studies are provided to demonstrate 

their wide applications.  

2.2.1  Surface Plasmon Resonance (SPR)  

Surface plasmon resonance (SPR) occurs when an incident electromagnetic wave (i.e light) 

propagates from a medium with a relatively higher refractive index (RI) to one with a lower RI. In 

a commercial configuration, a Kretschmann geometry setup is usually employed using a high-

reflective index glass prism with the attenuated total reflection (ATR) method and a thin metal 

surface with a relatively low RI [20], [21]. Reflection, especially total internal reflection (TIR), 

tends to occur at the interface of the two media, rather than refraction. At a certain incident angle, 

a portion of the energy from the fully reflected light will be transferred into the medium with the 

lower RI and increases the intensity of the local electric field. The resulting collective oscillation 

of the electrons that propagate along the surface is known as the surface plasmon. The defined 

SPR angle where resonance occurs is dependent on the refractive index of the medium near the 

metal surface. Consequently, any small changes in the sensing medium, such as biomolecular 

binding interactions between an immobilised ligand and analyte, can lead to a shift in the intensity 

of incident light, which is calculated as a function of the incident angle [22], [23]. Conventional 

SPR platforms are used to perform bulk measurements and typically have a limit of detection 
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(LOD) on the order of 106–107 EVs/mL. Metallic nanostructures or nanoparticles can also enhance 

SPR signals to reach a LOD as low as 5 × 103 EVs/mL [24].  

Localised surface plasmon resonance (LSPR) refers to the special case where the light 

wave is trapped within conductive nanoparticles (NPs) that are smaller than the wavelength of 

incident light. This situation leads to coherent localised plasmon oscillations and can be fine-tuned 

based on the size, structure, and interparticle separation of NPs. For example, Ag NPs can be 

electrodeposited over PDMS for increased EV detection sensitivity [25]. However, even minimal 

variations in nanostructure dimensions could potentially affect the optical resonance conditions 

and thus the sensitivity and reproducibility of the assay outcome. The increase in chip costs due to 

the fabrication of intricate nanostructures should also be considered, especially during the 

translation into clinical studies [9], [23]. 

One of the most renowned EV-SPR studies was carried out by the Im group termed the 

nano-plasmonic exosome (nPLEX) sensor, where they proposed sensor included periodic 

nanohole arrays patterned over a gold film [26]. Building upon their previous studies on the nPLEX 

platform, the same group has further advanced their technology to achieve single-EV resolution 

utilizing plasmon‐enhanced fluorescence detection combined with periodic gold nanowell 

structures, referred to as FLEX (Figure 2.1 (A)) [27]. With their established protocol, the gold 

wafers were batch fabricated and the optimal diameter for each gold nanowell was determined to 

be 200 nm for additional long-range surface plasmon resonance enhancement. The resonance 

wavelengths can be conveniently tuned by adjusting the periodicity of the arrays. When compared 

to a flat gold surface, FLEX demonstrated a 6-fold increase in the number of sEVs detected from 

a cholangiocarcinoma (CCA) cell line. Such signal amplification not only facilitated precise EV 

subpopulation identification but also mitigated potential biases from the analysis of aggregated 

EVs with more intense signals. Clinical studies were conducted using bile samples from both CCA 

patients (n = 17) and benign cases (n = 8). A distinct differential pattern from marker‐positive 

tumor‐derived EVs was observed between the two groups using three pre-determined biomarkers 

(EpCAM, MUC1, and EGFR).  Another study that utilized similar concepts was produced by Hu’s 

group, where they also applied an antibody microarray printed on gold films for exosome capture 

and detection in combination with SPR, shown in Figure 2.1 (B) [22]. However, the microfluidic 



 

18 

 

compartment is rather simple and only serves as a sample delivery unit to the SPR platform. 

Regardless of the setup, this assay was able to identify unpurified EVs from cell culture supernatant 

(CCS) without enrichment. Moreover, the assay showed a clear distinction between two human 

hepatocellular carcinoma cell lines with different metastatic potentials based on the abundance of 

surface proteins and lipid mass. 

It is noteworthy that in the SPR biosensors discussed above, the microfluidic components 

are primarily comprised of a single chamber connected to a straight microchannel, where the sole 

function of this structure is to deliver pre-processed samples to the sensing platform. While these 

designs serve the fundamental purpose of delivering samples to the sensor and may increase the 

multiplicity of the device by incorporating additional channels, they contribute relatively little 

value to the overall setup. The integration of optical sensors with microfluidic sample processing 

units is still a largely unexplored area in the field of EV biosensors. 
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Figure 2.1 Optical platforms for EV profiling and characterization with SPR and SERS.  

(A) Fluorescence‐amplified extracellular vesicle sensing technology (FLEX) can capture immunolabelled EVs on a 

plasmonic gold surface. The finite‐difference time‐domain (FDTD) simulation shows the enhanced electromagnetic 

fields near the embedded nanowell structure, which leads to amplified fluorescence signals. EpCAM, MUC1, and 

EGFR were used as Cholangiocarcinoma (CCA) markers. Reproduced with permission from [27]. Copyright 2023, 

Advanced Science.  (B) Schematic view of SPR imaging platform combined with specific antibody microarrays for 

the detection of EVs in cell culture supernatant. The antibodies are immobilized over an ultrathin gold film and the 

optical path is preset at a fixed angle of incidence for capturing changes in the refractive index upon binding. 

Reproduced with permission from [28]. Copyright 2014, Analytical Chemistry (C) MoS2-Plasmonic Nanocavities 

(MoSERS) platform for label-free single EV SERS profiling. The microchip can achieve up to 97% single EV 

confinement using less than 10μL sample as a combined effect of embedded MoS2 monolayer and optimized 

nanocavity dimension. SEM and fluorescent micrographs show EV loaded individually into cavities. Combined with 

machine learning algorithms. Reproduced with permission from [10]. Copyright 2023, American Chemical Society. 

(D) Schematic diagram of the proposed PO nanoprobe biosensor, where the cells’ production of reactive oxygen 

species (ROS) and antioxidants under programmed apoptosis leads to shift in surface plasma resonance. Reproduced 

with permission from [29]. Copyright 2022, Biosensors and Bioelectronics. 

 

2.2.2  Surface enhanced Raman Spectroscopy (SERS) 

First discovered by C.V. Raman in 1928, Raman scattering only accounts for a very small 

fraction of scattered light and occurs when an excitation leads to scattered photons with a different 

frequency compared to that of the incident photon [30], [31]. This inelastic scattering of laser light 
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leads to the vibration of chemical bonds in the incident medium, and some photons are scattered 

with a particular shift in energy levels as a function of both the structural and chemical 

characteristics of the sample. The frequency can be subsequently recorded and processed into the 

form of a Raman spectrum, which can be regarded as biochemical “fingerprints” that correspond 

to the molecular-level composition of the analyte. This technique has been used to characterize the 

distribution of various cellular components with high spatial resolution [5], [9]. As mentioned 

previously, the molecular content of EVs may serve as potential biomarkers for liquid biopsy. Thus, 

the non-destructive and label-free nature of Raman spectroscopy makes it an ideal technique for 

studying the subtle differences in EV membrane properties and molecular content. Although it is 

not as commonly used in comparison to previously discussed techniques, Raman spectroscopy has 

been adapted for characterizing both the soluble and the vesicular components of cell secretions 

from conditioned medium (CM) [32]. This characterization may provide more insight into the 

soluble factors that synergistically cooperate with EVs as part of the regenerative effect of CM.  

As approximately 1 in 107 incident photons will undergo inelastic scattering, Raman 

spectroscopy is inherently limited by extremely low signal intensity. Consequently, this limitation 

needs to be balanced with either increased laser power, prolonged scanning duration, or higher 

sample concentration. Therefore, surface-enhanced Raman spectroscopy (SERS) was developed 

in 1974, whereby the Raman signal can be enhanced dramatically up to 1014 times [33], [34]. This 

is achieved by placing the sample molecules between the gaps of certain nanomaterials (also 

known as “hot spots”). The increase in signal intensity stems from the SPR phenomenon 

mentioned previously, which is the oscillation of electrons at the vicinity of a metal or 

semiconductor structure that leads to an enhanced electric field upon interaction with the incident 

electromagnetic waves. Thus, SERS not only retains the advantages of Raman spectroscopy in that 

it maintains the vibrational modes of molecules, but also overcomes its aforementioned limitations 

[35]. This improvement is particularly important for studying EVs as the populations of disease 

related EVs are scarce compared to healthy ones. When combined with customised platforms or 

enhancement probes, SERS has the potential to perform EV profiling with single-molecule level 

resolution and is thus one of the most extensively used techniques in the field of EVs [36].  
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A recent publication from the Mahshid lab featured a label-free sEV plasmonic assay in 

combination with SERS, named the MoSERS platform (Figure 2.1 (C)) [37]. The platform had a 

novel structure consisting of a plasmonic silver/ ZnO bilayer with an embedded single-layer MoS2 

floor and plasmonic cavity arrays at the surface. The MoS2 monolayer provided natural physical 

attraction forces to the lipid bilayer, specifically Coulomb and van der Waals forces, facilitating 

the nanoconfinement of EVs without any biological recognition elements. The EV trapping ability 

of the MoS2layer was further confirmed by examining fluorescently labelled EVs under TEM, 

where the fluorescent intensity (i.e. number of captured EVs) was twice the intensity from the 

nanocavities without MoS2. The photonic cavities had an optimized diameter at 250 nm to host 

precisely one single EV, providing sufficient electromagnetic field enhancement for obtaining 

sEV-resolution SERS spectra. The platform’s sEV profiling capability was validated using 

Glioblastoma (GBM) cell lines, where MoSERS successfully identified the presence of EGFRvIII 

oncogenic mutation with the detection limit being as low as 1.23%. Furthermore, when interfaced 

with a convolutional neural network (CNN) ML algorithm, MoSERS achieved an 87% diagnostic 

accuracy using plasma samples with complex backgrounds from GBM patients (n=12) and healthy 

controls (n=8), successfully detecting GBM signature mutations in all patients. 

Most of the SERS platforms made with noble metals are not tunable due to prefixed 

morphology, which may lead to low compatibility with ambient refractive index (RI) and other 

complementary detection techniques such as colorimetry. Meanwhile, certain semiconductors, 

such as TiO2 and ZnO, demonstrated significantly improved biocompatibility. However, they are 

also limited by insufficient electron transfer due to a lack of free ions and require a strong 

electromagnetic field during operation. The increased laser intensity may also damage the 

structural integrity of samples [38], [39]. This may be overcome by the development of novel 

Raman probes. For example, a novel Raman probe was developed using ultra-thin degenerate 

molybdenum oxide doped with H+, a type of “plasmonic oxide” (PO) material [40] (Figure 2.1 

(D)). The free electron concentration can be adjusted based on the level of H+ doping, and the 

subsequent reaction with redox products from specific cancer EVs can lead to an observable 

variation in spectra intensity. The proposed “nanoflake” structure exhibited a homogeneous 

increase in plasma resonance at the edge. This system was combined with a serpentine-shaped 
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microfluidic chip with engraved grooves to hydrodynamically separate individual molecules from 

the suspension and minimise possible interference from the liquid background. The device 

successfully differentiated between the THP-1 and HEK-293 cell lines based solely on their SERS 

patterns with an accuracy of over 90%. However, more advanced studies with clinical samples and 

rapid on-chip cell immobilization have yet to be conducted. 

2.2.3  Other Optical-based Biosensors 

Apart from the more commonly studied optical biosensors, nanophotonic resonators follow 

a similar working principle to SPR but operate using refractometric sensing, where the interactions 

between the analyte and surface-immobilized capture molecules lead to a change in the dielectric 

properties of the resonators. This change can be translated into a shift in resonance wavelength 

and used for the quantification of biological interactions. Jahani et al. addressed the possibility of 

tracking the red shift of the resonance spectrum upon target binding over a narrow window instead 

of the entire bandwidth, which eliminated the need for cumbersome and expensive spectrometers 

(Figure 2.2 (A)) [41]. They also employed diatomic metasurfaces with quasi-bound states in the 

continuum (BICs), where the light wave remains completely localised in the vicinity of the surface. 

When combined with a customized image processing system, their device detected on average 

0.41 nanoparticles/μm2. Real-time quantification of ovarian cancer-related EV binding was 

performed with an LOD as low as 1.23×108 particles/mL. This study demonstrated a new path for 

label-free biomolecular studies but focused on the mechanism and setup of the assay, while the 

detection of EVs was used as a proof-of-concept. 

Based on a similar principle of detecting changes in RI, Wang and his group proposed a 

label-free photonic crystal (PC) biosensor for EV detection shown in Figure 2.2 (B) [42]. This 

biosensor consists of a narrowband optical reflector that reflects a particular wavelength upon 

excitation. Moreover, the PC surface is patterned with one-dimensional subwavelength gratings, 

which facilitates phase matchings between the excitation light and the PC resonances and leads to 

narrowband reflection. The PC detector was integrated with a four-channel microfluidic chip to 

increase the throughput, where each channel was designed for the host, parasitic, positive, and 

negative reference samples, respectively. Compared to the conventional SPR devices discussed 
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previously, PC offers the unique advantage of reduced fabrication cost with comparable sensitivity 

and does not have the need for signal enhancers due to the naturally narrow line width of the PC 

resonance. However, current PC studies remain at a preliminary stage since only one type of EV 

surface protein was used. As a result, future investigations are needed to fully validate its 

application in clinical settings. 

On the other hand, a unique method of sEV entrapment, termed geometry-induced 

electrohydrodynamic tweezer (GET), was achieved by generating an electrohydrodynamic 

potential using a finite circular array of gold nanoholes with a void region in the middle [43]. 

Shown in Figure 2.2 (C), the applied opposing alternating current (a.c.) electro-osmotic flows can 

form a stagnation zone at the central void region with minimum electrohydrodynamic potential. 

The interaction between the EV’s charged double lipid layer and its image charge in the conduction 

plane contributes to the localization of particles in a parallel manner. Single vesicle entrapment 

was ensured by finding the optimal A.C. frequency at 3.5 kHz using a void region of 4 μm diameter, 

where the dipole-dipole repulsion force overcomes the drag force generated by the electro-osmotic 

flow. In addition, the periodicity of the array induces surface plasmon waves, resulting in a 

significant enhancement in the fluorescence emission from the single fluorescently labelled EVs. 

This setup also allows for the facile overlay of both electrohydrodynamic potential and plasmon-

enhanced optical trapping potential through the addition of a cavity at the center region. The 

photothermal heating effect can be effectively mitigated via a sapphire substrate that serves as a 

heat sink to avoid the burning of samples. 
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Figure 2.2: Other optical platforms. 

(A) Schematic sketch of a real-time in-flow imaging platform with 2D dielectric sensor microarray, where the imaging 

units are illuminated with single-wavelength light source. A red shift in the transmission spectrum indicates biomarker 

binding, where the change in intensity can approximated as a linear function of the spectrum shift with a constant of 

α, which is the slope of the transmission spectrum in the linear region. Reproduced with permission from [41]. 

Copyright 2021, Nature Communications. (B) Schematic diagram of EV isolation from parasite samples and 

subsequent capturing by the immobilized antibodies, which is again reflected by the shift in collected spectrum. The 

four channels in the microfluidic unit are designed for the host, parasitic, positive, and negative reference samples, 

respectively. Reproduced with permission from [42]. Copyright 2018, ACS Sensors. (C) Geometry-induced 

electrohydrodynamic tweezers (GET) utilize electrodynamic potentials for trapping single nanosized EVs. SEM image 

shows specifically arranged circular arrays of plasmonic nanoholes with a central stagnant region due to the radially 

outward a.c. electro-osmotic flow. Maximum radiation energy flow for a dipole fluorescence emitter is also observed 

at the center of the circular region. Both optical trapping potential simulation and recorded trapping stability show 

stable confinement of a single EV at the center region. Reproduced with permission from [43]. Copyright 2023, Nature 

Communications.  

2.3 Machine learning-assisted cancer biopsy and diagnosis using EV 

spectral data 

With the rapid advancement of EV-characterizing biosensors, the increasing volume and 

complexity of generated data have posed significant challenges in translating raw data into human-
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interpretable information. Meanwhile, the recent boom in artificial intelligence (AI) and machine 

learning (ML) has provided a convenient method for large-scale data analysis. These technologies 

can be seamlessly integrated into biosensors to form the new generation of "smart" sensors [44], 

[45]. ML algorithms can be roughly classified into two main categories: supervised and 

unsupervised. The former assigns a set of pre-defined labels to the raw dataset and is more 

commonly used for categorical classification. The latter leverages the machine to draw meaningful 

and useful interpretations from the data, and the problems can be either classification or regression-

based [46]. Regardless of the type, machine learning can be generally summarized as a data-driven 

pattern recognition approach. Using statistical models designed to capture subtle associations 

between input data points (features), the algorithm can identify underlying patterns within the 

population and successfully predict outputs, such as distinguishing between patient and healthy 

samples or functioning as a discriminative model [47], [48]. Moreover, when facing large amounts 

of low-resolution data with noisy background, ML enhances the possibility of finding reasonable 

analytical results and even discover hidden relations between sample parameter with a precise in-

built mathematical framework [48]. Given its wide adaptability, natural cost-effectiveness and 

great freedom in portability, ML has been applied for the interpretation of numerous forms of input 

data, such as spectral data [49], [50], fluorescent images [51], [52], electrochemical readings [53], 

and more.  

2.3.1  Different Machine Learning Models 

Support Vector Machines (SVM) is one of the most seen supervised machine learning 

algorithms primarily used for classification tasks. Originally proposed in 1963 by Vapnik, the 

fundamental principle behind SVM is to find the optimal hyperplane that best separates the data 

into distinct classes [54]. When dealing with relatively simple data that can be linearly separated, 

the hyperplane is used to maximize the margin distance between the hyperplane and the closest 

data points from the data with classes assigned, known as support vectors. SVM is also capable of 

generating nonlinear decision boundaries. By mapping non-linear data into a higher-dimensional 

space, this implicit transformation enables the SVM to find a linear hyperplane in the higher-
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dimensional space using only dot products using preset kernels. Common kernels include linear, 

polynomial, and radial basis function (RBF) etc. [55], [56], [57] 

As the name suggests, linear discriminant analysis (LDA) finds linear combinations of the 

original features to create new axes for the data projection. Being a derivative of Fisher's 

discriminant analysis, the core principle of LDA is to project high-dimensional data onto a lower-

dimensional space [58]. By maintaining key high dimensional features, the correspondingly 

projected feature vectors of the assigned classes onto a lower dimensional space can be used for 

effective stratification. Thus, it can be used for both classification and dimensionality reduction 

[59]. The two main criteria that LDA follows is to maximize the distance between the means of 

two classes while minimizing the variance within individual classes. Thus, by computing both in-

class and between-class scatter matrices and solving the subsequent eigenvalue problem, an 

orientation vector (eigenvectors) can be used as the linear discriminants and serve as the basis for 

the new feature space [58], [60]. 

The k-Nearest Neighbors (KNN) algorithm is a relatively simple supervised machine 

learning method used for both classification and regression tasks. Contrary to other ML models, 

KNN does not necessarily have an in-built model, but rather makes computations at the time of 

prediction. During classification, KNN identifies certain numbers (k) of closest data points to the 

new input based on a chosen distance metric, such as Euclidean distance, cosine distance, and 

hamming distance etc. The class of the new sample is then determined by the majority voting 

among these “neighbours”. The distances can be regarded as a metric for similarity and need to be 

chosen carefully as using appropriate similarity measure can effectively enhance the K-nearest 

neighbor algorithm’s classification accuracy [61], [62], [63].  

A decision tree consists of nodes and edges, where each edge represents the making of a 

decision and each node represents a final class label or a regression value assigned to that sample. 

The process of splitting dataset and making decisions is applied recursively until the stopping 

condition is met, such as only leaving certain number of samples in a node. The Random Forest 

(RF) algorithm consists of multiple decision trees, as described above, where the subset used for 

each individual tree are randomly selected from the training data via bootstrap aggregating. Thus, 
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the decisions made at the nodes are based on only on a fraction of the original features, and the 

final decision is made by majority voting or taking the average among all the decision trees. This 

structure helps to improve the overall model performance and eliminate overfitting [64], [65].  

Similar to the working mechanism of a neuron, where a reaction is only given when the 

stimulation exceeds a certain threshold, artificial neural networks (ANNs) rely on different 

activation functions (mostly sigmoid functions) to determine whether or not an output should be 

produced. ANNs typically consist of an input layer, one or more hidden layers, and an output layer. 

Each node receives inputs and applies a weighted sum; the result is then passed through an 

activation function to introduce non-linearity. Interestingly, the hidden layers are often called the 

“black box” because humans generally are unable to interpret how exactly deep learning algorithm 

reaches a particular conclusion, while these layers are the key components for capturing complex 

patterns and revealing hidden features in the data [66], [67]. Weights are the parameters that define 

the importance of each input feature, and bias provides additional shifting in the activation function 

for better fitting. During training, these two parameters are continually adjusted to minimize the 

error between the predicted and actual outputs as a “learning” process of the network. ANNs have 

been proven to be particularly useful when dealing with wide range of data types with complex 

features, such as image generation, voice recognition and spectra data processing etc. [68], [69]  

Contrary to the models mentioned above, autoencoders (AEs) are a type of unsupervised 

neural network. One AE can be considered as a basic building blocks of a neural network, and they 

can be stacked to form hierarchical deep models. It is often used in tasks like dimensionality 

reduction, non-linear feature learning, and data denoising without any pre-labelled training data 

[70]. An AE consists of two main components: the encoder and the decoder. The encoder 

compresses the input data into a lower-dimensional space to obtain meaningful features for 

effective data representation. This compressed representation, or latent space, is then passed to the 

decoder, which attempts to reconstruct the original data from the lower-dimensional code. The 

network is trained to minimize the reconstruction error during this process, the difference between 

the input and the output is often used as an evaluation metric [71], [72].  
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2.4 ML-assisted EV spectral data analysis 

2.4.1  Deep learning  

Deep learning-based algorithms are among the most commonly used models for spectral 

analysis due to their automatic feature extraction and classification capabilities. These algorithms 

can extract useful information from the high-dimensional data of spectra and have demonstrated 

superior performance in analyzing spectral signals [73], [74], [75], [76]. The biomedical field has 

rapidly advanced over the past decades, with improvements in laboratory instrumentation and 

analysis techniques leading to an exponential growth in biological databases. These databases 

often feature a number of variables (features) that exceed the number of observations [77]. 

Managing such high-dimensional data presents significant challenges for statistical and machine 

learning methods, making dimensionality reduction essential for alleviating the burden on the 

network and enhancing model efficiency. 

A 2023 study involved 543 patient samples and 210 healthy controls, demonstrating the 

clinical potential of early-stage cancer diagnosis and tissue of origin (TOO) discrimination among 

six types of cancers [78]. Using an AuNP-aggregated array chip as a SERS substrate, exosomes 

isolated via size exclusion chromatography (SEC) from plasma samples were directly dropped 

onto the dot array in a label-free manner for subsequent spectra collection (Figure 2.3 (A)). To 

account for indistinguishable signals from common impurities such as lipoprotein and calnexin, 

100 signals were collected per sample, and the classification results were reported as an averaged 

prediction per single spectrum based on the multiple instance learning (MIL) concepts. The signals 

were preprocessed to remove noise, correct the baseline, and eliminate spiked data. Anomalous 

data were excluded if the intensity of the common band near 860 cm−1 did not exceed a manually 

specified threshold determined through signal comparison. Employing a customized CNN 

classifier, the decision system first performs a binary classification to determine whether the 

samples exceed the threshold for classification as a patient with an AUC of 0.97. Subsequent 

determination of TOO also showed a robust sensitivity of 90.2% with the implementation of a 

multi-layer perceptron (MLP) network. 
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A similar study focused on the stratification between the healthy and diseased population, 

as well as the classification among three different types of cancers, where a total of 110 clinical 

samples were involved [79]. Interestingly, before the spectra were fed into a 1D CNN algorithm, 

they were first augmented to further increase the diversity. Augmentation also helped to maintain 

the original distribution of each spectrum in the original library while avoiding subsequent 

overfitting during the training. Baseline changes, random noise addition, and spectra shifts to either 

the left or right were applied. A linear combination of augmented spectra was used to augment the 

dataset for 10 folds. Then, general maximum-minimum normalization described before was 

performed to minimize the effect from the difference in intensity before passing the spectra as 

inputs of the CNN model. To further demonstrate the superiority of the proposed model with the 

highest accuracy being 98.27%, the classification results were also compared to traditional 

machine learning model such as LDA, AlexNet and GoogLeNet-based CNN etc.  

2.4.2  Other supervised models  

Other supervised models are relatively less common to be used as the principal data 

analysis method given the inherent complexity of the spectral data unless the sample pool size is 

limited. Researchers tend to use multiple models simultaneously to find the one with the desired 

performance. For example, a series of models such as Artificial Neural Network (ANN), SVM, 

tree classification, RF, AdaBoost, gradient boosting and KNN etc. were applied for the 

classification among glioblastoma stem cell (GSC) and differentiated glioblastoma cells (DGC) 

[80]. Standard baseline correction using the rubber band method and vector normalization was 

applied. Additionally, a negative second derivative of the spectra was calculated using the 

Savitzky–Golay filter as a denoising method. The dimensionality reduction methods applied are 

particularly noteworthy. The spectra were first reduced to the fingerprint region from 400 –1800 

cm−1, which contains rich bioactive peaks, and then subjected to principal component analysis 

(PCA). Only 30 principal components (PCs) were selected and used as input for the ML models. 

Compared to the original data with over 1400 features, this significant reduction in dimensionality 

helped accelerate computation time by narrowing the focus to a few selected peaks instead of the 

entire spectrum. Although only a general prediction accuracy of 60.3% was achieved, the ML 
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models provided a new perspective on population differences from a biological standpoint. Using 

K-means clustering to assign all single-point measurements into four clusters, the clusters showed 

distinctive lipid and nucleic acid contents that matched previous reports by identifying 

characteristic peak positions. 

In addition to sample classification and determining the cellular origin of detected EVs, 

machine learning (ML) can also be applied to predict the density of EVs in sample mixtures using 

SERS. A RF classifier was initially trained with EV spectra derived from five mixtures of THP-1 

and HT-1080 cell lines with varying concentrations, using the combination of concentrations as 

the class label [81]. A micro/macro-F1 score of over 99% demonstrated the feasibility of detecting 

sample compositions. Subsequently, an ANN was trained with unmixed HT-1080 and THP-1 EV 

measurements, while spectra from the previous mixed samples were used solely in the testing sets 

(Figure 2.3 (B)). A clear shift in the tendency of classification as HT-1080 was observed as the 

concentration of HT-1080 increased. However, the predicted probability of THP-1 decreased 

rapidly to almost 0 at a 50:50 sample proportion due to the statistical dominance effects. Further 

analysis involved calculating the Raman shifts using a Gaussian curve fitting algorithm, revealing 

key wavelengths contributing to the recognition. It is also worth noting that this proof-of-concept 

study was carried out only with cell line samples, clinical samples with their complex background 

will pose more challenges to their approach.  
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Figure 2.3: ML-assisted data analysis for EV spectra. 

(A) Multiclass cancer subtyping first assigns cancer scores as an averaged result to each sample, calculated as the 

mean values of the multiple instance learning (MIL)-based cancer classifier. The samples deemed as patient will be 

further examined with pre-trained prediction models, one for each specific cancer. A score tendency by type is 

produced as model prediction. The plasma samples were directly added onto AuNPs coated on the APTES-

functionalized cover glass [78]. Copyright 2023, Nature Communications. (B) Artificial neural network algorithm 

(ANN) can also be applied to profile the EV mixtures concentration, prepared in different ratios quantitatively. The 

probability of model prediction to be HT-1080 EVs drastically decreased as the concentration reduced from 25% to 

1% in the mixed solution. Characteristic peaks were identified around 1450 cm-1 and 1600 cm-1, with the peak intensity 

forming a calibration curve in solution with varying concentrations [81]. Copyright 2023, Small. (C) Utilizing 

Autoencoders (AE) as a dimensionality reduction tool, a classifier is introduced in the latent space. The “condensed” 

spectra are passed to five blocks of fully connected feed-forward layers with dropout and optional skip connections. 

Gaussian noise was added to the original dataset prior to being passed into the AE and was significantly reduced in 

the reconstructed from decoder. Two-dimensional t-SNE projection of latent space EV showed clear distinction among 

different samples [82]. Copyright 2024, Scientific Reports. (D) AE was used in conjunction SERS-active thin films 

directly formed via femtosecond laser nanopatterning. Projection of training and test set in the one-dimensional latent 

space demonstrate clear boundaries between the train/test set. Particular directions in Euclidean hyperspace which 

optimally separates the data can be calculated using the first linear layers, which shed light onto two positive peaks 

around 1330 and 1745 cm–1 that contributes to the classification [83]. Copyright 2022, ACS Sensors. 
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2.4.3  Autoencoders 

Apart from the advantages of using supervised neural networks discussed above, 

autoencoders often require uniform input data with the same frequency range and resolution for 

all spectra. This requirement restricts the use of data from multiple sources and introduces issues 

with calibration drifts during lengthy data collection. These problems usually necessitate extensive 

data processing, which can be time-consuming. Self-supervised autoencoder learning may offer a 

solution to these challenges [82].  Using Raman spectra from two laboratories and 13 biological 

sources, including commercially available cell lines, human blood, and lipoproteins, the 

autoencoder was first trained in a self-supervised manner (Figure 2.3 (C)). The encoder's goal is 

to extract chemically relevant information from the spectra and pass it to the latent space. To 

achieve this, the spectra are cut at random locations with Gaussian noise addition and wavelength 

shifts, making the network robust to inputs with different spectral ranges. The decoder then 

reconstructs the original spectra using only the essential information in the latent space, employing 

a Fourier loss function to evaluate the quality of the reconstructed spectra. After validating the 

autoencoder system, the latent representation of the spectra is used as input for another deep 

learning network. Due to the extensive pre-processing by the encoder, this subsequent network is 

relatively small and interacts only with the spectra in the latent space. The test set is also processed 

through the encoder and then passed to the classifier. This novel system has demonstrated 

promising results, as t-SNE clustering in the latent space showed clear distinctions, and the system 

achieved over 90% accuracy in classifying the biological nanoparticles to their correct origins 

without any preset labels. 

Autoencoders are usually used as a dimensionality reduction method, and the decoder 

output is fed into an additional classifier. However, Kazemzadeh et al. were inspired by the 

network structure and developed an autoencoder-based neural network classifier [83]. As the 

pioneering study utilizing femtosecond laser-machined nanoplasmonic surfaces for placental EV 

SERS applications, spatial K-means clustering was first performed on the normalized spectra of 

all samples (Figure 2.3 (D)). This unsupervised technique automatically labels the samples based 

on their shapes and peaks, which is particularly useful given the high heterogeneity among EV 
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populations and within individual samples, making it difficult to assign a uniform label to a single 

sample. Evident differences in the distribution of cluster centers between EV samples indicated 

the presence of different mixtures of EV populations in each sample. Following this, a hybrid 

autoencoder-inspired network and a CNN model were applied for classification tasks. Although 

the CNN model achieved a significantly higher classification accuracy of 96% compared to the 

autoencoder, the autoencoder offers the unique advantage of linking any obtained values for each 

spectrum to directly indicate the presence or absence of specific Raman spectral features. Two 

distinct positive peaks were observed around 1330 and 1745 cm–1, highlighting the important role 

of lipids or phospholipids in population stratification in this case. 

2.4.4  EV spectral analysis incorporated with dimensionality reduction 

techniques 

The primary goal of dimensionality reduction is to simplify datasets while preserving 

significant information, thus improving computational efficiency and model performance [84]. 

Techniques like Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) 

have traditionally been used to reduce dimensionality by transforming data into a lower-

dimensional space [85], [86]. More recently, AEs have gained popularity for dimensionality 

reduction due to their ability to capture nonlinear relationships through latent space, as mentioned 

above. This is particularly important in SERS spectra, where each spectrum contains thousands of 

features. Subtle data variations are crucial for accurate classification and diagnosis, making the 

careful selection of dimensionality reduction methods vital, as they may significantly impact the 

performance of machine learning models. 

A recent study investigated different dimensionality reduction approaches of Raman 

spectra to improve the classification accuracy of intracranial tumors, particularly glioblastomas 

[87]. Two main methods were explored: PCA and a feature-filtering approach based on 

biochemical components. PCA is a common technique, while the feature-filtering approach 

focused on selecting spectral shifts corresponding to statistically significant differences between 

tissue groups, such as glioblastoma centers and normal white matter. Specifically, the Fisher 

criterion was calculated for each spectral point across three tissue classes: normal brain tissue, 
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glioblastoma margin, and glioblastoma center. Spectral points exceeding the critical Fisher value 

were retained, while others were discarded. A key advantage of feature selection methods is their 

interpretability, which is valuable for clinicians. After identifying significant features, the study 

matched them with known biochemical components using a reference library. This approach not 

only reduced data dimensionality, but also ensured that the retained features were biologically 

relevant, enhancing tissue classification accuracy. The two techniques were integrated with a 

support vector machine (SVM) classifier, achieving an accuracy of 83% and 92% specificity in 

tumor tissue classification. 

In some cases, dimensionality reduction methods, such as Independent Component 

Analysis (ICA), Partial Least Squares (PLS), and LDA, were used as additional modules to further 

push the limit of classification. Popp et al. first constructed a Raman dataset containing over 2,200 

spectra from eight bacterial classes, including various Bacillus species [88]. These proposed 

dimensionality reduction techniques were combined with a genetic algorithm, inspired by natural 

evolution, to optimize a merit function related to experimental accuracy. The algorithm employs 

iterative processes of selection, mating, and mutation to refine a population of vectors, with key 

steps including constructing the initial population, selecting parents, creating offspring, and 

replacing less optimal vectors. A supplementary study explored the impact of the number of 

spectra on accuracy. While more spectra provide critical information that might be lost with fewer 

scores, increasing their number also raises model complexity and computational time, potentially 

leading to overfitting. Ultimately, using 35 spectra in the training set was found to balance 

accuracy and robustness effectively, making it a practical choice when robustness is not the 

primary concern. The application of the PCA algorithm achieved the highest increase in 

classification accuracy, improving it by 6%. 

2.5 Conclusion  

To conclude, the integration of optical sensors and ML presents a promising pathway for 

the enhanced detection and characterization of EVs, particularly in the context of cancer 

diagnostics. Label-free optical biosensing techniques, such as SERS, offer significant advantages 

by eliminating the need for molecular tags, thus minimizing the risk of false positives and non-
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specific aggregation. With ML’s capacity for processing complex, large-scale data, it has 

demonstrated wide application and great flexibility in improving the interpretation of high 

dimensional spectral data, offering insights into the underlying biological patterns. ML-driven 

analysis enhances the ability to draw meaningful conclusions from noisy or low-resolution data 

through customized data analysis workflows. Furthermore, the incorporation of dimensionality 

reduction techniques has been shown to improve model performance, increasing the accuracy of 

classification outcomes. Ultimately, the combination of advanced optical sensors and ML 

algorithms holds the potential to revolutionize EV-based diagnostics, providing new opportunities 

for single-vesicle analysis and improving the accuracy and efficiency of clinical applications.  

Potential future pathways include further development of optical biosensor platforms to 

find an optimal balance between the use of bio labels for specificity and the sensitivity derived 

from platform structures and materials for molecule-specific information. Another key area for 

future research is the standardization of data processing workflows across different sensor 

platforms and spectral data types, as current data preprocessing steps are often customized for 

specific projects, which can limit reproducibility and broader application in clinical settings. By 

developing more universal data analysis protocols, researchers can achieve more consistent and 

reliable outcomes across studies.  
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Abstract 

Surface-enhanced Raman Spectroscopy (SERS) offers label-free molecular fingerprints of 

extracellular vesicles (EVs) as a promising biomarker for cancer hallmarks. However, effective 

spectrum interpretation is often hindered by the heterogeneous and nanoscale nature of EVs. Deep 

learning (DL) models integrated with dimensionality reduction techniques may provide novel 

insights by detecting subtle patterns and relationships in complex spectral data that are often 

challenging to identify through traditional analysis methods. Using a SERS library of single EV 

spectrum, four dimensionality reduction techniques—spectrum resampling, bio-inactive region 

cutting, Autoencoder (AE), and Gradient-weighted Class Activation Mapping (Grad-CAM)—

were evaluated to improve the binary classification accuracy between two different types of cancer 

patients and healthy controls. Among these methods, the resampling approach yielded a significant 

accuracy improvement of 10.7% and 8.2% for two cancer models respectively. Resampling simple 

implementation shows potential for enhancing diagnostic performance using SERS-based EV 

analysis. 
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3.1 Introduction 

The nanoscale sizes and highly heterogeneous composition of extracellular vesicles (EVs) 

pose significant challenges for a single, effective, and uniform analysis method that can be used 

for different studies [1]. EVs are heterogeneous, phospholipid membrane-enclosed structures 

produced by all types of cells. These vesicles play crucial roles in mediating cell-to-cell 

communication both locally and at a distance [2],[3]. There are various approaches to characterize 

EVs, traditional approaches, such as antibody/aptamer labeling techniques targeting common 

surface markers for fluorescence detection, have been widely used [4], [5]. However, the labelling 

step adds increased complexity to the experiments with additional curing and washing steps. 

Surface-enhanced Raman Spectroscopy (SERS) may offer an alternative, this label-free approach 

can capture the entire biochemical signature of the molecules. Each peak in a SERS spectrum 

corresponds to specific molecular bonds or functional groups based on its Raman shift, while the 

peak intensity reflects the concentration of the corresponding molecular species [6], [7]. A 

previous study introduced a unique SERS-assisted nanocavity platform for isolation and label-free 

fingerprinting of single EVs. The photonic cavity arrays were optimized to host exactly one EV 

with a 97% confinement efficiency, enabling the detailed analysis of individual EVs by leveraging 

local electromagnetic field enhancement [8].  

Decoding SERS spectrum of simple chemical substrates is straightforward as the peaks are 

often sparse and well-separated. However, interpreting biomolecules’ spectra is challenging due 

to their heterogeneous nature and complex molecular composition. Often, this complexity is 

observed in overlapping spectrum peaks, which makes it difficult to determine the true proportion 

of each characteristic molecular bond. Currently, there are no standardized protocols for decoding 

SERS spectra [9], [10]. The recent advancements in learning models have provided a convenient 

yet practical solution to overcome these challenges. These data-driven pattern recognition 

approaches have built-in statistical models designed to capture subtle associations between input 



 

38 

 

data points (features) and can identify underlying patterns within the population. In particular, 

convolutional neural networks (CNN) are one of the most commonly applied deep learning (DL) 

algorithms for analyzing biomolecular spectral data and can facilitate cancer diagnosis tasks [11], 

[12], [13], [14]. As the filters from the convolutional layer slide through the input data, they capture 

both the local patterns and the hierarchical representations of the data, exploiting simple features 

such as the position of individual peaks to more complex patterns like relationships between peaks 

as the layer “deepens” [14], [15], [16].  

Despite the advantages that CNN offers for spectra analysis, they are still hampered by the 

inherent complexity of SERS spectra. Firstly, the wavelength shift along the x-axis can be 

stretched depending on the optical spectrometer and its calibration in each study. Additionally, the 

intensity along the y-axis is often accompanied by noise [17]. As a result, researchers often develop 

tailored data treatment protocols specific to the project’s needs [18]. This lack of uniformity 

introduces potential ambiguities and hinders the transfer of learning among studies. Secondly, the 

dataset used for training CNNs usually requires a balanced representation from each sample 

population to avoid network bias towards the major class. However, assigning a uniform label to 

all samples overlooks the heterogeneity of EV populations and leads to decreased model 

classification performance. Lastly, while the range of SERS shift collection can be personalized, 

the spectrum grating rate ranges from just over one thousand to approximately three thousand, 

with various biologically significant peaks shared between healthy and cancer samples. This places 

considerable pressure on the network to identify the key features that can differentiate between 

classes. 

Unsupervised learning may provide novel insights into sample composition from a 

different perspective. These algorithms try to find underlying patterns without explicit guidance 

from humans, thus no labeling of the data is required before training and the results of the 

unsupervised model may reveal previously undiscovered data relationships [19], [20]. In addition, 

spectra dimensionality reduction techniques may also help address the aforementioned concerns. 

By focusing on the most informative features, dimensionality reduction can effectively mitigate 

the risk of overfitting and enhance model interpretability by mapping high-dimensional data to a 
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lower-dimensional space. However, an optimal balance point needs to be established between 

retaining original information and improving model performance [21], [22], [23].  

In this work, we have built a sample spectral library consisting of single EV spectra 

collected using the previously developed nanocavity platform (Figure 3.1) [8]. To ensure 

repeatability and potential for generalization, all proposed data analysis techniques were applied 

separately to two patient datasets, each belonging to one of the two different cancers available, 

Medulloblastoma and Glioblastoma. These two cancers were selected as model diseases because 

they are among the most common brain tumors observed in pediatric and adult patient groups. 

Investigating the behavior of related EVs crossing the blood-brain barrier and their potential role 

in EV-facilitated diagnosis could inform future studies on other brain tumors [37], [89]. The goal 

is to improve the binary classification accuracy between healthy controls and cancerous 

populations. We began by simulating a realistic clinical setting in which the number of healthy 

samples (n = 16) is substantially larger than that of patient samples (n = 8) for each cancer. We 

then explored the feasibility of increasing accuracy through direct adjustments to the sample 

train/test distribution. After determining the optimal ratio, we applied K-means clustering for 

sample subgrouping and potential pattern discovery. However, the high heterogeneity of EVs 

made it difficult to identify a consistent pattern within the same population, leading us to explore 

dimensionality reduction techniques. Methods such as resampling spectra, removing the bio-

inactive region, Autoencoder (AE), and Gradient-weighted Class Activation Mapping (Grad-CAM) 

were applied. 
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Figure 3.1: General Schematics. 

(A) After single EV SERS spectra for cancer patients were collected using the nanocavity platform in a label-free 

manner, the data first underwent standard cleaning procedures such as baseline subtraction, normalization and 

smoothing.  To mimic a realistic clinical setting, the number of patient samples (n=8) was set to be only half of the 

healthy controls (n =16), and an optimal train/set data distribution was first discussed. Then, dimensionality reduction 

algorithms, including an AE and Grad-CAM, were compared and studied to find the highest increase in binary 

population classification compared to the base accuracy from the original dataset. (B) Averaged spectrum from the 

cancerous and healthy populations. The peak positions are difficult to discern, where the main differences come from 

the height of the peaks. The high EV heterogeneity within each sample should also be considered in addition to 

averaged results. (C) General schematics for the structure of a CNN and simplified working principle of the 

convolutional layer. 
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3.2 Methods 

3.2.1  Data Collection  

The datasets used were single-EV spectra collected using the nanocavity platform. Detailed 

experiment procedures and data-cleaning protocols before DL analysis have been described in 

previous publications [37]. Briefly, EVs were first isolated from the blood-plasma samples of 

Medulloblastoma (MB) patients (n = 8), Glioblastoma (GBM) patients (n = 8), and healthy controls 

(n = 16) via IZON columns. MB is addressed as “Cancer Type 1” and GBM is addressed as 

“Cancer Type 2” in this study. Using an InVia Raman microscope, the isolated EVs samples were 

loaded into the nanocavity platform in a minute amount. Each spectrum was collected between 

wavelengths 100–3200 cm–1, with each dataset containing approximately 70 single EV spectra.  

GBM samples were provided by our collaborator Dr. Petrecca and were collected under 

approval from the Neurosciences Panel of the MUHC Research Ethics Board (REB: 

IRB00010120). The MB samples and healthy controls were obtained through our collaborators 

from a biobank (MP-37-2017-3256).  All human samples were collected with consent from the 

subjects or legal guardians. 

3.2.2  Data Cleaning  

 Prior to saving each spectrum, its baseline was corrected using an in-built function from 

WiRE 5, where a linear baseline was automatically fit in the collected spectral range. The data 

files were then compiled via MATLAB R2022a to ease batch processing. Subsequently, the dataset 

undergoes normalization and smoothing by Savitzky-Golay with a second-order polynomial fit 

performed using Origin Pro 2019b software.  The data is now ready for DL analysis.  

3.2.3  CNN Model Construction and Evaluation 

The base CNN model was adapted from Ho et al. [90], written in Python (Python Software 

Foundation. Python Language Reference, version 3.8.8. Available at http://www.python.org) in 

Spyder 5.4.2 and utilizing the Pytorch package 2.0 [91]. The network is based on a ResNet-based 
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structure with an initial convolutional layer, followed by one residual layer, and a final fully 

connected layer. The initial convolutional layer has 64 filters, and the hidden residual layer 

contains 20 filters. The residual layer includes 4 convolutional layers, bringing the total depth of 

the network to 6 layers. During each epoch of the training process, 10% of the training set was 

randomly selected and used as the validation set to evaluate the robustness of the model. The 

performance of each CNN model was evaluated based on the classification accuracy calculated 

from the confusion matrix using Equation 1 below. True positives (TP) are the number of class 1 

spectra correctly predicted as their given label of 1 matches the predicted one. True negatives (TN) 

are the number of class 0 spectra correctly predicted, with a label of 0. False negatives (FN) 

represent the number of class 1 spectra misclassified as class 0, and false positives (FP) are the 

number of class 0 spectra misclassified as class 1. 

     𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100        (1) 

 

3.2.4  Autoencoder  

An autoencoder (AE) is a type of unsupervised neural network designed to extract features 

from unlabeled data by compressing the input information into a lower-dimensional latent space 

[25], [26]. The encoder was constructed with an input layer that feeds into two sequential encoder 

layers, where each encoder layer includes a batch normalization and a rectified linear activation 

function (ReLU) to introduce non-linearity and stabilize the learning process. The output is a 

condensed representation in the latent space. The dimensionality was set to be reduced to half of 

the original input features. The structure was followed by two decoder layers similar to the encoder 

but in reversed order and with 1 output layer. A linear activation function was again included to 

ensure continuous output values. Finally, the AE was compiled using the Adam optimizer and 

mean squared error (MSE) loss function for the quantification of the reconstruction error between 

the input and the output data. The Adam optimizer uses the exponential moving averages of both 

the gradients and their squared values as momentum terms, dynamically adjusting the learning 

rates for each parameter until reaching optimal performance [27], [28]. 
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3.2.5  Gradient-weighted Class Activation Mapping 

Gradient-weighted Class Activation Mapping (Grad-CAM) uses gradients that flow into 

the final convolutional layer and produce a coarse localization map highlighting the important 

regions used during classification [29]. Starting with the forward pass, the input was passed 

through the CNN model, and feature maps were generated at each convolutional layer following 

the normal order progression of the model. Then in the backward pass, the gradients of the output 

for the feature maps were calculated as a reversed process of the forward pass. As convolutional 

features naturally retain spatial information, which is lost in the fully connected layers, we capture 

the feature map generated by the last convolutional layer. The gradient of the score for a class 

(class c) was first calculated using Equation 2 below, where yc is the score of class c, and Ak is the 

feature map of a convolutional layer. The neuron importance weight is noted using 𝛼𝑘
𝑐 .  

𝛼𝑘
𝑐  =   

1

𝑍
 ∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

 (2) 

The gradients were then pooled to obtain a single importance weight for each feature map 

channel. Each feature map was multiplied by its corresponding importance weight, emphasizing 

the regions of the feature maps that are most important for predicting the target class. A ReLU was 

applied to the linear combination of maps because in our case only features that have a positive 

influence on the classification are of interest. 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐  = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐𝐴𝑘

𝑘

) (3) 

Finally, the weighted feature maps were summed along the channel dimension to produce a 

single importance map, which was normalized to a range between 0 and 1 [30], [31]. 
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3.3 Results and Discussion 

3.3.1  Unbalanced Data Library 

A CNN model was selected as the base algorithm for this study due to its natural feature 

extraction capability via convolutional layers. Each neuron in a convolutional layer is connected 

to a local region of the input spectrum, allowing the CNN to focus on smaller regions where 

important features may reside [32], [33]. This corresponds to the nature of SERS spectra, where 

key information comes from peaks’ position, intensity, and shapes. Additionally, instead of the 

conventional pooling layer, the network was implemented with stridden convolution, which 

introduces a stride variable that controls the step size of the filter as it moves over the input. This 

effectively preserves the location of the SERS peaks while reducing computational complexity 

when dealing with large datasets [15], [34]. 

As a general consideration, the number of spectra from each population used to train the 

CNN should be balanced. This helps ensure the network produces unbiased and generalized results, 

avoiding favoring the dominant class and misclassifying the minority class [35]. However, this 

principle might not apply when using CNN to facilitate cancer diagnosis in a clinical setting. In 

EV-based studies, the diverse heterogeneity in structure and composition of these biovesicles from 

the plasma samples also poses great challenges to DL analysis [8], [36]. It is suspected that only 

around 3% of the plasma-derived EVs carry brain tumor mutation signatures, given the difficulty 

of crossing the blood-brain barrier [37]. Thus, the signals from cancerous EVs can easily be diluted 

against a vast background of non-cancer-related EVs shared between both the healthy and diseased 

groups. This questions the notion of an even class balance for training a model, as an 

underrepresentation is expected from one of the classes. Furthermore, as many cancer-related EVs 

are still understudied, there is currently no standard library available to represent the SERS spectra 

of disease signal-bearing EVs to the best of our knowledge.  

3.3.1.1 Adjusting Ratio between Healthy and Patient Train Set 

To address these concerns, we propose a simple approach, reducing the number of spectra 

used in training from each healthy sample to a certain percentage of the patient group before 
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applying other advanced data analysis techniques. This method reassesses weights during training, 

as the majority class dominates the loss function. As gradients and weights are updated during 

backpropagation, the network prioritizes minimizing the loss for the majority class. By adjusting 

the network to assign greater weight to the minority class, such as patient spectra, the model can 

improve its accuracy in recognizing these less common cases, which are critical in real-world 

scenarios [38], [39]. This strategy assumes that healthy samples are generally more uniform, 

thereby reducing concerns about generalization to new healthy samples. However, finding an 

optimal balance is essential and will be discussed further later in the text. 

A total of 8 patient samples from both Cancer 1 and Cancer 2, and 16 healthy controls were 

used in this study to simulate a more realistic clinical background with an unmatched number of 

samples available. As shown in Figure 3.2 (A) and Figure 3.2 (E), the confusion matrix for the 

original dataset was obtained with an equal number of spectra from both populations used for 

training, using 60% of each healthy sample and 70% of each patient sample. Since more healthy 

spectra were set aside for testing than patients, the global accuracy calculated with the complete 

test set may be biased (Figure S1). To provide a more accurate measure, local accuracy is reported 

here by randomly sampling the healthy test set to match the remaining patient spectra. The model 

achieved an average classification accuracy of 57.0% for Cancer 1 versus healthy and 76.8% for 

Cancer 2 versus healthy, establishing the baseline accuracy for the study. Notably, while nearly all 

healthy spectra were correctly classified, a significant portion of patient spectra were misclassified 

as false negatives. This aligns with earlier observations that the algorithm overemphasized the 

healthy population when trained on a balanced dataset, due to the dominance of healthy samples. 

By adjusting the ratio between the training set of the two groups, an optimal value was 

found by setting the ratio to 0.6 for Cancer 1 (number of spectra in the healthy train set = number 

of spectra in the patient train set * 0.6) and 0.8 for Cancer 2. It led to the highest increase in average 

classification accuracy compared to the other ratio (Figure S2).  For Cancer 1, accuracy improved 

by 6.3%, where the evident redistribution of the patient spectra confirms that an uneven training 

set ratio compels the network to focus more on patient signatures (Figure 3.2 (B)). The same trend 

was reflected in Figure 3.2 (C), as the data point distribution of the patient spectra shows a clearer 

focus. Cancer 2 followed a similar trend, with a moderate accuracy increase of 2.6%. Although the 
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improvement in classification probability was less pronounced, the patient spectra in Figure 3.2 

(F) showed a clearer distribution with significantly fewer false negative cases. Also, the 

distribution became more uniform with reduced extreme values, indicating that fewer spectra were 

misclassified as healthy (Figure 3.2 (G)). Overall, this adjustment in the training set ratio resulted 

in a moderate enhancement in model performance, demonstrating the effectiveness of this strategy 

in improving classification accuracy for the minority class. 

3.3.1.2 Leave-One-Out Cross-Validation 

Leave-One-Out Cross-Validation (LOOCV) is an established method for estimating the 

performance of machine learning algorithms where one data point is excluded from the training 

and the model is trained on the rest of the dataset. The excluded data is then included in the testing 

set, and the same process will be repeated for each data point in the dataset [40], [41]. In this study, 

where the number of patient samples is only half that of the healthy controls, a certain portion of 

healthy samples can be excluded from the training set and later used entirely in the testing set. This 

approach not only improves the balance of group representation in training but also provides 

additional means of evaluating the robustness of the model. The average change in classification 

accuracy for Cancer 1 versus healthy is shown in Figure 3.2 (D), with different numbers of healthy 

samples excluded from the training set noted on the x-axis. Excluding three healthy samples from 

the training set yielded the highest accuracy increase of 3.7%, while excluding more led to reduced 

accuracy compared to the baseline. Listed in Table S2, we evaluated how well the model 

performed when healthy samples were partially included in the training set (Healthy #1-3) and 

entirely used in the testing set (Healthy #7-8), using one model with six healthy samples allocated 

completely for testing. The CNN model performed relatively poorly when encountering unseen 

samples, as their probability of being classified as patients outweighed the correct classification, 

leading to a decrease in overall accuracy. This also suggests that the healthy population also 

exhibits certain heterogeneity, as the model could not generalize learned patterns to a relatively 

large number of new samples. 

For Cancer 2 versus healthy, no significant accuracy increase was observed and excluding 

more than four healthy samples decreased overall model performance (Figure 3.2 (H)). This trend 
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presumably originated from adjusting the percentage of each healthy sample used for training. As 

more healthy samples were allocated entirely for testing, a higher percentage of the remaining ones 

were used for training to balance the number of spectra from both populations. This enabled the 

model to better learn healthy signatures, improving performance when fewer unknown samples 

were introduced. However, to achieve better generalization, a larger sample pool is necessary. 

Thus, at this step, we report that using a 0.6 ratio for Cancer 1 and a 0.8 ratio for Cancer 2 produced 

the highest accuracy increase for our dataset. All subsequent studies in this report were conducted 

using these two ratios respectively for the training sample distribution. 

 

Figure 3.2 Classification accuracy changes with varying train/test distribution.  

(A) to (D) for Cancer 1. (A) Confusion matrix for the original dataset with an averaged classification accuracy of 

57.0%, which serves as the base accuracy. (B) Confusion matrix for the model with 0.6 ratio in the training set. (C) 

Box plot for the distribution of classification accuracy for the model in panel B (D) The average change in 

classification accuracy for varying numbers of healthy samples excluded in Leave-One-Out Cross-Validation 

(LOOCV) algorithm. (E) to (H) for Cancer 2. (E) Confusion matrix for the original dataset with an averaged 

classification accuracy of 76.8 %. (F) Confusion matrix for the model with a training set ratio of 0.8. (G) Box plot for 

the distribution of classification accuracy for the model in panel F. (H) Averaged change in accuracy for LOOCV 

models. 

3.3.2  Unsupervised Learning with K-means clustering 

As mentioned, a predetermined single label is always assigned to all spectra from a sample 

group since a CNN was the supervised learning model employed for the classification tasks in this 
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study. The model compares the predicted outcomes with the assigned labels to calculate its 

accuracy and loss values, and "learns" to perform better over time. Nevertheless, the nanocavity 

platform used for the spectra collection is a label-free technique and EVs exhibit exceedingly high 

heterogeneity, even within the same sample. Therefore, assigning the same label across an entire 

healthy or patient sample’s EV population may lead to decreased classification performance. This 

is speculated to be a result of the model’s struggles to identify a uniform and generalized pattern 

that accurately summarizes an entire population. 

K-means clustering is a common unsupervised method where data points are assigned into 

K groups based on their distance from each group’s centroid. The data points closest to a given 

centroid are clustered into the same category, allowing the identification of natural groupings 

within the data [20]. Based on previous observations that lipoproteins usually constitute a large 

portion of the EV signals collected, the number of groups was set to three [42]. The remaining 

signals from patients and healthy individuals were assumed to form one cluster each. Spatial K-

means clustering was performed for all samples, with three examples each from the healthy and 

the two cancer populations shown in Figure 3.3 (A). The clustering results did not demonstrate a 

coherent pattern within the groups, as varying levels of spectra were assigned to the three clusters 

(Fig. S3). Increased cluster numbers were also tested (Fig. S4), but no evident pattern could be 

determined. The spectra clustering visualization for Healthy #1 showed a clear distinction among 

the K-means group within the same sample (Figure 3.3 (B)). The cluster centers of the proposed 

three clusters in both Figure 3.3 (C) and Figure 3.3 (D) showed relatively similar peak positions 

across two cancer models, with the main differences coming from the height of the peaks. This 

incoherence among samples suggests additional data treatment methods are needed to enhance the 

model’s performance. 
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Figure 3.3 K-means clustering for unsupervised subgroup identifying.  

(A) Label distributions in K-Means clustering when K set to 3 for sample healthy controls and two cancer groups. (B) 

K-means clustering visualization for Healthy #1 using principal components in 2D dimension. (C) and (D) Clusters’ 

centers for each K-means group with matching colors to panel A for Cancer 1 and Cancer 2 respectively. 

3.3.3  Spectral Dimensionality Reduction 

3.3.3.1 Data Condensation with AE and Resampled Data 

In our dataset, a single Raman spectrum consists of 2924 data points, resulting in 2924 

features for machine learning models. Such high-dimensional data often contains certain irrelevant 

information, which can increase complexity and reduce the model’s predictive power as it becomes 

difficult to find generalized patterns for the assigned classes. Moreover, the "curse of 

dimensionality" may lead to an increased risk of overfitting, which occurs when a model becomes 

overly tailored to the training data, capturing noises that do not generalize well to unseen data [9], 

[43], [44]. To mitigate these challenges, dimensionality reduction is an avenue worth exploring.  
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AE is a type of unsupervised DL model commonly employed for dimensionality reduction. 

AEs usually consist of two main parts: an encoder and a decoder, it can be imagined as having a 

funnel structure (Figure 3.4 (A)). The encoder transforms the original data into a latent space, 

preserving only the features that help identify complex patterns. The decoder then reconstructs the 

original data using these preserved features, ideally closely matching the input data. The model is 

typically trained with the purpose of minimizing the reconstruction error, with the key lying in the 

lower-dimensional representation of the input features in the latent space [26]. Since the process 

of data condensing is unsupervised, the machine may be able to discover previously hidden 

patterns without human bias [45]. Thus, we propose training the CNN classifier in this latent space, 

leveraging the reduced dimensionality and condensed feature mappings for improved performance. 

By focusing on the most relevant features, the AE may help the CNN avoid overfitting and 

enhances its ability to generalize to new data. 

To further enhance the robustness of the model, Gaussian noise was added to the original 

spectra before they were transformed into the latent space via the encoder. This is a common 

practice for autoencoders, as adding noise to the previously cleaned dataset forces the decoder to 

focus on and capture the most essential features during the reconstruction process [46], [47]. By 

learning to reconstruct the original data from noisy inputs, the model becomes more resilient to 

variations and noise, which are often encountered in real-world applications. As shown in Figure 

3.4 (B), the spectrum reconstructed by the decoder exhibited a reduced noise level and more 

closely resembled the original spectra compared to the input that was fed into the encoder, proving 

that key features were retained in the latent space. To gain further insights into the behavior of data 

condensation, the data distribution in the latent space was visualized (Figure 3.4 (C)). The 

visualization revealed that most spectra from the two classes largely overlapped, which reflects 

the shared characteristics of these biovesicles. Only a small portion of the data deviated from the 

main overlapped area, potentially containing the key information necessary for differentiating the 

samples. 
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Figure 3.4 Data Condensation with Autoencoder and Resampled Data.  

(A) The CNN model was interfaced with an Autoencoder (AE), where subsequent classification occurred within the 

latent space, and the features were condensed in an unsupervised manner. (B) Gaussian noise was added to the original 

spectra before passing into the AE to reinforce the model’s capability of filtering important features. The reconstructed 

spectra showed significantly reduced noise level. (C) Data visualization in the latent space using the first two 

dimensions. (D) A resampled spectrum consisting of 1245 features. (E) Classification accuracy change for the two 

cancer models. Both resampled dataset showed significant increase in classification accuracy, while the improvement 

from AE is less evident.  

On the other hand, resampling is a technique that selects data points from the original 

samples to form new datasets and was designed for class imbalance problems [48], [49]. In the 

case of Raman spectra, the key information lies in the position and intensity of the peaks in a 

consecutive format, meaning no single data point determines the final classification. Therefore, by 

taking a spin on the traditional resampling methods, the spectra can be resampled using a set of 

predetermined wavelengths that selectively omit intermediate points on the x-axis. Specifically, 

from an original dataset containing 2924 features, the resampling process reduces the dataset to 

1245 features, cutting the feature count by more than half. As shown in Figure 3.4 (D), the spacing 

between each data point is sparser compared to the original data since only half of the features 
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were retained, but it preserves the general shape and location of the peaks which can greatly 

facilitate effective classification. 

The effectiveness of the two applied data condensation techniques was evaluated by 

comparing their increase in accuracy relative to the base accuracy (Figure 3.4 (E)). The models 

trained with the resampled data exhibited a significant improvement, achieving a 10.7% and 8.2% 

increase in accuracy for Cancer 1 and Cancer 2, respectively. Thus, by focusing on a subset of 

relevant data points, resampling has proven effective in mitigating the effects of the “curse of 

dimensionality”. This technique ensures that the essential characteristics, like the height and 

position of the SERS spectra, are retained while eliminating unnecessary data points, leading to 

more accurate predictions with reduced computation power. However, when the AE was integrated 

into the model, the improvement was not as evident. This outcome suggests potential limitations 

of using AE for this specific dataset. The data condensation in the latent space may have resulted 

in the loss of critical information, particularly the location and height of peaks, which are essential 

for distinguishing between classes. While the AE is effective at reducing dimensionality, it might 

have oversimplified the data, leading to the omission of subtle yet important spectral features. In 

complex datasets like SERS spectra, where classification depends on these fine-grained details, 

such losses can significantly impact model performance. 

3.3.3.2 Data Selection with Bio-silent Region Cut and Grad-CAM 

There is a “silent region” on the SERS spectra, ranging from 1800 cm-1 to 2800 cm-1 there 

are no biologically relevant peaks [50], [51]. In EV-based studies, removing this section from the 

spectra while preserving the remaining features for DL analysis may serve as an effective method 

of dimensionality reduction. However, this approach does not necessarily guarantee an increase in 

classification accuracy. DL models, often regarded as "black boxes", are challenging to decompose 

into intuitive components that humans easily understand. As a result, the primary evaluation metric 

for assessing a model's performance is classification accuracy, which can make it difficult to 

pinpoint where the network may have erred or how to enhance its accuracy more effectively.  

To address this challenge, the Grad-CAM algorithm was developed in 2017 [29]. 

Originally designed for interpreting images, Grad-CAM identifies the final convolutional layer in 
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the network and calculates the gradient information flowing into that layer (Figure 3.5 (A)). The 

feature maps that are generated at each convolutional layer capture various patterns and spatial 

hierarchies in the data, the gradients reflect feature importance by indicating how much each 

feature in a particular layer contributes to the final class score. This process produces a coarse 

localization map that highlights important regions in the image for predicting a specific class.  

We propose applying a similar concept to spectra data. After training the model on spectra 

with the bio-silent region removed, we can backtrack the gradient maps. These gradients typically 

averaged over all spatial locations, yield a set of importance weights that indicate the overall 

significance of each feature map channel for the target class prediction. Regions with higher 

weights contribute more to the final feature importance mapping [30], [31], [52]. This map can 

then be used to identify which regions of the spectra the CNN network considers most important 

for predicting the target class. To test this approach, we retrained a new CNN model using only 

these identified regions of the spectra, as a method of both feature mapping and dimensionality 

reduction, to evaluate whether this improves the accuracy. A sample spectrum is shown in Figure 

3.5 (B), where the highlighted regions indicate the areas on the original spectrum that align with 

the Grad-CAM-generated importance map. These peaks were deemed more significant for sample 

classification by the previously trained CNN model. Given the high heterogeneity of EVs, the 

averaged spectra may not serve as the best representation. Therefore, 20 spectra from each sample 

were randomly selected, and their feature maps were calculated to identify the common 

wavelength regions deemed important by the machine. Figure 3.5 (C) shows the SERS intensity 

at the five most common peak points identified by Grad-CAM, revealing locations that 

differentiate among the three populations. For instance, at 1492 cm⁻¹, the healthy controls 

exhibited relatively uniform intensity, whereas the two cancer groups displayed greater variability. 

Conversely, at 1544 cm⁻¹, the cancer populations showed more uniform intensity, while the healthy 

group exhibited more variation. 

An average accuracy increases of 3.7% was observed when the biosilent region was 

removed from the Cancer 1 dataset, suggesting a modest improvement despite the significant 

reduction of 800 features. Similarly, the Cancer 2 dataset showed a 2.6% increase in accuracy 

(Figure 3.5 (E)). However, this improvement is not particularly substantial, indicating that the 
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removed region was not critical for classification. This is further supported by Figure 3.5 (B), 

where no prominent feature importance peaks appear within the region between 2000 cm⁻¹ and 

2800 cm⁻¹. A similar trend is observed in Figure 3.5 (D), where the biosilent region appears 

relatively inactive, lacking significant Raman peaks that could aid in distinguishing between 

different classes.  When Grad-CAM mapping was applied, the model for Cancer 1 experienced a 

slight decrease in average performance, while a 2.1% accuracy increase was noted for the Cancer 

2 dataset. These results suggest that the selection of wavelength regions based on feature 

importance may not have adequately captured the complex and diverse nature of EVs, leading to 

an incomplete or biased representation of the data. Additionally, the process of manually selecting 

important regions and training the model exclusively on these areas may have distorted the relative 

positions of SERS peaks, which are crucial for accurate classification. This distortion could have 

resulted in the loss of important contextual information necessary for distinguishing between 

different classes, ultimately reducing performance. 

 

Figure 3.5 Data Selection with Bio-silent Region Cut and Grad-CAM.  
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(A) Grad-CAM backtracks the gradient distribution in the last convolutional layers of the CNN model and generates 

a feature map that highlights key sections of the spectra that the model considered important for classification. (B) 

Grad-CAM feature importance mapping for one sample spectrum. The overlapping region indicates the features 

considered important by the model during classification. (C) Boxplot of SERS intensities at five most common 

wavelengths with high Grad-CAM importance. (D) Bio-silent region is highlighted with no biologically active peaks 

and was removed in the training set as an effective method of feature reduction. (E) Classification accuracy change 

for the two cancer models. The removal of bio-inactive regions did not lead to significant change in accuracy, while 

the manual selection of key regions based on Grad-CAM caused distortion of the relative position of the peaks with 

reduced model performance. 

3.4 Conclusion 

The study investigates several methods for enhancing the binary classification accuracy of 

a CNN model using single EV Raman spectra datasets. Initially, by optimizing the training set 

ratio between the two classes, the network was compelled to place more emphasis on the minority 

class. Such improvement was also achieved without the addition of any complex algorithms to the 

original network. Subsequently, we compared four dimensionality reduction techniques, finding 

that resampled data led to the most significant improvement. This outcome aligns with previous 

studies demonstrating that resampling is one of the most effective approaches for constructing 

classifiers from imbalanced datasets. In addition, the proposed resampling method was proven 

effective across two cancer models and follows a standardized data treatment protocol, making it 

potentially transferable to other studies. The findings show the importance of both class balance 

in training and careful feature selection in improving the robustness and accuracy of DL models 

in this context. 

For future studies, it will be important to expand the focus beyond binary classification to 

explore multiclass scenarios, which can reveal more detailed patterns within the data. Multiclass 

classification also offers deeper insights into the varying degrees of disease states and pushes the 

boundary of DL model performance to more real-life applications. Additionally, increasing the 

sample pool is critical for enhancing the model's generalization capabilities. A larger dataset would 

not only improve the robustness of the model but also help minimizing overfitting when the 

number of spectra sample surpasses the spectrum dimension, leading to more reliable predictions 

across diverse populations.  
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Fig S1: (A) Global accuracy of the confusion matrix for Cancer 1 versus healthy controls using 

the original dataset. (B) Global accuracy of the confusion matrix for Cancer 1 versus healthy 

controls using a 0.6 ratio for the training set. (C) Global accuracy of the confusion matrix for 

Cancer 2 versus healthy controls using the original dataset. (D) Global accuracy of the confusion 

matrix for Cancer 2 versus healthy controls using a 0.8 ratio for the training set. 
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Fig S2: (A) Change in accuracy for different healthy/cancer proportions in the train set for Cancer 

1. (B) Change in accuracy for different healthy/cancer proportions in the train set for Cancer 2. 

 

 

Table S2: Classification probability for healthy samples included in the training set (#1 - #3) and 

used completely in test (#7 - #9) 

 

 

 

 

 Probability of classified as 

Healthy 

Probability of classified as 

Patient 

Healthy #1 0.63 0.37 

Healthy #2 0.78 0.22 

Healthy #3 0.64 0.36 

Healthy #7 0.23 0.77 

Healthy #8 0.43 0.57 

Healthy #9 0.53 0.47 
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Fig S3: K-means clustering (k =3) for the remaining Cancer 1, and Cancer 2 patients and healthy 

samples. 
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Fig S4: K-means clustering with 4 clusters for selected Cancer 1 and Cancer 2 patients, and healthy 

controls. 
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4 Comprehensive discussion of findings 

4.1 Single EV Technologies 

EVs play crucial roles in mediating cell-to-cell communication both locally and at a 

distance, given their capacity to navigate the extracellular matrix where most cells are embedded 

[92]. This discovery has also challenged the long-held hypothesis that direct cell-to-cell contact is 

the primary communication method between cancer cells and surrounding stromal cells, 

highlighting the broader and more versatile roles that EVs play in this complex network [93], [94]. 

However, the majority of currently available EV characterization techniques rely on bulk analysis, 

where the signals obtained are averaged across a population of EVs. This approach, while practical, 

overlooks the variations among individual vesicles and was historically considered necessary due 

to the nanoscale size of EVs, but presents significant technical difficulties for single-vesicle 

profiling [24], [95], [96].  

The highly heterogeneous nature of EVs, both in terms of their biophysical properties and 

molecular composition, further complicates the bulk analysis, as multiple biomarkers are often 

needed to capture relevant molecules of interest. This reliance on multiple markers can dilute both 

the sensitivity and specificity of diagnostic results, as the signals may become overwhelmed by 

background noise or irrelevant information. Additionally, assays are frequently constrained by the 

current state of biomarker discovery, leaving many EV subtypes underexplored or entirely 

unstudied. The scarcity of tumor-shed EVs carrying critical disease-indicating biomarkers amidst 

a vast population of irrelevant healthy EVs shows the need for more precise analytical techniques. 

This makes sEV analysis a critical advancement for early diagnosis and disease progression 

monitoring. The precise identification of interested vesicles may significantly increasing the 

likelihood of detecting the faint yet crucial signals that indicate the presence of disease. Single EV 

profiling technology holds great potential to be the key to a more thorough understanding of the 

biological functions and pathways of previously undiscovered EV subtypes, addressing 

technological restrictions in disease development. Recent studies have reported several single-EV 

analysis techniques using bead-based microwell arrays combined with tyramide signal 

amplification droplet-based digital assays [97], or single molecule imaging achieved via total 



 

67 

 

internal reflection fluorescence microscopy [98], [99]. These developments have highlighted the 

exciting potential of sEV analysis to unlock new frontiers in EV research and diagnostic 

applications. However, when it comes to plasmonic platforms, the field of sEV profiling remains 

relatively understudied due to challenges associated with both single EV entrapment and signal 

amplification, which are critical to the success of nanofabrication techniques. Despite these 

challenges, the miniature size, ease of device setup, and the highly adaptable nature of plasmonic 

surface designs present significant opportunities for their future application. These platforms could 

eventually be integrated into clinical settings to facilitate more accurate and rapid diagnostics. 

Beyond the recently developed MoSERS platform in the Mahshid lab [37], recent innovations 

from the Im group have introduced periodic gold nanowell structures that utilize plasmon-

enhanced fluorescence detection, capable of profiling EVs with single-vesicle resolution [27]. This 

demonstrates the growing interest in plasmonic technologies and their potential for advancing EV 

research. 

Despite the significant potential, label-free single EV SERS platforms, like MoSERS, face 

several challenges in their integration into routine cancer diagnostics. One of the most prominent 

obstacles is the construction of a comprehensive spectral library that can reliably identify key 

biomarkers. Even though plasma samples are concentrated using size-exclusion chromatography 

(SEC), the overall EV concentration in solution often remains relatively low, and high-resolution 

spectra are not guaranteed. Additionally, the label-free nature of the technique introduces another 

layer of complexity, as it provides no prior information about the source of the detected signal. 

While it may be possible to distinguish between patient-derived and healthy control samples, there 

is no definitive assurance that a given signal carries a tumor-specific EV signature, and the natural 

heterogeneity present even among healthy EVs, further complicates this process. These factors 

contribute to the slower development and clinical translation of label-free technologies, despite 

their clear advantages in non-invasive diagnostics. Potential solutions to these challenges will be 

discussed in greater detail in the subsequent ‘Next Steps’ section. 
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4.2 Choice of Step Size in Dimensionality Reduction and ML Model 

Optimization 

The choice of step size, often referred to as the learning rate, is a critical parameter that 

significantly influences the performance of ML models. It dictates how much the model updates 

its parameters during each iteration as it works to minimize the loss function, directly affecting 

how the model navigates the complex, high-dimensional data space[100], [101]. In ML models, it 

is usually based on gradient descent method or the steepest descent algorithm [102]. In the context 

of dimensionality reduction, the learning rate can be interpreted as the degree of reduction applied 

to the original dataset and the step size used for retaining relevant data points. A well-tuned step 

size ensures efficient capture of essential features while discarding irrelevant information. Finding 

this optimal balance is especially important for spectral data, where subtle differences at specific 

wavelengths are key for accurate classification. 

The selection of the ML model is not the primary focus of this study, as it has been 

extensively discussed in previous works [37], [103]. Simpler models, including Logistic 

Regression (LR), Random Forest (RF), and Support Vector Machines (SVM), were tested on the 

same dataset but yielded unsatisfactory results. Given the frequent application of deep learning, 

particularly CNNs, in analyzing high-dimensional Raman spectroscopy data, a ResNet-based CNN 

was adapted from the work of Ho et al. as the foundational architecture for this project [90]. 

Section 3 focused on comparing the effects of dimensionality reduction techniques on 

improving binary classification accuracy. However, the role of step size during this process may 

be further investigated. In Section Section3, the dimensionality was greatly reduced to 

approximately half of the original set, preserving around 1400 data points for each of the four 

techniques. This number was determined based on the resampling method, where each sample was 

filtered based on the nearest matching wavelength compared to a predefined set of wavelengths. 

As 1245 data points were ultimately preserved, the step sizes of the other three techniques were 

adjusted to match this number, allowing for a more uniform comparison of the effectiveness of the 

techniques. Nonetheless, careful consideration should be given to the selection of step size. If set 

too high, the model risks overshooting the optimal solution, bypassing the most accurate reduced-
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dimensional representation of the data. Conversely, a small step size can slow convergence and 

increase the number of training iterations needed to find the optimal solution. This is particularly 

important in dimensionality reduction, as it is often a precedent step prior to the actual ML model. 

Effective tuning of the step size requires experimentation within a set range. Although this is 

usually not explicitly mentioned, previous studies has applied similar methods for finding their 

optimal step size [104], [105]. 

4.3 Evaluation Metric Selection for Single EV Data with High Spectral 

Heterogeneity  

As this study was based on single-EV spectra, there is a critical need to develop novel 

analysis methods and adopt more appropriate evaluation metrics tailored to the complexity of EV 

compositions. Traditional approaches usually assess accuracy on a per-spectrum basis using the 

confusion matrix (Figure 4.1). While this is convenient for initial evaluations, it may fail to capture 

the heterogeneous nature of EVs since each spectrum represents only a small snapshot of the 

overall EV population of a sample. Thus, relying on per-spectrum classification may lead to 

misleading results, particularly in terms of false negatives, where a single misclassified spectrum 

could disproportionately affect the overall accuracy. 

Future work should consider evaluating accuracy on a per-sample basis by considering a 

contributed result from each spectrum in that sample. This shift in perspective recognizes that not 

every signal within a sample needs to be perfectly classified as a "patient" signal to yield clinically 

valuable insights. It may also better reflect the inherent biological variability of EV populations, 

accounting for the subtle differences and overlapping features that exist between healthy and 

cancerous samples. By focusing on the combined accuracy of entire samples, this approach can 

provide a more realistic and comprehensive understanding of the model's performance. Such an 

evaluation would not only help in reducing false negatives but also offer a clearer indication of the 

model's diagnostic potential in real-world clinical settings, where variability within the population 

is expected. 
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Figure 4.1: Common evaluation metrics for ML-based spectra analysis. 

(A) General workflow of ML-based data analysis. (B) Loss curve in the training stage. Overfitting will occur 

when the loss of the test set increases. (C) The representation of a confusion matrix represents the prediction 

summary in matrix form, where the true positive and true negatives on the diagonal squares. (D) Representation 

of a ROC curve, which shows the performance of a classification model at all classification thresholds. AUC 

can be used as a metric to assess the performance of a classification model. Reproduced with permission from 

ref [48]. Copyright 2020, ACS Sensors.  

4.4 Spectral Data Pre-Processing  

As briefly discussed in Section 3, the spectral data processing and analysis steps are often 

highly specific to the device and data type, with customized workflows designed for each project. 

Common preprocessing techniques include denoising, baseline drift elimination, Fourier transform, 

and normalization [106], [107], [108]. These preprocessing steps have a direct impact on the 

overall performance of ML models, as they shape the quality and consistency of the data fed into 

the algorithms. For SERS spectral data, each spectrum typically undergoes smoothing using the 

Savitzky–Golay filter to reduce noise, followed by background subtraction to eliminate unwanted 

signals, and min-max normalization, which scales the data between 0 and 1 for better 

comparability across spectra [45], [48], [109]. This workflow is also reflected in Section 2 and 

Section 3.2, where the reviewed studies generally follow these preprocessing steps, though the 

specific details regarding the order and method of implementation are often not mentioned. This 

lack of transparency can hinder the reproducibility and transferability of findings across studies. 

While this variability can partly be attributed to the unique characteristics of each study, device, 
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and experimental setup, it also highlights the need for more standardized and generalized data-

cleaning methods in the field. Given that SERS-based bioanalysis is still in its developmental stage, 

establishing clearer protocols would not only enhance reproducibility but also lead to broader 

adoption of these techniques across various research and clinical applications. 

4.5 Next Steps 

Ultimately, the envisioned use of the MoSERS platform in clinical settings is to serve as a 

supplementary tool for cancer diagnosis, rather than as a standalone diagnostic standard. Its 

primary role would be to screen patients suspected of having early-stage tumors that are difficult 

to detect using conventional imaging or biopsy techniques. Thus, future studies will need to 

involve much larger sample pools, as well as extend beyond binary classification to investigate 

cancer subtypes and metastatic stages. Incorporating established cell lines into the spectral library 

may also be valuable addition, as they offer a more consistent and prominent model of patient 

signatures. This would enhance the reproducibility of results and provide a more reliable reference 

for comparison. This expansion may eventually provide a more comprehensive understanding of 

the platform's diagnostic potential in diverse clinical scenarios. Another potential modification to 

maintain the platform's label-free nature would be the integration of an EV concentration step prior 

of adding the sample. By targeting commonly shared surface biomarkers such as CD9, CD63, and 

CD81, this step could help eliminate lipoproteins, which are often present in large quantities in 

samples and may interfere with accurate detection [110], [111].  

Furthermore, as we were challenged by the complex sample compositions where the 

specific EV compositions may be difficult to control, unsupervised learning could be the key for 

interpreting these unknown mixtures. More advanced models like variational autoencoders could 

offer promising solutions, enabling deeper insights into the underlying structures and distributions 

within the data [112]. By leveraging these techniques, we can improve the platform's ability to 

classify and analyze heterogeneous EV populations, ultimately making it more adaptable and 

effective in clinical applications. 
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5 Final Conclusion and Summary 

In conclusion, the integration of label-free SERS platforms and ML-assisted spectral data 

analysis presents a powerful approach for enhancing EV characterization, particularly in cancer 

diagnostics. ML enables the processing of complex, high-dimensional spectral data, improving the 

interpretation of underlying biological patterns and facilitating meaningful conclusions from even 

noisy data. This study highlighted the importance of optimizing data processing workflows and 

ensuring class representation balance in training sets to improve model robustness and 

performance. The resampling technique was particularly effective in addressing imbalanced 

datasets, demonstrating significant improvements in classification accuracy and potential 

transferability to other cancer paradigms. Moreover, these findings emphasize the critical role of 

both feature selection and model optimization in enhancing the accuracy of deep learning models. 

For future studies, expanding beyond binary classification to multiclass scenarios is 

essential for gaining deeper insights into tumor metastatic states and pushing the boundaries of 

ML in clinical applications. Future research should also focus on increasing sample sizes, as larger 

datasets are crucial for improving model generalization and reducing overfitting. Additionally, 

developing more standardized data analysis protocols will promote reproducibility and facilitate 

broader application of these techniques across different studies and clinical settings. By continuing 

to refine these technologies, the combination of optical sensors and ML holds great promise for 

revolutionizing EV-based diagnostics, ultimately improving the detection early-stage cancer in an 

efficient and cost-effective manner. 
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