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ABSTRACT 

In this thesis, we present numerical examples of class invariants constructed 

by DeShalit-Goren in [14]. These class invariants are an attempt to generalize the 

classical theory of elliptic units. The hope is that a better understanding of these 

class invariants would lead to other cases of Stark's conjectures expressing the value 

of derivatives of Artin L-functions at s = 0 in term of a regulator of linear forms in 

logarithms of S-units. 
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ABRÉGÉ 

Dans ce mémoire, nous présentons des exemples numériques d'invariants de 

classes. Ces invariants de classes, dont la construction est présentée dans [14], 

peuvent être vus comme une généralisation des unités elliptiques. Une meilleure 

compréhension de ces invariants pourrait peut-être mener à de nouveaux cas des con

jectures de Stark qui expriment les valeurs des dérivés des fonctions L d'Artin en 

s = 0 en termes de régulateurs de formes linéaires en logarithmes de S-unités. 
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CHAPTER 1 
Introduction 

In the XVIIIth century, Leonhard Euler (1707-1783) gave his marvelous pro of of 

the infinitude of prime numbers using the infinite series 

00 1 
((8) = '" -. L..J n8 

n=l 

It was perhaps the first time that an analytical ta al was used in arder ta prove a 

statement in number theory. 

Later on, Gustav Lejeune Dirichlet (1805-1859) managed ta prove his celebrated 

theorem on primes in arithmetic progressions. His idea was ta adapt Euler's pro of 

of the infinitude of prime numbers ta this case. In arder ta do sa, he introduced the 

concept of Dirichlet L-series. This was probably one of his greatest achievements. 

Sinee then more and more general L-series have been introduced in number the-

ory by Heinrich Weber (1842-1913), Erich Hecke (1887-1947), Emil Artin (1898-1962), 

and André Weil (1906-1998) among others. The modern notion of Artin L-function 

contains as particular cases an the Dedekind zeta functions and the Dirichlet L-series. 

These L-functions seem ta encode a lot of arithmetical information. Unfortunately, 

it is not easy ta extract their secrets. Whenever a new discovery is made about these 

L-functions, number theorists are weIl rewarded. 

One of these nice discoveries is the class number formula. If (K (8) is the Dedekind 

zeta function of a number field K, then 

where hK is the class number, Tl the number of real embeddings, T2 the number of 

pair of complex conjugate embeddings, Reg(K) the regulator, !j.K the discriminant, 
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and WK the number of roots of unit y in K. Using the functional equation of (K(S), 

this statement can be translated into a simpler formula at S = 0: 

hKReg(K) sr1+r2-1 + O(srl+r2). 
WK 

In the 70's, Harold Stark tried to find a similar formula for a general Artin L-function. 

Moreover, he gave a more precise conjecture in the case of an L-function of an abelian 

extension with a simple zero at s = O. If these conjectures are true, then it would 

give a partial solution to Hilbert's 12th problem. Hilbert's 12th problem consists in 

finding transcendental functions such that when evaluated at sorne points, they give 

explicit generators of abelian extensions of number field. The prototypical example 

is the set of cyclotomie fields which are generated by particular values of the expo-

nential function. This is why Stark's conjectures are one of the most important open 

problems in number theory. 

The rank one abelian conjecture predicts the existence of a unit called Stark's 

unit. Stark was able to prove his conjectures when the base field is either Q or a 

quadratic imaginary field. For this, he used respectively the theory of cyclotomie 

units and the theory of elliptic units. lndeed, in both of these cases, it is known how 

to explicitly construct units in abelian extensions of the base field. In the latter case, 

the contruction of elliptic units is possible thanks to the theory of classical modular 

function and the theory of complex multiplication. 

It became then an outstanding problem to construct units in abelian extension of 

number fields. The hope is that this would lead to other cases of Stark's conjectures. 

Note that the two cases whieh are known are exactly the fields for whieh ex

plicit class field theory is known. Goro Shimura and Yukata Taniyama (1927-1958) 

extended the theory of complex multiplication to a wider class of number fields called 

CM-fields. Let K be a CM-field (i.e. a totally complex field which is a quadratie 

extension of a totally real field), and let K* be a reflex field of K, whieh is another 
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CM-field associated to K. The theory of complex multiplication allows one to gener

ate abelian extensions of the reflex field K* using values of Siegel modular functions 

evaluated at CM-points associated to K. 

In the paper [14], Ehud De Shalit and Eyal Goren gave an attempt to generalize 

the construction of elliptic units to CM-field of degree four. They constructed class 

invariants in the Hilbert class field of the reflex field K*. They proved several prop

erties of these invariants, but they ask a fundamental question: Are these class 

invariants global units? This question is the motivation of this thesis. 

Our goal here is fairly modest. It consists of writing a program in order to 

have numerical examples of these class invariants. We remark also that the link with 

L-series, if any, is still unknown. 

In Chapter 2, we recall Dirichlet's class number formula, and use it as a mo

tivation for Stark's conjectures. Chapter 3 is provided to recall the main results of 

class field theory in classical language. The classical language is more efficient for 

computational purposes. We follow then with Chapter 4 that contains a brief intro

duction to Stark's conjectures. Chapter 5 gives an overview of the construction of 

elliptic units, while Chapter 6 gives the background needed for the construction of 

DeShalit-Goren invariants. Finally, in Chapter 7, we present the construction of the 

class invariants, and the algorithm used for their calculation is presented in Chapter 

8. The program itself can be found in appendix A and we present some numerical 

results in appendix B. 
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1.1 Notation 

We use the standard notations Z, Q, ~, and C for the set of integers, rational 

numbers, real numbers and complex numbers, respectively. Whenever R is a ring, 

RX means the group of units of this ring. The symbol K will be used to denote a 

number field. 

One finds below the symbols we use. For each of them, we wrote it in the chapter 

of its first appearance. 

Chapter 2 

• «(s): The Riemann zeta function. 

• (K (s ): The Dedekind zeta function of the number field K. 

• N (a): The norm of the fractional ideal a. 

• Re(s): The real part of s. 

• CI(K): The class group of K. 

• hK : The class number of K. 

• K,K: See section 2.2.3. 

• [K: Q]: The degree of the field extension K/Q. 

• Ln: N umber of integral ideals with norm n. 

• L(t): Number of integral ideals with norm :::; t. 

• Lc(t): Number of integral ideals in the ideal class C with norm :::; t. 

• Res(J, s): Residue of f at s. 

• rI: N umber of real embeddings. 

• r2: Number of pair of complex embeddings. 

• Reg: Regulator of a set of units. 

• WK: Number of roots of unit y in K. 

• D..K: Discriminant of K. 

• </J: Euler 4>-function. 

• (m: m-th root of unity. 
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• Gal(Lj K): Galois group of the galois extension Lj K. 

• e(!.plp): Ramification index. 

• f(!.plp): Inertia index. 

• Xl: The trivial character. 

Chapter 3 

• OK: Maximal order of K. 

• I(K): The group offractional ideals of K. 

• P(K): The group of principal ideals of K. 

• Cl+ (K): The narrow class group of K. 

• >.:» 0: A totally positive element. 

• m: A modulus. 

• Clm(K): The ray class group modulo m. 

• Im{K): The fractional ideals relatively prime with m. 

• Pm(K): See definition 3.2.4. 

• tpL/K: The Artin map of the abelian extension Lj K. 

• I(!.plp): The inertia group of the prime!.p lying above p. 

• D(!.plp): The decomposition group of the prime !.p lying above p. 

• kp: The residue field OK/P. 

• Hm: An ideal subgroup modulo m. 

• H: An ideal group (equivalence class of ide al subgroups). 

• C1H(K): The ideal class group of the ideal group H. 

• f(Lj K): The conductor of the abelian extension L/ K. 

• HK : The small Hilbert class field. 

• Hi(: The big Hilbert class field. 

• f(X): The Artin conductor of the character X. 

• Gi(!.plp): Higher ramification groups. 

• W(X): The Artin root number. 
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Chapter 4 

• OK,S: The S-units. 

• St(Lj K, S): Abelian rank one conjecture. 

Chapter 5 

• 8J: Weierstrass' elliptic function. 

• CE,A: The field of elliptic functions with respect to A. 

• Im(z): Imaginary part of the complex number z. 

• An (k): The affine space of dimension n. 

• 92,93: Weierstrass' constants. 

• SL2 (R): The group of matrices with coefficients in R with determinant 1. 

• PSL2 (R): SL2 (R)jZ(SL2 (R)), where Z(SL2 (R)) is the center of SL2 (R). 

• GL2 (R): The group of matrices with coefficients in R with determinant in R X
• 

• GLt(IR): The group of matrices with determinant > O. 

• ~: The upper-half plane. 

• ~*: The upper-half plane with the cusps of a discrete group r. 

• O'k(n): 2:dln dk. 

• r(N): Principal congruence subgroup modulo N. 

• J: The elliptic modular function. 

• j: 1728· J. 

• ~: The discriminant modular form. 

• ,: The Euler constant. 

• "': The Dedekind eta-function. 

Chapter 6 

• Mmxn(R): The set of m x n matrices with coefficients in R. 

• ]P2(C): The projective plane. 

• Diag(d1, ... , dn ): The diagonal matrix with dl, . .. ,dn on the diagonal. 

• ~n: The Siegel space. 
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• SPn(lR): The symplectic matrices with coefficients in 1R. 

• Pa: The analytic representation. 

• PT: The rational representation. 

• K*: The reflex field of a CM-field K. 

• <1>*: The reflex type of a CM-type <1>. 
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CHAPTER 2 
L-series and their value at s = 1 

The main reference for this section is [42]. In particular, aIl details of the proof 

of Dirichlet's class number formula can be found there. Another useful reference is 

[13]. For sorne interesting historical facts, see [16]. 

2.1 The PeU equation 

Going back to the dawn of ages, people were interested in solving the foIlowing 

equation 

for x, y E Z and d a positive integer. One reason why people were interested in that 

equation is that for x and y big enough, it gives a rational approximation of .../d. 

Indeed, we have then d = (=fI + X2)/y2 ~ X2/y2 when x and y are big enough. 

Then .../d ~ Ixl/lyl. Nowadays we calI this equation the PeIl equation foIlowing 

Leonhard Euler (1707-1783), even though it is often said that it has nothing to do 

with the english mathematician John PeIl (1611-1685). Mathematicians tried to solve 

this equation and Joseph-Louis Lagrange (1736-1813) solved PeIl equation using the 

theory of continued fractions. 

Why is this equation so important? In modern algebraic number theory, so

lutions of PeIl's equation correspond to units in real quadratic fields Q( .../d), where 

d is a positive square-free integer, and d == 2,3 (mod 4). Moreover there exists a 

unit ê = X + Y .../d (if we ask also that ê > 1 then it is unique) such that aIl 

other units are of the form ± en = (x + y.../d)n = Xn + Yn .../d, for sorne 

nEZ. In other words, we can find aIl solutions of PeIl's equation if we know this 

fundamental unit. They are precisely the numbers ±(xn, Yn)' When n is big, it gives 
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a good approximation of Vd. One resson why it is important to know this ê is that 

thanks to Gustav Lejeune Dirichlet (1805-1859), we can compute the class number 

of a real quadratic field if we know this fundamental unit ê. This is done through the 

famous Dirichlet class number formula. 

2.2 The Dirichlet class number formula 

2.2.1 The Riemann zeta function 

Euler has been the first to introduce the zeta function of a real variable. He used 

it to give another pro of of the infinitude of prime numbers. The proof goes like this. 

He defined the zeta fun ct ion by 

00 1 
((8) = '""' -. L...J nB 

n=l 

This series converges absolutely for 8 > 1 and has an Euler product 

( 
1 )-1 

((8) = II 1 - p8 ' 
P 

for 8 > 1. Taking the logarithm, we find log ((8) = log TIp (1 - ;. ) -1, for 8 > 1. 

A limit argument allows one to interchange the product and the logarithm to ob

tain log ((8) = L:p log (1 - p~ ) -1, also for 8 > 1. N ow using the series 

expansion of the logarithm function log l~X = L:~=l x: which is valid for Ixl < 1, we 

get log ((8) = L:p L:~=l npt... = L:p ;. + g(8), where g(s) = L:p L:~=2 n;ns- Euler then 

showed that g(8) is bounded near 8 = 1. Now let 8 ~ 1 in the equation 

1 
log ((8) = '""' - + g(s). L...J pB 

P 

Suppose there exists only finitely many primes. The right-hand side would be 

bounded around s = 1. On the other hand, ((8) tends to the harmonic series which 

diverges so we have a contradiction. We conclude that 

1 2:- =00, 
p p 
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and that there are infinitely many primes. 

Then, Bernhard Riemann (1826-1866) allowed complex variables and used it to 

study the distribution of prime numbers. He proved that it satisfies a functional 

equation and that it has a meromorphic continuation to the whole complex plane 

with only one pole at s = 1 which is simple and has residue 1. For the purpose of this 

present chapter, we just need to know that it has a meromorphic continuation on the 

domain Re( s) > 0 with a pole of order 1 at s = 1. After Riemann, it is customary 

to work with zeta and L-functions of a complex variable. Euler's argument works in 

exactly the same way if we allow the variable s to be complex. 

2.2.2 The Dedekind zeta function 

Let K be any number field. Following Richard Dedekind (1831-1916), we define 

a generalization of the Riemann zeta function (if K = Q, we get back the Riemann 

zeta function), the Dedekind zeta function: 

00 

(K(S) = L ~:' 
n=l 

where in is the number of integral ideals a in K such that N(a) = n. In order to 

study the convergence of that function, we recall for convenience the fundamental 

lemma on Dirichlet series, that is series of the form L::=1 ~, where an E C. 

Lemma 2.2.1 Let L::=1 ~ be a Diriehlet's series. Suppose L:n~t an = OW), then 

the series converges for Re(s) > r, and is a holomorphie funetion on this half-plane. 

Thus, we are led to study i(t) = Ll~n~t in which is the number of integral ideals a '" 0 

with N( a) :S t. In order to do this, we split i(t) as a finite sum i(t) = LCECl(K) ic(t), 

where ic(t) is the number of integral ideals a E C (C is an ideal class) with N(a) :S t. 

It is not easy to prove, but the following is true. If C E CI(K) then there exists a 

constant K, not depending on C and made explicit below, such that 

ic(t) = K' t + 0 (tl-iK~Qi) . (2.1) 

10 



Summing over an ideal classes C E CI(K), we get 

(2.2) 

Coming back ta the Dedekind zeta function, we rewrite it as 

(2.3) 

where hK is the class number of K. Using Equation (2.2) and the lemma on Dirichlet 

series, we see that the series on the right-hand side of this last equation represents 

an analytic function for Re(s) > 1- 1/[K : Q]. Since ((s) represents a meromorphic 

function on Re(s) > 0 with only one simple pole at s = 1, (K(S) represents then 

a meromorphic function on the half-plane Re(s) > 1 - l/[K : Q] with only one 

pole of order 1 at s = 1 with residue Res((K, s = 1) = lim8-tI(s - l)(K(s) = hK . /'i,. 

For Re(s) > 1, the Equation (2.3) can be written as «éW = «(~) L:~=l Ln-:;FK+hK·/'i,. 

Letting s --t 1, we get th en 

. (K(S) 
P := hm --;;--( ) = hK . /'i,. 

8->1 .., S 

Therefore, if we are able to compute p, and if we know /'i, then we would be 

able to compute the class number. When K is abelian, using class field theory (the 

Kronecker-Weber theorem), L-series and Euler product, one can do this and it leads 

to Dirichlet's class number formula. 

2.2.3 The constant /'i, 

The constant /'i, which appears above is 

2r1 +r2 • 1fr2 • Reg( K) 
/'i,= WK'~ , 

where 

• rI is the number of real embeddings. 

• r2 is the number of complex embeddings divided by 2. 
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• W K is the number of root of unit y in K. 

• b.K is the discriminant of K. 

• Reg(K) is the regulator of K. 

We recaIl here the definition of the regulator of any rI + r2 - 1 units in a number field. 

According ta Dirichlet unit Theorem (see [42]), we have an isomorphism O~ ~ WxF, 

where W is the finite group consisting of roots of unit y in K and F is a free abelian 

group of rank rI + r2 - 1. Let (Pl,"" Prl +r2-1) be any rI + r2 - 1 units in O~. 

Let al, ... , a rl be the real embeddings of K and a r1+b"" a r1 + r2 be a set of complex 

embeddings such that ai -=1 aj for aIl i, j = rI + 1, ... , rI + r2. Define then 

if ai is real; 

if ai is complex, 

and consider then the (rI + r2) x (rI + r2 - 1) matrix 

( 
:~~~~~ ... :~~~~~ ~ :~~~:~ :~~ ... :~~~:~ :::=~~ ) 

Ir1 +r~ (IL!l ... Ir1 +r2 (ILr1) Ir1 +r2 (ILr1 +!l ... Ir1 +r2 (IL~l +r2-1l . 

The regulator Reg(PI' ... ,Pr1 +r2-d of this set of units is the absolute value of the 

determinant of any minor of rank rI + r2 - 1 of the matrix above (they are aIl equal). 

In other words, you take the matrix ab ove , you delete any line you want and you 

take the absolute value of the determinant. 

Theorem 2.2.1 The units {Pb ... 1 Pr 1+r 2-1 } are Z-linearly independant if and only 

if Reg(Pll ... ,Pr1+r2-1) -=1 O. 

The regulator of the field K is obtained as foIlows. Any basis for F is called a set of 

fundamental units for K. Let (éb' .. ,érl +r2-1) be a set of fundamental units of K. 

Then the regulator of the field K is defined as 
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2.2.4 The Euler product for the Dedekind zeta function 

The absolute convergence of the Dedekind zeta function for Re(s) > 1 allows 

one to write it in this half-plane in the more traditional form 

where the sum is taken over nonzero integral ideals of K. This function has also an 

Euler product for Re(s) > 1 

( 
1 )-1 

(K(S) = II 1'- N(p)8 ' 
P 

where the product is over aU nonzero prime ideals of K. Note that if K/Q is Galois 

then Hilbert's theory of Galois extensions teUs us that the factorization of p in K 

will be of the form p . OK = (Pl' P2 ... Prp)ep, where ep := e(plp) is the ramification 

index which do es not depend on the prime p lying above p. The same is true for the 

inertia index f p := f(plp). Since N(p) = pfp, we have in that case 

( 1) -rp 

(K(S) = II 1 - pfP8 ' 
P 

(2.4) 

where now the product is over aU positive prime numbers in Z. 

2.2.5 Dirichlet L-series 

Dirichlet introduced the notion of L-series in number theory in connection with 

his famous Dirichlet theorem on arithmetic progression. This theorem says that in 

any arithmetic progression 

a, a + m, a + 2m, ... , a + km, ... , 

where (a, m) = 1, there are infinitely many primes. 
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His idea was to adapt Euler's proof of the infinitude of prime numbers to this 

case and prove that if (a, m) = 1, then 

L ~ =00, 
p=a (mod m) P 

where the sum is taken over aU positive prime numbers congruent to a modulo m. 

He introduced L-series precisely in order to gather those primes together. Let X 

be a character modulo m, that is a group homomorphism X : (ZjmZ)X ~ ex. 

We extend the definition of X to aU integers by setting x(n) = 0 if (n, m) -=1 1, 

and x(n) = x(n + mZ) otherwise. Then we define the L-series 

L(s, X) = ~ x(n). 
~ n8 

n=l 

This is a Dirichlet series. If X is not the trivial character, using the orthogonality 

relation and the lemma on Dirichlet series, we see that it represents an analytic 

function for Re( s) > 0 and converges absolutely for Re( s) > 1. We also have an 

Euler product 

L(s, X) = Il (1- X;:)) -1, 

ptm 
(2.5) 

where Re(s) > 1. For the trivial character, L(s, Xl) = TIp (1 - ~ ) -1. TIplm (1 - ;.). 
The first product on the right-hand side is the Riemann zeta function so we get 

(2.6) 

Therefore, when X = Xl it represents an analytic function for Re( s) > 1. We shall 

now recall the pro of of Dirichlet theorem. Starting from the Euler product (2.5) and 

taking the logarithm function define by the usual power series -log(l- z) = 2:~=1 z: 
for Izl < 1, we get 10gL(s,X) = 10gTIptm (1- ~)-1 = 2:ptmlog (1- ~)-1. 
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Again, using the series expansion of the logarithm, we get 

logL(s X) = ~ ~ X(p)n = ~ X(p) + g(s) 
, ~~ npnB ~ ps ' 

p/m n=l p/m 

where g(s) = Lp/m L~=2 ~~2~ (note that this makes sense since Ix(p)1 = 1 and there

fore I~I < 1). Taking the inverse of a+mZ in (Z/mZ) X , say b+mZ. Multiplying 

the last equation by X(b), we get X(b) log L(s, X) = X(b) Lp/m ~ + X(b)g(s). Sum

ming over aU characters modulo m leads to LxX(b) logL(s,X) = Lx L p x~) +h(s), 

where h(s) = Lx x(b)g(s). Changing the order of summation in the sum on the right 

hand side, it becomes L p ;. Lx x(pb), then using the orthogonality relations, we see 

that this sum is cp(m) L]Ea (mod m) ;., where cp is the Euler cjJ-function. Finally, we 

are led to the equation 

1 
X(b) log L(s, Xl) + L X(b) log L(s, X) = cp(m) L pB + h(s). 

X#Xl ]Ea (mod m) 

One shows that h(s) is bounded around s = 1. Moreover, we know that L(l,X) is 

finite if X i= Xl and that log L(s, Xl) ~ 00 when s ~ 1 according to the identity 

(2.6). If we show that for X i= Xl, L(l, X) i= 0 then letting s ~ 1 in the last equation, 

we would have 
1 

00 = cp(m) ]Ea ~d m) pB' 

since aU other terms would be bounded at 1. This would prove Dirichlet theorem. 

We shaU indeed show that L(l, X) i= 0 for X i= Xl and even more then that, we 

will relate L(l, X) with the class number of sorne number fields. 

2.2.6 The Dirichlet class number formula 

From now on suppose that K is a finite abelian field over Q. We shaU use class 

field theory for Q encompassed by the Kronecker-Weber theorem: 
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Theorem 2.2.2 (Kronecker-Weber) Let K jQ be a finite abelian extension. Then 

there exists a positive integer m such that K ç Q((m). That is, every finite abelian 

extension of Q is contained in a cyclotomie field. 

Let X be a character of Gal(KjQ). Using the Kronecker-Weber theorem, we can 

view X as a character modulo m for sorne integer m. Indeed, let f be the smallest 

positive integer m such that K ç Q((m) (it exists by Kronecker-Weber). It is known 

that p ramifies in K if and only if pif. Consider X as a character modulo f through 

the following maps 

Explicitly, we have then x(n) = x(reso,(n+fZ» if (n, f) = 1 and otherwise x(n) = O. 

For brevity, let G = Gal(KjQ) and denote the group of characters of G by ê. 

Consider then for Re(s) > 1 the product I1xEê L(S,X) = I1xEêI1ptf (1- ~)-1. 
One shows then that I1xEê (1 - ~) -1 = (1 - pks) -rp

, where fp is the inertia index 

f(plp) of any prime p of K lying above p, and rp is the number of prime ideals of K 

lying above p (in proving this, we use the fact that pis ramified in K if and only if pif). 

Changing the order of the product (which is allowed since it converges absolutely), 

we get I1xEê L(s, X) = I1ptf (1 - pk. ) -rp

• Combining this with the Euler product 

(2.4) of (K, we have (K(S) = I1p (1 - pk. ) -rp 
= I1plf (1 - pk. ) -rp • I1xEê L(s, X) 

which is valid for Re( s) > 1. Finally, using the identity (2.6) for the trivial character 

we get for Re(s) > 1 

( 1) ( 1 )-rp 

(K(S) = ((s) II L(s,X)· II 1- -; 1- ks 
X~Xl pif P P 

80 we get another expression for p = lims ..... 1 (K(S)j((s). Indeed, 

( 1) ( 1 )-rp 

p = II L(l, X)· II 1- - 1 - J; . 
Xhl PIf P P 
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Now, if K = Q((f), then since p = hK • Yi, =f:. 0 we get a proof that for X =f:. Xl 

L(I, X) =1= 0, 

for any character modulo f and for any positive integer f. We have thus completed 

the proof of Dirichlet theorem on arithmetic progressions. 

2.3 A particular case of Stark's conjectures 

We have shown that we have hK = pjt;, where 

( 1) ( 1 )-TP P = II L(I, X) . II 1 - - 1 - J; , 
X#Xl pif P P 

2T1 +T2 • nT2 • Reg(K) 
t;,= WK'~ • 

In order to compute hK we first have to know the value of p, that is the value of L(I, X) 

for non-trivial characters X. We can do this directly as in [42] for example. It takes 

several steps, but they are not that difficult. In the case where K is a quadratic 

number field, it would lead to an explicit formula for the class number of quadratic 

number fields. Instead of doing this, we use this formula to give a motivation for 

Stark's conjectures. 

Specializing this last formula to the case of a quadratic number field K = Q( .Jd), 

we get the foUowing. First of aU, every ramified prime p, i.e. pif, will have fp = Tp = 1, 

and therefore we have 

p = L(I, X) = Yi,' hK , 

where X is the unique non-trivial character of Gal(KjQ) (it is know that X is the 

Kronecker symbol). The constant t;, is the foUowing: 

{

210g e ifd>O' 
Vf ' , 

t;,= 

~, ifd<O, WKvr 

where é is the fundamental unit in Q(Vd), when d > O. Furthermore, it is known 

that in this case f = I~KI. Putting aU this together, we get the following formula 
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for L(l, X): 

{ ~.hK L(l, X) = VIÔKI ' 

271" • h
K WK~ , 

if d > 0; 
(2.7) 

if d < O. 

Note that this value is the quotient of a presumably transcendent al value by a 

rational number. The general Stark's conjecture is a similar statement for a general 

Artin L-function. 
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CHAPTER 3 
Class field theory 

For a first reading on class field theory, we suggest the article [20]. We used 

mainly four references for this section, namely [9], [11], [32] and [48]. 

3.1 Introduction 

Class field theory is the continuation of algebraic number theory " à la Dedekind" . 

It started with Leopold Kronecker (1823-1891), Heinrich Weber (1842-1913), David 

Hilbert (1862-1943) and took a definitive form with Teiji Takagi (1875-1960), Emil 

Artin (1898-1962) and Helmut Hasse (1898-1979). Later on, Hasse discovered local 

class field theory and proved it with the help of global class field theory. Jacques 

Herbrand (1908-1931) and Claude Chevalley (1909-1984) proved local class field the-

ory without using anything from the global theory. Then Chevalley introduced the 

concept of ideles in order to deduce the global theory from the local theory. 

In this chapter, we shall present the classical theory of global class field theory 

according to Takagi, Weber and Artin. 

3.2 Class field theory 

We first fix our notation: 

• K is a number field, that is a finite extension of Q. 

• K X is the group of non-zero elements of K. 

• OK is the ring of integers of K. 

• O~ is the group of units in OK. 

• I(K) is the group of fractional ideals of K. 

• ~ : K X 
-t I(K) is the map defined by À t-t ~(À) = À . OK' 

• P(K) is the subgroup of I(K) consisting of the principal ideals, i.e. P(K) = 

l-(K X
). 
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• Cl(K) = I(K)j P(K) is the class group of K. 

In the beginning of the XIXth cent ury, Evariste Galois (1811-1832) stated his famous 

theory of the solvability of polynomials. The criterion is that for a polynomial to be 

solvable it is necessary and sufficient that its Galois group is solvable. In particular, 

every abelian group is solvable so any polynomial with abelian Galois group (which 

are called abelian polynomial) can be solved by extraction of roots (these abelian 

polynomials have been found by Niels Henrik Abel (1802-1829), hence their name). 

Later on in the XIXth cent ury, Kronecker was interested in solving explicitly abelian 

polynomials which was possible according to Galois theory. At the same time, he 

was working on the theory of elliptic functions. 

He started with the study of abelian polynomials with coefficients in Q and he 

formulated the following conjecture: 

Conjecture 3.2.1 (Kronecker) Every mot of an abelian polynomial with rational 

coefficients is a rational function of mots of unit y (with coefficients in Q). 

This has been proven by Weber. Nowadays, it is called the Kronecker-Weber theorem, 

and we used it in the previous chapter. Then he got interested in abelian polynomials 

with coefficients in an imaginary quadratic number field. Here again, he formulated 

a conjecture (see Section 5.3 for the theory of the j-function). 

Conjecture 3.2.2 (Kronecker) Every mot of an abelian polynomial with coeffi

cients in a quadratic imaginary field K can be expressed as a rational function (with 

coefficients in K) of some values of the modular function j(T). 

This conjecture became to be known as Kronecker's Jugendtraum. The conjecture is 

false, even though Kronecker was not far away from the truth. In order to be true, 

one has to add the values of sorne other functions like the Weber functions. The 

correct theorem has been proven by Takagi after he proved the main theorems of 

class field theory. 
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A little after Kronecker, Weber was interested in the distribution of prime ideals 

in ideal classes and wanted to prove that there are infinitely many primes in every 

class of Cl(K) for any number field K. He introduced then the concept of ray class 

group in connection with his work. Going back in the XVIIlth century, Carl Friedrich 

Gauss (1777-1855) gave the impulse to the theory of binary quadratic form and during 

his studies, he defined an equivalence relation between forms. Later on, Dedekind 

translated this language into his new discovery: The ideal theory. For an imaginary 

quadratic field K, both theories are equivalent, that is the study of classes of binary 

quadiatic forms is equivalent to the study of CI(K). But for real quadratic fields, it is 

not true anymore and one sees that the theory of binary quadratic forms is equivalent 

to a slightly bigger class group, namely Cl+(K), the narrow class group. We defined 

it right now for any number field, not only for quadratic fields. Let K be a number 

field, then À E K is said to be totally positive, and we write À » 0, if a(À) > 0 for 

an real embedding a of K. Let 

P+(K) = {a E I(K)la = À· OK, for some À» O}, 

and define the narrow class group as Cl+(K) := I(K)j P+(K). Weber was aware of 

that and he noticed then the following isomorphism (the notation will become clear 

after Definition 3.2.4): 

Theorem 3.2.1 

where 

• Im«a!) is the group of fractional ideals generated by the integers relatively prime 

with m. In other words, Im({Q!) is the group of fractional ideal ~ . Z where 

(a,m) = (b,m) = 1. 
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• P mooo(((]) is the subgroup consisting of % . Z E Im(((]) such that % » 0 (that is 

for ((], % > 0 sin ce there is only one real embedding) and a == b (mod m). 

Proof: 

We shall use the following notation: a := a + mZ for any integer a. Define the 

application f : Im(((]) --t (ZjmZ)X by the following rule. Every ideal in Im(((]) has 

two generators, one positive and one negative. Take the positive one, say % . Z and 

send it to a· (b)-l in (ZjmZ) X • Then ker(f) = Pmoo(((]) and this map is clearly 

surjective. Therefore Clmoo (((]) ~ (ZjmZ)x. 

o 

Dirichlet's theorem on arithmetic progressions can now be interpreted as follows. In 

every class of Clmoo(Q), there exists infinitely many prime numbers. Note also that 

if m = 1 then it says that there are infinitely many prime numbers in N as was known 

already to Euclid. Weber proceeded then to generalized Clmoo (((]) to other number 

fields. We explain this now. 

Definition 3.2.1 Let K be a number field and ma be an integral ideal of K. Let moo 

be a set of distinct real embeddings of K. We define a modulus m to be a formaI 

product m = ma . moo. 

A modulus is just a way to pack together finitely many prime ideals and finitely many 

real embeddings (a real or complex embedding is also called an infinite prime). We 

proceed now to generalize O~, K X, I(K), P(K), and CI(K). For an these definitions, 

fix a modulus m = ma . moo. 

Definition 3.2.2 We define a subgroup KX (ma) of KX ta be the subgroup generated 

by the elements a E OK such that (a . OK, ma) = 1. We define also O~(ma) = 

O~nKX(ma). 

In other words, À E KX(ma) if and only if there exists a,(3 E OK(# 0) such that 

À = a j (3 and (a . OK, ma) = ((3 . OK, ma) = 1. Then we define an equivalence relation 

on K X (ma). 
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Definition 3.2.3 Let >.1, >'2 E K X (lllo). Then, by definition >'i = ~ where ai, (3i 

are non-zero algebraic integers in K satisfying (ai' OK, mo) = 1 = ((3i . OK, mo) for 

i = 1,2. Define then 

Œ (~:~~) > 0 for aU real embeddings Œ E moc. 

Note, that the last condition means that Œ(>'1) and Œ(>'2) have the same sign for 

each Œ E moo. Also, this equivalence relation is well-defined, that is, it does not 

depend on the representation of >'i as a quotient ~. 

Next, we define a subgroup of K X (mo) which now depends also on the infinite part 

of the modulus and use it to generalize the construction of Cl(K) and Cl+(K). 

Definition 3.2.4 Define 

O~m = {a E O~(lllo)la == 1 mod xml· , 

Define also Im(K) to be the subgroup of I(K) generated by aU primes relatively prime 

with mo, and 

Pm(K) = /'(K~) = {a E Im(K)la = >.. OK for some ,.\ E K~}. 

Note that Pm(K) is a subgroup of Im(K) and that Im(K) depends only on the finite 

part ma ofm (therefore sometimes, we write lmo(K) instead of Im(K) J. FinaUy, we 

define the ray class group of modulus m by Clm(K) := Im(K)/ Pm(K). 

These ray class groups are finite groups like the usual class group. Indeed, 

if P(ma, K) denotes the group of principal ideals lmo(K) n P(K), then we have an 

isomorphism 

lmo(K)/ P(mo, K) !::! Cl(K). 
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The map Im(K) ~ lmo(K)/P(mo,K) induces a map 

andker~ = P(mo,K)/Pm(K). Therefore, wegettheisomorphismCI(K):::::: Clm(K)/J, 

where J = P(mo, K)/ Pm(K). We shaH study a bit further the group J. Consider the 

homomorphism 

This map is surjective, and its kernel is easily seen to be O~ . K~. Thus 

If we show that KX(mo)/(O~ . K~) is a finite group, then Clm(K) would also be a 

finite group. Consider the map 

K X (mo) ~ II (Op/m~p(mo)) x x II K; / K:,+, 
plmo uE1lloo 

where Op is the localization of OK at p, mp is the unique maximal ideal of Op, 

K; is the completion of K with respect to the place (1, and K;,+ is the subgroup 

of K; consisting of positive elements. Using the approximation theorem, we see that 

this map is surjective. Moreover, its kernel is precisely K~. We see from aH this 

that Clm(K) is a finite group. More precisely, we have: 

Theorem 3.2.2 The ray class groups Clm(K) are fini te groups. Let hm,K denotes its 

cardinality. Then we have 

where cP is the generalized Euler cP-function and t is the number of real places in moc· 

If K = Q and m = (m) . 00 then Clm(Q) = Clmoo(Q), the class group of the 

Theorem 3.2.1. Note, moreover, that when m = OK' 00 where 00 = {(11, .•. ,(1r} is 

24 



the set of an real embeddings of K, th en Clm(K) = Cl+(K). Also, when m = OK 

then, Clm(K) = CI(K) so ray class groups generalize both the usual class group and 

the narrow class group. 

We make a small digression here. Remark that for the usual class group, we 

have the following exact sequence 

1 -+ O~ -+ K X ~ I(K) -+ CI(K) -+ 1. 

We see from this sequence that O~ is a measure of the non-injectivity of i and CI(K) 

is a measure of the non-surjectivity of the same map L. We have a similar exact 

sequence for the ray class groups 

Recall that Weber was interested in proving that there are infinitely many prime 

ideals in every class of CI(K), and more generally in every class of Clm(K), in order 

to generalize Dirichlet's theorem to any number field. Recall also that in proving 

Diriehlet's theorem, we used the fact that every abelian extension is contained in 

a cyclotomic field (the Kronecker-Weber theorem). In order to prove his theorem, 

Weber supposed the existence of sorne fields (the ray class fields) having similar 

properties as the ones cyclotomie fields have for Q. He called them class fields. 

Unfortunately for him, he was not able ta prove the existence of these fields even 

though he was convinced of this facto Actually, he was sure of their existence for Q 

and pretty sure for a quadratie imaginary field because of the second conjecture of 

Kronecker. On the other hand, assuming their existence, he proved sorne of their 

properties and he was pretty sure that the class fields are finite abelian extension of 

K. 

Hilbert, working on other problerns, was led ta stipulate the existence of sorne 

fields with sirnilar properties ta those of Weber. Hilbert has been the first ta see 
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in that theory a theory of abelian extensions of number fields. Then Takagi proved 

all the main theorems of class field theory. Finally, Artin introduced his famous 

reciprocity law which nowadays is in the center of class field theory. We recall here 

the notion of the Artin map cp LI K (also denoted (_, LI K)). 

Let LI K be a finite extension of number fields. Let p be a prime of K and l.l3 

a prime of L lying above p. Let also l<.p = OL/1.l3 and kp = OK Il'. From algebraic 

number theory, we have the following exact sequence 

1 --t I(l.l3lp) --t D(l.l3lp) --t Gal(l<.plkp) --t 1, (3.1) 

where I(l.l3lp) is the inertia group and D (1.l3 Il' ) the decomposition group. Suppose 

now that l.l3 is unramified above l', then I(l.l3lp) = 1 and D(l.l3lp) ~ Gal(l<.plkp). By 

Galois theory for finite fields, the Galois group on the right is cyclic generated by the 

Frobenius x H xq , where q is the cardinality of kp. Under the exact sequence (3.1), 

the Frobenius corresponds to a unique K-automorphism of L in D(l.l3lp). We calI 

this K-automorphism by the same name, namely the Frobenius. Now, if LI K is an 

abelian extension, then the Frobenius do es not depend on the prime l.l3 lying ab ove. 

Suppose from now on that LI K is abelian, and denote this Frobenius by O"p. One 

can show that O"p is uniquely determined by the following condition. It is the unique 

automorphism 0" E Gal(LI K) such that O"(x) == xq (mod 1.l3) for aU x E OL, where q 

is the cardinality of OK/P. The Artin map is then defined as follows. 

Definition 3.2.5 Let mo be an integral ideal of K such that aU ramified primes 

divide mo. The Artin map is defined as 

t t 

CPIT'OJ,L/K : IIT'OJ(K) --t Gal(L/ K), a = II l'fi ~ II O"~i. 
i=l i=l 

Note that even though the Artin map depends only on the finite part of a modulus m, 

we shall also use the notation CPm,L/K for the Artin map. We are now almost ready to 

state the main theorem of class field theory which classifies finite abelian extensions 

26 



of a number field, but in order to get aH finite abelian extensions of K we have to 

consider also quotients of ray class groups. 

Definition 3.2.6 An ideal subgroup modulo m is a group Hm satisfying the two in

clusions Pm(K) < Hm < Im(K). For each ideal subgroup modulo m, we define also a 

class group, namely 

Recall also that a real ernbedding (7 of K is called rarnified in a finite extension LI K 

if there exists a complex embedding T of L such that TIK = (7. We can now state the 

first main theorem of class field theory. 

Theorem 3.2.3 Let LI K be an abelian extension and let m be a modulus divisible 

by aU primes of K, finite or infini te, that ramify in L . 

• The Artin map 'Pm,L/K is surjective. 

• If the exponents of the finite primes in mare sufficiently large, then ker( 'Pm,L/ K ) 

is a congruence subgroup modulo m, that is Pm{K) < ker{';?m,L/K) < Im{K), and 

consequently, the Artin map gives us the isomorphism 

Im(K)/ker('Pm,L/K) ~ Gal(LI K). 

Remark: The condition "for sufficièntly large" seerns weird at first. It should be 

clear after the definition of the conductor (below) what we rnean: The conductor 

should divide m. See Theorem 3.2.7. 

This last theorern can be satisfied by more than one modulus. In or der to have 

a bijective correspondence between abelian extensions and sorne classifying objects, 

we shall introduce an equivalence relation between congruence subgroups. The ideal 

classes obtained in this way will be the classifying objects for finite abelian extensions. 
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Definition 3.2.7 Let ml and m2 be two moduli, Hml an ideal subgroup modulo ml 

and H m2 an ideal subgroup modulo m2. Then 

An equivalence class [Hm] of ideal subgroups is caUed an ideal group. 

Theorem 3.2.4 Let ml and m2 be two modulus, Hml be an ideal subgroup modulo ml 

and Hm2 an ideal subgroup modulo m2. If Hml ~ Hffi2, then both class groups are 

isomorphic: Clm1,H
m1 

(K) ~ Clm2 ,Hm2 (K). Thus, if H = [Hm] is an ideal group, we 

can talk about the class group of H. More precisely, ClH(K) = Clm,Hm(K). 

We define next the conductor of an ideal group, but before that here are sorne pre

liminaries. The next definition extend divisibility of integral ideals to modulus. 

Definition 3.2.8 Write ml = mO,1 . moo,l and m2 = mo,2 . moo,2' We say that mllm2 

ifmo,llmo,2, and moo,l ç moo,2. Therefore, it makes sense to talk about the gcd of two 

moduli, gcd(ml, m2) = gcd(mO,I, mo,2) . (moo,l n moo,2)' 

Theorem 3.2.5 If H is an ideal group (i.e. an equivalence class of ideal subgroups), 

and Hmll Hm2 EH, where Hm; is an ideal subgroup modulo ll\i. Let m = gcd(ml' m2). 

Then there exists an ideal subgroup Hm modulo m such that Hm EH. 

Definition 3.2.9 Let H be an ideal group. The gcd of aU m for which there exists 

an ideal subgroup Hm E H is caUed the conductor of H and is denoted by f = f(H). 

f is thus characterized by the two conditions: 

• Hf EH . 

• Hm EH=? flm. 

Note also that if H is an ideal group and m is a modulus, then there is at most one 

ideal subgroup modulo m in H. We denote it by Hm. 

We can now precise Theorem 3.2.3. 
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Theorem 3.2.6 To any finite abelian extension L/K, there exists a unique ideal 

group H su ch that ClH(K) ::= Gal(L/ K), and the isomorphism is given by the Artin 

map for any modulus m such that there exists a Hm in H. 

Definition 3.2.10 Let L be a finite abelian extension of K. Then the conductor 

of L / K is the conductor of the ideal group corresponding to it under the last theorem. 

It is denoted by HL / K). 

Theorem 3.2.7 Let L/K be a fini te abelian extension of K . 

• A prime p of K (finite or infinite) is ramified in L if and only if pIHL/ K) . 

• Let m be a modulus divisible by aU primes (finite or infinite) which are ramified 

in L. Then ker(<pm,L/K) is a congruence subgroup modulo m that is Pm(K) < 

ker(<pm,L/K) < Im(K) if and only if HL/ K)lm. 

We also have the converse of Theorem 3.2.3, namely 

Theorem 3.2.8 Let m be a modulus of K and let Hm be a congruence subgroup 

modulo m, that is Pm(K) < Hm < Im(K). There exists then a unique abelian exten

sion L / K such that its ramified primes (finite or infinite) divide ln and such that the 

Artin map <Pm,L/K : Im(K) -? Gal(L/K) gives us the isomorphism 

i.e. Hm = ker(<pm,L/K). 

We thus have a one-to-one and onto correspondence between the ideal groups 

and the finite abelian extension of K. This correspondence is actually order reversing. 

To understand this last fact, we have to explain the order relation on the set of ideal 

groups. 

Definition 3.2.11 Let Hl and H2 be two ideal groups for K. We say that Hl ç H2 

if there exists a modulus m, an HI,m E Hl and an H2,m E H2 such that HI,m ç H2,m. 

After this definition, we can state: 
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Theorem 3.2.9 Let Land M be two fini te abelian extensions of K. Let HL and 

HM be their corresponding ideal group. Then L ç M if and only if HL 2 HM. 

3.2.1 Ray cIass fields and the Hilbert cIass field 

Definition 3.2.12 Let K be a number field and m any modulus. The finite abelian 

extension of K corresponding to the ideal subgroup Pm(K) is called the ray class field 

of modulus m and is denoted Km. 

By the theorems above, we have Gal(Km/ K) ~ Clm(K) and every abelian extension 

is contained in a ray c1ass field for some modulus m. We have another characterization 

of the conductor, namely: 

Theorem 3.2.10 Let L/ K be an abelian extension. The conductor HL/ K) is the 

g. c. d. of all modulus m such that L ç Km. 

It is thus the smallest Km such that K ç Km. The ray c1ass fields are the general

ization of the cyclotomie fields for the base field Q. Indeed: 

Theorem 3.2.11 Let K = Q and let m E Z. The ray class fields corresponding 

to the modulus m = mZ . 00 is Q( (m) and the ones corresponding to the modulus 

m = mZ is Q((m + (;;;,1), that is, the maximal real subfield ofQ((m). 

On the other hand, for a general base field K, we do not know explicit generators for 

the ray class fields Km (as the roots of unit y for Q). When K is quadratie imaginary, 

such generators can be given by the main theorems of complex multiplication. 

Among the ray class fields, two are partieularly important: The Hilbert class 

fields. There are two notions of a Hilbert c1ass field of a number field K. One is the 

small Hilbert c1ass field, denoted by HK' and the other is the big Hilbert c1ass field, 

denoted by Hi<. They are defined as follows: 

• The small Hilbert class field (or Hilbert c1ass field) is the ray c1ass field associ

ated to the modulus m = OK. 
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• The big Hilbert class field (or the narrow Hilbert class field) is the ray class 

field associated to the modulus m = OK . 00 where 00 = {0"1"'" O"r} is the set 

of aIl real embeddings of K. 

A direct consequence of the theorems above is that Gal( H KI K) ::: CI( K) and also 

that Gal(Hi<1 K) ::: CI+(K). We also have HK ç Hi< by Theorem 3.2.9. The Hilbert 

class fields have the following property 

Theorem 3.2.12 The smaU Hilbert class field is the maximal finite everywhere un

ramified abelian extension of K. In other words, if LI K is a finite abelian extension 

such that all finite and infinite primes are unramified then L ç H K . 

Proof: 

Let L be a finite unramified abelian extension of K at every prime (including the 

infinite ones) and f = f{LIK) its conductor. By Theorem 3.2.7, f = OK sinee aIl 

primes are unramified. By the second part of the same theorem, ker('PoK,L/K) is a 

congruence subgroup that is PoK(K) ç ker('POK,L/K). Then by Theorem 3.2.9, we 

necessarily have L ç H K. 

o 

Theorem 3.2.13 The big Hilbert class field is the maximal finite unramified abelian 

extension of K (exclu ding the infinite primes). In other words, if LI K is a finite 

abelian extension su ch that aU finite primes are unramified then L ç Hi<. 

Proof: 

Let L be a finite unramified abelian extension of K at the finite primes and f its 

conductor. Set also m = OK . 00. Since aIl finite primes are unramified in L, m is 

divisible by aH ramified primes and flm. By the second part of the Theorem 3.2.7, the 

group ker('Pm,L/K) is a congruence subgroup modulo m, that is Pm(K) ç ker('Pm,L/K)' 

Then by Theorem 3.2.9, we necessarily have L ç Hi<. 

o 

Remark: When K is totally complex, then HK = Hi<. 
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3.3 Generalized L-series 

In order to prove his theorem on the infinitude of primes in any ideal class, Weber 

generalized the notion of Dirichlet series to any number field. 

Definition 3.3.1 Let m be a modulus and Clm(K) the ray class group modulo m. 

Let X : Clm(K) -7 ex be a character. We extend the definition of X to any integral 

ideal of K by setting x(a) = x([a]) if (a, mo) = 1, and x(a) = 0 if (a, mo) =1- 1. The 

generalized Dirichlet L-series modulo m is defined to be 

~ x(a) 
L(s, X) = L.,.. N(a)s' 

#0 

where the sum is taken over aU non-zero integral ideal of K. 

If X =1- Xl, then L(s,x) represents an analytic function for Re(s) > 1- [K~Q], For Xl, 

it represents an analytic function for Re(s) > 1. They also have an Euler product 

( 
x(p) )-1 

L(s,x) = II 1 - N(p)s ' 
p 

valid for Re(s) > 1. 

3.4 Artin L-functions 

First of aU, the main reference for this section is [48]. The class of Artin L

functions contains aU L-series we have seen so far. Moreover, they are defined for any 

finite galois extension of number fields not necessarily abelian. When the extension 

is abelian, they reduced to the ones above. We introduce Artin L-functions here in 

order to explain Stark's conjectures in Chapter 4. 

Let Kjk be a finite galois extension ofnumber fields. Let p : Gal(Kjk) -7 GL(V) 

be a finite dimensional complex representation of G = Gal(Kjk) with character X. 

Let p be a prime ideal of k and s:}3 be any prime ideal of K above p. RecaU from 

Equation (3.1) that we have the isomorphism 

D(s:}3lp)j I(s:}3lp) ~ Gal(K<.pjkp). 
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We will denote the coset corresponding to the Frobenius element of Gal (Kc:pj Kp) 

by CT(J3. This coset induces a well-defined automorphism on 

VI((J3lp) = {v E VICT' v = v, for aU CT E I(l,plp)}. 

We can now define the Artin L-function: 

Remark: The notation det(l - CT(J3N(p)-SIV1((J3lp») means the determinant of the 

operator 1 - CT(J3N(p )-S acting on VI((J3lp). 

Using a standard argument on infinite product, one can show that the Artin 

L-function represents an analytic function for Re(s) > 1. The argument goes as 

foUows. It suffices to prove that the product is absolutely and uniformly convergent 

on any half-plane Re( s) ~ 1 + 8 for any 8 > O. This is equivalent to the convergence 

(absolutely and uniformly) of the following series: 

where the log is given by the principal branch. Note that we can decompose the 

determinant as follows: 

d~ 

det(l - CT(J3N(p)-SIV1((J3lp») = II (1 - éiN(P)-S), 
i=l 

where the éi are roots of unit y, and d(J3 = dim(V1(\llIP»). This is true because the 

operator 1- CT(J3N(p)-S preserves the hermitian pairing H(x, y) := 2:O"EG < CTX, CTy >, 

where < , > is the usual hermitian product on V (after having chosen a basis). There

fore, this operator is diagonalizable and moreover the eigenvalues are roots of unit y 

since Gal(Kjk) is a finite group. Thus we are led to consider the series 

d~ 

L I)og(l - éiN(P)-S)-l. 
P i=l 
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Using the usual series for the Iogarithm, this Iast series is equal to 

But, we have the following chain of inequalities: 

"0~1 En l ,,~l ~~~ nN(~)ns ~ dim(V) ~~ nN(p)nRe(s) 

00 1 
~ dim(V) . [K : k] . L L n n(1+c5) 

p n=l p 

~ dim(V) . [K : k].log((l + 5). 

We can conclude with this last inequality. 

It is also known (using Brauer's theorem on induced representations) that the 

Artin L-functions can be extended to a meromorphic function on the complex plane. 

If p' is an equivalent representation, it is known that the corresponding Artin 

L-functions agree. Therefore, we can write L(s, X, K/k) instead of L(s, p, K/k) since 

two representations are equivalent if and only if they have the same char acter . 

The Artin L-functions have three fundamental properties that we record in the 

next theorem. 

Theorem 3.4.1 The Artin L-functions behave as follows under direct sum, induc-

tion and inflation: 

• L(s, X + X', K/k) = L(s, X, K/k) . L(s, X', K/k). 

• Suppose we have k ç L ç K and that X is a character of H = Gal( K / L), then 

L(s, Ind~(x), K/k) = L(s, x, K/ L). 

• Suppose we have k ç L ç K, H = Gal(K/L) is a normal subgroup of C, and 

X is a character of C/ H ~ Gal(L/k), then L(s, Infl(x), K/k) = L(s, x, L/k). 
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How do we get back the Dedekind zeta functions from these new ones? Taking the 

trivial representation p = 1, we get 

L(s, 1, K/k) = (k(S). 

When K / k is an abelian extension, then we get back the generalized Dirichlet 

L-series up to a finite Euler product. This is the content of the next theorem. 

Theorem 3.4.2 Let K/k be an abelian extension, let f be the conductor of K/k and 

let X =1= Xl be an irreducible character of Gal(K/k). Consider the sequence of maps: 

Through this last sequence of maps, we can consider X as a character on Clf(K). We 

shall denote it by X' and we consider the generalized Dirichlet L-series L( s, X'). 

We then have the following equality: 

L(s,X,K/k) ~ II (1- ~~)!) -1. L(s,x'), 

where S = {primes p 1 x(I(~lp)) = 1, and pIf}· 

3.4.1 Functional equation 

While studying the distribution of prime numbers, Riemann was led to prove 

a functional equation for the Riemann zeta function. This allowed him to extend 

the definition of this function to the whole complex plane and along the way he 

stated his famous Riemann hypothesis, which is still unproved. Here, we state the 

functional equation for Artin L-functions. We give first the definition of the relevant 

mathematicalobjects. 

Let V be a finite complex representation of Gal(K/k) with character x. The 

Artin conductor of X is defined as follows. Let p be a prime ideal of k and let ~ be a 

prime ideal of K lying ab ove p. Let Gi(~lp) be the higher ramification groups. Note 
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that Go(l,l3lll) = I(l,l3lp). Define 

f(x p) = f IGi (l,l3lp)1 . codim(VG;('+llp)) 
, i=l II(l,l3lp)1 . 

Note first that this sum is a finite sum, and that this number does not depend on 

the prime l,l3 lying above p. It is also known that this number is actually an integer 

though it is not clear from the definition. Define then the Artin conductor of X to be 

the integral ideal of k: 

f(x) = II pf(x,P) . 

p 

Next, for any infinite real place v of k, let w be a place of K lying above v, and let 

These numbers depend only on v. Define then 

for v real; 

for v complex, 

where rlR(s) = Jr-s/2r(s/2). Let also 00 denote the set of aIl infinite primes of k. 

We can now define the completed Artin L-function A: 

A(s,X,K/k) = (I~Klx(l). N(f(X))r/
2

• (II Lv(S'X,K/k)) . L(s,X,K/k). 
vloo 

Theorem 3.4.3 The completed Artin L-function satisfies the following functional 

equation: 

A(l - s, X, K/k) = W(X) . A(s, X, K/k), 

where X is the character of the dual representation and W(X) is a complex number 

of norm one su ch that W(l) = 1 (W(X) is called the Artin mot number). 
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CHAPTER4 
Stark's conjectures 

The main reference for this chapter is [73]. For another nicely written reference 

in english, see [12]. Moreover, the papers by Stark are still interesting, see [68], [69], 

[70], and [71]. 

For the abelian rank one conjecture, see in particular Chapter 4 of [68]. 

Recall Formula 2.7 of Chapter 2 for a quadratic field K = Q( v'd): 

if d> 0; 

if d < 0, 

where again X is the non-trivial character of Gal(KjQ) , hK is the class number, Ô,K 

is the discriminant, ê is the fundamental unit in the case where d > 0, and WK is the 

number of roots of unit y in K. 

Stark's conjecture is an attempt to generalize this last formula to any general 

Artin L-function. As Stark noticed, it seems to be more natural to look at s = ° 
instead of s = 1. lndeed, for instance, we have 

but using the functional equation for the Dedekind zeta function (which is a particular 

case of the general functional equation of an Artin L-function with X = Xl, see 

Theorem 3.4.3), we get the following formula for the Taylor series at s = 0: 

This last formula is much simpler. 
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Let K/k be any finite galois extension of number fields. Let G = Gal(K/k), 

and V be a finite dimensional complex representation of G with character X. Follow

ing Tate, we shall work with any finite set of primes S containing the set of infinite 

ones Soo. In that case, we define 

This function also represents an analytic function on Re(s) > 1, and can be ex

tended to a meromorphic function on the complex plane. Write the Taylor expansion 

of Ls(s, X, K/k) at s = 0: 

The order rs(X) is known explicitly: 

Theorem 4.0.4 For any v E S, let w be any place of K lying above v. The or

der rs(x) is given by the formula 

rs(X) = L dim(VD(w1v)) - dim(VG ). 

vES 

We get as an immediate consequence the following corollary: 

Corollary 4.0.1 If X is the character of a one-dimensional representation, then 

{

ISI-l, 
rs(x) = 

I{v E SI x(D(wlv)) = 1}1, ifx"l Xl· 

Stark's conjecture is an attempt to describe cs(x). We will not state the general 

non-abelian Stark conjecture, see [73J. Instead, we shaH present the abelian rank one 

conjecture that Stark gave. In that case, it is more precise and predicts the existence 

of a unit which is called a Stark unit. First, we recall here the definition of S-units 
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in a number field K, where 8 is a finite set of primes of K containing 800 : 

OF<,s := {À E KIIÀlw = 1, for all w '1- 8}. 

Note, that when 8 = 800 , one gets back the usual units of OK. 

Suppose now that Kjk is an abelian extension of number fields. Let 8 be a set 

of primes of k satisfying: 

SI. 181 2: 2; 

S2. 8 contains 800 and all primes which ramify in K; 

S3. 8 contains at least one place which splits completely in K. 

Note that v splits completely if and only if D(wlv) = 1. Therefore, the conditions 

that we impose on 8 are precisely the ones that we should ask in arder to have 

rs(x) 2: 1 by Corollary 4.0.1. 

Let now 8K denotes the set of primes of K lying above those in 8. Fix a place v 

of 8 which splits completely in K, and fix a w in 8K above v. If 181 2: 3, define 

uv = {u E OF< S Ilulw' = 1, for all w' t v}. ,K 

If 8 = {VI, V2}, and W2 is ab ove V2, then define 

Finally, define 

1 

U}t/k = {u E OF<s IK(uwK)jk is an abelian extension}. ,K 

Conjecture 4.0.1 (Stark) There exists a 8-unit é E U}t/k n Uv su ch that 

for aU XE ê. 

39 



The E in the conjecture is called a Stark unit, and we shall denote this conjecture by 

St(K/k, S, v). 

Theorem 4.0.5 The conjecture St(K/k, S, v) is true if S contains another totally 

split place v'. 

Note that this last theorem is trivial if either ISI = 2 and X t Xl, or 151 2: 3. lndeed, 

it suffices to take € = 1. The interesting case is thus when we have simultaneously 

ISI = 2 and X = Xl· 

Therefore, the conjecture is independent of the choice of v in S, so from now 

on, we shall denote St(K/k, S, v) by St(K/k, S). Some consequences follow from this 

last theorem. 

Corollary 4.0.2 The conjecture St(k/k, S) is true. 

Corollary 4.0.3 If S contains two complex places, then St(K/k, S) is true. 

Corollary 4.0.4 If S contains a finite place v which splits completely and k is not 

totally real then St(K/k, 5) is true. 

What happens if we change the set S7 It is c1ear that if 5 ç S', then S' satisfies 

also properties 81, 82, and 83. 

Theorem 4.0.6 If the conjecture St(K/k, S) is true, then St(K/k, S') is true for 

any S' 2 S. 

lt is also c1ear that if S satisfies the condition 81, 82, and 83 for K/k then S satisfies 

them also for any intermediate field k ç L ç K. 

Theorem 4.0.7 If k ç L ç K, then St(K/k, S) implies St(L/k, S). 

This conjecture is also known to be true for the base fields Q and k = Q( Vd), 

with d < o. In the latter case, Stark used the theory of elliptic units that has been 

introduced by Siegel. We will give an introduction to these units in Chapter 5. 
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CHAPTER 5 
Classical theory of elliptic units 

We used several books for this section. For the theory of elliptic functions, we 

used [35J amongs other. See also [36], [41J and [SIJ. For a historical survey of these 

functions which were so important for the development of mathematics in the XIXth 

century, see the article of Rouzel in either [29J or [16J. 

The theory of elliptic curves can be found in [35J or in [66J. 

The theory of classical modular function is often presented only for ,some par

ticular groups and this presentation is often ad hoc. For a more general perspective, 

we found really useful the following two references: [64J and [61J. 

For the theory of complex multiplication of elliptic curves, the book [5J is good 

for a first reading. Then, we used also [11], the article of Jean-Pierre Serre in [SJ and 

[15J. 

5.1 Introduction 

Let K be an imaginary quadratic number field and let Km be any ray class field 

modulo m, for some modulus m. In [65], Siegel gave a class number formula relating 

both class numbers hKm and hK . First he computed the values of L-series at s = 1 

using Kronecker's limit formula, and by the way he constructed some units in Km. 

These units are now called elliptic units and they have been studied by Ramachandra 

in [51J and Robert in [55J. ' 

Stark used this construction in order to prove his rank one abelian conjecture 

when the base field is a quadratic imaginary field. 

In this chapter, we present the background in order to understand Siegel's con-

struction and then we give a sketch of the proof of Stark's conjecture when the base 

field is quadratic imaginary. 
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5.2 Elliptic functions and elliptic curves 

The theory of elliptic functions is a vast subject and it is difficult to get ac-

quainted with it. One can view the birth of several mathematical disciplines in the 

development of this theory (such as Riemann surfaces and some topies in algebraie 

topology). We shall first explain how people got interested in these and then state 

the main results. 

In the XVIth and XVIIth centuries, calculus has been mostly invented by Got

tfried Leibniz (1646-1716) and Issac Newton (1643-1727). It was then natural to try 

to compute the arc length of an ellipse. Let 

where a > b > 0, be the equation of an ellipse. Given any curve y = f(x) of class 

Cl, the arc length between two points is given by the formula 

If we compute the arc lentgh of the ellipse above with ).1 = ° we get 

(5.1) 

where e = 1 - !~. Other integrals coming from physical problems lead to similar 

integrals. An integral of the type 

J R(x,y)dx, 

where R is a rational function in x and y, and y = )P(x) for some cubie or quar

tic polynomial P(x), is called an elliptic integral (because of the particular case of 

the ellipse). Mathematicians suspected that these are not integrable by elementary 

fun ct ions (rational functions, trigonometric function, exp, log, etc). Adrien-Marie 
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Legendre (1752-1833) wrote a treatise on elliptic integrals and reduced them to three 

types: 

• F(k x) = rx 
1 dt , Jt=o y'(1-t2)(1-k2t2) , 

• E(k x) = rx 
l-k

2
t2 dt 

, Jt=o y'(1-t2)(1-k2t2) , 

• II(k n x) = r 1 dt " t=o (l+nt2)y'(1-t2)(1-k2t2) , 

which are called elliptic integrals of the first, second and third type, respectively. 

Note that if in Equation (5.1) we set e = k 2 and make the change of variable x = au 

then we get an elliptic integral of the second kind. 

In order to study these integrals, Abel and Carl Jacobi (1804-1851) had the 

idea of inverting these integrals and study instead their inverses. Consider the arcsin 

function 

l
x 1 

u = arcsin(x) = Vf=t2 dt, 
t=o 1 - t2 

where -1 ~ x ~ 1. It is easier to work with the inverse sin(u) = x. In particular, we 

have the addition formula 

Recall that an addition formula for a function f is an algebraic relation of the 

form F(f(u + v), f(u), f(v)), where F is a polynomial. Here is an example lead

ing to the concept of elliptic function. Set u(x) = F(k, x), the elliptic integral of 

the first kind. Set also K = ft~o y'(1-t2~(1-k2t2) dt. Define for -K ~ u ~ K, the 

inverse x = sn(u) which is called a Jacobian elliptic function because he used it ex

tensively during his research on elliptic functions. This function also has an addition 

theorem: 

( ) 
sn(u)Jl - sn2 (v)Jl - k2sn2 (v) + sn(v)Jl - sn2 (u)JI - k2sn2 (u) 

sn u + v = 2 2 2( ) . 1 -k sn (u)sn v 

Using this addition theorem, we can extend sn(u) to aIl real values of u. Moreover 

this function is periodic of period 4K, that is sn(u + 4K) = sn(u). While Augustin 
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Louis Cauchy (1789-1857) was developping his theory of complex integration, it was 

natural to try to extend the definition of an elliptic function to complex variables as 

mathematicians did for the trigonometric functions. There is one big problem now. 

Consider the complex integral 

L(a, b) = i R(z, JP(z)) dz, 

where 'Y is a Cl path going from a to b, R is a rational function, and P(z) is a 

polynomial of degree 3 or 4. When the variable is real, we are able to chose a canonical 

root using the order relation on IR. We do not have such an order relation on C so 

this expression is ambigous. Riemann discovered the theory of Riemann surfaces 

(or created depending on the point of view!) precisely because he was trying to 

explain the meaning of such integrals. One can fully understand this expression only 

within this theory. Before Riemann, mathematicians tried to study these integrals in 

many ways. One soon noticed that the inverse of such integrals are doubly periodic 

fun ct ions on the complex plane and that they still satisfy an addition theorem. As 

we will see, the addition theorem of elliptic fun ct ions is an important property of 

these functions. Joseph Liouville (1809-1882) and Gotthold Eisenstein (1823-1852) 

have been the first ones to study doubly periodic functions without any references to 

elliptic integrals. Liouville's approach was more function theoretical and Eisenstein's 

approach more constructive. 

5.2.1 Liouville's approach 

Starting, as Liouville did, with an arbitrary meromorphic function f : C ---+ C, 

we calI such a function doubly periodic if there exist two numbers W1 and W2 such 

that f(z + wd = f(z + W2) = f(z) for aU z E te. If WdW2 is rational, then one can 

show that f reduces to a function with only one period (singly periodic function) and 

if WdW2 is irrational (E lR - Q) then Jacobi showed that the function reduces to a 

constant. So we are led to the following definition: 
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Definition 5.2.1 Let Wl and W2 be two IR.-linearly independent periods in C (so the 

quotient WdW2 is not real). An elliptic function is a complex-valued meromorphic 

function f such that f(z + Wl) = f(z + W2) = f(z), for aU z E C. 

It is then clear from the definition that if A = ZWI EB W2, then f(z + w) = fez) 

for aIl W E A. A discrete free Z-module of rank 2 contained in C is called a lattice. 

The Z-module A ab ove is such a lattice and every lattice in C is of this form for 

sorne IR.-linearly independent numbers (Wb W2)' Given a lattice A = ZWI EB ZW2, the 

set P = {z = tlWl + t2W2 E AIO :::; t l , t2 < 1} is called a fundamental parallelogram 

for A. C is then the disjoint union C = ILeA (w + P). The set of an elliptic functions 

for a fixed lattice A is clearly a field and we denote this field by CE,A. We state here 

Liouville's theorems. For these theorems, fix a lattice A and an elliptic function f 

for this lattice. 

Theorem 5.2.1 (Liouville) If fis entire (holomorphie on aU C) then fis constant. 

Theorem 5.2.2 (Liouville) The sum of the residues of f in a fundamental paral

lelogmm P is equal to zero (counting multiplicities). 

Theorem 5.2.3 (Liouville) The number of zeros of f in a fundamental paraUelo

gram P is equal to the number of its poles (counting multiplicities). 

5.2.2 Eisenstein's approach 

Eisenstein's approach was to construct directly doubly periodic functions. He 

defined for n ~ 1 the following function. Let A = Wl EB ZW2 be a lattice in C, then 

define 
1 1 

En(z) = 2:
A 

(z + w)n = 2: (z + mlWl + m2w2)n' 
wE ml>m2EZ 

For n ~ 3 there is no problem and these series are absolutely convergent. For n = 1,2 

we have to define a summation process, namely Eisenstein summation given by 

~ = lim ~ (lim ~). L..J N -+00 L..J M -+00 L..J 
e -N -M 

These functions En(z) are elliptic functions with respect to the lattice A. 
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For more details, and to see how Kronecker improved Eisenstein's work, see the 

marvelous little book [79] by Weil. We just introduced Eisenstein's work because now 

it is more natural to introduce the Weierstrass p-function. 

5.2.3 Weierstrass' theory 

Weierstrass' theory provides the link between elliptic functions and algebraic 

geometry, namely the concept of elliptic curves which is more suitable for arithmetical 

purpose than the analytic theory of elliptic functions. 

Let A = ZWI $ ZW2 be a lattice in C. Weierstrass defined the so-called p

function (actually, he found it by taking the second derivative of the logarithm of the 

a-function which he introduced before in relation with his theory on the development 

of entire functions as infinite convergent prod ucts) 

1 (1 1 ) p(z, A) = p(z) = "2 + 2: ( )2 - 2 . 
Z wEA Z - W w 

w#O 

When there is no danger of confusion, we simply write p( z) instead of p( z, A). In 

contrast to E2(z), this series converges absolutely and uniformly, so it represents 

a meromorphic function on C. The periodicity is, on the other hand, less obvious 

than for E2 (z). Anyway, one can prove that p(z) is an elliptic function for A. The 

derivative is 

and note that the derivative of an elliptic function is still an elliptic function for the 

same lattice. 

Theorem 5.2.4 We have CE,A = C(p(z, A), p'(z, A)) or in words: The field of el

liptic functions for the fixed lattice A is generated by p(z) and p'(z). 

The Weierstrass p-function satisfies also an addition theorem: 
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Theorem 5.2.5 (Addition theorem) The Weierstrass function satisfies the fol

lowing addition formula 

for aU Zl, Z2 E C. 

It is also known that the only functions defined over C with an addition theorem 

are the elliptic functions, the trigonometric functions and the rational functions. 

Moreover, p satisfies a differential equation. Define first 

This series converges absolutely for k ~ 3. Note also that for odd k, Gk = O. 

Theorem 5.2.6 As is traditional, set g2 = g2(A) = 60G4 and 93 = 93(A) = 140G6 • 

Then we have the following differential equation 

and g~ - 2795 =1= O. 

This differential equation provides the link between elliptic functions and algebraic 

geometry. Indeed, the equation y2 = 4x3 - 92X - 93 defines a curve and Theorem 5.2.6 

means that the point (p(z), p'(z)) lies on this curve (the fact that 9~-2795 =1= 0 means 

that the curve is non-singular). The converse is also true, namely: 

Theorem 5.2.7 Suppose that C2 and C3 are two complex numbers satisfying the con

dition ~ - 27c5 =1= O. Then the equation y2 = 4x3 - C2X - C3 defines a non-singular 

algebraic curve and there exists two lR-linearly independent periods Wl and W2 such 

that g2(Wl, W2) = C2 and 93(Wl, W2) = C3· 
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5.2.4 Elliptic curves 

As explained above, the curve with equation y2 = 4x3 - 92X - 93 is parametrized 

by elliptic functions. Complex algebraic curves which can be parametrized by ellip

tic functions are called elliptic curves. Alfred Clebsch (1833-1872) discovered other 

curves that can be parametrized by these, for example the intersection of two quadrics 

in the affine space A3(C) admits such a parametrization. 

Next, if we introduce sorne topological notions, we can characterize elliptic curves 

through their genus. It is true that every non-singular projective algebraic curve gives 

via the implicit function theorem a compact Riemann surface. It is also true that 

a Riemann surface is a non-singular projective algebraic curve if and only if it is 

compact. The Riemann surface associated with the projectivization of the curve of 

equation y2 = 4x3 - 92X - 93 is a torus, namely CI A. The field of elliptic functions for 

the lattice A is isomorphic to the field of meromorphic functions on CI A. One can 

show that every non-singular algebraic curve of genus 1 defined over C is isomorphic 

to the projectivization of a non-singular plane cubic with equation y2 = 4x3 - 92X- 93, 

where 9~ - 27 9~ =1= O. We can reinterpret Theorem 5.2.6 and 5.2.7 as follows: 

Theorem 5.2.8 Given any elliptic curve E defined over C in the projective form 

there exists a lattice A = ZWI EB ZW2 such that 92(A) = C2, 93(A) = C3 and su ch that 

the map CI A ~ E(C) defined by 

{ 

[8J(z) : 8J'(z) : 1] if z ~ A; 
z+AI-+ 

[0 : 1 : 0] if z E A, 

is a biholomorphic map. 

Therefore, over C, we can view an elliptic curve as a torus CI A for sorne lattice A. 

We can then tranport the structure of the abelian group CI A on the curve E. We 
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get this really nice geometric interpretation called secant-tangent process. Using the 

addition theorem for the Weierstrass function, we can describe explicitly this group 

law on the coordinates of the points of E and thus define this group law algebraically. 

Kronecker already used this in his research on elliptic functions. This allows one to 

extend the definition of the group law to elliptic curves defined over any field. The 

modern notion of an elliptic curve is the following: 

Definition 5.2.2 Let k be an algebraic closed field. An elliptic curve over k is a 

non-singular (irreducible) projective curve E, which is also a group, and such that 

the group law 

+:ExE-tE 

and the inverse map 

-:E-tE 

are morphisms of algebraic varieties. 

Remark: One can prove that the group law is necessarily commutative. This is why 

we use the additive symbol +. Moreover, one can show that a non-singular projective 

curve which has a group law given by an algebraic map is necessarily of genus one. 

An alternative definition for an elliptic curve is thus a non-singular curve of genus 

one with a distinguished point (the zero element). 

We shall now explain the link between the analytic structure of CI A and the 

algebraic structure of the associated elliptic curve. 

Definition 5.2.3 Let El and E2 be elliptic curves. A morphism of elliptic curves is 

an algebraic morphism <p : El -t E 2 such that <p is also a group homomorphism. The 

set of all morphisms of elliptic curves between El and E2 is denoted by Hom(E1 , E2 ). 

A morphism <p : El -t E2 is called an isomorphism if there exists another mor

phism 'l/J : E 2 -t El su ch that cp 0 'l/J = idE2 and 'l/J 0 cp = idEl . If El = E2' then a 

morphism is called an endomorphism and we denote the ring of endomorphisms of 

an elliptic curve E by End(E). 
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LetEi :: CI Ai be elliptic curves defined over C, (i = 1,2). If rP E Hom(E1 , E2 ), then 

it is given by rational functions and therefore it induces a holomorphie map 

such that ~(O) = O. Actually, this correspondence is a bijection (in fancy language, 

we have an equivalence of categories). 

Theorem 5.2.9 Let Ei ~ CI Ai be elliptic curves defined over C (i = 1,2) and 

let rP E Hom(El , E2 ). Then the correspondence rP ~ ~ makes the following diagram 

commutative 
El ~ CIAl 

~ 1 1~ , 
E2 ~ C/A2 

and this correspondence is a bijection between Hom(El, E2 ) and the set of holomorphie 

maps rP : CI Al --t CI A2 su ch that rP(O) = O. 

Theorem 5.2.10 Let Ei ~ CI Ai be elliptic curves (i = 1,2). Let rP : CI Al --t CI A2 

be a holomorphie map su ch that rP(O) = O. There exists a linear map L~ : C --t C 

such that L~(Al) ç A2 and such that the following diagram is commutative 

1 1 
This gives a bijection between 

{C-linear map L : C --t C such that L(Al ) ç A2 }, 

and 

{holomorphie maps rP: CIAl --t C/A2 s.t. rP(O) = O}. 

According ta these theorems, we identify Hom(El , E2 ) with the set {a E qaAl ç A2 } 

since every C-linear map L : C --t C is of the form L(z) = a . z for sorne a E C. In 
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particular, if El = E2 = E ~ CI A, then we identify End(E) with the set 

{a E CjaA ÇA}. 

In Section 5.4 of this chapter, we will explain the link between elliptic curves 

and number theory. 

5.3 Modular functions 

The first appearance of modular (or automorphic) functions came through the 

theories of binary quadratic forms and elliptic functions. lndeed, let A = Wl œW2 be 

a lattice in C and suppose Im(wdw2) > 0 (this amounts to choosing an orientation). 

The group SL2 (Z) acts on the upper-half plane by 

az+b 
zt---ta·z=-

cz+d' 
a=(~~). 

To verify that, one uses the formula lm (~::~) = (adl::1~f(z), which is valid for any 

matrix (~~) E M2(IR). 

Set T = wd W2. If A' is another lattice, we have À . A = A' for sorne À E C if and 

only if there exists an a E SL2 (Z) such that a· T = T'. We can view the Weierstrass' 

constants 92 and 93 as functions on the upper-half plane ~ by setting 

where T E ~ and i = 1,2. Then a simple calculation shows that 9i satisfies the 

following transformation formula 

for aH 'Y = (~ ~) E SL2 (Z). 

Furthermore, the discriminant fun ct ion .6. = 9~ - 27 9~ (actually it is only the dis

criminant of the following polynomial up to a constant) of 4x3 - 92X - 93 considered 

as a function on ~ satisfies 
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We thus get a SL2 (Z)-invariant function by considering the modular function 

3 

J = 92 
D.' 

This is the classicai elliptic modular function (SL2 (Z)-automorphic function) and 

we shaH exp Iain it in more details in this section. The theory of automorphic functions 

has been developed initiaHy by two mathematicians at the end of the XIXth century: 

Henri Poincaré (1854-1912) in France and Felix Klein (1849-1925) in Germany. 

Through the work of Poincaré, automorphic functions can be viewed as an ana-

logue of elliptic functions. This is actually the first application of non-euclidean 

geometry to other parts of mathematics. A lattice A gives a group of transforma

tions of the Euclidean plane by setting z 1-+ z + w for aH w E A. It is a discrete 

subgroup of the isometries of the Euclidean plane (isometries corresponding to the 

euclidean metric) and an elliptic function is a meromorphic fun ct ion invariant un-

der the action of this group. An automorphic function is the analogue, but in the 

hyperbolic plane. 

Recall that the plane hyperbolic geometry is the geometry where the famous 

parallel axiom of Euclid in plane Euclidean geometry is replaced by the following 

one: "Through a given point not on a given line there passes more than one line 

that does not meet the given line". There exist several models for this geometry 

like the unit disk, the right half-plane (used by Gauss) or the more traditional upper 

half-plane. Poincaré noted that the modular transformations of the upper half-plane 

coming from the theory of elliptic functions are precisely hyperbolic isometries in this 

model. More precisely, this model consists of the upper half-plane 

~ = {z E qlm(z) > O}, 

where "lines" are taken to be half circles with center on the real line and lines per

pendicular to the real axis. Figure 5-1 shows that the hyperbolic axiom above is 
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satisfied and one can verify that aIl other axioms are also satisfied. Thus this is a 

Figure 5-1: Plane hyperbolic geometry 

model of plane hyperbolic geometry. Given two points z, w E <C and a curve, joining 

z and w, we define 

I ldzl 
11111 = 'Y Im(z) , 

and the hyperbolic metric d is given by d(z, w) = inf Il,11, where the infimum is taken 

over aIl curves between z and w. It is true then that the isometries of the hyperbolic 

plane are given in this model by the transformations 

az+b 
Zl-t -

cz+d' 
where (~~) E GLt(lR). 

If we denote the set of scalar matrices by lRx .12 , then GLt(lR)j(lRx .12 ) is isomorphic 

to the group of biholomorphic automorphisms of the upper-haIf plane. We also have 

the isomorphism 

Therefore, depending on personal taste, one can work either with GLt(lR) or SL2 (lR). 

Next, Poincaré asked himself for which subgroups of PSL2 (lR) are there non-constant 

meromorphic functions invariant under the action of the subgroup. He saw that 

necessarily, such subgroups must be discrete, and then started the theory of discrete 

subgroup of PSL2 (lR) or, equivalently SL2 (lR). 

Given a discrete subgroup r of PSL2 (lR), he defined the concept of automor-

phic function with respect to r by declaring a meromorphic function on ~ to be 

r-automorphic if it is invariant under r. 
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Let r be a discrete subgroup of PSL2(~). The space of orbits ~/r is not nec

essarily compact. In order to compactify it, we have to add points called cusps. 

We explain this here. First, we need to classify the fractional transformation of the 

Riemann sphere Cu {oo}: 

az+b 
Zl----+-

ez+d' 
where Œ = (~~) E GL2 (C). 

Suppose now that Œ is not a scalar matrix. There are two possibilities for the Jordan 

normal form of Œ: 

(~1) or (B~), 

where ,x, J-l E C, ,x i= J-l. In the first case, Œ is called parabolic. In the second case, 

the transformation is of the form z 1----+ ez, where e = ,x/ J-l. If lei = 1 then Œ is called 

elliptic, if e is real and positive then Œ is called hyperbolic, and otherwise Œ is ealled 

loxodromic. If we restriet ourselves to SL2 (C) then we have the following theorem: 

Theorem 5.3.1 Let Œ E SL2 (C) and suppose that Œ i= ±I2 • Then 

• Œ pambolie {::? Tr(Œ) = ±2; 

• Œ elliptie {::? Tr(Œ) is real and ITr(Œ)1 < 2; 

• Œ hyperbolie {::? Tr(Œ) is real and ITr(Œ)1 > 2; 

• Œ loxodromie {::? Tr( Œ) is not real. 

If we speeialize further to SL2(~), the group we are interested in, then we flrst see 

from the last theorem that it do es not have any loxodromie element. Further: 

Theorem 5.3.2 Let Œ E SL2(~) and suppose that Œ i= ±I2 • Then 

• Œ pambolie {::? Œ has only one fixed point on ~ U {oo}; 

• Œ elliptic {::? Œ has one fixed point z E ~ and the other fixed point is z; 

• Œ hyperbolie {::? Œ has two fixed points on IR U {oo}. 

We can now define the notion of cusp. First note that if Œ E PSL2 (IR), it makes sense 

to talk about the type of Œ (parabolie, elliptic or hyperbolic). 

Definition 5.3.1 Let r be any discrete subgroup of PSL2(IR). Then 
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• z E ~ is called elliptic if there exists an elliptic Element a E r su ch that a· z = z. 

• s E ~ U { oo} is caUed a cusp if there exists a parabolic element a E r su ch that 

a·s = s. 

Definition 5.3.2 Let r be any discrete subgroup of PSL2(~). The completed upper

half plane ~* consists of the union of the upper-half plane with aU the cusps of r. 

Note that ~* depends on r. The group r acts on ~* so we can talk about the space 

of orbits ~* Ir. The analogue of a fundarnental parallelograrn for an elliptic function 

is the concept of a fundarnental region. 

Definition 5.3.3 Let r be a discrete subgroup of PSL2(Z). Then a fundamental 

region for r is a subset F of 1)* such that 

• F is a connected open subset of 1); 

• No two distinct points of Fare r -equivalent; 

• Every z E 1) is r -Equivalent ta a point of F. 

Now, we define a topology on 1)* as follows (see Figure 5-2). If s =f 00 is a cusp 

then take as a basis of open neighborhoods the sets of the forrn {s} union with 

the interior of a circle in 1) tangent to the real axis at s. For 00 take the sets 

{ 00 } U {z E 1) IIrn( z) > c} for sorne positive nurnber c and, finally, if z El), take as a 

basis of open neighborhoods those in 1). This defines a Hausdorff topology on ~*. 

-
Figure 5-2: Topology on 1)* 
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Theorem 5.3.3 The spa ce of orbits ~* Ir with the quotient topology is a locally com

pact Hausdorff space. 

Definition 5.3.4 A discrete subgroup r of PSL2 (lR) is called a Fuchsian group of 

the first kind if ~* Ir is compact. 

Next, we shaH add a structure of Riemann surface on the space ~* If. For this, we 

need a lemma. 

Lemma 5.3.1 Let r be a Fuchsian group of the first kind. Let z E ~* and look at 

its stabilizer Stabr( z) = bEr Il . z = z}. Then there exists an open neighborhood 

U of z in ~* such that 

Stabr(z) = b E fI,(U) n U =1= 0}. 

According to this last lemma, we can identify the set 

UIStabr(z) = {Stabr(z) . xix EU}, 

with the image of U in ~* If, which is open by definition of the quotient topology. 

Lemma 5.3.2 The group Stabr(z) is a cyclic group, finite if z is not a cusp. 

We can now construct the atlas on ~* If. There are three different kind of points to 

consider. For each point z E ~*, we take an open neighborhood U of z such that 

Stabr(z) = b E fI,(U) nU =1= 0}, 

and we identify it with 11'(U) by the previous discussion, where 11' : ~* ---t ~* If is the 

natural projection . 

• If z E ~* is neither a cusp nor an elliptic element, then Stabr(z) = {id}, 

therefore U::: 11'(U) and we can take the chart 11'-1 : UIStabr(z) ---t U ç C . 

• If z E ~* is an elliptic element. Let n = #Stabr(z). Take an isomorphism 

,x : ~ ---t D, where D is the unit dise, such that ,x(z) = O. Take then the chart 

cp: U IStabr(z) ---t C defined by cp(11'(z)) = ,x(z)n. 
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• If sE RU {oo} is a cusp then take a p E PSL2(R) such that p(s) = 00. Then 

one can show that p. Stabr(z)· p-l is generated by a transformation of the form 

z ~ z+h for sorne real number h > o. Take then the chart <p : U /Stabr(z) -+ C 

defined by <p(7r(z)) = e
2"AP

z. 

This defines for a Fuchsian group of the first type a structure of compact Riemann 

surface on ~* Ir. We are thus led to the generalization of elliptic functions. 

Definition 5.3.5 Let r be a Fuchsian group of the first kind. A r -automorphic 

function is a meromorphic function on the Riemann surface ~* /r. 

The analogue of the Eisenstein series are contained in the next definition. 

Definition 5.3.6 Let k be an integer and let r be a Fuchsian group of the first kind. 

A function f : ~ -+ C is called a r -automorphic form of weight k if 

• f is meromorphic on ~. 

• f(a· z) = (cz + d)k f(z) for all z ~ a . z = ~:~~ Er. 

• f is meromorphic at each cusp of r. 

5.3.1 The case of SL2 (Z) 

There is a family of discrete subgroup of SL2(R) which are particularly important 

for arithmetic purposes. Consider the subgroup SL2 (Z) with the reduction map 

modulo an integer N, SL2 (Z) -+ SL2 (Z/NZ) defined by (~~) ~ (~tZ~ ~t~~). The 

kernel of this map is called the principal congruence subgroup of level N, and is 

denoted by r(N). A r(N)-modular form of weight k is called a modular form of level 

N and weight k. 

If we specialize the theory of the last section to the group r(1) = SL2 (Z) we get 

the following. A fundamental region (see Figure 5-3) for this group consist of the set 

of z E ~ such that 

• -1/2 < Re(z) < 1/2; 

• Izl > 1. 
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Figure 5-3: Fundamental domain for SL2 (Z) 

The elliptic points of r(l) are those equivalent to i and (3' The point 00 is a cusp. 

Indeed, the transformation z 1---7 z+ 1 E r(l) is a parabolic element and fixes 00. One 

can show that the cusps of r(l) are Q U {oo} and that each cusp is equivalent to 00. 

A r(l)-modular function (or automorphic) is thus a function f : ~ --+ C such 

that: 

• fb· z) = f(z) for an 'Y E r(1); 

• f(e 211"iz) = '" a e27rinz for Im(z) > a for sorne a > 0 L..,.n~-m n , . 

A r(l)-modular form of weight k is a function f : ~ --+ C such that: 

• J(~:t~) = (cz + d)k f(z) for an transformation z 1---7 ~::~ E r(l)j 

• f(e27riz ) = '" a e27rinz for Im(z) > a for sorne a > 0 L..,.n~-m n , • 

From now on, we will use the usuaI notation q = e27riz
• For example, the function 

defined by Eisenstein, is a r(l)-modular form of weight 2k and its Fourier expansion 

lS 

. (27Ti)2k n 
G2k(T) = 2((2k) + 2 (2k _ 1)! L a2k-l(n)q , 

n~l 

The discriminant function 
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is a r(l)-modular form of weight 12 and its Fourier expansion is 

Ll(T) = (211")12 L-r(n)qn, 
n~1 

where -r(n) E Z is the Ramanujan function. Finally the function 

is a r(l)-modular function and its Fourier expansion at infinity is 

where c(n) E Z. 

5.4 Application to number theory and complex multiplication 

There are several applications arising from the theory of elliptic functions to 

number theory. We will focus here on complex multiplication. Recall, that for an 

elliptic curve E ~ CI A, we identified End( E) with the set {a E qaA ÇA}. The 

link with number theory is provided by the following theorem: 

Theorem 5.4.1 Let A = W1 + ZW2 be a lattice and f : C ---t C an elliptic function 

for A. For a E C the following are equivalent: 

1. f (az) is a rational function in f (z ); 

2. aA ÇA. 

We see from this last theorem that the elliptic function is not really relevant apart 

the fact that it is an elliptic function for the lattice A. The core is really the lattice or 

what amounts to the same, the elliptic curve CI A. From now on, we shall work with 

elliptic curves instead of elliptic functions. Note that we always have End(E) ;2 Z. In 

general, End(E) = Z, but note that if aA ç A and a tf- Z then, necessarily a E C-R 

lndeed, suppose that a E lR - Z, then aWl = awl + bw2 for sorne a, b E Z. Since, Wl 

and W2 are lR-linearly independent, we have b = a - a = 0 and hence a = a E Z, 
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contradicting the hypothesis QI E IR - Z. This is why we are led to the following 

definition: 

Definition 5.4.1 An elliptic curve E such that End(E) ~ Z is called an elliptic 

curve with complex multiplication. 

The family End(E) is not just a set of complex numbers, but more precisely: 

Theorem 5.4.2 Let E be an elliptic curve with complex multiplication. Then the 

ring End(E) is an order in an imaginary quadratic field. 

We shall prove this theorem, but before that we recall the notion of orders in a 

number field. 

5.4.1 Orders in number field 

Definition 5.4.2 Let K be a number field. An order in K is a subset 0 ç OK such 

that 

• 0 is a subring of OK; 

• 0 con tains a Q-basis of K. 

Theorem 5.4.3 A subset 0 ç OK is an order if and only if 0 is a subring of OK 

and is a free Z-module of rank [K : Q]. 

Note that if 0 i= OK is a non-maximal order, then 0 is not integrally closed and 

therefore is not a Dedekind domain. In order to define a class group for an order, we 

have to introduce the concept of proper ideals. Remark that if a is a fractional ideal 

of 0 (non-zero finitely generated O-module) then 

OÇ{QlEKIQI·aÇa}, 

but that the equality does not always happen. 

Definition 5.4.3 Let a be a fractional ideal. The ideal a is called a proper fractional 

ideal for the order 0 if we have the equality 0 = {QI E KI QI • a Ça}. 

Is a fractional proper ideal invertible? The following theorem answer this question 

when K is a quadratic number field: 
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Theorem 5.4.4 Let 0 be an order in a quadratic field K and let a be any proper 

fractional ideal for O. Then a is proper if and only if a is invertible. 

Note also that given a lattice of rank 2 in K, say A, then A is a fraetional ideal for 

sorne arder. lndeed, define the arder associated with A by 

OA = {a E KlaA ÇA}. 

Then 0 A is an order in K and A is a proper fraetional ideal for 0 A. 

We can now define the class group of an arder in a quadratic nurnber field. 

Definition 5.4.4 Let K be a quadratic field and 0 be an order in K. Let 1(0) be 

the group of fractional proper ideals of 0 (which is the set of invertible fractional ideal 

by the last theorem) and let 

P(O) = {a E 1(0)la =.x. 0 for some.x E K}. 

Define then the class group of the order 0 by Cl( 0) : = 1(0) / P ( 0) . 

Note that if 0 = OK, then Cl(O) is the usual class group of K. We shaU now define 

the ring class field assoeiated ta an arder. For this, we have ta relate Cl(O) with 

sorne Clm,Hm (K). Note first that sinee 0 and OK are bath free Z-rnodule of the sarne 

rank, the quotient OK /0 is finite. 

Definition 5.4.5 Let 0 be an order in a quadratic field K. The conductor f of 0 

is define by f = [OK: 0]. 

See [11] ta see why one caUs f the conductor. 

Theorem 5.4.5 Let K be a quadratic number field and 0 an order in K of conduc

tor f. Set mo = f . OK and 

HTT1<J = {a· OKla E K~, a == a rnod xmo for some a E Z S.t. (a· OK, mo) = 1}. 

The group H TT1<J is a congruence subgroup modulo mo and then 

Cl(O) ~ 1TT1<J(K)/ HTT1<J = ClTT1<J,Hm o (K). 
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We can now define the ring class field of a quadratic number field: 

Definition 5.4.6 The ring class field of 0 is the abelian extension L corresponding 

to the congruence subgroup Hmo by class field theory. The Artin map gives us the 

isomorphism Gal(LI K) ~ lmo(K)1 Hmo ~ CI(O). 

Note that if 0 = OK, then mo = OK, lmo(K) = I(K) and Hmo = P(K) so we get 

the usual class group and the ring class field is the Hilbert class field of K. We can 

now come back to the pro of of Theorem 5.4.2. 

Proof [Theorem 5.4.2]: 

Let E ~ CI A be an elliptic curve with complex multiplication and let A = Wl EBZW2. 

Let n = {a E Cla . A ÇA}. We show first that n C OK for some quadratie 

imaginary field K. Let a E n and since E has complex multiplication, we can suppose 

that a (j. Z. We claim that a is quadratie imaginary. We have aWl = aWl + bw2 , 

and aW2 = CWl + dw2 for some a, b, c, d E Z. This means that det (OL~ca OL-=!>d) = O. 

Therefore, a is a root of a monie quadratic polynomial with coefficients in Z that is 

an integral number. Let T = WdW2 E ~, then from the equation aW2 = CWl + dw2 , we 

see that K = Q( T) = Q( a) is a quadratie imaginary field. Doing this last argument 

for aU multipliers a E n shows that n ç OK. Moreover, n is clearly a ring. Let a 

be any complex multiplier in n. Then Z EB Za is a free abelian group of rank 2 and 

the inclusions Z EB Za ç n ç OK shows that n is a free Z-module of rank 2. We 

conclude using Theorem 5.4.3. 

o 

In order to emphasize the ring of multipliers of an elliptic curve, an elliptic curve 

such that End(E) is an order 0 in some imaginary quadratic field will be called an 

elliptic curve with CM by 0 (CM stands for complex multiplication). 

Theorem 5.4.6 Let K C C be a quadratic imaginary field and let 0 be an order 

in K. There is a bijection between CI(O) and the set of isomorphism classes of elliptic 

curves with CM by O. 
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Proof: 

Let Isom( 0) denotes the set of aIl isomorphism classes of elliptic curves with complex 

multiplication by O. If E is such an elliptic curve, we shaIl denote its class by [E]. 

Define then the map 

CI(O) - Isom(O) 

by [a] - [Cial. It is weIl-defined since the fact that a is an O-ideal implies that Cfa 

has complex multiplication by 0 and also for aIl À E K, Cfa ~ C/(À· a). Since there 

is an isomorphism C/ Al ~ C/ A2 if and only if À . Al = A2 for sorne À E C, this map 

is injective. It is also surjective since if Cfa is an elliptic curve with CM by 0 then 

a is a proper fractional ideal in O. 

o 

5.4.2 Main theorems of complex multiplication 

First of aU, note that if a is a fractional ideal in an imaginary quadratic number 

field K, then a = Wl EBW2 for sorne IR-linearly independent complex numbers Wl, W2. 

Suppose moreover that T = WdW2 E ~ (if it is not the case, just interchange Wl 

and W2)' For any modular form h of weight k, we define h(a) by 

In particular, if h is an automorphic function (thus ofweight 0), we have h(À·a) = h(a) 

for aIl À E K so we can speak about h( C) where C is any ideal class in K. 

Theorem 5.4.7 (First Main Theorem) Let K be an imaginary quadratic field, 

and 0 an order in K. Let CI(O) = {Cl,"" Ct} be its class group . 

• The numbers J(Ci ) form a full set of distinct conjugate algebraic numbers . 

• The ring class field of 0 is precisely K(J(Ci )) for any i = 1, ... , t. 

In particular, for the maximal arder OK, we get: 

Theorem 5.4.8 K(J(Ci )) is the Hilbert class field of K. 

63 



Theorem 5.4.9 (Explicit reciprocity law) Let K be an imaginary quadratic field 

and OK its maximal arder. Let [a] be any ideal class in CI(K). Then by the last 

theorem, we have that K(J(a)) is the Hilbert class field of K. We now describe 

explicitly the action of the Artin symbol on J(a); if P is a prime of K, then we have 

Therefore, for any ideal b of K, we have 

Remark: In some books, one find instead the following reciprocity law 

J(a)(b,HK/K) = J(ba). 

It is exactly the same thing since b E [b- l
] and J(a) depends only on the ide al class 

[a] of a. Indeed, in an imaginary quadratic field, the complex conjugation is a well

defined automorphism, and therefore it makes sense to talk about the ideal b. In 

order to verify our claim, it suffices to verify that for every prime ideal P of K, we 

have that P . P is principal. 80 let P be a prime ideal and let p be a prime below. 

There are three possibilities for the ramification, namely: 

• p . OK = p2 (ramified); 

• p. OK = P (inert); 

• p. OK = Pl . P2 (split totally). 

Then, since in a Galois extension the Galois group acts transitively on the primes 

lying above a fixed one, in the first case we necessarily have p = p and therefore 

p . p = p. OK. In the second case, we have then p . p = p2 . OK and in the last case, 

we have p . p = p. OK. Thus in each case, p E [p-l] and our claim is proved. 

In the case of the rational field Q, we have an explicit description of the ray class 

fields, see Theorem 3.2.11. Do we have such a description for a quadratic imaginary 
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field? This is the content of the second main theorem of complex multiplication. See 

for instance [5]. 

5.5 Integrality question 

We shaH now deal with integrality questions. In the classical theory this can be 

achieved through the modular equation. 

When dealing with integrality questions, we work with 

instead of J alone. Indeed, while J(T) is an algebraic number for an imaginary 

quadratic number T, it is not an algebraic integer. On the other side, j (T) is integral 

for an imaginary quadratic number T. The classical proof of this uses the modular 

equation. 

Theorem 5.5.1 1fT E ~ is an imaginary quadratic number then j(T) is an algebraic 

integer. 

Proof: 

See [5] for the classical pro of. 

o 

5.6 Elliptic units and a special case of Stark's conjecture 

In this section, we will sketch a proof of the abelian rank one Stark conjecture 

when the base field is quadratic imaginary following [73]. 

First of aH, we explain the utility of limit formulas such as the Kronecker limit 

formulas. This is useful when one wants to compute the value of aL-series at s = 1 (or 

at 8 = 0 by the functional equation). Let K be a number field and let Km be the ray 

class field modulo ffi. By class field theory, we then have an isomorphism Clm(K) ~ 

Gal(Km/ K). Let X be a character of Clm(K) and consider the L-series 

" x(a) 
L(8, X) = ~ N(a)8' 

11#0 
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We can rewrite this last series as follows: 

L(s, X) = z= X(C)(K(S, C), 
GEClm(K) 

where (K(S, C) is the partial zeta function: 

Suppose then that we know the Laurent expansion of (K(S, C) around S = 1: 

(K(S,C)= a-l +ao(C)+al(C)(s-I)+ .... 
s-1 

Note that a-l does not depend on C. This is precisely Dedekind's discovery. On the 

other hand, the other coefficients could depend on C. Plugging this last equation 

into the L-series, we get 

L(s, X) = ~ X(C) (sa.=\ + ao(C) + al(C)(s - 1) + ... ) . 

Suppose X =1= Xl· Letting S ~ 1 and using the orthogonality relation, we get 

L(I, X) = z= x(C)ao(C), 
G 

thus we can compute the value of the L-series at S = 1. In the literature, limit 

formulas are usually given around S = 1, but then using the functional equation they 

can be translated into a formula for L(O, X). 

When the base field K is quadratic imaginary, such a formula is known sinee a 

long time and it is ealled Kroneeker's limit formula. Before stating it, we define first 

the Siegel-Ramaehandra invariant. 

Let K be a quadratie imaginary number field and let mo =1= OK be an integral 

ideal of K. We shaH denote the only infinite place of K by V oo (thus Soo = {voo }). 
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Let ((z, A) and O'(z, A) be the classicai Weierstrass functions with respect to a Iat

tice A. That is, ( is defined by the equations 

d((z) = -p(z) 
dz ' 

lim (((Z) - ~) = 0, 
z-+O Z 

and 0' by 

dlO~;(z) = ((z), lim O'(z) = 1. 
z-+O Z 

The function «(z) is not doubly periodic, but it satisfies the following transformation 

rule ((Zl + Z2, A) = «(Zl' A) + 'Tl(Z2' A), where 'Tl is sorne IR-linear function, see [81]. 

Define the function 

G(Z, A) = e-6z7)(z,A) . 0'12(Z, A) . ~(A). 

Note that this function is the same as the function given in [54] up to the con

stant i. Then, let f be the smallest positive integer in mo n z. Consider the ray class 

group CImo(K) and for each ideai class C E Clmo(K), define the Siegel-Ramachandra 

invariant 

where a is an integral ideal in the ideal class C. 

Theorem 5.6.1 The Siegel-Ramachandra invariants have the following properties: 

1. 9mo (C) is independent of the choice of a E C. 

2. gmo(C) E Kmo· 

3. The explicit action of the Galois group Gal(Kmo/ K) is given by 

4. If mo has at least 2 different prime divisors, then gmo (C) is a unit. Otherwise, 

if mo is the power of a unique prime ideal p, then 9mo (C) is a {voo, p} -unit. 

Moreover, gmo(C)l-<T is a unit for all 0' E Gal(Kmo/K). 
1 

5. The extension K(gmo(C)12 f ) of K is abelian. 

67 



Proof: 

These facts are consequences of the theory of complex multiplication. See [15]. 

o 

Now, we can state Kronecker's limit formula at s = o. 

Theorem 5.6.2 Let K be a quadratic imaginary number field and let mo be an in

tegral ideal of K. Consider the ray class group Clmo(K) and let C E Clmo(K) be any 

ideal class. The derivative of (K(S, C) at s = 0 is given by 

(~(O, C) = __ l-,---,-log Ig (l)<c,Kmo /K) 1 
12fw(mo) mo , 

where w(mo) is the number of roots of unit y À in K satisfying À _ 1 mod mo, 

and Izl = z . z is the normalized valuation. 

We are now in position to sketch the proof of Stark's conjectures. Let K be a 

quadratic imaginary field and let L / K be a finite abelian extension. Moreover, let 

S be a set of primes of K satisfying 81, 82 and 83 of Chapter 4. Note that Voo is 

a totally split place, thus we shall prove St(L/ K, S, voo )' We can choose an integral 

ideal mo of K such that 

• p 1 mo if and only if P ES" {Voo }; 

• w(mo) = 1; 

• L ç Kmo' 

Indeed, it suffices to take mo = (TIPES,-{Voo} p) n for n big enough. The set S still 

satisfies conditions 81, 82, and 83 for Kmo. By Theorem 4.0.7, it suffices to prove 

St(Kmo / K, S, voo ) in order to prove St(L/ K, S, voo)' First, we need a lemma which 

can be found in [73]. 

Lemma 5.6.1 With the notation above, there exists a unit ê E U;lmo/K su ch that 
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Fix a place w of Kmo lying above VOO • From Kronecker's limit formula, we see that 

1 
(~(O, C) = ---log Ic(C,Kmo/K) 1 . 

WKmo w 

Moreover, from Property (4) of Theorem 5.6.1, we see that if ISI ~ 3, then Iclw' = 1 

for aU w' t voo , and if S = {voo , vp}, then 14,-w' = Iclw' for alll7 E Gal(Kmo/ K) and 

sorne w' lying ab ove V p• 

We conclude that there exists c E U'ftmo/K n U Voo such that 

L~(O, X, Kmo/ K) = L X(C)(~(O, C) 
CEClmo(K) 

1 = --::;- L X(C) log Ic(C,Kmo/K) Iw 
Kmo CeClmo (K) 

1 
= --L X(l7) log Ict7lw, 

WKmo t7eG 

and St(Kmo / K, S, voo ) is true. Thus St(L/ K, S, voo ) is true when K is an irnaginary 

quadratic nurnber field. 

Siegel also constructed elliptic units in unramified abelian extensions of K in 

order to give a class number formula relating the class nurnber of K and the one of 

its Hilbert class field. He constructed thern using quotients of the ~ function, see 

[41]. This is the construction that DeShalit-Goren atternpt to generalize in [14]. 
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CHAPTER 6 
Higher dimensional theory 

For the theory of abelian varieties, we used [72], [28] and [4], and for the theory 

of complex multiplication of abelian varieties, we used [40] and [62]. 

6.1 Introduction 

We shaH explain now the background materials that one needs to construct class 

invariants. If we look at the construction of eHiptic units, we notice that there are 

three main ingredients: 

• Elliptic curves over Cj 

• Modular formsj 

• Complex multiplication of elliptic curves. 

In order to construct a generalization of elliptic units, we have to explain one possible 

generalization of these three concepts, namely: 

• Abelian varieties over Cj 

• Siegel modular formsj 

• Complex multiplication of abelian varieties. 

We shaH first explain these concepts and then explain the construction of DeShalit

Goren. 

6.2 Abelian functions and abelian varieties 

Once again, we have three different perspectives on the subject: 

• Abelian functions (analysis)j 

• Function fields (algebra)j 

• Abelian varieties (algebraic geometry). 

The analogues in the one dimensional case were the elliptic functions, the function 

field C(p(z), p'(z)) and the elliptic curve. The concept tying up aH these different 
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points of view was the topological surface CI A. It will be the same in the higher 

dimensional case, but here there will be one fundamental difference: en 1 A is not 

always an algebraic variety. We explain this now. 

As in the case of elliptic curves, the concept of abelian functions arose in con

nection with the computation of sorne particular integrals. An integral of the type 

J R(x,y)dx, 

where R is a rational function in x and y, y = J P( x), and P( x) is a polynomial 

of degree > 4, is called an abelian integral (because Abel studied them extensively). 

When one allows complex variables, then the same problem as with an elliptic in

tegral happens, namely one cannot give a precise definition of the square root of a 

complex function. Mathematicians tried to invert these integrals, but then they got 

complex-valued functions with more than two periods. It was known at the time 

that a complex-valued function of one variable cannot have more than two ~-linearly 

independent periods. It became clear that one should work with functions of sever al 

complex variables. 

Let f : en -t e be a meromorphic function of several complex variables. A 

n-tuple w = (Pl,P2,'" ,Pn) E en is a period for f if f(z + w) = f(z), for aIl z E en. 

The set of periods of a meromorphic function forms an additive abelian group in en. 
Recall that a lattice (sometimes called a fulliattice) in en is a discrete free Z-module 

of rank 2n. We shall restrict ourselves to meromorphic functions such that their group 

of periods, say A, is a lattice. In that case, there exist 2n ~-linearly independent 

periods Wl, ... ,W2n E en such that A = EB~~lZWi' 

Definition 6.2.1 Let f : en -t e be a meromorphic function. Let A be its set of 

periods. We call f an abelian function for A if A is a lattice in en. If A = EB~:;lZWi, 

the matrix 
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is called a period matrix for f (or for A). 

One can consider the complex manifold Cn / A and then, as in the one dimensional 

case, the field of meromorphic functions on Cn / A is identified with the set of abelian 

functions for the lattice A. 

Here is an example of an abelian function. Let (W1,W2) be two 1R-linearly in

dependent complex numbers and set A = ZW1 E9 ZW2. Recall that the Weierstrass' 

function for A is 8J(z, A) = 12 + ~ wEA (~1) -~). Let us define the 2n vectors 
z L...J w;éO z-w w 

Pl = (W1, 0, ... ,0), P2 = (W2, 0, ... ,0), ... , P2n-1 = (0, ... , 0,W1), P2n = (0, ... , 0,W2), 

and let f(z) = 8J(zd . P(Z2) ' ... p(zn-d . p(zn)' Then f is an abelian function for the 

period-matrix 

W1 W2 0 0 

p= E Mnx2n (C). 

0 0 W1 W2 

6.2.1 Abelian varieties 

The analogue of elliptic curves in higher dimensional algebraic geometry are the 

abelian varieties. 

Definition 6.2.2 Let k be an algebraic closed field. An abelian variety over k is a 

non-singular projective (connected) variety A, which is also a group and such that the 

group Law 

+: A x A --+ A, 

and the inverse map 

- : A --+ A, 

are morphisms of algebraic varieties. 

Remark: It is known that the group law is necessarily commutative and this is why 

we use the additive symbol + for the group law. If A is defined over the complex 
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nurnbers e, then it becornes a cornplex Lie group and it is also known that in this 

case A ~ en / A is a cornplex torus for sorne lattice A. 

We are led to the following question. Given a lattice A = œ;~l Wi, we can ask 

whether or not en / A is an algebraic variety. The answer is contained in the next 

theorern. 

Theorem 6.2.1 Let A be a lattice in en, then the following are equivalent: 

1. en / A is an algebraic variety. 

2. en admits a positive definite H ermitian form H = S + iE su ch that E = Irn( H) 

is integer-valued on A (such an H is called a Riemann form). 

Remarks: Point (1) rneans that there exists a projective ernbbeding. For the 

point (2), we recall here the definition of a Herrnitian forrn. 

Definition 6.2.3 A Hermitian form on en is a map H : en x en ~ e such that 

• The map z 1--+ H(z, w) is e-linear in z for all w E en; 

• The map w 1--+ H (z, w) is anti-linear in w for all z E en (i. e. additive and 

H(z, ÀW) = ~. H(z, w)); 

• H(z, w) = H(w, z). 

Mo reo ver, H is said to be positive if H(z, z) ~ 0 and positive definite if H is positive 

and satisfies also H(z, z) = 0 if and only if z = O. 

Sornetirnes, it is preferable to work only with the irnaginary part of a Herrnitian forrn. 

Theorem 6.2.2 A Hermitian form H can be written H(z, w) = S(z, w) + iE(z, w). 

We have the following properties: 

• S, E : en x en ~ lR are lR-bilinear, where en is considered as a lR-vector space; 

• S is symmetric; 

• E is alternating (E(z, w) = -E(w, z)); 

• S(z, w) = E(iz, w); 

• E(iz, iw) = E(z, w); 

• If H is positive, then H(z, z) = S(z, z) = E(iz, z) ~ 0 for all z E en; 
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• If H is positive definite, the last condition is satisfied and moreover E(iz, z) = 

o <=> z = 0; 

• If H is a Riemann form for some lattice A, then E(z, w) E Z for all z, w E A. 

We have a converse of this theorem, namely: 

Theorem 6.2.3 Consider Cn as a lR-vector space. Suppose we are given a lattice A 

of cn and an lR-alternating form E : cn x cn ~ lR satisfying: 

• E(iz, iw) = E(z, w) for aU z, w E cn; 

• E(iz, z) ;::: 0 for all z E cn; 

• E(iz, z) = 0 {::} z = 0 for aU z E en; 

• E(z,w) E Z for all z,w E A. 

Then H(z,w) = E(iz,w) +iE(z,w) is a Riemann form for Cn/A. 

In the sequel, we shall work mainly with the imaginary part of a Riemann form and 

we also call such an E a Riemann form. 

Definition 6.2.4 An abelian manifold is a complex tOTUS with a Riemann form. 

Thus, according to Theorem 6.2.1, every abelian manifold is an abelian variety and 

vice-versa. 

Scholie: When n = 1, we get back the theory of elliptic functions and elliptic curves. 

Let A = W1 œ ZW2 be a lattice in C. The Weierstrass' function gives us an explicit 

projective embedding of C/ A into ]p2(C) by Theorem 5.2.8. Therefore, according to 

Theorem 6.2.1, there should be a hidden Riemann form somewhere. It is actually 

true for every lattice and this is why we did not meet it previously. 

Theorem 6.2.4 Let A = ZW1 œ ZW2 be a lattice in C. Then C = IRW1 œ lRW2' If 

the numbers z, w E C, then (~) = (~~ ~n (~~) for some ai, /3i E IR. Define the 

pairing E(z, w) = det (~~ ~~) = al' /32 - /31' a2' Then E is a Riemann form on C/ A. 

Weil introduced the concept of polarization in analogy with the concept of ori

entability in differential geometry. Over C, it can be defined as follows: 
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Definition 6.2.5 Let enjA be an abelian manifold and let E, E' be two Riemann 

forms on en j A. We define an equivalence relation,,", by 

E ,...., E' <=> there exists ). E e such that E = ). . E'. 

Note that ). is neeessarily a positive rational number sinee E, E' are integer valued 

on A and E(iz, z) ~ O. 

Definition 6.2.6 Let en j A be an abelian manifold. A polarization on en jAis an 

equivalenee class of Riemann forms. 

A class of polarizations which is particularly important is the class of principal ones. 

Here is the explication of this concept. 

Definition 6.2.7 Let en j A be an abelian manifold, and E an associated Riemann 

form. According to the elementary divisor theorem, there exists a basis of the lattiee 

A, say (El, . .. ,En, (1, ... ,(n), such that the matrix of E is given by 

where D = Diag(d1, ... ,dn) is a diagonal matrix with integers di > 0, (i = 1, ... ,n) 

satisfying di ldi+1' (i = 1, ... ,n - 1). Mo reover, the numbers dl, . .. ,dn are uniquely 

determined by E and A. The vector (dl, . .. ,dn) is called the type of E and the 

basis (El, . .. , En, (1, ... , (n) is called a symplectic basis for A. 

Definition 6.2.8 Let en j A be an abelian manifold with a polarization P. The polar

ization is said to be principal ifthere exists an E E P su ch that E is of type (1, ... ,1). 

Let us come back to an abelian variety A. 

Definition 6.2.9 Let Al and A 2 be two abelian varieties. A homomorphism of 

abelian varieties is an algebraic morphism 
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which is also a group homomorphism. The set of homomorphisms between two abelian 

varieties is denoted by Hom(A b A 2). An homomorphism <1> : Al -+ A2 is called an 

isomorphism if there exists a homomorphism of abelian varieties 1/J : A2 -+ Al su ch 

that 4> 0 1/J = idA2 and 1/J 0 4> = idAl. When Al = A2' we call su ch a homomorphism 

(resp. isomorphism) an endomorphism (resp. automorphism) and denote the ring of 

endomorphisms of an abelian variety A by End(A) (resp. Aut(A)). 

If A are abelian varieties over e, then there exist lattices Ai such that A ~ en; / Ai, 

for i = 1,2. Let <1> E Hom(Ab A2), then 4> is given by rational functions and thus 

induces a holomorphie map 

such that ~(o) = o. As in the case of elliptic curves, this correspondence is actually 

a bijection. 

Theorem 6.2.5 Let Ai ~ en; lAi be abelian varieties defined over e, (i = 1,2). 

Then the correspondence 4> 1---+ ~ makes the following diagram commutative 

~ 

enliAI ------+ 

1~ , 
~ 

e n2 /A2 ---=---t 

and this correspondence is a bijection between Hom(AI, A 2 ) and the set of holomorphie 

maps <1> : enliAI -+ e n2 1 A2 su ch that 4>(0) = o. 
Theorem 6.2.6 Let Ai ~ en; 1 ~ be abelian varieties defined over e, for i = 1,2. 

Let 4> : enliAI -+ e n2 1 A2 be a holomorphie map such that <1>(0) = 0, then there exists 

a e-linear map Lt/J : en1 -+ e n2 su ch that Lt/J(AI) ç A2 and su ch that the following 

diagram is commutative 

en1 
Lq, 

e n2 ------+ 

1 1 
en1 lAI '" e n2 / A2 ------+ 
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This correspondence sets a bijection between 

and 

{holomorphie maps <!> : en1 
/ A 1 ---+ en2 

/ A2 sueh that <!>( 0) = O}. 

Moreover, End(A) depends only on the isomorphism class of A. 

If E is an elliptic curve, note that the extension of scalars End(E) ®z Q is 

a Q-algebra and that we have End(E) ®z Q c:= Q or K, where K is a quadratic 

imaginary field (the latter case being the CM-case). This provided the link with 

number theory. Similarly, we shall study the structure of End(A)®zQ for an arbitrary 

abelian manifold A in the section on complex multiplication of abelian varieties. 

6.3 Siegel modular functions 

In this section, we proceed to generalize the theory of classical modular forms. 

We mainly use the reference [18] (german). The new mathematical object is called 

a Siegel modular form. Siegel discovered these functions while he was working on 

the theory of quadratic forms. For a general overview, recall that a domain of en 
is called homogeneous if the group of biholomorphic automorphisms acts transitively 

on it. Moreover, it is called symmetric if for each point of the domain there exists an 

involution in the group having only this point as a fixed point. Élie Cartan (1869-

1951) proved that every bounded symmetric domain is automatically homogeneous, 

and he classified them. He found four main types plus two exceptional ones which 

appear only for dimension 16 and 27. We shall not explain his results, see [63] for 

instance. One is relevant for us, namely the generalization of the unit circle. First, 

we introduce the Siegel space that generalizes the Poincaré upper half-plane. 
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Definition 6.3.1 The Siegel space r,n is the set of aU complex symmetric matrices 

(n-rowed) such that the imaginary part is positive definite: 

Note that l)l is merely the upper half-plane. In the classical case, the group of 

biholomorphic automorphisms acts on r,l, but also on the Riemann sphere, and we 

have the inclusions r,1 ç C ç C, where the Riemann sphere is a compact Riemann 

surface. We have a similar thing for l)n. Define first 

Clearly, r,n embeds in Pn. Next, define Cn to be the set of W = (tt:~) E M2nxn(C), 

where Wi E Mn(C) satisfy both rank(W) = n, and Wf . W2 = Wi . Wl . Note 

that when det(W2 ) =1= 0, the last condition is equivalent to Wl W2-
1 being symmetric. 

The group GLn(C) acts on Cn by right multiplication, namely W . U = (tt:~~), 

whenever U E GLn(C). The analogue of the Riemann sphere is Sn := Cn/GLn(C), 

the space of orbits of this action. We also have an embedding of Pn into Sn defined 

by Z f-+ (t.) . GLn(C). This map is clearly injective, and after having identified Pn 

with its image, we have the inclusions r,n ç Pn ç Sn. When n = 1, then Pl ~ C 

and SI ~ JIDl(C) ~ C. One can show that Sn is a compact complex manifold. 

We shall see next that we also have an action of a group of biholomorphic auto

morphisms of r,n. First, we identify r,n with a domain of C
n
(
n
2+l

l
. This identification 

is made through the map 

The group we are interested in is SPn(lR) which is defined as follows. From now on, 

J stands for the matrix J = (-~n 10 ), We can now define SPn(lR). 
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Definition 6.3.2 The symplectic group is defined as follows 

Note that Mt J M = J if and only if Mt Jt M = P. This latter group acts on Cn by 

multiplication on the left. lndeed, if M = (é Z), where A, B, C, DE Mn(lR) then the 

action is defined by M· ( U;~) := (~U;~ !~tt~ ). This action induces an action on each of 

the three spaces ~n, Pn and Sn. Using the fact that if Z E ~n, then det(CZ + D) =1 0 

we see that the action on ~n is given by 

Z E ~n f-t M· Z:= (AZ + B)(CZ + Dt1
. 

In summary, we have 

Theorem 6.3.1 The group SPn(lR) acts on ~n by M· Z := (AZ + B)(CZ + D)-l, 

whenever Z E ~n, and ME SPn(lR). 

The action of SPn (Z) is discontinuous and we can talk about its fundamental region. 

The closure of it is contained in the next theorem. 

Theorem 6.3.2 Let n be any positive integer. The Siegel's fundamental domain is 

the subset Fn of ~n of Z = X + iY su ch that 

1. 1 det(CZ + D)I ~ 1, for aU ME SPn(Z); 

2. y E Rn, where Rn is the Minkowski's reduced do main (see below); 

3. IXijl::; 1/2, for i ::; j, where X = (Xij)' 

The Minkowski's reduced domain in the theorem is the set of Y = (Yij) E Mn(lR) 

satisfying 

1. lYg ~ Yii, for aU g integral with (gi,'" ,gn) = 1, (1::; i::; n); 

2. Yi,i+1 ~ 0, (1 ::; i ::; n - 1). 

Note that when n = 1 we get the clos ure of the fundamental region of SL2 (Z) acting 

on the Poincaré upper half-plane, see Section 5.3.1. 
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The domain ~n is biholomorphically equivalent to the generalized unit circle 

which is one the four main bounded symmetric domain of Cartan. 

Definition 6.3.3 The unit circle of degree n is defined as 

Theorem 6.3.3 The generalized Cayley transformation ~n ~ Dn defined by 

is a biholomorphic map. 

Using this fact, it is often more expedient to prove sorne facts about the action 

of SPn(lR) on ~n' See [26]. Let us come back to the action of SPn(lR) on ~n' 

Theorem 6.3.4 We have an isomorphism Bihol(~n) ~ SPn(lR)/{±I2n }. 

Next, as in the classical case, we are interested in discrete subgroups of SPn(lR). In 

particular, SPn(:~) is such a discrete subgroup and it acts discontinuously on ~n

Theorem 6.3.5 The matrix M = (é Z), where A, B, e, DE Mn(Z), is in SPn(Z) if 

and only if we have we have the following equalities: At D - ct B = In, Ate = ct A 

and BtD = DtB. 

From this last theorem we see that when n = 1, SPl (Z) = SL2 (Z). In general, we 

have the inclusion SPn(Z) ç SL2n (Z), but for n ~ 2, this is not an equality. This 

inclusion is a consequence of the next theorem. 

Theorem 6.3.6 The group SPn(Z) is generated by the element J and the matri

ces (10' In), where S = st. 
We see that the analogy with the classical case is really strong. We can now define 

what a Siegel modular form is. 

Definition 6.3.4 A function f : ~n ~ C is called a Siegel modular form of weight k 

and level 1 if the following conditions are satisfied: 

• f is holomorphie, 
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• f(M· Z) = det(CZ + D)kf(Z) for ail Z E SPn(Z), 

• In every region Y ~ }Q, (}Q > 0), f is bounded. 

Note that for n > 1, it is known that the last condition is not necessary. This is the 

Koecher principle. 

It is also true that every Siegel modular form has a Fourier expansion of the 

form 

f(Z) = L a(T)e27riTr(TZ) , 

T~O 

where T runs over aIl half-integral positive symmetric matrices of degree n. Recall 

that half-integral means that tii and 2tij , (i =1 j), are integers. 

6.4 Complex multiplication of abelian varieties 

6.4.1 Structure of End(A) ®z Q 

We study here the structure of End(A) ®z Q and see how number theory cornes 

into the picture. We follow mainly [4]. Sorne information can also be found in [40],[60] 

and [62]. For the general theory of associative algebras, see [50]. 

Start with an abelian variety A ~ Cn / A defined over C. According to Theorems 

6.2.5 and 6.2.6, we have a faithful (that is, injective) complex representation 

defined by cp ~ Lj, (with the notation of Theorems 6.2.5 and 6.2.6), which is called 

the analytic representation (hence the subscript a). It can be viewed as the induced 

action on the tangent space. Now, if we restrict Lif> ta A we get a faithful rational 

representation 

PT : End(A) <-+ Endz(A), 

which is called the rational representation. Since the representation is faithful, we 

can identify End(A) with a subring of Endz(A) ~ M 2n (.Z) ~ Z;4n
2

, and we get: 

81 



Theorem 6.4.1 Let A be an abelian variety. Then End(A) is a free Z-module of 

finite rank. Therefore, End(A) ®z Q is a fini te dimensional Q-algebra. 

We conclude that there are embeddings 

Pa : End(A) ®z Q '---t Mn(C), 

We shall now see that the Q-algebra End(A) ®z Q has an anti-involution. Recall first 

the definition of an involution and an anti-involution of an algebra: 

Definition 6.4.1 Let A be a R-algebra (here R stands for a commutative ring with 

unit y) . 

• An involution on A is an automorphism of R-algebras P : A ---t A, such that 

p(p(a» = a for aU a E A . 

• An anti-involution on A is a automorphism of R-module p : A ---t A, such that 

- p(al . a2) = p(a2) . p(ad for aU al, a2 E A; 

- p(p(a» = a, for aU a E A. 

Note that since we extended the representation Pa to a representation of End(A)®zQ, 

it makes sense to talk about </J . z, where </J E End(A) ®z Q and z E cn. Explicitly, 

we have </J. z := Pa(</J) (z). 

Theorem 6.4.2 (Rosati involution) Let A ~ cn / A be an abelian variety and 

let E be an associated Riemann form. The adjoint of E defines an anti-involution R 

on End(A) ®z Q, caUed the Rosati involution. That is, for every </J E End(A) ®z Q, 

there exists a unique R(</J) E End(A) ®z Q such that 

E(</J· z, w) = E(z, R(</J) . w), 

for aU z, w E Cn and the association </J 1--+ R( </J) defines an anti-involution on the 

Q-algebra End(A) ®z Q. 

It is clear that the Rosati involution do es not depend on the representative of a 

polarization. 
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The rational representation gives us a trace function Tr := End(A) 0z Q -+ Q 

defined by Tr(</J) = Tr(Pr(</J)), where Tr is the usual trace of a linear transformation. 

We can define a bilinear symmetric form, which we calI also Tr , on End(A) 0z Q by 

setting Tr(</JI, </J2) := Trr(</JI . R(</J2)). 

Definition 6.4.2 Let A be a Q-algebra with a linear form T : A -+ Q. Suppose also 

that A has an anti-involution p. Then P is said to be positive (respectively positive 

definite) if the associated bilinear form T(al . p(a2)) is positive (respectively positive 

definite). 

Theorem 6.4.3 The Rosati involution is positive definite with respect to the rational 

trace. 

Up to now, we know that End(A) 0z Q is a finite dimensional Q-algebra with a 

positive definite involution with respect to the rational trace. 

In order to go further in the description of the structure of End(A) 0z Q, we 

have to introduce a subclass of endomorphisms: The isogenies. 

Definition 6.4.3 Let Al and A2 be two abelian varieties defined over C. A homo

morphism </J : Al -+ A2 of abelian varieties is called an isogeny if </J is surjective and 

has a finite kernel. 

Here is an example of an isogeny. For any abelian variety A and non-zero integer 

nE Il, let nA : A -+ A be defined by a f-t n . a, then nA is an isogeny. Isogenies are 

"almost isomorphisms". Indeed, if f : Al -+ A2 is an isogeny, let e = e(f) be the 

exponent of the group ker(f), then we have: 

Theorem 6.4.4 Let Al and A2 be abelian varieties over te and let </J E Hom(AI, A2 ) 

be an isogeny. There exists a unique isogeny 'IjJ : A2 ---t Al such that 

• </J 0 'IjJ = e(</J)A2; 

• 'ljJo</J=e('IjJ)AlI 

and e(</J) = e('IjJ). 

Therefore, it makes sense to talk about isogenous abelian varieties. 
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Definition 6.4.4 Two abelian varieties Al and A 2 are called isogenous if there exists 

an isogeny cp : Al ~ A 2 . This defines an equivalence relation on the set of abelian 

varieties. 

Note also that because of Theorem 6.4.4, the isogenies of A into itself are precisely 

the invertible elements in End(A) 0z Q. 

Definition 6.4.5 An abelian variety A is simple if the only sub-abelian varieties of 

A are {O} and A itself. 

Theorem 6.4.5 If A is a simple abelian variety, then End(A) 0z Q is a division 

Q-algebra. 

If A isnot simple, then it can be decomposed up to isogeny as a product of simple 

ones. 

Theorem 6.4.6 (Poincaré complete reducibility theorem) Suppose that A is 

an abelian variety, then there exists an isogeny 

su ch that ail Ai are simple abelian varieties. Moreover, the pairs (Ai,~) are uniquely 

determined up to isogeny (i = 1, ... ,t). 

Corollary 6.4.1 With the same notation as in the last theorem, we have 

where Di = End(Ai) 0z Q is a division Q-algebra (i = 1, ... , t). 

This last theorem together with Wedderburn's theorem tells us that End(A) 0z Q is 

a semisimple algebra with a positive involution. Because of Corollary 6.4.1 we can 

restrict our study to End(A) 0z Q, where A is simple. In this particular case we have 

established: 
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Theorem 6.4.7 Let A be a simple abelian variety. Then End(A) @z Q is a sim

ple finite dimensional division Q-algebra with a positive definite involution (Rosati 

involution) with respect to the rational trace. 

Abraham Adrian Albert (1905-1972) classified the structure of such algebras, 

see [1], [2] and [3]. His results are clearly explained in [4]. 80 let (D, ') be a finite 

dimensional division Q-algebra with a positive anti-involution x I--t x'. We shan 

denote the center of D by K. The anti-involution induces an involution on K (since K 

is commutative). Let Ko be its fixed field. 

Theorem 6.4.8 With the notation above, Ko is a totally real number field. 

Definition 6.4.6 The pair (D, ') is called of the first type if K = Ko and of the 

second type otherwise. 

Theorem 6.4.9 Let (D, 1 ) be of the second type. Then its center K is totally imagi

nary, the restriction of the anti-involution to K is the non-trivial automorphism of K 

over Ko, and [K : Ko] = 2. 

We give a special name to the kind of fields which appear in the last theorem. 

Definition 6.4.7 A CM -field is a number field which is a totally imaginary quadratic 

extension of a totally real field. 

Note that quadratie imaginary fields are CM-fields and cyclotomie fields provide 

another example of such fields. Here is a characterization of CM-field. 

Theorem 6.4.10 Let K be a number field, and fix an embedding of K in C. Then K 

is a CM-field if and only if the foUowing two conditions are satisfied: 

• Complex conjugation T indu ces a non-trivial automorphism of K. 

• Complex conjugation commutes with aU other embeddings, that is T 0 (J = (J 0 T 

for aU (J E HomQ(K, C). 

It therefore follows that complex conjugation does not depend on the chosen embed

ding. 
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We shaH not pursue the general study of such Q-algebra (D, '). See again [4] for this 

theory and to see which ones can be realized as End(A) 0z Q for sorne simple abelian 

variety A. We just state the final result. 

Theorem 6.4.11 Let (D, ') be as above. Then we have the following possibilities 

for D: 

Type Structure 

First type D = totally real number field 

D = totally indefinite quaternion algebra 

D = totally definite quaternion algebra 

Second type D = division algebra and Z(D) is a CM-field 

Table 6-1: The center of a finite dimensional division Q-algebra with a positive 
anti-involution 

We are now ready to define the generalization of an elliptic curve with complex 

multiplication by a quadratic imaginary field. 

Definition 6.4.8 Let A ~ en / A be a polarized abelian variety of dimension n defined 

over e. Let K be a CM -field and suppose that [K : Q] = 2n. We say that A has 

complex multiplication by K if there exists an embedding 

t : K ~ End(A) 0z Q, 

su ch that the Rosati involution induces complex conjugation on K. 

When n = 1, we get back the old notion of complex multiplication of elliptic curves. 

6.4.2 Construction of abelian varieties with CM 

Now that we have defined the right generalization of complex multiplication to 

abelian varieties, we should explain how we can construct such abelian varieties. 

Instead of stating directly one big theorem, we shall state several small results that 

we collect in one big theorem at the end, see Theorem 6.4.12. 
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Definition 6.4.9 Let K be a CM -field and suppose moreover that [K : Ko] = 2n. 

Let ~ = {<Pl, ... ,<Pn} be a set of embeddings <Pi : K -t <C such that none of them is 

the complex conjugate of another one, that is 

for all i, j = 1, ... ,n. Then we call (K, ~) a CM-type. 

Lemma 6.4.1 Let K be a CM -field and let Ko be its associated totally real subfield. 

Then, there exists ç E K such that 

• K = Ko(ç), (ç =1= 0); 

• -e is totally positive. 

Proof: 

By the primitive element theorem, there exists ç' E K such that K = Ko(Ç') and 

since the extension is quadratic, ç' satifies a quadratic polynomial with coefficients 

in Ko: 

for sorne ai E Ko, (i = 0,1,2). Then 

ç' = -al ± y'a~ - 4a2ao. 
2a2 

Set ç = y'a~ - 4a2aO, we have K = Ko(ç), and e 
[K : Ko] = 2, ç =1= O. This proves the first part. 

Now, we want to show that -e is totally positive. Suppose that it is not. Then 

there exists a real embedding a : Ko -t lR such that a( -e) < O. Let a be any 

extension of a to K. Then we have 

and therefore a(ç)a(ç) > o. Write a(ç) = a + ib for sorne a, bER The product 

becomes then (a + ib)(a + ib) = (a2 - b2) + 2abi > 0 implies that a or b = O. If a = 0 
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then a2 > b2 > 0 implies that b = 0 but since ~ =1= 0, a(~) =1= o. Thus b = 0, but 

then a(ç) E IR which is a contradiction since K is totally imaginary. 

o 

Lemma 6.4.2 Let (K, cI>) be a CM -type and let Ko be its associated totally real 

subfield. Then by the last lemma, we can choose ~ E K su ch that K = Ko(~), the 

element -Ç2 is in Ko and -Ç2 totally positive. We daim that we can choose ~ such 

that in addition Im( cp(~)) > 0 for all cp E cI>. 

Proof: 

Suppose that Ç' satisfies the hypothesis of Lemma 6.4.1. We can choose an a E Ko 

with any sign distribution, so choose a E Ko such that cp(a) ·Im(cp(ç')) > 0, for 

all cp E cI> , and set ç = a . Ç'. 

o 

Lemma 6.4.3 Let (K,cI> = {CP1, ... ,CPn}} be a CM-type and suppose [K: Q] = 2n. 

Consider then the map 

For any free Z-module a ç K of rank 2n, the image cI>(a) is a lattice in en. There

fore, en jcI>(a) is a complex toms. 

We can now construct some abelian varieties from a CM-type. According to Theorem 

6.2.1, it suffices to find a Riemann form on en jcI>(a). 

Lemma 6.4.4 Let (K, cI> = {cpl, ... ,cpn}} be a CM-type and let Ko be its associated 

totally real subfield. Let ç be as in Lemma 6.4.2. Define for any z = (Zl, ... , zn), 

and w = (Wb . •• ,Wn) E en: 

n 

E(z, w) := L CPi(Ç) (ZiWi - ZiWi). 

i=l 

Let a ç K be a free Z-module of rank 2n. For a, (3 E K we have 

E(cI>(a), cI>((3)) = TrK/Q(ç· a· (3), 
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and for a suitable integer m, m· E is a Riemann form on the torus en/<p(a), which 

is thus an abelian variety. 

Proof: 

We have to check the conditions on Theorem 6.2.3. The facts that E is lR-alternating 

and that E(iz, iw) = E(z, w) (Vz, w E en) are straightforward computations. 

Next we check that E(iz, z) ~ O. Note first that for any i = 1, ... , n, CPi(Ç) is 

a pure imaginary number (a complex number z is pure imaginary if z = - z or, in 

other words, has no real part). lndeed, the quadratic extension K / Ko is Galois and 

the non-trivial Galois automorphism is defined by ç f-+ -ç and this is equal to the 

complex conjugation. Thus we have 

and it is pure imaginary (note that we used the fact that complex conjugation com

mute with any embedding, see Theorem 6.4.10). So we have 

n 

E(iz, z) = L CPk(Ç) ( -iZkZk - iZkZk), 
k=l 

and cpk(Ç) pure imaginary implies that -icpk(Ç) = lm CPk(Ç), and therefore 

n 

E(iz, z) = 2 L(lmcpk(ç))lzkI2 ~ 0, 
k=l 

since lmcpk(ç) > 0 for aIl k = 1, ... ,no 

From this last equation, it is also clear that E(iz, z) = 0 {:::} z = O. 

The only thing we still have to check in order to have a Riemann form is that E 

is integer-valued on q>(a). But this is not always the case and this is why we have to 

multiply by a suitable integer. First let a, f3 E K then 

cp(f, . Ci . (3) 
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where T is the complex conjugation. Further 

TrK/Q(~· a· (3) = L (<p(~)<p(a)<p({3) + <p(e)<p(a)<p(i3)) , 
't'E~ 

and since e = -~, we get 

= L <p(Ç) (<p(a)<p({3) - <p(a)<p(ï3)). 
cpE~ 

This last sum is exactly E(<I>(a), <I>({3)). According to this equality, E(<I>(a), <I>({3)) E 

Q for aU a, (3 E K. Finally, sinee a is in particular a finitely generated Z-module the 

denominators ofthe redueed fractions that E takes on <I>(a) are bounded. Therefore, 

we can find m in Z such that m . E is integer-valued on <I>(a) and this conclu de the 

pro of. 

o 

Next, we want to see if this abelian variety has complex multiplication by K. 

Lemma 6.4.5 Let (K, <1» be a CM-type and let the notation be as in Lemma 6.4.4. 

Then for any free Z-module a ç K of rank 2n, A ::= en j<l>( a) is an abelian variety. 

Moreover, this abelian variety has complex multiplication by K. 

Proof: 

So we have to check two things: Firstly that K can be embedded in End(A) 0z Q 

and then that the Rosati involution induces the complex conjugation on K. 

Let 0 be the arder associated to a, that is 
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for any z E en. We daim, that S>.. induces an endomorphism on en /<I>(a). We thus 

have to check that S>..(<I>(a)) ç <I>(a). Let 0: E a, then 

By definition of 0, À . a = a thus 

8>..(<I>(0:)) = <I>(À . 0:) E <I>(a). 

We thus have an induced map <P>.. : en /<I>(a) -t en /<I>(a), defined by z + <I>(a) 1--+ 

S>..(z) + <I>(a). This gives us an embedding 

o ~ End(A) 

Next, since 0 is an order, Frac(O) = K. Using the universal property of the fraction 

field, we get an embedding 

K ~ End(A) ®z Q. 

The fact that the Rosati involution induces complex conjugation on K is clear. 

o 

We summarise our results as follows: 

Theorem 6.4.12 Let (K,<I> = {CP1, ... ,CPn}) be a CM-type and Ko its totally real 

subfield. Suppose moreover that [K : Q] = 2n. Then 

1. There exists ç E K such that 

(a) K = Ko(ç); 

(b) -e » 0; 

(c) Imcp(ç) > 0 for all cp E <I>. 

2. For any free Z-module a ç K of rank 2n, en/<I>(a) is a complex toros, where 

<I> : K -t en is defined by À 1--+ (Y'l(À), ... , Y'n(À)). 
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3. A suit able integer multiple of the 'R.-bilinear form 

n 

E(z, w) = L <p(ç) (ZiWi - ZiWi) 

i=l 

is a Riemann form on en j <P ( a) and in this way en j <P ( a) becomes an abelian 

variety with complex multiplication by K. 

We have also the converse, namely: 

Theorem 6.4.13 Every abelian variety defined over C with complex multiplication 

by a CM-field K can be constructed as in the previous theorem. 

Definition 6.4.10 A CM -type (K, <p) is called primitive if every abelian variety with 

complex multiplication by K is simple. 

6.4.3 The reflex field 

Definition 6.4.11 Let (K, ip) be a CM -type. We define the type norm (or half

norm) and the type trace (or half-trace) as follows: 

• Nil>(>') = nCPEil> <p().); 

• Til>().) = L:CPEil> <p().) , 

for all ). E K. 

Definition 6.4.12 Let (K, <p) be a CM -type, we define the reflex field to be 

K*:= Q({Til>().) 1). E K}). 

Theorem 6.4.14 Let (K,ip) be a CM-type, then the reflex field K* is also a CM

field. 

Associated to the reflex field, there is also a reflex type. This notion is contained in 

the next theorem. 

Theorem 6.4.15 Let (K, ip) be a CM -type, and LjQ a finite Galois extension con

taining K. Let G = Gal(LjQ) and define 

• S = {a E Gia indu ces a <p E ip on K}; 

• S* = {a-lia ES}; 
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• H* = b E GIS*')' = S*}. 

Then K* = L H ·, the fixed field of L by H*. Moreover, if 

<P* = {'ljI : K* ---t q'ljl is induced by a E S*}, 

then (K*, <P*) is a primitive CM-type. Finally, all this does not depend on the Galois 

extension L containing K. 

There is a link between ideals in K and ideals in K*: 

Theorem 6.4.16 Let (K,<P) be a CM-type and (K*,<P*) itsrefiexfield. LetalsoLjQ 

be a Galois extension containing K. If a is an ideal in K*, then there exists an ideal 

b in K su ch that 

b . OL = II <p(a) ·OL, b . b = N(a) . OK. 
<pE<I>· 

To conclude this chapter, we say a word on explicit class field theory. Using this 

theory, Taniyama and Shimura were able to generate abelian extensions of the reflex 

field of a CM-field using values of Siegel modular functions evaluated at CM-points. 

Yet, it is also known that we do not get (K*)ab in this case. Note that if K is a 

quadratic imaginary field, then K* = K, and this is why the reflex field did not 

appear in the theory of complex multiplication of elliptic curves. 
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CHAPTER 7 
De8halit-Goren invariants 

7.1 8tark's conjectures again 

The construction of elliptic units in abelian extensions of a quadratic imaginary 

number field used explicit class field theory provided by the theory of complex mul

tiplication. It is thus natural to try to construct units in abelian extensions of the 

reflex field of a CM-field. The hope is that it would lead to other cases of Stark's 

conjectures. Let (K, <I» be a CM-type of degree four, then there are three possibili-

ties: 

1. K is Galois, Gal(K/Q) ~ '1-/2'1- x '1-/2'1-. In that case <I> is non-primitive, and 

K* is quadratic imaginary; 

2. K is Galois, Gal(K/Q) ~ '1-/4'1-. In that case K = K*, and <I> is primitive; 

3. K is non-Galois. In that case K* is another CM-field of degree 4 over Q. 

We shall not deal with the case (1). In that case, one can use the theory of elliptic 

units in order to construct units in abelian extensions of K*. Case (2) will be called 

the cyclic case and case (3) will be referred to as the non-Galois case. 

Let thus K be any CM-field of degree 4 falling in either the cyclic case or the 

non-Galois case. Then K* is a CM-field of degree 4 over Q. Let L / K* be any abelian 

extensions and let S be any set of primes of K* containing Soo. Moreover, let X be 

any character of Gal(L/ K*). Here S satisfies automatically conditions 81 and 83 

of Chapter 4. Suppose that S satisfies also 82, then from Theorem 4.0.3, we see 

that St(L/ K*, S) is true in that case. Actually, from Corollary 4.0.1, we see that if 

X =1= Xl, then TS(X) 2: 2 and thus we can take é = 1 as a Stark unit. If X = XI, then 

the only way to get a rank one L-function is to take an unramified abelian extension 
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LI K* and S = Soo. The rank one abelian conjecture is also known to be true in that 

case. 

Anyway, except this last case, the L-functions will have a zero of order at least 2 

at s = O. Karl Rubin stated a generalization of Stark's conjectures for zeros of higher 

orders at s = 0, see [56]. This is the case of interest for us and this can be viewed 

as a motivation of constructing S-units in abelian extension of CM-fields of degree 

greater than two. 

7.2 Class invariants 

In this section, we explain the construction of DeShalit-Goren. First of aH, we let 

K be a CM-field of degree four and we fix a CM-type (K, cI». Moreover, let (K*, cI>*) 

be its reflex field. The construction of DeShalit-Goren concerns the cyclic and non-

Galois cases, but in this thesis, we deal only with the cyclic case. Therefore, we 

suppose K to be Galois with Galois group isomorphic to the cyclic group of order 

four. 

Let ~2 be the Siegel space. For T E ~2 and u E M2x1 (C), we define the theta 

function with characteristics r, sE M2x1 (!Q) by 

Definition 7.2.1 The characteristics are called integral if r, s E !Z2 and are called 

even if they are integral and rt . s E !Z. 

Theta functions with integral characteristics depend only on r, s mod Z2, up to ±l. 

We shaH work with the square ofthis function so this sign ambiguity do es not matter. 

In our case, ten out of the sixteen integral characteristics are even: 

[[0]] [~] , 
[ [~] ] 

[1/2] , 
[ [0] ] 
[1~2] , 

[ [0] ] 
G~~] , 

[[1~2] ] 
[~] , 

[[1/2] ] [[1~2] ] [[1~2] ] [G~~]] [1/2] 
[ 1/2 ] 

[1~2] , [~] , [1~2] , [~] , [~~~] . 
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Consider then 

Oev(U, T) = II 0 [:] (u, T), 
even 

where the product is over aIl the even characteristics (this is defined up to a sign) 

and set 

Igusa proved in [30] that O;v(T) is a Siegel modular form of level1 and weight 10. 

Let A be a lattice in ((:2 and let ((:2 j A be an abelian surface with a principal 

polarization given by a Riemann form E. Let n = (W1,W2) be a symplectic basis 

of A. The function 

depends only on A and E. Next, we shall evaluate this function at some CM-points. 

We have seen in the last chapter how to construct abelian surfaces with complex 

multiplication by a CM-field. We explain now a condition for that surface to admit 

a principal polarization. 

Let a be a fractional ideal of K. We have seen in the last chapter that ((:2 jiP(a) 

is an abelian manifold. We have seen also that there exists a 8 E K (in Theorem 

6.4.12, take 8 = ';-1) satisfying (5 = -8 and Im(<p(8)) > 0 for <p E iP, such that for 

U,v E a 

is a Riemann form for this abelian manifold. The following lemma is immediate. 

Lemma 7.2.1 The polarization induced by the Riemann form Eo on ((:2 jiP(a) is 

principal if and only if 

where 'DK / Q is the different of the field K. 

We can now define the class invariants in the cyclic case. Let K be a cyclic quartic 

CM-field and F its associated totally real subfield. We suppose moreover that hF = 1, 
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the fundamental unit of F has norm -1 (these last two conditions imply ht = 1), 

and that the different V K / Q is generated by a pure imaginary number o. Sinee the 

norm of the fundamental unit is -1, we can choose 0 such that 

Im<p(o) > 0, 

for aH <p E <I>. For any ideal a of OK, choose a such that 

O«aEF. 

Then using the fact that the fundamental unit of F has norm -1, we can find a 

generator in F which is totally positive. 

Consider the lattice <I>(a) with the Riemann form 

The complex torus ([:2 /<I>( a) becomes a principally polarized abelian manifold. Define 

~(<I>(a)) = ~(<I>(a), Eao) , 

and set 

Theorem 7.2.1 The invariants u(<I>; a) have the following properties: 

1. u(<I>; a) is well-defined and u(<I>; a) f. 0, 00. 

2. u(<I>; a) E HK, and y!u(<I>; a) E Kab. 

3. The explicit reciprocity law is given by the following rule: If C is any ideal of 

K and e = Nif>. (C), then 

u(<I>' a)(C,HK/K) = u(<I>; ae). 
, u(<I>;~ 

4. If..\ E K X
, then u(<I>;..\ . a) = Nif>(..\)10 . u(<I>, a). 
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5. The invariant u(<P; a, b) = u(<P; ab)ju(<P; a)u(<P; b) depends only on the classes 

of a and b. Its norm from HK to K is 1. 

6. The invariants behave as follows under a change of CM-type: u(<I>O",O"-la) = 

u(<I>, a) for any 0" E Gal(KjQ). The Galois group acts transitively on the four 

CM-types of K. 

7. Assume (hK, 10) = 1. Then the u(<I>; a) generate HK. In particular, if hK > 1 

they are non-trivial. 

8. Assume hK is prime and different from 5 and 2. Then the group generated by 

the u( <P; a, b) in H~ has rank hK - 1. 

The invariants we are interested in are the u( <1>; a, b). 

Theorern 7.2.2 The following properties are equivalent: 

1. The u(<I>; a, b) are units, for aU a, b. 

2. For every a, (u(<I>; a)) is Gal(HKjK)-invariant. 

3. For every a, (u(<I>; a)) = N4J(a)lO. 

4. If a is integral, u( <1>; a, b) is integral. 

7.3 Sorne further results 

Since the publication of [14], others properties of these invariants have been 

discovered. We list them here. 

1. A prime p of H K over P appears in the denominator of a class invariant if and 

only if there is a smooth genus 2 curve C, defined over an extension H of H K, 

such that J ac( C) has CM by OK and there is a prime l.l3 of H over p su ch that 

C is isomorphic modulo l.l3 to two supersingular elliptic curves E, E' intersecting 

transversely at their origins. See [14J and [23J. 

Note that in [76], the author gives examples of such curves having CM by OK. 

2. A prime p as above has the property that p is either ramified or decomposes as 

P1P2 in K, see [14J. 
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In aIl examples of class number two and four we have studied, we verified this 

last fact and it was always true. For example, take the field Q( J -41 + 4V41) 

(B.2.X.). Using MAGMA, we computed, for each invariant u(<I>j a, b), the 

number field L = Q(u(<I>j a, b)). If x is a root of the minimal polynomial of 

u(<I>j a, b), then we computed the factorization of the ideal x· OL. We saw that 

the primes appearing below were 2, 5, 23, 31, 59 and 359. They aIl factorize 

into Pl . P2 in K except 2 which factorizes as pi . p~. 

3. Let us write K = Q( Vd)( v'r), where r is a totally negative algebraic integer 

of Q( Vd), d a square-free integer. A prime j:l as above has the property that 

p < 16 . ~ . Tr(r)2. This is the main result of [23]. 

Here again, in aIl examples of class number two or four we have studied, we 

computed also this bound. AlI primes which appear are smaller than this bound. 

In the example ab ove , the bound is 180848704. 

4. In fact, if p is unramified in K and P is as above, then if the denominator of 

u( <l>j a, b) has valuation n at j:l then n ~ ! + 6 . log(d;~~~r)/2). The proof of this 

fact is not yet written in detail and so some caution has to be exercised. For 

instance, the exact constants may change, though qualitatively this is the result 

one gets. The reference for this is [21]. 

5. Let K be a quartic primitive CM-field. We say that a rational prime is "evil" 

(for K) if for some prime P of Q, there is a principally polarized abelian variety 

with complex multiplication by OK whose reduction modulo Pis the product 

of two supersingular elliptic curves with the product polarization. The result 

is: Let p be a rational prime and let L be a real quadratic field of strict class 

number one. There is a constant N = N(L,p) such that p is evil for every 

primitive CM-field K such that F = L, p = Pl . j:l2 in K and N(~KIL) > N. 

See [24]. 
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7.4 Analysis of the numerical results 

We list here some observations we made concerning our numerical results. 

• First of aIl, we find only two global units among aIl the examples we computed, 

namely B.1.II. and the last one in B.2.I.. This shows that in general one 

should not expect the DeShalit-Goren invariants to be units and so the focus 

should be on studying their factorization, going further than the results of 

Goren and Lauter. 

• We never reach the theoretical bound for the size of the primes appearing in the 

ideal generated by an invariant u(a, b). Recall from Section 7.3, point 3, that 

if K is written as Q( Vd)( y'r), where r is a totally negative algebraic integer of 

Q( Vd), da square-free integer, then the primes appearing in the decomposition 

of u(a, b) are above rational primes p bounded by 16· J2 . Tr(r)2. However, in 

general, the size of the primes seems to be much smaller. For example, in 

B.2.II., the largest prime decomposing in K as Pl . P2 is 5345323 while the 

largest prime appearing in the decomposition of the elements u(a, b) is 47. 

• Moreover, it seems that only few primes appear. For example, in B.2.IV. the 

bound is 50176. There are exactly 5152 primes below this bound and two of 

them are ramified, namely 2 and 7. Among the 5150 unramified primes, 2597 

decompose as p, 1252 as Pl . P2 and 1301 as Pl . P2 . P3 . P4 in the CM-field K. 

Thus there are 1301 primes that could appear, but only three of them actually 

occur, namely 17, 31, and 47. 

• Among the class number two examples, only unramified primes appear. 

• On the other hand, among the class number four examples, there are six of 

them where a ramified prime appear. 

1. B.2.II. There are two ramified primes: 2· OK = p~ . p~ and 17· OK = p4 • 

Only 2 appears. 
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2. B.2.IV. There are two ramified primes: 2· OK = p4 and 7· OK = p~ . p~. 

Only 7 appears. 

3. B.2.VI. There are two ramified primes: 2· OK = p~ . p~ and 17· OK = p4. 

Only 2 appears. 

4. B.2.IX. There are two ramified primes: 5· OK = p~. p~ and 29· OK = p4. 

Only 5 appears. 

5. B.2.X. There are two ramified primes: 2· OK = p~ . p~ and 41 . OK = p4. 

Only 2 appears. 

6. B.2.XI. There are two ramified primes: 3· OK = p~. p~ and 73· OK = p4. 

Only 3 appears. 

Henee, we notice that every ramified prime that appear is of the form p~ . p~ in 

K . 

• Recall that Theorem 7.2.1 guarantees that the span of the class invariants is 

"big" provided the class number is prime to 10. From example B.2.V., we see 

that the condition of the class number is neeessary. Indeed, the field spanned 

by the invariants is Q( J5), while the Hilbert class field has degree 4 over K. 

• We note also that for aH class number four examples, all prime ideals appearing 

in their factorization are raised at a power either two or four. 
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8.1 Aigorithm 

CHAPTER 8 
Computation 

An computations have been done with the software MAGMA V2.11-13. The 

computer on which we ran the computations was a Intel(R) Pentium(R) 4 CPU 

2.53GHz with 512MB of RAM. The approximate running time varies from one ex-

ample to another. For instance, example B.1.!. takes about 41 seconds for a precision 

of about 300 digits. On the other hand, example B.2.XIII. takes about 10515 sec

onds for a precision of about 1800 digits. 

We present here the algorithm that we haved used for computing the class in-

variants. 

1. Take a CM-field K Galois over Q with Galois group Z/4Z. 

In the article [49], the authors determine an non-quadratic imaginary cyclic 

number fields of 2-power degree with relative class number sm aller or equal 

to 20. Thus it gives us aIl the cyclic quartic CM-fields with small class number 

(smaller or equal to 20). For instance, there are exactly eight ofthem with class 

number two. They are listed in the following table: 

Q( J -5 + V5) Q( J -6 + 3V2) 

Q( J -65 + 26V5) Q( J -65 + 10V13) 

Q( J -10 + 5V2) Q( J -85 + 34V5) 

Q( J -13 + 3V13) Q( J -119 + 28v17) 
" 

Table 8-1: Cyclic quartic CM-fields with class number 2 
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2. Among the cyclic quartic CM-fields provided by [49). we choose the ones such 

that hF = 1 (F is the totally real subfield associated to K) and also such that the 

fundamental unit of F has norm -l. 

It foHows that ht = 1. Indeed, let a be any fractional ideal of F. Since 

hF = 1, the ideal a = a . OK for sorne a E KX. Then, multiplying a by -1 

or ±1], we can get a positive generator, and therefore ht = 1. Here are sorne 

examples of sorne real quadratic number fields with class number one and with 

a fundamental unit of norm -1: K = Q( v'd), where d = 2,5,13,17,29,41,73 

(we will use these ones). 

3. Fix a CM-type of K. 

ln our case, suppose' C = Gal(K/Q) {1, CT, T, OT}, where CT is a generator 

of C, and T is the complex conjugation. There are four CM-types which are 

given abstractly by 

<Pl = {1,CT}, <P2 = {1, CTT}, <P4 = {uT, T}. 

Note also that by property 6 of Theorem 7.2.1, it suffices to compute aH the 

invariants u(<p; a, b) (by aH, we mean u(<p; a, b), where [a] and [b] run over aH 

ideal classes of Cl(K)) for only one CM-type. 

4. Find a good generator 8 for the different V K / Q. 

First, we find a generator of V K / Q and we check whether or not it is pure 

imaginary. In aH examples we have studied, it is always the case. Then, we 

multiply it by ±1], where 1] is the fundamental unit of F, in order to have 

lm <p(8) > 0 for aH <p E <P. 

5. Find a representative for each ideal class in K. 

6. For each such representative a, we find a generator a E F of a· li such that a » O. 

We multiply a generator by ±1, ±1], where 1] is the fundamental unit of F, in 

order to get a totally positive generator. 
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7. We compute the Riemann form which gives a principal polarization on ([:2/<I>(a). 

It is given by Eao(<I>(u) , <I>(v)) = TrK/Q(a- 18- l uv). 

8. For each a, we find a symplectic basis (el, e2, El, E2) for a with respect to the 

alternating form Eao. 

Here, we proceeded as follows. We find a Z-basis (Œl, Œ2, Œ3, Œ4) of a. Let 

A = (Eao(Œi' Œj)) and let [nl n2 n3 n4]t denotes the coordinate of any vector 

x = nI ŒI + n2Œ2 + n3Œ3 + n4Œ4 E a. First, we take >'1 = [l 0 0 o]t and we 

find >'2 = [0 x y z]t such that >'~A>'l = -1. For this, we used the command 

Solution provided by MAGMA. Then, we set M = [A.À~ A.À~] E M4x2 (Z). 

Then the command Solution gives a basis of the nullspace of M. We denote 

this basis by >'3 and >'4. We necessarily have Eao(>'3, >'4) = ±1. Thus, if 

Eao(>'3' >'4) = 1, then we take el = >'2, e2 = >'4, êl = >'1, and ê2 = >'3. If 

Eao(>'3' >'4) = -1, we take instead el = >'2, e2 = >'3, êl = >'1, and ê2 = >'4. We 

get in that way a symplectic basis. 

9. Find the period matrix (Wl, W2). 

Recall from Chapter 6 that W = ('Pl (et) 'Pl(e2)) and that w = ('Pl(et) 'Pl(e2)). 
, l 'P2(el) 'P2(e2) 2 'P2(et) 'P2(e2) 

10. Find the corresponding point 7 = w2"1 • Wl E ~2. 

11. For the tèn even characteristics, compute e [:](0,7) to a high precision. 

Say we wou Id like to compute this theta series up to the precision lO-m for 

sorne integer m. Note that we have 

and thus, we want to find a constant C such that 

L exp (-rri(n + r)t7(n + r) + 27ri(n + r)ts) ~ 1O-m. 
nEZ2 

(n+r)tIm(r)(n+r»C 
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This is done in [80]. We just state the result here. We should take C such that 

C > m + 0.35 - 21og10(min T), 

where min T = minnEZ2 nt . Im( T) . n. Moreover, if C ~ 75, then we can take 

1 . 
C> '2(m + 0.35 - 2 log 10 (mm T)). 

Next, we have ta compute aIl n E 'Z} such that 

(n + r)tlm(T)(n + r) ~ C. 

Here again, we used an algorithm presented in [80]. 

12. Compute ~(cp(a), Ea8) for each representative a. 

We see that the bigger is the imaginary part the faster will be the convergence 

of the theta series. We used here a trick suggested by Van Wamelen in [76]. 

In order to increase the imaginary part, we apply a generator of Sp2(Z) to 

T = w2' lwl in arder to bring it back in the fundamental domain. Thus, if we 

have T' = M· T for sorne M E SL2(Z) then 

where M = (é 15) E SP2(Z), since (}~v is a Siegel modular form of weight 10. 

Van Wamelen implemented a function in MAGMA in order to do this. The 

name of this function is To2DUpperHalfSpaceFundamentalDomian. 

13. Compute u(cp; a) for ail representatives a. 

14. Compute u(<I>; a, b), where a and brun over ail representatives of Cl(K). 

15. Choose any one of the class invariants, say u( <1>; a, b). 

16. Compute the reflex type. 

With the same notation as in step 3, we have then: 

<I>~ = {l,O'T}, <1>; = {l, O'}, <1>; = {O'T, T}, <1>: = {O', T}. 
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17. Compute the action of the Galois group Ga1(HK / K) on u(<p; a, b). 

By Property 3 of Theorem 7.2.1, we know the action of Gal(HK / K) on u('I>j a). 

Let C be an ideal of Cl(K), and let c = N<f;>.(C). The action of (C,HK/K) 

on u( <Pj a, b) is thus given by 

u(a, b)CC,HK/K) = u a 
( 

( b) ) CC,HK/K) 

u(a)u(b) 
u(ab)CC,HK/K) 

u( a)CC,HK/K)u(b )CC,HK/K) 

u(abc)u(c) 
u(ac)u(bc) . 

18. Compute its minimal polynomial over K. Cali this minimal polynomial f(X). 

It is given by 

f(X) = II (X - u('I>; a, b)CC,HK/K)) , 
c 

where C runs through a complete set of representatives of Cl(K). 

19. Find 9 = f(X) . f(X). 

The coefficients of g(X) are now in K n lR = F. 

20. Try to recognize the coefficients of g(X) as algebraic numbers in F. 

Here, we used the command PowerRelation provided by MAGMA. We in

creased the precision until the polynomial obtained by PowerRelation for a 

coefficient of g(X) has roots in F. 

21. Once this is done, let (J be the non-trivial automorphism of F. Compute h(X) = 

The polynomial h(X) has coefficients in Q and h( u( '1>; a, b)) = O. 

22. Factorize h(X) and find the minimal polynomial of u('I>j a, b) over Q. 

The minimal polynomial of u('I>; a, b) is a factor of h(X). 

23. Repeat steps 15 to 22 for ail class invariants u( <P; c, il). 

See figure 8-1 to see the programming tree. 

106 



(periodmatrices ) 

(thetaeven ) 

[ periodmatrices 

(nOTID_partiel ) 

min 

Figure 8-1: Programming tree 

8.2 Description of the program 

We give here a description of the functions in the program . 

• precision(precision) 

Input: Precision. 

Output: No output. 

Effect: Change the precision of the default real field. This will have an 

effect on the precision of the period matrices . 

• multiplication(field,ideall,idea12) 
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- Input: Number field, ideal, ideal. 

- Output: The multiplication of these two ideals. 

• cm_type(field) 

- Input: Number field. 

- Output: A list of four elements. The first one is the list of the four 

embeddings. The second one is the list of the four CM-types. The third 

one is the list of the four embeddings, but abstractly. The last one is the 

list of the 4 CM-types, but abstractly. 

• reflex(field,automorphismsabstractly,cmtypeabstractly) 

_ Input: Field, set of automorphisms, CM-type (the abstract one here). 

- Output: The reflex type of cmtypeabstractly abstractly. 

• idealrep(field) 

- Input: Number field. 

- Output: A list of representatives for the ideal c1ass group. 

• parimag(matrix) 

- Input: A two by two complex matrix. 

- Output: The imaginary part of that matrix. 

• nouvellematrice(A) 

- Input: A two by two real matrix. 

- Output: New matrix as in [80]. 

• couples(RealSymmetricMatrix,epsilon,constant) 

- Input: A real symmetric matrix, a vector in 'li}, a constant. 

- Output: The list of couple n = (nI, n2) E 7l} such that (n + epsilon)t . 

RealSymmetricMatrix· (n + epsilon) :::; constant. 

• periodmatrices(CM-field,Real subfield,cmtype,ideal) 

- Input: A CM-field, its real subfield, a CM-type, an ideal. 

- Output: A list of 3 matrices. In order: Wb W2, W;-lWl' 
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• min(realsymmetricmatrix) 

- Input: A real symmetric matrix. 

- Output: The first successive minima of W21
Wl' 

• constante(prec,Realsymmetricmatrix) 

- Input: An integer, a real symmetric matrix. 

- Output: The constant we need in the function couples in order to have 

precision pree for the theta series. 

• theta(delta,epsilon,omega,preeision) 

- Input: The two characteristics delta and epsilon, the period matrix, pre

cision. 

- Output: The value of 0 [~] (0, omega). 

• thetaeven(omega,preeision) 

- Input: Period matrix, precision. 

- Output: The value of Oev(O, omega). 

• delta_O_K(emfield,real subfield,emtype,O_K,precision) 

- Input: CM-field, real subfield, CM-types, the representative 1 of OK, 

precision. 

Output: The value of ~(emtype(OK )), i.e. the denominator of the invari

ants u(<I>; a). 

• invariant(K,F,emtype,ideal,denominator,preeision) 

- Input: Clear (denominator is the value given by delta_O_K). 

- Output: The value of u(emtype; ideal). 

• all_value(K,F,emtype,rep,denom,preeision) 

- Input: CM-field, real subfield, CM-type, representatives of the ideal class 

group, ~(cmtype(OK)), precision. 

- Output: A list containing the set of values u( emtype; a) where a runs 

through the representatives of the class group. 
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• u_phi(K,F,cmtype,ideall,idea12,denom,precision) 

- Input: Clear. 

- Output: The value of u(cmtype; ideal1, idea12). 

• poLconj(f) 

- Input: A polynomial with complex coefficients ao + alx + ... anxn. 

- Output: The polynomial with complex conjugates coefficients ao + alX + 

... + anxn
. 

• vaIeur(K,rep,ideal) 

- Input: CM-field, representatives, ideal. 

- Output: Find the ide al rep [1] for which ide al is equivalent to rep [1] . 

If ideal(rep [Ir l
) = a . OK then it returns two values, namely a and l. 

• norm_partiel(alpha,cmtype) 

- Input: Number alpha, CM-type. 

- Output: The partial norm of alpha. 

• polynomial_a_b_l(K,F,cmtype,ideall,ideaI2,denom,precision, ... 

automorphisme,cmtypeaut,rep,toutevaleur) 

- Input: CM-field, real quadratic field, ideall, ideal2, L\(OK), precision, 

abstract automorphisms, abstractcmtype, representatives, values of 

u(cmtype; a) given by the function aH_value. 

- Output: That function computes f(x) = I1c(x - u(a, b)(C,HK/K)), where 

C runs over a complete set of representatives of CI(K). Then f(x) has 

coefficients in K. It computes then f ·7 = 9 which has now coefficients 

in F. Then 1 use PowerRelation provide by MAGMA to recognize each 

coefficient as the root of a polynomial of degree 2 with coefficients in 

C. There are three outputs: Coefficients of f . 1 E IR, a list where each 

component is a list of three integers defining a polynomial of degree 2 for 

the corresponding coefficient of f ·1, value of u(ideal1, ideal2) in C. 
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• all_polynomial_a_b_1(K,F,cmtype,precision,automorphisme, ... 

cmtypeaut,rep) 

- Input: Clear. 

- Output: 5 things: List of the values of the u(a, b), ~(OK), a list where 

each component is the first output of the function polynomiaLa_b_1, a 

list where each component is the second output of the function 

polynomial_a_b_1, a list where each component is the third output of 

the function polynomial_a_b_1. 

• pol_over_Q(F,coef,pol,quad) 

- Input: Real quadratic field, output (2) of polynomiaLa_b_l, output (3) 

of polynomial_a_b_l, d, where F = Q( v'd,). 

- Output: 3 things: If f is the polynomial given by polynomiaLa_b_l 

with coefficients if F, then it ouputs the polynomial with coefficients in 

Q: f· r, where (j is the quadratic conjugation in F, the coefficients of f 

in F, the coefficients of r in F. 

8.3 How to run the program 

Put the program in a text file under a name (for example invariant). In the 

same folder, run magma, and type load "invariant". Then you can use every 

function. Here is an example of a computation for the field Q( J -5 + V5). 

[vallieres~scribe computation]$ magma 

Magma V2.11-13 Wed Oct 5 2005 19:55:03 [Seed 2492706851] 

Type? for help. Type <Ctrl>-D to quit. 

> load "invariant" j 

Loading "invariant" 

> F := QuadraticField(5)j 

> G<y> := PolynomialRing(F)j 

> L<l> := ext<Fly-2 - (-5 + F.l»; 
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> K<k> := AbsoluteField(L); 

> precision_def(500); 

> al,a2,a3,a4 := cm_type(K); 

> b := idealrep(K); 

> u,delta,coef,coefseq,valeur := 

all_polynomial_a_b_l(K,F,a2[1],300,a3,a4[1],b); 

1 

o 

> polQ := pol_over_Q(F,coef[l] ,coefseq[l] ,5); 

> Factorization(polQ); 

[ 

<x - 1/14641, 8> 

] 

112 



CHAPTER 9 
Conclusion 

The motivation of this thesis was to see whether or not the DeShalit-Goren 

class invariants are global units. Thanks to the numerical results presented in 

this thesis, we know now that they are not. On the other hand, we have today much 

information on the primes appearing in these class invariants. For example, a bound 

is known for these primes even though our numerical results suggest that it might be 

a litt le big. Another observation that is worth to point out is that apparently only 

few primes are an obstruction for these class invariants to be global units. At this 

point, we do not reaUy understand this phenomena. 

While working on this thesis, we asked ourselves several questions related with 

these class invariants. 

First of aU, it would be great to implement a program computing these invariants 

also in the non-Galois case. 

Then it would be nice to find a link with Stark's conjectures. For this, a good 

understanding of Rubin's paper [56] is probably indispensable. It seems also that for 

a complete solution ofthese conjectures in the case where the base field is a CM-field 

of degre four, one would have to construct units in arbitrary ray class fields of the 

reflex field, not only in the Hilbert class field. In the pro of of Stark's conjectures for 

the case where the base field is quadratic imaginary, the Kronecker's limit formulas 

were important. Konno found a limit formula for CM-fields in the paper [38]. The 

next step would be to connect this limit formula to the class invariants of this thesis. 

Another possibility would be to try to generalize this construction to CM-fields 

of degree six and compare with the case treated in this master thesis. 
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Finally, the Shimura reciprocity law gives us the explicit action of the Galois 

group Gal(K j K) on these invariants. It would be nice to generalize the Shimura 

reciprocity law to the group Gal(K jQ). If this action were known, then it wou Id 

have been possible to compute directly the minimal polynomial of the invariants 

u(<p; n, b) over Q instead of the minimal polynomial over K. 
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APPENDIX A 
Program 

precision_def ;= procedure(P) 
AssertAttribute(FldPr, "Precision" ,P); 

end procedure; 

corpsl ;= function(d,a,b) 
F<f> .= QuadraticField(d); 
G<y> ;= PolynomialRing(F); 
L<l> ;= ext<Fly-2 - (a + b*f»; 
K<k> ;= AbsoluteField(L); 

return K,F; 
end function; 

multiplication ;= function(K,idea11,idea12) 
return ideall*idea12; 

end function; 

cm_type ;~ function(K) 
C<i> ;= ComplexField(); 
coef ;= Coefficients(DefiningPolynomial(K»; 
rac ;= (Sqrt«-coef(3]+Sqrt(coef(3]-2 - 4 * coef(1]»/2),-Sqrt«-coef(3]+ 

... Sqrt(coef(3]-2 - 4 * coef(1]»/2),Sqrt«-coef(3]-Sqrt(coef(3]-2 - 4 * ... 
... coef(1]»/2),-Sqrt«-coef(3]-Sqrt(coef(3]-2 - 4 * coef(1]»/2)]; 

phi_1 ;= hom<K -> C 1 rac(l]>; 
phi_2 ;- hom<K -> C 1 rac(2]>; 
phi_3 ;= hom<K -> C 1 rac(3]>; 
phi_4 ;= hom<K -> C 1 rac(4]>; 

f ;= Automorphisms(K); 
for l ;= 1 to 4 do 

end for; 

if f(l](K.l) eq -K.1 then 
indiceconj ;= 1; 

end if; 

for l ;= 1 to 4 do 

end for; 

if f(1](K.1) eq K.1 then 
indiceid ;- 1; 

end if; 

aut_1 ;= f(indiceid]; 
aut_2 ;= f(indiceconj]; 
indicerestant := (]; 
j := 1; 
for l := 1 to 4 do 

if l ne indiceconj and l ne indiceid then 
indicerestant(j] ;= 1; 
j ;= j + 1; 

end if; 
end for; 
Cpre<i> ;= Comp1exFie1d(10); 
phi3_k := Cpre!phi_3(K.1); 
phi4_k ;= Cpre!phi_4(K.1); 
if Imaginary(Cprelphi_1(f(indicerestant(1]] (K.1»)*i eq phi3_k then 

aut_3 ;= f(indicerestant[l]]; 
aut_4 ;= f(indicerestant[2]]; 

end if; 
if Imaginary(Cpre!phi_1(f (indicerestant (1]] (K.1»)*i eq phi4_k then 

aut_4 ;- f[indicerestant[l]]; 
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aut_3 'Z f[indicerestant[2]]; 
end if; 

return [phi_l.phi_2.phi_3.phi_4].[[phi_l.phi_3].[phi_l.phi_4].[phi_2.phi_3].[phi_2.phi_4]] •... 
... [aut_l.aut_2.aut_3.aut_4].[[aut_l.aut_3].[aut_l.aut_4].[aut_2.aut_3].[aut_2.aut_4]]; 

end function; 

reflex := function(K.automorphismes.cmtype) 
bidon := []; 
for 1:= 1 to 4 do 

if (cmtype[l]-(-l»(K.l) eq automorphismes [1] (K.l) then 
bidon[l] := automorphismes[l]; 

end if; 
end for; 
for 1:=1 to 4 do 

if (cmtype[2]-(-1»(K.l) eq automorphismes [1] (K.l) then 
bidon [2] := automorphismes[l]; 

end if; 
end for; 

return bidon; 
end function; 

idealrep := function(K) 
Cl. homo := ClassGroup(K); 
representative :z []; 
l := 1; 
for x in Cl do 

representative[l] := homo(x); 
l := l + 1; 

end for; 
return representative; 
end function; 

parimag := function(A) 
return Matrix(RealField().2.2.[Imaginary(A[i.j]):i.j in [1 .. 2]]); 

end function; 

nouvellematrice := function(A) 
R :. RealField(); 
Q := Matrix(R.2.2.[A[1.1].A[1.2]/A[1.1].O.A[2.2] - «A[1.2]-2)/A[1.1])]); 
return Q; 

end functionj 

couples := function(B.epsilon.constante) 
A :. nouvellematrice(B); 
R := RealField(); 
liste := []; 
T := []; 
U :- []; 
x :- []; 
05:= []; 
l := 1 ; 
i := 2; 
T[2] :- R!constante; 
U[2] := R!O; 
"hile i le 2 do 

boal_value :- 1; 
Z := Sqrt(T[i]/A[i.i]); 
OS[i] := Floor(Z - Uri] - epsilon[i]); 
xCi] :- Ceiling(-Z - Uri] - epsilon[i]) - 1; 
"hile bool_value eq 1 and i le 2 do 

x[i] :- xCi] + 1; 
if xCi] le OS[i] then 

if i eq 1 then 
liste [1] := X' 

l :- l + 1; 
else 

i 0= i - 1; 
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U[i] :. A[1,2]*(x[2] + epsilon[2]); 
T[i] :. constante - A[i+1,i+1]*(x[i+l] + epsilon[i+l] + U[i+l]); 
bool_value := 0; 

end if; 
else 

i :s i + 1; 
end if; 

end while; 
end while; 

return liste; 
end function; 

periodmatrices := function(K,F,cmtype,ideal) 
C<i> := ComplexField(); 
n :- FundamentaIUnit(F); 

/* Now 1 choose a good generator for the different */ 

o := HaximaIOrder(K); 
D := Different(O); 
bool,deltaprime := IsPrincipal(D); 
nl := elt<Kln>; 
if Imaginary(cmtype[l] (deltaprime»*Imaginary(cmtype [2] (delta prime» gt 0 then 

if Imaginary(cmtype[1](deltaprime» gt 0 then 

else 

delta := deltaprime; 
else 

delta :- -deltaprime; 
end if; 

if Imaginary(cmtype[l](deltaprime» gt 0 then 
if Real (cmtype [1] (n1» gt 0 then 

else 

delta := n1*deltaprime; 
else 

delta := -n1*deltaprime; 
end if; 

if Real (cmtype [1] (n1» gt 0 then 
delta := -n1*deltaprime; 

else 
delta := n1*deltaprime; 

end if; 
end if; 

end if; 

/. Find the complex conjugation. It's the one such that f(k) 

G :- Automorphisms(K); 
for l := 1 to 4 do 

if G[l] (K.l) eq -K.1 then 
conj := G[l]; 

end if; 
end for; 

/* Since [K: Q] 

/* Find representatives of A * conj(A) */ 

bool, aprime := IsPrincipal(ideal*conj(ideal»; 

if bool eq false then 

4 */ 

-k */ 

return "a*conj(a) is not principal. Check if the class number of the real field is 1"; 
end if; 

/* Now we want to find a representative which is totally positive */ 

if Real (cmtype [1] (aprime»*Real(cmtype[2] (aprime» gt 0 then 
if Real (cmtype [1] (aprime» gt 0 then 

a :- aprime; 
else 
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else 

a := -aprime; 
end if; 

if Real (cmtype (1] (aprime» gt ° then 
if Real (cmtype (1] (nl» gt ° then 

a :- n1*aprime; 

else 

else 
a := -nl*aprime; 

end if; 

if Real (cmtype (1] (nl» gt ° then 
a := -nl*aprime; 

else 
a := nl*aprime; 

end if; 
end if; 

end if; 

/* Now, we want to define the Riemann form */ 

K2 := CartesianProduct(K,K); 
riemannform := map<K2 -> C 1 x :-> Trace((a*delta)"(-1)*conj(x(l])*x(2]»; 

/* Now 1 want to find the symplectic basis */ 

baseprime := BasisMatrix(ideal); 
alpha := (]; 

alpha (1] := RowSequence(baseprime)(l]; 
alpha (2] := RowSequence(baseprime)(2]; 
alpha (3] := RowSequence(baseprime)(3]; 
alpha (4] := RowSequence(baseprime)(4]; 
E := Matrix(IntegerRing(),4,4,(riemannform(O!alpha(i],O!alpha(j]):i,j in (1 .. 4]]); 

etal := Matrix(IntegerRing(),1,4,(l,O,O,O]); 

V :- Vector(l,(-l]); 
tampon := Matrix(IntegerRing(),1,3,((E*Transpose(eta1»(j,1]:j in (2 .. 4]]); 
e1prime := Solution(Transpose(tampon) ,V); 

el := Matrix(IntegerRing(),1,4,(O,elprime(l],elprime(2],e1prime(3]]); 

A := HorizontalJoin(E*Transpose(eta1),E*Transpose(e1»; 
B :- Vector(2,(O,O]); 
_,noyau := Solution(A,B); 
e2prime := Matrix(IntegerRing(),1,4,(Basis(noyau)(l](j]:j in (1 .. 4]]); 
eta2prime := Matrix(IntegerRing(),1,4,(Basis(noyau)(2] (j]:j in (1 .. 4]]); 
passage := Transposa(Matrix(IntegerRing(),4,4,alpha»; 
coeff_max_order_e2 := passage * Transpose(e2prime); 
coeff_max_order_eta2 := passage * Transpose(eta2prime); 
e2primesuite := (coeff_max_order_e2(j,1]:j in (1 .. 4]]; 
eta2primasuite :- (coeff_max_order_eta2(j,1]:j in (1 .. 4]]; 

if riemannform(O!e2primesuite,O!eta2primesuite) eq -1 then 
e2 := e2prime; 
eta2 := eta2prime; 

eise 
e2 := eta2prime; 
eta2 .= e2prime; 

end if; 

nouvellebase := (passage*Transpose(el) ,passage*Transpose(e2) ,passage*Trans pose(etal), ... 
... passage*Transpose(eta2)]; 

symplecticbasis := ((nouvellebase(l] (m,l]:m in (1 .. 4]]:1 in (1 .. 4]]; 

1* Find the period matrix */ 

omega1 := Matrix(C,2,2,(cmtypa(i] (O!symplecticbasis(j]):i,j in (1 .. 2]]); 
omega2 := Matrix(C,2,2,(cmtype(i](O!symplecticbasis(j+2]):i,j in (1 .. 2]]); 
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bigomega :. HorizontalJoin(omegal.omega2); 
omega2_inv_omegal :- omega2-(-1) * omegal; 

return [omegal.omega2.omega2_inv_omegal].symplecticbasis; 
end function; 

min := function(A) 
R := ReaIField(); 
a:=[1.0]; 
b := [0.1]; 
aval := Matrix(R.2.1.a); 
bval := Matrix(R.2.1.b); 
el :. Transpose(aval)*A*aval; 
e2 := Transpose(bval)*A*bval; 
liste :. [e1[1.1]. e2[1.1]] ; 
bon, mauvais := Maximum(liste); 
bidon :- bon; 
l :- 1; 
listel:= couples(A.[O.O].bon); 
vhile l le #listel do 

changetype :- Matrix(R,2,l,listel(1]); 
formematricielle := Transpose(changetype)*A*changetype; 
if formematricielle[l,l] le bidon and listel(l] ne [0,0] then 

bidon :. formematricielle[l.l]; 
end if; 

l := l + 1; 
end vhile; 

return bidon; 
end function; 

constante := function(s,A) 
C := s + 0.35 - 2 * Log(10,min(A»; 
if C ge 75 then 

C := 1/2*( s + 0.35 - 2 * Log(10,min(A»); 
end if; 

return C; 
end functioD; 

theta := function(del,ep,Omega.precision) 
C<i> := ComplexField(); 

sommation := couples (parimag(Omega) ,deI ,constante (precision,parimag(Omega »); 
dell :- Matrix(C,2,l,del); 
epl := Matrix(C.2.1.ep); 

bidon :- 0; 
l := 1; 
vhile l le #sommation do 

mat := Matrix(C,2,l,sommation[I]); 
partiel := Transpose(mat + dell)*Omega*(mat + dell); 
partiel2 :- Transpose(mat + dell)*epl; 
bidonl := Exp(Pi(C)*i*(partiel[l.l] + 2*partie12[1.1]»; 
bidon := bidon + bidonl; 
l :- l + 1: 

end vhile: 

return bidonj 
end function: 

thetaeven := function(Omega.precision) 
duol := [0.0]; 
duo2 := [0,1/2]: 
duo3 := [1/2,0]: 
du04 ·C [1/2,1/2]; 
thetabidon := [[duo1.duo1].[duo1,duo3].[duo1.duo2],[duo1,duo4].[duo3.duo1].[duo3,duo2] •... 

... [duo2.duol].[duo2,duo3].[duo4.duo1].[duo4.duo4]]: 

l := 1: 
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bidon :'" 1; 
vhile l le 10 do 

bidonl := theta(thetabidon[l] [l],thetabidon[l] [2],Omega,precision ); 
bidon := bidon * bidonl; 
1:-1+1; 

end vhile; 
return bidon; 
end function; 

/* To be faster ve first compute Delta(O_K) and ve give it to the function vhen ve calI it */ 

delta_O_K :- function(K,F,cmtype,prin,precision) 
B := periodmatrices(K,F,cmtype,prin); 
l,m := HasAttribute(FldPr,"Precision"); 
heu := ChangeRing(B[3],ComplexField(m»; 
heu,heul :- To2DUpperHalfSpaceFundamentalDomian(heu): 
C :- Matrix(ComplexField().2.2.[heul[3.1].heul[3.2].heul[4.1].heul[4.2]]): 
D := Matrix(ComplexField().2.2.[heul[3.3].heul[3.4].heul[4.3].heul[4.4]]); 
heu := ChangeRing(heu.ComplexField(»; 
facteur := Determinant(C*B[3] + D)-(-10): 

return facteur.Determinant(B[2])-(-10).(thetaeven(heu.precision)-2); 
end function; 

invariant := function(K.F.cmtype.ideal,denom,precision) 
A := periodmatrices(K.F.cmtype.ideal); 
l.m :- HasAttribute(FldPr."Precision"); 
hip := ChangeRing(A[3].ComplexField(m»; 
hip,hipl:- To2DUpperHalfSpaceFundamentalDomian(hip): 
C := Matrix(ComplexField().2.2.[hipl[3.1].hipl[3.2].hipl[4.1].hipl[4.2]]); 
D := Matrix(ComplexField().2.2.[hipl[3.3].hipl[3.4].hipl[4.3].hipl[4.4]]); 
hip := ChangeRing(hip.ComplexField(»; 
facteur :- Determinant(C.A[3] + D)-(-10); 
numer :- facteur.Determinant(A[2])-(-10).(thetaeven(hip.precision)-2): 

return numer/denom; 
end function; 

alI_value := function(K.F.cmtype.rep.denom.precision) 
C<i> := ComplexField(); 
h := ClassNumber(K); 
liste := []: 

for 1:= 1 to h do 
print h-l; 

liste[l] := invariant(K,F,cmtype,rep[l].denom.precision); 
end for; 
return liste; 

end function: 

u_phi := function(K.F.cmtype.ideall,idea12,denom.precision) 
if ideall ne idea12 then 

produit := multiplication(K.ideall.idea12); 
bidon := (invariant(K.F.cmtype.produit.denom.precision)/ ... 
... (invariant(K.F.cmtype.ideall.denom. precision) •... 

... invariant(K.F.cmtype.idea12.denom.precision»); 
else 

produit := multiplication(K.ideall.idea12); 
bidon := (invariant(K.F,cmtype,produit.denom.precision)/ ... 
... (invariant(K.F.cmtype.ideall.denom.precision»-2); 

end if; 
return bidon; 
end function: 

/. Here is a procedure to compute the polynomial over the real field ./ 

pol_conj := function(f) 
C<i> := ComplexField(): 
Q<x> :- PolynomialRing(C): 
deg := Degree(f); 

120 



coef :- Coefficients(f): 
g := 0: 
for 1:= 1 to deg + 1 do 

g := g + ComplexConjugate(coef[l).x-(l-l): 
end for: 

return gi 
end function: 

valeur :& function(K.rep.ideal) 
h := ClassNumber(K): 
bool := false: 
1 := li 
while bool eq false do 

bool.a :- IsPrincipal(ideal.(rep[l)-(-l»): 
1 :- 1+1: 

end while; 
return Kla.l-1: 
end function: 

norm_partiel := function(alpha.cmtype) 
return (cmtype[l) (alpha) • cmtype[2)(alpha»; 

end function; 

polynomial_a_b_1 := function(K.F.cmtype.ideal1.idea12.denom.precision.automorphisme •... 
... cmtypeaut.rep.toutevaleur) 

bool.prec :- HasAttribute(F1dPr."Precision"): 
C<i> := ComplexField(); 
Q<x> := PolynomialRing(C): 
ref := reflex(K.automorphisme.cmtypeaut): 
h := ClassNumber(K): 
hip := [): 

for 1 := 1 to h do 
c := multiplication(K.ref[l) (rep[l» .ref(2) (rep[l)): 
ab := multiplication(K.idea11.idea12): 
abc := multiplication(K.ab.c): 
ac := multiplication(K.ideal1.c): 
bc :- multiplication(K.idea12.c); 

val_c.num_c := valeur(K.rep.c): 
val_abc.num_abc :- valeur(K.rep.abc); 
val_ac.num_ac := valeur(K.rep.ac); 
va1_bc.num_bc := valeur(K.rep.bc): 
hip[ll :- «norm_partiel(val_abc-(-1).cmtype)-10)*toutevaleur[num_abcl •... 

... (norm_partlel(val_c-(-1).cmtype)-10).toutevaleur[num_cl)1 ... 
... «norm_partiel(val_ac-(-1).cmtype)-10) •... 

... toutevaleur[num_ac) (norm_partie1(val_bc-(-1).cmtype)-10) .touteva1eur[num_bcl): 
end for: 
g := 1: 
for 1:=1 to h do 

g := g.(x-hip[l): 
end for; 
f :- pol_conj(g): 

liste := Coefficients(f.g): 
bidonpol :- [l: 
precision_def(precision): 

for 1:=1 to 2.h do 
bidonpo1[1) := QIPowerRelation(liste[1).2); 

end for: 
bidonpolcoef :- [l: 

for 1:=1 to 2.h do 
bidonpolcoef[l) := Coefficients(bidonpol[l): 

end fori 
precision_def(prec): 
nombre := hip[l]: 

return Coefficients(f.g).bidonpolcoef.nombre: 
end function; 
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all_polynomial_a_b_l := function(K.F.cmtype.precision.automorphisme.cmtypeaut.rep) 
bool.prec := HasAttribute(FldPr."Precision"); 
C<i> :- ComplexField(); 
Q<x> :z PolynomialRing(C); 
ref :- reflex(K.automorphisme.cmtypeaut); 
h := ClassNumber(K); 
denom 'Z delta_O_K(K.F.cmtype.rep[l].precision); 
liste :- all_value(K.F.cmtype.rep.denom.precision); 

h := ClassNumber(K); 
listel: = []; 
liste2 : = [); 
liste3 : - [); 
y := 1; 
for 1:=2 to h do 

z := 1; 
while z le h do 

listel[y).liste2[y].liste3[y] := polynomial_a_b_l(K.F.cmtype.rep[l].rep[z).denom •... 
... precision.automorphisme.cmtypeaut.rep.liste); 

y := y + 1; 
z :- z + 1; 

end while; 
end for; 

return liste.denom.listel.liste2.liste3; 
end function; 

signe := function(F.ele.nombre.quad) 
d := Sqrt(quad); 
elesuite :- ElementToSequence(ele); 
hip := elesuite[l) + d*elesuite[2); 
hipl := elesuite[l] - d*elesuite(2]; 
P :- 50; 
R := RealField(P); 
nombreprime := RIReal(nombre); 
hipprime := Rlhip; 
hiplprime :- Rlhipl; 
if hipprime eq nombreprime then 

return ele; 
else 

if hiplprime eq nombreprime then 
return (elesuite(l) - elesuite[2)*F.l); 

ell5e 
return "achtung,achtung!!" j 

end if; 
end if; 

end function; 

pol_over_Q := function(F.coef.pol.quad) 
G<y> :- PolynomialRing(F); 
longueur := #pol; 
Q<x> := PolynomialRing(RationalField(»; 
for 1 := 1 to longueur do 

if IsIrreducible(Qlpol[l) ne true then 
return "achtung pol_over_Q_l! Some polynomial are not irreducible!!"._._; 

end if; 
end for; 
alpha := [); 

for 1 := 1 to longueur do 
field := NumberField(Qlpol[l]); 
if #pol[l] ne 2 then 
bool.appli := IsIsomorphic(field.F); 

if bool eq true then 
alpha [1) :- signe(F.appli(field.l).coef[l).quad); 

else 

else 
return "Achtung in function pol_over_Q_2. Increase the precisionl"._._; 

end if; 
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alpha [1] : = FI [-pol[l] [1] Ipol[l] [2] ,0] ; 
end if; 

end for; 
alpha[longueur + 1] := 1; 
beta : = []; 

for 1:=1 to longueur do 
if #pol[l] ne 2 then 

beta[l] := FI [ElementToSequence(alpha[l]) [1] ,-ElementToSequence(a lpha[l]) [2]]; 
else 

beta[l] := alpha[l]; 
end if; 

end for; 
beta[longueur+l] := 1; 
reponse := QI (G 1 alpha * Glbeta); 

return reponse,alpha,beta: 
end function; 
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APPENDIX B 
Results 

B.l Quartic cyclic CM-fields with class number 2 

There are exactly eight quartic cyclic CM-fields with class number two. We 

computed the class invariants for all of them. 

1. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u( <P; a-I, a-1 ) : 

Minimal pol. over Q : 

Factorization: 

II. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u( <P; a-1 , a-1) : 

Minimal pol. over Q : 

Factorization in Q( V2): 

III. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u(<p;a-I,a-1 ) : 

Minimal pol. over Q : 
Factorization: 

* 
K = Q( J -5 + J5) 
x4 + lOx2 + 20 
40000 
[1 1 2 1 3] ,x, 2x , 2x 

• OK 
• a = ([[2,0,0,0], [0,1,0,0]]) 
0.000068301345536 ... 
t - 14~41 
14641-1 = 11-4 

K ~ Q( J -6 + 3V2) 
x 4 + 12x2 + 18 
9216 
[1 1 2 1 3] 

,x'"3x '"3 x 
• OK 
• ([2,0,0,0], [0, 1,0,0]) 
0.000866551777220 ... 
t2 - 1154 . t + 1 

unit 

K = Q( J -65 + 26\1"5) 
x 4 + 130x2 + 845 
6760000 
[1, !(x + 1), i2(x2 + 39), 164 (x3 + x 2 + 39x + 39)] 
• UK 
• ([5,0,0,0], [-1,2,0,0]) 
0.000000005610331.. . 

t - 2609!:~:~4481 
14641 . (2609649624481) -1 = 114 . 31-4 .41-4 
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IV. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cI>; a-\ a-1) : 

Minimal pol. over Q : 

Factorization: 

V. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cI>; a-l, a-1) : 

Minimal pol. over Q : 

Factorization: 

VI. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cI>; a-l, a-1) : 
Minimal pol. over Q : 

Factorization: 

VII. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cI>;a-1,a-1) : 
Minimal pol. over Q : 

Factorization: 

VIII. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cI>;a-l,a-1) : 
Minimal pol. over Q : 

Factorization in Q( Jf'7): 

K = Q( J -65 + 10V13) 
x4 + 130x2 + 2925 
45697600 
[1, ~(x + 1), fo(x2 + 15), 1~0(X3 + 3x2 + 55x + 45)] 
• UK 
• ([5,0,0,0], [1,3,0,0]) 
0.000000126734986 ... 
t - 7896481 

7890481-1 = 53-4 

K = Q(J-lO + 5V2) 
x4 + 20x2 + 50 
25600 
[1 1 2 1 3] ,X,gX ,gX 

• OK 
• ([2,0, 0, 0], [0, 1,0, 0]) 
0.000011973036721... 
t - 83;21 

83521- 1 = 17-4 

K = Q( J -85 + 34V5) 
x 4 + 170x2 + 1445 
11560000 
[1, ~(x + 1), fs-(x2 + 51), 1~6 (x3 + x2 + 51x + 51)] 
• UK 
• ([5,0,0,0],[-1,2,0,0]) 
4.436167004826079 ... 
t 25411681 

- 572829674183924641 

25411681.572829674183924641- 1 =714 .11-4 .41-4 .61-4 

K = Q( J -13 + 3V13) 
x4 + 26x2 + 52 
1827904 
[l,x, k(x2 + 4), k(x3 + 4x)] 
• OK 
• ([2,0,0,0], [0,1,0,0]) 
0.000000003395586 ... 
t - 2944~9921 
294499921-1 = 131-4 

K = Q( J -119 + 28Jf'7) 
x4 + 238x2 + 833 
261921856 
[1, 1(X + 1), is(x2 + 35), 1~2(X3 + X2 + 35x + 35)J 
• UK 
• ([7,0,0,0],[1,5,0,0]) 
1.215349828304578 ... 
t2 _ 7393066413557053988740684097 . t + 1 

898516199636091136 

p.8 p'-8 p4 p-4 p4 p-4 
2,1' 2,2' 43,1' 43,2' 179,1' 179,2 
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B.2 Quartic cyclic CM-fields with class number 4 

There are exactly 13 quartic cyclic CM-fields with the properties we want. We 

computed the class invariants for aIl of them. For each of these class invariants u, 

we computed the factorization of u· OL where L = Q(u). The symbol Pp,n denotes a 

prime of L lying ab ove the rational prime p. 

* 
1. Field: K = Q( v' -15 + 6v'5) 

Defining polynomial: x 4 + 30x2 + 45 
Bound: 360000 
Integral basis: [1, x, f2 (x2 + 9), 112 (x

3 + 9x)] 
Rep. for CI(K): • OK 

• (1 = ([3,0,0,0], [0,1,0,0]) 
• b = ([2,0,0,0], [1, 1,0,0]) 
• c = ([6,0,0,0], [30,34,33,1]) 

u(<I>; (1-1, (1-1) : 0.000000098473203 ... 
Minimal pol. over Q : t2 

- 1~~~~~~7 . t + 923~21 
Factorization: P31\ 

u(<I>;(1-1,b-1) : 0.001040582726326 ... 
Minimal pol. over Q : t - 9!1 

Factorization: p,-4 p,-4 
31,1· 31,2 

u(<I>;(1-l,c-1) : 0.000094632748485 ... 
Minimal pol. over Q : t2 - 1O~:r7 • t + 1 
Factorization: p,-2 p,2 

31,1· 31,2 

u(<I>; b-1 , b-1 ) : 0.000000048054000 ... 

Minimal pol. over Q : t2 
- 2~~~~~i2 . t + 923

1
521 

Factorization: p314
2 

u(<I>;b-1,c-1) : 0.000046179894477 ... 
Minimal pol. over Q : t2 - 208

9
°;1922 . t + 1 

Factorization: p,2 p,-2 
31,1' 31,2 

u(<I>;c1,C-1) : 0.000000004370130 ... 
Minimal pol. over Q : t2 - 228826127 . t + 1 
Factorization: unit 
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II. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u(~;a-l,a-1) : 

Minimal pol. over Q : 
Factorization: 

u(~; a-l, b-1) : 

Minimal pol. over Q : 
Factorization: 

u(~;a-1,c-1) : 

Minimal pol. over Q : 
Factorization: 

u(~;b-l,b-1) : 
Minimal pol. over Q : 
Factorization: 

U(~;b-1,C-1) : 

Minimal pol. over Q : 
Factorization: 

U(~;C-1,C-1) : 

Minimal pol. over Q : 
Factorization: 

K = Q(V-17 +4vTI) 
x4 + 34x2 + 17 
5345344 

[1, x, k(x2 - 3), k(x3 + x 2 - 3x - 3)] 

• OK 
• a = ([2, 0, 0, 0], [1, 1, 1, 0]) 

• b = ([2, 0, 0, 0], [0,1,1, 0]) 
• C = ([2, 0, 0, 0], [3,3,2,2]) 

0.000066349314922 ... 
t 4 _ 18023839694417 t3 + 205985001591681 x2 _ 148798913105 X + 1 

9759362 78074896 9759362 
p,2 p,-2 p-4 p4 

2,1' 2,2' 47,1' 47,2 

II.069576293863622 ... 
t 2 _ 98609t + 1 

8836 
p,-2 p,2 p-2 p2 

2,1' 2,2' 47,1' 47,2 

0.702860141688946 ... 
t 4 _ 148798913105 t3 + 205985001591681 t 2 _ 18023839694417 t + 1 

9759362 78074896 9759362 
p,2 p,-2,-,4 p-4 

2,1' 2,2' '47,1' 47,2 

0.063494764662182 ... 
t4 _ 368579716t3 + 12873474384774t2 _ 368579716t + 1 

2209 4879681 2209 

P 2 p-2 p2 p-2 
47,1' 47,2' 47,3' 47,4 
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III. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(<l>;a-1,a-1) : 
Minimal pol. over IQ : 
Factorization: 

u(<l>ja-1,b-1) : 

Minimal pol. over IQ : 
Factorization: 

u(<l>; a-1, ,-1) : 
Minimal pol. over IQ : 
Factorization: 

u(<l>;b-1,b-1) : 

Minimal pol. over IQ : 
Factorization: 

u(<l>; b-1, ,-1) : 
Minimal pol. over IQ : 
Factorization: 

U(<l>;,-1,,-1) : 

Minimal pol. over IQ : 
Factorization: 

K = IQ( J -105 + 42J5) 
x 4 + 210x2 + 2205 
17640000 

[1, ~(x + 1), i4(x2 + 63), 1!8 (x3 + x 2 + 63x + 63)] 

• OK 
• a = ([3,0,0,0], [1, 1,0,0]) 
• b = ([5,0,0,0], [-1,2,0,0]) 
• C = ([15,0,0,0], [220, 1, 224, 224]) 

1.857285586735647 ... 

t
2 

- 5:~:i~~~g:~~~~~1 t + 5498l21;04761041 

P794
• Pio~ 

0.000001377164651... 
t2 _ 53842015850642 t + 1 

74149321 
p, -2 p,2 p-2 p2 

79,1' 79,2' 109,1' 109,2 

0.000000013486300 ... 

t - 7414~321 
74149321- 1 = 79-2 . 109-2 

5.954938537669610 ... 
t 2 - 245863~~~~~229282 t + 1 

P 4 p-4 
11,1' 11,2 

0.000000432405706 ... 
t 2 _ 2510651901956609522 t + 1 

1085620208761 
P -4 p4 p,2 p,-2 p-2 p2 

11,1' 11,2' 79,1' 79,2' 109,1' 109,2 
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IV. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u(<!>;a- 1 ,a- 1 ) : 

Minimal pol. over Q : 

Factorization: 

u(<!>;a- 1 ,b- 1 ) : 

Minimal pol. over Q : 
Factorization: 

u(<!>;a-I,c 1 ) : 

Minimal pol. over Q : 
Factorization: 

u(<!>; b-I, b- 1) : 

Minimal pol. over Q : 
Factorization: 

u(<!>;b-1,,-1) : 
Minimal pol. over Q : 
Factorization: 

u(<!>; ,-1, ,-1) : 

Minimal pol. over Q : 

Factorization: 

K=Q(J-14+7V2) 
x4 + 28x2 + 98 
50176 
[1 1 2 1 3] ,x, '7x ''7x 

• OK 
• a = ([7,0,0,0], [2, 1, 6, 0]) 
• b = ([2,0,0,0], [0, 1,0,0]) 
• ,= ([14,0,0,0], [24, 1, 2, 194]) 

0.000000000927464 ... 
t 4 10925265690538649217383771716 t3 + 

18442932323956519729 
1028404704063672221077851309923450541173479878t2 

4072529695597996115767741417439521 

19885138346;2~13~0:283~55:56{94.t21904452 t + 1 
p,2 p,-2 p-4 p4 p,-4 p-4 p,4 p4 p-4 p4 p-4 p4 

7,1' 7,2' 17,3' 17,4' 31,1' 31,2' 31,3' 31,4' 47,1' 47,2' 47,3' 47,4 

0.000466063228750 ... 
t 4 _ 56516t3 + 211254318726t2 _ 56516t + 1 

17 83521 17 

P -2 p2 p-2 p2 
17,1' 17,2' 17,3' 17,4 

0.000001989996339 ... 
t 2 - 32068589042920171231394 t + 1 

63816374823378961 
p,-2 p,2 p2 p-2 p-4 p,4 p-4 p4 

7,1' 7,2' 17,1' 17,2' 31,1' 31,2' 47,1' 47,2 

0.000000395358280 ... 
t 4 _ 211254151684 t 3 + 500574365574t2 _ 211254151684 t + 1 

83521 83521 83521 
P 4 p-4 

17,2' 17,3 

0.000848293228291... 
t 4 _ 56516t3 + 211254318726t2 _ 56516t + 1 

17 83521 17 
P -2 p2 p2 p-2 

17,1' 17,2' 17,3' 17,4 

0.000000001688100 ... 
t 4 19885336741405849536945104452 t3 + 

18442932323956519729 
1028404704063672221077851309923450541173479878t2 

4072529695597996115767741417439521 
10925265690538649217383771716 t + 1 

18442932323956519729 
p,2 p,-2 p4 p-4 p4 p4 p-4 p-4 p4 p4 p-4 p-4 

7,1' 7,2' 17,1' 17,2' 31,1' 31,2' 31,3' 31,4' 47,1' 47,2' 47,3' 47,4 
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V. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cI>;a-I,a-1) : 
Minimal pol. over IQ : 
Factorization: 

u(cI>; a-l, b-1 ) : 

Minimal pol. over IQ : 
Factorization: 

u(cI>; a-I, ,-1) : 
Minimal pol. over IQ : 
Factorization: 

u(cI>; b-I, b- 1) : 

Minimal pol. over IQ : 
Factorization: 

u(cI>;b-1,,-1) : 
Minimal pol. over IQ : 
Factorization: 

u(cI>; ,-1, ,-1) : 
Minimal pol. over IQ : 
Factorization: 

K = IQl(J -15 + 3\1"5) 
x4 + 30x2 + 180 
360000 
[1 1 2 1 3] ,x, lix , lix 

• OK 
• a = ([3,0,0,0], [0, 1,0,0]) 
• b = ([2,0,0,0], [0, 1, 0, 0]) 
• ,= ([6,0,0,0], [12, 1, 24, 35]) 

0.000000143371621... 

t - 697!881 

P -2 p-2 p-2 p-2 
19,1' 19,2' 139,1' 139,2 

0.000000017078358 ... 
t2 - 377170261290387352127 t + 1 

6441449076001 
P -2 p2 p4 p-4 p-2 p2 

19,1' 19,2' 31,1' 31,2' 139,1' 139,2 

5.741619808076916 ... 

t
2 - :A52~:;li:t4~W1~~1 t + 486489i4964161 

P4 p-4 p-4 p-4 
l1,1' l1,2' 19,2' 139,2 

0.000004004711490 ... 
t2 _ 25499772694177442 t + 1 

102119232721 
P 4 p-4 p2 p-2 p2 p-2 

l1,1' l1,2' 19,1' 19,2' 139,1' 139,2 

6.839389999673570 ... 
t2 - 197697030899617385838047 t + 1 

13521270961 
P4 p-4 p4 p-4 

l1,1' l1,2' 31,1' 31,2 
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VI. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(<T>; a-l, a-1) : 
Minimal pol. over Q : 

Factorization: 

u(<T>; a-1, b- 1) : 

Minimal pol. over Q : 
Factorization: 

u(<T>;a-1,c-1) : 
Minimal pol. over Q : 

Factorization: 

u(<T>;b- 1 ,b-1 ) : 

Minimal pol. over Q : 

Factorization: 

u(<T>;b- 1,c- 1) : 

Minimal pol. over Q : 

Factorization: 

u(<T>;c-1,c1) : 
Minimal pol. over Q : 

Factorization: 

K = Q(V-17 + JI7) 
x 4 + 34x2 + 272 
5345344 
[l,x, ~X2, i(x3 - 2x)] 

• OK 
• a = ([2,0,0,0], [1, l, 1,0]) 
• b = ([2,0,0,0], [0,0,1,1]) 
• c = ([2,0,0,0], [0,2,0,1]) 

0.000000069824614 ... 
t4 258498290272310006082837702793313t3 

3583949899882919778744002 
21792184045580079707504734790667393t2 

28671599199063358229952016 
51328076662060002344898304359521 t + 1 

3583949899882919778744002 
p.- 2 p'2 p4 p-4 p-4 p4 p'4 p'-4 

2,1' 2,2' 47,1' 47,2' 103,1' 103,2' 239,1' 239,2 

2.244151203918937 ... 
t2 _ 14402520990641 t + 1 

5354586744004 
p.2 p'-2 p2 p-2 p-2 p2 p'-2 p'2 

2,1' 2,2' 47,1' 47,2' 103,1' 103,2' 239,1' 239,2 

0.000000031114041... 
t 4 _ 43023907708338058948 t3 + 1362011497052116601118972231305286 t2 

1338646686001 1791974949941459889372001 
43023907708338058948 t + 1 

1338646686001 

+ 

P -2 p2 p-2 p2 p-2 p2 p-2 p2 p-2 p'2 
47,1' 47,2' 47,3' 47,4' 103,1' 103,2' 103,3' 103,4' 239,1' 239,2' 

p. -2 p2 
239,3' 239,4 

0.095066059419262 ... 
t
4 513238~:369646i~96908080;i1~4.,Bi88i4~~305:521 t 3 

21792184045580079707504734790667393t2 
28671599199063358229952016 

258498290272310006082837702793313 t + 1 
3583949899882919778744002 

p.- 2 p'2 p-4 p4 p4 p-4 p'-4 p'4 
2,1' 2,2' 47,1' 47,2' 103,1' 103,2' 239,1' 239,2 

0.042361699716690 ... 

+ 

t4 _ 43023907708338058948t3 + 1362011497052116601118972231305286t2 _ 
1338646686001 1791974949941459889372001 

430213:30::406863;68000518948 t + 1 

P -2 p-2 p2 p2 p2 p2 p-2 p-2 p,-2 p,2 
47,1' 47,2' 47,3' 47,4' 103,1' 103,2' 103,3' 103,4' 239,1' 239,2' 

P23~,3 . Pi39,4 

0.000000001318043 ... 
t4 13620l7~~9937~9~19696;1~152938~95327~5gï161284 t 3 

1851053910472600526938043071195639000134 t2 
1791974949941459889372001 

1362011493468166701236052452561284 t + 1 
1791974949941459889372001 

P 4 p-4 p4 p-4 p,-4 p4 
47,1' 47,2' 103,1' 103,2' 239,1' 239,2 
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VII. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u(~;a-I,a-1) : 

Minimal pol. over Q : 
Factorization: 

u(~; a-I, b- 1 ) : 

Minimal pol. over Q : 
Factorization: 

u(~;a-1,,-1) : 
Minimal pol. over Q : 
Factorization: 

U(~;b-1,b-1) : 
Minimal pol. over Q : 
Factorization: 

u(~; b-1, ,-1) : 
Minimal pol. over Q : 
Factorization: 

u(~; ,-1, ,-1) : 
Minimal pol. over Q : 
Factorization: 

K = Q( J -35 + 14V5) 
x 4 + 70x2 + 245 
1960000 

[l,x, fs(x2 + 21), fs(x3 + 21x)J 

• OK 
• a = ([5,0,0, OJ, [0, 1,0,0]) 
• b = ([2,0,0,0], [1, 1,0,0]) 
• C = ([10,0,0,0], [29,99,3,1]) 

0.000006060327141 ... 

t - 8315800~1281 
p,2 p,2 p-2 p-2 p-2 p-2 

71,1' 71,2' 151,1' 151,2' 191,1' 191,2 

0.000000000246226 ... 
t 2 - 176345927319082601618081634809207 t + 1 

43421023752329711903041 
P4 p-4 p,4 p,-4 p,2 p,-2 p2 p-2 p-2 p2 

11,1' 11,2' 29,1' 29,2' 71,1' 71,2' 151,1' 151,2' 191,1' 191,2 

1.061841908253816 ... 

t
2 

- 23~m~~g~~m~~m~42 t + 69189~~~m~~64961 
p,4 p-4 p-4 

71,1' 151,1' 191,2 

0.000000001752119 ... 
t 2 _ 2393169906223529711042t + 1 

4193120339521 
p,2 p,-2 p-2 p2 p2 p-2 

71,1' 71,2' 151,1' 151,2' 191,1' 191,2 

4.314181558995886 ... 
t 2 _ 609954878225015621009233946970578927 t + 1 

263145608745794401 
P4 p-4 p,4 p,-4 p,4 p,-4 

11,1' 11,2' 29,1' 29,2' 71,1' 71,2 
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VIII. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(<T>; a-l, a-1) : 

Minimal pol. over Q : 
Factorization: 

u(<T>; a-l, b-1 ) : 

Minimal pol. over Q : 

Factorization: 

u(<T>;a-1,c-1) : 

Minimal pol. over Q : 

Factorization: 

u(<T>; b-l, b-1 ) : 

Minimal pol. over Q : 

Factorization: 

u(<T>;b- 1,c-1) : 

Minimal pol. over Q : 
Factorization: 

u(<T>;c-l,c-1) : 
Minimal pol. over Q : 

Factorization: 

K = Q(.J -145 + 58J5) 
x4 + 290x2 + 4205 
33640000 

[1, ~(x + 1), 1~6 (x2 + 87), 2~2 (x3 + x 2 + 87x + 87)] 

• OK 
• a = ([5,0,0,0], [-1,2,0,0]) 
• b = ([19,0,0,0], [14,2,0,0]) 
• c = ([95,0,0,0], [116,2,9023,2]) 

3.114124375091707 ... 
t2 - 61021713470609035149120674697122t + 1 

19002920532868561 
p,4 p,-4 p-4 p4 

59,1' 59,2' 199,1' 199,2 

1.640090008311705 ... 
t4 7104141440632480751377535928004t3 + 

1165042506264695562001 

4358605~5;ii;254~4~~~~~~:~90;8~~05~~~6609~~~~;2i~;5~Oi1~0~38104006t2 
7104141440632480751377535928004 t + 1 

1165042506264695562001 
P 2 p-2 p2 p-2 p-2 p2 p2 p-2 p-2 

109,1' 109,2' 149,1' 149,2' 149,3' 149,4' 179,1' 179,2' 179,3' 

P 2 p2 p2 p-2 p-2 
179,4' 199,1' 199,2' 199,3' 199,4 

0.000001898752116 ... 
t4 7104141440632480751377535928004 t 3 + 

1165042506264695562001 
4358605752117545822445090074402436026245210250310838104006t2 

1357324041403523197831510569555025235124001 
7104141440632480751377535928004t + 1 

1165042506264695562001 
P 2 p-2 p2 p-2 p-2 p2 p2 p-2 p-2 

109,1' 109,2' 149,1' 149,2' 149,3' 149,4' 179,1' 179,2' 179,3' 

P 2 p2 p2 p-2 p-2 
179,4' 199,1' 199,2' 199,3' 199,4 

1.827155559290797 ... 
t4 7104141440632480751377535928004 t 3 + 

1045764584228840304367208753281 
435860575211754582244509007 4402436026245210250310838104006 t2 

1093623565627319227 450382775135003941807412343334186328264961 
134999435250597407730264152883732109361291082244 t + 

16011742624349580809101054210751592712002324118755822032127294001 
361110988778517554345143302210721 

2344279237631 022126260485346996140688964260274227039903723 75 711468641 

Piï~l . Plï~2' P~,l . P~,2' PiO~,l • PiO~,2' Pi4~,1 . Pi4~,2' Pi7~,1 . Pi7~,2' 
Pt99,1 . Pf99,2 

0.000000001114058 ... 
t 137851081 

- 123737784357464761 
137851081.123737784357464761-1 

149-2 . 179-2 

2.115320176587490 ... 

t4 I~~~i~!~~~~~~~:g~8!~~~~~~~~~g~1t3 + 
lO~3:6826305567::Al;159~528il5~4]80i~~ll~~0;o~396401286o2~5122130l3530334\O::3821802~409661 t2 

134999435250597407730264152883732109361291082244 t + 
16011742624349580809101054210751592712002324118755822032127294001 

361110988778517554345143302210721 
2344279237631 022126260485346996140688964260274227039903723 75 711468641 

P1ï~1 . P1ï~' P~,1 . N9,2' PiO~,1 . PiO~,2' P14~,1 . P14~,2' Pi7~,1 . Pi7~,2' 
Pf99,1 • Pf99,2 
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IX. Field: 
Def. pol.: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(<t>;a-I,a- 1) : 

Min. pol. /Q : 

Factorization: 

u(<t>;a-I,b- 1) : 

Min. pol. /Q : 
Factorization: 

u(<t>;a- 1 ,c-1 ) : 

Min. pol. /Q : 

Factorization: 

u(<t>;b-1 ,b- 1) : 

Min. pol. /Q : 

Factorization: 

u(<t>;b- 1,c-1) : 

Min. pol. /Q : 

Factorization: 

u(<t>;cI,c-1 ) : 

Min. pol. /Q : 
Factorization: 

K = Q(J-145 + 1OV29) 
x4 + 290x2 + 18125 

1131649600 

[1, ~(x + 1), fo(x2 + 15), 2~0(X3 + 5x2 + 15x + 75)] 

• OK 
• a = ([5,0,0,0], [1,3,3,0]) 

• b = ([5,0,0,0], [1,0,3,3]) 

• c = ([5,0,0,0], [0,0,8,24]) 

1.465872679682312 •.• 
t4_ 18963107339334195400804 t3 + 3822353294706004747840865962333160447526 t2_ 

3448231591506025 11890301108660174062927611300625 
368775443316577932615403161735011910244 t + 
83184843813714294248593141849455015625 

378185593412741934969271018840321 
581963246941840545420513835207333525687890625 
0-4 0-4 04 04 0-4 0-4 p-4 p-4 04 04 
'5,1 . '5,2 . '7,1 . '7,2 . '23,1 • '23,2· 149,1· 149,2· '241,1 . '241,2 

0.000897847040873 ... 

t - 151::1~i54180125 
139452481.155318751025-1 = 74.2412.5-2.23-4.149-2 

1.632653016549247 ... 

t 4 _ 789801~38898:57:28:111204 t 3 + 66305031~~~~~~~~~~igg~~~~~5602726 t 2 

7898003889768511204t + 1 
1289456281 

P2 p2 p-2 p-2 02 0-2 0-2 02 
149,1· 149,2· 149,3· 149,4· '241,1 . '241,2 . '241,3 . '241,4 

0.000000013790347 ... 
t4 _ 18963107339334195400804 t3 + 3822353294706004747840865962333160447526 t2_ 

3448231591506025 11890301108660174062927611300625 
368775443316577932615403161735011910244 t + 
83184843813714294248593141849455015625 

378185593412741934969271018840321 
581963246941840545420513835207333525687890625 
0-4 0-4 p,4 p,4 0-4 p,-4 p-4 p-4 04 p,4 
'5,1 • '5,2· 7,1· 7,2· '23,1· 23,2· 149,1· 149,2· '241,1· 241,2 

0.000015359350223 ... 

t 4 _ 7898010i889S:5~28:111204 t 3 + 663050345485647249200946565602726 t 2 
1662697500610350961 

7898003889768511204t + 1 
1289456281 

P2 p2 p-2 p-2 p,2 p,-2 p,-2 p,2 
149,1· 149,2· 149,3· 149,4· 241,1· 241,2· 241,3· 241,4 

2.507648947509065 ... 

t2 - 1345245140613050068886402 t + 1 
3373402561 

Pi4t1 . Pt41,2 

134 



X. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(<I>;a- 1,a-1) : 

Minimal pol. over Q : 

Factorization: 

u(<I>;a-1,b-1) : 

Minimal pol. over Q : 
Factorization: 

u(<I>;a- 1,c-1) : 

Minimal pol. over Q : 

Factorization: 

u(<I>;b-1 ,b- 1) : 

Minimal pol. over Q : 

Factorization: 

u(<I>;b-I,c-1): 

Minimal pol. over Q : 

Factorization: 

u(<I>;c-I,c-1) : 

Minimal pol. over Q : 

Factorization: 

K = Q( J -41 + 4v'4f) 
x 4 + 82x2 + 1025 
180848704 

[1, X, k(x2 + 5), ;fo(x3 + 37x)] 

• OK 
• a = ([2,0,0,0], [1,1,1,0]) 
• b = ([2,0,0,0], [0, 1, 1,0]) 
• c = ([2,0,0,0], [3,3,2,2]) 

0.006234747377822 ... 
t 4 14015693453321549225256920721151184559817877153 t3 + 

6502104922530782459798213310 1250 
540456903831567086620576966793555940357612908132306576It2 

3939417630309126233892146891689479006250000 
11343651412011596540401604850109854293153 t + 1 

65021049225307824597982133101250 
p,-2 p,2 p,4 p,-4 p,-4 p,4 p,4 p,-4 p,-4 p,4 p,4 

2,1' 2,2' 5,1' 5,2' 23,1' 23,2' 31,1' 31,2' 59,1' 59,2' 59,3' 

p,-4 p,4 p,-4 
59,4' 359,1' 359,2 

1159283.725388456395615 ... 
t2 - 2300942421977382355150271681 t + 1 

1984796621900875322500 

P2~'t·Pi,2·P5~t·p~,2·P23~1·Pi3,2·Pt1,1·P3ï~2·P59\ ,P~9,2,P35L .Pt59,2 

0.000000005378103 ... 
t 4 _ 12182577593513317252 t3 + 120120063251018746330303055603718 t2 _ 

65519105089 4292753131663425697921 
12182577593513317252 t + 1 

65519105089 
p,-2 p,-2 p,2 p,2 p,-2 p,2 p,2 p,-2 p,-2 p,2 

23,1' 23,2' 23,3' 23,4' 31,1' 31,2' 31,3' 31,4' 359,1' 359,2' 

p,-2 p,2 
359,3' 359,4 

174453353.410440115446805 ... 
t 4 11343651412011596540401604850109854293153 t3 + 

65021049225307824597982133101250 
5404569038315670866205769667935559403576129081323065761 t2 

3939417630309126233892146891689479006250000 
14015693453321549225256920721151184559817877153 t + 1 

65021049225307824597982133101250 

P,2-1
2 

. pi 2 . P,5\ • P,5-2
4 

• Pia 1 . P 2-3
4
2 . Pi1 1 . P,3ï

4
2 . P,5-9

4
1 • P~9 2 . P59

4
3 • 

l , , , l , , l , , , 

p,4 p,-4 p,4 
59,4' 359,1' 359,2 

150.483742322858662 ... 
t 4 _ 12182577593513317252 t3 + 120120063251018746330303055603718 t2 _ 

65519105089 4292753131663425697921 

121826557;15it~510383917252 t + 1 
p,2 p,-2 p,-2 p,2 p,2 p,-2 p,-2 p,2 p,-2 p,2 

23,1' 23,2' 23,3' 23,4' 31,1' 31,2' 31,3' 31,4' 359,1' 359,2' 

Pl59,3 . P35~,4 

+ 

135 



XI. Field: 
Def. pol.: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u(q,;a-I,a- 1 ) : 

Min. pol. /Q : 

Factorization: 

u(q,; a-I, b- 1 ) : 

Min. pol. /Q : 
Factorization: 

u(q,;a- 1 ,c-1 ) : 

Min. pol. /Q : 

Factorization: 

u(q,; b-I, b- 1 ) : 

Min. pol. /Q : 

Factorization: 

u(q,; b-l, c-1) : 

Min. pol. /Q : 

Factorization: 

U(q,;C- 1,C-1) : 

Min. pol. /Q : 

Factorization: 

K = Q( J -219 + 24J73) 
x4 + 438x2 + 5913 
4089346704 

[1, ~(x + 1), -Js(x2 + 3), 2~8 (x3 + 3x2 + 51x + 153)] 

• OK 
• a = ([3,0,0,0], [0,0,2,1]) 
• b = ([3,0,0,0], [0,0,0,1]) 
• C = ([3,0,0,0], [8,0,8,2]) 

0.002061212756340 ... 
t 4 3306582865449998214347040939328545663817217 t3 + 

4768082070218968246634304144 
257085696176799108972543462392789519802432664601 t2 

2796215505628527723913331176576008 
889546658240533101566293060870992834785 t + 1 

4768082070218968246634304144 
p,4 p,-4 p,-2 p,2 p-4 p4 p,-4 p,4 p,4 p,-4 

2,1' 2,2' 3,1' 3,2' 19,1' 19,2' 251,1' 251,2' 503,1' 503,2 

0.016401918901501... 

t2 
- 4~~~~~~~~~~~~~!~~~1 t + 1 

p,-2 p,2 p,-2 p,2 p4 p,-4 p,2 p,-2 p,2 p,-2 
2,1' 2,2' 3,1' 3,2' 19,1' 19,2' 251,1' 251,2' 503,1' 503,2 

0.125669000604070 ... 
t4 _ 362613323909326899482081 t3 + 373761086042290740022813811191296225 t2 _ 

31879640018 4065245790709068161296 
362613323909326899482081 t + 1 

31879640018 
p,2 p,-2 p,-2 p,2 p,-2 p,2 p,2 p,-2 p,-2 p,2 

2,1' 2,2' 2,3' 2,4' 251,1' 251,2' 251,3' 251,4' 503,1' 503,2' 

p,2 p,-2 
503,3' 503,4 

1.441996848178209 ... 
t4 88954646;:iis025~.J~201185;66ii:~:3048;oO:{i4834785 t 3 + 
257085696176799108972543462392789519802432664601t2 

2796215505628527723913331176576008 
3306582865449998214347040939328545663817217 t + 1 

4768082070218968246634304144 
p,4 p,-4 p,-2 p,2 p,-4 p4 p,-4 p,4 p,4 p,-4 

2,1' 2,2' 3,1' 3,2' 19,1' 19,2' 251,1' 251,2' 503,1' 503,2 

8.791635032692373 ... 
t4 _ 362613323909326899482081 t3 + 373761086042290740022813811191296225 t2_ 

31879640018 4065245790709068161296 

3626133;13:~i;i0608{r82081 t + 1 
p,2 p,-2 p,-2 p,2 p,-2 p,2 p,2 p,-2 p,-2 p,2 

2,1' 2,2' 2,3' 2,4' 251,1' 251,2' 251,3' 251,4' 503,1' 503,2' 

p,2 p,-2 
503,3' 503,4 

1.1 04835988234184 ... 
t4 373761086042282609531232393054973633t3 

4065245790709068161296 
262976845352767093425646015029264262549957046193 t2 

2032622895354534080648 
373761086042282609531232393054973633 t + 1 

4065245790709068161296 
p,-4 p,4 p,4 p,-4 p,4 p,-4 

2,1' 2,2' 251,2' 251,2' 503,1' 503,2 

136 
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XII. Field: 
Def. pol.: 
Bound: 
Integral basis: 
Rep. for Cl(K): 

u(cI>ja-1 ,a-1) : 

Min. pol. /Q : 
Factorization: 

u(cI>ja-I,b- 1) : 

Min. pol. /Q : 

Factorization: 

u(cI>j a-I, ,-1) : 
Min. pol. /Q : 

Factorization: 

u(cI>jb- 1,b- 1) : 

Min. pol. /Q : 

Factorization: 

u(cI>j b-l, ,-1) : 
Min. pol. /Q : 
Factorization: 

u(cI>; c- 1 , c- 1 ) : 

Min. pol. /Q : 

Factorization: 

K = Q( J -221 + 34v'I3) 
x4 + 442x2 + 33813 
132066064 

[1, ~(x + 1), is(x2 + 51), 4~8 (x3 + 3x2 + 187x + 153)] 

• OK 
• a= ([13,0,0,0],[-1,2,0,0]) 
• b = ([17,0,0,0], [5,15,15,0]) 
• c= ([221,0,0,0],[692,0,2,1]) 

7.901417107596603 ... 
t 2 - 2307797132797468266337874614980162444962 t + 1 

18234867745948307281 
P 4 p-4 p,-4 p,4 

101,1' 101,2' 647,1' 647,2 

1.005700406975535 ... 
t 4 922827909931040405330226086788804160932 t3 + 

40704458701931741827228574569 
2096906081093137344810076398308560390012145317709677279632964571908769302134 78 t2 _ 

1656852958217266700854707724494525992640 1 03841459593535 761 
922827909931040405330226086788804160932t + 1 

40704458701931741827228574569 
p-2 p2 p-2 p2 p-2 p2 p2 p-2 p,-2 p,2 

43,1' 43,2' 43,3' 43,4' 101,1' 101,2' 101,3' 101,4' 257,1' 257,2' 
p,-2 p,2 p2 p-2 p2 p-2 p,-2 p,2 p,-2 p,2 

257,3' 257,4' 491,1' 491,2' 491,3' 491,4' 569,1' 569,2' 569,3' 569,4' 

p,2 p,2 p,-2 p,-2 
647,1' 647,2' 647,3' 647,4 

7.856631112797008 ... 
t 4 922827909931040405330226086788804160932 t3 + 

40704458701931741827228574569 
20969060810931373448100763983085603900 1214531 77096772796329645 71908 769302134 78 t2 _ 

1656852958217266700854707724494525992640 1 03841459593535 761 
922827909931040405330226086788804160932t + 1 

40704458701931741827228574569 

P -2 p2 p-2 p2 p-2 p2 p2 p-2 p,-2 p,2 
43,1' 43,2' 43,3' 43,4' 101,1' 101,2' 101,3' 101,4' 257,1' 257,2' 

p,-2 p,2 p2 p-2 p2 p-2 p,-2 p,2 p,-2 p,2 
257,3' 257,4' 491,1' 491,2' 491,3' 491,4' 569,1' 569,2' 569,3' 569,4' 

pl47,1 . pl47,2 . P64~,3 . P64~,4 

825586721804009147481193907465 76698944154355821366788 73 750 114691316326898561 
P -4 p-4 p4 p4 p,-4 p,-4 p-4 p-4 p,-4 p,-4 

43,1' 43,2' 101,1' 101,2' 257,1' 257,2' 491,1' 491,2' 569,1' 569,2' 

Pt47,1 . Pt47,2 

0.000000000447982 ... 

t - 95321~W62334~~O:94241 
4270230409.9532145763409494241- 1 = (101·647)2.(43·257·491·569)-2 

8255867218040091474811939074657669894415435582136678873750114691316326898561 
P -4 p-4 p4 p4 p,-4 p,-4 p-4 p-4 p,-4 p,-4 

43,1' 43,2' 101,1' 101,2' 257,1' 257,2' 491,1' 491,2' 569,1' 569,2' 

Pt47,1 . P~7,2 
137 



XIII. Field: 
Defining polynomial: 
Bound: 
Integral basis: 
Rep. for CI(K): 

u(cp;a-l,a- 1 ) : 

Minimal pol. over Q : 
Factorization: 

u(CP;a-l,b-1 ) : 

Minimal pol. over Q : 
Factorization: 

u(cp;a-1,,-1) : 
Minimal pol. over Q : 
Factorization: 

u(cp; b-l, b- 1 ) : 

Minimal pol. over Q : 

Factorization: 

u(cp; b-1, ,-1) : 
Minimal pol. over Q : 
Factorization: 

u(cp; ,-1, ,-1) : 
Minimal pol. over Q : 

Factorization: 

K = Q( J - 255 + 60J17) 
x4 + 51Ox2 + 3825 
300675600 

[1, ~(x + 1), 1~0 (x2 + 75), 2!0 (x3 + x 2 + 75x + 75)] 

• OK 
• a = ([3,0,0,0], [1, 1,0,0]) 
• b = ([5,0,0,0], [1,3,0,0]) 
• C = ([15,0,0,0], [217, 1, 16, 223]) 

4.107898863385631 ... 
t2 - 1928579186176040753046043381994824514 t + 1 

79224082468417441 
P -4 p4 p,-4 p,4 

19,1' 19,2' 883,1' 883,2 

1.890754071253506 ... 
t 2 - 77112001867007270398807874 t + 1 

14579983147255201 
P -2 p2 p,-2 p,2 p2 p-2 p,2 p,-2 

13,1' 13,2' 67,1' 67,2' 157,1' 157,2' 883,1' 883,2 

2.172624629422181... 
t2 - 8745541949594755427364837030242 t + 1 

1900077983733445049521 
P -2 p2 p-4 p4 p,2 p,-2 p-2 p2 p,-2 p,2 

13,1' 13,2' 19,1' 19,2' 67,1' 67,2' 157,1' 157,2' 883,1' 883,2 

2.657837652996455 ... 
t2 1233792029872116326380925984 t 

16595242354792272935045400001 
155626223800576 

787582338746527577270996742820858321 
p.4 p'4 p-4 p,-4 p,-4 p,-4 p-4 p,4 

2,1' 2,2' 13 . 67 . 83,1' 83,2' 157' 883 

1.405702461999406 ... 
t 12475024 

- 887458358880306889 

+ 

12475024.887458358880306889-1 = 24 .8832 .13-2 .67-2 . 

83-4 .157-2 

3.054063790579308 ... 
t2 139928671193516086837837392483872 t + 

2162708578918883801168051573530321 
155626223800576 

787582338746527577270996742820858321 
p.4 p'4 p-4 p-4 p4 p'-4 p,-4 p,-4 p-4 p,4 

2,1' 2,2' 13 . 19,1' 19,2' 67 • 83,1' 83,2' 157' 883 

138 



B.3 One example of quartic cyclic CM-field with class number 5 
Field: K = Q(V-101 + lOVIOï) 
Def. pol.: x 4 + 202x2 + 101 
Bound: 6659865664 
Integral basis: [1, !(x + 1), fo(x 2 + 11), to(x3 + x2 + 11x + 11») 
Rep. for Cl(K): • OK 

• a = ([5,0,0,0), [2,2,4,3)) 
• b = ([25,0,0,0), [12, 2, 4, 18)) 
• c = ([125,0,0,0), [32,72,119,63)) • ,,= ([625,0,0,0), [77, 467, 384, 33)) 

u(4)ja-l,a- 1 ) : 36032.758844207454189 ... + i· 22689.622629195781996 ... 
Min. pol.: t lO + 

u(4); a- 1 , b- 1 ) : 

Min. pol. : 

u(4);a- 1 ,c1 ) : 0.000077790150867 ... + i . 0.000048984014104 ... 
Min. pol. : 

+ 
.!..2.!,.,!ffiffil~~~!.!.!!.t + 1 

u(4)j a- 1 , ,,-1) : 3.914422541565896 ... 
Min. pol. : 

139 



u(4)j b- l , b- l ) : 

Min. pol. : 

u(4)jb- l ,c- l ) : 

Min. pol. : 

u(4)j b- l , l)-l) : 

Min. pol. : 

U(4)jC l ,C l ) : 

Min. pol. : 

u(4)j Cl, l)-l) : 

Min. pol. : 

-0.000000003933090 ... - i . 0.000000001665795 ... 
t lO 

0.000000008450741... 

0.000077790150867 ... - i . 0.000048984014104 ... 

+ 

+ 
.!.2!..o!ffiffii~~~~t + 1 

-0.000000003933090 ... + i . 0.000000001665795 ... 
t lO + 

140 



tI(ct>i~-l,~-l) : 
Min. pol.: 

141 
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