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ABSTRACT

With the launch of World of Warcraft in 2004, Massively Multiplayer Online

Games (MMOGs) really came into their own as millions of people started playing

worldwide. Providing scalability to such a large audience while maintaining a consis-

tent gameplay experience is a difficult task which many companies face in an industry

where only few succeed.

This thesis focuses on the issues of how a MMOG can be scaled to support more

concurrent players and how consistency can be maintained in a Distributed Multi-

Server Environment (DMSE). As a basis for investigation the notion of “Subgames”

(i.e. games within games) was introduced. As smaller, more flexible game units,

subgames reduce scalability problems but raise consistency concerns by requiring

modular game actions in a distributed environment to function. This is addressed

through a new transactional protocol and action framework which abstracts and

solves consistency issues while creating an infrastructure which allows for scalability.

A complete solution is illustrated using these techniques through the design of gen-

eral game mechanics and subgames.

The approach here further enables scalability of MMOGs in a DMSE and pro-

vides a general framework for the further investigation of MMOG consistency and

scalability through subgame instances.
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ABRÉGÉ

La popularité des jeux massivement multi-joueurs en ligne ( MMOGs ) a grande-

ment augmenté avec l’arrivée du jeu World of Warcraft, qui est joué par des millions

de personnes à travers le monde. Cependant, ce type d’application nécessite des in-

frastructures extensibles pour accommoder des milliers de joueurs, tout en offrant

une expérience de jeu consistante. Ceci représente un grand obstacle que plusieurs

compagnies doivent affronter, mais qui est surmonté par peu.

Cette thèse aborde les problèmes reliés à la croissance du nombre de joueurs

simultanés, tout en discutant comment maintenir un environnement distribué multi-

serveurs ( DMSE ) consistant. La notion de sous-jeux ( un jeu qui se déroule l’intérieur

d’un autre jeu ) a été utilisée pour mieux étudier le problème. En tant qu’unités de

jeu plus petits et flexibles, les sous-jeux facilitent la croissance, mais augmentent

les problèmes de concurrence puisque leur bon fonctionnement nécessite des actions

modulaires dans un environnement distribué. Ces défis sont adressés par un nouveau

protocole transactionnel et un cadre d’applications d’actions qui font abstraction et

règlent les problèmes de consistance, tout en offrant une infrastructure qui permet

une certaine croissance. Une solution, où les mécanismes de jeux et de sous-jeux sont

adaptés en conséquence, illustre les techniques proposées dans cette thèse.

Ces techniques permettent une plus grande croissance pour les jeux MMOGs

dans un DMSE, tout en fournissant des outils de sous-jeux qui permettent l’étude

des défis de consistance et de croissance.
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Chapter 1
Introduction

Massively Multiplayer Online (Role-Playing) Games (MMOGs or MMORPGs)

have redefined traditional computer game notions and defined an era. They have

almost become common knowledge since the advent of the most popular MMORPG:

World of Warcraft [8]. Unlike traditional video games focused on the aspects of a

single player or a small group of players, MMOGs throw their players into a virtual

world to interact with real people (via a personalised avatar) in a dynamic environ-

ment. These additional features add complex networking and social challenges to

the development of the game world and the game itself.

MMOGs reach millions of people worldwide [8, 6, 3] generating massive amounts

of income for their developer’s corporations. It is imperative as a new class of service

provider that these games remain operational. However, creating a system that is

able to scale to such a large audience with hundreds of thousands of concurrent users,

while maintaining a consistent gameplay experience, is a difficult task. The quality

of the game experience for a player, however, can make all the difference between

the success or failure of the game.

Motivation

There are more strict requirements on the network infrastructure in a typical

MMOG. Simple network designs do not “scale” to the hundreds of thousands or

millions of players supported by a popular MMOG. In order to allow many players
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to play the game “simultaneously,” players are usually spread across many different

copies of the same game world, on multiple different individual servers [26]. Unfor-

tunately, while this allows more players to play the same game, many players will be

isolated from each other. This practice, while practical from a developer perspective,

usually upsets players wishing to interact with each other [26].

The motivation behind this thesis is to break down a MMOG into smaller more

manageable games called “Subgames” to allow for increased and more flexible inter-

action between players while still being able to scale and increase the total possible

number of players within the same “global world.” To this end, the design pre-

sented here is based on a Distributed Multi-Server Environment (DMSE), allowing

for greater scalability compared to a traditional client/server network architecture

[10].

Good game design requires strict consistency of the game state (even in a dis-

tributed game environment), and for subgame purposes, the ability to modify and

enhance the default game mechanics. These issues are also discussed and addressed

with the notion of a light-weight transactional protocol suitable for games within a

scalable and modular framework. The complete design is backed by a non-trivial

implementation appropriate for scalable subgame architectures which can increase

interactions between players in a consistent fashion.
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Contributions

The specific contributions presented by the research in this thesis are the fol-

lowing:

1. Creating a modular “subgame” infrastructure to expand upon a global game

world in a scalable fashion.

2. Providing a practical design for encapsulating game state changes into entities

called actions. This helps maintain consistency and provides a way to override

default game behaviors.

3. The creation of an efficient transactional protocol to maintain consistency for

games in a distributed multi-server environment.

4. A versioning scheme used in conjunction with consistency resolution to prevent

malformed state-change requests and ensure distributed operations are properly

ordered.

5. A demonstrated implementation of the complete architecture in a non-trivial,

distributed game environment.
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Roadmap

The next chapter provides a background to the main principles discussed in the

thesis research, Chapter 3 provides further background on the Mammoth project (the

game research framework used for implementation and experimentation), Chapter 4

discusses the main contributions of this research in detail with respect to accommo-

dating both subgame and consistency requirements, while Chapter 5 focuses more on

surrounding challenges encountered in the implementation itself. Finally, Chapter

6 concludes and discusses future work enabled by this thesis. An Appendix is also

provided including other miscellaneous implementation work done on the Mammoth

project during the duration of this thesis.
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Chapter 2
Related Work: Massively Multiplayer Online Games

While computer games have been around since the 1970’s, MMOGs are a rela-

tively new genre of game. Originally, online games called Multi-User Dungeons (or

MUDs) existed giving people the text-based equivalent of what a MMOG is con-

sidered today. The main proponent of change for the advent of the MMOG was

the increased network infrastructure provided by the Internet and the availability of

dial-up and high speed Internet access in the late 1990’s.

With the launch of modern MMORPGs such as EVE Online, World of Warcraft

(WoW), and Guild Wars from 2003-2005, MMOGs really came into their own as

millions of people started playing worldwide [6, 8, 3]. To achieve this a number of

critical systems are required to support the game infrastructure needed to handle a

large numbers of players at once. Two main issues which are specifically relevant

to MMOGs are Scalability and Consistency. Below a discussion of useful network

designs for MMOGs is presented, followed by scalability and consistency concerns.

2.1 Network Topography

There are many different approaches to create a network topology. Several basic

models are shown in Figure 2–1. These designs range from a traditional client/server

to a completely peer-to-peer model [14].
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(a) Client/Server (b) DMSE (c) Peer-to-peer

Figure 2–1: Network Architectures

Client / Server

The Client/Server model shown in Figure 2–1a represents a system with a cen-

tralised server maintaining all the information about players and the game world.

Clients connect to the server and receive information about the game world around

them. All game state queries and modifications go to the server to be executed. This

provides the greatest control and easiest approach to consistency for the game world,

as there is only a single point of access. Unfortunately, this approach is not scalable

because the number of supportable players is dependent on the physical hardware

and network limitations of a single machine. For its simplicity and easy management

of consistency, however, this system is used in the majority of MMOGs [14]. In or-

der to scale their games, most commercial systems duplicate this architecture and

balance the load of clients amongst different servers, but this tends to isolate players

wishing to play with one another [26].
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Peer-to-Peer

The Peer-to-Peer (P2P) model shown in Figure 2–1c is the opposite extreme

of the client/server model. With the P2P model, the system is “infinitely” scalable

as the network load is completely distributed amongst all of the computers in the

system. However, in this model there are several practical problems when applying

it for games, principal among them are availability, performance, consistency and

security (to prevent game cheating) [20]. Most companies in the industry tend to

avoid this model due to these issues, especially with respect to the security concerns.

Recent exceptions exist though: WoW is using the benefits of a P2P system to

disseminate its client software updates [2].

Distributed Multi-Server Environment

The Distributed Multi-Server Environment (DMSE) model in Figure 2–1b is

used by the Mammoth project. It combines the security and update performance

of the client/server model with the potential scalability of a P2P network. Like a

P2P network the system can simply scale by adding another machine to the cluster;

however, unlike P2P, the onus and cost of adding extra machines is still with the

service provider, rather than utilizing the power of client machines. As previously

mentioned, most MMOGs in the industry are currently configured in a centralised

manner due to the security benefits it provides [14].

Unfortunately, as in the P2P model there are a couple of issues with the DMSE

model which need to be addressed: there needs to be an easy way to scale the game

world and there needs to be a way to maintain the consistency of the game state.

Solving these two problems is the goal of this thesis.
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Duplication Spaces

While the DMSE model has similar benefits to the traditional client/server

architecture, programming a MMOG in a distributed setting is much more complex.

To combat this issue, technology from Quazal was used which abstracts the notions

of where objects reside on the network using “Duplication Spaces,” based on an

object replication scheme with “Master” objects and copied “Replicas” [28]. More

about how this technology is used and adapted specifically to Mammoth is discussed

in Section 3.4.

2.2 Scalability

The choice of a network topology, as described in the previous section, can effect

the ability to scale an MMOG based on physical limitations of hardware. However,

the network topology does not address how it is possible to scale the overall game

architecture to the same levels.

Scalability quickly becomes an issue in MMOGs if any of the basic game ar-

chitecture algorithms become a performance bottleneck as more users are added or

the size of the world is increased. Some of these algorithms may be polynomial or

exponential in nature, or the entire set of world objects can simply be too large. In

these cases, a game can break down quickly with even a relatively small increase to

the number of users.

WoW provides an interesting comparison. Their user base is approximately

10 million subscribers worldwide, with half of them located in China [8]. With so

many subscribers, there is also the possibility for many of them to be playing at the

same time, and at its peak WoW has had upwards of a million concurrent users in
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China [5] with an average of 330,000 in the first-quarter of 2007 [4]. With such a

large number of concurrent users it is hard to see how a game with a single-server

architecture would be able to handle such requirements. Fortunately, there are a

number of techniques available to increase the abilities of the underlying network

architecture.

2.2.1 Shards/Instances

To combat the issues with the number of concurrent users WoW takes a tradi-

tional stance of effectively duplicating the game and isolating players onto separate

servers. In the U.S. alone, WoW uses over 200 servers, each supporting “thousands”

of players [1]. This common technique is used often in the industry and is known as

creating a “Shard” or “Instance” of the game world [26].

Figure 2–2: Server Shards

Figure 2–2 shows the typical game shard setup. Individual servers become re-

sponsible for a set of clients [13]. Each server has a complete copy of the game running

on it, and no communication occurs between the servers. Players are isolated from

each other if they are connected to different servers.
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Shards have the same advantages as the traditional client/server system: the

game is controlled from a central location, the game world can be kept consistent,

and it can be harder to infiltrate or abuse the system. In addition, the scalability

comes from being able to add another server, which contains another instance of the

game world, which players can connect to. Unfortunately, since players on different

servers are isolated from each other, players wishing to play together must ensure

they are connected to the same shard. In addition, each server still has a physical

limit to the number of players able to play on it. Therefore it is possible for individual

servers to still become overloaded with players.

The other disadvantage to shards is they limit the “massively multiplayer” ex-

perience. While playing with thousands of players is still impressive, in the large

sparse worlds typical of MMOGs a player may not encounter many other people or

will continually see the same people. It is also deceptive to players as they may

not realise they are isolated, and not in fact interacting with every possible player

actually playing the game.

2.2.2 Interest Management

Interest management is another technique used to scale the ability of a single

server. It is used to limit the amount of work a server has to do for each client

and therefore allow it to handle more clients at once. There are various interest

management schemes, but simplistically, each one can be thought of as a publish

and subscribe model [11].

10



Publishers release new information about changes in the game world and are

generally game objects. Subscribers are consumers of this information and are gen-

erally connected clients. Interest management refers to whatever scheme is used to

determine the relation between these publishers and subscribers [11]. There is also

middleware such as Quazal’s Duplication Spaces which can do this to some degree

automatically [28].

By lessening the number of messages needed to be sent to clients, interest man-

agement is beneficial to any architecture. By itself however, it does not solve underly-

ing issues with scalability in a traditional client/server system. A detailed discussion

of interest management and different approaches to it is given by Boulanger et al.

[11].

2.2.3 Load Sharing

Another technique used to scale MMOGs is Load Sharing [16]. It is used more

in cases of distributed network topologies, but can also be used with shards. To give

an example for shards, players could connect through a central hub (which monitors

all other servers) before being routed to the game server with the least number of

players connected to it. In this manner there is always an even balance of players

spread across all the servers in the network.

Attempts have been made in the past to solve scalability by “mirroring” the

game-state across servers similar to something between the shard and DMSE ap-

proaches [15]; however, while this can balance the number of connections, it fails to
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address the growing number of game objects and absolute consistency. It is impor-

tant to note, load sharing is just as important for the objects in the game world as

it is for handling connections from clients to servers [29].

As mentioned previously, relatively small changes to the number of users or game

objects can quickly break a functioning game. By utilizing interest management with

game objects and servers, the state of the game can be evenly distributed. This allows

the game world to scale across multiple servers in a controlled fashion as well as the

network connections from clients.

The Mammoth project uses this implementation of a DMSE topology (Figure 2–

1b), interest management, and load sharing (with the use of Duplication Spaces [28])

to provide a scalable game environment. The implementation work of this thesis

enables game mechanics to run in this setting as well as keeping the game state

consistent across clients and servers.

2.3 Consistency

Being able to scale a MMOG is a necessity, but it is equally important to

maintain a consistent view of the game world. Everyone playing the game should

have the same information about the global game world and all the items and players

they are currently interested in. Ensuring requests and updates are applied at the

same time everywhere is a difficult task. Because this coordination for consistency

is difficult a traditional single server model is generally preferred for MMOGs [26].

Using a DMSE model for networking would be beneficial due to its innate scal-

ability; however, consistency with distributed objects is a much more complex prob-

lem. In the single server model, server-side consistency can be obtained simply

12



because there is only a single node which contains game data, and therefore setting

up controls to synchronize updates is easier. In a DMSE, there are multiple nodes

each with different sets of data; in order to make updates, more network messages

are required, and even more work is required to maintain consistency.

There are still other consistency concerns in a client/server setup existing be-

tween clients and the server itself (as clients usually have an outdated, inconsistent

view of the world); however, many techniques have been developed to resolve these is-

sues. Mammoth, for example, had used a coordinated state change network message

(described further in Appendix A.1).

“Dead-reckoning” is a common technique used to allow clients to make use of

particular information to estimate game state in order to resolve short-term consis-

tency issues [18]. Dead-reckoning is popular in games because traditional perfect

consistency schemes for distributed environments (from the database community)

are not “efficient” enough for the real-time nature of modern computer games [22].

With Dead-reckoning a game client utilizes information it currently has about

the game state and its internal physics engine to compute where objects are in

the future within a given amount time [27]. In this manner the game can seem

to be moving in realtime, while in reality network messages are lagging slightly

behind. Problems arise however when the predicted state differs from the actual

state received. In these cases, visible “jumps” will occur or extra work is required to

merge the divergent states [24].

The main issue with dead-reckoning is that most of this research focuses on

player movement or other activities that can be predicted based on physical models.
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The process breaks down when more complex interactions involving objects which

move unpredictably at any point in time are introduced [27]. It is impossible for

an algorithm to predict the change in state, if a player randomly decides to pick

up a tomato. Since objects and interaction are a major component for MMOGs,

many “impossible” predictions can occur at any given time. In addition the state

update is necessary to prevent an object from appearing in two places at once. To

solve this problem stronger consistency models are needed. Two main approaches

often discussed for resolving these consistency problems are local lag and lockstep

synchronization.

“Local lag” is where an intentional delay is used to counteract the delay caused

by sending network messages [23]. With local lag the displayed game state runs

slightly behind the known game state, hopefully giving enough time for a state

change message to reach its destination before it needs to actually be displayed.

Unfortunately, this delay is hard to estimate, and if the specified delay is not suffi-

ciently long a rollback is needed to restore and repair the game state [17]. This is an

expensive process that may affect other clients as well – rollbacks on one client can

invalidate data sent to other clients, causing a cascade effect dependent on the num-

ber of participants in the game [25]. The Timewarp algorithm is a well-known design

that ensures strong consistency through rollbacks [17]. In the case of an MMOG,

however, the number of game participants is quite large and real-time progress is

critical, making state rollback and repair impractical.
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Similar problems with scalability arise when using the lockstep protocol to syn-

chronize game state changes. The lockstep protocol revolves around a “stop-and-

wait” mechanic where each client announces and receives other updates before pro-

ceeding to the next game step [9]. In this manner clients can remain consistent and

secure; however, its performance is effected by the number of clients and the slowest

clients connected in the network [9].

When a DMSE is introduced to increase the scalability of the game system, local

lag and lockstep break down. In a DMSE, it is possible for a message to get rerouted

from one server to another in order to find the Master object. In this case an extra

time cost is incurred. However, for local lag, this increases the chance of needing a

rollback as the message is delayed [13]. The rollback also becomes increasingly more

expensive as the system scales upwards [24]. In the case of the lockstep protocol,

every client in the system would be slowed down to wait for the extra time in the

rerouted request. In both cases, it will become increasingly unmanageable as the

number of clients and servers expand to the numbers found in typical MMOGs.

All of the schemes mentioned here, while providing consistency for their intended

realms, fail to provide scalable implementations suitable for a DMSE and large-scale

MMOGs. The work introduced by this thesis in Chapter 4 shows it is possible to

maintain consistency at the point of an initial request across multiple servers. Thus,

it becomes possible to scale a system while maintaining consistency in an arbitrary

game environment.
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Chapter 3
Mammoth Architecture

The following chapter describes the “Mammoth” Massively Multiplayer Game

Research Framework and its current implementation. It is provided as an intro-

duction into the Mammoth project and as further background to general gameplay

elements and requirements usually found in MMOGs.

After introducing the Mammoth platform, basic concepts provided in its im-

plementation needed for the research performed in this thesis will be described.

Afterwards, a discussion of potential conflicts in consistency follows.

3.1 What is Mammoth?

Mammoth is a Massively Multiplayer Game Research Framework [7]. It was

created as a collaborative project between a group of McGill University students

and professors in the summer of 2005. Its goal was to provide an implementation

platform for academic concepts from the fields of databases, distributed systems, fault

tolerance, graphics, modeling and simulation, networking, artificial intelligence, and

aspect-orientation to have a practical application to test different methodologies in

a controllable environment.

It has since grown to a code base of over 80,000 lines of Java in about 800 class

files. There is always a steady stream of development from numerous undergraduate

and graduate contributors. Jörg Kienzle and Clark Verbrugge are the two main

overseers of the project, and I joined the project at the start of 2006. The project
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has been demonstrated at various conferences in Canada and has gained support and

collaboration from gaming industry companies such as Electronic Arts and Quazal.

Like most massively multiplayer games, Mammoth consists of a virtual world

where players take control of a digital avatar, moving around and interacting with

objects. However, unlike other games, Mammoth has a fixed number of avatars in

the world. These avatars will always exist even when players are not playing the

game. A player logging into Mammoth then takes control of one of the avatars in

the world during their gaming session.

3.2 Ground Work

Initially, the Mammoth virtual world was fairly bleak providing basic movement

for players and very little in the way of interaction with objects contained within the

game world. An item could be picked up, which would place it directly in the player’s

inventory, or it could be dropped directly at the player’s feet from their inventory

(see Figure 3–1).

While this mechanic was simple to implement and provide implementation for,

it is not a realistic behavior nor one typically found in most games, especially in

this day of age. Most research at the time for Mammoth revolved around a player’s

movement over the network, and as such, item interactions left much to be desired.

Before starting with the main implementation work of this thesis, I did some

groundwork to increase the interactions available to players with items in the world.

This increased interaction has been a major factor in making the research on sub-

games, consistency and stable states described in this thesis possible, as well as

17



Figure 3–1: First Mammoth Client

enabling other research on path-finding [21], artificial intelligence [19], and interest

management [12].

3.2.1 Item Interactions in Mammoth 1.0

Initially, items in Mammoth were fairly simplistic. Item properties included a

name, weight, and value. As stated previously, items could only be picked up directly

to the player’s inventory or dropped at their feet (at the exact same location as the

player).
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When an item is dropped in such a manner, it is obscured by the player avatar.

This is annoying to users, especially, if they wish to pick up the item again, as they

would be required to move to do so. If multiple items are dropped, anyone wishing to

pick one up later would have similar troubles as all the items would be overlapping.

A user would be required to search through the pile of items one by one.

Searching through a pile on the ground would not be possible for a user, if their

inventory was nearly full. Imagine a player wished to pick up a flower with weight

0.01kg. They have room in their inventory for one more item with a maximum weight

of 0.1kg. If the flower is obscured by a Tomato of weight 0.2kg, it is impossible for

a player to pick up the flower without first losing the security of an item already in

their inventory. They would have to drop another item, pick up the tomato, move

(as to not drop the tomato on their original item), drop the tomato, pick up the

flower, and then pick up their original item.

This magnitude of manual labor expected of a player is unacceptable as it makes

a game tedious instead of fun. Further work was pursued to ensure items would

have more realistic interactions. It would also allow for a more modern up-to-date

gameplay comparable with other games today. As most modern games allow a

player to choose where they would like to place an item on the ground. Usually, this

intermediate navigation is a visual distinction, but can also be realised as a separate

game state. To update Mammoth, the notion of a “hand” was added.

3.2.2 Improving the User Interface

One of the major introductions to Mammoth was the notion of a player’s “hand.”

A player would be able to pick up an object which would replace his mouse cursor
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with an icon of the object he now held in his hand. This allowed for a, much needed,

deeper interaction with items.

Not only could the player now choose if he wanted the item in his inventory,

but they could also drop the item nearby or in an alternate location. This allows

for additional gameplay scenarios; for instance, having an obstructing log which the

player needs to move, before proceeding on their way.

Having a hand also prevents the manual labor of sorting items, as stated previ-

ously. With a hand any item can be picked up, regardless of if the player has space in

their inventory for it or not. Only if a player tries to place the item in their inventory

afterwards would a check be made for a full inventory. In this manner if there was a

pile of objects on the ground, a player can simply continue to pick items up in their

hand and move them aside until they find the one they are looking for.

Players would even be able to drop the item from their hand into a container in

the world. Thus, the simple addition of a hand provided a system of state changes

referred to as picking up, dropping, getting (an item from a container), and putting

(an item in a container).

3.2.3 Containers

Containers were created not only as a better way to account for a player’s

inventory, but also to make the game world more dynamic. Now, a player had a

choice. They could not only pick up an item and store it in their inventory or move

it on the ground, but they could hide it in a different place, such as a trashcan (see

Figure 3–2).
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Figure 3–2: Dropping a Flower in a Trashcan

3.3 Potential Conflicts

Besides a lack of gameplay at the time, Mammoth wasn’t without technical

issues. Especially, with an implementation of items and containers many potential

conflicts existed.

It is possible for two players to try and pick up the same item at the same time

from the world or another container in it. At this point, there must be a resolution

of conflict for consistency to remain. There can also be problems with consistency

brought on by network lag. With these problems, both players could end up with
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the item in their inventories, which would be incorrect. Similarly, a player who had

picked up an item initially could find their item suddenly disappears when a lagged

client requests to pick up that same object which they believe is still on the ground.

The added notion of a hand creates a single point to help resolve conflicts,

rather than a large inventory object. It also provides an intermediate location where

a player can come into possession of the item quickly and then decide where the item

should be placed. The two-step process ensures there is less load on the server by

separating checks for ownership and container space.

In the case two players initiate a pick up (even if one is from a lagged client),

the server can check if a player’s hand is empty, and if the item is not owned, assign

the item to a player’s hand. The second request by the other player would find the

item is owned already, and the request would be denied.

Unfortunately, issues arise on clients with partial views of the world, especially

clients with network lag. It would be possible for a client to receive updates about an

object it does not know about yet or in a different conflicting state. Thus, applying

the update fails and results in an inconsistent state on the client.

Of course when an invalid state is present due to lack of consistency, it not

only disrupts the gameplay experience but also the basic essence of how the game

functions. Further work was required to resolve these consistency issues in Mammoth.

Initially, research was done on the traditional client/server system and implemented

successfully (see Appendix A.1). However, the solution was not applicable in a peer-

to-peer or multi-server environment.
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3.4 Object Replication

As part of the most recent work being done on the Mammoth project, an object

replication scheme has been introduced, similar to that discussed in Section 2.1. It is

the latest functional part in a long standing effort to run Mammoth in a Distributed

Multi-Server Environment (DMSE).

In essence, every object has a master copy which is the only copy allowed to

change the state of the object. All other copies of the object on other machines (such

as clients or other servers) are replicas which are only allowed to read the state of

the object or forward state changing requests to the master object. Whenever the

master object is updated, the update is disseminated to all the other replicas.

However, while the master/replica system existing in Mammoth is based on the

work of Quazal and their Duplication Spaces [28], the rest of the Mammoth system

is based upon remote procedure calls completely transparent to the game layer.

The game simply invokes the operation on the game object as normal: Mammoth

automatically redirects the call to the master object, if necessary. This transparency

is not only convenient for developers, but it also makes it easier to migrate master

objects between servers for load balancing or fault tolerance reasons.

By using a master/replica system, it is easier for an object to remain consistent

as only one copy of the object can be updated. However, the main difference now is all

of the game objects no longer need to be centrally located. Unfortunately, more work

was required to ensure the system was robust enough to deal with complex actions

involving multiple object updates required by MMOGs. This will be discussed further

in the next chapter.
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Chapter 4
Subgames in MMOGs

As was discussed back in Chapter 2, modern day MMOGs have many issues

surrounding their implementation. Two primary concerns are scalability to allow

more people to play and consistency to allow everyone to share the same experience.

In most cases, these two qualities are mutually exclusive. Stable platforms such as

a traditional client/server model (refer to Section 2.1) provide consistency but do

not scale well. Where as a Distributed Multi-Server Environment (DMSE) provides

much more scalability but has many consistency issues to overcome.

In this chapter, it will be shown how it is possible to achieve both scalability

and consistency in a DMSE by the research in this thesis. First, to solve scalability

the definition of subgames will be presented, requirements needed for their imple-

mentation, as well as issues in consistency brought on by subgames. Afterwards, the

solutions to consistency issues in a DMSE will be discussed using a new transaction

like protocol and encapsulated actions.

4.1 Motivation for Subgames

In a typical MMOG there is some entity which represents the game world. This

“global world” defines how the game is played, how players are allowed to interact

with each other and the world around them, as well as miscellaneous rules and

regulations for other entities in the game itself. These things can be thought of in

more concrete terms as rules, goals, laws, physics, economy, etc...
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However, when a world contains many thousands of players, having complex

interactions becomes troublesome. It is difficult for a game to regulate many players

at once, especially in a simple manner that can be scaled to the numbers needed in

an MMOG. It is especially important for all these players to not only interact with

each other but with other objects in the game world as well. As the game expands

in number of players, features and game items, the number of possible interactions

increases, with a naive implementation quickly becoming unscalable.

In order to achieve these goals the notion of a “Subgame” was introduced. A

subgame is, simplistically, a game within a game. In a narrowed definition, a subgame

defines an alternate or subset of rules for the game world. E.g. a typical MMOG

Side-Quest could be thought of as a subgame.

What differentiates a subgame from a completely isolated shard is subgames are

still connected to the global game world, whereas a shard is a completely isolated

system. Normally, in the case of an isolated shard, scalability is achieved due to its

encapsulation. A shard can be moved or contained on any individual server without

the need to migrate data. Subgames maintain this scalability by minimizing and

optimizing the crucial data which needs to be communicated between the subgame

instance and the rest of the game world. In this manner, a game can appear larger

and be more realistic, while encapsulating specific player groups to allow for a more

scalable system.

By having a smaller subset of players to deal with, a subgame can ensure those

players receive important information about all the players within the subgame.

Extraneous information about the game world is not as crucial and can tolerate
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slower or lost updates in the case of overload. It allows for players in a subgame to

be aware of what is going on in the outside world without disruption of the subgame

itself. In addition, it allows for a subgame to be more scalable, as fewer players are

interacting with it, or if need be, another copy of the subgame with a different set

of players could be created.

A subgame can be thought of as an encapsulation of specific gameplay mechanics

and sets of rules. It is meant to be a modular unit which can be isolated or integrated

into larger collaborative systems. When a player voluntarily joins a subgame (be it

a side-quest or a game of capture-the-flag), the player becomes part of a smaller

community who have similar interests or goals for some given amount of time. It is

then possible to increase the interactions between these players in a similar group

without having to disturb the thousands of other players in the global world.

There can be many different types of subgames having alternative gameplay

mechanics, outside the scope of the regular game world, such as Capture-the-flag,

Tag, or Hide-and-go-seek. If subgames launch from a global game world in this

manner, they must share the global game infrastructure. As such, these subgames

must cooperate and interact appropriately within the context of the global game

world.

Figure 4–1 shows a generic infrastructure for subgames. At the top enclosing all

subgames, is the global world. The global game provides basic rules and regulations

which form the core game mechanics. Within this context a Subgame Manager

provides a framework to manage subgames. Each subgame can be created as a
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Figure 4–1: Global World and Subgame Infrastructure

unique entity as in the case of a larger game like Orbius (See Section 4.3), or multiple

co-existing instances of smaller subgames, like side-quests.

Subgames can be various sizes. In the case of side-quests, there may just be

a single player joining the subgame to make use of its unique abilities. The quest

may just keep track of a particular task the player performs, and upon completion

provide some reward. A group game like hide-and-go-seek provides a wider reaching

interaction affecting dozens of players at a time.

It is also important to note, that while subgame objects are encapsulated them-

selves, they should not be closed systems (otherwise they would be shards). Imagine

the case of a scavenger hunt where players are looking for a particular trophy. If

multiple instances of the game coexist, it should not matter if the trophy they find

belongs to their particular instance of the subgame, as long as they only find one
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of them. Since subgames are discrete units, optimizations like this can be made to

increase the performance between these similar subgames. In the case of different

subgames, actions which can occur between them can be known and thus optimized

to allow for greater scalability. By mixing subgames to different degrees in this man-

ner, it not only allows for increased scalability, but also greater flexibility and realism

as well.

Subgames solve the issue of scalability in much the same manner as shards.

Using subgames allows for a much more dynamic scalable world compared to lumping

players en mass. Even though players are somewhat isolated, there is still a greater

interaction with the global world. Traditional network techniques such as the lockstep

protocol are not sufficient, as they are effected by the slowest client on the network.

With such a broadened scope of clients, this can have a great negative impact on

the system. How this issue is addressed to enable subgames to work in a DMSE is

discussed later in section 4.5.2.

4.2 Subgame Requirements

For a virtual world or global game to be able to support subgames, there are a

number of basic requirements that need to be met. These requirements are discussed

in the following paragraphs.

Items and Item Types

Obviously, as has been discussed (in section 3.2.1), items play an important role

in games, especially in games where the human player plays a single character as in

the case of MMOGs. Item objects are the main source of interaction with the game

world. Subgames may need the functionality to define their own kind of items, or
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re-define the properties of items that exist in the global world. To make this possible,

the notion of classes of objects or Object Types must exist (refer to Section 5.2). If

this is the case, a subgame can define its own object types, or override the properties

of existing object types.

Items in the game world are instances of these object types. In order to populate

the world with items which are important for a particular subgame, a subgame needs

to be allowed to instantiate items and place them into the world. Conversely, a

subgame might also require that certain items do not exist in the game world. In

this case, a subgame should be able to remove item instances from the game world

(or temporarily hide these instances from all the players participating in a subgame).

It could also simply be the case that the subgame wishes to remove special items it

created specifically for itself.

Graphic User Interface

It is also important to be able to change the image/representation of an item or

a player. It may be important for a player in a subgame to know if they are on a

specific team or if an item is in a particular state.

Many subgames may also require mechanisms to modify the user interface of the

game. For instance side-quests need to be able to display open quests and objectives

as well as completed ones for a users benefit. Other games may wish to display the

current score or other information vital to gameplay.

Actions

Actions help divide the abilities a player can use into discrete units. Having

abilities such as pick up and drop as concrete units provides a single point of access;
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making it easy for subgames to intercept or override the default behavior of the game

world. In capture-the-flag for instance, the effects of grabbing an opponent’s flag are

easily monitored or modified through the object pick up action.

Modularity

As the notion of a subgame suggests, it is important to have subgames be a

modular entity which can be loaded into the global game world. In this manner,

subgames can be loaded individually or in groups and contain all the extra required

components such as object types and actions necessary to play the game. It also

allows designers to work independently from other games or the global world.

4.3 Subgame Examples

Before proceeding further, a few examples of subgames will be provided. Not

only will this provide further context and understanding, but it will allow for visu-

alisation of the concepts being discussed.

Orbius

Orbius was the first subgame created before the notion of the global world and

a separate subgame manager existed. It provided the basic understanding for what

a subgame was, and what was required for subgames to function. The infrastructure

for the work described here was all built up around these notions.

The basic idea behind Orbius was a simple Capture-the-Flag (CTF) type me-

chanic. Players would be divided into at least two separate teams and assigned a

team color. Their objective would be to find five specifically sized orbs (ranging

from small to large) scattered across the world and return them to an agreed upon

container. After assembling a complete “base” with five of their team-colored orbs,
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a “golden” orb of their color would appear somewhere in the game world. Team

members would then need to find the golden orb and place it in an enemy base.

In addition there were a few changes to more standard CTF rules. Orbs were

quite large and thus (based on size and weight) players could only carry a single large

orb or possibly some combination of two of the smaller ones. This created a need

to have multiple people find orbs. Also, it was possible to “tickle” another player, a

special action which, with a given probability, would have the tickled person drop the

item in their hand (or if no item was in their hand, an item from their inventory). This

gave an offensive “weapon” to players to disrupt opponents who were farther ahead

in their orb collections. Finally, for every player that stood near their established

base, any opponent who tried to steal an orb from it would have a greater chance of

failing to pick it up.

For the creation of Orbius, many things in the global world needed to be changed.

The Orbius subgame needed to be able to know when players interacted with items

and containers, and be able to change the default mechanics of taking and dropping

(e.g. when a player failed to pick up an orb from a base). It also introduced a new

type of item, the Orbs themselves, as well as the ability to dynamically create and

destroy them. It also introduced the new action of “tickling” which needed to be

incorporated into the game. Finally, the subgame needed to be able to keep track of

the players, their associated teams, and the team score, in order to declare victory.

“Find the Trophy”

For validation and testing of subgame designs a simple “Find the Trophy” (FTT)

game was implemented. A unique “trophy” is placed somewhere in the game world,
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and it is up to the players of the game to find the trophy. Whoever finds it gets a point

and becomes “it.” They then have a set amount of time in which to hide the trophy

again somewhere else in the world. To prevent other players from following them to

see where the trophy is hidden, they have an increased speed. Once the trophy is

hidden again, the process repeats, with other players seeking out the trophy etc...

In cases where the trophy is not found, whoever hid it gains another point and the

trophy is randomly moved to a new location for everyone to find again.

FTT offers similar problems and implementation requirements to Orbius. It

needs to be able to detect when a player interacts with an object, and it needs to be

able to not only spawn an item but move it within the game world too. And while

no new actions are introduced, the fact that a player’s speed changes was a new

requirement, and implies the ability to modify a player’s inherent abilities. Scoring

is also required, and in addition there are also time factors related to the gameplay

which need to be centralised in some fashion.

While FTT has a more simplistic game mechanic than Orbius, it offers a similar

range of requirements. By having implemented both games, it is clear subgames

require careful planning, and a solid global world infrastructure is needed to have a

stable enough environment for practical MMOGs.

4.4 Consistency and Interaction Issues

There are some basic concerns when addressing Subgame principles above and

beyond any game-specific requirements. The biggest of these concerns is game state

consistency. Without a consistent global game world, it is impossible for subgames to

reliably determine what is occurring and when, the game world can easily diverge for

32



different players, making gameplay difficult and frustrating. Secondly, there needs

to be a concrete, modular notion of actions for players to perform in the subgame

world. As evident in the example subgames above, actions are often specialized to

the game mechanics. Unfortunately, as will be shown below, these two requirements

are sometimes opposed.

As mentioned already in Section 3.3, ensuring game state consistency is a chal-

lenging problem in the context of MMOGs. For playability and fairness reasons, it is

important that all players “see” a consistent state of the game world that surrounds

them at all times, regardless of how the state of the surrounding objects is distributed

on physical machines. This is especially true for players that participate in the same

subgame, since usually the participants of a subgame interact more closely with each

other compared to normal players – they not only need to know about each other’s

positions, but are also more likely to interact with the same game objects. In order

for a subgame to be playable, fair, and most importantly fun, the state of the world

and the state of all objects relevant to the subgame should be perceived identically by

all participants, even if the game state is scattered over several nodes in a distributed

system.

The complexity of ensuring the system remains in a consistent state depends on

the MMOG architecture and how the game state and game objects are distributed.

Clear and precise consistency protocols have to be put in place. Once protocols are

in place, actions can be built up upon them to allow players to safely interact with

the global game world without worry of corrupting the game state and becoming

inconsistent.
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4.4.1 The Consistency Problem

As has been repeatedly mentioned, item state consistency in MMOGs is a big

concern. If the game is not consistent, then problems can arise and attempts to

correct invalid states must be made. It has been discussed how current methods are

expensive, dependent on the number of players (which for MMOGs is very large),

time consuming, and requires extra systems to be in place. Furthermore, invalid

requests can continue to be made during any rollback process taking up more precious

computing resources. It is therefore advantageous to spend slightly more time upfront

to ensure the game state is always consistent across the network.

In a typical MMORPG, most interactions do not need to occur instantaneously,

and thus, taking the extra time to maintain consistency is more beneficial for the

game and not as noticeable to the player. Traditionally, inconsistency can be an

acceptable tradeoff for performance in some situations (especially when it comes

to movement); however, many MMORPG actions such as item interactions require

strong consistency regardless for the game is to remain playable.

Maintaining consistency of a game in a client/server setup is not a trivial thing;

even in this simple environment, network lag and other timing concerns can cause

consistency problems. And of course, the problem only gets more difficult when

dealing with a multiple server environment, where information itself is distributed.

Below describes consistency problems which arise due to game actions depending on

how information is organized.
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Need for item information in two spots

For basic game actions, such as picking up or dropping items in containers,

information about the location and owner of an item needs to be stored in two

locations. The item itself needs to know if it is inside a container, and the container

it resides in needs to know what objects it contains.

Note that the object and its container are two logically separate game entities,

and updating the game state due to picking up (or dropping) an item requires at

least two separate activities – an object must be removed from its current location,

and placed in a new location. Without some effort of consistency control the two

activities required may execute non-atomically, or in different orders, and having the

item appear both on the ground and in the player’s inventory at the same time is

unacceptable.

Of course, if information about an item’s location was stored in one object it

would allow for optimal consistency (as there is only a single entity to update). In

a single server instance with proper synchronization, for instance, a single point of

update would not be a problem; even in the distributed case with object replication

(refer to Section 3.4), a single update could be handled.

Unfortunately, it is not as simple as being able to just store location information

in a single object. For a practical, functional game, item location information is

distributed, with individual object data residing close to the site of most active use.

The necessity splits up information. Below several implementation strategies are

discussed for dealing with this consistency problem in a distributed environment.
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Item knows all. An obvious and single solution is to retain ownership in-

formation itself in only one place. If only the item knows its location and owner

then it is easy to check if the item can be picked up or dropped by another entity.

Unfortunately, if an entity wants to know the objects it contains in its inventory it

needs to iterate through all possible items in the world. Of course if the entity is a

client or in a distributed environment it may not even have access to all the possible

items in the world. Therefore, finding one’s enclosing container is a constant O(1)

operation, whereas inventory lookup is O(n), where n is the number of items in the

world.

Container knows all. Symmetrically, it is possible to store ownership infor-

mation entirely in the container. If only the container knows the items it contains

then it is very easy to display the items in a container, by simply iterating through

the list of items inside. To find out where an object is in order to check the validity of

a pick up or drop, however, becomes much more complicated as all containers must

be searched for the item. In this case, retrieving the inventory list is a constant O(1)

operation, whereas the pick up check (to determine if an item is owned by another

player) involves querying all “n” containers in the game world, an O(n) operation.

Third party. A third possibility is a third party lookup system which contains

both information about containers and item locations and ownership. In this model,

the items and players themselves know nothing about where they are located or what

they may contain.

This design is attractive for its simplicity and ease of atomic updating. Unfortu-

nately, all checks and updates for both an object and its container, must be processed
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by a single location. This makes load-balancing awkward, and as containment forms

a connected data structure, this implies a single node will be responsible for all object

operations. In this sense it is no different from a traditional client/server framework

with increased message overhead.

A Solution. Given the trade-offs, and despite the greater consistency prob-

lems, the design used in this thesis stores ownership information in two locations.

The object knows in which container it may reside. Containers also know their entire

contents. This allows for fast checking of either ownership or inventory (which occurs

often), at the cost of having to update distributed data in an atomic fashion.

4.4.2 Actions

Actions were created to aid not only in the consistency of the game world, but

provide a better framework for these changes as subgame design relies on a modular,

easy way to add, remove, or modify game actions. An action thus encompasses almost

any concrete state change that a player or game entity can perform, such as pick up or

drop, and as opposed to general game mechanic implementations, everything relating

to the state change is encapsulated within the action itself. Consistency checks,

feasibility checks, and the actual performance of the action itself are all contained

within a single code module for each individual action which can be performed.

By separating actions in such a manner it becomes much easier to monitor

changes in game state, interrupt those behaviours, and to expand the set of actions

available to the game. Expandability in this manner is especially important for

subgames which may wish to define their own new sets of actions to increase gameplay

as well as interrupt existing ones.

37



Actions in a Distributed Environment

When dealing with a distributed environment, having encapsulated actions also

helps to ensure that there is a coordinator between the various objects which need to

be changed. The action object itself thus serves as a central point for coordination,

and is responsible for ensuring consistency if multiple objects are involved.

Not all subgame activities are neatly captured within action objects; however,

further design issues will be discussed in Sections 4.5.3 and 5.4.

Conflicts

When dealing with realtime games, potential exists for two separate actions to

be performed at the same “moment” in time on a single object. These conflicts can

occur easily when there is a client with a larger network delay between the actual

update of an object and the message reporting the update of the object. When

an event occurs as such, there needs to be a way to determine which of the two

“simultaneous” actions occurred first or will take precedence.

Imagine a scenario in which two players wish to pick up the same game object.

In this case, only one player should end up with the item and the other should see

the item disappear as normal. From a player perspective, precise correctness here

usually makes little difference, as a player who successfully picks up the item on the

ground will be pleased with picking it up before the other player. Conversely, the

other player will just have assumed the other player reached the item first regardless

of the actual time the messages were sent on their respective machines.

It is therefore possible to arbitrarily choose one of the two conflicting messages

to take priority. Usually, this is automatically done by whatever networking code is
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in place; if a single thread exists to apply these updates, or the object becomes locked

upon change, then it is impossible to simultaneously apply these updates together.

Therefore, as long as checks are in place, one update will be applied, and the other

will fail as it can no longer be performed on the new state of the objects.

Such a simple, centralized solution to atomicity becomes significantly more com-

plex in a DMSE, particularly when actions require a simultaneous update of dis-

tributed game data. In the next section several solutions are discussed, culminating

in a flexible, generic abstraction.

4.5 Solutions

For a subgame architecture in a DMSE requires solutions to several problems.

Key among them are the need to support a modular, flexible action design, and the

necessity of ensuring consistency for all players.

There are thus two main parts to these problems. One is the general consistency

of the game world itself in a DMSE. The other is how to allow subgames to override

the default behaviors and change how the world reacts to certain actions. Below we

discuss these concerns and present a specific solution. Actual implementation details

are given in Chapter 5.

4.5.1 Consistency Resolution

Maintaining consistency is the largest issue discussed in this thesis. Consistency

bears heavily on the core mechanics of an MMOG, and it is important to both the

game itself and any extensions to the game as well, such as subgames.

In the case of a single server, consistency is not necessarily a complex problem: a

single process or thread synchronization can maintain consistent control of an object,
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and a single network message can consolidate the state change information so clients

can update both objects at once as well. As has been mentioned previously, this

scenario fails to be applicable to a DMSE. The following section will explain how

to combat these consistency issues in the context of three core, generic cases. First,

the simple single object update case is addressed, followed by the two object update,

and finally the case where three objects must be updated simultaneously.

Single Object Update

The case of a single object being modified in a DMSE has little difference from

a traditional client/server setup – mainly it is an issue of a different server handling

a request, based on the distribution of game objects.

This is true even in the context of many clients connected to the system, through

many different points, and other servers making requests as well. Even with the po-

tential to create many simultaneous requests to change an object’s state, by ensuring

only one update/request can occur at a time through a simple access lock consistency

can be maintained for single object updates.

As was discussed briefly in Section 3.4, replicated objects play a large role in

creating a DMSE. They also help ensure consistency during single object updates.

Replicated objects help accomplish this task by not only ensuring there is only

one master copy of an object that may be updated, but also by disseminating the

changes to all the replicas of the object. With such a system in place, updates such

as player movement or scoring can be easily maintained.
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Versioning

Sequentializing single object updates eliminates consistency problems, but does

not ensure updates are correctly applied in order. There can be cases where two

requests were made on an object, but only one should be applied. Once the first

request is applied, the second request made on the original state of the object (and

not its current new state) should be automatically denied. The second client must

then recheck the conditions as they are now that the earlier update has been applied

and perform another request.

To monitor outdated requests, a “versioning” scheme is applied. The master

object starts at version zero. The version number is replicated along with the normal

object data to the replica proxies. Every time a “versioned” request is made from

a replica, it sends its current version number. The master (after acquiring its lock)

can then compare the version number in the call request to the version number of

itself. If it does not match, it rejects the request; otherwise, it completes the request

as normal and increments the version number.

Normally, with a versioning scheme, starvation is a concern. In the case of

an MMORPG, requests are usually initiated based on the proximity to the desired

object. In these cases, there is a limit to the number of players which can surround or

interact with a given object if physical space is mimicked within the game world. In

addition, in the event a version number is outdated on the request, it was probably

the result of another party picking up the desired item. In this case, the request is

denied which would have been the outcome regardless.
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With versioning in place it is not only possible to order simultaneous requests,

but also to ensure even lagging clients do not make use of old data. If a client has

yet to apply an update (and receive the latest version number) and then makes a

request, it will be rejected. However, concerns with continually outdated clients,

which lacked the necessary state information to ever make a valid request, were not

the focus of this thesis.

4.5.2 TTLS: Timed Test Lock and Set

Having lockable and versioned objects works quite well for single object update

scenarios. However, in cases where updates to more than one object need to be

applied consistently is a more difficult problem. If a player and an item both need to

be updated simultaneously (as previously discussed in Section 4.4.1), a transactional

system is necessary to update information in two places.

Imagine a scenario where a player wishes to pick up an item off the ground. The

player needs to be told they have picked up an item, and the item needs to be told

it is now in the possession of the player. These two updates need to happen at the

same time to ensure the item knows about the player and the player knows about the

item without interference from another party. On the other side, the client needs to

update both of these objects at the same time in order to not see the player holding

the item and the item lying on the ground simultaneously.

Normally, in distributed systems such as databases, these sorts of simultaneous

updates are applied in a transactional manner. With transactions, locks are first

acquired on all the objects, updates are applied, and then after everything has been

approved, a commit message is sent to all objects to apply the changes. Then each
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object can unlock and allow further changes. This process may not seem too long or

be an inconvenience in its normal setting; when applied to games however, waiting

and delays are unacceptable.

Typical MMOGs have many requests occurring simultaneously, and there is also

an expectation of immediate feedback. A player taking an item expects to see the

item in their hand as soon as they have requested to pick it up. If this process

takes too long, players become frustrated and lose interest in the game. A full-blown

transactional system with distributed locking is far too cumbersome for what needs

to be achieved.

Fortunately, in the case of basic game conflicts, such as two players attempting

to pick up the same object at once (see Section 4.4.2), it is easier to resolve than in a

normal transactional system. A game can freely read the state of any object without

locking, as it is assumed this data is relatively accurate and up-to-date. It can be

used to make decisions and display information to the player. Any inconsistencies

with the “real-time” data would become apparent if the player requests to change

any data. For any such changes, a write lock is required to secure the data and

ensure no other party (be it another player or the game) changes it simultaneously.

Normally, when a lock cannot be acquired the system waits for the lock to

become available. Waiting on a lock is where the majority of transaction systems

can build up time and be unsuitable for use in games. Instead of waiting, we can

“abort” the request and return. Since reading the state of the object does not lock

it, the assumption is that if the object is already locked, it is currently in another

“transaction” or state update. More than likely, the state of the object will have
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changed when this object becomes unlocked (e.g. another player picked up the item

just before the player). In such a case, the original request which was blocked by the

locked object would be invalidated by the change in state and version of the master

object. Therefore, rather than waste time waiting to receive a denied request, it

is faster and better for the player experience to return immediately. This scheme

also avoids any deadlocks, which can occur in traditional transactional systems, as

no waiting ever occurs on a locked object (another important factor in the case of

games). And as long as a consistent locking order is maintained i.e. the player is

locked and then the item, there will never be a case where two requests for the same

item both fail because of acquired locks, unless there is a third party involved.

The design presented here is called “Timed Test Lock and Set,” or TTLS for

short. Its goal is to provide a partial locking system in a distributed environment,

allow for a transactional type update system for multi-object requests, and to do so

without the overhead of traditional distributed locking or atomic commit systems.

In the case of games, most action requests can be broken down into updates of

two or three objects. The two object case has already been described; for a third

object scenario, imagine a player wishing to place an item in a container. Not only

must the player and item be updated, but the receiving container as well. These

two main cases will be discussed in detail within the workings of TTLS and a game

environment. Afterwards, a summary of the associated message costs for varying

strategies will be provided.

Two Object. The process of TTLS starts with an action which encapsulates

the needed game mechanics and acts as a coordinator for the series of updates.
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Ideally, it is executed remotely on the same machine as the master player object,

as players are in most cases the instigators of actions, but this exact procedure is

discussed in more detail in Section 5.4.2. However, it is important to note, the order

actions are performed in is important to prevent multiple concurrent actions from

all failing, as mentioned previously. Therefore, we will assume that the player object

is always locked first.

Figure 4–2 represents a UML Sequence diagram outlining the TTLS procedure.

The first step in TTLS, is to lock the first object (the player in this case) as normal;

however, we must flag the start of the process as a TTLS procedure, so the player

will not release its lock right away as if it was a normal call. The player object will

then confirm that the action is possible. Normally, without TTLS, the player would

unlock and propagate the change as an update; however, with TTLS those steps are

delayed until later. It is important to note, if this action was indeed executed on

the same machine as the player, the initial TTLS call and locking of the object is

localised.

The second step of TTLS is to execute a call on the second object. This could

be a local call or a remote call depending on where the object is located. This call

proceeds just as normal, as it is the last object in the sequence. The object will

check if the requested update is possible and if it is, change its state and publish

the change as normal. The return call is then sent to the requester (just as normal),

and the player object can then be told to finish the process by sending an update

message and releasing its lock.
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Figure 4–2: TTLS with Two Objects: Pick Up

Unfortunately, while Figure 4–2 shows a successful “simultaneous” update, it

does not mean anything if the client receiving the updates does not apply them

at the same time as well. To combat this problem, a nounce was introduced. A

nounce is simply a way of identifying the transaction and each update within it. In

this manner, a client can wait for each update in the transaction before applying
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them. Figure 4–3 shows the updated TTLS protocol with the nounce creation and

propagation. Nounces will be discussed in greater detail below.

Figure 4–3: TTLS with Two Objects: Pick Up w/ Nounce

Fast response is essential in games, and so TTLS includes a basic timeout mech-

anism. This occurs when the first object has waited too long for a response from

the second object. Failure is assumed, and the first object aborts its update and the

action is cancelled. Other methods of failure are possible; however, the focus of this
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thesis was more on ensuring consistency during normal operation, and not recover-

ing from node failures, which would involve more complex mechanisms to repair the

state of the system.

Figure 4–4: TTLS with Two Objects: Failure on Remote Object

With ensured network protocols, focus was given to failure scenarios revolving

around object state and the sharing of objects. Figure 4–4 shows the case where the

second object in the transaction is locked (or otherwise fails) on the request. When

the second object returns with a failure (or theoretically it could not respond and let

the first object time-out to save a network message at the expensive of lock time),

the first object must undo the changes it made, restoring the state of the object
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to before it was locked and unlock itself. This “rollback” could even be saved by

not initially applying the request (though checking for its validity) until the commit

message is received, as the object will have remained locked.

Of course failure does not only have to be the case where the object is locked.

It could also be that the version id of the object has been changed since the action

was initiated, meaning some update has invalidated the state the action presumed.

Another reason for failure could simply be the case where the item is not able to

be picked up. Maybe the item was picked up by another player before we received

the update and we initiated the update. In this case, while the object is no longer

locked, its version id would be different.

Figure 4–5: TTLS with Two Objects: Failure on Initial Object

Finally, the most simple case is where the initial object may already be locked or

have changed since the request. Figure 4–5 shows how an action wishing to perform
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on an outdated or locked object will simply result in failure before any interactions

are requested over the network.

Three Object. There are often situations in a game where three objects need

to be updated simultaneously. Imagine a player wishing to put an item in a container

within the world. Here three objects are involved: the player, the item, and the

container receiving the item as well.

Figure 4–6: TTLS with Three Objects: Pick Up from Container
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Fortunately, the initial TTLS system presented here also is scalable and extends

well to three objects. Figure 4–6 shows the full successful protocol UML Sequence

diagram of the three object case. The order for these operations is to start with the

player as mentioned previously, followed by the item and then the container. It is

also important to keep the container locked for as little time as possible, as there

may be other players wishing to add or remove other items from the container, and

their actions should not fail because of the actions of another person.

As shown in Figure 4–6, TTLS is extended by performing another TTLS request

on the second object as well, keeping its updated state locked without a published

update message until final confirmation has been received. When the third object

returns as normal, confirmations are sent to the first two objects to proceed as

normal.

Of course, theoretically these procedures could be further extended to more than

three objects, but then message overhead and lock time start becoming problems.

However, in most normal cases, game actions can be broken down to involve at

most three objects. More complicated things such as trading items between players

typically involve more complicated systems anyway, as an actual transaction would

need to occur, and since it is involving items players’ already own, they can be easily

locked and controlled. In addition, complex multi-object interactions such as trading

are not usually as time-sensitive. Exact specifications and costs on messages will be

discussed later in this section. Importantly, however, it has been shown that a system

can exist which implements a transactional-like update system in a context which is

suitable for fast-paced gameplay mechanics.
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Observers and Nounces

While TTLS ensures that requests are applied to master objects “simultane-

ously,” the corresponding updates also need to be applied to clients at the same

time; otherwise, inconsistencies can arise, such as a player seeing the object they

picked up in their hand and still on the ground at the same time.

To solve this problem a nounce is used. A nounce is a form of identification

associated with the update to alert the client that it needs to wait for multiple pieces

of information before proceeding. In the case of TTLS, actions, and replication, the

nounce contains a list of all objects involved in the “transaction.” Thus, each nounce

has an id number corresponding to the action transaction, and a list of all objects

involved. Furthermore, each nounce sent along with a RPC request, is specifically

tagged to the corresponding object the update will apply to; i.e. the player take

action request’s nounce is tagged with the player object’s id.

When a client receives an update message it should first check for a nounce. For

single object requests, no nounce is needed, so if no nounce is found the update is

applied as normal. Otherwise, the nounce should be added to the pool of nounces

corresponding to the nounce id number. Later, the client can check if it has obtained

an update for each object in the nounce’s object list. For example, in a take action

the nounce states the update applies to two objects, the item being picked up and

the player picking it up. Therefore nounces are required from updates for the player

and the item. If a nounce and an update have been obtained for each object in the

nounce list, then the client can apply all the updates at once.
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In the case where not all the nounces have been received, a check is required

to ensure that the client is actually interested in all the objects in the nounce. If,

for instance, the receiving client is interested only in the item, but not the player

picking it up (just beyond their “sight range”), then the client can apply the update

stating the item was picked up and ignore the fact that the player has picked it up,

as the player is not of interest. Now that the item was picked up, the item is no

longer of interest either (as it belongs to a player out of sight range). Therefore, if

after searching through the nounce object list (while ignoring nounces which have

already been received) there remain only ids referring to objects which are not in the

interest range of the client, the updates can be applied without worry of inconsistency.

Otherwise, the client will continue to wait for another update message containing

the nounce for the missing object. In this manner, it is simple to apply the updates

simultaneously on the client as well at the negligible cost of a small increase to

message size.

Message Overhead

While TTLS provides consistency in a DMSE, the efficiency of TTLS has yet to

be addressed. TTLS has less overhead than an atomic-commit transactional system,

but does not have the speed of a simple distributed design where network messages

are sent simultaneously. Overhead, for TTLS, varies depending on the number of

objects involved. Below the single object, two object, and three object cases are

discussed in greater detail.

For TTLS, the single object update case is very efficient, as there is no additional

overhead in terms of network messaging. The only difference between a normal
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distributed system with no consistency checks and the TTLS version is the object

versioning and simple-access locking systems (as described previously above). Since

the request fails on an invalid version or if the object is locked, there is a negligible

amount of overhead to the system in the case of direct contention.

In the two object case, TTLS needs to send an additional message to the sec-

ond machine if the master objects are on different servers, where as in a simple

distributed setting these two messages would be sent simultaneously, saving time.

Notice, however, the second message in TTLS is between two servers which in many

cases may have better network connectivity than clients. Also, in the case where the

two objects are on the same machine, the extra message for TTLS is not required at

all.

The three object case is, as expected, a little more complex, as it borders on a

more transactional system. Nevertheless, the final update is published immediately

after the third object has verified the request. This is therefore still faster than

waiting for a final handshake commit in a traditional transactional protocol. Again,

if multiple masters, involved in the action, exist on the same machine fewer messages

need to be sent and a faster response can be obtained, and as in the two object

cases these extra messages are all executed as inter-server traffic, possibly exploiting

a faster server network.

Finally, the case of three object TTLS can be specialized, if a player is placing

an object in their own inventory. In this case, the problem can be reduced to the

two object TTLS as the player is both the actor and the container. Since the object
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master of the player is obviously on the same machine of the container (which is also

the player), less overhead is required.

So, while TTLS does incur some additional overhead to maintain consistency,

this overhead is potentially lessened by extra messages occurring on a faster inter-

server network, and in many cases can be reduced down to an optimal state which

matches the effort required in a non-consistent distributed system.

4.5.3 Action Resolution

A usable subgame architecture requires a modular design for actions, as well

as appropriate consistency resolution. The design used here consists of an Action

Controller regulating different Action Behaviors associated with classes of actions,

or Action Types. Figure 4–7 shows the general layout of this system starting with a

requested Action Instance and finishing with the action behavior to be executed.

Figure 4–7: Action Controller Regulation Design
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Action Types and Action Instances

As part of action resolution, a system must be in place to distinguish between

the different types of actions available. An Action Type is basically the shell of an

action. It is a container which bundles and describes what objects will be involved

in the action. When a player wishes to perform an action, they create an instance

of an Action Type or an Action Instance which specifies the components involved in

the action, such as the player and the item they being picked up.

When a subgame wishes to create a new type of action, it can simply create a

new action type which classifies itself by what type of objects it acts on or utilize

an existing type. The “tickle” example from Orbius (refer back to Section 4.3) is a

good example of a new action which is outside the normal class of actions.

While action types classify actions, Action Instances specify what objects are

involved with the action itself. Action instances, however, perform no operations on

the objects they contain; for that Action Behaviors are needed.

Action Behaviors

An Action Behavior is associated to a type of action and is the actual “workhorse”

for the action system. An action behavior is uniquely instanced and has two func-

tions, the first to validate an action instance’s objects so the requested action can

be performed, and secondly to perform the action on the requested objects in the

action instance.

While a default action behavior is created for each action type in the system to

create the normalm, “global world” game mechanics, it is also possible for subgames

to subclass or create their own classes of action behaviors for existing action types.
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A subgame action behavior can then specify that it would like to be used instead of

the default action and take place of the behavior, for example when a specific type

of item is picked up (like an Orb). In this manner subgames can co-exist as long as

they work and intercept different classes of items. Note that behaviors themselves

are independent and do not have knowledge of other behaviors; for this purpose there

is an Action Controller.

Action Controller

The Action Controller is an instanced class existing on every machine in the

system. Its purpose is to load all the behaviors for all possible action types and

allow the system to perform those actions.

When an entity (such as a player or other game system) wishes to perform an

action, it creates an instance of the Action Type corresponding to the mechanic

they would like to utilise (such as pick up or drop). This action instance holds the

objects involved in the action (such as the player and an item). It then gets passed

to the action controller.

The action controller will then proceed through the list of action behaviors

associated with that particular action instance. Each action behavior will be asked

if it would like to perform its action on the set of objects. If they respond yes, their

action gets performed. Otherwise, another action behavior is queried. This process

continues until the default action behavior gets checked at the bottom of the list. If

that fails, the requested action cannot be performed.
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In the case of a successful action behavior being found, its execution is handled

either locally or remotely depending on the type of objects involved in the action.

This is discussed later in more detail in Section 5.4.
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Chapter 5
Mammoth Implementation

While initially the concepts discussed in the previous chapter can be easy to

grasp, implementing them can cause other problems. To help complete the discus-

sion, an overview of the research and implementation work in the context of subgames

for Mammoth follows.

The first subsection introduces the Subgame Manager, the central component

that coordinates all subgame related activities. The reasons for its introduction are

explained together with a brief history on the previous architecture of Mammoth.

Following the discussion on the subgame manager, a detailed look at XML Object

Types and and how the data structures for inventories had to be changed is presented.

Finally, the action controller framework is explained. Additional work related to

Mammoth implementation difficulties, but not directly related to the research in

this thesis can be found in the Appendix.

5.1 Subgame Manager

As explained in the previous chapter, it should be easy for a researcher to design

their own subgame, and plug it into the Mammoth framework. At a given point in

time, there could be multiple subgames available to players. Players should have the

option to be able to join an existing subgame instance or create a new one if they so

choose.
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To this aim, a Subgame Manager component was added to the Mammoth frame-

work. Its main purposes is to take care of several things: the loading of different

types of subgames, the instantiation of specific subgame instances, the starting of an

instance, the maintenance of the subgame hierarchy, the joining and leaving of play-

ers, and the coordination of running subgame instances, if needed. Every machine

in the Mammoth network has its own subgame manager which maintains the same

set of subgames available to all players.

In the first prototype implementation during the first months of this thesis

(where Mammoth was still running in classic client / server mode), the subgame

manager existed on the client and the server, where it loaded the subgame modules

specified in a Mammoth property file during startup. Once loaded, a subgame could

be instantiated and take control of the virtual world. The subgame manager would

then directly intercept a game message (such as pick up and drop) coming from the

network and prevent or modify its execution, if a subgame so desired. However, it

was realized, especially in a distributed environment and with multiple subgames,

that such a scheme was not flexible or scalable, as multiple subgames might have

conflicting views on a message, and distinguishing these conflicts was not possible

within the architecture (at that time).

Two changes to the Mammoth framework made the implementation of the sub-

game manager more elegant and modular: the introduction of the action controller

(see Section 5.4), and the object replication network interface (see Section 4.5.1).

The introduction of the action controller framework made it possible for a sub-

game to simply define a new set of actions relevant to itself. At startup, the subgame
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manager loads each subgame’s set of actions into the action controller. Whenever an

action is executed by a player, the action controller dispatches the command through

the various subgame actions in sequence, regardless of if the player is playing a sub-

game or not; for instance, a subgame might allow other players outside the subgame

to see an object (belonging to the subgame) but not allow any interaction with it.

If a subgame does not explicitly define an action (whether permissive or dismissive)

then the action controller looks for a corresponding action in another subgame; or,

if there is none, in the default set of actions for the global world. A point of future

research is to evaluate how to detect and handle conflicting action behaviors with

regards to subgame instances (see Section 6.1.1).

In addition to defining new actions, subgames can also define timers and spe-

cialised scoring. In a distributed setting, it is important to ensure that this infor-

mation is available to all players and updated in a consistent way. In the original

client/server Mammoth implementation, this information was kept on the server.

This can not be done in a Distributed Multi-Server Environment (DMSE). Luckily,

with object replication, the solution is simple: subgame instances themselves can be

implemented as replicated objects. The replicated subgame contains all important

information related to the subgame, for instance the current score or a list of players

playing the subgame. All subgame participants have replicas of the corresponding

subgame master object and can therefore access the scores and other important in-

formation directly. Whenever subgame information needs to be updated, the player

simply calls the corresponding method on the subgame object. And thanks to the

object replication technique, this call is transparently forwarded to the machine that
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currently holds the master subgame object. The state change is executed on the

master machine, and the changes are broadcast to all participants.

5.2 XML Object Types

The world of Mammoth (or world map) is loaded from an XML file. In the

previous version of Mammoth, the notion of item types (see Section 4.2) did not

exist. Hence, the XML file would define every item instance individually. As a

result, even if there would be, for example, several identical tomato instances in

the world, the XML file would contain the definition of a tomato multiple times.

First of all, this is pretty inefficient, as it creates a larger XML file to parse. More

importantly, though, if someone wants to add or change the property of a set of

identical items, like for example change the weight of all tomatoes, every tomato

instance in the XML file would have to be modified.

To remedy this situation, and to allow subgames to define their own item types,

the notion of item types were introduced and then later more generic Object Types.

It is a common structure which defines the properties of an object (item or scenery)

in the world and that can than be “instantiated” in the XML. As a result, the

information about all tomatoes (for instance) is centralised, and hence it is possible to

change the representation of a tomato, its description or its properties by modifying

the XML definition of the tomato type. Then, all the actual tomato instances in the

world will change accordingly.

In addition, it was made possible to “override” the default properties defined in

a type from within the instance. In the instantiating object XML tag, the normal

properties for objects can still be specified. In this case, at instantiation time, the

62



properties defined by the instance are used, if specified, and only the properties that

are not specified in the instance are taken from the corresponding object type.

With the new system, the XML map is a more compact representation of the

world, and it is easier to maintain and update. It is now also possible to instantiate

a particular type of object at runtime as long as a base type exists within the game

to create new objects. Object types also form a hierarchy (just like classes) which

can be helpful for classification purposes, such as having a rose count as a flower to

a subgame about collecting flowers.

Apart from actions (see Section 5.4.1), object types are one of the main features

for subgames to implement play mechanics. For instance, a subgame can create a

new “flag item type” from which it can instantiate “flags” in order to implement a

capture-the-flag game. Likewise, it is possible to create some sort of reward trophy

for winning the game. Using the classification mechanism of object types it is now

also possible to define rules such as: “a player is only allowed to pick up fruit,” a

fruit being any item type that is a subtype of the fruit type, for instance an apple,

orange, or banana.

5.3 Inventory Refactoring

Originally, the Mammoth engine had inventory objects existing both in players

and containers. However, both implemented a common interface to an inventory

object, and most instances of inventory manipulation were about retrieving the in-

ventory object and manipulating it directly. Figure 5–1 represents the old architec-

ture of Mammoth. Unfortunately, with the move to a distributed environment and

Remote Procedure Calls (RPC), the direct approach does not work as well.
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Figure 5–1: Mammoth Architecture for DynamicObjects Before

When directly modifying an inventory object, the parent object has no mecha-

nism to monitor or be notified that the state of the inventory it contains has changed

(outside of registering a listener, which seems unconventional). This causes compli-

cated situations to arise when a client retrieves a remote copy of an inventory and

changes it locally (by retrieving the inventory out of its parent object) without no-

tifying the original server-side inventory object.

To combat this problem, the common shared interface between players and con-

tainer items was extracted to their shared parent class (see Figure 5–2). In addition

the ability to retrieve the inventory object directly was removed and instead replaced

with such functions as getItemsInInventory(), getInventorySize(), addItem()

and removeItem().
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Figure 5–2: Mammoth Architecture for DynamicObjects After

In this manner, whenever such calls were made to modify the inventory, they

could be executed using the Mammoth RPC system, and the owner of the inventory

would be directly involved in its manipulation.

The main reason behind this change (in addition to the consistency issues)

was to allow subgames to monitor events such as adding and removing items from

inventories.

5.4 Action Controller

The Action Controller provides a centralised location for the control and execu-

tion of game mechanic actions (as was previously discussed in Section 4.5.3). It also

provides a platform for subgames to “hook in” and intercept or change the default

game behaviors of the global world. It also allows subgames to create new types of
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actions for their unique purposes. It was also a necessity for Mammoth when it mi-

grated from the traditional client/server message system to a distributed multi-server

environment with replicated objects and remote procedure calls.

The action controller itself is an object which resides on every machine in the

network. It is created upon launching the application, and instilled with basic knowl-

edge to allow the game to function (see default behaviors below). It’s main purpose

is as to act as a switchboard by taking in a type of action (such as pick up or drop)

and find the matching behavior to execute locally or remotely. The action controller

class diagram can be seen in Figure 5–3.
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5.4.1 Actions

With the new system, any change to the game state has to be done from within

an action. Most actions are instigated by a player. Typical actions in the world are

picking up an object in the world, placing an object in a player’s inventory, removing

the object from a player’s inventory, and placing the object back in the world.

The notion of an “Action,” actually corresponds to two separate entities, each

with a respective segregation. The first part of the action is what defines its basic

game mechanic and is known as the Action Type, it corresponds to move, pick up,

drop, get or put in most cases in Mammoth. It is instanced to form an action instance

which holds information about the objects involved in the overall action.

The second part of an action is the Action Behavior. Its job is to actually

execute the required game mechanics behind the action. It is broken down into two

parts: a check for the preconditions of the action (e.g. does the player have enough

room in their inventory?) and the actual execution of the action. This distinction

between check and execution is important later for remotely executed actions (see

Section 5.4.2).

Action Instances

As described above, an action type is a category of action (e.g. move, pick up,

drop, get, or put). When a player wishes to perform one of those actions, they create

an instance of the action type to create an action instance. The action instance then

holds the type of action to be performed and the objects involved in the action (e.g.

the player and item in the case of pick up).
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This action instance is then passed to the action controller, which finds a suitable

action behavior to actually execute the request.

Action Behaviors

An Action Behavior is what actually defines how an action is performed. There

is at least one action behavior for each action type. Default behaviors are loaded at

the start of any client or server to provide the default actions in the world such as

move, pick up, etc...

An action behavior has two main methods checkPrecondition() and perform()

each of which take a corresponding action instance as an argument. When an action

instance is passed into the action controller, each action behavior corresponding to

it is polled with its checkPrecondition() method. The action behavior then can

check if it would like to perform its action, i.e. in the case of the default pick up be-

havior, can the player actually pick up the item. If he can, it returns true, otherwise

it sets its exception attribute and returns false.

The action controller processes behaviors in a ”lowest subgame first” order, i.e.

the default behavior is processed last. Therefore, if no behavior returns true on its

checkPrecondition() the action cannot be performed, and the exception from the

behavior will be available to be polled by the client to see why the action failed. This

is typically displayed in the chat box to the user. e.g. “Item out of reach.” or “Item

is not takable.”

As soon as a checkPrecondition() method returns true, the action controller

takes control again and performs a Remote Action call (see the following subsection).

In the rare case where the Mammoth client is running independent of a network
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(stand-alone), the behavior’s perform() method is called locally, which changes the

state of the player and the item in the pick up case. More on the stand-alone client

is described in Appendix A.3.

5.4.2 Remote Actions

As discussed in Section 4.5.1, actions involving more than one object need to

use a locking scheme such as TTLS (see Section 4.5.2) in order to provide consistent

updates to the distributed game state. Remote locking, i.e. asking for a lock on

a remote node, should however be avoided whenever possible for obvious reasons:

remote calls take time, and therefore the objects involved in the action would have

to be locked for a long time. Also, in case of node failures, locks might be held even

longer.

In order to minimize locking, it would be ideal to initiate an action on a node

that holds the master object of one of the objects involved in the action (often the

node holding the player master object). Then, for a two-object action, the only wait

would be for the second item. In the case of node failures, only the player node will

have waited, but since he is initiating the action, chances are he is not wanting to

do anything else.

Therefore, it would be beneficial to have the functionality to execute the selected

behavior above on the action controller of whatever machine the player master is

located on. To do this, object proxies received a special method execute() which

accepts a special “Java Runnable” to allow for the remote execution of these action

code fragments. Via this method, the action controller can send the name of the

behavior which it wishes to be executed and the action instance containing the
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object ids of the objects involved in the action i.e. the player and item for pick up,

to the master node of the player.

It is also the reason why action behaviors are broken into two components, the

check and the execution. By checking preconditions of an action with the local

replicas, if they fail (e.g. the player is out of reach of the item they wish to pick

up) then an expensive remote network call can be avoided and network bandwidth

has been saved. Otherwise, if everything checks out, the network call can be made

and the action can be performed remotely using the second method on the action

behavior. Of course, before executing the method on the remote node, the check

can be performed again, since the master object state might have changed in the

meantime; however, this usually results in a versioning error (see Section 4.5.1).

Thus, via the built-in RPC system, a remote call is made to the player master

object. It then executes the special wrapper created by the action controller on

the client. This wrapper, will execute a special invokeBehavior() method on the

remote machine’s action controller. The invokeBehavior() method will take the

behavior name, find it in its local behavior list and pass in the reconstructed action

instance to its perform() method. Then the action will execute as normal; however,

on the remote machine of the player master instead of the originating client (see

Figure 5–4).

This process saves network bandwidth and time compared to traditional locking

techniques as discussed in more detail back in Section 4.5.2.
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5.4.3 Actions and Subgames

The client automatically creates an action controller and automatically loads in

the default game actions when it is started. Afterwards, the subgame manager loads

every subgame as specified in the properties file and they in turn load actions they

wish to modify the behavior of. These are loaded on the action controller’s stack for

each action type.

When a player initiates an action, the subgame action behaviors are queried first

before relying back on the default world behavior. In some instances the subgame

may subclass the default behavior to provide extended functionality, or merely add

hooks to the subgame to be notified about special events, for instance the player

placing an object in a container.

It is also important as there could be cases where even on a node where the

player is not playing a subgame actions still need to be processed using the subgame

behaviors. For instance, maybe people not playing capture-the-flag can see the flag,

but are not allowed to pick it up. Or a trophy to be found in “Find the Trophy,”

can be picked up by anyone, but for a limited time before they are forced to drop it

automatically.

5.5 Subgames and Visibility

There could be instances where subgames would want to hide important game

items (such as flags in capture-the-flag) from players who are not playing that partic-

ular subgame. Providing this functionality is possible on the server-side via interest

management or on the client-side via visibility management.

73



Since the Mammoth project implements both of these services, it could be done

in either location. It was decided at the present time, the Visibility Manager on the

client would be sufficient as it alleviates work from the server.

Like most other Mammoth components the visibility manager is modular and

can be switched, for instance for debugging purposes, with various implementations.

One example for an implementation displays everything in the game world regardless

of its innate visibility. It is also possible to extend the visibility manager with specific

rules for active subgames in this manner.

More information about the implementation of the visibility manager created is

available in Appendix A.2.

5.5.1 Preventing Multiple Concurrent Player Actions

One thing which was observed back in the original client/server version of Mam-

moth was that users would not sit patiently waiting for things to occur. They would

create many simultaneous requests at once. Therefore, a system needed to be imple-

mented in order to “lock” the client and prevent the user to create any further actions

while their initial request was still being performed. This cycle involved locking the

Graphical User Interface (GUI), and then waiting for the action’s return value.

However, with the new replicated objects system and the action controller, this

notion of a client-side lock needed to be implemented differently. This implementa-

tion, however, was in the end a lot more elegant and localized in the action controller

code, and did not pollute the graphical user interface with hooks in many places as

done in the previous implementation.
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Instead of checking for locks in all locations interested in performing certain

actions, a single lock was placed on the request to perform an action. If a client

is already executing an action, the lock is not granted. The request to perform an

action is ignored, and a friendly reminder is sent to the user, letting him know about

the action failure. In addition, the lock on the perform action changes the mouse

cursor to signal to the user that they must wait for an action to complete. Usually,

if the network connection is fast enough, this “wait” cursor is not seen. Once the

action has been performed and the updates received (determined by checking for

the corresponding nounces (see Section 4.5.2)), the action completes, and the client

unlocks.
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Chapter 6
Conclusion

Massively Multiplayer Online Games (MMOGs) are built from much more com-

plex and dynamic systems than those found in other computer games. They require

a complicated harmony of different systems working together in order to function.

With more people playing these social games, year after year, the economic impact

will continue to have great potential in the future.

The motivation behind this thesis was to break down a MMOG into smaller more

manageable subgames to allow for increased and more flexible interaction between

players while being able to increase the scalability of the system. Subgames also

provide the ability to modify and enhance the default game mechanics. In addition,

game architecture and design can be greatly stabilised through maintaining strict

consistency of the game state, especially in a distributed game environment.

Subgames provide a stable, scalable framework on which to build upon a virtual

world in the complex environment of MMOGs. As it was described in Section 4.2

there are a variety of requirements needed for subgames to function, such as the

ability to create new objects and object types, modify the user interface, create new

and modify existing game actions, and exist in a modular framework.

With such a platform now in place, subgames provide a vast number of options

to expand upon the global game world and create interesting dynamics for players

76



to experience. It was also shown how a consistent game state in a Distributed Multi-

Server Environment (DMSE) is also achievable with minimal overhead through the

use of a light-weight transactional protocol named TTLS. In addition, the mecha-

nisms used were also suitable for subgames. By encapsulating basic game rules and

game state changes in actions, a more robust system was created.

In addition to presenting the theoretical ideas behind subgames, this thesis

also provides an initial implementation of the subgame concept within Mammoth,

the massively multiplayer game research framework developed at McGill University.

The core of the implementation consists of a subgame manager component that runs

on every machine. It loads the available subgames at start-up, keeps track of the

individual subgame instances that are currently active, stores subgame-related state,

and manages the participating players. Subgames can also define new game objects

by defining object types using XML. Finally, action types and action behaviors allow

a subgame to create new game actions, or alter the existing behavior for default

actions in the game world in a consistent and scalable fashion.

6.1 Future Work

The work in this thesis represents a first step. The research accomplished has

defined the concept of subgames and their inherent differences to shards in a manner

of theory and practical implementation. Further work can be achieved as a second

step to further conceptualize subgames into a discrete form. The work which has

been provided can also be used as a basis to proceed to more in-depth studies of how

subgames are supposed to interact on a larger scale.
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In this thesis, we showed ideas and techniques that make it possible for one

subgame instance to define new objects, to define new behaviors, or to override the

objects and behaviors of the global world it inhabits. The ideas and techniques,

however, did not address the issues which arise from concurrently running subgame

instances which specify conflicting alterations to the global world. As mentioned

in Section 4.1, subgames can form hierarchies. Also, players can be allowed the

freedom to participate in several subgame instances concurrently. In this case, it is

necessary to look at the possible conflicts between subgame instances which a player

participates in. Finally, the graphical user interface of the Mammoth client must

be customizable in order for subgame players to initiate subgame-specific actions.

These issues are described briefly in the following sections.

6.1.1 Conflicts Between Different Subgames

Using the techniques proposed in this thesis, subgames can alter the state of the

global world and redefine how players interact with objects. For instance, a game

such as Orbius (see Section 4.3) has to limit the amount of weight a player can carry

in order to make it more difficult for a team to collect the orbs of different weights

in order to win. It is also possible for a subgame to remove items from the virtual

world. For instance, “Find the Trophy” (see Section 4.3) might want to make sure

that only one single trophy exists in the world.

What if these alterations to the properties of the virtual world conflict? What

if, for instance, one subgame forbids the picking up of objects above a certain weight,

while some other subgame requires heavy objects to be picked up in order to win?
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Can these two subgames co-exist in the same virtual world? What if a player wants

to participate in both subgames at once? Should this be allowed?

There are many issues related to these problems. First of all, conflicts between

subgames have to be detected. This is not trivial, since subgames can extend the

virtual world in many ways. Probably, some extensible framework or language will

have to be defined which allows subgame designers to express the subgame properties

and expectations in a formal way. A pairwise analysis of formal subgame definitions

could then reveal potential conflicts.

Once a conflict is detected, it has to be resolved. It would be possible to simply

forbid the conflicting subgames to be instantiated at the same time. It can also be

imagined that properties of the virtual world are only changed for players joining

a subgame. As a result, non-subgame players and subgame players would see and

experience the same virtual world in different ways. At first glance, this seems to

solve conflicts, provided that a player is not allowed to participate in conflicting

subgame instances simultaneously. However, further studies have to reveal if this

idea would not create awkward situations and unfair gameplay situations between

players.

6.1.2 Interactions Between Players Participating in Subgames

It will be important to study how different instances of the same subgame in-

teract. Many questions arise in this context. Ideally, players participating in one

instance should be able to see players participating in the other instance.

As an example, imagine two games of soccer taking place concurrently. A soccer

player from the first game should be able to see the players of the other game, if
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the games take place in the same virtual world. However, would it be allowed for a

player from the first game to take the ball away from the second game? Probably

not. If the goal was to make the virtual world more realistic, it could be allowed;

unfortunately, a game that is realistic, but not fun, does not serve its purpose.

Therefore, if non-subgame players were allowed to interact with vital objects

important to subgame players then this interaction would have to be monitored and

artificially stopped, if the gameplay of the subgame is threatened. For instance,

in “Find the Trophy,” a non-subgame player could take the trophy, but would be

forced to drop it somewhere in the near future, otherwise the subgame players could

potentially never be able to find the trophy again, especially if the non-subgame

player leaves the game.

6.1.3 User Interface Modification

Another challenge which arises in a customisable game framework is modifica-

tions to the user interface. If a game creates a new type of interaction, such as the

tickling action of Orbius, players need a way of initiating the new action. It is helpful

to players to have a visual representation of the new action as well.

There are further challenges in coordinating multiple combinations of actions,

as well as providing the needed hooks into the user interface framework. These hooks

not only have to provide the modification of the existing user interface, but allow for

multiple subgames to add their own modifications in harmony.

As mentioned previously, complex modifications to the user interface are a ne-

cessity for complex subgame mechanics. Especially for a variety of subgame types.

More sports like games such as capture-the-flag, may not only need special actions
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like “designate object as base,” but also windows to display the score. A subgame

used to manage side-quests would also need an additional but interactive window

interface.

While basic additions are currently possible within the GUI of the Mammoth

client, a system would need to be designed to allow these additions to coexist simul-

taneously.
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Appendix A
Appendix

The following sections found in this appendix are addendum to the work im-

plemented in the Mammoth project during the duration of this thesis. The first

section revolves around work done on consistency in a single-server environment

before Mammoth had distributed servers. The middle two sections relate to imple-

mentation issues discovered while working with Remote Procedure Calls (RPC) in a

Distributed Multi-Server Environment (DMSE). The last section provides informa-

tion about work done on moving Mammoth from a 2D to a 3D world.

A.1 Single Server Consistency

Initially, the Mammoth project was built upon a traditional client/server net-

work topology. Combating consistency on the centralised server was a first step

towards understanding consistency in general. Unfortunately, the solution presented

here, while sufficient at the time, was a short-term solution which did not scale to a

DMSE.

When a request is made on a single server to update the location of an item, the

server already has access to both objects. With a single thread, proper synchroniza-

tion, or locking, the server can “simultaneously” update both objects at once. This

avoids any problems with consistency arising from the need to update two objects

at once as was discussed in Section 4.4.1, on the server side.
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In a single server instance, invalid requests can easily be denied; however, it can

be difficult to update the state of a client. If an update is missed or the client is

lagging it can try and apply a regular update message inappropriately.

By consolidating the request for the item location change into a single notion

of “the object is now here” conflicts can be avoided. The client can then move the

object from where ever it thought it was to where it should be (by updating both

objects at once) restoring consistency to the client.

If a client does not have a copy of the item, then they can ignore the message,

as when they receive the item its state will be correct as it will be coming from the

single instance on the server.

Unfortunately, when there are multiple objects on multiple servers involved,

the single point of access and single message approaches no longer work. As was

discussed in this thesis in Section 4.5.1, it is not a trivial matter.

A.2 Visibility Manager

Firstly, the Visibility Manager (VM) is independent of interest management. Its

only function is to take all the objects that are of interest to the player on the client

and decide if they should be visible or not.

Initially, the visibility manager in Mammoth was simply for ensuring roofs dis-

appeared when a player moved under them. However, there were many problems

with it overriding the inherit visibility of a game object instead of just the visual

graphical view. These problems continued to crop up as other parts of Mammoth

83



changed leading to confusing erroneous displays, such as no other players being dis-

play as they were turned invisible by the visibility manager or objects, that should

be invisible, reappearing when other clients logged in.

With the introduction of object replication and the change in behavior to how

Mammoth works especially in regards to picking up and dropping items. It was

finally time to rewrite the original visibility manager. The goal of the rewrite was to

cleanup listener registration and the initialization of the graphical views of objects.

As visibility was basically being managed in two places, the old visibility manager

and the graphical view of the object, which causes plenty of room for confusion and

conflicting results.

The other and probably main reason for the refactor was the setVisible()

method was now a Remote Procedure Call (RPC). And if an object was trying to

change its visibility it would make a call to the master of the object instead of

the local copy of the object. This caused many confusing problems (initially their

was a problem with changing the position of an object like this too), such as roofs

disappearing on other clients that were not supposed to disappear. Basically, the

visibility of the graphical view had to be notified when the visibility property of

the object was changed on the importing of the remote state. Therefore, the new

visibility manager framework was created to combat all these issues.

The visibility manager is defined as an interface, but a base class is provided

which defines the general functions of registration of objects with the manager. The

base class should probably be used for any further implementations, but many ex-

ample visibility managers have been created for reference.
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Whenever an object of interest comes into or is removed from the (local) world

state, the visibility manager is notified. It is also notified when the visibility of an

object changes (an item being picked up) or the player moves positions. On these

two main events, code can be created to control what the player should see from

their current position or override the inherit visibility of an object. i.e. one could

create a visibility manager that shows every object regardless of whether it should

be visible or not.

Item visibility was also changed to be based solely upon information on the

location of the item (world, hand, or inventory); however, this initially did not flag the

visibility as being changed when the item changed locations. However, simply calling

the visibility changed notification function on the object on a location change solved

the problem, as then the visibility manager would recheck the visibility property of

the item and correctly update itself.

The visibility manager is created for the World Window which is the main view

on the game world in the Mammoth Graphical User Interface (GUI). The VM gets

notified by the world window whenever an object is added or removed from the game.

It is also alerted by the world window when the main player (the character which is

being controlled) on the client is registered.

When the VM is notified of these additions it adds the object to its internal

list of objects and registers a listener with it so it will be notified when the object’s

visibility changes or in the case of a player, when they move. When an object’s

visibility changes the visibility manager’s updateVisibility() method is called to

coordinate the graphical change.
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There are many different example visibility managers at the present time. A list

of them follows along with a short description.

A.2.1 Roof VM

This is the default visibility manager. It behaves as the game should. When a

player is under a “roof” it disappears. Otherwise, all visibilities on the client should

correspond to their internal representation.

A.2.2 NoRoofs VM

This is similar to the default VM above; however, roofs are never displayed.

A.2.3 All VM

This VM always displays every object in the interest area of the client’s player

regardless of its inherit visibility property. i.e. if an item is picked up or placed in an

inventory, it will still be visible on the ground at whatever position it was initially at.

Normally, the item disappears when it is grabbed thus preventing further interaction

with it.

While this Visibility Manager may initially seem useless, it is in fact quite useful

for debugging purposes. Since, normally it is impossible to simulate simultaneous

interactions with items, testing network code is difficult. However, if the item does

not disappear from the game world when picked up with this VM, it is still possible

to interact with it. Therefore a simultaneous request can be mimicked easily without

the need for frantic clicking and luck.

A.2.4 Narrow VM

The Narrow VM was a test just to experiment with a limited range of view and

ensure the visibility manager really worked properly. It only shows the player items
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that are within their reach which is much smaller than the number of objects they

are interested about or that the physical client is responsible for knowing about.

A.3 Stand-Alone Client

One thing that has existed in Mammoth since the beginning was the notion of

a “Stand-Alone” client. Basically, it was the graphical interface to the game world

without any network engine or server behind it. It allowed for a simple way to test

and debug code without the need to setup a server and connect to it, especially

when only game interface or other miscellaneous code was changed. It has been an

invaluable debugging tool.

Unfortunately, with the move to object replication with RPC, the once simple

stand-alone client was broken. Originally, there was a game object which handled

changes to the game state. The game object was wrapped by the network layer

using simple network messages for every change. Later this lead to the problems

and the creation of the single update message discussed in Appendix A.1. To create

the stand-alone client all which needed to be done was to create a dummy wrapper

which would interface with the client-side GUI instead and direct all calls to a local

copy of the game object rather than create a network message, send it, and wait for

a response.

The best way to understand is to follow the chain of an action in two cases: the

regular network client and the stand-alone client. On a networked client, the player

would click to pick up an object. That click would be then turned into a network

message requesting the pick up action to be performed and sent over the network

to the server where all the objects reside. The server would perform the action and
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change the state of its master copy of the object and then send an update message

back to all clients interested in the objects being changed. The client would receive

this update message and make a call to import the state to update the local copy of

the object. The resulting call would also trigger notifications to listeners monitoring

the object, such as the graphical representation and the player would see themselves

picking up the object.

On the stand-alone client, this procedure was relatively the same; however, no

network message is created and the action is performed directly on the local copy

without delay. Thus, the player clicks on the object, the game grants permission for

the action to be performed, and the objects are updated immediately calling all the

listeners in the process. And thus, the player sees themselves picking up the object.

When RPC is introduced with object replication this basic network process

changes. Instead of a network message being created for the specified action, a

network message is created for the RPC invocation transparently through a replica

proxy. And instead of an update message specific to the action, a replication update

method containing the changed state is returned. Thus, when the state is changed

via RPC, no listeners are notified as the call would never be performed on the local

client. Instead they must be moved to where the state update occurs locally when

the new replication update message is received.

However, if the same methodology of the original stand-alone client is applied,

the process breaks down. As now the stand-alone client has all the original objects

without proxies. When the player goes to pick up the object, the calls are made

directly and the objects are changed; however, now no listeners are called as the
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import state method (where the listeners are notified) is never called. Thus, on the

stand-alone client, the graphics layer is never notified that the object has moved to

the player’s hand and the player does not see the change even though it has occurred

internally.

Fortunately, the solution to this problem also brought to light another issue.

Imagine, if while using the object replication scheme, a master object resided on

another client or a server with a monitoring system interested in certain objects.

Normally, when the master object’s state is changed via a RPC invocation, the state

is changed, but similar to the stand-alone client issue, no import state method is

called and no listeners are notified of the change. Thus, anything monitoring the

master object is never alerted to the change. Therefore, even on the master it

was important that listeners be triggered via the import state method. With this

addition, if all the stand-alone objects were changed to be master proxies (instead

of the direct access to the objects), whenever calls were made, not only would the

state change, but the listeners would be called as well. Therefore, two problems were

solved with one solution.

The only issue left to solve for the stand-alone client was that by using a master

proxy, a replication update message would be sent whenever an object’s “remote”

methods were called. Yet, the stand-alone client had no notion of messages or net-

working as it is an independent stand-alone client. Therefore, the original “Repli-

cation Engine” handling the network messaging needed to be abstracted. In this

manner, two replication engines could be created. One would be the original net-

worked replication engine, where the other would be a “dummy” one not performing
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any actions. Thus, the dummy replication engine could be passed to the master

proxies on the stand-alone client, and while a network replication update request

would be made, nothing would occur.

Thus, with the increased flexibility and ease-of-use of the new RPC and object

replication systems, the stand-alone client system that has been of use since the

beginning of the project was able to stay intact.

A.4 2.5D Demo

Initially, the world of Mammoth was in two dimensions. A 3D demo was cre-

ated, but separate from the research work done in 2D. In order to maintain the

research done in 2D while moving to a 3D world, the notion of the 2.5D demo arose.

As Mammoth was running with a 3D graphics engine behind it (JMonkey), it was

possible to project the 2D textures of Mammoth into 3D objects. This allowed the

client to seem 3D while the game and servers behind it still worked within 2D space

(see Figure A–1). This allowed Mammoth to move from its initial 2D roots to a more

updated modern look in 3D.

There were some interesting challenges related to the move to 3D. One main

challenge was simple “picking” (or determining which object was clicked on). Nor-

mally, this is quite easy in a 2D environment, but not quite as simple in 3D. Thank-

fully, the 3D engine used could return sets of graphical objects that a ray intersected

with. This ray could be cast out from the camera to where a player clicked and once

each graphic object was tagged with its equivalent world object id, this problem was

solved.
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Figure A–1: 2.5D Client

The camera itself provided a lot of new challenges as well. It had to be ensured

that the camera would always be “right-side” up, so the player did not see the

world of Mammoth upside-down. In addition, as the camera moved (through player

control), the player’s character’s animation needed to be adjusted i.e. if the player

was moving towards the camera the character’s front image needed to be shown.

This involved some complex approximations of direction in regards to wherever the

camera was currently located.
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Besides the initial challenges of moving from a 2D to 3D world, there were spacial

challenges as well. Normally, in the game, a player would move into a building and

the building’s roof would disappear (as per the visibility manager). However, in a

3D world, it would be possible to have the building or a wall blocking the view of the

player without the player being inside the building. For this, a ray was used again

from the camera to the player’s character. With this set of objects, it was possible

to determine if anything was before the player’s character blocking its view. If such

an object existed, it was made translucent so the player’s character could be seen

through it.

In addition to simply projecting 2D textures into 3D boxes for walls and roofs,

the ability to load actual 3D models in place of their 2D equivalents was needed.

By adding some additional XML parameters, it was possible to load a 3D model in

place of the 2D texture and scale it to fit within the 2D dimensions specified for the

object being replaced.

Finally, as an experiment, a “first-person” viewpoint was added. Giving a player

the ability to see through the eyes of their character instead of seeing the world from

above in the “third-person” (as in Figure A–1). In this perspective the default

radii for player interest and reach were not sufficiently distant enough compared to

the two-dimensional version of the game. This was because, in three-dimensions a

player’s field of view is much greater than it is in a two-dimensional game. Also, it

was found the focal-point of the camera was too far-away for a player to see items

at their feet, therefore it needed to be possible for a player to reach and pick up an
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item that was much farther away than before as otherwise it would disappear from

their view.

There were many technical challenges to move Mammoth into a 3D world, but

it was still possible to maintain the 2D research that had been done up onto this

point. This has provided many benefits to allow the project to move forward and

start exploring new 3D challenges, while still maintaining the large amount of work

that has already been done.
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