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ABSTRACT

Markov Decision Processes are a mathematical framework widely used

for stochastic optimization and control problems. Reinforcement Learning is a

branch of Artificial Intelligence that deals with stochastic environments where

the dynamics of the system are unknown. A major issue for learning algorithms

is the need to balance the amount of exploration of new experiences with the

exploitation of existing knowledge. We present three methods for dealing with this

exploration-exploitation tradeoff for Markov Decision Processes. The approach

taken is Bayesian, in that we use and maintain a model estimate. The existence of

an optimal policy for Bayesian exploration has been shown, but its computation

is infeasible. We present three approximations to the optimal policy by the use of

statistical sampling.

The first approach uses a combination of Linear Programming and Q-learning.

We present empirical results demonstrating its performance. The second approach

is an extension of this idea, and we prove theoretical guarantees along with

empirical evidence of its performance. Finally, we present an algorithm that adapts

itself efficiently to the amount of time granted for computation. This idea is

presented as an approximation to an infinite dimensional linear program and we

guarantee convergence as well as prove strong duality.
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ABRÉGÉ

Les processus de décision Markoviens sont des modèles mathématiques

fréquemment utilisés pour résoudre des problèmes d’optimisation stochastique et

de contrôle. L’apprentissage par renforcement est une branche de l’intelligence

artificielle qui s’intéresse aux environnements stochastiques où la dynamique du

système est inconnue. Un problème majeur des algorithmes d’apprentissage est

de bien balancer l’exploration de l’environnement, pour acquérir de nouvelles

connaissances, et l’exploitation des connaissances acquises. Nous présentons

trois méthodes pour obtenir de bons compromis exploration-exploitation dans

les processus de décision Markoviens. L’approche adoptée est Bayésienne, en ce

sens où nous utilisons et maintenons une estimation du modèle. L’existence d’une

politique optimale pour l’exploration Bayésienne a été démontrée, mais elle est

impossible à calculer efficacement. Nous présentons trois approximations de la

politique optimale qui utilise l’échantillonnage statistique.

La première approche utilise une combinaison de programmation linéaire

et de l’algorithme ”Q-Learning”. Nous présentons des résultats empiriques qui

démontrent sa performance. La deuxième approche est une extension de cette

idée, et nous démontrons des garanties théoriques de son efficacité, confirmées

par des résultats empiriques. Finalement, nous présentons un algorithme qui

s’adapte efficacement au temps alloué pour le calcul de la politique. Cette idée est

présentée comme une approximation d’un programme linéaire à dimension infini;

nous garantissons sa convergence et démontrons une dualité forte.
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CHAPTER 1
Introduction

Life is the sum of all your choices.

- Albert Camus

Decision making is an essential part of a person’s life and is the main de-

termining factor for the kind of life that person will live. Decisions range from

simple ones such as whether to go grocery shopping today or tomorrow, to more

complex ones such as whether one should continue graduate studies or get a high

paying job. The “goodness” of the choice made is proportional to the amount of

experience available for the current situation. In the first example, more experience

will allow one to better gauge the impact of putting off grocery shopping for an-

other day, given the current household situation. The first couple of times one will

inevitably make a couple of ‘bad’ choices, but given that we can learn from our

mistakes, these bad choices should decrease.

In the pursuit of experience, one needs to test the waters in order to properly

gauge the effect of the different avaliable choices. Consider a student that has

just arrived in a new city and has already found a route to get from home to

school in a reasonable amount of time. Every morning the student may ask herself

the same question: Is there a faster way to get to school that would allow me to

sleep in more? She must choose between two types of behavior: cautious and

exploratory. A cautious student will be content with the usual route as she is
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guaranteed to arrive to class on time. This type of behavior is sometimes referred

to as exploitative, since the person is exploiting the current knowledge he or she

already has. An exploratory student will try new paths in the hope of stumbling

across a faster one, at the risk of getting lost or arriving late to class. Adhering

constantly to one type of behavior is usually not optimal since a completely

exploitative behavior may settle for something mediocre, while a completely

explorative behavior may never stabilize or lead to bad results.

In this thesis we deal with the problem of balancing exploration and exploita-

tion, specifically applied to intelligent agents. An intelligent agent is “anything

that can be viewed as perceiving its environment through sensors and acting upon

that environment through effectors” (Russell and Norvig, 1995). Specifically we

are dealing with agents that must choose the way they will act, and as mentioned

above, we would like them to make “good” choices. This notion of preference

implies there should be an ordering of the action choices based on their effects.

Utility theory is a convenient framework for dealing with preferences by assign-

ing utilities to the various action choices. A utility is a quantitative measure of

the “goodness” of the various actions.

In most problems the effects of the actions are not deterministic, thus,

there is some degree of uncertainty. This uncertainty can come from either

incomplete knowledge of the environment or from simplifying assumptions. An

example of a situation where one has incomplete knowledge of the environment

is a slot machine, since perfect knowledge of its outcomes would bankrupt the

casino! An example of simplifying assumptions is the roll of a fair die; one could
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hypothetically predict the exact outcome by considering all the physical forces

affecting the die, but rather than attempt to solve this impractical problem it can

be simplified by assigning equal chance to the six possible outcomes. Probability

theory is a mathematical framework for quantifying uncertainty, assigning a

probability (a real number between 0 and 1) to each element of the set of all

possible outcomes.

Decision theory is the field combining utility and probability theory.

Decision theory is studied in many fields, but we shall consider it in the context

of Reinforcement Learning, a branch of Artificial Intelligence that has recently

received much interest. Arriving at an optimal balance between exploration and

exploitation is a key problem in this field. In this thesis we will present various

methods for pursuing this balance within a mathematical framework that is widely

used for Reinforcement Learning.

1.1 Statement of Originality

The first algorithm presented was previously published in refereed conference

proceedings (Castro and Precup, 2007). In addition to containing a more extensive

literature review, we present two additional, novel algorithms. The first of these

is a continuation of the algorithm of (Castro and Precup, 2007) with formal

guarantees for near-optimal performance. Just as the algorithm of (Castro and

Precup, 2007), it is based on the idea of sparse sampling introduced in (Kearns

et al., 1999). However, it is more faithful to the original algorithm, and it is

because of this that formal guarantees of near-optimality are achieved.
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The last algorithm we present is a dynamic algorithm whose solution quality

is directly proportional to the amount of time allowed for computation. This is

an improvement over most of the existing algorithms, whose parameters must

be decided beforehand. The problem is phrased as an infinite dimensional linear

program and we present a sequence of approximations with guarantees of conver-

gence. The algorithm takes advantage of this sequence and uses previous solutions

in the sequence to speed up its current computation. We also prove the absence

of a duality gap for the infinite dimensional linear program in question as well as

for a general class of Markov decision processes. This result is significant in its

own right, as the finiteness of the state space is always assumed when solving a

Markov decision problem using linear programming (Puterman, 1994),(Bertsekas

and Tsitsiklis, 1996).

We demonstrate the strong empirical performance of all our methods on

the problems in (Castro and Precup, 2007) as well as some larger problems, thus

demonstrating that our algorithms benefit from both theoretical guarantees and

strong empirical performance. This is an important combination not present in

many existing algorithms.

1.2 Thesis Outline

This thesis is organized as follows. In chapter 2 we present the background

necessary for our decision making problem. In chapter 3 we present the formal

theory characterizing the problem of balancing exploration and exploitation

strategies on which our methods will be based. In chapters 4, 5 and 6 we present

three different methods for producing near-optimal decisions with different formal

4



guarantees. We evaluate each method empirically and compare them to existing

algorithms. Finally, in chapter 7 we provide some discussion of our work, along

with contributions and future work.
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CHAPTER 2
Background

In this chapter we present the necessary background for this thesis. We

first introduce Markov Decision Processes (MDPs), which are the mathematical

framework used for modeling decision making in Reinforcement Learning. We

present the main algorithms for computing the value of states when the model is

known, along with some approximation schemes. We then introduce Reinforcement

Learning (RL), which is a field concerned with the creation of agents which learn

how to make good decisions.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) (Puterman, 1994) is a four tuple:

{S,A,P ,R}, where S is the set of states, A is the set of available actions1 ,

P : S × A × S 7→ [0, 1] denotes the transition probabilities between states, and

R : S × A 7→ R is the reward function. If the agent is in state s and performs

action a, then P(s, a, ·) is the distribution over next possible states and R(s, a) is

the expected reward received. In this thesis we assume that S is finite or countable

and A is finite.

1 We acknowledge that many authors denote by As ⊂ A the set of actions avail-
able from state s ∈ S. For simplicity in this thesis we assume As = A for all s ∈ S.
However, the results can easily be adapted to the more general case.
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The following assumption is necessary for some of the theoretical results

presented in this thesis.

Assumption 2.1.1. The rewards are positive and bounded. That is, the reward

function is defined as R : S ×A 7→ [0, Rmax]

The boundedness assumption is standard in the MDP literature. The positiv-

ity assumption is not problematic, as any reward function can be scaled upwards

in order to make it positive. This translation does not affect the ordering of the

states by their optimal values, and thus, does not affect the optimal policy.

If S is finite, the transition probabilities between states can be stored in

a tabular format, i.e. in an |S| × |A| × |S| array P, whose (i, a, j)th entry

is the probability of transitioning from state i to state j under action a. This

representation is acceptable for state spaces which are not too big, but becomes

impractical as the size of the state space increases. In section 2.4 we will consider

an alternate representation for the transition probabilities.

The behavior of an agent in an MDP can be modeled using the notion of

a policy. A deterministic stationary policy π : S 7→ A is one that determines

what action to take depending solely on the current state. A stochastic policy

π : S × A 7→ [0, 1] is one that assigns a probability to each action given the current

state.

In order to behave well, an agent should consider the long-term rewards of

its actions, rather than only the immediate reward returned by R. For example,

in figure 2–1 the only time the agent receives a reward is when it reaches the goal

state. By considering only the immediate reward, the agent would choose actions
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Figure 2–1: Grid-world example

randomly throughout the whole grid except for the states immediately next to the

goal state. However, in state (3,d) the agent is clearly in a better position than

in state (5,b), because at least one path to the goal from (3,d) is shorter than any

path available from (5,b). This example suggests that states should have a value

associated with them that captures the best possible behavior from a state.

The running time horizon of the agent is not generally specified beforehand,

and a good decision-making method should handle horizons of arbitrary length,

indeed, even of infinite length. Clearly, summing over all possible future rewards

from a certain state can diverge if we consider an infinite horizon. For this reason,

a discount factor 0 < γ < 1 is introduced. This discount can be intuitively

thought of as an interest rate in finance applications, and is meant to discourage

rewards received too far in the future. For example, in the grid world of figure 2–1,

introducing a discount factor pushes the agent to find the shortest path to the goal

8



from any state. The expected utility of an agent following a policy π is given by

E
∞

π [U ] =
∞
∑

t=0

γtrπt <∞. (2.1)

where rπt is the expected reward received at time t when using policy π. An agent

will try to find a policy maximizing equation (2.1) in order to achieve an optimal

behavior. We immediately obtain the following inequality:

E
∞

π [U ] ≤
Rmax

1− γ
(2.2)

for all policies π.

The Maximum Expected Utility principle (Russell and Norvig, 1995) states

that a rational agent should choose the action that maximizes its expected utility.

In an MDP, the maximum expected utilities from each state obey the Bellman

optimality equations (Bellman, 1957) (note the recursive nature of this definition):

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P(s, a, s′)V ∗(s′)

}

. (2.3)

Inequality (2.2) also implies

V ∗(s) ≤
Rmax

1− γ
. ∀s ∈ S

For convenience, denote Vmax = Rmax

1−γ
. We may also wish to denote Vmin = Rmin

1−γ
.

By assumption 2.1.1 we have that Vmin = 0, but we shall leave it as Vmin for

generality.
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Similarly, one can define a set of state-action utilities, which quantify the

value of taking each action from each state, and are defined as:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

P(s, a, s′)V ∗(s′). (2.4)

The solution of Equations (2.3) can be computed exactly and approximately,

and we will review a number of these methods in the following sections. Note that

if we have a solution to Equations (2.3), we can easily extract the optimal policy

via the following equation:

π∗(s) = arg max
a∈A

{

R(s, a) + γ
∑

s′∈S

P(s, a, s′) · V ∗(s′)

}

= arg max
a∈A

Q∗(s, a). (2.5)

2.2 Computing the value function

In this section we present three standard methods for computing the value

functions defined in Equations (2.3).

2.2.1 Value iteration

Bellman (1957) introduced Dynamic Programming (DP) as an approach to

solving problems exhibiting a recursive nature as in equations (2.3). The basic idea

is to start from an initial estimate V 0 of the value function and compute successive

approximations via the following equation:

V n+1(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

P(s, a, s′)V n(s′)

}

. (2.6)

Computation of the value function by this method of successive approxima-

tions is known as value iteration. The successive approximations V n converge to
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V ∗ in max norm, and value iteration finds a stationary policy that is near-optimal

within a finite number of iterations (Puterman, 1994).

We restate a useful theorem from (Puterman, 1994):

Theorem 2.2.1. Suppose 0 ≤ γ < 1, S is finite or countable, and R(s, a) is

bounded. Then there exists a unique V ∗ satisfying equations (2.3).

2.2.2 Policy iteration

The optimal policy π∗ may not be very sensitive to the actual numerical

values of the value functions (Russell and Norvig, 1995). In other words, the

optimal policy may be reached before the value functions have converged to their

fixed point (i.e. V n 6= V ∗ but πn = π∗), where πn is the policy extracted from V n

by equation (2.5). This suggests an alternate approach to obtaining the optimal

decisions at each state, called policy iteration.

Given a certain deterministic policy π, we can compute the value of all the

states when the agent is committed to π by the following set of equations:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

P(s, π(s), s′)V π(s′). (2.7)

Policy iteration works by starting from an initial policy π0, computing V 0

via equations (2.7), and then extracting an improved policy π1 from V 0 via

π1 = arg maxa∈A
{

R(s, a) + γ
∑

s′∈S P(s, a, s′)V 0(s′)
}

The algorithm continues

until the policy no longer changes.

This is a sufficient stopping condition, since it has been shown that the

sequence of value functions {V n} generated by policy iteration converges monoton-

ically in max norm to V ∗ (Puterman, 1994).
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2.2.3 Linear Programming

Finally, we present an alternate approach to computing the value functions

defined by equations (2.3) which uses Linear Programming (LP). Linear pro-

gramming is a technique developed by G.B. Dantzig in the late 1940’s for solving

optimization problems. Its elegant theory has been used in many fields (see

(Chvátal, 1983)) and is well understood.

The Bellman optimality equations (2.3) can be rephrased as the following

primal LP:

minimize
∑

s∈S

α(s)V (s)

such that V (s)− γ
∑

s′∈S

P(s, a, s′)V (s′) ≥ R(s, a) (2.8)

∀s ∈ S. ∀a ∈ A.

The vector α in the objective function can be considered as state-relevance

weights. For finite MDPs (i.e. with finite state and action spaces) any strictly

positive constants will produce the correct value function. For infinite state spaces

(where the LP (2.8) becomes an infinite-dimensional LP) the choice of the α vector

cannot be arbitrary. Indeed, it must be the topological dual of the primal variable

space in order to guarantee continuity of the objective function and the constraints

(see (Anderson and Nash, 1987)). We shall deal with this issue in section 6.1.
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The above primal LP can be written in its dual form, yielding the dual LP:

maximize
∑

s∈S

∑

a∈A

R(s, a)x(s, a)

such that
∑

a∈A

x(t, a)− γ
∑

s∈S

∑

a∈A

P(s, a, t)x(s, a) = α(t) (2.9)

x(s, a) ≥ 0 ∀a ∈ A.s ∈ S

The value of the decision variables x(s, a) in the dual LP have an intuitive de-

scription. They represent the total discounted joint probability under initial-state

distribution α that the system occupies state s and chooses action a (Puterman,

1994).

Since finite MDPs yield a finite LP we have no duality gap, thus, the value of

the primal and the dual LP are the same. Furthermore, the value function com-

puted by the LP is equal to the fixed point solution to equations (2.3) (Puterman,

1994). Note that the primal LP has |S| variables and |S| × |A| constraints, whereas

the dual LP has |S| × |A| variables and |S| constraints. Thus, for finite MDPs, it is

preferable to solve the dual LP.

2.3 Approximating the value function

The methods presented in section 2.2 are suitable for MDPs whose state and

action spaces are not very large. If the MDPs have a very large state or action

space, direct computation with the above methods is infeasible. In this section we

briefly review some methods for approximating the value function when the size of

the MDP makes exact methods infeasible.
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2.3.1 Function approximators

In supervised learning, function approximation refers to a wide variety of

techniques for constructing a representation based on data given in the form of

inputs and desired real-valued outputs. This approach can be “imported” in MDPs

by treating the state as an input and providing an output based on equation (2.3),

for instance. This approach has been widely studied and used for MDPs using

various techniques such as superimposed tilings over the state space (Albus, 1981),

linear combinations of basis functions (Cherkassky and Mulier, 1996), radial basis

function networks (Sutton and Barto, 1998), and many more (see (Ratitch, 2004)

and (Sutton and Barto, 1998) for a survey of various function approximation

methods). We do not focus on function approximation in this thesis, but mention

them because one approach is closely related to some of the methods we present

further on.

2.3.2 Linear Programming Approximations

The idea of Linear Programming Approximation (LPA) is to choose a set

of basis functions that would span most of the region of interest in a large state

space. The value function would then be approximated by a linear combination of

the basis functions. The coefficients for each basis function are found by means of

an linear optimization solver.

When considering the primal LP formulation (see equation (2.8)) of the value

function, by using a set of basis functions to span the state space, the number

of variables is reduced to the number of basis functions chosen. This idea was

introduced in (Schweitzer and Seidmann, 1985) and further developed in (de Farias
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and Roy, 2003; Hauskrecht and Kveton, 2004; Guestrin et al., 2002). Although

LPAs have proven to be quite effective in practice, their success is directly affected

by the choice of basis functions, which is not evident.

Furthermore, even though the number of variables can be reduced in this

way, the number of constraints still remains arbitrarily large. To overcome this, de

Farias and Roy (2001) propose sampling from the constraints in order to reduce

the size of the constraint space. Unfortunately their method is not very practical,

as their theoretical results rely on prior knowledge of the optimal policy, which

in general is not known. The authors propose some heuristics to bypass this

requirement, but at the expense of the theoretical guarantees.

2.3.3 Sparse Sampling

In (Kearns et al., 1999), the authors present an approximation for large state

spaces using statistical sampling. Their algorithm requires a generative model

that receives an input state and action and outputs the next state according to

the MDP transition model. The idea is to start from some state in the MDP

and create a sparse tree from it. From any state at level h in the sparse tree,

a predefined number of transitions C are sampled for each action. This set of

transition samples creates the h + 1 level in the sparse tree. The process is

continued until a desired depth H. The authors present an analysis to determine

the values of C and H that would yield a value function that is within ǫ of the

optimal value function. Their algorithm is independent of the size of the state

space, depending solely on Vmax, γ and the desired precision ǫ. Thus, their

algorithm is able to handle problems with an infinite state space.
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Although theoretically satisfying, the required values for C and H make the

resulting sparse MDP infeasible in practice. Nevertheless, the ideas can be applied

with less conservative values for these parameters. This thesis will rely heavily on

this idea.

2.4 Factored Markov Decision Processes

Many real world problems enjoy an underlying structure in the state space

that allow one to express transition probabilities more compactly, by using state

variables. The different combinations of all the values of these state variables

produce all the possible states in the system. A standard example is the coffee

robot problem (Boutilier et al., 1995), in which a robot is to get coffee for a user

and avoid getting wet. The user is at the office and the coffee must be purchased

at the store. Since going to the store means going outside, there is a risk of getting

wet that is dependent on the probability of rain. The robot can choose from four

actions: move (between the office and the shop), buy coffee, deliver coffee, and

get umbrella. The state space is represented by the Boolean variables location,

hasRobotCoffee, hasUserCoffee, hasUmbrella, isRaining and isWet. The different

instantiations of the 6 state variables produce the 64 distinct states. In general,

state variables need not be Boolean. Note that the number of distinct states

increases exponentially with the number of state variables.

Independence relations can be exploited in order to provide a compact

representation of the transition probabilities, instead of explicitly enumerating

all states. In the coffee robot example, for instance, the value of state variable

hasRobotCoffee at time step t does not affect the value of state variable isRaining
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at time step t + 1. In fact, isRaining is independent of all other state variables

except itself.

This suggests an alternate form of representing the transition probabilities:

using Dynamic Bayesian (or Belief) Networks (DBNs) (Dean and Kanazawa,

1989). A Bayesian network is a directed, acyclic graph (DAG) where the nodes

are the state variables, and the arrows represent influence (i.e. an arrow from

node X to node Y indicates that the value of node X has a direct influence on the

value of node Y ). At each node X a conditional probability table (CPT) is stored

that contains the probabilities of the different values for X given the values of its

parents (the nodes {Y } with an arrow to X).

A Dynamic Bayesian Network (DBN) is Bayesian Network with two copies

of all the state variables, for two successive time steps t and t + 1. The directed

arrows go from the variables at time step t to the ones at time step t + 1 (since we

are assuming the Markov property).

A factored MDP model will have one DBN for each action a (Koller and

Parr, 2000). An example of the representation for the robot coffee domain is

depicted in figure 2–2, where the left column holds the variables at time step t

and the right column holds the variables at time step t + 1 (we have omitted the

CPTs for clarity). The size of the representation is dependent on the number of

dependencies between state variables. Indeed, if every state variable is affected

by the value of all the state variables in the previous time step, then the DBN

representation is no smaller than the tabular representation.
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Figure 2–2: Coffee robot example: DBN for deliver coffee action

The reward function can also benefit from the structure of the state space if it

can be decomposed into localized additive reward functions depending on a subset

of the state variables X.

Unfortunately, the value function for factored MDPs usually does not exhibit

any factored structure, and so a compact representation is not possible without

approximations.

2.4.1 Algebraic Decision Diagrams

Algebraic Decision Diagrams (ADDs) are one such structure which have been

widely used to represent factored MDPs. To describe them we must first describe

Binary Decision Diagrams (BDDs).

BDDs are a compact way of representing Boolean functions f : B
n 7→ B

in a tree-like fashion (Bryant, 1986). Consider ordering the binary variables as

b0, b1, · · · , bn and constructing a complete binary tree in the following manner.

At level i there are only nodes representing variable bi. Each node has two

branches stemming from it into level i + 1, representing the two possible Boolean
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values. A traversal of a branch of the binary tree yields an instantiation of all the

variables, and thus the leaf contains the result of the function f applied to such an

instantiation. This simple construction may not be very efficient, as there may be

many identical subtrees. BDDs take advantage of this and reduce a full binary tree

into a more compact form by merging any identical subtree and eliminating any

node whose two children are identical. Consider the Boolean function x1 ∨ (x2 ∧ x0)

over three variables. Figure 2–3 (a) illustrates the complete binary tree for this

Boolean function, and figure 2–3 (b) demonstrates the reduction obtained through

the BDD construction. In all the BDD diagrams below a solid line represents the

true branch while the dotted line represents the false branch.

Figure 2–3: Example Boolean function: (a) Full binary tree representation; (b)
BDD representation

ADDs generalize BDDs in that the value at the leaves need not be Boolean.

In other words, ADDs are a compact way of representing real valued functions

over Boolean variables f : B
n 7→ R (R.I. Bahar et al., 1993). Furthermore, ADDs

can be used to represent real valued functions over variables which take on more

than two values. This can be done by considering the binary representation of

each multi-valued variable and assigning a binary variable to each bit of such a
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representation. ADDs are then a compact way of representing real valued functions

over variables that can take on a finite set of values.

It should be noted that the size of the resulting BDD or ADD is dependent

on the ordering of the variables chosen. Figure 2–4 demonstrates two BDDs

representing the same Boolean function as above but with different variable

orderings. Finding the optimal ordering of the variables for a BDD (or ADD) is

actually an NP-hard problem, and as such, the designer must rely on heuristics to

be able to compactly represent a function.

Figure 2–4: BDD orderings for example Boolean function: (a) good ordering; (b)
bad ordering

Stochastic Planning Using Decision Diagrams (SPUDD) is a planning algo-

rithm introduced in (Hoey et al., 1999), which uses ADDs to encode a factored

MDP and performs a form of value iteration performs a form of value iteration

solely through operations on these ADDs. Their experimental results show that

in many cases there are big savings when using SPUDD for value iteration, rather

than standard value iteration. The implementation of SPUDD is based on CUDD

(Colorado University Decision Diagrams) (Somenzi, 1998), which is a library of C

routines designed to manipulate ADDs.
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2.5 Reinforcement Learning

The previous sections presented methods for solving MDPs where the model is

known. In many cases, however, this is not the case. In these situations, the agent

must learn the model and how to act by interacting with the environment. The

agent must adapt its behavior in order to maximize the expected utility. In order

to have an idea of the utility of each choice the agent must try all the actions from

all the different states.

Reinforcement Learning (RL) is the field of Machine Learning that deals

with this learning problem. There is a vast array of algorithms designed for this

learning problem (see (Sutton and Barto, 1998) for an excellent survey of available

methods) which can be classified into different types of methods. We will only

review some of them and point the reader to (Sutton and Barto, 1998) for more

information.

Model-based methods are methods which maintain an explicit representation of

the model estimate throughout the learning process. As such, the model estimate

at any point can be considered as a known MDP and any of the methods described

in section 2.2 may be used to obtain a value function estimate. One advantage of

this type of method is that if any prior knowledge of the model is available, it may

be used as the initial model estimate and may shorten the learning time.

Model-free methods do not maintain a model estimate, but rather update

the value function estimates directly and use these estimates to make the action

choices. One advantage of these methods is that they avoid having to store the
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immediate rewards and transition probabilities. However, prior knowledge of the

dynamics of the system does not provide an improved starting point.

One well-known type of model-free method is Q-learning (which is in fact

a type of Temporal Difference learning (Sutton and Barto, 1998)). Q-learning

maintains an estimate of the action value functions (see equation (2.4)) by

performing an update after each time step of agent-environment interaction. After

observing a transition from state s to state s′ under action a and receiving reward

r, the agent performs the following update:

Q(s, a)← Q(s, a) + α
[

r + γmax
a′

Q(s′, a′)−Q(s, a)
]

. (2.10)

where α ∈ (0, 1) is the learning rate. The learning rate can be thought of as the

step size in standard gradient descent methods (see (Duda et al., 2000)).

The action values maintained by Q-learning are guaranteed to converge to the

optimal action value function if all actions are tried from all states infinitely often.

This algorithm works well in practice, and its ease of implementation makes it an

enticing candidate for RL agents.

2.5.1 Exploration

An agent is faced with a conundrum when posed with this sort of problem.

On the one hand, it needs to explore its environment in order to obtain valu-

able experience which will allow it to better understand the dynamics of the

environment. On the other hand, it needs to exploit whatever knowledge of the

environment it already has in order to maximize the reward received. Exploring is
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expensive and risky, as the agent may choose sub-optimal or even dangerous ac-

tions; however, a lack of exploration may lead the agent to be stuck with a policy

that is sub-optimal (local maxima). This is known as the exploration problem, and

is the main problem we will address in this thesis.

Exploration has been studied extensively from a theoretical point of view

using bandit problems. A one-armed bandit is a slot machine where a user can

insert a coin, pull the handle and collect any earnings. An n-armed bandit is a slot

machine with n handles. The user inserts a coin and must choose which handle

to pull. Each handle obeys a different probability distribution that prescribes

the expected earnings when playing it. If the model is known beforehand the

problem is trivial, as the user need only play the handles with the highest expected

earnings. If the model is not known, the user must maintain estimates of the

expected earnings of each handle. A greedy policy is one that always chooses

the handle with the highest current estimate of the expected return. An agent

following a strictly greedy policy is only exploiting but not exploring. When the

agent chooses a handle that is not the optimal given the current estimate, the

agent is exploring.

For bandit problems, the balance between exploration and exploitation has

been solved exactly in (Gittins and Jones, 1979). Their method computes Gittins

indices for each handle which depend on the current model estimate. Gittins

indices map each available handle to a real number in such a way that an optimal

policy consists of always choosing the handle with the highest index. This method
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is not directly applicable to general MDPs, as it relies on the fact that in bandit

problems there is only one state.

2.5.2 ǫ-greedy and Boltzmann exploration

Two simple and well-known methods for exploration in MDPs are ǫ-greedy

and Boltzmann methods. In ǫ-greedy exploration, the agent chooses actions

greedily (based on the current value function estimate) with probability 1 − ǫ,

and chooses actions randomly with probability ǫ. Most implementations decay the

value of ǫ throughout time. This yields an agent that, the more knowledge it has

about the environment, the less it explores.

Boltzmann exploration use a Gibbs or Boltzmann distribution over the

available actions. The Boltzmann distribution comes from statistical mechanics

and is used in physics and chemistry to determine the percentage of molecules

within a certain velocity range given the temperature of the system. In this

context, the Boltzmann distribution defines the probability of choosing action a

from state s by:

p(a|s) =
eQ(s,a)/τ

∑

a′∈A e
Q(s,a′)τ

(2.11)

where τ is the temperature parameter. A high temperature will yield a uniform

distribution over all actions (and thus promote exploration), while a low tempera-

ture will choose actions with high expected value with much higher probability. As

in ǫ-greedy methods, τ is normally decreased over time.
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2.5.3 Interval Estimation methods

The two methods presented in section 2.5.2 choose actions randomly while ex-

ploring. Interval Estimation (IE) attempts to overcome this problem by computing

confidence intervals for the action values (Kaelbling, 1993). It always selects the

action with the largest upper interval boundary, thereby giving an advantage to

actions where there is a large uncertainty.

Since in RL one is concerned with the uncertainty in the model, Wiering and

Schmidhuber (1998) introduced Model based IE, where confidence intervals are

maintained on the probability distributions for each state-action pair. Like IE, it

gives an advantage to state-action pairs that have not been explored sufficiently.

This idea was further developed and analyzed in (Strehl and Littman, 2004) and

(Strehl and Littman, 2005), where formal learning time guarantees are presented.

2.5.4 E3 and variants

In (Kearns and Singh, 1998) the E3 (Explicit Explore or Exploit) algorithm

is introduced. The main idea of the algorithm is to divide the state space into

known and unknown states. When in an unknown state, the algorithm is in an

exploratory phase where its policy is guaranteed to try to increase the agent’s

knowledge of the environment; when in a known state, the algorithm is in an ex-

ploitative phase where it chooses actions greedily according to its model estimate.

The model estimate is used only on a subset of the state space (namely, the known

states). All states start off being unknown, and a state becomes known after it

has been visited at least a predetermined number of times M . The value of M
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is computed as a function of 1/ǫ, 1/δ, |S| and Rmax, where ǫ is the desired preci-

sion in the value function and δ is the desired confidence in the value estimates.

The authors present bounds on the number of samples needed to obtain a good

approximation of the optimal value function.

Despite the strong theoretical guarantees presented in (Kearns and Singh,

1998), the implementation of E3 is not straightforward and makes it hard to use.

In (Brafman and Tennenholtz, 2001) the authors present R-MAX, an algorithm

which is simpler and generalizes E3. It creates an absorbing state s0 which

returns a reward of Rmax upon entering it (hence the name of the algorithm). The

algorithm maintains two models, one for planning and another for estimation. The

model for estimation is updated after every transition. The planning model is used

to choose the next action. Initially, all states transition deterministically to s0

under every action in the planning model. Once a state has been visited at least

M times, it becomes known and the distribution from the estimation model is used

for planning from that state.

For factored MDPs E3 is not sufficient, as it maintains counts for states and

thus bypasses the structure in the state space. To overcome this, (Kearns and

Koller, 1999) present DBN-E3, an algorithm similar to E3, except that instead of

states being known or unknown, it is the CPT entries in the DBNs that can be

known or unknown. The authors present similar bounds guaranteeing the efficiency

and optimality of their algorithm. Similarly, R-MAX has been generalized for

factored MDPs (Guestrin et al., 2002)
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Note that all the algorithms presented in this section still require a planning

algorithm to choose the next action given the model. This is left to the designer

to choose, although in the general case, an optimal planner may not be available

for large domains. In (Guestrin et al., 2002) the authors present a modification

of Factored R-MAX using Approximate Linear Programming. Their methods are

able to handle large domains while still maintaining strong theoretical guarantees.

However, a good choice of basis functions is critical for good results.

2.6 Summary

In this chapter the necessary background for the remainder of this thesis has

been presented. MDPs were introduced as the mathematical model for planning

in stochastic environments, along with various methods for computing the value

function and optimal policy. Some approximate methods were presented for

larger domains where exact methods become infeasible. Observing that in many

problems the state space enjoys an underlying structure, we presented factored

MDPs, and an efficient value iteration algorithm (SPUDD).

When the model of the MDP is unknown, the agent needs to interact with the

environment to learn the model and the optimal behavior. Reinforcement Learning

is the field which studies these types of learning problems. We introduced various

types of RL methods, along with the exploration problem in RL. Exploration is

the main focus of this thesis, and thus, we finished the chapter presenting various

algorithms that produce different forms of exploration, with different theoretical

guarantees.
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Note that our discussion here does not include heuristic methods for directing

exploration, as many of these are ad-hoc and not directly related to our work.

Bayesian methods, which are more closely related to our work, will be presented in

detail later.
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CHAPTER 3
Bayesian Learning

In Bayesian learning the agent maintains and updates a model estimate,

starting from a Bayesian prior. A prior encodes any initial information about

the environment the agent may have. This prior information can capture various

forms of knowledge and can come from various sources. For example, a design

engineer could encode a rough estimate of the transition probabilities based on her

experience. A robot could have a rough estimate of its dynamics from previous

runs in a somewhat similar domain. The set of states {s′} that are reachable from

a state s under action a could be known in advance such as in grid world domains,

where the immediate neighbors of s are the only reachable states under any action.

Bayesian learning attempts to maintain a model estimate, update it accord-

ingly after any observation, and use the current model estimate to make a (near)

optimal action choice in the next time step. A formal description of this idea is

presented in the next section, followed by related work.

3.1 Hyper MDPs

3.1.1 Intuitive description

Bayesian learning in MDPs can be traced back to (Bellman and Kalaba,

1959), where Adaptive Control Processes are introduced. Informally, this model

pairs a current model estimate (the information state) with the current state in the

MDP (the physical state) to create a hyper state. A Hyper MDP is then created
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by allowing the transition probabilities between hyper states to be determined

by the current model estimate at the hyper state. 1 Heretofore MDP will refer

to the original MDP (whose model is unknown) and Hyper MDP will refer to the

constructed Hyper MDP.

Note that since we are using the model estimate at each hyper state to deter-

mine the possible transitions, the model of the Hyper MDP is known beforehand.

It has been shown that if the agent considers all the possible hyper states it

could reach and computes the value function for all these hyper states, this value

function produces an optimal exploration strategy.

An intuitive way to think of a Hyper MDP is as a tree. The root r is the

hyper state defined by the physical state s the agent is in and the current model

estimate ψ. By considering all possible transitions under all possible actions and

the resulting updated model estimates, the agent can construct the next-level

set of hyper states. Continuing in this fashion one can see that the tree is in fact

infinite (since we can continue interacting with the environment and updating the

model estimate based on the observations indefinitely). Also note that the model

gets refined the further one goes down the tree. Note that the data received will

determine exactly one path that the agent takes in the infinite tree. With this

graphical representation in mind, we will heretofore refer to this model as the

1 In (Bellman and Kalaba, 1959) they use the terms ‘generalized state’ and
‘Adaptive Control Process’ to refer to what we call ‘hyper state’ and ‘Hyper
MDP’, respectively.
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Hyper MDP or the hyper tree, depending on which facilitates the exposition of

ideas.

3.1.2 Formal definition

We will follow the notation of (Martin, 1967) for the formal definition of

Hyper MDPs (i.e. Adaptive Control Processes). Since we will be using our

model estimate to obtain a probability distribution and we will be updating

this model estimate as we interact with the environment, we need to consider

distributions from a family H that are closed under updates and which can be

indexed by ψ ∈ Ψ, where Ψ is the admissible set of parameters for H. The

different members of H differ only in the values assigned to ψ. In other words, ψ

represents our information state, and encodes the prior and any updates performed

from interactions with the environment. Thus, our hyper states are of the form

(s, ψ) ∈ S ×Ψ.

If we assume finite state and action spaces, the uncertainty in the transition

matrix can be denoted by a random |S| × |A| tensor P , with a prior probability

distribution function H(P|ψ) ∈ H. We may define the set of all |S| × |A|

generalized stochastic tensors by:

M =

{

P | P is |A| × |S|,P(s, a, s′) ≥ 0,
∑

s′∈S

P(s, a, s′) = 1 (a ∈ A; s, s′ ∈ S)

}

The range of H(P|ψ) isM, and we have that

∫

M

dH(P|ψ) = 1.
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We can now extract the transition probabilities given an information state ψ.

The probability of ending in state s′ given that action a is chosen and the agent is

in hyper state (s, ψ) is given by

p̄as,s′(ψ) =

∫

M

P(s, a, s′)dH(P|ψ). (3.1)

From this we can determine the expected reward when choosing action a in

hyper state (s, ψ) by

r̄as (ψ) =
∑

s′∈S

p̄as,s′(ψ)R(s, a, s′). (3.2)

Note that equation (3.2) assumes that the reward function is known, which in

general may not be the case. If the reward function is not known, equation (3.2)

becomes:

r̄as (ψ) =
∑

s′∈S

∫

Cb[0,Rmax]

p̄as,s′(ψ)dµ(ψ). (3.3)

where Cb[0, Rmax] is the space of all bounded continuous measurable reward

functions on [0, Rmax], and µ is a measure over C[0, Rmax] given the information

in ψ. In this thesis, however, we will assume that the reward function is known

beforehand.

Let D : Ψ 7→ Ψ be an operator that updates our distribution parameter (or

information state) based on observations experienced, and let Da
s,s′(ψ) denote the

update based on a transition observation from state s to state s′ under action a.

As was mentioned in section 3.1.1, we are concerned with computing the optimal

value function over hyper states, V ∗(s, ψ). Given the formulation above, we can
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restate the Bellman optimality equations (2.3) for Hyper MDPs:

V (s, ψ) = max
a∈A

{

r̄as (ψ) + γ
∑

s′∈S

p̄as,s′(ψ)V (s′, Da
s,s′(ψ))

}

(3.4)

where (s, ψ) ∈ S ×Ψ; 0 ≤ γ < 1

In section 3.1.1 we mentioned that there are an infinite number of hyper

states, and this fact is reasserted by the set of Equations (3.4). Indeed, it is not

immediately obvious that the set of Equations (3.4) should admit an optimal

solution, let alone a unique one. Fortuitously, the following theorem from (Martin,

1967) demonstrates that this is actually the case.

Theorem 3.1.1. There exists a unique set of bounded functions {vi(ψ)} which

satisfies the set of equations (3.4).

Despite Theorem 3.1.1, the fact that there are an infinite number of hyper

states implies that an exact computation of Equations (3.4) would be infeasible.

It would be convenient to deal with a finite subset of the Hyper MDP.

A commonly used approach is to truncate the unfolding of the value function

computation necessary for solving Equations (3.4). By truncating at a certain

depth n, we obtain a similar set of equations:

V n+1(s, ψ) = max
a∈A

{

r̄as (ψ) + γ
∑

s′∈S

p̄as,s′(ψ)V n(s′, Da
s,s′(ψ))

}

, (3.5)

(s, ψ) ∈ S ×Ψ; n = 0, 1, 2, · · · ; 0 ≤ γ < 1,

where V 0(s, ψ) = Vmax =
Rmax

1− γ
, (s, ψ) ∈ S ×Ψ.
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The choice of V 0(s, ψ) = Vmax is specific to our approach. As was mentioned

in section 2.1, Vmax is an upper bound on the value function for any state. By

truncating the infinite unfolding of the value function at a depth n, the choice of

V 0 is an estimate of the true value function for the hyper states at the fringe of the

truncation. Thus, by setting the leaves of the hyper tree to this upper bound, we

are promoting exploration by being optimistic about the true value of these fringe

hyper states.

Martin (1967) shows that Equations (3.5) can be used as approximations

and converge monotonically to the solution of Equations (3.4). We will restate a

theorem from (Martin, 1967) which will be necessary for our theoretical analysis

in section 5.2. The theorem has been rephrased for our situation and is stated

without proof.

Theorem 3.1.2. Let {V n(s, ψ)} be a sequence of successive approximations

defined by Equations (3.5). Then the error of the nth approximant has the bound

|V (s, ψ)− V n(s, ψ)| ≤ γnVmax.

3.2 Choice of distribution

As mentioned in the previous section, we need to choose a distribution that

is closed under updates and which can be indexed by a set of parameters ψ. The

multinomial distribution is a natural choice for finite state and action spaces.

The multinomial distribution is essentially obtained from counts of observed

transitions. Let the matrix M be a |S| × |A| × |S| matrix of observation counts,

such that element Ma
s,s′ holds the number of times we have observed transition
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s → s′ under action a. From such a matrix we can easily extract the desired

probabilities via:

P̂ (s, a, s′) =
Ma

s,s′
∑

s′′∈S M
a
s,s′′

.

Thus, the matrix M is our indexing parameter used to extract the necessary

distributions. For generality, we will continue to refer to the indexing parameter

as ψ. Note also that with the multinomial distribution it is easy to encode a prior

by assigning the initial counts in M appropriately. Complete uncertainty of the

domain can be setting M to the constant matrix 1. Events which are more likely

to occur can be assigned a higher value, while events which are known to never

occur can be set to zero.

3.3 Related work

We will mention some work on Bayesian exploration using the Hyper MDP

model. In (Dearden et al., 1999) the authors present a method which uses the

value of perfect information (Howard, 1966) to estimate the possible gains from

exploration. The computation of the value of perfect information is clearly

infeasible and the authors present various myopic estimates. This approach is

similar to IE methods (see section 2.5.3) in that it attempts to give an advantage

to exploratory actions.

In (Duff, 2002), various heuristic methods are presented for approximating an

exact solution to the Hyper MDP. The methods include converting the problem

into a local semi-Markov Decision Process (Puterman, 1994) by considering two

possibilities from each physical state: either return to the same state or enter

a ‘sojourn’ period through the rest of the states. Each action then becomes a
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random process whose reward is determined by the length of sojourn. With this

construction, Gittins indices may be computed and used for action selection.

The author also considers approximating the value function over hyper states by

parameterizing them as a linear combination of information state components.

Finally, an approach is presented where the likelihood of visiting each hyper state

is estimated by modeling information state components by diffusion processes

and defining a system of flux constraints between connected hyper states to

acknowledge interdependencies. These dynamics are formulated in terms of

stochastic differential equations. Although the methods presented in (Duff, 2002)

produce empirically good results, the author fails to provide any theoretical

guarantees of their performance.

In (Wang et al., 2005) an algorithm based on the idea from (Kearns et al.,

1999) is presented to approximate the value of the Hyper MDP. They construct

a sparse tree from the full Hyper MDP, using the information states ψ as a

generative model. In contrast to (Kearns et al., 1999), they do not expand all

actions in their construction. Instead, they use Thompson sampling (Thompson,

1933) to pick their actions. At each hyper state (s, ψ), the optimal action value

function is computed for the MDP with model given by ψ. This estimate is then

used to choose the optimal action(s), and only these action(s) are expanded.

Finally, any actions that have not been expanded are still evaluated by multiplying

the expected immediate reward when performing the action by the number of

decisions remaining to the selected horizon.
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The idea in (Wang et al., 2005) serves as the inspiration for the algorithm

presented in the next chapter.

3.4 Summary

In this chapter we have introduced Hyper MDPs, which will be used exten-

sively throughout this thesis. We presented certain theorems from (Martin, 1967)

which will be necessary later for the theoretical analysis. Finally, we presented

some related work on exploration using the Hyper MDP model. In particular, the

work from (Wang et al., 2005) is closely related to the approach we present in the

next chapter.
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CHAPTER 4
Using Linear Programming for Bayesian learning

The idea of sampling a finite subtree of the hyper tree, as in (Wang et al.,

2005), is promising. This method provides direct control over how large we would

like the tree to grow. However, the use of Thompson sampling in the algorithm

of (Wang et al., 2005) has a major disadvantage. At each hyper state, (s, ψ), the

value function for the original MDP, using the model indexed by ψ, is computed in

order to determine the best action choice from s. If the original MDP is large, this

computation is very expensive. To perform this computation on each hyper state

greatly limits the size of the problems that this method can handle.

Furthermore, by sampling based on the model at the current hyper state, the

sampling is somewhat myopic in that it assumes that the information state ψ does

not change from then on. If the agent begins with a bad prior this would “blind” it

from expanding other areas in the hyper tree.

We propose a new approach that attempts to improve the approach of (Wang

et al., 2005). We present empirical evidence that our approach exhibits better

performance than (Wang et al., 2005). This work has been previously published in

(Castro and Precup, 2007).

4.1 The Approach

Our approach differs from that of (Wang et al., 2005) in four important

ways. The first difference is that rather than computing the value function at each
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hyper state to sample the next action, we choose the action uniformly randomly

from the available actions. The sparse sampling algorithm introduced in (Kearns

et al., 1999) (on which the approach in (Wang et al., 2005) and our approach

are based) expands all available actions rather than sampling from the available

actions. Our approach lies somewhere in between expanding all actions (as in

(Kearns et al., 1999)) and using Thompson sampling (as in (Wang et al., 2005)).

In contrast to (Wang et al., 2005), we fix the depth of the sampled Hyper MDP.

Thus, by choosing an action uniformly randomly at each hyper state, the fixed

horizon allows many actions to be sampled per hyper state. As we increase the

maximum number of samples, we expand more actions per hyper state, bringing

our algorithm closer to the original idea of (Kearns et al., 1999). This approach

would create a more balanced tree in cases where Thompson sampling would

create a tree with few, long trajectories.

The second difference is that we compute the value of the sampled hyper

states using Linear Programming. In a manner similar to what was presented in

(Puterman, 1994), the optimality equations for the hyper MDP can be formulated

as a linear program as follows:

minimize
∑

(i,ψ)∈S×Ψ

V (i, ψ)

such that V (i, ψ)−

[

r̄ai (ψ) + γ
∑

j∈S

p̄aij(ψ)V (j,Da
ij(ψ))

]

≥ 0 (4.1)

∀(i, ψ) ∈ S ×Ψ. ∀a ∈ A.
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We will refer to equations (4.1) as the exact LP. Note that the exact LP is

a countably infinite dimensional LP because there are countably many distinct

states and countably many constraints (see (Anderson and Nash, 1987)). We will

obviously not attempt to solve the exact LP, but will construct a finite subset of

the exact LP by sampling from the hyper tree. In particular, we will consider the

finite subsets K ⊂ S × Ψ and B ⊆ A. The LP we will solve (heretofore referred to

as the sampled LP) is then defined as:

minimize
∑

i

V (i, ψ)

such that V (i, ψ)−



r̄ai (ψ) + γ
∑

j∈ρ1(K)

p̄aij(ψ)V (j,Da
ij(ψ))



 ≥ 0 (4.2)

∀(i, ψ) ∈ K. ∀a ∈ B.

Note that we make use of a projection operator ρ1 : S × Ψ 7→ S. The choice of

using Linear Programming was motivated by the success of Linear Programming

Approximation techniques (see section 2.3.2) and the hope that similar techniques

could be applied to this problem.

The third difference is that we introduce a rest parameter, whose purpose

is to speed up the algorithm. Since we have opted to maintain a Dirichlet distri-

bution with counts of observed transitions, at each iteration we only increase one

of the counts in our matrix by one. It is then clear that the distribution does not

change very much after a single transition. Thus, rather than constructing a new

Hyper MDP after each iteration, we allow the rest parameter to determine how

many iterations should pass before a new Hyper MDP is constructed.
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Finally, the fourth difference is that we maintain action-value estimates for the

state-action pairs of the original MDP, and update them using standard Q-learning

(see section 2.5). We will use these action-value estimates for choosing actions

during the rest period. We use this approach because Q-learning is simple and

cheap, yet it often provides a good policy quickly.

4.2 The Algorithm

We will now detail our approach, which we will call the LP approach. Given

an initial prior for our model, we sample a finite Hyper MDP as follows. At each

hyper state (s, ψ), we choose an action a uniformly randomly from the available

actions. We then extract the model from ψ to sample a transition s
a
−→ s′

leading us into a new hyper state (s′, Da
s,s′(ψ)). This is continued until the desired

horizon is reached, at which point the sampling begins from the root of the hyper

tree. Once the number of sampled hyper states (internal or fringe) reaches the

maximum number of samples, we stop.

Note that there are many subtrees of the infinite hyper tree that are not

sampled. Nonetheless, we need an estimate of these subtrees in order to solve the

sampled LP. In our approach we assign the root of all unsampled subtrees a value

of Vmax. As explained in section 3.1.2, this is done to promote exploration by being

optimistic about unsampled regions.

The algorithm is described in detail below. Algorithm LPapproach receives

five parameters, whose type is given by s ∈ S;ψ ∈ Ψ; depth,maxSamples, rest ∈

N. For all our experiments we used CPLEX as our LP solver.
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Algorithm 1 LPapproach(s, ψ, depth,maxSamples, rest)

1: Q(s, a)← 0. ∀(s, a) ∈ S ×A
2: repeat
3: sampledLP ← sampleHyperMDP ((s, ψ), depth,maxSamples)
4: Solve sampledLP to obtain a value function V̄ : K 7→ R

5: Choose an action by a = arg maxa

[

r̄as (ψ) + γ
∑

s′∈ρ1(K) p̄
a
s,s′(ψ)V̄ (s′, Da

s,s′(ψ))
]

6: Observe transition s
a
−→ s′

7: Q(s, a)← Q(s, a) + α[r̄as (ψ) + γmaxa′ Q(s′, a′)−Q(s, a)]
8: ψ ← Da

s,s′(ψ)
9: s← s′

10: for i = 1 to rest do
11: Construct the following value function V̂ : S 7→ R:

V̂ (s) =

{

V̄ (s, ψ) if (s, ψ) ∈ K
maxaQ(s, a) otherwise

}

12: Choose an action by a = arg maxa

[

r̄as (ψ) + γ
∑

s′∈S p̄
a
s,s′(ψ)V̂ (s′)

]

13: Observe transition s
a
−→ s′ and reward r

14: Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
15: ψ ← Da

s,s′(ψ)
16: s← s′

17: end for
18: until done exploring

The next algorithm defines sampleHyperMDP (which is called by LPapproach)

and is responsible for generating the sampled LP in the form of Equations (4.2).

It works by sampling trajectories of the specified depth and choosing actions

uniformly randomly at each hyper state. Each previously unsampled hyper state in

the trajectory is added as a variable to the sampled LP (and thus, to K) until the

specified maximum number of samples is reached. We use ζ to denote the set of

states in the sampled trajectory.
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Algorithm 2 sampleHyperMDP((s, ψ), depth,maxSamples)

1: samples← 0
2: K ← ∅
3: while samples ≤ maxSamples do
4: Sample a trajectory of length min(depth,maxSamples − samples) from the

hyper tree, choosing actions uniformly randomly at each hyper state. Let ζ
be the set of states along the trajectory.

5: samples← samples+ |(ζ −K)|
6: K ← K ∪ ζ
7: end while
8: Construct sampledLP from K as defined in Equations (4.2)

The length of the trajectory in line 4 ensures that the number of samples

taken does not exceed the specified maximum number of samples.

4.3 Problem domains

We will now present three problem domains on which the LP approach

was tested. The three problems are of differing sizes and nature, in order to

demonstrate the versatility of the LP approach.

4.3.1 Small MDP

The first problem is a two-state, three-action MDP, whose dynamics are

illustrated in figure 4–1. The circles depict the states and the labeled arrows

between them are the transition probabilities under the specified action. Action 1

is displayed on the top left, action 2 on the top right, and action 3 at the bottom.

The reward received upon entering each of the two states is displayed inside the

circle for each action. The agent always begins in the left state for all trials.

Intuitively, the best policy is to perform action 1 until the right state is reached,

and then do action 3 to remain in the right state.
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Figure 4–1: Dynamics of a two-state, three-action Small MDP

4.3.2 Bandit problem

The second problem is similar to the well known bandit problem (see section

2.5.1) with two slot machines (bandits) and three actions. In addition to the three

actions, the model has three states. The dynamics of this model are illustrated

in figure 4–2. Action 1 (don’t gamble) is displayed as a solid black line, action 2

(gamble on machine 1) as a dashed line, and action 3 (gamble on machine 2) as a

solid grey line. The leftmost state corresponds to not winning anything, the middle

state corresponds to winning under machine 1 and the rightmost state corresponds

to winning under machine 2. Unlike most slot machines, we have not associated

any cost for gambling. Once again, the labels on the arrows depict the transition

probabilities under each of the three actions. Naturally, the agent always begins in

the leftmost state.

4.3.3 GridWorld

The third problem is a 2x4 grid world (i.e. 8 states) with a reward of +1 in

the top right state and 0 everywhere else. There are four actions (North, South,

East and West) with a 0.1 probability of remaining in the same state. If the agent
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Figure 4–2: Dynamics of the bandit problem

tries to move into a wall it will deterministically stay in the same state. The agent

always begins in the bottom left state. This problem is illustrated in figure 4–3.

Figure 4–3: Dynamics of the grid world problem

4.4 Experimental results

In this section we present the experimental results on the three domains

described in section 4.3. For all domains, the results were averaged over 30

independent runs. The graphs present the performance of our algorithm as it is

exploring.
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We ran the LP approach against four different types of algorithms. This first

is a Q-learning agent (with α = 0.1 1 ) using an ǫ-greedy approach (setting ǫ

to 0.01, 0.1, or 0.5). The second type is the algorithm described in (Wang et al.,

2005). We also compared against a myopic agent (acting only based on immediate

reward) and an agent which chooses actions randomly. These last two algorithms

fared far worse than all the others, and so are omitted from our graphs for clarity.

Finally, we also implemented an agent using Boltzmann exploration, but the

results (for varying temperature values) was similar to the results for ǫ-greedy, and

so the results are omitted from our graphs for clarity.

For the LP approach we experimented with different parameter settings, as

explained in more detail below. Also, because the primal LP has more constraints

than variables, the dual was solved instead. Since we are solving a finite LP, there

is no duality gap and the dual solution is equal to the primal solution.

We also implemented a variant of the LP approach. In this variant, rather

than use the state-action value during a rest phase, we perform dynamic pro-

gramming (DP) on the current model estimate to determine a value function for

the original MDP. The agent then chooses actions greedily based on this com-

puted value function. This method is obviously much slower than the original LP

approach presented in section 4.2, but it may produce better results.

1 Note that we also used α = 0.1 for the Q-learning portion of our algorithm.
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4.4.1 Small MDP

For the small MDP problem we used the following parameter settings for

the LP approach: depth = 7, rest = 6, and maxSamples = 35. Figure 4–4

(a) demonstrates the performance of the different algorithms. The y-axis is the

average return per episode (i.e. total reward received divided by episode number).
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Figure 4–4: Small MDP: (a) Comparison of different algorithms; (b) Effect of
varying parameters of the LP approach

The algorithm from (Wang et al., 2005) was not able to handle more than

35 samples, which is why we performed the comparison at this level. The LP

approach was able to handle up to 50 samples, and the results of this are displayed

in figure 4–4 (b). In the same figure we also display the results of running the

LP approach with the DP variant mentioned above. Although Q-learning with

ǫ = 0.1 outperformed all the other algorithms in figure 4–4 (a), we can see in figure

4–4 (b) that if we allow the LP approach to use 50 samples for the sampled LP,

it performs better than all the rest. Interestingly, using the DP variant produces

worse results than the original LP approach. This is a very small problem so it

47



takes relatively few iterations before the action value estimates become accurate.

This is probably occurring before our model estimate becomes accurate. Thus,

using DP on this model estimate would produce worse results than using the

action value estimates.

4.4.2 Bandit problem

For the bandit problem we used the following parameter settings for the LP

approach: depth = 6, rest = 5, and maxSamples = 45, and the DP variant was

used. Figure 4–5 (a) demonstrates the performance of the different algorithms.

Once again, the y-axis is the average return per episode.
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Figure 4–5: Bandit: (a) Comparison of different algorithms; (b) Effect of varying
parameters of the LP approach

In this problem the algorithm from (Wang et al., 2005) was able to handle

up to 45 samples. The LP approach outperformed all the other algorithms using

45 samples. In figure 4–5 (b) we plot the performance of the LP approach using

fewer samples. We can see that even with only 15 samples the LP approach (with

the DP variant) does almost as well as Q-learning with the best settings (ǫ = 0.5)
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and still performs better than the algorithm from (Wang et al., 2005). With fewer

samples, however, not using the DP variant results in poor performance. This

is a larger problem than the Small MDP problem above, so more iterations are

necessary to obtain a good approximation of the action values. In this case, the

model estimate is becoming more accurate faster than the action value estimates.

Hence, using the DP variant produces improved performance than relying on

action value estimates.

4.4.3 Grid world problem

For the grid world problem we used the following parameter settings for the

LP approach: depth = 9, rest = 8, and maxSamples = 15, and we used the

DP variant for the comparison. Figure 4–6 (a) demonstrates the performance of

the different algorithms. This problem is different from the last two in that it

terminates. When the agent reaches the goal state (the state with a reward of +1),

it has won and is placed back in the start state. We allow all of the algorithms up

to 60 time steps to reach the goal state. If by then the agent has not reached the

goal state, the agent is placed back in the start state and a new episode begins.

Whenever the agent reaches the goal state, it is also placed back in the start state

and a new episode begins. The y-axis in figure 4–6 (a) is the sum of discounted

rewards per episode. This means that the longer it took the agent to reach the

goal, the less reward it received.

Once again, our choice of maxSamples is due to the fact that the algorithm

from (Wang et al., 2005) was not able to handle more than 15 samples. This is a

larger problem than the first two, and all the other algorithms are ’stuck’ with low
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Figure 4–6: grid world: (a) Comparison of different algorithms on the grid world
problem; (b) Effect of varying parameters of the LP approach

reward, while the LP approach is able to find a good policy. From figure 4–6 (b)

it is clear that using the DP variant yields a clear advantage over the original LP

approach. This problem is larger than both of the problems previously presented,

so it is expected that it would take longer for the action value estimates to yield

good results.

4.4.4 Running time

The last three sections demonstrate that the LP approach has an advantage

over the other methods in terms of the reward obtained. However, in terms of

computation time, the LP approach is obviously much slower than Q-learning or

Boltzmann exploration. Table 4–1 plots the average running time per episode of

the two variants of the LP approach along with the running time for the algorithm

in (Wang et al., 2005). There is a notable difference between the two variants of

the LP approach.
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HMDP Wang
Using DP No DP

Small MDP 0.0065 2.8408e-04 5.3850e-04
Bandit 0.0094 3.3234e-04 3.4113e-04

Grid world 0.0548 0.0083 0.0025
Table 4–1: Comparison of running times per episode (in seconds)

It should be noted that even when the DP variant was not used, in all cases

the performance when using the LP approach was superior to the other algorithms.

4.5 Summary

In this chapter we have presented the LP approach to Bayesian exploration

and showed that it compares favorably against other state of the art techniques

for exploration. The LP approach is somewhat similar to the algorithm presented

in (Wang et al., 2005). However, our approach exhibits better efficiency than the

algorithm of (Wang et al., 2005).

Our algorithm is much slower in terms of running time than ǫ-greedy explo-

ration, but in our experiments it achieves better performance. The algorithm in

(Wang et al., 2005) has comparable running time but with worse performance.
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CHAPTER 5
Near-optimal Bayesian learning

Although the LP approach enjoyed improved performance by sampling actions

uniformly randomly, it is difficult to establish theoretical guarantees for it. In

order to obtain formal guarantees we must expand all available actions at each

sampled hyper state as required for the sparse sampling algorithm of (Kearns

et al., 1999).

The problem domains used in chapter 4 are toy domains in the sense that

they are useful for demonstrating characteristics of a particular algorithm or

comparing it against others, but are nowhere near the size of a real world problem.

Unfortunately, many state of the art algorithms which have formal guarantees do

not scale well to large problems. In order to apply similar techniques, the designer

must rely on heuristics or on embedding domain specific knowledge into the agent.

Using heuristics can produce good results in practice, but the conditions required

for the theoretical results are usually not present (Duff, 2002; de Farias and Roy,

2001). On the other hand, by embedding domain specific knowledge into the agent,

the results may be very good for the desired problem, but fail to generalize to

others.

In this chapter we present an algorithm that guarantees a near optimal explo-

ration policy independent of the size of the state space and problem specification.

Thus, we avoid the two pitfalls mentioned in the last paragraph.
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As mentioned in section 2.4, many real world problems exhibit an underlying

structure which can be exploited by representing the state space as a set of state

variables, rather than explicitly listing all the states. We apply the algorithm

presented in this chapter to a series of well known problems specified as factored

MDPs and compare it against a state of the art exploratory algorithm for factored

MDPs represented as ADDs.

5.1 The Algorithm

In chapter 4 we used the idea of sparse sampling from (Kearns et al., 1999),

but we did not use the sparse sampling algorithm as presented in the paper in

order to speed up computations. In this chapter we do make use of the sparse

sampling algorithm as presented in (Kearns et al., 1999). The sparse sampling

algorithm requires a generative black box to generate posterior states. As was

mentioned in section 3.1.1, since our infinite Hyper MDP is built from a prior

indexed by ψ, the model is fully known. This means that we have a generative

model to obtain posterior states, namely, the distribution function P(ψ).

There are two main differences between the LP approach and the current

approach. Rather than using a linear program to compute the value function for

the sampled Hyper MDP, we use the approach from (Kearns et al., 1999), which is

a form of value iteration (see section 2.2.1). Additionally, we expand all available

actions at each hyper state, rather than sampling only a few as was done in the LP

approach and in (Wang et al., 2005).
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The full algorithm is described in Algorithm 3, with SparseSample described

in Algorithm 4. Note that SparseSample has been modified slightly to include the

generative model p(ψ).

Algorithm 3 bayesExplore(MDP, s0, ψ, ǫ, rest)
1: s← s0

2: repeat
3: Construct a model estimate from H(P|ψ)
4: a← SparseSample(ǫ, γ, s, ψ)
5: Observe transition (s 7→ s′) under action a
6: ψ ← Da

s,s′(ψ)
7: s = s′

8: if rest > 0 then
9: Compute the value functions V̂ (·) based on the current model estimate

10: end if
11: for i = 1 to rest do
12: Choose action a greedily based on V̂ (·)
13: Observe transition (s 7→ s′) under action a
14: ψ ← Da

s,s′(ψ)
15: s← s′

16: end for
17: until done exploring

We make use of the rest parameter just as in the LP approach. In our current

approach, we do something similar to the DP variant presented in section 4.4 in

that at the beginning of each rest phase, we compute the value function based

on the current model estimate. In contrast to the LP approach, we do not specify

how to compute this value function. Indeed, Algorithm 3 does not specify how

to maintain the model estimate nor how to compute the value functions V̂ (·). In

other words, the algorithm is independent of the problem representation and the

value function computation algorithm best suited for such a representation.
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Algorithm 4 SparseSample(ǫ, γ, s, ψ)

1: Define the horizon H and number of samples C as per Theorem 5.2.4
2: {QH(s, a, ψ)}a∈A ← EstQ(H,C, γ, s, ψ)
3: return arg maxa∈A{Q

H(s, a, ψ)}

4: Procedure EstQ(h,C, γ, s, ψ)
5: if h = 0 then
6: return {Vmax, · · · , Vmax}
7: end if
8: for all a ∈ A do
9: Generate C samples from pas(ψ). Let Sa be the set containing all these C

next states.
10: QH(s, a, ψ)← r̄as (ψ) + γ 1

C

∑

s′∈Sa
EstV (h− 1, C, γ, s′, Da

s,s′(ψ))
11: end for
12: return {QH(s, a, ψ)}a∈A
13: end Procedure

14: Procedure EstV(h,C, γ, s, ψ)
15: {QH(s, a, ψ)}a∈A ← EstQ(h,C, γ, s, ψ)
16: return maxa∈A{Q

H(s, a, ψ)}
17: end Procedure

5.2 Theoretical analysis

As our algorithm is based on the sparse sampling algorithm of (Kearns et al.,

1999), our theoretical analysis will also be based on the theoretical analysis of the

same paper. The analysis presented in this section focuses on the computation of

the value function for the Hyper MDP, V (s, ψ), since this computation is what

determines the exploration strategy of the agent.

Although the rest parameter increases the speed of the algorithm by reducing

the number of times the Hyper MDP is constructed, it becomes problematic for

our theoretical analysis. Thus, for this section, we will assume that bayesExplore

(Algorithm 3) is used with rest = 0.

55



We begin by defining the estimator U∗:

U∗(s, a, ψ) = r̄as (ψ) + γ
1

C

C
∑

i=1

V ∗(si, D
a
s,si

(ψ))

where the si are drawn according to pas(ψ). Note that V ∗(s, ψ) is the optimal value

of hyper state (s, ψ). Although the optimal value function is inaccessible to us,

defining the estimator U∗ in this way is not problematic, as it is only necessary for

the analysis.

From the definition of V (s, ψ) in Equation 3.4, it follows that:

Q(s, a, ψ) = r̄as + γ
∑

s′∈S

p̄as,s′(ψ)V (s′, Da
s,s′(ψ))

= r̄as + γEs′∼pa
s (ψ)[V

∗(s′, Da
s,s′(ψ))].

In order to establish our main result (Theorem 5.2.4), we now present three

short lemmas. The first and third of these are directly adapted from (Kearns

et al., 1999), with minor modifications for the Hyper MDP framework. The second

one is novel and is therefore included with proof.

Lemma 5.2.1 (Adapted from (Kearns et al., 1999)). For any s ∈ S, a ∈ A and

ψ ∈ Ψ, with probability at least 1− e−λ
2C/Vmax

2

we have:

|Q∗(s, a, ψ)− U∗(s, a, ψ)|= γ
∣

∣Es′∼pa
s (ψ)[V

∗(s′, Da
s,s′(ψ))]

−
1

C

C
∑

i=1

V ∗(si, D
a
s,si

(ψ))

∣

∣

∣

∣

∣

≤ λ

where the probability is taken over the draw of the si from pai (ψ).

Lemma 5.2.1 states that with “high” probability, the difference between

the optimal value function V ∗ and the estimator U∗ is “small”. The qualitative
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terms “high” and “small” are quantified by the choice of C (the number of

samples) and λ. The required setting for these variables will be defined later on in

Theorem 5.2.4.

For the following lemmas we will define k = |A|. The next lemma will bound

the combined error from truncating and sampling from the infinite hyper tree.

Lemma 5.2.2. With probability at least 1− (kC)ne−λ
2C/Vmax

2

we have that

|Q∗(s, a, ψ)−Qn(s, a, ψ)| ≤ γλ+ γnVmax

Proof.

|Q∗(s, a, ψ)−Qn(s, a, ψ)|

= γ

∣

∣

∣

∣

∣

Es′∼pa
s
[V ∗(s′, Da

s,s′(ψ))]−
1

C

C
∑

i=1

V n−1(si, D
a
s,si

(ψ))

∣

∣

∣

∣

∣

≤ γ

(∣

∣

∣

∣

∣

Es′∼pa
s
[V ∗(s′, Da

s,s′(ψ))]−
1

C

C
∑

i=1

V ∗(si, D
a
s,si

(ψ))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

C

C
∑

i=1

V ∗(si, D
a
s,si

(ψ))−
1

C

C
∑

i=1

V n−1(si, D
a
s,si

(ψ))

∣

∣

∣

∣

∣

)

= γ

(∣

∣

∣

∣

∣

Es′∼pa
s
[V ∗(s′, Da

s,s′(ψ))]−
1

C

C
∑

i=1

V ∗(si, D
a
s,si

(ψ))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

C

C
∑

i=1

[

V ∗(si, D
a
s,si

(ψ))− V n−1(si, D
a
s,si

(ψ))
]

∣

∣

∣

∣

∣

)

≤ λ+ γnVmax

where the last inequality follows from Theorem 3.1.2 and lemma 5.2.1. At each

level we require that each of the sampled next states be good estimates for each

of the k actions. Lemma 5.2.1 showed that the probability of a bad estimate
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is bounded by e−λ
2C/Vmax

2

. Thus the above bound holds with probability 1 −

(kC)ne−λ
2C/Vmax

2

.

Lemma 5.2.3 (Adapted from (Kearns et al., 1999)). Assume that π is a stochastic

policy, so that π(s) is a random variable. If for each s ∈ S and ψ ∈ Ψ, the

probability that Q∗(s, π∗(s), ψ) − Q∗(s, π(s), ψ) < λ is at least 1 − δ, then the

discounted infinite horizon return of π is at most (λ + 2δVmax)/(1 − γ) from

the optimal return, i.e., for any s ∈ S and ψ ∈ Ψ, V ∗(s, ψ) − V π(s, ψ) ≤

(λ+ 2δVmax)/(1− γ).

Lemma 5.2.3 is a type of continuity result. It states that as the state-action

value function induced by a particular policy π approaches the optimal state-action

value function, the expected sum of the discounted rewards when using policy π

approaches the optimal expected sum of discounted rewards.

We combine these three lemmas for our main result.

Theorem 5.2.4. Algorithm 3 (with rest = 0) takes as input any state s0 ∈ S, any

prior indexed by ψ ∈ Ψ, any value ǫ > 0, and produces a policy π satisfying the

following conditions:

• (Near-Optimality) The value function of the stochastic policy π produced by

Algorithm 3 satisfies

|V π(s0, ψ)− V ∗(s0, ψ)| ≤ ǫ.
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• (Efficiency) The approximation above is produced in time O((kC)H), where

H = ⌈logγ(λ/Vmax)⌉,

C =
V 2
max

λ2

(

2H log
kHV 2

max

λ2
+ log

Vmax
λ

)

,

λ =
ǫ(1− γ)

4
,

δ = λ/Vmax.

Proof. We begin by focusing on the near-optimality property. Lemma 5.2.2 showed

the error of our Q-function approximations are bounded by λ + γHVmax with

probability 1 − (kC)He−λ
2C/Vmax

2

. Setting H = logγ(λ/Vmax) our final Q-value

estimates QH(s0, a, ψ) for all a ∈ A when starting from hyper state (s0, ψ) are

within 2λ from the true Q-values. If we choose C as in (Kearns et al., 1999),

namely

C =
Vmax

2

λ2

(

2H log
kHVmax

2

λ2
+ log

1

δ

)

then we guarantee that

(kC)He−λ
2C/Vmax

2

≤ δ

thus ensuring that with probability 1 − δ all the estimates are within 2λ.

Lemma 5.2.3 implies that for each s ∈ S and ψ ∈ Ψ, the resulting policy π

extracted from the QH functions yield

V ∗(s, ψ)− V π(s, ψ) ≤
2λ+ 2δVmax

1− γ

59



Substituting in δ = λ/Vmax we obtain

V ∗(s, ψ)− V π(s, ψ) ≤
4λ

1− γ

Substituting in λ = ǫ(1− γ)/4 as specified we finally obtain

V ∗(s, ψ)− V π(s, ψ) ≤ ǫ

.

The efficiency of the algorithm follows in the same way as the proof of

efficiency in (Kearns et al., 1999). EstQ calls EstV a total of kC times (C calls

for each of the k actions). EstV then recursively calls EstQ, but reducing the

horizon parameter h by 1. Thus, the depth of the recursion is at most H, the

desired horizon. It then follows that the running time is O((kC)H).

Theorem 5.2.4 demonstrates that the value of a hyper state (s, ψ) can be

approximated efficiently to within a desired ǫ, independent of the size of the state

space. Note that, unlike other PAC results, the confidence parameter δ is not

specified beforehand, but is dependent on the chosen accuracy parameter, ǫ. To

the best of our knowledge, there is no previous algorithm for performing near-

optimal Bayesian learning in factored MDPs such that computational complexity is

independent of domain size.

5.3 Empirical analysis

We ran bayesExplore on various experimental domains to observe its perfor-

mance in practice. We compared the results against the LP approach and against

R-MAX (see section 2.5.4). As mentioned in the start of this chapter, our problem
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domains are all standard problems used to test algorithms for factored MDPs.

In the case of the LP approach, the domain was “flattened out” from a factored

representation into a standard MDP representation. For all domains the results

were averaged out over 10 independent runs.

5.3.1 Experimental results

As mentioned at the start of the chapter, we will consider factored MDPs

represented as ADDs and use Algorithm 3 to perform exploration. We use SPUDD

(see section 2.4.1) to compute the value function V̂ (·) in algorithm 3 at the start of

each rest phase.

For our experimental results we use a standard domain for factored MDPs,

namely, the SysAdmin problem introduced in (Guestrin et al., 2001). The problem

consists of a network of computers linked together with some particular topology.

Each computer in the network can be in one of two possible states: up or down.

The agent receives a reward of 1 for each computer that is up, and the goal for

the system administrator is to keep as many of the computers up as possible.

Each computer has some probability of going down at each time step, and this

probability is increased as the number of neighbors that are down increases. There

is a hierarchical order in the connectivity of computers in that the state of ‘parent’

computers can influence the state of the child computers, but not the other way.

In the framework presented in (Guestrin et al., 2001), at each time step the system

administrator has two actions choices: reboot one of the machines or do nothing.

When a machine is rebooted it deterministically goes up.
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We ran experiments on the problem domain just mentioned and on a slight

modification of it. The modification is to add a new state for each machine and

a new action. The new action is to reboot a computer, which sends it into a

rebooting state with high probability, and with small probability it could make the

computer go up or down. The agent receives a penalty of -1 for each computer

that is in a rebooting state1 . This added action and state are meant to try to

trick the agent into choosing a bad action. They serve to demonstrate how the

far-sightedness of bayesExplore prevents the agent from choosing bad actions.

The first network topology we considered is the simplest one, which is that

all the computers are connected in a ring (see Figure 5–1). The state of each

computer is only affected by the state of its immediate neighbors. We shall refer

to this problem as the Ringn problem in its original formulation, where n is

the number of computers on the network, and as the Ringn’ problem for the

modification with the added action.

We first present the results comparing the bayesExplore algorithm against the

LP approach on the Ring4 problem. Figure 5–2 (a) plots average reward versus

iteration number and Figure 5–2 (b) plots cumulative reward versus the log of the

time. These results clearly demonstrate that bayesExplore yields higher returns

and is faster than the LP approach. Unfortunately, the Ring4 problem was the

1 Note that because of assumption 2.1.1 we shift the rewards up so they are
positive
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Figure 5–1: Ring Topology with 6 computers

largest problem of the SysAdmin problems that the LP approach was able to

handle.
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Figure 5–2: Ring4 problem: (a) Average reward versus iteration number; (b) Cu-
mulative reward versus log time

Now we compare bayesExplore against R-MAX on the Ring4’ problem. As

mentioned previously, the LP approach was not able to handle this problem. The

results are presented in Figure 5–3. In Figure 5–3 (a), where we plot average

reward versus iteration number, the superior performance of bayesExplore is

evident. Needless to say, bayesExplore is much slower than R-MAX. For this
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reason, we allowed R-MAX to run for more iterations in order to compare their

performance in terms of elapsed time, rather than iteration number. Figure 5–3

(b) presents these results, and they clearly demonstrate that bayesExplore obtains

a much higher return even when we allow R-MAX to run for the same amount of

time.
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Figure 5–3: Ring4’ problem: (a) Average reward versus iteration number; (b)
Cumulative reward versus log time

The second network topology we considered is where there is a central server

and the network machines branch out from this central server (see Figure 5–4).

In this problem, rather than rebooting (or reinstalling) each machine individually,

the system administrator can emit a reboot or reinstall action through a particular

leg. The effect of the action decays by a factor β the further down the leg the

machine is located. This means that if a reboot action is issued to a leg, the first

machine on the leg will come up deterministically, the second machine on the leg

will come up with probability β and will stay in its current state otherwise, the

third machine on the leg will come up with probability β2, etc. The effect of the
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reinstall action is decayed by the same amount β. The probability of a machine

going down is increased if its parent (the machine directly above it on the leg)

is down. Note that this means that the machines closest to the server are not

affected by the state of any other machines. Figure 5–4 illustrates these dynamics.

We will refer to these problems as Legsnm, where n is the number of legs and m is

the number of machines per leg.

Figure 5–4: Legs topology with 5 legs and 3 computers per leg and decaying dy-
namics for action act

We compared bayesExplore against R-MAX using various settings for n and

m. The results for the Legs2
2 problem are presented in Figure 5–5; the results

for the Legs2
3 problem are presented in Figure 5–6; and the results for the Legs3

2

problem are presented in Figure 5–7. These problem domains are larger than

the SysAdmin’ problem domains, so the performance of all algorithms is worse.

Nevertheless, bayesExplore clearly has an advantage over R-MAX and the results

demonstrate that an increased performance is achieved with a greater depth and
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Figure 5–5: Legs2
2 problem: (a) Average reward versus iteration number; (b) Cu-

mulative reward versus log time

number of samples. We can also observe that although the rest parameter helps

speed up the algorithm, it deteriorates its performance.
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Figure 5–6: Legs2
3 problem: (a) Average reward versus iteration number; (b) Cu-

mulative reward versus log time

5.4 Summary

In this chapter we demonstrated that we can approximate the value of a hyper

state (s, ψ) up to a desired level of accuracy dependent only on Rmax, γ and ǫ,
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Figure 5–7: Legs3
2 problem: (a) Average reward versus iteration number; (b) Cu-

mulative reward versus log time

and independent of the size of the state space. This is an enormous advantage for

exploration, as it allows us to deal with a much larger range of problems.

Although methods that use Approximate Linear Programming (ALP)

(de Farias and Roy, 2003; Hauskrecht and Kveton, 2004; Guestrin et al., 2002)

also enjoy this benefit, the choice of basis functions is not immediately clear and

is specific to each domain. Furthermore, ALP methods reduce the number of

variables in the original LP to a manageable size, but the number of constraints

may still remain arbitrarily large. de Farias and Roy (2001) present a method for

sampling a subset of the constraints. Their results, however, depend on knowledge

of the optimal policy, which is not known beforehand.

The bayesExplore algorithm also enjoys an independence from the problem

specification, which allows it to be applicable for a large range of problems of

varying sizes and structures. For our experiments we still chose small problems to

simplify the comparison of the various algorithms.
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It is often the fact that algorithms which enjoy rich theoretical guarantees

tend to not perform as well in practice. To demonstrate the strong empirical

performance of bayesExplore, we compared it against other state of the art

exploratory techniques (the LP approach of chapter 4 and (Brafman and Ten-

nenholtz, 2001)). Our results indicate that bayesExplore has a strong empirical

performance, even when the depth and number of samples used is very small.
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CHAPTER 6
Projections in infinite dimensional spaces

After having computed the value function for a sampled hyper MDP rooted

at hyper state (s, ψ) and performing an action leading to hyper state (s′, ψ′),

in the previous algorithms we are obliged to recompute the value function for

the hyper MDP rooted at (s′, ψ′) from scratch. Nevertheless, there may be a

substantial amount of overlap between the two hyper trees. One would hope that

the value function computed in one iteration can be used as a starting point for

the computation of the value function in the next iteration. This idea motivated

the algorithm presented in this chapter, based on the Simplex algorithm for LPs.

The Simplex algorithm is the most widely known algorithm for solving a finite LP,

where at each iteration the algorithm goes from one extreme point to another until

the optimum is reached (Chvátal, 1983). In order to achieve this, we must deal

with finite projections of our original problem.

As was mentioned in section 4.1, the LP formulation of the optimality

equations for hyper MDPs defined by equations (4.1) is a countably infinite

dimensional LP. There has been a growing body of work on infinite dimensional

LPs recently, mainly spurred by the seminal book of Anderson and Nash (1987).

A convenient property of finite LPs is that there is no duality gap. This means

that the optimal value of the primal and dual LPs agree when a solution exists

(Chvátal, 1983). Unfortunately, in infinite dimensional spaces this is not always
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the case, and there are many simple infinite dimensional LPs that suffer from

a duality gap. In (Anderson and Nash, 1987) some conditions that guarantee

absence of a duality gap are presented, which rely on the topological properties of

the spaces in question.

The theory of infinite dimensional LPs has recently been applied with some

success to MDPs for the average reward case (Hernández-Lerna and Lasserre,

2002; Hernández-Lerma and Lasserre, 1996; Lasserre, 1992; Hordijk, 1994; Klabjan

and Adelman, 2006). However, there has been very little work on the discounted

reward criterion. In (Hernández-Lerna, 1989) the Bayesian model explored in

this thesis is discussed, but the algorithmic contributions are similar to what

was already presented in (Martin, 1967). An interesting method was presented

in (Ghate et al., 2007) with an application to the discounted reward criterion.

The method presented in this chapter is based on the idea in that paper, but our

problem formulation and theoretical results are significantly different.

In this chapter we present an anytime algorithm for Bayesian exploration. An

anytime algorithm is one that will continue to refine and improve its solution until

its time “runs out”. Once its time runs out, it returns the latest solution, and the

more time it has, the better the solution returned will be. In fact, we will present

the algorithm and its theoretical properties for the general class of MDPs with

countable state spaces, finite actions and bounded rewards, of which Hyper MDPs

are a special case. We begin by providing some background on infinite dimensional

LPs, followed by the algorithm, its theoretical properties and experimental results.
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6.1 Background

Infinite Dimensional spaces are extremely interesting in their own right and

have received a great deal of attention. They are widely used in applied areas such

as Economics, Control Theory and Operations Research. They are generally more

difficult to work with than finite spaces, as many properties which are taken for

granted in finite dimensional spaces fail to hold in infinite dimensional spaces,

unless certain specialized conditions hold. For the most part, we will focus on the

theory of Linear Programming in infinite dimensional spaces in this section. We

take for granted that the reader has some basic knowledge of topology. If not,

(Munkres, 2000) provides a great introduction.

As mentioned in the introduction to this chapter, the absence of a duality

gap in finite LPs is a property that fails to hold in infinite dimensional LPs.

Furthermore, the continuity of the objective function and of the constraints

are not guaranteed in arbitrary spaces. In order to show that these properties

hold in infinite dimensional spaces, we must first formulate the LP problem in a

topological setting. Most of the notation used for this presentation is taken from

(Aliprantis and Border, 2006) and (Anderson and Nash, 1987).

Definition 6.1.1. A topological vector space (tvs) X is a vector space over R

with a translation-invariant topology having a neighborhood base B at zero with the

following properties:

1. Each V ∈ B is absorbing. That is, for each vector x ∈ X there exists some

α0 > 0 such that αx ∈ V whenever −α0 ≤ α ≤ α0.
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2. Each V ∈ B is circled. That is, for each v ∈ V and any |α| ≤ 1 we have

αv ∈ V .

3. For each V ∈ B there exists some W ∈ B with W +W ⊂ V .

4. Each V ∈ B is closed.

Having defined the topological space on which most of our work will be done,

we will now define dual pairs, which are essential for a proper formulation of a

general LP.

Definition 6.1.2. Given a topological vector space X, its topological dual X ′ is

the vector space of all continuous linear functionals on X. 1

We can now define dual pairs, but before doing so, we must define a type of

functional on the product of two spaces.

Definition 6.1.3. A bilinear functional for two tvs X and Y is some function

from X × Y to R, written as 〈·, ·〉, with 〈x, y〉 a linear function of x for each fixed

y ∈ Y , and a linear function of y for each fixed x ∈ X.

Definition 6.1.4. A dual pair is a pair (X,X ′) of vector spaces together with a

bilinear functional (x, x′) 7→ 〈x, x′〉, from X ×X ′ to R, that separates the points of

X and X ′. That is:

1. 〈·, ·〉 is a bilinear functional on X ×X ′.

2. The mapping x 7→ 〈x, x′〉 is linear for each x′ ∈ X ′.

3. If 〈x, x′〉 = 0 for each x′ ∈ X ′, then x = 0.

1 This is a strict subset of the algebraic dual X∗, the vector space of all linear
functionals on X.
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4. If 〈x, x′〉 = 0 for each x ∈ X, then x′ = 0.

Many necessary properties required for our optimization problem require the

space to be convex (i.e. including the line segment joining any two of its points).

A Hausdorff tvs having a neighborhood base at zero of convex sets is called a

locally convex space. In order to guarantee that we are dealing with a pair of

locally convex spaces (X,X ′), the most commonly topologies used on X and X ′

are the weak and weak∗ topologies, defined below.

Definition 6.1.5. Given two spaces X and X ′, the weak topology on X

(denoted σ(X,X ′)) is the topology having a base of neighborhoods at the origin

composed of sets of the form BA = {x ∈ X : −1 ≤ 〈x, x′〉 ≤ 1. ∀x′ ∈ A}, where

A runs through all the finite subsets of X ′.

The weak∗ topology on X ′ (denoted σ(X ′, X)) is defined in a similar

manner.

If (X,X ′) is a dual pair, then the topological dual of the tvs (X, σ(X,X ′)) is

X ′ (Aliprantis and Border, 2006).

Remark 6.1.6. There may be many topologies which are consistent with the dual

pair (X,X ′). Indeed, every locally convex Hausdorff space (X, τ) is consistent with

the dual pair (X,X ′) (see (Aliprantis and Border, 2006)).

For formulating an LP, we need to look at two dual pairs of tvs, let (X,Y )

and (Z,W ) be such pairs, equipped with their respective weak topologies σ(X,Y )

and σ(Z,W ). Let A be a linear map from X to Z, its adjoint (or transpose) A∗

is defined by the relation 〈Ax,w〉 = 〈x,A∗w〉 for each x ∈ X and w ∈ W . A∗ is

a linear map from W to the X∗ (the algebraic dual of X). However, this may be
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problematic since, as mentioned before, Y is a strict subset of X∗. The following

proposition from (Anderson and Nash, 1987) remedies this situation.

Proposition 6.1.7. A∗ maps W into Y if and only if A is continuous with respect

to the topologies σ(X,Y ) and σ(Z,W ).

We are now ready to formulate the Linear Programming problem in a

topological setting. Heretofore we will always assume that we are using a topology

consistent with the dual pair in question. We denote the null vector by θ. Let P

and Q be the positive convex cones in X and Z respectively (a convex cone is a

set closed under addition and multiplication by positive scalars), and let A be a

σ(X,Y ) − σ(Z,W )-continuous map from X to Z. An inequality constrained LP

can then be defined as follows:

IP: minimize 〈x, c〉

such that Ax− b ≥ θ, (6.1)

x ≥ θ

where b ∈ Z and c ∈ Y . As in (Anderson and Nash, 1987), we will refer to the

above linear program as IP.

Before formulating the dual LP, we must define the dual cones of P and Q:

P∗ = {y ∈ Y : 〈x, y〉 ≥ 0 ∀x ∈ P}

Q∗ = {w ∈W : 〈z, w〉 ≥ 0 ∀z ∈ Q}
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The dual LP (which we will refer to as IP∗) can now be defined as follows:

IP∗: maximize 〈b, w〉

such that − A∗w + c ∈ P∗ (6.2)

w ∈ Q∗

Note that the above formulations are a generalized form of representing LPs,

and the LPs presented previously fall within this category. We will refer to X as

the primal variable space, Z as the primal constraint space, W as the dual variable

space and Y as the dual constraint space.

Although strong duality does not always hold for infinite dimensional pro-

grams, we do have weak duality, as stated in the following theorem from (Ander-

son and Nash, 1987).

Theorem 6.1.8. If IP and IP∗ are both consistent (i.e. have a feasible solution),

the the value of IP is greater than or equal to the value of IP∗ and both values are

finite.

Another subtlety which is taken for granted in finite dimensional LPs is that

the dual of the dual (IP∗∗) is exactly equal to IP . In infinite dimensional cases this

is only the case if the positive cone P is closed.

We close this section by presenting a theorem from (Anderson and Nash,

1987) which specifies a sufficient condition for the absence of a duality gap. Before

doing so, we need to define a special set D in Z × R as follows:

D = {(Ax− z, 〈x, c〉) : x ∈ P, z ∈ Q}.
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Theorem 6.1.9. If IP is consistent, with finite value, and D is closed, then there

is no duality gap for IP.

6.2 Absence of a duality gap

We will be dealing with subsets of the sequence spaces ℓ∞ (bounded

sequences) and ℓ1 (absolutely summable sequences). To be more precise,

ℓ∞ = {x ∈ R
∞ : sup |xi| <∞} and ℓ1 = {x ∈ R

∞ :
∑

∞

i=1 |xi| <∞}.

Continuing with the notation in section 6.1, we will use a subspace V ⊂ ℓ∞

as our primal variable space X, and a subspace R ⊂ ℓ1. Let P and Q denote the

positive cones of ℓ∞ and ℓ1, respectively. The subspaces are defined as follows:

V = {x : x ∈ ℓ∞, 0 ≤ xi ≤ Vmax∀i ∈ N}

R = {z : z ∈ ℓ∞, 0 ≤ zi ≤ Rmax∀i ∈ N}

From the above definitions we clearly have V ⊂ P and R ⊂ Q.

As mentioned in the introduction to this chapter, we will first present our

results for a general class of MDPs, and then show that Hyper MDPs are in fact a

part of this class and so all the results proved will immediately apply. Consider an

MDP as defined in section 2.1 with a countably infinite number of states, a finite

number of available actions and respecting assumption 2.1.1.
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Consider the primal LP formulation presented in section 2.2.3, rephrased for

our current context.

minimize 〈x, c〉

such that Ax ≥ b, (6.3)

x ≥ θ

In LP (6.3), x ∈ ℓ∞ denotes the vector containing the state values for all the

states in the MDP (i.e. xi holds the value of state i ∈ S) and c denotes the vector

containing the state-relevance weights (i.e. ci holds the state relevance weight for

state i). We require that c ∈ ℓ1 for the following reason. As previously mentioned,

for infinite dimensional LPs we must ensure that we are dealing with topological

dual pairs. The dual of ℓ∞ is ℓ1 ⊕ ℓd1, where ℓd1 is the disjoint complement of ℓ1

and consists of all singular functionals (see (Aliprantis and Border, 2006)). By

restricting c to an element of ℓ1, we are guaranteeing that the requirement of

topological dual pairs is respected, thus ensuring the continuity of the objective

function and constraints. One possibility for the choice of c is that of a probability

distribution over the state space. Such a distribution could represent the starting

state distribution of the MDP. For Hyper MDPs the choice of c could be that

of a probability distribution defined over the infinite hyper tree assigning higher

probabilities the closer to the root a hyper state is.
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The linear transform A is indexed by [(i, a), j], where i, j ∈ S and a ∈ A.

Thus, A := [a(i,a),j] where A(i,a) is a vector defined by

A(i,a) = [a(i,a),j] =











1− γP (i, a, i) if i = j

−γP (i, a, j) otherwise
.

b ∈ ℓ∞ is defined by b := [b(i,a)] = [R(s, a)]. Note that the product A(i,a) · x is

bounded, as demonstrated by the following derivation:

A(i,a) · x = xi −
∑

j∈S

γP (i, a, j)xj

≤ Vmax −
∑

j ∈ SγP (i, a, j)Vmin

= Vmax − γVmin
∑

j∈S

P (i, a, j)

= Vmax − γVmin

since P is a probability distribution. Thus, the range of A is ℓ∞ as required.

Let F be the feasible region for LP (6.3) (i.e. F = {x : x ∈ ℓ∞, Ax ≥

b, x ≥ θ}). From assumption 2.1.1 it is clear that x ∈ V whenever x ∈ F and

furthermore, b ∈ R.

With this in mind, we will define D′ ⊂ D as follows:

D′ = {(Ax− z, 〈x, c〉) : x ∈ V, z ∈ R}.

Lemma 6.2.1. D′ is closed.

Proof. Let (ξ(α), r(α)) → (ξ, r) in Z × R with (ξ(α), r(α)) ∈ D′ for all α. Each

(ξ(α), r(α)) is of the form (Ax(α) − z(α), 〈x(α), c〉) where each x(α) ∈ V and each
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z(α) ∈ R. This means (Ax(α) − z(α))→ (Ax− z) and 〈x(α), c〉 → 〈x, c〉. We need to

show x ∈ V and z ∈ R.

Let x = limα→∞ x(α). Since x(α) ≤ (Vmax) (the constant Vmax sequence) for all

α it requires only a moment’s thought to see that x ≤ (Vmax), implying x ∈ V.

Now let z = limα→∞ z(α). Since z(i) ≤ (Rmax) (the constant Rmax sequence) for

all α it is also clear that z ≤ (Rmax), implying z ∈ R. Thus, (Ax − z, 〈x, c〉) ∈ D′,

completing the proof.

An immediate corollary of this result is the following:

Corollary 6.2.2. V is closed.

We may now prove the following important theorem:

Theorem 6.2.3. There is no duality gap for LP (6.3).

Proof. Theorem 2.2.1 asserts that an optimal solution to LP (6.3) exists, which

confirms the LP is consistent. Lemma 6.2.1 demonstrated that D′ is closed. Since

all the conditions for theorem 6.1.9 are met, the result follows.

Furthermore, corollary 6.2.2 implies the dual of the dual of LP (6.3) is equal

to LP (6.3) itself.

We have thus shown that for the general class of MDPs described above, the

solutions to the primal and dual infinite dimensional LPs agree. To the best of the

author’s knowledge, this is the first time this result has been proven, as finiteness

of the state space has always been assumed when using LPs to solve the Bellman

optimality equations (Puterman, 1994),(Bertsekas and Tsitsiklis, 1996). In the
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next section we present a characterization of the extreme points of these infinite

dimensional LPs and a method for approximating them through finite LPs.

6.3 Convergent projections

In (Cross et al., 1998) the authors characterize the set of extreme points of

an infinite dimensional compact convex set and their finite projections. Before

presenting their results, we need a few more definitions.

Definition 6.3.1. A function f : C 7→ R on a convex set C in a vector space

is convex if f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) for all x, y ∈ C and all

0 ≤ α ≤ 1; it is concave if −f is a convex function.

Note that a linear function is both convex and concave.

Definition 6.3.2. A function f : X 7→ [−∞,∞] on a topological space X is:

• lower semi-continuous if for each c ∈ R the set {x ∈ X : f(x) ≤ c} is

closed.

• upper semi-continuous if for each c ∈ R the set {x ∈ X : f(x) ≥ c} is

closed.

Note that a real function is continuous if and only if it is both upper and

lower semi-continuous.

Definition 6.3.3. A point x ∈ S is called an extreme point of S if x is not the

midpoint of any line segment contained in S.

By the Bauer Minimum Principle (see (Aliprantis and Border, 2006)), when

the feasible region of an optimization problem is a nonempty compact convex
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subset S ⊆ R
∞, and the minimizing objective function is a concave lower semi-

continuous function on S, then the optimum is attained at an extreme point of

S.

Now we will define the projection function presented in (Cross et al., 1998).

Definition 6.3.4. For each N = 1, 2, · · · , define the projection function pN :

R
∞ 7→ R

N as pN(x) = (x1, · · · , xn) and the corresponding projections of S onto R
N

as SN = {pN(x) : x ∈ S}.

It will sometimes be necessary to view SN as a set embedded in R
∞ via

SN = {(pN(x),0) : x ∈ S}. Let E be the set of extreme points of S and EN be the

set of extreme points of SN , where EN can also be thought of as a set embedded in

R
∞.

The following is the main result from (Cross et al., 1998).

Theorem 6.3.5. The sets of extreme points EN of the projections SN of the

compact convex set S converge to the closure of the extreme points of S, i.e.

limN→∞EN = Ē. If E is closed then we have limN→∞EN = E.

We highlight that the authors assume that R
∞ is a space equipped with

the product topology. In our problem, we are dealing with elements of the space

V ⊂ ℓ∞ ⊂ R
∞, and thus, the results from (Cross et al., 1998) apply immediately to

our situation. Furthermore, lemma 6.3.6 below from (Aliprantis and Border, 2006)

combined with remark 6.1.6 ensure that the product topology on ℓ∞ is consistent

with the dual pair in question.

Lemma 6.3.6. The product topology on R
∞ is a complete locally convex Hausdorff

topology.
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We proceed to prove some necessary lemmas, recalling that F is the feasible

region of LP (6.3).

Lemma 6.3.7. F is compact.

Proof. A point x ∈ F is of the form (x1, x2, · · · , xi, · · · ), where each i ∈ S. From

assumption 2.1.1 we have that xi ∈ [0, Vmax] for all i. Since [0, Vmax] is compact, by

the Tychonoff product theorem (see (Aliprantis and Border, 2006)) it follows that

F is compact.

Lemma 6.3.8. F is convex.

Proof. Let x, y bet two points in F . We know there is at least one such point by

theorem 2.2.1, and if there is only one point then the lemma is vacuously true.

Consider z = λx+ (1−λ)y for some 0 ≤ λ ≤ 1. x is of the form (x1, x2, · · · , xi, · · · )

and y is of the same form. z is thus of the form (λx1 + (1 − λ)y1, · · · , λxi + (1 −

λ)yi, · · · ). We need to show that the constraints of LP (6.3) are satisfied by z.

λxi + (1− λ)yi is clearly positive since xi,yi,λ and (1− λ) are all positive. Now

take any action a ∈ A, we have that

zi − γ
∑

j∈S

P (i, a, j)zj = λxi + (1− λ)yi − γ
∑

j∈S

P (i, a, j)(λxj + (1− λ)yj)

= λxi − γ
∑

j∈S

P (i, a, j)λxj + (1− λ)yi − γ
∑

j∈S

P (i, a, j)(1− λ)yj

= λ

(

xi − γ
∑

j∈S

P (i, a, j)xj

)

+ (1− λ)

(

yi − γ
∑

j∈S

P (i, a, j)yj

)

≥ λR(i, a) + (1− λ)R(i, a)

= R(i, a)
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where the inequality follows from the fact that x and y are both feasible.

Since a was arbitrary, we have that z ∈ F . Since λ was arbitrary, it follows

that F is convex.

Since our objective function 〈x, c〉 is linear, it follows that it is both convex

and concave. Further, since x ∈ ℓ∞, c ∈ ℓ1 and the dual of ℓ∞ is ℓ1 ⊕ ℓ
d
1, we have

that 〈x, c〉 is continuous.

We have thus demonstrated that all the required conditions for theorem

6.3.5 are met. Ordering the variables for each hyper state in some fashion, define

the projections FN of F in a similar way as the projections SN were defined,

namely FN = {pN(x), x ∈ F}. However, rather than appending a vector

of zeros when embedding the projection in R
∞, we will append a vector of

Vmax values. In other words, we can consider FN as a set embedded in R
∞ via

FN = {(pN(x),Vmax) : x ∈ F}. Let E represent the set of extreme points of F and

EN the set of extreme points of the projection FN , for all N . The following result

follows immediately from theorem 6.3.5.

Theorem 6.3.9. The sets of extreme points EN of the projections FN of F

converge to Ē. That is, limN→∞EN = Ē.

The closure of E is not necessary for our situation, since by the Bauer

minimum principle we know the optimal solution to LP (6.3) is in E (i.e. at an

extreme point of F ).

As mentioned above, we will embed our projections in the infinite space

somewhat differently than was done in (Cross et al., 1998). Let V N be the optimal

solution to the LP defined on the projection FN . Note that in such an LP the

83



optimization is only over variables whose index is less than or equal to N . We will

embed these solutions onto R
∞ by the following equation:

WN
i =











V N
i if i ≤ N

Vmax otherwise

We will now present a final lemma and then the main theorem of this chapter

on which the algorithm will be based.

Lemma 6.3.10. WN is an extreme point of F .

Proof. Assume not, by contradiction. Then there exist x, y ∈ F such that WN =

1
2
(x+ y). Consider this convex combination at each index: WN

i = 1
2
(xi + yi). Since

pN(WN) ∈ EN , WN
i = xi = yi for all i ≤ N . Therefore, WN

i = Vmax = 1
2
(xi+yi) for

all i > N . Clearly we have either xi ≥ Vmax ≥ yi or xi ≤ Vmax ≤ yi; without loss

of generality assume the former. However, from inequality (2.2) we know that for

all f ∈ F , 0 ≤ fi ≤ Vmax for all i. This is only possible if xi = Vmax, which implies

yi = Vmax for all i. Thus, WN = x = y, proving the desired result.

Theorem 6.3.11. The sequence of embedded solutions WN form a decreasing

monotone sequence converging to V ∗.

Proof. By Lemma 6.3.10, we see that WN ∈ EN+1. Since WN+1 is the optimal

extreme point in FN+1, W
N+1
i ≤ WN

i for all 1 ≤ i ≤ N . Also, W n
i = WN+1

i = Vmax

for all i > N + 1. At index N + 1 we have WN
N+1 = Vmax ≥ V N+1

N+1 = WN+1
N+1 . Since

for all f ∈ F we have f ≥ θ, we see that the sequence of WNs is bounded below.

Thus, by the Monotone convergence principle, the WNs converge. The fact that
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their limit is V ∗ follows from the fact that V ∗ is an extreme point minimizing LP

(6.3).

Note that a Hyper MDP constructed over an MDP with a finite number of

actions and respecting assumption 2.1.1 is part of the general class of MDPs for

which the above results apply. Thus, theorem 6.3.9 applies to the Hyper MDP case

as well.

6.4 ABE: Anytime Bayesian Exploration

Consider an exploratory agent that requests an action choice from a black box

at certain points in time. The time intervals between requests may vary, but the

agent does not want to wait for long when it puts in a request. A simple example

of this kind of situation can be posed in the context of the SysAdmin problem

(see section 5.3.1): rather than dividing up the decision epochs into predetermined

time slots, one can think of a decision epoch occurring every time the system

administrator has to take a new action. If the system administrator is working on

a machine, he cannot perform another action on another machine simultaneously,

so the action choice can wait until he is done with the current machine.

The previous methods presented in this thesis output an action choice as

soon as their computation is finished (which is dependent on the depth, number of

samples selected and complexity of the problem). If the algorithm takes too long

to choose an action, the agent will be left waiting idly; on the other hand, if the

agent is not requesting an action, the algorithm will be left sitting idly until a new

request is made. It would be beneficial to develop an algorithm that can return
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an action choice essentially at any point in time. The more time between action

requests, the better its response will be.

We present an algorithm based on the ideas presented in (Ghate et al.,

2007). In contrast to our presentation, (Ghate et al., 2007) deals with the dual

LP formulation. They fail to prove the absence of a duality gap which restricts

one to solving only the dual formulation. Furthermore, the convergence of the

value functions in (Ghate et al., 2007) is not guaranteed to be monotonic, which is

needed in order to provide an anytime algorithm.

Our algorithm proceeds as follows. As in section 5.1 we construct a sparse

tree with a specified number of samples per action (C) and a desired horizon (H).

Rather than specifying large values of C and H to guarantee near-optimality, we

start with reasonably small values of C and H in order to produce a relatively

small sparse tree. The sparse tree is formulated as an LP (as in Chapter 4) and

CPLEX is used to obtain a solution to this LP. Note that this solution is the value

function for the sampled hyper states. This initial LP is our first projection, and

thus we may refer to it as LP1. If there is more time after solving LP1, the next

projection (LP2) is constructed by either increasing the number of samples (δC)

or the depth (δH) in the sparse tree of LP1. LP2 is thus an extension of LP1 and

thus, all of the results presented in section 6.3 apply, demonstrating that each

successive projection will produce a better value function estimate. The algorithm

continues in this fashion until a request for an action is received. At this point,

the latest value function computed is used to select the optimal action. A detailed

listing of the pseudocode for ABE can be found in Appendix A.
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6.5 Experimental results

In this section we present empirical results for ABE when running experiments

on the same domains as in section 4.4 and some of the problems from section 5.3.1.

These results illustrate the improved performance when more time is allowed as

well as demonstrate it compares favorably against other algorithms. Since ABE

is essentially a generalization of bayesExplore (without the rest parameter), the

plots for bayesExplore are not presented in the following results for clarity. In

all of the results presented, ABE was started with 2 samples, a depth of 3 and

incremented one sample at a time (i.e. C = 2, H = 3, δC = 1, δH = 0). The

numbers in parentheses next to ABE in the legend indicate the amount of time in

seconds given to ABE for action selection.

In figure 6–1 we ran ABE on the small MDP problem of section 4.4 and

compared it against the performance of the LP approach with the parameter

settings that yielded the best results. This is a very easy problem so there is little

improvement when more time is given to ABE, as it achieves near-optimal results

quickly. Nevertheless, it is able to achieve an improved performance compared to

the best results that the LP approach was able to produce.

Figure 6–2 compares ABE against the best of the LP approach settings

and R-MAX on the bandit problem of section 4.4. This problem highlights the

advantage of allowing more time for action selection as well as the advantage of

ABE over the other algorithms.

In the grid world problem of section 4.4 the performance of ABE was quite

poor. This is due to the fact that the goal state cannot be “seen” by ABE unless
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Figure 6–1: Small MDP: (a) Average reward versus iteration; (b) Cumulative
reward versus log time
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Figure 6–2: Bandit problem: (a) Average reward versus iteration; (b) Cumulative
reward versus log time

we are able to grow the sparse tree to a sufficient depth. The advantage of the

LP approach was that it maintained and used state-action values for exploration.

This served as a form of “memory” for the algorithm by being able to estimate

how close the states are to the goal. However, this method rendered it difficult

to obtain theoretical results for the LP approach. Figure 6–3 demonstrates the

performance of ABE on the grid world problem. Although the performance is
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poor, we can still observe a slight improvement in performance when more time

is allowed. The graphs from the LP approach are omitted since it is clear that it

outperforms ABE in this problem.
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Figure 6–3: Grid world problem: (a) Average reward versus iteration; (b) Cumula-
tive reward versus log time

The performance of the various algorithms on the Ring4 problem of section

5.3 is depicted in figure 6–4. As in the small MDP problem above, ABE achieves

near-optimal performance very early on, so there is almost no improvement as

more time is allowed. Nevertheless, its performance is still superior to the LP

approach and R-MAX.

Figure 6–5 compares the various algorithms on the Legs2
2 problem of section

5.3. We observe a similar behavior as before, further reassuring the validity of the

method.

Finally, table 6–1 shows the savings obtained when using the solution of a

previous projection as a starting point for the computation of a larger projection

versus starting from scratch. We present the percentage of reduction in the
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Figure 6–4: Ring4 problem: (a) Average reward versus iteration; (b) Cumulative
reward versus log time
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Figure 6–5: Legs2
2: (a) Average reward versus iteration; (b) Cumulative reward

versus log time

number of iterations and computation time taken by the CPLEX solver on each of

the problems from section 4.4 as well as the Ring4 problem of section 5.3, averaged

over 1000 iterations. We always started with C = 2 and H = 3, and tried different

values of δC. The top column specifies the values of H and C being compared.

It is evident that there are great savings when starting from an extreme point

solution as opposed to computing the solution from scratch. In the first three
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problems it is also clear that as we increase the number of samples, the savings

increase. This is due to the low stochasticity of the problems.

Table 6–1: Percentage reduction on number of iterations/computation time

Problem H = 3, C = 3 H = 3, C = 4 H = 3, C = 5 H = 3, C = 6

Small MDP 43.78%/33.33% 68.16%/50.49% 97.62%/81.12% 98.44%/83.91%

Bandit 49.89%/29.25% 64.39%/39.42% 84.30%/60.53% 87.97%/65.10%

Grid World 32.35%/19.57% 48.49%/26.36% 65.73%/42.47% 73.71%/49.14%

Ring4 26.82%/18.36% 47.27%/43.33% 35.27%/29.48% 36.55%/30.16%
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CHAPTER 7
Conclusion

In this thesis we have presented three methods for computing exploration

policies yielding high return. We have demonstrated the good empirical perfor-

mance of our methods when compared against other state-of-the-art algorithms. In

Chapter 4 we showed that by modifying the method of (Wang et al., 2005) we can

achieve better results. The shortcoming of these two methods, however, is that it is

difficult to obtain theoretical guarantees of their performance.

As a result, we presented the bayesExplore method in chapter 5 and proved

that it can achieve near-optimal results independent of the size of the state space

and problem representation. This result was heavily based on the results of

(Kearns et al., 1999). As in the original paper, the required number of samples

and horizon derived from the theory are still too restrictive to be applicable in

practice. However, our empirical results demonstrated that even when limited to a

small number of samples and a shallow horizon, bayesExplore achieves a superior

performance to other algorithms.

The ABE algorithm presented in chapter 6 is the most significant contri-

bution of this thesis. With this method we indirectly address the problem of the

infeasibility of the requirements for near-optimality of bayesExplore. Rather than

committing to a number of samples and horizon depth beforehand, we can increase

these values gradually, proportional to the amount of time available, yet without

92



losing any previous computations. This method also simplifies the choice of the

number of samples and horizon depth, as they will be dynamically set at each it-

eration. We proved formally and demonstrated empirically that the more time the

algorithm is given to process, the better the action choice will be. Our theoretical

results are not only applicable to Hyper MDPs, but to any general MDP with a

countable number of states and bounded rewards. Furthermore, the duality result

proved in theorem 6.2.3 is significant in its own right as it is the first time such a

result has been shown (as far as the author’s knowledge).

7.1 Future work

In chapter 5 we observed that the rest parameter can help speed up the

algorithm without affecting the performance very much. It would be useful to

obtain theoretical results regarding how the rest parameter affects the near-

optimality results.

It is also clear that after a large number of iterations, the model estimate

will be greatly improved, and thus, expanding all actions may not be necessary.

At a certain point action-selection methods (Puterman, 1982; Even-Dar et al.,

2006) could be used to reduce the size of the sampled tree. Results similar to what

was presented in (Kearns and Singh, 1998) could be used to define the number of

samples before action-selection can be used. Unlike the method in (Kearns and

Singh, 1998), however, our methods might not try all actions from every state, and

thus, we would not guarantee near-optimality of the model estimate.

One troublesome aspect is the “near-sightedness” of ABE. As was demon-

strated by the grid world problem in section 6.5, if the goal is quite far away,
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the sparse tree constructed by ABE may not be able to “see” the goal state in a

reasonable amount of time. The LP approach got around this by maintaining and

using state-action value pairs but we were not able to provide theoretical guar-

antees. A possible modification to ABE is to use state-action value pairs at the

leaves of the sparse tree. However, this modification complicates the monotonicity

guarantee so the theoretical results would have to be refined.

Finally, it would be interesting to extend the results of chapter 6 to MDPs

with continuous state and action spaces. These types of MDPs are very common

in control theory and robotics and would benefit greatly from an anytime method

for online planning. Work on LPs in measure spaces (Kellerer, 1988; Lai and Wu,

1994) suggest that strong duality results can be obtained for general MDPs with

continuous state and action spaces. However, the indexing of the increasing projec-

tions is no longer clear and the inductive arguments for the anytime algorithm do

not immediately follow.
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Appendix A

In this appendix we present the pseudocode for ABE. Before doing so, we will

define the projection procedure (see algorithms 5 and 6) which, given a desired

depth H, a specified number of samples C, and a sampled finite hyper tree to

start from (T ), constructs a projection of the infinite dimensional hyper tree. We

assume that the hyper tree T is a data structure where T.root returns the hyper

state at the root of the tree (i.e. a pair of the form (s, ψ)), T.numSamples returns

the number of samples for each action from the root, T.isLeaf returns whether

T is a leaf node, T.subtree(a, i) points to the subtree obtained at the ith sample

of action a from the root, and T.nextStates is the set of sampled next states

from the root. This procedure is used by our main algorithm to create the initial

finite LP, and then to obtain the increasing projections. Algorithm 7 introduces

ABE (Anytime Bayesian Exploration). It receives as parameter an initial depth

H, initial number of samples C, depth increment δH and samples increment

δC. The initial depth and samples should be chosen so as to guarantee that the

computation time with them will be close to the smallest expected time interval

between action requests. Once the initial solution has been found, the algorithm

will continue to increment the size of the projection, alternating between increasing

the number of samples and increasing the depth. As soon as a request is received,

the algorithm interrupts its current processing and returns the latest solution

available. Theorem 6.3.11 guarantees that each successive computation produces

an improved solution.
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Algorithm 5 Projection(T,H,C)

1: if H == 0 then
2: return T
3: end if
4: if T.isLeaf then
5: for a = 1 to |A| do
6: for i = 1 to C do
7: T ← addSample(T,H − 1, C)
8: end for
9: end for

10: else
11: if T.numSamples == C then
12: for a = 1 to |A| do
13: for i = 1 to C do
14: T.subtree(a, i)← Projection(T.subtree(a, i), H − 1, C)
15: end for
16: end for
17: else
18: for a = 1 to |A| do
19: for i = 1 to T.numSamples do
20: T.subtree(a, i)← Projection(T.subtree(a, i), H − 1, C)
21: end for
22: for i = T.numSamples+ 1 to C do
23: T ← addSample(T,H − 1, C)
24: end for
25: end for
26: end if
27: end if
28: return T
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Algorithm 6 addSample(T,H,C)

1: if H == 0 then
2: return T
3: end if
4: (s, ψ)← T.root
5: for a = 1 to |A| do
6: Generate a sample from pas(ψ). Let s′ be this next state.
7: T.numSamples← T.numSamples+ 1
8: T.isLeaf ← FALSE
9: T.nextStates← T.nextStates ∪ s′

10: T.subtree(a, T.numSamples).root← (s′, Da
s,s′(ψ))

11: T.subtree(a, T.numSamples).numSamples← 0
12: T.subtree(a, T.numSamples).isLeaf ← TRUE
13: T.subtree(a, T.numSamples).nextStates← ∅
14: T.subtree(a, T.numSamples)← Projection(T.subtree(a, i), H − 1, C)
15: end for
16: return T
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Algorithm 7 ABE(MDP, s0, ψ,H,C, δH, δC)
1: s← s0

2: T ← ∅
3: T.root← (s0, ψ)
4: T.nextStates← ∅
5: T.numSamples← 0
6: while Agent is exploring do
7: T ← Projection(T,H,C)
8: Construct an LP from T in the usual manner.
9: Solve the constructed LP. Let V̄ be the solution vector found.

10: a← arg maxa
[

r̄as (ψ) + γ
∑

s′∈T.nextStates p̄
a
s,s′(ψ)V̄ (s′, Da

s,s′(ψ))
]

11: while An action request interrupt has not been received do
12: H ← H + δH
13: C ← C + δC
14: T ← Projection(T,H,C)
15: Construct an LP from T in the usual manner.
16: Solve the constructed LP, using V̄ as the starting extreme point. Let V̄ be

the new solution vector found.
17: a← arg maxa

[

r̄as (ψ) + γ
∑

s′∈T.nextStates p̄
a
s,s′(ψ)V̄ (s′, Da

s,s′(ψ))
]

18: end while
19: Return action a to agent, and observe transition (s 7→ s′) under action a per-

formed by agent
20: if s′ ∈ T.nextStates then
21: Let i be the sample number for which hyper state (s′, Da

s,s′(ψ) is the root.
22: T ← T.subtree(a, i)
23: Discard all the elements of V̄ not in T.subtree(a, i), as they are no longer

needed.
24: else
25: T ← ∅
26: T.root← (s′, Da

s,s′(ψ))
27: T.nextStates← ∅
28: T.numSamples← 0
29: end if
30: s← s′

31: end while
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Key to Abbreviations

ABE: Anytime Bayesian Exploration

ADD: Algebraic Decision Diagram

AI: Artificial Intelligence

ALP: Approximate Linear Programming

BDD: Binary Decision Diagram

CPT: Conditional Probability Table

DAG: Directed, acyclic graph

DBN: Dynamic Bayesian Network

DP: Dynamic Programming

IE: Interval Estimation

LP: Linear Programming

MDP: Markov Decision Process

RL: Reinforcement Learning

tvs: Topological Vector Space
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