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ABSTRACT

In this thesis, we present a new model for higher-order quantum programming lan-
guages. The proposed model is an adaptation of the probabilistic game semantics devel-
oped by Danos and Harmer [DHO2]: we expand it with quantum strategies which enable
one to represent quantum states and quantum operations. Some of the basic properties
of these strategies are established and then used to construct denotational semantics for
three quantum programming languages. The first of these languages is a formalisation of
the measurement calculus proposed by Danos et al. [DKPO7]. The other two are new:
they are higher-order quantum programming languages. Previous attempts to define a de-
notational semantics for higher-order quantum programming languages have failed. We
identify some of the key reasons for this and base the design of our higher-order languages
on these observations.

The game semantics proposed in this thesis is the first denotational semantics for a
A-calculus equipped with quantum types and with extra operations which allow one to
program quantum algorithms. The results presented validate the two different approaches
used in the design of these two new higher-order languages: a first one where quantum
states are used through references and a second one where they are introduced as constants
in the language. The quantum strategies presented in this thesis allow one to understand
the constraints that must be imposed on quantum type systems with higher-order types.
The most significant constraint is the fact that abstraction over part of the tensor product

of many unknown quantum states must not be allowed.
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Quantum strategies are a new mathematical model which describes the interaction
between classical and quantum data using system-environment dialogues. The interactions
between the different parts of a quantum system are described using the rich structure
generated by composition of strategies. This approach has enough generality to be put in
relation with other work in quantum computing. Quantum strategies could thus be useful

for other purposes than the study of quantum programming languages.
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ABREGE

Nous présentons dans cette these un nouveau modele pour les langages de program-
mation quantique. Notre modele est une adaptation de la sémantique de jeux probabilistes
définie par Danos et Harmer [DHO2]: nous y ajoutons des stratégies quantiques pour per-
mettre la représentation des états et des opérations quantiques. Nous établissons quelques
propriétés de base de ces stratégies. Ces propriétés sont ensuite utilisées pour constru-
ire des sémantiques dénotationnelles pour trois langages de programmation quantique.
Le premier langage est une formalisation du calcul par mesures proposé par Danos et
al. [DKPO7]. Les deux autres langages sont nouveaux: ce sont des langages quantiques
d’ordre supérieur dont la syntaxe a été construite a partir d’observations expliquant 1’échec
des tentatives précédentes pour construire une sémantique dénotationnelle pour de tels lan-
gages.

La sémantique de jeux présentée dans cette these est la premiere sémantique dénota-
tionnelle pour de tels A-calculs équipés de types et d’opérations supplémentaires per-
mettant la programmation d’algorithmes quantiques. Les résultats présentés valident les
deux approches différentes utilitées dans la conception de ces deux nouveaux languages
d’ordre supérieur: une premicre ou les états quantiques sont indirectement accessibles
via des références et une seconde ou ils sont introduit directement comme des constantes
dans le langage. Les stratégies quantiques présentées permettent de comprendre les con-
traintes devant €tre imposées aux systémes de type quantique comportant des types d’ordre
supérieurs. La contrainte la plus importante est le fait que 1’abstraction sur une partie d’un

état quantique comportant plusieurs gbits inconnus doit étre prohibée.



Les stratégies quantiques constituent un nouveau modele mathématique qui décrit
I’interaction entre les données classiques et quantiques par des dialogues entre systeme
et environnement. L’interaction entre les differentes parties d’un systeme quantique y est
décrite a I’aide d’une structure riche en utilisant la composition de strategies. L”approche
utilisé est assez générale pour étre mise en relation avec d’autres travaux en informatique
quantique. Les propriétés des stratégies quantiques pourraient donc étre utiles a d’autre

fins que I’étude des languages de programmation quantiques.
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CHAPTER 1
Introduction

Une question presque insondable, ol nous ne arréterons pas, est de
savoir jusqu’a quel point nos moyens de raisonnement offrent, par
essence, le caractere de regles de jeu, autrement dit, ne sont valables
que dans un certain cadre intellectuel, ot on les tient pour impérieux. Y
a-t-il toujours dans la logique en général, et dans le syllogisme en parti-
culier, une convention ludique tacite, par laquelle on tient compte de la
valeur des catégories et des concepts comme des pions et des cases d’un

échiquier? A d’autres de trancher la question.
Johan Huizinga
Homo Ludens, essai sur la fonction sociale du jeu, 1938

1.1 Quantum programming language theory

Quantum algorithms are usually described using the low-level formalism of quantum
circuits. This approach is very useful to study the complexity of quantum algorithms, a
theme which, together with quantum information and quantum cryptography, is one of the
central research preoccupations in the field of quantum computing. Another way to study
quantum algorithms was not given much attention until recently: the development of more
structured languages to describe quantum computation. The study of the structure and
the various semantics of a programming language is an important way to understand how

programming constructs, like control flow mechanisms, abstractions, stores and other pro-

gramming languages features, interact with each other and contribute to the expressiveness
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and structure of the programming language. Since quantum computing introduces radi-
cally new computing constructs, it is natural to try to apply the methods of programming
language semantics to understand their contribution in a similar manner.

Many quantum programming languages have been proposed, starting from the quan-
tum pseudocode of Knill [Kni96], to the more recent quantum A-calculus proposed by
Selinger and Valiron [SV06a]. In the last few years the structure of quantum programming
languages has become a topic of study in itself, using various ideas from category theory
and classical programming language theory. Many important questions in this field can be
seen as variants of a central one: what is the structure of the interactions between classical
and quantum data? These interactions are the key to understanding the basic quantum me-
chanical operations like measurements and tensor products, which together lead to many
counter-intuitive phenomena associated to quantum mechanics, like non-locality. Under-
standing them is also a central problem if we want to integrate quantum programming
constructs in a classical language. An important conceptual problem is the design of a
higher-order quantum language, a problem which is also related to these classical-quantum
interactions. As a final example of the importance of this question, consider the problem
of mixing classical and quantum data in the graphical calculi. These graphical languages
are diagrammatic formalisms abstracting from the language of monoidal categories and
have proven very useful in understanding and reasoning about abstract quantum mechan-
ics [AC04, CP06a, Sel07]. These graphical languages provide a structure to understand the
flow of quantum information in quantum protocols and algorithms. To incorporate classi-
cal data in them, such as the data arising from measurements, classical data is represented

using a choice of particular basis in the Hilbert space model used for quantum data. This



idea has been abstracted in the language of symmetric monoidal categories as classical
objects equipped with morphisms which allow one to use the classical data encoded as
quantum states.

1.2 Game semantics

The goal of this thesis is to adapt game semantics to quantum computing. Game
semantics was a very successful approach in the field of programming language theory. It
was adapted to analyse many different programming language features using a common
set of basic concepts. The central idea of game semantics is to represent computations as
interactions or dialogues between a system executing a program and its environment. A
program is viewed as a strategy that tells the system how to choose its next action using
the preceding part of the interaction. By adapting the rules governing these interactions,
game semantics can be used to model, in a very tight manner, many different languages.

It should be noted that the games referred to in game semantics are not at all like the
games discussed in traditional game theory. In game semantics of programming languages,
the concept of winning and losing, or of more general payoff schemes, is not used because
the focus is on the structure of the possible interactions between the players. In contrast,
in traditional game theory one typically does not study the interaction between agents; the
focus is to find optimal strategies for the players.

The quantum games we present in this thesis are defined following the ideas of game
semantics: they are used to model quantum computation as an interaction between a quan-
tum system and its environment. We believe this approach is an interesting guide when we
seek answers about the central question of classical-quantum interactions, the central idea

of game semantics being interactions between systems. We introduce guantum strategies
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to the arsenal of game semantics, and use them to analyse various quantum programming
languages. In classical programming language theory the main reason to use games and
strategies as denotation of programs is to get full abstraction results. To prove these results,
one has to use the fact that the game’s rules can be adapted to characterise the programs
tightly. Full abstraction is not our main goal in this work; here we focus on using quantum
games and strategies to understand the structure of quantum programming languages in
terms of interactions.
1.3 Overview

In chapter 2, we give an overview of quantum computing and of game semantics.
We also present three example quantum programming languages. In chapter 3, we define
and explore a notion of quantum strategy based on previous work on probabilistic game
semantics. The three remaining chapters use quantum strategies to define denotational
semantics for a typed variant of the measurement calculus 4 and for two new quantum

A-calculi that we introduce in chapter 5 and chapter 6.



CHAPTER 2
Background

2.1 Quantum computing
2.1.1 Linear algebra and the Dirac notation

We need first to review some basic linear algebra results. In this thesis, we use the
Dirac (or so called “bra-ket”) notation widely used in quantum mechanics and quantum
computing.

Hilbert spaces. A complex Hilbert space H is a vector space over C equipped
with an inner product (—, —)y and which is complete with respect to the associated norm,
defined by |jul| = V/(u, u). Unless stated otherwise, all Hilbert spaces are assumed to be of
finite dimension. Such spaces are isomorphic to C" and are automatically complete for any
inner product. The elements of H are called kets, written with the right half of a bracket:
the vector u is denoted by |u#). For an indexed family of vectors, it is customary to keep
only the indexes in the notation. For example, if e, e, 1s a basis of H, the usual notation is
|0Y, |1) instead of |ey), |e1).

Given a vector |u) € H, the linear function (u|: H — C is defined by

ul((v)) = (lu), v)n.

Functions defined in this manner are called bras. The function mapping |u) to (u| is de-
noted f. The Dirac notation allows a simplification of the inner product notation (Ju), |v))

by using the simpler notation (u[v).
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An orthonormal basis of H is a generating set of vectors |i) € H such that (i|j) = ¢;,

where
5, = lifi=j
Oifi #j

Dual spaces. The dual H* of a Hilbert space H is the vector space of all linear
functionals H — C. The Riesz representation theorem for finite dimensional complex
Hilbert spaces says that all functionals in H* are bras.

Given a basis |i) for H, the set of functionals (i| is a basis of H* called the dual basis
of [i). It is the unique set of functionals (i| such that(i|j) = ¢;;. H* is always a Hilbert
space because we can define ({u|, (v|)g- by (v|u). Note that the map | takes A: H;, — H,
toA": H; -» H;.

Maps between Hilbert spaces. We denote the set of all linear maps H; — H, by
hom(H, H,); the set of all linear maps H — H is M(H). The matrix representation with
respect to bases |i) and |j) of H; and H, of a map A € hom(H, H,) is the matrix with
entries a;; = (jIAlD) = (1)), Ali)).

There is a natural way to extend the map { to maps A: H; — H,: the adjoint

A": H; - H; to amap A is defined by
A" ((u]) = (Alu))'.

It follows directly from the definitions that if a;; are the components of the matrix rep-
resentation of A, then the elements of the matrix representation of AT are aj;, where the

overbar denotes complex conjugation.
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The unitary maps U € M(H) are those satisfying U™ = U~'. Unitary maps preserve
inner products and norms since (u|UTU|v) = (ulv).

A linear map A € M(H) is Hermitian if A™ = A.

A projection operator is a Hermitian map P: H — H such that P*> = P. The set of
projection operators on H is denoted by P(H). Two projection operators are orthogonal
if PyP, = P,P; = 0. This relation is denoted by P, LP,. A family of projectors P; is

complete if they are pairwise orthogonal and

ZP,-:IH.

In Dirac notation, |u){v| denotes the linear map H — H defined by

)Vl (w)) = (viw)lu).

In particular, the map |u){u|, which we also denote by [u], is the projection map onto
the subspace spanned by |u). Given an orthonormal basis |i), a very useful identity is
210 = 1n.

Given an orthonormal basis |i) of H, the set of maps |i){j| is a basis of M(H).
Theorem 2.1. (Spectral decomposition) Let H be a complex Hilbert space. For every
Hermitian map A € M, there is an orthonormal basis |i)y and complex numbers A; such

that
A= Z A i)

A map A € M is positive if (u|Alu) > O for all |u) € H. The set of positive maps on H
is denoted by Pos(H). A linear operator M(H,) — M(H,) is positive if it can be restricted

to a map Pos(H;) — Pos(H,).



Definition 2.2. The Lowner partial order [Low34] on M(H) is defined by

A< B < B-AecPos(H).

Tensor products. Given two Hilbert spaces H; and H,, we define their tensor
product H, ® H, to be the vector space generated by all pairs |u;) ® |u) with the fol-
lowing identifications:

L (juy) +u2) @ [v) = |u1) @ [v) + |uz) ® )
2. |uy @ (i) + v2)) = |u) ® [vi) + |u) ® |v2)
3. () @) = Alu) @ v)) = |u) ® (Av))
The Dirac notation convention is to leave the ® operator implicit, and even sometimes to

merge tensor products into a single ket:

) @ [v) = [w)lv) = uv)

The space H; ® H, is also a Hilbert space when the inner product of |u;)|u,) and |v{)|v,) is

defined to be
Qui[Cuallvilva) = Curlvi Xualva).
Given orthonormal bases |i) and |j) for H; and H, respectively, the set of vectors of
the form [ij) is an orthonormal bases for H; ® H,.

The tensor product A; ® A, of two maps A; € hom(Hy, K;) and A; € hom(H>, K>) is

amap H; ® H, — K; ® K, defined by

A ® Ali)lv) = (Ai]u)) ® (Az|v)).



Given orthonormal bases |i1), |i2), |j1), |j2) of Hi, H,, K; and K, respectively, the ma-
trix representation of A; ® A, for bases [i;i,) and | j; j,) can be computed from the elements

of the representation of A; and Aj;:
ivinji jo = 12l A1 ® Agliin) = (jilAli )< J2lAzli2) = @iy j, @iy )y
A map A € hom(H, K) can always be extended to a map
HQ®H®H, > H ®K®H,,

namely Iy, ® A ® Iy,. We will often abuse the notation and omit the identity maps from

such tensor products, denoting Iy, ® A ® I, simply by A. When there could be ambiguity

on which component A is acting, we use superscript labels to remove the ambiguity.
Trace and partial trace. The trace tr(A) of A € M(H) is defined as follows: take

any orthonormal basis |i) of H, and put

tr(A) = Z(ilAli).

This definition can be shown to be independent of the choice of basis. The trace operator
tr is linear and cyclic, meaning that tr(AB) = tr(BA).

The partial trace operation tr’2 takes elements in M(H, ® H») to elements of M(H,).
It is defined in a manner similar to the trace, but by summation over a basis |i) of H,:

tr2(A) = Z<i|A|i).

This is also independent of the choice of basis. Note that |i) and (i| implicitly denote /5, ®|i)

and Iy, ® (il.
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A map &: M(H;) — M(H,) is said to be trace preserving if tr (6(A)) = tr (A) for all
A € M(H,). It is trace non-increasing if tr (6(A)) < tr (A) for all A € M(H,).

Using traces it is possible to define an inner product on M(H) using the formula
(A, By = tr(A"B).

Since H is assumed to be finite-dimensional, this inner product automatically gives M(H)
a Hilbert space structure.

A linear map &: M(H;) — H, has an adjoint & with respect to this inner product
which satisfies

tr (AE(B)) = tr (6" (A)B).

It is easy to show that & preserves traces if and only if & is unital, i.e. &'(]) = I.
2.1.2 Quantum mechanics

Basic postulates

Quantum mechanics is the physical theory build from the following four postulates.

I. Quantum systems. A quantum system A is described by a separable Hilbert
space H, over the field of complex numbers. A state of A is a ray (one dimensional
subspace) in H,. Unless stated otherwise, we work with normalized vector representatives
of states, that is to say that the ray spanned by |¢) € Hs with (¢|¢) = 1 is identified with
|#).

We work only with complex Hilbert spaces of finite dimension, all of which are sep-

arable and isomorphic to C" for some n.
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II. Evolution. The evolution over time of a quantum system A is described by a
unitary operator U on H,: if the system starts in state |¢), then after the evolution the
system is in state U|g).

ITI. Measurement. A measurement is the process by which information about the
state of a quantum system A is obtained. There are many types of measurements used in
quantum theory, but we assume that the most basic kind is described in what follows.

A projective measurement of the state of a quantum system A is a family of projection
operators P = {P; | i =1,...,n} on H, such that:

1. P,P; =P,
2. Y Pi=1y,.
If a measurement # is made on a system in state |¢), the result i is observed with probability
(¢|P|¢). Measuring the state of the system changes it; if the measurement result is i, the
state after the measurement is the normalized projected vector
Pilp)
V<@IPIp)

IV. Compound systems. The Hilbert space describing the quantum system ob-
tained by combining two quantum systems A and B is Hy @ Hp.

Entanglement

The fact that the state space of a compound system AB is the tensor product Hy ® Hp
has important consequences which distinguish quantum systems from classical ones. The
main distinguishing feature is the existence of entangled states which cannot be written

as a tensor product |u)|v) of two states |u) and |v).
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To illustrate this, suppose a quantum system AB is in the following entangled state:

_ |00y +11)

1Boo) N

If two independent measurements
pA:{P?7P124}7 PB:{Pf7P§}

are sequentially performed on each component, the results obtained are correlated. Indeed,

the possible results for the first measurement are i = 1 or 2, with probability

tr (P‘,“ ®1 |,300><,300|) -

When the B subsystem is measured with P2, the result will be either j = 1 or 2, with
probability
pij =t ((IA ® P?) (P? ® IB) |,300><500|)-

We can see that the distributions for i and j are not independent, since in general

pipj=1tr (Pf ® Ip |,300><,300|) tr (IA ® P} |,300><,300|) # Dijs

where p; = 3; pijand p; = 3, p;;. In the case where the projectors P! Pf are the projectors
onto the canonical basis [7){i[ | /){ I, the joint probability distributionis p;; = 1if i = jand 0
otherwise. The meaning of this is that if the system A is measured in the canonical basis
and i is observed, someone measuring the system B with knowledge of the result of the

measurement at A knows with certainty that the result will be j = i.
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Mixed states

We introduce below the main formalism used to describe and manipulate quantum
states about which there is only partial information.

An ensemble of quantum states is a finite set of states {|¢;)}, i € I, together with a
corresponding set of probabilities p; such that }}; p;, = 1. To any ensemble there is an
associated operator p = ) ; pil¢:){¢;|. This operator is always positive and has trace 1;
these two conditions are the key to get the following mathematical description:
Definition 2.3. A positive operator p is called a density matrix (or density operator) if
tr(o) = 1 and subdensity matrix (or subdensity operator) if tr(p) < 1.

We denote the set of all density matrices of a Hilbert space H by D(H), and the set
of all subdensity matrices by SD(H). A simple consequence of the spectral decomposi-
tion theorem is that every density matrix can be decomposed as an ensemble, though not
necessarily uniquely.

Another important way to think about density matrices is given by the following
result, which is in fact a consequence of Gleason’s result [Gle57]:

Proposition 2.4. (Gleason’s theorem) Let H be a finite dimensional Hilbert space with
dim(H) > 2. For every function p: P(H) — [0, 1] such that

1. p(I)=1and

2. p(Py + Py) = p(Py) + P(Py) if P LP,,
there is a density matrix p such that p(P) = tr(Pp).

Finally, note that the restriction of the Lowner partial order to SD(H) is a w-directed
complete poset (every countable directed set has a least upped bound) with the zero map

as minimum element [SelO4b].
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Other types of measurements

The projective measurements used in the description of the quantum mechanics pos-
tulates is not the only way to describe quantum measurements. The other descriptions all
involve the idea that measurements are performed by making a quantum system A inter-
act with a measurement apparatus, which is just another quantum system B. Following
this point of view, the measurement process takes place in the combined system AB, and
cannot in general be described by a family of projectors on subspaces of H, alone.

A positive operator valued measure (henceforth referred to as a POVM) on a Hilbert

space H is a family of positive operators A,, such that

ZAm = Iy.

If the system is in state p, performing the POVM measurement A,, will yield result m with
probability p,, = tr(A,,0). Unless the operators A,, are defined in some way that allows
one to compute the state after the measurement yielded the result m (as it is the case below
with generalised measurements and quantum interventions), there is no unique way to
determine the state after the measurement has been performed.

Contrarily to the case of projective measurements, in a POVM measurement the maps
A,, associated to measurement results are not necessarily pairwise orthogonal. This has the
consequence that there can be POVM measurements with different measurement results
than is possible with any projective measurement, since in the latter case orthogonality
forces the number of different outcomes to be less than dim(H). This can be explained
by the interpretation of POVM as being a projective measurement in an enlarged system.

This interpretation is possible because Neumark’s theorem [Neu43] implies that that any
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POVM can be seen as the restriction by partial trace of a projective measurement on a
larger Hilbert space.

Another kind of measurement is called a generalised measurement. These are spec-
ified by giving a family of maps M,,: Hy — H,, indexed by the possible measurement

results, and satisfying the condition

D MM, =1

The probability of observing m if a generalised measurement is performed while the sys-

tem is in state p is
Pm = tr (MmpM;,) ,
and the measurement process leaves the system in the state

1 +
—M,, pM,,.

m

Superoperators and interventions
It is natural to seek a description for the physical evolution of unknown quantum
states as described by density matrices. This description must satisfy various conditions.
First, it must be a map that sends subdensity matrices to subdensity matrices. Second, it
must preserve convex combinations of density matrices, because we want these maps to
preserve probability distributions. Finally, if the evolution map is applied to part of a larger

system, and the rest of the system is left unchanged, then the resulting larger map for the

whole system must still send density matrices to density matrices.
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Definition 2.5. A superoperator & is a positive linear map M(H;) — M(H,) such that
1. & is trace non-increasing,
2. & is completely positive: E @ Iy, is positive for all Hilbert spaces H
It can be verified that superoperators satisfy all the above requirements. Complete
positivity is a necessary condition because there are maps that are positive but not com-

pletely positive; one can consider, for example, the transposition map
T: M(C?) > M(C?)

defined by 7 (|i){(j]) = |j)(i|. If we extend T to 7 @1 M(C?) and apply this extended operator

to the positive matrix 3;; [i)(jjl = X;; D)< ® [){]j], we get
(T eD| > el = > T wWihe i = 1)),
ij ij ij

or, in matrix form

o o O
- O
O =
o o O

which is clearly not positive.
Superoperators can be characterised in various useful ways. The first one is known as
Kraus decomposition. The next result is an adaptation of Choi’s theorem for completely

positive maps [Cho75, Kra83].
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Proposition 2.6. For any superoperator &: there is a set of matrices {E;} satisfying
o E;.TE,- < I such that
EA) = Z EAE]
We call the matrices E; the elements (also called the Kraus elements) of the decom-
position of the superoperator.
Note that the decomposition given in this proposition is not necessarily unique. For

example, a simple computation shows that the elements

. 1110 E 111 O
1= —= 2= —=
V2| 0 1 V2| 0 -1

and the projection maps onto the canonical basis F; = |0){0] and F, = |1){1]| both define
the same superoperator.
Example 2.7. The superoperator elements for some fundamental examples are as follows:
e Adding an ancilla |¢): I ® |¢)
e A unitary transformation U: {U}
e A projective measurement (not necessarily complete) {P;}: {P;}
e Tracing out a subsystem with orthonormal basis {|i)}: {I ® (i|}

Another useful characterisation of superoperators is a result showing how to decom-
pose them into elementary operations. It says that every superoperator can be thought of
as a sequence of operations consisting of adding an ancilla state to the starting space, then
applying a unitary transformation, then performing a projective measurement and finally
tracing out part of the system in the resulting state. Note that is it possible to learn some-

thing about the projective measurement result in the process. In that case the superoperator



18

describing the projective measurement step has {P;} as elements, where ), P; < I, which

entails that the superoperator is trace decreasing since

tr [Z P; pPi) = Z tr(P; p) < tr(p)

for any density matrix p. The following proposition is shown in [NC00].
Proposition 2.8. Every superoperator &: M(H,) — M(H,) can be decomposed into a
sequence of ancilla-adding, unitary, projective measurement and partial trace superoper-
ators.

Intervention operators

Peres introduced in [Per0O] a very general description of quantum measurements
called intervention operators. The measurement process is conceived as a unitary in-
teraction of a measurement apparatus with the quantum system to be measured, followed
by a projective measurement on the combined system. Mathematically, Peres shows that
this process is described by superoperators: if the system is initially in state p, then, after

reading the result m with probability

Pm =t [Z Em,pE;l.),

the system is left in state
Zi EmtpE;l
Pm .

Pm =

Note that p,, can be written as tr(A4,,0) if we put

A, = Z E! E,.
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In general, we define a quantum intervention to be a family of superoperators
En: SD(H,) — SD(Hp,)

indexed by the possible measurement outcomes m, such that }’,, p,, = 1 for all p. Note
that the output space Hp, may depend on the measurement outcome; this feature makes
quantum interventions more general than superoperators. Since we must have ., p,, = 1,

&,, must satisfy the following condition:

Z tr (Em(p)) = Z tr (Z EmipEjm.] =tr (Z A, p] =1,

and since this must hold for all p, this is equivalent to asking that ), A,, = I, i.e. when the
matrices A,, are the components of a POVM.

Note that quantum interventions are different from quantum instruments [DL70], an-
other similar generalisation of superoperators, because the output state of a quantum in-
strument is in a fixed Hilbert space while in a quantum intervention the output space de-
pends on the measurement result.

2.1.3 Quantum computation

The field of quantum informatics originates in the 1970’s, when the first quantum
information theory results were proved. These provided some insight into the power and
limitation of the idea of using quantum states to carry information. [Hol73]. In the 1980’s,
the first formal model of quantum computation was introduced in the form of a univer-
sal quantum Turing machine [Deu85]. The most widely cited quantum algorithms were
discovered in the 1990’s: the Deutsch-Jozsa algorithm [DJ92], the Grover algorithm for

searching an unsorted database [Gro96], and the Shor algorithm for factoring [Sho94].
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Table 2-1 Basic quantum circuit operations

Pauli X X:NOT:((l) (1)
) 0 i
Pauli Y Y = ( ~i 0
) 1 O
Pauli Z Z = ( 0 —1 )
1 1
Hadamard H = 1 -1

All three are examples of algorithms using quantum resources in a clever way in order to
perform tasks more efficiently than can be done using classical algorithms.

Quantum algorithms

The basic token of information in quantum computing is called a gbit: it is a quantum
state in the Hilbert space C*> which is taken as the simplest piece of information. The
computational basis of the space of gbits is the canonical basis of C? and its two vectors
are conventionally denoted by |0) and |1). They are seen as an embedding of the classical
bits 0, 1 into the space of gbits.

The common way to describe quantum computation is quantum circuits, which can
be described as follows. A set of gbits to operate upon is fixed, together with input and
output subsets of these gbits. Each gbit that is not part of the input set is assumed to be
prepared in some fixed initial state. The computation itself is represented as a sequence of
unitary transformations on the set of all gbits associated to the algorithm. At the end, non-
output gbits are measured or simply discarded (traced out). Some of the most important

unitary operations used in quantum circuits are given in table 2—1.
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Controlled operations. Some steps in quantum algorithms involve operations that
are conditionally applied. Let U be an operation on some set B of the gbits involved in a
quantum algorithm, and A be one of the other gbits. We can define a new unitary operation

AU (“control-U”) on the subsystem AB by

NU|0)uy = |0)|uy and AU|1)|u) = [1)U|uy).

This means that U is applied on the B subsystem if and only if the A gbit is |1). An
important example is the controlled not operation AX on two gbits. In the canonical basis,
AX operates by flipping the value the second gbit if the control gbit is |1) and not changing
the value of the second gbit if the control gbit is |0). This makes AX the main way to
introduce control flow in quantum programs.

Universality. Most quantum circuits are described using a limited number of uni-
tary operations. A set of unitary transformations is said to be universal if it has the prop-
erty that every unitary transformation can be approximated with arbitrary good precision
by composition and tensors of unitary transformations from the given set. This means
that it suffices to use only transformations taken from a universal set in order to be able to
construct quantum circuits for all possible quantum algorithms.

2.2 Quantum programming languages

There are many proposed quantum programming languages. The reader can find a
listing of most of the proposed quantum programming languages in the surveys of Selinger
and Gay [SelO4a, Gay05]. We overview below three quantum programming languages,
chosen to represent three important classes of languages: the low level measurement cal-

culus, the functional quantum A-calculus and finally the categorical abstract language of



22

dagger compact closed categories, which abstracts some important aspects of quantum
mechanics.
2.2.1 The Measurement Calculus

The measurement calculus is a quantum programming language developed around
the idea that quantum circuits can always be described as a special kind of circuit where
the only operations allowed are a unitary transformation on two gbits used to introduce
entanglement, one gbit measurements, and one gbit unitary transformations picked from
a limited set and which can be chosen according to previous measurement results. It was
introduced by Danos et al. [DKP07] and is based on the one-way model of Raussendorf
and Briegel [RBO1], which introduced the idea of a measurement-based description of
quantum computation. One of the main results obtained is a reduction procedure tak-
ing general measurement calculus programs, called patterns, to a standard form where
the allowed operations are always applied in a specific order. This allows one to study
parallelism in pattern computation, since the standard form, described below, reveals the
structure of dependencies between measurements and quantum operations.

Patterns

For any a € [0, 2n], we put

1 . 1
) = 5 (10y +e“1))  |=o) =

We denote |+) and |—() respectively by |+) and |-).

(|0> - emll)).

&

2

A pattern type is a finite set of gbits {H;,i € I} with two subsets in, Out of /. Let

Xi, Yi, Z; be the usual Pauli operators on gbit i, and M;" be the projector [+,] on gbit i.
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The operations on the gbits of a pattern type are called commands. They are of three
kinds:

i. Measurement. The measurement commands allow one to measure a gbit with
the projective measurement = {M*,1 — M“}. All measurements are considered to be
destructive. The measurement result of a such a measurement is called a signal. The
signal values associated to the two projectors are respectively 1 if the first projector is
applied, and O if it is the second projector that is applied. Two signals s and ¢ can be
combined using addition modulo 2 to get a new signal s @ ¢ (sum modulo 2).

ii. Correction. One can change the state of an output gbit by applying the Pauli
operators X or Z to it.

iii. Entanglement. The entanglement command E;; entangle the qgbits i, j of the
pattern type by applying to them the controlled-Z operator (denoted AZ).

Signals are used to modify commands as follows:

X ifs=1 Z ifs=1 ) )
[Xi]s = [Zi]s = [Mia]ss — M(—l) a+ir
I ifs=0 I ifs=0

A pattern consists in a pattern type (/, In, Out) with a finite command sequence
Ey,....E,

on it that satisfies the following three conditions:
1. no command depends on signals from gbits not yet measured,
2. no command is applied to a gbit after it has been measured,

3. no gbit in Out is measured, all other gbits are measured.
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It is also assumed that all non-input gbits are initially in the [+) state. We use the conven-
tion that the signal associated to the gbit i is s;.
Example 2.9. As shown in [AL04, DKP07], the Hadamard operation H can be imple-

mented as the following pattern:

(1,20, {1}, 2}, [X,1" MY En)

Suppose that the gbit 1 is in state |[+). Since all non-input gbits are assumed to be in
state [+) at the beginning, the £}, command is applied to |[+)|+). The gbit array is left in

state

0y +11)
N
% (O)1+) + 1)1=))

5o (252

NG R ) [+) = 1-)
= |+) > + =) 5

ANZ|)+) = AZ

|+)

= [$)10) + =)D

The first gbit is then measured in the {|+), |—)} basis. After the measurement, the array is
left either in the state |[+)|0) or the |—)|1) state, and the signal s is respectively set to 1 or
0. The correction command X, is then applied conditionally according to the value of sy,
and the second gbit is left in state |1) = H|+) as required. A similar computation shows

that when the gbit 1 is in the |—) state at the beginning, gbit 2 ends in state |0) = H|-).
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Example 2.10. The controlled-not operation AX is implemented as the pattern
(X419 [Z4]2[Z1 1 MYMY E 34 Eo3E 15

Example 2.11. The following is a pattern implementing teleportation [BBC™93] (i.e. the

identity function from one gbit to another): on the gbits labelled 1,2 and 3,
[X3]7[Z5]* MgM?EBElz

2.2.2 Quantum A-calculus

The A-calculus is a formal language that was introduced in the 1930s by Church
and Kleene and also studied in an equivalent form (combinatory logic) by Curry. As a
programming language, one of its main distinguishing features is that it is a higher-order
language in which functions can take other functions as arguments. Many variants of
the A-calculus have been studied : with control constructions, with recursion operators,
with probabilistic choices, with stores, etc. The study of A-calculus semantics has led
to the development of many rich fields of informatics such as domain theory and game
semantics.

A first adaptation of the A-calculus to quantum computing was proposed by Maymin
in the 90’s [May96, May97]. Another important contribution was made later by van Ton-
der [vTO4]; it emphasised for the first time the connection between the no-cloning the-
orem and the necessity to use quantum variables linearly (without duplication) in quan-
tum A-calculi. In this thesis, we take as a starting point Selinger and Valiron’s proposal
which was first defined in Valiron’s master’s thesis [Val04] based on earlier work by

Selinger [Sel04b]. We review in what follows the more recent version found in [SV06a].
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Syntax

The quantum A-calculus is designed around the idea of classical control with quantum
store: quantum algorithms are described in a setting where a classical computing device
is allowed to operate on the state of a quantum register using unitary transformations and
quantum measurements.

Following this view, the terms of the quantum A-calculus are defined as follows:

M,N,P :=x| MN | Ax.M | if Pthen M else N | true | false | meas |

new | U |« |(M,N)|let{x,y) = MinN

where U ranges over unitary transformations and x over variables. The meas constant is
the function which measure a gbit to return the measurement result. The new constant
is used to create a new gbit in one of the computational basis state. The variable x is
considered bound in Ax. M. The set of free variables of a term M is denoted by FV(M).
We use M[N/x] to denote substitution in M of a term N for every occurrence of x € FV(M)
when no free variable of N becomes bound. We identify Ax. M and Ay. M[y/x].

The types of the quantum A-calculus are defined by:

A,B := bool |gbit | X [!A|A - B|T|A®B.

The type system also involves a subtyping relation defined by the rules given in table 2-2.
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Table 2-2 Quantum A-calculus subtyping rules

A< B A< B
a <« X< X T<T 1A < B IA <: |B
A < B Ay < By Ay < A B, < B,
A1®A2<: B, ® B, Al—OBl <1A2—OBZ
where « is a constant type, X is a type variable.

The types of constants are defined as follows:

meas: !(gbit —!bool) new: !(bool — gbit)

true, false: bool U: !(gbit" — gbit")

A context I' is a function assigning types to variables taken from some finite set,
which is denoted using the usual notation x;: T4,...,x,: T,. The domain of I" is denoted
by |T']. It is convenient to use the notation !'I" for x;: !Ty,..., x,: !T,.

A typing judgement is a triple of the form I' + M: T, where I is a context, M is a
term and 7 is a type. Valid typing judgements are those derived using the typing rules are
given in table 2-3.

Note that these rules forbid duplication of unknown quantum data, since it is not
possible to derive a typing judgement of the form x: gbit - x ® x: gbit.

Operational semantics

We describe next how quantum programs described as A-calculus terms are executed.
This is done by giving rules telling how to reduce terms to simpler forms of base types.
The reduction relation needs to be probabilistic to be able to deal with measurement oper-

ations. Furthermore, we need to take into account the state of the quantum register at each
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Table 2-3 Quantum A-calculus typing rules
A< B A. < B
I''x:A+x: B I'tc: B
I't,'A+ P: bool I, ArM: A I,/ ArWN: B
I',IL,!/ArifPthenMelseN : A
I',!/A+M:A —oB IL,)JAFN: A
I',I),!/]Ar MN: B
I'N'x:A+rM: B IN'A,x:A+M: B
FTrAx.M:A—B T,AFrAx.M: " (A — B)
'L IA-M o 1"Ay ) IA-My: 1"Ay
1, 0o, 1A F (M, Ma): " (A, ® Ay) Do 10T
I',IArM: "(A; ®A) [ !IA X 1"AL,x: "Ay NG A
L0 A Flet{(x;,x,) =MIinN: A

(A, 1s the type of the constant ¢)

Fv(M)nil=0

reduction step. To see that this is necessary, consider the term
if (meas (U (new 0))) then M else N,

which intuitively should reduce to M or N with different probability distributions depend-
ing on the state U|0). The state is modified by the measurement action, and any further re-
duction of M or N should be done using this modified register. To formalise this, we asso-
ciate a gbit to each free variable of a term as follows: a program state is a triple [Q, M, L]
where

1. Q astate in the Hilbert space H = (C?)®" for n gbits, n > 0,

2. M is aterm,

3. L is a partial function assigning variables of M to gbits of Q that is defined on all

free variables,
4. quantum data is used linearly in M, i.e. no variable of type gbit is used more than

once in M.
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Table 2—4 Quantum A-calculus reduction rules

[Q,N] 1" [Q',N'] (O, M] |7 [Q', M']
[Q’ (/lX M)V] ~L [Q7 M[V/X]] [Q’ MN] lp [Q”MN’] [Q, MV] \LP [Q’,M'V]
(O, My] 17 [Q', M] (O, M>] [P [Q', M)

[Q, M, M)] IP [Q' AM}, Mp)]  [Q, Vi, M2)] [P [Q',(V, M;)]

[O,if O then M else N] | [Q, N] [Q,if 1 then M else N] | [Q, M]

[0, P] P [Q,P]
[O,if Pthen M else N] |? [Q, if P’then M else N]

[Q’ U(Pl, .. ’pn>] sL [UQ’ <pl’ o ’pn>]
[0, meas ¢,] |19 [[01Q/II[01°QII,01  [Q,meas ¢;] L' [[1]°Q/I[11Qll, 1]

[Q.new 0] | [0®]0),0]  [Q.new 1] | [Q®]|1),1]

[0, M] |7 [Q',M’]
[0, 1et {x;, x2) = M in N] |7 [Q',let (x|, x2) = M’ in N]

[Q.let (x1,x2) = V1, Vo) in N] | [Q', N[Vi/x1, Va/x5]

We can simplify the notation of program states by labeling the variables with gbit indexes,
so that we can denote program states by pairs [Q, M].

The operational semantics of the quantum A-calculus is given by a small-step prob-
abilistic reduction relation described in table 2—4; a call-by-value strategy is adopted by
Selinger and Valiron. An important observation is that the value to which a given term
is reduced depends on the reduction strategy chosen. This happens in all languages with
operations that have side effects, like quantum measurements operations. There is nothing
special in the quantum case in this regard. For example, assuming that x is a classical in-
teger store holding the value 1, the term (x := x + 1, x) will reduce in a classical language

to either (2, 2) or (2, 1) depending on which component is reduced first.
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2.2.3 Categorical quantum mechanics

Another approach to the problem of providing a structured description of quantum
computation is categorical quantum mechanics. This consists in using concepts from cat-
egory theory (which we review briefly below) to create an abstract description of quantum
mechanics where it is possible to express quantum algorithms and protocols. Abstrac-
tion allows one to study other models of quantum mechanics than the usual Hilbert space
model. The proposed abstract categorical language can be interpreted using mathemati-
cal objects other than complex Hilbert spaces, such as sets and relations, and in turn any
protocol or algorithm described in the abstract language can be interpreted using these
objects.

Categories

We begin this review of categorical quantum mechanics by giving a brief overview
of category theory. A more complete account of category theory can be found in [Mac71,
BW99]. Note that the concepts of category theory are also used in game semantics and in
programming language theory in general. The concepts described in what follows will be
used throughout this thesis.

Category theory can be described as a theory of structures, where, in contrast to model
theory where sets and relations are used to describe them, the focus is on the structure-
preserving maps. Instead of defining a particular structure as a set equipped with various
relations (including operations, functions, distinguished elements, etc.) which satisfy cer-
tain conditions or axioms, we define the class of such structures by imposing certain con-
ditions on the maps between them. Category theorists assume there is always a minimum

amount of relations between these maps to be able to express more complex constructions.
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Namely, there should be a notion of composition of two maps and each structure should
have an associated identity map:
Definition 2.12. A category C is a structure consisting of

1. a family of objects Ob(C),

2. a family of morphisms Mor(C)

3. two mappings Dom¢ and Codomc from morphisms to objects,

4. for each object X € Ob(C) a morphism 1x with Dom(1x) = Codom(1y) = X,

5. a composition operation o which takes two morphisms f and g with Dom(g) =
Codom(f) to a morphism g o f with Dom(g o f) = Dom(f) and Codom(g o f) =
Codom(g).

The composition operator is usually left implicit, writing g f instead of g o f. We also
use the notation f; g for g o f. Equations involving morphisms in a category are usually
represented as diagrams where objects are nodes and morphisms are arrows. For example,

the composition of two morphisms can be illustrated in this way:

gf 7
N
Y

Some important ideas about structures can be expressed using category theory. For

X

example, an isomorphism between two objects X and Y is a morphism f: X — Y for
which there is another morphism f~! such that ff~! = 1y and f~'f = 1x. The important
point about this simple definition is that it does not use any knowledge about the internal
structure of X and Y, it uses only the morphisms between the two objects in order to tell if

they are isomorphic or not.
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The structure-preserving maps between categories are called functors. A functor F
from C to D is a pair of maps, one sending objects of C to objects of D, and one sending
morphisms home¢(X, Y) to morphisms homp(F(X), F(Y)) (we usually denote both by F
since the argument type removes any ambiguity); these maps must satisfy the following
conditions:

1. F(1x) = lpx
2. if gf is defined, then F(gf) = F()F(f).
A contravariant functor F is defined as a functor, but with F(f): F(Y) — F(X) for
f: X — Y, i.e. as a functor that “reverses the arrows”.
A natural transformation « between functors F,G: C,D is a family of morphisms

ay: F(X) = G(X) indexed by the objects of C such that forall f: X - Y

F(X) —~G(X)
F(f )l J{G(f )
F(Y)——~G(Y)
A product of two objects A, B of a category C, if it exists, is an object A X B with
two projection morphisms p, and pp such that for all objects C with a pair of morphisms

fa, fp there is a unique paring morphism (f4, f3) such that

A (fa.fB) B

fa I8
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All products are isomorphic in the sense defined above. We usually choose one represen-

tative that we call the product of A and B. Note that fixing B in A X B defines a functor
-xXxB:C—-C.

An object T is said to be terminal in a category C if for all objects X there is a unique
morphism #x: X — T. If C has a terminal object, it is unique up to isomorphism.
A Cartesian category C is a category with a terminal object and products. A Carte-

sian category is said to be closed if in addition there is a functor
-=>B:C->C
such that there is a bijection (in the category of sets)
A: hom(A X B,C) — hom(A,B = C)

which is natural both in A and C. Note that this is equivalent to saying that

AxB) % (A x By~

Al X poc
for all morphisms f and g.

Cartesian closed categories have a close relationship to logic and A-calculi. This

relation can be summarised in “slogan” form :

Categories Logic A-calculi
Objects Propositions Types
Morphisms Proofs Terms

Composition Cut-elimination S-reduction
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This is known as the Curry-Howard-Lambek correspondence, and is the cornerstone of
the applications of category theory in computer science. A detailed explanation of this
correspondence can be found in [L.S86].

The last important general categorical concept necessary to abstract quantum me-
chanics categorically is symmetric monoidal categories. These are categories equipped
with an extra tensor operation on objects.

Definition 2.13. A monoidal category (C,®,1,a,p, A,) is a category C equipped with a

tensor bifunctor @: C X C — C, a distinguished object I and natural isomorphisms:

axyz: X®Y)®Z - X (Y®Z) (associativity)

Ax: X®1 — X (left identity) px: I®X — X (right identity)

such that the following diagrams commute for all objects A, B, C and D.

@A,B.C&D QA BRC.D

(A®B)®C)®D A®BoC)®D A®(B®C)®D)
0A®B,C,Dl lidA ®ap,c,p

(A®B)®(C®D) A®(B®(C®D))

@A,B,CoD

@A,IB

A)®B A®(®B)

A®B

The two conditions imposed on the natural isomorphism associated to monoidal cat-

egories are called coherence conditions; they imply that all diagrams constructed from

identity morphisms, @, p and A by composition and tensors are commutative.



35

Definition 2.14. A symmetric monoidal category is a monoidal category C equipped with

a symmetry natural isomorphism oxy: X®Y — Y ® X subject to the coherence condition

oxi1

X1 I®X

RN

X

A symmetric monoidal category is closed when there is a bijection

A: hom(A® B,C) —» hom(A, B — C)

which is natural in A and B. This is similar to the definition of Cartesian closed categories.
Note that we use the notation B — C, which is used in linear logic to denote linear
implication [Gir87], instead of B = C which is used to denote intuitionistic implication.
This usage is natural since symmetric monoidal closed categories and Cartesian closed
categories are respectively models of the multiplicative fragment of linear logic and the
conjontion and implication fragment of intuitionistic logic.

An important class of symmetric monoidal categories is obtained by considering sym-
metric monoidal categories equipped with a “dualisation functor”.
Definition 2.15. A compact closed category C is a symmetric monoidal category where

for each object X there is a dual object X*, and two natural transformations

vy: [ > XX" ex: X' X > 1,



called the unit and counit, that satisfy the following two coherence conditions:

p/_g] vx®l1

X————IX———(X®X)®X

;

X X@ I~ X®(X'®X)
/l;(i 1®vy « "
X" X*®l XXX
|-
X leX— o (X OO X
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A compact closed category is always a symmetric monoidal closed category: we

get this by defining X — Y by X* ® Y. The “x” operator can easily be shown to be a

contravariant functor satisfying (X*)* =~ X.

2.2.4 Abstract quantum mechanics

The main idea in abstract quantum mechanics is to introduce an extra operation  in

a symmetric monoidal category.

Definition 2.16. A dagger category is a category equipped with an involutive and con-

travariant endofunctor  which is the identity on objects.

This structure suffices to define abstractions of the following basic linear algebraic

concepts:

Definition 2.17.
1. f:X > Yisunitary if fT = f ' (ie. if fif 1= f1fT=1),
2. f:X — Yis Hermitian if f = f7,

3. f: X — Y is positive if there is another morphism g such that f = g'g.

Definition 2.18. A dagger symmetric monoidal category is a symmetric monoidal cat-

egory with a dagger structure such that T preserves the symmetric monoidal structure
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coherently, i.e. with (X ®Y)" = X" ® Y' and such that all the coherence isomorphisms are
unitary morphisms.
Definition 2.19. A dagger compact closed monoidal category (also know as strongly

compact closed categories) is a dagger symmetric monoidal category such that

I -XeXx

RN

XX
commutes.

Abramsky and Coecke [AC04] have shown that dagger compact closed monoidal cat-
egories with biproducts provide enough structure to describe finite dimensional quantum
mechanics abstractly. The main motivating example is the category of finite dimensional
complex Hilbert spaces and linear maps, which satisfy all the dagger compact closed cat-
egory axioms. Another interesting example is the category of sets and relations. It is
shown above that important concepts like unitary and Hermitian maps can be defined in
this abstract setup. It is in fact possible to define an abstract version of the Dirac notation
in this categorical language. Scalars are defined as morphisms s: I — I — in the case of
complex Hilbert spaces, it is easy to check that these maps are in bijection with the com-
plex numbers. Scalars can be abstractly multiplied using tensor products and left and right
identity natural isomorphisms. Kets are abstracted using the fact that elements of a com-
plex Hilbert space H are in bijection with maps C — H, i.e. as abstract maps [¢): [ — X
in a dagger compact closed category. With the dagger functor, one can also define abstract
bras, inner products, orthogonality, bases, etc. In the presence of biproducts, it is also

possible to define spectral decompositions and measurements. All this provides enough to
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express the postulates of quantum mechanics. Abramsky and Coecke showed that this is
also enough to describe protocols such as teleportation, entanglement swapping and logic
gate teleportation.

Abstract quantum mechanics has been further developed by Selinger in [SVO06a,
Sel07], where an abstract definition of completely positive maps is given, and in more
recent work of Coecke, Pavlovic and Paquette [Coe07, CP06b, CP06a] where a new ap-
proach to abstract measurements is developed which allows the use of a graphical calculus
integrating measurement operations without the difficulties of integrating biproducts into
similar graphical calculi for general monoidal categories. Note that this last approach dif-
fers from ours: it is based on the idea that classical data can be copied and discarded while
quantum data cannot. This is abstracted in the categorical notion of Classical objects,
which are objects equipped with morphisms that abstract the properties of linear maps
between Hilbert spaces that copy and discard vectors in a specified base. Using classical
objects, it is possible to make measurement results, which are classical, interact with quan-
tum data. Classical data is thus “encoded” as quantum data. In our approach, quantum data
is represented as a special kind of probabilistic strategy.

2.3 Game semantics

Game semantics is the study of the interpretation of logical or programming lan-
guages using concepts associated to games like moves, plays and strategies. The central
idea in game semantics is that a system can be described by the various ways that it can
interact with its environment. These interactions can be described as sequences of actions,
or “plays”, in a game. Various types of systems can be described by imposing various con-

straints to these interactions. The roots of this approach are in the work made by logicians
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in the 50’s and 60’s to create interpretations of classical and intuitionistic logics in terms
of games. In the 90’s we saw a surge in applications of this general idea in the study of
many logical systems and programming languages [Bla92, AIM94, AJ94, AIM94, HO00,
AMI99].

The aim of this thesis is to adapt game semantics ideas in a way appropriate to con-
struct interpretations for quantum programming languages. In order to be able to represent
quantum operations like measurements which give probability distributions on the mea-
surement results, we need to work with probabilistic strategies. We end this chapter by
a review of the basic definitions and facts of probabilistic game semantics, as presented
in [DHO2].

2.3.1 Arenas

The basic notion used in most of game semantics is the arena. Intuitively, it is the
specification of the rules of interaction between the system and the environment where
both agents can perform actions, or moves, taken from a specified set. The roles of the
system and the environment are usually played by two players which are respectively
named Player and Opponent. The choice of these names, widely used in the literature, do
not indicate that the two agents are in competition and that one of them could win; we care
only about the interactions between the two agents, and hence the name “arena” is used
instead of the name “game” to indicate the absence of rewards or of winning conditions.
Definition 2.20. An arena A is a triple (M4, A, +4) where My is a set of moves, the
function

Aa: My — {O,P} x {Q, A} X {I, N}
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is a labeling which assigns moves to the two players Opponent and Player, and tells us
which moves are Questions and which are Answers, and whether they are Initial or Non-
initial moves, and finally +,C My X M, is a relation, called the enabling relation, such
that

(A1) ifa vy b, then AQ%(a) # AP (b), A9 (a) # A3 B),

(A2) if /ILN(a) =1, then 14(a) = OQ)],

(A3) ifa v band A3 (b) = A then A3 a) = Q,

where the functions A%, /L?A and /li: are A, composed with the projections on the sets
{0, P}, {Q, A} and {I, N}.

We use the convention that M3, where X is some list of superscripts taken from the
set of move labels {O,P,Q, A,I,N} denote the set of moves labeled with these labels.
Moves in an arena are thus of various types, and the constraints on the enabling relation 4
limit the possible interactions in the arena by limiting which moves can be made at a
certain point given the past interactions. The condition (A1) forces that only Player moves
enable Opponent moves and vice versa, (A2) asks for all initial moves to be questions by
Opponent and finally (A3) says that answers can only be enabled by questions.

2.3.2 Plays and threads

Interactions between Opponent and Players are described by sequences of moves. A
play in A is a sequence of moves s € M. This does not take into account the enabling
relation; we define a justified play to be a play where each occurrence of a non-initial
move b has a pointer to a previous occurrence of a move a with a +4, b. We finally need
to enforce alternation of the two players. A legal play is a justified play where Opponent

and Player alternate; we denote the set of legal plays in A by £,4. Note that because all
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initial moves are Opponent moves, Opponent is always making the first move. The sets of
odd and even length legal plays are respectively denoted by £ and L5".
Example 2.21. The bool arena is defined as follows:

1. Myom = {2,0,1}

2. Aoatl(7) = (0,Q, D) and Apeat(0) = Anoar(1) = (P, A,N)

3. ? Fpoar 0,1

The legal plays in bool are those of the form
g,7yb; ...7b,7, by b, ... 7,

where b, € {0, 1}. In these plays, each b, is justified by the preceding occurrence of the ?
move.

Example 2.22. The empty arena / is the arena with no moves at all. The only legal play
in /1 is the empty play €.

Nothing in the various restrictions imposed on justified and on legal plays forbid the
case where there are many initial moves. It is possible for Opponent to start many interac-
tions in parallel by making many initial moves. Formally, suppose sa € £4. Starting from
a and following the justification pointers will always lead to an occurrence of an initial
move b, which we call the hereditary justifier of a in sa. We can see that every legal play
will be partitioned in subplays, each one consisting of all occurrences of moves heredi-
tarily justified by a given initial move. These subplays are called threads. The current
thread of a legal play sa ending with an opponent move, denoted by [sa], is the thread of
sa where a occurs. If sa ends with a Player move, the current thread is then defined by

[s]a. We want the current thread to be a legal play, so it is necessary to impose an extra
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condition on legal plays: a legal play s is well-threaded if for every subplay 7a ending
with a Player move, the justifier of a is in [#]. In a well-threaded play, player always plays
in the last thread where Opponent played.
2.3.3 Operations on arenas
In game semantics, complex types obtained by type operations must correspond to

arenas constructed by corresponding operations. Given arenas A, B, their product A © B
is defined by

o Muop = My + Mp (disjoint union)

o Asop = [4a, Ag] (copairing)

® mbpopniffmbygnormtign.
The product arena A © B is intuitively understood as the arena where at each of Opponent’s
turns she can choose to play a move in either A or B, and where Player must answer in the
last component where Opponent played.

The linear arrow operation A — B is defined similarly:

My .p=My+ Mg

o Map = |y 290 T3, Ay

e mrppniffmrynormignor Ay (n)=ANm) =1
where ZZ’P inverts the roles of the two players and ELN makes all moves of A noninitial. This
time, after Opponent makes an initial move in B, at each of his turns Player can choose to
play either one of his moves in B or an Opponent move in A.

The empty arena [ has important properties with respect to arena operations:

AOI=I0A=A

I oA=A



43

2.3.4 Probabilistic strategies

Given a legal play s in an arena A, let next,(s) = {a € My|sa € L4} be the set of all
moves that can be legally made after the play s.
Definition 2.23. A probabilistic strategy for Player is a function o : L3" — [0, 1] such
that
(S1) o(e)=1
(2) 0°(5) 2 Tpenextisa) T(5b)

The set of traces of a strategy o in A is the set of even length legal plays which are
assigned a non-zero probability by o it is denoted 7. A strategy o is deterministic if
o(s)=1forall s € 7.

It is possible to describe a probabilistic strategy o~ in conditional form:

o(sab)

o | sa) = e

The probability o (b | sa) is the probability of Player choosing to play b after the play sa.
We say that o is total if for all sa € £, we have that
Z o] sa)=1
benext(sa)

Composition of strategies is the way interactions between parts of a program are
encoded in game semantics. Given two strategies : A — Band 7: B — C, we define a
new strategy o; 7: A —o C obtained by letting o and 7 “interact” on B. Before giving the
definition of composition, it is necessary to formalise this notion of interaction.

The set of interactions for A, B, C is

Tapc={ue€(My+ Mg+ Mc) | ulap € Laop, ulpc € Lpoc, tlac € Laoc)
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where u|sp 1s the sub sequence of u obtained by deleting the moves of C, and similarly
for ulpc. The case of ulsc is a bit different because deleting from u the moves of B and
their associated pointers might leave the moves of A or C that are justified by B-moves
without justifiers. In this case, we define the justifiers of u|4¢ to be as follows: a move a in
C justified by a move b in B will be justified by the first move of either A or C we get to
by following back the justification pointers from a in u.

The set of witnesses wit(s) of s € L4_.c in an interaction J 4 g ¢ is the set of interac-
tions u € 1 4 g such that ulsc = s.

The composition of two strategies o: A — B and 7: B — C can now be defined as

follows:

[o371(s) = > o (ulan)T(ulse).

uewit(s)

The identity strategy (or so-called “copycat strategy”) id4: A — A is neutral with

respect to composition. A typical play is as follows:

A" A,
aj
aj
a
ap

Formally, the identity strategy is defined as the deterministic strategy with trace

T(IA(S)) = {S € LA,—oAr | VS, I;even S. SllA[ = SllAr}.

Using all the structure defined so far it is possible to define the category PStrat of are-

nas and probabilistic strategies. Taking arenas as objects, a morphism A — B is a strategy
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in A — B. Composition of strategies is the needed composition, with the identity strate-
gies as identity morphisms. It is associative, and it is shown in [DHO2] that probabilistic
strategies are closed under composition.

This category is also symmetric monoidal. The operation © is a tensor product, which
acts on morphisms as follows. Giveno: A - Cand7: B— Dand s € ag"BH( wopy W

set

[0 O 7](s) = 0(5la—c)T(Slc=D)-

All coherence isomorphisms are easily defined using variants of the copycat strategy.
2.3.5 Strategies and threads

Threads have an important role in game semantics as a way to characterize the strate-
gies that encode programs with side-effects, like stores. This is achieved by forcing Player
to use only the limited information available in the current thread instead of using all the
information that can be extracted from the whole previous plays, including moves made
in other threads.

A strategy o is well-threaded if 7, consists only of well-threaded plays. Note that
this condition forces Player to answer in the last thread where Opponent played. Given two
well-threaded plays sab € £9*" and ta € L5 with [sa] = [1a], we define match(sab, ra)
to be the unique legal play tab with b justified as in [sa]. A well-threaded strategy o is
said to be thread independent if sab € 7,,t € T,, a € next() and [sa] = [ta] implies

that
o(sab)  o((match(sab, ta))
o(s) o (t) '

The meaning of this condition is that if Player plays according to o, Player chooses his

answers with probabilities that only depend on the current thread, i.e. o°(b | sa) = o (b | ta).
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The diagonal strategy A4: A — A © A is defined as the deterministic strategy with
trace set

even ’ even ’ : ’ .
{s € Ly Thon | V8 T s.5'l4, € 1dg, As'|a, € ldA,}-

This is similar to the definition of the identity strategy: A instructs Player to use copying
strategies between A and its two copies A; and A,. Possible conflicts in A are resolved by
separating in different threads moves made according to the left or the right copy plays.
There is also a unique strategy <4 — I, namely the trivial strategy with trace {&}.

The pairing of two thread independent strategies 0: A —o Band 7: A — C is defined
by

(o, T) =Aj;00T

Thus when Player plays using the pair strategy (o, 7), he plays using o after an initial
move in B, and using 7 after an initial move in C.

For each arena A, (A, A4, $4) is a comonoid, meaning that the following two diagrams

commute:
(AGA)GA e AO(AGA)
AsGidy T TidA OAy
AGA AGA
A
A" A0I<U" AoA -2 104N 4

The following proposition is an important fact about thread independent strategies,

proved in [Har99]:
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Proposition 2.24. A strategy o : A — B is thread independent if and only if o is a
comonoid homomorphism for the comonoid, that is, if for all A and B the following com-
mutes:

A-MoA0A4 AT

|l A

B v BoB B
It is a known fact in category theory[Jac94] that the last proposition implies that the
restriction of PStrat to thread independent strategies is a Cartesian closed category. This
is based on the fact that we can use pairing as defined above to get products. Note that

projections strategies are defined as copying strategies:

T4 (A O B)——A ng: A © B——B
aj by

a b,

a, by

a;
b,



CHAPTER 3
Quantum games and strategies

3.1 Arenas for quantum systems

The central objective of this thesis is to develop a new model for quantum program-
ming languages by adapting the concepts of game semantics to quantum computation. The
core of game semantics is the idea of identifying states of a system with the processes by
which the environment gets information about the system. These processes are described
as sequences of actions performed by the environment and the system. The most basic
systems are described as simple “question-answer’” interactions.

To adapt game semantics to quantum systems, it is necessary to identify the kind of
actions that can be performed and the find appropriate restrictions on the interactions to
make them compatible with quantum mechanics. We take the following extended form of
the “slogan” correspondence describing game semantics to physical systems as a general

guideline:

A-calculi Games Physics
Types Arenas State spaces
Terms Strategies Dynamics

Reduction Composition of strategies Composition of dynamics

This guideline is formulated with general physical systems in mind, but here we focus on

the case of quantum physical systems. Following the correspondence, a quantum state

48
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should be described by the way Player, incarnating the physical system, interacts with
Opponent, which has the role of the environment, when they play in some appropriate
arena. More specifically, if Opponent asks for information about the state of a quantum
system, Player should answer with some information about this state. We need to specify
the kind of interactions that they can have in this process.

A possibility is to identify knowledge of the state of a quantum system to knowl-
edge of the density matrix p describing it, as it is done in some of the work on quantum
knowledge theory [vdMPO3]. In that case, a typical play in the arena describing a quan-
tum system would be of the form ?p. This conception of quantum knowledge is criticised
in [DP0S5, D’HOS], where it is argued that an agent may get knowledge about the state of
a quantum system in the following ways:

1. if the agent prepares the system in a known state,

2. if the agent measures the state of the system,

3. if information about the state of the system is communicated to the agent.
We adopt this point of view and adapt it to the context of game semantics. We consider
Opponent can only be given information about a quantum system under the control of
Player, knowledge that Player can only get by measuring or preparing the system. This
means that the possible answers to such a question must correspond to the measurement
outcomes.
3.1.1 Quantum Games

The central new structure introduced this thesis is a quantum game which is a variant
of the games used in the field of game semantics. There is an emerging field of research

developing around the idea of quantum games. To understand how the work presented in



50

this thesis differs from what is done in the quantum game field, we present an outline of
the latter.

Quantum games with payoffs are the central object of study of quantum game theory.
They are presented as generalisation of classical von Neumann games [MvN47, OR94]. A
classical two player von Neumann game G can be described as a pair of set of strategies

S 4 and S g, one for each player A and B, together with a payoff function

M:S,x855 > RXR.

If both A and B chose their strategies s4 and sz, we get an element of S4 X S5, and the
associated tuple M(sy, sp) gives the payoff of each player when they play using the chosen
strategies. A Nash equilibrium of G is a pair of strategies (s4, sg) such that no player
can improve his or her payoft by choosing another strategy if the other player keeps using
the same strategy. The von Neumann theorem says that in zero-sum two players games
(where the payoff of one player is opposite to the payoft of the other) there is always a
Nash equilibrium of probabilistic strategies.

The focus of the research in quantum game theory is to study Nash equilibria when
strategies are described as quantum states and chosen using quantum operations. A typ-
ical two player quantum game starts with some fixed state p in some complex Hilbert
space H4 ® Hg, where A and B are two quantum systems associated to two players, and
comes equipped with privileged orthonormal bases |s4) and |sg). The elements of these
bases are thought as the possible strategies for A and B. Each player chooses a strategy
using some quantum operations &, and Ep on the associated quantum system. These op-

erations are taken from a predefined set. Finally, the state [E4 ® Eg] (p) is measured with
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the projective measurement {|s45g){(sasp|}; the value observed is then used to determine
the payoff of each player.

This scheme can be seen as a generalisation of the classical von Neumann games,
Consider a classical game G as above for the case of two players A and B. We suppose
that the players choose strategies in S 4 and S g by applying some permutations w4 and mp
of S 4 and S  to some fixed strategies s4 and sg. The chosen strategies are thus m4(s4) and
ng(sp). Since the players can chose among all permutations, they can pick any strategies
they want. Described in this way, the game G can be put in “quantum form” as follows.
Let H4 and Hjp be the Hilbert spaces spanned by S 4 and S 5 respectively (we assume there
is a finite number of strategies for each player). The available strategies correspond to
base vectors |s4) € Hy and |sp) € Hp and thus instead of using permutations, the players
use the corresponding permutation matrices. This means that to select a strategy player A
applies a permutation matrix M,, which selects the strategy corresponding to the state
s)) = MsglsA). To determine the payoffs, one has to measure the state (715;‘ M B/) |sasp)
using the projectors onto the bases |s4), s4 € S 4 and |sg), sp € S g and associate the payoff
M(sa, sg) when s, and sp are observed. To represent a probabilistic choice of strategy,
one can use the quantum operations obtained by convex combinations of the permutation

operations above, i.e. superoperators of the form
8(p) = Z psgﬂs;‘pﬂ;‘a
Sh

where p,, € [0,1] and } .5, ps, = 1. In general quantum games, the starting state is

allowed to be an entangled state over |p), the permutation matrices are allowed to be any
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quantum operation (in most of the literature unitary operations are used) and the mea-
surement results can be any quantum measurements. Variants of known classical games,
like the prisoner’s dilemma, have been studied to determine their Nash equilibriums and
compare them to the classical equilibriums. These are constructed using various schemes
which allow using other quantum operations than the permutations by allowing the starting
state to be an entangled state.

It was shown first in [Mey99, Mey00, EWL99] that there are simple games where
there are new Nash equilibriums when the players use quantum strategies that are not
present when they use probabilistic strategies. In fact, Mayer proved an analogue to
von Neumann’s theorem for quantum games. Recent work developed these ideas by inves-
tigating various quantum analogues of classical matrix games and using quantum games
in quantum information and complexity theory [CHTWO04, GW07]. While these results
are interesting, they do not provide the framework needed to develop a quantum ana-
logue of classical arenas as described in the first section of this chapter. This is because
matrix games hide the detailed interactions occurring when the players use their chosen
strategies. There is also a more profound conceptual problem with the approach used in
quantum game theory: the choice of a strategy in a quantum game as described above is
done by applying a quantum operation on a state. This is described as a “quantum strat-
egy” where probabilistic choices are generalised, but, since quantum games can be seen as
matrix games, these “quantum choices” amount in fact to classical probabilistic choices in
a set of quantum operations. It is possible to make this a general principle: games can be

played with quantum states and with the possibility of using quantum operations on these



53

states, but the only way a player can make a decision about his or her next next move us-
ing information about a quantum state is by measuring it and using the measurement result
classically. The quantum game concept developed in this thesis follows this principle.
This view of quantum games or interactions is a good way to understand a cen-
tral difficulty encountered when studying higher-order languages : as pointed out by
Selinger [Sel04b], reasonable attempts to find a closed monoidal category extending the
category of superoperators where one can define interpretations of higher-order quantum
programming languages fail. The above principle may help to understand why this is the
case. Consider the core defining property of symmetric monoidal-closed categories: the

adjunction
XY -7
X—>Y—oZ

In the categories used to define denotational semantics of classical programming lan-
guages, this adjunction property can be understood as saying that there is an object Y — Z
that can be used to define a parametrised family of terms over some other object X, and
that the parameter can always be also thought of as an argumentinaterm X ® ¥ — Z.
To apply the term corresponding to a certain parameter in X, one must first determine this
parameter.

In the quantum case such a parametrisation should be a way to use a state to choose a
quantum operation. If we follow the principle proposed above, this must be done by mea-
suring the parameter state in X and using the measurement result to choose the quantum
operation Y — Z. If such a process describe an adjunct, has to correspond to a quantum
operation X ® Y — Z. If we consider the quantum parametrisation to be given by a fam-

ily of superoperators &,,: SD(Y) — SD(Z), with &,,(p) = X, Emk/oET and indexed with

mk
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the measurement results of a generalized measurement M = {M,,} over X, the resulting

operation X ® ¥ — Z willmap p € SD(X® Y) to

D (M, ®E)p (M), ©E],).

Since not every superoperator X ® Y — Z can be written in this last form, we cannot hope
to have the desired general correspondence. This can also be explained by the fact that in
X ®Y — Z the parameter X and the argument Y can be entangled in the quantum case,
while they are independentin X — Y — Z.
3.2 Arenas for isolated quantum systems

We proceed in what follows to the formalisation of the ideas described in section 3.1.
We begin by considering simple isolated quantum systems described by a complex Hilbert
space H. Starting from an arena as defined in section 2.3, we need to add H to the structure.
We also need to add restrictions on the enabling relations so that the answers to a quantum
question can be used as measurement outcomes.
Definition 3.1. Anisolated quantum system arena (IQSA) A is an arena |A| = (M, Aa, )
together with an associated Hilbert space H, such that for all q € MS the number of
enabled moves | {a | g 4 a} | is dim(Hy).

The arena |A| is called the underlying arena of the IQSA A. A quantum play in
an IQSA A is a play in |A| together with, for each occurrence of a quantum question ¢, a
projective measurement £, = {Pi | g -4 a}. We denote a quantum play as a regular play

where we replace the quantum questions by their associated measurements, for example:

quaﬂ’qzaz A
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If there are many occurrences of a question g, we refer to the nth occurrence with g[n].
Given a quantum play s, the play of |A| obtained by forgetting the associated quantum
measurements is the underlying play |s|. For an IQSA A, the set of legal quantum plays
is
L4 ={s| is a quantum play and |s| € L }.
Example 3.2. The IQSA gbit describing the possible states of a gbit is defined as follows.

The underlying arena is

o Mgyl = (7}, My =10,1);

and H, is taken to be C?. Some possible quantum plays are

s1 ={[0]o, [111}-
s> ={[+]o, [=]1}21
s3 ={[0]o, [111}-0{[+]o, [=]:}-1

54 =100, 11}, 1

Note that the underlying plays of quantum plays in gbit are plays of bool.
Example 3.3. Given any Hilbert space H we define a IQSA [H] in a similar way as the
definition of the IQSA qbit, but using in general 0, ...,dim(H) — 1 as possible answers.
When dim(H) = 2, we will also use the name qbit for the IQSA [H]. In the case of the
trivial Hilbert space H = 0, we adopt the convention that [0] is the empty arena /.

The special case C is important. In this IQSA, there is only one possible complete

projective measurement £ = {/,}. There is also only one possible answer, O.
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3.3 Quantum strategies for isolated quantum arenas

In the last section we identified the kind of actions occurring in the interaction be-
tween a quantum system and an environment extracting information from it. The next step
is to identify the strategies that describe quantum states.

When a quantum system is in a certain state, for each quantum measurement there
is a probability distribution over the measurement outcomes. We thus need to begin by
providing a way to allow the possible interactions to describe this distribution.

Definition 3.4. A probabilistic strategy o in a IQSA A is defined as a function
o: L7 —[0,1]

such that
1. o(e) =1
2. 0(8) 2 Lpenexty(sa) 0 (sab)
A probabilistic strategy of a quantum arena A can be viewed as a probabilistic strategy
for |A| and vice versa.
We can now define a probabilistic strategy in the IQSA [H] that corresponds to a
given state p.
Definition 3.5. Let p be a density matrix over H. The probabilistic strategy [p] in [H]
associated to p is defined by
1. [ple) =1
2. [p)Poiymy ... Pouymy) = te (P PP P
We need to check that [p] is a probabilistic strategy. The first condition of the defini-

tion is automatically verified. The second condition is also satisfied: let s#,m € Li". We
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have that

> lplsPamy= Y w(PLPIN L PP PP )

menext(sPo) m: Mm
_ ? n—1] 1] 1] Nn—1]
= tr((z Pl.)Pmnl L Pppil plin
i

=tr (P?[n—l] . P?mpP’?n[ll] N P?[n—l])

my—1 Trhomy oMy

= [p1(s).

The probability of Player answering m to the question P, asked after a quantum play
§ = Popymi - .. Popmmy 1s given by

ol (sPom) _ (PrupsPs)

lelem [P = =06 tr(py)

where p, is the subdensity matrix P;[f] .. .P,ZE}]pSP,ZLH .. P:,["]
This makes the strategies [p] thread dependent. To see this, consider for example how

the strategy [|+)(+|] evaluates on the two quantum plays:

{[0o, [111}, 0{[0]o, [1]:}, 0

{[0lo, [111}> 1 {[0]o, [1]:}, 0

The probability of answering O at the end of the first play is 1 while it is O in the second
play. The strategy dictates the use of a different probability distribution in the second
thread according to the answer given in the first one.

Note also that [p] is total because tr(p) = 1, and thus

Pm N
ZO'(mH?D?):Z%:l
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Is there a density matrix p associated to a probabilistic strategy for a IQSA? It is
not the case in general. Consider for example any probabilistic strategy o in the IQSA
H for which o(m | $») is the uniform distribution with value 1/ dim(H) for all m. The
existence of such examples is due to the fact that we do not impose any special restrictions
on probabilistic strategies. We now define a restricted family of probabilistic strategies
that correspond to quantum states.

Definition 3.6. A probabilistic strategy for a IQSA H is called a quantum strategy if the
following three conditions hold
1. if sPom, sPym € Ly and P! = P, then o(m | sPy) = o(m | sP’'»)
2. for any three projective measurements Py, Py and Py with P, LP,’ and P, = P, +
P,’,’lz we have that o(m | sPs) = o(my | sP)) + o(ir | sP7)
3. for every projective measurement P such that Y, P}, = Iy we have o(m | sP») = 1

Lemma 3.7. Let o be a total quantum strategy in [H], with dim(H) > 2, s be a quantum

play. The function p: P(H) — [0, 1] which sends P € P(H) to
p(P) = a(m| sP),

where Py is any complete projective measurement with P}, = P, satisfies the conditions of

Gleason’s theorem (proposition 2.4).

Proof. Fix some quantum play s. By the first condition of the definition of quantum
strategy, p is well-defined.

Let PLQ, P, Q € P(H). By definition,

p(P+ Q) =o(m| sP)
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for some P, with P!, = P + Q.

It is always possible to define a projective measurement %, by splitting P}, into two.
If the rank of P + Q is 0 or 1, we simply take #, = #». If the rank of P + Q is strictly
greater that 1, set m; = m. In that case, there must be a move m, with anz = 0. Let P,

be defined by P,, = P, P, = Q and P,,, = P}, for m’ # my, m,. It then follows from the

second condition of the definition of quantum strategy that
p(P) + p(Q) = o(my | sP)) + o(my | sP5) = o(m | sP2) = p(P + Q)

To evaluate p([), the last condition of the definition of quantum strategy gives us that
for any P, with P, = I
p(h) =o(m| sP2) = 1,

so p satisfies the conditions of Gleason’s theorem. O

This lemma implies that when dim(H) > 2, there is a quantum state p, for each even
length quantum play s in [H].

Lemma 3.8. For a quantum strategy o in H, with dim(H) > 2, we have that
om| sPs) =tr (P:n ps)

Since the defining conditions of quantum strategies do not impose any constraints on
the relation between threads, these p,; need not be related to one another in any special

way. The strategies [p] satisfy the following extra condition.
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Definition 3.9. Suppose dim(H) > 2. A total quantum strategy o on H is said to be

physically realisable if for all quantum plays sP.m € o we have that

P, pP),

PsPm = a(s?’ym)

where p; is the density matrix associated to s by lemma 3.7.
Theorem 3.10. For every total physically realisable quantum strategy o on a IQSA [H],

with dim(H) > 2, there is a density matrix p such that [p] = o

Proof. For each play s = Popyymy ... Popgm, € Ly, the strategy o determines a density

matrix p, which satisfies

o (M1 | sp?[n+1]) =tr (P?[n+1]ps) .

Mp+1

Taking p = p, an easy induction on the length of s shows that

20l poll, Al pllnl

ny mi mi ny

ps:P

and thus that

o(s) = (P PLoP - ) = [p](s).

3.3.1 Consistent histories

In addition to quantum knowledge theory and probabilistic game semantics, the defi-
nition of quantum strategies given above was inspired by an alternative approach to quan-
tum mechanics know as quantum consistent histories theory [Gri84, Omn88a, GMH93].

The main goal of this theory is to describe a quantum system using sequences of measured
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properties of the system. Each such history of the system must be assigned a weight in
such a way that classical reasoning using probabilities is valid. The problem is to identify
on which sets of histories this is possible. We summarize the usual solution to this problem
in what follows. The central idea is that a measure of compatibility between histories is
introduced and used to define the compatible ones.

Definition 3.11. Let H be a Hilbert space. A decoherence functional is a map
d: P(H)xP(H) — P(H)

such that for all P, P', Q € P(H)
1. d(P,P)eRandd(P,P)>0
2. d(P,Q) = d(Q.P)
3. d(Iy,Iy) =1and d(0,P) =0
4. If PLP', thend(P® P’,Q) = d(P,Q) + d(P’, Q)
Properties of quantum systems are usually described using projectors. We call a
projector

P,® - ®P,cP(H® - ®H)

a quantum history in H. Given a density matrix p € D(H), we can define a decoherence

functional on P(H ® - - - ® H) by

dpy(P1® - ®@Py, 01 ® - ®Qy) =tr(Py... P1pQy ... On).

The sets of histories where classical reasoning on probabilities is valid can be defined as

follows:
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Definition 3.12. Let H be a Hilbert space and d be a decoherence functional on P(H).
A subset S C P(H) is consistent with respect to d if p(P) = d(P, P) defines a probability
distribution on S .

The central result of the theory is a characterisation of consistent sets (explained for
example in [Gri03])
Proposition 3.13. S C P(H) is consistent for a decoherence functional d if and only if for
all P,Q € S with P # Q Re(d(P, Q)) = 0.

Note that consistent sets of quantum histories are defined using the stronger condition
d(P, Q) = 0 for any two orthogonal quantum histories P and Q.

Histories are closely related to plays. It is straightforward to associate a decoherence

functional p to each strategy [p] in [H]. Given a quantum play s = Poyym; ... Popym, in

cven
H b

we have a quantum history
1] 2[n]
Pl®...@PM.

By construction we have that

> Ple-ePM =1

my

The strategy [p] induces a probability distribution on the set of quantum histories:
P (P:n[ll] ®:---Q® P;[f]) = O'(Pf][]]l’l’l] Ce P?[n]mn) .

3.4 General quantum arenas
Up to this point, we have studied isolated quantum systems arenas in order to under-

stand how quantum states can be represented as strategies. Since our goal is to be able to
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study quantum types using quantum arenas, we need to extend the basic classical arena
operations © and — to quantum arenas.
3.4.1 Quantum arenas

The definition of an IQSA A is simply to add a Hilbert space H, to the specification of
an arena which acts as the space where the projective measurements are made. In a general
arena involving many quantum systems, the projective measurements are performed in
different Hilbert spaces. Hence we need to extend definition 3.1 as follows:

Definition 3.14. A quantum arena A is an arena (M4, 4, A4) together with for each a € MS
a Hilbert space H, such that |{b| a +4 b}| = dim(H,)

We can see IQSA as special cases of quantum arenas where the same Hilbert space
is associated to every quantum question. Quantum plays and probabilistic strategies in
quantum arenas are defined in the same manner as for IQSA, except that the projective
measurements $, associated to a question a are taken in H,,.

3.4.2 Products of quantum arenas

Definition 3.15. Given two quantum arenas A and B, A © B is the quantum arena with
|A| © |B| as underlying arena and where the Hilbert space H, for a € MS@B is taken to be
the Hilbert space H, in the component A or B where a comes from.

The ® operation extends to morphisms in the same way as the probabilistic case
explained in section 2.3.4.

Let’s examine the anatomy of a quantum play in a quantum arena of the form A © B.

The projective measurement associated to each question is taken on the component where
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the question is asked. A typical play in [H4] © [Hp] is of the form

[Ha] o [Hp]
P
my
Poai
m
Posl2)
my

This play involve the two systems A and B independently. We can look at these mea-
surements in the complex Hilbert space H4 ® Hp describing the combination of the two
systems. It is clear that the measurements occurring in quantum plays of [Hs] © [Hp]

correspond to measurements of one of the two forms
{Pw ®Ig | Py € P(Ha)}  or {14 ® Qs | Qs € P(Hp)}.

By comparison, in the quantum arena [H4 ® Hg], Opponent can use a projective measure-
ment with any projectors on Hy ® Hg. This allows her to choose the projections onto the
Bell states, which is not possible in the case of Hy © Hp.

Given a quantum state py © pg over H4 ® Hp, we can define a strategy [ps ® pp] in
[H4] © [Hg] as we did in the case of a IQSA [H]. Given a play s = Poyym; ... Popyyimy,
where the questions ?[k] and their associated answers m; can be from either the A or the B

component, we set

loa ®psl(s) = tr (PR P (s @ ps) PN PV
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Note that in this expression it is possible to use a state p over H4 ® Hz which is not a tensor
product ps ® pp.

The difference between [Hs] © [Hp] and [H4 ® Hp] is important, as the limitations
in the allowed measurements in the first case make it an unsuitable candidate to represent
joint quantum systems. This is because there are families of states in Hy ® Hp which
cannot be distinguished by measurements of the form allowed in [H,] © [Hp] together
with classical processing of the results. Moreover, the states in these families can even

be chosen to be separated. Such an example is the following set of orthogonal states in

CPeC3:
1 e®|1) 10) ® (0) + (1)) 10) ® (10) — (1))
12) ® (11) +12)) 12) ® (11) = 12)) (1) +12)) ® |0}
(1) =12)) ®10) (0) + 1)) ® |2) (10) = 1) ® |2)

where |0), |1) and |2) is an orthonormal basis of C®. This example is discussed in the
paper [BDF*99], where it is proved that even with classical communication, two parties
cannot distinguish these states with certainty using separate measurements on each com-
ponent of the system. The paper gives other examples of such phenomena.

We introduce another product operation on quantum arenas where any question $#,
over a tensor product space can be asked.
Definition 3.16. Let A and B be two quantum arenas. The quantum arena A ® B is defined
by

1. Magp = {(a,b) € My X Mg | Aa(a) = Ap(b)}

2. Aasp ((a, b)) = Aa(a) = Ap(D)
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3. Hp = H,® H, for (a,b) € M,
4. (ay,by) Fagp (a2, by) ifay + by and ay + b,

It is easy to see that in particular [H,] ® [Hg] = [Hy ® Hg]. To simplify the notation,
we will denote the measurement results (1,4, mp) in quantum arenas of the form A ® B by
m*m®B. When we do not need to refer to the measurement results in each component, a
generic tuple of measurement results is denoted by m.

3.4.3 The linear arrow quantum arena

We now turn to the other basic arena operation which is used to represent quantum
operations as strategies.

Definition 3.17. Given two quantum arenas A,B, A — B is the quantum arena with

|A| —o |B| as underlying arena and where, for m € M? H,, is defined to be H,, in the

A—oB’

component A or B where a comes from.

A typical single-threaded play in [H4] — [H4] is as follows:

[H4] [H]

P,
/
P
A
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In this play, Opponent wants to know the result of measuring the output with the projective
measurement $,,. Player answers this by asking Opponent to measure the input state with
the projective measurements Py, . . ., Popy. Player can then use the measurement results
to decide how to answer to Opponent’s initial question.

Important classes of quantum operations can be defined in the quantum arena

[H4] — [Hp].

Example 3.18. A unitary transformation U: H — H can be represented as a total deter-

ministic strategy [U]: H —o H where Player plays following this pattern:

(U]

[H] —I[H,]
P,
P,
m
m

where

P, = UP,U" = {UPmUT |m=0...dim(H,) - 1}.

We can check that the proposed strategies for unitary transformations behave in the
proper way: if we compose [U]: H —o H with a state strategy [p]: I —o H, what we get is

the state strategy [UpU']:

|UpU| Pom) = te (P, (UpU") P,)
= tr ((PuU)p(P,U)")

= [U]lp](F>m)
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Example 3.19. Let [H,] and [Hj] be two Hilbert spaces arenas. The partial trace strategy
[tr®] is defined as the deterministic, total and thread independent strategy which assigns

weight 1 to single threaded plays of the form

[tr”]

[H4] ® [Hp] [Hyl
P
P,
mAm?B
)

where #;, = {(P;’nA ® I)}>. Note that, since the measurement results in [H4] ® [Hg] must be
of the form m*m®, we can fix arbitrarily an index m{ in the indexing of the elements of #’.
When this strategy is composed with a state strategy [p], the resulting strategy is the state
strategy [tr® p] associated with the reduced density matrix. Let |j) be an orthonormal basis

of Hyz. We have that
tr®; [p] (P?PgmAmg mA) = Z tr (P;nmgp) Sm
=tr(P,x ®Ip)
= {pmA ® [Z |,-><j|]p]
J
=r {PmA Z<j|p|j>)
J

=tr (PmA tr® (p))
- o) )
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Note that the projection strategies on [H4] © [Hg] also compute the trace of p when
composed with a strategy [p]: I —o [H4] © [Hp]. For the projection 4 on the first compo-
nent:

[Ha) © [Hp] ——<[H,]
P,
P,

we have that ms[p] = [trB(p)].
Example 3.20. The effect of performing a projective measurement Q on a space H can also

be represented with a strategy [Q] : [H] — [H]. Player plays according to the following

pattern:

[H] <o [H]
P,

Q

ny

P

n
nmy

The state after the measurement Q is performed is Q(p) — we abuse the notation and
use Q to denote both the set of projectors {Q,,} and the associated superoperator defined
by

p Z QP Q-
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Composing with a strategy [p] in I — [H], we get that

[Pllpl Poma) = . (P2, 0}, pO}, P

my

=u|P,, ) (0.r0) P,

mj

=tr (P;zQ(p)) :

The above examples make it possible to represent three of the four components of
the decomposition of superoperators: unitary transformations, projective measurements,
partial traces. Unfortunately, it is not possible to do the same for the missing preparation:
there is no such strategy to describe preparation of a new state. Suppose we want to define
such a strategy in the arena [H,] — [H4 ® Hp] which corresponds to the operation that
takes a state p to a state p ® |p){p|. Using projective measurements, we need to associate

to a question $»,, in [Hy ® Hg] a question $», in [H,] such that

(P (0 ®le)eD) = (P p).

Following a scheme similar to the case of unitary strategies, we would take

P = (g|P2|p).

The problem is that (@|P/#%|¢) is not a projector in general. This is a difficulty that makes
it impossible to get a general correspondence between strategies in [H4] — [Hp] and
superoperators from Hy to Hg following the scheme used in the examples above.

As it is the case with general probabilistic strategies in [H,], a general probabilistic

strategy in [H,4] — [Hp] needs not to respect the laws of quantum mechanics. One such
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example would be a strategy o~ which makes Player ignore the [H4] component and play
in [Hp] using a probabilistic strategy which does not correspond to a quantum state. When
composed with a state strategy [p] in [H,], this gives a strategy in [Hg] which is not a
quantum state. Thus the strategy o~ does not correspond to a superoperator.

It is possible to see both the unitary and partial traces constructions as special cases
of a construction involving trace-preserving superoperators. Suppose we have such a su-
peroperator &: SD(H) — SD(H), with dim(H,) > dim(Hp) such that & maps projectors

to projectors. We define a strategy as above using the adjoint &* to &:

[H] — o [H]
P,
& (P)
m
m

Since & is trace-preserving, & is unital and
Y EP)=ED=1

This shows that &(P») is a complete projective measurement. As in the above examples, a
direct computation shows that [E][p] = [E(p)].

Product of strategies

Suppose we have two probabilistic strategies o : [Hs] — [Hg] and 7: [H¢] — [Hp].
Can we define a tensor product strategy o-®7 in the arena [H,|®[Hc] — [Hp]®[Hp]? Itis

impossible to do so in general, since this would require, in a typical case, that we construct
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a projective measurement ¥, in H4 ® H¢ from a projective measurement $, in Hg ® Hp:

[Hal ® [Hc] ——[Hp] ® [Hp]
P
P
The strategy o~ may provide a way to connect a projective measurement on Hg to a pro-
jective measurement on H, and similarly 7 may connect a projective measurement on Hp
to a projective measurement on H¢, but there is no way to separate $, into two projective
measurements to use o~ and 7 to define ;. Yet, it is possible in many important examples
to define a strategy o ® 7 that acts as expected. Consider for example the situation where
o and 7 are two unitary transformation strategies, say o = [U;] and 7 = [U,]. In this case,
we can define #;, as (U; ® U,)' P, (U, ® U,). This give that [U] ® [U,] = [U; ® U,].
We can define similarly a tensor strategy of two partial traces strategy with the property
[tr;] ® [try] = [tr; ®tr,].
3.5 The category of quantum arenas and quantum strategies
In the previous sections we have introduced all the necessary concepts needed to
define a category QStrat of quantum arenas and strategies.
Given two probabilistic strategies 0: A — B and 7: B — C, we define their compo-
sition in the same way as in section 2.3:
[o371(s) = > olulas) usc).
uewit(s)

We take quantum arenas [H] as objects of QStrat. Since not all strategies

o [Hy] — [Hp]
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preserve quantum states, we need to restrict the definition of morphisms [H4] — [Hp] to
the strategies o: [Hy] — [Hp] such that for every [p]: I — [H,], the composition o[p]
is also a strategy of the form [p’] for some state p” in Hg. The composition of two such
strategies clearly satisfies the same condition. The identity strategies trivially have this
property.

3.5.1 Quantum strategies as probabilistic strategies

In the application of quantum strategies as interpretation of terms of quantum lan-
guages, quantum arenas and strategies cohabit with classical arenas and strategies that
represent classical terms and data. We thus need to be able to mix classical and quantum
strategies.

Quantum strategies are defined as special kind of probabilistic strategies, and thus the
category QStrat can be embedded in the category PStrat. Given a quantum arena A, we
define the (probabilistic) arena A to be the arena obtained by replacing questions with all
possible (a, %) such that # is a projective measurement on H, and keeping the same la-
belling and enabling structure, so that every play in A is a quantum play in A. This extends
trivially to strategies in A, which can be identified with probabilistic strategies in A. An
arena [H] is sent to a probabilistic arena ﬁ and a probabilistic strategy o : [Hy] — [Hp]
in QStrat is sent to the strategy o

In the subsequent chapters, we will work in the category Pstrat, identifying A and A.
Note that while the two arena operations —o and © are preserved in this embedding, the
tensor operation between quantum arenas cannot be extended to all probabilistic arenas.
This is an important fact that guided the design of the type system of the two quantum

A-calculi presented in chapter 5 and 6.
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3.5.2 Tensor product of strategies with classical interactions

In 3.4.3 we showed how to defined the tensor product of strategies representing var-
ious important quantum operations. In general the application of a quantum operation is
conditional on some previous classical data, and embedding Qstrat in Pstrat allows us to
encode these dependencies using probabilistic strategies.

There are two different cases to consider. In the first case, we have quantum states in

H that depend on some classical interaction in an arena U:

U——[H]
P
a
a
m

Since the answer m to $, must describe a quantum state, we assume that there is a

density matrix p;, s = aj . . .a,, such that
o(m|Pss) =tr (P;';ps).

A simple example of this situation is a conditional preparation strategy prep which
behaves like state |b){(b| according to some boolean value b € {0,1}. This strategy is

described by the following typical play:

bool —"—[H]
Pr

?

b



where

m

prep (m | P27b) = tr (P}, [b)b]).

We can define a tensor o ® 7 of two such strategies o~ and 7 as follows:

Uys o U L@-O[HA] ® [Hp]
P

a

an

by
b

mAmb
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where the probability that Player answers m*m? to P, after the interactions s = a; .. .a,

and t = by...b,, is tr (P05 ® p;). Note that while we take the tensor product of the

two output quantum arenas, we must take the classical game product of the classical input

arenas.

The second case to consider is when o and 7 are both strategies that correspond to

conditional quantum operations. The general pattern is similar to the purely quantum case

presented in 3.4.3, but we add to the input arena of o and 7 two classical arenas U, and

Up where the classical part of the interaction occurs:

0: Uy O[Hy]l — [Hp], 7:Uc®[Hc] —o [Hpl.
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For example, consider a typical thread in the first case: the interaction looks as follows:

UA O] [HA] Z O[I_IB]
P
a

& (P2)
m
m

where s = a;...a, and &; is a trace-preserving superoperator such that &; preserve pro-
jectors. Note this is a deterministic strategy.
Assuming that o and 7 are two strategies as above, we can define o ® 7 by the fol-

lowing typical play:

Us o U o [Hal®[Hc]l—""[Hg]® Hp]

P
a

(Ete &) @)
mm’

’

mm

where the probability that Player answers mm’ to P, after the interactions s = a; ...a,,

and 1 = by ... by, 18 tr (P ps ® py).
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Diagonal strategies and quantum strategies

We mentioned in section 2.3 the important role played by the diagonal strategy
A:A—>AGA
in game semantics: thread independent strategies o-: A — B are duplicable:

A-—2-A0A

‘Tl lm

BTB@B

It is well-know in game semantics that thread dependent strategies describe processes with
side-effects. These are usually associated with stores where content is affected by various
operations like incrementation or assignment. In a classical language, the effect of these
operations is not immediately visible: it is only through access to the store content that the
previously made operations can affect the future of the computation.

Quantum strategies of the form [p]: I —o [H] are thread dependant because they
encode the dynamics of the evolution of a quantum state: measurements are operations
performed on the state and their effect is not visible to the environment until the next mea-
surement is performed. Since in a quantum play each measurement operation correspond
to a different thread, quantum strategies must be thread dependent.

The strategy [p] is defined assuming that Player provides the measurement result an-

swers to an Opponent question by observing the state resulting from the last performed
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measurement (or p in the case of the initial question). The following diagram is not com-

mutative:
I—2 101
[o] l i[p]G[p]
[H] 7 [H] o [H]

This means that a quantum strategy cannot be cloned using the A strategy. On the one
hand, the role of A in [p]; A is to allow Opponent to have access to [p] from two different
instances of the arena [H]. A question $, in either the left or the right [H] is answered
using [p], and the future answers are affected in the same way in both cases. On the other
hand, A o [p] © [p] behaves like two independent instances of [p]: a question $; in the
final left [H] arena is answered using the left [p] strategy and does not affect the right [p]
strategy.

We can define another strategy {p} which is not dynamical and is thus duplicable.
This is done by assuming that Player has an infinite supply of quantum states p, and that
each measurement asked is performed on a fresh state. The strategy {p} corresponding to

this scenario is defined by
(pkm | sP2) =t (P}, p)
This new strategy is thread independent since

{p} (sPom) _ tr(PZn ) _ {o} (P, m),
{o}(s) {o}®)
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and thus this time {p} is duplicable, i.e. the following commutes:

I—% ~J101

{p}l l{p}o{p}

[H] —~ [H]© [H]

This relation between {p} and A is saying that if we have an infinite supply of copies of a
quantum system all in a certain quantum state, we can use them as two infinite supplies of
quantum systems in that state.

Note that there is no equivalent to the diagonal strategy for the tensor operation ®.
This is because such a strategy D: [H] —o [H] ® [H] would be cloning unknown quantum
states, which is impossible. We can look at this from a new angle with the concept of
quantum strategy. To define D, one would need to take a projective measurement 5 in
H ® H and transform it into a projective measurement on H, but there is no natural way to
do so.

3.6 Quantum strategies using other quantum measurements

In the previous section, quantum plays are defined using projective quantum mea-
surements. It is possible to work with the other types of quantum measurement described
in section 2.1.2. An important motivation in doing so is the problem exposed in 3.4.3 of
defining a preparation strategy using projective measurements, which is due to the fact that
the family of projectors is not closed under certain operations.

In a quantum arena A, the number of possible answers to a question £, must be the
dimension of the associated Hilbert space H,,. This assumption was made so that it is never
the case that there are more possible measurement results to a question #, than the dimen-

sion of H,. Since we work below with other types of quantum measurements, and since
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these measurements can handle more measurement results than dim(H,), we drop this
limitation when working with other types of measurements than projective measurements.
3.6.1 Generalised measurement based quantum strategies

Suppose that in a quantum play we allow using generalised measurements of the
form M, = {M, | a + b} instead of projective measurements. It is still possible to define
strategies for quantum states, unitary transformations and partial traces in a similar way as
when working with projective measurements.

Given any state p in H we define a strategy [p] in [H] in a similar manner as with
projective measurements. The strategy [p] makes Player answer an initial question M,
with the measurement result m with probability tr (M;'n P (M;)T)

In the case of a unitary transformation U, we can define a strategy [U] where Player

plays as follows:

[H] —[H]
Mo,
M?A
m
m

9 . . .
where M, = {M,‘,,B U } This defines a new generalized measurement since:

1

> (M, U) M, U) = U [Z M;Mm] U=U'IU=1
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As with projective measurements, when we compose this with a strategy [p]: I — [H],
we get

[UpI (Mo, Mo,mn) = > tr (M, U)p(M,U)') Sy

= tr(M,, (UpU") M)

= [UpU"1 (Mo, My, mn).

Strategies for partial traces using generalised measurements are defined similarly. It
is also possible to define a strategy representing the effect of performing a generalised
measurement, as in example 3.20.

The problem of the preparation strategy is still present. The usual scheme fails for
a similar reason as in the case of projective measurements. Since we want a strategy in
[H4] — [Hs ® Hp], we need to associate to a question M,,, in [Hy ® Hg] a question M,,

in [H,4] such that

tr (M0 © Lol (M) ) = e (Mo (M1)').

The natural candidate is M,;"f = M,Zf‘*lgp). It is easy to check that }’,, (M,Z{“B)T M,,?{‘ = I, but
M,, is not a generalised measurement because M,?,;‘ is a map from Hy to Hy ® Hp, and is
thus not a map in M(H,).
3.6.2 POVM based quantum strategies

Suppose that we use POVM measurements A, = {A,, | a + M} over H, in quantum
plays instead of projective measurements. It is again possible to define strategies for quan-

tum states, unitary transformation and partial traces with a similar construction as in the
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case of projective measurements and generalised measurements. It is even possible to de-
fine a strategy [&] in [H4] — [Hp] for any trace-preserving superoperator &. The strategy

[£] is defined as follows:

[Ha] —[Hp]
A,
A,
m
m

where A = & (A:,?) This is always a positive operator. The adjoint & being unital, we
have that
2A0 =8 (4r)=¢€ (Z Aiif) =& =1,

And thus & (A,,) is a POVM. If we compose [E] with [p], we get

[E1lp)( A, Ao, nm) = > tr (Z EiA jEkp] 5
k

J
—tr (A,- Z EkaZ)
k
= tr (A;&(p))

= [E(p)] (Ay, Ay, nm)

so [&€] acts on quantum state strategies as & acts on quantum states.

There is a important limitation when using POVM based quantum strategies. The
quantum state left after a POVM is not specified, so it is not possible to have quantum
strategies with multiple threads as with projective measurements. In particular, there is
no natural way to use the scheme of example 3.20 with POVM based quantum strategies

since it involves two successive measurements of the input state. It is possible to work with
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the convention that a POVM {A,,} updates a state p to VA,,0 VA,, when the measurement
result is m. We use this idea in the construction of a denotational semantics in the next
chapter.
3.6.3 Intervention operators

The last generalisation of the definition of quantum play we consider is the case of
intervention operators. This is the most important example; we use this generalisation in
chapter 5 and 6.

In this case, the projective measurements associated to question moves are replaced

with quantum interventions. We associate to a question ¢ a family of superoperators
&, ={&4: SD(H,) — SD(H,)}

indexed by the possible measurement results m. When working with quantum interven-
tions, we need to drop the limitation imposed in definition 3.1 on the number of answers
to a given question. This is because quantum interventions can take a state p in a certain
space and map it to a state in a different space. Note that in a general play, the different
occurrences of a question g will not all have the same associated Hilbert space H,.

The strategy describing a state [p] is defined similarly as in the other cases: Player an-
swers m to &, with probability tr (8,7”(/0)). Note that the state after the intervention is &’ (o),
which is in SD(H,,). In general, this will be a different space than the space before the an-
swer is given, namely SD(H,). If Opponent asks another question &, after receiving her
answer to &, all possible Player answers will have probability zero when the domain of
Eyle) 18 different than SD(H,,). When the domain and SD(H,,) match, the question E,; is

answered using the normalised state &’ (p)/ tr (8;'”(,0)). In general, a typical play in gstore
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is a sequence of the form

8?[1]1’1’!1 ce 87[n]mn

consisting of alternating quantum interventions and measurement results. The strategy [p]

in gstore is defined by

[0 (my | Exiymy ... En) = tr (EX .. ENN ).

Note that we consider [p] to be a partial strategy: it is possible that Opponent asks &,
using an intervention operator with an input space which is not the same as the last output
space or with the space from which the starting state is taken. We define [p] as assigning
probability zero to all plays where this is the case.

The scheme used to represent quantum operations with the other quantum measure-
ments formalisms can also be used with intervention operators. Suppose that ¥ is a trace-

preserving superoperator. We have that

[Hy]l — 2L [Hp]
&,
&,
m
m

where &,, is taken to be &), F = {8;',{* of } Since ¥ preserves traces, &, is again a

quantum intervention:

D uErF ) =Y & =1,
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where p’ = ¥ (p). When we compose the strategy [¥ ] with a state strategy [p], we get that
[Fip) (11 Ex,En,m) = >t (ELF (0)) Sy

=tr (8} (F(p))
=[F (o).



CHAPTER 4
Game semantics for the measurement calculus

As a first application of the quantum strategy concept developed in the last chapter,
we study in this chapter the low-level measurement calculus, presented in section 2.2.1.
The measurement calculus lacks an explicit type system: this was not required when the
measurement calculus language was first introduced, since the main purpose then was
to simplify the presentation of the one-way model [RBO1]. Because the construction of
a game semantics is based upon games corresponding to types, we must begin by the
introduction of a typed variant of the measurement calculus.

4.1 MCdata

The formalization of the measurement calculus that follow aims to construct a type
system where commands are typed in a way that automatically enforces the three condi-
tions defining patterns in section 2.2.1.

The approach chosen here to add types to the measurement calculus is not the unique
possibility. We choose to consider quantum states as constants, as we do for Boolean and
angle values. This forces commands to be operations taking quantum data to quantum
data. Signals are considered as (classical) stores where measurements results are written
when a quantum measurement is performed and read by dereferencing. Another possible
approach would be to represent quantum data as the state of a quantum store. In that case,

commands are considered as operations modifying the internal state of the store. While

86
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we do not develop this idea in the case of the measurement calculus, it is developed in
chapter 5 in the case of a quantum A-calculus.
4.1.1 Syntax

The language MCdata we define below uses labelled types and labelled terms. The
labels identify gbits, and allow signals to be tied to specific measured gbits.

The terms of the language MCdata are constructed as follows:

Booleans B, By, B,

Ol1]|!s| B ®B,

Angles W, W, W,

gbits )

a| W, +W,|rotW B, B,
x|l¢Y |measi sWQI|E;Q|X;BQ| Z;BQ

where s, x are variable picked from an infinite set of variables Var, a € [0, 27), i, j are gbit
labels, 1 is a finite set of labels and |¢)’ is a state in the complex Hilbert space H; = ®i - C?
— since we use integers as labels, these products are always taken in some specific order.
If I = 0, we set Hf = C. We assume there is an infinite number of different labels,
i.e. that the number of gbits involved, while always finite, can be as large as desired.
Most of the operations are explicit analogues of their counterparts in the measurement
calculus. The only Boolean operation needed in the measurement calculus is the exclusive-
or @ operation. Boolean values are introduced as terms, either directly as the constants 0,
1, or indirectly as measurement results stored in signal variables which are accessed by
the dereferenciation operation !. The angle operation + is the addition (modulo 27) of
two angles. The operation rot a b; b, takes the angle « to (-D?a + byn, where b, and
b, are two Boolean values. This operation is used in the measurement calculus when
signals are used to modify a measurement angle, using the notation [M{]*'. Since we use

conditional rotation operation, the gbit measurement operation does not need the signal
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input present in the measurement calculus. Finally, the above syntax introduces analogues
of the conditional correction commands X and Z and of the entanglement command E,
together with gbit constant terms and variables. Qbit variables are necessary to be able to
represent terms with unspecified input.

The type system uses four base types:
T := angle | bool | gbit’ | signal,

The types angle and bool are the classical types of angles and Boolean values, and
the gbit’ type is the type of gbit states over H;. Signals are stores for Boolean values. The
labels associated to the type signal, specify to which gbit i in I the signal is associated to,
1.e. the gbit that can be measured to change the value of the signal.

A context I is a partial function assigning types to variables: it is written as a list of
type assignments x;: T7,...,x,: T,. Note that such a list cannot refer more that once to a
given variable. A typing judgement is a triple I' + M : T consisting of a context I', a term
M and a type T. We must give rules so that one can infer the type of a term M in a context
I from basic type assumptions. Before doing this, note that measurements are destructive
in the measurement calculus and thus that it should not be possible to reuse the label of a
previously destroyed gbit. We enforce this formally by keeping track of the unused labels
of a term M the set unused labels in M is denoted UL(M). We consider the measurement
and dereferencing operations binding on signal variables: a variable s is free in M if it
does not occur in M as an argument to a meas or a ! operation. The set of free variables

of M is denoted FV(M).
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Table 4-1 MCdata typing rules

Constants
x € Var
LoxtTEx:T T = gignal) or gbit!

I+ a:angle @€ [0,27)

Trb:bool DEOL gy qbit! 1#) € Hi

Classical operations
[rs:signal,  TrW:iangle T'rBj:bool T+ B: bool
I r!s: bool I'+rotW B, B,: angle

' By: bool '+ B,: bool '+ W;: angle '+ W,: angle
I'+ B; & B,: bool 't W, + W,: angle

Quantum operations
[+ B:bool T+ Q: gbit"™" I'+B:bool T+ Q: it
I'+X;BQ: gbit"" T'+ZBQ: gbit™

['Fs:signall, T+ W:angle T+ Q: qgbit""

'+ meas) s W Q: gbit’ se VNIV

'+ Q: gbit’”"” T+ Q: gbit
I'+E;Q: qbit™™ Tt prep; O: gbit™"

i € UL(Q)

The typing rules of MCdata are described in table 4-1. Note that we only allow
variables of type signal, and gbit’, since it is not possible in the measurement calculus to
have an unspecified Boolean or angle.

An MCdata pattern is an MCdata term M for which we can derive a typing judgement
of the form

1t signali'1 yeres Syt signal?;,x: qbit™ r M: qbit™™.

where In, Out, J; C 1. To clarify the notation, we label signal variables with the label i of

the associated measured gbit: s; is the signal where is stored the measurement result of
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a qgbit of type gbit’. Note also that we need to use gbit variables in order to describe the

unspecified input to a pattern. This is because we do not have access to higher-order types

such as “gbit™ — qbit*™”

As the following examples show, it is easy to write a measurement calculus pattern
as a MCdata term.
Example 4.1. The MCdata form of the measurement calculus pattern for the Hadamard
operation is

Hadamard,, = X, !smeas}, s 0 E, prep, x.

Note that we have left all parentheses implicit: the Hadamard term is
X, (15) (meas}2 50 (E1» (prep, x))).
The type of this term is
s: signalj,, x: gbit' + Hadamard,, : qbit?
Example 4.2. The controlled-not operation AX is represented in MCdata as the pattern
CNotjpy = X4 5324152 Z; s, meas; s3 0 meas, s, 0 E34 Ex; E i3 prep;prep, x
The type of this pattern is
X: qbitslz, Syt signal%234, 53 signal?_q)4 F CNotjoy: qbit14

Example 4.3. The releportation pattern, which takes some state in H; and transfers it to
Hgl

Teleport,; = X3 !'s; Z3 |s; meass; s, 0 meas),; s; 0 Ex; Ej, prep; prep, x
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We can derive the following typing judgement using the above rules:
x : gbit', 51 : signal},,, s : signal3, + Teleport,,: gbit’

The type system restricts MCdata terms to those corresponding to patterns.
Lemma 4.4. IfT' + M: T is an MCdata valid typing judgement, then I" contains at most

one variable of type qbit’ which is used in M

Proof. By induction on the derivation of ' - M : T.

If M is a constant or a variable term, the result is trivial.

By inspection of the other derivation rules, we can see that in all cases the hypothesis
contains at most one term of type gbit’, which, by induction hypothesis, contains at most

one variable of type qbit’. The term in the conclusion thus also has this property. O
We henceforth assume without loss of generality that there is at most one gbit variable
in a context, i.e. that all contexts I" are of the form
Si: signal?‘l, ey Syt signalz,x: qbitI“.
Consider a gbit MCdata term M:
s signali‘l, ey St signali'; ,x: qbit™ F M: qbit®".

Does the MCdata type system force M to correspond to a measurement calculus pattern?
While we can construct from M a sequence of measurement calculus commands, we need
to check that it will always satisfy the three defining conditions of patterns.

1. Assume a signal s: signal} is used in M. According to the typing rules, the only

place where s can be used in either in a dereferencing operation or in a measurement
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operation. To satisfy the first defining condition of measurement calculus patterns,
s must not be used in the arguments of a measurement operation that assigns a value
to s. The measurement operation typing rule explicitly forbids this.

2. Since the type system does not allow to the introduction of a new gbit label i to a
term N with prep;, when i has been used previously in the construction of N, no
command can be applied to i, if i is measured in the measurement calculus pattern
associated to M.

3. For similar reasons, if i € Out, then i cannot be measured in M. If a gbit i ¢ Out
is used in M, then i must be measured at some point since the measurement typing
rule is the only one where labels are removed from gbits.

4.1.2 Operational semantics
The operational semantics we give in this section is a direct adaptation to MCdata of
the semantics given in [DKPO7]. A store is a partial function £ : Vars — {0, 1} taking

variables to Boolean values. Stores are modified as follows:

bift=s
Z[s > b](¥) =
2(t) otherwise.

A MCdata state is a pair £, M where X is a store and M is a MCdata term. A canonical
form X, V is a pair with a store X and a constant term V.

The operational semantics is given by a probabilistic reduction relation X, M J7 X', V,
where V is a canonical form and p € [0, 1] is the probability of the reduction occurrence.
The parameter p is omitted when it is 1. The reduction rules are described in table 4-2.

Note that the only place where the reduction rules allow probabilistic branching is in

the two rules for measurements.
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Table 4-2 MCdata reduction rules

Constants
Tala @€10.2m) TOoyT0 T 101
ExlEx XYEVAL 3 jg) |5, |g)
Classical operations
2 s U Z,2(s)

LWPP¥,e Y.BJ"Y.b E,B "X, by
X,q,rot WB, B, [P 2" 3
a €[0,2m), by, b, €{0,1} and B = a”' + byn
ZaBl U[J Z,?bl 2”32 'U’q Z,”bz
X, BieB, |P1Y,b
Z’ Wl Ul) 2” a ZI, WZ Ul] 2”’ (0]
Wi+ Wy [P E" B
Quantum operations
LBYE,b  T,0U3I¢) LBWY,b  T,QU03, gy
5. X BQ P T, (IX,1g)) %.ZBQ UM X" (1Z: 1))V
WY, Y, 0 1%, gy
Vra QUL (r )P
X, meas; s W Q ||’ Z[s > 1], (+al¢)
WY «a L0 1, gy
3, meas) s W Q 77 Z[s - 0], 2(—,l¢)’
%, 0P X, gyt %007 Y, gy
2 E QU7 X, (AZjle))™ ') X, prep; Q U7 X, (|+) ® [¢))"

b],b2 S {0, 1}, b= l’)] XOI'bQ

ap,a; €10,2n),B=a; +a;

r=K=al®)l
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4.2 Denotational semantics

We now turn to the problem of applying the ideas exposed in the last chapter to
construct a game-based interpretation of MCdata terms. We want to define a map [—]]
on types and on typing judgements such that [I'+- M: T] is a strategy in [I']] — [7].
Because of the presence of the preparation command, we need to allows POVM quantum
strategies as introduced in section 3.6.2. Note that the fact that there can be only one
POVM measurement per play is not problematic since in the measurement calculus each
gbit is measured at most once.

Each type of MCdata is interpreted as a quantum arena:

[bool] = bool  [angle] = angle [ gbit'| = qbit’ = [H]
IIsignalf,]] = signal’, = (angle o gbit"! — gbit’ ) © bool
The bool arena is the classical flat arena defined in section 2.3.4. The angle arena is the
flat arena over [0, 2r), defined in a similar way as the bool arena. The interpretation of the
qbit’ uses the quantum arena [H;] which is the tensor product of arenas [C?], one for each
index in /.

The interpretation the signal type is more complex. Since we consider signals as
stores, we use an interpretation similar to what is used in the case of classical stores. A
classical store s comes equipped with two methods: one to write a value to the store, one
to read a value from the store. The type of a classical store for Boolean values is taken to
be

(bool — com) © bool,
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where com is the arena for command types, where the only possible interaction is of the
form “rundone”. Opponent asks that the command be run, and Player confirms that this
has been done. With this definition, the write and read operations can be respectively
interpreted as the projections on the bool —o com and bool arenas. Intuitively, the write
operation is a command that takes a value as input and is executed returning no value, and
the read operation simply returns a Boolean value. The definition of the signal arena given
below differs from this because we consider the measurement operation as a variant of the
103}

classical write command. Since the measurement operation takes an angle and a gbit

value and returns a gbit’ value, the write part must be replaced by the arena

angle © gbit’""! — qbit’.

We want the two projection strategies to correspond to measurement
meas): signal; —o ((angle ) qbitlu“}) —o gbit’ )

and to dereferencing

deref : signal;, — bool.

We thus use the arena
signal’ = ((angle o gbit’ U”}) —o gbit’ ) © bool

as the interpretation of the type signal;.
A term M is said to be semi-closed if we can derived a typing judgement of the form

I' - M: T with I containing only signal variables. The interpretation of a semi-closed
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Table 4-3 MCdata denotational semantics

ﬂsignal;

[[F,x: TFx: signalg]] : [T © signal, — signal,

[[F,x: Trx: qbitl]] . [T © gbit! . (71
[T+ «: angle] : [I'] —— angle

[T+ 0: bool]l : [T —2> bool

[Tk 1:bool]: [T] ——> bool

[T+ 1¢)': gbit'] = [T 1] gbit’

[T F!s: bool] : [T —2= signal§ Qerel signal§

WILIBi1,IB
VLB UBD angle@bool@booll%angle

[T +rotW By By: angle]| : [T

([B11L[B:11)
_—

[T+ B;®B,: bool] : [T] bool ® bool —='> bool

AW L,IW2 1) addAngle
_—

[T+ W, + W,: angle] : [T angle © angle —— angle

) ; R . dX; :
[+ x:B0: qbie™ @] - ry MY poor o it X gpigti
[ zBo: avit™]: rp—TMe L pogr o qitUi 2 gpigr
. . A”!(meas)
signal’ © angle © gbit'V') ————> qbit’

IIF FEi;O: qbitM”’}]] : I tor_ qbit/V7 M) gbit!Vt)

IIF + meas, s W Q: qbit’]] .y bHWILIen

[T+ prep; 0: abie™ ] - T 2 git! X git!t

term I' v M: T is a strategy [M] : [I'l — [7] which is defined by induction on the
derivation of typing judgements.
All constants are interpreted as their corresponding strategies as described in the pre-

vious chapters: the Boolean values 0 and 1 are interpreted as the strategies O, 1: bool and



97

similarly an angle « € [0, 27) is interpreted as the strategy « : angle with typical play

angle
?

a

A quantum state term I + [p)’: qbitl is interpreted as the strategy [lcp)’ ] in [[']] — qbit’
which ignore the [I']] component.

The dereferencing operation !s is interpreted as the projection strategy deref de-
scribed above:

[T +!s: bool] = [[s]] ; deref.

The classical operations are interpreted using deterministic strategies rot, xor and

addAngle with the obvious definition:

[T+ rot WBB,: angle]] = ([W1, [B:1, [B:1); rot
[T+ By ® B,: bool]] = ([[B:], [B:1); xor

[T+ W, + W,: angle] = (W1, [W-1); addAngle

In each case, Player queries Opponent about each required input datum and produces a
final answer in the output component.

Conditional corrections are interpreted as follows:

[T+ x.BQ: qbit" || = (B, 101 condX;

[T+ Z.BQ: qbit™]| = <[], [Q1): condZ;



98

Both strategies

condX;, condZ; : bool © gbit™"! — gbit'""

are defined as follows: if Opponent begins with A, in the output component, Player asks
Opponent for a Boolean in the bool component, and then asks either (X,&’(XZT)? or A, when
he is answered 1 or O respectively. He finally copies the final Opponent’s answer to the
output component.

bool o it ———qbit""
A

(Ix1°AIX]1?)

m

?

m
Note that if we had the resources of higher order language, the conditional corrections
could be interpreted using an “if then else ” construct. In the case of a X correction, this
would give:

if Bthen X else id.

In in classical higher-order game semantics, conditionals are interpreted using a strategy

cond and pairing:

[if Bthen M else N = (B, [M1l, [NT); cond

where Player, when using the cond strategy, probes Opponent about the input bit, and then
probes again in either the second or third component to copy Opponent’s answers in the

output component.
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The measurement commands are interpreted using the adjunction bijection A between

strategies in A © B — C and those in A — B —o C. The projection meas) has the adjoint
A~'(meas!): signal; © angle © qbit’"'! — qbit’.
The denotation of the measurements commands is defined by

[T+ meas) s WQ: gbit’|| = (I, [W1.1QT): A~ (meas];; ).

Entanglement operations are interpreted using the unitary operation strategies defined

in section 3.18:
[[F F E,J Q: qbitIU{i’j}:[I = [IQ]] s [/\Zz]]
The interpretation of typing judgements ending with the preparation of a new gbit is

defined using the preparation strategy
prep;: gbit’ —o gbit"™"
as described in section 3.6.2. Suppose we are given an interpretation [[F F Q: gbit’ ]] with
I'F Q: gbit™,

The strategy
[[F Fprep,; Q: qbitIU{i}]] - [T — qbitlu{i}

is defined as the composition [Q] ; prep;.

This completes the definition of the denotational semantics.
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Example 4.5. Consider the interpretation of the Hadamard given in example 4.1, but for

a fixed input gpbit |p)':
[[s: signal}, + X, !smeas!, sOE, prep, |)': qbitz]]
is equal to the following composition:

signal],

A
signal}, © signal;,
idOA
signal}, O signal}, © signal,,
idoidoA

signal], © signal}, © signal;, O signal |,
idoidoido[[le)']]
signal|, © signal;, © signal}, © gbit'
idoid o[[0]loprep,
signal}, © signal;, © angle © gbit'*
derefoA™!(meas))
bool © gbit’

condX,

qgbit?

4.3 Soundness
Since our goal is to show that the denotational semantics matches the operational

semantics of MCdata, we need to take stores into account in the denotational semantics.
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To this end, we need to define a strategy sig: I —o signal, that behaves in a way that
encodes the behaviour of a signal interacting with its environment.
Assume that a signal is initially set to b; € {0, 1}. A typical play in the signal arena

where Player is using the deterministic strategy sig,, is

(angle o gbit’""! —— qgbit’) © bool

?
by
A
?
a
Ay @ {[+a1h, [=ali},
m, by
m
?
by

In the typical play, Player answers question in the Bool component using the initial value
b, and answers any question A, about the output gbits using the measurements results he
gets from Opponent when she is asked to measure the input gbit at the required angle. New
Opponent questions in the bool component are answered using the measurement result b,
in for gbit i.

Let I" be the context

S1: signal}], ...y 8, signalj .
A T'-store is a store X defined exactly for the variables sy,...,s,. If £ is a I'-store, we

define [X]] to be the product strategy

(SiQx(s,)» - - - » Sigs(s,y) - I — [T
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A pair Z, M, withT' - M: T semi-closed and X a I'-store, is interpreted as
[Z, M1 = [Z]; [M].

The next proposition says that if some term M reduces to some value V with probabil-
ity p when starting with a store Z, then, if Player is using the strategies associated to M and
V in their respective contexts, he behaves in the same way in both cases with probability
p:

Proposition 4.6. If X, M ||’ X', V, then for all well-opened sab € T ([¥', V1) we have that

[Z, M| sa)=p[Z,V]®]sa)

Let us consider a simple example of such an equality between probabilistic strategies
in the arena bool. Consider the strategy true and the strategy coin which makes Player
answer the initial question with O or 1 randomly with uniform probability. The fact that
Player behaves the same way in both cases with probability 1/2 can be written as in the

statement of the last proposition:
. 1
coin(b | s?7) = Etrue(b | s?).

We prove proposition 4.6 using a stronger proposition which is proven by induction

on the derivation of X, M |}’ X', V, using
[Z, M1 = [Z1; A; (IM] © idyry)
instead of [X, M]. This stronger proposition is that given X, M || X', V, we have

[Z, MY (b|sa)=p[Z,V] b] sa)
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for any well-opened play in 7 ([X’, V]') starting in [7]]. Since these plays are the same as

those of [[Z, M]], the proposition follows directly.

Proof. We prove the result by induction on the derivation of £, M ||’ X', V, but we need to

prove it using a stronger hypothesis. We define [[X, M]]’ to be the morphism

=1 [Mleidry

[———[I]—2—[I]o[Il

[(TToll]

and we show by induction that given X, M |}’ ¥’, V, we have
[ M1 (s) = p[Z, V] ()

for any well-opened play in 7 ([¥’, V]') starting in [T]]. Using the variant [X, M]]" allows
one to access the [[X] strategy from the output arena, which is not possible if we use
=, mM].

For constants, the result is immediate.

We show how a typical induction case is handled. Suppose the proposition holds

when X, By |J? ¥',b; and X', B, |J? ", b,, and that we want to prove it when
X,Bi® B, |”1Y, b,

with b = by & by. Let sab € 7 ([X”, b]]") with a being a move in bool. The fact that the

diagram

idOA

[(IToll'l ———[ITodrioern

A@idi /

(rrernoe(ri
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commutes and the functoriality of the © arena operation imply that [Z, B; @ B;]|’ is equal

to
— 2 bool © [I]]
Al Txor@id
[(CHoelry bool ® bool © [T']]
B ]]oidi Tid olB:lleid

bool © [[IT']] —aon bool 0 [I'T o [[T]]

Consider a witness u of sa in the above composition. The first move of # must be a question
in the final bool arena. The xor strategy copies this question to its left bool input arena, and
the identity strategies copies it to a question in the output bool component of [[X, B;]". By
hypothesis, this strategy behave like [X’, b, ]| with probability p and leave the I'-store in the
state X’. At this point, the xor strategy begins an interaction in its second bool input arena,
and the play proceeds using [X’, B,]. The induction hypothesis implies that [X’, B,]’
behaves like [X”, b,]" with probability ¢g. Finally, Player following the xor strategy will
answer b = b; xor b, in the final bool component with probability pg, leaving the I'-store
in state X”’. This shows that plays starting in the last bool component [X, B; & B,]| behave
as [, b]] with probability p.

Consider the case of the measurement rule. Suppose that the proposition holds for

YW UPZ,aand ¥, Q U727, o). We want to show that when
T, meas,sWQ [P X", o)
for all well-opened plays sab € T ([[2”, lo)! ]],> with @ in gbit’, we have that

[£.measi s w o | sa) = par[[=.1p)']| @ | sa).
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where r = [{a,|¢)/|>. Similarly to the previous case, we have that
[[2, meas) s W Q]]/

is equal to the following composition:

. . A~ ioid
—E [ signal’ © angle © qbit'"""! o [T'] & gbit’ o [T
[Al i Tid ol Qlleid
[Clolr] signal’ © angle © [T'] © [T]]

noid l T idOA

signal; © [['] —— - signal; © angle © [T]
Consider a witness u of sa in the above composition. The first move of u is a question A,
in the final gbit’ arena. This is copied to a question in the gbit’ component of the signal;
arena. This is copied by the identity, projection and diagonal strategies to the signal, part
of the initial I'. Following [X]], Player asks back a question in the angle component, which
is copied back to the input signal arena of A™! (measf,). The question is then copied to the
angle input arena and copied to the output arena of [[W]. By hypothesis, this question is
answered with a with probability p after an interaction which changes the [X] strategy
to a state where it behaves as the strategy [Z']. Note that the s: signal} part of I is not
affected by this change, since s cannot be used before the measurement command meas

is introduced. The answer is copied back to the signal} part of the initial store strategy,

now [Z]’, where Player uses it to ask for result of the measurement

Fo @ {[+alys [=ali} -
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This question is copied to the input gbit’'! of A~! (meas;), and answered using [Q]. By
induction hypothesis, this happens in the same way as using the strategy [[Igo}’u“}]] with
probability gr, where r is the probability that the measurement on gbit i gives the result
m. Note this is the point in the interaction where the quantum measurement is actually
performed. By hypothesis, after this interaction, Player will use the strategy [X”]] in the
first part of the composition, and as in the previous angle step, the s part of X is unaffected.

The answer is copied back to the initial signal;, where afterwards any query using
deref will be answered with the i part of the measurement result. This will leave the store
strategy behaving as [X[s + m]]}, and the I part of the answer is copied to the final qbit’
arena.

The other cases are treated similarly. |

The next important result about the relation between the operational and denotational
semantics of MCdata is adequacy, the converse of proposition 4.6.
Proposition 4.7. (Adequacy for MCdata) Let M be a semi-closed term. If for all well-

opened sab € T ([¥', V]) we have that
[Z, M (D] sa)=p[XZ, V] (D] sa),

then X, M [P X',V holds.

Proof. By induction on the construction of terms. Assume I' - M : qbit®™, where I" con-
tains only signal variables. We show how typical cases are dealt with, the other cases being
similar.

For the base case, M is either a constant term or a signal variable. In both cases, the

result is immediate since M is a value.
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Suppose that the proposition holds for B, and B,, two boolean semi-closed terms,
i.e. that the strategy [X, B,]] makes Player play the same moves as [I”, ;] and that the
strategy [[X’, B,]] makes Player play the same moves as [I",b,]]. We want to show that
the proposition also holds for I' + B; @ B,: bool. Assume that when player uses the
strategy [£, B; @ B;]| he makes the same choices as if playing using the strategy [X”, b]|
for some Boolean b. By the definition of [B; @ B;]|, Player answer the initial question
by starting interactions using successively the strategies [B;]] and [B,]]. Suppose that in
these interactions the initial questions are answered by b; and b, with probability p and ¢
respectively and thus that the final answer Player gives using [B; @ Byl is b = b; @ b,. By
induction hypothesis, this implies that X, B, |}’ ¥, b, and ¥, B, |7 X", b,. If thus follows

from the definition of the operational semantics that
Y, B® B, |"1X, by @ b,.

Most other cases follow using a similar argument.

The case for the two typing rules involving signals are a little different.

For a term of the form I" +!s: bool, assume that [X, !s]] makes Player behave in the
same way as [[2’, b]| for a Boolean value b. By definition of the dereferencing strategy, the
initial question in [, !s]] is answered with the boolean X(s). This entails that b = X(s) and
thus that 2, !s |? X, b.

Suppose that the proposition holds for

I s:signall, 2+ W: angle and '+ Q: gbit™!".
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We need to show that the proposition also holds for meas; s W Q: gbit’. Suppose that
[[2, meas) s Q: gbit’ ]]

makes Player play the same way as [X”,|¢)]] with probability p. By definition of the
strategy meas’, an initial question A, about the output gbits is answered using first an
interaction played using [X’, W] to determine the angle W and second an interaction using
[X”, Q] to determine the quantum state being measured. The first interaction will end
with an answer which provides the measurement angle a with probability p; there may be
some part of the interaction which uses [X]] and leaves the game in a state where the next
moves in the signal arenas are chosen by Player according to the strategy [X’]. Since this
means that [X, W] makes Player behave as if he is using the strategy [[~’, @]]. By induction
hypothesis, this implies that X, W |7 ¥’, @. The initial question (A, is transformed by the
sigh strategy into the question
Ay & {[+a ], [=al}

"’ This question begins the second interaction and is answered using

in the arena qbi
the strategy [Q]. The answer to the initial question of this second interaction is a pair of
measurement results m, b with probability g, where b = X" (i) is the measurement results.

The answer m is given by the state |¢) since meas) makes Player answer the initial question

A, with this m and that by hypothesis the strategy
[[Z, meas; s Q: qgbit’ ]]

makes Player play the same way as [[X”, |¢)]. It is not possible to infer from the mea-

surement result the state being measured, but we can assume that this state is of the form
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l)|+e) if b 1s 1 or |p)|—,) if b = O since all future interactions involving the measured
gbit use this updated state. The measurement result » must be X”(s). This implies that
with probability g the strategy [X’, Q]| makes Player behave as if he is using the strategy

[Z”, o)) ]l- This implies by induction hypothesis that

2,0 U7 E p)la)-

Using the reduction rule for measurement terms, we conclude that
¥, meas; s W Q: gbit’ | grZ”,|®)

as required. O

A MCdata context C[—-] of type A with hole of type T is a constructed like a term
with a free variable — of type 7.
Definition 4.8. Let ' + M, M’ : T be two semi-closed terms. M and M’ are contextually

equivalent M ~ M’ if for all context C|—] and I'-store Z,
SCIMI)P Y,V < X CIM]JPY,V.

We can extend this definition to general open terms M, M’ with a free gbit variable
x: gbit™ by asking that M[Q/x] ~ M’[Q/x] for any gbit term Q: gbit™.

We want to show that the denotational semantics defined in the last section captures
contextual equivalence.
Proposition 4.9. (Soundness for MCdata) If [M] = [M']l, then M ~ M’.

To prove this, we need the following lemma:
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Lemma 4.10. (Substitution for MCdata) Let U',x: T + M: U andT' + N: T be two MC-

data terms. Then
I' M[N/x]: T and [MIN/x]1l = (idyry, [INTD; [M] -

Proof. By induction on the derivationof I', x: T+ M: U.

For the base cases where M is a constant term, so in

(M1 (rlel7l — LUl

all plays contain only moves from [U]]. The composition of [M] with {(idyry, [N]]) is
thus [M]. If M is a variable y # x, then [[y] is the copy strategy between [U] and the
[U1 component of [I']l. The composed strategy (idyry, [V]) does not involve [N] and
is thus equal to [[y]l. If M = x, then this time [x]] is the copy strategy between [U] and
[7]. Composing with {idyry, [N]l) gives [N]l. In both case we get the desired result since
y[N/x] =y and x[N/x] = N.

We show how to deal with the induction step in the case of the measurement rule; the
other cases are similar. Assume that the substitution lemma holds for I', x: 7 + s: signalf,,

[,x:TrW:angleand T, x: T + Q: qbit’'"!. We want to show that it also holds for
[, x: T+ meas;s W Q: gbit'.
On one hand, we have that

(meas§ sWQ: qbit’) [N/x] = meas s[N/x] W[N/x] Q[N/x].
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On the other hand, we have that by hypothesis

idgry © [N :<[sT, [W [T
= (idgry O [N ; [T, idgry @ INT 5 [IWT L idgry © [N 5 [OTD

= ([LsIN/x1D, TWIN/x1T, TQIN/ x11D),

and thus we get the desired result by composing with A™! (meas;). O

Proof of proposition 4.9. Suppose that we have [M] = [[M’] for two semi-closed terms
M, M’ of type T. Take any context C[—] with a hole of type T and any I'-store X, and
suppose that

X, C[M] P 2, V.

It follows by proposition 4.6 that for all well-opened sab € 7 ([X’, V]) we have that
[Z, CIMI (| sa) = p[Z, V] (b ] sa).
By hypothesis,

[Z, CIMIT = [Z1; Cidyry, [MT); [CTx11
= [Z1; Gidyry, [M]): [CTx1T

= [Z, cim1],
and thus for all well-opened
sab € T([X,V])

we have that

[S.CIM N b | sa) = p[E. VI | sa).
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By adequacy we conclude that C[M'], 2 || X', V.

By the symmetric argument, we get that M ~ M’. O

The main reason to introduce game semantics in classical programming language se-
mantics is to be able to prove full abstraction. This property is the converse of soundness:
it say that if two terms are contextually equivalent, then their denotations are the same.

Full abstraction is usually showed by proving the contrapositive proposition: if two
terms M, and M, have different denotations [[M,]] and [[ M,]], there must be a context C[—]
which can distinguish them. Proving this requires the construction of a context C[—] asso-
ciated to a given strategy. In game semantics, strategies are identified using an equivalence
relation defined as follows. Let the test arena test be the arena with only one question ¢
and one answer a. A test for an arena A is a strategy a: A —o test. A strategy o in A
passes the test a if o;@ = T, where T is the strategy where the question ¢ is answered
with the answer a. Two strateges o and 7 are equivalent if they both pass the same tests.
It is shown in game semantics that when working with strategies up to this equivalence
relation, every important property (such as proposition 4.6 and adequacy) stay valid. To
prove full abstraction, one must produce a context C[—] that distinguishes M; and M,
when [M,] # [M-,]. Using the equivalence relation, this last inequality means that there
isatesta: A —o test which is passed by one of the two strategies but not by the other. The
required context can be constructed from this test if the strategies of the category where
the denotation is defined are characterised very tightly so that this construction is possible.
We were not able to get such a result in the case of MCdata and for the other languages
presented in this thesis because we do not have an appropriate characterisation of quantum

strategies.



CHAPTER 5
A-calculus with quantum stores

In the last chapter we used quantum arenas to define a denotational semantics for
a typed variant of the measurement calculus. Based on attempts to construct a quan-
tum arena based denotational semantics for Selinger and Valiron’s language, which was
presented in section 2.2.2, we developed two new quantum A-calculi using different ap-
proaches to incorporate quantum states in classical languages. The first one uses quantum
stores and is the topic of this chapter. In the second one, quantum states are used directly
as data in the language; the description of this second language is the topic of the next
chapter. We begin this chapter with a review of the main observations that lead us to intro-
duce two new quantum A-calculi. Then we present the first language, based on quantum
stores, and its semantics.
5.1 Ciritique of the quantum A-calculus

In the first presentations of the quantum A-calculus developed by Selinger and Val-
iron [Val0O4, SV06a] no denotational semantics was given. They proposed in [SV06b] a de-
notational semantics for the linear part of the quantum A-calculus; their interpretation is in
the category CPM of completely positive maps on finite dimensional Hilbert spaces. The
category CPM inherits a compact closed structure from the category of finite dimensional
Hilbert spaces. By working in this category the difficulties of using trace non-increasing
maps described in section 3.1.1 are avoided, but at the cost of having programs interpreted

as trace-increasing completely positive maps because the interpretation of A-abstraction
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can produce such maps (for example the term Ax,y.x ® y). This is incompatible with the
expectation that terms of a language that described manipulation of quantum data should
be interpreted as superoperators, which correspond to physically realisable operations.
We explored the possibility of using quantum arenas and strategies to construct a
denotational semantics for the full language. The main difficulty encountered is with the
tensor type operation of Selinger and Valiron’s quantum A-calculus: it can be used on
both quantum and classical types. So if we want to inductively associate an arena [[A]] to
each quantum A-calculus type A, we need to define [[A ® B]| using the classical product of
arenas [[A]] © [B] in general, but by [A]l ® [B]] when both A and B are gbit types. While
with this idea we are able to deal with types, it creates difficulties for the definition of the

denotation of terms. In particular, we need a strategy

[x: gbit, y: gbit - x® y: gbit ® gbit]]

which should intuitively take two gbit states and tensor them. This should be a strategy in

the arena
[gbit]] © [gbit]] — [[gbit]] ® [[gbit],

but there is no natural strategy of this type with the required behavior. Such a strategy
needs to specify how to answer a question in [[gbit]] ® [[gbit]] by measuring each gbit
component separately. As we explained in section 3.4.2, this is not possible in general.

If instead of interpreting the type hypothesis x: gbit,y: gbit in the above typing
judgement as [[qbit]] ® [gbit]] instead of [[gbit]] © [[gbit]], we run into a different difficulty.
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This time we have problems with abstraction. Suppose we want to define a strategy
[y: gbit + Ax. x ® y: gbit — (gbit ® gbit)] .

The typing judgement must be introduced using the abstraction rule

x: gbit, y: gbit F x ® y: gbit ® gbit
y: gbit F Ax. x ® y: gbit — (gbit ® gbit)

We thus need an adjunction between strategies in

[qbit]] — ([[gbit]] — [gbit]] ® [[gbit]])

with those in the arena

[gbit]] ® [gbit]] —o [[gbit]] ® [gbit] .

This again requires that one constructs a strategy which tells how to answer measurement
questions in [[gbit]] ® [[gbit]| using separate measurements in the two gbit components.
There is also another issue with the quantum A-calculus. The language does not
allow quantum states to be introduced directly (as, for example, we allow in the language
MCdata in the previous chapter): quantum states can only be referred to by using variables
of type gbit. In the type system, quantum states are considered as data of type gbit which
can’t be duplicated, but at the same time the language only allows one to have references
to gbits, which, intuitively, can be duplicated. There are two ways to introduce quantum
data into programs: a direct way using a syntax to denote quantum states and an indirect
way using references to external quantum stores. In the first case quantum data should be
treated linearly to make it impossible to duplicate an unknown quantum state, but in the

second case references to gbits should not have this restriction. We thus introduce two
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different languages, one for each of these approaches. We describe the second one in this
chapter and the first one in the next chapter.
5.2 Simply typed A-calculus with quantum stores

The A-calculus with quantum stores language (QSL) introduced in this chapter avoids
the difficulties described in the last section. The syntax of the language is built upon
a simply typed A-calculus with pairing and conditionals; quantum operations are added
using quantum stores which have a syntax analogous to classical stores. In a classical
higher-order programming language with stores, like idealised ALGOL [Rey81], stores
are references to values. They are used through various operations like dereferencing and
assignment. The quantum stores we use below are defined according to the following

parallel between classical and quantum references:

Classical stores Quantum stores
Dereferencing Measurement
Assignment Preparation
Command with side effects Unitary transformation

Juxtaposition by products  Juxtaposition by tensor products

In this perspective, a quantum state is viewed as existing in an external store which can
only be accessed indirectly. In this picture, the quantum counterpart of dereferencing,
which classically returns the value stored, is quantum measurement. The counterpart of
assignment is state preparation. Note that, while classically it is possible to assign a value
to a store multiple times, this is not the case with quantum stores, as a quantum state
cannot be destroyed. Instead, preparation creates a new quantum state. Classical stores

can be equipped with commands with side effects, for example, an integer incrementation
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command. This role is played by unitary operations in the quantum counterpart. Finally,
when many classical stores are used in some programs, they are simply juxtaposed using
products. In the quantum case, juxtaposed quantum stores must be described by tensor
products to allow them to hold entangled states.
5.2.1 Syntax

The syntax of QSL is that of a classical simply typed A-calculus with pairing, con-
ditionals and sequential composition, augmented with new constructs that permit manip-
ulation of quantum stores. To accommodate these, we need to introduce a new syntactic
device. When multiple quantum stores are combined, they can be measured by using a
projective measurement on the whole space. Because of this, we must be able to refer
to the combined store as a whole, while keeping the possibility to refer to a part of the
system. To this end, we introduce tensor of variables in the syntax. An extended variable
is an expression of the form x; ® - - - ® x,,, where the x; are variables such that x; # x; if
i # j. Two extended variables x; ® --- ® x, and y; ® - - - ® y,, are disjoint if x; # y; for all

i, j. Two such extended variables can be joined to form a new extended variable

XI1® - ®x,0y1® - QY.

Note that when we use x; ® --- ® x, to refer to an arbitrary extended variable, the case

n = 1 1is also possible. We use the notation

N® @ CY® - ®Y,

when each of the variables xi, ..., x, occurs in y; ®- - -®y,, and the order of the occurrences

is the same in both extended variables. We say in this case that x| ®- - -®x,, is a subvariable
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of y; ® --- ® y,,. To simplify the notation, we use X instead of x; ® - - - ® x,, leaving the
number n implicit.

The terms of QSL are defined by

M,N,P:= x|0|1]|skip|Ax.M | MN |if MthenNelse P | (M, N) |

fstM | snd M | M;N | meas*x | newXin M | U*X | prepywithxin M

where X and y can be any extended variables, x,7 C x and U can be any multiple-gbits
unitary transformation. All the classical operations used are standard operations: (M, N)
is pairing, fst and snd are the two associated projection operations, M; N is sequential
composition, and skip is the operation doing nothing. The quantum part of the language
consists of operations to manipulate quantum stores: measurement, gbit creation, unitary
modification and preparation of extra gbits. The unitary operation syntax U* X means that
the unitary transformation U of rank n is applied to the gbits 7 = z; ® --- ® z,, of the
quantum store x. While X is an extended variable term, the extended variable 7 is used
as a label and is not considered a free variable of U?X. We will also use the notation
U 7 to denote this operation when the quantum store X is being implicitly specified in the
context. The measurement operation meas” x measures the gbit x in the quantum store X in
the canonical basis and returns a boolean value corresponding to the measurement result.
As for unitary operations, the variable x is only a label to point out which gbit of X is
measured. We will also use the shorter notation meas x to denote meas*x when it is clear
in the context which variable x is used. For the preparation operation, prepy with xin M
means that a given quantum store x is extended to a larger store by adding extra gbits

prepared in the |0) state. In M, the whole extended store is referred to as x ® y.
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As in any A-calculus, the A operation is a binder. Observe that it can be used on
extended variables, i.e. terms like Ax®y. meas x are allowed. The preparation operation is
also a binder: X is not free in the term prep y with x in M. The set of free extended variables
of M is denoted by FV(M). A term M is closed if it has no free extended variables. We
use the notation M[N/X] to denote the capture-free substitution (no occurrence of a free
variable in N is bound in M) of the term N for every occurrence of x. Note that the syntax
limits substitution in unitary and measurement operations to changes of variables. For
example the substitution

U'XN/X] = U ¥

is defined only when N = x” and y’ C X’ is the subvariable corresponding to y C x.
For clarity, we use the alternative notation letx = Nin M for (Ax. M)N. When multi-

ple variables are bound in this manner successively, we use the notation
|et)C1 =Ni,...,x, = N,,inM

for (Ax,. ... (Ax;. M)N;...)N,. Note that the terms Ax;(Ax,...(1x,. M)...) and Ax. M
are different: in the first one the variables xi, ... x, are considered separately while in the
second case x = x; ® - - - ® x,, 1s considered as a single variable.

5.2.2 Types

The types of QSL are the following:
A,B == bool |com | AX B|A = B | gstore.

The type bool is the type of boolean constants, A X B and A = B are respectively the types

of pairs and functions. The type com is the type of commands which can be composed
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Table 5-1 QSL typing rules

Lx:ArXx: A I' 0: bool '+ 1: bool I' + skip: com

I'-M:A=B I'-N: A I'x:A+rM:B ' M;: A I'-M;: A
' MN:B I'rAx.M: A= B ' (M, M): A; X Ay

I'tM: AXB I'tM: AXB I'+ P: bool I'eM: A I'tN: A
IF'rfstM: A I'rsndM: B I'+ifPthenMelseN: A

I+ M: com I'rN:A A = com or bool =. X% bool
C'-M:N:A I', x: gstore + meas” x: boo

I',X: gstore - U” X: com

I',x: gstore- M: A INx®y: qstorer M: A
I'rnewXxinM: A I',x: gstore + prepywithxinM: A

using sequential composition. The type gstore is the type of a quantum store. A quantum
store does not have a fixed dimension, as the number of gbits it holds can vary in the course
of a computation if preparation operations are used.

The typing rules for the classical part are given in table 5—1. The rules for the classical
part of the language are the standard rules of a simply typed A-calculus where extended
variables can be used. The rules for involving quantum operations encode the idea that the
content of quantum stores can be measured, modified using unitary transformations and
that quantum stores can be prepared or extended with an ancilla state. Note that the unitary
operation rule allows unitary operations to be applied only to part of a quantum register. An
important feature of QSL is that the typing rules do not forbid having multiple references to
a quantum store. For example, the typing judgement x: gstore + (meas x, meas x): bool X
bool is valid. Copying a reference to a gbit is not the same thing as duplicating the gbit.

Yet the language does not allow unknown gbit duplication: to duplicate the content of a
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quantum store x, one would need to prepare a new gbit y and apply an appropriate unitary
transformation to the quantum store x ® y. There is no such unitary transformation.
5.2.3 Operational semantics

The operational semantics of the classical part of the quantum store language is stan-
dard. For the quantum part we use a quantum variant of stores. Note that we expect that
the reduction relation of this language depends on reduction order, since, as we pointed out
in section 2.2.2, it is the case in the presence of operations with side-effects like quantum
measurements.

A quantum store Q is a function taking extended variables x; ® - - - ® x,, taken in a
finite domain of extended variables |Q| to a state [x; ... x,)g € (C2)®n. The domain |Q| is
assumed to contain only disjoint extended variables. A quantum store holds the state of
the quantum registers that are used in a quantum A-calculus term. We drop the index Q
when the context makes it clear to which quantum store a state belongs.

A quantum store Q can be modified in various ways. First, it can be extended by the
addition of a new quantum register; since this is similar to the extension of a classical store

we use the notation

Ollxi ... x0) = @)]

to denote the extension of Q to a store with domain |Q| U {x; ® - - - ® x,,} and associating to
the new extended variable x; ... x, the state |p).
Another important operation is preparation of extra gbits appended to a cell of a given

quantum store Q. If x; ® - - - ® x,, € |Q|, then

Q[lxl - XnYl ---ym> = |X1 xn>|00>]
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is the quantum store with x; ® - - - ® x,, removed from |Q| and

X® QX Ry QY

added, and with associated state

X1 .o X Y1 e V) = X1 ... x,0[0. .. 0).

Note that by definition of quantum store, {x1, ... x,} and {yi,...y,} are disjoint.
The final operation that we need is the modification of one register using a unitary
operation or a projection. Given a quantum store Q) and a linear map A over the Hilbert

space associated to the extended variable x; ® - - - ® x,, € |Q|, we denote by

Q[l-xl R -xn> = Alxl ree xn)]

the quantum store where |x; ... x,) is replaced by A|x; ... x,).

A QSL program is a pair Q,I' v M: A where Q is a quantum store, I' + M: A is
a valid typing judgement such that all the gstore variables in I" are in |Q|. We say that a
program Q, M is closed if |I'| C |Q|. To simplify the notation, we will often leave the types
implicit and write Q, M instead of Q,I' + M: A.

A value for QSL is a term of the recursively defined form

Viz x,® - ®x,]0]1]*|skip|Ay. M | (M, N),

where X can be any extended variable and M is any term with y € FV(M).
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Table 5-2 QSL probabilistic reduction rules

oM Q.axM Q. .MI[N/x]J1Q",V
Q’V’U' Q’V Q’ MN Uj)q Q”,V

o.My Qv O.NUQ.V
Q.fst(M,N) I? O,V Q,snd(M,N) II* ',V

O.M\|P Q' skip Q. NU7Q"V
Q.M;N |77 Q" V

0,P|? 0,0 O .,N 70"V O,P|r Q0,1 o.M |10",V
O.,if Pthen Melse N [P Q”,V 0.if Pthen Melse N |77 9",V

Q, UMk x1®@---@x, || Ollx1...x,) > UM ®%|xy ... x,)], skip

0, meas x; YOI/l Oflxy L x,) 5 [019]xy . .. ) /110191 .. )1, O

0, meas x; Y750 Oy . x) 5 (119 o) /IR - x), 1

Ollx1... x> 0...00],M |? Q',V
o,newx;®---®x,inM|P Q,V

Ollx1 ... Xyy1-..Ym) = @0, M P O,V
Ollx1 ... x,) @), prepywithxinM P Q',V

X1Q®--®x, &0

We define the operational semantics of QSL as a big-step probabilistic reduction re-

lation between programs. The notation

o.M Qv

means that when M is run with a quantum store in state Q, it reduces with probability p
to the value V with the quantum store left in state Q. When p = 1, we omit the prob-
ability argument and write simply Q, M || Q’, V. This relation is defined inductively by
the rules in table 5-2. Most of these rules are the usual reduction rules for the simply

typed A-calculus with sequential composition, conditionals and pairing. The reduction
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rules for the classical part of the language do not affect the quantum stores. The rules in-
volving measurements, preparations or unitary transformations change the quantum stores
according to quantum mechanics. For example, the rule for measurement says that if x;
is measured with a quantum store in state Q, then the state |x; ...x,)o where x occurs
is projected with the projection [0]" or [1]*, depending on the measurement result, and
normalised. Note that this is the only place where there is a probabilistic branching in
the reduction. For a unitary transformation operation U, the part of the quantum store Q
affected by U is updated to U|x; ... x,) and the term reduces to the command skip.

Example 5.1. Consider the following two terms M; and M, defined respectively by

M;: NUxQ®Yy M, : ifmeas xthen (U y) else skip

where AU denote the controlled version of a unitary operation U. This is defined by

NU1b1)|b2) = 1b1)|by @ by),

where @ is the exclusive-or operation. We have that

x®y: gstore - M;: comand x ® y: gstore - M,: com.

In a quantum store state Q which assign |¢) to x ® y, M, reduce to skip and the state Q is

modified by the unitary operation:

0, M, | Q[lxy) = AU|xy)], skip.
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Figure 5-1 QSL teleportation

teleport,_=
prepy ® zwith xin

Hy;, NXy®z;

Hx; Xx®Yy;

let b, = meas x, b, = measyin

if b, then
if l’)y then Ui zelse Uiz
else

if by then Un zelse Ug z

The term M, also reduces to skip but leaves the quantum store in a different state:

Ollxy) = loy], M> UP Q[lxy) = [0]"xy)], skip

O [lxy) = l)], M> U7 Qlxy) = U1 |xy)] , skip

where p = tr ([0]*¢){¢l).
Example 5.2. It is possible to program the quantum teleportation protocol [BBC*93] in

the quantum store language. It is represented as a term teleport,,, defined in figure 5-1,

BVl

which transfers an unknown state from some quantum store x to another quantum store z.

In the definition of teleport,, the operation H is the Hadamard transformation and
Uo() = I, U()] = X, U]() = Z, and U]] =7ZX

are the four possible correction operations, one of which must be applied to z to change its

state to that of the input quantum store x. If follows from the typing rules that

x: gstore + teleport,.: com
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The command teleport,, performs the teleportation protocol to transfer the state of the gbit
register x to the gbit register z. This can be verified using the operational semantics rules:

it is possible to derive that
0. teleport,. I Q|lxyz) - U; , [b,1'Tb,Fenot” H'|xyz)| , skip,

where we label each unitary transformation and projectors by the subspace associated to
the label variables.
Example 5.3. Any quantum circuit can be represented as a QSL term. Suppose that the

circuit takes a state |x; ... x,) as input which is initially tensored with the state

Vi...ym) =10...0).

The unitary operations Uy, ..., U, are applied to this state, and at the end the gbits

Xlse oo Xns Y1s oo Ym

are measured. This is represented as the term M defined as follows:
prepy; ® -+ ®y, Withx; ® ... x,in

U1 ®  @x, @Y1 ® - ® Vs

Uix1® - @x, 01 Q- QY5
(meas xi,...,meas x,,measyy, ..., measy,)

We can derive that

X1 ®---Qx,: qstore - M: bool ® - - - ® bool.
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Let Q be a quantum store with |x; ... x,) — |¢). We have that

Q’M ‘U’p Qla <b19" 'abn>7

where by, ... b,,, and are the results of the final measurements operations and

Q' = 0%t %) o Dol o byt P IBA1" .. (011" Uk ... U0 0)]

5.2.4 Denotational semantics

We now use quantum strategies to construct a denotational semantics for the quantum
store language. We want to define an arena [[A] corresponding to each type A and a
strategy [M] : [I'l — [A]l corresponding to each term I' + M: A. We will use quantum
strategies defined with intervention operators, as described in section 3.6.3.

The gstore arena is the arena with quantum interventions &, = {an} as questions and
natural numbers m as answers. The question &, enables its possible measurements results.

A play in this arena is a sequence of moves
Eoprymy -+ - Sapyhy

where the quantum interventions &y may all be different. We need a strategy [p] in qstore
which describes a quantum state p.
The probabilistic strategy [p] in gstore associated to a density matrix p is defined by
[p]l(e) = 1 and
() Exims - .. Engamy) = tr(EX . &M ().
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Note that since we use the convention that impossible composition of superoperators
yields the zero operator, the above definition assigns probability zero to plays which in-
volve domain inconsistencies. For example, if Opponent asks another question & after
receiving an answer to &), all possible Player answers will have probability zero when
the domain of &y is different than SD(H,,,). When the domain and SD(H,,) match, the

question &opyy is answered using the normalised state
2011 201
&)/ e (E1(p)).

It is easy to verify this satisfies the definition of probabilistic strategies. Note that the
strategy [p] is thread dependent: the first question is answered using the probabilities given
by p, = tr (87,[,1 ](p)), but a second question in a new thread will be answered with the prob-
ability distribution given by tr (8;1[22 ]8,31[11 ](p)) /Pm,» 1.€. using the updated state 8:”[11 )/ Dm, -
Thus in general the probability distribution used is different in different threads, and is
updated according to the laws of quantum mechanics.

Example 5.4. We can define a strategy which describes a unitary operation. This is a
strategy [U] in the arena qstore —o com. Suppose that the superoperator corresponding to
U is U. A typical play using [U] is “run {U}, 0 done”. The {U,}, question in the qstore
arena changes the state used to answer future questions in the arena. Notice that Player
does not learn anything about the state in this interaction with Opponent because there is
only one possible measurement result. The strategy [U] really describes the effect of U
since one can verify that [p]; [U] = [U(p)]; skip using the definition of composition of

strategies.
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Example 5.5. We define a strategy which represents performing a projective measurement

of the state of a quantum store as follows.

meas

gstore bool
?
C,
m
m

The measurement strategy makes Player answer the first question in the output Boolean
component by asking about the result of a measurement in the computational basis of
the input gbit with the quantum intervention C = {Py, P}, where P,, is the projective
measurement superoperator defined by #,,(p) = [m]p[m]. Player then copies the answer
m to the output component. In contrast to the case of unitary transformations, Player does
learn some information about the input state in the part of the exchange happening in the
gstore arena, and this information is used to provide an answer in the bool arena.

We now use quantum strategies to construct a denotational semantics for the quantum
store language. For each type A, we define an arena [[A]], and givenaterm I' - M: A, we
define a strategy [M] : [I'T — [A].

For types, the definition is given by the following inductive construction :

[bool]] = bool [com] = com [gstore]] = gstore

[Ax Bl = [AloBl [A= Bl =I[Al —[BI]

The arena com is defined with the moves “run” and “done” as in chapter 4. The quantum

store type is interpreted using the arena qstore.
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Table 5-3 QSL denotational semantics

[F.3: Ar X2 Al [T ® [A] > [A] [T + skip: com] : [T 2~ com

ITFO: bool] : [T]—">bool [T F1:bool]: [T —— bool

Irr MN: BT : 1] —22Y a] — 181) © 141 22~ 8]

[CrAazM: A= B]: 114 - By

(IM1,IM 1)
[T F (M, Ma): Ay X Al : [T —————> [A1] © [A2]]

[T FfstM: AT : [T 2% 1470 1B] ™% [A]

78]

[TrsndM: Bl : [TT-% 1A o [B] =~ [B]
[T -if Pthen Melse N: A] : [r] SLHMHIND ool o [AT © [A] 2% [A]]
[CFM:N: A : [T] D om o [A] =2 [A] . A = com or bool

[T, %: gstore - meas* x: bool] : [Tl © gstore Tostorg gstore "2 hool

— v — Tgstor U
[[F, X: gstore + U” x: com]] : [I'T © gstore e gstore LN com

idyry ]].010...0)(0...01]
[T +newXxinM: A] : [T (g 0-0x |>III*]] O gstore REI [A]

[T, x: gstore + prepywithxin M: A] : [I'l © gstore __Prep@MD [A]]

Given a context I' = x;: A;,...,x,: A,, we set [I']] to be [A{] ®--- ® [A,]l. The
interpretation [[I' - M: A] is defined by induction on the derivation of I'  M: A in what
follows.

We begin the definition of [I' -+ M: A]] with the base cases of variables and constant
terms. The interpretation of I', x: A + x: A uses the projection strategy 4. The Boolean
constants 0, 1 are interpreted as their corresponding deterministic strategies in bool. The

constant sKip is interpreted as the unique non-trivial deterministic strategy skip in com.
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The strategy

[[Uy1®“'®ym XN® - ® xn]]

corresponding to a unitary transformation is defined as the strategy [U]: qstore — com.
In the case of measurements, [meas x;]| is interpreted using the meas strategy.

We now turn to the inductive cases. The definition of [[M;; M,]| follows the standard
idea in game semantics: it is defined as the composition ([M], [M-]]); seq, where seq is

the strategy com © com — com defined with the following typical play:

Seqcom
com o Ccom-——Com

run
run

done
run

done
done

Using this scheme, the commands M; and M, are successively ran when seq is composed
with ([M; 11, [M:1).

For terms of the form I' + Ax. N: B, where I',x: A + N: B, we define [[Ax. N to be
A ([[N]), using the adjunction

[N : [TTo[Al = 18]
A(IND = [T — [A] — [B]

The other classical operations are also interpreted using the usual game semantics

ideas. We refer the reader to [Har99] for a detailed account.

For quantum store creation using new, suppose that the denotation of

INx®---®x,: qstore - M: A
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is already defined. The term newx; ® --- ® x,in M is interpreted as the composition
Adyry, [10...0)0...0[1); [M]l. The strategy [|0){0|] is used to initiate the state of the new
quantum store.

The last case is for the preparation typing rule. The strategy

[prepywithxin M]|

is defined as the strategy

prep (IM]) : [I']l © gstore — [[A]]

defined with the following idea. Let ¥\ be the preparation superoperator taking p to p ®
|0...0)0...0|. Player plays using prep ([M]]) by making the moves prescribed by [M]|
except that before playing his first move in the gstore arena, he must initiate an exchange in
this arena which forces Opponent to add the |0 - - - 0) state to the state p she uses to answer
Player’s questions about the state of the quantum store. This is achieved by playing a {¥},

quantum intervention question in the gstore arena before any other move is played there:

prep([M1)

[I'T o qgstore [A]

{Folo
0
For

m

This completes the definition of the denotational semantics.
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5.3 Soundness

To study the relation between the operational and denotational semantics, we need to
take quantum stores into account. We use the standard approach used in game semantics
of classical stores, described in the last chapter for the language MCdata: we define a

strategy

[Q, M1 : I [A]

for each pair O, M where M is of type A. This strategy is defined as the composition of
[M] with a strategy [Q] representing the state of the quantum registers in Q. For each
extended variable x; ® --- ® x,, € |Q|, the state |x; ... x,)o can be described as a strategy
[lx1...x,)] in I —o gstore. The strategy [Q] associated to the quantum store Q is defined
as the ©-product of all the strategies [|x; ... x,)], x; ® - ® x, € |Q|.

Lemma 5.6. (Substitution for QSL) For any QSL terms T, x: A+ M: BandT' + N: A with

x € FV(M), we have thatT' + M [N/x] : B and [M[N/x]]l = (idyry, [N1); [M].

Proof. By structural induction on the construction of M. Since the proof for the classical
cases is well-known, we show how some typical classical cases are dealt with and then
focus on the cases involving quantum operations.

Suppose I', x: A+ M: B.

If M is a variable x, then X[N/X] = N and it is immediate that I’ + X[N/x]: A.
Moreover, [X[N/X]]] = [NT: [T — [A] which is equal to (idyry, INTY; [X]] = [N

since [[x]] is the projection strategy on [[A]].
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For a term M of the form Ay. M’, y must be different than x because we suppose that

x € FV(1y. M’"). The induction hypothesis is that the proposition holds for
Ix:A,y:C+rM: B,
i.e. thatT' + M’[N/x]: B and [M'[N/X]]| = <idyry, [NT); [M’]. Since
(Ay. MOIN/x] = Ay. (M'[N/x]),
we have that I + Ay. M’[N/x]: B and that
[(Ay. MOIN/X]] = A ([M'[N/x]])
= A ((dgry, INTD; [MT)

= (idyry, INTY; A ([M7])

= (idyry, INTY; [Ay. M),

where the third equality follows from the naturality of the adjunction A.
The quantum cases are dealt with in a similar manner. Consider the unitary operation
case. Suppose that M = U’ %, with y C X. Since X: gstore, N must be a gstore variable x’.

Let y’ be the subvariable of x’ corresponding to the same gbits as y in X. We have that
T+ U'X[N/x] = U” ¥: com

and that
o7z vz = v %] = (idr. [*])) : 1M1

The measurement case is similar to the unitary transformation case.
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Finally, consider that M is a preparation term
I,x: A,y: gstore + prepzwithyin M’: B
and assume that the lemma holds for
[x:A,y®Z: gstore + M': A.
Substitution of N for x in M yields
(prepzwithyin M") [N/x] = prepzwithyin (M [N/x]),

and thus by induction hypothesis I',y: gstore + M[N/x]: B. Furthermore, we have by

definition of the preparation strategy that

[(prepzwithyin M") [N/X]]| = [prepZwithyin (M’ [N/X])]
= prep ([M’ [N/X]])
= prep (Cidyry, INT); [M'])
= (idyry, [NVT); prep ([M'])

= (idyry, INTD; [M ] a

It is now possible to state and prove the following result.
Proposition 5.7. Let M and V be two terms of ground type. If Q, M P Q’,V, then for all

well-opened sab € T ([Q’, V1) we have that

[Q. M1 (b|sa)=plQ,VI(b]|sa).

Proof. The proof is a structural induction on the derivation of Q, M |J? Q’, V.
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We show how to deal with some typical classical cases. First, we deal with the base
cases.
For the cases of the form Q,V || Q, V, the proposition is trivial.

In the case of a unitary transformation operation U, suppose that
O, Ux1®---®x, | Qllx1...x,) = Ulxy...x,)],skip

holds. By definition of the denotational semantics, we have that [[Q, Uy}]] is the compo-
sition

J [o1l [

[[x1®--®x, ] [U]

gstore com

A run move in the final com arena is answered with the question {U}, in the gstore arena
and then copied by the projection strategy to the [[I']] arena, where an interaction begins
with [Q] in which the unitary transformation move {U,}, is made, affecting all subsequent
interactions in the gstore component. The 0 answers that Opponent gives back to Player is
copied back to the initial qstore arena, and then a “done” move is made in the com arena.
In any further interaction with the quantum store strategy [[ Q] Player will behave as if he

is using the strategy

Ollx1 ... x) = Ulxy ... x)1[ -
[ |

If Player uses the strategy

[Qrix: ... x.) > U'lxy ... x,)]. skip]|.
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then the behaviour is the same: the initial “run” move is answered with “done” without

interacting with the strategy

[O[x]...x) = Ulx;...x)]1-

The two rules for quantum measurement operations are dealt with similarly. Suppose

that
Q. meas x; | Ol L x) o [0k - x) /1[0y - x0T, 0.
By definition we have that [[Q, meas x;]| is the strategy [Q] ; [x;]] ; meas in the arena
I —o [[I']] — qstore — bool.

Any interaction starting with the question ? in bool is answered by measuring in the canon-
ical basis the gbit of the arena gstore. The answer to this is given according to [ Q] and is O
with probability ||[[0]¥|x; . .. x,,)||. Any further interaction with [[ Q] will be made according
to

[Ollx: ... x.) = [01%xy ... x )],

and the answer to the initial question in bool is 0. This amounts to saying that [[Q, meas x;]|

behaves like
[[Q [|x1 Cx) o [01%, ...x,,)],O]]

with probability ||[[0]¥]x; ... x,,)||. The other measurement case is similar.

We now deal with some typical induction cases.
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For conditionals, suppose that the proposition holds when

O,PJ’ Q,0and Q',N |7 Q", V.

Assume that Q, if Pthen M else N JP? Q”, V. By definition, we have that

[Q,if Pthen M else N]

is the composition

Lol

APLIMILINT)
I [

bool © [A] @ [A] —=2 - [4]

An initial move in the final [[A]] arena will make Player ask for a Boolean in the bool input
of cond. Opponent will answer using [[Q] ; [P]l, which, by hypothesis, with probability
p will make her answer as if using the strategy [Q']; [[O]l. After that Player will play
according to the strategy [Q’]; [/V], which with probability ¢ makes him behave as if
using [Q”]; [V]. After hiding, we see that using [Q]l; [if P then M else N]|, Player will
play as using the strategy [Q]l; [V] with probability pg. The other conditional case is
treated similarly.

In the case of application, suppose that the proposition is true when
O,M\|? Q',Ax. M" and Q', M'[N/x] |4 Q", V.
Assume that O, MN |74 Q”,V. By definition we have that [Q, MN] is

[o1

i o[ (IMILINTD

(IA] — [B]) © [A] —=2—[B] .
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A move in the final [B] is copied to [A]] — [B]], where it is answered using the strategy
[Q, M]. By induction hypothesis, with probability p this answer is given as if using the
strategy [Q’, Ax. M’]]. So with probability p the plays of [Q, MN] are the same as those
of [Q’, (Ax. M")N]. By lemma 5.6, this is the same as [[Q’, M[N/x]]], which by induction
hypothesis is the same as [Q”, V]| with probability ¢g. So the plays of [Q, MN] are the
same as those of [Q”, V] with probability pgq.

For the new operation, assume that the proposition holds when
Ollx;...x)y—10...0)],M |” Q', V.
Suppose that
o,newx;®---®x,inM ]| Q',V.
By definition we have that [new x; ® - - - ® x,, in M] is the composition

J [o1 [

(1,[10...0)0...01)

[T] © gstore

(Al

Since [Q[|x;...x,) — [0...0)]] is equal to [Q] ;I ©[|0...0){0...0[], the above compo-
sition is equal to [Q[|x; ... x,) — |0...0)], M], which by induction hypothesis is [Q’, V.
The most interesting induction case is the preparation case. Suppose that the propo-

sition holds when

Qllxi--.x)lyi - ym) P 9)I0...0)] U7 O, V.

Assume that

Qllxi...x,) — lp)],prepywithxin M |7 Q', V.
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By definition of

[T,x: gstore + prepywithxin M: A],

any play in [I']] © gstore — [[A]] will be played with player using the strategy [M]],
except that a preparation move is made in gstore. This preparation move is answered by

Opponent using the strategy

[O[lx1...x.) = I,

which make her pick her answers using the strategy [|¢){¢|]. After the preparation move,

Opponent will play as if she is using the strategy [|¢){¢|0...0)<0...0|], which is

[O[Ix1 .. xdyi - ym) = l@)0... O] .

The overall play is thus just like what would happen if Player uses [[M] composed with
this last strategy. We get the desired result because the induction hypothesis implies that

composed strategy dictates the same moves to Players as the strategy [Q’, V1. O

We now turn to the converse problem: proving adequacy for the QSL.

Aterm ' + M: A is said to be semi-closed if FV(M) contains only variables to type
gstore. The ground types are all the constants types.
Proposition 5.8. (Adequacy for QSL) Let M be a semi-closed term of ground type. If for
all well opened sab € T ([[Q’, V1) we have that

Q.M (D | sa) = p[[Q. V(D] sa),

then we must also have that

o.M " Q. V.
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We use the standard proof technique that uses a computability predicate. We refer
the reader to [Gun92] for an expository account of adequacy proofs for the language PCF
which uses this technique. The usual definition of computability predicate is adapted to
quantum stores as follows.

Definition 5.9. (Computability for QSL) Let T'1,1', + M : A, with 'y containing only vari-
able of type qstore. We say M is computable if
1. '+ M: A, A = bool, gstore, T or com and if for all sab € T ([Q’, V1) we have
that [Q, M1 (b | sa) = p[Q’, VI (b | sa), then Q,M |? Q’,V,
2. T,x1: Ao X Ay - M AisTy - M[Ny /x4, ...,N,/x,]: A is computable for all
computable semi-closed terms 'y + Ny: Ay, ..., T1 F N,: A,
3. T v M: A — B, M semi-closed and for all semi-closed I'y + N: A we have that
I'y - MN: B is computable,
4. M = x with T’y + x: gstore and both ') + meas x;: bool and I'; + Uy: com with
y C X are computable.
Proposition 5.8 is a direct consequence of the following lemma.
Lemma 5.10. All QSL terms are computable.
In order to prove this lemma, we need the following result:

Lemma 5.11. For any type A, there exist a semi-closed term M such that T + M : A.

Proof. By induction on the construction of A. If A is bool or com, we can take M to be
the constant true or respectively skip. If A = gstore, then taking M = x we have the
semi-closed term x: A + x: A.

If A is a product By X B,, assume inductively that there are terms I'y + M;: By and

I v M,: B,. Without loss of generality, we can also assume that [[';| N [[’;| =, renaming
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variables if necessary. Then M = (M,, M;) is a term such that '}, I, + M: A. Similarly, if
A = B| = B,, assume that thereisaterm I' + N: B,. Then if x ¢ ||, we can take the term

I'Ax.N: B, = B,. |

Proof of lemma 5.10. By induction on the construction of M. By the second and third
clauses of the definition of computability, we can assume that M is constructed out of
semi-closed terms. We explain the most interesting part of the proof, leaving out the cases
which are standard classical cases.

For the base case, M must be a constant, a classical variable x or a quantum store
variable x. If M = X is a quantum store variable, we must apply the last clause of the

definition of computability. We need to check that both

I'' Fmeasx;: boolandI'; F Uy: com,y C x

are computable. In the first case, suppose that [[Q, meas x;]] makes Player behave as
[Q’, V] for some boolean value V. This means that measuring the gbit i of the quan-
tum store x with the quantum store in some state Q gives the boolean result V (without
loss of generality, suppose that V = 0) with probability p and a quantum store left in
state Q[|xy...x,) — [0]%|x;...x,)]. This implies that Q,measx; |7 Q’,V. A similar
argument is used to show thatI'; - Uy: com is computable.

For the induction step, we assume that M is constructed out of semi-closed com-
putable terms.

For example, to show that Ax. M is computable, we assume that M is a semi-closed
computable term. Since Ax. M is of type A = B, we have to use the third clause of the

definition of computability. Using lemma 5.11, we can take a computable semi-closed
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N: A and consider (Ax. M) N. Assume that [ Q, (Ax. M)N] = p[Q’, V]. We have to show
that Q, (Ax. M) N ||? Q’, V. By the properties of adjunctions and the definition of [[Ax M]|

we have

[(Ax. M)N] = ([[Ax. M], [M]) ; eval
= (A([M]), [M]]);eval
= (id, [N]) ; [M] ; eval

= [MIN/x]] -

This implies that [[Q, (Ax. M)N] is the same as [[Q, M[N/x]]], which with probability p

makes Player behave as if he is using [Q’, V]|. By induction hypothesis, this implies that

Q,M[N/x]1 J" Q', V.
Using the operational semantics derivation rules, we get that
Q,(Ax.M)N " Q'V,

which is the desired result.
The quantum measurement and unitary operations cases are dealt with in the same
way as in the previous case of gstore variables.

In the case of local preparation, consider that

M = prepywithxin N

is a semi-closed term. Assume that [Q, M] makes Player behave as if he was using the

strategy [Q’, V], with probability p. Since in the definition of [Q, M] Player plays a
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preparation move before the first question about the state held by x®y in Q, the answer to

this question is given using

[O[1x1 ... x 1. . Ym) = X1 ... x)]0...0)]].

Thus the strategy [Q’, V] make player behave as

[O[lx1...xuy1 - ym)y o |x1 ... x)[0...0)], M].

By induction hypothesis, this implies that

Ollxt .o 1o ymy o lx1 ... x[0...0)],M |* Q', V.

Using the operational semantics derivations rules, we get that O, M ||’ Q’, V, which is the

desired result. O

Contexts for QSL are defined similarly as in the case of MCdata: a context with a

(13 2

hole of type B is a term C[—] with a special free variable of type B, 1.e. it is possible to
derive thatI', —: B+ C[—]: A. Capture-free substitution of aterm I' + M : B in the context
C[—] is denoted by C[M].

Definition 5.12. Two semi-closed terms I' + My: A and I' v+ M,: A are contextually

equivalent if for all quantum stores Q and ground type context C[—]

O,CIM]1P Q',V < Q,C[M,] | Q,V.

This relation is denoted by M, ~ M.
Proposition 5.13. (Soundness for QSL) Let M, and M, be two semi-closed QSL terms. If

(M1 = [M], then M\ ~ M,.
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Proof. Suppose thatT' + M;: Aand I' v M,: A are two semi-closed terms with [M,] =
[M,]]. Take any ground type context C[—] with a hole of type A and I'-quantum store Q.
Suppose that Q, C[M,] |7 Q’,V. By proposition 5.7, we have that for any well-opened
sabe 7 ([Q, VI

[O.CIMiIN (b sa)=p[Q.V](b]sa).

Using the hypothesis and the substitution lemma and naturality of adjunction, we have that

[Q, CIMi 11 = Q1 ; [ICIM 11l
= [Q1; (idyry, [M:1); [CT-11
=[O Cidyry, [M211); [CT-11]
= Q1 [CIM-]]l
=[O, CIM]].

We thus have that for all well-opened sab € 7 ([Q’, V])
[Q.CIM:]1I (b | sa)=plQ,VI(b]|sa),

which implies by adequacy that Q, C[M,] ¥ Q’, V.

The other implication being proved with a similar argument, we get that M, ~M,. O



CHAPTER 6
A-calculus with quantum data

In the quantum store A-calculus presented in the last chapter, quantum states can only
be accessed indirectly through references. We now introduce another quantum A-calculus
in which a quantum state can be represented and manipulated directly in the language.
We want to be able to apply unitary transformations to quantum data, to prepare quantum
states, to tensor and measure them, and to refer to parts of a quantum state. Since quantum
states cannot be duplicated, we must make the A-calculus with quantum data linear, as
in the case of the quantum A-calculus of Selinger and Valiron [SV06a]. The denotational
semantics presented in this chapter will validate this choice using a different argument:
quantum measurements have side effects, which forces us to use thread dependent strate-
gies that cannot be duplicated using the duplicating strategy A.

The problems pointed out in section 5.1 force us to be careful when introducing the
gbit tensor operation. Because of this, we also use extended variables in the quantum data
language. While QSL extended variables are used as references to quantum stores, in this
chapter they are used to represent quantum data.

6.1 Syntax

The syntax of the A-calculus with quantum data language (QDL) is that of a classical
simply typed A-calculus with pairing and conditionals, with extra constructs that give the
language enough expressiveness to encode the usual manipulations of quantum data as can

be described with the low level formalism of quantum circuits.
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6.1.1 Terms

The terms of QDL are defined recursively as follows:

M,N,P:=Xx|*|0|1|p|{(M,N)|fstM|sndM |
MN | Ax. M | if Mthen N else P |

UM|MON |leth,x = meas; MinN | meas M,

where b, x and y are extended variables defined as in section 5.2.1, i > 0 is a natural
number, p can be any density matrix and U is a superoperator corresponding to a unitary
transformation U. Most of the syntax consists of standard A-calculus operations. The term
U M is the operation that corresponds to applying a unitary transformation to the state
described by the term M. The measurement operation syntax, leth,x = meas; MinN,
means that the gbit i of the term M is measured and thereafter the measurement result is
accessible in NV as b and the resulting state is accessible as x. Note that the variables b and
x are bound in N. To measure a single gbit, we use instead the simpler syntax meas Q.
The set of free variables in M is denoted FV(M).

6.1.2 Types

The types of QDL are the following:
A,B = bool | T | gbit” |AXB|A = B.

where n > 0. The type bool is the type of boolean constants, A X B and A = B are
respectively the types of pairs and functions. The type gbit®” is the type of quantum states
on n gbits. The notation gbit® stands implicitly for the product gbit ® - - - ® gbit; we use

the notation gbit® ® qbit®” to denote gbit®"*™, although there is no ® type operation.
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The typing rules of QDL are given in table 6—1. We assume that contexts I" contain
no gbit variables and contexts A; contain only gbit variables. This convention will be used
throughout this chapter. Rules involving classical operations are direct adaptation of the
standard typing rules of a typed A-calculus. The rules for quantum constants, quantum
measurements and unitary operations are straightforward. The three tensor rules allow
one to take two terms of type qbit®" and qbit®" and create a term of type qbit®"*™. The
distinction between the three cases is due to the fact that known or unknown gbits must be
dealt with differently. If I, A - M: qbit®", M is a known gbit when it has no dependency
on some quantum state variable in A, i.e. if FV(M) N |A] = 0. If instead FV(M) N |A|
contains only an extended variable X, then the quantum state represented by M depends on
the value of the quantum variable x and is thus unknown. The typing rules do not allow an
unknown quantum state to depend upon more than one other quantum state.

Example 6.1. The term p ® p has type F p ® p: qbit®*.

The term x ® x is not allowed since extended variables cannot contain duplicate vari-
ables. It follows from this that there is no duplicating function Ax.x ® x either. In the
A-calculus with quantum data, duplicating a known state p is possible but duplicating an
unknown state x isn’t.

Note that x: gbit F (x, x): gbit X gbit is not a valid typing judgement either. This is

forbidden by the pairing typing rules: to derive that
x: gbit F (x, x): gbit X gbit,
one must start with the assumption x: gbit  x: gbit and then use the derivation rule

x: gbit - x: gbit x: gbit + x: gbit
x: gbit, x: gbit F {x, x): gbit X gbit
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Table 6—1 QDL typing rules

IAX:ArXx: A AR T I'’A+O: bool I',A+ 1: bool

I'A,x: A+ M: B I''Af\+r M:A>B I'AEN:A
I'ArAx.M: A= B I''A\,Ap+ MN: B
AT My Ay Ao rMy: Ay I'ArM: AXB IArM: AXB
LA A - (M, M): Ap X Ay IArfstM: A ILArsndM: B
I',A; + P: bool IArM: A ILAEN:A o
[,A,A, +ifPthenMelse N: A [, Ak p:gbit
LA+ Q: gbit®™* ) T, Ay b: bool,X: gbit" F M: A I,A+ M: gbit™
ILA;, A Fleth,x =meas; QinM: A [,A+UM: qbit™
. : . <1 Q®n . - Qm
IAF Q: gbit I'A; - My : gbit I',A» v M;: gbit EV(M;) N A = 0
I, A + meas Q: bool [,A1, Ay v My ® M;: qbit®" @ gbit®”

[, A1, X7 gbit®" + M : qbit®” [, Ay, X7 qbit®" + My : gbit®”

— L TP DN FV(M) \ AN = (%)
AL Ar, X1 ® X3 gbit™ @ gbit™ + M} ® M, : gbit™ @ gbit

[,ALT: @qbit® - My: gbit®  T,Ay + Ma: gbit®  FV(My)\ Al = (X}
[, A1, Ay, x: @bit®™ + My ® M;: gbit® @ gbit®” EV(M2) N Az =0

This is forbidden because contexts can only refer once to a given variable.

Example 6.2. Quantum teleportation can be implemented in the quantum data A-calculus.
Consider the term teleportation defined in figure 6-1, where the unitary superoperators
Uy, are the usual correction unitary operations of the teleportation protocol. Using the
type inference rules, we can derive that - teleport: gbit = gbit.

Example 6.3. Any quantum circuit can be implemented as a QDL term. The input gbits
are represented as a gbit®" variable X. If some ancilla state |¢) is used, X is then tensored

with [p){¢|. The unitary transformations Uy, ..., Uy corresponding to the quantum gates
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Figure 6-1 QDL Teleportation

teleport:
Ax.letb,,y ® z = meas;cnot'? (H x) ® [By]) in
letby,z’ = meas; y ® zin
if b, then
if b, then Uy 2’ else Uy 7/
else
if l’)y then 7/[10 7 else (L[n 4

applied in the circuit are then applied. Finally, measurement operations are used to mea-
sure the gbits i; to i; and return a tuple containing the measurement results.

lethy,y; =meas;, Uy ... Uy (x; @ -+ ® x, ® [p){¢]) in

let by, yx = meas;, y;_; in
(by,...by)

6.2 Operational semantics
The operational semantics of the A-calculus with quantum data is given as a big-step
probabilistic reduction relation M || V between terms and values. Values are the terms

defined recursively by
VW= 0|1]|*|p|Ax.M|{V,W)|VeW.

The reduction relation is defined by the rules given in table 6-2.

Example 6.4. Consider the term
M = if (meas |+){+|) then p; else p, : gbit.

Since meas |[+)(+| |'/? 0, we have that M |!/? p;. Similarly, M §'/* p,.
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Table 6-2 QDL probabilistic reduction rules
M )P Ax. M’ NIV M P vy M, |1V,

Viv MN P4 M[V/3] (M1, May UP7 (Vy, Vy)
M [P (V1,V2) M P (V1,V2)
fst M U7 Vi sndMuP Vs
P’ 0 MUV PUr1 N2V

if PthenMelse N |71V if PthenMelse N |1V
QUp  M|b/mX/-L uw(lmlplm))| V" V
letb,x = meas; QinM |JP1" V

0l7p
meas Q | m

Pm =1tr ([m]ip), m=0,1

Pm = tr ([m]ip), m=0,1

M, P Vv, M, |9V, M|’ p
MM, JP1Vi®V, UM P Up)

Example 6.5. The term teleport p reduces with probability 1 to p.
6.3 Denotational semantics

We now define a denotational semantics for QDL. The first problem to solve is to
find the right arena to model the type qbit®". We use the arena qbit®" defined in the same
way as gstore, but where the quantum intervention question &, = {8;1} uses only quantum
operations

&,: SD(C*") > SD (H,),

i.e. all operations must take their input in the state Hilbert space C*" for n gbits. In the
case of the gstore arena, the dimension of the input space of the operations &’, could be
any natural number n > 2 since the dimension of the state stored in a quantum store can
vary in the course of a computation. For a given piece of quantum data, this dimension is

fixed.



152

With the arena gbit, we can define the interpretation of the QDL types recursively as

follows:

[bool]] = bool [Th=T [gbit®'] = qbit®”

[A = Bl = [A]l — [B] [A % B] = [Al o [B]

Apart from the definition of [gbit®"]), this definition is similar to the corresponding defini-

tion for QSL. Given a context
I'=x1:A1,...,x,: A,

we set [I'tobe [A1]©:---©[A.]

We now turn to the definition of the interpretation [M] of aterm I' + M: A. The
definition is by induction on the derivation of I' - M : A; it is summarised in table 6-3.

In the base case we must deal with variable and constant terms. For variables, the

interpretation of I', x: A + Xx: A is defined using the projection strategies
ma: [T o [A] — [A].

As for QSL, the denotations of the constants 0, 1, and * are the constant strategies. A

quantum state constant p: qbit®" is interpreted as the quantum strategy [p] in gqbit®".
We describe the interesting inductive cases. The other cases are interpreted using the
same ideas used for QSL in the last chapter.

The definition of the strategy

[[,A;,A, +if PthenMelse N: A]|
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Table 6-3 QDL denotational semantics

[TAX: Ar%: Al : [TT0IATIGIA] —% [A]  [LAF+: TT: [T10[A] ——=T

[T,A+O: bool] : [TT®[A]—2>bool [I,AF1:bool]: [IT®[A] ——> bool

[TA AT M: A= B]: [TT0IA] — . ] - [B]

eval

[T A A2k MN: B]: [TTO[Ad© [[Az]]/j[[A]] — [B]) © [A] 22> [B]
ry
([FTo[ADoe (e A MICIN]

[T,A1, Ay - (M7, M3): Ay X Ao ]l :

[T 6 [A1© [As]] —— (ITT © [A{T) © ([T © [A,]) —21 W]

[Ail©[A2]

ey

[C.AFfstM: Al : [T]0 [A] 2% a7 0 1B] 2% 4]

IT,AFsndM: B]: [T]0[A] - [A] o [B] =% 18]

[T,A,A> +ifPthenMelse N: A] :

[I'TolATelA] bool © ([I'T © [A2]1)
i — [Ploid
(Irme Ao T e A2

cond(TM1,INT)
_—

Al

[r.a+p: qbic® ] [T1 0 [A] 2> gbite”
[T,A1,A; + leth,x = meas; QinM: A] :

IletAde sl (bool ® gbit®") © (IT'] © [A21]) M A
\Lr A meas;oid
(ITTo A D ([[F]] O] [[AQ]]) W qbit®n+1 o([I]o [[Az]])

[r.a+ s qpie® ] [r1o 1Al -7 gbiee - gpie>”

meas

[T, A+ meas Q: bool]l : [T [AT —Z- gbit® ™% bool
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[[F, A1, Ay F My ® M qbit™ @ qbit®’"]] :

IT1© [A1] © [A2] —— (ITT © [A1]) © (ITT © [A]) —E2D it @ qbit®”
[T, A1 A2 T @771 qbit™ @ qbit™ + My ® M, : qbit™ @ qbit™] :
[TToIA]© [A2] © gbit®” ® qbit®” qbit®" ® qbit®”
" , : [M ] ® [M,]]
(ITTo A D o (IT] @ [A2]) © gbit®” ® gbit®”
[T A1 Ao, % gbit™ F My ® M, : gbit™ @ qbit™] :
[I'T oAl oA qbit®" ® qbit®"
& [M1® [Ms]

(ITT © [A(T) © gbit™ © ([T © [A21)

differs from the usual definition of conditional strategies used in game semantics because

of the linearity constraint. Assume that

[P1: [I'TO[A] — bool [MI,INT = [T] © [A2]l — [A]

are already defined. Using the symmetry strategy associated to ® and the duplicating

strategy A, we can define a strategy

ri ([T (A 6 [A2DD) — ([T 6 [ADD © (II'T © [A21D

which reorganizes the input arena. With this strategy, we can define [[if Pthen M else N]|
to be the composition

r; [P] © id; cond([M], [INT),

where

cond([M]l, [NT): bool © (IT'T © [A:]l) — [A]l
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is defined using a conditional strategy operation defined in general by the following idea.

Given any two arenas A and B and two strategies o, 7: A — B, the strategy
cond(o, 7): (bool®A) - B

is the strategy that makes Player answer an initial move in B by asking for a Boolean b
in the bool component and then makes Player play in the components A and B using the
strategy o if b = 1 and tif b = 0.

The first quantum operation we deal with is unitary transformations. In this case we
assume that the strategy [I, A + M: gbit®"] is already defined. The strategy [U M] is
defined to be [[M]; [U], where [U] is the strategy corresponding to the superoperator U.

For the measurement case, suppose that
[O1: [T1o[AT —o gbit**" and [M] : [T [A.] ©bool © gbit®™
are already defined. We can define
[letb,x = meas; Qin M|
as the composition

r; ([Q] ©1id); (meas; © id); [M]]

where meas;: qbit®*' — bool © gbit®" is the strategy described as follows. Let C be the
quantum intervention corresponding to a projective measurement in the canonical basis
and 7 be the identity quantum intervention. If the first move is a question in the qbit®”
arena, Player uses the left-hand scheme of figure 6-2 and if the first move is in the bool

arena, then Player uses the right-hand scheme. In these schemes, & ® ¥ stands for the
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quantum intervention {&,,, ® F,,} It is important to point out that in the right-hand

(my,my)*
scheme, Player must question Opponent two times. Since the first intervention 7 ®C alters
the state, Opponent’s answer to the second question & ® I’ depends on the first answer
given. This is the only instance in the semantics described in this chapter where more than
one thread is necessary in the qbit®" arena. Because of the side effects of measurements, we
are forced to use thread dependent strategies to describe quantum states. This is the point
where we are forced to assume that gbit types are linear, since thread dependent strategies
cannot be duplicated using the usual A duplicating strategy. In contrast, previous work on

quantum A-calculi justified the need of the linearity hypothesis by invoking the no-cloning

theorem.

Figure 6-2 Strategy for the QDL measurement rules

meas;

ghit®"*) — "~ pool © gbit™ gbit®"™*) ——">hool © qbit®"
& ?
&®C I®C
(m, b) b
m b
? &,
b ET i
m
m

There are three tensor cases to deal with. In the first case, we tensor two known gbits.

Suppose that the strategies

[T, A, % : gbit™ + M, : gbit®"]] and [T, Az, X;: gbit®™ + M,: gbit®"]]
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are already defined, where FV(M,;) \ |A;] = 0 for i = 1,2. The strategy [M; ® M,] is
defined as the composition r; [[M; ]| ® [ M, ]|, where the strategy [M;]|® [[M,] is defined by
the scheme described in figure 6-3. In this scheme, the probability that Player answers m
to &, after the interactions s = a; ...a, and t = by ... by is tr (E,,(ps ® p;)). Note that while
we take the tensor product of the two output quantum arenas, we must take the classical

game product of the classical input arenas.

Figure 6-3 Strategy for the first QDL tensor rule

(T1o Al © (T [A]) —2EEL ihit @ gbit®”
&
a
an
b,
be
m

In the second case, we tensor two gbits each constructed from unknown gbits. This
case is similar to the first one: suppose that [T, A; + M : gbit®'] and [T, A, + M, : gbit®"]|
are already defined and that FV(M;) N |A;| = {X;}. The strategy [M; ® M,]| is defined to
be the composition r © id; [M,]] ® [[M,]], but this time the strategy [[M;] ® [M,] must
be defined using the scheme of figure 6-4. In this figure 7, and G, are the two trace-
preserving superoperators used by Player respectively in [M,] and [M,]].

The third tensor rule is for cases where known and unknown states are tensored. In

this case we have to use a conditional preparation strategy defined using a combination
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Figure 6—4 Strategy for the second QDL tensor rule

(TTo AT © (TTolA]) © qbit® ® gbit®” I opite @ gbit®”

&
a

b

& (Fs®G)

m

of schemes used in the first two cases. Assume that [T, A, X: gbit® + M, : gbit®"]] and
[T, As + M, : qbit®"] are already defined and that FV(M ;)\ |A,| = {x} and FV(M,)N|A;| =
(0. The strategy [[M; ® M,]| is defined as the composition r; [M; ]| ® [M;]] where this time
the tensor strategy [[M,]] ® [M-]l is defined with the scheme given in figure 6-5. Using
that scheme, Player determines how to answer the initial question &, by first playing in the
[T © [A;]] arena to determine which state p,, s = a; ...ay, to prepare; we assume this
state is prepared by a superoperator 7. After this, Player will start an interaction in [[T']] in
order to learn how the state represented by the term M, is built from its input. In this case,
we assume that this construction corresponds to a superoperator G;, where t = by ... b; is
the interaction in the [[T']] part. The initial question is then transformed into the question
(Fs ® G;) & in the input arena qbit®”", and the answer is copied back to the output arena.

This completes the definition of the denotational semantics.
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Figure 6-5 Strategy for the third QDL tensor rule

(TTolal) © qbit” o (16 [A1) 20 obits @ qbit™
%
a
ayg
by
b
& (Fs®G))
m
m

Example 6.6. Consider the two QDL terms

M, = x® (if bthen p, else p,)

M, = ifbthenx® p; else x ® p,,

where p; and p, are two one gbit states. Intuitively, both terms produce the state x ® p; or

X ® p, depending on the value of B. We can derive that

x: gbit,b: bool + M;: gbit® gbit, i = 1, 2.

Let us compare the associated strategies [[M;] and [[M,].



160

In the first case, [M,]] is defined as a preparation strategy with typical play

gbit © bool ——qbit ® gbit
&

E:Fp
m
where 7, is the superoperator that tensors its input with the state py,.

In the second case, [ M,]] is the strategy in the same arena using which Player will first
query for the boolean value in the bool input arena, then play according to either [x ® p;]|
or [x ® p,]| conditionally on the given answer. A typical play is thus exactly the same as
in the case of [M,]] and thus [M,] = [M,]], as can be expected from the intuitive meaning
of both terms.

6.4 Soundness

We now turn to the problem of proving a soundness result for the denotational se-
mantics defined in the last section. First, we need a substitution lemma.

Lemma 6.7. (Substitution for QDL) For any QDL terms I',A;,x: A+ M: Band ', A, +

N: A withx € FV(M), we have that
LA, Ao - M[N/X]: B and [M[N/X]]| = r;ido [[N];IM].

Proof. This is proven by structural induction on the construction of M. O

The following proposition states that when a term M reduces to some value V with
probability p, the corresponding strategies [M] and [[V] makes Player play in the same

way with probability p.
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Proposition 6.8. If M ||” V, then for all well-opened sab € T ([V]]) we have that

[MI(b| sa) =pIVIb]| sa).

Proof. By structural induction on the derivation of M |J” V. Most of the proof follows
an argument similar to the QSL case in section 5.3. We skip these to focus on the cases
involving quantum operations.

For measurement operations, consider first the single gbit case. Suppose that [M]]
behaves as [[p]] with probability p. Assume that meas M reduces to 0 with probability
ptr(|0){0| p). The strategy [meas M] is the composition [[M] ; meas and, by induction
hypothesis, any interaction using this strategy will behave as an interaction using the strat-
egy [p]; meas. By definition of [p], this strategy behaves as the constant strategy O in
bool with probability tr (|0){0|p), and thus [meas M] behaves as [[O]] with probability
ptr (|00l p).

The general measurement case is similar.

To deal with the tensor operation reduction rule, suppose that the proposition holds

when M; || V; and M, | V, and assume that

M, @M, |1V, ®V,.

Since the definition of [M; ® M,] is in three cases, these must be considered separately.
In the first case, M| and M, are both terms with no free variables of type gbit appearing in

the type context. By definition

(M) ® Mp]| = r©id; [M,]] ® [M]]
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and by the induction hypothesis this will behaves as

(M ® M)l = roid; [Vi] @ [V2]

with probability pg. The other two cases are similar, except that the definition of the

strategy [[M,] ® [[M,] is different in each case. O

The next result is adequacy, the converse of the previous one. As for classical A-
calculus and QSL, we use a computability predicate to prove adequacy for QDL. The
main difference between the following definition and the usual definition of computability
is the use of extended variables. Note that neither the presence of extended variables or
the linearity constraint on gbits have any significant impact on this definition.

Definition 6.9. A QDL term M is computable if
1. M is closed with M: A and A = bool, T or gbit, and if for all sab € T (b | sa) we
have that [M] (b | sa) = p[VI(b| sa), then M |’ V,

2. x1:Ay,...,x,: Ay F M A and for all computable closed terms

I'eENi: Ay, ..., TEN, A,

we have that M[N,/xy, ... ,N,/x,] is computable,
3. M is closed with + M: A = B and for all closed N with + N: A the term MN is
computable.
Lemma 6.10. All QDL terms are computable.
We need the following lemma which is proved by induction on the construction of
the type A.

Lemma 6.11. For any type A, there exist a closed term M of type A.
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Proof of lemma 6.10. By induction on the construction of M. The part of the proof in-
volving classical constructs follows the usual pattern as in classical game semantics, using
lemma 6.11 for abstraction as explained in the proof of lemma 5.10, so we focus here on
the quantum operations. Using the definition of computability, we can assume that the
components of M are computable closed terms.

The most interesting case is measurement since it involves an argument specific to
QDL. We begin with the one gbit measurement case. Suppose that M = meas N where N

is a closed computable term of type gbit. Assume that V is a boolean value and that

(M1 (b |sa)=pIVI(b]|sa)
for all well-opened sab € T ([V]).
When Player uses [M]], a typical play is

(V]

meas

1 gbit bool
?
C,
m
m

where C is the quantum intervention corresponding to a projective measurement in the
canonical basis. Let p be the probability that using [N] the answer is 0 and 1 — p the
probability that the answer is 1. Although it is not possible to infer which state p is used

to answer C, using these probabilities, we know that if player was using

p" = pl0X0l + (1 - p)I1)1|
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instead of p, we would get the same play as above. Since measp’ ||’ 0, we get that
meas p |J* 0 as required.

We use a similar argument to deal with the general measurement case. For unitary
operations, the above problem does not occur since the strategy [UM] = [M];[U]
provides the measurement probabilities for all quantum interventions &,. This allows one
to find, via the Gleason theorem, a state p such that [M]] behaves like [p] with probability

p. Using this and the induction hypothesis on M, we get the desired result. O

Adequacy is a direct corollary of lemma 6.10.

Proposition 6.12. (Adequacy for QDL) Let M be a closed term of type bool, T or qbit®".
If for all well-opened sab € T ([V]) we have that [M]| (b | sa) = p[[V] (b | sa), then we
have that M || V.

To give the final result, we need to introduce the necessary concept of contextual
equivalence for QDL. A context C[—] of type B with a hole of type A is a term C[—]
with a special variable “—~” (possibly an extended variable) such that —: A + C[-]: B.
Capture-free substitution of a term N in a context C[—] is denoted C[N].

Definition 6.13. Two closed terms + M,: A and + M,: A are contextually equivalent
(denoted M, ~ M) if for every ground-type context C[—] with a hole of type A we have
that

CIM1 PV &= CIM] " V.

The following soundness result follows from proposition 6.8 and adequacy using the
same standard argument used to prove proposition 5.13 in the last chapter.
Proposition 6.14. (Soundness for QDL) Let M, and M, by two closed QDL terms. If

[M] = [M,]), then M\ ~ M,.



CHAPTER 7
Conclusion

7.1 Recapitulation

We introduced a notion of quantum arena and of quantum strategy derived from the
concept of probabilistic strategy of Danos and Harmer [DHO02] and based on the vision of
quantum knowledge proposed by D’Hondt and Panangaden [DP05] and quantum consis-
tent history theory. This notion was illustrated by many examples of quantum strategies
that describe quantum states and important quantum operations. To justify the use of these
strategies, a criterion was given to identify the probabilistic strategies that correspond to
quantum states. Since the usual classical game semantics operations on arenas are insuffi-
cient to represent tensor product spaces adequately, we introduced a new tensor operation
for quantum arenas. As a last contribution to the topic of quantum strategies, we gave
an overview of the various generalisations of quantum plays that can be obtained by con-
sidering other kinds of quantum measurements than projective measurements. The two
important cases are quantum plays using POVM measurements and those using interven-
tion operators.

The rest of this thesis was devoted to the use of quantum strategies to analyse three
different quantum programming languages. We first gave a denotational semantics for
a typed variant of the measurement calculus of Danos et al. [DKP0O7]. We obtained a

soundness result for this semantics.
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We then introduced two new higher-order quantum programming languages. While
the syntax of both languages was derived from the work of Selinger and Valiron [SV06a],
two different views of the interaction between quantum and classical parts of a quan-
tum A-calculus were developed. In one case, quantum states are represented as states of
quantum stores on which various commands can be applied. A new syntactic device, ex-
tended variables, was used to allow various gbits of a store to be entangled. In the other
case, quantum states can be used directly in the language as quantum data, forcing the
A-calculus to be linear to avoid duplication of unknown states. In game semantics of clas-
sical languages, this difference between a reference and the data itself is reflected in the
semantics as the difference between thread dependent and thread independent strategies.
The work presented in this thesis clarifies the impact this has in the quantum case: measur-
ing quantum states has side effects which can only be represented using thread dependent
strategies.

The fact that there are two different products (quantum and classical) of quantum
arenas led us to separate the ® type operation of the quantum A-calculus of Selinger and
Valiron into the classical arena product operation and the quantum tensor product arenas
operation.

A denotational semantics using quantum arenas was given for both the quantum store
and the quantum data A-calculi. In both cases the classical segment of the interpretation
uses known constructs from game semantics. For the quantum store A-calculus, new quan-
tum arenas and strategies were required to take into account the fact that the internal state
of a quantum store is affected by unitary transformation, measurements and preparation

commands. For the quantum data A-calculus, gbit variables can only be used linearly
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because the semantics requires thread dependent strategies to account for quantum mea-
surements side effects. We proved soundness results for both languages.
7.2 Discussion

The main goal of this thesis was to present quantum games and strategies as a new
framework to understand the relation between classical and quantum data in quantum pro-
gramming languages. The applications we have given show that it is possible to use this
framework to define semantics of various typed quantum programming languages includ-
ing higher order languages. It inherits one important general feature of game semantics:
it can be adapted to deal with different kinds of quantum programming languages con-
structions. Let us point out some features of quantum strategies that had to be taken into
account. These features played an important role in this thesis, as we took them as guides
for the design of the two A-calculi introduced instead of seeing them as defects of the
model.

I. Quantum strategies [p] in [H] are not thread independent. This is pointing out
that quantum strategies behave like classical strategies for constructions with side-effects.
This feature was obviously important for the A-calculus with quantum stores, since thread
dependence is a general feature of stores. It is also important in the case of the A-calculus
with quantum data since it entails that quantum data must be used linearly: a strategy
representing a state p can’t be duplicated using a A strategy as any interaction with it will
change the state it represent.

II. The usual game semantics tensor operation ® cannot produce quantum arenas
where general quantum measurements can be made, thus making it impossible to deal with

entanglement. This forced the introduction of a tensor operation ® which can only be used
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on quantum strategies. The syntax of both A-calculi we introduced reflect this: we used
classical pairing and a purely quantum tensor operation. Having two different products
also has consequences for abstraction because it depends on the existence of a closed
structure, i.e. on the existence of an adjoint to the product. The quantum tensor product
of arenas does not have an adjoint, and this makes it impossible to use A-abstraction over
a gbit variable which is part of a tensor product. There is, thus, no such abstraction in the
syntax. This can be seen as a consequence of the principle we adopted in section 3.1.1: all
choices are classical, and thus we cannot abstract over part of a tensor product.

ITI. The quantum tensor product of strategies can be defined for either two strategies
representing known states, or two strategies representing unknown states. To deal with the
case of the tensor product of a known and an unknown state, we used instead a prepara-
tion strategy. These three cases are distinguished in the type system of the A-calculus with
quantum data. This feature of the quantum tensor product suggests that in quantum lan-
guages we must distinguish between the cases where quantum states are known and those
where quantum states are unknown.

IV. There is a strategy that allows one to consider locally the components of a state

on a joint space as independent states. This strategy
C: qbit” ® gbit®" — qbit®" © ¢bit®”

is used in the interpretation of the let ... in ... operations of the A-calculus with quantum
data. There is no strategy doing the reverse operation that takes independent states to tensor

product states. This is intuitively impossible because there are ways to operate on the
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resulting tensor state that cannot be described as separate operation on each independent
gbits.

These features of quantum arenas and strategies have their roots in the approach taken
to define quantum strategies for quantum states. We adopted a point of view close to that
of the quantum consistent histories interpretation of quantum mechanics: agents can only
interact with quantum data through measurements. This determined the structure of quan-
tum arenas where quantum states can be represented using the standard approach of game
semantics to represent states of systems. We then built more complex quantum arenas
using the usual product and arrow arena operations of game semantics. As the applica-
tions presented in this thesis showed, it is possible to represent enough important quantum
operations in these arenas to be able to construct denotational semantics for quantum pro-
gramming languages. The various properties of quantum strategies representing quantum
operations are due to a feature specific to them. A typical strategy represents a classical
operation in the arena A — B as the way Player uses Opponent’s answers in the input A
to give an answer in the output B. In contrast, in all the examples of quantum strategies
given in this thesis, a quantum operation is represented as the relation between the ini-
tial question P, asked by Opponent with the counter-question $-, asked by Player. This
constraint explains the last of the three features listed above.

7.3 Future work

We conclude this thesis with possible developments of the ideas it presents.

While we gave enough results on quantum strategies to be able to define denotational
semantics for three quantum languages, there are many questions remaining to be an-

swered. A central one is to characterise, using a condition on plays, the quantum strategies
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in [H4] — [Hp] among all probabilistic strategies in that arena. In chapter 3 we defined the
quantum strategies as those that send, via composition, quantum states to quantum states.
We would like to identify these strategies directly, since strategies with that property corre-
spond to superoperators. The link with consistent histories may prove useful to solve this
problem. By contrast, the approach used to define quantum arenas could be used in con-
sistent history theory to describe processes; as far as the author is aware, there is no such
development in that theory. Note that the characterisation of the quantum strategies of the
form [p] we gave in chapter 3 relies on Gleason’s characterisation of density operators in
terms of probabilities assigned to projectors. To get a similar result for quantum strategies
describing quantum operations, we would need a result characterising a quantum operation
& as a function taking quantum measurements on the output to quantum measurements on
the input. The author is not aware of any such result either. As explained in the conclusion
of chapter 4, the absence of such a characterisation explains why we did not give any full
abstraction results.

A closely related problem is to understand better the structure of the category Qstrat
of quantum strategies. This category was defined as a first step toward the construction
of a dagger compact-closed category of quantum arenas and strategy. Its relation with the
larger category of probabilistic strategies should be investigated further. This categorical
investigation should probably take into account the features of quantum strategies enu-
merated in the last section. One possible goal for such an investigation would be to get a

factorisation result which would allow one to split a probabilistic strategy into a quantum
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and a classical strategy. Factorisation results are used in games semantics as a way to re-
duce a full abstraction proof for a given language to a full abstraction result for a simpler
language.

Another possible research development is to improve our understanding of the struc-
ture of quantum strategies extended to use intervention operators and the arena gstore, as
described in chapter 3. The author proposed an alternative formalism to describe strategies
which use a structure related to Petri-nets to describe information flow in classical game
semantics [Del05]. This information flow framework can be adapted to the use of quantum
interventions.

Finally, the concepts of quantum arena and strategy presented in this thesis could be
used to analyse quantum protocols used in quantum information and cryptography theory.
Quite often these protocols are already presented informally as games and furthermore
some work has been done to use game semantics tools in classical cryptography [JiirQ5].
The relation between our approach and the results mentioned on non-locality without en-
tanglement — results that have antecedents in the literature on quantum key distribution —
is another indication that the quantitative approach of quantum information theory could

be used to analyse quantum strategies.
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