PROJECT 1

A COMPUTER METHOD FOR OBTAINING
"ACTUAL" ROUTING MILEAGE IN RAILWAY NETWORKS

RUSSELL B. CROFT, CDP, BA

A PROJECT
| IN
* THE DEPARTMENT
oF .
COMPUTER SCIENCE

Presented in Partial Fulfillment of the Requirements for
the degree of Master of Science (Applied)
at McGill University
Montreal, Canada

| April, 1975

INTRODUCTION

CN has developed a highly sophisticated formula designed to indicate the
cost of moving goods from one point on the rail network to another. The
“formula has the form' f(ci ,’ui) where the u's are parameters or output
units which affect the cost in some way e.g. mileage, tonnage, car-days

or yard-switching-minutes; and the c's are unit costs or cdst per output
unit , e.g. cost per mile, cost per ton, cost per car-day or cost per yard-
switching-minute. Regression analysis is used to produce these unit costs.
This technique tends to smooth aber}ations in the actual performance
statfstits recorded at source, and account for them in what is considered

the proper proportions for specific applications.

It is fairly easy to calculate a cost by hand for a given movement of
goods shipped in a specific kind of equibment between any two pairs of
points on the CN_system and to do this with a fair amount of aécuracy.

We are able to do this even though the regression formula analyzes data
summarized differently than its ultimate use. For example, in practice,
it is far easier to collect and analyze the effect of all the.train miles
on our Southern Ontario area than it is to collect and analyze the number
of train-miles from Toronto to Sarnia. Detailed data would be too costly
to obtain and (for a network as large as CN's) almost prohibitive to

handle in a reasonable amount of time.

Recently, a'great number of requests have been made for more and more
detailed costs, so that, even though the hand calculation formala is
easy to use, the volume was getting out of hand. The company began to
embark on wholescale profitability studies for which some sort of detailed - -
cost was needed quickly. In addition, since the cost itseTf is built up

by multiplying some set of unit costs by a set of performance statistics,
managers submitted their requests asking that some of these performance
statistics be totalled as well as the cost. At best this extra information
would gfve only an estimate for parameters like train-miles or loaded car-
miles on a particular section of tréck even though statistics were not
readily or easily available in such detail. These requests presented a
costing clerk with real problems, especially if these requests involved

large geographical areas.

Consequently, a proposal was made that we should investigate some computer
method to do part of the work performed by a clerk. The proposal was to
produce as good a cost as possible. The costs would be compared to the
revenue (information which is easy to obtain) to check the profitability.
An'arbitrary profitability factor was set so that any movement falling
within (say) *15% of break-even would be intensively recosted by hand.

The purely profitable would be discarded for the time being and the purely

~unprofitable traffic would be forwarded to others to take some kind of

remedial action.

A method to produce a satisfactory cost by computer has now been developed.
The method, outiined here, has become so efficient that the natural extension

was made to cost all the traffic that CN handles, and to produce various

summary profitability and performance statistics for management. The

process involved special techniques, not the least of which was to find

some efficient way to analyze some 2,000,000 individual movements for any
given year. There were several prob]ehs in this project, each one of which
could be discussed in separate treatises. This paper describes only one

of these problems: that of producing‘an acceptable mileage for use in

the costing formula. The philosophy behind the method is to actually get
the computer to "think T1ike a human". As will be shown, this involves
trying to simulate train movements the way ourtrain masters actually do

the same job.

" SOME OF THE PROBLEMS

In the analysis of how we were going to produce a cost it was found that

the cost itself could be segregated into four major components:

1) mileage related calculations--that portion of the cost directly

related to the length of haul of the movement of goods (about 20 -
30% of the total)

2) tonnage related calculations--that portion of the cost directly

related to the weight of goods carried (about 20 - 30% of the total)

3) engine switching related calculations--that portion of the cost directly

related to the supply of empty equipment to customers and marshalling

them in yards before (and after) being hauled on trains (about
30 - 40% of the total)
4) other components including how long a railway car is in service,

billing costs etc. (about 5 - 20% of the total).

It was quite evident after just a short analysis that if a good method
could be found to produce an acceptable mileage, the other calculations
could also be simplified. Unfortunately, there are in use three different
kinds of mileage calculations, each one of which has its own purpose. These
are:
1) Optimum Mileage--a theoretical mileage used to come to some "best"
decision on how to handle traffic
2) Road Map Mileage--a practical mileage used to estimate the effect of
a given service. It is usually the most direct mileage
between two points on a well defined road.
3) Actual Mileage--an accounting.mileage used by accountants to properly
apportion cost data to various operations. It is the

road map mileage plus any detours en route.

For costing the optimum mileage is just not applicable. Although an optimum
cost based on optimum mileage may be desirable in some circumstances to
indicate what we should strive for it is not really applicable when trying
to find out what in fact actually did happen. On the other hand, the road

map mileage was used for some time and was quite effective until it was

legend
YARD NAME ' .

MONCTON
NEWCASTLE
CAMPBELLTON
GASPE

RIVIERE DU LOUP
FREDRICTON

ST. LEONARD
EDMUNSTON
JOFFRE

WONOOTD WN ~—

8
OrR, [LC® , V@
J
18 s 3 4
‘////o . ° 3 = 2 \\\\b
JO E® S@ |

F©
FIG. 1

Stylized Routing Map of a portion of
CN Atlantic Region

found that this kind of mileage produced too low a cost. The road map

idea was originally used because that is the way a costing clerk produced
his cost, and it was the original aim to come as close as possible torhié
calculations. In addition, road map mileage was easily inserted into a
computer programme as a table and searched, As will be shown later, this
method was discarded not only because it produced too low a cost, but a]soi
because it presented some. special problems in computer processing. The
actual mileage eventually becamekthe concept used, but it is'by‘no means

easy to produce, computer or no computer.

THE SYSTEM - INTRODUCTORY COMMENTS

<:; - To illustrate what I mean by "actual mileage" let us consider a simplified
map of a portion of CN's Atlantic Region (Fig. 1 opposite). Since this map
will be used as the basis for most of this discussion it is best to under-

stand what it represents.

The DOTS represent yards or points where traffic is delivered and marshalled.
The NUMBERS (uncircled) represent mileage between yards

The LETTERS represent the names of each yard. A legend ié included.
The NUMBERS CIRCLED represent the yard code.

The orientation of the map is essentially correct: top is north and left is
. - west. The computer is asked to follow two fundamental rules: |

1) Trains must travel from yard to yard with no stopping between yards.
. (:: Thus a train moving from M to S may not stop at x. If it did, this

would imply that x itself should be a yard.

2) Trains must travel "westward".. We must.assume that any .route
from M to R.is exactly the same route from R to M but in the reverse

direction.

This last rule can be followed easily by having the yard numbers increase
from east to west. We'wi11 ask the computer to strive to find a route
from a low numbered yard to a higher numbered yard. If this is not the
case, we can reverse the.yard numbers to make it the case. For example

a request for a route from G to M (i.e. from 4 to 1) will be calculated

from M to G (1 to 4) because the two routes are the same.

To develop a mileage we ask the computer to trace a route from yard to
yard; tallying the mileage at the samé time. Thus if we ask the computer
to give a mileage from M to C the computer answers "M to N (8 mi]es), N

to C (5 miles), for a total of 13 miles". But what happens if the computer
is asked to give a mileage from G to R? Is the foute G to R for a ta]]y

of 8 + 4 = 12 miles or is it G to C then to R for a tallyof 8 + 1 + 1 + 4 = 14

miles? The first option we might call the "road miles" defined eaf]ier,
while the second (if it occurs) wi]] be the actual miles described earlier.
In practice, the route from G to R is actually G to C to R.» This kind of
routing happens often on the CN system, so it must be tallied exactly if and
when it happens because it does affect the cost. One can easily see that

the difference in the mileage-related cost using the two different mi]eages

(assuming the cost is directly proportional to mileage) will be about 14%.

THE

SYSTEM - A SIMPLE EXAMPLE

Now

that we have our ideas fixed, let us try to find a method to define

routes for this kind of network. In practice, when a railway car is at

M, the trainmasterasks himself the following questions:

1)
2)

3)

5)

Where is this railway car going?
On which train must I place this railway car to get it from "here" to
"there"?

us suppose that the railway car in question is to move from M to R.

‘train master answers his questions this way:

The railway car is going to R

From M there are three possible train services (arcs on the network):

a) MtoN
b) Mto$S
c) MtoF

Of these M to F is no good because F is a "dead end". Thus my choice is
one of the other two, but which one?
What do my train orders say? (this is a set of operating rules defined
from past experience)
The rules state:
a) if a railway car is at M and is going to any yard whose code is Tess
than or equal to 5, then send it on a train going from 1 (i.e. M) fo
2 (i.e. to N).
b) if a railway car is going to the yard coded 6, then send it on a train

going directly to 6.

©

c) all other railway cars are to be placed on trains going from 1 (i.e. M)

to 7 (i.e. to.S).

Thus the train is sent on to N from where similar train orders tell the local

yard master to route our train hauling the railway car to C and then to R.

"Aha!", cries a sharp observer. "Surely this is not the right'route. Suppose,
rather than taking the route M-N-C-R (total 18 miles) that the train master
sends the train from M to S then to E to R for a total of 16 mi]es?"' As stated
earlier, herein lies the whole tale. It turns out that the service on the

R-E Tline is slow and predominantly serves E from R. Thus to save delays,

and to satisfy the customer's desire tb get traffic dé1ivered quickly, ﬁhe
railway car is sent by a different foute. The computer system that we are
asked to design must take into account all these kinds of problems, so‘that

the mileage. the computer is asked to recreate will be the mileage that the
train hasters actually design. This route will belthe "actual route" which

results in tallying the "actual mileage" we defined earlier.

Theré is another example of this kind of actual service which must be given.

Observe the routest-N-C and F-S-C. The train service states: .

Monday and Friday take F-N-C and return the next day-to F via the same
o route
Wednesday - take F-S-C and return the next day to F via the same

route.

Now ifﬁa.rai]way'car is at S available for routiﬁg on Thursday going to

C, rather than wait until next Tuesday for the train to go in that direction
(FeSQC) the train orders can state that the railway car be picked up on
Thursday, delivered to F (Thursday) then take Friday's train to C. Thus

the route would be S-F-N-C for a total of 6 - 3 - 3 - 6 = 23 miles rather

than the 6 miles from S to C. This situation does not occur often but when

it occurs we would like to be able to handle it easily.

It turns out that the train orders that‘thertrain master uses are quite
explicit and can be translated easily into a computer programme. The whole
~idea will be to obtain a mileage which represents as closely as possib1e the
way railway cars actually move'most of'the time. Let us assume that the
complication of alternate service due to time of week does not occur for our
sample map. We are now in a position/to examine how such a set of operating

rules can be translated into computer jargon.

I have devised a scheme fbr numbering the yards, which, briefly, follows

these rules: ‘ BN

1)_ Identify the main line. It is numbered 1ast.

2) VYards for a continuous set of lines (arcs) must be numbered in.sequence.

3) Only yards are numbered. Intersections like X and Y are called dummy
yards. |

4) The eastern-most yard of a set of lines (arcs) is numbered first.

5)' Numbering continues westerly, stopping at a dead-end or at another east-
wést line, until numbering can proceed no further.

- 6) When there is more than one un-numbered line leading from a yard, or

dummy yard, number them in order by length (number of lines or arcs)

- with the dead-ends.being numbered first.

- 10 -

To number our sample Map 1 procede as follows:

A) M-S-E-J is the main Tline

B) M gets 1 (it is eastern-most)

C) I continue numbering at N (it gets 2) because the other Iine is the
main line.

D) X does not get numbered. I must stbp numbering this line here and
continue to C; it gets 3.

E) I do not number S (it is on another east-west line)

F) I continue at Y; Y is not numbered; G gets 4 (a dead end)

G) I continue to R; it gets 5; E and J are not numbered because they are
on anbther east-west line. ‘

H) I return to M; then to X (not numbered); F gets 63 then S gets 7;

E gets 8; and J gets 9.

We shall see that the routing programme depends on this numbering scheme.

‘:> ' -11 -

THE ROUTING ALGORITHM*

To generalize, we must change our terminology only slightly. Because
"yard" connotes special conditions in the ultimate computer programme,
we actually call the dots in the sample map JUNCTIONS. For our sampTe
map, then, let us make a table of all the possible train runs (network
arcs) using the following rules:
1) the table has four columns: |
| in column T place the "from" or ORIGIN JUNCTION for each arc.
Call it "0J".
in column 2 place the "to" or DESTINATION JUNCTION for each arc.
<:: Call it "DJ".
in column 3 place the highest junction number that can be
‘accessed by going from the Origin Junction to the Destination
Junction. Call it "LJ" for limit junction. For example, in
the previous discussion we found, according to the train orders,
that the highest junction we could reach by going from 1 to 2
was 5; and from 1 to 6 was 6. (We will see later this number
can be manipulated in any way that we please to make the computer
~ programme do what we want it to do!!)
in column 4 place the miles between 0J and DJ. Call it "MI"
2) Arrange the table so that column 1 is in order. This is necessary
because when there is more than one arc leaving a junction, this
_ creates extra entries in the table to represent these arcs. Later,
<:; this rule, too, must be altered.
* Strictly speaking this is an heuristic. At this stage of its development,

~we cannot prove that the procedure is exhaustive. Thus "algorithm" will
be used in a very general way.

W D W oM
1 6 6 7
1 7 9 10
1 2 5 8
2 6 6 9
2 3 9 5
3 4 4 9
3 7 7 6
3 5 9 5
4 5 9 14
5 8 8 5
5 9 9 15
6 7 9 9
7 8 9 1
8 9 9 10

FIG. 2

Routing Table for Fig. 1

TALLY & O

I

ENTER £
oY, DY

et voir ERROR
SCAn
W
FOun) [«

«@ Y, T«Te

YES

Y | YES
Ty« TaceyeMi @ i

No

weri |

¥ Sean wiLL BE
DEFINED LATER

FIG. 3
Routing Algorithm Flow Chart

- 12 -

The result appears in fig 2 opposite. Figure 3 shows a sample algorithm

flow chart that will allow us to use this table to find a mileage. In

words this algorithm states:

1) start the mileage at 0.

2) enter a pair of numbers representing the "from" or Origin Yard (0Y)
and the "to" or Destination Yard (DY).

3) Scan the first column until we find the first 0J number equal to the
Origin Yard. Call this number OJi. (Séan will be defined later)

4) If_ggE_DJj < DY £ LJi then repeat this step with i = i + 1 as long
as OJi . i still equals OY,otherwise stop and process an error routine.

(We should have listed all possible arcs, if we leave one out, this error

routine will tell us so.)

5) If DJ, € DY < LJ; then a) tally the miles MI, and

b) change 0Y to read DJi
6) If the new OY equals DY then stop. The mileage has been tallied; the

algorithm terminates. Otherwise repeat steps 3 through 6.

Using the algorithm, let us try to find the mileage from M to G (i.e. from
yard 1 to yard 4). I will forma summary table and leave the reader to find

his way through it.

STEP

F- N S A < T 4

2w o o

oY

N N NN

w W W W

DY

LT~ .

L N

- 13 -

TALLY TESTS
.
0
0
0 no good
0 ok
8
8 continue
8 ;
8 no good
8 ok
13
13 continue
13
13 ok
22
22 quit

REMARKS

Set tally to zero
0Y = 1; DY = 4 Routing begins

The first link in the table
is found

DY not in DJ - LJ range for line
1; increase i by 1; QY = new 0OJd

DY now in DJ - LJ range for line

2

Change OY to new DJ; tally miles

New OY # DY, so continue
4th line of table is found

DY not in DJ - LJ range for Tine
4; increase i by 1; 0Y = new 0J

DY now in Dj - LJ range for line
5

Change 0Y to new DJ; ta]]y miles
New QY # DY, so continue
7th 1ine in table is found

DY is in DJ - LJ range for line
. .

Change OY to new DJ; tally miles

New OY = DY so quit; the
mileage is 22

10

5*

*3

b*

*3

9*

*4

- b*

*5

10

FIG. 4
Routing Table for FIG.

1

(Revised)

-14 -

Qur sharp-eyed observer finds another fault: try to find a mileage from R to S.
The junction numbers are from 5 to 7 (i.e. from East to West) - a perfectly
reasonable request. But in this case there is no entry in the table that

will allow us to get junction 7 between a DJ and an LJ. Our observer is

quite correct: I left it out to illustrate another point. It will be
remembered that we formulated two basic rules for the computer to strive

to use when finding a route. One of these (ru]e 2) stated that the computer
should route from a Tow numbered junction to a higher if possible. Unfbrtunate]y
this may not be possible all the time. Even in practice; a train must take |
a backward step just to get further ahead.. In the same way we can get the
computer to do the same thing. Notice that there is no logic in the algorifhm
which says that the 1ow-high order musf be followed. Thus we are able to -

insert into the tablea line which reads "5 3 7 5" which would be analogous

to a train order saying: "if a railway car is at 5 destined for yards 6 or 7

(yards greater than 5), then send it on a train going to 3". From yard 3

(i.e. C), the normal low-high (East - West) routing will be resumed.

It is not obvious with this small table, but the order in which arcs from

a specific node are listed is of great importance. To maintain an East -

West (low yard number to high yard number) order the rule (2) for ordering

the table must be altered. We will want the shorter East - West runs to

occur first (these are the "simple movements"). Then the West - East segments,
followed by'the "Tong hau]“ segments. When this guide-line is followed, the

ammended routing table takes the form shown in Fig 4. The amended 1lines

C

- 15 -

are marked for convenience. Note that the old segment from 4 to 5 has ’

been changed to reflect more closely the route actually taken.

As an exercise, 1 ask our astute observer to verify that the route from

R to F (i.e. from 5 to 6) using the new table, is 19 miles; and, the route
from G to R (i.e. from 4 to 5) is 14 miles. Note that although it appears
that the route from R to F is from Nést to East geographically, by the
defihition of the yard numbering scheme we can consider this an east-west
movement, ie., a movement from a Tow numbered functiqn to a high numbered

function.

PROGRAMMING CONSIDERATIONS

It is time to summarize the above scenario. We have produced a mileage
which represents the way a train master would route trains. The algorithm

to do this is simple and easy to programme. But what we have not been able

“to establish is whether the algorithm is efficient. What can we say about

the algorithm if the table has 500 or 5000 lines in it? How can such a table
be searched efficiently? If standard search techniques are used, would not
the search time be prohibitive? Let us analyze these problems before coming

to any conclusions.

Throughout computer science 1iterature it has been shown that one of the best

methods to search an ordered in-core table is to use a BINARY SEARCH technique

in some form. If a BINARY SEARCH method is used to search this table of N

lines there will be K™= Log, N-1 comparisons to find the first occurence

- 16 -

~of an origin yard, plus some "L" sequential tests after that to decide
which one of several equal destination junctions to use. This process

will be repeated for each of "I" iterations for each route desired. If

there are "R" routes for which we need mileages then the totaT timing

in comparisons would be in the order of:

T (comparison)’= R I (1092 N-T ¢ L)

where N Number of table lines (elements)

L Number of sequential searches
I’= Number of iterations for 1 route

R = Number of routes

1000; there

At CN, our table of arcs has (typically) 1000 arcs, i.e. N

are on the average 2 sequential searches i.e. L =2

20

it takes on the average 20 iterations to find a route: I

Using these figures and inserting some sample number of routes gives

for R = 100 1000 10,000 100,000 routes
T = 24K 240K 2.4M 24M comparisons
(K= 1,000 M= 1,000,000))

These figures indicate that if we are not careful, this method may take
some time. However, in practice, we at CN capitalized onthe fact that
there are less than 1000 junctions for the entire rail network map, enabling

us to use 3-digit codes for the junction humbers. The table itself has

TABLE
16 —

2 117

311 2

7176 -~

512 3

613 4 L~

7137

8135

9 [32

10 |4 3 ?

115 8

12 15 3

13 |5 9 /

516 7 /

75 |7 8 /

16 |8 0
FIG. 5

Organization for the Routing Table

1

CLeAR
10060 CELLS

T |

Read
o T ()

G

F(oT(I))eT

NN

INVERTED

| FILE
— =]
A2l 4
~ 3] 6
a0
< s
/icm
//‘ 7115
o/ //7ele

\Q;F\

TABLE(L)<0T (1)
| ‘
I<It]

FIG. 6

\\

kNVD FILE
L

F.f

Flow Chart to Build Routing Table

§> oY, DY%I

Fw@/tlo

.7 ~
KOG $DYELD>
~ 7~

Not Founn

(ERROR
~ e

— — —

FIG. 7

Routing Table Search
Algorithm

- 17 .

close to 1000 lines. A1l we had to do was to keep track of the first
occﬁrance of each junction in the table, and record these positions in
another table. In this manner we produced a "mini;inverted file" in core
to help reduce search time, i.e..we listed the positions of the first occurance
of each junction separate from the table itself. This allowed us to use
a "double subscripting" technique (a very fast index register operation)
to find where to start searching in the table during routing rather than
using the Binary Search. (Fig. 6 shows the algorithm to build both these
tables; the results of the algorithm is shown in Fig. 5; and Fig 7 shows
. the actual table-search flow chart stated only as " SCAN 0J "
in the flow chart of Fig 3. These charts have been inserted for interest's
sake.) Thus the Tog N-1 factor can bé/eliminated from the formula for T
and replaced by just?] comparison resulting in a 75% reduction in the timing:

for R = 100 1000 10,000 100,000 records

T= 6K 60K 600K 6M comparisons

(K 1,000 M= 1,000,000)

For a typical batch run of about 75,000 f0utings, using a moderately fast
computer, these timings translate to about 1 to 1.5 hours of processing.
This may sound 1ike a lot of time, but considering the accuracy of the
cost that this mileage produces, and considering that comparable costs
cannot be thained for this much traffic in a reasonable amount of time,

the investment in computer time is will spent.

f Data
Tables Edit
Sort/
Format | st
\L‘\\ _ } Note: square boxes denote
> Station ©° programs; boxes with
. Lookup S-shaped lower edge
Online denote reports; other
Storage , boxes denote files.
. Y
\\‘___’,J ' * Appendix A shows
Cost ¥ the source language
Analysis | of this programme .
Y)
Sort
Results
. 4 | v
Workload ~ Report ' Significant
Translation : Programs * |Move System
y ‘ y
T
Workload Profitability 5-Percentile
Reports Reports Rankings
Fig. 8

The Complete Cost Analysis System

- 18 -

IMPLEMENTATION AT CNR

Actually the mileage obtained fromthis method does not tell the whole

story. There are about 5500 stations on the CN rail network of which

less than 10% are classified as yards or junctions. Thevrouting and

mileaging algorithm described here is only a small section, but the

most important section,of a series programmes which has been designed

to examine and highlight different aspects of the costs and profitability '

of al1 CN traffic. The system is a powerful planning tool that allows

us to ana]ysé large volumes of revenue traffic information, and then

to produce concise and meaningful summary reports of this information upon

which action may be taken. Some of this action might be:

A)

D)

The
1)
2)
3)

4)

Forming equipment lease and purchase strategies based on the profit-
ability of certain railway car types;
Examining cerrtain marketing policies based on commodity cost and/or

profitability characteristics;
Determining train service feasibility; or

Determing rail Tine abandonment feasibility.

cost analysis system can be broken into four logical sections:

Editing, modifying, and grouping of inﬁut data.

The detailed analysis of the cost,of which the routing algorithm is a part.
The organization, ranking and grouping of the output data.

The production of reports.

Fig. 8 (opposite) shows complete programme flow of the cost analysis system.

- 19 -

Input to the system is from the commodity detail summary fi]e,‘a file
containing revenue ihformation for all the traffic CN handles fn any
given month. Of course any source of data can be used as long as the
data contains certain information necessary to produce a cost. Thé

specific information needed to calculate a cost of a movement is:

1) The originating station number (eg. 14522 represents M (Moncton) in

figure 1).

2) The destination station number (these two parameters define the route
that a railway car takes-the route calculated by the algorithm

described here).

3) A traffic code - a code that describes how much of the movement occurred

on the CN territory. These codes are:

LF - Tocal forwarded (100% CN)

IF - interline forwarded (terminated outside CN)

IR - interline received (originated outside CN)

BR - bridge réceived (originated and terminated outside CN)

4) A railway car type code-used to calculate equipment costs

(eg. 250 is a standard box car)

5) A commodity code-used to calculate-commodity related cost

(eg. 733 is the code for cloth and fabrics)
6) The number of cars to which the above information applies
7) The total tonnage for the above information

8) The total revenue,included to calcuate the profitability.

- 20 -

- The input file containing the above information representé some 2.5 million
carioadings each year summarized to about 600,000 records by the time it

reaches the edit phase of the cost analysis system. The editor first checks
for compatability of codes then formats each record ready for sorting. The

types of code checking performed include:

A) Compatability between commodity codes and equipment types, eg., we want
to remove records showing livestock travelling in tank cars, or bulk

1iquid petroleum travelling in box cars, etc.

B) Equipment carrying excessive weight (most of these are decimal point

misplacements)
C) Impossible station codes
D) Records showing impossible revenues
After these checks and reformating the new file is ordered by ascending

sequence by origin anddestination station codes, the result of which is

passed to the cost analysis programmes proper.

The cost analysis section is divided into two segments. Although the two

segments perform one logical step, and could be run together, hardware and
procedure constraints at CN have necessitated the division into two parts.

As pointed out earlier, there are about 5500 stations on the CN rail network>
of which less: than 10% are yards or junctions. The first of these’segmenté
calculates a mileage for moving this traffic on Tocal or 'way-freight' trains’

to the yards. This is a fairly simple but not trivial procedure. This has

/

l N
R

F

PPN fe e - FIG. 9 N N N N
_ .AStijzed Detail Map of a portion of
' CN Atlantic Region

PN

- 21 -

the effect that the extra trackage, representing simple one-arc routés,
can be eliminated from the total network leaving a skeleton network of
about 500 junctions and their associated arcs or routes. As an example,
fig 9 opposite shows’the detailed map of the portion of the Atlantic
Region used as an example for the discussion of the routing algorithm.
The second of these parts is the cpsting programme of which the routing

algorithm described hefe_is part.

The computations in the cost analysis programmes depend on data which is
stored in different tables in the system. These data tables contain the

fo]]owing'information:

1) Unit costs, i.e. cost/mile or cost/train-mile, etc.

2) Freight car descriptions i.e., tare weights, or cost/day
3) Commodity costs, i.e. cost/freight claims x o
4) Empty movement of freight car probabilities

5) A station number table

6) Train performance data; and

7) The junction table described earlier.

The first of the cost anlaysis programmes has a very simple function--to
search the 5500 element station table, assign the junction code for the
routing algorithm, and to calculate the mileage from the stations at each
end of the movement to the junctions. The second part is divided into

three sections.” The first section calculates the cost of the local or

- 22 -

'way-freight' train service from the stations at each end of the movement
to its associated'jdnction. These costs are computed from information in
the data tables, and information contained in the input record: The

second section is the routing algorithm. As each arc of the route is
found a cost is calculated for that route using much the same calculations
as in the first part and using much the same information. The third
sec%ion is the totalling section where all the costs are added,including
fixed costs, such as billing and cleaning costs. Accumulated at the same
time are some performance statistics such as tota] train-miles and total
car-days. Each input record is costed and mileaged in this way, producing

an output file ready for profitability analysis.

Upon completion of the cost analysis run, the output file is passed to a
number of utility programmes, from which various summaries and reports are
produced. Most of these reports are produced only on request, eliminating
unnecessary computer processing and storage of volumes of little-used
paper. Service on these requests-is fast, and depending on the complexity :
of the request, can be completed within 24 hours.‘ The costed file is‘

normally kept as a historical record and stored on magnetic tapes indefinitely.

As a final presentation I have included a sample of the various kinds of

reports that are produced from the Cost Analysis System.

Fig. 10 - Some costed movements of .commodity 733 (cloth, fabrics) between
various stations on the rail network. For example, the last

Tine shows a movement from St. Henri (Montreal) to Winnipeg

- 23 -

of one car weighing 22 tons (commodity weight) costing
4 $xkx#based on 1345 miles. The mileage was calculated
by the routing algorithm. The other columns represent

figures which are needed for planning purposes.

Fig. 11 - A summary of all the movements of commodity 733 for a givén
time period. The last line of figure 1 is included in
the top Tine of this example. Note that the traffic has
been separated between profitable, unprofitable and
suspect (marginal) traffic. The mileage in this case is

the weighted average mileage for all 88 cars.

Fig. 12 - A summary of the regenerated workload statistics (costing
parameters) by segment'of track. As mentioned earlier, these
kinds of statistics are not generally maintained by the
accounting system because they would be too costly to obtain
or record. For example, the 3rd group of lines from the top
shows the section of track from Coteau, Quebec to Glen Robertson,
Ontario. This section of track was used for thé movement
described in figures 10 and 11. These are estimates, and, as it
turns out, fairly good ones. When all these statistics are
added to give a grand total for the entire CN system, the
deviation from the data that can be collected is not more than
5-10%, depending on the statistic.

Figures 10, 11, 12, 13 which follow are internal confidential reports,
":> consequently all cost and revenue related figures have been deleted.

- 24 -
©

Fig. 13 - A sample of the significant moves system. These reports afe
"ordered by total parameter (in this case by tons and‘by route).
This page of the ;eport shows the third 5-percentile group.
The total line shows that only 42 records (point to point
movements) have accounted for 15% of total systemvtonnage;
of which the 23 listed records are part. Incidentally, the
report shoWs that the 42 records represent about 7% of the

total car miles, a figure generated by the routing algorithm.

The above reports admittedly place much emphasis on the costs that can

be derived from the system. Mileage has a direct effect on about 20-30%

of the cost and an indirect effect on about another 30%. The mileage itself
‘:: is the actual mileage or mileage that reflects every time that a wheel on

a railway car turns. Thus the real point is that all these costs would

never have been possible if we could not have come up with some simple and

acceptable method to produce an accurate mileage between pairs of points

on the CN rail network. Many tihes, the simplest solution seems to be the

best solution, and in this case I have been able to demonstrate that there

is a very simple method to produce the mileage and thus to produce a cost.

RESEARCH € DEVELOPMENT COSTING SERVYICES
**«TESTING PROGRAM 072211 e . AUG. 12/74

GPOUF = 3.50

COMMODITY = 733 CLOTH » FABRICS N.G.S.

REVENUE T ONeT TON REY CST NREvV -~ MILES REVENUE NREV REV REV/CST CAR

T ORIGN DESTN I -

C STATN STATN 0A CARS . TCNS SURS IN cosT PEVENUE $=——PER CAR-—=3 fm=—== PER TON--==—=% PER NTM RATIQ YYPE

LF 12605 33273 62 1 22 . 22 i 758 T - 22077
HAL IMPEX - MCNYARDPQ BOX STL 4OF8FDR6OT

LF 12605 33273 62 2 66 332 798 225
HALIMPEX MCNYARDPQ) o T : BOX STL 4OF9F DR 40T

LF 12605 33360 &2 1 25 25 798 225
HALIMPEX COTSTPAUI ' ' ' BOX STL 4OF9F DR 60T

LF 12605 33376 62 1 20 | 20 T o 798 T 220
HAL IMPEX PTSTCHARR B8OX STL 4QFBFDR6OT

LF 12605 3337¢ 62 3 53 , : . 17 800 ’ 510
HAL IMPEX PTSTCHARR INSUL BOX 40F STO

LF 2772% 43340 65 1 23 23 370] ’ } 100
STHYACINT KREWTORONT 80X FOREIGN

LF 27724 43240 65 1 23 ‘ 23 T — 370 - 110 T
STHYAC INT NEWTGRONT ; BOX STL 4OF8FDR CUF60T

LF 27724 4334(¢5 2 . a1 23 370 115
STHYAC INT NEWTGROANT BOX STL 40F9FDR CUF60T

LF 27724 43340 &% 24 563 23 370 220
STHYACINT NEWTCRUNT - BOX STL 4OF8FDR6OT

LF 27724 42340 65 23 768 23 I 370) 275
STHYAR INT NEWTORCNT . ’ BOX STL 4QF9F DR 607

LF 27724 43630 65 1 22 ’ ' 22 441 . 225
STHYACINT CLAKKSON ’ BOX STL 40F9F DR 60T

LF 33128 44510 66 1 20 20] _ ‘387 . 210
MONEAST HAMILTON L 80X STL SOF DDR 80T

LF 32128 46210 66 1 34 34 T ~ 389 210~
MONEAST WAT ERLOON 80X STL 50F DDR 80T

LF 33128 46210 66 1 al ' 21 389 . 240
MONEASTY WATERLOCN) . . 80X STL 50F DCR 70T

LF 33170 42230 66 1 12 12 331, © 225

_MONMORSTR _WTORGNTOQ , -)BOX STL 40FSF DR 60T

LF 33170 42230 66 1 12 12 331 , 530
MONMCRSTR WTORQONTO . INSUL BOX S50F STANDARD

LF 33170 4251C 66 L 12 12 331 : 530
MONMCRSTRQ TQPCHEST o : INSUL BOX 50F STANDARD

LF 33170 42572-¢6 1 12 ‘ 12 : 331 .. 540

__MONMCRSTR CRIQLE : e L INSUL BOX SOFCMP 12FCR

LF 33270 94110 66 1 12 - 12 T 2890 ‘ s00
STLAUREPQ VICTORIBC MISCELLANEOUS CARS FGN

LF 33324 6421C ot _ 1 22 22 1345) 225"
STHENRT wWINNIPFG .) BOX STL 4O0F9F DR 607

FIG. 10

. L : B . ' ‘ . | R
NOTE: %E%ﬁOBEEEEQEIAL INFORMATION HAS ' Sample Commodity (detajl) Cost Report

http:sERVIc.es

mi-___...w_-m__________ e

Y

“(')r

- ‘_*_ﬁ)

SEPV!CES

RESEARCH € DEVELOPMENT COSTING
$sTESTING PROGRAM 073311 e AUG. 12774
GROUP = 3,50 * SIMGLE CCM. SUB~GROUP s
COFMODITY = 133 CLOTH , FABRICS N.D.S.)
sxs CCh-271 TOTAL %

T . REVENUE NET TON REY CST NREV MILES REVENUE 'NREV REV REY/CSY

o _ RCDS __CARS TONS _ SUBS Ih cost REVENUE $—-—PER CAR * * PER TON—-——% PER NTM RATIOD
PROFITABLE TRAFFIC

LF 25 88 2080 T 24 T e 6107 oot o T T
IR 16 20 301 15 264

gF 8 29 545 19 405

T0 49 127 2926 21 536
UNPROFITABLE TRAFFIC . . B ~
LF 3 3 36 12 331

IF 1) 1 1o 10 0

IR 10 20 214 11 472

BF » 1 1 7 7 547

10 15 25 2¢7) S 438
SUSPECT TRAFFIC
TOTAL TRAFFIC

Le 28 91 2116 23 - 606 cteT<,TY T}/, T/ — o T
IF 1 1 10 10)

IR 26 40 515 13 351

8F 9 30 552 18 4«07

10 XA 102 3193 20 528

FIG. 11

NOTE: ALL CONFIDENTIAL INFORMATION

Sample Commodity (Summary) Profitability Report._

HAS BEEN DELETED

I (ﬁ;,__ e SUMMARY BY LIN ~ ... SEP. 15/73 YEAR 1972 FSE- crﬁzj
~ . . _ DPERATIONS AND MAINTENANCE HORKLOAgfi] L _ . __ FORECAST YEAR ©513
_ COMMOD I TIE S-ALL
CAR TYPES =ALL

FROM ™ MILES _ LDADED EMPTY ONET | LOADED EMPTY NTM 6TM ' CHANGE 1971 TD 1973
CARS CARS TONS . CAR CAR (000} © (000) TOTAL CARS TOTAL TONS
e m e o e e e e .. . _MILES . MILES . __.. ... AMOUNT __PCT ___ _AMOUNT PCT _
HEPSTJC NAKINA 143 W _ 190 37 5960 27170 5291 852 1445 10104 __ 0.0 o 0.0
£ - 37 190 956 - 5291 27170 137 252 1762 0.0 0 0.0
T, 227 227 6916 324061 32461 989 . . 1697 11867 0.0 0 0.0
COTZAU CORNWAL 30 W _ 14442 _ 10508 541836 435152 315240 __ 16362 25870 862333 0.0 __ 0 0.0
E 11639 0 265034 359380 0 8124 15785 526166 0.0 0 0.0
T. 26031 10508 810370 785532 315240 | 24486 _ 41655 1388500 0.0 0 0.0
COTEAU GLENROR 15 W 2642 0 67506 40519 o 1046 1938 129200 0.0 0 0.0
€ 5869 2701 270234 . 90347 40519 4188 6171 411400 0.0 0 0.9
B} _T__ . 8511 _ 27CL 337740 . 130266 40519 5234 . _ 8109 540600 0.0 __ .0 0.0
CORuWAL BRCKVIL 58 W 14113 10251 521383 . 8203839 594600 30343 48249 831879 0.0 _ 0 0.0
E 11334 0 258302 | 661479 0 15067 29509 508775 0.0 0 0.0
T_. 25497 _ . 10251 780285 | 1481859 594600 _ 45410 _ 77753 1340655 9.0 .0 0.0
CORMWAL COTCAU 30 W 276 125 15913 | 3317 3759 481 662 22066 0.0 _ 0 0.0
- 3 133 0 3150 - 4178 0 95 187 6233 0.0 0 0.0
T . 413 125 19063 12495 3759 576 849 28300 0.0 0 0.0
BRCKVIL KINGSTN 40 W 14117 10373 519990 © 573799 . 414929 21214 33770 844250 0.0 0 0.0
€ 11367 0 257877 461069 c 10520 20630 515750 0.0 0 0.0
i T_ . 25484 10373 777867 . 1034%68 414529 31734 _. 54400 1360000 0.0 .0 0.0
BFCKVIL CORMWAL 58 W. 2530 102 14252 14534) 5949 829 ‘1147 19775 0.0 0 0.0
E 114 0 1818 6618 0 106 250 4310 0.0 0 0.0
. T_. . 364 102 16070 21152 5949 _ 935 1397 24086 _ 0.0 _ 0 0.0
BRCKVIL KINGSTN _ 40 Ww_ 52 2 687 ' _ 2100 _ 105 ___28_ _ 74 1850 _ 0.0 _ 0 0.0
E 3 0 168 . 121 0 7 10 250 0.0 o} 0.0
T 55 2 855 2221 105 _ 35 , 84 2100 __ 0.0 __ 0 0.0
KINGSTN BELVILL _ 47 W_ 14133 10286 522082 672217 | 483465 24502 39593 842510 _0.0 0 0.0
£ 11340 0 2560644 538505 : 0 12241 24032 511319 0.0 0 0.2
e et e el LT 2547310286 _ _ 778726 _ 1210782 . 483465 __ 37143__ 63630 1353829 _ 0.0 __. O 0.0
KINGSTN BRCKVIL 46 _W_ 250 104 14252 . 11667 __ _ 4790 _ _66T__ ___ 922 20043 _ 0.0 ___ .0 0.0
E 1t o . 1818 5295 o 85 201 4369 0.0 0 0.0
o . _T_ .. 364 .. 106 16070 _ _ 16562 _ _ 4790 _ 752 . 1123 24413 0.0 __ .0 0.0
KINGSTN BELVILL _ 47 W__ 53 ___.. .40 __ 707 2511 __ 1906 _ - _34___ __ . 83 1893 __ 0.0 ___ . _ O 0.0
3 45 0 2094 2127 0 99 146 3106 0.0 0 0.0
__ i X098 40 2791 4638 _ 1906 _ . 133____ 235 5000 __ 0.0 __ 0 0.0
e e e e e e e _ FIG]2 . , e
SampTe Ma1ntenance WOrk1oads Report by) .

NOTE ALL CONFIDENTIAL INFORMATION HAS BEEN : . Track Segment ™’ . . .
- - DELETED - e . . - . - - . L e et . e merims e e e .-

http:K~NGS.TN

_ L RESEARCH A NO DEVE[PP

HENT ===

€CO0ST RESEARCH

e

. -

—————

. TONS _SORT = 5 PCT GROUPS FOR MARKET SEGHENT 6 . ANNUAL 1972 PAGE 201
o wHk o _ _
- - - kA% T
e *E¥ _
T - "I
—_— - L 23 4
¥
_ _RECORDS__PCT __ REVENJE PCT R CAR LDS PCT C TONS PCT T NET REV PCT N CARMILES PCT M CAR DAYS PCT O
LF 64118 33338 103 255 18393 684420 3870 15 -
T TLF 37154 42435 755 T - 7354 17454 169876 197 15
LF 77420 60512 23 371 17242 678188 4135 15
1F7 35140 35160 773 494 16537 38520 3453 15
IR 53954 55838 759 177 16490 60534 969 1%
IF 23376 35106 ~ 23 393 16148 30654 2391 15
IA 55903 55838 23 182 16c81 29120 961 15
TLF T 48460 45300 T 23 - 556 16038 29468 47¢7 15
_IR 55678 55838 11 173 15836 58024 947 15
IR " 55954 55600 103 - 241 15623 147974 16C9 15
IR 47560 42310 43 226 15341 21271 1314 15
IF 55838 45110 2% T 7437 T 14538 T 392824 5734 15
IR 55978 55838 21 : 547 14692 132525 2931 15
‘TR 55954 43325 89 ~— R : Y 7 R Y Y Y s A 898160 6552 15
_BF 35130 35160 773 _ 402 14460 45852 1144 15
LF 51480 14789 15 — 370 1426C 665298 4192 15
IR 55978 55600 763 325 13963 192962 2081 15
IR 55951 55600 23 T 152 T 13318 92162 1075 15
IR 55690 55600 103 87 13302 . 71868 952 15 -
I 55838 55517 773 T T T 444 131715 T - “102128 28301 15
IR 55954 55838 21 385 12586 1C7C46 2076 1s
IF ~ 35106 35160 773 340 12886 - 21760 2092 15
IF 77420 93330 15 . 304 12802 _.sr11rse L2546 A5
LF) 16 0.07 _3.14 9202 _ 4.48 ___ 471788 __5.58 _ _ _1.86 9689418 _3.74 __ 87744 _ 4,40
1F 11 N.05 3.06 7 T15933 T 7.76 T T36119C 7 5.04 TT1.83 6554609 2.53 1¢8267 5442
o Ia ... 1% 6.06 _ _le29 _ 4960 2.42 234389 3.27 B 0.37_ 2960C38___ 1.14 31544 1.58__
BF 1 0.00 0.04 4027 0.20 T1446Q0 3.20 0.04 45852 c.C2 1144 0.C6
TOT 427 0.19 7.54 30497 14.86 1081827 135.69 4.15 19249917 T.43 228699 1l.46
o o o L FIG. 13 o
_ sample 5-Percentile Ranking Report .
NOTE “ALL CONFIDENTIAL INFORMATION HAS BEEN

DELETED

http:llH--O.C6
http:402--0:.;20----14460-:).20-------0-~04---45S52---C.C2

APPENDIX A

SOURCE LISTING OF
COST ANLAYSIS PROGRAMME

Copretitaen W E e b W [S VAR L A Detha 0 J R Ao L bt B T P S R Y S

IDENTIFICATION DIVISION.
PROGRAM=ID « '07340000!

AUTHORe D RB CROFTs CDP

INSTALLATIONG CN RESEARCH AND DEVELOPMENT.

DATE=WRITTENS SEPTEMBER 1974+
DATE-COMPILED. APR 3, 1975.
REMARKS. THIS PROGRAM IS THE COST ANALLYSIS PROGRAM

OF THE CN COST RESEARCH SECTION COSTING SYSTEM.

TENVIRONMENT DIVISION
INPUT-0OUTPUT SECTION
FILE-CONTROL
SELECT INPUTFILE . ASSIGN UT-S—-INO1.

SELECT TABRILES-FILE ASSIGN UT-S—-INOZ.
SELECT OUTPUTFILE ASSIGN UT-S—-0UTO1.

DATA DIVISIONe.

— FTUE SECTION. — e
FO INPUTFILE : '
RECORDING MODE 1S F
RECORD CONTAINS 80 CHARACTERS

BLOCK CONTAINS 0 RECORDS ~—~~~————~— 77 77—
LLABEL RECORDS ARE STANDARD
DATA RECORD IS COSTINPUT.

01 COSTINPUT.

02 TPART-03.

05 ORG-DEST-IN = PIC X(10)e.
02 PART1.
05 STATINN-D . PIC 9(%)e B
) 057 LIM=STN-1-0 PIC 9(S)a
. 05 LIM=STN-2-0 PIC 9(5)e
05 JCT-1-0 PIC 9(4).
05 JCT-2-0 PIC 9(4).
] 057 TMILES-1-0 PIC 999Vv9,
05 MILES-2-0 PIC 999V9.,
(:; 05 TRAIN=-SUB-0 PIC 9(4).,
02. PART2,. ,
5 STATION=D T TTTTTTRIC 9(5).
05 LIM=STN=-1-D PIC 9(5)e
05 LIM=STN-2-D PIC 9(5)e
05 JCT—-1-D PIC 9(4]). "
05 JCT=2<D PICT9(4),
05 MILES—-1-D PIC 999V3Se.
05 MILES-2-D PIC 999V9.
05 TRAIN-SUB-D PIC 9(4).

FD TABLES~FILE
RECORDING MODE IS F
RECORD CONTAINS 35 CHARACTERS
BLOCK CONTAINS 0 RECORDS

UABEL RECORDS ARE STANDARD
DATA RECORDS ARE SEPRPARATORe
01 SEPARATOR.

05 TABLE~SEPARATOR PIC X(4)a

05 FILLER PIC X(31).
01 TABLEB.

05 ENTRY-BR _ PIC X(20)

05 FILLER . PIC X{(15).
01 TABLEBB.

05 0JBRR comp PIC S9(4).

05 FILLER PIC X(33)e.

FD OUTPUTFILE

RECORDING MODE IS F
RECORD CONTAINS 14 CHARACTERS
BLOCK CONTAINS 0 RECORDS
LABEL RECORDS ARE STANDARD

01 COSTED-OUTPUT
05 ORIG-DEST-0OUT PIC X(10)e

CDATA RECORD I8 COSTED-QUTPUT, ~ 7 "7 7 7 o imrrs mme o s

_1‘:3 05 MILES-0QUT PIC 9999,

'—‘-‘* —WORK

01

ING-STORAGE SECTION. T T
GENERAL~GARBAGE »

05 FILLER PIC X(8) VALUE 'WORKSTOR'.
05 SwW—-1 COMP-3 PIC S9.
i 05 " DIR~SW COMP=3 = “PIC S9 VALUE ZERQO. ~~ 777
05 DIRECTION~CD COMP-3 PIC 9.
05 SAME=LLINK~SW COMP—-3 PIC S9 VALUE +0.
05 TOTAL-MILES~-QUT PIC S9(5)V9a
05 " NOT-USED “PICT S99, T
01 DIRECTION~-DETERMINANTe
05 DIRECTION PIC 99V9.
05 DIR-CD REDEFINES DIRECTIONS
10 W=PRT PICT99,.,
10 D-PRT PIC. 9
01 SNAP-CON DISPLAY PIC XXXX VALUE 'SNAP!,
01 SNAP.
02 " SNAP=AREA" USAGE 15 COMPUTATIONAL=3.
05 0J PIC S9(3)a
05 0J1 COMP-3 PIC 9(3)e
05 0J2 COMP-3 PIC 9(3).
05 DJ1I COMP=3 """ "~ TTTTPICTQ(3) T T T
05 DJ2 COMP-3 PIC 9(3)e
01 SUBSCRIPTS COMPUTATIONAL .
05 M PIC S999.
05 A - PICTS999 .
05 SUB PIC S9(4).
05 PASS-ND PIC S9(4).
05 ITTY PIC S999.
05 N - PICT599997
- 05 COST—AS—-THRU-SW PIC S9e
05 COST—AS—-WAY-SW PIC S9.
05 WAY-LIMIT . PIC S9(4). o
T 01 COUNTERS COMPUTATIONAL S 7~
c: 05 TOTAL-RECS PIC S9(10) VALUE ZERDS.
01 ITERATION-CTR COMP-3 PIC S9(10) VALUE ZERD.
01 FILLER PIC X(8) VALUE 'GEN WORK',
““““““““ 01 "GENERAL=WORK=AREAS "~~~ COMPUTATIONAL-3.
05 O0-D-CONV. ‘
10 C-STATION-D . PIC 99999,
10 C-STATION-D PIC 99999.
05 TASSIGN=SW T T PICT9e T T T
01 FILLER PIC X(B) VALUE 'TRIPWORK'.
01 TRIP-WORK=-AREAS ' COMPUTATIONAL~3.
05 TOTAL~MILES PIC S9(5)V9.

T 0l "ND=C=SAVEs

05 ND-CTRS—-SAVE COMP-3 DODCCURS 91 TIMES PIC S999.

01 DIFFFRENCES.,
05 DIFF1 cCOoMpP PIC S9(9).
05 FILLER ~ 7 REDEFINES DIFFls
. 10 DIFF1-SIGN PIC X
10 FILLER PIC XXX
05 DIFF2 COMP PIC S9(9)e
05 FICLER "REDEFINES T DIFF2. B
10 DIFF2~-SIGN PIC Xe
. 10 FILLER PIC XXXe
01 TABLE-B—THROUGH=-INFQO.
05 TJUNCTIONB 7~ COMP PICTS9(a)Yy, T
05 TRIP-DIRECTION PIC S9(4) COMPUTATIONAL .
05 COST-CODE PIC Xe
05 DISPLAY—-ERROR.
B =3 ol © I

07 ERROR-CODE

107 DISPLAY=0ORG ™~ PICTO9Ts 7 T
10 FILLER PIC 99 VALUE ZERQ.
10 JUNCTIONA PIC S9(4) COMPUTATIONAL.
10 REGIONA PIC S9(4) COMPUTATIONAL.
107 " DIRECTIONA"™ TTTPICT 59(4) COMPUTATIDONAL .
10 SWITCH-CLNA PIC 999V99 COMP-3.

01 TABLES—AREA.
05 TBL~A-ENTRY.

IO STATS-FROM=STATION=TBLA., 777
15 WAY-MILES PIC 9(4)VY COMP-3.
0s TBL~B-ENTRY REDEFINES TBL-A~ENTRY.
100 STATS—FROM~-ROUTING=- TBLB.,

1577 MILLESB PICT 9(4)V9J'CDMP 3e
01 ROUTING-TABLES.
02 TRLB-CON DISPLAY PIC XXXX VALUE 'TR20°%'.
o2 TABLE-B,
TTOS5T TENTRY-BTTT T TUTOCCURS T T 625 TIMES. T
02 ROUTING-TABLEB REDEFINES TARLE-Be
05 ENT-B OCCURS 625 TIMES.
10 0©0JB COMP PIC S9(4).
1077 DB~ TTTTCOMPTTTT T TTRPICTS9(4) .
10 LJB comp P1IC S9(4).
10 TRNA coMpP PIC S9(4)e.
10 RATIOCDBB COMP PIC S9(4).
107 REGIDON-B cCoOMP PICTS9({4).
- 10 MIB COMP -3 PIC 9(4)V9,.
10 THSWH COMP-3 PIC 99VvV999,
10 HOURS-R COMP -3 PIC 99V9.
01 POTNTERS TCOMPUTATIONAL " 7777777 7 77 T
05 TBX O0OCCURS 397 TIMES PIC 5999e.
6:; : 05 O~T=~TBL-POINTER OCCURS ' 362 TIMES PIC S999.

http:SPLAY.;..oRG

7ok sk W Y S S e sk s ksl ol 6 sk sk e sk s sle sie o ke ol ok ok e sl ol sk ol sl st e sl ke s v e sl o Xk sk N*i*r*¥************v*f_—*——“
* SECTION 1 -~ TABLE BUILDER %*
2 332333 FITTTIIETR TR S 23 EFRRIEEEFEESEE S *%*****%***********

EJECT

PRUCEDURE DIVISIONS.
MOVE LOW-VAILLUE TO POINTERS.
MOVE O TO A

‘:> OPEN INPUT TABILES-FILES -
TTTTTMOVE ZEROTTO Ne

BEGIN—-TABLES.
MOVE 1 TO SUB.
. READ-1ITe

READ TABLES-FILE AT END GO TO TABLES-ENDe.
DUMMY—~STATE.

MOVE ZEROS TO NOT-=USEDe
READ—-IT~EXITa

IF TABLE-SEPARATOR EQUAL ' TO 'TRLAY 777

PERFORM READ-IT
GO TO READ-ROUTING-TABLE
ELSE GO TO READ-IT.

READ~-TABLES.
. READ TARLES—-FILE AT END GD TO TABLES-ENDe

BRANCH-PARAG.

READ~ROUTING-TABLE

IF T TABLE=SERARATOR TEQUAL TO ' TBLA', ™

THEN GO TO TARLES—FENDe.
MOVE ENTRY-BB TO ENTRY-B (SUB).
- IF TRX (DJBB) = ZFRO,

TTHEN MOVE SUB TO TBX (0JBB),
ADD 1 TO A,
MOVE A TO O-T-TBL-POINTER (0JBB).
ADD 1 TO SUB.

GO 7O READ-TABLES.

TABLES—END.
CLOSE TABLES-FILE.

OPENTINPUT INPUTFILE, OUTPUT OUTPUTFILE.
MOVE ZEROS TO ERROR-CODE.

st e 3 s o s e b s ok e e sl e oeole ke 3 e ol e e e sk e e el e e 3k e ol s sl s ok ok e e e ok e sk e e s e sl ok o e o Ak ol e ok o ol ok e
¥ SECTION 2 = READ AND_ INITIALIZE *

C,

SR AR R o TR o o S ok o o TR o e o et o o s SR R R SR SO R o R R R
READ-RECORD » ‘
READ INPUTFILE AT END GO TO END-OF-JOB.
ADD 1 TO TOTAL—=RECS.

PRE-PROCESS.
PERFORM INITIALIZE-RECORD THRU INITIALIZE-EXITe
PERFORM BEGIN=-PROCESSING THRU EXIT-RUOUTINGe.
ADD ITT TO ITERATION=-CTR.

END=COSTING.,.
PERFORM FINAL-FORMULAE THRU FINAL-FORMULAE-EXIT.
GO TO READ-RECORDe

NODE—-ZERO.

INrTTALIZE ~RECORD.
MOVE STATION=-O TO C-STATION-O.
MOVE STATION=D TO C—STATION=-De.

PERFORM NODE~ZERQO VARYING M FROM 1 BY 1 UNTIL M IS

GREATER THAN 91))

MOVE ZEROS 7O TOTAL-MILES-QUT
SAME-I_INK—-SWys DIRECTION=CD,
Mo

ASSIGN- SWq
ERROR~CODE »
COST=AS=THRU-SW,
COST-AS-WAY-—=SW,

TRIP-DIRECTIUN,
Sw—l .

INITIALIZE-EXIT.
EXITe

4¥$f¥$¥i***#************4**************************ﬁf***i*****ﬁfﬁ*

* : SECTION 3 - ALGORITHM %
320 3 3K 3k 3 ok sk 3R e e 3 3 3k kK 3 3k ok Ak e e 3 k3 sk e 3k e kol R ok RO 3K i sk 3k Sk ok 3k K e ok ok ok ok o ok kool ok kok Xk
BEGIN-PROCESSINGe

IF ZEROEQUALTTRAIN=5UB-0 "OR TRAIN-SUR-D
GO TO TEST-LIMIT-STATIONS.
IF (TRAIN-SUR-0 EQUAL TRAIN-SUB-D
AND JCT-1-0 EQUALL JCT-1-~D

AND JCT=2-0" EQUALJCT=2~-DY 77
oRr (JCT-1-0 EQUALL JCT=1-D

AND JCT-1-0 EQUAL JCT=2~-D

AND JCT=-2-0 NOT EQUAL UCT-2-D)

NEXT SENTENCE™ —— ~
ELSE GO TO TEST-LIMIT- GTATIONS.'

NOTE THAT THE ABOVE TEST CHECKS FOR 2 STN%
ON THE SAME LLINKe

T COMPUTE WAY-MILES = MILES=1-D - MILES-1-0.
MOVE JCT-1~0 TO OJls DJ1s JUNCTIONA.
MOVE 2 TO PASS-NO.
MOVE 1 TO SAME~LINK-SWe

MOVE TRAIN=-SUR-D TO SUB.
PERFORM SWITCH-WAY~COST—-RTN THRU CONVERT-EXITs
MOVE ZERD TO 17T

GO TO ARE-WE-FINISHED-ROUTINGe

T TEST-LIMIT-5TATIONS.
I1F STATION-D IS GREATER THAN LIM-STN-2~0,
OR STATION-D IS LESS THAN LIM-STN-1-0,
- _THEN MOVE MILES-2-0 TO WAY-MILES,

T T T T T MOVE JCT=2-0 TO 0J1, JUNCTIONA,
* MOVE TRAIN-SUB-0 TO SUB,
,<:; MOVE 1 TO PASS—NO, '
PERFORM SWITCH-WAY~COSTZRTN THRU CONVERT-EXIT,

MOVE JCT- 1—0 TO OJlo JUNCTIONAo
MOVE 1 TO PASS-NO,
ADD 1 TO TRIP-DIRECTIONS,

MOVE TRAIN-SUB-0 "TO 5UB,
PERFORM SWITCH-WAY-COST-RTN THRU CONVERT-EXIT,
ADD 1 TO TRIP-DIRECTIONe.

MOVE 999 TO 0J2.

MOVE JCT=1-D TO DJ1,
MOVE JCT—-2-D TO DJ2.
MOVE ZERO TO ITTe

IF 0J1 IS GREATER THAN DJ1ls

AND D0J1 1S GREATER THAN DJ2,

THEN GO TO MOVE-AND—-REVERSE.
ARE-WE-F INISHED=~ROUTING.

ADD 1 TO M,

ADD 1 7O ITTe
IF ITT IS GREATER THAN 80,
THEN GO TO ERROR-3.

1F 0J1 IS EQUAL TO DJ1s

THEN "PERFORM FINISHED—-ROUTING=1,
_ GO TO EXIT-ROUTING.

IF 0J1 IS EQUAL TO DJ2,

THEN PERFORM FINISHED=-ROUTING=24

GO TO EXIT-ROUTING . .
SHOULD-WE~REVERSE.

MOVE TBX (0J1) TO Ne.

IF N = 0,

THEN GO TO ERROR=9.,
N CHECK ELEMENT.
- IF 0J1 IS GREATER THAN DJ2,
_____C THEN GO TO TEST-DJle

©

"IF 0 0J1 IS GREATER THAN DJ1,
THEN GO TO MOVE-AND-REVERSE.
INTERVAL-TEST.,

COMPUTE DIFF1 DJ1 - DJB (N).

TDJY1 = LJB (N)Y. T
IS NOT EQUAL TO DIFF2-SIGN,

COMPUTE DIFF2 =
IF DIFF1-SIGN
N
N

G
OR DJ1 = DJB (N)
OR_DJ1 = LJB (N) e
GO TO PRE=COST—-RTN.
¥ THE ABOVE CHECKS IF DJ1 IN TABLE RANGE
COMPUTE DIFF1 DJ2 = DJIBR (N)e
COMPUTE DIFF2 DJ2 = 1LJB (N}

K
IF DIFFI=-SIGN 1F
OR DJ2 = DJB (N
“0OR DJ2 = LJB (N
PERFORM FINISHtD ROUTING=25%

‘NOT EQUAL TO DIFF2-SIGN

Vvﬁ

MOVE DJ2 T0O DJ1
MOVE 999 TO DJZ2
ELSE GO TO ADJUST-RTNe.
¥ THE ARQVE CHECKS IF DJ2 IS IN TR RANGE

"PRE-COST—-RTN.
MOVE DJB (N) TO 0Jls JUNCTIONB.
MOVE MIB (N) TO MILESB.
MOVE TRNB (M) TO SUR.

IF 0JB (N} IS GREATER THAN DJB (N),
THEN ADD 1 TO TRIP-DIRECTION,

MOVE 1 TO DIR-SWa

NOTE THIS IS THE ENTRY TO THE COST ROUTINE.

PERFORM THROUGH-COST-MODULE ' THRU THROUGH—-COST-EXITo.

1F DIR=SW IS EQUAL TO 1,

THEN ADD 1770 TRIP-DIRECTIONS
MOVE ZERO TO DIR-SWe
GO TO ARE-WE-FINISHED-ROUTINGa
FINISHED-ROUTING—1.

1F SAME-LINK=-SW =71,
THEN GO TO EXIT-ROUTING.
IF DJ2 IS EQUAL TO 999,
THEN GO TO EXIT—-ROUTING.

MOVE MILES=1=D TO WAY-MILESS
MOVE JCT=1-D TO JUNCTIONA.
MOVE TRAIN=-SUB-D TO SUB

MOVE 2 TO PASS—NO. 3

PERFORM SWITCH-WAY-CUST-RTN THRU CONVERT-EXIT,
FINISHED-ROUTING=2.

MOVE MILES=-2-D TO WAY-MILES.
MOVE TRAIN-SUR-D TO SUB

MDVE 27TO PASS—-NQO

PERFORM SWITCH-~WAY—-COST—-RTN THRU CONVERT—-EXITa
TEST-DJ1l .

IF 0J1 IS GREATER THAN DJl

THEN PERFORM FINISHED-ROUTING=2
MOVE DJ2 TO DJ1,

PERFORM REVERSE

ELSE PERFORM FINISHED=RUOUTING=1e

MOVE 999 TD DJZ2.

GO TO SHOULD-WE-REVERSE.
ADJUST-RTN.

ADD 1 TO Na

IF7770J17 IS EQUAL TO OJH (N) s~
THEN GO TO CHECK-ELEMENT

MOVE ZERO TO 0OJe

ERROR~-8e.

GO TO READ-RECORD.

ERROR=7« _ o - - e e
" GO TO READ-RECORD.
ERROR~2 «
GO TO READ~-RECORD.

ERROR=3.
GO TO READ-RECORD.

ERROR=9 «

GO TO READ-RECORD..

MOVE-AND-REVERSE .
IF DJ2 IS EQUAL TO 999,
THEN PERFORM REVERSE,
GO TO SHOULD-WE-REVERSE,

ELSE PERFORM FINISHED-ROUTING—- 1»
MOVE 999 TO DJ2,
PERFORM REVERSE
GO TO SHOULD-WE-REVERSE.

ADD 1 TO M,
MOVE 0OJ1 T0 0OJ.
MOVE DJ1 TO 0OJle.

REVERSE . o T _ T T

MOVE OJ TO DJie
MOVE 0J2 TO OJe.
MOVE DJ2 TO 0J2.
MDVE 0OJ TO DJ2e.

ADD 17 TO TRIP-DIRECTION.,
ADD 1 TO M.
EXIT-ROUTING.

EXIT.

©

T TSRO SRR R RORORR MR ok ok ok et oo s e o sk R 0 e sl s sk ook ol ok o ol s sl ok s o e B s R SR ROR SRSk R IR

S Tk SECTION 4 ~ WAY-FREIGHT COSTING *
3k 3 3% o 3 3 3 3k ok 3 ko s M ol le ¥ 3l 3 3 3k ok 3 i o o ok 3ok X ok 3kl 3k o i ok 3 s 3k sk e ok o i e ok 3 ke ke o o ok ol 3 e ke ok e e ok ok
SWITCH-WAY=-COST~RTN.

IF— TSUBTTIS 'NOT TEQUAUTTTO T ZERQ s T
THEN NEXT SENTENCE, '

ELSE GO TO YARD-RTN.

COMPUTF DIRECTION = TRIP-~DIRECTION / 2.

o IF7""D~-PRT 1S5S GREATER THAN ZERO, S e
THEN MOVE 2 TO DIRECTION-CD,
ELSE MOVE 1 TO DIRECTION-=-CDe
GO TO BRANCH-LINE—-RTNe

- TTSUBSIDY-CHECK. T T
: YARD-R TN
GO TO SWITCH~-WAY-EXITe
BRANCH~L INE-RTNe.

T T T T COMPUTE TTOTAL-MILES-QUT =T TOTAL-MILES-0OUT + WAY-MILES,

IF sSuUuB IS GREATFR THAN WAY-—-L IMIT,

"MOVE "JUNCTIONA“TO JUNCTIONRB, 77777 777~
MOVE 1 TO COST—AS=THRU-SW, _

PERFORM THRU=I.OOP THRU THROUGH-COST-EXIT,
GO TO SWITCH-WAY-EXITa

- WAY=FRT-RTNe
WAY-RATIO-LOOP.
B T SWITCH=WAY-EXIT — . T
- CONVERT-EXITe

MOVE ZERO TO COST—-AS-THRU-=-SW.
‘ } ***************»** **************#************** ¥ 3 3R % R 3 g 3Ok 3 koK
’ - 5T ="THRU=-FREIGHT COSTING -~ =~ 777 - %*
ot %0 e s o R e e e e ok R **‘**‘W***¥* < 3% 3 33 e 3 ok o 36 3 ok 3 ok s e 3K ol 3 e ok i o o ok ok ok skl s ok ok sk K K KK
THROUGH-COST-MODUILLE .
COMPUTE DIRECTION = TRIP-DIRECTION / 2.

IF77"D=-PRT IS GREATERTTHAN ZERDO, 777 7777
THEN MOVE 2 TO DIRECTION-CD,

ELSE MOVE 1 TO DIRECTION-CD.

ADD MILESRB TO TOTAL-MILES-0OUT.

THRU-LOOP. 77

THROUGH-COST-EXIToe
' EXITe

FINAL-FORMULAE.

ADD 5 TD TDTAI—MI’ES ~0UTe e e
MOVE ORG-=DEST-IN TO ORIG-DEST-0UT.

MOVE TOTAL-MILES-OUT TO MILES-0UTe.

WRITE COSTED-QOUTRPUT.

*—_“_. ~ FINAL-FORMULAE- FXIT. T T e e -

******* S 3 3 3¢ e 3 30 2l 3 3 3 3 ok 3k ok e e 3K sl 3 e sl Sk Sl sl sk 3k sk ok ks e e ‘********** 3¢ 3e 3 e e sk sk ***
* SECTION 8 - CLOSE FILES
'—“._—m‘v*"“"“'***"************4—»"’*’»***4**4‘**’.‘%‘*** 31 3 e e e 3k ke xe dedkg **************

END-DF-J0B.
EXHIRIT NAMED TOTAIL—RECS.
CLOSE INPUTFILE, OUTPUTFILE.,

GURACK. SE AT U

O

