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Abstract 

Climate change is set to impact biodiversity around the globe. In response, pole-wards 

range shifts are being observed ubiquitously, leading to range contraction for species already 

living at northern latitudes, such as birds breeding in northern Canada. Any pole-wards shift by 

these species, or from other species moving up from the south, will cause range contraction and 

increased extinction risk. Canadian birds are experiencing climate-driven change faster than 

anywhere else in the world, making it critical to understand the magnitude of change they will 

experience in the future. Species distribution models (SDMs) are the most commonly used tool 

to understand the incoming climate-driven changes. Inferring from associations between 

observational occurrences and environmental data, these models are used to predict potential 

species distribution with future climate scenarios. However, many different distribution models 

have been developed, each based on different assumptions and better suited for different types of 

data. The Canadian north is a particular challenge, as it has rapid climate change and very sparse 

distribution data. While most SDMs are based only on occurrence data, some new approaches 

combine occurrences with abundances from systematic survey data, which could be a solution to 

having reliable models in under-sampled regions. In addition to projected species range shifts, 

species traits are well-known to be correlates for extinction risk. Combining SDMs with traits 

could provide a framework for understanding a species ability to cope or adapt to climate-driven 

change as well as changes in habitat suitability and identify vulnerable species not currently 

deemed at-risk.  

In this thesis, I first address the question of how to integrate climate-change projections 

into a trait vulnerability assessment (TVA) framework. This new framework evaluates how 

much climate change a species is experiencing (i.e., how much suitable habitat they are predicted 

to lose and gain), which is then combined with species-specific traits. Species traits represent 

sensitivity, exposure, and adaptive capacity to climate change. By incorporating both SDM and 

TVA, I assessed the overall vulnerability of the 471 birds breeding in Canada and highlighted 83 

species not currently at-risk, but likely to become vulnerable in the future given their combined 

changing distributions and capacity to withstand these changes.  

Secondly, I ask how different data types can be leveraged to address data-deficiencies 

when predicting species distributions. I test a recently developed method of combining 

abundance and occurrence data for waterfowl of the western boreal region of Canada, where 

both types of data are limited and biased in different ways. I compare four different types of data 

and approaches including: (1) abundance data from the Waterfowl Breeding Population and 

Habitat Survey (WBPHS), (2) occurrence data derived from abundance data from WBPHS, (3) 

occurrence data weighted by abundance, and (4) occurrence data from the Global Biodiversity 

Information Facility (GBIF). I find that the simple method of model integration (occurrence data 

weighted by abundances) produces better predictions than individual models. I also determine 

which models are most appropriate depending on species rarity.  

Overall, I find that an improved understanding of extinction risk is possible even in the 

rapidly-changing under-studied Canadian north, but we must leverage all available information 

to have reliable predictions of species risk.  
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Résumé 

Les changements climatiques auront un impact sur la biodiversité dans le monde entier. 

En réponse à ces changements, divers taxa se déplacent vers les pôles, entraînant une contraction 

de l'aire de répartition et un risque accru d’extinction pour les espèces vivant déjà à des latitudes 

nordiques, comme les oiseaux qui se reproduisant dans le nord du Canada. En plus de subir une 

contraction de leur aire de répartition, les oiseaux canadiens endurent les changements 

climatiques plus rapidement que partout ailleurs dans le monde. Il est donc essentiel de 

comprendre l'ampleur des changements auxquels ils seront confrontés. Les modèles de 

répartition des espèces (SDM) sont l'outil le plus couramment utilisé pour étudier la réponse des 

espèces face aux changements climatiques à venir. Déduisant des associations entre les 

occurrences observées et les données environnementales, ces modèles sont utilisés pour prévoir 

la répartition potentielle des espèces en fonction des futures conditions climatiques. De 

nombreux modèles de répartition ont été développés, chacun basé sur des hypothèses différentes 

et mieux adapté à différents types de données. Le nord du Canada représente un défi particulier 

car il connaît des changements climatiques rapides et des données de répartition très éparses. 

Alors que la plupart des SDMs sont basés uniquement sur des données d'occurrence, certaines 

nouvelles approches combinent les occurrences avec les abondances provenant de données 

d'enquêtes systématiques, ce qui pourrait être une solution pour avoir des modèles fiables dans 

les régions sous-échantillonnées. En plus des déplacements prévus des aires de répartition des 

espèces, les caractéristiques des espèces sont bien connues pour être des corrélats du risque 

d'extinction. La combinaison des SDMs avec les traits pourraient fournir un cadre pour 

comprendre la capacité d'une espèce à faire face ou à s'adapter aux changements climatiques 

ainsi qu'aux changements dans l'adéquation de l'habitat et identifier les espèces vulnérables qui 

ne sont pas actuellement considérées comme en danger. 

Dans cette thèse, j'aborde la question de savoir comment intégrer les projections de 

changement climatique dans un cadre d'évaluation de la vulnérabilité des traits (TVA). Ce 

nouveau cadre évalue l'ampleur du changement climatique auquel une espèce est confrontée 

(c'est-à-dire la quantité d'habitat approprié qu'elle est censée perdre ou gagner), qui est ensuite 

combinée aux traits spécifiques de l'espèce. Les caractéristiques des espèces représentent la 

sensibilité, l'exposition et la capacité d'adaptation au changement climatique. En intégrant les 

SDMs et le TVA, j'ai évalué la vulnérabilité globale des 471 oiseaux qui nichent au Canada et 

j'ai mis en évidence 83 espèces qui ne sont pas actuellement en danger, mais qui seront 

probablement vulnérables à l'avenir compte tenu de l'évolution combinée de leur climat et de leur 

capacité à résister à ces changements. 

Deuxièmement, je me demande comment les différents types de données peuvent être 

exploités pour remédier aux déficiences des données lors de la prévision de la répartition des 

espèces. Je teste une méthode récemment développée pour combiner les données d'abondance et 

d'occurrence des oiseaux aquatiques de la région boréale occidentale du Canada, où les deux 

types de données sont limités et préjugés de différentes manières. Je compare quatre types de 

données et d'approches différentes : (1) les données d'abondance provenant du Waterfowl 

Breeding Population and Habitat Survey (WBPHS), (2) les données d'occurrence dérivées des 

données d'abondance du WBPHS, (3) les données d'occurrence pondérées par l'abondance, et (4) 

les données d'occurrence provenant du Global Biodiversity Information Facility (GBIF). Je 

constate que la méthode simple d'intégration des modèles (données d'occurrence pondérées par 
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les abondances) produit de meilleures prédictions que les modèles individuels. Je détermine 

également quels modèles sont les plus appropriés en fonction de la rareté des espèces. 

Dans l'ensemble, je constate qu'il est possible d'améliorer la compréhension du risque 

d'extinction, même dans le nord du Canada, qui évolue rapidement et qui est sous-étudié, mais 

nous devons exploiter toutes les informations disponibles pour obtenir des prévisions fiables sur 

le risque pour les espèces.  
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Introduction 

Few areas in North America remain untouched by global climate change. From increases 

in frequency and severity in extreme temperatures, to decreased glacial extents and sea level rise, 

to increased heatwaves, climate change impacts are unavoidable, spanning terrestrial, freshwater, 

and marine systems (IPCC, 2022). Warming temperatures are impacting biodiversity in various 

ways, including changes in ecosystem structure, species range shifts, and changes in phenology 

(IPCC, 2022). However, such impacts are even more drastic at northern latitudes, particularly in 

Northern Canada. Northern Canada is the home and the breeding grounds for hundreds of birds 

but remains under-sampled, and understudied, despite being extremely vulnerable to climate 

change. Species distribution models (SDMs) have been developed to evaluate species exposure 

to climate change and are the primary tool used for such assessments (Elith and Leathwick, 

2009; Willis et al., 2015). These models use associations between observational and 

environmental data to predict a species current and potential future distribution across a spatial 

and temporal landscape using various temperature and green house gas emission scenarios (Elith 

and Leathwick, 2009; Lawler et al., 2011). One major advantage of SDMs is that continuous 

maps of suitable habitat can be predicted at any spatial resolution with sufficient data. SDMs are 

used from detailed analyses of individual species to global predictions at coarse grid cells 

involving thousands of species. However, there are many biotic and abiotic factors that influence 

a species distribution which are not considered in SDMs. Most SDMs only assess the magnitude 

of predicted geographical shifts in habitat and climate suitability (Willis et al., 2015). While such 

information is still very useful, it lacks all the components needed to robustly assess climate 

change vulnerability as an SDM simply describes the changes in (modelled) suitable habitat, not 

the response of the species to such change. 
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To accurately assess vulnerability, other factors such as species traits, and changes in 

abundance, must be considered. First, using only SDMs for climate-change vulnerability 

assessments does not capture a species ability to cope and adapt with environmental change. 

SDMs generally only use bioclimatic variables (Elith and Leathwick, 2009) and much less 

commonly include species-specific traits. The resulting predicted distributions are, therefore, 

models of the realized niche of species as defined by climate variables. As the observed 

occurrences of many species are a subset of the fundamental (Soberón, 2007) or tolerance niche 

(Sax et al., 2013), then the models would likely under-predict the geographic area that the 

species could occur in given a particular set of circumstances (e.g. the absence of competitor 

species). If this is the case, then vulnerability estimates derived from an SDM might under-

estimate climate change risk for a species (Bush et al., 2018). One way to better understand 

vulnerability to climate change is to use additional biological information about species (e.g., 

functional traits) to help refine predictions of change and estimates of vulnerability. Species-

specific traits can increase or decrease a species vulnerability to climate change, and therefore, 

influence their extinction risk (Willis et al., 2015). For example, Ducatez et al., (2020) 

investigated how behavioural plasticity is associated with extinction risk in birds. They used 

innovation propensity (a species ability to develop a new behavioral response in the face of 

climate-driven change) as a measure of behavioural plasticity and found a negative relationship 

with extinction risk (Ducatez et al., 2020). Behavioural plasticity reflects a species ability to 

adapt to environmental change, therefore species with increased innovation ability have lower 

extinction risk and are more likely to have stable, or even increasing, population size (Ducatez et 

al., 2020). Combining life-history traits with SDMs can provide a more complete assessment of 

not only how much change in suitable habitat each species is experiencing, but also if they can 
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adapt to such changes. For instance, SDM may find that a particular species is predicted to gain 

suitable habitat and life history-traits can determine if such species can disperse, survive, and 

reproduce in this newly available habitat (Willis et al., 2015).  

Second, most SDMs use presence-only or presence-absence data, but many researchers 

argue that using abundance data (i.e., count data) is a better metric. While the collection of 

abundance data is more costly and resource demanding, it can provide more valuable models 

results. For example, Johnston et al., (2015) compared the conservation prioritization results 

between occurrence and abundance models for the Northern Pintail (Anas acuta) in California. 

Results from the occurrence model analysis highlights three regions in the Central Valley as 

important for the Northern Pintail, however the abundance model analysis highlighted all 

locations within one of the three regions in the Central Valley: the Sacramento River Valley, 

where 71-95% of the Northern Pintail population resides (Johnston et al., 2015). Abundance 

model outputs can also quantify the number of individuals in an area, and thus their impact of the 

local community, whereas presence-absence models simply state that at least one single 

individual is present (Elith and Leathwick, 2009; Martínez-Minaya et al., 2018). In theory, 

habitat suitability can be extrapolated based on abundance model outputs, but the abundance-

suitability relationship has mixed support in the literature (Dallas and Hastings, 2018; Weber et 

al., 2017). Despite this, using abundance data can provide valuable baseline data, and can 

potentially provide early warning signs of population decline (Howard et al., 2015; Waldock et 

al., 2022; Yu et al., 2020). However, abundance models should be used with caution, as they 

may not be appropriate for all species.   

In this thesis, I evaluate the vulnerability of Canadian birds to climate change. More 

specifically, I first combine SDMs and Trait Vulnerability Assessments (TVA) to develop an 
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integrated approach that considers geographical shifts in suitable habitat, as well as each species 

ability to cope and adapt to such climate-driven change. Following this, I investigate the best 

approach to use when working with abundance data with SDMs, looking into how a species 

ecology may influence the model performance and therefore, model selection. These results can 

be used to better inform conservation management, spatial prioritization, and species-specific 

conservation. SDMs solely based on occurrence data can only provide so much information on a 

species vulnerability to climate change. Additional information, such as life history traits, biotic 

and abiotic interactions, home range size and changes in abundance, is needed to produce more 

accurate and informative results for conservation purposes. For the purpose of this thesis, I will 

focus on how incorporating life history traits and abundance data with SDMs will influence 

model performance and outputs. 
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Abstract 

Aim: Species distributions models (SDMs) are the most widely used tool to determine climate 

change impacts on biodiversity. However, SDMs only consider environmental change, and do 

not consider a species ability to adjust and handle with these changes. Biological traits provide a 

wealth of information on how well a species can cope with climate-driven change. Here, we aim 

to combine more explicitly SDM predictions into each TVA component, to provide a 

vulnerability assessment which considers both extrinsic changes and intrinsic ability of each 

species. 

Location: Canada 

Methods: SDMs were produced for all 471 species of birds breeding in Canada. From these 

predictions, the amount of habitat gained and lost by each species is used as a trait to reflect their 

expected geographical change in suitable habitat. The expected geographical change in suitable 

habitat was then incorporated into each TVA component with other biological traits which 

reflect a species sensitivity, adaptive capacity, and exposure to climate change. The vulnerability 

risk for all 471 species was assessed across life history guilds and breeding biomes. 

Main Conclusion: This assessment highlights seabirds, shorebirds, waterfowl, and wetland birds 

to be the most vulnerable to climate change, with each group having high vulnerability scores in 

at least one of the TVA components. We identified 83 species most likely to become vulnerable 

with increased climate-driven change, most of which breed in the Artic Tundra, wetlands, and 

coastal habitats. Finally, we show that northern species are more vulnerable to climate change 

due to both their biological traits and their predicted change in suitable habitat. Incorporating 

SDMs with TVAs can provide information about how a species’ habitat availability will be 

altered due to climate change as well as help determine if they can persist in decreasing habitat 

or disperse to new available habitat.  

 

Key words: adaptive capacity, Aves, climate change, exposure, sensitivity, species distribution 

models, trait vulnerability assessment 
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Introduction 

Climate change is set to impact birds around world, but northern species are particularly 

vulnerable and under studied (Bellard et al., 2012; Nixon et al., 2016; Gaudreau et al., 2018). To 

prevent losses, species will need to adapt to new environmental conditions or disperse to follow 

their climate niche (Bateman et al., 2020), with the latter already observed in many taxa shifting 

their range pole-wards (Walther et al., 2002). However, for birds already at the physical limits of 

their habitat, such as Arctic breeding birds, any northward shift will cause range contractions, 

reducing their breeding habitat and increasing their extinction risk. Already 24-50% of bird 

species globally are vulnerable to climate change (Foden et al., 2013), and many more species 

are expected to experience a decrease in range size globally (Walter et al., 2007). Range shifts 

and changes in climate conditions can cause changes in migration timing (arriving early or late 

on the breeding grounds), potentially eliciting a mismatch between nutrient availability and 

nutrient demand for migratory birds, and thus impacting population size and species survivorship 

(Smith et al., 2020). In addition to changes in range size, species-specific traits can also impact 

vulnerability status. Species with traits that promote specialist behavior are more likely to be 

vulnerable to climate change compared to generalist species (Chichorro et al., 2019). With 

Canada warming more than two times faster than the rest of the world, and the Arctic is warming 

three times faster (Bush and Lemmen, 2019), identifying species in need of protection is vital for 

their survival. We urgently need to evaluate comprehensive risk for northern species which are 

likely to become more vulnerable with rapid climate change. 

To evaluate risk, we need to determine if a species is vulnerable because of their traits, 

making them unable to persist or disperse, or from climate change driven habitat loss, or both. 

Species distribution models (SDMs) are the most widely used tool for predicting climate change 
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impacts on biodiversity and assessing changes in range size at both a regional (Brian et al., 2008) 

and local scale (Berteaux et al., 2010; Gaudreau et al., 2018). However, SDMs use bioclimatic 

variables to project species distribution with future changes in habitat without including their 

ability to cope with these changes (Willis et al., 2015). Other issues with SDMs include weak 

relationship between extinction risk and predicted changes in habitat suitability (Fordham et al., 

2012), spatial and temporal autocorrelation (Martínez-Minaya et al., 2018; Miller, 2012), non-

stationarity (which reflect spatial heterogeneity; Martínez-Minaya et al., 2018; Miller, 2012), 

sampling bias (Martínez-Minaya et al., 2018), etc. If SDMs incorrectly assume an environmental 

variable represents a fundamental limit for a species, then projected range losses could be over-

estimated as the species might not actually need to move to track the climate. On the other hand, 

since SDMs do not consider a species’ persistence or dispersal ability, models may over-estimate 

predicted range availability and under-estimate the vulnerability risk. For example, SDMs 

predicted a 600% increase in current distribution size for the White-necked Picathartes 

(Picathartes gymnocephalus), however their low dispersal ability makes them unlikely to 

colonize the newly available habitat (Willis et al., 2015). In this case, SDMs over-estimated 

potential range availability and under-estimated vulnerability risk, when in fact, the low dispersal 

ability of the White-necked Picathartes, combined with a 50% loss of its current range, makes it 

highly vulnerable to climate change (Willis et al., 2015). In practice, SDMs have mixed results 

when projecting past range shifts of species (Sofaer et al., 2018), although they might become 

more predictive as climate change causes major shifts. Despite this, SDMs remain useful, and in 

many cases, the only tool for understanding potential climate change impacts for a species. But 

SDMs should be combined with additional information for each species rather than used in 

isolation to predict the impact of climate change. Not considering biological traits could result in 
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(1) an under-assessment of vulnerability status derived from models which do not consider 

intrinsic ability to cope with modelled geographical change, and (2) increased extinction risk due 

to reduced or absent conservation management developed based on inaccurate modelling results. 

The other source of information readily available for all species is biological traits. Traits 

form the basis for trait vulnerability assessments (TVA), which evaluate vulnerability based on 

intrinsic abilities and extrinsic opportunity (Willis et al., 2015). For example, habitat 

specialization is a trait commonly used to reflect a species sensitivity, such that specialists are 

more sensitive to climate change due to their narrow habitat requirements compared to generalist 

(Foden et al., 2013; Gardali et al., 2012). TVA’s combine species exposure to climate change 

and species-specific characteristics to determine their vulnerability status and assess if particular 

traits increase or decrease their vulnerability (Willis et al., 2015). Many climate change 

vulnerability assessments have been developed over the years (Barrows et al., 2014; Foden et al., 

2013; Gardali et al., 2012; Garnett et al., 2013; Triviño et al., 2013; Young et al., 2012) all using 

traits to describe the same three components for each species: sensitivity, adaptive capacity, and 

exposure to climate change (Wheatley et al., 2017). However, the methodologies and the traits 

used to estimate each component of these assessments varies from framework to framework, 

with little to no consistency (Wheatley et al., 2017). One study compared the outputs of 12 

different vulnerability assessment frameworks, including trait- and trend-based (which focus 

more on changes in abundance and distribution, rather than traits) approaches, to determine if 

they generate similar findings (Wheatley et al., 2017). Each framework provided differing 

results, with none of them assigning the same risk category for a single species (Wheatley et al., 

2017), suggesting the inconsistencies are a product of the variables used and how they are 

combined rather than from the data used in each assessment. 
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 Despite SDM predictions being one of the only tools for predicting climate change 

impacts across many species, few studies have incorporated SDM predictions into vulnerability 

assessments. In an early example, Foden et al., (2013) included projected changes in temperature 

and precipitation from SDMs for birds into their calculation of exposure and included five “trait 

sets” for sensitivity and two for adaptive capacity (Foden et al., 2013). Bateman et al., (2020) 

includes more details from the SDM projections in the TVA by partitioning projections into 

habitat gained, lost, and maintained. They then merge traits with SDM projections by including 

dispersal ability in the adaptive capacity component of their TVA to reflect a species ability to 

realize these predicted gains and also use SDM predictions for exposure (the climate change 

scenario considered) and sensitivity (range loss due to climate change; Bateman et al., 2020). 

Here, we build upon the Bateman et al. approach by expanding the SDM-trait links in a 

TVA. We similarly partition SDM projections into area that is lost, potentially gained, and 

maintained (‘win-win’ areas projected to be stable into the future). We then combine those 

partitions with trait information that indicates how well species could track their climate niche 

(adaptive capacity) as well as traits that enable a species to persist in those areas of rapidly 

changing climate (sensitivity). We also include other threats in addition to climate change in our 

estimate of exposure and use a probabilistic approach to estimate habitat gained and lost for each 

species. We develop this TVA for breeding birds of Canada (471 species), which are highly 

exposed to rapid climate change and where we have detailed information of species traits and 

threats. Our results include a ranked list of the vulnerability scores of all species. By comparing 

vulnerability scores to their IUCN status, we identify currently overlooked species that are most 

likely to become vulnerable in the future. Finally, we compared TVA results to current trends in 
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species abundance to highlight traits potentially related to declines in abundance, causing 

increased vulnerability in the near future. 

Methods 

Occurrence data - Occurrence data for 471 species of birds breeding in Canada was 

downloaded from Global Biodiversity Informatics Facility (GBIF: gbif.org) and filtered to 

extract breeding range data only. Only records later than 2000 were kept to avoid localities with 

large spatial uncertainties or those that might have shifted their ranges. The average start and end 

date of the breeding season was estimated for a random subsample of species (n = 117; 25% of 

species), generating a breeding season from June to July (similar breeding period as in Bateman 

et al. (2020); eBird, 2017; Bateman et al., 2020; Fink et al., 2020). For species that didn’t have 

dates associated with their occurrence records, we included occurrence points only when they 

were within the IUCN breeding polygons when available (IUCN, 2021). When breeding 

polygons were not available, we used one of two approaches (Fig. S1). We first determined if the 

distribution data was within the general breeding range of that species (based on distribution 

maps from Birds of the World; Birds of the World, 2020). If the data was distributed similarly to 

the breeding range, only obvious outliers were excluded. If the occurrence data was distributed 

across North America and removing outliers was not an option, we used manually drawn 

breeding ranges. The manually drawn breeding ranges were approximations of the breeding 

range of each of the remaining birds (3%; Fig. 1). Distribution maps from Birds of the World 

(Birds of the World, 2020) were used as a reference for range extent, which was then used to 

exclude all points outside of these polygons. Occurrence data was then gridded for a 1-km2 grid 

on a Lambert Conformal Conic projection. 
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Climate and environmental variables - We used current and future climate variables 

generated by AdaptWest (AdaptWest Project 2021) and non-climate habitat variables from a 

range of sources for our SDMs for the same grid as distribution data (1-km2). Five climatic 

variables were included which were previously found to be important for modelling species 

distributions in breeding ranges (Bateman et al., 2020; Wilsey et al., 2019), and three 

topographic variables (Table S1). Future climate predictions included downscaled data from the 

Coupled Model Intercomparison Project phase 6 (CMIP6) in accordance with the 6th IPCC 

Assessment Report, as well as current data from PRISM and WorldClim. Future projections 

consist of an ensemble projection from 13 CMIP5 models (ACCESS-ESM1-5, BCC-CSM2-MR, 

CNRM-ESM2-1, CanESM5, EC-Earth3, GFDL-ESM4, GISS-E2-1-G, INM-CM5-0, IPSL-

CM6A-LR, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL). Current climate 

variables consisted of climate normal data from 1991 to 2020. We used emissions scenario 8.5 

Representative Concentration Pathway 6 (RCP6) and projections for 2080. While emissions 

scenario 8.5 produces more changes in projected distributions (Thuiller et al., 2019) than mid-

range scenarios, in this paper we wanted to assess the potential for future vulnerability under 

these strong, but not necessarily unrealistic scenario. RCP8.5 emphasizes high population 

growth, slow income growth, and modest rates of technological development with no climate 

change policies (Riahi et al., 2011; van Vuuren et al., 2011). By using this worst case - high 

emission scenario we can forecast the most drastic changes in species distribution and use these 

predictions to implement mitigation and conservation measures.       

Species Distribution models – Three separate distribution models were used for each 

species: Generalized Additive Model (GAM), Boosted Regression Tree (BRT), and Maximum 

Entropy (MaxEnt) model. These models have been found to have high performance when being 
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compared to other distribution models (Eskildsen et al., 2013). Models were built using the 

mgcv, gbm, and dismo packages in R (R Core Team, 2020). Models were fitted on data from the 

United States and Canada to avoid truncating environmental variables, and predictions were 

made only for Canada at a 5-km2 grid scale. We then averaged across this set of models to 

produce an ensemble prediction for each grid cell for current and future predictions. From these 

model layers, we then calculated for species i, plot j, cells that were gained (occur in the future 

but not in the present), lost (occur in the present but not the future), and remained stable (occur in 

the present and the future). A gain for species i in cell j was calculated as the probability of 

occurrence in the future (Fij) subtracted by the probability of occurrence in the present (Pij) for 

each cell (Fij - Pij). Conversely, a loss for species i in cell j was calculated as the probability of 

occurrence in the present subtracted by the probability of occurrence in the future (Pij - Fij) for 

each cell. The number of cells that remained stable for species i in cell j was calculated as the 

sum of the probability of occurrence in the present and the probability of occurrence in the 

future, divided by two ((Fij +Pij)/2). We validated SDMs based on suitability within their known 

breeding range (IUCN boundary plus a 500 km buffer) rather than the typical approach for 

pseudo-absence data, where zero are drawn from within and outside the known range. We used 

this approach because we wanted a realistic range extent, therefore we clipped predictions to the 

same buffered breeding boundary to synchronise the validations within the same extent. 

Validation of SDMs was done using two metrics across all of Canada: Area under the receiving 

operator curve (AUC) and area under the precision-recall curve (AU-PRC). AU-PRC in 

particular, does not incorporate the correct predictions of absences into its calculation, therefor 

increasing the geographical extent or including highly unsuitable locations in the model does not 
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influence AU-PRC, making it ideal for less common and rare species (Sofaer et al., 2019; Vesk 

et al., 2021).  

Trait vulnerability assessment (TVA) – We compiled a biological traits dataset for all 

471 species breeding in Canada. Various morphological and biological traits were collected from 

a range of sources. Once all available trait data was assembled, we imputed 50 missing trait 

values using the missForest package in R. Using this dataset, traits that reflected a species 

sensitivity, adaptive capacity, and exposure to climate change were extracted (Table S1; 

Bateman et al., 2020; Foden et al., 2013; Gardali et al., 2012; Ofori et al., 2017; Willis et al., 

2015). 

Sensitivity reflects intrinsic traits that make a species vulnerable to climate change and 

unable to persevere (Foden et al., 2013; Gardali et al., 2012). We considered sensitivity to be 

comprised of (1) a species ability to persist in their environment, and (2) the amount of suitable 

habitat they are predicted to lose relative to their current distribution. Three traits were used to 

estimate persistence ability. First, the number of strata a species forages in was used to reflect 

either generalist or specialist behaviour, where specialists would have a lower persistence ability 

due to their narrow resource requirements. Second, innovativeness is a measure of behavioural 

plasticity, which reflects a species ability to develop new foraging techniques or affinities for 

new food resources as their available habitat changes (Ducatez et al., 2020). Third, generation 

length reflects how quickly a species can reproduce and evolve to new environmental conditions. 

Persistence traits were normalized (where greater persistence values indicate lower persistence 

ability) and summed to estimate persistence ability. Persistence and relative loss of suitable 

habitat were then summed to obtain sensitivity (Fig. 1A, Fig. 1B). 
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Adaptive capacity reflects a species ability to adjust to the effects of climate change, 

which includes their ability to disperse and colonize newly available habitats (Foden et al., 2019; 

Gardali et al., 2012). Here, we considered adaptive capacity to be comprised of two components, 

(1) a species ability to disperse, and (2) the amount of suitable habitat they are predicted to gain 

due to climate change. We used three traits to reflect dispersal ability. First, the number of 

habitats a species is found in was used to reflect either a generalist or specialist behaviour such 

that generalist will have greater potential to disperse and colonize new habitats compared to 

specialists. Second, clutch size was used as a proxy for a species ability to adjust to 

environmental change, such that a larger clutch size would provide greater opportunity to adjust 

to environmental change as a species. Third, migration index would reflect a species physical 

ability to disperse long distances and disperse to newly available habitats. Dispersal traits were 

normalized (such that a greater dispersal value represents better dispersal ability) and summed to 

estimate dispersal ability. Dispersal ability and gain in suitable habitat were summed to obtain 

adaptive capacity (Fig. 1A, Fig. 1B).  

Finally, exposure reflects the nature, magnitude, and rate of environmental and climatic 

pressures a species may experience based on their geographic location (Foden et al., 2019, 2013). 

Here, we normalized the number of threats a species has listed by IUCN and the net loss in 

suitable habitat, which were summed to calculate a species exposure to climate change (Fig. 1C). 

The final TVA score was calculated using the following:  

 𝑇𝑉𝐴 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  (Equation. 1) 

We calculated the average TVA score for each avian guild (a group of species with 

similar life history traits) and the average TVA score for currently at-risk (i.e., species listed as 
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vulnerable, near threatened, endangered or critically endangered by IUCN). The TVA score of 

at-risk species was then used to identify species with greater TVA scores, which we identified as 

impending at-risk species, i.e. species most likely to become at-risk in the future. Finally, the 

current distribution of currently and impeding at-risk species was mapped across Canada to 

determine if any special patterns between the two groups could be observed. 

Statistical Analyses – To compare the current IUCN status with the calculated TVA 

score, as well as with the three TVA components, two separate generalized linear models (GLM) 

were used (binomial family with a logit link). We also used two separate linear models (LM) to 

compare the TVA score, and TVA component scores for impending at-risk species. Further, we 

performed three separate linear models (LM) to investigate the relatedness between change in 

species abundance (Rosenberg et al., 2019) and the SDM predictions, TVA scores, and TVA 

components. 

Results 

The validation metrics for across Canada produced a mean AUC of x̄ = 0.81 and AUPRC 

of x̄ = 0.73 (Fig. S3). SDMs performed best for shorebirds when using the AUC metric (x̄ = 

0.84), whereas aerial insectivores performed best when using AUPRC (x̄ = 0.78). 

Adaptive Capacity, Sensitivity and Exposure – Trait vulnerability scores consist of three 

components: sensitivity, adaptive capacity, and exposure to climate change. For sensitivity and 

adaptive capacity, we classified 471 species into four vulnerability categories; (1) low 

vulnerability, (2) climate vulnerable, (3) trait vulnerable, or (4) climate and trait vulnerability. 

For sensitivity, 7% of species identified as climate and trait vulnerable, meaning they will 

experience large habitat losses due to climate change in addition to low persistence potential 

within their habitat (Fig. 1B, Fig 2A). Of the remaining species, 4% are climate vulnerable and 
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63% are trait vulnerable, with the last 26% of species experiencing low vulnerability (they have 

high persistence potential in their environment and experience low loss in suitable habitat; Fig. 

2A). For adaptive capacity, 47% of species are both climate and trait vulnerable, meaning they 

gained little to no suitable habitat caused by climate change and have low dispersal ability to 

access newly available habitats (Fig. 1B, Fig. 2B). Other species are vulnerable based either on 

climate (34%) or traits (9%), whereas 10% of species have low vulnerability (they have high 

persistence ability to new conditions and have new opportunities with climate change). For 

exposure, we classified species into three levels based on the number of threats that they are 

exposed to (i.e., threats other than climate change and sever weather). Most species experienced 

low exposure to climate change (64%), whereas 32% of species experienced moderate exposure 

and 3% experienced high exposure to climate change (Fig. 1C, Fig. 2C).   

Trait vulnerability scores for avian guilds – Overall, seabirds had the highest average 

trait vulnerability score (mean score value ± s.d. here and after; x̄ = 0.93 ± 0.48), but some 

species from all guilds were vulnerable (Fig. 3A). The contribution of each category to total trait 

vulnerability scores also varied between guilds, with some groups, such as shorebirds, which had 

the highest exposure (x̄ = 0.68 ± 0.34), whereas others had the highest sensitivity (waterfowl (x̄ = 

0.93 ± 0.29) and wetland birds (x̄ = 0.91 ± 0.25)) or lowest adaptive capacity (seabirds (x̄ = 0.50 

± 0.14)). Eighty-three species had TVA scores greater than the TVA scores of currently at-risk 

species (x̄ = 1.09; Fig. 3B, 3C, Table 1, S1). These species were identified as impending at-risk 

species and had significantly higher exposure (P < 2e-16), higher sensitivity (P = 3.04e-07), 

lower adaptive capacity (P = 1.57e-10; Fig. 3B) and higher overall TVA scores (P < 2e-16; Fig. 

3C), where alpha = 0.05. Furthermore, all breeding biomes host impending at-risk species 
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however, most of these species (57%) breed in the Arctic Tundra (n = 16), wetlands (n = 12), and 

along coasts (n = 19; Fig. 3D).  

Spatial distribution of vulnerable species – We mapped the distribution of both currently 

and impending at-risk species (Fig. 4, top). Both maps display a higher concentration of at-risk 

species in northern Canada, with the impending at-risk map displaying a much more drastic 

pattern compared to the currently at-risk species, suggesting increased number of at-risk species 

in northern Canada in the future. Further, we mapped the average TVA score for all species 

present within a cell, such that the TVA score is weighted by the probability of a presences. This 

map demonstrates areas in northern Canada having a higher average TVA, implying a higher 

vulnerability risk to climate change for species in the Arctic (Fig. 4).  

Relationship with change in species abundance – The SDM predictions (net change in 

suitable habitat) and sensitivity were positively related to the change in species abundance (P = 

0.0038, P = 0.013, respectively), so species with increasing sensitivity and projected habitat 

availability into the future (2080, from SDMs) have also already generally increased in 

abundance (documented from counts 1970-2017). The TVA score (P = 0.033), exposure (P = 

3.69e-08) and adaptive capacity score (P = 0.038) were negatively related to change in species 

abundance (Table 3), so species with documented declines over the past decades generally had 

higher TVA and exposure scores as well as lower adaptive capacity in this analysis.  

Discussion 

Climate-driven change has onset the 6th major mass extinction, which is likely to have 

widespread impacts globally, but especially at northern latitudes. Establishing the vulnerability 

of species to climate change is key for effective and targeted conservation actions. By combining 

SDM predictions with trait vulnerability assessments, we aimed to better understand how and 



 

32 
 

why some species are vulnerable to climate change while others are not, in addition to 

identifying species that may need protection sooner than anticipated. Our results indicate: (1) 

four avian guilds are particularly vulnerable to climate change, with 83 species newly identified 

as impending at-risk species; (2) impending at-risk species are disproportionately found in three 

habitats, with more than half of species breeding in the Arctic tundra, wetlands, and coastal 

habitats; and (3) SDM predictions, TVA scores and each TVA components are significantly 

related to change in species abundance. 

Vulnerable avian guilds – Four guilds in particular were found to have the highest 

vulnerability to climate change: seabirds, shorebirds, waterfowl, and wetland birds. Seabirds had 

the highest overall TVA score and lowest adaptive capacity. Species of this guild occupy and 

breed in a unique, but also vulnerable habitat (coastline). Their narrow habitat and foraging 

requirements, combined with a net loss of almost 40% of suitable breeding habitat, are most 

likely strong factors influencing their high vulnerability score. Further, seabirds had the lowest 

adaptive capacity among avian guilds. Adaptive capacity reflects a species ability to adapt to 

new environments based on their dispersal ability, which is estimated from migration traits, 

number of habitats, and clutch size. Their narrow habitat requirements reduce the amount of 

potentially available habitat they could gain in the future, which increases their extinction risk. 

Further, seabirds have delayed sexual maturity and small clutch size, both of which have been 

associated with increased extinction risk (Grémillet and Boulinier, 2009, Clavel et al., 2011). 

Similar traits have been found to also be associated with threatened seabird species in previous 

research (Richards et al., 2021). Additionally, seabirds display high social resilience and 

reluctance to change breeding site (Grémillet and Boulinier, 2009) which likely increases their 

susceptibility to abrupt environmental changes. 



 

33 
 

The TVA further revealed that waterfowl and wetland birds have the highest sensitivity. 

Waterfowl and wetland birds were once severely endangered, with some species on the brink of 

extinction (North American Bird Conservation Initiative Canada, 2019). While these waterbirds 

have greatly increased in population abundance thanks to protection and restoration of key 

habitats and active hunting management (Rosenberg et al., 2019), they remain highly sensitive to 

climate change. Sensitivity reflects a species ability to persist under environmental change, here 

persistence is estimated from foraging habitat diversity, clutch size, and innovativeness. Both 

groups displayed low innovativeness, meaning they have little ability to develop new foraging 

techniques or use novel food resources (Ducatez et al., 2020). Additionally, these species are 

limited to foraging in-and-around the water, foraging primarily on seeds, vegetations, and 

invertebrates (Stafford et al., 2014). Both traits reflect specialist behaviour, which is associated 

with higher extinction risk (Chichorro et al., 2019; Ducatez et al., 2020). Although waterfowl 

and wetlands species have increased in abundance in recent years, their high sensitivity scores 

provide evidence that these birds may struggle to persist with increased climatic changes. Lastly, 

shorebirds had the highest exposure to climate change. In Canada, shorebirds are of particular 

conservation concern due to their severe population declines (Hope et al., 2019). These birds 

have narrow habitat requirements, relying primarily on the Arctic tundra and wetlands for 

breeding and foraging. Their reliance on these two endangered habitats increases their extinction 

risk (Bateman et al., 2020; Chichorro et al., 2019; Gilg et al., 2012) and is presumably the 

driving force of their high exposure to climate change, in addition to a predicted net loss of 

almost 50 % in suitable breeding habitats. 

Seeing that this framework successfully highlighted avian guilds already known to be 

highly vulnerable climate change, we argue that it could also be used to investigate other avian 
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guilds not currently under threat to determine their vulnerability based on the biological traits we 

used here. Further, we identified 83 impending at-risk species which have higher TVA scores 

than currently at-risk species. These impending at-risk species are species most likely to become 

vulnerable as climate change impacts continue to intensify, based on the combination of their 

biological traits and the severity of climate-driven change they are predicted to experience (Table 

S2).  

Vulnerable Canadian habitats – More then half of impending at-rick species breed in 

three biomes: the Arctic tundra, wetlands, and coastal habitats. All three of these biomes are 

endangered due to climate-driven change. In the Artic tundra and wetlands, warming 

temperatures promote earlier appearance of flowering plants and invertebrates (Post et al., 2009; 

Drever et al., 2012). While this may seem advantageous for breeding birds it causes a mismatch 

in the timing of peak nutrient demand and the availability in abundant resource for breeding 

birds, eliciting impaired chick growth and increased mortality (Post et al., 2009; Smith et al., 

2020).  Further, the Arctic tundra and coastal habitats are experiencing similar phenomena called 

arctic or coastal squeeze. Northward shift in suitable breeding habitat will cause many Arctic 

birds to experience range contraction, with some species experiencing an “arctic squeeze”, as 

their northward range shifts become restricted by the Arctic coastline (Post et al., 2009; Smith et 

al., 2020; Wauchope et al., 2017). To a similar effect, many coastal habitats will experience a 

“coastal squeeze” as rises in sea level force coastal habitats to retreat inland (Jones et al., 2013). 

Some habitats will be constrained by human developments, such as cities, which will increase 

inundation risks along the coast, reducing breeding and foraging habitat availability for many 

birds (Von Holle et al., 2019).  
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Based on the similar spatial patterns between currently and impending at-risk species, we 

observe a higher concentration of at-risk species in northern Canada compared to the south (Fig. 

4). Using our SDM integrated TVA framework, we provide further evidence that northern 

species are more vulnerable to climate change, which is consistent with findings and spatial 

distributions produced by Bateman et al., (2020). Further, we observe some highlighted areas in 

northern Canada which have a higher average TVA score, indicating that species currently 

present in these areas have increased vulnerability to climate change (Fig. 4). We also 

highlighted three major habitats that are highly important for impending at-risk species and are 

already known to be sensitive to climate change, supporting the efficacy of this framework.  

Changes in species abundance – Previous work focused primarily on predicting species 

distribution in response to climate change, however predicting abundance is considered a better 

measure of the impacts these species have on its local community (Ehrlén and Morris, 2015). 

Here, the SDM predictions, overall TVA score and each TVA component were significantly 

related to change in species abundance. However, these results must be considered carefully. 

Few trait vulnerability assessments have tested their predictive power for change in species 

abundance (Wheatley et al., 2017). Strong relatedness between change in abundance and SDM 

predictions and TVA components does not translate to high predictability of change in 

abundance. Additionally, it is unlikely that climate change impacts are reflected in current 

abundance trends, but this may soon change. Further research into the relationship between these 

variables is needed to see how results from SDMs and TVAs can be used to predict change in 

abundance.  

The avian guilds and biomes highlighted here are consistent with the current vulnerable 

and endangered status associated with both of these groups. Traits that result in high sensitivity, 
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low adaptive capacity, and high exposure should be targeted for conservation efforts to increase 

species ability to persist or disperse with environmental changes. Global biodiversity is under 

threat from climate change; however, researchers and conservation practitioners cannot solely 

rely on SDMs to assess the potential global impacts. Additional information, such as biological 

traits, are needed to develop effective conservation management for species who will most likely 

become vulnerable in the near future. 
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Figures

Figure 1. Conceptual diagram of how adaptive capacity, sensitivity and exposure are calculated using functional traits and SDM 

predictions. A. Potential change in species range after climate change. B. Relationship between functional traits and SDMs predictions 

used to estimate sensitivity (i) and adaptive capacity (ii). For sensitivity, if a species has a high persistence ability with little to no 

habitat loss (bottom left quadrant of i), then it has low sensitivity and low vulnerability to climate change. In contrast, if a species has 

low persistence ability with large habitat loss (top right quadrant of i), then it is highly sensitive to climate change seeing as it is unable 

to adjust to a changing environment and is experiencing high range contraction. In the case of adaptive capacity, if a species has a 

higher dispersal ability and new opportunities for colonization (a large gain in suitable habitat), then it has a greater adaptive capacity 

(upper right quadrant of ii). In contrast, if it has low dispersal capability and no new colonization opportunities (lower adaptive 

capacity) then it is more vulnerable (bottom left quadrant of ii).  C. Exposure is calculated by summing the net loss in suitable habitat 

and the number of IUCN threats listed for each species. High net loss in suitable habitat with multiple IUCN threats increases exposure, 

whereas low net loss in suitable habitat and small number of IUCN threats decreases exposure. 
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Figure 2. Trait vulnerability related to sensitivity (A.), adaptive capacity (B.), and exposure (C.) for each avian guild. Sensitivity 

is the combination of a species persistence ability (sum of number of foraging strata, total innovations, and generation length) and 

relative loss in suitable habitat. Adaptive capacity is a combination of a species ability to disperse (sum of migration traits, clutch 

size, and number of habitats) and gain in suitable breeding habitat. Exposure is the sum of the number of threats a species has 

according to IUCN RedList (excluding climate change and sever weather) and the net loss in suitable habitat.  
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Figure 3. Breakdown of the TVA scores, and its components, across avian guilds, individuals, 

IUCN status, and breeding biomes. Impending at-risk species are species which are currently 

listed as Least Concern and have a TVA score greater then 1.09, shown as points circled in red 

(B.) or red points (C., D.), and species currently listed as Vulnerable are shown as yellow points 

(C., D.). A. TVA, sensitivity, adaptive capacity, and exposure scores for each avian guild, where 

TVA Index = Exposure + Sensitivity – Adaptive Capacity. B. The average scores for each TVA 

component. C. TVA scores for species currently listed as Least Concern (LC), and as Vulnerable 

(VU). VU included species listed Vulnerable, Near Threatened, Endangered, and Critically 

Endangered. The mean TVA score for Vulnerable species is shown by the black dashed line (x̄ = 

1.09). D. The distribution of TVA scores within each breeding biome.  
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Figure 4. Top left: Percent of species present in each cell that are currently at-risk species (i.e. 

currently listed as near threatened, vulnerable, endangered or critically endangered). Top middle: 

Percent of species present in each cell that are impending at-risk species (i.e. species with a TVA 

score greater than currently vulnerable species). Top right: All at risk species (current and 

impending at-risk species combined). The bottom map displays the mean TVA score of each 

species present in a cell, weighted by their probability of being present. 
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Tables 

Table 1. Top ten species which are currently listed as least concern and whose TVA score is 

greater than the average score of species currently listed as vulnerable (x̄ = 1.09). See 

supplementary material for the full list of 83 species highlighted. 

Common Name Scientific 

Name 

Dietary 

Guild1 

Breeding 

Biome2 

Life History 

Guild3 

TVA 

Score 

Golden Eagle 
Aquila 

chrysaetos 
VertFishScav 

Habitat 

Generalist 
Birds of Prey 2.06 

Pine Grosbeak 
Pinicola 

enucleator 
PlantSeed Boreal Forest Forest Birds 2.05 

Northern Goshawk 
Accipiter 

gentilis 
VertFishScav 

Forest 

Generalist 
Birds of Prey 2.04 

Surf Scoter 
Melanitta 

perspicillata 
Invertebrate Wetland Waterfowl 1.95 

Short-eared Owl 
Asio 

flammeus 
VertFishScav 

Habitat 

Generalist 

Grassland 

Birds 
1.93 

Barrow's Goldeneye 
Bucephala 

islandica 
Invertebrate Wetland Waterfowl 1.93 

Red-throated Loon 
Gavia 

stellata 
VertFishScav 

Arctic 

Tundra 

Wetland 

Birds 
1.88 

Northern Fulmar 
Fulmarus 

glacialis 
VertFishScav Coasts Seabirds 1.87 

Canada Jay 
Perisoreus 

canadensis 
Omnivore Boreal Forest Forest Birds 1.87 

American Three-toed 

Woodpecker 

Picoides 

dorsalis 
Invertebrate Boreal Forest Forest Birds 1.82 

1 Elton Traits 1.0: Species-level foraging attributes of the World’s birds and mammals (Wilman et al. 2014) 
2 Decline of the North American avifauna (Rosenberg et al., 2019) 
3 NABCI: State of Canada’s Birds 2019 (NABCI 2019) 

 

Table 2. Linear model results predicting change in species abundance with SDM predictions, 

TVA index, exposure, adaptive capacity, and sensitivity. Also see Fig. S2. 

 

  

Metric Estimate Standard Error P Value 

SDM Predictions 0.69 0.24 0.0038 

TVA Score -0.26 0.12 0.033 

Exposure -1.31 0.23 3.69e-08 

Adaptive Capacity  -0.55 0.26 0.038 

Sensitivity 0.71 0.28 0.013 
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Appendix 

SDM specifications - We ran each species through three models: Generalized Additive 

Model (GAM), Boosted Regression Tree (BRT), and Maximum Entropy (MaxEnt) model. Here, 

We used the mgcv package in R (R Core Team, 2020) to run the GAMs with a binomial family 

and logit link function. BRTs is a machine learning technique that uses two algorithms: decision 

trees and boosting (Elith et al., 2008). BRTs iteratively splits the predictor data creating a simple 

model each time, which are combined to produce a final optimized model for predictions 

(Eskildsen et al., 2013).  For this model, we used the gbm package in R, using a Bernoulli family, 

tree complexity of four, learning rate of 0.008 and bagging fraction of 0.5. The MaxEnt models 

also models non-linear relationships while maximizing the entropy of the raw distribution (Elith 

et al., 2010; Bateman et al., 2020). We ran the MaxEnt models using the dismo package in R 

using default settings. 

TVA indexing - Traits included in the TVA (Table S1) were extracted from the curated 

trait’s dataset. Traits reflecting sensitivity were extracted and a quantitative index was created for 

foraging strata. The foraging strata diversity index was set such that generalists were given a 

value of three, species utilizing two foraging stratums were given a value of two, and single 

foraging strata species were given a value of one, these values were then log scaled. Persistence 

was estimated by summing foraging strata, innovativeness, and generation length and 

subsequently downscaled between zero and one, such that values closer to one represented lower 

persistence ability (low foraging habitat diversity, low innovativeness, and long generation 

length). Sensitivity was estimated by summing the persistence value with the relative loss in 

suitable habitat for each species (Fig. 1A). Traits included in the adaptive capacity component 

were extracted and a quantitative index was created for the migration traits. The migration index 
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was set between zero and three based on migration distance (non, migratory, long, or short) and 

migration status (non-migratory, obligate, or facultative). Long-distance, obligate migrants have 

better dispersal ability and given a value of three, whereas than non-migratory birds were given a 

value of zero. The migration index, in addition to clutch size, the number of habitats (log scaled 

of habitat diversity) and gain in suitable habitat, were downscaled between zero and one, such 

larger values represent better dispersal ability (higher migration index, larger clutch size, greater 

habitat diversity) and a larger gain in suitable habitat (Fig. 1B). To calculate dispersal ability, the 

migration index, habitat diversity, and clutch size were summed. The dispersal value and gain in 

suitable habitat were then summed to estimate overall adaptive capacity for each species. 

Exposure was estimated by summing the number of additional IUCN threats and net loss in 

suitable habitat. These two traits were normalized between zero and one, such that one represents 

higher exposure (many additional threats and large net loss in suitable habitat; Fig. 1C).  

Change in species abundance - We obtained the estimated North American population 

size (popest; between 1970 – 2017) and the estimated loss of breeding individuals (loss_med) 

over the same period from Rosenberg et al., (2019)(Rosenberg et al., 2019), for all birds included 

in both datasets (n = 411). Change in abundance was estimated using the following formula: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 =  
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 × (−1)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑏𝑟𝑒𝑒𝑑𝑖𝑛𝑔 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
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Supplementary Figures and Tables 

 

  

Figure S1. Occurrence data extraction from GBIF and data 

cleaning workflow for all 471 species of birds breeding in 

Canada. See occurrence data section in methods of main text for 

more details. 
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 Figure S2. Relationship between change in abundance and percent change in suitable habitat 

from SDM, overall TVA score and each TVA components.  
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Figure S3. Species distribution model validation 

metrics (AUC and AUPRC) across Canada 
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Table S1. Variables and traits included in SDMs and TVA, respectively. 

SDM Variables Predictor Variables  

Climatic1 
Mean Annual Precipitation (mm)  

Degree-days below 0°C (Chilling degree days)  

Precipitation as snow (mm)  

Hargreave's climatic moisture index  

Degree-days above 18°C   

Topographic Topographic wetness index  

Topographic ruggedness index  

Land cover  

TVA Components Traits   

Sensitivity 

Persistence Ability 

Number of Foraging Strata (Log scaled) 

Total Innovations 

Generation Length 

Loss in Suitable Habitat2  

Adaptive Capacity 

Dispersal Ability 

Number of Habitats (Log scaled)3 

Clutch Size 

Migration Index4 

Gain in Suitable Habitat2  

Exposure Number of Threats5  

Net Loss in Suitable Habitat2  
1 AdaptWest Project 2021  

2 SDM predictions 

3 Number of habitats listed by IUCN 

4 Index is a combination of migration distance (long or short) and status (obligatory or facultative)  

5 Number of threats listed by IUCN, excluding “Climate change and sever weather” 
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Table S2. Species currently listed as least concern and were identified with having a TVA score 

greater than the average score of species currently listed as vulnerable (x̄ = 1.09).  

Common Name Scientific Name Dietary Guild1 Breeding 

Biome2 

Life History 

Guild3 

TVA 

Score 

Golden Eagle Aquila chrysaetos VertFishScav 

Habitat 

Generalist Birds of Prey 2.20 

Northern 

Fulmar 

Fulmarus 

glacialis VertFishScav Coasts Seabirds 2.00 

King Eider 

Somateria 

spectabilis Invertebrate 

Arctic 

Tundra Waterfowl 1.89 

Barrow's 

Goldeneye 

Bucephala 

islandica Invertebrate Wetland Waterfowl 1.86 

Surf Scoter 

Melanitta 

perspicillata Invertebrate Wetland Waterfowl 1.74 

Short-eared 

Owl Asio flammeus VertFishScav 

Habitat 

Generalist Grassland Birds 1.68 

Parakeet 

Auklet Aethia psittacula Invertebrate Coasts Seabirds 1.68 

Black 

Guillemot Cepphus grylle VertFishScav Coasts Seabirds 1.61 

White-rumped 

Sandpiper 

Calidris 

fuscicollis Invertebrate 

Arctic 

Tundra Shorebirds 1.60 

Dunlin Calidris alpina Invertebrate 

Arctic 

Tundra Shorebirds 1.59 

Common 

Murre Uria aalge VertFishScav Coasts Seabirds 1.57 

Tufted Puffin 

Fratercula 

cirrhata VertFishScav Coasts Seabirds 1.55 

Townsend's 

Solitaire 

Myadestes 

townsendi Omnivore 

Western 

Forest Forest Birds 1.54 

Ferruginous 

Hawk Buteo regalis VertFishScav Grassland Birds of Prey 1.51 

Pigeon 

Guillemot Cepphus columba VertFishScav Coasts Seabirds 1.50 

American 

Oystercatcher 

Haematopus 

palliatus Invertebrate Coasts Shorebirds 1.48 

Willow 

Ptarmigan Lagopus lagopus PlantSeed 

Arctic 

Tundra All Other Birds 1.47 

Thick-billed 

Murre Uria lomvia VertFishScav Coasts Seabirds 1.47 

Red-throated 

Loon Gavia stellata VertFishScav 

Arctic 

Tundra Wetland Birds 1.39 

American Pipit Anthus rubescens Invertebrate 

Arctic 

Tundra All Other Birds 1.39 

Hudsonian 

Godwit 

Limosa 

haemastica Invertebrate Wetland Shorebirds 1.37 

Horned Puffin 

Fratercula 

corniculata VertFishScav Coasts Seabirds 1.35 
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Gray-cheeked 

Thrush 

Catharus 

minimus Invertebrate 

Boreal 

Forest Forest Birds 1.33 

Pelagic 

Cormorant 

Phalacrocorax 

pelagicus VertFishScav Coasts Seabirds 1.32 

Williamson's 

Sapsucker 

Sphyrapicus 

thyroideus Omnivore 

Western 

Forest Forest Birds 1.31 

Glaucous-

winged Gull 

Larus 

glaucescens VertFishScav Coasts Seabirds 1.30 

Baird's 

Sparrow 

Ammodramus 

bairdii Omnivore Grassland Grassland Birds 1.30 

Black 

Turnstone 

Arenaria 

melanocephala Invertebrate Coasts Shorebirds 1.28 

Smith's 

Longspur Calcarius pictus Omnivore 

Arctic 

Tundra All Other Birds 1.26 

Purple 

Sandpiper Calidris maritima Invertebrate 

Arctic 

Tundra Shorebirds 1.26 

Ross's Gull 

Rhodostethia 

rosea Invertebrate Coasts Seabirds 1.25 

Northern 

Gannet Morus bassanus VertFishScav Coasts Seabirds 1.25 

Bluethroat Luscinia svecica Invertebrate Other All Other Birds 1.22 

Gray-crowned 

Rosy-Finch 

Leucosticte 

tephrocotis PlantSeed Other All Other Birds 1.20 

Fox Sparrow Passerella iliaca Omnivore 

Forest 

Generalist Forest Birds 1.20 

Ancient 

Murrelet 

Synthliboramphus 

antiquus Invertebrate Coasts Seabirds 1.19 

Iceland Gull Larus glaucoides VertFishScav Wetland Wetland Birds 1.16 

Stilt Sandpiper 

Calidris 

himantopus Invertebrate 

Arctic 

Tundra Shorebirds 1.14 

White-

crowned 

Sparrow 

Zonotrichia 

leucophrys PlantSeed 

Habitat 

Generalist All Other Birds 1.14 

Sanderling Calidris alba Invertebrate 

Arctic 

Tundra Shorebirds 1.13 

Common 

Ringed Plover 

Charadrius 

hiaticula Invertebrate Coasts Shorebirds 1.12 

Prairie Falcon Falco mexicanus VertFishScav Arid lands Birds of Prey 1.09 

Rock 

Sandpiper 

Calidris 

ptilocnemis Invertebrate 

Arctic 

Tundra Shorebirds 1.08 

Brewer's 

Sparrow Spizella breweri Omnivore Arid lands All Other Birds 1.06 

Dark-eyed 

Junco Junco hyemalis PlantSeed 

Forest 

Generalist Forest Birds 1.05 

Lewis's 

Woodpecker Melanerpes lewis Invertebrate 

Western 

Forest Forest Birds 1.04 

Northern 

Goshawk Accipiter gentilis VertFishScav 

Forest 

Generalist Birds of Prey 1.04 
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Northern 

Shrike Lanius borealis VertFishScav 

Arctic 

Tundra All Other Birds 1.03 

Mountain 

Bluebird 

Sialia 

currucoides Invertebrate 

Western 

Forest All Other Birds 1.02 

Ruddy 

Turnstone 

Arenaria 

interpres Invertebrate 

Arctic 

Tundra Shorebirds 1.01 

Pacific Loon Gavia pacifica VertFishScav Wetland Wetland Birds 1.01 

Pectoral 

Sandpiper 

Calidris 

melanotos Invertebrate 

Arctic 

Tundra Shorebirds 1.00 

Western 

Sandpiper Calidris mauri Invertebrate 

Arctic 

Tundra Shorebirds 0.99 

Eastern Yellow 

Wagtail 

Motacilla 

tschutschensis Invertebrate Other All Other Birds 0.98 

Sage Thrasher 

Oreoscoptes 

montanus Invertebrate Arid lands All Other Birds 0.98 

Henslow's 

Sparrow 

Ammodramus 

henslowii Invertebrate Grassland Grassland Birds 0.97 

Greater Scaup Aythya marila Invertebrate 

Arctic 

Tundra Waterfowl 0.97 

Trumpeter 

Swan 

Cygnus 

buccinator PlantSeed Wetland Waterfowl 0.97 

Vesper 

Sparrow 

Pooecetes 

gramineus Omnivore Grassland Grassland Birds 0.96 

Gyrfalcon Falco rusticolus VertFishScav 

Arctic 

Tundra Birds of Prey 0.95 

Harlequin 

Duck 

Histrionicus 

histrionicus Invertebrate Wetland Waterfowl 0.94 

Glossy Ibis 

Plegadis 

falcinellus Invertebrate Wetland Wetland Birds 0.94 

Pacific Golden-

Plover Pluvialis fulva Invertebrate 

Arctic 

Tundra Shorebirds 0.93 

Red-headed 

Woodpecker 

Melanerpes 

erythrocephalus Invertebrate 

Eastern 

Forest Forest Birds 0.91 

 

 

  

1 Elton Traits 1.0: Species-level foraging attributes of the World's birds and mammals (Wilman et al. 2014) 

2 Decline of the North American avifauna (Rosenberg et al., 2019) 

3 NABCI: State of Canada's Birds 2019 (NABCI 2019) 



 

57 
 

Linking statement: From biological traits to abundance data to improve SDMs 

 Integrating biological traits and species distribution models could improve overall climate 

change vulnerability assessments. Such assessments would be more thorough and accurate 

assessments since they are based on the geographic change in suitable habitat experienced by 

each species as well as their sensitivity, adaptive capacity, and exposure to climate change. 

However, including biological traits is not the only avenue available to improve model 

performance and predictions. Abundance data can provide more insightful relationships between 

species and their habitat. Given the recent and numerous methods developments made for SDMs 

combined with the sparsity of data in many locations, determining efficient and effective 

approaches to combining disparate datasets is critical. For my next chapter, I ask whether 

combining presence-absence data with survey data yields better predictions than either data type 

in isolation. 
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Abstract 

 Context Species distribution models (SDM) are at the center of climate change 

assessments. While having been very useful in the past, many argue that the traditional presence-

absence data used for these models is insufficient. Abundance data, or count data, could provide 

more insightful model outputs since they can quantify how many species are predicted to be 

present in an area of interest. Despite requiring more resources to obtain such data, abundance-

based models tend to perform better then occurrence-based models. However, a recently 

developed weighting approach has been shown to improve model performance. Therefore, we 

investigate the best approach to utilize abundance data by comparing model performance from 

four different models: (1) abundance-based model, (2) occurrence-based model weighted by 

abundance, and (3-4) presence-absence data from two different sources. We compared the 

explanatory and predictive power of all four models using linear models and calculated eight 

performance metrics for the occurrence-based models, as well as two performance metrics for 

the abundance-based models. The Weighted model outperformed the other three models in 

explanatory power, while the Abundance model only outperformed the two other presence-

absence models (3-4) in explanatory power. The explanatory power of the Weighted model was 

significantly related to species abundance, and the Abundance models with species range size. 

However, the discrimination metric from the Abundance models was found to increase with 

species abundance. Using abundance data can improve SDM’s predictive power. However, we 

found that models which indirectly model abundance, i.e. occurrence data weighted by 

abundance, outperform models which directly model abundance. Many researchers argue that 

abundance models are a more appropriate metric to use for accurate SDMs, however we argue 

that occurrence models weighted by abundance could improve model performance. 

 

Key words: abundance, boreal forest, presence-absence, species distribution models, waterfowl, 

weighted model 
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Introduction 

As we enter an epoch of severe global change, it is clear that biodiversity around the 

world will be affected by climate warming. Species distribution models (SDM) are the most 

commonly used tool for understanding the enormity of these impacts (Elith and Leathwick, 

2009; Lawler et al., 2011). These models use associations between where and when a species is 

observed, i.e. occurrence data, to predict a species potential distribution across a spatial and 

temporal landscape (Barker et al., 2014; Senay et al., 2013). The model predictions are used to 

better anticipate future change in the environment and are particularly valuable for remote, 

poorly surveyed areas, and areas experiencing increased warming rates such as Canada (Bush 

and Lemmen, 2019).  

The interest in species distribution models using occurrence data has continued to 

increase over the years despite these models having some shortcomings and limitations (Lobo et 

al., 2010). One such limitation is the lack of true absence, or confirmed absence data, for 

presence-only models. These models are a subset of occurrence-based SDMs which use 

environmental data associated with presence records for a species to model its potential 

distribution (Senay et al., 2013). True absence data provide environmental data where a species 

is not present, but it is difficult to obtain and is usually unavailable, which leads researchers 

having to use “pseudo-absences” (Senay et al., 2013, 2013). Pseudo-absences are “implied 

absence” and provide background data where a species has not been explicitly observed (Elith 

and Leathwick, 2009). However, there are many reasons why a species may be absent from a 

particular location, other then habitat unsuitability, which are not considered in SDMs. For 

example, species may appear absent due to sampling issues (e.g., site inaccessibility, present but 

undetected) or biological issues (e.g., species interactions (competition or predation) leading to 
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local exclusion, local extinction, or absent due to migratory behavior; Barbet-Massin et al., 2012; 

Elith and Leathwick, 2009; Lobo et al., 2010; Senay et al., 2013). Further, there are different 

sampling methods for pseudo-absences which have been developed, each influencing model 

outputs differently but none of which have been shown to be a superior method (Iturbide et al., 

2015). Despite the improved SDMs which have been developed and the different sampling 

methods available, pseudo-absences still remain as a major source of uncertainty with 

occurrence-based SDMs (Senay et al., 2013). 

Using species distribution models with occurrence data, researchers can generate maps of 

habitat ‘suitability’ (Weber et al., 2017), but many argue that abundance-based models (models 

that use count data instead of occurrence data) are better metrics since they quantify the number 

of individuals within an area of interest (Johnston et al., 2015; Martínez-Minaya et al., 2018; Mi 

et al., 2017; Waldock et al., 2022). Modelling abundance trends can also act as a proxy for 

estimating environmental change in a particular location and can provide early warnings signs of 

population collapse (Waldock et al., 2022). In theory, spatial outputs from abundance models 

display areas of higher abundance, which imply better environmental suitability, and areas of 

lower abundance, which imply lower environmental suitability and increased extinction risk 

(Weber et al., 2017). Yet, there are many mixed findings on the abundance-habitat suitability 

relationship. For instance, a meta-analysis performed by Weber et al., (2017) found a general 

positive correlation between abundance and habitat suitability for various taxa, including 

vertebrates, invertebrates, and plants (Weber et al., 2017). In contrast, another study found little 

evidence of any abundance-suitability relationship across 246 mammal species and 158 tree 

species (Dallas and Hastings, 2018). Further research is needed on inferring environment change 
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and habitat suitability from abundance models, however we also need to understand which 

models are more appropriate based on species ecology.  

 Given the lack of clarity in early studies investigating the similarities and differences in 

abundance versus occurrence data, we need to better understand when abundance data adds 

additional information beyond the more readily available occurrence data. There are many 

factors yet to be fully investigated including: data type (occurrence vs abundance, presence-only 

vs presence-absence), sampling protocols, spatial extent, biases associated with the data, and 

species life history. Therefore, this study aimed to assess model performance using both 

occurrence and abundance data for 18 waterfowl species in the Canadian western boreal forest. 

Using data from the Waterfowl Breeding Population and Habitat Survey (WBPHS), we assessed 

model performance between four different datasets: (1) abundance data from WBPHS, (2) 

occurrence data derived from WBPHS abundance data, (3) occurrence data weighted by 

abundance, and (4) occurrence data from the Global Biodiversity Information Facility (GBIF). 

Further, we aimed to determine how species attributes, i.e. species abundance and range size, 

may influence model performance and outputs.  

Methods 

Population Data - Waterfowl data was obtained from the WBPHS, which covers 

northern United States and Canada, including most of the Canadian western boreal forest (Fig. 

S1; Canada, 2015). We included data from 2000 to 2019 for 13 individual species and 5 species 

groups, referred to as species henceforth (Table 1; Silverman et al., 2022). From this, we derived 

three datasets; the first dataset, referred to as the Abundance dataset, consisted of abundance data 

where abundance was calculated as total indicated pairs. Total indicated pairs (TIP) estimates 

the number of pairs present based on raw observation, while considering life-history 
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characteristic (Barker et al., 2014). For instance, TIP for 14 species (excluding SCAU spp., 

REDH, RUDU, and RNDU) was calculated as TIP = 1*singles + 1*pairs. For the remaining 

four species (SCAU spp., REDH, RUDU, and RNDU), TIP was calculated as TIP = 1*pairs, 

where singles refer to a one male or a small group of males without a visible female associated 

with them, and pairs refers to male-female pairs seen on a segment (Silverman et al., 2022). A 

value of zero was given to all species not observed within a particular segment during the data 

collection. The second datasets, referred to as the Occurrence dataset, included presence-absence 

data derived from the WBPHS abundance data, such that any value equal to or greater than one 

was assigned a one, representing a presence, and a zero given to all other species not observed 

within a segment, representing absences. The third dataset, referred to as the Weighted dataset, 

consisted of abundance-weighted occurrence data. Unlike presence-absence datasets, where all 

entries are equal, an abundance-weighted dataset could provide more information on habitat 

suitability such that a higher number of individuals at one site may reflect a great habitat 

suitability (Yu et al., 2020). Weights were calculated following Yu et al., (2020) methods and are 

based on individual species abundance and overall species richness in sites according to 

equations 1 and 2:    

 𝑢𝑤𝑖𝑗 =  𝑅𝐴𝑖𝑗  ×  𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑖  Equation 1 

 
𝑤𝑖𝑗 =  

𝑢𝑤𝑖𝑗  − min (𝑢𝑤𝑖𝑗)

max(𝑢𝑤𝑖𝑗) − min (𝑢𝑤𝑖𝑗)
 × 100 + 1 

Equation 2 

Where i = site, j = species, RA = relative abundance, and uw = unscaled weight, and w is 

the scaled weight used to train the SDMs (Yu et al., 2020). 

Lastly, we obtained occurrence data from the Global Biodiversity Informatics Facility 

(GBIF: gbif.org) as the fourth dataset, the GBIF dataset, to further investigate how unstructured, 
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citizen science data influences model performance compared to WBPHS data, which used a 

more structed sampling protocol.  

Environmental Data - Climatic predictor variables were obtained from Adapt West 

(AdaptWest Project, 2021). We included five climatic variables known to be significant in 

modelling species distribution for avian species at a 5-km2 grid scale (Table 3; Bateman et al., 

2020; Wilsey et al., 2019). Additionally, we included four topographic variables which included 

a ruggedness index, a wetness index, land cover and wetlands layer. The wetlands layer was 

obtained from the National Forest Information System (Hermosilla et al., 2018), where a cell was 

considered a wetland for at least 80% of the survey years (or 13 out of the 16 years). From this, 

we calculated the percent wetland for each grid cell.  

Model description and comparison - For all four datasets, we performed separate species 

distribution models across all species. We used Generalized Additive Model (GAM) and a 

Boosted Regression Tree (BRT) using the mgcv and dismo packages in R (R Core Team, 2020), 

both models have been found to have high performance for species distribution models 

(Eskildsen et al., 2013). For the models predicting presence-absences (Occurrence, Weighted, 

and GBIF) eight model performance metrics were calculated (AUC, AUPRC, Kappa, 

Specificity-Sensitivity, No Omission, Prevalence, Equal Sensitivity and Specificity, and 

Sensitivity) using the PRROC and dismo packages in R. To determine which model had the 

highest predictive power, we identified which model produced the highest value for each 

performance metric across all species. To evaluate the performance of the abundance models, 

two diagnostic metrics were calculated: (1) discrimination, calculated as Spearman’s Rank 

Correlation, and (2) precision, calculated as the variance of predicted abundances divided by the 

variance of observed abundances (Norberg et al., 2019; Waldock et al., 2022). Finally, the 
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distribution from all four datasets were mapped across the western boreal forest to explore how 

the spatial patterns differ between each dataset. 

Model performance with range size and commonness – We performed a Linear Model 

(LM) followed by an ANOVA to compare the explanatory power (deviance explained) between 

all four models. To assess if there was a relationship between explanatory power and 

performance metrics with species total abundance and/or range size, we performed separate LMs 

for each metric, with the metric as the response and total observed abundance and range size as 

predictors. Range size was calculated by summing the number of cells a species was found 

present in, which was then multiplied by 25 km2 (5 x 5 km resolution). 

Results 

Deviance explained - The Weighted models had the highest deviance explained (x̄ = 0.76 

± 0.20; mean deviance explained ± s.d. here and after), followed by the Abundance models (x̄ = 

0.63 ± 0.19; Fig. 1), the Occurrence models (x̄ = 0.45 ± 0.16; Fig. 1), and the GBIF model (x̄ = 

0.37 ± 0.18). Overall, the type of data used for each model influenced the model’s deviance 

explained (F3, 68 = 36.4, P < 0.01) and all contrasts were significant except between the 

Occurrence and GBIF models (P<0.01; Fig. 2).  

Model predictive performances – Overall, the Weighted models performed the best, 

having the greatest value for five or more metrics (including the highest Equal Sensitivity and 

Specificity, Kappa, and Specificity-Sensitivity) for 12 out of 18 species, and the top scores for 

four metrics for the remaining four species (Fig. 2). The Occurrence and GBIF models 

performed worse in most metrics for most species, with the notable exception being they 

performed better for AUC and AUPRC, metrics (especially AUC) that are commonly used to 

assess performance of occurrence-based SDMs. To evaluate the Abundance models, two metrics 
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were calculated: (1) discrimination, and (2) precision. The mean discrimination was x̄ = 0.72 ± 

0.12, indicating high discrimination between low and high values of observed abundances, and 

the mean precision was x̄ = 0.34 ± 0.19, indicating moderate model precision (Fig. 3).  

Abundance and Range Size – There were mixed results for whether explanatory power 

(based on deviance explained) and predictive power (based on model performance metrics) were 

related to species abundance and range size (Table 2). Explanatory power increased with 

abundance for the Weighted model and Occurrence models but decreased with range size for the 

Abundance model and Occurrence models (P<0.01). Since the Weighted model had much 

greater explanatory power then the Occurrence and GBIF models, only the Weighted model 

performance metrics were used to evaluate the relationship between the diagnostic metrics with 

species abundance and range size. Several relationships between the Weighted model metrics 

and species abundance and range size were found (Table 2). Five metrics decreased with species 

abundance, while the remaining two metrics, AUC and AUPRC, increased with species 

abundance. Additionally, five Weighted model metrics decreased with range size, while AUC 

increased with range size. The discrimination metric from the Abundance models (Spearman’s 

Rank correlation) increased with abundance (P < 0.01). No other significant relationships were 

found with the precision metrics (Table 2).  

Spatial patterns from each model – Distribution maps from all four models in the western 

boreal forest displayed differing spatial patterns (Fig. 4). Abundance spatial outputs display 

increased predictions along the southern edge of the boreal forest, whereas the Weighted model 

displayed a more homogenous prediction of occurrences throughout the boreal forest. 

Interestingly, the Occurrence and GBIF models produced very contrasting spatial patterns. The 

GBIF model displays a high probability of occurrence along the southern edge of the western 
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boreal, where as the Occurrence model displays much high probabilities of occurrence 

throughout the western boreal.  

Discussion 

 Modelling the changes in suitable habitat for biodiversity is key to better understand how 

much environmental change species will experience. Changes in habitat and phenology, 

ecosystem structure, and range shifts are all important factors that will impact species 

survivorship as climate-driven change continues to increase in severity (IPCC, 2022). 

Abundance-based SDM in particular, can provide additional information on changes in 

population size and have the potential to infer habitat suitability based on abundance, but this 

requires further research (Nielsen et al., 2005; Weber et al., 2017). Here, we compared model 

performance between four different datasets (Fig. 1), to understand how different data types 

influenced model outputs. Overall, the Weighted model outperformed the three other models, 

having both better explanatory and predictive power. The explanatory power of the Weighted 

model and the discrimination metric of the Abundance model both increased with species 

abundance. Whereas the explanatory power of the Abundance model decreased with range size. 

Lastly, all four models displayed very different predicted spatial patterns. 

 Abundance vs occurrence models - Comparing model performance between occurrence 

(presence-pseudo absence data) and abundance data for species distribution models has been 

done for a variety of taxa (Howard et al., 2014; Waldock et al., 2022; Yu et al., 2020). Here, we 

found abundance-based SDMs produced a higher deviance explained compared to the 

occurrence-based models, consistent with findings from the literature. One study found that 

directly modelling abundance for both fish and bird species produced better models for 80% of 

the species included in their study (Waldock et al., 2022). The authors stated that modelling 
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abundance directly can provide better quantification of changes in spatial abundance patterns 

(Waldock et al., 2022). While these results are encouraging for the use of abundance data with 

SDMs, we found that using abundance data indirectly with occurrence data may be a better 

approach. The Weighted dataset produced higher deviance explained than both occurrence 

datasets and the abundance data. Rather than directly modelling abundance, a weight is added to 

each presence and absence record which account for both local species abundance and species 

dominance. Therefore, species present at a site with high abundance relative to high overall 

specie richness are assigned a greater weight (Yu et al., 2020). The weighted technique used here 

was developed by Yu et al., (2020), who also found that the weighted models used in their study 

on fluvial fish outperformed traditional, un-weighted models. Similarly, Howard et al., (2014) 

incorporated abundance data in their species distribution models. Instead of using the abundance 

data to weight the occurrences, they compared models that were trained on abundance data with 

those trained on presence-absence data. The models trained on abundance data were converted to 

presence-absence predictions and were found to significantly improve model performance 

compared to the traditional presence-absence trained models (Howard et al., 2014). While Yu et 

al., (2020) and Howard et al., (2014) incorporate abundance data into their distribution models 

differently, both studies showed improved model performance when indirectly modelling 

abundance. Perhaps modelling abundance indirectly, using it to inform presence-absence data, is 

a better approach than directly modelling abundance, however this requires further research.  

Deviance explained with abundance and range size – One of the goals of this research 

was to determine how species ecology, more specifically their abundance and range size, 

influenced model performance. These results suggest that, for Occurrence models, explanatory 

power is highest for abundant yet spatially restricted species. This could be explained by the 
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more abundant species having more reliable presence data to better train the models. Moreover, 

smaller range size allows for a larger portion of the species range to be sampled, providing more 

thorough and complete dataset for the distribution models, although this can potentially 

artificially inflate metrics such as AUC. More widespread species with larger ranges sizes may 

not be appropriate for SDMs since they can have weaker associations with the environment 

across a large landscape (Waldock et al., 2022). This sampling issue was likely also influential 

for the Abundance models, which also improved for spatially-restricted species. Larger range 

sizes are difficult to sample completely, especially in the remote Canadian boreal forest.  

Model metrics with species abundance and range size - There were multiple relationships 

found between these variables, each varying in direction and significance (Table 2). Each model 

metric implies something different about the structure of the data, however seeing that the 

Weighted model is a new approach, using multiple diagnostic metrics can limit biases and 

inaccurate interpretation of the results (Yu et al., 2020). Of the two Abundance model metrics, 

discrimination was the only one to have any significant relationship with species abundance, 

such that larger species abundance increases the discrimination value (Table 2). Discrimination 

reflects how well a model discerns between low and high values of observed abundance 

(Norberg et al., 2019; Waldock et al., 2022). Identifying and tracking changes in abundance 

across a spatial and temporal scale is often needed for conservation and wildlife management, 

making this diagnostic metric particularly valuable (Waldock et al., 2022). Increased abundances 

would most likely increase the contrast between areas with low and high abundances, leading to 

better predictive power by the models.  

Spatial patterns from each model – Although we cannot directly compare the spatial 

outputs from the Abundance models with the outputs from the three other models, we can still 
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observe relative differences in the spatial distribution displayed (Fig. 5).  Abundance and 

occurrence data have often produced dissimilar spatial patterns in previous work, most likely due 

to the influence of different biological processes between abundance and occurrence (Johnston et 

al., 2015; Mi et al., 2017; Nielsen et al., 2005).  

The differing spatial outputs between the Abundance model and the three other models 

further support the findingsthat modelling and predicting species distributions using only 

occurrence or abundance data may be insufficient and lead to very contrasting conclusions. 

Interestingly, the models using occurrence data from two different sources (Occurrence and 

GBIF models) produced differing spatial distributions (Fig. 5). The GBIF map displays a high 

probability of occurrence at the southern edge of the western boreal, most likely due to the high 

spatial bias associated with unstructured citizen science data. Contrastingly, the occurrence data 

derived from WPBHS produced a much more heterogenous spatial pattern across the western 

boreal, further supporting the efficacy of a structured sampling protocol which could be used to 

collect both occurrence and abundance data.     

Conclusion - While promising new more complex approaches are being developed for 

combining survey and presence-only data (e.g. Howard et al., 2014; Adde et al., 2021), these 

approaches are more computationally intensive and have so far been limited to a handful of 

species. Adde et al., (2021) applied an integrated species distribution modelling (ISDM) 

framework recently formalized by Isaac et al., (2020) on three waterfowl species in the western 

boreal forest. This approach integrated standardized survey data from WBPHS and unstructured 

citizen science data from eBird (Sullivan et al., 2009) to model species distributions where 

WBPHS data was limited (Adde et al., 2021). Although this more sophisticated approach has 
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much potential to improve model performance, it may be impractical for studies with multiple 

species or for more cryptic and rare species.  

Our results suggested that indirectly modelling abundance by using a weighted approach 

produced improved model performance. Moreover, based on the differing predicted spatial 

patterns from all four models, only using occurrence or abundance data is insufficient for 

conservation purposes. These findings support the use of the abundance-weighted approach 

when abundance data is available. Using approaches which indirectly model abundance can 

provide more informed interpretations about spatial prioritization, species spatial distribution as 

well as spatial and temporal changes in species abundance, all of which are vital for accurate 

conservation and wildlife management. 
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Figures 

 

  

Figure 1. Deviance explained by for all four models; the bolded line in the boxes displays the 

mean deviance explained, with the whisker displaying the maximum and minimum distribution 

of the data. All contrasts were significant except between the Occurrence and GBIF models 

(P<0.01), where alpha = 0.05. 
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Figure 2. Diagnostic metrics calculated to the assess predictive power all four models across 

all 18 waterfowl species. A. Eight model performance metrics were calculated for the 

Weighted, Occurrence, and GBIF. The left panel displays which model produced the highest 

metric value for each species. The right panel displays which model produced the highest 

metrics across all species. B. The two Abundance model metrics performance across all 

species.  
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  Figure 3. A significant positive relationship between the discrimination metric of the 

Abundance models and total species abundance, such that the discrimination correlation 

coefficient increases with increased species abundance. The species abundance is displayed 

on a logarithmic scale. The discrimination metric is calculated as Spearman’s Rank 

Correlation coefficient. Labels represent species, see Table 1 for full common and scientific 

names. 
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Figure 4. The predicted spatial distributions from all four models across the Canadian 

western boreal forest. Model predictions were summed across species and rescaled between 

zero and 100 for easier comparison. The Abundance map (top left) displays the predicted 

abundance of all 18 waterfowl species included in this study in the western boreal forest 

(scaled). The Weighted, Occurrence and GBIF maps (top right and bottom) display the 

predicted probability of occurrence for the 18 waterfowl species included in this study in the 

western boreal forest.  
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Tables 

 

 

 

 

 

  

Species Code Common Name Scientific Name 

AGWT Green-winged Teal Anas crecca 

AMWI American Wigeon Mareca americana 

BUFF Bufflehead Bucephala albeola 

BWTE Blue-winged Teal Spatula discors 

CAGO Canada Goose Branta canadensis 

CANV Canvasback Aythya valisineria 

GADW Gadwall Mareca strepera 

GOLD Barrow's Goldeneye 

Common Goldeneye 

Long-tailed Duck 

Bucephala islandica 

Bucephala clangula 

Clangula hyemalis 

MALL Mallard Anas platyrhynchos 

MERG Hooded Merganser 

Common Merganser 

Red-breasted Merganser 

Lophodytes cucullatus 

Mergus merganser 

Mergus serrator 

NOPI Northern Pintail Anas acuta 

NSHO Northern Shoveler Spatula clypeata 

REDH Redhead Aythya americana 

RNDU Ring-necked Duck Aythya collaris 

RUDU Ruddy Duck Oxyura jamaicensis 

SCAU Greater Scaup 

Lesser Scaup 

Aythya marila 

Aythya affinis 

SCOT Surf Scoter 

White-winged Scoter 

Black Scoter 

Melanitta perspicillata 

Melanitta deglandi 

Melanitta nigra 

Table 1. Species and species groups included in this study. Species 

grouped according to Western Breeding and Population Habitat 

Survey. 
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Response Variable 

Significance (Estimate; P-value) 

Abundance Range Size Abundance: 

Range Size 

Deviance Explained  

Abundance - -5.28e-06; 

P = 0.0062 

- 

Weighted 2.51e-06; 

P = 0.032 

- - 

Occurrence 2.75e-06; 

P = 0.0043 

-5.83e-06; 

P = 0.00028 

-3.18e-11; 

P = 0.023 

GBIF - - - 

Weighted Model Metrics   

Specificity-Sensitivity -2.47e-05;  

P = 0.0065 

-2.61e-05;  

P = 0.041 

1.12e-09;  

P = 1.08e-07 

Prevalence -1.37e-05;  

P = 0.0039 

- 4.64e-10;  

P = 2.5e-06 

Equal Sensitivity Specificity -5.28e-05; 

 P = 3.33e-06 

- 1.57e-09;  

P = 9.58e-10 

Kappa -3.38e-05;  

P = 0.0013 

-4.35e-05;  

P = 0.0039 

1.15e-09;  

P = 4.28e-07 

Sensitivity -2.30e-05;  

P = 0.00015 

-1.46e-05;  

P = 0.048 

8.14e-10;  

P = 1.22e-08 

No Omission - -2.35e-05;  

P = 0.026 

4.65e-10;  

P = 0.0003 

AUC 1.84e-06;  

P = 0.0014 

-4.21e-06;  

P = 2.96e-05 

-1.99e-11;  

P = 0.015 

AUPRC 1.83e-06;  

P = 0.00095 

3.21e-06;  

P = 0.00025 

-2.36e-11;  

P = 0.0037 

Abundance Model Metrics   

Spearman's Rank Correlation 2.96e-06;  

P = 0.00096 

- -3.54e-11;  

P = 0.0061 

Precision - - - 

 

 

Table 2. Results from LMs between deviance explained and diagnostic metrics with 

species abundance and range size.   
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SDM Variables Predictor Variables 

Climatic1 
Mean Annual Precipitation (mm) 

Degree-days below 0°C (Chilling degree days) 

Precipitation as snow (mm) 

Hargreave’s climatic moisture index 

Degree-days above 18°C  

Topographic Topographic wetness index 

Topographic ruggedness index 

Land cover 

Percent wetland2 

1 AdaptWest Project 2021 

2 Hermosilla et al., 2018  
 

Table 3. Predictor variables included in SDMs. 
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Supplementary Figures 

 

  

Figure S1. Map of the Western Boreal Forest, displayed by the red polygons, and the Waterfowl 

Breeding Population and Habitat Survey (WBPHS) aerial survey transects are displayed by the 

black lines. The species distribution models were trained on population and environmental data 

within the light grey polygon, which represents a 500 km buffer around the western boreal forest, 

to avoid truncating environmental variables. 
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Final Discussion 

One major advantage of species distribution models is the ability to predict potential 

future distribution across a continuous landscape. These predictions are an essential tool for 

climate change research, spatial prioritization and wildlife and conservation management (Mi et 

al., 2017). SDMs are particularly valuable for areas that are undergoing rapid climate-driven 

change such as Northern Canada. Climate-driven change in Canada is responsible for many 

ecological changes being observed across the country, with changes in the Canadian Arctic even 

more drastic (IPCC, 2022). Given this, there is an urgent need to develop more accurate 

assessments of how climate-driven change will impact ecosystem structure, and species 

distribution and abundance. Despite the potential use for SDMs in such a fast-changing 

environment, these models contain many conceptual, biotic, and algorithmic shortcomings that 

are often left unaddressed and are a source of uncertainty (Elith et al., 2006; Howard et al., 

2014). As the interest and use of SDM continues to increase, much research has been focused on 

improving the predictive performance of SDMs. Incorporating biological traits, abundance data, 

biotic interactions, and account for biases are only some of the avenues currently being explored 

to improve model predictions (Howard et al., 2014). Therefore, the overall goal of this thesis was 

to explore two such avenues that could improve species distribution models (Table 1).  

First, I developed a trait vulnerability assessment (TVA) framework which incorporates 

SDM predictions more explicitly into each TVA component (sensitivity, adaptive capacity, and 

exposure). SDMs are used to predict environmental change and changes in habitat suitability for 

a species of interest. However, these models do not explicitly assess a species vulnerability to 

climate changes, but rather predict how much suitable habitat they are expected to lose with 

climate-driven change (Willis et al., 2015). Using SDMs, researchers can also predict how much 
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suitable habitat a species is expected to gain as well as where these future suitable habitats will 

be located. However, these models do not consider a species ability to cope and adapt to such 

changes. For example, a case study on the Grey-necked Picathartes (Picathartes oreas) showed 

that SDMs predicted potential range expansion for this species. Yet the Grey-necked Picathartes 

was found to have low adaptive capacities due to its specialized nesting requirements which were 

not met in the potentially gained habitat (Willis et al., 2015). By integrating both SDMs and 

TVAs, a more complete and thorough assessment of each species vulnerability can be made. 

Such assessments would include information on how much habitat each species is predicted to 

gain or lose, as well as their ability to persist or disperse, given these environmental changes. 

Using the TVA framework developed in Chapter 1, I highlighted vulnerable avian guilds and 

provide key intel on which aspects of their life history are the main driver of their vulnerability 

(Table 1). With this information, more accurate and effected conservation and wildlife 

management practices can be implemented for endangered species and habitats.  

For the second part of my thesis, I explored how different types of data influence model 

explanatory and predictive power. Abundance data has been nominated by many as a better 

metric for climate change modelling, simply because they provide a more quantitative 

continuous map of predictions. Rather than a binary, present or absent map, abundance-based 

model can produce predictions on the number of species expected to be in an area of interest 

(Howard et al., 2014; Mi et al., 2017; Martínez-Minaya et al., 2018; Yu et al., 2020). Some 

studies have compared models results between occurrence and abundance data (Howard et al., 

2014; Johnston et al., 2015) while others have explored combining both occurrence and 

abundance data (Adde et al., 2021; Mi et al., 2017; Yu et al., 2020). Here, I compared model 

performance between both forms of data while also comparing a combined approach which uses 
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abundance information to influence the occurrence data. My analysis determined that the 

combined approach produced models with higher explanatory and predictive power (Table 1). 

These results provide more support for the use of abundance data with SDMs; however, they also 

highlight the potential of using a combined approach rather than directly modelling abundance. 

Improving species distribution models is crucial to provide more accurate predictions, especially 

for areas such as Canada, where many drastic changes are already underway.    

By including more species-specific information in species distribution models, such as 

biological traits and abundance data, researchers can produce more accurate and reliable model 

predictions needed for conservation and wildlife management. Including biological traits, as in 

trait vulnerability assessment, provides intel on the ability to cope and adapt with climate-driven 

change. A species sensitivity, adaptive capacity, and exposure to climate change greatly 

influences how severely they will experience changes in suitable habitat, which can help 

determine if and when these species need active conservation management (Willis et al., 2015). 

While including abundance data provides intel on the spatial distribution of relative abundances 

in an area of interest, it also can provide early warning signs of population decline and can 

potentially be used to infer habitat quality, although the latter requires more research (Howard et 

al., 2014). Further research could also explore different methodologies on combining occurrence 

and abundance data or integrating abundance-based SDMs with biological traits. By improving 

the predictive power of SDMs, researchers, conservation, and wildlife management as well as 

policy makers can better anticipate, and ideally, reduce climate-driven change impacts on 

biodiversity.   
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Tables 

 

  

Chapter 

 

Aim Methods Main Findings 

1. Integrating 

species 

distribution 

models with 

trait 

vulnerability 

assessment for 

Canadian birds 

Develop a 

framework 

which 

includes more 

explicitly 

SDM 

predictions in 

all three TVA 

components. 

Ran BRT, GAM, and 

MaxEnt distribution 

models. SDM predictions 

used as a trait in the TVA 

to reflect their sensitivity, 

adaptive capacity, and 

exposure to climate 

change. 

Evaluated the vulnerability 

of 471 birds breeding in 

Canada using this TVA. 

Overall, seabirds are most 

vulnerable to climate change. 

Identified 83 species most 

likely to become vulnerable 

climate-driven changes due to 

their inability to disperse or 

persist or both. Identified 

three main breeding biomes 

used by more than 50% of 

vulnerable species: Artic 

Tundra, Wetlands, and 

Coastal habitats.  

    

2. Comparing 

species 

distribution 

models using 

occurrence, 

abundance-

weighted and 

abundance data 

Explored best 

approach to 

use when 

working with 

abundance 

data. Further 

explored how 

species 

abundance 

and range size 

influence 

SDM outputs 

Compared the predictive 

and explanatory power of 

SDM using four different 

datasets: (1) abundance 

data, (2) occurrence data 

weighted by abundance, 

(3-4) occurrence data from 

two different sources. 

Models were compared 

using various performance 

metrics for 18 waterfowl 

species in the Wester 

Boreal Forest. 

The Weighted model 

significantly outperformed 

the other three models. The 

explanatory power of this 

model is positively related to 

species abundance. The 

Abundance models 

underperformed compared to 

the Weighted model but 

outperformed the two 

occurrence models. The 

explanatory power of the 

abundance models is 

negatively related to species 

range. The correlation 

coefficient between observed 

and predicted abundances 

from this model was 

positively related to species 

abundance.  

Table 1. Brief summary of chapter 1 and 2 included in this thesis.  
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