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Abstract

Abundant genome sequence information from large cohorts of individuals can now be

routinely obtained and this information is poised to ease the identification of genetic varia-

tions linked to complex disease. In this work, I investigate the computational and statistical

challenges involved in the analysis of large genomic datasets and I tackle three different

aspects of the analysis, each of them having very different characteristics. First, in order

to analyse large amounts of data from genomic studies we design a programming language,

BigDataScript, that simplifies the creation of robust and scalable data analysis pipelines. Sec-

ond, we create genomic variant annotation and prioritization methods (SnpEff and SnpSift)

that help to calculate putative genetic effects and estimate the genetic impact of variants.

Finally, we address the problem of finding associations between interacting genetic loci and

disease by proposing a methodology that combines population-level genetic information with

evolutionary information in order to increase the statistical power in epistatic genome wide

association studies .
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Abrégé

Il est aujourd’hui possible d’obtenir la séquence du génome de grandes cohortes d’individus,

et cette information permet de faciliter l’identification de variations génétiques liées à des

maladies complexes. Dans ma thèse, j’étudie les défis informatiques et statistiques liés à

l’analyse de grands ensembles de données génomiques. J’aborde trois aspects de l’analyse.

Premièrement, afin d’analyser de grandes quantités de données provenant d’études génomiques

nous concevons un langage de programmation, BigDataScript, qui simplifie la création de

pipelines d’analyse de données robustes et évolutives. Deuxièmement, nous créons deux

méthodes d’annotation et de classification de variantes génomiques (SnpEff et SnpSift) qui

aident à prédire leur l’effet possible. Enfin, nous abordons le problème de l’identification

de liens entre les maladies génétiques et les variantes qui les causent en proposant une

méthodologie qui combine l’information génétique au niveau d’une la population avec des

informations évolutive afin d’augmenter la puissance statistique des études d’association

considérant les interactions épistatiques.
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Chapter 1

Introduction

1.1 Introduction

How does one’s DNA influence their risk of getting a disease? Contrary to popular belief,

your future health is not “hard wired” in your DNA. Only in a few diseases, referred as

“Mendelian diseases”, are there well known, almost certain, links between genetic mutations

and disease susceptibility. For the majority of what are known as “complex diseases”, such

as cancer or diabetes, genomic predisposition is subtle and, so far, not fully understood

and involves interaction among several genes as well as between genes and the external

environment.

With the rapid decrease in the cost of DNA sequencing, the complete genome sequence

of large cohorts of individuals can now be routinely obtained. This wealth of sequencing

information is expected to ease the identification of genetic variations linked to complex

traits. In this work, I investigate the analysis of genomic data in relation to complex diseases,

which offers a number of important computational and statistical challenges. We tackle

several steps necessary for the analysis of sequencing data and the identification of links to

disease. Each step, which corresponds to a chapter in my thesis, is characterized by very

different problems that need to be addressed.
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i) The first step is to analyse large amounts of information generated by DNA sequencers

to obtain a set of “genomic variants” present in each individual. To address these big

data processing problems, Chapter 2 shows how we designed a programming language

(BigDataScript (Cingolani, Sladek, & Blanchette, 2015)), that simplifies the creation

robust, scalable data pipelines.

ii) Once genomic variants are identified, we need to prioritize and filter them to discern

which variants should be considered “important” and which ones are likely to be less

relevant. We created the SnpEff & SnpSift (Cingolani, Platts, et al., 2012; Cingolani,

Patel, et al., 2012) packages that, using optimized algorithms, solve several annotation

problems: a) standardizing the annotation process, b) calculating putative genetic

effects, c) estimating genetic impact, d) adding several sources of genetic information,

and e) facilitating variant filtering.

iii) Finally, we address the problem of finding associations between interacting genetic loci

and disease. One of the main problems in GWAS, known as “missing heritability”, is

that most of the phenotypic variance attributed to genetic causes remains unexplained.

Since interacting genetic loci (epistasis) have been pointed out as one of the possible

causes of missing heritability, finding links between such interactions and disease has

great significance in the field. We propose a methodology to increase the statistical

power of this type of approaches by combining population-level genetic information

with evolutionary information.

In a nutshell, this thesis addresses computational, analytical, algorithmic and method-

ological problems of transforming raw sequencing data into biological insight in the aetiology

of complex disease. In the rest of this introduction we give the background that provides

motivation for our research.
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1.2 Genomes and genetic variants

DNA is composed of four basic building blocks, called “bases” or “nucleotides” (Alberts et

al., 1995). These four nucleotides, usually abbreviated {A,C,G, T}, are Adenine, Cytosine,

Guanine, and Thymine. Bases form pairs, either as A − T or C − G, that are ordered

sequentially to form two long polymers, with backbones that run in opposite directions giving

rise to a double-helix structure (Watson & Crick, 1953). Arbitrarily, one of the polymers is

called the positive strand and the other is called the negative strand.

Proteins are composed of chains of amino acids and, as explained by the central dogma

of biology (Alberts et al., 1995), DNA is the template that instructs the cellular machinery

how to produce proteins. There are 20 amino acids, which are the building blocks of all

proteins. Each of the twenty amino acids is encoded by a group of three DNA bases called a

“codon” (Crick, Barnett, Brenner, & Watts-Tobin, 1961). More than one codon can code for

the same amino acid (i.e. 43 = 64 codons > 20 amino acids) allowing for code redundancy.

Additionally, there are codons that mark the end of the protein, these are called “STOP”

and signal molecular machinery to end the translation process (Brenner, Stretton, & Kaplan,

1965).

Proteins compose up to 50% of a cell’s dry weight compared to DNA which makes up only

3% (Alberts et al., 1995). Proteins perform their functions mainly by interacting with other

proteins, forming complex pathways that execute a vast array of cellular functions including

catalysing of chemical reactions, cell signalling, and providing structural conformation of the

cell (Alberts et al., 1995). The 3-dimensional structure of a protein, also called “tertiary

structure”, is tailored to bind to other proteins in a specific manner to accomplish a specific

function.

The human genome has a total of 3 Giga-base-pairs (Gb), and those bases are divided

into 22 autosomal chromosome pairs (in each pair one chromosome is maternally inherited

and the other paternally inherited) and two sex chromosomes. The longest of the autosomal

chromosomes is roughly 250 Mega-bases (MB) in length and the shortest one is 50 Mb.
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A convenient way to compare DNA from different individuals (or samples) is by means

of a “reference genome”. Having a standard reference sequence facilitates comparisons and

analysis. For most well studied organisms, reference genome sequences are available and

current large scale sequencing projects are extending significantly the number of genomes

known, e.g. one project seeks to sequence 10,000 mammalian genomes (Haussler et al.,

2009), another is targeting all microbes that live within the human gut (Turnbaugh et al.,

2007). The human reference genome (e.g. GRCh37) does not correspond to the DNA of any

particular person, but to a mosaic of the genomes of thirteen anonymous volunteers from

Buffalo, New York (Schneider & Church, 2013).

When the genome of an individual is sequenced, the DNA is compared to the reference

genome. Most of the DNA is the same, but there are differences. These differences, gener-

ically known as “genetic variants” (or “variants”, for short), describe the particular genetic

make-up of each individual. There are several different ways a sample can differ from a

reference genome. Each variant is the result of a mutations that happened at some point in

the evolutionary history of the individual (or that of the reference genome). Variant types

can be roughly categorized in the following way:

Single nucleotide variants (SNV) or Single nucleotide polymorphisms (SNP) are the

simplest and more common variants produced by single base difference (e.g. a base

in the reference genome, at a given coordinate, is an ‘A’, whereas the sample is ‘C’).

Depending on whether the variant was identified in an individual or in a population,

it is called a Single Nucleotide Variant (SNV) or Single Nucleotide Polymorphism

(SNP). It is estimated that there are roughly 3.6M SNPs per individual (McVean et

al., 2012). There are several biological mechanisms responsible for this type of variant:

i) replication errors, ii) errors introduced by DNA repair mechanism, iii) deamination (a

base is changed by hydrolysis which may not be corrected by DNA repair mechanisms),

iv) tautomerism (and alteration on the hydrogen bond that results in an incorrect

pairing) (Griffiths, 2005).
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Multiple nucleotide polymorphisms (MNP) are sequence differences affecting several

consecutive nucleotides and are typically treated as a single variant locus if they are

in perfect linkage disequilibrium (e.g. reference is ACG whereas the sample is TGC).

Insertions (INS) refer to a sample having one or more extra base(s) compared to the

reference genome (e.g. the reference sequence is AT and the sample is ACT). Short

insertions and deletions (indels) of a chromosome region range from 1 to 20 bases in

length are reported to be 10 to 30 times less frequent than SNV (McVean et al., 2012).

Small insertions are usually attributed to DNA polymerase slipping and replicating the

same bases (this produces a type of insertion known as duplication). Large insertions

can be caused by unequal cross-over event (during meiosis) or transposable elements.

Deletions (DEL) are the opposite of insertions, the sample has one or more base(s) re-

moved with respect to the reference genome (e.g. reference is ACT and sample is AT).

As in the case of insertions, deletions can also be caused by ribosomal slippage, cross-

over events during meiosis. Those include large deletions, which can result in the loss

of an exon or one or more whole genes (Alberts et al., 1995). Short deletions are 10 to

30 times less frequent than SNV (McVean et al., 2012).

Copy number variations (CNVs) arise when the sample has two or more copies of the

same genomic region (e.g. a whole gene that has been duplicated or triplicated) or

conversely, when the sample has fewer copies than the reference genome. Copy number

variations are often attributed to homologous recombination events (Alberts et al.,

1995).

Rearrangements such as inversions and translocations are events that involve two or more

genomic breakpoints and a reorganization of genomic segments, possibly resulting in

gene fusions or loss of critical regulatory elements. Inversions, a type of rearrangement,

result from a whole genomic region being inverted.
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As humans have two copies of each autosome, variants could affect zero, one or two of

the chromosomes and are called “homozygous reference”, “heterozygous”, and “homozygous

alternative” respectively. Variants are also classified based on how common they are within

the population: common (≥ 5%), low frequency (≤ 5%), or rare (≤ 1%). How these types of

genetic variants influence traits or disease risk is a topic of intense research that is discussed

throughout this thesis.

1.3 DNA and disease risk

It would be fair to say that the Garrod family was fascinated by urine. As a physician

at King’s College, Alfred Baring Garrod, discovered gout related abnormalities in uric acid

(Kennedy, 2001). His son, Sir Archibald Garrod, was interested in a condition known as

alkaptonuria, in which children are mostly asymptomatic except for producing brown or

black urine, but by the age of 30 individuals develop pain in joints of the spine, hips and

knees. In 1902, Archibald observed that the family inheritance pattern of alkaptonuria

resembled Mendel’s recessive pattern and postulated that a mutation in a metabolic gene

was responsible for the disease. Publishing his finding he gave birth to a new field of study

known as “Human biochemical genetics” (Kennedy, 2001).

Diseases having simple inheritance patterns, such as alkaptonuria, cystic fibrosis, phenylke-

tonuria and Huntington’s are also known as Mendelian diseases (Kennedy, 2001). The genetic

components of several Mendelian diseases have been discovered since the mechanism was first

elucidated by Garrod in 1902 and the process has been accelerated in recent years, thanks

to the application of DNA sequencing techniques (Bamshad et al., 2011).

In complex diseases (or complex traits), such as diabetes or Alzheimer’s disease, affected

individuals cannot be segregated within pedigrees (i.e. no simple pattern of inheritance

can be identified). In contrast to Mendelian diseases the aetiology of complex traits is

complicated due to factors such as: incomplete penetrance (symptoms are not always present
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in individuals who have the disease-causing mutation) and genetic heterogeneity (caused by

any of a large number of alleles). This makes it more difficult to pinpoint the genetic

variants that increase risk of complex disease as demonstrated by the failure of linkage

analysis methods and later on GWAS (Botstein & Risch, 2003).

1.3.1 Heritability and Missing heritability

We all know that “tall parents tend to have tall children”, which is an informal way to say

that height is a highly heritable trait. It is said that there are 30 cm from the tallest 5%

to the shortest 5% of the population and genetics account for 80% to 90% of this variation

(Wood et al., 2014), which means that 27cm of variance are assumed to be “carried” by DNA

variants from parents to offspring. Since 2010 the GIANT consortia has been investigating

the genetic component of complex traits like height, body mass index (BMI) and waist to hip

ratio (WHR). Even though they found many variants associated those traits, their findings

only explain 10% of the phenotypic variance which corresponds to only a few centimetres in

height (Wood et al., 2014).

In order to measure this genetic contribution to disease or traits we need a formal defi-

nition. Heritability is defined as the proportion of phenotypic variance that is attributed to

genetic variation. The total phenotypic variation is assumed to be caused by a combination

of “environmental” and genetic variations V ar[P ] = V ar[G] + V ar[E] + 2Cov[G,E] (Zuk,

Hechter, Sunyaev, & Lander, 2012) .

The environmental variance V ar[E] is the phenotypic variance attributable only to envi-

ronment, that is the variance for individuals having the same genome V ar[E] = V ar[P |G].

This can be estimated by studying mono-zygotic and dizygotic twins.

If the covariance factor Cov[G,E] is assumed to be zero, we can define heritability as

H2 = V ar[G]
V ar[P ]

. This is called “broad sense heritability” because V ar[G] takes into account all

possible forms of genetic variance: V ar[G] = V ar[GA]+V ar[GD]+V ar[GI ], where V ar[GA]

is the additive variance, V ar[GD] is the variance from dominant alleles, and V ar[GI ] is the
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variance from interacting alleles (epistasis). Non-additive terms are difficult to estimate, so

a simpler form of heritability called “narrow sense heritability” that only takes into account

additive variance is defined as h2 = V ar[GA]
V ar[P ]

(Zuk et al., 2012).

Focusing on narrow sense heritability, the concept of “explained heritability” is de-

fined as the part of heritability due to known variants with respect to phenotypic vari-

ation (πexplained = h2
known/h

2
all). Similarly, missing heritability is defined as πmissing =

1 − πexplained = 1 − h2
known/h

2
all. When all variants associated with traits are known, then

h2
known = h2

all and πmissing = 0.

Until recently, it was widely assumed by the research community that the problem of

missing heritability lay in finding the appropriate genetic variants to account for the numer-

ator of the equation (h2
known) (Zuk et al., 2012). However, in a series of theorems published

recently, it has been proposed that there is a problem in the way the denominator is es-

timated (Zuk et al., 2012). In the aforementioned papers, Zuk et al. created a limiting

pathway model (LP (k)) that accounts for epistasis (gene-gene interactions) in k biological

pathways. They showed that a severe inflation of h2
all estimators occurs even for small values

of k (e.g. k ∈ [2, 10]). As a result, genetic variants estimated to account only for 20% of

heritability, could actually account for as much as 80% using an appropriate model (Zuk et

al., 2012).

Even though this result is encouraging, the problem is now shifted to detecting epistatic

interactions, a problem that we discuss this in section 1.7 and Chapter 4. Identifying epistatic

interactions is a hard problem and requires very large sample sizes. In the same work (Zuk

et al., 2012), the authors show a power calculation example assuming a single loci genetic

effect that would require sequencing roughly 5, 000 individuals to detect links to a genetic

variant, which is a large but nowadays not uncommon, sample size. According to their

estimates, finding an epistatic interaction of similar effect would require sample sizes as high

as 500, 000 individuals (Zuk et al., 2012). Even though this represents an extremely large

number of samples, it is quickly becoming possible thanks to large technological advances
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and cost reductions in sequencing and genotyping technologies.

1.3.2 Conclusions

Although some genetic causes for complex traits, such as type II diabetes, have been found,

only a small portion of the phenotypic variance can be explained. This might indicate that

many risk variants are yet to be discovered. Recent studies on the topic of missing heri-

tability suggest that the root of these “difficult to find genetic variants” might be found in

epistatic interactions (analysed in section 1.7.7) or rare variants (see section 1.6.6). Analysis

of either requires more complex statistical models and larger sample sizes with the corre-

sponding increase in computational requirements. In Chapter 4 of this thesis, we focus on

methods for finding epistatic interactions related to complex disease and develop computa-

tionally tractable algorithms that can process data from sequencing experiments involving

large number of samples in a reasonable amount of time.

1.4 Identification of genetic variants

Two of the main milestones in genetics were the discovery of the DNA structure in 1953

(Watson & Crick, 1953), followed by the first draft of the human genome in 2004 (Collins,

Lander, Rogers, Waterston, & Conso, 2004). The cost of sequencing the first human reference

genome was around $3 billion (unadjusted US dollars) and it was an endeavour that took

around 10 years. Since that time, DNA sequencing technology has evolved substantially so

that a human genome can now be sequenced in three days for a price of less than $1,000,

according to prices estimated by Illumina, one of the main genome sequencer manufacturers

(Hayden, 2015).

The amount of information delivered by sequencing devices is growing faster than com-

puter speed (Moore’s law) and data storage capacity (Schatz, Langmead, & Salzberg, 2010).

A crude example, a leading edge sequencing system is advertised to be capable of delivering

9



18,000 human genomes at 30× coverage per year, yielding over 3.2 PB of information. Hav-

ing to process huge amounts of sequencing information poses several challenges, a problem

informally known as “data deluge”. From this raw data we want to obtain a set of candidate

genomic variants that contribute to disease risk with the ultimate goal to translate these

risk variants into biological knowledge. As expected, processing huge datasets consisting of

thousands of sample is a complex problem. In Chapter 2 we show how to mitigate or solve

some of these issues, by designing a computer language specially tailored to tackle what are

known as “Big data” problems.

1.4.1 Sequencing data

DNA sequencing machines are based on different technologies, in a nutshell all these tech-

nologies detect a set of polymers (or chains) of DNA nucleotides and outputs a set of strings

of A, C, G, and Ts. Unfortunately, current technological limitations make it impossible to

“read” a full chromosome as one long DNA sequence. Instead, modern sequencers produce a

large number of “short reads”, which range from 100 bases to 20 Kilo-bases (Kb) in length,

depending on the technology (Quail et al., 2012). Since sequencers are unable to read long

DNA chains, preparing the DNA for sequencing involves fragmenting it into small pieces.

These DNA fragments are a random sub-samples of the original chromosomes (Shendure &

Ji, 2008). Reading each part of the genome several times increases accuracy and ensures

that the sequencer reads as much as possible of the original chromosomes. The coverage

of a sequencing experiment is defined as the number of times each base of the genome is

read on average (Shendure & Ji, 2008; Quail et al., 2012). For instance, if the sequencing

experiment is designed to produce one billion reads, and each read is 150 bases long, then

the total number of bases read is 150Gb. Since the human genome is 3Gb, the coverage is

said to be 50.

After sequencing a sample, we have millions of reads but we do not know where these

reads originate from in the genome. This is solved by aligning (also called mapping) reads to
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the reference genome, which is assumed to be very similar to the genome being sequenced.

Once the reads are mapped, we can infer if the sample’s DNA has any differences with

respect to the reference genome, a problem is known as “variant calling”.

Although sequencing costs are dropping fast, it is still expensive to sequence thousands

of samples and in some cases it makes sense to focus on specific areas of the genome. A

popular experimental set-up is to focus on coding regions (exons). A technique called “exome

sequencing” (M. Clark et al., 2011) consists of capturing exons using a DNA chip and then

sequencing the captured DNA fragments only. Exons are roughly 1.2% of the genome, thus

this technique reduces sequencing costs significantly, for which it has been widely used by

many research groups although it has the disadvantage of only analysing coding genomic

variation.

1.4.2 Read mapping

Once the samples have been sequenced, we have a set of reads from the sequencer. The

first step in the analysis is finding the location in the reference genome where each read is

supposed to originate from, a process that is complicated by a several factors: i) there are

differences between the reference genome and the sample genome, ii) sequencing reads may

contain errors, iii) several parts of the reference genome are quite similar making reads from

those regions indistinguishable, and iv) a typical sequencing experiment generates millions

of reads (Shendure & Ji, 2008).

Local sequence alignment We introduce a problem known as local sequence alignment :

Given two sequences s1 and s2 from an alphabet (e.g. Σ = {A,C,G, T}), the alignment

problem is to add gap characters (‘-’) to both sequences, so that a distance measure, such

as Levenshtein distance, d(s1, s2) is minimized. This problem has a well known solution,

the Smith-Waterman algorithm (Smith & Waterman, 1981), which is a variation of the

global sequence alignment solution from Needleman-Wunsch (Needleman & Wunsch, 1970),
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and has an algorithm complexity O(l1.l2) where l1 and l2 are the length of the sequences.

So, Smith-Waterman algorithm is slow since in this case one of the sequences is the entire

genome.

In order to speed up sequence alignment, several heuristic approaches emerged. Most

notably, BLAST (S. Altschul et al., 1990), which can be to map sequences to a reference

genome. BLAST uses an index of the genome to map parts of the query sequence, called

seeds, to the reference genome. Once these seeds have been positioned against the reference,

BLAST joins the seeds performing an alignment only using a small part of the reference.

Mapping step Sequence alignment has an exact algorithmic solution and several faster

heuristic solutions. But even the fastest solutions are too slow to be used with the millions of

reads generated in a typical sequencing experiment. Faster algorithms can be used if we relax

our requirements in two ways: i) we allow for sub-optimal results, and ii) instead of requiring

the output to be a complete local alignment between a read and the genome, we just want

to know the region in the reference genome where the read sequence is from. This relaxed

version of the alignment algorithm is called “read mapping” and the reduced complexity is

enough to speed up the computations significantly. In a nutshell, a read mapping is regarded

as correct if it overlaps the true reference genome region where the read originated. Once the

mapping is performed, the read is locally aligned, a strategy similar to BLAST algorithm

(H. Li & Durbin, 2009; Langmead, Trapnell, Pop, & Salzberg, 2009).

Reformulating the alignment problem as a mapping problem allows us to use data struc-

tures such as suffix trees to index the reference genome. Using suffix trees we can query

for a substring (read) (Durbin, 1998) of the indexed string in O(m) time, where m is the

length of the query. Alternatively, we can use suffix arrays which provide a space optimized

alternative to suffix trees (Durbin, 1998). An implicit assumption in this solution, is that

the read is very similar to the reference and that there are no gaps. Suffix arrays algorithms

are fast but, even though they are memory optimized versions of suffix trees, memory re-
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quirements are still high (O[n log(n)], where n is the length of the indexed sequence, in

this case the reference genome) and this becomes the limiting factor. In order to reduce

the memory footprint of suffix arrays, Ferragina and Manzini (Ferragina & Manzini, 2000)

created a data structure based on the Burrows-Wheeler transform. This structure, known

as an FM-Index, is memory efficient yet fast enough to allow mapping of a high number of

reads. An FM-index for the human genome can be built in only 1Gb of memory, compared to

12Gb required for an equivalent suffix array (H. Li & Durbin, 2009). Given a genome G and

a read R, an FM-index search can find the Nocc exact occurrences of R in G in O(|R|+Nocc)

time, where |R| is the length of R (H. Li & Durbin, 2009).

We should keep in mind that suffix trees, suffix arrays and FM-indexes are guaranteed

to find all matching substring occurrences, nevertheless a sequencing read may not be an

exact substring of the reference genome (due to sample’s genome differences with the refer-

ence genome, read errors, etc.). So, even if efficient indexing and heuristic algorithms can

decrease mapping time considerably, these algorithms are not guaranteed to find an optimal

mapping. Several parameters, such as the read length, sequencing error profile, and genome

complexity profile can affect their performance. The most commonly used implementation

of the FM-index mapping algorithms are BWA (H. Li & Durbin, 2009, 2010) and Bowtie

(Langmead et al., 2009; Langmead & Salzberg, 2012). Each provides optimized versions for

the two most common sequencing types: i) short reads with high accuracy (H. Li & Durbin,

2009; Langmead et al., 2009) or ii) longer reads with lower accuracy (H. Li & Durbin, 2010;

Langmead & Salzberg, 2012). It should also be taken into account that read-mapping al-

gorithms implement heuristics to map reads having differences with respect to the reference

genome. Obviously these heuristics are implementation dependent, thus two mapping algo-

rithms can (and often do) lead to different mappings for the same read set which in turn can

lead to different variants being called (see section 1.4.3).
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Mapping quality Sequencers not only provide sequence information, but also provide

an error estimate for each base (H. Li, 2011b), which is often reported using FASTQ data

format (Cock, Fields, Goto, Heuer, & Rice, 2010). This is often referred as a quality (Q)

value, which is the probability of an error, measured in negative decibels Q = −10 log10(ε),

where ε is the error probability. Mapping quality is an estimate of the probability that a

read is incorrectly mapped to the reference genome.

Mapping algorithms provide estimates of mapping quality. In the MAQ model (H. Li,

Ruan, & Durbin, 2008), which is one of the earliest models for calculating mapping quality,

three main sources of error are explored: i) the probability that a read does not originate

from the reference genome (e.g. sample contamination); ii) the probability that the true

position is missed by the algorithm (e.g. mapping error); and iii) the probability that the

mapping position is not the true one (e.g. if we have several possible mapping positions). It

is assumed that the total error probability can be approximated as ε ≈ max(ε1, ε2, ε3).

1.4.3 Variant calling

Genome-wide variant calling has until recently largely been done using genotyping arrays (for

SNVs) or Comparative Genomic Hybridization arrays (for CNVs). The inherent limitations

of these technologies, particularly their ability to only assay genotypes at sites that are

known in advance to be polymorphic, combined with the declining cost of sequencing, have

now made approaches based on high-throughput resequencing the tool of choice for variant

calling in clinical studies.

Once the sequencing reads have been mapped to the reference genome, we can try to find

differences between a sequenced sample and the reference genome. This process is called

“variant calling” (Nielsen, Paul, Albrechtsen, & Song, 2011). Several factors complicate this

task, the two main ones being sequencing errors and mapping errors, described in 1.4.2.

Based on sequencing data and mapping error estimates, tools such as GATK (McKenna

et al., 2010) and SamTools/BcfTools (H. Li et al., 2008) use maximum likelihood models
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to infer when there is a mismatch between the sample and reference genomes and whether

the sample is homozygous or heterozygous for the variant. This method works best for

differences of a single base (SNV), but it can also work with different degrees of success for

short insertions or deletions (InDels) consisting of less than 10 bases.

Aligning sequences that contain InDels (gaps) is more difficult than ungapped alignments

since finding the optimal gap boundary depends on the scoring method being used. This

biases variant calling algorithms towards detecting false SNVs near InDels (DePristo et al.,

2011). An approach to reduce this problem is to look for candidate InDels and perform a

local realignment in those regions, to reduce significantly the number of false positive SNVs

(DePristo et al., 2011). Another approach involves estimating a “Base Alignment Quality”

(BAQ) (H. Li, 2011a) score, which is the probability of misalignment for each base. It can

be shown that replacing the original base quality with the minimum between base quality

and BAQ produces an improvement in SNV calling accuracy. The BAQ can be calculated

using a special type of “Hidden Markov Model” (HMM) designed for sequence alignment

(H. Li, 2011a; Durbin, 1998). A more sophisticated option for reducing errors consist of

performing a local genome re-assembly on each polymorphic region (e.g. HaplotypeCaller

algorithm (GATK Team, 2015)).

Finally, one should note that the error probabilities inferred by the sequencers are far

from perfect. Once the variants have been called, empirical error probabilities can be easily

calculated (McKenna et al., 2010) by comparing sequenced variants to a set of “gold standard

variants” (i.e. variants that have been extensively validated). This allows to re-calibrate or

re-estimate the error profile of the reads. This is know as a re-calibration step, and usually

improves the number of false positives calls (DePristo et al., 2011).

Due to the nature of short reads, this family of methods does not work for structural

genomic variants, such as large insertions, deletions, copy number variations, inversions,

or translocations. A different family of algorithms are used to identify structural variants

generally making use of pair end reads or split reads, but their accuracy so far has been low
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compared to SNV calling algorithm (ORawe et al., 2013).

One of the caveats of current sequencing technologies and computational methods for

variant calling is that detection accuracy varies significantly for different variant types. SNV

are by far the most accurately detected. Insertions and deletions, collectively referred as

InDels, can be detected less efficiently depending on their sizes. Small InDels consisting

of ten bases or less are easier to detect than large InDels consisting of 200 bases or more

(Durbin et al., 2010), in part as most commonly used sequencers reads DNA in stretches

roughly 200 bases long. Due to this technological limitation, detection is less reliable for

more complex variant types.

1.5 Functional annotations of genomic variants

The development of cost-effective, high-throughput sequencing technologies have had a pro-

found impact on our ability to study the effects of individual genetic variants on the patho-

genesis and progression of both monogenic and common polygenic diseases. As sequencing

costs decrease and throughput increases, it has now become possible to quickly identify

a large number of sequence polymorphisms (SNVs, indels, structural) using samples from

affected and unaffected subjects and investigate these in epidemiologic studies to identify

genomic regions where mutations increase disease risk. However, translating this informa-

tion into biological or clinical insights is challenging as it is often difficult to determine which

specific polymorphisms are the main pathogenetic drivers of disease across a population; and

more importantly, how they affect the activity of disease-related molecular pathways in tis-

sues and organism a specific patient. In part, this difficulty results from the large number of

genetic variants that are observed in individual genomes (the human population is believed

to contain approximately 3.5 million polymorphic sites with minor allele frequency above

5%) combined with the limited ability of computational approaches to distinguish variants

with no impact on genome function (the vast majority) from variants affecting gene function

16



or expression that may be associated with disease risk or drug response (the minority). The

development of algorithms for automated variant annotation, which link each variant with

information that may help predict its molecular and phenotypic impact, is a critical step

towards prioritizing variants that may have a functional impact from those that are harmless

or have irrelevant functional effects. In this section we review the key concepts and existing

approaches in this important field. In Chapter 3 we introduce an approach to collect relevant

information that will help answer questions about genetic variants discovered in sequencing

studies, including: (i) will a given coding variant affect the ability of a protein to carry its

functions; (ii) will a given non-coding variant affect the expression or processing of a given

gene; and ultimately (iii) will a given coding or non-coding variant have any impact on

phenotypes of interest?

Answering these questions is essential for many types of analyses that use large-scale

genomics datasets to study quantitative traits and diseases, particularly when only a small

number of individuals is studied comprehensively at a genome-wide level. For example, most

genome-wide association studies (GWAS) or exome sequencing studies lack the statistical

power to identify rare variants or variants with small effects associated with a disease, in part

due to the large number of variants assayed. This limitation can be addressed by directing

both statistical analysis and subsequent experimental steps to focus on smaller sets of genetic

variants that have been prioritized based on external evidence of their putative impact. The

common impairment of DNA repair mechanisms and chromatin stability in malignant cells

leads to a similar challenge in cancer genomics, where the hundreds or thousands of mutations

that distinguish an individual’s tumor and germline genomes need to be classified on the basis

of their putative phenotypic effects and potential roles in carcinogenesis.

The large number of databases containing potentially helpful information about a given

variant make the process of gathering and presenting relevant data challenging, despite excel-

lent tools that already exist to analyse large genomics datasets (including GATK (McKenna

et al., 2010) and Galaxy (Goecks, Nekrutenko, Taylor, et al., 2010)) and visualize the results
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(such as the UCSC (Karolchik et al., 2014) or Ensembl (Flicek et al., 2012) genome browsers).

Each of these databases uses its own format and is updated asynchronously, which makes

it difficult for any analysis to remain up to date. In addition, the lack of comprehensive

and computationally efficient models that allow integrative analyses using these resources,

makes the task of comprehensive variant annotation overwhelming. By efficiently combining

information from tens or hundreds of genome-wide databases, the tools described here are

designed to greatly facilitate the process of variant annotation, and make it accessible to

groups with limited bioinformatics expertise or resources.

1.5.1 Variant types

Although variant calling is a challenging task and remains an important area of research,

many high-quality tools exist for calling SNVs and indels. We discuss here the problem of

annotating the variants identified by some of these tools. The most common type of variant

identified by current technologies and analysis approaches is a single base difference with

respect to the reference genome (SNV) followed by multiple base differences (MNP), as well

as small insertions and deletions (InDels). Here, we focus on annotating these three types

of variants which comprise most of the variants in a typical sequencing experiment. We do

not address the annotation of large rearrangements due to the challenges involved in their

identification and functional characterization and their relative rarity in the germ line.

1.5.2 Types of genetic annotations

The process of genetic variant annotation consists of the collection, integration, and presen-

tation of experimental and computational evidence that may shed light on the impact of

each variant on gene or protein activity and ultimately on disease risk or other phenotypes.

Variant annotation has traditionally been divided in two apparently independent but actu-

ally interrelated tasks based on the variant’s location with respect to known protein-coding

genes. Coding variant annotation focuses on variants that are located within coding regions
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of annotated protein-coding genes and attempts to assess their impact on protein function.

In contrast, non-coding variant annotation focuses on variants located outside the coding

portion of genes (i.e. in intergenic regions, UTRs, introns, or non-protein-coding genes) and

aims to assess their potential impact on transcriptional and post-transcriptional gene regu-

lation. These two categories of variant annotations are not mutually exclusive, as variants

located within exons can often have an impact on the gene transcript’s processing (splicing).

In addition, some transcripts can have function a result of both their protein-coding and

non-coding potential (Alberts et al., 1995). Despite the intermingling of the notion of cod-

ing and non-coding variants, we will consider each type of annotation separately as assessing

their impact requires different sources of data and algorithms.

The ultimate goal of variant annotation is to predict the impact of a sequence variant,

although this is an ill-defined term. One the one hand, one may be interested in the molecular

impact of a variant on the activity of a protein. On the other, one may be interested

in a variant’s impact on much higher-level phenotypes such as disease risk. Mutations

that are predicted to completely abrogate a gene’s activity are called loss-of-function (LOF)

mutations. Those that are predicted to have less severe consequences are called moderate

or low impact mutations. In practice, a variant will be predicted to cause LOF if it has

two properties: i) its molecular impact is reliably predictable by existing computational

approaches (e.g. gain of stop-codon); and ii) its functional impact, reflected by altered

protein activity or expression levels, is expected to be large. Many types of variants, including

most non-coding variants, may have a large functional impact but lack predictability, and

as a consequence are typically not predicted to be LOF variants.

1.5.3 Coding variant annotation

Coding variants occur in translated exons. When a reliable gene annotation is available,

their main impact can be classified by determining their effect on the translated amino

acid sequence (if any). A synonymous coding variant (also called silent) does not change
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the sequence of amino acids encoded by the gene, although it may impact aspects of post-

transcriptional regulation such as splicing and translation efficiency and can affect the total

protein activity through changes in the amount of translated protein that is made in the

cell. In contrast, a non-synonymous coding variant changes one or more amino acids en-

coded by the gene and can directly alter the protein’s activity, localization or stability.

Non-synonymous variants include missense substitutions that change a single amino acid,

nonsense substitutions that lead to the gain of a stop codon, frame-preserving indels that

insert or delete one or more amino acids, and frame-shifting indels that may completely alter

the protein’s amino acid sequence. Primary annotation and assessment of impact, determines

whether a variant falls in any of these categories.

Several factors can affect prediction accuracy in coding variant annotations:

i Gene misannotation. Genomic variants that have a significant effect on a protein’s

expression or function represent a very small fraction of all variants. Assembly and

gene annotation errors or genomic oddities that break classical computational models

are also rare, but lead to false positives. This implies that one is likely to find a non-

negligible fraction of false-positive high-impact variants among the list of what appear

to be the strongest candidates for variants with severe effects. Tools such as SnpEff

(Cingolani, Platts, et al., 2012) can anticipate some of the most common causes of

misannotation, but the number and diversity of the type of events that can lead to

false-positives makes the task very challenging. As a consequence, one should always

manually inspect the top candidates to ensure that they have been assigned to the

correct genes and transcripts.

ii Gene isoforms. In higher eukaryotes, most genes have more than one transcript (or

isoform), due to alternative promoters, splicing, or polyadenylation sites. For example,

a human gene has an average of 8.8 annotated messenger RNA (mRNA) isoforms and

some genes are believed to have over 4,000 isoforms resulting from complex splicing

programs. For these genes, a variant may be coding with respect to one mRNA isoform
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and non-coding with respect to another. There are two frequent approaches to address

this situation: (i) annotate a variant using the most severe functional effect predicted

for at least one mRNA isoform; or (ii) use only a single canonical transcript per gene

to perform primary annotation.

iii Variant calling for indels. Variant annotation relies on knowing the exact genomic

coordinates of the variant: this is rarely a problem for isolated SNVs; however, inser-

tions and deletions often cannot be located unambiguously. Consider for example the

variant AA → A. This mutation results in the loss of a single base, but was it the first

or second A that was deleted? From the standpoint of the cell, this question is irrele-

vant and deletion of any A will have the same effect. In contrast, from the standpoint

of most variant annotation software, deleting the first A is different from deleting the

second. Consider the scenario of a previously annotated transcript where the first A

is part of the 5’ UTR and the second is the first base of a start codon. If the missing

base is assigned to the leftmost position in the motif (as is the current convention),

the deletion would be annotated as a low impact 5’UTR variant. However, assigning

it to the rightmost A would make it appear to be a high-impact start-codon deletion.

Similar issues may arise when considering conservation scores or transcription factor

binding site (TFBS) predictions.

1.5.4 Loss of function variants

True LOF variants are difficult to predict computationally, but specific types of genetic

changes will frequently lead to severely impaired protein activity. These include i) stop-

gains, also known as nonsense mutations; ii) start-loss mutations which change or remove

the transcript’s start codon; iii) indels causing frame-shifts; iv) large deletions that remove

either the first exon or at least 50% of the protein coding sequence; and v) loss of splice

acceptor or donor sites that alter the protein-coding sequence. Variants that introduce pre-

mature in-frame stop codons (nonsense mutations and most frame-shift indels) are expected
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to abolish protein function, unless the variant is very near the C-terminus of the coding re-

gion (Yamaguchi-Kabata et al., 2008) (effectively, downstream of the last functional domain

in the protein). Such mutations may have severe consequences in affected cells, tissues or

organism, as is seen for mutations that cause monogenic diseases (Scheper, van der Knaap,

& Proud, 2007). In addition, a new stop codon that lies upstream of the last exon will likely

trigger nonsense mediated decay (NMD), a process that degrades mRNA before protein syn-

thesis occurs (Nagy & Maquat, 1998). NMD predictions are not exact and many factors can

affect mRNA degradation, including the variant’s distance from the last exon-exon junction

or poly-A tail, and the possibility that transcription may re-initiate downstream of the LOF

variant (Brogna & Wen, 2009).

A variant that leads to the loss of a stop codon, sometimes called a read-through mutation,

will result in an elongated protein-coding transcript that terminates at the next in-frame stop

codon. While there are no general models that predict how deleterious this may be, such

variants can also result in aberrant folding and degradation of the nascent proteins, leading

to activation of cellular stress response pathways, in addition to their direct effects on protein

activity and expression levels (Scheper et al., 2007).

The effect of the loss of a start codon depends on the location of a replacement start

codon with respect to the translation start site and reading frame of the native protein. If

the new start codon maintains the reading frame, the only consequence may be the loss of a

few amino acids in the protein transcript; however, in many cases, the new start codon will

not be in-frame, thus producing a frame-shifted protein that is later degraded. In addition,

the new start codon may lack an appropriate regulatory context (for example, if there is no

Kozak sequence nearby or if it disrupts 5’ UTR folding) leading to reduced expression of an

N-terminally truncated protein. Consequently, losing a start codon is thought to be highly

deleterious in most cases, due to the potential that it may reduce both protein production

and activity.

Variants affecting rare amino acids are also thought to cause loss of function in pro-
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teins. Through a process called translational recoding, a UGA “Stop” codon located in the

appropriate mRNA context (determined by both primary mRNA sequence and secondary

structure) may be translated to incorporate a selenocysteine amino acid (Sec / U) (Alberts

et al., 1995). In humans, it is known to occur roughly 100 times in mRNAs whose 3’ UTR

contains a Selenocysteine insertion sequence element (SECIS). Since the translation machin-

ery goes so far to encode these special rare amino acids, the expectation is that mutations

at those sites would be highly deleterious. This is supported by evidence that reduced ef-

ficiency of selenocysteine incorporation is linked to severe clinical outcomes, such as early

onset myopathy (Maiti et al., 2009) and progressive cerebral atrophy (Agamy et al., 2010).

Since algorithms rely on heuristics, LOF predictions are affected by false-positives, vari-

ants predicted to result in a LOF sometimes actually produce proteins that are partially

functional (MacArthur et al., 2012). In fact, an apparently healthy individual is typically

heterozygous for around 100 predicted LOF variants, and homozygous for roughly 10, but

many of those are unlikely to completely abolish the protein function. Indeed, these vari-

ants are enriched toward the 3’ end of the gene, where they are likely to be less deleterious

(MacArthur et al., 2012).

1.5.5 Variants with low or moderate impact

Compared to the high impact variants discussed above, where extensive prior biological ev-

idence strongly suggests that a specific type of variant will severely impair protein activity,

there are few guidelines that can reliably predict how the majority of non-synonymous (mis-

sense) variants will alter protein function or expression. As a result, the primary annotation

performed by SnpEff and most related software packages will broadly categorize missense

substitutions and their accompanying amino acid changes (e.g. K154 → L154) as moderate

impact variants. Short indels whose length is a multiple of three are treated similarly, unless

they introduce a stop codon, as their effect will usually be localized.

Once missense and frame-preserving InDel variants are identified, a more detailed esti-
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mation of their impact on protein function can be performed using heuristic and statistical

models. The most common approaches are based on sequence conservation, either amongst

orthologous or homologous proteins, or protein domains, sometimes adding information of

the physio-chemical properties of the reference and variant amino acids (e.g. differences

in side chain charge, hydrophobicity, or size). The SIFT algorithm (Kumar, Henikoff, &

Ng, 2009) assesses the degree of selection against specific amino acid changes at a given

position of a protein sequence by analysing the substitution process at that site throughout

a collection of predicted homologous proteins identified by PSI-BLAST (S. F. Altschul et

al., 1997). Based on this multiple sequence alignment and the highly conserved regions it

contains, SIFT calculates a normalized probability of amino acid replacement (called the

SIFT score), which estimates the mutation’s effect on protein function. Polyphen (Adzhubei

et al., 2010), another commonly used tool, takes the process one step further by searching

UniProtKB/Swiss-Prot (Apweiler et al., 2013) and the DSSP database of secondary struc-

ture assignments (Joosten et al., 2011) to determine if the variant is located in a known

active site in the protein. In contrast to other methods that categorize each variant individ-

ually, VAAST (Yandell et al., 2011), a commercially available package, computes scores for

groups of variants located within a given gene and “collapses” them into a single category, a

concept similar to burden testing performed for rare variants identified in exome sequencing

studies. For human proteins, SnpEff makes use of the Database for Non-synonymous SNVs’

Functional Predictions (X. Liu, Jian, & Boerwinkle, 2011) (dbNSFP), which collects scores

produced by several impact assessment algorithms in a single database. Individually, im-

pact assessment methods usually have an estimated accuracy of 60% to 80% when compared

to manually curated databases of human variants, but predictions from several algorithms

can be combined to provide a stringent, but more accurate estimate of impact (Choi, Sims,

Murphy, Miller, & Chan, 2012).

In most cases these algorithms apply best to SNVs since these are common in populations

and there is more genomic sequence and experimental data available to refine the statistical
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methods. However, some recently developed algorithms are capable of assessing variants

other than SNVs, including PROVEAN (Choi et al., 2012), which extends SIFT to assess

the functional impact of indels.

Non-synonymous and synonymous variants are difficult to assess due to several factors:

i Imprecise models of protein function. Accurate impact assessment of coding variants

remains an open problem and most computational predictions are riddled with both

false positives and false negatives. While both missense variants and frame-preserving

indels are broadly catalogued as having moderate effects, this is mostly due to lack

of a comprehensive model and the extremely complex computations that would be

required for an in-depth analysis (such as protein structure predictions). In these

cases, proteomic information can be revealing. SnpEff adds annotations from curated

proteomic databases, such as NextProt (Lane et al., 2012), which can help to elucidate

if a mutation alters a critical protein amino acid or domain (such as amino acids that

are post-translationally modified as part of a signalling cascade or that are form the

active site of an enzyme) resulting in a protein may no longer function.

ii Gain of deleterious function. Computational variant annotation may eventually be

able to fairly accurately predict the molecular impact of a variant in terms of the

degree to which it translates in a loss of function for the encoded protein. However,

gains of function, including the acquired ability to interact with new partners and

disrupt their function, remain vastly more difficult to tackle, although several such

variants have been linked to disease (Whitcomb et al., 1996).

iii Unanticipated effects of synonymous variants. In most cases, synonymous variants

are regarded as non-deleterious (or low impact); however, one needs to seriously con-

sider the possibility that they may have greater functional effects by altering mRNA

splicing (Coulombe-Huntington, Lam, Dias, & Majewski, 2009) or secondary structure

(Sabarinathan et al., 2013). Synonymous SNVs may also alter translation efficiency,

25



by changing a frequently used to a rarely used codon and have been linked to changes

in protein expression (Sauna & Kimchi-Sarfaty, 2011).

1.5.6 Non-coding variant annotation

Although coding variants represent less than 2% of variants in the human genome, they

make up the vast majority of confirmed disease-related variants that have been validated

at a functional level. This may result from ascertainment bias (since variants in coding

regions are straightforward to discover and characterize at a basic level and many studies

have largely ignored non-coding variants); or may be explained by the increased complexity

of computational approaches and lab assays required to predict and validate the impact

of non-coding variants; or by their potentially more subtle impact on gene expression or

cell function. Nonetheless, in a compendium of current GWAS studies, roughly 40% of the

variants are intergenic and 30% intronic. Functional studies of these variants are increasingly

emphasizing the importance of non-coding genetic variation at risk loci for complex genetic

diseases and traits (Hindorff et al., 2009).

Functional non-coding regions of the genome encompass a wide variety of regulatory

elements contained in DNA and RNA molecules that are involved in transcriptional and

post-transcriptional regulation. Cis-regulatory elements include (i) binding sites for DNA-

binding proteins such as transcription factors and chromatin remodelers; (ii) binding sites for

RNA-binding proteins involved in splicing, mRNA localization, or translational regulation;

(iii) micro RNA (miRNA) target sites; and (iv) long non-coding RNA (lncRNA) targets

on DNA, RNA and proteins. Non-coding transcripts include well-characterized regulatory

RNAs (e.g. miRNA, snoRNA, snRNA, piRNA and lncRNAs) as well as RNAs involved

directly in protein synthesis (e.g. tRNA and rRNA). The annotation and impact assessment

of non-coding variants presents a significant challenge for several reasons: (i) reliable tech-

nologies to study transcriptional regulatory regions on a genome-wide basis are only just

reaching maturity and provide limited resolution of binding sites for individual transcription
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factors and regulatory RNA molecules; (ii) non-coding functional regions of most genomes

remain incompletely mapped as they vary widely among different cell types and cell states

(for example, in diseased and healthy tissues); (iii) non-coding regulatory elements often are

part of complex transcriptional programs that are time-dependent (Mattick, 2001), contain

many redundant linkages or reciprocal connections between genes and respond to a wide

range of intra and extracellular signals; and (iv) genomic regulatory elements rarely have a

strict consensus sequence (for example, compare the position weight matrices used to identify

transcription factor or miRNA binding sites with the amino acid triplet code) making the

effect of a mutation on gene regulatory programs difficult to predict. As a result, high-quality

annotation of non-coding variants relies more heavily on experimental data than is the case

for coding variants: since many of these experimental techniques did not study the effects of

SNVs on gene regulatory programs, they can only be used to annotate variants and not to

predict their effects on gene transcription. In the few cases where the effects of SNVs have

been studied (for example, the effects of SNVs that are common in a population and located

in genetic loci associated with complex diseases), experimental approaches provide highly

accurate functional assessment at a cost of reduced coverage compared to computational

approaches.

Large-scale projects such as ENCODE (Guigó Serra et al., 2012) and modENCODE

(Celniker et al., 2009) have made major steps toward mapping gene transcription and tran-

scriptional regulatory regions in many tissues and cell types, but similar studies in dis-

eased tissues remain at an early stage (for example, the growing collection of disease-related

epigenomes from the Epigenome Roadmap (Bernstein et al., 2010)). The base-by-base res-

olution and number of cell states studied for different types of regulatory elements and

non-coding transcripts varies widely among datasets; in part due to the lack of sensitive,

comprehensive and high-resolution technologies to study the different molecular species and

modes of interaction that can be altered by non-coding variants. Efficient technologies for

genome-wide, high-throughput mapping of binding sites for RNA-binding proteins (PAR-
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CLiP (Ascano, Hafner, Cekan, Gerstberger, & Tuschl, 2012)), miRNAs (PAR-CLiP (Hafner,

Lianoglou, Tuschl, & Betel, 2012) and CLASH (Helwak, Kudla, Dudnakova, & Tollervey,

2013)) are starting to be applied on a broad scale as are protocols to map transcription

factor binding sites (TFBS) which can improve resolution to a single base (Chip-exo (Rhee

& Pugh, 2012)). However, in most cases, DNA and RNA binding sites are only imprecisely

located within Chip-Seq peaks that span genomic regions hundreds of base pairs in length,

with computational approaches being used to pinpoint the bases most likely mediating the

interaction. In the absence of more precise localization data, de novo computational predic-

tion of binding sites for DNA and RNA binding proteins remains insufficiently accurate to

be of much use in annotating single non-coding variants.

This limitation is particularly critical for functional predictions of putative target sites for

microRNAs and other regulatory RNA species. MicroRNAs are short RNA molecules that

regulate gene expression post-transcriptionally by binding the messenger RNA of a gene

through complementary, usually in the 3’ region of the transcript, which leads to mRNA

degradation or inhibits translation. Sequence variants that cause the loss or gain of a miRNA

target site would lead to dysregulation of the gene, with likely deleterious effects. Although

miRNAs are relatively well documented in most model organisms including human, their

binding sites are only starting to be mapped experimentally, and computational predictions

has very low specificity. Meaningful information regarding the possible role of a variant in

disrupting a miRNA target site is starting to emerge (C. Liu et al., 2012), although variants

that create new miRNA binding sites remain under the radar.

Even if the position of a functional element could be perfectly determined, predicting a

variant’s impact on chromatin conformation, promoter activity, gene expression, or transcript

processing remains challenging. For transcription factors, this involves predicting whether

the protein will still be able to recognize its mutated site (and with what affinity), as well

as predicting the impact of these changes on gene expression levels. The latter is particu-

larly hard to predict as a result of interactions, competition, and redundancy contained in
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regulatory networks of transcription factors or RNA binding proteins. As a consequence,

computational prediction of the functional impact of non-coding variants remains a very ac-

tive area of research and there is no broad consensus on the best methodology to use (Ward

& Kellis, 2012b). One significant exception is the identification of variants affecting canon-

ical splice sites, defined as two bases on the 3’ end on the intron (splice site acceptor) and

5’ end of the intron (splice site donor). Variants that affect canonical splice sites are easily

detected and typically lead to abnormal mRNA processing, involving exon loss or extension

that leads to loss of function of the encoded protein.

1.5.7 Impact assessment of non-coding variants

Two broad classes of publicly available genome-wide datasets are commonly combined to

assess the functional impact of non-coding genetic variants: (i) computational predictions

of sequence conservation and sites involved in molecular interactions such as transcription

factor and RBP binding, as well as miRNA-mRNA target interactions; and (ii) experimen-

tal genome-wide localization assays for DNA binding proteins, histone modifications, and

chromatin accessibility.

Computational sources of evidence Interspecies sequence conservation plays a key role

in scoring and prioritizing non-coding variants. This is based on the assumption that sites or

regions that have been more conserved across species than expected under a neutral model of

evolution are likely to be functional; suggesting that mutations contained in them are likely to

be deleterious. In the absence of strong experimental data, sequence conservation measures

calculated from whole genome multiple alignments, (for example using PhastCons (Siepel

et al., 2005), SciPhy (Garber et al., 2009), PhyloP (Pollard, Hubisz, Rosenbloom, & Siepel,

2010), GERP (Davydov et al., 2010), or even frameworks that integrate multiple scores such

as CADD (Kircher et al., 2014)), have been developed to provide a generic indicator of

function for non-coding variants. Although high conservation scores generally mean that a
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genomic region may be functional, the converse is not true and many experimentally-proven

non-coding functional regions show only modest sequence conservation (for example due

to binding site turnover events). Finally, some regulatory regions (e.g. specific elements

regulating immune response (Raj et al., 2013)) are under positive selection and may thus

show less conservation than surrounding neutral regions.

In humans, genome-wide computational predictions of transcription factor binding sites

based on matching to publicly available position weight matrices are available from variety

of sources, including Ensembl (Flicek et al., 2012) and Jaspar (Bryne et al., 2008). Because

of the low information content of most binding affinity profiles, the specificity of the predic-

tions is generally very low. Related approaches exist to predict splicing regulatory regions

(Fairbrother, Yeh, Sharp, & Burge, 2002) and miRNA target sites (Ziebarth, Bhattacharya,

Chen, & Cui, 2011), some of which are precomputed for whole genomes and available from

the UCSC or Ensembl genome browsers. Recent efforts to determine RNA-binding protein

sequence affinities can also be used to identify putative binding sites for these proteins in

mRNA (Ray et al., 2013).

Experimental sources of evidence: To investigate the potential impact of variants on

transcriptional regulation, many published experimental data sets produced by large-scale

projects such as ENCODE (Guigó Serra et al., 2012), modENCODE (Celniker et al., 2009)

and Roadmap Epigenomics (Bernstein et al., 2010), can be used directly by annotation

packages. These include: (i) ChIP-seq or ChIP-exo experiments that identify TFBSs on

a genome-wide basis; (ii) DNAseI hypersensitivity or Formaldehyde-Assisted Isolation of

Regulatory Elements (FAIRE) assays that identify regions with open chromatin; and (iii)

ChIP-seq studies to identify the presence of specific promoter or enhancer-associated his-

tone post-translational modifications, which can be combined to identify active, poised, and

inactive enhancers and promoters (Ray et al., 2013). Most of these data sets are easily

available through Galaxy (Goecks et al., 2010) (as tracks from the UCSC Genome Browser)
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or through SnpEff (as downloadable pre-computed datasets). In parallel with the types of

studies described above, expression quantitative trait loci (eQTLs) represent an agnostic way

to map putative regulatory regions. An increasing number of such loci are available through

the GTEX database (Lonsdale et al., 2013). Experimental data that may support assess-

ment of the impact of variants on post-transcriptional regulation remain sparser, although

databases such as doRiNa (Anders et al., 2011) or starBase (J.-H. Yang et al., 2011) contain

genome-wide datasets obtained by CLIP-Seq and degradome sequencing. To our knowledge,

these data have yet to be used in the context of variant annotation studies.

Combining sources of evidence: Despite the variety of computational and experimental

sources of evidence available, impact assessment for non-coding variants remains relatively

crude, due to the fact that biological models of gene regulation remain fairly simple. Nonethe-

less, significant steps forward have been made recently and two web-based tools, HaploReg

(Ward & Kellis, 2012a) and RegulomeDb (Boyle et al., 2012), perform SNV and indel im-

pact assessment for variants from dbSNV on the basis of a broad body of computational and

experimental evidence. Both use pre-computed scores for variants from dbSnp and there-

fore cannot be used for rare variants, but they are extremely valuable for exploration by

associating the variant of interest with a variant in dbSnp via linkage disequilibrium.

Despite some advances in the field, non-coding variants remain one of the most chal-

lenging to analyse and annotate. Many factors add to the complexity of the problem, such

as:

i Sparseness of functional sites within ChIP-seq peaks. Even if a non-coding variant is

located in a region that contains a ChIP-seq peak for a given TF and has all the hall-

mark signatures of regulatory chromatin, the likelihood that it is deleterious remains

low, because most DNA bases contained within a peak are non-functional.

ii Gain of function mutations. While this section has focused on variants causing the

loss of a functional regulatory element, genetic variants may also create new or more
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effective transcription factor binding sites. These are substantially harder to detect as

they can occur in regions that show no evidence of function in individuals possessing

the reference allele, and show little conservation across species. Furthermore, compu-

tational methods to predict gain of affinity for a given TF caused by a variant have

insufficient specificity to be of much use on their own.

1.5.8 Clinical effect of variants

One of the most revealing types of annotation of both coding and non-coding variants

reports whether the variant has previously been implicated in a phenotype or disease.

Although such information is available for only a small minority of all deleterious vari-

ants, their number is growing and should be the first type of annotation one seeks out.

Clinical annotations, until recently, have been scattered in a large number of specialized

databases of medical conditions with a genetic basis, including the comprehensive, man-

ually curated collection of genetic loci, variants and phenotypes in the Online Mendelian

Inheritance in Man database (Hamosh, Scott, Amberger, Bocchini, & McKusick, 2005)

(OMIM, www.omim.org); web pages containing detailed clinical and genetic information

about uncommon disorders in the Swedish National Board of Health and Welfare Database

for Rare Diseases (www.socialstyrelsen.se/rarediseases) and the peer-reviewed NIH GeneRe-

views collection (Bryne et al., 2008) (www.ncbi.nlm.nih.gov/books/NBK1116); and a cu-

rated collection of over 140,000 mutations associated with common and rare genetic disor-

ders in the commercial Human Gene Mutation Database (Stenson et al., 2003) (HGMD,

www.hgmd.org/). In most cases, these datasets do not use standardized data collection

or reporting formats; are designed to primarily provide information to patients and health

professionals through a web interface; and rely on heterogeneous criteria to describe disease

phenotypes and clinical outcomes; pathological and other clinical laboratory data; as well

as the genetic and biologic experiments that have been used to demonstrate disease mecha-

nisms at a molecular or cellular level. These shortcomings are being addressed by initiatives
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that provide centralized, evidence-based, comprehensive collections of known relationships

between human genetic variants and their phenotype that are suitable for computational

analysis, such as the NIH effort to aggregate records from OMIM, GeneReviews (Pagon,

Bird, Dolan, & Stephens, 1993) and locus-specific databases in ClinVar (Landrum et al.,

2013) (www.ncbi.nlm.nih.gov/clinvar).

Another important application of variant detection and annotation is in the study of

cancer genomes, which is occurring increasingly in clinical settings to support treatment

decisions for advanced tumors. Annotation of variants detected in tumor sequences can be

analysed for clinical cohorts, using similar techniques as other complex traits, as well as for

individual patients, using techniques to identify differences between somatic (tumor) and

germline (healthy) tissues. In the latter case, one looks for cancer-associated mutations that

distinguish the somatic genome of cancer cells of an individual from the germline genome

in order to find the driving mutations that pinpoint the specific mechanisms underlying

tumorigenesis or metastasis. Ideally, these mutations can be used to select a treatment

for the patient, establish prognosis, or to identify causative mutations that have led to

the cancer’s progression. In such a setting, given that sequence differences between the

cancer and germline genomes are of greater interest than the background genetic changes

between the germline and a reference genome, variant calling is performed using specialized

algorithms, such as MuTect (Cibulskis et al., 2013) and SomaticSniper (Larson et al., 2012).

One of the main problems in these databases is annotation accuracy. Biological knowl-

edge, as well as molecular and phenotypic evidence supports the identification of certain

groups of high impact variants based on simple criteria (such as premature stops, frame-

shifts, start lost and rare amino acid mutations); however, it is often hard to predict whether

non-synonymous variants will have equally large effects on an organism’s health. Even when

the accepted “rules of thumb” used in the primary annotation indicate that protein function

is impaired, we should consider that these predictions may be based on a small number

of model genes and will require appropriate wet-lab validation or confirmatory studies in
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cohorts. In addition, as more human genomes are sequenced, it is likely that some genetic

variants that have been linked to Mendelian diseases will be found in healthy individuals

(Riggs et al., 2013); and in many cases, may not actually be disease-causing mutations (Bell

et al., 2011).

1.5.9 Data structures and computational efficiency

Most computational pipelines for genomic variant annotation and primary impact assess-

ment are relatively efficient and can annotate variants obtained from large resequencing

projects involving thousands of samples within a few minutes or hours even using a moder-

ately powered laptop. This is typically achieved through two key optimizations: (i) creation

of reference annotation databases and (ii) implementation of efficient search algorithms. Ref-

erence database creation refers to the process of creating and storing precomputed genomic

data from the reference genome, which can be searched quickly to extract information rel-

evant to each variant. This process needs to be performed only once per reference genome

and most annotation tools have pre-computed databases for many organisms available for

users to download.

Since these databases typically contain tens or hundreds of thousands of features, efficient

search algorithms are used together with appropriate data structures to optimize the search

process. In ANNOVAR (K. Wang, Li, & Hakonarson, 2010), each chromosome is subdivided

in a set of intervals of size k and genomic features for a given chromosome are stored in

a hash table of size L/k, where L is the length of the chromosome. Another approach,

used by SnpEff, is to use an “interval forest”, which is a hash of interval trees (Cormen,

Leiserson, Rivest, Stein, et al., 2001) indexed by chromosome. Querying an interval tree

requires O[log(n) + m] time, where n is the number of features in the tree and m is the

number of features in the result.

Obviously, processing times differs significantly for different reference genomes and dif-

ferent annotation options. But just as an example of processing speed, SnpEff can annotate
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a VCF file containing 4, 500, 000 variants in less than 4 minutes (3 : 52 wall time, data source

Illumina platinum genomes project NA12878 (Illumina, n.d.), reference genome hg19) and

roughly 1 minute (1 : 12) using multi-threaded mode (command line option ’-t’).

1.5.10 Variant annotation standards

The advent of large sequencing datasets posed a challenge on how to store and transmit

genomic data in a reliable manner. Some large sequencing research projects helped to create

standards pushed by their own internal need to share data amongst their own teams, which

may work in different institutions and are often located in different countries. For instance

the 1000 Genomes project (McVean et al., 2012), created the Variant Call Format (VCF )

(Danecek et al., 2011), which is the current de facto standard for storing variants.

Until recently there were no standards for variant annotations. This meant that most

annotation tools had their own unique way to format information, usually by adding it to non-

standard INFO fields in VCF formatted files. The lack of standards complicates downstream

processing and creates problem when sharing data with other teams who might not be

using the same analysis tool-set. In an effort coordinated with the developers of the most

widely used annotations tools (such as SnpEff (Cingolani, Platts, et al., 2012), ANNOVAR

(K. Wang et al., 2010), and ENSEMBLs Variant effect predictor -VEP- (McLaren et al.,

2010)) we created new annotation standard for VCF files. This new ANN, field which is

used in VCF files, is intended to solve or at least mitigate some of the common problems in

storing and sharing variant annotation information to; i) make sequencing analysis pipeline

development easier, ii) facilitate benchmarking amongst annotation tools, and iii) improve

clarity in how to handle some common “edge cases”.

We are also actively collaborating with the “Global Alliance for Genomics and Health”

(GA4GH) to create a new variant annotation schema specification, API definitions as well

as the corresponding “reference server” implementation.
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1.5.11 Conclusions

In Chapter 3 we introduce SnpEff (Cingolani, Platts, et al., 2012) & SnpSift (Cingolani, Pa-

tel, et al., 2012), two approaches we designed for efficiently performing functional annotations

of sequencing variants. These packages allow annotating, prioritizing, filtering and manipu-

lating variant annotations as well as combining several public or custom-created databases.

It should be noted SnpEff was one of the first annotation packages and has become one of

the most widely used annotation software in both research and clinical environments.

1.6 Genome wide association studies

A genome wide association study aims at identifying genetic variants associated to a partic-

ular phenotype. First, the genomes (or exome, depending on the study design) of affected

individuals (cases) and healthy individuals (controls) need to be sequenced, variants called,

and annotated. Then, the goal is to find variants that exhibit some statistical association

with the trait or phenotype of interest, which could be a disease status (e.g. diabetic vs

healthy), a biomedical measurement (e.g. cholesterol level), or any measurable characteris-

tic (e.g. height). Since the genome is so large, patterns of mutations that suggest correlation

may be encountered by chance, so we need to establish statistical significance in order to dis-

tinguish true associations from spurious ones. Like most studies, we will focus our discussion

on SNVs, but most methods can be extended to other genomic variants.

1.6.1 Single variant tests and models

Consider a simple situation where there is only one variant in the whole genome for the

cohort we are analysing. Since each individual has two sets of chromosomes, the variant can

be present in one, both, or neither chromosomes, so the number of times a non-reference

allele is present in an individual, is Nnr = {0, 1, 2}.
When the trait of interest is binary (e.g healthy vs disease), a cohort can be divided into
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cases and controls and we can build a 3 by 2 contingency table:

Homozygous Reference Heterozygous Homozygous non-reference

(Nnr = 0) (Nnr = 1) (Nnr = 2)

Cases Nca,ref Nca,het Nca,hom

Controls Nco,ref Nco,het Nco,hom

Further assumptions about how many alleles are required to increase disease risk can

reduce this 3 × 2 table to a 2 × 2 table. In the “dominant model”, the effect of a mutated

gene dominates over the healthy one, so one variant is enough to increase risk. The opposite,

called “recessive model”, is when both chromosomes have to be mutated in order to increase

risk (Balding, 2006; Clarke et al., 2011). In these models, we can count how many cases and

controls have at least one variant (dominant model) or two variants (recessive model). This

simplifies the previous table, yielding a 2 × 2 contingency table, than can be tested using

either a χ2 test or a Fisher exact test (Balding, 2006).

Two other commonly used models are the “multiplicative” and the “additive” models

(Balding, 2006; Clarke et al., 2011). In these models, a disease risk is assumed to be multi-

plied (or increased) by a factor γ with every variant present. In this case we cannot simplify

the contingency table, so we assess significance using a Cochran-Armitrage test (Clarke et

al., 2011).

1.6.2 Multiple variant tests

In a real case scenario there are thousands or millions of variants in a resequencing or

genotyping study. We can extend the concept shown in the previous section by performing

individual tests for each variant present in the cohort. Multiple testing can be addressed

either by performing a correction, such as False Discovery Rate (Balding, 2006; Clarke et

al., 2011), or using a stricter genome wide significance level. There are ∼ 3 × 109 bases
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in the genome, but taking into account the correlation between nearby variants (linkage

disequilibrium), the genome wide significance level is generally accepted to be p ≤ 10−8.

In order to check if the null hypothesis of a significance tests is adequate, a QQ-plot is

used (Clarke et al., 2011) (i.e. plotting the y = −log(p) vs x = −log[rank(p)/(N+1)], where

N is the total number of variants). Adherence of the p-values to a y = x line on most of

the range implies few systematic sources of association (Balding, 2006; Clarke et al., 2011).

If the p-values have a higher slope than the y = x line, there might be “inflation”, possibly

due to co-factors, such as population structure (see section 1.6.3). If the inflation is not too

high (e.g. less than 5%), this bias can be corrected by shifting the p-values towards the 45

degree line. More sophisticated methods are explained in section 1.6.3.

1.6.3 Population structure

It is widely accepted that humans started in Africa and migrated to Europe, then to Asia

and later to America (Hartl & Clark, 2007). Out of an initial population, a few individuals

migrate and colonize a new territory. This implies that the genetic variety of the new colony

is significantly reduced compared to the previous population, since the genetic pool is only a

small “founder population”. The “Out of Africa” hypothesis implies that each new migration

of humans from Africa to Europe produced a reduction in genetic variety, also known as a

“population bottleneck” (Hartl & Clark, 2007).

As we previously mentioned, each individual inherits two chromosome sets, a maternal

and a paternal one. Through recombination a chromosome is formed by a crossover com-

bining maternal and paternal chromosomes and then passed down, thus the offspring has

two sets of chromosomes, one from each parent. This breaking and shuffling of chromosomes

every generation, increases genetic diversity. Nevertheless if variants are located nearby in

the chromosome, the chances that they are separated by a recombination event are smaller

than if they are further away from each other. This produces a correlation of close variants or

“linkage disequilibrium” (LD). Nearby highly correlated variants are said to be in the same
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“LD-block” (Hartl & Clark, 2007). If a population has low genetic variety, the LD-blocks

are large. So the African population has more diversity (smaller LD-blocks) and conversely,

European, Asian and Amerindian populations have less diversity (larger LD-blocks) (Hartl

& Clark, 2007).

1.6.4 Population structure as confounding variable

Imagine that we have a cohort of individuals drawn from two populations (PA and PB) and

that individuals in PA have much higher risk of diabetes than individuals from PB. Now

imagine that individuals from PA have a variant vA more often, but vA is actually neutral and

has no health effects whatsoever. If we do not take population factors into account our study

would conclude that vA is associated with increased susceptibility to diabetes, just because we

see vA more often in affected individuals. In this case it is clear that population structure is a

confounding variable. We could avoid this problem by analysing each population separately

(Patterson, Price, & Reich, 2006), but this would cause a loss of statistical power since we

would have fewer samples.

A population that results form inter-breeding of two or more previously separated popula-

tions is known as an “admixed population”. For instance the African-American population

is a mixture of, roughly, 80% African and 20% European genomes (Hartl & Clark, 2007;

Balding, 2006). In the case that structure is confounding an analysis of an admixed popu-

lation, such as an African-American cohort, it is not possible to perform a separate analysis

of each sub-population (Hartl & Clark, 2007).

The admixed population problem can be studied by performing a correction using the

eigen-structure of the sample covariance matrix (Patterson et al., 2006). Samples can be

arranged as a matrix C where each row is a sample and each column represents a position in

the genome where there is a variant. The numbers Ci,j in the matrix indicate the number of

non-reference alleles in a sample (row i) at a genomic position (column j). Since the allele

can be present in zero, one, or two chromosomes in each individual, the possible values for
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Ci,j are {0, 1, 2}. The covariance matrix is calculated as M = ĈT .Ĉ, where Ĉ is the matrix

C corrected to have zero mean columns. Usually, the first two to ten principal components of

M are used as factors in linear models (see section 1.6.5) to correct for population structure

(Patterson et al., 2006).

Whether a cohort has any population structure and needs correction or not can be tested

using two methods: a) plotting the projections of the first two principal components and

empirically observing the number of clusters in the chart, or b) using a statistic of the

eigenvalues of M based on Tracy-Widom’s distribution (Patterson et al., 2006).

1.6.5 Continuous traits and correcting for co-factors

The methods described so far are suitable for binary “traits” or “phenotypes”. Statistical

methods that link genetic information to traits can also be used for continuous or “quan-

titative” traits (such as weight, height and measurements of cholesterol level). A linear

regression can be used assuming the traits are approximately normally distributed (Balding,

2006; Clarke et al., 2011). A significance test (p) for linear models can be calculated using

an F statistic, but more sophisticated methods are also available (Balding, 2006; Clarke et

al., 2011).

Using linear models, it is easy to include known co-factors to correct for biases. For

instance, if it is known that a phenotype increases with age or that males are more susceptible

than females, age and sex can be added to the linear equation in order to correct for these

effects (Balding, 2006; Clarke et al., 2011). In a similar manner, we can add co-factors to

binary traits using logistic regression.

1.6.6 Common and Rare variants

The “allele frequency” (AF) is defined as the frequency a variant appears in a population.

Variants are usually categorized according to AF into three groups: Common variants (AF ≥
5%), “low frequency” (1% < AF < 5%), and “rare variants” (AF < 1%). Common variants

40



originated earlier in the population while rare variants are either relatively recent or selected

against.

There are three main models for disease susceptibility (Hartl & Clark, 2007; Gibson,

2012): i) the Common-Disease-Common-Variant hypothesis (CDCV) assumes that if dis-

ease is common, it must be caused by a common variant; ii) the “infinitesimal hypothesis”

proposes that there are many common variants each having a small effect on risk; and iii)

the Common-Disease-Rare-Variant hypothesis proposes that there exists many rare variants,

each one having large risk effects.

1.6.7 Rare variants test

The “rare variant model” assumes that multiple rare variants have large effects on a trait.

The problem is that, since these variants are rare, huge sample sizes are required for tests to

identify statistically significant associations. To overcome this problem, methods known as

“burden tests” collapse groups of rare variants that are hypothesised to have similar effect

on gene or protein activity and perform statistical significance tests on the group (B. Li &

Leal, 2008). An example of collapsing technique is to count the number of rare variants in

the genomic region surrounding an exon or a gene and apply a Fisher exact test, as shown

in section 1.6.1. A limitation of some burden tests is that they implicitly assume that all

rare variants have the same direction of effect, although in reality they might have no effect,

be deleterious, or protective (B. Li & Leal, 2008; Wu et al., 2011).

Several techniques that allow weighting rare variants by collapsing them using a kernel

matrix. This allows to incorporate other information, such as allele frequency and functional

annotations. It can be shown that the statistic induced by kernel weighting functions follows

a mixture of χ2 distributions and there is an efficient way to approximate it (B. Li & Leal,

2008; Wu et al., 2011), avoiding computationally expensive permutation tests.
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1.7 Epistasis

William Bateson first described epistasis in 1907 (Tyler, Asselbergs, Williams, & Moore,

2009) assessing a discrepancy between the predicted segregation ratios and the observed

ones (Phillips, 2008). The term epistasis, which literally means “standing upon”, was used

to describe “characters” layered on top of other each other thus masking their expression.

This original definition describing the situation in which the actions of one locus mask the

allelic effects of another locus is an extension of dominance where a completely dominant

alleles mask the effects of the recessive allele at the same locus (Carlborg & Haley, 2004;

Cordell, 2002).

Nowadays the term epistasis is not only used to describe the original definition (Cordell,

2002), but also often interpreted as mutations in two genes producing a phenotype that is

surprising considering the individual effect of each mutation. Furthermore, in some contexts

epistasis is used to refer to a broad range of gene-gene interactions, many complex interactions

among genetic loci or even interaction between genes and the environment (Phillips, 2008).

Three categories of epistasis commonly used by geneticists are (Phillips, 2008; Zhao, Jin, &

Xiong, 2006):

• Functional epistasis: The molecular interactions between proteins, usually consisting

of proteins within the same pathway or within a complex.

• Compositional epistasis: Describes the traditional usage of epistasis as described by

Bateson (i.e. masking of one allelic effect by an allele at another locus).

• Statistical epistasis: This terminology is attributed to Fisher and defined as a deviance

from additive genetic effects.

These concepts imply that analysis of epistasis can be used to infer functional relation-

ships between genes (Mani, Onge, Hartman, Giaever, & Roth, 2008), genetic pathways’

structure and function as well as evolutionary dynamics (Phillips, 2008). Some authors even
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relate the analysis of epistatic gene interactions patterns to the fundamentals of systems

biology (Phillips, 2008).

Epistasis can be classified by the way a deviation of a double-mutant (having one muta-

tion at each loci) organism’s phenotype differed from the expected neutral (non-interacting)

phenotype (Mani et al., 2008). A typical example is a mutation in one gene impairing a

whole pathway, thus masking the consequence of mutations in other genes of the same path-

way (Mani et al., 2008). An interaction is known as “synergistic” or “synthetic” when the

double mutant has a more extreme phenotype than expected based on the phenotype of the

two individual mutants. When the phenotype is less severe than expected, then there is a

“alleviating”, “diminishing returns” or “antagonistic” interaction, which is often attributed

to gene products operating in series within the pathway.

Often, a phenotype in human genetics is qualitative and dichotomous, for instance indi-

cating presence or absence of disease. (Cordell, 2002). Thus mathematical models calculating

the joint action of more than one loci focus on the penetrance (the probability of developing

disease given genotype). Assuming an allele is required at both loci in order to express the

trait, the effect of allele A can only be observed when allele B is also present. This means

that the effect at locus A appears masked by locus B and vice-versa (Cordell, 2002), which

is not precisely analogous to what Bateson described since in Bateson’s definition if factor

B is epistatic to factor A, then factor A is not expected to be epistatic to factor B as well

(Cordell, 2002).

A mathematical definition of epistatic interaction as “departure from neutrality” requires

defining neutrality and measuring phenotype.

• Phenotype is often measured using the concept of fitness, particularly in many large-

scale genetic interaction studies, since it is relatively easy to measure by population

allele frequencies or growth rates of microbial cultures (Mani et al., 2008). Different

measures of fitness can be used in epistasis: i) exponential growth rate of mutant strain

respect to wild type ; ii) the increase in population in one wild-type generation; and
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iii) the relative number of progeny (in one wild-type generation) (Mani et al., 2008).

Based on this, four mathematically different definitions of interaction have been used

(namely product, additive, log, and minimum) (Mani et al., 2008), but even though

some definitions yield identical results under some conditions, an alternative definition

choice can lead to different consequences (Mani et al., 2008).

• Neutrality predicts the phenotype of an organism without interacting mutations. Ge-

netic interaction studies have differed in their choice of neutrality models, generally

using either a multiplicative or a minimum mathematical function. A multiplicative

model predicts fitness to be the product of the corresponding single-mutant fitness

values. The minimum model is simply the minimum neutrality of the expected re-

sults form non-interacting mutations (e..g the fitness of the less-fit mutant). All the

above examples of fitness measures yield the same set of genetic interactions under

this neutrality definition. For example if each mutation disrupts a distinct pathway

limiting cell growth in a way that one mutation is substantially more limiting than

the other, the double mutant might is expected have same result as the most-limiting

single mutant (Mani et al., 2008).

It has been shown that the choice of definition can dramatically alter the resulting set of

detected interactions (Mani et al., 2008). To evaluate this Mani et al. (Mani et al., 2008)

applied all four definitions of interactions to two experiments providing quantitative growth-

rate measurements of cell populations. They show that: i) the additive and log definitions

have different biases; ii) the product and log definitions are equivalent for deleterious muta-

tions; iii) the product definition can reveal functional relationships missed by the minimum

definition; and iv) interaction networks inferred based on the minimum and product defini-

tions differ greatly. This leads to the question on which definition to use. By examining the

deviation distribution of expected (double-mutant) phenotype from the observed phenotype

they found that product and log definitions not only are the closest to the ideal, but also are

practically equivalent when single mutants are deleterious.
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The presence or absence of a trait are extreme aspects of “perturbation in a complex

system”, but there are no reasons to expect all forms of epistasis to follow this pattern

(Phillips, 2008). When applied to quantitative traits, epistasis also describes a situation in

which the phenotype cannot be predicted by the sum of the phenotypes of its single-locus

component (Carlborg & Haley, 2004). Many epistatic QTL interactions have been detected

in model organisms leading to the conclusion that epistasis makes a large contribution to

the genetic regulation of complex traits (Carlborg & Haley, 2004).

1.7.1 Epistasis is ubiquitous

One of the most common definition of epistasis is departure from additive effects. Neverthe-

less, there is no reason to think that traits should be additive based on a purely biological

perspective (Zuk et al., 2012) since biology is riddled with non-linearity such as genetic

networks which exhibit binary states, ligand - receptors concentration having sigmoid-like

responses, concentration saturations of substrate - enzymes reactions, sharp transitions cre-

ated by cooperative protein binding, the pathways constrained by rate-limiting inputs, etc.

(Zuk et al., 2012). It has been asserted that epistatic effects are not isolated events, but ubiq-

uitous (Tyler et al., 2009) and probably inherent properties of biomolecular networks. The

thought that epistasis in the classical sense may be ubiquitous has been partially confirmed

from mutational studies (Phillips, 2008). Genetic studies of synthetic traits, which occur

only when multiple loci or pathways are all disrupted in model organisms, have identified

instances of interacting genes revealing that epistasis may be pervasive (Zuk et al., 2012). Re-

searchers (Phillips, 2008) looking for interactions induced by systematically over-expressing

genes in Saccharomyces cerevisiae, found that about 15% of studied genes induced growth

defects with most over-expression not matching the phenotypes of individual deletions.
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1.7.2 Epistasis examples

Non-human Several genotype-phenotype patterns are known to be caused by epistasis in

animal and model organisms. Classic examples including (Carlborg & Haley, 2004):

• Coat colour in mammals has been one of the most common examples. In pig, the

dominant allele at the KIT locus confers white color coat and is dominant over all locus

conferring darker color (melanocortin 1 receptor or MC1R). This can be determined

in individuals with the recessive KIT genotype showing what was classically termed

‘dominant epistasis’, yielding a non-Mendelian segregation ratio of 9:4:3 (instead of

9:3:3:1) (Carlborg & Haley, 2004; Phillips, 2008).

• Drosophila provides another classic example with eye color determination. Drosophila

eye pigmentation (scarlet, brown, or white) is determined by the synthesis of two

drosopterins: brown pigments (from tryptophan) and red pigments (from GTP) (Tyler

et al., 2009). A mutation that prevents production of the brown pigment results in a fly

with red eyes and a mutation preventing red pigment results in a fly with brown eyes.

Flies with a mutation in the white gene, synthesize neither red nor brown pigment,

resulting in a fly with white eyes regardless of the genotype at the brown or scarlet

loci (Tyler et al., 2009).

• Dozens of quantitative traits indicating strong epistasis in mouse and rat (Shao et al.,

2008) have been identified in a panel of chromosome substitution strains. The effects

attributed to the strain-specific region of donor chromosomes exceeds by a median

eightfold the expected effect of the donor genome.

• Genetic interaction have been studied in a systematic and large-scale manner in Saccha-

romyces cerevisiae (Jasnos & Korona, 2007; Tong et al., 2001). Analysis of quantita-

tive traits loci (QTL) for transcripts levels in a two strain cross demonstrated epistatic

interaction for 67% of studied pairs (first the strongest QTL was found and then the
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strongest remaining QTL conditional on the first genotype was selected) (Brem, Storey,

Whittle, & Kruglyak, 2005).

• In a study comparing three Drosophila inbred lines (Drosophila melanogaster Genetic

Reference Panel) and a large out-bred and inter-cross derived population (Huang et

al., 2012), a set of candidate SNPs was selected by assessing allele frequency changes

between the extremes of the distribution for each trait. The researchers found that the

majority of these SNPs participated in at least one epistatic interaction (Huang et al.,

2012). Using this information from epistatic interacting loci they were able to infer

networks affecting quantitative traits (Huang et al., 2012).

Human Few instances of epistasis in common human diseases have been discovered and

well-replicated so far, despite considerable efforts (Zuk et al., 2012). Although many in-

stances of epistasis related to human disease have been published, with examples from type

2 diabetes (Wiltshire et al., 2006), bipolar effective disorder (Jamra et al., 2007), coronary

artery disease (Tsai et al., 2007), and autism (Coutinho et al., 2007); some authors suspect

these might be statistical features in the association studies because only a few have func-

tional basis (Phillips, 2008). Perhaps the best examples of epistatic interactions in humans

include:

• Interactions involving at least one locus with a large effect such as HLA (Zuk et al.,

2012). Two different interactions involving HLA alleles and ERAP have been discov-

ered in GWAS from ankylosing spondylitis and psoriasis where the HLA alleles have

odds ratios of 40.8 and 4.66 respectively (Evans et al., 2011; Strange et al., 2010). In

the autoimmune disease multiple sclerosis researchers found evidence of genetic inter-

actions between two histocompatibility loci known to be associated with the disease

(HLA-DRB5*0101 in DR2a and HLA-DRB1*1501 in DR2b) (Gregersen et al., 2006).

In Type 1 diabetes HLA is assumed to act non-additively with all other risk alleles

(HLA has have an effect of 5.5) (Barrett et al., 2009).
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• In Hirschsprung’s disease an interaction between RET and EDNRB was uncovered by

a genome-wide linkage study (RET having a log-odds of 5.6) (Carrasquillo et al., 2002).

• The ACE gene (angiotensin I converting enzyme) has an epistatic interaction with

AGTR1 gene (angiotensin II type 1 receptor ) gene, significantly increasing risk of

myocardial infarction when the “D-allele” in ACE is present in patients carrying a

particular AGTR1 allele (Tiret et al., 1994).

• Two different sets of interactions are assumed to be responsible for variation in triglyc-

eride levels. Notably, the interactions depend on the patient’s sex: in females the inter-

action involves ApoB and ApoE; and in males the interaction involves the ApoAI/CI-

II/AIV complex and low-density lipoprotein receptor LDLR (Nelson, Kardia, Ferrell,

& Sing, 2001).

• Sickle-cell anemia is regarded as a Mendelian trait but is modified by epistatic interac-

tions as evidenced by the fact that patients homozygous for two polymorphisms near

the Gγ locus have only mild clinical symptoms (Odenheimer, Whitten, Rucknagel,

Sarnaik, & Sing, 1983).

• Elevated blood serum cholesterol levels in humans is associated with an ApoE allele

depending on the genotype at the LDLR (low density lipoprotein receptor) gene locus

(Pedersen & Berg, 1989).

1.7.3 Epistasis and evolution

From an evolutionary perspective, some authors argue that the non-linear nature of epistatic

interactions between polymorphic loci is the genetic basis of canalization (the robustness or

ability of a population to produce the same phenotype regardless of environmental variabil-

ity) and speciation (Huang et al., 2012).

It has also been pointed out that interactions have an important influence on evolutionary

phenomena such as genetic divergence and affects the evolution of the structure of genetic
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systems (Phillips, 2008) based on studies and models showing that epistasis can have a

limiting role on the possible paths that evolution can take (Miller, Lunzer, & Dean, 2006).

Theoretical arguments that date back to Fisher assert that when genes interact there

is evolutionary pressure to promote their genetic linkage as a means of enhancing the co-

inheritance of favourable allelic combinations (Fisher, 1958). Under this assumption linkage

can facilitate the maintenance of epistatic interactions and vice versa, thus explaining some

molecular evolution complexity (Phillips, 2008). This has been supported by analysis of

complex gene regulation patterns in localized genomic regions (Birney et al., 2007). For va-

riety of organisms (such as yeast, Caenorhabditis, Drosophila, higher plants, and mammals)

genes sharing expression patterns are more likely to be in proximity (Hurst, Pál, & Lercher,

2004). This evidence shows that regional controls of chromatin structure and expression may

give rise to gene clusters by promoting their coregulation (Petkov et al., 2005).

1.7.4 Missing heritability

At the dawn of the “GWAS era” in 2002 it was hypothesised that there existed a large class

of genetic traits for which GWAS would fail, namely purely epistatic models containing no

additive or dominance variation at any of the susceptibility loci. Thus association case/-

control methods “will have no power if the loci are examined individually” (Culverhouse,

Suarez, Lin, & Reich, 2002). Furthermore, it was mathematically shown that for such models

maximizing the broad sense heritability (under some constraints) is equivalent maximizing

gene interaction variance (Culverhouse et al., 2002).

In a seminal series of papers (Zuk et al., 2012, 2014) further mathematical proof of

the link between epistasis and heritability was provided. The authors claim that missing

heritability arises by an overestimation of the denominator that happens when epistasis is

ignored (Zuk et al., 2012). This overestimation, called “phantom heritability”, was shown to

inflate the denominator over 60% in Crohn’s disease, thus accounting for up to 80% of the

missing heritability (Zuk et al., 2012). Even though the prevailing view among geneticists
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is that interactions play at most a minor role in explaining missing heritability, their work

shows that simple and plausible models can give rise to substantial phantom heritability

(Zuk et al., 2012)

In moderately heritable complex diseases for which single-locus GWAS analyses have not

accounted for the predicted phenotypic variance these epistatic models provide one possible

explanation so it is worth pursuing a hypothesis of interacting loci (Culverhouse et al., 2002).

1.7.5 Detecting epistatic interactions

Linkage disequilibrium (LD) between close sites is the result of un-recombined chromosome

blocks within common ancestry (Reich et al., 2001). However LD between widely separated

sites suggests epistatic selection forces are at work (Fisher, 1958; Koch, Ristroph, & Kirk-

patrick, 2013). In an analysis using the Yorubian population (from Ibadan, Nigeria) of the

HapMap dataset, patterns of LD were quantified and the significance of overall disequilibrium

per chromosome was evaluated of using randomization (Koch et al., 2013), showing an excess

of long range associations on all 22 autosomes. Although this is suggestive of epistasis, other

hypotheses should not be ruled out: i) population admixture has been proposed to explain

unusual patterns of long range LD (Price et al., 2008); ii) recombination between distant

chromosome blocks may not completely erase LD caused by drift even in a population at

demographic equilibrium; iii) bottlenecks are particularly effective at generating long-range

LD; iv) hitchhiking of linked sites with a positively-selected mutation can generate large

haplotype blocks; and v) large inversion and other structural variation alter recombination

patterns thus causing LD over unusually large regions (Bansal, Bashir, & Bafna, 2007).

Under the assumption that long range LD can hint at epistasis due to physical protein

interactions, Wang et al. created LDGIdb (M.-C. Wang, Chen, Chen, Huang, & Chuang,

2012), a catalogue of over 600, 000 pairs of SNPs showing strong long-range linkage dise-

quilibrium, i.e. pairs of SNP pairs that were either located on different chromosomes or on

different LD blocks and had r2 ≥ 0.8 (M.-C. Wang et al., 2012). However such a simple
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approach may be of little utility because of technical issues that must be taken into account

when performing such association tests: i) commonly used measures of LD (such as r2 and

D′) are known to give rise to large linkage for variants with minor allele frequencies (MAF)

near 0 (Koch et al., 2013); and ii) r2 is not corrected for multiple testing. A better alterna-

tive is to measure the probability that a large value of the disequilibrium D is observed if

there is no association. The aforementioned problems can be corrected by conditioning the

probability on the sampled allele frequencies at the two loci. This method has the analytical

advantage that the probability asymptotically converges to a Fisher’s exact test (Koch et

al., 2013).

Another approach is to implicitly test over and under-representation of allele pairs in a

given population, i.e. to analyse imbalanced allele pair frequencies (Ackermann & Beyer,

2012). The underlying theory is that such allele pairs are under Dobzhansky-Muller incom-

patibilities which establishes a fitness bias favouring individuals that inherit over-represented

allele combinations (Ackermann & Beyer, 2012). Based on this, Ackerman et al. (Ackermann

& Beyer, 2012) studied a population of 2,002 mice in family trios. They performed a χ2 test

correcting by confounding factors (such as allele frequencies, family structure and allelic drift)

based on inspecting 3 × 3 contingency tables of all possible two-locus allele combinations.

They claim that their methodology can detect more interactions than using independent

markers and as a result they were able to identify 168 LD block pairs with imbalanced

alleles (Ackermann & Beyer, 2012).

By exploiting the intense selective pressures imposed by the process of inbred mouse pop-

ulations, it can be expected that clusters of functionally related genes are likely to be selected

for co-adapted allelic combinations in genes that influence fitness and survival. This hypoth-

esis would result in regions of linkage disequilibrium (LD) among inbred strain genomes that

should occur more often than expected by chance (Petkov et al., 2005). In a study using 60

inbred mouse strains (Petkov et al., 2005), the authors study LD using permutation tests

and show that extreme patterns of LD give rise to a scale-free network architecture. Further
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pathway analysis identifies biological functions underlying several of these networks, hinting

that selective factors acting to generate LD networks during inbreeding reflect functional

interaction (Petkov et al., 2005).

In the next sub-section we introduce methods combining GWAS and epistatic analysis

to find epistatic loci affecting disease risk.

1.7.6 Epistasis & GWAS

In recent years there have been a growing number of GWAS. Most of them have used a

single-locus analysis strategy, in which each variant is tested individually for association

with a specific phenotype (Cordell, 2009). Some researchers mentioned that it may be in-

adequate to describe relationships between genotype and phenotype in complex disease by

simply summing the modest effects from several contributing loci (Culverhouse et al., 2002).

Nevertheless, the extent to which epistasis is involved in complex traits is not known so we

cannot assume that epistasis will be found for every trait in every population (Carlborg &

Haley, 2004). However epistasis has been overlooked and should to be routinely explored

in complex trait studies (Carlborg & Haley, 2004). This is particularly important for re-

searchers of moderately heritable complex diseases for which locus-by-locus analyses have

not accounted for the predicted genetic variance. In this case there could be value in pursu-

ing a hypothesis of epistatic loci (Culverhouse et al., 2002) that owing to their interaction,

might not be identified by using standard single-locus tests (Cordell, 2009). It is also hoped

that detecting such interactions will allow elucidation of biological pathways that underpin

complex disease (Cordell, 2009).

Recent GWAS studies explored genome-level identification of epistatic interactions (Ackermann

& Beyer, 2012); and even though methodological and sample size progress has been made,

these could hardly identify a significant number of interactions. However failure to detect

epistasis does not rule out its presence (Zuk et al., 2012). In theory a sufficient number of

contributing purely epistatic interactions could account for all the variation in disease status
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for any prevalence (Culverhouse et al., 2002). Nevertheless, when the genetic model of dis-

ease is purely epistatic (i.e. no additive or dominance at any of the susceptibility loci), then

association methods analysing a single locus at a time cannot detect the loci (Culverhouse

et al., 2002). Furthermore there could be an n-way purely epistatic model for which no joint

analysis of two, three, or n − 1 loci shows any evidence of association. This leads to the

concern that even assessment of all “(n − 1) way” interactions among candidate loci may

not be sufficient for detection of the contributing loci (Culverhouse et al., 2002).

Another reason why complex human phenotypes fail to find evidence for epistatic in-

teractions may simply be that analytic methods inherently exclude epistasis (Culverhouse

et al., 2002). For example individual interaction effects are expected to be much smaller

than linear effects, and the sample size required to detect a variant scales inversely with the

square of the effect size. The main obstacle is attributed to the exponentially large number

of statistical hypotheses tested when comparing all markers against all other markers in a

genome analysis (Ackermann & Beyer, 2012). As an example provided by Zuk et al. (Zuk et

al., 2012), consider two variants with frequency 20% and increasing risk by 1.3 fold, which

is a large effect. In such a case, assuming 50% power, a significance level of 5 × 10−8 and

equal number of cases and controls, the sample size required for single loci analysis would

be 4, 900. In comparison, the sample size required to detect pairwise interaction between

those two variants using the same power and an appropriately corrected significance level is

roughly 450, 000, so a researcher studying 100, 000 samples would discover all single acting

loci but would find little evidence of epistatic interactions, which may be the reason why

geneticists that have tested for pairwise epistasis have found few significant signals (Zuk et

al., 2012). It should be noted that even though GWAS involving over 500, 000 samples are

not available at the moment, studies using sample sizes in this order are expected to become

available within the next couple of years.

Existing approaches for identifying interactions in the context of GWAS can be grouped

into five broad categories (J. Li, Horstman, & Chen, 2011):
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1. Exhaustive search methods extend classical single-locus GWAS statistics such as the

Pearson’s χ2 test or logistic regression. For instance, using the definition of epistasis

as “departure from a linear model” (Cordell, 2009), in a logistic regression model the

input for sample s analysing loci i and j would include terms with each of the genotypes

(gs,i and gs,j), as well as an “interaction term” (gs,i · gs,j) (Cordell, 2002).

P (ds|gs,i, gs,j) = φ[θ0 + θ1gs,i + θ2gs,j + θ3(gs,igs,j)

...+ θ4cs,1 + ...+ θmcs,Ncov ]

where ds is disease status, φ(·) is the sigmoid function, cs,1, cs,2, ... are covariates for

sample s. Logistic models involving interactions between more than two variants can

be defined similarly, but require more parameters and extremely large samples are

required to accurately fit them.

It should be noted that the number of tests necessary to evaluate all two-, three- and

four-way interactions for 30-60 candidate loci, has a range similar to the number of

tests suggested for a single GWAS, thus searching for n-way interactions among all

the markers would be impracticable (Culverhouse et al., 2002). Other approaches

(Nelson et al., 2001; Culverhouse, Klein, & Shannon, 2004; Ritchie et al., 2001; Cook,

Zee, & Ridker, 2004; Zheng, Wang, & Lo, 2006) although promising, most have only

been applied on small data sets (Zhang & Liu, 2007). Methods based on brute-force

searches such as combinatorial partitioning (Nelson et al., 2001), and multifactor-

dimensionality reduction (Ritchie et al., 2001) are impractical for large data sets (Zhang

& Liu, 2007). Nevertheless it was shown (J. Li et al., 2011) that it can be feasible to

perform GWAS level analysis for two interacting sites. Simple methods which explicitly

consider interaction pairs can actually achieve reasonably high power with realistic

sample sizes under different interaction models with some marginal effects, even after
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adjustments of multiple testing using the Bonferroni correction.

Exhaustive search methods exists for identifying epistatic variants affecting continuous

phenotypes and quantitative trait loci (QTL). In this case, matrix algorithm optimiza-

tions can significantly speed up computations. For instance FastEpistasis applies an

efficiently parallelized QR decomposition to derive least squares estimates of the inter-

action coefficient and its standard error (Schüpbach, Xenarios, Bergmann, & Kapur,

2010). This allows it to handle all pairs of 500, 000 variant in a population of 5, 000

individuals in roughly one CPU year, which can be run in a little bit more than a day

on a 256 CPU cluster (Schüpbach et al., 2010).

2. Conditional search methods usually perform analyses in stages (J. Li et al., 2011). A

small subset of significant loci is identified in the first stage, typically using single locus

association statistics. Then this subset is mined using multi-locus association using

an exhaustive method. A well known approach in this category is “stepwise logistic

regression” which works as follows: i) all markers are individually tested for association

with disease using a logistic regression model; ii) loci are ranked based on the results of

single-locus tests; iii) the top (usually 10%) are selected for epistatic association, and

iv) all two-way (or three-way) interactions are tested. Even this stepwise approach can

become computationally intractable for high-order interactions (Zhang & Liu, 2007).

Analysis of stepwise logistic regression approach to identify two-way and three-way

interactions demonstrated that searching for interactions in genome-wide association

mapping can be more fruitful than traditional approaches that exclusively focus on

marginal effects (Zhang & Liu, 2007). As a counter argument for stepwise logistic

regression, we should take into account that the effect of one locus is altered or masked

by another locus (in the presence of epistasis), thus power to detect the first locus is

likely to be reduced and the joint effects will be hindered by their interaction (Cordell,

2002). Methods based on conditional search can greatly reduce the computational

burden by a couple of orders of magnitude, but with the risk of missing markers with
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small marginal effect (J. Li et al., 2011).

3. Linkage disequilibrium methods use patterns in disease population under two-locus

disease models (Zhao et al., 2006). Association can be estimated assuming that de-

viation of the penetrance from independence at an individual locus creates linkage

disequilibrium (LD) even if two loci are unlinked (Zhao et al., 2006). In Zhao et al.

(Zhao et al., 2006) the authors, based on the assumption that two disease-susceptibility

loci are in Hardy-Weinberg equilibrium (HWE), show that in the presence of interac-

tion the two loci will be in linkage disequilibrium in the disease population. They

develop a test statistic to detect of deviations from LD by comparing the difference in

the LD levels between two unlinked loci between cases and controls. Under the null hy-

pothesis, this test statistic asymptotically converges to a central χ2 distribution. Their

power simulations suggest that in general this LD-based test statistic has much smaller

p-values than those of logistic regression analysis concluding that their test has higher

power than logistic regression. Nevertheless, their model does not account for cofac-

tors, thus making it unsuitable in multi-ethnic GWAS where population stratification

may confound disease risk.

4. Stochastic search methods use sampling to infer whether a locus is an individual

risk locus, epistatically affects disease risk, or has no effect (i.e. background locus).

A Bayesian approach for genome-wide case-control studies denoted ‘bayesian epistasis

association mapping’ (BEAM) (Zhang & Liu, 2007) is a representative example of this

type of method. BEAM treats the disease-associated markers and their interactions

using a Bayesian partitioning model and computes the posterior probability using

Markov chain Monte Carlo. The method uses predictors in the form of genetic marker

loci divided into three groups: i) markers not associated with disease, ii) markers

individually contributing to disease risk, and iii) markers that interact with each other

(Zhang & Liu, 2007). Membership of each marker in each of the three groups is
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defined by the prior (Dirichlet) distributions. Given a prior distributions for regression

coefficients values given by group membership, a posterior distribution can be generated

using MCMC simulation (Cordell, 2009). At the end, it uses a statistic (called B-

Statistic) to infer significance from the samples in MCMC. Although it avoids explicitly

computing all interactions the method could in theory find high-order interactions.

Since BEAM was originally designed for genotyped markers, its power can be hampered

by allele frequency discrepancies between unobserved disease loci and linked genotyped

markers. This is a common problem when using indirect markers and the authors

show that in an extreme case when the MAF discrepancy was maximized all tested

methods had little power to detect interaction associations. In the original paper,

the authors apply BEAM to a data set containing 116, 204 SNPs genotyped for 96

affected individuals and 50 controls for an association study of age-related macular

degeneration (AMD). Unfortunately BEAM did not find any significant interactions,

most likely due to the small sample size. Runtime and power are primarily determined

by the number of MCMC rounds with a suggested number of MCMC iterations as the

quadratic of the number of SNPs. This is a main factor limiting applicability of the

algorithm (J. Li et al., 2011), so BEAM cannot easily be applied to large GWAS studies

because computational limitations make it unsuitable to handle over 500, 000 markers

with sample sizes of 5, 000 or more individuals, which are now commonly sequenced or

genotyped (Cordell, 2009).

5. Machine learning approaches can also be used to detect epistasis. A popular ap-

proach uses Random Forests (J. Li et al., 2011) or other regression tree partitioning

approaches based on classification. In this context, trees are constructed using rules

based on the values of a predictor variable such as a SNP to differentiate observations

such as case-control status (Cordell, 2009). A popular rule selection mechanism is to

use the variable that maximizes the reduction in Gini impurity (Kuhn & De Mori,

1995) at each node (intuitively, when child nodes have lower impurity from a split
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based on an attribute each child node will have purer classification). Random Forests

are constructed by drawing samples with replacement from the original sample. A

classification tree is created for each bootstrap sample, but only a random subset of

the possible predictor variables is considered. This results in a ‘forest’ of trees have

been trained on a particular sample of observations. (Cordell, 2009). Instead of try-

ing to create a monolithic learner, this type of methods called “ensemble systems”

attempts to create many heterogeneous “weak” (or simple) learners. The outcomes of

these heterogeneous systems are combined to create an improved model (J. Li et al.,

2011).

In Li et al. (J. Li et al., 2011), the authors create an extension of the AdaBoost al-

gorithm where they incorporate an importance score based on Gini impurity to select

candidate SNP in a way that genotype frequencies from the two classes (case and con-

trol) are expected to be more different. Decision trees are usually built with binary

splits, but since genotype data takes three possible values {0, 1, 2}, they also extended

their method to create a ternary split. AdaBoost draws bootstrap samples to increase

the power of a weak learner by weighting the individuals when bootstrapping. So when

a weak learner misclassifies an individual, the weight of that individual is increased,

and hard to classify individuals are more likely to be included in future bootstrap sam-

ples. The ensemble classifier votes by weighting weak learner instances by training set

accuracy. (J. Li et al., 2011). Using simulation, they claim that their method outper-

forms similar ensemble approaches, as well as statistical methods (logistic regression),

although they mention performance degradation when the risk allele frequency is low

(J. Li et al., 2011).

Although all these models have advantages under some assumptions, none of them seems

to be a “clear winner” over the rest (Cordell, 2009). All of these models suffer from the

increase in number of tests that need to be performed, which raises two issues: i) multiple

testing, and ii) computational feasibility. So far, no method for epistatic GWAS has been
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widely adopted and there is need of different approaches to be explored. In Chapter 4 we

propose an approach to combine co-evolutionary models and GWAS epistasis of pairs of

putatively interacting loci.

1.7.7 Conclusions

Genome wide association studies have traditionally focused on single variants or nearby

groups of variants. An often cited reason for the lack of discovery of high impact genetic

risk factors in complex disease is that these models ignore interactions among loci (Cordell,

2009) which has recently been pointed out as a potential cause of the “missing heritability”

problem (Zuk et al., 2012, 2014). With interactions being so ubiquitous in cell function,

one may wonder why they have been so neglected by GWAS. There are several reasons:

i) models using interactions are much more complex and by definition non-linear (Gao,

Granka, & Feldman, 2010), ii) information on which proteins interacts with which other

proteins is incomplete (Venkatesan et al., 2009), iii) in the cases where there protein-protein

interaction information is available, precise interacting sites are rarely know (Venkatesan et

al., 2009), and iv) protein interactions are not the only sources of epistatic loci, other types of

interaction loci are less known and may be even harder to map. Due to the lack of knowledge

about interaction loci, we need to explore all possible combinations, thus the number of N

order interactions grows as O(MN) where M is the number of variants (de Juan, Pazos, &

Valencia, 2013). This requires exponentially more computational power than single locus

models. This also severely reduces statistical power, which translates into requiring larger

cohorts, thus increasing sample collection and sequencing costs (de Juan et al., 2013).

In Chapter 4 we develop a computationally tractable model for analysing putative in-

teraction of pairs of variants from GWAS involving large case-control cohorts of complex

disease. Our model is based on analysing cross-species multiple sequence alignments using

a co-evolutionary model in order to obtain informative interaction prior probabilities that

can be combined to perform GWAS analysis of pairs of non-synonymous variants that may
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interact.

1.8 Coevolution

In a book published in 1859 entitled “On the origin of species by means of natural selection”

(Darwin, 1859), Charles Darwin introduced the concept of co-evolution referring to the

coordinated changes occurring in pairs of organisms. In another of his books “On the various

contrivances by which British and foreign orchids are fertilised by insects”, first published

in 1862 (Darwin, 1877); Darwin further explored this concept and providing more detailed

examples. By observing the relationship between the size of orchids’ corolla and the length

of the proboscis of pollinators, Darwin predicted the existence of a new species able to suck

from a large spur which was later confirmed (de Juan et al., 2013).

Coevolution originally referred to the coordinated changes occurring in pairs of organisms

to improve or refine interactions. This concept was later extended to pairs of proteins or

more generically, any pair of biomolecules which can be within the same organism (de Juan

et al., 2013). In this context, co-evolution is an indicator of protein-protein interactions,

thus an indicator of epistasis (Tillier & Charlebois, 2009). The modern use of co-evolution

methods in genetics is often attributed to Dobzhansky’s (Dobzhansky, 1950) and Elrich’s

(Ehrlich & Raven, 1964) seminal works that were published in 1950 and 1964 respectively.

In recent years, much effort has been dedicated to research of coordinated sequence changes

in proteins (and genes) were coevolution could be an important and widespread catalyst of

fitness optimization (de Juan et al., 2013).

Distinct allele combinations in co-evolving genes interact to confer different degrees of

fitness. If this fitness difference is large, selection for alleles could maintain allelic associ-

ation even between unlinked loci (Rohlfs, Swanson, & Weir, 2010), thus co-evolving genes

are expected to maintain their interaction by pressures favouring compensatory mutations

(Rohlfs et al., 2010). Under this hypothesis, genetic loci may be invariable due to their
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functional or structural constraints but these constraints may change subject to mutations

in their functional counterpart (Fares & Travers, 2006). In many cases, selective advantages

for a specific allele pair could fixate the optimal allele pair in the population (Rohlfs et al.,

2010).

Co-evolution examples In the absence of a clear positive control, identifying gene pairs

that is certainly co-evolving are a difficult task (Rohlfs et al., 2010). Here, some well known

examples of co-evolution in humans are introduced:

• HLA ligand and killer-cell immunoglobulin-like receptor (KIR) are two genes located

on different chromosomes forming a well established interacting immune-response pair.

Their allele frequencies are highly correlated in human populations as one expects

under allele matching selection (Single et al., 2007).

• A remarkable similarity in the phylogenetic trees of ligands (such as insulin and inter-

leukins) and their corresponding receptors was observed. This coevolution is proposed

to be required for maintaining their specific interactions (Pazos & Valencia, 2001).

• Researchers found that ligands and their G-protein coupled receptors have co-evolved

so that each subgroup of ligands has a matching subgroup of receptors (Goh, Bogan,

Joachimiak, Walther, & Cohen, 2000).

• In Hsp90 and GroEL heat-shock proteins, co-evolution was detected in “almost all”

functionally or structurally important sites (Fares & Travers, 2006).

• GroESL is involved in the folding of a wide variety of other proteins with the folding

activity mediated by the co-chaperonin GroES (Ruiz-González & Fares, 2013). It was

recently shown that different overlapping sets of amino acids co-evolve between GroEL

and GroES (Ruiz-González & Fares, 2013).
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• Gamete recognition genes ZP3 and ZP19 are highly polymorphic among humans and

located on different chromosomes. Putative interaction between these genes was re-

cently inferred (Rohlfs et al., 2010).

• Helicobacter pylori is the main cause of gastric cancer. Host-pathogen interaction

accounted for most of the difference in the severity of gastric lesions in the populations

analysed. For instance African H. pylori ancestry was relatively benign in population

of African ancestry but was deleterious in individuals with substantial Amerindian

ancestry (Kodaman et al., 2014). This is in an example of co-evolution modulating

disease risk.

1.8.1 Basic co-evolution inference models

In this section we review the first methods aimed to uncover co-evolution. These “basic

methods” serve not only to understand the historical perspective but also they are the basis

of more advanced methodologies described in section 1.8.2.

Phylogenetic tree similarity Proteins and their interaction partners co-evolve so that

divergent changes in one are complemented their interaction partner. These changes can be

manifested by “similar evolutionary trees” (Goh et al., 2000). Thus phylogenetic similarity

approaches can successfully be applied for protein-protein coevolution assumed to be caused

by physical interactions. These kind of methods have been shown to be capable of identifying

interaction partners, such as ligand-receptor pairs (de Juan et al., 2013).

Similarly, evolutionary relationships within protein families can be mined to predict phys-

ical interaction specificities (Ramani & Marcotte, 2003). Duplicate genes (paralogs) can

diverge in a way such that new binding specificities develop, thus the underlying hypothesis

is that interacting proteins exhibit coordinated evolution and tend to have similar phyloge-

netic trees. This was first demonstrated in a study of chemokines and their receptors showing

phylogenetic tree similarities (Goh et al., 2000).
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Correlated mutations Although some methods based on phylogenetic tree similarity

exists, the majority of co-evolutionary methods focuses on analysis of multiple sequence

alignment (Rohlfs et al., 2010). Proteins have evolved to interact or function in specific

molecular complexes and the specificity of these interactions is essential for their func-

tion. Consequently, residue contacts constrain the protein sequences to some extent (Pazos,

Helmer-Citterich, Ausiello, & Valencia, 1997). In other words, it is reasonable to assume

that evolution of sequence changes on one of the interacting proteins must be compensated

by mutations in the other (Pazos et al., 1997). It should be noted that this relationship

between co-evolution and interaction is not symmetrical since co-evolution does not imply

physical interaction (Fares & Travers, 2006). This is emphasized by the fact that co-evolution

between clusters of sites not in contact has also been shown (Pritchard & Dufton, 2000).

It has long been suggested that correlations in amino acid changes can be used to infer

protein contact, thus helping predict tertiary protein structure (Fitch & Markowitz, 1970;

Morcos et al., 2011; Burger & van Nimwegen, 2010; de Juan et al., 2013). A large number of

genomes and protein sequences have become available in recent years enabling the analysis

of co-evolution by means of statistical inference of covariation patterns based on multiple

protein sequence alignments (Burger & van Nimwegen, 2010, 2010), which has been a fruitful

technique for predicting contacting residues in the structure. This interdependent changes in

amino acids was formulated for the first time by the “covarion model” (Fitch & Markowitz,

1970) and applied in multiple sequence alignments of a family of homologue proteins (de Juan

et al., 2013). Statistical methods to find correlated mutations between pairs of proteins can

identify putative interaction sites in protein pairs (de Juan et al., 2013), but we should keep

in mind that correlated mutations suggesting compensatory changes between residues can

be due to several factors different than direct contact, such as physical proximity, catalytic

action, binding sites, or even maintaining folding stability.

One of the first attempts of statistical inference of co-evolving loci pairs was performed

by Gobel et. al in 1994. In their seminal paper they point out that “maintenance of
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protein function and structure constrains the evolution of amino acid sequences... [sequence

alignments] can be exploited to interpret correlated mutations observed in a sequence family as

an indication of probable physical contact in three dimensions” (Göbel, Sander, Schneider,

& Valencia, 1994). They analysed correlations between different positions in a multiple

sequence alignment and used such correlations to predict contact maps. In their study of

11 protein families they compare their results with experimentally validated contact maps

determined by crystallography, showing prediction accuracy up to 68%.

The promise of developing methods for predicting amino acid contacting pairs from se-

quence information alone was radically different from and more applicable than traditional

docking methods (Pazos et al., 1997). This lead to the development of methods for detecting

correlated changes in multiple sequence alignments with the primary objective of using them

to detect protein interfaces in interacting molecules (Pazos et al., 1997), thus facilitating pro-

tein structure prediction. It was demonstrated that the correlated sequence information was

enough to select the right inter-domain docking solution amongst many alternatives.

Correlation and mutual information (MI) have been used to assess co-evolution but they

do not take the evolutionary interdependence between protein residues into account (Fares &

Travers, 2006). Phylogenetic relationships can inflate these co-evolutionary measures, thus

one of main limitations of these methods has been their inability to separate phylogenetic

linkage from functional and structural co-evolution (Fares & Travers, 2006). Some methods

partially correct these effects but while some studies (Gloor, Martin, Wahl, & Dunn, 2005)

claim that these would require alignments of at least 125 sequences, while other studies

(Morcos et al., 2011) suggest that they may require in the order of 1, 000.

Phylogenetic correction Mutual information (MI) measures the reduction of uncertainty

about one position given information about the other. When used as a measurement for

co-evolution, MI can be confounded by several factors such as structural and functional

constraints, and the background sum of contributions from random noise and shared ancestry.
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In an attempt to improve MI’s signal to noise ratio by eliminating or minimizing the second

factor, a model postulated by Dunn et al. (Dunn, Wahl, & Gloor, 2008) tries to factorize

these terms in order to estimate a correction. They propose that each amino acid position in

the MSA has a propensity toward the background MI (related to its entropy and phylogenetic

history) and estimate the joint background MI as the product of their propensities. It follows

that a joint background correction term can be approximated as product of the average

background MI divided by the average overall MI of all positions in the MSA, which they call

the average product correction (APC) (Dunn et al., 2008). They show that APC is a metric

than can accurately estimate MI in the absence of structural or functional relationships (i.e.

the null model) (Dunn et al., 2008). Finally, by assuming the null model to be normally

distributed, a p-value can be inferred using a Z-score.

Another method, CAPS (Fares & Travers, 2006), compares transition probability scores

from the blocks substitution matrix (BLOSUM) between two sequences at the sites being

analysed for interaction. An alignment-specific BLOSUM matrix is applied depending on the

average sequence identity. Co-evolution between protein sites is estimated by the correlation

in the pairwise variability with respect to the mean pairwise variability per site (Fares &

Travers, 2006). A limitation of this method arises when sequences are too divergent, since an

alignment including highly divergent sequence groups could show unrealistic level of pairwise

identity (BLOSUM values are normalized by the time of divergence between sequences to

reduce the impact of this). Another problem common to many MSA-based co-evolutionary

methods is that constant amino acid sites, which are very likely to be functionally important,

cannot be tested for (Fares & Travers, 2006).

Evolutionary timespan What is the appropriate evolutionary time scale required in a

multiple sequence alignment in order to perform a co-evolutionary analysis? Co-evolution is

often analysed over very large time frames based on the evolutionary analysis across different

species (Qian, Zhou, & Tang, 2015). Nevertheless, genome-wide scans have identified several

65



candidate loci that underlies local adaptations, which seems surprising given the short evo-

lutionary time since the human divergence which is estimated have happened around 50, 000

to 100, 000 years ago when humans migrated out of Africa (Qian et al., 2015). In light

of this, it may make sense to analyse co-evolution within human populations based on the

propositions that multiple genes within a pathway or a functional sub-network may change

in the same fitness direction at a same evolutionary rate to achieve a common phenotypic

outcome (Qian et al., 2015). In a study using data from the 1000 Genomes project (McVean

et al., 2012) form East Asians, Europeans, and Africans populations, researchers found that

genes having signals of recent positive selection are significantly closer to each other within

protein-protein interaction (PPI) networks (Qian et al., 2015). The approach was also able

to identify known examples such as EGLN1 and EPAS1 (hypoxia-response pathway play-

ing key roles in adaptation to high-altitude) as well as multiple genes in the NRG-ERBB4

(developmental) pathway (Qian et al., 2015). This shows that sequences from shorter time

spans can also be mined for co-evolution.

MSA quality influences predictions Since many co-evolutionary methods rely so heav-

ily on multiple sequence alignments, it should not be surprising to know that the quality of

the input alignment may affect the results. As one example, it is well known that structure-

based alignment algorithms may be susceptible to shift error and other systematic errors,

thus strong covariation signal can be caused by alignment errors leading to false positive

predictions (Dickson, Wahl, Fernandes, & Gloor, 2010). The phylogeny of the sequences

also affects performance, since methods work better on large protein families having a wide

but homogeneously distributed degree of sequence similarity ranging from distant to similar

sequences (de Juan et al., 2013). In a recent study co-evolutionary methods applied to dif-

ferent alignments of the same protein family gave rise to distinct results, demonstrating that

the measurement of co-evolution may greatly depend on the quality of the sequence align-

ment (Dickson et al., 2010). Even when alignments for the same protein family contained
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comparable numbers of sequences the number of estimated co-varying positions differed sig-

nificantly. The authors of this analysis demonstrated that contact prediction can be improved

by removing alignment errors due to several factors such as partial or otherwise erroneous

sequences, the presence of paralogous sequences, and improper structure alignment.

Co-Evolution and protein structure Protein structure prediction from amino acid se-

quence is one of the ultimate goals in computational biology (Burger & van Nimwegen,

2010), despite significant efforts the general problem of de novo three-dimensional struc-

ture prediction has remained one of the most challenging problems in the field (Marks,

Hopf, & Sander, 2012). Unfortunately, de-novo protein structure prediction does not scale

with longer proteins since the conformational space grows exponentially with the protein

length. Inter-residue contact information can constrain the fold thus significantly reducing

the search space. Since covariation patterns can complement experimental structural biology

thus helping to elucidate functional interactions, information of co-evolutionary couplings be-

tween residues are often used to compute protein three-dimensional structures from amino

acid sequences (Marks et al., 2012). It has been observed that information about protein

residue contacts, can be used to elucidate the fold of some proteins (D. T. Jones, Buchan,

Cozzetto, & Pontil, 2012). Researchers demonstrated that using co-evolutionary informa-

tion from multiple sequence alignments greatly helps to deduce which amino acid pairs are

close (or in contact) in the three-dimensional structure thus allowing the protein fold to be

determined with a reasonable accuracy (Marks et al., 2012). It is not surprising that the

vast majority of methods for finding protein co-evolution are designed with the specific aim

of generating results useful in the context of protein folding.

Protein design It has recently been proposed to use co-evolutionary theory in compu-

tational methods for protein design. Significant similarities were found between the amino

acid covariation in natural protein sequences and sequences structures optimized by com-

putational protein design methods (Ollikainen & Kortemme, 2013). Because evolutionary
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selective pressures on function and structure shaped the sequences to be close to optimal

for their structures, natural protein sequences provide an excellent source for computational

protein design methods. A study using computational protein design to quantify protein

structure constraints from amino acid covariation for 40 diverse protein domains, shows that

structural constraints imposed by covariation play a dominant role in protein architecture

(Ollikainen & Kortemme, 2013). Thus, computational protein design methods could make

use of knowledge form natural co-evolution effects.

1.8.2 Global co-evolution models

Imagine a protein sequence of length L = a1, a2, ..., an, amino acid ai is coupled directly

with aj, and aj to ak, then ai and ak will show correlation despite not being directly coupled

(Weigt, White, Szurmant, Hoch, & Hwa, 2009). This is an important problem when inferring

co-evolution as indirect coupling can make it difficult to recognize the directly co-evolving

loci.

As opposed to models using the independence assumption, a ‘global’ model treats corre-

lated pairs of residues as dependent on each other thereby minimizing effects of transitivity

(Marks et al., 2012). Since direct couplings are more reliable predictions of physical interac-

tions, approaches that can distinguish direct from indirect couplings have been an intensive

area of study (de Juan et al., 2013). Global approaches are designed to reach high scores

only for amino acid pairs that are likely to be causative of the observed correlations (Marks

et al., 2012). In this section we introduce these methods.

Glass spin systems Global interaction models are well understood in statistical physics.

A typical example are long-range order observed in spin systems, where the spins only have

short-range direct interactions (Binney, Dowrick, Fisher, & Newman, 1992). One of the first

global models for co-evolution was proposed by Lapedes (Lapedes, Giraud, & Jarzynski,

2012), who used a Monte Carlo algorithm to infer the simplest probabilistic distribution
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able to account for the whole network of covariations (de Juan et al., 2013). He presented

a sequence-based probabilistic theory addressing co-operative effects in interacting positions

in proteins assuming that a sequence of length L is a global state of an L-site spin system

of twenty states (for twenty amino acids). Then he solved the global statistical formalism

based on maximizing entropy under constraints which are known to lead to Boltzmann

statistics (Marks et al., 2012). Finally the conditional mutual information is calculated

using this Boltzmann model which leads to the degree of covariation between residues at

two positions factoring out contributions by interaction with the rest of the residues (Marks

et al., 2012). The amount sequence data is a limiting factor when performing inference of

Boltzmann distribution parameters, thus it is usually infeasible to use more than first order

distributions (Lapedes et al., 2012). Another limitation is the phylogenetic relatedness of

these sequences, which is not addressed in this algorithm and has the potential to decrease

accuracy (Lapedes et al., 2012).

Direct coupling analysis A similar approach called direct-coupling analysis (DCA) was

also based on spin-glass physics (Weigt et al., 2009). In their implementation a generalized

message-passing technique is used to massively parallelize the algorithm implementation. As

in in the work of Lapedes (Lapedes et al., 2012) an application of the maximum entropy

principle yields the Boltzmann distribution which is used to estimate the second order in-

teraction model. In principle higher correlations of three or more positions can be included,

however dataset size (i.e. number of sequences in the MSA) does not allow for inference

beyond two-residue model parameters. Determining model parameters, which is the most

computationally expensive task is achieved by using a two-step procedure: i) given a can-

didate set of model parameters, single and two residue distributions are estimated; ii) the

summation over all possible protein sequences would require O(|ΣAA|N−2N2) steps (where

ΣAA is the amino acid alphabet and |ΣAA| is the alphabet size), so an approximation is

performed using MCMC sampling. This last step is the most expensive step and is expected
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to be very slow for 21-state variables. The message-passing approach implemented using an

efficient heuristic, reduces the computational complexity to O(|ΣAA|2N4). Once all proba-

bility distributions are estimated, gradient descent is used to adjust the coupling strengths

maximizing the joint probability of the data. Since the model is convex, it is guaranteed

to converge to a single global maximum. Finally, a quantity called direct information (DI)

measures the part of the mutual information of a position pair induced by the direct coupling

(intuitively similar to mutual information in a two-variable model). Even after all optimiza-

tions and parallelizations, the method could not be applied to more than 60 positions in the

protein alignment simultaneously. The authors apply the method to a dataset consisting of

over 2, 500 bacterial genes from a two-component signal transduction system,. Their global

inference robustly identified residue pairs proximal in space between sensor kinase (SK) and

response regulator (RR) proteins as well as homo-interactions in RR proteins (Weigt et al.,

2009). In their test dataset, the top 10 candidate interactions identified were shown to

be true contacts, furthermore these predictions were then used to calculate an interacting

protein complex quite accurately (3 Å RMSD) (Weigt et al., 2009).

Mean field approximation DCA has been shown to yield a large number of correctly

predicted contacts based on its ability to disentangle direct and indirect correlations; unfor-

tunately the method is computationally expensive (Weigt et al., 2009). A method published

by Morcos et al. (Morcos et al., 2011) proposes a “mean field” approximation to DCA (Weigt

et al., 2009). They first attempt to mitigate phylogenetic tree biases using a simple sampling

correction based on re-weighting sequences with more than 80% similarity. In a nutshell, the

approximation method also tries to disentangle direct and indirect couplings by inferring a

global statistical and least-constrained model which, as discussed before, is achieved using a

maximum-entropy principle leading to a Boltzmann distribution of couplings. The partition

function (Z) is then approximated by keeping only the linear order term in a Taylor series ex-

pansion, thus obtaining the mean-field equations. This approach is based on small-coupling
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expansion, thus a Taylor expansion around zero, a technique introduced in disordered Ising

spin-glass models with binary variables. A well known result is that the first derivative of

the Gibbs potential, the Legendre transform of the free energy F = −ln(Z), equals the

average of the coupling term in the Hamiltonian. This simplifies this average calculation

since the joint distribution of all variables becomes factorized over the single sites (Morcos

et al., 2011). This mfDCA algorithm speeds up the original DCA implementation by 103 to

104 times (Morcos et al., 2011), and can run on alignments up to 500 amino acids per row

which is an order of magnitude larger the previous version of DCA based on message passing

(Morcos et al., 2011; Weigt et al., 2009).

PSI-COV Like other methods, PSI-COV (D. T. Jones et al., 2012) starts from a multiple

sequence alignment. A covariance matrix is calculated by counting how often a given pair

of amino acids occurs in a particular pair of positions, summing over all sequences in the

MSA. Since this matrix contains the raw data capturing all residue pair relationships, one

can then compute a measure of causative correlations in the global statistical approaches by

taking the inverse of the covariance matrix (D. T. Jones et al., 2012; Marks et al., 2012).

Assuming that this covariance matrix can indeed be inverted, the inverse matrix relates to

the degree of direct coupling, a well known fact in statistical theory under the assumption of

continuous Gaussian multivariate distributions (Marks et al., 2012). Elements significantly

different from zero (off-diagonal) indicate pairs of sites which have strong direct coupling

and are thus likely to be in direct physical contact (D. T. Jones et al., 2012). Unfortunately,

the empirical covariance matrices are actually almost always singular simply because it is

unlikely that every amino acid is observed at every site. One of the most powerful techniques

to overcome this problem is sparse inverse covariance estimation under Lasso constraints.

The authors claim that the non-zero terms tend to accurately relate to correct correlations

in the true inverse covariance matrix (D. T. Jones et al., 2012).
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Multidimensional mutual information In a recent study a simple extension of mutual

information was proposed by considering “additional information channels” corresponding

to indirect amino acid dependencies (G. W. Clark, Ackerman, Tillier, & Gatti, 2014). This is

achieved by defining the information I(X1;X3;X2) representing an ‘interaction information’

for a channel with two inputs X1 and X3 and a single output X2. The effect of the indirect

input (X3) on the transmission between X1 and X2 can then be marginalized simply by

summing mutual information for each possible value X3 weighted by the probability of

occurrence (G. W. Clark et al., 2014). Similarly a four variable model extension can be

defined, in which case the marginalization would be done over two variables (X3 and X4).

The authors test and compare their results using a set of 9 MSAs consisting of less than

400 sequences each, showing that their simple extension is comparable to other maximum

entropy statistical models (G. W. Clark et al., 2014). Even thought the method is simple, the

marginalization sums impose a heavy computational burden requiring long execution times

and large memory footprints making the method impractical for sequences longer than 200

residues (G. W. Clark et al., 2014).

Bayesian network model Another attempt to disentangle direct from indirect statisti-

cal dependencies between residues assumes that the sequences in a MSA are drawn from

unknown joint probability distribution (Burger & van Nimwegen, 2010). The model consid-

ers pairwise conditional dependencies and factorizes the joint probability by a single other

position which the residue depends on, using the conditional probabilities as nuisance pa-

rameters that are integrated out when calculating the likelihood of the alignment. Most

notably, the model does not consider only the best way of choosing the dependent position,

but rather sums over all possible ways in which dependencies could be chosen. This sum

over all spanning trees is a generalization of Kirchhoff’s matrix-tree theorem and can be

efficiently computed form the Laplacian of the dependency matrix.
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1.8.3 Algorithm limitations

Mutual information was one of the first proposed methods used to detect covarying positions.

As opposed to correlation-based methods, mutual information considers the distribution of

each amino acid in the different sequences for a position quantifying whether presence of

an amino acid one position can be used to predict presence of an amino acid in the other

position. Mutual information does not take into account which amino acids are present,

therefore different amino acids are treated just as symbols (de Juan et al., 2013). MI is an

attractive and simple metric because it explicitly measures the dependence of one position

on another, but it is limited by factors such as: i) positions with higher entropy (variability),

tend to have higher MI than positions of lower entropy even though the latter are more

constrained and would seem more likely to be co-evolving (Dunn et al., 2008); and ii) MI

arises when alignments do not contain enough sequences to reduce the noise to signal ratio,

it was shown that alignments should contain at least 125 sequences to significantly reduce

this effect (Martin, Gloor, Dunn, & Wahl, 2005).

The influence of the background phylogenetic relationship between sequences in the MSA

confounds results and some efforts have tried to address this by removing certain problem-

atic clades from the MSA. For instance, it has been shown that the effect may be limited

to some degree by excluding highly similar sequences (from closely related species) from

the alignment (Wollenberg & Atchley, 2000). Continuous-time Markov process model for

sequence coevolution can model this explicitly and some approaches have been implemented

for small-scale studies of coevolution in small protein families, but computational limitations

have hindered their usage in large-scale studies (de Juan et al., 2013). Other confounding

effect is an uneven representation of protein sequence members (e.g. having several small

subgroups and one large subgroup) which leads to statistical noise (Marks et al., 2012).

Since amino acids often contact more than one amino acids, transitive effects tend to

form a network. Thus pairs of residues analysed using a simple statistical model (such as

correlation or mutual information) may not necessarily be close in space or functionally
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constrained (Marks et al., 2012). Algorithms to overcome this limitation exists, but they

are based in global probabilistic models which require parameter estimation of complex

distributions, such as the Bolzmann distribution, as well as marginalizing over all indirect

variables. This makes global models computational prohibitively for all but very small

datasets and impossible to apply to genome wide scale analysis.

Usually co-evolutionary methods are tested with high quality MSAs containing large

number of sequences varying from 5L to 25L (where L is sequence length). Such large number

of homogeneous sequences are rarely available and when they are, they usually correspond

to well studied proteins and might already have a crystallized structure, thus analysis of

amino acids in contact are not needed to infer the 3-D structure. Often, investigators study

less well-characterized proteins having MSA of less than L sequences, and low alignment

quality due to the presence of many gaps, in which case, existing methods are of limited

value (G. W. Clark et al., 2014).

Finally it should be mentioned that results from different models usually do not agree,

even for complex global models. In a recent study, a comparison of several methods shows

that while all methods detected similar numbers of co-varying pairs, there is less than

65% overlap between the top scoring prediction from methods based on different principles

(G. W. Clark et al., 2014).

1.9 Thesis roadmap and Contributions

The original research presented in this thesis covers topics of computational and statistical

methodologies related to the analysis of sequencing variants to unveil genetic links to complex

disease. Broadly speaking, we address three types of problems: i) data processing of large

datasets from high throughput biological experiments such as resequencing in the context of

a GWAS (Chapter 2); ii) functional annotation of variants, i.e. calculating variant’s impact

at the molecular, cellular or even clinical level (Chapter 3); iii) identification of genetic risk
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factors for complex disease using models that combine population-level and evolutionary-

level data to detect putative epistatic interactions (Chapter 4). When applicable, background

material specific to each chapter is presented in a preface, together with an explanation of

how that chapter ties in with the rest of the thesis.

This thesis comprises text and figures of articles that have either been published, sub-

mitted for publication, or ready to be submitted (waiting upon data embargo restrictions):

Chapter 2

1. P. Cingolani, R. Sladek, and M. Blanchette. “BigDataScript: a scripting lan-

guage for data pipelines.” Bioinformatics 31.1 (2015): 10-16.

For this paper, PC conceptualized the idea and performed the language design and

implementation. RS & MB helped in designing robustness testing procedures. PC, RS

& MB wrote the manuscript.

Chapter 3

2. P. Cingolani, A. Platts, M. Coon, T. Nguyen, L. Wang, S.J. Land, X. Lu,

D.M. Ruden, et al. “A program for annotating and predicting the effects of single

nucleotide polymorphisms, snpeff: Snps in the genome of drosophila melanogaster

strain w1118; iso− 2; iso− 3”. Fly, 6(2), 2012.

For this paper, PC conceptualized the idea, implemented the program and performed

testing. AP contributed several feature ideas, software testing and suggested improve-

ments. XL, DR, SL, LW, TN, MC, LW performed mutagenesis and sequencing exper-

iments. XL and DR performed the biological interpretation of the data. All authors

contributed to the manuscript.

SnpEff’s accompanying publication (SnpSift):
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3. P. Cingolani, V. M. Patel, M. Coon, T. Nguyen, S. Land, D. M. Ruden, and X.

Lu.“ Using drosophila melanogaster as a model for genotoxic chemical mutational

studies with a new program, snpsift”. Toxicogenomics in non-mammalian species,

page 92, 2012.

We used SnpEff & SnpSift and developed a number of new functionalities in the context

of two collaborative GWAS projects on type II diabetes:

4. M. McCarthy, T2D Genes Consortia. “Variation in protein-coding sequence and

predisposition to type 2 diabetes”, Ready for submission.

5. A. Mahajan, X. Sim, H. Ng, A. Manning, M. Rivas, H. Heather, A. Locke, N.

Grarup, H. K. Im, P. Cingolani, et al. “Identification and Functional Char-

acterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an

Effector Transcript at the G6PC2-ABCB11 Locus.” PLoS genetics 11.1 (2015):

e1004876-e1004876.

Chapter 4

6. P. Cingolani, R. Sladek, and M. Blanchette. “A co-evolutionary approach for

detecting epistatic interactions in genome-wide association studies”. Ready for

submission (data embargo restrictions).

For this paper, PC designed the methodology under the supervision of MB and RS.

PC implemented the algorithms. PC, RS & MB wrote the manuscript. This work uses

data from the T2D consortia, thus it cannot be published until the main T2D paper

is accepted for publication (according to T2D data embargo).

Other contributions During my thesis I have co-authored several other scientific articles

(grouped by topic) published, submitted for publication, or ready to be submitted, not

mentioned in this thesis:
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Epigenetics

7. P. Cingolani, X. Cao, R. Khetani, C.C. Chen, M. Coon, A. Bollig-Fischer,

S. Land, Y. Huang, M. Hudson, M. Garfinkel, and others. “Intronic Non-CG

DNA hydroxymethylation and alternative mRNA splicing in honey bees.” BMC

genomics 14.1 (2013): 666.

8. M. Senut, A. Sen, P. Cingolani, A. Shaik, S. Land, Susan J and D. M. Ruden.

“Lead exposure disrupts global DNA methylation in human embryonic stem cells

and alters their neuronal differentiation.” Toxicological Sciences (2014).

9. D. M. Ruden, P. Cingolani, A. Sen, W. Qu, L. Wang, M. Senut, M. Garfinkel,

V. Sollars, X. Lu, “Epigenetics as an answer to Darwin’s ’special difficulty’ Part

2: Natural selection of metastable epialleles in honeybee castes”, Frontiers in

Genetics (2015).

10. M. Senut, A. Sen, P. Cingolani, A. Shaik, S. Land, Susan J and D. M. Ruden.

“Lead exposure induces changes in 5-hydroxymethylcytosine clusters in CpG is-

lands in human embryonic stem cells and umbilical cord blood”, Submitted to

‘Epigenomics.

11. M. Senut, P. Cingolani, A. Sen, Arko, A. Kruger, A. Shaik, H. Hirsch, S. Suhr, D.

Ruden. “Epigenetics of early-life lead exposure and effects on brain development.”

Epigenomics 4.6 (2012): 665-674.

GWAS & Disease

12. K. Oualkacha, Z. Dastani, R. Li, P. Cingolani, T. Spector, C. Hammond, J.

Richards, A. Ciampi, C. Greenwood. “Adjusted sequence kernel association test

for rare variants controlling for cryptic and family relatedness.” Genetic epidemi-

ology 37.4 (2013): 366-376.

13. S. Bongfen, I. Rodrigue-Gervais, J. Berghout, S. Torre, P. Cingolani, S. Wilt-
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shire, G. Leiva-Torres, L. Letourneau, R. Sladek, M. Blanchette, and others. “An

N-ethyl-N-nitrosourea (ENU)-induced dominant negative mutation in the JAK3

kinase protects against cerebral malaria.” PloS one 7.2 (2012): e31012.

14. C. Meunier, L. Van Der Kraak, C. Turbide, N. Groulx, I. Labouba, Ingrid, P.

Cingolani, M. Blanchette, G. Yeretssian, A. Mes-Masson, M. Saleh, and others.

“Positional mapping and candidate gene analysis of the mouse Ccs3 locus that

regulates differential susceptibility to carcinogen-induced colorectal cancer.” PloS

one 8.3 (2013): e58733.

15. G. Caignard, G. Leiva-Torres, M. Leney-Greene, B. Charbonneau, A. Dumaine, N.

Fodil-Cornu, M. Pyzik, P. Cingolani, J. Schwartzentruber, J. Dupaul-Chicoine,

and others. “Genome-wide mouse mutagenesis reveals CD45-mediated T cell

function as critical in protective immunity to HSV-1.” PLoS pathogens 9.9 (2013):

e1003637.

16. M. Bouttier, D. Laperriere, M. Babak Memari, M. Verway, E. Mitchell, P. Cin-

golani, T. Wang, M. Behr, R. Sladek, M. Blanchette, S. Mader and J. White.

“Genomics analysis reveals elevated LXR signaling reduces M. tuberculosis via-

bility”, Submitted to Journal of Clinical Investigation.

17. M. Bouttier, D. Laperriere, M. Babak Memari, M. Verway, E. Mitchell, P. Cin-

golani, T. Wang, M. Behr, R. Sladek, M. Blanchette, S. Mader and J. White.

“Genomic analysis of enhancers engaged in M. tuberculosis-infected macrophages

reveals that LXR signaling reduces mycobacterial burden”, Submitted to PLOS

Pathogens.

Fuzzy logic

18. P. Cingolani and Jesus Alcala-Fdez. “jFuzzyLogic: a robust and flexible Fuzzy-

Logic inference system language implementation.” FUZZ-IEEE. 2012.
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19. P. Cingolani and Jesus Alcala-Fdez. “jFuzzyLogic: a java library to design

fuzzy logic controllers according to the standard for fuzzy control programming.”

International Journal of Computational Intelligence Systems (2013), vol 6, pages

65-75.
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Chapter 2

BigDataScript: A scripting language

for data pipelines

2.1 Preface

The overall goal in this thesis is to find genetic loci related to complex disease. In order

to have enough statistical power to find these risk loci, we need to sequence thousands of

cases and controls (i.e. patients and healthy individuals). Obviously the first step is to find

all these patients, obtain patients consent, take samples and keep track of clinically relevant

variables (such as age, sex, BMI, and glycemic traits). Just by the sheer number of patients

involved, it is easy to see that the logistics are challenging, to say the least.

Once the sequencing of each patient’s DNA is performed, we need to process the raw

sequencing information by performing what is known as “primary sequencing analysis”,

which involves mapping reads to the reference genome, calling variants, as well as performing

several types of quality controls. The term “primary analysis” makes it sound as if this step

is simple, but it is not. Managing such volume of information is a huge task that requires

large computational resources, and coordinating the process involved at every stage of the

analysis is not trivial, even if the jobs are relatively easy to parallelize.
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As an example of the complexity and data volumes involved in these analysis pipelines,

mapping the raw reads to the reference genome (i.e. the first stage of the primary analysis)

for our T2D sequencing data set, consisting of whole-exome sequencing of ∼ 13, 000 samples

at 80x coverage, is estimated to take over 12,000 CPU hours, that is over 32 CPU/years,

under the most optimistic assumptions. At this magnitude hardware and failures become

a significant issue since the probability of one or more nodes malfunction while the data is

being processed is quite high.

We designed and implemented a simple script-like programming language called Big-

DataScript (BDS), with a clean and minimalist syntax to develop and manage pipeline

execution and provide robustness to various types of software and hardware failures as well

as portability. This programming language specifically tailored for data processing pipelines,

improves abstraction from hardware resources and assists with robustness. Hardware ab-

straction allows BDS pipelines to run without modification on a wide range of computer

architectures, from a small laptop to multi-core servers, server farms, clusters, clouds or

even whole datacenters. BDS achieves robustness by incorporating the concepts of absolute

serialization and lazy processing, thus allowing pipelines to recover from errors. By ab-

stracting pipeline concepts at programming language level, BDS simplifies implementation,

execution and management of complex bioinformatics pipelines, resulting in reduced devel-

opment and debugging cycles as well as cleaner code. BDS was used to create data analysis

pipelines required for our research, including the ones described throughout this thesis, and

is currently used by other research groups and sequencing facilities in both academic and

private environments.

The rest of the chapter is published in: Cingolani, Pablo, Rob Sladek, and Mathieu

Blanchette. “BigDataScript: a scripting language for data pipelines.” Bioinformatics 31.1

(2015): 10-16.
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2.2 Introduction

Processing large amounts of data is becoming increasingly important and common in re-

search environments as a consequence of technology improvements and reduced costs of

high-throughput experiments. This is particularly the case for genomics research programs,

where massive parallelization of microarray and sequencing-based assays can support com-

plex genome-wide experiments involving tens or hundreds of thousands of patient samples

(Zuk et al., 2014). With the democratization of high-throughput approaches and simpli-

fied access to processing resources (e.g. cloud computing), researchers must now routinely

analyze large datasets. This paradigm shift with respect to the access and manipulation of

information creates new challenges by requiring highly specialized skill, such as implementing

data-processing pipelines, to be accessible to a much wider audience.

A data-processing pipeline, referred as “pipeline” for short, is a set of partially ordered

computing tasks coordinated to process large amounts of data. Each of these tasks is designed

to solve specific parts of a larger problem, and their coordinated outcomes are required to

solve the problem as a whole. Many of the software tools used in pipelines that solve big data

genomics problems are CPU, memory or I/O intensive and commonly run for several hours or

even days. Creating and executing such pipelines require running and coordinating several

of these tools to ensure proper data flow and error control from one analysis step to the

next. For instance, a processing pipeline for a sequencing-based genome-wide association

study may involve the following steps (Auwera et al., 2013): (i) mapping DNA sequence

reads obtained from thousands of patients to a reference genome; (ii) identifying genetic

changes present in each patient genome (known as “calling” variants); (iii) annotating these

variants with respect to known gene transcripts or other genome landmarks; (iv) applying

statistical analyses to identify genetic variants that are associated with differences in the

patient phenotypes; and (v) quality control on each of the previous steps. Even though

efficient tools exist to perform each of these steps, coordinating these processes in a scalable,

robust and flexible pipeline is challenging because creating pipelines using general-purpose
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computer languages (e.g. Java, Python or Shell scripting) involves handling many low-level

process synchronization and scheduling details. As a result, process coordination usually

depends on specific features of the underlying system’s architecture, making pipelines difficult

to migrate. For example, a processing pipeline designed for a “multi-core server” cannot

directly be used on a cluster because running tasks on a cluster requires queuing them using

cluster-specific commands (e.g. qsub). Therefore, if using such a language, programmers and

researchers must spend significant efforts to deal with architecture-specific details that are

not germane to the problem of interest, and pipelines have to be reprogrammed or adapted

to run on other computer architectures. This is aggravated by the fact that the requirements

change often and the software tools are constantly evolving.

In the context of bioinformatics, there are several frameworks to help implement data-

processing pipelines; although a full comparison is beyond the scope of this article, we men-

tion a few that relate to our work: (i) Snakemake (Koster and Rahmann, 2012) written as a

Python domain-specific language (DSL), which has a strong influence from make command.

Just as in make, the workflow is specified by rules, and dependencies are implied between

one rule’s input files and another rule’s output files. (ii) Ruffus (Goodstadt, 2010), a Python

library, uses a syntactic mechanism based on decorations. This approach tends to spread the

pipeline structure throughout the code, making maintenance cumbersome (Sadedin, Pope,

& Oshlack, 2012). (iii) Leaf (Napolitano, Mariani-Costantini, & Tagliaferri, 2013), which is

also written as a Python library, expresses pipelines as graphs drawn using ASCII characters.

Although visually rich, the authors acknowledge that this representation is harder to main-

tain than the traditional code. (iv) Bpipe (Sadedin et al., 2012) is implemented as a DSL on

top of Groovy, a Java Virtual Machine (JVM)-based language. Bpipe facilitates reordering,

removing or adding pipeline stages, and thus, it is easy for running many variations of a

pipeline. (v) NextFlow (www.nextflow.io), another Groovy-based DSL, is based on data

flow programming paradigm. This paradigm simplifies parallelism and lets the programmer

focus on the coordination and synchronization of the processes by simply specifying their
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inputs and outputs.

Each of these systems creates either a framework or a DSL on a pre-existing general-

purpose programming language. This has the obvious benefit of leveraging the language’s

power, expressiveness and speed, but it also means that the programmer may have to learn

the new general-purpose programming language, which can be taxing and take time to mas-

ter. Some of these pipeline tools use new syntactic structures or concepts (e.g. NextFlow’s

data-flow programming model or Leaf’s pipeline drawings) that can be powerful, but re-

quire programming outside the traditional imperative model, and thus might create a steep

learning curve.

In this article, we introduce a new pipeline programming language called BigDataScript

(BDS), which is a scripting language designed for working with big data pipelines in system

architectures of different sizes and capabilities. In contrast to existing frameworks, which

extend general-purpose languages through libraries or DSLs, our approach helps to solve

the typical challenges in pipeline programming by creating a simple yet powerful and flex-

ible programming language. BDS tackles common problems in pipeline programming by

transparently managing infrastructure and resources without requiring explicit code from

the programmer, although allowing the programmer to remain in tight control of resources.

It can be used to create robust pipelines by introducing mechanisms of lazy processing and

absolute serialization, a concept similar to continuations (Reynolds, 1993) that helps to re-

cover from several types of failures, thus improving robustness. BDS runs on any Unix-like

environment (we currently provide Linux and OS.X pre-compiled binaries) and can be ported

to other operating systems where a Java runtime and a GO compiler are available.

Unlike other efforts, BDS consists of a dedicated grammar with its own parser and in-

terpreter, rather than being implemented on top of an existing language. Our language is

similar to commonly used syntax and avoids inventing new syntactic structures or concepts.

This results in a quick-to-learn, clean and minimalistic language. Furthermore, creating our

own interpreter gives better control of pipeline execution and allows us to create features
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unavailable in general-purpose language (most notably, absolute serialization). This comes

at the expense of expressiveness and speed. BDS is not as powerful as Java or Python,

and our simple interpreter cannot be compared with sophisticated just-in-time execution

or JVM-optimized byte-code execution provided by other languages. Nonetheless, in our

experience, most bioinformatics pipelines rely on simple programmatic constructs. Further-

more, in typical pipelines, the vast majority of the running time is spent executing external

programs, making the executing time of the pipeline code itself a negligible factor. For these

reasons, we argue that BDS offers a good trade-off between simplicity and expressiveness or

speed.

2.3 Methods

In our experience, using general-purpose programming languages to develop pipelines is no-

tably slow owing to many architecture-specific details the programmer has to deal with.

Using an architecture agnostic language means that the pipeline can be developed and de-

bugged on a regular desktop or laptop using a small sample dataset and deployed to a

cluster to process large datasets without any code changes. This significantly reduces the

time and effort required for development cycles. As BDS is intended to solve or simplify the

main challenges in implementing, testing and programming data processing pipelines with-

out introducing a steep learning curve, our main design goals are (i) simple programming

language; (ii) abstraction from system’s architecture; and (iii) robustness to hardware and

software failure during computationally intensive data analysis tasks. In the next sections,

we explore how these concepts are implemented in BDS.

2.3.1 Language overview

BDS is a scripting language whose syntax is similar to well-known imperative languages. BDS

supports basic programming constructs (if/ else, for, while, etc.) and modularity constructs
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such as functions and include statements, which are complemented with architecture-

independent mechanisms for basic pipeline runtime control (such as task, sys, wait and

checkpoint). At runtime, the BDS backend engine translates these high-level commands into

the appropriate architecture-dependent instructions. At the moment, BDS does not support

object-oriented programming, which is indeed supported by other pipeline tools based on

libraries/DSL extending general-purpose programming languages. The complete language

specification and documentation is available online at http://pcingola.github.io/BigDataScript.

Unlike most scripting languages, BDS is strongly typed, allowing detection of common

type conversion errors at the initial parsing stage (pseudo-compilation) rather than at run-

time (which can happen after several hours of execution). As the syntax of strict typing

languages tends to be more verbose owing to longer variable declaration statements, we pro-

vide a type inference mechanism (operator :=) that improves code readability. For example

(Listing 1), the variables in and out are automatically assigned the types the first time they

are used (in this case, the type is assigned to be string).

2.3.2 Abstraction from resources

One of the key features of BDS is that it provides abstraction from most architecture-

specific details. In the same way that high-level programming languages such as C or Java

allow abstraction of the CPU type and other hardware features, BDS supports system-

level abstraction, including the number and the type of computing-nodes or CPU-cores that

are available to the pipeline and its component tasks, whether firing another process may

saturate the server’s memory or whether a process is executed immediately or queued.

Pipeline programming requires effective task management, particularly the ability to

launch processes and wait for processes to finish execution before starting others. Task

management can be performed using a single BDS statement, independently of whether this

is running on a local computer or a cluster. Processes are executed using the task statement,

which accepts an optional list of resources required by the task (for example, see Listing
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1). The task consists of running a fictitious system command myProcess and diverting the

output to output.file. BDS currently supports the following architectures: (i) local, single

or multi-core computer; (ii) cluster, using GridEngine, Torque and Moab; (iii) server farm,

using ssh access; and (iv) cloud, using EC2 and StarCluster. Depending on the type of

architecture on which the script is run, the task will be executed by calling the appropriate

queuing command (for a cluster) or by launching it directly (for a multi-core server).

Listing 2.1: pipeline.bds program. A simple pipeline example featuring and a maximum

of 6 h of execution time (Line 5).

,

1 #!/usr/bin/env bds

2 in := ‘‘input.file"

3 out := ‘‘output.file"

4 task ( out <- in, cpus=2, timeout=6*HOUR ) {

5 sys myProcess $in > $out # Invoke command

6 }

BDS performs process monitoring or cluster queue monitoring to make sure all tasks end

with a successful exit status and within required time limits. This is implemented using

the wait command, which acts as a barrier to ensure that no statement is executed until

all tasks finished successfully. Listing 2 shows a two-step pipeline with task dependencies

using a wait statement (Line 13). If one or more of the task executions fail, BDS will

wait until all remaining tasks finish and stop script execution at the wait statement. An

implicit wait statement is added at the end of the main execution thread, which means that

a BDS script does not finish execution until all tasks have finished running. It is common

for pipelines to need multiple levels of parallel execution; this can be achieved using the

parallel statement (or par for short). Wait statements accept a list of task IDs/parallel

IDs in the current execution thread.

In addition to supporting explicitly defined task dependencies, BDS also automatically

models implicit dependencies using a directed acyclic graph (DAG) that is inferred from

information provided in the dependency operators (<) contained in task statements (see
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Listing 2, line 8). Finally, the dep expression defines a task whose conditions are not evalu-

ated immediately (as it happens in task expressions) but only executed if required to satisfy

a goal. Using dep and goal makes it easier to define pipelines in a declarative manner

that is similar to other pipeline tools, as tasks are executed only if the output needs to be

updated with respect to the inputs, independent of the intermediate results file, which might

have been deleted.

2.3.3 Robustness

BDS provides two different mechanisms that help create robust pipelines: lazy processing

and absolute serialization. When a processing pipeline fails, BDS automatically cleans up

all stale output files to ensure that rerunning the pipeline will produce a correct output. If a

BDS program is interrupted, typically by pressing Ctrl-C on the console, all scheduled tasks

and running jobs are terminated or deallocated from the cluster. In addition to immediately

releasing computing resources, a clean stop means that users do not have to manually dequeue

tasks, which allows them to focus on the problem at hand without having to worry about

restoring a clean state.

Lazy processing Complex processing pipelines are bound to fail owing to unexpected

reasons that range from data format problems to hardware failures. Rerunning a pipeline

from scratch means wasting days on recalculating results that have already been processed.

One common approach, when using general-purpose scripting languages, is to edit the script

and comment out some steps to save processing time, which is inelegant and error prone.

A better approach is to develop pipelines that incorporate the concept of lazy processing

(Napolitano et al., 2013), a concept popularized by the make command (Feldman, 1979)

used to compile programs, and which simply means the work is not done a task invoking a

fictitious command myProcess defined to require 2 CPUs twice. This concept is at the core

of many of the pipeline programming tools, such as SnakeMake, Ruffus, Leaf and Bpipe.
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By design, when lazy processing pipelines are rerun using the same dataset, they avoid

unnecessary work. In the extreme case, if a lazy processing pipeline is run on an already

successfully processed dataset, it should not perform any processing at all.

BDS facilitates the creation of lazy processing pipelines by means of the dependency

operator (<-) and conditional task execution (see Listing 1, line 5 for an example). The

task is defined as task (out < in), meaning that it is executed only if out file needs to be

updated with respect to in file: for example, if output.file file does not exist, has zero

length, is an empty directory or has been modified before input.file.

Absolute serialization This refers to the ability to save and recover a snapshot of the

current execution state, compiled program, variables, scopes and program counter, a concept

similar to continuations (Reynolds, 1993). BDS can perform an absolute serialization of the

current running state and environment, producing checkpoint files from which the program

can be re-executed, either on the same computer or on any other computer, exactly from

the point where execution terminated. Checkpoint files (or checkpoints for short) also

allow all variables and the execution stack to be inspected for debugging purposes (bds -i

checkpoint.chp). The most common use of checkpoints is when a task execution fails.

On reaching a wait statement, if one or more tasks have failed, BDS creates a checkpoint,

reports the reasons for task execution failure and terminates. Using the checkpoint, pipeline

execution can be resumed from the point where it terminated (in this case, at the most

recently executed wait statement) and can properly re-execute pending tasks (i.e. the tasks

that previously failed execution).

Limitations BDS is designed to afford robustness to the most common types of pipeline

execution failures. However, events such as full cluster failures, emergency shutdowns, head

node hardware failures or network problems isolating a subset of nodes may result in BDS

being unable to exit cleanly, leading to an inconsistent pipeline state. These problems

can be mitigated by a special purpose checkpoint statement that, as the name suggests,
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allows the programmer to explicitly create checkpoints. Given that the overhead of creating

checkpoints is minimal (a few milliseconds compared with hours of processing time for a

typical pipeline), carefully crafted checkpoint statements within the pipeline code can be

useful to prevent losing processed data, mitigate damage and minimize the overhead when

rerun, which can be critical for long running pipelines.

2.3.4 Other features

Here we mention some selected features that are useful in pipeline programming. Extensive

documentation is available at http://pcingola.github.io/BigDataScript.

Automatic logging Logging all actions performed in pipelines is important for three

reasons: (i) it helps debugging; (ii) it improves repeatability; and (iii) it performs audits in

cases where detailed documentation and logging are required by regulatory authorities (such

as clinical trials).

Creating log files is simple, but it adds boilerplate code and increases the complexity

of the pipeline. BDS performs automatic logging in three different ways. First, it directs

all process StdOut/StdErr output to the console. Second, as having a single output can be

confusing when dealing with thousands of processes running in parallel, BDS automatically

logs each process’s outputs (StdOut and StdErr) and exit codes in separate clearly identified

files. Third, BDS creates a report showing both an overview and details of pipeline execution

(Fig. 2.3).

Automatic command line parsing Programming flexible data pipelines often involves

parsing command-line inputs a relatively simple but tedious task. BDS simplifies this task

by automatically assigning values to variables specified through the command line. As an

example, if the program in Listing 1 is called pipeline.bds, then invoking the program as

pipeline.bds -in another.file will automatically replace the value of variable in with

another.file.
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Listing 2.2: pipeline 2.bds program. A two-step pipeline with task dependencies. The

first step (line 9) requires to run myProcess command on a hundred input files, which can

be executed in parallel. The second step (line 19) processes the output of those hundred

files and creates a single output file (using fictitious myProcessAll command). It should be

noted that we never explicitly state which hardware we are using: (i) if the pipeline is run

on a dual-core computer, as each process requires 2 CPUs, one myProcess instance will be

executed at the time until the 100 tasks are completed; (ii) if it is run on a 64-core server,

then 32 myProcess instances will be executed in parallel; (iii) if it is run on a cluster, then

100 myProcess instances will be scheduled and the cluster resource management system

will decide how to execute them; and (iv) if it is run on a single-core computer, execution

will fail owing to lack of resources. Thus, the pipeline runs independent of the underlying

architecture. The task defined in line 18 depends on all the outputs from tasks in line 8

(mainOut <- outs).

,

1 #!/usr/bin/env bds

2 // Step 1: Parallel processing of input files

3 string[] outs // Define a list of strings

4 for( int i=0 ; i < 100 ; i++ ) {

5 in := "input_$i.file"

6 out := "output_$i.file"

7 task ( out <- in, cpus=2, timeout=6*HOUR ) {

8 sys myProcess $in > $out

9 }

10 outs.add( out ) // Add all output files here

11 }

12 wait // Optional: Wait for all tasks to finish

13

14 // Step 2: Process all outputs from previous step

15 mainOut := "main.txt"

16 mainIn := outs.join( ) // Create a string with all names (space-separated)

17 task ( mainOut <- outs, mem=10*G ) {

18 sys myProcessAll $mainIn > $mainOut

19 }
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Task re-execution Tasks can be re-executed automatically on failure. The number of

retries can be configured globally (as a command-line argument) or by a task (using the

retry variable). Only after failing retry+1 times will a task will be considered to have

failed.

2.3.5 BDS implementation

BDS is programmed using Java and GO programming languages. Java is used for high-level

actions, such as performing lexical analysis, parsing, creating abstract syntax trees (AST),

controlling AST execution, serializing processes, queuing tasks, etc. Low-level details, such

as process execution control, are programmed in GO. As BDS is intended to be used by

programmers, it does not rely on graphical interfaces and does not require installation of

complex dependencies or Web servers.

Figure 2.2 shows the cascade of events triggered when a BDS program is invoked. First the

script pipeline.bds (Fig. 2.2A) is compiled to an AST structure (Fig. 2.2B) using ANTLR

(Parr, 2007). After creating the AST, a runnable-AST (RAST) is created. RAST nodes

are objects representing statements, expressions and blocks from our BDS implementation.

These nodes can execute BDS code, serializing their state, and recover from a serialized file,

thus achieving absolute serialization. The script is run by first creating a scope and then

properly traversing the RAST (Fig. 2.2C). We note that if needed, this approach could be

tuned to perform efficiently, as demonstrated by modern languages, such as Dart.

When recovering from a checkpoint, the scopes and RAST are deserialized (i.e. recon-

structed from the file) and then traversed in recovery mode, meaning that the nodes do not

execute BDS code. When the node that was executed at the time of serialization event is

reached, BDS switches to run mode and the execution continues. This achieves execution

recovery from the exact state at serialization time. Checkpoints are the full state of a pro-

gram’s instance and are intended as a recovery mechanism from a failed execution. This

includes failures owing to corrupted or missing files, as BDS will re-execute all failed tasks
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when recovering, thus correcting outputs from those tasks. However, checkpoints are not

intended to recover from programming errors, where the user modifies the program to fix a

bug, as a previously generated checkpoint is no longer valid respect to the new source code.

When a task statement is invoked, process requirements, such as memory, CPUs and

timeouts, can optionally be specified. Depending on the architecture, BDS either checks

that the underlying system has appropriate resources (CPUs and memory) to run the process

(e.g. local computer or ssh-farm) or relies on the cluster management system to appropriately

allocate the task. If all task requirements are met, a script file is created (Fig. 2.2D), and the

task is executed by running an instance of bds-exec, a program that controls execution (Fig.

2.2E). This indirection is necessary for five reasons, which are described in detail below: (i)

process identification, (ii) timeout enforcement, (iii) logging, (iv) exit status report and (v)

signal handling.

Process identification means that bds-exec reports its process ID (PID), so that BDS

can kill all child processes if the BDS script execution is terminated for some reason (e.g.

the Ctrl-C key is pressed at the console).

Timeout enforcement has to be performed by bds-exec as many underlying systems

do not have this capability (e.g. a process running on a server). When a timeout occurs,

bds-exec sends a kill signal to all child processes and reports a timeout error exit status that

propagates to the user terminal and log files.

Logging a process means that bds-exec redirects stdout and stderr to separate log files.

These files are also monitored by the main BDS process, which shows the output on the

console. As there might be thousands of processes running at the same time and operating

systems have hard limits on the number of simultaneous file descriptors available for each

user, opening all log files is not an option. To overcome this limit, BDS polls log file sizes,

only opening and reading the ones that change.

Exit status has to be collected to make sure a process finished successfully. Unfor-

tunately, there is no unified way to do this, and some cluster systems do not provide this
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Figure 2.1: BDS report showing pipeline’s task execution timeline
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Figure 2.2: Execution example. (A) Script pipeline.bds. (B) The script is executed from a
terminal. The GO executable invokes main BDS, written in JAVA, performs lexing, parsing,
compilation to AST and runs AST. (C) When the task statement is run, appropriate checks
are performed. (D) A shell script task1.sh is created, and a bds-exec process is fired. (E)
bds-exec reports PID, executed the script task1.sh while capturing stdout and stderr as
well as monitoring timeouts and OS signals. When a process finishes execution, the exit
status is logged

information directly. By saving the exit status to a file, bds-exec achieves two goals: (i)

unified exit status collection and (ii) exit status logging.

Signal handling is also enforced by bds-exec making sure that a kill signal correctly

propagated to all subprocesses, but not to parent processes. This is necessary because there

is no limit on the number of indirect processes that a task can run, and Unix/Posix systems

do not provide a unified way to obtain all nested child processes. To be able to keep track

of all subprocesses, bds-exec creates a process group and spawns the subprocess in it. When

receiving a signal from the operating system, bds-exec traps the signal and propagates a kill

signal to the process group.
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2.4 Results

To illustrate the use of BDS in a real-life scenario, we present an implementation of a sequenc-

ing data analysis pipeline. This example illustrates three key BDS properties: architecture

independence, robustness and scalability. The data we analyzed in this example consist

of high-quality short-read sequences (200 coverage) of a human genome corresponding to

a person of European ancestry from Utah (NA12877), downloaded from Illumina platinum

genomes (http://www.illumina.com/platinumgenomes).

The example pipeline we created follows current best practices in sequencing data anal-

ysis (McKenna et al., 2010), which involves the following steps: (i) map reads to a reference

genome using BWA (Li and Durbin, 2009), (ii) call variants using GATK’s Haplotype-

Caller and (iii) annotate variants using SnpEff (Cingolani, Platts, et al., 2012) and SnpSift

(Cingolani, Patel, et al., 2012). The pipeline makes efficient use of computational resources

by making sure tasks are parallelized whenever possible. Figure 2.3 shows a flowchart of our

implementation, while the pipeline’s source code is available at include/bio/seq directory

of our project’s source code (https://github.com/pcingola/ BigDataScript).

Architecture independence We ran the exact same BDS pipeline on (i) a laptop com-

puter; (ii) a multi-core server (24 cores, 256 GB shared RAM); (iii) a server farm (5 servers,

2 cores each); (iv) a 1200-core cluster; and (v) the Amazon AWS Cloud computing infras-

tructure (Table 2.4). For the purpose of this example and to accommodate the fact that

running the pipeline on a laptop using the entire dataset would be prohibitive, we limited

our experiment to reads that map to chromosome 20. The architectures involved were based

on different operating systems and spanned about three orders of magnitude in terms of the

number of CPUs (from 4 to 1200) and RAM (from 8GB to 12TB). BDS can also create a

cluster from a server farm by coordinating raw SSH connections to a set of computers. This

minimalistic setup only requires that the computers have access to a shared disk, typically

using NFS, which is a common practice in companies and university networks.
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Figure 2.3: Whole-genome sequencing analysis pipeline’s flow chart, showing how computa-
tions are split across many nodes
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Table 2.4: Architecture independence example. Notes: Running the same BDS-based
pipeline, a sequence variant calling and analysis pipeline, on the same dataset (chr20) but
different architectures, operating systems and cluster management systems.

In all cases, the overhead required to run the BDS script itself accounted for 52 ms per

task, which is negligible compared with typical pipeline runtimes of several hours.

Robustness To assess BDS’s robustness, we ran the pipeline on a cluster where 10% of

the nodes have induced hardware failures. As opposed to software failures, which are usually

detected by cluster management systems, hardware node failures are typically more difficult

to detect and recover from. In addition, we elevated the cluster load to 495% to make sure

the pipeline was running on less than ideal conditions. As shown in Table 2.4, the pipeline

finished successfully without any human intervention and required only 30% more time than

in the ideal case scenario because BDS had to rerun several failed tasks. This shows how

BDS pipelines can be robust and recover from multiple failures by using lazy processing and

absolute serialization mechanisms.

Scalability To assess BDS’s scalability, we ran exactly the same pipeline on two datasets

that vary in size by several orders of magnitude (Table 2.5): (i) a relatively small dataset

(chromosome 20 subset, 2GB) that would typically be used for development, testing and de-

bugging and (ii) a high-depth whole-genome sequencing dataset (over 200 coverage, roughly

1.5 TB).
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Table 2.5: Scaling dataset sized by a factor of 1000. Notes: The same sample pipeline run
on dataset of 2 GB (reads mapping to human chromosome 20) and 1.5 TB (whole-genome
data set). Computational times vary according to system’s resources, utilization factor and
induced hardware failures.

2.5 Discussion

We introduced BDS, a programming language that simplifies implementing, testing and

debugging complex data analysis pipelines. BDS is intended to be used by programmers in

a similar way to shell scripts, by providing glue for several tools to ensure that they execute

in a coordinated way. Shell scripting was popularized when most personal computers had

a single CPU and clusters or clouds did not exist. One can thus see BDS as extending

the hardware abstraction concept to data-center level while retaining the simplicity of shell

scripting.

BDS tackles common problems in pipeline programming by abstracting task management

details at the programming language level. Task management is handled by two statements

(task and wait) that hide system architecture details, leading to cleaner and more compact

code than general-purpose languages. BDS also provides two complementary robustness

mechanisms: lazy processing and absolute serialization.

A key feature is that being architecture agnostic, BDS allows users to code, test and

debug big data analysis pipelines on different systems than the ones intended for full-scale

data processing. One can thus develop a pipeline on a laptop and then run exactly the same

code on a large cluster. BDS also provides mechanisms that eliminate many boilerplate

programming tasks, which in our experience significantly reduce pipeline development times.

BDS can also reduce CPU usage, by allowing the generation of code with fewer errors and
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by allowing more efficient recovery from both software and hardware failures. These benefits

generally far outweigh the minimal overhead incurred in typical pipelines.
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Chapter 3

A program for annotating and

predicting the effects of single

nucleotide polymorphisms, SnpEff:

SNPs in the genome of Drosophila

melanogaster strain w1118; iso− 2; iso− 3

3.1 Preface

As this thesis is focused on extracting biological insight from sequencing data, in this chapter

we examine algorithms we created for calculating “functional annotations” of genomic vari-

ants. In essence, functional variant annotations are bits of biological knowledge that allow

us to prioritize variants assumed to be relevant to the phenotypic trait under study and to

filter out variants assumed irrelevant. The spectrum of functional annotations for a genomic

variant is wide and may involve information on which genes are affected by the variant, how

the protein product is affected, how conserved is the genomic region the variant lies onto,
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and which clinically relevant information is associated with the loci; just to mention a few

typical use cases.

When trying to find variants that affect risk of complex disease, statistical power is

paramount. We need to be able to “separate wheat from chaff”. In our context this means

two different but closely related tasks: i) performing functional annotations, and ii) using

that information for prioritizing variants (and filtering out the ones we suspect are not related

to the particular trait under study). Failing to efficiently filter out irrelevant variants would

reduce our statistical power as more statistical tests are calculated, thus would decrease our

chances of finding the associations we are looking for. In order to efficiently annotate and

filter variants, we created two software packages called SnpEff and SnpSift that deal with

the annotation and filtering aspects respectively.

The rest of the chapter is published in: P. Cingolani, A. Platts, M. Coon, T. Nguyen,

L. Wang, S.J. Land, X. Lu, D.M. Ruden, et al. “A program for annotating and predicting

the effects of single nucleotide polymorphisms, snpeff: Snps in the genome of drosophila

melanogaster strain w1118; iso− 2; iso− 3”. Fly, 6(2), 2012.

3.2 Abstract

We describe a new computer program, SnpEff, for rapidly categorizing the effects of single

nucleotide polymorphisms (SNPs) and other variants such as multiple nucleotide polymor-

phism (MNPs) and insertion-deletions (InDels), in whole genome sequences. Once a genome

is sequenced, the SnpEff program can be used to annotate and classify genetic polymor-

phisms based on their effects on annotated genes, such as synonymous or non-synonymous

SNPs, start codon gains or losses, stop codon gains or losses; or based on their genomic

locations, such as intronic, 5’ untranslated region (5’ UTR), 3’ UTR, upstream, downstream

or intergenic regions. Here the use of SnpEff is illustrated by annotating ∼ 356, 660 can-

didate SNPs in ∼ 117Mb unique sequences, representing a substitution rate of ∼ 1/305
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nucleotides, between the Drosophila melanogaster w1118; iso− 2; iso− 3 strain and the refer-

ence y1; cn1bw1sp1 strain (Platts et al., 2009). We show that ∼ 15, 842 SNPs are synonymous

and ∼ 4, 467 SNPs are non-synonymous (N/S ∼ 0.28) and the remainder are in other cate-

gories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs) and start codon gains

(297 SNPs) in the 5’ UTR. We found, as expected, that the SNP frequency is proportional to

the recombination frequency (i.e., highest in the middle of chromosome arms). We also found

that start-gained and stop-lost SNPs in Drosophila melanogaster often encode N-terminal

and C-terminal amino acids that are conserved in other Drosophila species. This suggests

that the 5’ and 3’ UTRs are reservoirs of cryptic genetic variation that can be used multiple

times during the evolution of the Drosophila genus. At this time, SnpEff has been set up for

annotating DNA polymorphisms of over 320 genome versions of multiple species including

the human genome. It has already been used by over 50 institutions and universities in

the bioinformatics community. Tools such as SnpEff are valuable because, as sequencing

becomes cheaper and more available, whole genome sequencing is becoming more important

in model organism genetics.

3.3 Introduction

When we re-sequenced the w1118; iso−2; iso−3 genome in 2009, (Platts et al., 2009) bioinfor-

matics tools available then were unable to rapidly categorize the 3̃56,660 SNPs as comparing

to the y1; cn1bw1sp1 reference strain. At the time, other available tools such as ENSEMBLs

variant web application (http://ensembl.org) could only analyze a few hundred to a few

thousand SNPs per batch. Therefore, over the past couple of years, we have been developing

a new program, SnpEff, which is able to analyze and annotate thousands of variants per

second. In addition to SnpEff, other programs to annotate genomic variants are currently

now available, such as Annotate Variation (ANNOVAR) (K. Wang et al., 2010) and Variant

Annotation, Analysis and Search Tool (VAAST) (Rope et al., 2011). However, SnpEff sup-
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Table 3.1: Output of SnpEff.# SNP, a description of the single nucleotide polymorphism
(SNP) indicating chromosome arm (chr2L), coordinate in genome (10006682), and nucleotide
change (e.g., C/T indicates that C is replaced by T in w1118; iso−2; iso−3 at this position).
Gene name, official gene symbol of gene. Effect, description of SNP (e.g., upstream of
transcription start site at position 541). Old AA/new AA, amino acid change, if any, in one
letter code. Old codon/New codon, if a codon contains a SNP, the old (reference) and new
(w1118; iso− 2; iso− 3) codons are indicated. Codon Num (CDS), the codon number of the
coding sequence (CDS). CDS size, the size of the protein in amino acids.

ports more genome versions, is open source for any user, supports variant call format (VCF)

files and it is marginally faster (although the speeds of SnpEff, ANNOVAR and VAAST

are comparable). Table S1 shows a feature comparison of some currently available software

packages.

SnpEff, an abbreviation of “SNP effect,” is a multi-platform open source variant effect

predictor program. SnpEff annotates variants and predicts the coding effects of genetic

variations, such as SNPs, insertions and deletions (INDELs) and multiple nucleotide poly-

morphisms (MNPs) (http://SnpEff.sourceforge.net/). The main features of SnpEff include:

(1) speedthe ability to make thousands of predictions per second; (2) flexibilitythe ability to

add custom genomes and annotations; (3) the ability to integrate with Galaxy, an open access

and web-based platform for computational bioinformatic research (http://gmod.org/wiki/

Galaxy); (4) compatibility with multiple species and multiple codon usage tables (e.g., mi-

tochondrial genomes); (5) integration with Genome Analysis Toolkit (GATK) (McKenna et

al., 2010); and (6) ability to perform non-coding annotations. When SnpEff was integrated

into the GATK, it replaced the ANNOVAR program for variant analyses.

A simple walk-through example on how to analyze sequencing data to calculate variants

and their effects is shown in Listing SL1. This example is intended for illustration purposes
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only since many additional steps are routinely used in re-sequencing data analysis pipelines,

but design of a fully featured pipeline is beyond the scope of this paper.

Here, we report the results of SnpEff (version 1.9.6) analyses of the 3̃56,660 candidate

SNPs that we identified in w1118; iso− 2; iso− 3 with respect to the y1; cn1bw1sp1 reference

strain as reported in our previous paper. 1 This is of great interest to the Drosophila

community because thousands of transposon insertion stocks (Thibault et al., 2004) and

hundreds of deficiency stocks (Parks et al., 2004),(Parks et al., 2004) were generated in the

w1118; iso− 2; iso− 3 genetic background. The large number and potential severity of many

SNPs in the two laboratory strains was a surprising finding, and the possible evolutionary

implications of this finding are discussed.

3.4 Results

Formats used in SnpEff. To understand the potential effects of large numbers of SNPs

in genome sequence comparisons, we developed an open-source tool, SNPeff, to classify

SNPs based on gene annotations. Table 3.1 shows the beginning portion of the output

generated by SnpEff when the SNPs in w1118; iso−2; iso−3 were compared with the reference

genome, y1; cn1bw1sp1 that is represented in Drosophila melanogaster release 5.3. A more

complete SnpEff effect list is shown in Table 3.2. Before using SnpEff, an input file must be

generated that lists all of the SNPs and INDELs in a genome. We published the input file for

w1118; iso− 2; iso− 3 in our previous paper, 1 and it was derived by comparing hundreds of

millions of short sequence reads (2̃0-fold genome coverage) and identifying SNPs based on a

Sequence Alignment/Map tools (SAMtools) quality score for each nucleotide in the genome

(H. Li, 2011a).

Input formats supported by SnpEff are variant call format (VCF) (Danecek et al., 2011),

tab separated TXT format; and and the SAMtools

Pileup format (H. Li, 2011a). VCF was created by the 1,000 Genomes project and it is
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currently the de facto standard for variants in sequencing applications. The TXT and Pileup

formats are currently deprecated and being phased out.

SnpEff also supports two output formats, TXT and VCF. The information provided

in both of them includes four main groups: (i) variant information (genomic position, the

reference and variant sequences, change type, heterozygosity, quality and coverage); (ii)

genetic information (gene Id, gene name, gene biotype, transcript ID, exon ID, exon rank);

and (iii) effect information (effect type, amino acid changes, codon changes, codon number

in CDS, codon degeneracy, etc.).

Whenever multiple transcripts for a gene exist, the effect and annotations on each tran-

script are reported, so one variant can have multiple output lines. Table 3.3 shows the

information provided by each column in TXT format and Table 3.4 shows the information

provided in VCF format. When using VCF format, the effect information is added to the

information (INFO) fields using an effect (EFF) tag. As in the case of TXT output, if mul-

tiple alternative splicing products are annotated for a particular gene, SnpEff provides this

information for each annotated version (see Sup. Data File 1 for the complete SnpEff output

for w1118; iso− 2; iso− 3).

Predicted effects are with respect to protein coding genes. Variants affecting non-coding

genes are annotated and the corresponding biotype is identified, whenever the information

is available. A “biotype” is a group of organisms having the same specific genotype.

According to SnpEff (version 1.9.6), the largest number of SNPs in w1118; iso− 2; iso− 3

are in introns (130,126) followed by those in upstream (76,155), downstream (71,645) and

intergenic (51,783) regions (Fig. 3.5). “Upstream” is defined as 5 kilobase (kb) upstream of

the most distal transcription start site and “downstream” is defined as 5 kb downstream of

the most distal polyA addition site, but these default variables can be easily adjusted. SnpEff

also found thousands of SNPs within the exons. For example, there are 3,718 SNPs in the

3’ untranslated regions (3’ UTR) and 2,508 SNPs in the 5’ untranslated regions (5’ UTR).

The SNPs in the upstream, downstream, 5’ and 3’ UTR regions might affect transcription or
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Table 3.2: Detailed effect list from SnpEff

translation, but the actual effects have to be confirmed case-by-case. In the next few sections,

we present examples of several types of SNPs that might affect the protein function.

Heterozygosity is not considered in the w1118; iso− 2; iso− 3 sequence because the stock

was isogenized and only high quality (i.e., homozygous SNPs) were used for this analysis

(Platts et al., 2009).

The SnpEff website (http://snpeff.sourceforge.net/SnpSift. html) has a frequently asked

questions (FAQ) section that addresses most issues that a user might have in operating this

program.

SNPs that generate new start codons. There are 297 SNPs that potentially generate

a new translation initiation codon in the 5’ UTR (start-gained SNPs). The most common
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translation initiation codon is AUG, which is coded by ATG in the genome. To be thorough,

we also included CUG and UUG codons, which code for leucine, as these codons can also be

used to initiate translation in rare genes in Drosophila and mammals (Sugihara, Andrisani,

& Salvaterra, 1990),(Ivanov, Firth, Michel, Atkins, & Baranov, 2011). There are 60 genes

with ATG start-gained SNPs (Table 3.6), 99 genes with CTG start-gained SNPs and 120

genes with TTG startgained SNPs in w1118; iso − 2; iso − 3, all by definition in 5’ UTR

regions, compared with the reference genome (the reading frame is indicated on the SnpEff

table). Most of the ATG start-gained SNPs are within 1 kb of the annotated translation

start (Table 3.6), but this probably reflects the fact that most 5’ UTR sequences are less

than 1 kb long. Less than expected by chance, only 2̃5% of the ATG start-gain SNPs are

in the same reading frame as the annotated translation start point (Table 3.6). Since 33%

of in frame ATG start-gained SNPs are expected by chance, this suggests that there might

be weak selection against this class of SNPs. Of the 60 genes with ATG start-gained SNPs,

five genes have two ATG start-gained SNPs and one gene has three startgained SNPs; the

remaining 54 genes have a single start-gained SNP. Since SnpEff does not take into account

the Kozak consensus sequence flanking the AUG site, 5’-ACC AUG G-3’, that is generally

required for efficient translation (Kozak, 1987), and thus further assessment is required to

determine whether a start-gained SNP is actually used.

Gene ontology (GO) pathway analysis of the genes affected by the 297 start-gain SNPs

in w1118; iso − 2; iso − 3 was done using DAVID (Database for Annotation, Visualization

and Integrated Discovery) (Dennis Jr et al., 2003; Hosack et al., 2003). We found that

the GO categories “tissue morphogenesis,” “immunoglobulin like,” “developmental protein,”

and “alternative splicing” are significantly enriched after multiplecomparisons correction

by false-discovery rate (FDR ¡ 0.001; Table 3.7). These categories are interesting because

they predominantly contain proteins that show a wide degree of intra- and interspecies

variability. For example, the immunoglobulin loci, which are highly divergent among humans

and in other vertebrates, are used for antigen recognitioni (Lazure, Hum, & Gibson, 1981).
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Table 3.3: Information provided by SnpEff in tab separated output format (TXT)
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Also, developmental proteins and proteins involved in tissue morphogenesis often have both

conserved domains, such as the Hox domain, and highly divergent domains that maintain

morphological diversity within a species, such as the trans-activation domains (Ruden et al.,

2008; Guarente et al., 1991).

Our previous analyses suggest that most of the SNPs that we identified in w1118; iso −
2; iso− 3 are probably genuine and can be validated by capillary sequencing. 1 A common

worry about nextgeneration sequencing data in general is that SNPs are vastly over esti-

mated. One might thing that if a large fraction of the identified SNPs had the predicted

“effects”, the organism would not be viable. However, since short-read next-generation

sequencing has a high error rate, such as the short-read sequences we obtained with the Illu-

mina platform, further validation of specific SNPs is needed to be absolutely certain. Further

validation of SNPs is best done with long-range DNA sequencing, such as with traditional

capillary sequencing, or sequencing with the Roche (Wheeler et al., 2008), and many other

DNA sequencing instruments that are now available (Schadt, 2011) (see (Platts et al., 2009)

for validation examples with capillary sequencing).

An example of a start-gained SNP is found in the 5’ UTR of Ecdysone inducible protein

63E (Eip63E) gene, which is predicted to be a cyclin J dependent kinase required for oogenesis

and embryonic development (Fig. 3.8) (D. Liu & Finley, 2010). The potential start-gain

SNP (A ¿ G) in Eip63E changes 5’-ATA-3’ to 5’-ATG-3’ in the same reading frame with no

in-frame intervening stop codons (Fig. 3.8A). If translation occurs at the new start-gained

SNP, it would produce a protein with 57 additional N-terminal amino acids compared with

the reference gene (Fig. 3.8B). However, the three bases prior to the new 5’-ATG-3’ sequence,

5’-AAT-3’, is a poor match to the Kozak consensus sequence, 5’-ACC-3’, discussed above in

reference 12. Therefore, it is unclear whether the startgain SNP in Eip63E is recognized by

the ribosomal machinery.

It is interesting that a BLASTp search of the protein database reveals that the N-terminal

57 amino acids in Eip63E are 63% identical (36/57) to the 58 N-terminal amino acids of the

110



orthologous gene in Drosophila yakuba, but not to any other Drosophila species. D. yakuba

is very close to D. melanogaster in the phylogeny. This suggests that the 5’ UTR of Eip63E

might be a source for cryptic genetic variation encoding novel N-terminal protein sequences

that potentially modulates protein function (see Discussion).

SNPs that generate new stop codons. Another surprise in our SnpEff analysis was

the identification of 28 stop-gained SNPs and 5 stop-lost SNPs in w1118; iso−2; iso−3 (Table

3.9). A stop-gained SNP, classically called a nonsense SNP, has a coding codon changed to a

stop codon, UAA, UAG, UGA (Brenner et al., 1965). Three genes, oc/ otd, LRP1 and trol9,

have two stop-gained SNPs. Surprisingly at least 8 of the stop-gained SNPs are in genes that

encode essential proteins, and these are Dif, dp, ex, MESR4, mew, oc/otd, tai and trol. It

is not known whether the other stop-gained SNPs also affect essential protein-coding genes

because their functions have not yet been characterized (according to www.flybase.org). We

note that what would be a stop-gained SNP in w1118; iso − 2; iso − 3 would be a stop-lost

SNP in the reference strain, and vice versa, because the sequence of the ancestral Drosophila

melanogaster strain that gave rise to both of these strains is not known.

An important consideration with stop-gained and stop-lost SNPs is whether the C-

terminal amino acids in the longest version of the protein that not present in the shortest

version of the protein are conserved in other Drosophila species. If the additional C-terminal

amino acids are not conserved, then these amino acids might not affect the essential function

of the protein but they might exert modulatory effects. If the additional C-terminal amino

acids are conserved in multiple Drosophila species, then their loss might adversely affect the

function of the protein. Therefore, in Table 3.9, we further classify the stop-gained and stop-

lost SNPs into four categories: Category 1, including 23 genes, with both the N-terminal

and novel C-terminal regions conserved among Drosophila species and other organisms; Cat-

egory 2, including only one gene, with the entire gene sequence not conserved even among

other Drosophila species; Category 3, with two genes, with the novel C-termini not con-

served among other Drosophila species. In this category, the N-termini are conserved among
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Table 3.4: Information provided by SnpEff in variant call format (VCF). The in-
formation is added to the INFO fields using an tag ’EFF’. The format for each ef-
fect is “Effect (Effect Impact | Codon Change | Amino Acid change | Gene Name |

Gene BioType | Coding | Transcript | Exon [ | ERRORS | WARNINGS ])”.

Drosophila species, but this conservation is not maintained beyond the Drosophila genus

(this class is likely a novel gene that arose in the Drosophila genus); and Category 4, includ-

ing seven genes, with the novel C-terminal regions conserved among other Drosophila species

but not beyond the Drosophila genus. In this category, the N-terminus is conserved beyond

the Drosophila genus (this class probably has a C-terminal domain with a modulatory role

in the Drosophila genus but not beyond the genus).

An example of an essential protein-coding gene in Category 4, where the novel C-terminus

is not conserved outside the Drosophila genus, is oceliless (oc), also known as orthodenticle

(otd) (Fig. 3.10). The oc/otd gene has two in-frame stop-gained SNPs in w1118; iso −
2; iso − 3. The oc/otd gene is a Hox-family transcription factor required for photoreceptor

development in the compound eye and the light-sensing ocellus, embryonic development and

brain segmentation (Acampora et al., 1998; Younossi-Hartenstein et al., 1997). The Hox

domain is 60 amino acids, 59 of which are identical with the human Otd protein. The Hox

domains, which arose before invertebrates and vertebrates split several hundred million years

ago, are among the most conserved protein domains in bilaterally-symmetric organisms in

evolution (K. A. Jones et al., 1998). The two stop-gained SNPs are in the non-conserved C-

terminal region of Oc/Otd, which is thought to have a transcriptional-regulatory function.

Since both strains are viable, both oc/otd genes are apparently functional although they
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Figure 3.5: Classification of SNPs in w1118; iso − 2; iso − 3. The number of NSPs in each
class is shown above the bar. The quality score was arbitrarily set at 70 and above for this
graph.

encode a protein with 489 amino acids in w1118; iso−2; iso−3, and a protein with 543 amino

acids in the reference genome (Table 3.7).

An example of a stop-lost gene in class c, where the C-terminus is not conserved even

among the Drosophila genera, is CG13958 that encodes a protein of unknown function (Fig.

3.11). In w1118; iso − 2; iso − 3, CG13958 encodes a protein of 48 amino acids but in the

reference genome it encodes a protein with 84 amino acids. When BLASTp was done with

the non-redundant (nr) data set, there was not much homology beyond the 38th amino acid

within the Drosophila genus. However, there was a near perfect (37/38) identity of the

first 38 amino acids in four other Drosophila species: Drosophila grimshawi, Drosophila

yakuba, Drosophila erecta and Drosophila virilus (Fig.3.11). This protein likely arose in the

Drosophila genus since it has no known homologs outside of this genus.

There are also five stop-lost SNPs in w1118; iso− 2; iso− 3 (Table 3.7). All of these SNPs

are in predicted protein-coding genes, metabotropic GABA-B receptor subtype 1 (GABA-
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Table 3.6: 60 Genes with start-gained SNPs with ATGs. Bases from TSS, bases from
translation start site not including the ATG start-gained SNP. (+), in same reading frame
as annotated ATG. (-), in different reading frame as annotated ATG.

Table 3.7: Genes with start-gained SNP GO categories in w1118; iso − 2; iso − 3. Results
of Gene ontology analysis for 297 start-gained SNPs in w1118; iso − 2; iso − 3. Bottom, the
genes in the indicated gene ontology category is listed.
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B-R1), CG13958, CG4975, brown (bw), and POU domain motif 3 (pdm3). It is not known

whether any of the these genes are essential in Drosophila besides bw, which is not re-

quired for viability. However, the metabotropic GABA-B receptor subtype 1 (GABAB-R1)

gene is required for normal behavior in mice (K. A. Jones et al., 1998) and the ortholog

is therefore likely also essential in Drosophila, although no phenotypic data are available

(www.flybase.org). The bw gene is classic gene first described in 1921 by Waaler, (Waaler,

1921) which causes the eyes to be brown rather than red and encodes an ATPase binding

cassette (ABC) transporter (Saurin, Hofnung, & Dassa, 1999). The bw 1 mutation in the

reference strain is a spontaneous allele with a 412-transposon repeat insertion (Dreesen,

Johnson, & Henikoff, 1988), which would have been missed in our nextgeneration sequenc-

ing data because the input sequence we analyzed contained only short-read sequences that

mapped uniquely to the reference genome.

Not much is known about the functions of several genes with in-frame stop-gained SNPs.

The pdm3 gene is expressed in the larval and adult nervous system, and it encodes a highly-

conserved Hox domain, but no phenotypic data are available (www.flybase.org). No pheno-

typic data are available for either CG13958 or CG4975. The protein encoding CG13958 has

no known conserved domain, and its peak expression is observed within 0624 h of embryo-

genes, during early larval stages, at stages throughout the pupal period, and in the adult

male (www. flybase.org). The protein encoded by CG4975 has an Armadillolike helical

domain and an Ataxin-10 domain and has expression in the hind gut during the late larval

and periods (www.flybase. org) (Chintapalli, Wang, & Dow, 2007).

Some of the stop-lost SNPs have interesting consequences. For example, a stop-lost SNP

in w1118; iso−2; iso−3 is in the CG13958 gene and causes an extension of eight amino acids

before the next stop codon in 3’ UTR sequence is reached (Fig. 3.13). Since the C-termini of

CG13958 vary in w1118; iso− 2; iso− 3 and the reference strains of Drosophila melanogaster,

it is conceivable that the C-terminus might also fluctuate in other Drosophila species. To test

this idea, we investigated the C-terminal regions of CG13958 homologs in other Drosophila
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Figure 3.8: Analysis of Eip63E start-gained SNP in w1118; iso− 2; iso− 3. (A), Location of
the start-gained SNP at the Eip63E locus. Notice that the reading frame is the same as the
normal translation start site (TSS). (B), Conservation of 60 amino acid N-terminal region
of Eip63E in w1118; iso − 2; iso − 3 with Drosophila yakuba orthologous gene. The other
sequenced Drosophila species do not have this N-terminal sequence (not shown).
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Table 3.9: Stop gained and stop lost in w1118; iso − 2; iso − 3. Stop gained, gene with
stop gained SNP. Location, amino acid number changed to a stop codon (e.g., 255K/*,
indicates lysine at amino acid changed to a stop codon). Length, the length of the protein
in amino acids. Phenotype, not determined (ND), withdrawn (no longer considered a gene
by FlyBase), and NPC (non-protein coding, such as a rRNA). For stop lost SNPs (bottom),
*/L (+9 aa) indicates that the next in frame stop is after nine additional amino acids are
added. a-d refer to SNP categories 14 (see text).

species.

We found that CG13958 homologs have variable C-terminal amino acids in different

species of Drosophila. When the CG13958 protein is analyzed by protein Basic Local Align-

ment Search Tool (BLASTp) with the non-redundant (nr) protein database (http://www.

ncbi.nlm.nih.gov/), at least two Drosophila species have extended C-terminal amino acids

and at least three Drosophila species have missing amino acids at the C-termini (Fig. 3.13).

For example, Drosophila pseudoobscura has three of the extended amino acids found in

w1118; iso− 2; iso− 3 and Drosophila mojavenais has four of them. In contrast, Drosophila

simulans is missing the last terminal amino acid, Drosophila erecta is missing the last two ter-

minal amino acids, and Drosophila yakuba is missing the last three amino acids found in the

reference strain (Fig. 3.13). The large number of stop-gain and stop-lost SNPs in Drosophila

likely has important implications on the evolution of protein function (see Discussion).

Synonymous and non-synonymous SNPs in w1118; iso− 2; iso− 3. There are 15,842 syn-
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Figure 3.10: Oc/Otd has two stop-gained SNPs in w1118; iso−2; iso−3. (A) Location of the
two stop gained SNPs in oc/otd. (B) Protein BLAST of Oc/Otd against the non-redundant
(nr) protein database shows that only the 60 amino Hox domain flanking amino acid 100 is
conserved from Drosophila to humans. The color coding shows the alignment scores.
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onymous SNPs and 4,467 nonsynonymous SNPs in annotated coding regions in w1118; iso−
2; iso − 3 (Fig. 3.5). A synonymous SNP (silent SNP) is defined as a SNP that does not

change the amino acid in the protein, whereas a nonsynonymous SNP does. The genome-wide

normalized N/S ratio (dN/dS), also called ω (i.e., ω = dN/dS), is by definition normalized

to 1 in most evolutionary studies (Stoletzki & Eyre-Walker, 2011). The non-normalized N/S

ratio is 0̃.28 in w1118; iso−2; iso−3 compared with the reference genome, y1; cn1bw1sp1 (i.e.,

N/S = 4,467/15,842; Table 3.1).

We examined the distribution of synonymous and nonsynonymous SNPs genome-wide for

w1118; iso−2; iso−3 and saw higher levels of both classes of SNPs in the middle of the chro-

mosome arms and lower levels near the centromeres and telomeres (Fig. 3.12 and left). This

was expected because the number of SNPs is proportional to the recombination frequencies

in the different regions of the chromosomes (Begun & Aquadro, 1992; Charlesworth, Coyne,

& Barton, 1987). Also, our previous analyses of the distribution of total SNPs revealed a

similar pattern. 1 We observed higher N/S ratios near the telomeres and centromeres and

lower N/S ratios in the middle of the chromosome arms (Fig. 3.12 and right).

3.5 Discussion

In this paper, we used SnpEff to categorize the ∼ 356, 660 SNPs in w1118; iso−2; iso−3 and

place them into 14 different classes based on their predicted effects on protein function. In or-

der of prevalence, these 14 classes are intron, upstream, downstream, intergenic, synonymous,

non-synonymous, 3’ UTR, 5’ UTR, start-gained, stop-gained, stop-lost, synonymous-stop,

start-lost and splice-site SNPs (Fig. 3.5). The reason for cataloging the SNPs in w1118 ; iso2;

iso-3 is to get a better appreciation of evolution of genome sequences and genome organiza-

tion in this common laboratory strain. We appreciate the fact that both w1118; iso−2; iso−3

and y1; cn1bw1sp1 are derived and highly manipulated laboratory strains and do not repre-

sent natural populations. Therefore, we do not mean to imply that the analyses in this paper
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are significant but rather just observational. To be meaningful, these observations need to

be followed up with natural populations. Hundreds of Drosophila natural populations have

already been or are in the process of being sequenced, so this should be feasible in the near

future with a program such as SnpEff (Anderson, Gilliland, & Langley, 2009).

Many of the stop-gained and stoplost SNPs in w1118; iso − 2; iso − 3 occur in essential

genes that apparently still function after amino acid truncations caused by the stop-gained

SNPs (Table 3.7). These non-critical effects of the stop-gained SNPs are worth noting

because nonsense codons in the transcribed mRNAs generally result in nonfunctional protein

products. For example, some genetic disorders, such as thalassemia and Duchenne muscular

dystrophy (DMD), result from nonsense SNPs (Flanigan et al., 2009; Tran et al., 2007;

Chang & Kan, 1979). Also, nonsense SNP-mediated RNA decay exists in yeast, Drosophila

and humans, and usually ensures that mRNAs with premature stop codons are degraded

(Gatfield, Unterholzner, Ciccarelli, Bork, & Izaurralde, 2003).

The stop-gained and stop-lost SNPs in essential genes, if they are validated, could have

profound evolutionary implications and suggest the involvement of prions, analogous to

[PSI+], in the retention and selection of these SNPs. Brian Cox, a geneticist working with

the yeast Saccharomyces cerevisiae, discovered [PSI+] in 1965 as a non-genetically trans-

missible trait with a cytoplasmic pattern of inheritance similar to mitochondria (Cox, Tuite,

& McLaughlin, 1988). He isolated a yeast strain auxotrophic for adenine due to a nonsense

mutation is able to survive in media lacking adenine when [PSI+] is present (Cox et al.,

1988). Reed Wickner showed in 1994 that [PSI+] resulted from a prion form of the trans-

lation termination factor, Sup35 (Wickner, 1994). Lindquist and colleagues showed in 2008

that the [PSI+] prion provides survival advantages in several stressful environments, such

as high salt conditions (Tyedmers, Madariaga, & Lindquist, 2008). They have speculated

that Sup35 is an evolutionary capacitor that, when inactivated in the PSI+ form, releases

cryptic genetic variation that allow expression of novel C-terminal amino acids in hundreds

of proteins, some of which are beneficial in stressful environments.
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Figure 3.11: CG34326 has one stop-gained SNP in w1118; iso−2; iso−3 in the non-conserved
C-terminal region. (A) Protein BLAST of CG34326 against the non-redundant (nr) protein
database shows that only the 38 N-terminal amino acids are conserved among Drosophila
species and not beyond Drosophila. The colored lines represent the homologs from the
following organisms: Drosophila melanogaster, Drosophila grimshawi, Drosophila yakuba,
Drosophila erecta, Drosophila virilus, Ixodes scapularis, Ixodes scapularis and Nycticebus
coucang. (B) Aligment of Drosophila melanogaster CG34326 with orthologous gene from
Drosophila grimshawi. (C) Aligment of Drosophila melanogaster CG34326 with orthologous
gene from Drosophila yakuba.

How might prions be involved in revealing cryptic genetic variation in the 5’ and 3’

UTRs? While most prions are thought to not directly mutate DNA sequences, they could

provide an environment that would make the retention and selection of beneficial SNPs more

likely. For example, a stop-lost SNP would allow a modified protein with the new C-terminal

tail to be always expressed, even when the prion is lost (Tyedmers et al., 2008). Therefore,

a stop-lost SNP would more likely occur in a strain with beneficial codons in the 3’ UTR

because the cryptic C-terminal amino acids encoded by these nucleotides would provide a

selective advantage in stressful (i.e., [PSI+]) environments when they are translated.

It is attractive to speculate that a similar prion-mediated evolutionary mechanism might
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occur in Drosophila, for both stoploss and stop-gained SNPs, and that this might help

explain the large number of SNPs that we see in these categories. We note that Drosophila

has several Sup35 orthologs, some of which have N-terminal repeats that are known to be

potentially prion-forming domains (Tyedmers et al., 2008). We acknowledge that this is a

highly speculative explanation for the high numbers of start-gained and stop-lost SNPs, but

we believe that it is worthy of further investigation.

The many potential start-gained SNPs in Drosophila might also have evolutionary im-

plications. Similar to the cryptic genetic variation that is revealed by stop-lost mutations in

the 3’ UTR, start-gained SNPs reveal cryptic genetic variation in the 5’ UTR. Uncovering

the cryptic genetic variation in times of environmental stress, such as by inducing transcrip-

tion initiation at start sites upstream of the normally-used transcription start sites, could be

one mechanism to facilitate the use of potential start-gained SNPs. Further mutations and

selection of the potential start-gained SNPs, such as by introducing better Kozak consensus

sequences or more commonly used 5’-AUG-3’ translation initiation codons, can stabilize the

cryptic genetic variation further if it leads to improved survival or reproductive fitness in a

stressful environment. While amino acid extensions and deletions in known essential genes

occur only 8 times in w1118; iso− 2; iso− 3 compared with the reference strain (Table 3.9),

as laboratories begin to sequence hundreds or even thousands of individuals in a population,

extensions and deletions are likely to be found in a large proportion of functional genes.

Finally, we recently upgraded SnpEff further by including over 320 databases for different

reference genome versions that can be analyzed (http://snpeff. sourceforge.net/SnpSift.html).

Sources of information for creating these databases are ENSEMBL, UCSC Genome Bioinfor-

matics website as well as organism specific databases, such as FlyBase (Drosophila melanogaster),

WormBase (C. elegans) and TAIR (Arabidopsis thaliana), to name a few. The program

SnpEff is open access and additional genomes can be added and assistance in using SnpEff

can be provided upon request. Rapid analyses of whole-genome sequencing data should now

be feasible to perform by any laboratory
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Figure 3.12: Nonsynonymous to synonymous ratios along the chromosome arms in
w1118; iso − 2; iso − 3. (A) Left, Nonsynonymous SNPs at 1 Mbp intervals along the 2L
chromosome arm (black) and synonymous SNPs (gray). Right, N/S ratios (NS/Syn) along
the chromosome arms. Notice that N/S ratios are higher near the centromere and telomere
(see text). (BF) as in (A), but for chromosome arms 2R, 3L, 3R, 4 and X.
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3.6 Methods

SnpEff overview. The program is divided in two main parts (i) database build and (ii)

effect calculation. Part (i) Database build is usually not run by the user, because many

databases containing genomic annotations are available. Databases are build using a ref-

erence genome, a FASTA file, and an annotation file, usually GTF, GFF or RefSeq table,

provided by ENSEMBL, UCSC Genome Bioinformatics website or other specific websites,

such as FlyBase, WormBase and TAIR. SnpEff databases are gzip serialized objects that

represent genomic annotations.

Part (ii) Effect calculations can be performed once the user has downloaded, or built, the

database. The program loads the binary database and builds a data structure called “interval

forest,” used to perform an efficient interval search (see next section). Input files, usually

in VCF format, are parsed and each variant queries the data structures to find intersecting

genomic annotations. All intersecting genomic regions are reported and whenever these

regions include an exon, the coding effect of the variant is calculated (hence the name of the

program). A list of the reported effects and annotations is shown in Table 3.2, additional

information produced by the program, is shown in Table 3.3 and Table 3.4, for different

output formats.

SnpEff algorithms. In order to be able to process thousands of variants per second,

we implemented an efficient data structure that allows for arbitrary interval overlaps. We

created an interval forest, which is a hash of interval trees indexed by chromosome. Each

interval tree (Cormen et al., 2001) is composed of nodes. Each node has five elements (i)

a center point, (ii) a pointer to a node having all intervals to the left of the center, (iii) a

pointer to a node having all intervals to the right of the center, (iv) all intervals overlapping

the center point sorted by start position and (v) all intervals overlapping the center point,

sorted by end position.

Querying an interval tree requires O (log n + m) time, where n is the number of intervals

in the tree and m is the number of intervals in the result. Having a hash of trees, optimizes
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the search by reducing the number of intervals per tree.

In order to create this the interval forest, genomic information can be parsed from three

main annotation formats: GTF (version 2.2), GFF (versions 3 and 2), UCSC Genome Bioin-

formatics website RefSeqTables and tab separated text files (TXT). Once the interval forest

is created, the structure is serialized and compressed (GZIP) into a binary database. There

are over 250 genomic binary databases that are currently distributed with SnpEff, which

include all genomes from ENSEMBL.

SnpEff accuracy. As part of our standard development cycle, we perform accuracy

testing by comparing SnpEff to ENSEMBL “Variant effect predictor,” which we consider

it is the “gold standard.” Current unity testing includes over a hundred test cases with

thousands of variants each to ensure predictions are accurate.

SnpEff integration. SnpEff provides integration with third party tools, such as Galaxy

(Giardine et al., 2005), which creates a web based interface for bioinformatic analysis pipelines.

Integration with Genome analysis tool kit 4 (GATK) was provided by the GATK team. De-

tailed information on how to download, install and run, as well as usage examples of the

program, can be found at http:/snpEff.sourceforge.net.

Data access. SnpEff Data can be accessed from the Supplemental data file for w1118; iso−
2; iso− 3 or by contacting D.M.R.
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Figure 3.13: CG13958 has a stop lost SNP in w1118; iso−2; iso−3. The top comparison shows
the alignment of the Drosophila melanogaster reference genome with w1118; iso− 2; iso− 3.
Notice that the stop lost causes an extension of 9 amino acids. The second through sixth
comparisons shows the alignment of Drosophila simulans, Drosophila erecta, Drosophila
yakuba, Drosophila mojavensis and Drosophila pseudoobscura pseudoobscura (Sbjct) with
the Drosophila melanogaster reference genome (Dm-ref). The number of terminal amino
acids missing or gained is shown (-1 to +3).
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3.8 Epilogue

At the beginning of my Ph.D., functional annotation of genomic variants was an unsolved

problem with many research labs creating in-house custom solutions that oftentimes were

inefficient and lacking of rigorous testing. As a consequence, shortly after SnpEff & SnpSift

were released they quickly became widely adopted by the research community as well as

many private organizations. Currently SnpEff & SnpSift has over 250 downloads per week

(as reported by SourceForge, where the tools are hosted). So far SnpEff & SnpSift have been

cited over 400 times.
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Chapter 4

Epistatic GWAS analysis

4.1 Preface

In recent years over 80 genetic loci related to type II diabetes (T2D) have been identified

(Morris et al., 2012; Mahajan et al., 2014). However the combined effect of all these loci

account for less than 10% of the overall disease predisposition (Manolio et al., 2009). This

poses the question of why, given that so much effort has been directed at finding the genetic

components of this disease, the loci found so far have such modest effects. The lack of large

genetic effects is known as the “missing heritability” problem and does not only arise in

T2D but also in almost all complex traits. Recent studies on the topic of missing heritability

(Zuk et al., 2012, 2014) suggest that genetic interactions (epistasis) might be at least partly

responsible for this issue.

In this chapter, we propose a novel framework that examines the potential for putative

epistatic interactions in the context of genome wide association studies (GWAS) to uncover

potentially interacting variants that might affect disease risk. Although the computational

approach we describe is applicable to any complex trait, in this chapter we apply it to

diabetes GWAS data. Type II diabetes (T2D) is a complex disease that was first described

by the Egyptians in 1500 BCE. Later the Greeks in 230 BCE used the term “diabetes”
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meaning “pass through” (or “siphon”) denoting the constant thirst and frequent urination

of the patients. In the 1700s the term “mellitus” (from honey) was added to denote that the

urine was sweet and would “attract ants”.

Diabetes symptoms include frequent urination, thirst, and constant hunger, high blood

sugar (hyperglycemia) and insulin resistance. Long term complications from T2D may in-

clude eyesight problems, heart disease, strokes and kidney failure. Type II diabetes is highly

correlated with obesity and the disease rate has increased dramatically during the last 50

years. According to the World Health Organisation the prevalence of diabetes is around

8% to 9% in adults and an estimated 1.5 million deaths were caused by diabetes in 2012

(Guariguata et al., 2014), which is predicted to be the 7th leading cause of death by 2030.

The costs associated to treating diabetes patients in the U.S. alone are estimated around

$245 billion dollars.

The rest of the chapter is from the following paper: P. Cingolani, R. Sladek, M.

Blanchette, “A co-evolutionary approach for detecting epistatic interactions in genome-wide

association studies”, to be submitted to PLOS Computational Biology.

4.2 Abstract

Motivation Epistasis, broadly defined as genetic interactions, is one of the likely factors

explaining why variants identified to date by genome-wide association studies (GWAS) ac-

count for a small portion of heritable risk in complex diseases. Due to their high complexity,

reduced statistical power and sometimes prohibitive computational requirements, epistatic

GWAS analyses have rarely been performed.

Methods In this paper, we propose a novel methodology for identifying putative epistatic

interactions by combining interspecies comparison and population level variation. Using

crystal structures for individual proteins and protein complexes as well as genome wide

multiple species alignment, we create a co-evolutionary substitution model that allows the
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calculation of the posterior probability of physical interaction between residues. These prob-

abilities are then used as the interaction priors for an epistatic GWAS analysis using a

Bayesian framework.

Results Our algorithms can be applied to genome scale sequencing studies for tens of

thousands of samples, that typically yield millions of variants. We applied our approach

to a large type II diabetes (T2D) case-control cohort and inferred a number of putative

interactions associated with increased risk of developing T2D.

Availability Our code is publicly available at github.com/pcingola/Epistasis

4.3 Introduction

Genetic studies aim to discover how a phenotype of interest, such as disease risk or height, is

affected by in individual’s genetic background. Genome wide association studies (GWAS) are

powerful techniques aimed at finding statistical associations between a phenotype and genetic

variants (Clarke et al., 2011). Nevertheless, variants discovered in GWAS so far can only

explain a small part for the phenotypic heritability of complex traits. For instance, all genetic

variants associated with height collectively account for a few centimetres in the offspring’s

height (Wood et al., 2014). Similarly the known variants related to type 2 diabetes risk

collectively explain only 5% to 10% of the overall variance in disease predisposition (Morris

et al., 2012; Mahajan et al., 2014). This problem is known as “missing heritability” (Manolio

et al., 2009) and recent theories suggest that genetic interactions (epistasis) might play an

important role in it (Zuk et al., 2012, 2014).

The foundations for epistasis (Gao et al., 2010) were proposed almost a hundred years

ago by Bateson (1909) and Fisher (1918). It was the latter who coined the term to denote

a “statistical deviation of multi-locus genotype values from an additive linear model for

the value of a phenotype” (Gao et al., 2010). There is evidence of such interactions being
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involved in complex diseases. For instance an interaction between BACE1 and APOE4

having a significant association with Alzheimer’s disease has consistently been replicated

in different studies (Combarros, Cortina-Borja, Smith, & Lehmann, 2009). Many types of

situations can lead to epistatic interactions, perhaps the most common involves pairs of

variants that encode amino acids whose physical interaction is required for their respective

proteins to function in a pathway (Cordell, 2009, 2002).

One of the main problems in finding association between interactions and disease is that

out of the whole set of molecular interactions (the interactome) only a small part has been

characterized (Venkatesan et al., 2009). Interacting proteins can be identified experimentally

through several types of approaches (yeast two hybrid, protein fragment complementation

assay, glutathione-s-transferase, affinity purification coupled to mass spectrometry, tandem

affinity purification, etc. (Shoemaker & Panchenko, 2007a)) and large databases of protein-

protein interactions are now available (Stark et al., 2006; Shoemaker & Panchenko, 2007a).

In almost all cases, these methods identify the presence of an interaction between proteins

but do not discern the exact residues mediating the interaction. Furthermore, it is estimated

that up to 80% of human protein-protein interactions remains unknown (Venkatesan et al.,

2009).

These issues can be partially addressed using computational predictions of either pairs

of interacting proteins or interacting residues (Shoemaker & Panchenko, 2007b). A type of

approach that has been gaining popularity recently is one that makes use of the plethora of

genomic sequences available for species other than human in order to discover evolutionary

evidence of selective pressure on pairs of residues to identify interacting sites and interfaces

(Marks et al., 2012). Interacting residues and their neighbours may then be subject to

compensating epistasis, where the effect of a mutation at a residue in one protein may be

offset by another mutation at a residue in the second protein (Pazos et al., 1997). This is

a phenomenon generically known as co-evolution. For example assuming that evolutionary

pressure acts on both interaction sites simultaneously, co-occurring compensatory mutations
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can become fixed in the population with higher probability than non-compensatory ones.

In light of this hypothesis, one can use statistical methods to analyse multiple sequence

alignments of proteins from different organisms to find co-evolving sites. This approach has

been used to identify co-evolving sites both within a protein (e.g. N-terminal and C-terminal

domains in PKG protein (Goh et al., 2000), GroES-L chaperoning system (Ruiz-González &

Fares, 2013), α and β haemoglobin subunits (Pazos et al., 1997)), and between interacting

proteins (e.g. G-protein coupled receptors and protein ligands (Goh et al., 2000)).

Many methods exist to find putative interacting loci, both within and across proteins,

based on evolutionary evidence (see (de Juan et al., 2013) for a review). The earliest methods

for inferring co-evolution used either correlation or mutual information between two loci

(Marks et al., 2012) in a multiple sequence alignment. However, these methods are known

to have systematic biases due to the fact that they ignore phylogenetic relationships (de Juan

et al., 2013) or sequence heterogeneity problems (Weigt et al., 2009). More sophisticated

methods, such as DCA (Morcos et al., 2011), PSICOV (D. T. Jones et al., 2012) or mdMI

(G. W. Clark et al., 2014) try to overcome these biases by using global statistical models,

however they are not suitable for GWAS-scale analysis for two main reasons. First, they

require multiple alignments of a very large number of sequences (ranging from 400 to 25L,

where L is the length of the protein (G. W. Clark et al., 2014)), and such depth remains

only available for a small number of proteins. Second, they are computationally demanding

(e.g. running for minutes or even days for each interacting pair of proteins being considered),

making them unsuitable for analyses involving millions of variants spanning over thousands

of proteins. Furthermore, a recent study shows that overall agreement between methods is

not high (65% or less) and predictive power is quite low (only 6% of the “top scoring pairs”

are real interactions) (G. W. Clark et al., 2014).

Considering epistatic interactions in GWAS is challenging for several reasons: i) interac-

tion models are non-linear (Gao et al., 2010); ii) analysing all order N variant combinations

requires great computational power and efficient algorithms or might just be infeasible be-
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cause the number tests grows exponentially with N (Phillips, 2008); iii) multiple hypothesis

testing correction can render association tests underpowered for all but very large cohorts

(Gao et al., 2010; Phillips, 2008); iv) there is no consensus of what genetic interaction means,

which is reflected in the difficulty to find a unified model (Phillips, 2008; Mani et al., 2008);

and v) the required sample sizes to detect epistatic interactions depend on phenotypic effect

size and variants’ allele frequencies with some estimates assuming on the order of 10,000

to 500,000 cases (Jostins, Levine, & Barrett, 2013) to be required (such cohorts are only

now becoming feasible due to improvements and cost reductions in sequencing technology).

For all these reasons the application of epistatic models to sequencing studies has not been

widespread.

Approaches for epistatic GWAS do exist and they are based on a wide array of method-

ologies. In Zhao et al. (Zhao et al., 2006), the authors infer epistatic interaction probabilities

by noting that interactions create linkage disequilibrium patterns in the disease population.

A Bayesian framework in Zhang et al. (Zhang & Liu, 2007) takes into account several risk

models and uses Dirichlet priors to solve each model analytically, then they combine them

in the full model posterior distribution calculated using an MCMC sampling technique. In

Ackermann et al. (Ackermann & Beyer, 2012), the authors look for over / under-represented

allele pairs in a given family pedigree by performing an analysis of imbalanced allele pair

frequencies. Finally, finding interacting variants can be viewed as an attribute selection

problem, thus many machine learning methodologies have been proposed (McKinney, Reif,

Ritchie, & Moore, 2006). While all algorithms have relative advantages, there is no standard

in epistatic GWAS analysis and we believe that better methods can be created by combining

other sources of biological information, such as evolutionary evidence.

In this work we propose an approach to prioritize pairs of variants identified in case/-

control cohorts by combining genome wide association with epistatic interaction models.

In a nutshell, our method uses a 100-way vertebrate genome alignment (Blanchette et al.,

2004) to calculate interaction posterior probabilities for any given pair of residues in human
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proteins. This is achieved by contrasting the likelihood of the observed pair of alignment

columns under a joint substitution model that factors in dependencies between interacting

sites, and a null model of independent evolution. The posterior probabilities can then used

as priors to modulate the evidence of epistatic interaction derived from GWAS data. Our

implementation is efficient enough to be applied to GWAS-scale datasets of tens of thousands

of samples. Finally we showcase this method using a cohort of ∼ 13, 000 individuals in a

case-control study of type II diabetes (for study details, see (Teslovich et al., 2015)) and

identify suggestive associations of putatively epistatic interactions.

4.4 Methods

Our epistatic GWAS analysis pipeline involves three key steps, as shown in Figure 4.1. First,

we learn a co-evolutionary substitution rate matrix from pairs of amino acids that are known

to be in contact within proteins. Second, we analyse a GWAS data set to identify pairs of

non-synonymous variants that show (possibly weak) evidence of epistasis. Third, for each

pair of variants identified in step 2, we measure the evidence of co-evolution of the pair of

encoded amino acids, and combine it with the GWAS evidence by calculating a joint Bayes

factor.

4.4.1 Substitution model for pairs of interacting amino acids

In this section, we describe how we estimate two substitution rate matrices: i) the first is the

usual 20× 20 substitution rate matrix Q describing the evolution of individual amino acids;

ii) the second, Q2, is a 400× 400 substitution rate matrix for pairs of interacting residues.

We use the 100-way vertebrate multiple sequence alignment and accompanying phylo-

genetic tree T available from the UCSC Genome Browser (Karolchik et al., 2014). This

alignment includes the DNA sequences of 100 species whose genome is completely or nearly

completely sequenced, with 12 primates, 44 non-primate eutherians, 5 marsupials, 14 birds,
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Figure 4.1: Analysis pipeline schematic
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6 reptiles, 16 ray-finned fish and 8 lobe-fined fish. The multiple alignment is performed using

the multiz algorithm (Blanchette et al., 2004; Kie�lbasa, Wan, Sato, Horton, & Frith, 2011).

From the ∼ 21, 000 human protein structures (resolution less than 3 Å) available in

Protein Data Bank, we extracted a set of ∼ 770, 000 pairs of “within protein interaction”

residues, defined as pairs of amino acids from the same protein where at least one pair of

atoms is within 3 Å. Similarly, from the set of ∼ 5, 700 models of co-crystallized complexes in

PDB, we extracted a set of ∼ 12, 000 pairs of “protein-protein interacting” residues, defined

as amino acids from different proteins that satisfy the same distance criterion.

To derive the rate matrix Q, we consider the complete set of n ∼ 22 × 106 protein

coding sites present in the alignment, irrespective of the presence or absence of contacts.

Q is obtained following classical sequence evolution theory ((Z. Yang, 2006; Felsenstein &

Felenstein, 2004)). First, for each pair of species si and sj, we obtain ci(a) defined as the

count of amino acid a in species si, and ci,j(a, b) defined as the number of sites that have had

a transition from amino acid a in si to b in sj. The stationary probability of amino acid a

in genome si is then defined as πi = ci(a)/n. Assuming a time reversible model, we get the

frequency of change from a to b: fi,j(a, b) = fj,i(a, b) = (ci,j(a, b) + cj,i(a, b))/(2n). Let Pi,j

be the amino acid transition probability matrix from si to sj, i.e. Pi,j(a, b) is the probability

that species sj has amino acid b given that species si has amino acid a. Then Pi,j is obtained

through the relation fi,j(a, b) = πi(a) · Pi,j(a, b), or Pi,j(a, b) = fi,j(a, b)/πi(a). Let ti,j be

the total branch length between si and sj (obtained from the phylogenetic tree). Assuming

time reversibility, we have Pi,j = eQ·ti,j , and thus Q = log[Pi,j/ti,j] (Z. Yang, 2006). Taking

into account the estimation error, the equation becomes Q̂i,j = log[Pi,j/ti,j] + εi,j, where εi,j

is an error matrix. Under the assumption that the mean error is zero, we can approximate

the rate matrix by the calculating an average of all estimates:
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Q̂ =
1

N(N − 1)/2

∑
i<j

Q̂i,j

=
2

N(N − 1)

∑
i<j

1

ti,j
log[P̂i,j]

The much larger substitution matrix Q2 describes the substitution rate from any pair of

amino acids (a, b) to any other pair (c, d). It is derived similarly to Q, but considering only

pairs of amino acids from the set of within protein interacting pairs of amino acids. We only

take into account amino acids pairs within the same chain, that are separated by 20 amino

acids or more.

4.4.2 Calculating likelihood of individual and pairs of alignment

columns

Given a substitution rate matrix Q, a multiple sequence alignment MSA, and a phyloge-

netic tree T for the sequences in MSA, the likelihood of an alignment column MSA(i)

(i.e. L1[MSA(i)]) can be calculated using Felsenstein’s algorithm (Felsenstein & Felenstein,

2004), which has a time complexity of O(N · |Σ|2), where |Σ| = 20 is the alphabet size

and N is the number of sequences in the alignment. Given matrix Q2, the same algorithm

can be used to compute the likelihood L2[MSA(i),MSA(j)] of a pair of alignment columns

(MSA(i),MSA(j)), but now in time O(N · |Σ|4).
A test for co-evolution of two positions i, j from the same or different proteins is obtained

from the log-likelihood ratio of these two models:

�C [MSA(i),MSA(j)] = log

[
L2[MSA(i),MSA(j)]

L1[MSA(i)] · L1[MSA(j)]

]
(4.1)

where the denominator assumes that the amino acids i and j evolve independently.

In a GWAS study these likelihood calculations need to be performed on a very large
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number of pairs of sites, thus optimizations are required to ensure manageable running time.

First, pre-calculation of matrix exponentials P (t) = eQt can be performed for all values of t

corresponding to individual branch lengths in the phylogenetic tree T . Second, “constant-

tree caching” is used to cache likelihood values for sub-trees of the phylogenetic tree where

all nodes have the same amino acid.

4.4.3 GWAS model

Consider a GWAS with NS samples (individuals) and NV variants, we use the standard

notation for phenotypes and code them as ds = 1 when individual s is affected by disease

(cases) and ds = 0 if the individual is “healthy” (control). Let d̄ = [d1, ..., dNs ] be a phenotype

vector and gs,i ∈ {0, 1, 2} a genomic variant for sample s at locus i. A logistic model of disease

risk (Balding, 2006) is

ps,i = P (ds = 1|gs,i, θ̄)

= φ(θ0 + θ1gs,i + θ2cs,1 + θ3cs,2 + ...)

=
1

1 + e−(θ0+θ1gs,i+θ2cs,1+θ3cs,2+...)

= φ(θ̄T ḡs,i)

where φ(·) is the sigmoid function, cs,1, cs,2, ... are covariates for each individual s (these co-

variates usually include sex, age and eigenvalues from population structure analysis (Price et

al., 2006)), ḡs,i = [1, gs,i, cs,1, cs,2, ..., cs,NC
], and θ̄ = [θ1, θ2, ..., θm]. The parameter estimates
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θ̄ are obtained by solving the maximum likelihood equation

L(θ̄) =

NS∏
s=1

P (ds|θ̄, gs,i)

=

NS∏
s=1

pdss,i(1− ps,i)
1−ds

=

NS∏
s=1

φ(θ̄T ḡs,i)
ds(1− φ(θ̄T ḡs,i))

1−ds

Using this model, we have two hypotheses: i) the null hypothesis, H0, assumes that genotype

does not influence disease probability (i.e. θ1 = 0); and ii) the alternate hypothesis, H1,

assumes that the genotype does influence disease probability (i.e. θ1 	= 0). We can compare

these two hypotheses using a log likelihood ratio test, so we define

�G = log

[
L(θ̄|H1)

L(θ̄′|H0)

]

where θ̄′ and θ̄ are the maximum likelihood estimates for null and alternate models re-

spectively. According to Wilk’s theorem (Wilks, 1938), the log likelihood ratio has a χ2
1

distribution under the null hypothesis, so we can easily calculate a p-value.

Next, we extend the logistic model to accommodate interacting loci. For an individual

(sample s), we model interactions between two genetic loci i and j, having genotypes gs,i

and gs,j, by extending the logistic model

P (ds|gs,i, gs,j, H1) = φ[θ0 + θ1gs,i + θ2gs,j + θ3(gs,igs,j) (4.2)

+θ4cs,1 + ...+ θmcs,Ncov ]

= φ(θ̄T ḡs,i,j)) (4.3)

where ḡs,i,j = [1, gs,i, gs,j, (gs,igs,j), cs,1, cs,2, ..., cs,Ncov ]
T . An implicit assumption in this equa-

tion is that gs,i and gs,j are not correlated (e.g. they are not located in the same LD-Block),
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which hinders the application of this model for detecting interactions within proteins. This

can be enforced either by using haplotype structure information (e.g. from HapMap) or

by limiting the application of the model to variants either in different chromosomes or suf-

ficiently distant (say > 1MB), we use the latter. The null hypothesis H0 assumes that

variants act independently

P (ds|gs,i, gs,j, H0) = φ[θ′0 + θ′1gs,i + θ′2gs,j + θ′3cs,1 + ...] (4.4)

= φ(θ̄′T ḡ′s,i,j) (4.5)

where ḡ′s,i,j = [1, gs,i, gs,j, cs,1, cs,2, ..., cs,Ncov ]
T .

Just as in the single loci, this requires fitting the logistic regression parameters, thus

we investigated several algorithms for logistic regression parameter fitting. The fastest

convergence is obtained using Iterative Reweighted Least Squares (IRWLS (Daubechies,

DeVore, Fornasier, & Güntürk, 2010)) and Broyden-Fletcher-Goldfarb-Shanno algorithm

(BFGS (Broyden, 1970)) with some code optimizations. In most cases, IRWLS converges

faster, so it was selected as the default implementation in our analysis.

Another way to compare the null hypothesis to the alternative hypothesis, is using a

Bayesian formulation (Kass & Raftery, 1995; Wakefield, 2009)

P (H1|D) =
P (D|H1)P (H1)

P (D)
=

∫
P (D|θ̄, H1)P (θ̄|H1)P (H1)dθ̄

P (D)

⇒ P (H1|D)

P (H0|D)
=

∫
P (D|θ̄, H1)P (θ̄|H1)dθ̄∫
P (D|θ̄′, H0)P (θ̄′|H0)dθ̄′

P (H1)

P (H0)
= BF

P (H1)

P (H0)

where BF , the ratio of the two integrals, is the Bayes factor. Using a Bayesian formulation

has two main advantages: i) the hypothesis are automatically corrected for model complexity

since Bayes factor asymptotically converges to Bayesian Information Criteria (BIC) (Kass &

Raftery, 1995), and ii) we can compare non-nested models. The Bayes factor for the epistatic
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model becomes:

BFG =

∫ ∏NS

s=1 φ(θ̄
T ḡs,i,j)

ds [1− φ(θ̄T ḡs,i,j)]
1−dsP (θ̄|H1)dθ̄∫ ∏NS

s=1 φ(θ̄
′T ḡ′s,i,j))ds [1− φ(θ̄′T ḡ′s,i,j)]1−dsP (θ̄′|H0)dθ̄′

(4.6)

Calculating Bayes factors is challenging because most of the times there are no closed form

equations and even if the integrals can be computed by means of numerical algorithms, it

imposes a significant computational burden thus making it impractical for large datasets

such as GWAS data. We can approximate the integrals using Laplace’s method (Kass &

Raftery, 1995). If g(x) has a maximum at x0, it can be shown that

∫
e−λg(x)h(x)dx � h(x0)e

λg(x0)

√
2π

λg′′(x0)

The multivariate case for x̄ ∈ �d is an analogous extension that uses a Hessian matrix instead

of a second derivative of g(·)

∫
eλg(x̄)h(x̄)dx̄ � h(x̄0)e

λg(x̄0)

(
2π

λ

)d/2 [
∂2g(x̄)

∂x̄∂x̄T

]−1/2
(4.7)

Using equation 4.7 we can try to approximate the improper integrals in equation 4.6 by

the transformation L(θ̄) = e�(θ̄), where �(·) is the log-likelihood of the data, so we can use

Laplace approximation by applying Eq.4.7 at the point of the maximum likelihood. In order

to do so, we need to calculate the Hessian matrix in Eq.4.7. Fortunately in logistic models ,

it can be shown that for genotype terms

∂2�(θ̄)

∂θi∂θj
=

∑
s

gs,igs,jps(1− ps)

Using analogous derivation for the covariates, we can find an analytic form of the Hessian,

which completes the Laplace approximation formula.
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Calculating Bayes factors involves using prior parameter distributions. In order to esti-

mate these distributions, we run the logistic regression fitting analysis and plot the parameter

distributions for different levels of significance. As expected most parameters have uni-modal

distribution, except for θ3, which has a multi-modal distribution. For all parameters, except

θ3, we use a normal distribution centred at the mean and variance set to one (σ = 1) even

though most times the variance is much smaller. This is done to avoid penalizing outliers too

heavily and to have smooth derivatives near the maximum likelihood estimates. For θ3, we

use a Gaussian bimodal distribution fitting the parameters by means of an EM algorithm.

Computational and statistical issues The computational burden for the detection of

pairs of interacting genetic loci affecting disease risk is significantly larger than in a standard

(single variant) GWAS study. A priori all pairs of variants should be analysed, thus sig-

nificantly increasing the number of statistical tests. This also reduces the statistical power

since the required p-value significance level would be orders of magnitude smaller. A näıve

approach would estimate that if a typical genetic sequencing study has 106 variants, a GWAS

on epistatic variant pairs would square that number of statistical tests, thus p-values required

for significance would be in the order of 0.05/(106)2 = 5 · 10−14.
Fortunately the number of tests can be reduced significantly. First, in this study, we only

concentrate on non-synonymous coding variants. Second, as required by our co-evolutionary

model, only variants overlapping a multiple sequence alignment are taken into account (when

several multiple sequence alignments overlapped a region, the alignment with the longest

number of proteins was selected). Third, if two variants gi and gj are such that the interaction

term (gs,igs,j) is zero in all samples, which usually happens for pairs of rare variants, then

BFG = 1 (according to our estimates, this filters out over 95% of variant pairs). Fourth,

if the variants and the epistatic term [gs,i, gs,j, gs,igs,j] are linearly dependent, the logistic

regression equations are undetermined, so we skip such variant pairs. Fifth, if one of the

variants has high allele frequency with respect to the other, all non-zero epistatic terms
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may lie in the same positions as non-zero genotypes from the low frequency variant, causing

logistic regression estimates to artificially inflate the coefficients of the low frequency variant

and the epistatic term thus creating an artificially high association (low p-value). So we filter

out these variant pairs as well. Finally, we filter out variants having Hardy-Weinberg p-value

10−6 or less since a low p-value might indicate a sequencing quality problem. Once the results

are obtained, we can focus on pure epistatic interactions (i.e. interactions with no marginal

contribution from each independent loci) by further filtering results and keeping variant pairs

whose alternative logistic model (see equation 4.2) has small absolute values for θ1 and θ2

while having large absolute values for θ3, specifically we keep results if |θ3| > K(|θ1| + |θ2|)
(based on empirical data, we set K = 3).

4.4.4 Putting it all together

In summary, we first calculate the transitions matrices for the Markov models (Q and Q2)

based on observations from protein structures (PDB) and multiple sequence alignments

(UCSC’s 100-way). We analyse variants from genome sequencing data first by filtering only

for non-synonymous variants, then analysing all possible pairs of variants and filtering out

those that are unsuitable for further analysis. From the pairs of variants that pass filtering,

we fit two logistic regression models (null and alternative hypothesis), then calculate a p-

value using the log-likelihood ratio, and keeping pairs of variants having p-values below

a predefined threshold (10−6). These pairs of variants are then analysed under our co-

evolutionary model, we find the corresponding columns in the multiple sequence alignment

and calculate the likelihoods for the null and alternative models by means of Felsenstein’s

algorithm (using matrices Q and Q2 respectively). Finally, likelihoods from co-evolutionary

and logistic regression models are used to calculate the total Bayes Factor (BFT ) by means
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of Laplace’s approximation:

BFT =

∫ ∏NS

s=1 φ(θ̄
T ḡs,i,j)

ds [1− φ(θ̄T ḡs,i,j)]
1−dsP (θ̄|H1)dθ̄∫ ∏NS

s=1 φ(θ̄
′T ḡ′s,i,j))ds [1− φ(θ̄′T ḡ′s,i,j)]1−dsP (θ̄′|H0)dθ̄′

· L2[MSA(i),MSA(j)]

L1[MSA(i)] · L1[MSA(j)]

BFT = BFG · LC

4.5 Results

Our approach, which is summarized in Figure 4.1, involves three main components. First we

estimate evolutionary substitution rates for individual amino acids in a protein as well as for

pairs of amino acids (either from the same protein or not) that are physically interacting.

Given a set of multiple protein sequence alignment these evolutionary models can be used

as a statistical test for co-evolution between any two amino acids without using structural

information. Second, a statistical test for epistasis is developed to identify pairs of non-

synonymous variants that show (often weak) evidence of interaction in the way they associate

to a given trait. Finally, evidence from the co-evolution model and the epistatic GWAS model

are combined in a Bayesian framework.

4.5.1 Co-evolutionary substitution models

The approach described in Methods was used to obtain substitution rate matrices Q for

individual amino acids and Q2 for pairs of physically interacting residues within the same

protein. Unsurprisingly, Q (or more precisely a transition matrix P (t) obtained from Q) is

very similar to well known transitions matrices such as PAM (Dayhoff & Schwartz, 1978).

The structure of Q2, which describes substitution rates between one pair of interacting

amino acids to another, is richer. Of particular interest are pairs of amino acids having high

ratio R(ab, cd) = Q2(ab, cd)/(Q(a, c) · Q(b, d)) which is an indicative of co-evolution. For

example the highest ratio is found in amino acid pair transition V.I -> W.W (i.e. amino acid
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V mutated to W in one of the sequences, and amino acid I changed to W in the other). In

fact all top 10 ratios are transitions to W.W amino acid pairs. This makes sense considering

that tryptophan pairs are well known β-hairpin stabilizers and are considered as a paradigm

for designing stable β-hairpins (Santiveri & Jiménez, 2010). Nevertheless, we should keep in

mind that tryptophan is: i) the least frequent amino acid in the genome (having frequency of

1.1% and being encoded in only by TGG codon), and ii) is usually in the core of the protein,

as opposed to being part of surface interaction sites. These facts may indicate that the high

R(ab, cd) ratio may be caused by a bias when estimating the model based on within-protein

interactions. Unfortunately, at the moment there is no enough data from co-crystallized

proteins in PDB to estimate the parameters from true interacting loci.

Another type of pair transitions with large R(ab, cd) ratio is the double transitions to

a pair of phenylalanine amino acids from a pair of hydrophobic amino acids (Lysine, As-

paragine, Glutamine, Arginine, Aspartic acid and Glutamic acid). Phenylalanine-Phenylalanine

interaction pairs are assumed to conform π − π interactions which are predicted and exper-

imentally observed to be energetically favourable (Hunter, Singh, & Thornton, 1991).

4.5.2 Co-evolutionary model validation

We first assessed the ability of our co-evolutionary model to detect interacting sites located

within the same protein by computing the likelihood ratio of candidate pairs of sites under

a co-evolutionary model (Q2) versus under independence (Q). Although such pairs of sites

are unlikely to exhibit evidence of epistasis in GWAS studies (due to linkage), accurate

prediction of interacting sites in a given protein are useful for many other purposes, such as

protein structure prediction and prediction of the impact of individual mutations. Figure 4.2

shows that interacting sites tend to have higher likelihood ratio scores than non-interacting

ones (Mann-Whitney p-value < 2.2 × 10−16). Although the likelihood ratio score by itself

cannot perfectly discriminate between the two classes, only 25.9% of non-interacting pairs

have a likelihood ratio above the median likelihood ratio of interacting pairs. Figure 4.3
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Figure 4.2: Histogram of log-likelihood values of pairs of amino acids in contact (red) and
not in contact (blue) for amino acids within the protein (PDB). Log-odds of contacting vs
non-contacting pairs (black) and smoothed log-odds (dotted grey).

shows a receiver operator curve (ROC) curve for a classifier based on our method.

To confirm that a co-evolutionary model estimated on pairs of interacting sites from the

same protein is useful at predicting pairs of interacting sites between proteins, we repeated

the same type of analysis for ∼ 3, 000 pairs of interacting (< 3 Å) and ∼ 3, 000 pairs of non-

interacting (> 30 Å) residues from distinct proteins, obtained from co-crystal structures in

PDB (see Methods). As seen on Figure 4.4, the two classes of sites have substantially different

likelihood ratio distributions (Mann-Whitney one sided test: p − value < 2.2 × 10−16),

although slightly less so than for sites from the same protein. Only 29% of non-interacting

sites have a likelihood ratio larger than the median for interacting sites. These empirical
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Figure 4.3: Classifier’s receiver operator curve (ROC). Classification of pairs of amino acids
as {interaction, non-interacting} sites based on log-likehood calculated using our method.
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Figure 4.4: Histogram of log-likelihood values of pairs of amino acids in contact (red) and
not in contact (blue) for amino acids in different proteins (co-crystallized entries from PDB).
Log-odds of contacting vs non-contacting pairs (black) and smoothed log-odds (dotted grey)

distributions allow us to approximate of the log odds of the “interacting” vs “non-interacting”

amino acids distributions as

�odds(x) = log

[
P [L2(MSA(i),MSA(j)) ≥ x]

P [L1(MSA(i)× L1(MSA(j) ≥ x]

]
� eαx − β

where α = 0.195 and β = 1.018 (in order to avoid biases, the log odds value is capped to

4.0).
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Figure 4.5 shows the example of a predicted contact �C = 7.7 between Senp1 and Sumo1

proteins detected by our method. The co-crystallized structure from PDB highlights the

interacting amino acids (less than 3 Å apart) and the corresponding multiple alignment

columns.

Although our approach aims at identifying contacting residues from different proteins,

it can also be used to predict the presence or absence of interactions between proteins as

a whole. We extracted from BioGrid (Stark et al., 2006) a set of ∼ 3, 000 pairs of human

proteins with evidence of interaction, and further required that both proteins belong to the

same pathway (MsigDb, C2 groups (Subramanian et al., 2005)), and their corresponding

genes are expressed in the same tissue (GTex (Lonsdale et al., 2013), expression of 1 FPKM

or more, tissues ∈ {skeletal muscle, adipose tissue, pancreatic Islets, liver}). We randomly

selected as “non-interacting” pairs the same number of pairs amongst those that do not fulfil

any of the three conditions.

Let the two proteins considered have amino acid sequences A = a1...am and B = b1...bn.

To obtain the prediction score for this pair of proteins, we identify the pair of length-k sub-

strings ai, ai+1, , ai+k−1 and bj, bj+1, , bj+k−1 that exhibit the strongest support for parallel or

anti-parallel interactions

�C(k) = max

[
k−1∑
l=0

�C [MSA(ai+l),MSA(bj+l)],
k−1∑
l=0

�C [MSA(ai+l),MSA(bj+k−1−l)

]

where k = 3 was determined empirically to provide the best predictive power. As shown in

Figure 4.8), prediction accuracy is quite good (p-value < 2 · 10−42), taking into account the

modest amount of information considered by the model.

Comparison with other methods: We compare our model to well known local and

global algorithms. Using the same dataset as in Figure 4.2, we calculate mutual information

(MI) (Fodor & Aldrich, 2004) and correlation based score (McBASC algorithm) (Göbel et

al., 1994; Fodor & Aldrich, 2004). The respective histograms are shown in supplementary
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Figure 4.5: Example of interaction between amino acid #441 of Senp1 and #60 of Sumo1
proteins detected by our method with �C = 7.7. Left: PDB structure 2G4D, shows that the
amino acids are in close proximity. Right: Multiple sequence alignment and phylogenetic
tree showing the putative compensatory amino acid substitution pair D.N replaced by H.S.
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Figures 4.11 and 4.10. Compared to our method (Figure 4.2), which obtains histograms of

in-contact and null distributions that are discernible to the naked eye, neither of the other

local methods tested (MI or McBASC) can obtain a separable distribution. This is probably

due to the fact that these methods are known to require a large number of aligned sequences

(G. W. Clark et al., 2014).

Finally, we compare our method to a global methodology (Lapedes et al., 2012). This

type of method require the estimation of a Boltzmann distribution and have computational

times that are sometimes infeasible for calculating even single proteins and is thus impractical

for genome wide applications at the moment. Using data from Lapedes et al., we compare

results from two human proteins (Pdb IDs 1A17 and 1UBI) with our method. For this

comparison, we adapted the in-contact definition to less than 8 Å, in accordance to Lapedes

et al. and we used a log-likelihood threshold of 8.0 for our model. For protein 1A17 Lapedes

et al. achieves a precision (a.k.a. positive predictive value) of 40%, whereas our model

reaches 22.7%. Similarly, for 1UBI Lapedes et al. algorithm’s precision is 68.9% whereas

our model’s precision is 38.4%. As expected, the global model achieves higher precision,

at the cost of being computationally intractable for genome wide applications, whereas our

simple model obtains half the precision of the global one, but can be calculated within a few

seconds (as opposed to hours or days using large computer clusters).

4.5.3 Epistatic GWAS analysis

We applied our methods to a cohort of ∼ 13, 000 individuals in a case-control study of

type II diabetes (Teslovich et al., 2015). This multi-ethnic study covers exons of unrelated

individuals from five major ancestral groups (European descent, South Asian, East Asian,

Hispanic and African American descent) using an average sequencing coverage over 80×,

yielding 1.7 million coding variants. The filters described in Methods section resulted in

a number of variant pairs being analysed of less than 50 million. By means of the z-score

relationship between Bayes Factor and p-values shown in (Goodman, 1999), we can set the
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GWAS significance threshold for 50 million pairs at log10[BFT ] = 9.0.

Results Variants annotated and filtered according to the previous paragraphs resulted in

he identification of 689, 186 variant pairs having log likelihood �G above 6 (see equation

4.2) that were further analysed under co-evolutionary and Bayesian models yielding 303

pairs with log Bayes Factor log10[BFT ] over 9.0. The complete analysis took less than 2

days using a 1, 000 CPU-cluster, thus showing that an epistatic GWAS analysis is feasible

using current computational resources. Table 4.6 shows the main results from our GWAS

epistatic analysis. Genes highlighted in red are associated with diabetes or known to be in

diabetes-related pathway. It should be noted that some of the top results include amino acid

modification sites such as Phosphoserine (or Glycosylation, not shown), which are likely to

be interaction loci.

Associations are purely epistatic In order to understand the nature of the putative

epistatic associations, we compared our top epistatic GWAS results against a large single

marker GWAS study of type II diabetes from the DIAGRAM consortia (Zeggini et al., 2008;

Voight et al., 2010) as well as a meta analysis from the same consortia (Morris et al., 2012).

For each of our top 1, 000 results we looked up the closest entry from the DIAGRAM dataset

(i.e. the entry having smallest distance, as measured in number of bases) and analysed the

corresponding p-values from the three publicly released DIAGRAM datasets.

Only 14 of the top 1, 000 results show suggestive association (p-value ≤ 10−4) in a nearby

loci (average distance 977 bases). Of these, only one of them is in our top 10 results

(8:30982425 T/G variant in WRN gene) has DIAGRAM p-value of 4.6 × 10−4 and odds

ratio 1.06. Neither of the other 13 suggestive single marker variants are our top 50 results.

This indicates that our top results are populated by pure epistatic putative effects having

little marginal association with disease risk. In light of this evidence, it should be noticed

that conditional search methods (based on selecting the top single-marker results and per-

forming epistatic analysis only on this subset) would have missed most of our top results.
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Table 4.6: Results from epistatic GWAS analysis of type II diabetes sequencing data. Genes
form diabetes related pathways marked in red.

Likewise, an extension of that same limitation applies to our own method since we might be

missing any pure epistatic interaction of order three above, a limitation that doesn’t seem to

be plausible to overcome without introducing prior biological knowledge of interacting loci

(which is obviously not available at the moment).

4.5.4 Power analysis

In order to assess our disease association power we performed extensive simulations. As it

is often the case in this kind of analyses some simplifying but realistic assumptions were

required to make simulations computationally tractable. We assumed that: i) the disease

has a logistic risk model; ii) risk model has purely epistatic terms, i.e. that individual loci

are assumed to have no marginal effect in disease risk; iii) disease prevalence is 8% according

the well accepted prevalence for type II diabetes; iv) cofactors influencing disease such as

population admixture, age and sex were perfectly reduced by the model, meaning that no

residual effects remains after correction; v) genome wide significance was established as

0.05/(106)2 = 5.10−14; and vi) that the study has an equal number of cases and controls.

Under these assumptions we calculated power by running 100 iterations for every model

having a combination of: i) sample sizes ranging from 10, 000 to 1, 000, 000, ii) log odds

disease risk ranging from 0.1 to 5, and iii) allele frequencies of each of the two loci ranging
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from 1% to 20%. Results for some selected models are shown in Figure 4.7.

As expected these simulations show that very large sample sizes are required to find

epistatic effects on rare variant loci (i.e. allele frequencies below 1%). Even if the risk factor

is assumed to be over 2, 3, or 5, sample sizes requirements are expected to be over 400, 000;

200, 000; and 100, 000 respectively (see Figure 4.7, top-left plot). For common variants (i.e.

allele frequency of 5%) the sample sizes look more attainable in the near future, ranging

from 10, 000 to 100, 000 samples when risk factors decrease from 5 to 1.6 (Figure 4.7, middle

row, left plot). Finally, for relatively common variants (allele frequency of 10%) the sample

sizes up to 100, 000 would be required for risk factors of 1.3, which is still considered a high

risk factor (Figure 4.7, bottom right plot).

Unsurprisingly, our power calculation results show that large sample sizes are required

in order to find epistatic interactions even under assumptions of relatively common variants

and relatively high risk factors. This highlights how elusive finding epistatic genome wide

associations can be.

4.6 Discussion

In this paper, we propose a novel methodology for genome wide association studies to identify

pairs of variants under putative epistatic interaction. Due to the large number of statistical

tests required in an epistatic GWAS analysis and the corresponding reduction of statistical

power, this type of analysis is meant to be applied to datasets consisting of large number

of samples. Our highly optimized algorithms are applicable to such large scale sequencing

genomic studies and we show the application of our methods to a large scale exome sequencing

study for type II diabetes consisting of ∼ 13, 000 samples and ∼ 1, 7M variants. First,

this shows that is is indeed feasible to apply our methods to GWAS-scale datasets. Second,

although larger cohorts are needed in order to find risk alleles that have lower frequencies and

are not captured by this study, we show several suggestive association of pairs of putatively
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Figure 4.7: Power calculation using a case/control pure two-loci epistatic model for disease
prevalences of 8% (type II diabetes). X-axis shows the number of samples in thousands
(ranging from 10,000 to 1,000,000) and several joint risk values (from 0.1 to 5) are shown as
different colors lines within each plot. Each plot represents a different allele frequencies com-
bination (for each of the two loci), from top to bottom and left to right, the allele frequency
value pairs are: [AF1 = 1%, AF2 = 1%], [AF1 = 5%, AF2 = 1%], [AF1 = 5%, AF2 = 2.5%],
[AF1 = 5%, AF2 = 5%], [AF1 = 10%, AF2 = 1%], [AF1 = 10%, AF2 = 2.5%], [AF1 =
10%, AF2 = 5%], [AF1 = 10%, AF2 = 7.5%], [AF1 = 10%, AF2 = 10%]
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interacting variants affecting type II diabetes risk.

The co-evolutionary model we propose in section 4.4.1 requires multiple sequence align-

ment and the corresponding phylogenetic tree. Intuitively, using a MSA with larger number

of sequences should improve co-evolutionary model detection and other co-evolutionary ap-

proaches indeed require very large MSA. Unfortunately, at this moment, MSA consisting

of a large number of sequences are available only for a small fraction of all human proteins

and they often consist of a mixture of ortholog and paralog sequences which may lead to

biases in co-evolutionary models. Furthermore, both the phylogenetic tree and the number

of sequences in the MSA should remain constant throughout the genome in order to take

advantage of computational optimizations (matrix exponential pre-calculation and “constant

tree caching”) that allow the algorithm to be applied at genome-wide scale. Many multiple

sequence alignments (such as Pfam) have different number of sequences for each protein

(thus different phylogenetic trees). This poses two main disadvantages for our methodology:

i) we cannot benefit from the previously mentioned optimizations ; and ii) we would add

the problem of reconciling different phylogenetic trees from two proteins, which may lead

to inconsistencies. For all these reasons we selected UCSC’s multi-100way (Karolchik et al.,

2014), a genome wide multiple sequence alignment of 100 vertebrates which has a single

genome wide phylogenetic tree. This MSA is expected to grow with the advent of projects

like G10K (Haussler et al., 2009) thus enabling more precise co-evolutionary predictions.

In order to further validate our co-evolutionary model in the context of human disease,

we tested whether �C scores can separate clinically relevant variants from ClinVar database

(Landrum et al., 2013) according to their clinical significance attribute (CLNSIG). Interest-

ingly, variants categorized as “benign” (i.e. non-pathogenic) or “druggable” (i.e. affecting

drug response) have higher scores (mean �C within protein) than variants categorized as

pathogenic (Supplementary Tables 4.1, 4.2 and Figure 4.9). We speculate that this might be

because amino acids that can be compensated would be characterized as “benign” whereas

deleterious amino acids changes cannot be compensated by mutations in other proteins.
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Comparison to other Co-Evolutionary methods There are several methodologies

that can be used to predict putative interactions based on co-evolutionary theory. Neverthe-

less most methods are limited with respect to their applicability to GWAS-scale analyses:

Phylogenetic tree similarity can be used as a proxy for the co-evolution of interacting

proteins. Computational methods use matrix alignment (Ramani & Marcotte, 2003) which

has demonstrated some degree of success. Unfortunately, such methods have two limiting

factors: i) they require large (distinct) phylogenetic trees for each protein which are not be

available for all proteins in the genome; and ii) solve an optimization problem requiring long

computational times to match matrices (e.g. simulated annealing) for each putative pair or

proteins.

Correlation and Mutual information based methods aim to detect changes on one of

the interacting proteins that are compensated by mutations in the other (Pazos et al., 1997;

Göbel et al., 1994). Although these methods are fast enough to be applicable to GWAS scale

studies, they still have at least two limitations: i) they require large number of sequences

in the multiple sequence alignment to overcome noise (as we mentioned large MSAs are

not be available throughout the whole genome); and ii) there are affected by biases mainly

caused by phylogenetic relationships and indirect correlations. There are methods based on

mutual information that could perform some phylogenetic correction (de Juan et al., 2013),

nevertheless they still require a large number of sequences in the MSA and are known to

be biased by allele frequencies (Dunn et al., 2008) which might limit their applicability for

GWAS studies (particularly on non-common variants).

Global models are designed to disentangle direct interactions from indirect ones. Several

methods have been proposed which rely on: i) estimating parameters of Boltzmann distribu-

tions (Lapedes et al., 2012; Weigt et al., 2009), ii) mean field approximations of Boltzmann

distributions (Morcos et al., 2011), iii) constrained optimizations for finding approximations

of the inverses of large singular matrices (D. T. Jones et al., 2012), iv) marginalizing mul-

tidimensional extensions to mutual information (G. W. Clark et al., 2014); or v) solving a
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Bayesian network model (Burger & van Nimwegen, 2010). All these models are so computa-

tionally heavy that can only be applied to very small sets of proteins. Furthermore, in some

of the respective papers the authors mention that it is computationally infeasible to apply

them to a single pair of proteins if the length is over a some low number of amino acids (e.g.

60 (Weigt et al., 2009) or 500 (Morcos et al., 2011)). It is therefore not possible to apply

any of these method to GWAS-scale studies at the moment.

Our method attempts to solve three of the main problems common to some of the afore-

mentioned methods: i) the requirement of large number of sequences, ii) the phylogenetic

bias, and iii) running time. These goals are achieved, at least partially, by using a well known

Markov model of evolution.

Comparison to other Epistatic GWAS methods Many reasons have been given in

this manuscript and elsewhere to indicate why detecting epistasis this is a very difficult

task, with the most commonly cited one being the enormous number of statistical tests

required, consequently having a significant reduction of statistical power and an increase

in computational resources required. Thus methods based on exhaustive search can be

computationally infeasible for all but very low order interactions analysis (Cordell, 2009).

Their counterpart are conditional search methods (J. Li et al., 2011) which are usually based

on selecting the top single-marker GWAS results and then performing epistatic analysis on

a small subset. Unfortunately these methods will ignore pure epistatic interactions and only

detect marginal ones (J. Li et al., 2011; Cordell, 2002). Since there is no biological indication

on whether complex traits have marginal or pure epistatic effects (Culverhouse et al., 2002;

Zuk et al., 2012; J. Li et al., 2011), it might not be safe to rely exclusively on these type of

methods when performing an association study.

Stochastic search based methods (Zhang & Liu, 2007) show great potential, but as far as

we know have not yet produced any significant results most likely due to the small sample

sizes used in the respective publications. Some authors pointed out that some of most well
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known methods in this family may have difficulties with large number of samples (de Juan

et al., 2013).

Finally methods based machine learning have been proposed and applied with different

degrees of success (Koo, Liew, Mohamad, & Mohamed Salleh, 2013; Cordell, 2009; J. Li

et al., 2011). One of the main limitations of machine learning methods lies in the fact

that the majority of them do not result in a statistical significance metric (such as p-value

or Bayesian factor), thus researchers are often weary of conducting an expensive follow

up studies based in results from machine learning algorithms. Another limitation is that

many machine learning approaches do not allow for appropriate correction for population

admixture and other cofactors.

The methodology we proposed in this paper is based on a well established statistical

procedures (Logistic Regression) using standard corrections for known population cofactors

(eigen-analysis) as well as other disease cofactors (such as age and sex) known to affect risk

of type II diabetes. Our method performs an exhaustive search of second order interactions

thus is capable of finding pure epistatic interactions pairs as well as marginal ones. Fi-

nally, we address power limitations by using co-evolutionary results from a well established

Markov model of evolution and combining them with our association analysis by means of

a Bayesian model. This has the advantage of not only being based on solid and well ac-

cepted theoretical grounds, but also being able to increase statistical power and to analyse

large GWAS datasets that are becoming available now. Using distribution estimates (see

figure 4.2), we calculate that our method can increase Bayes Factor between 102 and 104

when co-evolutionary information contributes to the total Bayes Factor (i.e. when �C ≥ 0).

This improvement is roughly equivalent to increasing the genome wide association p-value

threshold by two orders of magnitude (Goodman, 1999), (i.e. shifting the power curves in

Figure 4.7 to the left). Thus the net effect of adding information from a co-evolutionary

model is to reduce sample size requirements roughly by half, which is remarkable given the

small amount of additional information being used by the model (only a multiple sequence
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alignment).

As a limitation, our methodology currently cannot analyse variants that are in complete

LD. There is evidence suggesting that nearby genes (in genomic coordinates) tend to have

correlated expression levels and may to be in the same pathway or even interact (Petkov et

al., 2005). Nevertheless it seems that complete LD would be a result of “selective sweeps”,

in which an allele giving significant fitness advantage becomes more frequent so rapidly that

there is little recombination. These selective sweeps seem to be rare (Hernandez et al., 2011),

thus this limitation might not be encountered often in practice.

Future work We plan to extend our method to include context specific information by

creating Q2 estimates for different protein domains, in order to obtain better estimates

for well characterized protein interaction regions. Another line of work is to perform GWAS

using kernel based statistics of multiple variants (Wu et al., 2011) thus allowing simultaneous

analysis of nearby variants in a putative interaction hotspot. In this case the epistatic

information would be used as a function modifying the kernel, instead of a Bayesian prior.

It has also been suggested that positive selection might be used as an additional prior of

epistatic interactions. Nevertheless a study comparing positive selection maps from nine

different methods (Akey, 2009) shows that only 14% of the regions have been identified in

more than one study. Although there seems to be a lack of concordance at the moment,

using positive selection estimates would be an interesting venue to explore in the future.

4.7 Supplementary material
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Significance (CLNSIG) Count Mean[�C ] Median[�C ]
Benign (2) 272 34.1 26.2

Likely benign (3) 258 31.5 25.5
Likely pathogenic (4) 562 17.5 12.0

Pathogenic (5) 4206 16.9 11.7
Drug response (6) 18 32.6 22.1

Other (255) 10 20.0 11.3

Table 4.1: ClinVar categories have different distributions. Columns 3 and 4 show the mean
and median �C values calculated for each variant using the best (highest) within protein �C

Project Mean[�C ] Median[�C ]
1000 Genomes 23.2 14.8

HGMD 19.8 12.1
ClinVar 18.6 11.9

Table 4.2: Overall distributions for 1000Genomes, HGMD and ClinVar. Columns 2 and 2
show the mean and median �C values calculated for each variant using the best (highest)
within protein �C . Values are calculated using a random sub-sample of all variants in each
project.
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Figure 4.8: Distribution of �C for interacting genes (red) and non-interacting genes (green)
showing a small but statistically significant difference.
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Figure 4.9: Distribution of �C across different clinical categories from ClinVar database
showing a clear separation on “Benign” variants
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Figure 4.10: Histogram of correlation based scores (mBASC algorithm) of pairs of amino
acids in contact (red) and not in contact (blue) for amino acids within the protein (PDB).
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Figure 4.11: Histogram of mutual information (MI) of pairs of amino acids in contact (red)
and not in contact (blue) for amino acids within the protein (PDB).
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Chapter 5

Conclusions

5.1 Contributions

In this thesis I contributed to three steps involved in the analysis of human sequencing data

and identifying the links between genetic variants and disease. Each step is characterized by

very different types of problems:

i) The first step is to reduce large amounts of information generated by high throughput

experiments into a manageable summary. In our case, it involves reducing the raw

sequencing information to a variant call set, but it could be any other features to be

analysed (RNA expression, transcript structure, enrichment peaks, genome reference

assembly, etc.). This is mainly done by mapping reads to a reference genome and

then using variant call algorithms. This step is characterized by requiring fast parallel

algorithms and usually, due to the amount of data involved, I/O can be one of the

bottlenecks. Algorithms that work on “chunks of data” instead of the whole data-

set are preferred, and in many cases exist, because working on disjoint data makes

the problem easier to parallelize. Usually several stages of these highly specialized

algorithms are combined into a “data analysis pipeline”. Programming data analysis

pipelines is not trivial since it requires process coordination, robustness, scalability
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and flexibility (data processing pipelines, particularly in research environments, tend

to change often). Although data pipeline solutions are often available in the form

of libraries, these libraries tend to make pipeline programming cumbersome or create

new programming paradigms and thus introduce a steep learning curve. In Chapter

2, we address problems related to pipeline programming in a novel way by creating a

new programming language, BDS, that simplifies the creation of robust, scalable and

flexible data pipelines. Although the main rationale behind the development of BDS

was managing our sequencing data pipelines, it is a flexible programming language

that can be applied to many large data pipelines.

ii) The second step in our data analysis consists of functional annotation, prioritization

and filtering of genetic variants. The main concern in the annotation step is performing

an adequate filtering of what should be considered relevant variants for our experiment.

Until not long ago there were no publicly available packages for functional annotation of

genomic variants, in chapter 3 we introduced SnpEff & SnpSift, two variant annotation

solutions that quickly became widely adopted by the research community.

iii) Finally, in Chapter 4, we analyse the problem of finding genetic links to complex

disease. This is known to be a difficult problem affected by several hidden co-factors

that bias the results (e.g. population structure). Furthermore there are limitations,

evidenced by missing heritability, implying that genomic links to complex disease may

not be found using traditional GWAS methodologies. We show that alternative models

that combine higher level information, may help to boost statistical significance.

iii.a) We proposed a new methodology for addressing a difficult problem: the detection

of interacting genomic loci (epistasis) that affect disease risk. Our models combine

genotype information and co-evolutionary evidence. We show that efficient algo-

rithms make these studies computationally feasible, albeit using relatively large

computational resources.
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iii.b) We were involved in a major project on GWAS of type II diabetes using a co-

hort of multi-ethnic unrelated individuals which uncovered new genes linked to

diabetes. We applied our epistatic GWAS models to data form this type II dia-

betes sequencing study of over 13,000 individuals finding suggestive evidence of

interaction.

These three chapters (three steps) complete our journey from “raw data” to “biological

insight” trying to find the genetic causes of complex disease.

5.2 Future work

Here we propose several improvements, extensions and future directions of work for each of

the topics discussed in this thesis.

BigDataScript We are adding native support for new clusters and frameworks, such as

LSF (IBM, 2015), Mesos (Hindman et al., 2011), Kubertes (Google, 2015) as well as a

“Generic cluster” API which allows the user to customize BigDataScript for any cluster or

framework by encapsulating task management via user defined scripts. On the language

specification side, we are exploring ways to add functional constructs such as map, apply,

filter as well as support for map/reduce and scatter/gather which are convenient ways to

define some problems in data pipeline programming. Finally we, will incorporate user-defined

data structures or a basic class mechanism (BDS currently supports maps and list).

Variant annotations In an effort coordinated with the developers of other annotations

tools (such as ANNOVAR (K. Wang et al., 2010), ENSEMBLs Variant effect predictor -VEP-

(McLaren et al., 2010), JAnnovar (Jäger et al., 2014), etc.) we are creating new annotation

standard for VCF files. We are actively collaborating with the “Global Alliance for Genomics

and Health” (GA4GH) to create a new variant annotation specification & API definitions.
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We plan to extend SnpEff’s variant annotation capabilities to haplotype-based annotations,

which means taking into account phasing information to calculate compound variant effects

(e.g. phased SNPs affecting the same codon or compensating frame shifts within the same

DNA strand). Finally, we are using information-theoretic analysis of splice sites from several

species in order to improve splicing effect predictions.

GWAS Epistasis As future work, we’d like to evaluate the possibility of incorporat-

ing contextual information, such as protein domain, in order to build more specific co-

evolutionary models. Other improvements include further optimization of logistic regression

and Bayes factor algorithms since any improvement greatly reduces computational times.

We also plan to use our methods on even larger type II diabetes cohorts that are currently

being sequenced. Finally, we are evaluating the possibility of incorporating higher order

interactions by clustering genes from our variant-pairs analysis and then evaluate them in a

joint analysis.

5.3 Perspectives

Genomic research for complex disease is trending towards larger and larger cohorts in order

to improve statistical power. Some years ago, projects involving hundreds to a thousand

individuals were common. To put this in perspective, that is the population of a village, or

a small town. Nowadays, projects like the those lead by the T2D consortia sequence in the

order of 20, 000 people (i.e. the population of a large town). Projects are being drafted for

sequencing over 100, 000 individuals (Regalado, 2014) (i.e. the population of a small city)

and some institutions are foreseeing sequencing up to 1, 000, 000 samples per year within the

next few years (Regalado, 2015).

As a rule of the thumb, sequence data of a single whole genome requires ∼ 800 CPU

hours of primary processing (i.e. read mapping and variant calling). For an institution

planning to process 1, 000, 000 genomes per year will require ∼ 800, 000, 000 CPU hours
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just for primary processing. In order to keep up with sequencing, data analysis should be

also performed within the same time-frame, thus requiring ∼ 92, 000 CPUs processing data

continuously (an over optimistic estimate that assumes no hardware failures, no software

failures and no programmed outages). Having tens to hundreds of thousands of CPUs

constantly analysing data in production environments poses infrastructures challenges. Most

academic environments currently use their own infrastructure (local clusters), an approach

that may not be easy to scale further. For this reason a shift towards a cloud infrastructure

is already being considered by some leading institutions (personal communications).

We developed BDS to help processing both the large datasets currently available, and

also huge datasets that experts consider likely to become available in the near future. Even

though BDS can currently handle typical analyses involving tens of thousands of CPUs,

further scaling to hundreds of thousands or even millions of CPUs would require additional

abstraction levels. Most notably, the current processing model assumes the existence of a file

system which is used for retrieving input files, storing output results and and logging process

status. We anticipate that this model can break down on cloud based pipelines running over

hundreds of thousands of CPUs. Typically cloud based environments use the concept of

object storage (also called buckets) instead of file systems. We think that the two models

(file system and object storage) can be abstracted away in a new unified model enabling

the user write even more portable pipelines and letting BDS take care of transparently

transferring data to and from the object storage system. This approach has the benefit of

also enabling users to transparently add data locality optimizations by moving the processes

close to the data instead of the traditional approach of moving the data to the process, with

various degrees of data locality optimizations ranging from multi-datacenter processing to

rack-aware file systems.

The quest for ever bigger sample sizes shows how elusive the genetic causes of complex

diseases are. It might be true that huge sample sizes are needed to uncover risk loci, but

perhaps one of the reasons why traditional GWAS studies are have not found as many
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associations as expected is that we they are looking at the wrong place by not routinely

taking into account other types of disease variants (e.g. InDels or CNVs) or models for

interacting variants (epistasis).

In the context of large cohort studies, variant annotation improvements would greatly

benefit the outcome. Compared to the previous problem of processing large datasets, variant

annotation is challenging not because of the computational challenges but rather due to

restricted biological knowledge. Advanced variant effects models could be developed with

help of systematic studies. For instance, a systematic analysis of loss of function and nonsense

mediated decay variants would entail creating all possible stop gained mutations in one or

more genes and analysing the protein output in each case (obviously this is an ambitious

and challenging project, but so were other projects like 1KG (McVean et al., 2012), GTeX

(Lonsdale et al., 2013) and ENCODE (Guigó Serra et al., 2012), just to mention a few).

Lower impact variants, such as non-synonymous variants, pose even further challenges since

there is no consensus on how to measure partial protein gain or loss of function (e.g. in

a protein affected by a non-synonymous variant, interaction efficiency with protein X is

degraded by 50% whereas interaction with protein Y is improved 20%). Such analyses,

which are beyond the current state of technology, could only be feasible by supporting long

term technology development projects.

Finally, we should keep in mind that the ultimate goal of complex trait research is to

have an impact on human health. This implies that research results should be readily avail-

able for translational medicine to effectively use of them. Scientific journals date from 1665

(Kronick et al., 1962) and understandably has some shortcomings in the era of translational

medicine. An enormous effort is required to read papers, curate them, and translate their

results into meaningful coherent data. In the private sector, companies that embark on this

costly curation process regard the resulting curated databases as a competitive advantage

and are unwilling to share them, creating the well known silo effect which leads to several

fragmented isolated curation projects with various degrees of success and different qualities.
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On the other hand, there are few incentives in academic environments to create curated

databases or to maintain them after the paper is published and the students leave their labs,

resulting on a plethora of outdated databases with different curation standards. A refresh-

ing approach adopted by the ClinGen project attempts to create long term, well curated,

high quality, clinically relevant database/s. Obviously it would be better to have researchers

contribute directly to these efforts thus significantly reducing the curation burden, but cur-

rently there are no incentives for researchers to do so. If we want to make more effective

use of research results in clinical environments, research agencies should incentivize (or even

require) investigators to publish genomic results in ClinGen and other similar systematic

long term efforts that might appear in the future.
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least squares minimization for sparse recovery. Communications on Pure and Applied

Mathematics , 63 (1), 1–38.

Davydov, E., Goode, D., Sirota, M., Cooper, G., Sidow, A., & Batzoglou, S. (2010). Iden-

tifying a high fraction of the human genome to be under selective constraint using

GERP++. PLoS Computational Biology , 6 (12), e1001025.

Dayhoff, M. O., & Schwartz, R. M. (1978). A model of evolutionary change in proteins. In

In atlas of protein sequence and structure.

de Juan, D., Pazos, F., & Valencia, A. (2013). Emerging methods in protein co-evolution.

Nature Reviews Genetics , 14 (4), 249–261.

Dennis Jr, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., . . . oth-

ers (2003). DAVID: database for annotation, visualization, and integrated discovery.

Genome Biology , 4 (5), P3.

DePristo, M., Banks, E., Poplin, R., Garimella, K., Maguire, J., Hartl, C., . . . others (2011).

A framework for variation discovery and genotyping using next-generation DNA se-

quencing data. Nature Genetics , 43 (5), 491–498.

Dickson, R. J., Wahl, L. M., Fernandes, A. D., & Gloor, G. B. (2010). Identifying and seeing

beyond multiple sequence alignment errors using intra-molecular protein covariation.

PloS One, 5 (6), e11082.

Dobzhansky, T. (1950). Genetics of natural populations. XIX. origin of heterosis through

natural selection in populations of Drosophila pseudoobscura. Genetics , 35 (3), 288.

Dreesen, T., Johnson, D., & Henikoff, S. (1988). The brown protein of drosophila

melanogaster is similar to the white protein and to components of active transport

complexes. Molecular and Cellular Biology , 8 (12), 5206–5215.

Dunn, S. D., Wahl, L. M., & Gloor, G. B. (2008). Mutual information without the influence

179



of phylogeny or entropy dramatically improves residue contact prediction. Bioinfor-

matics , 24 (3), 333–340.

Durbin, R. (1998). Biological sequence analysis: probabilistic models of proteins and nucleic

acids. Cambridge Univ Pr.

Durbin, R., Altshuler, D., Abecasis, G., Bentley, D., Chakravarti, A., Clark, A., . . . others

(2010). A map of human genome variation from population-scale sequencing. Nature,

467 (7319), 1061–1073.

Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: a study in coevolution.

Evolution, 586–608.

Evans, D. M., Spencer, C. C., Pointon, J. J., Su, Z., Harvey, D., Kochan, G., . . . others

(2011). Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates

peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature

Genetics , 43 (8), 761–767.

Fairbrother, W. G., Yeh, R.-F., Sharp, P. A., & Burge, C. B. (2002). Predictive identification

of exonic splicing enhancers in human genes. Science, 297 (5583), 1007–1013.

Fares, M. A., & Travers, S. A. (2006). A novel method for detecting intramolecular coevo-

lution: adding a further dimension to selective constraints analyses. Genetics , 173 (1),

9–23.

Felsenstein, J., & Felenstein, J. (2004). Inferring phylogenies (Vol. 2). Sinauer Associates

Sunderland.

Ferragina, P., & Manzini, G. (2000). Opportunistic data structures with applications. In

Foundations of computer science, 2000. proceedings. 41st annual symposium on (pp.

390–398).

Fisher, R. A. (1958). The genetical theory of natural selection. .

Fitch, W. M., & Markowitz, E. (1970). An improved method for determining codon vari-

ability in a gene and its application to the rate of fixation of mutations in evolution.

Biochemical Genetics , 4 (5), 579–593.

180



Flanigan, K. M., Dunn, D. M., von Niederhausern, A., Howard, M. T., Mendell, J., Connolly,

A., . . . others (2009). DMD Trp3X nonsense mutation associated with a founder

effect in north american families with mild Becker muscular dystrophy. Neuromuscular

Disorders , 19 (11), 743–748.

Flicek, P., Ahmed, I., Amode, M. R., Barrell, D., Beal, K., Brent, S., . . . others (2012).

Ensembl 2013. Nucleic Acids Research, gks1236.

Fodor, A. A., & Aldrich, R. W. (2004). Influence of conservation on calculations of amino

acid covariance in multiple sequence alignments. Proteins: Structure, Function, and

Bioinformatics , 56 (2), 211–221.

Gao, H., Granka, J. M., & Feldman, M. W. (2010). On the classification of epistatic

interactions. Genetics , 184 (3), 827–837.

Garber, M., Guttman, M., Clamp, M., Zody, M., Friedman, N., & Xie, X. (2009). Identifying

novel constrained elements by exploiting biased substitution patterns. Bioinformatics ,

25 (12), i54–i62.

Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P., & Izaurralde, E. (2003). Nonsense-

mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian

pathways. The EMBO Journal , 22 (15), 3960–3970.

GATK Team. (2015). The genome analysis toolkit. (https://www.broadinstitute.org/gatk)

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., . . . oth-

ers (2005). Galaxy: a platform for interactive large-scale genome analysis. Genome

Research, 15 (10), 1451–1455.

Gibson, G. (2012). Rare and common variants: twenty arguments. Nature Reviews Genetics ,

13 (2), 135–145.

Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual information

in protein multiple sequence alignments reveals two classes of coevolving positions.

Biochemistry , 44 (19), 7156–7165.
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