
Feature-Oriented Modularization of Deep
Learning APIs

Yechuan Shi

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Computer Science

School of Computer Science
McGill University

Montréal, Québec, Canada

Oct 2022

© Yechuan Shi, 2022

Abstract

Deep learning libraries provide vast APIs because of the multitude of supported input data types,
pre-processing operations, and neural network types and configuration options. However, develop-
ers working on one concrete application typically use only a small subset of the API at any one
given time. Newcomers hence have to read through tutorials and API documentation, gathering
scattered information, trying to find the API that fits their needs. This is time consuming and error
prone. To remedy this, we show how we modularized the API of a popular Java DL framework
Deeplearning4j (DL4J) according to features. Beginner developers can interactively select desired
high level features, and our tool generates the subset of the DL library API corresponding to the
selection. We evaluate our modularization on DL4J code samples, demonstrating an average recall
of 98.9% for API classes and 98.0% for API methods and constructors. The respective precision
is 19.3% and 13.8%, which represents an improvement of two orders of magnitude compared to
searching through the original complete DL4J API.

i

Abrégé

Les bibliothèques d’apprentissage en profondeur (Deep Learning Libraries) ont souvent une inter-
face de programmation (API) très vaste en raison de la multitude de types de données d’entrée pris
en charge, d’opérations de prétraitement, de types de réseaux neuronaux et d’options de configura-
tion. Cependant, les développeurs travaillant sur une application concrète n’utilisent généralement
qu’un petit sous-ensemble de l’API à un moment donné. Les developpeurs nouveaux arrivants
doivent donc lire des tutoriels et de la documentation pour connaître l’API. Ils doivent rassem-
bler des informations éparpillées un peu partout, pour essayer de trouver l’API qui correspond
à leurs besoins. Cela prend du temps et peut facilement enduire des erreurs. Pour remédier à
cela, nous montrons comment nous avons modularisé l’API d’un framework Java d’apprentissage
en profondeur populaire appelé Deeplearning4J (DL4J) par rapport au fonctionnalités qu’il of-
fre. Les développeurs débutants peuvent sélectionner de manière interactive les fonctionnalités
de haut niveau souhaitées, et notre outil génère le sous-ensemble de l’API de la bibliothèque qui
correspond à cette sélection. Nous évaluons notre modularisation sur des exemples de code DL4J,
démontrant un rappel moyen de 98,9% pour l’API classes et de 98,0% pour l’API méthodes et

constructeurs. La précision respective est de 19,3% et 13,8%, ce qui représente une amélioration
de deux ordres de grandeur par rapport à la recherche via l’API DL4J complète d’origine.

ii

Acknowledgements

I want to thank Prof. Jörg Kienzle and Prof. Jin Guo for supervising me during my master’s
studies, for their guidance, patience, and insistence on high standards through each stage of this
research project. Words cannot express how grateful I am for being their student.

I also want to thank my colleagues and friends for supporting my studies and my life. Last but
not least, I would like to thank my families for the unconditional love and support.

iii

Contents

List of Figures vii

List of Tables ix

List of Acronyms 1

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Thesis Contribution . 2
1.3 Thesis Outline . 3

2 Background and Related Works 4
2.1 Background . 4

2.1.1 Model-Driven Engineering . 4
2.1.2 Concern-Oriented Reuse . 5

2.1.2.1 Composition . 6
2.1.2.2 Concern Interface . 6
2.1.2.3 The CORE Reuse Process . 7

2.1.3 Concernification . 8
2.1.4 TouchCORE . 9

2.2 Related Work . 10
2.2.1 Improving API Documentation . 10
2.2.2 Support for Understanding and Using of APIs 11

iv

2.2.3 Raising Framework Abstraction Level . 13
2.2.4 Summary . 15

3 Concernification of a DL Library 16
3.1 Deep Learning for Java . 16
3.2 Concernification Preparation . 17
3.3 Feature Model . 19

3.3.1 Load Data . 19
3.3.2 Prepare Data . 21
3.3.3 Specify Network . 23
3.3.4 Operate Network . 24

3.4 Realization Models . 25
3.4.1 Data Loading . 26
3.4.2 Data Operation . 29
3.4.3 Specify Network . 35
3.4.4 Operate Network . 37

3.5 Feature Interactions . 39
3.5.1 Addressing Feature Interactions . 40

3.5.1.1 Extracting Common Parts . 40
3.5.1.2 Reusing the Realization Models 46

3.5.2 Feature Interaction Analysis . 48
3.6 Reusing a Concernified Framework . 49

3.6.1 Determining the Used Features . 50
3.6.2 Reusing Process . 50
3.6.3 Validity Check . 51

4 Concernified Framework Quality Assessment 53
4.1 Experimental Setup . 53

4.1.1 Assessment Metrics . 53
4.1.2 Assessment Workflow and Tools . 55
4.1.3 Result Converter . 56
4.1.4 Ground Truth Generator . 57

v

4.1.4.1 JavaParser . 57
4.1.4.2 Ground Truth Generator Building Process 59

4.1.5 Comparator and Analyser . 60
4.2 Validating Correctness . 61

4.2.1 Validation for the Complete Machine Learning Pipeline Samples 62
4.2.2 Validation for the Partial Machine Learning Pipeline Samples 64

4.3 Evaluating Usefulness . 66
4.3.1 Evaluation of the Complete Machine Learning Pipeline Samples 67
4.3.2 Evaluation of the Partial Machine Learning Pipeline Samples 70

4.4 Analyzing the Results . 73
4.5 Threats to Model Quality . 74
4.6 Pros and Cons . 76

5 Conclusion and Future Work 77
5.1 Conclusion . 77
5.2 Future Work . 78

5.2.1 Expand Concern Scope . 79
5.2.2 Improve the Experiment . 79
5.2.3 Conduct User Study . 79

Bibliography 81

A Code Sample in Section 3.6 85

B Woven Model Result for the Code Sample 88

vi

List of Figures

2.1 Feature Model for a Simple Deep Learning Concern 5

3.1 Feature Model for Deeplearning4J . 20
3.2 A subtree of the DL4J Feature Model related to Loading Data 21
3.3 Preparing Data Part in the DL4J Feature Model 22
3.4 Specifying Network Part in DL4J Feature Model 24
3.5 Operating Network Part in DL4J Feature Model 25
3.6 Realization Model of Loading Image Data (Partial) 27
3.7 An example illustrating the difference between ComposableRecordReader and Con-

catenatingRecordReader . 28
3.8 Realization Model of Loading Multiple format of Data (Partial) 29
3.9 Realization Model of Structuring CSV Data (Partial) 31
3.10 Realization Model of Transforming CSV Data (Partial) 32
3.11 Realization Model of Structuring Image Data (Partial) 33
3.12 Realization Model of Saving Data (Partial) . 34
3.13 Realization Model of Training Networks (Partial) 38
3.14 Realization Model of Evaluating Networks (Partial) 39
3.15 A General Realization Model for CSV Data Operations (Partial) 42
3.16 Partial Realization Model for Structuring CSV Data (Loading CSV Data is Included) 43
3.17 Class Mapping to Enable Merging . 43
3.18 Partial Realization Model for Structuring and Transforming CSV Data 44
3.19 Partial Realization Model for Transforming Image Data 45

vii

3.20 Partial Realization Model for Structuring and Transforming Image Data 45
3.21 Manually Built Conflict Resolution Models for a Feature Interaction 46
3.22 Examples of Returned Realization Models for Different Feature Combinations . . . 47
3.23 Result Model (Partial) for the Sample . 51
3.24 Recall Status of the Woven Model . 52

4.1 Authenticity Examining Process . 56
4.2 JavaParser Structural properties of an Example 58
4.3 Detailed Validation Results for Two Full Machine Learning Pipeline Samples . . . 63
4.4 Recall and Precision for the Complete ML Pipeline Validation Samples 64
4.5 Detailed Validation Results for Two Partial Machine Learning Pipeline Samples . . 65
4.6 Recall and Precision for Partial ML Pipeline Validation Samples 66
4.7 Recall and Precision for Complete ML Pipeline Evaluation Samples 69
4.8 Recall and Precision for Partial ML Pipeline Evaluation Samples 71
4.9 SGroundtruth and SGen in "LoadCSV" Sample . 73
4.10 Feature Coverage in Test Code Samples . 75

viii

List of Tables

3.1 Scope of the Concernification of DL4J . 18
3.2 Combinations of the "Load Data" and "Prepare Data" Feature Interaction 41

4.1 Confusion Matrix for Generated API Validation 54

ix

1
Introduction

1.1 Problem Statement and Motivation
During the past two decades, the field of Artificial Intelligence (AI) has experienced dramatic
growth, from a mostly academic research topic to a practical technology in commercial use. Be-
cause of this, many CS students choose to explore the field of AI during their studies nowadays.
According to the AI index 2022 annual report 1, "1 in every 5 CS students who graduated with
PhD degrees specialized in artificial intelligence/machine learning in 2020". With the influx of
researchers in this field, the total number of AI publications doubled, growing from 162,444 in
2010 to 334,497 in 2021 according to the same report. This phenomenal growth attracts many
inexperienced students or programmers into this field and they take some AI-related courses. In
Udemy, a website for teaching and learning online, machine learning related courses have 7 million
learners2.

The prosperity of AI, and in particular Deep Learning (DL), caused many specialized machine
learning frameworks and libraries to emerge. The APIs of DL libraries are typically vast and
complex, causing beginners to experience difficulties in learning how to correctly use them.

First of all, DL algorithms can be applied to data of different types, e.g., textual data, CSV
data, image or video data, and audio data. Therefore, the APIs of the DL libraries were designed
to support these different formats, which causes many API elements to be defined multiple times,
once for each supported data type. As a result, the API grows significantly in size.

Another obstacle for the inexperienced programmers is that decisions made during one phase
of the machine learning pipeline can affect later stages. A typical machine learning architecture
takes the form of a data processing pipeline, where data is read from one or several input sources,
pre-processed and transformed if needed, and then used to train a neural network. The trained

1https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf
2https://www.udemy.com/topic/machine-learning/

1

1.2 Thesis Contribution

network can then be used for prediction purpose. Since ML is a pipeline with data streaming from
one end to the other, the choice of API usage in one phase might affect the API that needs to
be used in a later phase. For example, the data format of the input data would impact the ways of
preparing the data. After the data preparation, the characteristics of the output data might influence
the choice of network type.

With these two special characteristics of the machine learning libraries, unlike other libraries
for traditional software development in which API usage decisions do not have cascading effects,
DL libraries do require users to have good domain specific knowledge to understand the effects of
their API usage decisions. For inexperienced programmers, e.g., students, it is therefore critical to
assist them with their API choices.

Traditionally, programmers gain the knowledge of the library API usage by reading its doc-
umentation or by working through tutorials. Even though documentation can show the function-
alities and structures of the APIs, according to Gias et al. [28], API documentation usually has
problems because it contains bloated, scattered or tangled information. Additionally, the docu-
mentation or tutorials typically do not provide an abstraction of the library functionality at a high
level. Beginners need to read or follow a significant number of tutorials to obtain a level of un-
derstanding that allows them to start writing code. What’s more, beginners need to search through
the entire API of the library to find what they need if they cannot obtain that information from
the documentation or tutorials. Although sometimes crowd sources, e.g., Stack Overflow, can help
to find high quality answers for specific questions, beginners sometimes struggle to formulate a
question that will allow them to get a good answer using the search engines. Again, a service that
would present a high-level overview of the functionality offered by the DL library, and modularize
the corresponding API elements would greatly guide the users towards the API to be used for their
desired purpose.

1.2 Thesis Contribution
The work presented in this thesis aims at helping machine learning developers, in particular new-
comers that are using a DL library, to make correct use of the librarie’s API.

In particular, we make the following contributions:

• By modularizing the machine learning libraries in a feature-oriented way, we present a new
intuitive way of library documentation that is aligned with the data processing and machine
learning pipeline. Our approach presents an interactive feature model that encodes the high-
level features of the DL framework to the developer. The developer simply selects those
features that they intend to use in their programming task. Our approach then generates the
subset of the DL framework APIs that corresponds to the features chosen by the developer.

2

1.3 Thesis Outline

• To showcase the practicality of our approach, we modularized the API of the popular Java
library DeepLearning4J (DL4J) according to features. Beginner users can interact with the
DL4J feature model using the concern-oriented modelling tool TouchCORE, which ensures
that the developer makes a correct feature selection. The aspect-oriented model weaver
provided by TouchCORE is used to generate the API corresponding to the feature selection
of the user.

• We evaluate the correctness and effectiveness of our approach to successfully retrieve API
classes and methods based on feature selections. Our evaluation on the DL4J library demon-
strates an average recall of 98.9% for API classes and 98.0% for API methods and con-
structors. The respective precision is 19.3% and 13.8%. While the precision rates are not
high, they still represent an improvement of two orders of magnitude compared to searching
through the original complete DL4J API.

1.3 Thesis Outline
The remainder of the thesis is structured as follows: Chapter 2 presents the background knowledge
required to understand the rest of the thesis, especially concern-oriented reuse and the concept of
concernification. It also overviews related work and existing approaches for API documentation
and API recommendation. Chapter 3 explains our approach by showing how we built a feature
model for DL4J, how we linked the different API elements to the features so that we can generate
custom APIs from feature selections, and how it is intended to be used by a beginner developer.
To show the correctness and effectiveness of our approach, chapter 4 defines recall and precision
metrics and then shows how well our concernified DL4J API performs. It also discusses the threats
to validity of our experiments. Finally, Chapter 5 presents a conclusion and discusses future work
related to the concernification of AI libraries.

3

2
Background and Related Works

In this chapter, we discuss the key concepts and approaches that serve as the foundation of our
work. We also describe previous literature on improving API usability, in particular centered
around API documentation.

2.1 Background
2.1.1 Model-Driven Engineering
Model-Driven Engineering (MDE) is an iterative and incremental software development process,
which advocates the use of models as the primary artefact at every stage of the development life cy-
cle. Models raise the abstraction level, allowing different stakeholders to participate in every stage
of software development through different modeling formalisms and notations that are appropriate
for each stage.

Among various forms of modeling choices, such as sketches, informal diagrams, etc., we de-
cided to adopt feature models [10] and class diagram in our thesis. A feature is a concept used
in software product line engineering[18]. A feature represents a distinguishing characteristic of a
software product, usually visible to the customer or user of that product. Feature models encapsu-
late application features and their dependencies in a simple and hierarchical diagram. The features
are structured in a tree where the non-root features have a relationship to their parents (i.e., manda-
tory or optional). Features sharing the same parent have OR or XOR (exclusive or) relationship
among them. Additionally, cross-tree constraints (i.e., requires or excludes) support the definition
of additional relationships.

For example, figure 2.1 shows a simple concern of a deep learning framework which supports
only one type of data as network input. As deep learning involves the process of inputting data into
the network, the non-root features “load data”, “specify network” and “run network” are manda-
tory. Under the feature “load data”, “CSV data” and “image data” have the XOR relationship so

4

2.1 Background

that they cannot be selected at the same time. The first cross-tree constraint means the feature of
“operate data” requires the feature of “CSV data“ to be selected at the same time. The second
cross-tree constraint means feature “operate data” and “image data” can not be chosen together.
These two constraints indicate that this simple deep learning concern supports operating only CSV
data.

Figure 2.1: Feature Model for a Simple Deep Learning Concern

On the other hand, a class diagram works as a blueprint of the system by modeling the classes
defined in the software and their inter-relationships. Class diagrams can be used by developers
to effectively communicate their understanding of a domain, but also to capture the structure of
a software design. As we are planning to model the API of a Java framework, and considering
the fact that Java is an object-oriented language, class diagrams are a suitable means to specify
the framework’s API. In this thesis, we therefore use feature models to specify the high-level
functionality of the DL library and class diagrams to express its API.

2.1.2 Concern-Oriented Reuse
A software system built using object-oriented languages can be modularized with classes. Classes
provide encapsulation of functionality and enable code level reuse. Moreover, a group of related
classes, or components, can be packaged. For example, in Java, packages provide name spaces,
and a group of packages can be put into a JAR file. This is typically how libraries are packaged,
distributed and eventually reused. However, the crosscutting nature of most software concerns
hinders these modularization techniques from fullfilling the design principle of Separation of Con-
cerns (SoC), which advocates separating a software system into distinct sections with as little
overlap as possible. In SoC, each module addresses a separate concern.

As one approach to solve the problem of cross-cutting concerns, aspect-orientation, separates

5

2.1 Background

concerns along additional dimensions. There are many kinds of concerns that are important in
a software development lifecycle. Some concerns align with the domain concepts. Others come
from system requirements or from the development process. According to [25], “Common dimen-
sions of concern are data or object (leading to data abstraction) and function (leading to functional
decomposition). Others include feature (both functional, such as “evaluation,” and cross-cutting,
such as “persistence”), role, and configuration”. In aspect-orientation, concerns are usually called
aspects. To construct the final system, all used aspects are combined by a so-called weaver at
specified places, which are called join points.

Concern-Oriented Reuse (CORE) is a new reuse approach inspired by the ideas of multi-
dimensional separation of concerns [25]. CORE builds upon MDE, software product lines, goal
modelling, and advanced modularization techniques offered by aspect-orientation. CORE defines
flexible modules, called concerns, to achieve a broader scale of software reuse. A concern can
encapsulate any number and kind of software artefacts, from reusable models to reusable code.
Furthermore, a concern in CORE encapsulates not only one specific way of addressing a domain
of interest or software development issue, but many variants that can provide the same or similar
functionality.

To this aim, CORE modularizes a system along features. Each concern has its feature model
to reflect the available variants encapsulated within the concern. Each feature (or combination of
features) can then be associated with the reusable artefacts that describe the structure or behaviour
of that feature. These artefacts that are attached to features are called realization models. Based
on a feature selection in the feature model, a specific configuration of the concern can then be
obtained by composing the realization models corresponding to the feature selection.

2.1.2.1 Composition

Typically, a realization model only contains those model or code elements related to a single fea-
ture. As different features might share the same elements, there is also potential for reuse within
the same concern. To support that, a realization model can extend several realization models in
CORE, thus sharing the model or code elements. To generate a specific configuration of a con-
cern based on a specific feature selection, CORE composes all realization models attached to the
selected features together. The composition algorithm [1] also keep track of the pair-wise relation-
ships between each of the composed elements in the composed model, and from which feature(s)
and realization model the element originated from.

2.1.2.2 Concern Interface

CORE promotes modularity through three concern interfaces that every concern must provide [11]:
variation interface, customization interface, usage interface (VCU).

6

2.1 Background

• The variation interface describes the available variants of a concern, typically presented by
the feature model. Also, the impact model is provided to give the users an indication of how
their feature selections influence the application quality.

• The customization interface describes how a chosen variant can be adapted to the needs of
a specific application. To allow a flexible reuse of a concern, the content in the concern
cannot be completely specified since it depends on the context in which it is applied. As
a result, some elements act as placeholders and need to be completed by the users. For
example, to use Observer Pattern as a concern, the users need to point out which element in
the application should play the role of its subject and observer.

• The usage interface describes how the application can finally access the structure and be-
haviour provided by the concern. For the purpose of information hiding, the details of the
structure and behaviour are not accessible from the outside. Similar to the concepts of API,
the usage interface exposes only the necessary elements to the users to trigger the function-
ality provided by the concern.

2.1.2.3 The CORE Reuse Process

While the process of building a concern is non-trivial and time-consuming, reusing an existing
concern is simple, essentially involving three steps supported by the three concern interfaces:

1. Selecting the features in the variation interface which can best fulfill the user’s need; the
variation interface organizes the possible features as variations and their impact on goals and
system qualities. the impact of choosing a feature can be specified with goal models, accord-
ing to which users select the most appropriate features. Based on this selection, the CORE
tool generates a generic version of the concern containing only those realization models
related to the selected features.

2. Adapting the generic realization models generated in the previous step to the specific reuse
context based on the customization interface; this is done by mapping partial structural and
behavioural model elements of the customization interface to structure and behavioural ele-
ments in the reuse context.

3. Using the model correctly through the usage interface; for example, if the realization models
of the concern take the form of class diagrams, then the usage interface would consist in
public classes and public methods that can be invoked by the user.

7

2.1 Background

2.1.3 Concernification
Concernification is a process of creating a concern interface for a reusable artefact (such as frame-
work) by raising the level of abstraction of its APIs to the modeling level [23]. It enables reuse of
existing APIs or code at the modeling level. To concernify an existing framework, the following
steps are performed to obtain the three interfaces:

1. Variation Interface:

(a) Find the distinct features that the framework provides.

(b) Create a feature model based on the inherent dependencies among the framework fea-
tures. Such dependencies include: OR, XOR, mandatory, optional and cross-tree con-
straints (require and exclude).

(c) Create an impact model by analyzing the high-level goals of the framework.

2. Customization and Usage Interface:

(a) Determine which code elements (e.g., classes or methods) belong to which feature.
Sometimes different features share some code elements.

(b) Create a realization model which groups all API elements belonging to the same fea-
ture. Code elements shared by multiple features should be put into a shared parent
realization model and extended by other realization models.

(c) Determine and specify the usage protocols to use each class in a usage interface.

(d) Identify the code elements which need to be added if a specific feature is selected. Add
these code elements to the customization interface.

Once these interfaces constructed, the reuse process discussed in Section 2.1.2 can be applied
to achieve the benefits of concernification. We summarize the benefits as followed:

• Documents Features: The variation interface of a concern (usually in the form of a feature
model) structures the functionality of the framework at a high-level of abstraction, from the
perspective of framework users. By reading the feature tree and their inter constraints, users
can quickly grasp the framework functionality and the dependencies.

• Tailor the APIs: A framework provides comprehensive functionality thus usually exceeds
the individual users’ need. When facing the enormous options of APIs, users might have
to spend some time digging out the most relevant APIs for their needs. With a concernified

8

2.1 Background

framework, the user can make a feature selection in the variation interface and therefore
access only a subset of the APIs corresponding to the user’s needs. It greatly reduces the
API complexity for users.

• Guarantee Correct Reuse: The customization interface forces the user to follow the rules
or constraints to adapt the framework to the context of reuse. For example, to fulfill the
Observer Design Pattern, the users need to provide a mapping from the subjects or observers
to some elements in their application.

In Schöttle’s work [23], he further proposed an automatic concernification algorithm to pro-
duce an initial concern interface. The automatic concernification algorithm works with a directed
acyclic graph (DAG) based on the inputs of several code examples. Nodes represent the potential
features and are processed in the algorithm based on the available information of the framework
and examples. Each edge represents a multi-set of possible relationships between the features,
where the possible relationships include: inheritance, containment, cross-reference, and structural-
grouping.

2.1.4 TouchCORE
To put the concepts of CORE into practice, effective tooling is necessary. Such tools need to
guide the users through the concern reuse process, and provide the support for interacting with
several models involved (e.g., feature model and realization model). Furthermore, the tool has to
take care of ensuring correct interactions with the concern interfaces (e.g., making correct feature
selections, specifying correct customization mappings, and ensuring consistent use of the concern’s
structure and functionality exposed in the usage interface). The tool also takes care of composing
the realization models based on feature selections (i.e., weaving). There exist tools for creating
and editing feature models (such as FeatureIDE 1) or different kind of realization models (such as
Papyrus 2). Some of them (such as Clafer 3) even provide support for the combination of these two
models.

In this thesis, we used the TouchCORE 4 as it directly supports CORE and the CORE reuse
process [11]. TouchCORE was initially called TouchRAM [1] which exploits Reusable Aspect
Models (RAM) to enable rapid application of reusable design concerns within design models of the
software under construction. TouchRAM was then upgraded to support Concern-Oriented Reuse
(CORE) (see Section 2.1.2 for more details on CORE) and consequently renamed TouchCORE.

1https://featureide.github.io/
2https://www.eclipse.org/papyrus/
3https://www.clafer.org/
4http://touchcore.cs.mcgill.ca/

9

2.2 Related Work

The TouchCORE tool is built on top of Eclipse Modelling Framework (EMF) to define the abstract
syntax for CORE and RAM models. These CORE and RAM models are structured and serialized
in XMI (XML metamodel Interchange) and EMF enables Java code generation from them.

TouchCORE supports feature and impact models, as well as use case diagrams, class diagrams,
sequence diagrams and state diagrams. It can be used by a concern designers to create a concern
with its three interfaces. In the process of concernification, the complexity of the aspect-oriented
model composition is hidden by TouchCORE as it transparently executes the aspect-oriented com-
position algorithm in the background. When a concern is reused by a concern users, TouchCORE
streamlines the reuse process by guiding the concern user’s interaction with the VCU interfaces of
the concern.

2.2 Related Work
This thesis focuses on providing high-level, feature-oriented interface for DL libraries that allows
newcomers to shrink the API of the framework to only those API elements that are related to the
features of interest to the developer.

In general, the API of a library hides the implementation details and complexity of the underly-
ing code from users and exposes only well-defined entry points to trigger the provided functional-
ity. Unfortunately, such a simplification also creates a problem: with limited knowledge about the
internals of the third-party library it is not always easy to use the API correctly. Even though the
API documentation typically provides references and examples that help the users, these examples
are often not comprehensive and don’t cover all important cases.

This section reviews existing related work on API documentation augmentation, work on sup-
porting the understanding and using of APIs, and work on raising library abstraction level.

2.2.1 Improving API Documentation
API documentation is often incomplete and can be augmented by information from crowd sources
such as Stack Overflow, GitHub, websites, etc. Some of the existing approaches augment the API
documentation by adding website reference to it. For example, Subramanian et al. [24] presented
an iterative, deductive method called Baker for linking source code examples to API documen-
tation, which fills the gap between traditional API documentation and example resources. The
approach uses the answers from Stack Overflow, identifies the types and methods in the code snip-
pets, and determines their fully qualified names. With this information, Baker can automatically
augment the API documentation of the types and methods it detected by injecting the code sam-
ple into the API documentation’s webpage. It can also add links to the official APIs into the Stack
Overflow answers. This is realized by using a large database containing information about the code

10

2.2 Related Work

elements in popular APIs. The approach first generates an incomplete abstract syntax tree (AST)
for the code snippet, and then uses information from the database to deduce facts about the AST
nodes iteratively. The iteration stops when either all AST nodes are associated with a single fully
qualified name, or it fails to improve the results for any AST node.

Similarly, Uddin et al. [27] proposed a framework to mine API usage scenarios from Stack
Overflow, which presents the API documentation in a task-based view. Each task consists of a code
example, the task description, and the reactions of developers (i.e., positive or negative opinions)
towards the code example. The approach first links the code sample to the API mentioned in
the Stack Overflow post with that code sample. Then, natural language processing is used to
summarize the discussion around the code sample to generate its natural language description. At
last, the approach analyzes the opinions of the people discussing the post towards the code example
to offer information about code quality. The task related information is then presented to the users
of the framework when they search for API usage scenarios.

Other approaches enrich the content of the API documentation, e.g., adding valuable sentences.
Treude et al. [26] proposed an approach to automatically augment API documentation with “in-
sight sentences” from Stack Overflow. Those sentences are related to a particular API and can
provide insight not contained in the API documentation. To achieve this, Treude et al. developed
SISE (Supervised Insight Sentence Extractor), a novel machine learning based approach that ex-
tracts related sentences from Stack Overflow and summarizes them as "insight sentences". With
this tool, users can directly get the insight sentences right next to the API explanation in the doc-
umentation. SISE achieved a precision of 64% and a coverage of 70% on the development set.
They also conducted a user study among eight software developers to compare SISE with other
state-of-the-art text summarization approaches, where SISE resulted in having the highest number
of sentences considered to provide information not included in the API documentation.

2.2.2 Support for Understanding and Using of APIs
Even though documentation can show the functionalities and usage of an API, according to Gias
et al. [28], API documentation usually suffers from problems of bloated, scattered or tangled
information. Therefore, a lot of studies focus on how to support developers to better acquire
knowledge about APIs other than from API documentation.

For example, Liu et al. [15] proposed an approach for generating query-based class summaries,
using an API knowledge graph (API KG). This method takes a natural language query Q and a class
C from the existing library L as input. Based on that input, the API knowledge graph of the library
L (i.e, API KG(L)) they constructed can extract up to S sentences describing C’s functionality and
up to M methods Mi in C which are most relevant to the query Q. To construct the API knowledge
graph, Liu et al. first developed a web crawler to collect the API reference documentation. Then

11

2.2 Related Work

they developed a parser based on the structure of the collected API documentation to extract API
entities and their properties and relations to build up the API knowledge graph. Using JDK and
Android APIs as an illustration of their approach, the resulting API KG includes 137113 API
entities and 305826 relation edges. To generate S sentences and M methods for a query Q, they
defined a KG-based similarity metric to compute a relevance score between a user query and
the API entities. Given a query Q, the KG-based similarity metric is a linear combination of a
Textual similarity and a Concept similarity for each candidate API entity e: SimpQ, eq “ w1 ˆ

SimtextpQ, eq ` w2 ˆ SimconceptpQ, eq, where w1 ` w2 “ 1. Textual similarity considers the
text context of the query and each API entity’s documentation. Concept similarity measures the
similarity between the semantic representations of their corresponding concepts, which can be
learned from the API knowledge graph.

Likewise, Ponzanelli et al. utilized Stack Overflow to help developers comprehend and develop
software [20]. They provided an Eclipse plugin named SEAHAWK which can automatically formu-
late queries based on the current context in Eclipse. Users can interact with the queries results and
import code samples simply by dragging and dropping. The plugin is composed of a data collec-
tion engine, a search engine, a recommendation engine, and a query engine using natural language
processing technology. They built their database using a public data dump provided byStack Ex-
change 5, which offers XML files to represent all user-contributed content for each website (e.g.,
Stack Overflow). Then the information was extracted from these XML files and converted into
JSon documents for portability reasons. The search engine indexes these documents and makes
them available for queries.

To help the users without prior knowledge and start learning APIs more quickly, Yin et al. de-
signed an API learning service for inexperienced developers [30]. First, they proposed a method to
link the API with its corresponding learning resources from Stack Overflow. Then, they constructed
an API knowledge graph with the APIs and their related threads from Stack Overflow. At last, by
mining how APIs are discussed in Stack Overflow, they proposed a learning entry recommenda-
tion method, where a learning entry is defined as a set of APIs commonly used by developers. The
learning entry recommendation method is achieved by constructing a new knowledge graph which
only contains the learning entry. Users can starts from any API in the learning entry and learn their
related APIs following the links without having to input any query.

Recently, many studies focuses on recommending APIs according to natural language queries
made by developers. For example, Gu et al. proposed DeepAPI, which is a deep learning method
to generate a sequence of API usages based on a natural language query [8]. DeepAPI learns the
sequence of the words in the query, and their associated API sequence. It is achieved by adapting a

5https://archive.org/details/stackexchange

12

2.2 Related Work

model named RNN encoder-decoder. The model encodes the user query into a fixed-length vector,
and generates the APIs sequence based on the vector. Gu et al. empirically evaluated the approach
with more than 7 million annotated code snippets from GitHub and outperformed two state-of-the-
art API learning approaches (i.e., Code Search with Pattern Mining [14] [29] and SWIM [21]).

Since it was published, more advanced techniques have been employed for code and natural
language representation learning. For example, the work CodeBERT proposed by Feng et al. [6]
demonstrates a better performance on several downstream tasks that require reasoning across nat-
ural language and programming languages according to Martin [16]. It is a pre-trained model built
with Transformer-based neural architecture. As it learns general-purpose representation, it sup-
ports downstream NL-PL applications such as natural language code search, code documentation
generation, etc. Results show that CodeBERT achieves state-of-the-art performance on both nat-
ural language code search and code documentation generation. Similarly, Huang et al. proposed
BIKER [9](Bi-Information source based KnowledgE Recommendation), that uses the word em-
beddings technique to calculate the similarity score between two text descriptions: Stack Overflow
posts and API documentation. After obtaining the ranked list of candidate APIs, BIKER summa-
rizes supplementary information to help developers select the most relevant API. The evaluation
with 413 API-related questions demonstrates the effectiveness of BIKER for both class and method
level API recommendation.

2.2.3 Raising Framework Abstraction Level
The Concernification approach discussed in Section 2.1.3 is a way of raising the abstraction level
of a framework. Benefiting from the raise of abstraction level, its reusable code artifact allows
users to access the large amount of framework functionality. Additionally, it can also support the
framework to be reused at the implementation level by understanding the framework functionality
and their corresponding APIs. There are two works focusing on raising a framework abstraction
level: design fragments and framework-specific modeling languages (FSML).

Design fragment is proposed by Fairbanks et al. [5] to help developers use a framework for
achieving a specific goal. For example, a Design fragment could represent a design that uses the
framework DL4J to train a multi-layer network using CSV data. Users need to provide some code
elements and declare the relationship of those code elements they provided with the elements the
framework provides, i.e., whether they must sub-class a class, implement an interface or override
a method. These code elements and their related framework APIs are the design fragments. A
design fragment consists of classes, interfaces, methods and fields. It can also include one or
several behavioural specifications, e.g., the users need to create new instances or invoke methods.

The design fragment is defined using an XML schema definition (XSD). Furthermore, it can
also include some free-form text for documentation reasons. The free-form text can add additional

13

2.2 Related Work

details which cannot be delivered by pure XSD, such as whether a method is a callback method
and how often it is invoked. Design fragments defined in XSD can be read and processed by an
Eclipse plugin provided by the authors. This Eclipse plugin can 1. display a catalog of Design
fragments, 2. display a list of the Design fragments that associate to the source code, 3. display a
set of problem markers that appear in the standard Eclipse problem view,

In general, design fragments specify a subset of the framework APIs and user-relevant code
like concernification does. However, there are still some difference between design fragments and
concernification. For example, the collection of code examples have no relationships (groupings,
constraints, etc.) between them in design fragments. On the contrary, in concernification, the
code examples are specifically associated with the framework’s high-level features and the inter-
relationships of the features are specified in the feature model. Also, the design fragments lan-
guage definition only provides documentation text to distinguish callback methods and framework-
provided methods. But in concernification, the framework-provided methods are defined in the
usage interface while all callback methods are part of the customization interface.

Another approach for abstracting a library is proposed by Antkiewicz et al., which introduces
framework-specific models [2] as a way to help developers build a framework-based application.
According to Antkiewicz et al., “a framework-specific model is a representation of a framework-
based application that is useful for answering questions related to the usage of the framework’s
API by that application”. Those questions concentrate on the way that the application is using the
framework. For example, in order to use the framework correctly, how should the application be
using the framework, etc.

To express a framework-specific model, Antkiewicz et al. used framework-specific modeling
languages (FSMLs). The FSML formalizes the set of abstractions that the APIs provides (referred
as API concepts below), and the constraints imposed by the framework. FSML makes use of
cardinality-based feature model [3] as modeling notation. The cardinality-based feature model
enables features to have multiplicity. The features are closely related to the code by encoding
the required code which need to be provided by the users, such as the class extending, instance
instantiation. Furthermore, there exist mappings between features and code patterns (structural or
behavioral) to define their correspondence. In this way, a framework-specific model using FSML
represents a feature configuration to describe a framework-based application.

In contrast to the concernification described in Section 2.1.3, the feature model in FSML is
more complicated and fine-grained as it contains variations, customization and usage steps to allow
more flexibility in customization. In concernification, the variation interface encodes a high-level
view of the framework and specifies user-perceivable functional features. The customization and
usage are handled separately in their corresponding interfaces. Hence, the approach of FSML tar-

14

2.2 Related Work

gets the experienced developers having knowledge in the framework, whereas the concernification
approach is more suitable for the beginners of the framework. In the future, the possibility of com-
bining these two approaches can be investigated to utilize both of their advantages. For example,
we can provide a simple framework-specific model for the beginners. For the experienced devel-
opers, a more elaborate feature model can be provided to enable more flexible customization for
the experienced developers in FSML.

2.2.4 Summary
In this Chapter, we first reviewed some background concepts. We started from Model-Driven
Engineering (MDE) which advocates the use of different modeling formalisms and notations in
different software phases. Among these modeling formalisms, we introduced feature models and
class diagrams in detail. Then, we explained Concern-Oriented Reuse (CORE), an approach for
packaging reusable software development artefacts while at the same time providing Separation of
Concerns (SoC). At the end of the background section, we brought up the concept of Concerni-
fication, an approach to raise the abstraction level of a framework and modularize a framework’s
API according to user-relevant functional features.

In the related work section, we reviewed some existing related work on API documentation
augmentation, work on supporting the understanding and using of APIs, and work on raising li-
brary abstraction level. Most of the work in supporting beginners using API utilizes machine
learning technology and achieved relatively good results. To raise the abstraction level of a frame-
work, to the best of our knowledge, there exists no other approach that addresses all the benefits of
concernification.

To sum up, most existing approaches for API recommendation require the users to provide a
research query. However, for an inexperienced developer with little prior knowledge about the
library or framework, it could be challenging to write a good query. Furthermore, according to
Robillard and DeLine [22], one of the obstacles faced by developers who are trying to learn new
APIs is the lack of knowledge about the API’s high-level design. Our work fills such a gap by
using Concernification to present the overall architecture and functionalities of a framework with
a feature model. Beginners can select the desired features and get the API recommendation based
on their needs directly by interacting with the concern interfaces.

15

3
Concernification of a DL Library

This chapter presents the details of our approach by applying it to a concrete DL library: Deep
Learning For Java (DL4J). Section 3.1 explains why we chose DL4J to showcase our approach.
Section 3.2 presents the preparation process for the concernification of DL4L, as well as what
information was consulted for building the concern-oriented model. It is followed by the demon-
stration of the feature model for DL4J in Section 3.3), its corresponding realization model in Sec-
tion 3.4, and how we address feature interactions in Section 3.5. Section 3.6 illustrates how the
final concern-oriented API can be used by beginners.

3.1 Deep Learning for Java
As claimed by a survey published in 2019 [17], Java and Scala are not as popular in the DL/ML
research community as Python. Since Java is not a mainstream languages in the field of Ma-
chine Learning, the number of existing Java libraries for Machine Learning is limited compared to
Python.

In this thesis, we chose Deep Learning for Java (DL4J) library to showcase our approach aimed
at helping beginners with DL library APIs. DL4J is to our knowledge currently the main DL library
used by the Java community. It is completely open-source, published using the Apache 2.0 licence
and under open governance at the Eclipse Foundation. DL4J is still continuously updated by its
contributors. Whenever a project requires the use of Java, but also needs to perform some DL task,
many applications have chosen to use DL4J rather than paying the overhead of integrating Java and
Python so that business functionality can be programmed in Java while DL-related functionality is
handled in Python. In the end, DL4J has become the choice for many commercial industry-focused
distributed DL platforms where Java is predominant. In github, the DL4J repository has gained
over 12,000 stars. Besides its wide commercial usage, DL4J is also a popular library among open
source projects, as demonstrated by the over 37,000 code examples using DL4J found in Github.

16

3.2 Concernification Preparation

3.2 Concernification Preparation
DL4J comes with several documentation artefacts:

• Its source code in github1;

• The API documentation2;

• Runnable code examples3;

• Its official tutorial website4;

• A book [19] co-written by DL4J’s main contributor Adam Gibson.

To concernify a framework, in-depth understanding of the framework is necessary. We first
prepared ourselves with some basic understanding of DL4J library by reading its overview5 from
its official tutorial. Then we downloaded the official sample codes and ran 20 of them to gain an
overall knowledge of the most commonly used APIs in specific use cases. In the procedure of
concernifying the framework, we also referred to the official community forum6 and some posts
on the Internet.

DL4J has the following submodules:

• Datavec: A data transformation library converting raw input data to tensors suitable for
neural networks;

• Nd4j: DL4J uses linear algebra and matrix manipulation as the basis of scientific calculation,
which is realized by ND4J. It is similar to the functions that NumPy provides to Python and
contains a mix of NumPy operations and TensorFlow/PyTorch operations in Java;

• Samediff: a TensorFlow/PyTorch like framework for the execution of complex graphs. This
framework is lower level, but very flexible. It’s also the base API for running ONNX (Open
Neural Network Exchange, which is an open format built to represent machine learning
models) and TensorFlow graphs;

1https://github.com/eclipse/deeplearning4j
2https://javadoc.io/doc/org.deeplearning4j/deeplearning4j-nn/1.0.0-M1/index.html
3https://github.com/eclipse/deeplearning4j-examples
4https://deeplearning4j.konduit.ai/
5https://deeplearning4j.konduit.ai/
6https://community.konduit.ai/

17

3.2 Concernification Preparation

• Libnd4j: A lightweight, standalone C++ library that enables math code to run with good
performance on different devices;

• Python4j: A python script execution framework easing the deployment of python scripts into
production;

• Apache Spark Integration: An integration with the Apache Spark framework enabling the
execution of deep learning pipelines on Spark.

Because of all the submodules, DL4J is a massive library, and the developers highly recom-
mend using Maven to manage and run DL4J-related projects. Concernifying such a huge frame-
work is out of the scope of a master thesis. Furthermore, because our work aims at helping beginner
users of DL4J, we decided to only concernified a subset of DL4J library, a part that would most
likely be used by the beginners. Since the developers recommend using Maven, the units of mod-
ularization of DL4J this thesis based on are jar files. Table 3.1 lists all the jar files used for
the concernification of DL4J described in this thesis. The version of DL4J we used to build our
model is 1.0.0-M1.1 unless the latest version for some specific jar files is 1.0.0-beta7 unless the
latest version for some specific jar files is 1.0.0-beta7.

Neural Network

Implementations
deeplearning4j-core-1.0.0-M1, deeplearning4j-nn-1.0.0-M1

Loading and Vectorizing Data

datavec-api-1.0.0-M1, datavec-data-audio-1.0.0-beta7,

datavec-data-codec-1.0.0-beta7, datavec-data-image-1.0.0-M1,

deeplearning4j-datasets-1.0.0-M1, datavec-data-NLP-1.0.0-beta7,

deeplearning4j-datavec-iterators-1.0.0-M1

Computing Library for JVM

nd4j-api-1.0.0-M1, nd4j-common-1.0.0-M1,

nd4j-native-1.0.0-M1, nd4j-native-api-1.0.0-M1,

nd4j-parameter-server-1.0.0-M1
Table 3.1: Scope of the Concernification of DL4J

To simplify the process, we extracted the contents in these jar files, and then combined them
into a single jar file called DL4J_ CORE.jar. For this jar file, we elaborated a feature model using
the example codes and official tutorials. The feature model was iteratively refined until it reflected

18

3.3 Feature Model

the DL4J library’s functionalities from the user’s perspective. To give the beginners an overview of
the library functionalities properly, the feature model is constructed in a machine learning pipeline
including the features of data preparation, network specification, and network operation.

Inside this DL4J_ CORE.jar, there are 3741 public classes and 92196 public functions (i.e.,
normal methods and constructors). It is still a huge library even after we narrowed down the scope
by excluding some advanced functionalities. In Chapter 4, we used these two figures which reflects
the original library size, and compared them with the number of classes and functions returned by
our concernified library in order to showcase the concern’s ability in reducing the API elements
exposed to the users.

3.3 Feature Model
As presented in Section 2.1.3, the first step of concernification involves identifying the user-
perceivable features and creating a feature model based on the inherent dependencies among the
framework features. In this section, we present the feature model that we elaborated manually for
DL4J. The feature model tree is organized into subtrees that follow the order of a typical machine
learning pipeline: from loading the data, to data operations, to specifying the network and then
running it. In the following, we will present each subtree in a separate subsection.

Figure 3.1 presents the complete feature model. As the legend shows, the filled circle means
the corresponding feature is mandatory, while the hollow circle marks the feature is optional.
Furthermore, a parent feature can group a set of features using an OR relationship (depicted with
a filled arc), which means that at least one of the child features must be chosen. Finally, an XOR
relationship among child features, depicted with a hollow arc, means that exactly one of the child
features must be chosen.

Also, the feature model specifies some cross-tree constraints. These constraints stem from the
logic of the machine learning pipeline, e.g., to evaluate a neural network, the network needs to be
trained first, and only then the inference process can be executed. Other constraints are due to our
simplification of the library, for example, we only provide data operations for formats of data that
are likely to be used by beginners.

3.3.1 Load Data
Data loading and preparation is a pivotal phase in machine learning [31]. It ensures accuracy in
the data, which somehow influences the model quality. In DL4J, the submodule named Datavec
handles the Extract, Transform, Load (ETL) process and vectorization component in a machine
learning pipeline [19]. In this section, we introduce the data loading procedure and its correspond-
ing concernified features.

19

3.3 Feature Model

Figure 3.1: Feature Model for Deeplearning4J

In most cases, data for machine learning starts in a human-readable format. For example, there
are formats like text data, image data, and audio data which are regularly processed by human eyes,
ears, and brains in daily life. These formats of data cannot be directly fed into a Neural Network
but must first be transformed into a vector representation. In DL4J, the process of loading data not
only reads the raw data from disk, but also transforms the raw data into vectors. For simplification,
we only provides 5 frequently used data types: text, audio, video, CSV, and image types. Since in
some situations the developer might have data in multiple formats, the relationships between the
data types in the feature model is specified as OR.

The users who want to test the machine learning algorithm on their own datasets, they need
to convert their original raw data into vectors. Usually the raw data is in a single format, hence
the Datavec module offers different readers to load each specific format of data. Since in this
thesis we focus on simplifying the DL4J library API for beginners, we only take the most common
data formats, i.e., CSV data, text data, image data, audio data, and video data, into account. We
furthermore classified the data according to whether they are sequential or not.

For the beginners, toy datasets are pivotal to get started with learning the basic concepts of
machine learning. D4LJ comes with a library of built-in datasets, including but not limited to:

• MNIST database [13] (Modified National Institute of Standards and Technology database)
is a handwritten digits dataset, containing a training set of 60,000 examples, and a test set of
10,000 examples. It is one of the most commonly used databases for benchmarking machine
learning algorithms.

• Iris dataset [7] consists of 50 samples from each of three species of Iris flowers. Four fea-
tures were measured for each sample: the length and the width of the sepals and petals. This
dataset became a typical test case for many statistical classification techniques in machine
learning.

• TinyImageNet (subset of ImageNet [4]) contains 100000 images of 200 kinds of objects

20

3.3 Feature Model

(500 for each object) downsized to 64×64 colored images. Each kind of object has 500
training images, 50 validation images and 50 test images. Since it is a subset of ImageNet,
researchers can use TinyImageNet to get an understanding of their models’ ability more
quickly.

• CIFAR-10 [12] is a collection of images that are commonly used to train machine learning
and computer vision algorithms, consisting of 60000 color images with the size of 32x32
categorized into 10 kinds of objects, with 6000 images per object.

Figure 3.2 shown below presents a closer look at the subtree rooted at the feature load data.

Figure 3.2: A subtree of the DL4J Feature Model related to Loading Data

As illustrated in Figure 3.2, selecting at least one of the subfeatures of load data is mandatory
since Neural Networks always require data for training or prediction. Users can either choose to
use their own raw data or use the library’s built-in datasets as shown by the "XOR" children of
load data.

3.3.2 Prepare Data
In the field of machine learning, preparing data means loading it and often processing it to put
it into the right format and/or adjust the value range. In the previous section we have already
discussed how to load the data. After loading, the raw input data is automatically transformed
into a Neural Network readable format called vector, which can already be fed into a Neural

21

3.3 Feature Model

Network for training. Because of this, the operate data subtree is not mandatory in our feature
model. However, in practice, some data modification operations are usually performed on the data
to increase the data quality, since raw data are often error-prone.

In our feature model, to make it easier for beginners to understand, we classified the optional
data operations into 3 categories: structuring data, transforming data, and saving data.

• Structuring data means changing the dimension of vectors. For CSV data, for example, we
can add or delete a column, which results in modifying the shape of the data. If we consider
image data as a 2-dimensional array, operations like resizing, flipping, rotating or cropping
are changing the dimension of it, which also falls into the category of structuring data.

• Transforming data means changing the value range or value type of data. Take CSV data
as an example. It is possible to scale the values of a numeric column into a certain range
using the formula x

1

“ px ´ xminq{pxmax ´ xminq. We can also convert a categorical value
into an integer value. In image processing, normalization is a process that changes the range
of pixel intensity values. These kinds of operations modify the value range of the data.

• Saving data refers to saving the processed data onto the local hard disk in case the data are
needed in the future in processed form. In this way, users only need to load the processed
data directly and use them without having to process them again.

Even though audio data, video data and text data can be structured and transformed, considering
the fact that machine learning beginners usually do not start from that kind of data, we built our
corresponding realization model only for CSV and image data. To express this decision in our
feature model, we add a constraint that structuring or transforming data requires non-sequence
data loaded.

As seen in Figure 3.3, the "operate input data" feature is optional, shown by the hollow circle
on the relationship. This means that users can choose to not select it. If they decide to choose it,
then they should choose one or several among the features "structure data", "transform data" and
"save data".

Figure 3.3: Preparing Data Part in the DL4J Feature Model

22

3.3 Feature Model

3.3.3 Specify Network
After the preparation of the data comes the phase of specifying the Neural Network. In this phase,
users need to consider two things ahead:

• The type of the Neural Network; DL4J has two types of networks comprised of multiple
layers: the MultiLayerNetwork, which is essentially a stack of neural network layers (with
a single input layer and single output layer), and the ComputationGraph, which allows for
greater freedom in network architectures.

• The way the Network is being built; DL4J supports loading a saved model from the disk,
loading a built-in model, or manually constructing the network layer by layer.

MultiLayerNetwork is the kind of network most frequently used by beginners who do not need
a complex and branched network graph. It is a simple and sequential model, as opposed to the
ComputationGraph, which allows multiple layers of inputs and outputs, and a directed acyclic
graph connection structure between the layers.

After the selection of the network type, users can construct the network either by loading it
or by manually building it. MultiLayerNetwork and ComputationGraph both have save and load
methods. Therefore, a user can load the network from disk and recover it for further training or
move on to using the network for prediction or evaluation.

Another loading choice is loading a built-in network provided by the DL4J framework. DL4J
comes with a library of existing models called model zoo 7 that can be accessed and instantiated
directly. The model zoo includes pre-trained weights for different datasets that are downloaded
automatically. The model zoo comes with well-known image recognition configurations in the
deep learning community. The zoo also includes an LSTM for text generation, and a simple CNN
for general image recognition. There are 16 types of networks included in the model zoo. In the
feature model, they are classified into MultiLayerNetwork and ComputationGraph, which means
to use them, the users need to know what type they belong to.

To manually build a Neural Network, its architecture is the first and foremost consideration.
The Neural Network architecture is made of individual units called neurons that mimic the bio-
logical behavior of the brain. Each layer in a neural network configuration represents a group of
hidden units. When layers are stacked together, they represent a deep neural network. The cre-
ativity of the famous networks (e.g., AlexNet, CNN, VGG...) comes from their architectures. All
layers available in DL4J can be used either in a MultiLayerNetwork or ComputationGraph. When

7https://deeplearning4j.konduit.ai/deeplearning4j/reference/model-zoo

23

3.3 Feature Model

configuring a neural network, the user provides the layer configuration as input and the network in-
stantiates the specified layer automatically. What is special about the ComputationGraph network
is that since it offers greater freedom in the network architecture, some branches of layers can be
joined together using vertices.

To understand a neural network, apart from its architecture, its parameters and hyper-parameters
are also critical.

• Parameters are the coefficients of the model, and they are chosen by the model itself and
updated during the learning process.

• Hyper-Parameters (e.g., activation function, momentum, minibatch size, epochs, learning
rate...) are not updated during the training process. Therefore, initialization is needed to
enable the best network performance.

In our feature model, we call these hyper-parameters high-level settings.
The feature model subtree related to specifying the Neural Network was built to reflect the

discussion above. As illustrated in Figure 3.5, the feature "specify network" and the two sub-
features "network type" and "construct network" are mandatory. Since DL4J provides default
settings for the hyper-parameters, the feature "customize high-level settings" is optional.

Figure 3.4: Specifying Network Part in DL4J Feature Model

3.3.4 Operate Network
The most important phase in the machine learning pipeline is to operate the network, which in-
volves training, predicting and evaluating. Training refers to the process where a machine learning

24

3.4 Realization Models

network learns the patterns contained in sufficient training data for learning a specific task. Evalu-
ation of a neural network involves calculating a performance measure that indicates how well the
network is trained. The measurement is obtained by comparison of the network output with known
labels on some test data. If the performance measure meets the expectation, the trained network
can be applied for prediction on unknown data. Considering the main purpose of using DL4J is
to run the network for the three processes discussed above, we made the feature "run network"
mandatory.

Apart from running the network as discussed above, DL4J also provides an API to store a
network on disk, i.e., saving the network architecture and its parameters. This works for trained,
half-trained or untrained networks. The differences between the networks with the same architec-
ture are their parameter values. Untrained networks have the default parameters when they were
initialized. With the iteration of the epochs and learning process, the parameters evolve according
to the algorithm. If the users want to use current model for further training or prediction, they can
save it on disk and load it when necessary.

Figure 3.5: Operating Network Part in DL4J Feature Model

3.4 Realization Models
In this section, we are going to talk about how to modularize the API elements (classes, methods,
constructors) of DL4J into realization models that are attached to their corresponding features. In
this way, a desired subset of the DL4J API elements based on the feature selection can be generated.
We will discuss the essential API elements for each features first by presenting some code snippets
from the official DL4J examples in its GitHub repository. After that, we will show the realization
models containing these API elements.

25

3.4 Realization Models

3.4.1 Data Loading
The two essential classes in the process of data operation are RecordReader and DataSetIterator.

• The RecordReader is a class in the DataVec module that helps convert byte-oriented input
into data that is represented in form of records, i.e., a collection of elements that are fixed in
number and indexed with a unique ID. Converting data to records is the process of vector-
ization. The record itself is a vector, each element of which is called a feature8

• The DataSetIterator is a DL4J class that traverses the elements of a list. An iterator passes
through the data list, accesses each item sequentially, keeps track of how far it has progressed
by pointing to its current element, and modifies itself to point to the next element with each
new step in the traversal.

Datavec supports the formats of tabular (comma-separated values [CSV] files, etc.), image, and
time-series datasets, both for single machine and distributed (Apache Spark) applications. Users
can use the corresponding RecordReader and DataSetIterator to load their datasets. Here is a code
snippet illustrating the APIs of RecordReader and DataSetIterator.

// Instantiating RecordReader. Specify height, width and channels of images.

// Note that for grayscale output, channels = 1, whereas for RGB images,

channels = 3

RecordReader recordReader = new ImageRecordReader(28, 28, 3);

// Point to data path.

recordReader.initialize(new FileSplit(new File(labeledPath)));

// DataVec to DL4J

DataSetIterator iter = new RecordReaderDataSetIterator(recordReader, 784,

labels.size());

Listing 3.1: Example of Loading Image Data

Figure 3.6 is the corresponding realization model containing the API elements in the above
code snippet.

8The term feature used here is from the world of Machine Learning, and should not be confused with the features
found in a feature model as used in Software Product Lines.

26

3.4 Realization Models

Figure 3.6: Realization Model of Loading Image Data (Partial)

For the built-in datasets, DL4J provides APIs that directly access them. For example, Mnist-
DataSetIterator is an API that provides simple access to the MNist data set, even automatically
downloading data in the background. It extends the DataSetIterator class.

Here is a code snippet using it:

//Get the DataSetIterators:

DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize, true,

rngSeed)

Listing 3.2: Example of Using Library Dataset

Also, in some cases, users might have more than one data format they want to work with.
Hence, there are two classes designed for this situation: ConcatenatingRecordReader and Com-
posableRecordReader. These classes can integrate different readers so that users can use them to
load multiple types of data.

Figure 3.7 illustrates how these two classes should be used depending on the source data format.
In the illustrated example there are three types of data: Image data, CSV data, and Text data. Their
corresponding readers are ImageRecordReader, CSVRecordReader, and LineRecordReader.

ConcatenatingRecordReader can combine these three readers into one single reader. That
combined reader reads the data sequentially in the order of the contained readers. The numbers of
data records of each type does not necessarily have to be the same. In the example illustrated in
the figure, the first reader reads 3 images, the second reader reads 3 CSV records, while the third
reader only reads 2 text records. As a result, the ConcatenatingRecordReader will read 8 records.

The ComposableRecordReader operates differently. It iterates over each readers reading only
one record each, and then combining the read records into an individual record. Thus, the number
of records of each reader should be the same. In the example, the ComposableRecordReader will

27

3.4 Realization Models

have the same number of records as its composed readers, which is 3.

Figure 3.7: An example illustrating the difference between ComposableRecordReader and Con-
catenatingRecordReader

The API provided by the ConcatenatingRecordReader and ComposableRecordReader is iden-
tical. Since the constructors of both classes accept a variable number of arguments (zero or more),
in practice, users only need to pass all the RecordReaders corresponding to the data formats they
want to process to the constructor when instantiating one of these classes.

// First RecordReader for CSV data

CSVRecordReader rr = new CSVRecordReader(0, ’,’);

rr.initialize(new FileSplit(new ClassPathResource("iris.csv").getFile()));

// Second RecordReader for Image data

RecordReader rr2 = new ImageRecordReader(28, 28, 3);

rr2.initialize(new FileSplit(new File(labeledPath)));

// ConcatenatingRecordReader

RecordReader rrConcatenating = new ConcatenatingRecordReader(rr, rr2);

// ComposableRecordReader

RecordReader rrComposable = new ComposableRecordReader(rr, rr2);

Listing 3.3: Example of Loading Multiple format of Data

28

3.4 Realization Models

Figure 3.8 is the corresponding realization model containing the API elements in the above
code snippet.

Figure 3.8: Realization Model of Loading Multiple format of Data (Partial)

3.4.2 Data Operation
As discussed in section3.3.1, we only included CSV and image data operations in the API we are
generating, considering the fact that this is what beginners use most of the time.
CSV Data Operations

As a reminder, in our feature model the data operations are modularized into operations for
structuring the data, and for transforming the data.

Structuring CSV Data To structure the CSV data, there are two classes involved: Schema and
TransformProcess. Schemas are used to describe the layout of tabular data. The users need to use
Schema first to define the layout of their current data.

Schema inputDataSchema = new Schema.Builder()

.addColumnsString("DateTimeString", "CustomerID", "MerchantID")

.addColumnInteger("NumItemsInTransaction")

29

3.4 Realization Models

.addColumnCategorical("MerchantCountryCode",

Arrays.asList("USA","CAN","FR","MX"))

.addColumnDouble("TransactionAmountUSD",0.0,null,false,false)

.addColumnCategorical("FraudLabel", Arrays.asList("Fraud","Legit"))

.build();

Listing 3.4: Example of Defining CSV Data Schema

In this code example, Schema describes the layout of the data by adding columns. These
columns are also specified with the data type (e.g, String, Integer, Double or Categorical). Note
that the order of the columns should be exactly the same as the original data so that the Schema
won’t have divergence with the original data.

After defining the data layout, imagine the situation when the users want to remove certain
unnecessary columns or rename columns, this is where TransformProcess engages.

TransformProcess tp = new TransformProcess.Builder(inputDataSchema)

.removeColumns("CustomerID","MerchantID")

.renameColumn("DateTimeString", "DateTime")

.build();

Listing 3.5: Example of Structuring CSV Data

Figure 3.9 is the corresponding realization model containing the API elements in the above
code snippet.

30

3.4 Realization Models

Figure 3.9: Realization Model of Structuring CSV Data (Partial)

Transforming CSV Data To transform the CSV data, TransformProcess is also used. The class
provides some APIs that can perform filtering or value replacing.

TransformProcess tp = new TransformProcess.Builder(inputDataSchema)

.conditionalReplaceValueTransform(

"TransactionAmountUSD", //Column to operate on

new DoubleWritable(0.0), //New value to use when the condition is

satisfied

new

DoubleColumnCondition("TransactionAmountUSD",ConditionOp.LessThan,

0.0)) //Condition: amount < 0.0

.stringToTimeTransform("DateTimeString","YYYY-MM-DD HH:mm:ss.SSS",

DateTimeZone.UTC)

.build();

Listing 3.6: Example of Replacing Value on CSV Data

Besides, neural networks work best when the data used for training is normalized, constrained
to a range between -1 and 1. There are several classes for normalization strategies. But here we

31

3.4 Realization Models

only cover the class NormalizerStandardize, which normalizes feature values (and optionally label
values) to have 0 mean and a standard deviation of 1.

DataSetIterator trainData = new MnistDataSetIterator

(batchSize, true, rngSeed);

// Normalize the training data

DataNormalization normalizer = new NormalizerStandardize();

normalizer.fit(trainData); // Collect training data statistics

trainData.reset();

// Use previously collected statistics to normalize. Each DataSet

// returned by ’trainData’ iterator will be normalized

trainData.setPreProcessor(normalizer);

Listing 3.7: Example of Normalizing CSV Data

Figure 3.10 is the corresponding realization model containing the API elements in the above
code snippet.

Figure 3.10: Realization Model of Transforming CSV Data (Partial)

32

3.4 Realization Models

Image Data Operations

Structuring Image Data In our model, structuring image data means changing the size of it, like
resizing or cropping. Users can apply ResizeImageTransform and CropImageTransform to perform
their tasks.

ResizeImageTransform rit = new ResizeImageTransform(28, 28);

ImageRecordReader reader = new ImageRecordReader(56, 56, 3, labelGenerator,

rit);

CropImageTransform cit = new

CropImageTransform(cropTop,cropLeft,cropBottom,cropRight);

ImageRecordReader reader2 = new ImageRecordReader(56, 56, 3, labelGenerator,

cit);

Listing 3.8: Example of Structuring Image Data

Figure 3.11 is the corresponding realization model containing the API elements in the above
code snippet.

Figure 3.11: Realization Model of Structuring Image Data (Partial)

Transforming Image Data Transforming image data means changing the pixel value of the im-
age. There are several classes in charge of this. EqualizeHistTransform flattens the intensity distri-
bution curve, which can be used to improve the contrast of the image. ImagePreProcessingScaler
can normalize the image pixel color values into a specified range.
Saving Data Operations To save the data, whether they are preprocessed or not, CSV or Image
data, the DataSet class is responsible for it. DataSet is the return type of the DataSetIterator.next().
Thus, no matter whether the data is preprocessed or not, as long as the users obtains a DataSet
object, it can be directly fed into the Neural Network or saved to disk.

// Example of CSV data

33

3.4 Realization Models

CSVRecordReader rr = new CSVRecordReader(0, ’,’);

rr.initialize(new FileSplit(new ClassPathResource("iris.csv").getFile()));

DataSetIterator iter = new RecordReaderDataSetIterator(rr, 784,

labels.size());

int counter = 1;

while (iter.hasNext()) {

String path = FilenameUtils.concat(dir, "dataset-" + (counter + ".bin");

iterator.next().save(new File(path));

counter += 1;

}

// Example of Image data

DataSetIterator iterator = new MnistDataSetIterator(batchSize, true, rngSeed);

int counter = 1;

while (iterator.hasNext()) {

String path = FilenameUtils.concat(dir, "dataset-" + (counter + ".bin");

iterator.next().save(new File(path));

counter += 1;

}

Listing 3.9: Example of Saving Data

Figure 3.12 is the corresponding realization model containing the API elements in the above
code snippet.

Figure 3.12: Realization Model of Saving Data (Partial)

34

3.4 Realization Models

3.4.3 Specify Network
As discussed in the section 3.3.3, MultiLayerNetwork and ComputationGraph are the most fre-
quently used classes. To build them, their configurations (hyper-parameters and layers) need to be
specified first. And then pass these configurations to their objects during instantiation. At last, us-
ing the API MultiLayerNetwork.init() or ComputationGraph.init() to finalize the building process.

// Configuration of MultiLayerNetwork

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()

.updater(new Sgd(0.01))

.list()

.layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)

.weightInit(WeightInit.XAVIER)

.activation("relu")

.build())

.layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)

.weightInit(WeightInit.XAVIER)

.activation("softmax").weightInit(WeightInit.XAVIER)

.nIn(numHiddenNodes).nOut(numOutputs).build())

.pretrain(false).backprop(true).build();

// Pass the configuration to a MultiLayerNetwork

MultiLayerNetwork multiLayer = new MultiLayerNetwork(conf);

multiLayer.init()

Listing 3.10: Example of Configuring MulitLayer Network

In the code snippet of the MultiLayerNetwork, after setting the hyper-parameter (i.e., updater),
it uses the API NeuralNetConfiguration.Builder().list() to collect the stack of layers. Since the
layers of a multilayer network are sequential, it just needs to add the layers orderly.

However, in a computation graph, the API NeuralNetConfiguration.Builder().graphBuilder()
is used to build the graph. For example,

• ComputationGraphConfiguration.GraphBuilder.addInputs(String... inputNames) specifies
the inputs to the network, and their associated labels.

• ComputationGraphConfiguration.GraphBuilder.addLayer(String layerName, Layer layer, String...
layerInputs) add a layer with the specified name and specified inputs.

• ComputationGraphConfiguration.GraphBuilder addVertex(String vertexName, GraphVertex
vertex, String... vertexInputs) adds a GraphVertex to the network configuration.

35

3.4 Realization Models

• ComputationGraphConfiguration.GraphBuilder setOutputs(String... outputNames) sets the
network output labels.

// Configuration of ComputationGraph

ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()

.updater(new Sgd(0.01))

.graphBuilder()

.addInputs("input1", "input2")

.addLayer("L1", new DenseLayer.Builder().nIn(3).nOut(4).build(), "input1")

.addLayer("L2", new DenseLayer.Builder().nIn(3).nOut(4).build(), "input2")

.addVertex("merge", new MergeVertex(), "L1", "L2")

.addLayer("out", new OutputLayer.Builder().nIn(4+4).nOut(3).build(),

"merge")

.setOutputs("out")

.build();

// Pass the configuration to a ComputationGraph

ComputationGraph computationGraph = new ComputationGraph(conf);

computationGraph.init()

Listing 3.11: Example of Configuring ComputationGraph

To load a multilayer network or computation graph from the local disk, the programmer just
needs to specify the file locations of the networks and use the corresponding API:

// Load the MultiLayerNetwork

MultiLayerNetwork net2 = MultiLayerNetwork.load(new File(filePath), true);

// Load the ComputationGraph

ComputationGraph net2 = ComputationGraph.load(new File(filePath), true);

Listing 3.12: Example of Loading Network from Local Disk

Loading a pre-existing model from the DL4J ModelZoo is also easy. For example, the follow-
ing code illustrates how a programmer instantiates a fresh, untrained network of AlexNet:

ZooModel zooModel = AlexNet.builder()

.numClasses(numberOfClassesInYourData)

.seed(randomSeed)

.build();

Model net = zooModel.init();

Listing 3.13: Example of Loading Built-in Model

36

3.4 Realization Models

Some models have pretrained weights available, and a small number of models are pretrained
across different datasets. PretrainedType is an enumerator that outlines different weight types,
which includes IMAGENET, MNIST, CIFAR10, and VGGFACE.

For example, users can initialize a VGG-16 model with ImageNet weights like so:

ZooModel zooModel = VGG16.builder().build();

Model net = zooModel.initPretrained(PretrainedType.IMAGENET);

Listing 3.14: Example of Loading Built-in Model with Pretrained Weights

Due to the complexity of the realization models for the feature "Specify Network", the corre-
sponding realization models are omitted.

3.4.4 Operate Network
As discussed in the section above, the APIs to run a MultiLayerNetwork or ComputationGraph are
also different. To train a network, the corresponding network objects have the function MultiLay-
erNetwork.fit(DataSet dataset) or ComputationGraph.fit(DataSet dataset) (and other overloading
functions) enabling the dataset to be fed into the models.

DataSet trainingData = data.getTrain();

// create and train a multilayer network for 1000 epochs

MultiLayerNetwork model = new MultiLayerNetwork(multilayerNetworkConf);

model.init();

for(int i=0; i<1000; i++) {

model.fit(trainingData);

}

// create and train a computation graph for 1000 epochs

ComputationGraph computationGraph = new ComputationGraph(compGraphConf);

computationGraph.init();

for(int i=0; i<1000; i++) {

model.fit(trainingData);

}

Listing 3.15: Example of Operating Networks

Figure 3.13 is the corresponding realization model containing the API elements in the above
code snippet.

37

3.4 Realization Models

Figure 3.13: Realization Model of Training Networks (Partial)

After the model is trained, the model output can be obtained using the function MultiLayerNet-
work.output(INDArray...) or ComputationGraph.put(INDArray...) (and other overloading func-
tions). With the model output and the ground truth labels, the model performance can be assessed
by comparing the outputs during the evaluation phase in the following two ways.

The first way is using the specific class and pass the model output and ground truth as pa-
rameters. The package ND4J provides a class named Evaluation which calculates the accuracy,
precision, Recall as well as improvement factor of the model. These metrics are obtained using
the function Evaluation.eval(INDArray realOutcomes, INDArray guesses) (and other overloaded
functions). The metrics can be accessed by printing Evaluation.stats() as follows:

//evaluate the model on the test set

Evaluation eval = new Evaluation(3);

INDArray output = model.output(testData.getFeatures());

eval.eval(testData.getLabels(), output);

System.out.println(eval.stats());

Listing 3.16: Example of Evaluating Networks

Figure 3.14 is the corresponding realization model containing the API elements in the above
code snippet.

38

3.5 Feature Interactions

Figure 3.14: Realization Model of Evaluating Networks (Partial)

In the feature "operate network", apart from the mandatory feature "run network", the optional
feature "save network" encapsulates the APIs for storing the network on disk. The classes Multi-
LayerNetwork and ComputationGraph provide the corresponding functions named save(File

file) to achieve this.

3.5 Feature Interactions
In the simplest case, features are independent of each other. In such a case, each feature corre-
sponds to a set of API elements as explained in the previous section. Selecting two independent
features then simply requires to compute the union of the corresponding realization models that
contain the API elements for each of the features.

However, the features we specified for DL4J in the feature model shown in Figures 3.1 to 3.5
are at a high level of abstraction. Furthermore, we decided to structure the features according to
the ML pipeline. As a result, the features are not always independent. There exists several so-
called feature interactions, where the simultaneous presence of multiple features requires different
or additional API elements to be used. For example, when the feature transform data is selected,
the API elements that should be used depend on whether the feature CSV data or image data is
also selected.

As described in section 2.1.2, CORE can deal with feature interactions by defining so-called
conflict resolution models – realization models that realize a set of features. When the user se-
lects features from the feature model, the TouchCORE tool will first check whether any conflict

39

3.5 Feature Interactions

resolution models exist and prioritize those when composing the models.
In the scope of our DL4J feature model, there are 7 feature interactions and they will be illus-

trated in the following sections:

1. If the user selects more than one input data type, then an additional set of new API classes
(e.g., ConcatenatingRecordReader,ComposableRecordReader) should be part of the API to
integrate the different types of data. We created a conflict resolution model called multiple
data types for these additional API elements.

2. The type of the input data chosen under load data changes the API for structure data and
transform data.

3. The API for load from disk depends on the type of the network chosen, i.e., multilayer
network or computation graph.

4. The API for load built-in model depends on the type of network chosen.

5. The API for saving network depends on the type of network chosen.

6. The API for customizing high-level settings depends on the type of network chosen.

7. The API for operating network depends on the type of network chosen.

3.5.1 Addressing Feature Interactions
To illustrate the complexity of the feature interactions, we show here how to address the first and
the second feature interactions from the above list. The involved features are CSV data, image data,
structure data and transform data. Since there is a cross-tree constraint that requires selecting CSV
data or image data in case structure data or transform data is selected, there are 24 ´ 3 “ 13

different possible ways of selecting a subset of those features. Hence, it is laborious to enumerate
these scenarios and build the corresponding realization models. There are some techniques to
reduce the complexity.

3.5.1.1 Extracting Common Parts

A frequently used technique is extracting the common parts of the realization models to avoid
repeatedly defining the same API model elements in each of them. Take the second feature in-
teraction as an example. It happens between the features of "Load Data" and "Prepare Data". In
our scope of abstraction, there are two options of data (i.e., CSV data and image data) that have
corresponding data operations. The APIs of the feature "structuring data" and "transforming data"

40

3.5 Feature Interactions

Load Data

CSV Data Type Image Data Type

Prepare Data
Structure Data Load and Structure CSV Data Load and Structure Image Data

Transform Data Load and Transform CSV Data Load and Transform Image Data
Table 3.2: Combinations of the "Load Data" and "Prepare Data" Feature Interaction

for these two data types are completely different. Hence, we have 4 combinations as illustrated in
Table 3.2.

For the CSV data, even though structuring and transforming are different operations, there exist
some intersections between their APIs. To elegantly build the realization models for these feature
interactions, we extract their common parts and put those API elements in a more general model.
Then the concrete realization models that need those API elements can extend this general model.

Below is a code snippet presenting the data operations on CSV data, where the brown color
represents structuring and the blue color represents transforming.

Schema inputDataSchema = new Schema.Builder()

.addColumnString("DateTimeString")

.addColumnsString("CustomerID", "MerchantID")

.addColumnDouble("TransactionAmountUSD",0.0,null,false,false)

//$0.0 or more, no maximum limit, no NaN and no infinite values

.build();

TransformProcess tp = new TransformProcess.Builder(inputDataSchema)

.removeColumns("CustomerID","MerchantID")

.conditionalReplaceValueTransform(

"TransactionAmountUSD", /Column to operate on

new DoubleWritable(0.0),

new DoubleColumnCondition("TransactionAmountUSD",

ConditionOp.LessThan, 0.0))

.stringToTimeTransform("DateTimeString","YYYY-MM-DD HH:mm:ss.SSS",

DateTimeZone.UTC)

.removeColumns("DateTime")

.build();

As we can see in the code snippet, to execute any data operation on the CSV data, the original
schema of the CSV data needs to be specified first. Also, since all the data operations are using the
class TransformProcess.Builder, the API TransformProcess.Builder(Schema).build() must be used

41

3.5 Feature Interactions

at the end to complete building the data operation pipeline.
Hence, we built a general realization model for CSV data operation that contains the related

class Schema.Builder and API TransformProcess.Builder(Schema).build() as shown in Figure 3.15.

Figure 3.15: A General Realization Model for CSV Data Operations (Partial)

Then, we built the realization model for "structuring CSV data" and "transforming CSV data"
respectively and extend this general realization model. Note that from the users’ perspective, when
they select "CSV data" and "structure data", they directly get the final result of "load and structure
CSV data", we also include the "load CSV data" since it’s necessary. All this happens transparently
to the user.

Figure 3.16 shows the partial realization model after selecting "CSV data" and "structure data"
with the tracing mode enabled. With tracing, the class diagram weaver assigns a color to every
model element depending on which model it came from. In the figure, the red model elements
relate to loading CSV data, the orange parts represent the general data operations on CSV data,
and the yellow model elements are the concrete CSV structuring operations.

42

3.5 Feature Interactions

Figure 3.16: Partial Realization Model for Structuring CSV Data (Loading CSV Data is Included)

In the figure above, the yellow part and orange part share the same class TransformProcess.Builder.
This is achieved by specifying a mapping between the different builder classes in the realization
models.

Figure 3.17: Class Mapping to Enable Merging

Considering the relation between "structuring" and "transforming" is not XOR, users can select
them at the same time. In this scenario, the realization model result would integrate these two
models and deal with the class mapping automatically. As shown in Figure 3.18, the API of the
Builder class now contains methods coming from the CSV tabular transform realization model
(green) as well as the CSV structure data realization model (yellow).

43

3.5 Feature Interactions

Figure 3.18: Partial Realization Model for Structuring and Transforming CSV Data

For the image data, since there is no intersection in the "structuring" and "transforming" API, we
did not need to define a common general realization model. The image "structuring" and "trans-
forming" operations mainly rely on different classes like CropImageTransform, FlipImageTrans-
form. Below are two figures for the different feature selections for image data.

44

3.5 Feature Interactions

Figure 3.19: Partial Realization Model for Transforming Image Data

Figure 3.20: Partial Realization Model for Structuring and Transforming Image Data

45

3.5 Feature Interactions

3.5.1.2 Reusing the Realization Models

From the previous section, we know that some realization models can be reused in different fea-
ture combinations. So we modularized the API elements related to those four features ("Load CSV
Data", "Load Image Data", "Structure Data" and "Transform Data") into seven basic realization
models, illustrated with orange boxes in the top row of Figure 3.21. To deal with feature interac-
tions for all possibilities of selecting two features among the four we defined five conflict resolution
models, shown in blue in the second row in Figure 3.21. These conflict resolution models extend
the appropriate realization models shown in the first row. For example, the middle conflict resolu-
tion model in the second row deals with the case where both CSV data and image data is selected.
In that case, the API should contain the API elements from load CSV and from load image, but
also the ones contained in multiple data.

We also defined two conflict resolution models to deal with the case where three features are
selected, namely both CSV data and image data, and either structure data or transform data.
Those models, shown in the third row, extend the appropriate models in the second row.

There is no need to create a conflict resolution model for when all four features are selected, be-
cause the composition algorithm in that case will simply use both three-feature conflict resolution
models.

Figure 3.21: Manually Built Conflict Resolution Models for a Feature Interaction

The complexity of dealing with the feature interaction is of course hidden completely from the
user of our approach. Figure 3.22 illustrates two feature selection combination examples and how
our tool deals with generating the corresponding API.

46

3.5 Feature Interactions

In the first case shown at the top, CSV data, image data and structure data are selected. Our
weaving algorithm finds the conflict resolution model linked to those 3 features (highlighted in
purple) and then weaves all models in the extension hierarchy together, thus combining the APIs
from load CSV, load image, structure CSV, structure image and multiple data.

In the second case, CSV data, structure data and transform data are selected. Our weaving
algorithm finds two conflict resolution models, one linked to CSV data and structure data, the
other one linked to CSV data and transform data, and therefore creates a new model (highlighted
in purple) that extends these two models and then weaves all models in the resulting extension
hierarchy together.

Figure 3.22: Examples of Returned Realization Models for Different Feature Combinations

To summarize, there exist feature interactions between the features of "load data" and "prepare
data". We first investigated what classes and APIs are involved. Then we extracted the common
parts (if any) as a general realization model. The corresponding realization models were built by

47

3.5 Feature Interactions

extending the general part. We hide the complex feature interactions from users’ views, enabling
users to only focus on their application design.

The other 6 feature interactions have been dealt with in a similar way. So we will not present
the realization details for them, but simply focus on their analysis.

3.5.2 Feature Interaction Analysis
In this section, we analyze the other feature interactions we had to address with some code snippets.

Network Type and Load Network From Disk In the feature of "load network from disk", the
associated APIs depend on the type of the network the users want to load. Thus, the feature
interactions are between "load from disk" and "MultiLayer Network", as well as "load from disk"
and "Computation Graph" Even though the cases of the feature interactions are not complicated,
DL4J provides two ways of each case.

// Load the MultiLayerNetwork

MultiLayerNetwork net1 = MultiLayerNetwork.load(new File(filePath), true);

// Load the ComputationGraph

ComputationGraph net3 = ComputationGraph.load(new File(filePath), true);

// or Load the MultiLayerNetwork using ModelSerilizer

MultiLayerNetwork net2 = ModelSerializer.restoreMultiLayerNetwork(new

File(filePath));

// or Load the ComputationGraph using ModelSerilizer

ComputationGraph net4 = ModelSerializer.restoreComputationGraph(new

File(filePath));

In the above code snippet, the blue code shows the first way of loading the network from disk
while the brown code illustrates the second way. Hence, we also considered these two methods
and provided them in our realization models. Because the involved APIs are not complex and there
is no overlap between these two methods, we simply built the realization models for the feature
interaction without creating a general common model.

Network Type and Load Built-in Network DL4J includes a model zoo so that users can use
some well-known models directly instead of constructing them layer by layer. We manually clas-
sified these 16 provided models into the ones that are of type MultiLayerNetwork and the ones that
are of type ComputationGraph. We use feature interaction models to ensure that when users select
"ComputationGraph" and "Built-in Model", only those built-in models that are of type Computa-
tionGraph are presented to the users. Similarly, another feature interaction model was created for

48

3.6 Reusing a Concernified Framework

the built-in networks that are of type multilayer network.

Network Type and Save Network Similar to loading, there are also feature interactions related
to saving, i.e., between the feature "Save Network" and "Multilayer Network", as well as between
"Save Network" and "Computation Graph". Again, DL4J provides two ways for each case, as
illustrated in the following code snippet in blue and red.

// Save the MultiLayerNetwork

MultiLayerNetwork net1 = new MultiLayerNetwork(multilayerNetworkConfig);

net1.save(new File("path/to/save"))

// Save the ComputationGraph

ComputationGraph net2 = new ComputationGraph(computationGraphConfig);

net2.save(new File("path/to/save"))

// or Save the MultiLayerNetwork using ModelSerilizer

ModelSerializer.writeModelk(net1, new File("path/to/save"), true);

// or Save the ComputationGraph using ModelSerilizer

ModelSerializerwriteModelk(net2, new File("path/to/save"), true);

Network Type and its High-Level Settings The selection choices are: high-level settings for
MultiLayerNetwork and high-level settings for ComputationGraph. Since there are many com-
plicated APIs for the settings and there exists an overlap between the MultiLayerNetwork and
ComputationGraph, we had to build a common general model. The details of these models are
omitted here for space reasons.

Network Type and Run Network Since the number of choices of types of networks is 2 (multi-
layer and computation graph), and the number of choices of running a network is 3 (train, predict
and evaluate), the number of combinations of those features is 2 ˆ 3 “ 6. In this case, 6 different
feature interaction models had to be elaborated.

3.6 Reusing a Concernified Framework
The first four sections in this chapter explained how we concernified the DL4J library, i.e., built
a feature model for it (section 3.3), specified realization models for each feature (section 3.4, and
how we addressed the discovered feature interactions (section 3.5).

In this section, we explain by means of a code sample (see Appendix A) from the official
DL4J example GitHub repository how our concernified DL4J library is intended to be used. By

49

3.6 Reusing a Concernified Framework

looking at the code comments, we first determine what features are involved. Then the process of
generating the associated API is shown.

3.6.1 Determining the Used Features
After reading the code in Appendix A and inspecting the comments, we determined that this
code sample intends to train and evaluate a double-layer MultiLayerNetwork on the built-in Mnist
dataset.

Thus, the involved features are:

• Load Data: Load Built-in Data

• Prepare Data: Not involved

• Specify Network:

– Network Type: MultiLayerNetwork

– Construct Network:

* Manually Build Network: Customize High-Level Settings

• Operate Network: Train, Predict and Evaluate

Even though feature interactions are hidden from the users, to prove the correctness of the
concernified library, we still need to manually analyze the feature interactions and check their
existence in the result.

Here, we have two feature interactions involved: “network type” and its “high-level settings”,
and “network type” and “operate network”. So we can expect the following concrete feature inter-
actions:

• Network Type and its High-Level Settings: High-Level Settings for MultiLayerNetwork

• Network Type and Operate Network: Train MultiLayerNetwork, Predict in MultiLayer-
Network, Evaluate MultiLayerNetwork

3.6.2 Reusing Process
As the feature model is supposed to be built from a beginner’s perspective, features are well
grouped and clearly named. In general, users can directly use the feature model, selecting the
features within the limitation of constraints.

50

3.6 Reusing a Concernified Framework

Figure 3.23: Result Model (Partial) for the Sample

In this example, users can select the features above and then get the realization model result.
Users can also see the list of the involved features and trace the corresponding classes of each
involved features in result model.

By dynamically interacting with the model which successfully concernifies the library, users
can get the API recommendation based on their needs and it’s very simple to make a change on
their selections. As presented in the figure above, the APIs used in the sample code are con-
tained. For example, the NeuralNetConfiguration.Builder.seed(long arg0) for the
MultiLayerNetwork high level settings; MultiLayerNetwork.fit(DataSet arg0) for Mul-
tiLayerNetwork training; class Evaluate for MultiLayerNetwork evaluation.

Within several minutes of selecting features, beginners already can get the classes and APIs
might involved for their specific needs. Compared to the traditional learning path requires begin-
ners to search in the Javadoc and consider the impacts resulting from conflicts of their choices,
this way can significantly reduce users’ exploring time. Compared to the traditional Javadoc, the
feature model can explain its main usages in a well-structured way, which enables users to have an
image of the library’s functions in a glance.

3.6.3 Validity Check
The previous section explains the reusing process of the concernified framework, illustrating the
simplicity and convenience of exploring the DL4J API by features. However, while convenience

51

3.6 Reusing a Concernified Framework

is desirable, correctness of the generated API is even more crucial. To check the correctness of the
concernified DL4J library, we built a tool that examines whether the classes, APIs and constructors
(called functions in the figure) used in the code sample are all present in the generated API. The
results for the sample code are shown in Figure 3.24. The tool will be introduced in more detail in
the next chapter.

The classes, APIs and constructors generated in the woven model are listed in Appendix (sec-
tion B). To better present the matched ones, they are marked as brown color.

The recall rate of each category (class, API, constructor) for this sample is 100%, i.e., none of
the used API elements were missing.

Figure 3.24: Recall Status of the Woven Model

52

4
Concernified Framework Quality Assessment

This chapter focuses on validating the quality of our concernified framework. To quantifiably
measure the quality of the concernified DL4J framework, we conducted two experiments where
we compare sample code that uses the Dl4J API with the suggested API elements generated by our
approach.

Section 4.1 describes the validation metrics used as well as the validation workflow and the
tools we built to automate the validation. Section 4.2 shows the results of the first experiment.
We evaluate the performance of our concernified framework on those code samples that were used
to build the framework to demonstrate that we built it correctly. Section 4.3 presents the second
experiment, which evaluates how well our concernified APIs perform on new sample code. This
provides an understanding of how well our approach would perform when used by a beginner who
is writing a new application.

4.1 Experimental Setup
4.1.1 Assessment Metrics
To quantitatively check the quality of our concernified framework, we calculate two standard met-
rics, i.e., recall and precision, on a set of code examples from the official DL4J example github
repositories. Since in our concernification we focussed on the API that is going to be used by
beginners to build a complete machine learning pipeline, some advanced functionalities of DL4J
are not included in our concernified API. As a result, we could not use all the code examples avail-
able in the github repository, but only used the samples in the data-pipeline-example folder1 and
dl4j-example folder2.

The recall rate judges the coverage or correctness of the concernified framework, because it

1https://github.com/eclipse/deeplearning4j-examples/tree/master/data-pipeline-examples
2https://github.com/eclipse/deeplearning4j-examples/tree/master/dl4j-examples

53

4.1 Experimental Setup

measures whether all API elements that the code sample uses are actually present in our generated
API. The precision measures how useful our approach is, as it calculates the ratio between the
number of API elements the code sample actually uses vs. the number of API elements that our
approach shows to the user, i.e., that are generated based on the high-level feature selection.

We used the standard confusion matrix3 to define recall and precision metrics. Selecting fea-
tures from the feature model can be considered a "search", and the generated API classes, functions
are the result of the search. In that light, the whole procedure of reusing the DL4J concern can be
seen as information retrieval.

Each code sample contains the set of API elements that a beginner programmer has used to
achieve some specific functionality with DL4J. This set of API elements therefore represents the
ground truth. We call it SGroundTruth. Using our approach, the beginner programmer would select
the high-level features they are interested in, and our tool would generate a set of API elements
that the user should consider using. We call that generated set of API elements SGen.

By comparing SGroundTruth and SGen we get the 4 categories as indicated in Table 4.1.

In SGen Not in SGen

In SGroundTruth Relevant and Retrieved Relevant and Not Retrieved

Not in SGroundTruth Non-Relevant and Retrieved Non-Relevant and Not Retrieved
Table 4.1: Confusion Matrix for Generated API Validation

The intersection of the API elements found in the ground truth and those found in the API
generated by our approach is the category of "Relevant and Retrieved" or often also called true
positives. We call this set STP (True Positive).

STP “ SGroundTruth X SGen (4.1)

The difference between SGroundTruth and STP is the category of "Relevant and Not Retrieved",
labeled as SFN (False Negative).

SFN “ SGroundTruth ´ STP (4.2)

The difference between SGen and STP is the category of "Non-Relevant and Retrieved", labeled
as SFP (False Positive).

3https://en.wikipedia.org/wiki/Confusion_matrix

54

4.1 Experimental Setup

SFP “ SGen ´ STP (4.3)

The calculation of the recall and precision is calculated as follows:

Recall “
|STP |

|SGroundTruth|
(4.4)

Precision “
|STP |
|SGen|

(4.5)

Besides the recall rate and precision rate, we propose another metric measuring the improve-
ment factor that our approach provides over not using it, i.e., how many fewer API elements our
generated API contains compared to the original DL4J API.

As mentioned already, DL4J is a giant library with a large API. Even when focussing only
on the API useful for beginners as we do in this thesis, the DL4J_CORE.jar still contains 5542
classes. The improvement factor metric we propose to use calculates the reduction factor of the
search space. In other words, it measures how much fewer API elements the beginner needs to
consider when writing their code. The improvement factor is calculated as follows:

ImprovementFactor “
|SDL4JAPI |

|SGen|
(4.6)

4.1.2 Assessment Workflow and Tools
Figure 4.1 illustrates our validation workflow. Starting from a code sample (bottom left) we per-
formed a coarse inspection of the code to determine the high-level features that are used. We select
those features in the feature model we created for DL4J. Based on that selection, the TouchCORE
tool takes care of feature interactions, and then combines the realization models associated with
the selected features to generates a woven model (realization model result) containing the corre-
sponding API elements, i.e., classes, methods and constructors.

To compare the API elements in this model with the ones used in the code sample we wrote
three utility tools. The first one, the result converter, was implemented as a plugin to TouchCORE.
It first finds the classes, methods and constructors. Then executes set addition in methods and
constructors to create a function set: Sfunctions “ Smethods ` Sconstructors. These classes and
functions are exported into a plain text file (result).

The second tool (GroundTruth Generator) uses the JavaParser library to find the classes, meth-
ods, and constructors from the DL4J API that are used in the code sample and puts classes and
functions into another text file (groundtruth). To make comparing easily, we intentionally use the

55

4.1 Experimental Setup

same order for listing the found classes, functions in both files. The last tool, Comparator Anal-
yser, is a Python script that compare the result and groundtruth text files, calculating the
intersection, as well as the recall, precision and improvement factor metrics.

Figure 4.1: Authenticity Examining Process

4.1.3 Result Converter
Based on a feature selection, TouchCORE generates the corresponding realiation model that con-
tains all the API elements corresponding to the selection. That model is a UML class diagram. This
graphical interface allows beginner users to quickly get an overview of the structure of the API.
Furthermore, the user can interact with the API, highlighting all the API elements corresponding to
a feature in a certain color. To automate the validation tough, we have to convert the UML diagram
into text format.

To achieve this, the extended the export functions of TouchCORE and added a function that
iterates through all the classes in the current UML class diagram. For each class, the collection
of its methods is inspected, and for each method, its signature is elaborated by concatenating the
return type, the method name, and all the parameters. We use the fully qualified name of the class
to avoid name clashes, and store all that information in a HashMap to avoid duplication.

In some cases, besides the classes, the generated result model also includes enumeration types.
These enumerations are indispensable since they are parameters of certain methods existing in the
woven model. When encountering this situation, we also record the fully qualified name of these
enumerations. They are also stored in the same HashMap with the classes.

After the iteration of the UML diagram is completed, a text file is created. The classes and
enumerations are output first, followed by the behavioral functions. Each section is partitioned by

56

4.1 Experimental Setup

a specific marker illustrating the beginning and ending of that section. Below is the pseudocode of
this woven model result converter.

initialize classes to be an empty set

initialize functions to be an empty set

for each entity that is a Class or Enumeration{

store entity name in classes

if entity is a Class{

for each method of entity method{

store method signature in the functions

}

for each constructor of entity constructor{

store constructor signature in the functions

}

}

}

output the classes to result text

output the functions to result text

4.1.4 Ground Truth Generator
To create the groundtruth text file to compare against, we need to determine the classes and func-
tions of the DL4J API used in the code sample. For this we are using a Java parser library called
JavaParser.

4.1.4.1 JavaParser

JavaParser4 is a Java library that allows users to interact with Java source code as Java objects
representing an Abstract Syntax Tree (AST). The Java AST consists of several types of nodes, each
containing some information known as structural properties. With this AST, users can traverse the
tree and identify the pattern they are interested in, or manipulate the structure they found.

Below is a simple example of Java code. It starts with a package import statement, which can
function as an indicator of what class is used in this code sample. The expression of double number
= Math.random(); contains the information of the variable type and what API is called. With this
knowledge, we can infer the information of classes as well as methods called in the code sample.

import java.lang.Math;

4https://javaparser.org/

57

4.1 Experimental Setup

public class Test {

public void hello() {

double number = Math.random();

Integer i = new Integer(3);

}

}

Figure 4.2 shows the AST produced by JavaParser for that code sample, and the useful infor-
mation that is used in our ground truth generator is highlighted in color.

Figure 4.2: JavaParser Structural properties of an Example

With the information highlighted in figure 4.2, we can derive the following:

• Imported Class Names: all the packages / classes in the "import" statements point to classes
that are being used by the sample code.

58

4.1 Experimental Setup

• Declared Variable Types: all the variable type related to DL4J (excluding primitive types) in
the sample code.

• Complete Function Signatures: JavaParser provides ways to get the complete signatures of
methods or constructors.

4.1.4.2 Ground Truth Generator Building Process

In our case, the code samples use mostly the related classes and functions from the DL4J and
datavec library. Generally, JavaParser can only recognize the primitive types and contents in the
default package (e.g., java.lang) if nothing provided for the type solver to look inside while solv-
ing types. To solve the problem, we provided the DL4J_CORE.jar file mentioned in the section
3.2 which we used to concernify the DL4J framework. We specify the JavaParser to look at the
DL4J_CORE.jar file if it encounters some classes or functions out of the scope of primitive types
and default package. Also, we filtered out those classes or functions which don’t contain the key-
words of "deeplearning4j", "nd4j" or "datavec". For example, the function new String(data)

is excluded in the ground truth.
Like the woven model result needed to be tested, the ground truth would also have two cate-

gories of "classes", "functions". To get all the classes involved in the code sample, we took the
import packages and declared variable types as the ground truth. All the methods and constructors
retrieved by JavaParser are taken as the ground truth of "functions".

In the sample code, there might be cases where some method calls are made as part of an
argument to another method call. For example, in the code of trainDataSet.save(new

File(trainFolder, "sample.bin"));, the File constructor is called inside of the method
call DataSet.save(File arg0). Hence, for each method that the ground truth generator finds,
the existence of any method calls happening inside the arguments should also be checked. To
achieve this, we created a class MethodCallVisitor that extends the VoidVisitorAdapter

and overrides its method void visit(MethodCallExpr n, Void arg). Inside of this method,
its super method super.visit(MethodCallExpr n, Void arg) is called to recursively re-
trieve all the method calls. And then all the methods are collected with a private field apis of
MethodCallVisitor. To get the method calls caught by the visitor, a getter for this field is
provided.

Below is the pseudocode of this ground truth generator.

initialize classesOfGt to be an empty set

initialize functionsOfGt to be an empty set

Process the code sample with JavaParser

59

4.1 Experimental Setup

Get the AST of the code sample

for each node of importdeclaration in the AST{

add node name to classesOfGt

}

for each node of variabledeclaration in the AST {

add node name to classesOfGt

}

for each node of methodcall in the AST {

recursively get all the methods inside of the current method

add their signatures to functionsOfGt

}

for each node of objectcreation in the AST {

recursively get all the constructors inside of the current object

creation expression

add their signatures to functionsOfGt

}

output classesOfGt to groundTruth text

output the functionsOfGt to groundTruth text

4.1.5 Comparator and Analyser
In an experiment, there will be several code samples and their corresponding result and ground
truth are stored in different folders. For example, for a code sample named CSVDataModel.java,
its result is stored in /result/CSVDataModel.txt while the ground truth is in /gt/
ãÑCSVDataModel.txt. The third tool we have is a Python script with the result path and
ground truth path as input. The Python script first traverses these two folders and then compares
the text files for a code sample.

For a code sample, the script will draw the Venn diagram for the category classes and functions
separately. using the Equation 4.4, Equation 4.5 and Equation 4.6, its recall, precision rate and
improvement factor can be obtained. When processing a code sample, the tool appends its recall,
precision rate and improvement factor in corresponding arrays. After all the code samples are
processed, the histogram of the recall and precision rate are drawn for further analysis.

60

4.2 Validating Correctness

Below is the pseudocode of this comparator.

initialize recalls to be an empty array

initialize precisions to be an empty array

initialize improvements to be an empty array

initialize resultpaths to be an empty array

initialize groundtruthpaths to be an empty array

for each result file in the result folder{

append result file path to resultpaths

}

for each groundtruth file in the groundtruth folder{

append groundtruth file path to groundtruthpaths

}

for i in length of results{

read resultpaths[i]

read groundtruthpaths[i]

calculate recall, precision, and improvement

append recall to recalls, precision to precisions, and improvement

to improvements

draw Venn diagram

}

draw histogram based on recalls, precisions,

calculate the average improvement factor based on improvements

4.2 Validating Correctness
These section validates that we built our feature model correctly by evaluating the aforementioned
metrics on the sample code that we used to build our concernified DL4J model. Because our model
was built with these code samples, we expect the recall rate to be 100%. If that would not be the
case, it would mean that we did a poor job in creating the realization models with the API elements
and forgot to include some, or we mis-categorized some API elements and attached them to the
wrong features. It also makes sense here to observe the precision rate. A higher precision rate
indicates how relevant the generated API is. The improvement factor measures the ability to filter

61

4.2 Validating Correctness

out as much of the irrelevant API as possible, hence, we want it to be as high as possible.
Since the code samples we collected came from the official GitHub repository of DL4J, some of

them don’t execute the whole machine learning pipeline (i.e., data loading, network building, and
network running), but only a part of the pipeline to demonstrate some specific functionalities that
DL4J provides. Our feature model was built for users who wants to perform a complete machine
learning experiment, i.e., use the entire pipeline. When a user uses the Feature Reuse mode in our
TouchCORE tool, the feature model constraints will ensure that the user makes a correct selection
resulting in an API that supports the entire ML pipeline. We validate our feature model with the
code samples that cover the entire pipeline in subsection 4.2.1.

We were also able to validate our model using the code samples which only cover a section of
the machine learning pipeline. To do that we use the Feature Construct mode in our TouchCORE
tool that makes it possible to bypass the feature model constraints when generating the API. We
report on those results in subsection 4.2.2.

4.2.1 Validation for the Complete Machine Learning Pipeline Samples
We first show the details of two code samples – CVSDataModel and LinearDataClassifier – that
both use the full machine learning pipeline. Figure 4.3 depicts two Venn diagrams that visually
present the ground truth API set SGroundTruth (red) and the generated API set SGen.

Recall Rate: In these two code samples, for both Classes and API elements, the red circles
are always entirely contained in the green circles. This means that all the relevant results are
successfully retrieved. The Recall (see equation 4.4) for Classes and API elements in these 2 code
samples is therefore 100% as expected.

Precision Rate: We can observe from the Figure 4.3 that our concernified DL4J model gen-
erates around 90 Classes and around 230 Functions for each of the full machine learning pipeline
samples. Using equation 4.5, the Precision for category class for the CSVDataModel example is
20.4% and 21.7% for the LinearDataClassifier example. The Precision for category API Elements
is 11.6% and 13.5%, respectively.

Improvement Factor: As explained in chapter 3, the number of public classes in DL4J relevant
for beginners is 3741 and 92196 for public functions. The Classes improvement factor in the
first sample is therefore 3741 ˜ 87 « 43, whereas in the second sample is 45. The Functions
improvement factor in the first sample is therefore 3741 ˜ 224 « 412, whereas in the second
sample is 415.

62

4.2 Validating Correctness

Figure 4.3: Detailed Validation Results for Two Full Machine Learning Pipeline Samples

Figure 4.4 shows a boxplot of the average recall and precision for the 13 complete ML pipeline
validation code examples. As expected, the recall for both classes and API elements is 100%,
hence our model was constructed correctly. The average precision for classes is 20.4%, whereas
for API elements such as methods and constructors it is 13.5%.

63

4.2 Validating Correctness

Figure 4.4: Recall and Precision for the Complete ML Pipeline Validation Samples

4.2.2 Validation for the Partial Machine Learning Pipeline Samples
Just as in the previous section, we show the detailed results for two code samples which only used
parts of the machine learning pipeline. Their Venn diagrams are shown in Figure 4.5. The first
sample loads one of the DL4J built-in datasets, partitions the data and then saves the partitioned
data back to disk to demonstrate the functionalities of using a built-in dataset and saving a dataset.
The second sample constructs a MultiLayerNetwork, saves it to disk, and loads the network from
disk again to demonstrate the functionalities of building, saving and loading networks.

Recall Rate: These two code samples all have 100% recall rate for the Class and API Elements
categories.

Precision Rate: Unlike in the full machine learning pipeline code samples, where our concerni-
fied DL4J model generated around the same number of Classes and Functions in most cases, the
size of the ground truth and the generated API vary a lot more, mostly determined by the number
of functionalities that the code samples cover. For example, the first code sample (FileSplitExam-
ple) only covers loading data files. Hence the ground truth API is very tiny (3 API elements are
being used). The second code example (IrisNormalizer) uses two functionalities: load CSV data
and transform data. Consequently it uses already a lot more API elements (10 in this case). Fur-
thermore, some functionalities, e.g., constructing a network, can be achieved in several alternative
ways using different sets of parameters. This results in our generated API containing in this case a
lot more API elements than for other functionalities.

We can observe from the Figure 4.6 that the overall Precision Rate for the 7 partial pipeline

64

4.2 Validating Correctness

samples is smaller than the complete pipeline samples, with an average of 13.1% for Classes and
7.2% for Functions. Besides, compared to the complete pipeline samples, the Precision Rate is
more scattered.

Improvement Factor: Since the partial ML pipeline examples focus on a smaller part of DL4J
than the complete ML pipeline examples it is not surprising that the improvement factor signifi-
cantly higher. In the first sample, the improvement factor is 3741˜ 23 « 162, while for the second
sample it is 92196 ˜ 42 « 2195.

Figure 4.5: Detailed Validation Results for Two Partial Machine Learning Pipeline Samples

65

4.3 Evaluating Usefulness

Figure 4.6: Recall and Precision for Partial ML Pipeline Validation Samples

Figure 4.6 shows the box plot measuring recall and precision for all of the 7 partial ML pipeline
code examples. Again, the recall is 100%, and therefore our model was built correctly. The
precision for the Class category is 13.1%, and for Functions it is 7.2%.

4.3 Evaluating Usefulness
While the previous section demonstrated that we correctly built our concern-oriented API for
DL4J, we now want to evaluate whether our approach could simplify the task for beginners that are
planning to write a new ML application from scratch. We do this by again determining the recall,
precision and improvement factor metrics, but this time for code samples that have not been used
to build our concernified API.

The code samples we chose for this purpose come from two public GitHub repositories. One is
the official DL4J example repository 5. The other one is the repository of a training course 6 which
contains hands-on code for DL4J beginners attending the course. Since our concernified DL4J
does not cover some advanced functionality and focuses only on the functionality that beginners
tend to use, we did not use all the code examples in the repositories. We removed the more
advanced ones, e.g., the one using Spark for distributed training.

5https://github.com/eclipse/deeplearning4j-examples
6https://github.com/CertifaiAI/cdle-traininglabs/tree/main/dl4j-labs/src/main/java/ai/certifai/solution

66

4.3 Evaluating Usefulness

4.3.1 Evaluation of the Complete Machine Learning Pipeline Samples
In the end, we tested 14 complete new ML pipeline samples and achieved an average of 98.9%
recall for API Classes and 98.0% recall for API Functions. The average precision is 19.3% and
13.8% for Classes and Functions respectively. Figure 4.7 shows the box plot and histogram for the
recall and precision of our test samples. In the box plots, outliers are depicted as hollow circles,
while averages are drawn as green lines. At the same time, the , the first quartile (Q1), the third
quartile (Q3) and the maximum compose the main part of the box plot, and the length of the box
gives an indication of the sample variability.

As the bottom-left histogram shows, there is one code sample achieving around 92% recall and
two code samples achieving around 96% recall for Classes. Even though these three samples have
different recall for Classes, they each failed in retrieving only one single class. We will discuss
each of the examples in the following paragraphs.

Sample CustomActivationUsageEx.java has 12 classes as part of the ground truth.
Our generated API did not contain the class org.nd4j.linalg.activations.
ãÑBaseActivationFunction. This class was extended in the sample to demonstrate how to
customize activation instead of using the ready-made activations. When doing our concernification,
we decided that it would be simpler for beginners to use the predefined activation, and hence we
exposed to the user the concrete activation enumeration org.nd4j.linalg.activations.

ãÑActivation, which the user can directly pass as a parameter to different methods to select the
activation function.

The samples LoadCSVHousePrice.java and WomenChessPlayer.java use the class
org.datavec.api.transform.condition.column.InvalidValueColumnCondition,
which was not in our generated API. This class is used to build a condition applied to a single
column for filtering out the invalid values. For example, if the CSV dataset contains String values
in an Integer column and these String values cannot be parsed into Integer, the InvalidValue-
ColumnCondition would return true as these String values are invalid values according to the
schema. Because this class is not included in the code samples we used to build our concernified
DL4J model, the model does not contain this API. Instead, during our process of concernifica-
tion, we found the Interface org.datavec.api.transform.condition.Condition is im-
plemented by 17 types of concrete condition classes(including InvalidValueColumnCondition).
Thus, we provided the Interface Condition in our DL4J model.

Compared to the recall rate of Classes, recall rates of category Functions vary between 93%
and 100%. There are 6 samples having recall rate from 93% to 98% and the remaining 8 samples
achieve 100% recall. For code sample WomenChessPlayer.java, which has the smallest re-
call in Functions (93.2%), our generated API did not contain 4 of the used functions out of a total

67

4.3 Evaluating Usefulness

of 59 used in the ground truth. The first missed function is INDArray.shapeInfoToString().
The code sample uses it to print out the dataset shape information, which allows beginners to
get an idea of the dataset dimension. Because it is not indispensable in the machine learning
pipeline, we had decided to not include it in the concernified API. The second missed function is
TransformProcess.Builder.stringMapTransform(String,Map<String,String>). It
replaces one or more String values in the specified column with new values. Here again we
had decided to not include this function in our API for beginners, as the same effect can be
achieved by using simpler, standard Java methods. Finally, the third and fourth missed functions
are TransformProcess.Builder.integerColumnsMathOp(String,MathOp,String...)
and the constructor of InvalidValueColumnCondition. The function calculates and adds a
new integer column to the dataset by performing a mathematical operation on a number of existing
columns. This is clearly a complex operation and most likely would not be used by beginners, so
again we decided not to include it when building the DL4J concern. The reason of missing the
constructor of InvalidValueColumnCondition is explained in the previous paragraph.

The concernified DL4J model generated 92 classes and 243 functions for these 14 code samples
on average. We can see from the bottom-right histogram in Figure 4.7 that precision rates of
Classes concentrate in the range of 20% to 25%, and precision rates of Functions are mainly
distributed between 10% and 15%. The overall precision rates for Functions are smaller than
the precision rates of Classes. This makes sense, because a function might have several sets of
parameters, which often translates into overloaded methods. Typically, a code sample however use
only one of these overloaded functions depending on the specific needs.

The fact that the precision rates are not high does not mean our concern model performs
poorly in retrieving relevant API elements. Even though the API elements returned by the model
do not appear in the ground truth, some of them are still related to the ground truth API el-
ements. In other words, some of the API elements in SGen ´ SGroundTruth can still provide
knowledge to the users to some extent. Like the example WomenChessPlayer.java men-
tioned above, although the class Condition returned by the concern was not used in the ground
truth, the users can get the ground truth class InvalidValueColumnCondition by searching
Condition and find all the classes that implement this interface, including the ground truth class
InvalidValueColumnCondition.

If this situation turns out to occur often, though, then it probably would be better to include all
17 concrete subclasses of the Condition interface.

68

4.3 Evaluating Usefulness

Figure 4.7: Recall and Precision for Complete ML Pipeline Evaluation Samples

To calculate the improvement factor for these complete machine learning pipeline samples, we
first count the average number of generated API elements, which are 92 Classes and 243 Functions.
Using the Equation 4.6, the improvement factor for Classes is 3741 ˜ 92 « 40, whereas for
Functions it is 92196 ˜ 243 « 379. The improvement factor reflects the concern’s ability to
reduce the number of API elements of the library that are exposed to the users. In the experiment
on complete machine learning pipeline samples, the API elements are decreased by one order of
magnitude for Classes and by two orders of magnitude for Functions, meaning that the cognitive
load on the users is greatly reduced. For example, searching through the reduced API will be much

69

4.3 Evaluating Usefulness

less effort.

4.3.2 Evaluation of the Partial Machine Learning Pipeline Samples
Although we did not design our concernified DL4J model for the incomplete machine learning
pipeline, we still want to check out our concern’s performance on those partial ML pipeline sam-
ples. Since the constraints in the concern reusing mode of TouchCORE enforce users to select
features that build up a complete ML pipeline, we had to use the TouchCORE concern building
mode to bypass these constraints. As shown in Figure 4.8, in the 7 partial ML pipeline samples
that we evaluated we achieved an average of 94.6% recall rate for Classes and an average of 89.6%
recall rate for Functions. However, the recall rate for functions varies among the samples, some of
them achieved 100% while others only reached around 70%. This is caused by the fact that they
only cover the incomplete ML pipeline as explained in the following paragraphs.

The samples that do not treat the entire ML pipeline contain a smaller numbers of features,
narrowing down the scope. As a result, the feature interactions involved tend to also be simple. It
turns out that in those situations the conflict resolution realization models are able to solve those
feature interactions to achieve good recall. However, for those samples having relatively lower
recall, they contain some APIs that belong to some features which are not suitable to be selected.
Besides, since the incomplete ML pipeline has fewer features, the total number of the involved
APIs would be small. Under such circumstances, the lost of APIs will have large impact on the
falling of recall rate.

70

4.3 Evaluating Usefulness

Figure 4.8: Recall and Precision for Partial ML Pipeline Evaluation Samples

Take the code sample LoadCSV.java which gets an unsatisfying recall rate (90% in Classes
and 66.7% in Functions) as an example. It contains the procedures of loading CSV data, converting
it into dataset and transforming the dataset. Besides these procedures, it also separates the dataset
into training and testing datasets, which is the functionality comprised in the feature of "train" and
"predict" whose APIs are mostly about running the network. Therefore, the features "train" and
"predict" not selected during experiment led to the failure of retrieving the "separate dataset" APIs.

The APIs failed to be retrieved in our concernification DL4J for the sample LoadCSV.java
are listed below and shown in Figure 4.9. For example, to better showcase the building process of
dataset, the code sample uses DataSet.getFeatures() and INDArray.shape() sequentially
(i.e., DataSet.getFeatures().shape()) to print out the shape of the training batch vector.
As we can see from their signatures, the APIs are related to the unselected feature "train" and

71

4.3 Evaluating Usefulness

"predict". As we built the concern for the complete machine learning pipeline usage, some features
are mandatory (like the feature "train" in this example). Thus, we put those APIs that can be
classified into several features into some mandatory features to make sure they will definitely be
included after the users make their feature selections. In the future, we could update our concern
model for use when creating applications that only cover a part of the machine learning pipeline.
In that case, we would have to change the feature constraints of the feature model, switching many
mandatory features to optional ones. Furthermore, the API elements that are used in more than one
feature would have to be assigned to all of them to ensure that the generated results will not miss
these APIs.

In such case, the relatively low recall rates for incomplete machine learning pipeline samples
are understandable.

//Class:

org.nd4j.linalg.dataset.SplitTestAndTrain

//Method:

org.nd4j.linalg.api.ndarray.INDArray.shape(),

org.nd4j.linalg.dataset.DataSet.getFeatures(),

org.nd4j.linalg.dataset.SplitTestAndTrain.getTest(),

org.nd4j.linalg.dataset.SplitTestAndTrain.getTrain(),

org.nd4j.linalg.dataset.DataSet.splitTestAndTrain(double)

In average, the concernified DL4J generated 38 Classes and 113 Functions for these experiment
samples. The improvement factor for Classes is 98 and 815 for Functions, which are both higher
than the statistics of the complete machine learning pipeline samples. Because the number of API
elements generate by the concernified DL4J is considerably smaller than the original DL4J library,
user can take advantage of it and try different feature combination if they do not find the elements
they desire in the generated API.

From the previous sections, we can draw a conclusion in the statistics for the evaluating exper-
iment:

• Generally, Recall Rates for the full or partial machine learning pipeline samples can reach
90% even 98%, meaning that most the relevant APIs are successfully retrieved in our con-
cernified DL4J model. And it is understandable for those samples belong to incomplete
pipeline that do not reach that level.

• Precision Rates for the full machine learning pipeline samples are stable, while for the partial
pipeline samples, Precision Rates vary based on the functionalities the pipeline covers.

72

4.4 Analyzing the Results

Figure 4.9: SGroundtruth and SGen in "LoadCSV" Sample

• Improvement Factors for the full machine learning pipeline samples are tend to be smaller
than the partial pipeline samples since the partial pipeline samples contains less functionali-
ties.

4.4 Analyzing the Results
On the API element level, the missed model elements in our generated API belong to one of two
cases: 1) API elements belonging to more than one feature, or 2) alternative API elements. We
explain each case below.

API Elements Belonging to more than one Feature: For example, Nd4j.create(double[]
data) which creates an N-dimensional array, can initialize an array used as a dataset. Or it can
also be used for constructing the array of the high-level parameters of a network. This specific
API can therefore be used in different scenarios and thus belongs to multiple features. In our con-
cernified API we had associated this constructor with the Custom Data feature, but not with the
Customize High Level Settings feature. This shows that even with deep knowledge of the DL4J
API and diligence when creating the feature model, omissions when assigning API elements to
features can happen. Similarly, one could envision that some feature descriptions are not clearcut,
and as a result some users interpret them differently from others. For example, should the prepro-

73

4.5 Threats to Model Quality

cessing operations to convert a column from String to int for CSV data be classified under the
feature Structure Data or Transform Data? Maybe it is appropriate to be classified into Transform
Data because it changes the data range. But as it also changes the schema of the CSV data, it can
also be categorized into Structure Data. Again it is probably wise to classify the operation under
both features just make sure the API is being proposed to the user regardless of their interpretation
of the categories of operations.

It is therefore important to allow the concernified API to be updated when such a case is de-
tected.

Alternative API Elements: In DL4J, some functionality can be achieved in different ways,
i.e., by using a different sets of APIs. In these cases, to simplify the task of learning DL4J for
newcomers, we decided to provide the simplest or most frequently used APIs to the newcomer.
For example, there are two APIs for setting the PoolingType of a SubsamplingLayer:

• SubsamplingLayer.Builder(PoolingType), where the option is set in the construc-
tor,

• SubsamplingBuilder.poolingType(PoolingType), which uses a dedicated method

In our concernified API we decided to only suggest one of the alternative API elements to the
user to reduce the size of the suggested API. In our case we chose the former, since every instance
of the Layer type needs to be instantiated using the constructor anyhow. However, the sample
code CIFARClassifier uses the latter one.

In another case, the DL4J API offers different ways to specify activation functions. We decided
to expose to the user the concrete activation enumeration org.nd4j.linalg.

ãÑactivations.Activation, which the user can then pass as a parameter to different meth-
ods to select the activation function. We believe that this is simple, since the beginners can di-
rectly use enum constants such as Activation.RELU. But the sample code CustomActiva-
tionUsageEx demonstrates how to customize activation, and to do that it uses the interface
org.nd4j.linalg.

ãÑactivations.IActivation of the DL4J API and defines the activation function by imple-
menting that interface.

4.5 Threats to Model Quality
Our evaluating experiment only contained 14 code samples for the complete machine learning
pipeline and 7 samples for the partial pipeline. The limited number of code samples has negative
impact on the experiment result. To remedy this to some extent, we made our code samples to be
representative (i.e., reflecting the functionalities that beginners would most likely use) by taking

74

4.5 Threats to Model Quality

some code examples from a repository of a training course for DL4J beginners to build up the
experiment samples.

We also checked whether our evaluating examples cover our DL4J feature model. The coverage
is shown in Figure 4.10, in which each feature of Figure 3.1 is represented by a number obtained
by numbering the features that have attached API elements in the feature tree using a breadth-first
traversal from left to right. That way, Custom Data is labelled 1 and Customize High Level Settings
is labelled 21.

This exercise showed that while many features are well covered, 6 features out of 31 total were
not used in any of the test examples. Especially the features related to the network type Compu-
tationGraph were lacking examples. This makes sense, as using a ComputationGraph network
is more complex compared to using a MultiLayerNetwork, and as a result the code samples for
beginners rarely contain it.

Figure 4.10: Feature Coverage in Test Code Samples

During the process of concernifying DL4J, even though we have tried to build the feature model
in a structure that reflects the main functionality of DL4J organized according to the machine
learning pipeline from the perspective of a concern user, we cannot guarantee the universality of
our choices. We might have made subjective choices, and hence not every concern user will find
our proposed feature model and feature scope intuitive. For example, as mentioned above, we
categorized the APIs to convert a CSV column from String to int with the feature Transform
Data. Some users might think it should be included in Structure Data, since the operation changes

75

4.6 Pros and Cons

the data schema which defines the data structure. This difference in interpretation can lead to
incomplete or wrong feature selections by a concern user, which then results in failing to generate
the desired APIs.

Finally, in the process of testing, it was the concern builders who read the code samples and
determined the corresponding feature selections, where again subjective factors might play a role.
As concern builders we might have had some underlying knowledge of DL4J that concern users,
especially beginners, will not have.

4.6 Pros and Cons
With our concernified DL4J API, beginners can easily get an overview of the main functionality
that DL4J offers by reading the feature model. The information in the feature model is short and
concise, compared to having to go through the lengthy informal textual documentation.

Furthermore, our approach effectively shrinks the API candidate elements that the developer
needs to consider to use significantly. This reduces the complexity, and hence can result in consid-
erable time savings and prevent confusion, especially for newcomers to ML. In our tests the API
was shrunk by two orders of magnitude, i.e., from 3741 public classes and 92196 public functions
to a mere 168 public classes and 531 functions.

Finally, our concernified API considers the entire ML pipeline, and deals with feature interac-
tions transparently. As a result, the user is more likely to produce code that correctly implements
a complete ML application. Furthermore, newcomers will not use incorrect combinations of API
calls caused by feature selection changes at the former stages of the ML pipeline. For example,
when a user switches from CSV data to image data, our feature interaction models automatically
determine all preprocessing API calls that have to be updated.

The biggest drawback of our approach is unfortunately quite severe. If our concernified API
incorrectly omits an API element in the realization model for a given feature selection, the concern
user will not see that API element in the generated API. If there is no alternative API that achieves
the desired functionality in the generated API, then the user will most likely spend an excessive
amount of time looking for it, and the resulting confusion can be considerable. And in the end, the
user would have to fall back to the original API.

Although this drawback is severe, we believe that such situations will occur less and less often
as the approach is widely adopted, since whenever such an omission is encountered we can update
the corresponding realization model. As a result, in a long run, the concernified API should be free
of such omissions.

76

5
Conclusion and Future Work

5.1 Conclusion
Currently the documentations of the Java libraries are mostly in the form of JavaDoc, which de-
fines a standard format for the automated documentation generation in HTML format from Java
source code comments. Although it clearly defines the official Java API specification, since the
documentation is specified at the source code level and hence modularized according to classes
and methods, high-level information about the library is typically scattered across many places.
For example, some of the explanations of APIs contain information that is too detailed for the
developers, and they need to refer to other material to obtain a better global understanding.

Apart from the JavaDoc, another scattered knowledge problem faced by the beginners to learn
APIs is that they also need to refer to some tutorials and read some code examples. In this scenario,
the users want to dynamically interact with the documentations to get their customized recommen-
dation of the APIs. For different application purposes, they need to read different tutorials, which
makes these information of documentation scattering over too many technical blogs or forums.

Our contribution to this was an unified model enables users to dynamically interact with it
to get a customized API recommendation. This one-stop service insures the information are not
scattered so that beginners only need this model as their Java documentation. We used the approach
of concernification, modeling part of the framework DL4J into three interfaces: variation interface,
usage interface and customization interface. Concern users first make selection in the feature model
of the variation interface. Based on the user’s feature selection, the usage interface will provide a
realization model containing an API subset of the DL4J framework, tailoring the API to the user’s
needs.

To concernify the DL4J framework, we first elaborated a feature model based on the tutorials
and code examples. Considering the fact that machine learning has several stages from loading
data to evaluating network, the features are grouped according to the deep learning pipeline with

77

5.2 Future Work

OR or XOR (exclusive or) relationship among those features which have the same parent. At
the same time, the non-root features have a relationship to their parents (mandatory, optional).
We also added cross-tree constraints (requires or excludes) to ensure users make correct feature
selection. In this way, new comers of the DL4J library can instantly get the understanding of what
functionality it provides and make selection of features more easily.

Each feature has its corresponding realization model containing only the related API elements.
We extracted parts of the realization models which might be reused by several features as a new
realization model so that it can be included by different realization models sharing with this com-
mon part. Feature’s behavior is not unchanging and can be influenced by the combination of feature
selection, which is defined as feature interaction. For example, the behavior of feature "structure
data" depends on the choice of the concrete data type in feature "load data". Generally, each feature
interaction should have its corresponding conflict resolution model. However, in a feature model,
there can be many options of feature selection, leading to a large combination number. To deal with
the complexity of feature interactions for all possibilities of selecting features, we also extracted
some common parts (if any) as general realization models. The complicated realization models
which involves K features can be built upon those general parts corresponding to K-1 features.

Finally, the thesis provided an experiment on DL4J code samples to evaluate the quality of
our concernified DL4J library using accuracy, precision and improvement factor. Starting from
the code samples, we selected those features in the feature model based on our inspection of the
code. The TouchCORE tool generated a woven model (realization model result) containing the
corresponding API elements, i.e., classes, methods and constructors. To compare the API elements
in this model with the ones used in the code sample we wrote three utility tools: Result Converter,
GroundTruth Generator and Comparator Analyser. The experiment achieved an average recall of
98.9% for API classes and 98.0% for API methods and constructors. The respective precision is
19.3% and 13.8%, which represents an improvement of two orders of magnitude compared to the
complete DL4J API. Compared to the original scope of the concernified DL4J, which having 3741
classes (inner classes included) and 92196 public methods and constructors, such reducing of API
elements significantly alleviate the users’ efforts spent on searching the related APIs.

5.2 Future Work
Compared to the traditional materials like official documentation, tutorials which the beginners can
refer to, a concernified library systematically presents its main functionality. Besides, users can
interact with the concernified library to acquire the API usage suggestions based on their feature
selection. This now opens many exciting possibilities for further research. As future work, we plan
to expand the concern scope to make it applicable in wider situations. Additionally, user study can

78

5.2 Future Work

be conducted to eliminate the evaluation bias.

5.2.1 Expand Concern Scope
Because our approach aims at providing guidance to DL4J beginners, it contains a limited set of
features for building a simple but complete ML pipeline. The current concernified APIs could be
extended to include more features and as a result could apply to a broader scope. For example,
besides performing learning on the local machine, DL4J also supports distributed neural network
training, prediction and evaluation on a cluster of CPU or GPU machines using Apache Spark.
If integrated into our concernified API, selecting the Distributed ML feature would give the user
access to a completely different API. With the expansion of the concern scope, the complexity
of feature interactions will also grow, which will need more investigation on how to abstract the
models properly.

Also, currently our feature model has been built with the assumption that the users want to
build an application with a complete ML pipeline. In some cases, however, users might want to
write code that does not cover the entire ML workflow. For example, one can envision code that
simply loads data and pre-processes it, but then stores the processed data so it can be used at a
later point in time. To support such use cases, our feature model would have to be adapted, and in
particular some of the realization models would have to be updated.

Additionally, the current concern is built for beginner users of DL4J, and hence its feature
model presents a coarse-grained, high-level view of the framework. We can adapt the approach of
framework-specific models [2] introduced in Section 2.2.3 to construct another concern of DL4J
specifically targetting experienced developers, enabling more flexibility in customization and usage
of the concern.

5.2.2 Improve the Experiment
The precision rate can not fully reflect model ability in retrieving relevant information because
some of the API elements which are not belong to the ground truth have certain relationship with
the ground truth API elements. In the future, we can calculate correlation coefficient between
API elements in SGen ´ SGroundTruth and SGroundTruth to further analyze the model information
retrieving ability.

5.2.3 Conduct User Study
While our initial evaluation suggests that our concernified API would benefit developers and in
particular new comers, it would be interesting to conduct an actual user study to confirm this.
Users can provide their opinions about the concern, especially its usability. For instance, if some
wording of the feature model hinder the users from understanding because of ambiguity.

79

5.2 Future Work

Furthermore, for the experiments in Section 4.2, the features were selected by the concern
builders, assuming the concern users will also make such feature selections. Having beginner
users of DL4J actually take part in the experiments would reveal whether they too would make
those selections, making the evaluation more convincing.

80

Bibliography

[1] Wisam Al Abed, Valentin Bonnet, Matthias Schöttle, Engin Yildirim, Omar Alam, and Jörg
Kienzle. Touchram: A multitouch-enabled tool for aspect-oriented software design. In In-
ternational Conference on Software Language Engineering, pages 275–285. Springer, 2012.
2.1.2.1, 2.1.4

[2] Michał Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineering of framework-
specific modeling languages. IEEE Transactions on Software Engineering, 35(6):795–824,
2009. 2.2.3, 5.2.1

[3] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration using fea-
ture models. In International conference on software product lines, pages 266–283. Springer,
2004. 2.2.3

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009. 3.3.1

[5] George Fairbanks, David Garlan, and William Scherlis. Design fragments make using frame-
works easier. In Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 75–88, 2006. 2.2.3

[6] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for program-
ming and natural languages. arXiv preprint arXiv:2002.08155, 2020. 2.2.2

[7] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179–188, 1936. 3.3.1

[8] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep api learning. In
Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of
software engineering, pages 631–642, 2016. 2.2.2

[9] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. Api method recom-
mendation without worrying about the task-api knowledge gap. In 2018 33rd IEEE/ACM

81

BIBLIOGRAPHY

International Conference on Automated Software Engineering (ASE), pages 293–304. IEEE,
2018. 2.2.2

[10] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
Univ Pittsburgh Pa Software Engineering Inst, 1990. 2.1.1

[11] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir, Philippe
Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and Bernhard Rumpe. Vcu: the
three dimensions of reuse. In International Conference on Software Reuse, pages 122–137.
Springer, 2016. 2.1.2.2, 2.1.4

[12] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). 3.3.1

[13] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. 3.3.1

[14] Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and Pierre Baldi.
Sourcerer: mining and searching internet-scale software repositories. Data Mining and
Knowledge Discovery, 18(2):300–336, 2009. 2.2.2

[15] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuangshuang
Xing, and Yang Liu. Generating query-specific class api summaries. In Proceedings of the
2019 27th ACM joint meeting on European software engineering conference and symposium
on the foundations of software engineering, pages 120–130, 2019. 2.2.2

[16] James Martin and Jin LC Guo. Deep api learning revisited. arXiv preprint arXiv:2205.01254,
2022. 2.2.2

[17] Giang Nguyen, Stefan Dlugolinsky, Martin Bobák, Viet Tran, Alvaro Lopez Garcia, Ignacio
Heredia, Peter Malík, and Ladislav Hluchỳ. Machine learning and deep learning frameworks
and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52(1):77–
124, 2019. 3.1

[18] Elisabeth Niehaus, Klaus Pohl, and Günter Böckle. Software product line engineering: Foun-
dations, principles and techniques, kapitel product management, 2005. 2.1.1

[19] Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach. " O’Reilly
Media, Inc.", 2017. 3.2, 3.3.1

82

BIBLIOGRAPHY

[20] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Leveraging crowd knowledge for
software comprehension and development. In 2013 17th European Conference on Software
Maintenance and Reengineering, pages 57–66. IEEE, 2013. 2.2.2

[21] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. Swim: Synthesizing what i mean-code
search and idiomatic snippet synthesis. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 357–367. IEEE, 2016. 2.2.2

[22] Martin P Robillard. What makes apis hard to learn? answers from developers. IEEE software,
26(6):27–34, 2009. 2.2.4

[23] Matthias Schöttle and Jörg Kienzle. Concern-oriented interfaces for model-based reuse of
apis. In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS), pages 286–291. IEEE, 2015. 2.1.3, 2.1.3

[24] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. Live api documentation. In
Proceedings of the 36th international conference on software engineering, pages 643–652,
2014. 2.2.1

[25] Peri Tarr, Harold Ossher, William Harrison, and Stanley M Sutton Jr. N degrees of sepa-
ration: Multi-dimensional separation of concerns. In Proceedings of the 21st international
conference on Software engineering, pages 107–119, 1999. 2.1.2

[26] Christoph Treude and Martin P Robillard. Augmenting api documentation with insights from
stack overflow. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 392–403. IEEE, 2016. 2.2.1

[27] Gias Uddin, Foutse Khomh, and Chanchal K Roy. Mining api usage scenarios from stack
overflow. Information and Software Technology, 122:106277, 2020. 2.2.1

[28] Gias Uddin and Martin P Robillard. How api documentation fails. Ieee software, 32(4):68–
75, 2015. 1.1, 2.2.2

[29] Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei Zhang. Min-
ing succinct and high-coverage api usage patterns from source code. In 2013 10th Working
Conference on Mining Software Repositories (MSR), pages 319–328. IEEE, 2013. 2.2.2

[30] Hang Yin, Yuanhao Zheng, Yanchun Sun, and Gang Huang. An api learning service for inex-
perienced developers based on api knowledge graph. In 2021 IEEE International Conference
on Web Services (ICWS), pages 251–261. IEEE, 2021. 2.2.2

83

BIBLIOGRAPHY

[31] Shichao Zhang, Chengqi Zhang, and Qiang Yang. Data preparation for data mining. Applied
artificial intelligence, 17(5-6):375–381, 2003. 3.3.1

84

A
Code Sample in Section 3.6

import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;

import org.deeplearning4j.nn.conf.MultiLayerConfiguration;

import org.deeplearning4j.nn.conf.NeuralNetConfiguration;

import org.deeplearning4j.nn.conf.layers.DenseLayer;

import org.deeplearning4j.nn.conf.layers.OutputLayer;

import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;

import org.deeplearning4j.nn.weights.WeightInit;

import org.deeplearning4j.optimize.listeners.ScoreIterationListener;

import org.nd4j.evaluation.classification.Evaluation;

import org.nd4j.linalg.activations.Activation;

import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;

import org.nd4j.linalg.learning.config.Nadam;

import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;

/** A slightly more involved multilayered (MLP) applied to digit

classification for the MNIST dataset

(http://yann.lecun.com/exdb/mnist/).

* This example uses two input layers and one hidden layer.

*

* The first input layer has input dimension of numRows*numColumns

where these variables indicate the

* number of vertical and horizontal pixels in the image. This layer

uses a rectified linear unit

* (relu) activation function. The weights for this layer are

initialized by using Xavier initialization

85

Code Sample in Section 3.6

* to avoid having a steep learning curve. This layer sends 500 output

signals to the second layer.

*

* The second input layer has input dimension of 500. This layer also

uses a rectified linear unit

* (relu) activation function. The weights for this layer are also

initialized by using Xavier initialization to avoid having a steep

learning curve. This layer sends 100 output signals to the hidden

layer.

*

* The hidden layer has input dimensions of 100. These are fed from the

second input layer. The weights

* for this layer is also initialized using Xavier initialization. The

activation function for this

* layer is a softmax, which normalizes all the 10 outputs such that

the normalized sums

* add up to 1. The highest of these normalized values is picked as the

predicted class.

*/

public class MNISTDoubleLayer {

public static void main(String[] args) throws Exception {

//number of rows and columns in the input pictures

final int numRows = 28;

final int numColumns = 28;

int outputNum = 10; // number of output classes

int batchSize = 64; // batch size for each epoch

int rngSeed = 123; // random number seed for reproducibility

int numEpochs = 15; // number of epochs to perform

double rate = 0.0015; // learning rate

//Get the DataSetIterators:

DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize,

true, rngSeed);

DataSetIterator mnistTest = new MnistDataSetIterator(batchSize,

false, rngSeed);

86

Code Sample in Section 3.6

MultiLayerConfiguration conf = new

NeuralNetConfiguration.Builder()

.seed(rngSeed) //include a random seed for reproducibility

.activation(Activation.RELU)

.weightInit(WeightInit.XAVIER)

.updater(new Nadam())

.l2(rate * 0.005) // regularize learning model

.list()

.layer(new DenseLayer.Builder() //create the first input

layer.

.nIn(numRows * numColumns)

.nOut(500)

.build())

.layer(new DenseLayer.Builder() //create the second input

layer

.nIn(500)

.nOut(100)

.build())

.layer(new

OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)

//create hidden layer

.activation(Activation.SOFTMAX)

.nOut(outputNum)

.build())

.build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);

model.init();

model.setListeners(new ScoreIterationListener(5));

model.fit(mnistTrain, numEpochs);

Evaluation eval = model.evaluate(mnistTest);

}

}

87

B
Woven Model Result for the Code Sample

The classes, APIs, constructors generated in the woven model for the code sample in section 3.6
are listed here. We use brown color to point out those are used in the code sample.

------CLASSES------

org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer

org.deeplearning4j.nn.conf.layers.ConvolutionLayer

org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator

org.nd4j.linalg.dataset.api.iterator.DataSetIterator

org.deeplearning4j.optimize.listeners.EvaluativeListener

org.deeplearning4j.nn.conf.layers.OutputLayer

org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator

org.deeplearning4j.nn.conf.layers.DenseLayer

java.lang.Integer

org.nd4j.linalg.learning.config.Sgd

org.deeplearning4j.nn.conf.layers.BatchNormalization

org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer

org.nd4j.linalg.schedule.ISchedule

org.deeplearning4j.nn.layers.BaseLayer<>

org.deeplearning4j.optimize.api.IterationListener

org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder

org.deeplearning4j.nn.weights.WeightInit

org.nd4j.linalg.learning.AdamUpdater

org.nd4j.linalg.learning.config.AdaGrad

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder

org.nd4j.linalg.dataset.DataSet

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType

88

Woven Model Result for the Code Sample

org.deeplearning4j.optimize.listeners.ScoreIterationListener

org.nd4j.linalg.factory.Nd4j

org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder

org.nd4j.linalg.learning.AdaDeltaUpdater

org.nd4j.linalg.learning.config.AMSGrad

org.deeplearning4j.optimize.api.TrainingListener

org.nd4j.linalg.lossfunctions.impl.LossMCXENT

org.nd4j.evaluation.classification.Evaluation

org.deeplearning4j.nn.conf.layers.Layer

org.nd4j.linalg.learning.RmsPropUpdater

org.nd4j.linalg.learning.AMSGradUpdater

java.util.Map<Integer,Double>

org.deeplearning4j.nn.api.OptimizationAlgorithm

org.deeplearning4j.datasets.iterator.impl.TinyImageNetDataSetIterator

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder

org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder

org.deeplearning4j.optimize.api.BaseTrainingListener

org.nd4j.linalg.api.rng.Random

org.nd4j.linalg.learning.config.Nadam

java.lang.Double

org.nd4j.linalg.dataset.api.DataSet

org.nd4j.linalg.learning.NoOpUpdater

org.deeplearning4j.nn.conf.layers.BaseLayer.Builder

org.deeplearning4j.nn.conf.layers.SubsamplingLayer

org.nd4j.linalg.learning.config.IUpdater

org.nd4j.linalg.learning.config.AdaDelta

org.nd4j.linalg.schedule.StepSchedule

org.deeplearning4j.datasets.iterator.impl.Cifar10DataSetIterator

org.deeplearning4j.nn.conf.layers.FeedForwardLayer

org.nd4j.evaluation.regression.RegressionEvaluation

org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder

org.nd4j.linalg.schedule.MapSchedule

org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction

org.nd4j.linalg.lossfunctions.ILossFunction

org.nd4j.linalg.dataset.SplitTestAndTrain

org.nd4j.linalg.learning.config.RmsProp

89

Woven Model Result for the Code Sample

org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder

org.nd4j.linalg.activations.Activation

org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder

org.nd4j.linalg.learning.NesterovsUpdater

org.nd4j.linalg.learning.NadamUpdater

org.deeplearning4j.nn.conf.layers.OutputLayer.Builder

org.nd4j.linalg.learning.config.NoOp

org.datavec.image.transform.ImageTransform

org.nd4j.linalg.learning.SgdUpdater

org.deeplearning4j.nn.conf.NeuralNetConfiguration

org.deeplearning4j.nn.multilayer.MultiLayerNetwork

org.deeplearning4j.nn.layers.BaseOutputLayer<>

org.deeplearning4j.nn.conf.inputs.InputType

org.deeplearning4j.nn.conf.MultiLayerConfiguration

org.nd4j.linalg.api.ndarray.INDArray

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder

org.deeplearning4j.nn.conf.layers.DropoutLayer

org.nd4j.linalg.learning.config.Nesterovs

org.nd4j.linalg.learning.config.Adam

org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder

org.nd4j.linalg.learning.AdaGradUpdater

------END OF CLASSES------

------API CALLS------

org.deeplearning4j.nn.conf.layers.
ãÑCenterLossOutputLayer.Builder.gradientCheck(boolean)

org.deeplearning4j.nn.conf.layers.
ãÑCenterLossOutputLayer.Builder.lambda(double)

org.deeplearning4j.nn.multilayer.
ãÑMultiLayerNetwork.fit(org.nd4j.linalg.dataset.api.DataSet)

org.deeplearning4j.nn.conf.layers.OutputLayer.Builder.build()

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑoutput(org.nd4j.linalg.dataset.api.iterator.DataSetIterator)

org.deeplearning4j.nn.conf.layers.BaseLayer.Builder.
ãÑupdater(org.nd4j.linalg.learning.config.IUpdater)

org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder.nOut(long)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder.
ãÑweightInit(org.deeplearning4j.nn.weights.WeightInit)

org.nd4j.linalg.dataset.DataSet.sample(int,

org.nd4j.linalg.api.rng.Random)

90

Woven Model Result for the Code Sample

org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder.nIn(long)

org.nd4j.evaluation.classification.Evaluation.accuracy()

org.nd4j.evaluation.regression.RegressionEvaluation.stats()

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑfit(org.nd4j.linalg.dataset.api.iterator.DataSetIterator)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑoutput(org.nd4j.linalg.dataset.api.iterator.DataSetIterator,
boolean)

org.nd4j.linalg.dataset.DataSet.splitTestAndTrain(int)

org.deeplearning4j.nn.conf.layers.BaseLayer.Builder.l1(double)

org.nd4j.linalg.factory.Nd4j.create(double[][])

org.nd4j.linalg.factory.Nd4j.create(double[][][])

org.nd4j.linalg.factory.Nd4j.create(int[][])

org.deeplearning4j.nn.conf.inputs.InputType.convolutional(long,

long, long)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑoutput(org.nd4j.linalg.api.ndarray.INDArray)

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder.nIn(int)

org.nd4j.linalg.dataset.api.iterator.DataSetIterator.hasNext()

org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder.
ãÑpoolingType(org.deeplearning4j.nn.conf.layers.PoolingType)

org.deeplearning4j.nn.conf.inputs.InputType.convolutionalFlat(long,

long, long)

org.deeplearning4j.datasets.iterator.impl.
ãÑCifar10DataSetIterator.next(int)

org.deeplearning4j.nn.conf.layers.BaseLayer.Builder.
ãÑactivation(org.nd4j.linalg.activations.Activation)

org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder.
ãÑlossFunction(org.nd4j.linalg.
ãÑlossfunctions.LossFunctions.LossFunction)

org.nd4j.linalg.factory.Nd4j.create(int[])

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder.nInt(int)

org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder.
ãÑpoolingDimensions(int...)

org.nd4j.linalg.factory.Nd4j.vstack(int...)

org.deeplearning4j.nn.conf.layers.
ãÑConvolutionLayer.Builder.stride(int...)

org.nd4j.linalg.factory.Nd4j.create(double[])

org.deeplearning4j.nn.conf.inputs.InputType.convolutional3D(int,

int, int, int)

91

Woven Model Result for the Code Sample

org.nd4j.linalg.dataset.DataSet.numInputs()

org.deeplearning4j.nn.conf.layers.
ãÑConvolutionLayer.Builder.padding(int...)

org.deeplearning4j.nn.conf.layers.
ãÑSubsamplingLayer.Builder.stride(int...)

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder.nOut(int)

org.deeplearning4j.datasets.iterator.impl.
ãÑIrisDataSetIterator.hasNext()

org.deeplearning4j.datasets.iterator.impl.
ãÑTinyImageNetDataSetIterator.hasNext()

org.nd4j.linalg.dataset.DataSet.splitTestAndTrain(double)

org.deeplearning4j.nn.conf.layers.
ãÑSubsamplingLayer.Builder.padding(int...)

org.nd4j.linalg.dataset.SplitTestAndTrain.getTest()

org.nd4j.linalg.dataset.api.iterator.DataSetIterator.next(int)

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder.build()

org.deeplearning4j.datasets.iterator.impl.
ãÑTinyImageNetDataSetIterator.next(int)

org.deeplearning4j.nn.conf.layers.OutputLayer.Builder.dropOut(double)

org.deeplearning4j.nn.conf.layers.BaseLayer.Builder.l2(double)

org.nd4j.linalg.dataset.api.iterator.DataSetIterator.reset()

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑevaluateRegression(org.nd4j.linalg.dataset.api.
ãÑiterator.DataSetIterator)

org.nd4j.linalg.factory.Nd4j.create(float[])

org.deeplearning4j.nn.conf.inputs.InputType.feedForward(long)

org.deeplearning4j.nn.multilayer.
ãÑMultiLayerNetwork.fit(org.nd4j.linalg.api.ndarray.INDArray,
org.nd4j.linalg.api.ndarray.INDArray)

org.nd4j.linalg.factory.Nd4j.create(float[][])

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.
ãÑBuilder.kernelSize(int...)

org.nd4j.linalg.factory.Nd4j.hstack(int...)

org.nd4j.linalg.dataset.DataSet.numExamples()

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑBuilder.activation(org.nd4j.linalg.activations.Activation)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑBuilder.updater(org.nd4j.linalg.learning.config.IUpdater)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.init()

org.nd4j.evaluation.classification.Evaluation.eval(int, int)

org.nd4j.linalg.factory.Nd4j.create(int[][][])

92

Woven Model Result for the Code Sample

org.deeplearning4j.nn.conf.layers.OutputLayer.Builder.nOut(int)

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder.build()

org.nd4j.linalg.dataset.DataSet.getLabels()

org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.
ãÑBuilder.alpha(double)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑoutput(org.nd4j.linalg.api.ndarray.INDArray, boolean)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.summary()

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑsetListeners(org.deeplearning4j.optimize.api.TrainingListener...)

org.deeplearning4j.nn.conf.layers.OutputLayer.Builder.
ãÑactivation(org.nd4j.linalg.activations.Activation)

org.deeplearning4j.nn.conf.inputs.InputType.feedForward(int)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑevaluate(org.nd4j.linalg.dataset.api.iterator.DataSetIterator)

org.nd4j.evaluation.classification.Evaluation.stats()

org.deeplearning4j.nn.conf.inputs.InputType.convolutional(int, int,

int)

org.deeplearning4j.datasets.iterator.impl.
ãÑMnistDataSetIterator.next(int)

org.nd4j.linalg.dataset.DataSet.sample(int, boolean)

org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder.build()

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑfit(org.nd4j.linalg.dataset.api.iterator.DataSetIterator, int)

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder.build()

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.
ãÑBuilder.activation(int)

org.deeplearning4j.nn.conf.inputs.InputType.
ãÑconvolutionalFlat(int, int, int)

org.nd4j.linalg.dataset.SplitTestAndTrain.getTrain()

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.
ãÑBuilder.kernelSize(int...)

org.nd4j.evaluation.classification.Evaluation.
ãÑeval(org.nd4j.linalg.api.ndarray.INDArray,
org.nd4j.linalg.api.ndarray.INDArray)

org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder.nIn(int)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.build()

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑListBuilder.layer(org.deeplearning4j.nn.conf.layers.Layer)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder.
ãÑoptimizationAlgo(org.deeplearning4j.nn.api.OptimizationAlgorithm)

org.nd4j.evaluation.classification.Evaluation.confusionToString()

93

Woven Model Result for the Code Sample

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑListBuilder.setInputType(int)

org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator.next(int)

org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder.nOut(int)

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder.nIn(long)

org.nd4j.linalg.dataset.DataSet.numOutcomes()

org.deeplearning4j.datasets.iterator.impl.
ãÑTinyImageNetDataSetIterator.next()

org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder.build()

org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator.next()

org.nd4j.linalg.dataset.DataSet.getFeatures()

org.nd4j.linalg.factory.Nd4j.create(float[][][])

org.deeplearning4j.datasets.iterator.impl.Cifar10DataSetIterator.next()

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑBuilder.learningRate(double)

org.deeplearning4j.nn.conf.inputs.InputType.convolutional3D(long,

long, long, long)

org.deeplearning4j.datasets.iterator.impl.
ãÑCifar10DataSetIterator.hasNext()

org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder.l2(double)

org.deeplearning4j.nn.conf.layers.BaseLayer.Builder.
ãÑweightInit(org.deeplearning4j.nn.weights.WeightInit)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder.list()

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.
ãÑdoEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator,
T...)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.
ãÑsetInputType(org.deeplearning4j.nn.conf.inputs.InputType)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑBuilder.miniBatch(boolean)

org.nd4j.evaluation.classification.Evaluation.
ãÑstats(org.nd4j.linalg.api.ndarray.INDArray,
org.nd4j.linalg.api.ndarray.INDArray)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑ.biasInit(double)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.fit()

org.deeplearning4j.nn.conf.layers.OutputLayer.
ãÑBuilder.name(java.lang.String)

org.nd4j.linalg.dataset.DataSet.sample(int)

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder.nOut(long)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.

94

Woven Model Result for the Code Sample

ãÑListBuilder.layer(int, org.deeplearning4j.nn.conf.layers.Layer)
org.deeplearning4j.datasets.iterator.impl.

ãÑMnistDataSetIterator.hasNext()
org.nd4j.linalg.dataset.DataSet.get(int)

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder.nOut(int)

org.nd4j.evaluation.classification.Evaluation.confusionMatrix()

org.deeplearning4j.datasets.iterator.impl.
ãÑMnistDataSetIterator.next()

org.deeplearning4j.nn.conf.layers.
ãÑCenterLossOutputLayer.Builder.build()

org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder.seed(long)

------END OF API CALLS------

------CONSTRUCTORS------

org.deeplearning4j.datasets.iterator.impl.
ãÑIrisDataSetIterator.IrisDataSetIterator()

org.nd4j.linalg.learning.config.Nadam.Nadam(double)

org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.
ãÑBuilder.CenterLossOutputLayer$Builder()

org.nd4j.linalg.learning.config.Adam.Adam(double, double, double,

double)

org.deeplearning4j.datasets.iterator.impl.Cifar10DataSetIterator.
ãÑCifar10DataSetIterator(int, int[],
org.deeplearning4j.datasets.fetchers.DataSetType)

org.deeplearning4j.nn.conf.layers.OutputLayer.
ãÑBuilder.OutputLayer$Builder()

org.nd4j.linalg.learning.config.AMSGrad.AMSGrad(double)

org.deeplearning4j.optimize.api.IterationListener.IterationListener()

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.
ãÑBuilder.SubsamplingLayer$Builder(int...)

org.deeplearning4j.datasets.iterator.impl.Cifar10DataSetIterator.
ãÑCifar10DataSetIterator(int, int[],
org.deeplearning4j.datasets.fetchers.DataSetType,

org.datavec.image.transform.ImageTransform, long)

org.nd4j.linalg.learning.config.Adam.Adam()

org.nd4j.linalg.learning.config.RmsProp.RmsProp()

org.nd4j.linalg.learning.NadamUpdater.
ãÑNadamUpdater(org.nd4j.linalg.learning.config.Nadam)

org.nd4j.linalg.dataset.SplitTestAndTrain.
ãÑSplitTestAndTrain(org.nd4j.linalg.dataset.DataSet,
org.nd4j.linalg.dataset.DataSet)

org.deeplearning4j.nn.conf.layers.BatchNormalization.BatchNormalization()

95

Woven Model Result for the Code Sample

org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.
ãÑBuilder.CenterLossOutputLayer$Builder(org.nd4j.linalg.
ãÑlossfunctions.LossFunctions.LossFunction)

org.nd4j.linalg.learning.config.AdaGrad.AdaGrad()

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.
ãÑBuilder.SubsamplingLayer$Builder()

org.deeplearning4j.nn.conf.layers.BaseOutputLayer.
ãÑBuilder.BaseOutputLayer$Builder(org.nd4j.
ãÑlinalg.lossfunctions.ILossFunction)

org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.
ãÑBuilder.GlobalPoolingLayer$Builder()

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.
ãÑBuilder.ConvolutionLayer$Builder(int...)

org.deeplearning4j.datasets.iterator.impl.Cifar10DataSetIterator.
ãÑCifar10DataSetIterator(int,
org.deeplearning4j.datasets.fetchers.DataSetType)

org.deeplearning4j.nn.conf.layers.BaseOutputLayer.
ãÑBuilder.BaseOutputLayer$Builder()

org.deeplearning4j.nn.conf.layers.OutputLayer.
ãÑBuilder.OutputLayer$Builder(org.nd4j.linalg.
ãÑlossfunctions.ILossFunction)

org.nd4j.evaluation.regression.RegressionEvaluation.
ãÑRegressionEvaluation(java.lang.String...)

org.deeplearning4j.nn.conf.layers.ConvolutionLayer.
ãÑBuilder.ConvolutionLayer$Builder()

org.deeplearning4j.nn.conf.layers.FeedForwardLayer.
ãÑBuilder.FeedForwardLayer$Builder()

org.nd4j.linalg.learning.SgdUpdater.
ãÑSgdUpdater(org.nd4j.linalg.learning.config.Sgd)

org.deeplearning4j.datasets.iterator.impl.
ãÑTinyImageNetDataSetIterator.TinyImageNetDataSetIterator(int,
int[], org.deeplearning4j.datasets.fetchers.DataSetType,

org.datavec.image.transform.ImageTransform, long)

org.deeplearning4j.datasets.iterator.impl.
ãÑTinyImageNetDataSetIterator.TinyImageNetDataSetIterator(int)

org.nd4j.evaluation.regression.
ãÑRegressionEvaluation.RegressionEvaluation()

org.deeplearning4j.datasets.iterator.impl.
ãÑMnistDataSetIterator.MnistDataSetIterator(int, int)

org.nd4j.evaluation.regression.
ãÑRegressionEvaluation.RegressionEvaluation(long)

org.deeplearning4j.nn.conf.NeuralNetConfiguration.
ãÑBuilder.NeuralNetConfiguration$Builder()

org.nd4j.linalg.learning.AMSGradUpdater.
ãÑAMSGradUpdater(org.nd4j.linalg.learning.config.AMSGrad)

96

Woven Model Result for the Code Sample

org.nd4j.linalg.learning.config.
ãÑAdam.Adam(org.nd4j.linalg.schedule.ISchedule)

org.deeplearning4j.datasets.iterator.impl.
ãÑCifar10DataSetIterator.Cifar10DataSetIterator(int)

org.deeplearning4j.datasets.iterator.impl.
ãÑMnistDataSetIterator.MnistDataSetIterator(int, boolean, int)

org.nd4j.linalg.learning.config.Nadam.Nadam(double, double, double,

double)

org.nd4j.linalg.lossfunctions.impl.LossMCXENT.
ãÑLossMCXENT(double, org.nd4j.linalg.api.ndarray.INDArray)

org.nd4j.linalg.learning.config.AdaDelta.AdaDelta()

org.nd4j.linalg.learning.NoOpUpdater.
ãÑNoOpUpdater(org.nd4j.linalg.learning.config.NoOp)

org.deeplearning4j.nn.conf.layers.BatchNormalization.
ãÑBuilder.BatchNormalization$Builder()

org.deeplearning4j.datasets.iterator.impl.TinyImageNetDataSetIterator.
ãÑTinyImageNetDataSetIterator(int,
org.deeplearning4j.datasets.fetchers.DataSetType)

org.deeplearning4j.nn.multilayer.MultiLayerNetwork.MultiLayerNetwork
ãÑ(org.deeplearning4j.nn.conf.MultiLayerConfiguration)

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.
ãÑBuilder.SubsamplingLayer$Builder(org.deeplearning4j.nn.
ãÑconf.layers.PoolingType)

org.nd4j.linalg.learning.config.Nadam.Nadam()

org.deeplearning4j.optimize.listeners.
ãÑEvaluativeListener.EvaluativeListener(org.nd4j.linalg.dataset.api.
ãÑiterator.DataSetIterator, int,
org.deeplearning4j.optimize.api.InvocationType)

org.nd4j.linalg.lossfunctions.impl.LossMCXENT.LossMCXENT(org.nd4j.linalg.
ãÑapi.ndarray.INDArray)

org.nd4j.linalg.learning.config.Sgd.Sgd(double)

org.nd4j.linalg.learning.config.AMSGrad.AMSGrad(double, double,

double, double)

org.deeplearning4j.nn.conf.layers.DenseLayer.Builder.DenseLayer$Builder()

org.nd4j.linalg.learning.config.Nesterovs.Nesterovs(double, double)

org.deeplearning4j.optimize.listeners.
ãÑScoreIterationListener.ScoreIterationListener()

org.nd4j.linalg.learning.AdaDeltaUpdater.
ãÑAdaDeltaUpdater(org.nd4j.linalg.learning.config.AdaDelta)

org.nd4j.linalg.learning.config.AdaDelta.AdaDelta(double, double)

org.nd4j.linalg.learning.config.Adam.Adam(double)

org.deeplearning4j.optimize.listeners.
ãÑEvaluativeListener.EvaluativeListener(org.nd4j.linalg.dataset.api.

97

Woven Model Result for the Code Sample

ãÑiterator.DataSetIterator, int)
org.nd4j.evaluation.classification.Evaluation.Evaluation()

org.deeplearning4j.datasets.iterator.impl.
ãÑIrisDataSetIterator.IrisDataSetIterator(int, int)

org.nd4j.linalg.learning.config.Nesterovs.Nesterovs()

org.nd4j.linalg.lossfunctions.impl.LossMCXENT.LossMCXENT()

org.deeplearning4j.nn.conf.layers.DropoutLayer.DropoutLayer(double)

org.deeplearning4j.optimize.api.
ãÑBaseTrainingListener.BaseTrainingListener()

org.deeplearning4j.nn.conf.layers.SubsamplingLayer.
ãÑBuilder.SubsamplingLayer$Builder(org.deeplearning4j.nn.conf.
ãÑlayers.SubsamplingLayer.PoolingType)

org.nd4j.linalg.schedule.StepSchedule.StepSchedule
ãÑ(org.nd4j.linalg.schedule.ScheduleType, double, double, double)

org.nd4j.linalg.schedule.MapSchedule.MapSchedule(org.nd4j.linalg.
ãÑschedule.ScheduleType, java.util.Map)

org.nd4j.linalg.learning.config.RmsProp.RmsProp(double)

org.nd4j.linalg.learning.config.Nesterovs.Nesterovs(double)

org.deeplearning4j.optimize.listeners.
ãÑScoreIterationListener.ScoreIterationListener(int)

org.nd4j.linalg.learning.config.AdaGrad.AdaGrad(double, double)

org.nd4j.linalg.learning.RmsPropUpdater.
ãÑRmsPropUpdater(org.nd4j.linalg.learning.config.RmsProp)

org.deeplearning4j.datasets.iterator.impl.
ãÑTinyImageNetDataSetIterator.TinyImageNetDataSetIterator(int,
int[], org.deeplearning4j.datasets.fetchers.DataSetType)

org.nd4j.linalg.learning.config.Sgd.Sgd()

org.nd4j.evaluation.classification.Evaluation.Evaluation(int)

org.nd4j.linalg.learning.config.AMSGrad.AMSGrad()

org.deeplearning4j.nn.conf.layers.OutputLayer.
ãÑBuilder.OutputLayer$Builder(org.nd4j.linalg.
ãÑlossfunctions.LossFunctions.LossFunction)

org.nd4j.linalg.learning.config.Nesterovs.
ãÑNesterovs(org.nd4j.linalg.schedule.ISchedule)

org.nd4j.linalg.learning.config.NoOp.NoOp()

org.nd4j.linalg.learning.config.AdaGrad.AdaGrad(double)

org.nd4j.linalg.learning.config.RmsProp.
ãÑRmsProp(double, double, double)

org.nd4j.linalg.learning.NesterovsUpdater.
ãÑNesterovsUpdater(org.nd4j.linalg.learning.config.Nesterovs)

org.nd4j.linalg.learning.AdaGradUpdater.
ãÑAdaGradUpdater(org.nd4j.linalg.learning.config.AdaGrad)

org.nd4j.linalg.learning.config.Nesterovs.

98

Woven Model Result for the Code Sample

ãÑNesterovs(double, org.nd4j.linalg.schedule.ISchedule)
org.nd4j.linalg.learning.AdamUpdater.

ãÑAdamUpdater(org.nd4j.linalg.learning.config.Adam)

------END OF CONSTRUCTORS------

99

