

National Library of Canada

Bibliothèque nationale du Canada

Direction des acquisitions et

des services bibliographiques

Acquisitions and Bibliographic Services Branch

NOTICE

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington – Ottawa (Ontano) K1A 0N4

And Sectore ence

contel Autorational

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

SULFUR EXTRUSION REACTIONS OF THIIRANES :

KINETICS AND MECHANISTIC INVESTIGATIONS

BY

WARREN CHEW

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY MCGILL UNIVERSITY MONTREAL, QUEBEC CANADA © AUGUST, 1992

National Library of Canada

Acquisitions and Bibliographic Services Branch Bibliothèque nationale du Canada

 Direction des poquisitions et des services publiographiques

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington Ottawa (Ontano) K1A 0N4

Accident Anterimere kiel

Ourfle Noticenterroce

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons. L'auteur a accorde une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-87642-5

Sulfur Extrusion Reactions of Thiiranes : Kinetics and Mechanism

•

- ·

.

To Mom and Dad,

Anna and Eva

SULFUR EXTRUSION REACTIONS OF THURANES : KINETICS AND MECHANISTIC INVESTIGATIONS

by Warren Chew

ABSTRACT

A kinetic study on the thermal decomposition of 2,2-dichloro-3-[9-fluorenyl] episulfide (28) was investigated in detail. Solid evidence as to the nature of the desulfurization process is given. A two-term rate equation is derived to account for the overall rate changes. Both a unimolecular and bimolecular ionic mechanism involving the concatenation of sulfur atoms was proposed to account for the observed kinetic behaviour. An extended study in 15 different solvents at different temperatures showed the desulfurization is ionic in nature. Activation parameters were calculated and rationalized with respect to differences in solvation of the ground and transition states. A linear isokinetic relationship was found indicating a similar mechanism of decomposition in these solvents. Rates of reaction were also found to be linearly correlated with dielectric constant as well as the π^* scale of Kamlet and Taft. A solvent isotope effect was found to exist and the rate of desulfurization is decreased in the presence of acetic acid. A radical mechanism is discounted from a rate study in the presence of radical inhibitors.

Several new disubstituted 9-fluorenones were prepared for the first time using Meyers methodology. These and other mono and disubstituted fluorenones were employed in an effort to synthesize a variety of novel stable thiiranes. Only three thiiranes were prepared in this manner. The X-ray crystal structures of 2,2-dichloro-3,3-diphenyl episulfide (110) and 2,2-dichloro-3-dibenzosuberonyl episulfide (123) were also obtained for the first time.

Thiirane 28 as well as sodium cyanodithioformate (139) were investigated as possible precursors to diatomic sulfur but no evidence of this interesting intermediate was detected. The chlorination of tetramethylthiuram disulfide, however, in the presence of 1,3-dienes, afforded products consistent with the trapping of diatomic sulfur.

REACTIONS D'EXTRUSION DU SOUFRE DES THURANES : Etudes Cinetique et Mecanistique

par Warren Chew

RESUME

Une étude cinétique sur la décomposition thermique des 2,2-dichloro-3-[9-fluorényl] épisulfures (28) a été éffectuée en détail. Des preuves tangibles sur la nature du mécanisme de désulfurisation sont données. L'étude cinétique a débouché sur une équation de vitesse à deux termes. Deux mécanismes ioniques, unimoléculaire et bimoléculaire, tenant compte de la concentration en atome de soufre ont été proposés pour expliquer le comportement cinétique observé. Une étude approfondie utilisant 15 différents solvents à differentes températures a montré que cette réaction de désulfurisation est ionique. Les paramètres d'activation ont été calculés et rationalisés en tenant compte des différences de solvatation entre les états de base et de transition. Une relation linéaire d'isocinétique a été trouvée montrant un mécanisme de décomposition similaire dans tous les solvents. Les vitesses de réaction sont également apparues, corrélées linéairement avec les constantes diélectriques tout comme l'échelle π^* de Kamlet et Taft. Un effet isotopique du solvent a été mis en évidence et la vitesse de désulfurisation décroit en présence d'acide acétique. Le mécanisme radicalaire est rejeté par une étude de vitesse en présence d'inhibiteurs radicalaires.

De nouvelles 9-fluorènones disubstituées ont été synthétisées pour la première fois en employant la méthodologie de Meyers. Les fluorènones di et monosubstituées ont été utilisées pour tenter la synthèse de nouveaux et stables thiiranes, seulement trois ont été obtenues par cette méthode. Les structures aux rayons-X du 2,2-dichloro-3,3diphényl épisulfure (110) et du 2,2-dichloro-3-dibenzosuberonyl épisulfure (123) sont également été obtenues pour la première fois.

La thiirane (28) et le cyanodithioformate de sodium (138) ont été utilisées comme possibles précurseurs de soufre diatomique mais aucune evidence de cet interessant intermediare a été detecté. Cependant, la chlorination de tétraméthylthiurame disulfure en présence de diènes-1,3 conduit aux produits d'addition du soufre diatomique.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor David N. Harpp who supported and guided me throughout this project. His patience, dedication and encouragement is greatly appreciated.

I am especially grateful to Professor B. Jik Chin for valuable discussions and suggestions relating to kinetics, Professor A. S. Perlin for his encouragements, and Professor A. E. Grosser for suggestions on kinetics. Extensive discussions with Professor J. J. Hogan on error analysis are most appreciated.

I would also like to thank Dr. Françoise Sauriol for expert guidance on the use of the NMR facilities, Dr. John Finkenbine and Mr. Nadim Saadé for obtaining the mass spectra, Dr. Rosie Hynes for obtaining the X-ray crystal structures, Dr. Ralf Steudel and Stefan Förster at the Institut für Anorganische and Analytische Chemie, Berlin, Germany for obtaining the HPLC chromatograms, and Dr. Nancy Kawai, Mr. Steven Barnett, and Mr. Dave Pinto for obtaining the Raman spectra.

Of course I cannot forget the cast of colleagues and friends who continuously supported me throughout my stay at McGill and who have provided invaluable assistance. These are Dr. Patricia Folkins, Dr. Charles Williams, Dr. Youla Tsantrizos, Gerard Derbesy, Dr. Jung Hee Kim, Dr. Vrej Jubian, Karen Mrejen, Denise Maher, Dr. Chao Jun Li, Dr. Daguan Gu, Imad Abu-Youssef, Sylvie Tardif, and the entire research group in Dr. Chin's laboratory who made life in the lab much more entertaining. I would also like to thank Gerard Derbesy for translating the abstract into French and Bryan Takasaki for providing the computer programs for kinetic analysis.

Finally, I would especially like to thank Nancy Kwan who not only proofread the manuscript but whose friendship and tremendous support means a great deal. Thank you for being there.

TABLE OF CONTENTS

Abstract i
Résumé ii
Acknowledgementsiii
Table of Contents
Index of Figures viii
Index of Tables x
Index of Abbreviations xii
Chapter 1 1
1.1 Thiiranes 1
1.2 Nomenclature
1.3 Physical Properties
1.4 Naturally Occurring Thiiranes
1.5 Biological Activity
1.6 Thiiranes Used in Insecticides/Herbicides
1.7 Technical Applications
1.8 Thermal and Photochemical Reactions
1.8.1 Introduction
1.8.2 Sulfur Extrusion
1.8.3 C-S and C-C Bond Cleavage
1.8.4 Polymerization14
1.9 Non-Thermal Reactions of Thiiranes14
1.9.1 Electrophilic Reactions on Sulfur 14
1.9.1.1 Protonation and Behaviour with Lewis Acids
1.9.1.2 Alkyl and Acyl Halides15
1.9.1.3 Halogens16
1.9.1.4 Sulfur, Nitrogen, and Phosphorus Containing
Reagents16
1.9.2 Nucleophilic Attack on Sulfur
1.9.3 Nucleophilic Attack on Carbon 19
1.10 Plan of Study

Chapter 2 Kin	etics of the Decomposition of 2,2-Dichloro-3-[9-fluorenyl] Episulfide. 2	2
2.1 Inte	roduction	:2
2.2 Rat	te Law in the Decomposition of 282	3
2.3 Arr	rhenius Parameters	8
2.4 Err	or Analysis of Rate Constants and Activation Parameters	i3
2.5 Iso	kinetic Relationship	0
2.6 Pla	usible Mechanism of Sulfur Extrusion6	6
2.7 Ste	reochemical Aspects in the Decomposition of Thiiranes	0
2.8 Sol	vent Effects7	'3
	2.8.1 Introduction	3
	2.8.2 Hughes - Ingold Rules7	6
	2.8.3 Attempt to Correlate Reaction Rate with Solvent Polarity	'7
	2.8.4 Multiparameter Approaches	57
2.9 Sol	vent Isotope Effect	2
2.10 E	ffect of Radical Inhibitor9	15
2.11 E	ffect of Added Sulfur	6
Chapter 3 Syn	thesis, Structure, and Reactivity9	9
3.1 Inte	roduction9	9
	3.1.1 Conversion from Oxiranes9	9
	3.1.2 Condensation of Diazo Compounds1	01
	3.1.3 Other Methods 1	.02
3.2 Syr	nthesis of 2,2-Dichloro-3-[9-fluorenyl] Episulfide 1	.03
3.3 Syr	thesis of 2,2-Dichloro-3-[2-fluoro-9-fluorenyl] Episulfide 1	.04
3.4 Me	thyl- and Methoxyiluorenyl substituted Episulfides 1	05
3.5 Dia	aryl Episulfides	14
3.6 Syr	nthesis of 2,2-Dichloro-3-dibenzosuberonyl Episulfide	16
3.7 Rea	activity of Fluorenyl substituted Episulfides 1	21

Chapter 4 Diatom	tie Sulfur Extrusion 120	h
4.1 Introd	uction	b
4.2 Brane	h-Bonded Sulfur Atoms 120	h
4.3 Diator	mie Sulfur Precursors	9
4.4 Attem	ipts Towards Trapping ¹ S ₂ in 2,2 Dichloro-3-[9-fluorenyl]	
Episu	lfïde 13	2
4.5 Dimer	rization of Sodium Cyanodithioformate13	6
4.6 Chlori	ination of Tetramethyl Thiuram Disulfide13	7
Conclusions and (Contributions to Original Knowledge 14	0
Chapter 5 Experi	mental	2
5.1 Gener	al Methods 14	2
5.2 UV R	ate Measurements 14	3
5.3 ¹ H NI	MR Rate Measurements (Radical Inhibitor Study)14	3
5.4 Prepa	ration of 2,2-Dichloro-3-[9-fluorenyl] episulfide14	5
5.5 Attem episu	pted preparation of 2,2-Dichloro-3-{2-fluoro-9-fluorenyl} lfide	6
5.6 Atten	npted preparation of 2,2-Dichloro-3-[3,6 dimethoxy-9-fluorenyl]	
episu	Itide	8
5.7 Attem	ipted Preparation of 2,2-Dichloro-3-[5-methyl-9-fluorenyl]	_
episu	Ifide	2
5.8 Atten	ipted Preparation of 2,2-Dichloro-3-[7-methyl-9-fluorenyl]	
episu	lfide	4
5.9 Atten	pted preparation of 2,2-Dichloro-3-[3-methoxy-9-fluorenyl]	
episu	Ifide	6
5.10 Prep	aration of 2,2-Dichloro-3-[2,5-dimethoxy-9-fluorenyl]	
epis	ulfide	-8
5.11 Prep	paration of 4,5-dimethoxy-9-fluorenone	1
5.12 Atte epis	mpted Preparation of 2,2-Dichloro-3-[3-methyl-9-fluorenyl] ulfide	2
5.13 Prep	paration of 2,2-Dichloro-3,3-diphenyl episulfide	3
5.14 Prep	paration of 2,2-Dichloro-3,3-(4,4' dimethoxy)diphenyl episulfide 16	4
5.15 Prep	paration of 2,2-Dichloro-3,3-dibenzosuberonyl episulfide	6
5.16 Prep	paration of 1-Methoxy-3-trimethylsilyloxy-1,3-butadiene	7

5.17	Preparation of 1-Methoxy-2-methyl-3-trimethylsilyloxy-1,3	
	pentadiene	167
5.18	Reaction of Thiirane 28 with 1,3-butadienes	169
5.19	Preparation of Sodium cyanodithioformate	169
5.20	Reaction of 139 with 1,3-butadienes	169
5.21	Chlorination of Tetramethylthiuram disulfide with 1,3-butadienes	169
5.22	Reaction of N,N-dimethylcarbamyl chloride with sulfur	170
5.23	Reaction of 28 with methylbenzenes	170
endix I.	X-Ray structure determination of compound 110	171

Appendix I.	X-Ray structure determination of compound 110	171
Appendix II.	X-Ray structure determination of compound 123	176

INDEX OF FIGURES

No.	Title	Page
1.	Plot of Absorbance vs. Concentration of olefin 29 in the determination of extinction coefficient. Absorbances were measured at $\lambda = 325$ nm	24
2	Bate behaviour in the decomposition of 28 in toluane at $80^{9}C$	75
2	Rate behaviour in the decomposition of 28 in fondence at all C . Plot of the ratio of the unimolecular and himotocular term of Eq. (2) us	20
5.	eniculfide concentration in toluone soluent	.00
4	Comparison of experimental data with a hypothetical deviation of 15%	55
••	in the higher concentration range. Plot shows data from toluene at 80° C	
	• experimental data (see also Figure 2): ∇ 15% deviation data	
5.	Rate profiles for the decomposition of 28 in <i>m</i> -xylene at 70° C shows data	57
	collected under identical experimental conditions at different times.	.,
	• experimental data taken Mar. 23/91; ∨ experimental data taken Mar. 13/92	
ба.	Isokinetic plot from activation parameters derived from k_1 values.	62
	Isokinetic temperature = 45° C.	
6b.	Isokinetic plot from activation parameters derived from k_2 values.	63
	Isokinetic temperature = 93° C.	
7a.	Plot of log k_1 vs. μ (dipole moment) showing the significant scatter	64
	with k_1 . k_1 values were taken from all solvents at 80°C.	
7b.	Plot of log k_1 vs. δ_H (internal pressure) showing the scattering with k_1 .	65
	k_1 values were taken from all solvents at 80°C.	
8.	One dimensional Gibbs energy diagram showing relative standard molar	74
	Gibbs energy of reactants, transition state, and products.	
9.	One dimensional Gibbs energy diagram showing (a) Solvent 2 solvating	74
	activated complex preferentially and (b) Solvent 3 solvating initial reactants	
	preferentially. Solvent 1 is an ideal solvent solvating neither the reactants	
	nor activated complex.	
10.	One dimensional Gibbs energy diagram for two different solvents.	75
11a.	Plot of log k_1 vs. E_T showing the non-linearity with k_1 . The k_1 values were	81
	taken from those solvents at 80° C and which have an E _T value that was	
	measured.	
11b.	Plot of log k_1 vs. $(n^2-1)/(n^2+2)$ showing the non-linearity with k_1 .	82
	The k_1 values were taken from those solvents at 80°C.	

12a.	Plot of log k ₁ against a function of dielectric constant showing the general	84
	increase in rate with dielectric constant.	
12b.	Plot of log k ₂ against a function of dielectric constant showing the general	85
	increase in rate with dielectric constant.	
13.	Plot of log (k/k_0) vs. $(D_c-1)/(2D_c-1)$ for the Menschutkin reaction between	86
	triethylamine and iodoethane showing the scattering of points. A general	
	increase in rate with dielectric constant is also illustrated. Rate constants	
	were taken from reference 136 and are relative to <i>n</i> -hexane as the slowest	
	solvent.	
14.	Distinction between the bulk solvent and the cybotactic region.	89
15.	Plot of log k_1 vs. π^* solvent polarity parameter showing a general increase	90
	in rate with π^* . The k ₁ values were taken from Table 4a and which have a	
	π^* value that was measured.	
16.	Rate profile in the decomposition of 28 in ethanol (•) and ethanol- d (∇).	93
17.	Effect of adding acetic acid in the decomposition of 28.	95
18.	The increase in olefin 29 in the thermolysis of thiirane 28 in chlorobenzene	97
	at 80 ⁰ C. • 0.2mM sulfur added; ⊽ no sulfur added.	
19.	ORTEP representation of 2,2-dichloro-3,3-diphenyl episulfide (110).	114
20.	ORTEP representation of 2,2-dichloro-3-dibenzosuberonyl episulfide (123).	119
21.	Resonance structures for compound 98 and 82 in a unimolecular	123
	desulfurization pathway.	
22.	a) HPLC chromatogram showing pure thiirane 28; b) HPLC chromatogram	135
	after 2.5 hr in refluxing toluene showing olefin 29 and peaks due to presence	
	of S_6 and S_8 .	

ix

INDEX OF TABLES

No. Title

Page

2. 3. 4a. 4b. 5. 6. 7.	Extinction coefficients for 29 in various solvents measured at $\lambda = 325$ nm. Calculated rates of reaction at various concentrations at 80°C. k_1/k_2 and k_1/k_3 rate constants derived from Eq. (3) and (4) respectively. k_2/k_3 and k_3 rate constants derived from Eq. (5) and (6) respectively. Correlation coefficients obtained in the determination of rate constants for several different rate laws. Relative rates calculated from rate constants using Eq. (3).	25 26 30 31 32
3. 4a. 4b. 5. 6. 7.	Calculated rates of reaction at various concentrations at 80° C. k_1/k_2 and k_1/k_3 rate constants derived from Eq. (3) and (4) respectively. k_2/k_3 and k_3 rate constants derived from Eq. (5) and (6) respectively. Correlation coefficients obtained in the determination of rate constants for several different rate laws. Relative rates calculated from rate constants using Eq. (3). Patio of unimolecular and himolecular terms in rate equation (3) shown as	26 30 31 32
4a. 4b. 5. 6. 7.	k_1/k_2 and k_1/k_3 rate constants derived from Eq. (3) and (4) respectively. k_2/k_3 and k_3 rate constants derived from Eq. (5) and (6) respectively. Correlation coefficients obtained in the determination of rate constants for several different rate laws. Relative rates calculated from rate constants using Eq. (3). Patio of unimolecular and himolecular terms in rate equation (3) shown as	30 31 32
4b. 5. 6. 7.	k_2/k_3 and k_3 rate constants derived from Eq. (5) and (6) respectively. Correlation coefficients obtained in the determination of rate constants for several different rate laws. Relative rates calculated from rate constants using Eq. (3). Patio of unimolecular and himolecular terms in rate equation (3) shown as	31 32
5. 6. 7.	Correlation coefficients obtained in the determination of rate constants for several different rate laws. Relative rates calculated from rate constants using Eq. (3). Patio of unimolecular and himolecular terms in rate equation (3) shown as	32
6. 7.	for several different rate laws. Relative rates calculated from rate constants using Eq. (3). Patio of unimplecular and himolecular terms in rate equation (3) shown as	24
6. 7.	Relative rates calculated from rate constants using Eq. (3). Ratio of unimplecular and himolecular tarms in rate equation (3) shown as	24
7.	Patio of unimplecular and himolecular terms in rate equation (2) shown as	.74
	Ratio of unmolecular and officiecular terms in fale equation (5) shown as	35
	percentages. Calculated from rate data in Table 3.	
8.	Decomposition rates of 28 in the specified solvent at different temperatures.	39
9.	k_1 and k_2 rate constants derived from Eq. (3).	46
10a.	Activation parameters derived from k ₁ rate constants.	50
10ь.	Activation parameters derived from k ₂ rate constants.	51
11.	Calculated rate constants obtained by variation of experimental rate	54
	values in toluene at different temperatures.	
12.	Calculated number of standard deviations, σ , from Eq. (3).	59
13.	Predicted solvent effects on rates of nucleophilic substitution reactions	77
	(taken from reference 120).	
14.	Dielectric and rate constants used in this study. Rate constants were	83
	obtained at 80°C. Dielectric constants taken from Handbook of	
	Chemistry and Physics, 73rd ed., D. R. Lide, Ed., CRC Press,	
	1992-93, p 9-51.	
15.	Rate constants derived from Eq. (3) in ethanol and ethanol-d solvents.	94
16.	Second order rate constants obtained from appearance of 29 in toluene- d_8	96
	at 80°C with and without addition of radical inhibitor.	
17.	Rate of appearance of olefin 29 at various concentrations of added sulfur.	98
	Initial concentration of thiirane $28 = 0.20$ mM.	
18.	Selected bond lengths and bond angles for 2,2-dichloro-3,3-diphenyl	115
	ensulfide (110) Estimated α s refer to the last digit	

19.	Selected bond lengths and bond angles for 2,2-dichloro-3-	120
	dibenzosuberonyl episulfide (123). Estimated σ s refer to the last digit.	
20.	Reaction conditions in the thermal decomposition of 28.	134
21.	Reaction conditions for the chlorination of tetramethylthiuram disulfide.	138
XR-1.	Atomic coordinates (x, y, z) and temperature factors (B_{eq}) for	171
	compound 110. Estimated σ s refer to the last digit.	
XR-2.	Crystal data for the structure determination of compound 110.	172
XR-3.	Distances(Å) to the Least-squares planes.	174
XR-4.	Atomic coordinates (x, y, z) and temperature factors (B_{eq}) for	176
	compound 123. Estimated σ s refer to the last digit.	
XR-5.	Crystal data for the structure determination of compound 123.	177
XR-6.	Distances(Å) to the Least-squares planes.	179

xi

INDEX OF ABBREVIATIONS

	concentration
σ	standard deviation
Å	angstrom
abs.	absorbance
Bp.	boiling point
°C	degrees Celsius
ca.	circa
cf.	confer
cm	centimeter
d	deuterium
D _c	dielectric constant
DME	dimethoxyethane
DMF	dimethylformamide
DMSO	dimethylsulfoxide
3	extinction coefficient
EI	electron impact
eq.	equivalent
Eq.	equation
EtOAc	ethyl acetate
EtOH	ethanol
eu	entropy units
eV	electron volt
g	gram
HPLC	high performance liquid chromatography
hr	hour
IR	infrared
kcal	kilocalories
L	litre
lit.	literature
т	meta
mg	milligram
MHz	megahertz
min	minute

ml	milliliter
mM	millimolar
mm	millimeter
mmol	millimole
mol	mole
Mp.	melting point
MS	mass spectrometry
N	normality
nm	nanometer
NMR	nuclear magnetic resonance
0	ortho
р	para
ppm	parts per million
r	measure of best fit
R _f	relative mobility
S	second
S _N 1	substitution nucleophilic unimolecular
S _N 2	substitution nucleophilic bimolecular
t	tertiary
THF	tetrahydrofuran
TLC	thin layer chromatography
UV	ultraviolet

xiii

CHAPTER 1

INTRODUCTION

1.1 THURANES

It is almost inevitable that a comparison be made of thiiranes 1 with their oxygen counterpart oxiranes, in view of their similarities in structure and proximity of their heteroatoms to each other in the periodic table. In contrast to the chemistry of oxiranes which has been studied enormously, thiiranes or episulfides have received much less attention. The limited literature on thiirane chemistry may be attributed to their lack of easy availability, their limited stability and their characteristic unpleasant smell of the lower molecular weight members. Thiiranes are more prone to spontaneous polymerization than oxiranes and are less convenient to store. Desulfurization is a common pathway in the reaction of thiiranes but deoxygenation of oxiranes is seldom observed. The ring-opening reactions of thiiranes have received less consideration in contrast to the ring-opening reactions of oxiranes.

It is only in the last decade when researchers discovered the importance of thiirane and its chemistry. Several reviews on the synthesis, physical properties, and reactivity of thiiranes have appeared recently.¹ A number of novel methods of synthesis has been developed and the behaviour of thiiranes in many reactions has been examined. Several new technical applications of thiiranes have also been demonstrated in recent years. A variety of biologically active substances has been synthesized containing the thiirane functionality and in some cases have been found to be more potent than its oxirane analogue. Thiiranes have also been employed in synthetic carbohydrate chemistry.²

2

a) A. V. Fokin and A. F. Kolomiets, *Russ. Chem. Rev.*, 44, 138 (1975); b) A. V. Fokin and A. F. Kolomiets, *Russ. Chem. Rev.*, 45, 25 (1976); c) E. Vedejs and G. A. Krafft, *Tetrahedron*, 38, 2857 (1982); d) A. V. Fokin, M. A. Allakhverdiev, and A. F. Kolomiets, *Russ. Chem. Rev.*, 59, 405 (1990).

D. Miljkovic, M. Popsavin, N. Vukojevic, and N. A. Hughes, J. Carbohydr. Res., 9, 215 (1990).

1.2 NOMENCLATURE

Three-membered rings containing one sulfur atom are named thiiranes I with the ring numbering starting at the sulfur atom. Several systems of nomenclature have been widely used :

- a) Substitution method whereby the position of the sulfur atom which replaces the carbon atom in the parent molecule is indicated by number and the "thia" prefix;
- b) Name of alkene + episulfide;
- c) Name of alkene + sulfide;
- d) Epithioalkane with position of functional group given by numbers;
- e) Episulfide + "name of alkene".

Thus compound 2 may be called 7-thiabicyclo[4.1.0] heptane, cyclohexene episulfide, cyclohexene sulfide, 1,2-epithiocyclohexane, or episulfide of cyclohexene according to the nomenclature systems a) through e) respectively. For larger molecules, the episulfide or epithio designation is commonly used. In most cases, however, thiirane is the more general term used to define compounds containing this functional group.

1.3 PHYSICAL PROPERTIES

The physical properties of the parent thiirane has been reviewed by Dittmer³ and Sander.⁴ Typical C-C bond lengths in thiiranes fall between 1.37 Å to about 1.60 Å and C-S bonds range from 1.73 Å to 1.92 Å. The C-C bond length in thiirane suggests a partial double bond character as a typical sp³-sp³ C-C bond is about 1.55 Å and a C=C bond 1.34 Å. The CSC angle is about 48°C for the parent thiirane but this varies a little depending on the substituents present in the molecule. Table 1 lists bond lengths and angles for the parent thiirane and their oxides as well as data for its analogues, aziridine, oxirane, and phosphorane. The sharp difference between the strain energy of

³ D.C. Dittmer, "Comprehensive Heterocyclic Chemistry", A. R. Katritzky and C. W. Rees, Eds., Pergamon Press: London, 1984, Vol. 7, Chapter 5.06.

⁴ M. Sander, *Chem. Rev.*, **66**, 297 (1966).

cyclopropane and its heteroatom analogues is indicative of the higher degree of stabilization of the heterocyclic compounds by π -electrons of the heteroatom. The contribution of the π -electrons enhances the unsaturated character of the thiirane ring which is responsible for its greater stability compared with the oxirane ring. The increase in stability of thiirane is also reflected in a lower strain enthalpy and entropy compared with oxirane (59.2 eu. and 38.4 kcal/mol for oxirane and 21.5 eu. and 17.6 kcal/mole for thiirane).⁵

	X					
	Oª	NH ^b	Pc	Sª	SOd	SO ₂ °
C-C	1.472	1.480	1.502	1.492	1.504	1.590
C-X	1.436	1.488	1.807	1.819	1.822	1.731
C-X-C	61°24'	-	47°24'	48°24'	48°46'	54°40'
C-C-X	59°18'	-	66°18'	65°48'	65°37'	62°40'

 Table 1. Bond lengths and bond angles for 3-membered ring heterocycles.

^a G. Cunningham, Jr., A. W. Boyd, R. J. Myers, W. D. Gwinn, and W. I. LeVan, J. Chem. Phys., 19, 676 (1951); ^b T. E. Turner, V. C. Fiora, W. M. Kendrick, and B. L. Hicks, J. Chem. Phys., 21, 564 (1953); ^c M. T. Bowers, R. A. Beaudet, H. Goldwhite, and R. Tang, J. Am. Chem. Soc., 91, 17 (1969); ^d S. Saito, Bull. Chem. Soc. Jpn., 42, 663 (1969); ^e Y. Nakano, S. Saito and Y. Morino, Bull. Chem. Soc. Jpn., 43, 368 (1970).

The principle ions observed in mass spectra of thiiranes are due to loss of a hydrogen atom or alkyl group. Loss of neutral SH is often observed as well as loss of sulfur. A rearrangement to a thioaldehyde or thioketone followed by loss of hydrogen or alkyl group is also a preferred route in electron impact mass spectroscopy. Absorptions in the UV spectra of thiiranes are usually found between 205 nm to 260 nm. The IR spectrum of thiirane has been extensively analyzed⁶ but aside from the parent compound, little IR and Raman work has been done on this class of compound. The reported C-S stretching vibration frequencies for thiirane are 651 cm⁻¹ and 611 cm⁻¹.⁷

⁵ R. Ketcham and V. P. Shah, J. Chem. Eng. Data, 11, 106 (1966).

Gas phase : H. W. Thompson and W. T. Cave, J. Chem. Soc., Faraday Trans., 47, 951 (1940); Liquid phase : G. B. Guthrie, D. W. Scott, and G. Waddington, J. Am. Chem. Soc., 74, 2795 (1952).

⁷ W. D. Allen, J. E. Bertie, M. V. Falk, B. A. Hess, Jr., G. B. Mast, D. A. Othen, L. J.Schaad, and H. F. Schaefer III, J. Chem. Phys., 84, 4211 (1986).

A number of X-ray crystallographic structures of thiiranes have been documented. The first X-ray structure of a thiirane ring system was reported in 1972 by Bates.⁸ They found that the shortness of the C-C bond joining the episulfide ring supported the view that carbons in an episulfide ring are between sp^2 and sp^3 hybridized. The first metal carbonyl derivative containing two coordinated episulfide rings was recently reported.⁹ The *cis*-1,4 cyclohexadiene bisepisulfide complex of chromium tetracarbonyl (3) showed that the C-S bond lengths of 1.915 Å appears to be the longest observed to date in episulfide ring systems. The C-S-C bond angles of 47.3° are within the expected range for the episulfide ring.

Another metal substituted thiirane, triphenylsilyl thiirane, was shown to have a propellertype molecular structure and that the C-C and C-S bonds are significantly shortened.¹⁰ The X-ray crystal structures of two highly hindered thiiranes, 2,2-di-t-butyl-3,3-diphenyl thiirane¹¹ and adamantylideneadamantane thiirane,¹² showed long C-S bond distances. Longer C-C bonds from the thiirane ring to the t-butyl and phenyl groups were also observed. Crystallographic data of thiiranes containing exocyclic double bonds have also been reported.¹³ Thiirane 4a, containing one exocyclic double bond, showed the inherent ring strain as well as the unsymmetrical ring structure whereas thiirane 4b proved to be nearly symmetrical with a characteristic shortening of the C-C bond of the thiirane ring.

⁸ R. B. Bates, R. A. Grady, and T. C. Sneath, J. Org. Chem., 37, 2145 (1972).

⁹ E. W. Abel, N. A. Cooley, K. Kite, K. G. Orrell, V. Šik, M. B. Hursthouse, and H. M. Dawes, *Polyhedron*, 8, 887 (1989).

¹⁰ G. Barbieri, G. D. Andreetti, G. Bocelli, and P. Sgarabotto, J. Organomet. Chem., 172, 285 (1979).

A. Mugnoli and M. Simonetta, Acta. Cryst., B32, 1762 (1976).

¹² G. A. Tolstikov, B. M. Lerman, L. I. Umanskaya, Y. T. Struchkov, A. A. Espenbetov, and A. L. Yanovsky, *Tetrahedron Lett.*, 21, 4189 (1980).

a) W. Ando, Y. Hanyu, Y. Kumamoto, and T. Takata, *Tetrahedron*, 42, 1989 (1986); b) N.
 Tokitoh, H. Hayakawa, M. Goto, and W. Ando, *Chem. Lett.*, 961 (1988).

The crystal data of a related molecule, thiiranimine 5 also show the unsymmetrical nature of the thiirane ring due to an exocyclic C=N double bond.¹⁴ Another thiiranimine was also reported¹⁵ as well as the similar α -thiolactone which contains a exocyclic C=O.¹⁶

Several other crystal structures of thiiranes were examined including steroidal thiiranes,¹⁷ spiro thiiranes,¹⁸ a Dewar-type thiophene derivative,¹⁹ and a polyether antibiotic, acanthifolicin, which contains the rare thiirane functionality in a natural product.²⁰ The reported bond lengths and bond angles are all within the expected range in episulfide rings. Only a few X-ray structures of episulfoxides²¹ are reported and to our knowledge only one X-ray structure of an episulfone has been cited.²²

¹⁴ E. Schaumann, H. Nimmesgern, and G. Adiwidjaja, Angew. Chem. Int. Ed. Engl., 21, 694 (1982).

¹⁵ G. L'abbé, J.-P. Dekerk, J.-P. Declercq, G. Germain, and M. V. Meerssche, Angew. Chem. Int. Ed. Engl., 17, 195 (1978).

¹⁶ E. Schaumann and U. Behrens, Angew. Chem. Int. Ed. Engl., 16, 722 (1977).

a) K. U. Oda and H. Koyama, J. Chem. Soc., Perkin Trans. II, 1866 (1973); b) K. U. Oda and H. Koyama, J. Chem. Soc., Perkin Trans. II, 933 (1975).

a) W. W. Ng and S. C. Nyburg, J. Chem. Soc., Chem. Comm., 555 (1978); b) K. Fukuyama, S. Fujii, and Y. Katsube, Acta Cryst., C39, 248 (1983).

¹⁹ N. Kikutani and Y. Iitaka, Acta. Cryst., B31, 1478 (1975).

²⁰ F. J. Schmitz, R. S. Prasad, Y. Gopichand, M. B. Hossain, and D. V. Helm, J. Am. Chem. Soc., 103, 2467 (1981).

a) H. Koyama and H. Nakai, J. Chem. Soc., Perkin Trans. II, 741 (1977); b) B. F. Bonini, E. Foresti, R. Leardini, G. Maccagnani, and G. Mazzanti, Tetrahedron Lett., 25, 445 (1984); c) W. Ando, Y. Hanyu, and T. Takata, Tetrahedron Lett., 25, 1483 (1984); d) W. Ando, Y. Hanyu, and T. Takata, J. Org. Chem., 51, 2122 (1986).

²² R. Desiderato and R. L. Sass, Acta. Cryst., 23, 430 (1967).

1.4 NATURALLY OCCURRING THHRANES

Only a small handful of naturally occurring substances containing the unique 3membered heterocyclic are known. In 1980, Peppard and coworkers²³ discovered by gas chromatographic analysis that about 10-350 ppm of the components of hop oils were 3 sesquiterpenes, 2 humulenes **6a** and **6b** and an epithiocaryophyllene **6c**.

An epithiospecifier protein was found to be present in both turnip tissue and crambe seed.²⁴ The parent thiirane molecule, ethylene sulfide, and 2-methyl thiirane were 2 compounds of over 90 other organic compounds identified in the aroma of canned beef and of cooking mutton.²⁵ Cabbage and rutabagas were found to contain 2-cyano methyl thiirane and thiirane carboxylic acid was found in white asparagus. Some thiiranes are found during degradation of the sulfur containing amino acids, cysteine, cystine, and methionine. Acanthifolicin, a polyether carboxylic acid from the extracts of a marine sponge was shown to contain an episulfide ring.²⁰

1.5 BIOLOGICAL ACTIVITY

Many thiiranes are know to be very useful as potent drugs. Epitiostanol (7) and its derivatives are antitumor drugs which are effective against breast cancer but studies also show these compounds were toxic in rats.²⁶ Other epithiosteriodal derivatives such as the carbenolides are useful as respiratory stimulants and blood pressure increasing agents.²⁷ Two thiiranyl steroids which have been synthesized were demonstrated to be

²³ T. L. Peppard, F. R. Sharpe, and J. A. Elvidge, J. Chem. Soc., Perkin Trans. 1, 311 (1980).

a) H. L. Tookey, Can. J. Biochem., 51, 1654 (1973); b) R. A. Cole, Phytochem., 17, 1563 (1978).

²⁵ L. N. Nixon, E. Wong, C. B. Johnson, and E. J. Birch, J. Agric. Food Chem., 27, 355 (1979).

a) T. Hori, T. Miyake, K. Takeda, and J. Kato, *Prog. Canc. Res. Ther.*, 10, 159 (1978); b) Y. Muraoka, I. Yahara, F. Itoh, H. Watanabe, and H. Nara, *Chem. Abs.*, 90, 146152f (1979); c) K. Takeda, *Chem. Abs.*, 92, 34512h (1980).

²⁷ D. Sato, Chem. Abs., 70, 4442p (1969).

useful inhibitors of human placental aromatase²⁸ and lanosterol 14 α demethylase (P450_{14dm}) which is a cytochrome enzyme responsible for the first stage in the biosynthesis of cholesterol from lanosterol.²⁹ Thioglycidates **8**, which have been shown to control hypertension, are useful as hypoglycemic agents.³⁰ They act by irreversible inhibition of mitochondrial carnitine palmitoyl transferase-A enzyme which is responsible for converting long-chain fatty acids into their ester derivatives. This inhibitory action effectively prevents further oxidation of these acids as they cannot enter the mitochondrion where oxidation takes place. Thus, the blood glucose levels are lowered.³¹

Cyclohexene sulfide is known to inhibit both L-glutathione transferase and aryl hydrocarbon hydroxylase enzymes which are responsible for inducing skin tumors.³² Substituted propylene sulfides were reported to be active against tuberculosis.³³ Thiirane is found to be more potent than oxirane as an antibacterial agent. Adducts of amines with thiiranes act as immunosuppressants. Furanoid epithio sugar 9 has also been reported as a potential immunostimulant.³⁴ The sulfur analogue of cpoxycicosatrienoic acid (10) has been synthesized as an arachidonate epoxygenase inhibitor albeit it is less potent than the nitrogen or oxygen analogues.³⁵ It was prepared by the treatment of the

²⁸ W. E. Childers, P. S. Furth, M. J. Shih, and C. H. Robinson, J. Org. Chem., 53, 5947 (1988).

²⁹ S. F. Tuck, C. H. Robinson, and J. V. Silverton, J. Org. Chem., 56, 1260 (1991).

a) W. Ho, R. J. Mohrbacher, and G. Tutwiler, US Patent 4196300, *Chem. Abs.*, 93, 71528j (1980); b) R. J. Mohrbacher, W. Ho, and G. Tutwiler, US Patent 4370343, *Chem. Abs.*, 98, 149595d (1983).

³¹ W. Ho, G. F. Tutwiler, S. C. Cottrell, D. J. Morgans, O. Tarhan, and R. J. Mohrbacher, J. Med. Chem., 29, 2184 (1986).

A. H. L. Chuang, H. Mukhtar, and E. Bresnick, J. Natl. Cancer Inst., 60, 321 (1978).

³³ E. P. Adams, K. N. Ayad, F. P. Doyle, D. O. Holland, W. H. Hunter, J. H. C. Nayler, and A. Queen, J. Chem. Soc., 2665 (1960).

³⁴ K. Adlgasser, H. Hünig, and R. Zenk, Liebigs Ann. Chem., 283 (1987).

a) J. R. Falck, S. Manna, J. Viala, A. K. Siddhanta, C. A. Moustakis, and J. Capdevila, Tetrahedron Lett., 26, 2287 (1985); b) J. R. Falck, P. Yadagiri, and J. Capdevila, Methods Enzymol., 187, 357 (1990).

epoxyeicosatrienoic acids with KSCN. Alpha-adrenergic blocking agents were prepared using ethylene sulfide as the precursor.³⁶

1.6 THURANES USED IN INSECTICIDES/HERBICIDES

Some thiiranes are effective as insecticides. A study has shown that thiiranes proved to be the most active against insects.³⁷ Thiophosphates of 2-mercapto methyl thiirane are strong insecticides³⁸ and several thiirane 1-oxides were reported to be sufficient to kill weeds, insects and snails.³⁹ Chloropropene sulfide has been claimed to be an effective nematocide.⁴⁰

1.7 TECHNICAL APPLICATIONS

A number of useful applications of thiiranes have been reported. 2-methyl thiirane has been used as a fuel gas odorant, 1,2-dimethyl and 1,2-diphenyl thiirane in liquid crystals,⁴¹ thiirane in the enhancement of respiration of tobacco leaves and 2- (methoxy methyl) thiirane as tobacco additives which reduces the nicotine and phenol levels in smoke. Fluorinated thiiranes are useful as refrigerants or fire extinguisher agents.⁴² Thiiranes have also appeared in components of paint and varnish coatings, insulating materials, semi-conductors and antioxidants.

Polymeric materials containing the epithio functionality possess excellent mechanical properties. Epoxy resin compound 11 was found to be resistant to heat⁴³ and

³⁶ R. Granados, M. Alvarez, N. Valls, and M. Salas, J. Heter. Chem., 20, 1271 (1983).

³⁷ a) D. E. Frear and E. J. Seiferle, *J. Econ. Entomol.*, **40**, 736 (1947); b) J. B. Siddall and C. A. Henrick, US Patent 3723462, *Chem. Abs.*, **78**, 159402q (1973).

a) W. Lorenz, German Patent 1086712 (1960); b) G. Schrader and W. Lorenz, German Patent 1082915 (1960), Chem. Abs., 55, 25983 (1961).

³⁹ G. E. Hartzell, US Patent 3413306 (1969), Chem. Abs., 70, 57418s (1969).

⁴⁰ C. Harukawa, M. Sakai, and K. Konishi, Japanese Patent 9997 (1962), *Chem. Abs.*, **60**, 3440 (1964).

⁴¹ G. Gottarelli, P. Mariani, G. P. Spada, B. Samori, A. Forni, G. Solladie, and M. Hibert, *Tetrahedron*, 39, 1337 (1983).

⁴² F. C. McGrew, US Patent 3136744 (1964), Chem. Abs., **61**, 4312 (1964).

⁴³ V. A. Dzhafarov, S. I. Sadykh-Zade, S. K. Kyazimov, A. V. Ragimov, and S. D. Abbasova, *Chem. Abs.*, 91, 40423a (1979).

aryloxypropene sulfides have been proposed as light and heat stabilizers for poly(vinyl) chloride and co-polymers of vinyl chloride.

The oxirane analogues of the sulfides were found to be less effective.⁴⁴ Other resin compounds were useful as photoresistors. The poly(ethylene glycol) ether of 2-hydroxymethyl thiirane showed improvement of antistatic properties of fiber and films. Poly(ethylene) sulfides have high tensile strength.⁴⁵

1.8 THERMAL AND PHOTOCHEMICAL REACTIONS

1.8.1 INTRODUCTION

The lower ring strain of thiiranes compared to other 3-membered rings (oxirane, aziridine and cyclopropane) suggests thiiranes would be less reactive than oxirane (cf. Section 1.3). However, it is the lower bond energy of C-S (66 kcal/mol) compared with the C-O bond (91 kcal/mol) that overrules the lower strain energy and which accounts for much of the reactivity of this class of compounds. The thermal or photochemical reactions involve either the cleavage of the carbon-sulfur bond, which often lead to rearrangement products, isomeric or polymeric materials, or extrusion of sulfur which results in the formation of alkenes. Thiiranes that are highly aryl-substituted or whose molecule is substituted with electron attracting groups are more likely to promote the abstraction of sulfur. The gas phase thermal and photochemical reactions of thiirane and its nitrogen and oxygen relatives have been reviewed by Braslavsky.⁴⁶

1.8.2 SULFUR EXTRUSION

There are many non-thermal reactions that involve the extrusion of sulfur from thiiranes but little work has been done on the thermally induced desulfurization reaction. A recent review on thermal decomposition of sulfur compounds including thiiranes is given by Williams and Harpp.⁴⁷ Articles on the elimination of sulfur from thiiranes have

⁴⁴ M. Kosmin, US Patent 2824845, *Chem. Abs.*, **52**, 9667 (1958).

⁴⁵ P. Sigwalt, Chim. Ind., Genie Chim., 104, 47 (1971).

⁴⁶ S. Braslavsky and J. Heicklen, Chem. Rev., 473 (1977).

⁴⁷ C. R. Williams and D. N. Harpp, Sulfur Repts., 10, 103 (1990).

also appeared in the last few years.⁴⁸ It appears that the first case involving spontaneous loss of sulfur from thiiranes substituted by aryl or halogen was reported by Staudinger and Siegwart⁴⁹ (Scheme 1) and Schönberg (Scheme 2).⁵⁰ The thermolysis reaction of *cis* or *trans*-2,3 divinyl thiirane (12a) loses sulfur at 90°C affording a mixture of *cis* and *trans* 1,3,5-hexatrienes plus rearrangement dihydrothiepins.⁵¹

However, Bergman⁵² showed that *trans*-2,3-diethynyl thiirane (12b) when heated at 100° C in toluene gave predominantly *trans* alkene but at 395°C in the gas phase, the stereoselectivity is lowered.

 ⁴⁸ a) Y. Suhara, Yukagaku, 32, 466 (1983); b) F. S. Guziec, Jr. and L. J. Sanfilippo, Tetrahedron, 20, 6241 (1988).

⁴⁹ H. Staudinger and J. Siegwart, *Helv. Chim. Acta.*, 3, 840 (1920).

⁵⁰ A. Schönberg and L. V. Vargha, *Liebigs Ann. Chem.*, 483, 176 (1930).

⁵¹ a) M. P. Schneider and M. Schnaithmann, J. Am. Chem. Soc., 101, 254 (1979); b) J. C. Pommelet and J. Chuche, J. Chem. Res. (S), 56 (1979).

⁵² K. P. C. Vollhardt and R. G. Bergman, J. Am. Chem. Soc., 95, 7538 (1973).

A chelotropic extrusion of a sulfur atom could explain the retention of stereochemistry but it was considered unlikely and the authors concluded that the reaction was more complicated.⁵³ In 1985, Lutz and Biellmann⁵⁴ studied the mechanism of sulfur extrusion of 2,2-dichloro-3-[9-fluorenyl] thiirane (*cf.* Scheme 1). Their conclusion was that sulfur loss was not a chelotropic extrusion but that a more complex process was involved. Bouda and co-workers⁵⁵ described the decomposition of furanic and aromatic thiiranes at moderate temperatures (90°C) but at low temperatures (0°C) desulfurization does not take place. When thiirane 13 was heated gently, elemental sulfur was obtained and the thiirane converted to the ethylene derivative 14.⁵⁶ In the reaction of thiobenzophenone with diazomethane or diazoethane, thiirane 15 was produced but sulfur was lost at room temperature with a half-life of 16 hr to give the olefin 16.⁵⁷

⁵³ The mechanism of desulfurization of a related molecule, an allene episulfide, was studied by Ando and rationalized via a thioxyallyl radical intermediate although no clear conclusions were justified; W. Ando, A. Itami, T. Furuhata and N. Tokitoh, *Tetrahedron Lett.*, 28, 1787 (1987).

⁵⁴ E. Lutz and J. F. Biellmann, Tetrahedron Lett., 26, 2789 (1985).

⁵⁵ H. Bouda, M. E. Borredon, M. Delmas and A. Gaset, Synth. Comm., 19, 491 (1989).

⁵⁶ N. A. Korchevin, V. A. Usov, and M. G. Voronkov, *Chem. Hetero. Cmpds.*, 623 (1974).

<sup>a) I. Kalwinsch, L. Xingya, J. Gottstein, and R. Huisgen, J. Am. Chem. Soc., 103, 7032 (1981);
b) R. Huisgen and L. Xingya,</sup> *Heterocycles*, 20, 2363 (1983).

In the reaction of thiocarbonyl fluoride with diazomethane, 2,2-difluorothiirane was formed but spontaneously lost sulfur at 0° C (Scheme 3).⁵⁸ Aliphatically substituted thiiranes such as fenchane-spirothiirane (17) extrude sulfur when heated.⁵⁹ Three recent articles have appeared which showed that episulfide compounds lose sulfur spontaneously to give the olefin,^{60a} biaryl compounds,^{60b} and a diazepine.^{60c}

Several examples are reported in the literature where photochemical reactions involve sulfur loss. The photolysis of dibenzoylstilbene thiirane (18) afforded

⁵⁸ W. J. Middleton, E. G. Howard, and W. H. Sharkey, J. Org. Chem., 30, 1375 (1965).

J. M. Beiner, D. Lecadet, D. Paquer, and A. Thuillier, Bull. Soc. Chim. Fr., 1983 (1973).

a) K. C. Nicolaou, C.-K. Hwang, M. E. Duggan, and P. J. Carroll, J. Am. Chem. Soc., 109, 3801 (1987); b) M. A. Francisco, A. Kurs, A. R. Katritzky, and D. Rasala, J. Org. Chem. ,53, 4821 (1988); c) J. Svetlik, F. Turecek, and I. Goljer, J. Org. Chem. ,55, 4740 (1990).

dibenzoylstilbene. The loss of sulfur was explained by assuming a cleavage of the C-S bond of the three-membered ring forming a biradical intermediate which is then followed by loss of atomic sulfur.⁶¹ A similar conclusion was proposed when Becker⁶² investigated the photochemistry of tetraphenylthiirane. Another photochemical study was conducted by Trozzolo on tetraphenyloxirane but the authors favoured an ionic mechanism rather than homolytic cleavage.⁶³

1.8.3 C-S AND C-C BOND CLEAVAGE

The other pathways in thermal reactions of thiiranes involve C-S or C-C bond fission. Many unusual rearrangement or isomeric products are isolated, especially in substituted thiiranes. The C-S bond is either cleaved homolytically or heterolytically leading to various products. When *exo-2*,3-epithionorborn-5-ene (**19**) is photolyzed, 2-thiabicyclo[3.2.1] octa-3,6-diene (**20**) is obtained *via* a stepwise mechanism involving a homolytic cleavage of the C-S bond.⁶⁴

Triene 21 undergoes a similar rearrangement to afford thiabicycles.⁶⁵ Benzothiophene (23) was observed when thiirane 22 was heated in refluxing benzene.⁶⁶

Only a few examples in the literature have shown that the C-C bond is cleaved thermally. The formation of dihydrothiepins from thermal rearrangement of 2,3-divinyl

⁶¹ A. Padwa, D. Crumrine, and A. Shubber, J. Am. Chem. Soc., 88, 3064 (1966).

⁶² R. S. Becker, J. Kolc, R. O. Bost, H. Kietrich, P. Petrellis, and G. Griffin, J. Am. Chem. Soc., 90, 3292 (1968).

⁶³ A. M. Trozzolo, W. A. Yager, G. W. Griffin, H. Kristinnsson, and I. Sarkar, J. Am. Chem. Soc., 89, 3357 (1967).

⁶⁴ T. Fujisawa and T. Kobori, J. Chem. Soc., Chem. Comm., 1298 (1972).

⁶⁵ A. G. Anastassiou and B. Y. H. Chao, J. Chem. Soc., Chem. Comm., 277 (1972).

⁶⁶ D. Seyferth, W. Tronich, R. S. Marmor, and W. E. Smith, J. Org. Chem., 37, 1537 (1972).

thiirane⁵¹ and Bergman's *cis*-2,3-diethynyl thiirane isomerization to the thienocyclobutadiene (24) are believed to take place *via* C-C bond cleavage.⁵² Ando⁶⁷ reported that in the reaction of palladium(0) with allene episulfide, a bicyclo thiahexane derivative was isolated and that this compound can be rationalized by a C-C bond breaking in an intermediate step.

1.8.4 POLYMERIZATION

Another common reaction pathway for thiiranes involves polymerization under influence of heat or light. Polymerization reactions of alkene sulfides appear in a review article by Sander.⁴ At room temperature, both the parent molecule and 2-phenyl thiirane polymerize and 2-methyl thiirane polymerizes on exposure to light.⁴ Most thermal and photochemical polymerizations probably proceed by diradical intermediates which may be trapped by various acceptors. In the thermolysis of cyclohexene sulfide, desulfurization occurs with the formation of cyclohexene. Six other products were also observed which may be derived either from the diradical intermediate (homolytic cleavage of C-S bond) or reactions with elemental sulfur.⁶⁸

1.9 NON-THERMAL REACTIONS OF THURANES

1.9.1 ELECTROPHILIC REACTIONS ON SULFUR

Electrophilic reactions involving thiiranes usually yield sulfonium salts or ringopened cations (Scheme 4). Depending on which isomer exists, two products can result. In the open-form, product A would be formed if substituent R can stabilize the cation. If the sulfonium salt predominates then an S_N^2 mechanism predicts product B would be formed due to the nucleophilic attack at the least hindered site. Thiiranes are more reactive than oxiranes due to the lower C-S bond energy and almost all reactions of thiiranes involve ring openings similar to oxiranes.

⁶⁷ N. Choi, Y. Kabe, and W. Ando, Tetrahedron Lett., 32, 4573 (1991).

 ⁶⁸ S. Inoue and S. Oac, Bull. Chem. Soc. Jpn., 48, 1665 (1975). See also a) D. S. Tarbell and D. P. Harnish, Chem. Rev., 18 (1951); b) A. Noshay and C. C. Price, J. Poly. Sci., 54, 533 (1961).

1.9.1.1 PROTONATION AND BEHAVIOUR WITH LEWIS ACIDS

In the presence of acids, thiiranes usually are protonated and polymerization takes place. With the acid-catalyzed addition of nucleophiles, ring opening products are observed and polymerization occurs when another molecule of thiirane acts as the nucleophile. Polymerization is often observed in the presence of Lewis acids whereas thiiranes form complexes with many metals. However, desulfurization is observed with molybdenum,⁶⁹ rhodium,⁷⁰ ruthenium,⁷¹ and osmium⁷² metal complexes. Palladium(0) in the reaction with allene episulfide gave rearrangement products.⁶⁷

1.9.1.2 ALKYL AND ACYL HALIDES

Ring opening products are usually observed in the presence of alkyl or acyl halides. The sulfonium salt is formed in the intermediate but halide attack results in ring opening. Treatment of thiiranes with alkyl chlorides or bromides, gives 2-chloro or 2-bromo ethyl sulfides (Scheme 5). For weak or non-nucleophilic anions, the S-alkyl thiiranium salt can be isolated but they are frequently unstable and result in polymeric materials.

⁶⁹ J. T. Roberts and C. M. Friend, J. Am. Chem. Soc., 109, 7899 (1987).

⁷⁰ S. Calet and H. Alper, *Tetrahedron Lett.*, 27, 3573 (1986).

⁷¹ C. R. Brulet, S. S. Isied, and H. Taube, J. Am. Chem. Soc., 95, 4758 (1973).

⁷² R. D. Adams, G. Chen, S. Sun, and T. A. Wolfe, J. Am. Chem. Soc., 112, 868 (1990).

The S-methyl thiirane salt 26 was isolated when cis-1,2 di-*t*-butyl thiirane (25) is treated with MeOSO₂F at 0°C. S-acetyl derivatives result when thiiranes are reacted with acetyl chloride (Scheme 6).

Scheme 6

1.9.1.3 HALOGENS

In many cases, halogenation reactions of thiiranes give sulfenyl halides or disulfides such as in the case of chlorination of ethylene sulfide (Scheme 7). The iodination reaction gives only disulfide but it can also be used to desulfurize thiiranes. Chlorination reactions carried out in hydroxylic solvents result in sulfonyl chlorides as the sulfenyl chlorides are further oxidized (Scheme 8).

1.9.1.4 SULFUR, NITROGEN, AND PHOSPHORUS CONTAINING REAGENTS

Scheme 9 shows the general behaviour of thiiranes when treated with sulfur monochloride or sulfur dichloride. With sulfur dichloride, a chloro disulfide is obtained

and a chloro trisulfide is obtained with sulfur monochloride. A 2:1 ratio of sulfur halide to thiirane results in tri or tetrasulfides.

The reaction of 2 with *N*-chlorobenzene sulfonylformimidoyl chloride (Scheme 10) from electrophilic attack by nitrogen on the sulfur atom forms thionitrosomethane as evidenced by trapping experiments.⁷³ Desulfurization may also occur by using 2-methyl-3-phenyl oxaziridine.⁷⁴ Some phosphorus compounds are also known to react electrophilically with the thiirane sulfur.⁷⁵

1.9.2 NUCLEOPHILIC ATTACK ON SULFUR

The most widely used nucleophilic reaction of thiiranes is the desulfurization by trivalent phosphorus compounds to give the alkene and phosphine sulfide.

⁷³ M. S. A. Vrijland, Tetrahedron Lett., 837 (1974).

⁷⁴ Y. Hata and M. Watanabe, J. Org. Chem., 45, 1691 (1980).

⁷⁵ R. Appel and V. I Gläsel, Z. Naturforsch., Teil B, 447 (1981).

Triphenylphosphine⁷⁶ is most commonly used although triethylphosphine,⁷⁷ triethyl phosphite,⁷⁸ tributylphosphine,⁷⁹ and tris(alkylamino)phosphines⁸⁰ have been employed. Sulfur⁸¹ and nitrogen⁸² nucleophiles also attack the sulfur atom of thiiranes. Oxygen nucleophiles usually attack at the carbon atom on the ring but it was reported that desulfurization of thiirane (**27**) occurs by nucleophilic attack by the oxygen of the dimethyl sulfoxide solvent (Scheme 11).⁸³ Wittig reagents are also known to desulfurize thiiranes.⁸⁴ Other desulfurization methods have also been reported.⁸⁵

⁷⁶ a) R. E. Davis, J. Org. Chem., 23, 1767 (1958); b) C. E. Diebert, J. Org. Chem., 35, 1501 (1970); c) D. H. R. Barton and B. J. Willis, J. Chem. Soc., Perkin Trans. I, 305 (1972); d) D. H. R. Barton, F. S. Guzicc, Jr., and I. Shahak, J. Chem. Soc., Perkin Trans. I, 1794 (1974); c) B. F. Bonini, G. Maccagnani, G. Mazzanti, and P. Piccinelli, Tetrahedron Lett., 3987 (1979); f) G. Barbaro, A. Battaglia, P. Giorgianni, G. Maccagnani, D. Macciantelli, B. F. Bonini, G. Mazzanti, and P. Zani, J. Chem. Soc., Perkin Trans. I, 381 (1986); g) W. Freund and S. Hünig, *Helv. Chim. Acta.*, 70, 929 (1987).

⁷⁷ C. C. J. Culvenor, W. Davies, and N. S. Heath, J. Chem. Soc., 282 (1949).

⁷⁸ a) N. P. Neureiter and F. G. Bordwell, J. Am. Chem. Soc., 81, 578 (1959); b) R. D. Schuetz and R. L. Jacobs, J. Org. Chem., 26, 3467 (1961); c) A. I. Meyers and M. E. Ford, J. Org. Chem., 41, 1735 (1976); d) R. J. Bushby and M. D. Pollard, J. Chem. Soc., Perkin Trans. I, 2401 (1979); e) J. E. McMurry, G. J. Haley, J. R. Matz, J. C. Clardy, G. Van Duyne, R. Gleiter, W. Schaefer, and D. H. White, J. Am. Chem. Soc., 108, 2932 (1986).

 ⁷⁹ a) D. B. Denney and M. J. Boskin, J. Am. Chem. Soc., 82, 4736 (1960); b) W. Ando, Y. Hanyu,
 Y. Kumamoto, and T. Takata, *Tetrahedron*, 42, 1989 (1986).

a) D. H. R. Barton and B. J. Willis, J. Chem. Soc., Chem. Comm., 1225 (1970); b) A. G.
 Hortmann, A. Bhattacharjya, J. Am. Chem. Soc., 98, 7081 (1976).

⁸¹ A. S. Gybin, W. A. Smit, M. Z. Krimer, N. S. Zefirov, L. A. Novgorodtseva, and N. K. Sadovaya, *Tetrahedron*, 36, 361 (1980).

⁸² J. Bolster and R. M. Kellogg, J. Chem. Soc., Chem. Comm., 630 (1978).

⁸³ Y. Ueno and M. Okawara, Bull. Chem. Soc. Jpn., 45, 1797 (1972).

⁸⁴ K. Okuma, Y. Tachibana, J. Sakata, T. Komiya, I. Kaneko, Y. Komiya, Y. Yamasaki, S. Yamamoto, and H. Ohta, *Bull. Chem. Soc. Jpn.*, **61**, 4323 (1988).

a) J. R. Schauder, J. N. Denis, and A. Krief, Tetrahedron Lett., 24, 1657 (1983); b) I. Zeid, S. Yassin, I. El-Sakka, and A. Abass, Liebigs Ann. Chem., 191 (1984); c) J. Nakayama, S. Takeue, and M. Hoshino, Tetrahedron Lett., 25, 2679 (1984); d) F. Capozzi, G. Capozzi, and S. Menichetti, Tetrahedron Lett., 29, 4177 (1988).

1.9.3 NUCLEOPHILIC ATTACK ON CARBON

A variety of nucleophiles attack the carbon atom of thiiranes to give ring opened products (Scheme 4 and 12). The reactivity is higher than in the analogous reaction with oxiranes; hence, thiiranes tend to polymerize more readily than oxiranes. Many different products are obtained from the generated thiolate anion. With oxygen nucleophiles such as hydroxide and alkoxide/aryloxide ions, the mercaptan derivative is usually obtained although polymerization occasionally occurs. Under these conditions, a thiolate anion is formed which is much more reactive than the oxygen anion.⁸⁶ In many of these cases, there is no preference for attack at either carbon. The polymeric materials obtained from these reactions have been used as light and water resistant agents.⁸⁷

Scheme 12

Nitrogen nucleophiles also react to give 2-mercaptoethyl amine derivatives. The general feature in reactions of thiiranes with amines is that the attack usually occurs regioselectively at the least hindered position. The thiirane ring is opened easier than the corresponding oxirane ring.⁸⁸ Primary and secondary amines react readily whereas

⁸⁶ T. V. Vergizova, A. A. Rodin, and K. A. V'yunov, *Zh. Org. Khim.*, 22, 1396 (1986) and references therein.

⁸⁷ G. Champetier and F. Lucas, Compt. Rend., 252, 2782 (1961).

a) H. Kakiuchi, T. lijima, and H. Horie, *Tetrahedron*, 35, 303 (1979); b) A. Champseix, J.
 Chanet, A. Étienne, A. Le Berre, J. C. Masson, C. Napierla, and R. Vessière, *Bull. Soc. Chim.* Fr., 463 (1985); c) R. Luhowy and F. Meneghini, J. Org. Chem., 38, 2405 (1973).

weakly basic and hindered amines are less reactive and require harsher conditions. Polymeric products result when tertiary amines or amide ions are used. The optimal conditions to effect the reaction would be to use polar media with weakly basic amines. This would accelerate nucleophilic opening of the thiirane ring. Unreactive thiiranes can also be made to react with highly basic amines under similar conditions.

Sulfur nucleophiles are more reactive towards thiiranes than oxygen or nitrogen nucleophiles and attack on the least substituted carbon is commonly observed. The thiolate anion reacts rapidly with many functional groups which, in most cases, lead to polymeric products. However, with effective acceptors of thiolates, which inhibit further polymerization, monomeric products can be obtained. Thiols cleave the C-S bond giving 2-alkylethane thiols as well as oligomerization products.

Halogen nucleophiles are also known to react with thiiranes leading to ring opened products. They react preferentially on the most substituted carbon but attacks on the less substituted carbon have also been reported.⁸⁹

Carbanions attack at the least hindered carbon atom of the thiirane.⁹⁰ These anions include Grignard⁹¹ and alkyllithium⁹² reagents and metal complexes,⁹³ all which lead to ring-cleaved products. In some cases, desulfurization occurs with the formation of the olefin and metal thiolate.^{76c,88b,94}

Although the most common reaction of phosphorus compounds with thiiranes is the elimination of sulfur, there have been some reports where phosphorus compounds react on one of the carbon atoms leading to monomeric and polymeric products.⁹⁵

a) G. K. Helmkamp and D. J. Pettitt, J. Org. Chem., 27, 2942 (1962); b) P. Raynolds, S.
 Zonnebelt, S. Bakker, and R. M. Kellogg, J. Am. Chem. Soc., 96, 3146 (1974); c) Y. Taguchi and Y. Suhara, Chem. Abs., 94, 174260 (1981).

a) C.O. Guss and D. L. Chamberlain, Jr., J. Am. Chem. Soc., 74, 1342 (1952); b) Y. Taguchi and Y. Suhara, Bull. Chem. Soc. Jpn., 59, 2321 (1986).

a) D. C. Dittmer, J. E. McCaskie, J. E. Babiarz, and M. V. Ruggeri, J. Org. Chem., 42, 1910 (1977); b) P. K. Claus, W. Rieder, and F. W. Vierhappe, Monatsh. Chem., 109, 609 (1978).

 ⁹² a) F. Lautenschlaeger and H. Schnecko, J. Poly. Sci. A1, 8, 2579 (1970); b) P. Ongona, B. Mauze, and L. Miginiac, Synthesis, 1069 (1985).

a) L. A. Korotneva, G. P. Belonovskaya, and B. A. Dolgoplosk, *Dokl. Acad. Nauk. SSSR*, 207(4), 899 (1972); b) B. M. Trost and S. D. Ziman, *J. Org. Chem.*, 38, 932 (1973); c) A. Mordini, M. Taddei, and G. Seconi, *Gazz. Chim. Ital.*, 116, 239 (1986).

 ⁹⁴ a) F. G. Bordwell, H. M. Andersen, and B. M. Pitt, J. Am. Chem. Soc., 76, 1082 (1954); b) R. H. Schlessinger, G. S. Ponticello, and A. G. Schultz, *Tetrahedron Lett.*, 3963 (1968); c) B. M. Trost and S. Ziman, J. Chem. Soc., Chem. Comm., 181 (1969); d) B. Rajanikanth and B. Ravindranath, Ind. J. Chem., 23B, 879 (1984).

 ⁹⁵ a) B. E. Jennings, British Patent 1077958, *Chem. Abs.*, 67, 82542y (1967); b) A. Nicco and B. Boucheron, German Patent 1814640, *Chem. Abs.*, 71, 81929a (1969).

1.10 PLAN OF STUDY

Our main objective is to unequivocally determine a mechanism for the thermallyinduced sulfur extrusion of thiiranes. As our model, we have chosen to carefully reexamine the kinetics of 2,2 dichloro-3-[9-fluorenyl] episulfide (**28**) (*cf.* Section 2.1) for several reasons. First, the synthesis of this compound is fairly straightforward and is well-documented in the literature. Second, this particular thiirane can be stored in the refrigerator for several months without noticeable decomposition. Although it is known that thiiranes containing aromatic and electron withdrawing substituents are usually unstable, the stability of this thiirane is ideal as it allows study on its thermal decomposition under suitable conditions. Finally, a detailed kinetic study would allow clarification of the conclusions made by Lutz and Biellman⁵⁴ and to provide strong evidence regarding the nature of the desulfurization. It should then be possible to establish a possible general rate law that governs the mechanism of the thermal decomposition of thiiranes.

Another goal of this project is to examine the effect of solvent on the decomposition of 28. The effect of solvents should distinguish whether the extrusion of sulfur proceeds *via* an ionic or radical mechanism. A possible correlation between rate and a solvent polarity scale could then be made.

We felt it appropriate to synthesize novel derivatives of 28. This would allow a good test of our mechanistic hypothesis. By studying the structural differences of these derivatives, we can rationalize the reactivity of these compounds. Some general conclusions regarding the mode of decomposition could thus be made.

The possibility of generating singlet diatomic sulfur in thiiranes will also be examined. This would not only provide insight into the overall mechanism of sulfur extrusion from these thiiranes but could also serve as another method to deliver ${}^{1}S_{2}$ from a relatively stable and readily available precursor. Other feasible methods of producing ${}^{1}S_{2}$ will also be investigated.

CHAPTER 2

KINETICS OF THE DECOMPOSITION OF 2,2-DICHLORO-3-[9-FLUORENYL] EPISULFIDE

2,1 INTRODUCTION

Detailed kinetic studies on the decomposition of thiiranes have rarely been reported in the literature. In many of these reactions, elemental sulfur is lost but no detailed mention of the mechanism involved in the extrusion is reported. There appear to be three examples in the literature that have dealt with kinetic studies in the thermal decomposition of thiiranes.

Bergman's⁵² work suggests that thermal sulfur extrusion from 1,2 diethynyl thiirane (12b) occurs in a bimolecular fashion at high concentrations of thiirane. As the concentration of thiirane decreases during the reaction, the bimolecular step changes to a unimolecular process. A simple cheletropic extrusion of a sulfur atom was ruled out as a likely pathway; the authors concluded that the reaction involves a more complicated mechanism.

Lutz and Biellmann⁵⁴ studied the thermally induced extrusion reaction of 2,2 dichloro-3-[9-fluorenyl] episulfide (28) in decalin at 100° C querying whether the loss of sulfur was a unimolecular process (Scheme 13). They concluded that the decomposition of 28 is not a first order reaction. Clean kinetic behaviour was not observed from their results and it was suggested that sulfur loss is not a cheletropic extrusion of a sulfur atom but that a more complex process was involved. It was proposed that an "unknown species" acquires a sulfur atom which reacts further with another molecule of thiirane.

Finally, the mechanism of extrusion of a related molecule, an allene episulfide, was examined by Ando and coworkers.⁵³ The thermally catalyzed desulfurization of 30 in *o*-dichlorobenzene at 150° C led the authors to postulate a thioxyallyl radical intermediate. The observed rate acceleration in diglyme was rationalized by the dipole moment of the C-S bond biradical intermediate with a small contribution of zwitterionic structure. A similar kinetic study was undertaken by the same authors on 31 but only 2,4 dimethyl-3-mercaptopenta-1,3 diene (32) was obtained *via* an intramolecular 1,4 hydrogen shift and no allene was recovered.⁹⁶

2.2 RATE LAW IN THE DECOMPOSITION OF 28

According to Scheme 13, the rate of this reaction equals the rate of decrease in the concentration of episulfide or the rate of increase in the concentration of olefin with time. Thus :

$$kate = -\frac{\partial [E]}{\partial t} = \frac{\partial [O]}{\partial t} \qquad \text{Eq. (1)} \qquad [E] = \text{concentration of episulfide}$$
$$[O] = \text{concentration of olefin}$$

The rate of decomposition of 28 can be conveniently obtained by measuring the increase in absorbance with time of the olefin product 29 at $\lambda = 325$ nm. $\lambda_{ma\lambda}$ (320 nm) was not used because absorbance values were too high at higher concentration of episulfide. Using the initial rate method, the initial slopes (abs./time) were calculated.

T. Furuhata and W. Ando, Tetrahedron, 42, 5301 (1986).

96

Following the Beer-Lambert Law,

$$A = \varepsilon bc$$
 Eq. (2) $A = absorbance$
 $\varepsilon = molar extinction coefficient$
 $b = cell path length (cm)$
 $c = concentration (M)$

The concentration/time rates can then be calculated by dividing the calculated slopes by the molar extinction coefficient, ε , a value which is characteristic of the olefin in the medium in which the reaction was conducted. Extinction coefficients were determined by taking 'he slopes of the plots of absorbance versus concentration of olefin. A typical plot is shown in Figure 1 where the extinction coefficient in decalin was determined. Excellent linear relationships were obtained in all solvents (r > 0.99). Errors were obtained by estimating the uncertainty in the absorbances (10%) and using similar equations derived in section 2.4 (*vide infra*). Table 2 shows the experimentally obtained extinction coefficients in the various solvents used in this study.

Figure 1. Plot of Absorbance vs. Concentration of olefin 29 in the determination of extinction coefficient. Absorbances were measured at $\lambda = 325$ nm.

Solvent	ε	Solvent	ε
Decalin	3720 ± 381	1:1 Decalin/Toluene	6940 ± 816
DMF	7233 ± 863	Decane	2290 ± 284
DMSO	9368 ± 1084	1,1,2,2-Tetrachloroethane	8476 ± 1087
Isobutanol	2820 ± 342	1,2,4-Trimethylbenzene	8109 ± 1092
2-Chloroethanol	4827 ± 862	o-Xylene	13077 ± 1312
Chlorobenzene	7915 ± 989	<i>m</i> -Xylene	7743 ± 938
o-Dichlorobenzene	11511 ± 1220	<i>p</i> -Xylene	7402 ± 901
Bromobenzene	11121 ± 1301	Ethanol	2894 ± 427
Toluene	6315 ± 770	Ethanol-d	<u>3493 ± 768</u>

Table 2. Extinction coefficients for 29 in various solvents measured at $\lambda = 325$ nm.

The thermal decomposition reaction was conducted in 16 different solvents (Table 2) all involving runs at 80°C. Table 3 shows calculated rates at various concentrations. A typical rate profile in toluene is shown in Figure 2.

Figure 2. Rate behaviour in the decomposition of 28 in toluene at 80°C.

Decalin		DMF		DMSO	
[episulfide]	[]/time ^a	[episulfide]	[] / time	[episulfide]	[]/time
0.10	0.13	0.001	0.28	0.048	3.4
0.20	0.42	0.005	0.82	0.097	6.4
0.50	1.0	0.01	0.86	0.19	12
1.0	2.9	0.03	3.0	0.48	35
1.2	4.2	0.05	6.1	0.97	113
1.5	5.2	0.08	7.3	-	
1.8	6.9	0.10	11		
2.0	10	0.15	23		
		0.20	32		
		0.25	34		
		0.30	49		

Table 3. Calculated rates of reaction at various concentrations at 80°C.

Isobutanol		2-Chloroethanol		Chlorobenzene	
[episulfide]	[] / time	[episulfide]	[] / time	[episulfide]	[] / time
0.011	0.065	0.031	0.27	0.10	0.023
0.033	0.053	0.083	0.64	0.15	0.040
0.055	0.67	0.31	1.8	0.20	0.084
0.088	0.88	0.52	9.8	0.25	0.11
0.33	1.5	0.83	16	0.32	0.23
0.55	2.9	1.0	20	0.51	0.48
0.88	5.3	1.6	43	0.82	2.0
1.1	6.8			1.1	2.5
1.3	7.4			1.3	3.0
1.7	9.8	1		1.8	5.8

Table 3. continued

o-Dichlorobenzene		Bromobenzene		Toluene	
[episulfide]	[] / time	[episulfide]	[] / time	[episulfide]	[] / time
0.10	0.043	0.033	0.020	0.052	0.0098
0.15	0.060	0.087	0.072	0.083	0.019
0.20	0.097	0.10	0.037	0.10	0.050
0.25	0.15	0.15	0.072	0.15	0.096
0.33	0.38	0.21	0.099	0.20	0.10
0.54	0.90	0.26	0.15	0.25	0.12
0.87	1.5	0.33	0.31	0.31	0.29
1.1	2.3	0.54	0.87	0.52	0.47
1.4	3.0	0.87	1.3	0.83	0.90
1.9	4.2	1.1	2.4	1.0	1.5
		1.4	3.2	1.4	2.3
		1.8	6.3	2.0	4.4

1:1 Decalin/Toluene		Decane		1,1,2,2 Tetrachloroethane	
[episulfide]	[] / time	[episulfide]	[] / time	[episulfide]	[] / time
0.053	0.041	0.010	0.020	0.11	0.064
0.084	0.043	0.051	0.045	0.23	0.24
0.11	0.081	0.10	0.076	0.57	0.66
0.16	0.12	0.31	0.54	1.2	2.2
0.21	0.21	0.51	0.73	1.4	3.1
0.26	0.31	0.82	0.93	1.7	4.7
0.53	0.32	1.0	1.9		
0.84	0.82	1.6	3.0		
1.1	1.1	2.1	4.4		
1.4	1.9				
1.9	3.3				

Table 3. continued

1,2,4 Trimethylbenzene		<i>o</i> -Xy	lene
[episulfide]	[]/time	[episulfide]	[] / time
0.30	0.026	0.05	0.019
0.50	0.11	0.11	0.071
1.0	0.39	0.22	0.15
1.5	0.63	0.55	0.41
2.0	1.1	1.1	1.3
3.0	2.2	2.2	3.4
		2.7	5.4
		3.3	6.5

m-Xylene		p-Xy	lene
[episulfide]	[] / time	[episulfide]	[] / time
0.10	0.013	0.10	0.036
0.50	0.081	0.21	0.070
1.0	0.30	0.52	0.31
1.5	0.46	1.0	0.76
2.0	0.97	1.6	2.5
2.5	1.5	1.6	1.8
3.0	2.3	1.8	2.2
		2.1	3.6
		2.2	3.8
		2.4	4.2
		2.6	4.6
		3.1	5.8

^a All rates are in mM s⁻¹ x 10^5

By inspection, the decomposition of 28 is not a first order reaction (in agreement with that observed by Lutz and Biellmann⁵⁴) and thus is not a simple unimolecular decomposition. From this detailed kinetic study, four possible rate laws were examined to fit the data :

Rate = $k_1[E] + k_2[E]^2$	Eq. (3)	
	-	[E] = concentration episulfide (mM)
Rate = $k_1[E] + k_3[E]^3$	Eq. (4)	$k_1 = s^{-1}$
		$k_2 = mM^{-1} s^{-1}$
Rate = $k_2[E]^2 + k_3[E]^3$	Eq. (5)	$k_3 = mM^{-2} s^{-1}$
$Rate = k_3[E]^3$	Eq. (6)	

Values of the rate constants, k₁, k₂ and k₃, were obtained by curve-fitting the data using the Marquardt-Lerenberg interactive algorithm⁹⁷ and are listed in Tables 4a and 4b. The accuracy of the rate equations were judged by calculated correlation coefficients. These coefficients are shown in Table 5. The best overall correlation value corresponded to Eq. (3). This enables us to conclude that the mechanism of sulfur loss is consistent with the two-term rate expression consisting of the first and second order terms, Eq. (3).98

⁹⁷ SigmaPlot Scientific Graphing System Version 4.1, Jandel Scientific Corporation. 98

W. Chew and D. N. Harpp, Tetrahedron Lett., 33, 45 (1992).

	Rate = k_1 [I	$E] + k_2 [E]^2$	Rate = k_1 [E] + k ₃ [E] ³
Solvent	kı ^a	k2 ^b	k _l a	k3 ^c
Decalin	0.72 ± 0.51	2.0 ± 1.0	2.1	0.69
DMF	109 ± 32	173 ± 116	133	330
DMSO	36 ± 21	82 ± 29	57	14
Isobutano)	5.6 ± 1.2	0.14 ± 0.82	5.6	0.07
2-Chloroethanol	8.3 ± 5.0	12 ± 4	16	5.0
Chlorobenzene	0.78 ± 0.27	1.3 ± 0.3	2.1	0.35
o-Dichlorobenzene	0.52 ± 0.20	0.99 ± 0.33	2.1	0.08
Bromobenzene	0.50 ± 0.27	2.5 ± 1.0	1.24	0.63
Toluene	0.45 ± 0.17	0.90 ± 0.43	1.2	0.28
1:1 Decalin/Toluene	0.83 ± 0.17	0.61 ± 0.84	1.3	0.20
Decane	1.2 ± 0.4	0.49 ± 0.24	1.5	0.16
1,1,2,2 Tetrachloroethane	1.9 ± 0.3	2.2 ± 0.5	1.2	0.53
1,2,4 Trimethylbenzene	0.11 ± 0.07	0.21 ± 0.05	0.40	0.04
o-Xylene	0.71 ± 0.20	0.41 ± 0.54	1.3	0.07
<i>m</i> -Xylene	0.09 ± 0.08	0.22 ± 0.09	0.22	0.06
<i>p</i> -Xylene	0.63 ± 0.21	0.42 ± 0.20	1.4	0.07

Table 4a.	k_1/k_2 and k_1/k_3	rate constants derived from Eq.	(3) and (4) respectively.

^a in s⁻¹ x 10⁵; ^b in mM⁻¹ s⁻¹ x 10⁵; ^c in mM⁻² s⁻¹ x 10⁵

	Rate = $k_2[E]^2 + k_3[E]^3$		$Rate = k_3 E ^3$
Solvent	k2 ^a	k3 ^b	k3 ^b
Decalin	2.2	0.072	1.2
DMF	536	2.0x10 ⁻⁵	1775
DMSO	60	2.9x10 ⁻⁷	46
Isobutanol	3.6	3.0x10 ⁻⁸	2.1
2-Chloroethanol	17	4.6x10 ⁻⁸	11
Chlorobenzene	1.7	4.8x10 ⁻⁹	0.94
o-Dichlorobenzene	1.2	7.4x10 ⁻⁹	0.66
Bromobenzene	1.6	0.11	0.98
Toluene	1.1	2.0x10 ⁻⁹	0.57
1:1 Decalin/Toluene	1.1	4.3x10 ⁻⁹	0.60
Decane	1.0	4.4x10 ⁻⁹	0.49
1,1,2,2 Tetrachloroethane	1.4	0.046	0.89
1,2,4 Trimethylbenzene	0.24	1.5x10 ⁻¹⁰	0.08
o-Xylene	0.63	1.2x10 ⁻⁹	0.19
<i>m</i> -Xylene	0.17	0.025	0.08
<i>p</i> -Xylene	0.63	1.4x10 ⁻⁹	0.20

Table 4b. k_2/k_3 and k_3 rate constants derived from Eq. (5) and (6) respectively.

^a in mM⁻¹ s⁻¹ x 10⁵; ^b in mM⁻² s⁻¹ x 10⁵

•

	Correlation coefficients			
Solvent	Eq. (3)	Eq. (4)	Eq. (5)	Eq. (6)
Decalin	0.993	0.994	0.989	0.953
DMF	0.993	0.992	0.990	0.928
DMSO	0.997	0.997	0.992	0.960
Isobutanol	0.996	0.996	0.993	0.902
2-Chloroethanol	0.991	0.991	0.989	0.902
Chlorobenzene	0.993	0.993	0.991	0.954
o-Dichlorobenzene	0.998	0.998	0.997	0.928
Bromobenzene	0.996	0.997	0.995	0.983
Toluene	0.999	0.998	0.999	0.968
1:1 Decalin/Toluene	0.998	0.998	0.997	0.947
Decane	0.995	0.994	0.993	0.943
1,1,2,2-Tetrachloroethane	0.998	0.998	0.984	0.942
1,2,4-Trimethylbenzene	0.999	0.999	0.999	0.980
o-Xylene	0.996	0.996	0.992	0.937
<i>m</i> -Xylene	0.998	0.998	0.998	0.992
p-Xylene	0.999	0.997	0.999	0.972

Table 5. Correlation coefficients obtained in the determination of rate constants for several different rate laws.

Table 6 shows the relative values of the data obtained from Eq. (3) (Table 4a). In general, the unimolecular rate constants in the solvents do show the expected trends with respect to their polarities (*cf.* Section 2.8.3). DMF and DMSO which are the most polar have higher rates and the alcohols, isobutanol and 2-chloroethanol, which are moderately polar have slightly lower rates. The non-polar aromatic solvents all show similar slow rates with the exception of 1,2,4-trimethylbenzene and *m*-xylene which are even lower contrary to expectation. No explanation can be given to account for these observed rates. However, it has been reported recently that the 9-fluorenyl cation can undergo electrophilic aromatic substitution reactions with benzene, toluene, and mesitylene.⁹⁹

99

a) R. A. McClelland, N. Mathivanan, and S. Steenken, J. Am. Chem. Soc., 112, 4857 (1990); b) R. A. McClelland, J. Li, and F. Cozens, 3rd European Symposium on Organic Reactivity,

Strong evidence was provided for capture of the fluorenvl cation with these solvents. Our observation of the slower rates in the methylbenzenes (Table 6) could possibly be linked to the trapping of the fluorenyl cation by these solvents since our proposed intermediate involves a fluorenyl cation (cf. Section 2.6). Electrophilic substitution would inhibit formation of olefin 29 and thus the rate of reaction would diminish. We explored this possibility further by conducting product studies on the desulfurization of thiirane 28 in toluene, 1,2,4-trimethylbenzene and the xylenes. Unfortunately, no indication of trapping of the fluorenyl cation with these solvents was observed and only the olefin **29** plus elemental sulfur was obtained. The failure to detect any other products does not discount the proposed dipolar mechanism but perhaps it is likely that the linking of sulfur atoms and subsequent extrusion of elemental sulfur is much faster than electrophilic reaction with the solvent molecules. The relative rates in the bimolecular term also show the expected trends with the exception of decalin and decane, both nonpolar solvents, and bromobenzene. All show somewhat higher rates than either 1,2,4trimethylbenzene and *m*-xylene. The rationale for these higher rates in these solvents is not clear. It will be shown later that the rate is slowest in isobutanol perhaps due to the near exclusive unimolecular pathway observed.

Solvent	k _{rel} (k ₁)	k _{rel} (k ₂)
DMF	1211	1236
DMSO	400	586
2-Chloroethanol	92	86
Isobutanol	62	1
1,1,2,2-Tetrachloroethane	21	16
Decane	13	4
1:1 Decalin/Toluene	9	4
Chlorobenzene	9	9
o-Xylene	8	3
Decalin	8	14
<i>p</i> -Xylene	7	3
o-Dichlorobenzene	6	7
Bromobenzene	6	18
Toluene	5	6
1,2,4-Trimethylbenzene	1	2
<i>m</i> -Xylene	11	2

 Table 6. Relative rates calculated from rate constants using Eq. (3).

In each solvent at low concentration of episulfide, the reaction follows a unimolecular, first order process, but at higher concentrations a bimolecular pathway becomes more important. The unimolecular term in Eq. (3) predominates at low concentration levels and as the concentration increases the second order or bimolecular term becomes more important. Table 7 shows the percentage of the unimolecular pathway calculated from Eq. (3) and rate data in Table 3 showing the importance of the unimolecular term at low concentrations and the significance of the bimolecular term at high concentrations. Thus in toluene, over a 400-fold increase (cf. Table 3) in the rate of desulfurization is observed when the concentration is increased 38-fold, thus reflecting the contribution of the bimolecular term. At low concentration levels (ca. 0.10-0.15 mM) the nearly exclusive pathway is a unimolecular decomposition while at higher concentrations (ca. 2.0 mM), the bimolecular path is actually followed by ca. 4:1. The bimolecular term predominates at higher concentrations in the majority of the solvents. In the case of DMF, at low concentrations, the exclusive pathway is unimolecular and at higher concentrations the unimolecular pathway is favored by ca. 2:1. In decane, the

unimolecular and bimolecular pathways become competitive at higher concentrations (ca, 1:1). One interesting feature is observed in the behaviour of isobutanol. In the entire concentration range studied, experimental results indicate that the decomposition is exclusively unimolecular. While we expect isobutanol and 2-chloroethanol to behave in a similar fashion since they are both alcohols, our results indicate otherwise. A typical plot of the ratio of the relative contribution of each term in Eq. (3) vs. concentration is shown in Figure 3 (toluene solvent). It clearly shows the decrease in the unimolecular contribution as the concentration of episulfide increases.

Decalin		DN	1F	DMSO		
[episulfide]	uni/bimol	[episulfide]	uni/bimol	[episulfide]	uni/bimol	
0.10	78	0.001	100	0.048	90	
0.20	64	0.005	99	0.097	82	
0.50	48	0.01	98	0.19	69	
1.0	26	0.03	95	0.48	48	
1.2	22	0.05	93	0.97	31	
1.5	19	0.08	89	[
1.8	17	0.10	86]		
2.0	15	0.15	81			
		0.20	76	ļ		
		0.25	72	1		
<u></u>		0.30	68]		

Table 7. Ratio of unimolecular to bimolecular terms in rate equation (3) shown aspercentages. Calculated from rate data in Table 3.

Isobu	Isobutanol		ethanol	Chlorobenzene	
[episulfide]	uni/bimol	[episulfide]	uni/bimol	[episulfide]	uni/bimol
0.011	100	0.031	96	0.10	86
0.033	100	0.083	89	0.15	80
0.055	100	0.31	68	0.20	75
0.089	100	0.52	56	0.25	70
0.33	99	0.83	45	0.32	65
0.55	99	1.0	39	0.51	54
0.88	98	1.6	30	0.82	42
1.1	97	ł		1.1	36
1.3	97			1.3	31
1.7	96	ł		1.8	24

Table 7. continued

o-Dichlorobenzene		Bromobenzene		Toluene	
[episulfide]	uni/bimol	[episulfide]	uni/bimol	[episulfide]	uni/bimol
0.10	84	0.033	86	0.052	91
0.15	78	0.087	70	0.083	86
0.20	72	0.10	66	0.10	83
0.25	68	0.15	57	0.15	77
0.33	62	0.21	50	0.20	71
0.54	49	0.26	44	0.25	67
0.87	38	0.33	38	0.31	62
1.1	32	0.54	27	0.52	49
1.4	27	0.87	19	0.83	38
1.9	22	1.1	16	1.0	32
		1.4	13	1.4	27
		1.9	10	2.0	20

1:1 Decalin/Toluene		Decane		1,1,2,2 Tetrachloroethane	
[episulfide]	uni/bimol	[episulfide]	uni/bimol	[episulfide]	uni/bimol
0.053	96	0.010	99	0.11	88
0.084	94	0.051	98	0.23	79
0.11	93	0.10	96	0.57	60
0.16	90	0.31	88	1.2	43
0.21	86	0.51	· 82	1.4	37
0.26	84	0.82	74	1.7	33
0.53	72	1.0	70		
0.84	62	1.6	60		
1.1	56	2.1	53	1	
1.4	50	1			
1.9	42				

Table 7. continued

1,2,4 Trimet	hylbenzene	o-Xylene		
[episulfide]	uni/bimol	[episulfide]	uni/bimol	
0.30	64	0.05	97	
0.50	51	0.11	94	
1.0	34	0.22	89	
1.5	26	0.55	76	
2.0	21	1.1	61	
3.0	15	2.2	44	
		2.7	39	
		3.3	34	

m-Xy	lene	p-Xylene		
[episulfide]	uni/bimol	[epistatide]	uni/bimol	
0.10	79	0.10	94	
0.50	44	0.21	88	
1.0	28	0.52	74	
1.5	20	1.0	59	
2.0	16	1.6	49	
2.5	13	1.6	18	
3.0	11	1.8	45	
		2.1	42	
		2.2	40	
		2.4	38	
		2.6	37	
		3.1	32	

37

Figure 3. Plot of the ratio of the unimolecular to the bimolecular term of Eq. (3) vs. episulfide concentration in toluene solvent.

2.3 ARRHENIUS PARAMETERS

It is well-known that the rates of almost all chemical reactions increase with increasing temperature. The rate can commonly increase a factor of 2 to 4 for every 10 K rise in temperature. The activation energy or the minimum energy required for a reaction to occur is much higher than the average energy of the colliding molecules and only a small fraction of collisions lead to reaction. If the activation energy is low then the reaction becomes faster. Therefore, the rate constant depends on the activation energy of the reaction. Increasing the temperature increases the number of collisions and for most reactions the rate generally increases. The Arrhenius equation, Eq. (7), shows how the rate constant of a reaction depends on the temperature.

$$k = Ae^{-\frac{E_{acl}}{RT}}$$
 Eq. (7) k = rate constant
A = Arrhenius constant
E_{act} = activation energy
R = gas constant
T = temperature (K)

The Arrhenius parameter, A, is the total number of collisions per second that have the correct orientation. Taking natural logarithms of both sides gives :

$$\ln k = \ln A - \frac{E_{act}}{RT} \qquad \text{Eq. (8)}$$

A plot of ln k vs. 1/T should give a straight line with a slope equal to $-E_{act}/R$. Such a plot gives a method for determining the activation energy of a reaction from values of the rate constants at different temperatures.

The thermal decomposition of episulfide **28** was conducted at four temperatures for 15 solvents used in the study. The rates at various concentrations in different solvents are shown in Table 8. Using our proposed rate law, Eq. (3), rates were curve fitted⁹⁷ to obtain the first and second order rate constants, k_1 and k_2 , and these are shown in Table 9. From these rate constants in Table 9, the activation energies, E_{act} , for the unimolecular and bimolecular terms in Eq. (3) can be calculated independently for each solvent using Eq. (8). Good linear correlation was found in most of the Arrhenius plots.

	Decalin									
[E]	70°C	[E]	80°C	[E]	90°C	(E)	100°C			
0.10ª	0.11 ^b	0.10	0.13	0.15	0.32	0.10	0.42			
0.20	0.12	0.20	0.42	0.23	0.60	0.14	0.56			
0.51	0.39	0.50	1.0	0.30	0.87	0.19	0.69			
0.73	0.69	1.0	2.9	0.38	1.3	0.24	1.1			
0.85	1.1	1.2	4.2	1.0	5.7	1.0	11			
0.97	1.6	1.5	5.2	1.5	10	1.5	19			
1.3	2.0	1.8	6.9	1.8) 14	1.8	24			
1.3	2.4	2.0	10	2.0	19	2.0	28			
1.5	2.6	Į								
1.8	3.8									

Table 8. continued

DMF								
(E)	37.5°C	50°C	65°C	[E]	80°C			
0.0011 0.0054 0.010 0.050 0.10 0.16 0.25 0.32	- 0.13 0.35 0.41 0.58 0.78 1.3	0.092 0.14 0.62 0.84 2.0 3.9 5.3 5.7	0.23 0.87 1.7 5.1 7.4 28 29 32	0.001 0.005 0.01 0.03 0.05 0.08 0.10 0.15 0.20 0.25	0.28 0.82 0.86 3.0 6.1 7.3 11 23 32 35			
0.0011 0.0054 0.010 0.050 0.10 0.16 0.25 0.32	0.13 0.35 0.41 0.58 0.78 1.3	0.092 0.14 0.62 0.84 2.0 3.9 5.3 5.7	0.23 0.87 1.7 5.1 7.4 28 29 32	0.001 0.005 0.01 0.03 0.05 0.08 0.10 0.15 0.20 0.25 0.30	0.28 0.82 0.86 3.0 6.1 7.3 11 23 32 35 49			

	DMSO								
(E)	40°C	[E]	75℃	[E]	80°C	[E]	100°C		
0.050	0.22	0.034	2.1	0.048	3.4	0.034	6.8		
0.10	0.68	0.057	2.5	0.097	6.4	0.057	8.5		
0.18	1.2	0.092	4.4	0.19	12	0.10	10		
0.25	1.6	0.18	5.9	0.48	35	0.18	17		
0.34	1.8	0.25	6.8	0.97	113	0.25	23		
0.57	3.6	0.34	26			0.34	89		
0.92	6.0	0.57	41			1.2	275		
1.2	12	0.92	90						
1.5	17	1.2	134				<u> </u>		

	2-Chloroethanol								
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C		
0.031	0.10	0.031	0.27	0.030	0.50	0.030	8.1		
0.082	0.21	0.083	0.64	0.050	1.1	0.050	13		
0.31	0.66	0.31	1.8	0.080	1.5	0.080	19		
0.51	2.1	0.52	9.8	0.10	1.9	0.30	53		
0.82	3.0	0.83	16	0.15	2.8	0.50	55		
1.0	3.8	1.0	20	0.25	5.0	0.80	69		
1.5	6.2	1.6	43	0.30	6.6	1.2	131		
2.0	11			0.50	17	1.8	202		
{				1.2	55				
				1.8	99	·			

Table 8. continued

Chlorobenzene									
{E}	70°C	[E]	80°C	[E]	90°C	[E]	100°C		
0.30	0.15	0.10	0.023	0.10	0.068	0.10	0.13		
0.51	0.32	0.15	0.040	0.15	0.088	0.15	0.25		
0.79	0.63	0.20	0.084	0.20	0.13	0.20	0.39		
1.0	1.1	0.25	0.11	0.25	0.22	0.25	0.47		
1.3	1.6	0.32	0.23	0.51	1.1	0.51	2.1		
1.8	2.7	0.51	0.48	1.0	3.5	1.0	6.7		
ſ		0.82	2.0	1.3	5.9	1.3	9.7		
		1.1	2.5	1.8	8.2	1.8	14		
}	J	1.3	3.0						
		1.8	5.8	[<u> </u>		

	o-Dichlorobenzene										
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C				
$\begin{array}{c} 0.10\\ 0.15\\ 0.32\\ 0.50\\ 0.60\\ 0.70\\ 0.80\\ 1.0\\ 1.5\\ 2.0\\ \end{array}$	0.011 0.020 0.043 0.13 0.27 0.38 0.46 0.77 1.6 2.9	0.10 0.15 0.20 0.25 0.33 0.54 0.87 1.1 1.4 1.9	0.043 0.060 0.097 0.15 0.38 0.90 1.5 2.3 3.0 4.2	0.10 0.15 0.20 0.32 0.53 0.85 1.1 1.4 1.8	0.080 0.15 0.16 0.34 0.55 1.1 2.3 2.9 4.2	0.10 0.20 0.30 0.50 0.64 0.75 0.80 0.86 1.0 1.2 1.5	0.24 0.64 0.93 1.7 2.8 3.3 4.0 4.9 5.0 8.6 6.8				
				t		2.0	16				

41

Table 8. continued

Bromobenzene											
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C				
0.11 0.17 0.22 0.28 0.33 0.56 0.89 1.1 1.4	0.021 0.035 0.086 0.12 0.36 0.48 1.4 2.6 3.8 5 0	0.033 0.087 0.10 0.15 0.21 0.26 0.33 0.54 0.87	0.020 0.072 0.037 0.072 0.099 0.15 0.31 0.87 1.3	0.033 0.089 0.10 0.15 0.20 0.25 0.33 0.56 0.90	0.094 0.11 0.12 0.20 0.31 0.39 1.1 1.8 3.2	0.10 0.16 0.21 0.26 0.34 0.56 0.90 1.1 1.9	0.24 0.41 0.62 0.77 1.6 3.2 4.7 6.9 18				
1.9	5.9	1.1 1.4 1.8	2.4 3.2 6.3	1.1 1.5 1.9	4.1 5.7 8.3						

	Toluene										
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C				
0.10 0.15 0.20 0.25 0.30 0.81 1.3 2.0	0.026 0.054 0.072 0.093 0.16 0.43 0.99 1.6	0.052 0.083 0.10 0.15 0.20 0.25 0.31 0.52 0.83 1.0 1.4	0.0098 0.019 0.050 0.096 0.10 0.12 0.29 0.47 0.90 1.5 2.3	0.10 0.15 0.20 0.25 0.30 0.81 1.3 2.9	0.062 0.096 0.17 0.18 0.47 1.6 2.8 5.3	0.10 0.15 0.20 0.25 0.30 0.81 1.3 2.0	0.11 0.13 0.25 0.27 0.79 2.5 5.3 7.6				

Table 8. continued

1:1 Decalin/Toluene										
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C			
0.050	0.0034	0.053	0.041	0.053	0.042	0.053	0.092			
0.080	0.026	0.084	0.043	0.084	0.043	0.084	0.14			
0.10	0.032	0.11	0.081	0.11	0.081	0.11	0.20			
0.16	0.047	0.16	0.12	0.16	0.12	0.16	0.34			
0.21	0.070	0.21	0.21	0.21	0.21	0.21	0.40			
0.26	0.092	0.26	0.31	0.26	0.31	0.26	0.55			
0.50	0.12	0.53	0.32	0.54	0.32	0.54	0.61			
0.80	0.22	0.84	0.82	0.84	0.82	0.84	1.4			
1.0	0.33	1.1	1.1	1.1	1.1	1.1	3.0			
1.3	0.51	1.4] 1.9	1.4	1.9	1.4	4.4			
1.8	0.96	1.9	3.3	1.9	3.3	1.9	6.7			

	Decane									
[E]	70°C	[E]	80°C	(E)	90°C	(E)	100°C			
0.31	0.13	0.010	0.020	0.31	0.83	0.31	1.0			
0.52	0.10	0.051	0.045	0.52	1.2	0.52	1.6			
0.83	0.23	0.10	0.076	0.83	1.9	0.83	3.1			
1.03	0.78	0.31	0.54	1.03	3.5	1.03	7.0			
1.6	1.3	0.51	0.73	1.6	7.2	1.6	15			
2.1	1.8	0.82	0.93	2.1	8.9	2.1	21			
		1.0	1.9							
[1.6	3.0			ł	{			
		2.1	4.4							

Table 8. continued

	1,1,2,2 Tetrachloroethane									
[E]	70°C	[E]	80°C	{E]	90°C	[E]	100°C			
0.10 0.20 0.50 0.60 0.70 1.0 1.1 1.2 1.5	0.024 0.089 0.31 0.51 0.92 1.1 1.2 1.8 2.5	0.11 0.23 0.57 1.1 1.4 1.7	0.064 0.24 0.66 2.2 3.1 4.7	0.10 0.20 0.51 1.0 1.5 2.0	0.18 0.47 1.7 4.4 7.6 13	0.10 0.20 0.50 1.0 1.5	0.40 2.1 3.0 15 20			
1.8	4.0 4.4]				

	1,2,4 Trimethylbenzene									
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C			
0.10	0.018	0.30	0.026	0.10	0.018	0.25	0.20			
0.30	0.041	0.50	0.11	0.25	0.10	0.30	0.27			
0.50	0.068	1.0	0.39	0.30	0.13	1.2	2.5			
1.0	0.16	1.5	0.63	1.2	1.1	1.8	4.6			
1.5	0.26	2.0	1.1	1.8	1.9	2.0	7.1			
2.0	0.62	3.0	2.2	2.0	3.3	3.0	14			
3.0	1.2			3.0	6.4					

	o-Xylene									
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C			
0.051	0.013	0.05	0.019	0.051	-	0.10	0.39			
0.10	0.038	0.11	0.071	0.10	0.15	0.15	0.46			
0.15	0.061	0.22	0.15	0.15	0.18	0.20	0.51			
0.31	0.11	0.55	0.41	0.31	0.52	0.25	0.73			
0.51	0.21	1.1	1.2	0.51	0.78	0.30	0.77			
0.82	0.38	2.2	3.4	0.82	1.6	0.50	1.7			
1.0	0.52	2.7	5.4	1.0	2.5	0.80	3.7			
1.3	0.84	3.3	6.5	1.3	3.4	1.0	5.4			
1.7	1.3			1.7	5.3	1.3	7.3			
2.0	1.7			2.0	7.1	1.7	11			
						2.0	_14			

<i>m</i> -Xylene									
[E]	70°C	[E]	80°C	(E)	90°C	[E]	100°C		
0.50 1.0 1.5 2.0 2.5 3.0	0.046 0.20 0.32 0.58 0.70 0.90	0.10 0.50 1.0 1.5 2.0 2.5 3.0	0.013 0.081 0.30 0.46 0.97 1.5 2.3	0.50 1.0 1.6 1.8 2.0 2.2	0.14 0.53 0.83 1.4 4.1 7.1	$\begin{array}{c} 0.10 \\ 0.50 \\ 1.0 \\ 1.6 \\ 1.8 \\ 2.0 \\ 2.2 \\ 2.4 \\ 2.5 \\ 3.0 \end{array}$	0.035 0.26 2.6 5.4 6.0 7.2 8.3 9.7 12 17		

	<i>p</i> -Xylene										
[E]	70°C	[E]	80°C	[E]	90°C	[E]	100°C				
0.10 0.49 0.98 1.2 1.6 1.8 2.0 2.2 2.4 2.5 3.0	0.031 0.15 0.59 0.93 1.8 1.9 2.3 2.6 3.1 3.7 4.3	0.10 0.21 0.52 1.0 1.5 1.6 1.8 2.1 2.2 2.4 2.6 3.1	0.036 0.070 0.31 0.76 2.5 1.8 2.2 3.6 3.8 4.2 4.6 5.8	0.10 0.50 0.80 1.2 1.5 1.6 1.8 2.0 2.2 2.5 3.0	0.038 0.50 0.88 2.1 2.5 2.6 3.4 5.9 6.1 7.6 9.2	0.10 0.50 0.80 1.0 1.2 1.5 1.6 1.8 2.0 2.2 2.4 2.5	0.071 0.90 1.5 1.9 3.6 4.4 8.5 9.7 10 13 14 14				
]						3.0	16				

^a in mM; ^b in mM s⁻¹ x 10^{5} ; ^c all rate values at 80° C were taken from Table 3 and included here for completeness.

Dec	calin	DI	MF	DMSO		
Temp. (°C)	k ₁ ª; k ₂ b	Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂	
70	0.53 ± 0.23	37.5	3.7 ± 0.6	40	3.1 ± 1.2	
	0.87 ± 0.56		4.8 ^d ± 4.3		5.6 ± 1.6	
80¢	0.72 ± 0.51	50	22 ± 4.9	75	31 ± 23	
	2.0 ± 1.0		2.2 ^d ± 26		74 ± 22	
90	1.6 ± 0.9	65	100 ± 23	80	36 ± 21	
	3.7 ± 1.4		12 ± 83		82 ± 29	
100	7.1 ± 1.5	80	109 ± 32	100	95 ± 44	
	3.5 ± 3.4		173 ± 16		126 ± 52	

Table 9. k_1 and k_2 rate constants derived from Eq. (3).

2-Chloroethanol		Chlorobenzene		o-Dichlorobenzene	
Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂
70	2.2 ± 1.0	70	0.44 ± 0.17	70	$2.0^{d,e} \pm 0.1$
	1.6 ± 0.6		0.57 ± 0.19		0.72 ± 0.12
80	8.3 ± 5.0	80	0.78 ± 0.27	80	0.52 ± 0.20
	12 ± 4		1.3 ± 0.3		0.99 ± 0.33
90	23 ± 11	90	1.9 ± 0.4	90	0.90 ± 0.24
	18 ± 7		1.5 ± 0.6		$0.84^{e} \pm 0.65$
100	110 ± 23	100	4.0 ± 0.8	100	3.1 ± 0.8
	$0.42^{\circ} \pm 16$		2.2 ± 1.4		2.2 ± 1.6

Bromobenzene		Toluene		1:1 Decalin/Toluene	
Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂
70	0.39 ± 0.26	70	0.45 ± 0.09	70	0.12 ± 0.05
	1.5 ± 0.3		0.18 ± 0.26		0.22 ± 0.28
80	0.50 ± 0.27	80	0.45 ± 0.17	80	$0.83 \pm 0.17^{\circ}$
	2.5 ± 1.0		0.90 ± 0.44		0.61 ± 0.85
90	2.6 ± 0.9	90	1.2 ± 0.2	90	1.0 ± 0.5
	$0.93^{\circ} \pm 0.52$		0.69 ± 0.62		0.71 ± 0.27
100	2.3 ± 0.8	100	2.8 ± 0.8	100	1.2 ± 0.7
	3.7 ± 2.0		$0.53^{e} \pm 0.54$		1.3 ± 0.4

Table 9. continued

.

Decane		1,1,2,2-Tetrachloroethane		1,2,4-Trimethylbenzene	
Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂
70	0.28 ± 0.10	70	0.13 ± 0.21	70	0.03 ± 0.04
	0.30 ± 0.12		1.1 ± 0.24		0.12 ± 0.11
80	1.2 ± 0.4	80	0.31 ± 0.29	80	0.11 ± 0.07
	0.49 ± 0.24		1.4 ± 0.5		0.21 ± 0.05
90	2.2 ± 0.6	90	1.9 ± 0.7	90	0.11 ± 0.19
	1.1 ± 0.7		2.2 ± 1.5		0.66 ± 0.20
100	2.3 ± 1.1	100	9.2 ± 3.0	100	0.25 ± 0.42
	4.0 ± 1.1		3.3 ± 2.4		1.5 ± 0.4

Table 9. continued

o-Xylene		<i>m</i> -Xylene		p-Xylene	
Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂	Temp. (°C)	k ₁ ; k ₂
70	0.22 ± 0.08	70	0.15 ± 0.04	70	0.39 ± 0.16
	0.31 ± 0.35		0.05 ± 0.02		0.37 ± 0.17
80	0.71 ± 0.21	80	0.09 ± 0.07	80	0.63 ± 0.21
	0.41 ± 0.54		$0.22~\pm~0.08$		0.42 ± 0.20
90	1.1 ± 0.3	90	0.86 ± 0.20	90	0.56 ± 0.33
	1.1 ± 0.9		0.24 ± 0.20		0.90 ± 0.27
100	2.9 ± 0.7	100	0.19 ± 0.56	100	2.2 ± 0.7
	2.1 ± 2.3		$1.7^{c} \pm 0.3$		1.3 ± 0.5

^a in mM⁻¹ s⁻¹ x 10⁵; ^b in mM⁻² s⁻¹ x 10⁵; ^c all rate constants at 80°C were taken from Table 4a and included here for completeness; ^d these rate constants were very small to be of any significance; ^e these irregular rate constants were omitted in the calculation of the activation parameters.

In several cases, notably in the k_2 values, the uncertainties become exceedingly large. We will see later that this is caused by the small concentrations employed in the derivation of the rate constants (*cf.* Section 2.4). In some cases, the uncertainties are slightly greater than the rate constants themselves. This suggests that, statistically, from the available rate data, the rate constant could not be obtained accurately.

From the transition state theory, the Eyring equation is defined as :

$$k = \frac{k_b T}{h} e^{-\frac{\Delta G^*}{RT}}$$

$$k = \text{rate constant}$$

$$k_b = \text{Boltzmann's constant} (1.38 \times 10^{-23} \text{ J/K})$$

$$h = \text{Planck's constant} (6.63 \times 10^{-34} \text{ J s})$$

$$T = \text{temperature} (K)$$

$$R = \text{gas constant} (1.987 \text{ cal/K mole})$$

$$\Delta G^{\neq} = \text{free energy of activation.}$$

Solving for ΔG^{\neq} one obtains,

$$\Delta G^* = T(4.576 \log \frac{k}{T} + 47.21)$$

The activation parameters can thus be computed from the following :

$$\Delta H^* = E_{act} - RT \qquad \text{Eq. (9)}$$

$$\Delta G^* = \Delta H^* - T\Delta S^* \qquad \text{Eq. (10)}$$

$$\Delta G^* = E_{act} - RT - T\Delta S^*$$

So that,

$$\Delta S^* = 4.576 \log(\frac{k}{T}) + \frac{E_{act}}{T} - 49.21$$

or from Eq. (7),

$$\Delta S^* = 4.576 \log(\frac{A}{T}) - 49.21$$
 Eq. (11)

The values of the activation parameters E_{act} , ΔH^{\neq} , ΔG^{\neq} , and ΔS^{\neq} can be calculated from Eqs. (8), (9), (10), and (11) respectively. These are included in Tables 10a and 10b in increasing ΔG^{\neq} .

The standard deviations were determined by applying a similar method in the determination of standard deviations in the rate constants. An estimated 15% error in the values of the slopes and intercepts of the ln k vs. 1/T plots were used. The $\sigma s \text{ in } \Delta H^{2}$ and ΔS^{2} are the same as for E_{act} and the σs in ΔG^{2} were determined by taking the square root of the sum of the squares of the σs in E_{act} and ΔS^{2} (cf. Section 2.4).

Solvent	E _{act} a,b	∆Н≁	∆S ^{≠d}	∆G≁
DMSO	17.9 ± 0.5	17.3 ± 0.5	-22.5 ± 1.5	24.0 ± 1.6
DMF	12.4 ± 0.5	11.8 ± 0.5	-47.3 ± 1.4	25.9 ± 1.5
Bromobenzene	10.5 ± 0.7	9.9 ± 0.7	-53.5 ± 2.0	25.9 ± 2.1
1,1,2,2 Tetrachloroethane	14.0 ± 0.7	13.4 ± 0.7	-45.4 ± 2.0	26.9 ± 2.1
Toluene	16.4 ± 0.7	15.8 ± 0.7	-37.6 ± 2.0	27.0 ± 2.1
o-Dichlorobenzene	19.0 ± 0.8	18.4 ± 0.8	-29.7 ± 2.1	27.3 ± 2.2
<i>p</i> -Xylene	17.1 ± 0.7	16.5 ± 0.7	-36.2 ± 2.0	27.3 ± 2.1
1:1 Decalin/Toluene	16.7 ± 0.7	16.2 ± 0.7	-37.4 ± 2.1	27.3 ± 2.2
Decane	18.0 ± 0.7	17.4 ± 0.7	-34.1 ± 2.0	27.6 ± 2.1
Decalin	21.7 ± 0.7	21.1 ± 0.7	-21.9 ± 1.9	27.7 ± 2.0
<i>m</i> -Xylene	20.9 ± 0.8	20.3 ± 0.7	·25.4 ± 2.4	27.8 ± 2.5
Chlorobenzene	30.4 ± 0.7	29.8 ± 0.7	6.6 ± 2.0	27.8 ± 2.1
2-Chloroethanol	32.6 ± 0.5	32.0 ± 0.5	13.0 ± 1.5	28.1 ± 1.6
1,2,4 Trimethylbenzene	15.3 ± 0.9	14.7 ± 0.9	-45.2 ± 2.4	28.2 ± 2.6
o-Xylene	21.9 ± 0.7	21.3 ± 0.7	-23.9 ± 2.0	28.5 ± 2.1

Table 10a. Activation parameters derived from k_1 rate constants.

^a Activation parameters derived from k_1 rate constants; ^b in kcal mol⁻¹; ^c kcal mol⁻¹; ^d cal mol⁻¹ K^{-1} ; ^e kcal mol⁻¹.

Solvent	E _{act} a,b	۵н≁	ΔS ^{≠d}	∆G≠e
DMF	12.7 ± 1.2	12.1 ± 1.2	-39.1 ± 3.8	23.7 ± 4.0
Decalin	13.4 ± 0.7	12.8 ± 0.7	-38.3 ± 1.9	24.2 ± 2.0
DMSO	11.6 ± 0.5	11.0 ± 0.5	-47.2 ± 1.3	25.0 ± 1.4
Bromobenzene	7.4 ± 0.7	5.8 ± 0.7	-60.8 ± 2.0	25.0 ± 2.1
1,1,2,2 Tetrachloroethane	8.8 ± 0.7	8.2 ± 0.7	-57.0 ± 1.9	25.2 ± 2.0
Chlorobenzene	9.4 ± 0.7	8.8 ± 0.7	-56.6 ± 2.0	25.7 ± 2.2
<i>p</i> -Xylene	11.4 ± 0.7	10.8 ± 0.7	-52.4 ± 2.1	26.4 ± 2.2
<i>m</i> -Xylene	12.9 ± 0.8	12.3 ± 0.8	-48.0 ± 2.2	26.6 ± 2.3
o-Dichlorobenzene	17.8 ± 0.7	17.2 ± 0.7	-33.5 ± 2.1	27.2 ± 2.2
Toluene	17.8 ± 0.8	17.2 ± 0.8	-33.4 ± 2.3	27.2 ± 2.4
1:1 Decalin/Toluene	21.8 ± 0.7	21.2 ± 0.7	-22.7 ± 2.1	28.0 ± 2.2
2-Chloroethanol	23.0 ± 0.6	22.5 ± 0.6	-19.6 ± 1.8	28.3 ± 1.9
1,2,4 Trimethylbenzene	20.9 ± 0.8	20.3 ± 0.8	-27.0 ± 2.2	28.4 ± 2.3
Decane	34.9 ± 0.7	34.3 ± 0.7	16.8 ± 2.0	29.3 ± 2.1
o-Xylene	27.1 ± 0.7	26.5 ± 0.7	-10.4 ± 2.1	29.6 ± 2.2

Table 10b. Activation parameters derived from k_2 rate constants.

^a Activation parameters derived from k₂ rate constants; ^b in kcal mol⁻¹; ^c kcal mol⁻¹; ^d cal mol⁻¹ [°]K⁻¹; ^e kcal mol⁻¹.

Relatively few articles in the literature have *thoroughly* dealt with the overall effect of changing the medium upon the activation energy (or enthalpy) and entropy. The variation in these kinetic activation parameters is frequently so unpredictable that no generalizations can be easily made. In some ionization studies, certain regularities in the activation parameters do exist and these data are consistent with the theory of absolute reaction rates.¹⁰⁰ The high ΔH^{\pm} value of chlorobenzene in the k₁ determinations indicate some desolvation in the transition state which is consistent with a dipolar transition state. Solvent interaction in the ground state by chlorobenzene might be attributed to the greater polarizability of the aromatic π electrons.¹⁰¹ DMF, a strong solvating agent, would experience little desolvation in the transition state and consequently have a lower ΔH^{\pm} albeit we do not observe the same behaviour in DMSO. All non-polar solvents should, therefore, have high ΔH^{\pm} values but our data indicate otherwise.

The somewhat large negative values of the entropy of activation suggest a highly ordered transition state in which the solvent plays a strong stabilizing role. The ground state would have less ordering of solvent molecules. This further strengthens our proposed mechanism involving ionized intermediates (cf. Section 2.6). Ionization reactions usually accompany a large negative ΔS^{\neq} because of the loss of entropy of the solvent when going to the transition state. Large negative entropies have been observed in the unimolecular thermolysis reaction of α -chloroalkyl ethers in aprotic solvents.¹⁰² For the majority of the solvents, the molecules are somewhat unordered in the ground state but on solvation in the transition state they experience a reduction in the number of degrees of freedom available to them and, therefore, suffer from a greater loss in entropy. Solvents which are already ordered in the ground state will suffer a smaller loss in entropy upon solvation in the transition state. In two solvents, chlorobenzene and 2chloroethanol, the positive values of ΔS^{\neq} (Table 10a) suggest a highly unordered transition state but become negative in the bimolecular mechanism (Table 10b) as expected. On the contrary, the reverse is observed for decane. The value of ΔS^{\neq} becomes positive in the bimolecular mechanism. No rationale can be offered for this unusual behaviour. It is interesting to note that numerical values for ΔS^{\neq} of the bimolecular term are almost uniformly more negative than the ΔS^{\neq} in the unimolecular

a) G. Salomon, *Helv. Chem. Acta.*, 16, 1361 (1933); b) N. J. T. Pickles and C. N. Hinshelwood, J. Chem. Soc., 1353 (1936); c) B. L. Archer and R. F. Hudson, J. Chem. Soc., 3259 (1950); d) J. W. Hackett and H. C. Thomas, J. Am. Chem. Soc., 72, 4962 (1950).

¹⁰¹ R. E. Pincock, J. Am. Chem. Soc., 86, 1820 (1964).

¹⁰² H. Kwart and P. A. Silver, J. Org. Chem., 40, 3019 (1975).

term. This is consistent with the fact that a bimolecular reaction usually involves more ordering of solute and solvent molecules as two reacting species must come together for reaction to occur. The fact that some of the ΔH^{\neq} and ΔS^{\neq} values are inconsistent within a series of solvents of similar structure or polarity (*ie.* xylenes, haloaromatic solvents, polar/non-polar solvents) implies solvent interactions, in both the ground and transition states, are too complicated for simple interpretation. The values of ΔG^{\neq} are all relatively constant which is consistent with the compensating effect of ΔH^{\neq} and ΔS^{\neq} (*cf.* Section 2.5) and which satisfies Eq. (10).

2.4 ERROR ANALYSIS OF RATE CONSTANTS AND ACTIVATION PARAMETERS

In evaluating rate constants and kinetic activation parameters, it is necessary to examine the accuracy of the experimental data in the rate profiles. This would not only allow us to strengthen our proposed mechanism of decomposition but it also gives an indication of the validity of our experimental approach and procedures.

A typical rate profile for the decomposition of 28 is shown in Figure 2 (toluene at 80° C). An arbitrary deviation of $\pm 15\%$ in any of the first seven data points along the rate profile does not affect the calculated rate constants to a significant extent. However, it will be seen that a rate deviation of $\pm 15\%$ in the higher concentration region produces a slight variation in the rate constants with the largest change at the highest concentration. A simultaneous -15% change in the observed rate for the eleventh data point and a +15% change in the observed rate for the last value while keeping the first 10 points unchanged gives a first order rate constant that is diminished 7-fold (Table 11). The estimated \pm 15% range originates from standard deviations obtained from multiple experimental runs. In the majority of the two or more experimental runs at the same concentration, standard deviations were not greater than 15%. In only a few cases, notably the lower concentration levels, the standard deviations were above 25%. Figure 4 shows the comparison of the experimental observed data with a hypothetical 15% deviation for the last two data values. Thus, the most sensitive portion of the rate profile is in the higher concentration range. Although the shape of the curves are very similar, the derived rate constants from curve-fitting are different. Conversely, the first and second order rate constants are slightly changed if one varies the eleventh point by +10% while varying the last point by -10%. Table 11 shows the variation in rate constants at different temperatures when the eleventh data point is increased or decreased (with a simultaneous decrease or increase in the last data point) by different percentages.

70°C			80°C			
% deviation from expt'l	kı ^a	k2 ^b	% deviation from expt'l	k _l a	k2 ^b	
15	0.65	0.034	15	0.83	0.57	
10	0.58	0.083	10	0.70	0.68	
5	0.52	0.13	5	0.58	0.79	
2	0.48	0.16	2	0.50	0.85	
-	0.45 ^c	0.18	-	0.45 ^c	0.90	
2	0.42	0.20	2	0.40	0.94	
5	0.38	0.23	5	0.32	1.0	
10	0.32	0.28	10	0.19	1.1	
15	0.25	0.33	15	0.066	1.2	

 Table 11. Calculated rate constants obtained by variation of experimental rate

 values in toluene at different temperatures.

90°C			100°C			
% deviation from expt'l	kl ^a	k2 ^b	% deviation from expt'l	k _l a	k2 ^b	
15	1.8	0.23	15 [.]	2.8	0.53	
10	1.6	0.38	10	2.7	0.62	
5	1.4	0.53	5	2.5	0.76	
2	1.3	0.63	2	2.2	1.0	
_	1.2 ^c	0.69	-	1.8 ^c	1.2	
2	1.1	0.75	2	3.0	0.43	
5	1.0	0.84	5	3.1	0.29	
10	0.82	1.0	10	3.5	0.050	
15	0.62	1.2	15	3.5	1.8x10 ⁻⁹	

^a in mM⁻¹ s⁻¹ x 10⁵; ^b in mM⁻² s⁻¹ x 10⁵; ^c experimental observed value
Figure 4. Comparison of experimental data with a hypothetical deviation of 15% in the higher concentration range. Plot shows data from toluene at 80° C. • experimental data (see also Figure 2); ∇ 15% deviation data.

Based upon the deviations observed in toluene, it prompted us to determine an error range where our experimental rate constants, which lie within this range, can be taken as valid and accurate data and any experimental rate constants that lie below or above the range can be assumed simply as a bad experimentally derived rate constant. The tolerance range was determined by taking the uncertainty in the rate constants by estimating the errors in evaluating the rates. An estimate of $\pm 15\%$ was obtained. By treating the uncertainties in both k_1 and k_2 independently, the variance in the rate constants can be obtained from Eqs. (12a) and (12b).¹⁰³

 $\sigma_{k_1}^2 = \frac{1}{N-1} \sum \frac{\sigma_y^2}{x^2} \qquad \text{Eq. (12a)} \qquad \sigma_{k_1}^2 = \text{variance in } k_1$ $\sigma_{k_2}^2 = \frac{1}{N-1} \sum \frac{\sigma_y^2}{x^4} \qquad \text{Eq. (12b)} \qquad \sigma_{k_2}^2 = \text{variance in } k_2$ $\sigma_y = \text{estimated error in rates}$ = 15% of rate valuesx = [episulfide]N = number of data points

Thus, the uncertainties or standard deviations are easily obtained by taking the square root of the variance. From this 15% error in the determination of the rate constants, we can assume that a similar 15% variance interval exists in the evaluation of the activation energy, enthalpy, entropy and free energy. The activation parameter ranges for both the unimolecular and bimolecular portions of Eq. (3) are included in Tables 10a and 10b. As mentioned previously, large σ s were obtained for some of the second order rate constants (eg. DMF, DMSO, and 2-chloroethanol). This is ascribed to the small values of x (low concentrations) employed in Eqs. (12a) and (12b). Small values of x would magnify into a much larger value in σ . Since x should define the error in the unimolecular term (k₁), we decided to apply only the higher concentration values in the evaluation of the error in the bimolecular term (k₂). This improved the value of σ for k₂.

In many instances where experimental runs were repeated, the derived rate constants were acceptable within the prescribed error limits. The differences in these rate constants are not likely to be due to systematic error but by random error which could not

¹⁰³ D. C. Harris, *Quantitative Chemical Analysis*, 2nd ed., W. H. Freeman and Co., New York, 1987, pp. 31, 43.

be avoided. Under the experimental conditions employed, the rates can be measured quite accurately. A good indication of this can be seen in the rate profile for *m*-xylene at 70° C shown in Figure 5 along with the same rate profile re-acquired after one year. The experimental runs are duplicable. The computed rate constants are similar; hence our experimental procedures appear to be quite accurate and valid. By derivation of the rate constants from Eq. (3), we see that the observed rate constants provide solid evidence of a dipolar mechanism consistent with our proposed mechanism of sulfur extrusion in thiiranes.

Figure 5. Rate profiles for the decomposition of 28 in *m*-xylene at 70°C shows data collected under identical experimental conditions at different times.
experimental data taken March 23/91; ∇ experimental data taken March 13/92.

The experimental derived rate constants should thus be accepted only as a good approximation to the real values (*cf.* Table 4a). These values should be viewed with caution, as shown, from the possible large variations in the rate constants from the small deviations (random errors) in the observed rates. Although the error range is somewhat narrow, the activation parameters should also be treated with discretion as they are also obtained from approximate rate constants. An important feature that should be noted

invariably lower than the unimolecular first order entropy values as expected. This observation is a good indication that the activation parameters are reasonably accurate.

To further recognize how favorably the rate data fits Eq. (3), we calculated for each datum value, the number of standard deviations, σ , from the proposed parabolic rate law. We decided to use the rate data accumulated from all solvents at 80°C (cf. Table 3) to test the fit. From the determined k_1 and k_2 rate constants in Table 4a, we first replace their values back into Eq. (3) and calculate the rates at each concentration. To determine the number of standard deviations or how much deviation from Eq. (3) there is for each value, we subtract the calculated rates from the experimentally obtained rates and divide by σ_{v} , σ_{v} is obtained from the experimental rate multiplied by the estimated error in the determination of the rate. This estimate is 15% as shown above. Table 12 shows the calculated number of standard deviations for each rate and solvent. We immediately notice that in each solvent, the magnitude of the majority of the points are within 2σ . This suggests that we can be certain by statistical analysis the 'o a 95% confidence level, the determined rates at any particular concentration of episulfide will fall within 15% from the theoretical value obtained from Eq. (3). It is interesting to note that in some solvents (chlorobenzene, toluene, 1:1 decalin/toluene, 1,2,4-trimethylberizene, o-xylene, and p-xylene), the first or lowest concentration levels resulted in large σ s. This is not coincidental in view of the narrow range of variance at the low concentrations vs. the higher concentration levels. At low concentration, a 15% error in the rate gives a much smaller spread in the error range than at higher concentrations. This, consequently, produces a larger overall σ if the best fit curve from Eq. (3) does not include or go through those points. It is also interesting to point out that the number of positive σs is approximately equal to the number of negative σ s which implies a reliable fit of the data with no apparent irregularity in them.

Decalin	DMF	DMSO	lsobutanol	2-CIEtOHa	Clbenz ^b
-2.0	-4.1	-2.8	-0.32	0.081	21
-3.1	-2.2	-2.2	16	1.4	18
-0.95	1.9	-1.1	-3.5	7.0	9.8
-0.41	0.81	0.35	-2.9	-1.6	9.2
-0.25	-0.21	-0.09	1.5	-0.45	4,3
0.47	2.3		0.65	0.50	3,4
0.53	1.1		-0.28	-0.17	-1.7
-0.33	-0.90		-0.40		-0.53
	-0.63	1	0.31		0.70
]	0.66		-0.02		-0.03
	-0.12)	

Table 12. Calculated number of standard deviations, σ , from Eq. (3).

DiClbenz ^c	Brbenz ^d	Toluene	Dec/tolu ^e	Decane	4ClEthane ^f
2.8	-0.53	11	7.0	-2.7	-1.1
4.4	-0.88	8.8	5.3	2.2	-2.7
3.2	7.2	0.50	7.5	4.1	-0.31
1.9	6.1	-0.62	10	-1.8	-0.08
-0.24	7.5	1.25	5.3	-0.09	0.34
3.5	6.6	2.8	2.3	2.4	-0.16
1.9	2.5	-1.4	1.5	-0.76	
0.37	1.0	0.10	-1.7	-0.12	
1.1	0.07	0.71	-0.74	0.04	
-0.56	-1.2	-0.14	0.67		}
1.2	-0.36	-0.19	0.02		
-1.4	0.28	0.06	-0.30		
-0.62	i]	0.05		1
0.32	ļ				

•

Table 12, continued

124 Mebenz ^g	o-Xylene	m-Xylene	<i>p</i> -Xylene
6.5	7.3	-1.2	6.4
-0.12	1.0	1.5	7.4
-0.45	1.0	0.25	2.7
0.21	1.6	2.5	3.0
0.06	0.11	-1.0	-1.2
0.05	0.31] -0.1	1.4
	-0.53	0.08	1.0
	0.20	-0.03	-0.80
			-0.47
1		1	-0.29
			-0.24
]	0.29

^a 2-chloroethanol; ^b chlorobenzene; ^c dichlorobenzene; ^d bromobenzene;

^c 1:1 decalin/toluene; ^f 1,1,2,2-tetrachloroethane; ^g 1,2,4-trimethylbenzene.

We conclude that Eq. (3) can be regarded as a likely fit to the overall kinetic observations in all solvents. If, however, we delete the values that are greater than 2σ units and recalculate the rate constants, we find that k_1 and k_2 do not change to any significant extent. For example, the value of 16σ in isobutanol was removed perhaps it could very well be a bad experimental point. However, after recalculating the rate constants, no change from the previous values was observed. In cases where the data are greater than 7σ , if we vary the rates by as much as 15% no noticeable change in the overall rate constants was observed. Hence, the rates at the lower concentration levels do not contribute to any critical degree to the overall determination of k_1 and k_2 .

2.5 ISOKINETIC RELATIONSHIP

The variation in rate due to a change in solvent may be caused by changes in either, or both, enthalpy or entropy of activation. Changes in rate can be chiefly caused by changes only in the enthalpy of activation, which is most commonly observed, or changes only in entropy of activation. Rate changes in both entropy and enthalpy are also observed but these quantities are often linearly correlated. This correlation is known as the isokinetic relationship, Eq. (13).

 $\delta \Delta H^* = \beta \delta \Delta S^* \qquad \text{Eq. (13)}$

This phenomenon was first recognized by Leffler¹⁰⁴ who discussed its scope and significance. In simple terms, it states that at the isokinetic temperature, β , all the reactions in a given series have identical rates, or that $\delta \Delta G^{\neq} = 0$. The significance of this relationship lies within the rates of reaction in a reaction series. A reaction series consists of either substituent or solvent effects on the reaction rate. A reaction that is the fastest below β becomes the slowest above β and vice versa. Below the isokinetic temperature, the fastest reaction will have a lower ΔH^{\neq} and it is in the region of control by ΔH^{\neq} . Above the isokinetic temperature, the fastest reaction will have a higher ΔS^{\neq} and it is in the region of control by ΔS^{\neq} . Such an enthalpy-entropy relationship is well precedented in the literature.¹⁰⁵ An interesting feature in our study is an observed isokinetic relationship. The isokinetic plots for both unimolecular and bimolecular terms are shown in Figures 6a and 6b respectively using the ΔH^{\neq} and ΔS^{\neq} values from Tables 10a and 10b resulting in a linear relationship. A compensating effect of ΔS^{\neq} is observed as values of ΔH^{\neq} increase. It should be emphasized that this linearity is a requirement of Eq. (10). The isokinetic temperatures are 45°C and 93°C respectively for the first and second order terms with good correlations of 0.983 and 0.988 respectively. The linearity of the isokinetic plots also provides an indication that the reaction series in these solvents proceed with the same mechanism. Any noticeable deviation from the isokinetic function is attributed to different solvent interactions and possibly a different reaction mechanism. It has been debated that the apparent isokinetic relationship is a result of indiscriminate experimental error.¹⁰⁶ However, the spread of ca. 20 kcal in ΔH^{\neq} and ca. 45 eu in ΔS^{\neq} argue for the authenticity of our relationship.

¹⁰⁴ J. E. Leffler, J. Org. Chem., 20, 1202 (1955).

^{a) M. G. Alder and J. E. Leffler, J. Am. Chem. Soc., 76, 1425 (1954); b) M. D. Cohen, J. E. Leffler, and L. M. Barbato, J. Am. Chem. Soc., 76, 4169 (1954); c) P. D. Bartlett and R. R. Hiatt, J. Am. Chem. Soc., 80, 1398 (1958); d) C. D. Cook and B. E. Norcross, J. Am. Chem. Soc., 81, 1176 (1959); e) E. S. Huyser and R. M. VanScoy, J. Org. Chem., 33, 3524 (1968); f) Y. Matsumoto and R. Ucoka, J. Org. Chem., 55, 5797 (1990); g) R. M. Hassan, Can. J. Chem., 69, 2018 (1991); h) Y. Inoue, N. Yamasaki, T. Yokoyama, and A. Tai, J. Org. Chem., 57, 1332 (1992).}

a) R. C. Petersen, J. H. Markgraf, and S. Ross, J. Am. Chem. Soc., 83, 3819 (1961); b) W. Good,
 D. B. Ingham, and J. Stone, Tetrahedron, 31, 257 (1975).

Figure 6a. Isokinetic plot from activation parameters derived from k_1 values. Isokinetic temperature = 45° C.

Figure 6b. Isokinetic plot from activation parameters derived from k_2 values. Isokinetic temperature = 93° C.

Since the isokinetic temperature for k_2 lies within our experimental temperature range, we should expect a reversal in rates above and below the isokinetic temperature. A reversal in the rates above and below the isokinetic temperature has been demonstrated from substituent effects on the thermal isomerization of triphenylformazans.¹⁰⁷ An attempt to show the reversal in rates above and below the isokinetic temperature was, however, unsuccessful. The lack of observed reversal in rates can be attributed to the fact that our rates were determined near the isokinetic temperature. A number of cases are reported where the isokinetic temperature falls within the experimental temperatures and reactions carried out at or near the isokinetic temperatures could lead to erroneous conclusions about the nature of the reaction.¹⁰⁸ Thus, interpretation of rate data from any reaction series should therefore be regarded with care. The failure to find a true linear correlation between the rate constants and some characteristic of the solvent (*ie*, dipole moment, internal pressure, etc. *cf.* Section 2.8.3) could also lead to the unobserved

¹⁰⁷ N. Nishimura, Y. Sucishi, and S. Yamamoto, Chem. Lett., 429 (1979).

a) J. F. Bunnett and R. J. Morath, J. Am. Chem. Soc., 77, 5165 (1955); b) W. H. Saunders, Jr. and J. C. Ware, J. Am. Chem. Soc., 80, 3328 (1958); See also ref. 104 and references cited therein.

reversal in rates. Plots of log k_1 vs. μ (dipole moment) or δ_H (internal pressure) are shown in Figures 7a and 7b respectively. They illustrate the significant scattering of the points.

Figure 7a. Plot of log $k_1 vs. \mu$ (dipole moment) showing the significant scatter with k_1 . The k_1 values were taken from all solvents at 80°C.

· · 、

2.6 PLAUSIBLE MECHANISM OF SULFUR EXTRUSION

From the desulfurization kinetics of episulfide 28, the following mechanism is proposed to account for the observations. At low concentrations, thermal ionization of the C-S bond in 28 (Scheme 14) likely occurs as the first and rate determining step. Such an intermediate 35 has been suggested, as in the reaction between 9-diazoxanthene (33) and coumarin 2-thione (34).¹⁰⁹ A thiirane is isolated but which loses sulfur quickly.

Cleavage of the C-S bond of 28 at the carbon bearing the two chlorines would be unfavorable due to their electron-withdrawing effect. The positive charge on the carbon bearing the fluorene substituent would be stabilized by resonance. The fast step would involve the subsequent attack of the sulfur anion species 36 on another molecule of episulfide 28, giving intermediate 37. This species would acquire sulfur atoms sequentially until an S₈ cycle is formed along with 29.

. .

a) N. Latif and I. Fathy, Can. J. Chem., 44, 1075 (1966); b) M. Kamata, K. Murayama, and T. Miyashi, *Tetrahedron Lett.*, 30, 4129 (1989).

As the concentration of episulfide 28 increases, the second term in the rate equation becomes more important and a competing bimolecular mechanism is followed (Scheme 14). The sulfur atom from one episulfide molecule abstracts the sulfur atom from another in the rate determining step, giving intermediate 38. The fast step is the subsequent concatenation of more sulfur atoms until S_8 is formed. At even higher concentration levels in thirteen solvents, the bimolecular route actually becomes the rate-determining step.

We have also found that rate equations 4, 5, and 6 fit the experimental data reasonably well and therefore they cannot be completely ruled out as possible rate laws. A mechanism that can be envisioned for the third order term in the equations is the following (Scheme 15). The initial step would be the formation of adduct **39**. Adduct **39** could either lose the olefin product (path A) and give **38** or react with a third molecule of episulfide in the rate determining step giving **40** (path B). Subsequent acquisition of more episulfide molecules in the fast step would give **41**. Elemental sulfur is eventually extruded *via* recyclization of intermediate **41** to give the olefin **29**.

2,7 STEREOCHEMICAL ASPECTS IN THE DECOMPOSITION OF THURANES

We have convincing evidence that the mechanism of thermal decomposition of **28**, and perhaps thiiranes in general, is concentration dependent. Such an observation for episulfide was initially made by Bergman but little proof was provided.⁵² Both a unimolecular and bimolecular mechanism play an important role in the extrusion of sulfur. One vital aspect that one should address is the stereochemical outcome in these desulfurization reactions.

It is known that the higher oxidized analogues of thiiranes, episulfoxides and episulfones, extrude sulfur monoxide and sulfur dioxide respectively under thermolytic and pyrolytic conditions. Furthermore, the stereochemistry of the substituents is preserved. Vollhardt examined the sulfur monoxide extrusion reaction of 2,3-dideuterio thiirane oxide and found that there was greater than 90% retention of stereochemistry.¹¹⁰ It was concluded that the mechanism follows a partial biradical pathway but with a significant contribution from the concerted process in which SO is expelled. A biradical intermediate was proposed to account for the loss of stereoselectivity and it may be the exclusive mode of decomposition if C-C bond rotation is slow compared to the extrusion of SO. On the other hand, non-stereoselective extrusion reactions have also been reported in the thermolysis of stilbene and 2-butene episulfoxides.¹¹¹ These are thought to involve rupture of the C-S bond in the first step forming a diradical followed by an internal rotation around the C-C bond. Evidence for the diradical intermediate was demonstrated by kinetic studies in solvents of different polarity where little effect on the decomposition rates was observed with increasing solvent polarity. The stereoselectivity was also found to be lowered with increasing temperature.111b

Stereochemical integrity is usually observed in the decomposition of episulfones.¹¹² A concerted cheletropic expulsion of SO_2 is the favored pathway although a biradical mechanism where SO_2 extrusion occur faster than C-C bond rotation cannot be excluded.¹¹³ However, the decomposition of 2-phenyl and *cis*- or *trans*-2,3

a) W. G. L. Aalbersberg and K. P. C. Vollhardt, J. Am. Chem. Soc., 99, 2792 (1977); b) W. G. L. Aalbersberg and K. P. C. Vollhardt, Israel J. Chem., 21, 145 (1981).

a) G. E. Hartzell and J. N. Paige, J. Org. Chem., 32, 459 (1967); b) K. Kondo, M. Matsumoto, and A. Negishi, *Tetrahedron Lett.*, 2131 (1972).

a) N. P. Neureiter and F. G. Bordwell, J. Am. Chem. Soc., 85, 1209 (1963); b) L. A. Carpino and L. V. McAdams, III, J. Am. Chem. Soc., 87, 5804 (1965); c) N. P. Neureiter and F. G. Bordwell, J. Am. Chem. Soc., 88, 558 (1966); d) N. Tokura, T. Nagai, and S. Matsumura, J. Org. Chem., 31, 349 (1966).

¹¹³ N. H. Fisher, Synthesis, 393 (1970).

diphenyl episulfones was believed to progress by a non-concerted pathway leading to stereoselective products. From solvent studies, both a diradical and ionic mechanism was proposed.¹¹⁴

There are several reported cases in the literature that discuss the stereochemical aspects in the degradation of thiiranes. In reactions of thiiranes with certain reagents, desulfurization occurs non-stereospecifically as evidenced by yielding mixtures of *cis* and *trans* olefins.^{85a,94c,d} By contrast, reactions with a number of reagents gave olefins stereospecifically.^{70,74,76e,78a,79a,89a,115} In these reactions, the reagents are believed to attack the sulfur atom followed by ring opening to give the olefin.

Thermally induced desulfurizations, in general, can be classified as nonstereospecific (cf. Section 1.8.2). Pommelet^{51b} suggested that a competition between C-C and C-S bond cleavage occurs upon thermolysis of 12a to rationalize the formation of the different isomers. A similar conclusion was also adapted by Schneider.^{51a} The mixture of cis- or trans-2,3-divinyl thiiranes (12a) gave the same proportion of 20% cis and 80% trans isomers. Both ionic and biradical intermediates were postulated to account for other products. Bergman⁵² emphasized a strong dependence of stereochemistry on temperature and he classifies these reactions as non-stereospecific. Nevertheless, Strausz argues that low temperature thermolysis of cis- or trans- 2-butene thiiranes is stereospecific with greater than 90% retention of configuration.¹¹⁶ In cases where thiiranes undergo photolysis, formation of the diradical from C-S bond cleavage would most likely give non-stereospecific products.⁶² Padwa,⁶¹ however, claims that the photodesulfurization of 18 is stereoselective and the loss of sulfur is best explained by cleavage of the C-S bond forming a diradical which is then followed by loss of atomic sulfur. It was also suggested that the non-stereoselectivity in the thermolysis was attributed to photoisomerization of the thiirane.

One can clearly see that the steric outcome of these reactions is unpredictable. Several different mechanisms have been postulated to account for the observed products. Although our substrate cannot be used to investigate stereochemical aspects, we can

¹¹⁴ F. G. Bordwell, J. M. Williams, Jr., E. B. Hoyt, Jr., and B. B. Jarvis, *J. Am. Chem. Soc.*, **90**, 429 (1968).

¹¹⁵ V. Calò, L. Lopez, A. Mincuzzi, and G. Pes e, Synthesis, 3, 200 (1976).

¹¹⁶ E. M. Lown, H. S. Sandhu, H. E. Gunning, and O. P. Strausz, J. Am. Chem. Soc., 90, 7164 (1968).

speculate from our proposed mechanism of sulfur extrusion from thiiranes that, in general, stereoselectivity can be predicted. Our mechanism is dependent on concentration and at low concentration of thiirane, one should expect to see non-stereoselectivity in these reactions (Scheme 16). A unimolecular C-S bond fission giving a dipolar intermediate followed by C-C bond rotation would give a mixture of stereoisomers. At higher concentration levels, one should expect retention of configuration of the olefin. A bimolecular mechanism comes into play and a stepwise abstraction of sulfur atoms predominates which would give stereospecific products.

72

2.8 SOLVENT EFFECTS

2.8.1 INTRODUCTION

It has long been known that solvents play a paramount role in reaction rates, chemical equilibria, and spectral properties of compounds. One of the most important factors in performing a chemical reaction is choosing the appropriate solvent. A change in solvent can considerably alter the rates of most chemical reactions in which ions are formed from neutral molecules. Several monographs and articles have been published emphasizing solvent effects in organic chemistry.¹¹⁷ A recent book providing a comprehensive description of solvents effects in organic chemistry was written by Reichardt.¹¹⁸ One of the earliest examples of solvent effects was demonstrated by Menschutkin¹¹⁹ where the reaction of triethylamine with iodoethane showed rate acceleration depending on what solvent was chosen. He found that the reaction in methanol was 280 times faster than in *n*-hexane and 742 times faster in benzyl alcohol. An increase in the solvating power of the solvent leads to an increase in the rate of reaction. By careful selection of solvents, the rate of a chemical reaction can be controlled.

The influence of solvent on reaction rates is best treated by the transition state theory developed by Eyring. A one dimensional Gibbs energy diagram (Figure 8) is useful in describing this theory. The activated complex exists at the top of the energy barrier and represents that point in the reaction coordinate where the molecular species has an equal chance to reform into reactants or form its products. The overall reaction rate is the rate in which the activated complex passes over the energy barrier towards the formation of the products.

a) E. S. Amis and J. F. Hinton, Solvent Effects on Chemical Phenomenon, Vol. 1, Academic Press, New York, 1973; b) V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum Press, New York, 1978; c) C. Reichardt, Pure Appl. Chem., 54, 1867 (1982); d) M. H. Abraham, Pure Appl. Chem., 57, 1055 (1985).

¹¹⁸ C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd ed., VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1988.

¹¹⁹ N. Menschutkin, Z. Phys. Chem., 34, 157 (1900).

Figure 8. One dimensional Gibbs energy diagram showing relative standard molar Gibbs energy of reactants, transition state, and products.

The initial reactants and activated complex will, however, be solvated to a different extent according to the solvating power of the solvent and this would retard or accelerate a reaction (Figure 9). In Figure 9(a), solvent 1 represents an ideal solvent in which neither the reactants or the activated complex are solvated and it has a Gibbs energy of activation, ΔG_1^{\neq} . Solvent 2 is shown to solvate the activated complex preferentially and it has a Gibbs energy of activation $\Delta G_{2^{\neq}}$. The Gibbs energy of transfer is reduced by a value $\Delta G_{1-2^{\neq}}$ thus giving a rate acceleration. In Figure 9(b), solvent 3 is shown to solvate the initial reactants and thus the Gibbs energy of transfer is increased by $\Delta G_{1-3^{\neq}}$ resulting in rate retardation.

Figure 9. One dimensional Gibbs energy diagram showing (a) Solvent 2 solvating activated complex preferentially and (b) Solvent 3 solvating initial reactants preferentially. Solvent 1 is an ideal solvent, solvating neither the reactants nor activated complex.

In reality, both initial reactants and activated complex are solvated and it is the difference in Gibbs energy of transfer which determines the net rate. Such a solvation scheme is represented in Figure 10.

Figure 10. One dimensional Gibbs energy diagram for two different solvents.

The difference in the Gibbs energy of activation for the reaction in the 2 solvents is :

$$\Delta\Delta G^{\neq} = \Delta G_1^{\neq} - \Delta G_2^{\neq}$$
$$= G_1^{\neq} - G_1^R - G_2^{\neq} + G_2^R$$
$$= \Delta G_{1,2}^{\neq} - \Delta G_{1,2}^R$$

Hence, ΔG_{1-2}^{\neq} can be evaluated by obtaining $\Delta \Delta G^{\neq}$ from measured kinetic activation parameters and ΔG_{1-2}^{R} from Eq. (14) where γ refers to the activity coefficients of reactants in solvent 1 and 2.

$$\Delta G_{1-2}^{R} = -RT \ln(\frac{\gamma_{1}}{\gamma_{2}}) \qquad \text{Eq. (14)}$$

If both ΔG_{1-2}^{\neq} and ΔG_{1-2}^{R} are positive, then there is a destabilizing effect. If both are negative, then there is a stabilizing effect, and if they are both zero, then there is no solvent effect. A large solvent effect is expected if one term is positive and the other negative since they reinforce each other.

2.8.2 HUGHES - INGOLD RULES

In studying the effect of solvents on reaction rates, many different factors come into play and it is often difficult to provide a complete explanation of these effects. One must therefore treat experimental data in a qualitative fashion. One of the more successful qualitative theories was that developed by Hughes and Ingold.¹²⁰ They investigated solvent effects on nucleophilic substitution and elimination reactions. Only pure electrostatic interactions between ions and solvent molecules in the initial and transition state were considered so that solvation will increase if there is an increase in magnitude of charge. A decrease in solvation results if charge is dispersed or destroyed. The following rules were thus defined :¹²⁰

- a) An increase in solvent polarity will increase the rate of reaction in which there is a greater charge in the activated complex relative to the initial reactants.
- b) An increase in solvent polarity will decrease the rate of reaction in which the charge density in the activated complex is lower than in the initial reactants.
- c) If there is little or no charge developing on going from the initial reactants to the activated complex, then a change in solvent polarity will have negligible effect on the rate.

Table 13 summarizes the effect of increasing solvent polarity on nucleophilic substitution type reactions. A vast number of examples in the literature demonstrate the application of the Hughes-Ingold rules.¹²¹

¹²⁰ C. K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd ed., Cornell University Press, Ithaca, New York, 1969.

a) S. Fukuzumi and J. K. Kochi, J. Am. Chem. Soc., 102, 2141 (1980); b) Y. Kondo, M. Ittoh, and S. Kusabayashi, J. Chem. Soc., Faraday Trans. 1, 78, 2793 (1982); c) A. R. Katritzky and B. Brycki, J. Am. Chem. Soc., 108, 7295 (1986); d) G. A. Jones, C. J. M. Stirling, and N. G. Bromby, J. Chem. Soc., Perkin Trans. II, 385 (1987); e) P. M. E. Mancini, R. D. Martinez, L. R. Vottero, and N. S. Nudelman, J. Chem. Soc., Perkin Trans II, 951 (1987).

Reaction Type	Initial Reactants	Activated Complex	Charge alteration during activation	Effect of increased solvent polarity on rate
S _N 1	R-X	R ^{δ+} X ^{δ-}	Separation of	Large Increase
S _N 1	R-X+	R ^{δ+} Χ ^{δ+}	Dispersal of	Small Decrease
S _N 2	Y + R-X	Υ ^{δ+} RΧ ^{δ-}	Separation of	Large Increase
S _N 2	Y⁺ + R-X	Υ ^{δ-} RΧ ^{δ-}	Dispersal of	Small Decrease
S _N 2	Y +R-X+	Υ ^{δ+} RΧ ^{δ+}	Dispersal of	Small Decrease
S _N 2	Y ⁻ + R-X ⁺	Υ ^{δ-} RΧ ^{δ+}	Destruction of charge	Large Decrease

 Table 13. Predicted solvent effects on rates of nucleophilic substitution reactions (taken from reference 120).

2.8.3 ATTEMPT TO CORRELATE REACTION RATE WITH SOLVENT POLARITY

Organic chemists have attempted to understand solvent effects in terms of the polarity of the solvent. The polarity of a solvent is a term used to relate the capacity of a solvent to solvate reactants and activated complexes. Qualitatively, it is easy to understand but quantitatively it is more difficult. Many have tried to express experimental rates with such properties as dielectric constant, dipole moment, refractive index, or Hildebrand's solubility parameter (internal pressure) and some have found these solvent parameters successful.^{101,122} Because of the highly complicated interactions between solvents and reactants or activated complexes, the correlation of these effects with solvent properties is often difficult and inadequate. For example, the dielectric constant does not take into account hydrogen bonding or electron pair donor/electron pair acceptor (EPD/EPA) interactions, both which often play a major role in solute/solvent interactions nor does it take into account solvents which are highly structured.

a) E. Tommila and P. Kauranen, Acta. Chem. Scand., 8, 1152 (1954); b) M. Watanabe and R. M. Fuoss, J. Am. Chem. Soc., 78, 527 (1956); c) K. F. Wong and C. A. Eckert, J. Chem. Soc., Trans. Faraday I, 66, 2313 (1970); d) J. P. Snyder and D. N. Harpp, J. Am. Chem. Soc., 98, 7821 (1976); e) G. Desimoni, G. Faita, P. P. Righetti, and L. Toma, Tetrahedron, 46, 7951 (1990).

There have been attempts to evolve an empirical scale of solvent polarity based on solvent-sensitive reference processes. Such a reference would serve as a model that covers a wide variety of possible intermolecular interactions. With this model, it could be assumed that the process reflects all possible interactions which are present in related solvent-sensitive actions. These empirical parameters would then constitute a more reliable measure of solvent polarity. Empirical solvent polarity scales are reviewed by Reichardt,¹²³ Abraham,¹²⁴ and recently by Pytela.¹²⁵ The most comprehensive scales are briefly described here.

Grunwald and Winstein¹²⁶ defined a solvent ionizing power parameter, Y, based on a standard reaction namely the $S_N l$ solvolysis of *t*-butyl chloride in 4:1 aqueous ethanol as a reference solvent. This standard reaction was given a value of zero as the Y parameter. The model was chosen because it was believed to occur by a pure $S_N l$ mechanism where ionization of the C-Cl bond is the rate determining step. The authors defined Eq. (15):

 $Log \frac{k_a}{k_o} = mY$ Eq. (15) $k_o = first order rate constant in reference solvent$ $k_a = rate constant in another solvent$ m = substrate parameter

 $\mathbf{Y} = \mathbf{parameter}$ characteristic of a solvent

Y values were obtained from a number of solvents and in a large number of cases, good linear relationships were found.¹²⁷ Less satisfactory results were obtained in reactions that go through S_N^2 type mechanisms or in reactions where nucleophilic solvent participation becomes relevant.

¹²³ C. Reichardt, Angew. Chem. Int. Ed. Engl., 4, 29 (1965).

¹²⁴ M. H. Abraham, Progress in Physical Organic Chemistry, 11.7 (1974).

¹²⁵ O. Pytela, Collect. Czech. Chem. Comm., 53, 1333 (1988).

¹²⁶ E. Grunwald and S. Winstein, J. Am. Chem. Soc., 70, 846 (1948).

a) M.-F. Ruasse and B.-L. Zhang, J. Org. Chem., 49, 3207 (1984); b) C. A. Bunton, M. M.
 Mhala, and J. R. Moffatt, J. Org. Chem., 49, 3639 (1984); c) T. W. Bentley, M. Christl, and S. J.
 Norman, J. Org. Chem., 56, 6238 (1991); d) M. Fujio, N. Tomita, Y. Tsuno, S. Kobayashi, H.
 Taniguchi, J. Kaspi, and Z. Rappoport, Tetrahedron Lett., 33, 1309 (1992).

Dimroth and Reichardt^{12*} proposed a E_T solvent polarity parameter based on the transition energy for the longest-wavelength solvatochromic absorption band of pyridinium N phenoxide betaine dye (42). E_T values are a measure of the amount of energy (kcal) necessary to bring one mole of dye from the electronic ground state to the first excited state. Since the ground state is an ion pair, E_T values for polar solvents will be higher due to stronger stabilizing effects. This would require more energy to promote the electron to the excited state. E_{T} values for more than 270 organic solvents have been determined and many examples in the literature show strong correlation between Err values and rate constants; a few are cited.^{102,129,130,131,132} One major drawback of these E_T values is that they cannot be measured in acidic solvents due to direct protonation of the phenolic oxygen atom 42, which results in no absorption bands. A recent article showed that 42 forms hydrogen bonds with proton donors and thus the E_T scale is a reasonable measure of solvent hydrogen-bond donor ability.133 Nevertheless, solvents of different polarity can indeed provide useful information concerning solute-solvent interactions because of the differences in position, intensity, and shape of absorption bands measured in the different medium.

There have been many other approaches in proposing a solvent polarity scale but in these cases they are restricted because of the limited number of solvents used to establish the polarity scales.¹³⁴ A recent article indicated that the solvent polarity

- ¹³² X. Creary, H. N. Hatoum, A. Barton, and T. E. Aldridge, J. Org. Chem., 57, 1887 (1992).
- ¹³³ C. A. Coleman and C. J. Murray, J. Org. Chem., 57, 3578 (1992).
- a) Z-scale : E. M. Kosower, J. Am. Chem. Soc., 80, 3253 (1958); b) Ω-scale : J. A. Berson, Z. Hamlet, and W. A. Mueller, J. Am. Chem. Soc., 84, 297 (1962); c) X-scale : M. Gielen and J.

K. Dimroth, C. Reichardt, T. Siepmann, and F. Bohlmann, *Liebigs Ann. Chem.*, 661, 1 (1963);
 752, 64 (1971). For improved synthesis of betaine dyes see C. Reichardt and S. Asharin-Fard,
 Angew. Chem. Int. Ed Engl., 30, 558 (1991).

¹²⁹ R. Tang and K. Mislow, J. Am. Chem. Soc., 92, 2100 (1970).

¹³⁰ M. H. Abraham and P. C. Grellier, J. Chem. Soc., Perkin Trans. II, 1735 (1976).

¹³¹ F. Mao, D. R. Tyler, M. R. M. Bruce, A. E. Bruce, A. L. Rieger, and P. H. Rieger, J. Am. Chem. Soc., 114, 6418 (1992).

parameter, δ_N (¹⁴N isotropic hyperfine splitting constant), can be linearly correlated with rate constants in the kinetics of nitroxide radical trapping of carbon centered radicals.¹³⁵ On the other hand, all these parameters constitute a somewhat better measure of solvent polarity than the single physical characteristics since they reflect the intermolecular forces between solute and solvent molecules more reliably.

Despite the observation that single empirical parameters serve as good approximations of solvent polarity, many solvent-sensitive processes do not correlate well with these parameters; our work appears to fall into this category. Plots of either log k_1 or log k_2 vs. several polarity scales including dipole moment, Hildebrand's solubility parameter, Dimroth's E_T values, and refractive index, showed no apparent correlation (Figures 7a, 7b, 11a, 11b).

Nasielski, J. Organomet. Chem., 1, 173 (1963); d) DN scale : V. Gutmann, "The Donor-Acceptor Approach to Molecular Interactions", Plenum Press: New York, 1978; e) AN scale : A. J. Parker, U. Mayer, R. Schmid, and V. Gutmann, J. Org. Chem., 43, 1843 (1978). A. L. J. Beckwith, V. W. Bowry, and K. U. Ingold, J. Am. Chem. Soc., 114, 4983 (1992).

Figure 11a. Plot of log k_1 vs. E_T showing the non-linearity with k_1 . The k_1 values were taken from those solvents at 80°C and which have an E_T value that was measured.

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}{c}
\end{array}{c}
\end{array}{c}
\end{array}$

Figure 11b. Plot of log k_1 vs. $(n^2-1)/(n^2+2)$ showing the non-linearity with k_1 . The k_1 values were taken from those solvents at 80°C.

Log k₁ (or log k₂) against Grunwald's Y values were not plotted because of unavailable Y parameters for the solvents used in our study. An enticing characteristic is found when we plot log k₁ or log k₂ vs. $(D_c-1)/(2D_c+1)$, where D_c is the dielectric constant (Figures 12a and 12b). Table 14 shows the dielectric constants and log k₁ and log k₂ values for the solvents used in this study. The quantitative correlation (r = 0.72 and 0.61 respectively) is not ideal but, in general and with the exception of a few irregular data points, an increase in rate with dielectric constant is shown. This is direct evidence for the existence of an ionized transition state in agreement with our proposals. Several cases in the literature have shown log k vs. $f(D_c)$ plots with few scattered points but a general increase in rate with dielectric constant (positive slope) is observed.¹³⁶ This is demonstrated in Figure 13 (r = 0.82). A similar trend is also observed in other polarity scales (Figures 7a,, 7b, and 11a). These also support the existence of ionized transition states. We serve to point out that any single physical quantity cannot effectively be used as a measure of solvent polarity in our system perhaps due to the multitude and complex

136

a) M. Auriel and E. de Hoffmann, J. Am. Chem. Soc., 97, 7433 (1975); b) M. H. Abraham and P. L. Grellier, J. Chem. Soc., Perkin Trans. II, 1735 (1976).

nature of solute/solvent processes. There are many different kinds of interaction mechanisms between solute and solvent molecules which may act simultaneously.

Table 14. Dielectric and rate constants used in this study. Rate constants were obtained at 80°C. Dielectric constants were taken from *Handbook of Chemistry and Physics*, 73rd ed., D. R. Lide, Ed., CRC Press, 1992-93, p 9-51.

Solvent	(D _c -1)/ (2D _c +1)	log k _l a	log k <u>2</u> a
Decane	0.19	-4.9	-5.3
Decalin	0.22	-5.1	-4.7
<i>p</i> -Xylene	0.23	-5.2	-5.4
1:1 Decalin/Toluene	0.23	-5.1	-5.2
<i>m</i> -Xylene	0.24	-6.0	-5.7
Toluene	0.24	-5.3	-5.0
o-Xylene	0.25	-5.1	-5.4
Bromobenzene	0.37	-5.3	-4.6
Chlorobenzene	0.38	-5.1	-4.9
1,1,2,2-Tetrachloroethane	0.41	-4.7	-4.7
o-Dichlorobenzene	0.43	-5.3	-5.0
Isobutanol	0.46	-4.3	-5.9
2-Chloroethanol	0.47	-4.1	-3.9
DMF	0.48	-3.0	-2.8
DMSO	0.48	-3.4	-3.1

^a rate constants taken from Table 4a.

Figure 12a. Plot of $\log k_1$ against a function of dielectric constant showing the general increase in rate with dielectric constant.

Figure 12b. Plot of log k_2 against a function of dielectric constant showing the general increase in rate with dielectric constant.

Figure 13. Plot of log (k/k_0) vs. $(D_c-1)/(2D_c+1)$ for the Menschutkin reaction between triethylamine and iodoethane showing the scattering of points. A general increase in rate with dielectric constant is also illustrated. Rate constants were taken from reference 1.36 and are relative to *n*-hexane as the slowest solvent.

1. *n*-hexane; 2. cyclohexane; 3. carbon tetrachloride; 4. 1,4-dioxane; 5. benzene; 6. toluene; 7. diethyl ether; 8. iodobenzene; 9. chloroform; 10. bromobenzene: 11. chlorobenzene; 12. ethyl benzoate; 13. ethyl acetate; 14. 1,1,1-trichloroethane; 15. chlorocyclohexane; 16. bromocyclohexane; 17. tetrahydrofuran; 18. 1,1-dichloroethane; 19. 1,1,2,2-tetrachloroethane; 20. dichloromethane; 21. 1,2-dichloroethane; 22. acetophenone; 23. 2-butanone; 24. acetone; 25. propionitrile; 26. benzonitrile; 27. nitrobenzene; 28. *N*,*N* dimethylformamide; 29. acetonitrile; 30. nitromethane: 31. dimethylsulfoxide; 32. propylene carbonate.

2.8,4 MULTIPARAMETER APPROACHES

The quantitative treatment of the effect of solvents requires inclusion of all solvation effects and self-association of the solvents, determined by the solubility parameter. Particularly significant is the role of nonspecific solvation of the reaction complex, due to the polarizability (or polarity) of the medium. To account for two or more aspects of solvation, multiparameter approaches were developed.

Katritzky et al.¹³⁷ employed a linear combination of E_T values and the Kirkwood dielectric function, $(D_c-1)/(2D_c+1)$, where they assumed the dielectric function represents dipole/dipole interactions and where the E_T values represent dipolar interactions and hydrogen bonding factors. Correlations with rates show significant improvements with their multiparameter treatment.

Koppel and Palm¹³⁸ argued that a complete description of solute/solvent interactions should include specific and non-specific effects. A 4-term equation was derived consisting of two specific and two non-specific solvent interaction terms, Eq. (16).

 $A = A_0 + yY + pP + eE + bB$ Eq. (16) A = solvent dependent property $A_0 =$ solvent property in inert solvent Y, P = non-specific parameter E, B = specific parameter

The basis for the Y values is the dielectric constants, for P the refractive index, for E, the Lewis acidity parameter, is based on Dimroth's E_T values, and B, the Lewis basicity parameter is based on the O-D IR stretching bands of CH₃OD.¹³⁹ Over 70 solvent-sensitive processes correlated well¹⁴⁰ with Eq. (16) and in 50 of them, parameter E showed the most importance which reflects the dominance of E_T values (electrophilic solvation) in these processes.¹³⁸ Thus, the authors showed that it is necessary to take into account all four possible solvent-solute interactions in dealing with solvent effects.

¹³⁷ F. W. Fowler, A. R. Katritzky, and R. J. D. Rutherford, J. Chem. Soc., Part B, 460 (1971).

A. Koppel and V. A. Palm, "Advances in Linear Free Energy Relationships", N. B. Chapman and J. Shorter, Eds., Plenum Press: New York, 1972, Chapter 5, p 203.

¹³⁹ T. Kayiya, Y. Sumida, and T. Inoue, Bull. Chem. Soc. Jpn., 41, 767 (1968).

¹⁴⁰ The validity of Eq. (16) was characterized by the standard deviations of the regression coefficients, the correlation coefficient, r, and the relative standard deviation of the correlation.

Kamlet and Taft's¹⁴¹ treatment of multiple solvent effects were similar to Koppel and Palm's treatment. They proposed the multiparameter Eq. (17)

$$A = A_0 + s(\pi^* + d\delta) + a\alpha + b\beta + h\delta_{H^2} + e\xi \qquad Eq. (17)$$

where π^* measures the ability of the solvent to stabilize a charge by its dielectric effect, δ is the polarizability correction term which is 0 for non-chlorinated aliphatic solvents, 0.5 for polychlorinated aliphatic solvents, and 1.0 for aromatic solvents, α and β are similar to Koppel and Palm's Lewis acidity and basicity terms, δ_{H}^2 is the Hildebrand solubility parameter squared which is a measure of the solute/solvent interactions that are interrupted in creating a cavity for the solute, and the ξ parameter is the coordinate covalency measure which is equal to -0.20 for P=O bases, 0 for C=O, S=O, and N=O bases, 0.20 for single-bonded oxygen bases, 0.60 for pyridine bases, and 1.0 for sp³ amines. s, d, a, b, h, and e are the regression coefficients that dictate the importance of that parameter in the overall reaction. As the authors explained, by rationally choosing specific solvents, the multiparameter equation can be reduced to 1, 2, or 3 terms involving different combinations of the parameters.

The parameter, π^* , which is an index of solvent dipolarity/polarizability measuring the ability of the solvent to stabilize a charge by virtue of the solvent dielectric effect, should effectively correlate better than the dielectric constant, D_c, itself. This can be explained by the way the parameters are derived. The term D_c is a macroscopic property of the bulk solvent and does not probe the cybotactic region, whereas π^* values are obtained from probing electronic transitions occurring in the solute organized cybotactic region or solvation shell. The distinction between the cybotactic region and the bulk solvent is shown in Figure 14. The cybotactic region is defined as the region where the solvent is highly organized around the solute molecules. This suggests that in order to describe solvent effects on reaction rates, the solvent polarity scale should reflect or be based on the cybotactic region since the reaction of interest would be most influenced by the cybotactic region rather than the bulk solvent.¹⁴² Grunwald-Winstein's Y values and Dimroth-Reichardt's E_T values are also derived from experiments which probe the cybotactic region of the solvent.

M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham, and R. W. Taft, J. Org. Chem., 48, 2877 (1983). Application of the Kamlet equation has been shown in Diels-Alder reactions : See reference 122e.

¹⁴² B. R. Knauer and J. J. Napier, J. Am. Chem. Soc., 98, 4395 (1976).

Figure 14. Distinction between the bulk solvent and the cybotactic region.

Our attempt to correlate π^* values alone with log k₁ or log k₂ was met with some success. We observe a prevailing increase in rate with the π^* solvent polarity parameter which is indicative of a dipolar mechanism (Figure 15). The lack of good correlation (r = 0.75) of log k₁ or log k₂ with π^* (or even E_T as shown in Figure 12a) can be attributed to the fact that these parameters stem from a particular effect the solvent polarity has on a certain model (reference) chemical process of a certain compound (*cf.* Section 2.8.3). These model processes do not bear any resemblance to our decomposition reaction and hence the parameters do not correlate well with our reaction rates.

Figure 15. Plot of log $k_1 vs$, π^* solvent polarity parameter showing a general increase in rate with π^* . The k_1 values were taken from Table 4 and which have a π^* value that was measured.

Nevertheless, the rate of reaction correlates reasonably well with the non-specific parameters of Koppel and Palm. Since our reaction involves neither acidity or basicity effects of solvents we can neglect the specific parameters in Eq. (16). The equation, therefore, reduces to three terms comprising of the dielectric and refractive index parameters. Multiple regression provides Eqs. (18) and (19) where $f(D_c) = (D_c-1)/((2D_c+1))$ and $f(n^2) = (n^2-1)/(n^2+2)$.
$$\log k_1 = -1.83 + 4.80f(D_c) - 16.15f(n^2) \qquad \text{Eq. (18)}$$
$$\log k_2 = -6.12 + 4.92f(D_c) - 1.11f(n^2) \qquad \text{Eq. (19)}$$

We see that the dielectric term plays a dominant role and the refractive index term plays a negative role in the overall reaction rate. If we increase the polarity of the solvent (*ie.* dielectric constant) the rate increases which is in agreement with our proposed ionic mechanism.

Similarly, we can simplify Kamlet and Taft's equation, Eq. (17), by eliminating the acidity and basicity terms as well as the coordinate covalency parameter. Multiple regression analysis shows that the solubility parameter, $\delta_{\rm H}^2$, plays a very minor role in the rate of reaction and therefore we can neglect that term altogether thus arriving at Eqs. (20) and (21):

 $\log k_1 = -3.88 + 0.83\pi^* - 1.79\delta \qquad \text{Eq. (20)}$ $\log k_2 = -3.47 + 0.18\pi^* - 2.05\delta \qquad \text{Eq. (21)}$

As with the pronounced effect of dielectric constant in the Koppel and Palm treatment, the reaction rate is directly proportional to the π^* parameter here. The greater the value π^* the greater the reaction rate which supports our mechanism involving dipolar intermediates.

We should also note that in the Koppel and Palm approach we used the dielectric constants which are ground-state properties of the bulk solvent and in the Kamlet and Taft illustration we used π^* values which are derived from probing the cybotactic region. Overall, this suggests that although the rates of reactions are mainly influenced by the cybotactic region more than the bulk solvent, we show here that the bulk solvent is meaningful in our system.

2.9 SOLVENT ISOTOPE EFFECT

The solvent isotope effect in the study of reaction kinetics is used to describe changes in a kinetic process when a solvent is replaced by its isotopically substituted counterpart. In most cases, hydrogen is substituted by deuterium but carbon, sulfur, and nitrogen isotopes have also been used. The isotope effect for reactions is used to indicate whether there is a direct or indirect solvent participation in the reaction. A combination of three factors are involved when observing these effects :¹¹⁸

- a) Primary isotope effect where in the rate determining step the bond to the isotopically-labelled atom is broken;
- b) Secondary isotope effect in a solute/solvent interaction where bonds to the isotopically labelled atoms are not broken in the reaction;
- c) The reactants become labelled by fast exchange and the newly labelled molecules cleave in the rate determining step.

Unfortunately, these three factors all operate simultaneously and is thus difficult to differentiate between them.

In general, a reaction shows an increase in rate with unlabelled solvent relative to the labelled solvent if the activated complex becomes charged. Conversely, a reaction that disperses or destroys charge will exhibit an enhanced rate in labelled solvent relative to the unlabelled solvent. The different behaviours are most likely attributed to the difference in polarization of the X-H and X-D bonds where the X-H is more polarizable than X-D. In a charged activated complex, the more polarizable unlabelled solvent will increase the rate of reaction whereas labelled solvent, being less polarizable, will decrease the rate of reaction.

Our study focused on the difference in the observed rate constant in the decomposition of episulfide 28 when ethanol is substituted with ethanol-d. The rate profiles were obtained at 50°C starting with an initial concentration of 1.00 mM of episulfide 28. Figure 16 shows the rate profiles for the two solvent systems.

Figure 16. Rate profile in the decomposition of 28 in ethanol (•) and ethanol- $d(\nabla)$.

By curve-fitting⁹⁷ the rate vs. concentration of episulfide to Eq. (3) k_1 and k_2 values were determined and are listed in Table 15. We observe that the rate of appearance of olefin **29** is faster in the protonated solvent than in the deuterated solvent. This is not inconsistent with our mechanism involving a charged activated complex as it appears the rate determining step in deuterated ethanol is altered, the O-D bond being stronger than the O-H bond. According to our proposed dipolar mechanism, it is possible for the sulfur anion from the unimolecular or bimolecular pathways to abstract the deuterium atom from the labelled solvent. If this is now rate-determining, the production of the alkene would be retarded.

Solvent	k_1 (x 10 ⁵ s ⁻¹)	$\frac{k_2}{(x \ 10^5 \ mM^{-1} \ s^{-1})}$
Ethanol	4.2	0.21
Ethanol-d	1.7	0.17

Table 15. Rate constants derived from Eq. (3) in ethanol and ethanol-d solvents.

The solvent isotope effect can be calculated from taking the ratio of the second order rate constants of the unlabelled and labelled solvent :

 $\frac{k_2(unlabelled)}{k_2(labelled)}$

An isotope ratio of 2.5 and 1.2 is obtained from k_1 and k_2 rate constants respectively which is indicative of a primary isotope effect. The magnitude of the isotope ratio is not uncommon in other studies with ethanol and ethanol-*d* solvents.¹⁴³

Further evidence of hydrogen transfer within this system can be seen from the addition of acetic acid. The rate profile shown in Figure 17 was obtained starting with an initial concentration of episulfide 28 of 1.0 mM and varying the concentration of acetic acid. As the concentration of acetic acid is increased, the rate of decomposition in toluene at 80°C is reduced dramatically. A 6-fold decrease in rate is observed when the concentration of acetic acid is increased by 1.5 times. This is compatible with the abstraction of hydrogen by the sulfur anion intermediates which inhibits further decomposition.

 ¹⁴³ a) J. D. Roberts, W. Watanabe, and R. E. McMahon, J. Am. Chem. Soc., 73, 760 (1951); b) J. D. Roberts, C. M. Regan, and I. Allen, J. Am. Chem. Soc., 74, 3679 (1952).

Figure 17. Effect of adding acetic acid in the decomposition of 28.

2.10 EFFECT OF RADICAL INHIBITOR

We extended our mechanistic efforts by studying the effect of radical inhibitors on the decomposition of thiirane 28. If the rate is slowed, then we could conclude that the reaction possibly follows a radical-type mechanism. Rates were determined by ¹H NMR by following the increase in the appearance of alkene 29 in toluene- d_8 at 80°C with and without addition of a radical inhibitor. The bimolecular rate constants were used for comparison of reaction rates and are shown in Table 16 for two different radical inhibitors, acetanilide and styrene. The addition of either inhibitor, even at 2.2-2.7 times more concentrated than 28, showed no significant change in the rate thus demonstrating the unlikelihood of a radical mechanism. Thus, it can be concluded that an ionic mechanism is likely operative in the decomposition of 28.

	$k_2 (x \ 10^5 \text{ mM}^{-1} \text{ s}^{-1})$
No inhibitor	0.38 ± 0.09
Acetanilide	0.34 ± 0.07
Styrene	0.33 ± 0.07

Table 16. Second order rate constants obtained from appearance of **29** in toluene- d_8 at 80°C with and without addition of radical inhibitor.

2.11 EFFECT OF ADDED SULFUR

Huisgen demonstrated that the desulfurization of triphenylthiirane by sodium thiophenoxide is inhibited by the interaction of the eliminated sulfur.¹⁴⁴ Kinetic analysis by ¹H NMR showed that the addition of sulfur suppresses the rate of decomposition of the thiirane. In the presence of sulfur, the thiophenoxide anion reacts with sulfur forming polythiolate anions; hence diminishing active thiophenoxide which would otherwise desulfurize the thiirane. There was no mention of the possibility that the thiirane could also react with the added sulfur presumably because the thiophenoxide would be a better nucleophile. In our kinetic studies, no external nucleophile was employed and we therefore, decided to see if our particular thiirane would interact with sulfur which would be present in the early stages of the reaction.

We compared the rate of increase of olefin 29 with an experiment in which elemental sulfur was added prior to the addition of thiirane and we measured the rate of increase of 29. Our studies on the effect of adding sulfur in the decomposition of thiirane 28 indicated that sulfur did not inhibit the rate of decomposition. Figure 18 shows the effect of adding 0.2 mM of sulfur to the reaction while monitoring the increase in concentration of olefin 29 in chlorobenzene at 80°C. It is clearly seen that sulfur has no effect on the rate and therefore does not seem to interact with 28.

¹⁴⁴ R. Huisgen, "Developments in the Organic Chemistry of Sulfur", Proceedings of the XIII International Symposium on the Organic Chemistry of Sulfur, Odense, Denmark, C.T. Pedersen and J. Becher, Eds., Gordon and Breach Science Publishers, 1989, p 63.

Figure 18. The increase in olefin 29 in the thermolysis of thiirane 28 in chlorobenzene at 80° C. • 0.2 mM sulfur added; ∇ no sulfur added.

Moreover, no significant change in rate is observed if one varies the concentration of sulfur added. We see that the rate changes by only two-fold if we vary the concentration of sulfur by 62-fold (Table 17). The small difference in rate can be attributed to the random errors in the determination of the rates.

Conc. S ₈ (mM)	Rate (x 10 ⁵ mM s ⁻¹)
0.021	0.11
0.063	0.12
0.10	0.12
0.21	0.14
0.26	0.15
0.52	0.16
0.78	0.20
1.04	0.20
1.31	0.21

Table 17. Rate of appearance of olefin **29** at various concentrations of added sulfur. Initial concentration of thiirane 28 = 0.20 mM.

It is known that elemental sulfur reacts with alkenes to give sulfurated products as well as episulfides.¹⁴⁵ The synthesis of stable episulfides, however, resulted from reacting the alkene with elemental sulfur in refluxing DMF. Under these conditions we would expect to favor formation of olefin **29** rather than thiirane **28** which is thermally unstable.

^{a) R. Sato, M. Nakayama, Y. Yuzawa, T. Goto, and M. Saito, Chem. Lett., 1887 (1985); b) P. D. Bartlett and T. Ghosh, J. Org. Chem., 52, 4937 (1987); c) W. Ando, H. Sonobe, and T. Akasaka, Tetrahedron Lett., 28, 6653 (1987); d) J. Nakayama, Y. Ito, and A. Mizumura, Sulfur Lett., 14, 247 (1992). See also W. A. Pryor, "Mechanisms of Sulfur Reactions," McGraw-Hill, 1962, Chapter 5.}

CHAPTER 3

SYNTHESIS, STRUCTURE AND REACTIVITY

3.1 INTRODUCTION

The majority of synthetic studies on thiiranes is devoted not only to develop novel methods of synthesis but also to modify the classical methods in order to improve the range of reagents used and to improve the yields. There have been numerous studies on the effect of reaction conditions in the formation and yields of thiiranes. With the discovery of new thiolating agents, it has been possible to design new non-traditional methods of synthesis.

3.1.1 CONVERSION FROM OXIRANES

One of the most important and frequently used methods to prepare thiiranes is the reaction of oxirane with thiourea or alkali metal thiocyanates (Scheme 16).¹⁴⁶ The yields are high and the products are easily isolable. The accepted mechanism of reaction with thiocyanate involves a nucleophilic attack by the thiocyanate resulting in a C-O bond cleavage intermediate, followed by an intramolecular S to O cyano migration and ring closure (Scheme 16).¹⁴⁷

¹⁴⁶ S. Searles, E. F. Lutz, H. R. Hays, and H. E. Mortensen, Org. Synth., 42, 59 (1962).

a) M. G. Ettlinger, J. Am. Chem. Soc., 72, 4792 (1950); b) E. E. van Tamelen, J. Am. Chem. Soc., 73, 3444 (1951); c) C. C. Price and P. F. Kirk, J. Am. Chem. Soc., 75, 2396 (1953).

A similar mechanism can be envisaged using thiourea (Scheme 17). The stereochemistry is preserved and the optically active (R,R) oxirane gives optically active (S,S) thiirane. A number of new thiiranes with a variety of substituents have thus been obtained which were previously unavailable.^{51a,94d,111,148} This reaction is slow if the oxirane ring is tri- or tetra-substituted or if the substituents are electron withdrawing. Most thiirane products are unstable due to the ease of sulfur elimination if substituents are electron withdrawing. However, thiiranes containing electron attracting substituents have been synthesized.¹⁴⁹

Other sulfur reagents have been successfully employed in the preparation of thiiranes. Triphenylphosphine sulfide in the presence of acid has been used with success to convert the corresponding oxiranes to thiiranes with retention of configuration.¹⁵⁰ Silyl thiirane was formed by interaction of the corresponding oxirane with 3-methylbenzothiazole-2-thione (43) (Scheme 18).¹⁵¹

a) H. Bouda, M. E. Borredon, M. Delmas, and A. Gaset, Synth. Comm., 17, 943 (1987); b) R. L.
 Pederson, K. K. C. Liu, J. F. Rutan, L. Chen, and C. H. Wong, J. Org. Chem., 55, 4897 (1990).

¹⁴⁹ R. Ketcham and V. P. Shah, J. Org. Chem., 28, 229 (1963).

a) T. H. Chan and J. R. Finkenbine, J. Am. Chem. Soc., 94, 2880 (1972); b) T. H. Chan and J. R. Finkenbine, Int. J. Sulfur Chem., 8, 45 (1973); c) W. E. Childers and C. H. Robinson, J. Chem. Soc., Chem. Comm., 320 (1987). See also J. R. Finkenbine, Ph.D. thesis, McGill University, June 1974.

¹⁵¹ G. Barberi, J. Organomet. Chem., 117, 157 (1976).

The perhydrobenzothiazole-2-thione derivative has also been implemented.¹⁵² One of the most effective new thiono compounds is dimethyl thioformamide which has been used to prepare thiiranes.¹⁵³ Also effective are 2-mercaptobenzothiazole¹⁵⁴ and 5-mercapto-1-phenyltetrazole.¹⁵⁵

3.1.2 CONDENSATION OF DIAZO COMPOUNDS

Coupling of diazo compounds with thiocarbonyls is one of the oldest methods to prepare thiiranes. Between 1916-1920, Staudinger reported the formation of thiirane from diazo compounds with thiocarbonyls.^{49,156} An unstable 1,2,3 or 1,3,4 thiadiazoline was postulated as an intermediate which is converted to the thiirane with the concomitant evolution of nitrogen (Scheme 19).

The reactions in these systems can easily be accounted for by initial formation of a carbene.¹⁵⁷ This method has been employed with a wide range of both diazo reagents and

¹⁵² R.C. Cambie, G. D. Mayer, P. S. Rutledge, and P. D. Woodgate, J. Chem. Soc., Perkin Trans. I, 52 (1981).

¹⁵³ T. Takido, Y. Kobayashi, and K. Itabashi, Synthesis, 779 (1986).

¹⁵⁴ V. Calò, L. Lopez, and G. Pesce, Gazz. Chim. Ital., 109, 703 (1979).

E. Lippmann, D. Reifegerste, and E. Kleinpeter, Z. Chem., 17, 60 (1977).

a) H. Staudinger and F. Pfenninger, Chem. Ber., 49, 1941 (1916); b) H. Staudinger and J. Siegwart, Helv. Chem. Acta, 3, 833 (1920).

¹⁵⁷ N. Latif and I. Fathy, J. Org. Chem., 27, 1633 (1962).

thioketones resulting in many different thiiranes.^{361,158} Grignard reagents¹⁵⁹ and phenyl(trihalogenmethyl) mercury compounds⁶⁶ have also been used as sources of carbenes to prepare thiiranes.

3.1.3 OTHER METHODS

Thiiranes have also been prepared by other methods which include the addition of sulfur to alkenes¹⁶⁰ although the yields are low, pyro- and photolytic methods^{79b,161}, as well as reactions involving ring cyclization *via* a thiolate anion.¹⁶² A convenient synthesis of thiiranes is the addition of sulfenyl chlorides to alkenes followed by ring closure.¹⁶³ A new method was discovered by Zipplies¹⁶⁴ in which the reaction of dimethylaniline oxide with CS₂ in the presence of alkenes produced thiiranes. The reaction of thioaldehyde 44 with a Wittig reagent also gives thiirane (Scheme 20).¹⁶⁵ 2-Hydroxyalkanesulfenyl chlorides are converted stereospecifically to thiirane with triphenylphosphine;¹⁶⁶ diethoxy triphenylphosphorane was used to transform a 2-hydroxythiol to a thiirane.¹⁶⁷ An unusual class of thiiranes, vinylthio substituted thiiranes (45), has recently been synthesized using sulfenyl chlorides in the presence of

^{a) M. Tashiro, S. Makata, and S. Ischi,} *Heterocycles*, 12, 184 (1979); b) M. S. Raasch, J. Org. Chem., 44, 632 (1979); c) G. L'abbe, J. P. Dekerk, C. Martens, and S. Toppet, J. Org. Chem., 45, 4366 (1980); d) E. Schaumann, H. Behr, G. Adwidjaja, A. Tangerman, B. H. M. Lammerink, and B. Zwanenberg, *Tetrahedron*, 37, 219 (1981); e) T. Furuhata and W. Ando, *Tetrahedron Letts.*, 28, 1179 (1987); f) K. Rall and W. Sundermeyer, J. Fluorine Chem., 47, 121 (1990).

¹⁵⁹ a) R. C. Moreau, Bull. Chim. Soc. Fr., 1044 (1955); b) P. Beak and J. W. Worley, J. Am. Chem. Soc., 94, 597 (1972).

^{a) S. Inoue, T. Tczuka, and S. Oac,} *Phosphorus Sulfur*, 4, 219 (1978); b) J. Emsley, D. W. Griffiths, G. J. J. Jayne, *J. Chem. Soc., Perkin Trans. I*, 228 (1979); c) C. Bertaïna, R. Fellous, F. Lemaire, and R Stringat, *Tetrahedron Letts.*, 26, 5521 (1985); d) J. Joseph, R. K. Gosavi, A. Otter, G. Kotovych, E. M. Lown, and O. P. Strausz, *J. Am. Chem. Soc.*, 112, 8670 (1990).

a) H. Quast and A. Fuss, Angew. Chem. Int. Ed. Engl., 20, 291 (1981); b) A. Krebs, W. Rüger, and W. H. Nickel, Tetrahedron Letts., 22, 4937 (1981).

^{a) R. C. Cambie, P. S. Rutledge, G. A. Strange, and P. D. Woodgate,} *Heterocycles*, 1501 (1982);
b) M. Michalska, E. Brzeziñska, and P. Lipka, J. Am. Chem. Soc., 113, 7945 (1991); c) J. Uenishi, M. Motoyama, Y. Nishiyama, and S. Wakabayashi, J. Chem. Soc., Chem. Comm., 1421 (1991).

<sup>a) F. K. Lautenschlaeger and N. V. Schwartz, J. Org. Chem., 34, 3991 (1969); b) F. K.
Lautenschlaeger, J. Org. Chem., 34, 3998 (1969); c) T. Fujisawa and T. Kobori, Chem. Lett.,
935; 1065 (1972); d) M. U. Bombala and S. V. Ley, J. Chem. Soc., Perkin Trans. I, 3013 (1979);
c) J. M. Majewski and J. Zakrzewski, Tetrahedron Lett., 22, 3659 (1981); f) W. A. Smit, N. S.
Zefirov, and I. V. Bodrikov, "Organic Sulfur Chemistry," R. K. Friedina and A. E. Skorova,
Eds., Pergamon Press, 1981, p 159.</sup>

¹⁶⁴ M. F. Zipplies, M.-J. De Vos, and T. C. Bruice, J. Org. Chem., 50, 3228 (1985).

¹⁶⁵ E. Vedejs, D. A. Perry, and R. Wilde, J. Am. Chem Soc., 108, 2985 (1986).

¹⁶⁶ J. E. Baldwin and D. P. Hesson, J. Chem. Soc., Chem. Comm., 667 (1976).

¹⁶⁷ R. L. Robinson, J. W. Kelly, and S. A. Evans, Phosphorus Sulfur Relat. Elem., 31, 59 (1987).

alkynes and a boron superhydride.¹⁶⁸ More recently, thiiranes were prepared utilizing a reaction involving a dithioiminocarbonate and thiazoline with aldehydes promoted by fluoride ion.¹⁶⁹

3.2 SYNTHESIS OF 2,2-DICHLORO-3-[9-FLUORENYL] EPISULFIDE (28)

As stated above, one of the more convenient methods of preparing fluorenyl substituted thiiranes is the coupling reaction of 9-diazofluorene with a thioketone. This was first reported by Staudinger and Siegwart⁴⁹ in which thiirane **28** was first prepared using their procedure. The diazo compound is obtained by oxidation of its corresponding hydrazone. A variety of hydrazones and their corresponding diazofluorenes are easily obtained by the method described by Baltzly and coworkers.¹⁷⁰ Following their procedure, readily available 9-fluorenone was easily converted to its hydrazone by treatment with hydrazine monohydrate in refluxing *n*-butanol followed by oxidation with

¹⁶⁸ G. Capozzi, L. Gori, and S. Menichetti, *Tetrahedron*, 47, 7185 (1991).

¹⁶⁹ Y. Tominaga, H. Ucda, K. Ogata, S Kohra, M. Hojo, M. Ohkuma, K. Tomita, and A. Hosomi, *Tetrahedron Lett.*, 33, 85 (1992).

¹⁷⁰ R. Baltzly, N. B. Mehta, P. B. Russell, R. E. Brooks, E. M. Grivsky, and A. M. Steinberg, J. Org. Chem., 26, 3669 (1961).

mercuric oxide to 9-diazofluorene (46). Thiirane 28 is obtained by reacting 46 with thiophosgene at 0° C following Staudinger's procedure (Scheme 21).

3.3 SYNTHESIS OF 2,2-DICHLORO-3-[2-FLUORO-9-FLUORENYL] EPISULFIDE

In our quest to synthesize fluorene-substituted thiiranes in order to further examine the mechanism of sulfur extrusion, we extended Staudinger's synthetic methodology by attempting to synthesize the fluoro fluorenyl thiirane derivative 49. Our initial strategy was to not alter the structure of the parent thiirane 28 at the 2 or 3 positions but rather putting a substituent on the fluorenyl ring system so that the reactivity of the compound will almost be similar to the parent thiirane. The simplicity of readily available monosubstituted fluorenones allowed us to attempt to prepare the thiiranes in three steps. We initiated work on 2-fluoro-9-fluorenone. The disadvantage is that the electronegative fluorine should decrease the stability of the thiirane. 2-Fluoro fluorenyl hydrazone (47) was prepared and consequently converted to its diazo compound 48 following Baltzly's approach.¹⁷⁰ Subsequent reaction of 48 with thiophosgene gave a ~3:1 ratio of olefin 50 to thiirane 49 (Scheme 22). Several attempts to prepare 49 were unsuccessful most likely due to the instability of the 3-membered heterocyclic ring with the additional fluorine atom (*cf.* Section 3.7).

3.4 METHYL- AND METHOXYFLUORENYL SUBSTITUTED EPISULFIDES

Our efforts turned to methyl- and methoxy-fluorenyl substituents. Unfortunately, alkyl or alkoxy substituted fluorenones are not readily available and thus had to be synthesized. The preparation of 3,6-dimethoxy-9-fluorenone was reported by Schuster and coworkers in 1985.¹⁷¹ The advantage of this particular compound is the symmetrical aspect of the dimethoxy fluorenone which permitted us to easily characterize and identify the intermediates via ¹H and ¹³C NMR. The synthesis involves a reaction between a Grignard reagent and an oxazoline followed by deprotection and intramolecular cyclization. giving the disubstituted fluorenone. The synthesis of the dimethoxyaryloxazoline 52 was accomplished by the procedure described by Meyers and coworkers¹⁷² and is shown in Scheme 23. The first step requires protection of the carboxyl substituent. The 2-oxazoline group was suitable protection for the carboxyl function because of its resistance to Grignard reagents which would be used in a subsequent step in the synthesis.¹⁷³ Meyers has recently extended his methodology to the synthesis of 2-substituted napthalenes.¹⁷⁴ The acid chloride was prepared from 2,4dimethoxy-benzoic acid by treatment with thionyl chloride and which, in turn, was transformed to the benzamide 51 by treatment with 2-amino-2-methylpropanol (Scheme

¹⁷¹ C. Chuang, S. C. Lapin, A. K. Schrock, and G. B. Shuster, J. Am. Chem. Soc., 107, 4238 (1985).

¹⁷² A. I. Meyers, R. Gabel, and E. D. Mihelich, J. Org. Chem., 43, 1372 (1978).

a) A. I. Meyers, D. L. Temple, D. Haidukewych, and E. D. Mihelich, J. Org. Chem., 39, 2787 (1974); b) A. I. Meyers, A. Meier, and D. J. Rawson, Tetrahedron Lett., 33, 853 (1992).

¹⁷⁴ T. C. Gant and A. I. Meyers, J. Am. Chem. Soc., 114, 1010 (1992).

23). The 2-oxazoline **52** is then prepared by cyclization of **51** with thionyl chloride followed by chromatographic purification.

With 52 in hand, a nucleophilic aromatic substitution reaction with 3methoxyphenylmagnesium bromide was performed to yield the biphenyl 53 (Scheme 24). The Grignard reagent was easily prepared by heating 3-bromoanisole and magnesium metal in refluxing THF. It should be noted that the methoxy substituent ortho to the oxazoline is preferentially displaced over the para methoxy group, owing to the versatility of the oxazoline moiety acting also as an activating group. Substitution is facilitated at the ortho position apparently because of direct chelation of nitrogen (and/or possibly oxygen) and the methoxy oxygen with the magnesium.^{173a} The biphenyl compound 53 was deprotected via the intermediate methiodide salt 54 and removal of the oxazolinium moiety was accomplished by alkaline hydrolysis to give the biphenyl carboxylic acid 55. A milder method for converting oxazolines to carboxylic acids was recently described by Phillion and co-workers¹⁷⁵ in which trifluoromethanesulfonic anhydride was employed followed by alkali saponification. Poly(phosphoric) acid cyclization¹⁷⁶ of 55 gave 2 isomeric compounds, 3,6-dimethoxy-9-fluorenone (56) and 1,6-dimethoxy-9-fluorenone which were easily separated.

¹⁷⁵ D. P. Phillion and J. K. Pratt, Syn. Comm., 22, 13 (1992).

¹⁷⁶ J. Koo, J. Am. Chem. Soc., 75, 1891 (1953).

Conversion of the symmetrical fluorenone 56 to the 9-diazofluorene compound 58 via hydrazone 57 is relatively straightforward following the procedure of Baltzly.¹⁷⁰ The synthesis of 2,2-dichloro-3-(3,6-dimethoxy-9-fluorenyl) thiirane (59), to our knowledge, has never been reported in the literature.

Treatment of the red diazo compound 58 with this phosene at 0° C gave only compound 60 as a red solid in 37% yield. In another attempt to prepare this 59,

hydrazone **57** was converted directly without isolation of the diazo compound. This route would minimize generation of azine side products which was observed if diazo compound **58** was isolated. Azines are known to form readily from diazo compounds¹⁷⁷ and hydrazones.¹⁷⁸ However, this method proved unsatisfactory as olefin **60** was the only product isolated. This was confirmed by ¹³C NMR.

The methodology outlined above was extended allowing us to possibly prepare other substituted fluorenyl thiiranes. Following the general procedure in the preparation of **59**, it was decided this approach will be used with other arylsubstituted Grignard reagents in hopes of affording several new substituted fluorenones. Snieckus and coworkers described a convenient route to substituted fluorenones by a remote aromatic metalation strategy.¹⁷⁹ Substituted fluorenones are also known to be biologically and physiologically active compounds.¹⁸⁰ For example, 2,7-*bis*(*N*,*N*-diethylaminoethoxy) fluoren-9-one dihydrochloride (Tilorone) (**61**) is an interferon inducer and exhibits antiviral activity.¹⁸¹

From the appropriate Grignard reagents, 2-oxazolines 65, 66, and 67 were obtained from treatment with 2-methylphenylmagnesium bromide (62), *p*-tolylmagnesium bromide (63), and phenylmagnesium bromide (64) respectively. The oxazolines were deprotected affording the biphenyl carboxylic acids 68, 69, and 70 which were converted to their disubstituted fluorenones 71, 72, and 73 *via* intramolecular poly(phosphoric) acid cyclization. These were then converted to their mixture of isomeric hydrazones 74, 75, and 76 by treatment of the ketone with hydrazine hydrate. Oxidation of the hydrazones afforded the red diazo compounds 77, 78, and 79 which

a) H. H. Szmant and C. McGinnis, J. Am. Chem. Soc., 72, 2890 (1950); b) S. G. Cohen, F. Cohen, and C. H. Wang, J. Org. Chem., 28, 1479 (1963); c) C. J. Abelt and J. M. Pleier, J. Am. Chem. Soc., 111, 1795 (1989); d) M. H. Sugiyama, S. Celebi, and M. S. Platz, J. Am. Chem. Soc., 114, 966 (1992).

¹⁷⁸ V. M. Kolb, A. C. Kuffel, H. O. Spiwek, and T. E. Janota, J. Org. Chem., 54, 2771 (1989).

¹⁷⁹ J.-M. Fu, B.-P. Zhao, M. J. Sharp, and V. Snieckus, J. Org. Chem., 56, 1683 (1991).

a) E. P. Kyba, S.-T. Liu, K. Chockalingam, and B. R. Reddy, J. Org. Chem., 53, 3513 (1988); b)
 A. W. Nicholas, M. C. Mani, G. Manikumara, M. E. Wall, K. W. Kohn, and Y. Pommier, J.
 Med. Chem., 33, 972 (1990).

¹⁸¹ R. F. Krueger and G. D. Mayer, *Science*, 169, 1213, 1214 (1970).

were not isolated but immediately treated with thiophosgene *in situ* in an attempt to prepare the fluorenyl substituted thiiranes (Scheme 25). In all three cases, the 3-methoxy substituted derivatives gave only the corresponding olefins, 83, 84, and 85. These compounds were confirmed by ¹H and ¹³C NMR and MS analyses. This is not surprising in view of the presence of the activating substituents (*cf.* Section 3.7).

Scheme 25

We further expanded our efforts by applying the Meyers methodology¹⁷² to prepare oxazoline **87**. Thus, the carboxyl group of 2,3-dimethoxybenzoic acid was converted to its acid chloride followed by conversion to its corresponding benzamide (**86**). Treatment with thionyl chloride afforded **87**.

Oxazoline 87 was treated with 4-methoxyphenylmagnesium bromide (88) to give biphenyl 90 (Scheme 26). Deprotection of the oxazoline moiety via the methiodide salt and aqueous sodium hydroxide gave the carboxylic acid 92. 2,5-Dimethoxyfluorenone, 94, was synthesized by poly(phosphoric) acid catalyzed cyclization of 92. To our knowledge, this fluorenone derivative has not been prepared previously. Transformation of the ketone to hydrazone 96 was performed by reacting with hydrazine monohydrate in refluxing ethanol. The hydrazone was oxidized to the diazo compound 97 with mercuric oxide which was then treated with thiophosgene to yield, after chromatography, thiirane 98. Satisfactory 1 H and 13 C NMR spectra were obtained.

Following a similar procedure, the Grignard reaction between oxazoline 87 and 2methoxyphenylmagnesium bromide (89) gave the dimethoxybiphenyl 91. Deprotection produced the carboxylic acid 93. 4,5-Dimethoxyfluorenone (95) was then prepared from 93 via intramolecular cyclization initiated by poly(phosphoric) acid. To our knowledge, fluorenone 95 has been synthesized for the first time. Derivatization to its hydrazone, however, proved very difficult. In refluxing ethanol or ethylene glycol containing hydrazine monohydrate, only the starting ketone was recovered. No further attempt to convert the ketone to its hydrazone was performed. The synthesis of the 3-methyl fluorenyl derivative involved another approach. In the preparation of the previously described methoxy substituted derivatives, it required an ortho methoxy substituted benzoic acid as starting material which was readily available. However, 2-methoxy-4-methyl benzoic acid required to make the 3-methyl fluorenyl compound was not readily available. The preparation of the fluorenones entailed a Grignard coupling reaction followed by an internal cyclization under acidic conditions. However, with suitable 2-aminobenzophenone compounds, the carbonyl functionality is already in place. Under standard Pschorr-type cyclization conditions, the ortho amino group is converted to the diazonium group and ring closure is easily effected by uncatalyzed intramolecular C-C bond formation to the other ortho position in the other ring. The Pschorr-type reaction has been used to synthesize a variety of substituted fluorenone and azafluorenones.^{180a}

Thus, 2-amino-4-methylbenzophenone (99) in 2N HCl was treated with aqueous sodium nitrite to obtain the diazonium intermediate. After heating in refluxing THF, 3-methylfluorenone (100) was obtained (Scheme 27). Conversion to the hydrazone 101 was straightforward but then an attempt to prepare thiirane 102 failed and the corresponding olefin product 103 was obtained exclusively. The presence of olefin was confirmed by ^{13}C NMR, MS and elemental analysis.

Scheme 27

3.5 DIARYL EPISULFIDES

A related molecule, 2,2-dichloro-3,3-diphenylthiirane (110), was successfully synthesized following the procedure described by Staudinger and Siegwart.⁴⁹ This compound has the advantage in that the 3-membered ring heterocycle is predicted to be more stable than the fluorenyl substituted compound because of it being less strained. The degree of aromaticity is less than that of the fluorenyl group. Starting with benzophenone (104), the hydrazone 106 and the diazo derivative 108 were easily prepared by known methods¹⁷⁰ and readily converted to **110** as white crystals (Scheme 28). Confirmation of the structure was obtained from the X-ray crystal structure of the compound.¹⁸² Figure 19 shows the ORTEP representation and Table 18 shows selected bond lengths and bond angles. As predicted, the phenyl groups are not co-planar and are arranged in such a fashion as to minimize their interaction. The thiirane ring structure is unsymmetrical as seen from the slightly shorter C(1)-S bond compared to the C(2)-S bond. The C(1)-C(2) bond length, however, was found to be characteristically shorter than those found in the literature^{11,12} but the length is comparable to others.^{13b,183} Similarly, the 4,4'-dimethoxybenzophenone thiirane derivative (111) was also prepared using the same procedure but was found to decompose readily at room temperature as predicted with the presence of the moderately activating methoxy groups.

Figure 19. ORTEP representation of 2,2-dichloro-3,3-diphenyl episulfide (110).

- 182 We gratefully acknowledge Dr. Rosie Hynes, McGill University for obtaining the X-ray crystallographic data.
- 183 N. V. Riggs, U. Zoller, M. T. Nguyen, and L. Radom, J. Am. Chem. Soc., 114, 4354 (1992).

Bond lengths (Å)	
Cl (1) - C(1)	1.781(23)
Cl (2) - C(1)	1.80(23)
S -C (1)	1.773(24)
S - C (2)	1.830(22)
C (1) - C (2)	1.43(3)
Bond Angles (⁰)	
C (1) - S - C (2)	46.6(11)
Cl (1) - C (1) - Cl (2)	106.2(13)
Cl (1) - C (1) - S	116.3(13)
Cl (1) - C (1) - C (2)	124.1(19)
Cl (2) - C (1) - S	116.1(13)
Cl (2) - C (1) - C (2)	121.1(15)
S - C (1) - C (2)	68.8(14)
S - C (2) - C (1)	64.6(12)

Table 18. Selected bond lengths and bond angles for 2,2-dichloro-3,3-diphenyl episulfide (110). Estimated σ s refer to the last digit.

Scheme 28

3.6 SYNTHESIS OF 2,2-DICHLORO-3-DIBENZOSUBERONYL EPISULFIDE

The synthesis of dibenzosuberone episulfide has never been accomplished previously. As such, we attempted to synthesize it following a similar procedure described previously in the preparation of thiirane 28.

Initial attempts to prepare the hydrazone from readily available dibenzosuberone (112) in refluxing *n*-butanol were unsuccessful. In these reactions, only the alcohol 113 was obtained (Scheme 29). Under identical reaction conditions, the analogous alcohol 117 from dibenzosuberenone (116) was obtained (Scheme 30). Furthermore, only Wolff-Kishner reduction products 114 and 118 were isolated when 98% hydrazine was used as the reagent under refluxing ethylene glycol. However, dibenzosuberone was easily derivatized to its hydrazone 115 using hydrazine monohydrate in refluxing

ethylene glycol for 2 hr.¹⁸⁴ Further refluxing gave 114. Similarly, dibenzosuberenone (116) gave 118 after 24 hr reflux in ethylene glycol. We can conclude that temperature, time of reaction, and strength of the hydrazine reagent are all vital in the preparation of dibenzosuberone hydrazone (115). This is rather surprising in view of the similarities between 112 and 9-fluorenone.

We also attempted to extend the above methodology to synthesize hydrazones of anthrone (119) and anthraquinone (120). However, after several attempts, we were unable to isolate any desired products. In some experiments, anthracene (121) was the only isolated product (Scheme 31). Anthracene most likely arose from prolonged heating. The starting ketones were reduced to their corresponding alkanes which would rapidly aromatize.

¹⁸⁴ H. H. Szmant and C. E. Alciaturi, J. Org. Chem., 42, 1081 (1977).

With dibenzosuberone hydrazone (115) in hand, it was conveniently oxidized to its analogous diazo compound 122 as violet crystals. Conversion to its 2,2-dichloro thiirane 123 was straightforward by treatment with thiophosgene to afford straw yellow crystals (Scheme 32).

The structure was confirmed by obtaining the X-ray crystallographic data¹⁸² of **123** which shows some interesting features (Figure 20). As with compound **110**, the thiirane ring is slightly unsymmetrical and the C(1)-C(2) bond length of 1.507(8)Å is in agreement with other thiirane ring systems. The dihedral angle between the planes of both aryl groups was determined to be $60.1(3)^{\circ}$ indicating the non planarity of the rings. Table 19 shows the selected bond lengths and bond angles for **123**.

Figure 20. ORTEP representation of 2,2-dichloro-3-dibenzosuberonyl episulfide (123).

Bond lengths (Å)	
Cl (1) - C(1)	1.763(6)
Cl (2) - C(1)	1.761(6)
S-C(1)	1.769(6)
S - C (2)	1.844(6)
C (1) - C (2)	1.507(8)
Bond Angles ()	
C (1) - S - C (2)	49.2(3)
Cl (1) - C (1) - Cl (2)	109.5(3)
Cl (1) - C (1) - S	117.3(3)
Ci (1) - C (1) - C (2)	119.6(4)
Cl (2) - C (1) - S	118.2(3)
Cl (2) - C (1) - C (2)	119.1(4)
S - C (1) - C (2)	68.0(3)
S - C (2) - C (1)	62.8(3)

1

1

Table 19. Selected bond lengths and bond angles for 2,2-dichloro-3dibenzosuberonyl episulfide (123). Estimated σ s refer to the last digit.

3.7 REACTIVITY OF FLUORENYL SUBSTITUTED EPISULFIDES

The study of the reactivity of substituted derivatives of 28 entailed measuring the possible loss of sulfur when heated in toluene at 80° C for 45 min. The unsubstituted thiirane 28, as expected, converted entirely to its corresponding olefin. If our proposed mechanism has as the slow step (unimolecular path) the ionization of the C-S bond (Scheme 14), the reaction would be predicted to lose sulfur much faster in the presence of activating groups on the fluorenyl ring system since these substituents would stabilize the developing cation. In the presence of deactivating groups, the dipolar intermediate would be unfavourable and we would not expect the compound to lose sulfur as easily.

The inability to cleanly isolate the fluoro substituted derivative 49 is consistent with our argument. The fluorine atom could stabilize the dipolar intermediate via resonance¹⁸⁵ and therefore, it could facilitate desulfurization. On the other hand, its deactivating properties or its inductive effect should destabilize the intermediate and thus 49 should not desulfurize. Our experiments show that a mixture of 49 and 50 was obtained which is in agreement with our qualitative argument. The appearance of both 49 and olefin 50 dictates that the inductive effects of fluorine and the resonance contributing factors of fluorine plus the resonance effects of the fluorenyl ring system are equally capable of governing the stability of 49.

A similar explanation can be envisioned for the failure to synthesize thiiranes 59, 80, 81, and 82. The presence of methoxy activating substituents would stablize the proposed cationic intermediate and enhance its decomposition. The presence of additional activating methyl groups in 80 and 81 further increases desulfurization. The synthesis of 2,5 dimethoxy substituted fluorenyl thiirane 98 was successful, although in very poor yield. Initial studies show that when 98 was heated at 80°C for 2 hr, no desulfurization occurred. Although the two methoxy substituents present in 98 would enhance desulfurization by its resonance effect, a closer examination of the resonance

¹⁸⁵ R. G. Pews, J. Am. Chem. Soc., 89, 5605 (1967).

contributors could explain why we do not observe any desulfurization (Figure 21). In order for **98** to desulfurize, resonance structures I or II should be fairly stable. However, these resonance structures destroy the overall aromaticity of the ring system and therefore, both I and II should make relatively unimportant contributions to the resonance description of the cation. Conversely, resonance contributor III (Figure 21) in compounds **59**, **80**, **81** or **82** does not disrupt the aromaticity of the entire ring system and hence, should be a major resonance contributor. Desulfurization should, therefore, occur. Furthermore, it was discovered that introduction of only a methyl substituent at the 3-position of the fluorenyl group in **28** (compound **102**) causes desulfurization as expected. The methyl activating group would stabilize the carbonium ion in the fluorenyl ring skeleton thereby increasing the rate of desulfurization.

Figure 21. Resonance structures for compounds 98 and 82 in a unimolecular desulfurization pathway.

A very interesting characteristic was observed when we studied the reactivity of the diphenyl substituted thiiranes 110 and 111. The advantages of having thiirane 110 or 111 is that synthesis consists of three relatively easy steps in which the thiirane can be obtained pure and in high yield and the precursors as well as the thiirane are stable for months in the refrigerator without noticeable decomposition. We can predict the relative stability of 110 and 111 vs. 28 on the basis of their structures. We find that, unlike 28, 110 does not desulfurize when heated at 80°C for 45 min. This observation can be explained by the differences in the aromatic systems which influence their ability to promote the cation generated in the unimolecular rate determining step. The planar fluorenyl group in 28 can delocalize the cation more efficiently than the non-coplanar phenyl groups of 110 (Figure 19). It is known from solvolysis reactions of alkyl chlorides containing either the fluorenyl or biphenyl aromatic systems that the fluorenyl substituent is a better transmitter of π electrons in stabilizing carbonium ions. The phenyl groups, meanwhile, are less effective in stabilizing the incipient carbonium ion since the π system is twisted out of the plane.¹⁸⁶ The phenyl groups in **111** are also noncoplanar which will inhibit their effectiveness at stabilzing the incipient carbocation. However, the 4,4'-dimethoxyphenyl-substituted derivative **111** was found to decompose spontaneously in solution. The para activating methoxy groups would be more effective at stabilizing the carbonium ion and, therefore, facilitate desulfurization.

2,2-Dichloro-3-dibenzosuberonyl episulfide (123) did not desulfurize under the reaction conditions (2 hr, 80°C) but was found to desulfurize, although to a 50% extent, when heated at 100°C for eight days. After seventeen days, approximately 75% had decomposed. This is not surprising as we would predict from the structure (Figure 20) that with two methylene groups bridging the phenyl groups, the π system becomes more planar than the diphenyl or the dimethoxydiphenyl systems but less than that of the fluorenyl system. The aryl groups in 123 are ~60° out of the plane and the phenyl groups in 110 are > 60° out of the plane whereas the fluorenyl group in 28 is planar. Since the fluorenyl system decomposes readily while the diphenyl system does not desulfurize, we would expect some decomposition to occur with 123 but at a very slow rate.

a) R. Bolton, M. E. Jones, and S. W. Tucker, J. Chem. Soc., 1464 (1964); b) R. Bolton, J. Chem. Soc., 1542 (1965); c) R. Bolton and R. E. M. Burley, J. Chem. Soc., Perkin Trans. II, 426 (1977); d) Y. Tsuno, Y. Tairaka, M. Sawada, and T. Fujii, Bull. Chem. Soc. Jpn., 51, 601 (1978).

Consequently, we can summarize the aromatic systems in increasing order of reactivity :

diphenyl < dibenzosuberonyl < fluorenyl

and

4,4'-Dimethoxydiphenyl would be predicted to be more reactive than fluorenyl since the activating methoxy groups would override the resonance effect of the planar fluorenyl ring system.

Qualitatively, we can state that amongst the substituted fluorenyl derivatives the increasing order of reactivity would be as follows :

fluorenyl < 2,5-dimethoxyfluorenyl < 2-fluorofluorenyl < 3-methylfluorenyl < 3-methoxyfluorenyl < 3-methoxy-5-methylfluorenyl = 3-methoxy-7-methylfluorenyl < 3,6-dimethoxyfluorenyl.

CHAPTER 4

DIATOMIC SULFUR EXTRUSION

4.1 INTRODUCTION

It has been proposed that in some instances sulfur extrusion in organic reactions proceeds in a manner which involves a chelotropic loss of a sulfur atom.¹⁸⁷ Such a process, however, seems unfavorable due to the high energy of formation (66.3 kcal/mol) of a sulfur atom.¹⁸⁸ Sulfur extrusion must, therefore, proceed through other transient species of much lower energy. Such a species could be in the form of diatomic sulfur which would combine to form stable elemental sulfur.¹⁸⁹

4.2 BRANCH-BONDED SULFUR ATOMS

One of the more attractive mechanisms in sulfur extrusion reactions was first conceived by Foss in 1950.¹⁹⁰ The initial step involves the combination of two sulfur species followed by a transfer of a sulfur atom forming a thiosulfoxide-type intermediate **124**. This intermediate could acquire more sulfur atoms, thereby lengthening the sulfur chain. At any intermediate step, the chain could cyclize to form stable species of sulfur. The thiosulfoxide moiety and the concatenation of sulfur atoms mechanism is well discussed in the literature.^{98,187e,191}

a) W. E. Parham and V. J. Traynelis, J. Am. Chem. Soc., 77, 68 (1955); b) A. Padwa, D. Crumrine, and A. Shubber, J. Am. Chem. Soc., 88, 3064 (1966); c) R. Grigg, R. Hayes, and J. L. Jackson, J. Chem. Soc., 1167 (1969); d) W. H. Mueller, J. Org. Chem., 34, 2955 (1969); c) K. J. Miller, K. F. Moschner, and K. T. Pous, J. Am. Chem. Soc., 105, 1705 (1983).

^{188 &}quot;JANAF Thermochemical tables," Dow Chemical Co., Midland, Mich., 1966, plus later supplements to 1976.

¹⁸⁹ D. N. Harpp, *Perspectives in the Organic Chemistry of Sulfur*, B. Zwanenburg, A. J. H. Klunder, Eds., Elsevier: Amsterdam, 1987, pp 1-22.

¹⁹⁰ O. Foss, Acta. Chem., Scan., 4, (1950).

<sup>a) F. Scel and D. Gölitz, Z. Anorg. Chem., 32 (1964); b) G. Höfle and J. E. Baldwin, J. Am. Chem. Soc., 93, 6307 (1971); c) R. D. Baechler and S. K. Daley, Tetrahedron Lett., 101 (1978);
d) R. D. Baechler, S. K. Daley, B. Daly, and K. McGlynn, Tetrahedron Lett., 105 (1978); c) D. N. Harpp, K. Steliou, and C. J. Cheer, J. Chem. Soc., Chem. Comm., 825 (1980); f) G. W. Kutney and K. Turnbull, Chem. Rev., 82, 333 (1982); g) M. Green, E. M. Cown, and O. P. Strausz, J. Am. Chem. Soc., 106, 6938 (1984); h) W. Ando, H. Sonobe, and T. Akasaka, Tetrahedron Lett., 31, 5093 (1990).</sup>

Gleiter¹⁹² studied the loss of sulfur from thiepins and concluded that the extrusion of sulfur proceeds *via* rearrangement to a thiirane intermediate **125** followed by the linking of sulfur atoms to give intermediate **126** which would eventually lose elemental sulfur. The extrusion of S_2 or S_8 would be an energetically more favorable pathway than explusion of other forms of sulfur.

In the addition adduct of dimethylthiophene and singlet oxygen 127, Matturro¹⁹³ described that the decomposition of 127 involved the elimination of elemental sulfur by a concatenation of sulfur atoms. Similarly, Huisgen¹⁹⁴ suggested that in the thermal decomposition of trithiolane 128 a thiobenzophenone-S-sulfide (129) is formed which undergoes abstraction of sulfur atoms leading to the formation of S₈ and thiobenzophenone.

¹⁹² R. Gleiter, G. Krennrich, D. Cremer, K. Yamamoto, and I. Murata, J. Am. Chem. Soc., 107, 6874 (1985).

¹⁹³ M. J. Matturro, R. P. Reynolds, R. V. Kastrup, and C. F. Pictroski, J. Am. Chem. Soc., 108, 2775 (1986).

¹⁹⁴ R. Huisgen and J. Rapp, J. Am. Chem. Soc., 109, 902 (1987).

In a more recent article, Kamata and coworkers isolated a tetrathiane in the reaction of *cis*- or *trans*-2,3-diphenylthiirane with a catalytic amount of tris(p-bromophenyl)aminiumhexachloroantimonate in dichloromethane.¹⁹⁵ The proposed mechanism of formation involved a thiirane cation radical abstracting a sulfur atom from another thiirane cation radical resulting in a two sulfur species cation radical 130 with a concomitant release of stilbene. Further linkage of two more sulfur atoms gave intermediate 131 which cyclized affording the tetrathiane 132.

128

. 195

M. Kamata, K. Murayama, T. Suzuki and T. Miyashi, J. Chem. Soc., Chem. Comm., 827 (1990). The tetrathiane was confirmed by X-ray crystallography.

4.3 DIATOMIC SULFUR PRECURSORS

The rapid development in singlet oxygen chemistry has initiated considerable interest in its analogous sulfur species, ${}^{1}S_{2}$. Singlet oxygen is known to play an important role in many biological processes and the possibility of emulating singlet oxygen chemistry with singlet sulfur is being actively developed. Singlet diatomic sulfur, ${}^{1}S_{2}$, has so far been found to be a valuable synthetic tool for organic chemists. Its important in organic synthetic chemistry and drug synthesis has been reviewed by Steliou.¹⁹⁶

A wide variety of methods for the generation of ${}^{1}S_{2}$ has been employed in recent years and is discussed in a recent account.¹⁹⁷ Several unsuccessful approaches have been tried where ${}^{1}S_{2}$ is implicated but in these cases, no trapped products were identified.^{145b,198} A seemingly simply route to ${}^{1}S_{2}$ would be to imitate the phosphine

K. Steliou, Y. Gareau, G. Milot, and P. Salama, *Phosphorus, Sulfur, and Silicon*, C. T. Pedersen and J. Becher, Eds., Gordon and Breach, Science Publishers Inc.: England, 1989, pp 209-241.

¹⁹⁷ K. Steliou, Acc. Chem. Res., 341 (1991).

<sup>a) D. L. Smith, University Microfilms, Ann Arbor, Mich., 77-11451; b) A Orahovatz, M. J. Levinson, P. J. Carroll, M. V. Lakshmikanthan, and M. P. Cava, J. Org. Chem., 50, 1550 (1985);
c) W. Ando, Y. Kumamoto, N. Tokitoh, Tetrahedron Lett., 28, 4833 (1987); d) J. E. Bishop, S. A. Dagam, and H. Rapoport, J. Org. Chem., 54, 1876 (1989).</sup>

ozonide method in the generation of ${}^{1}O_{2}$,¹⁹⁹ However, thiozone is not a readily accessible form of sulfur,²⁰⁰

The first synthetically useful ${}^{1}S_{2}$ precursor was reported by Steliou.²⁰¹ The reaction of an organometallic trisulfide with triphenylphosphine dibromide gave ${}^{1}S_{2}$ which was captured as a Diels-Alder adduct (Scheme 34). Two intermediates were postulated in the reaction. A thiozone intermediate **133** analogous to a thiozonide²⁰² as well as the six-membered species depicted in **134**. Later, the same authors discovered another precursor to ${}^{1}S_{2}$. This method was based on a novel head-to-head dimerization of 2,2'-bis(thiobenzoyl)biphenyl (**135**) generated from 2,2'-bis(benzoyl)biphenyl in the presence of generated B₂S₃. A dithietane intermediate which has been postulated could spontaneously release ${}^{1}S_{2}$ and 9,10-diphenylphenanthrene (Scheme 35).²⁰³ To date, this route remains the most efficient means for generating diatomic sulfur.

a) "Singlet Oxygen", H. H. Wasserman and R. W. Murray, Eds., Academic Press: New York, 1979; b) W. Herz and R.-R. Juo, J. Org. Chem., 50, 618 (1985).

a) T. Ghosh and P. D. Bartlett, J. Am. Chem. Soc., 110, 7499 (1988); b) R. Sato, S. Satoh, and M. Saito, Chem. Lett., 139 (1990).

²⁰¹ K. Steliou, Y. Gareau, and D. N. Harpp, J. Am. Chem. Soc., 106, 799 (1984).

²⁰² P. D. Bartlett and C. M. Lonzetta, J. Am. Chem. Soc., 105, 1984 (1983).

²⁰³ K. Steliou, P. Salama, D. Brodeur, and Y. Garcau, J. Am. Chem. Soc., 109, 926 (1987).

Scheme 35

Although the 1,2-dithietane was inferred as an intermediate, no stable isolated 1,2-dithietane was known until Nicolaou and coworkers synthesized and isolated dithiatopazine (136), the first example of a 1,2-dithietane.^{60a} When 136 was heated to 100°C, it smoothly delivered diatomic sulfur which was trapped with 2,3-diphenyl-1,3-butadiene to give the cyclic disulfide and the corresponding olefin 137.²⁰⁴

²⁰⁴ K. C. Nicolaou, C.-K. Hwang, S. DeFrees, and N. A. Stylianides, J. Am. Chem. Soc., 110, 4868 (1988).

Schmidt and Görl showed unequivocally that a tetrachalcogen 138 undergoes thermal decomposition with ring contraction to transfer S_2 which was trapped by 2,3-dimethyl-1,3-butadicne.²⁰⁵

The most recent generation of ${}^{1}S_{2}$ was reported by Harpp and MacDonald in which a variety of organometallic pentasulfides (Scheme 36) fragmented in the presence of triphenylphosphine dibromide. Ejected ${}^{1}S_{2}$ species were trapped by dienes to afford the cyclic disulfides.²⁰⁶

Scheme 36

Another pathway towards the production of ${}^{1}S_{2}$ has been reported involving an anthracene endodisulfide.^{145c,191h} However, it is unclear whether the trapped products were actually isolated as the yields were based on the amount of recovered product.

4.4 ATTEMPTS TOWARDS TRAPPING ${}^{1}S_{2}$ in 2,2-Dichloro-3-(9-Fluorenyl) Episulfide (28)

As previously mentioned (cf. Chapter 1.8.2), thiiranes undergo sulfur extrusion under a variety of conditions to form elemental sulfur and their corresponding olefin. In conjunction with our studies on the mechanism of sulfur extrusion of thiiranes, we studied the possibility that diatomic sulfur could be lost in the thermal decomposition of

²⁰⁵ M. Schmidt and U. Görl, Angew. Chem. Ind. Ed., 9, 887 (1987).

²⁰⁶ D. N. Harpp and J. G. MacDonald, J. Org. Chem., 53, 3812 (1988).

thiirane 28. We have proposed that the mechanism of sulfur extrusion in 28 and possibly in other thiiranes follows a pathway that involves branch-bonded sulfur atoms (Scheme 14). It is quite conceivable that during the thermal decomposition ${}^{1}S_{2}$ can be extruded as shown in Scheme 37.

Rapid oligomerization of these transient species would form the more stable S_6 or S_8 . Therefore, our attention focussed on heating a sample of thiirane 28 in the presence of a diene trap. A number of reactions were performed under a variety of conditions including solvent, temperature, time of reaction, and diene trap. Table 20 summarizes the different reaction conditions er ployed. In all cases, no trapped cyclic disulfide was isolated. Only elemental sulfur and the corresponding alkene 29 was isolated. The addition of *cis*-1,2-dichloroethylene (entry 11) also gave the alkene 29, elemental sulfur and recovered trapping agent. The thermal decomposition of 2,2-dichloro-3,3-(4,4'-dimethoxydiphenyl) episulfide (111) in CDCl₃ in the presence of Danishefsky's diene^{207,208} (1-methoxy-3-trimethylsilyloxy-1,3-butadiene) also gave elemental sulfur and its corresponding olefin with no indication of any trapped product. The unsuccessful urapping of a ${}^{1}S_{2}$ species suggests the more favorable pathway preferred is the continuous abstraction of sulfur atoms until a 6 or 8 sulfur atom chain is achieved which cyclizes to release S_6 or S_8 (Scheme 14). If ${}^{1}S_2$ is indeed released, then the failure to trap it can be

²⁰⁷ S. Danishefsky and T. Kitahara, J. Am. Chem. Soc., 96, 7807 (1974).

²⁰⁸ S. Danishefsky, C.-F. Yan, R. K. Singh, R. B. Gammill, P. M. McCurry, Jr., N. Fritsch, and J. Clardy, J. Am. Chem. Soc., 101, 7001 (1979).

		Temperature	Time		
Entry	Solvent	<u>(°C)</u>	<u>(hr)</u>	Trapping Reagent	
1	Decalin	100	2	2,3-diphenyl-1,3-butadiene	
2	Decalin	60	3.5	2,3-dimethyl-1,3-butadiene	
3	Decalin	190	3	2,3-diphenyl-1,3-butadiene	
4	Benzene	80	2	2,3-diphenyl-1,3-butadiene	
5	Benzene	80	2	Danishefsky's diene ^a	
6	Toluene	111	6	2,3-diphenyl-1,3-butadiene	
7	1,4 Dioxane	100	3	2,3-dimethyl-1,3-butadiene	
8	DME	85	3	2,3-dimethyl-1,3-butadiene	
9	DME	25	24	Danishefsky's diene	
10	CH ₂ Cl ₂	25	3	2,3-dimethyl-1,3-butadiene	
11	CH ₂ Cl ₂	25	24	cis-1,2-dichloroethylene	
12	THF	67	2	Danishefsky's diene	
13	THF	25	2	b	

Table 20. Reaction conditions in the thermal decomposition of 28.

a 1-methoxy-3-trimethylsilyloxy-1,3-butadione

^b 1-methoxy-2,4-dimethyl-3-trimethylsilyloxy-1,3-butadiene

HPLC analysis²⁰⁹ of a sample of thiirane 28 heated in refluxing toluene for 2.5 hr showed that S_6 and S_8 were, in fact, produced. The retention times indicate that the S_6 peak is not due to residual amounts of undecomposed 28. Peak areas do not represent relative concentrations of the various products but also on the extinction coefficients at 254 nm. Figure 22a is chromatogram of thiirane 28 in chloroform solution and Figure 22b is a

We gratefully acknowledge Prof. Ralf Steudel and Stefan Förster, Technische Universität Berlin, Institut für Anorganische und Analytische Chemie, Sekr. C2, D-1000 Berlin 12 : or performing the analysis. A UV absorbance detector at $\lambda = 254$ nm was used. chromatogram after the reaction. The thiirane is totally converted to its corresponding olefin and the presence of S_6 and S_8 in the reaction mixture is clearly seen. Any S_7 produced would be hidden under the olefin peaks. The sulfur rings suggest they originated from chain-like polysulfanes and for energetic reasons, seem not to be derived from S_2 species.

Figure 22. a) HPLC chromatogram showing pure thiirane 28; b) HPLC chromatogram after 2.5 hr in refluxing toluene showing olefin 29 and peaks due to presence of S_6 and S_8 .

135

4.5 DIMERIZATION OF SODIUM CYANODITHIOFORMATE

In 1955, Bähr and Schleitzer reported the synthesis of sodium cyanodithioformate salts (139) by reaction of sodium cyanide with carbon disulfide in dimethylformamide solution (Scheme 38).²¹⁰ These sodium salts were found to spontaneously dimerize to give disodium dimercaptomaleonitrile (140) and elemental sulfur.²¹¹ A likely mechanism for this unique reaction is the head-to-head dimerization of the thiocarbonyl functionalites (Scheme 39) resulting in a 1,2 dithietane intermediate which would eliminate ¹S₂. Thiocarbonyls usually undergo dimerizations or trimerizations in a headto-tail manner.²¹² It was demonstrated by Steliou¹⁵⁶ that a head-to-head dimerization of two thiones can be effected which eliminates ${}^{1}S_{2}$. However, careful attempts to trap ${}^{1}S_{2}$ with dienes failed and only elemental sulfur was obtained in 49% yield.

²¹⁰ G. Bähr and G. Schleitzer, Chem. Ber., 88, 1771 (1955).

²¹¹ a) G. Bähr, Angew. Chem., 68, 525 (1956); b) G. Bähr and G. Schleitzer, Chem. Ber., 90, 438 (1957).

²¹² a) P. S. Fraser, L. V. Robbins, and W. S. Chilton, J. Org. Chem., 39, 2509 (1974); b) L. Field, Synthesis, 713 (1978); c) K. Oka, A. Dobashi, and S. Hura, Tetrahedron Lett., 21, 3579 (1980).

4.6 CHLORINATION OF TETRAMETHYL THIURAM DISULFIDE

The chlorination of tetramethylthiuram disulfide (141) gives N,N-dimethyl thiocarbamyl chloride with concomitant extrusion of two sulfur atoms. This reaction was observed by Cava in 1983.²¹³ A conceivable mechanism for this reaction is depicted in Scheme 40. The initial step would be electrophilic attack of sulfuryl chloride giving 1 mole of thiocarbamyl chloride. Rearrangement of electrons would then give the second mole of thiocarbamyl chloride with evolution of sulfur dioxide and extrusion of ${}^{1}S_{2}$. If sulfur is released as ${}^{1}S_{2}$ then in the presence of diene, this species could be trapped. Table 21 summarizes the various reaction conditions that were attempted to see if ${}^{1}S_{2}$ could be obtained from 141. It was found that in the ¹H NMR spectrum of the reaction carried out at room temperature using SO₂Cl₂ or Cl₂ (entries 3, 4, 5, 8) showed minor peaks that is consistent with those of the cyclic disulfide adducts as well as the tetrasulfide products.^{172,214} However, careful chromatographic procedures gave only the tetrasulfide product in low yield. The main problem encountered in reactions using chlorine gas as the chlorinating reagent is the direct chlorination of the diene which may inhibit possible ¹S₂ addition. Chlorine gas is known to react with 1,3-dienes.²¹⁵ In cases with SO₂Cl₂, SO₂ may also be trapped to give 3,4 dimethyl sulfolene. This would also hinder any formation of Diels-Alder adducts. The possibility that SO_2 or Cl_2 can react with ${}^{1}S_{2}$ is also likely although this reaction is not precedented in the literature. No reaction took place when only diene was added to the thiuram disulfide.

141

²¹³ K.-Y. Jen and M. P. Cava, J. Org. Chem., 48, 1449 (1983).

C. R. Williams, Ph.D. thesis, McGill University, June 1991.

a) M. L. Poutsma, J. Org. Chem., 88, 4167 (1966); b) E. Z. Said and A. E. Tipping, J. Chem. Soc., Perkin Trans. I, 1986 (1972); c) M.-C. Lasne and A. Thuillier, Bull. Chem. Soc. Fr., 1142 (1974).

Table 21. Reaction conditions for the chlorination of tetramethylthiuram disulfide.

		Temp.	Reaction	Chlorinating	Trapping
Entry	Solvent	(°C)	Time (hr)	Reagent	Reagent
1	Toluene	111	24	SO ₂ Cl ₂	a
2	CDCl ₃	61	24	SO ₂ Cl ₂	ь
3	CCl₄	25	24	SO ₂ Cl ₂	a
4	CCl₄	25	24	Cl ₂	a
5	CCl₄	25	2.5	SO ₂ Cl ₂	a
6	CCl₄	-20	2	Cl ₂	a
7	CCl₄	60	24	none	а
8	CCl₄	60	24	Cl ₂	а
9	CCl₄	77	15.5	SO ₂ Cl ₂	a
10	CCl₄	77	2.5	SO ₂ Cl ₂	none

a 2,3-dimethyl-1,3-butadiene; b 1,4-dichloro-1,3-butadiene

It is also possible that the observation of disulfide and tetrasulfide adducts could arise from sulfuration of the diene. Sulfur is known to react with alkenes to afford products containing cyclic thianes.^{145,2006} We discount this pathway because in a separate reaction of N_iN -dimethylthiocarbamyl chloride in the presence of diene and elemental sulfur, no reaction occurred after 3 days. Hence, we feel that the presence of cyclic disulfide and tetrasulfide products in our reaction mixtures came from Diels-Alder trapping of diatomic sulfur.

A proposed mechanism of formation of the di- and tetrasulfide adducts would be as follows (Scheme 41). The S₂ species that is generated (Scheme 40) is trapped in a Diels-Alder type reaction (path A) or a combination of two S₂ species would form the cyclic tetrasulfide adduct (path B).

Scheme 41

CONCLUSIONS AND CONTRIBUTIONS TO ORIGINAL KNOWLEDGE

A detailed kinetic study on the thermal decomposition of 2,2-dichloro-3-[9fluorenyl] episulfide (28) was undertaken. Strong evidence towards the nature of the desulfurization process is given which could pertain to the overall desulfurization mode of thiiranes in general. The kinetic analysis enables us to derive a two-term rate equation consisting of a first and second order term with respect to concentration that governs the decomposition reaction. A plausible mechanism is proposed to account for the observed rate behaviour. At low concentrations, the dominant pathway is unimolecular involving C-S bond fission in the rate determining step. At high concentrations, the bimolecular portion of the rate equation becomes more important and it is this pathway that becomes the rate determining step.

An extended solvent study in 15 different media at different temperatures supports our proposed ionic mechanism. Activation energies, enthalpies, entropies, and free energies were determined and evaluated with respect to differences in solvation of the ground and transition states. The integrity of calculated rate constants and Arrhenius parameters were also assessed. A true isokinetic relationship which showed good linearity was found. This observation allows us to deduce that the desulfurization of thiiranes proceeds by the same mechanism in all solvents. Stereochemical aspects were also addressed to an extent where we can possibly predict the stereochemical outcome of thiirane decomposition reactions. Rates of reaction were found to be directly proportional to the dielectric constant of the bulk solvent as well as the π^* scale of Kamlet and Taft. While clean linearity was not observed, the plot as a function of dielectric constant was comparable with similar published work.

A solvent isotope effect showed a decrease in the overall rate when deuterium is substituted for hydrogen in ethanol. The rate of desulfurization is also observed to decrease in the presence of acetic acid. Both studies are consistent with a dipolar ionic mechanism. A radical mechanism is ruled out from a rate study in the presence of radical inhibitors.

À. A Several novel 9-fluorenones were synthesized including 3-methoxy-5-methyl-9-fluorenone (71), 3-methoxy-7-methyl-9-fluorenone (72), 2,5-dimethoxy-9-fluorenone (94), and 4,5-dimethoxy-9-fluorenone (95). These fluorenones and other mono and disubstituted fluorenones were used in an attempt to prepare unique 2,2-dichloro-3-[substituted fluorenyl] thiiranes. Only 2,2-dichloro-3-(2,5-dimethoxy-9-fluorenyl) thiirane (98) was synthesized in ten steps. Syntheses of 2,2-dichloro-3,3-(4,4'-dimethoxy)diphenyl episulfide (111) and 2,2-dichloro-3-dibenzosuberonyl episulfide (123) were achieved for the first time.

The X-ray crystal structures of 2,2-dichloro-3,3-diphenyl episulfide (110) and 2,2-dichloro-3-dibenzosuberonyl episulfide (123) were also obtained for the first time.

The thermally induced reactions of thiirane 28 and sodium cyanodithioformate (139) were also investigated as possible precursors to diatomic sulfur. In either case, no indication of diatomic sulfur was found under various conditions. When tetramethylthiuram disulfide, in the presence of 1,3-dienes, was treated with SO_2Cl_2 or Cl_2 , it afforded products that were consistent with the trapping of diatomic sulfur, albeit in low yield.

CHAPTER 5

EXPERIMENTAL

5.1 GENERAL METHODS

Melting points (Mp.) were determined using a Gallenkamp melting point apparatus using open end capillaries and are uncorrected. UV spectra were recorded on a Phillips Pye Unicam PU8800 UV-Vis spectrophotometer equipped with an Accuron PSX 876 Series 2 temperature programme controller. Low resolution electron impact (EI) mass spectra were obtained on a Dupont Instruments 21-492B or Kratos MS25RFA mass spectrometer equipped with a 70eV ionizing energy source and used in direct-inlet mode. Elemental analyses were performed by Guelph Chemical Laboratories Ltd. (Guelph, Ontario).

¹H NMR spectra were recorded on either the Varian XL200 or XL300 spectrometers using deuteriochloroform as the reference solvent unless otherwise indicated. The assignments were compared with literature values or based on homonuclear decoupling experiments. Multiplicity assignments are recorded using the following abbreviations : s, singlet; d, doublet; t, triplet, q, quartet; m, multiplet; br, broad. ¹³C NMR spectra were obtained at 75.4 MHz using the Varian XL300, 67.9 MHz using the JEOL CPF-270, or at 50.3 MHz using the Varian Gemini-200 spectrometers. The ¹³CDCl₃ (δ 77.00), ¹³C₆D₆CD₃ (δ 20.4), ¹³CD₃OD (δ 49.00), CD₃COCD₃ (δ 29.8) and ¹³CD₂Cl₂ (δ 53.80) signals were used as references in these solvents. In some cases, APT experiments were used to determine peak assignments. ¹⁹F NMR spectra are reported relative to external dichlorodifluoromethane and were not proton decoupled.

Infrared spectra were recorded on an Analect Instruments ASQ-18 FTIR spectrometer equipped with an Analect Instruments MAP-67 Data System and displayed on a RAM-56 color monitor. Spectra are reported in wavenumbers (cm⁻¹). Raman spectra were recorded on a S. A. Ramonor spectrometer equipped with a U-1000 double monochromator and a Spectra-Physics Argon ion laser at 514.5 nm or a Bruker IFS-88 FT Raman spectrometer equipped with a ND:YAG laser operating at 300 mW with a 4 cm⁻¹ resolution and are also reported in wavenumbers.

High performance liquid chromatography (HPLC) was performed courtesy of Prof. Ralf Steudel and Stefan Förster, Technische Universität Berlin, Institut für Anorganische und Analytische Chensie, Sekr. C2, D-1000 Berlin 12, Germany.

Hexanes was distilled over 7% by volume sulfuric acid and passed through an alumina column before use. Methylene chloride was distilled from P₂O₅. Tetrahydrofuran was distilled from sodium benzophenone ketyl. Isobutanol, 2chloroethanol, toluene, and o-dichlorobenzene were purified by distillation from calcium hydride and stored over 4Å molecular sieves prior to use. All other solvents were used as purchased from Aldrich Chemical Company without further treatment. DMSO was stored over 4Å molecular sieves. o-Xylene, m-xylene, and p-xylene were HPLC grade quality. Thin layer chromatography (tlc) was performed using Kieselgel 60 F₂₅₄ plates with polyester backing and visualized by UV and/or dipping in a solution of ammonium molybdate (2.5 g) and ceric sulfate (1.0 g) in 10% v/v aqueous sulfuric acid (100 ml), followed by heating. Flash column chromatography was performed using Kieselgel 60 (Merck 70-230-mesh) silica gel. Chromatographic solvent mixtures are volume/volume percentages. Experiments requiring inert atmospheric conditions were done using prepurified nitrogen.

5.2 UV RATE MEASUREMENTS

The rates of decomposition were measured by following the increase in UV absorption of **29** on a Phillips Pye Unicam PU8800 UV/Vis spectrophotometer equipped with an Accuron PSX 876 Series 2 temperature programme controller. Quartz UV cells (Hellma Canada Ltd.) containing the solvent were allowed to equilibrate for 10-15 mins. at the desired temperatures prior to injection of the samples. The samples were injected *via* Hamilton syringes and the cells were capped, shaken and placed in the cell compartments. The absorbances were measured at various time intervals at $\lambda = 325$ nm and at a bandwidth of 2 nm. The method of initial rates was used in calculating observed rate constants.

5.3 ¹H NMR RATE MEASUREMENTS (RADICAL INHIBITOR STUDY)

Rates were measured on a Varian XL300 spectrometer using toluene- d_8 as the reference solvent. A 5mm (diameter) NMR tube was containing the inhibitor dissolved in toluene- d_8 was allowed to equilibrate at 80°C for 5-10 mins. in the sample probe prior to adding the episulfide. The episulfide was injected and immediately placed in the sample probe. ¹H NMR spectra were acquired at various intervals over a period between 12 - 16 hr. All spectra were obtained by acquiring 64 transients. The rates were calculated first by calculating the ratio of the peak heights measured at 8.3 ppm (in cm) and the peak height of toluene. Assuming the episulfide was completely converted to the olefin, the ratio of peak heights of the final spectrum would equal the initial

concentration of episulfide. Thus, the concentration of olefin at any time was easily obtained. By plotting the concentration vs. time, the second order rate constant, k_2 , can be calculated using the initial rate method. The first order rate constant was assumed to be negligible since the initial concentration of the episulfide ranged from ca, 6 - 16 mM.

5.4 PREPARATION OF 2,2-DICHLORO-3-[9-FLUORENYL] EPISULFIDE

9-Fluorenone hydrazone

To a solution of 7 g (39 mmol) of 9-fluorenone in 40 ml of n-butanol, 5 ml of 85% aqueous hydrazine monohydrate was added. After 4 hrs of reflux, the hot solution was poured into 100 ml of methanol. The resulting yellow mixture was allowed to cool yielding 7.2 g of hydrazone as yellow needles which was purified

by recrystallization with methanol (95%). Mp. 152 - $155^{\circ}C$ (lit.¹⁷⁰ Mp. 152°C). ¹H NMR (200 MHz, CDCl₃) : δ 6.40 (s, 2H, NNH₂), 7.3 - 7.91 (m, 8H, aromatic). ¹³C NMR (50.3 MHz, CDCl₃) : δ 119.6, 120.6, 120.8, 125.6, 127.8, 128.0, 128.6, 129.8, 130.3, 137.8, 138.7, 141.4, 145.7. MS m/z (rel. intensity) 194 (M⁺⁺, 100), 177 (11), 151 (12), 139 (9), 165 (85).

9-Diazofluorene (46)

To 2.0 g (64 mmol) of 45 in 125 ml anhydrous ether, 0.5 g KOH was added and the mixture was stirred vigorously. Yellow mercuric oxide (18.4 g, 85 mmol) was added in 4 portions with each of the orange mixtures stirred until a brown sludge became visible.

The solution was decanted after each addition. The clear purple solution was then dried over MgSO₄ and evaporated under reduced pressure furnishing deep orange crystals. After recrystallization with pentane, the yield of **46** was 1.42 g (71%). Mp. 94 - 96.5°C (lit.¹⁷⁰ Mp. 99°C). ¹H NMR (200 MHz, CDCl₃) : δ 7.27 - 7.43 (m, 4H), 7.51 (d, 2H), 7.94 (d, 2H). ¹³C NMR (50.3 MHz, CDCl₃) : δ 119.4, 121.1, 124.7, 126.5, 131.6, 133.1. The carbene carbon resonance could not be observed. MS m/z (rel. intensity) 192 (M⁺⁺, 30), 164 (M⁺⁺ - N₂, 100).

2,2 Dichloro-3-[9-fluorenyl] episulfide (28)

To 2.5 g (13 mmol) of 46 suspended in 50 ml petroleum ether, 1 ml (13 mmol) of thiophosgene in 5 ml petroleum ether was added dropwise with the reaction being kept at 0° C. The red suspension turned orange upon slow addition of the thiophosgene and the evolution of nitrogen was apparent. After a few minutes, straw yellow needles began to appear. After allowing the solution to

warm to room temperature for 1 hr, the mixture was filtered off yielding 2.2 g (61%) of the episulfide. The ¹³C NMR showed that **28** was pure and no minor peaks were

observed. Mp. 89 - 91°C (lit.49 Mp. 97°C). ¹H NMR (200 MHz, CDCl₃) : 8 7.29 (dt, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.45 (dt, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, $J_1 = 7.6$ Hz), 7.54 (dd, 2H, $J_2 = 1.2$ Hz), 7.54 (dd, 2H, J_2 = 1.2 Hz), 7.54 (dd, 2H, J_2 = 1.2 Hz), 7.54 7.6 Hz, $J_2 = 1.2$ Hz), 7.75 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz). ¹³C NMR (75.4 MHz, CD_2Cl_2) : δ 60.3, 77.3, 120.6, 126.6, 127.3, 130.2, 140.7, 142.3. MS m/z (rel. intensity) 278 (M⁺⁺, 2), 246 (M⁺⁺ - S, 100), 208 (95). Raman : 652 cm⁻¹.

1,1 Dichloro-2-[9-fluorenyl] ethylene (29)

A solution of 28 (0.15 g, 0.53 mmol) in 8 ml toluene was heated at reflux for 2.5 hr. The reaction was monitored by analytical thin layer chromatographic plates measuring 6.5 cm x 2.0 cm (hexanes eluent) for the presence of sulfur $(R_f = .58)$ and the corresponding olefin ($R_f = .45$). After evaporating the solvent, the

sulfur and olefin are then isolated by silica gel chromatography (hexanes eluent). The first fraction was collected and identified to be sulfur. It was obtained after evaporating the hexanes under reduced pressure. Isolated yield of sulfur = 16.6 mg (97%), Mp, 111 - 111.5°C. The second fraction was identified to be 29. Isolated yield of olefin 29 = 92.8 mg (70%). Mp. 128 - 130°C. ¹H NMR (200 MHz, CDCl₃) : δ 7.31 (dt, 2H, J₁ = 7.5 Hz, $J_2 = 1.4$ Hz), 7.39 (dt, 2H, $J_1 = 7.5$ Hz, $J_2 = 1.4$ Hz), 7.70 (dd, 2H, $J_1 = 7.5$ Hz, $J_2 = 1.4 \text{ Hz}$), 8.32 (dd, 2H, $J_1 = 7.5 \text{ Hz}$, $J_2 = 1.4 \text{ Hz}$). ¹³C NMR (75.4 MHz, CDCl₃) : δ 119.6, 122.3, 125.8, 127.5, 129.1, 134.2, 136.5, 140.2. MS m/z (rel. intensity) 250 (11), 248 (64), 246 (M^{+*}, 100), 176 (M^{+*} - 2xCl, 70.9), 123 (16), 105 (15), 88 (33). UV : λ_{max} (decalin) 308, 320 ($\epsilon = 4918, 5450$).

5.5 ATTEMPTED PREPARATION OF 2,2-DICHLORO-3-[2-FLUORO-9-FLUORENYL] **EPISULFIDE**

2-Fluoro-9-fluorenone hydrazone (47)

2-Fluoro-9-fluorenone (1.5 g, 7.5 mmol) was dissolved in 35 ml ethanol. Hydrazine monohydrate (1.33 g, 0.026 mol) was added and the yellow solution was heated at reflux for 24 hr. After allowing the mixture to cool, the hydrazone precipitated. Following filtration, hydrazone 47 was recrystallized with ethanol yielding 0.73 g of yellow needles (45%). Mp. 157 - 160°C (mixture of both isomers). ¹H NMR (200 MHz, CDCl₃) : δ 6.48 (s, 2H, NNH₂), 6.96 - 7.91 (m, 7H, aromatic). ¹⁹F NMR (282.2 MHz, CDCl₃) : δ 63.34, 63.58. MS m/z (rel. intensity) 212 (M⁺⁺, 100), 183 (87).

9-Diazo-(2-fluoro)-fluorenone (48)

2-Fluoro-9-fluorenyl hydrazone 47 (0.45 g, 2.1 mmol) was dissolved in 40 ml anhydrous THF. Sodium sulfate (0.75 g) was added followed by yellow mercuric oxide (1.27 g, 5.9 mmol) and 10 drops of ethanolic KOH. The mixture was stirred until a sludge appears which was then decanted and a fresh portion of HgO was added. The red solution was then filtered, the solvent evaporated under vacuo to afford 0.27 g (61%) of the diazo compound 48. Mp.

83 - 84°C. ¹H NMR (200 MHz, CDCl₃) : δ 7.06 - 8.14 (m, 7H, aromatic). ¹⁹F NMR (282.2 MHz, CDCl₃) : δ 62.13. MS (FAB, glycerol) m/z (1±³. intensity) 365 ((M+³ - N₂)₂ + H⁴, 3), 183 (MH^{4*} - N₂, 100).

1,1-Dichloro-2-[2-fluoro-9-fluorenyl] ethylene (50)

Diazo compound 48 (0.27 g, 1.27 mmol) was suspended in 12 ml anhydrous THF. Thiophosgene (0.63 g, 5.5 mmol) in 2 ml anhydrous THF was added dropwise to the cooled (-15° C) suspension. The mixture was stirred for 20 mins and then allowed to warm to room temperature. The mixture was filtered and the filtrate concentrated, chromatographed (4:1 hexanes:CH₂Cl₂ eluent) to yield 0.27 g (71%) of a ~1:3 mixture of 49 and 50 as determined by ¹³C

NMR analysis. The mixture could not be separated as both compounds have identical R_f values. Mp. 114 - 120°C. ¹H NMR of **50** only (200 MHz, CDCl₃) : δ 7.06 - 7.68 (m, 5H, aromatic), 8.02 (dd, 1H, J₁ = 10.8 Hz, J₂ = 2.5 Hz), 8.30 (d, 1H, J = 7.9 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 113.4 (d, J = 26.3 Hz), 116 (d, J = 23.3 Hz), 119.4, 120.4 (d, J = 9.0 Hz), 123.6, 125.8, 127.2, 129.4, 133.6, (d, J = 2.8 Hz), 136.2, 136.5, 138.1 (d, J = 9.2 Hz), 139.4, 162.5 (d, J = 243.9). ¹⁹F NMR (282.2 MHz, CDCl₃) : δ 63.68. MS m/z (rel. intensity) 268 (11), 266 (64), 264 (M⁺⁺, 100), 229 (M⁺⁺ - Cl, 7), 194 (M⁺⁺ - 2xCl, 53), 183 (11), 168 (6), 132 (10), 114 (8), 97 (21).

5.6 ATTEMPTED PREPARATION OF 2,2-DICHLORO-3-[3,6-DIMETHOXY-9-FLUORENYL] EPISULFIDE

2,4-Dimethoxybenzoyl chloride

A solution of 2,4-dimethoxybenzoic acid (11.0 g, 60 mmol) in thionyl chloride (19.4 g, 163 mmol) was stirred at room temperature for 24 hr. After evaporating the excess SOCl₂, the white solid was treated a second time with SOCl₂ for 4 hr. Excess thionyl chloride was evaporated giving 11 g (91%) of the acid chloride as a white solid. Mp. 55 - 55.5°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.89 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 6.45 (d, 1H, J = 2.3 Hz), 6.54 (dd, 1H, J₁ = 9.0 Hz, J₂ = 2.3 Hz), 8.15 (d, 1H, J = 9.0 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.7, 55.9, 98.2, 105.4, 113.8, 137.9, 162.0, 162.2, 166.5.

N-(Dimethyl-2-hydroxyethyl)-2,4-dimethoxy benzamide (51)

A solution of the acid chloride (11 g, 55 mmol) in 20 ml CH_2Cl_2 was added dropwise to a solution of 2-methyl-2-amino-1propanol (11.7 g, 131 mmol) in 35 ml CH_2Cl_2 kept at 0°C. After stirring at room temperature for 2.5 hr, the mixture was filtered and the filtrate was concentrated under reduced pressure to yield 12.8 g (92%) of amide 51 as a viscous oil. ¹H NMR (200 MHz, CDCl₃) :

δ 1.37 (s, 6H), 3.65 (s, 2H), 3.84 (s, 3H), 3.93 (s, 3H), 6.47 (s, 1H), 6.58 (d, 1H, J = 8.9 Hz), 8.12 (d, 1H, J = 8.7 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 25.0, 55.5, 55.9, 70.2, 71.3, 98.7, 105.3, 114.3, 133.8, 158.6, 163.5, 165.7.

2-(2,4-Dimethoxyphenyl)-4,4-dimethyl-2-oxazoline (52)

Thionyl chloride (18 g, 151 mmol) was added dropwise to 51 (12.8 g, 51 mmol) and the mixture magnetically stirred until no further gases have evolved. The solution was then transferred to 100 ml ether and allowed to stand until the oxazoline hydrochloride salt precipitated which was then filtered off. The salt was neutralized with 100 ml of 20% NaOH and the alkaline solution was

extracted with ether. The combined ethereal extracts were dried with MgSO₄ and evaporated to give the crude oxazoline. After silica gel chromatography (EtOAc eluent), 3.63 g (31%) of pure oxazoline 52 was obtained as a yellow syrup. ¹H NMR (200 MHz, CDCl₃) : δ 1.36 (s, 6H, C(CH₃)₂), 3.81 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.03 (s, 2H,

CH₂), 6.45 - 6.48 (m, 2H), 7.72 (d, 1H, J = 9.0 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 28.4, 55.3, 56.1, 67.1, 78.6, 98.,9, 104.4, 110.4, 132.6, 159.7, 161.0, 162.9. MS m/z (rel. intensity) 235 (M⁺⁺, 82), 220 (M⁺⁺ - CH₃, 100), 206 (12), 192 (48), 163 (36), 149 (52), 135 (27), 121 (21).

3-Methoxyphenylmagnesium bromide

Magnesium (0.49 g, 20 mmol) was covered with 3 ml dry THF and the flask was flushed with nitrogen for 30 mins. A solution of 3-bromoanisole (3.74g, 20 mmol) in 11 ml dry THF was added dropwise under nitrogen to the magnesium. The resulting dark mixture was heated at reflux for 2 hr. The Grignard reagent was then used directly in the next step.

2-[2-(3-Methoxyphenyl)-2-(4-methoxyphenyl)]-4,4-dimethyl-2-oxazoline (53)

A solution of the oxazoline 52 (3.63 g, 15.4 mmol) in 15 ml dry THF was flushed with nitrogen for 0.5 hr. The Grignard reagent was transferred slowly under nitrogen and the mixture allowed to stir for 2-3 days. The reaction was then quenched with 30 ml saturated aqueous NH_4Cl . The organic layer was separated and the aqueous layer extracted 3 times with 40 ml portions of ether. The combined extracts were washed with 40 ml water, dried

with MgSO₄, and evaporated under reduced pressure to obtain a dark yellow oil which was purified by silica gel chromatography (1:1 EtOAc : hexanes eluent) to give 2.43 g (51%) of **53** as a viscous oil. ¹H NMR (200 MHz, CDCl₃) : δ 1.27 (s, 6H, C(CH₃)₂), 3.77 (s, 2H, CH₂), 3.81 (s, 3H), 3.84 (s, 3H), 6.85 - 7.68 (m, 7H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) : δ 27.8, 55.1, 55.3, 67.1, 79.3, 112.6, 113.0, 113.8, 115.5, 120.4, 120.9, 129.0, 131.9, 142.8, 142.9, 159.5, 161.1, 163.8. MS m/z (rel. intensity) 311 (M⁺⁺, 30), 310 (M⁺⁺ - 1, 100) 296 (M⁺⁺ - CH₃, 9), 255 (10), 225 (16).

2-(3-Methoxyphenyl)-4-methoxybenzoic acid (55)

Methyl iodide (2.22 g, 15.6 mmol) was added to 53 (2.43 g, 7.81 mmol) and the mixture stirred for 3 hr. Excess methyl iodide was then evaporated under reduced pressure. The methiodide salt 54 was dissolved in 20 ml methanol and 20 ml of 20% aqueous NaOH was added. The mixture was allowed to stir at reflux for 24 hr. The cooled mixture was then acidified to pH = 2 at which point

55 began to precipitate. After filtration and recrystallization with ethanol the yield was

149

2.01 g (99%) of **55**. Mp. 128 - 129°C (lit.¹⁷¹ Mp. 130 - 131°C). ¹H NMR (200 MHz, CDCl₃) : δ 3.77 (s, 3H), 3.84 (s, 3H), 6.79 - 7.84 (m, 7H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.1, 55.4, 112.6, 112.8, 114.2, 116.4, 121.1, 123.2, 129.0, 132.9, 143.2, 145.3, 159.3, 162.0, 172.8. MS m/z (rel. intensity) 258 (M⁺⁺, 83), 241 (M⁺⁺ - OH, 42), 86 (34), 72 (100).

3,6-Dimethoxy-9-fluorenone (56)

Acid 55 (2.01 g, 7.78 mmol) was placed in a 250 ml flask equipped with a mechanical stirrer. Poly(phosphoric acid) (30 ml) was added and the mixture stirred for 3 hr at room temperature until a dark brown slurry was obtained. To the slurry was added 150 ml iced water and swirled until the brown slurry dissipates. The precipitate that formed was extracted 3 times with 80 ml portions of CHCl₃. The organic extracts were washed with

50 ml water and then twice with 50 ml aqueous NH₄Cl. After drying with MgSO₄, the solvent was evaporated to afford after recrystallizing with ethanol bright yellow needles of **56**: 243 mg (24 %). Mp. 141 - 143^oC (lit.¹⁷¹ Mp. 142 - 144^oC). ¹H NMR (200 MHz, CDCl₃) : δ 3.89 (s, 6H, OCH₃), 6.73 (dd, 2H, J₁ = 8.0 Hz, J₂ = 2.0 Hz), 6.98 (s, 2H), 7.57 (d, 2H, J = 8.3 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.7, 107.0, 112.9, 125.7, 128.3, 145.9, 164.9, 191.4. MS m/z (rel. intensity) 240 (M⁺⁺, 100), 211 (9), 197 (17), 169 (17), 126 (9). The mother liquor contained the **1,6-dimethoxy-9-fluorenone** isomer : 0.56 g (57%). Mp. 114-116^oC. ¹H NMR (200 MHz, CDCl₃) : δ 3.81 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 6.81 - 6.92 (m, 4H), 7.28 (t, 1H, J₁ = 8.5 Hz, J₂ = 6.7 Hz), 7.97 (d, 1H, J = 8.6 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.2, 55.5, 107.1, 112.7, 112.9, 114.1, 116.5, 120.9, 125.8, 128.9, 133.3, 142.7, 145.9, 159.0, 162.3. MS m/z (rel. intensity) 240 (M⁺⁺, 59), 129 (19). The sample was contaminated with the 3,6-dimethoxy isomer.

3,6-Dimethoxy-9-fluorenone hydrazone (57)

A solution of the fluorenone derivative 56 (243 mg, 1.01 mmol) in 8 ml ethanol was prepared to which hydrazine monohydrate (2.5 ml) was added and the mixture was heated at reflux for 24 hr during which a yellow precipitate formed. The precipitate was filtered to give 224 mg (92%) of pure hydrazone 57. Mp. = $204 - 204.5^{\circ}$ C (lit.¹⁷¹ Mp. 202 - 203° C). ¹H NMR (200 MHz, CDCl₃) : δ 3.89 (s, 3H, OCH₃), 3.93 (s,

3H, OCH₃), 6.10 (s, 2H, NNH₂), 6.85 (dd, 2H, $J_1 = 8.5$ Hz, $J_2 = 2.5$ Hz), 7.13 (s, 1H), 7.23, (s, 1H), 7.62 (d, 1H, J = 8.4 Hz), 7.87 (d, 1H, J = 8.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.9 (2xCH₃), 106.5, 106.8, 113.9, 114.7, 124.0, 126.3, 131.3, 131.8, 143.4, 144.8, 154.7, 163.2, 163.3. MS m/z (rel. intensity) 254 (M⁺⁺, 100), 239 (M⁺⁺ - NH, 21), 225 (17), 210 (17), 139 (11), 129 (27.1), 112 (11).

3,6-Dimethoxy-9-diazofluorene (58)

Hydrazone 57 (224 mg, 0.88 mmol) was dissolved in 40 ml anhydrous THF. Pulverized yellow mercuric oxide (0.75 g, 3.46 mmol) was added followed by 0.35 g Na₂SO₄ and 10 drops of a solution of 10% KOH in ethanol. The mixture was stirred at room temperature for 24 hr. The mixture was filtered and the filtrate was evaporated under reduced pressure. The crude solid was dissolved in 150 ml ether, washed with 30 ml water, dried

with MgSO₄ and concentrated to give 92.6 mg (42%) of diazo product **58**. Mp. 232°C (dec.) (lit.¹⁷¹ Mp. 240°C (dec.)). ¹H NMR (200 MHz, CDCl₃) : δ 3.92 (s, 6H, OCH₃), 6.98 (dd, 2H, J₁ = 8.5 Hz, J₂ = 2.4 Hz), 7.35 (s, 1H), 7.40 (s, 1H), 7.43 (d, 2H, J = 2.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.6, 104.7, 113.0, 127.5, 132.3, 136.1, 142.2, 160.2. MS m/z (rel. intensity) 224 (M^{+*} - N₂, 99).

1,1-Dichloro-2-[3,6-dimethoxy-9-fluorenyl] ethylene (60)

Diazo compound 58 (92.6 mg, 0.36 mmol) was dissolved in 10 ml anhydrous ether. A solution of thiophosgene (0.30 g, 2.62 mmol) in 2 ml ether was added dropwise to the cooled (0° C) diazo solution. After the evolution of nitrogen has ceased the ethereal solution was cooled to -27° C and a precipitate was obtained after filtering and washing with cold ether which was determined to be 60.

Yield = 46.5 mg (37.3 %). Mp. 122 - 123°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.90 (s, 6H, OCH₃), 6.84 (dd, 2H, J₁ = 8.5 Hz, J₂ = 2.5 Hz), 7.17 (d, 2H, J = 2.3 Hz), 8.20 (d, 2H, J = 8.9 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.5, 105.1, 113.1, 118.1, 126.8, 130.2, 133.2, 141.6, 160.6. MS m/z (rel. intensity) 310 (11), 308 (65), 306 (M⁺⁺, 100), 263 (29), 220 (11), 153 (15), 129 (27), 112 (10).

5.7 ATTEMPTED PREPARATION OF 2,2-DICHLORO-3-[5-METHYL-9-FLUORENYL] EPISULFIDE

2-[2-(2-Methylphenyl)-2-(4-methoxyphenyl)]-4,4-dimethyl-2-oxazoline (65)

Following the general procedure in the preparation of compound 53, the oxazoline 52 was treated with 2methylphenylmagnesium bromide (62) yielding 57% of 65. ¹H NMR (200 MHz, CDCl₃) : δ 1.17, 1.19 (2xs, 6H, C(CH₃)₂), 2.11 (s, 3H, CH₃), 3.64 (s, 2H, CH₂), 3.82 (s, 3H, OCH₃), 6.73 (d, 1H, J = 2.5 Hz), 6.89 (dd, 1H, J₁ = 8.6 Hz, J₂ = 2.6 Hz), 7.14 - 7.20 (m,

4H), 7.77 (d, 1H, J = 8.6 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 20.0, 28.0, 55.3, 66.9, 79.2, 112.6, 115.5, 121.0, 125.0, 127.2, 128.8, 129.3, 131.3, 135.6, 141.2, 143.3, 160.8, 163.3. MS m/z (rel. intensity) 295 (M⁺⁺, 5), 280 (M⁺⁺ - CH₃, 100), 209 (9).

2-(2-Methylphenyl)-4-methoxybenzoic acid (68)

Following the general procedure in the preparation of compound 55, oxazoline 65 gave acid 68 in 16% yield. Mp. 141 - 142°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.06 (s, 3H, CH₃), 3.85 (s, 3H, OCH₃), 6.70 (d, 1H, J = 2.5 Hz), 6.92 (dd, 1H, J₁ = 8.5 Hz, J₂ = 2.5 Hz), 7.09 - 7.25 (m, 4H), 8.05 (d, 1H, J = 8.6 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 19.9, 55.5, 112.8, 116.3, 120.8, 125.3, 127.3,

128.2, 129.5, 133.4, 135.3, 141.4, 146.1, 162.6, 170.1. MS m/z (rel. intensity) 242 (M+⁺, 97), 227 (M+⁺ - CH₃, 51), 225 (M+⁺ - OH, 100), 197 (19), 181 (22), 165 (35), 152 (28), 120 (23).

3-Methoxy-5-methyl-9-fluorenone (71)

Following the general procedure in the preparation of compound **56**, acid **68** gave ketone **71** in 53% yield. Mp. 138 - 140°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.56 (s, 3H, CH₃), 3.90 (s, 3H, OCH₃), 6.72 (dd, 1H, J₁ = 8.3 Hz, J₂ = 2.2 Hz), 7.14 - 7.22 (m, 3H), 7.50 (d, 1H, J = 8.0 Hz), 7.64 (d, 1H, J = 8.3 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 20.1, 55.7, 111.0, 111.4, 121.6,

126.2, 127.6, 128.9, 133.5, 135.7, 136.9, 140.9, 147.6, 165.1, 192.8. MS m/z (rel. intensity) 224 (M^{+*}, 100), 181 (15), 170 (6), 165 (17), 152 (20).

3-Methoxy-5-methyl-9-fluorenone hydrazone (74)

Following the general procedure in the preparation of compound 57, the yellow hydrazone 74 was obtained after evaporating the solvent. Ketone 71 gave hydrazone in 91% yield as a mixture of two isomers. In some cases, ketone 71 was contaminated by the Wolff-Kishner reduction product (3methoxy-5-methyl fluorene) which was removed by column

chromatography (1:1 CH₂Cl₂ : hexanes eluent). Mp. 128 - 134°C (mixture of both isomers). ¹H NMR (200 MHz, CDCl₃) : major isomer (NNH₂ syn to H₁) δ 2.65 (s, 3H, CH₃), 3.91 (s, 3H, OCH₃), 6.19 (s, 2H, NNH₂), 6.83 (m, 2H, both isomers), 7.12 - 7.23 (m, 4H, both isomers), 7.43, (d, 1H, J = 2.4 Hz), 7.60 (d, 1H, J = 7.8 Hz), 7.89 (d, 1H, J = 8.5 Hz). minor isomer (NNH₂ syn to H₈) δ 2.69 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 6.24 (s, 2H, NNH₂), 7.32, (d, 1H, J = 2.2 Hz), 7.68 (d, 1H, J = 7.8 Hz), 7.81 (d, 1H, J = 8.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : major isomer δ 20.8, 55.6, 110.6, 110.9, 118.3, 124.0, 126.5, 127.7, 131.3, 131.4, 132.8, 139.1, 140.9, 146.0, 160.4, minor isomer δ 21.2, 55.6, 109.7, 111.9, 121.4, 123.3, 127.6, 131.1, 132.4, 133.8, 136.2, 138.8, 144.5, 145.9, 160.8. MS m/z (rel. intensity) 238 (M⁺⁺, 100), 223 (M⁺⁺ - CH₃, 19), 209 (32), 195 (17), 165 (27), 152 (19).

1,1-Dichloro-2-[3-methoxy-5-methyl-9-fluorenyl] ethylene (83)

Hydrazone 74 (35.1 mg, 0.14 mmol) was dissolved in 10 ml anhydrous ether and 0.25 g sodium sulfate was added to the solution. Yellow mercuric oxide (100 mg, 0.46 mmol) was then added followed by 3 drops of ethanolic potassium hydroxide (1 g KOH in 10 ml ethanol). The mixture was stirred at room temperature for 45 mins, decanted from the sludge and cooled to 0° C. Thiophosgene (24 mg, .21 mmol) in

2 ml anhydrous ether was added dropwise to the red-orange diazotized solution. Evolution of nitrogen was apparent. The solution was then stirred for another 20 mins at 0° C and after allowing to warm to room temperature, the solution was filtered and flash chromatographed (3:2 hexanes : CH₂Cl₂ eluent) yielding 13.3 mg of corresponding olefin 83. Mp. 96 - 96.5°C. R_f = 0.75. ¹H NMR (200 MHz, CDCl₃) : δ 2.43 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 6.79 (dd, 1H, J₁ = 8.7 Hz, J₂ = 2.6 Hz), 7.15 (d, 1H, J = 2.5 Hz), 7.19 (d, 1H, J = 7.8 Hz), 7.53 (d, 1H, J = 7.7 Hz), 8.10 (s, 1H), 8.18 (d, 1H, J = 8.8 Hz). ¹³C NMR (67.9 MHz, CDCl₃) : δ 22.0, 55.5, 104.8, 112.4, 119.3, 119.7, 119.8,

NNH₂

CH₃C

CH

126.5, 126.9, 129.4, 129.7, 133.8, 137.3, 137.6, 142.2, 160.7. MS m/z (rel. intensity) 294 (11), 292 (65), 290(M^{+*}, 100), 247 (44), 212 (21), 176 (36), 88 (17).

5.8 ATTEMPTED PREPARATION OF 2,2-DICHLORO-3-[7-METHYL-9-FLUORENYL] EPISULFIDE

2-[2-(4-Methylphenyl)-2-(4-methoxyphenyl)]-4,4-dimethyl-2-oxazoline (66)

Following the general procedure in the preparation of compound 53, the oxazoline 52 was treated with 4methylphenylmagnesium bromide (63) yielding 27.5% of 66. ¹H NMR (200 MHz, CDCl₃) : δ 1.28 (s, 6H, C(CH₃)₂), 2.38 (s, 3H, CH₃), 3.76 (s, 2H, CH₂), 3.83 (s, 3H, OCH₃), 6.84 -6.87 (m, 2H), 7.23 (dd, 4H, $J_1 = 13.0$ Hz, $J_2 = 7.9$ Hz), 9.10 (d, 1H, J = 9.1 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 21.2,

28.0, 55.4, 67.1, 79.3, 112.3, 115.5, 120.4, 128.1, 128.7, 131.9, 137.0, 138.3, 143.3, 161.0, 163.8. MS m/z (rel. intensity) 295 (M+*, 25), 294 (M+* - 1, 100), 280 (M+* -CH₃, 3), 239 (7), 209 (12), 108 (15), 43 (44).

2-(4-Methylphenyl)-4-methoxybenzoic acid (69)

Following the general procedure in the preparation of COOH compound 55, oxazoline 66 gave acid 69 in 21% Mp. 167 -169°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.39 (s, 3H, CH₃), 3.86 (s, 3H, OCH₂), 6.81 (d, 1H, J = 2.5 Hz), 6.90 (dd, 1H, J₁ = OCH₃ 8.7 Hz, $J_2 = 2.6$ Hz), 7.21 (s, 4H), 7.97 (d, 1H, J = 8.7 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 21.2, 55.5, 112.5, 116.6, 121.0, 128.3, 128.7, 133.4, 137.1, 138.3, 146.2, 162.3, 171.4. MS m/z (rel. intensity) 242 (M+*, 100), 225 (M+* - OH, 67), 182 (10), 165 (9), 152 (11), 120 (14).

3-Methoxy-7-methyl-9-fluorenone (72)

Following the general procedure in the preparation of compound 56, acid 69 gave ketone 72 in 28% yield. Mp. 118 -120°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.36 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 6.69 (dd, 1H, $J_1 = 8.2$ Hz, $J_2 = 2.2$ Hz), 6.96 (d, 1H, J = 2.2 Hz), 7.30 (m, 2H), 7.42 (s, 1H), 7.57 (d, 1H, J = 8.3Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 21.5, 55.8, 106.8, 112.4, 119.9, 124.6, 126.1, 127.2, 134.4, 135.5, 139.4, 140.6, 147.1,

165.2, 170.0. MS m/z (rel. intensity) 224 (M+', 100), 181 (15), 165 (11), 153 (13).

3-Methoxy-7-methyl-9-/luorenone hydrazone (75)

Following the general procedure in the preparation of compound 74, ketone 72 gave hydrazone 75 in 85% yield as a mixture of two isomers. Mp. 121 - 131°C (mixture of both isomers). ¹H NMR (200 MHz, CDCl₃) : major isomer (NNH₂) syn to H₁) δ 2.40 (s, 3H, CH₃), 3.91 (s, 3H, OCH₃), 6.17 (s, 2H, NNH₂), 6.80 (dd, 2H, $J_1 = 8.6$ Hz, $J_2 = 2.2$ Hz, both isomers), 7.14 (d, 2H, J = 7.6 Hz, both isomers), 7.22, (d, 2H, J

= 2.2 Hz, both isomers), 7.60 (dd, 2H, J_1 = 8.4 Hz, J_2 = 2.3 Hz, both isomers), 7.75 (s, 1H), 7.82 (d, 1H, J = 8.3 Hz). minor isomer (NNH₂ syn to H₈) δ 2.44 (s, 3H, CH₃), 3.88 (s, 3H, OCH₃), 6.24 (s, 2H, NNH₂), 7.49 (d, 1H, J = 7.6 Hz), 7.53 (s, 1H). ¹³C NMR $(75.4 \text{ MHz}, \text{CDCl}_3)$: major isomer δ 21.7, 55.6, 106.1, 112.0, 119.2, 121.2, 123.6, 126.7, 129.2, 131.3, 138.0, 138.7, 140.2, 146.0, 161.0, minor isomer δ 21.9, 55.6, 104.6, 106.1, 113.3, 120.0, 121.7, 126.5, 130.2, 130.3, 135.8, 137.7, 138.3, 143.6, 160.6. MS π/z (rel. intensity) 238 (M⁺⁺, 100), 223 ($iA^{++} - CH_3$, 18), 209 (29), 195 (16), 165 (26), 152 (25).

1,1-Dichloro-2-[3-methoxy-7-methyl-9-fluorenyl] ethylene (84)

Following the procedure in the preparation of compound 59, only its corresponding ethylene compound 84 was isolated in 20% yield. Mp. 82 - 85°C. $R_f = 0.64$. ¹H NMR (200 MHz, CDCl₃) : δ 2.67 (s, 3H, CH₃), 3.90 (s, 3H, OCH₃), 6.82 (dd, 1H, $J_1 = 8.9$ Hz, $J_2 = 2.5$ Hz), 7.17 - 7.22 (m, 2H), 7.40 (d, 1H, J = 2.5 Hz), 8.23 (d, 1H, J = 8.6 Hz), 8.31 (d, 1H, J = 7.6 Hz). ¹³C NMR (67.9 MHz, CDCl₃) : δ 21.3, 55.5, 110.0, 110.8, 119.3, 123.4, 126.6, 127.1, 129.8,

131.9, 132.9, 133.6, 137.6, 137.8, 142.9, 160.3. MS m/z (rel. intensity) 294 (11), 292 (65), 290 (M^{+*}, 100), 247 (36), 212 (25), 176 (40).

5.9 ATTEMPTED PREPARATION OF 2,2-DICHLORO-3-[3-METHOXY-9-FLUORENYL] EPISULFIDE

2-[2-Phenyl-2-(4-methoxyphenyl)]-4,4-dimethyl-2-oxazoline (67)

Following the general procedure in the preparation of compound 53, the oxazoline 52 was treated with phenylmagnesium bromide (64) yielding 5% of 67. ¹H NMR (200 MHz, CDCl₃) : δ 1.27 (s, 6H, C(CH₃)₂), 3.75 (s, 2H, CH₂), 3.84 (s, 3H, OCH₃), 6.87 -6.90 (m, 2H), 7.36 - 7.39 (m, 5H), 7.70 (d, 1H, J = 8.2 Hz), ¹³C NMR (75.4 MHz, CDCl₃) : δ 28.0, 55.4, 67.2, 79.2, 112.5, 115.5, 120.3, 127.2, 127.9, 128.2, 131.8, 141.2, 143.4, 160.9, 163.7. MS m/z (rel, intensity) 281 (M⁺⁺, 25), 280 (M⁺⁺ - 1, 100), 195 (28), 152 (11), 94 (11).

2-Phenyl-4-methoxybenzoic acid (70)

Following the general procedure in the preparation of compound 55, oxazoline 67 gave acid 70 in 25% yield. Mp. 163 - 165° C. ¹H NMR (200 MHz, CDCl₃) : δ 3.86 (s, 3H, OCH₃), 6.82 (d, 1H, J = 2.5 Hz), 6.90 (dd, 1H, $J_1 = 8.7$ Hz, $J_2 = 2.6$ Hz), 7.31 - 7.35 (m, 5H), 7.98 (d, 1H, J = 8.8 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.5, 112.6, 116.7, 121.0, 127.3, 127.9, 128.4, 133.4, 141.3, 146.3,

COOH OCH₁

162.4, 172.0. MS m/z (rel. intensity) 228 (M+', 100), 211 (M+' - OH, 96), 168 (27), 152 (15), 139 (31).

3-Methoxy-9-fluorenone (73)

Following the general procedure in the preparation of compound 56, acid 70 gave ketone 73 in 61% yield. Mp. 95 -96°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.85 (s, 3H, OCH₃), 6.67 $(dd, 1H, J_1 = 8.2 Hz, J_2 = 2.2 Hz), 6.94 (d, 1H, J = 2.2 Hz), 7.20 -$ 7.30 (m, 2H), 7.42 (s, 1H), 7.57 (d, 1H, J = 8.3 Hz). ¹³C NMR $(75.4 \text{ MHz}, \text{CDCl}_3)$: δ 55.8, 107.0, 112.9, 120.0, 123.8, 126.2,

127.1, 129.2, 134.1, 135.3, 143.3, 146.9, 165.3, 192.5. MS m/z (rel. intensity) 210 (M+*, 100), 180 (13), 167 (15), 152 (9), 139 (28).

3-Methoxy-9-fluorenone hydrazone (76)

Following the general procedure in the preparation of compound 57, ketone 73 gave hydrazone 76 in 9% yield. Mp. 118 - 125° C (mixture of both isomers). ¹H NMR (200 MHz, CDCl₃) : δ 3.89, 3.91 (2xs, 6H, OCH₃, both isomers), 6.81 - 7.94 (m, 14H, both isomers). ¹³C NMR (75.4 MHz, CDCl₃) : major isomer δ 55.6, 106.4, 112.6, 119.5, 120.7, 123.6, 126.8,

128.1, 128.4, 138.3, 140.2, 141.0, 143.5, 161.1, minor isomer δ 74.7, 104.9, 113.9, 120.4, 121.8, 125.6, 127.9, 129.6, 131.0, 138.6, 139.8, 141.6, 145.9, 160.7. MS m/z (rel. intensity) 224 (M⁺⁺, 100), 209 (M⁺⁺ - NH, 23), 195 (30), 180 (19), 165 (11), 152 (43).

1,1-Dichloro-2-[3-methoxy-9-fluorenyl] ethylene (85)

Hydrazone **76** (16.4 mg, 0.073 mmol) was dissolved in 10 ml anhydrous THF and 0.25 g sodium sulfate was added to the solution. Yellow mercuric oxide (39 mg, 0.18 mmol) was then added followed by 3 drops of ethanolic KOH (1 g KOH in 10 ml ethanol). The mixture was stirred at room temperature for 45 mins, decanted from the sludge and cooled

to 0°C. Thiophosgene (24 mg, 0.21 mmol) in 2 ml anhydrous ether was added dropwise to the red solution of the diazotized solution. Evolution of nitrogen was apparent. The solution was then stirred for another 20 mins at 0°C and after allowing to warm to room temperature, the solution was filtered and flash chromatographed (1:1 CH₂Cl₂ : hexanes eluent) yielding 78 mg of a yellow-brown solid which was determined to be **85** (47%). Mp. 86-89°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.91 (s, 3H, OCH₃), 6.74 (dd, 1H, J₁ = 8.20 Hz, J₂ = 2.2 Hz), 7.03 (d, 1H, J = 2.4 Hz), 7.15 - 7.50 (m, 4H), 7.62 (d, 1H, J = 8.3 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.8, 107.1, 112.9, 120.1, 123.9, 126.3, 127.2, 128.3, 129.3, 134.1, 135.4, 137.8, 143.4, 147.0, 165.4. MS m/z (rel. intensity) 280 (11), 278 (64), 276 (M⁺⁺, 100), 233 (41), 198 (12), 163 (29).

Cí

CI

5.10 PREPARATION OF 2,2-DICHLORO-3-[2,5-DIMETHOXY-9-FLUORENYL] EPISULFIDE

2,3-Dimethoxybenzoyl chloride

Following the general procedure in the preparation of 2,4dimethoxybenzoyl chloride, 2,3-dimethoxybenzoic acid (10.2 g, 55 mmol) when treated with excess thionyl chloride (18.0 g, 151 mmol) yielded 10.5 g (92 %) of the acid chloride as a white solid. Mp. 56- 57° C. ¹H NMR (200 MHz, CDCl₃) : δ 3.89 (s, 3H, OCH₃), 3.90 (s,

3H, OCH₃), 7.13 (d, 1H, J = 1.2 Hz), 7.15 (d, 1H, J = 1.2 Hz), 7.52 (dd, 1H, J₁ = 2.2 Hz, J₂ = 1.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 56.2, 61.6, 117.9, 123.7, 123.8, 128.9, 149.0, 153.5, 164.8.

N-(Dimethyl-2-hydroxy ethyl)-2,3-dimethoxy benzamide (86)

Following the general procedure in the preparation of 51, the acid chloride (10.5 g, 52 mmol) when treated with 2-methyl-2amino-1-propanol (11.7 g, 131 mmol) yielded 12.1 g (92 %) of the benzamide 86 as a beige solid. Mp. 83-86°C. ¹H NMR (200 MHz, CDCl₃) : δ 1.40 (s, 6H, C(CH₃)₂), 3.68 (s, 2H, CH₂), 3.89 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 7.05 (d, 1H, J = 1.2 Hz), 7.15

(t, 1H, J = 1.2 Hz), 7.72 (d, 1H, J = 1.2 Hz), 8.26 (s, 1H, NH). ¹³C NMR (75.4 MHz, CDCl₃) : δ 24.9, 56.1, 61.2, 70.8, 115.5, 122.5, 124.5, 126.9, 147.2, 152.5, 165.5.

2-(2,3-Dimethoxyphenyl)-4,4-dimethyl-2-oxazoline (87)

Following the general procedure in the preparation of 52, benzamide 86 (12.1 g, 48 mmol) was treated with thionyl chloride. After workup, 5.2 g (46 %) of oxazoline 87 was obtained as a gold-colored solid. Mp. 46 - 47.5°C (lit.¹⁷² Mp. 49 - 50°C). ¹H NMR (200 MHz, CDCl₃) : δ 1.57 (s, 6H, C(CH₃)₂), 3.84 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 4.34 (s, 2H, CH₂), 7.07 (d, 1H, J = 2.2 Hz), 7.09

(d, 1H, J = 2.2 Hz), 7.48 (dd, 1H, $J_1 = 5.4$ Hz, $J_2 = 3.2$ Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 28.3, 56.1, 61.3, 67.3, 79.1, 115.0, 122.5, 123.3, 123.7, 148.6, 153.2, 161.2. MS m/z (rel. intensity) 235 (M⁺⁺, 94), 220 (36), 206 (31), 192 (28), 178 (21), 163 (100), 151 (29), 149 (73), 135 (36), 121 (31).

2-[2-(4-Methoxyphenyl)-2-(3-methoxyphenyl)]-4,4-dimethyl-2-oxazoline (90)

Following the general procedure in the preparation of compound 53, the oxazoline 87 (5.2 g, 22 mmol) was treated with 4-methoxyphenylmagnesium bromide (88) (1.3 eq.) yielding 3.45 g (61%) of 90 as a viscous oil which could not totally purified. ¹H NMR (200 MHz, CDCl₃) : δ 1.20 (s, 6H, C(CH₃)₂), 3.69 (s, 2H, CH₂), 3.73 (s, 3H, OCH₃), 3.82 (s,

3H, OCH₃), 6.89 - 7.27 (m, 7H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) : δ 27.9, 55.1, 55.8, 60.3, 79.9, 112.8, 113.0, 121.8, 128.0, 128.7, 130.1, 130.7, 130.9, 156.7, 158.6, 163.5. MS m/z (rel. intensity) 310 (M⁺⁺ - 1, 7), 163 (100).

2-(4-Methoxyphenyl)-3-methoxybenzoic acid (92)

Following the general procedure in the preparation of compound 55, oxazoline 90 (3.45 g, 11 mmol) gave 0.16g (6%) of pure white acid 92 after recrystallizing with 1:1 H₂O:EtOH. Mp. 170 - 172°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.77 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 6.90 - 7.55 (m, 7H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) :

OCH,

δ 55.1, 56.0, 113.3, 114.5, 122.1, 128.1, 128.2, 130.7, 131.2, 131.8, 157.2, 158.8, 172.3. MS m/z (rel. intensity) 258 (M⁺⁺, 100), 225 (9), 197 (12), 184 (7), 122 (11).

2,5-Dimethoxy-9-fluorenone (94)

Following the general procedure in the preparation of compound 56, acid 92 (0.16g, 0.6 mmol) gave 0.12 g of ketone 94 in 81% yield as a bright orange solid. Mp. 160 - 163°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.82 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.90 - 7.55 (m, 5H), 7.66 (d, 1H, J = 8.2 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.5, 55.6, 109.4, 116.5, 117.9, 119.9, 125.1, 127.2, 128.1, 129.2, 135.2, 135.8, 136.3, 154.7, 160.0. MS m/z (rel. intensity) 240 (M+⁺, 100), 225 (63), 197 (20), 126 (11). OCH₃

2,5-Dimethoxy-9-fluorenone hydrazone (96)

Following the general procedure in the preparation of compound 57, the hydrazone 96 was obtained after evaporating the solvent and flash chromatography (CH_2Cl_2 then 1:1 EtOAc : hexanes eluent). Ketone 94 (0.12g, 0.5 mmol) gave 5 mg (4%) of hydrazone 96 as a mixture of two isomers. In some cases, ketone 94 was contaminated by the Wolff-Kishner reduction product (2,5-dimethoxy

fluorene) which was removed by column chromatography (CH₂Cl₂ eluent). ¹H NMR (200 MHz, CDCl₃) : δ 3.88 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 6.88 (d, 1H, J = 8.2 Hz), 6.97 (d, 1H, J = 8.2 Hz), 7.24 (d, 1H, J = 8.0 Hz), 7.28 (s, 1H), 7.48 (d, 1H, J = 8.0 Hz), 7.87 (d, 1H, J = 8.0 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : major isomer δ 55.4, 55.5, 104.8, 112.7, 115.3, 117.9, 124.5, 127.7, 129.0, 131.7, 138.9, 145.7, 155.2, 159.4, 169.8, minor isomer δ 55.3, 55.7, 110.9, 112.6, 113.2, 113.7, 122.3, 124.9, 128.2, 131.0, 133.5, 139.3, 154.8, 158.9, 169.8.

2,2 Dichloro-3-[2,5 dimethoxy-9-fluorenyl] episulfide (98)

Hydrazone 96 (5.0mg, 0.019 mmol) was dissolved in 10 ml anhydrous ether and to the solution was added 0.25 g sodium sulfate. Yellow mercuric oxide (100 mg, 0.46 mmol) was then added followed by 10 drops of ethanolic potassium hydroxide (1 g KOH in 10 ml ethanol). The mixture was stirred at room temperature for 2 hr, decanted from the sludge and then a second portion of mercuric oxide was

added. The mixture was then stirred for 24 hr, filtered, concentrated to about 2 ml, and cooled to 0°C. Thiophosgene (5 drops) in 2 ml anhydrous ether was added dropwise to the diazotized solution. Evolution of nitrogen was apparent. The solution was then stirred for 20 mins at 0°C and after allowing to warm to room temperature, the solution was flash chromatographed (1:1 CH₂Cl₂ : hexanes eluent) yielding 7 mg of a orange-yellow residue which was determined *via* ¹³C NMR to be the episulfide **98**. ¹H NMR (200 MHz, CDCl₃) : δ 3.87 (s, 3H, OCH₃), 3.98 (s, 3H, OCH₃), 6.91 (d, 1H, J = 8.5 Hz), 6.92 (d, 1H, J = 8.5 Hz), 7.20 (t, 1H, J = 8.1 Hz), 7.91 (s, 1H), 7.92 (d, 1H, J = 8.0 Hz), 8.17 (d, 1H, J = 8.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.4, 55.6, 65.5, 91.6, 111.7, 112.2, 114.0, 118.3, 124.5, 127.1, 132.7, 134.7, 137.3, 138.2, 154.7, 158.7. MS m/z (rel. intensity) 310 (2), 309 (12), 308 (12), 307 (65), 306 (M⁺⁺ - S, 65.2), 305 (M⁺⁺ - SH, 100), 290 (59), 262 (12), 247 (10), 150 (13), 76 (15).

5.11 PREPARATION OF 4,5-DIMETHOXY-9-FLUORENONE

2-[2-(2-Methoxyphenyl)-2-(3-methoxyphenyl)]-4,4-dimethyl-2-oxazoline (91)

Following the general procedure in the preparation of compound 53, the oxazoline 87 (10.2 g, 43 mmol) was treated with 2-methoxyphenylmagnesium bromide (89) (1.3 eq.) yielding 1.95 g (14%) of 91 as a viscous oil which did not solidify. ¹H NMR (200 MHz, CDCl₃) : δ 1.38 (s, 6H, C(CH₃)₂), 3.88 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃), 4.08 (s, 2H,

CH₂), 6.76 - 6.98 (m, 4H, aromatic), 7.24 (dd, 2H, $J_1 = 7.9$ Hz, $J_2 = 1.6$ Hz), 7.52 (dd, 1H, $J_1 = 7.8$ Hz, $J_2 = 1.6$ Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 28.4, 56.1, 56.2, 67.0, 78.4, 111.1, 111.7, 112.1, 115.1, 118.0, 119.5, 121.8, 128.4, 133.3, 148.3, 150.3, 155.9, 163.7. MS m/z (rel. intensity) 280 (M⁺⁺ - OCH₃, 23), 149 (100).

2-(2-Methoxyphenyl)-3-methoxybenzoic acid (93)

Following the general procedure in the preparation of compound 55, oxazoline 91 (0.36 g, 1.16 mmol) gave 0.30g (99%) of a pure white acid 93 after recrystallizing with 1:1 H₂O:EtOH. Mp. 194 - 196^oC (lit.¹⁷² 196 - 197^oC). ¹H NMR (200 MHz, CDCl₃) : δ 3.70 (s, 3H, OCH₃), 3.74 (s,

3H, OCH₃), 6.92 (d, 1H, J = 8.2 Hz), 7.01 (d, 1H, J = 7.4 Hz), 7.15 (dd, 2H, $J_1 = 7.6$ Hz, $J_2 = 2.1$ Hz), 7.33 (t, 1H, J = 8.3 Hz), 7.38 (t, 1H, J = 8.1 Hz), 7.52 (d, 1H, J = 7.8 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.6, 56.2, 110.9, 115.1, 120.3, 122.2, 125.2, 128.2, 128.3, 128.9, 131.0, 131.8, 156.7, 157.3, 169.8. MS m/z (rel. intensity) 258 (M⁺⁺, 100), 227 (M⁺⁺- OCH₃, 48), 211 (12), 197 (7), 184 (9), 168 (21), 165 (58), 139 (12).

4,5-Dimethoxy-9-fluorenone (95)

· ' 、

Following the general procedure in the preparation of compound 56, acid 93 (0.30 g, 1.16 mmol) gave 0.12 g of ketone 95 in 44% yield as a beige solid. Mp. 134 - 137.5°C. ¹H NMR (200 MHz, CDCl₃) : δ 4.06 (s, 6H, 2xOCH₃), 7.51 (t, 2H, J = 8.0 Hz), 8.06 (dd, 2H, J₁ = 7.9 Hz, J₂ = 1.2 Hz), 8.93 (dd, 2H, J₁ = 8.3 Hz, J₂ = 1.5 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 56.0, 116.8, 117.2, 122.6, 124.3, 128.5, 129.2, 129.6. MS m/z (rel. intensity) 240 (M⁺, 6), 226 (100), 211 (49), 155 (19), 139 (8), 127 (13). IR (cm⁻¹) : 1724 (C=O).

5.12 ATTEMPTED PREPARATION OF 2,2-DICHLORO-3-[3-METHYL-9-FLUORENYL] EPISULFIDE

3-Methyl-9-fluorenone (100)

2-Amino-4-methyl benzophenone (99) (3.1 g, 14.5 mmol) was suspended in 2 N HCl and stirred at 0°C for 15 mins. Sodium nitrite (1.0g, 14.5 mmol) dissolved in 5 ml water was then added dropwise to the arylamine. After 1 hr, the red precipitate was filtered, dissolved in 25 ml anhydrous THF, dried with Na₂SO₄, and then heated at reflux for 2.5 hr. The solvent was removed under vacuo leaving a dark red residue which was chromatic gued

(CHCl₃ eluent) yielding 282 mg of 100 as a red solid (10%). Mp. 166 - 169°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.33 (s, 3H, CH₃), 6.98 (d, 1H, J = 7.0 Hz), 7.17 - 7.23 (m, 2H), 7.35 - 7.39 (m, 2H), 7.44 (d, 1H, J = 7.6 Hz), 7.56 (d, 1H, J = 7.3 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 22.0, 119.9, 121.0, 123.8, 124.0, 128.7, 129.3, 131.6, 134.2, 134.4, 14.0, 144.5, 145.6, 193.3. MS m/z (rel. intensity) 194 (M⁺⁺, 100), 165 (80).

3-Methyl-9-fluorenone hydrazone (101)

3-Methyl-9-fluorenone (100) (112 mg, 0.57 mmol) was dissolved in 20 ml ethanol and hydrazine monohydrate (0.35 ml, 7.2 mmol) was added. The mixture was refluxed until a clear yellow solution was obtained. The solvent was removed yielding 0.12 g of 101 as a yellow solid (100%). Mp. 95 - $102^{\circ}C$ (mixture of both isomers). ¹H NMR (200 MHz, CDCl₃) : δ 2.43,

2.46 (2xs, 6H, CH₃, both isomers), 6.31 (s, 2H, NNH₂, both isomers), 7.13 - 7.92 (m, 14H, aromatic, both isomers). MS m/z (rel. intensity) 208 (M⁺⁺, 100), 193 (M⁺⁺ - NH, 6), 179 (60), 165 (23), 152 (14).

1,1-Dichloro-2-[3-methyl-9-fluorenyl] ethylene (103)

3-Methyl-9-fluorenyl hydrazone (101) was dissolved in 30 ml anhydrous ether and yellow mercuric oxide (1.0 g, 4.6 mmol) was added followed by 10 drops of ethanolic KOH. The mixture was stirred until the sludge appears which was decanted and a second portion of HgO was added. Fresh portions of HgO were added until the ethereal solution became faint red in color.

The solution was then concentrated to about 5 ml and then cooled to 0°C. Thiophosgene (1.5 g, 13 mmol) in 4 ml anhydrous ether was added dropwise and the solution allowed to stand at 0°C for 1 hr. After filtering the mixture, the filtrate was concentrated and chromatographed (hexanes eluent) yielding 54 mg (89%) of a yellow solid which was identified to be ethylene compound **103**. Mp. 67 - 70°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.43 (s, 3H, CH₃), 7.11 (d, 1H, J = 7.2 Hz), 7.29 - 7.38 (m, 2H), 7.48 (s, 1H), 7.65 (d, 1H, J = 6.9 Hz), 8.16 (d, 1H, J = 7.9 Hz), 8.29 (d, 1H, J = 7.1 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 21.6, 119.4, 120.2, 121.2, 125.5, 125.7, 127.3, 128.3, 128.6, 133.9, 134.1, 136.8, 139.2, 140.2, 140.3. MS m/z (rel. intensity) 264 (11), 262 (64), 260 (M⁺, 160), 225 (M⁺⁺ - Cl, 37), 190 (34), 189 (71), 163 (10), 94 (36). Anal. Calc'd for C₁₅H₁₀Cl₂: C, 68.99; H, 3.86. Found: C, 68.90; H, 3.73.

5.13 PREPARATION OF 2,2-DICHLORO-3,3-DIPHENYL EPISULFIDE

Benzophenone hydrazone (106)

Benzophenone (104) (14 g, 77 mmol) was dissolved in 80 ml n-butanol and hydrazine monohydrate (5 ml) was added. The mixture was heated to reflux for 24 hr. After cooling the mixture, the precipitated hydrazone 106 was filtered and recrystallized with methanol yielding 12.6 g (83%). Mp. 88 - 91°C (lit.¹⁷⁰ Mp. 98°C).

¹H NMR (200 MHz, CDCl₃) : δ 5.43 (s, 2H, NNH₂), 7.26 - 7.59 (m, 10H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) : δ 126.3, 127.9, 128.0, 128.7, 128.8, 129.3, 132.8, 138.3, 149.0. MS m/z (rel. intensity) 196 (M+⁺, 70), 180 (17), 165 (28), 119 (11), 85 (67), 83 (100), 77 (38).

Diphenyldiazomethane (108)

To a rapidly stirred solution of benzophenone hydrazone (106) (5.0 g, 25 mmol) in 200 ml anhydrous ether, 0.4 g KOH was added followed by 0.2 ml H₂O. The solution was stirred until dissolution of the KOH. Yellow mercuric oxide (6.0 g, 28 mmol) was added and the mixture was decanted from the heavy sludge after

stirring for 5 min. A fresh portion of HgO was added to the rose color solution and the mixture allowed to stir for 48 hr. The ethereal solution was dried with MgSO₄, filtered, and concentrated down furnishing 3.2 g (66%) of **108** as a deep purple solid. Mp. 29 - 31° C (lit.¹⁷⁰ Mp. 30°C). ¹H NMR (200 MHz, CDCl₃) : δ 7.14 - 7.44 (m, 10H, aromatic).

¹³C NMR (75.4 MHz, CDCl₃) : δ 125.1, 125.6, 128.3, 129.1, 129.5. MS (FAB, glycerol) m/z (rel. intensity) 166 (M⁺⁺ - N₂, 57), 165 (100), 152 (13).

2,2-Dichloro-3,3-diphenyl episulfide (110)

Diphenyldiazomethane (108) (325 mg, 1.7 mmol) was dissolved in 1.67 ml anhydrous THF and cooled to 0° C. Thiophosgene (192 mg, 1.7 mmol) in 1.67 ml anhydrous THF was added dropwise to the diazo solution. The mixture was stirred for 10 min and then warmed to room temperature. The clear yellow solution was concentrated under vacuo and chromatographed

(hexanes eluent) furnishing 271 mg (57%) of **110** as a white powder. Mp. 86 - 87°C (lit.⁴⁹ Mp. 89 - 90°C). ¹H NMR (200 MHz, CDCl₃) : δ 7.28 - 7.39 (m, 6H, aromatic), 7.58 - 7.64 (dd, 4H, J₁ = 7.3 Hz, J₂ = 1.4 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 66.8, 80.7, 128.1 (C-5), 128.1 (C-7), 129.4, 138.9. MS m/z (rel. intensity) 280 (M⁺, 2), 248 (M⁺⁺ - S, 19), 245 (M⁺⁺ - Cl, 32), 210 (100), 178 (66), 165 (81). Raman : 691 cm⁻¹. Anal. Calc'd for C₁₄H₁₀SCl₂: C, 59.79; H, 3.59. Found: C, 59.85; H, 3.07.

5.14 PREPARATION OF 2,2-DICHLORO-3,3-(4,4'-DIMETHOXY)DIPHENYL EPISULFIDE

4,4'-Dimethoxybenzophenone hydrazone (107)

4,4'-Dimethoxybenzophenone (105) (3.0 g, 12.4 mmol) was dissolved in 60 ml warm *n*-butanol and hydrazine monohydrate (5 ml) was added. The mixture was heated to reflux for 2.5 hr and then cooled whereupon the yellow hydrazone precipitated. Following filtration, 1.11 g (35%) of hydrazone 107 was obtained which was purified by chromatography (1:1 CHCl₃:ethyl acetate eluent). Mp. 72 - 75°C (lit.¹⁷⁰ Mp. 85°C).

¹H NMR (200 MHz, CDCl₃) : δ 3.79 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 5.32 (s, 2H, NNH₂), 6.81 (d, 2H, J = 8.7 Hz), 7.03 (d, 2H, J = 8.7 Hz), 7.22 (d, 2H, J = 8.4 Hz), 7.40 (d, 2H, J = 9.0 Hz). ¹³C NMR (75.4 MHz, CDCl₃) : δ 55.3, 113.4, 114.6, 125.0, 127.9, 130.1, 131.6, 149.2, 159.6. MS m/z (rel. intensity) 256 (M⁺⁺, 100), 240 (22), 225 (M⁺⁺ - OCH₃, 35), 199 (10), 148 (29), 133 (40), 77 (17).

Diazo-4,4'-dimethoxybenzophenone (109)

Following the general procedure in the preparation of CH₃C diphenyldiazomethane. (108),4,4'-dimethoxybenzophenone hydrazone 107 gave 1.74 g (81%) of 109 as a purple amorphous solid. Mp. 106 - 108°C (lit.¹⁷⁰ Mp. 112°C). ¹H NMR (200 MHz, $CDCl_3$) : δ 3.81 (s, 6H, OCH₃) 6.93 (d, 4H, J = 9.0 Hz), 7.17 (d, CH₂C 4H, J = 9.0 Hz). 13 C NMR (75.4 MHz, CDCl₃) : δ 55.4, 114.8, 121.5, 126.5, 132.2, 157.7. MS m/z (rel. intensity) 452 ((M+* -N₂)₂, 91), 226 (M⁺⁻ N₂, 100), 211 (90), 183 (19), 168 (18), 152 (17), 135 (34), 113 (27).

2,2-Dichloro-3,3-(4,4'-dimethoxy)diphenyl episulfide (111)

Diazo compound 109 (0.2 g, 0.79 mmol) was dissolved in 10 ml anhydrous ether and cooled to 0°C. Thiophosgene (0.11 g, 0.94 mmol) in 2 ml anhydrous ether was added dropwise. Spontaneous evolution of nitrogen was apparent as the purple solution faded to a yellow color. The mixture was allowed to stir for 0.5 hr at room temperature. The ether was evaporated under vacuo and the residue chromatographed (1:1 CH₂Cl₂:hexanes

eluent) furnishing 0.20 g (74%) of episulfide 111 as an orange-brown solid. Mp. 86 -87°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.79 (s, 6H, OCH₃), 6.87 (d, 4H, J = 8.9 Hz), 7.51 (d, 4H, J = 8.9 Hz). ¹³C NMR (67.9 MHz, CDCl₃) : δ 55.6, 66.4, 82.0, 113.7, 131.1, 131.6, 159.6. MS m/z (rel. intensity) 311 (2), 309 (13), 308 (M+* - S, 4), 307 (M+* - SH, 20), 238 (M+* - CSCl₂), 223 (7), 69 (18), 66 (100), 57 (88), 41 (30). Raman : 665 cm⁻¹. Anal. Calc'd for $C_{16}H_{14}O_2SCl_2$: S, 9.39. Found: S, 9.37.

1,1-Dichloro-2,2-bis(4-methoxyphenyl) ethene

The second fraction yielded 14.2 mg of a caramel colored solid which was identified as the ethylene compound. Mp. 128 - 132°C. ¹H NMR (200 MHz, CDCl₃) : δ 3.88 (s, 6H, OCH₃), 6.95 (d, 4H, J = 8.9 Hz), 7.78 (d, 4H, J = 8.9 Hz). 13 C NMR (67.9 MHz, CDCl₃) : δ 55.4, 113.4, 113.7, 128.4, 130.7, 132.2, 162.8. MS m/z (rel. intensity) 308 (M⁺⁺, 0.2), 242 (23), 227 (24), 211 (10), 135 (100), 107 (12), 92 (17), 77 (20).

S CI

CI

CI

CH₃C

CH₂C

5.15 PREPARATION OF 2,2-DICHLORO-3,3-DIBENZOSUBERONYL EPISULFIDE

Dibenzosuberone hydrazone (115)

Dibenzosuberone (112) (1.0g, 4.8 mmol) was dissolved in 20 ml ethylene glycol and hydrazine monohydrate (2.5ml, 51 mmol) was added. The mixture was allowed to reflux for 2 hr upon which a yellow solution was observed. The mixture was cooled, diluted with water and extracted twice with 40 ml

benzene. The extracts were combined, dried with MgSO₄, and concentrated. After chromatography (3:2 hexanes : EtOAc eluent), 0.83 g of hydrazone (115) was obtained as a yellow solid (78%). Mp. 81 - 84 °C (lit.¹⁸⁴ Mp. 82°C). ¹H NMR (200 MHz, CDCl₃) : δ 2.80 - 3.42 (m, 4H, CH₂CH₂), 5.53 (s, 2H, NNH₂), 7.00 - 7.74 (m, 8H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) : δ 31.9, 33.9, 125.9, 126.0, 127.0, 127.9, 128.4, 128.5, 129.1, 130.2, 133.6, 137.0, 137.4, 139.9, 149.1.

Diazodibenzosuberone (122)

To a rapidly stirred solution of hydrazone (115) (0.83g, 3.7 mmol) in 35 ml anhydrous ether, yellow mercuric oxide (6.0 g, 28 mmol) was added followed by 0.25 g Na_2SO_4 . 10 drops of 10% ethanolic KOH was then added and the mixture was stirred for 24 hr. The mixture was decanted from the

heavy sludge resulting in a violet colored solution containing the diazo compound 122 which was not isolated but was concentrated to about 10 ml and immediately cooled to 0°C. A small sample (19 mg) was dried and used for spectroscopic analysis. ¹H NMR (200 MHz, CDCl₃) : δ 3.09 (s, 4H, CH₂CH₂), 7.00 - 7.50 (m, 8H, aromatic). ¹³C NMR (75.4 MHz, CDCl₃) : δ 35.6, 123.8, 124.7, 126.6, 127.9, 130.2, 132.3, 139.4.

2,? Dichloro-3,3-dibenzosuberonyl episulfide (123)

Thiophosgene (10 drops) in 5.0 ml anhydrous ether was added dropwise to the cooled stirred diazodibenzosuberone 122 solution. Immediate evolution of nitrogen gas was observed. The mixture was allowed to stir for 2 hr, concentrated under vacuo and chromatographed (2:1 hexanes : CH_2Cl_2 eluent) furnishing 0.22 g (~20% based on initial amount of 115) of 123 as straw yellow crystals. Mp. 113 - 114°C. ¹H NMR (200 MHz, CDCl₃) : δ 2.98

- 3.16 (m, 2H), 3.64 - 3.82 (m, 2H), 7.11 - 7.41 (m, 8H). ¹³C NMR (75.4 MHz, CDCl₃)

NNH,

: δ 31.9, 69.0, 82.8, 126.2, 128.9, 129.5, 129.7, 136.5, 138.8. MS m/z (rel. intensity) 306 (M⁺⁺, 3), 277 (2), 276 (3), 275 (5), 274 (M⁺⁺ - S, 14), 273 (M⁺⁺ - SH, 38), 272 (M⁺⁺ - H₂S, 23), 271 (M⁺⁺ - Cl, 100), 236 (63), 221 (11), 202 (31), 191 (41). Anal. Calc'd for C₁₆H₁₂SCl₂: C, 62.54; H, 3.94. Found: C, 62.14; H, 3.60.

5.16 PREPARATION OF 1-METHOXY-3-TRIMETHYLSILYLOXY-1,3-BUTADIENE

The siloxydiene was prepared according to the procedure of Danishefsky.²⁰⁷ Anhydrous powdered $ZnCl_2$ (0.2g, 2 mmol) was added to triethylamine (11.5g, 0.11 mol). The mixture was stirred at room temperature and under an inert atmosphere until the $ZnCl_2$ became suspended in the amine whereupon a white

suspension was observed. 1-Methoxy-3-butene-2-one (5g, 0.05 mol) in 15 ml benzene was added followed by 10.85g (0.10 mol) chlorotrimethylsilane. After stirring 0.5 hr, the mixture was heated to 40°C and then left stirring 24 hr. After cooling the mixture, it was transferred to 100ml anhydrous ether and filtered. A brown liquid was obtained after collecting the filtrate and evaporating the ether under reduced pressure. Vacuum distillation of the liquid furnished 3.87g (45%) of 1-methoxy-3-trimethylsilyloxy-1,3-butadiene. Bp. 54 - 55°C (5mm Hg) (lit.²⁰⁷ 54 - 55°C (5mm Hg)). ¹H NMR (200MHz, CDCl₃) : δ 0.22 (s, 9H, OTMS), 3.57 (s, 3H, OCH₃), 4.05 (s, 1H), 4.09 (s, 1H), 5.34 (d, 1H, J = 12.2 Hz), 6.82 (d, 1H, J = 12.4 Hz).

5.17 PREPARATION OF 1-METHOXY-2-METHYL-3-TRIMETHYLSILYLOXY-1,3-PENTADIENE

1-Hydroxy-2-methyl-pent-1-ene-3-one

A 1L 3-neck flask was charged with 600ml benzene, 20.45g (0.5 mol) 60% sodium hydride, and 0.5ml methanol. The cooled solution (0°C) was stirred under an inert almosphere. A mixture of 3-pentanone (55ml, 0.5 mol) and ethyl formate (41ml, 0.5 mol) was added dropwise over a period of 1.5 hr. After addition, the beige pastelike precipitate was stirred for an additional 1.5 hr at room temperature and then diluted

with 375ml anhydrous ether. The suspension was then filtered, the crude sodium salt was washed with anhydrous ether. After drying, the yield was 31g (45.6%).

The sodium salt was transferred slowly to 400ml water cooled to 0° C. When the salt was dissolved, the solution was acidified to pH 5 using concentrated HCl. The

OCH₃

mixture was extracted 4 times with 100ml ether each time. The combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford an amber oil which solidifies on standing. Vacuum distillation (Bp. = 58° C, 12mm Hg) furnished 13.6g (52%) of 1-hydroxy-2-methyl-pent-1-ene-3-one. ¹H NMR (200MHz, CDCl₃) : δ 1.12 (t, 3H, J = 7.3 Hz), 1.77 (s, 3H), 2.43 (q, 2H, J = 7.3 Hz), 7.52 (br s, 1H), 7.56 (br s, 1H).

1-Methoxy-2-methyl-pent-1-ene-3-one

A 250ml 3-neck flask was charged with 175ml benzene and 88ml of 3:2 mixture benzene and methanol. To the solution, 13.6g (0.118 mol) of 1-hydroxy-2-methyl-pent-1-ene-3-one was added followed by 0.17g (0.89 mmol) of *p*-toluenesulfonic acid monohydrate. The solution was distilled until half the benzene/methanol azeotrope (Bp. = 59° C) was collected. The flask

was replenished with a fresh benzene/methanol mixture and this cycle was repeated four times. Finally, 88ml benzene was added whereupon distillation causes the boiling point to rise to 79°C as the reaction was driven to completion. The reaction was then quenched with 88ml of 1M sodium bicarbonate solution. The phases was separated and the lower aqueous phase was extracted twice with 88ml ether. The combined organic phases were dried over MgSO₄, filtered, and concentrated under vacuo. The brown oil was vacuum distilled (Bp. = 94°C, 12mm Hg) affording 12.7g (84%) of 1-methoxy-2-methyl-pent-1-ene-3-one. The methoxy ketone was stored over nitrogen at -27°C. ¹H NMR (200MHz, CDCi₃) : δ 1.07 (t, 3H, J = 7.4 Hz), 1.68 (s, 3H, CH₃), 2.51 (q, 2H, J = 7.4 Hz), 3.83 (s, 3H, OCH₃), 7.21 (b s, 1H).

The hydroxy ketone was prepared according to the procedure of Danishefsky.²⁰⁸ A 100ml flask was charged with triethylamine (2.9ml 21 mmol), 1-methoxy-2-methyl-pent-1ene-3-one (2.00g, 15.6 mmol), and 25ml anhydrous ether then cooled to 0° C. Under an inert atmosphere, trimethylsilyl trifluoromethanesulfonate (TMSOTf) (3.0 ml, 15.6 mmol) was

added dropwise over a 10 min. period. The solution went from a yellow color to a redbrown oily precipitate. After allowing the mixture to stir a further 20 min., the oily liquid was separated. The ethereal solution was concentrated under vacuo and the yellow oil was vacuum distilled (Bp. = 83° C, 12mm Hg) (lit.²⁰⁸ 44 - 46° C (0.7 mm Hg)) yielding 1.57g (50%) of 1-methoxy-2-methyl-3-trimethylsilyloxy-1,3-pentadiene. ¹H

OCH₂

NMR (200MHz, CDCl₃) : δ 0.06 (s, 9H, TMS), 1.35 (d, 3H, J = 6.8 Hz), 1.41 (s, 3H), 3.38 (s, 3H, OCH₃), 4.50 (q, 1H, J = 7.0 Hz), 6.1 (br s, 1H).

5.18 REACTION OF THURANE 28 WITH 1,3-BUTADIENES

A typical procedure involves dissolving 1 eq. of thiirane **28** in the specified solvent (Table 20) followed by 2.5-3.0 eq. of diene. After stirring at the specified temperature and time, a ¹H NMR spectrum was taken of the crude mixture to detect any appearance of trapped adduct. The corresponding olefin and sulfur were recovered by column chromatography.

5.19 PREPARATION OF SODIUM CYANODITHIOFORMATE

The preparation of 139 was followed according to the literature.²¹⁰ Sodium cyanide (10.0g, 0.20 mmol) was dried over phosphorus pentoxide for 1 hr and then suspended in 50ml dry DMF. Under inert atmosphere and with vigorous stirring, 12ml carbon disulfide was added slowly over a 20 min, period to

the cooled (0°C) suspension. After stirring for an additional 30 min., a brown solid precipitated. Isobutanol (35ml) was added to the mixture which was gradually heated until the solid dissolved. Unreacted sodium cyanide was filtered away and the filtrate cooled to yield 42.6g (62%) of 139 as a shiny brown solid. Mp. 62 - 64°C. IR (CHCl₃ solution, cm⁻¹) : 1050 (C=S), 2200 (CN).

5.20 REACTION OF 139 WITH 1,3-BUTADIENES

In a typical reaction 139 (1.0g, 2.9 mmol) was dissolved in 20 ml CHCl₃ to which 2,3-diphenyl-1,3-butadiene (0.20g, 0.97 mmol) was added. The mixture was stirred for 1.5 hr at room temperature and the crude was examined by ¹H NMR for any presence of trapped product. Thin layer chromatography revealed the presence of sulfur.

5.21 CHLORINATION OF TETRAMETHYLTHIURAM DISULFIDE WITH 1,3-BUTADIENES

A typical procedure involves adding 2.0-2.5 eq. of diene to a slurried solution of 141 in CCl_4 . One eq. of SO_2Cl_2 in CCl_4 was added dropwise at room temperature. In cases where Cl_2 was used, it was bubbled through the slurry for 20 min. Under conditions specified in Table 21, the initial beige colored mixture gradually transformed to a lemon-colored, one indicating presence of sulfur and N,N-dimethylcarbamyl chloride by-product. After filtration through a Schlenck tube under inert atmosphere, only the tetrasulfide product was isolated as a green-yellow oil via flash chromatography (hexanes

eluent) which was performed under inert atmosphere and in the absence of light. A small amount of disulfide adduct was also identified in the mixture. ¹H NMR (200 MHz, CDCl₃) : δ 1.78 (s, 6H), 3.63 (s, 4H). ¹³C NMR (75.4 MHz, CDCl₃) : δ 18.1, 42.8, 130.3. MS n/z (rel. intensity) 210 (M⁺⁺, 3), 146 (39), 82 (94), 67 (100).

5.22 REACTION OF N,N-DIMETHYLCARBAMYL CHLORIDE WITH SULFUR

2,3-methyl-1,3-butadiene (2.5g, 30mmol) was added to a solution of $N_{.}N_{-}$ dimethylcarbamyl chloride (1.5g, 12mmol) in 35ml CCl₄ followed by elemental sulfur (0.67g, 2.6mmol). The mixture was then stirred at room temperature for 72 hr and a ¹H NMR spectrum was taken of the crude material showing only starting materials. Heating the mixture at reflux for 24 hr also showed no reaction.

5.23 REACTION OF 28 WITH METHYLBENZENES

A typical procedure involved dissolving 31mg of thiirane 28 in 15ml of toluene, 1,2,4-trimethylbenzene, *o*-xylene, *m*-xylene, or *p*-xylene. The solution was then heated at 80°C for two hours, then cooled and the solvent removed under vacuo. The residual material was dissolved in CDCl₃ and a ¹H NMR spectrum was recorded.

APPENDIX I. X-Ray structure determination of compound 110.

Atomic coordinates and temperature factors are reported in Table XR-1. Intensity data were collected at room temperature on a AFC6S Rigaku diffractometer controlled by TEXRAY software using the $\theta/2\theta$ scan mode and are shown in Table XR-2.

Table XR-1. Atomic coordinates (x, y, z) and temperature factors (B_{eq}) for compound 110. Estimated σs refer to the last digit.

Atom	х	У	Z	B _{eq}
Cl 1	0.0877(3)	0.3652(11)	0.0534(3)	5.4(4)
CI 2	-0.0202(3)	0.4118(11)	0.1232(3)	5.5(4)
S	0.0426(3)	0.8129(11)	0.0785(3)	4.4(4)
C 1	0.0524(12)	0.543(4)	0.1048(11)	4.4(15)
C 2	0.0895(12)	0.685(4)	0.1503(9)	4.2(15)
C 3	0.1638(6)	0.676(3)	0.1537(7)	3.6(3)
C 4	0,1966(9)	0.8525(22)	0.1334(6)	6.9(3)
C 5	0.2647(9)	0.8483(23)	0.1377(6)	6.4(3)
C 6	0.3000(6)	0.668(3)	0.1621(7)	5.0(3)
C7	0,2672(9)	0.4909(22)	0.1823(7)	6.8(3)
C 8	0,1990(9)	0.4951(23)	0.1781(7)	6.1(3)
C 9	0.0665(8)	0.728(3)	0.2127(6)	4.3(3)
C10	0.0771(7)	0.5720(22)	0.2611(9)	6.2(3)
CH	0.0576(7)	0.609(3)	0.3210(7)	5.7(3)
C12	0.0275(8)	0.802(3)	0.3326(6)	6.7(3)
C13	0.0169(7)	0.9581(23)	0.2843(9)	9.6(3)
C14	0.0364(7)	0.9210(25)	0.2243(7)	5.3(3)
CLIA	0.6579(4)	-0.3601(14)	-0.0320(3)	8.2(5)
Cl 2A	0.5726(4)	-0.4533(15)	0.0591(4)	9.5(6)
S A	0.5933(4)	0.0110(14)	0.0270(4)	7.5(5)
CIA ·	0.6250(15)	-0.252(4)	0.0354(12)	6.3(19)
C 2A	0.6619(11)	-0.117(5)	0.0817(12)	5.2(16)
C 3A	0.7308(6)	-0.058(3)	0.0698(7)	5.0(3)
C 4A	0.7429(8)	0.139(3)	0.0425(7)	6.7(3)
C 5A	0.8065(9)	0.1933(21)	0.0342(6)	6.0(3)
C 6A	0.8581(6)	0.051(3)	0.0532(7)	5.6(3)
C 7A	0.8460(8)	-0.146(3)	0.0805(7)	7.8(3)
C 8A	0.7824(9)	-0.2009(21)	0.0888(6)	5.3(3)
C 9A	0.6575(7)	-0.143(3)	0.1520(5)	3.4(3)
CIOA	0.6796(7)	-0.3271(24)	0.1867(8)	6.6(3)
CIIA	0.6777(7)	-0.3386(24)	0.2531(8)	6.2(3)
C12A	0.6536(7)	-0.166(3)	0.2847(5)	6.2(3)
CI3A	0.6315(7)	0.018(3)	0.2500(9)	7.8(3)
C14A	0.6334(7)	0.0291(23)	0.1836(8)	8.3(3)

Compound 110	S ci
	CI
Chemical Formula	C14H10SCh
Formula Weight	281.20
X-ray crystal dimension (mm) ^a	0.40 x 0.15 x 0.05
Radiation	Graphite-monochromated CuK_{α}
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
Lattice constants	
a(A)	20.646(6)
	0.244(3) 20.880(6)
β (°)	20.880(0) 99.263(23)
	2656 5(16)
7 (A) Z	8
F (000)	1162.33
Density (calc'd) (g cm ⁻³)	1.406
μ (mm ⁻¹)	0.571
λ (Å)	1.54056
20 max (°)	80.0
h, k, l ranges	-16 16,0 5,0 17
No. of reflections measured	1638
No. of unique reflections	1564
No. of reflections with $I_{nei} > 2.5\sigma (I_{nei})$	827
For significant reflections	$RF = 0.091^{b}, R_{W} = 0.083^{c}, G_{O}F = 2.37^{d}$
Maximum shift / σ ratio	0.022
Deepest hole in D-map (e / Å ³)	-0.400
Highest peak in D-map (e / Å ³)	0.450
Drop of standard intensities	25% for each crystal
Method of structure determination	Solved by direct methods ²¹⁰
Method of structure refinement	NKCVAX system programs ^{er}

Table XR-2. Crystal data for the structure determination of compound 110.

²¹⁶ G. M. Sheldrick, *Crystallographic Computing 3*, G. M. Sheldrick, M. Kruger, and R. Doddard, Eds., Oxford University Press: Oxford, England, 1985, pp 175-189.

E. J. Gabe, Y. LePage, J.-P. Charland, F. L. Lee, and P. S. White, J. Appl. Cryst., 22, 384 (1989).

 41 cell dimensions were obtained from 20 reflections with 20 angle in the range 40.00 - 50.00°. No correction was made for absorption.

 $h_{\rm RF} = \Sigma (F_o - F_c) / \Sigma (F_o)$

.

 $C_{\rm R_w} = (\Sigma [w(F_o - F_c)^2 / \Sigma (wF_o^2)])^{\frac{1}{2}}$

 $d G_0 F = (\Sigma[w(F_0 - F_c)^2 / (\# \text{ reflections} - \# \text{ parameters})])^{\gamma_t}$

The dihedral angles between the planes of the phenyl groups in 110 were determined from the equations in Table NR-3.

Table XR-3. Distances (Å) to the Least-squares planes. Phenyl groups were idealized as rigid groups and all are perfectly planar.

Plane no. 1

Equation of the plane :- 1.04(16)x + 2.39(4)y + 19.18(6)z = 4.39(4)

Distances(Å) to the plane from the atoms in the plane.

C 3	0.000(23)	C 4	0.000(22)
C 5	0.000(22)	C 6	0.000(23)
C 7	0.000(22)	C 8	0.000(22)

 χ^2 for this plane 0.000

Plane no. 2

Equation of the plane : 17.57(8)x + 2.49(4)y + 4.17(15)z = 3.87(5)

Distances(Å) to the plane from the atoms in the plane.

C 9	0.000(22)	C10	0.000(22)
C11	0.000(20)	C12	0.000(24)
C13	0.000(23)	C14	0.000(19)

 χ^2 for this plane 0.000

Plane no. 3

Equation of the plane : 0.23(15)x + 2.58(4)y + 18.73(7)z = 1.32(12)

Distances(Å) to the plane from the atoms in the plane.

C 3A	0.000(23)	C 4A	0.000(20)
C 5A	0.000(23)	C 6A	0.000(23)
C 7A	0.000(20)	AS D	0.000(23)

 χ^2 for this plane 0.000

Plane no. 4

Equation of the plane : 18.61(6)x + 2.42(4)y + 0.95(16)z = 12.03(5)

 $\mathsf{Distances}(\mathsf{\mathring{A}})$ to the plane from the atoms in the plane.

C 9A 0.00)()(22)	C10A	0.000(20)
C11A 0.00	00(20)	C12A	0.000(24)
C13A 0.00)0(22)	C14A	0.000(21)
χ^2 for this plane	0.000		

Dihedral angle between planes A and B.

В	Angle(⁰)
2	64.9(6)
3	4.0(6)
4	73.7(6)
3	61.0(6)
4	9.0(6)
4	69.8(6)
	B 2 3 4 3 4 4 4

APPENDIX II. X-Ray structure determination of compound 123.

Atomic coordinates and temperature factors are reported in Table XR-4. Intensity data were collected at room temperature on a AFC6S Rigaku diffractometer controlled by TEXRAY software using the ω scan mode and are shown in Table XR-5.

Tabl	e XR-4.	Atomic	coordinates	(x, y,	z) and	temperature	factors	(B_{eq}) f	or	compound
123.	Estimate	d σ s refe	er to the last	digit.				•		

Atom	x	у	2	B _{eq}	
S	0.62296(19)	().6257(3)	0.06797(7)	5.15(9)	
Cl 1	0.54225(18)	1.0721(3)	0.09744(7)	5.68(9)	
Cl 2	0.75718(18)	1.0136(3)	0.01891(6)	5.54(9)	
CI	0.6712(6)	0.8961(10)	0.07392(22)	4.4(3)	
C 2	0.7574(6)	0.7600(9)	0.11535(23)	3.7(3)	
C 3	0.9152(7)	0.7150(10)	0.10565(23)	4.0(3)	
C 4	0.9485(7)	0.5357(12)	0.0762(3)	5.5(4)	
C 5	1.0918(9)	0.4897(14)	0.0675(3)	7.2(5)	
C 6	1.1976(9)	0.6260(18)	0.0864(4)	7.7(6)	
C 7	1.1643(8)	0.8035(15)	0.1158(3)	6.8(5)	
C 8	1.0231(7)	0.8520(12)	0.1267(3)	5.2(4)	
C 9	1.0955(8)	1.0434(14)	0.1629(4)	7.7(5)	
C10	0.8679(9)	1.1112(11)	0.1805(3)	7.2(4)	
CH	0.7803(6)	0.9424(10)	0.2072(3)	4.6(3)	
C12	0.7550(7)	0.9529(11)	0.2638(3)	5.2(4)	
C13	0.6760(7)	0.8005(13)	0.2879(3)	5.2(4)	
C14	0.6217(7)	0.6345(11)	0.2568(3)	4.9(3)	
C15	0.6462(6)	0.6201(9)	0.20059(24)	4.1(3)	
C16	0.7255(6)	0.7735(9)	0.17594(23)	3.6(3)	

Compound 123	
	S CI
Chemical Formula	$C_{16}H_{12}SCl_2$
Formula Weight	307.23
X-ray crystal dimension (mm) ^a	0.50 x 0.35 x 0.20
Radiation	Graphite-monochromated MoK $_{\alpha}$
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
Lattice constants	
a (Å)	9.351(4)
b (A)	6.3151(19)
c (A)	24.077(6)
β (°)	94.03(3)
V (A ³)	1418.3(8)
Ζ Γ (000)	4
F(000)	033.03
Density (calc d) (g cm ⁻²)	1.439 N 59
μ (mm ²)	0.30
λ (Α)	0.70930
20 max (°)	44.9
h, k, l ranges	-10 10, 0 6, 0 25
No. of reflections measured	1973
No. of unique reflections	1841
No. or reflections with $I_{net} > 2.5\sigma (I_{net})$	
For significant reflections	$RF = 0.045^{\circ}, R_{W} = 0.040^{\circ}, G_{0}F = 1.40^{\circ}$
For all reflections	$RF = 0.106, R_W = 0.044$
Maximum shift / σ ratio	0.005
Deepest hole in D-map (e / Å ³)	-0.270
Highest peak in D-map (e / A ³)	0.390
Merging R	1.5%
Drop of standard intensities	1% Solved her discussion at a 216
Nethod of structure determination	Solved by direct methods ²¹⁰
iviemod of structure refinement	INKUVAA System programs"

 Table XR-5. Crystal data for the structure determination of compound 123.

^a cell dimensions were obtained from 25 reflections with 20 angle in the range 20.00° , 25.00° . No correction was made for absorption.

 $b RF = \Sigma (F_o \cdot F_c) / \Sigma (F_o)$

 $\mathcal{L}_{\mathbf{w}}^{c} = (\Sigma [\mathbf{w}(\mathbf{F}_{o} \cdot \mathbf{F}_{c})^{2} / \Sigma (\mathbf{w} \mathbf{F}_{o}^{-2})])^{2}$

 ${}^{\rm d}\,{\rm G}_{\rm o}{\rm F}=(\Sigma[w({\rm F}_{\rm o}{\rm \cdot}{\rm F}_{\rm c})^2\,/\,(\#\,{\rm reflections}\,-\,\#\,{\rm parameters})\})^{4}$

The dihedral angles between the planes of the phenyl groups in 123 were determined from the equations in Table XR-6.

Table XR-6. Distances (Å) to the Least-squares planes.

Plane no. 1

Equation of the plane : 0.33(3)x - 3.289(19)y + 20.43(4)z = 0.11(4)

Distances(Å) to the plane from the atoms in the plane.

C 3	-0.004(8)	C 4	-0.005(9)
C 5	0.014(11)	C 6	-0.012(13)
C 7	-0.007(11)	C 8	0.011(10)

 χ^2 for this plane 4.580

Plane no. 2

Equation of the plane : 7.681(15)x - 3.292(15)y + 4.17(7)z = 3.758(24)

Distances(Å) to the plane from the atoms in the plane.

C11	-0.003(8)	C12	0.004(9)
C13	-0.001(9)	C14	-0.001(8)
C15	0.000(7)	C16	0.001(7)

 χ^2 for this plane 0.409

Dihedral angle between planes A and B

A	В	Angle(⁰)
1	2	60.1(3)

Compound 110

- a) Table of Bond Distances (Å) and Bond Angles(^o)
- b) Table of Torsion Angles(⁰)
- c) Table of Observed and Calculated Structure Factors
- d) Table of Calculated Hydrogen Atom Parameters
- e) Table of Anisotropic u(i, j) Values

C1 (1) -C (1) C1 (2) -C (1) S-C (1) S-C (2) C (1) -C (2) C (2) -C (3) C (2) -C (9) C1 (1A) -C1 (2A) C1 (1A) -C (1A) C1 (2A) -C (1A) S (A) -C (1A) S (A) -C (1A) S (A) -C (2A) C (1) -C (2A) C (2A) -C (3A) C (2A) -C (9A)	1.781(1.80(3 1.773(1.830(1.43(3 1.52(3 1.48(3 2.854(1.79(3 1.78(3 1.78(3 1.76(3 1.852(1.41(4 1.53(3 1.49(3	23)) 24) 22))) 12)) 12)) 24)))
C(1) - S - C(2) $C1(1) - C(1) - C1$ $C1(1) - C(1) - S$ $C1(1) - C(1) - C(2)$ $C1(2) - C(1) - C(2)$ $C(1) - C(2)$ $C(2) - C(1) - C(3)$ $S - C(2) - C(3)$ $S - C(2) - C(3)$ $C(1) - C(2) - C(3)$ $C(1) - C(2) - C(3)$ $C(1) - C(2) - C(3)$ $C(2) - C(3) - C(3)$ $C(2) - C(3) - C(4)$ $C(3) - C(4) - C(4)$ $C(3) - C(4) - C(4)$ $C(4) - C(4) - C(4)$ $C(4) - C(4) - C(4)$ $C(4) - C(4) - C(4)$	(2) 2; 2))))))	46.6(11) 106.2(13) 116.3(13) 124.1(19) 116.1(13) 121.1(17) 68.8(14) 64.6(12) 116.8(14) 116.0(16) 115.8(19) 118.9(20) 115.4(16) 119.3(16) 120.6(16) 118.4(16)

C(1A) - S(A) - C(2A) Cl(1A) - C(1A) - Cl(2A) Cl(1A) - C(1A) - S(A) Cl(1A) - C(1A) - C(2A) Cl(2A) - C(1A) - S(A) Cl(2A) - C(1A) - C(2A) S(A) - C(1A) - C(2A)	45.7(13) 106.0(14) 117.0(14) 122.1(22) 116.9(18) 121.2(19) 70.4(15)
S(A) - C(2A) - C(3A)	115.8(16)
S (A) -C (2A) -C (9A)	119.4(16)
C(1A) - C(2A) - C(3A)	116.6(22)
C (1A) -C (2A) -C (9A)	119.8(22)
C (3A) -C (2A) -C (9A)	113.0(17)
C (2A) -C (3A) -C (4A)	120.7(16)
C (2A) -C (3A) -C (8A)	119.3(17)
C (2A) -C (9A) -C (10A)	122.3(17)
C (2A) -C (9A) -C (14A)	117.6(17)

.

Table of Torsion Angles in Degrees

C 2	S	C 1	CL 1	-118.6(15)					
č 2	ç	ĉī	CT. 2	115 3(14)	C 2	S	C 1	C 2	0 0 (11)
c i	S	C 2			C 1	ŝ	Č 2	<u> </u>	107 5/ 16)
	5		Č Å	-1113(16)		C 1	Č 2		108 1 (16)
	3							Č O	-144.9(22)
			6	-1095(16)					149.0(22)
			5					6	142.0(21)
				-1.3(0)	3			3	
5				-108.9(19)	3				107.0(19)
S	02			40.3(9)	5				-141.2(19)
CI	C 2			113.4(21)					-08.1(10)
C 9	C 2	C 3	C 4	-101.3(18)	6 9				77.3(15)
S	C 2	C 9	C10	150.7(19)	5	02	C 9	C14	-31.0(8)
C 1	C 2	C 9	C10	76.7(17)	CI	CZ	C 9	C14	-105.0(20)
C 3	C 2	C 9	C10	-67.5(14)	C 3	C 2	C 9	C14	110.8(19)
			~~ ~~						
C 2A	SA	C 1A	CL 1A	-116.9(17)					
C 2A	SA	C 1A	CL 2A	115.8(17)	C 2A	S A	C 1A	C 2A	0.0(13)
C 1A	SA	C 2A	C 1A	0.0(14)	C 1A	SA	C 2A	C 3A	108.5(18)
C 1A	SA	C 2A	C 9A	-111.1(18)	CL 1A	C 1A	C 2A	SA	110.2(19)
CL 17	AC1A	C 2A	C 3A	2.9(6)	CL 1A	C 1A	C 2A	C 9A	-139.4(24)
CL 22	AC 1A	C 2A	SA	-110.2(19)	CL 2A	C 1A	C 2A	C 3A	142.5(24)
CL 22	AC1A	C 2A	C 9A	0.2(6)	SA	C 1A	C 2A	SA	0.0(4)
SA	C 1A	C 2A	с за	-107.3(21)	SA	C 1A	C 2A	C 9A	110.4(22)
S A	C 2A	C 3A	C 4A	27.5(9)	SA	C 2A	C 3A	C 8A	~154.9(21)
C 1A	C 2A	C 3A	C 4A	99.7(22)	C 1A	C 2A	C 3A	C 8A	-82.6(20)
🛋 9A	C 2A	C 3A	C 4A	-115.5(21)	C 9A	C 2A	C 3A	C 8A	62.2(14)
A	C 2A	C 9A	C10A	140.5(20)	SA	C 2A	C 9A	C14A	-42.9(10)
C 1A	C 2A	C 9A	C10A	65.5(17)	C 1A	C 2A	C 9A	C14A	-117.9(23)
C 3A	C 2A	C 9A	C10A	-78.0(16)	C 3A	C 2A	C 9A	C14A	98.5(19)
									· · ·

for C14 H10 S C12

STRU	ICTURE	E FACI	ORS FO	R C1	4 H1() s ci	12						1	Page 1	1
	Colum	nns ar	:e 10F	0	10Fc	100	OSig, *	for	Insi	ignifi	icant				_ •
1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig
	·16,	0, 1		-	14,	2, 1		8	30	153	3568*	8	45	131	3615*
	525	531	358	1	35	65	2017*	10	447	511	296	9	398	418	206
4	33	13	4869*	2	33	37	4999*	12	49	189	3090*	10	309	324	192
6	34	243	5531*	3	348	379	241	14	34	61	5035*	11	187	183	215
8	239	236	287	4	235	271	262	-	12,	1, 1		12	32	77	3553*
-	-16,	1, 1		5	33	67	4452*	7	30	115	3859*	13	146	27	1073*
7	34	104	2340*	6	33	93	5278×	8	30	134	2076*	14	138	52	411*
8	178	190	977*	7	293	325	221	9	368	374	189	-	11,	2, 1	
-	-15,	0, 1		8	209	223	299	10	146	30	751*	1	239	205	259
1	32	222	3874*	9	289	259	230	11	285	298	193	2	352	426	250
3	352	305	241	_	13,	0, 1	-	12	99	57	953*	3	29	219	6270*
5	303	327	205	7	378	409	205	13	138	110	796*	4	203	35	285
7	402	459	227	ġ	139	18	787*		12.	2. 1		5	216	126	288
ġ	158	267	1122*	11	224	312	268	1	140	106	280	ŝ	ี จิ๊ก	16	1968*
	.15	1 1	~ ~ ~ ~ ~	îŝ	231	244	249	2	404	305	184	7	37	13	2637*
1	222	253	269		13	1 1	413	2	104	110	044	ó	275	264	182
2	222	200	203		T.21	105	3414+	3	70	113	5447	Ô	215	110	702
2	211	471	1700+	- <u>-</u>	30	145	3414~	4	70	11	3401	10	22	110	34301
3	82	38	1/90*	2	30	145	3790	5	21	11	30907	10	32	2	3641*
4	212	195	288	3	Z/1	191	190	6	31	24	3631*	11	411	314	213
5	33	208	5091*	4	198	204	204	7	443	450	294	12	122	323	990*
5	358	277	230	5	105	32	973×	8	32	15	3423*	13	50	51	2192*
7	367	384	234	6	409	339	278	9	217	219	262	-	11,	3, 1	
8	34	121	4722*	7	42	108	1760*	10	33	35	3217*	1	442	460	298
9	80	146	2035*	8	378	300	182	11	202	177	302	2	158	38	260
10	34	19	5448*	9	91	112	537*	12	34	116	5251*	3	206	199	205
-	·15,	2, 1		10	33	142	4862*	-	12,	3, 1		4	424	396	296
1	34	31	5091*	11	147	273	1100*	1	312	319	197	5	196	151	220
_ 2	34	20	4777*	12	191	12	307	2	152	218	1014*	6	489	489	339
3	34	45	4980*	-	13.	2. 1		3	149	125	944*	7	132	4	1107*
4	384	354	266	1	249	154	177	4	117	209	1366*	8	33	312	5701*
5	34	21	2889*	2	253	214	169	5	224	189	263	ğ	34	90	4202*
6	77	169	2334*	3	97	89	1092*	ĕ	33	112	4660*	10	34	77	3383*
7	108	148	1574*	Ă	218	238	204	7	34	14	4600*	<u> </u>	10	0 'i	5505
	-14	<u>1</u>	1014	5	20	10	2430*	6	363	210	210	2	-021		225
ົ່	250	192	162	2	160	120	2430"	õ	202	100	4627+	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	127	116	1046+
2	200	202	175	7	700	123	231	9	- 34	120	403/1	4	137	110	10401
-	303	200	4270+		107	150	2155-	-	11, 2C	V, 1	E 4 6 1 4	0	100	110	200
0	5 T	210	4370-	0	181	109	290	Ť	20	/8	5491*	8	100	112	329
10	04	2/9	1448*		33	145	4/32*	3	263	272	220	10	176	219	993*
10	33	269	5060*	10	169	82	933*	5	81	344	1894*	12	139	105	708*
12	279	307	240	11	161	79	1045*	7	475	516	269	14	33	110	1976*
	-14,	1, 1		-	13,	3, 1		9	807	823	296	-	10,	1, 1	
1	133	32	297*	1	156	169	395*	11	722	760	217	1	709	662	257
2	211	215	197	2	110	172	1507*	13	260	275	232	2	646	633	270
3	31	9	3144*	3	127	35	641*	15	254	205	239	3	541	535	299
4	80	92	1320*	4	193	110	324		11,	1, 1		4	387	366	243
5	73	121	982*	5	186	45	327	1	551	682	330	5	393	385	266
6	332	305	212	6	149	18	1004*	ī	27	76	6008*	6	47	95	3332*
7	235	212	188	7	- 69	142	1080*	3	352	453	213	ž	201	222	284
8	33	177	3665*		12.	0.1		Ă	79	28	1908*	Ŕ	283	349	244
Ğ	33	117	5226*	2	126	122	1182*	5	211	222	266	å	122	220	1216+
10	77		1428*		200	184	282	e E	200	360	200	10	101	107	20107
11	529	360	328	-	370	104	250	7	222	332	201 5610+	11	727	19/	201
**	J 2 U	203	J4 0	v	213	494	ムリプ		20	33	DOTZ"	**	JJ 4	401	223

STRU	JCTURE	FAC	FORS FC	DR C1	4 H1(s c	12							Page	2
_	Colun	ins ai	re 10F	'o	10Fc	100	OSig, *	for	Ins	ignif:	icant				-
1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	FC	Sig
	-10,	1, 1		6	25	59	5488*	12	30	255	5823×	3	33	129	4876*
	287	304	179	7	337	354	224	14	418	355	255	4	205	250	279
-3	292	356	192	8	27	122	5639*	16	242	252	236	5	175	224	313
14	35	8	4382*	9	82	21	741*		-8,	1, 1		6	33	58	3867*
12	346	390	240	10	567	569	329	1	1064	1047	162	7	176	175	318
-	-10,	2, 1		11	30	7	2820*	2	894	863	184	8	34	94	4056*
	27	50	5475*	12	236	238	165	3	469	534	261		-7,	0, 1	
2	170	17	868*	13	105	45	896*	4	330	279	202	1	232	228	167
3	21	165	5930*	14	33	43	4297*	5	107	159	632*	3	20	200	5259*
4	241	298	250	15	220	265	258	6	146	312	1014*	5	334	367	226
5	129	120	1328*	-	-9,	2, 1		7	427	411	245	7	618	598	203
7	29	98	5/06*	1	26	107	5796*	8	491	460	322	9	204	156	249
1	210	215	285	2	255	253	215	9	472	418	227	11	28	5	5304*
0	103	110	203	3	73	51	2006*	10	315	370	224	13	460	417	238
10	131	119	712*	4	101	128	1446*	11	167	141	941*	15	391	475	224
11	30	104	3353*	5	175	119	321	12	30	105	3150*		-7,	1, 1	
10	32	104	3507*	6	303	263	207	13	315	320	169	1	674	731	192
12	149	21	932*	7	113	141	607*	14	32	28	2330*	2	913	862	154
13	10	342	2250×	8	424	326	229	15	143	43	363*	3	120	88	835*
	.10'	3, 1		9	30	11	2268*	16	196	22	287	4	778	757	174
1	111	241	605*	10	31	183	3687*		-8,	2, 1		5	745	748	187
2	31	57	3216*	11	82	54	1129*	1	830	808	233	6	254	308	177
3	100	92	1710*	12	79	181	642*	2	659	658	261	7	867	849	199
4	100	107	964*	13	33	22	4651*	3	92	11	1424*	8	97	2	596*
5	289	274	186	14	34	26	4620*	4	554	523	289	9	98	72	943*
0	130		816*		-9,	3, 1		5	117	88	873*	10	27	47	5161=
	1/5	151	225	1	361	392	215	6	26	165	5213*	11	110	44	1338*
	33	80	4637*	2	168	134	229	7	27	2	5286*	12	29	119	5253*
9	33	115	4503*	3	30	78	3894*	8	133	149	1089*	13	149	161	238
11	30	138	4498*	4	292	280	183	9	29	9	5269*	14	267	335	163
ΤŦ	.10	142	4417*	5	153	159	250	10	83	90	1008*	15	133	263	973*
-	.10,	4, 1	4400.	6	383	357	212	11	332	343	214	16	34	89	4450*
1 1	34	182	4498*	7	136	129	772*	12	32	84	3024*		-7,	2, 1	
2	34	204	5413*	8	175	132	225	13	278	313	198	1	878	842	206
3	34	9	4717*	9	79	66	1308*	14	34	86	3066*	2	98	232	1393*
4 E	24	146	4666*	10	68	234	1505*	15	199	106	271	3	154	175	323*
5		~ 29	4000*	11	125	155	1187*	-	-8,	3, 1		4	820	873	216
-	-91	V, I	020	12	213	261	276	1	29	46	5881*	5	25	168	5799*
2	332	480	232		-9,	4, 1		2	138	292	1224*	6	420	370	245
5	14/	200	133*	1	33	168	4526*	3	436	487	241	7	26	34	5606*
5	291	320	206	2	272	248	210	4	29	172	5952*	8	247	282	230
6	204	409	299	3	267	288	231	5	622	558	300	9	163	2	883*
11	304	415	204	4	33	211	4924*	6	30	7	3555*	10	29	74	5700*
12	115	18	330	5	34	54	4653*	7	334	353	231	11	95	65	359*
15	112	144	936*	5	165	104	1063*	8	280	255	178	12	118	40	779*
10	293	283	191	7	_ 34	121	4275*	9	102	37	369*	13	97	47	384*
•	-9,	1, 1	~ ~ ~	-	-8,	0, 1		10	32	43	4094*	14	139	45	965*
Ť	253	338	209	2	511	492	224	11	33	67	3676*	15	52	2	2905*
2	400	399	313	4	796	794	171	12	241	266	240		-7,	3, 1	
3	177	388	200	6	602	609	266	-	-8,	4, 1		1	28	71	5367*
4	105	237	303	8	442	406	228	1	138	120	1055*	2	258	262	224
5	102	226	1328×	10	546	548	306	2	33	64	4535*	3	321	404	218

STRU	JCTURE	E FACT	FORS FO	R CI	L4 H1() s ci	12						3	Page 3	3
	Colur	nns ai	e 10F	`o	10Fc	100	OSig, *	for	Insi	gnif:	lcant				
1	kFo	FC	Sig	1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	Fc	Sig
	-7,	3, 1	-	5	275	267	187	6	258	235	171	2	83	114	794*
4	499	473	346	6	25	129	5383*	7	331	328	184	4	828	807	121
5	499	607	350	7	25	64	5392*	8	111	132	808*	6	1531	1494	111
6	29	2	5316*	8	302	379	207	9	249	331	211	8	383	374	180
7	204	130	175	ă	119	243	1226*	10	100	169	1338*	10	905	872	197
Ŕ	450	554	287	าก์	28	143	5304*	11	101	71	940*	12	96	89	987*
ă	322	318	194	11	178	167	178	12	117	197	1161*	1 4	227	318	100
10	135	442	205	12	- 10	- 01	2074*	13	163	133	182	16	299	271	203
11	435	112	290*	13	33	91	2074*	14	100	146	3199*	10	_ *	1 1	200
12	206	266	105	1.0	120	107	1060*	16	152	130	3100"	٦	300		214
12	230	200	155 A15A+	16	133	201	1000*	τ0	-5	2 1	002.	5	201	070	214
13	- 34	/0	4104^	10	24	201	45901	1	-5,	2, 1	105	2	100	210	730
	-/,	4, 1	104	-	-0,	3, 1	226	<u></u>	394	300	195	3	120	90	200*
Ţ	345	362	194	Ť	324	209	220	2	22	5	44/6*	4	1206	1122	114
2	328	294	194	2	133	12	1001*	3	/30	708	182	5	6/1	555	159
3	467	529	301	3	530	509	313	4	273	203	190	6	855	852	146
4	111	132	652*	4	27	9	5150*	5	23	46	5686*	7	611	612	194
5	119	160	668*	5	145	135	380*	6	349	369	231	8	104	104	353*
6	300	330	209	6	343	298	240	7	140	84	348*	9	321	280	206
7	33	3	4340*	7	217	128	261	8	111	163	1267*	10	441	451	234
8	34	12	4616*	8	178	146	191	9	157	3	329*	11	83	124	902*
9	120	129	616*	9	49	122	1341*	10	290	241	202	12	485	450	230
	-6,	0, 1		10	31	110	3017*	11	88	4	1145*	13	379	380	164
2	1067	1065	123	11	222	248	170	12	30	96	2870*	14	293	276	200
4	395	296	246	12	54	29	2693*	13	150	129	220	15	252	226	166
6	884	886	151	13	228	226	237	14	378	355	251	16	137	46	892*
8	23	122	5348*		-6.	4. 1		15	130	182	396*	17	112	82	1214*
10	99	23	776*	1	453	508	264		-5.	3. 1	000	- ·	-4.	2.1	1011
12	76	141	990*	2	31	10	3294*	٦	26	71	5250×	1	240	188	177
	104	Δ.	756*	- 7	81	1 47	1156*	2	107	700	31 4	2	617	564	107
	101	19	1081*	3	30	2.4.7	3102*	2	107	101	1027+	2	520	104	200
10	-6	1 1	1901.	5	30	222	3382*	8	140	101	1027*	3	120		15704
1	170	200	207	5	105	220	3363^	~1	140	116	340~	- 14 E	44 01 E	00	15/01
2	10	209	207 E111+	7	103	230	243	5	203	440	209	5	910	923	123
2	E 2 2	420	5111 [~]		22	144	4070+	70	120	323		9	230	234	203
ر ۸	244	430	214	0	23	202	4912~		123	152	7417		24	25	3807*
4	338	200	219	- 9	34	35	41/4*	8	396	362	238	8	395	401	271
5	102	04/	1/8	10	_ 34	72(4446*	.9	346	365	201	. 9	179	141	283
9	487	506	239	-	-5,	U, 1		10	401	322	249	10	243	253	212
	854	872	176	1	2524	2378	88	11	32	68	2167*	11	29	75	4939*
8	299	305	192	3	485	386	184	12	33	134	3923*	12	30	25	2431*
9	556	591	282	5	294	214	209	13	34	71	4133*	13	31	13	2827*
10	674	587	253	7	90	14	996*		-5,	4, 1		15	42	110	2991*
11	28	5	5072*	9	248	226	200	1	390	384	192	16	37	136	3702*
12	301	288	210	11	471	457	230	2	65	2	545*		-4,	3, 1	
13	71	106	1246*	13	119	84	1191*	з	360	345	195	1	586	645	271
14	143	193	250	15	107	41	755*	4	360	346	211	2	25	176	5320*
15	262	287	212	17	100	5	655*	5	201	214	193	3	141	225	994*
16	136	274	809*		-5,	1, 1	-	6	297	287	195	4	26	247	5631*
	-6,	2, 1	-	1	1137	1120	122	7	32	40	4715*	5	252	313	222
1	343	359	197	2	590	613	175	8	33	17	4094*	Ř	457	485	225
2	415	432	212	3	400	354	233	ğ	230	194	235	ž	466	608	260
3	211	191	189	Ă	1321	1245	120	10	200	140	4530*	Ŕ	200	200	10074
4	23	237	5906*	5	950	914	140		-4.	0.1	4000	ă	502	526	191
		÷ •		-					- 7	~, _				U	TOT

STRU	JCTURE	E FAC	FORS FC	R CI	4 H1	o s ci	12						3	Fage -	4
	Colur	nns ai	re 10F	`o	10Fc	100)Sig, *	for	Insi	ignifi	icant				-
1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	Fc	Sig
-	-4,	3, 1		4	374	332	254	16	33	246	3972*	2	217	144	138
	31	81	2779*	5	618	636	182		-2,	1, 1		3	78	102	490*
	352	330	204	6	517	570	210	1	807	776	100	4	174	154	161
12	33	31	2626*	7	292	254	199	2	558	545	131	5	518	503	190
13	34		3683*	8	907	939	211	3	450	355	164	6	279	275	152
14	,50	14/	1061*	9	246	248	212	4	471	459	167	7	262	254	159
•	-4,	4, <u>1</u>	005	10	463	497	329	5	890	910	120	8	32	176	4141*
1	350	384	205	11	85	27	1556*	6	570	608	174	9	33	186	4166*
2	153	10	3132*	12	30	119	2698*	7	110	150	771*	10	107	171	902*
3	722	120	209	13	21	66	1527*	8	370	344	176	11	291	342	183
	120	100	20001	14	32	42	25/1*	.9	214	292	216	_	-2,	5, 1	
5	100	166	104/~	10	55	99	43/2*	TO	141	237	895*	1	155	236	348*
7	201	240	100	Τ0		2 1	1548*	11	948	990	204	2	165	65	306
ģ	224	240	770	٦	-3,	3, I	E 21 0 +	12	110	83	825*	3	72	1	1964*
ů ů	220	69	2.34 1165*	2	20	1 6 0	53124	13	408	437	322	4	162	91	325*
10	128	35	1061*	2	20	705	2000	14	199	11/	138		-1,	0, 1	
10	-4.	5 1	1001.	3	167	200	201	10	32	70	1455*	3	1152	1190	68
1	7	188	1635*	- 14 E	101	200	2172+	17	300	381	260	5	3198	3079	78
2	34	74	1792*	6	234	153	21/27	Τ/	-752	2 1	306*	7	230	208	150
-	-3.	0.1	4/32.	7	254	122	225	-	-2,	2, <u>1</u>	200	. 9	773	764	157
1	1466	1417	67	Ŕ	361	256	203	2	276	205	200	11	55	135	2167*
3	223	176	152	ă	501	451	102	2	2/0	200	103	13	212	160	228
5	479	413	171	10	142	130	214	3	105	302	41427	12	379	334	219
7	20	130	4151*	11	356	287	174		386	393	230	τ,	34	12	3672*
ġ	388	430	251	12	447	491	231	6	289	202	180	٦	-1, -1,	1, 1	01
11	287	372	200	13	90	141	750*	7	135	102	109 071*	2	767	110	91
13	269	331	208	14	537	578	293	8	582	615	260	2	- 101 - 500	500	120
5	32	4	2336*		-3.	4. 1	200	ă	318	305	100	3	70	300	123
17	248	313	213	1	287	290	175	10	ÂΡ	15	1348*		272	202	160
	-3,	1, 1		2	127	135	233	11	29	21	5056*	5	1321	1330	100
1	1204	1144	94	3	228	141	158	12	88	17	542*	7	607	1220	160
2	499	456	149	4	302	340	198	13	242	257	164	Ŕ	1270	1257	125
3	16	58	4557*	5	387	387	170	14	129	82	216	ă	101	481	270
4	236	149	145	6	272	231	162	15	241	253	203	10	237	163	196
5	547	568	169	7	542	542	200	16	34	164	3762*	11	26	100	1969*
6	19	32	4260*	8	33	44	4044*		-2,	3. 1		12	28	79	4536*
7	369	390	260	9	33	129	3772*	1	207	152	233	13	29	86	5026*
8	935	923	144	10	204	244	256	2	354	381	225	14	177	113	150
9	973	938	188	11	102	57	692*	3	254	246	197	15	366	318	222
10	402	442	243		-3,	5, 1		4	146	116	849*	16	33	7	3292*
11	690	762	256	1	178	285	301	5	252	266	198	17	34	64	3894*
12	28	131	5089*	2	34	38	4354*	6	263	316	194		-1,	2.1	
13	184	243	296	3	98	49	631*	7	437	393	235	1	659	653	158
14	193	254	154		-2,	0, 1		8	134	82	1047*	2	199	197	154
15	82	4	684*	2	1320	1348	61	9	29	77	5058*	3	720	689	147
16	88	82	1047*	4	503	533	134	10	30	159	2519*	4	62	205	1393*
17	_34	194	4355*	6	436	430	191	11	189	199	152	5	436	395	209
-	-3,	2, 1		8	457	422	201	12	73	24	1911*	6	67	183	1298*
1	517	528	196	10	345	295	223	13	71	101	1078*	7	438	390	292
2	128	171	700*	12	491	499	322	14	34	167	4475*	8	114	241	1114*
3	864	894	147	14	155	101	163		-2,	4, 1		9	26	8	4727*

STR	JCTURE	E FAC	TORS FO	R C1	4 H10	S CI	12						1	?age !	5
	Colur	nne ar	re 10F	0	10Fc	100)Sig, *	for	: Insi	ignifi	lcant			-	
1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	Fc	Sig	1	kFo	FC	Sig
	-1,	2, 1		5	18	44	2934*	9	200	264	233		1,	3, 1	
	27	167	4738*	6	853	851	89	10	191	214	234	0	162	285	824*
	120	206	670×	7	21	73	2719*	11	34	153	4589*	1	402	433	242
12	249	263	166	8	661	667	113		Ο,	5, 1		2	359	391	207
13	137	87	193	9	23	200	3760*	1	269	301	201	3	664	738	248
15	130	216	977*	10	691	705	164	2	34	86	1901*	4	484	527	300
16	34	163	3847*	11	218	218	158	3	172	309	276	5	155	3	785*
	-1,	3, 1		12	346	352	164	4	257	297	161	6	27	33	4732*
1	120	15	725×	13	330	366	115		1.	0.1		7	35	214	2859*
2	24	72	5223*	14	437	407	135	1	231	231	104	8	301	417	188
3	571	589	260	16	426	445	172	3	276	287	179	9	216	206	138
4	386	348	246		0.	2. 1		5	92	29	734*	าก้	321	252	190
5	26	98	4840*	0	489	449	184	7	647	673	151	11	230	191	137
6	27	180	5210*	ĩ	517	490	125	11	241	152	192	12	110	13	1132
ž	27	100	5062*	2	19	42	2952*	12	340	327	231	13	34	232	2220+
Ŕ	101	144	1208*	2	1287	1287	70	15	122	367	204	10	1	231	22291
ä	20	109	5097*	7	380	367	150	17	242	224	105	•	- 20	4, 1 1C	E100+
10	200	222	147		335	320	130	<u>т</u> (1	1 1	190	Š	29	70 T0	2128*
11	177	140	15/	5	330	523	1052+	•	1/ 757	1/ 1 7/ 1	0.2	~ ~	120	32	2652*
12	341	410	104		267	250	132	- 1	131	133	92	3	132	73	211
12	376	410	235	· ·	207	2.39	73044	2	1120	1110	144	4	207	322	181
1.0	210	420	2025+	0	20	TIO	33614	2	1132	1112	102	5	384	321	229
Τ.4	_104	290	29224	30	20	5 5 5	22034	3	0.24	074	103	9	70	64	1150*
-		4/ 1	220	10	21	107	3400*	4	040	0/4	113		308	246	192
2	200	200	229	11	162	101	9337	5	122		4100*	8 Ø	233	261	216
	290	200	203	12	702	104	147	5	433	480	207		235	297	231
4	189	211	148	13	305	287	127		3/6	400	174	10	199	_283	278
5	253	103	120	14	200	294	140	8	22		3/62*		1,	5, 1	
	88	225	926*	15		154	/68*	. 9	24	11/	4931*	0	163	239	880*
•	200	203	1/6	-	° <u>′</u> -	3, 1	15534	10	154	91	292	1	34	119	4014*
- 8	108	304	709*	Ţ	55	193	155/*	11	270	283	184	2	156	162	343*
- 9	119	220	605*	2	448	473	209	12	358	328	234	3	99	67	1444*
10	30	335	1833*	3	239	221	141	13	479	444	191	4	402	370	223
TT	128	82	304	4	136	103	286*	14	447	388	200	-	2,	0, 1	
-	-1,	5, <u>1</u>		5	730	737	150	15	384	457	213	0	443	444	83
1	106	. 9	1215*	6	253	258	137	16	146	110	311*	2	1195	1275	70
2	34	15	3904*	7	243	275	148	•	1,	2, 1		4	598	657	131
3	101	278	1339*	8	209	222	175	0	706	680	147	6	1132	1203	114
4	34	74	4383*	9	30	163	2294*	1	585	572	162	8	197	230	161
-	0,	0, 1		10	359	295	134	2	1398	1433	110	10	605	531	254
2	935	919	39	11	381	378	156	3	20	25	4168*	12	28	136	5214*
4	68	63	324*	12	33	72	2761*	4	1100	1085	124	14	353	266	228
6	333	332	133	13	236	234	147	5	102	10	816*	16	127	3	367*
8	984	996	90	14	228	171	205	6	183	150	180		2,	1, 1	
10	1035	1057	130		0,	4, 1		7	550	634	263	0	1850	1875	76
12	223	254	155	0	390	391	233	8	397	451	242	1	891	874	98
14	209	185	105	1	75	23	683*	9	351	377	225	2	789	821	112
16	88	188	483*	3	450	392	135	10	386	445	270	3	328	290	227
	Ο,	1, 1		4	216	248	119	11	94	132	586*	4	858	824	120
1	255	234	116	5	516	454	129	12	745	643	153	5	1253	1276	109
2	944	939	61	6	146	80	177	13	414	406	218	6	1042	1063	123
3	599	619	88	7	76	52	451*	14	539	541	294	7	78	25	405*
4	175	200	104	8	33	21	1729*	15	34	14	3826*	ġ	426	469	219

STRU	CTURE	E FAC	FORS FC	R CI	14 H10) s c	12						1	Page (6
_	Colu	ms ai	ce 10F	`o	10Fc	100)Sig, *	for	Ins:	ignif:	icant		•	i ngo	•
1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	- Fc	Sig	1	kFo	FC	Sig
	2,	1, 1		0	34	29	421Ī*	3	408	367	252	14	99	219	1396*
	53	75	2357*	1	268	246	204	4	559	563	276	15	110	115	591*
-1	27	115	5378×	2	34	187	3953*	5	64	17	2053*		4	2.1	0.1
12	29	26	4613*	3	34	73	4849*	6	28	146	5212*	n	108	- 32	865*
13	325	283	183		3,	0, 1		7	278	192	197	ĭ	766	730	164
14	149	130	188	1	634	608	99	8	30	92	5546*	2	1/0	100	242
15	478	556	320	3	126	110	199	ĝ	92	15	836*	2	337	364	212
16	96	140	954*	5	824	873	129	10	152	55	101	3	357	304	217
	2.	2, 1	•	7	557	570	190	11	171	101	290	- 4	161	241	210
0	478	501	203	9	571	594	261	12	110	145	424+	5	101	241	0147
1	222	211	146	11	327	362	197	13	34	70	4247		24 057	43	23384
2	127	64	660*	13	30	91	2622*	10	2	A 1	40031		855	951	220
3	92	164	924*	15	100	173	701+	0	21	*/ 1	10454	8	214	235	246
ă	146	1/0	221	10	703	1 1	101-	1	20	23	1045*	9	28	153	5597*
5	223	230	167	0	3/20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1200+	- <u>-</u>	30	46	18/0*	10	29	94	5476*
š	306	230	210	1	200	200	1200^	2	30	95	2698*	11	30	21	2523*
7	200	330	210	7	242	200	146	3	234	261	145	12	326	286	191
	201	424	248	2	881	893	114	4	105	45	607*	13	105	85	625*
0	220	244	219	ک	886	946	121	5	518	465	199	14	145	86	889*
10	103	1/3	491*	4	545	569	172	6	32	78	2985*		4,	3, 1	
10	208	166	247	5	76	89	1097*	7	270	292	202	0	25	13	5156*
11	29	30	4986*	6	117	122	276*	8	33	66	4259*	1	642	656	251
12	617	549	162	7	22	51	4062*	9	141	89	360*	2	364	346	225
13	173	113	162	8	23	127	5152*	10	34	58	4095*	3	65	61	1987*
14	80	227	1614*	9	25	57	5119*		з,	5, 1		4	34	21	1516*
15	34	17	4023*	10	401	463	251	0	223	226	246	5	144	205	985*
	2,	3, 1		11	28	15	4835*	1	34	117	4109*	6	351	420	218
0	155	152	831*	12	492	536	339	2	34	2	2550*	7	329	360	211
1	24	3	5055*	13	325	312	190		4.	0, 1		8	435	418	223
2	498	425	280	14	303	292	168	0	590	633	131	ğ	356	246	178
3	68	108	1851*	15	233	171	206	2	1574	1609	91	10	32	111	2804*
4	26	154	5105*	16	140	51	346*	4	3315	3358	95	11	82	55	030*
5	135	37	368*		з.	2. 1		6	1560	1635	121	12	83	22	1/06+
6	112	89	839*	0	328	314	202	8	23	197	5443*	T 4	A 0.0	A 1	1400-
7	121	163	421*	ĩ	607	574	174	٦Õ	480	400	310	0	"'	4, 1	2051+
8	243	159	230	2	1280	1364	130	12	300	242	205	1	244	210	7321-
ĝ	220	190	134	3	274	326	175	1 4	110	110	205	2	244	310	200
10	38	25	2033*	۵	897	959	147	16	110	100	1605+	2	29	104	90/*
11	174	150	179	5	270	310	102	10	00 A	103	1002~	3	78	86	482*
12	33	173	3984*	6	469	101	307	0	1 4 4	157	011	4	10	149	456*
13	186	130	277	7	767	702	200	1	144	121	1 C 0 1 +	5	480	502	218
10	2	A 1	211	6	101	205	209	, T	50	43	1001×	6	99	118	799*
1	167	101	170	0	423	395	241 1010+	2	406	394	213	7	280	341	191
5	E1	727	1402+	10	110	225	1213*	- 3	1056	1051	124	8	34	157	3977*
2	205	27	1423*	10	140	63	374*	4	192	136	175	9	227	197	235
3	202	335	228	11	30	29	2489*	5	234	272	166		4,	5, 1	
4	31	125	2554*	12	70	11	625*	6	84	105	644*	0	268	330	213
5	120	69	211	13	106	24	576*	7	81	92	1085*		5,	0, 1	
6	184	159	186	14	151	143	791*	8	226	254	213	1	1194	1128	106
7	188	124	164	15	103	19	952*	9	309	295	217	3	964	972	129
8	95	80	790*		3,	3, 1		10	238	273	223	5	269	248	180
9	228	246	243	0	25	233	5544*	11	421	435	260	7	502	547	284
10	202	_300	262	1	279	306	182	12	263	278	184	9	1122	1119	190
	2,	5, 1		2	189	160	267	13	113	29	668*	11	406	429	279

STRU	CTURI	E FAC	FORS FO	R CI	4 HIC) s c	12						1	Page '	7
	Colur	nn s ar	ce 10F	0	10Fc	100)Sig, *	for	Insi	lgnif:	lcant			-	
1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	Fc	Sig
	5,	0, 1	-	1	273	356	192	4	28	173	5259×	9	373	336	241
	118	204	824*	2	31	99	3071*	5	29	60	5149*	10	253	266	158
	222	221	232	3	362	332	209	6	131	133	249	11	297	338	200
	5,	1, 1		4	282	313	169	7	31	32	1721*	12	322	285	228
0	906	908	136	5	57	109	1251*	8	31	142	3088*	13	139	84	1021*
1	486	433	200	6	120	23	1180*	9	32	99	3352*		7.	3. 1	
2	944	948	137	7	33	204	2202*	10	154	88	820*	0	28	7 7	5228*
3	735	774	165	8	111	42	697*	11	117	103	1183*	ĭ	167	112	869*
4	544	570	200	Ŭ	6	0.1	001		6.	4.1	1100	2	82	A	1742*
5	278	254	180	٥	19	, <u> </u>	5055×	Ω	416	342	262	2	20	1/0	5971*
e e	112	132	886*	ž	780	707	160	ĩ	31	170	3201 +	3	120	27	1001+
7	94	75	697*	4	1112	1110	145	2	30	117	2201~		239	010	1091~
á	120	1 4 4	007*		1063	1101	140	2	22	100	3464+	5	219	210	7/1
0	122	10	392"	10	1003	1101	194		32	110	3404*	0	31	10	3434*
10	133	1 4 7	10231	10	6/3	502	258	4	32	118	2735*	1	412	340	272
10	205	147	263	12	301	293	184	5	204	318	286	8	169	160	238
11	29	121	5230*	14	_33	95	4398*	6	33	44	4352*	9	33	104	4600*
12	31	149	2880*	-	6,	1, 1		7	34	13	4308*	10	34	83	5221*
13	204	95	165	0	865	848	150	8	186	136	309	11	199	147	280
14	33	219	4111*	1	109	102	333*		7,	0, 1			7,	4, 1	
15	136	79	934*	2	20	178	5142*	1	277	272	183	0	352	328	198
	5,	2, 1		3	222	237	174	3	373	405	209	1	32	19	3769*
0	289	307	163	4	22	75	4947*	5	557	584	263	2	32	16	2602*
1	528	517	217	5	284	359	172	7	357	338	235	3	55	107	1479*
2	22	249	4776*	6	409	337	237	9	28	102	5224*	4	33	193	5023*
3	314	355	200	7	220	255	229	11	187	136	186	5	137	119	1055*
4	721	750	222	8	134	109	997*	13	288	269	203	6	34	97	4447*
5	429	471	230	ĝ	327	321	210		7.	1.1		7	34	54	4804*
6	907	947	219	10	263	306	229	0	170	139	226	•	8.	0.1	1001
	153	197	340*	11	152	137	208	1	21	24	4825*	0	806	834	168
	495	557	334	12	31	34	3061*	2	53	107	1975*	ž	380	368	21.8
ā	218	172	257	12	400	429	266	3	332	300	197	<u> </u>	500	607	263
10	30	18	3185*	1 4	90	83	1/02*	Å	245	217	203	2	024	017	203
ĩĩ	246	101	151	7.3	2	2 1	1492"	-	240	211	E170+	0	044	2040	229
12	300	332	210	•	670	<i>61</i> 7	222	ç	24	0.5	5170*	10	330	1040	220
12	203	216	105	1	370	203	444	7	25	110	5009*	10	000	629	209
1.8	205	210	190		432	431	7//		20	112	5354*	12	90	120	10/2*
14	393	440	234	2	333	348	200	8	1/4	128	303	•	8,	1, 1	
^	- D7	3, 1	200	3	255	299	195	.9	211	269	273	0	1537	1516	143
1	221	521	308	4	298	357	207	10	87	175	1122*	1	275	304	180
L L	26	217	5349*	5	144	110	351*	11	78	149	925*	2	142	128	897*
2	237	266	228	6	123	99	1125*	12	192	128	190	3	138	9	365*
3	250	250	222	7	246	218	231	13	33	127	4941*	4	97	88	1372*
4	373	427	242	8	112	33	956*	14	162	45	811*	5	25	83	2045*
5	134	101	1026*	9	30	107	5271*		7,	2, 1		6	181	70	290
6	29	21	5055*	10	198	195	181	0	24	130	5690*	7	27	8	5101*
7	655	587	177	11	370	372	203	1	560	701	284	8	28	46	3749*
8	400	379	252	12	42	15	2323*	2	440	395	233	ğ	423	382	252
9	225	256	160	13	283	262	198	3	500	523	327	10	101	64	851*
10	33	159	4254*		6.	3. 1		4	26	58	5678*	11	32	24 25	2385*
11	162	46	865*	0	421	484	277	5	290	316	102	12	22	75	A965+
12	130	16	1047*	ĩ	60	194	2104*	ř	574	EV3	207	12	27	160	31104
	5.	4. 1	,	2	27	107	5437*	7	316	247	20A	10	0 0	2 1	2440^
Ω	357	401	211	~ ~	55	201	2662*	ģ	334	300	221 017	~	224	21 L	020
-				J	55	00	2002.	0	551	220	61 I	v	234	22 U	230

STRU	CTURE	E FACI	CORS FC	R C	L4 H10) s c:	12							Page	8
	Colum	nns ai	re 10F	` 0	10Fc	100	OSig, *	foi	r Ins:	ignif:	icant			- 490	•
1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	- Fc	Sig	1	kFo	Fc	Sig
-	8,	2, 1		10	32	77	3319*	10	33	184	473Ž*	3	247	294	165
	25	72	5750*	11	166	49	304	11	74	107	784*	4	31	74	4005*
2	26	141	5524*	12	34	57	4976*		10,	2, 1		5	306	364	194
3	296	189	198		9,	2, 1		0	27	220	5978*	6	32	24	3161*
4	426	521	273	0	235	237	229	1	286	241	209	7	357	349	225
5	296	336	200	1	124	120	659*	2	188	258	323	8	33	94	4960*
6	28	82	3849*	2	27	115	5613*	3	34	222	4779*	9	34	31	4888*
7	199	142	306	3	149	34	990*	4	416	502	296	-	11.	3. 1	
8	30	70	3236*	4	282	285	213	5	30	102	2585*	0	338	278	226
9	31	127	3075*	5	180	211	341	6	131	113	293×	1	340	353	202
10	129	18	297*	6	30	13	3038*	7	45	144	1723*	2	467	394	261
11	237	285	240	7	295	302	200	8	32	24	3372*	3	151	57	928*
12	34	75	1848*	8	263	250	182	9	166	33	932*	4	127	37	441*
	8,	3, 1		9	199	156	200	10	34	96	4552*	5	34	2	4947*
0	421	405	284	10	403	314	260		10,	3, 1	-	Ğ	274	242	208
1	443	380	272	11	34	150	3098*	0	31	94	3321*	-	12.	0. 1	
2	29	69	5386*		9,	3, 1		1	350	346	227	6	202	155	194
3	521	567	236	0	221	163	172	2	220	210	194	B	216	202	270
4	207	245	184	1	323	299	196	3	121	55	865*	10	326	310	206
5	113	139	674*	2	385	420	218	4	57	275	2222*		12.	1.1	
6	119	126	875*	3	31	83	3589*	5	162	173	336*	3	327	320	186
7	115	115	945*	4	117	211	937*	6	142	36	979*	4	695	672	211
8	93	92	1052*	5	48	128	2058*	7	34	19	3297*	5	31	66	3220*
9	34	78	4552*	6	32	71	3488*	8	34	160	4404*	6	161	226	268
10	56	187	1568*	7	164	117	889*		10.	4. 1		7	365	346	186
	8,	4, 1		8	244	195	239	0	34	127	3564*	8	348	321	204
0	79	68	960*	9	34	50	4610*	1	34	153	4978*	ĝ	34	ั วี วี	4900*
_ 1	111	49	1411*		9,	4, 1		2	34	11	4793*	•	12.	2. 1	1900
2	204	81	273	0	116	249	1003*		11.	0.1		0	244	194	169
3	356	374	228	1	194	408	980*	1	26	59	5601*	ī	30	45	3403*
4	34	20	4646*	2	117	139	933*	3	229	190	256	2	479	495	261
5	267	382	234	3	285	333	223	5	53	20	2929*	3	381	398	228
6	47	32	2395*	4	304	324	214	7	208	230	191	4	74	201	1681*
	9,	0, 1			10,	0, 1		9	32	105	2399*	5	148	164	279
1	391	399	255	0	383	373	266	11	238	164	247	6	305	312	216
3	156	160	910*	2	859	883	220		11,	1, 1		7	52	36	3002*
5	524	506	302	4	27	154	5315*	0	27	246	6032*	8	263	260	228
7	28	23	5400*	6	28	178	5776*	1	27	91	3970*	-	12.	3.1	
9	113	24	314*	8	362	389	232	2	612	582	301	0	145	57	408*
11	208	193	195	10	32	84	3482*	3	252	200	237	ī	153	340	1160*
13	466	436	260	12	34	306	5019*	4	283	287	231	2	33	161	5170*
	9,	1, 1			10,	1, 1		5	523	541	262	3	152	11	1036*
0	550	518	290	0	98	162	1044*	6	198	247	203	4	111	81	749*
1	24	68	5650*	1	905	898	227	7	72	34	819*	5	345	285	241
2	703	685	240	2	96	72	1052*	8	32	82	3565*	-	13.	0.1	
3	196	259	277	3	231	218	256	9	33	153	5040*	3	30	12	3719*
4	214	237	262	4	581	536	300	10	34	107	5267*	5	32	32	3571*
5	436	390	258	5	28	22	5267*	11	83	51	1320*	7	33	29	4523*
6	304	289	194	6	29	152	5958*		11,	2, 1		ġ	34	41	4897*
7	458	469	264	7	307	290	189	0	29	70	5432*	-	13.	1. 1	
8	136	53	258	8	199	140	191	1	141	163	824*	0	,	184	1109*
9	80	47	1181*	9	292	268	196	2	335	313	182	1	85	122	863*

STR	JCTURE	E FACT	TORS FOR	СI	4_H10	s ci	12	_	_				Ŧ	age s	•
	Colum	លាខ ai	re 10Fo		10Fc	100)Sig, *	for	: Insi	ignif:	icant				
1	kFo	Fc	Siq	1	kFo	FC	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sig
	13,	1, 1	-	7	164	64	36Ō*	3	272	295	19Ž	5	34	47	563Ž*
2	31	54	2539*		13,	3, 1		4	225	194	273		15,	1, 1	
3	300	294	213	0	549	537	343	5	82	63	1772*	0	212	193	280
4	274	229	174	1	163	6	1024*	6	262	179	229	1	111	235	1456*
5	146	146	283	2	124	173	955*	7	34	91	5091*	2	416	315	297
6	393	418	258	3	48	231	2145*		14,	2, 1		3	150	335	824*
7	264	309	239		14,	0, 1		0	33	153	4708*	4	34	11	4768*
8	58	139	1445*	0	31	8	3243*	1	136	237	1110*	5	103	34	1490*
	13,	2, 1		2	233	167	180	2	79	118	1392*		15,	2, 1	
0	94	34	1062*	4	139	80	900*	3	34	138	5057*	0	354	280	232
1	206	127	194	6	221	250	268	4	240	250	276	1	34	173	3445*
2	250	253	184		14,	1, 1		5	34	48	5121*	2	237	207	270
3	316	378	210	0	31	22	3321*		15,	0, 1			16,	0, 1	
- 4	293	328	215	1	345	334	237	1	192	158	303	0	431	401	244
5	33	223	3581*	2	130	284	1006*	3	425	464	286	2	34	49	3280*
6	34	159	5184*												

Table S-2. Calculated Hydrogen Atom Parameters

	x	У	Z	Biso
н 4	0.1693(13)	0.993 (3)	0.1145(10)	7.7(3)
н 5	0.2901(13)	0.985 (3)	0.1220(10)	6.8(3)
H 6	0.3527(6)	0.664 (5)	0.1654(11)	5.1(3)
Н 7	0.2945(13)	0.351 (3)	0.2012(10)	6.7(3)
H 8	0.1737(13)	0.359 (3)	0.1937(10)	7.3(3)
H10	0.1004(10)	0.423 (3)	0.2521(13)	6.8(3)
H11	0.0659(11)	0.488 (4)	0.3585(10)	5.8(3)
H12	0.0124(12)	0.831 (5)	0.3791(8)	7.3(3)
н13	-0.0064(11)	1.107 (3)	0.2932(14)	9.7(3)
H14	0.0282(11)	1.042 (3)	0.1869(10)	6.6(3)
H 4A	0.7029(10)	0.249 (4)	0.0278(11)	8.1(3)
H 5A	0.8158(14)	0.346 (3)	0.0131(9)	6.3(3)
H 6A	0.9073(7)	0.093 (5)	0.0468(11)	6.6(3)
H 7A	0.8860(10)	-0.256 (4)	0.0952(11)	9.6(3)
A8 H	0.7731(14)	-0.3531(25)	0.1099(9)	5.8(3)
H10A	0.6982(11)	-0.461(3)	0.1622(12)	7.8(3)
HllA	0.6948(11)	-0.481 (3)	0.2800(12)	6.1(3)
H12A	0.6521(12)	-0.175 (5)	0.3361(6)	7.0(3)
H13A	0.6129(11)	0.151(3)	0.2745(13)	9.1(3)
H14A	0.6163(11)	0.171 (3)	0.1567(12)	9.0(3)

Hydrogen positions calculated assuming a C-H distance of 1.08 A. Biso(H) is from Uiso(H) = 0.01 + Ueq(C) for the attached carbon.

Table	s-3.	Anisotr E.S.Ds. re	opic u(i,j fer to the) values last digi	*100. t printed	
	u11	u22	u33	u12	u13	u23
C1 1	7.8(6)	6.3(5)	6.4(5)	-0.4(5)	1.3(4)	-1.1(5)
C1 2	4.9(5)	6.1(6)	9.8(6)	-1.5(5)	0.7(4)	0.0(5)
S	5.1(5)	5.2(5)	6.6(5)	-0.2(5)	0.9(4)	2.0(4)
Č 1	6.8(22)	5.5(20)	4,9(18)	1.7(19)	1.8(16)	-2.0(17)
C 2	7.9(21)	5.7(20)	2.3(15)	-0.5(19)	0.1(15)	-2.7(16)
Cl lA	14.6(9)	9.9(7)	6.3(5)	-2.3(7)	0.0(5)	-0.7(5)
C1 2A	9,9(8)	13.9(9)	12.2(7)	-6.2(7)	1.0(6)	0.9(7)
SA	10.5(8)	9.4(8)	8.1 (6)	1.5(7)	0.3(6)	0.8(6)
C 1A	12.4(29)	4.9(22)	6.1(21)	-5.1(23)	0.2(21)	-0.6(17)
C 2A	3.7(18)	9.5(24)	6.2(19)	-0.4(19)	-0.5(15)	0.6(19)

Anisotropic Temperature Factors are of the form Temp=-2*Pi*Pi*(h*h*ull*astar*astar+---+2*h*k*ul2*astar*bstar+---)

.

Compound 123

- a) Table of Bond Distances (Å) and Bond Angles(^o)
- b) Table of Torsion Angles(⁰)
- c) Table of Observed and Calculated Structure Factors
- d) Table of Calculated Hydrogen Atom Parameters
- e) Table of Anisotropic u(i, j) Values

Table 3.	Bond Distances((A) and Angles(Degrees)	
S-C(1) S-C(2) C1(1)-C(1) C(2)-C(1) C(1)-C(2) C(2)-C(3) C(2)-C(16) C(3)-C(4) C(3)-C(8) C(4)-C(5) C(5)-C(6)	1.769(6) 1.844(6) 1.763(6) 1.761(6) 1.507(8) 1.536(8) 1.512(8) 1.383(10) 1.397(10) 1.402(10) 1.365(15)	$\begin{array}{cccc} C(6) - C(7) & 1.373(15) \\ C(7) - C(8) & 1.398(11) \\ C(8) - C(9) & 1.506(12) \\ C(9) - C(10) & 1.448(12) \\ C(10) - C(11) & 1.514(10) \\ C(11) - C(12) & 1.400(9) \\ C(11) - C(12) & 1.383(9) \\ C(12) - C(13) & 1.367(10) \\ C(13) - C(14) & 1.366(11) \\ C(14) - C(15) & 1.390(9) \\ C(15) - C(16) & 1.380(8) \end{array}$	
C(1) - S - C(2) S - C(1) - C1(2) S - C(1) - C1(2) S - C(1) - C(2) C1(1) - C(1) - C(2) - C(1) S - C(2) - C(1) - C(2) - C(2) - C(2) - C(3) -	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	C(5) - C(6) - C(7) $C(6) - C(7) - C(8)$ $C(3) - C(8) - C(7)$ $C(3) - C(8) - C(9)$ $C(7) - C(8) - C(9)$ $C(7) - C(8) - C(9)$ $C(8) - C(9) - C(10)$ $C(9) - C(10) - C(11)$ $C(10) - C(11) - C(12)$ $C(10) - C(11) - C(12)$ $C(10) - C(11) - C(16)$ $C(12) - C(11) - C(16)$ $C(12) - C(13) - C(14)$ $C(13) - C(14) - C(15)$ $C(14) - C(15) - C(16)$ $C(2) - C(16) - C(11)$ $C(2) - C(16) - C(15)$ $C(11) - C(16) - C(15)$	120.1(7) 121.8(8) 117.6(7) 126.9(6) 115.3(7) 122.9(6) 115.7(6) 120.8(6) 120.2(5) 119.0(6) 120.3(6) 120.2(5) 118.6(5) 121.6(5) 119.8(5)

Table S-4. Torsion Angles in Degrees

-

Table S-1. Observed and Calculated Structure Factors for C16 H12 S C12
STRU	JCTURI	E FAC	TORS FO	OR CI	L6 H12	2 S C.	12						1	Page	1
	Colur	nns a:	re 101	Fo	10Fc	10	OSig, 1	for	: Insi	ianif:	icant		-		~
1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	- Fc	Sig	1	kFo	FC	Sig
· •	-10,	0, 1		5	192	204	107	10	79	98	99	8	36	39	411*
2	58	49	161*	6	44	28	438*	12	97	93	79	ğ	68	54	349*
4	22	24	1076*	7	20	65	1218*	14	227	231	136	10	103	106	90
	-9,	0, 1		8	102	106	89	16	20	40	1345*	îĭ	56	106	511*
2	146	146	94	9	68	14	105	18	156	159	101	12	21	52	1193*
4	114	117	87	10	79	74	99	- •	-7.	1. 1	20 £	13	12	22	500*
6	82	76	110	11	20	28	523*	1	89	~ ' 9 q	84	14	A 1	42	327*
8	58	74	422*	12	98	96	91	2	159	173	112	15	97	94	104
10	158	184	104	13	21	23	1174*	3	256	256	116	15	_7 '	A 1	100
12	113	117	96	14	120	91	82	Ă	39	81	590*	1	103	11A	0.4
	-9,	1, 1		15	42	24	258*	5	164	163	103	2	203	774	94 11174
1	139	162	89	16	22	2	1397*	ő	112	117	78	2	21	10	111/*
2	87	102	104		-8.	2. 1	1001	7	29	82	796*	2	21	70	10074
3	49	9	476*	1	57	71	393*		18	31	807*	~1	127	140	14211
4	35	17	651*	2	79	72	105	ă	129	136	95	2	137	2142	94
5	21	53	1263*	3	20	22	1028*	10	19	34	1237*	7	00	21	1407
6	30	36	845*	4	80	72	102	11	168	172	1237*	, 0	50 50	04 66	100
7	21	50	1167*	5	108	105	85	12	200	61	350*	0	29	1 5	10141
8	42	26	527*	6	149	171	101	12	46	50	170*	10	21	15	1014*
ĝ	94	85	94	ž	143	129	101	14	102	100	85 170~	10	104	110	133
10	56	16	414*	8	19	57	169*	15	102	65	177*	ΤΤ	204	110	100
11	38	38	596*	ğ	47	53	529*	16	110	129	1777	2	-0,	U, 1	
12	22	20	1013*	10	21	32	1066*	17	127	124	90	4	201	105	82
	-9.	2.1		11	143	145	101	19	21	124	1052+	4	242	312	99
1	114	105	90	12	21	140	1077*	10	21	7	1170+	0	343	345	99
2	37	54	707*	13	46	38	533*	19	-7	2 1	11/0-	10	224	213	109
3	34	18	722*	14	62	58	152*	1	03	2, 1 07	0.2	10	1/	10	1154*
4	122	114	87	15	64	55	A10*	2	216	221	33	14	144	141	99
	157	153	95	10	-8.	3.1	410	2	210	100	7.41	14	209	201	11/
6	33	18	748*	1	170	150	112	3	116	134	90	10	243	231	130
7	55	83	451*	2	78	82	123	- 11 E	107	101	02	10	112	97	118
8	46	4	338*	2	21	78	1105*	5	107	101	01	20	113	120	94
ġ	22	- २	1287*	4	21	70	1151+	7	104	101	04		-0,	1, 1 1, 1	105
10	22	ă	1324*	5	21	0	1220+	6	201	200	140	1 1	220	200	105
	-9	จั	1024.	5	111	117	1220~	0	201	107	140	2	50	6	278*
1	22	18	1092*	7	21	27	1170+	10	221	101	121	3	14/	145	98
2	22	53	123/*	ģ	21	37	TT/0~	11	23	02	418*	4	102	105	71
3	71	50	396*	ä		32	116	10	20	41		5	155	153	98
	-8'-	0 1	500*	10	30	34	203+	12	40	10 10	435*	5	232	214	102
2	200	200	103	10	50	1/	2020	13	29	48	341*	7	242	239	118
Δ	200	215	142	12	23	33	4431	14	20	12	80T×	8	62	66	113
6	59	210	3/3+	12	_0	A 1	1020~	10	59	44	3/4*	. 9	331	340	110
	103	103	2431	1	-0, A	4, 1 cc	110	10	0 1 0	5/	349*	10	18	23	1154*
10	20	1/	1110+	2 1	04	10	1040+	1/	86	84	111	11	203	200	95
12	1 4 0	1.0	.0110-	2	22	13	1249*	18	_26	65	444×	12	56	7	135*
1 4	21	700	99	3	22	13	1032*	-	-1	3, 1		13	125	127	83
16	127	107	420*	4	22	26	1178*	1	19	15	1081*	14	40	40	534*
τ0	-0	1 1	96	5	- 70	60	130	2	116	127	81	15	19	34	1144*
٦	-0,	1 2 1	05	~	-'	V, 1		3	58	69	418*	16	53	125	509*
- -	1 1 0	110	85	2	50	32	121*	4	45	19	503*	17	168	163	115
2 2	100	713	82	4	120	169 169	100	5	173	188	116	18	20	29	1053*
3	103	т. 200	110	ø	278	310	124	6	20	21	1100*	19	21	2	1148*
4	69	00	ττs	8	202	265	124	7	96	98	94	20	21	15	1176*
-															

STRU	JCTURE	FAC:	TORS FO	R C	L6 H12	2 S CI	12						J	2age 3	2
	Colum	nns ai	ce 10F	φ	10Fc	100)Sig, *	for	Ins:	ignifi	icant			-	
1	kFo	FC	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sig
	-6,	1, 1		10	160	154	102	1	183	194	122	10	52	35	399*
	22	39	1299*	11	48	69	506*	2	137	120	94	11	34	39	612*
	-6,	2, 1		12	21	63	1393*	3	189	193	119	12	102	106	87
1	36	5 5	514*	13	38	5	319*	4	129	135	84	13	56	24	137*
2	43	56	454*	14	22	59	1185*	5	16	18	993*	14	21	15	719*
3	64	64	106	15	22	18	1114*	6	97	99	66	15	113	101	86
4	199	212	122		-6,	5, 1		7	107	111	72	16	165	156	109
5	26	45	753*	1	67	60	138*	8	77	79	86	17	22	14	1024*
6	187	168	126	2	40	31	388*	9	23	53	354*		-5,	5, 1	
7	18	13	1167*	3	134	122	86	10	45	14	146*	1	161	160	106
8	135	145	90	4	21	12	1249*	11	193	205	136	2	128	124	89
9	233	244	126	5	154	144	102	12	159	166	108	3	80	69	115
10	18	5	1250*	6	44	37	612*	13	18	26	1213*	4	55	25	147*
11	147	140	103	7	33	23	285*	14	200	197	104	5	35	8	611*
12	69	56	111	8	48	92	604*	15	140	137	81	6	54	48	164*
13	85	66	97	9	40	25	415*	16	260	271	138	7	142	148	99
14	95	88	89		-5,	0, 1		17	20	39	1216*	8	56	76	453*
15	194	193	111	2	269	266	92	18	20	17	995*	9	112	106	96
16	48	39	324*	4	125	133	85	19	51	15	400*	10	56	22	411*
17	76	62	108	6	127	133	76	20	21	14	1164*	11	22	19	1045*
18	21	16	1068*	8	193	180	117	21	72	76	382*	12	45	16	339*
19	88	87	108	10	441	445	94		-5,	3, 1			-4,	0, 1	
20	45	38	579*	12	493	487	98	1	130	140	84	2	196	213	87
	-6,	3, 1		14	164	191	107	2	47	29	277*	4	79	75	61
1	210	237	104	16	110	110	75	3	85	89	87	6	547	527	73
2	184	175	109	18	44	2	309*	4	255	270	115	8	589	581	78
3	99	107	85	20	127	117	80	5	61	8	329*	10	427	442	85
4	18	0	1116*	22	105	93	93	6	187	204	101	12	16	34	964*
5	98	103	90		~5,	1, 1		7	176	168	103	14	216	220	124
6	131	116	83	1	322	317	87	8	88	80	92	16	277	251	106
7	186	181	108	2	46	84	320*	9	305	322	117	18	164	158	90
8	196	201	105	3	227	228	94	10	185	210	113	20	20	16	730*
9	88	96	105	4	15	19	979*	11	131	124	92	22	102	106	93
10	142	129	84	5	116	104	68	12	19	6	1130*	24	54	64	512*
11	43	8	287*	6	258	261	94	13	55	23	140*		-4,	1, 1	
12	120	131	86	7	207	217	103	14	19	84	1216*	1	1026	1037	70
13	95	97	99	8	16	8	995*	15	20	17	1021*	2	13	59	1106*
14	28	1	746*	9	16	12	1135*	16	60	23	354*	3	407	401	75
15	21	25	1073*	10	42	18	409*	17	21	13	1142*	4	636	624	71
16	21	13	984*	11	351	342	101	18	21	19	1120*	5	63	51	81
17	39	75	667*	12	96	106	81	19	70	58	118	6	315	304	85
18	22	37	1070*	13	260	274	115	20	22	2	1072*	7	203	202	101
	-6,	4, 1		14	257	249	126		-5,	4, 1		8	24	20	395*
1	46	5	472*	15	108	101	77	1	109	108	85	9	148	148	79
2	29	39	368*	16	139	155	91	2	215	221	141	10	388	389	90
3	61	64	356*	17	30	61	701*	3	19	38	1047*	11	313	325	97
4	20	8	1162*	18	62	102	412*	4	19	25	1098*	12	157	161	101
5	60	46	330*	19	43	16	224*	5	147	145	93	13	202	191	119
6	55	38	392*	20	25	11	733*	6	61	20	355*	14	76	79	96
7	20	54	1179*	21	158	168	100	7	44	79	356*	15	240	227	119
8	20	8	1077*	22	21	14	1148*	8	55	44	350*	16	200	206	136
9	95	90	94		-5,	2, 1		9	108	111	83	17	160	154	90

STRU	ICTURE	E FAC	FORS FO	DR CI	6 н12	z s c:	12						I	Page (3
	Colur	nns ai	re 105	ю	10Fc	100)Sig, *	for	Insi	ignifi	loant				
	kFo	FC	Sig	1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig
	-4,	1, 1		20	40	29	598*	16	368	376	103	22	21	53	1148 *
10	70	4/	114	21	.51	8	398*	18	161	166	93	23	63	51	382*
79	/ 0 A E	00	102	-	-4,	4, 1	C00+	20	19	7	1058*	_	-3,	3, 1	_
20	127	142	100-	1	20	5	1247+	22	140	158	97	1	105	106	67
22	21	140	1121+	2	104	200	122	24	287	, 80	100	2	480	476	84
22	37	70	734*	2	134	120	122	1	-31		50	3	276	280	102
24	22	10	1110*		137	125	93	2	E 3 0	522	58	4	364	361	87
	-4.	2.1	TTTT	5	95	42	92	2	0,00	232	63	5	101	130	90
1	421	416	81	7	47	7	274*	4	389	386	71	7	125	100	72
2	326	341	90	8	64	68	123	5	536	531	68	Ŕ	368	375	05
3	21	39	261*	9	106	116	82	6	199	182	86	ğ	129	120	89
4	359	340	85	10	19	15	1060*	7	562	584	71	10	262	263	112
5	30	61	470*	11	19	34	1132*	8	75	68	67	11	181	179	90
6	65	53	83	12	64	60	328*	9	112	108	80	12	17	31	1055*
7	70	66	80	13	135	130	85	10	464	451	80	13	159	160	109
8	159	159	87	14	60	8	350*	11	99	75	65	14	33	61	474*
9	104	108	70	15	97	104	99	12	69	41	75	15	246	262	130
10	156	145	91	16	168	165	107	13	163	154	92	16	177	182	116
11	60	67	111	17	40	22	399*	14	95	83	69	17	98	102	93
12	23/	257	121	18	4/	_ 17	283*	15	181	190	124	18	35	28	579*
10	101	121	103 415+	٦	-4,	⊃, ⊥ ?⊑	1220+	10	200	360	83	19	88	86	104
15	222	217	1413~	2	20	35	1000*	10	344	360	11/ 11/	20	134	117	95
16	243	256	135	- - -	20 53	23	340*	10	92	40	9040	21	21	31	1104 *
17	208	205	109	4	31	79	720*	20	29	11	780*	44	-3	13	137
18	67	107	367*	5	134	112	90	21	48	85	528*	1	-3, 61	1, T	217*
10	20	56	987*	6	20	23	1136*	22	81	70	104	$\frac{1}{2}$	1.57	160	100
20	20	47	1108*	7	140	133	98	23	63	4	356*	3	230	212	110
21	76	73	113	8	22	36	911*	24	52	64	308*	4	101	106	80
22	54	14	159*	9	106	102	87		-3,	2, 1		5	96	106	82
23	22	53	1166*	10	84	81	107	1	546	520	73	6	298	309	124
_	-4,	3, 1		11	37	12	564*	2	85	75	62	7	27	16	708*
1	155	149	102	12	46	8	359*	3	389	365	77	8	90	87	85
2	54	100	322*	13	55	16	282*	4	13	32	1001*	9	18	53	1144*
3	206	101	82	14	148	142	98	5	171	173	105	10	61	4	305*
4 5	261	250	110	7	-4,	р, т	400+	סר	333	368	83	11	19	63	1218*
6	341	200	06	2	4/ 5/	00	4220	<u> </u>	219	224	99	12	118	126	75
7	256	239	104	2	90	40 Q A	97	ů ů	243	204	33 170*	11	20	39	550× 1175±
8	17	13	1022*	4	22	48	8372	10	100	95	67	15	20 61	42	130+
ĝ	102	98	72	5	50	60	535*	11	116	120	77	16	20	6	1011*
10	157	150	111	6	109	98	99	12	157	159	89	17	21	42	1166*
11	98	93	81	7	44	2	291*	13	159	147	91	18	154	144	109
12	124	127	85		-3,	0, 1		14	101	92	73	19	22	69	1353*
13	18	7	766*	2	617	606	59	15	17	54	1229*	-	-3,	5, 1	
14	56	42	145*	4	185	193	80	16	312	316	113	1	147	135	102
15	62	72	138*	6	270	266	72	17	103	94	81	2	50	45	152*
16	47	49	438*	8	374	359	73	18	47	25	390*	3	19	18	1085*
10	47	56	489*	10	143	150	82	19	111	116	80	4	88	85	94
10 10	157 10	138 2	91 0/5+	12	244	250	98	20	112	132	84	5	82	65	99
19	Z I	Ð	2434	14	211	351	94	21	14	//	TTT	b	19	52	1101*

STRU	JCTURE	E FACI	TORS FO	R C1	6 н12	s ci	12						I	age 4	4
	Colum	nns ai	re 10F	`o	10Fc	100)Sig, *	for	Insi	ignif:	icant			-	
_ 1	kfo	FC	Sig	1	kEo	Fc	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig
	-3,	5, 1		17	139	142	94	18	214	245	112	8	29	12	546*
	64	52	124	18	18	52	1216*	19	67	53	376*	9	108	102	94
8	20	1	1038*	19	18	41	11/1*	20	20	45	1211*	10	56	36	436*
10	27	10	303*	20	110	175	82	21	100	120	95	11	,22	21	1013*
10	107	204	1110^	21	102	1/3	9/ 1172*	22	_2	42	T003×	0	-1, 1000	U, 1	75
12	731	204	275*	22	146	154	7112~	1	16	4, 1 52	1201+	۲ ۸	1008	776	35
13	164	150	108	24	21	44	1288*	2	340	338	101	6	0.9	111	44
14	86	83	117	25	108	96	87	3	131	130	80	8	141	151	00
15	35	23	710*	~~	-2.	2. 1	• •	4	343	351	108	10	13	- 5	928*
16	22	83	1233*	1	65	45	69	5	125	121	80	12	740	721	75
	-3,	6, 1		2	72	63	60	6	252	241	121	14	91	103	62
1	94	71	96	3	12	27	890*	7	212	209	130	16	218	218	119
2	21	10	1137*	4	691	676	66	8	60	40	119	18	159	186	108
3	21	84	1321*	5	148	162	106	9	259	251	109	20	351	367	120
4	21	16	1119*	б	272	258	84	10	18	11	1060*	22	63	47	128*
5	73	92	141	7	237	228	87	11	92	95	92	24	54	46	433*
6	21	19	1226*	8	467	480	78	12	51	95	468*		-1,	1, 1	
7	56	32	413*	9	178	182	110	13	88	76	92	1	747	736	44
8	52	25	448*	10	49	22	278*	14	133	127	92	2	38	56	226*
. 9	91	87	112	11	119	101	77	15	90	110	97	3	464	451	51
10	83	70	119	12	85	75	73	16	137	134	94	4	279	272	60
`	-2,	0, 1	47	13	49	5	30/*	10	42	44	213*	5	381	390	60
2	919	922	4/	16	32	150	512~	10	21	25	1045*	5	141	749	57
4	522	514	72 59	10	17	102	93 1041*	20	22	00	1131+	0	100	123	94
0 8	382	305	50 67	17	29	12	1041×	20	-2	5 1	1121-	0	437	450	04 71
۵.	647	613	70	18	122	84	85	1	- <u>8</u> 4	67	96	10	437	459	80
	56	44	89	19	104	97	84	2	104	133	89	11	646	637	74
14	138	157	94	20	89	76	93	3	18	67	1195*	12	267	263	87
16	119	117	76	21	78	84	121	4	19	13	996*	13	475	481	81
18	218	209	123	22	130	126	91	5	53	22	364*	14	215	209	103
20	275	261	123	23	51	60	454*	6	33	41	561*	15	28	96	653*
22	149	155	105	24	55	72	306*	7	55	19	331*	16	17	8	1049*
24	45	27	262*		~2,	3, 1		8	19	15	1135*	17	17	2	986*
	-2,	1, 1		1	160	156	109	9	152	140	94	18	39	35	465*
1	538	537	55	2	229	241	94	10	20	56	1083*	19	117	114	82
2	233	234	68	3	262	253	88	11	93	105	100	20	43	75	510*
3	532	528	56	4	124	129	86	12	20	24	1130*	21	171	152	111
4	179	188	87	5	25	38	412*	13	49	24	370*	22	52	84	267*
5	955	942	58	6	116	117	71	14	69	90	401*	23	88	78	93
2	290	293	68	7	44	35	3/8*	15	45	17	190*	24	45	39	540*
	55Z	500	65	8	4/3	482	89	10	6/	101	366*	25	_26	23	742*
0	174	165	00	10	252	222	100	ΤI		20	446×		-1,	2, 1	0 0 0 ±
10	316	315	93 81	11	200	200	105	1	202	200	112	2 T	121	110	999*
11	234	240	86	10	100	100	75	2	202	105	114	2 2	51 <i>4</i>	E10	63 63
12	218	217	97	13	100	36	271*	2	53	19	320*	2	170	147	03
13	157	157	111	14	141	140	92	⊿	38	73	646*	7 5	270	274	03 75
14	235	239	108	15	105	124	88	5	111	104	94	С А	145	138	103
15	186	188	123	16	202	231	105	6	31	14	636*	7	250	243	83
16	126	123	78	17	196	202	111	7	100	127	108	8	460	466	77

(

STRU	JCTURE	E FAC	FORS FC	DR CI	.6 H12	2 S C]	12						I	Page 5	5
•	Colum	uns_ar	re 10F	0	10Fc	100)Sig, *	for	Insi	gnifi	cant				
1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig	1	kFo	Fc	Sig
	⁻¹ /	2, 1		11	58	74	134*	24	134	127	6Ž	24	75	88	123
	70	61	74	12	164	156	115		0,	1, 1			Ο,	3, 1	
10	562	571	79	13	54	94	399*	1	550	568	30	1	374	385	56
11	61	53	89	14	64	66	352*	2	949	960	30	2	250	252	64
12	182	193	117	15	177	160	106	3	216	211	40	3	294	297	59
13	16	10	900*	16	27	66	413*	4	590	601	36	4	78	73	65
14	16	14	947*	17	126	123	85	5	408	412	40	5	279	285	63
15	104	111	75	18	42	51	507*	6	315	314	45	6	404	404	60
16	245	237	120	19	21	28	1022*	7	939	940	41	7	86	82	65
17	43	9	414*	20	34	21	395*	8	241	243	55	8	68	63	56
18	39	40	508*		-1,	5, 1		9	610	616	47	9	116	110	50
19	43	6	250×	1	42	78	473*	10	201	208	64	10	227	216	75
20	204	205	106	2	18	2	995*	11	283	277	59	11	136	137	65
21	141	125	93	3	18	11	1155*	12	42	17	112*	12	443	455	69
22	49	69	453*	4	62	82	346*	13	288	301	63	13	17	2	630×
23	121	<u>5</u> 9	83	5	144	129	84	14	291	293	66	14	201	210	94
24	44	16	336*	6	59	61	133*	15	360	367	70	15	18	27	864*
	-1,	3, 1		7	19	70	1253*	16	47	33	126*	16	374	391	83
1	445	433	77	8	51	84	458*	17	179	191	67	17	167	177	75
2	49	65	269*	9	43	2	452*	18	213	210	86	18	57	70	129*
3	110	116	77	10	19	35	982*	19	40	12	164*	19	105	93	59
4	357	330	84	11	20	28	1052*	20	152	148	69	20	20	44	883*
5	154	165	82	12	20	13	1226*	21	40	2	201*	21	89	79	102
6	446	460	82	13	20	48	1087*	22	63	60	121	22	107	119	69
7	152	156	91	14	35	24	651*	23	20	12	726*	23	119	105	61
8	312	314	94	15	133	128	86	24	98	95	93	-	Ō.	4. 1	•-
9	180	177	122	16	21	28	690×	25	136	138	64	0	69	57	84
0	75	53	82	17	133	130	92		0,	2, 1		i	171	172	70
1	121	106	84		-1,	6, 1		0	746	751	58	2	82	82	71
12	188	171	121	1	43	47	349*	1	505	499	43	3	269	267	71
13	117	121	79	2	138	139	88	2	513	529	43	4	130	135	63
14	371	386	111	3	114	109	84	3	603	608	44	5	93	83	54
15	251	271	136	4	90	98	103	4	555	555	45	6	329	322	72
16	65	77	325*	5	56	22	441*	5	393	399	49	7	35	36	172*
17	232	233	105	6	114	107	88	6	68	65	48	8	270	286	80
18	153	153	105	7	72	62	125	7	72	76	61	ġ	75	85	96
19	87	94	102	8	21	80	1253*	8	118	116	50	10	116	116	52
20	20	59	1332*	9	21	54	1275*	9	423	436	55	11	125	117	60
21	50	73	466*	10	21	2	1213*	10	50	57	93	12	59	51	124*
22	47	37	284*	11	40	75	488×	11	219	220	75	13	171	176	74
23	22	5	1169*	12	45	26	307*	12	332	322	63	14	167	167	74
	-1,	4, 1			Ο,	0, 1		13	281	291	73	15	42	61	216*
1	16	13	922*	4	608	629	29	14	167	175	74	16	105	107	63
2	173	167	92	6	1146	1115	35	15	86	91	78	17	29	7	245*
3	66	60	93	8	326	326	45	16	131	134	58	18	34	66	443*
4	28	34	567*	10	700	687	47	17	18	61	800*	19	21	2	738*
5	55	32	118*	12	336	332	57	18	235	240	93	20	42	44	417*
6	190	174	88	14	26	53	365*	19	55	74	237*	-	0,	5, 1	•
7	231	238	118	16	72	74	62	20	63	62	88	1	52	74	144*
8	328	326	109	18	28	50	447*	21	98	96	84	2	114	125	58
9	105	100	73	20	192	187	77	22	25	77	727*	3	139	127	65
10	274	276	117	22	299	300	93	23	50	40	264*	4	180	187	75
									-	-		-			• •

.

Columns are 10F0 10FC 100Sig, * for Insignificant 1 kF0 FC Sig 1 15161* • 5 150 159 71 11 138 148 83 10 206 226 116 16 57 10 397* 6 19 48 544* 12 278 283 85 11 164 160 90 17 76 6 63 152* 7 79 82 76 13 308 310 89 12 140 135 83 1, 6 6, 1 8 19 12 799* 14 16 0 567* 13 17 51 1156* 0 36 74 660* 9 42 34 167* 15 541 62 61 271 117 15 84 86 93 1 3 54 39 143* 10 25 11 467* 16 261 271 117 15 84 86 93 2 47 47 177* 11 20 18 723* 17 196 189 131 16 145 142 91 3 54 39 143* 12 40 24 269* 18 221 215 123 17 148 148 99 4 20 33 1087* 13 31 9 441* 19 18 38 1108* 18 20 74 1349* 5 21 64 1066* 14 44 46 6333* 20 19 1 1113* 19 126 129 82 67 7 55 44 150* 16 67 78 21 70 76 363* 20 127 126 87 7 55 44 150* 16 67 78 21 70 76 363* 20 127 126 87 7 55 44 150* 16 67 78 76 106 25 102 76 89 0 310 311 95 11 57 20 438* 17 41 26 414* 23 65 51 37* 22 98 71 103 9 55 502* 0, 6, 1 24 22 40 1187* 1, 4, 1 10 60 109 488* 0 78 76 106 25 102 76 89 0 310 311 95 11 57 20 438* 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 12 2 77 62 77 0 13 36 812* 2 86 103 77 0 64 658 47 3 46 84 357* 1 701 699 61 3 171 181 94 2 734 724 49 4 149 139 70 2 67 57 64 4 65 61 93 77 0 64 658 4 17 7 40 52 322* 5 331 342 75 7 85 99 87 10 378 378 80 8 32 44 421* 6 569 574 69 8 17 28 1133* 12 315 304 89 9 87 80 997 7 413 429 77 9 104 117 85 14 63 54 91 10 74 78 100 8 198 189 96 10 270 276 276 128 137* 112 315 304 89 9 87 80 99 7 413 429 77 9 104 117 85 14 63 54 91 10 74 78 100 8 198 189 96 10 270 276 128 137* 112 2 128 173 103 2 217 555 10 30 10 040* 12 354 357 111 2 21 163 173 103 2 915 917 37 12 289 289 97 14 1807 121 133 156 137* 112 2 163 173 103 2 915 917 37 12 289 289 97 14 180 717 101 113 81 85 1070* 1 , 0, 1 11 41 30 247* 13 156 137 111 22 163 173 103 2 916 748 100 6 198 189 96 10 270 276 128 16 199 314 1 66 76 135* 9 104 105 72 11 180 174 133 266 * 7 78 58 90 55 8 522 521 52 15 17 14 143 157 78 55 90 6374 0 57 58 53 1 300 143 66 0 44 41 1724 0 34 4 4003 10 16 57 6 36 370 0378 038 78 87	STRU	ICTURE	E FACI	TORS FO	0R C1	6 H12	2 S C1	2						F	Page 6	5
1 kFo Fc Sig 1 1 1 138 148 83 10 206 226 116 16 57 110 378 77 9 82 76 13 308 310 89 12 140 135 83 1, 66 63 152 7 79 82 76 13 308 310 89 12 140 135 83 1, 66 63 152 7 79 82 76 13 308 310 89 12 140 135 83 1, 66 63 32 1, 66 1 128 137 51 146 160 573 14 160 573 14 160 573 14 160 573 14 160 513 156 16 53 14 160 533 10 89 12 140 135 83 2 14 74 7177 177 11 20 118 723 17 196 189 131 16 145 142 91 3 54 39 133 13 19 441* 19 18 38 1108* 18 20 74 1349* 5 21 64 1066 123 117 15 84 86 93 2 2 47 47 177* 112 20 124 269* 18 221 215 123 17 148 148 99 4 2 03 51087* 13 31 19 441* 19 18 38 1108* 18 20 74 1349* 5 21 64 1066 102 17 41 26 414* 23 63 56 137* 22 125 126 87 7 55 44 150* 102 17 41 26 414* 23 63 56 137* 22 98 71 103 9 53 95 502* 0, 6, 1 24 22 40 1187* 1, 4, 1 10 60 109 488* 0 78 76 108 25 102 76 89 0 310 311 95 11 57 20 438* 0 178 76 108 25 102 76 89 0 310 311 95 11 57 20 438* 0 178 316 327 71 0 53 68 12* 2 86 103 77 0 644 658 47 1349 4 2, 73 62 77 0 13 36 812* 2 86 103 77 0 644 658 47 1349 4 2, 73 74 74 149 139 70 2 67 57 64 4 65 61 95 41 166 199 49 52 55 57 57 120 3 316 327 70 5 16 23 986* 6 507 515 56 12 5 567 57 120 3 316 327 70 5 16 23 986* 6 507 515 56 12 5 567 57 120 3 316 327 70 5 16 23 986* 6 507 515 56 12 5 567 57 120 3 316 327 70 5 16 23 986* 6 507 515 56 12 5 567 57 120 3 316 327 70 5 16 23 986* 6 507 515 56 12 5 567 57 120 3 316 327 77 0 51 62 33 86* 6 507 515 56 12 5 567 57 120 3 316 327 77 0 51 62 33 86* 6 507 515 51 61 6 25 197 110 39 9 7 43 328 28 97 14 167 128 1133* 12 315 304 89 9 87 10 378 378 80 8 8 32 44 421* 6 559 574 69 8 17 28 1133* 12 315 304 89 9 18 10 74 78 108 8 198 96 10 270 276 128 16 199 193 144 12 18 14 146 166 128 137 113 22 163 147 103 129 113 126 128 177 113 120 126 128 77 113 126 128 177 113 120 126 128 77 113 126 128 1337 115 20 166 143 188 20 147 13 136 135 81 173 113 20 156 143 168 20 141 133 98 100 15 55 90 409* 2, 1, 1 113 78 114 124 24 124 13 13		Colur	nns ai	ce 10F	` 0	10Fc	100	Sig, *	for	Insi	gnifi	icant				
$ \begin{array}{c} 0, 5, 1 \\ 5 & 150 & 153 & 71 & 11 & 138 & 148 & 83 & 10 & 206 & 226 & 116 & 16 & 57 & 10 & 397* \\ 6 & 19 & 48 & 544* & 12 & 278 & 283 & 85 & 11 & 164 & 160 & 90 & 17 & 66 & 63 & 152* \\ 7 & 79 & 82 & 76 & 13 & 300 & 310 & 89 & 12 & 140 & 135 & 83 & 1 & 6, 1 \\ 8 & 19 & 12 & 799* & 14 & 16 & 0 & 567* & 13 & 17 & 51 & 1156* & 0 & 36 & 74 & 660* \\ 9 & 42 & 34 & 167* & 15 & 541 & 550 & 92 & 14 & 109 & 111 & 75 & 1 & 46 & 68 & 533 \\ 10 & 25 & 11 & 467* & 16 & 261 & 271 & 117 & 15 & 84 & 86 & 93 & 2 & 47 & 47 & 177* \\ 11 & 20 & 18 & 723* & 17 & 196 & 189 & 131 & 16 & 416 & 99 & 4 & 20 & 35 & 1087* \\ 13 & 31 & 19 & 441* & 19 & 18 & 38 & 1108* & 18 & 20 & 74 & 1349* & 5 & 21 & 64 & 1066* \\ 14 & 44 & 46 & 333* & 20 & 19 & 1 & 1113* & 19 & 126 & 129 & 82 & 6 & 21 & 19 & 1124* \\ 15 & 80 & 67 & 78 & 21 & 70 & 76 & 363* & 20 & 127 & 126 & 87 & 7 & 55 & 44 & 150* \\ 16 & 21 & 48 & 519* & 22 & 126 & 118 & 81 & 21 & 205 & 208 & 120 & 81 & 104 & 108 & 102 \\ 17 & 41 & 26 & 414* & 23 & 63 & 56 & 137* & 22 & 96 & 71 & 103 & 9 & 53 & 95 & 502* \\ 0, & 6, 1 & 24 & 25 & 102 & 76 & 89 & 0 & 310 & 311 & 95 & 11 & 57 & 20 & 438* \\ 1 & 116 & 111 & 58 & 1, 2, 1 & 2, 1 & 144 & 134 & 94 & 2, 0, 1 & 1 \\ 2 & 77 & 62 & 77 & 0 & 13 & 36 & 812* & 2 & 86 & 103 & 77 & 0 & 644 & 658 & 47 \\ 1 & 419 & 139 & 70 & 2 & 67 & 57 & 64 & 4 & 65 & 61 & 957 & 51 & 54 & 1966 & 1949 & 52 \\ 5 & 67 & 57 & 120 & 3 & 316 & 327 & 70 & 51 & 62 & 3 & 986* & 6 & 507 & 575 & 56 & 1 \\ 6 & 96 & 98 & 91 & 4 & 483 & 502 & 66 & 6 & 313 & 341 & 112 & 8 & 126 & 128 & 77 \\ 7 & 40 & 52 & 322* & 5 & 313 & 342 & 77 & 9 & 104 & 178 & 78 & 878 & 80 \\ 8 & 32 & 44 & 421* & 6 & 569 & 574 & 69 & 8 & 17 & 28 & 1133* 12 & 315 & 304 & 89 \\ 9 & 67 & 80 & 99 & 7 & 413 & 429 & 77 & 9 & 104 & 117 & 85 & 14 & 656 & 57 & 57 & 14 \\ 116 & 74 & 78 & 108 & 8 & 198 & 160 & 106 & 77 & 36 & 337* & 10 & 378 & 80 \\ 8 & 32 & 47 & 416 & 416 & 425 & 101 & 18 & 18 & 51 & 1079* \\ 2 & 2 & 515 & 517 & 32 & 126 & 1117* & 20 & 41 & 133 & 266* & 4 & 58 & 75 & 74 \\ 110 & 74 & 78 & 108 & 71 & 108 & 118 & 21 & 36$	1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sig
		Ο,	5, 1		10	403	393	77	9	289	292	96	15	21	15	1161*
	5	150	159	71	11	138	148	83	10	206	226	116	16	57	10	397*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	19	48	544*	12	278	283	85	11	164	160	90	17	66	63	152*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	79	82	76	13	308	310	89	12	140	135	83		1,	6, l	
9 42 34 167* 15 541 550 92 14 109 111 75 1 46 66 93 2 47 47 177* 11 20 18 723* 17 196 189 131 16 145 142 91 3 54 39 143* 12 40 24 269* 18 221 215 123 17 148 148 99 4 20 35 1087* 13 31 19 441* 19 18 38 1108* 18 20 74 1349* 5 21 64 1066* 14 44 46 333* 20 19 1 1113* 19 126 129 62 6 21 19 1124* 15 60 67 78 21 70 76 363* 20 127 126 87 7 55 44 150* 16 21 48 519* 22 126 118 81 21 205 208 120 8 104 108 102 0, 6, 1 24 22 40 1187* 1, 4, 1 10 60 109 488* 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 2 77 62 77 0 13 36 812* 2 88 71 103 9 53 95 502* 0, 6, 1 24 22 40 1187* 1, 4, 1 10 60 109 488* 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 2 77 62 77 0 13 36 812* 2 86 103 77 0 644 658 47 3 46 84 357* 1 701 699 61 3 171 181 94 2 734 724 49 4 149 139 70 2 67 57 64 4 65 13 77 2 644 658 47 3 46 84 357* 1 701 699 61 3 171 181 94 2 734 724 49 4 149 139 70 2 67 57 64 4 65 13 341 112 8 126 129 77 9 7 40 52 322* 5 313 342 75 7 85 99 87 10 378 378 80 8 32 44 421* 6 569 574 69 8 17 28 133* 12 315 304 89 9 87 80 99 7 413 429 77 9 104 117 85 14 63 54 91 10 74 78 108 8 198 189 96 10 270 276 128 16 199 193 114 11 66 76 135* 9 104 105 72 11 180 170 101 18 18 55 1070* 2 22 17 553* 10 30 10 401* 12 354 357* 115 20 156 147 108 1 429 19 181* 13 94 88 69 15 56 90 409* 2, 1, 1 1 6 67 61 35* 9 104 105 72 11 180 170 101 18 18 55 1070* 1 0 74 78 108 8 198 189 96 10 270 276 128 16 199 193 114 1 6 67 6 135* 9 104 105 72 11 180 170 101 18 18 55 1070* 2 915 917 37 12 289 289 977 14 187 221 123 24 113 98 67 4 29 19 181* 13 94 88 69 15 56 90 409* 2, 1, 1 6 1213 1216 53 14 404 403 100 16 57 36 337* 0 872 880 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 352 354 74 16 61 64 25 101 182 1366 103 37* 0 872 880 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 352 354 74 16 64 44 172* 0 34 4 400* 9 41 37 341* 7 119 113 75 22 50 53 324* 22 11 3 1124* 2 260 279 135 8 200 188 75 74 16 387 389 99 19 19 4 917* 1, 51 3 63 103 11 204 201 96 63 1 150 143 66 0 44 41, 3, 1 5 83 60 103 15 205 225 146 102 1 150 143 66 0 74 44	8	19	12	799*	14	16	0	567*	13	17	51	1156*	0	36	74	660*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	42	34	167*	15	541	550	92	14	109	111	75	1	46	80	523*
11 20 18 723* 17 196 189 131 16 145 142 91 3 54 39 143* 12 40 24 269* 18 221 215 123 17 148 148 99 4 20 35 1087* 13 31 19 441* 19 18 38 1008* 18 20 74 1349* 5 21 64 1066* 14 44 46 333* 20 19 1 1113* 19 126 129 82 6 21 19 1124* 15 80 67 78 21 70 76 363* 20 127 126 87 7 55 44 150* 16 21 48 519* 22 126 118 81 21 205 208 120 8 104 108 102* 17 41 26 414* 23 63 56 137* 2 98 71 103 9 53 95 502* 0, 6, 1 24 22 40 1187* 1, 4, 1 10 60 109 488* 0 78 76 108 25 102 76 89 0 310 311 95 11 57 20 438* 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 \times 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 \times 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 \times 1 44 9 139 70 2 67 57 64 4 65 61 95 4 1966 199 51 194 52 5 67 57 120 3 316 327 70 5 16 23 986* 6 507 515 61 6 96 98 91 4 483 502 66 6 313 341 112 8 126 128 77 7 40 52 322* 5 31 342 75 7 85 99 87 1 0 378 80 8 32 44 421* 6 569 574 69 8 17 28 1133* 12 315 304 89 9 87 80 99 7 413 429 77 9 104 117 85 14 63 54 91 10 74 78 108 8 198 199 6 10 270 276 718 16 199 133 114 11 66 76 135* 9 104 105 72 11 180 70 101 18 18 55 1070* 1, 0, 1 114 13 0 304 77 14 187 221 123 24 113 98 67 4 29 19 181* 13 94 88 69 15 56 90 4037* 0 872 890 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 74 78 100 8 198 997 14 187 221 123 24 113 98 67 4 29 19 181* 13 94 88 69 15 56 90 409* 2, 1, 1 16 6 76 135* 9 19 14 403 3100 16 57 60 337* 0 872 890 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 352 354 74 16 416 425 101 18 21 168 108 3 977 963 55 14 15 62 100* 18 18 26 1117* 20 41 33 266* 4 58 75 74 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 19 4 917* 1, 5, 1 52 18 230 198 33 24 66 43 366* 23 17 76 1103* 14 126 126* 17 7 205 35 10 3107 54 413 68 0 44 41 261* 6 41 7 248* 12 138 135 74 25 50 53 82* 22 21 3 1112* 2 280 279 135 8 200 198 33 24 66 43 366* 23 17 6 1103* 1	10	25	11	467*	16	261	271	117	15	84	86	93	2	47	47	177*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	20	18	723*	17	196	189	131	16	145	142	91	3	54	39	143*
13 31 19 441* 19 18 38 1108* 18 20 74 1349* 5 21 64 1066* 14 44 46 333* 20 19 1 1113* 19 126 129 82 6 21 19 1124* 15 80 67 78 21 70 76 363* 20 127 126 87 7 55 44 150* 16 21 48 519* 22 126 118 81 21 205 208 120 8 104 108 102 17 41 26 414* 23 63 56 137* 22 98 71 103 9 53 95 502* 0, 6, 1 24 24 22 40 1187* 1, 4, 1 10 60 109 488* 0 78 76 108 25 102 76 89 0 310 311 95 11 57 20 438* 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 2 77 62 77 0 13 36 812* 2 86 103 77 0 644 658 47 3 46 84 357* 1 701 699 61 3 171 181 94 2 734 724 49 4 149 139 70 2 67 57 64 4 65 61 95 4 1966* 6 507 515 61 6 96 98 91 4 483 502 66 6 313 311 12 8 126 128 77 7 40 52 322* 5 331 342 75 7 8 15 99 87 10 378 378 80 8 32 44 421* 6 569 574 69 8 17 28 1133* 12 315 304 89 9 87 80 99 7 413 429 77 9 104 117 85 14 63 504 89 9 87 80 99 7 141 3429 77 9 104 117 85 14 63 504 91 10 74 78 108 8 198 189 96 10 270 276 128 16 199 193 114 1 66 76 135* 9 104 105 72 11 180 70 101 18 18 55 1070* 1, 0, 1 11 41 30 247* 13 556 30 404* 22 163 71 112 2 163 173 103 2 915 917 37 12 289 289 97 14 187 221 123 24 113 98 87 4 229 19 181* 13 94 86 69 15 56 90 409* 2, 1, 1 6 1213 1216 53 14 404 403 100 16 57 36 337* 0 872 890 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 352 354 74 16 416 425 101 18 21 166 109 39 77 963 55 14 15 62 1000* 18 18 26 117* 20 41 33 266* 4 58 75 74 15 63 87 389 99 19 19 4 917* 1, 5, 1 52 01 188 3977 963 55 14 15 62 1000* 18 18 22 61 117* 20 41 33 266* 4 58 75 74 16 387 389 99 19 19 4 917* 1, 5, 1 52 01 188 3977 963 55 14 15 62 1000* 18 18 26 117* 20 41 33 266* 4 58 75 74 16 387 369 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 238 77 16 387 389 99 19 19 4 917* 1, 5, 1 52 18 200 198 93 24 66 43 368* 23 21 76 1103* 3 46 4 400* 9 41 37 200* 1, 1, 1, 1 24 89 75 110 4 228 225 145 10 79 63 84 0 814 806 44 1, 3, 1 58 83 63 103 311 264 86 43 14 2424* 20 136 144 95 21 30 19 405* 1 54 37 73 41* 7 119 113 75 22 50 55 3824 22 21 3 1112* 2 280 2	12	40	24	269*	18	221	215	123	17	148	148	99	4	20	35	1087*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	31	19	441*	19	18	38	1108*	18	20	74	1349*	5	21	64	1066*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	44	46	333*	20	19	_1	1113*	19	126	129	82	6	21	19	1124*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	80	67	78	21	70	76	363*	20	127	126	87	7	55	44	150*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	21	48	519*	22	126	118	81	21	205	208	120	8	104	108	102
0, 6, 1 22 40 1187* 1, 4, 1 10 60 109 488* 1 118 111 58 1, 2, 1 1 144 134 94 2, 0, 1 2 77 62 77 0 13 36 812* 2 86 103 77 0 644 658 47 3 46 84 357* 1 701 699 61 3 171 181 94 2 734 724 49 4 149 139 70 2 67 57 64 4 65 61 95 4 1966 1949 52 5 67 57 120 3 16 327 70 5 16 23 986* 6 507 515 61 6 96 98 91 4 483 502 66 6 313 341 112 8 126 128 77 7 40 52 322* 5 331 342 75 7 85 99 87 10 378 378 80 8 32 44 421* 6 569 574 69 8 17 28 1133* 12 315 304 89 9 87 80 99 7 413 429 77 9 104 117 85 14 63 54 91 10 74 78 108 8 198 199 6 10 270 276 128 16 1949 131 14 11 66 76 135* 9 104 105 72 11 180 170 101 18 18 55 1070* 2 22 17 553* 10 30 10 401* 12 354 357 115 20 156 147 108 1, 0, 1 11 41 30 247* 13 156 137 111 22 163 173 103 2 915 917 37 12 289 289 97 14 187 221 123 24 113 98 87 4 22 19 19 181* 13 94 88 69 15 56 90 409* 2, 1, 1 6 1213 1216 53 14 404 403 100 16 57 36 337* 0 872 890 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 36 144 404 403 100 16 57 36 337* 0 872 890 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 36 238* 74 14 61 64 25 101 18 21 36 1093* 2 678 682 54 12 291 9 19 181* 18 26 1117* 20 41 33 266* 4 58 75 74 16 367 389 99 19 19 4 917* 1, 5, 1 5 218 238 77 18 257 255 116 20 44 14 172* 0 34 4 400* 9 41 37 280* 1, 1, 1 24 89 75 110 4 28 19 169 163 103 3 266* 4 58 75 74 16 387 389 99 19 19 4 917* 1, 5, 1 5 218 238 77 18 257 255 116 20 44 14 172* 0 34 4 400* 9 41 37 280* 1, 1, 1 24 89 75 110 4 228 225 145 10 59 63 84 0 814 806 44 1, 3, 1 5 8 36 103 11 204 201 96 1 150 143 668 04 4 1, 3, 1 5 8 36 103 11 204 201 96 1 150 143 68 0 44 41 261* 6 41 7 248 12 18 135 74 2 586 586 47 1 180 162 93 7 153 163 98 13 130 135 81 3 281 269 57 2 66 84 75 8 181 182 118 14 146 166 102 5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 276 116 6 320 316 68 57 28 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94 13 20 171 1045* 19 218 200 138 9 98 108 57 8 53 10 274* 14 165 55 35002* 111 111 86	17	41	26	414*	23	63	56	137*	22	_ 98	71	103	9	53	95	502*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	0,	6, 1		24	22	40	1187*	-	1,	4, 1		10	60	109	488*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	78	76	108	25	102	76	89	0	310	311	95	11	57	20	438*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	118	111	58		1,	2, 1		1	144	134	94	-	2,	0, 1	
3 46 84 35/* 1 701 699 61 3 171 181 94 2 7734 724 49 4 149 139 70 2 67 57 64 4 65 61 95 4 1966 1949 52 5 67 57 120 3 316 327 70 5 16 23 986* 6 507 515 61 6 96 98 91 4 483 502 66 6 313 341 112 8 126 128 77 7 40 52 322* 5 331 342 75 7 85 99 87 10 378 378 80 8 32 44 421* 6 569 574 69 8 17 28 1133* 12 315 304 89 9 87 80 99 7 413 429 77 9 104 117 85 14 63 54 91 10 74 78 108 8 198 189 96 10 270 276 128 16 199 193 114 11 66 76 135* 9 104 105 72 11 180 170 101 18 18 55 1070* 2 22 17 553* 10 30 10 401* 12 354 357 115 20 156 147 108 1, 0, 1 11 41 30 247* 13 156 137 111 22 163 173 103 2 915 917 37 12 289 289 97 14 187 221 123 24 113 98 87 4 29 19 181* 13 94 88 69 15 56 90 409* 2, 1, 1 6 1213 1216 53 14 404 403 100 16 57 36 337* 0 872 890 52 8 522 521 62 15 17 14 1135* 17 96 84 94 1 74 72 59 10 352 354 74 16 416 425 101 18 21 36 1093* 2 678 682 54 12 291 276 89 17 102 104 82 19 169 168 108 3 977 963 55 14 15 62 1000* 18 18 26 1117* 20 41 33 266* 4 58 75 74 16 387 389 99 19 19 4 917* 1, 5, 1 5 218 238 77 18 257 255 116 20 44 14 172* 0 34 4 588* 6 43 14 242* 20 136 144 95 21 30 19 405* 1 54 37 341* 7 119 113 75 22 50 55 382* 22 21 76 1103* 3 48 4 400* 9 41 37 280* 1, 1, 1, 1 24 89 75 110 4 228 225 145 10 59 63 84 0 814 806 44 1, 3, 1 5 83 6103 11 204 201 96 1 150 143 68* 23 21 76 1103* 3 48 4 400* 9 41 37 280* 1, 1, 1, 1 24 89 75 110 4 228 125 145 10 59 63 84 0 814 806 44 1, 3, 1 5 83 61 03 11 204 201 96 1 150 143 68 0 44 41 261* 6 41 7 248* 12 138 135 74 2 586 586 47 1 180 162 93 7 153 163 98 13 130 135 81 3 281 269 57 2 66 84 75 8 181 182 118 14 146 166 102 4 95 103 61 3 171 165 100 9 154 146 103 15 235 229 120 5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 116 6 320 316 68 5 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 79 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* 14 65 55 360* 20 1111 118 86	2	77	62	77	0	13	36	812*	2	86	103	77	0	644	658	47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	46	84	357*	1	701	699	61	3	171	181	94	2	734	724	49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	149	139	70	2	67	57	64	4	65	61	95	4	1966	1949	52
$ \begin{array}{c} 6 & 96 & 98 & 91 & 4 & 483 & 502 & 66 & 6 & 313 & 341 & 112 & 8 & 126 & 128 & 77 \\ 7 & 40 & 52 & 322* & 5 & 331 & 342 & 75 & 7 & 85 & 99 & 87 & 10 & 378 & 378 & 80 \\ 8 & 32 & 44 & 421* & 6 & 569 & 574 & 69 & 8 & 17 & 28 & 1133* & 12 & 315 & 304 & 89 \\ 9 & 87 & 80 & 99 & 7 & 413 & 429 & 77 & 9 & 104 & 117 & 85 & 14 & 63 & 54 & 91 \\ 10 & 74 & 78 & 108 & 8 & 198 & 189 & 189 & 96 & 10 & 270 & 276 & 128 & 16 & 199 & 193 & 114 \\ 11 & 66 & 76 & 135* & 9 & 104 & 105 & 72 & 11 & 180 & 170 & 101 & 18 & 18 & 55 & 1070* \\ \hline \\ 2 & 22 & 17 & 553* & 10 & 30 & 10 & 401* & 12 & 354 & 357 & 115 & 20 & 156 & 147 & 108 \\ 1, & 0, & 1 & 11 & 41 & 30 & 247* & 13 & 156 & 137 & 111 & 22 & 163 & 173 & 103 \\ 2 & 915 & 917 & 37 & 12 & 289 & 289 & 97 & 14 & 187 & 221 & 123 & 24 & 113 & 98 & 87 \\ 4 & 29 & 19 & 181* & 13 & 94 & 88 & 69 & 15 & 56 & 90 & 409* & 2, & 1, & 1 \\ 6 & 1213 & 1216 & 53 & 14 & 404 & 403 & 100 & 16 & 57 & 36 & 337* & 0 & 872 & 890 & 52 \\ 8 & 522 & 521 & 62 & 15 & 17 & 14 & 1135* & 17 & 96 & 84 & 94 & 1 & 74 & 72 & 59 \\ 10 & 352 & 354 & 74 & 16 & 416 & 425 & 101 & 18 & 21 & 36 & 1093* & 2 & 678 & 682 & 54 \\ 12 & 291 & 276 & 89 & 17 & 102 & 104 & 82 & 19 & 169 & 168 & 108 & 3 & 977 & 963 & 55 \\ 14 & 15 & 62 & 1000* 18 & 18 & 26 & 1117* & 20 & 41 & 33 & 266* & 4 & 58 & 75 & 74 \\ 16 & 387 & 389 & 99 & 19 & 19 & 4 & 917* & 1, & 5, & 1 & 5 & 218 & 238 & 77 \\ 18 & 257 & 255 & 116 & 20 & 44 & 14 & 172* & 0 & 34 & 4 & 588* & 6 & 43 & 14 & 242* \\ 20 & 136 & 144 & 95 & 21 & 30 & 19 & 405* 1 & 54 & 37 & 341* & 7 & 119 & 113 & 75 \\ 22 & 50 & 55 & 382* & 22 & 21 & 3 & 1112* & 2 & 280 & 279 & 135 & 8 & 200 & 198 & 93 \\ 24 & 66 & 43 & 368* & 23 & 21 & 76 & 1103* & 3 & 48 & 4 & 400* & 9 & 41 & 37 & 280* \\ 1 & 150 & 143 & 68 & 0 & 44 & 41 & 261* & 6 & 41 & 7 & 248* & 12 & 138 & 135 & 74 \\ 2 & 586 & 586 & 47 & 1 & 180 & 162 & 93 & 7 & 153 & 163 & 98 & 13 & 130 & 135 & 81 \\ 3 & 281 & 269 & 57 & 2 & 66 & 84 & 75 & 8 & 181 & 182 & 118 & 14 & 146 & 166 & 102 \\ 4 & 95 & 103 & 61 & 3 & 171 & 165 & 100 & 9 & 154 & 146 & 103 & 15 & 235 &$	5	67	57	120	3	316	327	70	5	16	23	986*	6	507	515	61
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	96	98	91	4	483	502	66	6	313	341	112	8	126	128	77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	52	322*	5	331	342	75	7	85	99	87	10	378	378	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	32	44	421*	6	569	574	69	8	1/	28	1133×	12	315	304	89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	8/	80	99	1	413	429		.9	104	117	85	14	63	54	91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	14	78	108	8	198	189	96	10	270	276	128	10	199	193	114
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		00	10	132*	10	104	105	12	11	180	1/0	101	18	18	55	1070*
1014130247*131561371112216317310329159173712289289971418722112324113988742919181*13948869155690409*2,1,16121312165314404403100165736337*0872890528522521621517141135*1796849417472591035235474164164251011821361093*26786825412291276891710210482191691681083977963551415621000*1818261117*204133266*4587574163873899919194917*15152182387718257255116204414172*0344588*64314242*2013614495213019405*15437341*711911375 </td <td></td> <td>22</td> <td>~ 1/</td> <td>553*</td> <td>10</td> <td>30</td> <td>10</td> <td>401*</td> <td>12</td> <td>354</td> <td>357</td> <td>115</td> <td>20</td> <td>156</td> <td>147</td> <td>108</td>		22	~ 1/	553*	10	30	10	401*	12	354	357	115	20	156	147	108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	1, 01E	U, 1	27	11	41	30	24/*	13	107	137	111	22	103	1/3	103
4 29 19 101 13 94 403 100 16 57 36 $337*$ 0 872 890 52 10 352 521 62 15 17 14 $1135*$ 17 96 84 94 1 74 72 59 10 352 354 74 16 416 425 101 18 21 36 $1093*$ 2 678 682 54 12 291 276 89 17 102 104 82 19 169 168 108 3 977 963 55 14 15 62 $1000*$ 18 18 26 $1117*$ 20 41 33 $266*$ 4 58 75 74 16 387 389 99 19 19 4 $917*$ 1 5 1 52 $18288*$ 75 74 16 387 389 99 19 19 $497*$ 1 $5,11$ 52 $18288*$ 77 763 16 387 389 99 19 19 $497*$ 1 $5,11$ 52 $1828*$ 77 74 16 387 389 99 19 19 $497*$ 1 $5,37$ $341*$ 7 113 728 20 136 144 95 21 30 19 $405*$ 154 37 $341*$ </td <td>2</td> <td>912</td> <td>917</td> <td>101+</td> <td>12</td> <td>289</td> <td>289</td> <td>97</td> <td>14</td> <td>T01</td> <td>221</td> <td>123</td> <td>24</td> <td>113</td> <td>98</td> <td>87</td>	2	912	917	101+	12	289	289	97	14	T01	221	123	24	113	98	87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1212	1016	101-	10	94	402	100	15	20	90	4091	~	4,	1, 1	F O
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	522	521	53	16	404	403	1135*	17	06	20	22/2	1	012	090	52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	352	354	71	16	416	425	101	10	21	26	1002+	2	270	602	59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	291	276	80	17	102	10/	82	10	160	160	1093*	2	070	002	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	15	62	1000*	18	18	26	1117*	20	109	700 700	266*	J A	577	903	55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	387	าลัด	000	10	10	20	017*	20	1	5 1	200*		210	220	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	257	255	116	20		14	170*	0	-1/3/	J, T	589*	5	210	230	242*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	136	144	95	21	30	19	405*	ĭ	54	37	341*	7	110	113	242**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	50	55	382*	22	21		1112*	2	280	279	135	, 8	200	108	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	66	43	368*	23	21	76	1103*	2	48	215	400*	ğ	41	37	280*
0 814 806 44 1, 3, 1 5 83 63 103 11 204 201 96 1 150 143 68 0 44 41 261* 6 41 7 248* 12 138 135 74 2 586 586 47 1 180 162 93 7 153 163 98 13 130 135 81 3 281 269 57 2 66 84 75 8 181 182 118 14 146 166 102 4 95 103 61 3 171 165 100 9 154 146 103 15 235 229 120 5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 116 6 320 316 68 5 523 526 81 11 20 56		1.	1. 1		24	89	75	110	ă	228	225	145	10	59	63	84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	814	806	44		1.	3. 1		5	83	63	103	îĭ	204	201	96
2 586 586 47 1 180 162 93 7 153 163 98 13 130 135 81 3 281 269 57 2 66 84 75 8 181 182 118 14 146 166 102 4 95 103 61 3 171 165 100 9 154 146 103 15 235 229 120 5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 116 6 320 316 68 5 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94	1	150	143	68	0	44	41	261*	ő	41	7	248*	12	138	135	74
3 281 269 57 2 66 84 75 8 181 182 118 14 146 166 102 4 95 103 61 3 171 165 100 9 154 146 103 15 235 229 120 5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 116 6 320 316 68 5 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* <td>2</td> <td>586</td> <td>586</td> <td>47</td> <td>ī</td> <td>180</td> <td>162</td> <td>93</td> <td>7</td> <td>153</td> <td>163</td> <td>98</td> <td>13</td> <td>130</td> <td>135</td> <td>81</td>	2	586	586	47	ī	180	162	93	7	153	163	98	13	130	135	81
4 95 103 61 3 171 165 100 9 154 146 103 15 235 229 120 5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 116 6 320 316 68 5 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* 14 65 55 350* 20 111 111 86	3	281	269	57	2	66	84	75	8	181	182	118	14	146	166	102
5 1103 1107 54 4 136 120 83 10 131 126 86 16 276 276 116 6 320 316 68 5 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* 14 65 55 350* 20 111 111 86	4	95	103	61	3	171	165	100	ğ	154	146	103	15	235	229	120
6 320 316 68 5 523 526 81 11 20 56 1268* 17 261 244 109 7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* 14 65 55 350* 20 111 111 86	5	1103	1107	54	4	136	120	83	10	131	126	86	16	276	276	116
7 598 611 62 6 49 44 114* 12 24 53 602* 18 47 5 165* 8 78 74 56 7 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* 14 65 55 350* 20 111 111 86	6	320	316	68	5	523	526	81	$\overline{11}$	20	56	1268*	17	261	244	109
8 78 74 56 7 281 269 94 13 20 17 1046* 19 218 200 138 9 98 108 57 8 53 10 274* 14 65 55 350* 20 111 111 86	7	598	611	62	6	49	44	114*	12	24	53	602*	18	47	5	165*
9 98 108 57 8 53 10 274* 14 65 55 350* 20 111 111 86	8	78	74	56	7	281	269	94	13	20	17	1046*	19	218	200	138
	9	98	108	57	8	53	10	274*	14	65	55	350*	20	111	111	86

STR	UCTURE	E FAC	FORS FO	DR C1	6 H12	2 s c:	12						,	Page	7
	Colum	nns ai	re 108	Fo	10Fc	100)Sig, *	foi	r Ins:	ianif	icant		•		•
1	kFo	Fc	Siq	1	kFo	Fc	Sig	- ī	k Fo	- 9.011. FC	Sia	١	kE o	Fa	ei a
	2,	1, 1		21	58	70	451*	10	55	62	176*	11	260	260	519
	254	283	151	22	122	125	89		ຈັ	0 1		12	500	202	30
22	94	90	101		2	Δ <u>1</u>	05	Δ	336	201	65	12		00	/6
23	21	56	1241*	٥	225	2, 1	120	Š	154	341	60	13	213	185	121
24	54	11	273*	1	220	200	113	2	104	120	91	14	1/	53	1051*
	2.	2 1	210.	5	110	110	113	4	041	628	63	15	133	150	87
0	127	112	71	2	112	119	12	6	163	181	98	16	165	165	109
1	662	<u> </u>	11 66	3	10	14	1089*	8	1125	1113	72	17	104	98	75
2	827	421	00	4	100	191	105	10	897	899	77	18	19	37	1250*
2	437	431	103	2	135	134	88	12	217	206	113	19	57	1	351*
د ۸	1/0	190	101	5	02	50	325*	14	299	300	111	20	158	170	95
4	030	809	68	7	185	172	95	16	103	94	75	21	108	112	90
2	42	56	302*	8	343	347	112	18	197	191	100	22	95	87	101
6	231	247	90	9	18	20	1169*	20	229	246	155		З,	3, 1	
7	624	632	75	10	138	158	90	22	39	61	602*	0	42	50	237*
8	28	41	208*	11	47	45	162*	24	29	1	813*	1	119	113	80
9	285	281	86	12	66	58	119		з,	1, 1		2	239	235	96
10	105	96	69	13	19	1	996*	0	12	20	1131*	3	105	110	72
11	15	53	1021*	14	31	48	298*	1	736	744	62	4	199	184	106
12	69	66	86	15	39	53	528*	2	12	2	946*	5	81	82	80
13	188	197	121	16	121	116	85	3	151	165	102	6	82	75	70
14	151	156	108	17	66	72	141*	4	62	73	71	7	298	202	106
15	186	190	97	18	58	43	426*	5	425	427	71	Ŕ	136	145	95
16	24	15	751*	19	22	56	1436*	6	323	320	79	ă	374	363	0.5
17	197	199	97		2.	5. 1	00	7	12	220	1000*	10	17		10504
18	202	203	104	0	242	253	145	Ŕ	151	127	75	11	226	242	12031
19	45	42	400*	ĩ	304	331	128	ă	400	417	10	10	230	243	148
20	20	61	1049*	2	204	212	106	10	112	111	76	12	161	174	310*
	20	10	1075*	3	10	25	1040*	11	236	240	103	10	101	1/4	90
$\mathbf{-}$	56	85	470*	۵	75	82	120	12	105	105	103	14	21	80	534*
23	41	20	349*	5	52	1 /	1/0+	12	105	105	10	12	67	13	122
	2.	<u>ຈຼິ</u> ງ	242	5	210	223	1430	14	167	102	994^	10	91	84	89
0	242	223	٩.0	7	213	223	144 5404	14	210/	103	100	1/	58	35	308*
1	308	317	00	6	124	3 4 1	3401	12	210	223	135	18	20	45	1252*
2	131	142	90	0	T20 T20	141	400+	10	43	8	429*	19	54	30	432*
2	328	220	05	10	21	- 4	409*	1/	242	231	122	20	140	158	95
4	220	320	0 / C A	TO	20	31	825*	18	158	141	94	21	_ 22	47	1361*
	400	100	04	11	20	74	1107*	19	258	250	136		з,	4, 1	
	100	400	00	12	20	67	1325*	20	34	27	611*	0	199	182	124
	120	155	78	13	62	53	353*	21	93	70	99	1	17	38	1175*
	133	122	95	14	21	28	1149*	22	51	85	523*	2	344	350	110
0	87	86	73	15	57	72	396*	23	98	93	101	3	39	84	524*
	44	28	387*	16	22	1	630*		з,	2, 1		4	171	167	97
10	16	18	971*		2,	6, 1		0	162	164	73	5	17	45	1219*
11	213	202	118	0	31	23	655*	1	555	541	72	6	18	18	1163*
12	17	48	1190*	1	42	34	230*	2	199	187	94	7	237	231	117
13	44	32	155*	2	21	57	1102*	3	13	6	888*	8	23	16	839*
14	34	74	673*	3	40	17	406*	4	254	240	87	9	18	5	1047*
15	38	70	587*	4	21	7	1026*	5	561	553	76	10	84	77	95
16	109	100	76	5	21	13	1016*	6	272	283	93	11	70	93	127
17	48	44	319*	6	21	19	1125*	7	482	509	84	12	43	70	300*
18	139	138	84	7	35	24	682*	8	259	251	92	12	105	104	8.4
19	52	68	449*	8	98	95	107	ģ	121	132	82	14	154	157	0 %
20	70	72	356*	ġ	22	17	1158*	10	356	358	٩ <u>٨</u>	15	20		1056+
			·	-						200	~ 7		~ ~ ~	4	T000~

STRU	CTURE	E FACI	ORS FO	R C1	6 H12	s ci	L2						I	?age 8	3
	Colur	nns ai	ce 10F	0	10Fc	100)Sig, *	for	Insi	ignifi	lcant	_			
1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig
	3,	4, 1		7	157	159	106	12	121	109	76	2	317	315	85
	190	201	125	8	157	166	94	13	23	11	5/3*	4	216	227	107
17	108	100	93	9	182	168	118	14	40	00	450*	0	240	229	101
τu	- 44	5 U U	304*	10	19	80	000+ 01	15	100	1/2	110 501+	10	100	161	120
•	3,	⊃, ⊥ 102	107	12	36	20	902 *	17	121	122	95	12	104	101	103
1	190	203	336*	13	101	162	207~	18	30	26	737*	14	351	374	118
2	104	07	935 81	14	19	37	1010*	19	64	70	144*	16	104	77	87
2	114	116	82	15	23	10	841 *	20	41	58	628*	18	141	าร์ล์	92
4	19	- 10	1062*	16	19	13	1034*	20	4	4. 1		20	49	24	166*
5	19	18	1237*	17	45	56	473*	0	437	433	105		5.	1. 1	200
6	206	181	146	18	20	27	989*	ĩ	127	92	77	0	137	148	92
7	60	79	382*	19	77	89	122	2	18	123	1397*	ī	238	231	100
8	24	105	1108*	20	21	76	1237*	3	143	148	97	2	215	239	107
9	100	90	96	21	183	172	120	4	111	118	77	З	122	133	78
10	20	30	1076*	22	35	63	385*	5	146	149	95	4	213	222	112
11	59	84	443*		4,	2, 1		6	82	84	99	5	479	484	88
12	88	87	115	0	389	390	81	7	43	9	393*	6	101	91	67
13	158	166	95	1	228	212	96	8	109	107	80	7	112	118	75
14	47	73	431*	2	36	55	372*	9	139	141	89	8	200	223	120
15	23	8	959*	3	15	92	1026*	10	58	14	408*	9	130	136	92
	з,	6, 1		4	200	212	107	11	109	89	83	10	38	6	425*
0	21	23	1056*	5	408	428	89	12	117	118	82	11	116	97	78
1	21	4	760*	6	167	171	118	13	74	67	116	12	39	31	292*
2	48	53	531*	7	16	18	990*	14	40	20	300*	13	151	159	89
3	64	46	344*	8	208	235	111	15	122	107	84	14	75	49	101
4	83	74	109	9	16	89	1085*	16	21	32	1298*	15	91	89	92
	44	28	299*	10	89	/9	82	Τ/	,67	- 6T	13/*	10	77	62	104
	21	31	100+	17	311	289	110	•	4,	э, <u>т</u>	0.2	10	20	29	131*
	48	21	490*	12	100	1/3	122	1	107	111	93	10	21	5/	13/*
0	45	0 1	494^	14	03 730	199	132	2	20	777	1104+	20	2 L	24	100
0	221	200	86	15	21	13	840*	2	20	26	1008*	20	61	106	532*
ž	13	205	855*	16	37	51	223*	Δ	52	86	475*	~ 1	5	2 1	JJ2 ~
ž	73	71	67	17	96	122	90	5	103	116	94	0	65	27 <u>7</u> 83	100
6	434	445	79	18	20		1090*	6	142	141	93	ĩ	16	19	1041*
8	621	634	82	19	87	92	109	7	96	92	94	$\overline{2}$	122	119	74
10	115	102	76	20	21	4	1101*	8	55	17	388*	3	39	47	412*
12	127	125	87	21	47	6	514*	ĝ	62	25	350*	4	290	301	104
14	290	296	116		4,	3, 1		10	94	100	101	5	452	450	97
16	257	263	123	0	163	177	91	11	54	54	330*	6	253	241	108
18	54	79	272*	1	16	6	1061*	12	128	101	85	7	17	16	1145*
20	49	75	257*	2	441	465	99	13	22	44	1169*	8	17	77	1177*
22	41	1	572*	3	102	115	70		4,	6, 1		9	277	275	115
	4,	1, 1		4	16	31	1017*	0	21	12	874*	10	115	107	79
0	544	544	74	5	119	110	80	1	36	38	630*	11	302	291	111
1	463	475	74	6	155	165	94	2	24	43	1071*	12	177	170	110
2	44	70	223*	7	142	167	93	3	81	64	128	13	75	81	107
3	78	82	67	8	143	150	87	4	22	72	1203*	14	117	144	84
4	157	150	73	9	157	161	103	5	_71	70	133	15	212	230	109
5	14	27	1059*	10	18	1	1124*	_	5,	0, 1		16	121	122	86
ь	50	66	T06*	11	89	88	90	0	253	267	94	17	132	138	89

STRU	ICTURE	E FACI	FORS FC	R C1	6 H12	2 S C3	.2						I	age !	9
	Colum	nns ai	re 10F	`o	10Fc	100)Sig, *	for	Ins	ignif:	icant		-		0
1	kFo	Fc	Sig	1	kFo	Fc	Sig	1	kFo	Fc	Sia	1	kFo	FC	Sig
	5,	2, 1	-	10	103	103	101	17	89	116	120	14	46	38	480*
8	21	19	1025*	11	67	73	149*	18	129	138	92	16	5.9	131	454+
19	59	81	501*		6.	0.1	2.15	-0	6.	<u>ຈ</u> ົ້າ	22	10	7	1 1	404 *
20	22	<u>ج</u>	1191*	Ω	161	168	9.4	Δ	327	21 1	120	0	262	1, 1 0, 0	
	5.	3. Î	**>*	ž	287	203	102	1	327	313	120	U	203	208	125
0	304	200	00	2. A	207	203	102	2	41	14	232*	1	184	197	104
1	174	100	100	4	09	04	/5	2	123	120	86	2	43	47	253*
	204	102	100	0	200	211	102	3	143	132	97	3	74	75	110
2	304	316	114	8	84	63	79	4	121	123	83	4	250	274	135
3	92	83	79	10	55	79	133*	5	82	86	97	5	18	99	1328*
4	130	153	91	12	271	276	130	6	202	212	141	6	192	193	111
5	18	43	1180*	14	69	39	119	7	47	25	263*	7	281	277	124
6	149	132	106	16	211	204	118	8	51	50	154*	8	147	150	104
7	42	62	272*	18	36	113	781*	9	64	37	350*	ğ	297	295	137
8	18	68	1172*		6.	1. i		10	72	64	111	าก้	69	235	3604
9	18	26	1140*	0	239	244	106	11	50	8.8	163*	11	22	73	330*
10	61	63	355*	ň	322	304	06	12	100	70	103~	10	33	/1	641×
11	240	200	127	5	130	110	50	12	100	10	69	12	20	23	1180*
12	210	61	104	2	101	110	90	13	30	43	597*	13	21	15	970*
12	10	91	104	3	481	482	96	14	21	7	1016*	14	45	59	513×
13	219	210	154	4	17	63	578*	15	34	32	574*	15	48	3	453*
14	20	79	1286*	5	317	327	104	16	22	3	1105*	16	60	17	325*
15	179	181	· 121	6	196	212	131		6,	4, 1			7,	2, 1	-
16	27	17	503*	7	49	56	282*	0	209	211	105	0	85	80	95
17	21	40	1118*	8	98	97	82	1	189	180	131	1	57	28	360*
18	22	12	1163*	9	70	97	113	2	72	90	124	2	188	172	101
	5,	4, 1		10	18	7	1131*	3	65	63	121	3	50	50	1654
0	141	160	86	11	109	74	78	4	20	41	1120+	ر ۸	10	39	11111
ī	233	243	134	12	0/	9.4	97	5	20	21	7170-	- 4 	19	10	1114*
$\overline{\mathbf{n}}_{2}$	1 8 1	192	07	12	10	20	1070+	ć	59	101	236^	3	19	35	11/4*
	101	102	240+	1.5	73	20	12704	7	99	107	92	5	131	136	87
- 5	122	107	240^	14	25	35	848*	1	20	67	1122*	7	54	72	154*
4	132	127	92	15	28	21	759*	8	21	34	1041*	8	150	159	103
2	01	42	369*	16	31	17	803*	9	55	18	398*	9	148	133	90
6	255	259	144	17	113	87	85	10	56	56	403*	10	30	50	798*
7	19	15	1156*	18	53	26	166*	11	21	48	1334*	11	20	17	1052*
8	104	101	87	19	62	7	365*	12	22	83	1422*	12	60	41	323*
9	20	16	1163×		6,	2, 1		13	96	93	107	13	160	150	112
10	38	33	614*	0	139	107	95		6.	5.1	·	14	79	- 92	120
11	91	85	100	1	74	58	94	0	25	20	1001*	15	00	111	105
12	61	15	405*	2	103	96	72	ĩ	<u>7</u> 1	22	597*	10	7	2 1	105
13	38		537*	2	204	220	121	5	70	20	107	0	120	3, I	
14	21	61	1007*	3	204	240	110	2	12	00	127	Ū.	29	68	/82*
15	22	01	1097*		317	310	112	3	21	45	1229*	Ţ	186	194	113
13	- 22	- 02	1308*	5	29	40	652*	4	115	109	91	2	152	157	98
•	<u>ې</u> ړ	5, I		6	34	39	384*	5	49	11	330*	3	44	15	442*
0	55	75	162*	7	143	130	96	6	22	96	1393*	4	20	15	1113*
1	20	37	1138*	8	18	6	1228*	7	63	77	349*	5	175	193	122
2	20	11	983 *	9	167	193	115		7,	0, 1		6	219	234	153
3	51	24	417*	10	61	24	354*	0	232	210	121	ž	- 20	50	31/*
4	54	37	406*	11	96	74	83	ž	200	106	126	á	25	25	J14"
5	21	74	1105*	12	10	· 7	400×	г. А	194	100	120 120	0	20	30	10404
ř	25	10	7100 ··	12	1 J A A	70	210-	4	144	T03			41	30	1040*
ž	21	16	11664	14	44	12	2421	0	42	18	491*	10	101	130	119
	20	10	1730×	14	29	51	394*	8	TOR	92	80	11	21	23	1118*
8	30	1	/46*	15	239	213	157	10	141	131	92	12	64	65	370*
9	131	115	92	16	51	95	543*	12	40	35	271*	13	22	21	1185*

STRU	CTURI	E FAC	FORS FOR	R C1	6 H12	2 S C1	12						I	agel?)
	Colur	nns ai	ce 10F¢	С	10Fc	100)Sig, *	for	Ins	ignifi	icant				
1	kFo	Fc	Sig	1	kFo	FC	Sig	1	kFo	FC	Sig	l	kFo	Fc	Sig
	7,	4, 1		3	112	113	77	12	23	28	960*	0	21	7	799×
	53	28	365*	4	47	30	279*		8,	3, 1		1	135	130	94
1	50	41	459*	5	96	91	87	0	21	9	1009*	2	21	81	1257*
2	67	54	130	6	32	23	479*	1	56	89	444*	3	40	12	576*
3	27	10	847*	7	262	234	135	2	41	25	546*	4	44	59	239*
4	79	78	113	8	48	15	467*	3	100	92	95	5	37	67	708*
5	48	81	55 5 *	9	78	74	114	4	181	175	123	6	21	3	995*
6	56	16	407*	10	21	7	1120*	5	21	11	1102*	7	80	82	116
7	65	37	406*	11	54	31	456*	6	21	66	1146*	8	22	58	800*
8	158	121	113	12	122	112	85	7	21	57	1328*	9	57	49	446*
9	22	6	842*	13	104	94	98	8	140	133	94		9,	2, 1	
	8,	0, 1			8,	2, 1		9	22	39	1165*	0	120	114	84
0	203	197	142	0	52	60	385*		8,	4, 1		1	146	140	91
2	149	154	96	1	36	67	630*	0	62	8	365*	2	61	67	434*
4	58	67	357*	2	20	46	1129*	1	22	32	1088*	3	43	25	266*
6	173	177	114	3	20	11	1035*	2	57	39	428*	4	83	83	113
8	135	126	80	4	111	129	87		9,	0, 1		5	22	56	1137*
10	211	218	112	5	107	105	87	0	20	66	1270*	6	22	28	1170*
12	21	101	1259*	6	20	4	1127*	2	127	115	80	7	40	41	664*
14	44	6	244*	7	21	68	1228*	4	21	100	1298*		9,	3, 1	
	8,	1, 1		8	52	54	171*	6	41	91	584*	0	22	1	1091*
0	30	57	712*	9	35	13	642*	8	21	15	1092*		10,	0, 1	
1	113	116	78	10	63	37	140*		9,	1, 1		0	107	117	104
2	40	59	318*	11	22	46	1301*								

Tab]	Le	S-2	. Ca	lculated	l Hydrogen	Atom	Parameters
------	----	-----	------	----------	------------	------	------------

	x	Y	Z	Biso
H 4	0.863	0.432	0.060	6.4
H 5	1.124	0.351	0.045	8.1
н 6	1.308	0.592	0.079	8.6
Н 7	1.252	0.906	0.130	7.6
H 9A	1.055	1.175	0.143	8.5
H 9B	1.069	1.011	0.201	8.5
HIOA	0.883	1.245	0.208	8.0
H10B	0.807	1.172	0.144	8.0
H12	0.798	1.082	0.289	6.0
H13	0.654	0.812	0.331	6.0
H14	0.561	0.515	0.277	5.7
H15	0.603	0.488	0.176	4.9

Hydrogen positions calculated assuming C-H of 1.08A. Biso is from Uiso(H) = Ueq(C) + 0.01.

.

.

Table S-3.

Anisotropic u(i,j) values *100. E.S.Ds. refer to the last digit printed

	u 11	u22	u33	u12	u13	u23
S C1 1 C1 2 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C10 C11 C12 C13	ull 6.26(12) 6.28(11) 8.20(12) 5.2 (4) 5.2 (4) 5.3 (4) 7.1 (5) 9.1 (6) 6.5 (6) 5.0 (5) 5.3 (5) 6.5 (5) 10.5 (7) 6.0 (4) 6.5 (5) 5.5 (5)	u22 6.61(13) 7.40(13) 7.89(13) 6.0 (5) 4.3 (4) 5.6 (5) 7.8 (6) 11.2 (7) 15.7 (11) 13.6 (8) 8.3 (6) 9.1 (7) 6.2 (5) 5.5 (5) 8.1 (6) 8.8 (6)	u33 6.62(12) 7.79(12) 4.88(10) 5.4 (4) 4.6 (4) 4.6 (4) 4.3 (4) 6.3 (5) 7.6 (6) 7.6 (6) 7.6 (6) 7.6 (6) 7.6 (6) 7.3 (5) 6.4 (4) 13.8 (7) 10.8 (6) 5.8 (4) 5.2 (4) 5.5 (4)	u12 -1.93(10) 1.11(11) -1.15(12) -0.9 (4) -1.0 (3) 0.0 (4) 0.9 (5) 4.1 (6) 2.6 (7) -0.6 (6) -1.1 (4) -3.4 (5) -2.8 (5) -0.9 (4) -0.7 (4) 0.7 (5)	u13 -0.20(9) -0.31(9) -0.02(9) 0.3 (3) 0.0 (3) 1.0 (3) 1.8 (4) 3.7 (5) 2.8 (5) 0.9 (4) 0.5 (4) 1.4 (5) 1.9 (5) 0.7 (3) -0.4 (3) 1.1 (4)	u23 -1.34(10) -0.37(11) 1.21(10) -0.4 (3) -0.1 (3) 0.8 (4) 0.7 (4) 2.5 (5) 5.3 (7) 2.6 (6) 1.6 (4) -1.3 (6) -1.2 (5) -0.2 (4) -1.7 (4) 0.9 (4)
C14 C15 C16	4.9 (4) 5.1 (4) 4.5 (4)	7.6 (5) 4.8 (4) 4.3 (4)	6.2 (4) 5.7 (4) 4.7 (4)	-0.3 (4) -1.0 (4) -0.2 (3)	1.3 (4) 1.1 (3) 0.8 (3)	1.9 (4) -0.3 (3) 0.0 (3)

Anisotropic Temperature Factors are of the form emp=-2*Pi*Pi*(h*h*ull*astar*astar+---+2*h*k*ul2*astar*bstar+---)

