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Abstract

The gluing and tensor product constructions of lattices are re-
viewed. A third construction, called shifting, is defined and its re-
lationship to gluing and tational equivalence is investigated. There
follows a discussion of a method, based on gluing, for systematically
generating theta function identities. Gluing is used also as a device
for constructing phenomenologically realistic superstring theories. Fi-
nally, these lattice methods are applied to recent work concerning van-
ishing cosmological constants in string theories. In addition, scattered
throughout the thesis are a number of smaller 1esults on lattices.

Les constructions collage et produit tensoriel des 1éseaux sont 1e-
vues. Une tioisieme constiuction, appelé déplacement, est définie et sa
connexité au collage et la équivalence rationnelle est examinéde. Suit
une discussion sur une methode, basée sur le collage, pour engendrer
systématiquement des identités fonction théta. Aussi, le collage est
employé comme un instrument pour constiuire des théories de su-
percordes qui sont réalistes phénoménologiquement. Finalement, ces
methodes de réseaux sont appliquées a des travaux récents regardant
la constante cosmologique dans les théories de supercordes. Nombre
de plus petits 1ésultats sur les réseaux sont éparpillés dans toute la
these.
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PREFACE

This thesis is concerned with lattices, their constiuction, and their appheations
to theta function identities and superstrings. It is based primarily on tive papers
[GL1-5).

Four different ways of constructing lattices are addressed: direct sums, direct
products, gluing, and shifting. Direct sums are elementary and hence penvasie
enough to recur throughout the entire subject. On the other hand. not much work
has been done on direct products; I review some of what has been done and rederive
some of this from more elementary arguments. Central to most of the wotk con-
tained herein are the gluing and shifting constructions, and their inter-relationshp
Much of this material has been taken from {GL2]. Gluing is well known to the
mathematical community, and played a pivotal role for exainple in Niemeier's clas-
sification of the 24-dimensional even self-dual lattices. Shifting is less well known,
though mathematicians have confronted a special case of it (namely, neighboms) in
Borcherds’ classification of the 24-dimensional odd self-dual lattices, and physicists
working in string theory have for the last few years used what is called here the
self-dual shift to construct new string theories from old ones. One of the major
accomplishments of this thesis (and of [GL2]) is the generalization of this self-dual
shift and the derivation of a number of interesting results concerning shifting (with
consequences both for the theory of neighbours, and the self-dual shift) It tuins
out for example that a lattice A can be constructed by shifting another iff the two
lattices are rationally equivalent. Moreover, the neighbourhood graph for self-dual
lattices of any given dimension is connected.

We apply these constructions to two different areas. The gluing constiuction
is useful in finding systematic geometrical derivations of theta function identities.
This I cover in Chapters 4 and 5 — the results are taken from [GL3] and [{GL4].

The gluing construction can also be used in the construction of strings -- see See.3
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of Chapter 6, which is condensed from [GL1]. Another application to string theory
concerns the existence of string theories with zero cosmological constant. Dienes re-
cently found in [DIEN] a class of partition functions which correspond to vanishing
cosmological constant; lattice techniques turn out te be ideally suited to investigate
whether a string theory can be found with su-h a partition function. [ discuss this

in Sec.4 of Chapter 6 — it covers material in /GL3].

Chapter 1 reviews basic properties of latiices. Section 1 sets the stage for
subsequent developments by including several important definitions and by proving
results such as the finiteness of the automorph.«m groups of Euclidean lattices.
Section 2 is concerned with the direct sum operation, and Section 3 discusses self-
duality. Section 4 establishes a number of results, some of which do not seem to
be generally known. Sections 5 and 6 discuss root la .tices and introduce the gluing
construction. Chapter 1 is intended to be primarily a survey of fundamental aspects
of the theory of lattices — the remainder of the thesis is built upon it. Although
most of the theorems may not be new, their proofs (witn few exceptions, and those

are clearly identified in the text) are all my own.

Standard references for Chapter 1 include [CS1], [CAS], [SER], [MH], and
[GO].

Chapter 2 discusses two other ways of constructing lattices: the tensor prod-
uct and shifting. Sections 1 and 2 cover tensor products: Sec.l describes its basic
properties; and Sec.2 investigates the question of the minimal norm of tensor prod-
ucts. Tensor products do not arise again in this thesis. Included in these sections
is some recent work by Kitaoka (see [KIT1-4]) — his tools are fairly sophisticated,
and so I have included there some of my own material, derived from first principles
and without knowledge of his work, even though much of it is a special case of
his. Shifting, on the other hand, recurs throughout this thesis. It is stated in its
most most general form in Sec.3, and some basic results of the self-dual shift and

of neighbours are given in Sec.4.
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Relevant references for Secs.1 and 2 are the papers by Kitaoka quoted in the
bibliography. Most of Secs.3 and 4 is new; see Chapter 17 of [CS1] for the theory of
neighbouring lattices, and [GL1]} for references on self-dual shifting used in string

theory construction. Secs.3 and 4 were based on parts of [GL2].

A self-dualizable lattice is one which can be glued to a self-dual one. Analysis
of the properties of self-dualizable lattices has led to the notion of simalarity defined
in Sec.1 of Chapter 3. Its close connections with rational equivalence are discussed
there. Sec.2 provides a recipe for detertmning whether two lattices are similar o
not; it can also be thought of as a geometrical (as opposed to algebraic) derivation
of the analogous question for rational equivalence. Sec.3 reviews and extends sonie
work (on embedding a lattice in some orthonormal lattice [,,,) T included in my
M.Sc. Thesis, and did independently of more far reaching research by Conway and
Sloane. This material is interesting in its own right, but is alse useful in Sec.4 where
I use many of the results obtained in previous sections to find theorems of relevance

to simiilarity, neighbours, etc.

The bulk of this chapter (except for Sec.3) came from {GL2]). References on
rational equivalence (especially its p-adic analysis) include Chapter 3 of [CAS] and
Chapter 15 of {CS1]. The relevant paper for Sec.3 is [CS4]. Although a little of
Sec.4 also overlaps [CS4], most of it is new, obtained first in (GL2].

Theta functions are useful in the theory of elliptic functions, the theory of
modular and Jacobi forms, analytic number theory, the study of Riemann surfaces,
and the representation of affine Lie algebras. They arise in physics in the partition
functions of strings and two-dimeusional conformal field theories (see [GL3] for
references). The theta functions considered here are exclusively of genus g = 1
(see [MUM] for definitions). However, to some extent the results and techniques

obtained here should generalize quite naturally to higher g.

In Chapter 4 we discuss theta constants — 1.e. functions only of r € H. Sec.1

reviews the basic properties of the Jacobi #-functions 6,, 63,84 and k. Sec.2 covers
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the theta constants of lattices and their glue classes and introduces the main strategy
of Chapters 4 and 5: to use glue decompositions of lattices to obtain theta functions
identities, See.3 exphieitly does this, after discussing some general material on theta
function identities. In there for example we find all hinear identities in the Jacobi
funetions as well as all quadratic identities in 83 derivable from this lattice method.
We also discover that the famous (quartic) Jacobiidentity 85(7) +604(7)* = 63(7)* is
derivable from one of these degree two identities. In Sec.4 we investigate polynomials
that the s and the theta constants of glue classes are 1oots of and we include

several interesting consequences of the existence of these polynomials.

Chapter 5 discusses theta series, where the extra complex variable = or vari-
ables 2 involved both complicate the analysis and strengthen the conclusions. The
structure of this chapter is analogous to that of the previous one (e.g. the famous
quantic Riemanu identity is derived from a quadratic theta series identity), except
that it goes further For example, 1t is shown there that any theta series identity
can be dernved from this lattice method. Also, whereas it is possible for two lattices
(e.g. Eg b Ex and D1+(;) to have the same theta constants, this is not so for their

theta series

The material for Chapters 4 and 5 came mostly from [GL3] and (GL4]. Some
of the basie results m Sees 1 and 2 of these chapters can be found in Chapter 4 of
[CS1] and in [MUM]. The idea of using gluing decompositions for theta function
identities is not new (see both Jhose references), but no source we have found goes
into nearly the depth we have in Secs.3 and 4. In fact, we have found only three
mdependent theta constant. and only one full rank theta series, quadratic identities
in literature searches (all these can be found in [TM] and [KT)); included in Tables
S and 11, respectively, are at least 33 and 24 independent quadratic theta constant

and theta series identities.

Chapter 6 discusses the application of the previous work on lattices to string

theory. Sec.l provides a brief description of those aspects of string theory needed
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in the remaining sections. Sec.2 treats the bosonic lattice string. At the end of
it the shifting method used by string theorists is reviewed and its mathematical
limitations are discussed. Sec.3 introduces the ‘bottom-up’ construction of strings,
a method giving physicists greater control over constructing string theories with
phenomenologically correct zero mass particle spectra and gauge groups. Sec.d
discusses a recent proposal by Dienes for finding strings with a zero cosmological
constant. The results obtained in earlier chapters help to show that his partition
functions cannot be realized by a lattice string with certain desired properties.

The standard reference on strings is [GSW]. The lattice formalism of strings
can be found in [KLT] and [LAML,3]. Sec.3 is condensed from {GL1]. Our analysis
[GL5)] of Dienes’ partition function [DIEN] has not yet been completed in complete
generality, but we have shown that the most natural class of physically acceptable
candidate strings (which may or may not exhaust all possibilities) cannot possess
his partition functions.

In summary, scattered throughout the thesis are many results which seem to
be new. Also, even when the theorems are familiar, the proofs are my own (unless
clearly stated to the contrary in the text) — they may differ from the standard
ones by involving for example more elementary or more geometric (as opposed to
algebraic) arguments. The greatest concentrations of original results are in Sec.6 of
Chapter 1, Sec.4 of Chapter 3, Secs.3 and 4 of Chapters 2, 4, 5, and 6, and the end
of Sec.2 of Chapter 4.

I would like to thank Professor C. S. Lam — not only has he been my advisor
(with all that entails), but he has co-authored with me the five papers this thesis is
based on. Also, I greatly appreciate the assistance of Rudelle Hall in proof-reading,
typing, etc. Financial support for the research contained herein was provided in

part by the Natural Sciences and Engineering Research Council.
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Chapter 1 LATTICES

1.1  Introduction

‘Lattice’ is a mathematical homonym, a single term representing fundamentally
different mathematical structures. A lattice, to many mathematicians, involves
two binary operations on a partially ordered set, obeying certain properties. This
algebraic structure has absolutely nothing to do with the type of lattice considered

in this work.

Definition 1.1.1 A lattice A is a non-empty nowhere dense set of points in some
finite dimensional real inner product space V = V(A) (called the background space)
such that a,b € A and k,¢ € Z, implies ka + ¢b € A (we say A is closed under

Z-linear combinations).

In other words, a lattice is a discrete additive subgroup A of some real inner
product space V. Equivalently, a lattice is a free finitely generated abelian Z-module
on which is defined a symmetric real-valued bilinear form. Indeed, that is how it
is usually defined. Although unfortunate, it will be necessary at times for us to
explicitly include the background space V in our considerations.

The trivial example of a lattice is the zero lattice, Az def {0} = V(Az) consisting
of exactly one point. Unless explicitly stated to the contrary, by ‘lattice’ we exclude
the zero lattice. Also, by ‘lattice’ we mean, in this work, ‘non-singular lattice’ —
see later in this section for the definition.

The familiar a - b will be used to denote the inner product=bilinear form=dot
product, and a? 4 4. a will be called the norm. It is well known that up to isomor-
phism, R®™ is the unique indefinite real space with dimension ¢ + m and signature
(6,m). R! 4l R4O is the unique positive definite, or Fuclidean, inner product space

of dimension ¢.
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Note that Def.1 requires that 1™ be considered as a topological space. This can
be done in a number of (topologically) equivalent ways (e.g. by choosing a basis

{vi,...,vn} of V and defining || 3" a,0,|| = 3 a?).

Theorem 1.1.1:  There exists a set 3 = {by,...,b,} C .\, linearly independent
(over R), whose Z-span (bl,...,b,,)défZ o Hd-ir{Z" €b, | €, € Z} ecquals \

=1

Moreover, any such set 3 also has cardinality n.

Of course, f is called a basis, and n the dimension, of the lattice. The dimen-
sion of the lattice may be less than, but never more than, the dimension of the
background space. The zero lattice is said to have dimension 0.

Thm. 1 can be proved in the following way. From the structure theorem of
finitely generated modules over a PID (see pp.218-226 of [HUN]), we know A is
isomorphic (as a Z-module) to Z" = [[ Z for some n. So, there exists a finite subsct
B = {by,..., by} of A whose Z-span equals A and whose elements b, are lincarly
independent over Z. Suppose Y a;b, = 0 for a, € R. Then the following lemma

tells us that because A is nowhere dense, all a, must be 0, thus concluding the proof

of Thm.1.

Lemma 1.1.2: For any z € R let n(z) denote the integer satisfying & — n(r) €
—%, %] Let ay,...,a, be real numbers. Then for any € > 0, there exists an integer

N¢ # 0 such that |N.a, — n(N.a,)| <€, for eachi=1,...,n.

Proof 1If all a, are rational the lemma clearly holds — just choose N, to be the
greatest common denominator of all «;,.

In the remaining case, where at least one a, is irrationai, define the map o :
Z — R" taking k € Z to the vector a(k:)déf (ka; —n(ka,),..., ka, —n(kay)). Since
la(k) — a(€)| > |a(k — ¢)], the map is one-to-one. Because each a(k) lies in the unit
cube —-;-, -é-]", the image of Z contains accumulation points. In fact, any point a(k)
is an accumulation point of a(Z) (again using the above inequality). Hence 0 1s an

accumulation point. QED
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It is casy to show (see e.g. p.21 of [LEK]) that if z is any primitive vector of A
(r.e. if £/k € A for some k € Z holds only when k = £1), then there can be found
a basis 3 = {b,...,b,} for A such that b; = z.

Ay is said to be a sublattice of a lattice A if Ag is a lattice in its own right, and
Ay C A; the bilinear form on Ag is induced by that on A. Note that any lattice
has proper sublattices (in fact infinitely many) of equal dimension to it. If S is any
subset of A, then (S} is a sublattice of A.

For the most part we will be concerned here only with retional lattices, i.e. lattices
whose dot products a-b are all rational. A lattice is called integral (sometimes called
classically integral — sce [CAS]) if all of its dot products are integers. An integral

2 are even integers; otherwise it is called odd.

lattice is called even if all norms a
Hence an odd lattice always has both even and odd norms.
Because the background space V is isomorphic to some R®™, there exists a
basis e, of V (called here an orthonormal basis) such that
0 1#j
e, €= 1 i1=35<¢.
-1 1=373>¢

Let 3 = {b;,...,bn} be any basis of A, and suppose we have

&+m
b, = ZM,Je] for i1 =1,...,n.

=1
Then M is an n X (€ + m) matrix with real entries and is called a generator matriz
of A corresponding to 8. Thm.1 tells us M is always of rank n.
Write A = M G4™ M, where
G*™ = diag{+1,...,+1,-1,...,-1}. (1.1.1)

- s
m

¢

Note that A,; = b, - b). In fact, let z = 3, 2,b, andy = 3°7_, y,b; be any two
vectors in A. Then z-y = & A §*, where & and § denote the row vectors (z;,...,2,)

and (y1,...,yn) respectively. Hence A, unlike M, is independent of the choice of

3
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basis for the background space V' (though it is dependent on the choice of basis fon
the lattice).

Thus the dot product of A is encapsulated in the symmetric n x n matiix A,
which is called the Gram matriz of A corresponding to g. .\ is rational iff all of the
entries of A are rational, i.e. iff A is a Q-matrix; A is integral iff all of the entries of
A are integers, u.e. iff A isa Z-matrix. A is even iff 4 is a Z-matrix whose diagonal
entries are all even; it is odd iff its Gram matrix is a Z-matrix with at least one odd
diagonal entry.

There is no unique Gram matrix corresponding to a given lattice. In particular,
let #={b,...,bn} and ' = {b},...,b),} be any two bases of the lattice A, and let
A,j and A}, be their corresponding Gram matrices. Thm.1 tells us n = m cquals
the dimension of A. Let b, = Z;;l U, b’J and b, = E;’___l Vi;b;. Then U and V' are
two n x n Z-matrices. In addition, they are inverses of each other. This implies

that the determinants |U| = |V| = 1. Moreover, we get
A=VAVY and A=UA'U". (1.12)

A is symmetric, which means it can be expressed as
A= B'GB, (1.1.3)

where B is an invertible (real) n x n matrix, and where G is an n x n diagonal
matrix whose entries are either 0, +1 or —1 (see [MH], p.6). When G (or A) fails
to be invertible, A is called singular (or null). For example, take V = R"! and A

to be the 1-dimensional lattice generated by b, = e; 4 e;. Then

G = ((1) _01) M=(1 1), and A=G=(0).
Hence in this case A is singular.
Singular lattices are briefly discussed on pp.27-28 and pp.108-109 of [CAS].

There it is shown that a siugular lattice is essentially a non-singular lattice of

smaller dimension, in disguise.
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From this point on, all lattices will be assumed to be non-singular (or regular),
50 G will be of the form eq.(1). Let ny be the number of +1 entries in G, and n_
the number of —1 entries. Then ny + n- = n. The Sylvestor law of inertia (see
[MH], p.61) says that ny and n_ are well-defined, i.e. independent of the particular
decomposition chosen in eq.(3). This proves, using eq.(2), the independence of n
and n_ on the specific choice of 8 (and hence A). If n; and n_ are both nonzero,
A is said to be an indefinite lattice; if n. = 0, A is said to be Buclidean (or positive
definite). Most of the lattices considered here will be Euclidean. The signature of A
is defined to be (n4,n_) (this convenient definition is from [SER] — most writers
define the signature to be ny — n_).

The simplest examples of lattices are the cubic, or orthonormal, lattices I,
consisting of those points in R™"™ with integral coordinates relative to some or-
thonormal basis ey,..., ¢4, of R™™. These lattices are of dimension m + n and
signature (m, n). The vectors e, represent one possible choice of basis of I, », and
corresponding to this basis the Gram matrix 4 = G™" = G. I, » is an odd lattice.
I, def m.0 is Euclidean.

Define Vy = Vp(A) to be the subspace R ® A of V; its dimension and signature
will equal that of A. By an automorphism of A we mean a linear map T : A — A
preserving dot products: (Tu) - (Tv) = u v, Yu,v € A. Then each automorphism
induces an orthogonal map on V;. Define Aut(A) to be the set of all automorphisms

of A; it is easy to verify that it is a group.

Theorem 1.1.3:  Suppose A is a Euclidean lattice. Then:
(i) for any ¢ € R, the number of vectors v in A with norm v? < ¢ is finite (in
fact odd for ¢ > 0); and
(i1)  Aut(A) is finite.

Proof Vp will also be Euclidean, so the closed ball in V} of radius ¢ will be compact.

Hence Thm.3(i) follows because A must be nowhere dense (obviously the number

5
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of norm k # 0 vectors is even since (—v)* = v*),

To show Thm.3(ii), first choose some basis ;3 of \ and let .V be the largest nonm
of the basis vectors. An automorphism of \ is uniquely specified by its behaviowm
on 3, and preserves norms; if we let M < 0o be the number of vectors in A of norm

< N, then there clearly cannot be more than M? automorphisms of \. QED

Thm.3(i) tells us that the set {v? | v € A} of all norms of A is countable and

has an enumeration ny, k = 0,1,2,..., satisfying
O=np<ny<ny <---—o00. (1.1.4)

Moreover, if we let Ny denote the number of vectors in A with norm 7y, then each
Ny is finite, Ny = 1, and Ny is even for all £ > 0.

We call n; =min{v? | v € A,v # 0} the minimal norm of A and denote it by
i = p(A). Note that if A is an n-dimensional Euclidean lattice with minimal norm

i, then the number of vectors v in A with norm v? < r is at most

(1 +2r/p)"], (1.1.5)

where [z] here denotes the greatest integer not more than r.

The assumption in Thm.3 that A be Euclidean is necessary — in fact most
indefinite lattices serve as counterexamples to it. However, if A is indefinite and
rational, it is easy to see that the set {v? | v € A} of all norms of A is countable

and has an enumeration ng, k =0, £1,£2,..., satisfying
—0— n.yg<n_1<0=ng<ny<nyg <+ — oo. (1.1.6)

(The assumption here that A be rational is necessary, as the choice A = (e, me_)
shows, where {e4,e_} is an orthonormal basis of R!'!.) Indeed, let A be any Gram
matrix of A, and choose a nonzero m € Z so that m4 is a Z-matrix. Then v? € #Z,

Yv € A.
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Definition 1.1.2:  Two lattices A and A’ are said to be integrally equivalent,
written A = A', if there exists an orthogonal (1.e. dot product-preserving) trans-
formation T : Vo(A) — V4(A') such that, for any basis 8 = {b;,...,b,} of A,
T(B) S (T hy,...,Tba} is a basis for A'.

Note that if T 8 is a basis of A’ for one choice of basis 8 of A, T 3’ will be a
basis of A’ for any other basis 8’ of A. It is straightforward to verify that ‘integral

cquivalence’ is an equivalence relation.

Theorem 1.1.4: Let A and A’ be any two lattices. Then:
(i) if they have Gram matrices A and A’ satisfying A = A', we have A = A/,
(it) if A = A" and A is any Gram matrix of A, then A is also a Gram matrix of

A

For (i), let {by,...,b,} and {b},...,d)} denote the bases which produce the
Gram matrices A and A’ for A and A’, respectively. The equivalence in (i) is induced
by mapping b, to b} for each j. The proof of (ii) is similar.

Two integrally equivalent lattices can thus be thought of as being essentially
identical: they have the same dimension and signature; they have the same set
of possible Gram matrices (see Thm.4); one is rational/integral /even iff the other
is; ete. Of course, A = A’ does not imply the background spaces V and V' are

isomorphic. In fact:

Theorem 1.1.5:  Given any lattice A of signature (ny,n_), there exists an

integrally equivalent lattice A’ in a background space V' = V(A') of signature

(ng,n2).

Indeed, the simplest such construction is to take A’ = A and V' = V;. Never-
theless, we will find that it is most convenient in some cases to choose a background

space of larger dimension. For example, the root lattices A,, E¢ and E; defined
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in Sec.5 are of dimensions 1, 6 and 7 respectively, but are usually defined using,

background spaces of dimensions n + 1. 8 and 8 respectively.
1 A

Historically, lattices wete often expressed in the language of quadratic forms
Lattices have been studied in number theory mostly in that disguise  Given any
nx n Gram matrix A, we may construct the quadratic form of n vanables vy,.. [,
by computing the product @ A +!, where a4 = (xy,...,r,). For example, I, cot-
responds to the form o3 + -+ + 04, — 2k, — - = 2% L, among others. There
is a one-to-one correspondence between quadratic forms and Gram matiices, so
any lattice generates several quadratic forms and any quadratic form corresponds
to several lattices. However, there is a one-to-one, onto cortespondence between
integral cquivalence classes of lattices and integral equivalence elasses of quadratic
forms (sce Thin.4). Thus the two languages can be treated as isomorphie; that of

lattices 1s preferred here because it is more geomettic.

Indeced, often in the literature *lattice’ means an ‘integral equivalence elass of
lattices’. For reasons that will become clearer in the subsequent chapters, it is more

convenient, for our purposes, to use the definition given in Def.1.

The fundamental regron for a lattice, given a basis {by,..., b, }, is the subset
of the background space V' consisting of all poiuts of the form #{by + - +1,b,, fon
t, € [0,1). It is a building block for the lattice (or, more precisely, for V) and when
stacked ad infinatum fills V) with precisely 1 lattice point per block (namely, at one
of the corners).

. de
Define the determanant (also called the discriminant) of A to be |A] luf ||4||,

the absolute value of the determinant of a Gram matrix 4 of A. We see fiom eq.(2)
and the observation given there (namely, that |U| = 1) that |A| is independent
of the choice of A (and hence the basis). |A] is simply the volume-squated of any
fundainental region (shape, but not voluine, of the fundamental region 1s affected
by basis transformations). Note that the determinant of a rational lattice is in Q,

and that of an integral lattice is in Z (however, we shall see in Section Three that

8
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the determinant of an even lattice may be odd).

Define A*, the dual (or polar) of A, to be:

A yeVy|z yeZ Vre ).

Then A and A* are of equal dimension and signature, and (V; =) R@ A =R® A",
In fact, let {e,} be an orthonormal basis of V; (1.e. e, - e, = £6,,), let G be as in
cq.(1), and let M be the generator matrix corresponding to some basis {b;,...,b,}
of A (expressed with respect to {e,}). Then M* def (M~1)tG is a generator matrix
of A* corresponding to the dual basis {b%,...,b},} of A* which satisfies b} - b, = §,,.
In this dual basis, the Gram matrix for A* becomes A* % 4=, Hence IA*] = |\
and (A*)* = A, and the dual lattice of any rational lattice is rational. Clearly,
A C A* iff A is integrai.

Finally, for any lattice A and positive number ¢, we will be occasionally inter-
ested in the scaled-up lattice A9 def {Vez | Vz € A}. We may extend this definition
to negative ¢ by defining AFY to be A with the signature flipped (1.e. with the dot
product multiplied by —1).

Note that for ¢ > 0 the minimal norms obey p(A(¥) = €u(A). Both lattices
A and A(® have equal dimension n, and for ¢ € Z, A® is integral if A is, and
A" is a sublattice of A. The Gram matrices of A9 are ¢ times those of A, so
|AD] = |¢|"|A|. Also, for any rational lattice A, there exists a positive integer
N (e.g. choose the least common denominator of the entries in a Gram matrix)
such that AV) is integral — hence many of the results for integral lattices trivially
extend to rational lattices.

Because M* = (M ~1)! G is a generator matrix of A*, we immediately get that
A* € A for integral A, where £ = 1/|A|2.

Let A and A’ be two lattices with Gram matrices A and A'. Then if A = AA4’,
we know from Thm.4(i) that A = A"V,

Using this, we can classify all 1-dimensional lattices as such: A is 1-dimensional

iff there exists a nonzero real number r, such that A = I{r).

9
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The classification of all 2-dimensional lattices was first accomplished by Gauss,
using reduced forms (see e.g. [CS1], pp 356-366; the classification can also be casily
accomplished by gluing orthogonal lattices). Some mmportant 2-dimensional lattices
are shown in Fig.2. The classification of higher dimensional lattices is unfortunately
more complicated and incomplete. See [CS1] and [CS2] for up-to-date tables of the
lattices of small determinant and dimension. For example, thete ate precisely 1,
2,4, 7,9, 13, and 18 integral Euclidean lattices of determinant 25 and dimension
1, 2, 3, 4, 5, 6 and 7, respectively. However, we do know that there is a tinite
number of integral equivalence classes of integral lattices with a given deternnmuant

and dimension. This is what we will now proceed to prove

Theorem 1.1.6 (Minkowski's Theorem):  Let A be any n-dimensional rational

Euclidean lattice. Then

, . de 1
n(A) < 4w;2/"|;\|‘/", where w, l=r7r"/2/I‘(1 + 311).

I' is just the gamma function and w, equals the volume of the unit sphere
in n dimensions. Thm.6 is actually a special case of Minkowski’s Convex Body
Theorem (discussed in detail in Ch.2 of [LEK]). Incidently, by Stirling’s formula,
for large n Minkowski’s bound behaves like |A|'/"2n/2re. Rogers in [ROG] has a
much sharper upper bound: it behaves like |A|!/"n /e for large n. Minkowsk: also
showed that there exist rational lattices A with p(A) > wi 2/ |A|Y/".

A . raightforward inductive calculation (given on pp.36-7 of [MH]), and using

the above upper bound for x, gives us:

Corollary 1.1.7:  Inductively define the positive constants c,, n = 1,2,.. by
the formula ¢; = 1, ¢, = (4/3)""%c,_; + 4"w%. Then given any n-dimensional
Euclidean lattice A, a basis b,,...,b, can be found which satisfies

b - by] < calAl/u(A) .

10




Fromw Cor.7 (1t is also possible to reason more directly from Thm.6) we imme-

diately get an important result:

Theorem 1.1.8  For cachn =1,2,. .and d = 1,2,..., there are only a finite
number of (integral) equivalence classes of Euclidean integral lattices of dimension

n and deternnnant d.

(This result apparently is originally due to Eisenstein and Hermite — see
[MH].) In fact, we can use Cor.7 to find a (crude) upper bound for the number of

such classes:

A(dJw) ™ (2end + 1), (1.1.7)

usig, the notation of Cor.7 and Thm.8. We shall see in Section Three that the
assumption that the lattices be integral is necessary (e.g. there are infinitely many
classes of rational lattices of determinant 1 and dimension 2). However, the as-
sumption that the lattices be Euclidean may be dropped: a similar argument shows
that the elass number for indefinite lattices of fixed dimension and determinant is
also finite. In particular, Gauss (using cycles of reduced forms) and Eichler (using
the spinor genus see e.g. Ch.11 of [CAS]) have completely classified all indef-
inite integral forms of given dimension (see for example the discussion in [CS1],

pp-352-4095).

1.2 Direct Sums

There are thice basic ways of building higher dimensional lattices up from
smaller ones:

(1) direct sums (discussed in this section);

(11)  direct products (discussed in Secs.2.1 and 2.2); and

(i) lemanation (not dealt with in this work).

11



Lamination is discussed for example in Sec.1.8 of [GAN] and in Chapter 6 of
[CS1]. It provides an interesting construction of the 24-dimensional Leech lattice
A4, which we discuss in the following section.

Two ways of constructing lattices from other ones of equal signature are gluinyg
and shifting. This will be introduced and investigated in some detail later in this
work.

Let Aj,...,Ax be lattices of signature (mj,n;y),...,{mi,ni). Consider the
set A = {(z1,...,2%) | . € A,}. For any two points r = (ry,...,rx) and y =
(¥1,--+,y&) in A, define $+yd§f($1 + Y15 Tk + Yk, l"ydg-l‘l /TI ERRE Y TS
and for A € R, A&z & (Az1,..., Azp).

Obviously this makes A a lattice of signature (my + - +mg,ny+- - +ny). It
is called the direct sum of the components A, and is denoted by A; & ---® As. Note
that it is an orthogonal sum — i.e. loosely speaking A, L A, for ¢ # j. If V; is the
background space for the component A,, V =V, @ .-- @ Vi is the background space
for A. Let ¢, : V; = V and 7, : V — V| be the obvious embeddings and projections.
Then any = € A can be uniquely written as & = Z:;l t(z,), where z, = m,(r) € A,

Let 3, be a basis for A, and let B, = ,{B,) denote the embedding of /3, into V.
A basis 3 for A consists of the union of these §,. For this basis,

M, 0 A 0

M, A,

M and A =

0 Mk 0 Ak
using obvious notation. Thus A is Euclidean, integral, even or self-dual iff cach

component A, is. Also:

p(A1® - @A) =min{p(A1), ..., p(As)} (1.2.1a)
k

A1 @Al =[] 1A (1.2.1h)
=1

We will often write A! (not to be confused with the scaled-up lattice A‘®) for

12




A% - 3 A. Note also that the order of the summands A, do not matter: e.g. A; &
S !

A = IAQ B Ay

Such a direct sum may be termed ezternal. We will also be interested in the
internal dircct sum: let A be any lattice and let Ay,..., Ay be sublattices of A. If
every £ € A can be uniquely written as z = ZLI z, for z, € A,,and if A,-A, = {0}
for ¢ # j, then we call A the internal direct sum of the sublattices A,, and write (as
hefore) A = A} @ -+ ® Ag. It should be obvious from the context whether we are

referring to internal or external direct sum.

Definition 1.2.1: Call A indecomposable if A = A; & A2 implies either A; or A,
is the zero lattice {0}, i.e. if A cannot be expressed as the (internal) direct sum of

proper sublattices.

Hence, every one-dimensional lattice is indecomposable. Indecomposable lat-
tices are the basic building blocks of lattices. Direct sums can be defined for vector
spaces; the only indecomposable (real) vector space is (up to isomorphism) R!.
Lattices are much less trivial in this respect. For example, all root lattices (see
Sec.5) are indecomposable (Thm.5.2). Clearly, I is indecomposable only for k = 1;
in fact, the only indecompasable integral lattice containing unit vectors (i.e. vectors

of norm 1) is I:

Theorem 1.2.1:  Any integral Euclidean lattice A can be uniquely expressed as
the (external) direct sum A =~ I, ® A’, where the integral lattice A’ contains no unit

vectors and where A has exactly 2k unit vectors.

Proof Let {b;,...,b,} be a basis for A. Let 2k be the number of unit vectors in
A (this number is even because u-u = (—u)-(—u)) and let u;,..., ux be k linearly

independent unit vectors in A (i.e. u, # *u, for all i # 7). Then for ¢ # 3, u, - u,

must be an integer (as A is integral) and also must satisfy —1 = —u?u} < (u,-u,)? <
usu? = 1. Therefore u, - u, = 8,), 50 (u1,...,usx) = I.

13



Let b, = b, — Ef=l(b. - uy)uy. Then b, - u, = 0 for all +,j. Note that if
Yo, +2 =) Bu, +y, where a,,3, € Z and r,y € (b},...,d)), then dotting
this with u, gives ap = B, for each ¢, and hence also r = y. Finally, the Z-
span (uy,...,uk,by,..., b, ) must equal A. Thus, A equals the (internal) direet sum
(uyy...,uk) ® (b),...,b)), and so is integrally equivalent to the (external) direct
sum Iy @ A/, for A'déf( Loy OL).

Of course, A’ can contain no unit vectors, for such a vector (or its negative)
would have to be contained in the list u,...,uk, and be orthogonal to all such

vectors, which is absurd. QED

A similar proof (apart from the first paragraph) establishes the indefinite case:

Theorem 1.2.2:  Any integral lattice A can be expressed as the (external) direct

sum A = Iz ¢ ® A', where the integral lattice A’ contains no vectors of norm +1.

Of course, whereas A nowhere dense implies Euclidean lattices can only have
finite numbers of unit vectors, this is not so for indefinite lattices. For example, I,
has infinitely many unit vectors. Moreover, k and £ (and hence A’) are not uniquely
determined, given an indefinite A (e.g. Thm.3.2 tells us that Es ® I, = Iy ).

Of course, the hypothesis that A be integral is crucial. These results are ex-
ploited in the various enumerations of lattices. A slightly weaker thcorem (Witt’s
Theorem in Sec.5) applies to vectors of norm 2 (with the role of direct sums being
taken by gluings and with I; being replaced by the root lattices).

We will conclude this section with a discussion of the uniqueness of the direct

sum decompositions.

Theorem 1.2.3: Let A be any Euclidean lattice. Then there exist indecom-
posable sublattices Ay,...,Ax of A such that A equals the internal direct sum
AL ® - ® Ar. Moreover, if A = A} & -+ ® A} is any other internal direct sum and

each A! is indecomposable, then k = £ and there exists a permutation o such that

A=Al

14
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Proof First note that such indecomposable decompositions are certainly possible.
Let Ay @@ Ag and A1 ®-- B A be as in the statement of the theorem. We wish
to find the permutation o with the desired properties.

def

Fix i and let A,; A, N A’ Vj. Then Ay A, @ -+ @ Ay C A,. Enumerate

all vectors v € A, in such a way that
0=vi<vi<vi<. -

(this is possible by Thm.1.3(1) and eq.(1.4)). We will prove by induction that
Ap = A,

Clearly vg = 0 is in A,o. Suppose for induction that v,, € A,y Vm < N. We
wish to show that vy € Ay. If vy € Ay, for some j, then we are done. Thus (since
A=A @ - DA, we may assume vy = u; + -+ + ue where u, € A; and where
uf < v%,.

Because A = A & - - D A, we may write each u, as Z,f:l u,;, where ug, € A,
Then vy = (Z:=l up,)+ -+ (Z:zl u,), where each E:=1 up, € Ay and where
uf, < u? <o} But vy € Ay, s0for h #4,0 =vy -(Z;=1 upj) = (Zj:x“h1)2§
te vy = Z:=1 u,,. Since u, < v%;, by the induction hypothesis u,, € A, implies
,, € Ayo. Therefore, vy € Ay.

Thus, A, = A,p. But A, is indecomposable by hypothesis, so all but one A,,,
say A,;,, must be the zero lattice. Therefore, A, C A;'. A similar argument to the

above will then give A;. C A,, so we have A, = Ag'. Define o(2) = j,. QED

For example, the vector space R™ does not decompose uniquely in this strong
sense: (R®e;))D(RQ®e;) =(RQ® {e1 +e2}) D (R® {e1 — ez}). However it does

satisfy the following easy consequence of Thm.3:

Corollary 1.2.4: If Ay, A3, A} and A} are all Euclidean, and both A; & A} and
AL @ A2 = A} @ A), hold, then A; = A} also holds.

15
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Both Thm.3 and Cor.4 fail for indefinite .\. An example can be constructed
from the equivalence Iy, ® I,,; = I o & I, we get from Thm.3.2 (I, ; is odd and
II,, is even, so they cannot be equivalent). There are many more counterexamples.

Another important consequence of Thin.3 concerns automorphisms:

Corollary 1.2.5: Let A" ® A2 ®--- D AL* be a decomposition of a Euclidean
lattice into indecomposable lattices A,, where A, and A, are (integrally) incquivalent

for ¢ # j. Then the automorphism group Aut(A) = (Aut(A())" x Sp, X ++« x
(Aut(Ag))™ x S,,.

Here S, is the group of permutations on n elements and (Aut(A}))"! =Aut(\;)x
-+ xAut(A;) (n; times). This result tells us that it suffices to know only the au-
tomorphisms of indecomposable lattices. For example, Aut(A) has [|Aut(A’)|| 2*&!
elements, where Iy @ A’ is the decomposition of Thm.1.

Cor.5 also fails in general for indefinite lattices. For example, the automorphism
groups of Ils; (see the next section for its definition) and most other indefinite

lattices are infinite, unlike those of Il ; and all Euclidean lattices.

1.3  Self-duality

Recall the definition of dual lattice A* at the end of Sec.1, as well as some of

the elementary results established there concerning duals.
Definition 1.3.1: A is called self-dual (or unimodular) if A* = A.

Sometimes (e.g. [MH]) the term unimodular is used to denote lattices with de-
terminant 1 (which is a weaker condition than self-duality — see Thm.1). Through-
out this work only the term self-dual will be used.

Since A C A* iff A is integral, A is self-dual iff both it and its dual A* are
integral; i.e. iff both A and A~! are Z-matrices for any Gram matrix A of A.

Hence (by p.353 of [HUN]):
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Theorem 1.3.1: A is self-dual iff A is integral and |A| = 1.

In other words, self-dual lattices have one lattice point per unit volume.

If an integral lattice A satisfies the relation A &~ A*, Thm.1 tells us it is self-dual.
On the other hand, there are several examples of non-integral (hence non-self-dual)
lattices A satisfying A &~ A*. For example, for any two-dimensional Euclidean lattice
A, with determinant d = |A,| and basis {b;, b2}, it is easy to verify that A, ~ (A3)(®
(see Thm.6.10(iii) — the equivalence takes b; — \/gbg and by — —\/c_ib{). Therefore
AL Agﬁ) satisfies the desired relation. A = Dgl/ﬁ) (see Sec.5) is another example.

Less trivial examples involve the 12-dimensional Coxeter-Todd lattice A}, (the
densest sphere packing known in 12 dimensions; see pp.127-9 of [CS1]) and the 16-
dimensional Barnes-Wall lattice Ay¢ (the densest packing known in 16 dimensions;

see pp.129-131 of [CS1]). Let k = (|K2|)~Y/1? = 72971/12 and € = (JA4¢]) /18 =

256=1/16_ It can be shown that A = K'¥ and A = A{? also satisfy the relation.

Needless to say, it is not a property shared by most latuices of determinant 1.

0Odd self-dual lattices will usually be called Type [; even self-dual lattices will
usually be called Type II. The cubic lattices I, , are all Type I. There are no
trivial examples of Type II lattices (but see eqs.(1),(2) below). There is no ‘Type
IIT’ lattice, for example, corresponding to those self-dual lattices whose norms are
all multiples of 3. In fact, it can be shown that if the norms of the vectors in a
self-dual lattice are all multiples of some positive k € Z, then k = 1 or 2 (this was
stated without proof on p.48 of [CS1]). More generally, suppose a positive k € Z
divides the norms of all vectors in an n-dimensional integral lattice A. Let ¢ = k
if k is odd; otherwise let £ = k/2. Then a straightforward argument shows ¢ must
divide every element of any Gram matrix A of A. Thus |A| must be an integral

multiple of €.

The root lattice Eyg (defined in Sec.5) is a Euclidean Type II lattice in 8 di-

mensions. The lattice II;; is defined to have generator matrix and Gram matrix
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(in terms of an orthonormal basis of R!'!)

M:(} '11) and A:(O 1). (1.3.1)
11 10

II, , is a Type II lattice of signature (1,1). Define

I, 8kn def {Il,l DD II:,LcBFa B-eh E’i’ (1.3.2)

— e

n k

and IT, ntsk d—E-I(IIn.*.gk‘n)(_l), for n > 0, & > 0. Then these II,, , are all Type 11

of signature (m,n).
It was mentioned at the end of Sec.1 that all indefinite integral lattices have

been classified. The classification of all the indefinite self-dual lattices is as follows.

Theorem 1.3.2: Let m and n be any positive integers. Then A is an indefinite
Type I lattice of signature (m,n) iff A = I, », and A is an indefinite Type II lattice

of signature (m,n) iff m —n =0 (mod 8) and A = I, ».

Proof (due to Serre) We will prove only the Type I case (the Type II case is
handled on p.57-8 of [SER]), and we will assume another result established on
p.55-6 of [SER]: namely, that if A is indefinite and self-dual, then it represents zero
(i.e. there exists a nonzero z € A such that z? = 0). To prove this theorem, we will
explicitly find vectors in A with norm +1.

Let z € A satisfy ¢ # 0 and 2° = 0. We may suppose z is primitive (i.e. z/k €
A for k € Z implies k = £1). Consider the set N = {z-y |y € A}. Then N is
clearly an additive subgroup of Z, so equals €Z for some £ € Z. Since z is primitive
and A is self-dual, £ = £1. Therefore there exists a y € A such that £ -y = 1.

Now if 2 is even, take any v € A with v? odd (possible since A is Type I) and
definey' =v+(1—-z-v)y. Theny' € A, z-y' =1,and y' - y' is odd. Thus we may
assume y? is odd.

Let y> = 2k +1, and put e;j =y — kz and e; = y — (k + 1)z. It is easy to verify
that e = —e2 = +1 and e; - €3 = 0, so we have shown A has a sublattice integrally

equivalent to Iy ;.
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Now use induction on the dimension m + n of A. For m + n = 2, the above
argument shows A = I, ; suppose the theorem holds for all indefinite lattices with
dimension < M, for M > 2, and consider the case m +n = M + 1. Then by the
above argument, A = I; | B A’ where A’ is self-dual and of dimension M —1. Now A’
may be neither odd nor indefinite, but either I; § A’ or Iy ; @ A’ must be indefinite
(and both are Type I) — without loss of generality suppose I; & A’ is indefinite.
Since its dimension is M, the induction hypothesis tells us I} @ A’ = I, ; for some

a, b>0. Thus A =~ 10'1 ¢ Ia,b ~ Ia,b-H- QED

(This proof was adapted from [SER], pp.53-8. Serre and many others use T'g
for Eg and T',, for what we will later call D} )

Hence by Thm.2, I, is the only indecomposable indefinite self-dual lattice.

The Euclidean case is more complicated (though vaguely resembling Thm.2)
and hence a little richer. All Euclidean self-dual lattices have been enumerated only
for dimensions n < 25 and, for reasons to be given shortly, it is doubtful much more
progress will be made along these lines.

There is at least one Type I Euclidean lattice in each dimension (namely I,,),
and Type II Euclidean lattices exist only in dimensions which are multiples of 8
(two proofs of this are given in Sec.3.4).

In 1938, L.J. Mordell proved Eg = Dg was the unique Type II Euclidean
lattice in 8 dimensions. In 1941 E. Witt showed Es & Eg and Dfﬁ were the only
such lattices in 16 dimensions and in 1968 H.-V. Niemeier found all 24 such lattices
in 24 dimensions (although the most important of these, the Leech lattice Ay4, was
found in 1965 by J. Leech).

In 1957 M. Kneser enumerated all Type I lattices in dimensions n < 16. J.H.
Conway and N. Sloane extended this to n < 23 in 1982, and in his Ph.D. dissertation
in 1984, Borcherds handled n = 24 and n = 25 (see [CS1] for a complete list of
references). See Table 1 (which is based on Table 2.2 in [CS1]) for a summary

of the known results (Thm.2.1 implies the recursion an4+1 = an + bn41 + cp; the
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Table 1: The n-dimensional Self-dual Euclidean Lattices

Dim. | Total Number | Number With No | Total Number | Indecompos-

=n | Typel=a, Unit Vectors=b, | Type [I=¢, able=d,
1 1 0 0 1 ()

2 1 0 0 0

3 1 0 0 0

4 1 0 0 0

5 1 0 0 0

6 1 0 0 0

7 1 0 0 0

8 1 0 1 041 (Fy)
9 2 0 0 0

10 2 0 0 0

11 2 0 0 0

12 3 1 0 1 (Dt,)
13 3 0 0 0

14 4 1 0 1

15 5 1 0 1

16 6 1 2 141
17 9 1 0 1

18 13 4. 0 4

19 16 3 0 3

20 28 12 0 11

21 40 12 0 12
22 68 28 0 27
23 117 49 0 48
24 273 156 24 154422
25 665 368 0 367
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values of d, can also be derived from the other columns). This table shows that
for smaller dimensions (less than 20 or so), well over half of all Type I Euclidean
lattices contain unit vectors and hence fail to be indecomposable.

The Minkowski-Siegel ‘mass’ formulae can be used to show these enumerations
are complete (apparently the original German is ‘massformel’; which actually means

‘measure formula’, but this mistranslation is now in standard usage). For example:

Theorem 1.3.3- Let Q be the set of all integral equivalence classes of Type II

Euclidean lattices of dimension n. Then

|3k| | By, |
z ||Aut(A - JI—II T

AeQ

where n = 2k is a multiple of 8.

Here, ||Aut(A)]| is the order of the automorphism group of A, and By is the
kth Bernoulli number. A similar, but more complicated, result holds for Type I
Euclidean lattices. There are several standard ways of finding these automorphism
groups (see e.g. Cor.2.5), so Thm.3 provides a straightforward, if somewhat messy,
way of verifying the completeness of the enumerations summarized in Table 1.

The mass formulae are discussed in much more detail in [CS3]. Incidently,
there are also mass formulae for determinants other than 1 — the sum then is over
all A in a given genus (see Sec.3.1 for the definition).

Note that ||Aut|| > 2 since z — —z is always a symmetry. Thus, doubling the
right-hand side of the formula in Thm.3 gives a (crude) lower bound for the number
of Type II Euclidean lattices of dimension n. For example, this gives us ~ 10™°
forn =8, 5x 1078 for n = 16, and ~ 10~ for n = 24 (instead of 1, 2 and
24 respectively). But for n = 32 it gives a (presumably crude) lower bound of 80
million. It seems rather doubtful Niemeier’s work will ever be extended.

Using another mass formula, lower bounds can be similarly found for Type I

Euclidean lattices. For n = 20 we get a bound of about 107! (instead of the actual

21




¢ 3

number of 28). But for » = 28 we get about 200, for n = 29 we get about 40 000,
for n = 30 about a billion, for n = 31 about a trillion, and for n = 32 about 10"°
In general, we get from this argument that the number of Type I Euclidean lattices
of dimension n grows more quickly than " — compare this with eq.(1.7).

Mathematically, the enumerations of self-dual lattices can be used in a fairly
simple manner to find all lattices with other determinants (particularly the smaller
determinants). See [CS1] and [CS2] for details.

In the remainder of this section we will briefly discuss some of the properties
of the Euclidean self-dual lattices of smaller dimensions.

In Sec.1 we discussed bounds on the minimal norms u of rational Euclidean
lattices. Let pj(n) denote the minimal norm of the Type I Euclidean lattice of
dimension n with the largest minimal norm; define puy;(8k) similarly for the Type

IT lattices. Let k(n) denote the closest integer, and K(n) the closest even integer,

to ($w;1)2/". Then for each n,

k(n) < pr(n) <1 +[n/8], (1.3.3a)
K(8n) < urr(8n) <1+ [n/§ (1.3.3b)

(see p.46 of [MH] and p.189 of [CS1]). In fact, the second ‘<’ in both of these can
be replaced with ‘<’ when n > 24 (see Chapter 19 of [CS1]).

For example, pur(n) = 1 for 1 < n <11 and n = 13; it equals 2 for n = 12,
14 <n <22, and n = 25; it equals 3for n =23, n =24, 26 < n < 31, n = 33 and
perhaps a few more; and p;(32) = 4. On the other hand, u;r(n) equals 2 for n = 8
and n = 16; it equals 4 for n = 24, n = 32, and n = 40; and pxrr(48) = 6 (these
values were communicated by John Conway).

There is only one 24-dimensional Euclidean Type II lattice with minimal norm
pr1(24) = 4 (compare with the over 102% 33-dimensional Euclidean Type I lattices
with minimal norm 1;(33) = 3). This lattice is called the Leech lattice A4, and

has a number of very interesting properties. Unfortunately we cannot discuss many
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of them here. A generator matrix for it is given in Figure 1 — for increased read-
ability only the nonzero entries are displayed there. Its theta constant is given in
eq.(4.2.10a). See [BOR] and throughout [CS1] (especially pp.131-5) for a more
detailed tieatment. For a simple, self-contained construction of Ay4, see pp.135-138
of [MH]. The 23 other 24-dimensional Euclidean Type II lattices all have minimal
norm 2, and are called the Niemeser lattices (we will discuss them in more detail in
Sec.5). Their theta constants are given in eq.(4.2.100).

Conway'’s analysis of the automorphism group of Ag4 in the late 1960’s pro-
duced three previously unknown sporadic finite simple groups: -1, -2 and -3 (see for
example [GOR], or Ch.10 in [CS1]).

We will conclude this section with a remarkable result concerning self-dual

lattices which will be useful in later sections (most notably Sec.3.4).

Theorem 1.3.4: Let A be a self-dual lattice of signature (n4,n_). Then there
exists a vector u € A such that u - z = 2% (mod 2) for any z € A. Moreover, any

2

such u has norm u* = ny — n_ (mod 8).

Proof First we prove the existence of such vectors u. Choose any basis =
{bi,...,bn,4n_} of A and let B* = {b7,...,b ., } be the dual basis. Then A

self-dual implies
ny+n_

=Y e
1=1
Also,forany z = Y €,b, € A,u-z =3 6,02 =5 £2b? = 2 (mod 2), because A is
integral. Therefore such u exist.

Let u' be any other such vector. Then (u — u')-z = 0 (mod 2) for all z € A,
ie. v=(u—1u')/2€A* = A. Thus v'? = (u + 2v)? = u? +4u - v + 4v? = u? (mod
8). Define U(A) to be u® (mod 8) — we have just seen that it is well-defined.

Now consider A’ = A®I, 1. By Thm.2, A’ = In 41,n_+1- Leter, ... en 414n_+1
be orthonormal basis vectors for A’. Then u" = Y e, works as a u for A, so

UAN)=u"?=ny+1—n_—1=ny —n_ (mod 8).
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The Leech Lattice Generator Matrix

Figure 1:
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We may write u" = ug + uy where uy € A and uf € I;;. It is easy to see ug
and u} are valid choices for u’s for A and I; ;. Hence u{? = U(l1,;) =0 (mod 8),

soUN)=ul? =u"? —ul®* =ny —n_ (mod 8). QED

Apparently, van der Blij (see p.24 of [MH]) was the first to find this result.
Incidently, given any even lattice (not necessarily self-dual) of signature (n4y,n_),
it can also be shown (see App.4 in [MH]) that

ViRlexpl2m(ny —n_)/8] = S exp(mig?).

[gleas/A

1.4 Useful Lemmas

In this section we will prove a number of results which will be used repeatedly
in the following sections and chapters. The main results of this section are Lemma
1, Cors.2(i), 4, 5 and 6, and Thms.9 and 10. The terminology introduced in this

section (see cspecially Defs.1, 2 and 3) also will be used throughout this work.

Definition 1.4.1: A, is said to be a saturated sublattice of A if it is a sublattice

of A whose dimension (hence signature) equals that of A.

Equivalently, a sublattice Ag of A is saturated iff the vector spaces Vp(Ag) =
R ® Ag and Vp(A) = R @ A are identical, or iff Ay has finite index in A (see
Lemma 1). A s a saturated sublattice of A, for any nonzero ¢ € Z. Any integral
lattice is saturated in its dual A*. Any rational lattice contains a saturated integral
sublattice. A lattice is rational iff any of its saturated sublattices is rational, iff all
of its saturated sublattices are rational.

This terminology is not standard. For example, a saturated lattice sometimes
in the mathematical literature refers to an integral lattice A whose norm 1 and 2
vectors span a saturated (in our sense) sublattice of A. In [GL2] we used the term

‘dense’ in place of ‘saturated’.
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Lemma 1.4.1: Suppose A’ is a saturated sublattice of some lattice A. Then A/.\/

is an abelian group of order

IA/AY)] = ]AT/TAL (14.1)

Proof Let M, A and M', A’ be the generator/Gram matrices of A and A', respec-
tively, relative to the same basis of V(A) = V(A'). Then because A’ is saturated
in A, there exists a Z-matrix U with nonzero determinant satisfying A’ = U ).
Hence A' = U AU?, so |A'| = [U[*|A| and it suffices to show that ||A/A']| = ||U]].

Express U as the product U = Uy - - - U; of elementary row matrices (see pp.335-
347 of [HUN]) and define A, for ¢ = 1,...,k recursively as being the lattice whose
generator matrix is M, = U, M,_,, where My = M. But |A,_;|/|A,] trivially equals
HU,||. Therefore

IA/A N = IA/AL % -+ x A1/ Akl = [T ] % - x [[U]] = [|U]].

QED

This lemma will be especially useful in the following section when we calculate
the determinant of a glued lattice. One immediate consequence is that the dual
group A*/A of any integral lattice A has order |A|. Also, we see that the dcter-
minants of a lattice and any saturated sublattice must differ by a factor that is

a perfect integer square. (Of course it was not assumed in Lemma 1 that A be

rational.)

Corollary 1.4.2: Suppose A’ is a saturated sublattice of some lattice A. Then:
(i) A'=Aiff |A'|=]Al; and
(i) A C A’ where £ = |A'|/|A].

Cor.2(i) follows immediately from Lemma 1 (or from Cor.2(ii)), and Cor.2(ii)

follows from Lemma 1 and Lagrange’s Theorem (see p.39 of [HUN]).
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Lemma 1.4.3: Let A be an n-dimensional rational lattice and suppose v € A is

nonzero. Then vt %' {u€A|u-v=0}is an (n — 1)-dimensional sublattice of A.

Proof Because v # 0, there exist n — 1 vectors by....,by~; € A such that g =
{b1,...,bn=1,by = v} is a linearly independent set. Define A’ = (3). Then A'is a
saturated sublattice of A.
Now consider the basis f* = {b],...,b}} of A’* dual to 8. Define A" =
(by,...,b%_,); it is an (n — 1)-dimensional sublattice of A"* orthogonal to b, = v.
But A is rational, so so is A’ and hence A’*. Thus there exists an € such that

(A"*){9 is integral. This implies
(All)(tz) C (Alm)(tz) C A C A.

Therefore (A")(*") C v, so vt is at least (n — 1)-dimensional.
Because (A'*){¢") C A, we know b, € A; since €b% -v = £ # 0, A/vt is infinite

and v+ cannot be saturated in A. Thus its dimension must be n — 1. QED

2 > 0, then v+ has signature

Of course if A has signature (ny,n_) and v
(ny —1,n_); if v? < 0, then v1 would have signature (n4,n_ —1). In either of

those cases, (v) @ v+ is a saturated sublattice of A. When v? = 0, v obviously lies

1 4

in v, and so v~ is a singular lattice (t.e. its determinant is 0).
The assumption that A be rational is necessary here. For example, because the
subset Q® {1, 7} of real numbers is only countable, there exist real numbers a not

in it. Then the indefinite (non-singular) nonrational lattice A given by the Gram

A= (i __O‘W) , (1.4.2)

has the property that for any nonzero v € A, v-u # 0 for all nonzero u € A. Hence

matrix:

for any nonzero v € A, v+ = {0} &~ Az is 0-dimensional, not 1-dimensional.

The assumption that A be rational is necessary even in the Euclidean case:

A=(1 @), 1.4.3
(22 (14
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where the notation is as in eq.(2) (except to guarantee the positive definite-ness of
A we must ensure a? < 7).

An orthogonal lattice is a lattice with a basis {by,...,b,} satisfying b, - b, =
0 for + # 3. The Gram matrix corresponding to this basis 1s then diagonal.
Every orthogonal lattice is clearly integrally equivalent to a lattice of the form
[fkl) @B Il(k"), where the k, = b% are nonzero real numbers. The following
much-used theorem, called the Orthogonal Decomposition Theorem (first given in
[GL1]), tells us that every rational lattice has a saturated orthogonal sublattice. For
notational convenience, we will henceforth abbreviate the one-dimensional lattice
Il(k) to {(k)}, and the n-dimensional lattice I§k‘) DD Ifk“) to {(k1),..., (&)}
Finally, {(k1),...,(km);(€1),...,(€n)} will denote the (m + n)-dimensional lat-
tice I* @ ... @ 1" o II™" @ ... @ II™") (s0 if each k, and ¢, is positive,

(k1y...ykmi €y, ...,€,) will be an indefinite lattice of signature (m, n)).

Corollary 1.4.4 (Orthogonal decomposition):  Let A be any rational lattice of
signature (m, n). Then there exist positive integers ky,...,kn, ¢1,...,€, such that

A contains a sublattice integrally equivalent to {(ky),...,(km);(€1),...,(¢n)}.

Cor.4 follows inductively from Lemrma 3 once one realizes that any non-singular
lattice (of dimension > 0) contains vectors of nonzero norm. This also can be shown
using the well-known fact (see e.g. p.6 of [MH]) that symmetric Q-matrices can
always be diagonalized over (%; however, the previous proof allows us to squeeze
additional details out of it. For example, k; can be any (positive) norm in A, and if
Ao is any orthogonal sublattice of A equivalent to {(k}),...,(kp,,); (£),...,(€,,)},
then we can choose k,,¢, in Cor.4 so that k, = k| for z = 1,...,my, and £, = If’]
for j = 1,...,n9. Another proof of Cor.4 is given in [GL1]; it is constructive and
lattice-theoretic, but has the disadvantage that complications arise in the indefinite
case.

Although simple, this theorem is quite useful and will be exploited often in
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what follows. Eqs.(2) and (3) again show that it is necessary for A to be rational.

The sublattice equivalent to {(ky),...,(km);(£1),...,(¢n)} is called an orthog-
onal decomposition of A; it is a saturated sublattice. Clearly, if A is even, so are all
k., ¢,. Using the notation of eq.(1.1.5), each k, > n; and each ¢, > |n_;|. If AL/K)
is integral for some integer k, then k must divide each &, ¢,.

There is no unique orthogonal decomposition; if k,,#¢, defines one, so does
m?k.,nfﬂ, for any nonzero integers m,,n,. In later sections we will address the
possible existence of orthogonal decompositions that are in a sense particularly
economical. For example, we eventually will prove that the k,,£, for any self-dual
lattice can be chosen to be powers of 4 (this is trivial for indefinite lattices).

As an example, orthogonal decompositions for the root lattices (see the next
section) are computed in Table 4, given later in the next section.

The following generalization of Lemma 3 follows quickly from Lemma 3 and

Cor.4.

Corollary 1.4.5: Let Ay be a k-dimensional non-singular sublattice of an n-
dimensional lattice A. Then Ay def {veA|v vy =0 Yvg € Ap} is a sublattice of
A of dimension n — k. Moreover, if A has signature (m,n) and Ay has signature

(o, ng), then A3 has signature (m — 1mg,n — ng).

Ag- is called the orthogonal complement of Ao in A.

Of course, Ag N A} = {0} since A, is non-singular, so Aq @ AF is saturated
in A. If Ay were singular, the dimension of A" would still be n — k, but Ag N Ay
would not be {0} and A" would also be singular. We will be interested only in the
non-singular case. We will address the sublattices AF in more detail in Sec.6. Note
that Ag is a saturated sublattice of (Ag)*, but in general they may not be equal
(e.g. for any nonzero v € A, ({(2v)+)t = (v) ). However, ((Ag)t)t = Ag always
holds. Also, if A = A; @ A,, then AlL = A, and A2L = A;.

Eqs.(2) and (3) show that the assumption that A be rational is necessary.

29



¢ 3

The following result often will enable us to reduce a proof involving rational

indefinite lattices to the Euclidean case. It follows immediately from Cor.4.

Corollary 1.4.6:  Suppose A is a rational lattice of signature (m,n). Then there
exist Euclidean integral lattices Ay and Ap of dimensions m and n respectively,
such that {AL;AR}défAL &) A(R—l) is a saturated sublattice of A. Consider the
projections 7y : V(A) — Vo(AL) and 7p : V(A) — Vu(AR), and for any v € \
define vy, def 7(v) and vg def wr(v). Then u v =wuy - vy — ug - vg, where the dot

products uy, - v, and upg - vgr are induced by those of Ay and Ap, respectively.

{Az; AR} will be called an LR-decomposition of A. Of course A, € Af and
Ar C A}. Additional properties possessed by these Ay and Ap will be discussed
in Sec.6.

By using Lemma 3 we obtain some additional information. For example, for
any Euclidean sublattice A’ of A there can be found an LR-decomposition {A; AR}
of A such that A’ is a sublattice of A (similarly for any negative definite sublattice
A" of A). There is no unique LR-decomposition: e.g. there is a different LR-
decomposition of Ig,; for each of the infinitely many different choices of vectors
v € I3 satisfying v? = —1 (just choose Agp = (v)(‘” =~ I,), and both Ay, = I3 and
A =~ Eg (see the following section for the definition of Ej) are possible.

As before, eq.(2) shows it is necessary to assume A is rational.

Definition 1.4.2: Vectors y;,...,y, are said to be independent with respect to

some lattice A with orders n,, if the n, are nonzero integers satisfying

Y ks € A for k€ Z iff n, divides k, Va.

1=1

The purpose of the following definitions is the statement of Lemma 7, which is

used only in the proof of Lemma 8.
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Let B be any n x m Q-matrix. Define the ‘column space’ B, of B to be the

set of n-tuples

B.E (Y kBY |k € 2},
=1

where B! is the 1th column of B. Define the ‘row space’ B, similarly. B, and B,
are Z-modules.

Finally, let E, which we will call the ‘column group’, be the additive group
obtained by modding each component of each vector in B, by 1; define the ‘row

group’ B, similarly. Specifically, we may write

B.¥B./(z"nB.) , B,¥' B, /(Z™ N B,).
It is important not to confuse the finite groups B. and B,, the infinite Z-

modules B, and B,, and the columns Bg') of B, with each other.

Lemma 1.4.7:  The row group B, and column group B, of any Q-matrix B are

isomorphic.

Proof Let Z({¢) be the set of all £ x £ Z-matrices whose inverse is also a Z-
matrix. Firstly, we clearly have that the ‘column space’ B, of B equals the ‘column
space’ of BU for any matrix U € Z(m), so the groups B, and (ﬁ )e are also
equal. Secondly, for any V € Z(n), the correspondence B & V B{") induces an
isomorphism between the groups B, and (171-3')c Similar comments apply to the
ICOW groups.

Let € be any integer such that B is a Z-matrix. We know then that there exist
matrices U € Z(m), V € Z(n), such that

D=V {B)U

is a n X m diagonal matrix. The above argument now shows that B, = (1 D). and

B, 2 (L D),. But D diagonal trivially implies (X D). & (1 D),.  QED
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Lemma 1.4.8: Let A be any n-dimensional lattice, and let {z,,...,r,,} be a set

of vectors such that the group of cosets

G={) ha,+A" |k €Z)

1=1

is finite. Define the lattice
A={qeA|q -z,€Z, Vi}.
Then G and G' = A / Ag are isomorphic as groups.

Proof Because G is finite, without loss of generality we may assume the r, are
independent generators of G, with orders n,. Let {¢1,...,qn} be a basis for A.

Define the n x m matrix B by
B,, = ¢, z,.

B is a Q-matrix.

Note that EJ k,B,, €Z Vi iff z] g - (kyz,) €Z Vi iff Y k,z, € A* iff nylk, V)
by definition of the z, being independent generators. Thus G is isomorphic to the
column group ﬁ: defined before Lemma 7; similarly, G' & §; The result follows

immediately from Lemma 7. QED

A special case of Lemma 8 is that if A; is a saturated sublattice of some A, then
the groups A/A; and A}/A* are isomorphic. Lemma 8’s main import, however, lies

in its role in the following proof, which is one of the principle results of this section.

Theorem 1.4.9: Let A be any lattice. Suppose there exists a set of vectors
{v1,...,ym} independent with respect to A*, with orders n,. Then there exist
vectors {r1,...,7m} in A such that

Py, nl5,, (mod 1).

32




-

it
"

Proof Let Ag = {q € A | q-y, € Z Vi}. Define G' = A/Ay. Then for any
4,4 €A, q=¢q (mod Ag) iff g- y, = ¢' -y, (;nod 1), for each i. Therefore there is
a well-defined one-to-one mapping from each [g] € G’ to the m-tuple (g -y (mod
1),...,9 ym (mod 1)).

Since ¢ - (n,y,) € Z, we see that ¢ -y, (mod 1) can only take the values in

L -'1;—-1 }. Therefore, there are at most HT:I n, possible m-tuples.

"‘,n',-..

But H;’;l n, is precisely the order of G' (by Lemma 8 and the independence

of the y,). Since our mapping was one-to-one, we get that it is also onto the set of

LN
nl,""nm ’

Define r; € A to be a representative of that class of G' corresponding to the

m-tuples

where 0 < &, < n,.

m-tuple (7117’0"“’0); define 7, € A to be a representative of that class of G’
corresponding to (0, ;‘;, 0,...,0); and similarly for r3,...,rp. QED

Note that A may or may not be rational, and that m may or may not equal
the dimension of A. Also, note that the orders n, here are with respect to A*, not

A.

Definition 1.4.3: Let A and A’ be Gram matrices for two lattices A and A/,
respectively. A} and A, are said to be rationally equivalent, written A, 2 A2, if there

exists an invertible Q-matrix V such that VAV = A'.

Equivalently, Ag A’ iff the bilinear forms corresponding to A and A’ are iso-
morphic over Q when tensored with Q.

Because two Gram matrices A; and A; of a lattice A are related by A4; =
Ut 4, U for some Z-matrix U with determinant +1, we see that this definition is
well-defined (3.e. independent of the particular choice of Gram matrix). This also

shows that A =~ A’ implies A 2 A
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For example, we have A gA‘ for any rational lattice A (choose V' = 4~")
in fact this is also a sufficient condition for A to be rational.

Def.3 defines rational equivalence in the usual way for quadratic forms. The
following theorem interprets rational equivalence geometrically, s.e. in a manner
more conducive for lattices. This simple theorem underlies all subsequent results

concerning rational equivalence given in this work.

Theorem 1.4.10: A, 2 A, iff there exists a lattice A} (integrally) equivalent to
A such that Ay N A} is saturated in both A; and Aj.

Proof Let A; and A; be Gram matrices for A; and A2, corresponding to bases
{8.} and {8}, respectively. Then A, 2 A4 iff 3 an invertible Q-matrix U such that
A, = U'AU.

“=> " Let Aj be the lattice with basis vectors 3] = Uf,. Then A} = A3 (the
equivalence is given by 3, « (). Let £ € Z be such that €U is a Z-matrix. Then
A;(lz), and hence A; N A}, is a saturated sublattice of both A; and Aj.

“& " It suffices to show that any saturated sublattice Ay of A; is rationally
equivalent to A;. This follows because the matrix U expressing a basis for Ay in

terms of one for A; is a Z-matrix with nonzero determinant (since Ay is saturated

in Ay), and so is invertible as a Q-matrix. QED

Corollary 1.4.11: A, 2 A, iff 3¢ € Z and a lattice A} (integrally) equivalent to
A, such that Agtz) C A} and A’Z(ez) C A,

In fact, it is possible to prove that £ = |A} N A5|/+/|A1||A2| works in Cor.11.

Cor.11 follows immediately from the above proof of Thm.10.

1.5 The Root Lattices and Gluings

The theory of Lie groups and algebras is surely among the most elegant and

useful of all mathematical theories. Its influence is felt in areas such as high energy
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physics and the classification of the finite simple groups (16 of the 18 infinite families
of finite simple groups are of Lie type — see [GOR]). In this section its significant

applications to lattice theory will be presented.

To every complex semi-simple Lie algebra there is associated a root system (see
p-42 of [HUM)]), z.e. a set of vectors {a,} (called root vectors) satisfying various
properties (e.g. 2a, - a,/a? € Z). A basis for it can be found — these basis vectors
are called simple root vectors. A convenient way of graphically representing a set of
simple roots is with a Dynkin diagram: to each simple root there is associated a node
in the diagram, and two nodes are connected by 0, 1, 2 or 3 (sometimes directed)
segments depending on the dot product of the corresponding simple roots. All
possible connected Dynkin diagrams are known (see e.g. [BOU] p.197) — they
correspond to the complex simple Lie algebras A,, By, Cn, Dn, E¢, E7, Es, Fy,

and G, (all other Dynkin diagrams are simply unions of these).

By a root lattice of some Lie algebra we simply mean the lattice generated by
the simple root vectors of the Lie algebra. The simple roots are determined only
up to a global rotation and global scale factor, but we shall fix them by adopting
the conventions of Bourbaki (see [BOU], pp.250-262) and Conway and Sloane (see
[CS1], pp-116-129). The dimension of the root lattice, i.e. the number of simple
roots, is the rank of the Lie algebra and the value of the subscript (e.g. the root
lattice A, has dimension n). We will use the same symbol to denote the root lattice

and the Lie algebra (no confusion should result).

See Figure 2 for the 2-dimensional root lattices (the origin is labelled with an

o” and the simple roots with a bullet). As can be seen there, many of the root

lattices are integrally equivalent (perhaps using scale factors).

Theorem 1.5.1: B, =1I,, G, = A, C,, = Dy, and Fy = D,(f), for all n.
In addition, 4, ~ I{?, D, = IY, D, ~ 4, ® A, ~ I!?, and D; ~ A;. These

completely exhaust the (possibly scaled) integral equivalences between root lattices.
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Figure 2: The Two-Dimensional Root Lattices
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= D, ~ Iga)
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The explicit proof of these equivalences was done in Thm.2.6.1 of [GAN]. That
these exhaust all possible equivalences follows easily by computing determinants
(sece Table 2). Of course, if we had not adopted Bourbaki's conventions, Thm.1
would still hold, though perhaps with different scalings and provided we replaced
all equalities, ‘=", with equivalences, ‘~'.

Thm.1 permits us to consider in what follows only the simply-laced root lattices,
i.e. the ones whose simple roots all have equal length. Henceforth by root lattices
we will mean A, forn =1,2,..., D¢ for k = 4,5,..., Es, E, and Eg (usually I, is
not considered a root lattice). They all are Euclidean, have minimal norm u = 2,
all are even, and in fact are spanned by a basis consisting of norm 2 vectors. They
have determinants [A,| = n+ 1, |D.| = 4, |Es| = 3, |E7| = 2, and |Eg| = 1.
Hence only FEj is self-dual. Many features of the root lattices are listed in Table 2
(note there that the vectors e, in terms of which the roots a, are expressed, are
orthonormal, and R**! etc. denote the Euclidean background spaces). Except for
A;, Bourbaki’s choice of norm 2 for the simple roots of these simply-laced algebras
is the smallest possible choice for which the root lattices are integral (e.g. D3/ s

not integral).

Theorem 1.5.2: The root lattices A, for n > 1, Dy for k > 4, Eg, E7, and Fg

are all indecomposable.

Indeed, because these lattices A are even, if wehad A = A ®---® A4, then no
A, could contain unit vectors, so each root vector of A would have to lie completely
in one component A,; because the Dynkin diagram is connected for all these (unlike,
for example, that of D,), these root lattices must all be indecomposable.

Note that A, is the n-dimensional sublattice of I,4+; consisting of all vectors
whose coordinates (relative to the standard orthonormal basis of I,,4+1) add up to
zero. D, is the (saturated) sublattice of I,, consisting of all vectors whose coordi-

nates add up to an even integer.
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Table 2:

The Root Lattices

Symbol Equiv. Dynkin Diagrams | Basis Vectors
Ifu n 2 1 B'I 1 2 3 n a, = ¢,
° o o see QO
Ann21 | Gy = A, o) = —e; + e,
az = —ey+ €
o__.o_.-o—— see -—o ? 2 3
1 2 3 n :
Qn = —¢€y, + €ntl
(a' € Rn+1)
D,,,n>4 Cn Qy = —€) — €9
2
Fy~ D{? . L |ea=e-e
3 ves —O :
2 Qp = €n-) — €4
(o € RM)
Es - Q) = €7 — €3
Qq = €3 — €4
6 .
1 2 3 4 s 7 8
Qg = €7 — €3
ar =er+ eg
1 —8
08 = —5 =1 el
(o, € R®)
E, —_— Q) = e3 — e4
S
1 2 34] 8 T lag=er—eg
Qg = €7 + €g
18
ar = —=52.,=16
(a, € R%)
Eg —

Q4 = €7 — €3
as = e7 + eg
- 1 8
Qg = —3 Zl:l €

(a, € RY)
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From the Dynkin diagram (also given in Table 2) we can read off the Gram
matrix. Thus the Gram matrix has 2’s down the diagonal, and -1’s and 0’s scat-
tered elsewhere. In the cases considered here, the Gram matrix equals the Cartan
matrix of the corresponding root system. The Dynkin diagram can also be used to
recursively compute all determinants of the root lattices (see Sec.3.4 of [GAN]),
and verify the values given in Table 2.

Similarly, the weight lattice corresponding to a Lie algebra consists of the lattice
generated by the root vectors and the weight vectors. It turns out that the weight
lattice is simply the dual of the corresponding root lattice.

We see from Lemma 4.1 that the dual group A% /A, has precisely |[A,| =n+1
elements. It can be shown to equal the cyclic group Cpy1. We let [i] (or less
ambiguously [¢]A,) for : =0,...,n denote its elements (which are called glue classes
for reasons we will later discuss). Similarly, D}, /D, has order 4; its four glue classes
are labelled [0], {1], [2] and [3]. The orders for E¢, E7 and Eg are 3, 2 and 1, with
classes [0], [1] and [2], [0] and [1], and [0], respectively. In all cases the class [0] has
been chosen to be the zero element in the dual group — 1.e. the root lattice itself.
The nonzero glue classes are listed in Table 3; they are of course all of the form
[t] = g, + [0] where g, is some vector in the dual of the root lattice. In that table,

we have written for convenience, e.g.,

1
n+1

(=P =L }) for (—yy e, =L Ty,

n+1 n+1

Also, in the third column the dot products of the representatives (chosen in the
second column) of the glue classes are displayed in matrix form; these numbers also
give of course the correct dot products (mod 2) for any choice of representatives.
The orthogonal decompositions of the root lattices are given in Table 4. In the
second column the orthogonal lattice vectors 3, are expressed in terms of the root
vectors a,. In the third column their norms m, = ? are given. In the fourth and

fifth columns the root vectors a, and weight vectors A, are expressed in terms of
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Table 3:

The Nonzero Glue Vectors of the Root Lattices

Glue Vectors

2] (K]

Dynkin Diagrams

Glue Gp

A, | [i] = An+ Fore 2>k, | . n Crty
(Gl [ E W= TN |
fori=1,...,n % ‘ : o =[¢ + k})

n )
(j=n+1-19)
D, (1} '
. 1 s C2 X CQ
(1]=({3}") + Dn LN when
%1 % 11:_2 A n even
2,1 3 '
[2]=Cn + Dn 1-4-_2 ';' ;J‘ s C'.‘
Ng | ([1]+[3]=[0D)
{2l for
[312(—%> {’;'}n—l) + D, &l n odd

E; (1]

[1)=€; + ez + %Cs 5 Cy
“%ZZ:aek'f'E? % 2 3 4 8 7

Es [1]=E6+ 4

%(61 + ez + €3) % % 1 2 3 s 6 Cs
33

[2]=Es+
sler+erte) —eq
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Table 4:  Orthogonal Decompositions of the Root Lattices
A Orthogonal m, Roots «a, Glues
Basis j, g,
An | Bakyr = @2k Mak41 @2k+1 = Baks =L ]"H]-i- 3
1=t
=2 +) 22, ﬂ;—2£+1
(J=n+1-1
Bk = 205, Ly Mok = | age = (1= k)B3_2 — Bxn odd)
+k012k+: Qk(k'*‘l) +(k + ])ﬂ;k - ﬁ;kﬂ
if 2k < n if % < n it 2k < n )L 8,
ok = iz, L mak = | ook = (1= k)B_; — Biey J even
if n =2k n(n+1) +(2k + 1)55
if2k=n if 2k =n
D,|Bi=0a —q m,=4 |o =207 +206; =308
B =0 +ay ag = =287 +20; 2] =24;
ﬂt =a; + a
+25 %, o o = —287., +26; 3] = —4;
ife>2 1> 2 + 3 r0 B;
Es | Bia3a = aaap7 m, =2 oy = —PF; + B
Bs = —a, — 2a3 "/B; — ﬂg
—3ay — das - 2a¢ Q2467 = ﬂ1,2,3,4
—3a; — 2a4
Be= oy + 2a3+ az = —f3 - B;
ag + az ~B5 + B7
Br = az + 203 + 204 as = —f7 - 53
+2a5 + ag + az ~B; + 55
s = 20y + 3y + 4a3 ag = —p; —pB:
+50/.| + 605 + 306 —'Bg i ,3;
+4a7 +2as
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Table 4:

Orthogonal Decompositions of the Root Lattices (cont )

A Orthogonal m, Roots «, | Glues
Basis 5, s
Er | Braza =a13ss m,=2 |oay3s6 = Piang | [H=0] — 2055
,Bs = —Qp — 2(12 g 303 Qp = —-ﬂ:; - ﬂ; —;’f.‘; — J;
—4da4 — 205 — 3as — 207 —P5 +
Be = a3 + 204 ay = —0; — 7}
+05 + (073 _/3;; + /df;
Br =0 +2ay + 203 ar = —p3; — g
+2a4 +as +os -3 — 7
Eg | Pr23 =246 my=2, |og4p = P23 (1} = B} + 3} ]
By = a2 + 2a3 + ay i<d |y =-p5-5 —i: + 0
+2as + ag —B5 + 383
Bs = 2a; + 3a, ms=4 |ag =—05-p; [2] = =205 + 24
+da; + 20y -3 =355
+2a5 + ag
Bs =2a1 + y me=12 | a5 = —j; +;
+2as + ag +55 + 365 ]
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the 3,. See Tables 2 and 3 for our choices of root and glue vectors. Incidently, these
m, are not quite the best that can be done (see Sec.3.1 for the best).

The root lattices are extremely important for two reasons. For one thing, they
provide us with a rich supply of lattices to use for examples and counterexamples.
For example, the root lattices and their duals solve many packing-type problems
(see Chapter 1 in [CS1]). The other reason is Witt’s Theorem, and the lattice

construction method called gluing:

Theorem 1.5.3 (Waitt’s Theorem). Suppose some Euclidean integral lattice A is
generated by vectors of norm 1 and 2. Then A is equivalent to the direct sum of I,

and various root lattices.

This can be proven as follows. By Thms.2.1 and 5.2 it suffices to show that
an indecomposable Euclidean integral lattice A generated by norm 2 vectors alone
must be one of the root lattices. It is trivial to verify that the norm 2 vectors
in A constitute a root system (see p.42 of [HUM]). In a number of books on Lie
algebras — e.g. see pp.42-76 of [HUM] for a clear geometric presentation — these
root systems are classified, directly showing A is one of the root lattices. In fact
the proof in our case is significantly simplified because all (root) vectors here have
equal norm (namely 2).

Thm.3 fails for indefinite lattices, even if we include as possible summands I ;
and the root lattices likewise scaled by -1.

Throughout this work we will be primarily interested in two ways of construct-
ing new lattices from old ones: gluing and shifting. The interplay between these
two related methods produces some useful results, as we shall see. Shifting will be
introduced in the following chapter. The remainder of this section will be devoted
to gluing theory.

Let Ay be a saturated sublattice of A. This implies by Lemma 4.1 that
\/IA—Ol/—IK_I € Z. For any g € A, let [g] d-gg + Ao = {g+z | Vz € Ay} be a conjugacy
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class of vectors. These conjugacy classes form an additive group G = {{g}}.

Conversely, given a lattice Ay and a set of vectors g;,....,gr in QO Ay, we can
form the conjugacy classes [g] € (Q ® Ag)/\o as before, for each g € {g1,....q4).
Then the union of the vectors in all these classes [g] will form a new lattice A. The
(finite) group G = {[g] | g € {(g1,-..,9k)} is called the glue group, the vectors g, are
called the generators of G, the vectors g are called the glue vectors, the classes [¢]
are called glue classes, and the lattice Ag is called the base lattice. The lattice .\ so

formed will be denoted by Ao[G] or Ao[{g1, -, gk}]-

To emphasize its dependence on the base lattice Ag, the glue classes [g] will
also be denoted as [g]Ay. The direct sum of the classes [g;]A, {g2)A2, ete., will be
denoted by the following notation: [g1,...,9k]{A1,..., Ak}

Compare the discussion given earlier for the ‘glue classes’ of the root lattices.
P g g

The least positive integer n such that n[g] = [0] 40 Ay is called the order of (g]-

By the fundamental theorem of abelian groups (see p.76 of [HUN)]) the glue group
G = A/Ao, being abelian and finite, is isomorphic to C,, % - -+ x Cy,. These n, can
be taken to be the orders of the independent generators of G (with respect to Ay
see Def.4.2). Hence we can always assume the glue generators g, are independent
generators in the sense of Def.4.2; in general of course those generators (nor even
their glue classes) are not unique.

It is important not to confuse the symbol Ag[g] = Ao[{g}] with [g]A¢. If the
order of [g] is n, then Aolg] = U, [ig]Ao.

Note that Ag is a saturated sublattice of Ag[G], for any glue group G.

For example, 4, ~ (Al,Iiﬁ))[l, 3], and for any n,m, Dynyn = (Db D,,)[2,2] =
{Dm,Dn}(2,2] and A,[1] = A}. In glue class notations, these identities can be
written as: [0]4; = [0,0}]{A4,,(6)} U [1,3]{A1,(6)}; [0]Dm4+n = (0,0]{Dm,Dn} U
(2,2]{Dm, D,.}; and [0]A% = U™ ,[:JAn. Note that the glue classes of any glue
decomposition are pairwise disjoint. Further examples, the four gluings D,[0] =

I§2), D;[1] = D,[3] = Iil/z) D Ifz) and D,[2] = I of Dy, are illustrated in Figure 3
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Dy, = Dp[0] »» T

D]

Dyf2) = I,

Figure 3: The Gluings of D,

)

2 ' °

° . ~ Dz [3]
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(where the origin is labelled “0” and the glue vectors are denoted by bullets).

Witt’s Theorem tells us that whenever the norm 1 and 2 vectors in a Euclidean
integral lattice .\ span a saturated sublattice of .\, th 1 we can obtain .\ by gluing
together root lattices and Ip,. This is very important. It turns out that for smaller
determinants and dimensions, this condition is often satistied. For example, the
first self-dual lattice not of this form is 19-dimensional. 26 of the 27 Type II lattices
of dimension n < 24 can be obtained by gluing root lattices (the Leech lattice Ay,
is the sole exception).

Let g,, for ¢ = 1,...,k, be independent glue generators of G with orders n,.
Then Ao[G] is integral iff Ag is integral, all g, are in A§, and each dot product ¢, ¢,
is an integer. Self-duality of the glued lattice Ay[G] depends in addition on the size

of G. In particular, eq.(4.1) immediately gives us

k
|A[G]l = 1Al/IGII* = 1Al /([ ). (1.5.1)
1=1

Corollary 1.5.4: Let g, be independent glue generators of G with orders n,. Then
Ao[G] is self-dual iff Ag is integral, the glue vectors g, lie in AJ and have integral

dot products with each other, and

[Ao| = (Hn:)z-

A lattice Ag is called self-dualizable if it has a self-dual gluing. Thus to be self-
dualizable, for any prime p dividing |[Ay| there must exist a vector in Aj of order p
and with integral norm. A lattice is self-dualizable iff it is a saturated sublattice of
some self-dual lattice.

A self-dualizable lattice obviously must be integral. Moreover, Cor.4 tells us
that its determinant must be a perfect (integral) square. Unfortunately, the converse

fails: even if |Ag]| is a perfect square, no gluing of it may be self-dual. Ag = E¢ @ E¢
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is an example, as we shall see. Also, for any prime p, Ag = A,—1 @ Ap_; is self-
dualizable iff either p=2 or p =1 (mod 4).

We can casily apply Cor.4 to the task of constructing new self-dual lattices.
For example, consider the root lattices. The corollary tells us that for glues we must
use their weight vectors. D, [2] is always self-dual, and in fact equals I,. D,[1] and
D,[3] are self-dual iff 4 divides n, in which case they are equivalent. We write D:’k
for Dq&[1] = D4x[3] — it is even/odd when k is even/odd. We also have D} ~ I,
and D; = Fyg.

The only other self-dualizable root lattice is 4;2_,. Cor.4 again immediately
implies that the lattice A}, | 4« A2y [k] is self-dual. It is also even/odd when k
is even/odd. Hence A7 ~ Iy and A] ~ Ejs.

The following lattices are also all self-dual: A3z Eg[k1] def {Asx2-1, E6}[k, 1],

Agia - E7[k1], and Agga_y Dygyq[k1]. Moreover, Ay Eg[11] = A; Ez[11) = A3 D5(11] =
Es (these equivalences follow immediately because Ej is the unique Type II lattice
in 8 dimensions; Witt’s Theorem also works, and a slightly more complicated argu-

ment from first principles based on Cor.4.2(i) can also establish them).

Finally, for any integral Euclidean lattice A, the indefinite lattice {A; A} LAs

A1 is self-dualizable (take as glues the vectors (a; a), Va € A*).

Gluing theory was used in Niemeier’s classification of all 24 Type 1I Euclidean
24-dimensional lattices; the 23 Niemeier lattices (see Table 5; it was based on Table
16.1 of [CS1]) can be obtained by gluing various root lattices. The table includes
those root lattices (given in the first column), as well as the glues (given in the
second). There we use the short-hand [(122)], e.g. , to denote the three glues
[122],[212],[221] obtained by cyclically permuting {122]. The total number of glue
vectors, which equals the square root of the determinant of the root lattice, is given
in the third column. The final column gives the so-called ‘Coxeter number’ h of
the lattice: 24h is the number of root vectors (i.e. norm 2 vectors) in the lattice;

and 196 560—576h is the number of norm 4 vectors. In fact, two Niemeier lattices
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Table 5:

The 24-dimensional Type II (Niemeier and Leech)

Lattices

Root Glue Vector Order of h
Lattice | Generators g, Glue Group
Doy 1] 2 16
DisEs | [10] 2 30
E} [000] | 30
Ang [5] 5 25
Dy | [(12) 1 22
AnEr | [31) 6 18
D E? [[110], {301]] 4 18
AsDs | [21] 8 16
D3 [(122)] 8 14
A2, [15] 13 13
AnDrEs | [111] 12 12
E§ [1(012)] 9 12
A2Ds [240], [501], [053] 20 10
D} [even perms of {0123}] 16 10
A3 [(114)] 27 9
A2D? | [1112], [1721] 32 3
A [1(216)] 19 7
ASDy | [2(024)0), [33001],

[30302], [30033] 72 6
DS [111111], [0(02332)] 64 6
A8 [1(01441)] 125 5
A3 [3(2001011)] 256 4
Al [2(11211122212)] 729 3
A [1(00000101001100110101111)] | 4096 2
Aoy — — 0

Rl
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with equal Coxeter numbers have the same numbers of norm k vectors for each
k, 1.e. they have equal theta constants (see eq.(4.2.10b)). The proof that all these
lattices are self-dual is straightforward from Cor.4. The proof that these are all
distinct follows by applying Thms.2.3, 5.1, 5.2 and 5.3 to the sublattice in each
generated by the norm 2 vectors (1t is called the root lattice of the given Niemeier
lattice). The proof that the Niemeier lattices and the Leech lattice exhaust all Type
II Euclidean lattices of dimension 24 now follows from the Minkowski-Siegal mass
formula.

The reverse process to gluing, called ‘ungluing’, will be considered in Sec.6.3.

1.6 Gluing Theory Continued

This section contains a number of basic results meant first of all to illustrate
some of the results already presented, and, secondly, to prepare for some further
developments in the following chapters.

The following simple but useful result is true. Though it probably can be proved
directly, it is most naturally and eloquently proved using the shifting construction,
and as such is an example of the consequences resulting from the inter-relationship
between gluing and shifting to be discussed in the next chapter (it is proved after

the statement of Thm.2.4.5 in the next chapter).

Theorem 1.6.1: Let A be self-dualizable. Let G’ C A* be any set of vectors with

pairwise integral dot products. Then there exists a self-dual gluing of A containing

G'.

In Sec.4 we defined and discussed some properties of the orthogonal complement

A of a sublattice Ay in a lattice A. We can now go a little further.

Theorem 1.6.2: Let Ay be a k-dimensional non-singular sublattice of an n-

dimensional integral lattice A. Then A is a sublattice of A with a determinant
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|Ag| which divides |Ao||A]| (in fact, |Ao] |A]/]Ag] must be a perfect integer square).
If instead A is a rational lattice, the quotient |Ag||A|/| A | must be a perfect rational

square. Moreover, if A is self-dualizable, then \j is self-dualizable iff A\(,L is.

Proof It suffices (by using a scaling argument) to consider the case when \ is

integral.

Note that Ao @ Ay glues to A. Let g, = g’ + ¢!’ be the independent glues, with

orders n,, where g, € (Ag)*, 4. € (Ay)*. Then [In, = V/|Ao| |AFI/1A]
Because Aj- is the largest sublattice orthogonal to Ag, Y k.g’ € Agiff Y kg, €

Ao @ Ay iff nJk,. Since the g!’s span a subgroup of Aj/Ag, [ n, must divide |Ay],
and hence |AF| divides |Ao| [A].

The fact that |Ag||A|/|Af| must be a perfect square now follows from the
observation that |Ag| |Ag-|/|A]| = [[n? is a perfect square.

Finally, suppose A is self-dualizable. Then so is Ag @ Ay. Thm.1 now gives us
the final statement of this theorem. QED

From the previous section, we know A can be obtained from gluing any of
its orthogonal decompositions, or from gluing any LR-decomposition. This result
allows us to investigate in a little more detail some properties of the orthogonal and

LR-decompositions. In particular:

Theorem 1.6.3:  Let {(k1),...,(km);(£1),...,(€n)} be any orthogonal decom-
position of some lattice A. Then ([],)([]¢,)/]A| must be the square of an integer.
Moreover, if A is integral and some prime p divides k;, say, but does divides no

other k,, ¢,, nor |A|, then p? divides k; and we may take k} = k;/p? instead of m,.

Proof The first statement follows immediately from Lemma 4.1.
Let z3,...,Zn+m be the orthogonal vectors in A defining the given orthogonal
decomposition. Now consider the sublattice Ag of A defined to be (z2,...,Zn4m)t

(where the * is taken relative to A). It is 1-dimensional, say spanned by z) € A,
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and contains (z,) (so z; = Nz for N € Z). Its determinant [Ag| (by Thm.2 above)
divides |A| - ([]i=, ki) - (H;’;l |¢,]). Hence p does not divide |Ag| = z}? = k; /N2,
so it must divide N. ((N/p)j |, z2,...,Tn4+m) is an orthogonal sublattice of A with

the desired properties. QED

Call a LR-decomposition {Ap; Ar} of A mazimalif any other LR-decomposition
{A]; A} of A satisfying A, C A}, and Arp C Al satisfies Ay = A}, and Ag = Af.

Any LR-decomposition is clearly contained within a maximal one.

Theorem 1.6.4: Let {A;;Agr} be any maximal LR-decomposition of A. Then
{AL;0}+ = {0;ARr} and {0;Ag}* = {Ar;0}, using obvious notation. Moreover, if

A is self-dual,
* = (M) {z € V(AL) | Jy € V(AR) such that (z;y) € A},
Ag = mr(A),

|AL] = |ARr| and in fact the dual groups A} /AL and AR/ARg are isomorphic.

Proof The first statement is clear from the definition of maximality. Now assume
A is self-dual.

Because {A; Ar} is saturated in A, the glue group G defined by {AL; Ar}[G] =
A is finite. Let [gx]{AL; Ar} = (9xL; 9xr)+{AL; AR}, k =1,..., N, be the elements
of G, using obvious notation. Then eq.(5.1) implies nivzl n? = |AL||Ag|. Also, A
integral implies each gk, € A}. Hence Ar{{{g1],...,[gnL]}] = {mL(v) | v € A} is
a saturated sublattice of AJ.

Suppose €x € Z are found satisfying Y kg € Ar. Then Y £x(0;gxr) =
Yo lkgr — Y €k(gkL;0) € AT, so the maximality of {AL; Ar} means 3 ¢xgir € Ap,
te. Y Crgx € {AL; AR}, which implies ny divides ¢, for each k.

Thus the maximality of {Ar; Ar} has implied that the glues gi;, are indepen-

dent of order ng in Ap. Now 7 (A) = Ar[{91L,-..,9~L}) C A}, s0

o < Aul{gwl = l‘%’; == (%)
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Therefore |Ar| < |AL|, so reversing the roles of L and R in the above argument
gives us [Ag| = |AL|. Eq.(*) now implies 1/|A;| = |AL[{gxs}]], s0 Ar[{gxr.}] = A},
by Cor.4.2.

Hence for any x € A} there exists a vector ¢ € A with r = ¢qp def mr(q). Let
¢' € A be any other vector with ¢, € [r]Ag. Then by the maximality of {\;;.\p)
we know that ¢ — ¢; € Ar. Thus the mapping from A} /AR to A} /AL defined by
lgqr]ARr — [gL)AL is well-defined; it is straightforward to verify that it is in fact a
group isomorphism. QED

The following theorem tells of one way to relate two lattices, provided their

intersection is saturated.

Theorem 1.6.5: If A, def Ay N A; is saturated in both Ay and A4, then:

(1) A1 = A12[G1]) and A2 = Ay2[G2], where the glue groups are defined by
G, = Az/AIZ;

(i1)  if in addition A; and A; are self-dual, the groups G, and G, will be isomor-
phic.

Of course, Thm.5(i) follows easily from the discussion in the previous section.
Thm.5(ii) follows from Thm.4.9 by letting y, be the independent generators of G,
(this is always possible) and letting A be A,. Then the r, will be independent

generators of G, and the mapping y, « r, will induce an isomorphism between G,

and G,.

Theorem 1.6.6: Suppose A is integral and let n;, n, be the orders of the glues
[91],[g92] € A*/A. Then Dg, - g2 € Z, where D = (n;,n3) is the greatest common

divisor of n; and n,. In particular, if ny and n, are relatively prime, ¢, - 4, € Z.

This follows because the vectors n; g, and njy g, arein A, so ny ¢; - g, € Z and

n2 g1 g2 € 2.
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We sce from Cor.5.4 that the determinant of a self-dualizable lattice must be a
perfect square, and yet we gave examples in the last section of integral lattices with
determinants that were perfect squares and which were not self-dualizable. We will
address the question of self-dualizability much more completely later, but for now

consider the following special cases.

Theorem 1.6.7: Suppose A is integral. Then A is self-dualizable if esther of these
conditions hold:
(i)  A*/Ais isomorphic to Cpz X -+ - Cp2, for certain integers n;

(ii)  |A| is a power of 4.

As usual C,, denotes the cyclic group of order m. (i) follows by letting g1,..., g
be independent generators of A*/A of order n?,...,n, respectively. Then for each
v and j, n?g,-g, € Z. Without loss of generality we may suppose each n, is a power
of a prime p,;: n, = pf‘ (by using the fundamental theorem of abelian groups).
Consider the gluing A[{n1g1,...,nkgk}]. Then each dot product (n,g,) - (n,g,) is
integral, by Thm.6. Cor.5.4 now tells us this glued lattice is self-dual, which gives
us Thm.7.

(ii) is proven similarly: let A*/A be isomorphic to C,, X --- x Cp,, where
n, = 2%, By choosing glues as in the proof for (i) given above, it suffices to consider
the case when all ¢,’s are 1, 1.e. when all n, = 2. Then k¥ must be even. Let
g1, .., gk be independent generators of A*/A, each of order 2. We may also assume
their norms are all non-integral, and hence are } times odd integers (otherwise
use the g, with integral norms g2 as glues). By Thm.6, then, g; + ¢, has integral
norm and so can be used as a glue. This amounts to reducing & by 2. Proceeding
inductively (i.e. applying the same argument to Alg; + g2]*/A[g1 + g2]) establishes
(i1).

Theorem 1.6.8: Vne Z,n #0, {(n)*} def {(n),(n),(n),(n)} is self-dualizable.
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Proof Without loss of generality assume n is positive (for n < 0, the following
proof will show {(—n)*} is self-dualizable, and hence so is {{(—n)*}\=D = {(n)'}).
From Lagrange’s Theorem (p.47 of [SER]) we see that there exist integers

1,7, k,€ such that i + )2 + k? 4 €2 == n. Define the following glue vectors of {(n)!}:
g1 = [iaj,kve]v g2 = [—j,i,——é,k], g3 = [k,—f,—l,]] and g4 = [e,k,—j,—ll

Then it is trivial to verify that g, - g, = §,; — in other words, we have that the

gluing {(n)*}[{91,92,93,94}] = 1. QED

Theorem 1.6.9: Let A be any integral lattice. Then A* def {A,A,/‘.,A}d:-c'f A

AGADA and {A; A} A @ ACD are self-dualizable.

Proof Let Ag be any orthogonal decomposition of A; Thm.8 tells us that A} is
self-dualizable. Thm.1 now finishes the proof. QED

Theorem 1.6.10: Let A be a two-dimensional non-singular lattice. Then:
(i)  if A is rational there exist nonzero integers m,n, ¢, 7 such that |A| = mn, the

greatest common divisor (j,¢) = 1, and
A = {(¢m), (en)}[m, jn];

(ii)  if A has a glue decomposition as givenin (i), then A* = {(¢/m), (¢/n)}[—)/m,1/n]
(here m,n can be irrational and this result would still hold);

(iii)  (A*)(FIAD ~ A, where the ‘4’ sign is chosen when A is definite and the ‘-’
sign when A is indefinite;

(iv)  w(A®) = p(A)/IA; and

(v) Suppose A is rational, and let A’ be any other 2-dimensional lattice with a
determinant |A’| such that |A|/|A’| is a perfect rational square. Then Ag/\’
iff they have equal signature, A’ is also rational, and there exists some nonzero

vectors £ € A, y € A', with 2?2 = y2.
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Proof (i) follows quickly from orthogonal decomposition.

Let r and y be the orthogonal vectors in A which define the given orthogonal
decomposition (so £? = ém, z -y = 0, and y? = ¢n). Then a glue vector g in
the glue class [m,yn]{(m),(n)} is g = z/€ + j y/€. It is trivial to verify that r/m,
y/n, and ¢' = —jz/(€m) + y/(€n) all have integral dot products with z, y, and ¢
(e.g. g g =-3/C+3/€=0),s0(z,y)[g'] C A*. But ¢’ has order ¢ in (x/m,y/n),
so |(z/m,y/n)d']] = (€/m)(¢/n)/(€*) = 1/(mn) = A*. Cor.4.2 gives us (ii).

The most general way to see (iii) is to look at Gram matrices. Let A be the
Gram matrix of A corresponding to a basis {b;,b2}. Without loss of generality
suppose A is definite (so |A| > 0). Then we know A~! is the Gram matrix for A*
corresponding to the dual basis {b},b3}. Let b, = /|A|b3 and b, = —/]AJb; —
they form a basis for (A*){I2D which, it is easy to verify, corresponds to a Gram
matrix equal to 4. Thus by Thm.1.4 we get (ii1).

(iv) follows immediately from (iii).

Now for (v). It is clear that, since A is rational, Ag A’ can only occur when
A’ is also rational and has signature equal to that of A.

Suppose first that there exist vectors z € A, y € A’, with norms z? = y* # 0.
Then {z,r1} and {y, y1} define orthogonal decompositions of A and A’ respectively.
By Thm.2 it is trivial to verify that these orthogonal sublattices are rationally
equivalent, and so then are A and A'.

Next, if there exist nonzero vectors x € A, y € A’, with norms z? = y? = 0,
then it can be shown in a number of ways that both A and A’ are self-dualizable,
and hence must glue to either I; ; or I} ;. Since these two self-dual lattices are
casily seen to be rationally equivalent, so must A and A’ in this case. This concludes
the proof of the '<=’ half of (v).

The other direction of (v) follows immediately from Cor.4.11. QED
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Chapter 2 TENSOR PRODUCTS AND SHIFTING

2.1 The Tensor Product: Basic Properties

This chapter will address two means of constructing lattices fiom other ones
In this and the following section, we will discuss tensor products. The final two
sections introduce and develop the shifting construction.

Let V" and V' be two real inner product spaces By the tensor product V7 2V
we mean the real vector space consisting of all points of the form > (r,,.r]), for
r, € V and z, € V'. We write zr, @ z/, for the ordered pair (r,,2'). It is also
required that @ be a bilinear product; 1.e. (¢ +ry) @ r' = r &' +ry @ r and
Q@' +sy) )=z +sz@y, forall r,yeV, 2,y eV, andr,se R. Vi 1"
is made into an inner product space by defining (r @ z') - (y @ y') =(r y)}z' ¥'),
forall z,y € V,and z',y' € V'.

More formally, the tensor product can be defined category theoretically as a
certain universal object @p (see e.g. p.209 of [HUN] for details), but this level of
abstraction is unnecessary here.

It is easy to show that V' © V' has dimension nn', where n and n' are the
dimensions of V' and V' respectively. Also, 0 ' = r @0 = 0 is the zero vector
the space.

For reasons soon to be made clear, define A % A’, for any mn x n and m' < n'
R-matrices 4 and A', to be the mm' x nn' R-matrix whose (2 + m't)(3’' +n'y)th
entry, forz =1,...,m,y=1,...,n, ¢ =1,...;m" and ) = 1,....0, is .4,]:1',,},

For example,

5 6 10 12
(12 , (56 , |7 8 14 16
4_<3 4)’A‘(7 8) and A A" =1 1o 13 o5 24

91 24 28 32

Definition 2.1.1: Let A and A’ be two lattices with background spaces V =
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V(A) and V' = V(A'). The tensor product \ © A’ of A and A’ is defined to be
Hrwe'lzeA, LedNp)CVaV.

The following results are immediate.

Theorem 2.1.1:  Let A and A’ be any lattices. Then:

(i) if B ={b,...,bn} and §' = {b},... b, } are any bases for A and A’ respec-
tively, then 3 @ B' < {b; @ b,,b, @ b),... by @ b,_,, b @b} is a basis for
ADA;

(ii)  if A and A’ are the Gram matrices corresponding to 8 and ', then A ® A’
is the Gram matnx for A ® A’ corresponding to 8 ® 3';

(i) V((AOA)=V(A)@V(A')and Vo(A@ A') = Vo(A) @ Vh(A'); and

(iv) A ® A'is non-singular iff both A and A’ are non-singular.

For example, Thm.1(iv) follows from Thm.1(ii) which follows from Thm.1(1).
As before, we will assume for the remainder of this chapter that all lattices consid-
cred are non-singular.

The following theorem follows quickly from Thm.1 and the above definitions.

Theorem 2.1.2:  Let Ay,...,A4 be any lattices of dimensions n,,.. ., n4 respec-
tively. Then:

(1) Ay ®@ Ay is of dimension nyn,; and signaiure (ny4nz4 + nj—na—,ny4ne— +
ny4+ng-), where A, and A, are of signature (n,4,n;-) and (nq4,n,.) respec-
tively;

(1) AL @ Az = A2 [A ™

(i) A OL~AMEA @ -0A;
(iv) M O(A2DA) = (A ©A2) D (A1 ©A3);

v) MO~ A forany L€ R;

(vi) (A1 ®A)P = AP @A~ A, ® AL, for any € € R;
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(vil) Ay = Az and A\ = Ay implies A} O .\2 & A3 &\ (similarly for \, gA\;.
etc.);
(vili) (1249202030 3)and A\ 9 N 2 0N
(ix) A @ Az= Az, for the zero lattice A z; and

(x) (MDA =ATD4AL

Proof The dimension of A; & \, follows from Thm.1(1) Its signature can be
seen by diagonalizing A, ® Az if UfA U, =diag{+1,...,+1,—1,.... =1} and
Ui AUy =diag{+1,...,+1,-1,. ., =1}, then Uy ®U; works for 4;© 4. To obtain
the formula in (i1), it suffices by Thm.1(11) to evaluate the determmant |4 - A'|
This is a straightforward exercise.

The obvious choices of integral equivalences work in (iv), (v), (vi), (vii), (viii)
and (ix); (iii) follows immediately from (iv) and (v) (with £ = 1)

To verify (x), first note that for any = € Ay, y € Ay, ' € A} and y' €
AL, (2Quy)- (2 y')=(z- 2Ny y') € Z,s02' @y € (A ® Az)* and hence,
AT @A € (A ©A2)*. The conclusion now follows from Cor.1.4.2(i) by computing
determinants. QED

Corollary 2.1.3: Let A; and A, be any lattices. Then:
(i) if A} and A, are Euclidean (resp. indefinite), so is \j ) Aq;
(i1) if A; and A, are integral (resp. rational), so is A} @ Ag;
(1) if A, and Ay are integral, A\ ® Az is even iff A} and/or A; is even; and

(iv) if A; and A; are self-dual (resp. self-dualizable), sois Ay @ Ag.

Cor.3(i) follows immediately from Thm.2(i); Cor.3(ii) and 3(iii) follow from
Thm.1(ii); and Cor.3(iv) follows from Thm.1.3.1, Cor.3(ii), and Thm.2(ii)
Note that by Thm.2(vi), A} @Ay = Ail) ) Agl”) for any nonzero £ € R, so the

converses of Cor.3 cannot be expected to hold. However, we can say the following:

Theorem 2.1.4: Let A and A; be any lattices. Then:
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(i) if A; @ Az is integral (resp. rational), there exists a positive £ € R such that
A(lt) and A(zl/[) are both integral (resp. ratioaal); and
(i)  1f A} %5 Ag is self-dual, there exists a positive £ € R such that A(ll) and Aél/e)

are both self-dual

Proof (i) Choose some y € A with nonzero norm L. Then for any z,z" € Ay,
Lr ' =(z®y) (' ®y) € Z. Therefore A(IL) 1s an integral lattice.

Let ¢ be the smallest positive real number such that Agl) is integral. Then
({¢x-1' | r,z' € A1}) = Z (because Z 1s a principle ideal domain). Choose m, € Z
and &,,r) € \; so that Y ¢m,z,-r, = 1.

Choose any y',y" € A;. Then y' - y"/€= (S muz,-z))y' -y = > m (2. @Y')"
() @ y")eZ. Thus ‘\(21/2) 15 an integral lattice.

To prove (ii), let € be asin (1). Then A(ll) and 1\(21”) are integral and thercfore
have integral determinants. Hence 1 = |A1®A2] = |A(1[)®Aglll)| = |./\(1l)|"‘|A.(zl/()|"l
implies that |A§()| and IA(QIMI both equal 1. Thm.1.3.1 tells us they are self-dual.
QED

However, A; ® A, self-dualizable does not necessarily imply that there exists
an ¢ € R such that Ag” and A(Ql/” are both self-dualizable. Indeed, by Thm.2(ii1)
and Thm.1.6.9. the lattice A @ I4 is self-dualizable for any integral lattice A.

Thm.2(iv) tells us that A, decomposable (with respect to direct sum) implies
A1 ® A, is decomposable. Does the converse hold? Also, Thms.2(v) and (vi) tells
us that decompositions with respect to @ are never unique.

Not much work has been done on tensor products. There are at least two
reasons for this. First of all, it is not a very practical means of constructing new
lattices. For example, we see from Thm.3(iv) that the tensor products of self-
dual lattices are always self-dual. However, the first nontrivial self-dual lattice
constructed in this manner is Eg ® Es which has dimension 64. The second reason

for the relative lack of results, is the complexity of the theory.
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For the last couple decades Yoshiyuki Kitaoka has published a number of papers
in which he addresses questions concerning tensor products. We will investigate one
of them ([KIT1]) in some detail in the following section.

Three questions he has analysed in considerable detail are:

(i) if Ay and \\; are indecomposable (with respect to 0), then when is \; o .\,
also indecomposable?;
(1) when does A; ® A2 = Ay} © Az imply \; = A3?; and

(ii1)  when is a decomposition with respect to ® unique? 1.e. when does

Mo @A AN -0 AL

imply m = n and A, = A, for each 1 and some permutation o.

(See for example [KIT2], [KIT3] and [KIT4] for details.) One interesting
conclusion he reached in [KIT4| was that when the A, in (iii) are all root lattices
other than 4, and when the A'] there are all of dimension > 2 and are indecompos-
able with respect to 9, we get that (iii) holds (up to the trivial scaling factors of
Thm.2(vi) of course). (Clearly, 1-dimensional lattices such as A, can and must be
excluded, by Thm.2(v).) In other words, for lattices A which can be obtained by
tensoring together root lattices, their decomposition with respect to ¢ is as unique

as 1s conceivably possible.

2.2 The Minimum Norm of the Tensor Product

In this section we will restrict our attention to Euclidean lattices.

Let A; and A; be Euclidean. Then A; @ A; is also Euclidean, so the minimal
norms u(A;), p(Az) and p(A; @ A2) are all positive and are actually attained.
Choose z € A; and y € A, satisfying 22 = u(A,) and y? = pu(A,y). Thenz )y €
A @Az and (z @ y)? = u(Ay)u(Az). Therefore we may write:

p(Ay @ Az) < p(Ar)p(Az2). (2.2.1)
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Of course it is not a prior:t necessary that equality holds in eq.(1); the minimal
vector in A 75 Az may look like )" z, @y, for certain x, € A} and y, € A;. In fact, R.
Steinberg has shown (see pp.47-8 of [MH]) that in every sufficiently large dimension
there exist self-dual lattices A; and A, such that u(A; @ A2) < u(A)u(A2). His
argument is as follows.

Consider any self-dual lattice A of dimension n. Let § = {b;,...,b,} be any
basis for A and let g* = {b},..., b}, } be the dual basis. Then b b @b} +- - - +b, R0},
lies in A ® A. Note that

= Y (b b)(by b)) = D Ayl =Tr(4A™) =n,

1y<n 11<n
where A and A* = A~! are the Gram matrices corresponding to 8 and #*. Thus
MA®A) < n.

From eq (1.3 3a) we know that for any n there exist self-dual (Euclidean) lat-
tices A of dimension n with minimal norm p(\) at least as large as k(n), the closest
integer to (2w;')?/". It is possible to show that k(n) > \/n for n > 292. Hence for
such n, there exist n-dimensional self-dual lattices \ satisfying u(A®A) < p(A)u()).
For these A, equality does not hold in eq.(1).

Nevertheless 1t seems to be very difficult to explicitly find lattices A; and A,
which produce an inequality in eq.(1).

We shall let TE denote the set of all Euclidean lattices A, with the following
property: if Ay is any other Euclidean lattice, then p(A) @ A2) = p(A)u(A2).

Obviously, if A € TE, sois any lattice integrally equivalent to A. The following

results concerning lattices in 7& are less trivial.

Theorem 2.2.1: Let A and A’ be Euclidean and suppose A € T€. Then:
(1) A A €TE; AY ¢ TE for any positive £ € R; any sublattice of A with
minimal norm equal to that of A is in T&; if in addition A’ € TE, then so is
A A

(11)  any orthogonal Euclidean lattice is in TE;
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(iif) if A" ¢ TE, then there exists a Euclidean .\" with dimension equal to that
of A’ such that pu(.\' @ \") < pu(N)u(A"):
(iv)  the root lattices A,, D,, Fs, E7 and Eg are all in T&; and

(v) any lattice of dimension < 3isin TE.

Proof (i) follows from the work in the previous section and eq.(1.2.1a), which says
that u(A; © A2) = min{u(A1), u(A;)}. If a sublattice Ay of A has minimal norm
1(No) = p(A), then for any A’ ;i A)p(A') = p(AGA") < p(Ao @A) < j(Ao)p(N) =
p(A)p(A), e, u(Ao @ A') = p(Ao)u(A"). (11) follows from (i) and some results of
the previous section.

To obtain (iii), let n = dim(A’) and (A'©A 1) < u(A")p(A}) for some Euclidean
lattice A;. Let Zi\-ix I, Dy, be a minimal vector of A’ ® A;, where r, € A’ and
y: € A;. By the bilinear property of @ discussed 1n the previous section, we may
assume that the z, are linearly independent, and the y, are linearly independent.
Thus ¥V < n. Take A" = (y,) @I,(‘l_)N for any € > u(A;) — 1t is trivial to verify that
A" has the desired properties.

(iv) is more difficult. First we will prove Ey € TE. The argument we will use
was first found by Steinberg (see pp.47-8 of [MH]).

Let {e;,...,es} be an orthonormal basis of R®. Then Ey can be thought of
as the set of all vectors 3_ ke, in R® with 3"k, € 2Z, and either all k, € Z or all
k, € Z + % Thus, every element u € Ey @ A’ can be written as Y ¢, @ u,, where
S u, € A’ and either all u, € A’ or all u, ¢ A’ and 2u, € A’

Let u be a minimal element of Es ® A’. Note that u? = 5" u?. We must show
that > u? > 2u(A').

Obviously not all u, can be in A'™ (for then Y u? > 4u(A')). Then if all u,
are in A, at least two — say u; and u; — must not be in A'™ (because 3 u, must
be). But then Y u? > u? +u? > 2u(A).

Now consider the case when no u, is in A’. Then all u, are nonzero and in

A0/ Thus T u? > 8u(A'1/9)) = 24(A).
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Therefore Eg € TE. Now, we know from Sec.1.5 that E7 © A, and E¢® A, are
(integrally equivalent to) saturated sublattices of Eg. So E7 and Eg are (integrally
equivalent to) sublattices of Ejg and their minimal norms equal that of E3. Hence,
hy (i) we see that E7 and Es must also be in TE.
Steinberg’s idea of embedding the root lattice in Q @ I,, does not seem to work
for A,. Instead we do the following.
Let r,, : = 1,...,n, be the basis of ‘simple roots’ of A, in Table 2. Let
w= Y. r,@ut, for r, € A’, be any minimal vector of A, @ A’'. Then, u? = 222 -2z, .
T9+2zr3— - —2x,_ 1 2, +22% =2l +(zy—19)} H (T2 —13)? + - H(Tpoy —Tp )21 >
21(A'), since u # 0.
The remaining root lattices D, can be treated by the method used for A,,, or
for Eg.
(v) Consider first any 2-dimensional lattice A. Let b; and b, generate it —
without loss of generality we may suppose b = p(A) and |b, - by] < u/2. Let
=b @ + by @y, for z,,z, € A, be a minimal vector in A @ A’. Then
= b2z? +2(by - by)(zy - 72) + bRz} = (bRx? — \/b222)? + 2(\ /b3 x2b2z2 + (b, -
by)(z1 - 22)) 2 0+ 2u(A)V/732] - w(A)V/aTz] 2 p(A)u(A").
The proof for A being 3-dimensional is similar (though messier) and will not

be given here. QED

It is possible to use the methods used in the proofs of Thm.1(iv,v) to extend
those results. For example, D} € TE. However a recent paper makes all that
unnecessary.

The proofs thus far in this section have all been from first principles. Y.
Kitaoka also has investigated these questions and in [KIT1] he brought some heavier
machinery to bear on them. (Actually, he restricts his attention to rational lattices

A and .\’ but this is unnecessary in the present context.)

For eachn =1,2,3,... let

pn = sup{p(A)/|AI'/"}, (2.2.20)
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where the ‘sup’ runs over all Euclidean lattices of dimension n. It is known that for
each n this sup is attained (in fact by an integral lattice -~ sece the lemma on p 29
of [MH]). Several upper bounds for y, are known: we gave one in Thm.1 1.6; the
sharpest one is due to C.A. Rogers (see e.9. [ROG]): and Kitaoka used

n
D)

4

A (2.2.2h)

o s

5)
(2
a < ”I‘(_+

(It is possible that if he used Rogers' bound, Thms.2 and 3 given below could be
slightly strengthened.)

Theorem 2.2.2 (Kitaoka): Any Euclidean lattice A of dimension < 42 is neces-

sarily in TE.

sketch of Proof Let A’ be any Euclidean lattice and let v = Zf\_/__, x,Qu, forr, €A
and y, € A’ be any minimal vector in A @ A’. We may assume, by the bilincarity
of ®, that the z, vectors are linearly independent, as are the y,. Define the N-
dimensional Euclidean lattices Ag ' ({z1,...,zn}) and A} def ({y1,-..,yn1}), and
let Ay and Aj be their Gram matrices relative to the bases {z,} and {y,}. Then
p(Ao)u(Ag) = p(M)p(A") 2 WA @ A') = v? = Tr(As4p).

Now it is a straightforward argument in matrix algebra to show that for any pos-
itive definite symmetric n xn R-matrices B and C, we have Tr( BC) > n(|B||C|)!/"
(just diagonalize, etc.).

Hence,
vt > N(Aol [N = N(iAol IAGDY, s0 ulfo)/IAel1/N w(AD)/IAGI1IN > N.
Thus p4 > N.

Now it is possible to show (using eq.(2b)) that for n < 42, u, > /n unplies
n=1.

But NV < the dimension of A, which is < 42 by hypothesis. Therefore N =1,
v =1z @Y1, and so p(A @ A') = p(A)u(A"). QED
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Theorem 2.2.3 (Kitaoka): Let A be any Euclidean lattice with u(A) < 6 and

such that any nonzero sublattice Ay of it has determinant |Ag| > 1. Then A is in

TE.

Proof Let A’ be any Euclidean lattice, and let v = Z,N___l z, ® ys, Ao and Aj be
as in the proof of Thm.2. As was done there, 6u(Ag) = p(A)p(A") 2 p(A®A') >
N(|Ao] [A])! /N = NIAG|'/N. Hence pn 2 p(Ap)/I1Ag|'/N 2 N/6.

It is possible to show from eq.(2b) that p, > n/6 for n > 40.

Thus, N < 40. So by the proof of Thm.2, N = 1. QED

For example, this implies that any integral Euclidean lattice A with u(A) <6
— e.g. Ayq (in fact all self-dual lattices of dimension < 56) and all the root lattices
-— must necessarily lie in T&.

Actually, we have proven something slightly stronger in all three theorems
(namely, that N = 1; 1.e. that any minimal vector in A ® A’ is of the form z ® y),
but this is not really relevant here.

There are many consequences that can e extracted from the above remarks.

Some of these are collected below.

Corollary 2.2.4: (i) For any a > 1, there exists a self-dual Euclidean lattice A

satisfying j(A ® A) < p(A)°.

(ii)  For any integral Euclidean lattice A and any Euclidean lattice A’, u(A®A') >
i(A'), with equality only when pu(A) = 1.

(iii)  Suppose A is integral and Euclidean, and for some Euclidean lattice A’ we
have (A ® A") < 6u(A’). Then p(A) < 6.

(iv) Let A and A' be any Euclidean lattices satisfying p(A ® A') < pu(A)u(A'),
and let Zin r, ® ¥, be any minimal vector of A ® A’, with z, € A, y, € A
Then N > 42.

Proof (i) follows from the argument given at the beginning of this section and the
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observation that k(n)®/? asymptotically grows like (n/2re)*/?, and so will eventu-
ally surpass \/n.

(ii) follows from (iii) and Thm.3. The proof of Thm.3 can be used to prove
(iii).

Finally, the proof of Thm.2 can be used to get (iv). QED

2.3 The Shifting Method: General

A second method for generating new lattices from a given one is called shifting.
It will be proved that two lattices can be connected by a (rational) shift iff they are
rationally equivalent. Hence in this way shifting generalizes gluing.

In its most general form shifting connects rational lattices. However, a special
case of it (the integral shift, discussed later in this section) takes integral lattices
only to other (rationally equivalent) integral lattices, and never increases the de-
terminant. This integral shift specializes to the usual (self-dual) shift when one
considers shifting only self-dual lattices. It takes self-dual lattices only to other self-
dual lattices, and connects any two such lattices of equal dimension and signature.
When shifting occurs in the mathematical and physical literature, it is usually the
self-dual variety.

A simple example of shifting is provided by the theory of neighbouring lattices,
discussed on pp.421-3 of [CS1] and in Secs.2.4 and 3.4. (Self-dual) shifting is also
used in string theory to generate new theories from a given one (sce e.g. Sec 6.2).

Although shifting has appeared before in the literature, it seems that it has
never been systematically studied. and the connection between it and rational equiv-
alence has never been explicitly made.

When shifting has appeared before, it has not always been without errors. For
example, physicists have come up with a number of arguments (see e.g. [LAM3]
and [LL]) for the self-duality of the (integral) shift of a self-dual lattice, but none

of these arguments seem to be complete. Also, Borcherds on p.422 of [CS1] defined
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netghbours (an order 2 shift) in two different ways; the second way is not correct —
[{1s,(})®)] (his notation) equals Dg, not Eg as he claims it does.
Suppose we are given a (rational) lattice A, vectors wy,...,wm € Q® Ay, and

an m x m Q-matrix ( = ((,,).

Definition 2.3.1: By the (rationally) shifted lattice we mean the set

Al({wla"'awm}’C)déf

{g+) tw, |6 €Z,ge Ay, and Vj, q-w, = Y (pby (mod 1)} (2.3.1)
=1

1=1

w, are called the shift vectors, and (,, are called the vacuum parameters.

(This terminology is taken from string theory — see Sec.6.2.) We may write
this more compactly in matrix notation in the following way. Choose some basis
B = {by,...,b,} of Ay and let A be the Gram matrix of A, relative to 3. Let W
denote the n x m Q-matrix whose ¢jth entry W,, is the :th component (w,), of w,
relative to 3. Let ¢ € I, and ¢ € I, be column vectors with integer components
(g represents a vector in A;, relative to 3, in the natural way). Then the shifted

lattice can be written as
MW, ) S {q+ We|LE I, q€ I, W'Ag=(l (mod 1)}. (2.3.2)

It is trivial to verify from either eqgs.(1) or (2) that the shifted ‘lattice’ is indeed
always a lattice.

The following definitions are made with Thm.3 in mind. Consider the sets

SE{S tw e M|t ez},
1=1

"€ {3 tw €At 6 €2}, and

1=1
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&2

SEN tweM|6€Z, and Vi, Y GG +wi-w,) € Z).
=1

Define the shift groups to be

m

Q=QW)E (Y tw, | L e Z}/S,
=1

Q= (W)= (D tw, |6, €2}/5", and

1=1
~ -~ d m -~
Q=0W,0) () tw, |t eZ}/5.
1=1

The following result is straightforward to venfy.
Theorem 2.3.1:  The shift groups €2, Q* and Q are all finite.

If the shift groups Q(W) and Q(W') of two different shifts are equal, then
S = §', and there exist an m X m' Z-matrix K, and an m’ x m Z-matrix L,
such that w, = Y w,K}, and v,/ = }Jw,K,,. Also, §* = 5%, so Q*(W) =
Q*(W'). However, as we shall see below, we do not have in general that A;(W,() =
Ay (W', ¢"), even if in addition Q(W,¢) = Q(W',¢'). Conversely, suppose w, =
Yw,/'K) and w,’ = Y w,K,,, for Z-matrices K, K'. If in addition ¢/ = K'CI
(mod 1) and ¢ = K"('K’ (mod 1), then QW) = Q(W'), Q*(W) = Q*(W'),
QW,¢) = W', (") and Ay(W,¢) = Ay(W', ().

Define the fth sector A; ¢ of the shifting to be

Ae g+ We|gel,, W'Ag=(l (mod 1)}.

Then A1(W,({) = UAy,¢. A1 is a nonempty sublattice of both Ay and A(W,();
moreover, the shift vectors w, are all in A7 ;.
There is a relationship between shifting and gluing that will be developed in

the remainder of this section and the next. The essence of it lies in the trivial

68




observation that any nonempty sector .\, can be written as ¢+ W¢ + A; ¢ for any
vector ¢ + W2 in A .

For convenience write w(é')d-i-f > lw,. Also, let ¢(€) denote any vector satisfy-
mg q(?) +w(€) € Ay ¢, provided Ay ¢ 1s nonempty.

An example will now be given to illustrate the above definitions.

Let Ay = Iy, w = wy = (%,...,;}), and ( = 0. Then S = {20w | ¢ € Z},
Q=Q"=0Q={5,5+w} =Cy A1 = Dg, and ¢(1) can be chosen to be 0. The
shifted lattice Aj(w,() is then Dg|w] = Dg[l] = Es. (This is an example of the glue
gauge, as we will see later in this section.)

Now consider w’ = w but ¢’ = 1. Then again we have §' = S, Q' = Q"* =
Q' = , and Alo = Arg, but ¢'(1) # 0 (¢'(1) = —e; is a possible choice) and
Af(w', (') = Dg[—e; +w'] = Dg[3]. Although Aj(w',¢{') = Aj(w,(), these two
lattices are not pointwise identical.

In general, Q' = Q will not force A}(W,¢) and A(W',{’) to be (integrally)
equivalent to each other. In spite of this, the notation A;(2) is sometimes used in
the literature.

Given a shift matrix W, an m x m Z-matrix N can be found with the prop-
erty that WM = 0 (mod 1), for any other Z-matrix M, if M = NM' for some
Z-matrix M' (in fact, we may choose generators w,’ for Q(W) so that the cor-
tesponding .V is diagonal — these w] are then independent with respect to Ay,
as defined in Def.1.4.2). Clearly, the determinant |NV| equals the order ||2]| of
Q. Also, S = {w(.V¢) | ¢ € I,,}. Incidently, charging the shift vector genera-
tors by w; = 3w, K, w, = } w|K], induces the changes N' = A'NK" and
N=KN'K"

Theorem 2.3.2:  Let Ay = \{(W, (). Then:

(i) AiNAz=|J Ay~ and
tely,

(i) Ao~ A R A,
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Proof (1) Clearly the containment “C" holds

Suppose ¢' € Ay N\;. Then ¢' € .\ ¢ for some €', 50 ¢ = ¢(€') + (€', whete
q(¢') € \\y. Wealso have ¢' € .\, which implies w(¢') € \;. Therefore, by deinition
of N, ¢ = N{ for some ¢, s0 ¢’ € \| n¢.

(ii) It suffices to prove .\ g g A

A} is rational so there exists a L € Z such that .\(,I')) is imtegral  Let ¢ =
L?T]n,. Choose any q € A;. Then ¢%q-w, €Z V1. The desired result follows fiom
Cor.1.4.11. QED

Theorem 2.3.3: Let Ay = A((W,(). Then we have the following isomotphisms
between glue groups and shift groups:

1) A /A=

(i) A2 /A1 = {nonempty sectors Aj e} = {w(€)+ S5 € Q| Ay is nonempty }
(1) A /(AN Ag) =Z{w(l)+5€ Q]| .\ ¢isnonempty }.

Thm.3(i) follows immediately from Lemma 1.4.8. Thm.3(1i) is proven by noting
that for nonempty Ay ¢, q(€) +w(f) € Ay o iff w(€) € S Similarly, Thin 3(iii) results
from the observation that for nonempty A; ¢, ¢(€) + w(€) € Ay NN if () €S

Theorem 2.3.4: A, & Ay iff 3V, ¢ such that Ay = A (W, ().

Proof “=" By Thm.1.4.10 there exists a saturated integral sublattice Ay of
both A; and some lattice Aj integrally equivalent to A,. In fact we may choose it
so that Ay C A and Aj C Ag.

Let w, + Ag, 2 = 1,...,k, be generators of A;/Ay and choose ¢ = 0. Then the
shift Ao(W,(') has zero sector Ay and in fact equals Ag[{w,}] = A).

Let w) + A}, j = 1,...,¢, be generators of Ag/A} and choose (;, = —uw| - w).
Then the zero sector of the shift A\(W’,(’) again is Ag and in this case we have

A (W', ¢") = Ao, as a simple calculation reveals.
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Now angment the shifts together:

Wy =
' w, for 1>k

. def {u.', for 1 <k

- d_gr{ ! for 1,) >k

1
Y 0 otherwise

and consider the shift A, (W, (:) Then A; o again turns out to be Ag, and the shift
A(W,() = AL
“<"  follows immediately from Thm.2(i1). QED

Thm.4 is the reason the rational shift is interesting in its own right, and not
interesting merely because it is the natural generalization of the self-dual shift. Of
course, by no means are these W and ¢ unique. For one thing, any other generators
W' of Q(W) will work as well (provided ( is adjusted appropriately). A systematic
source of redundancy that will become more important in the following section,

bears striking resemblance to the gauge problems in modern physics:
Theorem 2.3.5: A(W,() = A{(W',('), where
W, =w, +z,, I, €A}

W) =w()+ bz,
70 =q(0) - ) bz,
Gy =Gy — 25 (2 +wy).
Moreover, the shift groups Q*(W) and Q*(W') are isomorphic, and A; o = A} .
The obvious calculations establish Thm.5. See also Thm.12.
So far we have considered shifting in its full generality. In the remainder of

this section we will investigate the consequences of imposing additional constraints

on W and ¢.




Consider first the constraint that (W'AIV 4+ ()N be a Z-matnx. Of course
this constraint is independent of the choice of shift vector generators.  When
N =diag(ny,...,ny,). so that the shift vectors &, are independent with respect to

Ay with orders n, (see Def.1.4 2), this condition becomes n,(w,-w, +¢,,) € Z, Vi, ).

Theorem 2.3.6: For a shift Ay = A\ (W,() such that (W'AW + OV s a Z-
matrix, A; Ny = A 0. Also, Q = Q.

In proving this, it suffices of course to show that Ay v € Ay V€ (1n fact

equality holds).

Theorem 2.3.7:  Any two rationally equivalent integral lattices are (up to in-
tegral equivalence) connected by a (rational) shift satisfying the constraint that

(WA + ()N be a Z-matrix.

Proof Let A, =~ A; be as in Thm.1.4 10. Define Ay = A; N AL Then Ay 15 a
saturated sublattice of both Af and Aj.

Choose a representative w, from each class in Ay /Ao, and define (,, = ~w, w,.
Then the shift A;(W,() has zero sector A, 3 = Ay.

For ¢ € A1, ¢+ w(€) € Ay(W,¢) implies q - w, = 3 ¢4,(;, (mod 1) V), which
implies (¢ + w(¢)) -w, € Z Vj. Therefore (Ao C ) A (W,() C A;.

Note that Aj is the lattice obtained by gluing to Ay all shift vectors w(f) € A),.
For these ¢, choosing ¢(¢) = 0 shows that A} C A;(W, (). QED

In other words, when we are dealing with integral lattices (which is our main

interest here), we can without loss of generality impose the simplifying constraint

that (W!AW + ()N be a Z-matrix.

Theorem 2.3.8: When (W!'AW + ()N is a Z-matrix, a gauge (see Thin.5) can
always be chosen so that (;, = —w,’ - w,’ (mod 1). Conversely, if there is such a

choice of gauge for a given W and ¢, then (W*AW + ()N is a Z-matrix.
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This choice of shift vectors is called the glue gauge, for reasons that will become
more apparent shortly. The proof of Thm.8 is similar to that of Thm.9 below.

As before, given a shift matrix W, we can find an m x m Z-matrix N* with the
following property: M = (M,;) is a Z-matrix such that > A w, € A} for all ¢, iff
M = N*M' for some Z-matrix A['. When A, is integral, M = N is such a matrix
(since Ay € A7), so there would be a Z-matrix N' such that N = N*N'. Hence
the determinant |N*| divides the determinant |N]. When A, is self-dual, N* can

be taken to be N Of course, for any A, (integral or not), |V*] is the order of Q*.
Theorem 2.3.9:  When ('N* is a Z-matrix, all sectors A; ¢ are nonempty.

Proof  Assume w, are independent (relative to A}) and let n} be their orders.

From Thm.1.4.9 there exist vectors r, € A;, 1 = 1,...,¢, such that

ryw, = ;};5,, (mod 1).

Define q(€) ' ¥ 3 6,n3¢,r,. Then ¢(€) € Ay and ¢(£) -w, = ¥6,(,, (mod 1),
V). Therefore, q(€) + w(€) € Ay ,. QED

Thm.8 follows from Thm.1.4.9 in a similar manner: let z, = - }_ n,(w, - w, +
Gy )Ty

Hence, when ('N* and (W!AW + ()N are both Z-matrices, we have Q = ) =
A /(AyNAg) and Q* =2 A /(A NAL).

Thin.9 tells us that for each 1, there exists a ¢, € A; such that ¢, + w, € A,.
We may now set q(¢) = > £,q,.

Now suppose A, is integral and ('N* is a Z-matrix. Then because of the
important Thm.9, a simple calculation shows that the shifted lattice A, will be
integral iff w, - w, +¢,; + ¢ € Z Vo,j — de. iff WAW + ¢ +¢* is a Z-matrix.

Definition 2.3.2: A shift is called an integral shift if both (*N* and W'AW +

¢ + ¢* are Z-matrices.
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Note that for an integral shift, (11 ATV 4¢).V is always a Z-matrix. Henee there
is a glue gauge; in fact, init w,-w; € Z, (,, € Z and \{(V,¢) = Ny o[{wi}] = Na(Q).

This is the reason for the name ‘glue gauge’

Theorem 2.3.10: Let A; be integral, and suppose \; = A\ (1, ¢) is an integral
shift. Then A\, is an integral lattice with determinant

A{tl)

|V

el = 1)
Proof Thm.3 becomes Q = A2/\1 0 and Q* = A /A 0. Therefore

|1V|2 - ”QHZ = lAl.Ol/|‘\2| and

NP =0 P = |Avl/1A0]-

The desired identity follows immediately. QED

Hence |A;| > |A2] > |A4]/]|Q?. Thus the determinant never inereases when
using the integral shift. If one starts with a non-self-dual but self-dualizable lattice
A1, a self-dual lattice of equal dimension and signature will eventually be obtained,
by repeatedly shifting in this manner.

Incidently, the determinant formula in Thm.10 holds even if A; is not integral,

Thm.10 also tells us that it may not be possible to connect two rationally
equivalent integral lattices with an integral shift (e.g. {4} 2 {9} but neither integral
shift {4} — {9} nor {9} — {4} can exist). However, it is easy to show from the
proof of Thm.4 that given integral lattices A, gAg, there exists a third integral
lattice A3 such that Aj can be integrally shifted to both A} and A;. Moreover, the

proof of Thm.7 implies:

Theorem 2.3.11:  Let A, be self-dualizable and A, be self-dual. Suppose they
are of equal dimension and signature. Then there exists a A} = A3 such that there
is an integral shift of A; to A}. Moreover, if in addition A} N A, is saturated in Ay,

then there is an integral shift of A; to A,.
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Using the existence of a glue gauge, which is unique up to vectors in A; N Ay,

we quickly get this interesting result:

Theorem 2.3.12: Suppose A; is integral. Then the integrally shifted lattices
AW, () and Ay (W' (') are equal iff the shifts are connected by a gauge transfor-

mation of the type defined in Thm.5.

Note that this theorem refers to lattice equality ‘=" and not the more general

lattice equivalence ‘=’

2.4 The Shifting of Self-dual Lattices

By ‘shift’ we will mean throughout this section the ‘self-dual shift’, i.e. the
integral shift (see Def.3.2) restricted to self-dual A;.

As we shall shortly see, one can get self-dual lattices from others by ‘shifting’.
This procedure has been widely used in constructing new strings (see e.g. Sec.6.2).
In fact, the results of this section can be used in an attempt to systematically
produce, by shifting and gluing, Grand Unified Theories with a given gauge group,
with supersymmetry, and with a superconformal current (see Sec.6.3). Shifting’s
general properties and its connection with the gluing method will be discussed in
this section (see also Sec.3.4). The terminology given here is that used by string
theorists (see Sec.6.2).

For convenience, we shall explicitly include here the definition of the sclf-dual
shift. The shifting operation begins with a self-dual lattice Ay, a set of shift vectors
wy, 1 < ¢ < m, satisfying n,w, € Ay Vi, and an m xm Q-matrix { = ((,,) of vacuum
parameters. Without loss of generality we may assume that the shift vectors are
independent with respect to Ay, with orders n, (see Def.1.4.2).

The conditions the shift vectors and vacuum parameters must satisfy for (self-

dual) shifting to take place become here:
Ct] + C]l + w, - W, S/ V’l,] (241(1)
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n]C]l €Z Vi, (2.510)

In the case considered here, the shift group @ is isomorphic to the direct product
Cn, X Cp, x -+ x C,, of cyclic groups.

Let A2 = A (W, (). Then we know from Sec.3 the following 1esults:

Theorem 2.4.1: (i) A; is self-dual;
(1) A NA2z=Ag;
(1) w, € A}, V2;
(iv)  All sectors \; ¢ are nonempty; and

-~

(V) Q=Q=Q‘EA]/(A]ﬂAZ)EAQ/(Alﬂ‘\Q).

We learned in the proof of Thm.3.10 that eq.(la) is required for A, to be
integral, while eq.(18) is needed to show |Az] = 1. Though it is widely quoted,
rigorous proofs of Thm.1(i) are difficult to find. Physicists usually exploit modular
invariance of a partition function (see Chapter 6). The proof given in the previous
section is more self-contained and general, and produces other interesting results.

Thms.3.11 and 3.12, respectively, reduce to:

Theorem 2.4.2: Ay = A (W, () for some W,(, iff Az is self-dual and has the

same dimension and signature as A;.

Theorem 2.4.3: A(W,() = A (W', (") iff the shifts are connected by a gauge
transformation of the type defined in Thm.3.5.

Note that eqgs.(la, b) imply the following constraints on w,: there must exist

integers F, € {0,1} (called the fermionic parameters) such that

nfw? —F)€E22Z W (2.4.2a)
nn,w,cw, € DyZ Vi, ;. (2.4.2b)
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The quantity Dy, = (n,,n,) in eq.(2b) is the greatest common divisor of n, and n;,.
For n, odd, eq.(2a) reduces to nw,? € Z with F, = n,w,? (mod 2); for n, even it
hecomes n,w,? € 2Z, with F, arbitrary.

The constraints in eqs.(1) for ¢,, can be solved in terms of a number of free
parameters (the discrete torsions) Q,; = —Q,, (mod D,,), 1 < i < j < m, each
taking arbitrary in.wegral values between 0 and D,, — 1. The solution (see [LAM3])

1s:

C_)l = (—nly:‘)lwl Cwy + Ql])/Dl) (mOd 1) @ # J (2430)
o = (F - w?)/2 (mod 1), (2.4.3b)

where Y,, € Z is defined so that Y, ,n, +Y,,n, = D,, (it is an elementary theorem in
number theory that such Y;, exist — they are not unique, but any non-uniqueness
can be absorbed in the parameters Q).

A different set of discrete torsion parameters @,, and (when n, is even)
fermionic parameters F, may correspond to a different shifted lattice Aq, so al-
together we may have as many as 2™ Hl$a<]5m D,, possible self-dual lattices A
obtained from a given A; and a given shift group €2, by varying (.

As we know from the work of the last section, there is a close connection
between the gluing and the shifting operations. The gluing operation may actually
be thought of as the shifting operation in a particularly simple gauge, the glue
gauge. The glue gauge is unique only up to vectors in A; . This is discussed in
the next two theorems, which are just restatements of facts learned in the previous

section,

Theorem 2.4.4: By choosing the gauge (i.e. the 2, € A; in Thm.3.5) appropri-
ately, we may assume without loss of generality that all @,; = (;; = 0, and that
the shift vectors have integral dot products w, -w, (this choice of gauge is called the

glue gauge). In the glue gauge, A2 = A o[{w1,...,wm}] = A1,0[8).
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Theorem 2.4.5: Suppose you are given two self-dual lattices .\; and A, with
intersection A9 = A; N .\ saturated in .\\; and \,. Let w, + Ny be the classes in

.\2 / "\0. Then A\l(IV’, 0) = .\2.

Shifting gives us an elegant proof of Thm.1.6 1. Let \; be any self-dual lattice
Ao glues to. Shift \; by the vectors in G', choosing ¢ = 0 (so we are in the glue
gauge). Then the resulting shifted lattice has the desired properties.

Let us turn to another property of the shift operations: namely, that they
are generally not commutative. Let w; and w; be independent (with respect to
Ay), and let ¢ be any 2 x 2 Q-matrix. Then the following three self-dual lat-
tices obtained from different orderings and combinations of the shifts are pen-
erally different: A(llg,déf (Awi,¢11)) (w2, C22), ‘\(2_”‘!;‘(A\(wQ,ng))(w.,Cu), and

Agz) =A@y def A({wy,w2}.¢). In fact, the following theorem can be proved.

Theorem 2.4.6: (l) .’\(1’2) = A(QJ) iff wy-w, €2
(ll) A(l,?) = 1\(12) lff C12 € Z.

Proof Note that we have
Az = {g+ Gw + bwy [ (g + &wy) - wy = €632 (mod 1),

q-w; = €11, where g € A},
Az = {g+ i) + bwa | (¢ + lawr) - wy = €1()2,
q-wy = €2C22, where q € A}
Thm.1(iv) implies that there exists a ¢ € A, and an ¢, € Z such that ¢+ w, +w, €
Ay2. Then 3¢’ € A, and integers ¢},¢, such that 0 < ¢} < n} and 0 < €, < n,,
and ¢' + flwy + lhwy = ¢ + €yw; + w2. The independence of wy and w, implies
¢} = ¢, (mod ny) and ¢, = 1 (mod n2). Hence ¢, = 1. Using eq.(154) and the above

equations, a single subtraction yields that A, ; = A;; implies w; - w; € Z. The

converse follows immediately from the above equations.
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This proves (1). A similar argument establishes (ii). QED

Thus, in the glue gauge of A({wi,w2},¢), (AMwi,(1))(we,Ca2) =
(Alws, C22))(wr, (1) = Al{wr, w2}, €).

Theorem 2.4.7: Let w,, 1 < i < m, be independent with respect to A;. If
Ay = A (W, ), then A} = A2(TV,() iff both conditions below are satisfied:

(1) Cl] = C_n (mod 1), Vi, J;

(i) 3, k, €2ZV) =1, --,m, implies n,|k, Vi.

Proof By Thm.1(iv), for each 1 there exists a g, € A, such that ¢, +w, € A;. Note
that A; = A(W,() iff both g, € A2(W,(), V¢, and the zero sectors A; g and Ay ¢ of
the shifts A, (W, () and A,(W, (), respectively, are equal. Note that ¢’ € A, implies
that there exist integers k, such that ¢' - w, = =3 k,(,, (mod 1), Vj. It is trivial
to verify that A9 C Az Thus Ay = Agp iff each ¢' € A satisfying ¢' - w, € Z
Vj is necessarily in Ay, which is equivalent to condition (ii).

Also, ¢, € Ao(W,¢) iff (¢, +w,) - w;, = —(;, (mod 1) Vjiff ¢, w, =(,,,Vj. But
qy +w, € Az, 50 ¢, -w; = (j, V7.

Therefore q, € Ao(W,() iff ¢,; = (;, (mod 1), Vj. QED

In the special case where m = 1, i.e. when the shift group has only one gener-

ator, this theorem simplifies to the following,.

Corollary 2.4.8: Let w have order n. If A; = Ay(w,(), then A; = Ag(w,() iff
(n,k) = 1, where w? = 2k/n + F. For n odd or F = 0, this ‘ff’ condition becomes

(2n,nw?) =1 or 2.

(Here, as before, (n, k) denotes the greatest common divisor of n and k.) Re-

lated to this is the following result.
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Theorem 2.4.9: Suppose \; = \{(IV,(). Then there exists a shift given by 1V/ ('
obtainable from W, ¢ by means of a gauge transformation such that A\, = \ (V7' ()

and 4’\1 = ‘\Q(IV,.CI).

Proof Let W, ¢ be the glue gauge satisfying A (1, ¢) = .\l(W,C)dg Ao and let

&, be its independent generators. Define a new shift 1", ¢’ obtained from W, ¢ by
the gauge transformation given by r, = r, (using the notation of Thm.1.4 9, where
we take y, défd), ). Then W', (' is connected to W, ( by some gauge transformation.
Let w, be the shift generators. Using Thm.3.5, note that

. - . 1.
Gy =Cy—r) @ = '—;0,] (mod 1).
t

Thus, Y ki, = —,—k;‘; (mod 1), so
(1) C;, = (;, (mod 1)
(1) ) ki, €2 V5 iff n,|k,, Vi.
Therefore by Thm.7, A2 = A(W', (') and Ay = A,(W', (). QED

In the remainder of this section we will introduce a term which we will study
in much more detail in the following chapter, where we exploit the interconnections

between shifting and gluing touched on in this section.

Definition 2.4.1: Two self-dual lattices A, A’ are called neighbours if their in-

tersection A N A’ has index 2 in both of them.

Thus, A and A’ are neighbours iff an order 2 shift connects them. This term
is taken from [CS1]. A number of special properties are satisfied by neighbours,
some of which we will touch on, but it is beyond the scope of this paper to list them
all. They have proven to be useful in the enumeration of self-dual lattices (e.g. see
pp-421-425 of [CS1]).

Up to integral equivalence, there are exactly two self-dual indefinite lattices

of signature (n4,n-) = (8k + ¢,£), namely Igki¢¢ and Ilgg4ee.  These are
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neighbours: the shift operation Igxiee — Ilgk4ee is given by the shift vector

w = %, , %; %,.. . %) expressed in the standard basis of Igxtee. Of course,
any other (self-dual) indefinite lattices connected by a shift must be (integrally)
equivalent.

The following theorem shows how to find neighbouring lattices to a given one,

and also gives some nontrivial examples of shifting.

Theorem 2.4.10:  The neighbours of I,, are equivalent to ka @D I—4x for k =
., [n/4], while the Leech lattice A4 only has the neighbours Oy3 @ I; (where
093 is the so-called shorter Leech lattice — see p.179 of [CS1]) and the Niemeier

lattice with root lattice A% (see Table 5).

Proof  Without loss of generality we may work in the glue gauge, and write
e.g. In(z) for the shifted lattice I,,({z},0). We are interested in shift vectors z ¢ I,
such that 2z € I,,. Note that I,(z) = I, (y) iff ¢ — y € I,,, so we are interested in
the conjugacy classes of Inl“)/l
Every such class contains a vector whose coordinates (relative to the orthonor-
mal basis of I,,) consist of k 's and n — k 0’s for some k. It suffices to consider
the results of shifting by such vectors. Moreover, up to integral equivalence (in fact
a trivial rearranging of the basis vectors of I,,) it clearly suffices to consider the
results of shifting I,, by the vectors dg(%, ,3:0,...,0) (i.e. kk Y’sandn—k
0’s) for k=1,2,...,n.
The shift vector must satisfy the conditions egs.(la,b) — they imply z2 € Z,
r.e. 4 divides k. Directly from the definition we can see I,(zx) = DY @ I,— (the
zero sector is Dy @ I,_k, etc.). This gives us the desired list of neighbours of I,,.
The Leech lattice is dealt with similarly' we need to know about the group
(l/ /A2y, or equivalently the group A24/A . This is investigated in Thm.28 on
p.289 of [CS1]. There we find that every vector of Ay4 is congruent modulo A(4)

to either the zero vector (which corresponds to an order 1 shift, and so can be
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discarded), or a norm 4, 6 or norm 8 vector. In other words it suffices to consider
shifting by a norm 1=4/4 vector or a norm 2=8/4 vector (a vector of norm 3/2=6/4
would fail to satisfy eq.(18)). Thm.27 on p.288 of [CS1] implies that shifting by
any norm 1 vector will produce the same lattice (up to integral equivalence), and
shifting by any norm 2 vector will also produce the same lattice (up to integral
equivalence).

Thus there are two cases: Ag4(ry) for 2r4 € Ay, &3 = 1; and Ayy(a2) for
2z, € Ay, 23 = 2.

Consider first Ag4(z;). By Thm.1.2.1 we can write this as [} b AY;, where ),
is a self-dual 23-dimensional lattice. Any nonzero vector u € Al is either in Ay,
(i.e. in the zero sector), in which case its norm is u? > 4, or equal to r; + v for
some nonzero v € Agg. Since z, - (3 +v) =0, u* =1 +2r; v+ 02 =02 -1>3
Thus Af; has minimal norm g > 3, so it must be integrally equivalent to Oy, the
shorter Leech lattice.

Now consider Az4(x;). It must be Type II (since z3 and the zero sector are both
even), and it has a root vector (namely z;), so it must be one of the 23 Niemeier
lattices (see Table 5). Let r be a root vector (i.e. a norm 2 vector) in Ags(z2).
Then 2r is a norm 8 vector in Ay, congruent to 2z, mod Ag?. But p.289 of [CS1]
tells us there are only 48 such vectors. Thus Ag4(ze) can have no more than 48
root vectors. However, Table 5§ tells us that all Niemeier lattices have over 48 roots
except the one with root lattice A}*, which has exactly 48.

Therefore A24(z;) must be integrally equivalent to that lattice. QED

Let A; and A; be neighbours, and let Ag = A; N A be their intersection.
Then |A¢| = 4, so Aj/Ao has 4 elements. Let Ay = Ao[g1] and Az = Aglg2]. Then
A3/Ao = {[0]Ao, [91]A0, [92)A0, [91 + g2)A0} = Co x Cs.

Note that g? € Z, 92 € Z and 2g;-g2 = (291)- 92 € Z. Therefore (g, +g2)* € Z,
so A3 def Ao[g1 + g2] also is self-dual. A3 is a neighbour of both A} and A,.

What this shows is that neighbours come in triples (in this case Ay, Az and
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As).
It is easy to show, using the above notation, that 9+t (n+g2)? =1 (mod
2). Hence either all three self-dual neighbours in the triple are odd, or exactly 2 of

the 3 are even. This has proved useful in the enumeration of all Type I lattices of
24 dimensions (see Ch.17 of [CS1]).

Neighbouring lattices will also be discussed in Sec.3.4.
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Chapter 3 RATIONAL EQUIVALENCE AND SIMILARITY

3.1 Similarity

Two lattices can be rationally equivalent only if their dimension and signa-
ture are equal. There are some circumstances (most notably when studying self-

dualizability) where this restriction is inconvenient.

Definition 3.1.1: Two lattices A; and A, are said to be similar, written A; ~ Ao,

if there exist integers k,¢,m,n > 0 such that Ay @ Ixe gAz @ Imn-

Thus two integrally or rationally equivalent lattices will always be similar.

We introduced the concept of similarity in [GL2] to study self-dualizability and
shifting. In fact, it was only while writing up that paper that we realized its intimate
connection with rational equivalence. In the previous chapter we found that shifting
is closely related to rational equivalence; however, we will see in this chapter that
similarity is more natural and useful for questions concerning self-dualizability.

Suppose some lattice A is similar to a rational lattice A;. Then the direct sum
of A with some orthonormal lattice, is rationally equivalent to some rational lattice.
It is easy to show from this that A must be rational. Throughout this chapter we
will only consider rational lattices.

The basic result for studying similarity is the following theorem.

Theorem 3.1.1:  Let Ay, A}, Az and Aj be rational lattices. Suppose A; ~ Aj.
Then A} & Ap ~ A} @ A iff Ay ~ AL

Proof “=": Consider first A; = A} = {(no)}, A2 = {(m1),...,(mi)},and A} =
{(m1),...,(nx)}, and suppose {(ng), (m1),...,(mk)} g {(no), (m1),...,(n&)}. Let

r, and y,, for i = 0,..., k, be orthonormal bases for these lattices (so e.y. y, -y, =

ny8y,). Then by Cor.1.4.11 there exists a nonzero integer £ such that (A} ®A})(¢") =
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(€yo,Cyr,...,Llyx) C (70, 21,...,2%) = A1 ® A2. So, there exist integers a,, for
0 £i,j < k such that, for these i, J,

(atOIO + dt) ' (aJO.UO + ({J) = €2 "l(‘gus

k
where d, = E Qy,T,,

=1

for 0 £ i < k. Choose the sign of ¢ so that ¢ # agg. Define
Ci=(€—ag)di+apdo €Ay , 1<i< k.

Then simple arithmetic gives ¢,-¢, = (€ —agg)?¢* n, §,, for 1 < i,j < k. This is just
the statement that {(m;),...,(m)} 2 {(n1),...,(nx)}.
By induction (on p=dim(A;)) we quickly get that for any orthogonal lattices
Ay, Az and A, A @ A, gAl @ A5 implies A, g[\'2
Now suppose A g A}, Az and A} are all rational lattices, and A, B A, g A DAS.
Let A} = A; have intersection A{ N A} with A} which is saturated in A} (possible
by Thm.1.4.10). Then A} & A, gA'{ @ A5, as can be seen e.g. by Cor.1.4.11. Now
let Ay, Aoz and A}, be orthogonal decompositions of AY, A; and A} respectively.
Then, by the same reasoning we have Ay, & Aoz 2 Ay, ® Ap,. But, by the above
argument this implies Ay 2 A{, and hence A :gs/\'2
What we have shown so far is that for any rational lattices A, g A}, A and
5 A1 © A, 2 A} @ A} implies A, 2 A}. It is easy to see (directly from Def.1) that
this remains true after replacing each ‘2 with ‘~’.

‘e This direction is either trivial or reduces to the above direction.

QED

Hence similarity is an equivalence relation (transitivity was not obvious before
Thm.1). Thm.1 is essentially the Witt Cancellation Theorem, stated and proved in

[CS1] (the above proof has the advantage in this context of being lattice-theoretic).
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Let the signature of Ay and A3 be (n14+,n;-) and (n24,n2-). Then Thm.1 also
tells us that in Def.1 we may always suppose one of k or m is zero and the other is

[n14+ — n24l, and one of € or n is zero and the other |n;_ — ny_|. Hence:

Theorem 3.1.2:  For rational lattices A; and A, A gAz iff Ay ~ Ay, and A,

and A; have the same dimension and signature.
A revealing characterization of similarity is given in Cor.9. Thm.1.6.1 becomes:

Theorem 3.1.3: If A; ~ A, are two integral lattices, then A, is self-dualizable

lff A2 is.

Iu fact, Thm.3 hints at a strong relationship between similarity and self-
dualizability that will be more fully developed in what follows. We will show ulti-
mately (Cor.T) that two integral lattices A; and A, are similar iff they fall shor! of
heing self-dualizable to exactly equal extents.

One more elementary result is:

Theorem 3.1.4:  For rational lattices A; and Aj, Ay ~ A, implies \/|A||A;] €
Q. In fact, if in addition A; = Ag, then € = [A,NAY|/+/TAz] JAa] works in Cor.1.4.11.

Proof Suppose that A, g Ao = Ay & Iy 4, for some non-negative integers k and ¢
(the other cases can all be treated similarly). We have then that |Aq| = |A2]|, and
if Ay~ Ay, then k = 0 and Ao = Ay. For some A} & Ao, & = +/[(A1 A AD)I /ALl
is an integer and is in fact the order of the group A;/(A; N A}) (Lemma 1.4.1 and
Thm.1.4.10). Hence the order of any glue class [g] € A1/(A1 N A}) must divide ¢,
so &[g] = [0], and thus ¢,g € Aj.

Define €, similarly. Then because ¢! £,y is an integer, \/l_mg_l must be
rational. If Ay = Ag, € has the desired properties. ~ QED

Thus I, and the root lattice Ay cannot be similar. The converse is not true;

for example, I; @ I}g) and Iz(,s) def I§3) &) I}a) are not similar,

86




¢ 3

A useful theoretical (as we saw in the proof of Thm.1) and practical (as we
shall see in Sec.2) tool for analyzing similarity is orthagonal decomposstion, which we
presented in Cor.1.4.4. A lattice is always similar to its orthogonal decomposition.
The orthogonal decompositions of the root lattices are given in Table 4. Of the root
lattices, only Eg is self-dual. However, note that D, ~ {(4),...,(4)}, so by Thu..3
D, is always self-dualizable. Indeed, we have already scen that D,(2] = I, for all
n. The converse is almost true; it turns out (see Thm.12) that the m,’s for any
sclf-dual (but not sclf-dualizable) lattice can alsu be chosen to be powers of 4.

It will prove convenient to write {(k)!} and A¢ for {(k),...,(k)} (€ times) and
A®---®A (€ times), respectively (not to be confused with the scaled lattice ALD).
Thus, D, ~ {(4)"*} and ([})* = I,. It turns out that D,; (and hence D,;,“k) has
an orthogonal decomposition {(2)?*}, while Doy has {(2)%*,(4)}. Es, E7 and Ey
have orthogonal decompositions {(2)%,(12)}, {(2)"}, and {(2)?}, respectively (these
are the ‘smallest’ decompositions of D, Eg, E7 and Eg).

In Sec.2 we will be concerned with reducing a set of m,’s by replacing them
essentially with primes in a way which preserves similarity at the expense of (rational
or integral) equivalence. To determine whether two given lattices are similar (or
rationally equivalent), we will reduce their orthogonal decompositions to ‘primary’
ones and compare the results. An example of this reduction process is Thm.1.6.8.
Thm.1 allows us to simplify each m, separately, thus making the task of finding a
systematic reduction scheme that much easier.

One immediate consequence of Thm.1 (and the uniqueness of Type I indcfinite
lattices — see Thm.1.3.2) is:

def

Theorem 3.1.5:  An integral lattice A is self-dualizable iff A ~ {(1)} = I,.

Proof Let A be of signature (m,n) and first suppose A is self-dualizable. Then
A glues to some self-dual lattice A’ and hence, A ~ A’ (in fact Ag/\'). But by
Thm.1.3.2 A’/ a5} I]y] ~ Im+l,n+h SO we get. A~A & Il,l ~ Im+l,n+l ~ I;.
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Now suppose A ~ I;. Then Thm.1l implies AgImln, so by Thm.1.4.10 there
exists a lattice A’ = I,;, , such that AN A’ is saturated in both A and A’'. Because
ANA' is saturated in the orthonormal (hence self-dual) lattice A’, it is self-dualizable.
Thus by Thm.1.6.1 (or Thm.3) A is self-dualizable (though of course it itsell need

not glue to an orthonormal lattice). QED

If we replace the condition that A be integral with the weaker condition that
it merely be rational, then A self-dualizable will still imply A ~ {(1)} (since A
would have to be integral), but A ~ {(1)} could now imply only that A contains &
saturated lattice which is self-dualizable (this can be shown using the above proof).

Thus Thm.1.6.9 becomes
Theorem 3.1.6:  Let A be any rational lattice. Then A* AP ADADA ~ {(1}.
Thm.5 tells us that any two self-dualizable lattices are similar. In fact:

Corollary 3.1.7:  For integral latiices A; and A;, Ay ~ A, iff there exists a
lattice Ay (which we may take to be Euclidean) such that A, @ A; and A, @ Aj are
both self-dualizable.

For example, A3 = A} works.
Given the Chapter 1 theorems on LR-decomposition (e.g. Cor.1.4.5), we can

reduce the indefinite case to the Euclidean one in the following way:

Theorem 3.1.8: Suppose A is indefinite and rational with an LR-decomposition
(AL;AR). Then A ~ Ay & (AR)®. A is self-dualizable iff AL ~ Ag. Moreover, if
a second lattice A’ has an LR-decompostion (A ; AR), then A ~ A" iff Ap @ Al ~
Ay & Ag.

The first statement in Thm.8 follows from Thm.5, Thm.6, and the fact that

(A2; A2) is self-dualizable. The other two statements follow from this one.
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A number of applications of these results can be obtained from Thm.10, given
below, which in turn arises from the following lemma. Before stating the lemma,
we will define for completeness the term genus.

Two Euclidean integral lattices A} and \; are said to lie in the same genus if
they are of equal dimension, if they are both odd or both even, and if A}/\, =
A3 /A2, where the isomorphism preserves norms (mod 1). Hence all Type I lattices
of equal dimension lie in the same genus; similarly for all Type II lattices of equal
dimension.

This definition came from [CS3]. The more familiar definition (sce p.128 of
[CAS]) concerns the equivalence of the corresponding quadratic forms over the

p-adic integers, but is less geometric.

Lemma 3.1.9: If A is odd, self-dual, Euclidean, and of dimension n > 4, then
for any sufficiently large k € Z, 3z € A such that 22 = k. If instead A is even, then

so must be k.

Proof From Thm.1.6 on p.204 of [CAS], it suffices to prove the lemma for I, and
Ef,V¥n >4, and V¢ > 1. But this follows immediately from the facts that I repre-

sents all positive integers and Fjg represents all positive even integers. QED

This lemma is actually far stronger than we need in the proof of Thm.10.
Unfortunately it was necessary to quote a nontrivial result from [CAS], so our

proof of the following theorem is not completely self-contained.

Theorem 3.1.10:  Suppose a lattice A is self-dualizable and of signature (&, ¢).
Then an orthogonal decomposition {(m),...,(mk);(n1),...,(ne¢)} for A can be

found such that any prime p dividing ([]m,)([] n,) must also divide 2|A|.

Proof First we shall prove this for Euclidean lattices A of dimension n,
First suppose that this theorem is known to be true for each self-dual lattice of

a given dimension n and let A be a self-dualizable lattice of that dimension which
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glues to the self-dual lattice A;. Then A 2 Ay, so by Thm.4 A‘ll) C A for € = |A].
By assumption A; has an orthogonal decomposition given by m,’s which are powers
of 2. Then m, def ¢m, defines an orthogonal decomposition of A with the desired
property. Thus, if Thm.10 is satisfied by every self-duallattice of a given dimension
n, then it is satisfied by every self-dualizable lattice of that dimension.

The proof of Thm 10 for self-dual lattices A of dimension n will be by induction
on n. Suppose that A is self-dual. If A is of dimension n < 7, then A = [,, and the
theorem is trivially satisfied; take each m, = 1. Thus, any self-dualizable lattice of
dimension < 7 satisfies the theorem.

Now suppose the theorem has been confirmed for all self-dualizable lattices of
dimension < N and let A be any self-dual lattice of dimension V. Then Lemma 9 im-
plies that for some positive k € Z there exists a vector z in A of norm 4*. Thm.1.6.2

L is self-dualizable and hence, satisfies

tells us that the (V — 1)-dimensional lattice z
the theorem by assumption. Since |z| divides 4% (again by Thm.1.6.2), we have
that 1 has an orthogonal decomposition given by m,’s, : = 1,..., N — 1, which
are powers of 2. Then {(m;),...,(mn_1),(4*)} is a decomposition of A. Thus any
self-dual, and hence self-dualizable, Euclidean lattice of dimension N must satisfy
the theorem.

The proof for the indefinite case is similar; it suffices to verify the theorem
for the self-dual lw.tices Iy n and II, ,. But it holds trivially for I,, , (choose all
m, =n, = 1) and Ey (see Table 4 or the proof given above). Il ; has orthogonal
decomposition {(2);(2)} (if we let {b;,b2} be its basis satisfying 2 = 0 = b3 and
by - b, = 1, then b; + b, and b; — b, are the vectors defining the desired orthogonal

decomposition). Thus, I, , has a decomposition with m, = n;, = 2 and the

theorem is proved in the indefinite case. QED

2|A|, rather than merely |A|, is necessary in the statement of Thm.10, as oth-
erwise Eg for example would have an orthogonal decomposition {(1)®} = Ig, which

1s absurd.
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Sec.4 contains some of the interesting consequences of Thm.10.

3.2 The Primary Decomposition Procedure

In this section we discuss a method for finding which *similarnity class’ a given
rational lattice belongs to. It suffices, by orthogonal decomposition, to analyze all
n-tuples m, of positive integers. We will arrive at a method for simphfying a given
choice of m,’s which preserves similarity at the expense of iutegral and rational
equivalence.

The main points of this section are Thm.9 (the Primary Decomposition The-
orem) and Thm.10; the earlier theorems provide an algorithm (snmmarized in
Thm.10) for obtaining the primary decomposition of a given lattice. The section
closes with a more standard characterization of similarity, which can also be shown
to follow from the analysis of this section.

Note that because of Thms.1.1 and 1.6, similarity and direct sums define an
abelian group; the identity is {(1)} and the inverse of any group clement A is
A ~ AC=D, Thm.1.1 allows us to reduce each {(m,)} individually; 1.e. to consider
without loss of generality only 1-dimensional lattices. By ‘reducing’ m, we mean
finding integers n,i,...,n such that {(m,)} ~ {(nu),...,(nw&)}, where each n,,
has as few prime divisors as possible. After reducing each {(m,)} as much as
possible, Thm.1.6 (or, more precisely, Thm.2) will then enable us to treat the m,’s
collectively again, ultimately yielding one of the ‘canonical’ sets {(m}),(m}),...}

to be defined later.

Theorem 3.2.1:  {(mik}),...,(mnk?)} ~ {(m1),...,(mn)}, for any k, € Z.

The proof is simple: gluing the n glue vectors [0,...,0,m,k,,0,...,0] to the
lattice {(m1k?),...,(mak%)} results in {(m,),...,(mn)}.
Because we will be dealing so often with orthogonal decompositions, in this

section we will let {m,,...,m,} denote the n-dimensional lattice {(m,),...,(mq)}.
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Moreover, Thm.1 tells us we may assume each m, is square-free; 1.e. p divides m,
immplies p? does not. With this in mind we will let, for example, {m'} denote
{(m)*} dof {m,m,m,mj}.

For k = 1,3 let Py denote the set of all primes p congruent to k£ (mod 4), and
define Plgd-g Py U {2}. We know these three sets are infinite (e.g. by Dirichlet’s

Theorem on primes in arithmetic progressions — see Chapter VI of [SERY]).

Theorem 3.2.2: Suppose m # 1 is square-free. Then:

(mod 2) if no p € P divides m
(mod 4) otherwise '

(m*} ~ {m?} iff k=¢ {

To see this, note first that (Thm.1.6) {m*} ~ {1}. Now, for m square-free,
{m?)} def {m,m} is self-dualizable iff it has an integer-normed glue vector of order
m, i.e. iff 3k, ¢ € Z relatively prime to m satisfying k? + ¢2 = 0 (mod m), which
in turn is equivalent to the statement that —1 be a quadratic residue of m. The
square-free m’s with quadratic residue —1 are precisely of the form given in Thm.2.

(Recall the definition of quadratic residues: m is a quadratic residue of n iff
3z € Z such that £ = m (mod n).)

This type of argument will recur throughout the remainder of this paper. In
particular, quadratic residues will play a large role in what follows; for the basic
theory see any number theory book (e.g. Ch.1 of [SER]). As usual, let the Legendre
symbol be

1 -1 otherwise ’

(1_2) _ {+1 if p is a quadratic residue of q
q
for distinct primes p and ¢. For example, (%) = +1 for any odd prime p.
Dirichlet’s Theorem on primes in an arithmetic progression gives us the follow-

ing useful result:

Lemma 3.2.3: For any collection of distinct primes p;,...,px and any choice
for each ¢, € {1,-1}, 2 = 1,...,k, there exists a p € Py, ¢ € P; such that (&) =

(B) = ¢ for each .
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The following theorem tells us how to reduce products p - ¢ of primes,
Theorem 3.2.4: Let p and q be distinct primes. Then:
(i) if p€ Pia, q€ Py, {pa} ~ {p.q} iff (§)=+1;

{p,q} iff (8)=+1

(ii) if p € P12, ¢ € Ps, {pq} ~ { {p,g®} iff p=2 and (%).—.— -1

Gyt paen, o~ {0 T D=0

This important theorem allows us to reduce any product p- g of two primes,
except for when ¢ € P, and (s) = —1 — e.g. both {10} and {15} cannot be reduced.
It turns out, though, that {15} ~ {2,3%,(2:5)} — in fact it is possible to ‘reduce’
p - q whenever p € P3 (see Thm.5 below).

To prove Thm.4 first note that {p, pq, g} ~ {1} iffA ef {p, pq, q} is self-dualizable,
iff A has two glues, one of order p and the other of order ¢, and both with integral
norm. This is the case iff ( lp‘l) = (:q"-) = +1, using the kind of argument above to
prove Thm.2. This immediately gives us Thm.4(i) and the bottom half of Thm.4(ii).

Next, {pq,p} ~ {q} iff gz + y? = p2? has integral solutions for z,y and =.
From Legendre’s Theorem (see p.80 of [CAS]) this happens iff () = (L) = +1.
This gives us Thm.4(ii1) and the top half of Thm.4(i1).

Theorem 3.2.5: Suppose p € P3, ¢ € Py, and (fl’-) = —1. Then if (%) = -1,
{pa} ~ {2,P°,(2- 9)}; (3.2.1a)
otherwise for any ¢' € P; satisfying ( q?-,) = (%;—) = -1,
{pa} ~ {2,P°,(2-¢'), (¢' - 0)}- (3.2.1b)

Proof Suppose p € P3, ¢ € P, and (s) =-1.1If (%) = -1, then {p, pq,2q,2} has

integral normed glues of order p (since (:f) = +1), of order q (since ( ?f) = +1)and
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of order 2 (since (%) = +1) and hence is similar to {1}. The case when (%) =+1is

dealt with similarly. QED

The existence of ¢' in Thmn.5 is guaranteed by Lemma 3. Note that eq.(15)
is also satisfied when (%) = - 1. The point of Thm.5 is that (together with the

following theorem) it tells us how to remove any prime in P; from any product

P1:p2 Pk

Theorem 3.2.6: {my,...,mp} ~ {m],...,m.} implies {Amy,...,Am,} ~

{Am},..., Am},} for any positive A € Z.

The proof is obvious. Note that there must be the same number of m;’s as
m'’s: {6} ~ {2,3%} but v12} ~ {3} isn’t similar to {4,6%} ~ {2,3}.

Thms.4-6 allow us to reduce a large number of {m,}’s. For example, using
{2-3} ~ {2,3%) and {3-5} ~ {2,33,(2-5)}, we get {2-3-5} ~{5-2.3,5%,5} ~
{5-2,(5-3)%,5} ~ {(2-5),23,3%,(2-5),5} ~ {2,3,5} by applying Thm.4(ii), eq.(1a),
Thm.2, Thm.6, and Thm.2 in that order.

In particular, the previous theorems allow us to reduce any single {m} to a
direct sum {n,,...,nx}, where each n, is square-free, has fewer prime divisors than
m (except perhaps when Thm.5 is used) and is either:

(a) itself prime; or

(b) can be decomposed into distinct primes n; = p,---p,, where p; € Pq,
p; € P for ) > l,and(f",—)=—1forany1$j<j’5£.
For example, {170} = {2-5- 17} is of type (b).

The following theorem will allow us to further reduce those n; of type (b).

Theorem 3.2.7:  Suppose p € Pz and ¢,r € P;. If n = pgr is of type (b), then
{par} ~ {p,q,7}.

(This can be proved in the manner of Thm.4.) Thms.6 and 7 allow us to reduce

94




L3

any type (b) n to a direct sum of a number of n,, each of type (a), or of type (b)

with only € =2 prime divisors.

Let P {pg|p€ Prz,q € P, (2)=-1}. We immediately get:

Corollary 3.2.8: Let A be any rational lattice. Then A ~ {ny,...,ni}, where

either n, is prime or n, € P'.

It turns out that the decomposition given in Cor.8 is not quite unique: e.g. {2-

5,5-13,13 - 2} ~ {1}. Call a subset {s,32,...,5,} of P’ a loop if each p € Py,
divides either 0 or 2 of the s,. Loops look like:

P1pP2, P2P3y ' Pn—1Pny PnpP1.

It will be shown below that every loop is similar to {1}. In fact, they generate all
subsets in P’ similar to {1}.
Let P" be any subset of P’ not containing any loops, and such that any larger
subset does contain loops. The following two paragraphs give one way of doing this.
Write any element of P’ as p-q, where p < ¢, and define a lexicographic ordering

< on P’ by
p-q=p ¢ iff either g<¢', or g=¢q' and p<p'.

Let ry < r; < r3 < +-- be an enumeration of P’. For example, r; = 2.5 and
To = 2.13.
Define subsets P}, of P’ recursively as follows: Py = §; and, for k = 1,2,.. .,

P = Pi_, if rr belongs to a loop in P;_, U {rs}
k= 1 PL_, U{re} otherwise '

Define P" = UPj. The elements in the relative complement P’/P" can be expressed
in terms of those in P". For example, r; = 5-13 is the ‘smallest’ element of P’ not

in P". It can be written as {r3} ~ {r1,r2}. Hence:
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Theorem 3.2.9 (The Primary Decomposition Theorem): Let A be a rational

lattice.

(i) Then A ~ {m,,...,m,}, where either m, € P;2UP" and occurs only once,
or m, € Py and occurs at most 3 times.

(ii) Suppose m, € P;; U P; U P", for : < n. Suppose further that no m;’s
are the same. Then for any integers k,¢, > 0, {(m1)*,...,(m,)f"} ~

{(m))",...,(my)%} iff, for each i < n,

k.

, [(mod 4) if m, € P
(mod 2) otherwise

Proof First note that by the usual reasoning any loop is self-dualizable. Thus
Thm.9(1) follows immediately from Cor.8.

To prove Thm.9(ii) it suffices to show it for £, = 0, k, # 0, Vi, j. The direction
“=" is obvious from Thm.2. Assume A = {(m;)*,...,(m,)*"} is self-dualizable.
Suppose m, € P; and assume without loss of generality that 0 < k, < 4. Then
there must be at least one glue of A of order m,. This requires k, > 4 (since m,
can divide no other m,) and hence k, = 4. Therefore we may assume each m, is in
P2 UP" and that each k, = 1.

Since there are no loops in P and |A| must be a perfect square, we may arsume
for contradiction tha* m, o q € Py3. Suppose ma,,...,my, are the remaining m,’s
v/hich ¢ divides. Then for: = 2,...,2¢, m, € P". Write m, = ¢p,, for p, € P2,
and let ¢' € P, satisfy (5= (55-) = —1. Adding 2¢ copies of {gq'} to A and noting
that {¢¢',qp,} ~ {¢'p,} allows us to assume without loss of generality that ¢ = 1.
It is now easy to verify that there can be no glue of of order ¢, so such a laitice A

cannot be self-dualizable. This completes the proof of the Decomposition Theorem.

QED

Part (i) of the Primary Decomposition Theorem characterizes the ‘primary

decompositions’. This theorem says that any similarity class contains exactly one of
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these. For convenience, {1}, rather than @, will be called the primary decomposition
for the class self-dualizable lattices.

Thus the similarity classes of lattices are in a natural one-to-one correspondence

with the finite subsets of
Plg u 'P" U (P3 X {1,2,3})

In Table 6 can be found the primary decompositions of all (square-free) prod-
ucts of the primes < 17. Use is made there of the enumeration r, of P' given
above.

Recall that there are two possibilities for an m, in the primary decomposition
of some lattice A: it can either be a prime, or the product of two primes. If a prime
p equals one of the m, in the primary decomposition of A, we say p is a singlet in
that decomposition. Then p € Pj; can be a singlet 0 or 1 times in the decomposition
of A and p € P; can be a singlet 0,1,2 or 3 times.

For example, {6} ~ {2,3%}, so 2 and 3 are the only singlets, occurring 1 and 3
times respectively. On the other hand, no prime is a singlet for {10}.

Inductively collecting the previous theorems, we get the following powerful
result. Thm.10(a) tells us that to verify that two lattices are sirnilar, it suffices to
compare the number of times each prime is a singlet in their primary decompositions.
Until now the test was that the two primary decompositions themselves be equal —
this apparently is more work than is necessary. Thms.10(b-€) tell us how to quickly
compute the number of times each prime will be a singlet, given an orthogonal

decomposition for the lattice.

Theorem 3.2.10: Let A and A’ be any rational lattices. Then:

(a) A~ A"iff |JA|]|A| is a perfect (rational) square and, for each p € P, U Py, p is
a singlet in the primary decomposition of A the same number of times as it is
a singlet in the primary decomposition of A';

(b) If p € PLU P; and p does not divide N, then p cannot be a singlet in the

prime decomposition of N;
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Table 6: Primary Decompositions Involving Primes p Less Than
19

p< 3 2x3 ~ {2 3%).
p <5 ri % 245 irred.;  3x5 ~ {2 3% r}; 243x5~ {2 3 5).
pST: 24T~ {2 7} 3xT~ {3 73}; 5x7T~ {2 r, T}
24347 ~ {2 3 T%}; 24547~ {2 5 T°); 34547~ {3° 5 T);
2+3x5%7 ~ {3 7 r}.

p<1l: 2+~ {2 113} 3x11l ~ {33 11}; 5#11~ {5 11};
T+l ~ {7 11} 2+3%11~ {2 3 11%}; 2«5x11 ~ {113 r};
21 ~ {2 7T 11} 36l ~ {2 3 11 m}; 37l ~ {3 73 113);
5xTx1l ~ {2 r 72 11%); 2«3x5x11 ~ {2 3 5 113};
2x3xTx11 ~ {2 3 7° 11}, 2#5T+11 ~ {2 5 73 11}

54 T*11 ~ {3 5 7 11%}; 2#3+5+T*11 ~ {3 7 11 7},

p<13: r; % 2413 irred.; 3x13~ {3 13}; 73 d-—"-{5*13~{r1 T2 };
Tx13~ {2 7 )y 11x13~ {2 11° rp}; 243#13 ~ {33 1y}
2¢5¢13 -~ {2 5 13}, 24713 ~ {2 7° 13}; 2411%13 ~ {2 11 13},
3643 ~ {2 3 5 15} 33~ {23 7 rp} M3~ {2 3 112 ry)
503 ~ {5 7 13}; 543~ {2 11° 13 r}; 74143 ~ (7 11 13}
2+355%13 ~ {3 13 ri}; 2#3x7x13~ {2 3* 7 13},
2x3x11%13 ~ {2 3 11 13}; 2x5xT*x13~ {2 7 r, 7}
2x5x11%13 ~ {5 11 rp}; 2x7x11%13 ~ {73 113 rp};
3x5xTx13 ~ {2 3° 7° 13 r}; 3#5x11%13~ {3 5 113 13};
BxTall#13 ~ {3 7 11 13}; 5+Tx11#13~ {2 5 7 11 ry);
243454713 ~ {3 5 T° rp}; 2+3x5x11x13~{2 3% 11 r r,};
2x3xT*11x13 ~ {3 7 11° rp}; 2#5xTx11%13 ~ {7 11° 13 r};
3SGMAINS ~ {3 7 11 1y 1y} 286M1d3~ {2 33 5 7 11° 13)

p< 1T 2617~ {2 17}; 31T~ {2 3% r; .} re 517 irred.;
T~ {2 T rorgd; U7~ {2 11 7y 1)y 13417 ~ {13 17);
24317 ~ {3 ro ma}; 245x17~ {5 1y ry}; HTHLT ~ {3 1y}
2+11%17 ~ {11 1 rq}; 2¢13%17 ~ {17 r2}; 3+5%17~ {3 5 17},
IxT+17T ~ {3% 7 17}; 3*11x17~ {3 113 17}
3#13+17~ {2 3% 13 r; ry);
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ST ~ {5 T 17}; BT~ {2 113 17 r }; 54347 ~ {5 ry 1y 1)
T#11%17 ~ {7° 11 17}; T*13*17~ {7 r; ry ry};
11%13#17 ~ {11 ry 7o 14}y 2%3%5+17T ~ {3* 1T r};
2¢3%T#17T ~ {2 3 7 17}; 2x3*11%17~ {2 3* 11 17);
2x3x13%17 ~ {2 3 7 7y re}; 254717 ~ {7 1T r )
2x5x11%17 ~ {2 5 11 17}; 2%5x13x17 ~ {2 13 r,};
2471117 ~ {2 T 11° 17); 247#13+17 ~ {7 13 =, n)};

2 11%13%17 ~ {113 13 ry rg); 35+T#17 ~ {3 7° n};
Jx5%11%17 ~ {2 33 5 113 ry 14}y 3x5%13%17~ {3 17 n, r2};
IxT+11x17 ~ {2 3 T 11 7y rq}; 3T*13x1T ~ {2 3 72 1T 1)y
3x11%13%17 ~ {2 3 11 17 r}; S5*T+11x17T ~ {2 5 7 Il ry m4);
5¢T#13%17 ~ {2 7 13 17 r}; 5+11+13x17~ {5 11 13 17);
711413417 ~ {7 11° 13 17} 234557417~ {3 5 7 1 r4);
24345411417 ~ {2 3 11 re}; 243551317~ {2 3° 5 13 17};
2x3xT+11%17 ~ {33 7 113 r; ry}; 234T#13x17T~ {2 3 7° 13 17};
2x3x11%13%17 ~ {2 3% 113 13 17}; 25x7x11x17 ~ {2 7 113 r,};
245xTx13%17 ~ {5 73 17 73}y 2#5+11x13+17 ~ {2 113 17 r; )
26T#1 1413617 ~ {7 11 17 ry}; 3sSxT*l1xl7 ~ {2 3 T3 11 17 nr};
BSHTHIIAT ~ {2 3 5 T 13 ry 14} 365+11413417 ~ {3° 11 13 ry)
IPAMIMT ~ {2 3 7% 11° 13 r ry} ST~ {2 T° 113 1y 7y)
2BGATHIAT ~ {2 3 5 70 11° 17} 26395+7+1341T ~ {3 7 1y 1)
2x3x5x11x13%17T~ {2 3 5 113 r rp 14}
2x3xTx11%13%17~ {2 3 7 11 r; ry ry};
2x5xT+11%13x17T~ {5 7 11 13 r ry}y

3#5xTx11%13x17~ {2 33 5 7 113 17 r};
2x3#5xT*11%13x17~ {3 7 11 13 17 r}.
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(¢c) If p€ Ps and p does not divide N, then in the primary decomposition of Np,
p is a singlet

(%) (mod 4) times;

(d) If p€ P, and p does not divide N, then in the primary decomposition of Np,

p is a singlet
1+(
2

= |2
N

times;

(e) Assume N is square-free. Let ny be the number of times 2 divides N. Let
p: be the primes in Py dividing NV and define N, = N/p,. Then in the primary

decomposition of NV, 2 is a singlet

1—-(N
ng + Z ép' ) (mod 2) times.

‘
Proof Thm.10(a) follows from Thm.1.4 and the following observation:

Let m, = p,—1poy € P", i =1,...,L. Then for any p € P, satisfying (f'-) =
-1 Vi,

{m1,...,me} ~ {p1p,...,p2ep} ~ {Pip, ..., PP}

where p! are the distinct primes occurring an odd number of times in {p1,...,pa¢}.

Thm.10(b) follows immediately from the theorems leading up to Thm.9. In-
ductively using Thm.4(iii) and eq.(1b) gives us Thm.10(¢). Thm.10(d) follows from
Thm.4(i) and by noting that when p, € P, satisfy (%) = —1 Vi < 3, then

{p1- px} ~ {p1p2,. .., P2k—1P2k }

{Pl . 'P2k+1} ~ {Pl,Pz, ces ,sz}-

Thm.10(e) is just combinatorics. QED

Examples of the power of Thm.10 are given in the proofs of Thms.4.1-4.4.
Thm.10 can be used to construct the primary decomposition of any orthogonal de-

composition, and hence of any lattice. Together with Thm.1.2 this gives a complete
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classification of rational equivalence. A more standard classification is given by the
weak Hasse principle (namely, that two lattices are rationally equivalent iff they are
equivalent over the p-adic rationals for all primes p € oo — e.g. see pp.76-78 of

[CAS]), or equivalently by the following theorem (see e.g. p.372 of [CS1)):

Theorem 3.2.11: A=A’ iff
(i) A and A’ have the same dimension and signature,
(11) |AJ|A'] is a perfect (rational) square, and

(ii1) for each prime p > 3, A and A’ have the same p-excess (mod 8).

This theorem is proved, and p-excess is defined, in pp.370-372 of [CS1]. It

implies the following:

Theorem 3.2.12: A~ A’ iff
(1) |A]|A'| is a perfect (rational) square, and

(i1) for each prime p > 3, A and A’ have the same p-excess (mod 8).

The 2-excesses of A and A’ may differ here. What is interesting here is that,
using the fact that A ~ A’ iff their primary decompositions are equal, Thm.10 im-
mediately gives us Thm.12, and Thm.11 then follows from Thm.1.2. Thus we have
derived a central result of the theory of quadratic forms from a more geometric lat-
tice perspective. (Of course, conversely, Thm.11 can be used to derive the theorems

in this section).

3.3 Integral Coordinates

In this section we consider a question addressed in (GAN] and (independently!)
a couple years later in [CS4]. Some of the history of this problem is given in [CS4).
The title for this section comes from the Conway-Sloane paper. Although this
section is interesting in its own right, some of the results obtained here will be

useful in Sec.4.
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Definition 3.3.1:  An n-dimensional Euclidean lattice A is said to be (¢, k)-
integrable if A'® is integrally equivalent to some sublattice of In4x. A lattice A
with signature (m, n) is called (£; k4, k_ )-integrable if A‘® is integrally equivalent

to some sublattice of Itk ntk_-

In other words, A is (¢, k)-integrable iff the vectorsin A can be given coordinates
€=Y%(zy, ..., Lk4n), where all z, are integers. We will be most interested in the
cases where k,ky,k_ > 0 and ¢ > 0 are integers, and A is integral.

As an example, consider A = 4; = {(2)}. Clearly in this case A is not (1,0)-
integrable. However it is (1, 1)-integrable: e.g. map the norm 2 vectors +r, to
(£1,41). In fact, Lagrange’s Theorem (see e.g. p.47 of [SER]) is the statement that
for any positive integer N, the one-dimensional lattice {(N)} is (1, 3)-integrable.

Note that A, 1s (2,0)-integrable; however A, for n > 2 is not (¢,0)-integrable
for any £. For example, let r; = —ey +e3 and r; = —eg + €3 be the usual basis of A,
and suppose we can give them coordinates £~'/%(a,b) and ¢71/%(¢, d), respectively,
for integers a,b,c.d (which we may take to be relatively prime). That means a® +
b2 = ¢’ + d? = 20 and ac + bd = —¢. The second of these tells us that ¢ € Z, so
the first implies @ = b and ¢ = d (mod 2). But odd? + odd® = 2 (mod 4) and
even? + even? =2 (mod 4), so we must havea = b =c=d = 1 (mod 2). The first
equation then implies ¢ is odd and the second implies ¢ is even. This contradiction
means that no such coordinates can be found for r; and r, — 12.e. that 4, is not
(¢,0)-integrable. The proof for n > 2 follows from this. However it is easy to see
that each A, is (1, 1)-integrable (the definition of A, given in Sec.1.5 expresses it as
a sublattice of I,,41; this can also be seen from the gluing {A4,,(n+1)}(1,1] = I,4+;).

Finally, consider the lattice Es. By a determinant check it 1s easy to show
that it also cannot be (¢,0)-integral for any ¢ (see e.g. Thm.2(iv)). Suppose for
contradiction that it is (1, k)-integrable for some k > 0. Let r,, t = 1,...,6, be the
root vectors of Eg, as in Table 2, and let ¢,, for j = 1,...,6 + k, be an orthonormal

basis for Is+x. Each of the basis vectors r, has norm 2, so must have the form
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te, te; fori # j.

Without loss of generality let r, — e; — €. Then 1, - r3 = —1 tells us that
we may take r3 — e; — e3. Similarly, ry - 73 = =1 and rq-rp, = 0 implies cither
r4 — —e; —eg Or T4 — €3 —e4. However, in the first case coordinates for r5 cannot be
found, because of both r5-r4; = —1 and rs-r; = 0. Thus we must have ry — ¢, —¢,.

Now look at r¢. From rg - r3 = =1l and rg - ry = 16 -1y = 0 we get either
re — —e; — e2 (in which case coordinates for r; cannot be found) or rg — e3 + ¢,
(in which case coordinates for r; cannot be found).

Therefore Eg cannot be (1, k)-integrable. A similar argument establishes this

for F7; and Eg. However, see Thm.1 and Thm.3.

Theorem 3.3.1: Let A be any n-dimensional Euclidean rational lattice. Then
A 1s (£, k)-integral for some integers £, k. Moreover, ¢ may be taken to he a perfect

square, and k£ may be chosen to be 3n.

Proof Let {b,} be any basis for the lattice and let {v,}, j = 1,...,n, be an
orthogonal basis for any orthogonal decomposition of A (we may choose the norms

vf € Z). Then there is an invertible n x n Q-matrix B = (B,,) satisfying
b,:ZB,JvJ, for i=1,...,n
=1

(in fact B™! is the Z-matrix expressing the v,’s as linear combinations of the b,'s).

Now any orthogonal lattice (e.g. {v1,...,vn)) is obviously (1,k)-solvable —
in fact k = 3n works by Lagrange’s Theorem. Choose a nonzero ¢ € Z so that
¢ B is a Z-matrix. Then providing the vectors v, with integral coordinates induces
coordinates 1/¢'(z,1,..., ., ) for the basis vectors b,, where z,, € Z. In other words,

we have shown that A is (£'2, k)-integrable. QED

Of course, in this Euclidean case, the Es example considered above shows that
in general we must have both ¢ > 1 and k > 0. Contrast this with the indefinite

case, considered in Thm.3.
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Thms.1.10 and 4.3 allow us a quicker (but less elementary) proof of Thm.1 (in
fact they allow us to strengthen Thm.l — see Thm.2(vii)). See also the proof for
Thm.3 given below.

Some easy consequences of the definitions and previous results are collected in

Thm.2.

Theorem 3.3.2: Let A be any n-dimensional Euclidean rational lattice. Then:
(i) if A is (4, k)-integrable, then it is (¢, ')-integrable for any &' > k; if A is
any sublattice of A, then it too is (¢, k)-integral;
(i1)  if A is both (¢, k)-integral and (¢', k' )-integral, then it is also (¢ + &',k + k')-
integral;
(iii) A is self-dualizable iff A is (4™,0)-integrable for some m;
(iv)  for integral A, A is (¢,0)-integral for some integer ¢, iff AUAD is self-dualizable;
if n is even, this condition reduces to A being self-dualizable;
(v) A self-dual and (1, k)-integral for some k, implies A = I,,;
(vi) A, is (1,1)-integrable; D,, is (1,0)-integrable; Eg, E; and Ej are (2,2)-,
(2,1)- and (2,0)-integrable, respectively; Dy, is (2,0)-integrable;
(viil)  Ais (4,3)-integrable (if A is integral we may also take £ to be a power of 4);
and

(viii) A is (1,0)-integrable if A is integral and has dimension n < 5.

Proof (i) is obvious. To see (ii), let an arbitrary vector v € A have integral
coordinates 1/V¥(zy,...,z;) and 1/V(z!,... 2, ). Then it is trivial to verify
that it can be given integral coordinates 1/v/Z + #(zy,...,zk,Z},...,2% ) (i.e. that
all dot products will be preserved).

Both (ii1) and (iv) are immediate consequences of Thm.1.10.

To see (v), let A’ = A be such that A’ C I,,;x. Define A" to be the sublattice
AL of Iyx. Then by Thm.1.6.2, |A"| = 1, so by Thm.14.2 A' @ A" = I,

The desired result now follows from the uniqueness of direct sum decomposition
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(Thm.1.2.3).
To see that D:’n, and hence Eg, is (2, 0)-integrable, sce Table 4. (i) now tells
us that Eg and E; are (2,2)- and (2, 1)-integrable, respectively,

(vii) follows from Thm.4.3 and Thin.1.10. (viii) now follows from (vii). QED

So far we have constructed only Euclidean lattices. The indefinite case is much

simpler, because the indefinite self-dual lattices are basically unique.
Theorem 3.3.3: Let A be any integral lattice. Then A is (1; 1, 2)-integrable,

Proof By Thm.4.3, A issimilar to a 3-dimensional indefinite lattice {(m), (ma); (m+4)}.
where the m, are positive integers, not all even. Then A & {(m3); (m), (m2)} is

indefinite, odd and self-dualizable; hence it glues to L4, nt2. QED

Of course, A is also (1;2,1)-integrable. A in Thm.3 may be either Euclidean
or indefinite.

Thms.1 and 3 can be expressed in the following equivalent way:

Corollary 3.3.4: Let A be any symmetric n x n Z-matrix and A’ any symmetric
positive definite Z-matrix. Then there exist Z-matrices M and M’ (not necessarily
square), a positive integer ¢, and a matrix G of the form diag{+1,...,+1,-1,...,-1}
such that

A=MGM"' and A'=¢M' M'

These results were also obtained in [CS4], although in most cases their proofs

were different. Their main interest was in establishing the following theorem.

Theorem 3.3.5: Let ¢(¢) be the smallest dimension n for which there exists an
n-dimensional integral lattice which is not (¢, k)-integrable for any k. Then:

@ o) =6;

(i)  »(2) =12
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(i)  o(3) =14
(iv) 21 < p(4) <25
(v) 16 <¢(5) <22
(vi) () <4+ 2, (£ odd);
(vii)  @(€) <2mel (1 + 0(1)), (£ even);
(viii)  @(¢) > 2log logl/log log logé (1 + o(1)); and
(ix) any 24-dimensional Type II lattice, and any self-dual lattice in dimensions

< 24, is 4-integrable.

Thm.5(i)-(viii) is Theorem 1, and Thm.5(ix) is Theorems 17 and 18, in [CS4].
We will use Thm.5(ix) in the following section to obtain bounds for the m,’s in

orthogonal decompositions of lattices.

34 Some Consequences and Examples

To help illustrate the usefulness of the preceding analysis, we have included
here a number of its cunsequences. This section will thus be a little more disjointed
than the previous ones.

We will generally adopt the convention of Sec.3.2 and write {m,,...,m,} for
the n-dimensional lattice {(m),...,(mn)}.

Because root lattices are so effective at constructing other lattices, convenient

expressions for their similarity classes should come in handy. Hence:

Example 3.4.1: The root lattices  From Table 4 we can read off D,, ~ Fg ~
{1}, E7 ~ {2}, and E¢ ~ {3}.

It is trivial to prove I{"H) ® A, is self-dualizable (in fact it glues to In4y);
hence 4, ~ {(n + 1)3}d§f {n+1n+1,n+1}. (End of Ex.1)

Obviously, Thm.1.5 allows us to quickly test whether a given base lattice is

self-dualizable. This is useful for example in the gluing construction of strings
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described in Sec.6.3. One simple but effective constraint was that the lattice must be
integral and have a perfect (integral) square as its determinant (e.9. 4, is not self-
dualizable). But by no means is this a sufficient condition. For example, 4,,¢pd,, has
determinant (n+ 1)?, but we see from Ex.1 that it is similar to {n+1,n+ 1}, which
is not always similar to {1} (sec Thm.2.2). In fact, for any prime p, A,y h A, is
self-dualizable iff p = 2 or p = 1 (mod 4), in spite of the fact that its determinant
is always a perfect square.

The Niemeier lattices (see Table 5) provide several other examples. For exam-
ple, by Ex.1 A;7 ® E7 ~ {(18)%,2} ~ {(2)%,2} ~ {1}, so 4;7E7 is self-dualizable
and indeed glues to one of the Niemeier lattices. This test quickly confirms that all
Niemeier root lattices are self-dualizable, but it alone cannot distinguish between
self-dual and self-dualizable.

Similarity also allows us a quick test for A; C Aj: Ay is saturated in Ay only
if both A} ~ A; and |A(|/|Aq] is a perfect square. Unfortunately it is difficult to
find sufficient conditions for A; being saturated in A, (of course, rational shifting
provides one).

Unrelated to these considerations, the Hilbert symbol (see Chapter III of
[SER]) (a,b)z of a and b relative to Z is defined to be +1 if 22 — az? — by? = 0 has

a solution (z,z,y) # (0,0,0) in Z3, and otherwise equals —1. We obviously have
(a,b)z = +1 iff {a,b} ~ {ab}.

Thm.1.10 has many applications to the theory of self-dualizable lattices, as we
shall soon see. It is natural to ask if it can be generalized to all lattices. The
following example (and also Ex.3) shows that it cannot. The technique developed

here will also be useful elsewhere in this section.

Example 3.4.2: Consider the two-dimensional lattice A’ given by the Gram

3 1\
1 5)
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Ay

It has determinant 14 = 2- 7. Note that A’ ~ {3,314} ~ {2,(7)%}.

Suppose it contained a vector x of norm 2k? for some k € Z. Then there would
be another lattice vector, orthogonal to z, of norm 2 - 14¢? for some ¢ € Z, by
Thm.1.6.2. In this case A’ ~ {2.7}, contradicting the previous calculation.

Similar conclusions apply if we assume 3z € A, with norm k2, and hence 7k?
or 14k%. Therefore, in particular there cannot lie in A’ a vector of norm 2k7t 5o

the desired m,’s cannot be found. (End of Ex.2)

It is now natural to ask if we at least can find m,’s, : = 1,...,k, such that
A ~ {my,...,mg} (which is much weaker than saying that the m,’s constitute an
orthogonal decomposition for A) and such that any prime p dividing at least one of
the m,’s must also divide 2|A|. For example the lattice A’ in Ex.2 satisfies this, as

do all the root lattices (see Ex.1).

Example 3.4.3:  Consider the two-dimensional lattice A" given by the Gram
3 1
1 6)°

It has determinant 17. Note that A" ~ {3,317} ~ {3,2,(3)*,2.5,5 17} ~

{2,2-5,5-17}, using Thm.2.5(i1). Since (1—27-) = +1, Sec.2 tells us this is not similar

matrix

to any of {1}, {2}, {17} or {2,17}. Hence, this answers in the negative the question

posed in the previous paragraph. (End of Ex.3)
However, the following result holds.

Theorem 3.4.1:  Given a lattice A, there exists a ¢ € P, and integers my,...,my
such that A ~ {m,,...,m;} and such that any prime p dividing at least one of the

m,’s must also divide 2¢q|A|.

Proof Let {m,,...,m,} be the primary similarity class of A, as defined in Thm.2.9.
The singlets p must, by Thm.2.10, divide 2|A|.
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Choose g € P, to satisfy (g) = —1 Vp dividing []m,. Since for any m, = p'p",
{m,} ~ {P'q,p"q}, we get the theorem. QED

For example in Ex.3 ¢ = 5 may be chosen. We can also demand that all m,’s
be it P13 U P3UP’, and that ¢ divides only those m,’s in P'.

The technique used in Ex.2 can now be applied to two-dimensional (Euclidean)
lattices of any determinant (or, equivalently, positive definite binary quadratic forms
of any discriminant). For example, let A be any two-dimensional lattice of deter-
minant 3. Then automatically we know A cannot contain any vectors of norm 7h?,
11k2, 14k2, ..., for any integer k, for otherwise Thm.1 would be violated. These
results can be explicitly verified by checking the two lattices of dimension 2 and
determinant 3: A, and I; @ I}s).

Similarly, let A be any two-dimensional lattice of determinant m? for some
m € . When m is large we can expect there to be a large number of candidates
for A. Nevertheless, none of them can contain vectors whose norm is 3k* or Gi*
(uuless 3 divides m), or 7k? (unless 7 divides m), etc.

In other words, from inspecting the discriminant alone one can immediately
determine infinite families of numbers that a given positive definite binary quadratic
form cannot represent.

We already know that A* ~ {1}. We can do better than that. Thm.2.9 implies

the following surprising generalization of Thm.2.2:

Theorem 3.4.2: Suppose A; ~ A are rational. Then A; & Ay ~ (1} iff
{|A1],]A2]} ~ {1}, i.e. iff for each p € Pj, the exact power a, that p occurs in

the expansion of |A;} into o product of primes is even.

Of course, a special case of this is A = Az, which can be used to immediately

prove Thm.1.5.

Theorem 3.4.3:  Any rational lattice A is similar to an odd 3-dimensional lattice
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A’ with any desired signature {(3,0),(2,1),(1,2),(0,3)} (e.g. you may choose A’ to

be Euclidean).

Proof Let {my,...,my,} be the primary decomposition of A. Let p, be the distinct
primes in P2 dividing an odd number of m,’s, and let p, be the primes in Pj,
dividing an even, nonzero number of m,’s. Let ¢, be the primes in P; that are
singlets an odd number of times, and let g; be the primes in P; that are singlets an
even, nonzero number of times (hence twice).

We are interested in choosing primes p,q € P; U Py so that

A~ A E (T ea (]2, ] a2 )}

It suffices, by Thm.2.10(a), to verify that p,q, p;, P, ¢ and g all are singlets for A3
the same number of times they are singlets for A.
That Az has the correct number of singlets p,,pl,q, and q, fixes, respectively,

[
) T

(—p—), (l), (g—), and (B,) for each 1.
1 q,

That p and q cannot be singlets for A3 gives us values for (5) and (%), depending
on whether p € P, or P; and whether ¢ € P, or P;. It is possible, using quadratic
reciprocity and Lemma 2.3, to choose p,q € P; U P; in such a way that they possess
all the desired quadratic residues.

The 3-dimensional lattice A; constructed above was Euclidean. An analogous
argument shows that we could have imposed on it the signature (+—+), for example
— this would affect of course the various quadratic residues calcul~ ted there, but as
before primes p and ¢ could be found to satisfy all the necessary constiraints. Finally,

applying the above constructions to A'~1) shows that 3-dimensional lattices similar

to A can also be found with the signatures (1,2) and (0, 3). QED

Hence, any rational quadratic form is rationally equivalent to a diagonal form,

all but three of whose entries are +1.
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In general, the full three dimensions are required, as we see in this next theorem.

Theorem 3.4.4: Suppose p,q € P; satisfy (f;—) = ~1. Then any lattice similar

to
{p,q,pq}

is at least 3-dimensional.

Proof Suppose for contradiction that {p,q,pq} ~ {a,b}, for some a,b € Z. We
may without loss of generality assume a and b are square-free. Then Thm. 1.4 implies
a = +b. Therefore {p,q,pq,a,xa} ~ {1}. Thm.2.10(d) tells us that p is a singlet
in the primary decomposition of the LHS, while it is not a singlet on the RHS;
Thm.2.10(a) tells us that this is a contradiction. QED

A similar sort of proof shows that any lattice similar to {q,q,q} is at least

3-dimensional, for any q € P; satisfying (%) = +1.

Theorem 3.4.5: Let A; and A, be any two rational lattices of equal dimension

n and signature. Then there exists a A; = Az such that Ay N A} is of dimension

z2n-—2.

In general, n — 2 is the best that can be done; for example, consider A} ~ {1}
and A; to be equal to certain direct sums of the lattices given in Thm.4.

Using techniques such as those applied in the above proofs, Thm.2.10 can also
be used to prove Thm.5, but a far simpler proof is Meyer’s Theorem (see e g. pp.20-
22 of [MH]): any indefinite lattice of dimension > 5 represents 0 nontrivially.

Let Ay and A; be two n-dimensional Euclidean self-dual lattices. From Thin.2.4.2
and Thm.2.4.1 we know it is possible to shift between them, the shuft group Q heing
isomorphic to Ay /(A;1NA}), for some A = Az. Now by Thmn.1.10, A, and A, contain
saturated orthogonal sublattices equivalent to {4V1,...,4M} and {4V2,...,4M},
respectively, for certain positive integers N; and N,. Let N =max{N,, N;}. Choos-

ing A, ~ A; to contain the sublattice of A, equivalent to {4V,...,4V} (we now
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know such a A} can be found), the order of 2, namely y/|A; N A}], is seen from

Lemma 1.4.1 to be a power of 2. Hence:

Theorem 3.4.6: Any two self-dual lattices of equal dimension and signature can

be connected by a shift whose shift group has order a power of 2.

This is an important result. Now consider shifting I, by a single shift vector
of order 2. The result is another self-dual lattice A; of dimension n. Shift A,
by another order 2 (with respect to A;) shift vector; the result is another self-
dual n-dimensional lattice A;. Continuing in this way, a large number of lattices
As,..., Ak, ..., can be constructed. By choosing these order 2 shifts sufficiently
carefully, how many of the n-dimensional self-dual Euclidean lattices are left out?

Thm.6 implies that all of them can be generated in this way:

Corollary 3.4.7: Any n-dimensional Euclidean self-dual lattice A can be ob-

tained from I,, by successively applying order 2 shifts.

Proof From Thm.6 we have Q = Cpi, X - x Cyx,. Let {w,} be the corresponding
generators of 2 — choose these in the glue gauge. Define Ay = I,({2*~'w;},0), ...,
Ak, = A —1({w1 1,0), Ak 41 = Ak, ({2F71w2},0), ...y Ay = Aym1({we},0), where
we have written s for }:f=l k,.

Note that the shift group taking A, to A;4; has order 2. Thm.2.4.6 shows that
A=A, QED

Recall the definition of neighbouring lattices given in Sec.2.4. Consider the
neighbourhood graph G,, of all self-dual lattices of a given dimension n. It consists
of a node for each such lattice, with two nodes being connected iff the correspond-
ing two lattices are neighbours. Then Cor.7 is precisely the statement that G, is
connected for each n. Similar reasoning shows that £,,, the neighbourhood graph

of all Type II lattices in dimension n, is connected. s, £16 and €24 are given on

112




LI

¢ 3

p-423 of [CS1]. (More precisely, the graph of £54 there was made with the enumer-
ation of the 24-dimensional Type I lattices in mind. It can be shown however that
two different 24-dimensional Type II lattices are neighbours iff their corresponding,
nodes in the graph in [CS1] are connected; moreover, every Nicmeier lattice is a
neighbour of itself, and A,4 is not.)

Moreover, it is not difficult to show that in 8k dimensions, every Type I lattice
is the neighbour of a Type II lattice (this in fact is established in the proof of
Thm.10 given later in this section), and vice versa. For example, a neighbour of I,
is D'{4, while the Leech lattice Ayq has Oy3 @ I} (where 043 is the so-called shorter
Leech lattice) as a neighbour (see Thm.2.4.10).

A particularly crude upper bound on the m,’s chosen in the orthogonal decom-

position of A can be obtained effortlessly from Thm.1.4 and Cor.7:

Theorem 3.4.8:  If A self-dualizable, then an orthogonal decomposition {m,,.

my} can be found for it so that all m,’s have absolute values which are less than

4N—1

or equal to |A] , where IV is the number of self-dual lattices with the same

dimension and signature as A.

Proof Let A glue to the self-dual lattice A;. First note that Thm.1.4 shows that
A(ll) C A for € = |A|, so € times the orthogonal decomposition of A| is an orthogonal
decomposition for A. Thus it suffices to prove the bound for the self-dual lattice
Ay. Similarly, if A, = A(Q), AV € A for A = |2 In particular, an order 2
shift will quadruple the m,’s. Cor.7 then gives us the bound. QED

Thm.3.5(ix) together with Thm.1.4 immediately imply that an upper bound
for the m,’s of any self-dualizable lattice A of dimension n < 24 is 16|A| and is 4|A|
for n < 23 — considerably better than Thm.8.

The following famous and important result has several proofs (see e.g. pp.127-
130 of [MH]), but what is remarkable is the ease with which it follows from

Thm.1.10. This is given below as the first proof. The second proof (which can
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be found on p.51 of [SER]) follows quickly from Thm.1.3.4 (although Serre’s proof
of this result, on pp.49-50 of [SER], is quite different from the one given in Sec.1.3

of this work).
Theorem 3.4.9: When A is Type II and Euclidean, 8 must divide its dimension.

First Proof Let A be even, self-dual and of dimension n. Then by Thm.6 we may

write

QX Oy, X -+ X Cyr,

for ky > ---k¢ > 0, where Q is the glue gauge shift group taking I, to A. Let
wy = 7‘,—. Y w,,e, be the independent generators of {2 (e, is the orthonormal basis
for I,), sow,;, € Z.

By Thm.1.4.9, there exist vectors r, € I,, such that

riw, = 8, (mod 1)

Consider z = Y 2k —kep2y, = 2—,‘;;- Y. z,e,, so x, € Z. Being a linear combination of
the shift vectors, ¢ € A. We shall now show that all z, are odd.

Let y = Y wymry — €y for some 1 <m <n. Theny € I,. Butw, -y € 2
for each i, so y € A. Thus y? must be even, so (3 w,mr)? is odd, which means
Zw:"mr? and hence Zw,mr? are odd. Therefore z,, is odd for each m.

Now z, being a linear combination of the shift vectors, is in A. Thus z? is even,
$0 sxrigr 0 L2 € Z and hence ) z? = 0 (mod 8). But z, odd implies z? = 1 (mod
8), so we get the desired conclusion: n = 0 (mod 8). QED

Second Proof By Theorem 1.3.4, any u € A satisfying u -z = 22 (mod 2) for all
r € A, has norm u? = n (mod 8). But A is even, so we may take u = 0. Hence

n =0 (mod 8). (The indefinite case can be treated similarly.) QED

Two other proofs of Thm.9 involve theta functions (see p.109 of [SER]) and
Gauss sums (see Appendix 4 in [MH]).
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Theorem 3.4.10: If A is even and self-dualizable, then it glues to some Type 11

lattice if 8 divides ny — n_., where (n4,n.) is the signature of .\.

Proof Suppose that A glues to a Type I lattice A;. Let « € \ be as in Thin.1.3.4,
Then since 8|(n4+ —n_) by hypothesis, A, = A;({1©/2},0) is a Type II lattice.

A C Ay and is even, so
Ac{zeA |22 €22} ={ze A |r-ueE2Z}C A,

Since A and A; are both of dimension n, A is saturated in A; and hence must glue

toit.  QED

For example, D,, glues to I, for all n; when (and only when) 8 divides n it also
glues to the Type II lattice D.

Now consider even lattices A with odd determinant. A9, Eg and Ey are ex-
amples. It is trivial to show that such lattices are self-dualizable only in dimensions
which are multiples of 8, since they cannot glue to odd lattices. By Thm.1.9 we get
that (A42)¥ and (Es)F are self-dualizable iff 4 divides k. Similar reasoning gives us

this surprising result:

Theorem 3.4.11: (a) Only in even dimensions can a lattice be both even and

of odd determinant.

(b)  Suppose in addition the lattice A has the property that for each p € Ps, the
exact power that p occurs in the expansion of |Al into a product of primes, is

even. Then the dimension must be a multiple of 4.

Note that the additional condition in Thm.11(b) implies that |A| =1 (mod 4).
We can illustrate this theorem with the lattices A,—;: they are always even and
have an odd determinant precisely when they are of even dimension. When the
determinant condition in Thm.11(b) is satisfied, n = 1 (mod 4), so 4 divides the

dimension n — 1.
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An alternate proof of Thm.11(a) involves reducing the lattice mod 2. The
result is a nondegenerate alternating bilinear form, and so is of even dimension

(Prof. Jacques Hurtubise brought this point to my attention).
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Chapter 4 THETA CONSTANTS

4,1 Jacobi 6-functions

The Jacobi 8-functions which we need are defined by:

0

Jda(z | 7')‘12f Z exp(2mmiz + mrm?) (4.1.1a)
m=-—00
02(7)‘1._—".f Z gl cxp(rrz'r/4):)3(-§ I ) (4.1.10)
m=-0oo =
def — 2
by(r) = Z q™ =050 7) (4.1.1¢)
m=-—oo
def > m? __ 1
6= Y, (—0™ = (5 ]7) (4.1.1d)
() z gimHIR? - exp(wir/kz)ﬂg(;-;: | 7) (4.1.1¢)
m=-—0oo
def . .
q = exp(mir). (+.1.1f)

An important and closely related function, the Dedekind eta function y(r), is
discussed in Sec.5.1 (see eqgs.(5.1.2d,¢€)).

The theta functions considered here (and in Chapter 5) are of genus ¢ = 1. In
algebraic geometry and elsewhere it is convenient to generalize these functions to
sums over m € Iy, g > 1, where the complex parameter T becomes a g X ¢ complex
matrix whose imaginary part is positive definite (see Chapter II of [MUM], or
App.C of [LSW]). The results obtained here and in Ch.5 for y = 1 should generalize
in a natural way to higher ¢ — in particular, see pp.211-226 of [MUM].

This notation is taken from [CS1], with the exception that their 64(¢ | z) is
our 93(€/m | z). The relationship between our notation and that in [MUM] is:

J3(z | 7) = 9(2,7) (4.1.2a)

62(7) = 910(0, 7) = 9 0(0,7) (4.1.2b)
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05(7) = Yoo (0, 7) €' D9 6(0, 7) = V(0, ) (4.1.2¢)

84(7) = V01(0,7) = Jy, 4 (0,7) (4.1.2d)

Yi(T) = '97},0(01 T). (4.1.2¢)

Note that all these functions converge for r € HE {weC|Imw>0}: in

fact, for Im r > € > 0,

4| < (expl-e))",
so by the Weierstrass M test (see p.343 of [LEV]) the series for 65(r) converges
uniformly in each half plane Im 7 > €. Thus 65 is analytic in H (see p.336 of [LEV]).
Similar arguments apply to the other functions in eq.(1). Therefore, throughout the
rest of this paper 7 will be taken to lie in H.

By theta constants (the term Thetenullwert is sometimes used in the literature)
1s meant the restriction to z = 0. This chapter will be concerned primarily with the
above theta constants 6, 63, 8y, and ¥i. In the following chapter we will extend
these techniques and results to z # 0.

For convenience, define ¥ def 63. Note that

Y =63 iff 1/ke€Z (4.1.3a)
Yr = Y iff either 1/k 1/ € Z. (4.1.3b)

(See eq.(3f) below.) In general, we will thus be interested in 1 where k is rational
and > 2.

From the definitions the following basic identities can be readily verified:

84(7) = 263(47) — 65(7) (4.1.3c¢)
h2(7) = 62(7) (4.1.3d)
Xk:tbk/e(r) = G3(7/k?) (4.1.3¢)
. Yirse(T) = Yrsk-0) (7). (4.1.3f)
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In fact, in the next section we will find that eqs.(3e. f) are special cases of much
more general relations which reflect basic facts about lattices and their glues.

These first identities allow us to establish the following:

1(1) = b3(7) (4.1.40)
Yo(1) = 02(7) = Oa(7/4) — 63(7) (4.1.40)
#s(7) = 3186(7/9) = 83(1)) (41 40)
ha(r) = %92(7'/4) (414D
$a(7) = 510:(7/9) = 62()}. (4.140)

For example, eq.(4b) is a consequence of eq.(3d,e) with k = 2.

Using egs.(3c) and (4b), identities involving 8;, #3 and 6, can always be reduced
to identities involving only 3. For that reason we will discuss from now on ouly
those identities involving 6; alone. We will also be interested in identities involving
Yr, provided they lead to algebraic equations that can be used to solve for ¢y
explicitly in terms of 63. Thus (until Sec.4) we will be talking primarily about
identities of the type given in eq.(4), but not those of the type eq.(3e, f).

The equations considered so far will be called linear relations. More gencrally,
we refer to an identity involving the 6, and the 4 functions as of degree n, if cach
term of the identity is composed of the product of n such functions. For example,
the celebrated Jacobi identity 83(7)* = 8,(7)* +84(7)*, which is derived in Scc.d in
two different ways, is of degree 4. Thm.3.1 tells us that any fundamental identity
is homogeneous in degree.

Linear relations for the remaining ¥, e.g. %5, which can be used to solve
¥y explicitly in terms of #; as was done in eq.(4) for k¥ = 1,2,3,4,6, cannot he
obtained from eq.(3) alone. This is because eq.(3€¢) generally contains more than
one ‘unknown’ function ¥, for the remaining values of k. For example, for k =35
both 5 = 15,4 and th5/2 = 1573 are unknowns. Another way of saying this is that
the Euler ¢-function ¢(k) is < 2 iff k =1,2,3,4,6. Sce also Thm.1.
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Identities of higher degrees are discussed in Sec.3.

Let A be any lattice, and f be any ‘rapidly decreasing smooth funtion’ on
Vo(A). The Poisson summation formula directly implies

1 N
ze}jA fe) = o EZA f(), (4.1.50)

where f(a:) is the Fourier transform of f. Choosing A = I, and using the fact that
the Fourier transform of g(z) = exp[—7z?] is §(y) = exp[—-my?], we get (see p.109
of [SER] for details)

Dy(z | -%) = (1/i)2exp(riz?r) O (a7 | 7). (4.1.5b)
This immediately implies
6x(=2) = (7/i)!* () (4.160)
Bs(~) = (/i) Ba(r) (416
Ba(=2) = (/i) () (4.16¢)

buge(=2) = (/i) 052 | 7)
= (r/i)/? Z—: ¢ Y jeom)(nr), (4.1.6d)
=0

where in eq.(6d) ¢ = €2™/™ and m € Z satisfies mk = 1 (mod n). For example,
these allow eq.(4b) to imply eq.(3c).
Equations (1- f) immediately give us

O3(r + 1) = 04(7), 64(r +1) =64(r),
92(7' + 1) = \/;62(7-)’ zbﬂ/k(‘r + 2"‘) = ¢’n/k(7—)' (417)

The question about which functions (e.g. which ¥k ) can be expressed in terms
of 03 is a recurring one in this chapter. With this in mind, make the following

definition. Let 7™ denote the C-module of functions

N
a,03(k1,7) - - - O3(knj7), (4.1.8)
1

=
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where each a, € C, k; € R, and k,, > 0 (otherwise convergence would fail for
7 € H). Define 73 to be the sum of all 'TJ("). For example, '7}(” and henee T,
contains 63,83, 8y, and yq, ¥3, 4y, y's. Define T3* to be the field of fractions of T;.
We will be interested in using lattices to find functions in 7y which are identically

zero. If the function lies in T} " it is said to be a degree n wdentaty.

Definition 4.1.1:  Call F(7) 3-solvableif it liesin T3 — z.e. if it can be expressed
polynomially in terms of 83. Call F(r) rationally 3-solvable if it lies in T,* — 2.0, if

it can be expressed as a fraction involving only ;.

We will also be interested in determining the 3-solvability of various theta

functions/constants.
Theorem 4.1.1: For k > 2, ¥ is 3-solvable iff £ = 2,3,4,6 and oco.

One direction of this theorem is already known; the other follows as a special

case of Thm.3.3.

Lemma 4.1.2:  Let n;,n,,... and nj,n),... be two increasing unbounded se-
quences of real numbers. Let p;(7), p2(7),... and pi(r),p3(7), ... be two sequences
of nonzero polynomials with complex coefficients. Then provided the series couverge

for r € H,
> pr(VT) exp(namit) = Y- (V) exp(nimir)
k=1 k=1

iff, for each k, nx = n}. and pir = pj.

This trivial result has some important consequences. Of course to prove it,
suppose without loss of generality that 0 = n; < n{ and consider the limit z —
+o0t, ete.

As a final remark, eqs.(16-f) allow us to directly confirm the validity of the

following checks. For example, as 7 — <001 in the limit, ¢ — 07 so 6;(kr) — 0,
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B3(kT) = 1, 64(k7) — 1, and ¢(k7) — 0 for any & > 0 and any ¢ for which 1/¢ ¢ Z
(if 1/¢ € Z, then y = 6;3). Thus any identity in 6,, 83, 85 and 1, will remain a
(numerical) identity after the above substitutions. For example the Jacobi identity
gives 11 = 0 + 14,

Now consider the limit r — 0%. To do this make the substitution 7 —
~1/7. Then from egs.(6) and the previous test we get (provided our identity is
homogeneous in degree) that in the original identity we can replace 6;(kr) — 1/Vk,
03(kt) = 1/Vk, 64(kT) — 0, and (k) — 1/Vk for any k > 0, and any ¢ € Q.

As trivial as these tests seem, they have some practical value (e.g. in double-
checking a conjectured identity), and some theoretical value. For example, we know
that 8;(r) = 26,(47) + 84(7), t.e. that 83 can be linearly solved for using both 6,
and 84, but the above two tests show that this cannot be done using only 8, or 6;.

It is possible of course to derive further tests. In Sec.3 we obtain some additional

conditions identities in the Jacobi functions must obey.

4.2 Theta Constants of Lattices and their Glue Classes

In this section and chapter we will be most concerned with integral Euclidean
lattices.

Given a class [g]Ay, its theta constant is defined to be

O(lglAo) ¥ Y explrir(g + z)?]
r€Aq (4.2.1)

O(Ao) E O([0]Ao).
(We reserve the term theta sertes for the z # 0 case — see the following chapter.)
As before exp(mir) is usually written simply as q. The argument of the function
O([g]Ao) is understood to be 7. If this is not the case, the argument will be explicitly
included, as in ©([g]Ao)(27).
A similar argument to that given at the beginning of Sec.l (using as well
eqs.(1.1.4)) shows that these lattice theta constants converge and in fact are analytic

in H.
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Note that A is even iff O(A)(r 4+ 1) = O(A)(7) (sec eq.(11)).

In this notation, the Jacobi #-functions in egs.(1.1) can be written as

62(2r) = O([L{(2D E o((1P) = O([1]4,) (4.2.24)
83(kr) = O({(k)}) (4.2.20)
Prse(kT) = O([){(M)}). (4.2.20)

Theorem 4.2.1: (i) The theta constant of a direct sum of glue classes is the

product of the theta constants of the individual classes:

k
e([gh e agk]{Ala v sAk}) = H @([g,]/\.);
1=1

(ii) the theta constant for the disjoint union of glue classes is the sum of the

theta constants of the individual classes:

k
O{UL[gi]A} =D O([g:]Ai) provided ([g:]A:) N ([g5]A;) # @ when & # j;

1=1

(i)  O([VegAD)(r) = O([g]A)(er); O(AD)(r) = O(A)(Lr).

This theorem encapsulates the technique for generating identities investigated
in this and the following chapter. Note that the glue classes of any glue decompo-
sition are pairwise disjoint — hence the value of Thm.1(ii).

By Thm.1(i) we get that the theta constant of I, is 83(7)™. In fact,

O({(m1),...,(me)})(r) =03(my7)- - - 3(mT) (4.2.3a)
O([ey, ..., &k){(m1), ..., (Mi)INT) =Vmy e, (maT) Py pe, (MT). (4.2.3D)

Orthogonal decomposition (t.e. Cor.1.4.4) has the following immediate conse-

quences.
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Corollary 4.2.2:  The theta constant of any glue class of any rational Euclidean
lattice can be expressed polynomially in terms of 63 and . (with arguments 7

scaled appropriately ).

Corollary 4.2.3:  The theta constants of the glue classes of all rational Euclidean

lattices are all rationally solvable iff all 4 are rationally solvable.

Define T(™ to be the C-module consisting of functions such as

N
Z a; bk, (MayT) - Pk, (Mny 7).

=1

Define T to be the sum of all 7(™). Then 7(™ contains 7'3(") (defined in Sec.1),
and Thm.1.1 tells us vhat T properly contains 7'3(1). Cor.2 tells us that the theta
constant of any glue class of any n-dimensional rational Euclidean lattice lies in
T,

In this way, given a glue decomposition of a class or lattice, one obtains relations
between the theta constants. This is how the identities between the Jacobi 8-
functions are obtained in Sec.3. For example, some simple examples of gluing
decompositions that we have already seen are as follows: Eg = Ds[l]; Dpgn =
{Dn,D,}2,2]; A2 = {Al,IfG)}[l,B]. In glue class notations, these iden.itics can
be wiitten as: [0]Es = [0]Ds U [1]Ds; [0]Dmyn = [0,0]{Dm, Dn} U [2,2]{Dmm, Dn};
[0]A4; = [0,0]{A;,(6)} U [1,3]{A1,(6)}. These translate to the identities

O(Es) = O(Ds) + O([1]Ds) (4.2.4a)
O(Dpmtn) = (D) - O(Dn) + 0([2)Drm) - O(12] D) (4.2.4b)
O(A2) = 0(A1) - 0({(6)}) + O([1]A:1) - O([3]{(6)})- (4.2.4c)

Finally, we note that an outer automorphism of the Lie algebra (a symmetry

operation of the Dynkin diagram) preserves the theta constants. Hence,

O([m]4,r) = O([r + 1 -m]4,) (4.2.5a)
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o((1)Dr) = 6([3]D;) (4.2.50)
O((1]Es) = O([2]Es) (4.2.5¢)
O([1]Ds) = ©([2]Dy) = O([3]1Dy). (4.2.5d)

Indeed, for any A and any glue [g] in a glue group G, [~g] is also in G, and:
O([-g]A) = 6([g}A). (4 2.5¢)

Related to this is the useful fact that two (integrally) equivalent lattices have the
same theta constants. Incidently, eqs.(5a-e) apply only to theta constants; their
failure to hold for =z # 0 is the reason the analysis and identities in the following
chapter are more complicated than here. For example, the specific transformation
connecting the two integrally equivalent lattices must be built into the identities
derived from their equivalence: Z'is a vector while 7 is a scalar.

We will use gluing decompositions to construct various identities; others (see
e.g. App.C of [LSW/) have used automorphisms of lattices to obtain identitics, but
they have derived only a fraction of those we have.

An analogous calculation to that given in Sec.1 (see also p.109 of [SER]) shows

that, given an n-dimensional lattice A,

n 2
@(A)(_l/r)_ﬁ_/.)_@( A*)(r). (4.2.60)

VIAl

From this it is possible to prove

o(lglA)(~1/7) (T\//z— ZC"@ [kr)Ao)(T). (4.2.6h)

k=0

Here, [g]A is a glue of A of order n, ¢ = 2™/, r € A* satisfies r - g = -'; (mnod 1)
(such a vector r always exists by Thm.1.4.9), and Ag is the largest sublattice of A*
satisfying g - Ag € Z. A special case of eq.(6b) is eq.(1.6d). Eq.(6b) can be used to

derive the related formula given in [{OS] (the converse is not obviously truc).
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Because A* = A[G] where G = A*/A,

O(A*) = O([g]A). (4.2.7)
geG
The usefulness of eqs.(6) and (7) follows if ©(A) can be calculated independently
of eq.(6) — e.g. if it can be expressed in terms of 63’s (i.e. ‘3-solved’). Note that
eq.(1.3¢e) is a special case of eq.(7), taking A = Ifk) and using eqs.(26, ¢). Also,
eq.(1.3f) is a special case of eq.(5e).
The theta constants of the root lattices are all known (see for example pp.108-

127 of [CS1}):

O(D)(r) =3 (8s(r)" +04(7)"), (4.2.80)
O(11Da)() =0([3IDa)(7) = 36a(r)", (4.2.80)
O([2)D,)(r) == {8(r)" = B4(r)"), (4.2.50)

(D)) =;2(T)" +63(7)", (4.2.8d)

O(Es)(r) =b0(r)* + 1 {60(7/3) = do(r)F, (4.25¢)

O(E;)(r) = bolr /3" + +1360(r) - bo(r/3)}], (428f)
O Es)(r) =0([2)Es)(r) = {O(E)(r) - O(Be)r)},  (4:2.89)

O(E7)(r) =83(27)" + 765(27)%6,(27)*, (4.2.8h)
O([1)E7)(r) =62(2r)" + 76,(27)83(27)*, (4.2.84)

O(E3) (1) =63(27)" + 65(27)" + 76,(27)%03(27)%63(7/2),  (4.2.87)

O(Es)(r) =5 {6a(r)° +63(r)° + a()'). (4.2.8%)

Here  ¢o(r) S O(A.)(7) = 85(27)02(67) + 82(27)65(67), as in [CS1].

The situation for A, and its glue classes is by far the most complicated:

Srto Ga( &fr)n

O(An-1)(T) = nly(nr)

(4.2.9a)
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Let (dé{ 2™/, Then similarly we have for any £ = 1,...,n — 1,

n—l .k A
D okeo C T I3 ()"
ml‘n/e(”T)

O[] An-1)(7) = (4.2.00)

Note that eq.(9a) is a special case of eq.(9b). Also, the 1‘);;(%]1‘)’5 occurring in eqs.(9)
can be expressed if desired as linear combinations of y,’s (see eq.(1.64)). All of the
expressions in eqs.(8) and (9) will be proved in the following scction,

Call a lattice or glue class §-solvable if its theta constant is. Eqs.(8) show that
each glue class of D,,, Eg, E7, and Eg is 3-solvable. However, it is not clear from
eq.(9) that this is true of A,. Indeed, we have been unable to prove the (rational)
3-solvability of its theta constant. However, for smaller n explicit ‘3-solutions’ can
be found, and are listed in Table 7.

More generally, it would be interesting to know if all lattices are 3-solvable.
Certainly all 1-dimensional lattices (see eq.(2b)), and hence all orthopgonal lattices
(see eq.(3a)), are. Moreover, by Hecke's Theorem (see pp.187 and 192 of [CS1}) the

same holds for all self-dual lattices:

Theorem 4.2.4 (Hecke's Theorem):  Let A be any self-dual Euclidean lattice.
Then:

(i) the theta constant ©(A)(7) is a polynomial in ©(1,)(7) = 63(7) and O(Eg)(7);
(ii) if A is Type II, O(A)(7) is also a polynomial in @{Eg)(7) and O(Ag)(7).

These are usually proved using the theory of modular forms. (A discussion of
general results concerning lattice theta constants as modular forms can be found
on pp.382-8 of [CAS].) Note that in Thm.4(ii) any Niemeier lattice other than E}
and Eg @ D7 will do instead of Agy.

To illustrate Thm.4, note that
O(Az4)(1) =O(Es)(7)?
- %%((—?)(Es)(7‘)293(7')1'3 — 20(Eg)(7)83(7)! + 85(7)** §4.2.10a)

O(AN)(T) =L O(Ee)(r)® + (1 — 25)0(Aza)(r), (4.2.108)
30 30
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Table 7: Known Theta Constants of A,
Lattice | Weights | Name | Theta series
Ay (0] Oy | 03 ('i)
1 Ou1y | 0s3(3)
Ay 0 O(20) | 0a2(2)03(6) + 02(2)06,(6)
1], (2] Sy | 02(2) ¥6(6) + 03 (2) ¥a (6)
Aa 0 O30 % {6a(1)> +64(1)° }
{1%,[3] g(a,l) ? ‘{)z(})‘:a bu(1P )
2 (3,2) 3 103(1)° —04(1
Ay [0] O40) | 2og=o Pask(20) O k)(1)
TR
2], (3 Ora,2) a4
445 [0] @(5]0) @(2’0)(1)2 03(b) +26(2 1)(1)2 ¢3(6)
(1], (5] Os.1y | 20(2,0)(1) O2,1)(1) ¥s(6) + O(2,1y(1)? 12(6)
(2], (4] Os,2) | 20¢2,0)(1) O2,1)(1) ¥3(6) + O(2,1)(1)? 03(6)
(3] 053 @('é,m(l)2 P2(6) + 20(2.1(1)? ¥6(6)
Ag E(l)} o 3(6,0) ;1&0 Vs7k(42) O(s,1)(1)
, (6,1
(2], [5] O, |77
(3], [4] O3y {77
Ay [0] O(7,0 Y i-o V47%(8) O(a.k)(1)?
o5} | o |4 0s0) )
) 72y | 3 {Og;(1) — OF,(1)
BLE] | Oas |77
(4] O(74) 9&;7(1) — O7.0y(1)
As | [0) Os0) | Lk=o¥o/k(18) O(a,k)(1) O(sk)(1) )
{l{, EB} O(a,1) ??
21 {7 @(3'2) ??
(3], [6] O3 | 3 {Or(l) — O o)1) }
(41, (8] Owy |77
Ay, Ao 77
Au | (0] O(11,0) | Lk=o ¥s/6(12) Os 1y(1)?
.01 | O |7
(2L (10] | ©(11,2) | k=0 Oi.k+2)(1) O0x(1) Ye/(k+1)(12)
(3], (9] ©O(11,3) 7?5
(4], (8] O(11,4) | k=0 O.k-2)(1) Os.1)(1) Yes(k42)(12)
(5], [7] O(11,5) ”5
(6] On11.6) | 3 =09s5(1)? Ye/-3(12)
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where in eq.(100) Ay is a Niemeier lattice (i.e. even, 24-dimensional) with Coxeter

number h.

An immediate consequence of Thm.4(i), using eqs.(2b) and (8k), is:
Corollary 4.2.5: Any Euclidean self-dual lattice is 3-solvable.

Let A be any integral Euclidean lattice; define A, to be the set of all even-
normed vectors in A. Then A, is a saturated sublattice of A, of index 1 or 2, Note

that

O(A)(r) = %{@(A)(r) +O(A)(r + 1)} (4.2.11)

Hence if A is integral and 3-solvable, then (usually) so will A..

In addition, let A be integral and of even dimension, and suppose all of its glue
classes [g]A € A*/A are of order 2 (this last condition would be satisfied for example
when |A| = 2). Then similar modular form arguments, based on results found for
example around Cor.10.2 in [MUM], can be used to show that O(A)(r), and in
fact each O([g]A)(), can be written as a polynomial in 6,(7)2, 83(7)? and §,(7)*
Hence in this case each glue class [g]A is 3-solvable.

However, it 1s unlikely that all 2-dimensional lattices are, as we shall sce in the
following two sections.

(KT] investigated the sublattices AJ} of Ag4 invariant under an element m €
My4 CAut(Ayy). There are 21 such sublattices, varying in dimension from 2 to
24. They also computed the theta constants of these. All of these turn out to he
3-solvable.

Generalizations of Hecke’s Theorem for integral lattices of determinant higher
than one are possible in some cases (e.g. |A] = 2,4). For example, consider odd A
with determinant |A] = 4, whose glues ¢ € A* all have integral normns g*. I; i Dys
are examples of such lattices (but there are many more). It can be shown from the

above results that, for an n-dimensional lattice A with those properties, Q(A)(7)
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lies in an [25+] + 1-dimensional vector space, generated by the theta constants of
In—4 B Dy, Inos % Dy, ...

For another example, let A be any even Eu-lidean lattice of determinant 4, and
suppose that A* contains an odd normed vector. Then O(A)(7) is an element of an
["—;l] + 1-dimensional space, and is generated by D,, Eg & D,—s, E2® D, _y5,. . ..

Note that the condition that A* contain an odd normed vector follows from
the other conditions whenever 8 does not divide n. As an example, let A be any
22-dimensional even Euclidean lattice with |A| = 4. Then the group A*/A consists
of four glue classes' one, [0]A, containing even normed vectors only; one, which we
will call [g)]A, containing odd norms only; and two, [g2]A and [g3]A, which only
contain vectors of norm = $ (mod 2). It is not difficult to verify the following
formulae:

l—a~-0b a
O((0]A) = ——=—(63" + 65) + (65" + 6,")(83 — 636 + 65)

(65 + 65)(65 — 0164 + 61)°
= é((,)g? +62%) + "“—;3—'3(0;893 +6ig18) (4.2.120)
+ 2T g1gn 1 4361%) — HEOL + 047 + 2 (03010 + 61°69),
OlgA) = 5632 — 63) + — 20306 — 630)°) (4.2.120
+ 223 grage _ g2614) - 1610612 - 63261°) + 2(6363° — 61°65),
Olgl) = O(lgs]A) = 35637 ~ 637) + “E2 =S 1o} — a36)
+ l9—'3—:3‘-‘-'339(9;293 — 63612, (4.2.12¢)

‘)

<

where a,b are real parameters. This is explicitly given because it will be used in
Sec.6.4. Of course A being 22-dimensional is not significant — analogous formulae
exist for other dimensions. The difficult part of the derivation of these lies in showing
that ©([(g2)A) = O([g3]A) — this can be done using eq.(6b).

It is possible for two integrally inequivalent lattices to have the same theta
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constant. We shall call such lattices theta equivalent. An example is Ey  Ey and
Dy, as can be seen either by using the Jacobi identity and eqs.(8a, b, k), or by using
Thm.4(ii). Two theta equivalent integral lattices are necessarily of the same type
(i.e. even or odd). Putting —1/7 in their theta constants tell us that they are of
the same dimension (see Thm.3.1) and determinant and that the theta constants of
their duals also are equal.

This suggests that two such lattices lie in the same genus, or at least are
rationally equivalent. We have been unable to prove this, however.

It is possible to show the following results using Hecke's Theorem.

Corollary 4.2.6: Let Ni(A) be the number of norm &k vectors in A. Let A and
A' be two different Euclidean self-dual lattices of equal dimension n, and let Ny, N}
be the numbers of norm k vectors in them. Define ¢ = [n/8]. Then:
(1) for each integer k > 0 there exists a function F, x of ¢ arguments such that
Fok(N1,...,N¢) = Ny; and
(i1) A and A’ are theta equivalent iff Ny = Ni,...,N¢= N,.

For example, for n = 22 £ = 2 and it is possible to compute

F22‘3(N1,N2) =248N; — 4N, + 5104, (4.2.13a)
F22,4(N1,N2) =960N1 - 12N2 4 85932. (4213b)

Also, it is possible to show using Cor.6(ii) that it is not at all rare for integrally
inequivalent lattices to be theta equivalent. In particular, from the explicit tables
of self-dual lattices of dimensions < 24 (see e.g. Table 16.7 of [CS1]) it can be
easily seen now that there are precisely 40 pairs of integrally incquivalent yet theta
equivalent self-dual Euclidean lattices of dimension n < 24 (12 of these are without
unit vectors); 10 triples (6 without unit vectors); 3 quadruples (2 without unit
vectors); 1 quintuple (none have unit vectors); and 3 sextuples (none have unit

vectors). The often quoted E?, D pair is the one with minimal dimension, but it
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is by no means unique (other pairs are the trivial EZ ® Iy, D} @l fork = 1,2,...,8,
and the less trivial A;74,[31] and D¢ E7A,[110,301]).
On the other hand, in the following chapter we show (in Thm.5.2.5) that the

theta series of two lattices are equal only when the lattices are integrally equivalent.

4.3 Identities of the Jacobi Functions

If an integral lattice admits several glue decompositions, then the theta series
computed from those decompositions (using Thm.2.1) must be equal. This is how
identities between the Jacobi 8-functions can be obtained. If the lattice in question
is of dimension n, then the identities will be of degree n. We are interested in
algebraically independent identities — 1.e. identities that cannot be obtained from
cach other and ones of lower degree arithmetically (z.e. through multiplication and
addition) and/or by transforming r (e.g. 7 > 7+ 1, 7 — k7, 7 — ~1/7). For
example, eqs.(1.3¢c) and (1.4b) are not algebraically independent in this sense. Re-
stricting attention to algebraically independent identities cleans up most of the maze
of identities that can be found scattered throughout [TM], for example. We shall
find shortly that the (quartic) Jacobi identity also is not algebraically independent,

as 1t can be derived from first and second degree ones.

4.3.1 A general discussion of identities:

Recall the definition of the C-modules 7 (given in Sec.2 — it is generated by
products of arbitrarily scaled ’s) and 73 (given in Sec.l1 — it is generated by
products of arbitrarily scaled 63’s). This subsection will concern functions in T
which are identically zero for all 7 € H; in the remainder of the section we will
focus on identities in T3.

We can write any identity in 7 in the form

N
D> _aeO(lgdAe)(r) = 0, (4.3.1)

=0
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where each a¢ € C, where the A, are orthogonal lattices, and where the glues g are
of finite order: gy € Q ® A,. For example, eqs.(2.6) and (1.6-7) are not identitics in
this sense.

Can Thm.2.1 (i.e. the gluing method) algebraically generate all identities in
T? This is an unsolved problem (see p.117 of [MUM]), and we will not be able
to answer it in this chapter. However, in the following chapter we show that the
analogous question for thete series of full rank is true (see Thm.5.3.6 there), but
the analysis here is more difficult and the proofs do not carry over.

A few simple results are possible which allow us to simplify the form of the

identity eq.(1).

Theorem 4.3.1:  Any given identity in 7 can be expressed as the (finite) sum

of identities in 7, each homogeneous in degree.

Theorem 4.3.2:  Any given identity in 7 is a linear combination (over C) of

identities in 7 whose coefficients a, are all rational.

These theorems would have to hold if Thm.2.1 were to generate all identities
in 7. Both these results follow from Lemma 1.2. In particular:

Consider a theta function identity, and look what happens when —1/7 is placed
in it. Each dimension (i.e. each 63 or i) will contribute a factor (7/:)'/2, by
eqgs.(1.6). Applying Lemma 1.2 gives us Thm.1.

Now for Thm.2. Let ay,...,ay be the non-zero coefficients. Say that «, and
«, are equivalent if a,/a, € Q. Let A,,..., A be the corresponding equivalence
classes of coefficients, and let a, be any element in 4,. Without loss of generality
(e.g. by multiplying the identity by 1/a,) we may assume that a, € Q.

Suppose first that the a, are linearly independent over Q: w.e. Y ra, =0 for
r, € Q can only happen for r, = 0. Then Lemma 1.2 implies that for cach ¢, the
sum of the terms whose coefficient is in A, must be identically equal to zero. This

is because, when we expand any 63(m7) or ¥x(mr) in terms of powers of ¢, the
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coefficients are rational (in fact they are 0,1 or 2). Thus, the original identity is
a lincar combination (with coefficients a, € R) of identities with purely rational
coefficients.

The case where the a, are not linearly independent can easily be reduced to the
case where they are by rewriting one of the a,, say ai, in terms of the others, and
thus rewriting the terms with coefficient @ € Ax as a linear combination (over Q)
of terms with coefficients in the other A,. The net result is that A4 is absorbed into
the other A,. If a;,...,ax—; are linearly independent, the argnment in the above
paragraph will apply. Otherwise, proceed again as in this paragraph.

An immediate consequence of Thm.2 (obtained by replacing r with —1/7 in
an identity) is that we may assume that the pairwise products of the determinants
[A:||A;] are always a perfect (rational) square. This observation, together with
Thm.1, suggests the possibility that an arbitrary identity in 7 can be written as
a sum of identities eq.(1) whose lattices A, are all rationally equivalent (compare
Thm.5.34) Indeed, we can show that this is so for all linear (see Thm.3) and
quadratic (this follows from Thm.1.6.10(v)) identities in 7.

4.3.2 Linear identities:

Earlier in this section we dismissed as unsolved the question as to whether the
gluing method algebraically generates all identities in 7. In 71 the situation is

simple enough to tackle directly:
Theorem 4.3.3:  Any linear identity in T is generated by egs.(1.3a, b, e).

Proof Consider the linear identity

N
vi(r) = Z Vn,(T), where (4.3.2a)

1=1

No N,
n(r) = Z ag,05(m,1), v (1) = Za,,zﬁin_.._(mijr), (4.3.2b)
=1 !

=1
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where all a,, # 0, m’,J >0,0 <my <. - < mpy, and where n,, ky; € Z. We can
assume the greatest common divisor (n,,k,;) = 1, and 1 < k,; < . Tt clearly
suffices to show that no such identity eq.(2) can exist.

It is not difficult to show that without loss of generality all m,,m}, € Q, and
hence that we may take all m;, to be integer multiples of n? and all m; to be
integers.

Suppose for now that Ny > 0 — the case where there are no 83 can be handled
similarly.

Define P(n,) to be the set of all primes p = 1 (mod n,). We know that these
sets are all infinite. Note that for each ¢, and any M € Z, v, () cannot represent
Mp? (i.e. when expanded out, it cannot contain a term ﬁqM"z) for any sufficiently
large p € P(n,).

Let P! NN P(n,); by Dirichlet’s Theorem on primes in arithmetic progres-
sions (see Chapter VI of [SER]), P is infinite. Note that for all sufficiently large
p € P, vy represents mp?. However, by the preceding paragraph, ¥ v, cannat
represent m;p® for such p. This contradicts eq.(2a). QED

In proving Thm.3 we have also established Thm.1.1.

4.3. uadratic identities:

It is possible to generate an infinite number of identities in T, independent of
each other and of the linear ones discussed earlier. For example, consider the gluing

{(k),(k* = k)}L,k - 1]~ I, ® I‘(k—l). It gives us the quadratic identity

k
X:W/e(’ﬁ')'ﬁk/z({k2 —k}7) = 63(T)8:({k - 1}7). (4.3.5)

=1

This will be true for k = 2,3,4,.... A multitude of other identities can be found.
For this reason we will consider in the remainder of this section those identities

in T3, 1.e. those that can be expressed as polynomials of 83 with scaled arguments
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(and, of course, 67, 64, and i for k = 3,4,6). The following section will address
more general identities, when ; for example enters non-polynomially.
Consider the gluings {(2),(2)}(1,1] = I; and {(8),(8)}(2,2] = I, & I1(4). They

give us, respectively, the quadratic identities
1
B2(r) +63(r)" = 83(57)", (4.3.6a)
1
63(87) + 62(87)% + =02(27)* = 63(7)83(47), (4.3.6b)
where in eq.(6b) we have used eq.(1.4d). Using eqs.(6a) and (1.4d), we can rewrite

eq.(4.3.6b) us
262577 = 0a(7) - 65(7). (4:3.6¢)

But note that eq.(6c) is also obtainable from eqs.(6a) and (1.4b). This calculation
shows that two different lattice equalities may result in algebraically equivalent theta
identities.

Eq.(6a) is interesting for another reason. Replacing r in it by 2 — 1/7 and

—1/7, respectively, gives us

—04(7)? + 63(7)? = 26,(27)2, (4.3.7a)
64(7)? + 63()? = 265(27)°. (4.3.7b)

Then using eqs.(7a, b) and (6¢) we can write
83(1) — 03(1) = {262(27)%}{263(27)%} = 6,y(7)*. (4.3.7¢)

Hence the Jacobi identity is not fundamental in our sense, and can be derived from
the two-dimensional lattice gluing {(2),(2)}[1,1] & I; (to some extent, this was
recently realized as well by [KT]).

Note that any two-dimensional (integral) gluing

{(m1),(m2)}[G] ~ {(n1), (n2)}[G'] (4.3.80)
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gives us an identity in 73 (using Thm.2.1 and eqs.(2.3)). and if the orders of all
glues in G and G’ are in {1,2,3,4,6} this identity also lies in 7},(2). Unfortunately,
there are infinitely many gluing equivalences eq.(8a), even when we restrict the
orders of the glues to {1,2,3,4,6}. However, we are interested in gluings eq.(S«)
which lead to algebraically independent identities. The one-dimensional identitics

eqs.(1.3b, e) allow us to restrict our attention to gluings of the form

{(ka), (kb)}a, b] ~ {(¢c), (¢d)}[c,d], (4.3.80)

where the glue orders k,¢ € {1,2,3,4,6} (so the identity lies in 'Iz,m), where a < b
and ¢ < d, and where {ka, kb} # {lc,¢d} (so the corresponding identity is not
trivial). Moreover, Thm.2.2(iii) tells us it suffices to consider only the case where

a, b and [a, b]? = (a + b)/k have greatest common divisor 1.

Theorem 4.3.4: There are precisely 51 gluings of form eq.(8b); all these are
listed in Table 8.

A sketch of the proof of this is given below. It turns out that all but one
of these gluings (namely {(16), (32)}[4, 8] = {(12),(96)}(2,16]) are of the following
form:

Consider any order k gluing A% {(ka), (kb)}{a, b], where k € {2,3,4,6}. The
above gluing defines an orthogonal decomposition {(ka),(kb)} of A. A has a second
orthogonal decomposition {(¢c),(¢d)}, obtained by chc;osing the vector there of
norm £c to be the glue vector (a/Vka, b/Vkb) € [a, b]{(ka),(kb)}. This defines a
second gluing {(¢c), (¢d)}[c, d] of A. We are interested in the situations where this
second glue also has its order £ in {1,2,3,4,6}.

We will now sketch a proof of Thm.4. It is a straightforward exercise to find
all the gluings of the form described above (we must have ¢ = 1 there, as otherwise
A/} is still integral). The remainder of the proof consists in showing that apart
from the one exception {(16),(32)}[4,8] =~ {(12),(96)}(2,16], any gluing cq.(8h)

must be of that form.
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The key observation is that the minimal norm g of the lattice on the left-hand
side of eq.(8h) must be either ka or (a + b)/k; a similar comment holds for the
minimal notm g’ of the lattice on the right-hand side of eq.(8b). Since g must equal
i’ (the two lattices are integrally equivalent), we get four (non-mutually exclusive)
cases, If o = ka and ' = (¢ +d)/¢, or p = (a+b)/k and u' = lc, then the gluing 1s
of the form already considered (or else we are also 1n one of the other two cases). If
it = ka and ¢’ = €c, a simple argument shows that kb = ¢d, so by Thm 1.4.1 k = ¢,

a = ¢, b = d, and the corresponding identity trivially holds.

Therefore we may consider p = (@ + b)/k and p' = (¢ + d)/¢. From Thm.1.4.1
we get ab = cd. If k = ¢ we get = — ¢ and b = d, which also yields a trivial identity.

It is also easy to elimminate the case k = 1. Thus we may assume 1 < k < ¢.

Let = = (ma/vka,nb/\/nb) be the vector in the lattice on the left-hand
side of eq.(80) which corresponds (under the integral equivalence) to the vector
(V/?c,0) on the right-hand side. Then m = n (mod k) and z? = ¢c. It is not
difficult to eliminate the possibility that z € {(ka)} & {(kb)} (1.e. m =n = 0
(mod k)). The equations z? = fc, (a + b)/k = (c + d)/¢, and ab = cd, and
the fact that (k,¢) € {(2,3),(2,4),(2,6),(3,4),(3,6),(4,6)} can also be used to
force either £ = 2 and m,n = %1 (which turns out to be equivalent to the glu-
ing {(4),(8)}[2,4] = {(3),(24)}{1,8], which is of the already considered form), or
k=4, € =6, and m,n = £2. This final case is realized only by the gluing
{(16),(32)}[4,8] =~ {(12),(96)}[2,16]. This concludes the proof of Thm.4.

In Table 8 we list all of the identities obtainable from the gluings eq.(8b). In the
appendix we discuss their algebraic independence from one another. The identities
in the table have been divided into 33 groups. Identities are in the same group
(e g. the second and third identities in the table) if we have been unable to deter-
mine their algebraic dependence/independence from each other. Any identities in
separate groups are <nown to be algebraically independent. Thus, Table 8 lists for us

at least 33 algebraically independent quadratic identities. Included in the table are
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Table 8:

The Quadratic Theta Constant Identities

Lattices

Identity

{2.2}1,1] = Lor
{8.8}[2,2]~ {1,4}

B2(1)? +6a(1)* =05 ()7

{3,6}[1,2] ~ {1,2},
{4,8}[2,4) ~ {3,24)}[1,8),
or {12,24}[2.4] = {1,8}

03 (3) 83 (6) + 2¢3(3) ¥3(8) =65 03(2)

{16,32][4 8]~ {(3,96}(1,32),

T62(1) 0 (2) =

19.9}[3.3]= {2,18)[1,9]
or {18,18}{3.3]~ {1.9}

{12,96}[2,16)~ {3,96}{1,32), 02 (3) 03 (24) + 26 (3) ¥ (24)
{16,32}{4,8)~ {12,96}[2,16]
[{4.12}[13] ~ {1,3} T 62(1) 02(3) + 64(1) 04(3) = 85(1) 03 (3)

05(1)% + 2yy(1)?
05(2)03(2) + 0(2)

{(3.15}[1,51~ {2,10}01,5],
{8.40}[2,10]~ {3.60}(1,20],
or {6,30}[L,5]~ {1.5}

02(2)
03 (3) 03 (15) + 2¢3(3) w3 (15) =
03(2) 05 (10) + 02 (2) 02 (10)

{24,84)[4,14)~ {3,168}[1,56]

{12,15)[4,5]~ {3,60}{1,20], 3(4)83 (5) + 203 (4) w3 (5) =
{48,60)(8,10]~ {3,240}[1,80] ( ) 63 (20) + 2¢3( 1) wq (20)
{6,21}[2,7]% {3'42}[1v14]r 03(2)63 (7)+2d’ )TL3(7)

83(1) 63 (14) + 2¢5(1) w5 (14)

[4,44)[1,11]~ {3,33}[1,11],
{6,66}[1,11]~ {2,22}{1,11]

3 03(1) 83 (11) +

03 (3) 85 (33) + 243 (3) ¥5(33)

¢ 3

139

T05(1) 02 (1) + § 04(1) 04 (11) =




( Table 8: The quadratic identities (cont.)

Lattices Identity

{4,28}[1,7] =~ Ga(1) 03(7)+ 02(1) 62 () + £ 04(1) 04(7) =
{2,14}[1,7] 03(2)03(14 +9',(2)02 (14)
(122035~ | §0a(3)05 (5) + I 62(3)0 (5) + L 03 (3) 01 (5) =
{2,30}{1,15] 03( )03 (30) + 82 (2 )02(30)
{4,60}[1,15] 03(1)03(15)+0( ) 64 (15) + 64 ) 2 (15)
(2028571~ | 5 0:(5)05(7) + L 02(5)02(7) + § 0 (5) 03 (7)
{3,105 }{1,35], =93(3)03(105)+‘2¢3(3)¢3(10 )

{10,14}[5,7) =
{6,210}{1,35)

{(3042}[5.7]~ | 03 (15)05(21) + 05 (15) 02 (21) + 2%3 (15) ¥a (21)+
{2,70}[1,39], 246 (15) 5 (21) = B3 03 (35) + 82 62 (35)
{15,21}[5,7) ~
{4,140}[1,35]

{2044}[5,11] ~ 02 (5) 02 (11) + 03 (5) 03 (11) + 04 (5) 04 (11) =

{4,220}[1,55) 02(1) B2 (55) + 03(1) B3 (55) + Ba(1) 84 (55)

{28,36}(7,9] ~ 02(7)02(9) + 03 (7)03(9) +04(7)04(9) =

{4,252} [1,63] 02(1) 03 (63) + 63(1) B3 (63) + 04(1) 04 (63)

{12,52)3,13] ~ 82 (3) 62 (13) + 03 (3) 03 (13) + 04 (3) 04 (13) =

{4,156}[1,39] 82(1) 02 (39) + 83(1) B3 (39) + 84(1) 84 (39)
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Table 8: The quadratic identities (cont.)

Lattices Identity

{30,186}[5,31] = 63 (5) 03 (31) + A2 (5) 92 (31) + 23 (3) ¥ra (1) + 2u5 (D) Vs (B1) =
{6,210}[1.152] 03(1) B3 (155) + O2(1) 02 (155) + 2u5(1) w5 (155) + 2ew( 1) 46 (159)
{42,174}[7,29] =~ 04 (7 03 (29) + 02(7) 6, (‘29) + 203 (T)ea (29) + 2us (T v (29) =
{6,1218}(1,203] 8a(1) 83 (203) + A1) 02 (203) + 2ua( 1) Vi3 (203) + 2ea( 1) v (203
{66,150}(11,25] = O3 (11)03(25) + 2 (11) 02 (25) + 205 (L1Y g (26) + 24 (1 1) 4 6 (25)
{6,1650}[1,275] = 03(1) 3 (275) + O2(1) 02 (275) + 2uw3(1) va (275) + 2un( 1) v (275)
{78,138}[13,23] ] 03 ( 13) ) (23) + 04 ( 13) 8, (23) + 2y ( 13) vy (2.;) + 24 (1) vy (23)
{6,1794}[1,299] = 03(1) 65(299) + 0a(1) 02 (299) + 2u4(1) va (299) + 2u0(1) v, (209)
{102,114}[17,19] > | 65(17)83(19) + 02 (17)02 (19) + 23 (17) v (19) + 246 (17) v (19)
{6,1938}(1,323) = f3(1) 03 (323) + 02(1) 62 (323) + 23 1) vy (323) + 2o 1) v (323)

{18,564}3,9) = Pa(l) Y3 (3) + we(l) v (3) = wall) 03(3) + wu(1) 02(3)
{2,54}{1,27],

{9,27}(3,9] ~

{4,108}[1,27]

{6,102}{1,17] ~ 63 (2) 03 (34) + 82 (2) 02 (34) + 23 (2) ¥3 (31)+
{3,51}[1,17) 296 {2) ve (34) = 03(1) 63 (17) + 2y3(1) ¥, (17)
[30,78)[5.13] ~ B3 (10) B3 (26) + 05 (10) 02 (26) + 243 (10) U3 (20)+
(3,195}(1,65], 206 (10) G (26) = O(1) 05 (65) + 24(1) ¥, (65)
{15,39}[5,13] ~

{6,390}[1,65]
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Table 8:

The quadratic identities (cont.)

Lattices

Identity

{12,66}[7,11]~
{3.231}[1,77),
{21,33}[7,11]~
{6,462}{1,77]

63 (14) 03 (22) + 62 (14) 0, (22) + 293 (14) ¥3 (22)+
246 (14) Y6 (22) = 03(1) 03 (77) + 2¢a(1) w3 (77)

16,138)1,23] =
{4,92){1,23]

|

03 (6) 03 (138) + 02 (6) 62 (138) + 233 (6) v (138)+
2 (6) s (138) = 4 05(1) 05 (23) + § 62(1) 62 (23) + & 04(1) 04 (23)

{18,126}[3.21]~
{4,252)(1,63)

64 (18) 05 (126) + 0, (18) 04 (126) + 245 (18) ¥3(126)+
1

2¢vs<18)ws(126)—‘03(1)03(63) 1 62(1) 02 (63) + £ 64(1) 04(63)

{30,114}[5,19]~
{4,380)[1,95]

)

(

9, (30) 0y (114) + 05 (30) 62 (114) + 205 (30) ¥ (114)+
‘Zd'e(JO)tle(lH) = 1 03(1) 65 (95) + 1 f2(1 )92(9‘3)+ L 04(1) 94(95)

{20,76}[5,19] ~
{6,570}(1,95]

103()03(19)4' 82 (5)02 (19) + 3 04 (5)04 (19) =
83 (6) 83 (570) + 82 (6)65 ( 570)+2wa(6)¢3(570)+Zwe(f)')uﬁ(570)

(12102} [7.17]~

03 (42) 05 (102) + 02(42) 02 (102) + 295 (42) ¥3(102)+

{4,476}{1,119] D1h6 (42) the (102) = L 0a(1) 03 (119) + & 62(1) 6, (119) + L 04(1) 05 (119)
{28.68}(7,17)~ T03(T)03(17) + L 62 ()0, (17) + § 04 (7)04(17) =

{6,714}{1,119]

83 (6)03 (714) + 0 (6)0: (714) + 213 (6)d3 (T14) + 296 (6)¥s (714)

{51.90][9,15] ~
{4,540}{1,135]

03 (54)03(90) + 62 (54) 62 (90) + 23 (54) ¥3 (90)+

205 (54) Y5 (90) = £ 83(1) 03 (135) + 3 62(1) 0, (135) + £ 0a(1) 64 (135)

{66,78)[11,13]~
{4,572}{1,143]

03 (66) 865 (78) + 62 (66) 02 (78) + 2¢3 (66) ya (78)+
245 (66) v (78) = & 03(1) 05 (143) + L 62(1) 6> (143) + 1 64(1) 84 (143)

{44 52}[11,13]~
{6,858}[1,143]

503 (11)03 (13) + 3 62 (11)62 (13) + 5 04 (11)04 (13)
= 03 (6)03 (858) + 02 (6)6, {858) + 233 (6)13 (858) + 26 (6) s (858)
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the lattice gluings that produced these identities. Each gluing produces an ideutity:
when two gluings (such as {(2),(2)}(1,1] = I and {(8),(8)}{2,2] = {(1),(4)}) are
known to correspond to algebraically equivalent identities, both gluings are written
adjacent to that identity.

We have found several theta constant identities in the mathematical literature
([TM] is the richest source of these, and [KT] also contains many - both used
predominantly “Schroter’s formula™), but all of those turn out to be algebraically
equivalent to either the first, fourth or tenth identities in Table 8, or to be derivable
solely from the linear identities.

In Table 8 we write for convenience 6;(k) for 8;3(kr), ete..

By the algebraic equivalence of 83 identities we mean in this paper that one
can be obtained from the other and from lower degree identities through any com-
bination of the following algebraic manipulations: (1) arithmetic (1.e. through mul-
tiplication and linear combinations of the other identities; and (2) transformung r
byr— —1/rorr > kr+¢,forkeQ,leZ.

It is not difficult to show that, for example, the quadratic identities

B,(27)% + 63(27)% =6;(7)?, (4.3.9q)
82(7)02(37) + 64(7)04(37) =03(7)63(37), (4.3.9h)

are algebraically independent, by writing both identities entirely in terms of 85, and
considering the ratios of the scalings of each of the terms. The ratios for eq.(9a)
are 1 and 4; those for eq.(9b) are 4/3, 3, and 12. The transformations in (2) will at
most affect these ratios by powers of 4. On the other hand, the identity eq.(6b) also
has ratios 1 and 4; as we saw earlier it is algebraically equivalent to eq.(9a). This
type of argument provides us with the 33 groupings in Table 8 discussed above.
Moreover, an identity in 73 is independent of the lincar relations iff, when it is
expressed entirely in terms of 8; (using for example eqgs.(1.4)), it does not reduce

to the triviality ‘0=0’. This is because of Thm.3.

143




4.3.4 Higher-dimensional identities:

Lattice considerations can easily be used to derive the theta constant expres-
sions for the root lattices. One way to derive these for D,,, Es, E7 and Eg is to use
their orthogonal decompositions (these are calculated in Table 4). Also, eq.(2.11)
yvields the constant for D, and those for its glue classes follow from I,, = D,[2] and
eqs (2.5-7) Since Df = Ey, we immediately get that for Eg. The theta constant for
E,, follows from the equivalence Eg ~ { A3, A2. 4, }{1,1,1]; the constants for its glue
classes now follow from eqs.(2.5-7). Alternate expressions, and hence theta function
identities, can be obtained using for example Eg ~ {E7,(2)}[1,1] = {Es, 42}[1,1],
Es ~ {Ds,(12)}[1, 3] and E7 = {Es.(6)}[1,2].

Of course, 4, is trickier. Since their orthogonal decompositions are known (see
Table 4), their theta constants (like that of any rational lattice) are in 7 and can
be written down explicitly (but messily). Eq.(2.9) itself can be derived (by putting
—1/7 in it) from A:‘I_l(”) oI = IS,")[I,...,I]. But the easiest proof comes from

looking at the standard embedding of A,,_; in R™ and using the projection operator

0 otherwise

%Zcuz{l if k=0 (mod n), (43.10)
=1

where ¢ = 2™/,

The expressions given in Table 7 were found using lattice equivalences such as

Es ~ ‘48 [3], E‘;' = ‘47[4], E—? = .47[2], and
-4n+m ~ {An-—la(L)aAm}[n - 1’831]7 (4'3'11)

where € = 2EBELS and L = En(m +1)/(n +m + 1).

Of course each of the expressions in Table 7 imply identities when compared
with eq.(2.9). Also, by Hecke’s Theorem (Thm.2.4) self-dual gluings such as E?[1,1]
produce other identities. Further sources of identities are:

{An,(n+ DL & Loy, (4.3.12a)
and D} ~ I,. (4.3.12b)
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For example, the simplest derivation of Jacobi's identity is to read it off from
eq.(12b).

Of course, root lattices are not the only source of lattice identities. The gluings
of orthogonal lattices can yield great numbers of them in each dimension, using the
methods used earlier for generating quadratic identities. These are too numerous
and messy to explicitly write down. In addition, the results of the following section
allow in some cases glues of order other than 2,3,4, or 6 to be used. An example

will be given in the next section.

4.4 Theta Constants of Glue Classes

In this section we investigate the existence of polynomials that . satisfies, We
will be particularly interested in polynomials with coefficients in 73. We will find
that the results for 1x generalize very naturally to the theta constant of any glue

class.

Let us look at the lowest ‘forbidden’ &, 1.e. k& = 5. Recall from Thm.1.1 that s
cannot be 3-solved — z.e. it cannot be expressed as a polynomial of 3. However,
as we shall presently show, s can be expressed as an irrational function of 6.

To see that, start with the following equation obtained from eqs.(1.3e,f):

1

Ysa(r) = 565(7/25) = 364(r) = (7). (44.10)

Using {(5), (5)}[1,2] = I;, we find a quadratic identity %5 must satisfy, namely

0=9s(r)’ + %{93(7') —83(7/25)}ys(T) + %{%(r/tﬁ)2 — 83(7)?%}. (4.4.1h)

This enables us to solve for 5 in terms of 3 using the quadratic formula:

_ {63(7) — 63(7/25)} + +/{83(1) — 03(/25)}% — 465(7/5)% + 463(7')7'.

¥s(7) i

(4.4.1c)
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Of course, the quadratic equation (3.3b) has a second root — it is easy to see that

52 is that second root:

_ {85(7) = 65(/25)) — \/{63(r) — 85(7/25)}? — 48,(7/5)* + 463(7)*
Ys/2(T) = 1 :

(4.4.1d)
Thus if we allow these non-polynomial dependences, we may derive more ; identi-
ties by allowing for order 5 glues (e.g. when extending Table 7).

However, in this work we are interested in identities in 7;3. Hence eqs.(1c,d)
do not mean we may in higher dimensions consider ¢s and 5/, to be ‘derived’
quantities, in the sense that 8, and 14, for example, are. In fact, in two dimensions
we shall sce 15 involved in a number of independent identities. We will make this
point more graphic later in this section when we discuss the 3-solvability of the
lattices Ay.

We shall investigate how eq.(1b) can be generalized to other ¢’s. First (z.e. in
Thm.1) we will discuss the polynomial equations the ¢, ’s satisfy, and later (z.e. in
Thin.2 and beyond) we shall see when the coefficients of those polynomials are
functions of 6;. Higher dimensional generalizations will be discussed in Thm.4, and
various illustrations and remarks will be presented in the remainder of the section.

Let 'T,f") be the C-module spanned by the theta constants of n-dimensional
Euclidean lattices, and let 77, be their sum. Define ’T}zn) and Tg similarly, except
use only rational lattices. Then both 7 and 7 contain Tg, which contains 7;. We
have no examples of lattices whose theta constants are not in 73, but for reasons to

be discussed below we suspect there are 2-dimensional counterexamples.

Theorem 4.4.1: For each n = 1,2,3,..., there exists a monic polynomial
fa(®) = ¢F + s000% Voo + 5,k of degree k = [%q&(n)] , with coefficients
Snit € TAY, whose k roots are precisely Y5/, = ¥njn-j, forall 3, 1 < ; < n,

relatively prime to n.

Proof Fixn andletl= K <... < Ky £ 7 be the k numbers relatively prime

146




to n. Define ¢(n, ,)(T) wn”\' (7). To prove Thm.1 it suffices to show that

(=D%ne = YY) (7). (4.4.2a)

1< < <k
for £ = 1,...,k can be expressed as a linear combination (over Q) of the theta
constants of various ¢-th dimensional lattices. This follows by induction on ¢ and
n and by considering the sum of .he theta constants corresponding to the lattice

gluings
{(n),...,(n)}K,,...,K,,] for every choice of 1 <y <+ <ip <k, (4.4.20)

QED

Here ¢(n) is the Euler ¢-function, #.e. the number of numbers less than 7 and
relatively prime to n, and [z] is the least integer > r.

For example, for n = 2,5,7 we have k =1,2,3:

F1(9)(r) =9(r) = Ba(r/4) + 6a(7), (4.4.30)
fs()(7) =p* - —{Gs(r/"5)—93(r)}¢+ {93(T/5) — 83(1)?}, (4.4.30)
FrBY(r) =9° = 3 {8s(55) - 63}¢2+
o) - )7 - 1) + (8 — o) () — )i
— 7030 = H0a.0fs(2)) + Oy {B(3) - BV} - 6], (4430)

where for convenience we dropped T from some arguments, and for eq.(3¢) we used
the notation of Table 7.

Recall that we have called a lattice (rationally) 3-solvable if its theta constant
is. Call a polynomial 3-solvable/rationally 3-solvable if all of its coefficients are,
respectively, in 73 or 7;". For example, egs.(3) show that f,, fs and fr are all
3-solvable.

The proof of Thm.1 is constructive, explicitly showing us how to find f,,. From

a related construction we get the following results:
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Theorem 4.4.2: Fix n, and suppose f; is (rationally) 3-solvable for all d < n
dividing n. Then f, is (rationally) 3-solvable iff V¢ satisfying 1 < € < k def [1é(n)],

the lattice A, ¢ def {(én?), A¢—, }[n?,n] is (rationally) 3-solvable.

Corollary 4.4.3:  f, is (rationally) 3-solvable for all n, if every lattice is (ratio-
nally) 3-solvable. If every f, is rationally 3-solvable, then every A, is rationally
3-solvable. If every f, is 3-solvable, then for each k, either Ay is 3-solvable or there

s . : o k+2
are an infinite number of independent identities in 7},( +2)

Thm.2 and hence Cor.3 follow from the observation that {(n?)¢}[n,...,n] ~
{(0), Ag':zl)}[n,n[l]] = {An,e}*™", and from the facts that the symmetric polynomi-

als

4
def 13 ) def
pl,k = Z‘rg and p(,k = Z zil e 1‘159
1=1 1< < <1<k

for ¢ = 1,...,k, in the indeterminants z,,...,zk, both generate any symmetric
polynomial in the r,.

Using Table 7 and egs.(1.4), we immediately get from Thm.2 that f, is 3-
solvable (and can be explicitly — if somewhat messily — written down) if ¢(n) < 8,
e. Vn <10, or n=12, 14, 15, 16, 18, 20, 24, or 30.

Now, A, is rationally 3-solvable iff }_ %, /x is rationally 3-solvable, by egs.(1.6d)
and (2.9a). Therefore Ag, A3, 414, A5, 419, Az3 and Ajg are all rationally 3-
solvable and their theta constants can be explicitly given.

A significant generalization of Thm.1 is possible:

Theorem 4.4.4: Consider any N-dimensional glue class [g]A of order n. Then
there exists a monic polynomial f of degree k = [3¢(n)] whose coefficients s,
0<é<karein TL((N) and whose k roots are the theta constants of the glue classes
UglA = [(n = ))g]A for all j, 1 € j < n, relatively prime to n. Moreover, if A is

rational then the coefficients s, will also lie in ’T,(JN).
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Thm.4 follows from arguments analogous to those used in proving Thm.1: in

particular, in place of eq.(2b) use
{A,... ,A}[{[K,‘g],...,[K,,g]}] for every choice of 1 <y < - < i <k,

Obviously, Thm.1 is a special case of Thm.4.
Any order 2 glue [g]A has theta constant ©([g]A) which satisfies:

fGb) =¥ + {©(A) - O(A[g))}, (4.dda)

while the theta constants of the non-trivial glue classes {144, {2]44, [3]4, and

[4)A4 of Ay satisfy:
f0) = #* = 3{O(AD) ~ O(A I + {O(B) ~O(4 ). (44.40)

Note that the polynomial in eq.(4b) is 3-solvable.

At the beginning of this section we ‘solved’ for ¢5 and 5/, in terms of 6.
Unfortunately, the existence of this ‘solution’ does not simplify our analysis of ex-
pressions with 5 in them, because of our decision to stay in T or T;.

In particular, in Table 9 we investigate the 3-solvability of

Vs (T)bs(kT) + ¥5/2(7)¥s 2 (kT). (4.4.5a)

In the following discussions we will refer repeatedly to such functions. It is easy to
verify (using eq.(1a)) that eq.(5a) is 3-solvable/rationally 3-solvable iff 95 (7 )ibs /o (kT)+
¥s/2(T)¢s(kT) is 3-solvable/rationally 3-solvable, iff the lattice Ak def {(25), (25k)}([5, 54
is 3-solvable/rationally 3-solvable, iff the lattice {(25), (25k)}{10, 5k] is 3-solvable/ra-
tionally 3-solvable. Table 9 was derived by rewriting Ax as the gluing of an orthog-
onal lattice with a single glue of order 1, 2, 3, 4 or 6. This is possible for example
whenever the minimum norm in Ay is 1, 2, 3, 4 or 6. A7 is the first such lattice

whose theta constant cannot be ‘3-solved’ in this way (its minimum norm is 8).
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Table 9:  ys(7) ¥s(kr) + 5 2(7) ¥s/2(kT)

Expression

T03(r /5)7 + 102(57 ) = % 05(r /5) 03(57) — % O3(7 )’

3 b4

O3(3r /5) 03(307 ) — % 83(57 ) 63(107 ) + wa(r /5) ¥s(107)

T oa(dr /5) 0(607 ) y 7 0a(57 ) Oa(157 ) + 30a(7 /20) 02157 /4)
+1 05(27 /5) 02(307)

k=4 L10:(r) 05047 ) — % 03(57 ) 02(207 )

k=5 % 03(67 /5) 03(1507 ) — % 03(57 ) 63(2567 ) + ¥e(7 /D) ¥e6(257 )
+u(27 /5) ¥3(507 ) + 02(37 /5) 02(757 )

k=61 +{0a(r /5) —0(57) }{Ba(67 /5) —63(307) } — 2 05(27 ) 63(37)

k= 7 ?7?

k = 8 A

k=913 03(2r ) 03187 ) — % 03(57 ) 03(457 ) + Oa(T ) 02(97 )

poey
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It would be interesting to see if its theta constant is 3-solvable — it is one of the
simplest lattices which is not obviously 3-solvable.

Eqs.(1) tell us that A4 is (rationally) 3-solvable iff Sy(r)%' VAMAKT) is,
where A(7) = {63(7) — 03(7/25)}% — 483(7/5)? + 483(7)? is the discriminant of the
quadratic polynomial eq.(1b). Note that

Ske(T) = A(T)Se(kT)/Si(7), (4.-4.50)

so if Ax and A, are rationally 3-solvable, so is Age. It is also easy to verify
Sue(r) = Su(r/k). (4.4.50)

These two equations tell us that Sy is rationally 3-solvable for any rational k iff S;
is rationally 3-solvable for any integral k, iff S, is rationally 3-solvable for any prime
P

From Table 9 we learn that A is 3-solvable for £ < 6 and k¥ = 9. Then ¢q.(5b)
tells us Ag, Ao, Aq2, and Ays, to name a few, are all rationally 3-solvable. Their
3-solvability, however, is an open question.

Table 9 implies some degree four identities: one for each k that A, is 3-solvable.
These take the form Si(7)? = A(7)A(k7). This idea tells us that if Ay is 3-solvable
for all k, then we will get an infinite number of algebraically independent degree 4
identities for 63. The unlikelihood of this suggests that not all Ak, and hence not
all 2-dimensional lattices, are 3-solvable. In fact, it hints that only finitely many
Ay may be 3-solvable.

On the other hand, if all A were rationally 3-solvable, we again would have
an infinite number of algebraically independent 8; identities but they would be of
arbitrarily high degrees.

Note that although we learn from eq.(5b) that, for example, A5 is rationally
3-solvable and hence get an identity reflecting this, this identity (at least if it is
derived solely from eq.(5b)) would not be algebraically independent of the one for

As. Something cannot be gained from nothing.
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It is obvious that 73 is an integral domain. It would be extremely useful if 73
was known to be in addition a unique factorization domain (see p.137 of [HUN]
for definitions). However, consider the identity for k = 2, for example — it has
the form Si(7)? = A(7)A(27) — and assume for contradiction that 73 1s a unique
factorization domain. Now if S3(7) were irreducible in 73, then because deg(A(7)) =
2 =deg(A(27)), we must have Sp(7) = A(71) = A(27) (at least up to real number
proportionality constants — the units in 73). This is of course false. Thus S,(7)
is reducible, say So(7) = uy(7)uz(2) where deg(u,(7)) =deg(uz(7)) = 1 and u,(7),
ug(7) are irreducible. Then A(7) = u;(7)? and A(27) = uy(7)? (interchanging u,
and u, if necessary). But ¥5(7) is not 3-solvable by Thm.1.1, so neither is \/A(T)

by eq.(1c). This is another contradiction. Hence:
Theorem 4.4.5: The integral domain 73 is not a unique factorization domain.

In Thm.2 we are interested in the theta constants of gluings such as {(5k), A4 }{4.1]
and {(5k), 44 }[k, 2] for various k. Using the lattice equivalence {(5), A4}[1,2] =~ Is,
as well as cgs.(1) and (4b), we get that {(5k), A4}[k, 1] is rationally 3-solvable iff
{(5k), A4}k, 2] is, iff A} is. In this way the rational 3-solvability of a 5-dimensional
lattice 1s reduced to the rational 3-solvability of a 2-dimensiona! one.

As a final note, these results are of interest even if the polynomials f are not
(rationally) 3-solvable, for they seem to represent the minimal polynomials that the
lattice gluing method can be expected to generate. This is discussed in more detail
in the following chapter.

Problems in the full-rank case seem to be more tractible than here in the theta
constant (0-rank) case For example, in Chapter 5 we prove that the full-rank theta
series of a glue class is 3-solvable only when the order of the glue class is 1, 2, 3, 4

or 6 (compare Thm.1.1). The proof does not carry over to this case, however.
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5.1

Chapter 5 THETA SERIES OF FULL RANK

Jacobi f-functions

The Jacobi 6-functions which we need are defined by:

Vs(z | )& Z exp[2mmiz + mum?r] (5.1.1a)
m=—od
def o 1 1 1
dy(z]7)= Z exp[2ri(m + 3)(: + —.)-) + wi(m + ;)-)"'r]
m=-o00 = = =
. 1 1 1
= exp{mir/4 + miz + 57 J3(z + stsTlT) (5.1.1h)
= 1 . 1
Va(z | r)déf Z exp[2mi(m + 5)z + mi(m + 3)21']
m=—wo = =
: 1
= exp|mit /4 + mz] sz + 57| 7) (5.1.1¢)
def 1 )
da(z | T) = Z exp[2mmi(z + 5)+ mim?7]
m=-00 -
1 -
= J3(z + 5 | 7) (3.1.1d)
= 1 1
Uiz ] r)dz.e—f m;w exp[2ri(m + Z)z + m(m + 5)21']
=exp[7rzr’k2 +::7rz:} 1)3(:+—1:T]r). (9.1.1¢)

k

Note that all these series converge for T € H {weC|lmw >0}, and any

k

2 € C. In fact it is possible to prove using arguments similar to that given at the

beginning of Sec.4.1 (see p.1 of [MUM] for details) that for each fixed z € C, they

are analytic functions (of 7) in H. and for each fixed 7 € 'H they are entire functions

(of z

). Moreover, for fixed 7 € H, vz, V3 and Uy are even functions of =, while v,

is odd. As in the previous chapter, 7 will be always taken to lie in H.

Q:

The following functions (first given by Hermite) can be defined for cach a,b €

o0

Jap(z]7) = Z exp[mi(m +a)*r 4+ 2m(m +a) - (z + b)]. (5.1.2a)

m=-—oo
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Let n be the smallest positive integer such that nb € Z. Then there is a k such
that kb= L (mod 1). Let ( = exp[2mi/n]. A simple calculation (see eq.(2.3b)) now
shows

n—1

Vap(z | 7) = exp[2miab) Z CllI!,,/([Ha)(nz | n%r). (5.1.2b)

£—=0
For this reason it will suffice in what follows to consider only the ¥ functions. rather

than all ¥, 4. A special case of eq.(2b) is
01(2 | T) = Z‘I/4(2Z I 4T) - l@4/3(?2 l 4T), (5.126)

which we will use later in deriving eq.(5¢), and in proving Thm.4.4.
Another important function is the Dedekind eta function n(r):

20

1/(7~)d§f exp(mir/12] H (1 — exp[2mimr]). (5.1.24)

m=1

n(7) is interesting in the theory of modular forms; we will see it also in Ch.6 in
the partition functions of strings (e.g. see eq (6.2.6)). It is possible to show using
modular form arguments (e.g. p.72 of [MUM]) that n*!(r) and V1/6,1/2(0]37)%*

both equal the cusp form Agg(7). From this and eq.(2b) it is trivial to derive

Il(T) = €Xp[—7rl/6]191/6‘1/2(0 I 3T)

= P19(127) — ¢12/5(12T). (5.1.2¢)

Therefore, Thm.4.3.3 immediately implies that 7 is not 3-solvable, and that eq.(2¢)
is the unique expression for 7 in terms of the theta functions in eqs.(4.1.1). More-
over, the identity 7** = 6366% /28 shows that 5(7)® 13 3-solvable, and hence that n
satisfies a degree 3 polynomial in the sense of Sec.4.4.

By theta constants 1s meant the restriction to z = 0. The previous chap-

. def def
ter considered exclusively the theta constants 6,(7) = 0,(0|7), b3(7)= Y3(0]7),

H‘(r)dg U4(0]r), and uvk(r)déf P (0]r) (¥,(0|7) is identically zero). In this chapter

we will extend the techniques and results developed there to = # 0.
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For convenience, define ¥ def 3. Note that

U =1, iff 1/keZ (5.1.3a)
V=0, iff 1/k-1/t€ 2Z. (5.1.30)

(See eq.(3f) below.) In general, we will thus be interested in ¥ where & is 1ational
and > 1. ¥, is never an odd function of = for fixed r; it is even iff 1/ = 0 (mod
3):

From the definitions the following basic identities can be readily verified:

Va(z | 1) =203(22 [ 4r) — dy(z | 7) (5.1.3¢)
Ua(z | T) =Va2(s]T) (5.1.3d)

k
Zwm(: | 7) = va(z/k | 7/k?) (5.1.3¢)
‘I’L/z 7)) = Prpe-nlz | 1) (5.1.3f)

In fact, in the next section we will find that egs.(3e, f) are special cases of much
more general relations (namely, eqs.(2.11) and (2.7d) respectively) which 1eflect
basic facts about lattices and their glues.

Eq.(3f) above (compare with eq.(4.1.3f) in the previous chapter) is our first
hint of the difficulties facing us in our attempt to gencralize the results of the
previous chapter. Indeed, in what follows it will be common to use; instead of Wy,

its symmetrization:

. of 1 i}
\Pk(zlr)d=f-5{\Pk(z | 7)+ ¥p(—-2]|7)} (3.1.4a)
Hence
‘i’k/e = ‘i’k/(k-e) (5.1.4h)
Fe(0]7) = (0] 7) = ha(r). (5.1.4¢)
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These first identities allow us to establish the following:

~

Uy(z|r)=Pi(z[1)=Vs(z]7) (5.1.5a)
oz | 1) =Uy(z | 1) = D2(z | 7) = 03(2/2| 7/4) = Oa(z | 7)  (5.1.3b)
Pa(z | 7) = %{03(43 | 7/9) = ds(z | 7)} (5.1.5¢)
Bz | 7) =% (/2] 1/4) (5.1.5d)
Uiz | 7) = 50a(z/2 | 7/4) - -o (/2] 7/4) (5.1.5¢)
Fo(z | 1) = 5 92(2/317/9) = da(z | T) ). (5.1.51)

For example, cq.(5b) is a consequence of egs.(3d, e) with k = 2. In fact, the deriva-
tions of eqs.(5a-d) and (5f) are 1dentical to the corresponding ones in the previous
chapter.

Using the linear identities eqs.(3c) and (5b), identities involving V2, Y3 and U4
can always bhe reduced to identities involving only v3. We will also be interested in
identities of higher degree: e g. the (degree 4) Riemann identity V(= [r) +V}(T|r)+
P H ) = 204 |7) (see eq.{3 8e)). Thm.3.1 tells us that any fundamental
identity is homogeneous 1 degree We will be interested in identities which are of
full rank. The precise meaning of this will beco.ne clearer later (see for example the
definition of F; later in this section, and especially the discussions after Thm.3.2
and before Thm.4.1), but suffice it to say here that theta constant identities are of
rank 0 (and hence not of full 1ank), while the 1dentities considered in this section
are of rank and degtee 1 (and so are of full rank).

Identities of higher degiees aie discussed in Sec.3.

Using eq.(4.1.5b), we immediately get

1

(= | —;) = —(7/1)"/? exp[miz27] D1 (27 | T) (5.1.6a)
U2(z | ——-}) = (1/1) % exp[riztr] 94(z7 | T) (5.1.6b)
Dz | —-—1-) = (1/i)? exp[riztr] 9y (27 | T) (5.1.6¢)
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" 1 . . k
w Posi(z |~—;)=(T/z)l/2exp[m:2rl 1)3(;;+:r | 7)
n—1i
= (r/i)'/2 exp(wiz’r] Z C“\Il,,/g,,,(n: | ntr),  (5.1.6d)
=0
where in eq.(6d) ¢ = €*™/" and m € Z satisfies mk = 1 (mod n). For example,
these allow eq.(5b) to imply eq.(3¢).
Egs.(la-e) immediately give us
hiz|r+1)= \/201(: | 7), dofzlr+1)= \/;02(: | ) (0.1.7a)
Va(z |7+ 1) =d4(z]7), Dy(z|7+1)=03(z]|7) (5.1.7h)
1 1
hiz+5lr)=—do(z]7), els+5lr)=di(z]7) (5.1.7¢)
1 1
Ua(z + 3 | )= 04(z | 7), Doz + 5 | 7y =d3(z ] 7) (5.1.7d)
Tapplz+ 1] 7) =" 0z | 1) Togulz |74 20) = Lyl | 7)(5.1.7c)
Let ?3(") denote the full rank homogeneous polynomials of degree n i 1y,
t.e. the C-module of functions generated by the monomials J4(2 @, | byr). - y(5-
@y | bo7), where the variable ¥ = (z;... ,z,) € C", where the vectors @, € R*
are hnearly independent, and where the real numbers b, are positive. Define
F3 to be the sum of all ]'-4"). Then f;” and hence F3 contain vy, vy, 1y, and
¥y = \ilg, \ilg, \i’4, \ilb. Define .’Fﬁ) and F| 3 similarly, except the monomials consist
of products of ¥, as well as ¥3. Then F 3 contains Fj, as well as 9y and ¥,. Define
F3 and F7; to be the field of fractions of F3 and F) 3, respectively. We will be
interested in using lattices to find functions in F3 and F) ; which are identically
zero.
Definition 5.1.1:  Call F(Z'|r) 3-Solvable if it lies in F3 — we. if it can be
expressed polynomially in terms of ¥3. Call F(Z'|7) rationelly 3-Solvable if it lies
in F; — i.e. if it can be expressed as a fraction involving only 4. Similatly, call
F(£|1) (1,3)-Solvable/rationally (1,3)-Solvable if it lies in F) 3 or FY 5, respectively.
P




We will also be interested in determining the Solvability of various theta func-

tions/series.

Theorem 5.1.1:  For k > 1, ¥, is 3-Solvable iff £ = 1,2 and oo, and (1,9)-
Solvable iff k = 1,2,4,00. Uy is (1,8)-Solvable iff 9-Solvable iff k =1,2,3,4,6 and

0.

One direction of this theorem is already known; the other is an immediate
consequence of Thm.3.6. Compare with Thm.4.4.
5.2 Theta Series of Integral Lattices and their Glue Classes

Given a glue class [g]A d-—e-fg + A, where ¢ € Q® A, its theta series is defined to
be

Ng)]A)NE | )= Z exp[mir(g + z)* + 27mi(z + g) - 7 (5.2.1a)
I€A
I(A) = V([0]A). (5.2.1b)

Here, the variable = is in the n-dimensional complez vector space C © .\, where n
is the dimension of the lattice A (the arrow will be used to emphasize its vectorial
nature). In the one-dimensional case, we will sometimes write z for . Of course,
the theta constants are obtained by setting = = 0: O([g]A)(r) = V([g]A)(0 | 7).
The argument of the function J([g]A) is understood to be (Z | 7). If this is not the
case, the argument will be explicitly included. as in J([g]\)}(V2Z | 27).

By the usual analyticity arguments, these are analytic in H for fixed =, and
for fixed r € H and fixed z, € C, 1 # ), they are entire in z,.

It will occasionally be convenient to rewrite eq.(1b), for example, as

HANZ | 1) = I )M | Ar)

def Y exp(mrmdm! + 2mizi'], (5.2.1¢)
mel,
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where M is a generator matrix, and 4 = MM* is the corresponding Gram matrix,

for A.

In the notation of eqs.(1a,b), the Jacobi 6-functions in eqs,(1.1) can be written

as

92(V22 | 2r) = I([L{(2)})(=1m) & (11 |r)

=N[4/ V2, =:/V2) | 7) (3.2.20)
ds(Vkz | kr) = o(IF) = 9({(k)}) (5.2.2h)
Uee(VEz | kr) = 9([Q1F) = o([{(k)}). (5.2.2¢)

Suppose y € Q ® A*. Then there exists some integer n > 0, called the order
of y with respect to A*, such that ky € A* iff n divides k. By Thm.1.4.9 we can
findanr € Asuchthatr-y = ;’; (mod 1). Moreover, if we let Ay denote the lattice
of all vectors # € A with integral dot products with y, then A = Ay[r]. A simple

calculation from eq.(1) then enables us to write

n—1
DANZ +y | 7) = ¢*I([kr]Ao)(F | T), (5.2.3a)
k=0
n—1
H[9JA)Z +y | ) = exp[2meg-y] D ¢*O([kr +g]A0)(F | 7),  (5.2.30)
k=0

where [g] is any glue of A, and where ¢ = *™/",

From eq.(1) we also immediately get information about the Z'-quasi-period of

these theta series:

HAY)Z + T | 7) =exp[-mirlr — 21 Z)H(A)F | 7) (5.2.4a)
I[g]A)Z + TA | 7) =exp[—mirlr — 2mid - Z]I([g]A)Z | 7)  (5.2.4b)

for any A € A. Similar reasoning gives us the following interesting relation between

the theta series of the glue classes and the base lattice:

([g]A)(F | 7) = exp[rig®T + 2mig - £)I(A)F + 79 | 7). (5.2.4c)
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These straightforward calculations lead to this useful result:

Theorem 5.2.1:  Suppose 0 = 23\;1 a, ¥([g,)A)(Z | 7) is satisfied for all 7,7,

and assume the glue classes [g,]A are all distinct. Then a; =+-- = ay = 0.

Proof Suppose g9 € A. Choose N > 0 so that Ngix € A for all k. By Thm.14.9
we see that there exists an r € A* such that r-gx € Z iff gx € A, t.e. iff £ = 0.

From the expression (see eq.(3b))

I[ge]A)E + 7| 7) = exp[2rige - r] I([ge]A)(Z | 7) we obtain
M

N
0= N ax O([gelA)Z +&r | T) = Nag0(A)(Z | 7), (+)

€=1 A=0
and hence get ay = 0.

Now note that, for any ¢ € Q ® A, eq.(4c) gives us
M [gk]A)Z + g7 | 7) = exp[-mig®T — 27ig - ) I((gx + g]A)E | 7).

Therefore Zf’___lcu U([gx + 9]AX)Z | 7) = 0 for each such g. Choosing ¢ = —g;
implies by () that ax = 0. QED

Eqs.(1.7) tell us about the periodicity of J; etc. in the z variable. This can

now be generalized, using egs.(3): for any y € A*,
YANZ +y| ) =ANZ | 7)), (5.2.5a)
and for any y € (A[g])*,
I([gA)Z +y | ) =I([g]A)Z | 7). (5.2.5b)

In fact, by Thm.1 and eqs.(3), these can be shown to exhaust all periods of ¥([g]A)
{and hence 9(A)):

Theorem 5.2.2: Fory € C®A, yis a 2"-period of J([g]A) — i.e. I([g]A)(Z+y |
) =J([glA)F | ) — iff y € (Alg])™.
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Let 7 be a vector with n complex components z,, i = 1,...,n. By k. Ao

we mean the vector whose ¢ components are z;,,...,z,. We use the short-hand

(k=0 fop z(kk+1, 0 (zks+- ., 2¢). The following easily verified theorem is the

basis of the lattice derivation of theta function identities developed in this chapter.

Theorem 5.2.3: (i) The theta series of a direct suin of glue classes is the

product of the theta series of the individual classes:
k
(g1, gelAnr o ADE | 1) = [0l ANEA =30 | 1),
=1

where M, =1 + E;;ll dim\¢, and N, = ZZ’:l dim Ay
(i1)  the theta series of the disjoint union of glue classes is the sum of the theta

series of the individual classes:

k
HUE [aJA) = Zﬂ([g,]z\.) provided [g.]A. N {g;]A, # @ when ¢« # 5

=1

(i)  I(VegIAO)NF | 7) = I(gIANVET | er);  I(ADYE | r) = (ANVEE | 7).

Note that the glue classes of any glue decomposition are pairwise disjoint

hence the value of Thm.3(ii).

By Thm.3(i) we get that the theta series of I, is

P 7)E V(2 | 7) - Da(zn | T, (5.2.Ga)

where (2),...,2,) € C" are the coordinates of ¥ € C @ I, relative to the orthonor-

mal basis of I,,. [n fact,

I({(m1),...,(mH(E | 7)

=d3(vmrza1 | 7). V3(Vmize | mut) (5.2.6h)
I, . G {(ma),. .. (m)})(E [ 7)

=Pmy 0 (VMaz | mit) g e (Vmeze | mer),  (5.2.60)
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using the obvious orthogonal basis of the lattice {(m;),...,(mx)}.
As in Chapter 4, the Orthogonal Decomposition Theorem (Cor.1.4.4) has the

following immediate consequence.

Theorem 5.2.4: The theta series of any glue class of any rational Euclidean
lattice can be expressed polynomially in terms of ¥; and ¥ (with arguments r and

z, scaled appropnately).

More explicttly, recall the definition of .7-';") given in the preceding section;
define F and F similarly, except that the mononuals are products of ¥y (7 - @, |
h)'s, for k, € Q, 1 =1...., n. Then F(" contains }—;") and fl(f;). We learn in
Thm.4 that ") also contains the theta series of the glue classes of any rational
lattice.

The vectonial nature of Z introduces a non-trivial complication into the analysis
(in this chapter) of theta series, which is not present in the corresponding analysis
(in Chapter 4) of theta constants. In particular. if two lattices A and A\’ are in-
tegrally equivalent, their corresponding theta constants ©(A)(r) and ©(A')(r) are
nmumerically equal. This was used repeatedly in the previous chapter. For theta
series we must be more careful: the vector = will in general have to be rotated
to preserve the dot product (2 + ¢) in eq.(1). An equivalence A — A’ induces
an equivalence C @ A « C © A'; write this symbolically as 2 « . Explicitly,

let 3¢ & g, € = 1,...,n be corresponding bases of .\, A’ respectively. Then for

= Z;;l z¢f3¢, we have ¥ & ' = Z;;l z¢3y and
HA)E | 7) = HA ) | 7). (5.2.7a)

Morcover, if the equivalence takes glue class [g] of A to glue class [¢'] of A', we

similarly have
I([glA)E | 7) = I([g"|A')(Z" | 7). (5.2.7b)
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A special case of these gives:

AN | ) =D(A)T | r) (3.2.7¢)
I([—glA) (=2 | ) = O([g]A)(= | 7, (5.2.7d)

for any glue g of any lattice A. These generalize eq.(1.3f) and the even-ness of vy
and 3, discussed in the previous section.

It is natural (and frequently done) to identify all integrally equivalent lattices,
This chapter is one of the reasons we chose not to do so in this work., For cach n,
fix an orthonormal basis 3, = {e,} of R®. The coordinatization of any lattice .\
considered below will be defined relative to the 3, of some R". Morcover, we will
take 8, to be the basis of C ® A, when we speak of coordinates of 7. By I, we
mean precisely the subset of R® with integer coordinates relative to 3, so the basis
of the lattice is also 3,. Any other n-dimensional (Euclidean) orthogonal lattice
of form {(my),...,(mn)} is similarly defined to have basis \/m,e, in R" Hence
the eqs.(6) are automatically satisfied; it is unnecessary to specify further what the
coordinatization of = there is taken to be, for this is implicit in the above discussion.

We defined in Sec.1.5 the root lattices. All that need be added here is that
these lattices are to be defined as in Sec.1.5, but relative to one of the specific basis
choices f,. For example, D, is the set of vectors in I, whose components (relative
to the basis 3, ) sum up to an even integer.

Note that from eq.(7d) we know J([g]A) (=7 | 7) = H[g]ANZ | r) iff [g] is
an order 2 glue of A (see Thm.4.4). A consequence of this is that only order 2
glues have 3-Solvable theta series. To facilitate calculations, it is often convenient

to introduce the average theta series:

BN 17) = 3 (UaIAN=7 | 7) + 9([glANE | 7)),

as was done in the previous section with Vi in eq.(1.4a).
Asin the previous chapter, identities between the theta series of the glue classes

of root lattices arise by considering the outer automorphisms of the Lie algebras
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corresponding to those root lattices:

I[iAn)(Z | 7) = ([n +1 = i]Adn) (=7 | 7) (5.2.8)
H(ADa)(Z | 1) = A([3] Dy )(Z" | 7) (5.2.8b)
N[1)Es)(Z | 7) = D([2)Ee)(~7 | 7) (5.2.8¢)
I([1Da)(Z | 7) = I([2]Da)(2" | 7) = I([3]D4)(£" | 7), (5.2.8d)

where "' in eq.(8b) has coordinates (z,,..., zp—1, —2,), and where in eq.(8d), ' =
%(z; totmtantrn—zn -z~ 42— 23+ 24,2 — 29 — 23 F 24) and
7" = (21,22, 23, —24).

The principle way we generated identities for the theta constants in Chapter
4 was by finding one or more gluings a given lattice is (integrally) equivalent to,
and equating the theta constants corresponding to each of these. For example, we
considered there the equivalences Ey = Dg[1]; Ditn = {Dp, Dy }[2,2]; and A; ~
{41,(6)}1,3] = {(2),(6)}[1,3]. Using Thm.3, here we get (compare eqs.(4.2.4) in

the previous chapter):

J(Es) = 9(Dg) + I([1]Ds) (5.2.9a)
9(Dim+n) = 9(Dm) - (D) + 9([2]Drm) - 9([2] D) (5.2.95)
HA)(Z | 7) = 9(A)(Z" | 1) 9({(6)})(=" | 7)
+ (1A=, =) | 7) - I(BHBN(" | )
= 9({(Q)N(V2<' | 7)- 9({(6)})(=" | )
+9([1{2})(V22' | ) - H(BI{(B)}(" | 7), (5.2.9¢)

where in eq.(9¢) 2' = 17 - (1,-1,0) and 2" = 7152' (1,1,-2).

As before, the usual calculation implies that for any lattice A,

/2
AN | —1/7) = 1Y) expmiZ2r|9(A*)(r7 | 7). (5.2.10a)

VIAl
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Thus we can also write:

\n/ n—1
I[g]A)(Z | -1/7) =(T\//2|)7\Tz exp[mii?] g_ockz?([kr]x\o)(ri | 7), (5.2.108)
. . (r/i)"/? Rt - .
I([glA)(Z | -1/1) = exp|riZ ]Zg I([kr)Ao) (72 | 7). (5.2.10¢)

\/‘—A—‘ k=0

Here, [g] is a glue of A of order n (i.e. kg € A iff n divides k), ¢ = ™/ g A"

satisflesr-¢g = %{ (mod 1), and Ay is the largest sublattice of A* satisfying g- Ay C Z.
A special case of eq.(10b) is eq.(1.6e).
Because A* = A[G] where G = A*/A,

dA) =) d(lglA) =) Hlgln). (5.2.11)

9€G 9eEG

The usefulness of eqs.(10) and (11) follows if J(A) can be calculated independently
of eq.(10) — e.g. if it can be expressed in terms of J3’s (i.e. ‘3-Solved’). Note that
eq.(1.3¢) is a special case of eq.(11), taking A = Ifk) and using Thm.3.

The theta series of the root lattices can be computed from the methods of the

previous chapter (compare eqs.(4.2.8) there):

HDA)E |7) =5 (957 | 1)+ 03 | 7)), (5.2120)
S(UD)E | 7) =5 95(F | 7) + 5(=i)" 9L | 7), (5.2.120)
S(2ADE | 1) =5 (952 | 1) -5 | 1), (5.212)
HBIDA)E | ) =5 03 | 7) = 5(=o)" 97( [ ), (5.2124)

IDr)Z | 7)=03(F | 1) +93(Z | 7), (5.2.12¢)

H(Es)(Z | 7) =5 { 95(F'Ir) + 03(2"|r) ) 9s(VIZ2"127)
+ L) — 93 )
{92(V32"|37) — 10, (V32"|37) }, (5.2.12f)

HEs)Z |7 W) +93(2'17) ) 9a(2"/V12r/12)

1
WAL
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b ) = )
A V(" VBIT/3) = 0y (2" )V3IT/3) ), (5.2.12¢9)
DUE)Z | 7) =d(2AEe(F1r) = S{AENEN) - HE)EI)},  (5.212h)
WE:)(Z | 1) =03(V25'|2r) + 04(1 — 4)03(5 = T) + 943 — 6)v3(1,2,7)
+94(2,3,6,7)93(1,4,5) + v3(1,2,5.6)03(3,4, 7)

+U5(1,4,6,7)93(2,3,3) + v3(2.4,5,7)93(1, 3,6)

+93(1,3,5,7)93(2,4,6), (5.2.12i)
H[1]E7)(# | 7) ={ interchange each Y, and U; in eq.(12:)}, (5.2.125)
WE7)Z | 7) ={ sum eqs (12:,)}, (5.2.12k)
1
WE)Z | 1) =c{01(Z|r) + 95(Z|r) + 95(Z|7) + 95(Z)r) ). (5.2.12¢)
In eqs.(12f, g, k) the (row) vector (3, 2") can be obtained from # by the formula
(z',2") = 2T, where
(F11 11 —\/Ei\
-1 111 -1 3
-2 000 -2 0
r_ L]0 200 -2 o
V8l 0 0 20 -2 0
0 0 0 2 -2 0
0 0 00 O 0
\o 009 0 o/

Ineqs.(12:, j, k), the (row) vector Z can be obtained from %" by the formula ' = #'T,

where
1 1 1 1 1 1

1

1 1 I -1 -1 -1 -1
1 -1 -1 1 1 -1 -1
1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 -1
-11 -1 -1 1 -1 1
-1 -1 1 1 -1 —1

-1 -1 1 -1 1 —1)

In eq.(12i) we also used the short-hand 93(1 — 4)19%(5 — 7) for 94(\2z'(1-4) |
2r) 93(V2315-7) | 27), ete..

S,H
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|
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The situation for 4, and its glue classes is by far the most complicated:

n-—-1 9y 3 M o o
k=0 ‘)31({%‘ 7‘,‘;}" +3]7)

WA, F )= . 5.2.11
(An-1)(F | 7) nvz(ynz | nr) (0.2.13a)
Here, € is the norm n vector with components (1,...,1). Let ¢ = e*™/" Then we

similarly have forany £ =1,....,n -1,

Thoo CTMURUL - Smlet T
nW,, /el \/—., |nr '

Note that eq.(135) can be obtained from egs.(4a, c¢) by substituting & — ¥ + {{]r

I([An-1)(7 | 1) = (5.2.13h)

and z — ¢r/\/n into eq.(13a). The expressions in eqs.(12) and eqs.(13) will all
be proved in the following section. Of course in eqs.(13) it may be most useful to
consider the case when z = 0.

Equations (12) show that the theta series of each glue class of D,,, Ey, E;, and
Es is (1,3)-Solvable (except for [1]Es and [2)Eg, whose average v is (1,3)-Solvable).
However, it is not clear from eqs.(13) that this is true of 4,. Indeed, we have
been unable to prove the (rational) (1,3)-Solvability of its theta series. However, for
smaller n explicit "(1.3)-Solutions’ can be found, and are listed in Table 10. Note
that by Thm.4.4(d) those classes denoted there by a ‘??' are not (1,3)-Solvable,
even in the average.

Thm.4.4 discusses in more generality the 3- and (1,3)-Solvability of glue classes.

There are integrally inequivalent lattices whose theta constants are equal: {or
example Fg & Fg and D}, as can be seen using the Jacobi identity. However, the

theta series stores more information abcut the lattice (or glue class):

Theorem 5.2.5:  The equality J([g]A)(Z]|7) = I([¢']A')(Z]|7) holds for all & and
7 iff the glue classes [g]A = [g']A’, i.e. iff they are pointwise identical.

Of course a special case of this shows that the theta series of two lattices are

equal iff the two lattices are equal.
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Table 10:

Known Theta Series of A,

Lattice | Weights | Name | Theta series

A (0] Oy | Vil(2)
! Ouy | (i)

Aq 0 Op0) | ¥i(2) V3(6) + Va(2) Ua(8)
1].(2] @rer) | Va(2) Ws(6) +vs(2) Ws(6)

A3 0 Qo) | 2 I +93(D) }
(1] Oun, |1 {'“(l) +n93( ) }
(2] Onay | 5 (VA1) —v3(1) )
[3] Ouy | 1) -}

Aq (0] Qo) | Lo V1/d20)Osy(1)
(1).[4) Ouyy |77
[2].[3] Oua |77

As, A5 ??

A (0] O | TrmoOai)(1) ¥yi8) Oaa-py(1)
(1].(7] Oy |
(2] O(7.2) S0 Oaksn (1) Wayk-2(8) Oz azi(l)
(2],(6) O | 3 {Ok:(1) — Ok, (1)}
(31,5) Oz |7
(6] Ay | im0 Oi)(1) Wayk—2(8) Oz 2-k)(1)
[4] Q74 | Op, (1) —O7.0(1)
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Thm.5 can be shown in the following way. We get from Thm.2 that Afg] = \'[¢']
— this immediately does it when ¢ € \\ and ¢’ € \\'. Otherwise, we may apply

Thm.1 after expressing J([g].\) and J{[g'].\") as sums of glue classes of AN\,

5.3 Identities of the Jacobi Functions

Theta series identities are obtained here in a completely analogous manner to
that described in the previous chapter — i.e. by comparing different glue decom-
positions of lattices. If the lattice in question is of dimension n, then the identities
will be of degree n. We are interested in algebraically independent identities
i.e. identities that cannot be obtained from each other and ones of lower degree
arithmetically (1.e. through multiplication and addition) and/or by transforming r
(e.g. r =7+ 1, 7= kr, 7 — —1/7) or I (e ¢g. through a rotation). For example,
eqs.(1.3¢) and (1.3b) are not algebraically independent in this sense. Nor is the

celebrated Riemann identity, as we shall soon see.

5.3.1 The peneral theory of full rank identities:

Recall the definition of the C-module F given in Sec.2 (it is gencrated by
products of ¥i's). We will consider in this section only identities in F, although
the results can be extended to more general identities. Although eqs.(2.10), (1.6)
and (1.7a,b) are not identities in this sense, almost all other equations considered
in the first three sections of this chapter are, including everything in Table 11.

We can write any identity in F in the form

N

Z agexp(mizt,r + 2m(Z M) )|V A)(EMy+ Z0 4+ Z2r | 7)= 0. (53.1a)
{=0

Here, each ay € C, ¢y € Q® A}, T2 € Q @ Ay, and where M, is any real

(constant) matrix whose rank equals the dimension of A;. Note that by eq.(2.1c)
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we may rewrite eq.(la) as

N
Y aeexplminA; S + 20iE MeAT ERIUIn (EMe+ For 4 Feo | der) =0,
=qQ

(5.3.1b)
where 'y, € Q" E'NA;’ € Q", and M, is a real matrix of rank ne (A, is a Gram
matrix for A,, hence must be positive definite and symmetric). Note that because
we are in F we can choose in eq.(1a) all A¢ to be orthogonal lattices, and in eq.(15)
all 4¢ to be diagonal.

The analogs of Thmns.4.3.1-2 in Chapter 4 continue to apply here:

Theorem 5.3.1:  Any given identity in F can be expressed as the (finite) sum

of identities in F, each homogeneous in degree.

Theorem 5.3.2:  Any given identity in F is a linear combination (over R) of
identities whose terms all have translates 'y = 0. Anidentity in F whose translates
¢ all vanish is a linear combination (over C) of identities whose terms all have

rational coefficients a, and translates &g = 0.

Thm.1 tells us that in eq.(la) we may assume all the lattices A, are of equal
dimension n; this dimension is the degree of the identity. We will be interested in
this section only in 1dentiiies of full rank, 1.e. identities whose matrices A, and Af,
all have rank equal to the degree n.

It is eqs.(2.3a) and (2.4c) that allow us to disregard ;. Note that in Thm.2
the translates 2"y will in general not vanish. The proofs of Thms.1.2 are as in the
previous chapter.

The following simple result will turn out to be useful for the next two proofs.

Lemma 5.3.3: For any z € R" and any n-dimensional lattices A;,...,An in

R", wehavefor Te R

liminfr .o maxe=,. ~ dist(Tz,As) = 0,
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where dist(Tz, A¢) def minges, (Tx — q)%.

Proof By considering A & --- P Ay, it suffices to prove the lemma for V = 1.
Let A C R" be an n-dimensional lattice and take any y € R". Suppose the set

A+ (y) is not dense at 0. Then it is nowhere dense, and so 1s itself an n-dimensional

lattice. But this implies y € Q ® A, in which case the above liminf is attained and

equals zero. QED

Note that, for example, in eqs.(1.5), (2.6) and Thm.2.3(iii) we consistently see

that if T is scaled by k, then z is scaled by Vvk. This is true in general:
Therrem 5.3.4: We may assume in eq.(1b) that M;AM, = A, for cach ¢.

Prrof Consider the degree n identity

N
0= Zagt,(é' | 7), where (+a)

=0

¢
te(7 | 7) = exp[miZ s A ThT + 2miZ MeZ | 0L )(Z My + Z ¢ Aot | Agr), (D)

for 7, € Q" and where M, and A, are n x n real matrices of rank n (A, must in
addition be positive definite). We may and will assume each A, is diagonal. Choose
My so that My = +/Ao.

Clearly, to prove Thm.4 it suffices to prove that the sum of all t,(Z | r) in
eq.(*) satisfying M; M, = A, is also identically 0 for all 7', 7.

First note that each t, has ‘quasi-period’ rﬁgd-f—-frﬁAu\/I['r, for all i, € [,
i.e.

tt(é‘ + Mi,T I 7’) = exp[-wir?zAgr'ri'T — 27riz"'M¢r?z‘] te(Z l T). (* +a)

Because A, is diagonal, we know explicitly all the zeros of (I, )(Z' | A¢r). In

particular, consider the following set:

S¢={z € R"| 3y € R" such that ty(z +yr | 7) =0}
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For each ¢, it can be shown that the intersection of S with any compact set in R®
has Lebesgue measure 0 Choose any 7 ¢ UN_,Se — the set of such I is dense in
R".

Write = 7, + 172, and choose any ¥ € R™. Then we have by eq.(x * a) that

there exist positive constants m, M such that
0 < mexplr T FBe!] < | te(&+Tir | 7) |< MexplrryT?§Bj'] < oo, (x*Db)

for all T € R, where By & MeA7 M},

Suppose By = By for € = 0,...,No, Be = By for £ =No+1,...,Np, ..., and
Be= DB, for ¢ =Ny +1,. ., Ng= N, where the B! are all distinct. Then there
exist i dense in R" such that the ‘norms’ § By, 7t ...,y B,y are all distinct. Now
using Lemma 3 and continuity of, for example, Z?’:"O aety, we get from eq.(* * a,b)

(by sending T — oo) that for such y

AVO 1Vk
Yoart@|r)== Y artd]T) =0
=0 €=Np_1+1

for all 7. Since these 7 are dense in R", we can write

No Np,
Y agt(F )= = Y atdF|T)=0
£=0 E=Ny_1+1

for all ', 7. QED

This proof worked because we knew something about the zeros of V(I )(Z|AT)
for 4 diagonal. Thm.4 and hence Thm.6 should hold for more general identities
than merely those in F, but to increase their generality we must know something
about the zeros for non-diagonal 4. At this time we have not completed this
generalization.

Note that any identity derived using these lattice techniques will automatically
satisfy the conclusion of this theorem. In this case, M { will be the generator matrix

for the corresponding lattice.
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Consider again an identity of form eq.(1b), and assume it satisfies M{Me = Ay
Define A, to be the lattice with generator matrix M;. We may assume by Thm.!

that these lattices are all of equal dimension n.

Theorem 5.3.5: We may assume in addition that \de{ o e also has dimen-

sion n.

Proof Thanks to Thm.4 we may assume in eq.(+) that M{M, = A, for all ¢ =
1,...,N. Define A, to be the lattice with generator matrix M;. To prove Thin.5 it
suffices to show that the sum over all ¢ in eq.(x) for which Q ® A = Q) A}, alvo
is identically 0 for all =, r

s def

The periods of t, comprise the lattice A, = (\\¢[Z¢4¢])*, which is an n-

dimensional sublattice of A}. Suppose Q @ A} = \, for ¢ = 0,.... Ny, ..., and

QA = Aefor € = Ny +1,...,Np = N, where all the A, are distinct. Then
A= 4 nt—N,, 41 1\¢ is n-dimensional, for k = 0,...,m.
Define s,(z" | 7) Z,_M 1 aete(Z | ), k=0,...,m. Then s (¥ + 7' |

) =s(Z | ) V&' € A}. Eq.(x) becomes

0@ 1) ==Y s | 7). (ke 0]

We will show sy = 0 by inducting on m.

For m =1, s, has period in both Aj and A}, and so has periods in Ay + A,. By
Lemma 3, such a set is dense. Therefore s; must be constant for all 7, so sending
7 — roo implies s;, and hence s, must both be identically 0.

For m > 1 note that eq.(x * *) implies so(Z|1) — so(2 + 7)) =

— e sk(Z]r) = sk(£ + £'|7)} for any 2’ € A", so induction immediately pives
us so(Z | 7) = so(Z + 2’ | ) for any such Z'. This is precisely the statement that

so has periods in A, which by the preceding argument implies sq = 0. QED

One consequence of Thm.5 is that all A, are rationally equivalent, but it says

much more. In particular, it allows us to replace the identity eq.(1a) with several
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identities, each of the form

N
Y aed((gdA)E | T) =0, (5.3.2)
€=0

But now we can apply Thm.2.1. The conclusion of our analysis is the main result

of this subsection:
Theorem 5.3.6: Eqs.(2.3), (2.4), (2.7) and Thm.2.3 generate all identities in F.

Results corresponding to Thms.2.1, 3.4 and 3.5 for theta constants are not yet
known to be true, at least in their full generality. These theorems are proven here
using information about Z-periods and 2'-quasi-periods of the theta series of glue
classes of lattices; these tools are not immediately available in the analysis of theta

constant identities.

5.3.2  Linear identities:

Thm.6 tells us that the only linear identities in F are the obvious ones:
eqs.(1.3b, ¢, f) generate all of them (the translates z; + z,7 for 21,2, € Q can
of course be handled by the one-dimensional analogs of eqs.(2.3a) and (2.4q, ¢)).

Thm.1.1 is obviously a special case of this remark.

5.3.3  Quadratic identities:

As we have seen, the vectorial nature of * is responsible for most of the com-
plications intioduced when we generalize the results of Chapter 4 to this chap-
ter. With this in mind, consider the gluing A = {(m,),(m2)}[k1, k2], k1, k2 > 0.
Theu if the glue vector (ky/\/my,ka/\/m32) € [ky,k,] is primitive, we can also
write A = {(n1),(n2)}[¢1,%2]), where n,,¢, are chosen so that the lattice equiv-
alence be a rotation T taking (ki/\/m1, k2/\/m2) to (y/n1,0) (so we must have

ny = k¥ /my + k3 /m,).
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Let the orders of the glues be M and N. respectively. Then the lattice oxpres-

sion {{m,),(m2)}{ky, ko] = {(ny).(n2)}[€1, €] implies the identity:

M
Z\I’ml/zkl(vmlzl ' 'nl‘r)q’mz/xkz(\/'—ﬁ;:'.! I 7”'.!7') =
1=

Z o eV | mm) ¥, n(Vhazh | ner)e (5.3.3q)
ky —ha
for (21,2) =(z1,22)T, where T = ( \/;L;"H v’hkllm; ) =(TH™" (5.3.3h)
\/H1M2 \ﬁl\n.‘
We will write eq.(3a) in the more compact form

M
D Yoy fik (1) Urmy by (mz) = Z@m/m (1) ¥ny/pe,(nh). (5.3.3¢)
1=1 J=1

Note that the order of the ¥’s in each term in eq.(3¢) is important: the left-most
U's in each product take z; (or z}) as an argument, while the right one takes z, (or
z3).

Of course any lattice equivalence {(m1),(m2)}(k1, k2| = {(n1),(n2)}[¢1. 03] will
induce an identity of the form eq.(3a), but in general =’ will not be related to &
as in eq.(3b). As in Chapter 4 it turns out (see Thm.7 below) that all but one of
the lattice equivalences we need to consider for Table 11 belong to the subelass of
gluing equivalences defined above.

As in the previous chapter, it is possible in this way to generate an infinite num-
ber of identities in F® | independent of each other and of the linear ones discussed
carlier. For this reason we will consider in the remainder of this section only those
identities in fl 1, t.e. those involving only v, and ¥3 (and, of course, vy, Uy, ¥y,
\1/3, ¥, and \Ils). The following section will address some more general identities.

In particular, we may already anticipate one problem with ¢qs.(3). There we
find ¥’s and not ¥’s. This can be accommodated for in the following way.

Consider the following transformations:

- - vn \/Tll ,/nlml ' vnyms
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..",z" i , 3 , 3
(z122) ((\/mml \/nlmg) (\/nlmg \/nlml) )
=(zy,—2)T (5.3.50)

Both these represent reflections (e.g. eq.(5a) represents reflecting —Z" through the

glue vector). Then in the spirit of eq.(3c) we get the following identities:

M M
%{; \Il%i_(ml )\I/:v%%(mg) + ; ql%(—ml)@%(—mg)ﬁ- L1}
N
= Z\i:%(n',)@%(n;), (5.3.6a)
=1
M )
\II';_:_L(m,)\Il';nrg(mz)
=1 1 2
;N N
= Z{Z s (n)¥ 22 (ng) + Z}‘I’ﬁl{(—nlx)q’ﬁ%("”é) + "}, (5.3.6b)
= =

where by ‘+ L’ we mean to add all the previous terms within the brackets { } with

1"

zy and z; replaced with i+ and z3-, respectively; similarly by ‘+ "’ we mean to add

the previous terms within { } with s} and z} replaced with z{ and =5

The situation is unfortunately more complicated when it is necessary to get ¥'s
on both sides of the identity. In particular, when T is not idempotent (1.e. when the
rotation it represents is not through a rational angle) the above maneuver cannot
be extended so as to get ¥’s on both sides.

As in Table 8, we are interested for Table 11 here in (rank 2) quadratic identities
in ¥, and 9Y; which are algebraically independent of each other and of the one-
dimensional identities. Because of this, it suffices to consider a subset of the infinite
set of all two-dimensional gluing equivalences {(m,), (m2)}{G] = {(m}), (m})}G’].
This subset is identical to that defined in Subsection 4.3.3, except that m; = mj,

m; = mjy and G = G' can be allowed here. In particular, it suffices (for reasons

given in Subsec.4.3.3) to consider equivalences of the form

{(ka), (kb)}[a, b] = {(£c), (¢d)}[Ze, d],
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Table 11: The Quadratic Theta Series Identities

Lattices Identity
{2,2}{t,l]= I, or v3(1) +93(1) = vi(})
{8,8}[2,2] = {1.,4}
{3,6}{1,2] = {1,2}, V3 (3) Vg (B) + 20, () Wa(6) =
{4,8}(2,4] = {3,24}[1,8], Loy a2y +
{16,32}[4,8] ~ {12,96}[2,16],
{12,24}[2.4] ~ {1,8}, or
{16,32}[4.8] ~ {3.96}[2,32)
{2,6}[1.3] = {2,6}1,3], D2(1) V2 (3) + 0(1) U, (3) =
or {4,12}[1,3] = {1.3} Ua( 1) da (3') + Uy(17) 1y (3) |
{9, 9}[ 3= {2,184[1,9], U3 (9) + 203 (9) =

or {18, 18}3.3] ~ {19} $ VSV (Y + U ()0 (1) + )
{3 15}[1 5~ {2, 10}{L.3], Vs (3) V3 (15) + 29, (3) ¥, (15) =
{6,30}[1.5) = {1,.5}, or 5 {Vs(2) V3 (10") + 0 ()02 (107) + ')
{8.40}[2.10] & {3.60}{1, 20] |
{(3,33)[L. 1] ~ (4, 44)[3, 11], | va(3)v3(33) + 2%, (3) W4 (33) = H{0(1) o, (11 +
{6.66){1,11] = {2,22}]1, 11) Da( 1) U (117) 4 0, (11) 0 (L1) + d4(17) 04 (119) + 7}
{4,28)(1,7) = {2, 14}[1, 7] U3(1) 03 (T) + va(1) ¥a(T) = (1) J(T) + 04(1) oy

= 203 (2) Vs (1) + 205 () o (1)

(TW

{12,20}[3,5] = {2,30}(1,15]

Ua (3} U3 (5) + 2 (B} 2 (B) = (3) 1 (B)+
Va (3) s (5) = 204 (2') 0y (307) + 2002 (2) o), (307)

=

{6.10][3.5] ~ {4,60}[1.15]

2053 (6) 93 (10) + 205 (6) Uy (10) = D3( 1) 15 (1) +
D4(1') ¥4 (15") + va(1') U2 (15') = vy (1) ¥, (15)
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Table 11: The quadratic identities (cont.)

Lattices

Identity

{20,28}[5.7] ~
{3,105}(1,35],
{10,14}[5,7) =
{6.210}[1,35)

${93(5)V3(7) + V2(5) V2 (T) = V1 (5) V1 (7) + V4 (5) V4 (7)
F L} = g(3') V3 (105) + 25 (3') ¥ (105

{30,42)[5,7) =

{2,70}[1,35),

{15,21}(5,7) ~
{4.140}[3.35)

v (15) 05 (21) + 2W3 (15) W3 (21)+

Uz (15)d3(21) +
= 1 {Ua(1") V3(35) + va(1") 92(35') + "'}

2Ws (15) ¥e (21)

{1 60}[1, 15] ~
{4.60}[3,15]

l(l) l)l(l))+l)o(1) 1)')(

5
1).(1') V1 (15) + va(1') 94 (15
1

{20 44)[5.11] =
{1.220){3.55]

)+ V(1) U3 (15) + Us(1) U4 (15) =
)+ 05(1') 93(15) + Da(1’) 94 (15")
)+ U2(5) U3 (11) + 04 (5) v (1) =
)+ Ua(1') ¥3(55') + Da(1') V4 (55")

—J1 (M (1) + U (H)Ua (1
(1) J(85') + da(l’) 1)'7(-))

{ 28,36}[7,9] =
{1,252)(1,63]

~1)1(f)01(9)+')v( V2 (9) + V3 (7 )03(9)+U4( )04(9)

(u 5 3. 18] =
{4,156)[1,39]

7)
—0y(1') 5 (63') + V(') V2 (63) + Vg 1') U3 (53') + Ua(1') B4 (63)
= ()1 (18] 02 (0 02 (19) + 0 )03 (1) + 05 3) s (19) =
—01(1') ¥y (39') + Va(1') Vs (39') + Va(1) Y3 (39') + va(1') Vs (39")

{18,54}[3,9] =
(2.54)(1.27),
{9,27}[3,9] ~
{4,108)[1,27]

V3 ( 9)03(1. +z\p (9)\1:3(27)+ 2Ws (9) We (27)+
U2 (9) V2 (27) = 1 {Va(1') ¥3(27') + ¥a(1') 92(27) + "}
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Table 11:  The quadratic identities (cont.)

Lattices Identity
{6,138}{1,23] ~ V3 (6)Va (138) + U ( 6)1)0(138)+2\D (6)W3 (138)
{4,92}(3,23) +20¢ (6)\115(1'18 La(1) vs(23+

Do 1) 02 (23') + vy(1') vy (23') + 1)4 1)1),(23')+ "y

{18, 126}[3, 21] &
{4,252}(1,63]

V3 (18)03 (126) + U (18)d2 (126) + 2W, (18)W, (126)
206 (18)Ws (126) = +{i5(1') vy (63")+
Vo(1') 92 (63") — 0, (1') U (63') + (1) Uy (63) + "}

{30, 114}[5, 19] ~
{4,380}(3,95)

U3 (30)03 (114) + U2 (30)0a (114) + 294 (30)W, (114)
+2¥5 (30)W5 (114) = L{vg(1') 04 (95" )+
Ja(1") U2(95") + Uy (1) Uy (95") 4+ ¥a(1’) U4 (95") + "}

|

120,76}, 19] ~
{6,570}{1,95]

Y3 (5)93(19) + V2 (5 )00(19 - 1 (5)0; (19)
+U4 (5)s (19)+ L} = Vs(0") 3 (HT0")+
U2 (6')92 (570%) + 25 (6 )3 (570') + 2Wrs (6") Wy (5T0)

{42,102}(7, 17] »
{4,476}{1,119)

U3 (42)Y3(102) + V2 (42)2 (102) + 24 (42) ¥4 (102)
+2W (42)W5 (102) = l{1?3 (1) V3 (119")+

Ua(1) 92 (119) — 94(1") 9 (119)+z)(1).)4(11‘) + "}

(28,687, 17] ~
{6,714}(5,119]

103NV (17) + 02(T)W2 (17) - 0 (), (17)
U4 (TWa (17)4 L} = U3(6 )UJ(‘lt)+
D (6')0 (T14) + 2Wa (6') W3 (T14) + 25 (6')Ws (T1 V)

{54,90}[9, 15] ~
{4,540}(3,135)

V3 (54)03 (90) + U (54)02 (90) + 205 (54)W5 (90)
+2Ws (54)Ws (90) = H{Da(l! 1)J(l$ "4

92(1') 92 (135") + 0,1(1") 1(135')+0( ) Uy (135) + "}

{66,78}[11, 13] ~

93 (66)03 (78) + V2 (66)02 (78) + 2 (06)%(48)

{4,572){1,143) +20, (66)\115 (78) = 5{03 ) 0 (143')4
(1)00(143') 2(1%) 0, (143 )-}-17(1)1)4( 43') + "'}

{44,52}[11,13]% {193(\1)1)3 13{)+l9') (1102 (13) = vy (119 (13)+

{6,858}[1,143] U4 (11)04(13)+ L} = U5 (6")V3( 858')+

02 (6")02 (858') + 204 (6")W5 (858') + 204 (6') ¥4 (858")
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where the gluing orders &,¢ € {1,2,3.4,6}, where 0 < a < band 0 < ¢ < d
are all integers, where the sign before ¢ in the right-hand glue is chosen so that
the transformation T involved in the equivalence is a rotation, and lastly, where

whenever ka = fc and kb = €d. the rotation T involved is nontrivial.

Theorem 5.3.7:  There are exactly 55 such lattice equivalences; 38 of these are

given in Table 11, and the remainder are:
{(3), HHL 8] = {(3),(24)}[-1,8],  {(12),(96)}(2,16] = {(3),(96)}{1.32],

{(6), 21)}2,7} ~ {(3), (42)}{1. 14],  {(24), (84)}[4,14] ~ {(3),(168)}[-1,56),
{(12), (15)}[4,5] = {(3), (60)}[-1,20], {(48),(60)}(8,10] = {(3),(240)}{1,80},
{(6),(210)}(1,35] ~ {(6),(210)}{-1,35], {(30),(186)}(5,31] = {(6),(210)}[1, 155],
{(42), (174)}[7,29] =~ {(6), (1218)}[-1,2083], {(21),(33)}(7,11] ~ {(6),(462)}[~1,77),
{(78),(138)}[13,23] = {(6), (1794)}{-1,299], {(6), (102)}(1,17] = {(3), (51)}[- 1, 17],
{(66), (150)}[11,25] = {(6), (1650)}(1,275], {(30),(78)}(5,13] ~ {(3),(195)}(1,65],
{(15),(39)}(5,13] = {(6),(390)}[1,65], {(42),(66)}(7,11] = {(3),(231)}[-1,77],

and {(102), (114)}[17,19] ~ {(6), (1938)}[1, 323].

The proof of Thm.7 is similar to that of Thm.4.3.4 in Chapter 4. The reason the
17 equivalences explicitly listed in Thm.6 were not included in Table 11 was because
those equivalences had k, £ € {3, 6} and the rotations T involved were not thiough a
rational angle (see the discussion after eqs.(6)). All but one of these 55 equivalences
are of the type considered in eqs.(3); {(16),(32)}[4,8] = {(12),(96)}[2,16] is the
only exception, and its T is defined by

N

Sl
SISk
S~——
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The notation in eqs.(6) is used throughout Table 11. To illustrate all the

preceding notation, the second identity in Table 11, written out in full, becomes

D4(V/32,[37) 93(V6z,|67) + 2¥3(V321|37) T3 (V62,[67)

1
5{0a(2117) B3(V2:5127) + Da(={|7) Ba(V233[27)}.  (5.3.6¢)

Note that eq.(3c) tells us that, corresponding to the gluings {(2), (2)}{1, 1] = I»
and {(8),(8)}[2,2] = {(1), (4)}, are the identities
ll
P(1)+9351) =033 ), (53.70)
1 1
93(8) + 93(8) + 593(2) ~ 203(2) =05(1)9s(4"), (5.3.75)

!

where as can be seen by eq.(3b) the Z' in eq.(7a) equals the Z' in eq.(7b). Using

eq.(7a), we may rewrite eq.(7b) as
92(1) — 9%(1) = 2092(2") 93(2"). (5.3.7¢)

This is interesting for three reasons. Firstly, it shows that, although J;, cannot be
expressed as a linear expression in ¥3’s (scaled in various ways), 92 can be expressed
as a quadratic expression in ¥3’s — we say that ¥ is not 3-Solvable but ¥? is (see
Sec.1 and eq.(4.1a)).
Also, we may derive eq.(7c) (and hence eq.(7b)) by substituting Z + (1, ) for
7 into eq.(7a) (7152" becomes 7‘55' +(3,0)). Hence two different gluings may yield
the same identity (we also saw this in the previous chapter).
Finally, replacing 7 with —1/7, and z; with 2z, + 1, in eq.(7a) gives us, respec-
tively,
93(1) + 92(1) =295(2") (5.3.8a)
93(1) - 03(1) =033 ). (5.3.80)
Now, multiply eq.(7a) (with variables z; and z;) by the same equation (this time

with variables z3 and 24), do the same to eq.(8)), and add the two products together.
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The result is

1 1

20§(1) 4 203(1) = v} (5 5 (5 3.8¢)

(== f ! l T} + I
where 2’ denotes here \/-(‘,1 + 22,21 — 22,23 + 24, 23 — 24). Now, into eq.(8¢) 1eplace

each z, with z, + 3, and add the result to eq.(8c). We get

24(1) + 203 (1) + 204(1) + 20%(1) =

1' 1!
193( (‘ H‘ (193194193194)(“ )+(U40319403)(— ) (5.3.8d)

using obvious notation. We may write the RHS of eq.(8d) as

1 .1
{193(\/—21]"7')‘*'19 (\/— | "')} {19 (\/—Zzl +’) \/,532|§T)},
where 2’1 = (21 + 22,23 + 24) and ¥ = (21 — 22,23 — 24). Now, applying ¢q.(8q)

twice gives us precisely Riemann’s formula (see p.17 of [ MUM]):
91(1) + 95(1) + 93(1) + 94(1) = 204(1"), (5.3.8¢)

where here 2’ = %(zl +29423424, 21+ 22—23—24,2; —29+23—24, =31+ Iy —23+3y ).

What we have shown is that a second degree identity (namely eq.(7a)) can
be used to derive the fourth degree Riemann identity eq.(8¢). Hence the Riemann
identity is not an algebraically independent identity in our terms. All of the very
useful information stored in the Riemann identity is present, though perhaps in
not so accessible a form, in the much simpler eq.(7a) (A simpler derivation of the
Riemann identity will be given later in this section.)

In Table 11 we list all the ¥J; and U3 quadratic identities derivable using the
above techniques. The discussion of their algebraic independence from one another
and from the linear identities is similar to the theta constant case (i.e. by looking
at the ratios of the scalings in each term). Included in the table are the gluings

that produced these identities. We have been able to find only one of these (namely
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the first one, which can be found for example in [TM)]), in its fullest generality —

1.e. with rank 2 — in the literature.

5.3.4 Hipher-dimensional identities:

Lattice considerations can easily be used to derive the theta series expressions
for the root lattices. One way to derive these for D,, E7 and Fj is to use their
orthogonal decompositions (these are calculated in Table 4). Also, the series for D,
follows immediately from the observation that D,, consists of all the even normed
vectors in I, and those for [2]D, and [1]D, U [3]D, follow from I, = D,[2] (no
rotation necessary) and eqs.(2.8b) and (2.10a). Finally, the series for [1]D,, and
[3]D,, can be obtained inductively from D, = D,D;[11] for odd n, and D}, =
D,D,[{[11], [22]}] for even n > 0. Since Df = Ej, we immediately get it for Es.
The theta series for Eg can be found from Eg ~ {Ds,(12)}[1, 3] (the average series
for its glue classes now follow from eq.(2.10a)). Alternate expressions, and hence
theta function identities, can be obtained by using other gluings, as in Ch.4.

Of course, A, is trickier. Since their orthcgonal decompositions are known (see
Table 4), their theta series (like that of any raticnal lattice) are in F(™ and can
be written down explicitly (but messily). Eq.(2.13a) and hence eq.(2.13b) can be
derived from -4:1—1(") I =~ Igl")[l, ..., 1], but the simplest derivation is probably
the projection operator argument given in eq.(4.3.10) of the previous chapter.

The expressions given in Table 10 were found using the lattice equivalences
given at the end of Sec.4.3. E; = A7[4] and E7 = A;[2] give us the O(7,g), O(7,9)
and Oz ¢) entries in the table (no rotations are involved). Eq.(4.3.11) implies the
theta function:

N Ansm)(Z | 7) = (5.3.9a)
N—

—

[~k An1)(Z' | 7) Up/ee( VI2" | LT) (k] A )(Z" | 7),
k=0

where N = n(m + 1)/(n + m + 1,n) is the order of the glue. Define the following

unit vectors: €n4m41 = 1 1}7™) and €pmer ! = —=({1}7, {0},
Vndm1 vn
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Then in eq.(9a),

-
~’ —
- =

“1

{1—n) Fadiid Iy~ Mo !
—(-' *E€nd4+m+1 )ens SO=2C C€ndml o

o _ > 1~ 1 P [ ‘

< =2z (n+l-ntm+i) + 2 Entmtl €mtl- (5 3.9¢)
This gives us the ©(4 o) entry in Table 10. There clearly is no rotation involved

in the A4; entries in Table 10. For the rotation involved in the A, entries, see the

discussion after eq.(2.9¢). And for 43, T is

11 0
1 {10 -1

T=7%lo 1 -1 (5 3.94)
00 0

Of course each of the expressions in Table 10 imply identities when compared

with eq.(2.13). Further sources of identities are:

{Ap,(n+ D11 = T4, (5.3.10a)

and D} =~ I4. (5.3.10h)

For example, the simplest proof of the Riemann identity (eq.(8¢)) is to read it off
from eq.(105).

Of course, root lattices are not the only source of lattice identities. The gluings
of orthogonal lattices can yield great numbers of them in each dimension, using the
methods used earlier for generating quadratic identities. These are too munecrous

and complicated to explicitly write down.

5.4 Theta Series of Glue Classes

In this section we investigate the existence of polynomials that ¥y satisfies.
We will find that the results for ¥} generalize very naturally to the theta series of

general glue classes. We will find that the theta series of the glue classes are roots of
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polynomials whose coefficients are linear combinations of the theta series of lattices,
and we will investigate their minimal polynomials.
Ji(z | 7) is an odd function of = while V3(z | 7) is even. Therefore U, cannot

be *3-Solved’. However, from eq.(3.7¢) we see that we can write

Dy(z|7) = —\/Va(z | 7)% = 202(22 | 27) 63(27). (5.4.1a)

Similarly, by Thm.1.1 we know that \115 cannot be ‘Solved’. However, from

{(5),(5)}[1,2] = I and eq.(1.3f) we see that it also satisfies a quadratic equation:

By(z|r) + %{og(zm — 9a(z /5|7 /25)} bs(2|7)

+ 2 {03(/517/5)05(32/517/5) = 9 (217} = 0, (5.4.15)

SO we may write

‘il5(z 7) = J3(z|r) - 19:(2/5|1'/2-5')+

\/{193(2|T) — U3(2/5|7/25)}% 4+ 493(z|7)? — 493(2/5|7/5)93(32/5|7/3)
2 .

(5.4.1¢c)

Of course, the quadratic equation eq.(1d) has a second root — it is easy to see that
‘115/2(.: | 7) is that second root.

Throughout this section, we will continue to write, for example, J;3(k) for
I3(Vkz | k7). Until now, we have been interested in this paper only in full rank
expressions. However, eq.(1b), for example, is rank 1 but degree 2. In this section
we will be interested in polynomials that the (average) theta series of glue classes
satisfy; these polynomial identities will have the same rank as the dimension of the
glue class in question, but their degrees will be some multiple (depending on the
order of the glue) of that rank. With this in mind, consider the following definitions.

Define T;(k)™), for 0 < k < n, to be the R-module of rank k spanned by
the theta series of n-dimensional lattices. Explicitly, it will be the (finite) linear

{ combination of terms J(A)(ZM|r), where A is an n-dimensional lattice and where
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the n x n real matrices M are of rank k. Define Tgr(A)\" similarly, except that the
lattices A must be rational. Let T, (k)U* and Tr(k)™* be their field of fractions
Define T7(k) and Tgr(k) as the sums over n of T (A" and Tr(M)™, tespectively
Then we know that 77, (k)(™ always contains Tp(k)(™ and (Thms.1 1 and 2.4) 70

properly contains Tg(n)(™),

Theorem 5.4.1: Foreachn =1,2.3,..., there exist monic polynomials f, (v} =
L/)k+s,,,11,1)k“'l+- ++8n,k and fn(¢*) = ¥ +38n,1 u"l‘l +- g of degrees k= o(n)
and k' = [%qﬁ(nﬂ , Tespectively, with coefficients s, ¢, 3p.¢ € T(1)', whose b and
k' roots are precisely ¥, /,, and \iln/m = \il,,/(,,_m), respectively, for all m relatively

prime to n.

Here ¢(n) is the Euler ¢-function, 1.e. the number of numbers relatively prime
to n, and [z] is the least integer > .
For example, the polynomial given in eq.(18) is f5. For n = 2,3 we have

k =k =1 and k = 2, respectively:

Fo(0)(z | 7) =fa($)(z | 7) = § = D3(1/4) + D5(1), (5.4.20)
Fo(B)z [ 7) =2 = S{95(1/9) = 951}y + 3 {B0) = (L2}, (5.420)

where by ©(1) in eq.(2b) we mean 9({(3),(3)}{1,2])(z/V3,2/V3 | 7/3).

A significant generalization of Thm.1 is possible:

Theorem 5.4.2: Consider any N-dimensional glue class [g]A of order n. Then
there exist monic polynomials f and f of degrees ¢(n) and [¢(n)], respectively,
whose coefficients sx and 3 are in T,(N )™ and whose ¢(n) and [¢(n)] roots are
9([mg]A) and ¥([mg]A) = J([—mg]A), respectively, for all m relatively prime to n.

Moreover, if A is rational, the coefficients will in fact be in Tp(N )N,

Of course here 7 will be in C @ A, so will have N independent complex com-

ponents. Thm.1 is a special case of Thm.2. Their proofs are similar to those of
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Thms.4.4.1 and 4.4.4 in Chapter 4, and will not be given here. Later in this section
we will discuss how minimal these polynomials f and f are.

For example, any order 2 glue [¢]A has theta series J([¢g]A)(Z" | r) which satisfies:
FO)E | r) =~ {9(Alg)(2) + I(A)1)}, (5.4.3a)

while the average series of the non-trivial glue classes [1]dy, [2]44, [3]44. and (4],

of Ay satisfy:

FONE 7= 97 = LA = I AN} + FOENE [ 7) = (A1),

(5.4.3b)
where & € C® 44 C C*, (1) as usual stands for (3'|7), and ¥’ = (£, )T for

( 0 0 0 1 0 0 O —1\
0 0 0 01 0 0 -
0 0 0 00 1 0 -1
o 0 0 00 0 1 -1
T:l 0 0 O 00 O0O0 O
2 1 -1 -1 11 11 1
-1 1 -1 1111 1
-1 -1 1 11 1 1 1
1 1 1 11 11 1

\ 0 0 0 00 0 O0 O }

Thms.1 and 2 tell us the theta series of glue classes are algebraic in T (N).
A natural question to ask at this point is whether the polynomials given in those
theorems are the ones of smallest possible degree, 1.e. whether they can be factored
over T (N) or T, (N)*. An easy argument (see below) following from the results of

Sec.3 tells us they cannot be factored over 7T (N):

Theorem 5.4.3:  Given any glue class [g|A, any monic polynomial over T (N)
having its theta series or average theta series as a root is a multiple of the polynomial

f or f, respectively, given in Thm.2.

The analogous result over 77 (/N)* — e.g. the question of whether the (average)

theta series lies in 77 (N)* — is more complicated and has not yet been obtained.
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However we do know that J([g]\) € T;,(.N)* only if [g].\ is of order 1 or 2. in wlich
case it is in 77 (.V) as well.

Thm.3 follows from Thm.2.1 and the observation that the sum of the 1oots
of any monic polynomial dividing f or f will be in T7,(V)Y). Similar arguments.

together with eq.(1.2¢), give us:

Theorem 5.4.4:  a) J([g]\) is 3-Solvable only if the order of [¢]\ is 1 or 2,
b) J([g]A) is 3-Solvable only if the order of [g]A is 1, 2, 3. 4 or 6
c) ¥([g]A) is (1,3)-Solvable only if the order of [g]A is 1. 2 or 4 and
d) 9([g]A) is (1,3)-Solvable only if the order of [g]A is 1. 2. 3. 4 or 6.
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Chapter 6 APPLICATIONS TO STRING THEORY

6.1 Imtroduction to String Theory

Many of the results obtammed in the previous chapters were motivated by string
theory., In Sees.3 and 4 of this chapter we focus on two applications to strings of
the foregoing analysis. However, we will first (1n this section) give a brief sketch of
the theory of superstiings, emphasizing those aspects of particular relevance to the
temaining, three sections. In the second section we will review the so-called lattice
stiing

This s prunarily mtended to be a mathematices thesis, so some of the arguments
in the first three sections of this chapter may be found to be too sketchy (the reader
should find the fourth section sufficiently self-contained) This is unfortunate but
unavoidable Wherever possible, references will be given

The standard reference on superstring theory is {GSW]| — please refer to it
for any missing details o1 for clarifications on the following material.

A field m physies is sunply an object (e.g. a 4-vector A(z) of Hermitian oper-
ators) defined at ecach point @ m space-time The quantum field obeys the action
prnciple 81 = 0, where the action I can be obtained by integrating the Lagrangian.
This leads to the Euler-Lagrange equations. The important quantities that must be
computed are the transition awsplitudes, from which the probabilities are obtained.
These amphtudes are given by a Feynman path-integral, a weighted sum over all
possible (classical) paths gomg from the initial to the final state, the weight factor
bemg exp(eI/h) These ttansition amphitudes are usually calculated perturbatively
using the Feynman rules and Feynman diagrams.

There are some formal similarities between a quantum field theory of strings
and the standard ones of point particles, but the {inite extension of strings introduces

some important new features, as we shall see.
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The fundamental object in string theory is the stiing; in the heterotie theory
we will be considering it is a closed loop (parametrized say by o, with period 27)
about 10™* cm long - something like 1029 times smaller than the *diameter” of o
proton. An electron or any other elementary particle is realized whenever a stiing,
vibiates, rotates, ete. in a certain particular way. The string has an mfinite nnmber
of such modes, with arbitrarily high frequency and angular momentum  To each of
these corresponds a particle (more precisely, a state), whose masses and spins are
arbitrarily large. The natural mass scale in string theory is the Planck mass, =~ 104
GeV. so the elementary particles familiar to us would presumably cotrespond to the
massless modes. Of course we do not want all of these patticles to remain truly
massless; as in the Standard Model they could acquire relatively small masses using,

spontancous symumetty breaking.

Incidently, [GSW] give on pp.59-60 a ‘no-go theorem’, which shows the il

cultics of constructing a physics based on extended objects of dimension > 1.

As a particle moves it traces out in space-time a (one-dimensional) world Lne.
A string similarly traces out a two-dimensional world sheet. The action I of a string
1s proportional to the surface area of its world sheet (at least in the simplest hosonie
case). An action of this form is clearly invariant under the choice of parametiization
of the world sheet; the fact that we are dealing with strings (rather than, say,
membranes) permits I to be conformally mnvariant as well. These synunetiies ae

central to string theory, as we shall sce.

Thus, the transition amplitudes in quantum string theory tequire summing,
over all the possible surfaces joining the initial and final states of the stiing(s)
— the topology of cach surface specifies as we shall see the precise nature of the
interaction 1epresented in cach “summmand’. Two of the appeals of string theory are
the simplicity of its interactions -— two strings may join into one, one string may split
into two (and of course any combination of these may also occur) — and the fact that

there is no Lorentz-invariant interaction point (so that the form of the interactions
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are uniquely determined from the free theory). The world sheets resulting from,
say, the scattering of two strings will. topologically speaking, include world sheets
looking like an ‘H’, like a ladder with two rungs, etc.. Quantum mechanically, we
must take the weighted sum of these possibilities. The result is a perturbation

SCTIeS.

In quantum mechanics it is possible to start with nothing and end with nothing,
but to do so in a very complicated way. It does this through the so-called virtual
processes. In string theory, for example, what could happen is that a virtual string

would spontaneously appear, split, rejoin, and then disappear.

These processes contribute to what is known in quantum field theory as the
‘vacuum-to-vacuum amplitude’. Its first order term corresponds to the physical
process described in the previous paragraph, whose Feynman diagram looks like a
torus. This term is usually called the partition function of the string. The corre-
sponding torus can be characterized by a complex number 7 called the modular
parameter, and so the partition function will be a function Z(7), usually written
as Z(r,7), where 7 is the complex conjugate of 7 but 1s treated as an indepen-
dent variable (more accurately, the first term of the vacuum-to-vacuum amplitude
is actually the sum over all tori* [drd7Z(r.7)/ImT, where the integrals are over
the fundamental domain H). From this arises as well the cosmological constant

corresponding to the theory (see Sec.6.4).

Now, the partition function should be invariant under reparametrization of
the torus. Some of these are global transformations not continuously connected to
the identity. These transformations induce mappings on r; these mappings form a
discrete group isomorphic to the modular group SL(2,Z)/{£1}. Thus Z(7) must be
invariant under the modular group — this is how the powerful constraint of modular
invariance enters into string theory. Modular invariance constrains the dimension
of the theory Modular invariance guarantees the vacuum-to-vacuum amplitude (to

first order) is finite. Some plausibility arguments exist which seem to show that
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modular invariance also guarantees that strings are fiee of all divergences, so that
string theory is completely finite “he modular invariance of the partition function
will play a recurring role throughout the remaining sections. For example, in Sec. |
we try to determine, given a certain class of (modularly invariant) functions which
look Like partition functions, whether an acceptable string could be found whose

partition function belongs to that class.

One of the qualities of string theory that many physicists found appealing was
the apparent near uniqueness of a string satisfying the desired properties (although
the large number of different ‘compactifications’, as can bhe seen in See.3, shows that
uniqueness to be illusory in some ways). An important example is the demand that
the theory be chiral. It has long been known that the weak foree can distinguish
between a system and its inirror image. The Standard Model (the accepted quantum
field theory, with gauge group SU(3)x SU(2)xU(1)) of course is chiral: the left
handed leptons e, and v, form an SU(2) doublet, while the right-handed ¢, is
a singlet and the right-handed clectron-neutrino v, p does not exist. We shall find

chirality in Sec.3 to be a strong constraint on a stiing theory.

String theory is a gauge theory. In more usual quantum field theories what
must eventually be done is to fiz the gauge. The situation is similar in string
theory. Throughout the 1emainder of this chapter we will use the so-called light-
cone gauge (see e.g. pp.93-95 of [GSW]). In a D-dimensional string theory, there
are D bosonic fields X°,..., XP~!; the light-cone gauge non-covariantly singles
out two of these: X° and XP~'. The net effect is that the only independenr
oscillators a (see eq.(2.3a¢)) aie the transverse ones (i.e. those assoctated with X'
for: =1,...,D —2). The oscillators are creation and annihilation operators acting,
on the Fock space of states (see e.g. p.76 of [GSW]); this means that we should

apply only the transverse oscillators to the ground states |0) to get physical states

Ghosts are states |ghost) with negative norm (ghost|ghost) < 0. This is o very

undesirable situation because in quantum field theories (including stiing theories)

192



these notms are interpreted as transition probabilities, and so should be > 0. It
turns out that in the light-cone gauge there are no ghosts. However, the gauge
fixing obviously bioke Lorentz invariance. We must make sure the resulting theory
is Lorentz invariant. It turns out that Lorentz invariance holds only in, e.g. for the
bosonie strmg, D = 26 dimensions, and for the so-called Type II string, D = 10

dimeunsions, consistent with the constraints derived from modular invariance.

We just referied to the dimension in string theories. Unfortunately, nature
appears to be only 4- (1ather than 26- or 10-) dimnensional. The most obvious way
to explain the discrepancy is to compactify the extra dimensions — that is, to make
them so small (¢ g on the order of the Planck length of 107*3 cin) that we have no

hope of observing them. This will be discussed in the following scection.

In 1971 Ramond, Nevet and Schwarz found a fermicnic string that was later
discovered to have built into it a previously unknown symmetry called supersym-
metry. Supersymmetry is the only symmetry that can mix bosons and fermions,
and thus is the only hope to tiuly unify all the particles found in nature. It can
do this because it has a fermionic generator @@ which changes the spin of particles
by % (Sce [FRE] for a complete introduction to supersymmetry). Locally super-
symmettic theories (called supergravity) automatically include general relativity in
the appropriate limit, but have serious problems which seem to prevent them from
accurately desecribing nature.

There is no experimental evidence yet that nature is supersymmetric (in fact if
it 1s, the supersymmetry must be badly broken), but many physicists are neverthe-
less convineed tl it supersymmetry is just too promising not to somchow play an
important role in reality. Supersymmetry comes in two versions 1n string theory:

space-time supersynimetry and world sheet supersymmetry.

The 26-dimensional bosonic string is not supersymmetric (and has the more
serious flaw of having tachyons). There are several classes of worldsheet supersym-

metric stiings - - n.e. superstrings. Type I superstrings are both open and closed,
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while Type II strings are only closed. The former seems to hold some promise as
a possible theory of physics. The latter has difficulty either with chirality or with
supporting an adequate gauge group.

But the most promising superstring today is called the heterotic string. It is
a closed string, and hence its right- and left-moving modes are independent (there
are no endpoints to reflect its wave). It is a hybrid of the old bosonic string and
the Type II string: its left-movers live in 26 dimensions while its right-movers
are only in 10, but this is rectified by making 8 of these transverse and 16 of
them internal (2 are eliminated by the light-cone gauge). Only right-movers ate
(world sheet) supersymimetric (the heterotic string may or may not be space-time
supersymmetric— see Sec.3). The low-energy limit of the theory is D = 10, .V =
1 supergravity (D is the dimension of space-time, N is the number of fermionie
generators () and the number of spin % supersymmetric partners of the graviton,
called gravitinos) coupled to the gauge group Spin(32)/Z, or Ey x Eg. These gange
groups, and the way to rectify the difference of 16 dimensions are closely related
to each other and to the 16-dimensional even self-dual lattices, and is one of the
main ways lattices enter into string theory. The heterotic string is anomaly-free,
free of ghosts and tachyons, and there is reason to believe it is entirely finite. Its
lowest mass states (and there are many of them!) are all massless (prior, that is, to
symmetry breaking). In the remaining three sections of this chapter we will consider
only the heterotic string.

The most promising of the heterotic strings is the Eg x Eg one. It seems to have
the best hope of predicting the observed particles. It has been speculated that one
of these Eg’s might give rise to another type of matter (called shadow matter) which
can interact with our matter only gravitationally. We will address some questions

related to shadow matter in Sec.3.

6.2 The Lattice String Formalism
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We review in this scction how strings in the light-cone gauge (see the previous
section) can be constructed from lattices. Our goal is to construct heterotic strings
whose dynamical degrees of freedom are completely desceribed by world-sheet free
hosons quantized in a lattice, and to see how the various constraints (such as the
modular invariance of the partition function — sec Sec.1) 1estrict the physically
allowable theories. This 1s discussed in much more detail in a number of papers by
the “Cornell group” (sce e.g. [KLT]) and, independently, by Lam (see [LAM1-3]

the equivalence of the two approaches was made explicit in [LAM1]). We will
also discuss how shifting arises naturally in such theories, and apply some of the
results obtained in Chapters 2 and 3 to the study of this shifting construction of
strings.

An alternate lattice formalism is the so-called ‘covariant lattice’ approach,

which uses Lorentzian lattices (e.g. Izs,1). It will not be discussed here (but see

e.g. [LL]).

The lattice string is a tiny subclass of all strin~ theories; they represent the
simplest and most accessible strings, and yet most features of general strings are
reflected in these lattice ones. Hence the real interest of the lattice string is not so
much in finding among them a totally adequate physical theory, but more conserva-
tively, to help us understand general properties of string theories. This theme runs

throughout the lengthy survey article [LSW] on lattices and strings.

Let X and ¥ be boson and fermion fields, respectively. They are functions of

4 def

(0%,0!) (in fact, of 0= 0% £ o), where ¢° = ¢t is ‘time’, and where o!

=0 is
a parameter that runs along the string. Now, our strings are all closed, so ¢ is a
periodic coordinate, say with period 27. How X and ¥ behave as we wrap around
the string ~ 2.e. when we replace ¢ with ¢ + 27 — constitute their boundary

conditions. As they are not themselves directly observable, they do not have to be

periodic.
Because our strings are all closed, the fields can be functions of ¢% alone
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(and are called left-movers), or functions of o~ alone (called right-movers)  <ec
e.g. eq.(1.1a). (If the string had endpoints, waves could reflect off them and reverse

direction.)

The conformal currents (which generate the conformal transformations dis-

cussed in the previous section) look something like
1o 1,
T(o,t) = —-50}{ -0X, - 56\11 .

They are physical, so must be periodic (t.e. T(o +2m,t) =T(o,t)), which suggests

the boundary conditions

X(o +2m,t) = exp(—27iw)X(o,t) or X(o + 2m,t) = X(o,t) + 27u

and ¥(o + 27,t) = exp(—2mw)¥(o, t), (6.2.1)

for constants u,w and &. These are called the twist (by phases w and &) and shift
(by u) boundary conditions.
A heterotic string must also possess a conserved superconformal currentin order

to eliminate all the remaining ‘ghosts’ (1.e. negative normed states). It looks like
Tr = 04X U, — fopy ¥OTPTY

(where fq g+ is the structure constant of a Lie algebra), but takes a different form in
the bosonized framework used in Sec.3 (see [GL1) for a more detailed treatment of
the superconformal current, including references). Because only the right-hand side
of such a string is supersymmetric, only it has a superconformal current (both sides
are conformally invariant, however). We will discuss the superconformal current
more in the following section. The superconformal current (being a fermionic quan-
tity) must be periodic or antiperiodic as we travel around the string: 1.e. when we
replace ¢ — o + 2r. This is highly nontrivial (leading e.g. to the so-called triplet

constraint) and, as we shall see, strongly restricts the right-hand side of the theory.
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¥ can be related to X through a process called bosonization, which is given by

the formula

U =: exp(—1.X) 1, (6.2.2)

where the colons denote the normal ordered product, and tells one how to interpret
products of fields in the Taylor expansion of ‘exp’. This clearly relates (complex)
fermions with the twisted boundary conditions to (real) bosons satisfying the shifted
boundary conditions The existence of this bosonization process is intimately con-
nected with the fact that the world sheet is two-dimensional.

There are two possible strategies. Those bosons could be fermsionized, or the
fermions could be bosonized (in both cases using eq.(2)). In the lattice string
considered here, the latter is the approach taken.

Whereas the shifted bosons (and hence the twisted fermions) live on a lattice,
as we shall see, the twisted bosons on the other hand required something more
complicated, called an orbifold. An orbifold is obtained from a lattice by identifying
the lattice points in the orbits of automorphisms of the lattice. It is flat, except for
isolated singularities, so its curvature looks like the sum of Dirac deltas. We will
not discuss orbifolds further here, and will assume all bosons in the theory obey the
shifted boundary conditions.

In the heterotic string, there are 24 left-moving degrees-of-freedom (i.e. real
bosons), and 12 right-moving degrees-of-freedom. The dimension D of space-time
in the theory is not simply the number (24 + 12) of boson fields, but rather is
determined from the number of bosons playing the role of space-time coordinates.
In particular, for a D-dimensional string (i.e. a string representing a universe with
a D-dimensional space-time) D — 2 left-moving bosons Xﬁ pair up with D — 2
right-moving bosons Xg — they are uncompactified: the center-of-mass coordinates
X: = .\'fo + X?{o and momenta pg = pgo + P?{o (see below) of the resulting fields
XP(o,t) = _Yg(a*‘) + Xﬁ(a‘) are unconfined (the number of such fields is D — 2

rather than D because we are in the light-cone gauge — see the previous section).
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In the remainder of this discussion we will consider only the remaining com-
pactified real bosons.

Let X(o,t) = (X1 (0%); Xr(07)) denote the compactified real bosonic coordi-
nates. The m fields in X are left-moving, and the n fields in X'y are right-moving.
The previous paragraphs tell us that, for a D-dimensional heterotic string, these
numbers are m = 26 — D and n = 14 — D. The two cases of greatest interest are
D = 10 and D = 4; in the following two sections we will focus on 4-dimensional
strings.

Consider the normal mode expansion (see e.g. eq.(1.1))

. 1
XL/R(a,t) = Xo + PL/RU:t + 1 Z Ea:kt exp(—lkai). (6 3.3a)
A#0

X is (classically) the center-of-mass coordinates of the string and divided by 27 is
assumed to lie in a torus defined by an (m + n)-dimensional lattice A — 1.e. it is

invariant under translations by vectors in A. The boundary conditions satisficd by

X is then of the form
X(o +27,t) = X(o,t) + 2ru (mod 27A) (6.2 3b)

for some constant vector u € R @ A.

Let p = (pL;pr) € R @ A denote the momentum of a state (it is a vector
of eigenvalues of P = (Pr; Pg)). Its dot products (it turns out) are defined by
P1° P2 = P1L - P2L — PiR - p2r — in other words, A has signature (m,n). The
boundary condition eq.(3b) means p — u € A.

A state with mass M has a momentum p = (py; pr) satisfying

M?*=ph/2+Mp— = =p5/2+ M, -1, (6.2.4)

] =

where M r are non-negative integers describing the states of excitations of the
bosonic oscillators. In particular, zero mass states — which are the experimentally

relevant ones — require p% = 1 and p% = 2 or 0. The mass scale of these string
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theories is on the order of the Planck mass, = 10'® Gev, so massive particles would

have masses comparable to bacteria — far beyond the scope of modern accelerators.

Tachyons have imaginary ‘mass’, and hence travel faster than light. They occur
when both p? < 2 and p% < 1. For a number of reasons their presence in a theory

is not desired. We will confront them in the following section.

Space-time has a preferred role in quantum field theories. But here everything is
a world sheet field of operators — including space-time. The Lorentz group :s on an
cqual footing with all other symmetries of the theory. The spin-statistics theorem,
giving the correct relationship between spin and statistics, is automatic in (space-
time) quantum field theories, but in string theory its validity is not guaranteed: it is
iinposed, and not derived. We shall now discuss the consequences in this formalism

of insisting upon this spin-statistics connection.

Even though all fermions ¥ have been bosonized wvia eq.(2), fermionic states
must still exist in this purely bosonic formalism. The fermionic number F is con-
served and additive, and in this framework the fermionic parity (—1)” is given by

(—=1)%P", where v is called the fermionic vector.

We are interested in maintaining the correct connection betweea spin and statis-
tics. Spin is governed by the representation of a state in the transverse space-time
rotational group SO(D — 2) (the Lorentz group is SO(D — 1,1), but in the light-cone
gauge this collapses to SO(D—2) — this is discussed on p.41 of [GL1]). For heterotic
strings, this group operates only on the right-moving coordinates, which means the
root lattice D(p_yy/2 for this group must be contained in the right-hand side of A
(explicitly, (D(p-2)/2)¢ =" C A). The usual connection between spin and statistics
is obtained therefore if the fermionic vector v is allowed to have nonzero components
only in the coordinates R ® (D(D..z)/g)("”, and it should transform like a vector
with respect to the tranaverse space-time group SO(D — 2) — in other words, its

component in (D(p-z)/2)¢ ™! should lie in the glue class [2](D(p_z)/2)(""). We can
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write v = (0; vr), and we can choose

The root lattice for SO(2) is one-dimensional (in fact equal to D, = I%” = (4)).
so in the case of a four-dimensional string the fermionic vector v lies in the direction
defined by this one-dimensional lattice.

So far there have been no restrictions on the choice of lattice .\ (other than
that for a four-dimensional string it has signature (22, 10)). We shall see that the
modular invariance of the partition function restricts it quite significantly.

The partition function (see Sec.1 for its definition) of this lattice string is piven

by

Za(vulr,7) = n(r)"™n(F)™" Y explmir(ry + up)? - mF(rg +up)?)(-1)*

reA
=q(r) " "y(F)™" Zexp[m'r(rL +ur)? = miF(rp + ug) + 2mur + u) - v
reA
En(r) " n(7) " On(vulr, 7) (6.2.0)

where 7(7) is the Dedekind eta function of the modular parameter r (see eq.(5.1.2d)).
The 7 factors arise from the contributions of the bosonic oscillators. @, contains
the contributions of the momentum states p = r + u, together with the statistical
factor (—1)”. In these expressions, rp, and rg are the left- and right-hand parts of
r,sor =(rp;TR).

We saw in the previous section that this partition function Zj (vu|r, ) has to
be invariant under the modular transformations. This is so iff it is invariant under
both 7 = 7+ 1 (hence 7 — 7+ 1) and 7 — —1/7 (hence 7 — —1/7).

Invariance under T — 7 + 1 implies both
2 +2r.-v=0 (mod 2) VreA (6.2.7a)
v? = (m =n)/12 (mod 2). (6.2.7b)
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For the heterotic string, m—n = 12, so eq.(7b) is fortunately consistent with eq.(5).
Note also that because eq.(7Ta) must be valid for both £r, we see that we must have
both2r-v € Z and r? € Z — 1.e. that 2v € A* and A is integral.

Invariance under 7 — —1/r (using the Poisson summation formula) implies

A=A (6.2.8a)
u =2v (mod A). (6.2.8b)

Thus we may take v = u, and we have 2v € A. Note that eqs.(7) imply p? must
always be odd, and r? is even for bosons and odd for fermions. Note also that the
component in R @ (D(D_Q)/Q)(‘” of any momentum p must lie in (D(D-g)/z)(“”*,
and will be in [1)(D(p_q)/2) " or [3](D(D_2)/2)(_” if the corresponding particle
is a fermion, or [Q]DEI_D{-)ﬂ/? or DEBI__)Z,)/2 if the corresponding particle is a boson.

To summarize, the momenta p for such a D-dimensional lattice string lie in
A + v, where A is a Type I lattice of signature (26 — D,14 — D), and where v
satisfies eqs.(4), (6a), and 2v € A. We will be interested in the choice D = 4.

A generalization of string theory is conformal field theory; lattices also can be
used in their construction — for a brief review see [CN| or [LSW].

We will end this section with a brief discussion of the shifting method applied
to the construction of lattice strings. This is also touched upon for example on
pp.110-111 and pp.118-123 of [LSW].

The basic idea is that after choosing more complicated shift boundary con-
ditions than the earlier ones, which were given by a single u satisfying, it turned
out, eq.(8b), the theory can be rewritten in terms of those boundary conditions after
throwing away the additional nonphysical states. But different boundary conditions
mean a different string theory. In other words, this rewriting of the theory amounts
to changing the lattice A which defined the theory. The new lattice is precisely the
shift of A, in the sense of Sec.2.4.

This is usually expressed in the fermionic formulation, so we shall turn now to

that. Consider first the following string.
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The lattice A = I, n corresponds to m left-moving and n right-moving, wotld-
sheet fermions satisfying periodic houndary conditions, as can be seen thioueh
bosonization. In this case the fermionic direction v is v = ((1/2)™:(1/2)"). thanhs
to eq.(7a). This v however is not the vector representation of SO(D — 2) {in fact it
1s not even on the right-hand side of A), so spin and statistics are not connected  To
restore the spin-statistics connection we must convert it into a string of the carliet
type by incorporating antiperiodic boundary conditions, in the following way

Next, consider a fermionic string given by (m + n) complex fermion ficlds
(\Ilf'(a+), U (o) T (67), ..., U (07)) satisfying the aperiodic twisted hound-

ary condition:

\Ilf,*:(o:t +27) = exp(——.?mw“i)\Df(ai), (62.9)

(The RNS string briefly referred to in the previous section is a special case of such
a string.) From these w$, we can form a vector w € R ® A, where A is [, ,,.

Now consider A such string theories, each defined by a different choice of twist
vectors wy € R® A, k = 1,..., 4. It is usually assumed that cach of these twist
vectors are of finite order in A, 2.e. there exist positive ng € Z such that ngw, € \
for each k. Then the twist group Q generated by linear combinations of these vectors
(modulo A) is finite, of order at most [Iny.

Each s € § can be written as Zf___x srwyi for integers sg satisfying 0 < s < ny.
Each s € Q defines a Hilbert space (called a sector) of states. The string theory
consisting of all these sectors is not physically acceptable. For one thing, it is not
modularly invariant (its bosonic lattice is A[Q?], which is not self-dual). But there
is another problem.

Physical states (which are obtained by applying the field operators ¥ to the
vacuum |0), as in eq.(6.1.2)) must be periodic under ¢ — ¢ + 27. We thus must
project out of the physical Hilbert space all aperiodic ones. This is achieved by the
Gliozzi-Scherk-Olive (GSO) projection, which is built into eq.(10) below.

Eq.(9) tells us the phase the fields ¥ gain as 0 — o + 27. To determine
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the phase gained by an arbitrary state, it is necessary (and sufficient) to know in
addition the phase gained by the vacuums |0), of each sector s € Q. Call this phase
((s) € R% A. It is essentially a linear function of s.

We can now write down the partition function for the system:

Zpac(o|r,7)=(1/ Hlenk) Z Zy(s + v, t + v|r, T)exp[2me(s. t)],
3,1EN

d(s.t) =t-C(s)—v-(t+v) (6.2 10)

and Z, is asin eq.(6). The sum over s in eq.(10a) is the sum over sectors. The sum
over t, together with the (1/IIn; ) factor, gives the GSO condition (¢(s)+s+((s))t €
Z. (Specifically, the GSO projection is the normalized sum of twist operators —
sce e.g. [LAM1-3].)

Imposing the condition on Zj g, that it be modularly invariant turns out to
entail a number of constraints on the twist vectors wx and vacuum phases ((s).
In particular, defining (,, to be the jth component of ((w,), we get precisely the
conditions eq.(2.4.1q, b) in Section 2.4.

Indeed, it is not difficult to see that the GSO projection is such that the bosonic
lattice A’ corresponding to the string theory with partition function Z, q ¢ is simply
the shifted lattice A' = A(Q,((,;)) discussed in Sec.2.4. Modular invariance, not
surprisingly, is the condition needed to ensure that that shifted lattice be self-dual.

What we have seen is that imposing arbitrary aperiodic twisted boundary con-
ditions on compiex fermion fields is equivalent (after bosonization and GSO pro-
jection) to shifting the original lattice A by those twist vectors. The treatment of
shifting in Ch.2 was partially motivated by the widespread use of shifting in string
physics. Most of the theorems in Sec.2.4 were designed for that purpose.

We know that any odd indefinite self-dual lattice is integrally equivalent to
some I, ,. We are interested here in odd self-dual lattices with signature (m,n) =
(26 — D, 14 — D). However, strings corresponding to integrally equivalent lattices

are not necessarily physically equivalent. In particular, an arbitrary rotation in
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SO(m,n) will in general mix up the left-movers and the right-movers, and so could
for example change the mass spectrum.

In other words, for lattices used in constructing strings, the projections =,
and mg are physically relevant. This is another reason why in this work we do not
necessarily equate (as many do) integrally equivalent lattices

On the other hand, since rotations of SO(m)xSO(n) do not mix up the left
movers with the right-movers, they describe the same physics. Only 1otations
SO(m,n)/(SO(m)xSO(n)) give rise to different models, so the number of continu-
ous parameters specifying different physical models is mn.

Results in Chs.2 and 3 tell us the following important result:

Let A and A’ be bosonic lattices for two different D-dimensional strings, and

let 71, mR, 7}, and 7'y be the projections satisfying 7 (pr;pr) = p1, cte.

Theorem 6.2.1: Let (Az;Agr) and (A; Al) be the LR-decompositions of A and
A’ defined by 7, 7r, 7}, and 7'5. Then it is possible to shift in the above manna

between the two strings theories (up to a physically irrelevant rotation in S0(22)

x SO(10)), iff Ay ~ A% (ne. iff ALRAY).

For example, it is impossible, starting with the fermionic string 12 14, to get
at (through shifting in this string-theoretic manner) the strings constructed in the

following section (e.g. the Z; orbifold discussed there).

6.3 The Bottom-up Construction of Strings

String theory is the only known grand unified theory where quantum gravity
can be meaningfully incorporated. And, because of that, the theory is most casily
formulated at the Planck scale. From that scale down, as the universe cools, dy-
namics intervene to give rise to spontaneous symmetry breakings (these are what

give many of the ‘massless’ states a small mass) and phase transitions. Our inability
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to deal with the dynamical issues makes it difficnlt to predict anything from first
principles at the present (extremely low) energies — in fact this absence of tangible

experimental predictions is one of the most serious flaws of string theories.

The usual way in the physics literature for constructing new strings is the shift-
ing method described at the end of Sec.2. The physicist starts with some string,
usually one with far too much symmetry, then imposes on it new aperiodic boundary
conditions to break down that symmetry, and sees what phenomenological charac-
teristics the resulting string possesses. It is very difficult to decide which boundary
conditions to try, with the resuit that this becomes a hit-and-miss kind of activity.
It has not produced any phenomenologically acceptable theories. This gives rise to
two natural questions: (i) can another method for constructing strings be found
which gives the physicist more control over the phenomenological properties of the
resulting string; and (ii) is the lack of success of the shifting method an indica-
tion that there simply are not many (if any) physically acceptable (lattice) string
theories. We shall see in this section that the answer to (i) is ‘yes’, and that (ii)
there does seem to be an inherent scarcity of phenomenologically reasonable (lattice
string) theories (in particular, ‘shadow matter’ does not seem to be a miracle cure

of the ‘rank 22’ problem — see below).

This section is a summary of the results and techniques developed in [GL1].
That paper is far too long to include here without major abbreviations, but the
reader who finds the treatment given here confusing or incomplete should consult
[GL1]. In it we focus on a method (based on the gluing construction of lattices, and
called the "bottom-up construction’) for constructing strings with desired low energy
spectrum and gauge group. The strings considered will be 4-dimensional, and will
have, as they should, a super(conformal) current. We wish them to be chiral and
without tachyons. What tachyons are in the lattice formalism was discussed after
eq.(2.4). The forms chirality and space-time supersymmetry take in this formalism

will be addressed after Thm.1.
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Four-dimensional heterotic lattice strings suffer a drawback in that the gauge
group is of rank 22 (see below), which is definitely too large for phenomenological
application. One possible way out of this difficulty is to try to arrange some of
these 22 ranks to be in a shadow group, thereby effectively reducing the rank of
the observed gauge group. By definition, a shadow group is one in which the
observed particles have zero quantum numbers, and that any massless particles
with nontrivial quantum numbers in the shadow group have no quantum numbers
in the observed gauge group. Thus matter in the observed gauge group and matter
in the shadow group can interact only through gravity, and the shadow group is
effectively decoupled and unobservable at the present energies. In this section we

will prove some general theorems concerning the shadow-group scenarios.

We would like to construct four-dimensional heterotic strings by constructing
self-dual lattices A of signature (22,10) (see the previous section for the basic tela-
tionship between A and the string theory). Moreover, we would like to tailor it to
possess a given gauge group G and to contain a given massless spectrum S. We will
next discuss the constraint on the construction of the self-dual lattice put by these

two requirements.

Let {AL;ARr} be the maximal LR-decomposition of A discussed at the end of
Sec.2. The lattice Ay is even, by eq.(2.7a) and v = (0;vg). We will construct A
(and hence the string theory) by gluing A from a base lattice Ay = {AgL;Aon}.
There is no natural choice for this base lattice; we have found it most convenient
to choose it to be an orthogonal decomposition of {Ar; Ar}. The strategy is that
choosing a superconformal current will fix Agr (see Thm.1); the gauge group will
constrain Agy; and the massless particle spectrum will provide us with a set of glues.
The conditions of chirality and absence of tachyons further constrain Agy, and the

remaining glue vectors.

Let us recall two facts. The momentum p = (pr;pr) of a massless state must

satisfy p2 = 0 or 2, and p4 = 1 (see eq.(2.4)). Moreover, the rank of the gauge
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group G for the four-dimensional strings constructed this way is always 22 (the
dimension of Az). Consequently if G is the largest semisimple group in G and it is
of rank r, the gauge group must be of the form ¢ = GxU(1)¥~", with the U(1)

groups generated by the left-moving bosonic oscillators.

G is the experimentally accessible gauge group. Its gauge bosons have (ground
state) momenta (pr;v), where pi = 2, and so are massless (and hence experimen-
tally relevant). Let A, be the root lattice corresponding to G. Then p; transforms
like the adjoint representation of the gauge group, and so lies in A;. Hence Ay is
an r-dimensional sublattice of A;. By Witt's Theorem (Thm.1.5.3), A, is precisely

the sublattice of Ay generated by its norm 2 vectors.

The Standard Model (the currently accepted quantum field theory) has the
gauge group SU(3)xSU(2)xU(1). This means two things. First of all, we are
interested preferably in theories with r as small as possible (because the rank of
the Standard Model is so small). One possible way of getting around this is shadow

matter, as we have seen. Secondly, A2 ® A} C AL.

The choice of the glue group G is partially determined by the massless spectrum
S. Each particle in § gives us a (possibly redundant) glue vector p — v = g € G.
Unfortunately we only know some of the components of p in Ay. For example,
whether it is a fermion or a boson determines its glue class in (D;)(™": e.g. a
‘vector boson’ lies in [2]. Also, we know how it transforms under G, so we know
which weight classes it lies in (e.g. a gauge boson must lie in {0]A,). The other
components of p are determined only by the massless condition p = 0,2 and
p% = 1, and the constraints that the glues must form an additive glue group with
integral dot products. These constraints are surprisingly strong as evidenced by
the arguments given in [GL1] for the proof of Theorem 5.11 there (reproduced as
Thm.8 here). Usually the massless states in § will not yie'd a large enough glue
group to make Ay[G] self-dual. In that case, additional glues, hopefully massive,
would have to be supplied to complete the job.
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A heterotic string must possess a conformal and a superconformal current (=su-
percurrent) in order to eliminate all the negative-norm states. Conformal invariance
has already been used in the light-cone gauge construction under discussion, but we
must still make sure of the existence of a supercurrent constructed out of the right-
moving variables. A detailed discussion of the supercurtent is beyond the scope of
this work (see e.g. the discussion in [GL1] and the references therein).

Unfortunately, a complete list of supercurrents constructable from lattice bosons
is not known, though special solutions are available. Among these known super-
currents, some of them can never lead to a four-dimensional chiral theory and can
be rejected on phenomenological grounds. Of the remaining ones, we choose for
the sake of concreteness to discuss in this section only the supercurrent used in the
Z; orbifold at a particularly symmetric moduli (see in particular Tables 1T and IV
in [GL1]) and consider its consequences. The method employed below is general
enough to be usable for other supercurrents as well. At this point in time, however,
we have not yet applied our methods to alternate supercurrents.

This particular supercurrent solution may be used to constrain the right-hand

part Ap of the lattice A.

Theorem 6.3.1: (i) Ag contains the sublattice

AOR déf{11(12),11(12)’11(12)’I](l?),ll(l2),11(12), 11(12)111(12)’1"(12),[](4)}

€ {(12),(12),(12), (12), (12), (12),(12),(12),(12), (4)}

and the glue classes [(¢3),] = [0,...,0,6,0,...,0,2], where the ‘6’ occurs at the :th

placeand 1 <:<09.

(i1) Let ¢ = (qr;9r) = p — v represent a massless fermion. Then in the basis of
AoRr, each of the 10 components of pg must be equal to +1 or —1.

(ii1) Suppose a space-time supersymmetric theory contains a massless fermion ¢ =
(gz; qr) not in the adjoint representation (1.e. glue class [0]) of the gauge group.

10) def

If pr = qr + vg is chosen conventionally to be pr = ((—1)'%) =7, then the
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gaugino glue vector § = (1°(—1)*) € Ag is uniquely determined up to per-
mutations of its first nine coordinates. In particular, there can be no N > 1
space-time supersymmetric theory that is chiral.

(iv) We may take the left-hand base lattice to be the 22-dimensional orthogonal
lattice

Ao = {(3k?), (K*), (K%),..., (K)}, (6.3.1)

for some (as yet unknown) nonzero integer k.

Note that the final component of Agg is {(4)} = D, the helicity or space-
time group. Thm.1(i) says that any string with the given supercurrent in it must
necessarily contain Agg.

By a nonchiral theory, we mean here one in which every left-handed massless
fermion with fixed quantum numbers in G has a right-handed partner. Let us
define ‘left-handed’ helicity to be in the class [3]D; (for p) of the SO(2) (the tenth
coordinate on the right-handed side), and ‘right-handed’ helicity to be the ones in
class [1]. So a left-handed fermion ¢ = (qr; ¢r) is a chiral partner of a right-handed
fermion ¢' = (q;qR) iff g = ¢}, the tenth coordinate of gr belongs to class [3], and
the tenth coordinate of ¢ belongs to class [1]. Note that there are no requirements
for the other components of qp and ¢%. Note also that if a theory is nonchiral in
our sense, it is nonchiral in a more usual sense as well (which is concerned only with
quantum numbers in G).

It is also necessary to explain what is meant here by a space-time supersym-
metric theory in this context. (Recall that the heterotic string necessarily has world
sheet supersymmetry on the right-hand side, but may or may not have space-time
supersymmetry.) We mean by this that a glue — a gaugino — of the form (0; 6)
exists, with § belonging to glue class [3] in the helicity group SO(2) (the tenth co-
ordinate of Agr), and with 62 = (6 + vp)? = 1. We also mean by this that every
massless vector boson must be in the adjoint representation (i.e. the glue class [0])

of the gauge group. Beyond this, no supersymmetric operator algebra is assumed.
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With this definition, we note that neither (gz;0) nor (0; gg) in (iii) of Thm.1 may
be in the self-dual lattice A for the string.

The proof of Thm.1 is like the proof of most of the theorems in this section
very straightforward once the physical terms are successfully translated into the
lattice language.

The determinant of Agg in Thm.1 is |Agr| = (12)%4. Incorporating the 1ight-
hand glues (g3), and ¢, the right-hand glued lattice Amdéf Aorl(gadiy. -2 (gs)y. 0]
has a determinant equal to |A;p| = (12)°4/(2°6)2 = 37 > |Ap|. We thus obtain
immediately Thm.2 below. If the theory is not space-time supersymmetric, then

the gaugino glue § should not be included, and the bound for |Ag| is increased to

39 92

Theorem 6.3.2: |[A;] = |[Ag| = 37, 35, 3%, and 3 if the theory is space-time
supersymmetric. Otherwise, the allowed v7alues for |AL| = |Ap| are all of the above,

plus each of the above multiplied by 22, plus 3% and 3°22.

This theorem will be used later to find the allowed gauge groups.

Note that an immediate consequence of Thm.2.1 and Thm.3.1 is that any two
strings with this supercurrent can be obtained from each other by shifting. In
particular, all of them can be obtained by shifting the Z; orbifold of Example 3.1
in [GL1].

In the remainder of this section we give a number of results concerning this
class of string theories. The proofs of the theorems are given in [GL1], but again
are straightforward once the physical terminology is expressed in the language of
lattices and glue vectors.

It should be borne in mind that all we are starting from is a self-dual lattice
containing the sublattice Agr. Thus although some of the theorems stated below
(e.g. Thm.3) may be familiar to workers in string theory, they are usually proven

with the help of the supersymmetric algebra, which is absent in the present ap-
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proach. In our framework these ‘familiar’ theorems are not immediately obvious,
and it is gratifying that with much less input in the gluing string framework, they

rermaitn valid.

Theorem 6.3.3: (i) Tachyons are absent in space-time supersymmetric theories.

(i1) To each massless scalar boson in a supersymmetric theory there is one and only
one massless fermion with the same gauge quantum numbers.

(ii1) To each massless gauge vector boson in such a theory there are two massless

fermions (gauginos), one left-handed and the other right-handed.

The following theorem shows the absence of low-mass and high-spin elementary

particles — something apparent experimentally.

Theorem 6.3.4: Other than the gravitons and gravitinos (their supersymmetric
partners), which have spins 2 and % respectively, there can be no massless particles

of spin greater than one.

Thms.3-4 hold for more general choices of supercurrents than that used in
Thm.1.

The following theorem about the Higgs boson makes it impossible to construct
conventional grand unified theories in this framework (the Higgs boson is involved
in spontaneous symmetry breaking, necessary to give the electrons, etc. a small
but nonzero mass and also, at another energy scale, to break the GUT gauge group
down to the Standard Model). Supersymmetry is not required for the following

proof.

Theorem 6.3.5: No massless scalar particles in a chiral theory can lie in the

adjoint representation of the gauge group.

Recall from Thm.2 that |Az| may take on values 37, 35, 3%, and 3 for a space-

time supersymmetric theory. The following theorem deals with the relationship
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between these values and the chirality of the theory (see Sec.1 for a discussion of

chirality).

Theorem 6.3.6: A |AL| = 37 space-time supersymmetric theory is necessarily
chiral. A |Ar| = 3 theory is necessarily nonchiral. When |A | = 3 or 3%, the theory

can be either chiral or nonchiral.

Note that A; & Agr and A; & A, can both be glued to one of the 23 Niemeier
lattices. Moreover, all the glues for A2 @ A are of order 3. This can be used to get
at the possible gauge groups, as we shall shortly see.

The next two theorems give a classification of the allowed gauge groups in the
presence of shadow matter. Recall from earlier in this section that a shadow group is
one in which no glue is allowed to have nonzero components both mside and outside
of the confines of the corresponding root lattice. For that reason a shadow group
lattice has to be self-dual in order for the whole string lattice to be so, and this
confines the allowed shadow group lattices to Eg, Eg @ Ej, and D,*;;. The possible
Niemeier lattices that can be built out of A; & A, are greatly reduced. Then it can

be shown that:

Theorem 6.3.7: (i) When shadow matter is present, we may take k in eq.(2) to

be products of 2’s and 3’s only.

(i1) If the shadow group lattice is Eg, then Ay is a sublattice of cither Eg () Ey
or {Dy3,(12)}{13] @ Ejs, and hence the gauge group G is a subgroup of cither
E¢ x Eg or Dy3x U(1).

(iii) If the shadow group is of rank 16, then Ay is a sublattice of either EqL(the
shadow group lattice), and hence the gauge group G is a subgroup of Ey.

Define a first-level order 9 ungluing of a Euclidean lattice A to be any lattice A’
for which there exists a glue g of order 3 satisfying A = A’[g]. Define a second-level

order § ungluing of A to be a first-level order 3 ungluing of any first-level order 3
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ungluings of A, etc.. For example, the first-level order 3 ungluings of Eg are g,
Es © Ay, {D7,(36)}[19], and {E7,(18)}[19]. E7 itself has five first-level order 3
ungluings

The earlier results imply AL must be a first-, second-, or third-level order 3
ungluing of Eg, Eg b Eg, or {D;3,(12)}[13], if the resulting string is to be chiral
and have shadow matter. Conversely, any such ungluing determines A;, and hence
the gauge group of a supersymmetric string with the supercurrent of this section.

Similarily, with or without shadow matter, it can be shown using [CS2] that
AR is a first-, second-, or third-level order 3 ungluing of {Dg,(12)}{13], Es @ I4,
Iy ® Ifs), or Es 1), & I}g). In particular, because there is only a finite number of
integral Euclidean lattices with a given determinant and dimension, there is a finite
number of possible strings whose supercurrent is as in this section. Moreover, in
theory at least, these could be systematically and completely enumerated.

The Standard Model group SU(3)xSU(2)xU(1) has rank 4. It is, therefore,
conceivable to have a rank-16 shadow matter group in the theory. If this were
possible, the standard model would effectively be contained in a rank 22 — 16 = 6
grand-unified gauge group. Unfortunately, the following theorem shows that this is
impossible, at least when the theory is grand unifiable and contains the supercurrent
of this section. By a grand unifiable standard model, we mean one in which all the
observed fermions (quarks and leptons) are constructed out of glues ¢ = (¢r; qr)
with all gp = 1. We call that grand unifiable because if this were not the case, it is

hard to imagine how the fermions can be unified into a larger gauge group.

Theorem 6.3.8: A grand unifiable standard model, with an arbitrary number of
generations, with or without the usual choice of Higgs boson, will be nonchiral if it

contains 16 dimensions of shadow matter and the supercurrent of this section.

A corollary to this result is that no chiral GUT string, containing the Standard

Model in a natural way, may have 16 dimensions of shadow matter.
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To summarize, we have discussed the bottom-up construction of lattice strings,
and have arrived at a number of conclusions concerning strings with low-energy
behaviour similar to that of the Standard Model. We have failed to construct a
phenomenologically correct string.

The conclusions of this section are reached for lattice strings with the super-
current of the Z3 orbifold example. Some of these conclusions (¢ g. Thms.3-4) hold
in much greater generality, whereas others (e.g. Thm.5) do not. The theorems con-
cerning shadow matter (Thms.7 and 8) are probably the most far-reaching physical
results of this section. [GL1] does not solve the all-important question of whether a
string containing the standard model can be constructed. It only gives some answets
to the specific cases of lattice strings with the specified supercurrent Nevertheless,
it provides a systematic analysis at least for this limited class of strings. Much more
work is necessary to systematically analyze the cases of other supercurrents, and
to determine whether the present methods are helpful in constructing more general

conformal field theories along the lines of [CN].

6.4 Zero Cosmological Constants in String Theories

One of the most serious problems of the current theory of particle physics is its
inability to account in a natural way for the large size of the universe, or more tech-
nically, for the smallness of the cosmological constant A (A} < 107!22M%, where
Mp ~ 10'9GeV is the Planck mass). One interesting mechanism for producing such
a small cosmological constant to one-loop order is to arrange to have the contribu-
tion from the fermion loops to cancel that from the boson loops. This would be the
case for a supersymmetric theory (where there is a symmetry between the fermions
and bosons — see Sec.2), but unfortunately our world is not supersymmetric — not
to the required accuracy anyway. Nevertheless, there are still infinitely many other

ways to arrange such a cancellation.
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In a superstring, the bosonic and fermionic mass spectra are highly constrained
(as we saw for instance in the last section), so it becomes possible and interesting to
ask whether a non-supersymmetric string theory can give rise to a zero cosmological

constant.

There has been some work in this direction. It turns out that the cosmological
constant corresponding to a string theory can be obtained by integrating (over
7 in the fundamental region of the modular group) the partition function of the
theory. Dienes in [DIEN] has found a class of partition functions which gives rise
to a zero cosmological constant to one-loop order. Moreover his partition functions
satisfy a number of additional constraints (e.g. they have no on-shell tachyons)
which physically acceptable strings are expected to obey. The partition functions
he found are the kind that one would obtain from a lattice string, but after looking
over more than 120 000 such strings with the help of a computer, he reports in
[DIEN] that he was still unable to find a consistent string with such a partition

function.

This final section reviews research done in [GLS5]; it applies the techniques
included in the earlier chapters to investigate the question whether any (consis-
tent) lattice string can be found with Dienes’ partition function. We will be able
to quickly show (in Cor.4) that no such string exists. However, it appears that
Dienes’ constraints are harsher than they have to be; we have generalized his class
of partition functions, and most of this section concerns this larger class. The main
conclusion of our work (Cor.6) is that no such string exists, even for the larger class
of possible partition functions, provided that the string must in addition satisfy
the half-norm property (given in eq.(11)). This property is extremely natural given
the class of possible partition functions, and indeed is consistent with the type of
string Dienes seems to be most interested in, but we have not attempted yet to
generalize our solution to all conceivable strings. The approach developed in this

section should be applicable to the general case.
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Dienes’ one-loop partition functions are (7))~ 22n(#)~"2T(r7), for T given by

T(r7)=Q(77) + I(r7), (6.4 La)

where @) is given by

Q(r7) = 8363{626361(26361636} — 6363 — 6363) + 617(463636} + 136161616}]}
+ 036316263611263616,6; — 6265 — 6,67] + 63°(463656; — 1361616}6}])
+ 8167 {62636,(267636,65 — 6365 — 6363) + 6,7(4636363 + 136363616])),
(6.4.10)

and where I is an unknown function of T and 7 with the property that the Taylor
expansion Y, . amng™q" of n(7)"¥n(7)712I(r7) satisfies amn = —aum. Here
and throughout this section the theta functions 6;, etc. are functions of 7, and
g = expimi7). Note that eq.(1b) implies the string has 22 left-moving bosonie
degrees of freedom and 10 right-moving ones.

For reasons that will become clear shortly, we will generalize the partition

functions in eq.(1a) to

T(r7) = cQ(r7) + I(r7), (6.4.1¢)

where ¢ and I are given above and where ¢ is any nonzero real number. It is clear
that any such partition function will also have zero cosmological constant. Dienes’
class corresponds of course to the choice ¢ = 1. Only two of his constraints scem
to restrict the possible values of ¢. First of all, his graviton/gravitino constraint on
p-1980 of [DIEN] says that ¢ must be a positive rational number with a denomi-
nator which divides 64. We will be able to derive this ourselves from more geueral
considerations (see Thm.3 below, so we can for now ignore this constraint). More
importantly, in the discussion after his eq.(1), he demands (without explanation)
that a, (his notation) must be an integer. This implies that 2c € Z. Cor.4 will
show that no string can be found for such values of ¢. However, we see no serious

reason (other than simplicity) for maintaining this demand.
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Therefore our main interest will be focused on the class of partition functions
given in eq.(1c) for any ¢ # 0. Dienes’ class can be recovered by choosing ¢ = 1.

A lattice A shall be called v-even for some vector v (not necessarily in .\) if
r24+2r-v=0 (mod 2) Vr € A. (6.4.2)

Thm.1.3.4 tells us that any self-dual lattice A is v-even for some v € %A. In fact:
any lattice A is v-even for some v € R ® A; if A i1s rational then v can be chosen in
Q @ A; and if A is integral then v € %A"'.

For any Euclidean lattice A® define the ‘shifted theta constant’ @,&(vu|r) to
be

Ope(vulr) = Z exp[mit(r + u)? + 2me(r + u) - v)
r€EAF
= I([u]AE)(v | 7). (6.4.3)

We will call O(AE)(r) a ‘pure theta constant’ — it corresponds to v = u = 0. For

indefinite A, define

Opr(vulr?) = Z exp[mit(ry + up)? — mir(rr + ur)® + 2mi(r +u) - v], (6.4.4)
reA!
where we write r € A’ in the usual way as r = (r;rr) (so dot products in A’ are
givenby r-r' =7y -} —rgp-rk). We will also use the short-hand O(A7)(77) for
O,1(00]77)
Then we know from Sec.2 that if Dienes’ partition function corresponds to a

(consistent) lattice string, then
T(77) = O (vv|T7), (6.4.5)

where A is an odd indefinite v-even self-dual lattice of signature (22,10), where

2

v = (0;vr) (i.e. v lies entirely on the RHS), and where v? = —v} = 1.
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Given any indefinite lattice \! of signature (m,n), define the n-dimensional

dimensional Euclidean lattice (\\/)g by:

def
(ADR= {ral(0irr) € AT}, (6.4.6)
where dot products in (A?)g are (obviously) defined by rg - = —(0rr) - (00)
Apg is called the RHS of AL,
We would like to find the lattice A responsible (in the sense of eq.(5)) for the
partition function eq.(1), or show that no such lattice exists. One glaring difficulty

is that the partition function is not precisely known. Thm.1, given below, overcomes

that difficulty.

Theorem 6.4.1: Suppose A satisfies eq.(5). Then:

Onn(vrn|T) =4c(6305 + 6367 — 6305 — 0563]

=16¢{8q — 896¢° + 5184¢° + - - -}, (6.4.7a)

O (vv|r7) =c62*[463* 8% — 803°8)% + 46561°) + cH26%°[4020,28° — 462656}*)

+ c63°03(—136;165 + 248;°6,? — 11636,°

+ c6303°65 (7630563 + 563656, + 263636,°]
+c03°05[11836;* — 11638}° + 4677

+ c6365[4622 — 1363°8] + 306593 — 2863°9,% + 11636)°]
+ c6303%63(46363° — 76303°6} + 66303%6% — 463636, + 563616,° — 46363

+ cHL2GL0[4612510 — 28G361¢ + 240161° — 8622] + sym. (6.4.7h)

where ‘sym.’ in eq.(7b) denotes all of the previous terms with 8, « 6,, ;3 — 8, and
84 — 03, where Ag is the RHS of the lattice A, and where the notation (‘37\(1)1)'7‘7‘)
denotes the function

03(7)03(7)G5(F)Oa (vulrF) + 63(7)03()85(T)OA(vv|FT).
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Eq.(7a) follows by putting q equal to zero (1.e. considering the limit 7 — +o01)
in Dienes’ partition function eq.(1lc), once we show that any acceptable I in eq.(1)
vanishes in this limit (this easily follows from Dienes’ ‘pole strength a’ constraint
given in [DIEN]). Eq.(7b) follows from the observation that by definition the I in
eq.(1) satisfy T = 0.

Eq.(7bh) is very messy — we are being far more explicit here than is necessary, to
help make as unambiguous as possible the following argument, and also to prepare
for a future generalization of Cor 6. A third way to eliminate the ambiguity in
eq.(1c) due to the [ is to ‘Euclidean-ize’ A (i.e. put ¢ = ¢). The resulticg equation
is much simpler than eq.(7b), but much information is accordingly lost. We will

come bhack to this later.

It will turn out that all we really need to consider is the third term in eq.(7b).
In particular, note that the coefficients in eq.(7b) of 8186381482 and 6186465816 are
not equal. We will show in Thm.6 that those coefficients must be equal for any
lattice satisfying the half-norm property eq.(11). Cor.6 is based on a test (Thm.5)
which can be used to show a given Ag is not the RHS of a A satisfying eq.(75). To
help motivate the proof of Thm.5 we will shortly work out one example (eq.(10b)) in
complete detail. The proof of Thm.5 in the general case follows from that argument
by simply generalizing.

Rather than directly trying to solve eq.(1) for A, we will try to solve egs.(7a)

and (7b) for vp, Ag and ultimately A (or show that no such solution exists).

One obvious difficulty with this strategy is that eqs.(7) involve ‘shifted theta
constants’ O4 ,(vrvR|T) etc., rather than pure theta constants. This makes it much
harder to read off information about Agr and Ag. Thm.2 given below is designed

to overcome this complication. With this in mind, make the following definitions.

Let Ap be the sublattice of A consisting only of the even norm vectors (i.e. the
bosons). Then it can be shown that [Ag| = 4. Ap is also of signature (22,10). Let

ABr e (AB)r. Let u = (0;ur) € A be any odd-normed vector living entirely in the
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right-hand side of A (such vectors will always exist. by eq.(7a)). Then \ = \p(ul

and Ap = Apggrlug]. Note also that 2v,2u € Ap (so 2vR,2up € \pg).

Now define lattices A%, & Aprlvr + ug] and A}, def Agrlvg]: define ' and \"”

similarly. Note that Ag, A and A%, are all integral (in fact, odd) and have egual

determinant. Ap and A, are vp-even, and A' is both ug- and (ug + vp)-even.

Theorem 6.4.2;

Opp(vRYR|F) = O(AR)(F) — O(AR)(T), (6.4.84)
Op(vv|r7) = O(A")(r7) — O(A")(77). (6.4.8h)

Thm.2 can be verified by explicit calculation, using eqs.(3), (5.2.3) and (5.2 4).

First we will outline the approach taken to find all solutions to eqs.(7a) and

(7b).
By using the known transformation property of lattice theta constants under

T — —1/7 (sce eqs.(4.2.6)), we get:
Oaz (vRVR|T) = Ope () = Opr«(7)

= VAR|(16c){g? + 4¢ +0g? — 16> — 14¢? +0¢® + 644" + ---}.

(6.4.9)

The following are a sample of the kinds of information that can bhe squeezed

out of eqs.(7a), (8a), and (9). They are not necessary for the proof of Cor.6, hut

could be useful in any generalization of it.

Thecrem 6.4.3: (i) ¢ > 0;

(i) c € {1/64,1/32,3/64,1/16,5/64,3/32,7/64,1/8}:

(ii1) \/]Ag|-8c € Z;

(iv) A'; contains 128¢ unit vectors (so can be written as A% = Iy B Ag, for £ = G4c).

Ar and A’y contain no unit vectors.
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(v) |Ar| = |Al| = |A%| = 4k?, for some integer k > 2.

We will not write down in detail the proof of Thm.3, because it is not important
for what follows, but a small outline of one can easily be made. For example,
¢ < 0 was ruled out by showing that v} = 1 implied A, must contain nore unit
vectors than A’y (the result then follows from eq.(8a) and looking at the ¢' term
in eq.(7a)). It suffices to show A’ has at least as many unit vectors as A%, (since
¢ # 0); let u;,us € Ay be unit vectors; then u, - vg = :i:%, so for some choice of
signs (£u; T uy)+vp € A is a unit vector (the desired conclusion now follows from
the obvious counting argument). Also, the coefficients of all the terms in eqs.(7a)
and (9) must be even integers, which helps to give us (ii) and (ii1). (v) follows from
(1), (iii), eq.(1.5.1), and the fact that vy is an order 2 glue of Ap.

Many other simple results can be found.

Thm.3(i1) immediately tells us:

Corollary 6.4.4: No string exists having a partition function T in Dienes’ class

(t.e. either with ¢ =1 or even with 2c € Z).

Basically, the reason is that A% and A, being integral and 10-dimensional,

can only have 20 unit vectors, but egs.(7a) and (8a) imply, for ¢ = % say, that Al
has at least 64 unit vectors. Because of this result we will consider for now on the
more general class of partition functions given in eq.(1c).

As an example, all possible solutions Ag to eq.(7a) with determinant [Ag| = 16
(the smallest possible allowed determinant) can be found. By (iii), we see that 32¢
must be an integer, so by Thm.1.2.1 A% can be written A}, = I, @ Ag for some 8-
dimensional integral lattice Ag with determinant 16 (see Thm.3(iv)). Fortunately,
all such lattices can be explicitly found using [CS2] (by way of comparison, their
tables do not give all 9-dimensional integral lattices of determinant 16). It is then

possible to verify that the only determinant 16 possibilities are (up to integral
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equivalence):
Ar = A,A,DyD,4[1111], vg =[0020], ¢ =1/16; (6.4 10a)
Ag = Ay A1Ar 4, Dg[01111], vg = [11000], c = 1/32; (6.4.100)
AR = A1 A A1 4, Dg[01113)], vg =[00002], ¢ = 3/32. (6 4.10¢)

However, a complete enumeration of all Ag satisfying eq.(7a) could be beyond
our power. Nevertheless a large class of solutions A to eq.(Ta), which includes the
three in egs.(10), satisfies the following property, which we shall call the half-norm
property:

gE:\}:gze%Z (6.4.11)
(indeed, it may turn out that any solution of eq.(7a) must satisfy this additional
property, since the glues violating eq.(11) would otherwise have to conveniently can-
cel out in eqs.(7b) and (9)). It seems to be automatically satisfied by the strings/spin
structures Dienes in [DIEN] is interested in. In any event, by Cor.10.2 in [MUM],
this assumption means that the theta constants of all glue classes of Aj, and A7,
can be expressed as polynomials in 62,82,62 (see the comments made in Sec.4.2
concerning modular forms and theta constants of lattices). The determinant of any
such (integral) lattice must be a power of 2, since its glues (by Thm.1.6.9) must
be of order 1,2 or 4, and if it is to also be a solution of eq.(7a) the determnant
(by Thm.3(v)) must be a power of 4. Also note that if one of Ag, Al,, A, satisfies
eq.(11), all do (see the correspondences discussed after eqs.(12)).

There are several simultaneous solutions Ap to egs.(7a) and (11). Their deter-
minants range from 42 = 16 (for which there are 3 solutions) to 4® =16 384 (with
4 solutions).

The strategy here is to investigate the LHS Aj, of A — it will be 22-dimensional,
even, and will have determinant |Ar| = |[Ag| (hence by Thm.1.6.7(ii) A, must be
self-dualizable and so must glue to one of the 68 self-dual lattices of dimension 22;
these are all explicitly known — see pp.416-7 of [CS1]). Moreover, the glue groups
A} /AL and A% /AR are isomorphic (by Thm.1.6.4).
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By way of a concrete illustration of our findings, we will consider the choice of
Agrineq.(10b). What is important is the ideas behind the following equations, rather
than the equations themselves. In particular, the group isomorphisms between

$/AL, AR/AR, etc. induced by the correspondences h, « g, « g, « g.', which
preserve dot products (mod 1), are important and hold in general, as are egs.(13).

Consider the glue classes in A*/A pr and A%*/Apggr (because we are interested
by ¢q.(8a) in the difference of their theta constants, it turns out that it does not
matter whether we use glue classes of A gg or ones of Ay, A%y — it is more convenient
sometimes to use A ggr). There are 32 = 2 |Ag| of them. Only 16 of them have the
property that up = [10111] dotted with any of their vectors is not an integer (this

is necessary if these classes are to lie in A%y* resp. AR*). These are listed below:

[11000]Apr « [01111]A g (6.4.12a)
[00100]Apr © [10011]A g (6.4.12b)
[00010]Agr < [10101]A R (6.4.12¢)
[00002]ABRr « [10113]ABR (6.4.12d)
[00001)ABR + [10110]ABR (6.4.12¢)
(11003]ABr « [01112]ABR (6.4.12f)
[11110)ApR « [01001]AgR (6.4.12g)
(11113]Agr « [01002]A R (6.4.12h)
[00111]Agr + [10000]ABR (6.4.121)
[00112]ApR « [10003]A R (6.4.125)
[00103]ApR « [10012]ABR (6.4.12k)
[00013]AgR « [10102]ABR (6.4.120)
[11101]Agg « [01010]ABR (6.4.12m)
[11102]Agr « [01013]AgR (6.4.12n)
[11011]Apr « [01100]A Br (6.4.120)
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[11012]Agg & [01103)A gr (6 4.12p)

(Fortunately it is not really necessary to be nearly this explicit!) Note that \pzp
here is Ay A1A; A1 Dg. The left gluesin eqs.(12) lie in A%}*, while the right ones are
in Aly*. These are paired so that up = [10111] added to one yields the corresponding
one. Call these [9,']Apr and [¢}]ABR, for ¢ = 1,...,16 (so that g!' & ¢!).

Define g, = ¢, + vg € A}. It is important to note that g, -9, = g} -9, = ¢ ¢
(mod 1), as well as g2 = ¢/% = ¢!'? (mod 2). Moreover, this correspondence defines a
group isomorphism between AL /AR, Ap*/Ap and AR* /AR (1.e. (9. +9,) =g, +y,
(mod A'p), etc. — note that [g,]Ar + [9,]Ar = [gx]AR, Where gk = g, + g, + up
(mod AgRr). These relationships, central to what follows, will hold in general.

Suppose
16

A = | J([R]AL; [6)]AR), (6.4.13q)

=1
where [h,]JAL are the 16 glue classes in A7 /A (note that hy = 0). Then it is not,
difficult to see from the definitions that

16

A" = | J([rJA L [} 1AR). (6.4.13h)

1=1
(This is the motivation for the pairings in eqs.(12).) Moreover,

16

Oa(r) =D O([hJAL)(T) - O([gI]AR)(F), (6.4.13¢)

=1

with a similar expression for @,«. Incidently, the analogues of all these equations
of course will hold in general.

It is straightforward to verify the following expressions:

O([g/1A%) - O(lg]AR) = A, where (6.4.144)
Ay = %A4 =-Ap=-A;s = %[67392 + 6562 — 6365 — 6268),  (6.4.14b)
Dy =Ag = —Ag = %9‘3[@39} + 20368 + 6262],  (6.4.14c)
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As =g = gég[égéf _ 5249, (6.4.14d)

Ag = —A1y=-A16 = gag[egef —- 28363 + 6265), (6.4.14e)

1 1 como cecs i sn
§A7 = A =—-An=-A12 = g[—9§9§ + 8363 + 6365 — 6363]. (6.4.14f)

Because A is v-even and self-dual, we know a lot about the glue classes [h,]A .
Important is the realization that the correspondence h, « g, induces a group iso-
mornhism between A% /AL and A% /AR, however hZ =1 + ¢2 (mod 2). From this
we get that A; < AL[h1o, b1z, his), A2 S AL[hio, Bi1, ki), and Ay % Ap[hio, by, hr]
are all self-dual (sir-e by direct inspection A'j[g1y, 912, 915, etc. are); hence by

Hecke’s Theorem we may write
O(A) = €.03" + fi(63 — 0365 +63)63" + (1 — e - f,)(63 — 636} + 63)°6;

for 1 = 1,2,3, for (as yet unknown) real parameters e,, f,. Moreover, the analysis at
the end of Sec.4.2 (apply eq.(4.2.11) to the first ‘generalized Hecke's Thm.’ example
there) tells us that, for (as yet unknown) real parameters a, b, ¢, d, we may write
l-a—b-c—-
4
3007 + 00 + 61°) + S(010 +61°)(63 +65) + S(62° + 6363 + 7).

o(AL) = L 03 + 651" + 01 + S8+ 061 +63°)

Incidently, the ten parameters we have just introduced are not independent: they
satisfy the equations e; +e; +e3=3—-2a—3b—2cand f, + fo+ f3 = 2a+3b— 5d
(of course, the ¢ used here has nothing directly to do with the c in eq.(1¢)). It turns
out, again using the analysis and results included at the end of Sec.4.2, that the
theta constants of all the 16 glue classes of Ay can be expressed in terms of these
parameters. The analysis is lengthy and messy, using equations such as eqs.(4.2.12),
(4.2.6) and (4.2.7), and since eqs.(153) are not needed in the proof of Thm.5 we will

not include here the intermediate calculations. In particular, we get:

a—-b—-c—-d

1 9 1
O([h1]AL) = (65" +65%) + (65°63 +656,°) + ~ (9§498 +6365*)



b c - i . . o s
+ 7(63°6% +6:761°) + 7(6361° + 63°63) + 54-(9§0§° +6296%);  (6.4.150)

1
O([h2]AL) = O([R1s]AL) = 593[(930 - 6%
+ (=94 2a+3b + 4c + 5d + dey +2£1)(81°0) — 6161°)

+ (20 — 6a — 9b — 10c — 10d — 10e; — 4£,)(8326% — 6361%): (6.4.15b)
O([heAL) =%(¢9§2 4oy Totathyt c: d¥32es —2fs grags 8181%)
yam ez = g ogay ¢ 2R M g | graguy
¢ 2mem i 2 gge 4 gio) + UG £ 606 (6.150)
O((hslAz) = O((hslAe) = FEA1(62° +62°) (6.4.150)

+ (=3 + b+ 2c + 3d)(63°0] + 636]°) + (2 — b — 2c — 2d)(63°6} + 636}2)];

O(hi]As) =3 (637 — 637) ¢ 2HAEDH AT 30 2 3o grogy _gigie
Praza Mo guugs — ggay) + L2t gogis grzgie)
simes i’” = 2Js gso1e — g1oa8) + 14‘~1<0§9§° — 62°6%),  (6.4.15¢)

OholA) = 2637 — 67) + =222 = d(giept _gigl)
+ 36362 - 8361%) + (610617 - 61761)
+ 7(6361° - 03°6) + g(ogeg" — 62062, (6.4.15f)

O([h3]) = O([h14]), resp. O([hs]) = O([ho]), are the same as eq.(156) with ey and
fa, resp. ez and f3, instead of e, and f;; ©([h1,]), resp. O([hy2]), are the same as
eq.(15¢) with e; and fz, resp. e; and fi, instead of e3 and f3; and finally O([h4]),
resp. ©([his]), are the same as eq.(15c) with e; and fi, resp. ez and f,, instead of
e3 and f3.

Now, straightforward arithmetic gives us:
~ | P 105 =6 & 1 e ——
On(volr7) =g 3°[6363 — 205°0;" + 630,°] + 56263°(636;°6; — 03636,

+ ZOB0L(=2 + 2 + FIBIGR + (4 - de — 20 )01001 + (=2 + 2¢ + NFL6L"

-
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+ 8939560:[aé§(§;262 — af2656}7]
+ %9;692[(2 —2¢ —2f)8356% + (—4 + de + 41)83%6,°

4 (4 —4e ~3f)050," + (=2 + 2¢ + £)G16° + 627

+ ORI + (=2 + 2 + )AL+ (6 — G — 4)030}

+ (=8 +8e +6£)63°6,% + (4 — 4e — 3£)636,°]

+ %ogo;ﬁag (6262° 4 B26356¢ + 286203288 — 2682656} — 08201815 — §262°)
+ %0;2910[(—4 +de + 4£)8068 + (8 — 8e — 8£)B1241°

+ (—8+8e+ 6£)0501 + (4 - 4e — 2£)63638 — 262%] + sym. (6.4.16)

where ‘sym.’ and C:)T\ here is as in eq.(7b). Note that there are four parameters in
eq.(16): e def dez—ey—eaq, f def 3fs—fi—f2,a def —942a+3b+4c+5d+4e;+4e, —4e3+
21 +2f, —2f5 and B 20— 6a — 9b—10c~ 10d — 10e, — 10e,+ 105 —4f; —4f5 +4fs.

Cor.10.2 in [MUM]| tells us that a polynomial in 6%, 62 and 6? vanishes for all
7 iff it is a polynomial in 83 — 8} — 3. Since eqs.(7b) (with ¢=1/32) and (16) must
be equal, this implies, for example, that the coefficients of 83863 must be equal,
which in turn implies —13/4 = —2 4 2e + f = —11/4, which is clearly impossible.
Thus the choice of Ag given in eq.(10b), although it satisfies eq.(7a), cannot be the
RHS of a permissible A which satisfies eq.(5) (and hence eq.(7b)).

Incidently, if we had instead ‘Euclidean-ized’ A (as was discussed after egs.(7))
and carried out all of the analogous work that would have been entailed, we would
have found no inconsistency, but rather the constraints: e = —9/4, a = —7/4 and
B = 1/4. So it would seem that too much information is lost through Euclidean-
ization.

Of course, all of the work used in deriving the inconsistency was not really
necessary in hindsight. It would have sufficed to have shown that the coefficients
of 6186161468 and 0}8646501° — call them A and B — in eq.(16) are equal. Note
that 4 = A4; — A, + Aj, where A;, Ay, A3 are, resp., the coefficients of 32616561,
6186161° and 6)*6361° in O, (vv|7r7); similarly, B = —B; + B, where By, B, are,
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resp., the coefficients of 818616285 and 6561641° in O, (vv|rF).

Now, consider any Ax = O([g}/]AR) — O([¢1]AR) for which ¢ € Z. Then each
Ay can be expressed as a polynomial in 2 and 4. Let A} consist of those terms in
Ay in which 82 occurs to odd power. For example, Al =(04,) = :;9‘,‘9{ -~ EliHiH?
A priori one would expect these A} to look like 81" + <858} + 16268 for arbitrary
r,s,t € R. However, it is easy to verify from eqs.(14) that for all these &, A} is
a real multiple of 656} — 626%. From that, eqs.(13¢) and (8b) immediately imply
Ay = —-By and A = A3 = By, =0, we. that A = B.

These comments can be easily generalized. The result is:

Theorem 6.4.5: Using the notation described in the preceding paragraph, sup-
pose that for each k for which g2 € Z, both

(i) Ay is expressible as a polynomial in 6% and 62, and

(ii) there exists an €, € R such that A} = £,(656% — 626%),

hold. Then eqs.(5) and (7b) will necessarily be inconsistent, and no acceptable

string will exist with RHS Ap.

The choice of Ag considered earlier succumbs of course to Thm 5. The point

of Thm.5 is the following corollary, which is the main result of this section.

Corollary 6.4.6: There is no string theory with partition function of the type
given in eq.(1c), based on a lattice A whose RHS Ap satisfies the half-norm property,

t.e. eq.(11).

Proof First note that by Cor.10.2 in [MUM], condition (i) of Thm.5 is always
satisfied when the half-norm property is satisfied.

We will begin by making some general observations about the theta constants
of lattices satisfying eq.(11). Only in the final paragraph of the proof will it be
applied to A’y and A%.
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Let A, be any 10-dimensional {integral) lattice satisfying eq.(11). Let D¥ RYIE

We can write
O(A,) = abi + 66862 + 656} + d636¢ + 6365 + f6;°, (6.4.17a)

where a, b, c,d,e, f are real, atid f =1 —a ~b—¢c—d —e. Then by egs.(4.1.6) and
(4.2.6a),

O(A}) =Dabi° + Db6562 + Dcb3(6: — 62)
+ Dd6365 + De6?(6% — 63)2 + Df6)° (6.4.17b)
=(Da + Dc + De)8° + Db8362 + (—Dc — 2De)656}
+ Dd6%65 + Deb263 + Df61°. (6.4.17¢)

Because A} only has one zero vector, eq.(17b) implies a = 1/D.

Now let g € A}, g> € Z. Then g will be order 1,2 or 4, and O([g]A;) will be of
the same form as eq.(17a): i.e. O([g]A) = a,01°+b,6502+---. Of course, A;[g] will
also satisfy eq.(11). Consider first the case where ¢ is of order 2. Then the previous
paragraph applied to both A; and A,[g] immediately implies that a;, = 1/D. Hence
the same conclusion must apply to g of order 4 (and trivially to order 1 glues)
— i.e. the leading coeflicient for any integral-normed glue g of Ay is ay = 1/D.
Moreover, note that the coefficient of 3° in the theta constant of a glue class of
non-integral norm must be 0.

Now by eq.(4.2.7), we can rewrite eq.(17¢) as the sum of O([g]A;) for all glue
classes [g]A;. We then get N/D as the coefficient of 1% there. Hence c +e =
(N — D)/D?. The same technique as in the previous paragraph allows us to find a
similar formula for ¢y + ¢4, for glues g of A; with integral norm.

Finally, consider the two lattices A’y and AR corresponding to a Ag satisfying
eq.(11). Their glues g;, g} can be paired as was done in eqs.(12). Consider integral-
normed glues g; « g¢}. From the previous two paragraphs (and the dot product-

preserving group isomorphism mentioned after egs.(12)), two things should be clear:
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¢ d

ag =agy and g, + g =cgu + egu. Hence
" 310 i6 gt j2 g8
E = (a-‘li' - ag;‘)93 + ((:grk' — Cg, )9394 + (eg;: = €1 )939‘
necessarily satisfies condition (ii) of Thm.5. QED

Obviously Cor.6 itself cannot be generalized to take care of Ap which do not
satisfy eq.(11). However, in the more general case an analogue of eq.(16) can still
be found (although it may be most convenient to consider the first few terms ¢™ ¢"
of its Taylor expansion and use identities such as eqs.(4.2.13)) and compared with
eq.(7b). In other words, the general approach used here, rather than the specitic

details in the proof of Cor.6, should be very useful in generalizing Cor.6.



CONCLUSION

This thesis has been concerned with lattices, particularly ways of constructing
them, and applying those lattice techniques and results to two areas: the theory
of theta functions; and the theory of superstrings. Much of the material has been
taken from five papers ([GL1-5]).

Chapter One presented a general overview of lattice theory Although most of
the material included was not new, the proofs were my own (except for a couple,
whose sources were clearly given there). Some new (or at least not generally known)
findings can also be found in that chapter (see especially Sec.4 and 6).

Chapter Two developed two constructions (namely, tensor products and shift-
ing) that were not considered in the first chapter. Most of the material on shifting
was original. The sections on tensor products considered in some detail their mini-
mal norms; most results obtained there are known.

Chapter Three treated rational equivalence/similarity from a geometric, rather
than algebraic, perspective (1.e. it used the language of lattices rather than the
more common one of quadratic forms). Among other things what resulted was a
new derivation of the ‘weak Hasse principle’ (see Sec.2). In the final section this
geometrical perspective is used to prove a variety of results (some old, some new)
about lattices.

Chapter Four applies the gluing construction (discussed primarily in Chapter
One) to the theory of theta functions in one (complex) variable 7. One of the
highlights of this chapter was the generation of at least 33 independent quadratic
identities in the Jacobi functions. Any identity of this kind we have been able to
find in the mathematical literature {and there are lots of them) can be shown to
be algebraically/modularly equivalent to one of three of ours, so Table 8 contains
at least 30 new identities. These identities exhaust all that can be derived by the

lattice method, so they may constitute a complete list. Many other findings lie in

231




ot

this chapter, including some generalizations of Hecke’s Theorem in Sec.2.

Chapter Five generalizes the results of the previous chapter to theta serzes,
i.e. functions of some complex vector = as well as 7. Although more complicated,
the extra variables allow the analysis to be more thorough than that in Chapter
Four, and the conclusions in general are stronger. For example, whereas ditferent
lattices can have different theta constants, their theta series must be different.
Also, we proved that any identity of this type (w.e. of full rank) can be derived
using lattices. The analogue of Table 8 is Table 11, which includes at least 24
independent quadratic identities. Our literature search has shown that all such

previously known identities are modularly equivalent to exactly one of ours.

Chapter Six applies the previous material on lattices to two problems in string
theory. One concerns an attempt to construct strings using the gluing method
(see Sec.3), and the other concerns the possibility of finding a physically reasonable
string theory having zero cosmological constant (see Sec.4). These two scctions
show the power of lattices in handling some questions in string theory, and are both

original contributions.

Of course, there are many directions for future research. For example, it would
be valuable to know if Tables 8 and 11 are complete (because of Thm.5.3.6 this
seems to be particularly tractible in the latter case). Along the same lines, it
would be interesting to know if similar tables could be constructed for identities of
higher degree (degree 3 should be readily accessible). Further extensions of Hecke'’s

Theorem would be quite useful. We could go on and on.

The analysis of Sec.6.4 culminated in Cor.6.4.4, which showed that Dienes’
partition functions eq.(6.4.1a) can never be realized, and especially in Cor.6.4.6,
which proves that any function in an even broader family of partition functions
which also would lead to zero cosmological constant (1.e. those given in eq.(6.4.1¢)),
can be realized by a string satisfying the ‘half-norm property’: eq.(11). It should
be emphasized that the class of strings ruled out by Cor.6.4.6 is both large and
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extremely natural -— see Sec.6.4 for some discussion of this point. Nevertheless,
my immediate project will be to try to generalize these corollaries to cover every
possible lattice string (an intermediate step may be to consider all those with the
supercurrent used in Sec.6 3, say). The work in Sec.6.4 suggests this should be
possible. Completing this analysis would be valuable for mathematical reasons, too
— indeed, much of the material at the end of Sec.4.2 arose in our attempts to make

progress on Dienes’ problem.
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