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Abstract
Early identification of hearing loss is important because if untreated it can lead to delayed language 

development and other difficulties. Current tools for newborn hearing screening are subject to 

excessively high false-positive rates. Tympanometry is a promising tool for improving screening tests 

by evaluating the condition of the middle ear, but it is poorly understood in newborns. Tympanometry 

involves large deformations, non-linear responses, viscoelastic (time-dependent) effects, and complex 

dynamic responses, which make it hard to model. A previous gerbil finite-element model developed in 

our lab was the first numerical simulation of tympanometry involving the simultaneous application of 

large quasi-static pressures and small sound pressures, and it succeeded in replicating some features of 

tympanometry. However, the model involved over-simplified anatomical details of the ossicles to 

reduce the computational cost. The goal of this study was to improve the model by adding a 

representation of the incudostapedial joint and its surrounding structures.

The model employed a quasi-linear visco-hyperelastic model with several time constants in a Prony 

series. Material properties were taken from previous models and publications. The tympanic membrane

was assumed to be homogeneous and nearly incompressible. The loads, combining high quasi-static 

pressures with low-amplitude sound pressures, both low-frequency pure tones and wideband chirps, 

reflected the conditions in tympanometry. The model was verified against our previous models, and 

validated against data from the literature and our recent laser vibrometry data for the pressurized gerbil 

middle ear. The model demonstrated experimentally and clinically observed features, including 

hysteresis and the asymmetry in the vibration amplitude between positive and negative static pressures.
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This numerical model will help us gain insight into how the middle ear responds to different stimuli 

and thus open up new approaches to the interpretation of tympanometric measurements.
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Modélisation par éléments finis des vibrations de l’oreille moyenne sous
pressurisation quasi-statique

Résumé
L’identification précoce de la perte auditive est importante car si elle n’est pas traitée, elle peut 

entraîner un retard du développement du langage et d’autres difficultés. Les outils actuels de dépistage 

auditif du nouveau-né sont soumis à des taux de faux positifs excessivement élevés. La tympanométrie 

est un outil prometteur pour améliorer les tests de dépistage en évaluant l’état de l’oreille moyenne, 

mais elle est mal comprise chez les nouveau-nés. La tympanométrie implique de grandes déformations,

des réponses non linéaires, des effets viscoélastiques (dépendants du temps) et des réponses 

dynamiques complexes, ce qui rend la modélisation difficile. Un précédent modèle à éléments finis de 

gerbille développé dans notre laboratoire était la première simulation numérique de tympanométrie 

impliquant l’application simultanée de grandes pressions quasi-statiques et de petites pressions sonores,

et il a réussi à reproduire certaines caractéristiques de la tympanométrie. Cependant, le modèle 

impliquait des détails anatomiques trop simplifiés des osselets pour réduire le coût de calcul. Le but de 

cette étude était d’améliorer le modèle en ajoutant une représentation de l’articulation incudostapédiale 

et de ses structures environnantes.

Le modèle a utilisé un modèle visco-hyperélastique quasi linéaire avec plusieurs constantes de temps 

dans une série Prony. Les propriétés des matériaux ont été tirées de modèles et publications précédents. 

La membrane tympanique était supposée homogène et presque incompressible. Les charges, combinant

des pressions quasi-statiques élevées avec des pressions sonores de faible amplitude, à la fois des sons 

purs à basse fréquence et des gazouillis à large bande, reflétaient les conditions de la tympanométrie. 

Le modèle a été vérifié par rapport à nos modèles précédents, et validé par rapport aux données de la 

littérature et à nos données récentes de vibrométrie laser pour l’oreille moyenne de gerbille sous 
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pression. Le modèle a démontré des caractéristiques qui sont observés expérimentalement et dans la 

clinique, comme l’hystérésis et l’asymétrie de l’amplitude des vibrations entre les pressions statiques 

positives et négatives.

Ce modèle numérique nous aidera à mieux comprendre comment l’oreille moyenne répond à différents 

stimuli et ouvrira ainsi de nouvelles approches pour l’interprétation des mesures tympanométriques.
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Chapter 1: Introduction

1.1 Motivation
Hearing loss is one of the most common congenital defects. Impaired hearing can lead to deficits in 

language, cognition and social skill development. Early detection accompanied by appropriate early 

intervention is essential. Neonatal hearing screening tools including otoacoustic emission (OAE) and 

auditory brainstem response (ABR) tests have high false-positive rates that are often caused by 

transient middle-ear dysfunction due to fluid and other residual material in the first 48 hours after birth.

Tympanometry provides information about the acoustic input admittance of the outer and middle ear

in the presence of large static pressures. It is a promising clinical took for evaluating the status of the 

middle ear in newborns. Since tympanometry can effectively identify various forms of middle-ear 

dysfunction, it can be used to help interpret OAE and ABR measurements. In older children and adults, 

tympanometry with a single low probe-tone frequency provides easy-to-interpret results but the 

interpretation may be very different in newborn ears because of anatomical and physiological changes 

during maturation. Tympanometry with a high-frequency or multi-frequency probe tone may provide 

more information on the middle-ear condition but is often hard to interpret and is even less well 

understood for the infant ear. For example, tympanometry results are influenced by the direction of the 

quasi-static pressure change and the rate of the pressure pump. Currently, the clinical significance of 

these parameters is not well understood.

Numerical models of the middle ear are very helpful in understanding and predicting the responses 

of the middle ear. Such models allow us to study the effects of different parameters quantitatively to get

a better understanding of the functions of different middle-ear components. Finite-element models 

allow us to connect the detailed anatomical and mechanical properties of the middle-ear structures to 
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the physiological characteristics of the system. In recent years, because of increasing computational 

power, increasing accessibility of finite-element software and the improved integration of solvers and 

post-processing tools, the finite-element method has been increasingly applied in modelling of the 

middle ear. 

Tympanometry involves both non-linear responses and viscoelastic (time-dependent) effects. The 

model of Choukir (2017) was the first non-linear middle-ear model that could simulate responses to an 

acoustic stimulus in the presence of large quasi-static pressures (comparable to those in 

tympanometry). However, some aspects of that model were very much simplified. 

1.2 Objectives
The overall research programme of which this thesis forms part has a focus on improving 

understanding of tympanometry in newborns. In this research, an animal model (the Mongolian gerbil 

ear) is used because it allows comparison with experimental measurements that are not possible with 

human ears. The overall objective of the present work was to develop a better quantitative 

understanding of the mechanical behaviour of the gerbil middle ear, particularly its response under 

conditions involving both non-linear viscoelasticity and linear dynamics as found in tympanometry. 

The specific objectives of this work are listed below:

1) Modification of the previous model by inserting some middle-ear components, with the material

properties of the different components estimated from previous work.

2) Verification of the new model’s low-amplitude response by comparison to the previous model.

3) Investigation of the non-linear behaviour of the new model in conditions relevant to 

tympanometry, involving the presence of large quasi-static ear-canal pressures with and without

the presence of a sound stimulus.

4) Comparison of the model results with experimental measurements.
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1.3 Thesis outline
Chapter 2 of the thesis provides a brief overview of the auditory system with an emphasis on the 

anatomy of the middle ear. Chapter 3 consists of a literature review of concepts and previous studies 

related to the present work. Chapter 4 presents the methods and is followed by our results in Chapter 5. 

Chapter 6 includes a summary of this work, a discussion of potential future work and the significance 

of our research.
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Chapter 2: The auditory system

2.1 Introduction
The auditory system is responsible for the sense of hearing. The system serves to gather sound signals, 

transform and amplify them, and transmit the results to the brain via neural pathways. The system 

consists of three sections: the outer, middle, and inner ear (Fig. 2-1). Detailed descriptions of the 

anatomy of the ear are illustrated in numerous anatomy textbooks (e.g., Standring, 2016, chaps. 36 & 

37). This chapter provides a brief description of the anatomical characteristics of each part of the 

human ear, based largely on Standring (2016), with an emphasis on the middle ear as it is most relevant

to this thesis. In section 2.5, we highlight the similarities and differences between the human middle ear

and the gerbil middle ear. Section 2.6 is a brief conclusion.

2.2 Anatomy of the outer ear
The outer ear (see Fig. 2-1) includes the pinna (or auricle) and the outer ear canal (or external acoustic 

meatus). The pinna has a curved rim called the helix, a deep notch called the concha, and an adipose 

bottom part called the lobule (or earlobe). The pinna is approximately three-quarters of its adult size at 

birth and continues to grow up to about 11 years of age (e.g., Purkait, 2013). The ear canal is an air-

filled tube that extends from the pinna to the eardrum (or tympanic membrane, TM). It is 

approximately 2.5 cm in length from the floor of the concha of the auricle (e.g., Standring, 2016). The 

lateral, cartilaginous part forms approximately one-third of the length of the ear canal, and the osseous 

part forms the remaining two-thirds of the canal. 
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2.3 Anatomy of the middle ear
The middle ear is an irregularly shaped, air-filled space laterally bounded by the TM. Within the 

middle-ear cavity lie three ossicles, the malleus, the incus and the stapes. The ossicles transmit the 

vibrations of the tympanic membrane across the cavity to the inner ear. 

2.3.1 Middle-ear cavity

The middle-ear air cavity can be subdivided into four parts: the tympanic cavity, the aditus ad antrum, 

the mastoid antrum and the mastoid air cells. The tympanic cavity is bounded laterally by the TM and 

medially by the oval window. It contains the middle-ear ossicles. Posterior to the tympanic cavity is the

aditus ad antrum, which is a short passageway that connects the cavity and the mastoid antrum. The 

mastoid antrum (or the tympanic antrum) is within the petrous portion of the temporal bone and 

communicates with the mastoid air cells, which are small air spaces of variable size. The volume of the 

mastoid air cells usually makes up most of the volume of the middle-ear cavity and is very variable. 
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Figure 2-1: Ear anatomy schematic, showing the outer ear, the middle ear and the inner ear 
spaces. (Adapted from http://audilab.bme.mcgill.ca/teach/me_saf/)



Although the mastoid antrum is well developed at birth, the mastoid air cells continue to extend and 

pneumatize (i.e., to fill with air) into the mastoid antrum even after puberty (Standring, 2016).

2.3.2 Tympanic membrane

The TM is a thin, cone-shaped membrane, separating the middle-ear cavity from the external auditory 

canal. The apex of the TM cone is referred to as the umbo. A ring of bone called the tympanic annulus 

encircles the TM. The longest diameter of the TM is between 9 and 10 mm and the shortest diameter is 

about 8 to 9 mm (e.g., Kassem et al., 2010). 

The TM consists of two components, the pars tensa (PT) and the pars flaccida (PF) (Fig. 2-2). 

Both components have three layers: the inner mucosal layer, the outer epidermal layer and the 

intermediate fibrous layer (Fig. 2-3). The epidermis of the human TM exhibits a centripetal migration 

pattern, from the umbo outward to the external meatus. This serves as a self-cleaning mechanism for 

ear wax and cell debris (e.g., Lim, 1995). The PT and PF are different in the compositions of their 

fibrous layers. In the PT, the fibres of the radial collagenous layer converge on the manubrium, while 

the circular collagenous layer thickens towards the periphery. The PF is thicker than the PT and has a 

much looser structure which contains vessels, nerve endings and mast cells (e.g., Lim, 1970; Stenfeldt 

et al., 2006).
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Figure 2-2: Anatomy of tympanic membrane. (From http://audilab.bme.mcgill.ca/teach/me_saf/)



Lim (1970) reported the thickness of the PT as being between 30 and 90 µm in adults. They 

also reported the PF to be approximately one-tenth of the TM in surface area and to have a thickness 

that varies between 30 and 230 µm in adults. Ruah et al. (1991) measured TM thickness in human 

temporal bones of different ages and reported age-related changes of the TM thickness. They found the 

thickness of the PT and PF to be significantly higher in newborns. Other groups have reported that the 

thickness of the PF in adults has a range from 40 to 120 µm and the thickness of the PT has a range 

from 120 to 140 µm (e.g., Kuypers et al., 2006; Van der Jeught et al., 2013).

Figure 2-3: Illustration of TM microstructure. (http://audilab.bme.mcgill.ca/teach/me_saf/)

2.3.3 Ossicles

The ossicular chain connects the TM to the oval window and consists of the malleus, incus and stapes. 

The malleus (Latin for “hammer”) is the most lateral of the three. It has a head, a neck, and three 

processes (anterior, lateral and manubrium). The head of the malleus has a round shape and is 

connected to the incus. The neck of the malleus extends inferiorly to the manubrium. Both the 

manubrium and the lateral process are connected to the TM. 
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The incus (Latin for “anvil”) has a body, a short process and a long process. The articular 

surface of the malleus articulates with the body of the incus via the incudomallear joint (IMJ). The 

short process extends into the posterior incudal recess of the middle-ear cavity. At the tip of the long 

process, there is a lenticular process (consisting of a pedicle and a plate) that articulates with the stapes 

at the incudostapedial joint (ISJ). 

The stapes (Latin for “stirrup”) is the smallest bone in the body and has the shape of a stirrup. It

consists of a head, a neck, two crura and a footplate. The two crura diverge at the neck and join the 

stapes footplate separately. The anterior crus is generally shorter, thinner and less curved than the 

posterior crus. Among the ossicles, the stapes is the most variable (e.g., Saha et al., 2017). 

The development of the ear ossicles starts at fours weeks into intrauterine life. The ossicles have

achieved their adult size and configuration at birth (Standring, 2016).

2.3.4 Joints

There are two synovial joints between the three ossicles. The IMJ is saddle-shaped. The ISJ has been 

described as ball-and-socket, but the surfaces are only mildly convex and concave. As in typical 

synovial joints, articular cartilage covers the articular surfaces, and in between there is synovial fluid. 

Each joint is surrounded by a fibrous joint capsule which contains synovial fluid inside. Karmody et al. 

(2009) reported the existence of a fibrous articular disk (which they referred to as a meniscus) that 

divides the joint space into unequal parts, but Soleimani et al. (2020) did not observe it in their 

histological sections. As Soleimani et al. (2020) discussed, the variability of the thickness of the 

synovial space of the ISJ in experimental measurements is huge because the joint is extremely delicate 

and under observation might be dehydrated, dislocated or changed in other ways. 
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2.3.5 Muscles and ligaments

The ossicles are connected to the tympanic cavity wall by ligaments. According to Standring (2016), 

the malleus has three ligaments: the anterior, the lateral and the superior. The anterior mallear ligament 

stretches from the neck of the malleus to the cavity wall. The lateral ligament is triangularly shaped and

connects the head of the malleus to the cavity wall. The superior ligament connects the head of the 

malleus to the roof of the epitympanic recess. The incus has a posterior incudal ligament that in human 

stretches in two bundles from the short process to the cavity wall at the posterior incudal recess. There 

is also a mucosal fold (sometimes referred to as the superior incudal ligament) that connects the body 

of the incus to the roof of the epitympanic recess. A study by Lemmerling et al. (1997) reported great 

variability in the mallear and incudal ligaments. They observed the anterior, superior, and lateral 

mallear ligaments and the medial and lateral parts of the posterior incudal ligament in only 68%, 46%, 

95%, 26% and 34% of the 75 ears they examined. The stapedial annular ligament connects the base of 

the stapes to the oval window of the cochlea. The posterior part of this ligament is much narrower than 

the anterior part.

There are two intratympanic muscles: tensor tympani and stapedius. The tensor tympani originates 

from the cartilaginous part of the pharyngotympanic (i.e., Eustachian) tube and is inserted into the 

handle of the malleus. The stapedius muscle connects the stapes head to the mastoid wall of the 

tympanic cavity. Both muscles are fully developed prenatally, but their attachments mature about one 

week after birth (Saunders et al., 1983, p. 10). Both muscles reduce the response of the middle ear by 

inhibiting the motion of the ossicles. They attenuate the low-frequency components of a loud complex 

sound to prevent the masking of the sound’s high-frequency components (Borg and Counter, 1989).
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2.4 Anatomy of the inner ear
The inner ear is a structure of interconnected membranous sacs and ducts. It is a liquid-filled labyrinth 

and has three main parts: the cochlea, the vestibule and the semicircular canals. Medial to the tympanic 

cavity and between the cochlea and the semicircular canals lies the vestibule. It is egg-shaped but 

flattened transversely. There are mechanosensory receptors in the vestibule that detect the steady-state 

head position. Posterior to the vestibule are located the three semicircular canals, which detect angular 

acceleration during tilting or turning of the head. The cochlea is anterior to the vestibule and is 

connected laterally to the stapes via the oval window. It is coiled around a conical central axis like a 

snail shell. The basilar membrane sits inside the cochlea and carries two types of sensory hair cells: the 

inner hair cells and the outer hair cells. The inner hair cells are pear-shaped; they only form one row 

and extend along the axial border of the basilar membrane. The outer hair cells are long cylindrical 

cells that form two to three rows radially within the organ of Corti. They are nearly twice as tall as the 

inner hair cells.

2.5 Gerbil middle ear
The middle ear of the Mongolian gerbil (Meriones unguiculatus) has been a popular subject of 

experimental studies and modelling (e.g., Dirckx et al., 1998; Rosowski et al., 1999; Lee and 

Rosowski, 2001; Elkhouri et al., 2006; Maftoon et al., 2015). Gerbil ears are relatively large for their 

overall body size, allowing easier observation of the TM during experimental procedures. Gerbils are 

also easy to breed and are relatively inexpensive, making them convenient subjects for experimental 

measurements.
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Figure 2-4: Sizes and configurations of human and gerbil middle ears. Air spaces in the ear: (a) 
hypotympanum; (b) tympanic cavity; (c) epitympanic recess; (d) aditus; (e) mastoid cells; (f) ear 
canal; (g) hypertrophied bulla. (After Funnell, http://audilab.bme.mcgill.ca/teach/me_saf/)

Despite overall similarities in anatomy and function between the human and gerbil middle ears, there 

are several differences:

1. Size: the human middle ear is larger than the gerbil middle ear, as shown in Fig. 2-4, although 

the size of the gerbil middle ear is larger relative to its body size.

2. Presence of the bulla: a thin bony shell called the bulla encapsulates the gerbil middle ear.

3. Anatomy of the manubrium: the entire length of the gerbil manubrium is tightly attached to the 

PT, while in human the manubrium is only tightly attached to the PT at the umbo and at the 

lateral process.

4. Shape and relative size of PF: The gerbil’s TM, unlike the human TM, has a relatively large and

circularly shaped PF.
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5. Composition of TM: The human PT contains more and denser collagen than does the gerbil’s 

(Chole and Kodama, 1989).

6. TM thickness: The gerbil TM is much thinner than the human TM. According to Decraemer and

Funnell (2008), the gerbil PF has a thickness of around 23 µm in its thin central region and 

increases steeply to 5 to 10 times thicker approaching the bony annulus. The gerbil PT has a 

thickness between 5.6 to 14.4 µm in the thin central region and increases to around 34 µm near 

the rim.

7. Anatomy of the anterior mallear process: The gerbil anterior mallear attachment is a bony 

attachment as opposed to the ligament in the human middle ear. The anterior process is also 

longer in the gerbil.

8. Anatomy of the posterior incudal ligament: In the gerbil middle ear, the ligament surrounds the 

short process of the incus, but the human posterior incudal ligament is composed of two bundles

(see Fig. 2-5).
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Figure 2-5: Different configuration of posterior incudal ligament in human and gerbil. ib = internal 
bundle, eb = external bundle, i = incus, p = periotic bone. (Adapted from 
http://audilab.bme.mcgill.ca/teach/me_saf/)

2.6 Conclusion

In this chapter, we presented anatomical descriptions of the human ear with an emphasis on the middle 

ear. We have shown that the middle ear is a system with complex anatomy and contains many tissue 

types. We also compared the gerbil middle ear to that in humans. Significant variations can be found 

within species and between species.
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Chapter 3: Literature review

3.1 Introduction
In this chapter, we give a summary of concepts and previous studies relevant to our research. In section

3.2, the principle and applications of tympanometry are presented. In section 3.3, the principle of finite-

element modelling, its applications and a number of relevant middle-ear models are summarized. In 

section 3.4, a review of previous experimental studies on the middle ear is presented. In section 3.5, we

summarize models and experimental measurements with an emphasis on the ISJ. 

3.2 Tympanometry
Tympanometry is a promising clinical tool for evaluating the status of the middle ear in newborns. In 

section 3.2.1, we present the principles of tympanometry. In section 3.2.2, we present clinical 

applications of tympanometry. Finally, in section 3.2.3, we review the use of tympanometry in 

newborns. 

3.2.1 Principles of tympanometry

The following information is mostly based on Van Camp et al. (1986). Tympanometry provides 

information about the acoustic input admittance of the outer and middle ear. Acoustic admittance Y is 

the reciprocal of impedance Z and is defined as the volume velocity response to a known pressure, 

expressed as 

Y=1/ Z=U / P , (3-1)
where U is the volume velocity (i.e., the volume of fluid that passes through a unit surface area per unit

time) and P is the sound pressure at the point of measurement. Admittance and impedance are complex 

numbers; they can be expressed either as a combination of real and imaginary parts (namely, 

conductance G and susceptance B for admittance) or using magnitude and phase. Acoustic admittance 
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has units of mho (m3/Pa·s). In tympanometry, in addition to the acoustic stimulus, there is also a pump 

that generates quasi-static pressures generally ranging between −4 and +4 kPa. (The unit for pressure 

commonly used in clinical tympanometry is daPa, where 1 daPa=10 Pa.)

An illustration of a tympanometer is shown in Fig. 3-1. A probe is inserted into the ear canal and 

seals the air in the canal. The probe contains three components: a sound source that generates acoustic 

stimuli, a microphone that measures the resulting sound pressure levels, and a pump that produces 

varying quasi-static pressures. The microphone voltage values are monitored and converted to 

equivalent admittance values.

The first commercial tympanometer was introduced clinically in the 1970s (Van Camp et al., 1986, 

p. 21) and was capable of measuring the acoustic admittance at two probe frequencies (220 Hz and 660

Hz). The resulting tympanogram shows the measured acoustic input admittance as a function of the 

quasi-static pressure (see Fig. 3-2 for an example). The acoustic admittance is related to the amount of 
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Figure 3-1: Illustration of a tympanometer (After Funnell, http://audilab.bme.mcgill.ca/teach/me_obj/)



sound energy absorbed and reflected by the TM and can thereby provide information about the status of

the middle ear. 

However, the probe tip has to be placed at the entrance of the ear canal and cannot be placed directly

on the TM surface. Therefore, the admittance measured at the probe tip (Ya) (i.e., “a” for acoustic) is the

sum of the admittance of the ear-canal volume (Yec) (i.e., “ec” for ear canal) and the admittance at the 

TM (Ytm). We can calculate Ytm if we know Yec. Early studies (e.g., Terkildsen and Thomsen, 1959) 

suggested that Yec can be measured when a large static pressure is applied to the ear canal, pushing or 

pulling the TM almost to its limit. As a result, the TM and other middle-ear structures cannot vibrate 

much. Therefore, all (or at least most) of the energy from the probe tip is reflected from the surface of 

the eardrum, making Ya≈Yec+Ytm.

A real tympanogram is asymmetric, with higher admittance values for positive pressure values than 

for negative values. The asymmetry has been said to come from eardrum movement, enlargement of 

the cartilaginous ring of the TM, movement of the probe tip, and viscoelasticity of the soft tissue (Elner

et al., 1971).

Tympanograms can be analyzed qualitatively or quantitatively. Qualitative methods are based on the

overall shape of the tympanogram (e.g., Fig. 3-2A), while the quantitative methods are based on 

specific measurable characteristics (e.g., Fig. 3-2B). A popular qualitative classification system was 

developed by Lidén (1969) and Jerger (1970). The following information is mostly based on Shanks 

and Shobet (2008). Type A tympanograms (see Fig. 3-2A) indicate the normal condition of the middle 

ear. Type A tympanograms have subcategories type AS (“S” refers to a shallow notch in an impedance 

tympanogram) with a flattened peak, and type AD (“D” refers to a deep notch in an impedance 

tympanogram) with a sharper peak. These subcategories indicate middle-ear conditions that require 

more attention: Type AS tympanograms are associated with otosclerosis, and type AD tympanograms are
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related to ossicular discontinuity or atrophic scarring of the eardrum. Type B tympanograms are flat 

and generally occur with middle-ear effusion and eardrum perforation. Type C tympanograms have 

peaks shifted towards the negative pressure. A shifted peak indicates static pressure in the middle-ear 

space, which is often a result of sinus congestion, ear infection or dysfunction of the Eustachian tube.

Fig. 3-2B showcases a quantitative method of analyzing a tympanogram. As indicated in the figure, 

a tympanogram can be interpreted in terms of four values: acoustic admittance magnitude Ytm (mmho), 

peak pressure TPP (daPa), width TW (daPa), and external ear canal volume Vea (ml). These four 

numbers differ in their degrees of diagnostic relevance. Tympanometry can also be analyzed in terms of

admittance quantities: susceptance (B), conductance (G), admittance magnitude (Y), and the admittance

phase angle (φ). The admittance tympanograms can have patterns with more features and can help to 

discern specific middle-ear pathologies (Van Camp et al., 1986).
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Figure 3-2: Two methods for analyzing 226 Hz tympanograms. (A) A qualitative analysis based on 
tympanogram shape. (B) A quantitative analysis based on equivalent ear canal volume, peak static 
acoustic admittance, tympanogram peak pressure and tympanogram width.



3.2.2 Clinical applications of tympanometry

According to Van Camp et al. (1986), measurements of immitance (a term that includes both 

admittance and impedance) were first made clinically available in the 1940s and became widely used in

the 1970s. Early tympanometry instruments measured only the magnitude of acoustic impedance for a 

single, low-frequency probe tone of 220 Hz and lacked control units to produce stable sound pressure 

levels. In the 1970s, a second probe tone of 660 Hz became available in new instruments and its 

advantage was demonstrated in evaluating mass-related pathologies in the middle ear (Feldman, 1976). 

Although low-frequency probe tones are still used most frequently, the use of higher-frequency probe 

tones gained more clinical acceptance because it permitted higher sensitivity for the diagnosis of 

ossicular-chain diseases (Lilly, 1984). Along with the development of a better-controlled probe tone, 

quantitative measurements were added to the instrument for more precise diagnostics. As a result, 

tympanometry became a routine component of audiological and otological evaluation procedures for 

older children and adults. Audiologists recognize peak patterns and use the position and magnitude of 

peaks in the tympanograms to diagnose patients with possible middle-ear pathologies (Van Camp et al.,

1986). Although measurements of the input admittance only reflect possible abnormalities of the 

middle ear as a whole, tympanometry has often been used to estimate middle-ear pressure because it is 

inexpensive, sensitive and non-invasive. It is used clinically to determine the possible presence of fluid 

in the middle-ear cavity and to evaluate the intactness of the ossicular chain.

The choice of 220 or 226 Hz as the probe-tone frequency was initially made for several reasons 

(e.g., Van Camp et al., 1986; Kochkin, 2006). Firstly, the impedance value at this frequency is 

numerically equal to the volume of air in a closed cavity. Calibration became easy because a volume of 

1 cm3 had an impedance of 1 milliohm at a frequency of 226 Hz. Thirdly, transducers at the time were 

only compatible with low frequencies and became non-linear at high frequencies. Secondly, the low-

frequency probe tone allowed precise calculation for a single-component admittance approach as the 
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phase angle is nearly constant and did not need to be considered. Fourthly, the probe signal level was 

sufficiently high and did not activate the acoustic stapedial reflex. Also, 220 Hz was not a harmonic of 

the 50-Hz power-line frequency used in Europe (e.g., Lilly, 1984; Van Camp et al., 1986; Iacovou et al.,

2013). As the probe-tone frequency increases, the tympanometric pattern begins to have multiple peaks.

Therefore, higher probe-tone frequencies (660 Hz or above) allow a better differentiation between 

healthy ears and pathological ears (e.g., Feldman, 1976; Colletti, 1977; van de Heyning et al., 1982) 

and thus provide a more effective basis for categorizing middle-ear conditions based on tympanometric

shapes.

Multi-frequency tympanometry (MFT) emerged in the 1970s and offered an alternative approach to 

conventional tympanometry. One can achieve MFT by (1) holding each probe-tone frequency constant 

while quasi-statically sweeping the ear-canal pressure (e.g., Colletti, 1975); (2) holding the ear-canal 

pressure constant at each value while sweeping the frequency (e.g., Wada and Kobayashi, 1990); or (3),

what is usually done now, quasi-statically sweeping the ear-canal pressure while applying multiple 

stimuli consisting of either chirps (i.e., rapid frequency sweeps; e.g., Funasaka et al., 1984) or clicks 

(e.g., Keefe and Simmons, 2003). The changes in quasi-static pressure are quite small within the 

duration of a single chirp or click, leading to the assumption that the pressure remains constant within 

each such stimulus.

MFT provides information on how components of admittance change with the pressure and with the 

probe frequency. The resonance frequency of the middle ear changes when the mass and stiffness of the

system change, and can, therefore, serve as one of the middle-ear status indicators in the tympanogram.

Otosclerosis (e.g., Colletti et al., 1993) and rheumatoid arthritis (e.g., Giannini et al., 1997) increase 

middle-ear stiffness and subsequently increase the resonance frequency of the middle ear. Ossicular 

chain discontinuity and otitis media with effusion (i.e., a common middle-ear disorder in which fluid is 
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built up in the middle-ear cavity) typically decrease the resonance frequency of the middle ear because 

such conditions decrease the stiffness of the middle-ear system (e.g., Wada et al., 1998; Ferekidis et al., 

1999). 

Vanhuyse et al. (1975) proposed patterns of tympanograms obtained with normal and pathological 

ears at 678 Hz. Colletti (1977) investigated the effects of probe-tone frequencies on the shape of the 

tympanogram for frequencies from 200 to 2,000 Hz. Low-frequency tympanograms were found to be 

V-shaped, the mid-frequency ones W-shaped, and the high-frequency ones inverted V-shaped. Margolis

and Goycoolea (1993) later adapted the Vanhuyse model to higher probe-tone frequencies (up to 

2,000 Hz). The number of peaks and troughs in the admittance tympanograms increase as the middle-

ear system shifts from stiffness to mass controlled. Although MFT curves contain more information, 

the coupling of the ear canal and TM becomes complex at high frequencies and therefore adds 

complexity in interpreting the tympanograms. As a result, MFT is not yet used as a routine clinical 

hearing test. 

3.2.3 Tympanometry in newborns

The overall research programme of which this thesis forms part has a focus on newborn hearing 

screening. Hearing loss is one of the most common congenital disabilities, and impaired hearing can 

lead to deficits in language, cognition and social skills. Early detection accompanied by appropriate 

early intervention is essential. Newborn hearing screening often starts with an otoacoustic emission 

(OAE) test to check for the cochlear response to sound. The emission of a range of sound frequencies 

in response to appropriate stimuli indicates proper functioning of the outer hair cells. OAE test results 

also depend on middle-ear status, because for the cochlea to receive the sound stimuli the middle ear 

needs to be functional. The middle ear is also paramount in transmitting the OAEs from the cochlea to 

the TM for the probe to be able to capture them in the ear canal (Kemp, 2002). Newborn hearing 
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screening sometimes also includes an auditory brainstem response (ABR) test to check for nerve 

function. Three surface electrodes are placed on the infant’s head to record nerve responses. ABR tests 

provide information about the function of the middle ear and cochlea and the central auditory pathway 

through the brainstem (e.g., Bogičević et al., 2018). Since both OAE and ABR signals travel through 

the middle ear, their results may be more most effective when interpreted along with tympanometry 

measurements (McKinley et al., 1997; Kilic et al., 2012).

The infant ear has substantial anatomical differences from the adult ear (as shown in Fig. 3-3), and 

such differences greatly affect the interpretation of tympanograms. Postnatal changes in the outer and 

middle ear that may contribute to the acoustic differences include ossification of the ear canal; 

enlargement of the external ear, mastoid and middle ear cavity; tympanic annulus fusion; and changes 

in the ossicular joints (e.g., Qi et al., 2006; Motallebzadeh et al., 2017a). Infants with otitis media may 

reveal a normal tympanogram when using a 226-Hz probe tone (e.g., Paradise et al., 1976; McKinley et

al., 1997; Margolis et al., 2003), while healthy infant ears may produce notched tympanograms at 

226 Hz with features generally found at higher probe-tone frequencies in adults (Bennett, 1972; Keith, 

1973). As reviewed by Carmo et al. (2013), many groups recommend 1,000-Hz tympanometry for 

infants under sixth months of age as it offers higher sensitivity for identifying middle-ear disorders in 

infants and shows better correlations to OAE and ABR screening results. Some groups observed that 

the 1,000-Hz probe tone gives rise to better results for the characterization of tympanometric patterns 

when compared to 226-Hz and 678-Hz probe tones (e.g., Calandruccio et al., 2006; de Moraes et al., 

2012). Alaerts et al. (2007) compared 226-Hz and 1,000-Hz tympanometry performed on 110 infants 

up to nine months of age and 15 adults with normal hearing. In infants younger than three months, 91%

passed tympanometry screening with a 1,000-Hz probe tone while only 35% passed when using a 226-

Hz probe tone. High-frequency tympanometry has been shown to offer better specificity for neonatal 
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hearing screening, if not better sensitivity. However, due to the ambiguity and complexity of high-

frequency tympanograms, there are disagreements concerning a standard for tympanometric patterns 

and classification parameters.

3.3 Finite-element method

In this section, we introduce the finite-element (FE) method and some important concepts for model 

generation. In section 3.3.1, we define the FE method and its basics. In section 3.3.2, we introduce non-

linear and time-dependent models. In section 3.3.3, we give a review of previous middle-ear models. 

3.3.1 Introduction

Continuum mechanics treats distributions of physical quantities as continuous functions of position and

time and considers their discrete nature to be unimportant. Continuum mechanics applies the 

fundamental law of motion and derives differential equations that represent the balance of linear and 

angular momentum of particles in a continuum. It also uses empirical constitutive laws to add 

information about the particular materials of the continua into the system of equations.
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Figure 3-3: Comparison of ear anatomy between newborns and adults (After Fowler EP Jr. 
(1947): Medicine of the ear, 2nd ed., T. Nelson, New York, from 
http://audilab.bme.mcgill.ca/teach/me_saf/)



For stress problems, current strategies involve solving analytical equations. The differential 

equations for a simple system may be easy, but they become very complicated for systems with 

irregular geometries and with multiple material properties and loading conditions. The use of analytical

methods to solve real systems often involves a considerable degree of idealization or approximation. 

Numerical methods are appropriate when the behaviour of a system and its surroundings is too 

complex to be solved as a whole, and no plausible idealization of the system can be obtained. By far 

the most versatile and widely used numerical method for solving problems in mechanics of materials is 

the FE method. In the finite element method, the system is divided into a finite number of well-defined 

components, whose individual behaviour is readily understood and is represented by simple 

approximations. The history of the FE method used in mechanics probably started in the 1940s when 

McHenry, Hrenikoff, Newmark, and Southwell showed a reasonably good solution to an elastic 

continuum problem by dividing it into simple elastic bars (e.g., Zienkiewicz et al., 2013). Here we 

present a brief description of the FE method based largely on Zienkiewicz et al. (2013).

Obtaining a FE solution involves the following steps:

1. Divide structure into elements with nodes (i.e., discretization or meshing)

2. Assign the material properties, define the boundary conditions, determine loading condition(s)

3. Connect the elements at the nodes to form an approximate system of equations for the whole 

structure (i.e., forming system matrices)

4. Solve the system of equations involving unknown quantities at the nodes (e.g., displacement)

5. Calculate desired quantities (e.g., strains and stresses) at selected elements
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Based on the variational principle (Zienkiewicz et al., 2013, chap. 4), the solution to the continuous 

problem is a function u which makes the potential energy Π stationary with respect to arbitrary changes

δu. Thus, for a solution to the continuous problem, the “variation” is

δ Π=0 (3-2)
for any δu, which defines the condition of stationarity. 

Frequently, the physical aspects of a problem can be stated directly in a variational form. One of the 

“natural” variational principles is the minimization of energy. In stress analysis, for example, the 

variational principle for a continuous body can be obtained by minimizing the total potential energy of 

the system. The total potential energy Π can be expressed as

Π=
1
2
∫
Ω

σ Tε dV −∫
Ω

dT b dV −∫
Γ

dT qd S , (3-3)

where σ and ε are the vectors of the nodal stress and strain components, respectively; d is the vector of 

displacement; b is the vector of body-force components per unit volume; and q is the vector of applied 

surface-force components. The volume integrals are defined over the entire region of the domain Ω and

the surface integrals are defined over the boundary Γ. Solving the resulting system of linear equations 

provides the response of the system (e.g., Zienkiewicz et al., 2013, chap. 3).

The FE method can be very accurate if realistic assumptions are made and proper material and 

boundary definitions are used. There are some factors to be considered to provide an adequate 

representation of reality:

1. Constitutive equations: The choice of method is based on trade-offs between the computational 

cost and the required accuracy. The choice of constitutive equations should depend on the 

natural material behaviour under desired modelling conditions. For example, modelling a 

rubber using linear isotropic constitutive laws is inappropriate unless strains are small enough.
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2. Mesh convergence analysis: The degree of meshing should be analyzed carefully. A coarse 

mesh may not lead to accurate results, but a very fine mesh can have undesirably high 

computational cost. Appropriate mesh size is essential to accurate but practical analysis. 

3. Material definition: Material parameters should be determined a priori as much as possible. 

Adjusting too many model parameters to fit a set of experimental results will not lead to a 

reliable model. 

4. Boundary conditions, loading conditions and constraints: The interconnections of the system 

within itself (i.e., between the components of the system) and with the environment (i.e., how 

the system is situated within its surroundings) are usually very complicated. A successful FE 

model should represent those conditions in a simplified form but still provide an acceptable 

representation of reality.

5. Model verification and validation: Model verification refers to the verification of the FE 

computer code and the mathematical calculations. It may consist of comparing results from the 

same FE model obtained with different solvers or with other simulation results. Model 

validation is the process of comparing the FE model simulation results to experimental 

measurements.

There are many software packages available for FE modelling. Commonly used commercial 

packages include ANSYS (www.ansys.com/) and ABAQUS (www.3ds.com/products-services/simulia/

products/abaqus/). Both of them integrate three steps of modelling, including pre-processing, 

processing, and post-processing. Free and open-source software is also available and may include all 

three steps or target specific functions. For example, Salome-Meca (code-aster.org/) is an open-source 

platform that incorporates sub-modules to include all three steps of modelling. FEBio (febio.org/) is 

also open source and has specific software for the different modelling steps, including PreView for pre-
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processing, FEBio for solving, and PostView for post-processing. Moreover, some software targets 

geometry and mesh generation (e.g., Fie, Tr3 and Fad at audilab.bme.mcgill.ca/sw/, Gmsh at 

www.geuz.org/gmsh). There is software that just solves the mathematical equations (e.g., Code_Aster 

at www.code-aster.org/, SAP IV at https://nisee.berkeley.edu/elibrary/getpkg?id=SAP4, and a locally 

modified version at http://audilab.bme.mcgill.ca/sw/sap.html). Software for visualizing the output is 

usually included in the package (e.g., PostView in FEBio and ParaVis in Salome-Meca).

3.3.2 Non-linear and time-dependent material models

In continuum mechanics, non-linearity arises from three conditions: (1) geometrical non-linearities 

(i.e., when geometry changes because of large displacements), (2) material non-linearities, and (3) 

contact non-linearities (e.g., Funnell et al., 2017). Modelling tympanometry requires simulation of the 

middle-ear response to a sound pressure in the presence of large static pressures. In this brief 

introduction, we only discuss hyperelastic and viscoelastic behaviours.

3.3.2.1 Finite-strain theory

For moderate to large deformations, simulation software uses finite-strain theory to describe the 

geometric configuration. The following mathematical presentation is largely based on Irgens (2008, 

chaps. 5 & 7). Let us consider that a particle P0 and its neighbouring particle Q0 in the reference 

configuration Ω0 are transformed to new positions P and Q in the deformed configuration Ωf. In the 

deformed configuration, the two particles are located at y(X) and y(X+dX), respectively, and the 

deformed image of segment PQ is described by the vector

d y= y (x+d x)− y (x ) . (3-4)

Since P and Q are neighbouring particles, we can approximate this expression for small |dx| by the 

Taylor expansion 

26



d y=(Grad y)d x+O|d x2|=F d x+O|d x2| , (3-5)

which we can approximate as 

d y=Fd x , (3-6)
where F is called the deformation gradient. The deformation gradient linearly transforms any 

infinitesimal vector in the undeformed configuration to another infinitesimal vector in the deformed 

configuration of a body. The right Cauchy-Green deformation tensor C arises from mapping the scalar 

product of two initial infinitesimal vectors and is defined by 

C=FTF , (3-7)

FT being the transpose of matrix F. Note that C is symmetric. The difference between the initial and 

modified scalar products gives rise to the Lagrangian finite-strain tensor E and the Green-Lagrangian 

strain tensor e. The strain tensors are defined by

E=
1
2

(C− I )and

e=
1
2

( I−C )

, (3–8)

where  I is the unity matrix. The  Lagrangian finite-strain tensor  E can be expanded  in terms of the

displacement u:

E=
1
2

[
∂u
∂ X

+(
∂u
∂ X

)
T

+(
∂u
∂ X

)
T

∂u
∂ X

] . (3–9)

For infinitesimal deformations, the term (
∂u
∂ X

)
T
∂ u
∂X

is neglected, but for large deformations, this 

term is kept.

The principle invariants of C are defined as 

I 1=tr(C)=λ1
2
+λ2

2
+λ3

2

I2=
1
2
( I 2

2
−tr (C2

))=λ1
2
λ2

2
+λ2

2
λ3

2
+λ1

2
λ3

2

I 3=det(C )=J2
=λ1

2
λ2

2
λ3

2

(3-10)
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where λ1, λ2 and, λ3 are called the principle stretch ratios and are the eigenvalues of the deformation 

gradient, F. J is called the Jacobian and represents the volume change ratio. If the material is 

incompressible, I3=1; the volume change is negligible and J=1.

3.3.2.2 Hyperelasticity

For large deformations, it is common to use hyperelastic models where the non-linear stress-strain 

relationship is derived from a strain-energy function. The strain-energy function represents the potential

energy stored in the material as a result of deformation. The strain-energy function can be expressed as 

a function of either strain invariants (I1, I2 and I3) or principle stretch ratios (λ1, λ2 and λ3). The stress 

tensor and the strain tensor can be calculated based on the strain energy. The stress components can be 

determined by differentiating the strain-energy function with respect to a strain component:

S ij=
(∂W )

(∂E ij)
=2

(∂W )

(∂C ij)
(3-11)

where Sij is the second Piola-Kirchhoff stress tensor, Eij is the Lagrangian strain tensor, and Cij is the 

right Cauchy-Green deformation tensor (Holzapfel, 2000). 

Various strain-energy functions can be applied to soft tissue, such as neo-Hookean, Mooney-Rivlin, 

Ogden, etc. In our study, we used a generalization of the Mooney-Rivlin method. It was initially 

proposed by Mooney in 1940 and was expressed in terms of the strain invariants by Rivlin and Rideal 

in 1948 (e.g., Funnell et al., 2017). The Mooney-Rivlin model has been widely applied to model large 

deformations in nearly incompressible soft tissues such as skin, brain tissue, breast tissue and, more 

importantly for our purposes, the TM (e.g., Qi et al., 2008; Soleimani et al., 2020).

In the Mooney-Rivlin model, the strain-energy function is written as 

W=C10(I 1−3)+C01( I 2−3)+ κ
2
(J−1)

2
(3-12)
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where C10 and C01 are material constants, κ is the bulk modulus, and J is the Jacobian. Further details 

about the hyperelastic model can be found in standard continuum mechanics textbooks (e.g., Holzapfel,

2000).

3.3.2.3 Viscoelasticity

Most soft biological materials exhibit both non-linear and time-dependent (viscoelastic) behaviour 

(e.g., creep, stress relaxation and hysteresis). The following discussion is primarily based on Govindjee

and Reese (1997) and Charlebois et al. (2013). Viscoelastic models can be separated into three groups: 

linear viscoelastic (LV), quasi-linear visco-hyperelastic (QLVH) and fully non-linear visco-hyperelastic

(NLVH). For LV models, the stress is linearly proportional to the strain history. For LV and QLVH 

models, the elastic elements are considered as hyperelastic, and the stress response is decoupled 

between time and strain. For NLVH models, the deformation gradient has a multiplicative split into a 

viscous part and an elastic part. LV and NLVH models are beyond the scope of this work and will not 

be discussed further. The focus here will be on QLVH models. The QLVH model is a single-integral 

mathematical model that is an extension of the linear viscoelasticity convolution formulations to handle

non-linear viscoelastic materials. The strain-energy function and its derivation can be found in the 

papers cited above (Govindjee and Reese, 1997; Charlebois et al., 2013).

We first introduce the concept of stress and relaxation. Let us consider a model composed of an 

elastic branch in parallel with an arbitrary number of viscoelastic branches. The elastic branch only 

includes one elastic spring element, and each viscoelastic branch includes an elastic spring and a 

dashpot (damper) combined in series. The combination of these branches is usually referred to as the 

generalized Maxwell model (illustrated in Fig. 3-4) and provides a generalized relaxation and creep 

response.
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Fung (1993) introduced the QLVH model with the assumption that stress depends linearly on the 

superposed time history of a related non-linear response. The stress response is evaluated by 

convolving a normalized relaxation function G(t) with the derivative of an elastic response function Se:

S( t)=∫
0

t

G (t−s)(
d Se

d s
)d s (3–13)

where Se is the instantaneous second Piola-Kirchhof stress tensor and can be seen as an equivalent 

elastic stress; t is time, and s is a dummy variable. G(t) for the generalized Maxwell model is defined 

by a Prony series. Depending on whether Se represents the instantaneous or long-term elastic response, 

G(t) is given by either

 G(t )=1−∑
i=1

N

gi(1−exp(−t / τi)) (3–14)

or 

G(t)=1+∑
i=1

N

g iexp (−t / τ i) , (3–15)

respectively. In both equations, gi (relaxation coefficients) and τi (time constants) are material 

parameters, and N is the number of exponential terms.
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3.3.2.4 Viscoelasticity and non-linearity in the TM

The TM has a non-uniform thickness and multiple layers of soft tissues and exhibits a non-linear stress-

strain relationship and strain-rate-dependent behaviour. 

In the literature, various measurements of the mechanical properties of the TM have been reported. 

Békésy (1960) measured the Young’s modulus (i.e., the elastic modulus) of the human TM to be 20 

MPa using a bending test on a rectangular strip of TM modelled as a quasi-static beam. Kirikae (1960) 

calculated the Young’s modulus of the human TM to be 40 MPa based on a dynamic test on a strip of 

fresh TM. Decraemer et al. (1980) performed a uniaxial tension test on strips of human TM and 

reported a Young’s modulus of 23 MPa. Fay et al. (2005) applied several methods to estimate the 

material properties of the cat and human TM. First, they used a constitutive model based on known 

stiffness values of collagen and on observed fibre densities. Then, they used composite laminate theory 

to reinterprete bending and tensile loading tests to find the range of elastic modulus for the fibre layers. 

Lastly, they employed a wave-number versus frequency relationship to represent the TM’s mechanical 

structure. From these three methods, they reported the Young’s moduli to be between 0.1 and 0.3 GPa 

for human TM and between 0.1 and 0.4 GPa for cat TM. Their reported values were much higher than 

previous estimates because they had used a much smaller thickness of the TM that corresponded to 

only the fibre layers. 

In normal hearing (i.e., under low frequencies and low sound pressures), the middle ear behaves 

linearly, but it becomes non-linear in response to high pressures (i.e., to blast and explosions and in 

tympanometry). Under these conditions, the soft tissue in the middle ear shows time-dependent 

behaviour. Fung (1993) discussed common features of soft tissue, including having a hysteresis loop in 

cyclic loading and unloading, and preconditioning in repeated cycles. Hysteresis is a dynamic 

phenomenon of soft tissue; the stress-strain curve in the unloading process is different from that in the 
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loading process. Preconditioning refers to the change in stress-strain curves in successive loading and 

unloading cycles before the material reaches a steady state after a few cycles. Middle-ear soft tissue 

also exhibits these phenomena. Cheng et al. (2007a) conducted tensile tests on strips of fresh human 

TMs to measure their viscoelastic properties. They performed uniaxial tensile, stress relaxation, and 

failure tests under quasi-static loading conditions and reported Young’s moduli (tangent moduli) 

between 26 and 38 MPa. Preconditioning was observed during successive loading and unloading (see 

Fig. 3-5). Hysteresis was demonstrated by the non-zero area between the loading and unloading curve 

within one cycle (see Fig. 3-5c). 

The studies mentioned above assumed the TM modulus to be uniform over the area and thickness of

the sample. However, the TM has an inhomogeneous and anisotropic structure, and the measured 

modulus can differ significantly when the sample is obtained at different locations on the TM. Local 

measurements, such as nanoindentation, can characterize the TM modulus at different locations and can

be used to map the entire TM surface. Huang et al. (2008) established a nanoindentation method to 

measure both in-plane and through-thickness viscoelastic properties of the posterior and anterior 

portions of the human TM. They reported the through-thickness Young’s modulus to be between 6.2 

and 6.8 MPa at steady state and estimated the in-plane Young’s modulus to be between 17.4 and 19.0 

MPa using a generalized Maxwell model (section 3.3.2.3). The in-plane Young’s moduli were similar 
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Figure 3-5: Cyclic loading of three TM specimens (a, b and c). Differences between the loading and 
unloading curves demonstrate hysteresis. Changes in the areas between the curves from cycle to cycle 
demonstrate preconditioning (Cheng et al., 2007a).



to the value of 20 MPa obtained by Békésy (1960). Daphalapurker et al. (2009) used the same 

technique to measure the Young’s moduli of the human TM in four quadrants for both in-plane and 

through-thickness directions. They obtained Young’s moduli of 37.8 MPa and 25.73 MPa in two 

different human TM samples, which are close to the value (40 MPa) reported by Kirikae (1960) and the

value (20 MPa) reported by Békésy (1960), respectively.

Aernouts and Dirckx (2012a) performed an in situ sinusoidal indentation test on gerbil TM and 

obtained Young’s moduli between 71 and 106 MPa at an indentation frequency of 0.2 Hz. In a later 

study (Aernouts and Dirckx, 2012b), they performed step indentation measurements to characterize the 

viscoelastic properties of the gerbil TM. The obtained data were fitted to a Maxwell model. Later, both 

types of indentation tests were used to characterize the human TM and resulted in Young’s moduli of 

2.1 to 4.4 MPa and viscoelastic responses (Aernouts et al., 2012). All of the above measurements were 

obtained at low strain rates.

Luo et al. (2009a, 2009b) used a split-Hopkinson pressure bar to measure the strain-rate-dependent 

behaviour of the normal and diseased human TM at higher strain rates, from 300 to 2000 s−1 in the 

radial and circumferential directions. They reported Young’s moduli of 45.2 to 58.9 MPa in the radial 

direction and 34.1 to 56.8 MPa in the circumferential direction and concluded that Young’s modulus is 

strain-rate dependent at high strain rates. Luo et al. (2015) measured the mechanical properties of 

human TM after exposure to blast waves at high strain rates. The measured Young’s moduli were 

compared to the values they obtained earlier with the intact human TM (Luo et al., 2009a).

Many studies have measured TM properties under high pressures in terms of blast, but these 

measurements are not relevant to high quasi-static pressures.

Few measurements have been reported for the material properties of the PF. Lim (1968) described 

the human PF as a continuation of the ear-canal skin, so using the Young’s modulus of skin for the PF 
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may be appropriate. Agache et al. (1980) estimated the average Young’s modulus of human forearm 

skin to be 0.42 MPa in younger subjects and 0.85 MPa in subjects older than thirty years of age. 

The ligaments and other soft tissues in the middle ear can also be expected to exhibit viscoelastic 

behaviour. Gan’s group conducted several studies on different middle-ear soft tissues and on the ISJ 

using a micro-material testing system (Cheng and Gan, 2007, 2008a, 2008b; Gan et al., 2011; Zhang 

and Gan, 2011). The results show that the middle-ear ligaments, tendons and joints are composed of 

viscoelastic materials with stress relaxation and hysteresis behaviour.

3.3.3 Finite-element models of the ear

A lumped-parameter model was the first mathematical model of the middle ear. In such a model, each 

middle-ear component is lumped as an equivalent electrical circuit element (e.g., Zwislocki, 1957). 

Lumped-parameter models ignore the spatial extents of their components. To address this problem, the 

development of analytical (e.g., Wada and Kobayashi, 1990) and semi-analytical models emerged 

(Rabbitt and Holmes, 1986). However, the middle ear is a complicated system containing many 

interconnected, highly irregular, asymmetrical and non-uniform parts. FE modelling offers the best 

support to understand such a complex system quantitatively. For a complete review of different 

approaches to modelling the middle ear, refer to Funnell et al. (2017).

3.3.3.1 Overview of finite-element models of the ear

Funnell and Laszlo (1978) introduced the use of the FE method for the study of the ear. They studied

the low-frequency response of the cat TM and developed the first three-dimensional FE model of the 

TM. In the absence of quantitative shape data, circular arcs were used to represent the curvature of the 

TM. They assumed a fixed axis of rotation running from the anterior mallear process to the posterior 

incudal process. This model was extended to higher frequencies by Funnell (1983), investigating the 

undamped natural frequencies of the TM. Funnell et al. (1987) added the effect of damping on the TM 
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model. The damping was modelled using mass-proportional Rayleigh damping. The simulation results 

matched quite well with laser interferometric point measurements on the cat TM (Decraemer et al., 

1989). Wada et al. (1992) presented the first three-dimensional FEM of the human middle ear, 

including the TM and ossicles. They also assumed a fixed axis of rotation, as had been done by Funnell

and Laszlo (1978). The model’s low-frequency response (below 3 kHz) was comparable to 

experimental data obtained by time-averaged holography (Tonndorf and Khanna, 1972). An “elastic” 

boundary condition with linear and torsional springs on the TM annulus, instead of a “fully clamped” 

condition, was found to produce simulation results closer to experimental data.

The mechanical behaviour of the TM relies heavily on its shape, so reconstructing the realistic 

geometry of the TM is essential for obtaining a good model. Different imaging techniques have been 

used to improve the geometrical characteristics of middle-ear models. Funnell and Decraemer (1996) 

used phase-shift moiré topography to study the shape and deformation of the TM, combined with FE 

modelling. Daniel et al. (2001) also used moiré shape measurements for the TM, and for the ossicles 

and ligaments they used histological sections and high-resolution magnetic-resonance microscopy 

(MRM) data. Sun et al. (2002) used a series of histological images to reconstruct the TM, ossicles, 

attached ligaments and muscle tendons but could not distinguish between PF and PT. Decraemer et al. 

(2003) reconstructed the TM and ossicles using x-ray micro-computed tomography (microCT) imaging

data. MicroCT imaging techniques allowed a clear observation of TM shape and orientation but could 

not provide thickness information. Kuypers et al. (2006, 2005) used confocal microscopy to obtain full-

field high-resolution thickness measurements of the TM for human and gerbil, respectively. Elkhouri et

al. (2006) used a combination of histological sections, microCT and MRM to reconstruct accurate 

geometries of a gerbil middle ear.
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Earlier models assumed linearity and often assumed rigid connections between the ossicles because 

of the difficulty of creating the models and a lack of experimental data for comparison. With advances 

in computer hardware and computational power, recent models can process more elements in a shorter 

simulation time. 

A few non-linear FE models of the middle ear emerged, aiming to investigate the effects on the outer

and middle ear of the large static pressures that occur during tympanometry or in otitis media. Ladak et 

al. (2006) made the first non-linear FE model of the middle ear, investigating non-linear deformation of

the cat TM considering only geometric non-linearity. They investigated the effects of large static 

pressures on the displacement of the TM. Their numerical results agreed with experimental shape and 

displacement measurements made using phase-shift shadow moiré topography (Ladak et al., 2004). 

They reported that the location of the maximum displacement changes when the pressures are altered, 

and concluded that geometry alone might be sufficient when simulating the TM response to high 

pressures.

Qi et al. (2006) developed the first non-linear FE model of a human newborn ear canal and 

examined soft-tissue deformation in response to high static pressures. Their model included both 

geometric and material non-linearities and used a hyperelastic constitutive law. In a later model, the 

same method was used to model the response of the newborn middle ear to high pressures (Qi et al., 

2008). Wang et al. (2007) combined static hyperelastic material properties and geometric non-

linearities in their human middle-ear model and simulated the dynamic behaviour of the middle ear in 

the presence of static pressures. Their analysis indicated that the reduced vibration amplitudes of the 

TM and footplate under positive static pressures was mainly due to material non-linearity, while the 

reduced vibrations under negative pressures was caused by both geometrical and material non-

linearities. Motallebzadeh et al. (2013) modelled the TM as non-linear and viscoelastic. The simulation 
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results were able to match both the loading and unloading curves with the TM deformation data 

reported in Cheng et al. (2007b). Choukir (2017) developed the first non-linear middle-ear model that 

could simulate responses to an acoustic stimulus in the presence of large quasi-static pressures. She 

simulated the response of the gerbil TM to a 226-Hz pure tone and to a wideband chirp. A fixed axis of 

rotation was assumed, and the ossicles were simplified as a rigid wedge. The model response to 

triangular pressure sweeps was validated against experimental data from rabbits (Dirckx et al., 2006; 

Salih et al., 2016). The present work is an extension of Choukir’s model.

Most FE models of the middle ear have been developed for humans. However, animal models are 

also used in middle-ear modelling because they can be validated with better data obtained in vivo. 

Models have been developed for various species, including cats (Funnell and Laszlo, 1978; Ladak et 

al., 2006), gerbils (Elkhouri et al., 2006; Maftoon et al., 2015), rabbits (Aernouts et al., 2010) and 

chinchillas (Ravicz and Rosowski, 2013; Wang and Gan, 2016).

3.4 Experimental measurements
There have been various experimental measurements made to study middle-ear mechanics in multiple 

species, both in vivo and post mortem. This section provides a review of previous studies relevant to 

our research. Section 3.4.1 contains a summary of non-gerbil studies, with an emphasis on human-

related studies. Section 3.4.2 reviews experimental studies of unpressurized gerbil TM vibrations. 

Finally, section 3.4.3 presents experimental measurements made on pressurized TMs, using both 

acoustic stimuli and quasi-static pressures. 

3.4.1 Unpressurized non-gerbil tympanic-membrane vibrations

Funnell and Laszlo (1982) reviewed early experimental measurements of TM vibrations. In this 

section, we highlight some of the critical studies mentioned in that review and then present more recent

studies.
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The earliest observations on TM vibrations were done with a magnifying glass, a mirror and 

mechanical probes. The first observations of TM vibration patterns using laser holography were made 

by Tonndorf and Khanna (1972) and Khanna and Tonndorf (1972). They used time-averaged 

holography at frequencies up to 6 kHz. Their method was much more sensitive than earlier methods, 

allowing lower sound-pressure levels. In both cat and human, they observed maximum displacements 

in the posterior region of the PT, and the spatial pattern remained simple up to around 2 kHz. For 

frequencies beyond 2.5 kHz, the simple low-frequency vibration pattern began to break up, and 

vibration patterns became more complex. Time-averaged, phase-modulated speckle-pattern holography

was used by Wada et al. (2002) to study guinea-pig TM vibrations up to 4 kHz. Sinusoidal phase 

modulation (SPM) allowed measurement of both the amplitude and the phase of the motion of the 

entire TM. They again reported that complex vibration patterns appeared at frequencies above 2.5 kHz. 

Although time-averaged holographic and speckle-pattern measurements offer full-field observations 

of the TM surface motion in response to sound stimuli, point-by-point laser interferometry provides 

more precise measurements of the magnitude and phase of the TM motion. Tonndorf and Khanna 

(1968) developed a laser interferometer and observed the vibration of the cat TM at the umbo. 

Konrádsson et al. (1987) studied the vibration of the human TM using scanning laser Doppler 

vibrometry (LDV) and reported data at 578, 3,107, and 3,113 Hz that were consistent with earlier 

studies. Decraemer et al. (1989) utilized a homodyne laser interferometer and reported the phase and 

magnitude for a wide frequency range (130 to 20 kHz) for a few points on the cat TM and manubrium. 

They reported that all points on the PT moved almost in phase for frequencies up to 1 kHz, but the 

phase differences increased beyond 1 kHz. For frequencies above 5 kHz, each point moves very 

differently.
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Using a computer-assisted fibre-optic-based opto-electric holographic (OEH) interferometer system,

Rosowski et al. (2009) studied TM vibrations up to over 20 kHz in human, cat, and chinchilla. They 

found increasingly complex vibration patterns for frequencies higher than 0.8 kHz for chinchilla and 

2 kHz for cat and human. They observed ring-like patterns in chinchilla for frequencies higher than 

1 kHz and in cat and human for frequencies higher than 4 kHz. The same group later used stroboscopic 

holographic interferometry to study the amplitude and phase at a few frequencies in human temporal 

bones. They applied sound stimuli of 0.5, 1, 4, and 8 kHz and described TM motion as a combination 

of standing waves and “some smaller travelling-wave like components” (Cheng et al., 2010). 

3.4.2 Unpressurized tympanic-membrane vibrations in gerbils

Admittance measurements and LDV measurements have been used to study the gerbil middle and 

external ear. Some studies examined the input admittance of the gerbil ear in response to acoustic 

stimuli at different frequencies as an indirect measure of the TM vibration (e.g., Ravicz et al., 1992; 

Ravicz and Rosowski, 1997; Teoh et al., 1997). Although there have been many experimental studies of

the gerbil middle ear, the only measurements of the vibration patterns of the gerbil TM have been those

made at a few points on the PT near the umbo by de La Rochefoucauld and Olson (2010) and studies in

our laboratory (e.g., Ellaham et al., 2007; Nambiar, 2010; Maftoon et al., 2013, 2014). Ellaham et al. 

(2007) reported post mortem LDV measurements at multiple points on the TM over a frequency range 

of 0.15 to 10 kHz. Single-point LDV was used to record measurements on glass-coated plastic 

microbeads at five locations on the TM. Using a similar protocol, Nambiar (2010) performed post 

mortem studies on gerbil TMs but with better hydration techniques as an attempt to reduce the post 

mortem effects of drying. Maftoon et al. (2013, 2014) investigated the in vivo vibrations of the gerbil 

TM using the same protocol. They presented vibration data for two PF conditions: naturally flat, and 

retracted into the middle-ear cavity. At low frequencies, they reported a shallow minimum and a 
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shallow maximum in the magnitude plot of the manubrial frequency response, which was explained as 

the anti-resonance of the PF when in its flat condition. On the other hand, the manubrial response with 

a retracted PF showed a decreased magnitude and no anti-resonance feature. At higher frequencies, the 

frequency-response irregularities occur for both PT and manubrium, but are greater for the PT.

3.4.3 Pressurized tympanic-membrane vibrations

3.4.3.1 Tympanometric measurements

Some reports have shown that the direction of the pressure sweep affects admittance measurements 

(e.g., Decraemer et al., 1984; Kobayashi et al., 1985; Shanks and Wilson, 1986). In bidirectional 

tympanometry, two different peak pressures are found corresponding to the negative and positive 

directions of pressure change. The peak pressure difference (PPD) defines the difference between those

two peaks. Early studies reported that the PPD was dependent on the pressurization rate (e.g., Feldman 

et al., 1984; Gaihede, 1996). However, using a modern high-speed tympanometer, Therkildsen and 

Gaihede (2005) reported a consistent PPD of 120 Pa for four different pressurization rates (50, 100, 200

and 400 daPa/s). They attributed the presence of PPD to hysteresis and associated the early 

observations of rate dependence to phase delays in the older instruments.

3.4.3.2 Static pressure deformations

To better understand the effects of tympanometry-like quasi-static pressures, the Antwerp group 

measured the deformation of the gerbil TM under quasi-static pressures in several studies. Von Unge et 

al. (1993) studied gerbil PT deformation under static pressure using real-time differential moiré 

topography. They reported hysteresis between the loading and unloading phases and convergence to a 

preconditioned state after the second cycle. They observed two areas to have large deformation, one in 

the anterior region of the PT and the other one in the posterior region. As the static pressure was 

increased, the locations of the areas remained constant. Dirckx et al. (1998) measured volume 

40



displacements of the gerbil PF in response to middle-ear pressures between −2 kPa and +2 kPa. They 

reported that the displacement of the PF was highly non-linear and did not distinctly increase beyond 

800 Pa. Dirckx and Decraemer (2001) studied changes in gerbil TM motion under quasi-static pressure 

when middle-ear components were removed in sequence. They concluded that the cochlea, stapes and 

tensor tympani have little to no effect on the TM deformation under static pressure, but the TM 

deformation is strongly influenced by the ossicles for pressures between 0 and 400 Pa. They also 

reported that damage to the posterior incudal ligament (possibly induced by exposing the IMJ) changed

the TM response to the static pressure. Disruption of the anterior mallear bony attachment also affected 

the shape of the TM at 0 Pa.

3.4.3.3 Laser Doppler vibrometry measurements

Lee and Rosowski (2001) used LDV to analyze the acoustic behaviour of the gerbil PT and PF in 

response to middle-ear static pressure sweeps that mimic the pressure changes in clinical 

tympanometry. They found that a non-zero middle-ear static pressure generally reduces the velocity 

magnitude of both the PT and PF in response to sound stimuli. Negative middle-ear pressure reduces 

the velocity magnitude more than positive middle-ear pressure does. They also reported the frequency 

dependence of the velocity measurements; hysteresis between pressure sweeps in different directions; 

and asymmetry in the velocity measurements obtained when applying positive and negative middle-ear 

pressures. Such asymmetry between the effects of negative and positive middle-ear pressures agreed 

with other studies (e.g., Dirckx and Decraemer, 2001; Dirckx et al., 2006).

In our group, Shapiro (2014) performed preliminary post mortem LDV measurements under quasi-

static pressure and measured displacements at multiple points on the gerbil TM in response to a chirp 

over the range of 0.2 to 11 kHz. Using a similar protocol, Kose et al. (2020) reported in vivo vibration 

responses in 11 gerbils under quasi-static pressures. Cycles of static pressure steps over a range of 
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±2500 Pa in 500-Pa increments were applied to the TM. The pressure was held for 10 seconds at each 

step, and successive 128-ms chirps from 0.5 to 10 kHz were applied as the acoustic stimulus. They 

observed that, with increasing static pressure (loading), the magnitude of the frequency response at the 

umbo decreased, and the resonance frequency shifted towards higher frequencies. They generally 

observed a somewhat larger magnitude of vibration in the loading phase as compared to the unloading 

phase, which indicated hysteresis between loading and unloading. We report a comparison of our 

model response with the pressurized vibration data of Kose et al. in chapter 5.

3.5 Incudostapedial-joint measurements and modelling
The computational cost trade-off in FE modelling requires deliberation. Researchers often take out or 

simplify geometrically complicated structures like the ossicular chain to reduce the computational cost 

of their FE models. However, accurate geometry is essential for simulating sound transmission. Under 

low sound pressures, the middle ear is considered to function as a linear impedance transformer. Under 

high-intensity sounds, however, the ossicular joints may contribute to additional roles for the middle 

ear. Of the two middle-ear joints, the IMJ is larger and is thus visualized more clearly than the ISJ 

when processed with the same imaging modality. The IMJ is also believed to have greater ability to 

suppress the sound wave peak amplitude, while the ISJ is believed to shift the peak amplitude (Gottlieb

et al., 2018). Our group had conducted several studies to model the mechanical behaviours of the ISJ, 

and therefore, in this work, we chose to focus on the ISJ structure. The function of the IMJ is beyond 

the scope of this work, so only FE models related to the ISJ will be discussed below.

Wang and Gan (2016) obtained the first experimental measurements on the mechanical properties of

the human ISJ and built an FE model to quantitatively examine the effects of the ISJ on middle ear 

sound transmission. They performed tension and compression tests, stress relaxation tests, and failure 
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tests on eight human ISJ specimens. They concluded that the frequency-dependent viscoelastic 

behaviour of the ISJ protects the cochlea from high-intensity sounds.

There have been a few modelling studies of the mechanical behaviour of the ISJ. Ghosh and Funnell

(1995) developed a simple FE model of the cat ear that included a single-block representation of the 

ISJ and investigated the effects of ISJ flexibility. Funnell et al. (2005) used a pedicle-and-joint model to

represent the ISJ. The ISJ block had three layers: the lenticular plate, the articulation, and the head of 

the stapes; together, they were enclosed by a ligamentous joint-capsule structure. Based on examination

of histological images of the cat middle-ear, Funnell et al. (2005) assumed the cartilage layers on the 

two sides of the joint to be in direct contact during acoustic vibration and consequently modelled the 

joint articulation as a single block of cartilage with a single Young’s modulus value. Their modelling 

results suggested that the ISJ makes a significant contribution to the flexibility of the coupling between 

the incus and stapes. In this work, we used a similar approach to represent the ISJ.

For moderate sound pressures, FE modelling of the ossicular joints as simple blocks of viscoelastic 

material has been shown to result in reasonable agreement with experimental data, particularly at low 

frequencies (e.g., Maftoon et al., 2015; O’Connor et al., 2017). Even for higher frequencies, de Greef et

al. (2017) reported that a solid ISJ model and a fluid-interior ISJ model produced similar responses. 

However, they did comment that the quality of the microCT data certainly limited the structural detail 

they had for the joint, and that the characteristics of the interior material may not be as significant 

without further details of the joint geometry. Gottlieb et al. (2018) performed a joint-fusing experiment 

on human temporal bones to examine the role of the two ossicular joints in sound transmission. They 

reported three main effects of joint fusion: reduction in peak umbo velocity, elimination of the delay 

between malleus head and incus body, and increase and shift of the peak amplitude of the stapes 

velocity. The 3D motion of the ossicular chain was also different before and after joint fusion.
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Several FE models of human and gerbil ISJs have been developed by our group in collaboration 

with observations by Decraemer’s group. They observed non-linearity and strong asymmetry in 

experimental quasi-static tension and compression tests and developed FE models to reproduce the 

ossicular chain motion under such conditions. Soleimani et al. (2018) developed a simplified analytical 

model of the ISJ, modelling the joint capsule as a cylindrical membrane, and studied the mechanical 

behaviour of the joint. They concluded that the non-linear asymmetric behaviour might be due to 

mechanical instability of the joint capsule that is governed mainly by the joint-capsule length and the 

amount of synovial fluid in the joint. Soleimani et al. (2020) studied the effect of synovial membrane 

curvature and compared the model behaviour to the measurements of Zhang and Gan (2011). They 

replicated the uniaxial tension and compression tests done experimentally on the human ISJ and found 

that the geometry of the joint has a significant effect on its function.
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Chapter 4: Methods

4.1 Introduction
In this chapter, we present details of our FE model. In section 4.2, we describe the geometry and mesh 

of the model. In section 4.3, we explain how the boundary conditions are defined. In section 4.4, we 

report the material properties of the model components. In section 4.5, we present the rationale for the 

loading conditions and the time-step analysis.

4.2 Geometry, model components and mesh
The 3D geometry of the model is an update of the geometry used by Choukir (2017), which was a 

simplification of the geometry used by Maftoon et al. (2015). A dynamic non-linear viscoelastic 

analysis was performed by Choukir, and the model’s responses to long quasi-static pressure sweeps, 

ramps and sinusoids in combination with acoustic stimuli were evaluated. For slowly varying static 

pressures waves, it is necessary to calculate 2 to 3 minutes of simulated response, requiring millions of 

time steps. Considering that the acoustic chirps have frequencies up to 10 kHz, the time step for 

simulations that have both the quasi-static pressure and the acoustic stimuli should be on the order of 

20 µs to model the response to high frequencies adequately. Taking into account the small time step 

needed and the long duration of the simulation, Choukir decided to simplify Maftoon’s model for 

preliminary studies of the model’s response under the conditions of tympanometry. The ossicles and 

ligaments were replaced by a wedge and block structure. Maftoon’s mesh was simplified from 50000 

second-order solid elements to 18000 second-order solid elements in Choukir’s mesh. However, this 

oversimplification of the ossicles may result in missing details in the middle ear response. As 

mentioned in section 3.5, studies have suggested that the contributions of the ISJ to the middle-ear 

response to high quasi-static pressures and high-frequency sound pressures should be examined. 
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Therefore, we decided to add the ISJ, the stapes and their surrounding structures to Choukir’s model. 

We also added components representing ligaments to the model to reflect more realistic boundary 

conditions of the middle ear.

The complete middle-ear model of Maftoon et al. (2015) was segmented from a microCT data set, 

supported by histological images. When first developing the model geometry, Elkhouri et al. (2006) 

and Maftoon et al. (2015) used in-house pre-processing software (i.e., Fie, Tr3 and Fad) to perform 

image segmentation and surface tesselation. The open-source software Gmsh (Geuzaine and Remacle, 

2009) was then used for volume mesh generation and mesh optimization. Choukir (2017) replaced the 

middle-ear ossicles with a wedge defining a fixed axis of rotation and an equivalent ossicular mass. A 

block structure was added to provide an equivalent ossicular stiffness. Fad was used by Choukir to 

export the 3D mesh to text files that could then be imported into open-source FE pre-processing 

software, Salome-Meca (2016) and Preview (v1.20.4). Choukir used two FE solvers (Code_Aster v12.7

and FEBio v2.6.4) for model verification. These two FE packages are powerful and well-supported. 

Our group has developed FE models with them in many studies (Code_Aster: e.g., Maftoon et al., 

2015; Motallebzadeh et al., 2017b; FEBio: e.g., Motallebzadeh et al., 2013; Soleimani et al., 2020). 

Choukir verified that both solvers performed well in simulating models with dynamics, non-linearity 

and viscoelasticity.

The model we present here includes, in addition to the PT, PF and manubrium, several structures 

replacing Choukir’s wedge and block: two wedge structures representing the malleus and part of the 

incus; the pedicle; the lenticular plate; the ISJ; and a block representation of the stapes (see Fig. 4-1). 

The model also includes discrete elements, including springs that represent the anterior mallear 

process, the posterior incudal ligament, and the stapedial annular ligament; and dashpots that account 

for the cochlear load. Geometry modification and component insertion were performed in Salome-
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Meca (2017). Fad was also used to convert the 3D mesh of Code_Aster to text files that can be read by 

FEBio. PreView and MATLAB were used to edit some of the boundary conditions and material 

properties. Code_Aster (v14) and FEBio (v2.9.1) were used as the solvers. Code_Aster has both a 

linear solver and a non-linear solver, and we used its linear solver (operator DYNA_LINE_TRAN). 

FEBio only has a non-linear solver but can be used to simulate model responses to small amplitude 

inputs in the linear regime.

We used two FE solvers but with different models and for different purposes. We observed, as had 

Choukir, that FEBio’s parallelism can greatly reduce the computation time for the non-linear analysis. 

Therefore, we decided to only use Code_Aster for linear analysis and for adjusting baseline model 

parameters. Upon verification of the linear model in Code_Aster by comparison with Maftoon (2015), 

we then converted the model to FEBio and verified the FEBio model by comparing its response in the 

linear regime to that of the Code_Aster model. (This is discussed further in section 4.4.) After that, we 

performed simulation of the model’s response to quasi-static pressures using FEBio. 
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Figure 4-1: FE model of gerbil middle ear. A: FE model in PreView. B: FE model in Salome-Meca.



As discussed in section 3.3.2.4, the TM is an inhomogeneous structure composed of multiple layers 

and with anisotropy in the radial, circumferential and through-thickness directions. However, in this 

study, we assumed the TM to be homogeneous and isotropic. This has been effective in many other 

middle-ear modelling studies, including Maftoon et al. (2015) and Choukir (2017).

In the model of Maftoon et al. (2015), the TM was modelled using Code_Aster’s seven-node 

second-order TRIA7 COQUE_3D shell elements. The PT had a variable thickness calculated using an 

interpolation algorithm developed to reconstruct a thickness map based on the measurements of 

Kuypers et al. (2005), who reported thicknesses along four lines across the PT and eight lines across 

the PF in the gerbil, as shown in Fig. 4-2. In Choukir’s model, the TM thickness was taken to be the 

mean of what was used in the model of Maftoon et al., namely, constant thicknesses of 15.78 um for 

the PT and 23.5 µm for the PF. These mean TM thickness values are similar to the measurements 

obtained in gerbils by Teoh (1997) (i.e., 19.1 ± 3.2 µm for the PT, and 32.2 ± 12.7 µm for the PF). The 

manubrium was modelled with a larger thickness, 80 µm, to ensure its rigidity under both quasi-static 

and acoustic pressures.

Unfortunately, the shell elements in Code_Aster do not support material non-linearity. Moreover, 

testing shell elements in FEBio led to abnormal behaviour in dynamic analysis. On the other hand, 

solid elements in both FEBio and Code_Aster do support material non-linearity and agree well with 

analytical solutions. Choukir (2017) first converted the second-order shell elements in the model of 

Maftoon et al. to first-order shell elements and then extruded them along the element normals using 

Code_Aster’s COQU_VOLU subfunction in the CREA_MAILLAGE module. The PT was extruded as 

one layer, the PF as two layers and the manubrium as three layers. Higher-order elements are less stiff 

than first-order elements and therefore give better displacement predictions and have better 

convergence rates. The model of the TM and manubrium was made with ten-node second-order 
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tetrahedral solid element in both FEBio (tet10) and Code_Aster (TETRA10). Choukir tested the effect 

of the number of layers in the PT, PF and manubrium and found that with a maximum of 4 layers for 

the PT, 5 layers for the PF and 6 layers for the manubrium, all of the configurations produced similar 

results. Choukir’s model of the TM and manubrium were adopted for our model.

In the model of Choukir (2017), the effective load exerted on the eardrum by the ossicular chain was

modelled by stiff tetrahedral elements (i.e., the “wedge”). A fixed axis of rotation was defined by two 

points corresponding to the most anterior point on the anterior mallear process and the most posterior 

point on the posterior incudal process. The coordinates of these two points were taken from the model 

of Maftoon et al. (2015). Inspired by Funnell et al. (2005), the block structure in the Choukir model that

represented the stiffening effect of the middle-ear ligaments was removed and replaced by new 

structures explicitly representing the pedicle, the lenticular plate, the ISJ and the stapes (see Fig. 4-3). 

Crude hexahedral representations were created by connecting nodes extracted from the model of 

Maftoon et al. for each of the aforementioned structures. The stapes head, crura and footplate are all 
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Figure 4-2: Contour plots of the thickness distribution of a gerbil TM. A: PT; B: PF (Kuypers et 
al., 2005).



combined into a single hexahedron. The hexahedron between the pedicle structure and the original 

wedge in the Choukir model was reshaped as a second wedge (wedge 2) to facilitate its attachment to 

the Choukir model (see Fig. 4-1). We refer to the wedge adopted from Choukir’s model as wedge 1 to 

differentiate between the two structures. Both wedges are given the same material properties.

To model the effects of the anterior mallear process and the posterior incudal ligament, two sets of 

springs extending in all three translational directions were placed at each end of the wedge (see 

Fig. 4-4). The medial two sets are assumed to be rigid (i.e., having very high spring constants, 

equivalent to clamping the nodes that they are attached to) while the lateral two sets provide the 

effective ossicular stiffness. To model the stapedial annular ligament, a set of springs is placed at each 

of the four corner nodes on the top (medial) surface of the stapes structure to represent the stapedial 

annular ligament. To model the cochlear load, four dashpots are placed at the same four nodes to apply 

viscous damping to the model. A similar approach to the load on the stapes was used by Maftoon et al. 

(2015). To ensure consistency in node numbering, we converted the model in Salome-Meca’s mesh 

module from quadratic to linear before updating the geometry. The modified middle-ear model was 

50

Figure 4-3: A zoomed-in view of the model, showing the wedge 1, the wedge 2, the pedicle, the 
lenticular plate, the ISJ, the stapes and the springs and dashpots.



then converted into a text-only mesh file with Salome-Meca’s mesh converter in ASTK. Following 

that, the text file was imported into Fad and exported to a mesh in the FEBio format. We then used the 

convert function in PreView to transform the FEBio mesh from linear to quadratic. 

The original mesh of the middle-ear model (including the PT, PF, manubrium and wedge) in 

Choukir’s model consisted of about 14600 tetrahedral elements and about 28000 nodes. Her model was

a simplification of the model of Maftoon et al. (2015), which had around 80000 nodes. Mesh 

convergence was performed by Choukir using Code_Aster’s Homard utility to refine the mesh by 

dividing each tetrahedral element into eight smaller tetrahedral elements. She performed two iterations 
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Figure 4-4: Illustration of the boundary conditions at the wedge and the springs. The box shows a 
close-up view of the two sets of springs at one end of wedge 1.



of refinement to the mesh and compared the umbo displacement magnitude in response to sound 

pressures for each refinement. The first refined mesh resulted in an increase in the displacement 

magnitude at the umbo of less than 1.4% for frequencies below 200 Hz, less than 3% for frequencies 

between 200 and 2000 Hz, and less than 5.3% for higher frequencies. The original mesh was chosen for

further study. The other structures were made very coarse because their shape was not intended to be 

realistic and (except for the ISJ block) they were effectively rigid. Since we adopted the complete mesh

of the TM from Choukir’s model, we also chose to perform the subsequent analyses with the original 

mesh.

Simulations using the non-linear solver in FEBio are computationally costly and were thus mostly 

done on the supercomputer Beluga of Compute Canada. Beluga is a cluster of Intel Gold 6148 Skylake 

2.4-GHz processors connected by a Mellanox Infiniband EDR network. Such simulations were 

performed using six processors to take advantage of FEBio’s parallel solver using OpenMP and we 

requested 10 GB of RAM. Instead of showing improvements in run time, an increase in the number of 

processors beyond six resulted in decreased performance because the software wasted time in data 

allocation. A simulation for one set of parameters for obtaining 0.153 s of model response to a 

combination of acoustic stimulus and static pressure lasted about 32 hours. Simulations of a low-

amplitude acoustic input using the linear solver in Code_Aster and the non-linear solver in FEBio were 

performed using one processor and 4 GB of RAM, and took about 1.5 hours with Code_Aster’s linear 

solver and 6 to 7 hours with FEBio’s non-linear solver.

4.3 Boundary conditions
To model the constraints provided by the ligaments in the middle ear, we applied several boundary 

conditions to the model. The PT and the PF were considered to be fully clamped around their 
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peripheries. This choice of considering the TM to be firmly anchored to the bony tympanic ring around 

its entire circumference represents an approximation of the TM anatomy.

As mentioned in the previous section, we assumed a fixed axis of rotation between the two points 

defined by the most anterior node and the most posterior node (Fig. 4-4). The two ends of the inferior 

edge are fixed in space by the medial two sets of springs with very high spring constants (1000 N/m). 

The lateral two sets of springs provide finite ossicular stiffness and are given spring constants of 10 N/

m (both in Code_Aster and in FEBio).

The four sets of springs representing the stapedial annular ligament are connected to the stapes on 

one end and fixed in space in all three translational degrees of freedom on the other end. In the 

Code_Aster model, the spring constant was defined to be 52 N/m by matching the low-frequency 

magnitude at the umbo to that of the model of Maftoon et al. In the FEBio model, the spring constant 

was adjusted to 55 N/m. (This difference was presumably because damping was modelled differently in

Code_Aster and FEBio.)

4.4 Material properties
Because of the scarcity of data available for the material properties of the gerbil middle ear, all of the 

parameters describing the material properties of the components had to be estimated. Most of the 

parameters were adopted from the models of Maftoon et al. (2015) and Choukir (2017), and the rest 

were taken from the literature as mentioned below. To establish the baseline model in Code_Aster, we 

evaluated the dynamic response of our model to a unit-step sound pressure and compared the resulting 

frequency responses with those from the validated linear gerbil middle-ear model of Maftoon et al. 

(2015). That model was validated against experimental data obtained by the same author (Maftoon et 

al., 2014) and against those measured by other groups (Lee and Rosowski, 2001). After converting the 

model to FEBio (with the same geometry), we first adopted the viscoelastic material properties from 
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Choukir’s model and then adjusted them by comparing the model’s frequency responses (again based 

on a unit-step response) with those from our Code_Aster model. In the rest of this section, we report 

the material properties for both the Code_Aster model and the FEBio model. 

4.4.1 Tympanic membrane

4.4.1.1 Governing equations

As mentioned in section 3.3.2.3, we used a QLVH model similar to that of Choukir (2017) and 

Motallabzadeh (2013) and assumed linear viscosity and non-linear elasticity (hyperelasticity). The 

governing equation of the linear viscoelastic material property is given by equation 3-13, and the 

relaxation function is defined by equation 3-14 or 3-15, depending on whether the response is 

instantaneous or long-term. To model the material hyperelasticity, we chose to use the Mooney-Rivlin 

model, of which the strain-energy function is composed of deviatoric and volumetric energies (i.e., 

energy due to distortion and to change of volume, respectively) and is given by 

W =C10( Ī1−3)+C01( Ī 2−3)+W vol(J ) . (4-1)

C10 and C01 are material coefficients. Wvol(J) defines the volumetric change of the energy function in the

form of

W vol=κ( ln J )
2 . (4-2)

Wvol is assumed to be negligible in nearly incompressible tissue (e.g., Humphrey, 2003). The bulk 

modulus κ is set high enough to make Wvol very small. The terms I1 and I2 are the invariants of the 

deviatoric part of the right Cauchy-Green deformation tensor and are related to the strain invariants as 

follows: 

Ī 1=J
−2
3 I 1

Ī2=J
−4
3 I 2

. (4-3)
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Material properties for a hyperelastic material can be determined experimentally. The deviatoric 

properties can be determined by performing an unconfined tensile or compression test, and the 

volumetric part can be defined by performing a confined compression test. Under small strains, 

assuming incompressibility, the equivalent Young’s modulus is given (e.g., Hackett, 2015, chap. 4) by

E=6 (C10+C01) . (4-4)

The QLVH model is readily available in FEBio.

4.4.1.2 Hyperelastic parameters

As shown in section 3.3.2.3, there are two possibilities for characterizing the elastic part in equation 

3-13: the instantaneous response or the long-term response (equations 3-14 and 3-15, respectively). In 

those two limiting conditions, the viscosity of the material does not contribute to its response. 

However, it is not possible to directly measure either the instantaneous or the long-term response for 

practical reasons (Wu et al., 2003). For example, loading tests on the TM are not fast enough to provide

an instantaneous response and do not last long enough to provide a long-term response. Therefore, the 

viscosity of the material actually affects the shape of the stress-stretch curve. If the parameters obtained

from fitting the Mooney-Rivlin model to the experimental data were used as the instantaneous response

of the hyperelastic part of the QLVH model, the resultant stress-stretch curve would be lower than the 

experimental data. On the other hand, if the fitted hyperelastic parameters were used as the long-term 

response, then the resultant stress-stretch curve would be higher than the experimental data. In either 

case, the Mooney-Rivlin parameters must be adjusted to reproduce the experimental curves (e.g., 

Motallebzadeh et al., 2013). Choukir chose to take the elastic part of the model to be the instantaneous 

elastic response, and the Prony series of equation 3-15 was therefore used as the time-dependent part. 

Choukir (2017) obtained the parameters in Table 4-1 for her FEBio model by matching the 

responses at the umbo and at the centre of the PF with those from the model of Maftoon et al. (2015). 
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For the PT, these Mooney-Rivlin coefficients correspond to a small-displacement Young’s modulus 

(obtained from equation 4-4) of 9.9 MPa, very close to the 10 MPa used by Maftoon et al. (2015). 

Choukir found model responses to both acoustic pressures and quasi-static pressures to be insensitive to

different ratios of C10 to C01 as long as the sum was kept constant at 1.68 MPa. This is consistent with 

the result of Qi et al. (2008), who used the Mooney-Rivilin model for the soft tissue in a newborn 

middle-ear model. They also found the different ratios of C10 and C01 to have little effect on model 

displacements in response to static pressures of ±3 kPa. A 3:1 ratio of C10:C01 was adopted here, giving 

the values of C10 and C01 shown in Table 4-1. 

Table 4-1: Estimated parameters for the Mooney-Rivlin model

Estimated parameters

Component C10 (MPa) C01 (MPa) K (MPa)

PT 1.0708 0.6071 167.785

PF 0.0812 0.0406 12.18

The density of the PT was defined to be 1300 kg/m3, as in the model of Choukir. This value is 

beyond the range from the density of water (1000 kg/m3) to that of undehydrated collagen (1200 kg/

m3), as suggested in Funnell and Laszlo (1982). It was adopted by Choukir in order to match the 

resonance frequency obtained by Maftoon et al. (2015) at the umbo and at points on the anterior and 

posterior PT. Alternatively, we could have reduced the effective Young’s modulus by reducing the sum 

of the Mooney-Rivlin coefficients. In that case, we would have had to adjust the ossicular load to 

stiffen the response at the lower frequencies. For consistency we have used Choukir’s value.

The density of the PF was defined to be 1100 kg/m3. The Mooney-Rivlin coefficients were taken to 

be C10=0.0812 MPa and C01=0.0406 MPa, as in Choukir (2017), which correspond to a small-

displacement Young’s modulus of 0.74 MPa, compared to 2 MPa as used by Maftoon et al. (2015). The
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difference between the two Young’s moduli is attributed to the difference in boundary conditions 

between the two models. In this model and the model of Choukir, the PF boundary was fully clamped, 

while in the model of Maftoon it was simply supported. Choukir calculated that the change of the 

boundary condition from simply supported to fully clamped reduced the Young’s modulus by a factor 

of about 3.8. The Young’s modulus of 0.7 MPa used by Choukir is about a factor of 2.9 smaller than 

that used by Maftoon (2015).

The bulk modulus was taken to be 167.785 MPa and 12.18 MPa for the PT and the PF as in Choukir

(2017), respectively. The values were calculated with a Poisson’s ratio equal to 0.49. It was also 

confirmed that changing the bulk modulus by decreasing the Poison’s ratio to 0.45 did not have a 

noticeable effect on the model’s frequency response. 

4.4.1.3 Viscoelastic parameters

In wideband tympanometry and LDV experiments, the acoustic stimulus is usually within the range of 

0.2 to 10 kHz. The linear rate of change of the quasi-static pressure in tympanometry and in sweep 

pressurization experiments on the middle-ear vary from ±50 Pa/s to ±4000 Pa/s. In our study, we only 

examined the response of the middle ear to pressure rates of change from ±200 Pa/s to ±1500 Pa/s, 

which is equivalent to a frequency range from 20 mHz to 150 mHz. 

To cover the range from the ultra-low frequencies (20 mHz) of the quasi-static pressure variations to

the high frequencies (10 kHz) of the acoustic stimulus, for both the PT and PF, six time constants were 

predefined. (The number is limited to six by FEBio.) The inverse of each time constant corresponds to 

an angular frequency (because ωi=1/τi=2πfi) for which the damping represented by the coefficient (gi) is

maximum. A common practice is to take one time constant per decade in the time domain or in the 

frequency domain (e.g., Knauss and Zhao, 2007; Charlebois et al., 2013). Therefore, for the six time 

constants, we used constants ranging from 10 μs to 52 s that are approximately equally logarithmically 
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spaced to cover the frequency range of interest. In this case, the six time constants are about two 

decades apart from each other: τ1=10 μs, τ2=220 μs, τ3=5 ms, τ4=10 μs, τ5=2.3 s and τ6=52 s. 

Each Prony-series time constant is associated with a relaxation coefficient, which represents the 

amount of damping at the corresponding frequency. As discussed in section 3.3.2.3, for an n- term 

series, the sum of the n relaxation coefficients needs to be less than or equal to 1 (Simo and Hughes, 

1998). A common feature of the hysteresis of soft tissues is its insensitivity to frequency, with a more or

less flat relaxation spectrum over a wide range of frequencies, as shown in Fig. 4-5. This suggests that 

one should consider equal relaxation coefficients for all of the time constants. Thus, taking into account

the constraint on the sum of the relaxation coefficients (Eq 3-15), each of the six equal coefficients 

must be greater than 0 and less than or equal to 1/6 ≈ 0.167. Choukir compared the linear dynamic 

response of her model to that of the model of Maftoon and decided on a coefficient of 0.07 for all time 

constants. Fig. 4-6 shows a comparison using a coefficient of 0.035, 0.07 and 0.14 for all time 

constants. We can observe that increasing the coefficient increased damping at all frequencies, as 

expected, although the differences were fairly small. As done by Choukir, we also adjusted the 

relaxation coefficient related to the time constant 220 μs for the PF to 0.4 to better represent the 

damping present in Maftoon’s model at the centre point of the PF. Increasing the coefficient to 0.4 was 

justifiable because the new sum of the time constants, 0.75, still respects the constraint that the sum of 

all the time constans should be less than or equal to 1.
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In our Code_Aster model, the TM was defined as linear elastic, and Rayleigh damping was used for 

all model components. The material properties are mostly adopted from those used by Maftoon et al. 

and Choukir. The Young’s modulus was taken to be 10 MPa for the PT and 2 MPa for the PF, as used in

the model of Maftoon et al. The Poisson’s ratio was taken to be 0.49 for soft incompressible materials. 

The density of the PT was taken to be 1100 kg/m3, and the density of the PF was taken to be 
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Figure 4-5: Typical hysteresis-log frequency relationship for living soft tissues. Each small bell-shaped 
curve corresponds to the contributions of one Prony series term (gi, τi). The sum is almost flat over a 
wide range of frequencies (Fung, 1993).

Figure 4-6: A comparison of the FEBio model frequency response when using a coefficient of 0.35, 
0.07 or 0.14 for all time constants.



1300 kg/m3, both adopted from Choukir’s model. Rayleigh damping is a mathematical representation 

of the damping matrix that linearly combines the stiffness matrix and the mass matrix. It is described 

by ɑM + βK, where M is the mass matrix and K is the stiffness matrix. As suggested by Maftoon et al. 

(2015), we assumed stiffness-proportional damping (i.e., ɑ=0) for all middle-ear structures. We used a 

damping parameter β of 2×10−6 s for the structures with highly organized collagen fibres (i.e., the PT) 

and 3×10−5 s for the structures with abundant elastic fibres (i.e., the PF).

4.4.2 Manubrium, wedges and pedicle

In the Code_Aster model, the manubrium, wedge and pedicle were modelled as isotropic elastic 

materials. The elasticity of an isotropic linear material is completely described by the Young’s modulus 

and Poisson’s ratio. We determined the Young’s moduli of the manubrium, wedge and pedicle to be 

16.0 GPa by trial and error by matching the frequency-response magnitude of the umbo at low 

frequencies to that of the model of Maftoon et al. (2015) and Choukir (2017). This value is close to the 

Young’s modulus used in the model of Choukir (14.5 GPa) and the same as the value used in the model

of Maftoon et al. (16.0 GPa). The Poisson’s ratio is set to be 0.3 for these structures. The density of 

these structures is set to be 1100 kg/m3, as in the model of Choukir. This value is lower than the ones 

used in the model of Maftoon et al. (2015) for the ossicles (1918, 1855 and 1565 kg/m3 for the malleus,

incus and stapes, respectively). Based on Maftoon et al. (2015), we assumed the Rayleigh damping 

parameter β to be 2×10−6 s for the manubrium and the pedicle and adjusted β for the wedge to be 

2×10−4 s by matching our model’s frequency response at the umbo to that of Maftoon et al.

For the FEBio model, the manubrium and wedge were modelled as viscoelastic. The same Young’s 

modulus and Poisson’s ratio were used as in the Code_Aster model. The relaxation coefficients were 

again set to 0.07 except that at time constant 2.3 s the coefficient was adjusted to 13.0 to match the 

magnitude of the resonance frequency of our model to that of the model of Maftoon et al. Although this
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adjustment violates constraints on the Prony-series coefficients discussed in section 3.3.2.3 

(Viscoelasticity), it can be thought of as following the common practice of representing the cochlea by 

a first-order mass-spring-dashpot system. The damping coefficient is set to be higher than 1 for an 

overdamped system (Choukir, 2017, p. 72).

4.4.3 Incudostapedial joint

Considering the simple geometry being used for the ISJ, we decided to model the structure as a simple 

cartilage layer. In the Code_Aster model, the ISJ was considered to be isotropic elastic (E=0.3 MPa and

ν=0.49). The Young’s modulus was adjusted to be slightly higher than the value of 0.27 MPa used in 

Maftoon et al. (2015) because our ISJ structure had a smaller cross-sectional area and was thinner. In 

the FEBio model, we considered the ISJ to be viscoelastic and used the material properties of the 

cartilage layers in the human ISJ model of Soleimani et al. (2020). For the elastic part, we used an 

isotropic linear-elastic material with the same Young’s modulus and Poisson’s ratio as were used for the

cartilage by Funnell et al. (2005) and by Soleimani et al. (2020), Ec=10 MPa and νc=0.3. For the 

viscous part, as suggested by Soleimani et al. (2020), a two-term Prony series was used with time 

constants τ1=1.5 s and τ2=35 s, and coefficients g1=0.8 and g2=0.5, respectively.

4.4.4 Stapes and cochlear load

Since the stapes is assumed to be rigid in both the Code_Aster model and the FEBio model, we use a 

simple block structure to represent it and to provide points of connection for the representations of the 

annular ligament and cochlear load. The stapes is modelled as isotropic elastic and is given material 

properties similar to those of the manubrium, wedge and pedicle. We used a Young’s modulus of 16.0 

GPa and a Poisson’s ratio of 0.3. The damping coefficient was adjusted to different values in the 

Code_Aster model and the FEBio model. Here, we report the values we used in the two models 

separately.
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The cochlear load is said to approximate a pure viscous damping for frequencies under 30 kHz (e.g.,

de La Rochefoucauld et al., 2008; Ravicz et al., 2008). The average magnitude of the cochlear damping

was estimated to be 15.4×10−3
 Ns/m3 with a stapes footplate area of 0.62 mm2 for gerbil in de La 

Rochefoucauld et al. (2008). In the model of Maftoon et al., each of the four dashpots had a damping 

coefficient of 3.85 ×10−3
 Ns/m3. After comparing the linear low-frequency model response at the umbo 

to the response of the model of Maftoon et al., we adjusted the damping coefficient per dashpot to 

6.3×10−3 Ns/m3 in the Code_Aster model.

The cochlear load in the FEBio model is also implemented using four dashpots connected 

perpendicularly to the footplate. In FEBio the dashpots must be connected via rigid-body interfaces, 

and the other ends of the dashpots are connected to rigid bodies fixed in space; since the rigid 

connectors are configured not to have bending stiffness, the <check_zero_diagonal> flag must be set to

0 (false) to avoid simulation errors. We adjusted the damping coefficients to 6.0×10-3 Ns/m3 by 

matching our model’s linear response at the umbo to that of the model of Maftoon et al.

4.5 Loading conditions and time-step analysis
For the acoustic stimulus, the choice of the time step is crucial and is determined by the highest 

frequencies of interest. To study the effects of time-step sizes on the responses, we performed 

simulations with time steps of 50, 30, 15, 10 and 5 µs. Fig. 4-7 shows the effect of the time step on the 

umbo frequency response. Below a time step of 30 µs, we observe a negligible increase (less than 

0.1 nm/Pa) in magnitude at low frequencies as the time step became finer. Above 6 kHz, we observed a 

dramatic difference in the frequency roll-offs for a time step of 30 µs and 50 µs. We chose a time step 

of 10 µs for our simulations, in an endeavour to balance the trade-off between accuracy and 

computation time.
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We examined the model response to different loading conditions. To evaluate the material 

properties, we applied a unit-step sound pressure of 1 Pa on the TM surface and performed transient FE

analysis. Simulations were performed with a time step of 10 µs and were continued for 75 ms 

following the onset of the unit-step sound-pressure input. By the end of 75 ms, the velocity magnitude 

at different locations on the TM and footplate had reached almost zero. Increasing the time span of the 

simulation from 75 ms to 100 ms changed the response by less than 0.03 dB, so the time span of 75 ms 

was used to save computation time. Frequency responses were obtained by computing the fast Fourier 

transforms of the velocities at different locations. For results obtained from simulations run with the 

linear solver in Code_Aster, displacement responses were differentiated to get velocities. For 

simulations computed in FEBio, the velocity results were directly exported and used in the frequency 

response analysis. The selected time span provided a frequency resolution of 12 Hz. The response of 

our model was compared with those of the models of Maftoon et al. (2015) and Choukir (2017).
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We also evaluated the response of our middle-ear model to quasi-static triangular pressure inputs 

changing at linear rates between 200 Pa/s and 1.5 kPa/s with the amplitude varying between ±2.5 kPa 

as done by Dirckx et al. (2006) and with the amplitude varying between ±2.0 kPa as done by Dirckx 

and Decraemer (2001). To obtain stable results, we simulated at least 3 pressurization cycles at each 

pressure-change rate. To replicate the condition of tympanometry, we followed the same approach used

by Choukir (2017) and added a 0.3-s sinusoidal acoustic stimulus of 1 Pa amplitude to the quasi-static 

triangular pressure stimulus changing at 1.5 kPa/s. The sinusoidal acoustic stimuli were added onto 

both the ascending (from −2.5 kPa to +2.5 kPa) and descending (from +2.5 kPa to −2.5 kPa) branches, 

near the 0-Pa pressure as presented in Fig. 4-8. We plotted vibration displacement versus pressure for 

periods where the acoustic stimuli were applied to study how the peak pressure changes between the 

two branches as a function of the pressure-change rate.
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Figure 4-7: Effect of size of time step on simulated umbo frequency response.



This loading condition of quasi-static pressure plus acoustic stimulation requires lengthy simulation 

times. Therefore, multiple steps are used in FEBio to shorten the run time. When only the quasi-static 

pressure is applied, we specified a constant time step of 10 ms. We had to set the parameter for the 

maximum number of updates (i.e., <max_ups>) in FEBio to 50 for the solver to converge during the 

transients. When an acoustic stimulus is applied in addition to the quasi-static pressure, a constant time 

step of 10 µs was employed.
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Figure 4-8: Illustration of the loading condition for quasi-static pressure changing at 1.5 kPa/s with a 
superimposed pure tone of 226 Hz. A: Pressure as a function of time with a magnification of the 
acoustic stimulus (a factor of 100 was applied to the acoustic stimulus for better visualization). B: A 
closer view of the left-hand rectangle in A. C: A closer view of the right-hand rectangle in A. For panel 
B and C, a factor of 10 was applied to the acoustic stimulus for better visualization.



We also studied the response of the middle ear to a sudden increase in static pressure 

(mathematically represented by a fast ramp function) followed by an acoustic signal. The input pressure

was increased linearly from 0 to 250 Pa in 10 ms and maintained at 250 Pa for the rest of the input. At 

25 ms, an acoustic pressure of 2 Pa peak to peak was introduced as a sinusoidal wave at 226 Hz for 50 

ms, or as a chirp with frequency changing linearly from 0.12 to 3 kHz for 128 ms. This loading 

condition was intended to evaluate the ability of the model to simulate conditions present in step-wise 

pressurization cycles in LDV experiments in our lab (e.g., Kose et al., 2020). For these loading 

conditions, we used a uniform step size of 10 µs for the simulations.

As done in Maftoon et al. (2015) and Choukir (2017), we chose to export the displacement or velocity 

values for only a limited set of nodes corresponding to where LDV measurements were made by 

Maftoon et al. (2014) and Kose et al. (2020). We considered only two nodes on the manubrium (d and e

in Fig. 4-9), a node on the posterior PT (g), a node on the anterior PT (k) and a node at the centre of the

PF (a).
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Figure 4-9: A schematic of the general layout of eighteen micro-beads on a right gerbil TM; 
the shaded area represents the remaining hidden region of the PT (He, 2012).



Chapter 5: Results

5.1 Introduction
In this chapter, we present the responses of our FE model of the gerbil middle ear to the different 

loading conditions described in the previous chapter. In section 5.2, we report the model response to 

low-amplitude sound stimuli and compare results from the two FE solvers with those from the model of

Maftoon et al. (2015). In the subsequent sections, results are presented for the non-linear regime based 

on the FEBio model. In section 5.3, we present the model response to high quasi-static pressures in the 

form of triangular waves as well as a combination of high quasi-static pressure with a low-amplitude, 

low-frequency (226-Hz) pure tone. Simulation results are compared with those obtained from the 

model of Choukir (2017) and with experimental measurements. In section 5.4, we report the model 

response to a large pressure step followed by low-amplitude sound pressures, including a low-

frequency pure tone and a chirp. The chirp results are compared with experimental measurements made

by Kose et al. (2020).

5.2 Unpressurized vibrations
In this section, we first present and compare the low-amplitude responses of our model with two 

different solvers (Code_Aster and FEBio). Then, we present the frequency responses of our FEBio 

model at the umbo and at two nodes on the manubrium, two nodes on the PT and one node on the PF 

(as discussed in section 4.5) and compare them with the responses of the model of Maftoon et al. 

(2015) and previous experimental results.

5.2.1 Comparison of FEBio and Code_Aster models

As mentioned in section 4.2, we ran linear (low-amplitude) simulations with the same model geometry 

using two different linear FE solvers, for model verification. In the Code_Aster model, the TM was 
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linear elastic. In the FEBio model the TM material was hyperviscoelastic but with an effective low-

amplitude Young’s modulus that was the same as the Young’s modulus in the Code_Aster model. The 

different damping representations in the two solvers were adjusted to produce very similar 

displacement magnitudes at the main system resonance. This step was done to confirm that FEBio and 

Code_Aster would provide the same results at low amplitudes and low frequencies, and that they could 

provide similar results at higher frequencies, to increase our confidence in the FEBio results.
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Figure 5-1: Comparison of time-domain umbo velocities in FEBio and 
Code_Aster.



Figure 5-2: Comparison of umbo displacement frequency responses in FEBio and 
Code_Aster.

Fig. 5-1 shows the z component (i.e., perpendicular to the plane of the TM annulus) of the velocity 

magnitude in the time domain for the umbo in both FEBio and Code_Aster in response to a step 

pressure of 1 Pa. The two FE solvers produced very similar responses. Fig. 5-2 shows the 

corresponding displacement frequency responses, which are also very similar. The difference in 

magnitude of the frequency response at 0.2 kHz is 24 nm/Pa. For frequencies between 0.2 and 2 kHz, 

the difference in magnitude is less than 10 nm/Pa.

5.2.2 Umbo and pars-flaccida responses 

Some of the material properties of the components of our model were estimated based on matching 

the umbo response to that of the model of Maftoon et al. (2015). In earlier experimental studies (e.g., 
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Lee and Rosowski, 2001; Rosowski and Lee, 2002; Maftoon et al., 2014), it was observed that the PF 

affects responses measured at the umbo. Here we present the umbo and PF responses together.

5.2.2.1 Low frequencies

Fig. 5-3 shows our model frequency response from 0.2 kHz to 10 kHz in comparison with that from 

the model of Maftoon et al. The magnitude and phase of the umbo at the lowest frequency in our model

were 384.4 nm/Pa and –3.8°, compared with 382.2 nm/Pa and –3.3° for the model of Maftoon et al., 

resulting in a difference of 1.6% for the magnitude and a difference of 15% for the phase.

Fig. 5-4 shows our model response at the centre of the PF in comparison with that from the model of

Maftoon et al. The magnitude of the simulated response at the centre of the PF at resonance (820 Hz) is

9.6 μm/Pa, which is 36% lower than the 15 μm/Pa magnitude from the model of Maftoon et al. 
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Figure 5-3: Comparison of our model's umbo response with that of the model of Maftoon et al.



Although the PF material density and Young’s modulus are predefined to match the width and 

frequency of our model’s PF resonance to those of the model of Maftoon et al., our PF response is 

lower in magnitude. This is attributed to differences in the material density and boundary conditions for

the PF in the two models. The PF is simply supported in the model of Maftoon et al. but is fully 

clamped in our model.

Fig. 5-5 shows a magnified view of the umbo response from 0.2 to 2 kHz, presenting the PF-related 

feature more clearly. The umbo response exhibits a feature that includes a shallow magnitude 

maximum (790 Hz) followed by a shallow minimum (890 Hz), and a local minimum in the phase (830 

Hz). By comparison, in the model of Maftoon et al. the feature is located at a similar frequency, with a 
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Figure 5-4: Comparison of our model's PF response with that of the model of Maftoon et al.



shallow magnitude maximum at 780 Hz followed by a shallow minimum at 880 Hz, and a local 

minimum in the phase at 820 Hz. As discussed in section 5.2.4, this feature in the umbo response 

corresponds to the resonance in the PF response when the PF is flat. The PF shows a resonance around 

820 Hz in both our model and that of Maftoon et al., corresponding to the frequency of the local 

minimum in the umbo response. This feature is more pronounced in the model of Maftoon et al. than in

our model, due partly to our PF resonance having a lower magnitude, and partly to the coupling 

between the PF, PT and manubrium, which we will discuss in section 5.2.4 (PT response).
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Figure 5-5: A magnified view of part of Fig. 5-3 (model umbo response) to show the effect of a flat 
PF on the umbo response. A local maximum followed by a local minimum can be seen in the 
displacement magnitude, corresponding to the resonance of the PF response in Fig. 5-4.



5.2.2.2 Mid and high frequencies

The simulated umbo response (Fig. 5-3) shows a rather broad resonance with a peak magnitude of 604 

nm/Pa at 1.6 Hz, very similar to what was obtained with the model of Maftoon et al., which also has a 

peak magnitude of 604 nm/Pa at 1.6 Hz. The width and magnitude of the resonance are mainly 

controlled by the Rayleigh damping parameters and the cochlear load; the frequency of the resonance is

mainly controlled by the material properties of the PT, including its material density and elastic 

parameters. The material properties of the PT and the Rayleigh damping parameters were adapted from

the model of Choukir, and the damping coefficient at the footplate was selected to match the model of 

Maftoon et al.

For frequencies above the resonance frequency, the umbo response of our model (Fig. 5-3) starts to 

show differences from that of the model of Maftoon et al. Our model also appears to be more heavily 

damped than that model, having fewer irregularities above 2 kHz. To match the umbo resonance 

magnitude, we adjusted the cochlear damping to be 6.3×103 Ns/m per dashpot, which is higher than the

coefficient of 3.85×103 Ns/m used in the model of Maftoon et al. The phase responses deviate 

substantially above 6 kHz. The differences between the two models at higher frequencies can be 

attributed to the assumptions we made in our model. At higher frequencies, the vibrations of the 

ossicles become more complex and the ossicles no longer rotate around a fixed axis of rotation, as 

observed by Maftoon et al. (2015). Since our model assumes a fixed axis of rotation and does not 

include all the anatomical details of the ossicles, it is to be expected that the response of our model at 

high frequencies deviates from that of the model of Maftoon et al. For the PF, apart from the shift in the

magnitude, the shape and features are similar in the two models up to about 1.6 kHz.

As mentioned above, the amount of cochlear damping significantly affects the magnitude of the 

resonance. In Fig. 5-6, we compared the umbo responses of our Code_Aster model to the model of 
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Maftoon et al. with cochlear damping (solid lines, as in Fig. 5-3) and without cochlear damping 

(dashed lines). Both models used Rayleigh damping for the TM and cochlear damping at the footplate. 

The resonance magnitude of our Code_Aster model without cochlear damping is higher than that of the

model of Maftoon et al. without cochlear damping, although the curves with cochlear damping are very

similar. In our FEBio non-linear model, we used a Prony series instead of Rayleigh damping to 

represent damping in the viscoelastic components and implemented dashpots at the stapes footplate to 

model the cochlear load. In Fig. 5-7, we compare the umbo responses of our models in the two 

different solvers with and without cochlear damping. From the curves without cochlear damping, it is 

clear that the damping provided by the Prony series in the FEBio model is less than that provided by 

the mass-proportional Rayleigh damping. Prony series can be used to adjust damping separately in 

different frequency ranges, while Rayleigh damping affects all frequencies with a single parameter. 

Due to the lack of knowledge about both the TM damping and the cochlear impedance in gerbils, it is 

not clear to us whether the TM damping or the cochlear damping plays a more dominant role in 

middle-ear sound transmission. In any case, for our subsequent analyses we only look at responses 

below 3 kHz, where the effect of damping (except for the cochlear load) is relatively small.
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Figure 5-6: Comparison of umbo responses of our Code_Aster model and the model of Maftoon et al., 
with and without cochlear damping (CD).



5.2.3 Manubrial response

Fig. 5-8 shows the responses for our model at three points along the manubrium. Similar to the 

experimental observations by Maftoon et al. (2014) and to the behaviour of the model of Maftoon et al.,

the magnitude increases towards the umbo (from purple to maroon to yellow), and all points along the 

manubrium move almost exactly in phase with each other up to very high frequencies. This pattern in 

the responses is consistent with the fact that, in our model, the malleus is assumed to rotate around a 

fixed axis of rotation. Thus, the displacement along the manubrium is proportional to the distance from 

the axis of rotation.
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Figure 5-7: Comparison of our models in FEBio and Code_Aster with and without cochlear damping 
(CD).



Figure 5-8: Model displacement responses at three locations along the manubrium.

Fig. 5-9 shows the responses of our model at the umbo and also mid-manubrium, compared with 

those from the model of Maftoon et al. The displacements at corresponding points are almost the same 

for the two models up to around 2 kHz. Maftoon et al. (2015) measured the location of their axis of 

rotation for different frequencies. They found that at frequencies between 200 Hz and 1.5 kHz (i.e., the 

resonance peak), the manubrium rotates as a rigid body around a fixed axis of rotation whose location 

is close to that of the anatomical axis defined to run from the anterior mallear process to the posterior 

incudal process, as assumed in our model (see section 4.2). Above 2 kHz, the position of the axis of 

rotation in the model of Maftoon et al. started to shift. This does not happen in our model because we 

assumed a fixed axis of rotation that is independent of frequency.
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Figure 5-9: Comparison of our model response with that of Maftoon et al. at umbo and at mid-
manubrium.

5.2.4 Pars-tensa response

Fig. 5-10 shows our model responses for two PT points, anterior and posterior at the level of the middle

of the manubrium, and compares them to responses from the model of Maftoon et al. The two points 

vibrate in phase with each other for frequencies up to about 2 kHz in both models. At these frequencies,

the PT points exhibit a simple motion pattern. The PT responses also show the same PF feature as seen 

at the umbo, but it is smaller. As observed in gerbil ears experimentally, in both models the point on the

posterior side shows larger displacements than the one on the anterior side. The responses of our model

at low frequencies are very similar to those of the model of Maftoon et al., and the magnitudes are 

within the range seen in the experimental responses (Maftoon et al., 2014). For frequencies above 2 
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kHz, our model responses are somewhat lower in magnitude than those of the model of Maftoon et al. 

because the PT in our model is stiffer than the one in the other model, as discussed in section 4.5.

The resonance has a similar shape in both models. The simple in-phase motion breaks up at higher 

frequencies, with each point showing different frequency-dependent magnitudes and phases. As done 

by Maftoon et al. (2013), we define the break-up frequency as the frequency at which the phase 

divergence of the points on the PT is more than 15°. The break-up frequency for the PT points in our 

model is 2.3 kHz. This is slightly higher than the 2.2 kHz seen in the model of Maftoon et al. 

(consistent with the higher stiffness of our PT) but is well within the range of 1.8 to 2.8 kHz observed 

experimentally (Maftoon et al., 2014).

Fig. 5-5 (and, to a lesser extent, Figs. 5-3 and 5-10) indicate that the shunting of low frequencies by 

the PF in our model and its effect on umbo and PT is less than in the model of Maftoon et al. As shown 

in experimental studies, this effect of the PF is strongly affected by the size of the middle-ear cavity 

(e.g., Rosowski et al., 1999; Maftoon et al., 2014). Smaller cavity sizes result in a stronger effect of the 

PF on the response of the umbo and PT. Thus, with an open middle-ear cavity, the PF has a very small 

effect on the motion of the PT and umbo, as seen in our model and in the model of Maftoon et al. In the

open-cavity configuration, the effect may be modulated by the coupling of the PF with the manubrium 

and PT. The PT thickness in Maftoon’s model was variable, but in our model it had a constant thickness

of 15.8 μm, and this thickness along with the material properties used resulted in a stiffer PT in our 

model. This could affect the coupling between PT and PF, making the effect of the PF on the PT 

smaller. Furthermore, the coupling between manubrium and PT is affected by the position of the axis of

rotation, which is different than in the model of Maftoon et al. This also might alter the effect of the PF 

on the umbo. This reduced shunting by the PF is also seen in Choukir’s model, which has PT material 

properties which are very similar to those of our model. Such speculations about the coupling between 
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different structures of the middle ear could be verified by modelling different configurations: changing 

the axis of rotation, varying the PT thickness and material properties, etc.

Figure 5-10: Comparison of responses of our model and that of Maftoon et al., at anterior and 
posterior PT points.

5.3 Pressurized vibrations

5.3.1 Triangular-wave quasi-static pressures

5.3.1.1 Displacement versus quasi-static pressure

In this section, we report the response of our model to slowly varying triangular pressure sweeps with 

amplitude ranging from –2500 Pa to +2500 Pa and linear pressure-change rates between 200 Pa/s and 

1500 Pa/s, as was done by Choukir (2017). In addition, we also simulate the model response to 

triangular pressure sweeps ranging from –2500 Pa to +2500 Pa with a pressure-change rate of 1500 Pa/

s and compare the resulting displacements with experimental measurements made by Dirckx and 
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Decraemer (2001) for pressure steps from –2000 Pa to +2000 Pa. Since small changes during 

preconditioning were observed in experimental studies (e.g., Dirckx and Decraemer, 2001; Dirckx et 

al., 2006), we only simulated 2 to 3 pressurization cycles at each pressure-change rate. Fig. 5-11A 

shows umbo displacement at 1500 Pa/s as a function of time for three cycles. As also found by 

Choukir, we can see that amplitudes at negative ear-canal pressures are always significantly larger than 

amplitudes at corresponding positive pressures; no significant change in the umbo displacement is seen 

after the first cycle, and repeated displacement-vs-pressure curves nearly coincide (Fig. 5-11B). This 

was also the case for low pressure-change rates. For subsequent simulations in this section, we report 

the displacement results of the second cycle.
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Fig. 5-12 compares the response of our model at points in the anterior and posterior PT and at the 

umbo to the mean deformation of the PT reported by Dirckx and Decraemer (2001). They performed a 

sequence of modifications of the middle ear, and stage 0 of the experimental results in Fig. 5-12B 

corresponds to the condition in our model. We can again observe a strong asymmetry in the vibration 

amplitude between positive and negative static pressures. This asymmetry is less pronounced but still 

present in the experimental data. We calculated the ratio of the amplitudes at +2000 and −2000 Pa. For 

our model, the ratio of displacement amplitudes is 2.4, while in Dirckx and Decraemer (2001) the ratio 
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Figure 5-11: Simulated umbo response to about 4 cycles of triangular waves of pressure for a pressure-
change rate of 1500 Pa/s. A: Umbo displacement as a function of time. B: Umbo displacement as a 
function of quasi-static pressure.



is 1.3. Hysteresis, reflected by the difference between the loading and unloading curves, is smaller in 

our model response than in the experimental data.

Fig. 5-13 shows our simulated umbo motion for different linear pressure-change rates ranging from 

200 Pa/s to 1500 Pa/s in comparison with the response from Choukir’s model and with experimental 

umbo motions measured by Dirck et al. (2006) for the rabbit middle ear. Our simulated umbo motion in

Fig. 5-13A shows approximately the same small amount of hysteresis at all pressure-change rates. Fig. 

5-13B shows less hysteresis in Choukir’s results than in ours, presumably because of the absence of 

cochlear damping in Choukir’s model for these particular simulations. The experimental data in Fig. 

5-13C show more hysteresis, especially for lower pressure-change rates, than in the model responses. 

Compared with Choukir’s simulation results, our simulation displacements are approximately 5% 

larger at positive ear-canal pressures and are slightly smaller at negative ear-canal pressures.
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Figure 5-12: Comparison of model and experimental PT responses to quasi-static pressure. A: 
Response of our model for one cycle at the umbo and two points on the PT. B: Experimentally 
measured mean deformation as a function of pressure (Dirckx and Decraemer, 2001). 



5.3.1.2 Vibration amplitude versus quasi-static pressure

To simulate tympanometry, we applied a 226-Hz pure tone with a magnitude of 1 Pa (equivalent to 94 

dB SPL) for 300 ms around zero pressure on both the ascending and descending branches of the 

pressure sweep. We chose to apply the acoustic stimuli only for two short intervals and only on the 

1500 Pa/s pressure sweep to reduce the computation time. The acoustic stimulus was applied to the 

ascending branch from 6.53 s to 6.83 s, to cover a range of static pressure from –225 Pa to +225 Pa. It 

was then applied to the descending branch from 9.91 s to 10.21 s, to cover a range of static pressure 

from +165 Pa to –285 Pa. Both periods include zero static pressure. Fig. 5-14 shows the umbo 

displacement as a function of time in response to the quasi-static pressure and sound stimulus. Fig. 

5-14B and Fig. 5-14C are magnified views of the rectangles in Fig. 5-14A, showing the very small 

displacements resulting from the application of the pure tone.
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Figure 5-13: Umbo displacement vs. pressure for various pressure-change rates. A: Umbo 
displacement obtained with our model. B: Umbo displacement obtained with Choukir's model. C: 
Experimental umbo displacement obtained by Dirckx et al. (2006).



Fig. 5-15 shows the umbo response to the acoustic stimuli with the quasi-static response subtracted 

away. As seen in Fig. 5-15A for the ascending branch, as the static pressure increases, the umbo 

vibration increases slightly, then starting at time 6.68 s, which corresponds to a quasi-static pressure of 

–28.8 Pa, the vibration decreases. For the descending branch (Fig. 5-15B), as the static pressure 

decreases, the umbo vibration increases, and then starting at time 10.89 s, which corresponds to a 

quasi-static pressure of –70.5 Pa, the vibration decreases slightly. Compared with the umbo vibration 

obtained with the model of Choukir (Fig. 5-16), our model’s umbo vibration has higher magnitudes and

is more damped. The highest displacement of the umbo vibration in the ascending branch is around 0.7 
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Figure 5-14: Response of our model to 226-Hz acoustic stimuli during large sweeps of quasi-static 
pressure. A: Umbo displacement as a function of time. Rectangles indicate areas where the acoustic 
stimuli were applied. B: Magnified view of the two rectangles in A to show the acoustic induced 
displacements during the quasi-static sweeps. Arrows indicate the start and end of the vibrations.



µm for our model and 0.55 µm for Choukir’s model. The difference in the vibration magnitude can 

presumably be attributed to the difference in the boundary conditions of the two models (see section 

5.4 for discussion). In both model responses, pronounced transient effects are observed for the first 

three cycles as the acoustic stimulus starts. This phenomenon is only observed for the ascending 

branch.
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Figure 5-15: Model umbo vibration after removing the displacement induced by the quasi-static 
pressure sweep. A: Umbo vibration in the ascending branch. B: Umbo vibration in the descending 
branch.



 We also observe modulation of the vibration amplitude with a period of 4 to 6 cycles. This 

modulation is also observable in Choukir’s model. Choukir suggested two possible reasons for this 
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Figure 5-16: Model umbo vibration of Choukir's model after removing the displacement induced by the 
quasi-static pressure sweep. A: Umbo vibration in the ascending branch. B: Umbo vibration in the 
descending branch (Choukir, 2017).



phenomenon: (1) using six Prony series time constants to express the viscoelastic effects for some 

components of our model leads to complex interactions between the viscoelastic effects and the 

frequencies of the pressure signals; or (2) the numerical integration in the FE solver.

To better understand how the amplitude of the vibration changes as a function of pressure, we 

extracted the amplitude envelope by performing a series of FFTs on the derivative of displacement with

a moving window. We used a total of 50 windows on each 300-ms period of vibration with an 80% 

overlap between windows. Each window covered approximately five cycles of the 226-Hz tone. Fig. 

5-17 shows the magnitude plotted as a function of static pressure for both the ascending (i.e., the 

positive direction) and descending (i.e., the negative direction) branches. The curve is very similar to 

the tympanogram that we get from clinical tympanometry except that the vertical axis represents the 

displacement magnitude at one point on the surface of the TM (in this case the umbo) instead of 

representing acoustic admittance (i.e., a normalized volume velocity corresponding to the entire TM).

The vibration magnitude is larger for negative pressure, which corresponds to our observations in 

section 5.3.1.1 (i.e., Fig. 5-13A). Fig. 5-17 also demonstrates the dependence of the displacement 

magnitude on the direction of the pressure sweep. The peak shifts negatively with the descending 

sweep, resulting in a peak pressure difference here equal to 36.3 Pa. The directional dependence is 

caused by the viscoelasticity of the components of the middle-ear model and reflects hysteresis. This 

feature was also demonstrated in Choukir’s model with a similar PPD value of 42.8 Pa. The peak 

admittance in the negative direction is higher than that in the positive direction, indicating that the 

umbo vibrates with larger magnitude in response to the acoustic stimulus on the descending branch. 

Due to the many differences in the model components and material properties, the vibration 

displacement of our model is generally larger than that of Choukir’s model.

88



Figure 5-17: Umbo displacement normalized by sound pressure as a function of quasi-static pressure 
swept in both directions. PPD refers to the peak pressure difference defined in section 3.3.4.1, that is, 
the separation between the two pressure peaks obtained during the loading and unloading of the static 
pressure. "+ direction" stands for positive direction (from –2.5 kPa to +2.5 kPa) and "– direction" 
stands for negative direction (from +2.5 kPa to –2.5 kPa).

5.3.2 Step quasi-static pressures combined with low-amplitude sound pressures

In this section, we present the response of our model to a quasi-static pressure step, approximated by a 

linear increase from zero to 250 Pa in 10 ms and then maintained at a constant value. After 15 ms a 50-

ms acoustic stimulus is superimposed on it, in the form of a pure tone (Fig. 5-18 A & B) or a chirp (Fig.

5-19 A & B), as described in section 4.5. The umbo displacements as a function of time are shown in 

panels C and D of Figs. 5-18 and 5-19. We also investigated the effect of changing the nature of the ISJ

on the model response (Fig. 5-18D).
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In Figs. 5-18C and 5-18D, we observe the umbo displacement to increase non-linearly as the static 

pressure increases linearly for the first 10 ms. The nature of the non-linearity is very similar to that of 

the model response of Choukir, but the resulting displacement of our model is about 10 μm larger than 

that from the model of Choukir. Then, when the pressure stays constant at 250 Pa, the displacement has

a slight curvature with displacement increasing from 61.26 μm at 10 ms to 61.87 μm at 25 ms for the 

viscoelastic ISJ. The increase in the displacement is 0.6 μm, which is slightly smaller than the 0.7 μm 

reported by Choukir. Since we have time constants as high as 52 s, this slight increase in displacement 
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Figure 5-18: Model response to a quasi-static pressure step combined with a 226-Hz acoustic 
stimulus, and comparison between a viscoelastic ISJ and an elastic ISJ. A: Input pressure signal. 
B: Magnified view corresponding to the rectangle in A to highlight the acoustic stimulus. C: Umbo
displacement as a function of time for both types of ISJ. D: Magnified view corresponding to the 
rectangle in C.



due to the quasi-static pressure could last several tens of seconds before it reaches a plateau. For the 

elastic ISJ response, the displacement increased from 61.37 μm to 61.97 μm, also giving us an increase 

of 0.6 μm. The slight curvature in the displacement response is typical of stress relaxation due to the 

viscoelasticity of the system. Therefore, having an elastic ISJ only increased the overall model 

displacement by 0.1 μm and did not affect the magnitude of the gradual increase. This indicates that the

viscoelasticity of the model is predominantly provided by the TM. The displacement resulting from the 

sinusoidal acoustic stimulus is very close to being a pure sine wave of the same frequency riding on top

of the slowly increasing response to the large pressure step. Aside from the transient effects seen at the 

onset, the magnitude of the vibration for the 50 ms duration is about 0.3 μm.
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Figure 5-19: Model response to a quasi-static pressure combined with a chirp (0.12 to 3 kHz). A: Input
pressure signal. B: Magnified view corresponding to the rectangle in A to highlight the acoustic 
stimulus. C: Umbo displacement as a function of time for an elastic ISJ. D: Magnified view 
corresponding to the rectangle in C.



Fig. 5-19 panels C and D show the umbo displacement when the acoustic stimulus is a chirp rather 

than a pure tone. For the first 25 ms, the response is the same as what is shown in Fig. 5-18. Then, the 

amplitude of the vibration increases from 25 ms (120 Hz chirp frequency) to 127.19 ms, decreases from

there to 134.18 ms, increases again to 148.01 ms, and decreases until the end of the chirp signal. Due to

the viscoelasticity of the model, the displacement at the umbo is continuing to rise even at the end of 

the chirp (153 ms).

When the acoustic stimulus is a chirp, simulating 150 ms of the model response lasted 32 hours in 

FEBio. A full pressurization cycle in the experimental study of Kose et al. (2020) is several minutes 

long and would be equivalent to millions of simulation steps. As a first step towards modelling a 

complete stepwise pressurization cycle, we simulated the response of our model to constant quasi-static

pressures of different magnitudes in combination with one chirp of 128 ms. The chirp contains 

frequencies that increase linearly from 0.1 kHz to 10 kHz, the same as what was used as the 

experimental input. The simulated displacement data were differentiated using MATLAB’s diff 

function, effectively converting it to velocity, and then in the frequency domain was converted back to 

displacement by dividing by 2πf. This is equivalent to computing the difference between the model 

displacement data with chirp and that displacement obtained from a quasi-static step input without a 

chirp, but is faster because the response without a chirp does not need to be simulated. We applied only 

cochlear damping in the model without increasing the Prony-series coefficient at 10 μs. The normalized

frequency response of our model due to chirps in the presence of a range of quasi-static pressures is 

presented in Fig. 5-20A, and equivalent experimental data obtained by Kose et al. (2020) in one gerbil 

is presented in Fig. 5-20B. Our model responses show trends similar to what is seen in the experimental

measurements. As the magnitude of the quasi-static pressure increases from 0 Pa to +2500 Pa, the 

magnitude of the simulated low-frequency response decreases by a factor of 7.6, compared with a 
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factor of 4.1 for the experimental data; the decreasing magnitudes started to plateau earlier for the 

model results. The frequency of the resonance peak shifted towards higher frequencies. We did not 

observe a strong indication of the experimental R1 peaks (marked by circles, filled and unfilled, in 

panel B) in our simulated frequency response, but the frequencies of the R2 peaks in the simulated 

responses are similar to the experimental ones. The highest peaks of the 500-Pa (red), 1000-Pa (green), 

1500-Pa (blue), 2000-Pa (yellow) and 2500-Pa (cyan) pressurized vibrations are approximately 3.9 

kHz, 5 kHz, 5.5 kHz, 6 kHz and 6.5 kHz in our model and the R2 peaks are at 4.8 kHz, 5.5 kHz, 6.5 

kHz, 7 kHz and 8 kHz in the experimental data, respectively. Our model’s pressurized frequency 

responses showed multiple peaks at frequencies around and higher than that of the highest peak. These 

multiple peaks are not seen in the experimental data, presumably because of damping that was heavier 

than in our model.

Figure 5-20: Comparison of our model responses with normalized vibration data at the gerbil 
umbo in Kose et al. (2020), in response to quasi-static pressures with different magnitude in 
combination with a chirp (0.12 kHz to 10 kHz). Here, a frequency range of 0.5 kHz to 10 kHz was 
selected to match the experimental data.
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5.4 Discussion
For our Code_Aster model, we noticed that the model response at the umbo was not sensitive to 

changes in the spring constants of the lateral two sets of springs on the two ends of wedge 1. Although 

we intended to use these springs to provide the ossicular stiffness, the stiffness currently is mostly 

provided by the annular ligament springs on the stapes footplate. Therefore, the axis spring constants, 

and thus also the stapes spring constants, need to be reconsidered.

For the model response to the pressurized sweeps, we observed an asymmetry in our pressure versus

displacement curves (Fig. 5-12 and Fig. 5-13A). Dirckx and Decraemer (2001) suggested that the TM 

motion in response to negative pressures is strongly affected by ossicular mechanics, while its motion 

at positive pressures is mainly influenced by the elastic properties of the TM itself. The discrepancies 

between the magnitudes of TM vibration at negative pressures obtained by our model and those 

obtained experimentally might be explained by the fact that our model does not accurately represent the

ossicular mechanics. This can also be related to our observation with the model response to a pure-tone 

acoustic stimulus on top of a quasi-static pressure ramp. When changing the ISJ from viscoelastic to 

elastic, we observed a decrease in the magnitude of the umbo motion. Due to the simplicity of our ISJ 

structure, without curvature and individual ISJ components being modelled, it is hard to conclude what 

the decrease in magnitude indicates about the functionality of the ISJ.

For the model response to the 226-Hz pure tone in the presence of quasi-static sweeps, we obtained 

a difference between the pressure peaks 36.3 Pa (Fig. 5-17). The value of the PPD is directly dependent

on the amount of hysteresis in the model response. Our model showed a smaller amount of hysteresis 

than Choukir’s model did (Fig. 5-13), and consequently we obtained a lower PPD value than hers (42.8

Pa). Therkildsen and Gaihede (2005) reported a constant PPD of 120 Pa measured with live humans for

pump speeds from 500 Pa/s to 4000 Pa/s. On the contrary, as discussed in section 5.3.1.1, Dirckx et al. 
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(2006) reported higher umbo hysteresis at lower pressure-change rates measured with post mortem 

rabbits. It is not clear to us whether the difference in species and/or the difference in experimental 

procedure could lead to the discrepancy.

Our simulated frequency responses at the umbo for a chirp on top of static-pressure steps were a first

step towards replicating the experimental LDV measurements of Kose et al. (2020). We observed 

trends similar to those observed experimentally in terms of low-frequency magnitudes and resonance 

peak frequencies, but we observed multiple closely spaced peaks as low as 3 kHz, which was not seen 

experimentally. For the experimental measurements, because of laser tracking problems, the first chirps

after a step were not reliable and later chirps were used, while we only simulated the model response to

one chirp after a step to reduce computation cost. In our model response, because of the short period of 

simulation, the magnitude of the acoustic signal is much smaller than the magnitude of the on-going 

viscoelastic effect. We should simulate later chirps to see if it makes a difference. Due to the 

complexity of the many middle-ear components and our lack of knowledge about the masses and 

corresponding moments of inertia of those components of the gerbil middle ear, we cannot relate these 

peaks to particular middle-ear components.
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Chapter 6: Conclusion

6.1 Summary
In this study, we developed a FE model of the gerbil middle ear and studied its response under 

conditions similar to those involved in clinical tympanometry, namely, a combination of large quasi-

static pressures and low-amplitude acoustic pressures. We updated the previous model of Choukir 

(2017) by inserting distinct components for the ISJ, the pedicle, the lenticular plate and the stapes. We 

also added spring representations of the ligaments. We defined a fixed axis of rotation for the malleus 

and incus. We used two different FE solvers: Code_Aster, for model verification and analysis within 

the linear regime, and FEBio, for both linear and non-linear analysis.

For the Code_Aster model, we used isotropic elastic material properties and stiffness-proportional 

Rayleigh damping for all components. The model’s small-amplitude frequency responses were 

compared with the model of Maftoon et al. (2015), and material properties were adjusted accordingly. 

The cochlear damping was modelled using four dashpots perpendicular to the stapes footplate. The 

magnitude of the Rayleigh parameter was increased compared to that used in the model of Maftoon et 

al. to match the resonance peak.

For the FEBio model, we employed a quasi-linear visco-hyperelastic model to describe the 

viscoelastic behaviour of the middle ear. The TM and the ISJ were described by the Mooney-Rivlin 

hyperelastic model. The other components were modelled as isotropic elastic. The elastic properties of 

the model components were determined by comparing the small-amplitude frequency responses of our 

model with the model of Maftoon et al. (2015). The viscoelastic response was defined with six Prony-

series time constants, equally spaced logarithmically, covering a frequency range of 3 mHz to 16 kHz, 

effectively covering the range from ultra-low quasi-static pressure change rates to the frequencies of 
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the acoustic stimuli in tympanometry. As done by Choukir (2017), the Prony-series coefficients of the 

PF were adjusted to match the feature in the umbo response that reflected coupling between the PT and 

the PF. As done for the Code_Aster model, the cochlear damping was modelled using dashpots. To 

provide enough damping for the model, the Prony-series coefficients of other structures were adjusted 

to match the magnitude of the low-frequency response produced by the model of Maftoon et al. 

Overall, both the Code_Aster and FEBio models showed a small-amplitude response similar to that of 

the model of Maftoon et al. for frequencies up to 3 kHz.

As done by Choukir (2017), we explored the responses of our model to large quasi-static pressures 

in the form of triangular sweeps, with and without superimposed low-frequency acoustic stimuli, with 

pressure-change rates of 200 Pa/s to 1500 Pa/s. As previously observed, the umbo displacement was 

larger for the positive pressures than for the negative pressures. As Choukir did, we observed constant 

hysteresis for different pressure-change rates, although Dirckx et al. (2006) reported increasing 

hysteresis with decreasing pressure-change rates. We also compared the PT displacements at positive 

and negative pressures to those measured by Dirckx and Decraemer (2001); the PT displacements at 

negative pressures were substantially larger in our model.

We repeated Choukir’s investigation of the model umbo response to low-frequency pure tones 

applied on top of pressure sweeps at a pressure-change rate of 1500 Pa/s. The simulated static-pressure-

induced variations in the umbo vibration magnitude for ascending and descending pressure sweeps 

resemble some features of clinical tympanograms: (1) the asymmetrical effects of positive and negative

pressures; and (2) the peak pressure difference that is a result of hysteresis. In addition to Choukir’s 

investigations of pressure sweeps, we studied our model’s response to low-frequency acoustic stimuli 

applied on top of quasi-static pressure steps, and also compared the effect of elastic and viscoelastic 

versions of our new ISJ component. The model results suggest that the viscoelasticity of the TM affects
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umbo vibrations more than does that of the ISJ. Finally, in response to acoustic chirps (from 0.1 kHz to 

10 kHz) superimposed on quasi-static pressure steps of between +500 Pa and +2500 Pa (as done by 

Kose et al., 2020), our model produced frequency responses that exhibited trends similar to those seen 

in the experimental results in terms of the low-frequency magnitude decrease and resonance peak shift 

to higher frequencies when the magnitude of pressurization increased.

6.2 Future work
Although our model was able to produce results similar to some aspects of experimental data, there are 

some discrepancies and further work is required. Developing a model with realistic geometry and a 

priori knowledge of the material properties is challenging. One reason is the wide range of possible 

choices that can be made during the calibration of a model, especially when using an oversimplified 

and somewhat arbitrary geometry for parts of the model. Sensitivity analyses on separate model 

components are essential to understand the relative influences of some of these choices. For example, 

for both the Code_Aster and FEBio models, we should explore the TM thickness, geometry and 

curvature; the spring constants of the annular ligament springs and the springs on the axis of rotation; 

the damping coefficient of the dashpots on the stapes footplate; and the thickness and Young’s modulus

of the wedges. Specifically for the springs on the axis of rotation, future work should define the annular

ligament spring constants a priori by numerical simulation on just the stapes footplate, or by direct 

experimental measurement, and then investigate the spring constants required on the wedge (possibly 

increasing the thickness of the wedge) to an appropriate stiffness at the rotational axis. 

For the FEBio model, we should explore the effects of the parameters of the Mooney-Rivlin model 

and try different hyperelastic material models, and also explore the effects of the relaxation coefficients

for each Prony-series time constant. Future work should determine the low-amplitude effective Young’s

modulus of the hyperelastic part of the viscoelastic material properties a priori. We did not observe PT 
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buckling at low pressure-change rates as Choukir (2017, figs. 5–12) did. The discrepancy could 

indicate that the hyperelastic part of the TM material properties requires adjustment.

The present model still includes a considerable degree of simplification of the manubrium, ossicles, 

joints and ligaments. Further improvements of the model can be made by introducing more realistic 

component geometries (i.e., taken from the model of Maftoon et al.) and perhaps by taking into account

the anisotropy and multiple layers of the TM. The geometry of the model components can strongly 

affect how they contribute to the model response. For example, Soleimani et al. (2020) found that the 

curvature of the ISJ joint capsule affected the joint response during tensile tests. More realistic 

compartments and geometry of the ISJ are required to really evaluate the effects of the ISJ on the 

model response. However, more complex geometries will require significantly greater computational 

power, in addition to introducing more parameters to be determined. Utilization of the supercomputer 

was helpful but only reduced run time by approximately 20%. Using multiple solution phases, with 

smaller step sizes when there are acoustic stimuli or large pressure transients, is not useful when those 

conditions continue for a long period. Therefore, it is essential to determine which model features are 

important, and where there are opportunities for decreased mesh resolution.

Future work should also investigate the pressurized vibrations of other components of the middle 

ear, for example, at the ISJ and at the stapes, to study the functionality of different middle-ear 

components. Since we do have a pedicle structure in the model, future work could also investigate the 

possible effects of pedicle bending (Funnell et al., 2005) in pressurized vibration responses. We did not 

investigate further for this thesis for lack of time and because there are few good data for comparison, 

but the recent pressurized ISJ measurements in our group by Feizollah (2019) using X-ray nanoCT and 

light-sheet imaging, as well as microscopic video and optical-flow processing, will be very useful for 

this purpose.
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For the experimental pressurized LDV data of Kose et al. (2020), we only compared our model 

response to the positive static-pressure steps and encountered numerical problems when attempting to 

apply negative steps. Future work should simulate the model response to negative static-pressure steps. 

We noticed that the effect of viscoelasticity lasted through the period of the chirp acoustic input. 

Therefore, future work should extend the time of simulation until the viscoelastic effect is very small so

that results from a full experimental pressurization cycle can be compared.

As discussed earlier, without more realistic component geometries, it is unclear to us which 

components of the middle ear contributed to the multiple peaks that we observed around the main 

resonance frequency under quasi-static pressurization. As more components are added to the model, we

should be able to identify individual frequency-response peak features with distinct components of the 

middle ear, and thus gain a better understanding of the middle-ear response to quasi-static pressures. 

6.3 Significance
Our model is an enhancement of the previous model of Choukir (2017), with more anatomical details. 

We confirmed Choukir’s modelling of certain aspects of the response of the middle ear to both quasi-

static pressures and acoustic pressures, presented a very preliminary look at the possible effects of the 

ISJ, and also presented a promising comparison to the new experimental data of Kose et al. (2020). Our

model provides a tool to explore the complex interactions between the quasi-static and acoustic 

measurements, which can be used to improve our understanding of clinical tympanometry. Although 

our model was developed for gerbils, and the high-quality data that are available for gerbil ears, the 

ultimate goal is to study tympanometry performed in humans and particularly in newborns.
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