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Abstract

Advances in cry research and understanding have been limited duc to the Jack

of available analysis and classification methods which can adequately deal with

the particulars of this simple, yet effective, communicatiün medium. This thesis

presents new processing and classification methods for infant cry signais. First,

a new method of accurately extracting the vocal fundamental frequency from

cry signais is proposed. This multi-step crosscorrelation vector-based mcthod

accurately tracks rapid changes in the fundamental frequency in these utlerances, is

not limited to any particular range of pitch values, and allows a more detailed view

of this important parameter for further analysis. The benefits of this method arc not

limited to infant cry vocalizations, however. This new method can be employcd

by any application that requires accurate and detailed pitch extraction, as weil as

being suitable for pitch synchronous analysis of a voiced signal. Then, a nove!

application of artificial neural networks is presented: the automatic classification

of anger, fear, and pain cries. A comparison of five different input data sets

derived from two different parametric representations, applied to four different

neural network architectures is presented. From the classification rates obtained,

the use of artificial neural networks wouId seem well suited to the classification

of these types of infant cries and warrants future investigations. Sorne future

work is outlined prior to the concluding remarks outlining the contributions of this

dissertation.
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Sommaire

Les progrès dans le domaine de la recherche et de la compréhension des cris

des nouveaux-nés étaient limités à cause d'un manque de méthodes qui pou­

vaient traiter adéquatement ce simple moyen de communication qui se trouve à

être efficace pour attirer de l'attention aux besoins du bébé. Cette dissertatiun

présente des nouvelles méthodes pour le traitement et la reconnaissance des cris

de bébés. En premier lieu, une nouvelle méthode pour l'extraction de la fréquence

fondamentale de ces signaux est proposée. Cette nouvelle méthode, consistuée

de plusieurs étapes, est basée sur les vecteurs de corrélations croisés qui servent

à suivre l'évolution des valeurs de la fréquence fondamentale avec une grande

précision dans ces signaux. En plus, cette méthode n'est pas limitée à une portée

fixe de valeurs de fréquences fondamentales, et peut aussi permettre une vue plus

détaillée de ce paramètre qui peut servir pour d'autres analyses. Les bénéfices

de cette méthode ne se limitent pas aux cris. La méthode peut être employée par

toutes applications qui demandent une analyse précise et détaillée de la fréquence

fondamentale, ou qui demandent une analyse des signaux synchronisé au début

de la période fondamentale. Ensuite, une nouvelle conception et mise en applica­

tion des réseaux neuroniques pour la classification des cris fâchés, de peur, et de

douleur sera présenté. Cinq différents groupes de données qui dérivent de deux

représentations parametriques différentes du signal sont présentées à quatre archi­

tectures différentes et comparées. Suite aux résultats obtenus de ces expériences, les

réseaux neuroniques semblent bien classifier ces types de cris et encouragent une

l'expérimentation continuée sur ce système de classification. Les grandes lignes

des expansions futures sont discutées avant de conclure.
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Chapter 1 Introduction

As is the case for the newborn offspring of other mammals in the animal kingdom,

the human infant is very helpless and defenseless, relying on its parents to tend to

its needs. For the human infant, these needs typically consist of feedings, diaper

changes, affection, and, in sorne cases, prompt medical attention due to a possibly

unknown problem. Unlike older infants, neonates do not possess the command

of language, and thus must rely on other methods to signal their needs to their

care-giving environment. The most common and most primai of these signalling

methods are cry vocalizations.

These vocalizations are a very effective means of eliciting a response

from care-givers, who often judge their effectiveness in tending to the in­

fant's needs by gauging how soon the crying stops after care is administered

[Donovan and Leavitt, 1985b1. Due to the complex neurological and physiological

processes involved in cry production, it is thought that a more subtle form of in­

formation may be contained in these vocalizations in addition to simply serving to

attract attention [Lester, 1984, Porter et al., 19861.

In the vast majority of cases, parents of infants learn over time to distin­

guish between the different types of cries of their infant. From the cry, they

can determine whether the infant is hungry, hurt, or just wants to be held

[Golub and Corwin, 19851. This knowledge is also applicable across infants as weil

since it has been observed that after parents have "Iearned" to identify the meanings

behind the various types of cries from their infant, they do better at distinguishing

between the cries of other infants than do other adults [Les~er and Boukydis, 1~851.

This observation thus leads to the belief that there are simiiar or common features

present in cries uttered by infants who are in the same state, be the state hunger,

1
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pain, or fussy, for example.

lt is not only parents that leam to distinguish between different types of cries,

however. Studies have shown, that in a clinical setting, the cries of healthy, or so­

called "normal" infants, can be differentiated from those which have genetic disor­

ders, such as Down's Syndrome or 15-15 trisomy, for example, or from those which

have had traumatic birth histories [Zeskind and Lester, 1978, Und et al., 1970) Typ­

ically, the latter cries are said to be "harsher" sounding than the former. Conse­

quently, from these auditory discriminations, a crude, simple, yet accurate determi­

nation of pathological diagnosis can be made of an infant's state or condition, based

on the characteristics of the cry utterance. If a precise diagtlosis cannot be made

from a cry utterance, one might at least say that something is wrong, prompting a

further and more detailed medical examination of the infant.

The idea of listening in order to assist in the determination of pathology, also

known as diagnostic listening, is not a new one, however, and dates back to about 400

B. C. when it was originally proposed by Hippocrates [Golub and Corwin, 1985].

Over 2000 years passed before this idea re-surfaced in the domain of infant crying.

In the latter part of the 19th century, Charles Darwin, the father of the theory of

Natural Selection, treated the subject through a series ofdrawings and descriptions

of different types of infant cries uttered in different situations [Darwin, 1872).

More recently, however, a number of research groups have attempted to deter­

mine the discriminating features in the cry in the hope that these differences could

be quantified for the eventual development of an automated classification system

[Wasz-Hockert et al., 1985, Johnston and O'Shaughnessy, 1988, Benini et al., 1993).

This work arose from earlier work done on the analysis of infant cry signais. Al­

though sorne success has been achieved in visually or auditorily discriminating

between different cry types, this information has yet to be used in an automated

system.

The work done to date on the analysis of infant cries which has been docu-
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mented in the literature, has used methods borrowed from the domain of speech

processing, since the cry can be considered to be a form of speech, and since

the mechanisms which produce a cry are similar to those which produce speech

[Petroni et al., 1994a1. Although these methods borrowed from the speech process­

ing domain have opened the door for work to be undertaken in this domain, they

are not always useful on ail types of cry vocalizations due to the peculiar characler­

istics of certain vocalizations. Consequently, no one method yet exisls which can

correctly and consistently deal the full spectrum of infant cries.

This is especially true when dealing with the analysis and treatment of the vocal

fundamental frequency (Fo). This parameter, also referred to as the pitch, repre­

sents the rate at which the vocal folds, located in the larynx, vibra te during voiced

portions of the signal. A numberof studies have determined that vocal fundamen­

tal frequency, and its progression over time and over the length of an utterance are

important indicatorl' ofboth infant state and neurologieal organizalion not only in

infants, but in adults as weil [Anand et al., 1989, Colton and Steinschneider, 1980,

Fuller, 1991, Hollien,1980]. Despite the importance of 1"0, none of the melhods

borrowed from the speech domain, adequately deal with the wide range of infant

vocal fundamental frequency values, whieh can go from values as low as 150 Hz to

values of over 2500 Hz. It should be noted that adult speech has l'ù values which

typieally fall below 600 Hz.

Ideally, a method specifically, tailored for correctly dealing with this range of

Fo values would have to be used for the purposes of correct extraction. This

Fo extraction method should be able to track the progression of the fundamental

frequency in cry utterances whieh undergo rapid changes and during events such

as double-harmonie break episodes. These events are common in certain types of

cries, such as pain cries, and it is important that these events be properly handled.

As weil, a method whieh would be capable of producing a value of Fo for evcry

pitch period in the signal would be desirable, so that the prosodie progression of

Fo could b~ accurately tracked. This wouId enable the subsequent identifieation
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and quantification of the specifie Focharacteristics of different types of cries. Other

potential benefits of this method would be to perform pitch-synchronol/s extraction

of other parameters, such as the formant values, for example, in addition to the

aforementioned Foanalysis IO'Shaughnessy, 1987, Medan and Vair, 19891.

Although the identification and extraction of parameters from cry vocalizations

is important, it would also be desirable, to determine a set of features which could

be used to accurately classify or discriminate between different infant states or

pathological conditions. The cry is a readily available and non-invasive parameter,

the latter making it particularly appealing for use in a clinical setting, as was

previously mentioned, especially if certain clinical situations are considered. For

example, such a classification system would be useful for care givers who are

responsible for a number of infants at any one given time. When tending to one

infant, they would be able to identify whether another infant who starts to cry is

doing 50 because it requires immediate attention resulting from a problem, or is

crying simply to relieve sorne stress. An automated classification system could then

be useful to assist a care giver in determining if the needs of the infant who is crying

are greater or require more prompt attention than those of the current infant being

tended to before leaving the current infant in order to tend to the crying infant. AIso,

there have been documented cases where ail pathological signs in a certain infant

are normal, but an abnormal sounding cry is present IZeskind and Lester, 19781.

ln these cases, an automatic cry classification system could alert physicians and

indicate that an infant requires a more detailed observation of his or her condition,

and that something may be wrong.

Prompt medical attention is especially important in the development of a new­

born infant IKeating, 19801. AIso, prompt identification of infants who are said to

be nt risk, due to a traumatic birth or a low birth weight, for example, can lead

to a faster and more successful medical treatrnent which will enable the infants to

proceed along a normal path of development in the shortest delay possible.
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This dissertation attempts to address the issues of processing and classification

in the hope that the methods and the results presented here will bring the statl!

of the art in the cry domain one step closer to achieving the goals of accurate

fundamental frequency extraction and correct classification of infant state from the

cry signal.

This chapter has given a brief introduction to the cry analysis and classification

problem statement and has mentioned the importance and the potential applica­

tions of this work.

Chapter 2 presents background information on cry analysis from ils carly ori­

gins to the presentation and discussion of more recent developments. Methods

borrowed from the speech domain which have been used to date on cries and

documented in the literature are outlined. The motivations for looking at specific

parameters in the cry signal are also presented. In particular, the extraction of vocal

fundamental frequency from both speech and cries will be discussed. The chapter

conc1udes with a presentation on automatic classification methods used in speech

and on cries.

Chapter 3 addresses the extraction of one parameter of particular interest from

the cry signal, namely, the extraction of vocal fundamental frequency. This chapter

begins with a detailed presentation of a new and accurate lib extraction method

especially suited for infant cry signais. The results of this method are then compared

to those obtained from other Fa extraction routines adopted from the speech domain

and tested on cry utterances. Computational considerations, potential benefits, and

spin-offs of the new method are discussed as well.

Chapter 4 focuses on experiments performed on the automatic determination of

infant state using a number of different artificial neural networks (ANNs) architec­

tures and leaming methods. The merils, strengths, and weaknesses of the different

methods, and of different input feature sets are discussed.

Chapter 5 focuses on future work which can be undertaken as a result of the
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work presented in this dissertation, in both the analysis and classification domains.

Concluding remarks, including a concise presentation of the contributions of

this dissertation are presented in chapter 6.
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This chapter presents the background and related work of topics which are directly

related to this dissertation. First, the topic of cry analysis will be presented, from

its early treatments to the more recent analysis of this signal and its fentures. In

this section, the motivations for looking at the cry and the information which has

been extracted to dace from this signal, will be outlined. As weil, some recent

attempts at augmenting the cry with other parameters for the purposes of accurate

classification of infant state will be presented. Following this, the evolution of

the analysis methods of a particular parameter in the cry signal, namely the vocal

fundamental frequency, will be addressed. The methods of choice for the analysis

of this parameter in the speech domain will be presented. The last section of

this chapter addresses the issue of neural network-based classification, outlining

the methods developed by other research groups to deal with the classification of

time-varying signais such as speech.

2.1 Cry Analysis and Classification

As was mentioned in chapter 1, the idea behind the examination of the infant cry

for the purposes of determining the state of an infant is not new. The development

and proliferation of less expensive computers with stronger computational engines,

couplect with more sophisticated signal processing, classification, and visualization

techniques will most likely provide the impetus for future research in the analysis

and classification of infant cries. However, much about the cry has been learned

from research performed over the past 30 to 40 years, and the advances in the

analysis and understanding of the cry expression has paralleled the development
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of techniques which have assisted in its recording and analysis.

Significant research activity in this domain began at the tum of the century

with the advent of devices which allowed the permanent recording of sounds.

At that time, two German investigators noted that certain infants in their test

group had notably higher pitch values in their utterances than did other infants

[Flatau and Gutzmann, 19061. Later, as tape recorders appeared in the 1920s, re·

search in this domain began to spread. The analysis and classification techniques

used during this initial period of work undertaken in this domain, consisted ex­

c1usively of auditory methods. One particular researcher attempted to determine

the meanings behind cries using auditory techniques to identify relevant sounds

in certain utterances [Sherman, 19271. Other researchers also began to focus on the

identification of particular features in the cry which would allow certain types of

cries to be differentiated from each other. Fairbanks, in 1942, published an article

detamng his studies of the fundamental frequency, Or pitch, ofhunger vocalizations

[Fairbanks, 19421. Even in these initial studies into the analysis of infant cries, the

fundamental frequency emerged as an important parameter for discrimination.

The development of sound spectrograms in the late 1940s prompted increased

interest into this domain and a number of research groups used this tool to

further advance the understanding of cries. Spectrograms gave researchers the

opportunity to visually identify features of certain types of cries. In 1968, a

Scandinavian group published a book detailing their research efforts in attempt­

ing to identify relevant features in the cries of both healthy and sick infants

[Wasz-Hockert et al., 1968). When these first studies attempted to identify cer­

tain features in cry utterance using the spectrogram, they discovered that there

was no nomenclature available for certain types of cries. Consequently, much of

the definitions and description of many cry characteristics were developed in the

1960s.

This monograph by Wasz-Hockert, Lind, Vuorenkoski, and Partanen provided a
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comprehensive presentation of the spectrograms and harmonic patterns in the cries

of infants with genetic or pathological disorders, as well as for hungry infants or

infants in pain. Prior to the publication of this book, however, Truby and Und had

identified threetypes ofpain cries and classified them according to the fundamental

frequency values [Trubyand Und, 1965). The first type was referred to as the basic

cry, and contained Fo values belween 200 Hz and 600 Hz. The second type was

the turbulent, or disphonation, utterance which was caused by an overloading of

the vocal tract, resulting in aperiodic vibrations of the vocal folds. The third tYl-'e

of pain cry was hyperphonation, and contained Fo values belween 1000 Hz and

2000 Hz, which was thought to correspond to extreme distress.

In this early period of cry research, there was no real focus of groups in general

to tackle a particular cry type. Researchers would publish observations which

would serve in the future as a stepping stone to improving the observations

made previously, or proposing the correlation belween certain physiological ef·

fects and certain attributes in the cry. In addition to the aforementioned researchers,

Parmelee [Parmelee, 1962) noticed that there were certain differences between the

cries of healthy infants, and those whlch suffered from neurological disorders.

AIso, Bosma, Truby, and Lind state.::l that neurological maturity is revealed by the

stability of laryngeal coordination and vocal tract mobility, since the production of

the vocalizations involves varying control of vocal articulators [Bosma et al., 1965).

This tie belween neurology and attributes would prave to be important in future

studies of neurological stability and central nervous system insult, for example,

and cry attributes [Anàerson-Huntington and Rosenblith, 1976). The latter study

also showed that these abnormal cries could be used as indicators of future devel­

opmental problems.

In 1959, Davis published an article noting that the human auditory system is

particularly sensitive to frequency values about 800 Hz, which in turn implies that

humans are particularly sensitive to cries with high fundamental frequency values

[Davis, 1959). By the late 1960s, a number of studies quoted that fundamental
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frequency and duration were important parameters for the discrimination of cry

types. Insofar as adult response~ to cries were concerned, Korner and Goldstein

noticed that the cry would elicit attention and a visual scanning of the infant for

further indications as to why the infant was crying [Korner and Grobstein, 1966].

Aside from an eliciting attention from adults, it was notieed that certain types

of cries had specific harmonie patterns associated with them, and that these cries

could also be differentiated auditorily [Partanen et al., 19671. The recordings of

this partieular study included cries of infants with asphyxia, brain damage, hy­

perbilirubinemia, and Down's syndrome. The studies published in and around

that time could not provide quantifiable measures of pain, pathology, or genetic

problems from spectrograms, due to the lack of available methods for extracting

measures from cry signais. Consequently, only non-parametrie statistieal analysis

was performed at this time.

One of the results of this study was the development of a deviee called

the "Cry Analyzer" which would screen cries obtained from a neonatal ward

[Vuorenkoski et al., 19701. On the cry utterances that would differ from the normal

types of cries, further spectrographie analysis would be performed. This deviee

recorded the fundamental frequency of the cry as well as the heart and respiration

rates of the infant. An objective evaluation of the Cry Analyzer indicated that its

use in practice wouId be limited and subsequent studies using this device were dis­

continued. However, this method was a first attempt at automating the acquisition

of "interesting" cry recordmgs for further analysis.

Along with the identification of fundamental frequency related patterns in cer­

tain types of cries, Ostwald, Phibbs, and Fox showed that elements in the cry such

as fundamental frequency and utterance duration could also be useful in prediet­

ing the occurrence of future health problems, or to provide an "early-warning"

for certain disease types [Ostwald et al., 19681. Of these two features, fundamental

frequency was found to have the most reliable diagnostic value.
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In the 1970s, cry analysis branched out into the partieular study of the cries of

infants with other conditions, and to the study of factors whieh influence the cry as

weil. Lieberman, Harris, Wolff and Russel [Lieberman et al., 1971] compared the

characteristics and communieative significance in the cries of human infants with

those of non-human primates.

Katarina Michelsson continued research in the identification and analysis of the

relevant characteristics of certain types of cries. In one partieular study, Michels­

son, Sirvio, Koivisto, and Wasz-Hëckert investigated the cry and fundamental fre­

quency characteristics of pain cries of neonates both with and without feeding tubes

[Michelsson et al., 1974]. A couple of years later, Miehelsson and Sirvio examined

the cries of infants with congenital hypothyroidism [Miehelsson and Sirvio, 1976)

and determined that the fundamental frequency characteristics of these cries dif­

fered from those of healthy infants. The foUowing year, Miehelsson, Sirvio, and

Wasz-Hëckert published other articles outlining the difference between the fun­

damental frequency and duration of pain cries of healthy and asphyxiated infants

[Miehelsson et al., 1977a], and in cries of healthy infants and of those with bacterial

meningitis [Miehelsson et al., 1977b].

Moreover, Michelsson, along withJuntunen, and Sirvio, performed sound spec­

trographie investigations of infants with severe malnutrition IJuntunen et al., 1978].

They found that the maximum and minimum fundamental frequency values of the

cries of malnourished infants were higher than those of healthy infants. Lester had

published the results from a similar study two years earlier [Lester, 1976]. Both

studies concluded that the spectrogram could indeed be a useful tool in assisting

the determination of the level to which the brain is affected by malnutrition.

The spectrographie and auditory studies ofcries uttered by infants with different

conditions by Katarina Miehelsson continued in association with other researchers.

Thodén and Michelsson illustrated the difference in fundamental frequency val­

ues between healthy infants and those with Krabbe's disease spectrographically
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[Thodén and Miehelsson, 1979]. The compilation of the spectrographie cry analy­

sis studies, in whieh Michelsson participated in, were presented in 1980 when a

book on the significance of infant communieation using cry and early speech was

published [Murry and Murry, 1980]. This book also presented the current state of

cry analysis research in addition to the results of the aforementioned spectrographie

studies. ln one partieular chapter of this book, Michelsson illustrated the spectro­

graphie differences in the fundamental frequency values and harmonie patterns of

cries uttered by infants with physiologieal or genetic problems [Miehelsson, 1980].

ln another article, the significance and potential benefits of cry analysis for de­

termining the probability of an infant at risk or of asymptomatic infants with

neurologieal problems [Michelsson and Wasz-Hëckert, 1980].

ln this same book, two other members of this Scandinavian research group pub­

Iished an article detailing the acoustie attributes of pain cries in normal infants as

seen in a spectrogram [Thodén and Koivisto, 1980]. Here, Thodén and Koivisto de­

tailed how certain features, fundamental frequency values, and harmonie structure

were present in pain cries, but not in non-pain cries.

Following the publication of these articles, research into identifying differences

between healthy infants and those with other pathologieal or genetic conditions

continued for this partieular researcher. Miehelsson, Tuppuranien, and Aula

IMiehelsson et al., 1980] noticed that infants with an abnormality of chromosome 4

or 5 had cries with significantly higher fundamental frequency values than those

of healthy infants. As weil, infants with "Cri-du-Chat" syndrome had fiat and

monotone melody types, and that infants with ~3- or 18-trisomy had hoarse and

low-pitched cries. The infants with chromosomal abnormalities also had difierent

pain cries than other infants who suffered from central nervous system disorders.

Thcse researchers concluded that the cry can be a useiul indieator of chromosomal

abnormalities.

Raes, Miehelsson, and Dehaen later published an article where a number of
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spectrographie characteristies were compared between the pain cries of healthy

infants and infants with infectious or congenital disorders of the larynx, once a:;ain

noting that certain spectrographie features occur more often in cries of infants

with central nervous system disorders. The results of a similar study conducled

on infants with congenital hydrocephalus, cerebral malformations, ,md heallhy

infants was published two years laler [Miehelsson et al., 19841. This sludy also

noticed that certain spectrographie features and melody types were common 10

certain types of cries.

The mid-1980s saw the publication of yet another collection of cry anal­

ysis articles dealÎi1g in a wide variety of topies of interest to this domain

[Lester and Boukydis, 19851. Here, Wasz-Hi:ickert, Miehelsson, and Und described

the research undertaken by Scandinavian researchers over the pasl 25 years

[Wasz-Hi:ickert et al., 19851, and, as weil, new work was presenled by Thodén,

Jarvenpaa, and Miehelsson on the spectrographie analysis of pain cries in prema­

ture infants [Thodén et al., 19851. This article noted that the more premalure lhe

infant, the higher pitcheci the cry.

Recently, the focus of the research of this group has focused on the crying pal­

terns of infants and adult perceptions ofcries. In a recent article, Miehelsson, Rinne,

and Paajanen noted that the length of crying bouts decreases as an infant gets older,

and adult's perceptions of cries also changes over time [Miehelsson et al., 19901.

For ail the articles published by this group of Scandinavian researchers, the cry

features quoted result from a visual analysis of spectrograms and lack precise quan­

tification of particular events in these signaIs. Nevertheless, this group has perhaps

contributed the most in identifying certain acoustie events and fundamenlal fre­

quency melodies and the occurrence and frequency of these events in different cries

over the past 35 years. However, theirs was not the only work undertaken during

this time period. A number of research groups analyzed the cry or notieed that

there were differences between different cry types.
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ln 1973 Stark and Nathanson [Stark and Nathanson, 19731 compiled an article

detailing the cry attributes and facial gestures present in cries uttered by infants

for no apparent reason; that is, cries which were not a result of pathology or fol­

lowing the application of a specific stimulus. Two years later, these researchers

published a spectrographie and fundamental frequency analysis of the cries of

infants who later died of sudden infant death syndrome (SIOS) noting that there

were differences between the spectrograms of normal infants and those with SIOS

[Stark and Nathanson, 19751. These acoustic differences later proved to be contra­

dictory [Colton and Steinschneider, 19801 and inconclusive [CoHon et al., 19851.

ln a study where the effects of toxie factors on an infant were examined, Os­

trea Jr., Chavez, and Strauss, noticed that certain central nervous system manifes­

tations, one of which was a high pitched cry, were present in infants whose moth­

ers used heroin during the last trimester of the pregnancy [Ostrea Jr. et al., 19751.

This observation was also made by Finnegan [Finnegan, 19851. Lester and Dreher

[Lester et al., 1989], noticed that there were durational and other spectral differences

between the cries of healthy infants, and those whose mothers used marijuana dur­

ing pregnancy. Another study noticed that there were differences between the

duration of cries, the number of cry utterances, and the number of hyperphonated

cries between healthy control infants and those whose mothers took cocaine dur­

ing pregnancy [Corwin et al., 19921. The more recent studies state that the effects

of narcotics have an effect on the neurological development of the infant and that

this is in tum manifested in the characteristics of the cry.

The cry has also been used as an indieator of infant development. Tenold, Crow­

eU, Jones, Daniel, McPherson, and Popper, used cepstral and stationary analysis to

determine that there was greater variability in the fundamental frequency and in

the spectra of premature infants than those of fuU-term infants [Tenold et al., 1974].

This study hypothesized that the greater variability observed in the cries of pre­

mature infants related to the underlying neurophysiological maturity. Prescott

[Prescott, 1975], illustrated that there were differences in the melody of infant cries
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in the first two months fol1owing birth. The melody of infants during this time

showed more variability than it did shortly after birth.

AIso, in 1978, Zeskind and Lester published a comprehensive article on infant

crying [Zeskind and Lester, 19781. In this article they stated that hlgh fundamental

frequency values were indieators of stressed infants, adding that harmonie and

temporal features may also be present in these types ofcries. As well, they remarked

that neurodevelopmental impairment has also been shown to contribute to acoustic

and temporal features in cries. Moreover, infants with serious complications, due

to fetal malnutrition, for example, have certain cry-related features, one of whieh

was a high Fovalue. Zeskind and Lester went on to state that certain cry patterns

may ref1ect the risk states of the infant.

Other studies also presented the correlation between development and cry

features, as wel1 as commenting on the neurologieal implications of these find­

ings. Hollien presented some developmental aspects of neonatal vocalizations

[Hol1ien, 19801 and Illingsworth discussed the developmental factors whieh affect

infant vocalizations in the first year of life [Illingsworth, 1980].

In 1984, Lester [Lester, 19841 stated that the characteristies of cries are a direct

measure of the integrity of the central nervous system. In the same article, he

also proposed his biosocial model of infant crying, whieh is a neural model of

the cry production process. Citing previous studies, Lester presented the idea

that neurologieal maturity is revealed by the coordination and stability of vo­

cal tract articulators. In this article, the most important neural contribution to

the production of the cry is the effect of the vagus nerve, which also related

to cardiovascular activity and also serves a sensory role for abdominal ful1ness

[Kennedy III and Kuehn, 1989, Lemme et al., 1989]. Lester also states that there are

a number of biologieal factors whieh affect the cry, and adds that there are social

aspects to cry utterances as welli most notably, that the cry serves to attract atten­

tion and to prompt a visual scan of the infant by adults to determine why the infant
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is crying.

In this article, Lester proposes a binocular view of the cry. First the features in the

cry reflect aspects of the neurophysiological function of the infant that are important

for la ter developmental outcome, which also make it useful as a diagnostic tool,

and secnndly, the cry functions to signal to care givers that the infant is in jeopardy,

resulting in a response from the care givers. Lester notes that humans rely on

prosodic features to communicate with each other, especiaIly in the first utterances.

These aspects overall motivate the more careful examination of vocal fundamental

frequency in cry utterances.

Zeskind gives a complete treatment on the developmental aspects of the cry in a

later article [Z,eskind, 1985]. Another article published in 1989 added to this infor­

mation stating that the fundamental frequency characteristics change over a two

year span, starting from birth [Robb et al., 1989]. Recently, an article by ]ohnston,

Stevens, Craig, and Grunau treated the developmental changes in the pain expres­

sions of premature, fuIl term, two-, and four-month infants 1J0hnston et al., 1993].

In their study, the cry parameter was augmented by the use of facial expressions

in order to determine the behavioural responses to pain stimuli of these various

infants. This article noted that higher pitched cries were one of the significant

attributes the pain expressions of premature infants in comparison with those of

other infants.

In addition to the studies performed by the Scandinavian research group

mentioned earlier, a number of other studies also observed that there were

correlati(lns between certain genetic disorders and certain cry characteristics

[Stallard and ]uberg, 1981, Beemer et al., 1984]; the most common attribute being

a very high-pitched, or cat-Iike cry. Other, more recent studies have also noticed

that the presence of abnormal or high-pitched cries are accurate indicators of chro­

mosomal abnormality [Murayama et al., 1991, Chemos et al., 1992].

The 1980s also marked a rise in the number of groups studying the ef-
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fects of infant cries on human Iisteners. G:adding [Gladding, 19781 reported

on the effects of Iistener empathy, gender, and training on the identification

of infant cries. Donovan [Donovan, 19811 studied the maternai response of

mothers of young infants to varying degrees of control over the termination

of infant crying, contributing additional insight into this topic four years later

[Donovan and Leavitt, 1985b, Donovan and Leavitt, 1985a], and again in 1989 and

1990 [Donovan and Leavitt, 1989, Donovan et al., 19901. Other researchers noted

that sorne adults may respond negatively to the prolonged exposure to cry utter­

ances, and that there may not be correlations between perceived urgency on the

part of the Iistener and the actual state of the infant [Boukydis, 1985, Frodi, 1985,

Murray, 19851.

Other research groups have published their findings related to the presence

of abnormal cries with the occurrence of pathological conditions. One research

group in England noticed that the presence of a weak cry, accompanied by gen­

eral weakness and poor feeding, fol1owing constipation in a 24-week-old girl,

characterized the incidence of botulism [Turner et al., 19781. These abnormal cry

characteristics were also confirmed by another research group 12 ye,\rs Inter

[Jagoda and Renner, 19901.

In 1982, Golub and Corwin treated the topic of the use of the infant cry for

diagnostic purposes [Golub and Corwin, 19821. In this article they tested the pos­

tulation that the infant cry is a reflection of complex neurophysiological functions

by using a model of cry production which related the acoustic properties of the

signal, to anatomical and physiological characteristics of the infant producing the

cry. This initial pilot study was expanded to include more cries for further exami­

nation if the cry production model could indeed predict cry utterance parameters

occurring as a result of a physiological condition [Golub and Corwin, 19851. As the

desired goal of their long-term study, where different acoustic parameters extracted

from the cries are to be examined, the authors hope that the screening of infants

using cry analysis for the classification of pathology will become as common in
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hospitals as blood tests are.

One major focus of recent efforts from researchers, is the problem in the deter­

mination and classification of infant pain, since strong evidence now exists that

neonates possess the necessary anatomieal functional components for the percep­

tion of pain [Anand and Hiekey, 1987). Despite the initial studies whieh attempted

to differentiate between pain and other cries in the late 19605by the aforementioned

group ofScandinavian researchers, the past 10 years has seen a surge in the number

of publications whieh attempt to find the discriminating characteristics of infant

pain.

In 1986, two studies were published on the observable effects that pain had on

infants. Porter, Miller, and Marshall [Porter et al., 1986) published a study reporting

on the cry features observed during various stages of a circumcision procedure.

The analysis of these cry recordings from newborn males used spectrograms, and

features from these recordings were derived from these spectrograms, such as

duration of vocalizations, pitch patterns, and the number of identifiable harmonies,

to name just a few of the features examined. It was determined from this study, that

the most invasive procedures generated significantly longer crying episodes, higher

peak fundamental frequency values, fewer harmonies, and greater Fo variability. It

should be noted that no anesthetic was used in any of these procedures. These cries

were also presented to adult listeners for a subjective judgment of the perceived

urgency of the cries. Porter, Miller, and Marshall noticed that the cries from the

most invasive procedures were judged as being the most urgent. As well, adult

Iisteners all seemed to judge the cries along the lines of harmonie, temporal, and

pitch characteristies.

In that same year, Johnston and Strada published an article detailing a descrip­

tion ofacutepain response in infants undergoing a routine immunization procedure

1J0hnston and Strada, 1986). This study not only examined cry features, as Porter,

Miller, and Marshall did, but also looked at other measures such as heart rate, body
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movements, and facial expressions. The analysis of the cry recordings in this study

was performed using spectrograms. The authors remarked that there was wide

variability across spectrographs but that facial expressions remained consistent

across infants. Johnston and Strada go on to identify a particular pattern whieh

emerged as a result of an initial response to pain in the heart rate, cry features,

body movements, and facial expressions of the infants investigated in the study.

In the following year, Grunau and Craig investigated pain expressions as a result

of a heel-Iance for blood sampling purposes using measures of facial expressions

and cries [Grunau and Craig, 1987]. This study was conducted on infants who

were asleep and on infants who were awake at the time of the procedure, in order

to gauge if the expression of pain would differ depending on the functional state

of the infant. Il was discovered that facial expressions differed if the infant was

asleep or awake at the time of the heel-Iance, but that the fundamental frequency

of the cry was not related to this state. Once again, this study used spectrographie

techniques to analyze the cries.

Fuller and Horii published an article whieh attempted to determine an indieator

of distress in infant cries in 1988 [Fuller and Horii, 19881. In this study, the authors

cite the promise of using features extracted from four types of cry signais, namely

pain, Cussy, hungry, and cooing, whieh were guided from the "stress-arousal frame­

work" which states that levels of stress and arousal in infants will be refiected in the

cry characteristics. Sorne Fa related features, such as fundamental frequency jitter

and amplitude shimmer, showed no variability across cry types, whereas other

measures, whieh were generated to model the "tenseness" of the vocal tract, such

as the mean spectral energy of the cries, proved to be a useful tool in diffcrentiat­

ing cries. These parameters were extracted from a window-based analysis of the

utterances.

Aiso in 1988, Johnston anC: O'Jhaughnessy published an article where they

extracted the position and energy values of the second formant in order to de-
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termine if these values, which reflect the excitation and tenseness in vocal tract,

could be identified as different physiological responses to differentemotional states

fJohnston and O'Shaughnessy, 19881. In this study, pain, fear, and anger cries were

examined, with pitch extraction performed using a modified version of the simpli­

fied inverse filter trackirig (SIFT) method [Markel, 1972bl, and narrowband spec­

trograms were employed to examine parameters such as duration, harmonie struc­

ture, and melody. Formant structure was analyzed using wideband spectrograms

[O'Shaughness)',198"l. The authors found that there was greater intensity and

higher second formant frequency values in pain cries, a result which was found to

be consistent with the stress-arousal model of cry production mentioned by Fuller

and Horii.

ln the following year, Johnston published a review article on infant pain assess­

ment and management techniques [Johnston,19891. In this article, the relevant

physiologieal measures of pain observed in infants were cited as being cardiovas­

cular and hormonal changes, whereas the relevant behavioural responses to pain

were cited as being both facial expressions and cry characteristics. Pharmaco­

logical and nonpharmacologieal methods of controlling pain in infants were also

discussed, with the aforementioned measures being used to determine the relative

effectiveness of these pain management techniques.

ln that same year, Anand, Phil, and Carr, published a comprehensive article

on the neurological, anatomical, and chemical processes and responses evoked by

pain, stress, ilnd analgesia in infants [Anand et al., 19891. The changes in these

processes and responses as an infant developed were also presented, with a de­

scription of the cry as being an important manifestation of the underlying state of

the infant.

ln 1990, Grunau, Johnston, and Crait; focused on the relevance of facial expres­

sions and fundamental frequency and other cry characteristics for the tracking the

response of infants to invasive and non-invasive procedures [Grunau et al., 19901.
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The cry related features were ail exlTacted using spectrographie analysis.

Although a number of researchers used the cry as one of the parameters invesli­

gated as an indieator of pain, few used techniques other than spectrographie ones.

Fuller [Fuller, 1991] used measures extracted using a somewhat more elaborate ex­

traction of parameters from the cry signal, using discriminant function analysis to

determine the relevance of certain extracted features for the classifieation of pain,

fussy, and hunger cries. The method of choice for coding cry characterislics for the

assessment of infant pain still seems to be the spectrogram even if a number of other

parameters have emerged in the consideration of relevant parameters measured

from infants, such as facial expressions [Maikler, 1991, Benini et al., 1993].

In recent years, however, a number of other parameters are being extr<y:tcd

from cry utterances in order to assist pain determination in a multidimcn­

sional parametrie representation of features. These parameters include cnergy

values for premature infant pain [Stevens et al., 1994], and formant frequencies

[Hadjistavropoulos et al., 1994].

Recent efforts have also focused on the automatie classification of infant state

based on the characteristics of the cry. Published efforts at automating this dis­

crimination basieally begin with Lundh [Lundh, 1986]. In this article, the author

presents the development of a baby alarm which determines the tenseness of the

cry, based on energy characteristics of the signal, to characterize happy, crying, and

distressed. This deviee was tested by 10 deaf families who compared the pieture

illuminated by the deviee whieh was meant to convey the state determined by the

deviee, with the actual state of the infant. Although useful, this deviee generated

a number of false alarms.

Seven years later after the development of this baby alarm were documented,

Xie, Ward, and Laszlo published a brief article outlining their attempts at classifying

an infant's level-of-distress from cry signaIs using hidden Markov models (HMMs)

[Xie et al., 1993]. This measure was determined from several adult perceptions
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regarding the aversiveness, or perceived urgency, of several cries. Although the

article does not reveal specifie implementation details, a correct classification rate of

over 80% was quoted for the level-of-distress classification measure for the HMM.

Despite the number of parameters extracted from cry signais and investigated

for the classification of different cry types, the most commonly used, and seemingly

most relevant from an auditory point of view, are the vocal fundamental frequency

and related parameters such as harmonic structure, and melody. These parameters

are commonly used to illustrate differences in the cries of healthy and i11 infants

[Donzelli et al., 19941.

Perhaps the true relevance of the fundamental frequency has been overshad­

owed by the lack of computerized extraction methods which can adequately deal

with cry utterance vocalizations [Petroni et al., 1994a, Petroni et al., 1994bl. This

wouId explain why the majority of researchers still use the spectrogram tù de­

termine both the fundamental frequency, and its evolution over the course of an

utterance.

The following section will present sorne of the methods used to extract funda­

mental frequency from speech signais.

2.2 Fundamental Frequency Extraction

This section will present the background and the previous research undertaken on

the extraction of vocal fundamental frequency. 5ince the overwhelming majority of

work done to extract this parameter has been done on speech signais, the literature

presented will focus mair,ly on extraction methods used for this particular class of

vocalization.

Vocal fundamental frequency determination methods can be separated into

two classes; time-domain methods and frequency-domain methods. Tnne-domain
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techniques have the general advantage over frequency-domain methods in that

time-domain methods require much simpler ca1culations than their freqllency­

domain counterparts. In addition, these methods allow the location and speci­

fication of the pitch epoch times which make these methods suitable for pitch­

synchronous formant analysis [Hess, 1983, Medan and Yair, 19891.

On the other hand, frequency-domain fundamental frequency estimation meth­

ods segment the input signal into short blocks, also known as frames or windows,

and use spectral transformations such as clipping or inverse filtering to extract the

fundamental frequency. Typically, the extracted pitch values of these methods arc

then input to a preprocessor which then corrects for pitch halving or doubling er­

rors due to the mis-Iabelling of the fundamental frequency with its first harmonic,

as will be further discllssed in section 3.1.2.

The advent of computers and computerized signal processing techniques in

the late 1960s ushered in the start of the development of pitch extraction or pitch

determination algorithms. In 1967, Noll published an article outlining a pitch

extraction method based on the power spectrum of the logarithm of the power

spectrum, called the "cepstrum" [Noll, 19671. This transformation of the power

spectrum effectively causes the source and filter components of the speech signal

to be separated. This method was also used to extract the fundamental frequency

from infant cry signais sorne years later [Tenold et al., 1974).

Sondhi published a different pitch extraction method a few months after Noll's

article [Sondhi,1968l. The base methodology of the pitch extraction methods

presented in his article was spectral flattening, achieved by clipping a portion

of the signal contained within a window at a certain threshold value, and then

performing an autocorrelation on the spectrally transformed signal. This method

provided a simple, computationally inexpensive, and effective alternative to the

cepstral pitch extractor. A real-time hardware implementation of this algorithm

along with sorne other variations such as infinite peak clipping was presented by
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Dubnowski, 5chafer, and Rabiner [Dubnowski et al., 19761.

In 1972, one of the more popular methods of pitch exlraction, formant extrac­

tion, and speech coding was presented. John Markel published an article which

described a digital inverse filtering method for formant estimation of an input sig­

nal window, where the characteristics of the input sequence would correspond, in

a least square error sense, to a unit impulse train, with a period corresponding to

the pitch period, presented to the filter [Markel, 1972al. He later published an algo­

rithm which would use this technique to model the spectru: . of a low-bandwidth

version of the input speech signal, inverse filter the signal window with the pre­

dicted filter, and then perform autocorrelation on the inverse filtered signal to

determine the fundamental frequency [Markel, 1972bl. This method was called

the simplified inverse tracking filter (51FT) method, and still remains a popular

method of pitch extraction from speech signaIs.

ln mid-1973, John Makhoul, Joseph Maksym, and John Markel ail pub­

lished articles detaiiing different applications of this linear prediction tech·

nique [Makhoul, 1973, Maksym, 1973, Markel, 1973). Makhoul presented an

autocorrelation-based method of spectral analysis which approximated the short­

time spectrum. Maksym published a pitch extraction method based on the adaptive

prediction of the speech window where the prediction error was used as to deter­

mine the presence of voicing. The application of the digital inverse tilter for both

formant and fundamental frequency analysis was described by Markel, who also

presented a post-processing method for the determining whether a given input

signal window was voiced or unvoiced.

The theory and refined applications of the linear prediction technique for both

fundamental frequency and formant extraction were later compiled in a book

[Markel and Gray Jr., 19761.

With certain English vowels in speech, it was common to have two formant

frequency values within a few hundred Hertz ofeach other. In the linear prediction
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spectra for these particular vowels, these peaks would commonly be merged into

one peak, making separation of the two formant frequencies practically impossible.

This problem was addressed by McCandless [McCandless, 19ï4) using the chirp­

z transform [Rabiner et al., 1969) to resolve closely spaced formant peaks in the

spectra of input signais, if accurate determination of formant values was desired,

in addition to the extraction of Fo.

Another comp'Jtationally simple, yet effective pitch extraction method for

speech signais, with an associated decision logic system, was developed with the in­

tention ofhaving a method with characteristics similar to that of the autocorrelation

method. This involved taking the absolute magnitude of the difference between

the delayed input speech frame and the original at various delays [Ross et al., 1974).

The original appeal behind this method was that it used no multiply operations

and the nature of its operations made it suitable for a hardware implementation.

In 1976, the classic article by Rabiner, Cheng, Rosenberg, and McConega1pre­

sented the results of seven pitch detection algorithms which were tested on a num­

ber of different utterances spoken by adult male, adult female, and child speakers

[Rabiner et al., 1976). A number of error measures were defined and computed in

order to determine which algorithms were especially prone to particular errors,

and which algorithm generated the best results.

Another method which examined the characteristics of the signal over a

short time window was the maximum-likelihood pitch estimation method

[Wise et al., 1976). This method involved sampling the autocorrelation of the input

signal frame, and also offered improved resolution of the extracted fundamental

frequency values.

The zero-crossing method of extracting pitch was presented by Geckinli and

Yavuz [Geckinli and Yavuz, 1977). This method involved low pass filtering the in­

put speech signal to about 900 Hz so that each pitch boundary wouId be marked on

a zero crossing. Twelve threshold values were used for the decision making process
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with two specified threshold values set to the speaker's upper and lower values of

a speaker's pitch range. A f10wchart of the implementation of the algorithm was

also presented by the authors of the above-cited article.

An improvement to the linear prediction method was proposed by Hermansky,

Hanson, Wakita, and Fujisaki [Hermansky et al., 1977). In this article, the authors

addressed the limitations of the linear prediction method for fundamental fre­

quency extraction, especially for voices with high fundamental frequency values.

The spectrum of the input signal would be transformed by taking the cube root of

the power spectrum. Following this transformation, ali-pole modeling of the the

transformed spectrum would then be performed prior to the inverse filtering and

pitch determination process.

Aiso in 1971', Rabiner published an article describing the use of the autocorre­

lation function for the purposes of pitch extraction, detailing its limitations and

shortcomings in view of certain signal characteristics [Rabiner, 1977). Despite its

limitations this method was cited as having a reasonable performance under low

noise conditions.

Friedman proposed a pseudo-maximum-likelihood method of pitch estimation

which was based on a sequence of operations [Friedman,1978]. First, the input

signal window was subjected to linear-prediction inverse filtering. Then the in­

verse filtered signal was subjected to short-time spectral extraction using a bank

of bandpass filters with envelope extraction performed on the filter outputs. The

determination of pitch was then made using an algorithm which operated on these

parallel envelopes, which were considered as a multi-component vector signal.

A real-time pitch detector was developed by Seneff using the spacing between

the harmonics in a selective portion of the input spectrum to determine the fun­

damental frequency of the input signal window [Seneff,1978). The spectrum size

was limited to an upper frequency value of about 1000 Hz since in the input spec­

trum, the higher frequency values become ragged and the harmonics become more
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difficult to distinguish. The algorithm then used heuristics to extract the candidate

harmonics from the spectrum at which point it then proceeded to ca1culate the

fundamental frequency.

The following year, Ananthapadmanabha and Yegnanarayana published

their attempts at extracting the epoch from the linear prediction residual

[Ananthapadmanabha and Yegnannrayana, 19791. It should be noted that epoch

extraction is particularly useful for accurate pitch extraction since the start of an

epoch signais the start of the pitch period. Due to sorne ambiguities present in the

inverse-filtered signal regarding the exact start time of the pitch epoch, this signal

is further filtered aTid processed in order to extract this information.

Matausek and Batalov [Matausek and Batalov, 19801 proposed another ap­

proach using the inverse-filtered signal following a covariance-based linear pre­

diction stage to determine the glottal waveform. This process involved integrating

the inverse filtered signal and then iteratively inverse filtering this signal in order

to obtain a glottal mode!.

Duifuis, Willems, and Sluyter proposed a pitch extraction method base(\ on a

theory of hearing which states that the perception of fundamental frequency is

assisted by the fundamental frequency of the spectrum which best fits the spec­

trum of perceived sounds [Duifhuis et al., 19821. The method presented by the

authors involved '.mbjecting the peaks of the spectrum of an input signal window

to thresholding and component masking based on Goldstein's theory of pitch per­

ception [Goldstein, 19731. Once the spectral peaks were processed by this initial

stage, the remaining peaks were "sieved" to determine the most likely fundamen­

tal frequency. Sorne improvements to this method were featured in a later article

[Sluyter et al., 1982].

Another method which used a similar method to process the spectral peaks,

using a technique called the spectral comb, was proposed by Martin [Martin, 1982].

Here, a spectral correlation was performed on the power spectrum using a spectral
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comb with "teeth" of decreasing amplitude and intervals, and the results from

this technique were compared to that obtained using the cepstral pitch extraction

technique.

Although the methods which had been published up to that time worked well

on good quality adult male speech, few had been tested on speech which had

unusual characteristics due to aperiodicities in the vibration of the vocal folds or

from excessive fundamental frequency jitter and amplitude shimmer. One group

published a briefcomparison >Jn the performanceof a few of the more popular pitch

extraction methods, such as the cepstral and 51FT methods, on several speakers

with a variety of speech disorders [Laver et al., 1982).

This issue gained some attention in the following years, as researchers de­

termined that the fundamentaI frequency was an important parameter in deter­

mining the presence of larynge<\l pathology. Kasuya, Kobayashi, and Kobayashi

attempted to describe the pitch period perturbations present in patients with can­

cer of the vocal cords [Kasuya et al., 1983). Other attempts were made by Feij60

and Hemandez [Feij60 and Hemandez, 1985), and Imazumi [Imazumi, 1986) who

examined a number of factors based on the characteristics of the pitch periods in

utterances of speakers both with and without laryngeal pathology. In a related in­

vestigation, Veeneman and BeMent attempted to use inverse filtering to extract the

glottal pulse and to determine whether there would be an abnormal glottal volume

velocity, the latter being an indicator of pathology [Veeneman and BeMent, 1984).

Chung and Algazi first presented a crosscorrelation-based pitch extractor for the

purposes of extracting pitch values from noisy speech, exploiting the high correla­

tion between adjacent pitch segments [Chung and Aigazi, 1985). This method was

quoted as performing well Ù". the vicinity of voiced to unvoiced transitions where

the local signal-to-noise ratio was low.

A method which is similar to the cepstrurn pitch extraction method was pro­

posed by Indefrey, Hess, and Seeser [Indefrey et al., 1985). 1'1 this article, the au-
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thors proposed the application of a non-linear distortion in the frequency domain

following the computation of the discrete Fourier transform of the input signal win­

dow. Then, prior to performing the pitch period determination, the non-linearly

distorted spectrum was inverse transformed using the inverse discrete Fourier

transform.

Charpentier implemented a method which used phase information from the

discrete Fourier transform of an input signal window to extract the harmonic

components from the input spectrum and then performed fundamental frequency

determination based on the values of the extracted harmonics [Charpentier, 1986).

The use of the Fourier transform phase for extracting the fundamental frequency

was also proposed by Brown and Puckette [Brown and Puckette, 1993).

Another linear prediction-based method which attempted to address the issue

of short pitch period extraction was presented by Miyoshi, Yamato, Yanagida, and

Kakusl,o [Miyoshi et al., 19861. These authors stated that the extraction of voicecl

sounds uttered by children or females could be accurately estimated using sample­

selective linear prediction, which employed a two-step linear prediction process.

Despite the appeal of the method, which attempted to deal with the issue of Iinear

prediction and short pitch period sounds, the results presented in the paper did

not provide a complete or convincing test of this method.

A novel, albeit complicated, pitch extraction method was proposed by Gong

and Haton [Gong and Haton, 19871. This method involved modeling speech as

a sequence of a specified function type, referred to as a resemblance function,

which allows amplitude and excitation of the signal to be time-varying. This

resemblance function is statistically optimized from an energy function, and the

pitch period estimate is achieved by the maximization of this function. From a

frequency-domain perspective, this method is equivalent to a harmonic matching

procedure with results being comparable to those achieved by other harulonic

matching methods.
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Another method presented in that same year used the spectral autocorrelation

to extract pitch from noisy speech signaIs [Lahat et al., 1987]. In this method, the

spectrum of an input signal window was presented to a series of bandpass "lifters"

covering the range of expected pitch periods, and then extracting the pitch from

autocorrelation functions calculated at the output of the Iifters. These extracted

values were then presented to a median filter for the smoothing of extraneous

pitch values.

Andrews, DeGroat, and Picone published a series of articles outlining their

improvement to the c1assical cepstral-based pitch extraction method calied the

MUSIC method [Andrews et al., 1989, Andrews et al., 1990b, Andrews et al., 1990a).

In these articles, the authors propose the use of singular value decomposition for

estimating the power spectral density of a signal. In this method, singular value

decomposition is also used in the place of the fast Fourier transform to estimate the

cepstrum for the purposes of accurate pitch extraction in the presence of noise.

Cheng and O'Shaughnessy presented another method for the estimation of

the glottal c10sure instant and period in an attempt to provide pitch estima­

tion technique which could iIlustrate period-by-period changes in the pitch pe­

riod [Cheng and O'Shaughnessy, 1989). The method used a twelve-pole linear­

prediction analysis of the input speech signal window, a crosscorrelation, and

convolution to generate a non-stationary pitch period estimation.

The estimation of pitch using a set of harmonic sine waves to fit the input

data using a mean-squared error criterion was proposed by McAulay and Quatieri

[McAulay and Quatieri, 1990). This method assumes, however, that the sinusoidal

characleristics of the signal have already been analyzed by an analysis / synthesis

method proposed in a previous paper [McAulay and Qualtieri, 1986). The article,

however, fails to present any comparison between the results achieved using the

proposed method and other pitch extraction methods.

A method for the determination of pitch from aperiodic speech signaIs was pre-
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sented by Hedelin and Huber IHedelin and Huber, 19901. In this article the authors

identify four types of aperiodic voice excitation, and then proceed to present their

decimated whitening autocorrelation pitch extractor, to deal with the irregularities

present in these aperiodic speech signais, comparing their results to those of the

c1assical pitch extraction methods, such as 51FT and autocorrelation.

A new method which uses a cochlear model coupled with a bank of auto­

correlators in order to determine the pitch was presented by 51aney and Lyon

15laney and Lyon, 19901. The overall system was designed to mimic the human

perceptual system using an auditory model whose outputs can be viewed in a

three-dimensional graph of time versus frequency band versus intensity, calied a

correlogram. From these correlogram values, the subsequent post-processing sta:;c

determines the most likely pitch value for that given input signal window, without

attempting or enforcing framê-to-frame continuity.

Another cepstral-based method which uses the one-sided autocorrelation

of a input signal window was proposed by Nadeu, Pascual, and Hernando

INadeu et al., 19911. Here, the cepstrum is taken from the one-sided, or causal

part, of the autocorrelation sequence, allowing for an apparently sharper peak to

be present in the resulting cepstrum at the lag corresponding to the pitch period.

With the emergence and application of neural networks in a number of differ­

ent domains being attempted, it was only a matter of time before this paradigm

would be called upon to solve the pitch extraction problem. In 1990, an attempt

by Marnnez-Alfaro and Contreras-Vidal for a neural network-based pitch detector,

was presented IMartinez-Alfaro and Contreras-Vidal, 1991). A multi-layer neural

network, trained using backpropagation, was used, with speech signal windows

consisting of 100 raw signal samples presented to the neural network inputs with­

out prior preprocessing.

A method which appreciably improved both the resolution and accuracy of

extracted pitch values over that of previous methods was the so-called super
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resolution pitch determination method presented by Medan, Yair, and Chazon

[Medan et al., 199Il. This method is somewhat similar to that proposed by Chung

and Alazi [Chung and Algazi, 1985], with the difference that Medan, Yair, and

Chazon give a more detailed treatment on the use of the crosscorrelation for the

purposes of pitch extraction. As weIl, they also present a method for interpolating

between the sampie values and achieving "super" or aimost infinite resolution in

the extracted pitch values. De Mori and Omologo present another method which

is based on the super resolution method for the purposes of both visualization and

pitch extraction [De Mori and Omologo, 1993).

Hanna recently presented a novel method for the extraction of pitch using the

maximum likelihood [Hanna, 19921. In this method, a frequency-domain max­

imum likelihood procedure is used for the estimation of the pitch frequency of

voiced segments by maximizing a log-likelihood function over the range of possi­

ble pitch frequencies for the speech signal being analyzed.

Another method which has emerged over the past few years and is com­

monly used for the time-frequency analysis of signaIs uses wavelets. Although

a number of articles present the use of wavelets to determine whether a seg­

ment is voiced or unvoiced or to detect the presence of pitch in an utterance

[Kadambe and Boudreaux-Bartels, 19921, one group has used wavelets for pitch

determination [Lunji et al., 19931.

Although a number of different pitch extraction methods exist, as have been

described in this section, the problem of accurate pitch extraction still remains an

open problem, especially for speech which has short pitch periods, as it the case for

sorne female speech, for children's speech, and of course, for infant cry utterances.

As weIl, accurate determination and tracking of pitch on a period to period basis

still eludes most published methods. In short, no real distinguishable trend or

evolution in the development of fundamental frequency extraction methods has

really emerged since the first digital signal processing techniques came into use
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sorne 30 years ago. Although the complexity of the extraction methods has evolved

from a better understanding of the underlying processes which produce speech.

100% accuracy still eludes most published extraction methods.

2.3 Neural Network-Based Classification Techniques

This section will initially present two examples of neural network-based classifiers

in order to give a broad overview as to the wide variety of applications possible.

However, the focus of this section is primarily on speech-related applications of

artificial neural networks. Even with this particular focus, the amount of literature

published on the applications of neural networks in the speech domain is quite

extensive, and as such, it is impossible to mention ail of the articles related to this

domain. Thus, a survey of sorne of the more successful trials and architectures

used in the speech domain will be presented.

Neural networks have been successfully applied to solve a wide variety

of classification problems be it diagnosing HIV reverse transciptase inhibitors

[Tetko et al., 1994], to computing the likelihood of credit card fraud based on a

pattern of user transactions [Ghosh and Reilly, 1994]. The broad appeal of neu­

ral networks lies in their ability to achieve good performance through the dense

interconnection of simple computational elements. The potential benefits of the

use of neural networks go far beyond the high computational rates, which are

achieved from massive parallelism, by providing a greater degree of robustness,

or fault tolerance, precisely due to the large number of node interconnections

[Lippmann, 1987]. The training process of neural networks is still a major focus of

the research undertaken in this c1.omain, since it is the training process that adds

robustness to the network by compensating for variabilities in the input patterns.

Neural networks are non-parametric classification systems and thus make weaker

assumptions about the shapes of the underlying distributions than do traditional

statistical classifiers, and as such, may prove to be more robust when the distribu-
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tions are generated by non-Iinear processes.

In speech applications their use first started with the article publisheà by Koho­

nen, Miikisara, and Saramiiki which described the use of phonotopic maps for the

visualization of speech signais !Kohonen et al., 19841. This mapping principle was

originally used in image analysis and was later adapted for this speech application.

Self-organizing networks !Kohonen, 19881 were us,~d to form a two-dimensional

map displaying the similarity relations between phonological units, obtaining more

generality than the c1assical formant maps, since this method used the entire spec­

trum instead of the first three formant values to determine the spoken phoneme in

a given word.

Until the first neural network tests on speech recognition emerged in the late

1980s, the method ofchoice for speech recognition applications was hidden Markov

models (HMMs) !Rabiner, 19891. However, with the first few recognition trials

using neural networks giving reasonable results, the door was opened for further

research into other network architectures and learning methods to be undertaken

which could potentially be better suited to this task than the c1assical feedforward

neural networks trained using back propagation.

The "IEEE First International Conference on Neural Networks" saw a number

of presentations dealing with speech applications of neural networks. Shamma

proposed a three-step view of the auditory processing and recognition pro­

cess of speech which could be then emulated by a series of neural networks

!Shamma, 19871. One neural network could perform the initial transformation

of the signal and then these transformations would be sent to the feature extraction

stage, which would in turn send the extracted features to the learning and pattern

recognition stage. Although no results or recognition rates were given in this pa­

per, the method was indeed an intriguing way to process speech for recognition

purposes, emulating the function of the human brain.

Gold, Lippmann, and Malpass !Gold et al., 1981'J also proposed the application
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of neural networks to the recognition of steady state vowels in speech. ln this

paper, Hopfield neural networks [Hopfield, 1984) were modified and tested for the

purposes of word recognition and this paper went on to describe an approach for

dealing with time varying sequences, such as speech, for a Hopfield net whieh

would have delay filters added in the activation functions.

The trial of several experiments on speech data using neural networks was also

reported by Bourlard and Wellekens [Bourlard and Wellekens, 1987). Here, 16 mel­

cepstrum coefficients were generated for every 10 ms frame of input speech, whieh

were then clustered using a k-means clustering algorithm and subsequently input

into a neural network. Context information was also included at the inputs of the

network in the form of previous and future input feature vector frames. Results

from this proposed configuration, that of time-delay neural networks, and hidden

Markov models, were compared in a later paper [Bourlard and Wellekens, 1989)

where the relative strengths and weaknesses of these respective methods at cap­

turing relevant speech features were discussed.

Lippmann and Gold presented a novel neural network architecture called

a Viterbi-net and illustrated ils use for the task of isolated word recognition

[Lippmann and Gold, 1987). This network performed temporal alignment of the

input features derived from the speech signal to the input classification nodes,

and used fixed delays and threshold logie to implement a modified version of

the Viterbi algorithm, a method commonly used in many HMM speech recog­

nizers. Recognition accuracy in this series of tests equalled that of HMMs. ln

a later article, Huang, Lippmann, and Gold suggested that the incorporation of

these neural networks into HMMs might improve overall recognition performance

[Huang et al., 1988].

The use of "temporal flow" neural networks, or neural networks with recurrent

connections, for dealing with time-dependent sequences was proposed by Watrous

and Shastri [Watrous and Shastri, 1987). In this article, the authors used time-
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dependent input features, namely 16 filter-bank values, generated from the input

signal, which was segmented by hand in order to avoid time-alignment problems

between subsequent words. This setofexperiments illustrated that this architecture

WilS useful for word recognition.

AIso, in 1987, Waibel, Hanazawa, Hinton, Shikano, and Lang presented a

new architecture which was developed principally for capturing the acoustic fea­

tures between subsequent segments of input signal windows for the purposes

of phoneme recognition [Waibel et al., 1987, Waibel et al., 19891. This architecture,

calied a time-delay neural network (TDNN), also had the feature that it could

tolerate poorly aligned input frames of data, and still perform accurate recog­

nition. The results achieved by this architecture were comparable or superior to

those achieved using hidden Markov models [Waibel et al., 19881. For the phoneme

recognition experiments, the input features consisted of 16 mel-scale coefficients

computed every 5 ms from a 10 ms window of speech. These networks were

later used in word recognition experiments with recognition rates exceeding 90%

[Bodenhausen and Waibel, 1991].

Other applications of neural networks in speech related experiments included

the recognition of place of articulation [Bengio and Mori, 19881. In this particular

article, the Boltzmann machine algorithm and back propagation algorithm were

used to learn the front, center, or back, rlace of articulation for vowels. Coding the

input spectral lines of the input window of speech used a scheme that employed the

relative frequencies and amplitudes in a non-linear frequency scale representation

similar to that of the human ear, giving results which exceeded that of an HMM on

the same data set.

An alternate set of input features were used by Leung and Zue

[Leung and Zue, 19881 who derived features from the input speech signal using

Seneff's model of the human auditory sys~';m [Seneff, 19841 to classify phonemes

cut from continuous speech. Here, contextual information was aIso supplied in

36



•

•

•

2. Background and Rclatcd Work

the form of cuts from the preceding and subsequent phonemes in the word to a

feedforward neural network trained using back propagation. Recognition ratl'S

using this method were about 60% [Leung, 1989).

The idea of using Kohonen feature maps for the purposes of

phoneme-based speech recognition was rekindled by Kepuska and Gowdy

[Kepuska and Gowdy, 1989). In this a~ticle the authors proposed a solution to

the problem of feature vectors from other phonemie portions of an uttered word

overlapping with the phonemie portion under consideration. For accurate recog­

nition, the authors propose using the steady state portions of phonemes as input

into the neural network recognizer.

A dynamic-programming-based matching system, coupled with a neural net­

work trained using back propagation, was implemented and tested by Sakoc,

Isotani, Yoshida, Iso, Watanabe [Sakoe et al., 1989). This network model, called a

dynamie programming neural network (DPNN), could easily treat time-sequence

patterns, using the popular dynamie orne warping time alignment technique. Ex­

perimentai results of 99.3% were achieved for isolated Japanese digit recognition.

Other research groups performed a comparison of different recognition tech­

niques or different neural network architectures. One such group used both a

statie and a sequential presentation of input features consisting 01 18 mel-cepstrum

coefficients computed from every 10 ms of speech to determine the accuracy for a

simple recognition task and for digit recognition as weil [Demiehelis et al., 1989).

Another group performed a comparison of four neural network architectures

whieh had been previously deemed as useful for speech recognition purposes

[Fallside et al., 1990], but their experiments either achieved very poor results or

were incomplete. Other comparisons between neural networks and HMMs were

performed by BridIe [Bridie, 1991) who also set out a series of comparative mea­

sures to aid in this determination.

As weil, a comparison between a multi-Iayer feedforward neural network
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and a competitive learning method, called a learning vector quantization

[Kohonen, 1988] neural network, was presented by Ahalt, Jung, and Krishna­

murthy [Ahalt and Jung, 19911. In this article the authors use three feature sets de­

rived from the input speech signal window: autocorrelation coefficients, weighted

linear prediction cepstral coefficients, and formant frequency values. A comparison

of different learning vector quantization-based neural network architectures for ro­

bust speech recognition was performed by Zhu, Li, Guan, and He [Zhu et al., 1993).

A neural network hybrid was presented by Hataoka, Amano, Aritsuka, and

Ichikawa [Hataoka et al., 19901. The authors presented an algorithm for large vo­

cabulary speech recognition using two kinds of connectionist models. The first

one was a phoneme recognition model which used a method combining neural

nets and fuzzy inference calied neural-fuzzy. This method used neural nets as

acoustic feature detectors and fuzzy logic as a decision procedure. The other was

a connected-word sequence selection method which used semantic information

about conceptual relationships among vocabulary words.

Another neural network and hidden Markov model hybrid used for speech

recognition was presented by Robinson [Robinson, 19921. The recurrentneural net­

work was used for the purposes of context modeling and also provided phoneme

state occupancy probabilities for a simple context independent hidden Markov

mode!. The description of the implementation of the entire recognition system was

later described in another article [Robinson et al., 19931.

Using neural networks as a postprocessor for HMMs was described by Jin and

Chung !Jin and Chung, 19921. The neural network was introduced to eIÙ1ance

the classification capability of hidden Markov modeling for speech recognition

purposes. This postprocessor received stimuli from not one, but all word HMMs

for each word in the input speech, and the input speech frames did not require

prior segmentation.

As welI, Bengio, De Mori, Flammia, and Kompe, presented the design and
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evaluation of three neural networks in a composite neural network and HMM

framework [Bengio et al., 19921. Of the three neural networks, one detects manner

of articulation and the other two describe the signal in terms of place of articula­

tion, all of which were inspired by acoustic-phonetic knowledge. The latter two

networks were later merged when the hybrid system was implemented, with the

HMM serving to model the neural network outputs.

The issues of using partial connections between nodes in adjacent layers was

discussed by Ye, Wang, and Robert [Ye et al., 1990]. In the experiment presented

in the article, the neural network with partial connections was used to perform

isolated word recognition. Results demonstrated the advantages of partial con­

nections against that of full connections. Partial connections can introducc both

temporal context constraints and sorne implicit knowledge into the network, and

may also lead to efficient learning on a small data set size.

Another set of input features derived for a neural network in a speech

recognition application was proposed by Nguyen, Lippmann, Gold, and Paul

[Nguyen et al., 19901. In this article the authors propose the use of a front-end pre­

processor based on the ensemble interval histogram model developed by Ghitza

[Ghitza,1986]. The network using the front-end preprocessor achieved results

comparable to tho;;e using mel-scale filter-band inputs.

Neural networks were also investigated for the purposes of pitch detccLion

and pitch determination. Barnard, Cole, Vea, and Alleva [Barnard et al., 19911 pre­

sented two feedforward neural networks for pitch detection. One used the raw

input signal, and the other neural network used features derived from the input

signal, called peak descriptors, as inputs into the pitch detection network. In an­

other experiment, Martinez-Alfaro and Contreras-Vidal used a fe~dforward neural

network to perform pitch estimation [Martinez-Alfaro and Contreras-Vidal, 1991).

This neural network used 100 samples of the raw input signal, with the output

consisting of 100 nodes, one for each of the possible pitch period lags.
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Nak;:mura and Sawai [Nakamura and Sawai, 1992] proposed a modular time­

delay neural network for the purposes of speaker-dependent speech recognition.

Here the authors demonstrate that a modular network, with one network assigned

to each speaker, performs as weil as a single time-delay neural network with a

larger hidden layer, given the larger storage capacity that is required for a larger

collection of spe.' kers by a single neural network.

An interesting, but brief, comparison of two auditory models and mel-cepstral

coefficients as inputs to a phoneme recognition neural network, which employed an

unsupervised learning method, was performed by Anderson [Anderson, 1993]. In

this article it was noticed that different input patterns make different types ofbroad

class recognition errors, but that auditory models offer sorne improvements over

the mel-cepstrum coefficient inputs. Another similar comparison, performed using

Iinear prediction coding coefficients, and features derived from an auditory model,

this time for speaker identification purposes on two neural network architectures,

also inclucled Anderson as part of the investigating team [Colombi et al., 1993].

Another novel neural network architecture was proposed by Li, Fang, and

Li [Li et al., 1993]. In this article, the authors propose a self-organizing neural

tree, which is suitable for hierarchical classification and vector quantization. This

network promises to provide good results for speech recognition and image coding,

and has the advantage that the training time for the neural tree is much shorter

than for other competitive networks.

Wu and Chan presented an neural network for the purpose of speaker inde­

pendent word recognition [Wu and Chan, 1993]. The network was composed of

three concatenated subnetworks. One subnet converts the information contained

within the features extracted from a speech signal frame into a probability vector

whose components correspond to the estimated probability of the feature vectors

belonging to the phonetic classes that constitute the words in the vocabulary. These

outputs are then crosscorrelated by the second neural network and then presented
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to the decision making classification subnetwork for final classification.

Another neural network model which used inputs derived from neurophysil.~

logical findings in the auditory system was presented by Yamauchi, Fukuda, ,md

Fukushima [Yamauchi et al., 1993). The system used two separate modules, one to

extract auditory features from the input signal, and the second to perform recogni­

tion based on the extracted auditory features which accumulates features over time

and in three separate neural network blocks, accommodating different speaking

rates without affecting recognition.

Hadjitodorov, Boyanov, Ivanov, and Dalakchieva presented a system for

speaker identification which employed two neural network architectures

[Hadjitodorov et al., 1994). This method used one neural network based on self­

organizing maps, and another network using the autoregressive neural network

model, with the final cbs~ification decision obtained through a voting principle

using the decisions of the two classifiers.

Another attempt at speaker recognition was performed by Kuah, Bodruzzaman,

and Zein-Sabatto [Kuah et al., 1994). Twe1ve feature parameters were obtained

from the mel-cepstrum coefficients and from linear prediction coding coefficients

which then served as input into a feedforward neural network. Three different

speakers uttering 13 different words were used to train and test the system achiev­

ing good results.

A novel use of wavelets and neural networks for lhe purpose of both speaker

identification and the classification of unvoiced sounds was recently proposed by

Kadambe and Srinivasan [Kadambe and Srinivasan, 1994). Wavelets are used to

help in the "'o;sistance of classifying unvoiced sounds, and in the identification of

speakers based on only one pitch period of speech data. These features arc then

input into a feedforward neural network for classification.

Since the initial application of artificial neural networks to speech-related do­

mains over 10 years ago, the architectures used to address different classification or
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recognition issues have progressed from simple feedforward architectures, to the

use of specially designed architectures, to multiple neural network configurations,

to hybrid configurations combining neural networks with other classification meth­

ods. Despite the successes of more complex configurations or hybrid systems, good

results using relatively simple neural network architectures have nevertheless been

achieveci lOr a number of speech and phoneme recognition experiments. These re­

sults motiva te our simple initial attempt using neural networks for the purposes

of cry classification before more complex classification systems are investigated.
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Chapter 3 Improved Fundamental Frequency
Extraction for Infant Cry Vocalizations

This chapter presents an improved fundamental frequency determination method,

called the improved crosscorrelation vector-based fundamental frequency extrac­

tor, which is capable of tracking rapid changes in pitch due to double-harmonic

break episodes in the utterance signal, and capable of dealing with pitch values

which are within the large range of allowable Fu values for infant cry vocalizations.

The method, which will be described in section 3.1, ,llows the determination of

Fa on a period-by-period basis and can be used for both improved visualization of

the utterance, and for further pitch-synchronous processing of these vocalizations.

The results of this improved fundamental frequency extraction method will aIso be

compared to the results obtained on several cry recordings using six other methods

adopted from the speech processing domain described in section 3.2. They are

the linear predictive coding (LPC) method, its variant, the simplified inverse fHter

tracking (51FT) method, the cepstral extraction method, the harmonie sieve, the

spectral flattening autocorrelation method, and the super-resolution pitch extrac­

tion method. These various methods will be tested on five different cry recordings

from the data set described in section 3.3 and the results will be presented and

discussed in sections 3.4 and 3.5 respectively. The chapter concludes with an J1lus­

tration of the improved visualization of utterances achievable using the improved

crosscorrelation vector-based fundamental frequency extraction method.
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Figure 3.1: Block Diagram of the Improved Crosscorrelation Vector-Based
Fundamental Frequency Extraction Process

3.1 Improved Crosscorrelation Vector-Based Fundamental Fre­

quency Extraction

This section describes the different parts of the improved Fo extraction method

which is based on the processing of the sequences of crosscorrelation vectors gen­

erated in an earlier processing phase of the signal. An overview of the method is

first given, followed by an indepth description of the individual stages of process­

ing performed by this method.

3.1.1 Overview of the lmpr.:)ved Fundamental Frequency Extraction

Method

Figure 3.1 presents the method in a block diagram format consisting of a number

of steps which are grouped into Iwo different stages, namely, the signal transfor­

mation phase and the post-processing phase.

The first phase transforms the input signal using the normalized crosscorrelation

into a feature space which is then used in the post-processing phase, for the purpose
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of accurately determining and tracking the value of 10'0. Ideally, the sampled input

signal s(n) should consist of at least one complete utteranC'~, that is, from the start

of a vocalization to a retum to silence, in order for the post-processing phase to

function accurately. If only a portion of an utterance is available, the method still

performs properly, but obviously the progression of /'Îl cannot be monitored or

tracked for the missing portions of the signal.

Although this is not a real-time method, the multiple steps required by this

algorithm are necessary to ensure that correct /~) values will be produced for infant

cry vocalizations, and especially troublesome c1ass of speech signal. This method

is useful not only for infant cry signais, but for speech in general, and could be of

particular interest for cases where the 10'0 values of a speaker needs to be subjected

to a very detailed analysis, as could be the case if the emotional state, or laryngeal

pathology of a speaker is to be determined. The algorithm is not restricted to

a particular range of Fo values; any range can be accommodated. Subsequent

post-processing could yield 10'0 values for every pitch period in the recording with

so-called "infinite" or "super" resolution [Medan et al., 1991].

The following sections give a detailed description of each portion, or stage, of

the improved crosscorrelation vector-based fundamental frequency extractor.

3.1.2 Crosscorrelation-based Pitch Extraction

As was mentioned in section 2.1, time-domain pitch extraction methods are both

computar.onally simpler than their frequency-domain counterparts, and also yield

more accurate pitch values. This c1ass of Fa determination methods also allows

the possibility of locating the pitch epoch, which is the time at which the vocal

folds close, and which is denoted by the abrupt increase in the signal waveform,

as illustrated at the locations labeled A, C, and E in figure 3.2.

Closure of the vocal cords initiates the pitch period in a voiced signal. The
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Figure 3.2: SampIe Speech Signal Waveform
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abrupt increase in the signal amplitude marking this event is then followed by a

decaying amplitude envelope, as can be seen in figure 3.2 by the decrease of the

amplitude value of the pitch epoch peak, and the amplitude value of the oscillation

following the pitch epoch, Iabeled B, D, and F. The rate of decay of the amplitude

enveIope and the period of the intermediate oscillations between subsequent pitch

epochs are proportional to the bandwidth and equal to the period of the highest

energy formant frequency of the vocal tract. Typically, this cOlresponds to the

lowest resonant frequency of the vocal tract, namely, the first formant frequency

(l'i) [O'Shaughnessy, 19871.

Consequently, these methods are useful for for pitch-synchronous processing

of the signal, allowing not only the fundamental frequency to be determined on

a period-by-period basis, but other parameters as weil, such as the values of the

formants, for example. Formant frequency values correspond to the resonant

frequencies of the vocal tract, allowing one to gain sorne insight into the shape of

the vocal tract for cries uttered in different situations.

•

Since the accurate extraction and tracking of vocal fundamental frequency is

what is desired in order to overcome the deficiencies ofother Fa extraction methods,

it is no coincidence that the core method upon which the Fa extraction method

presented here is based, is a time-domain method.

The normalized crosscorrelation is at the heart of the improved crosscorrela-

46



•
3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

r-X-'I-'
10 10+ t

y-1

•

Figure 3.3: Adjacent Segments of Voiced Speech Signal

tion vector-based fundamental frequency extraction method as it is for the super­

resolution extraction method originally described in a journal article by Medan,

Yair, and Chazon [Medan et al., 1991]. The benefits of using the normalized cross­

correlation for fundamental extraction were presented in a paper by Chung and

Alazi [Chung and Algazi, 1985]. The details of the normalized crosscorrelation,

and its usefulness for Fo extraction, are described below. Although this method

leads to a highly accurate method of Fo extraction for speech signal~;, it requires

further refinements in order for it to be accurate for infant cry vocalizatiûm: :l5 weil.

Consider a periodic portion of a voiced speech segment s(t) and two adjacent

segments xT(t, to) and YT(t, to), as are shown in figure 3.3. Each of these ~egments

are of length rand both xT(t, to) and YT( t, to) span a segment of the signal s( 1) in

the interval [to, to +2r]. If, starting at t = to, there is a portion of the signal 2r

which contains exactly two pitch periods so that r = '/ù, corresponding to the

fundamental frequency period, and where X'l'o(t, to) is the first pitch period of the

signal segment and YT.( t, to) is the second pitch period of the signal segment, it

can be said that the two segments will differ only in amplitude and from other

distortions resulting from dissimilarities between the two signais.

The difference in amplitude between these two adjacent segments can be ex­

pressed in terms of an amplitude modulation factor, denoted as a(to), and the

distortion and dissimilarity factor between XT.( t, to) and Y1'o( t, to) can be expressed
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as ,,(1,10)'

Consequently, the two adjacent signal segments can be represented in terms of

each other as follows:

x7o(I,10) =a(lo)Y'lo(l, 10) +cIl, 10) (3.1)

with the condition that the two successive pitch periods are sufficiently similar, so

that the aforementioned assumptions hold. The time interval T = To for which the

error term c(l,lo) is minimized over the time interval [10,10 +T] according to an

error norm, say the normalized square error, is defined as the pitch period for the

time instant 1= 10.

Minimizing equation 3.1, using the normalized square error norm leads to the

following equation:

• ('O+T 2
J,. [XT(t, 10) - a(lo)YT(I, 10)] dl

(3.2)

•

where the denominator of equation 3.2, serves as a normalization term, compen­

sating for the occurrence of non-zero mean segments, which are common when the

segments do not include complete signal cycles. The argument of the integral in the

denominator can be replaced by either [xT(I, 10W or [YT(I, 10)]2 if one considers the

energy contained in xT(I, to) to be similar to that contained YT(t, to) for the purposes

of normalization. In a practical implementation, the value of T should be restricted

to the range of expected pitch period values, which in the domain of infant cry

vocalizations range from 0.4 ms to 6.6 ms, corresponding to frequencies between

2500 Hz and 150 Hz respectively.

Next, equation 3.2 is differentiated with respect to a(H in order determine

for which T the dissimilarity or error measure between the two adjacent signal

segments is minimized, and to find an optimal value for the amplitude modula-
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tion term. 1'he latter tuIDS out to be a(lo) = ft~+T xT(t,lo)YT(I,lo)dlj ft:[Yr(t,io)j2(/I,

where the numeriltor represents the inner product (x, Y)T from 10 to 10 +T, and the

denominator is the energy of the segment YT(I, 10)'

Using this result, the minimization of equation 3.2 can be expressed in the

following manner:

(3.3)

The second term on the right-hand side of equation 3.3 is immediately identified as

a normalized crosscorrelation term PT(X, y). Consequently, minimizing the above

equation, is analogous to maximizing PT(X, y) to find the pitch period. It should be

noted, however, that if adjacent segments of length corresponding to subsequent

multiples of the pitch period To are sufficiently similar to each other, that is, for

T = 2To,3To, then PT(X,y) will also produce maxima, as is expected.

The normalized crosscorrelation approach calculates the instantaneous value of

the pilch period which usually corresponds to the point where this value is greatest,

as the index T sweeps over the range of expected pitch values.

When dealing with a sampled signal, as is the case for this application, one

can replace the time indexes 1 and 10 by the sample indexes Il and 710' Moreover,

in the implementation of this first portion of the method, the adjacent segments

of the sampled signal, s(n), namely xn(no) and y,,(no), were taken to be of length

2n, instead of being of length n. This was done in order to reduce the effects of

strong formant peaks in the calculation of the normalized crosscorrelation values,

to improve its immunity to noise, and to removc the effeds of short periodic noise

bursts during silent portions of the signal from behg incorrectly identified as a

very short cry vocalization.

The above method, as implemented, processes the sampled cry vocalization

signal s(n) as shown in figure 3.4.

First, the cre sscorrelation values are generated for all adjacent segments sep-
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Figure 3.4: Flow Chart of the Crosscorrelation Block of the Signal Transfor­
ma tion Phase

arated by 11 of length 211. Since the cry recordings are sampled at 16 kHz, this

corresponds to traversing lag values from 6 to 110, which correspond to periods

of 0.375 ms to 6.875 ms or frequency values of 2667 Hz to 145.5 Hz. Figure 3.5

shows a signal segment and a plot of ils corresponding crosscorrelation vector. The

crosscorrelation is evaluated for each lag sample 11 at 110,

Once the crosscorrelation values have been computed for al! the lag value:; at

a given time index 110, the values which make up the crosscorrelation vector for

11 = 1/0 are searched for peaks above a certain threshold. Al!lag values !hat have

corresponding maxima values greater than this threshold value are savlld. These

lags r~Dresent the locations in p(x, Y)n of possible pitch period values which will be
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subject to furtherprocessing in order to determine in an approximate fashion which

of the Iags most likely corresponds to the pitch period. In the simplest cases, the

Iag where the crosscorrelation vector has its highest value couId be considered to

be the pitch period, or, alternativeIy, the Iag of the first crosscorrelation maxima to

exceed a certain threshoid couid be considered to be the pitch period, as a number

of classical Po extraction methods do [Ross et al., 1974, Rabiner, 1977].

However, the more successfui Fo extraction methods use sorne form of post­

processing on the pitch period candidates extracted from a speech signal in order

to improve overall accuracy of the extraction aigorithm. This is important when

infant cry signaIs are processed as weIl. Identifying a possible pitch candidate

correctly saves computation time wher, the crosscorrelation vectors are generated

in this initial phase, since the time, or sample, index 710 will be incremented by the

value of the most likely pitch period lag in preparation for the calculation of the

next sequence ofcrosscorrelation values, aise called a crosscorrelation vector. fn the

case where the true Fo lag is greater than the identified Iag, extra crosscorrelation

computations will be performed, thus increasing the time required for the algorithm

to move through a given signal.

In order to minimize the likelihood of performing these extra crosscocrelation

computations, the following post-pro~essing is done on the crosscorrelation vector
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peak candidate lag values [Medan et al., 19911. First these lag values are ordered

from smaller to larger lag values L = [/ 1.12•••• • I.\"J, where Is corresponds to the

largest lag value whose crosscorrelation value exceeds the prespecified threshold.

For ail the lis in L, starting with i = 1, Iwo adjacent segments of sampled signal s(n)

at" = 110 are re-processed, where "0 is the current lime index in s( n) from which the

sequence of crosscorrelation values were first calculated, leading to the set of lag

values L for Il = "0. Beginning with i = 1, the adjacent segments of s(no) are each

of lenbth 21,'1, rather than the previous length 21;, and are each separated by 1;, that

is one segment is given by .s(lIobN , and the other segment is given by S(1I0 + 1; hl.,..

The normalized crosscorrelation belween these Iwo segments is then calculated.

The first li whose crosscorrelation value exceeds another prespecified threshold is

the value by which the time index "0 is incremented for the computation of the

next series of crosscorrelation values for the crosscorrelation vector.

The above re-computation of the normalized crosscorrelation for the lag val­

ues in L is done in order to minimize the occurrence of lags corresponding to

strong, narrow bandwidth, first formant (FJl frequency values, which occur at

frequencies in the vicinity of 2Fo, being selected as the time index increment.

ln a voiced utterance, the value of the first formant can be identified as the in­

verse of the period of dominant oscillation belween Iwo successive pitch epochs

[Rabiner and 5chafer, 1975].

Cases where the period of the first formant frequency is chosen as the increment

value, increase the computation time of the crosscorrelation vectors for a given

voiced utterance, since the time index is incremented in smaller steps in these cases.

This method is based on the experimental results that if the lag 1; corresponds to

r. formant peak, then the Iwo adjacent signal segments s( "0, DhLN and s(110, li )21'N

will be dissimilar, and correspondingly, the normalized crosscorrelation of these

segments will be smal!. If, on the other hand, the lag li corresponds to a pitch

period, then these Iwo adjacent segments will be very similar which will in tum

yield a high normalized crosscorrelation value. 50, in effect, li can be considered
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Figure 3.6: Aow Chart of the Crosscorrelation Block of the Signal Transfor­
mation Phase Augmented with Adaptive Threshold Setting

to be an approximate value for the pitch period, or a pseudo pitch period value.

•

Using fixed threshold values for the aforementioned thresholds has the disad­

vantage that this value does not change as the characteristics of the signal or the

periodicity in the signal either becomes stronger and more prominent, or weakens.

A solution to this would be the introduction of a crosscorrelation vector maxima

threshold value; a dynamic variable which is set by augmenting the flow dia­

gram shown in figure 3.4 to that shown in figure 3.6. When the crosscorrelation

vector generation algorithm begins, the threshold is initially set to 0.85 so that

relatively high crosscorrelation values, due to brief noise bursts or 10cally periodic

disturbances in the signal, are not picked up and tracked. Once a maxima in the
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crosscorrelation vector exceeds this initial threshold value of 0.85, the threshold for

both the crosscorrelal'ion values of L and for the subsequent time index value are set

1'0 the greater of 0.8 and the largest value in the crosscorrelation vector multiplied

byO.89.

Having an adaptive threshold value permits low crosscorrelation values 1'0 be

considered as candidates in portions of the signal where there may be a formant

change or a lower signal 1'0 noise ratio which causes the similarity between two

adjacent segments 1'0 be reduced. As weil, this adaptive threshold has the benefit

of reducing the aforementioned effects of relatively high crosscorrelation values

on the time index due 1'0 the presence of a very narrow bandwidth Ft, by setting

the threshold 1'0 be a percentage of the maximum crosscorrelation value when two

adjacent segments are very similar.

Despite the use ofadaptive thresholds which attempt 1'0 minimize the occurrence

oi incorrect pseudo pitch period values, the characteristics of sorne cry signais

are such that there is usually very little decay between the pitch epoch and the

subsequent peak within the pitch period, unlike speech signais, where this decay

is appreciable. The rate of decay is inversely proportional 1'0 the bandwidth of the

highest energy formant [O'Shaughnessy, 1987], which for cries is almost always FI'

Furthermore, the method of proclaiming the first li whose crosscorrelation value

!'xceeds the threshold as the pseudo pitch pcriod does not completely eliminate the

occurrenc!' of errors. In fact, for very narrow bandwidth FI values in cry utterances,

this method still leads 1'0 numerous gross pitch errors, that is, the pseudo pitch

period is either n'lice or haIf the true value. This is clearly unacceptable if accurate

FIl extraction is required.

A number of journal papers published over the years have attempted 1'0 address

the problem of gross pitch errors by beginning 1'0 track a certain pitch period value

in the vicinity of the previous pitch period value, once others have been found

for a number of consecutive time indexes or frames [Hess, 1976, Markel, 1972a,
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Medan et al., 19911. This works weil for the majority of speech signais, since a

given Fovalue is usually within ±23% of the previous value. This is not the case for

infant cry vocalizations whieh can abruptly change or have double harmonic break

episodes present [Wasz-Hëckert et al., 19681. Consequently, further processing for

these crosscorrelation vectors considered as a group is necessary in order to obtain

the desired accuracy.

During episodes where the crossconelation maxima for a given vector or series

of vectors are ail below the threshold, be it due to a the occurrence of a dysphonie,

silence, or ambient noise interval, the time index wil1 be advanced according to the

lag value corresponding to the crosscorrelatio:l maxima with the largest value for

that vector. This procedure can be identified on the left-hand side of figure 3.6.

3.1.3 Grouping of the Crosscorrelation Vectors

The crosscorrelation vectors generated from the signal 5(1/.) over the length of the

recording can be placed together in a 2-dimensional manner similar to that in whieh

fast Fourier transform vectors of successive sigm:! segments are placed together

for the generation of a spectrogram. This concatenation of crosscorrelation vectors

yields a matrix of lag versus time where the entries in this matrix represent the

crosscorrelation value of a specifie lag value at a specifie time index. This qllows

the progression of the crosscorrelation vector maxima, whieh can be considered as

being pitch period candidates, to be tracked ",er time.

By using the observations regarding the crosscorrelation maxima made in the

previous section, it is expected that the actual pitch period lag value wil1 be con­

tained in one of the first few lag values in L, whose crosscorrelation maxima excei:!d

the threshold, as the lag values are traversed from low values (high frequency) to

high values (low frequency). The lag values of subsequent maxima whieh exceed

the threshold, and which follow the true pitch period lag, represent sub-harmonies
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Figure 3.7: Plot of the Lag Values with the Largest Crosscorrelation Values

of either the fundamental frequency period or the first formant period.

Identifying the lag where the first maxima exceeds the threshold in the cross­

correlation \!cctur as being the pitch period, as has been suggested by some re­

searchers, yields good results for speech signais, since high-energy formant values

typically have large bandwidths. Hence crosscorrelaticlJl vector maxima due to

intra-pitch period oscillations fall below threshold values and are eliminated from

further considerations [De Mori and Omologo, 1993l. This observation is not true

for some cry signais however, and so this heuristic is not useful for accurate pitch

period delermination for this c1ass of signais.

One observation made over the course of examining numerQUS crosscorrelation

vectors for a large number of cry utterances, was that the crosscorrelation value

of the pitch period lag will be the largest of all the other maxima values for the

majority of time indexes in a given section of an utterance, where the pitch period

values will be within ±25% of the previous pitch period value at the previous time

index. Although this observation does not prec1ude rapid and abrupt changes in

the pitch period values of an utterance, it does imply that once the pitch period

changes in a cry, it does so for a number of periods, not only for one or two pitch

periods.

An example of this observation is shown in figure 3.7. The lag values corre-
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sponding to the largest of the crosscorrelation maxima values in the vectors change

abruptly and unpredictably, leading to numerous pitch halving or doubling errors,

or gross f. itch errors.. if this technique were used to extract the pitch period, as

was described in the previous section. Figure 3.7 plots th.;> progression of pitch pe­

riod values for a portion of a voiced utterance with an actual pitch period varying

between 32 to 34 samples, which corresponds to Fovalues between 500 Hz and

470.6 Hz. The post-processing of the set of crosscorrebtion maxima [, in order to

eliminate the effects of narrow bandwidth FI values which oceur at values of 2/'(1,

as done in the super-resolution pitch extraction method, also yields inconsistent

results, as will be shown in section 3.4. This necessitates the following level of post­

processing of the crosscorrelation vectors in order to extract /~J accurately from cry

utterances.

3.1.4 Post-Processing Phase

The observation that, in a given utterance, the m?j"rity of lag values corresponding

to the largest of the the crosscorrelation maxima in the sequence of crosscorrelation

vectors corresponds to the true pitch period lag can be exploited for the post­

processing phase. Once again, figure 3.7 illustrates that using the heuristic of

selecting the lag value where the crosscorrelation value is greatest as the value for

the pitch period leads to very inconsistent results. Despite these inconsistencies,

however, it is readily observable that the majority of the lag values in this voiced

section do indeed correspond to the true pitch period lag value of between 32 and

34 samples. In fact, of the 100 time indexes in figure 3.7, only 33 of these values

are incorrect, and actually correspond to sub-harmonics of Fu which are integer

multiples of the pitch period.

Let us first define a pitch contour derived from a series of contiguous cro~s­

correlation maxima lag values, which are above the specified threshold, and have

subsequent lag values of the maxima lying within ±25% of the current lag value. If
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a distance measure such as a simple sum of the crosscorrelation maxima values over

the length of the pitch period contour wouId be used, then at the end of the utter­

ance, this "contour" would have the highest distance value of ail the other maxima

lag contours. Empirically, for a contour to be considered as a valid vocalization,

this should occur for an interval lasting at least 8 time indexes. Shorter interval

lengths are usually due to locally periodic noise bursts and are not considered as

valid markers of voiced events in th,- utterance.

In order to achieve this distance measure and distance analysis previously shown

in the post-processing block of figure 3.1, the following steps, explained in flow

chart form in figure 3.8, must be performed.

First, the crosscorrelation vector matrix is thresholded twice using two different

thresholds: a high threshold value, tu, and a low threshold value tL' In the first

pass, ail crosscorrelation vector maxima that have values greater than tu = 0.8

are kept and stored in a matrix labeled Mu. Then in the subsequent pass, ail

crosscorrelation peak values greater than tL = 0.6 are k«pt and stored in a matrix

labeled Ml,' The lag values where crosscorrelation maxima lie above the respective

thresholds in the Mil and Ah matrices, are set to a value of 1. At ail other lag

values in these matrices, the entries are set to 0, leading to very sparse Mu and Ah

matrices.

A number of different thresholds were tested for both stages of this peak ex­

traction process but this combination yielded the best results. These thresholds

allow crosscorrelation maxima lag values to be accepted when either a formant

change occurs, causing a brief drop in the crosscorrelation maxima values, but still

allowing the method to continue the pitch period track, during periods in the signal

where the cry utterance is particularly weak, or when there is ambient noise picked

up by the recording, ail while successfully exc1uding "false starts" in a contour due

to a brief and locally periodic noise signal.

Once this thresholding has been performed, the values in the matrix thresholded
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Figure 3.8: Flow Chart of the Peak Picking and Distance Computation
Stages of the Post-Processing Phase of the Pitch Period Extractor

•

with the higher value, Mil, are examined. Starting at the first time index, i = 1, the

algorithm increments the time index i unti! a non-zero entry is found .. Jo" a lag Lat

time i in Mu. This indicates that the maxima in the crosscorrclation vector matrix

lies above the high threshold value, tll. Once one such lag is found, the algorithm

then begins to look for non-zero entries in Mil at subsequent time indexes in a

window whose limits are set as being ±25% of the previous lag value. This range

of ±25% represents the limit of possible period-to-period changes for human vocal

cords [Hess, 1983].

The tracking in the neighbourhood of a given lag value represents that tracking
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of a candidate pitch contour and this continues in Mu until there are no peaks

within the range of allowable pitch period lag values when it switches over to test,

M/" the matrix thresholded with the low threshold, tL' As these peaks are visited

by the algorithm over the course of a contour, they are removed from both the high

and low thresholded matrices, MJI and Ah, 50 that these same peaks will not be

considered in future passes by the algorithm. The tracked lag values in the contour

are placed in a third matrix, referred to as the cOlltollr matrix, denoted as D.

This process is repeated until ail the non-zero entries in MJI have been visited,

and in this process, ail contours lasting less than 8 consecutive time indexes are

discarded for the reasons described earlier, namely because these short contours

are usually due to short, locally periodic noise bursts.

As a given contour is tracked, a cumulative distance measure is computed for

each time index according to the following formula:

• D(l ± 25%, i +1) = (cm(l ± 25%, i +1) +1)2 + D(l, i) (3.4)

•

where cm(·) is the value of the crosscorrelation maxima occurring at a lag in a

neighbourhood of ±25% of the current lag value lat time instant i, for the following

time instant i + 1. After ail the non-zero entries in Mu have been visited, the

algorithm moves to the next and final portion of the post-processing phase.

3.1.5 Distance Processing

As allüded to in section 3.1.4, the ca1culatior. of a distance measure for accurate Fo

extraction is necessary due to the fact that the lowest lag crosscorrelation maxima

which falls above a certain threshold is not necessarily the pitch period. Nor is

the pitch period the lag with the maximum crosscorrelation value. However, the

correct pitch period lag will have the majority of crosscorrelation value maximums

for the major!ty of time frames in a given contour. With this in mind, the distance
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measure ofequation 3.4 was formulated. At the end of a contour in a voiced section

of a recording, the lag value corresponding to the contour with the largest distance

value will correspond to the true pitch period contour. Using this information

coupled with additional heuristics, the distance processing algorithm proceeds

with the distance analysis shown in figure 3.9.

The distance measures ca1culated for every lag of every non-zero entry at every

time index are stored in matrix D, referred to as the contour matrix. The algorithm

takes this matrix and begins from the last time index of the contour matrix and

proceeds backwards to the start of the matrix or the initial time index. Thus, it

should be noted that the following description of the algorithm is described from

the perspective of moving along the decreasing time index. The algorithm searches

for the presence of a crosscorrelation distance maxima, indicated by the occurrence
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of a non-zero valued entry in a given lag value for a particular time index. If

none exist for a particular time index, the algorithm proceeds backwards in time,

deçrementing the time index counter until one such entry is found in the contour

matrix. If at any given time index, more than one non-zero entry is present, the

scores of the contours are checked, and the one with the highest distance score is

picked as the pitch period contour.

It should be noted tha'. these contour "ends" are treated as a particular case. For

the case of extremely weak signaIs, periodicity only appears at lags corresponding

to multiples of the true pitch period. Typically, these n('n-zero entries in the contour

matrix occurring at the end of a voiced section due to sub-harmonic period values,

only last for a few indexes and never for more than 8 time indexes. 50, once the first

non-zero lag entry is found for the first time at a given time index, the algorithm

then proceeds to examine the 8 earlier time indexes to observe if there are any other

contour peaks at lower lag values (higher frequency). If there are, the scores of the

contours are checked for sections of the contour for the length of the shorter of the

two contours being comparer'" The one with the maximum score is chosen to be

the winning contour. Tracking of that lag value initiates from this point, and the

other contours with ;ower scores are discarded. The lag which is tracked from this

point represents the true pitch period contour.

The algorithm then proceeds by moving backwards in time, by decreasing the

time index value in ordpr to traverse the matrix D. While tracking a given contour,

one of the following three events may occur: the current contour being tracked

ends, a new contour appears at a lower lag value (higher frequency), or a new

contour appears at a larger lag value (Iower frequency).

The first event represents the start of the utterance and the point from which the

algorithm proceeds, looking for other peak contours as it does when the algorithm

first begins. The second event represents the appearance of a contour at a lower lag

value, which could be the result of a return to the "true" pitch period value after a
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double harmonie break episode, or due to the occurrence of a narrow bandwidth

first formant, FI, whieh oceurs at multiple of the true Fo, in that partieular lime

instant in the utterance. The score of the new contour is then checked againstthat

of the current contour for the length of the shorter of the two contours. If the

score of the new contour never exceeds the score of the current contour for the

length of the shorter of the two contours, then the new contour is due to a strong,

narrow bandwidth FI effect, and is discarded. If the score of the new contour goes

above that of the current contour, then, the new contour represents the end of the

"true" pitch period lag and the current contour represents a double harmonie break

episode. Tracking then resumes about the rn::W contour.

The third event oceurs during a double harmonie break episode, where

the period of the vocal cord vibrations essentially doubles, whieh corresponds

to a halving of Fo. This represents a return to the true pitch value after

one of the aforemenlioned episodes. These types of episodes are common in

certain types of cries, inc1uding pain and sorne other physiologieal disorders

[Wasz-Hockert et al., 1968, Wasz-Hockert et al., 19851. For adults, the occurrence

of these types of events are not very common, but their occurrence may be due to

the presence of abnormal growths on the vocal cords [Kasuya et al., 19831. For this

type of event, when the current contour ends and another is present at a greater

lag value (lower frequency), the algorithm begin& tracking about the new contour,

looking once again for the occurrence of one of these three events.

Dysphonie episodes, where an energy smearing oceurs across the enlire fre­

quency band and no c1ear harmonies are present in this portion of the vocalizalion,

commonly occur in pain cries as weil. A spectrogram of an utterance containing

a dysphonie episode can be seen in figure 3.10. In this figure, dysphonia can been

in the interval from lime 0.03 seconds to 0.15 seconds where the dear harmonie

peaks, denoted by the dark bands occurring prior to and following the dysphonie

episode disappear, and are replaced by a noise-like spectrum.
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Figure 3.10: Spectrogram of a Cry Utterance Containing a Dysphonie
Episode

During such episodes, the algorithm would proceed as follows. Since there

is no periodicity present during dysphonie episodes, the crosscorrelation values

will, for the most part, fall below the low maxima threshold valu~ of tl" = 0.6,

and, with a few erratic exceptions, will remain below the high maxima threshold

of 1[[ = 0.8. In the event that there are a few maxima in this type of episode

which are within the same neighbourhood of a particular lag value, the duration

of these contours will be very short in duration, lasting only a few time indexes,

but whieh will always last less than 8 time indexes, as previously mentioned.

Consequently, these contourF will be mmoved during the crosscorrelation maxima

post-processing stage described earlier in section 3.1.4.

What results following this distance analysis part of the post-processing stage

are non-zero values in the contour matrix /) at particular lags and time indexes,

which correspond to the true pitch period values. This implies that for any given

time index, there will be at most, only one non-zero entry. The lag at which the non­

zero entry occurs, corresponds to the pitch period for that time index. The results of

this processing applied to sorne test cry utterances will be illustrated in section 3.4,

and compared with other popular pitch extraction routines in section 3.2.
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3.1.6 Implementation and Computational Considerations

The code for the implementation of the pitch extraction algorithm described in

the previous section was implemented using versions 4.0a to 4.2a of the high­

performance numerie computation and visualization software MATLAB, devel­

oped by the Mathworks Incorporated [Mat, 19921. MATLAB stands for MATrix

LABoratory and supplies a number of numerieal analysis, signal processing, and

graphies rendering routines in an interactive environment. It is also possible to

cali MATLAB from inside "C" or FORTRAN programs using a series of function

calls, thus allowing a fast computational engine to be incorporated as part of an

an extemal application program. Once a MATLAB routine has been ful1y lested

and debugged, it can be compiled in a pseudo-C format providing links to exlernal

functions for even faster execution.

The fundamental frequency extractio:l routines described in the previous sec­

tions were implemented using three separate programs. One routine performs

the signal transformation phase of sections 3.1.2 and 3.1.3, calculating the cross­

correlation vectors, and grouping them into a matrix whieh is indexed in time.

This routine was implemented using approximately 300 lines of MATLAB code.

Another routine performs the post-processing task of the peak-pieking and dis­

tance contour calculation described in section 3.1.4. The third routine performs

the distance analysis and the final pitch period determination process described

in section 3.1.5. The latter Iwo routines are implemented in 150 and 135 lines of

MATLAB code respectively.

Computationally speaking, the method, especially the signal transformation

phase, is particularly intensive. The post-processing stages of the crosscorrelation

vector matrix are quite fast relative to the signal transformation portion of the

method. Intuitively, this can be understood by the fact that for a given time index,

the computation of the normalized crosscorrelation requires O(N) computations,

where N corresponds to the number of lags in the expected range of pitch period
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values, which for infant cries, is especially large, as was previously mentioned.

As weil, the length of time required to generate the sequence of crosscorrelation

vectors depends not only on the length of the uttcrance, but also depends on

the duration of the voiced portions in a particular recording, and what the pitch

periods of the voiced portions are. Since the time index for the crosscorrelation

vector calculation advances in lime increments related to the pitch period of that

portion of the cry signal, an utterance with a low fundamental frequency will be

traversed much more rapidly than one with a much higher pitch, since one pitch

period represents a larger increment in the lime index for the latter case than for

the former.

This same is also true when considering portions of recordings where there are

long segments of silence or noise. In these cases, the time index is incremented by

the lag value for which the normalized crosscorrelation function was the largest,

irrespective of whether or not this value exceeded the threshold value. For portions

where there may be locally periodic noise bursts with relatively high frequency val­

ues, the method will move more slowly across these potions of the recording than

it will along silent portions, where the larger maxima values in the crosscorrelation

vector occur at larger lag values.

The subsequent post-processing handles the crosscorrelation vector matrix, and

thus the time required to complete the pitch period extraction is dependent upon

the number of crosscorrelation vectors in the matrix, J. The peak-picking process

requires D( N I), as does the distance analysis process, which finally yields the pitch

period values for a given recording.

With ail the above in mind, it is still be useful to discuss sorne typical computa­

tional times in order to illustrate the typical lime required to pr ,çess a cry recording.

Using the experimental set-up described in section 3.3 and the aforementioned rou­

tines, a cry recording lasting 3 seconds with voiced portions with an average pitch

period of approximately 32 samples (500 Hz) lasting for about 2.5 seconds requires
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approximately 3 minutes and 30 seconds in the signal transformation phase, and 40

seconds in the post-processing phase, of which 30 seconds are spent thresholding

and calculating the distance values for the contour matrix, and the final 10 seconds

are spent in the distance analysis portion of this Enal phase.

The currellt implementaticn, and the very nature of this processing method,

prec1udes a real-lime implementation, although sorne improvements in processing

speed are suggested in section 5.1. Despite the non real-time nature of this method.

and the seemingly intensive nature of the computations performed during its exe­

cution, even without the proposed ~provements for increased speed mentioned

in section 5.1.1, still requires less time, provides better resolution, and more impor­

tantly, more accuracy than the more popular Fo extraction techniques which have

been borrowed from the speech domain, and applied to infant cry utterances. This

will be illustrated in section 3.4 and discussed in section 3.5.

3.2 Comparison with Other Methods

Prior to the design and development of the improved crosscorrelation vector­

based fundamental frequency extraction method described in section 3.1, a num­

ber of the c1assical more popular, and more successful of the methods used

for fundamental frequency extraction for adult speech signais. which operate

only on the input signal, were implemented and tested. In tHis section, the

results of these methods applied to infant cry vocalizations are compared to

the improved crosscorrelation vector-based method. First, however, sorne back­

ground on the methods implemented and tested for comparative purposes will

be given. These methods are the linear predictive (LPC) residual for Fo estima­

tion [Maksym,1973) and it's popular variant, the spectral inverse filter track­

ing (51FT) algorithrn [Markel,1973), cepstral pitch extraction [Noll, 1967], the

harmonie sieve Fo extraction routine [Sluyter et al., 1982), spectral flattening by

c1ipping the speech signal [Sondhi, 1968), correlogram-based pitch extraction
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[Slaney and Lyon, 1990], and the crosscorrelation-based super-resolution pitch de­

termination method [Medan et al., 1991]. The following sub-sections briefly de­

scribe each of these methods, and outlining the problems that these methods en­

counter when processing infant cry signais, as these issues havenot been previously

discussed in any great depth or published in the literature.

3.2.1 Linear Predictive Coding (LPC) and the Simplified Inverse

Filter Tracking (SIFT) Algorithms

Overview of LPC

Linear predictive coding (LPC) is one of the most popular speech analysis and fun­

damental frequency extraction methods and it has also been used in speech coding

applications as weil [Reddy and Swamy, 1984]. The underlying reason behind the

popularity of LPC is due to its accuracy in representing the spectral characteristics

of the input signal, and to the relatively simple computations required to accom­

plish this task. LPC assumes that the speech signal to be modelled is generated by

an ail pole filter, which represents the vocal tract, excited by a periodic pulse train,

which represents the glottal pulses produced from &e vocal cords. The ali-pole

assumption does not hold if there are zeros in the spectrum due to nasal phonemes

in speech or from to unvoiced sounds [O'Shaughnessy,1987]. Nevertheless, this

ali-pole simplification is not a major source of errors for the majority of speech

signais.

The presumption behind the speech production process in LPC is that an exci­

tation source U(z) excites an ail pole shaping filter

•
1

H(z) = --:p:---

1 +L akz -
k

k=l

(3.5)
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yielding an output speech signal S(=), which is similar to the actual speech output

S(=) in a least-square error sense. For voiced sounds, excitation source U(=) is

viewed as being a uniform sample pulse train. In order to obtain an estimat!!

of H (z), for a given input frame of data, the speech signal is considered to be

stationary within a given analysis frame. In order to determine the LPC coefficients,

ak, one of two methods can be used; the least-squares autocorrelation method, or

the least-squares covariance method [Markel and Gray Jr., 1976). Because of ils

greater simplicity, the least squares autocorrelation method is the one which is

most commonly used to determine the LPC coefficients.

When determining the order of the poles, l', lIsed to model the spectrum of

the input frame, the following is taken into consideration. Typically, two poles

are required to model each formant resonance of the vocal tract, with two to four

additional poles used to model the zeros in the spectrum, so that voiced signais

can be matched with reasonably good accuracy. Unvoiced sections and silence,

however, result in a very poor spectral match, and this fact can be used to delermine

which frames are voiccd, and which are not [Atal and Rabiner, 1976). To assist in

the modelling of the input speech frame, the spectrum of the input speech signal

is flattened using pre-emphasis prior to LPC analysis. Thi.~ enables the higher

frequency formants to be modelled by effectively reducing the dynamic range of

the input spectrum, countering the attenuating effect of the vocal tract at higher

frequencies.

After the spectrum of an input speech frame has been modelled and the LPC

coefficients, ak, determined, the input speech samples can then be inverse filtered

through the alI-pole filter. What emerges from this process is referred to a the

residual signal and contains either a periodic pulse train, if the signal is voiced,

or a noisy signal, otherwise. An autocorrelation can be performed on the residual

to determine if periodicity is present, and if so, what the period of the pulses is,

effectively determining the pitch period of the input frame.
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In order to save both computation time and to reduce predictor order, p, for the

purposes of pitch extraction, the input speech sign:ll can be low-pass filtered and

dccimated at a frequency value above the frequency of the first formant resonance

peak, 50 that for speech signais, a low-pass filter with a eut-off of about 1000 Hz is

usually used.

Decimation refers to the process of converting a signal from a given sampling

rate to a lower sampling rate. This process can be achieved using ont! of two general

methods. One way is to pass the signal through a digital to analogue converter,

filter the signal if necessary, and then resample the analogue signal at the desired

sampling rate. A second method is to perform the sampling rate conversion entirely

in the digital domain [Proakis and Manolakis, 19881.

The LPC modelling of the reduced bandwidth spectrum is then performed on the

reduced bandwidth signal. This proces~ reqllires less poles to model this sole res­

onance in the input spectrum. The low-passed input signal is then inverse filtered

and then an autocorrelation is taken of this residual. This method is commonly

know as the simplified inverse filter tracking (51FT) algorithm [Markel,1972bl.

Problems with LPC and Infant Cry SignaIs

As has already been mentioned, this method is an especially popular and very

successful method for pitch extraction of adult speech. As was mentioned in

section 2.1 of chapter 2, many improvements to this method have been proposed

since this method was first introduced in 1972. Despite these improvements, its

use on infant cry signais is not as successful as it is for speech, and this is due

to a number of reasons. First, this method assumes and requires that the input

signal be stationary within a given frame, and that there he approximately three or

four pitch periods per input frame. Hence a frame size must he chosen which can

accommodate the range of expected pitch periods while not containing too high a

numher of pitch periods so that the stationarity assumption no longer holds.

70



•

•

•

3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

For adult speech, this is not a problem since the fundamental frequency range

is mostly limited to values between 60 Hz and 300 Hz (16 ms to 3 ms). This range

of Focan be accommodated by a 48 ms window without violating stationarity. For

infant cry signaIs, however, the range of Focan go from values as low as 100 Hz to

values in excess of 2500 Hz (10 ms to 0.4 ms). A window whieh would contain 3

pitch periods of an utterance with an Fo of 100 Hz would also contain 75 periods

of an utterance with and Foof 2200 Hz. In the latter case, it is cleac that stationarity

cannot be assumed, and because of this, the method would yield an average value

of the pitch periods contained within the window or a grossly incorrect value due

to amplitude variations across such a large range of values. Any small variations

in the pitch periods contained within the window or frame would be lost to thesc

undesirable effects. Consequently, no one winc'::w or frame size can accommoJate

the wide range of expected Fo values without either violating stati(lilarity, or risk

having too few samples inside a given window when the fund:lmental frequency

is low. Nevertheless, a fixed window size baser! on the frequency range of the

Fo values of a particular utterance was user! for experimental purposes, in order

to evaluate the C'peration of this method on infant cries, even if, in an al1tomated

system, this sort of "adaptive window siz.ing" could not be performed.

Another problem with LPC when used on infant cry signaIs is the determination

of the number of pnles required to model the cry spectrum. Based on inf~nt

vocal tract size, the first, second, and third formant values are expected to occur

at about 1100 Hz, 3300 Hz, and 550,ü Hz respectively [Golub and Corwin, 1985].

Consequently, given the bandwidth of the cry recordings described in section 3.3,

ten poles were used to ml/deI the vocal tract shape; six for the three expected

fo~mant peaks, with the rem.lining four poles used to model any zeros occurring in

the input spectrum. If the Fo in a given analysis frame is in the vieinity of 400 H7.,

then there are a sufficient number of harmonie peaks under each formant 50 that

the least-square error modelling of the spectrum will indeed track the spectral

envelope, and not the harmonie peaks [O'Shaughnessy, 1987). However, if the
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value of Fo increases much beyond this value, this will no longer be the case,

and the poles will model the harmonie peaks since the number of poles p will

be approximately equal to the number of harmonies in the spectrum. Since the

effect of these harmonie peaks will be removed from the input spectrum during

the inverse filtering process, the residual will not show the presence of a periodie

pulse train, as is expected for a voieed signal.

Figure 3.11 illustrates this point. Although both inverse fiitered residual signais

are rather "noisy", the one for the utterance with the higher Fo value, shown in
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figure 3.11(d), shows no clear periodicity since the poles in the LPC spectrum match

the two harmonies of the pre-emphasized spectrum. For the uttemnce with the

lower Fovalue, however, the poles model the resonant frequencies in the spectrum

of the input signal frame, as shown in figure 3.11(a). Consequently, the inverse

filtered residual of figure 3.11(b) shows sharp peaks corresponding to the pitch

period starting at approximately sample 50.

Decreasing the number of poles only postpones the fundamental frequency

value at whieh this problem will occur. For signais with NI values greater than

1000 Hz, there will only be either three or four harmonies present in the spectrum,

du:~ to the attenuating effects of the vocal tract. In these cases, even if the numbl'r

of poles are reduced from ten, as mentioned above, to four, to accommodate these

higher frequency signais, the spectral modelling will follow the harmonies, and

not the spectral envelope, and, in turn, will relllove ail traces of a periodie pulse

train from the LPC residual.

3.2.2 Cepstral Pitch Extraction

Overview of the Cepstral Method

Cepstral analysis is another way of deconvolving the filter and excitation compo­

nents of a speech signal [Noll, 19671. This process transforms the product of two

signais into a sum of ~wo signais. If the two signais are very different spectra!ly,

then it is possible to 'ieparate them using a simple linear filtering operation.

For speech signais the two components of interest are the excitation and vo­

cal tract response, for whieh the speech signa! .s(n) can be viewed as being the

convolution of the excitation e(n), and the vocal tract tract response u( Il J. In the

frequency domain S(z) = V(z)E(z), so if we take the logarithm of S(z) we get

10g(S(z)) = 10g(V(z)) +10g(E(z)). The inverse transform C'~ 10g(S(z)) is defined
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as the cepstrum, also referred to as .s(Tl), where the caret denotes the cepstra. 50

.s(Tl) = ÎJ(Tl) + ê(11), with ti( Tl) decaying to zero over the first few milliseconds,

inversely proportionalto the resonant frequencies, or formants, of the vocal tract,

and ê(11) appearing as a periodic pulse train at multiples of the pitch period. The

cepstrum .s( Tl) is a complex-valued quantity but information regarding the peri­

odicity in the input signal can be derived from using only the real portion of the

inverse transform of the log spectrum, or real (s( b)).

For adult male speech, for example, the first excitation peak would be expected

to appear in the range of 5 ms to 16 ms of the cepstrum, which corresponds to Fa

values from 200 Hz to 60 Hz respectively. The vocal tract excitation would end

in the cepstrum at a time approximately equal to the inverse of the first formant,

which atits lowest value occurs at about 3.5 ms (285Hz). In this case, then, the vocal

tract and excitation sources can be separated by considering values occurring in the

cepstrum from 0 ms to 4.5 ms, and attributing these contributions to the vocal tract

response, and considering the occurrence of the first sharp peak occurring after

4.5 ms as being the pitch period. This linear separation process is called liftering.

Problems with Cepstral Processing and Infant Cry Signais

5ince the cepstrum also uses a fixed window ofsignal samples on which il performs

the required processing, it is subject to the same considerations regarding window

size as were mentioned in the preceding section. As is the case with speech

which contains Fil values higher, than, say 400 Hz, as is the case for female speech

or children'f; speech, the separation between the excitation and and vocal tract

response comributions in the cepstrum is not so neat or clear cut. The lowest

of the formant rreqi.limcy values, namely Ft- has an approximate value of about

1100 Hz for infal"t cries, which would correspond to a peak occurring at 0.9 ms

in the cel'strum. Conscquently. bs::!d on the discussion in the previous sub­

subsection, values of the cepstrum between 0 ms and 1 ms would be considered
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Figure 3.12: Signal Segment and Ils Corresponding Real Cepstrum

as containing the vocal tract components. Thus, in cases where the lib in the cry

being analyzed falls below 1000 Hz, the liftering operation can easily separate the

vocal tract and excitation components. If the Fo were to go above 1000 Hz, as

commonly occurs wilh cries, the two components cannot be separated through

liftering since the excitation contribution will be contained within the range where

values corresponding to the vocal tract contribution are expected tu be found.

If the lifter separating the two components in the cepstrum was set at 0.45 ms,

to handle the expected range of pitch period values for infant cry utterances, then

the first sharp peak occurring above this time threshold wouId be considered as

corresponding to the pitch period. Since, however, the area between 0.45 ms

and 0.9 ms falls in the range of the inverse of the first formant frequency, it is

possible that for certain cries where FI has a very narrow bandwidth and contains

a relatively large amount energy, that this component will have a very sharp peak in

the cepstrum, and will consequently be tagged as corresponding to the pitch period

or the excitation component of the signal. In similar cases, il is very likely that vocal

tract responses be incorrectly chosen as the pilch period, and as such, this method

only works reliably for cry utterances with Fo values less than 1000 Hz, making

it unsuilable for pitch period extraction from infant cries in general. Figure 3.12

shows a signal segment and its corresponding real cepstrum, which c1early shows
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the occurrence of a sharp peak at sampIe 34, corresponding to a period of 2.125 ms

or an fI) of 470.6 Hz.

Also, sorne confusion exists as to what exactly constitutes a sharp cepstral peak,

since there is no clear correlation between the strength of a cepstral peak and

whether the segment under consideration is voiced or not.

3.2.3 The Harmonie Sieve

Overview of Method

This method, originally proposed by Goldstein IGoldstein, 1973], but imple­

mented by Duifhuis, Willems and 5luyter IDuifhuis et al., 1982], uses a har­

monie sieve preceded by an implementation of Goldstein's theory of hearing

IGoldstein et al., 1978], in order determine the best fit for an input stimuli con­

taining only a few spectral components, using a maximum likelihood criterion.

Basieally, the pitch determination method consists of two elements: a spectral an­

alyzer that detects and measures the frequency of the harmonie components, and

a harmonie pattern recognizer.

First, the fast Fourier transform (FFI) of a given input frame of signal samples

is presented for the subsequent spectral analysis. Next, the effect of frequency

masking of the spectral components on each other is determined based on the

Goldstein theory of hearing. In this portion of the method, two thresholds are used

for the purpose of determining if and which frequency components are masked

by other components in. the spectrum, or if certain components are too weak to be

considered altogether. The latter threshold is an absolute threshold, which reflects

the limit of audibility, and is set to a value of 26 dB below the highest peak level

in the spectrum of the input frame. The former, however, is a relative threshold,

whieh takes effect with respect to the amplitu.Je of the other spectral components,
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•
and is based on the psychophysieal masking threshold. This threshold is set as

follows; for a given spectral component, the masking threshold is set to a value of

90 dB/octave on the low frequency side of the component, and to 45 dB/oclave on

the high frequency side. Ali spectral components falling under these thresholds

are considered as being masked by the component under consideration and are

thus removed from the comI- '1ent set. These threshold values are considered to

roughly correspond to the critical band filter characteristies of the human ear.

Figure 3.13 shows a power spectrum of a cry utterance signal segment with

the relative masking threshold lines derived from the given spectral peaks. Note

that the fourth and fifth harmonies in lhe spectrum fall under the 45 dB/octave

masking threshold on the high frequency side of the third harmonie and would

thus be removed from the component set whieh would be presented to the sieve.

The sixth and seventh harmonie fall under the absolute threshold representing the

limit of audibility.

•
Once all the spectral components have been processed by this initial stage, the

remaining components are sent to the harmonie sieve, in order to determine whieh

of these components are the true harmonies for a given fundamental frequency can-
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didate value in the sieve, and whieh are spurious. The sieve contains "meshes" of

band.....iJth proportionalto the value of their center frequencies, and, the "meshes",

correspondingly, get wider as their center frequency increases, all'Jwing for slight

variations in the fundamental frequency of the signal contained within a given

input frame to be tolerated. The lowest center frequency values of the meshes in

the sieve span the range of expected frequency values for the input signal, with

step sizes being less than the value of the mesh width 50 that no portion of the

frequency scale is missed during this sieving process.

For each of the sieves, whieh are characterized by their fundamental frequency

value, the number and location (lf components whieh fall through the sieve are

checked, and are labelled according to their candidate harmonie number. Based on

this set of candidate harmonie numbers for ail the values in the expected Forange,

it is then decided whieh of the candidate harmonies correspond to the optimum

set.

This is determined by taking a normalized distance measure for ail the harmonic

sets which is in turn calculated by taking the number of the highest candidate

harmonie, or spectral component, adding the number of input harmonies, and

dividing by the number of classified harmonic components in the spectrum. The

number of unclassified spectral components, or components whieh do not "fall

through" a given sieve, increases the distance value for sieves centered at frequency

multiples of the true Fo.

Problems with Harmonie Sieving and Infant Cry SignaIs

The problem with this method when applied to infant infant cry signais is, first and

foremost, the number of computations involved for a given input signal frame for

the range of expected Fo values. Aiso a number of frequency errors arise from the

Goldstein theory of hearing pre-processing phase of this method when the mask­

ing of the fundamental frequency component occurs, due to particularly strong
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fvrmant values, whieh in tum increase the amplitude of the harmonie peak located

at this particular frequency. This has the eHect of decreasing the score for the sieve

centered at the correct Fo value, whereas sieves centered at multiples of (.(), espe­

cially 2Fo, being chosen as the correct Fo value. This anomaly was also observcd

by Duifhuis, Willems and Sluyter, the researchers who originally implementcd this

method, when dealing with speech signais with similar characteristies to those

described above. Their solution to this problem was to use tracking to follow a cer­

tain pitch value, as long as its distance score remained below a certain threshold.

In addition to decreasing the number of gross pitch errors, it also decreases the

number of calculations required by limiting the range of frequencies to be sicved

while a specific Fo1s tracked.

This solution works for speech since the values of Fo normally remain arollnd

the value of the preceding Fovalue, obtained from the previous input signal frame.

Such an assumption cannot be made for cry utterances, however, especially since

for certain types of cry utterances double harmonie break episodes commonly

occur. Although this method is novel in the way that it uses the theory of hearing

formulated by Goldstein to improve the "standard" harmonie sieve or matching

process, it is still not an optimal solution for infant cry signais.

3.2.4 Pitch Extraction by Spectral Flattening

Overvie"-V of Method

Another method popular due to the relative simplicity of the computations required

and its ability to enhance the periodicity in the signal is the c1ipping autocorrela­

tion method, and the variations of this technique, whieh were originally proposed

by Sondhi ISondhi, 1968). In his paper, Sondhi describes three different spectral

flattening methods, namely spectrum flattening followed by a minimum phase

phase correction for synchronizatiCin of the harmonies, spectrum flattening fol-
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Figure 3.14: Signal Section and Clipped Signal Section

lowed by autocorrelation, and non-linear distortion followed by autocorrelation.

Of these three methods, the latter two are described as being the best suited for the

fundamental frequency extraction of speech due to the simplicity of the required

computations, relative to the first method, as weil as the superior ability of this

method to distinguish between formant peaks and pitch epoch peaks following

the autocorrelation of the non-linearly distorted signal.

Aside from the simplicity of this method which makes it especially appealing,

it is also suitable for a real-time implementation. In Sondhi's description of the

method, a 30 ms segment of speech is taken, and in every 5 ms portion of the signal,

the maximum absolute value of the signal, (10, is found, and ail values betwccn

±k(lo are removed from the signal. A typical value of k is 0.3. Figure 3.14 shows

a signal segment and the signal segment subsequent to the c1ipping operation.

Following this "c1ipping" operation, the autocorrelation of the c1ipped signal is

performed. The lag of the first crosscorrelation maxima found which exceeds a

certain threshold is chosen as corresponding to the pitch period. As subsequent

frames are processed, this threshold is progressively reduced for maxima values in

the vicinity of lag values of the previous pitch period value. The original threshold

is restored if voicing ends, of if the pitch changes abruptly.
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Problems with Spectral Flattening and Infant Cry Utterances

As is the case with the other frame-based methods mentioned in the previous sub­

sections, the issue of frame size is once again an important consideration. Here,

however, there is an additional issue regarding the length of time within a given

frame in which the maximum absolute signal value, uo, will be determined. As

weil, the value of the clipping threshold k is also an issue that requires careful

consideration. Sorne infant cries have important variations in amplitude between

pitch periods, so that a certain threshold value would include these 1111 the peaks

for a particular value of k, but exclude other lower amplitude peaks, for example,

in other sections cf the input frame, leading to pitch halving errors.

Moreover, as was mentioned in section 3.1.2, sorne cry signaIs have a very

small decay in the amplitude between the pitch epoch and the subsequent periodic

peak due to a high energy, narrow bandwidth formant occurring at a frequency

approximately equal to 2Fo, something which does not normally appear in adult

speech signais. Using a clipping value threshold, k, of 0.3 would still include the

these 1;; peaks in the clipped signal. Thus, the use of the threshold and the segment

range in which it is to be applied over, should be adaptive, which implies having

a priori knowledge of the signal characteristics, which is not possible.

Consequently, although it is a simple and effective method for speech signaIs,

it can only be used on cry signaIs with a limited Fo range. Using one method with

one frame size and threshold for the expected range of Fo values works with sorne

1;11 values but compromises performance of other values.
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3.2.5 Correlogram-Based Pitch Extraction

Overview of Method

This method was developed by Malcolm Slaney in the research lab of Ap­

ple Computer in California [Slaney aud Lyon, 1990]. The implementation of the

correlogram-based pitch extraction algorithm, available through an anonymolls

ftp site on the Internet, consists of a number of different MATLAB files, each

of which performs a different function in the algorithm [Slaney,19941. Basically,

Slaney's pitch detector is based on Licklider's "DuplexTheory" of pitch perception,

which is believed to accurately model how humans perceive pitch [Seneff,1978].

This pitch detector combines a cochlear model, which separates the signal into

different frequency bands, which is then followed by a bank of autocorrelators,

which perform independent autocorrelation for each channel. The outpuls of the

individual channels are combined in a visual manner, calied a correlogmm, which is

then subsequently filtered, non-linearly enhanced, and summed across ail channels

before a pitch estimate is formed from this information.

An example of a cry utterance segment with pitch period of approximately 35

samples (640 Hz) and its corresponding correlogram is shown in figure 3.15.

Problems with Correlogram-Based Pitch Extraction and Cry Ulterances

Once again, as has been the case for ail the other methods discussed in this section,

this method is also faced with appropriate frame size concerns, and since no one

size can accommodate the entire range of expected frequency values, the frame

size must be tailored to the characteristics of the cry recording being analyzed.

The problem with this method lies in its computational complexity, due to the

complex implementation of the cochlear processing stage. This portion of the

processing requires a significant amount of time for the ca1culation of l'à on a given

segment or frame of data. For example, processing of a 16 ms window of data (256
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Figure 3.15: Cry Utterance Segment and Corresponding Correlogram

samples of a signal sampled at 16 kHz), this algorithm requires over 30 seconds

on a SPARC 10+ to calculate a pitch candidate value. If consecutive frames of

1h ms each overlapping by 50% with the previous frame samples are taken for

a 5 second utterance, the algorithm requires approximately 2 hours to generate

pitch values for aU the frames, compared to a time of just under 5 minutes for

the improved crosscorrelation vector-based method described in section 3.1. Due

to these prohibitive computation times, the algorithm by default uses no overlap,

and actuaUy spaces subsequent frames by 1000 samples, which risks losing the

occurrence of sorne important transitions or events for cry utterances. As weU,

this method is not free from the pitch halving or doubling errors present in other

methods, as will be shown when results are presented in section 3.4.

3.2.6 Super-Resolution Pitch Extraction

Brief Overview of Method and Problems with Processing Cry Utterances

This method originaUy proposed by Medan, Yair, and Chazon [Medan et al., 1991],

and the signal transformation phase of the improved crosscorrelation vector based

83



•

•

•

3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

fundamental frequency extraction method presented in section 3.1.3, both use the

normalized crosscorrelation method as a means of computing a set of pitch can­

didates [Chung and Aigazi, 1985). The algorithm presented by Medan, Yair, and

Chazon tracks the Focontour, however it does not make use of the crosscorrelation

vectors generated by the crosscorrelation computation. Tracking a specifie pitch

period value begins after pitch period values for the previous four or five time

indexes are within ±25% of the value of the previous candidate. This heuristie

performs well for speech, but fails for cry utterances, and yields a number of gross

pitch errors during diplophonie or double harmonie break episodes, as will be

shown in section 3.4. These events, as has previously been mentioned, are com­

mon in certain types of cry vocalizations, and it is important that these events be

properly handled by a given Foextraction method.

Another method by De Mori and Omologo proposed a variation of Medan,

Yair, and ChClzon's algorithm by making use of the crosscorrelation vectors result­

ing from the normalized crosscorrelation computations to calculate a cumulative

distance measure for the duration of the recording, using the observation that "il

contours for adult speech remain within the same neighbourhood, once a given

pitch period is found [De Mori and Omologo, 1993). This algorithm, however, in­

crements the time index in fixed steps, not in increments corresponding to the most

likely pitch period candidate lag for a given time index. Once again, the algorithm

works weil for speech; specifieally for speech that does not have the occurrence of

diplophonie episodes, and this, in turn, leads to inconsistent results for diplophonie

or double harmonie break episodes in cry signaIs as well.

3.3 Data Set and Experimental Set-up

The data set used for the testing and validation of the pitch period extraction

methodology proposed in section 3.1 above consisted of 230 cry episodes recorded

at the Nôtre-Dame-de-Grâce CLSC (Community Health Clinie) from sixteen two
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to six month old infants and 329 cry episodes recorded at the Royal Victoria Hos­

pital in Montreal from premature infants ranging in gestational age from 24 to 36

weeks. None of the infants involved in the study had a history of perinatal or

postnatal complications. Ali the parents of the infants gave their informed consent

to participate in this study.

For the data set consisting of infants of normal gestational age, the cry episodes

recorded were the results of one of three stimulus events: pain 1distress from rou­

tine immunization procedure; fear1startle from a jack-in-the-box; and anger1frus­

tration from a head restraint. For the premature infant data set, the cry episodes

recorded were also the result of one of three stimulus events: a needle stick in the

infant's heel as part of a routine immunization procedure, a washing and disinfect­

ing of the heel with a cotton pad prior to the hell stick, and a gentle squeeze of the

heel.

All the cry vocalization recordings were made on a Sony TCM-500DEV audio

cassette recorder with an omni-directional Senheiser MKE2 microphone placed

10 centimeters away from the infant's mouth. Once recorded, the signaIs were

then low-pass filtered to 8 kHz, prior to digitization using a 16 kHz sampling rate

and a 12-bit analogue-to-digital converter. These digitized recordings were then

transferred to a SPARC 10+ for further processing and analysis.

Prior to their use in the various Foextraction routines tested, the recordings were

high-pass filtered using a 301 tap finite impulse response (FIR) filter with a cutoff

of 240 Hz designed using the Remez Exchange Algorithm provided by MATLAB

[Oppenheim and Schafer, 1975]. The motivation behind the use of an FIR filter

with numerous taps was to achieve zero frequency distortion, due to the inherent

linear phase characteristics of FIR filteru, while achieving a stop-band attenuation

of approximately 30 dB [Proakis and Manolakis, 1988]. The frequency response of

the FIR high-pass filter is shown in figure 3.16 for the frequency range from 0 Hz

(OC) to 400 Hz. From 400 Hz to 8 kHz, the frequency response is flat at 0 dB.
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Figure 3.16: Frequency Response of FIR High-Pass Filter

Other high-pass filters were also investigated, namely Chebyshev type 1 and

type Il infinite impulse response (BR) fiiters, because of the large stop band at­

tenuation and sharp filter roll-off achievable from these filters using a small filter

order. Due to the phase distortion inherent in BR filters, their use was not pursued,

in the interest of minimizing signal distortion subsequent to filtering, and at the

expense of increasing the number of filter taps required by an arder of magnitude.

Section 3.4.1 will present in more detail the files which will be used to compare

the results obtained by using the method praposed in section 3.1 with those of

section 3.2.

3.4 Results

This section compares the results of the methods presented in sections 3.2 with

the improved crosscorrelation vector-based pitch period extraction method of sec­

tion 3.1 on five different utterances by presenting both the extracted pitch tracks

and a table of errar rates, broken down by error type, as generated by the re-
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spective methods. Since a comparison of pitch extraction methods for infant cry

vocalization has not previously been discussed or presented in the literature, a

corresponding treatrnent as to the limitations, shortcomings, and desired improve­

ments in existing methods have not been reported. Consequently, this section and

section 3.2 will atlempt to rectify this fact while iIlustrating the improvements of

the improved crosscorrelation vector-based method presented in section 3.1.

This section begins with a description of the individual recordings used in the

pitch period extraction tests, displaying the spectrograms of these recordings and

providing a verbal description regarding the relevant features in these particular

files. Next, the implementation of the methods of section 3.2 is briefly discussed.

This is then followed by a presentation of the pitch contours extracted by the

methods which were presented in section 3.2 and the improved crosscorrelation

vector-based pitch extractor described in section 3.1. Error rates will then be

presented in tabular form for comparative purposes.

3.4.1 Recordings Used in the Evaluation

This section gives both an iIlustrative and descriptive treatrnent of the infant cry

recordings used for testing the various pitch extraction algorithms. Although

the set of five recordings presented here is by no means an exhaustive set, it is

representative of the type of vocalizations which are commonly found in the cries

of both premature infants and full-term neonates.

The files used for testing were:

1. AD2DD4: An anger/frustration cry from a full-term infant,

2. AD71D4: A second anger/frustration cry from another full-term infant,

3. BD56ST: A pain/distress cry from a premature infant,

4. C1213SQ3: A second, less painful, cry from a premature infant, and

5. PD91D2: A pain/distress cry from a full-term infant.
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Figure 3.17: Spectrogramof A02004 (An Anger Cry from a Full-Term Infant)

File A02004

The spectrogram of file A02004 is shown in figure 3.17. This file represen ts the

cry of a full-term infant uttered when its head was restrained, and is labelled as

being an anger or frustration cry. This recording contains two voiced utterances or

episodes. The first voiced utterance is characterized by a rather fiat fundamental

frequency contour, with an initial Fo value of approximately 485 Hz , with sorne

episodes of noise occurring at a number of points between the start and the end of

the utterance two seconds later. From the spectrogram, it can be seen that just after

the one second mark, thepitch decreases for a~out half a second before beginning to

increase once again. Approximately 0.25 seconds later, the pitch begins to decrease

until the end of the utterance. The second voiced utterance in this recording is

relatively brief, and begins with an initial Fo value of approximately 400 Hz. This

episode also follows a short rising and falling fundamental frequency pattern.

This file was selected to illustrate how the different methods would perform on

relatively smooth contours, punctuated with sorne episodes of arnbient noise.

File AOn04
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Figure 3.18: Spectrogram of A07104 (An Anger Cry from a Another Full­
Term Infant)

File A07104, whose spectrogram is shown in figure 3.18, corresponds to another

recording of an anger or frustration cry uttered by a full-term neonate. The char­

acteristies of this utterance are appreciably different from those of the previous

anger / frustration recording. This file contains two voieed utterances with high

fundamental frequency values. The first voieed episode features a rather rapid and

abrupt change from a value of about 1000 Hz to a value of about 800 Hz in pitch,

whieh is then followed by a section with a rapidly increasing Fo, which lasts until

the end of the utterance at the 0.3 second mark. The second utterance begins at

around 0.5 seconds with an Foof about 1250 Hz, and features a narrow bandwidth

FI occurring at a frequency approximately equal to twiee that of the fundamental

frequency, as indicated by the significantly darker colour of the second harmonie,

whieh lasts until the one second mark of the spectrogram. For the remainder of

the recording, the FI value decreases in both value and bandwidth. This file was

selected to illustrate how the different pitch extraction methods would perform on

an utterance with an unusually high pitch and on utterances that have very Iittle

decay between the pitch epoch peak and the subsequent peak in the signal due to

a narrow bandwidth formant with a frequency approximately equal to that of the

second harmonie.
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Figure 3.19: Spectrogram of BD56ST (A Pain Cry from a Premature Infant)

File B056ST

The next recording uSl:d in tests was file B056ST, and its spectrogram can be seen

in fi~ure 3.19. This cry was recorded after a premature infant received an immu­

nization needle in its heel. As was the case for the previous two files, this file

also contains two voieed utterances. The first one begins at approximately the

0.15 second mark with a fundamental frequency of about 530 Hz whieh rapidly

increases to a value of about 640 Hz. For this initial portion of the first utterance,

the cry has a narrow bandwidth first formant occurring at a frequency of 2/ih, or

about 1300 Hz. Just prior to the 0.4 second mark, a double-harmonie break episode

begins, whieh is almost immediately fol1owed at about the 0.45 second mark by

a brief dysphonie episode, where there is no periodicity present in the signal as

the vocal folds vibrate in a chaotic manner leading to a smear in the energy val­

ues across the spectrum. Fol1owing this brief dysphonie episode, at about the 0.5

second mark, the signal resumes its double harmonie break episode, where the l'II

is essential1y halved, until about the 0.65 second mark, with a brief return to the

original Fovalue just before the 0.6 second mark. Fol1owing this double harmonie

break episode, Fo returns to a value in the vicinity of 600 Hz, slowly decreasing

in value until the end of the episode at the 0.9 second mark. The second voieed

episode beginning at the 0.95 second mark consists of an inspiratory phonation

starting with an initial pitch of about 1500 Hz whieh decreases in value until the 1.1
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Figure 3.20: Spectrogram of C1213SQ3 (A Pain Cry from Another Prema­
ture Infant)

second mark. This file was selected to illustrate how the different pitch extraction

methods would behave during and after a double-harmonie break episode, and on

an inspiratory phonation.

File C1213SQ3

The fourth file in the set is C1213SQ3 and its spectrogram is shown in figure 3.20.

This file contains the tail end of a vocalization followed by Iwo complete episodes

uttered by a premature infant after ils heel was squeezed. The recording begins

by catching the end of a phonation which has a fundamental frequency of about

640 Hz whieh decreases during its short duration from the start of the recording

to the 0.05 ~pcond mark. The second voieed utterance begins 0.3 seconds into the

recording with an Fo of about 400 Hz and rapidly increases to a value of about

750 Hz. The Fo contour then varies rapidly until the end of the voieed episode,

about 1.25 seconds into the recording. The last voieed utterance begins shortly

after the 1.5 second mark and has similar Focharacteristics to that of the previous

utterance, ending 2.3 seconds into the recording. This recording was selected to

illustrate how the different pitch extraction methods would behave on a file that

has very rapidly varying pitch values.
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Figure 3.21: Spectrogram of P09102 (A Pain Cry from a Full-Tcrm Infant)

File P09102

The last file in the test set is P09102 has its spectrogram shown in figure 3.21. This

recording was made following the immunization of a full-term infant, and thus

represents a pain or distress cry. This recording begins with a brief portion of

phonation with an Fo of about 640 Hz. At about 0.125 seconds into the recording,

a long voieed utterance begins with a brief section containing a high fundamental

frequency, which then quiekly drops to a value of about 727 Hz. The foi) contour

follows a slightly increasing slope until 0.5 seconds into the recording, at which

point the values start to àecrease. This decrease lasts for about 0.25 seconds beforc

Fo begins to increase once again for another 0.25 seconds. After this, the values

decrease rapidly until the 1.6 second mark. Then, there is a final portion with

rising-falling Fo pattern whieh ends this voiced utterance shortly aCter the 2 second

mark. Shortly before the end of the recording another brief phonation occurs

with a double harmonie break episode at the start of the contour whieh is then

followed by a sharp increase to a value of twiee the initial l'à. This recording

was selected to illustrate how the different pitch extraction routines would track

a relative smooth and stable Fo contour preceded by a brief high l'i) burst, and a

weak double harmonie break episode.
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3.4.2 Implementation of Pitch Extraction Methods

This subsection briefly presents the characteristics of the various elements used in

the pitch extraction routines of section 3.2, stating information such as the window

size, whether the signal was pre-emphasized or decimated prior to analysis, and

what method was used for voiced/unvoiced determination. Ali of the routines

were implemented using MATLAB.

Linear Predictive Cading

This method was implemented using about 115 lines of MATLAB code. The

signal was subject to pre-emphasis prior to analysis, and was segmented into fixed

windows each containing 256 samples, corresponding to a duration of 16 ms, each

of which was tapered using a Hamming window. Subsequent frames overlapped

by 66%. The spectrum of the Hamming windowed sections were modelled using

12 poles and the autocorrelation method. A particular frame was labelled as voiced

if the predictor error was less than 0.4, and unvoiced otherwise.

5implified Inverse Filter Tracking (51FT)

This method was implemented using about 240 lines of MATLAB code. The

original signal was low-pass filtered using a linear-phase finite impulse response

filter with a eut-off of just under 4 kHz and then decimated by 2. The decimated

signal was subject to pre-emphasis prior to analysis, and was segmented into fixed

windows each containing 128 samples, corresponding to a duration of 16 ms. Each

of these windows were tapered using a Hamming window, with subsequent frames

overlapping by 66%. The spectrum of the Hamming windowed sections were

modelled using 6 poles and the autocorrelation method. The method described by

Markel, which uses a combination of the voicing flags from previous segments and

the correlation values of the current frame, was implemented for voiced-unvoiced
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determination [Markel, 1973].

Cepstral Pitch Extraction

This method was implemented using about 90 lines of MATLAB code. The signal

was segmented into consecutive windows of 256 samples, corresponding to 16 ms

portions of the signal, whieh were also tapered using a Hamming window, with

subsequent windows overlapping by 50%. The real portion of the inverse Fourier

transformed log magnitude spectrum was used for the pitch determination process.

If the energy of a specific frame exceeded a value of 3.3 dB, the segment was labelled

as voieed. Otherwise, the segment was labeled as being unvoieed. This simple

voieed-unvoiced determination method was used since there is no dear correlation

between the value of a cepstral peak and whether or not a specific segment is voieed

or unvoieed [Noll, 1967].

Hannonic Sieve

The implementation of the harmonie sieve, preceded by an implementation of

Goldstein's theory of hearing, was performed using 300 lines of MATLAB code.

The original 16 kHz sampled signal was low-pass filtered using a linear-phase finite

impulse response filter with a cut-off of just under 4 kHz and then decimated by 2.

The decimated signal was then divided into consecutive frameseach containing 128

samples, corresponding to a 16 ms duration, with subsequent frames overlapping

by 50%. Ali windows were tapered using a Hamming window. The method

was implemented as described by Duifhuis, Willems, and 51uyter and induded an

implementation of their voieed-unvoiced determination method, whieh is based

on the score of the sieve with the lowest value representing the most-likely pitch

candidate [Duifhuis et al., 19821. If the score is below a particular value, the segment

is labelled as voieed and is labelled as being unvoieed otherwise.
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Spectral Flattening Autocorrelation Method (SFAC)

The implementation of this method was done using 150 lines ofMATLAB code. The

signal was segmented into windows each with a length of 256 samples, or 16 ms,

with subsequent windows overlapping by 66%. Since the voiced-to-unvoiced de­

termination method mentioned in section 3.2.4Ied to numerous errors, an alternate

method of making this determination was adopted. If the energy of a particular

window was less than 3.0 dB, the window was labelled as unvoiced and was

Iabelled as voiced otherwise.

Correlogram-Based Pitch Extraction

This was implemented using the MATLAB routines in the U Auditory Toolbox"

developed by Slaney to perform the various processing stages of this method as

outlined in section 3.2.5 [Slaney, 1994l. The signal was segmented into 256 sample

windows which overlapped by 50%.

Super-Resolution Pitch Extraction

This method was implemented using 490 lines of MATLAB code as was described

in the paper by Medan, Yair, and Chazon [Medan et al., 1991]. Once the cross­

correlation value at a specifie time index exceeded the adaptive threshold, il was

labelled as voiced, and was otherwise labelled as being unvoiced. To improve

the resolution of the pitch values extracted by this method, the pitch period was

interpolated between sample values, with subsequent frames being advanced by

the extracted l'itch period, in samples.
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3.4.3 Error Analysis Results

This subsection illustrates the pitch contours extracted by the various pitch extrac­

tion methods on the five test files.

Figures 3.22 to 3.26 show the pitch contours extracted from the test files de­

scribed in section 3.4.1 using six methods borrowed from the speech domain which

were described in section 3.2 and whose implementation was presented in sec­

tion 3.4.2. The results for these methods are shown in sub-figures (a) to (f). The Jast

sub-figure in each of these figures, labelled (g), displays the Iii) contour obtained

from the improved crosscorrelation vector-based Fo extraction method presented

in section 3.1, whose implementation was described in section 3.1.6.

The figures illustrate the extracted fundamental frequency versus time, where

the fundamental frequency is simply the extracted pitch period divided by the

sampling rate of 16 kHz.

As was done in the classical fundamental frequency extraction review paper

of Rabiner, Cheng, Rosenberg, and McConegal [Rabiner et al., 1976], six different

error parameters were computed. For every utterance in the test set a refcrence

pitch contour which is denoted by Pr(m), determined by inspection of the pitch

value for every pitch period, and averaging the l'ù values within a window for the

frame-based methods. The extracted pitch contour is denoted by, /'.(711), where

e = 1 ... E and E denotes the number of pitch detectors used in these tests. Here,

seven pitch detectors are compared, so that E = 7. By comparing the reference

pitch contour Pr(m) with the extracted pitch contour /,.(m) for every c, that is, for

each of the seven pitch extraction methods tested, and for every m, that is, for

each interval or section, either voiced or unvoiced in the recording, one of the four

following events can occur.

1. Pr(m) = D,Pe(m) = D,in which caseboth the referenceandextracted contours

have classified the interval m as unvoiced.
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2. l'r(m) = 0, 1',(m) # 0, in which case the reference contour has denoted that

interval m is unvoiced but the extraction method chas denoted this interval

as voiced. This event is tagged as a unvoiced-to-voiced error.

3. l'r(m) # O,/I,(m) = 0, in which case the referencecontour has labelled interval

m as voiced, but the extraction method chas identified the same interval as

being unvoiced. This event is tagged as a voiced-to-unvoiced error.

4. l'r(m) = PI # 0, 1',(m) = P2 # 0, in which case both the reference and

extracted contours label interval m as being voiced, but the values of pitch

periods PI and P2 differ. In this event, two types of errors can occur. If the

difference between the two extracted pitch periods is small, then a fine pitch

error is said to have occurred, otherwise, a gross pitch error has occurred.

The former denoted a difference of a few samples whereas the latter typically

denotes errors such as pitch halving or doubling.

Defining the error as the difference between the reference and extracted pitch

period samples as

(3.6)

•

then if 16(mll ~ 5 samples, which represents an error of 0.3125 ms in estimating

the pitch period, the error is classified as a gross pitch error. Given the range of

Fa values in infant cry signaIs, is a reasonable measure for the cutoff between both

fine and gross errors. Consequently, if le(mll ~ 5 samples a fine pitch error is said

to have occurred.

Fol1owing the above discussion, we can now present the six error measures useù

to compare the performance results:

1. Gross Error Count: For this measurement, the number of gross piich errors

was counted. AIso, in order to normalize for the different frame rates and

for the different granularity of results offered by different methods, the gross

error count for a given method was divided by the number of voiced intervals

in order compute the percentage of intervals classified as voiced by both the
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reference and the pitch extractor in question, for which gross errors occurred.

2. Number of Pitch Errors: Here, the number of intervals Ni in an utterance in

which fine pitch errors occur, were counted. As was the case for the gross

pitch error count, this value were also divided by the number of intervals

classified as voiced by both the reference and the pitch extractor in question,

in the recording in order to compute the percentage of voiced intervals in

which a fine pitch error occurred.

3. Mean of the Fine Pitch Errors: The mean, ë, of the fine pitch errors is defined

as
1 Ni

ë=-I:e(mj)
Ni j=1

(3.7)

•

•

where mj is the jll. interval in the utterance in which there occurs a fine pitch

error and Ni is the number of fine pitch errors occurring in the utterance.

4. Standard Deviation of Fine Pitch Errors: This measure is defined as

(3.8)

This represents a measure of accuracy in measuring the pitch period during

voiced intervals.

5. Voiced-to-Unvoiced Errors: This measurement is taken by counting the num­

ber of frames where this error occurred and, as well, dividing by the number

of voiced intervals in order to compute a percentage value. This measure

denotes the accuracy of classifying voiced intervals.

6. Unvoiced-to-Voiced Errors: This measurement was taken by counting the

number of frames in which this event occurs during unvoiced intervals, and,

as well, dividing this value by the ntlmber of unvoiced intervals in order

to compute a percentage value. This denotes the accuracy of classifying

unvoiced intervals.

These measures give a good description of the strengths and weaknesses of the
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Pitch DetectOf
Fi e LPC SIFr CE,,:, H,IEv sFAC coRR SPR I~VBM SUI\1

A02004 7/505 1/519 0/280 0/259 15/568 71277 0/1l48 0/862 30/4118
1.39% 0.19% 0.00% O.OOCl/lI 2.64% 2.53% 0.00% O,()ll% 0.73'10

A07104 93/252 42/204 18/129 0/86 30/273 123/134 22/1157 0/1191 328/3-126
36.9% ~O.6% 13.9% 0.00% 11.0% 91.8% 1.90% 0.00% 9.57%

B056ST 28/171 12/191 13/101 12/54 29/202 30/101 78/3M 0/427 202/1(.11
16.4% 6,28% 12.9% 22.2% 14.3% 29.7% 21.4% 0.00% 12.5%

C1213SQ3 15/404 6/393 10/202 0/177 3/404 14/196 1/852 0/828 49/3-156
3.71% 1.53% 4.95% 0.00% 0.74% 7.14% 0.12% O.(}{l% 1.42%

P09102 77/525 4/473 10/256 1/242 19/525 39/259 27/1014 0/1023 177/4317
14.7% 0.85% 3.91% 0.41% 3.62% 15.1% 2.66% 0.00% -t.IO'};.

Sum 220/1857 65/1780 51/968 13/818 96/1972 213/967 128/4235 0/4331
Il.8% 3.65% 5.27% 1.59 C1/CI 4.87% 22.0% 3.02% O.(}{l'Y.,

Table 3.1: Gross Pitch Errors

various extraction methods, and as weil, serve to demonstrate the improvements

obtained in using the pitch extraction method proposed in section 3.1. Section 3.5

wil\ elaborate on these results.

Theseerror measures were computed and are presented in tables 3.2 to 3.6. These

tables il\ustrate the improvements achieved with the new crosscorrelation vector­

based fundamental frequency extraction method versus the methods borrowed

from the speech domain. In ail of the tables, the "Sum" column computes the

total number of the type of error, indicated in the caption of the respective table,

across ail the pitch extraction methods tested. On the other hand, the row labeled

"Sum" computes the total number of the type of error, indicated in the caption of

the respective table, for that particular pitch extraction method across ail the test

files. The former il\ustrates if any of the test files are particularly prone to one

type of error over another. The latter, however, il\ustrates which of the extraction

methods, if any, generate a higher number or percentage of that type of error when

compared to the other extraction methods. Table 3.6 sums across ail the error types

presented in tables 3.2 to 3.5 for each of the test files and pitch detection methods

il\ustrating which of the Fo extraction methods yield the best results across ail the

error measures computed.

104



•

•

•

3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

Pite Detectar
fi e LPC 1FT CE,." HSIEV SFAL LQRR SPR ICVBM Sum
AlI2004 15/5115 17/519 lI1280 0/259 19/568 16/277 0/et8 0/862 67/4118

2.97% 3.28% 0.00% 0.00% 3.35% 5.78% 0.00% 0.00% 1.63%
AlI7104 19/252 41204 171129 lI/86 8/273 11134 0/1157 0/1191 49/3426

7.94% 1.96% 13.2% :'.CO% 2.93% 0.75% 0.00% 0.00% 1.43%
11056~r 8/171 1~ ~191 01101 O!.54 5/202 01101 0/364 0/427 2411611

4.68% 5.76% 0.00% 0.00% 2.48% 0.00% 0.00% 0.00% 1.49%
C12135Q3 28/404 71393 141202 11177 19/404 01196 0/852 0/828 69/3456

6.93% 1.78% 6.93% 0.56% 4.70% 0.00% 0.00% 0.00% 2.00%
1'091l12 18/525 121473 14/256 01242 16/525 21259 0/1014 011023 62/4317

3.43% 2.54% S.47% 0.00% 3.05% 0.71% 0.00% 0.00% 1.44%

Sum 8811857 51117811 45/968 111818 6711972 19/967 014235 0/4331
4.74% 2.87% 4.65% 1.34% 3.40% 1.96% 0.00% 0.00%

Table 3.2: Fine Pitch Errors

3.5 Discussion of Experimental Results

This section reviews the results of the tests performed in section :'lA. Pirst, the

pitch contour plots of the individual test files will be discussed, noting where and

why certain methods fail, and how the improved crosscorrelation vector-based

fundamental frequency extraction performs comparatively to the other methods

tested on the recordings. Following this, the results shown in tables 3.1 to 3.5 will

be discussed and the reason behind the failure of certain Fo extraction methods

on recordings with certain characteristics will be addressed. As weil, the sub­

stanhal improvement achieved using the improved crosscorrelation vector-based

fundamental frequency extraction method will be iIIustrated.

3.5.1 Fundamental Frequency Contours

File A02004

Figure 3.22 shows the fundamental frequency contours extracted from file A02004

using the respective methods indicated in the captions of the sub-figures. As

was mentioned in section 3.4.1, this file contains a relatively well-behaved contour

with slow and srnooth variations in its progression, punctuated with sorne brief
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Pilen Ocll'Clor
File LPC 51FT CErs HSIEV SFAC CORR SrR lCVUM 5U1n
A02004 1.22 U.90 0.00 058 0.95 0.97 0.00 (l.llO 4.62
AU71M 2.89 1.00 1.18 U.OO 1.U3 U.O(l 0.00 (!.lK) 5..:~
0056ST (l.71 (l.00 (l.00 (l.00 1.89 (l.00 (l.O(l O.O(l 1.80
C1213SQ3 1.65 0.38 1.46 (l.00 2.37 (l.OO 0.00 U.OO 5.86
PU9102 1.39 I.U3 1.7(l 0.00 1.39 1.41 O.UU O.lKl 6.92
Sum 7.(l6 3.31 4.26 058 6.83 2.38 (l.OO 0.00

Table 3.3: Standard Deviation of Fine Pitch Errors

episodes of ambient noise occurring during the course of the first episode. Looking

at the results of the different contours extracted from the various methods, it can

be immediately seen that the cepstrum-based, super-resolution, and the improved

crosscorrelation vector-based pitch extraction methods yield the smoothe"t and

most accurate pitch values. Both the cepstrum and the super-resolution method

fail to ignore the locally periodic noise burst occurring between time 2 and time 2.5

in the signal.

The contol\r of the first episode extracted by the super-resolution method has

a brief interruption occurring at about time 1.35 seconds, which, in turn, is due

to a sudden change in the characteristics of the first formant frequency, which

changes the characteristics of the signal. Consequently, adjacent pitch periods in

the signal are significantly different and the crosscomlatirm value drops below the

voiced/unvoiced threshold at that point in the utterance.

Ali the methods, except for the improved crosscorrelation-vector based funda­

mental frequency extraction method, have difficulty tracking the pitch at end of

the first episode due to the weakness of the signal which either causes the encrgy

contained within a given frame and the autocorrelation peak values to fall below

the voicing threshold for the cepstrum in the former case, and for the LPC, SI FT,

spectral flattening autocorrelation, and correlogram methods in the latter case. For

the super-resolution method, the oscillation between the pitch and no-pitch values

occurs due to the weakness of the signal which causes the crosscorrelation values to

oscillate above and below the voicing threshold. For the improved crosscorrelation
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Pilch Detector
Fil. U'C 51Fr UI'S H5!EV SFAL LUKK SPR ILvBM Sum
A02004 69/574 55/574 71287 28/287 61574 10/287 12/860 01862 187/4305

12.0% 9.58% 2.44% 9.76% 1.05% 3.48% 1.39% 0.00% 4.34%
A07104 21/273 69/273 71136 50/136 0/273 2/136 4/1161 0/1191 153/3579

7.69% 25.1% S.IS'l'o 36.8% 0.00% 1.47% 034% 0.00% 4.27%
B056Sr 31/202 111202 0/101 47/101 0/202 0/101 6/370 0/427 95/1706

15.3% 5.45% 0.00% 46.5% 0.00% 0.00% 1.62% 0.00% 5.57%
C1213503 0/404 11/404 0/202 25/202 0/404 6/202 0/852 0/828 42/3498

0.00% 2.72% 0.00% 12.4% 0.00% 2.97% 0.00% 0,00% 1.20%
1'091112 1/526 53/526 7/263 21/263 11526 4/263 7/1021 0/1023 94/4168

0.19% 10.1% 2.66% 8.01% 3.04% 1.52% 0.69"/0 0.00% 2.25%
Sum 122/1979 199/1979 21/989 171/989 7/1979 22/989 29/4264 014331

6.61% 10.1% 2.12% 17.2% 0.35% 2.22% 0.68% 0.00%

Table 3.4: Voiced-to-Unvoiced Errors

vector-based method, the pitch is tracked until voieing stops due the fact tha t the

method uses a lower voiced-to-unvoieed threshold and a distance measure, based

on the crosscorrelation maxima values, allowing the method to track a specific

pitch contour t!ven after the signal weakens considerably provided that periodicity

is maintained still present in the portions of the signal.

The LPC, 51FT, and harmonie sieve methods aU degrade under noisy conditions,

as can be seen in the interruptions occurring in the contour of the first "oieed

episode. The 51FT method performs better than the LPC method, due to the

reduced bandwidth of the input signal used in 51FT, whieh aUows it to remove

sorne of the effects of the noise bursts from the input spectrum. The harmonie

sieve is also adversely affected by the presence of noise bursts, and by the presence

of frames in the signal with weak or low amplitudes, when the number of peaks

faUing through the sieve is sharply reduced, causing those portions to be flagged

as unvoieed.

File A07104

A cry utterance whieh is typieal of the high fundamental frequency values found

in these signais, and whieh also provides one example of the rapid Fo variations

sometimes found in these signais, is contained in file AOn04. The pitch contours
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Pile Detl'Ctor
File CP<. .IFr LE'''' H.IEV ."Al LUKK ."R Il\DM Sun\
A02lJO.1 7/170 01170 12/&1 6/&1 SIl~170 0/&1 1~1482 0/4:><1 '1011 t02

4.12% 0.00% 14.3% 7.14% 29.4% 0.00% 3.11% 0.00% 5.29%
A07104 24/39 0139 3/20 2/20 38/39 0/20 191144 01137 86/341

615% 0.00% 15.0% 10.0% 97.4% 0.00% 13.2% 0.00')( 25.2CX.
B0565T 10/78 4/78 10/38 1138 21178 3138 23~145 0/110 72/603

12.8% 5.13% 26.3% 2.63% 26.9% 7.89% 15.9% 0.00% t1.9'~,

CI213SQ3 8/204 2/204 41101 81101 22/204 6/101 55/315 0/2.'\5 101/1465
3.92% 0.98% 3.96% 7.92% 10.8% 5.9"% 17.5% 0,00% 6$9'%,

1'09102 35/98 2198 18/46 5146 98/98 0146 27/180 01135 185/747
35.7% 2.05% 39.1% 10.9% 100% 0.00% 15.0% 0.00% 24$'l~1

Sum &1/589 8/589 471289 22/289 229/589 91289 139/1266 0/1075
14.3% 1.36% 16.3% 7.61% 38.9% 3.11% 11.0% 0.00%

Table 3.5: Unvoiced-to-Voiced Error5

extracted from this recording are shown in figure 3.23. As weil, the second episode

in this recording features a very narrow bandwidth first formant which occurs al

a frequency equal to twice the value of the fundamental frequency, at least for the

first 0.6 seconds of this episode.

Of the methods applied to this signal, the improved crosscorrelation vector­

based method gives the best results, providing smooth pitch contours for both

episodes in the utterance. In the first contour, the the rapid change in NI from

about 1000 Hz to SOO Hz is successfully tracked as is the subsequent rapid rise

in Fo from about SOO Hz to 2000 Hz. Also, the evolution of the second contour

is successfully tracked even though the occurrence of the narrow bandwidth FI

seems to affect sorne of the other methods quite adversely.

The super-resolution method behaves reasonably weil. Interruptions occur in

the first contour, mainly due to a change in formant values the middle portion

of that episode, and at the end of the episode because of a weakening signal.

Interruptions in the second episode occur because of sorne noise occurring at the

beginning and shortly after the 1 second mark, and as the signal weakens at the

end of the episode.

All of the ('ther methods yield extremely poor results due to inconsistencies

in the pitch values extracted, the most common error being pitch halving errors.
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Pitch Detector
ï'ifc LPC SFf CEPS HSIE\' SFAC caRR -SPR -ICVBM Sum

A02IX14 98/744 74/744 19/371 34/371 90/744 33/371 27/1342 0/1320 374/6007
13.2% 9.81% 5.12% 9.16% 12.1% 8.89% 2.01% 0.00% 6.23%

A07104 157/312 115/312 45/156 52/156 76/312 126/155 45/1305 0/1328 616/4037
50.3% 36.9% 28.8% 33.3% 24.3% 81.3% 3.45% 0.00% 15.3%

00565T 77/280 44/280 23/139 60/139 55/280 33/139 107/515 0/537 399/2309
275% 15.7% 16510 43.2% 19.6% 23.7% 20.8% 0.00% 17.2%

D213SQ3 51/608 2iiT608 287303 347303 44/608 26/303 56/1167 0/1063 265/4963
8.39% 4.28% 9.24% Il.2% 7.24% 858% 4.80% 0.00% 5.34%

1~19102 131/624 71/624 49/309 27/309 134/624 45/309 61/1201 0/1158 518/5158
21.0% IJ.4% 15.9% 8.74% 21.5% 14.6% 5.08% 0.00% 10.0%

Sum 514/2658 32972658 16471278 20171278 399/2658 263/1278 296/5530 0/5406
19.3% 12.4% 12.8% 16.2% 15.0% 20.6% 5.35% 0.00%

Table 3.6: Total Errors

5tarting with figure 3.23(a), it can be seen that the LPC method produces a number

of errors, but the most common of these errors are indeed pitch halving errors. As

was mentioned in section 3.2.1, this occurs because the spectrum of an utterance

containing a very high Fowill contain very few harmonies. In these cases, the the

poles of the LPC spectrum will model the harmonie peaks and not the spectral

peaks. Consequently, the effects of FI and Fo will be removed from the input

signal when it is inverse filtered, leaving only weak periodicity present at a period

equal to twiee that of the pitch period, resulting in pitch halving errors. In the first

episode of the signal, following the drop in Fa from 1000 Hz to 800 Hz occurring

at about time 0.1 seconds, there are so few harmonies present in the input signal

frame that the poles model the harmonies so weil that the inverse filtered signal

shows no periodicity at ail, and these frames are tagged as being unvoieed. In

short, this file illustrates the limitations of LPC on this type of cry utterance.

The 51FT method yields better results, as it uses both less poles and a version of

the signal whieh has been decimated by 2, reducing the b,mdwidth of the spectrum

that needs to be modelled by 2 as weil. Here, the number of pitch doubling errors

is considerable. This occurs because the Fa peak in the spectrum is stronger than

that of its harmonies. Inverse filtering the signal frame removes this effect, but

retains the effect of the harmonies in the inverse filtered spectrum. Consequently,

this appears as p~aks occurring at twiee the fundamental frequency value of the
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input signal frame. Also, SIFr has problems successfully tracking the 1"0 contour

at the end of the second episode due to the poor harmonie content in the signal.

In these frames, the LPC coefficients, or poles, model the fundamental and ils first

harmonie in the input spectrum, removing all traces of periodicity from the input

signal frame in the inverse fi1tered residual.

Next, the cepstrum pitch extraction method performs reasonably weil, save

for a number of pitch halving errors. This is mainly caused by variations in the

amplitude of the input signal, or shimmer, anJ due to sorne briefbursts of additive

noise, which may cause every other period to look more like the fundamental than

the true pitch period does, due to these effects.

The harmonie sieve method misses approximately the first half of the first pitch

contour and the final portion of the second pitch contour due to poor harmonie

content, whieh tends to flag a partieular interval as being unvoiced.

The spectral flattening autocorrelation method also produces a number of pitch

halving errors whieh are caused by amplitude shimmer in a given frame of the

input signal which causes every other period in the input frame to look more like

the pitch period than the actual pitch period. In addition, the frames between the

Iwo voiced episodes in the signal are incorrectly labeled as being voiced, since the

energy in these frames exceeds the voieed-unvoiced threshold.

Cochlear filtering and the subsequent correlation of these channels leads to

inconsistent resu1ts for the correlogram-based pitch extractor. In all but a few

frames the extracted pitch value is incorrect and the pitch extracted is either 4: or

!f, making this method practieally useless for this vocalization.

File B056ST

The pUch contours extracted by the various methods on file B056ST are displayed

in figure 3.24. As stated in section 3.4.1, this file corresponds to the cry of a prema-
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ture infant fullowing a heel stick and contains portions of sustained phonations,

dysphonation, double harmonie break episodes, and an inspiratory phonation 10­

cated at the end of the utterance. Also, there are places at the beginning and at the

end of the first vocalization where a narrow bandwidth Ft occurs at a frequency

equal to twice that of the fundamental frequency.

For this recording, the ilr.proved crosscorrelation vector-based method yields

perfect results for both episodes. It successfully tracks the start of the double

harmonie break episode beginning at time 0.4 seconds, and lasting until about 0.65

seconds, whieh is punctuated by a dysphonie episode shortly before time 0.5, and a

brief return to the true Fa in the neighbourhood of the 0.6 second mark. In addition,

the inspiratory phonation is successfully tracked from start to finish, despite the

rapid drop in the fundamental frequency values over the course of the inspiration.

The next best result is achieved by the 51FT method whieh successfully handles

the double harmonie break episode, save for the brief dysphonie episode whieh it

classified as voieed. This error is due to the occurrence of sorne periodie portions

contained within a frame that also contains sorne dysphonie signal portions, with

the periodie portions causing the frame to be labeled as periodie. In one frame at

the end of the first episode, this method incorrectly classifies the pitch as being the

formant frequency, due to the occurrence of the narrow bandwidth FI whieh occurs

at a frequency equal to 2Fo. Due to the poor harmonie content in the inspiratory

phonation, the final portion of this utterance is not tracked. For the initial portion

of this utterance, a number of pitch halving errors occur.

The cepstrum-based Fa extraction method also does reasonably well, but in

the first episode it misses the dysphonie portion due to the same effect as was

mentioned for the 51FT method. As well, tracking the retum to the original Fa

during the course of the double harmonie break episode occurs for only one frame,

whieh is too short. At the beginning of the first episode, the method also labels

the FI frequency as being Fa, since the sharpest peak in the cepstrum occurs for
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FI instead of Fo, and during a brief portion of noise shortly after, produces a pitch

halving error. The inspiratory phonation is correctly tracked at first, but soon falls

vietim to pitch halving errors due to the shimmer present in the pitch periods in

this portion of the signal.

As far as the other methods are concemed, they ail do rather poorly for a

number of reasons. The LPC method over-models the input spectrum causing the

periodicity due to the fundamental frequency to be removed when the signal is

inverse filtered, causing a number of pitch halving errors, as can be clearly seen

in figure 3.24(a). As weil, there are a number of voieed-to-unvoieed errors in the

course of the first episClde as weil. The initial portion of the inspiratory phonation

is tracked but soon terminates due to the erratie nature of this portion of the signal.

The results from the harmonie sieve are extremely poor as Goldstein's thcory of

pitch perception causes a number of harmonie peaks to be "masked" or eliminated

prior to sieving. For a number of frames, both prior to, and during the double

harmonie break episode in the first utterance, the strength of the first formant peak

masks the effect of Fo and the second harmonie, 50 that the sieve delermined the

Fo to be FI, In other portions of the first episode, where the voiee-to-unvoieed

errors occur, there are 50 few harmonie peaks remaining in the signal spectrum

subsequent to the Goldstein pitch perception stage that the sieve cannot make a

definite conclusion regarding the true value of Fo.

The spectral flattening autocorrelation method has a number of pitch doubling

errors arising from the clipping of the signal whieh includes formant peaks in the

ciipped signal. This is due to the narrow bandwidth of FI for sorne portions of

this signal, and due to the small decay in amplitude between the pitch epoch and

subsequent intermediate oscillation peak due to the strong and narrow bandwidth

formant, whieh occurs at a frequency of 2Fo, resulting in the pitch period of the

clipped signal to be twice the true Fo.

The correlogram based method once again leads to a number pitch halving
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errors, presumably because the periodicity across all the cochlear bands at half

the true Fo is stronger than it is for the true Fo, whieh is caused by sorne noise or

amplitude shimmer in these portions of the signal.

Lastly, the super-resolution pitch extraction method correctly tracks the begin­

ning of the double harmonie break episode, since the change in the signal causes

the crosscorrelation between adjacent segments to fall below the voieing threshold,

causing the method to stop tracking Fo. The drawback of this method is that once

it begins tracking a certain Fo, it does not stop unless the crosscorrelation peak

for the pitch period lag falls below this voieing threshold. This is precisely what

happens for this particular recording during the double harmonie break episode.

AIso, the beginning of the first episode displays another drawback of this method.

If the method has not settIed into tracking a specific Fovalue, the method is subject

to incorrectly c1assifying Fo if there are perturbations in the signal whieh cause

periodicity at other values to be briefly stronger than those at the true pitch period

lag.

File C1213SQ3

As was described in section 3.4.1, this recording, whose results are shown fig­

ure 3.25, is an example of a cry that has two very erratic and quiekly varying Fo

contours, and also contains the tai! end of one contour, with periods of ambient

noise episodes occurring between these episodes.

Once again, the improved crosscorrelation vector-based method gives perfect

results, successfully tracking the progression of the rapidly changing Fo values

without interruption for the two episodes. None of the other methods tested extract

smooth, uninterrupted Fo contours, so the individual contours will be reviewed

individually.

The LPC generates more interruptions in the contours than its reduced band-
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width counterpart, the 5IFT rnethod. For LPC, the occurrence of rapidly varying

pitch periods located within a given frame result in pitch halving errors, especially

if sorne portions of the frame are corrupted by noise. This effect also plagues the

cepstral and spectral flattening autocorrelation methods as weIl. The 51FT method,

however, appears to be more robust to these effects, whieh appear only when lower

frequency noise is present in the signal.

Next, the harmonie sieve produces numerous voieed-to-unvoieed errors, as a

result of the effects that quiekly varying periods contained within a given window

have on the resulting spectrum. In these cases, the harmonie peaks in the spectrum

do not occur at exact multiples of the fundamental frequency peak. When a sieve

with an initial frequency in the neighbourhood Fo is used, not all the peaks in the

spectrum will fall through the sieve, and the segment will be classified as unvoieed.

As was the case for the three test files described previously, the correlogram

based method performs poorly for this recording as well. Once again the periodicity

across all the cochlear bands at half the true Foappears to be stronger than that for

the true Fo, whieh is most likely caused by sorne noise or amplitude shimmer in

these particular portions of the signal.

The super-resolution pitch extraction method performs reasonably well on the

contours, save for a few erratie portions at the start of the second contour before

the algorithm settles and begins to track the pitch. The major disadvantage of

this method is in how it handles the non-voieed, noisy portions of the signal.

From the contour shown in figure 3.25(g), it can be immediately observed that this

method tracks the locally periodie portions of noise bursts, leading to a number of

unvoiced-to-voieed errors.
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File P09102

Theextracted pitch contours for recording P09102, the last of the 5 test files, is shown

in figure 3.26. This recording features a long voieed episode with a slowly decreas­

ing Jiil with little variations, preceded and followed by short voieed episodes, with

silence separating the three contours.

Once again, the improved crosscorrelation vector-based pitch extraction

method, gives the best results. It tracks all three contours perfectly, including

the high Fa portion at the beginning of the second voiced episode, and the double

harmonie break episode at the beginning of the thirci contour.

The LPC pitch extractor produces to a number of pitch halving errors, especially

in the second utterance when the signal amplitude weakens somewhat, causing

less harmonies to be present in the signal spectrum. This causes the poles to model

the harmonie peaks precisely, leaving little apparent periodicity at the true pitch

period. In the end portion of the second utterance, the pitch values extracted

become erratic, as they aJso do for the third utterance, due both to the weakness of

the input signal and to the presence of sorne additive noise in the signal.

The 51FT method provides a smoother contour than LPC does, but misses the

initial high Fa burst at the start of the second contour. As well, this pitch extraction

method gets interrupted at about the 1.6 second mark when the signal weakens

as it reaches the lowest Fa value for this utterance. Note that the third episode

consists of only one peak; all other pitch contours are ignored as the signal is weak,

and noise is present in the signal, so that the autocorrelation of the inverse filtered

residual does not indieate periodicity.

The cepstrum-based and spectral flattening autocorrelation pitch extractors both

provide smooth contours, save for a few pitch halving errors occurring in sorne

places. Note, however, that these rnethods successfully extract one correct pitch

period value from the initial high Fa portion of the second utterance, but fail to
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c1assify the portion of the recording between the first and second episodes as

unvoieed. Both the contours for the first and third episodes are inconsistent due to

weak signal values.

The harmonie sieve performs weil in the second utterance until the signal weak­

ens, at which point the low number of harmonies present in the spectrum to be

sieved causes the segment to be flagged as unvoieed. The break in this contour

prior to the one second mark is due to the Goldstein theory ofhearing pre-processor

eliminating sorne harmonie peaks due to masking effects by other neighbouring,

higher amplitude peaks so that the remaining components, when sieved, yield

inconclusive results, causing this series of input frames to be labelled as unvoiced.

The first and last Fo contours are also err:ttie due to weak signal values.

As is the case for the other test files presented above, the correlogram generates a

number of gross pitch errors for both the second and third utterances. This is due to

the stronger periodicity present across the cochlear filtered bands at twiee the pitch

period than at the actual pitch period. This method does, however, identify one

frame of the initial high Fo portion of the second utterance, even if it is subsequently

followed by voieed-to-unvoiced errors.

The Fo contours extracted from the super-resolution method, shown in fig­

ure 3.26(g), once again display erratie behaviour during the first few time indexes

of the utterance before the pitch tracking about a certain pitch value begins, 10­

calizing the search for pitch candidates in subsequent frames. Due to the short

and erratic nature of the first utterance and the high Fo portion at the start of the

second, the extracted pitch values at these points varies enormously. This occurs

as the method is thrown off by locally strong periodicities present in the signal due

to noise or narrow bandwidth FI values. Sorne spurious and locally periodie noise

bursts are pieked up between the second and third utterances. Note once again

that for the third utterance, the method begins tracking the low Fo of the double

harmonie break episode, and does not follow the change to the higher I;il value

116



•

•

•

3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

when it changes a few time instants later.

3.5.2 Error Analysis

This subsection reviews and discusses the results presented in tables 3.1 to 3.6, and

comments on which of the methods tested produces the best and the worst results,

and explains why these methods fail where they do. First, table 3.1, which presents

the gross pitch errors as defined in section 3.4.3, will be discussed. Briefly, the gross

pitch error represent errors in the extracted pitch contour which differs from the

reference pitch contour by more than 5 samples and usually flags errors such as

pitch halving or doubling errors.

Gross Pitch Errors

From table 3.1, it can immediately be noticed that the method that gives the most

pitch errors across aIl the test files (the sum column) is the correlogram-based pitch

extraction method. This is not surprising based on the discussion of the extracted

pitch contours from the test files presented in the previous section. Although this

method has an intuitive appeal in that it performs cochlear band filtering in an

attempt to mimic the nerve firing patters of the hair cells contained in the human

ear, it is this complexity, however, that may actually lead to this method's downfall.

The peaks in the correlogram subsequent to the cochlear filtering result in high

values at multir les of the pitch period and lower values at the true pitch period.

Consequently, although this method may seem appealing at first, the actual results

reveal that this method is not very accurate in extracting 1"0 from infant cries. The

largest number of gross pitch errors occurs for file AOn04, which implies that this

method has particular difficulty extracting pitch from utterances containing high

Po values.

The method that has the next highest rate of gross pitch errors is the linear
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predietive coding (LPe) method. This is due ta the fact that in cases where there

are few harmonies present in the spectrum of an input signal frame, the number of

poles used to model the spectrum do not, decreases, in turn, causing the poles to

model the harmonie peaks. Consequently, when the signal is inverse filtered, all

the effects of the harmonies are removed from the signal, leaving only periodicity

present at multiples of the true pitch period leading to these types of errors. Nole

that reducing lhe bandwidth of the input signal, decimaling, and reducing the

number of poles used to model the spectrum, as is done in the simplified inverse

filter tracking method (51FT), reduces these errors substantially.

The improved crosscorrelation vector-based method provides the best results,

producing no gross pitch errors in any of the files tested. This result is typieal of

those achieved with other files in the data set, as weil, and whose results are not

included here. 5ince this method uses post-processing in the form of thresholding,

distance calculations, and distance analysis in order to determine the true pilch

period, gross pitch errors seldom oœur. Consequently, the improvemenl in this

error measure when compared to sorne of the classieal methods, and sorne of the

newer, more complex methods, is immediately apparent, both in the tabular results,

and when comparing the accuracy of the extracted pilch contours.

The super-resolution pitch extraction method, whieh also uses the crosscor­

relation to generate pitch candidates, produces a number of gross pitch errors,

partieularly in a couple of cases. Pirst, if while tracking a specifie lih, during a

double harmonie break episode, for example, the fundamental frequency jumps

to a value whieh is twiee that of the old fundamental frequency, the method will

continue to track the old Fo value as being the true value of 1"0, since periodicity

exceeding the voiced-to-unvoiced threshold will still exist at this value. AIso, in

sections of the signal before the algorithm setlles and begins to track a specific l'h

value, when the signal is either weak, or there is a narrow bandwidth fii, other

strong periodie peaks can be incorrectly labeled as being the fundamental fre­

quency. Consequenlly, although the super-resolution method and the improved
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crosscorrelation vector based method both use the crosscorrelation as a means for

generating pitch candidates, the former uses the information located at that specific

time index when deterlPining the most Iikely Fo value. The latter method uses a

distance measure over the duration of the contour, 50 that the contour with the

highest score will be tagged as corresponding to the pitch contour. As a result,

the improved crosscorrelation vector-based pitch extractor is much Jess sensitive

to noise, signal strength, and locally strong oscillations within pitch epochs, than

the super-resolution method is.

The harmonie sieve also performs weil in terms of the small number of gross

pitch errors that it generates. This smail gross pitch error rate is somewhat de­

ceiving, however, because this method suffers from a large voieed-to-unvoieed

error rate, as can be seen in table 3.4. Despite this reduction in the number of

voieed frames available to this m~thod from which it can determine the pitch, it

still makes only a few pitch errors. Consequently, if the voieed-unvoieed deter­

mination method could be improved for the harmonie sieve pitch extractor, this

method could possibly achieve reasonable results.

Fine Pitch Errors

To briefly re-state what constitutes a fine pitch error before discussing the resuIts, a

fine pitch error is a difference between the extracted pitch value and the reference

pitch value of less than 5 samples. These types of errors occur when the method

used avoids making gross pitch errors for these frames, but fails to extract the

precise pitch value from the input frame due to imprecisions in the extraction

method. The number and rate of fine pitch errors for the five test files are Iisted in

table 3.2. In addition, the standard deviation, in samples, of the fine pitch error is

Iisted in table 3.3. This value measures the accuracy of the pitch values extracted

during voieed intervals.

Insofar as this type of error is concemed, there are no fine pitch errors in both
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the improved crosscorrelation vector-based method and in the super-resolution

method for the five test files. This is not surprising as both these methods u~e the

normalized crosscorrelation as the core vehicle for determining pitch candidates.

The normalized crosscorrelation provides an extremely accurate way of computing

the vocal fundamental frequency since it computes the pitch based on the the

location of maxima in the crosscorrelation vector which correspond to possible

pitch candidates. This results in the absence of fine pitch errors and consequently

no variation between the extracted and the reference pitch values for both of these

methods if gross pitch errors do not occur.

Of the other pitch extraction methods tested, the one whieh generates the largest

fine pitch error rate and the one whieh also has the highest variation between the

extracted and reference pitch values, as indieated by the standard deviation of

these errors, Œthe linear predietive coding method. This is due to a combination

of effects. First, ail frame-based methods have incorporated in them the averaging

of the pitch periods contained within a given frame of samples. Sorne files, such as

A07104 and C1213SQ3, contain segments where the pitch undergoes fast changes

in value. This causes the harmonie peaks to be wider than they would be for a

window containing a steady Fa value. When the LPC poles attempt to model this

spectrum, they may not be able to accurately model the wider harmonie peaks.

When the input signal is inverse filtered, the periodicity present in the residtlal

will be an average of the pitch values contained within the signal window ftlrther

distorted by the spectral modelling process.

Note that most of the methods whieh perform sorne form of spectral transfor­

mation, such as SIFT, cepstrum, and spectral f1attening autocorrelation methods,

suffer from a higher pitch period error rate than the other methods that do not

perform a spectral transformation, such as the harmonie sieve and the correlogram

piteh extractor. The same observation ean be made for the standard deviation of

fine pitch errors.
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Voiced-to-Unvoiced and Unvoiced-to-Voiced Errors

The tabulated results for the voieed-to-unvoieed errors and the unvoieed-to-voieed

errors can be found in tables 3.4 and 3.5 respectively. These tables are closely

related in that if a certain frame is not classified as voieed, it will be classified as

unvoieed. Individually, however, these results can illustrate if and whieh of the

methods tested are more biased towards one type of error over another.

Looking at the results for the improved crosscorrelation vector-based pitch ex­

traction methoc.. no voieed-to-unvoieed or unvoieed-tc-voieed errors were found

in the test files. This is because the post-processing phase of the method removes

from the set of candidate pitch values, all contours, or sections, whieh last less than

8 time intervals, whicheffectively excludes locally periodie noise bursts, or simply

spurious peaks, from being considered as pitch candidates. 50, the post-processing

phase does indeed do a good job at avoiding these types of errors as well.

For the other methods, the harmonie sieve gives the highest voiee-to-unvoieed

error rate. A partieular frame will be classified as unvoieed if the harmonie content

is poor in the input spectrum, or if there are a number of harmonie peaks that are

removed from the input spectrum by the Goldstein theory of hearing processing

stage prior to sieving. In these cases, if the remaining harmonie peaks are sparse,

or if there are a small number of harmonies peaks present in the spectrum prior to

sieving, the segment will be flagged as unvoieed. This is the major drawback of

this method. Note, however, that there are fewer unvoieed-to-voieed errors.

The 51FT method also suffers from a relatively high number of voieed-to­

unvoieed errors when compared to the number of unvoieed-to-voieed errors. If

there are frames whieh contain high Fovalues and thus only one or two harmonies

are present in the input spectrum, the poles will model the harmonie peaks exactly

leaving no trace of periodicity when the signal is inverse fiItered, causing the seg­

ment to be incorrectly labeled as unvoieed. Although, the 51FT method has low

gross pitch errors because of the smaller signal bandwidth used, it suffers from a
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considerable number of voiced-to-unvoiced errors. The converse can be said for

LPC, which uses the full bandwidth signal.

The cepstrum uses theenergy contained within a given signal frame to det~rmine

whether a signal is voiced or unvoiced. This method works reasonably well for

voiced-to-unvoiced errors. For unvoiced-to-voiced errors, however, the error rate

is larger as the method tends to pick up sorne locally periodic bursts of noise in a

number of frames in the test files and incorrectly classifies these segments as being

voiced.

The spectral flattening autocorrelation method uses the same voiced/unvoiced

classification method that the cepstrum does, with the difference that the threshold

for the energy contained within a given segment for this method is lower than that

used by the cepstrum-based method, as was explained in section 3.4.2. This results

in a smaller number of voiced-to-unvoiced errors, but a significant increase in the

number of unvoiced-to-voiced errors.

Lastly, the super-resolution method shows its bias towards unvoiced-to-voiced

errors which occur when any two adjacent signal segments have a crosscorrelation

value greater than a threshold value, will cause that lag at that specifie time index

to be flagged as being voiced. This causes unvoiced portions of the signal which

may be corrupted by noise, to be occasionally labelled as being voiced due to the

high crosscorrelation values which occasionally occur in these cases.

Total Errors

The table cataloging the sum of the errors identified above is listed in table 3.6. This

table sums the gross pitch errors, fine pitch errors, the voiced-to-unvoiced errors,

and the unvoiced-to-voiced errurs, dividing this total by the number of frames or

windows in the utterance.

The best results were achieved for the improved crosscorrelation vector-based
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pitch extraction methoa whieh generated no error of any kind on the testutterances.

This is not to say that the performance of this method is perfect, but it gave excellent

results for the test files. On sorne other files in the data set whieh were either

corrupted by strong episodes of noise or ambient sounds, such as tones, these

episodes, partieuIariy if they were of long duration and reIatively periodie, would

be tracked as pitch contours during moments when there was no voicing in the

signal. However, these files were not incluàed in the test set since most of the

methods used in the comparison would have made the same mistake. In short,

this metp')d outperforms ail other methods tested, does a good job of removing the

various types of errors, and yields optimal results, with the output being suitable

for further processing, if so required. As weil, it should be noted that on ail the files

of the data sets, as described in section 3.3, on whieh the various pitch extraction

methods were tested, the improv~d crosscorrelation vector-based pitch extraction

method outperformed ail of the other methods in ail of the error classes.

The method whieh yields the next best total error rate is the super-resolution

method, mainly because of the large number of frames that are generated by using

this other crosscorrelation based method. The main problem of this method occurs

when the Fu value changes at the end of a double harmonie break episode, and this

change is not followed, as was mentioned above.

At the other end of the scale is the correlogram-based pitch extraction method

whieh has the highest total error rate with the majority of errors occurring because

of gross pitch errors. Ali the other methods have errors rates that are within a few

percentage points of each other.

The file that lead to the most errors was file BD56ST, where most of the meth­

ods had trouble dealing with the double harmonie break episode and with the

inspiratory phonation. The file with the next highest error rate was file ADnD4

whieh generated problems for a number of methods due to the high fundamental

frequency values contained in this recording.
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Figure 3.27: Crosscorrelogram of a Cry Uttered after a Heel Stick

3.6 Other Extensions of the Improved Crosscorrelation Vector­

Based Fundamental Frequency Method

The following subsections presentother advantages or spin-offs from the improved

pitch period extraction method presented in section 3.1.

3.6.1 Improved Utterance Visualization Using the Crosscorrelogram

Aside from being a good method for accurately tracking the pitch period in in­

fant cry utterances, the signal transformation pl case of the crosscorrelation vector­

based fundamental frequency extraction method, described in section 3.1.2, also

provides information which is useful for improved visualization of infant crics

[Petroni et al., 1994b1. The sequence of crosscorrelation vectors placed together in

a matrix as described in section 3.1.3, can be displayed in a three-dimensional plot

of lag versus time versus intensity called a crosscorrelogram, which is shown in

figure 3.27 [De Mori and Omologo, 19931. This plot differs, however, from the one

presented by De Mori and Omologo in that the time increments in the crosscorrel­

ogram displayed in figure 3.27 are dependent on the lag value of the most Iikely

pitch candidate for a given lime index, not on a fixed value.
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(a) Spectrogram of Cry Ulterance (b) Crosscorrelogram of Cry Ulterance

•

•

Figure 3.28: Comparison Between Spectrogram and Correlogram for the
Second Cry Utterance of File C1213SQ3

The presence of periodicity in the crosscorrelogram is indieated by the occur­

rence of peaks (large positive crosscorrelation values) and valleys (large negative

crosscorrelation values) denoted by the black a.ld white shades respectively in the

plot. Gray areas denote the occurrence of non-periodicity corresponding to either

noise, silence, or dysphonie sections in the utlerance. As is the case for the range

of expected pitch period lag values in the utlerance, the lag values indieated on the

y-axis span values from 5 to 120, whieh correspond to frequencies of 3200 Hz to

133 Hz respectively, given a 16 kHz sampling rate.

The crosscorrelogram gives a finer-grain view of the progression of the pitch

period than the standard method of utlerance vocalization, namely the spectrogram

IOppenheim, 1970], does. Comparing the spectrogram and crosscorrelogram for

the same cry recording, as shown in figure 3.28, it is clear that the correlogram

of figure 3.28(b) gives more detail than the spectrogram of figure 3.28(a) does.

Intuitively this can be understood from the fact that the crosscorrelogram generates

a vector for almost every pitch period, whereas the spectrogram uses a window of

samples whieh inherently averages the Fo values of the signal contained within a

frame.
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Figure 3.29: Pitch Period Extraction Process from a Cry Recording Uttered
After a Heel Stick (File B056ST)

In the crosscorrelogram, the identification of the pitch peak can usually be

done visually, with the first strong peak from the top of the crosscorrelogram

corresponding to the Folag, although in the event of narrow bandwidth FI, strong

maxima appearing at smaller lag values may appear. Consequently, this inspection

heuristic should be used with caution.

•
The results of the crosscorrelation matrix processing described in section 3.1.4

can be shown in the same manner and the resulting pitch period values can be

superimposed on the the crosscorrelogram plot as well [Petroni et al., 1994al. The
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tableau in figure 3.29 displays the crosscorrelogram in figure 3.29(a), the thresh­

olded crosscorrelogram matrix in figure 3.29(b), and the actual extracted pitch

period contour superimposed on the crosscorrelogram plot in figure 3.29(c), of an

utterance whieh features a double harmonie break episode.

Note that the pitch contour is properly tracked through the double harmonie

break episode. The crosscorrelogram contrasts to the series of plots, calied a movie,

whieh would be required by the correlogram-based algorithm described in sec­

tion 3.2.5 since the correlogram generates a 3-dimensional plot for a single input

frame and Ilot for the entire utterance.

This chapter presented the description, implementation, and a sample of ex­

perimental results of the improved crosscorrelation vector-based fundamental fre­

quency extraction method: a method whieh successfully and accurately tracks

pitch contours in infant cries. The results of this method were compared against

six other methods commonly used in the speech domain on five test cry utter­

ances each with different spectral and fundamental frequency characteristics. This

chapter has addressed the lack of an adequate method to extract the fundamental

frequency from infant cry signais. Although, the method was designed to handle

the large range of fundamental frequency values present in infant cry signal, this

method can useful for other speech signais as weil.
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Chapter 4 Classification of Infant Cries Using
Artificial Neural Networks

This chapter presents research undertaken for the purpose of classifying and dis­

tinguishing between different cry types using artificial neural networks (ANNs).

The chapter begins with an introduction regarding the advantages of computing

and classifying with neural networks, with the choice of this methodology over

other classification methods being justified. This wi1l be followed by a presentation

of the paradigms used in cry classification experiments and their suitability for use

with time varying signaIs wi1l also be outlined, as wi1l their relative strengths and

weaknesses. The input features derived from the cry recordings and used as inputs

to the networks will then be presented, followed by a discussion of their rela tive

strengths and weaknesses. These features use information derived from the entire

spectrum of the cry signal, since they provide a more comprehensive representation

of both the fundamental frequency and of the vocal tract. Next, a brief overview of

the software used to simulate these networks wi1l be presented before proceeding

to the presentation and discussion of the artificial neural network test results for

the different input features.

It should be noted that the work presented in this chapter r~presents a novel

application of artificial neural networks in a domain where they have not been

used prior to this dissertation, or if such was the case, this fact has not been

mentioned in the literature. Through the comparison of results achieved using

different architectures and input features, certain conclusions can be drawn setting

the stage for future research in this area.
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4.1 Classification with Artificial Neural Ndworks: Introduction

and Motivation

Artificial neural networks, or "neural nets" as they are commonly referred to,

have and are currently being used to solve a number of different classification

and computational issues in a variety of different domains [Lippmann, 1987].

This methodology is especially attractive due to its inherent parallelism, the

simple computations involved during its operation, and resulting from recent

advancements in very large scale integrated (VLSI) circuits which has allcwed

software simulations of neural networks to be implemented in fast hardware

[Dayhoff, 1990, Morgan and Scofield, 1991]. These advancements have allowed

the development of real-time ANN applications in the area of speech processing

and recognition, but their application in the domain of infant crying, still remains

undocumented in the Iiterature [Petroni et al., 1995].

Artificial neural networks are based on the present understanding of the way

that biological neural systems behave, but the current state of the art is still far from

equalling human performance in the area of recognizing speech, for example. The

models of different neural network architectures are specified according to network

topology, node characteristics, and the learning or training method employed.

Work on artificial neural network models dates back over 50 years with the

paper of McCulloch and Pitts [McCulloch and Pitts, 1943] generally acknowledged

as marking the start of work in this field, even if the authors make no mention of

the practical uses of these models. During the past 15 years, neural nets have

seen a renewed interest as the work of many researchers have brought about

significant advances in this field, both for the development of new architectures,

as weil as in the formulation and implementation of improved training methods

[Hecht-Nielsen, 1990].

Neural nets have become popular in pattern classification due to their inher-
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ent parallelism and the simple computations required vis-a-vis traditional clas­

sifiers, which either require higher computational complexity, or which require

longer limes to perform their task which may preclude real-time operation. 1t was

thought that because of these strengths, neural networks wouId be well suilcd

to speech recognition, but their successes and the proliferation of this methodol­

ogy in this particular domain has still not consistently surpassed that of hidden

Markov models. This has been mostly due to the fact that the majority of the

commonly used architectures only support static input pattern sizes. This causes

a particular problem for applications such as word recognition, for example, or in

any other application which has inputs that vary both in length and in where the

"relevant features" required for correct classification occur within the input pattern

[Morgan and Scofield, 1991). Despite these limitations, however, a numbcr of neu­

ral network architectures and neural network hybri::l architectures have emcrgcd

over the past few years, as was presented in chapter 2.

Although hidden Markov models (HMMs) represent the method of choice for

the majority of speech recognition applications, this methodology was thought

to be too complex to segment and to train given the nature of the pattern that

was to be classified in this particular domain. In speech, recognition of words

requires the identification of specifie phonetic events occurring in a particular order

[O'Shaughness}', 1987, Rabiner, 1989). Hidden Markov models address this using

a temporal ordering of the nodes, which is meant to correspond to the occurrence

of certain acoustic events during the course of a word utterance. In these modcls,

called left-to-rigllt HMMs, an example of which is shown in figure 4.1, once a

particular state has been traversed, it cannot be revisited, thus imposing a temporal

order of phonetic events which is inherent in the words to be recognized by the

system.

For infant cries, however, there seems to be no apparent temporal order in the

features present in utterances of the same type of cry. As well, auditory iden­

tification or classification by adult listeners seems to focus on the occurrence or
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Figure 4.1: A Left-to-Right Hidden Markov Model

presence of specific acoustie events in a cry, coupled with cues based on inten­

sity, and on the prosodie evolution of the Fa contour [Wasz-Hockert et al., 1968,

Zeskind and Lester, 1978, Fuller, 1991]. Consequently, straight pattern identifica­

tion techniques would seem to be better suited, potentially more successful, and

also less complicated to train and test than a corresponding HMM. Consider, for

example, the presence of dysphonie segments in an utterance. These events are

a common occurrence in pain cries [Johnston and O'Shaughnessy, 1988], and are

usually present at the the beginning of an utterance. However, these events are not

Iimited to the start of the utterance; a dysphonie segment can occur anywhere in

the course of an utterance.

Note the difference between the above and an application of word recognition

in speech, where the position of where a phone is identified in a sequence of phones

could determine whether one of two words in the vocabulary is recognized. For

example, the identifieation ofa phone such as "a" in a sequence could make the dif­

ference between an input word being c1assified as "able" or "baIe". Consequently,

for speech, both the arder and presence of phonemes makes ail the difference,

whereas for acoustic events in infant cries, the occurrence or presence is important,

regardless of order since the presence of certain acoustic events reflects articula­

tor position and vocal tract tenseness, whieh, as wai' mentioned in section 2.1, is

though to differ according to infant state. In addition to this, the intensity of the

utteran(';,; and the prosodie evolution of Fa is important as well, as opposed to word
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recognition, where these features are considered a nuisance for recognition pur­

poses, and are usually excluded from the feature set [Bourlard and Morgan, 19931.

Also, given the faet that newborn or premature infants have very poor control over

their vocal tract articulators, lends additional support to the hypothesis that the

problem of the correct classification of infant cries may not necessarily benefit from

information of a sequential nature.

Neural networks have been used in both phoneme and speech recognition­

related experiments, but the results published in the literature show more succcss

for applications with the former than with the latter. Infant cry vocalization resem­

ble vowel vocalizations, and can perhaps benefit from the phoneme c1assification­

related work done in speech using artificial neural networks.

Although a cry utterance may not necessarily be considered as being a left­

to-right first-order Markov process, where the probability of transition from the

current state to another state depends solely on the current state, this should by

no means imply that hidden Markov models couId not be useful in this domain.

One would have to replace the left-to-right model, shown in figure 4.1, used in the

speech domain by an ergodic model, shown in figure 4.2, where transitions from a

given state to ail others are allowed.

The process of training such a model would be quite time consuming and there

would be no guarantee that the results obtained using HMMs wouId be superior to

those achieved using neural networks. As weil, the training of the HMM requires

a large number of training set data 50 that the training algorithm can learn to

properly approximate the probability density functions of the observation symbols

in the individual states and the state transition probabilities accurately. For infant

cry utterances, it is often difficult to obtain large numbers of recordings, unlike

speech, for example, where large databases of speech samples exist for testing and

comparing the results of both feature extraction routines and speech recognition

methods.

132



•

•

•

4. Classification of Infant Cries Using Artificial Neural Networks

Figure 4.2: An Ergodic Hidden Markov Model

For these reasons, then, it was decided that first a series of tests using ANNs

would be attempted for the purposes of classifying one of three different cry types,

of which a detailed description is given in section 4.3. Pending the results of these

tests, it would then be decided whether or not these tests would be abandoned

in favour of a new sets of tests, this time performed using another classification

methodology such as classification and regression trees [Breiman, 1984], or HMMs.

The results obtained in initial tests were sufficiently good to warrant theircontinued

testing. Further tests were performed on other neural network architectures for

comparative purposes and in order to determine if certain architectures or input

features yield better results and why. No other group to date has used ANNs in

the domain of infant crying, or if they have, their results have not been published

in the literature and it is important to have results which can be compared with

other work, using the same or similar data sets.

Work done by Xie, Ward, and Laszlo used hidden Markov models ta compute

a cry's so-called level-of-distress, which is a subjective measure based on a par­

e•.t's perception of the infant's physical and emotional state after listening to a cry

[Xie et al., 1993]. Although their method mentions the identification and use of

"cry phonemes" in an HMM, no implementation details or error analysis measures
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were discussed in the paper, even if the correct classification value of this level­

of-distress measure was quoted as bein,; over 80%. The validity of this measure,

and the relation that this subjective measure has to specific infant states, sllch as

pain or hunger, for example, is not c1ear. Nevertheless, this method was one of the

first published in the literature which attempted to automate the classification of

cries, even if the method is based more on the perceptions of the listener than on an

understanding of the underlying cry production process which causes these crics

to be uttered, or controlled experiments affecting the underlying physiological and

emotional states of the infant producing the cry.

The results obtained as a result of the experimentation performed for this disscr­

tation using ANNs, which are presented in section 4.6, achieve correct classification

rates equalling or surpassing those achieved by Xie, Ward, and Laszlo. It sholiid

be noted, however, that the the classification experiments described in section 4.6

attempted to discriminate between three different cry states, and did not try to

match the perceptual measures of infant distress as interpreted by adliit Iisteners.

Moreover, neural networks were also selected because of their success in certain

facets of the speech recognition problem, most notably in vowel recognition and

phoneme recognition, as well as due to sorne successes in word recognition rcslllt­

ing from the use of architectures that incorporate time in them. Since ANNs possess

the potential of equalling the classification rates of the best statistical recognizers

for certain applications [Niles et al., 1989], this implies that they are at least worth

a closer look. While no neural network training method can yet guarantee that

the set of weights generated after a given training session converges to the optimal

set of weights, research is still on going in this problem to ensure tha t the weight

values will approach this "optimum" aS closely as possible.

The area of finding the optimal training methods, architectures, and input fea­

ture sets which will yield the best results for both speech and similar applications

with time varying signais, such as infant cries, remains very much an open problem,
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with limited success in the speech domain having been achieved, as mentioned in

section 2.3.

The strengths of ANNs lie in their ability to map classification sets, and these

optimal mappings are achieved if the training set is sufficiently large and repre­

sentative of the data which is to be expected in test patterns or during actual use

of the network [Haykin, 19941. The premise is that if the training data is especial1y

representative of the data which can be expected and if the network appropri­

ately models of the classification spaces for the input and output sets, then the

network will generalize and perform correct classification on the input patterns

which it has previously never "seen". To perform this generalization task as wel1

as possible, the training size should be comparable to the number of input weights

[Hecht-Nielsen, 19901. This is not possible for most applications, however, and

other tasks must be performed to accurately determine the performance of a given

network configuration. In the absence of sufficient input patterns, methods exit to

assist in this determination [Weiss and Kulikowski, 19911. Among these includes

training for a fixed number of iterations, training until an error measure, such as

the mean-square error, drops below a certain value, randomizing the sequence in

which the patterns are presented, and cross-validation training. The latter method

requires taking k patterns randomly from a data set of size n, and using Il - k

patterns as the training set and the remaining k patterns as the test set, repeating

the process until al1 the Il patterns in the entire data set have been in the test set

once.

The fol1owing section presents and discusses the neural network architectures

and training algorithms used for the purposes of evaluating their ability for c1assi­

fying infant cry vocalization uttered as a result of three different stimulus events.
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4.2 Neural Network Paradigms Tested for the Classification of In­

fant Cry Vocalizations

This section presents the different neural network architectures and training

paradigms tested for the classification of infant cries. A number of different archi­

tectures were investigated, but the results of only four are presented in the intcrcst

of presenting the most successful of the methods tested. Although the Iitcratllre

Iists a number of different architectures which have been successful1y used for

either phoneme or word recognition, most of these architectures were not tested

for the following reasons. First, the study undertaken for this dissertation was

performed to investigate the feasibility of using ANNs for infant cry classification;

if reasonable results could be obtained with these mOre "traditional" nets, further

tests with more complicated methods could then be attempted in the future, as was

mentioned in the previous section. Next, the availability of software implemen­

tations of certain neural network architectures and leaming paradigms, sllch as

probabilistic restricted Coulomb energy networks [Scofield et al., 1988], or Viterbi

networks [Lippmann and Singer, 1993], precluded the testing 01 these methods

with the cry recordings. Finally, ANNs and leaming paradigmF. that were avail­

able for testing via software implementations, available in the public domain, and

suitable for time-dependent signais, such as speech, were tested.

The following subsections will pn:~ênt the four paradigms used in cry classifica­

tion tests. They are the basic feedforward neural network (FF), the autoregressive

neural network (RNN), the time-delay neural network (TDNN), and the cascade­

correlation neural network (CC). A number of different algorithms for training

these ANNs exist as well, all of which attempt to adapt the network weights ac­

cording to a particular tr<lining regimen in order ta achieve the desired end result

of the training process. All of the leaming methods used for training the various

neural networks architectures for this particular application, which will be pre­

sented in the subsequent subsections, used supervised leaming techniques. These
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training methods attempt to find the optimal set of weights which leads to the

convergence of the difference between the desired and actual output values for

the inputs presented to the network, according to sorne error measure. Once the

network has converged, the weights values will represent a minima in the error

surface, and it is hoped that after training, the global minima of the error surface,

for which the weights constitute the dimensions, is found.

Supervised learning techniques assume that the desired function of the network

is to perform as an input/output system where the inputs to the network Xk have

desired output values Yk associated with them. The stimulus pattern is presented

at the input and the corresponding desired output values are presented to the

output of the network. If the output of the network resuJting from the presentation

of the input pattern does not correspond to the desired output pattern within an

acceptable error level, the netwr.rk weights are then modified in such a way as

to reduce the difference between the actual and the desired output values. The

weights can also be modified after a group of input patterns are presented to the

network, or after the entire set of patterns are presented. The following section

will also discuss the various neural network training algorithms associated or used

with the corresponding neural network architectures.

4.2.1 Iieedforward Neural Network Architectures

Overview

This is perhaps the simplest of ail neural network architectures, from which ail

other networks have evolved, and thus the most logical network architecture with

which to begin. Many of the concepts presented here will be vaUd for the other

networks as weil, and as a result, this subsection will be somewhat longer than the

subsequent ones.
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Figure 4.3: A Simple Feedforward Neural Network

An example of a simple feedforward neural network is shown in figure 4.3. The

network is organized into layers according to where a certain node or ccli in the

network receives its inputs from. The connections in this network are unidirectional

wï:h the information flowing from left to right. In this architecture, connections

are permitted only between neighbouring layers and these connections cannot 100p

backwards from nodes on the right to those on the left. The hidden layer reccives ils

signais from the inputs and the output of the hidden nodes are in turn propagated

to the output nodes.

The individual nodes in the hidden layer and output layer m~y have one of

a number of transfer functions, J(. " which transforms the weighted sum of the

signais that it reeeives from the previous layer, x~", and presents this value at its

output, xq+l. Examples of commonly used transfer functions are the hyperbolic tan

function, logical function, linear function, and the signum function [Simpson, 19901.

Usually, non-linear activation functions are used sinee this allows the network to

compute high-order corrE:lations of the inputs which are not possible using simple

linear activation functions [Dayhoff, 1990J. It can beshown that a three-Iayer neura1

network, with non-linear activation functions, is sufficient to compute an arbitrary
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mapping between input and output values [Haykin, 1994].

The choiee of using a transfer function such as the hyperbolic tan function, whieh

has outputs ranging between [-1,11, over the logistie transfer function, whieh has

outputs ranging between [0,1], are that the range of the former is twiee as large

as that of the latter. As weil, the tanh transfer function is asymmetrie, that is

f( -v) = - f( v), and a multi-layer network willlearn faster when trained using

back propagation [Werbos, 1974], one of the most popular ANN training methods,

whieh will be outlined below. A derivation of the method can be found in Haykin's

book [Haykin, 1994], or in other text books dealing with neural networks.

Training Methods

The back-propagation algorithm for weight updates on a pattern-by-pattern basis

behaves as follows. First the network is initialized with a11 the weight values

set to small random values, in order to avoid the saturation of the majority of the

network nodes. Next, the training examples are presented at the inputs, one pattern

for every iteration, with the activation potentials, or the transfer function output

values, of the nodes computed based on the weighted input sum at its inputs. This

is done for a11 the layers in the network, proceeding from the inputs to the outputs.

The activity of neuron j in layer 1is given by the equation

(4.1)

•

where lIV- 1l(n) is the output neuron i in the previous layer 1- 1 at iteration n,

w}:l(n) is the weight of the connection between neuron i in layer 1- 1 and neuron

j in layer l, J(.) is the activation or transfer function of the node, and y}')(n) is the

output of neuron j in layer 1for iteration n.

At the output layer, layer L, the output for anode j can be defined as being

yY'l = Oj(n), and the error signal can be computed as ej(n) = dj(n) - Oj(n), where
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dj(n) is the desired output of node j at Iteration Il. This error is then propagated

backwards to modify the weight values in such a way as to decrease the error

between dj(n) and Oj(II). This is accomplished by computing the local gradients,

or the rate of change, of the weights, <5, by proceeding backwards on a layer by

layer basis, starting at layer L - the output layer, as denoted by the supcrscript ovcr

the 8:

for the j'h ncuron in the output layer Land

8j'1(n) = yj'\n)[l - yj'l(11)] L 81'+
11(11 )wt+1l(11)

k

for the j'h neuron in hidden layer 1.

(4.2)

(4.3)

•
The weights in the network at layer 1are then modified according to the gcner­

alized delta rule:

where a is the learning rate and 71 is the momentum. The learning rate detcrmines

how much of the difference between the two previous weight values is added to

the current change, and the momentum term determines how much of the gradient

contributes to the weight change.

This process terminates when the error for either ail the patterns in the training

set, or for the error summed over ail the patterns in the training set, drops below a

certain value. One common error measure used is the mean-square error:

•
L Id~'(71) - Oj(nW

e= -'J!..... _

J

but other errors measures can be used as weil [Morgan and Scofield, 1991).

(4.5)
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Instead of updating the weights after the presentation ofeach pattern, the weight

values can also be updated following the presentation of ail the patterns in the

training set. The latter is referred to as batch training, whereas the former is

referred to pattern mode training. Pattern mode training was described at the

beginning of this sub-subsection. In batch processing, one waits to propagate the

error backwards after ail the patterns in the training set have been presented. Both

methods have their respective strengths and weaknesses and the better results

obtained by the use of one method over another depend on the nature of the

problem [Haykin, 1994, Weiss and Kulikowski, 1991). In experiments performed

for the classification of infant cries, which will be described in section 4.6, both

pattern mode and batch mode training were employed.

In addition to the training method presented earlier, other training methods

exist for updating the weight values; attempting to reduce the number of training

iterations required before the network converges, as weil as optimizing the value

of the weights obtained following the completion of the training process, in such

a way as to avoid the occurrence of getting stuck in a local minima. Such meth­

ods, which attempt to improve on the standard back-propagation, are QuickProp

[Fahlman, 1988) and gradient descent line search training techniques which are

based on optimization theory [Goryn and Kaveh, 1991).

Neural Network Connections and Configurations

The number and configuration of the connections between the different layers also

distinguishes between different types of feedforward networks. Fully connected

networks, such as the one shown in figure 4.3, are ones where ail the nodes in a

given layer have connections to ail the nodes in the subsequent layer. One can

also selectively choose to connect certain groups of nodes from one l"yer to a

Iimited number of nodes in the following layer thus restricting or localizing the

information that is passed from one layer to the next in this fashion. One formaI
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hidden output
Inputs layer layer

Figure 4.4: A Simple Feedforward Neural Network with Tessellated Con­
nections

method of localizing the connections among a group of nodes is referred to as

tessellation or "tiling" and involves connecting "tiles" of nodes from one layer

to the next, as is shown in figure 4.4. In this figure, each node in a given layer,

has connections from three nodes in the previous layer with two nodes from the

previous layer overlapping hetween adjacent nodes in the subsequent layer. This

allows the network to selectively integrate the activations from a group of nodes

from theprevious layer to the following layer. These types ofconnections are meant

to model tht! receptive fields in the neural anatomy of the brain, and, by restricting

the connections in this manner, the performanceof tessellated-connection networks

can either equal or better those using full connections [Dayhoff, 1990],

Lastly, a network with additional hidden layers can learn more complex map­

ping functions between the inputs and outputs than can be achieved with two-layer

networks. For sorne applications, the use of multiple hidden layers has achieved

better results as these networks perform the computation of higher-order correla­

tion functions between the input and output.
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Figure 4.5: A Simple Recurrent Neural Network

4.2.2 Recurrent Neural Networks

A means of capturing time-dependent information in an input set of data, or

for tracking sequences in an input pattern that varies with time, is through the

use of recurrent neural networks (RNNs). Figure 4.5 shows an example of a

simple recurrent neural network. This network takes the outputs from the node

activations, or transfer functions, from the hidden layer, and feeds these values

back to the inputs of the same node, delaying these values by one or more time

instants. Figure4.5 shows an example ofonly one delay unit per node, however, the

outputs of the hidden layers could be delayed by additional time instants, simply

by placing additional delay nodes, z-l, in the network. The delay units store what

is commonly referred to as cOlltext illformatioll since they store the context of the

network at a particular time instant for use as future input values to the nodes.

These context nodes can be added to the output units as wel1, enabling the state of

these nodes to be captured, in addition to the state of the hidden layer.
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These networks have the ability to learn the inherent "states" of a sequence of

input vectors and are able to capture time-dependent information of sequences in

a pattern that varies with time.

One of the methods with which these neural networks can be trained is through

the use of the "temporal flow" network as described by Watrous and Shastri

[Watrous and Shastri, 1~871. The behaviour of this method allows the context

weights to vary and uses the standard back propagation algorithm to dclermine

the value of all the weights in the network, treating the context weights simply

as weights originating from the previous layer. After all the weights have been

adjusted, the activation of the nodes are recalculated for the next pass of the weight

update training algorithm.

Unlike static feedforward neural networks, where the output is based on the

presentation of a static input pattern, the output values for recurrent neural net­

works vary with time. The selection oi these time-varying target output values is

quite arbitrary, although in their original experiments, Watrous and Shastri used a

ramp function as their target response over the course of a pattern's presentation.

For output values lying between 0 and 1, the ramp wa!> mitially started at 0.5 for all

the outputs, and slowly increased towards 1 for the node whose desired response

at the end of the pattern wap l, and decrt:!ased to 0 for the other output nodes. After

the network was trained, the "winning" node in the output layer was the node

with the largest output value of all the nodes for the subsequent testing phase,

Besides the ramp function, another time-varying function which has a desirable

time-varying characteristic for the purposes of training t,e network is the Gaussian

function. The nice feature of this function is that the values initially rise or fall

quickly, before levelling off asymptotically towards either 1 or O. The use of the

Gaussian function has resulted in sorne faster convergence times than when the

ramp function was used.

In the configuration of a recurrent neural network, the input size per time
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interval and the overlap size between subsequent input patterns can also be varied.

As weil, the number of time delay units in the context and output nodes can be

varied in order to determine the "granularity" of these parameters which yields

the best results. Consequently, a static input pattern can be represented as a

sequence of time dependent frames where both the frame size and the number of

frames to be presented to a recurrent neural network can be varied. This allows

the determination of whether or not time or sequence is important for a given

classification problem, and which frame size, number of frames, and delay units in

the hidden and output layers yield the best results. From this information, it can

then be determined if and what granularity of time information is relevant for a

given data set.

The time information extracted by this type of network is based on the activation

values of the hidden nodes and of the output nodes, which differs from the time

information encoded in the neural network architecture described in ~he following

section.

4.2.3 Time-Delay Neural Networks (TDNNs)

This architecture was originally developed by Waibel, Hanazawa, Hinton, Shikano

and Lang IWaibel el al., 1987] in order to model the dynamic nature of speech by

attempting to represent and capture the relationships between the different spectral

and acoustics events in a given signal over time, while providing invariance to slight

shifts in time between the various input frames. The latter feature of this network is

designed to tolerate the imprecise segmentation and alignment of an input pattern

so that the relevant acoustic events in the input frames for the same output class

can occur either somewhat sooner or later in time without affecting recognition.

Figure 4.6 shows an example of a TDNN node. Unlike the feedforward neural

network nodes, where the 1 inputs to the node are weighted and summed before
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Figure 4.6: A lime-Delay Neural Network Node

•
beingpresented to the activation function, the TDNN node augments this definition

by introducing a series of delays z-I ... z-N for all the input signais leading to the

node. In tum both the undelayed and the delayed inputs are weighted before being

summed and presented to t~'Le node's activation function, 50 that the number of

weights required for this node are 1(N +1), where N denotes the number of delays

in thenode.

•

A group of these nodes are then placed together in a TDNN, as shown in

figure 4.7, where the number of delays in the hidden layer is represenled by the

number of input frames that are presented te> a hidden layer node. This value is

one less than the number of hidden layer frames. In figure 4.7, the hidden layer

consists of three hidden nodes, counted horizontally, with the current input value

and N = 31elay units per node, counted vertically. With respect to the notation

indicated in figure 4.6, figure 4.7 has 1 = 12 inputs per node, consisting of two

six-element vectors, illustrated in the bold rectangle at the inputs, and N =3 delay

units in each of the three hidden layer nodes.

Consequently, a sequence of two six-element vectors, or twelve input values,
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Figure 4.7: ATIme-Delay Neural Network Definition

are presented at any given time instant. At the following time instant, the next

group of two six-element vectors are presented, consisting of one of the input

vectors from the previous frame, and one new input vector, with the activation

of the previous group of the input data frame is delayed by one. This continues

until all the groupings, or the total delay length of vectors, in the frame have been

presented. In the example of figure 4.7, this occurs three time instants after the first

group from the input data frame is presented. When the last grouping of two six

element vectors has been presented to the network, the hidden layer activations of

the first group from the input data frame have been delayed by three time units.

Hence for this simple example with a delay length of two and a total delay length

of five, a complete input frame consists of five vectors consisting of six elements

per vector, presented in to the network in groups of two vectors.

AIthough the network of figure 4.7 uses only one hidden layer, other hidden lay­

ers can be added, with subsequently hidden layernodes integrating the activations

of the previous hidden layer nodes over time. In shc1rt, this architecture allows

acoustic events occurring in the &equential input groups of a given input frames

to be integrated over time. Although th~ network may seem complex, TDNNs are

trained using back propagation.

In order to determine if tjlis architecture is suitable for a given application, a

number of different parameters in t.'te network can be varied. First, the input

delay length can be varied, which in tum changes the number of delays in the
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hidden nodes, or the number of hidden node frames for the network. The larger

the input delay size, the smaller the hidden layer delay size, and the coarsC/" the

time representation and time integration of features. Conversely, the smaller the

delay length, the larger the hidden layer size, and, consequently, the fi"er the

time representation, allowing the integration of spectral and acoustic features to

be integrated over smaller time slices. In the latter cases, it may also be wise to

experiment with adding a second hidden layer as weil. This allows the network

to capture both the input and time sequence representations by using a smaller

number of delay units in the first hidden layer, using the second hidde:n layer to

integrate a reduced dimension of activations from the first hidden layer.

These networks were originally shown to be successful for phoneme recogni­

tion [Waibel et al., 19891 with performance topping that of hidden Markov mod­

els [Waibel et al., 19881. This improvement in phoneme recognition achieved by

TDNNs over HMMs has not necessarily translated to improved results for word

recognition, however. These TDNNs have the drawback that the learning proce­

dure is rather lengthy, which is necessary in order to update the potentially large

number of weights. As weil, if true shift invariance is to be achieved, a large number

of training tokens are necessary to both compensate for inaccurate segmentation

techniques and for variable length utterances.

4.2.4 Cascade Correlation Neural Networks

Cascade correlation is an example of an algorithm that constructs its own hidden

layer by adding hidden nodes bas~d on the network error after a previous training

iteration. This paradigm was developed by Scott Fahlman at Carnegie Mellon Uni­

versity [Fahlman and Lebiere, 1991]. An example of a cascade correlation network

is shown in figure 4.8. This architecture has an intuitive appeal in that it will only

create as many hidden nodes as it needs in order to get the network errer to fall

below a desired value. Consequently, one does not have to determine the optimal
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Figure 4.8: A Cascade Correlation Network

number of hidden nodes for an application to correctly or optimally leam the rela­

tions between the input and output values; the leaming algorithm will determine

this by proceeding in the following manner.

First, the network begins with only the input and output nodes, which are fully

connected. The algorithm begins by adjusting the weights between the input and

the output nodes, 50 as to minimize the network error, using either back propaga­

tion or another gradient descent learning algorithm. This portion of the training

phase continues until either the network errOf l'ù longer improves, a fixed number

of iterations have occurred, or the networ!, error goes below a predetermined value

in which case the network has converged and training is stopped. Otherwise, the

algorithm proceeds to train a set of candidate hidden nodes.

These candidate hidden nodes are linked to the existing network with connec­

tions coming from the inputs nodes only, with no connections to the output nodes

during this training process. During the training of these candidate hidden nodes,

the weights connecting the inputs to the candidate hidden units are adjusted 50 as

to maximize the correlation between the activation of the candidate hidden units
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and the residual error of the nehvork, that is, the error of nehvork at the output

nodes when training stopped in the preceding stage. The values of the weights are

adjusted using either back propagation, or a gradient descentlearning method.

Training of these candidate nodes continues until the correlation value no longer

increases, or, as is the case for the output weights, after a fixed nllmber of iteratkms

have occurred. The candidate node with the highest correb',m value is added

to the nehvork with its weight connections from the inputs fixed at the values

determined during the training of the candidate weights. The output of the hidden

node is then connected to thp inputs of the output nodes, so that the output nodes

receive weighted inputs from the both the inputs and the hidden nodes, as figure 4.8

illustrates. The weights of these connections behveen the hidden and the output

nodes and those of the connections behveen the inputs and the output nodes are

then adjusted during the subsequent training session as the weights behveen the

input and output layers were adjusted initially.

This cycle continues until the nehvork error during the training of the the output

nodes drops below a predetermined value. Subsequent hidden nodes which are

added to the nehvork receive inputs from both the input units and from the previous

hidden nodes and hence the hidden nodes are cascaded in this fashion.

In short, the clear boxes in figure 4.8 denote the weights whicb are set a resljit

of the candidate node training, and are fixed once a candidate node is added to

the netv.',::,rk, and the sclid boxes denote the connections from either the input or

hidden nodes to the output nodes and which are not fixed, and thus change after

the hidden nodes are added to the nehvork.

When compareu to the other three neural nehvork architectures presented in

theprevious subsections, the cascade correlation architecture and learning methods

have not been used in numerous applications. However, the prospect of a nehvork

which grows a hidden iayer in response to the way that the nehvork error changes

is indeed an appealing one. The purpose behind usin~ this method is to determine
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whether the classification rates of infant cries would indeed benefit from the use of

this "tailor made" hidden layer.

4.3 Data Set and Experimental Set-Up

This section describes the data set used for the neural network tests for infant cry

classification and the feature sets which were derived from the cry recordings for

use as inputs into the various neural network architectures described in section 4.2.

The utterances to be c1assified in this experiment were a subset of the data set

used for the fundamental frequency extraction tasks described in section 3.3. The

set of recordings consisted of 238 utterances recorded at the Nôtre-Dame-de-Grâce

CLSC (Community Health Clinic) from sixteen healthy infants ranging in age from

two to six months, with no history of perinatal or postnatal complications. Ali the

parents of the infants gave their informed consent to p::lrticipate in this study. Ali

cry vocalizations in this data set were due to one of three stimulus events: pain

1distress from a routine immunization, fear 1startle from a jack-in-the-box, and

anger 1frustration from a h~ad restraint. Recordings were made on a Sony TCM­

500DEV cassette recorder with an omni-directional Senheiser MKE 2 microphone

placed 10 cm from the infant's mouth. Subsequent to low-pass filtering at 8 kHz,

tht:se cassette recordings were then digitized using a Data General D2701A card,

using a 12-bit analogue-to-digital converter, on a personal computer, at a saœpling

rate of 16 kHz. These digitized signais were then transferred to a Sparc 10+ for

subsequent analysis, feature extraction, and classification experiments.

Recordings containing cry utterances with a minimum duration of 0.75 seconds

were used for feature extraction. Of the 238 recordings in this data set, 195 had

vocalizations with durations that satisfied this criterion. The other 37 recordings

were discarded from the s~dy.
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4.4 Parametric Represer.tations

Since important events in the cry signal :ne thought to occur in the first ~cc­

ond of the utterance following the onset of the cry after the stimulus event

1J0hnston and O'Shaughnessy, 1988], the first second of utterances lasting at least

0.75 seconds after the cry onset were used for the subsequent f~ature extraction

data set to be used in the classification experiments. For utterances that did not

last for at least one full second but which lasted at least 0.75 seconds, the last frame

of parameters was extended to fill the empty frames. If important features useful

for classification lie in this portion of the cry, classification couId be accurately

performed using the extracted features, provided, of course, that these features are

relevant from an auditory point of view. The motivation bel,inJ using these types

of features is that since a human listener can distinguish between certain types of

Lries [Zeskind et al., 1985], or can learn to differentiate between different types of

cries [Ostwald and Murry, 1985], then if a classification method is pr-.:sented with

features derived from an understanding of the human auditory system, hopefully,

the automatic classification system will also "learn" to identify the relevant features

in the data and perform classification based on these features.

Two feature sets have been successfully used for speech recogni­

tion and derive from an understanding for the human auditory system

in general, and in the frequer..-:y response of the cochlea in particular

[Davis and Mermelstein. 19!!D, O'Shaughnessy, 19117]. They are the mel-based cep­

stral coefficients (Davis and Mermelstein, 1980], and the mel-scale filter-band en­

ergies [O'Shaughnessy, 1987]. The cochlea's frequency response characteristic is

such that the hair cells at low frequen.:ies have a higher resolution than those at

higher frequencies. One of the first representations of the hair cell center frequency

values and bandwidths was published by Zwicker [Zwicker, 1961]. This brief ar­

ticle shows a linear spacing of frequency bands with very narrow bandwidths for

frequencies below 1 kHz, and logarithmic spacing and corresponding bandwidths
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Figure 4.9: Filter Bank for Mel·Cepstrum Coefficient Generation

for values above 1 kHz. This representation is also known as the "Bark" scale or

"mel" scale. A number of studies have shown that using these representations for

the purposes of speech recognition yields superior results to using a fixed band or

linear scale representation of similar features [Davis and Mermelstein, 19801.

Using the research done for the parametric repr~sentationof speech for speech

recognition as a starting point for the representation of infant cry vocalizations,

the following two feë.ture sets were extracted from the signal; 10 mel-cepstrum

coefficients and 19 filter-band energies per frame of cry utterance data.

To extract these feature sets, the first second of the aforementioned recordings

containing utterances lasting at least 0.75 seconds were segmented into a series

of 16 ms or 256 samplp. frames, with subsequent frames overlapping by 50%.

Consequently, for a 1 second portion of the cry utteranre, 125 frames of feature

vectors wouId be generated.

Generation of the mel-based cepstrum coefficients begins by taking the discrete

Fourier transform (DFT) of the Hamming-windowed signal frame. Then the output

spectrum is passed through as series of triangular band-pass filters which model the

bark or mel-scale, and the log energy output values of these filters are calculated.

Figure 4.9 shows a representation of the 21 triangular band-pass filters used to

filter the DFT of each frame of the utterance. The overall frequency response of
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these band-pass filters sums to unity for thè portion of the signal in the area of

interest. Once the 21 critical band energies, Bk, are calculated, the 10 mel-cepstrum

coefficients are calculated according to the following formula:

21 [1 ;r]
Cn = {; 10g(Bk) cos lI(k - 2)~1 (4.6)

•

•

for Il = 1,2, ... , M, where in this particular case, M = 10. As weil, the zeroth com­

ponent of the mel-cepstrum coefficients, co, corresponding to the average energy

of the frame is also included, so that in ail, Il coefficients, Co, ..• ,Clll, constitute the

mel-cepstrum vector for a given input frame or window of data.

As was mentioned earlier, the 19 mel-scale filter-band energy values are also

generated as features. Generation of this feature set is done be first generating a

series of band-pass filters whose center frequency and bandwidths approximately

followed the critical band values. These filters were then generated using the

Remez Exchange Algorithm for generating linear-phase finite impulse response

(FIR) filters.

'lne difference between the number of erUiea/-band filters used in the mel­

cepstrum coefficient computation and in the computation of the me/-scull' filter­

band energy values is due to the fact that for the filter-bands in the range of 0 Hz

to 1000 Hz, the filters generated using the Remez Exch<"ge Aigorithm required

slightly larger bandwidths than those specified by Zwicker, which were used in the

mel-cepstrum computation, in order ta obtain unity gain in the pass-band. More­

over, using slightly larger bandwidths decreased the number of filters used for the

mel-scale filter-band energy values in the range of 0 Hz ta 1000 Hz from 9 ta 7, but

these larger bandwidth filters resulted in unity gain in the pass-bands of these fil­

ters, and consequently the sum of the magnitude of the frequency responses in this

range summed ta unity as desired. This criterion could not have been satisfied if

narrower bandwidth filters were generated using the Remez-exchange algorithm.

The motivation behind using FIR filters, as was also mentioned in section 3.3,
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Figure 4.10: Sorne Filter Bank Responses for Mel-Scale Filters

is that because of their linear phase characteristic, ail the frequency components in

the signal am delayed by the same amount of time during the filtering process, and

thus, no signal distortion occurs. A comprehensive article by Dautrich, Rabiner,

and Martin discuss the benefits of using FIR filter over infinite impulse response

(UR) filters for the purposes of speech recognition [Dautrich et al., 1983l.

•

Despite the desirable linear-phase characteristics of FIR filters, these fiiters have

the drawback that they require an order of magnitude more taps than UR filters

do, in order to achieve the same stop-band attenuation values. The 19 FIR band­

pass filters required 601 taps to achieve a stop-band attenuation of over 70 dB.

The frequency response of sorne of these fiiters are shown in figure 4.10, with the

characteristics of ail of the bands are listed in table 4.1. The sum of the frequency

responses sums to unity in the frequency range of interest, namely from 180 Hz to

7500Hz.

To generate the energy values for the individual bands, the signal was presented
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Filter Lower Stopband Lower Passband Upper Passband Upper Stopband
Bank No. Frequency (Hz) Frequency (Hz) Frequency(Hz) Frequcncy (Hz)

1 130 230 240 250
2 240 340 350 450
3 350 450 460 560
4 460 560 580 680
5 580 680 715 815
6 715 815 865 965
7 865 965 1030 1130
8 1030 1130 1215 1315
9 1215 1315 1425 1525

10 1425 1525 1670 1770
11 1670 1770 1940 2040
12 1940 2040 2260 2360
13 2260 2360 2640 2740
14 2640 2740 3075 3175

-15 3075 3175 3625 3725
16 3675 3725 4300 4400
17 4300 4400 5200 5300
18 5270 5300 6300 6400
19 6300 6400 7600 7700

Table 4.1: Characteristics of Mel-Scale Filter Bands

to the band-pass filters and then the energy was computed for the 16 ms or 256

sample frames from the individual band-pass filtered signais. The set of 19 energy

values per frame were then augmented by an adding another value containing the

total energy for the frame, so that in an, 20 energy values constituted the mel-scale

filter-band energy vector for a given input signal frame, or window.

Sorne considerations are in order before presenting the data to the neural net­

work architectures for training and subsequent classification tests. First, the dy­

namic range for the irlput values can be rather large, given that the range of possible

energy values can vary appreciably from one utterance to the next, between dif­

ferent portions of the same episode, and between different infants as weil. In

order to normalize these effects and to decrease the dynamic range of the inputs,

so that the training or leaming of features does not focus on the overly large in­

put values, the input values of the feature sets were either scaled or normalized

[Weiss and Kulikowski, 1991, Morgan and Scofield, 1991).
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For the I-seconJ frames of mel-cepstrum coefficients, two alternatives were

were investigated. In the first, the individuall-second collection of computed mel­

cepstrum coefficients were treated in two ways. First, these values were scaled

by max(co), the maximum of the average energy value within the I-second, or

125-vector, input data frame so that the maximum value contained in a given

input frame would not exceed 1.0. In the second, these frames were also subject

to normalization so that all the vi:\lues within a given frame would lie between

± 1.0. This normalization was performed by first determining the range of values

in a given I-second input data frame, done by finding the largest value (max)

and smallest value (min) in the frame, computing the "mean" or offset, and then

subtracting the mean from all the values in the frame. This operation has the effect

of shifting all input values in the frame to lie within the same positive and negative

number. Dividing all the values in the frame by this number has the effect of

normalizing values to lie between ±1.0.

The individual I-second collection of mel-scale filter-band energy values were

treated in three ways. First, these values were scaled by the maximum value of

a given I-sec0nd, or 125-vector, input data frame, so that all the values would

be at most 1.0. Then, dynamic range reduction was also achieved by taking the

logarithm of the energy values, producing the second data set derived from mel­

scale filter-band energies. Lastly, all the input frames had the mean of the maximum

and minimum values contained within the I-second frame subtracted and then

normalized so that all values within the frame would lie between ±1.0.

All of the parameter extraction, filter design, and signal processing of the cry

utterances was performed on a Sparc 10+ using MATLAB. The following section

briefly describes the neural network simulation software used to create, train, and

lest the various neural network architectures discussed in section 4.2.
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4.5 Neural Network Simulation Software

ln order to train and test the articles and paradigms that were mentioned in sec·

tion 4.2, three different public domain neural network software simulators were

used. The following subsections will briefly describe their features.

4.5.1 Aspirin/Migraines

The Aspirin/Migraines package is a system of tools developed at the MITRE Cor­

poration in order to facilita te the generation, training, and testing of both small,

trivial neural networks, and large, more complex neural networks [Leighton, 19921.

In this package, a neural network is specified according to a specific syntax which

describes the network to be created in terms of input size, hidden layer size, and

output layer size. The type of connections between 1ayers, such as full or tessel·

lated, the transfer or activation functions of the nodes, and the learning methods

can also be specified. As weil, if the transfer functions provided by the package

do not provide sufficient resolution, or other types of activation functions with

different characteristics than the one provided by the package are desired, they

may be specified by the user.

The file that contains the description of the network in Aspirin furmat is then

parsed and compiled to create a series of "C" language functions which are nec·

essary to simulate the network. These generated functions are then compiled and

linked to the application code using a set of user interface Iibraries referred to as

Migraines.

The user interface provided by the latest version, release 6.0a, of this set of too1s

is text based. However, the Migraines interface can provide output in various

formats which are supported by a number of popu1ar plotting packages, 50 that

network data can be visualized. As weil, anumber of formats are supported for
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the input data file specification from simple ASCII to MATLAB-formatted data.

Unfortunately, the number of architectures and learning methods in this version

of the software is quite limited. Using this package, only feedforward networks,

with full and tessellated connections, and recurrent networks were simulated, both

of which were trained using the generalized delta rule back propagation learning

method.

4.5.2 Xerion

Xerion is a collection of simulators which is built using "C" language libraries

developed at the University of Toronto by Geoffrey Hinton's research group

[van Camp, 1993). Each neural network architecture supported by this collection

has its own individual simulator network, with the libraries providing the user

with a consistent interface for interacting with the simulators, and for displaying

the network properties using an X-based graphical user interface (GUI). As weil,

the collection of libraries provided by this package allows the researcher to code

complex and experimental network definitions simply and quickly, and also allows

the addition and generation of other architectures to be performed using the Xerion

interface.

A neural network is specified in a file using a set of objects and creating and

connecting these objects in the desired manner. A user can select from a number

of Jifferent transfer function types and learning methods, which can either be

selected prior to training using either X-based GUI menus and panels, command­

line inputs, or through the use of command files. The input data files used for

training and testing the network must be in plain ASCII; no other file formats are

supported in the latest version of the software, version 3.1.

Although the standard Xerion distribution consists of eight different network

simulators, sorne of which were used to test the suitability of certain architectures
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for cry utterance classification, the results of only one of the more successful ar­

chitectures will be presented in in section 4.6, namely cascade correlation neural

networks which were trained using a conjugate-gradient descent learning method.

4.5.3 The Stuttgart Neural Network Sîmulator (SNNS)

The Stuttgart Neural Network Simulator is a comprehensive neural network sim­

ulator program which was developed by a team of researchers at the University

of Stuttgart in Germany [Zell et al., 19941. This simulator package uses an X-bascd

graphical user interface to interact with the user regarding the creation of net­

works, the loading and saving of network definitions, patterns, and configuration

files, the training and testing of networks, and the selection and specification of

node transfer functions, learning methods, and learning method parameters.

Although the graphical user interface provides the most elaborate and clegant

means of interacting with the SNNS kernel, an automated batch process is providcd

for the purpose of training the networks as weil. Version 3.2 of SNNS providcs

access to eleven neural network architectures and to a number of learning methods

which are based on back propagation, and improvements to standard back prop­

agation, such as QuickProp, which was developed in the interest of improving

convergence limes [Pahlman, 19881. Version 3.3, which was released in November

1994, has added few more architectures to their collection, and has also provided

sorne network pruning algorithms.

Despite the complete and comprehensive nature of this package, SNNS only

supports input data files for training and testing in plain ASCII format.

The SNN5-provided architectures used in this research, whose results will be

presented in this following section, were the cascade correlation using both back

propagation and QuickProp, and time-delay neural networks (TDNNs).
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4.6 Results

This section presents the results of the tests done using the feature sets and the

neural network architectures presented in section 4.2. First, the experimentation

procedures will be described, detailing what error measures will be used for the

results which will be presented in the subsequent subsections. Then, the results

obtained from input sets generated as described in section 4.3 will be presented in

section 4.6.2 and section 4.6.3. The results will be discussed in section 4.7.

4.6.1 Experimentation Procedures and Error Measures

The various combinations of neural network architectures and input data

sets were trained using a resampling stmtegy of 10-fold cross validation

[Weiss and Kulikowski, 19911. This involves splitting the data set into ten mu­

tuaUy exclusive sample sets of roughly the same size and using nine of these sets

to train the network with the remaining set to be used as a test set. This process is

repeated until aU the sets have been used as the test set once, in order to perform

an error rate estimation which is as close as possible to an unbiased estimator of

the true classification rate. Since there are 195 input frames, or files, in the data

set, at any one time approximately 90% of them, namely 175, 176, or 177 of these

input frames, were used to train the network, and the remaining 10%, either 18,

19, or 20 input frames, were used to test the network once the training process was

compieted. The results from the testing process from these 10 data sets were then

accumulated in order to determine the correct classification rates and error rates of

a particular combination of an input data set with a neural network configuration.

The correct classification rate corresponds to the number of correct classification

of test files, divided by the total number of test files. The error rate, on the other

hand, is simply the correct classification rate subtracted from 1.
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Using only one training and test set for a11 the experiments has the danger of

being an especia11y biased test and, consequently, results of these types of experi­

ments may not reflect the true performance if another data set consisting of similar

data were to be used. These tests can lead to unrealistic and over optimistic results.

For the 1D-fold cross-validation tests, since the data set consists of 54 anger cries,

16 fear cries, and 125 pain cries, the test sets contained anywhere from 4 to 6 anger

cries, 1 or 2 fear cries, and 12 to 13 pain cries chosen randomly from the pool of 195

cries, respecting the proportion of these sets in the total data set.

The results will be presented in two separate subsections, one for the tests

run using the mel-cepstrum coefficients as inputs, and the other for the tests run

using the mel-scale filter-band coefficients. In these subsections, the resu\ls will

be presented according to the architecture and the input features derived from

either the mel-cepstrum coefficients or from the mel-scale filter-band energies,

in a tabular format referred to as a confusion matrix, from which the optimal

hidden layer size, learning rate, and momentum can be identified. As we11, for the

individual architectures, error rates will be tabulated as some parameters in the

various networks were varied, such as hidden layer size for feedforward networks,

input frame size and overlap for recurrent and time-delay neural networks, and as

different training methods were used for cascade correlation networks. Lastly, the

individual subsections will conclude by summarizing a11 the results in a table for

comparative purposes.

Displaying the test results of the neural network outputs in a confusion matrix

allows the identification of the different types of errors which occurred during the

testing phase of the different neural networks architectures using different input

data sets. A confusion matrix lists the correct classifications againstthe predicted

classification for each output class, which for the this application corresponds to

A, F, and P, for anger, fear, and pain cries, respectively. The number of correct

classifications fa11s along the diagonal of this matrix.
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Along with the confusion matrix, the correct classification rate for the anger,

fear, and pain classes, as well as the total correct classification rate, resulting from

lO-fold cross-validation training and testing performed on these networks will be

given.

5ince it is also useful to determine how these networks perform on a two-class

classification problem, results from a "pain" and "no_pain" class perspective will

be derived from the three-class classification results and presented along with the

three-class classification results. Grouping the anger and fear classes together in

the "no-pain" class implies that although correct classification of anger, fear, and

pain are desired, it is of particular importance, especially in a clinical setting, that

pain and non-pain utterances are not confused once the network has been trained.

For the two-class confusion matrices, the "pain" and "no-pain" classes are denoted

by P+ and P- respectively.

Consequently, when compiling the three-class results into a two-class grouping,

the anger and fear outputs will be labelled as "no-pain" utterances. In this two-class

grouping, anger utterances classified as fear, and vice-versa, will not be considered

as being incorrectly classified since both anger and fear utterances fall into the

"no-pain" class.

The two possible errors which occur in two-class classification problems are

frequently given the names adopted from classification a medical context: fa/se

positives orfa/se lIegatives. In this pain and no-pain context, false positives represent

no-pain utterances which are incorrectly classified as pain utterances, and false

negatives represent pain utterances incorrectly classified as no-pain utteranc,"s.

Note that here the true positives is the number of pain files correctly cla:;sified as

pain, and the true lIegatives are the number of no-pain files correctly classified as

no-pain. From this, the following formai measures of classification performance

can be defined [Weiss and Kulikowski, 19911:

1. Sensitivity: which is the numberof true positives divided by the total number
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of actual pain files,

2. Specificity: which is the number of true negatives divided by the total number

of actual no-pain files,

3. Positive Predictive Value: which is the number of true positives divided by

the total number of files predicted as pain,

4. Negative Predictive Value: which is the number of true negatives divided

by the total number of files predicted as no-pain,

5. Accuracy: the sum of the true positives and the true negatives divided by the

total number of pain and no-pain files.

These measures are useful for identifying a neural network architecture and

input data set which yields a high sensitivity, but which may have a poor specificity,

in the event that numerous no-pain fi:es are c1assified as pain.

4.6.2 Mel-Cepstrum Coefficient Input Data Set

This subsection presents the results for the input data sets derived from the mel­

cepstrum coefficients, which were generated as described in section 4.3. The rcsults

are presented according to the architecture and the input data sets used to train

and test the respective networks. The two input input data sets derived from the

mel-cepstrum coefficients correspond to either the mel-cepstrum coefficients scalcd

by the maximum value in the input frame of data so that the input values do not

exceed a maximum of 1.0, and the mel-cepstrum coefficient values with the mean

removed and normalized to lie between ±1.0.

First, the neurailldwork results will be presented, fol1owed by the results of the

variation of sorne neural network parameters.
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Totalcorreet = ffi = 69.23%
Acorrcct = ~ = 59.25%
Fcorrect = ft; = 25.00%
Pcorrect = 1~ = 79.20%

A F P
A 32 6 19
F 0 4 0
P 11 6 99
q, 11 0 7

Predicted

Number of hidden units: 45; Leaming rate: a = 0.015; Momentum: '1 = 0.9.
Actua!•

Predicted

Actual
P- P+

P- 42 19
P+ 17 99
q, 11 7

Sensitivity = 1"is = 0.7920
Specificity = ~ = 0.6000

Predictive value (+) = ii'. = 0.8534

Predictive value (-) = ~ = 0.6885

Accuracy = :~~ = 0.7231

Table 4.2: Results for Fully Connected Feedforward Neural Nehvork using
Mel-Cepstrum Inputs Scaled to a Maximum Value of 1.0

Total,.r,," = ~ = 83.59%

Ao.rr,,' = ~ =75.93%
F,."",, = l. = 43.75%

P,.""" = lli =92.00%

Sensitivily = lli = 0.9200

Specificily = ~ = 0.7571
Predictive value (+) = m= 0.9274

Predictive value (-) = ~ =0.9138

Accuracy = m= 0.8615

Actual

A F P
A 41 5 5
F 0 7 0
P 5 4 115
q, 8 0 5

>-=-
p. P+

p- 53 5
P+ 9 115
q, 8 5

Predicted

Predicted

Number of hidden units: 45; Leaming rate: a = 0.015; Momenlum: '1 = 0.9.
Actual

•
Table 4.3: I{esults for Fully Connecled Feedforward Neural Network using
Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie Between
±1.0

Neural Network Results

•

As mentioned at the start of section 4.6, the results are displayed in confusion

matrices and the entries of these matrices represents the sum of the test phases

of the ten 10-fold cross-validation tests with separate matrices for both three-class

and two-class confusion matrices. To the right of the respective matrices are error

measures derived from these matrt::es. This is done for the configuration indicated

iIt the top of the tables, and for the neural network architectures and input data sets

indicated in the caption of the table.

For the feedforward neural network result tables, an additional row has been
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Totalco....r:cot = ~ = 67.69 IX.
A - ." - 59 25'"corrf'cr - s:i - . III

Fcorral = ft = 12.50%

pcorr..cr = &= 78.401%..

A F P
A 32 6 20
F 2 2 0
P 20 8 98
q, 0 0 7

Predided

Number of hidden units: 24 with [11 x 10)lessel1ation and Il X-overlap and 3 Y-overlap.
Leaming rate: ., = 0.015; Momentum: '1 = 0.95.

Adua!•
Adua!

p. P+
P- 42 20
P+ 28 98
q, 0 7

Predided

Sensitivity = i'ts =0.7840
Specificity = ~ = 0.6000
Predictive value (+) = ~:. =0.m8
Predictive value (-) = ~ = 0.6774
Aeeuraey = ~ = 0.7910

Table 4.4: Results for a Feedforward Neural Network with Tessellated
Connections using Mel-eepstrum Inputs Sc"led to a Maximum value of 1.0

Totalcorrcct = ~ = 73.31'YcI
Acorrccl = ~ = 62.96°/i1
Fcorrcct = ft; = 12.50%
P - 105 - 84 00'"correct - 125 - . III

Sensitivily = :~ = 0.8400
Specificity = ~ = 0.5429
Predictive value (+) = ~ = 0.8077
Predictive value (-) = ~ = 0.7917

Aeeuraey = 1:~ = 0.7333

Adua!

A F P
A 34 2 10
F 0 2 0
P 13 12 105
q, 7 0 10

P- P+
p. 38 10
P+ 25 105
q, 7 10

Predided

Predieted

Number of hidden unils: 24 with [11 x 10]lessellation and Il X-overlap and 3 Y-ovcrlap.
Leaming rate: a = 0.015; Momentum: '1 = 0.95.

Adua!

•
Table 4.5: Results for a Feedforward Neural Network with Te~~ellatedCon­
nections using Mel-Cepstrum Inputs with Mean Removed ".Id Normalized
to Lie Between ±1.0

included in the respective confusion matrices. This row, labeled as "predicted if,",

indicates the number of test files whose output was undefined, that is, which hild

an output value which did not single out one of the three output classes, when an

input frame of extracted parameters was presented at the inputs during the testing

phase. This problem arises when more than one output values saturates at the

positive output value, +1.

•
The best resuits of the fuUy connected feedforward neural networks, which use

the scaled and normalized mel-cepstrum input data sets are given in table 4.2 and
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TotitlcQrrect = 11 = 64.61%
Ac,,,,,, = ~ = 37.03%
Fcorrect = fi- = 12.50%
Pco,.rcd = ~~ = 83.20%

A F P
A 20 0 20
F 0 2 0
P 25 6 104
q, 9 8 2

Predicled

Inputs size: [75 x 11) with an overlap of 50 veetors per input frame.
Number of hidden units: 36 with 3 delay units per node.

Leaming rate: " =0.1; Momentum: q =0.5.
Aclual•

Predicled

Aclual
P- P+

P- 22 20
P+ 31 104
q, 17 2

Sensitivity = :~ =0.8320
Specificity = ~ = 0.3143
Predictive value (+) = ~ = 0.7704
Predictive value (-) = ~ = 0.5238
Aeeuracy = l;; = 0.6461

Table 4.6: Results for a Fully Connected Recurrent Neural Network using
Mel-eepstrum Inputs Scaled to a Maximum Value of 1.0

•

table 4.3 respectively. Best results for the feedforward networks with tessellated

connections are given in table 4.4 and table 4.5 for the scaled and normalized mel­

cepstrum input data sets respectivel)'. For the feedforwa cd architecture, the training

method which yielded the best correct classification rate employed a pattern-by­

pattern updating of the weights, which is similar to the weight update method

presented in section 4.2.1. The presentation sequence of the input patterns during

the training phase was randomized in order to both speed the convergence time

of the network as weil as improving the generalization capabilities of the trained

network.

•

Table 4.6 and table 4.7 list the best results for the recurrent neural networks,

which, for both the scaled and normalized input parameter sets derived from the

mel-cepstrum coefficients, have an input frame size of 75 mel-cepstrum vectors,

with subsequent input frames overlapping by 50 vectors. Consequently, one entire

l-second, or 125-vector, input frame for a given utterance is traversed in three

75-vector frames. For both the scaled and the llormalized input parameter sets,

the optimal configuration for the recurrent neural network consisted of 36 hidden

units with each node in the hidden and output units having two delays per node.

This results in the two previous outputs of these nodes being fed back as input to
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Totalcorrccr = MS = 70.26'X.
Acorrrd = ~ = 53.70'Yo
Fcorrrct = ft; = 12.50ul.,
Pcorrect = ~ = 84.80°;'.

A F P
A 29 0 15
F 0 2 0
P 13 0 106
q, 12 14 4

Predicted

Inputs size: [75 x Il] with an ovcrlap of 50 vectors per input frame.
Number of hidden units: 36 with 3 delay units per node.

Leaming rate: Cl = 0.1; Momentum: '1 = 0.5.
Actua!•

Predicted

Actua!
P- P+

P- 31 15
P+ 13 106
q, 26 4

Sensitivity = :~ =0.8480

Specificity = %=0.4429

Predictive value (+) = l\'$ =0.8908

Predictive value (-) = :/;\ =0.6739

Accuracy = :~; =0.7026

Table 4.7: Results for a Fully Connected Recurrent Neural Network using
Mel-eepstrum Inputs with Mean Removed and Normalized to Lie Bctwecn
±1.0

Inputs size: [105 x 11]; Overlap: [104 x 11].
Number of hiddcn units: [21 x 5); Leamil1g rate: " = 0.Gl5.

p- p+
p- 60 53
p+ 10 72

r- A F P
A 32 16 53
F 12 0 0
P 10 0 72• Predicted

Predicted

Actua!

Actua!

Totalcorrcct = ~ = 61.02'X,
A - n - 61 Il'''correct - s:I - . /Il

F -"- 0'"correct - Tb - {II

Pcorrect = fis = 57.60%

Sensitivity = ifs =0.5760

Specificity = ;li =0.8571

Predictive value (+) = ~ = 0.8780

Predictive value (-) = ,.,~, =0.5310

Accuracy =m=0.6792

Table 4.8: Results for a 1ime-Delay Neur:ll Network using Mel-Cepstrum
Inputs Scaled to a Maximum Value of 1.0

•

that same unit one time instant later. During the testing of this particular network .

architecture, the weights of the neural networks were updated after the presentation

ofone complete 125-vector input frame, that is after three 75-vector frames with the

subsequent 125-vector training frames presented randomly to the network. For the

recurrent, time-de1ay, and cascade correlation p.~ural networks, once the network

had converged and the test patterns were presented at the inputs, the winning

output or "cIass" was determined as being the output having the largest value.

The results for the time-delay neural networks are given in table 4.8 and table 4.9
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Inputs size: [105 x 11]; OverJap: [104 x 11].
Number of hidden units: [21 x 5]; Leaming rate: " =0.015

P- P+
P- 61 37
P+ 9 88

A F P
A 35 16 37
F 10 0 0
P 9 0 88

Totalcorrec! = lli = 63.07%

Acorrcct = ~ == 64.81 %

Fcorrcct = -& = 0
0/0

Pcorrcd = fis = 70.40%

Sensitivity = ffi = 0.7040
Specificity = %= 0.8714

Predictive value (+) = ~ = 0.9072
Predictive value (-) = ~ =0.6224

Accural'Y = ~ = 0.7641

ActuaJ

ActuaJ

Predicted

Predicted

•

Table 4.9: Results for a Ttme-Delay Neural Network using Mel-eepstrum
Inputs with Mean Removed and Normalized to Lie Between ±l.O

•

for the scaled and normalized mel-cepstrum inputs, respectively. For both input

parameters derived from the mel-cepstrum coefficients, the TDNN configuration

which yielded the best results was for an input frame size of 105 mel-cepstrum

vectors, with an overlap of 104 vectors per frame, and with a hidden layer consisting

of 5 hidden units integrating the activations of 21 input frames, corresponding

to 20 delayed activation values plus the undelayed activations of the last input

frame. Consequently, the entire 125-vector input frame i<; presented after 125 time

instants; 105 to fin the first input frame and 20 more to fin the 20 activation delay

values in the hidden layer. The network was trained using a variant of back

propagation specificany formulated for TDNNs, with the weights being updated

after the presentation of an the input patterns in the training set [Waibel et al., 1987l.

The 125-vector input patterns were presented to the network in random order

during the training process.

•

Table 4.10 and table 4.11 show the best results obtained using the cascade cor­

relation network, for the scaled and normalized mel-cepstrum coefficient input

data sets, respectively. For both of these input data sets, the optimal results were

achieved using a network that was trained u."ing él conjugate gradient descent

training algorithm with the patterns presentf<d in a random fashion and with the

we.ights updated after an the patterns in the training set were presented.
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P- P+
P- 38 75
P+ 32 50

Adual

A F P
A 22 7 48
F 9 0 27
P 23 9 50

Number of hidden unils ereated: 28.
Training method: Congugate Gradient.

Adual liot 1 - 72 - 36 92·'a correct - m - . 10

Acorrrct = ~ = 40.74°A.
FeoTreet = -& = Q0!c..

Pcorrect = ffi = 40.00%

Sensitivity =ffi =0.4000

Spedficity = ~ = 0.5429

Predictive value (+) = ~ = 0.6097

Predictive value (-) = ;',"3 = 0.3363

Aeeuraey = Ms = 0.4513

Predided

Predided

•

Table 4.10: Results for a Cascade Correlation Neural Nehvork using Mel­
Cepstrum Inputs Scaled to a Maximùm Value of 1.0

P- P+
P- 56 62
P+ 14 63

Adual

A F P
A 24 8 41
F 24 0 21
P 6 8 63

Number of hidden unils erealed: 24.
Training melhod: Congugate Gradient.

Adual li t 1 - 7. - 40 00·'o a correct - 'j"ij'5 - • lU

A,.,"", = ~ = 44.44%
Fcorrecr = ft; = QOA,
P - 63 - 5040.'correct - i2S - • 10

Sensitivity = f?s = 0.5040

Specificity = ~ = 0.8000

Predictive value (+) = ~ = 0.8182

Predictive value (-) = fi'. =0.4746

Accuraey =~ =0.6103

Predided

Predided•
Table 4.11: Results for a Cascade Correlation Recurrent Neural Nehvork
using Mel-eepstrum Inputs with Mean Removed and Normalized to Lie
Between ±1.0

Neural Network Parameter Variations

•

In order to compare how the number hidden layer nodeR ~ffects the errer rate

for the two input data sets derived from the mel-cepstrum coefficients, tables

of hidden layer size and errer rates for the fully connected feedforward neural

network is shown in figure 4.12(a) and figure 4.12(b) for the scaled inputs and

for the normalized inputs respectively. The neural network configuration with

two hidden layers had 125 and 17 nodes in the first and second hidden layers,

respectively.

Table 4.13(a) and table 4.13(b) show the same for the feedforward networks
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Leaming Rate: 0 = 0.015; Momentum: '1 = 0.95.

Hidden Nodes Error Rate Hidden Nodes ErrorRate

17 1i.t. = 0.4821 17 I~ =0.3846
32 If.?" = 0.3846 32 ~ =0.3538
45 I~ =0.3077 45 I~ =0.1641
74 1 f.li. = 0.4923 74 1~=0.2256

2-layer ~ =0.4872 2-1ayer l':iS = 0.3333
125& 17 125& 17

(a) Scaled Input Values (b) Normali7ed Input
Values

•

•

Table 4.12: Hidden Layer Size and Error Rates for Fully Connected Feed­
forward Neural Networks using Mel-Cepstrum Coefficient Inputs

with tessellated connections. The input nodes are organized in a two dimensional

array of 11 x 125, corresponding to 125 vectors of 11 mel-cepstrum coefficients.

The tessellation configurations, and the number of overlapping nodes between

in adjacent groupings of input nodes, for the respective hidden layer size, are

indicated in the tables. The tessellation column shows the number input nodes

which were grouped together, and the overlap column indicates the number of

overlapping nodes between adjacent groups of nodes. For example, the first row

of table 4.13(a) indicates that a grouping, or tiling, of 20 mel-cepstrum coefficients

vectors ([11 x20J) with adjacent "tiles" having 15 overlapping mel-cepstrum vectors,

generates a hidden layer of 22 hidden units.

Table 4.14 and table 4.15 illustrate how the input frame size, corresponding to the

time granularity or resolution of the given input parameters, affects the error rate,

and how the hidden layer size affects the error rate for the optimal frame size of 75­

vectors for both the scaled and normalized mel-cepstrum inputs, respectively. In

table 4.14(a) and table 4.15(a), the input frame column indicates the number of mel­

cepstrum coefficient vectors which comprised the input frame size. The overlap

column displays the number of vectors from the current input frame which would

included in the next input frame. The number of delay nodes in both output nodes

and for the number of hidden nodes indicated under the hidden layer column are

also inoil.:~ted in these tables.
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Leaming Raie: Q = 0.015; Momenlum: '1 = 0.95.

Hidden Nodes Tessellation Overlap Error Raie
[1 x 22J [11 x 20] 11X-15Y ~ =0.3846
[1 x 23] [11 x Z5) 11X-10Y ffi =0.3384
[1 x 24] [11 x 2.~) 11X-5Y M=0.3231
[1 x 61] [11 x 5] 11X-3Y I~. =0.4722

(a) Scaled Inpul Values

Hidden Nodes Tessellation Overlap Error Raie
[1 x 22) [11 x 20J 11X-15Y ~ =0.3949
[1 x 23] [11 x 25] 11X-10Y 1f~. = 0.3077
[1 x 24] [11 x 25] 11X-5Y 1t5\: = 0.2769
[1 x 61] [11 x 5] 11X-3Y t.J!; = 0.4615

(b) Normalized Inpul Values

Table 4.13: Hidden Layer Size and Error Rates for Feedforward Neural
Nelworks with Tessellated Connections using Mel-Cepstrum Coefficienl
Inputs

Leaming Raie: Q = 0.1; Momentum: '1 = 0.5.

Input Frame Overlap Delay Nodes Hidden Nodes Error Raie Hidden Nodes Error Raie
10 x 11 5 4 18 I~ =0.4564 27 ~~ = 0.4615
25xll 0 4 28 1i!i\; = 0.4872 36 ~ =0.3538

75 x 11 50 2 36 I~ =0.3538 45 ~ =0.4051

(a) Input Frame Size and Errar Rates (b) Hidden Layer Size
and Errar Raie for a [75 x
11J Inpul Frame Size

Table 4.14: Parameter Variations and Error Rates for Recurrent Neural
Nelwork using Mel-Cepstrum Coefficients Scaled to a Maximum Value of
1.0

Leaming Rate: n = 0.1; Momentum: '1 = 0.5.

Input Frame Overlap Delay Nodes Hidden Nodes Error Raie Hidden Nodes Error Raie
10 x 11 5 4 18 ;\;'!; = 0.4000 27 ~ =0.3846

25x11 0 4 28 1~=0.3692 36 f,J1; = 0.2974

75 xlI 50 2 36 1f.J'. = 0.2974 45 ~ =0.3590

Table 4.15: Parameter Variations and Error Rates for Recurrent Neural
Network using Mel-eepstrum Coefficients With Mean Removed and Nor­
m&lized to Lie Between ±1.0•

(a) Inpul Frame Size and Errar Raies (b) Hidden Layer Size
and Error Raie for a [75 x
11J Inpul Frame Size
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Leaming Rate: " =0.015.

Input Frame Overlap Hidden Nades Errar Rate
10 xlI 9 x 11 (1) 56 x 8 120 - 0 6154ï95 - •

(2) 60 x 4

105 x 11 104 xlI 21 x 5 1t.!'. = 0.4615
(a) 5caled Input Values

Input Frame Overiap Hidden Nades Errar Rate
10 xlI 9 xlI (1) 56 x 8 l~ =0.5385

(2) 60 x 4

105 x 11 104 xlI 21 x 5 I~ =0.3897
(b) Narmahzed Input Values

Table 4.16: Network Variations and Error Rates for the Time-Delay Neural
Network using Parameters Derived from the Mel-Cepstrum Coefficients

Table 4.16 shows the results of another time-delay neural network configuration

using a smaller input frame size, which corresponds to a finer time resolution or

representation of the input data set, than the 75 x 11 which yielded the lowest

error rate for this architecture. 5ince a smaller delay width for this neural network

corresponds to a larger number of input frames to integrate over, requiring a larger

number of delay units for a given input frame size, two hidden layers were used

for this network configuration. The first hidden layer, with a width of 8 units,

integrates activity from 56 input frames, and the second hidden layer, with a width

of 4 units, integrates the activation of the first hidden layer over 60 time units.

5ince the training times of these networks are significantly longer when compared

to those of the other architectures investigated for these experiments, only the two

configurations listed in the table were tested.

Table 4.17 displays the results of cascade correlation networks trained using

different methods for the two input data sets derived from the mel-cepstrum coef­

ficients. The table lists the learning rate and momentum parameters for the training

methods, if applicable, and also lists the number of hidden units created by the

respective methods, followed by the error rates obtained during testing.
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Training Parameters Hidden Nades Ehar Rate
Methad 0 '1 Created

BackProp 0.1 0.7 37 ~ =0.6513
QuickProp 0.0001 1.9 4 ~ =0.6667

CanjGrad - - 28 1 t~~ = 0.6308
(a) Scaled Input Values

Training Parameters Hidden Nades Errar
Methad 0 '1 Created Rate

BackProp 0.1 0.7 41 m=0.6256
QuickProp 0.0001 1.9 15 ~ =0.6615

ConjGrad - - 24 t~~ = 0.6000
(b) Normahzed Input Values

Table 4.17: Training Methods and Error Rates for the Cascade Correlation
Neural Network using Mel-Cepstrum Coefficient Derived Inputs

4.6.3 Mel-Scale Filter-Band Energy Input Data Set

This subsection presents the results for the mel-scale filter-band energy-based input

data set, which was generated as described in section 4.3. As was the case for the

presentation of the resuits for the input data sets derived from the mel-cepstrum

coefficients, the results in this subsection will be presented according to the archi­

tecture and the input parameters used in the training and testing of the respective

architectures. The input data sets derived from the 19 mel-scale filter-band ener­

gies are the mel-scale filter-band energy values scaled by the maximum value of

the input data frame so that the maximum value of the input data frame does not

exceed 1.0, the logarithm of the mel-scaled filter-band energies, and the logarithm

of the mel-scale filter-band with the mean of a given input frame removed and

normalized so that the values in the input frame lie between ±1.0.

As was the case for the presentation of resuits from the input data sets derived

from the mel-cepstrum coefficients presented in preceding subsection, first, the

neural network results will be presented, followed by the error rates resulting from

the variation of sorne of the neural network parameters, such as hidden layer size

and, input frame size and over1ap, if applicable.
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Totalcorr..ct = ~ = 77.95%
Aeorrcct = ~ = 75.92%
Feorrcct = 1& = 12.50%
Pcorrect = ~~ = 87.20%

A F P
A 41 5 a
F a 2 a
P 13 5 109
q, a 4 16

Number of hidden units: 25.
Leaming rate: (} = 0.015; Momentum: q = 0.95.

Actual

Predicted

•
Sensitivity

Predicted

Actual
1'- P+

1'- 48 a
P+ 18 109
q, 4 16

- 109 - 08720- 125 - .

Specificity = ~ =0.6857
Predictive value (+) =m=0.8583
Predictive value (-) = ~ = 1.0000
Accuracy = l~; =0.8051

Table 4.18: Results for a Fully Connected Feedforward Neural Network
using Mel Filter-Band Inputs Scaled to a Maximum Value of 1.0

Totale...." = ffi = 79.49%
Acorrcct = ~ = 88.89%
Fcorrect = ft; = 12.50%
P - 105 _ 84 00°'correct - 125 - • 10

Sensitivity = l~ = 0.8400
Specificity = ~ =0.8143
Predictive value (+) = m= 0.8898
Predictive value (-) = ~ = 0.85CJ7
Accuracy =m=0.8308

Actual

A F P
A 48 7 10
F a 2 a
l' 6 7 105
q, a a 7

P- P+
l'- 57 la
P+ 13 105
q, a 7

Number of hidden units: 25.
Leaming rate: (} = 0.015; Momentum: q = 0.95.

Actual

Predicted

Predicted

•
Table 4.19: Results for a Fully Connected Feedforward Neural Network
using the Log of the Mel Filter-Band Inputs

Neural Network Results

•

To reiterate what was mentioned at the start of section 4.6, the values displayed in

the confusion matrices are the sum of the test phase of the ten 10-fold cross valida­

tion tests, be it for the three-c1ass confusion matrices or for the two-c1ass confusion

matrices displayed. The error measures indicated in the tables are derived from

the respective three or two-c1ass confusion matrices.

Table 4.18, table 4.19, and table 4.20, show the results of the feedforward neural

network, with full connections between adjacent layers, for the scaled, log, and
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Totaicorrrrt = * = 7B.9']t}h
A - ., - 79 63'"correct - s:i - . ~ /0

Fcorrcct = ft; = 12.50%.

Pcorrect = ~~ = 87.20u,{1

A F P
A 43 6 6
F 0 2 0
P 11 8 109
<P 0 0 10

Number of hidden units: 25.
Leaming rate: fi =0.015; Momentum: " =0.95.

Actua!

Predicted

•

Predicted

Actua!
P- P+

p- SI 6
P+ 19 109

<P 0 10

Sensitivity = :~ = 0.8720

Specificity = ~ =0.7286

Predictive value (+) =~ =0.8516

Predictive value (-) = ~ =0.8947
Accuracy = ~ = 0.8205

Table 4.20: Results for a Fully Connected Feedforward Neural Network
using the Log of the Mel Filter-Band Inputs with Mean Removed and Nor­
malized to Lie Between ±1.0

Totalcorrcct = ~ = 70.77%

Aeo,.rccl = ~ = 75.92%
F "_ 0'"correct = i6 - lU

Pcorrr.ct = ~Js = 77.60cX,

Actua!

A F P
A 41 8 11
F 0 0 0
P 13 8 97
<P 0 0 17

P- P+
P- 49 11
P+ 21 97

<P 0 17

Predicted

Predicted

Sensitivity = & = 0.7760

Specificity = ~ = 0.7000

Predictive value (+) = i;. =0.8220
Predictive value (-) = ~ = 0.8167

Accuracy = ill = 0.8051

Table 4.21: Results for Feedforward Neural Network with Tessellated Con­
nections using Mel Filter-Band Inputs Scaled to a Maximum Value of 1.0

Number of hidden units: 22 with [20 x 20] tessellation and 20 X-overlap and 15 Y-overlap.
Leaming rate: 0 =0.015; Momentum: '1 =0.95.

Actual

•

•

normalized log of the mel-scale filter-band energies. The results for the corre­

sponding input data sets trained on a feedforward neural network with tesse11ated

connections are shown in table 4.21, table 4.22, and table 4.23, respectively. For a11

these feedforward networks, the weights of the network were updated fo11owing

the presentation of an input frame, in a manner similar to that described in sec­

tion 4.2.1. Subsequent input frames were presented randomly to the network. As

well, all feedforward nets used the same learning rate and momentum parameters,

as indicated in the tables.
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A F l'
A 42 8 27
F 0 0 0
l' 3 8 98
0 9 0 0

Prcdicled

Number of hidden units: 22 \Vith [20 x 20) tcssellation and 20 X'(l\"crlap and 15 Y·lwcrlap.
learning r.tc: Il =0.015; Momentum: '1 =0.95.

Aclu.1•

Predicted

Aclual
p. P+

p. 50 27
1'+ 11 98
q, 9 0

Scnsitivity = :~, = 0.7840

Spccificity = ~ = 0.7143

Predictivc value (+) = :~ = 0.8991

Predictive value (-) = ~ = 0.6494

Accur.cy = ~ = 0.7590

Table 4.22: Results for a Feedforward Neural Network with Tessellaled
Connections using the Log of the Mel Filter-Band Inputs

Totalco,.rcct = ~ = 72.31%
Aco,.rcct = ~ = 62.96I X,
F _0_ 0'"correct - Ti) - III

l' 107 - 8560'"correct = 125 - . III

Sensitivity = ~ = 0.8560

Specificity = ~ =0.6000

Predictive valuc (+) = ~ = 0.8560

Predictive value (-) = ~ = 0.8253

Accuracy = :~; = 0.7641

AcluaI

A F l'
A 34 8 9
F 0 0 0
l' 10 8 107
q, 10 0 9

1'- P+
1'- 42 9
1'+ 18 107
q, 10 9

Predicled

Predicted

Number of hidden units: 22 \Vith [20 x 2U) tcsscll.tion and 20 X-ovcrlap and 15 Y-ovcrlap.
learning rate: fi = 0.015; Momcntum: '1 = 0.95.

Aclual

•
Table 4.23: Results for a Fully Connected Feedforward Neura! Network
using the Log of the Mel Filter-Band inputs with Mean Removed and Nor­
malized to Lie Between ±1.0

As was the case for the feedforward nets in the preceding subsection, an addi­

tional raw has been included in the confusion matrices for these networks. This

row, labeled </>, indicates the number of test files whose output was undefined, that

is, which had an output value which did not correspond to one of the three output

classes during testing.

•
Next, the results of the recurrent neural networks for the three input param­

eter sets derived from the mel-scale fjlter-band energies are given in table 4.24,

table 4.25, and table 4.26. Here, a11 three input parameter sets yielded the highest
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TotalcorrrCf = m= 66.67%
A"",,, = ~ =48.15%
F _0_ 0°'corrt>cf - i6 - 10

Pcorrect = ~~ = 83.20%

A F P
A 26 8 11
F 0 0 0
P 28 8 104
tjJ 0 0 10

Predicted

Inputs size: [75 x 20J with an overlap of 50 vectors per input frame.
Number of hidden units: 18 with 3 delay units per node.

Learning rate: a =0.1; Momenlum: '1 =0.5.
Actual•

Pred,cted

Actual
P- P+

P- 34 11
P+ 36 104
tjJ 0 10

Sensitivity = :~ = 0.8320

Specificity = ~ = 0.4857

Predictive value (+) = m= 0.7429

Predictive value (-) = ~ = 0.7556

Accuracy = :~; =0.7077

Table 4.24: Results for a Recurrent Neural Network using Mel Pilter-Band
Inputs Scaled to a Maximum Value of 1.0

Totalcorrcct = m= 63.59%
A - ~ - 3704°'correct - 54 - . /0

Fcorrcct = fg = 0%
Pcorrect = ~~ = 83.20%

A F P
A 20 2 20
F 0 0 0
P 34 8 104
tjJ 0 6 0

Predicted

Inputs size: [75 x 20] with an overlap of 50 vectors per input frame.
Number of hidden units: 18 with 3 delay units per node.

Learning rate: a =0.1; Momentum: Tf =0.5.
Actual

•
Actual

P- P+
P- 22 20
P+ 42 104

tjJ 0 7
Predicled

Sensitivity =m=0.8320

Specificity = ~ = 0.3143

Predictive value (+) = :~ =0.7123

Predictive value (-) = ~ =0.5238

Accuracy = ffi = 0.6359

Table 4.25: Results for a Recurrent Neural Network using the Log of the
Mel Filter-Band Inputs

•

correct classification rates for this architecture using the same network configura­

tion. This recurrent neural network had input frames consisting of 75 vectors, with

subsequent input frames overlapping by 50 vectors, so that the entire 125-vector

input pattern was visited after three 75-vector frames. These networks also had 18

hidden layer nodes and three delay units for each hidden layer and output layer

node. The weights for this network were updated following the presentation of the

entire 125-vector input frame, corresponding to the presentation of one complete

input pattern. Subsequent 125-vector input patterns were presented randomly to
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"'ota' - m _. 70 '6'"il , I{-o,.r,.cl - j'i!!;' - ._ III

A - 31 - 5741'"co,.rr('t - s:ï - • III

F - il - 0'"cor"f'r.t - ï(; - III

P - 1". - 8480'"cornct - 125 _. • III

A F P
A 31 6 19
F 0 0 0
P 23 10 106
q, 0 0 0

Predided

Inputs size: [75 x 20] with an overlap of 50 vectors per input frame.
Number of hidden units: 18 with 3 delay units per node.

Leaming rate: Cl =0.1; Momentum: '1 =0.5.
Adual•

Predided

Adual
P- P+

p. 37 19
P+ 33 106
q, 0 00

Sensitivity = :~ = 0.8480

Specificity = ~ = 0.5286

Predictive value (+) = m= 0.7626

Predictive value (-) = ~ =0.6607

Accuracy = ffi =0.733..1

Table 4.26: Results for a RecurrentNeural Network using the Log of the Mel
Filter-Band Inputs with Mean Removed and Normalized to Lie Between
±l.0

Actual

A F P
A 26 16 39
F 0 0 0
P 29 0 86

P- P+
P- 41 39
P+ 29 86

Inputs size: [105 x 20]; Overlap: [104 x 20J.
Number of hidden units: [21 x 10]; Leaming raie: Cl =0.2.

Adual ." t 1 - 111 - 5692'".10 a correcl - m - . lU

Acorrccl = ~ = 46.30%
F -"- 0'"correct - Tb - ln

P - 111 - 6880'"correct - 125 - • III

Sensitivity = 1~ = 0.6880

Specificity = Uï = 0.5857

Predictive value (+) = f& = 0.7478

Predictive value (-) = ~ = 0.5125

Accuracy = :~~ = 0.6513

Predided

Predided

•
Table 4.27: Results for a TIme-Delay Neural Network using Mel Filter-Band
Inputs Scaled to a Maximum Value of 1.0

the network. As was the case for the recurrent, time-delay, and cascade correlation

neural networks used with the mel-cepstrum coefficient derived parameter sets,

and explained in subsection 4.6.2, the winning class during the testing phase, was

determined as being the output with the largest value.

•
The results for the time-delay neural networks are given in table 4.27, table 4.28,

and table 4.29 for the input parameters derived from the mel-scale filter-band in­

puts. For the three input data sets, the TDNN configuration which yielded the

highest correct classification rate had an input frame size of 105 vectors, with sub-
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Inputs size: [105 x 20J; Overlap: [104 x 20].
Number of hidden units: [21 x 10); Leaming rate: " = 0.2.

AcluaI

Aclual

A F P
A 14 0 23
F 0 0 0
P 40 16 102

P- P+
P- 14 23
P+ 56 102

Predicled

Predicted

TotalcfJrrcc! = ~ = 59.49%
A - "-2593"'correct - 54 - . 10

Fcorrcct = ft; = Ql}'o

P - 102 _ 81 60"'correct - m - . /0

Sensitivity =~ =0.8160

Specificity = ~ = 0.2000

Predictive value (+) = :~; =0.6456
Predictive value (-) = ~ =0.3784

Accuracy = ~ = 0.5949

Table 4.28: Results for a Time-Delay Neural Network using the Log of the
Mel Filter-B.1nd Inputs

•

Inputs size: [105 x 20); Overlap: [104 x 20).
Number of hidden units: [21 x 10); Leaming rate: " = 0.2.

P- P+
P- lO 15
P+ 60 110

A F P
A 10 0 15
F 0 0 0
P 44 16 110

•
Predicled

Predicted

Aclual

Aclual

Totalcorrect = ~ = 61.54%
Acorrect - ~ - 18.52%
F _0_ 00/.correct - 16 - 0

Pcorrect = ~ = 88.00%

Sensitivily = m= 0.8800

Specificity = *l = 0.1429

Predictive value (+) = g~ = 0.6471

Predictive value (-) = ~ = 0.4000

Accuracy = :~~ = 0.6154

Table 4.29: Results for a Time-Delay Neural Network using the Log of
the Mel Filter-Band Inputs with Mean Removed and Normalized to Lie
Between ±l.O

•

sequent input frames overtapping by 104 vectors. For this TDNN, the hidden layer

consisted of 10 hidden units integrating the activations of 21 input frames, corre­

sponding to 20 delayed activation values plus the activations of the last input frame,

allowing the total input delay length of 125 vectors to be considered after 125 lime

instants. The network was trained using a variant of back propagation specifically

formulated for TDNNs, with the weights being updated after the presentation of

ail the input patterns in the training set [Waibel et al., 19871. The input patterns

were presented to the network in random order during the training process.

Table 4.39(a), table 4.39(b), and table 4.39(c) show the best results obtained using
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A F P
A 9 6 30
F 0 0 0
P 45 10 95

4. Classification of Infant Cries Using Artificial Neural Nelworks

Number of hidden units crealed: 11.
Training method: Back Propagation; Leaming raie: " =0.1; Momenlum: '1 =0.7.

Aclual 1i laI - Itl-l - 53 33'"o ( ('01""'1'('" - ~ - ....... 111

Acorrrct - ~ = 16.67%

Predicted Fcorrrct = Tk = Quit,

Pcorrrct = iis = 76.001%,

•
Scnsitivily

Predicled

Aclual
P- P+

p- IS 30
P+ 55 95

- "5 - 07600- 125 - .

Specificily = f.j = 0.2143

Predictive value (+) = l~ = 0.6333
Predictive value (-) = ~ = 0.3333

Accuracy = :~~ = 0.5641

Table 4.30: Results for a Cascade Correlation Neural Network using Mel
Filter-Band Inputs Scaled 10 a Maximum Value of 1.0

Number of hidden unils crealed: 9.
Training melhod: Back Propagation; Leaming raie: " =0.1; Momenlum: '1 =0.7.

P- P+
P- 13 24
P+ 57 101

A F P
A 6 7 24
F 0 0 0
P 48 9 101

•
Predicled

Predicled

Aclual

Aclual

Totalcorrcct = ~ = 54.87%
Acorrcct - ~ = 11.11%
Fcorrect = *= OIX,
P - 101 _ 8080·'correct - ffi - . lU

Sensitivily = ffi = 0.8080

Specificily = ~ = 0.1857

Predictive value (+) = :~~ = 0.6392
Predictive value (-) = ~ = 0.3513

Accuracy = 1~~ = 0.5949

Table 4.31: Results for a Cascade Correlation Neural Network using the
Log of the Mel Filter-Band Inputs

Number of hidden unils crealed: 4.
Training melhod: Back Propagation; Leaming raie: " = 0.1; Momenlum: '1 = 0.7.

Aclual

Aclual

A F P
A 10 8 19
F 0 0 0
P 44 8 106

P- P+
P- 18 19
P+ 52 106

Predicled

Predicled

Totalcorrcet = ~ = 59.49%
A - Itl - 1852'"correct - 54 - . /fi

F _0_ 0'"correct - î6 - III

P - 10. - 84 80'"correct - lE - . 10

Scnsitivily = ffi = 0.8480

Specificily = ~ = 0.2571
Predictive value (+) = ~ = 0.6709

Predictive value (-) = 1;; =0.4865

Accuracy = ffi =0.6359

Table 4.32: Results for a Cascade Correlation Neural Network using the
Log of the Mel Filter-Band Inputs with Mean Removed and Normalized to
Lie Between ±1.0•
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Leaming Rate: (} = 0.015; Momentum: '1 = 0.95.

Hidden Nodes Error Rate Hidden Nodes Error Rate Hidden Nodes Error Rate

25 I~ =0.2205 25 1 ?-~, = 0.2051 25 ;\\ - 0.2103

55 f.J!s = 0.2974 55 f.fs = 0.2872 55 ~ =0.2462

85 I~ =0.2872 85 1 f~, = 0.3179 85 ;\", - 0.2974

2-layer I·'~ = 0.3231 2-layer :';5 =0.2667 2-layer :9~ = 0.2564

120 &25 120& 25 120 & 25

(a) Scaled Input Values (b) Log Input Values (c) Norrnahzed Log Input
Values

•

•

Table 4.33: Hidden Layer Size and Errer Rates for Fully Connected Feed­
forward Neural Networks using Mel-Scale Filter-Band Inputs

the cascade correlation network, for this set of input parameters. For ail of these

input parameter sets derived from the mel-scale filter-band energy values, the

optimal results were achieved using a network that was trained using the back

propagation training algorithm with the patterns presented in a random fashion,

and with the weights updated after ail the patterns in the training set were presented

to the network.

Neural Network Parameter Variations

ln order to compare how the hidden layer size affects the error rate for the three

input parameter sets derived from the mel-scale filter-band energy values, tables

showing the hidden layer size versus error rates for the fully connected feedfor­

ward neural network are shown in figure 4.33(a), figure 4.33(b), and figure 4.33(c)

for the scaled, log, and normalized log input data sets respectively. Table 4.34(a),

table 4.34(b), and table 4.34(c) show hidden layer size and error rates for the feed­

forward networks with tessellated connections for the scaled, log, and normalized

log of the mel-scale filter-band energies respectively.

The input nodes are organized in a two dirnensional array of 20 x 125, corre­

sponding to 125 vectors of 20 mel-scale filter-band energy values. The tessellation

configurations, and the number of overlapping nodes between adjacent groupings

of input nodes, for the respective hidden layer size are indicated in the tables. The
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4. Classification of Infant Cries Using Artificial Neural Networks

leaming Rate: n =0.015; Momentum: '1 =0.95.

Hidden Nodes Tessellation Overlap Error Rate
[1 x 22] [20 x 20] 20X-15Y 57 - 0 "9"3IWE> - .......~

[2 x 22) [10 x 20J OX-15Y lii1: = 0.3231
[1 x 61] [20 x 5) 20X-3Y 1f:, = 0.3487
[5 x 5] [4 x 25] OX-OY 1;%~ = 0.3333

(a) Scaled Input Values

Hidden Nodes Tessellalion Overlap Error Rate
[1 x 22) [11 x 20J llX-15Y f4~ = 0.2821-,-
[1 x 23] [11 x 25J llX-10Y fil', = 0.2974

[1 x 24) [11 x 25J llX-5Y
1 f-~, = 0.3385

[1 x 61J [11 x 5) llX-3Y
1 t.:~ = 0.3590

(b) log Input Values

Hidden Nodes Tessellation Overlap Error Rate
[1 x 22) [20 x 20J 20X-15Y f.;'.; = 0.2769

[2 x 22J [10 x 20) OX-15Y f.j', = 0.2923

[1 x 61) [20 x 5J 20X-3Y -AA = 0.3179

[5 x 5J [4 x 25J OX-OY M. = 0.3282

(c) Norrnalized log Input Values

Table 4.34: Hidden Layer Size and Error Rates for Feedforward Neural
Networks with Tessellated Connections using Mel-Scale Filter-Band Inputs

tessellation column shows the number input nodes which were grouped together,

and the overlap column indicates the number of overlapping nodes between ad­

jacent groups of nodes. For example, the last row of table 4.34(a) indicates that a

grouping, or tiling, of 4 of the 20 mel-scale filter-band energy values in a vector over

25 vectors ([4 x 25]) with no overlap occurring between adjacent "tiles" generates

a hidden layer of 25 hidden units organized in a two-dimensional array of 5 x 5

nodes, which effectively "cover" the 20 x 125 input nodes.

Table 4.35, table 4.36, and table 4.37 illustrate how the input frame size, corre­

sponding to the time granularity or resolution of the given input data sets, affects

the error rate, and how the hidden layer size affects the error rate for the optimal

frame size for both the scaled, log, and normalized log of the mel-scale filter-band

energies, respectively.
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Leaming Rate: fi = 0.1; Momentum: '1 = O.s.

Input Frame Overlap Delay Nodes Hidden Nodes Error Rate Hidden Nodes Error Rate
10 x 20 5 4 15 ;:, - 0.4513 12 1;t, = 0.4359

25 x 20 0 4 18 ~ = 0.4103 18 ~ =0.3333

75 x 20 50 2 18 fi, - 0.3333 36 1;~, = 0.4153

(a) Input Frame Slze and Errar Rates (b) HIdden Layer S,ze
and Errar Rate for an In­
put Size of [75 x 20]

Table 4.35: Parameter Variations and Error Rates for Recurrent Neural
Network using Mel-Scale Filter Band Energy Values Scaled ta a Maximum
Value of 1.0

Leaming Rate: 0 = 0.1; Momentum: '1 = 0.5.

Input Frame OverJap Delay Nodes Hidden Nodes ErrorRate Hidden Nodes Error Rate
10 x 20 5 4 15 1t.ls = 0.4667 12 1* - 0.4615

25 x 20 0 4 18 I~ =0.4461 18 ;z.I, - 0.3641

75 x 20 50 2 18 l;\k = 0.3641 36 1;'1f, = O.44bl

Table 4.36: Parameler Variations and Error Rates for Recurrent Neural
Network using the Logarithm of the Mel-Scale Filter-Band Energies•

(a) Input Frame S,ze and Errar Rates (b) HIdden Layer S,ze
and Errar Rate for an In­
put Size of [75 x 20]

Leaming Rate: Q = 0.1; Momentum: '1 = 0.5.

Input Frame Overlap Delay Nodes Hidden Nodes ErrorRate Hidden Nodes ErrorRate
10 x 20 5 4 15 ~ =0.4051 12 ~ =0.3333

25 x 20 0 4 18 ~ =0.3385 18 1f.l'. = 0.2974

75 x 20 50 2 18 ~ =0.2974 36 M=0.3179

(a) Input Frame Slze and Error Rates (b) HIdden Layer S,ze
and Error Rate for an In­
put Size of [75 x 20]

•

Table 4.37: Parameter Variations and Error Rates for Rec'lrrent Neural
Network using the Logarithm of the Mel-Scale Filter-Band Energies With
Mean Removed and Normalized to Lie Between ±1.0

In table 4.38, the resuit of another time-deIay neural network configuration

using a smal1er input frame, which corresponds to a finer lime resoIution of the

input parameters, than that which yielded the highest correct classification rate

for this architecture. 5ince a smal1er input delay width for this neural network

corresponds to a larger number of input frames to integrate over, thus requiring a

larger number of delays per hidden layer node, two hidden layers were used for
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Leaming RaIe: n = 0.D15.

Input Frame Overlap Hidden Nades Errar RaIe
10 x 20 9 x 20 (1)56 x 10 ~~ =0.4564

(2) 60 x 5

105 x 20 104 x 20 21 x 10 ':;', =0.4308
(a) Scaled Input Values

Input Frame Overlap Hidden Nades Errar Rate
10 x 20 9 x 20 (1)56xl0 ::., =0.4462

(2) 60 x 5
105 x 20 104 x 20 21 x 10 f.;', =0.4051

(b) Log Input Values

Input Frame Overlap Hidden Nodes Error Rate
10 x 20 9 x 20 (1)56 x 10 ~ =0.4051

(2) 60 x 5
105 x 20 104 x 20 21 x 10 1f4~ =0.3846

(c) Normahzed Log Input Values

Table 4.38: Network Variations and Error Rates for the Time-Delay Neural
Network using Parameters Derived From the Mel-Scale Filter-Band Energy
Values

this network configuration. The first hidden layer of this TDNN, with a width of 8

units, integrates activity from 56 input frames, and the second hidden layer, with

a width of 4 units, integrates the activation of the first hidden layer over 60 time

instants. 5ince the training limes of these networks are significantly longer when

compared to those of the other architectures, only the two TDNN configurations

listed in the table were tested.

Table 4.39 displays the results of cascade correlation networks trained using

differentweight update methods for the three inputparametersets derived from the

mel-scale filter-band energy values. The table lists the learning rate and momentum

parameters for the training methods, if applicable, and aIso lists the number of

hidden units created by the respective methods, foI1owed by their respective error

rates.
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Training Parameters Hidden Nodes Error Rate

Method " '1 Created

BackProp 0.1 0.7 11 f.Js = 0.4667

QuickProp 0.0001 1.9 4 t.fs = 0.4872

ConjGrad - - 18 ~ =0.5897

<a) Scaled Input Values

Training Parameters Hidden Nodes Error

Method cr '1 Created Rate

BackProp 0.1 0.7 9 ~ -0.4513

QuickProp 0.0001 1.9 8 ~ =0.4769

ConjGrad - - 22 "3< = 0.5077

(b) Log Input Values

Training Parameters Hidden Nades Error

Method fi '1 Created Rate

BackProp 0.1 0.7 4 &s = 0.4051

QuickProp 0.0001 1.9 2 N5 =0.4462

ConjGrad - - 18 1* =0.4615
(c) Norrnahzed Log Input Values

Table 4.39: Training Method and Error Rates for the Cascade Correlation
Neural Network using Mel-Cepstrum Coefficient Derived Paramelers

4.7 Discussion

This section discusses the results of the neural network training and testing pre­

sented in section 4.6. First, the results obtained from the various input parame­

ter sets, derived from both the mel-cepstrum coefficients and from the mel-scale

filter-band energy values, which were trained and tested on the neural network

architectures presented in section 4.2 will be discussed. Then, the best results ob­

lained for the various architectures will be discussed, followed by a discussion of

the results of the neural nl'twork configurations and input frame size variations for

the different input data sets. The final subsection compares the results obtained in

the experiments presented in the previous section ta that of other work done by

other researchers.
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4.7.1 Neural Network Architectures

The results presented in section 4.6.2 and section 4.6.3 have been summarized in

table 4.40 and table 4.41 for the input parameter sets derived from the mel-cepstrum

coefficients and mel-scale filter-band energy values respectively. In these tables.

the columns correspond to the neural network architectures and represent, going

from left to right, lhe best results for the fully connected feedforward ANN (FF).

the feedforward ANN with tessellated connections (FT), the recurrent neural nel­

work (RNN), the time-delay neural network (TDNN), and the cascade correlation

neural network (CC). The rows represent the three-c1ass classification rates and

two-c1ass error measures indicated in the rows of the table, which were defined in

subsection 4.6.1.

The three-c1ass classification results in these two tables are given in decimal

form and not as a percentage as was done when these values were presented in

the individual tables of section 4.6.2 and section 4.6.3, in the interest of remaining

consistent with the format of the results for the two-c1ass classification rates.

Mel-Cepstrum Coefficient-Derived Input Parameters

Table 4.40 summarizes the results for the two input data sets derived from the mel­

cepstrum coefficients, with the results for the mel-cepstrum input frames scaled to

a maximum value of 1.0 given in table 4.40(a), and the results for the mel-cepstrum

coefficient input frames which have had their mean removed and normalized to

lie between values of ±1.0, given in table 4.40(b).

Il can immediately be observed that the results for the normalized mel-cepstrum

inputs are, for the most part, better than for the corresponding scaled mel-cepstrum

input values. Looking at the three-c1ass classification results for the anger, fear, and

pain classes, the majority of neural network architectures have better classification

rates for pain outputs than foreither anger and fear, with the latter c1ass consistently
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~ FF 1 Fr 1 RNN 1 TDNN 1 CC 1

TotaJeorrcct 0.6923 0.6769 0.6461 0.6102 0.3692

Acorrcd 0.5925 0.5925 0.3703 0.6111 0.4074
FCflrrl'c! 0.2500 0.1250 0.1250 0.0000 0.0000

Pcorrecl 0.7920 0.7840 0.8320 0.5760 0.4000

ScnsitivilV 0.7920 0.7840 0.8320 0.5760 0.4000
Specificitv 0.6000 0.6000 0.3143 0.8571 0.5429
Pred. VaL(+) 0.8534 0.7778 0.7704 0.8780 0.6097
Pred. Va!.(-) 0.6885 0.6774 0.5238 0.5310 0.3363
Accuracy 0.7231 0.7910 0.6461 0.6792 0.4513

4. Classification of Infant Cries Using Artificial Neural Networks

•

(b) Normalized Input Values

Table 4.40: Result 5ummary for Neural Networks using Mel-Cepstrum
Coefficient Inputs

Totalcorrcct 0.8359 0.7331 0.7026 0.6307 0.4000
Acorrect 0.7953 0.6296 0.5370 0.6481 0.4444
Fco,.rccl 0.4375 0.1250 0.1250 0.0000 0.0000

Pcur"ccl 0.9200 0.8400 0.8480 0.7040 0.5040

Sensitivilv 0.9200 0.8400 0.8480 0.7040 0.5040
Specificity 0.7571 0.5429 0.4429 0.8714 0.8000
Pred. Va!.(+) 0.9274 0.8077 0.8908 0.9072 0.8182
Pred. Va!.(-) 0.9138 0.7917 0.6739 0.6224 0.4746
Accuracv 0.8615 0.7333 0.7026 0.7641 0.6103

(a) Scaled Input Values

~ FF 1 Fr 1 RNN Ir-=T=O=NN""-I CC 1

•
having classification rates below O.s. This may be due to the small number of fear

recordings present in the data set, when compared to either pain or anger classes.

•

For the scaled mel-cepstrum inputs whose results are summarized in table

4.40(a), the best classification rate is achieved for a fully connected feedforward

neural network with a hidden layer size of 45 nodes. Next, the feedforward neural

network with tessellated connections does only slightly worse than the fully con­

nected feedforward, with the decreased fear and pain classification rates forcing

the total correct classification rate down. The recurrent neural network generates

the third-highest correct classification rate, and also features the highest correct

classification rate for pain cries for this input data set. The correct classification of

anger cries drops substantially for this neural network architecture however. For

the time-delay neural network, the correct classification rate drops from that of the

recurrent neural network, due to the substantial drop in the number of pain cries,
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which is slightly offset by an increase in the number of correctly classiEed anger

cries. The correct classification rate drops substantially for the cascade correlntil1l1

neural network, with the majority of pain cries not bcing correctly classified.

Looking at the two-class results fOl' the scaled input data set listed in the bottom

half of table 4.40(a), the highest accuracy is achieved for the feedforward neural

network with tessellated connections. The neural network architecture with the

highest sensitivity is the recurrent neural network, which implies that for this

particular input data set, this architecture has the best rate of correctly classifying

pain cries. This same architecture, however, has a low specificity, implying thatthe

method has a tendency ta classify anger and fear cries as pain cries, which is not n

desirable characteristic. In this light, the best tradeoff between a good sensitivity

and a good specificity is achieved for the fully connected feedforward nelwork,

l'ven if this architecture has a considerable number of undefined outputs.

For the three-class results of the normalized mel-cepstrum inputs, whose results

are shown in table 4.40(b), the highest correct classification rate is achieved by the

fully connected feedforward neural network with n hidden layer size consisting

of 45 nodes. Note that the correct classification rates for ail threl' output classes

are appreciably larger than for the scaled mel-cepstrum inputs. The feedforward

ANN with tessellated connections has the next highest correct classification mte

for this input data set, with drops in all the classification rates of allthree output

classes contributing to the decline in the total correct classification rate. Although

the classification rate for the recurrent neural network is lower than that of the

feedforward net with tessellated connections, the recurrent neural network has a

higher correct classification rate for pain utterances, a result similar to that achieved

for the scaled input data set. The time-delay and cascade correlation results for

the normalized input data set do not differ significantly from those for the scnled

input data set. However, the normalized inputs have a higher number of correctly

c1assified pain cries than the scaled input data set does.
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For the two-class classification results obtained from the normalized mel­

cepstrum input data set listed in bottom half of table 4.40(b), the architecture that

has the highest pain classification sensitivity is the fully connected feedforward

neural network. Both the feedforward network with tessellated connections and

the recurrent neural network have good sensitivity values, but their specificities are

rather low, implying that these two methods have a high incidence of classifying

non-pain cries as pain cries. The time-delay neural network has a high specificity,

but although this network can classify non-pain cries correctly, it cannot do the

same for pain cries. A similar observation can be made for the cascade correlation

network, except that this network has a lower accuracy, corresponding to a lower

correct classification rate for pain cries than the TDNN does. The fully connected

feedforward network has the highest accuracy, and the best specificity and sensi­

tivity combination with high values for both the positive and negative predictive

values. The latter values imply that for recordings which are classified or predicted

as being pain or no-pain, over 90% of these classifications correspond to actual pain

or no-pain utterances.

Mel-Scale Filter-Band Energy-Derived Input Parameters

The results from the three parameter sets derived from the mel-scale filter-band

energy values are summarized in table 4.41. In this table, the results for the mel­

scale filter-band energies data set which have either been scaled to a maximum

of 1.0 are given in table 4.41(a), the results for the data set corresponding to the

logarithm of the mel-scale filter-band energies are given in table 4.41(b), and the

input data set where the mean of the logarithm of the mel-scale filter-band energies

has been removed and for which the values been normalized to lie between ±1.0

is given in table 4.41(c).

Examining ail the results in these tables, it can be observed that for ail the

architectures, except for the fully connected feedforward neural network, the input
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Totalcorr~ct 0.7795 0.7077 0.6667 0.5692 0.5333
Acorred 0.7592 0.7592 0.4815 0.4630 0.1667
fcorrt'ct 0.1250 0.0000 0.0000 0.0000 0.0000
Pcorl"ccr 0.8720 0.7760 0.8320 0.6880 0.7600

Sensitivity 0.8720 0.7760 0.8320 0.6880 0.7600
Specificity 0.6857 0.7000 0.4857 0.5857 0.2143
Pred. Val.(+) 0.8583 0.8220 0.7429 0.7478 0.6333
Pred. Val.(-) 1.0000 0.8167 0.7556 0.5125 0.3333
Accuracy 0.8051 0.8051 0.7077 0.6513 0.5641

•

(b) Log Input Values

il FF 1 FT 1 RNN 1 TDNN 1 CC 1

(a) Scaled Input Values

~ FF 1 FT 1 RNN I-;;:T=DN=N"'L~

Totaleorrcct 0.7897 0.7231 0.7026 0.6154 0.5949
Acorrcct 0.7963 0.6296 0.5471 0.1852 0.1111
Fcorrcct 0.1250 0.0000 0.0000 0.0000 0.0000
Pcorrect 0.8720 0.8560 0.8480 0.8800 0.8080

Sensitivity 0.8720 0.8560 0.8480 0.8800 0.8080
5pecificity 0.7286 0.6000 0.5286 0.1429 0.2000
Pred. Val.(+) 0.8516 0.8560 0.7626 0.6471 0.6456
Pred. Val.(-) 0.8947 0.8253 0.6607 0.4000 0.3784
Accuracy 0.8205 0.7641 0.7333 0.6154 0.5949

Totalcorrcct 0.7949 0.7179 0.6359 0.5949 0.5487
Acorrcct 0.8889 0.7778 0.3740 0.2593 0.1111
Fcorrcct 0.1250 0.0000 0.0000 0.0000 0.0000
Pcorrcct 0.8400 0.7840 0.8320 0.8160 0.8080

5ensitivity 0.8400 0.7840 0.8320 0.8160 0.8080
Specificity 0.8143 0.7143 0.3143 0.2000 0.1857
Pred. Val.(+) 0.8898 0.8991 0.7123 0.6456 0.6392
Pred. Val.(-) 0.8507 0.6494 0.5238 0.3784 0.3513
Accuracy 0.8308 0.7590 0.6359 0.5949 0.5949

•
(c) Normahzed Log Input Values

Table 4.41: Result Summary for Neural Networks using Mel-Cepstrum

Coefficient Inputs

•

data set which has the highest correct classification rates for both the two and

three-class groupings are obtained for the normalized log of the mel-scale filter­

band energy values. The next highest correct classification rates are obtained using

the scaled mel-scale filter-band values, with the log of the mel-scale filter-band

energies yielding the lowest correct classification rates, for the majority of neural

network architectures listed in the tables.
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For ail three input data sets derived from the mel-scale filter-band energy values,

the fully connected feedforward neural network gives the best results, with the one

using the log of the mel-scale filter-band energies having the highest total correct

classification and nccuracy rates of the three input data sets. This results from a

highel' number of correctly classified anger cries for the log input data sets, which

offsets the smaller number of correctly classified pain cries.

Looking at the results of the input data sets derived from the mel-scale filter-band

energy values individually, itcan benoticed from the three-class results of the scaled

values, as tabulated in table 4.41(a), that the fully connected feedforward neural

network with a hidden layer size of 25 nodes has the highest correct classification

rate of ail the architectures. The feedforward ANN with tessellated connections

has the same correct classification rate for anger cries, but the drop in the overall

correct classification rate is due to the drop in the number of correctly classified

pain utterances and from the absen·:e of any correctly classified fear utterances.

For the recurrent neural network, the number of correctly classified anger cries

drops significantly, but the number of correctly classified pain cries lies between

that of the fully connected feedforward neural network and that of the feedforward

neural network with tessellated connections. As was the case for the TDNN using

the mel-cepstrum derived input data sets, the time-delay neural network produces

a low classification rate for anger cries. The rate for pain cries drops from that of

the feedforward network with tessellated connections for the TDNN. The cascade

correlation network has a very pOOl' classification rate for anger cries, but has a

larger number of correctly classified pain cries than the time-delay neural network.

For the two-class results listed in the bottom half of table 4.41(a), the method

that has the highest sensitivity is the fully connected feedforward ANN. This

architecture and data set also features a reasonable specificity, implying that this

method can correctly classify pain from pain utterances, and also does reasonably

weil at correctly identifying no-pain utterances. Note that this atchitecture has
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a perfect negative predictive value, corresponding to the result that all predicted

no-pain utterances corresponded to no-pain utterances. Both feedforward neural

network architectures, either with full or tessellated connections, have the same

accuracy, but overall, however, the numbers of the fully connected nelwork are

better, even if the one with tessellated connections has a higher specificity.

For the three-class results of the log mel-scale filter-band energy input data set,

as shown in table 4.41(b), the fully connected feedforward neural network has the

best correct classification rates of all the neural network architectures. Note that

for this input data set, the feedforward network with tessellated connections has

the lowest classification rate for pain utterances, even if it comes second in lcrms

of the overall correct classification rate. AIso, for the recurrent, time-delay, and

cascade correlation neural networks, the classification rate falls dramatically from

that of the feedforward networks, even if the correct classification rdte for pain falls

only slightly, when compared to the feedforward nets. The only method that can

correctly classify any fear files is the fully connected feedforward neural network;

all other architectures fail to classify fear utterances.

In the bottom half of table 4.41(b), the two-class results, for the log of the mel­

scale filter-band energy data set, indicate that the fully connected feedforward

ANN gives the highest accuracy, sensitivity, and specificity when compared to all

the other architectures which use the same input data set. Note that the recurrent,

time-delay, and cascade correlation neural networks all have sensitivity values

above 0.8, but the specificity of these nets are extremely low. This implies that

although these nets can correctly classify pain utterances, they do poorly at correctly

classifying non-pain utterances. Aiso from the low positive and negutive prediction

values indicated in the table for these three ANNs, it can be said that these networks

have a larger number of misclassifications than the feedforward neural networks

with full and tessellated connections.

In table 4.41(c), it is readily seen that once again the fully connected feedforward
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neural network with 25 hidden layer nodes yields the highest total correct classifi­

cation rate for the normalized log mel-scale filter-band energy input values. Also,

this architecture has the highest classification rate for anger and fear cries for this

input data set, as weil as having the second highest correct classification rate for

pain cries of ail the architectures that use this input data set. The classification rates

for the other architectures decrease as one scans the table from left to right, with

the sole exception being the correct classification rate for pain utterances for the

time-delay neural network. Although the classification rate for anger cries drops

by more than half from that of the recurrent neural network to that of the time­

delay and cascade correlation neural networks, the correct classification rate for the

pain cries does not drop below 0.8 for ail the architectures with this input data set.

Also, as was the case for the other two input data sets derived from the mel-scale

filter-band energies, only the fully connected feedforward neural network classifies

some of the fear utterances correctly.

In the bottom half of table 4.41(c), the best accuracy, and the best specificity and

sensitivity combination, is obtained for the feedforward neural network with full

connections between the nodes of adjacent layers. Note that the predictive value

rates are a1so relatively high for this ANN, implying that this architecture, as is the

case when the other two input data sets are used, performs few misclassification

errors. Although the other architectures ail have sensitivity values above 0.8, the

specificity values are very poor for the time-delay and the cascade correlation neural

network, implying that these methods have the tendency of c1assifying non-pain

utlerances as pain; an observation made for the log of the mel-scale filter-band

energy values input data set.

Comparison of the Input Data Sets

Examining the results obtained from the five data sets used to train and test the vari­

ous neural network architectures, the best correct classification rates were achieved
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for the fully connected feedforward neural network using the mel-cepstrum coef­

ficients which had their mean removed and which were normalized to lie between

values of ±1, as the input data set. This combination of network architecture and

input data set has the highest correct classification rates for two of the three utter­

ance classes, namely fear and pain cries, across all the architectures and all the input

data sets, with 92% of pain utterances in the test set being correctly classified, and

a total correct classification rate of 83.59%. From the two-class classification rates,

this neural network architecture and input data set yields a high sensitivity with

a good specificity, implying that there are few misclassifications performed by this

method, and, as well, that over 91% of utterances that are classified as either pain

or no-pain actually correspond to pain and no-pain utterances. Consequently, this

architecture and input data set also have the highest of all the two-class accuracy

values.

Comparing the total correct classification rates of the input data sets, the norma\.·

ized mel-cepstrum coefficient values yield higher values for all the architectures

except for the cascade correlation networks, which in any event, yield poor results

in all cases.

For all the input data sets, the best results were achieved when a fully connected

feedforward neural network was used. Often, a feedforward neural network with

tessellated connections would provide the next best classification rates, which at

best would be slightly less, but never equalling those of the fully connected net­

work. Hence, it would seem that an organization of the neural network connections

which attempts to model the receptive fields of the brain may work well for sorne

applications, but fail to match the performance of full connections for the purposes

of cry classification. Full connections betweer. nodes in adjacent layers seems to

better model the input-output characteristics than tessellated connections do, as

is identified by the larger correct classification rates using this node connection

methodology. Tessellated connections seem to miss sorne of the correlations be­

tween the input features which seem to be captured by the full connections.
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Next, the issue of the usefuiness of time information for the purposes of correct

classification will be addressed. Looking at the results obtained for the recurrent

neural networks and for the time-delay neural networks, it is noted that the total

correct classification rate for the recurrent neural networks are consistently better

than those of the time-delay neural networks. The time-delay neural network

was formulated to accurately capture the specifie acoustic sequences of a given

phoneme for speech, whereas the recurrent neural network was formulated as a

means of handling time-dependent input in general, with no provisions made to

provide shift invariance or to capture fine features in the input sequence.

The stricter encoding of the sequence of acoustic features present in cry utter­

ances which is inherent in the structure of TDNNs, would not seem to benefit

the classification of infant anger, fear, and pain cries. Although the correct clas­

sification rates for these two architectures are less than those of the feedforward

networks having either full or tessellated connections, the recurrentneural network

would seem to make better use of time information than does the time-delay neu­

ral network. This observation is intuitive if one thinks for the type of information

contained in cry utterances and speech signais.

Speech is defined in terms of phonemes, and a specifie sequence of acoustic

events denotes a specifie phoneme. Sorne phonemes can contain similar acoustic

events, but it is the sequence of these events, or the occurrence of these events,

followed or preceded by other events, which distinguishes phonemes from each

other. Hence, time-delay neural networks are an effective architecture for capturing

this information in an input frame of parameters derived from the speech signal.

For neonates, however, vocal tract shape is affected by a number of physio­

logical or psychological effects, which may be reflexive and not under the direct

volitional control of the infant [Zeskind, 1985l. Consequently, the occurrence of

specifie acoustic events in cries of the same class would seem to be more important

than the sequence in which these events occur.
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That being said, it is understandable that recurrent networks fare belter than

time-delay neural networks, since the former encodes time information on a more

generallevel than the sequential information encoded by a TDNN. This is further

supported by the observation that larger, or coarse, time frame sizes give belter

results than smaller, or finer, time frame sizes, as will be further elaborated in the

following subsection.

As weil, since the occurrence of certain acoustic events would appear to be more

relevant than the sequence with which these events occur, feedforward neural net­

works, with fully connected nodes between adjacent layers, yield belter results

than their time-dependent counterparts. Fully connected feedforward neural net­

works are capable of computing more complex relations between the inputs and

outputs than what is possible when sparser connections are used, thus yielding

belter results for this particular application,

Looking at the results obtained from the cascade correlation neural network,

it would seem that this particular paradigm is not suitable for the classification

of infant anger, fear, and pain cry utterances. Although the idea behind using

a leaming method that grows its own hidden layer, thus taking the guesswork

out of determining the optimal number of hidden layer nodes which is requh'ed

for a given network and application, is indeed appealing, the resulting t:Orrect

classification rates obtained are rather disappointing.

For both the mel-cepstrum coefficients and for the mel-scale filter-band energy

input data sets, the best classification rates are obtained when the normalized input

data sets are used. Normalization ensures that ail values in a given input da ta frame

will lie between ±l, so that aH the input data frames will have the same dynamic

range. Scaling the values, or dividing by the maximum value of a given input

frame only ensures that the largest value in the frame will be l, making no claims

on the range of values of the input data frames.

Comparing the results between the best of the mel-cepstrum coefficient derived
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input data sets and the best of the input data sets derived from the mel-scale filter­

band energy values, both of which are for the normalized input data sets, one can

notice that the results for the normalized mel-cepstrum coefficients yield better re­

sults for ail but the the cascade correlation neural network. The encoding of the rel­

evant spectral characteristics of an input signal window for the purposes of classi­

fication, would seem to be better captured by the mel-cepstrum coefficients than by

the normalized log mel-scale filter-band energy values. This observation has been

also made by researchers in the speech domain [Davis and Mermelstein, 1980], so

it would appear that for the purposes of classifying and discriminating between

infant anger, fear, and pain cries, mel-cepstrum coefficients yield better results than

filter-band coefficients as weil.

OveraIl Observations and Comments

Looking at the classification results for all the architectures and all the input data

sets overall and in general, a number of patterns emerge. First, the correct classi­

fication rate of anger cries seldom exceeds that for pain cries. In fact, the correct

classification rate for anger cries exceeds that of pain cries in only three cases: for

the time-delay and cascade neural networks which use the scaled mel-cepstrum

coefficient input data set, and for the fully connected feedforward neural network

which uses the log of the mel-scale filter-band energy as the input data set.

This may be partly due to the fact that there were more than twice as many

pain cries in the data set than there were anger cries. Consequently, the neural

networks may have been better able to generalize on pain cries than with anger

cries, especially for the input sets derived from the mel-scale filter-band energies.

For these particular data sets, the correct classification rate of pain cries never went

belowO.68.

The correct classification rate for fear cries is consistently very poor, never ex­

ceeding the 0.45 mark. Again, this is most likely due to the small number of
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available fear utterances in the data set. Consequentiy, there were too few utter­

ances for the neural network to pull a sufficientiy general number of features from

this class in order to perform correct classification on test utterances. The correct

classification rate for fear utterances is especially poor for the data sets derived

from the mel-scale filtet-band energy values. For these data sets, the only architec­

ture that consistentiy classified at least one fear utterance correctly was the fully

connected feedforward neural network. Ali other architectures failed to correctly

a single one fear utterance using these data sets.

One observation, which was made over the course of numerous classification

training and test sessions over a number ofarchitectures, was that certain utterances

would be consistently misclassified, irrespective of the parametric representa tion

used for the signal of the neural m:twork architecture used. To mention just one

example, one particular pain utterance, when present in the test set, has always

been classified as an anger utterance. This raises sorne thoughts as to the degree of

pain which may be present in a given utterance. Perhaps for this particular event,

this particular infant did not perceive the heel stick as a painfui event and found

this procedure to be more bothersome than painiul. After all, if one looks at adults,

the same procedure or event may be more painful for one person than for another,

so perhaps the same can be said for infants as well.

4.7.2 Neural Network Parameter Variations

In this subsection, the resuits of sorne neural network parameter variations, such as

the hidden layer size and number of input vectors, if applicable, will be discussed,

with sorne considerations resulting from the tables presented in the latter portions

of section 4.6.2 and section 4.6.3. Ali the tables relating the results for these param­

eter variations in these sections report error rates, which correspond to the total

correct classification rate for the three-class classification problem subtracted from

1. As was the case for the previous two subsections, this subsection will be divided
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according to the input parameters sets derived from the input signal from which

the input data sets are derived.

Mel-Cepstrum Coefficient-Derived Input Data Sets

Table 4.12 presents the error rate, as the hidden node size is varied, for the fully

connected feedforward neural network. The results for the scaled mel-cepstrum

input data set are shown in table 4.12(a) and those for the normalized mel-cepstrum

input data set are shown in table 4.12(b).

For both input data sets, the error rate starts off relatively high, and then reaches

a minimum for a hidden layer size of 45 nodes, before increasing once again for a

larger hidden layer size of 74 and for a fully connected fpedforward neural network

with two hidden layers with the first and second hidden layers consisting of 125

and 17 nodes respectively. This behaviour is typical for the variation of the number

of hidden layer nodes; generally, the error rate will fall as the hidden layer size

starts from a small number, and then increases to a larger number of nodes. At a

particular hidden layer size, a minimum error rate will be reached and the error

rate will then begin to increase once again as the hidden layer size continues is

increased.

Also, for both the data sets derived from the mel-cepstrum coefficients, the error

rate does not seem to improve once an additional hidden layer is added. Hence

the interim mappings generated by the addition of another hidden layer in the

network does not improve classification results. In turn, the resuIts obtained from

the use of a 2-hidden layer configuration would not warrant the substantial time

and computations required to train this network. As is the case for most other

applications, a single hidden layer is sufficient to capture the mappings between

the inputs and the outputs for the classification of anger, fear, and pain cries. As

can also be observed in table 4.12, for a given hidden layer size, the error rate of

the normalized mel-cepstrum input data set is lower than that of the scaled input
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data set.

Next, the error rates for the feedforward neural networks with tessellated con­

nections, shown in table 4.13, wiII be considered. As can be seen in table 4.13(a) and

table 4.13(b), the error rate initially starts at a high value for a small hidden layer

size before reaching a minimum, and then increasing once again as the hidden

layer size increases. For both the scaled and normalized mel-cepstrum coefficient

input data sets, a larger grouping of input vectors seems to decrease the error rate,

with the grouping of 25 mel-cepstrum input vecturs achieving the best resu1ts. For

this grouping of input nodes, a smaller overlap between subsequent input node

groupings results in a decrease of the error rate, with an overlap of 5 input vec­

tors yielding a lower error rate than when the overlap between adjacent "tiles"

consisted of la vectors. In any event, as was discussed in section 4.7, the resu1ts

obtained for this type of neural network connections do not improve the error rate

when compared to the full connection of nodes between adjacent layers.

The results for the parameter variations performed on the recurrent neural

network for the scaled and normalized mel-cepstrum input data sets arc presented

in table 4.14 and table 4.15, respectively. The subtables iIlustrate the error rate

variation as the number of input data vectors in the network changes according to

the number of overlapping vectors between subsequent input data frames, delay

nodes, and hidden layer sizes listed. These tables also list how the hidden layer

size affects the error rate for the optimal frame size of 75 input vectors.

For both the input data sets derived from the mel-cepstrum coefficients, the errar

rate falls as the number of input data vectors used in the recurrent neural network

increases, with the best results achieved for a network using an input frame size

of 75 vectors with subsequent input frames overlapping by 50 vectors. This result

would seem to imply that the classification of infant anger, fear, and pain crics does

not benefit from the use of a "fine" lime resolution of input features. The error

rates obtained for input frame sizes of la and 25 vectors are both larger than the
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one achieved for an input frame size consisting of 75 vectors. Although the erraI'

rate for this architecture does not fall below that of the fully connected feedforward

neural network, it would seem that this application does make sorne: use of lime

information, but this information is better captured by a lal'gel' or ~oarser time

window, than with a smaller one.

The results of table 4.14(b) and table 4.l5(b) both follow the same pattern of error

rate versus hidden layer size that was observed for the fully connected feedforward

neural network: the error rate falls as the hidden layer size increases, reaching a

minimum, before increasing once again as the hidden layer size is increased.

The table listing the error rates as the input frame size is varied for lime-delay

neural networks, using l!,e two input data sets derived from the mel-cepstrum

coefficients, is presented in table 4.16. Due to the large amount of time required

to train time-delay neural networks, only two configurations were trained. One

time-delay neural network was presented with 10 vectors of data at a time, or an

input delay length of 10, with subsequent input frames containing 9 of the previous

vectors and one new vector of input data. In order to process a one second segment

of a cry signal, which consists of 125 vectors, it was decided to use two hidden layers

in order to decrease the large number of delay nodes, namely 115, which would be

required if a single hidden layer would have been used.

Consequently, for this fine time resolution input representation of 10 vectors, or

alternatively, an input delay width of 10 vectors, two hidden layers were used, The

first hidden layer consisted of 8 units containing 55 delay units and one undelayed

unit, which integrated information over 56 input frames. The second hidden layer

consisted of 4 hidden units with 59 delay units and one unit with no delay, which

integrated the activations of the first hidden layer over 60 lime units.

The other time-delay neural network constructed was designed to use a much

larger input vector size thus integrating a coarser grouping of input data. This

network had an input frame size, or delay length, of 105 vectors with subsequent

202



•

•

•

4. Classification of Infant Cries Using Artificial Neural Nctworks

frames consisting of 104 vectors from the previous frame and one new vector of

input data, be it for the scaled or normalized mel-cepstrum coefficient input data

sets. The hidden layer consisted of 5 units containing 20 delay units and one unit

with no delay, thus integrating the activations of 21 input frames.

For both the input data sets derived from the mel-cepstrum coefficients, the

error rates of the coarser, or larger, time window are substantially better than

the error rates obtained by the network with the smaller time windC'·N. This is

consistent with the results achieved for the recurrent neural network, and is due to

the observation made earlier regarding the type of information which is found in

infant cry vocalizations.

For speech, TDNNs are especially good at capturing the sequence of acoustic

features which constitute a phoneme, since this sequence is common to a particu\ar

phoneme, even if it is spoken by a number of different speakers. For infant cries,

however, the occurrence of certain acoustic features is more important than the

sequence in which they occur, which follows if one considers that infant control

of vocal articulators is poor. The faet that sequence is not important for correct

classification of infant crirs is also reinforced by the observation that when larger

groups of vectors are used as inputs, the error rate drops for both TDNNs and

for recurrent neural networks. The fine time integration provided by TDNNs is

important to capture the subtle differences between phonemes in speech such "s

/p/, /t/, and /k/, or /b/, /d/, and /g/. Since infants lack the precise articulator

control l':'!,!uired to produce acoustie events with extremely short durations and

specifie artieulator positioning such as those mentioned above, the correct classifi­

cation rate for anger, fear, and pain eries does not benefit as a result of the use of

this precise and fine lime information.

Moreover, comparing the results for the larger, or coarser, time window sizes for

the reeurrent and the time-delay neural networks, shows that the smaller error ra te

of the recurrent neural network with a smaller overlap rate performs better than
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the time-delay neural network with a large number of input vectors and a large

overlap rate. This observation also reinforces the statement that the occurrence of

acoustic events in cries is more important than sequence for the classification of

anger, fear, and pain cries. The large overlap rate of time-delay neural networks

allows it to capture the precise sequence of acoustic events, whereas for recurrent

neural networks, the delay nodes capture the activations of the nodes, with no

explicit sequence being modeled. Consequently, from these results, time informa­

tion improves classification rates if the input consists of a large number of input

vectors. However, the incorporation of time information does not improve the

correct classification rate over that of the feedforward neural networks.

This observation should not imply that sequence is not useful for the

classification of cry utterances. Sorne studies have shown that there is in­

deed a correlation between fundamental frequency patterns over the course

of an utterance, and pathology [Michelsson et al., 1980, Michelsson et al., 1984,

Ostwald and Murry, 19851. Since the data set available for this work consisted only

of healthy infants, the use and usefulness of time information for the classification

of pathology could not be tested.

Lastly, table 4.17 displays the effects of different training methods on the error

rate and on the number of hidden layer nodes created by the cascade correlation

paradigm before the network error feU below the desired level and training was

stopped. For both the input data sets derived from the mel-cepstrum coefficients,

the conjugate gradient learning method yielded a lower error rate than when

either standard back propagation, or its variant QuickProp, were used to train the

networks. The latter training method, QuickProp, generated the smaIlest number

of hidden layer nodes, but the quality of the trained network was the worst of the

three training methods, having the largest error rate of the three methods. Standard

back propagation, on the other hand, generated the largest number of hidden units

with the second largest error rate. For the two data sets derived from the mel­

cepstrum coefficients, it would appear that conjugate gradient leaming yields the
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best correct classification rates, but these results are still far poorer than any of the

rates for the other architectures tested.

AIso, the error rates for all the architectures and configuration variations using

the data sets derived from the mel-cepstrum coefficients all follow the pattern that

using the normalized input data set generates lower error rates than when the

scaled input data set is used, implying that the process of removing the mean am.!

normalizing the input values to lie between ±1 allows a given network to better

capture relevant features from the inputs.

Mel-Scale Filter-Band Energy-Derlved Input Data Sets

Table 4.33(a), table 4.33(b), and table 4.33(c) of table 4.33 shows the error rates

versus the number of hidden layer nodes for the fully connected feedforward

neural network. Here, the minimum error rate for allthree cases was reached for

a hidden layer size of 25 nodes. As was the case for the mel-cepstrum coefficient­

derived input data sets, once the minimum error rate was reached for a given

hidden layer size, further increasing the hidden layer size would cause the error

rate to increase. AIso, none of the error rates for the three mel-scale filter-band

energy-based inputs benefit from the use of a neural network with two hidden

layers. This same pattern is observed for the number of hidden layer nodes for the

feedforward neural network with tessellated connections, the results of which are

listed in table 4.34.

The results for the parameter variations on the recurrent neural network are

indicated in table 4.35, table 4.36, and table 4.37 for the scaled, log, and normalized

log of the mel-scale filter-band energy values, respectively. For these data sets, the

same observation regarding the input frame size and error rate can be made as was

stated for the mel-cepstrum coefficient derived data set discussed in the previous

sub-subsection. The optimal error rates for the three data sets derived from the

mel-scale filter-band energy values are such that the best results are achieved for
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an input frame size of consisting of 75 vectors, with subsequent input frames

consisting of 50 vectors from the previous input frame and 25 new vectors.

As weil, the results for the hidden layer size and the error rate for an input frame

size consisting of 75 input data vectors follows the same pattern as it aid for the

mel-cepstrum coefficient-derived input sets; a small initial hidden layer size has a

high error rate, decreasing and reaching a minimum as the size was increased, and

then increasing as the hidden layer size was further increased.

Table 4.38 presents the results of tests done on two time-delay neural networks

as the input frame size for the input data sets derived from the mel-scale filter­

band energies was varied. The TDNN with the larger input frame size, consisting

of 105 input data vectors, produced the lowest error rates for ail three input data

sets. These results, coupled with those obtained with the recurrent neural network,

further reinforce the statement made in the previous sub-subsection that coarse, or

large, groupings of input vectors yields better results. Aiso recurrent nets produce

lower error rates, since this network integrates the activation of nodes, and not

the input activations, as the TDNN does. Furthermore, the fine time integration

of acoustic features provided by the large overlap size of TDNNs does not benefit

the classification of anger, fear, and pain from infant cry utterances for the input

data sets derived from both the mel-scale filter-band energies and from the mel­

cepstrum coefficients.

Lastly, the error rates obtained from the different learning methods used to train

the cascade correlation neural network are shown in table 4.39. For the input data

sets derived from th:! mel-scale filter-band energies, the network trained using

standard back propagation yielded the lowest error rate. The hidden layer size of a

cascade correlation network trained with standard back propagation fell between

that of the QuickProp method, which yielded the next best error rate with the

lowest hidden layer size generated, and the conjugate gradient training method,

which yielded the highest error rate, and also the highest number of hidden layer
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nodes created.

The error rates for all the architectures and configuration variations using the

data sets derived from the mel-scale filter-band energy values, show that the best

results were achieved when the normalized log inputs were used. The log inputs

yielded better results than the scaled inputs did, presumably because scaling the

energy values may result in sorne extremely small values in the inputs, whereas

taking the logarithm of these energies better compresses the dynamic range of these

values.

Comparison of the Input Data Sets

For the most part the results obtained using the data sets derived from the two sels

of features derived from the cry signais are comparable. The results for normalized

inputs yield the best results in both cases. When considering the usefulness of time

information for the purposes ofclassification, both input sets have lower error rates

when a coarse, or larger, grouping of vectors is input into the network.

To reiterate, this reinforces the statement that the occurrence, not the sequence,

of acoustic features in the input frame is important for improved classification,

which is somewhat intuitive given the difference in the articulator control required

to produce cries and to produce speech. AIso, the finer time integration of acoustic

features performed by the time-delay neural network, leads to a higher error rate

than the coarser integration of node activations performed by the recurrent neural

network, which encodes sequences in a more general manner than the time-delay

neural network does.

Lastly, the input data sets achieve different results insofar as the best results

obtained from the cascade correlation leaming methods are concerned. The mel­

cepstrum derived input data sets both achieve their best results when the conjugate

gradient learning method is used. The input data sets derived from mel-scale filter-
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band cnergy values achieve their best results when standard back propagation is

used. The observations regarding the input data sets and the cascade correlation

network and the different leaming methods are moot, however, as this architecture

yields extremely poor results in any event.

4.7.3 Comparison to Other Classification Attempts

As was mentioned in section 2.3, and again in section 4.1, there has been a very

limited attempt by researchers to automate the process of infant cry classification.

If this attempt has indeed been more widespread, the results of the research have

not been published in the literature. Consequently, the research undertaken for the

classification of anger, fear, and pain from infant cry utterances performed for this

dissertation represents the first attempt at the automatic classification of an infant

state and is also the first attempt at using artificial neural networks in the infant

crydomain.

The results presented in section 4.6 show that the best correct classification rate

for anger, fear, and pain cries of infant ranging in age from two to six months was

achieved for c. feedforward neural network with a hidden layer consisting of 45

nodes, which used 125 vectors consisting ofIl mel-cepstrum coefficient values for

which the mean was removed and then normalized to lie between ±l. The correct

classification rate obtained was 0.8359 or 83.59%.

The only other recently published work which cites an attempt a performing

the automatic classification of infant cries is a conference publication authored by

Xie, Ward, and Laszlo [Xie et al., 1993). 'his research group uses hidden Markov

models to compute a cry's so-called level-of-distress, which corresponds to an

adult's perception as to the infant's distress level, and quotes a correct classification

rate of over 80%, without detailing their results. It should be noted that this

group did not attempt to c1assify either infant state of pathology based on a cry
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utterance; only perceptive measure of infant distress was computed. Consequently,

it is difficult to compare the results of this research with that performed for this

dissertation. Nonetheless, the correct classification rate of 83.59% achieved for

anger, fear, and pain classification here, surpasses their classification rate for this

subjective measure.

There is sorne concern that arises from the choice of Xie, Ward, and Laszlo

to use a perceptive measure of infant distress in an automatic cry classification

system, instead of trying to classify infant state or pathology directly. A number of

researchers over the past 15 years have questioned the validity of using a parent's or

an adult's perception of an infant's cry to determine if an infant is indeed in distress

for a number of reasons. First, the relationship between the actual and perceived

features of the infant's cries and the behavioural response is affected by a number of

factors [Murray, 19851. The response, or the perception of aversiveness or distress

may be dependent upon the length of exposure to certain types of cries. As wel1,

the perceived meaning of the cries changes as adult listeners are more frequently

exposed to these utterances in general. Furthermore, with sorne listeners, the cry

may elicit a nurturing response, whereas with others, the same cry may elicit a

hostile response, with research undertaken in this area noting that crying is often

cited as a major trigger for child abuse [Donovan and Leavitt, 1985b, Frodi, 1985,

Murray,19851. It has also been observed that people from different cultures react

differently to infant cries [Murray, 19851.

In brief, then, attempting to model a perceptive measure may not be a proper

solution to the classification problem as the cry can have a paradoxical impact on

the listener.

Another means of comparing the results obtained through the neural network­

based classification experiments performed and reported in section 3.4, given the

lack of automatic classification results for anger, fear, and pain cries, is to compare

these results with those of studies where the classification of these types of cries
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is attempted by adults who themselves have infants. A review of cry perception

research, performed in 1985 by Boukydis [Boukydis, 19851, reveaIs the presence of

one study where the recognition of anger and pain cries was performed by adults

who themselves had infants [Weisenfeld et al., 19811.

In this study, Weisenfeld, Zander Malatesta, and DeLoach report that mothers

correctly identified the anger and pain cries of infants approximately 77% of the

time. The correct classification of their own infant's cries was significantly higher

than that for other infants, 82.5% versus 72% respectively. Fathers, on the other

hand, did very poorly in correctly classifying anger and pain from cries, with

the reported correct classification results being approximately 50%. Unlike their

spouses, the fathers showed no difference between the correct classification of

anger and pain cries of their infant versus that of other infants. It should be noted

that for this study, the infant was considered as producing an anger cry upon either

being physically restrained or when its pacifier was removed, and considered as

producing a pain cry, when its heel was snapped with a rubber band. The latter

differs from the data used in this dissertation, where the infant was considered to

have produced a pain cry after a heel stick.

Comparing the best results of the Weisenfeld, Zander Malatesta, and DeLoach

study with the best three-class neural network classification results, the neural

network still performs slightly better than the rate which is quoted for mother

identifying the cries of their own infant (83.59% versus 82.5%). If the general

correct classification rate for the mothers in the study is used, then the neural

network's performance is much better than that of the mothers'.

In short, then, the results of the best neural network-based anger, fear, and

pain classifier exceeds the results of both the hidden Markov model-based dis­

tress classification system of Xie, Ward, and Laszlo, as weil as surpassing the best

classification rates of parents on similar types of vocalizations.
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This chapter presents sorne future work which could be undertaken as a result of

the research performed for this dissertation, and, which was presented in chapter 3

and in chapter 4. The chapter will be divided into two sections, one tackling the

possible future extensions for the improved crosscorrelation vector-based funda­

mental frequency extraction method, and another addressing the extensions for

the neural network-based classification of infant cries.

5.1 Future Extensions for the Improved Crosscorrelation Vector­

Based Fundamental Frequency Method

This subsection deals with the possible future extensions for the improved cross­

correlation vector-based fundamental frequency extraction method presented in

section 3.1. To reiterate, this method is capable of tracking rapid changes in the

fundamental frequency of infant cry utterances, handling the large range of ['il

values present in infant cry signais, generates values of Fo for almost every pitch

period in voiced utterances, and is also useful for improved visualization of cry

utterances.

5.1.1 Improvements in Speed

The current implementation of the improved crosscorrelation vector-based fun­

damental frequency extraction method is computationally intensive, as was men­

tioned in subsection 3.1.6, since, during the signal transformation phase, a cross-
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correlation value is generated for every possible lag in the range of expected fun­

damental frequency values. Over the length of a recording , this amounts to a large

number of computations, which consumes the majority of the computation tirne of

the pitch extraction algorithm.

One method of reducing the number of computations required for a given

time index would be to calculate crosscorrelation values for every other lag in

the expected pitch period range, instead of calculating crosscorrelation values for

every lag. Thus would reduce the required number of computations for this stage

of the algorithm by half and would also reduce the amount of memory required

to store the collection of crosscorrelation vectors. However, this savings in both

the number of computations and memory cornes at the expense of the resolution

of the extracted pitch period values in the subsequent post-processing stage, and

correspondingly, a reduction in the resolution of the crosscorrelogram. Ifexecution

speed is of importance for a particular application, for example, then this extension

couId easily be implemented and tested for its effectiveness.

5.1.2 Pitch-Synchronous Processing

Another extension of this method would be to use it for pitch-synchronous pro­

cessing subsequent to the extraction of the pitch period in a given recording. As

weIl, a further pass over the time indexes, or the nos, as was introduced on page 49

in section 3.1.2, and the input cry utterance could result in the following extensions,

iIIustrated in figure 5.1.

First, one could supplement the missing pitch values due to large tirne incre­

ments resulting from large maxima at multiples of the actual pitch period value,

or correct those due to small increments resulting from narrow bandwidth FI val­

ues. As weIl, one could use techniques to interpolate between sample values in

order to obtain so-called "infinite" resolution in the extracted pitch period values
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Figure 5.1: Extension to Improved Pitch Period Processing Method

[Medan ct al., 1991]. The improved crosscorrelation vector-based pitch extraction

algorithm synchronizes itself to the maximum value of a pitch period when it first

begins to find periodicity within a portion of the signal. Consequently, one could

use the lime indexes used by the algorithm, which mark the beginning of a pitch

period during voiced sections of the recording, to extract pitch-synchronous fea­

tures such as formant values, or proceed to perform another pass over the data and

obtain ail the infinite resolution pitch values for further processing.

Other, more detailed measures of parameters based on Jib such as, jitter and

shimmer, could be determined on a period-by-period basis, allowing a more pre­

cise picture as to how these parameters evolve over the length of the cry episode

than was previously possible. This insight could shed more light into the precise

way that these and other parameters behave for different types of cries, recorded in

different contexts. This could be especially useful for cries of infants with patholog­

ical or genetic problems [Lind et al., 1970, Zeskind and Lester, 19781 and, as weil,

for aduIts with varying degrees of pathology of the vocal tract [Kasuya ct al., 19831.
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This pitch synchronous processing could also be useful for eventual coding of

the signal, should it be necessary to transmit an utterance from a remote center

over a low bandwidth connection, for example, te a central processing system for

further analysis, or for archivai purposes.

5.1.3 Other Fundamental Frequency Extraction Methods

Although the improved crosscorrelation-based fundamental frequency extraction

method represents a significant improvement in the determination of pitch period

values from infant cry utterances, other emerging methods are currently being

researched for improved fundamental frequency extraction from speech signais

which could possibly be tested on cry utterances as weil. One particular method

whieh appears to be promising is the application of wavelets [Boashash, 1992a,

Boashash, 1992bJ.

Sorne research groups have attempted to extract the fundamental fre­

quency from speech signais using this method with reasonable results

[Kadambe end Boudreaux-Bartels, 1991J. Recently, however, good results have

been achieved through the application of new wavelet functions for speech coding

applications whieh may prove to be useful for fundamental frequency extraction

[Kinsner and Langi, 1993).

5.2 Future Work for Neural Network-Based Infant Cry Classifica­

tion

This section presents sorne future work for the automated classification of infant

cry signais using neural networks which emerges as a result of the work presented

in chapter 4. Since attempts at automatic classification of cry signais in general are

just beginning, there is much that could be said on this topie. However, this section
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will briefly touch on sorne points which could be investigated in future attempts

at addressing this problem.

5.2.1 Other Neural Network Architectures

As as result of the correct classification rate of 83.59% achieved using a feedforward

neural network, with a single hidden layer consisting of 45 units, using an input

data set of mel-cepstrum coefficients with the mean of the input vectors removed,

and normalized to lie between ±1, it can be deduced that artificial neural networks

are suitable for the discrimination of anger, fear, and pain cries.

Consequently, other activation functions, such as radial basis func­

tions [Morgan and Scofield, 1991], and neural network architectures, such

as Coulomb energy networks [Scofield et al., 1988], or Viterbi networks

[Lippmann and Singer, 1993) could be trained and tested with the input param­

eter sets used for the neural network tests of chapter 4.

5.2.2 Other Parametric Representations

The data sets used in the neural network tests of chapter4 were derived from either

11 mel-cepstrum coefficients of 20 mel-scale filter-band energy values. Another se­

ries of tests which could be performed would be to reduce the dimensionality of

both the parameter vectors. The number of mel-scale cepstrum coefficients ex­

tracted from a given signal frame could be reduced from Il to, say, 7. As weil, fur­

ther tests could be conducted on augmenting this set of 7 mel-cepstrum coefficients

with 7 differential mel-cepstrum coefficients. The differential mel-cepstrum coeffi­

cients simply correspond to the first time-derivative of these features. The augmen­

tation of mel-cepstrum coefficients with differential mel-cepstrum coefficients has

provided good results for speech recognition applications [Flaherty and Roe, 19931,
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and may be worth investigating for the classification of infant cries as weIl.

Alternatively, other input features such as the linear predictive coding

(LPC) coefficients, or higher order representations from the input spectrum

[Nikias and Mendel, 19931 could also be generated and tested as input for dif­

ferent artificial neural networks, and whose correct classification results could be

compared to those presented in section 4.6.

The portion of the voiced utterances which were parametrized for input into the

different neural networks, consisted of the first second of an utterance which lasted

at least 0.75 secùnds after the stimulus event. Here, parametrization of different

portions of the cry utterance could be tested as weIl; taking a 1second portion of the

signal centered about the signal frame with the largest energy value, for example.

Alternatively, a longer portion of the utterance could be parametrized using no

overlap between subsequent signal windows. If this were done for the parametric

representations used i'1 chapter 4, a two second segment of the cry signal could

be taken, without increasing the number of input vectors presented to the neural

network architectures tested.

5.2.3 Expanding the Study

Other neural network-based classification experiments could be expanded to at­

tempt the classification of other infant states, such as hunger, or to c1assify various

pathological or genetic disorders, if a collection of data is available. As weIl, future

experiments could be expanded to include premature infants.

One drawback of research undertaken in this domain, is the lack of a standard­

ized data set, on which a number of researchers could compare the results of new

methods of either classification, or parameter extraction, as is the case for speech,

or image processing, with the availability of speech databases or standard image

files. This allows the improvements in processing or classification techniques to not
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only be done on a de facto standard set of data, but also allows researchers ail over

the world to have access to the same data and to determine whether improvements

are due to genuine improvements or a result of a limited data set.

Lastly, since the data sets are painstakingly co11ected in a clinical setting, it is

often difficult to obtain more than a few recordings of a specifie cry type, which

causes problems for the training process of classification methods. These methods

often require a large number of representative data for the training and lesting pro­

cesses in order to determine the unbiased estimation of the classification method

being tested. Consequently, it would be desirable that when automatic classifica­

tion methods are being investigated in the future, that a large number of recordings

be available for this purpose, and that equal numbers of recordings be available for

the different types or classes of cry utterances slated for classification.
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One of the goals of this work was to address the problEms inherent in the processing

of infant cry signaIs, mostnotably for the extraction of vocal fundamental frequency,

since this is a very important parameter in the determination of infant state and

future developmental outcome as was mentioned chapter 2.

This thesis developed a method whieh was capable of accurately extracting this

parameter using a multi-stage time-domain method called the improved cross·

correlation vector-based fundamental frequency extraction method presented in

chapter 3. The method uses a distance scoring method of the pitch candidates in

order to extract the correct fundamental frequency values over the length of an

utterance, and is able to correctly deal with discontinuities in the pitch contour

due to rapiù or sudden variations in pitch, double harmonie break episodes, and

disphonation. As weil, the method generates pitch values for almost every pitch

period in the voieed sections of cry utterances, which can be further refined by

implementing the future extensions for this method mentioned in section 5.1.

The imp,ùved crosscorrelation vector-based fundamental frequency extraction

method overcame the limitations of the standard frame-based pitch extraction

methods, the most common of whieh were presented in section 3.2. Typieally,

traditional pitch extraction methods are not weil suited to the large range of fun­

damental frequency values of infant cry utterances. Moreover, characteristics of

certain types of cry utterance signaIs, such as narrow bandwidth high energy for­

mant values, create confusion for other Foextraction methods. As weil, since thele

are no comparisons between different pitch extraction methods whieh exist for

infant cry utterances, this work was also performed and reported on in order to

demonstrate the improvements in the results of the new pitch extraction method,
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and the more popular existing methods. In addition to providing improvements

in the extracted pitch values, this method also generates a series of crosscorrelation

vectors which are extremely useful for improved visualization of cry lItterances.

The irnprovements need not be limited to the processing of cry signais, however.

This method may also be useful for the extraction of pitch values from adliit speak­

ers who may have aperiodicities in their vocalizations and for whom a very fine

analysis of pitch period variations may be required to determine the extent of vocal

tract pathology.

Another of the goals of this work was to perform the accurate automated classi­

fication of infant anger, fear, and pain cries, which was achieved using feedforward

artificial neural networks and the first second of a voiced utterance parametrized

using 11 mel-cepstrum coefficients for which an overal1 correct classification rate of

83.59% was achieved, illustrating the suitability of this paradigm for this particular

application.

The comparison between two different parametric represl'ntations, the mel­

cepstrum coefficients and mel-scale filter-band energy values, extracted from a 1

second portion of a voiced cry utterance trained on four different neural networks

was also reported and compared. To the best of our knowledge, this work repre­

sents the first attempt at, and comparison of, automated infant cry classification

using artificial neural networks. Based on the results of the various input param­

eter sets and neural network architectures investigated, the n:levance of certain

types of information were discussed and presented in section 4.7. Sorne ideas for

possible future work relating to both the parametric representations and neural

network-based classification experiments were also presented.
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