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Abstract

Advances in cry research and understanding have been limited due to the lack
of available analysis and classification methods which can adequately deal with
the particulars of this simple, vet effective, communication medium. This thesis
presents new processing and classification methods for infant cry signals. First,
a new method of accurately extracting the vocal fundamental frequency from
cry signals is proposed. This multi-step crosscorrelation vector-based method
accurately tracks rapid changes in the fundamental frequency in these utterances, is
not limited to any particular range of pitch values, and allows a more detailed view
of this important parameter for further analysis. The benefits of this method are not
limited to infant cry vocalizations, however. This new method can be employed
by any application that requires accurate and detailed pitch extraction, as well as
being suitable for pitch synchronous analysis of a voiced signal. Then, a novel
application of artificial neural networks is presented: the automatic classification
of anger, fear, and pain cries. A comparison of five different input data scts
derived from two different parametric representations, applied to four different
neural network architectures is presented. From the classification rates obtained,
the use of artificial neural networks would seem well suited to the classification
of these types of infant cries and warrants future investigations. Some future
work is outlined prior to the concluding remarks outlining the contributions of this

dissertation.



Sommaire

Les progrés dans le domaine de la recherche et de la compréhension des cris
des nouveaux-nés étaient limités & cause d'un manque de méthodes qui pou-
vaient traiter adéquatement ce simple moyen de communication qui se trouve a
étre efficace pour attirer de l'attention aux besoins du bébé. Cette dissertation
présente des nouvelles méthodes pour le traitement et la reconnaissance des cris
de bébés. En premier lieu, une nouvelle méthode pour I'extraction de la fréquence
fondamentale de ces signaux est proposée. Cette nouvelle méthode, consistuée
de plusieurs étapes, est basée sur les vecteurs de corrélations croisés qui servent
4 suivre 'évolution des valeurs de la fréquence fondamentale avec une grande
précision dans ces signaux. En plus, cette méthode n’est pas limitée & une portée
fixe de valeurs de fréquences fondamentales, et peut aussi permettre une vue plus
détaillée de ce parametre qui peut servir pour d'autres analyses. Les bénéfices
de cette méthode ne se limitent pas aux cris. La méthode peut étre employée par
toutes applications qui demandent une analyse précise et détaillée de la fréquence
fondamentale, ou qui demandent une analyse des signaux synchronisé au début
de la période fondamentale. Ensuite, une nouvelle conception et mise en applica-
tion des réseaux neuroniques pour la classification des cris fichés, de peur, et de
douleur sera présenté. Cinq différents groupes de données qui dérivent de deux
représentations parametriques différentes du signal sont présentées a quatre archi-
tectures différentes et comparées. Suite aux résultats obtenus de ces expériences, les
réseaux neuroniques semblent bien classifier ces types de cris et encouragent une
I'expérimentation continuée sur ce systéme de classification. Les grandes lignes

des expansions futures sont discutées avant de conclure.

ii



Acknowledgements

At the conclusion of this long, but exciting process, my first thoughts go out to
my parents. It was they who provided me with the support and understanding
I needed to get through this experience in graduate studies. To them, 1 owe
everything. [ am forever grateful for their help, and for showing me that hard
work and perseverance have their rewards. The financial support of NSERC is also

gratefully acknowledged.

Thanks must also be expressed to my supervisor, Alfred Malowany, for allowing
me to discover the interesting field of Graduate Studies, and for the inspiring
discussions that assisted me to the very end. I would also like to acknowledge the
help and input of Prof. C. Celeste Johnston. I thank her for allowing me to discover
the exciting and challenging domain of infant cry analysis, and for sensitizing me
to the issues and considerations specific to infants and their perception of pain;
our collaboration has been both enriching and exciting. Thanks also goes to Prof.
Bonnie Stevens, a former PhD student of Prof. Johnston's who is now on staff at
the University of Toronto, who along with Prof. Johnston, recorded the cry signals

which were used in this study.

A special thanks goes out to the other members of my PhD committee, namely,
Prof. Howard C. Lee, for his input, and to Prof. Renato De Mori, for his frequent

and insightful comments, and for his guidance.

Thanks also goes out to the system staff of the Center for Intelligent Machines
(CIM) Jan Binder, Steve Robbins, and Mike Parker, who have kept the comput-
ers up and running through thick and thin, and who have been responsible for

maintaining an excellent computing environment.

Another special thanks to all my fellow students who, over the years have

iii



passed through the CIM, and also a very special thanks to the “veterans”, who
have all passed through room 463, especially fellow PhD students Damian Haule,
Majid Noorhosseini, and Kumbesan Sandrasegaran. They deserve praise for their

help, suggestions, and friendship.

Last, but not least, an extra special thanks goes out to my girlfriend Joyce Di Turi

for her patience, support, and understanding,.

iv



Table of Contents

Chapter1 Introduction

Chapter2  Background and Related Work

......................

2.1 Cry Analysis and Classification

.........................

2.2 Fundamental Frequency Extraction

......................

2.3 Neural Network-Based Classification Techniques

---------------

Chapter3 Improved Fundamental Frequency Extraction for Infant Cry
Vocalizations . . .. .. ....... ... ... ... L 0 oL
3.1 Improved Crosscorrelation Vector-Based Fundamental Frequency
Extraction . . . .. ... . e
3.1.1 Overview of the Improved Fundamental Frequency Extraction
Method

---------------------------------------

3.1.2 Crosscorrelation-based Pitch Extraction

----------------

3.1.3  Grouping of the Crosscorrelation Vectors

3.14 Post-Processing Phase

--------------------------

3.15 Distance Processing

---------------------------

3.16 Implementation and Computational Considerations

---------

3.2 Comparison with OtherMethods . . .. ...................
3.21 Linear Predictive Coding (LPC) and the Simplified Inverse Filter
Tracking (SIFT) Algorithms

............................

3.22 Cepstral Pitch Extraction

------------------------

3.23 The Harmonic Sieve

---------------------------

3.24 Pitch Extraction by Spectral Flattening

................

325 Correlogram-Based Pitch Extraction

------------------

3.26 Super-Resolution Pitch Extraction

-------------------



vi

3.3 DataSetand ExperimentalSet-up . .. ... ... ... ... .. 84
34 Results . . .. i e e e e 86
34.1 Recordings Used in the Evaluation. . . . . ... ........... 87
34.2 Implementation of Pitch Extraction Methods . . . .. ... .. ... 93
343 ErrorAnalysisResults. . . . ...................... 96
3.5 Discussion of ExperimentalResults . . . . ... ............... 105
3.5.1 Fundamental FrequencyContours . . . . ... .. .. ... ..... 105
352 ErrorAnalysis .. ...... ... .. ... o e 117
3.6 Other Extensions of the Improved Crosscorrelation Vector-Based
Fundamental FrequencyMethod . . . .. .. .. ... ... ... ....... 124
3.6.1 Improved Utterance Visualization Using the Crosscorrelogram . . . 124
Chapter4  Classification of Infant Cries Using Artificial Neural Networks . . . 128
41 Classification with Artificial Neural Networks: Introduction and
Motivation . . .. . . . . . . e e e 129
4.2 Neural Network Paradigms Tested for the Classification of Infant Cry
Vocalizations . . . . . . . Lo e 136
421 Feedforward Neural Network Architectures . . .. ... .... .. 137
422 RecurrentNeuralNetworks ... ................... 143
423 Time-Delay Neural Networks (TDNNs) . . . ... .......... 145
424 Cascade Correlation Neural Networks . . .............. 148
4.3 DataSetand ExperimentalSet-Up . . .. ................... 151
4.4 ParametricRepresentations . . . ... ... .... .. ... . ... .. ... 152
4.5 Neural Network Simulation Software . . . ... ... .. .......... 158
451 Aspirin/Migraines. . . .. ... ... o oo 158
452 Xerion. . .. . .. .. e e 159
453 The Stuttgart Neural Network Simulator (SNNS) . . ... ... .. 160
46 Results . ... ... ... .. e 161



4.6.1 Experimentation Procedures and Error Measures

.......... 161

4.6.2 Mel-Cepstrum Coefficient Input DataSet . . . . ... ... ... .. 164

4.6.3 Mel-Scale Filter-Band Energy InputDataSet . . .. ... ... ... 174

4.7 Discussion .. ... ... ... 186

4.7.1 Neural Network Architectures . . . . ... .............. 187

4.72 Neural Network Parameter Variations . . . . .. .. ... ... ... 199

4.7.3 Comparison to Other Classification Attempts. . . . . .. ... ... 208

Chapter5 FutureWork. . ... ... ... .. ... . . ... ... 211
5.1 Future Extensions for the Improved Crosscorrelation Vector-Based

Fundamental FrequencyMethod . . . ... .. ... .......... .. ... 21

511 ImprovementsinSpeed .. ... ... ..... ... .. ... ..... 211

5.1.2 Pitch-Synchronous Processing . . . ... ............... 212

5.1.3 Other Fundamental Frequency Extraction Methods . . . . ... .. 214

5.2 Future Work for Neural Network-Based Infant Cry Classification . . . . . 214

5.2.1 Other Neural Network Architectures . . ... ... ......... 215

522 Other Parametric Representations . . .. ... .. .......... 215

523 ExpandingtheStudy ................ ... ... . ... 216

Chapter6 Conclusion . . ... .. ... ... .. ... .. .. . ..., 218

References . . . . ... ... .. . i e 220

vii



List of Figures

3.1 Block Diagram of the Improved Crosscorrelation Vector-Based

Fundamental Frequency Extraction Process . . . . .. .. .. ... ....... 44
3.2 Sample Speech SignalWaveform . . . . ... ... .............. 46
3.3 Adjacent Segments of Voiced Speech Signal . . . . ... ... ... ..... 47

3.4 Flow Chart of the Crosscorrelation Block of the Signal Transformation Phase 50

3.5 Cry Utterance Segment and its Corresponding Crosscorrelation Vector . . 51
3.6 Flow Chart of the Crosscorrelation Block of the Signal Transformation

Phase Augmented with Adaptive Threshold Setting . . . . . . ... ... ... 53
3.7 Plot of the Lag Values with the Largest Crosscorrelation Values . . . . . .. 56
3.8 Flow Chart of the Peak Picking and Distance Computation Stages of the

Post-Processing Phase of the Pitch Period Extractor . .. ... ... ...... 59
3.9 Flow Chart of the Distance Analysis Stage of the Post-Processing Phase of

thePitchExtractor . . . . ... ... ... .. . ... . o 61
3.10 Spectrogram of a Cry Utterance Containing a Dysphonic Episode . . . . . 64
3.11 LPC (solid line) with Original (dashed) Spectra and Residuals for Cries

with an Fy value of about 500 Hzand 1300Hz . ... .............. 72
3.12 Signal Segment and Its Corresponding Real Cepstrum . . . . . . ... ... 75

3.13 Power Spectrum with Goldstein’s Theory of Hearing Masking Thresholds 77

3.14 Signal Section and Clipped Signal Section . . . . ... .. .......... 80
3.15 Cry Utterance Segment and Corresponding Correlogram . . . .. ... .. 83
3.16 Frequency Response of FIR High-Pass Filter .. ... .. .. .. ... ... 86
3.17 Spectrogram of A02004 (An Anger Cry from a Full-Term Infant) . . . . . . 88

3.18 Spectrogram of A07104 (An Anger Cry from a Another Full-Term Infant) . 89
3.19 Spectrogram of BOS6ST (A Pain Cry from a Premature Infant) . . . . . ... 90
3.20 Spectrogram of C12135Q3 (A Pain Cry from Another Premature Infant) . . 91



3.21 Spectrogram of P09102 (A Pain Cry from a Full-Term Infant) . .. ... .. 92

3.22 Pitch Contours for Recording A02004 . . . . ... ... ... .. ...... 97
3.23 Pitch Contours for Recording A07104 . . . . . .. .. .. .. ... ..... 98
3.24 Pitch Contours for Recording BOS6ST . . . . ... ... ........... 99
3.25 Pitch Contours for Recording C12135Q3 . . . . ... ... ... ... ... 100
3.26 Pitch Contours for Recording P09102 . . .. .. ... ... ... ...... 101
3.27 Crosscorrelogram of a Cry Uttered aftera Heel Stick . . . . . .. ... ... 124
3.28 Comparison Between Spectrogram and Correlogram for the Second Cry

Utterance of File C12135Q3 . . . . . . . . . . v i i it e e e e 125
3.29 Pitch Period Extraction Process from a Cry Recording Uttered After a

Heel Stick (FileBOS6ST) . . . . .« . o ot i et e e 126
41 A Left-to-Right Hidden MarkovModel . .. ... .. ... ....... ... 131
42 AnErgodic Hidden MarkovModel . ... .................. 133
43 ASimple Feedforward NeuralNetwork . . . . . ... ......... ... 138
44 A Simple Feedforward Neural Network with Tessellated Connections . . . 142
45 ASimple Recurrent NeuralNetwork . . . .. . ................ 143
4.6 A Time-Delay Neural NetworkNode . ... ................. 146
4.7 A Time-Delay Neural Network Definition . . . . . ... ... ........ 147
48 A Cascade CorrelationNetwork . ... .................... 149
49 Filter Bank for Mel-Cepstrum Coefficient Generation .. .. ..... ... 153
410 Some Filter Bank Responses for Mel-Scale Filters . . . . ... .. ... ... 155
5.1 Extension to Improved Pitch Period Processing Method . . . . ... .. .. 213

ix



List of Tables

3.1 GrossPitch Errors . . . . . o o v i ot e e e e e e e
32 FinePitchErrors . . . . . . o o vt i e e e e e e
3.3 Standard Deviation of FinePitchErrors . . . .. ... ... ........
34 Voiced-to-Unvoiced Errors . . .. . . . o o v i v vt v h vt i e
3.5 Unvoiced-to-Voiced Errors . . .. .. . .. .. v v

36 Total BITOIS . & v v v v e e e ot e e e e e e e e e e e e e e e e e e

4.1 Characteristics of Mel-ScaleFilterBands . . . . . ... ... ... ... ..

4.2 Resulis for Fully Connected Feedforward Neural Network using
Mel-Cepstrum Inputs Scaled to a Maximum Valueof1.0 .. .........

4.3 Results for Fully Connected Feedforward Neural Network using
Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie Between

e e 0 N

44 Results for a Feedforward Neural Network with Tessellated Connections

using Mel-Cepstrum Inputs Scaled to a Maximum valueof 1.0 . . . . . ...

4.5 Results for a Feedforward Neural Network with Tessellated Connections
using Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie

Between 1.0 . . . . . 0 i e e e e e e e e e e e e e e e e e

4.6 Results for a Fully Connected Recurrent Neural Network using

Mel-Cepstrum Inputs Scaled to a Maximum Valueof1.0 ... ... ... ..

4.7 Results for a Fully Connected Recurrent Neural Network using
Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie Between

=

4.8 Results for a Time-Delay Neural Network using Mel-Cepstrum Inputs

Scaled to a Maximum Valueof 1.0 . . .. . ... ... .. . ¢« ...

4.9 Results for a Time-Delay Neural Network using Mel-Cepstrum Inputs

with Mean Removed and Normalized to Lie Between£1.0 . . . .. ... ..

4.10 Results for a Cascade Correlation Neural Network using Mel-Cepstrum

Inputs Scaled to a Maximum Valueof 1.0 . . ... ... . ...........



4.11 Results for a Cascade Correlation Recurrent Neural Network using

Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie Between
+1.0

.......................................... 170
4.12 Hidden Layer Size and Error Rates for Fully Connected Feedforward

Neural Networks using Mel-Cepstrum CoefficientInputs . . . . . . ... ... 171
4.13 Ifidden Layer Size and Error Rates for Feedforward Neural Networks

with Tessellated Connections using Mel-Cepstrum Coefficient Inputs . . . . . 172
4.14 Parameter Variations and Error Rates for Recurrent Neural Network

using Mel-Cepstrum Coefficients Scaled to a Maximum Valueof 1.0 . . . . . . 172
415 Parameter Variations and Error Rates for Recurrent Neural Network

using Mel-Cepstrum Coefficients With Mean Removed and Normalized to

LieBetween 1.0, . . . . . i i it e e e e e e e e e e e e e e 172
4.16 Network Variations and Error Rates for the Time-Delay Neuial Network

using Parameters Derived from the Mel-Cepstrum Coefficients . . . . .. ... 173
4.17 Training Methods and Error Rates for the Cascade Correlation Neural

Network using Mel-Cepstrum Coefficient Derived Inputs . . . . . . ... ... 174
4.18 Results for a Fully Connected Feedforward Neural Network using Mel

Filter-Band Inputs Scaled to a Maximum Valueof1.0 . ............. 175
4.19 Results for a Fully Connected Feedforward Neural Network using the

Log of the Mel Filter-Band Inputs . . . . .. ................... 175
4.20 Results for a Fully Connected Feedforward Neural Network using the

Log of the Mel Filter-Band Inputs with Mean Removed and Normalized to

LieBetween 1.0 . . . . . it o i e e e e e e e e e e e e e e e e e 176
421 Results for Feedforward Neural Network with Tessellated Connections

using Mel Filter-Band Inputs Scaled to a Maximum Valueof 1.0 .. ... ... 176
4.22 Results for a Feedforward Neural Network with Tessellated Connections

using the Log of the Mel Filter-Band Inputs . . . . .. ... ........... 177
4.23 Results for a Fully Connected Feedforward Neural Network using the

Log of the Mel Filter-Band Inputs with Mean Removed and Normalized to

LieBetween £1.0. . . . . v v v vt e e e e e e e e e e e e 177
4.24 Results for a Recurrent Neural Network using Mel Filter-Band Inputs

Scaled to a Maximum Valueof 1.0 . . . . . . . . . . v i i . 178
4.25 Results for a Recurrent Neural Network using the Log of the Mel

Filter-BandInputs . . .. .. ...... ... . ... .. i, 178

xi



4.26 Results for a Recurrent Neural Network using the Log of the Mel
Filter-Band Inputs with Mean Removed and Normalized to Lie Between £1.0 179

4.27 Results for a Time-Delay Neural Network using Mel Filter-Band Inputs
Scaled to a Maximum Valueof1.0 . ... .. .. ................. 179

4.28 Results for a Time-Delay Neural Network using the Log of the Mel
Fiter-BandInputs . . . ... ... .. . L o 180

4.29 Results for a Time-Delay Neural Network using the Log of the Mel
Filter-Band Inputs with Mean Removed and Normalized to Lie Between +1.0 180

4.30 Results for a Cascade Correlation Neural Network using Mel Filter-Band
Inputs Scaled to a Maximum Valueof 1.0 . . . .. ................ 181

4.31 Results for a Cascade Correlation Neural Network using the Log of the
MelFilter-BandInputs. . . . . . . .. .. o i e 181

4.32 Results for a Cascade Correlation Neural Network using the Log of the
Mel Filter-Band Inputs with Mean Removed and Normalized to Lie Between
H10 L e 181

4.33 Hidden Layer Size and Error Rates for Fully Connected Feedforward
Neural Networks using Mel-Scale Filter-Band Inputs . . . ... ... .. ... 182

4.34 Hidden Layer Size and Error Rates for Feedforward Neural Networks
with Tessellated Connections using Mel-Scale Filter-Band Inputs . . . . . . . . 183

4,35 Parameter Variations and Error Rates for Recurrent Neural Network
using Mel-Scale Filter Band Energy Values Scaled to a Maximum Value of 1.0 . 184

436 Parameter Variations and Error Rates for Recurrent Neural Network
using the Logarithm of the Mel-Scale Filter-Band Energies . .......... 184

4.37 Parameter Variations and Error Rates for Recurrent Neural Network
using the Logarithm of the Mel-Scale Filter-Band Energies With Mean
Removed and NormalizedtoLieBetween £1.0. . .. ... ... ... .. ... 184

4.38 Network Variations and Error Rates for the Time-Delay Neural Network
using Parameters Derived From the Mel-Scale Filter-Band Energy Values . . . 185

4.39 Training Method and Error Rates for the Cascade Correlation Neural
Network using Mel-Cepstrum Coefficient Derived Parameters . . . . . . . . . 186

440 Result Summary for Neural Networks using Mel-Cepstrum Coefficient
Inputs . . . .. e e e e e 188

441 Result Summary for Neural Networks using Mel-Cepstrum Coefficient
Inputs . . . .. e 191



Chapter 1 Introduction

As is the case for the newborn offspring of other mammals in the animal kingdom,
the human infant is very helpless and defenseless, relying on its parents to tend to
its needs. For the human infant, these needs typically consist of feedings, diaper
changes, affection, and, in some cases, prompt medical attention due to a possibly
unknown problem. Unlike older infants, neonates do not possess the command
of language, and thus must rely on other methods to signal their needs to their
care-giving environment. The most common and most primal of these signalling

methods are cry vocalizations.

These vocalizations are a very effective means of eliciting a response
from care-givers, who often judge their effectiveness in tending to the in-
fant’s needs by gauging how soon the crying stops after care is administered
[Donovan and Leavitt, 1985b]. Due to the complex neurological and physiological
processes involved in cry production, it is thought that a more subtle form of in-
formation may be contained in these vocalizations in addition to simply serving to

attract attention [Lester, 1984, Porter et al., 1986].

In the vast majority of cases, parents of infants learn over time to distin-
guish between the different types of cries of their infant. From the cry, they
can determine whether the infant is hungry, hurt, or just wants to be held
[Golub and Corwin, 1985]. This knowledge is also applicable across infants as well
since it has been observed thatafter parents have “learned” to identify the meanings
behind the various types of cries from their infant, they do better at distinguishing
between the cries of other infants than do other adults [Lester and Boukydis, 1985].
This observation thus leads to the belief that there are similar or common features

present in cries uttered by infants who are in the same state, be the state hunger,
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pain, or fussy, for example.

It is not only parents that learn to distinguish between different types of cries,
however. Studies have shown, that in a clinical setting, the cries of healthy, or so-
called “normal” infants, can be differentiated from those which have genetic disor-
ders, such as Down’s Syndrome or 15-15 trisomy, for example, or from those which
have had traumatic birth histories [Zeskind and Lester, 1978, Lind et al., 1970] Typ-
ically, the latter cries are said to be “harsher” sounding than the former. Conse-
quently, from these auditory discriminations, a crude, simple, yet accurate determi-
nation of pathological diagnosis can be made of an infant's state or condition, based
on the characteristics of the cry utterance. If a precise diaguiosis cannot be made
from a cry utterance, one might at least say that something is wrong, prompting a

further and more detailed medical examination of the infant.

The idea of listening in order to assist in the determination of pathology, also
known as diagnostic listening, is not a new one, however, and dates back to about 400
B. C. when it was originally proposed by Hippocrates [Golub and Corwin, 1985].
Over 2000 years passed before this idea re-surfaced in the domain of infant crying.
In the latter part of the 19th century, Charles Darwin, the father of the theory of
Natural Selection, treated the subject through a series of drawings and descriptions

of different types of infant cries uttered in different situations [Darwin, 1872].

More recently, however, a number of research groups have attempted to deter-
mine the discriminating features in the cry in the hope that these differences could
be quantified for the eventual development of an automated classification system
[Wasz-Hockert et al., 1985, Johnston and O’Shaughnessy, 1988, Benini e al., 1993].
This work arose from earlier work done on the analysis of infant cry signals. Al-
though some success has been achieved in visually or auditorily discriminating
between different cry types, this information has yet to be used in an automated

system.

The work done to date on the analysis of infant cries which has been docu-
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mented in the literature, has used methods borrowed from the domain of speech
processing, since the cry can be considered to be a form of speech, and since
the mechanisms which produce a cry are similar to those which produce speech
[Petroni et al., 1994a]. Although these methods borrowed from the speech process-
ing domain have opened the door for work to be undertaken in this domain, they
are not always useful on all types of cry vocalizations due to the peculiar character-
istics of certain vocalizations. Consequently, no one method yet exists which can

correctly and consistently deal the full spectrum of infant cries.

This is especially true when dealing with the analysis and treatment of the vocal
fundamental frequency (fp). This parameter, also referred to as the pitch, repre-
sents the rate at which the vocal folds, located in the larynx, vibrate during voiced
portions of the signal. A number of studies have determined that vocal fundamen-
tal frequency, and its progression over time and over the length of an utterance are
important indicators of both infant state and neurological organization not only in
infants, but in adults as well [Anand et al., 1989, Colton and Steinschneider, 1980,
Fuller, 1991, Hollien, 1980]. Despite the importance of I%, none of the methods
borrowed from the speech domain, adequately deal with the wide range of infant
vocal fundamental frequency values, which can go from values as low as 150 Hz to
values of over 2500 Hz. It should be noted that adult speech has /7 values which
typically fall below 600 Hz.

Ideally, a method specifically, tailored for correctly dealing with this range of
Fy values would have to be used for the purposes of correct extraction. This
Fy extraction method should be able to track the progression of the fundamental
frequency in cry utterances which undergo rapid changes and during events such
as double-harmonic break episodes. These events are common in certain types of
cries, such as pain cries, and it is important that these events be properly handled.
As well, a method which would be capable of producing a value of %, for every
pitch period in the signal would be desirable, so that the prosodic progression of

Fy could be accurately tracked. This would enable the subsequent identification
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and quantification of the specific f characteristics of different types of cries. Other
potential benefits of this method would be to perform pitch-synchronous extraction
of ather parameters, such as the formant values, for example, in addition to the

aforementioned F4 analysis [O’Shaughnessy, 1987, Medan and Yair, 1989).

Although the identification and extraction of parameters from cry vocalizations
is important, it would also be desirable, to determine a set of features which could
be used to accurately classify or discriminate between different infant states or
pathological conditions. The cry is a readily available and non-invasive parameter,
the latter making it particularly appealing for use in a clinical setting, as was
previously mentioned, especially if certain clinical situations are considered. For
example, such a classification system would be useful for care givers who are
responsible for a number of infants at any one given time. When tending to one
infant, they would be able to identify whether another infant who starts to cry is
doing so because it requires immediate attention resulting from a problem, or is
crying simply to relieve some stress. An automated classification system could then
be useful to assist a care giver in determining if the needs of the infant who s crying
are greater or require more prompt attention than those of the current infant being
tended to before leaving the current infant in order to tend to the crying infant. Also,
there have been documented cases where all pathological signs in a certain infant
are normal, but an abnormal sounding cry is present [Zeskind and Lester, 1978].
In these cases, an automatic cry classification system could alert physicians and
indicate that an infant requires a more detailed observation of his or her condition,

and that something may be wrong,.

Prompt medical attention is especially important in the development of a new-
born infant [Keating, 1980]. Also, prompt identification of infants who are said to
be at risk, due to a traumatic birth or a low birth weight, for example, can lead
to a faster and more successful medical treatment which will enable the infants to

proceed along a normal path of development in the shortest delay possible.



1. Introduction

This dissertation attempts to address the issues of processing and classification
in the hope that the methods and the results presented here will bring the state
of the art in the cry domain one step closer to achieving the goals of accurate
fundamental frequency extraction and correct classification of infant state from the

cry signal.

This chapter has given a brief introduction to the cry analysis and classification

problem statement and has mentioned the importance and the potential applica-

tions of this work.

Chapter 2 presents background information on cry analysis from its early ori-
gins to the presentation and discussion of more recent developments. Methods
borrowed from the speech domain which have been used to date on cries and
documented in the literature are outlined. The motivations for looking at specific
parameters in the cry signal are also presented. In particular, the extraction of vocal
fundamental frequency from both speech and cries will be discussed. The chapter

concludes with a presentation on automatic classification methods used in speech

and on cries.

Chapter 3 addresses the extraction of one parameter of particular interest from
the cry signal, namely, the extraction of vocal fundamental frequency. This chapter
begins with a detailed presentation of a new and accurate /y extraction method
especially suited for infant cry signals. The results of this method are then compared
to those obtained from other Fy extraction routines adopted from the speech domain
and tested on cry utterances. Computational considerations, potential benefits, and

spin-offs of the new method are discussed as well.

Chapter 4 focuses on experiments performed on the automatic determination of
infant state using a number of different artificial neural networks (ANNSs) architec-
tures and learning methods. The merits, strengths, and weaknesses of the different

methods, and of different input feature sets are discussed.
Chapter 5 focuses on future work which can be undertaken as a result of the
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work presented in this dissertation, in both the analysis and classification domains.

Concluding remarks, including a concise presentation of the contributions of

this dissertation are presented in chapter 6.



Chapter2 Background and Related Work

This chapter presents the background and related work of topics which are directly
related to this dissertation. First, the topic of cry analysis will be presented, from
its early treatments to the more recent analysis of this signal and its features. In
this section, the motivations for looking at the cry and the information which has
been extracted to date from this signal, will be outlined. As well, some recent
attempts at augmenting the cry with other parameters for the purposes of accurate
classification of infant state will be presented. Following this, the evolution of
the analysis methods of a particular parameter in the cry signal, namely the vocal
fundamental frequency, will be addressed. The methods of choice for the analysis
of this parameter in the speech domain will be presented. The last section of
this chapter addresses the issue of neural network-based classification, outlining
the methods developed by other research groups to deal with the classification of

time-varying signals such as speech.

2.1 Cry Analysis and Classification

As was mentioned in chapter 1, the idea behind the examination of the infant cry
for the purposes of determining the state of an infant is not new. The development
and proliferation of less expensive computers with stronger computational engines,
coupled with more sophisticated signal processing, classification, and visualization
techniques will most likely provide the impetus for future research in the analysis
and classification of infant cries. However, much about the cry has been learned
from research performed over the past 30 to 40 years, and the advances in the

analysis and understanding of the cry expression has paralleled the development
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of techniques which have assisted in its recording and analysis.

Significant research activity in this domain began at the turn of the century
with the advent of devices which allowed the permanent recording of sounds.
At that time, two German investigators noted that certain infants in their test
group had notably higher pitch values in their utterances than did other infants
[Flatau and Gutzmann, 1906). Later, as tape recorders appeared in the 1920s, re
search in this domain began to spread. The analysis and classification techniques
used during this initial period of work undertaken in this domain, consisted ex-
clusively of auditory methods. One particular researcher attempted to determine
the meanings behind cries using auditory techniques to identify relevant sounds
in certain utterances [Sherman, 1927]. Other researchers also began to focus on the
identification of particular features in the cry which would allow certain types of
cries to be differentiated from each other. Fairbanks, in 1942, published an article
detailing his studies of the fundamental frequency, or pitch, of hunger vocalizations
[Fairbanks, 1942]. Even in these initial studies into the analysis of infant cries, the

fundamental frequency emerged as an important parameter for discrimination.

The development of sound spectrograms in the late 1940s prompted increased
interest into this domain and a number of research groups used this tool to
further advance the understanding of cries. Spectrograms gave researchers the
opportunity to visually identify features of certain types of cries. In 1968, a
Scandinavian group published a book detailing their research efforts in attempt-
ing to identify relevant features in the cries of both healthy and sick infants
[Wasz-Hockert et al., 1968]. When these first studies attempted to identify cer-
tain features in cry utterance using the spectrogram, they discovered that there
was no nomenclature available for certain types of cries. Consequently, much of

the definitions and description of many cry characteristics were developed in the
1960s.

This monograph by Wasz-Héckert, Lind, Vuorenkoski, and Partanen provided a
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comprehensive presentation of the spectrograms and harmonic patterns in the cries
of infants with genetic or pathological disorders, as well as for hungry infants or
infants in pain. Prior to the publication of this book, however, Truby and Lind had
identified three types of pain cries and classified them according to the fundamental
frequency values [Truby and Lind, 1965]. The first type was referred to as the basic
cry, and contained £, values between 200 Hz and 600 Hz. The second type was
the turbulent, or disphonation, utterance which was caused by an overloading of
the vocal tract, resulting in aperiodic vibrations of the vocal folds. The third type
of pain cry was hyperphonation, and contained /g values between 1000 Hz and

2000 Hz, which was thought to correspond to extreme distress.

In this early period of cry research, there was no real focus of groups in general
to tackle a particular cry type. Researchers would publish observations which
would serve in the future as a stepping stone to improving the observations
made previously, or proposing the correlation between certain physiological ef-
fects and certain attributes in the cry. In addition to the aforementioned researchers,
Parmelee [Parmelee, 1962] noticed that there were certain differences between the
cries of healthy infants, and those which suffered from neurological disorders.
Also, Bosma, Truby, and Lind stated that neurological maturity is revealed by the
stability of laryngeal coordination and vocal tract mobility, since the production of
the vocalizations involves varying control of vocal articulators [Bosma et al., 1965].
This tie between neurology and attributes would prove to be important in future
studies of neurological stability and central nervous system insult, for example,
and cry attributes [Anderson-Huntington and Rosenblith, 1976]. The latter study
also showed that these abnormal cries could be used as indicators of future devel-

opmental problems.

In 1959, Davis published an article noting that the human auditory system is
particularly sensitive to frequency values about 800 Hz, which in turn implies that
humans are particularly sensitive to cries with high fundamental frequency values

[Davis, 1959]. By the late 1960s, a number of studies quoted that fundamental
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frequency and duration were important parameters for the discrimination of cry
types. Insofar as adult responses to cries were concerned, Korner and Goldstein
noticed that the cry would elicit attention and a visual scanning of the infant for

further indications as to why the infant was crying [Korner and Grobstein, 1966].

Aside from an eliciting attention from adults, it was noticed that certain types
of cries had specific harmonic patterns associated with them, and that these cries
could also be differentiated auditorily [Partanen et al., 1967). The recordings of
this particular study included cries of infants with asphyxia, brain damage, hy-
perbilirubinemia, and Down'’s syndrome. The studies published in and around
that time could not provide quantifiable measures of pain, pathology, or genetic
problems from spectrograms, due to the lack of available methods for extracting
measures from cry signals. Consequently, only non-parametric statistical analysis

was performed at this time.

One of the results of this study was the development of a device called
the “Cry Analyzer” which would screen cries obtained from a neonatal ward
[Vuorenkoski et al., 1970]. On the cry utterances that would differ from the normal
types of cries, further spectrographic analysis would be performed. This device
recorded the fundamental frequency of the cry as well as the heart and respiration
rates of the infant. An objective evaluation of the Cry Analyzer indicated that its
use in practice would be limited and subsequent studies using this device were dis-
continued. However, this method was a first attempt at automating the acquisition

of “interesting” cry recordings for further analysis.

Along with the identification of fundamental frequency related patterns in cer-
tain types of cries, Ostwald, Phibbs, and Fox showed that elements in the cry such
as fundamental frequency and utterance duration could also be useful in predict-
ing the occurrence of future health problems, or to provide an “early-warning”
for certain disease types [Ostwald et al., 1968]. Of these two features, fundamental

frequency was found to have the most reliable diagnostic value.

10
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In the 1970s, cry analysis branched out into the particular study of the cries of
infants with other conditions, and to the study of factors which influence the cry as
well. Lieberman, Harris, Wolff and Russel [Lieberman et al., 1971] compared the
characteristics and communicative significance in the cries of human infants with

those of non-human primates.

Katarina Michelsson continued research in the identification and analysis of the
relevant characteristics of certain types of cries. In one particular study, Michels-
son, Sirvio, Koivisto, and Wasz-Hockert investigated the ¢ry and fundamental fre-
quency characteristics of pain cries of neonates both with and without feeding tubes
[Michelsson et al., 1974]. A couple of years later, Michelsson and Sirvio examined
the cries of infants with congenital hypothyroidism [Michelsson and Sirvio, 1976]
and determined that the fundamental frequency characteristics of these cries dif-
fered from those of healthy infants. The following year, Michelsson, Sirvio, and
Wasz-Héckert published other articles outlining the difference between the fun-
damental frequency and duration of pain cries of healthy and asphyxiated infants
[Michelsson et al., 1977a], and in cries of healthy infants and of those with bacterial

meningitis [Michelsson et al., 1977b].

Moreover, Michelsson, along with Juntunen, and Sirvio, performed sound spec-
trographic investigations of infants with severe malnutrition [Juntunen et al., 1978].
They found that the maximum and minimum fundamental frequency values of the
cries of malnourished infants were higher than those of healthy infants. Lester had
published the results from a similar study two years earlier [Lester, 1976]. Both
studies concluded that the spectrogram could indeed be a useful tool in assisting

the determination of the level to which the brain is affected by malnutrition.

The spectrographic and auditory studies of cries uttered by infants with different
conditions by Katarina Michelsson continued in association with other researchers.
Thodén and Michelsson illustrated the difference in fundamental frequency val-

ues between healthy infants and those with Krabbe's disease spectrographically

11
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[Thodén and Michelsson, 1979]. The compilation of the spectrographic cry analy-
sis studies, in which Michelsson participated in, were presented in 1980 when a
book on the significance of infant communication using cry and early speech was
published {Murry and Murry, 1980]. This book also presented the current state of
cry analysis research in addition to the results of the aforementioned spectrographic
studies. In one particular chapter of this book, Michelsson illustrated the spectro-
graphic differences in the fundamental frequency values and harmonic patterns of
cries uttered by infants with physiological or genetic problems [Michelsson, 1980].
In another article, the significance and potential benefits of cry analysis for de-
termining the probability of an infant at risk or of asymptomatic infants with

neurological problems [Michelsson and Wasz-Hockert, 1980).

In this same book, two other members of this Scandinavian research group pub-
lished an article detailing the acoustic attributes of pain cries in normal infants as
seen in a spectrogram [Thodén and Koivisto, 1980]. Here, Thodén and Koivisto de-
tailed how certain features, fundamental frequency values, and harmonic structure

were present in pain cries, but not in non-pain cries.

Following the publication of these articles, research into identifying differences
between healthy infants and those with other pathological or genetic conditions
continued for this particular researcher. Michelsson, Tuppuranien, and Aula
[Michelsson et al., 1980] noticed that infants with an abnormality of chromosome 4
or 5 had cries with significantly higher fundamental frequency values than those
of healthy infants. As well, infants with “Cri-du-Chat” syndrome had flat and
monotone melody types, and that infants with 13- or 18-trisomy had hoarse and
low-pitched cries. The infants with chromosomal abnormalities also had different
pain cries than other infants who suffered from central nervous system disorders.
These researchers concluded that the cry can be a useful indicator of chromosomal

abnormalities.

Raes, Michelsson, and Dehaen later published an article where a number of

12
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spectrographic characteristics were compared between the pain cries of healthy
infants and infants with infectious or congenital disorders of the larynx, once again
noting that certain spectrographic features occur more often in cries of infants
with central nervous system disorders. The results of a similar study conducted
on infants with congenital hydrocephalus, cerebral malformations, and healthy
infants was published two years later [Michelsson et al., 1984]. This study also
noticed that certain spectrographic features and melody types were common to

certain types of cries.

The mid-1980s saw the publication of yet another collection of cry anal-
ysis articles dealing in a wide variety of topics of interest to this domain
[Lester and Boukydis, 1985]. Here, Wasz-Héckert, Michelsson, and Lind described
the research undertaken by Scandinavian researchers over the past 25 years
[Wasz-Hockert et al., 1985], and, as well, new work was presented by Thodén,
Jarvenpdd, and Michelsson on the spectrographic analysis of pain cries in prema-
ture infants [Thodén et al., 1985]. This article noted that the more premature the

infant, the higher pitchea the cry.

Recently, the focus of the research of this group has focused on the crying pat-
terns of infants and adult perceptions of cries. Ina recent article, Michelsson, Rinne,
and Paajanen noted that the length of crying bouts decreases as an infant gets older,

and adult’s perceptions of cries also changes over time [Michelsson et al., 1990].

For all the articles published by this group of Scandinavian researchers, the cry
features quoted result from a visual analysis of spectrograms and lack precise quan-
tification of particular events in these signals. Nevertheless, this group has perhaps
contributed the most in identifying certain acoustic events and fundamental fre-
quency melodies and the occurrence and frequency of these events in different cries
over the past 35 years. However, theirs was not the only work undertaken during
this time period. A number of research groups analyzed the cry or noticed that

there were differences between different cry types.
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In 1973 Stark and Nathanson [Stark and Nathanson, 1973] compiled an article
detailing the cry attributes and facial gestures present in cries uttered by infants
for no apparent reason; that is, cries which were not a result of pathology or fol-
lowing the application of a specific stimulus. Two years later, these researchers
published a spectrographic and fundamental frequency analysis of the cries of
infants who later died of sudden infant death syndrome (SIDS) noting that there
were differences between the spectrograms of normal infants and those with SIDS
[Stark and Nathanson, 1975]. These acoustic differences later proved to be contra-
dictory [Colton and Steinschneider, 1980] and inconclusive [Colton et al., 1985).

In a study where the effects of toxic factors on an infant were examined, Os-
trea Jr., Chavez, and Strauss, noticed that certain central nervous system manifes-
tations, one of which was a high pitched cry, were present in infants whose moth-
ers used heroin during the last trimester of the pregnancy [Ostrea Jr. et al., 1975].
This observation was also made by Finnegan [Finnegan, 1985]. Lester and Dreher
[Lester et al., 1989], noticed that there were durational and other spectral differences
between the cries of healthy infants, and those whose mothers used marijuana dur-
ing pregnancy. Another study noticed that there were differences between the
duration of cries, the number of cry utterances, and the number of hyperphonated
cries between healthy control infants and those whose mothers took cocaine dur-
ing pregnancy [Corwin et al., 1992]. The more recent studies state that the effects
of narcotics have an effect on the neurclogical development of the infant and that

this is in turn manifested in the characteristics of the cry.

The cry has also been used as an indicator of infant development. Tenold, Crow-
ell, Jones, Daniel, McPherson, and Popper, used cepstral and stationary analysis to
determine that there was greater variability in the fundamental frequency and in
the spectra of premature infants than those of full-term infants [Tenold et al., 1974].
This study hypothesized that the greater variability observed in the cries of pre-
mature infants related to the underlying neurophysiological maturity. Prescott

[Prescott, 1975], illustrated that there were differences in the melody of infant cries
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in the first two months following birth. The melody of infants during this time
showed more variability than it did shortly after birth,

Also, in 1978, Zeskind and Lester published a comprehensive article on infant
crying [Zeskind and Lester, 1978]. In this article they stated that hugh fundamental
frequency values were indicators of stressed infants, adding that harmonic and
temporal features may also be present in these types of cries. As well, they remarked
that neurodevelopmental impairment has also been shown to contribute to acoustic
and temporal features in cries. Moreover, infants with serious complications, due
to fetal malnutrition, for example, have certain cry-related features, one of which
was a high Fp value. Zeskind and Lester went on to state that certain cry patterns

may reflect the risk states of the infant.

Other studies also presented the correlation between development and cry
features, as well as commenting on the neurological implications of these find-
ings. Hollien presented some developmental aspects of neonatal vocalizations
[Hollien, 1980] and Illingsworth discussed the developmental factors which affect

infant vocalizations in the first year of life [Illingsworth, 1980].

In 1984, Lester [Lester, 1984] stated that the characteristics of cries are a direct
measure of the integrity of the central nervous system. In the same article, he
also proposed his biosocial model of infant crying, which is a neural model of
the cry production process. Citing previous studies, Lester presented the idea
that neurclogical maturity is revealed by the coordination and stability of vo-
cal tract articulators. In this article, the most important neural contribution to
the production of the cry is the effect of the vagus nerve, which also related
to cardiovascular activity and also serves a sensory role for abdominal fullness
[(Kennedy III and Kuehn, 1989, Lemme et al., 1989]. Lester also states that there are
a number of biological factors which affect the cry, and adds that there are social
aspects to cry utterances as well; most notably, that the cry serves to attract atten-

tion and to prompt a visual scan of the infant by adults to determine why the infant
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is crying.

In this article, Lester proposes a binocular view of the cry. First the featuresin the
cry reflect aspects of the neurophysiological function of the infant that are important
for later developmental outcome, which also make it useful as a diagnostic tool,
and secondly, the cry functions to signal to care givers that the infant is in jeopardy,
resulting in a response from the care givers. Lester notes that humans rely on
prosodic features to communicate with each other, especially in the first utterances.
These aspects overall motivate the more careful examination of vocal fundamental

frequency in cry utterances.

Zeskind gives a complete treatment on the developmental aspects of thecry ina
later article [Zeskind, 1985]. Another article published in 1989 added to this infor-
mation stating that the fundamental frequency characteristics change over a two
year span, starting from birth [Robb ef al., 1989]. Recently, an article by Johnston,
Stevens, Craig, and Grunau treated the developmental changes in the pain expres-
sions of premature, full term, two-, and four-month infants [Johnston et al., 1993).
In their study, the cry parameter was augmented by the use of facial expressions
in order to determine the behavioural responses to pain stimuli of these various
infants. This article noted that higher pitched cries were one of the significant
attributes the pain expressions of premature infants in comparison with those of

other infants.

In addition to the studies performed by the Scandinavian research group
mentioned earlier, a number of other studies also observed that there were
correlations between certain genetic disorders and certain cry characteristics
[Stallard and Juberg, 1981, Beemer et al., 1984]; the most common attribute being
a very high-pitched, or cat-like cry. Other, more recent studies have also noticed
that the presence of abnormal or high-pitched cries are accurate indicators of chro-

mosomal abnormality [Murayama et al., 1991, Chernos et al., 1992].

The 1980s also marked a rise in the number of groups studying the ef-
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fects of infant cries on human listeners. Gladding [Gladding, 1978] reported
on the effects of listener empathy, gender, and training on the identification
of infant cries. Donovan [Donovan, 1981] studied the maternal response of
mothers of young infants to varying degrees of control over the termination
of infant crying, contributing additional insight into this topic four years later
[Donovan and Leavitt, 1985b, Donovan and Leavitt, 1985a], and again in 1989 and
1990 [Donovan and Leavitt, 1989, Donovan et al., 1990]. Other researchers noted
that some adults may respond negatively to the prolonged exposure to cry utter-
ances, and that there may not be correlations between perceived urgency on the

part of the listener and the actual state of the infant [Boukydis, 1985, Frodi, 1985,
Murray, 1985].

Other research groups have published their findings related to the presence
of abnormal cries with the occurrence of pathological conditions. One research
group in England noticed that the presence of a weak cry, accompanied by gen-
eral weakness and poor feeding, following constipation in a 24-week-old girl,
characterized the incidence of botulism [Turner et al., 1978]. These abnormal cry
characteristics were also confirmed by another research group 12 years later
[Jagoda and Renner, 1990].

In 1982, Golub and Corwin treated the topic of the use of the infant cry for
diagnostic purposes [Golub and Corwin, 1982]. In this article they tested the pos-
tulation that the infant cry is a reflection of complex neurophysiological functions
by using a model of cry production which related the acoustic properties of the
signal, to anatomical and physiological characteristics of the infant producing the
cry. This initial pilot study was expanded to include more cries for further exami-
nation if the cry production model could indeed predict cry utterance parameters
occurring as a result of a physiological condition [Golub and Corwin, 1985]. As the
desired goal of their long-term study, where different acoustic parameters extracted
from the cries are to be examined, the authors hope that the screening of infants

using cry analysis for the classification of pathology will become as common in
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hospitals as blood tests are.

One major focus of recent efforts from researchers, is the problem in the deter-
mination and classification of infant pain, since strong evidence now exists that
neonates possess the necessary anatomical functional components for the percep-
tion of pain [Anand and Hickey, 1987]. Despite the initial studies which attempted
to differentiate between pain and other cries in the late 1960s by the aforementioned
group of Scandinavian researchers, the past 10 years has seen a surge in the number
of publications which attempt to find the discriminating characteristics of infant

pain.

In 1986, two studies were published on the observable effects that pain had on
infants. Porter, Miller, and Marshall [Porter et al., 1986] published a study reporting
on the cry features observed during various stages of a circumcision procedure.
The analysis of these cry recordings from newborn males used spectrograms, and
features from these recordings were derived from these spectrograms, such as
duration of vocalizations, pitch patterns, and the number of identifiable harmonics,
to name just a few of the features examined. It was determined from this study, that
the most invasive procedures generated significantly longer crying episodes, higher
peak fundamental frequency values, fewer harmonics, and greater /7y variability. It
should be noted that no anesthetic was used in any of these procedures. These cries
were also presented to adult listeners for a subjective judgment of the perceived
urgency of the cries. Porter, Miller, and Marshall noticed that the cries from the
most invasive procedures were judged as being the most urgent. As well, adult
listeners all seemed to judge the cries along the lines of harmonic, temporal, and

pitch characteristics.

In that same year, Johnston and Strada published an article detailing a descrip-
tion of acute pain response in infants undergoing a routine immunization procedure
[Johnston and Strada, 1986). This study not only examined cry features, as Porter,

Miller, and Marshall did, but also looked at other measures such as heart rate, body

18



2. Background and Related Work

movements, and facial expressions. The analysis of the cry recordings in this study
was performed using spectrograms. The authors remarked that there was wide
variability across spectrographs but that facial expressions remained consistent
across infants. Johnston and Strada go on to identify a particular pattern which
emerged as a result of an initial response to pain in the heart rate, cry features,

body movements, and facial expressions of the infants investigated in the study.

In the following year, Grunau and Craig investigated pain expressions as a result
of a heel-lance for blood sampling purposes using measures of facial expressions
and cries [Grunau and Craig, 1987]. This study was conducted on infants who
were asleep and on infants who were awake at the time of the procedure, in order
to gauge if the expression of pain would differ depending on the functional state
of the infant. It was discovered that facial expressions differed if the infant was
asleep or awake at the time of the heel-lance, but that the fundamental frequency
of the cry was not related to this state. Once again, this study used spectrographic

techniques to analyze the cries.

Fuller and Horii published an article which attempted to determine an indicator
of distress in infant cries in 1988 [Fuller and Horii, 1988]. In this study, the authors
cite the promise of using features extracted from four types of cry signals, namely
pain, fussy, hungry, and cooing, which were guided from the “stress-arousal frame-
work” which states that levels of stress and arousal in infants will be reflected in the
cry characteristics. Some F related features, such as fundamental frequency jitter
and amplitude shimmer, showed no variability across cry types, whereas other
measures, which were generated to model the “tenseness” of the vocal tract, such
as the mean spectral energy of the cries, proved to be a useful tool in differentiat-

ing cries. These parameters were extracted from a window-based analysis of the

utterances.

Also in 1988, Johnston anc, O'shaughnessy published an article where they

extracted the position and energy values of the second formant in order to de-
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termine if these values, which reflect the excitation and tenseness in vocal tract,
could beidentified as different physiological responses to different emotional states
[Johnston and O'Shaughnessy, 1988]. In this study, pain, fear, and anger cries were
examined, with pitch extraction performed using a modified version of the simpli-
fied inverse filter trackirig (SIFT) method [Markel, 1972b), and narrowband spec-
trograms were employed to examine parameters such as duration, harmonic struc-
ture, and melody. Formant structure was analyzed using wideband spectrograms
[O’Shaughnessy, 1987]. The authors found that there was greater intensity and
higher second formant frequency values in pain cries, a result which was found to
be consistent with the stress-arousal model of cry production mentioned by Fuller

and Horii.

In the following year, Johnston published a review article on infant pain assess-
ment and management techniques [Johnston, 1989]. In this article, the relevant
physiological measures of pain observed in infants were cited as being cardiovas-
cular and hormonal changes, whereas the relevant behavioural responses to pain
were cited as being both facial expressions and cry characteristics. Pharmaco-
logical and nonpharmacological methods of controlling pain in infants were also
discussed, with the aforementioned measures being used to determine the relative

effectiveness of these pain management techniques.

In that same year, Anand, Phil, and Carr, published a comprehensive article
on the neurological, anatomical, and chemical processes and responses evoked by
pain, stress, and analgesia in infants [Anand et al, 1989]. The changes in these
processes and responses as an infant developed were also presented, with a de-
scription of the cry as being an important manifestation of the underlying state of

the infant.

In 1990, Grunau, Johnston, and Craig focused on the relevance of facial expres-
sions and fundamental frequency and other cry characteristics for the tracking the

response of infants to invasive and non-invasive procedures [Grunau et al., 1990].
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The cry related features were all extracted using spectrographic analysis.

Although a number of researchers used the cry as one of the parameters investi-
gated as an indicator of pain, few used techniques other than spectrographic ones.
Fuller [Fuller, 1991] used measures extracted using a somewhat more elaborate ex-
traction of parameters from the cry signal, using discriminant function analysis to
determine the relevance of certain extracted features for the classification of pain,
fussy, and hunger cries. The method of choice for coding cry characteristics for the
assessment of infant pain still seems to be the spectrogram even if a number of other
parameters have emerged in the consideration of relevant parameters measured

from infants, such as facial expressions [Maikler, 1991, Benini et al., 1993).

In recent years, however, a number of other parameters are being extragted
from cry utterances in order to assist pain determination in a multidimen-
sional parametric representation of features. These parameters include energy
values for premature infant pain [Stevens et al., 1994], and formant frequencies

[Hadjistavropoulos et al., 1994].

Recent efforts have also focused on the automatic classification of infant state
based on the characteristics of the cry. Published efforts at automating this dis-
crimination basically begin with Lundh [Lundh, 1986]. In this article, the author
presents the development of a baby alarm which determines the tenseness of the
cry, based on energy characteristics of the signal, to characterize happy, crying, and
distressed. This device was tested by 10 deaf families who compared the picture
illuminated by the device which was meant to convey the state determined by the

device, with the actual state of the infant. Although useful, this device generated

a number of false alarms.

Seven years later after the development of this baby alarm were documented,
Xie, Ward, and Laszlo published a brief article outlining their attempts at classifying
an infant’s level-of-distress from cry signals using hidden Markov models (HMMs)

[Xie et al., 1993]. This measure was determined from several adult perceptions
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regarding the aversiveness, or perceived urgency, of several cries. Although the
article does not reveal specific implementation details, a correct classification rate of

over 80% was quoted for the level-of-distress classification measure for the HMM.

Despite the number of parameters extracted from cry signals and investigated
for the classification of different cry types, the most commonly used, and seemingly
most relevant from an auditory point of view, are the vocal fundamental frequency
and related parameters such as harmonic structure, and melody. These parameters
are commonly used to illustrate differences in the cries of healthy and ill infants
[Donzelli et al., 1994].

Perhaps the true relevance of the fundamental frequency has been overshad-
owed by the lack of computerized extraction methods which can adequately deal
with cry utterance vocalizations [Petroni et al., 1994a, Petroni et al., 1994b). This
would explain why the majority of researchers still use the spectrogram to de-
termine both the fundamental frequency, and its evolution over the course of an

utterance.

The following section will present some of the methods used to extract funda-

mental frequency from speech signals.

2.2 Fundamental Frequency Extraction

This section will present the background and the previous research undertaken on
the extraction of vocal fundamental frequency. Since the overwhelming majority of
work done to extract this parameter has been done on speech signals, the literature
presented will focus mairly on extraction methods used for this particular class of

vocalization.

Vocal fundamental frequency determination methods can be separated into

two classes; time-domain methods and frequency-domain methods. Time-domain
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techniques have the general advantage over frequency-domain methods in that
time-domain methods require much simpler calculations than their frequency-
domain counterparts. In addition, these methods allow the location and speci-
fication of the pitch epoch times which make these methods suitable for pitch-
synchronous formant analysis [Hess, 1983, Medan and Yair, 1989].

On the other hand, frequency-domain fundamental frequency estimation meth-
ods segment the input signal into short blocks, also known as frames or windows,
and use spectral transformations such as clipping or inverse filtering to extract the
fundamental frequency. Typically, the extracted pitch values of these methods are
then input to a preprocessor which then corrects for pitch halving or doubling er-
rors due to the mis-labelling of the fundamental frequency with its first harmonic,

as will be further discussed in section 3.1.2.

The advent of computers and computerized signal processing techniques in
the late 1960s ushered in the start of the development of pitch extraction or pitch
determination algorithms. In 1967, Noll published an article outlining a pitch
extraction method based on the power spectrum of the logarithm of the power
spectrum, called the “cepstrum” [Noll, 1967]. This transformation of the power
spectrum effectively causes the source and filter components of the speech signal
to be separated. This method was also used to extract the fundamental frequency

from infant cry signals some years later [Tenold et al., 1974].

Sondhi published a different pitch extraction method a few months after Noll’s
article [Sondhi, 1968]. The base methodology of the pitch extraction methods
presented in his article was spectral flattening, achieved by clipping a portion
of the signal contained within a window at a certain threshold value, and then
performing an autocorrelation on the spectrally transformed signal. This method
provided a simple, computationally inexpensive, and effective alternative to the
cepstral pitch extractor. A real-time hardware implementation of this algorithm

along with some other variations such as infinite peak clipping was presented by
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Dubnowski, Schafer, and Rabiner [Dubnowski et al., 1976].

In 1972, one of the more popular methods of pitch exiraction, formant extrac-
tion, and speech coding was presented. John Markel published an article which
described a digital inverse filtering method for formant estimation of an input sig-
nal window, where the characteristics of the input sequence would correspond, in
a least square error sense, to a unit impulse train, with a period corresponding to
the pitch period, presented to the filter [Markel, 1972a]. He later published an algo-
rithm which would use this technique to model the spectru: - of a low-bandwidth
version of the input speech signal, inverse filter the signal window with the pre-
dicted filter, and then perform autocorrelation on the inverse filtered signal to
determine the fundamental frequency [Markel, 1972b]. This method was called
the simplified inverse tracking filter (SIFT) method, and still remains a popular

method of pitch extraction from speech signals.

In mid-1973, John Makhoul, Joseph Maksym, and John Markel all pub-
lished articles detailing different applications of this linear prediction tech-
nique [Makhoul, 1973, Maksym, 1973, Markel, 1973]. Makhoul presented an
autocorrelation-based method of spectral analysis which approximated the short-
time spectrum. Maksym published a pitch extraction method based on the adaptive
prediction of the speech window where the prediction error was used as to deter-
mine the presence of voicing. The application of the digital inverse filter for both
formant and fundamental frequency analysis was described by Markel, who also
presented a post-processing method for the determining whether a given input

signal window was voiced or unvoiced.

The theory and refined applications of the linear prediction technique for both
fundamental frequency and formant extraction were later compiled in a book
[Marke! and Gray Jr., 1976].

With certain English vowels in speech, it was common to have two formant

frequency values within a few hundred Hertz of each other. In the linear prediction
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spectra for these particular vowels, these peaks would commonly be merged into
one peak, making separation of the two formant frequencies practically impossible.
This problem was addressed by McCandless [McCandless, 1974} using the chirp-
z transform [Rabiner et al., 1969] to resolve closely spaced formant peaks in the

spectra of input signals, if accurate determination of formant values was desired,

in addition to the extraction of Fq.

Another computationally simple, yet effective pitch extraction method for
speech signals, with an associated decision logic system, was developed with the in-
tention of having a method with characteristics similar to that of the autocorrelation
method. This involved taking the absolute magnitude of the difference between
the delayed input speech frame and the original at various delays [Ross ¢t al., 1974].
The original appeal behind this method was that it used no multiply operations

and the nature of its operations made it suitable for a hardware implementation.

In 1976, the classic article by Rabiner, Cheng, Rosenberg, and McConegal pre-
sented the results of seven pitch detection algorithms which were tested on a num-
ber of different utterances spoken by adult male, adult female, and child speakers
[Rabiner et al., 1976]. A number of error measures were defined and computed in
order to determine which algorithms were especially prone to particular errors,

and which algorithm generated the best results.

Another method which examined the characteristics of the signal over a
short time window was the maximum-likelihood pitch estimation method
[Wise et al., 1976). This method involved sampling the autocorrelation of the input

signal frame, and also offered improved resolution of the extracted fundamental

frequency values.

The zero-crossing method of extracting pitch was presented by Geckinli and
Yavuz [Geckinli and Yavuz, 1977]. This method involved low pass filtering the in-
put speech signal to about 900 Hz so that each pitch boundary would be marked on

a zero crossing. Twelve threshold values were used for the decision making process
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with two specified threshold values set to the speaker’s upper and lower values of
a speaker’s pitch range. A flowchart of the implementation of the algorithm was

also presented by the authors of the above-cited article.

An improvement to the linear prediction method was proposed by Hermansky,
Hanson, Wakita, and Fujisaki [Hermansky et al., 1977]. In this article, the authors
addressed the limitations of the linear prediction method for fundamental fre-
quency extraction, especially for voices with high fundamental frequency values.
The spectrum of the input signal would be transformed by taking the cube root of
the power spectrum. Following this transformation, all-pole modeling of the the
transformed spectrum would then be performed prior to the inverse filtering and

pitch determination process.

Also in 1977, Rabiner published an article describing the use of the autocorre-
lation function for the purposes of pitch extraction, detailing its limitations and
shortcomings in view of certain signal characteristics [Rabiner, 1977]. Despite its
limitations this method was cited as having a reasonable performance under low

noise conditions.

Friedman proposed a pseudo-maximum-likelihood method of pitch estimation
which was based on a sequence of operations [Friedman, 1978]. First, the input
signal window was subjected to linear-prediction inverse filtering. Then the in-
verse filtered signal was subjected to short-time spectral extraction using a bank
of bandpass filters with envelope extraction performed on the filter outputs. The
determination of pitch was then made using an algorithm which operated on these

parallel envelopes, which were considered as a multi-component vector signal.

A real-time pitch detector was developed by Seneff using the spacing between
the harmonics in a selective portion of the input spectrum to determine the fun-
damental frequency of the input signal window [Seneff, 1978]. The spectrum size
was limited to an upper frequency value of about 1000 Hz since in the input spec-

trum, the higher frequency values become ragged and the harmonics become more

26



2. Background and Related Work

difficult to distinguish. The algorithm then used heuristics to extract the candidate

harmonics from the spectrum at which point it then proceeded to calculate the

fundamental frequency.

The following year, Ananthapadmanabha and Yegnanarayana published
their attempts at extracting the epoch from the linear prediction residual
[Ananthapadmanabha and Yegnanarayana, 1979). It should be noted that epoch
extraction is particularly useful for accurate pitch extraction since the start of an
epoch signals the start of the pitch period. Due to some ambiguities present in the
inverse-filtered signal regarding the exact start time of the pitch epoch, this signal

is further filtered and processed in order to extract this information.

Matausek and Batalov [Matausek and Batalov, 1980] proposed another ap-
proach using the inverse-filtered signal following a covariance-based linear pre-
diction stage to determine the glottal waveform. This process involved integrating
the inverse filtered signal and then iteratively inverse filtering this signal in order

to obtain a glottal model.

Duifuis, Willems, and Sluyter proposed a pitch extraction method based on a
theory of hearing which states that the perception of fundamental frequency is
assisted by the fundamental frequency of the spectrum which best fits the spec-
trum of perceived sounds [Duifhuis et al., 1982]. The method presented by the
authors involved subjecting the peaks of the spectrum of an input signal window
to thresholding and component masking based on Goldstein’s theory of pitch per-
ception [Goldstein, 1973]. Once the spectral peaks were processed by this initial
stage, the remaining peaks were “sieved” to determine the most likely fundamen-
tal frequency. Some improvements to this method were featured in a later article
[Sluyter et al., 1982].

Another method which used a similar method to process the spectral peaks,
using a technique called the spectral comb, was proposed by Martin [Martin, 1982].

Here, a spectral correlation was performed on the power spectrum using a spectral
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comb with “teeth” of decreasing amplitude and intervals, and the results from
this technique were compared to that obtained using the cepstral pitch extraction

technique.

Although the methods which had been published up to that time worked well
on good quality adult male speech, few had been tested on speech which had
unusual characteristics due to aperiodicities in the vibration of the vocal folds or
from excessive fundamental frequency jitter and amplitude shimmer. One group
published abricf comparison un the performance of a few of the more popular pitch
extraction methods, such as the cepstral and SIFT methods, on several speakers

with a variety of speech disorders [Laver et al., 1982].

This issue gained some attention in the following years, as researchers de-
termined that the fundamental frequency was an important parameter in deter-
mining the presence of laryngea! vathology. Kasuya, Kobayashi, and Kobayashi
attempted to describe the pitch period perturbations present in patients with can-
cer of the vocal cords [Kasuya et al., 1983]. Other attempts were made by Feijéo
and Hernandez [Feijéo and Herndndez, 1985], and Imazumi [Imazumi, 1986] who
examined a number of factors based on the characteristics of the pitch periods in
utterances of speakers both with and without laryngeal pathology. In a related in-
vestigation, Veeneman and BeMent aftempted to use inverse filtering to extract the
glottal pulse and to determine whether there would be an abnormal glottal volume

velocity, the latter being an indicator of pathology [Veeneman and BeMent, 1984).

Chung and Algazi first presented a crosscorrelation-based pitch extractor for the
purposes of extracting pitch values from noisy speech, exploiting the high correla-
tion between adjacent pitch segments [Chung and Algazi, 1985]. This method was
quoted as performing well in: the vicinity of voiced to unvoiced transitions where

the local signal-to-noise ratio was low.

A method which is similar to the cepstrum pitch extraction method was pro-
posed by Indefrey, Hess, and Seeser [Indefrey et al., 1985]. In this article, the au-
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thors proposed the application of a non-linear distortion in the frequency domain
following the computation of the discrete Fourier transform of the input signal win-
dow. Then, prior to performing the pitch period determination, the non-linearly
distorted spectrum was inverse transformed using the inverse discrete Fourier

transform.

Charpentier implemented a method which used phase information from the
discrete Fourier transform of an input signal window to extract the harmonic
components from the input spectrum and then performed fundamental frequency
determination based on the values of the extracted harmonics [Charpentier, 1986].
The use of the Fourier transform phase for extracting the fundamental frequency

was also proposed by Brown and Puckette [Brown and Puckette, 1993).

Another linear prediction-based method which attempted to address the issue
of short pitch period extraction was presented by Miyoshi, Yamato, Yanagida, and
Kakusho [Miyoshi et al., 1986]. These authors stated that the extraction of voiced
sounds uttered by children or females could be accurately estimated using sample-
selective linear prediction, which employed a two-step linear prediction process.
Despite the appeal of the method, which attempted to deal with the issue of linear
prediction and short pitch period sounds, the results presented in the paper did

not provide a complete or convincing test of this method.

A novel, albeit complicated, pitch extraction method was proposed by Gong
and Haton [Gong and Haton, 1987]. This method involved modeling speech as
a sequence of a specified function type, referred to as a resemblance function,
which allows amplitude and excitation of the signal to be time-varying. This
resemblance function is statistically optimized from an energy function, and the
pitch period estimate is achieved by the maximization of this function. From a
- frequency-domain perspective, this method is equivalent to a harmonic matching

procedure with results being comparable to those achieved by other harnionic

matching methods.

29



2. Background and Related Work

Another method presented in that same year used the spectral autocorrelation
to extract pitch from noisy speech signals [Lahat et al., 1987]. In this method, the
spectrum of an input signal window was presented to a series of bandpass “lifters”
covering the range of expected pitch periods, and then extracting the pitch from
autocorrelation functions calculated at the output of the lifters. These extracted
values were then presented to a median filter for the smoothing of extraneous

pitch values.

Andrews, DeGroat, and Picone published a series of articles outlining their
improvement to the classical cepstral-based pitch extraction method called the
MUSIC method [Andrews et al., 1989, Andrews et al., 1990b, Andrews et al., 1990a].
In these articles, the authors propose the use of singular value decomposition for
estimating the power spectral density of a signal. In this method, singular value
decomposition is also used in the place of the fast Fourier transform to estimate the

cepstrum for the purposes of accurate pitch extraction in the presence of noise.

Cheng and O’Shaughnessy presented another method for the estimation of
the glottal closure instant and period in an attempt to provide pitch estima-
tion technique which could illustrate period-by-period changes in the pitch pe-
riod [Cheng and O'Shaughnessy, 1989]. The method used a twelve-pole linear-
prediction analysis of the input speech signal window, a crosscorrelation, and

convolution to generate a non-stationary pitch period estimation.

The estimation of pitch using a set of harmonic sine waves to fit the input
data using a mean-squared error criterion was proposed by McAulay and Quatieri
[McAulay and Quatieri, 1990]. This method assumes, however, that the sinusoidal
characteristics of the signal have already been analyzed by an analysis / synthesis
method proposed in a previous paper [MicAulay and Qualtieri, 1986]. The article,
however, fails to present any comparison between the results achieved using the

proposed method and other pitch extraction methods.

A method for the determination of pitch from aperiodic speech signals was pre-
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sented by Hedelin and Huber [Hedelin and Huber, 1990]. In this article the authors
identify four types of aperiodic voice excitation, and then proceed to present their
decimated whitening autocorrelation pitch extractor, to deal with the irregularities
present in these aperiodic speech signals, comparing their results to those of the

classical pitch extraction methods, such as SIFT and autocorrelation.

A new method which uses a cochlear model coupled with a bank of auto-
correlators in order to determine the pitch was presented by Slaney and Lyon
[Slaney and Lyon, 1990]. The overall system was designed to mimic the human
perceptual system using an auditory model whose outputs can be viewed in a
three-dimensional graph of time versus frequency band versus intensity, called a
correlogram. From these correlogram values, the subsequent post-processing stage
determines the most likely pitch value for that given input signal window, without

attempting or enforcing frame-to-frame continuity.

Another cepstral-based method which uses the one-sided autocorrelation
of a input signal window was proposed by Nadeu, Pascual, and Hernando
[Nadeu et al., 1991]. Here, the cepstrum is taken from the one-sided, or causal
part, of the autocorrelation sequence, allowing for an apparently sharper peak to

be present in the resulting cepstrum at the lag corresponding to the pitch period.

With the emergence and application of neural networks in a number of differ-
ent domains being attempted, it was only a matter of time before this paradigm
would be called upon to solve the pitch extraction problem. In 1990, an attempt
by Martinez-Alfaro and Contreras-Vidal for a neural network-based pitch detector,
was presented [Martinez-Alfaro and Contreras-Vidal, 1991]. A multi-layer neural
network, trained using backpropagation, was used, with speech signal windows

consisting of 100 raw signal samples presented to the neural network inputs with-

out prior preprocessing.

A method which appreciably improved both the resolution and accuracy of

extracted pitch values over that of previous methods was the so-called super
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resolution pitch determination method presented by Medan, Yair, and Chazon
[Medan et al., 1991]. This method is somewhat similar to that proposed by Chung
and Alazi [Chung and Algazi, 1985], with the difference that Medan, Yair, and
Chazon give a more detailed treatment on the use of the crosscorrelation for the
purposes of pitch extraction. As well, they also present a method for interpolating
between the sample values and achieving “super” or almost infinite resolution in
the extracted pitch values. De Mori and Omologo present another method which
is based on the super resolution method for the purposes of both visualization and

pitch extraction [De Mori and Omologo, 1993].

Hanna recently presented a novel method for the extraction of pitch using the
maximum likelihood [Hanna, 1992]. In this method, a frequency-domain max-
imum likelihood procedure is used for the estimation of the pitch frequency of
voiced segments by maximizing a log-likelihood function over the range of possi-

ble pitch frequencies for the speech signal being analyzed.

Another method which has emerged over the past few years and is com-
monly used for the time-frequency analysis of signals uses wavelets. Although
a number of articles present the use of wavelets to determine whether a seg-
ment is voiced or unvoiced or to detect the presence of pitch in an utterance
[Kadambe and Boudreaux-Bartels, 1992], one group has used wavelets for pitch

determination [Lunji ef al., 1993).

Although a number of different pitch extraction methods exist, as have been
described in this section, the problem of accurate pitch extraction still remains an
open problem, especially for speech which has short pitch periods, as it the case for
some female speech, for children’s speech, and of course, for infant cry utterances.
As well, accurate determination and tracking of pitch on a period to period basis
still eludes most published methods. In short, no real distinguishable trend or
evolution in the development of fundamental frequency extraction methods has

really emerged since the first digital signal processing techniques came into use
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some 30 years ago. Although the complexity of the extraction methods has evolived
from a better understanding of the underlying processes which produce speech,

100% accuracy still eludes most published extraction methods.

2.3 Neural Network-Based Classification Techniques

This section will initially present two examples of neural network-based classifiers
in order to give a broad overview as to the wide variety of applications possible.
However, the focus of this section is primarily on speech-related applications of
artificial neural networks. Even with this particular focus, the amount of literature
published on the applications of neural networks in the speech domain is quite
extensive, and as such, it is impossible to mention all of the articles related to this
domain. Thus, a survey of some of the more successful trials and architectures

used in the speech domain will be presented.

Neural networks have been successfully applied to solve a wide variety
of classification problems be it diagnosing HIV reverse transciptase inhibitors
[Tetko et al., 1994], to computing the likelihood of credit card fraud based on a
pattern of user transactions [Ghosh and Reilly, 1994]. The broad appeal of neu-
ral networks lies in their ability to achieve good performance through the dense
interconnection of simple computational elements. The potential benefits of the
use of neural networks go far beyond the high computational rates, which are
achieved from massive parallelism, by providing a greater degree of robustness,
or fault tolerance, precisely due to the large number of node interconnections
[Lippmann, 1987]. The training process of neural networks is still a major focus of
the research undertaken in this domain, since it is the training process that adds
robustness to the network by compensating for variabilities in the input patterns.
Neural networks are non-parametric classification systems and thus make weaker
assumptions about the shapes of the underlying distributions than do traditional

statistical classifiers, and as such, may prove to be more robust when the distribu-
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tions are generated by non-linear processes.

In speech applications their use first started with the article published by Koho-
nen, Mikisara, and Saramiki which described the use of phonotopic maps for the
visualization of speech signals [Kohonen et al., 1984]. This mapping principle was
originally used in image analysis and was later adapted for this speech application.
Self-organizing networks [Kohonen, 1988] were used to form a two-dimensional
map displaying the similarity relations between phonological units, obtaining more
generality than the classical formant maps, since this method used the entire spec-
trum instead of the first three formant values to determine the spoken phoneme in

a given word.

Until the first neural network tests on speech recognition emerged in the late
1980s, the method of choice for speech recognition applications was hidden Markov
models (HMMs) [Rabiner, 1989]. However, with the first few recognition trials
using neural networks giving reasonable results, the door was opened for further
research into other network architectures and learning methods to be undertaken
which could potentially be better suited to this task than the classical feedforward

neural networks trained using back propagation.

The “IEEE First International Conference on Neural Networks” saw a number
of presentations dealing with speech applications of neural networks. Shamma
proposed a three-step view of the auditory processing and recognition pro-
cess of speech which could be then emulated by a series of neural networks
[Shamma, 1987]. One neural network could perform the initial transformation
of the signal and then these transformations would be sent to the feature extraction
stage, which would in turn send the extracted features to the learning and pattern
recognition stage. Although no results or recognition rates were given in this pa-
per, the method was indeed an intriguing way to process speech for recognition

purposes, emulating the function of the human brain.

Gold, Lippmann, and Malpass [Gold et al., 1987] also proposed the application
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of neural networks to the recognition of steady state vowels in speech. In this
paper, Hopfield neural networks [Hopfield, 1984] were modified and tested for the
purposes of word recognition and this paper went on to describe an approach for
dealing with time varying sequences, such as speech, for a Hopfield net which

would have delay filters added in the activation functions.

The trial of several experiments on speech data using neural networks was also
reported by Bourlard and Wellekens [Bourlard and Wellekens, 1987]. Here, 16 mel-
cepstrum coefficients were generated for every 10 ms frame of input speech, which
were then clustered using a k-means clustering algorithm and subsequently input
into a neural network. Context information was also included at the inputs of the
network in the form of previous and future input feature vector frames. Results
from this proposed configuration, that of time-delay neural networks, and hidden
Markov models, were compared in a later paper [Bourlard and Wellekens, 1989]
where the relative strengths and weaknesses of these respective methods at cap-

turing relevant speech features were discussed.

Lippmann and Gold presented a novel neural network architecture called
a Viterbi-net and illustrated its use for the task of isolated word recognition
[Lippmann and Gold, 1987]. This network performed temporal alignment of the
input features derived from the speech signal to the input classification nodes,
and used fixed delays and threshold logic to implement a modified version of
the Viterbi algorithm, a method commonly used in many HMM speech recog-
nizers. Recognition accuracy in this series of tests equalled that of HMMSs. In
a later article, Huang, Lippmann, and Gold suggested that the incorporation of
these neural networks into HMMs might improve overall recognition performance
[Huang et al., 1988].

The use of “temporal flow” neural networks, or neural networks with recurrent
connections, for dealing with time-dependent sequences was proposed by Watrous

and Shastri [Watrous and Shastri, 1987]. In this article, the authors used time-

35



2. Background and Related Work

dependent input features, namely 16 filter-bank values, generated from the input
signal, which was segmented by hand in order to avoid time-alignment problems
between subsequent words. This set of experiments illustrated that this architecture

was useful for word recognition.

Also, in 1987, Waibel, Hanazawa, Hinton, Shikano, and Lang presented a
new architecture which was developed principally for capturing the acoustic fea-
tures between subsequent segments of input signal windows for the purposes
of phoneme recognition {Waibel et al., 1987, Waibel et al., 1989]. This architecture,
called a time-delay neural network (TDNN), also had the feature that it could
tolerate poorly aligned input frames of data, and still perform accurate recog-
nition. The results achieved by this architecture were comparable or superior to
those achieved using hidden Markov models [Waibel et al., 1988]. For the phoneme
recognition experiments, the input features consisted of 16 mel-scale coefficients
computed every 5 ms from a 10 ms window of speech. These networks were
later used in word recognition experiments with recognition rates exceeding 90%
[Bodenhausen and Waibel, 1991].

Other applications of neural networks in speech related experiments included
the recognition of place of articulation [Bengio and Mori, 1988]. In this particular
article, the Boltzmann machine algorithm and back propagation algorithm were
used to learn the front, center, or back, rlace of articulation for vowels. Coding the
input spectral lines of the input window of speech used a scheme that employed the
relative frequencies and amplitudes in a non-linear frequency scale representation
similar to that of the human ear, giving results which exceeded that of an HMM on

the same data set.

An alternate set of input features were used by Leung and Zue
[Leung and Zue, 1988] who derived features from the input speech signal using
Seneff’s model of the human auditory sys..m [Seneff, 1984] to classify phonemes

cut from continuous speech. Here, contextual information was also supplied in
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the form of cuts from the preceding and subsequent phonemes in the word to a
feedforward neural network trained using back propagation. Recognition rates

using this method were about 60% [Leung, 1989].

The idea of using Kohonen feature maps for the purposes of
phoneme-based speech recognition was rekindled by Kepuska and Gowdy
[Kepuska and Gowdy, 1989]. In this article the authors proposed a solution to
the problem of feature vectors from other phonemic portions of an uttered word
overlapping with the phonemic portion under consideration. For accurate recog-
nition, the authors propose using the steady state portions of phonemes as input

into the neural network recognizer.

A dynamic-programming-based matching system, coupled with a neural net-
work trained using back propagation, was implemented and tested by Sakoe,
Isotani, Yoshida, Iso, Watanabe [Sakoe et al., 1989]. This network model, called a
dynamic programming neural network (DPNN), could easily treat time-sequence
patterns, using the popular dynamic time warping time alignment technique. Ex-

perimental results of 99.3% were achieved for isolated Japanese digit recognition.

Other research groups performed a comparison of different recognition tech-
niques or different neural network architectures. One such group used both a
static and a sequential presentation of input features consisting of 18 mel-cepstrum
coefficients computed from every 10 ms of speech to determine the accuracy for a
simple recognition task and for digit recognition as well [Demichelis ¢t al., 1989].
Another group performed a comparison of four neural network architectures
which had been previously deemed as useful for speech recognition purposes
[Fallside et al., 1990], but their experiments either achieved very poor results or
were incomplete. Other comparisons between neural networks and HMMs were
performed by Bridle [Bridle, 1991] who also set out a series of comparative mea-

sures to aid in this determination.

As well, a comparison between a multi-layer feedforward neural network

37



2. Background and Related Work

and a competitive learning method, called a learning vector quantization
[Kohonen, 1988] neural network, was presented by Ahalt, Jung, and Krishna-
murthy [Ahalt and Jung, 1991]. In this article the authors use three feature sets de-
rived from the input speech signal window: autocorrelation coefficients, weighted
linear prediction cepstral coefficients, and formant frequency values. A comparison
of different learning vector quantization-based neural network architectures for ro-

bust speech recognition was performed by Zhu, Li, Guan, and He [Zhu et al., 1993).

A neural network hybrid was presented by Hataoka, Amano, Aritsuka, and
Ichikawa {Hataoka et al., 1990]. The authors presented an algorithm for large vo-
cabulary speech recognition using two kinds of connectionist models. The first
one was a phoneme recognition model which used a method combining neural
nets and fuzzy inference called neural-fuzzy. This method used neural nets as
acoustic feature detectors and fuzzy logic as a decision procedure. The other was
a connected-word sequence selection method which used semantic information

about conceptual relationships among vocabulary words.

Another neural network and hidden Markov model hybrid used for speech
recognition was presented by Robinson {Robinson, 1992]. The recurrent neural net-
work was used for the purposes of context modeling and also provided phoneme
state occupancy probabilities for a simple context independent hidden Markov
model. The description of the implementation of the entire recognition system was

later described in another article [Robinson ef al., 1993).

Using neural networks as a postprocessor for HMMSs was described by Jin and
Chung [Jin and Chung, 1992]. The neural network was introduced to enhance
the classification capability of hidden Markov modeling for speech recognition
purposes. This postprocessor received stimuli from not one, but all word HMMs
for each word in the input speech, and the input speech frames did not require

prior segmentation.

As well, Bengio, De Mori, Flammia, and Kompe, presented the design and
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evaluation of three neural networks in a composite neural network and HMM
framework [Bengio ef al., 1992]. Of the three neural networks, one detects manner
of articulation and the other two describe the signal in terms of place of articula-
tion, all of which were inspired by acoustic-phonetic knowledge. The latter two
networks were later merged when the hybrid system was implemented, with the

HMM serving to model the neural network outputs.

The issues of using partial connections between nodes in adjacent layers was
discussed by Ye, Wang, and Robert [Ye ¢t al., 1990]. In the experiment presented
in the article, the neural network with partial connections was used to perform
isolated word recognition. Results demonstrated the advantages of partial con-
nections against that of full connections. Partial connections can introduce both
temporal context constraints and some implicit knowledge into the network, and

may also lead to efficient learning on a small data set size.

Another set of input features derived for a neural network in a speech
recognition application was proposed by Nguyen, Lippmann, Gold, and Paul
[Nguyen et al., 1990]. In this article the authors propose the use of a front-end pre-
processor based on the ensemble interval histogram model developed by Ghitza
[Ghitza, 1986]. The network using the front-end preprocessor achieved results

comparable to those using mel-scale filter-band inputs.

Neural networks were also investigated for the purposes of pitch detuciion
and pitch determination. Barnard, Cole, Vea, and Alleva [Barnard et al., 1991] pre-
sented two feedforward neural networks for pitch detection. One used the raw
input signal, and the other neural network used features derived from the input
signal, called peak descriptors, as inputs into the pitch detection network. In an-
other experiment, Martinez-Alfaro and Contreras-Vidal used a fecdforward neural
network to perform pitch estimation {Martinez-Alfaro and Contreras-Vidal, 1991].
This neural network used 100 samples of the raw input signal, with the output

consisting of 100 nodes, one for each of the possible pitch period lags.
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Nak~mura and Sawai [Nakamura and Sawai, 1992] proposed a modular time-
delay neural network for the purposes of speaker-dependent speech recognition.
Here the authors demonstrate that a modular network, with one network assigned
to each speaker, performs as well as a single time-delay neural network with a
larger hidden layer, given the larger storage capacity that is required for a larger

collection of spezkers by a single neural network.

An interesting, but brief, comparison of two auditory models and mel-cepstral
coefficients as inputs to a phoneme recognition neural network, which employed an
unsupervised learning method, was performed by Anderson [Anderson, 1993]. In
this article it was noticed that different input patterns make different types of broad
class recognition errors, but that auditory models offer some improvements over
the mel-cepstrum coefficient inputs. Another similar comparison, performed using
linear prediction coding coefficients, and features derived from an auditory model,
this time for speaker identification purposes on two neural network architectures,

also included Anderson as part of the investigating team [Colombi et al., 1993].

Another novel neural network architecture was proposed by Li, Fang, and
Li [Lietal,1993). In this article, the authors propose a self-organizing neural
tree, which is suitable for hierarchical classification and vector quantization. This
network promises to provide good results for speech recognition and image coding,
and has the advantage that the training time for the neural tree is much shorter

than for other competitive networks.

Wu and Chan presented an neural network for the purpose of speaker inde-
pendent word recognition [Wu and Chan, 1993]. The network was composed of
three concatenated subnetworks. One subnet converts the information contained
within the features extracted from a speech signal frame into a probability vector
whose components correspond to the estimated probability of the feature vectors
belonging to the phonetic classes that constitute the words in the vocabulary. These

outputs are then crosscorrelated by the second neural network and then presented
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to the decision making classification subnetwork for final classification.

Another neural network model which used inputs derived from neurophysic-
logical findings in the auditory system was presented by Yamauchi, Fukuda, and
Fukushima [Yamauchi et al., 1993]. The system used two separate modules, one to
extract auditory features from the input signal, and the second to perform recogni-
tion based on the extracted auditory features which accumulates features over time
and in three separate neural network blocks, accommodating different speaking

rates without affecting recognition.

Hadjitodorov, Boyanov, Ivanov, and Dalakchieva presented a system for
speaker identification which employed two neural network architectures
[Hadjitodorov et al., 1994]. This method used one neural network based on self-
organizing maps, and another network using the autoregressive neural network
model, with the final classification decision obtained through a voting principle

using the decisions of the two classifiers.

Another attempt at speaker recognition was performed by Kuah, Bodruzzaman,
and Zein-Sabatto [Kuah et al., 1994]. Twelve feature parameters were obtained
from the mel-cepstrum coefficients and from linear prediction coding coefficients
which then served as input into a feedforward neural network. Three different
speakers uttering 13 different words were used to train and test the system achiev-

ing good results.

A novel use of wavelets and neural networks for the purpose of both speaker
identification and the classification of unvoiced sounds was recently proposed by
Kadambe and Srinivasan [Kadambe and Srinivasan, 1994], Wavelets are used to
help in the ~ssistance of classifying unvoiced sounds, and in the identification of
speakers based on only one pitch period of speech data. These features are then

input into a feedforward neural network for classification.

Since the initial application of artificial neural networks to speech-related do-

mains over 10 years ago, the architectures used to address different classification or
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recognition issues have progressed from simple feedforward architectures, to the
use of specially designed architectures, to multiple neural network configurations,
to hybrid configurations combining neural networks with other classification meth-
ods. Despite the successes of more complex configurations or hybrid systems, good
results using relatively simple neural network architectures have nevertheless been
achieved ror a number of speech and phoneme recognition experiments. These re-
sults motivate our simple initial attempt using neural networks for the purposes

of cry classification before more complex classification systems are investigated.
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Chapter 3 Improved Fundamental Frequency
Extraction for Infant Cry Vocalizations

This chapter presents an improved fundamental frequency determination method,
called the improved crosscorrelation vector-based fundamental frequency extrac-
tor, which is capable of tracking rapid changes in pitch due to double-harmonic
break episodes in the utterance signal, and capable of dealing with pitch values
which are within the large range of allowable /4, values for infant cry vocalizations.
The method, which will be described in section 3.1, ~llows the determination of
Iy on a period-by-period basis and can be used for both improved visualization of
the utterance, and for further pitch-synchronous processing of these vocalizations.
The results of this improved fundamental frequency extraction method will also be
compared to the results obtained on several cry recordings using six other methods
adopted from the speech processing domain described in section 3.2. They are
the linear predictive coding (LPC) method, its variant, the simplified inverse filter
tracking (SIFT) method, the cepstral extraction method, the harmonic sieve, the
spectral flattening autocorrelation method, and the super-resolution pitch extrac-
tion method. These various methods will be tested on five different cry recordings
from the data set described in section 3.3 and the results will be presented and
discussed in sections 3.4 and 3.5 respectively. The chapter concludes with an illus-
tration of the improved visualization of utterances achievable using the improved

crosscorrelation vector-based fundamental frequency extraction method.
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Figure 3.1: Block Diagram of the Improved Crosscorrelation Vector-Based
Fundamental Frequency Extraction Process

3.1 Improved Crosscorrelation Vector-Based Fundamental Fre-

quency Extraction

This section describes the different parts of the improved Fy extraction method
which is based on the processing of the sequences of crosscorrelation vectors gen-
erated in an earlier processing phase of the signal. An overview of the method is
first given, followed by an indepth description of the individual stages of process-

ing performed by this method.

3.1.1 Overview of the Improved Fundamental Frequency Extraction

Method

Figure 3.1 presents the method in a block diagram format consisting of a number
of steps which are grouped into two different stages, namely, the signal transfor-

mation phase and the post-processing phase.

The first phase transforms the input signal using the normalized crosscorrelation

into a feature space which is then used in the post-processing phase, for the purpose
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of accurately determining and tracking the value of . Ideally, the sampled input
signal s(n) should consist of at least one complete utterance, that is, from the start
of a vocalization to a return to silence, in order for the post-processing phase to
function accurately. If only a portion of an utterance is available, the method still
performs properly, but obviously the progression of /4 cannot be monitored or

tracked for the missing portions of the signal.

Although this is not a real-time method, the multiple steps required by this
algorithm are necessary to ensure that correct Iy values will be produced for infant
cry vocalizations, and especially troublesome class of speech signal. This method
is useful not only for infant cry signals, but for speech in general, and could be of
particular interest for cases where the [ values of a speaker needs to be subjected
to a very detailed analysis, as could be the case if the emotional state, or laryngeal
pathology of a speaker is to be determined. The algorithm is not restricted to
a particular range of /g values; any range can be accommodated. Subsequent
post-processing could yield Fp values for every pitch period in the recording with

so-called “infinite” or “super” resolution [Medan ¢t al., 1991].

The following sections give a detailed description of each portion, or stage, of

the improved crosscorrelation vector-based fundamental frequency extractor.

3.1.2 Crosscorrelation-based Pitch Extraction

As was mentioned in section 2.1, time-domain pitch extraction methods are both
computationally simpler than their frequency-domain counterparts, and also yield
more accurate pitch values. This class of /g determination methods also allows
the possibility of locating the pitch epoch, which is the time at which the vocal
folds close, and which is denoted by the abrupt increase in the signal waveform,

as illustrated at the locations labeled A, C, and E in figure 3.2,

Closure of the vocal cords initiates the pitch peribd in a voiced signal. The
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Figure 3.2: Sample Speech Signal Waveform

abrupt increase in the signal amplitude marking this event is then followed by a
decaying amplitude envelope, as can be seen in figure 3.2 by the decrease of the
amplitude value of the pitch epoch peak, and the amplitude value of the oscillation
following the pitch epoch, labeled B, D, and F. The rate of decay of the amplitude
envelope and the period of the intermediate oscillations between subsequent pitch
epochs are proportional to the bandwidth and equal to the period of the highest
energy formant frequency of the vocal tract. Typically, this co.responds to the
lowest resonant frequency of the vocal tract, namely, the first formant frequency
(#1) [O’Shaughnessy, 1987].

Consequently, these methods are useful for for pitch-synchronous processing
of the signal, allowing not only the fundamental frequency to be determined on
a period-by-period basis, but other parameters as well, such as the values of the
formants, for example. Formant frequency values correspond to the resonant
frequencies of the vocal tract, allowing one to gain some insight into the shape of

the vocal tract for cries uttered in different situations.

Since the accurate extraction and tracking of vocal fundamental frequency is
what is desired in order to overcome the deficiencies of other iy extraction methods,
it is no coincidence that the core method upon which the F/y extraction method

presented here is based, is a tiine-domain method.

The normalized crosscorrelation is at the heart of the improved crosscorrela-
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Figure 3.3: Adjacent Segments of Voiced Speech Signal

tion vector-based fundamental frequency extraction method as it is for the super-
resolution extraction method originally described in a journal article by Medan,
Yair, and Chazon [Medan et al., 1991]. The benefits of using the normalized cross-
correlation for fundamental extraction were presented in a paper by Chung and
Alazi [Chung and Algazi, 1985]. The details of the normalized crosscorrelation,
and its usefulness for Fy extraction, are described below. Although this method
leads to a highly accurate method of /;y extraction for speech signals, it requires

further refinements in order for it to be accurate for infant cry vocalizations as well.

Consider a periodic portion of a voiced speech segment s(¢) and two adjacent
segments z.(1, {o) and y.(f, L), as are shown in figure 3.3. Each of these .egments
are of length r and both z.(¢, {o) and y-(!, tp) span a segment of the signal s(t) in
the interval [ty, o + 27]. If, starting at ¢t = (g, there is a portion of the signal 2r
which contains exactly two pitch periods so that + = 7}, corresponding to the
fundamental frequency period, and where zr,(t, 4g) is the first pitch period of the
signal segment and yr(¢, ) is the second pitch period of the signal segment, it
can be said that the two segments will differ only in amplitude and from other

distortions resulting from dissimilarities between the two signals.

The difference in amplitude between these two adjacent segments can be ex-
pressed in terms of an amplitude modulation factor, denoted as a(ly), and the

distortion and dissimilarity factor between z,(1, {o) and y,(L, lg) can be expressed
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as f.’(.’,,to).

Consequently, the two adjacent signal segments can be represented in terms of

each other as follows:
z1(L, Lo) = allo)yn(L, to) + e(L, to) (3.1)

with the condition that the two successive pitch periods are sufficiently similar, so
that the aforementioned assumptions hold. The time interval 7 = Tj for which the
error term e(l,{p) is minimized over the time interval [{o, o + 7] according to an
error norm, say the normalized square error, is defined as the pitch period for the

time instant { = {q.

Minimizing equation 3.1, using the normalized square error norm leads to the

following equation:

./to+f[mf(t'rt0) - a(to)y,(t,tg)]zdt
E.(tg) = = (3.2)

TodT
[ et tohue(t, o)t

o

where the denominator of equation 3.2, serves as a normalization term, compen-
sating for the occurrence of non-zero mean segments, which are common when the
segments do not include complete signal cycles. The argument of the integral in the
denominator can be replaced by either [z.(t,%0)]? or [y.(t,)]? if one considers the
energy contained in z,(¢, {o) to be similar to that contained y,(!, ) for the purposes
of normalization. In a practical implementation, the value of 7 should be restricted
to the range of expected pitch period values, which in the domain of infant cry
vocalizations range from 0.4 ms to 6.6 ms, corresponding to frequencies between
2500 Hz and 150 Hz respectively.

Next, equation 3.2 is differentiated with respect to a(t+) in order determine
for which 7 the dissimilarity or error measure between the two adjacent signal

segments is minimized, and to find an optimal value for the amplitude modula-
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tion term. The latter turns out to be a(ty) = ,L“'” 2ot tady= (L, to)dif [ [y« (1, o)} dt,
where the numerator represents the inner product (x,y). from g to ¢, + 7, and the

denominator is the energy of the segment y,(!, {o).

Using this result, the minimization of equation 3.2 can be expressed in the

following manner:

Ertg) =1— [("”yﬁ ] . (3.3)

The second term on the right-hand side of equation 3.3 is immediately identified as
a normalized crosscorrelation term g.(x,y). Consequently, minimizing the above
equation, is analogous to maximizing p,(z,y) to find the pitch period. It should be
noted, however, that if adjacent seginents of length corresponding to subsequent
multiples of the pitch period Tp are sufficiently similar to each other, that is, for

T = 2Ty, 3Ty, then p.(z,y) will also produce maxima, as is expected.

The normalized crosscorrelation approach calculates the instantaneous value of
the pitch period which usually corresponds to the point where this value is greatest,

as the index 7 sweeps over the range of expected pitch values.

When dealing with a sampled signal, as is the case for this application, one
can replace the time indexes ¢ and { by the sample indexes n and »y. Moreover,
in the implementation of this first portion of the method, the adjacent segments
of the sampled signal, s(n), namely z(no) and y,(nq), were taken to be of length
2n, instead of being of length n. This was done in order to reduce the effects of
strong formant peaks in the calculation of the normalized crosscorrelation values,
to improve its immunity to noise, and to remove the effects of short periodic noise
bursts during silent portions of the signal from being incorrectly identified as a

very short cry vocalization.

The above method, as implemented, processes the sampled cry vocalization
signal s(n) as shown in figure 3.4.

First, the crcsscorrelation values are generated for all adjacent segments sep-
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Figure 3,4: Flow Chart of the Crosscorrelation Block of the Signal Transfor-
mation Phase
arated by = of length 2n. Since the cry recordings are sampled at 16 kHz, this
corresponds to traversing lag values from 6 to 110, which correspond to periods
of 0.375 ms to 6.875 ms or frequency values of 2667 Hz to 145.5 Hz. Figure 3.5
shows a signal segment and a plot of its corresponding crosscorrelation vector. The

crosscorrelation is evaluated for each lag sample n at ng.

Once the crosscorrelation values have been computed for all the lag values at
a given time index ng, the values which make up the crosscorrelation vector for
n = ny are searched for peaks above a certain threshold. All lag values that have
corresponding maxima values greater than this threshold value are saved. These

lags represent the locations in p(z, y), of possible pitch period values which will be
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Figure 3.5: Cry Utterance Segment and its Corresponding Crosscorrelation

Vector
subject to further processing in order to determine in an approximate fashion which
of the lags most likely corresponds to the pitch period. In the simplest cases, the
lag where the crosscorrelation vector has its highest value could be considered to
be the pitch period, or, alternatively, the lag of the first crosscorrelation maxima to
exceed a certain threshold could be considered to be the pitch period, as a number

of classical Fy extraction methods do [Ross et al., 1974, Rabiner, 1977].

However, the more successful F extraction methods use some form of post-
processing on the pitch period candidates extracted from a speech signal in order
to improve overall accuracy of the extraction algorithm. This is important when
infant cry signals are processed as well. Identifying a possible pitch candidate
correctly saves computation time wher: the crosscorrelation vectors are generated
in this initial phase, since the time, or sample, index g will be incremented by the
value of the most likely pitch period lag in preparation for the calculation of the
next sequence of crosscorrelation values, also called a crosscorrelation vector. 1n the
case where the true F{ lag is greater than the identified lag, extra crosscorrelation
computations will be performed, thus increasing the time required for the algorithm

to move through a given signal.

In order to minimize the likelihood of performing these extra crosscorrelation

computations, the following post-pro.essing is done on the crosscorrelation vector
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peak candidate lag values [Medan et al., 1991]. First these lag values are ordered
from smaller to larger lag values L = [{;.0s.....{~x], where [y corresponds to the
largest lag value whose crosscorrelation value exceeds the prespecified threshold.
Forall the/,’sin [/, starting with i = 1, two adjacent segments of sampled signal s(n)
atn = ng are re-processed, where ng is the current ime index in s(n) from which the
sequence of crosscorrelation values were first calculated, leading to the set of lag
values L for n = ng. Beginning with i = 1, the adjacent segments of s(ng) are each
of length 2/ v, rather than the previous length 2/;, and are each separated by {;, that
is one segment is given by s(ng)a,, and the other segment is given by s(ng + {;)a.
The normalized crosscorrelation between these two segments is then calculated.
The first {; whose crosscorrelation value exceeds another prespecified threshold is

the value by which the time index np is incremented for the computation of the

next series of crosscorrelation values for the crosscorrelation vector.

The above re-computation of the normalized crosscorrelation for the lag val-
ues in L is done in order to minimize the occurrence of lags corresponding to
strong, narrow bandwidth, first formant (/) frequency values, which occur at
frequencies in the vicinity of 2/, being selected as the time index increment.
In a voiced utterance, the value of the first formant can be identified as the in-
verse of the period of dominant oscillation between two successive pitch epochs
[Rabiner and Schafer, 1975].

Cases where the period of the first formant frequency is chosen as the increment
value, increase the computation time of the crosscorrelation vectors for a given
voiced utterance, since the time index is incremented in smaller steps in these cases.
This method is based on the experimental results that if the lag {; corresponds to
~ formant peak, then the two adjacent signal segments s(ng,0)21, and s(ng, li)any
will be dissimilar, and correspondingly, the normalized crosscorrelation of these
segments will be small. If, on the other hand, the lag {; corresponds to a pitch
period, then these two adjacent segments will be very similar which will in turn

yield a high normalized crosscorrelation value. So, in effect, {; can be considered
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Figure 3.6: Flow Chart of the Crosscorrelation Block of the Signal Transfor-
mation Phase Augmented with Adaptive Threshold Setting

to be an approximate value for the pitch period, or a pseudo pitch period value.

Using fixed threshold values for the aforementioned thresholds has the disad-
vantage that this value does not change as the characteristics of the signal or the
periodicity in the signal either becomes stronger and more prominent, or weakens.
A solution to this would be the introduction of a crosscorrelation vector maxima
threshold value; a dynamic variable which is set by augmenting the flow dia-
gram shown in figure 3.4 to that shown in figure 3.6. When the crosscorrelation
vector generation algorithm begins, the threshold is initially set to 0.85 so that
relatively high crosscorrelation values, due to brief noise bursts or locally periodic

disturbances in the signal, are not picked up and tracked. Once a maxima in the
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crosscorrelation vector exceeds this initial threshold value of 0.85, the threshold for
both the crosscorrelation values of L and for the subsequent time index value are set
to the greater of 0.8 and the largest value in the crosscorrelation vector multiplied
by 0.89.

Having an adaptive threshold value permits low crosscorrelation values to be
considered as candidates in portions of the signal where there may be a formant
change or a lower signal to noise ratio which causes the similarity between two
adjacent segments to be reduced. As well, this adaptive threshold has the benefit
of reducing the aforementioned effects of relatively high crosscorrelation values
on the time index due to the presence of a very narrow bandwidth 5, by setting
the threshold to be a percentage of the maximum crosscorrelation value when two

“adjacent segments are very similar.

Despite the use of adaptive thresholds which attempt to minimize the occurrence
oy incorrect pseudo pitch period values, the characteristics of some cry signals
are such that there is usually very little decay between the pitch epoch and the
subsequent peak within the pitch period, unlike speech signals, where this decay
is appreciable. The rate of decay is inversely proportional to the bandwidth of the
highest energy formant [O’Shaughnessy, 19871, which for cries is almost always F7.
Furthermore, the method of proclaiming the first {; whose crosscorrelation value
exceeds the threshold as the pseudo pitch period does not completely eliminate the
occurrence of errors. In fact, for very narrow bandwidth F values in cry utterances,
this method still leads to numerous gross pitch errors, that is, the pseudo pitch
period is either twice or half the true value. This is clearly unacceptable if accurate

7y extraction is required.

A number of journal papers published over the years have attempted to address
the problem of gross pitch errors by beginning to track a certain pitch period value
in the vicinity of the previous pitch period value, once others have been found

for a number of consecutive time indexes or frames [Hess, 1976, Markel, 1972a,
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Medan et al., 1991]. This works well for the majority of speech signals, since a
given fy value is usually within £25% of the previous value. This is not the case for
infant cry vocalizations which can abruptly change or have double harmonic break
episodes present [Wasz-Héckert et al., 1968]. Consequently, further processing for
these crosscorrelation vectors considered as a group is necessary in order to obtain

the desired accuracy.

During episodes where the crosscorrelation maxima for a given vector or series
of vectors are all below the threshold, be it due to a the occurrence of a dysphonic,
silence, or ambient noise interval, the time index will be advanced according to the
lag value corresponding to the crosscorrelation maxima with the largest value for

that vector. This procedure can be identified on the left-hand side of figure 3.6.

3.1.3 Grouping of the Crosscorrelation Vectors

The crosscorrelation vectors generated from the signal s(n) over the length of the
recording can be placed together in a 2-dimensional manner similar to that in which
fast Fourier transform vectors of successive signa! segments are placed together
for the generation of a spectrogram. This concatenation of crosscorrelation vectors
yields a matrix of lag versus time where the entries in this matrix represent the
crosscorrelation value of a specific lag value at a specific time index. This allows
the progression of the crosscorrelation vector maxima, which can be considered as

being pitch period candidates, to be tracked cver time.

By using the observations regarding the crosscorrelation maxima made in the
previous section, it is expected that the actual pitch period lag value will be con-
tained in one of the first few lag values in L, whose crosscorrelation maxima excead
the threshold, as the lag values are traversed from low values (high frequency) to
high values (low frequency). The lag values of subsequent maxima which exceed

the threshold, and which follow the true pitch period lag, represent sub-harmonics
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Figure 3.7: Plot of the Lag Values with the Largest Crosscorrelation Values
of either the fundamental frequency period or the first formant period.

Identifying the lag where the first maxima exceeds the threshold in the cross-
correlation vector as being the pitch period, as has been suggested by some re-
searchers, yields good results for speech signals, since high-energy formant values
typically have large bandwidths. Hence crosscorrelation vector maxima due to
intra-pitch period oscillations fall below threshold values and are eliminated from
further considerations [De Mori and Omologo, 1993]. This observation is not true
for some cry signals however, and so this heuristic is not useful for accurate pitch

period determination for this class of signals.

One observation made over the course of examining numerous crosscorrelation
vectors for a large number of cry utterances, was that the crosscorrelation value
of the pitch period lag will be the largest of all the other maxima values for the
majority of time indexes in a given section of an utterance, where the pitch period
values will be within £25% of the previous pitch period value at the previous time
index. Although this observation does not preclude rapid and abrupt changes in
the pitch period values of an utterance, it does imply that once the pitch period
changes in a cry, it does so for a number of periods, not only for one or two pitch

periods.
An example of this observation is shown in figure 3.7. The lag values corre-
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sponding to the largest of the crosscorrelation maxima values in the vectors change
abruptly and unpredictably, leading to numerous pitch halving or doubling errors,
or gross pitch errors, if this technique were used to extract the pitch period, as
was described in the previous section. Figure 3.7 plots the progression of pitch pe-
riod values for a portion of a voiced utterance with an actual sitch period varying
between 32 to 34 samples, which corresponds to F; values between 500 Hz and
470.6 Hz. The post-processing of the set of crosscorrelrtion maxima L in order to
eliminate the effects of narrow bandwidth F; values which occur at values of 21+,
as done in the super-resolution pitch extraction method, also yields inconsistent
results, as will be shown in section 3.4. This necessitates the following level of post-
processing of the crosscorrelation vectors in order to extract /4 accurately from cry

utterances.

3.14 Post-Processing Phase

The observation that, in a given utterance, the majority of lag values corresponding
to the largest of the the crosscorrelation maxiraa in the sequence of crosscorrelation
vectors corresponds to the true pitch period lag can be exploited for the post-
processing phase. Once again, figure 3.7 illustrates that using the heuristic of
selecting the lag value where the crosscorrelation value is greatest as the value for
the pitch period leads to very inconsistent results. Despite these inconsistencies,
however, it is readily observable that the majority of the lag values in this voiced
section do indeed correspond to the true pitch period lag value of between 32 and
34 samples. In fact, of the 100 time indexes in figure 3.7, only 33 of these values
are incorrect, and actually correspond to sub-harmonics of fy which are integer

multiples of the pitch period.

Let us first define a pitch contour derived from a series of contiguous cross-
correlation maxima lag values, which are above the specified threshold, and have

subsequent lag values of the maxima lying within £25% of the current lag value. If
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a distance measure such as a simple sum of the crosscorrelation maxima values over
the length of the pitch period contour would be used, then at the end of the utter-
ance, this “contour” would have the highest distance value of all the other maxima
lag contours. Empirically, for a contour to be considered as a valid vocalization,
this should occur for an interval lasting at least 8 time indexes. Shorter interval
lengths are usuaily due to locally periodic noise bursts and are not considered as

valid markers of voiced events in th. utterance.

Inorder to achieve this distance measure and distance analysis previously shown
in the post-processing block of figure 3.1, the following steps, explained in flow

chart form in figure 3.8, must be performed.

First, the crosscorrelation vector matrix is thresholded twice using two different
thresholds: a high threshold value, {;;, and a low threshold value {;. In the first
pass, all crosscorrelation vector maxima that have values greater than ¢y = 0.8
are kept and stored in a matrix labeled My. Then in the subsequent pass, all
crosscorrelation peak values greater than {;, = 0.6 are kept and stored in a matrix
labeled M,,. The lag values where crosscorrelation maxima lie above the respective
thresholds in the M and M, matrices, are set to a value of i. At all other lag
values in these matrices, the entries are set to 0, leading to very sparse My and M,

matrices.

A number of different thresholds were tested for both stages of this peak ex-
traction process but this combination yielded the best results. These thresholds
allow crosscorrelation maxima lag values to be accepted when either a formant
change occurs, causing a brief drop in the crosscorrelation maxima values, but still
allowing the method to continue the pitch period track, during periods in the signal
where the cry utterance is particularly weak, or when there is ambient noise picked
up by the recording, all while successfully excluding “false starts” in a contour due

to a brief and locally periodic noise signal.

Once this thresholding has been performed, the values in the matrix thresholded
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Figure 3.8: Flow Chart of the Peak Picking and Distance Computation
Stages of the Post-Processing Phase of the Pitch Period Extractor

with the higher value, M};, are examined. Starting at the first time index, i = 1, the
algorithm increments the time index 7 until a non-zero entry is found . a lag { at
time 7 in My. This indicates that the maxima in the crosscorrelation vector matrix
lies above the high threshold value, ¢;;. Once one such lag is found, the algorithm
then begins to look for non-zero entries in M;; at subsequent time indexes in a
window whose limits are set as being £25% of the previous lag value. This range
of +25% represents the limit of possible period-to-period changes for human vocal
cords [Hess, 1983].

The tracking in the neighbourhood of a given lag value represents that tracking
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of a candidate pitch contour and this continues in My until there are no peaks
within the range of allowable pitch period lag values when it switches over to test,
M, the matrix thresholded with the low threshold, {;. As these peaks are visited
by the algorithm over the course of a contour, they are removed from both the high
and low thresholded matrices, M,;; and My, so that these same peaks will not be
considered in future passes by the algorithm. The tracked lag values in the contour

are placed in a third matrix, referred to as the confour matrix, denoted as D.

This process is repeated until all the non-zero entries in My have been visited,
and in this process, all contours lasting less than 8 consecutive time indexes are
discarded for the reasons described earlier, namely because these short contours

are usually due to short, locally periodic noise bursts.

As a given contour is tracked, a cumulative distance measure is computed for

each time index according to the following formula:
D(l £25%,i + 1) = (em(l £ 25%,i+ 1) + 1)2 + D(L,1) (3.4)

where cm(:) is the value of the crosscorrelation maxima occurring at a lag in a
neighbourhood of £25% of the current lag value at time instant 7, for the following
time instant i + 1. After all the non-zero entries in My have been visited, the

algorithm moves to the next and final portion of the post-processing phase.

3.1.5 Distance Processing

As alluded to in section 3.1.4, the calculatior. of a distance measure for accurate F,
extraction is necessary due to the fact that the lowest lag crosscorrelation maxima
which falls above a certain threshold is not necessarily the pitch period. Nor is
the pitch period the lag with the maximum crosscorrelation value. However, the
correct pitch period lag will have the majority of crosscorrelation value maximums

for the majority of time frames in a given contour. With this in mind, the distance
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Phase of the Pitch Extractor
measure of equation 3.4 was formulated. At the end of a contour in a voiced section
of a recording, the lag value corresponding to the contour with the largest distance
value will correspond to the true pitch period contour. Using this information
coupled with additional heuristics, the distance processing algorithm proceeds

with the distance analysis shown in figure 3.9.

The distance measures calculated for every lag of every non-zero entry at every
time index are stored in matrix D, referred to as the contour matrix. The algorithm
takes this matrix and begins from the last time index of the contour matrix and
proceeds backwards to the start of the matrix or the initial time index. Thus, it
should be noted that the following description of the algorithm is described from
the perspective of moving along the decreasing time index. The algorithm searches

for the presence of a crosscorrelation distance maxima, indicated by the occurrence
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of a non-zero valued entry in a given lag value for a particular time index. If
none exist for a particular time index, the algorithm proceeds backwards in time,
decrementing the time index counter until one such entry is found in the contour
matrix. If at any given time index, more than one non-zero entry is present, the
scores of the contours are checked, and the one with the highest distance score is

picked as the pitch period contour.

It should be noted tha' these contour “ends” are treated as a particular case. For
the case of extremely weak signals, periodicity only appears at lags corresponding
to multiples of the true pitch period. Typically, these nen-zero entries in the contour
matrix occurring at the end of a voiced section due to sub-harmeonic period values,
only last for a few indexes and never for more than 8 time indexes. So, once the first
non-zero lag entry is found for the first time at a given time index, the algorithm
then proceeds to examine the 8 earlier time indexes to observe if there are any other
contour peaks at lower lag values (higher frequency). If there are, the scores of the
contours are checked for sections of the contour for the length of the shorter of the
two contours being comparer’. The one with the maximum score is chosen to be
the winning contour. Tracking of that lag value initiates from this point, and the
other contours with iower scores are discarded. The lag which is tracked from this

point represents the true pitch period contour.

The algorithm then proceeds by moving backwards in time, by decreasing the
time index value in order to traverse the matrix D. While tracking a given contour,
one of the following three events may occur: the current contour being tracked
ends, a new contour appears at a lower lag value (higher frequency), or a new

contour appears at a larger lag value (lower frequency).

The first event represents the start of the utterance and the point from which the
- algorithm proceeds, looking for other peak contours as it does when the algorithm
first begins. The second event represents the appearance of a contour at a lower lag

value, which could be the result of a return to the “true” pitch period value after a
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double harmonic break episode, or due to the occurrence of a narrow bandwidth
first formant, Iy, which occurs at multiple of the true Fp, in that particular time
instant in the utterance. The score of the new contour is then checked against that
of the current contour for the length of the shorter of the two contours. If the
score of the new contour never exceeds the score of the current contour for the
length of the shorter of the two contours, then the new contour is due to a strong,
narrow bandwidth /1 effect, and is discarded. If the score of the new contour goes
above that of the current contour, then, the new contour represents the end of the
“true” pitch period lag and the current contour represents a double harmonic break

episode. Tracking then resumes about the new contour.

The third event occurs during a double harmonic break episode, where
the period of the vocal cord vibrations essentially doubles, which corresponds
to a halving of ;. This represents a return to the true pitch value after
one of the aforementioned episodes. These types of episodes are common in
certain types of cries, including pain and some other physiological disorders
[Wasz-Hockert et al., 1968, Wasz-Héckert et al., 1985]. For adults, the occurrence
of these types of events are not very common, but their occurrence may be due to
the presence of abnormal growths on the vocal cords [Kasuya et al., 1983]. For this
type of event, when the current contour ends and another is present at a greater
lag value (lower frequency), the algorithm begins tracking about the new contour,

looking once again for the occurrence of one of these three events.

Dysphonic episodes, where an energy smearing occurs across the entire fre-
quency band and no clear harmonics are present in this portion of the vocalization,
commonly occur in pain cries as well. A spectrogram of an utterance containing
a dysphonic episode can be seen in figure 3.10. In this figure, dysphonia can been
in the interval from time 0.03 seconds to 0.15 seconds where the clear harmonic
peaks, denoted by the dark bands occurring prior to and following the dysphonic

episode disappear, and are replaced by a noise-like spectrum.
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Figure 3,10: Spectrogram of a Cry Utterance Containing a Dysphonic
Episode
During such episodes, the algorithm would proceed as follows. Since there
is no periodicity present during dysphonic episodes, the crosscorrelation values
will, for the most part, fall below the low maxima threshold value of t, = 0.6,
and, with a few erratic exceptions, will remain below the high maxima threshold
of iy = 0.8. In the event that there are a few maxima in this type of episode
which are within the same neighbourhood of a particular lag value, the duration
of these contours will be very short in duration, lasting only a few time indexes,
but which will always last less than 8 time indexes, as previously mentioned.
Consequently, these contours will be removed during the crosscorrelation maxima

post-processing stage described earlier in: section 3.1.4.

What results following this distance analysis part of the post-processing stage
are non-zero values in the contour matrix D at particular lags and time indexes,
which correspond to the true pitch period values. This implies that for any given
time index, there will be at most, only one non-zeroentry. The lag at which the non-
zero entry occurs, corresponds to the pitch period for that time index. The results of
this processing applied to some test cry utterances will be illustrated in section 3.4,

and compared with other popular pitch extraction routines in section 3.2.
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3.1.6 Implementation and Computational Considerations

The code for the implementation of the pitch extraction algorithm described in
the previous section was implemented using versions 4.0a to 4.2a of the high-
performance numeric computation and visualization software MATLAB, devel-
oped by the Mathworks Incorporated [Mat, 1992]. MATLAB stands for MATrix
LABoratory and supplies a number of numerical analysis, signal processing, and
graphics rendering routines in an interactive environment. It is also possible to
call MATLAB from inside “C” or FORTRAN programs using a series of function
calls, thus allowing a fast computational engine to be incorporated as part of an
an external application program. Once a MATLAB routine has been fully tested

and debugged, it can be compiled in a pseudo-C format providing links to external

functions for even faster execution.

The fundamental frequency extraction routines described in the previous sec-
tions were implemented using three separate programs. One routine performs
the signal transformation phase of sections 3.1.2 and 3.1.3, calculating the cross-
correlation vectors, and grouping them into a matrix which is indexed in time.
This routine was implemented using approximately 300 lines of MATLAB code.
Another routine performs the post-processing task of the peak-picking and dis-
tance contour calculation described in section 3.1.4. The third routine performs
the distance analysis and the final pitch period determination process described
in section 3.1.5. The latter two routines are implemented in 150 and 135 lines of
MATLAB code respectively.

Computationally speaking, the method, especially the signal transformation
phase, is particularly intensive. The post-processing stages of the crosscorrelation
vector matrix are quite fast relative to the signal transformation portion of the
method. Intuitively, this can be understoocd by the fact that for a given time index,
the computation of the normalized crosscorrelation requires O( N) computations,

where N corresponds to the number of lags in the expected range of pitch period
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values, which for infant cries, is especially large, as was previously mentioned.

As well, the length of time required to generate the sequence of crosscorrelation
vectors depends not only on the length of the utterance, but also depends on
the duration of the voiced portions in a particular recording, and what the pitch
periods of the voiced portions are. Since the time index for the crosscorrelation
vector calculation advances in time increments related to the pitch period of that
portion of the cry signal, an utterance with a low fundamental frequency will be
traversed much more rapidly than one with a much higher pitch, since one pitch
period represents a larger increment in the time index for the latter case than for

the forrmer.

This same is also true when considering portions of recordings where there are
long segments of silence or noise. In these cases, the time index is incremented by
the lag value for which the normalized crosscorrelation function was the largest,
irrespective of whether or not this value exceeded the threshold value. For portions
where there may be locally periodic noise bursts with relatively high frequency val-
ues, the method will move more slowly across these potions of the recording than
it will along silent portions, where the larger maxima values in the crosscorrelation

vector occur at larger lag values,

The subsequent post-processing handles the crosscorrelation vector matrix, and
thus the time required to complete the pitch period extraction is dependent upon
the number of crosscorrelation vectors in the matrix, /. The peak-picking process
requires O(N 1), as does the distance analysis process, which finally yields the pitch

period values for a given recording.

With all the above in mind, it is still be useful to discuss some typical computa-
tional times in order to illustrate the typical time required to pr <essa cry recording.
Using the experimental set-up described in section 3.3 and the aforementioned rou-
tines, a cry recording lasting 3 seconds with voiced portions with an average pitch

period of approximately 32 samples (500 Hz) lasting for about 2.5 seconds requires
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approximately 3 minutes and 30 seconds in the signal transformation phase, and 40
seconds in the post-processing phase, of which 30 seconds are spent thresholding
and calculating the distance values for the contour matrix, and the final 10 seconds

are spent in the distance analysis portion of this final phase.

The current implementaticn, and the very nature of this processing method,
precludes a real-time implementation, although some improvements in processing
speed are suggested in section 5.1. Despite the non real-time nature of this method,
and the seemingly intensive nature of the computations performed during its exe-
cution, even without the proposed :mprovements for increased speed mentioned
in section 5.1.1, still requires less time, provides better resolution, and more impor-
tantly, more accuracy than the more popular Fy extraction techniques which have
been borrowed from the speech domain, and applied to infant cry utterances. This

will be illustrated in section 3.4 and discussed in section 3.5.

3.2 Comparison with Other Methods

Prior to the design and development of the improved crosscorrelation vector-
based fundamental frequency extraction method described in section 3.1, a num-
ber of the classical more popular, and more successful of the methods used
for fundamental frequency extraction for adult speech signals, which operate
only on the input signal, were implemented and tested. In this section, the
results of these methods applied to infant cry vocalizations are compared to
the improved crosscorrelation vector-based method. First, however, some back-
ground on the methods implemented and tested for comparative purposes will
be given. These methods are the linear predictive (LPC) residual for Fy estima-
tion [Maksym, 1973] and it’s popular variant, the spectral inverse filter track-
ing (SIFT) algorithm [Markel, 1973], cepstral pitch extraction [Noll, 1967}, the
harmonic sieve Fy extraction routine [Sluyter et al., 1982), spectral flattening by

clipping the speech signal {Sondhi, 1968], correlogram-based pitch extraction
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[Slaney and Lyon, 1990], and the crosscorrelation-based super-resolution pitch de-
termination method [Medan et al., 1991]. The following sub-sections briefly de-
scribe each of these methods, and outlining the problems that these methods en-
counter when processing infant cry signals, as these issues have notbeen previously

discussed in any great depth or published in the literature.

3.2.1 Linear Predictive Coding (LPC) and the Simplified Inverse
Filter Tracking (SIFT) Algorithms

Overview of LPC

Linear predictive coding (LPC) is one of the most popular speech analysis and fun-
damental frequency exiraction methods and it has also been used in speech coding
applications as well [Reddy and Swamy, 1984]. The underlying reason behind the
popularity of LPC is due to its accuracy in representing the spectral characteristics
of the input signal, and to the relatively simple computations required to accom-
plish this task. LPC assumes that the speech signal to be modelled is generated by
an all pole filter, which represents the vocal tract, excited by a periodic pulse train,
which represents the glottal pulses produced from the vocal cords. The all-pole
assumption does not hold if there are zeros in the spectrum due to nasal phonemes
in speech or from to unvoiced sounds [O’Shaughnessy, 1987]. Nevertheless, this
all-pole simplification is not a major source of errors for the majority of speech

signals.

The presumption behind the speech production process in LPC is that an exci-

tation source U(z) excites an all pole shaping filter

1

H(z) = ———
14 E akz""
k=1

, {3.5)
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yielding an output speech signal 5(=), which is similar to the actual speech output
S(z) in a least-square error sense. For voiced sounds, excitation source {/(z) is
viewed as being a uniform sample pulse train. In order to obtain an estimate
of H(z), for a given input frame of data, the speech signal is considered to be
stationary within a given analysis frame. In order to determine the LPC coefficients,
ax, one of two methods can be used; the least-squares autocorrelation method, or
the least-squares covariance method [Markel and Gray Jr., 1976]. Because of its
greater simplicity, the least squares autocorrelation method is the one which is

most commonly used to determine the LPC coefficients.

When determining the order of the poles, p, tsed to model the spectrum of
the input frame, the following is taken into consideration. Typically, two poles
are required to model each formant resonance of the vocal tract, with two to four
additional poles used to model the zeros in the spectrum, so that voiced signals
can be matched with reasonably good accuracy. Unvoiced sections and silence,
however, result in a very poor spectral match, and this fact can be used to determine
which frames are voiced, and which are not [Atal and Rabiner, 1976]. To assist in
the modelling of the input speech frame, the spectrum of the input speech signal
is flattened using pre-emphasis prior to LPC analysis. This enables the higher
frequency formants to be modelled by effectively reducing the dynamic range of

the input spectrum, countering the attenuating effect of the vocal tract at higher

frequencies.

After the spectrum of an input speech frame has been modelled and the LPC
coefficients, a;, determined, the input speech samples can then be inverse filtered
through the all-pole filter. What emerges from this process is referred to a the
residual signal and contains either a periodic pulse train, if the signal is voiced,
or a noisy signal, otherwise. An autocorrelation can be performed on the residual
to determine if periodicity is present, and if so, what the period of the pulses is,

effectively determining the pitch period of the input frame.
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In order to save both computation time and to reduce predictor order, p, for the
purposes of pitch extraction, the input speech signal can be low-pass filtered and
decimated at a frequency value above the frequency of the first formant resonance
peak, so that for speech signals, a low-pass filter with a cut-off of about 1000 Hz is

usually used.

Decimation refers to the process of converting a signal from a given sampling
rate to a lower sampling rate. This process can be achieved using one of two general
methods. One way is to pass the signal through a digital to analogue converter,
filter the signal if necessary, and then resample the analogue signal at the desired
sampling rate. A second method is to perform the sampling rate conversion entirely
in the digital domain [Proakis and Manolakis, 1988].

The LPC modelling of the reduced bandwidth spectrum is then performed on the
reduced bandwidth signal. This process requires less poles to model this sole res-
onance in the input spectrum. The low-passed input signal is then inverse filtered
and then an autocorrelation is taken of this residual. This method is commonly
know as the simplified inverse filter tracking (SIFT) algorithm [Markel, 1972b].

Problems with LPC and Infant Cry Signals

As has already been mentioned, this method is an especially popular and very
successful method for pitch extraction of adult speech. As was mentioned in
section 2.1 of chapter 2, many improvements to this method have been proposed
since this method was first introduced in 1972. Despite these improvements, its
use on infant cry signals is not as successful as it is for speech, and this is due
to a number of reasons. First, this method assumes and requires that the input
signal be stationary within a given frame, and that there be approximately three or
four pitch periods per input frame. Hence a frame size must be chosen which can
accommodate the range of expected pitch periods while not containing too high a

number of pitch periods so that the stationarity assumption no longer holds.
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For adult speech, this is not a problem since the fundamental frequency range
is mostly limited to values between 60 Hz and 300 Hz (16 ms to 3 ms). This range
of Fy can be accommodated by a 48 ms window without violating stationarity. For
infant cry signals, however, the range of Iy can go from values as low as 100 Hz to
values in excess of 2500 iz (10 ms to 0.4 ms). A window which would contain 3
pitch periods of an utterance with an /5 of 100 Hz would also contain 75 periods
of an utterance with and F, of 2200 Hz. In the latter case, it is clear that stationarity
cannot be assumed, and because of this, the method would yield an average value
of the pitch periods contained within the window or a grossly incorrect value due
to amplitude variations across such a large range of values. Any small variations
in the pitch periods contained within the window or frame would be lost to these
undesirable effects. Consequently, no one winc'cw or frame size can accommodate
the wide range of expected Fp values without either violating stationarity, or risk
having too few samples inside a given window when the fundamental frequency
is low. Nevertheless, a fixed window size based on the frequency range of the
Fy values of a particular utterance was used for experimental purposes, in order
to evaluate the cperation of this method on infant cries, even if, in an automated

system, this sort of “adaptive window sizing” could not be performed.

Another problem with LPC when used on infant cry signals is the determination
of the number of pnles required to model the cry spectrum. Based on infant
vocal tract size, the first, second, and third formant values are expected to occur
at about 1100 Hz, 3300 Hz, and 5500 Hz respectively [Golub and Corwin, 1985].
Consequently, given the bandwidth of the cry recordings described in section 3.3,
ten poles were used to mudel the vocal tract shape; six for the three expected
formant peaks, with the remaining four poles used to model any zeros occurring in
the input spectrum. If the [ in a given analysis frame is in the vicinity of 400 Hz,
then there are a sufficient number of harmonic peaks under each formant so that
the least-square error modelling of the spectrum will indeed track the spectral

envelope, and not the harmonic peaks [O’Shaughnessy, 1987]. However, if the
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for Cries with an [ value of about 500 Hz and 1300 Hz

value of Fp increases much beyond this value, this will no longer be the case,
and the poles will model the harmonic peaks since the number of poles p will
be approximately equal to the number of harmonics in the spectrum. Since the
effect of these harmonic peaks will be removed from the input spectrum during
the inverse filtering process, the residual will not show' the presence of a periodic

pulse train, as is expected for a voiced signal.

Figure 3.11 illustrates this point. Although both inverse filtered residual signals

are rather “noisy”, the one for the utterance with the higher Fy value, shown in
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figure 3.11(d), shows no clear periodicity since the poles in the LPC spectrum match
the two harmonics of the pre-emphasized spectrum. For the utterance with the
lower Fy value, however, the poles model the resonant frequencies in the spectrum
of the input signal frame, as shown in figure 3.11(a). Consequently, the inverse
filtered residual of figure 3.11(b) shows sharp peaks corresponding to the pitch
period starting at approximately sample 50.

Decreasing the number of poles only postpones the fundamental frequency
value at which this problem will occur. For signals with F values greater than
1000 Hz, there will only be either three or four harmonics present in the spectrum,
dus to the attenuating effects of the vocal tract. In these cases, even if the number
of poles are reduced from ten, as mentioned above, to four, to accommodate these
higher frequency signals, the spectral modelling will follow the harmonics, and
not the spectral envelope, and, in turn, will reuwove all traces of a periodic pulse
train from the LPC residual.

3.2.2 Cepstral Pitch Extraction
Overview of the Cepstral Method

Cepstral analysis is another way of deconvolving the filter and cxcitation compo-
nents of a speech signal [Noll, 1967]. This process transforms the product of two
signals into a sum of {wo signals. If the two signals are very different spectrally,

then it is possible to separate them using a simple linear filtering operation.

For speech signals the two components of interest are the excitation and vo-
cal tract response, for which the speech signa! s(n) can be viewed as being the
convolution of the excitation e(n), and the vocal tract tract response »{n). In the
frequency domain S(z) = V{(2)E(z), so if we take the logarithm of S(z) we get
log(5(2)) = log(V(z)) + log( £(z)). The inverse transform of log(5(z)) is defined
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as the cepstrum, also referred to as 3(n), where the caret denotes the cepstra. So
§(n) = #(n) + &(n), with #(n) decaying to zero over the first few milliseconds,
inversely proportional to the resonant frequencies, or formants, of the vocal tract,
and &(n) appearing as a periodic pulse train at multiples of the pitch period. The
cepstrum 3(n) is a complex-valued quantity but information regarding the peri-
odicity in the input signal can be derived from using only the real portion of the

inverse transform of the log spectrum, or real(3(b)).

For adult male speech, for example, the first excitation peak would be expected
to appear in the range of 5 ms to 16 ms of the cepstrum, which corresponds to /7
values from 200 Hz to 60 Hz respectively. The vocal tract excitation would end
in the cepstrum at a time approximately equal to the inverse of the first formant,
which atits lowest value occurs at about 3.5 ms (285 Hz). In this case, then, the vocal
tract and excitation sources can be separated by considering values occurring in the
cepstrum from 0 ms to 4.5 ms, and attributing these contributions to the vocal tract
response, and considering the occurrence of the first sharp peak occurring after

4.5 ms as being the pitch period. This linear separation process is called liftering.

Problems with Cepstral Processing and Infant Cry Signals

Since the cepstrum also uses a fixed window of signal samples on which it performs
the required processing, it is subject to the same considerations regarding window
size as were mentionec: in the preceding section. As is the case with speech
which contains 7 values higher, than, say 400 Hz, as is the case for female speech
or children’s speech, the separatidn between the excitation and and vocal tract
response conicibutions in the cepstrum is not so neat or clear cut. The lowest
of the formant ﬁ'tequenq values, namely [, has an approximate value of about
1100 Hz for infant cries, which would correspond to a peak occurring at 0.9 ms
in the cepstrum. Conscquently, tased on the discussion in the previous sub-

subsection, values of the cepstrum between 0 ms and 1 ms would be considered
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Figure 3.12: Signal Segment and Its Corresponding Real Cepstrum

as containing the vocal tract components. Thus, in cases where the I in the cry
being analyzed falls below 1000 Hz, the liftering operation can easily separate the
vocal tract and excitation components. If the /4 were to go above 1000 Hz, as
commonly occurs with cries, the two components cannot be separated through
liftering since the excitation contribution will be contained within the range where

values corresponding to the vocal tract contribution are expected to be found.

If the lifter separating the two components in the cepstrum was set at 0.45 ms,
to handle the expected range of pitch period values for infant cry utterances, then
the first sharp peak occurring above this time threshold would be considered as
corresponding to the pitch period. Since, however, the area between 0.45 ms
and 0.9 ms falls in the range of the inverse of the first formant frequency, it is
possible that for certain cries where /7 has a very narrow bandwidth and contains
a relatively large amount energy, that this component will have a very sharp peak in
the cepstrum, and will consequently be tagged as corresponding to the pitch period
or the excitation component of the signal. In similar cases, it is very likely that vocal
tract responses be incorrectly chosen as the pitch period, and as such, this method
only works reliably for cry utterances with £y values less than 1000 Hz, making
it unsuitable for pitch period extraction from infant cries in general. Figure 3.12

shows a signal segment and its corresponding real cepstrum, which clearly shows
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the occurrence of a sharp peak at sample 34, corresponding to a period of 2.125 ms
or an Fy of 470.6 Hz.

Also, some confusion exists as to what exactly constitutes a sharp cepstral peak,
since there is no clear correlation between the strength of a cepstral peak and

whether the segment under consideration is voiced or not.

3.2.3 The Harmonic Sieve
Overview of Method

This method, originally proposed by Goldstein [Goldstein, 1973], but imple-
mented by Duifhuis, Willems and Sluyter [Duifhuis et al.,, 1982], uses a har-
monic sieve preceded by an implementation of Goldstein’s theory of hearing
|Goldstein et al., 1978], in order determine the best fit for an input stimuli con-
taining only a few spectral components, using a maximum likelihood criterion.
Basically, the pitch determination method consists of two elements: a spectral an-
alyzer that detects and measures the frequency of the harmonic components, and

a harmonic pattern recognizer.

First, the fast Fourier transform (FFT) of a given input frame of signal samples
is presented for the subsequent spectral analysis. Next, the effect of frequency
masking of the spectral components on each uther is determined based on the
Goldstein theory of hearing. In this portion of the method, two thresholds are used
for the purpose of determining if and which frequency components are masked
by other components in the spectrum, or if certain components are too weak to be
considered altogether. The latter threshold is an absolute threshold, which reflects
the limit of audibility, and is set to a value of 26 dB below the highest peak level
in the spectrum of the input frame. The former, however, is a relative threshold,

which takes effect with respect to the amplitu.de of the other spectral components,
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Figure 3.13: Power Spectrum with Goldstein’s Theory of Hearing Masking

Thresholds
and is based on the psychophysical masking threshold. This threshold is set as
follows; for a given spectral component, the masking threshold is set to a value of
90 dB/octave on the low frequency side of the component, and to 45 dB/octave on
the high frequency side. All spectral components falling under these thresholds
are considered as being masked by the component under consideration and are
thus removed from the comp nent set. These threshold values are considered to

roughly correspond to the critical band filter characteristics of the human ear.

Figure 3.13 shows a power spectrum of a cry utterance signal segment with
the relative masking threshold lines derived from the given spectral peaks. Note
that the fourth and fifth harmonics in the spectrum fall under the 45 dB/octave
masking threshold on the high frequency side of the third harmonic and would
thus be removed from the component set which would be presented to the sieve.
The sixth and seventh harmonic fall under the absolute threshold representing the

limit of audibility.

Once all the spectral components have been processed by this initial stage, the
remaining components are sent to the harmonic sieve, in order to determine which

of these components are the true harmonics for a given fundamental frequency can-
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didate value in the sieve, and which are spurious. The sieve contains “meshes” of
bandwidth proportional to the value of their center frequencies, and, the “meshes”,
correspondingly, get wider as their center frequency increases, al'owing for slight
variations in the fundamental frequency of the signal contained within a given
input frame to be tolerated. The lowest center frequency values of the meshes in
the sieve span the range of expected frequency values for the input signal, with
step sizes being less than the value of the mesh width so that no portion of the

frequency scale is missed during this sieving process.

For each of the sieves, which are characterized by their fundamental frequency
value, the number and location of components which fall through the sieve are
checked, and are labelled according to their candidate harmonic number. Based on
this set of candidate harmonic numbers for all the values in the expected I range,
it is then decided which of the candidate harmonics correspond to the optimum

set.

This is determined by taking a normalized distance measure for all the harmonic
sets which is in turn calculated by taking the number of the highest candidate
harmonic, or spectral component, adding the number of input harmonics, and
dividing by the number of classified harmonic components in the spectrum. The
number of unclassified spectral components, or components which do not “fall
through” a given sieve, increases the distance value for sieves centered at frequency

multiples of the true .

Problems with Harmonic Sieving and Infant Cry Signals

The problem with this method when applied to infant infant cry signals is, first and
foremost, the number of computations involved for a given input signal frame for
the range of expected Fp values. Also a number of frequency errors arise from the
Goldstein theory of hearing pre-processing phase of this method when the mask-

ing of the fundamental frequency component occurs, due to particularly strong

78



3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

formant values, which in turn increase the amplitude of the harmonic peak located
at this particular frequency. This has the effect of decreasing the score for the sieve
centered at the correct Fy value, whereas sieves centered at multiples of Iy, espe-
cially 2/, being chosen as the correct /iy value. This anomaly was also observed
by Duifhuis, Willems and Sluyter, the researchers who originally implemented this
method, when dealing with speech signals with similar characteristics to those
described above. Their solution to this problem was to use tracking to follow a cer-
tain pitch value, as long as its distance score remained below a certain threshold.
In addition to decreasing the number of gross pitch errors, it also decreases the
number of calculations required by limiting the range of frequencies to be sieved

while a specific Fy is tracked.

This solution works for speech since the values of [y normally remain around
the value of the preceding /7 value, obtained from the previous input signal frame,
Such an assumption cannot be made for cry utterances, however, especially since
for certain types of cry utterances double harmonic break episodes commonly
occur. Although this method is novel in the way that it uses the theory of hearing
formulated by Goldstein to improve the “standard” harmonic sieve or matching

process, it is still not an optimal solution for infant cry signals.

3.2.4 Pitch Extraction by Spectral Flattening

Overview of Method

Another method popular due to the relative simplicity of the computations required
and its ability to enhance the periodicity in the signal is the clipping autocorrela-
tion method, and the variations of this technique, which were originally proposed
by Sondhi [Sondhi, 1968]. In his paper, Sondhi describes three different spectral
flattening methods, namely spectrum flattening followed by a minimum phase

phase correction for synchronizaticn of the harmonics, spectrum flattening fol-
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Figure 3.14: Signal Section and Clipped Signal Section

lowed by autocorrelation, and non-linear distortion followed by autocorrelation.
Of these three methods, the latter two are described as being the best suited for the
fundamental frequency extraction of speech due to the simplicity of the required
computations, relative to the first method, as well as the superior ability of this
method to distinguish between formant peaks and pitch epoch peaks following

the autocorrelation of the non-linearly distorted signal.

Aside from the simplicity of this method which makes it especially appealing,
it is also suitable for a real-time implementation. In Sondhi’s description of the
method, a 30 ms segment of speech is taken, and in every 5 ms portion of the signal,
the maximum absolute value of the signal, ag, is found, and all values between
tkag are removed from the signal. A typical value of & is 0.3. Figure 3.14 shows
a signal segment and the signal segment subsequent to the clipping operation.
Following this “clipping” operation, the autocorrelation of the clipped signal is
performed. The lag of the first crosscorrelation maxima found which exceeds a
certain threshold is chosen as corresponding to the pitch period. As subsequent
frames are processed, this threshold is progressively reduced for maxima values in
the vicinity of lag values of the previous pitch period value. The original threshold

is restored if voicing ends, of if the pitch changes abruptly.
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Problems with Spectral Flattening and Infant Cry Utterances

As is the case with the other frame-based methods mentioned in the previous sub-
sections, the issue of frame size is once again an important consideration. Here,
however, there is an additional issue regarding the length of time within a given
frame in which the maximum absolute signal value, ao, will be determined. As
well, the value of the clipping threshold k is also an issue that requires careful
consideration. Some infant cries have important variations in amplitude between
pitch periods, so that a certain threshold value would include these all the peaks
for a particular value of &, but exclude other lower amplitude peaks, for example,

in other sections cf the input frame, leading to pitch halving errors.

Moreover, as was mentioned in section 3.1.2, some cry signals have a very
small decay in the amplitude between the pitch epoch and the subsequent periodic
peak due to a high energy, narrow bandwidth formant occurring at a frequency
approximately equal to 2/%, something which does not normally appear in adult
speech signals. Using a clipping value threshold, &, of 0.3 would still include the
these I peaks in the clipped signal. Thus, the use of the threshold and the segment
range in which it is to be applied over, should be adaptive, which implies having

a priori knowledge of the signal characteristics, which is not possible.

Consequently, although it is a simple and effective method for speech signals,
it can only be used on cry signals with a limited Fj range. Using one method with
one frame size and threshold for the expected range of F; values works with some

I4 values but compromises performance of other values.
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3.2.5 Correlogram-Based Pitch Extraction

Overview of Method

This method was developed by Malcolm Slaney in the research lab of Ap-
ple Computer in California [Slaney atid Lyon, 1990). The implementation of the
correlogram-based pitch extraction algorithm, available through an anonymous
ftp site on the Internet, consists of a number of different MATLAB files, each
of which performs a different function in the algorithm [Slaney, 1994]. Basically,
Slaney’s pitch detector is based on Licklider’s “Duplex Theory” of pitch perception,
which is believed to accurately model how humans perceive pitch [Seneff, 1978].
This pitch detector combines a cochlear model, which separates the signal into
different frequency bands, which is then followed by a bank of autocorrelators,
which perform independent autocorrelation for each channel. The outputs of the
individual channels are combined in a visual manner, called a correlogram, which is
then subsequently filtered, non-linearly enhanced, and summed across all channels

before a pitch estimate is formed from this information.

An example of a cry utterance segment with pitch period of approximately 35

samples (640 Hz) and its corresponding correlogram is shown in figure 3.15.

Problems with Correlogram-Based Pitch Extraction and Cry Utterances

Once again, as has been the case for all the other methods discussed in this section,
this method is also faced with appropriate frame size concerns, and since no one
size can accommodate the entire range of expected frequency values, the frame
size must be tailored to the characteristics of the cry recording being analyzed.
The problem with this method lies in its computational complexity, due to the
complex implementation of the cochlear processing stage. This portion of the
processing requires a significant amount of time for the calculation of /g on a given

segment or frame of data. For example, processing of a 16 ms window of data (256
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Figure 3.15: Cry Utterance Segment and Corresponding Correlogram

samples of a signal sampled at 16 kHz), this algorithm requires over 30 seconds
on a SPARC 10+ to calculate a pitch candidate value. If consecutive frames of
16 ms each overlapping by 50% with the previous frame samples are taken for
a 5 second utterance, the algorithm requires approximately 2 hours to generate
pitch values for all the frames, compared to a time of just under 5 minutes for
the improved crosscorrelation vector-based method described in section 3.1. Due
to these prohibitive computation times, the algorithm by default uses no overlap,
and actually spaces subsequent frames by 1000 samples, which risks losing the
occurrence of some important transitions or events for cry utterances. As well,
this method is not free from the pitch halving or doubling errors present in other

methods, as will be shown when results are presented in section 3.4.

3.2.6 Super-Resolution Pitch Extraction

Brief Overview of Method and Problems with Processing Cry Utterances

This method originally proposed by Medan, Yair, and Chazon [Medan et al., 1991],

and the signal transformation phase of the improved crosscorrelation vector based
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fundamental frequency extraction method presented in section 3.1.3, both use the
normalized crosscorrelation method as a means of computing a set of pitch can-
didates [Chung and Algazi, 1985). The algorithm presented by Medan, Yair, and
Chazon tracks the [, contour, however it does not make use of the crosscorrelation
vectors generated by the crosscorrelation computation. Tracking a specific pitch
period value begins after pitch period values for the previous four or five time
indexes are within £25% of the value of the previous candidate. This heuristic
performs well for speech, but fails for cry utterances, and yields a number of gross
pitch errors during diplophonic or double harmonic break episodes, as will be
shown in section 3.4. These events, as has previously been mentioned, are com-
mon in certain types of cry vocalizations, and it is important that these events be

properly handled by a given Fj extraction method.

Another method by De Mori and Omologo proposed a variation of Medan,
Yair, and Chazon's algorithm by making use of the crosscorrelation vectors result-
ing from the normalized crosscorrelation computations to calculate a cumulative
distance measure for the duration of the recording, using the observation that /4
contours for adult speech remain within the same neighbourhood, once a given
pitch period is found [De Mori and Omologo, 1993]. This algorithm, however, in-
crements the time index in fixed steps, not in increments corresponding to the most
likely pitch period candidate lag for a given time index. Once again, the algorithm
works well for speech; specifically for speech that does not have the occurrence of
diplophonic episodes, and this, in turn, leads to inconsistent results for diplophonic

or double harmonic break episodes in cry signals as well.

3.3 Data Set and Experimental Set-up

The data set used for the testing and validation of the pitch period extraction
methodology proposed in section 3.1 above consisted of 230 cry episodes recorded

at the Notre-Dame-de-Grace CLSC {Community Health Clinic) from sixteen two
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to six month old infants and 329 cry episodes recorded at the Royal Victoria Hos-
pital in Montreal from premature infants ranging in gestational age from 24 to 36
weeks. None of the infants involved in the study had a history of perinatal or
postnatal complications. All the parents of the infants gave their informed consent

to participate in this study.

For the data set consisting of infants of normal gestational age, the cry episodes
recorded were the results of one of three stimulus events: pain / distress from rou-
tine immunization procedure; fear/ startle from a jack-in-the-box; and anger / frus-
tration from a head restraint. For the premature infant data set, the cry episodes
recorded were also the result of one of three stimulus events: a needle stick in the
infant’s heel as part of a routine immunization procedure, a washing and disinfect-
ing of the heel with a cotton pad prior to the hell stick, and a gentle squeeze of the
heel.

All the cry vocalization recordings were made on a Sony TCM-500DEV audio
cassette recorder with an omni-directional Senheiser MKE2 microphone placed
10 centimeters away from the infant’s mouth. Once recorded, the signals were
then low-pass filtered to 8 kHz, prior to digitization using a 16 kHz sampling rate
and a 12-bit analogue-to-digital converter. These digitized recordings were then

transferred to a SPARC 10+ for further processing and analysis.

Prior to their use in the various Fp extraction routines tested, the recordings were
high-pass filtered using a 301 tap finite impulse response (FIR) filter with a cutoff
of 240 Hz designed using the Remez Exchange Algorithm provided by MATLAB
[Oppenheim and Schafer, 1975]. The motivation behind the use of an FIR filter
with numerous taps was to achieve zero frequency distortion, due to the inherent
linear phase characteristics of FIR filter., while achieving a stop-band attenuation
of approximately 30 dB [Proakis and Manolakis, 1988]. The frequency response of
the FIR high-pass filter is shown in figure 3.16 for the frequency range from 0 Hz
(DC) to 400 Hz. From 400 Hz to 8 kHz, the frequency response is flat at 0 dB.
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Figure 3.16: Frequency Response of FIR High-Pass Filter

Other high-pass filters were also investigated, namely Chebyshev type / and
type /] infinite impulse response (IIR) filters, because of the large stop band at-
tenuation and sharp filter roll-off achievable from these filters using a small filter
order. Due to the phase distortion inherent in IIR filters, their use was not pursued,
in the interest of minimizing signal distortion subsequent to filtering, and at the

expense of increasing the number of filter taps required by an order of magnitude.

Section 3.4.1 will present in more detail the files which will be used to compare

the results obtained by using the method proposed in section 3.1 with those of
section 3.2,

3.4 Results

This section compares the results of the methods presented in sections 3.2 with
the improved crosscorrelation vector-based pitch period extraction method of sec-
tion 3.1 on five different utterances by presenting both the extracted pitch tracks

and a table of error rates, broken down by error type, as generated by the re-
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spective methods. Since a comparison of pitch extraction methods for infant cry
vocalization has not previously been discussed or presented in the literature, a
corresponding treatment as to the limitations, shortcomings, and desired improve-
ments in existing methods have not been reported. Consequently, this section and
section 3.2 will attempt to rectify this fact while illustrating the improvements of

the improved crosscorrelation vector-based method presented in section 3.1.

This section begins with a description of the individual recordings used in the
pitch period extraction tests, displaying the spectrograms of these recordings and
providing a verbal description regarding the relevant features in these particular
files. Next, the implementation of the methods of section 3.2 is briefly discussed.
This is then followed by a presentation of the pitch contours extracted by the
methods which were presented in section 3.2 and the improved crosscorrelation
vector-based pitch extractor described in section 3.1. Error rates will then be

presented in tabular form for comparative purposes.

3.4.1 Recordings Used in the Evaluation

This section gives both an illustrative and descriptive treatment of the infant cry
recordings used for testing the various pitch extraction algorithms. Although
the set of five recordings presented here is by no means an exhaustive set, it is
representative of the type of vocalizations which are commonly found in the cries

of both premature infants and full-term neonates.

The files used for testing were:

1. A02004: An anger/frustration cry from a full-term infant,

2. A07104: A second anger/frustration cry from another full-term infant,
3. BO56ST: A pain/distress cry from a premature infant,

4. C12135Q3: A second, less painful, cry from a premature infant, and

5. P09102: A pain/distress cry from a full-term infant.
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Figure 3.17: Spectrogram of A02004 (An Anger Cry from a Full-Term Infant)

File A02004

The spectrogram of file A02004 is shown in figure 3.17. This file represents the
cry of a full-term infant uttered when its head was restrained, and is labelled as
being an anger or frustration cry. This recording contains two voiced utterances or
episodes. The first voiced utterance is characterized by a rather flat fundamental
frequency contour, with an initial [y value of approximately 485 Hz , with some
episodes of noise occurring at a number of points between the start and the end of
the utterance two seconds later. From the spectrogram, it can be seen that just after
the one second mark, the pitch decreases for about half a second beforebeginning to
increase once again. Approximately 0.25 seconds later, the pitch begins to decrease
until the end of the utterance. The second voiced utterance in this recording is
relatively brief, and begins with an initial /'y value of approximately 400 Hz. This
episode also follows a short rising and falling fundamental frequency pattern.
This file was selected to illustrate how the different methods would perform on

relatively smooth contours, punctuated with some episodes of ambient noise.

File A07104
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Figure 3.18: Spectrogram of A07104 (An Anger Cry from a Another Full-
Term Infant)

File A07104, whose spectrogram is shown in figure 3.18, corresponds to another
recording of an anger or frustration cry uttered by a fuil-term neonate. The char-
acteristics of this utterance are appreciably different from those of the previous
anger / frustration recording. This file contains two voiced utterances with high
fundamental frequency values. The first voiced episode features a rather rapid and
abrupt change from a value of about 1000 Hz to a value of about 800 Hz in pitch,
which is then followed by a section with a rapidly increasing Fp, which lasts until
the end of the utterance at the 0.3 second mark. The second utterance begins at
around 0.5 seconds with an [ of about 1250 Hz, and features a narrow bandwidth
", occurring at a frequency approximately equal to twice that of the fundamental
frequency, as indicated by the significantly darker colour of the second harmonic,
which lasts until the one second mark of the spectrogram. For the remainder of
the recording, the /7 value decreases in both value and bandwidth. This file was
selected to illustrate how the different pitch extraction methods would perform on
an utterance with an unusually high pitch and on utterances that have very little
decay between the pitch epoch peak and the subsequent peak in the signal due to
a narrow bandwidth formant with a frequency approximately equal to that of the

second harmonic.
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Figure 3.19: Spectrogram of B056ST (A Pain Cry from a Premature Infant)

File B056ST

The next recording uscd in tests was file BO56ST, and its spectrogram can be scen
in figure 3.19. This cry was recorded after a premature infant received an immu-
nization needle in its heel. As was the case for the previous two files, this file
also contains two voiced utterances. The first one begins at approximately the
0.15 second mark with a fundamental frequency of about 530 Hz which rapidly
increases to a value of about 640 Hz. For this initial portion of the first utterance,
the cry has a narrow bandwidth first formant occurring at a frequency of 2/, or
about 1300 Hz. Just prior to the 0.4 second mark, a double-harmonic break episode
begins, which is almost immediately followed at about the 0.45 second mark by
a brief dysphonic episode, where there is no periodicity present in the signal as
the vocal folds vibrate in a chaotic manner leading to a smear in the energy val-
ues across the spectrum. Following this brief dysphonic episode, at about the 0.5
second mark, the signal resumes its double harmonic break episode, where the /7
is essentially halved, until about the 0.65 second mark, with a brief return to the
original [ value just before the 0.6 second mark. Following this double harmonic
break episode, I returns to a value in the vicinity of 600 Hz, slowly decreasing
in value until the end of the episode at the 0.9 second mark. The second voiced
episode beginning at the 0.95 second mark consists of an inspiratory phonation

starting with an initial pitch of about 1500 Hz which decreases in value until the 1.1
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Figure 3.20: Spectrogram of C12135Q3 (A Pain Cry from Another Prema-
ture Infant)

second mark. This file was selected to illustrate how the different pitch extraction
methods would behave during and after a double-harmonic break episode, and on

an inspiratory phonation.

File C12135Q3

The fourth file in the set is C12135Q3 and its spectrogram is shown in figure 3.20.
This file contains the tail end of a vocalization followed by two complete episodes
uttered by a premature infant after its heel was squeezed. The recording begins
by catching the end of a phonation which has a fundamental frequency of about
640 Hz which decreases during its short duration from the start of the recording
to the 0.05 second mark. The second voiced utterance begins 0.3 seconds into the
recording with an [ of about 400 Hz and rapidly increases to a value of about
750 Hz. The Fy contour then varies rapidly until the end of the voiced episode,
about 1.25 seconds into the recording. The last voiced utterance begins shortly
after the 1.5 second mark and has similar /% characteristics to that of the previous
utterance, ending 2.3 seconds into the recording. This recording was selected to
illustrate how the different pitch extraction methods would behave on a file that

has very rapidly varying pitch values.
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Figure 3.21: Spectrogram of P09102 (A Pain Cry from a Full-Term Infant)

File P09102

The Jast file in the test set is P09102 has its spectrogram shown in figure 3.21. This
recording was made following the immunization of a full-term infant, and thus
represents a pain or distress cry. This recording begins with a brief portion of
phonation with an /4 of about 640 Hz. At about 0.125 seconds into the recording,
a long voiced utterance begins with a brief section containing a high fundamental
frequency, which then quickly drops to a value of about 727 Hz. The /9 contour
follows a slightly increasing slope until 0.5 seconds into the recording, at which
point the values start to decrease. This decrease lasts for about 0.25 seconds before
g begins to increase once again for another 0.25 seconds. After this, the values
decrease rapidly until the 1.6 second mark. Then, there is a final portion with
rising-falling /'y pattern which ends this voiced utterance shortly after the 2 second
mark. Shortly before the end of the recording another brief phonation occurs
with a double harmonic break episode at the start of the contour which is then
followed by a sharp increase to a value of twice the initial /. This recording
was selected to illustrate how the different pitch extraction routines would track
a relative smooth and stable [ contour preceded by a brief high /1 burst, and a

weak double harmonic break episode.
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3.4.2 Implementation of Pitch Extraction Methods

This subsection briefly presents the characteristics of the various elements used in
the pitch extraction routines of section 3.2, stating information such as the window
size, whether the signal was pre-emphasized or decimated prior to analysis, and
what method was used for voiced/unvoiced determination. All of the routines

were implemented using MATLAB.

Linear Predictive Coding

This method was implemented using about 115 lines of MATLAB code. The
signal was subject to pre-emphasis prior to analysis, and was segmented into fixed
windows each containing 256 samples, corresponding to a duration of 16 ms, each
of which was tapered using a Hamming window. Subsequent frames overlapped
by 66%. The spectrum of the Hamming windowed sections were modelled using
12 poles and the autocorrelation method. A particular frame was labelled as voiced

if the predictor error was less than 0.4, and unvoiced otherwise.

Simplified Inverse Filter Tracking (SIFT)

This method was implemented using about 240 lines of MATLAB code. The
original signal was low-pass filtered using a linear-phase finite impulse response
filter with a cut-off of just under 4 kHz and then decimated by 2. The decimated
signal was subject to pre-emphasis prior to analysis, and was segmented into fixed
windows each containing 128 samples, corresponding to a duration of 16 ms. Each
of these windows were tapered using a Hamming window, with subsequent frames
overlapping by 66%. The spectrum of the Hamming windowed sections were
modelled using 6 poles and the autocorrelation method. The method described by
Markel, which uses a combination of the voicing flags from previous segments and

the correlation values of the current frame, was implemented for voiced-unvoiced
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determination {Markel, 1973).

Cepstral Pitch Extraction

This method was implemented using about 90 lines of MATLAB code. The signal
was segmented into consecutive windows of 256 samples, corresponding to 16 ms
portions of the signal, which were also tapered using a Hamming window, with
subsequent windows overlapping by 50%. The real portion of the inverse Fourier
transformed log magnitude spectrum was used for the pitch determination process.
If the energy of a specific frame exceeded a value of 3.3 dB, the segment was labelled
as voiced. Otherwise, the segment was labeled as being unvoiced. This simple
voiced-unvoiced determination method was used since there is no clear correlation
between the value of a cepstral peak and whether or not a specific segment is voiced
or unvoiced [Noll, 1967].

Harmonic Sieve

The implementation of the harmonic sieve, preceded by an implementation of
Goldstein’s theory of hearing, was performed using 300 lines of MATLAB code.
The original 16 kHz sampled signal was low-pass filtered using a linear-phase finite
impulse response filter with a cut-off of just under 4 kHz and then decimated by 2.
The decimated signal was then divided into consecutive frameseach containing 128
samples, corresponding to a 16 ms duration, with subsequent frames overlapping
by 50%. All windows were tapered using a Hamming window. The method
was implemented as described by Duifhuis, Willems, and Sluyter and included an
implementation of their voiced-unvoiced determination method, which is based
on the score of the sieve with the lowest value representing the most-likely pitch
candidate [Duifhuis et al., 1982]. If the score is below a particular value, the segment

is labelled as voiced and is labelled as being unvoiced otherwise.
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Spectral Flattening Autocorrelation Method (SFAC)

The implementation of this method was done using 150 lines of MATLAB code. The
signal was segmented into windows each with a length of 256 samples, or 16 ms,
with subsequent windows overlapping by 66%. Since the voiced-to-unvoiced de-
termination method mentioned in section 3.2.4 led to numerous errors, an alternate
method of making this determination was adopted. If the energy of a particular
window was less than 3.0 dB, the window was labelled as unvoiced and was

labelled as voiced otherwise.

Correlogram-Based Pitch Extraction

This was implemented using the MATLAB routines in the “Auditory Toolbox”
developed by Slaney to perform the various processing stages of this method as
outlined in section 3.2.5 [Slaney, 1994]. The signal was segmented into 256 sample
windows which overlapped by 50%.

Super-Resolution Pitch Extraction

This method was implemented using 490 lines of MATLAB code as was described
in the paper by Medan, Yair, and Chazon [Medan et al., 1991]. Once the cross-
correlation value at a specific time index exceeded the adaptive threshold, it was
labelled as voiced, and was otherwise labelled as being unvoiced. To improve
the resolution of the pitch values extracted by this method, the pitch period was
interpolated between sample values, with subsequent frames being advanced by

the extracted pitch period, in samples.
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3.4.3 Error Analysis Results

This subsection illustrates the pitch contours extracted by the various pitch extrac-

tion methods on the five test files.

Figures 3.22 to 3.26 show the pitch contours extracted from the test files de-
scribed in section 3.4.1 using six methods borrowed from the speech domain which
were described in section 3.2 and whose implementation was presented in sec-
tion 3.4.2. The results for these methods are shown in sub-figures (a) to (f). The last
sub-figure in each of these figures, labelled (g), displays the /4 contour obtained
from the improved crosscorrelation vector-based F extraction method presented

in section 3.1, whose implementation was described in section 3.1.6.

The figures illustrate the extracted fundamental frequency versus time, where

the fundamental frequency is simply the extracted pitch period divided by the
sampling rate of 16 kHz.

As was done in the classical fundamental frequency extraction review paper
of Rabiner, Cheng, Rosenberg, and McConegal [Rabiner et al., 1976), six different
error parameters were computed. For every utterance in the test set a reference
pitch contour which is denoted by p.(m), determined by inspection of the pitch
value for every pitch period, and averaging the I} values within a window for the
frame-based methods. The extracted pitch contour is denoted by, p.(m), where
¢ =1...F and E denotes the number of pitch detectors used in these tests. Here,
seven pitch detectors are compared, so that £ = 7. By comparing the reference
pitch contour p,(m) with the extracted pitch contour p.(m) for every ¢, that is, for
each of the seven pitch extraction methods tested, and for every m, that is, for
each interval or section, either voiced or unvoiced in the recording, one of the four

following events can occur.

1. p.(m) =0, p.(m) = 0, in which case both the reference and extracted contours

have classified the interval m as unvoiced.
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2. p.(m) =0, p.(1) # 0, in which case the reference contour has denoted that
interval m is unvoiced but the extraction method ¢ has denoted this interval
as voiced. This event is tagged as a unvoiced-to-voiced error.

3. p.(m) # 0, p.(m) = 0, in which case the reference contour has labelled interval
m as voiced, but the extraction method ¢ has identified the same interval as
being unvoiced. This event is tagged as a voiced-to-unvoiced error.

4. p.(m) = P # 0, p.(m) = P # 0, in which case both the reference and
extracted contours label interval m as being voiced, but the values of pitch
periods P, and P, differ. In this event, two types of errors can occur. If the
difference between the two extracted pitch periods is small, then a fine pitch
error is said to have occurred, otherwise, a gross pitch error has occurred.
The former denoted a difference of a few samples whereas the latter typically

denotes errors such as pitch halving or doubling.

Defining the error as the difference between the reference and extracted pitch

period samples as

e(m)y=P -1 (3.6)

then if |e{m)| > 5 samples, which represents an error of 0.3125 ms in estimating
the pitch period, the error is classified as a gross pitch error. Given the range of
fy values in infant cry signals, is a reasonable measure for the cutoff between toth

fine and gross errors. Consequently, if |e(m)| £ 5 samples a fine pitch error is said

to have occurred.

Following the above discussion, we can now present the six error measures used

to compare the performance results:

1. Gross Error Count: For this measurement, the number of gross piich errors
was counted. Also, in order to normalize for the different frame rates and
for the different granularity of results offered by different methods, the gross
error count for a given method was divided by the number of voiced intervals

in order compute the percentage of intervals classified as voiced by both the
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reference and the pitch extractor in question, for which gross errors occurred.

2. Number of Pitch Errors: Here, the number of intervals /V; in an utterance in
which fine pitch errors occur, were counted. As was the case for the gross
pitch error count, this value were also divided by the number of intervals
classified as voiced by both the reference and the pitch extractor in question,
in the recording in order to compute the percentage of voiced intervals in
which a fine pitch error occurred.

3. Mean of the Fine Pitch Errors: The mean, €, of the fine pitch errors is defined

as

= —_Ze(m,-) (3.7)

where m; is the j* interval in the utterance in which there occurs a fine pitch

error and N; is the number of fine pitch errors occurring in the utterance.

4. Standard Deviation of Fine Pitch Errors: This measure is defined as

o= v g[e(m,-)]z 2 (38)
This represents a measure of accuracy in measuring the pitch period during
voiced intervals.

5. Voiced-to-Unvoiced Errors: This measurement is taken by counting the num-
ber of frames where this error occurred and, as well, dividing by the number
of voiced intervals in order to compute a percentage value. This measure
denotes the accuracy of classifying voiced intervals.

6. Unvoiced-to-Voiced Errors: This measurement was taken by counting the
number of frames in which this event occurs during unvoiced intervals, and,
as well, dividing this value by the number of unvoiced intervals in order
to compute a percentage value. This denotes the accuracy of classifying

unvoiced intervals.

These measures give a good description of the strengths and weaknesses of the
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Pitch Detector
File LPC SIFT CEPS HSIEV SFAC CORR SPR ICVBM Sum
AD2004 77505 1/519 0/280 /259 15/568 77277 0/848 0/862 Jn/ans
1.39% 0.19% 0.00% (1.00% 2.64% 253% 0.00%, 0.00% 1,.73%
A07104 93/252 42/204 | 18/129 0/86 30/273 | 123/134 2271157 | G/1191 | 3287426
36.9% 20.6% 13.9% 0.00% 11.0% 91.8% 1.90% .00% 9.57%
BO56ST 287171 12/191 | 13/101 12/54 297202 30/101 78/3ed4 0/427 | 20271611

16.4% 6,28% | 129% | 22.2% 14.3% 29.7% 214% 0.00% 12.5%
C1213503 157404 6/393 | 107202 | 0/177 37404 14/196 1/852 07828 | 19/M56
3.71% 153% | 4.95% | 0.00% 0.74% 7.14% 0.12% 0.00% 1.42%

PO9102 771525 47473 [ 107256 | 1/242 | 19/525 | 39/259 | 27/1014 { 0/1023 [ 177/4017
14.7% 0.85% | 391% | 041% 3.62% 15.1% 2.66% 0.00% 4.10%
Sum 220/1857 | 65/1780 | 51/968 | 13/818 | 96/1972 | 213/967 | 128/4235 | 0/4331

11.8% 3.65% | 5.27% 1.59% 4.87% 22.0% 3.02% 0.00%

Table 3.1: Gross Pitch Errors

various extraction methods, and as well, serve to demonstrate the improvements
obtained in using the pitch extraction method proposed in section 3.1. Section 3.5

will elaborate on these results.

These error measures were computed and are presented in tables 3.2 to 3.6. These
tables illustrate the improvements achieved with the new crosscorrelation vector-
based fundamental frequency extraction method versus the methods borrowed
from the speech domain. In all of the tables, the “Sum” column computes the
total number of the type of error, indicated in the caption of the respective table,
across all the pitch extraction methods tested. On the other hand, the row labeled
“Sum” computes the total number of the type of error, indicated in the caption of
the respective table, for that particular pitch extraction method across all the test
files. The former illustrates if any of the test files are particularly prone to one
type of error over another. The latter, however, illustrates which of the extraction
methods, if any, generate a higher number or percentage of that type of error when
compared to the other extraction methods. Table 3.6 sums across all the error types
presented in tables 3.2 to 3.5 for each of the test files and pitch detection methods
illustrating which of the Fy extraction methods yield the best results across all the

error measures computed.
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Piich Detector
File LPC SIFT CEPS | HSIEV SFAC CORR SPR ICVBM Sum
Al2004 15/505 17/519 0/280 4/259 19/568 | 16/277 0/848 0/862 | 67/4118
2.97% 328% | 0.00% | 0.00% 335% | 578% | 0.00% 0.00% 1.63%
AUZ7104 197252 4/204 | 17/129 0/86 8/273 1713 | 071157 | 0/1191 | 49/3426
794% 1.96% 13.2% 0% 2.93% 0.75% 0.00% 0.00% 143%
TH056ST B/171 11/191 0/101 0/54 5/202 0/101 0/364 0/427 | 24/1611

4.68% 576% | 0.00% 0.00% 248% | 0.00% | 0.00% 0.00% 1.49%
C12135Q3 287404 77393 | 147202 1/177 | 197404 | 0/19% | 0/852 0/828 | 69/3456
6.93% 1.78% | 6.93% 0.56% 470% | 0.00% | 0.00% 0.00% 2.00%

PO9102 18/525 | 12/473 | 14/256 | 07242 16/525 [ 27259 | 0/1014 | 0/1023 | 62/4317
343% 254% | 547% 0.00% 3.05% | 0.77% | 0.00% 0.00% 1.44%
Sum 8871857 | 5171780 | 45/968 | 11/818 | 67/1972 | 19/967 | /4235 | 0/4331

4.74% 2.87% | 4.65% 1.34% 340% | 1.96% | 0.00% 0.00%

Table 3.2; Fine Pitch Errors

3.5 Discussion of Experimental Results

This section reviews the results of the tests performed in section 3.4. First, the
pitch contour plots of the individual test files will be discussed, noting where and
why certain methods fail, and how the improved crosscorrelation vector-based
fundamental frequency extraction performs comparatively to the other methods
tested on the recordings. Following this, the results shown in tables 3.1 to 3.5 will
be discussed and the reason behind the failure of certain Fy extraction methods
on recordings with certain characteristics will be addressed. As well, the sub-
stantial improvement achieved using the improved crosscorrelation vector-based

fundamental frequency extraction method will be illustrated.

3.5.1 Fundamental Frequency Contours

File A02004

Figure 3.22 shows the fundamental frequency contours extracted from file A02004
using the respective methods indicated in the captions of the sub-figures. As
was mentioned in section 3.4.1, this file contains a relatively well-behaved contour

with slow and smooth variations in its progression, punctuated with some brief
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Pitch Delector

File LPC | SIFT | CEPS [ HSIEV | SFAC | CORR [ SI'R { ICVBM | Sum
ADZ004 1.22 0.90 0.00 0.58 0.95 097 | 0.00 0o | 162
AD7104 209 1.00 1.10 0,00 1.03 0.00 | 0.0 000 | 522
BOS56ST 0.71 0.00 0.00 0.00 1.09 000 | 0.00 .00 T.80 |
C121350Q3 | 165 | 0.38 146 0.00 2,37 0006 | 0.00 000 | 586
P09102 1.39 1.03 1.70 .00 1.39 141 | 0.00 000 | 692
Sum 7.06 3.3 4.26 058 6.83 238 | QUG 0.00

Table 3.3: Standard Deviation of Fine Pitch Errors

episodes of ambient noise occurring during the course of the first episode. Looking
at the results of the different contours extracted from the various methods, it can
be immediately seen that the cepstrum-based, super-resolution, and the improved
crosscorrelation vector-based pitch extraction methods yield the smoothest and
most accurate pitch values. Both the cepstrum and the super-resolution method

fail to ignore the locally periodic noise burst occurring between time 2 and time 2.5

in the signal.

The contour of the first episode extracted by the super-resolution method has
a brief interruption occurring at about time 1.35 seconds, which, in turn, is due
to a sudden change in the characteristics of the first formant frequency, which
changes the characteristics of the signal. Consequently, adjacent pitch periods in

the signal are significantly different and the crosscorrelation value drops below the

voiced/unvoiced threshold at that point in the utterance.

All the methods, except for the improved crosscorrelation-vector based funda-
mental frequency extraction method, have difficulty tracking the pitch at end of
the first episode due to the weakness of the signal which either causes the encrgy
contained within a given frame and the autocorrelation peak values to fall below
the voicing threshold for the cepstrum in the former case, and for the LPC, SIFT,
spectral flattening autocorrelation, and correlogram methods in the latter case. For
the super-resolution method, the oscillation between the pitch and no-pitch values
occurs due to the weakness of the signal which causes the crosscorrelation values to

oscillate above and below the voicing threshold. For the improved crosscorrelation
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Pitch Deteclor
File LPC SIFT CEPS | HSIEV SFAC | CORR SPR ICVBM Sum |
AD2004 6%/574 55/574 7/287 28/287 6/574 | 107287 12/860 0/862 | 187/4305
12.0% 9.58% 2.44% 9.76% 1.05% 3.48% 1.39% 0.00% 4.34%
A0714 21/273 69/273 | 7/136 | 50/136 | 0/273 | 2/136 | 4/1161 | 0/1191 | 153/3579
7.65% 25.1% 5.15% 36.8% 0.00% 1.47% 0.34% 0.00% 4.27%
[ BOB6ST 31/202 11/202 0/101 477101 0/202 /101 6/370 0/427 95/1706

15.3% 5.45% | 0.00% 465% | 0.00% | 0.00% 1.62% 0.00% 5.57%
C12135Q3 07404 11/404 0/202 | 25/202 | 0/404 6/202 0/852 0/828 | 42/3498
0.00% 2.72% | 0.00% 124% | 0.00% 2.97% 0.00% 0.00% 1.20%

ro9in2 1/526 53/526 | 7/23 | 217263 | 1/526 | 47263 | 7/1021 [ 0/1023 | 94/4168
0.19% 10.1% 2.66% 8.01% | 3.04% 1.52% 0.69% 0.00% 2.25%
Sum 12271979 | 19971979 | 21/989 | 171/989 | 7/1979 | 22/989 | 29/4264 | 0/4331

6.61% 10.1% 2.12% 17.2% | 0.35% | 2.22% 0.68% 0.00%

Table 3.4: Voiced-to-Unvoiced Errors

vector-based method, the pitch is tracked until voicing stops due the fact that the
method uses a lower voiced-to-unvoiced threshold and a distance measure, based
on the crosscorrelation maxima values, allowing the method to track a specific
pitch contour even after the signal weakens considerably provided that periodicity

is maintained still present in the portions of the signal.

The LPC, SIFT, and harmonic sieve methods all degrade under noisy conditions,
as can be seen in the interruptions occurring in the contour of the first *-oiced
episode. The SIFT method performs better than the LPC method, due to the
reduced bandwidth of the input signal used in SIFT, which allows it to remove
some of the effects of the noise bursts from the input spectrum. The harmonic
sieve is also adversely affected by the presence of noise bursts, and by the presence
of frames in the signal with weak or low amplitudes, when the number of peaks
falling through the sieve is sharply reduced, causing those portions to be flagged

as unvoiced.

File A07104

A cry utterance which is typical of the high fundamental frequency values found
in these signals, and which also provides one example of the rapid F, variations

sometimes found in these signals, is contained in file A07104. The pitch contours
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Pilch Dietector

File LPC SIFT | CEPS | HSIEV SFAC | CORR SPR ICVEM Sum
AQ2004 77170 | 0/170 12784 6/84 50/170 0/84 157482 (/458 90 /1702

4.12% | 0.00% 14.3% 7.14% 294% | 0.00% 311% 0.00% 5.29%
AO7104 24/39 0/39 3/20 2/20 38739 0720 19/144 0/137 86/341

61.5% [ 0.00% 15.0% 10.0% 97.4% | G.00% 13.2% 0.00% 25.2%
B0565T 10/78 +/78 10733 1/38 21/78 /s 237145 /110 727603

12.8% { S.13% 26.3% 263% 269% 7.89% 15.9% 0.00% T1.9%
C12135Q3 87204 | 2/204 4/101 8/101 /204 | 6/10 55/315 (/235 | 101/1465

3.92% | 0.98% 3.96% 7.92% 10.8% 5.94% 17.5% 0.00% [
PO9102 35/98 2/98 18/46 5/46 98 /98 0/46 27 /7180 /135 185/747

35.7% | 2.05% 39.1% 10.9% 100% | 0.00% 15.0% 0.00% 24 8%
Sum 84/589 | 8/589 | 47/289 | 22/289 | 229/589 { 97289 | 139/1266 | G/1075

14.3% | 1.36% 16.3% 7.61% 389% | A% 11.0% 0.00%

Table 3.5: Unvoiced-to-Voiced Errors

extracted from this recording are shown in figure 3.23. As well, the second episode
in this recording features a very narrow bandwidth first formant which occurs at

a frequency equal to twice the value of the fundamental frequency, at least for the

first 0.6 seconds of this episode.

Of the methods applied to this signal, the improved crosscorrelation vector-
based method gives the best results, providing smooth pitch contours for both
episodes in the utterance. In the first contour, the the rapid change in /4 from
about 1000 Hz to 800 Hz is successfully tracked as is the subsequent rapid rise
in [y from about 800 Hz to 2000 Hz. Also, the evolution of the second contour
is successfully tracked even though the occurrence of the narrow bandwidth

seems to affect some of the other methods quite adversely.

The super-resolution method behaves reasonably well. Interruptions occur in
the first contour, mainly due to a change in formant values the middle portion
of that episode, and at the end of the episode because of a weakening signal.
Interruptions in the second episode occur because of some noise occurring at the

beginning and shortly after the 1 second mark, and as the signal weakens at the
end of the episode.

All of the other methods yield extremely poor results due to inconsistencies

in the pitch values extracted, the most common error being pitch halving errors.
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Pitch Detector
File LPC SIFT CEPS HSIEV SFAC CORR SPR ICVBM Sum
A2 98/744 74/744 19/371 /371 90/744 33/371 2771342 | 0/1320 | 374/6007
13.2% 9.81% 5.12% 9.16% 12.1% 8.89% 2.01% 0.00% 6.23%
A07104 157 /312 115/312 45/156 52/156 76/312 126/155 4571305 | 0/1328 | 616/4037
50.3% 36.9% 28.8% 333% 24.3% 81.3% 345% 0.00% 15.3%
BOSAST 777280 44/280 23/139 60/139 557280 33/139 107/515 (/537 | 399/2309
27.5% 15.7% 165% 43.2% 19.6% 23.7% 20.8% 0.00% 17.2%

C1213503 51/608 26/608 28/303 34/303 44 /608 26/303 { 56/1167 | 0/1063 | 265/4963
8.39% 4.28% 9.24% 11.2% 7.24% 8.58% 4.80% 0.00% 5.34%

rog102 131/624 71/624 497309 27/309 | 134/624 45/309 [ 61/1201 | 0/1158 | 518/5158
21.0% 11.4% 15.9% 8.74% 21.5% 14.6% 5.08% 0.00% 10.0%
Sum 514/2658 | 329/2658 | 164/1278 | 207/1278 | 399/2658 | 26371278 | 296/5530 | 0/5406

19.3% 124% 12.8% 16.2% 15.0% 20.6% 5.35% 0.00%

Table 3.6: Total Errors

Starting with figure 3.23(a), it can be seen that the LPC method produces a number
of errors, but the most common of these errors are indeed pitch halving errors. As
was mentioned in section 3.2.1, this occurs because the spectrum of an utterance
containing a very high / will contain very few harmonics. In these cases, the the
poles of the LPC spectrum will model the harmonic peaks and not the spectral
peaks. Consequently, the effects of /1 and Iy will be removed from the input
sighal when it is inverse filtered, leaving only weak periodicity present at a period
equal to twice that of the pitch period, resulting in pitch halving errors. In the first
episode of the signal, following the drop in [y from 1000 Hz to 800 Hz occurring
at about time 0.1 seconds, there are so few harmonics present in the input signal
frame that the poles model the harmonics so well that the inverse filtered signal
shows no periodicity at all, and these frames are tagged as being unvoiced. In

short, this file illustrates the limitations of LPC on this type of cry utterance.

The SIFT method yields better results, as it uses both less poles and a version of
the signal which has been decimated by 2, reducing the bandwidth of the spectrum
that needs to be modelled by 2 as well. Here, the number of pitch doubling errors
is considerable. This occurs because the /7 peak in the spectrum is stronger than
that of its harmonics. Inverse filtering the signal frame removes this effect, but
retains the effect of the harmonics in the inverse filtered spectrum. Consequently,

this appears as peaks occurring at twice the fundamental frequency value of the
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input signal frame. Also, SIFT has problems successfully tracking the Iy contour
at the end of the second episode due to the poor harmonic content in the signal.
In these frames, the LPC coefficients, or poles, model the fundamental and its first
harmonic in the input spectrum, removing all traces of periodicity from the input

signal frame in the inverse filtered residual.

Next, the cepstrum pitch extraction method performs reasonably well, save
for a number of pitch halving errors. This is mainly caused by variations in the
amplitude of the input signal, or shimmer, and due to some brief bursts of additive
noise, which may cause every other period to look more like the fundamentai than

the true pitch period does, due to these effects.

The harmonic sieve method misses approximately the first half of the first pitch
contour and the final portion of the second pitch contour due to poor harmonic

content, which tends to flag a particular interval as being unvoiced.

The spectral flattening autocorrelation method also produces a number of pitch
halving errors which are caused by amplitude shimmer in a given frame of the
input signal which causes every other period in the input frame to look more like
the pitch period than the actual pitch period. In addition, the frames between the
two voiced episodes in the signal are incorrectly labeled as being voiced, since the

energy in these frames exceeds the voiced-unvoiced threshold.

Cochlear filtering and the subsequent correlation of these channels leads to
inconsistent results for the correlogram-based pitch extractor. In all but a few
frames the extracted pitch value is incorrect and the pitch extracted is either £ or

£, making this method practically useless for this vocalization.

File B056ST

The pitch contours extracted by the various methods on file B056ST are displayed
in figure 3.24. As stated in section 3.4.1, this file corresponds to the cry of a prema-
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ture infant fullowing a heel stick and contains portions of sustained phonations,
dysphonation, double harmonic break episodes, and an inspiratory phonation lo-
cated at the end of the utterance. Also, there are places at the beginning and at the
end of the first vocalization where a narrow bandwidth F; occurs at a frequency

equal to twice that of the fundamental frequency.

For this recording, the improved crosscorrelation vector-based method yields
perfect results for both episodes. It successfully tracks the start of the double
harmonic break episode beginning at time 0.4 seconds, and lasting until about 0.65
seconds, which is punctuated by a dysphonic episode shortly before time 0.5, and a
brief return to the true Fp in the neighbourhood of the 0.6 second mark. In addition,
the inspiratory phonation is successfully tracked from start to finish, despite the

rapid drop in the fundamental frequency values over the course of the inspiration.

The next best result is achieved by the SIFT method which successfully handles
the double harmonic break episode, save for the brief dysphonic episode which it
classified as voiced. This error is due to the occurrence of some periodic portions
contained within a frame that also contains some dysphonic signal portions, with
the periodic portions causing the frame to be labeled as periodic. In one frame at
the end of the first episode, this method incorrectly classifies the pitch as being the
formant frequency, due to the occurrence of the narrow bandwidth /4 which occurs
at a frequency equal to 2Fp. Due to the poor harmonic content in the inspiratory
phonation, the final portion of this utterance is not tracked. For the initial portion

of this utterance, a number of pitch halving errors occur.

The cepstrum-based 5y extraction method also does reasonably well, but in
the first episode it misses the dysphonic portion due to the same effect as was
mentioned for the SIFT method. As well, tracking the return to the original Fy
during the course of the double harmonic break episode occurs for only one frame,
- which is too short. At the beginning of the first episode, the method also labels

the Fj frequency as being Fy, since the sharpest peak in the cepstrum occurs for
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F} instead of Fy, and during a brief portion of noise shortly after, produces a pitch
halving error. The inspiratory phonation is correctly tracked at first, but soon falls
victim to pitch halving errors due to the shimmer present in the pitch periods in
this portion of the signal.

As far as the other methods are concerned, they all do rather poorly for a
number of reasons. The LPC method over-models the input spectrum causing the
periodicity due to the fundamental frequency to be removed when the signal is
inverse filtered, causing a number of pitch halving errors, as can be clearly seen
in figure 3.24(a). As well, there are a number of voiced-to-unvoiced errors in the
course of the first episode as well. The initial portion of the inspiratory phonation

is tracked but soon terminates due to the erratic nature of this portion of the signal.

The results from the harmonic sieve are extremely poor as Goldstein’s theory of
pitch perception causes a number of harmonic peaks to be “masked” or eliminated
prior to sieving. For a number of frames, both prior to, and during the double
harmonic break episode in the first utterance, the strength of the first formant peak
masks the effect of Fy and the second harmonic, so that the sieve determined the
Fy to be F. In other portions of the first episode, where the voice-to-unvoiced
errors occur, there are so few harmonic peaks remaining in the signal spectrum
subsequent to the Goldstein pitch perception stage that the sieve cannot make a

definite conclusion regarding the true value of F;.

The spectral flattening autocorrelation method has a number of pitch doubling
errors arising from the clipping of the signal which includes formant peaks in the
ciipped signal. This is due to the narrow bandwidth of /} for some portions of
this signal, and due to the small decay in amplitude between the pitch epoch and
subsequent intermediate oscillation peak due to the strong and narrow bandwidth
formant, which occurs at a frequency of 27, resulting in the pitch period of the
clipped signal to be twice the true /o,

The correlogram based method once again leads to a number pitch halving
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errors, presumably because the periodicity across all the cochlear bands at half
the true Fy is stronger than it is for the true g, which is caused by some noise or

amplitude shimmer in these portions of the signal.

Lastly, the super-resolution pitch extraction method correctly tracks the begin-
ning of the double harmonic break episode, since the change in the signal causes
the crosscorrelation between adjacent segments to fall below the voicing threshold,
causing the method to stop tracking /. The drawback of this method is that once
it begins tracking a certain F, it does not stop unless the crosscorrelation peak
for the pitch period lag falls below this voicing threshold. This is precisely what
happens for this particular recording during the double harmonic break episode.
Also, the beginning of the first episode displays another drawback of this method.
If the method has not settled into tracking a specific Fy value, the method is subject
to incorrectly classifying Fp if there are perturbations in the signal which cause

periodicity at other values to be briefly stronger than those at the true pitch period
lag.

File C12135Q3

As was described in section 3.4.1, this recording, whose results are shown fig-
ure 3.25, is an example of a cry that has two very erratic and quickly varying /o
contours, and also contains the tail end of one contour, with periods of ambient

noise episodes occurring between these episodes.

Once again, the improved crosscorrelation vector-based method gives perfect
results, successfully tracking the progression of the rapidly changing £} values
without interruption for the two episodes. None of the other methods tested extract
smooth, uninterrupted F contours, so the individual contours will be reviewed

individually.

The LPC generates more interruptions in the contours than its reduced band-
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width counterpart, the SIFT method. For LPC, the occurrence of rapidly varying
pitch periods located within a given frame result in pitch halving errors, especially
if some portions of the frame are corrupted by noise. This effect also plagues the
cepstral and spectral flattening autocorrelation methods as well. The SIFT method,
however, appears to be more robust to these effects, which appear only when lower

frequency noise is present in the signal.

Next, the harmonic sieve produces numerous voiced-to-unvoiced errors, as a
result of the effects that quickly varying periods contained within a given window
have on the resulting spectrum. In these cases, the harmonic peaks in the spectrum
do not occur at exact multiples of the fundamental frequency peak. When a sieve
with an initial frequency in the neighbourhood Fy is used, not all the peaks in the

spectrum will fall through the sieve, and the segment will be classified as unvoiced.

As was the case for the three test files described previously, the correlogram
based method performs poorly for this recording as well. Once again the periodicity
across all the cochlear bands at half the true F appears to be stronger than that for
the true [, which is most likely caused by some noise or amplitude shimmer in

these particular portions of the signal.

The super-resolution pitch extraction method performs reasonably well on the
contours, save for a few erratic portions at the start of the second contour before
the algorithm settles and begins to track the pitch. The major disadvantage of
this method is in how it handles the non-voiced, noisy portions of the signal.
From the contour shown in figure 3.25(g), it can be immediately observed that this
method tracks the locally periodic portions of noise bursts, leading to a number of

unvoiced-to-voiced errors.
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File P09102

The extracted pitch contours for recording P09102, the last of the 5 test files, is shown
in figure 3.26. This recording features a long voiced episode with a slowly decreas-
ing [% with little variations, preceded and followed by short voiced episodes, with

silence separating the three contours.

Once again, the improved crosscorrelation vector-based pitch extraction
method, gives the best results. It tracks all three contours perfectly, including
the high 4 portion at the beginning of the second voiced episode, and the double

harmonic break episode at the beginning of the thirc contour.

The LPC pitch extractor produces to a number of pitch halving errors, especially
in the second utterance when the signal amplitude weakens somewhat, causing
less harmonics to be present in the signal spectrum. This causes the poles to model
the harmonic peaks precisely, leaving little apparent periodicity at the true pitch
period. In the end portion of the second utterance, the pitch values extracted
become erratic, as they also do for the third utterance, due both to the weakness of

the input signal and to the presence of some additive noise in the signal.

The SIFT method provides a smoother contour than LPC does, but misses the
initial high Fp burst at the start of the second contour. As well, this pitch extraction
method gets interrupted at about the 1.6 second mark when the signal weakens
as it reaches the lowest F; value for this utterance. Note that the third episode
consists of only one peak; all other pitch contours are ignored as the signal is weak,
and noise is present in the signal, so that the autocorrelation of the inverse filtered

residual does not indicate periodicity.

The cepstrum-based and spectral flattening autocorrelation pitch extractors both
provide smooth contours, save for a few pitch halving errors occurring in some
places. Note, however, that these methods successfully extract one correct pitch

period value from the initial high Fy portion of the second utterance, but fail to
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classify the portion of the recording between the first and second episodes as
unvoiced. Both the contours for the first and third episodes are inconsistent due to

weak signal values.

The harmonic sieve performs well in the second utterance until the signal weak-
ens, at which point the low number of harmonics present in the spectrum to be
sieved causes the segment to be flagged as unvoiced. The break in this contour
prior to the one second mark is due to the Goldstein theory of hearing pre-processor
eliminating some harmonic peaks due to masking effects by other neighbouring,
higher amplitude peaks so that the remaining components, when sieved, yield
inconclusive results, causing this series of input frames to be labelled as unvoiced.

The first and last [ contours are also erratic due to weak signal values.

As s the case for the other test files presented above, the correlogram generates a
number of gross pitch errors for both the second and third utterances. This is due to
the stronger periodicity present across the cochlear filtered bands at twice the pitch
period than at the actual pitch period. This method does, however, identify one
frame of the initial high Fp portion of the second utterance, even if it is subsequently

followed by voiced-to-unvoiced errors.

The Fy contours extracted from the super-resolution method, shown in fig-
ure 3.26(g), once again display erratic behaviour during the first few time indexes
of the utterance before the pitch tracking about a certain pitch value begins, lo-
calizing the search for pitch candidates in subsequent frames. Due to the short
and erratic nature of the first utterance and the high /4 portion at the start of the
second, the extracted pitch values at these points varies enormously. This occurs
as the method is thrown off by locally strong periodicities present in the signal due
to noise or narrow bandwidth I} values. Some spurious and locally periodic noise
bursts are picked up between the second and third utterances. Note once again
that for the third utterance, the method begins tracking the low /% of the double

harmonic break episode, and does not follow the change to the higher f; value

116



3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

when it changes a few time instants later.

3.5.2 Error Analysis

This subsection reviews and discusses the results presented in tables 3.1 to 3.6, and
comments on which of the methods tested produces the best and the worst results,
and explains why these methods fail where they do. First, table 3.1, which presents
the gross pitch errors as defined in section 3.4.3, will be discussed. Briefly, the gross
pitch error represent errors in the extracted pitch contour which differs from the
reference pitch contour by more than 5 samples and usually flags errors such as

pitch halving or doubling errors.

Gross Pitch Errors

From table 3.1, it can immediately be noticed that the method that gives the most
pitch errors across all the test files (the sum column) is the correlogram-based pitch
extraction method. This is not surprising based on the discussion of the extracted
pitch contours from the test files presented in the previous section. Although this
method has an intuitive appeal in that it performs cochlear band filtering in an
attempt to mimic the nerve firing patters of the hair cells contained in the human
ear, it is this complexity, however, that may actually lead to this method’s downfall.
The peaks in the correlogram subsequent to the cochlear filtering result in high
values at multii:les of the pitch period and lower values at the true pitch period.
~ Consequently, although this method may seem appealing at first, the actual results
reveal that this method is not very accurate in extracting Fy from infant cries. The
largest number of gross pitch errors occurs for file A07104, which implies that this
method has particular difficulty extracting pitch from utterances containing high

Iy values.
The method that has the next highest rate of gross pitch errors is the linear
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predictive coding (LPC) method. This is due to the fact that in cases where there
are few harmonics present in the spectrum of an input signal frame, the number of
poles used to model the spectrum do not, decreases, in turn, causing the poles to
model the harmonic peaks. Consequently, when the signal is inverse filtered, all
the effects of the harmonics are removed from the signal, leaving only periodicity
present at multiples of the true pitch period leading to these types of errors. Note
that reducing the bandwidth of the input signal, decimating, and reducing the
number of poles used to model the spectrum, as is done in the simplified inverse

filter tracking method (SIFT), reduces these errors substantially.

The improved crosscorrelation vector-based method provides the best results,
producing no gross pitch errors in any of the files tested. This result is typical of
those achieved with other files in the data set, as well, and whose results are not
included here. Since this method uses post-processing in the form of thresholding,
distance calculations, and distance analysis in order to determine the true pitch
period, gross pitch errors seldom occur. Consequently, the improvement in this
error measure when compared to some of the classical methods, and some of the
newer, more complex methods, is immediately apparent, both in the tabular results,

and when comparing the accuracy of the extracted pitch contours.

The super-resolution pitch extraction method, which also uses the crosscor-
relation to generate pitch candidates, produces a number of gross pitch errors,
particularly in a couple of cases. First, if while tracking a specific /4, during a
double harmonic break episode, for example, the fundamental frequency jumps
to a value which is twice that of the old fundamental frequency, the method will
continue to track the old Fp value as being the true value of /7, since periodicity
exceeding the voiced-to-unvoiced threshold will still exist at this value. Also, in
sections of the signal before the algorithm settles and begins to track a specific /%
value, when the signal is either weak, or there is a narrow bandwidth /3, other
strong periodic peaks can be incorrectly labeled as being the fundamental fre-

quency. Consequently, although the super-resolution method and the improved
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crosscorrelation vector based method both use the crosscorrelation as a means for
generating pitch candidates, the former uses the information located at that specific
time index when determining the most likely /4 value. The latter method uses a
distance measure over the duration of the contour, so that the contour with the
highest score will be tagged as corresponding to the pitch contour. As & result,
the improved crosscorrelation vector-based pitch extractor is much less sensitive
to noise, signal strength, and locally strong oscillations within pitch epochs, than

the super-resolution method is.

The harmonic sieve also performs well in terms of the small number of gross
pitch errors that it generates. This small gross pitch error rate is somewhat de-
ceiving, however, because this method suffers from a large voiced-to-unvoiced
error rate, as can be seen in table 3.4. Despite this reduction in the number of
voiced frames available to this method from which it can determine the pitch, it
still makes only a few pitch errors. Consequently, if the voiced-unvoiced deter-
mination method could be improved for the harmonic sieve pitch extractor, this

method could possibly achieve reasonable results.

Fine Pitch Errors

To briefly re-state what constitutes a fine pitch error before discussing the results, a
fine pitch error is a difference between the extracted pitch value and the reference
pitch value of less than 5 samples. These types of errors occur when the method
used avoids making gross pitch errors for these frames, but fails to extract the
precise pitch value from the input frame due to imprecisions in the extraction
method. The number and rate of fine pitch errors for the five test files are listed in
table 3.2. In addition, the standard deviation, in samples, of the fine pitch error is
listed in table 3.3. This value measures the accuracy of the pitch values extracted

during voiced intervals.

Insofar as this type of error is concerned, there are no fine pitch errors in both
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the improved crosscorrelation vector-based method and in the super-resolution
method for the five test files. This is not surprising as both these methods use the
normalized crosscorrelation as the core vehicle for determining pitch candidates.
The normalized crosscorrelation provides an extremely accurate way of computing
the vocal fundamental frequency since it computes the pitch based on the the
location of maxima in the crosscorrelation vector which correspond to possible
pitch candidates. This results in the absence of fine pitch errors and consequently
no variation between the extracted and the reference pitch values for both of these

methods if gross pitch errors do not occur.

Of the other pitch extraction methods tested, the one which generates the largest
fine pitch error rate and the one which also has the highest variation between the
extracted and reference pitch values, as indicated by the standard deviation of
these errors, ic the linear predictive coding method. This is due to a combination
of effects. First, all frame-based methods have incorporated in them the averaging
of the pitch periods contained within a given frame of samples. Some files, such as
A07104 and C12135Q3, contain segments where the pitch undergoes fast changes
in value. This causes the harmonic peaks to be wider than they would be for a
window containing a steady /o value. When the LPC poles attempt to model this
spectrum, they may not be able to accurately model the wider harmonic peaks.
When the input signal is inverse filtered, the periodicity present in the residual
will be an average of the pitch values contained within the signal window further

distorted by the spectral modelling process.

Note that most of the methods which perform some form of spectral transfor-
mation, such as SIFT, cepstrum, and spectral flattening autocorrelation methods,
suffer from a higher pitch period error rate than the other methods that do not
perform a spectral transformation, such as the harmonic sieve and the correlogram

pitch extractor. The same observation can be made for the standard deviation of

fine pitch errors.

120



3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

Voiced-to-Unvoiced and Unvoiced-to-Voiced Errors

The tabulated results for the voiced-to-unvoiced errors and the unvoiced-to-voiced
errors can be found in tables 3.4 and 3.5 respectively. These tables are closely
related in that if a certain frame is not classified as voiced, it will be classified as
unvoiced. Individually, however, these results can illustrate if and which of the

methods tested are more biased towards one type of error over another.

Looking at the results for the improved crosscorrelation vector-based pitch ex-
traction methoc, no voiced-to-unvoiced or unvoiced-tc-voiced errors were found
in the test files. This is because the post-processing phase of the method removes
from the set of candidate pitch values, all contours, or sections, which last less than
8 time intervals, which effectively excludes locally periodic noise bursts, or simply
spurious peaks, from being considered as pitch candidates. So, the post-processing

phase does indeed do a good job at avoiding these types of errors as well.

For the other methods, the harmonic sieve gives the highest voice-to-unvoiced
error rate. A particular frame will be classified as unvoiced if the harmonic content
is poor in the input spectrum, or if there are a number of harmonic peaks that are
removed from the input spectrum by the Goldstein theory of hearing processing
stage prior to sieving. In these cases, if the remaining harmonic peaks are sparse,
or if there are a small number of harmonics peaks present in the spectrum prior to
sieving, the segment will be flagged as unvoiced. This is the major drawback of

this method. Note, however, that there are fewer unvoiced-to-voiced errors.

The SIFT method also suffers from a relatively high number of voiced-to-
unvoiced errors when compared to the number of unvoiced-to-voiced errors. If
there are frames which contain high /4 values and thus only one or two harmonics
are present in the input spectrum, the poles will model the harmonic peaks exactly
leaving no trace of periodicity when the signal is inverse filtered, causing the seg-
ment to be incorrectly labeled as unvoiced. Although, the SIFT method has low

gross pitch errors because of the smaller signal bandwidth used, it suffers from a
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considerable number of voiced-to-unvoiced errors. The converse can be said for
LPC, which uses the full bandwidth signal.

The cepstrum uses the energy contained within a given signal frame to determine
whether a signal is voiced or unvoiced. This method works reasonably well for
voiced-to-unvoiced errors. For unvoiced-to-voiced errors, however, the error rate
is larger as the method tends to pick up some locally periodic bursts of noise in a

number of frames in the test files and incorrectly classifies these segments as being

voiced.

The spectral flattening autocorrelation method uses the same voiced/unvoiced
classification method that the cepstrum does, with the difference that the threshold
for the energy contained within a given segment for this method is lower than that
used by the cepstrum-based method, as was explained in section 3.4.2. This results
in a smaller number of voiced-to-unvoiced errors, but a significant increase in the

number of unvoiced-to-voiced errors.

Lastly, the super-resolution method shows its bias towards unvoiced-to-voiced
errors which occur when any two adjacent signal segments have a crosscorrelation
value greater than a threshold value, will cause that lag at that specific time index
to be flagged as being voiced. This causes unvoiced portions of the signal which
may be corrupted by noise, to be occasionally labelled as being voiced due to the

high crosscorrelation values which occasionally occur in these cases.

Total Errors

The table cataloging the sum of the errors identified above is listed in table 3.6. This
table sums the gross pitch errors, fine pitch errors, the voiced-to-unvoiced errors,
and the unvoiced-to-voiced errors, dividing this total by the number of frames or

windows in the utterance.

The best results were achieved for the improved crosscorrelation vector-based
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pitch extraction methoa which generated no error of any kind on the test utterances.
This is not to say that the performance of this method is perfect, but it gave excellent
results for the test files. On some other files in the data set which were either
corrupted by strong episodes of noise or ambient sounds, such as tones, these
episodes, particularly if they were of long duration and relatively periodic, would
be tracked as pitch contours during moments when there was no voicing in the
signal. However, these files were not included in the test set since most of the
methods used in the comparison would have made the same mistake. In short,
this metb2d outperforms all other methods tested, does a good job of removing the
various types of errors, and yields optimal results, with the output being suitable
for further processing, if so required. As well, it should be noted that on all the files
of the data sets, as described in section 3.3, on which the various pitch extraction
methods were tested, the improved crosscorrelation vector-based pitch extraction

method outperformed all of the other methods in all of the error classes.

The method which yields the next best total error rate is the super-resolution
method, mainly because of the large number of frames that are generated by using
this other crosscorrelation based method. The main problem of this method occurs
when the # value changes at the end of a double harmonic break episode, and this

change is not followed, as was mentioned above.

At the other end of the scale is the correlogram-based pitch extraction method
which has the highest total error rate with the majority of errors occurring because
of gross pitch errors. All the other methods have errors rates that are within a few

percentage points of each other.

The file that lead to the most errors was file B056ST, where most of the meth-
ods had trouble dealing with the double harmonic break episode and with the
inspiratory phonation. The file with the next highest error rate was file A07104
which generated problems for a number of methods due to the high fundamental

frequency values contained in this recording.
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Figure 3.27: Crosscorrelogram of a Cry Uttered after a Heel Stick

3.6 Other Extensions of the Improved Crosscorrelation Vector-

Based Fundamental Frequency Method

The following subsections present other advantages or spin-offs from the improved

pitch period extraction method presented in section 3.1.

3.6.1 Improved Utterance Visualization Using the Crosscorrelogram

Aside from being a good method for accurately tracking the pitch period in in-
fant cry utterances, the signal transformation pl:ase of the crosscorrelation vector-
based fundamental frequency extraction method, described in section 3.1.2, also
provides information which is useful for improved visualization of infant cries
[Petroni et al., 1994b]. The sequence of crosscorrelation vectors placed together in
a matrix as described in section 3.1.3, can be displayed in a three-dimensional plot
of lag versus time versus intensity called a crosscorrelogram, which is shown in
figure 3.27 [De Mori and Omologo, 1993]. This plot differs, however, from the one
presented by De Mori and Omologo in that the time increments in the crosscorrel-
ogram displayed in figure 3.27 are dependent on the lag value of the most likely

pitch candidate for a given time index, not on a fixed value.
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Figure 3.28: Comparison Between Spectrogram and Correlogram for the
Second Cry Utterance of File C12135Q3

The presence of periodicity in the crosscorrelogram is indicated by the occur-
rence of peaks (large positive crosscorrelation values) and valleys (large negative
crosscorrelation values) denoted by the black and white shades respectively in the
plot. Gray areas denote the occurrence of non-periodicity corresponding to either
noise, silence, or dysphonic sections in the utterance. As is the case for the range
of expected pitch period lag values in the utterance, the lag values indicated on the
y-axis span values from 5 to 120, which correspond to frequencies of 3200 Hz to

133 Hz respectively, given a 16 kHz sampling rate.

The crosscorrelogram gives a finer-grain view of the progression of the pitch
period than the standard method of utterance vocalization, namely the spectrogram
[Oppenheim, 1970], does. Comparing the spectrogram and crosscorrelogram for
the same cry recording, as shown in figure 3.28, it is clear that the correlogram
of figure 3.28(b) gives more detail than the spectrogram of figure 3.28(a) does.
Intuitively this can be understood from the fact that the crosscorrelogram generates
a vector for almost every pitch period, whereas the spectrogram uses a window of
samples which inherently averages the F values of the signal contained within a

frame.

125



3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

I

Lag (Sarples)

8 B 4B % 5 8 3

—— J
- - = \"'\-\__\ \_
100| m
e wp - "\\ \
. . - e an - N . N i .\ (Y N—
100 150 200 2%0 200 350 400 450 500 0 100 150 200 230 300 50 400 450 500
Time Indan

{(a) Crosscorrelogram (b) Thresholded Crosscorrelogram Matrix

. [ Lyl
an el

." .- : !

. v \\
120 [ 4 ae ) :

50100 150 200 20 300 350 a0 450 £00
Tirne inca.

(c) Extracted Pitch Period Contour Super-
imposed on Crosscorrelogram

Figure 3.29: Pitch Period Extraction Process from a Cry Recording Uttered
After a Heel Stick (File B056ST)

In the crosscorrelogram, the identification of the pitch peak can usually be
done visually, with the first strong peak from the top of the crosscorrelogram
corresponding to the F lag, although in the event of narrow bandwidth /4, strong
maxima appearing at smaller lag values may appear. Consequently, this inspection

heuristic should be used with caution.

The results of the crosscorrelation matrix processing described in section 3.1.4
can be shown in the same manner and the resulting pitch period values can be

superimposed on the the crosscorrelogram plot as well [Petroni et al., 1994a). The
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3. Improved Fundamental Frequency Extraction for Infant Cry Vocalizations

tableau in figure 3.29 displays the crosscorrelogram in figure 3.29(a), the thresh-
olded crosscorrelogram matrix in figure 3.29(b), and the actual extracted pitch
period contour superimposed on the crosscorrelogram plot in figure 3.29{c), of an

utterance which features a double harmonic break episode.

Note that the pitch contour is properly tracked through the double harmonic
break episode. The crosscorrelogram contrasts to the series of plots, called a movie,
which would be required by the correlogram-based algorithm described in sec-
tion 3.2.5 since the correlogram generates a 3-dimensional plot for a single input

frame and not for the entire utterance.

This chapter presented the description, implementation, and a sample of ex-
perimental results of the improved crosscorrelation vector-based fundamental fre-
quency extraction method: a method which successfully and accurately tracks
pitch contours in infant cries. The results of this method were compared against
six other methods commonly used in the speech domain on five test cry utter-
ances each with different spectral and fundamental frequency characteristics. This
chapter has addressed the lack of an adequate method to extract the fundamental
frequency from infant cry signals. Although, the method was designed to handle
the large range of fundamental frequency values present in infant cry signal, this

method can useful for other speech signals as well.
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Chapter4 Classification of Infant Cries Using
Artificial Neural Networks

This chapter presents research undertaken for the purpose of classifying and dis-
tinguishing between different cry types using artificial neural networks (ANNSs).
The chapter begins with an introduction regarding the advantages of computing
and classifying with neural networks, with the choice of this methodology over
other classification methods being justified. This will be followed by a presentation
of the paradigms used in cry classification experiments and their suitability for use
with time varying signals will also be outlined, as will their relative strengths and
weaknesses. The input features derived from the cry recordings and used as inputs
to the networks will then be presented, followed by a discussion of their relative
strengths and weaknesses. These features use information derived from the entire
spectrum of the cry signal, since they provide a more comprehensive representation
of both the fundamental frequency and of the vocal tract. Next, a brief overview of
the software used to simulate these networks will be presented before proceeding

to the presentation and discussion of the artificial neural network test results for

the different input features.

It should be noted that the work presented in this chapter represents a novel
application of artificial neural networks in a domain where they have not been
used prior to this dissertation, or if such was the case, this fact has not been
mentioned in the literature. Through the comparison of results achieved using
different architectures and input features, certain conclusions can be drawn setting

the stage for future research in this area.
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4.1 Classification with Artificial Neural Networks: Introduction

and Motivation

Artificial neural networks, or “neural nets” as they are commonly referred to,
have and are currently being used to solve a number of different classification
and computational issues in a variety of different domains [Lippmann, 1987].
This methodology is especially attractive due to its inherent parallelism, the
simple computations involved during its operation, and resulting from recent
advancements in very large scale integrated (VLSI) circuits which has allewed
software simulations of neural networks to be implemented in fast hardware
[Dayhoff, 1990, Morgan and Scofield, 1991]. These advancements have allowed
the development of real-time ANN applications in the area of speech processing
and recognition, but their application in the domain of infant crying, still remains

undocumented in the literature [Petroni et al., 1995].

Artificial neural networks are based on the present understanding of the way
that biological neural systems behave, but the current state of the art is still far from
equalling human performance in the area of recognizing speech, for example. The
models of different neural network architectures are specified according to network

topology, node characteristics, and the learning or training method employed.

Work on artificial neural network models dates back over 50 years with the
paper of McCulloch and Pitts [McCulloch and Pitts, 1943] generally acknowledged
as marking the start of work in this field, even if the authors make no mention of
the practical uses of these models. During the past 15 years, neural nets have
seen a renewed interest as the work of many researchers have brought about
significant advances in this field, both for the development of new architectures,

as well as in the formulation and implementation of improved training methods
[Hecht-Nielsen, 1990].

Neural nets have become popular in pattern classification due to their inher-
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ent parallelism and the simple computations required vis-a-vis traditional clas-
sifiers, which either require higher computational complexity, or which require
longer times to perform their task which may preclude real-time operation. It was
thought that because of these strengths, neural networks would be well suited
to speech recognition, but their successes and the proliferation of this methodol-
ogy in this particular domain has still not consistently surpassed that of hidden
Markov models. This has been mostly due to the fact that the majority of the
commonly used architectures only support static input pattern sizes. This causes
a particular problem for applications such as word recognition, for example, or in
any other application which has inputs that vary both in length and in where the
“relevant features” required for correct classification occur within the input pattern
[Morgan and Scofield, 1991]. Despite these limitations, however, a number of neu-
ral network architectures and neural network hybrid architectures have emerged

over the past few years, as was presented in chapter 2.

Although hidden Markov models (HMMs) represent the method of choice for
the majority of speech recognition applications, this methodology was thought
to be too complex to segment and to train given the nature of the pattern that
was to be classified in this particular domain. In speech, recognition of words
requires the identification of specific phonetic events occurring in a particular order
[O'Shaughnessy, 1987, Rabiner, 1989]. Hidden Markov models address this using
a temporal ordering of the nodes, which is meant to correspond to the occurrence
of certain acoustic events during the course of a word utterance. In these models,
called left-to-right HMMSs, an example of which is shown in figure 4.1, once a
particular state has been traversed, it cannot be revisited, thus imposing a temporal

order of phonetic events which is inherent in the words to be recognized by the

system.

For infant cries, however, there seems to be no apparent temporal order in the
features present in utterances of the same type of cry. As well, auditory iden-

tification or classification by adult listeners seems to focus on the occurrence or
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Figure 4.1: A Left-to-Right Hidden Markov Model

presence of specific acoustic events in a cry, coupled with cues based on inten-
sity, and on the prosodic evolution of the Fy confour [Wasz-Hockert et al., 1968,
Zeskind and Lester, 1978, Fuller, 1991]. Consequently, straight pattern identifica-
tion techniques would seem to be better suited, potentially more successful, and
also less complicated to train and test than a corresponding HMM. Consider, for
example, the presence of dysphonic segments in an utterance. These events are
a common occurrence in pain cries [Johnston and O’Shaughnessy, 1988], and are
usually present at the the beginning of an utterance. However, these events are not
limited to the start of the utterance; a dysphonic segment can occur anywhere in

the course of an utterance.

Note the difference between the above and an application of word recognition
in speech, where the position of where a phone is identified in a sequence of phones
could determine whether one of two words in the vocabulary is recognized. For
example, the identification of a phone such as “a” in a sequence could make the dif-
ference between an input word being classified as “able” or “bale”. Consequently,
for speech, both the order and presence of phonemes makes all the difference,
whereas for acoustic events in infant cries, the occurrence or presence is important,
regardless of order since the presence of certain acoustic events reflects articula-
tor position and vocal tract tenseness, which, as waz mentioned in section 2.1, is
though to differ according to infant state. In addition to this, the intensity of the

utterancz and the prosodic evolution of Fp is important as well, as opposed to word
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recognition, where these features are considered a nuisance for recognition pur-
poses, and are usually excluded from the feature set [Bourlard and Morgan, 1993].
Also, given the fact that newborn or premature infants have very poor control aver
their vocal tract articulators, lends additional support to the hypothesis that the

problem of the correct classification of infant cries may not necessarily benefit from

information of a sequential nature.

Neural networks have been used in both phoneme and speech recognition-
related experiments, but the results published in the literature show more success
for applications with the former than with the latter. Infant cry vocalization resem-
ble vowel vocalizations, and can perhaps benefit from the phoneme classification-

related work done in speech using artificial neural networks.

Although a cry utterance may not necessarily be considered as being a left-
to-right first-order Markov process, where the probability of transition from the
current state to another state depends solely on the current state, this should by
no means imply that hidden Markov models could not be useful in this domain.
One would have to replace the left-to-right model, shown in figure 4.1, used in the
speech domain by an ergodic model, shown in figure 4.2, where transitions from a

given state to all others are allowed.

The process of training such a model would be quite time consuming and there
would be no guarantee that the results obtained using HMMs would be superior to
those achieved using neural networks. As well, the training of the HMM requires
a large number of training set data so that the training algorithm can learn to
properly approximate the probability density functions of the observation symbols
in the individual states and the state transition probabilities accurately. For infant
cry utterances, it is often difficult to obtain large numbers of recordings, unlike
speech, for example, where large databases of speech samples exist for testing and

comparing the results of both feature extraction routines and speech recognition
methods.
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Figure 4.2: An Ergodic Hidden Markov Model

For these reasons, then, it was decided that first a series of tests using ANNs
would be attempted for the purposes of classifying one of three different cry types,
of which a detailed description is given in section 4.3. Pending the results of these
tests, it would then be decided whether or not these tests would be abandoned
in favour of a new sets of tests, this time performed using another classification
methodology such as classification and regression trees [Breiman, 1984], or HMMs.
The results obtained in initial tests were sufficiently good to warrant their continued
testing. Further tests were performed on other neural network architectures for
comparative purposes and in order to determine if certain architectures or input
features yield better results and why. No other group to date has used ANNs in
the domain of infant crying, or if they have, their results have not been published
in the literature and it is important to have results which can be compared with

other work, using the same or similar data sets.

Work done by Xie, Ward, and Laszlo used hidden Markov models to compute
a cry's so-called level-of-distress, which is a subjective measure based on a par-
e..t's perception of the infant’s physical and emotional state after listening to a cry
[Xie et al., 1993]. Although their method mentions the identification and use of

“cry phonemes” in an HMM, no implementation details or error analysis measures
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were discussed in the paper, even if the correct classification value of this level-
of-distress measure was quoted as beiny; over 80%. The validity of this measure,
and the relation that this subjective measure has to specific infant states, such as
pain or hunger, for example, is not clear. Nevertheless, this method was one of the
first published in the literature which attempted to automate the classification of
cries, even if the method is based more on the perceptions of the listener than on an
understanding of the underlying cry production process which causes these cries
to be uttered, or controlled experiments affecting the underlying physiological and

emotional states of the infant producing the cry.

The results obtained as a result of the experimentation performed for this disser-
tation using ANNSs, which are presented in section 4.6, achieve correct classification
rates equalling or surpassing those achieved by Xie, Ward, and Laszlo. It should
be noted, however, that the the classification experiments described in section 4.6
attempted to discriminate between three different cry states, and did not try to

match the perceptual measures of infant distress as interpreted by adult listeners.

Moreover, neural networks were also selected because of their success in certain
facets of the speech recognition problem, most notably in vowel recognition and
phoneme recognition, as well as due to some successes in word recognition result-
ing from the use of architectures that incorporate time in them. Since ANNs possess
the potential of equalling the classification rates of the best statistical recognizers
for certain applications [Niles et al., 1989], this implies that they are at least worth
a closer look. While no neural network training method can yet guarantee that
the set of weights generated after a given training session converges to the optimal
set of weights, research is still on going in this problem to ensure that the weight

values will approach this “optimum” as closely as possible.

The area of finding the optimal training methods, architectures, and input fea-
ture sets which will yield the best results for both speech and similar applications

with time varying signals, such as infantcries, remains very much an open problem,
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with limited success in the speech domain having been achieved, as mentioned in

section 2.3.

The strengths of ANNs lie in their ability to map classification sets, and these
optimal mappings are achieved if the training set is sufficiently large and repre-
sentative of the data which is to be expected in test patterns or during actual use
of the network [Haykin, 1994]. The premise is that if the training data is especially
representative of the data which can be expected and if the network appropri-
ately models of the classification spaces for the input and output sets, then the
network will generalize and perform correct classification on the input patterns
which it has previously never “seen”. To perform this generalization task as well
as possible, the training size should be comparable to the number of input weights
[Hecht-Nielsen, 1990]. This is not possible for most applications, however, and
other tasks must be performed to accurately determine the performance of a given
network configuration. In the absence of sufficient input patterns, methods exit to
assist in this determination [Weiss and Kulikowski, 1991]. Among these includes
training for a fixed number of iterations, training until an error measure, such as
the mean-square error, drops below a certain value, randomizing the sequence in
which the patterns are presented, and cross-validation training. The latter method
requires taking k patterns randomly from a data set of size n, and using n — &
patterns as the training set and the remaining k patterns as the test set, repeating
the process until all the n patterns in the entire data set have been in the test set

once.

The following section presents and discusses the neural network architectures
and training algorithms used for the purposes of evaluating their ability for classi-

fying infant cry vocalization uttered as a result of three different stimulus events.
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4.2 Neural Network Paradigms Tested for the Classification of In-

fant Cry Vocalizations

This section presents the different neural network architectures and training
paradigms tested for the classification of infant cries. A number of different archi-
tectures were investigated, but the results of only four are presented in the interest
of presenting the most successful of the methods tested. Although the literature
lists a number of different architectures which have been successfully used for
either phoneme or word recognition, most of these architectures were not tested
for the following reasons. First, the study undertaken for this dissertation was
performed to investigate the feasibility of using ANNs for infant cry classification;
if reasonable results could be obtained with these more “traditional” nets, further
tests with more complicated methods couid then be attempted in the future, as was
mentioned in the previous section. Next, the availability of software implemen-
tations of certain neural network architectures and learning paradigms, such as
probabilistic restricted Coulomb energy networks [Scofield et al., 1988], or Viterbi
networks [Lippmann and Singer, 1993], precluded the testing of these methods
with the cry recordings. Finally, ANNSs and learning paradigms,: that were avail-
able for testing via software implementations, available in the public domain, and

suitable for time-dependent signals, such as speech, were tested.

The following subsections will present the four paradigms used in cry classifica-
tion tests. They are the basic feedforward neural network (FF), the autoregressive
neural network (RNN), the time-delay neural network (TDNN), and the cascade-
correlation neural network (CC). A number of different algorithms for training
these ANNSs exist as well, all of which attempt to adapt the network weights ac-
cording to a particular training regimen in order to achieve the desired end result
of the training process. All of the learning methods used for training the various
neural networks architectures for this particular application, which will be pre-

sented in the subsequent subsections, used supervised learning techniques. These
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training methods attempt to find the optimal set of weights which leads to the
convergence of the difference between the desired and actual output values for
the inputs presented to the network, according to some error measure. Once the
network has converged, the weights values will represent a minima in the error
surface, and it is hoped that after training, the global minima of the error surface,

for which the weights constitute the dimensions, is found.

Supervised learning techniques assume that the desired function of the network
is to perform as an input/output system where the inputs to the network z; have
desired output values y; associated with them. The stimulus pattern is presented
at the input and the corresponding desired output values are presented to the
output of the network. If the output of the network resulting from the presentation
of the input pattern does not correspond to the desired output pattern within an
acceptable error level, the netwerk weights are then modified in such a way as
to reduce the difference between the actual and the desired output values. The
weights can also be modified after a group of input patterns are presented to the
network, or after the entire set of patterns are presented. The following section
will also discuss the various neural network training algorithms associated or used

with the corresponding neural network architectures.

4.2.1 Teedforward Neural Network Architectures

Overview

This is perhaps the simplest of all neural network architectures, from which all
other networks have evolved, and thus the most logical network architecture with
which to begin. Many of the concepts presented here will be valid for the other
networks as well, and as a resuit, this subsection will be somewhat longer than the

subsequent ones.
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hidden  output
inputs |ayer layer

Figure 4.3: A Simple Feedforward Neural Network

An example of a simple feedforward neural network is shown in figure 4.3. The
network is organized into layers according to where a certain node or cell in the
network receives its inputs from. The connections in this network are unidirectional
wih the information flowing from left to right. In this architecture, connections
are permitted only between neighbouring layers and these connections cannot loop
backwards from nodes on the right to those on the left. The hidden layer receives its
signals from the inputs and the output of the hidden nodes are in turn propagated

to the output nodes.

The individual nodes in the hidden layer and output layer may have one of
a number of transfer functions, f(:), which transforms the weighted sum of the
signals that it receives from the previous layer, 27, and presents this value at its
output, z9t!. Examples of commonly used transfer functions are the hyperbolic tan
function, logical function, Jinear function, and the signum function [Simpson, 1990].
Usually, non-linear activation functions are used since this allows the network to
compute high-order correlations of the inputs which are not possible using simple
linear activation functions [Dayhoff, 1990]. It can be shown that a three-layer neural

network, with non-linear activation functions, is sufficient to compute an arbitrary
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mapping between input and output values [Haykin, 1994].

The choice of using a transfer function such as the hyperbolic tan function, which
has outputs ranging between [—1, 1], over the logistic transfer function, which has
outputs ranging between [0, 1], are that the range of the former is twice as large
as that of the latter. As well, the tanh transfer function is asymmetric, that is
f(-») = —f(v), and a multi-layer network will learn faster when trained using
back propagation [Werbos, 1974], one of the most popular ANN training methods,
which will be outlined below. A derivation of the method can be found in Haykin’s

book [Haykin, 1994], or in other text books dealing with neural networks.

Training Methods

The back-propagation algorithm for weight updates on a pattern-by-pattern basis
behaves as follows. First the network is initialized with all the weight values
set to small random values, in order to avoid the saturation of the majority of the
network nodes. Next, the training examples are presented at the inputs, one pattern
for every iteration, with the activation potentials, or the transfer function output
values, of the nodes computed based on the weighted input sum at its inputs. This
is done for all the layers in the network, proceeding from the inputs to the outputs.

The activity of neuron j in layer ! is given by the equation

U_, (Z wm (n)y! 1) )) (4.1)
i=0

where 1;}"”(1:) is the output neuron ¢ in the previous layer { — 1 at iteration =,

w (n) is the weight of the connection between neuron : in layer [ — 1 and neuron

J inlayer !, f(-) is the activation or transfer function of the node, and yj (n) is the

output of neuron j in layer / for iteration n.

At the output layer, layer L, the output for a node j can be defined as being

Jj ) = 0;(n), and the error signal can be computed as ¢;(n) = d;(n) - O;(n), where
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d;j(n) is the desired output of node j at iteration n. This error is then propagated
backwards to modify the weight values in such a way as to decrease the error
between d;(n) and O;(n). This is accomplished by computing the local gradients,
or the rate of change, of the weights, §, by proceeding backwards on a layer by
layer basis, starting at layer /. - the output layer, as denoted by the superscript over

the &:
8 (m) = ¢;0;(n)[1 - O;(n)] (4.2)

for the j'* neuron in the output layer . and
Jm(n) = J( Y(n) )1 - Yn) ]z §(l+1)(")w(1+ll( (4.3)

for the j** neuron in hidden layer /.

The weights in the network at layer { are then modified according to the gener-

alized delta rule:
m(n +1) = ww(n )+ o[w Yn) - w (n 1]+ 1]6}-”(1:):},“ Din) (4.4)

where « is the learning rate and 7 is the momentum. The learning rate determines
how much of the difference between the two previous weight values is added to
the current change, and the momentum term determines how much of the gradient

contributes to the weight change.

This process terminates when the error for either all the patterns in the training
set, or for the error summed over all the patterns in the training set, drops below a

certain value. One common error measure used is the mean-square error:

3 1di(n) = Os{m)?
=2

. ; (4.5)
J

but other errors measures can be used as well [Morgan and Scofield, 1991].
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Instead of updating the weights after the presentation of each pattern, the weight
values can also be updated following the presentation of all the patterns in the
training set. The latter is referred to as batch training, whereas the former is
referred to pattern mode training. Pattern mode training was described at the
beginning of this sub-subsection. In batch processing, one waits to propagate the
error backwards after all the patterns in the training set have been presented. Both
methods have their respective strengths and weaknesses and the better results
obtained by the use of one method over another depend on the nature of the
problem [Haykin, 1994, Weiss and Kulikowski, 1991]. In experiments performed
for the classification of infant cries, which will be described in section 4.6, both

pattern mode and batch mode training were employed.

In addition to the training method presented earlier, other training methods
exist for updating the weight values; attempting to reduce the number of training
iterations required before the network converges, as well as optimizing the value
of the weights obtained following the completion of the training process, in such
a way as to avoid the occurrence of getting stuck in a local minima. Such meth-
ods, which attempt to improve on the standard back-propagation, are QuickProp
[Fahlman, 1988] and gradient descent line search training techniques which are

based on optimization theory [Goryn and Kaveh, 1991].

Neural Network Connections and Configurations

The number and configuration of the connections between the different layers also
distinguishes between different types of feedforward networks. Fully connected
networks, such as the one shown in figure 4.3, are ones where all the nodes in a
given layer have connections to all the nodes in the subsequent layer. One can
also selectively choose to connect certain groups of nodes from one layer to a
limited number of nodes in the following layer thus restricting or localizing the

information that is passed from one layer to the next in this fashion. One formal
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hidden  output
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Figure 4.4: A Simple Feedforward Neural Network with Tesscllated Con-

nections
method of localizing the connections among a group of nodes is referred to as
tessellation or “tiling” and involves connecting “tiles” of nodes from one layer
to the next, as is shown in figure 4.4. In this figure, each node in a given layer,
has connections from three nodes in the previous layer with two nodes from the
previous layer overlapping between adjacent nodes in the subsequent layer. This
allows the network to selectively integrate the activations from a group of nodes
from the previous layer to the following layer. These types of connections are meant
to model the receptive fields in the neural anatomy of the brain, and, by restricting
the connections in this manner, the performance of tessellated-connection networks

can either equal or better those using full connections [Dayhoff, 1990].

Lastly, a network with additional hidden layers can learn more complex map-
ping functions between the inputs and outputs than can be achieved with two-layer
networks. For some applications, the use of multiple hidden layers has achieved
better results as these networks perform the computation of higher-order correla-

tion functions between the input and output.
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Figure 4.5: A Simple Recurrent Neural Network

4.2.2 Recurrent Neural Networks

A means of capturing time-dependent information in an input set of data, or
for tracking sequences in an input pattern that varies with time, is through the
use of recurrent neural networks (RNNs). Figure 4.5 shows an example of a
simple recurrent neural network. This network takes the outputs from the node
activations, or transfer functions, from the hidden layer, and feeds these values
back to the inputs of the same node, delaying these values by one or more time
instants. Figure 4.5 shows anexample of only one delay unit per node, however, the
outputs of the hidden layers could be delayed by additional time instants, simply
by placing additional delay nodes, ™!, in the network. The delay units store what
is commonly referred to as context information since they store the context of the
network at a particular time instant for use as future input values to the nodes.
These context nodes can be added to the output units as well, enabling the state of

these nodes to be captured, in addition to the state of the hidden layer.
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These networks have the ability to learn the inherent “states” of a sequence of
input vectors and are able to capture time-dependent information of sequences in

a pattern that varies with time.

One of the methods with which these neural networks can be trained is through
the use of the “temporal flow” network as described by Watrous and Shastri
[Watrous and Shastri, 1987]. The behaviour of this method allows the context
weights to vary and uses the standard back propagation algorithm to determine
the value of all the weights in the network, treating the context weights simply
as weights originating from the previcus layer. After all the weights have been
adjusted, the activation of the nodes are recalculated for the next pass of the weight
update training algorithm.

Unlike static feedforward neural networks, where the output is based on the
presentation of a static input pattern, the output values for recurrent neural net-
works vary with time. The selection of these time-varying target output values is
quite arbitrary, although in their original experiments, Watrous and Shastri used a
ramp function as their target response over the course of a pattern’s presentation.
For output values lying between 0 and 1, the ramp was nitially started at 0.5 for all
the outputs, and slowly increased towards 1 for the node whose desired response
at the end of the pattern was i, and decreased to 0 for the other output nodes. After
the network was trained, the “winning” node in the output layer was the node

with the largest output value of all the nodes for the subsequent testing phase,

Besides the ramp function, another time-varying function which has a desirable
time-varying characteristic for the purposes of training the network is the Gaussian
function. The nice feature of this function is that the values initially rise or fall
quickly, before levelling off asymptotically towards either 1 or 0. The use of the
Gaussian function has resulted in some faster convergence times than when the

ramp function was used.

In the configuration of a recurrent neural network, the input size per time
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interval and the overlap size between subsequent input patterns can also be varied.
As well, the number of time delay units in the context and output nodes can be
varied in order to determine the “granularity” of these parameters which yields
the best results. Consequently, a static input pattern can be tepresented as a
sequence of time dependent frames where both the frame size and the number of
frames to be presented to a recurrent neural network can be varied. This allows
the determination of whether or not time or sequence is important for a given
classification problem, and which frame size, number of frames, and delay units in
the hidden and output layers yield the best results. From this information, it can
then be determined if and what granularity of time information is relevant for a

given data set.

The time information extracted by this type of network is based on the activation
values of the hidden nodes and of the output nodes, which differs from the time
information encoded in the neural network architecture described in the following

section.

4.2.3 Time-Delay Neural Networks (TDNNs)

This architecture was originally developed by Waibel, Hanazawa, Hinton, Shikano
and Lang [Waibel e’ al., 1987] in order to model the dynamic nature of speech by
attempting to represent and capture the relationships between the different spectral
and acoustics events in a given signal over time, while providing invariance toslight
shifts in time betwezn the various input frames. The latter feature of this network is
designed to tolerate the imprecise segmentation and alignment of an input pattern
so that the relevant acoustic events in the input frames for the same output class

can occur either somewhat sooner or later in time without affecting recognition.

Figure 4.6 shows an example of a TDNN node. Unlike the feedforward neural

network nodes, where the [ inputs to the node are weighted and summed before
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Figure 4.6: A Time-Delay Neural Network Node

being presented to the activation function, the TDNN node augments this definition
by introducing a series of delays z~!...z~" for all the input signals leading to the
node. In turn both the undelayed and the delayed inputs are weighted before being
summed and presented to tiie node’s activation function, so that the number of

weights required for this node are /{N + 1}, where N denotes the number of delays

in the node.

A group of these nodes are then placed together in a TDNN, as shown in
figure 4.7, where the number of delays in the hidden layer is represented by the
number of input frames that are presented to a hidden layer node. This value is
one less than the number of hidden layer frames. In figure 4.7, the hidden layer
consists of three hidden nodes, counted horizontally, with the current input value
and N = 3 Jelay units per node, counted vertically. With respect to the notation
indicated in figure 4.6, figure 4.7 has / = 12 inputs per node, consisting of two
six-elemant vectors, illustrated in the bold rectangle at the inputs, and NV = 3 delay

units in each of the three hidden layer nodes.

Consequently, a sequence of two six-element vectors, or twelve input values,
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Figure 4.7: A Time-Delay Neural Network Definition

are presented at any given time instant. At the following time instant, the next
group of two six-element vectors are presented, consisting of one of the input
vectors from the previous frame, and one new input vector, with the activation
of the previous group of the input data frame is delayed by one. This continues
until all the groupings, or the total delay length of vectors, in the frame have been
presented. In the example of figure 4.7, this occurs three time instants after the first
group from the input data frame is presented. When the last grouping of two six
element vectors has been presented to the network, the hidden layer activations of
the first group from the input data frame have been delayed by three time units.
Hence for this simple example with a delay length of two and a total delay length
of five, a complete input frame consists of five vectors consisting of six elements

per vector, presented in to the network in groups of two vectors.

Although the network of figure 4.7 uses only one hidden layer, other hidden lay-
ers can be added, with subsequently hidden layer nodes integrating the activations
of the previous hidden layer nodes over time. In short, this architecture allows
acoustic events occurring in the sequential input groups of a given input frames
to be integrated over time. Although the network may seem complex, TDNNs are

trained using back propagation.

In order to determine if this architecture is suitable for a given application, a
number of different parameters in the network can be varied. First, the input

delay length can be varied, which in turn changes the number of delays in the
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hidden nodes, or the number of hidden node frames for the network. The larger
the input delay size, the smaller the hidden layer delay size, and the coarser the
time representation and time integration of features. Conversely, the smaller the
delay length, the larger the hidden layer size, and, consequently, the finer the
time representation, allowing the integration of spectral and acoustic features to
be integrated over smaller time slices. In the latter cases, it may also be wise to
experiment with adding a second hidden layer as well. This allows the network
to capture both the input and time sequence representations by using a smaller
number of delay units in the first hidden layer, using the second hidden layer to

integrate a reduced dimension of activations from the first hidden layer.

These networks were originally shown to be successful for phoneme recogni-
tion [Waibel et al., 1989] with performance topping that of hidden Markov mod-
els [Waibel et al., 1988]. This improvement in phoneme recognition achieved by
TDNNs over HMMs has not necessarily translated to improved results for word
recognition, however. These TDNNs have the drawback that the learning proce-
dure is rather lengthy, which is necessary in order to update the potentially large
number of weights. As well, if trueshift invariance is to be achieved, a large number
of training tokens are necessary to both compensate for inaccurate segmentation

techniques and for variable length utterances.

4,24 Cascade Correlation Neural Networks

Cascade correlation is an example of an algorithm that constructs its own hidden
layer by adding hidden nodes based on the network error after a previous training
iteration. This paradigm was developed by Scott Fahlman at Carnegie Mellon Uni-
versity [Fahlman and Lebiere, 1991]. An example of a cascade correlation network
is shown in figure 4.8. This architecture has an intuitive appeal in that it will only
create as many hidden nodes as it needs in order to get the network errcr to fall

below a desired value. Consequently, one does not have to determine the optimal
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Figure 4.8: A Cascade Correlation Network

number of hidden nodes for an application to correctly or optimally learn the rela-
tions between the input and output values; the learning algorithm will determine

this by proceeding in the following manner.

First, the network begins with only the input and output nodes, which are fully
connected. The algorithm begins by adjusting the weights between the input and
the output nodes, so as to minimize the network error, using either back propaga-
tion or another gradient descent learning algorithm. This portion of the training
phase continues until either the network error no longer improves, a fixed number
of iterations have occurred, or the network crror goes below a predetermined value
in which case the network has converged and training is stopped. Otherwise, the

algorithm proceeds to train a set of candidate hidden nodes.

These candidate hidden nodes are linked to the existing network writh connec-
tions coming from the inputs nodes only, with no connections to the output nodes
during this training process. During the training of these candidate hidden nodes,
the weights connecting the inputs to the candidate hidden units are adjusted so as

to maximize the correlation between the activation of the candidate hidden units
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and the residual error of the network, that is, the error of network at the output
nodes when training stopped in the preceding stage. The values of the weights are

adjusted using either back propagation, or a gradient descent learning method.

Training of these candidate nodes continues until the correlation value no longer
increases, or, as is the case for the output weights, after a fixed number of iterations
have occurred. The candidate node with the highest correix un value is added
to the network with its weight connections from the inputs fixed at the values
determined during the training of the candidate weights. The output of the hidden
node is then connected to the inputs of the output nodes, so that the output nodes
receive weighted inputs from the both the inputs and the hidden nodes, as figure 4.8
illustrates. The weights of these connections between the hidden and the output
nodes and those of the connections between the inputs and the output nodes are
then adjusted during the subsequent training session as the weights between the

input and output layers were adjusted initially.

This cycle continues until the network error during the training of the the output
nodes drops below a predetermined value. Subsequent hidden nodes which are
added to the network receive inputs from both the input units and from the previous

hidden nodes and hence the hidden nodes are cascaded in this fashion.

In short, the clear boxes in figure 4.8 denote the weights whici are set a resuit
of the candidate node training, and are fixed once a candidate node is added to
the netvrcrk, and the selid boxes denote the connections from either the input or
hidden nodes to the output nodes and which are not fixed, and thus change after

the hidden nodes are added to the network.

When compareu to the other three neural network architectures presented in
the previous subsections, the cascade correlation architecture and learning methods
have not been used in numerous applications. However, the prospect of a network
which grows a hidden jayer in response to the way that the network error changes

is indeed an appealing one. The purpose behind using this method is to determine
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whether the classification rates of infant cries would indeed benefit from the use of

this “tailor made” hidden layer.

4.3 Data Set and Experimental Set-Up

This section describes the data set used for the neural network tests for infant cry
classification and the feature sets which were derived from the cry recordings for

use as inputs into the various neural network architectures described in section 4.2.

The utterances to be classified in this experiment were a subset of the data set
used for the fundamental frequency extraction tasks described in section 3.3. The
set of recordings consisted of 238 utterances recorded at the Notre-Dame-de-Grace
CLSC (Community Health Clinic) from sixteen healthy infants ranging in age from
two to six months, with no history of perinatal or postnatal complications. All the
parents of the infants gave their informed consent to participate in this study. All
cry vocalizations in this data set were due to one of three stimulus events: pain
/ distress from a routine immunization, fear / startie from a jack-in-the-box, and
anger / frustration from a head restraint. Recordings were made on a Sony TCM-
S00DEV cassette recorder with an omni-directional Senheiser MKE 2 microphone
placed 10 cm from the infant’s mouth. Subsequent to low-pass filtering at 8 kHz,
these cassette recordings were then digitized using a Data General D2701A card,
using a 12-bit analogue-to-digital converter, on a personal computer, at a sarrpling
rate of 16 kHz. These digitized signals were then iransferred to a Sparc 10+ for

subsequent analysis, feature extraction, and classification experiments.

Recordings containing cry utterances with a minimum duration of 0.75 seconds
were used for feature extraction. Of the 238 recordings in this data set, 195 had
vocalizations with durations that satisfied this criterion. The other 37 recordings

were discarded from the study.
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4.4 Parametric Represertations

Since important events in the cry signal aie thought to occur in the first sec-
ond of the utterance following the onset of the cry after the stimulus event
[Johnston and O’Shaughnessy, 1988], the first second of utterances lasting at least
0.75 seconds after the cry onset were used for the subsequent feature extraction
data set to be used in the classification experiments. For utterances that did not
last for at least or:e full second but which lasted at least 0.75 seconds, the last frame
of parameters was extended to fill the empty frames. If important features useful
for classification lie in this portion of the cry, classification could be accurately
performed using the extracted features, provided, of course, that these features are
relevant from an auditory point of view. The motivation bel.ind using these types
of features is that since a human listener can distinguish between certain types of
cries [Zeskind et al., 1985], or can learn to differentiate between different types of
cries [Ostwald and Murry, 1985], then if a classification method is presented with
features derived from an understanding of the human auditory system, hopefully,
the automatic classification system will also “learn” to identify the relevant features

in the data and perform classification based on these features.

Two feature sets have been successfully used for speech recogni-
tion and derive from an understanding for the human auditory system
in general, and in the frequercy response of the cochlea in particular
[Davis and Mermelstein, 1929, O’Shaughnessy, 1987]. They are the mel-based cep-
stral coefficients {Davis and Mermelstein, 1980), and the mel-scale filter-band en-
ergies [O’'Shaughnessy, 1987]. The cochlea’s frequency response characteristic is
such that the hair cells at low frequer.cies have a higher resolution than those at
higher frequencies. One of the first representations of the hair cell center frequency
values and bandwidths was published by Zwicker [Zwicker, 1961]. This brief ar-
ticle shows a linear spacing of frequency bands with very narrow bandwidths for

frequencies below 1 kHz, and logarithmic spacing and corresponding bandwidths
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Figure 4.9; Filter Bank for Me}-Cepstrum Coefficient Generation

for values above 1 kHz. This representation is also known as the “Bark” scale or
“mel” scale. A number of studies have shown that using these representations for
the purposes of speech recognition yields superior results to using a fixed band or

linear scale representation of similar features [Davis and Mermelstein, 1980].

Using the research done for the parametric representation of speech for speech
recognition as a starting point for the representation of infant cry vocalizations,
the following two feature sets were extracted from the signal; 10 mel-cepstrum

coefficients and 19 filter-band energies per frame of cry utterance data.

To extract these feature sets, the first second of the aforementioned recordings
containing utterances lasting at least 0.75 seconds were segmented into a series
of 16 ms or 256 sample frames, with subsequent frames overlapping by 50%.
Consequently, for a 1 second portion of the cry utterance, 125 frames of feature

vectors would be generated.

Generation of the mel-based cepstrum coefficients begins by taking the discrete
Fourier transform (DFT) of the Hamming-windowed signal frame. Then the output
spectrum is passed through as series of triangular band-pass filters which model the
bark or mel-scale, and the log energy output values of these filters are calculated.
Figure 4.9 shows a representation of the 21 triangular band-pass filters used to

filter the DFT of each frame of the utterance. The overall frequency response of
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these band-pass filters sums to unity for the portion of the signal in the area of
interest. Once the 21 critical band energies, [, are calculated, the 10 mel-cepstrum

coefficients are calculated according to the following formula:

21 . N 1. =
Cn = g log( i) cos [n( - E)ﬁ] (4.6)
forn =1,2,..., M, where in this particular case, M = 10. As well, the zeroth com-

ponent of the mel-cepstrum coefficients, ¢y, corresponding to the average energy
of the frame is also included, so that in all, 11 coefficients, cy,. . ., cn, constitute the

mel-cepstrum vector for a given input frame or window of data.

As was mentioned earlier, the 19 mel-scale filter-band energy values are also
generated as features. Generation of this feature set is done be first generating a
series of band-pass filters whose center frequency and bandwidths approximately
followed the critical band values. These filters were then generated using the

Remez Exchange Algorithm for generating linear-phase finite impulse response
(FIR) filters.

The difference between the number of critical-band filters used in the mel-
cepstrum coefficient computation and in the computation of the mel-scile filter-
band energy values is due to the fact that for the filter-bands in the range of 0 Hz
to 1000 Hz, the filters generated using the Remez Exchaage Algorithm required
slightly larger bandwidths than those specified by Zwicker, which were used in the
mel-cepstrum computation, in order to obtain unity gain in the pass-band. More-
over, using slightly larger bandwidths decreased the number of filters used for the
mel-scale filter-band energy values in the range of 0 Hz to 1000 Hz from 9 to 7, but
these larger bandwidth filters resulted in unity gain in the pass-bands of these fil-
ters, and consequently the sum of the magnitude of the frequency responses in this
range summed to unity as desired. This criterion could not have been satisfied if

narrower bandwidth filters were generated using the Remez-exchange algorithm.

The motivation behind using FIR filters, as was also mentioned in section 3.3,
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Figure 4.10: Some Filter Bank Responses for Mel-Scale Filters

is that because of their linear phase characteristic, all the frequency components in
the signal are delayed by the same amount of time during the filtering process, and
thus, no signal distortion occurs. A comprehensive article by Dautrich, Rabiner,
and Martin discuss the benefits of using FIR filter over infinite impulse response

(IR) filters for the purposes of speech recognition [Dautrich et al., 1983].

Despite the desirable linear-phase characteristics of FIR filters, these filters have
the drawback that they require an order of magnitude more taps than IIR filters
do, in order to achieve the same stop-band attenuation values. The 19 FIR band-
pass filters required 601 taps to achieve a stop-band attenuation of over 70 dB.
The frequency response of some of these filters are shown in figure 4.10, with the
characteristics of all of the bands are listed in table 4.1. The sum of the frequency

responses sums to unity in the frequency range of interest, namely from 180 Hz to
7500 Hz.

To generate the energy values for the individual bands, the signal was presented
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Filter | Lower Stopband | Lower Passband | Upper Passband | Upper Stopband
Bank No. | Frequency (Hz) | Frequency (Hz) | Frequency (Hz) | Frequency (Hz)
1 130 230 240 250
2 240 340 350 450
3 350 450 460 560
4 460 560 580 630
5 580 680 715 815
6 715 815 865 965
7 865 965 1030 1130
8 1030 1130 1215 1315
9 1215 1315 1425 1525
10 1425 1525 1670 1770
11 1670 1770 1940 2040
12 1940 2040 2260 2360
13 2260 2360 2640 2740
14 2640 2740 3075 3175
15 3075 3175 3625 3725
16 3675 3725 4300 4400
17 4300 4400 5200 5300
18 5270 5300 6300 6400
19 6300 6400 7600 7700

Table 4.1: Characteristics of Mel-Scale Filter Bands

to the band-pass filters and then the energy was computed for the 16 ms or 256
sample frames from the individual band-pass filtered signals. The set of 19 energy
values per frame were then augmented by an adding another value containing the
total energy for the frame, so that in all, 20 energy values constituted the mel-scale

filter-band energy vector for a given input signal frame, or window.

Some considerations are in order before presenting the data to the neural net-
work architectures for training and subsequent classification tests. First, the dy-
namic range for the input values can be rather large, given that the range of possible
energy values can vary appreciably from one utterance to the next, between dif-
ferent portions of the same episode, and between different infants as well. In
order to normalize these effects and to decrease the dynamic range of the inputs,
so that the training or learning of features does not focus on the overly large in-
put values, the input values of the feature sets were either scaled or normalized
[Weiss and Kulikowski, 1991, Morgan and Scofield, 1991].
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For the 1-second frames of mel-cepstrum coefficients, two alternatives were
were investigated. In the first, the individual 1-second collection of computed mel-
cepstrum coefficients were treated in two ways. First, these values were scaled
by max(cp), the maximum of the average energy value within the 1-second, or
125-vector, input data frame so that the maximum value contained in a given
input frame would not exceed 1.0. In the second, these frames were also subject
to normalization so that all the values within a given frame would lie between
+1.0. This normalization was performed by first determining the range of values
in a given 1-second input data frame, done by finding the largest value (max)
and smallest value (min) in the frame, computing the “mean” or offset, and then
subtracting the mean from all the values in the frame. This operation has the effect
of shifting all input values in the frame to lie within the same positive and negative
number. Dividing all the values in the frame by this number has the effect of

normalizing values to lie between +1.0.

The individual 1-second collection of mel-scale filter-band energy values were
treated in three ways. First, these values were scaled by the maximum value of
a given 1-secund, or 125-vector, input data frame, so that all the values would
be at most 1.0. Then, dynamic range reduction was also achieved by taking the
logarithm of the energy values, producing the second data set derived from mel-
scale filter-band energies. Lastly, all the input frames had the mean of the maximum
and minimum values contained within the 1-second frame subtracted and then

normalized so that all values within the frame would lie between £1.0.

All of the parameter extraction, filter design, and signal processing of the cry
utterances was performed on a Sparc 10+ using MATLAB. The following section
briefly describes the neural network simulation software used to create, train, and

test the various neural network architectures discussed in section 4.2.
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4.5 WNeural Network Simulation Software

In order to train and test the articles and paradigms that were mentioned in sec-
tion 4.2, three different public domain neural network software simulators were

used. The following subsections will briefly describe their features.

4.5.1 Aspirin/Migraines

The Aspirin/Migraines package is a system of tools developed at the MITRE Cor-
poration in order to facilitate the generation, training, and testing of both small,
trivial neural networks, and large, more complex neural networks [Leighton, 1992].
In this package, a neural network is specified according to a specific syntax which
describes the network to be created in terms of input size, hidden layer size, and
output layer size. The type of connections between layers, such as full or tessel-
lated, the transfer or activation functions of the nodes, and the learning methods
can also be specified. As well, if the transfer functions provided by the package
do not provide sufficient resolution, or other types of activation functions with
different characteristics than the one provided by the package are desired, they

may be specified by the user.

The file that contains the description of the network in Aspirin fuormat is then
parsed and compiled to create a series of “C” language functions which are nec-
essary to simulate the network. These generated functions are then compiled and

linked to the application code using a set of user interface libraries referred to as
Migraines.

The user interface provided by the latest version, release 6.0a, of this set of tools
is text based. However, the Migraines interface can provide output in various
formats which are supported by a number of popular plotting packages, so that

network data can be visualized. As well, a number of formats are supported for
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the input data file specification from simple ASCII to MATLAB-formatted data.

Unfortunately, the number of architectures and learning methods in this version
of the software is quite limited. Using this package, only feedforward networks,
with full and tessellated connections, and recurrent networks were simulated, both
of which were trained using the generalized delta rule back propagation learning

method.

4,5.2 Xerion

Xerion is a collection of simulators which is built using “C” language libraries
developed at the University of Toronto by Geoffrey Hinton’s research group
[van Camp, 1993]. Each neural network architecture supported by this collection
has its own individual simulator network, with the libraries providing the user
with a consistent interface for interacting with the simulators, and for displaying
the network properties using an X-based graphical user interface (GUI). As well,
the collection of libraries provided by this package allows the researcher to code
complex and experimental network definitions simply and quickly, and also allows
the addition and generation of other architectures to be performed using the Xerion

interface.

A neural network is specified in a file using a set of objects and creating and
connecting these objects in the desired manner. A user can select from a number
of different transfer function types and learning methods, which can either be
selected prior to training using either X-based GUI menus and panels, command-
line inputs, or through the use of command files. The input data files used for
training and testing the network must be in plain ASCII; no other file formats are

supported in the latest version of the software, version 3.1.

Although the standard Xerion distribution consists of eight different network

simulators, some of which were used to test the suitability of certain architectures
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for cry utterance classification, the results of only one of the more successful ar-
chitectures will be presented in in section 4.6, namely cascade correlation neural

networks which were trained using a conjugate-gradient descent learning method.

4.5.3 The Stuttgart Neural Network Simulator (SNNS)

The Stuttgart Neural Network Simulator is a comprehensive neural network sim-
ulator program which was developed by a team of researchers at the University
of Stuttgart in Germany [Zell et al., 1994]. This simulator package uses an X-based
graphical user interface to interact with the user regarding the creation of net-
works, the loading and saving of network definitions, patterns, and configuration
files, the training and testing of networks, and the selection and specification of

node transfer functions, learning methods, and learning method parameters.

Although the graphical user interface provides the most elaborate and elegant
means of interacting with the SNNS kernel, an automated batch process is provided
for the purpose of training the networks as well. Version 3.2 of SNNS provides
access to eleven neural network architectures and to a number of learning methods
which are based on back propagation, and improvements to standard back prop-
agation, such as QuickProp, which was developed in the interest of improving
convergence times [Fahlman, 1988]. Version 3.3, which was released in November
1994, has added few more architectures to their collection, and has also provided

some network pruning algorithms.

Despite the complete and comprehensive nature of this package, SNNS only
supports input data files for training and testing in plain ASCII format.

The SNNS-provided architectures used in this research, whose results will be
presented in this following section, were the cascade correlation using both back

propagation and QuickProp, and time-delay neural networks (TDNNs).
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4.6 Results

This section presents the results of the tests done using the feature sets and the
neural network architectures presented in section 4.2. First, the experimentation
procedures will be described, detailing what error measures will be used for the
results which will be presented in the subsequent subsections. Then, the results
obtained from input sets generated as described in section 4.3 will be presented in

section 4.6.2 and section 4.6.3. The results will be discussed in section 4.7.

4.6.1 Experimentation Procedures and Error Measures

The various combinations of neural network architectures and input data
sets were trained using a resampling strategy of 10-fold cross validation
[Weiss and Kulikowski, 1991]. This involves splitting the data set into ten mu-
tually exclusive sample sets of roughly the same size and using nine of these sets
to train the network with the remaining set to be used as a test set. This process is
repeated until all the sets have been used as the test set once, in order to perform
an error rate estimation which is as close as possible to an unbiased estimator of
the true classification rate. Since there are 195 input frames, or files, in the data
set, at any one time approximately 90% of them, riamely 175, 176, or 177 of these
input frames, were used to train the network, and the remaining 10%, either 18,
19, or 20 input frames, were used to test the network once the training process was
comgieted. The results from the testing process from these 10 data sets were then
accumulated in order to determine the correct classification rates and error rates of

a particular combination of an input data set with a neural network configuration.

The correct classification rate corresponds to the number of correct classification
of test files, divided by the total number of test files. The errur rate, on the other

hand, is simply the correct classification rate subtracted from 1.
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Using only one training and test set for all the experiments has the danger of
being an especially biased test and, consequently, results of these types of experi-
ments may not reflect the true performance if another data set consisting of similar

data were to be used. These tests can lead to unrealistic and over optimistic results.

For the 10-fold cross-validation tests, since the data set consists of 54 anger crics,
16 fear cries, and 125 pain cries, the test sets contained anywhere from 4 to 6 anger
cries, 1 or 2 fear cries, and 12 to 13 pain cries chosen randomly from the pool of 195

cries, respecting the proportion of these sets in the total data set.

The results will be presented in two separate subsections, one for the tests
run using the mel-cepstrum coefficients as inputs, and the other for the tests run
using the mel-scale filter-band coefficients. In these subsections, the results will
be presented according to the architecture and the input features derived from
either the mel-cepstrum coefficients or from the mel-scale filter-band energies,
in a tabular format referred to as a confusion matrix, from which the optimal
hidden layer size, learning rate, and momentum can be identified. As well, for the
individual architectures, error rates will be tabulaied as some parameters in the
various networks were varied, such as hidden layer size for feedforward networks,
input frame size and overlap for recurrent and time-delay neural networks, and as
different training methods were used for cascade correlation networks. Lastly, the
individual subsections will conclude by summarizing all the results in a table for

comparative purposes.

Displaying the test results of the neural network outputs in a confusion matrix
allows the identification of the different types of errors which occurred during the
testing phase of the different neural networks architectures using different input
data sets. A confusion matrix lists the correct classifications against the predicted
classification for each output class, which for the this application corresponds to
A, F, and P, for anger, fear, and pain cries, respectively. The number of correct

classifications falls along the diagonal of this matrix.
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Along with the confusion matrix, the correct classification rate for the anger,
fear, and pain classes, as well as the total correct classification rate , resulting from
10-fold cross-validation training and testing performed on these networks will be

given.

Since it is also useful to determine how these networks perform on a two-class
classification problem, results from a “pain” and “no-pain” class perspective will
be derived from the three-class classification results and presented along with the
three-class classification results. Grouping the anger and fear classes together in
the “no-pain” class implies that although correct classification of anger, fear, and
pain are desired, it is of particular importance, especially in a clinical setting, that
pain and non-pain utterances are not confused once the network has been trained.
For the two-class confusion matrices, the “pain” and “no-pain” classes are denoted

by P+ and P- respectively.

Consequently, when compiling the three-class results into a two-class grouping,
the anger and fear outputs will be labelled as “no-pain” utterances. In this two-class
grouping, anger utterances classified as fear, and vice-versa, will not be considered
as being incorrectly classified since both anger and fear utterances fall into the

“no-pain” class.

The two possible errors which occur in two-class classification problems are
frequently given the names adopted from classification a medical context: false
positives or false negatives. In this pain and no-pain context, false positives represent
no-pain utterances which are incorrectly classified as pain utterances, and false
negatives represent pain utterances incorrectly classified as no-pain utterances.
Note that here the true positives is the number of pain files correctly classified as
pain, and the true negatives are the number of no-pain files correctly classified as
no-pain. From this, the following formal measures of classification performance
can be defined [Weiss and Kulikowski, 1991]:

1. Sensitivity: which is the number of true positives divided by the total number
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of actual pain files,

2. Specificity: whichis the number of true negatives divided by the total number
of actual no-pain files,

3. Positive Predictive Value: which is the number of true positives divided by
the total number of files predicted as pain,

4. Negative Predictive Value: which is the number of true negatives divided
by the total number of files predicted as no-pain,

5. Accuracy: the sum of the true positives and the true negatives divided by the

total number of pain and no-pain files.

These measures are useful for identifying a neural network architecture and
input data set which yields a high sensitivity, but which may have a poor specificity,

in the event that numerous no-pain fiies are classified as pain.

4.6.2 Mel-Cepstrum Coefficient Input Data Set

This subsection presents the results for the input data sets derived from the mel-
cepstrumn coefficients, which were generated as described in section 4.3. The results
are presented according to the architecture and the input data sets used to train
and test the respective networks. The two input input data sets derived from the
mel-cepstrum coefficients correspond to either the mel-cepsirum coefficients scaled
by the maximum value in the input frame of data so that the input values do not
exceed a maximum of 1.0, and the mel-cepstrum coefficient values with the mean

removed and normalized to lie between +-1.0.

First, the neural uetwork results will be presented, followed by the results of the

variation of some neural network parameters.
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Number of hidden units: 45; Learning rate: ¢ = 0.015; Momentum: i = 0.9.
Actual

AIFI D Totaleorreet =_}% = 69.23%
Al32]6]19 Acorrect = ;‘_2 = 59.25%
Predicted [ F || 0 (4] O Feorrect i+ = 25.00%
g }: g 979 Peorrect = 1 = 79.20%
Actual Sensitivity = &% = 0.7920
[P~ [P+ | Specificity = # = 0.6000
P-142 |19 Predictive value (+) = & = 0.8534
Predicted | P+ [| 171 99 |  predictive value (-) = $ = 0.6885
¢ [11]7 Accuracy = 1l = 07231

Table 4.2: Results for Fully Connected Feedforward Neural Network using
Mel-Cepstrum Inputs Scaled to a Maximum Value of 1.0

Number of hidden units: 45; Learning rate: o = (.015; Momentum: n = 0.9.

Actual 163

A|F P Totaleorreer = 19 = 83.59%

All41]5 5 Acorrect = 454'-1 = 75.93%

Predicted [F|| O [ 71 O Feorrect % = 43.75%

g g - 1 1;5 Peorrcct = 13 = 92.00%
Actual Sensitivity = 1E = 0.9200
P- 1 P+ Specificity 2 = 0.7571
P-[|53] 5 Predictive value (+) = 112 = 0.9274
Predicted | P+ || 9 ] 115 |  Predictive value (-) = & = 09138
¢ 1815 Accuracy = 1% = 0.8615

Table 4.3: Results for Fully Connected Feedforward Neural Network using
Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie Between
+1.0

Neural Network Results

As mentioned at the start of section 4.6, the results are displayed in confusion
matrices and the entries of these matrices represents the sum of the test phases
of the ten 10-fold cross-validation tests with separate matrices for both three-class
and two-class confusion matrices. To the right of the respective matrices are error
measures derived from these matrices. This is done for the configuration indicated
at the top of the tables, and for the neural network architectures and input data sets

indicated in the caption of the table.

For the feedforward neural network result tables, an additional row has been
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Number of hidden units: 24 with [11 x 10] tessellation and 11 X-overlap and 3 Y-overlap.
Learning rate: a = 0.015; Momentum: 5 = 0.95.
Actual

A F P Totalco..,.ug = {g% = 67.69%
A 321620 Acnrrrcr .%4; = 59.25%
Predicted [ F || 2 [ 2] O Feorrect 1% = 12.50%
g 200 (8} 973 Peorrect = 2% = 78.40%
Actual Sensitivity = 1 = 07840
P- [ D+ | Specificity = 3 - 0.6000
P- {42 20 Predictive value (+) = 15 = 0.7778

Predicted | P+ [| 28 | 98 |  predictive value (-) = & = 06774
¢1017 Accuracy = {9 = 07910

Table 4.4: Results for a Feedforward Neural Network with Tessellated
Connections using Mel-Cepstrum Inputs Scaied to a Maximum value of 1.0

Number of hidden units: 24 with [11 x 10] tessellation and 11 X-overlap and 3 Y-overlap.
Learning rate: o = 0.015; Momentum: » = 0.95.
Actual

ATFET 7P| Totalorea = kg = 73.31%
A3 2] 10 Acorreet # = 62.96%
Predicted | F|| O [ 2 | O Feorreet % = 12.50%
l tl; 173 ]62 ]:1005 Peorrect = % = 84.00%
Actual Sensitivity = 12 = 0.8400
P- | P+ Specificity = ¥ = 05429
P- || 38 | 10 Predictive value (+) = {2 = 0.8077
Predicted | P+ || 25 | 105 | predictive value (-) = ¥ = 07917
¢ 7110 143

Accuracy = j55 = 0.7333

Table 4.5: Results for a Feedforward Neural Network with Tessellated Con-
nections using Mel-Cepstrum Inputs with Mean Removed and Normalized
to Lie Between +1.0

included in the respective confusion matrices. This row, labeled as “predicted 4",
indicates the number of test files whose output was undefined, that is, which had
an output value which did not single out one of the three output classes, when an
input frame of extracted parameters was presented at the inputs during the testing

phase. This problem arises when more than one output values saturates at the

positive output value, +1.

The best results of the fully connected feedforward neural networks, which use

the scaled and normalized mel-cepstrum input data sets are given in table 4.2 and
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Inputs size: [75 x 11] with an overlap of 50 vectors per input frame.
Number of hidden units: 36 with 3 delay units per node.
Learning rate: o = 0.1; Momentum: 5 = 0.5.

Actual

ATE]| P Totaleorrec: = % = 64.61%

All20{0] 20 Acorrect %% = 37.03%

Predicted | F || 0 {2 ] O Feorrect & =1250%

g 2; g 124 Peorreet = % = 83.20%
Actual Sensitivity = 1% = 0.8320
P- | P+ Specificity = £ =03143
P- 221 20 Predictive value (+) = %-% = 0.7704
Predicted | P+ || 31 | 104 [  predictive value (-} = % = 0.5238
¢ J|17] 2 Accuracy = 1% = 0.6461

Table 4.6: Results for a Fully Connected Recurrent Neural Network using
Mel-Cepstrum Inputs Scaled to a Maximum Value of 1.0

table 4.3 respectively. Best results for the feedforward networks with tessellated
connections are given in table 4.4 and table 4.5 for the scaled and normalized mel-
cepstrum input data sets respectively. For the feedforwa:d architecture, the training
method which yielded the best correct classification rate employed a pattern-by-
pattern updating of the weights, which is similar to the weight update method
presented in section 4.2.1. The presentation sequence of the input patterns during
the training phase was randomized in order to both speed the convergence time
of the network as well as improving the generalization capabilities of the trained

network.

Table 4.6 and table 4.7 list the best results for the recurrent neural networks,
which, for both the scaled and normalized input parameter sets derived from the
mel-cepstrum coefficients, have an input frame size of 75 mel-cepstrum vectors,
with subsequent input frames overlapping by 50 vectors. Consequently, one entire
1-second, or 125-vector, input frame for a given utterance is traversed in three
75-vector frames. For both the scaled and the normalized input parameter sets,
the optimal configuration for the recurrent neural network consisted of 36 hidden
units with each node in the hidden and output units having two delays per node.

This results in the two previous ontputs of these nodes being fed back as input to
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Inputs size: [75 x 11] with an overlap of 50 vectors per input frame.
Number of hidden units: 36 with 3 delay units per node.
Leamning rate: a = 0.1; Momentum:  =0.5.

Actual

ATET T Totaleorrecr = 138 = 70.26%
. A[29] 0 |35 | Acorreer = & =5370%
Predicted [F | 0 | 210 | Fepppe = 2 = 1250%
P|[13] 0 | 106 106
Peorrect = 1% = 84.80%
¢ 12 | 14 3 correct 125
Actual Sensitivity = I% = 0.8480
[P-] P+ Specificity = 3 =04429
P- [[311 15 Predictive value (+) = }{§ = 0.8908
Predicted | P+ || 13 | 106 |  predictive value (-} = & = 0.6739
¢ [26] 4 3
Accuracy = {5% = 0.7026

Table 4.7: Results for a Fully Connected Recurrent Neural Network using
Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie Between
+1.0

Inputs size: [105 x 11]; Overtap: [104 x 11).
Number of hidden units: [21 x 5]; Learning rate: a = 0.015.

_ Actual 5 Total.orreer = w5 . 61.02%

195

A H 3}'\2 1FG 53 Acorrecr Eﬂ]z‘ = 61.11%
Predicted [ F [[12| 0 [ 0| Feorrex = g= 0%
P10 0 [72] Peorrer = & = 57.60%

Sensitivity = & = 0.5760

Actual Specificity = % = 0.8571

B g& I;; Predictive value (+) = 7 = 0.8780

Predicted [P+ || 10 | 72 | [Predictive value (-} = fj; = 05310

Accuracy = 12 = 0.6792 .

Table 4.8: Results for a Time-Delay Neural Network using Mel-Cepstrum
Inputs Scaled to a Maximum Value of 1.0

that same unit one time instant later. During the testing of this particular network
architecture, the weights of the neural networks were updated after the presentation
of one complete 125-vector input frame, that is after three 75-vector frames with the
subsequent 125-vector training frames presented randomly to the network. For the
recurrent, time-de'ay, and cascade correlation nc:ural networks, once the network
had converged and the test patterns were presented at the inputs, the winning

output or “class” was determined as being the output having the largest value.

The results for the time-delay neural networks are given in table 4.8 and table 4.9
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Inputs size: [105 x 11]; Overlap: [104 x 11].
Number of hidden units: [21 x 5]; Learning rate: a = 0.015

Actual o Totaleorrea = 12 = 63.07%
A ;\5 1F6 37 Acarrccl = % = 64.81%
. F = 2= 0%
Predicted [ F || 10| O | O correct I
P 9 0 88 Pcorrcc! =1m = 70.40%
Sensitivity = & = 07040
Adual __ Specificity = & = 08714
1T 3; Predictive value (+) = % = 09072
Predicted [P+ [ O | 88 Predictive value (-) = % = 0.6224
Accuracy 1% = 07641

Table 4.9: Results for a Time-Delay Neural Network using Mel-Cepstrum
Inputs with Mean Removed and Normalized to Lie Between 1.0

for the scaled and normalized mel-cepstrum inputs, respectively. For both input
parameters derived from the mel-cepstrum coefficients, the TDNN configuration
which yielded the best results was for an input frame size of 105 mel-cepstrum
vectors, with an overlap of 104 vectors per frame, and with ahidden layer consisting
of 5 hidden units integrating the activations of 21 input frames, corresponding
to 20 delayed activation values plus the undelayed activations of the last input
frame. Consequently, the entire 125-vector input frame is presented after 125 time
instants; 105 to fill the first input frame and 20 more to till the 20 activation delay
values in the hidden layer. The network was trained using a variant of back
propagation specifically formulated for TDNNSs, with the weights being updated
after the presentation of all the input patterns in the training set [Waibel et al., 1987].
The 125-vector input patterns were presented to the network in random order

during the training process.

Table 4.10 and table 4.11 show the best results obtained using the cascade cor-
relation network, for the scaled and normalized mel-cepstrum coefficient input
data sets, respectively. For both of these input data sets, the optimal results were
achieved using a network that was trained using a conjugate gradient descent
training algorithm with the patterns presented in a random fashion and with the

weights updated after all the patterns in the training set were presented.
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Number of hidden units created: 28.
Training method: Congugate Gradient.

AAC::U.EI P TOtalcorrccl = llng = 36.92%
T Acorrrc! = &= 40.74%
All22[7] 48 % .
Predicted [F ([ 9 [0 | 27| Feorree = 5= 0%
P 2319 |50 Pcorrcct = % = 40.00%
Sensitivity = %"3 = 0.4000
Actual Specificity = ¥ = 05429

o :fs g; Predictive value (+) = 2 = 0.6097

Predicted [ P+ || 32 | 50 Predictive value (-) = & = 0.3363
Accuracy = & = 04513

Table 4.10: Results for a Cascade Correlation Neural Network using Mel-
Cepstrum Inputs Scaled to a Maximum Value of 1.0

Number of hidden units created: 24.
Training method: Congugate Gradient.

Actual Totaleorreet = 7 = 40.00%
fAajF[DP] Z = 3 = 44.44%
A " 24 | 8 41 correct 5[:]{ ¢
Predicted [ F [[24 [0 | 21| [Feorre = %= O
P " 6 81|63 Pcorre:t SE= 50.40%
, Sensitivity = & = 0.5040
Actua Specificity = 3 = 0.8000
[P-] P+ n
P56 [ 62 Predictive value (+) = ';-7 = 0.8182
Predicted | P+ |[ 14 | 63 Predictive value (-) = % = 0.4746
Accuracy = 12 = 06103

Table 4.11: Results for a Cascade Correlation Recurrent Neural Network
using Mel-Cepstrum Inputs with Mean Removed and Normalized to Lie
Between +1.0

Neural Network Parameter Variations

In order to compare how the number hidden layer nodes =ffects the error rate
for the two input data sets derived from the mel-cepstrum coefficients, tables
of hidden layer size and error rates for the fully connected feedforward neural
network is shown in figure 4.12(a) and figure 4.12(b) for the scaled inputs and
for the normalized inputs respectively. The neural network configuration with
two hidden layers had 125 and 17 nodes in the first and second hidden layers,

respectively.
Table 4.13(a) and table 4.13(b) show the same for the feedforward networks
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Learning Rate: a = 0.015; Momentum: n = 0.95.

Hidden Nodes{ Error Rate | |Hidden Nodes| Error Rate
17 % = 04821 17 %= = 0.3846

32 7= = 0.3846 32 £ = 0.3538

45 £ = 03077 45 1st§_= 0.1641

74 =% =0.4923 74 %53 =(.2256
2-layer [ =04872 2-layer  {£ =0.3333

125& 17 125& 17
(a} Scaled Input Values {b) Normalizred Input
Values

Table 4.12: Hidden Layer Size and Error Rates for Fully Connected Feed-
forward Neural Networks using Mel-Cepstrum Coefficient Inputs

with tessellated connections. The input nodes are organized in a two dimensional
array of 11 x 125, corresponding to 125 vectors of 11 mel-cepstrum coefficients.
The tessellation configurations, and the number of overlapping nodes between
in adjacent groupings of input nodes, for the respective hidden layer size, are
indicated in the tables. The tessellation column shows the number input nodes
which were grouped together, and the overlap column indicates the number of
overlapping nodes between adjacent groups of nodes. For example, the first row
of table 4.13(a) indicates that a grouping, or tiling, of 20 mel-cepstrum coefficients
vectors ([11x20}) with adjacent “tiles” having 15 overlapping mel-cepstrum vectors,

generates a hidden layer of 22 hidden units.

Table 4.14 and table 4.15 illustrate how the input frame size, corresponding to the
time granularity or resolution of the given input parameters, affects the error rate,
and how the hidden layer size affects the error rate for the optimal frame size of 75-
vectors for both the scaled and normalized mel-cepstrum inputs, respectively. In
table 4.14(a) and table 4.15(a), the input frame column indicates the number of mel-
cepstrum coefficient vectors which comprised the input frame size. The overlap
column displays the number of vectors from the current input frame which would
included in the next input frame. The number of delay nodes in both output nodes
and for the number of hidden nodes indicated under the hidden layer column are

also indicated in these tables.
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Learning Rate: o = 0.015; Momentum: 5 = 0.95.

Hidden Nodes|Tessellation|Overlap} Error Rate
(1 x 224 (11 x 20] [11X-15Y|f& =0.3846
[1 x 23] [11 x 28] [11X-10Y|£& =0.3384
[1 x 24] (11 x 25) | 11X-5Y | & =0.3231
[ x 61] [11x5] |11X-3Y|Z =04722

(a) Scaled Input Values

Hidden Nodes|Tessellation|Overlap| Error Rate
[1x22) (11 x 20} [11X-15Y|Fh = 0.3949
[1x23) [11 x 25] [11X-10Y| &2 = 0.3077
(1 x 24] [11 % 25] | 11X-5Y |3 = 0.2759
[1 % 61] [11x5] |11X-3Y |3 = 04615

(b) Normalized Input Values

Table 4.13: Hidden Layer Size and Error Rates for Feedforward Neural
Networks with Tessellated Connections using Mel-Cepstrum Coefficient

Inputs
Learning Rate: o = 0.1; Momentum: 5 = 0.5.

Input Frame|Overlap|Delay Nodes|Hidden Nodes| Error Rate | [Hidden Nodes| Error Rate
10 x 11 5 4 18 o= = 0.4564 27 = = 0.4615
25 x 11 0 4 28 5 = 0.4872 36 {5 = 0.3538
75 x 11 50 2 36 £% =0.3538 45 F= = 0.4051

(a) Input Frame Size and Error Rates

(b) Hidden Laycr Size
and Error Rate for a |75 x
11] Input Frame Size

Table 4.14: Parameter Variations and Error Rates for Recurrent Neural
Network using Mel-Cepstrum Coefficients Scaled to a Maximum Value of

1.0

Learning Rate: o = 0.1; Momentum: 5 = 0.5.

Input Frame|Overlap|Delay Nodes|Hidden Nodes| Error Rate | |[Hidden Nodes| Error Rate
10 x 11 5 4 18 o = 0.4000 27 7% = 0.3846
25 x 11 0 4 28 12 = 0.3692 36 i = 0.2974
75 x 11 50 2 36 o = 0.2974 45 24 = (.3590

(a) Input Frame Size and Error Rates

{b) Hidden Layer Size
and Error Rate for a [75
11} Input Frame Size

Table 4.15: Parameter Variations and Error Rates for Recurrent Neural
Network using Mel-Cepstrum Coefficients With Mean Removed and Nor-
malized to Lie Between £1.0
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Learning Rate: o = 0.015.

Input Frame|Overlap|Hidden Nodes| Error Rate
10x11 9x11 (1)56 x 8 |12 =0.6154

(2)60 x 4
105x 11 (104 x 11 215 %“g = 0.4615
(a) Scaled Input Values

Input Frame|Overlap|Hidden Nodes| Error Rate
10 x 11 9x11 (1)56 x 8 % =0.5385
(2)60x 4
105x11 [104x11] 21x5 [Z=03897
{b) Normalized Input Values

Table 4.16: Network Variations and Error Rates for the Time-Delay Neural
Network using Parameters Derived from the Mel-Cepstrum Coefficients

Table 4.16 shows the results of another time-delay neural network configuration
using a smaller input frame size, which corresponds to a finer time resolution or
representation of the input data set, than the 75 x 11 which yielded the lowest
error rate for this architecture. Since a smaller delay width for this neural network
corresponds to a larger number of input frames to integrate over, requiring a larger
number of delay units for a given input frame size, two hidden layers were used
for this network configuration. The first hidden layer, with a width of 8 units,
integrates activity from 56 input frames, and the second hidden layer, with a width
of 4 units, integrates the activation of the first hidden layer over 60 time units.
Since the training times of these networks are significantly longer when compared
to those of the other architectures investigated for these experiments, only the two

configurations listed in the table were tested.

Table 4.17 displays the results of cascade correlation networks trained using
different methods for the two input data sets derived from the mel-cepstrum coef-
ficients. The table lists the learning rate and momentum parameters for the training
methods, if applicable, and also lists the number of hidden units created by the

respective methods, followed by the error rates obtained during testing.
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Training |Parameters|Hidden Nodes| Erior Rate

Method a ) Created

BackProp | 0.1 |07 37 15 = 0.6513
QuickProp|0.0001| 1.9 4 15 = 0.6667
ConjGrad | - | - 28 12 = 0.6308

(a) Scaled Input Values

Training |Parameters|Hidden Nodes| Error

Methaod o ) Created Rate
BackProp | 0.1 |07 41 [1Z=06256
QuickProp|0.0001| 1.5 15 12 = 0.6615
ConjGrad | - | - 24 1 = 0.6000

(b) Normalized Input Values

Table 4.17: Training Methods and Error Rates for the Cascade Correlation
Neural Network using Mel-Cepstrum Coefficient Derived Inputs

4.6.3 Mel-Scale Filter-Band Energy Input Data Set

This subsection presents the results for the mel-scale filter-band energy-based input
data set, which was generated as described in section 4.3, As was the case for the
presentation of the results for the input data sets derived from the mel-cepstrum
coefficients, the results in this subsection will be presented according to the archi-
tecture and the input parameters used in the training and testing of the respective
architectures. The input data sets derived from the 19 mel-scale filter-band ener-
gies are the mel-scale filter-band energy values scaled by the maximum value of
the input data frame so that the maximum value of the input data frame does not
exceed 1.0, the logarithm of the mel-scaled filter-band energies, and the logarithm
of the mel-scale filter-band with the mean of a given input frame removed and

normalized so that the values in the input frame lie between +1.0.

As was the case for the presentation of results from the input data sets derived
from the mel-cepstrum coefficients presented in preceding subsection, first, the
neural network results will be presented, followed by the error rates resulting from
the variation of some of the neural network parameters, such as hidden layer size

and, input frame size and overlap, if applicable.
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Number of hidden units: 25,
Learning rate: a = 0.015; Momentum: n = 0.95.

Actual

ATF l P Total.orroc: = % = 77.95%

A 41 5 1 0 Aggrrccg % = 75.92‘70

Predicted [F |J O | 2] © Feorrect £ = 1250%

P 13 5 109 Pcorrccl’ = :_% = 87.20%

¢ || 0[4] 16

Actual Sensitivity = % = 0.8720
-1 P+ Specificity = 4 =0.6857
P- (48] 0 Predictive value (+) = }3 = 0.8583
Predicted | P+ || 18 | 109 |  predictive value (-) = 3§ = 1.0000
¢ )l 416 Accuracy = 17 = 0.8051

Table 4.18: Results for a Fully Connected Feedforward Neural Network
using Mel Filter-Band Inputs Scaled to a Maximum Value of 1.0

Number of hidden units; 25,
Learning rate: a = 0.015; Momentum: 5 = 0.95.

Actual
ATF] P Total.orreer = -}% = 79.49%
All48)7 ] 10 Acorreet "54—‘? = 88.89%
Predicted [ F || 0 [ 21 O Feorrect 125 = 12.50%
:; (6) (7] 1g5 Pcorrect = %% = 84.00%
Actual Sensitivity = 1% = 0.8400
P-] P+ Specificity = 31 =0.8143

[P-[[ 57110 | Predictive value (+} = % = 0.8895
Predicted | P+ || 13] 105 |  predictive value (-) = 2 = 0.8507
6101 71 Accuracy = 182 - 08308

Table 4.19: Results for a Fully Connected Feedforward Neural Network
using the Log of the Mel Filter-Band Inputs

Neural Network Results

To reiterate what was mentioned at the start of section 4.6, the values displayed in
the confusion matrices are the sum of the test phase of the ten 10-fold cross valida-
tion tests, be it for the three-class confusion matrices or for the two-class confusion
matrices displayed. The error measures indicated in the tables are derived from

the respective three or two-class confusion matrices.

Table 4.18, table 4.19, and table 4.20, show the results of the feedforward neural

network, with full connections between adjacent layers, for the scaled, log, and
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Number of hidden units: 25.
Learning rate: o = 0.015; Momentum: = 0.95.

Actual
ATET P Totaleorreee = 53 = 78.97%
Al 4366 Acorrect £ = 79.63%
Predicted [F [ 0 [2] O Feorrer = & = 1250%
PRILIBII09 ) P = 12 = 87.20%
¢ 0010 =
Actual Sensitivity = 1% = 08720
[P-] P+ Specificity = 3 = 0.7286

P- [51] 6 Predictive value (+) = 1§ = 0.8516

Predicted | P+ || 191 109 |  predictive value (-) = 2L = 0.8947

57
¢ JO]10 Accuracy = % = 0.8205

X

Table 4.20: Results for a Fully Connected Feedforward Neural Network
using the Log of the Mel Filter-Band Inputs with Mean Removed and Nor-
malized to Lie Between +1.0

Number of hidden units: 22 with [20 x 20] tessellation and 20 X-overlap and 15 Y-overlap.
Learning rate: o = 0.015; Momentum: 5 = 0.95,

Actual

ATET D Totalcorreer = %3—2 = 70.77%

A48T  Acorrea il = 75.92%

Predicted | F || O [O[ O Feorrect = &= 0%

g 103 g 2; Peorreer = % = 77.60%
Actual Sensitivity = {% = 0.7760
P- TP+ | Specificity = # = 0.7000
P- |49 ] 11| Predictive value (+) = &5 = 0.8220
Predicted | P+ || 21| 97 1 predictive value (-) = £ = 0.8167
60117  Accuracy = I = 08051

Table 4.21: Results for Feedforward Neural Network with Tessellated Con-
nections using Mel Filter-Band Inputs Scaled to a Maximum Value of 1.0

normalized log of the mel-scale filter-band energies. The results for the corre-
sponding input data sets trained on a feedforward neural network with tessellated
connections are shown in table 4.21, table 4.22, and table 4.23, respectively. For all
these feedforward networks, the weights of the network were updated following
the presentation of an input frame, in a manner similar to that described in sec-
tion 4.2.1. Subsequent input frames were presented randomly to the network. As
well, all feedforward nets used the same learning rate and momentum parameters,

as indicated in the tables.
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Number of hidden units: 22 with [20 x 20] tessellation and 20 X-overlap and 15 Y-overlap.
Learning rate: o = 0.015; Momentum: # = 0.95.

Actual "
ATET T Totaleorreer = FE = 71.79%
A48 27 Acorrert & = 77.78%
Predicted | F|| O {0 ] O Foroe = O o
ERE S o
P,.-(. ree = = 78 0%
G (0(0 rreet 15 1
Actual Sensitivity = & = 0.7840
P- [ P+ ] Specificity = 3 =07143
P- |50 | 27 Predictive value (+) = % = 0.8991
Predicted | P+ 1 11 | 98 | predictive value (-) = 3§ = 0.6494
U2 19%] Accuracy = 1 - 07500

Table 4,22: Results for & Feedforward Neural Network with Tessellated
Connections using the Log of the Mel Filter-Band Inputs

Number of hidden units: 22 with [20 x 2] tessellation and 20 X-overlap and 15 Y-overlap.
Leaming rate: a = 0.015; Momentum: y = 0.95.

Actual

ATF g Totaleorreet = '%%—; = 72.31%

ANBE18] 91 Acorrea = 3 =6296%

Predicted | F [ O [O] O Feorreet = &= 0%

g ;g g 137 Peorrect = 12 = 85.60%
Actual Sensitivity = 17 = 0.8560
P- 1 b+ Specificity = 3 = 0.6000
P- 421 9 Predictive value (+) = {3 = 0.8560
Predicted | P+ [| 18 | 107 | predictive value (-) = 3 = 0.8253
¢ 1019 Accuracy = 12 = 0.7641

Table 4.23: Results for a Fully Connected Feedforward Neural Network
using the Log of the Mel Filter-Band Inputs with Mean Removed and Nor-
malized to Lie Between £1.0
As was the case for the feedforward nets in the preceding subsection, an addi-
tional row has been included in the confusion matrices for these networks. This
row, labeled ¢, indicates the number of test files whose output was undefined, that
is, which had an output value which did not correspond to one of the three output

classes during testing.

Next, the results of the recurrent neural networks for the three input param-
eter sets derived from the mel-scale filter-band energies are given in table 4.24,

table 4.25, and table 4.26. Here, all three input parameter sets yielded the highest
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Inputs size: [75 x 20] with an overlap of 50 vectors per input frame.
Number of hidden units: 18 with 3 delay units per node.
Leamning rate: a = 0.1; Momentum: 5 = 0.5.

y Ac;"al 71 Totaleorreer = Jg = 66.67%
Al26[8] 11 Acorrect = 55 = 48.15%
Predicted | F || O O O Feorrect % = 0%
g B P = I3 = 8320%
Actual Sensitivity = }—2; = 0.8320
-1 P+ Specificity = H = 04857
P- |34 11 Predictive value (+) = 13 = 0.7429
Predicted | P+ || 36 | 104 |  predictive value (-) = $ = 0.7556
¢ 1 0110 Accuracy = % = 0.7077

Table 4.24: Results for a Recurrent Neural Network using Mel Filter-Band
Inputs Scaled to a Maximum Value of 1.0

Inputs size: [75 x 20] with an overlap of 50 vectors per input frame.
Number of hidden units: 18 with 3 delay units per node.
Learning rate: a = 0.1; Momentum: 5 = 0.5.

Actual 324

A|F P Total,,,,-r.,cg = 708 = 63.59%

Alf20]2 20 Acorrect g‘% = 37.04%

Predicted | F[| 0 [0 ] O Feorret = 3= 0%

g 3(;} 2 134 Peorrect = % = 83.20%
Actual Sensitivity = 15 = 08320
TP-] P+ Specificity 2 = 0.3143
. P- |22 20 Predictive value (+) = {% = 0.7123
Predicted | P+ || 42 | 104 |  predictive value (-) = 2 = 05238
¢ I 9 7 Accuracy = %—%g = 0.6359

Table 4.25: Results for a Recurrent Neural Network using the Log of the
Mel Filter-Band Inputs

correct classification rates for this architecture using the same network configura-
tion. This recurrent neural network had input frames consisting of 75 vectors, with
subsequent input frames overlapping by 50 vectors, so that the entire 125-vector
input pattern was visited after three 75-vector frames. These networks also had 18
hidden layer nodes and three delay units for each hidden layer and output layer
node. The weights for this network were updated following the presentation of the
entire 125-vector input frame, corresponding to the presentation of one complete

input pattern. Subsequent 125-vector input patterns were presented randomly to
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Inputs size: [75 x 20] with an overlap of 50 vectors per input frame.
Number of hidden units: 18 with 3 delay units per node.
Learning rate: o = 0.1; Momentum: n = 0.5.

Actual

—
~1

a

AT FI| D Totaleorreer = 52 = 70.26%
ABTT6 [ 19| Acwrrer = 5 =5741%
Predicted | F [ O [ O | O Feorrect T"; = 0%
g 2; S P = 1 = 84.80%
Actual Sensitivity = 1% = 0.8480
P- 1 P+ Specificity = 3 = 05286
P- 37| 19 Predictive value (+) = {§§ = 0.7626
Predicted | P+ |} 33 | 106 |  predictive value (-) = £ = 0.6607
60100 Accuracy = {52 = 07333

Table 4.26: Resuits for a Recurrent Neural Network using the Log of the Mel
Filter-Band Inputs with Mean Removed and Normalized to Lie Between
£1.0

Inputs size: [105 x 20]; Overlap: [104 x 20).
Number of hidden units: [21 x 10]; Learning rate: « = 0.2,

Actual Totaleorrea = ‘}"3‘,‘% = 56.92%
ALPIPL A = § = 46.30%
Al[26[16|39 correet T 5§ 7 TR
Predicted | F 0 0 0 Feorreet i6 = 0%
P29 0 | 86| Peorreer = 123 = 68.80%
Sensitivity = ¥ = 0.6880
Aclt)ual o Specificity il - 05857
pirai 5o Predictive value (+) = £ = 0.7478
Predicted [P+ [[29 [ 86| Predictive value(-) = 3 = 05125
Accuracy = 1 = 06513

Table 4.27: Results for a Time-Delay Neural Network using Mel Filter-Band
Inputs Scaled to a Maximum Value of 1.0

the network. As was the case for the recurrent, time-delay, and cascade correlation
neural networks used with the mel-cepstrum coefficient derived parameter sets,
and explained in subsection 4.6.2, the winning class during the testing phase, was

determined as being the output with the largest value.

The results for the time-delay neural networks are given in table 4.27, table 4.28,
and table 4.29 for the input parameters derived from the mel-scale filter-band in-
puts. For the three input data sets, the TDNN configuration which yielded the

highest correct classification rate had an input frame size of 105 vectors, with sub-
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Inputs size: (105 x 20}; Overlap: (104 x 20)].
Number of hidden units: [21 x 10]; Learning rate: a = 0.2.

Actual Totalegrreer = 18 = 59.49%
- H ﬁ; ! 2”3 Acorrees = 8 =2593%
Predicted [F [0 [0 ] 0 | Feorrer = 55= 0%
P[40 [16 1 102| Peorrex = 135 = 81.60%
Sensitivity = 1% = 0.8160
A‘IE“"] 5 Specificity = # =0.2000
{12 3 Predictive value (+) = 12 = 06456
Predicted [T+ | 56 | 102 Predictive value (-) = % = (.3784
Accuracy = HE = 0.5949

Table 4.28: Results for a Time-Delay Neural Network using the Log of the
Mel Filter-Band Inputs

Inputs size: [105 x 20]; Overlap: [104 x 20].
Number of hidden units: {21 x 10]; Learning rate: a = 0.2.

A Af-;ual 5 Totaleorreat = % = 61.54%
A T0]0 15 Acorrect = % = 18.52::
Predicted [F || 0 [0 | 0 | Feorrer = jg= 0%
P[4 (16 [ 110| Peorre = 13§ = 88.00%
Sensitivity = 112 = 0.8800
Aclgual 5 Specificity = 10 =01429
i 16 1; Predictive value (+) = 1 = 0.6471
Predicted [ P5 || 60 | 110 | [Predictive value (-) = 3 = 0.4000
Accuracy = 10 = 0.6154

Table 4.29: Results for a Time-Delay Neural Network using the Log of

the Mel Filter-Band Inputs with Mean Removed and Normalized to Lie

Between £1.0
sequent input frames overlapping by 104 vectors. For this TDNN, the hidden layer
consisted of 10 hidden units integrating the activations of 21 input frames, corre-
sponding to 20 delayed activation values plus the activations of the last input frame,
allowing the total input delay length of 125 vectors to be considered after 125 time
instants. The network was trained using a variant of back propagation specifically
formulated for TDNNSs, with the weights being updated after the presentation of
all the input patterns in the training set [Waibel ef al., 1987). The input patterns

were presented to the network in random order during the training process.

Table 4.39(a), table 4.39(b), and table 4.39(c) show the best results obtained using
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Number of hidden units created: 11.

Training method: Back Propagation; Learning rate: a =0.1; Momentum: n =0.7.

. AC;“‘" Totaleorreet = 18 = 53.33%
A 9 % |30 Acorreet = % = 16.67%
0 o,
Predicted [ F || 0 | 0 | 0 | Feorreer = 0%
P|l45]| 10| 95 Peorrect = 1E T 76.00%

Sensitivity = 1 = 0.7600

A‘:l*;‘“' 5 Specificity B = 02143

B |||i 1; 70 Predictfve value (+) = {-’% = 0.6333

Predicted [ P+ || 55 | 95| [Predictivevalue(-) = § = 03333

} Accuracy = 10 = 05641

Table 4.30: Results for a Cascade Correlation Neural Network using Mel
Filter-Band Inputs Scaled to a Maximum Value of 1.0

Number of hidden units created: 9.

Training method: Back Propagation; Learning rate: o = 0.1; Momentum: n = 0.7.
3 Acft:ual Totaleorreer = ﬂlg = 54.87%
A 3 7 74 Acorrcc! % = 11.11%
Predicted [F | 0 [0 0 | Feorre = = 0%
P |48 [ 9 [101 | Peorrcer = 13 = 80.80%
Sensitivity = % = 0.8080
Actual P = 1B _
T T% Specificity = 55 = 0.1857
o R Predictive value (+) = 15 = 0.6392
Predicted [P [[ 57 [101| Predictive value(-) = 1 = 03513
Accuracy = 18 = 0.5949

Table 4.31: Results for a Cascade Correlation Neural Network using the
Log of the Mel Filter-Band Inputs

Number of hidden units created: 4.
Training method: Back Propagation; Learning rate: a = 0.1; Momentum: 5 = 0.7,
Actual

A 3 TOta]cnrrecl = '}1]52 = 59.49%

A 101 8 19 Acorrect = ‘w = 18.52%

Predicted | F 010 0 Fcorrcct fl[l(" = 0%

P 44 | 8 | 106 Pcorrccl = T% = B4.80%
Sensitivity = = 0.8480
AcIt,ual = Specificity % = 02571
Predictive value (+} = 1% = 0.6709

P-{{18] 19 158

Predicted [P+ [| 52| 106 | Predictive value(-) = 13 = 0.4865
Accuracy = %%45 = {).6359

Table 4.32: Results for a Cascade Correlation Neural Network using the
Log of the Mel Filter-Band Inputs with Mean Removed and Normalized to
Lie Between £1.0
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Learning Rate: o = 0.015; Momentum: 5 = 0.95.

Hidden Nodes| Error Rate | [Hidden Nodes| Error Rate | {Hidden Nodes| Error Rate

25 % =0.2205 25 3% =0.2051 25 Ak =0.2103

55 ]55‘5 =0.2974 55 2 =0.2872 55 it = 0.2462

85 % =(.2872 85 22 =0.3179 85 -1%% =0.2974

2-layer  [£3% =0.3231 2-layer  |u =0.2667 2-layer |t = 0.2564
120 & 25 120& 25 120 & 25

{a) Scaled Input Values (b) Log Input Values {c) Normalized Log Input
Values

Table 4.33: Hidden Layer Size and Error Rates for Fully Connected Feed-
forward Neural Networks using Mel-5cale Filter-Band Inputs

the cascade correlation network, for this set of input parameters. For all of these
input parameter sets derived from the mel-scale filter-band energy values, the
optimal results were achieved using a network that was trained using the back
propagation training algorithm with the patterns presented in a random fashion,
and with the weights updated after all the patterns in the training set were presented

to the network.

Neural Network Parameter Variations

In order to compare how the hidden layer size affects the error rate for the three
input parameter sets derived from the mel-scale filter-band energy values, tables
showing the hidden layer size versus error rates for the fully connected feedfor-
ward neural network are shown in figure 4.33(a), figure 4.33(b), and figure 4.33(c)
for the scaled, log, and normalized log input data sets respectively. Table 4.34(a),
table 4.34(b), and table 4.34(c) show hidden layer size and error rates for the feed-
forward networks with tessellated connections for the scaled, log, and normalized

log of the mel-scale filter-band energies respectively.

The input nodes are organized in a two dimensional array of 20 x 125, corre-
sponding to 125 vectors of 20 mel-scale filter-band energy values. The tessellation
configurations, and the number of overlapping nodes between adjacent groupings

of input nodes, for the respective hidden layer size are indicated in the tables. The
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Learning Rate: a = 0.015; Momentum: 5 = 0.95.

Hidden Nodes|Tessellation|{Overlap| Error Rate
{1 x 22] [20 % 20] [20X-15Y % =0.2923
(2 x 22] (10 x 20] | OX-15Y | &% = 0.3231
(1 x 61] [20x 5] | 20X-3Y l%‘g = (0.3487
(5x 5] [4x25] | 0X-0Y |£&=03333

(a) Scaled Input Values

Hidden Nodes|Tessellation|Overlap| Error Rate

[1x22) (11 x 20] |11X-15Y|:% =0.2821

i1 x 23] [11 x 25] [11X-10Y| X = 02974

(1 x 24) [11 x 25] | 1IX-5Y | £ =0.3385

[1x61] (11 x 5] | 11X-3Y |4 =0.3590
(b) Log Input Values

Hidden Nodes|Tessellation|Overlap| Error Rate
(1 x22) [20 x 20] |20X-15Y 3__ =0.2769
[2 x 22] [10 x 20] | OX-15Y | 3% = 0.2923

1 x 61] [20x 5] | 20X-3Y | & = 03179
[5 % 5] [4x25] | OX-0Y &t =0.3262

{c) Normalized Log Input Values

Table 4.3¢: Hidden Layer Size and Error Rates for Feedforward Neural
Networks with Tessellated Connections using Mel-Scale Filter-Band Inputs

tessellation column shows the number input nodes which were grouped together,
and the overlap column indicates the number of overlapping nodes between ad-
jacent groups of nodes. For example, the last row of table 4.34(a) indicates that a
grouping, or tiling, of 4 of the 20 mel-scale filter-band energy values in a vector over
25 vectors ([4 x 25)) with no overlap occurring between adjacent “tiles” generates
a hidden layer of 25 hidden units organized in a two-dimensional array of 5 x 5

nodes, which effectively “cover” the 20 x 125 input nodes.

Table 4.35, table 4.36, and table 4.37 illustrate how the input frame size, corre-
sponding to the time granularity or resolution of the given input data sets, affects
the error rate, and how the hidden layer size affects the error rate for the optimal
frame size for both the scaled, log, and normalized log of the mel-scale filter-band

energies, respectively.
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Learning Rate: o = (.1; Momentum: n = 0.5.

Input Frame|Overlap|Delay Nodes|Hidden Nodes| Error Rate | | Hidden Nodes| Error Rate
10 % 20 5 4 15 #2 =0.4513 12 £ =04359
25 x 20 0 4 18 £ =0.4103 18 £ =03333
75 = 20 50 2 18 £ =0.3333 36 15 = 04153

(a) Input Frame Size and Error Rates

(b) Hidden Layer Size
and Error Rate for an In-

put Size of [75

x 20

Table 4.35: Parameter Variations and Error Rates for Recurrent Neural
Network using Mel-Scale Filter Band Energy Values Scaled to a Maximum

Value of 1.0
Learning Rate: o = 0.1; Momentum: 5 = 0.5,

Input Frame|Overlap|Delay Nodes|Hidden Nodes| Error Rate | [Hidden Nodes| Error Rate
10 x 20 5 4 15 2 =0.4667 12 X =04615
25 x 20 0 4 18 1o = 0.4461 18 2. =0.3641
75 x 20 50 2 18 Ik = 0.3641 36 42 = 0.4461]

{(a) Input Frame Size and Error Rates

(b) Hidden Layer Size
and Error Rate for an In-

put Size of {75

x 20]

Table 4.36: Parameter Variations and Error Rates for Recurrent Neural
Network using the Logarithm of the Mel-Scale Filter-Band Energies

Learning Rate: a = 0.1; Momentum: 5 = 0.5,

Input Frame|Overlap|Delay Nodes|Hidden Nodes| Error Rate | |Hidden Nodes| Error Rate
10 x 20 5 4 15 = = 0.4051 12 £ =0.3333
25 x 20 0 4 18 T2 =0.3385 18 £ =0.2974
75 x 20 50 2 18 £ = 0.2974 36 fos = 0.3179

(a) Input Frame Size and Error Rates

(b) Hidden Layer Size
and Error Rate for an In-

put Size of [75

x 20]

Table 4.37: Parameter Variations and Error Rates for Recurrent Neural
Network using the Logarithm of the Mel-Scale Filter-Band Energies With
Mean Removed and Normalized to Lie Between £1.0

In table 4.38, the result of another time-delay neural network configuration

using a smaller input frame, which corresponds to a finer time resolution of the

input parameters, than that which yielded the highest correct classification rate

for this architecture. Since a smaller input delay width for this neural network

corresponds to a larger number of input frames to integrate over, thus requiring a

larger number of delays per hidden layer node, two hidden layers were used for
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Learning Rate: o = 0.015.

Input Frame|Overlap|Hidden Nodes| Etror Rate
10x20 | 9x20 | (1)56x10 |G =04564

{2)60 x 5
105 x 20 104 x 20 21x 10 1% =0.4308
(@) Scaled Input Values

Input Frame|OverlapjHidden Nodes| Error Rate

10 x 20 9x20 (1)56 x 10 IHT"; =0.4462

(2)60 x 5
105%20 [104x20[ 21x10 |& = 04051
(b) Log Input Values

Input Frame|OverlapjHidden Nodes| Error Rate

10 % 20 9%x20 | (1)56x10 |Zx=0.4051

(260 x5

105x20 |104x20] 21x10 |72 =03846
(c) Normalized Log Input Values

Table 4.38: Network Variations and Error Rates for the Time-Delay Neural
Network using Parameters Derived From the Mel-Scale Filter-Band Energy

Values
this network configuration. The first hidden layer of this TDNN, with a width of 8
units, integrates activity from 56 input frames, and the second hidden layer, with
a width of 4 units, integrates the activation of the first hidden layer over 60 time
instants. Since the training times of these networks are significantly longer when

compared to those of the other architectures, only the two TDNN configurations

listed in the table were tested.

Table 4.39 displays the results of cascade correlation networks trained using
different weight update methods for the three input parameter sets derived from the
mel-scale filter-band energy values. The table lists the learning rate and momentum
parameters for the training methods, if applicable, and also lists the number of

hidden units created by the respective methods, foliowed by their respective error

rates,
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Training |Parameters|Hidden Nodes| Error Rate
Method a 7 Created
BackProp | 0.1 | 0.7 11 £ = 0.4667
QuickProp|0.0001] 1.9 4 2 = 04872
ConjGrad | - | - 18 12 =0.5897
(a) Scaled Input Values
Training |Parameters|Hidden Nodes| Error
Method o n Created Rate
BackProp | 0.1 |07 9 o8 = 04513
QuickProp|0.0001| 1.9 8 & =04769
ConjGrad| - | =~ 22 7 = 0.5077
(b) Log Input Values
Training |Parameters|Hidden Nodes| Error
Method « ] Created Rate
BackProp | 0.1 | 0.7 4 £ = 0.4051
QuickProp|0.0001 1.9 2 £ =0.4462
ConjGrad | - | - 18 2 =04615

(c) Normalized Log Input Values

Table 4.39: Training Method and Error Rates for the Cascade Correlation
Neural Network using Mel-Cepstrum Coefficient Derived Parameters

4.7 Discussion

This section discusses the results of the neural network training and testing pre-
sented in section 4.6. First, the results obtained from the various input parame-
ter sets, derived from both the mel-cepstrum coefficients and from the mel-scale
filter-band energy values, which were trained and tested on the neural network
architectures presented in section 4.2 will be discussed. Then, the best results ob-
tained for the various architectures will be discussed, followed by a discussion of
the results of the neural network configurations and input frame size variations for
the different input data sets. The final subsection compares the results obtained in

the experiments presented in the previous section to that of other work done by

other researchers.
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4,71 Neural Network Architectures

The results presented in section 4.6.2 and section 4.6.3 have been summarized in
table 4.40 and table 4.41 for the input parameter sets derived from the mel-cepstrum
coefficients and mel-scale filter-band energy values respectively. In these tables,
the columns correspond to the neural network architectures and represent, going
from left to right, the best results for the fully connected feedforward ANN (FF),
the feedforward ANN with tessellated connections (FT), the recurrent neural net-
work (RNN), the time-delay neural network (TDNN), and the cascade correlation
neural network (CC). The rows represent the three-class classification rates and

two-class error measures indicated in the rows of the table, which were defined in

subsection 4.6.1.

The three-class classification results in these two tables are given in decimal
form and not as a percentage as was done when these values were presented in
the individual tables of section 4.6.2 and section 4.6.3, in the interest of remaining

consistent with the format of the results for the two-class classification rates.

Mel-Cepstrum Coefficient-Derived Input Parameters

Table 4.40 surmmarizes the results for the two input data sets derived from the mel-
cepstrum coefficients, with the results for the mel-cepstrum input frames scaled to
a maximum value of 1.0 given in table 4.40(a), and the results for the mel-cepstrum
coefficient input frames which have had their mean removed and normalized to

lie between values of £1.0, given in table 4.40(b).

It can immediately be observed that the results for the normalized mel-cepstrum
inputs are, for the most part, better than for the corresponding scaled mel-cepstrum
input values. Looking at the three-class classification results for the anger, fear, and
pain classes, the majority of neural network architectures have better classification

rates for pain outputs than for either anger and fear, with the latter class consistently
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[ [ FF | FT | RNN [TDNN ] CC |
Totaleorrect 0.6923 | 0.6769 | 0.6461 | 0.6102 [ 0.3692

Acorreet 05925 | 05925 | 0.3703 | 0.6111 | 0.4074
Feorrcet 0.2500 | 0.1250 | 0.1250 { C.0000 j 0.0000
Peorrect 0.7920 | 0.7840 | 0.8320 | 0.5760 | 0.4000

Sensitivity 0.7920 | 0.7840 | 0.8320 | 0.5760 | 0.4000
Specificity 0.6000 | 0.6000 | 0.3143 | 0.8571 | 0.5429
Pred. Val{+) || 0.8534 | 0.7778 | 0.7704 | 0.8780 | 0.6097
Pred. Val{-) || 0.6885 | 0.6774 | 0.5238 | 0.5310 | 0.3363
Accuracy 0.7231 | 0.7910 | 0.6461 | 06792 | 04513

(a) Scaled Input Values
l_ _ [ FF | FT [ RNN [ TDNN | CC |
Totalcorrec 0.8359 | 0.7331 | 0.7026 | 0.6307 | 0.4000
Acorreet 0.7953 | 0.6296 | 0.5370 | 0.6481 | 0.4444
Feorreet 04375 | 01250 | 0.1250 | 0.0000 | 0.0000
Peorreet 0.9200 | 0.8400 { 0.8480 | 0.7040 | 0.5040

Sensitivity |] 0.9200 | 0.8400 ] 0.8480 | 0.7040 ] 0.5040
Specificity || 0.7571 | 0.5429 | 04429 | 0.8714 | 0.8000
Pred. Val.{+) || 0.9274 | 0.8077 | 0.8008 | 0.0072 | 0.8182
Pred. Val.{-) || 0.9138 | 0.7917 | 0.6739 | 0.6224 | 0.4746
Accuracy 0.8615 | 0.7333 | 0.7026 | 0.7641 | 0.6103

(b) Normalized Input Values

Table 4.40: Result Sumunary for Neural Networks using Mel-Cepstrum
Coefficient Inputs

having classification rates below 0.5. This may be due to the small number of fear

recordings present in the data set, when compared to either pain or anger classes.

For the scaled mel-cepstrum inputs whose results are summarized in table
4.40(a}, the best classification rate is achieved for a fully connected feedforward
neural network with a hidden layer size of 45 nodes. Next, the feedforward neural
network with tessellated connections does only slightly worse than the fully con-
nected feedforward, with the decreased fear and pain classification rates forcing
the total correct classification rate down. The recurrent neural network generates
the third-highest correct classification rate, and also features the highest correct
classification rate for pain cries for this input data set. The correct classification of
anger cries drops substantially for this neural network architecture however. For
the time-delay neural network, the correct classification rate drops from that of the

recurrent neural network, due to the substantial drop in the number of pain cries,
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which is slightly offset by an increase in the number of correctly classified anger
cries. The correct classification rate drops substantially for the cascade correlation

neural network, with the majority of pain cries not being correctly classified.

Looking at the two-class results for the scaled input data set listed in the bottom
half of table 4.40(a), the highest accuracy is achieved for the feedforward neural
network with tessellated connections. The neural network architecture with the
highest sensitivity is the recurrent neural network, which implies that for this
particular input data set, this architecture has the best rate of correctly classifying
pain cries. This same architecture, however, has a low specificity, implying that the
method has a tendency to classify anger and fear cries as pain cries, which is not a
desirable characteristic. In this light, the best tradeoff between a good sensitivity
and a good specificity is achieved for the fully connected feedforward network,

even if this architecture has a considerable number of undefined outputs.

For the three-class resuits of the normalized mel-cepstrum inputs, whose results
are shown in table 4.40(b), the highest correct classification rate is achieved by the
fully connected feedforward neural network with a hidden layer size consisting
of 45 nodes. Note that the correct classification rates for all three output classes
are appreciably larger than for the scaled mel-cepstrum inputs. The feedforward
ANN with tessellated connections has the next highest correct classification rate
for this input data set, with drops in all the classification rates of all three output
classes contributing to the decline in the total correct classification rate. Although
the classification rate for the recurrent neural network is lower than that of the
feedforward net with tessellated connections, the recurrent neural network has a
higher correct classification rate for pain utterances, a result similar to thatachieved
for the scaled input data set. The time-delay and cascade correlation results for
the normalized input data set do not differ significantly from those for the scaled
input data set. However, the normalized inputs have a higher number of correctly

classified pain cries than the scaled input data set does.
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For the two-class classification results obtained from the normalized mel-
cepstrum input data set listed in bottom half of table 4.40(b), the architecture that
has the highest pain classification sensitivity is the fully connected feedforward
neural network. Both the feedforward network with tessellated connections and
the recurrent neural network have good sensitivity values, but their specificities are
rather low, implying that these two methods have a high incidence of classifying
non-pain cries as pain cries. The time-delay neural network has a high specificity,
but although this network can classify non-pain cries correctly, it cannot do the
same for pain cries. A similar observation can be made for the cascade correlation
network, except that this network has a lower accuracy, corresponding to a lower
correct classification rate for pain cries thari the TDNN does. The fully connected
feedforward network has the highest accuracy, and the best specificity and sensi-
tivity combination with high values for both the positive and negative predictive
values. The latter values imply that for recordings which are classified or predicted
as being pain or no-pain, over 90% of these classifications correspond to actual pain

or no-pain utterances.

Mel-Scale Filter-Band Energy-Derived Input Parameters

The results from the three parameter sets derived from the mel-scale filter-band
energy values are summarized in table 4.41. In this table, the results for the mel-
scale filter-band energies data set which have either been scaled to a maximum
of 1.0 are given in table 4.41(a), the results for the data set corresponding to the
logarithm of the mel-scale filter-band energies are given in table 4.41(b), and the
input data set where the mean of the logarithm of the mel-scale filter-band energies
has been removed and for which the values been normalized to lie between +1.0

is given in table 4.41(c).

Examining all the results in these tables, it can be observed that for all the

architectures, except for the fully connected feedforward neural network, the input
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| [ FF | FT [ RNN [TDNN]| CC |
Totalcorreet 0.7795 | 0.7077 | 0.6667 | 0.5692 | 0.5333

Acorreet 0.7592 | 0.7592 | 0.4815 | 0.4630 | 0.1667
Feorrect 0.1250 ! 0.0000 | 0.0000 [ 0.0000 | 0.0000
Peorreet 0.8720 | 0,7760 | 0.8320 | 0.6880 | 0.7600

Sensitivity 0.8720 | 0.7760 | 0.8320 | 0.6880 | 0.7600
Specificity 0.6857 | 0,7000 | 0.4857 | 0.5857 | 0.2143
Pred. Val.{+) || 0.8583 | 0.8220 | 0.7429 | 0.7478 | 0.6333
Pred. Val.(-) ({ 1.0000 | 0.8167 | 0.7556 { 0.5125 | 0.3333
Accuracy 0.8051 | 0.8051 | 0.7077 | 0.6513 | 0.5641

(a) Scaled Input Values

[ [ FF_| FT_| RNN [ TDNN] cC |
Totalcorrec ]| 0.7940 | 07179 | 0.6359 | 0.5949 | 0.5487

Acorrect 0.8889 | 0.7778 | 0.3740 | 0.2593 | 0.1111
Feorrect 0.1250 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Peorrect 0.8400 | 0.7840 | 0.8320 | 0.8160 | 0.8080

Sensitivity || 0.8400 | 0.7840 | 0.8320 | 0.8160 | 0.8080
Specificity 1] 0.8143 | 0.7143 | 0.3143 | 0.2000 | 0.1857
Pred. Val.(+) ([ 0.8898 | 0.8991 | 0.7123 | 0.6456 | 0.6392
Pred. Val.(-) || 0.8507 | 0.6494 | 0.5238 | 0.3784 | 0.3513
Accuracy 0.8308 | 0.7590 [ 0.6359 | 0.5949 | 0.5049

{(b) Log Input Values

[ [ FF_] _Fr | RNN [TDNN] €C ]
Totaleorree: || 07897 | 0.7231 | 0.7026 | 0.6154 | 0.5949

Acorrect 0.7963 | 0.6296 | 0.5471 | 0.1852 | 0,1111
Feorrect 0.1250 | 0.0000 | 0.0000 | 0.0000 | 0.0000
Peorrect 0.8720 | 0.8560 | 0.8480 | 0.8800 ) 0.8080

Sensitivity 0.8720 | 0.8560 | 0.8480 | 0.8800 | 0,8080
Specificity 0.7286 | 0.6000 | 0.5286 | 0.1429 | 0.2000
Pred. Val.(+) [| 0.8516 | 0.8560 | 0.7626 | 0.6471 | 0.6456
Pred. Val.(-) || 0.8947 | 0.8253 | 0.6607 | 0.4000 | 0.3784
Accuracy 0.8205 | 0.7641 | 0.7333 | 0.6154 | 0.5949

(c) Normalized Log Input Values

Table 4.41: Result Summary for Neural Networks using Mel-Cepstrum
Coefficient Inputs

data set which has the highest correct classification rates for both the two and
three-class groupings are obtained for the normalized log of the mel-scale filter-
band energy values. The next highest correct classification rates are obtained using
the scaled mel-scale filter-band values, with the log of the mel-scale filter-band
energies yielding the lowest correct classification rates, for the majority of neural
network architectures listed in the tables.
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For all three input data sets derived from the mel-scale filter-band energy values,
the fully connected feedforward neural network gives the best results, with the one
using the log of the mel-scale filter-band energies having the highest total correct
classification and accuracy rates of the three input data sets. This results from a
higher number of correctly classified anger cries for the log input data sets, which

offsets the smaller number of correctly classified pain cries.

Looking at the results of the input data sets derived from the mel-scale filter-band
energy values individually, it can be noticed from the three-class results of the scaled
values, as tabulated in table 4.41(a), that the fully connected feedforward neural
network with a hidden layer size of 25 nodes has the highest correct classification
rate of all the architectures. The feedforward ANN with tessellated connections
has the same correct classification rate for anger cries, but the drop in the overall
correct classification rate is due to the drop in the number of correctly classified

pain utterances and from the absen:e of any correctly classified fear utterances.

For the recurrent neural network, the number of correctly classified anger cries
drops significantly, but the number of correctly classified pain cries lies between
that of the fully connected feedforward neural network and that of the feedforward
neural network with tessellated connections. As was the case for the TDNN using
the mel-cepstrum derived input data sets, the time-delay neural network produces
a low classification rate for anger cries. The rate for pain cries drops from that of
the feedforward network with tessellated connections for the TDNN. The cascade
correlation network has a very poor classification rate for anger cries, but has a

larger number of correctly classified pain cries than the time-delay neural network.

For the two-class results listed in the bottom half of table 4.41(a), the method
that has the highest sensitivity is the fully connected feedforward ANN. This
architecture and data set also features a reasonable specificity, implying that this
method can correctly classify pain from pain utterances, and also does reasonably

well at correctly identifying no-pain utterances. Note that this acchitecture has
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a perfect negative predictive value, corresponding to the result that all predicted
no-pain utterances corresponded to no-pain utterances. Both feedforward neural
network architectures, either with full or tessellated connections, have the same
accuracy, but overall, however, the numbers of the fully connected network are

better, even if the one with tessellated connections has a higher specificity.

For the three-class results of the log mel-scale filter-band energy input data set,
as shown in table 4.41(b), the fully connected feedforward neural network has the
best correct classification rates of all the neural network architectures. Note that
for this input data set, the feedforward network with tessellated connections has
the lowest classification rate for pain utterances, even if it comes second in terms
of the overall correct classification rate. Also, for the recurrent, time-delay, and
cascade correlation neural networks, the classification rate falls dramatically from
that of the feedforward networks, even if the correct classification rate for pain falls
only slightly, when compared to the feedforward nets. The only method that can
correctly classify any fear files is the fully connected feedforward neural network;

all other architectures fail to classify fear utterances.

In the bottom half of table 4.41(b), the two-class results, for the log of the mel-
scale filter-band energy data set, indicate that the fully connected feedforward
ANN gives the highest accuracy, sensitivity, and specificity when compared to all
the other architectures which use the same input data set. Note that the recurrent,
time-delay, and cascade correlation neural networks all have sensitivity values
above 0.8, but the specificity of these nets are extremely low. This implies that
although these nets can correctly classify pain utterances, they do poorly at correctly
classifying non-pain utterances. Also from the low positive and negative prediction
values indicated in the table for these three ANNs, it can be said that these networks
have a larger number of misclassifications than the feedforward neural networks

with full and tessellated connections.

In table 4.41(c), it is readily seen that once again the fully connected feedforward
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neural network with 25 hidden layer nodes yields the highest total correct classifi-
cation rate for the normalized log mel-scale filter-band energy input values. Also,
this architecture has the highest classification rate for anger and fear cries for this
input data set, as well as having the second highest correct classification rate for
pain cries of all the architectures that use this input data set. The classification rates
for the other architectures decrease as one scans the table from left to right, with
the sole exception being the correct classification rate for pain utterances for the
time-delay neural network. Although the classification rate for anger cries drops
by more than half from that of the recurrent neural network to that of the time-
delay and cascade correlation neural networks, the correct classification rate for the
pain cries does not drop below 0.8 for all the architectures with this input data set.
Also, as was the case for the other two input data sets derived from the mel-scale
filter-band energies, only the fully connected feedforward neural network classifies

some of the fear utterances correctly.

In the bottom half of table 4.41(c), the best accuracy, and the best specificity and
sensitivity combination, is obtained for the feedforward neural network with full
connections between the nodes of adjacent layers. Note that the predictive value
rates are also relatively high for this ANN, implying that this architecture, as is the
case when the other two input data sets are used, performs few misclassification
errors. Although the other architectures all have sensitivity values above 0.8, the
specificity values are very poor for the time-delay and the cascade correlation neural
network, implying that these methods have the tendency of classifying non-pain
utterances as pain; an observation made for the log of the mel-scale filter-band

energy values input data set.

Comparison of the Input Data Sets

Examining the results obtained from the five data sets used to train and test the vari-

ous neural network architectures, the best correct classification rates were achieved
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for the fully connected feedforward neural network using the mel-cepstrum coef-
ficients which had their mean removed and which were normalized to lie between
values of %1, as the input data set. This combination of network architecture and
input data set has the highest correct classification rates for two of the three utter-
ance classes, namely fear and pain cries, across all the architectures and all the input
data sets, with 92% of pain utterances in the test set being correctly classified, and
a total correct classification rate of 83.59%. From the two-class classification rates,
this neural network architecture and input data set yields a high sensitivity with
a good specificity, implying that there are few misclassifications performed by this
method, and, as well, that over 91% of utterances that are classified as either pain
or no-pain actually correspond to pain and no-pain utterances. Consequently, this

architecture and input data set also have the highest of all the two-class accuracy

values.

Comparing the total correct classification rates of the input data sets, the normal-
ized mel-cepstrum coefficient values yield higher values for all the architectures

except for the cascade correlation networks, which in any event, yield poor results

in all cases.

For all the input data sets, the best results were achieved when a fully connected
feedforward neural network was used. Often, a feedforward neural network with
tessellated connections would provide the next best classification rates, which at
best would be slightly less, but never equalling those of the fully connected net-
work. Hence, it would seem that an organization of the neural network connections
which attempts to model the receptive fields of the brain may work well for some
applications, but fail to match the performance of full connections for the purposes
of cry classification. Full connections betweer. nodes in adjacent layers seems to
better model the input-output characteristics than tessellated connections do, as
is identified by the larger correct classification rates using this node connection
methodology. Tessellated connections seem to miss some of the correlations be-

tween the input features which seem to be captured by the full connections.
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Next, the issue of the usefulness of time information for the purposes of correct
classification will be addressed. Looking at the results obtained for the recurrent
neural networks and for the time-delay neural networks, it is noted that the total
correct classification rate for the recurrent neural networks are consistently better
than those of the time-delay neural networks. The time-delay neural network
was formulated to accurately capture the specific acoustic sequences of a given
phoneme for speech, whereas the recurrent neural network was formulated as a
means of handling time-dependent input in general, with no provisions made to

provide shift invariance or to capture fine features in the input sequence.

The stricter encoding of the sequence of acoustic features present in cry utter-
ances which is inherent in the structure of TDNNs, would not seem to benefit
the classification of infant anger, fear, and pain cries. Although the correct clas-
sification rates for these two architectures are less than those of the feedforward
networks having either full or tessellated connections, the recurrent neural network
would seem to make better use of time information than does the time-delay neu-
ral network. This observation is intuitive if one thinks for the type of information

contained in cry utterances and speech signals.

Speech is defined in terms of phonemes, and a specific sequence of acoustic
events denotes a specific phoneme. Some phonemes can contain similar acoustic
events, but it is the sequence of these events, or the occurrence of these events,
followed or preceded by other events, which distinguishes phonemes from each
other. Hence, time-delay neural networks are an effective architecture for capturing

this information in an input frame of parameters derived from the speech signal.

For neonates, however, vocal tract shape is affected by a number of physio-
logical or psychological effects, which may be reflexive and not under the direct
volitional control of the infant [Zeskind, 1985]. Consequently, the occurrence of
specific acoustic events in cries of the same class would seem to be more important

than the sequence in which these events occur.
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That being said, it is understandable that recurrent networks fare better than
time-delay neural networks, since the former encodes time information on a more
general level than the sequential information encoded by a TDNN. This is further
supported by the observation that larger, or coarse, time frame sizes give better
results than smaller, or finer, time frame sizes, as will be further elaborated in the

following subsection.

As well, since the occurrence of certain acoustic events would appear to be more
relevant than the sequence with which these events occur, feedforward neural net-
works, with fully connected nodes between adjacent layers, yield better results
than their time-dependent counterparts. Fully connected feedforward neural net-
works are capable of computing more complex relations between the inputs and
outputs than what is possible when sparser connections are used, thus yielding

better results for this particular application.

Looking at the results obtained from the cascade correlation neural network,
it would seem that this particular paradigm is not suitable for the classification
of infant anger, fear, and pain cry utterances. Although the idea behind using
a learning method that grows its own hidden layer, thus taking the guesswork
out of determining the optimal number of hidden layer nodes which is requived
for a given network and application, is indeed appealing, the resulting correct

classification rates obtained are rather disappointing.

For both the mel-cepstrum coefficients and for the mel-scale filter-band energy
input data sets, the best classification rates are obtained when the normalized input
data sets are used. Normalization ensures that all values in a given input data frame
will lie between =1, so that all the input data frames will have the same dynamic
range. Scaling the values, or dividing by the maximum value of a given input
frame only ensures that the largest value in the frame will be 1, making no claims

on the range of values of the input data frames.

Comparing the results between the best of the mel-cepstrum coefficient derived
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input data sets and the best of the input data sets derived from the mel-scale filter-
band energy values, both of which are for the normalized input data sets, one can
notice that the results for the normalized mel-cepstrum coefficients yield better re-
sults for all but the the cascade correlation neural network. The encoding of the rel-
evant spectral characteristics of an input signal window for the purposes of classi-
fication, would seem to be better captured by the mel-cepstrum coefficients than by
the normalized log mel-scale filter-band energy valuves. This observation has been
also made by researchers in the speech domain [Davis and Mermelstein, 1980], so
it would appear that for the purposes of classifying and discriminating between
infant anger, fear, and pain cries, mel-cepstrum coefficients yield better results than

filter-band coefficients as well.

Overall Observations and Comments

Looking at the classification results for all the architectures and all the input data
sets overall and in general, a number of patterns emerge. First, the correct classi-
fication rate of anger cries seldom exceeds that for pain cries. In fact, the correct
classification rate for anger cries exceeds that of pain cries in only three cases: for
the time-delay and cascade neural networks which use the scaled mel-cepstrum
coefficient input data set, and for the fully connected feedforward neural network

which uses the log of the mel-scale filter-band energy as the input data set.

This may be partly due to the fact that there were more than twice as many
pain cries in the data set than there were anger cries. Consequently, the neural
networks may have been better able to generalize on pain cries than with anger
cries, especially for the input sets derived from the mel-scale filter-band energies.
For these particular data sets, the correct classification rate of pain cries never went
below 0.68.

The correct classification rate for fear cries is consistently very poor, never ex-

ceeding the 0.45 mark. Again, this is most likely due to the small number of
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available fear utterances in the data set. Consequently, there were too few utter-
ances for the neural network to pull a sufficiently general number of features from
this class in order to perform correct classification on test utterances. The correct
classification rate for fear utterances is especially poor for the data sets derived
from the mel-scale filter t:and energy values. For these data sets, the only architec-
ture that consistently classified at least one fear utterance correctly was the fully
connected feedforward neural network. All other architectures failed to correctly

a single one fear utterance using these data sets.

One observation, which was made over the course of numerous classification
training and test sessions over a number of architectures, was that certain utterances
would be consistently misclassified, irrespective of the parametric representation
used for the signal of the neural neiwork architecture used. To mention just one
example, one particular pain utterance, when present in the test set, has always
been classified as an anger utterance. This raises some thoughts as to the degree of
pain which may be present in a given utterance. Perhaps for this particular event,
this particular infant did not perceive the heel stick as a painful event and found
this procedure to be more bothersome than painiul. After all, if one looks at adults,
the same procedure or event may be more painful for one person than for another,

so perhaps the same can be said for infants as well.

4,7.2 Neural Network Parameter Variations

In this subsection, the results of some neural network parameter variations, such as
the hidden layer size and number of input vectors, if applicable, will be discussed,
with some considerations resulting from the tables presented in the latter portions
of section 4.6.2 and section 4.6.3. All the tables relating the results for these param-
eter variations in these sections report error rates, which correspond to the total
correct classification rate for the three-class classification problem subtracted from

1. As was the case for the previous two subsections, this subsection will be divided
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according to the input parameters sets derived from the input signal from which

the input data sets are derived.

Mel-Cepstrum Coefficient-Derived Input Data Sets

Table 4.12 presents the error rate, as the hidden node size is varied, for the fully
connected feedforward neural network. The results for the scaled mel-cepstrum
input data set are shown in table 4.12(a) and those for the normalized mel-cepstrum

input data set are shown in table 4.12(b).

For both input data sets, the error rate starts off relatively high, and then reaches
a minimum for a hidden layer size of 45 nodes, before increasing once again for a
larger hidden layer size of 74 and for a fully connected feedforward neural network
with two hidden layers with the first and second hidden layers consisting of 125
and 17 nodes respectively. This behaviour is typical for the variation of the number
of hidden layer nodes; generally, the error rate will fall as the hidden layer size
starts from a small number, and then increases to a larger number of nodes. Ata
particular hidden layer size, a minimum error rate will be reached and the error
rate will then begin to increase once again as the hidden layer size continues is

increased.

Also, for both the data sets derived from the mel-cepstrum coefficients, the error
rate does not seem to improve once an additional hidden layer is added. Hence
the interim mappings generated by the addition of another hidden layer in the
network does not improve classification results. In turn, the results obtained from
the use of a 2-hidden layer configuration would not warrant the substantial time
and computations required to train this network. As is the case for most other
applications, a single hidden layer is sufficient to capture the mappings between
the inputs and the outputs for the classification of anger, fear, and pain cries. As
can also be observed in table 4.12, for a given hidden layer size, the error rate of

the normalized mel-cepstrum input data set is lower than that of the scaled input
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data set.

Next, the error rates for the feedforward neural networks with tessellated con-
nections, shown in table 4.13, will be considered. Ascanbe seen in table4.13(a)and
table 4.13(b), the error rate initially starts at a high value for a small hidden layer
size before reaching a minimum, and then increasing once again as the hidden
layer size increases. For both the scaled and normalized mel-cepstrum coefficient
input data sets, a larger grouping of input vectors seems to decrease the error rate,
with the grouping of 25 mel-cepstrum input vectors achieving the best results. For
this grouping of input nodes, a smaller overlap between subsequent input node
groupings results in a decrease of the error rate, with an overlap of 5 input vec-
tors yielding a lower error rate than when the overlap between adjacent “tiles”
consisted of 10 vectors. In any event, as was discussed in section 4.7, the results
obtained for this type of neural network connections do not improve the error rate

when compared to the full connection of nodes between adjacent layers.

The results for the parameter variations performed on the recurrent neural
network for the scaled and normalized mel-cepstrum input data sets are presented
in table 4.14 and table 4.15, respectively. The subtables illustrate the error rate
variation as the number of input data vectors in the network changes according to
the number of overlapping vectors between subsequent input data frames, delay
nodes, and hidden layer sizes listed. These tables also list how the hidden layer

size affects the error rate for the optimal frame size of 75 input vectors.

For both the input data sets derived from the mel-cepstrum coefficients, the error
rate falls as the number of input data vectors used in the recurrent neural network
increases, with the best results achieved for a network using an input frame size
of 75 vectors with subsequent input frames overlapping by 50 vectors. This result
would seem to imply that the classification of infant anger, fear, and pain cries does
not benefit from the use of a “fine” time resolution of input features. The error

rates obtained for input frame sizes of 10 and 25 vectors are both larger than the
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one achieved for an input frame size consisting of 75 vectors. Although the error
rate for this architecture does not fall below that of the fully connected feedforward
neural network, it would seem that this application does make some use of time
information, but this information is better captured by a larger or coarser time

winaow, than with a smaller one.

The results of table 4.14(b) and table 4.15(b) both follow the same pattern of error
rate versus hidden layer size that was observed for the fully connected feedforward
neural network: the error rate falls as the hidden layer size increases, reaching a

minimum, before increasing once again as the hidden layer size is increased.

The table listing the error rates as the input frame size is varied for time-delay
neural networks, using the two input data sets derived from the mel-cepstrum
coefficients, is presented in table 4.16. Due to the large amount of time required
to train time-delay neural networks, only two configurations were trained. One
time-delay neural network was presented with 10 vectors of data at a time, or an
input delay length of 10, with subse¢uent input frames containing 9 of the previous
vectors and one new vector of input data. In order to process a one second segment
of a cry signal, which consists of 125 vectors, it was decided to use twohidden layers
in order to decrease the large number of delay nodes, namely 115, which would be

required if a single hidden layer would have been used.

Consequently, for this fine time resolution input representation of 10 vectors, or
alternatively, an input delay width of 10 vectors, two hidden layers were used, The
first hidden layer consisted of 8 units containing 55 delay units and one undelayed
unit, which integrated information over 56 input frames. The second hidden layer
consisted of 4 hidden units with 59 delay units and one unit with no delay, which

integrated the activations of the first hidden layer over 60 time units.

The other time-delay neural network constructed was designed to use a much
larger input vector size thus integrating a coarser grouping of input data. This

network had an input frame size, or delay length, of 105 vectors with subsequent
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frames consisting of 104 vectors from the previous frame and one new vector of
input data, be it for the scaled or normalized mel-cepstrum coefficient input data
sets. The hidden layer consisted of 5 units containing 20 delay units and one unit

with no delay, thus integrating the activations of 21 input frames.

For both the input data sets derived from the mel-cepstrum coefficients, the
error rates of the coarser, or larger, time window are substantially better than
the error rates obtained by the network with the smaller time windew. This is
consistent with the results achieved for the recurrent neural network, and is due to

the observation made earlier regarding the type of information which is found in

infant cry vocalizations.

For speech, TDNNs are especially good at capturing the sequence of acoustic
features which constitute a phoneme, since this sequence is common to a particular
phoneme, even if it is spoken by a number of different speakers. For infant cries,
however, the occurrence of certain acoustic features is more important than the
sequence in which they occur, which follows if one considers that infant control
of vocal articulators is poor. The fact that sequence is not important for correct
classification of infant cries is also reinforced by the observation that when larger
groups of vectors are used as inputs, the error rate drops for both TDNNs and
for recurrent neural networks. The fine time integration provided by TDNNS is
important 10 capture the subtle differences between phonemes in speech such as
/p/, /t/,and /k/,or /b/, /d/, and /g/. Since infants lack the precise articulator
control renuired to produce acoustic events with extremely short durations and
specific articulator positioning such as those mentioned above, the correct classifi-
cation rate for anger, fear, and pain cries does not benefit as a result of the use of

this precise and fine time information.

Moreover, comparing the results for the larger, or coarser, time window sizes for
the recurrent and the time-delay neural networks, shows that the smaller error rate

of the recurrent neural network with a smaller overlap rate performs better than
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the time-delay neural network with a large number of input vectors and a large
overlap rate. This observation also reinforces the statement that the occurrence of
acoustic events in cries is more important than sequence for the classification of
anger, fear, and pain cries. The large overlap rate of time-delay neural networks
allows it to capture the precise sequence of acoustic events, whereas for recurrent
neural networks, the delay nodes capture the activations of the nodes, with no
explicit sequence being modeled. Consequently, from these results, time informa-
tion improves classification rates if the input consists of a large number of input
vectors. However, the incorporation of time information does not improve the

correct classification rate over that of the feedforward neural networks.

This observation should not imply that sequence is not useful for the
classification of cry utterances. Some studies have shown that there is in-
deed a correlation between fundamental frequency patterns over the course
of an utterance, and pathology {Michelsson et al., 1980, Michelsson et al., 1984,
Ostwald and Murry, 1985]. Since the data set available for this work consisted only
of healthy infants, the use and usefulness of time information for the classification

of pathology could not be tested.

Lastly, table 4.17 displays the effects of different training methods on the error
rate and on the number of hidden layer nodes created by the cascade correlation
paradigm before the network error fell below the desired level and training was
stopped. For both the input data sets derived from the mel-cepstrum coefficients,
the conjugate gradient learning method yielded a lower error rate than when
either standard back propagation, or its variant QuickProp, were used to train the
networks. The latter training method, QuickProp, generated the smallest number
of hidden layer nodes, but the quality of the trained network was the worst of the
three training methods, having the largest error rate of the three methods. Standard
back propagation, on the other hand, generated the largest number of hidden units
with the second largest error rate. For the two data sets derived from the mel-

cepstrum coefficients, it would appear that conjugate gradient learning yields the
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best correct classification rates, but these results are still far poorer than any of the

rates for the other architectures tested.

Also, the error rates for all the architectures and configuration variations using
the data sets derived from the mel-cepstrum coefficients all follow the pattern that
using the normalized input data set generates lower error rates than when the
scaled input data set is used, implying that the process of removing the mean and
normalizing the input values to lie between %1 allows a given network to better

capture relevant features from the inputs.

Mel-Scale Filter-Band Energy-Derived Input Data Sets

Table 4.33(a), table 4.33(b), and table 4.33(c) of table 4.33 shows the error rates
versus the number of hidden layer nodes for the fully connected feedforward
neural network. Here, the minimum error rate for all three cases was reached for
a hidden layer size of 25 nodes. As was the case for the mel-cepstrum coefficient-
derived input data sets, once the minimum error rate was reached for a given
hidden layer size, further increasing the hidden layer size would cause the error
rate to increase. Also, none of the error rates for the three mel-scale filter-band
energy-based inputs benefit from the use of a neural network with two hidden
layers. This same pattern is observed for the number of hidden layer nodes for the
feedforward neural network with tessellated connections, the results of which are
listed in table 4.34.

The results for the parameter variations on the recurrent neural network are
indicated in table 4.35, table 4.36, and table 4.37 for the scaled, log, and normalized
log of the mel-scale filter-band energy values, respectively. For these data sets, the
same observation regarding the input frame size and error rate can be made as was
stated for the mel-cepstrum coefficient derived data set discussed in the previous
sub-subsection. The optimal error rates for the three data sets derived from the

mel-scale filter-band energy values are such that the best results are achieved for
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an input frame size of consisting of 75 vectors, with subsequent input frames

consisting of 50 vectors from the previous input frame and 25 new vectors.

As well, the results for the hidden layer size and the error rate for an input frame
size consisting of 75 input data vectors follows the same pattern as it did for the
mel-cepstrum coefficient-derived input sets; a small initial hidden layer size has a
high error rate, decreasing and reaching a minimum as the size was increased, and

then increasing as the hidden layer size was further increased.

Table 4.38 presents the results of tests done on two time-delay neural networks
as the input frame size for the input data sets derived from the mel-scale filter-
band energies was varied. The TDNN with the larger input frame size, consisting
of 105 input data vectors, produced the lowest error rates for all three input data
sets. These results, coupled with those obtained with the recurrent neural network,
further reinforce the statement made in the previous sub-subsection that coarse, or
large, groupings of input vectors yields better results. Also recurrent nets produce
lower error rates, since this network integrates the activation of nodes, and not
the input activations, as the TDNN does. Furthermore, the fine time integration
of acoustic features provided by the large overlap size of TDNNs does not benefit
the classification of anger, fear, and pain from infant cry utterances for the input
data sets derived from both the mel-scale filter-band energies and from the mel-

cepstrum coefficients.

Lastly, the error rates obtained from the different learning methods used to train
the cascade correlation neural network are shown in table 4.39. For the input data
sets derived from th2 mel-scale filter-band energies, the network trained using
standard back propagation yielded the lowest error rate. The hidden layer size of a
cascade correlation network trained with standard back propagation fell between
that of the QuickProp method, which yielded the next best error rate with the
lowest hidden layer size generated, and the conjugate gradient training method,

which yielded the highest error rate, and also the highest number of hidden layer
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nodes created.

The error rates for all the architectures and configuration variations using the
data sets derived from the mel-scale filter-band energy values, show that the best
results were achieved when the normalized log inputs were used. The log inputs
yielded better results than the scaled inputs did, presumably because scaling the
energy values may result in some extremely small values in the inputs, whereas

taking the logarithm of these energies better compresses the dynamic range of these
values.

Comparison of the Input Data Sets

For the most part the results obtained using the data sets derived from the two sets
of features derived from the cry signals are comparable. The results for normalized
inputs yield the best results in both cases. When considering the usefulness of time
information for the purposes of classification, both input sets have lower error rates

when a coarse, or larger, grouping of vectors is input into the network.

To reiterate, this reinforces the statement that the occurrence, not the sequence,
of acoustic features in the input frame is important for improved classification,
which is somewhat intuitive given the difference in the articulator control required
to produce cries and to produce speech. Also, the finer time integration of acoustic
features performed by the time-delay neural network, leads to a higher error rate
than the coarser integration of node activations performed by the recurrent neural

network, which encodes sequences in a more general manner than the time-delay

neural network does.

Lastly, the input data sets achieve different results insofar as the best results
obtained from the cascade correlation learning methods are concerned. The mel-
cepstrum derived input data sets both achieve their best results when the conjugate

gradient learning method is used. The input data sets derived from mel-scale filter-
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band cnergy values achieve their best results when standard back propagation is
used. The observations regarding the input data sets and the cascade correlation
network and the different learning methods are moot, however, as this architecture

yields extremely poor resuits in any event.

4,73 Comparison to Other Classification Attempts

As was mentioned in section 2.3, and again in section 4.1, there has been a very
limited attempt by researchers to automate the process of infant cry classification.
If this attempt has indeed been more widespread, the results of the research have
not been published in the literature. Consequently, the research undertaken for the
classification of anger, fear, and pain from infant cry utterances performed for this
dissertation represents the first attempt at the automatic classification of an infant
state and is also the first attempt at using artificial neural networks in the infant

cry domain.

The results presented in section 4.6 show that the best correct classification rate
for anger, fear, and pain cries of infant ranging in age from two to six months was
achieved for a feedforward neural network with a hidden layer consisting of 45
nodes, which used 125 vectors consisting of 11 mel-cepstrum coefficient values for
which the mean was removed and then normalized to lie between +1. The correct

classification rate obtained was 0.8359 or 83.59%.

The only other recently published work which cites an attempt a performing
the automatic classification of infant cries is a conference publication authored by
Xie, Ward, and Laszlo [Xie et al., 1993]. This research group uses hidden Markov
models to compute a cry’s so-called level-of-distress, which corresponds to an
adult’s perception as to the infant’s distress level, and quotes a correct classification
rate of over 80%, without detailing their results. It should be noted that this

group did not attempt to classify either infant state of pathology based on a cry
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utterance; only perceptive measure of infant distress was computed. Consequently,
it is difficult to compare the results of this research with that performed for this
dissertation. Nonetheless, the correct classification rate of 83.59% achieved for

anger, fear, and pain classification here, surpasses their classification rate for this

subjective measure.

There is some concern that arises from the choice of Xie, Ward, and Laszlo
to use a perceptive measure of infant distress in an automatic cry classification
system, instead of trying to classify infant state or pathology directly. A number of
researchers over the past 15 years have questioned the validity of using a parent’s or
an adult’s perception of an infant’s cry to determine if an infant is indeed in distress
for a number of reasons. First, the relationship between the actual and perceived
features of the infant’s cries and the behavioural response is affected by a number of
factors [Murray, 1985]. The response, or the perception of aversiveness or distress
may be dependent upon the length of exposure to certain types of cries. As well,
the perceived meaning of the cries changes as adult listeners are more frequently
exposed to these utterances in general. Furthermore, with some listeners, the cry
may elicit a nurturing response, whereas with others, the same cry may elicit a
hostile response, with research undertaken in this area noting that crying is often
cited as a major trigger for child abuse [Donovan and Leavitt, 1985b, Frodi, 1985,
Murray, 1985]. It has also been observed that people from different cultures react
differently to infant cries [Murray, 1985].

In brief, then, attempting to model a perceptive measure may not be a proper
solution to the classification problem as the cry can have a paradoxical impact on

the listener.

Another means of comparing the results obtained through the neural network-
based classification experiments performed and reported in section 3.4, given the
lack of automatic classification results for anger, fear, and pain cries, is to compare

these results with those of studies where the classification of these types of cries
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is attempted by adults who themselves have infants. A review of cry perception
research, performed in 1985 by Boukydis [Boukydis, 1985], reveals the presence of
one study where the recognition of anger and pain cries was performed by adults

who themselves had infants [Weisenfeld et al., 1981].

In this study, Weisenfeld, Zander Malatesta, and DeLoach report that mothers
correctly identified the anger and pain cries of infants approximately 77% of the
time. The correct classification of their own infant’s cries was significantly higher
than that for other infants, 82.5% versus 72% respectively. Fathers, on the other
hand, did very poorly in correctly classifying anger and pain from cries, with
the reported correct classification results being approximately 50%. Unlike their
spouses, the fathers showed no difference between the correct classification of
anger and pain cries of their infant versus that of other infants. It should be noted
that for this study, the infant was considered as producing an anger cry upon either
being physically restrained or when its pacifier was removed, and considered as
producing a pain cry, when its heel was snapped with a rubber band. The latter
differs from the data used in this dissertation, where the infant was considered to

have produced a pain cry after a heel stick.

Comparing the best results of the Weisenfeld, Zander Malatesta, and DeLoach
study with the best three-class neural network classification results, the neural
network still performs slightly better than the rate which is quoted for mother
identifying the cries of their own infant (83.59% versus 82.5%). If the general
correct classification rate for the mothers in the study is used, then the neural

network’s performance is much better than that of the mothers’.

In short, then, the results of the best neural network-based anger, fear, and
pain classifier exceeds the results of both the hidden Markov model-based dis-
tress classification system of Xie, Ward, and Laszlo, as well as surpassing the best

classification rates of parents on similar types of vocalizations.
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Chapter 5 Future Work

This chapter presents some future work which could be undertaken as a result of
the research performed for this dissertation, and, which was presented in chapter 3
and in chapter 4. The chapter will be divided into two sections, one tackling the
possible future extensions for the improved crosscorrelation vector-based funda-
mental frequency extraction method, and another addressing the extensions for

the neural network-based classification of infant cries.

5.1 Future Extensions for the Improved Crosscorrelation Vector-

Based Fundamental Frequency Method

This subsection deals with the possible future extensions for the improved cross-
correlation vector-based fundamental frequency extraction method presented in
section 3.1. To reiterate, this method is capable of tracking rapid changes in the
fundamental frequency of infant cry utterances, handling the large range of /4
values present in infant cry signals, generates values of I for almost every pitch
period in voiced utterances, and is also useful for improved visualization of cry

utterances.

51.1 Improvements in Speed

The current implementation of the improved crosscorrelation vector-based fun-
damental frequency extraction method is computationally intensive, as was men-

tioned in subsection 3.1.6, since, during the signal transformation phase, a cross-
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correlation value is generated for every possible lag in the range of expected fun-
damental frequency values. Over the length of a recording , this amounts to a large
number of computations, which consumes the majority of the computation time of

the pitch extraction algorithm.

One method of reducing the number of computations required for a given
time index would be to calculate crosscorrelation values for every other lag in
the expected pitch period range, instead of calculating crosscorrelation values for
every lag. Thus would reduce the required number of computations for this stage
of the algorithm by half and would also reduce the amount of memory required
to store the collection of crosscorrelation vectors. However, this savings in both
the number of computations and memory comes at the expense of the resolution
of the extracted pitch period values in the subsequent post-processing stage, and
correspondingly, a reduction in the resclution of the crosscorrelogram. If execution
speed is of importance for a particular application, for example, then this extension

could easily be implemented and tested for its effectiveness.

5.1.2 Pitch-Synchronous Processing

Another extension of this method would be to use it for pitch-synchronous pro-
cessing subsequent to the extraction of the pitch period in a given recording. As
well, a further pass over the time indexes, or the ngs, as was introduced on page 49
in section 3.1.2, and the input cry utterance could result in the following extensions,

illustrated in figure 5.1.

First, one could supplement the missing pitch values due to large time incre-
ments resulting from large maxima at multiples of the actual pitch period value,
or correct those due to small increments resulting from narrow bandwidth F; val-
ues. As well, one could use techniques to interpolate between sample values in

order to obtain so-called “infinite” resolution in the extracted pitch period values
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Figure 5.1: Extension to Improved Pitch Period Processing Method

[Medan et al., 1991]. The improved crosscorrelation vector-based pitch extraction
algorithm synchronizes itself to the maximum value of a pitch period when it first
begins to find periodicity within a portion of the signal. Consequently, one could
use the time indexes used by the algorithm, which mark the beginning of a pitch
period during voiced sections of the recording, to extract pitch-synchronous fea-
tures such as formant values, or proceed to perform another pass over the data and

obtain all the infinite resolution pitch values for further processing.

Other, more detailed measures of parameters based on /4 such as, jitter and
shimmer, could be determined on a period-by-period basis, allowing a more pre-
cise picture as to how these parameters evolve over the length of the cry episode
than was previously possible. This insight could shed more light into the precise
way that these and other parameters behave for different types of cries, recorded in
different contexts. This could be especially useful for cries of infants with patholog-
ical or genetic problems [Lind ef al., 1970, Zeskind and Lester, 1978] and, as well,
for adults with varying degrees of pathology of the vocal tract [Kasuya et al., 1983].
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This pitch synchronous processing could also be useful for eventual coding of
the signal, should it be necessary to transmit an utterance from a remote center
over a low bandwidth connection, for example, to a central processing system for

further analysis, or for archival purposes.

5.1.3 Other Fundamental Frequency Extraction Methods

Although the improved crosscorrelation-based fundamental frequency extraction
method represents a significant improvement in the determination of pitch period
values from infant cry utterances, other emerging methods are currently being
researched for improved fundamental frequency extraction from speech signals
which could possibly be tested on cry utterances as well. One particular method
which appears to be promising is the application of wavelets [Boashash, 1992a,
Boashash, 1992b).

Some research groups have attempted to extract the fundamental fre-
quency from speech signals using this method with reasonable results
[Kadambe and Boudreaux-Bartels, 1991]. Recently, however, good results have
been achieved through the application of new wavelet functions for speech coding
applications which may prove to be useful for fundamental frequency extraction
[Kinsner and Langi, 1993].

5.2 Future Work for Neural Network-Based Infant Cry Classifica-

tion

This section presents some future work for the automated classification of infant
cry signals using neural networks which emerges as a result of the work presented
in chapter 4. Since attempts at automatic classification of cry signals in general are

just beginning, there is much that could be said on this topic. However, this section
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will briefly touch on some points which could be investigated in future attempts

at addressing this problem.

5.2.1 Other Neural Network Architectures

As as result of the correct classification rate of 83.59% achieved using a feedforward
neural network, with a single hidden layer consisting of 45 units, using an input
data set of mel-cepstrum coefficients with the mean of the input vectors removed,
and normalized to lie between +1, it can be deduced that artificial neural networks

are suitable for the discrimination of anger, fear, and pain cries.

Consequently, other activation functions, such as radial basis func-
tions [Morgan and Scofield, 1991], and neural network architectures, such
as Coulomb energy networks [Scofield etal., 1988], or Viterbi networks
[Lippmann and Singer, 1993] could be trained and tested with the input param-

eter sets used for the neural network tests of chapter 4.

5.2.2 Other Parametric Representations

The data sets used in the neural network tests of chapter 4 were derived from either
11 mel-cepstrum coefficients of 20 mel-scale filter-band energy values. Another se-
ries of tests which could be performed would be to reduce the dimensionality of
both the parameter vectors. The number of mel-scale cepstrum coefficients ex-
tracted from a given signal frame could be reduced from 11 to, say, 7. As well, fur-
ther tests could be conducted on augmenting this set of 7 mel-cepstrum coefficients
with 7 differential mel-cepstrum coefficients. The differential mel-cepstrum coeffi-
cients simply correspond to the first time-derivative of these features. The augmen-
tation of mel-cepstrum coefficients with differential mel-cepstrum coefficients has

provided good results for speech recognition applications [Flaherty and Roe, 1993},
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and may be worth investigating for the classification of infant cries as well.

Alternatively, other input features such as the linear predictive coding
(LPC) coefficients, or higher order representations from the input spectrum
[Nikias and Mendel, 1993] could also be generated and tested as input for dif-
ferent artificial neural networks, and whose correct classification results could be

compared to those presented in section 4.6.

The portion of the voiced utterances which were parametrized for input into the
different neural networks, consisted of the first second of an utterance which lasted
at least 0.75 seconds after the stimulus event. Here, parametrization of different
portions of the cry utterance could be tested as well; taking a 1 second portion of the
signal centered about the signal frame with the largest energy value, for example.
Alternatively, a longer portion of the utterance could be parametrized using no
overlap between subsequent signal windows. If this were done for the parametric
representations used in chapter 4, a two second segment of the cry signal could
be taken, without increasing the number of input vectors presented to the neural

network architectures tested.

5.2.3 Expanding the Study

Other neural network-based classification experiments could be expanded to at-
tempt the classification of other infant states, such as hunger, or to classify various
pathological or genetic disorders, if a collection of data is available. Aswell, future

experiments could be expanded to include premature infants.

One drawback of research undertaken in this domain, is the lack of a standard-
ized data set, on which a number of researchers could compare the results of new
methods of either classification, or parameter extraction, as is the case for speech,
or image processing, with the availability of speech databases or standard image

files. This allows the improvements in processing or classification techniques to not
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only be done on a de facto standard set of data, but also allows researchers all over
the world to have access to the same data and to determine whether improvements

are due to genuine improvements or a result of a limited data set.

Lastly, since the data sets are painstakingly collected in a clinical setting, it is
often difficult to obtain more than a few recordings of a specific cry type, which
causes problems for the training process of classification methods. These methods
often require a large number of representative data for the training and testing pro-
cesses in order to determine the unbiased estimation of the classification method
being tested. Consequently, it would be desirable that when automatic classifica-
tion methods are being investigated in the future, that a large number of recordings
be available for this purpose, and that equal numbers of recordings be available for

the different types or classes of cry utterances slated for classification.

217



Chapter 6 Conclusion

One of the goals of this work was to address the problems inherent in the processing
of infant cry signals, most notably for the extraction of vocal fundamental frequency,
since this is a very important parameter in the determination of infant state and

future developmental outcome as was mentioned  chapter 2.

This thesis developed a method which was capable of accurately extracting this
parameter using a multi-stage time-domain method called the improved cross-
correlation vector-based fundamental frequency extraction method presented in
chapter 3. The method uses a distance scoring method of the pitch candidates in
order to extract the correct fundamental frequency values over the length of an
utterance, and is able to correctly deal with discontinuities in the pitch contour
due to rapid or sudden variations in pitch, double harmonic break episodes, and
disphonation. As well, the method generates pitch values for almost every pitch
period in the voiced sections of cry utterances, which can be further refined by

implementing the future extensions for this method mentioned in section 5.1.

The imp:uved crosscorrelation vector-based fundamental frequency extraction
method overcame the limitations of the standard frame-based pitch extraction
methods, the most common of which were presented in section 3.2. Typically,
traditional pitch extraction methods are not well suited to the large range of fun-
damental frequency values of infant cry utterances. Moreover, characteristics of
certain types of cry utterance signals, such as narrow bandwidth high energy for-
mant values, create confusion for other I extraction methods. As well, since there
are no comparisons between different pitch extraction methods which exist for
infant cry utterances, this work was also performed and reported on in order to

demonstrate the improvements in the results of the new pitch extraction method,
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and the more popular existing methods. In addition to providing improvements
in the extracted pitch values, this method also generates a series of crosscorrelation
vectors which are extremely useful for improved visualization of cry utterances.
The improvements need not be limited to the processing of cry signals, however.
This method may also be useful for the extraction of pitch values from aduit speak-
ers who may have aperiodicities in their vocalizations and for whom a very fine

analysis of pitch period variations may be required to determine the extent of vocal

tract pathology.

Another of the goals of this work was to perform the accurate automated classi-
fication of infant aﬁger, fear, and pain cries, which was achieved using feedforward
artificial neural networks and the first second of a voiced utterance parametrized
using 11 mel-cepstrum coefficients for which an overall correct classification rate of
83.59% was achieved, illustrating the suitability of this paradigm for this particular
application.

The comparison between two different parametric representations, the mel-
cepstrum coefficients and mel-scale filter-band energy values, extracted from a 1
second portion of a voiced cry utterance trained on four different neural networks
was also reported and compared. To the best of our knowledge, this work repre-
sents the first attempt at, and comparison of, automated infant cry classification
using artificial neural networks. Based on the results of the various input param-
eter sets and neural network architectures investigated, the rvlevance of certain
types of information were discussed and presented in section 4.7. Some ideas for
possible future work relating to both the parametric representations and neural

network-based classification experiments were also presented.
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