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Abstract 

One way to achieve high data rate and bandwidth efficient wireless communications is 

to employ multiple transmit and receive antennas creating a Multiple-Input Multiple

Output (MIMO) system, combined with Linear Dispersion (LD) codes. Sphere De

coder (SD) is a low complexity Maximum Likelihood (ML) method of decoding LD 

codes. 

Using Subspace Matched Filtering principles, two complexity reducing front-ends 

to any variant of the SD, are developed. These two-stage decoders are designed to 

only have marginally worse performance than SD. 

Computer simulations confirm the lower complexity and close to ML performance 

of the two-stage decoders. For a two transmit and two receive antenna LD coded 

MIMO system at an SNR of 22dB, the two-stage de co der reduces the average size of 

the SD search tree by a factor of 5. The BER performance of the two-stage decoder 

is within O.25dB of the ML performance. 
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Sommaire 

Dans les systèmes de communications sans fil, une façon d'atteindre des débits de trans

mission élevés et une haute efficacité spectrale consiste à utiliser des antennes multi

ples du côté de l'émetteur et du récepteur (créant un canal Multi-Entrées Multi-Sorties 

(MEMS) ) ainsi que des codes à dispersion linéaire (DL). Le Décodage Sphérique (DS) 

est une méthode à basse complexité pour décoder les codes DS avec une performance 

semblable à celle du maximum de vraisemblance (MV). 

Utilisant des principes du Filtrage Adapté Sous-espace et pour toute variante du 

DS, un module précédant le DS est développé pour deux systèmes différents dans le 

but de réduire la complexité. Cependant, ces méthodes de décodage introduisent une 

faible pénalité sur la performance. 

Des simulations numériques confirment que les codes proposés réduisent la com

plexité et ont une performance proche de celle du MV. Pour un système DL MEMS 

avec deux antennes de transmission et deux antennes de réception, à 22dB, le décodage 

proposé réduit la complexité moyenne de DS par un facteur de 5. En termes de taux 

d'erreur binaire la performance du décodage proposé est à O.25dB de la performance 

duMV. 



iii 

Acknowledgments 

1 am very thankful to the N at ur al Sciences and Engineering Research Council of 

Canada and Professor Harry Leib for their financial support. 1 would also like to 

thank Professor Harry Leib for his very helpful feedback. Lastly, 1 would like to thank 

my family and friends, for your support and encouragement. 



AWGN 
BER 
BPSK 
GLR 
HT 
KZ 
LD 
LLL 
MIMO 
ML 
MLE 
MMSE 
O-STBC 
PAM 
PBC-ML 
PR-ML 
QAM 
QPSK 
SD 
SE 

SE/SD 
SER 
SFC 
SMF 
SNR 
SPC 
STBC 
V-BLAST 
ZF 

List of Acronyms 

Additive White Gaussian Noise 
Bit Error Rate 
Binary Phase Shift Keying 
Generalized Likelihood Ratio 
Householder Transform 
Korkine-Zolotareff 
Linear Dispersion 
Lenstra, Lenstra, and Lovasz 
Multiple-Input Multiple-Output 
Maximum Likelihood 
Maximum Likelihood Estimate 
Minimum Mean Square Estimate 
Orthogonal Space-Time Block Code 
Pulse Amplitude Modulation 
Projection Based Conditional Maximum Likelihood 
PRojection based Maximum Likelihood 
Quadrature Amplitude Modulation 
Quadrature Phase Shift Keying 
Sphere Decoder 
Schnorr-Euchner 
Schnorr-Euchner variant of the SD 
Symbol Errar Rate 
Statistical Full Coverage 
Subspace Matched Filtering 
Signal to Noise Ratio 
Statistical Partial Coverage 
Space-Time Block Code 
Vertical Bell labs LAyered Space-Time 
Zero-Forcing 

iv 



v 

Contents 

1 Introduction 1 

2 System, Mathematical Preliminaries, and Detection Methods 7 

2.1 System Assumptions 7 

2.2 System Framework . 

2.2.1 Uncoded Framework 

2.2.2 Linear Dispersion (LD) Coded Framework 

2.3 Mathematical Preliminaries 

2.3.1 Projections ..... 

2.3.2 Maximum-Likelihood Detection 

2.3.3 Subspace Matched Filtering 

2.4 Zero-Forcing (ZF) Detection 

2.4.1 Noise Colouring ... 

2.4.2 Analysis of the i th output of the ZF Detector (Ûi) 

2.5 Sphere Decoder (SD) ................... . 

2.5.1 Complexity and Search Tree Representation of the SD 

2.5.2 QR Factorization with the Householder Transform (HT) 

2.5.3 Practical Selection of the SD Radius .... 

2.5.4 Schnorr-Euchner Variant of the SD (SEjSD) 

8 

9 

10 

14 

14 

16 

17 

19 

20 

21 

22 

25 

26 

27 

28 



Contents 

2.6 LD Code for Multiple Antennas 

2.7 Computer Simulations . . . . . 

3 Statistical Partial Coverage (SPC) Front-End 

4 

3.1 Decision Feedback Step . 

3.2 Individual Pre-Detection 

3.2.1 Maximum Likelihood Estimates (MLE) 

3.2.2 Generalized Likelihood Ratio (GLR) . 

3.2.3 SPC Front-End Individual Symbol Pre-Detection 

3.2.4 Proofs for the Lower Bound on PD 

3.3 Canceling the Pre-Detected Symbols 

3.4 Simulation of the SPC Front-End 

3.4.1 Uncoded Framework . 

3.4.2 LD Coded Framework 

3.5 Comparison of the SPC Front-End to a Previously Published MIMO 

Detection Scheme . . . . . . 

3.6 Channel Estimation Errors . 

Statistical Full Coverage (SFC) Front-End 

4.1 Hypothesis Test . . . . . . . . . . . . . . . . 

4.1.1 Generalized Likelihood Ratio (GLR) 

4.1.2 Selection of the GLR Threshold, T 

4.2 Simulation of the SFC Front-End 

4.2.1 Uncoded Framework 

4.2.2 LD Coded Framework 

4.3 Channel Estimation Errors . . 

vi 

30 

31 

32 

33 

34 

34 

35 

38 

42 

44 

45 

46 

49 

51 

54 

57 

58 

59 

61 

61 

61 

64 

67 



Contents VIl 

5 Detector Combinations and Comparisons 70 

5.1 Complexity Reducing Detector Combinat ions 70 

5.2 Uncoded Detector Comparison: 16-QAM, NTX = 5 and NRX = 7 72 

5.3 LD Coded Decoder Comparison: QPSK NTX = 2 and N RX = 2. 75 

6 Conclusions 79 

A Computer Simulation Overview and Guide 81 

References 83 



List of Figures 

2.1 Uncoded system block diagram 

2.2 LD coded system block diagram 

2.3 Decompositions of the (H) subspace 

2.4 Example of SD as a search tree . . . 

2.5 Isosceles triangle used to derive the Householder Transform . 

2.6 Complexity comparison between SD and SE/SD: uncoded 

NTX = 5 and N RX = 7 . . . . . . . . . . . . . . . . . . . .. 

16-QAM 

...... 

3.1 Noiseless values of IIPvjwl12 when ei = 0 and ei = ±d..J NTx in the Vi 

viii 

10 

11 

16 

25 

27 

29 

subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

3.2 Uncoded SPC-SD detector SER performance: 16-QAM, NTX = 5, 

NRX = 7 ..................... . 46 

3.3 Uncoded SPC-SD detector BER performance: 16-QAM, NTX = 5, 

N RX = 7 ..................... . 47 

3.4 Uncoded SPC-SD detector complexity: 16-QAM, NTX = 5, NRX = 7 48 

3.5 LD coded SPC-SD decoder SER performance: QPSK, NTX = 2, NRX = 2 50 

3.6 LD coded SPC-SD de co der BER performance: QPSK, NTX = 2, N RX = 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.7 LD coded SPC-SD decoder complexity: QPSK, NTX = 2, NRX = 2 52 



List of Figures ix 

3.8 SPC-SD detector BER performance comparison in the presence of chan-

nel estimation uncertainty: 16-QAM, Nrx = 5, NRX = 7 . . . . . . .. 55 

3.9 SPC-SD detector complexity comparison in the presence of channel es-

timation uncertainty: 16-QAM, Nrx = 5, N RX = 7 . . . . . . . 56 

4.1 Uncoded SFC-SD detector SER performance: 16-QAM, NTX = 5, 

NRX = 7 ..................... . 62 

4.2 Uncoded SFC-SD detector BER performance: 16-QAM, Nrx = 5, 

NRX = 7 ..................... . 63 

4.3 Uncoded SFC-SD detector complexity: 16-QAM, NTX = 5, N RX = 7 64 

4.4 LD coded SFC-SD decoder SER performance: QPSK, Nrx = 2, NRX = 2 65 

4.5 LD coded SFC-SD decoder BER performance: QPSK, NTX = 2, N RX = 2 66 

4.6 LD coded SFC-SD decoder complexity: QPSK, Nrx = 2, NRX = 2 .. 67 

4.7 SFC-SD detector BER performance comparison in the presence of chan-

nel estimation uncertainty: 16-QAM, NTX = 5, N RX = 7 . . . . . . .. 68 

4.8 SFC-SD detector complexity comparison in the presence of channel es-

timation uncertainty: 16-QAM, Nrx = 5, N RX = 7 69 

5.1 Block diagram of SFC-SPC-SEjSD ........ . 71 

5.2 Uncoded detector SER performance comparison: 16-QAM, Nrx = 5, 

NRX = 7 ................................... 72 

5.3 Uncoded detector BER performance comparison: 16-QAM, NTX = 5, 

N RX = 7 ................................... 73 

5.4 Uncoded detector complexity comparison: 16-QAM, NTX = 5, N RX = 7 74 

5.5 LD decoder SER performance comparison: QPSK, NTX = 2, N RX = 2. 76 

5.6 LD decoder BER performance comparison: QPSK, NTX = 2, NRX = 2 77 

5.7 LD de co der complexity comparison: QPSK, NTX = 2, N RX = 2 . . ., 78 



x 

List of Tables 

2.1 Four simple PAM constellations with E[\Ui\2] = 1/2 .. 9 

3.1 Summary of the SPC front-end simulations .............. " 45 

A.l C++ source files ....... . 

A.2 Simulation adjustable constants 

81 

82 



1 

Chapter 1 

Introduction 

Future wireless communication systems will require much higher throughputs in order 

to deliver high voice quality, reliable video, and advanced mobile applications [1,2]. AH 

these services compete for a limited spectrum which, in many cases, must be licensed 

from the government. The main obstacle to reliable wireless communications is the 

multipath time-varying channel that causes fading [3,4,5]. 

Diversity, a technique to combat fading, can be realized with no bandwidth ex-

pansion by increasing the number of receive antennas or, more recently developed, by 

increasing the number of transmit antennas [6]. These techniques are referred to as 

receive diversity and transmit diversity. Increasing the number of transmit antennas is 

more practical in the downlink of many wireless communication systems since it only 

increases hardware complexity at the base station rather than at each mobile unit. 

One way of achieving diversity using multiple transmit antennas involves sending the 

same symbol from each sufficiently spaced transmit antenna so that the channel expe-

rienced by each transmitted symbol undergoes independent fading. Interestingly, the 

random scatterer fiHed environment can be used to create multiple effective channels 

which can, besides being used for diversity, be exploited to simultaneously transmit 
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different symbols in order to dramatically increase throughput without increasing sys

tem bandwidth [7]. At the same time multiple receive antennas can still be used for 

diversity. For this reason Multiple-Input Multiple-Output (MIMO) antenna systems 

have a much greater capacity than single antenna systems [8]. 

When the transmit diversity order is equal to the number of transmit antennas the 

system is said to have achieved full transmit diversity. Likewise, when the number 

of transmit antennas is equal to the transmission rate, in symbols per channel use, 

the system is said to achieve full spatial multiplexing. The Alamouti scheme for two 

transmit antennas [6] and Tarokh's Orthogonal Space-Time Block Codes (O-STBCs) 

[9] for more than two transmit antennas are techniques for achieving full transmit 

diversity that also allow for low complexity symbol-by-symbol Maximum-Likelihood 

(ML) detection. The O-STBCs and the Alamouti scheme can only achieve at most 

a rate of one symbol per channel use. Another technique, V-BLAST [7] (uncoded 

transmission), does not use the transmit antennas for diversity but can achieve full 

spatial multiplexing, a throughput of Nrx (the number of transmit antennas) symbols 

per channel-use. A limitation, imposed by the V-BLAST detection scheme, is that the 

number of transmit antennas must be less than the number of receive antennas [10]. 

Another limitation of V-BLAST transmission is its lack of any spatial or temporal 

coding and their resulting error resilience [10]. 

A class of codes that subsumes both O-STBCs as weIl as V-BLAST, are known as 

Linear Dispersion (LD) codes [10], are designed by optimizing the mutual information 

between the transmitted and received signaIs while maintaining a linear structure in 

the transmitted symbols. LD codes achieve diversity from coding as weIl as spec-

tral efficiency from spatial multiplexing. Linearity aids in decoding and allows the 

transmission rate to increase at the expense of losing orthogonality between transmit 

antennas. The LD codes are shown to outperform both O-STBCs and V-BLAST at a 
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given transmission rate for a wide range of SNRs, number of receive antennas (N RX), 

and number of transmit antennas (NT x). However, the LD codes are neither guar

anteed to achieve full transmit diversity nor full spatial multiplexing but normally 

achieve sorne intermediate level of both. Performance is boosted by spatial multiplex-

ing since, at a fixed rate, this allows for the use of a smaller symbol constellation. 

LD codes can be designed for any N RX and NT x and therefore can be used in the 

downlink where NTx is normally greater than N RX . 

Of major con cern for all of these techniques is ML detection computational com

plexity. O-STBCs, due to their forced orthogonal structure, allow for linear complexity 

ML detection. In contrast, ML detection of V-BLAST and LD codes has exp onen-

tial computational complexity in both NTX and the size of the symbol constellation. 

There are other suboptimallower complexity detection methods for V-BLAST and LD 

codes such as zero-forcing (ZF) detection, minimum mean squared error (MMSE) de-

tection, and decision feedback detection. These methods, however, result in significant 

performance degradation compared to ML detection. 

Recently, it has been shown that ML decoding with a lower than exponential com-

plexity is possible for certain linear, non-orthogonal, codes using the sphere decoder 

(SD) [10,11]. Rather than considering all possible symbol vectors, as is done for the 

exhaustive search ML detector, the SD searches for symbol vectors within a spheroid 

centered by an estimate of the transmitted symbol vector. SD achieves ML perfor-

mance detecting either an uncoded symbol vector or LD codewords since both are 

linear in terms of the transmitted symbols [10]. The computational complexity of SD 

is dependant on the realization of the channel matrix with the expected value of its 

complexity being a third degree polynomial in the number of transmit antennas [12]. 

Computational complexity gains over the original SD can be achieved by beginning 

the search for symbol vectors in the center of the spheroid rather than at the edge 
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[13,14], a technique known as the Schnorr-Euchner (SE) algorithm [15]. Another mod

ification, Statistical Pruning [16], also offers a reduction in computational complexity 

at only a small compromise in performance. Statistical Pruning and the SE algorithm 

both extend the number of dimensions that the SD can handle before it reverts to 

exponential complexity. 

Like LD codes, layered space-time codes [17] (also called D-BLAST) can achieve 

both diversity and spectral efficiency. A benefit to using a multi-antenna D-BLAST 

code is its simplicity since it is made up of many of single-antenna code blocks. D-

BLAST decoding, however, always contains nulling and canceling and so ML perfor-

mance cannot be achieved. 

Another technique, lattice basis reduction, was first proposed in the context of 

detection for MIMO systems as an optional front-end to the SD to improve its speed 

and numerical stability [13]. Various lattice basis reduction algorithms exist each with 

its own criteria for finding the equivalent basis whose elements are reasonably short 

and orthogonal. One such algorithm, known as Korkine-Zolotareff (KZ) reduction [13], 

has fairly high complexity but good performance and would therefore be appropriate 

for detection in a slow fading environment where the channel matrix is constant over 

many channel-uses and lattice reduction is done infrequently. Otherwise, in situations 

where KZ reduction would be too slow, LLL (Lenstra, Lenstra, and Lovasz) reduction 

[18], offering lower performance but at a much reduced complexity, is recommended 

[13]. 

Lattice basis reduction was also considered as a front-end to both linear and non-

linear suboptimal detectors [19]. Using a modified form of LLL reduction for two 

dimensions it was shown that LLL lattice-basis-reduced suboptimal detection has bet-

ter performance with minor extra complexity than lattice-basis-unreduced suboptimal 

detection. This work was then extended to more than two dimensions using the LLL 
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algorithm [20]. A drawback of the lattice-basis-reduction front-end is that it distorts 

the symbol constellation. This drawback, besides adding complexity to the detector, 

also results in decreased performance that becomes less as the size of the QAM con

stellation increases since the symbol constellation begins to approximate an infinite 

lattice [13,19]. It is suggested in [12] that the drawbacks of lattice basis reduction 

make it an unpromising approach to reduced complexity decoding. 

The contributions of this thesis are: 

• Using Subspace Matched Filtering (SMF) principles [21,22], two complexity re

ducing front-ends to any variant of the SD, were invented. Either of the re

sulting two-stage decoders can achieve lower complexity de co ding of either LD 

codes or uncoded (V-BLAST) transmission. The performance of these two-stage 

decoders, unlike those based on estimation and cancelation techniques, can be 

made arbitrarily close to ML . 

• Developed computer simulations to show the tradeoff between performance and 

complexity for these two two-stage decoders. These simulations confirm the 

complexity advantage and close to ML performance of both two-stage decoders. 

This thesis is organized as follows. Chapter 2 presents the system assumptions 

and both the uncoded and coded frameworks. Then, certain pertinent mathematical 

results and existing decoding methods are explained. In chapter 3 the Statistical 

Partial Coverage (SPC) front-end to the SD is described, analyzed, and simulated for 

both frameworks. Then, in chapter 4, another low complexity front-end, the Statistical 

Full Coverage (SFC) method, is described. Finally, in chapter 5, a computer simulation 

comparison of the detection schemes and their combinat ions is presented. Chapter 6 

provides the conclusions and overall observations. Appendix A is an overview and user 

guide to the source code used to generate the computer simulations. An attached CD 
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contains aIl the C++ source code. 
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Chapter 2 

System, Mathematical 

Preliminaries, and Detection 

Methods 

2.1 System Assumptions 

We consider a multiple-antenna wireless communication system with NTX transmit 

antennas and N RX receive antennas. For simplicity, several assumptions are made to 

focus attention on the proposed de co ding schemes rather than on the model. 

We assume that channel training allows the receiver but not the transmit ter to 

know all of the effective channels between each transmit and receive antenna. More

over, we assume sufficient antenna spacing, narrowband transmission, and fiat fading 

in both frequency and time so that the channel matrix, fI E CNRX xNTX , is comprised 

of independent circular complex Gaussian O-mean variance-l random variables. We 

also assume that the transmitted vector, ü E CNTX , is a vector of squared M-QAM 

complex symbols. The symbols have average power one and M is the number con-
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stellation points. The information bits in each transmitted symbol follow a Gray code 

assignment. The noise vector, ii E CNRX , is assumed to be made up of independent 

circular complex additive white gaussian noise (AWGN) of O-mean and variance-1 

random variables. 

We let p be the average SNR at each receive antenna. Each transmitted symbol is 

multiplied by J NTx since the signal power at each receive antenna is the sum of the 

transmit power from all NTX transmit antennas. 

2.2 System Framework 

Since both the SD and its lower-complexity detection variant, the SE variant of the 

SD (SE/SD) [13,14], as well as an important aspect of the two proposed front-ends, 

the Subspace Matched Filter (SMF) [21,22], are presented in the literature using a 

real system model we transform the complex system model into a real system model. 

Furthermore, the linearity of the LD codes in terms of the transmitted real symbols 

(taking the real and imaginary components of each complex symbol), which led to 

LD codes being considered in the literature using a real system model [10], is another 

motivation for the adoption the real system model. In fact, nearly all publications 

working in this area adopt a real system model. Our assumption of a squared M

QAM complex constellation enables each real transmitted symbol to be split into two 

v'M-PAM symbols with an identical constellation. Each real symbol is scaled so as to 

have an average power of 1/2. M-PSK symbols can also be split into two real symbols 

but are not considered in this work. We choose to focus instead on highly bandwidth 

efficient systems requiring large M where M-PSK is less appropriate than M-QAM. 

The valid symbols for four simple PAM constellations are presented in Table 2.1. The 

next two subsections show how both an uncoded real and LD coded real system model 
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can be obtained from the underlying complex model. 

Constellation bis/Hz distance (d) Valid real symbols of average power 1/2 
PAM-2 1 -J2 = 1.414 - Y2 Y2 ,,2' ,,2 
PAM-4 2 ~ = 0.632 -io - fro -fro ~ 10 ' 10' 10 ' 10 

PAM-8 3 k = 0.309 _..2- _....L _~ _~ ~ .1.. 
V42' V42 ' V42 ' V42' V42' V42 

5 7 

"742' 742 
PAM-16 4 Am = 0.153 _.l.Q. _~ -.l!- _ ---L- _--I-

V176 ' V176 ' V176 ' V176 ' V176 ' 
5 3 1 1 3 5 

- V176' - V176' - V176' V176' V176' V176' 
7 9 11 13 15 

V17o' .J17o' V17o' 7J'7O ' .J17o 

Table 2.1 Four simple PAM constellations with E[\'UiI 2] = 1/2. 

2.2.1 Uncoded Framework 

The uncoded framework is the framework for V-BLAST transmission. It is referred 

to as uncoded transmission since there is no coding method introducing either spatial 

or temporal diversity. 

The baseband equivalent model of the received uncoded complex signal vector, 

r E CNRX , at the sampling instant, which is assumed to be synchronous, can be 

represented as [10]: 

r=) P Hli+il. 
NTX 

(2.1) 

The decoder pro cesses r to determine li, the transmitted vector of squared M-QAM 

symbols. A block diagram of the uncoded system is shown below. 

The transmission rate, Ru, of an uncoded system depends on the number of symbols 

sent in one channel-use, NTX , and the size of the constellation, M. The uncoded rate 

in bits/channel-use is [10]: 

Ru = NTX log2 M. (2.2) 

For the reasons listed above we choose to express the complex system model as the 



Information 
symbol 
vector 

generator 

u 
MIMO H 

Modulator 

fi additive noise 

MIMO 
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Detector 

Fig. 2.1 Uncoded system block diagram 

real system model: 

r = J ~xHu+n. 
Where r = [ Re{r} ], u = [ Re{ ü} ] , n = [ Re{ fi} ] and 

Im{r} Im{ü} Im{fi} 

H = [Re{~} -Im~fI}] 
Im{H} Re{H} 

When transmitting uncoded symbols it is assumed that NT x :::; N RX. 

2.2.2 Linear Dispersion (LD) Coded Framework 

(2.3) 

(2.4) 

LD codes are STBCs that improve on the performance of uncoded transmission by 

introducing diversity. Defining L as the block length of the code, LD codes require 



that the channel be constant for L channel-uses. 

The transmission rate, Re, of a LD coded system depends on the number of M-

QAM symbols sent, Q, L, and the size of the constellation, M. Any comparisons 

between coded and uncoded systems will be done at equal transmission rates. The 

coded rate in bits/channel-use is [10]: 

(2.5) 

If the channel is constant for at least L channel-uses then: 

rt = J NTx HSt + nt, t = 1, ... ,L (2.6) 

where St E CNTXX1 represents the coded vector transmitted at time tE [1, L]. A block 

diagram of the LD coded system can be seen below. 

Information 
symbol 
vector 

generator 

u 
LD Space-

St 
Time Block 
Encoder 

MIMO H 
Modulator 

Fig. 2.2 LD coded system block diagram 

n additive noise 

MIMO 

Receiver 

r 

Decoder 
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We define the following three matrices: 

(2.7) 

s = [ ~h 82 (2.8) 

(2.9) 

We can then write the system equation in terms of these matrices: 

(2.10) 

LD codes are of the form: 

Q 

§ = L (aqAq + j,BqBq) (2.11) 
q=l 

where § E CLxNTX is the codeword matrix with a q and,Bq being real information scalars 

such that uq = a q + j,Bq, q E [1, Q]. The two sets of matrices: Aq, Bq E CLxNTX, 

q E [1, Q], completely describe the code. Equation (2.11) shows the linearity of the 

code matrix in the real transmitted symbols. 

Expressing the LD coded system framework in terms of their real and imaginary 

components yields: 

Q J:: L [aq(Aq,R + jAq,I) + j,Bq(Bq,R + jBq,I)] (ÏI~ + jÏlf) 
TX q=l 

- -
+NR + JNI (2.12) 



~ .. ~X~.!~~.' Mathemati~~~~_~r~!iminaries, and De.tection Methods....._~ .. ~. 

We define the following two matrices. 

(2.13) 

Likewise, we define the eth column of RR' R!, fI'K, fIf, N R, and N!, respectively, as 

re,R, re,!, he,R' he,!, ne,R, and ne,!' We define: 

he = l he,R 1 
he,! 

(2.14) 

Next, expressing the received matrix as a vector and expressing the real information 

scalars as a vector we can translate (2.10) to the following form [10]: 

rl,R al nl,R 

rl,! Alhl Blhl BQhl /31 nl,! 

J~x + 

rNRX,R ANhN BNhN BQhN aQ nNRX,R 

rNRX,! /3Q nNRX,! 

r - J ~X Gu+n. (2.15) 

Therefore G E C2NRXLx2Q for the LD coded system acts like H for the uncoded 

system. Under the assumption that the decoder has perfect knowledge of H and the 

LD code (and thus all the Aq, Bq E CLxNTX, q E [1, Q] matrices) then it will also 

know G. Furthermore, the LD coded form allows for any combination of NTX and 

N RX. It is only required that Q :::; N RX L so that the system is consistent. 
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2.3 Mathematical Preliminaries 

2.3.1 Projections 

The manipulation of projections and statistics of projections are concepts used to 

develop the two proposed SD front-ends. The channel matrix H = [hl ... hNTx] has a 

corresponding subspace (H), called the signal subspace, which is the span of {hi} ~{ 

[22]. Letting the columns of Q be an orthonormal basis of the (H) subspace then 

(2.16) 

is the unique orthogonal projection matrix onto the (H) subspace [23]. Taking the 

QR factorization of H = QR and substituting Q = HR-1 into (2.16) we obtain: 

PH HR-1(HR-I)T 

HR-1(RT)-lHT 

H(RTR)-lHT, 

(QRfQR 

RTQTQR 

(2.17) 

(2.18) 

Therefore, the unique orthogonal projection matrix onto the (H) subspace can be 

found in terms of its non-orthonormal component vectors. 

(2.19) 



In order to project a point, such as the received vector, r, onto the (H) subspace 

it is pre-multiplied by the orthogonal projection matrix, PHr. The projection matrix 

for the subspace orthogonal to the (H) subspace is [22]: 

Other important projection properties which follow directly include [22]: 

P _ pT _ p2 
H - H - H' 

(2.20) 

(2.21) 

(2.22) 

The channel matrix, H, can be spliced into Si, defined as H without the i th column, 

and hi, the i th column of H. 

(2.23) 

(Vi) represents the subspace of hi orthogonal to the Si subspace. The PH projection 

matrix can then be decomposed between these subspaces. 

(2.24) 

The PH projection matrix can also be decomposed into the oblique projections 

matrices E hiSi and ESihi that have range spaces (hi) and (Si) respectively and null 

spaces (Si) and (hi) respectively [21]. 

(2.25) 

(2.26) 
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(2.27) 

Figure 2.3 shows the relationship between two decompositions of the (H) subspace. 

y is a vector that is being projected onto this subspace. 

, , , , 
PRy = PSihiY 

- - --) 
/ 

Fig. 2.3 Decompositions of the (H) subspace 

If x has a N[O, 1] distribution and P is a rank r projection matrix then the distri

bution of y = Px is N[O, P] [22]. This means that the quadratic form yTy = xTpx 

has a central X; distribution. If x has a N[m, 1] distribution then the quadratic form, 

yTy , has a noncentral X; distribution with noncentrality parameter ),2 = mTm [21]. 

2.3.2 Maximum-Likelihood Detection 

The ML detected vector UML is the vector which maximizes the likelihood function 

!r(rlus ) when Us = UML [24]. Here Us can be any vector of symbols from a given 

constellation. The set of aIl symbol vectors is called S. 

(2.28) 

When the channel is fixed, the randomness in the received vector, r, cornes from 
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the Gaussian noise vector so that the conditional probability density function (pdf), 

!r(rlus), has a jointly Gaussian distribution. Assuming the noise elements have vari

ance No/2 this distribution is [24]: 

(2.29) 

To maximize !r(rlus) over the set of all possible symbol vectors, Us E S, it is neces

sary to minimize Ilr-V N;x Hus II~ which is equivalent to minimizing Ilr-V N;x Hus Ik 

Then, independent of the noise variance, the ML decision rule is to find the symbol 

vector Us that is closest to the received vector in the euclidean sense. 

UML = arg min Ilr - VNP 
Hus Ik 

UsES TX 
(2.30) 

The complexity of ML detection, using an exhaustive search over S, is exponential 

both in the size of the signal constellation (M), and in the number columns of H, the 

number of transmit antennas (NTX )' The exhaustive search complexity is O(MNTX). 

2.3.3 Subspace Matched Filtering 

SMF is a more general version of the well known Matched Filter. The SMF is able to 

deal with multirank (subspace) interference and multirank signaIs [21]. In this work 

we will only consider rank-1 signaIs but the SMF's ability to deal with multirank 

interference will be important. 

Suppose we have an N-dimensional measurement vector, y, which is composed as 

follows: 

y = xÀ + Sep + n. (2.31) 
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The rank-l signal is xÀ and the multirank interference is S</J. It is also assumed, in 

this detection problem, that S and x are known but that À and </J are not known. The 

unknown </J is dealt with as an unknown parameter. Our detection goal on measuring 

Y is to decide whether À = 0, the null hypothesis (Ho), or À i= 0, the alternative 

hypothesis (Hd. The dimensions of the various quantities are: 

Furthermore, it is assumed that p < N and the noise vector, n, is assumed to have a 

N[O, (]'21] distribution. The detection problem tests between the following two proba

bility distributions of y: 

Ho : y : N [8</J, (]'21] vs 
(2.32) 

Hl : y : N [xÀ + 8</J, (]'21] . 

The subspaces (x) and (8) are not assumed to be orthogonal but are assumed to be 

linearly independent. The pdf of y is: 

(2.33) 

The likelihood function of y is: 

(2.34) 

For the two sets of values (ÀI, </JI, (]'2) and (Ào, </Jo, (]'2), under hypothesis Hl and Ho, 
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the likelihood ratio for this problem is: 

A(y) = 
1 (>'1, <Pb (j2; y) 
I(Ào, <Po, (j2; y) 

(27r(j2t N/2 exp{ -~ Ily - XÀ l - S<pliln 
(27r(j2)-N/2 exp{ - 2;211y - S<po lin 

exp{ 2~211y - S<poll~ - 2~211y - XÀ l - S<pIIID· 

(2.35) 

(2.36) 

SMF uses the likelihood ratio to decide between Ho and Hl. A threshold, t, is chosen, 

and Ho is selected if A(y) < t and Hl is selected if A(y) > t. 

2.4 Zero-Forcing (ZF) Detection 

The ZF detector is a low complexity linear detector with sub-ML performance. In ZF 

detection the received vector, r, is first pre-multiplied by a ZF matrix, F ZF ' 

(2.37) 

The ZF matrix is a linear transformation from an N Rx-dimensional vector, r, to an 

NTx-dimensional vector, w. The ZF matrix is designed to completely cancel the effect 

of the channel, H, for a noiseless system. 

1. (2.38) 

Although the channel, H, is random, each realization is assumed to be known by 

the detector. The received symbol SNR, J NTx' is also assumed to be known by the 
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detector. 

(2.39) 

(2.40) 

A decision is made for each component of w; and this vector is called û. 

(2.41) 

2 .4.1 Noise Colouring 

Pre-multiplying r by the ZF matrix, F ZF , causes noise colouring. The covariance 

matrix of the additive noise vector is transformed from 1 to (HHH) -1 [25]. 

(2.42) 

(HTHt1H T E{nnT}H(HTH)-T 

(HTH) -1 HTIH (HTH)-l 

(HTHt1H TH(HTH)-1 

(2.43) 

This noise colouring causes a degradation in performance in ZF detection with respect 

to ML detection. Following multiplication by the ZF matrix the pdf of the coloured 

noise, (HTH)-l HT n, no longer has the spherical pdf geometry of the undistorted 

noise, n, used by the ML detector [25]. The symbol decision regions are designed for 



white noise and so the amplified, coloured, noise leads to incorrect decisions and a 

higher probability of error. 

2.4.2 Analysis of the i th output of the ZF Detector (Ùi) 

The following matrix identity is useful in the analysis of Ùi [26]: 

(2.44) 

Therefore, in ZF detection, the following decision is made for the i th symbol where U 

is the set of all symbols in the constellation. 

(2.45) 

Since Vi is a known vector we can also say that: 

(2.46) 



Equation (2.46) shows the relation between the i th output of the ZF detector, Ûi, and 

the Vi subspace. This relation shows that the two factors that lead to a ZF detection 

error at the i th symbol are a large PVjn and a small Ilvil12. 

2.5 Sphere Decoder (SD) 

The algorithm underlying the SD was discovered by Pohst [27] and then simplified 

and applied for communication systems to become known as the SD by Viterbo and 

Boustros [11]. The Schnorr-Euchner (SE) algorithm [15], a lower complexity variant of 

the SD, was first presented in a communications system context by Agrell et. al. [13] 

and by Chan and Lee [14]. The basic idea behind the SD, regardless of the variant, 

is the same. Instead of exhaustively searching through all symbol vectors only those 

found within a spheroid, of given radius (), centered at the equalized received vector, 

r:v, are searched. This strategy is able to lower complexity because it uses extra 

information, an approximation of the solution, that is not used by the exhaustive 

search detector. Similar to the exhaustive search detector, the SD solves the least 

square minimization: 

!pin Ilr - VNP Hlill~ = !pin IIVNP H(u - li) + nll~. 
UEg TX uEg TX 

(2.47) 

We let 9 be the set of symbol vectors in the spheroid. While still producing the ML 

solution the SD has much less complexity than the exhaustive search since it only 

considers a small subset of the symbol vectors. 

We begin the SD search pro cess by pre-multiplying r by F ZF ' This is done to find 

an estimate of the solution which will be used as the center of the sphere. 

r:v = FZFr. (2.48) 
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Although the calculation of w causes noise colouring this doesn't effect the least square 

calculation since the SD still uses r in equation (2.59). We define the vector kas: 

k=w- J P U. 
NTX 

(2.49) 

The SD detector uses w as the center of the spheroid. 

(2.50) 

(2.51) 

The minimization of (2.47) and (2.51) both achieve the same result and so it is valid 

to use w as the center of the spheroid, in spite of the introduced noise colouring. Both 

these equations achieve the same result because equation (2.51) only excludes noise 

orthogonal the subspace over which the minimization occurs. 

Now we can work out a method for finding those lattice points that lie within the 

search spheroid. 

(2.52) 

Performing a cholesky factorization of HTH = RTR where R is an upper triangular 

matrix yields: 

(2.53) 

We next assume that every element of a, except the last one, is zero, making it possible 

to find a range of UNTX' 

(2.54) 



~ + () > - > ~ () (2 55) r=L J - UNTx - J~ - J~ . . v tr!ix tr!ixrNTxNTX NTX· NTX rNTXNTX 

This inequality gives the range of UNTX so that li remains in the spheroid. The order 

in which the symbols in the range are considered is an important distinction between 

the Viterbo-Boustros algorithm [11], implementations of which we refer to as the 

SD, and the lower complexity Schnorr-Euchner algorithm [15]. The Viterbo-Boustros 

algorithm considers the symbols in the range ordered from smaUest to largest. The 

main advantage of using this symbol ordering is its simplicity. 

To find the range of UNTX-l aU elements of a except the last two are assumed to 

be zero. This range is found for each symbol, UNTX' in the range defined by equation 

(2.55). This aUows for the assumption, for the purposes of finding a range of UNTX-l, 

that UNTX is known. 

(2.56) 

(2.57) 

This is how the range of UNTX-l is calculated for one particular value of UNTX' In this 

way, a search tree is built until a range for the first element, Ul, is found. 

The range for the i th element of li, Ui, is found by assuming that aU elements of a 

prior to the ith element are zero and aU elements after the i th element are known. 

~.+"NTX r . . k. ()2 "NTX a2 ~.+"NTX r .. k. ()2 "NTx 2 
~, L-j=i+l 'J J + -L-j=i+l j > U' > ~, L-j=i+l 'J J _ - L-j=i+l a j 

J tr!ix J tr!ixri i - 1 - J N;X J tr!ixri i . 
(2.58) 



2 System, Mathematical Preliminaries, and Detection Methods 25 
••••••••••••••••••••••••••••••••••• _.~ .......................................................... _ ..... H_ •••• _ .......... H •••••••••• _ ••••••••••• _ •••••• H.~ ... H .... _ ••••• _ •••• _ .. _ •••• _...... ............................. • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

When a symbol vector is found within the spheroid, its distance from r is calculated. 

Ilr - J N;'x Hüll~· (2.59) 

2.5.1 Complexity and Search Tree Representation of the SD 

The complexity of SD is defined as the average number of loops required to complete 

the SD algorithm. During each loop a range of symbols is calculated and this represents 

a node visitation when the SD is thought of as a search tree. An example of a SD 

search tree realization is shown in figure 2.4 below. The bottom node in the tree is the 

search starting point when a range of UNTX is determined. The nodes in the first level 

up from the bottom represent the possible values of UNTX' In this example there are 

three possible values of UNTX: {-1, 0, 1}. When UNTX = -1 the only possible value of 

UNTX-l is -1. Likewise, when UNTX = ° there are no possible values of UNTX-l and 

when UNTX = 1 the two possible values of UNTX-l are {2, 3}. In this example the SD 

_________ 0 ______________ 'Ul 

-1 
!!J'!.TX-l 

Fig. 2.4 Example of SD as a search tree 

finds only one valid lattice point ü = (ul,uNTx-l,uNTxf = (0,2, If in the spheroid 

but there are 7 node visitations. The simulations will measure the complexity of any 

SD variant as the average number nodes visited during the search process. 



2.5.2 QR Factorization with the Householder Thansform (HT) 

The SD requires a Cholesky factorization of the Gram matrix, GH , of the channel 

matrix, H. It has been observed, however, that calculating the Gram matrix causes a 

loss in precision [28J. One method of performing the Cholesky factorization without 

having to calculate the Gram matrix is with a QR factorization of H. Then, a Cholesky 

factorization of the Gram matrix is RTR, where R is the upper triangular matrix 

obtained from the QR factorization of H. 

(2.60) 

(QRfQR 

RTQTQR 

(2.61) 

A stable way to perform the QR factorization of H is by repeated application of 

the Householder Transform (HT) [28J. The HT a.llows for the annihilation to 0 of 

several entries in a column at the same Ume. 

The HT, expressed as a matrix, e, pre-multiplies a given vector, say x, and the 

result is the first basis vector of the same length, aeo, with eo = [ 1 0 ... 0 ] T 

Therefore a = IIxl12 and 

ex aeo· (2.62) 

We show that e = 1 - P g by considering an isosceles triangle with equal length sides 

x and aeo and base g = x - aeo. 



2. .. ~y'~!~.m, Ma~~~~.~~~~.~~~reliminaries, and Detection Methods 27 

g = x - aeo 

Fig. 2.5 Isosceles triangle used to derive the Householder Transform 

aeo x - 2Pgx 

(2.63) 

We begin the QR factorization pro cess by finding the HT for the first column of 

H, hl, which we caU 8 1 , Then we create 8 2 from the second column of the product 

8 1H without the first element. In this way we annihilate to 0 aU elements below the 

diagonal of H. 

(2.64) 

2.5.3 Practical Selection of the SD Radius 

Of great practical importance to the SD is the selection of the spheroid radius. In the 

original SD paper [11] no method of radius selection is given but it is suggested that 

the radius can be dynamicaUy adjusted. For instance, if no points are found within an 

initiaUy selected radius then this radius should be increased and the search repeated 



until such time as at least one symbol vector is discovered within the spheroid. 

When the Schnorr-Euchner algorithm is incorporated into the SD [13,14,29] the 

computational complexity of this modified SD is seen to be less dependant on the 

chosen radius [14]. Therefore, for ease of comparison, aIl of the SD implementations 

in this work will use the same static radius selection method. A practical benefit of 

this method is that at least one symbol vector is always located within it's selected 

radius. 

AlI of the implemented SDs pick the spheroid radius, e, as follows, using the output 

of the ZF detector. 

(2.65) 

This ensures that at least one symbol ve ct or , û, is in the spheroid of radius e. 

2.5.4 Schnorr-Euchner Variant of the SD (SEjSD) 

The SEjSD has lower complexity, as defined in section 2.5.1, than the SD. The SE/SD 

begins searching for symbol vectors at the center of the spheroid rather than at the 

edge, as is done in the original SD [11]. This altered search ordering allows the ML 

solution to be found more quickly since the ML solution is most likely to be found 

closest to the center of spheroid [14]. Except for this altered search ordering, SE/SD 

and SD algorithms are the same, and both have the same ML performance. 

The range of the i th symbol in the symbol vector, Ui, contained in the spheroid 

of radius e, is given by equation (2.58). SE/SD sorts the symbols in this range in 

ascending or der of the following metric, where y E 7-i. and 7-i. is the set of symbols in 



the range of the i th symbol. 

(2.66) 

The following computer simulation confirms the lower complexity of the SE/SD 

compared to the SD. The relative lower complexity of the SE/SD is seen to decrease 
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Fig. 2.6 Complexity comparison between SD and SE/SD: uncoded 16-
QAM NTX = 5 and NRX = 7 
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with increasing SNR. This reducing complexity advantage occurs because at higher 

SNR fewer symbol vectors are found in the spheroid and therefore the order in which 

they are searched becomes less important. 
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2.6 LD Code for Multiple Antennas 

The LD code used in the computer simulations was discovered in the original LD 

paper by Hassibi and Hochwald [10]. The code is designed for NTX = 2, NRX = 2, 

and a block length, L, of 2 channel-uses. A QPSK symbol constellation is used in 

conjunction with this code. 

The simulations will compare the LD coded transmission with uncoded transmis-

sion at an equal rate. In uncoded transmission four symbols are transmitted from two 

transmit antennas in two channel uses which, assuming QPSK modulation, results in 

a rate, Ru, of 4. To set the LD coded transmission rate, Re, equal to the uncoded 

rate, Ru, we choose Q = 4, and also transmit 4 symbols during each block length. 

The LD code can be completely described by two sets of matrices: Aq, Bq E 

CLXNTX, q E [1, Q] as shown in equation (2.11). For the code used in the simulations 

these matrices are: 

(2.67) 

(2.68) 

(2.69) 

and 

A4 = B4 = [0 1] 
-1 0 

(2.70) 



2.7 Computer Simulations 

The C++ source code for the programs that generated the computer simulations 

included as part of this thesis can be found in an attached CD. Appendix A is a guide 

explaining how to use these C++ programs as well as their capabilities and limitations. 

Of primary importance, however, is an understanding of the derived graphical 

results. Three types of results are presented: Bit Error Rate (BER) performance, 

Symbol Error Rate (SER) performance, and decoder complexity. To ensure accurate 

results a minimum of 100 errors was required for each decoding method at each SNR. 

The simulations also ensure a minimum of 100 000 channel realizations. 

The decoder complexity from the simulations is defined as the SD complexity that 

was described in Section 2.5.1. The SD implemented in these simulations is based on 

the flowchart from [11]. The SE/SD implemented in these simulations is based on the 

flowchart from [14]. 



Chapter 3 

Statistical Partial Coverage (SPC) 

Front-End 
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A detector combining the SPC front-end with the SD (SPC-SD) reduces computational 

complexity compared to the standalone SD. The SPC-SD's lower computational com

plexity as compared to the SD is a result of individuaUy pre-detecting a percentage of 

the symbols in each symbol vector so that fewer symbols are left to be jointly detected 

by the SD. The performance of the SPC-SD detector can approach the performance 

of the SD detector because the SPC front-end is designed to only pre-detect symbols 

which have a very high probability of being correct. Correct pre-detection ensures 

that cancelation of these pre-detected symbols does not cause further distortion (from 

error propagation) and aUows for joint detection of aU the transmitted symbols. 

The steps in the SPC front-end are: 

1. Obtain the output of the zero-forcing detector (û from Section 2.4). 

2. Obtain the output of a decision feedback step. 

3. For each symbol in the symbol vector: 
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(a) Calculate the Generalized Likelihood Ratio (GLR), Li, as to whether Ui = 

(b) Compute a GLR threshold (K,i) that ensures a small probability that Ui =1= Ûi 

(c) Pre-detect the i th symbol in the symbol vector. If Li < K,i we decide that 

4. Cancel the pre-detected symbols. 

Section 3.2.3 describes how the error propagation associated with SPC front-end 

can be made as unlikely as desired by proper choice of the parameter U. 

3.1 Decision Feedback Step 

The SPC front-end begins by calculating Û, the output of the zero-forcing detector, 

and then by calculating w, the output of a decision feedback step. 

w r- V P Hû 
NTX 

= V ~x H(u - û) + n 

He+n. 

e=VNTx(U-Û). 

(3.1) 

(3.2) 

(3.3) 

Each element of e is either zero or an integer multiple of V NTx d. d is the minimum 

distance between symbols in the given constellation. If û = U then w = n and the 

vector w will only be made up of noise. The purpose of the decision feedback step is 

to obtain w, a vector that either contains only noise or a signal plus noise (if û =1= u), 

in order to use SMF [21]. 
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3.2 Individual Pre-Detection 

In or der to individually pre-detect the i th symbol in the symbol vector we splice the 

channel matrix, H, into Si, defined as H without the ith column, and hi. Similarly, 

we slice e into its ith element, ei, and <Pi, defined as e without the ith element. The 

values of ei and <Pi are treated as unknown parameters. 

(3.4) 

The pre-detection problem is to test between the following two probability distribu

tions ofw [21l. 

Ho : Ûi = Ui --+ ei = 0 --+ w : N [Si<Pi, Il vs 
(3.5) 

Hl : Ûi =1= Ui --+ ei =1= 0 --+ w : N [hiei + Si<Pi, Il· 

If, for the i th symbol, the SPC front-end chooses the hypothesis Ho then Ûi becomes 

the pre-detected symbol otherwise the i th symbol is not pre-detected and is left to be 

detected by the SD. The hypothesis test is done using a Generalized Likelihood Ratio 

(GLR), employing maximum likelihood estimates of the unknown parameters. 

3.2.1 Maximum Likelihood Estimates (MLE) 

The GLR requires the MLE of the unknown parameters in the likelihood functions. 

We use the convention where the MLE of a variable will have the same variable name 

with the addition of a hat. The particular hypothesis being assumed to be true will 

be indicated by a superscript. 

The MLE of <Pi under Hl, ~t, can be obtained using the oblique projection matrix 
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(3.6) 

An orthogonal projection matrix, PSi = Si(SrSitlSr, is used to obtain J? 

SiJ? PSiW 

J? (S!Si)-lS!w 

(3.7) 

The MLE of ei under Hl, ê;, can be obtained using the oblique projection matrix 

(3.8) 

The MLE of ei under Ho, ê? = O. 

3.2.2 Generalized Likelihood Ratio (GLR) 

The probability density function of the multivariate normal random vector w is: 

(3.9) 
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The likelihood function for this distribution is a function of (ei, CPi) with parameter w 

[21]. 

(3.10) 

The likelihood ratio, AiIO , for any two values (eil, CPil) and (eiQ, CPiO) is now: 

(3.11) 

Replacing the values CPi and ei by the their MLE under Hl and Ho we obtain the GLH.. 

AilO(W) 
Al A1. 

l (ei , CPi , w) 

l(ê?, ~?; w) 

(27rt NTX exp{-~llw - hiêt - 8i~~lln 
(27r)-NTX exp{ -~llw - hiê? - 8i~?lln 

{ III Al All12 1
11 

AO AO 2 exp -"2 w - hiei - 8 iCPi 2 +"2 w - hiei - 8 iCPi 112} 

1 1 2 1 2 
exp {"2 1 w - P s ;w11 2 - "2llw - Eh;s;W - ES;h;wI1 2} 

exp{~11 [1 - psJ wll~ - ~II [1 - (Eh;s; + ES;hi)] wlln· 

Combining Eh;s; and ES;h; as described by equation (2.27) in section 2.3.1. 

{ 1 .L 2 1 2 
exp "2IIPs;wI12 - "2 11 [1 - Ph;s;] w11 2} 

exp{~IIP~;wll~ - ~IIPt;s;wlln. (3.12) 
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The GLR can be simplified further by replacing it by a scaled logarithmic GLR [21]. 

Li(W) = 2ln AilO(W) 

IIP~iWII~ - IIP~iSiWII~ 

(3.13) 

Using the projection decomposition described by equation (2.24) to decompose P Sihi : 

W
T

( -PSi + PSi + Pp~.hJW 
1 

(3.14) 

The vector Vi = P~ihi represents the subspace of hi orthogonal to the Si subspace. 

This result makes intuitive sense because by projecting W onto the Vi subspace the 

scaled GLR is not inf1uenced by ZF detection errors in any non-'i th symbols. Also, as 

was shown in section 2.4.2 ZF detection errors are strongly and uniquely inf1uenced 

by the realization of Vi. 

The distribution of Li(W) is chi-squared with nonconcentrality parameter À; and 

one degree of freedom [21]. 

(3.15) 

(3.16) 
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3.2.3 SPC Front-End Individual Symbol Pre-Detection 

In this case, instead of using Li(W) = IIPViWII~ the SPC front-end uses IIPviWI12 in 

the hypothesis test. IIPviWI12 contains the same information as IIPViWII~ but avoids 

one squaring operation. The decision threshold for the i th symbol, K,i, is calculated for 

each symbol in the symbol vector. 

Ho 

< 
(3.17) 

> 

If the above hypothesis test chooses Ho then SPC pre-detection occurs and Ûi is chosen 

as the i th symbol output. The probability of false alarm (PF ) for the SPC front-end 

is defined as: 

PF P[HIIHo] 

- P[IIPViwlb 2:: K,iIHo] 

P[IIPVinI12 2:: K,d 

1 - P[XI (0) < K,i]. (3.18) 

If PF = 1 then every time ei = 0 the SPC front-end chooses Hl' However, the 

SPC front-end only reduces complexity when ei = 0 and the hypothesis test chooses 

Ho. Choosing Ho reduces complexity because this means that the i th symbol is pre-

detected and the SD therefore has one less symbol to jointly detect. Therefore, a 

smaller PF results in a larger the SPC front-end complexity reduction. The probability 



of detection (PD) for the SPC front-end is defined as: 

PD P[HIIHI] 

P[IIPYiWI12 ~ K;dHI ] 

P[XI (ÀT) ~ K;i] 

1 - P[XI (ÀT) < K;i]. 
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(3.19) 

If PD = 1 then every time ei i= 0 the SPC front-end chooses Hl. 1 - PD is therefore 

the probability that the SPC front-end makes a pre-detection error. It is these pre-

detection errors which cause the SPC-SD detector to have worse that ML performance. 

The key to ensuring that the SPC-SD detector has close to ML performance is to 

find the largest K;i than maintains a PD close to one. A larger K;i reduces PF and 

therefore reduces complexity. We choose the hypothesis test threshold, K;i, based on 

the channel realization, SNR, symbol constellation and a probabilistic measure of the 

noise projected onto the Vi subspace. 

(3.20) 

The logic behind this choice of K;i can be seen by considering the Figure 3.1 below. 

This figure shows the relationship between the noiseless value of Il P Yi W 112 when ei = 0 

and when ei = ±dJ NTx in the Vi subspace. These points are equidistant with this 

distance being dJ NTx Ilvdk Considering noise in the Vi subspace, it can be seen that 

if IIPYinl12 ~ U and IIPyi wI12 < K;i then ei = o. Although it is not al ways the case 

that IIPyi nl12 ~ U choosing a large U can ensure that this inequality is nearly always 
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satisfied. 

"'i 1 
1 

~~I 

Fig. 3.1 Noiseless values of IIPViWll2 when ei = 0 and ei = ±dV N~x in 

the Vi subspace 

CY P[IIPVinI12 :S U] 

P[XI (0) :S U]. 

Clearly cy can be made arbitrarily close to one by proper selection of U. 
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(3.21) 

If, for the i th symbol, "'i = 0 then PF = 1 and PD = 1 since the hypothesis test, 

equation (3.17), always selects Hl, When "'i = 0 the SPC front-end never pre-detects 

the ith symbol. 

In the following analysis we assume that IIvdl2V NTxd > U, and so "'i > 0, the case 

where the SPC front-end may pre-detect the i th symbol. We wish to show that the 

value of "'i = IIvdl2V NTxd - U assures a PD close to 1. Letting ii be the realization 

of n we can define the event E. 

E: IIPViiil1 :S U. 

E : IIPViiil1 > U. 
(3.22) 



From our definition of U we have the following two probabilities: 

prE] =a 

prE] = 1- a. 
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(3.23) 

The orthogonal projection PViw is a random vector because it contains the random 

noise vector, n, in the following way: 

(3.24) 

(3.25) 

In the next subsection we will prove that P[lIVjei + Pvinlb 2: ~ilHl, E] = 1 and that 

P[llvjei + PVinl12 2: ~IHl, E] 2: 1/2 so that, employing the chain rule: 

PD P[lIPviWI12 2: ~iIHl] 

> 

> 

> 

P[IIVjei + Pvinlb 2: ~ilHl, E]P[E] + P[lIVjei + PVinl12 2: ~ilHl, E]P[E] 

P[IIVjei + PVinl12 2: ~ilHl, E]a + P[IIVjei + PVinl12 2: ~ilHl, E](1 - a) 

[1]a + [1/2](1 - a) 

1 1 
-+-a 
2 2 
1 1 
'2 + '2 P [Xl(Ü) :::; U]. (3.26) 

This shows that the lower bound on PD can be made arbitrarily close to 1 by proper 

selection of U, the SPC front-end system parameter. A larger U guarantees a tighter 

lower bound on PD and thus guarantees that the SPC-SD detector will have closer to 

ML performance. However, a larger U also results in less of a complexity advantage, 
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as expressed in terms of PF in equation (3.18). The SPC-SD simulations will show 

this U dependent tradeoff between performance and complexity. 

3.2.4 Proofs for the Lower Bound on PD 

For both of the proofs used to derive a lower bound on PD figure 3.1 in the preceding 

section will be important. 

We begin with the pro of of 

(3.27) 

Substituting for /'i,i in (3.27): 

(3.28) 

Given Hl, the smallest value that ei can have is: ei = V N:x d, where d is the minimum 

distance between constellation points. 

We are given the event E : IIPyJi.11 ~ U. The worst case is that Vi and Pyjii are in 

opposite directions and IIPyiii11 = u. 

qed. 
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Proceeding to the pro of of 

(3.31) 

Substituting for Ki in (3.31): 

(3.32) 

Given Hl, the smallest value that ei can have is: ei = V NTx d, where d is the minimum 

distance between constellation points. 

(3.33) 

The event that the random vector P Vi n is in the same direction as the known vector 

Vi is called R. 

P[R] = 1/2. (3.34) 

Because Vi is an arbitrary vector and n is a white gaussian random vector with a 

spherical pdf geometry there will be a 1/2 probability that n is in the same direction 

as the half sphere centered by Vi. 



Employing the chain rule: 

P3 P[IIViV ~x d + PVj n l12 2:: II vi l12V ~x d - UIE, R1?[R1 + 

P[IIViV ~x d + PVj n l12 2:: IIVil12V ~x d - UIE, R1?[R1 

P[llvdl2V ~x d + IIPvjnl12 2:: IIvdl2V ~x d - UIE11/2 + 

P[IIVi I12V ~x d -IIPvj n 112 2:: II Vi l12V ~x d - UIE11/2 
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[111/2 + [011/2 = 1/2. (3.35) 

qed. 

3.3 Canceling the Pre-Detected Symbols 

The final step in the SPC front-end is to cancel from the received vector, r, those sym-

bols that have been pre-detected. By canceling the pre-detected symbols we obtain, 

if there are no pre-detection errors, ML joint detection performance. 

Let 'D be the set of indexes of the transmitted real symbol vector, u, where hy-

pothesis Ho is satisfied. The size of 'D, called g, depends on the system configuration 

and channel realization. 

'D - {i E [1,2NTx11 Ho} 

{i E [1, 2NTx111lPvjWl12 < K:i}. 

(3.36) 

(3.37) 

The columns of H E n2NRXx2NTX are divided between Hd E n2NRXx9 and Hd E 

n2NRXX(2NTX-9) according to set 'D. The columns of H with indexes E 'D are put in 

Hd and the columns of H with indexes fj. 'D are put in Hn. Similarly, Ûd E n g , are 
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the elements of û with indexes E D. The result of the cancelation is called r. 

(3.38) 

Then, r is pre-multiplied by a ZF matrix created from Hn. 

(3.39) 

The values of ün and Hn can then be used as inputs to the SD that follows the SPC 

front-end. 

3.4 Simulation of the SPC Front-End 

Computer simulations of the SPC front-end are done using the software on the attached 

CD. These simulations are intended to confirm the analytical results from section 3.2 

and to show the tradeoff between performance and complexity for three values of 

the SPC front-end parameter U. SPC-SD denotes a decoder combining the SPC 

front-end with the SD. SPC-SD simulation is do ne for both the uncoded and LD 

coded frameworks. For each framework, both BER and SER performance curves are 

presented as well as a measure of complexity. The table bellow summarizes the SPC 

front-end simulations. 

Uncoded Framework LD Coded Framework 
SER Performance figure 3.2 figure 3.5 
BER Performance figure 3.3 figure 3.6 

Complexity figure 3.4 figure 3.7 

Table 3.1 Summary of the SPC front-end simulations 
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3.4.1 Uncoded Framework 

The uncoded framework SPC front-end simulations consider a system with Nrx = 5, 

N RX = 7 with symbols drawn from a 16-QAM constellation. As explained in ap

pendix A, these results are obtained by running the executable obtained by compiling 

the uncodedMIMO.cpp file. The system parameters as weIl as the range of SNRs 

can be adjusted in this program file. The SPC front-end parameter, U, influences 

the performance-complexity tradeoff of the system and so simulations are done for 4 

informative values: U = {2.8, 3.0, 3.2, 3.6}. 

10° F--:-:-:-:::"...,.-::-r:: .. :. ::. :::: ::::::: :-:-: .::: T:. ::: :: .. :: .. :. :: .. -:-.. ::.::. r:::"...,.-:::::--:-:-:--:-r:"""'-:::::--:-:-:-::;E========:C::======~ 
'::::::::.. ..•••••••••••. . ................ ~ZF 

", .... " . ...... ", ........ , ... ",., .......... . 

.................. . 

-+- SPC-SD U=2.8 
~ SPC-SD U=3.0 
-e- SPC-SD U=3.2 
-+- SPC-SD U=3.6 
-4-- SD 

, ............ . 
: : : : : : : : : : : : : ~ : : : : : : . ..... ,', . . . . . . . . 

• • • • 1 • . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . .., .. 
........ , 

.... ". ... . ....... ,.. . ....... . ........ , .... ". ,' ............ . 

......... . ..... . .. . 
, ........... , ....... , ....... . . . . . . . . . . . . . . . , . . 

......... . 

. . . . . . . . . . ...................... . . ....... " ..... , . . . . . . . ~ . . 
............ 

. . . . . . . , . 

10-6L-______ J_ ______ ~ ________ L_ ______ J_ ______ ~ ________ L_ ______ ~ 

16 17 18 19 20 21 22 
SNR 

Fig. 3.2 Uncoded SPC-SD detector SER performance: 16-QAM, 
Nrx = 5, NRX = 7 

23 
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In figure 3.2 it is seen that the detector achieving the best SER performance is the 

standalone SD followed by SPC-SD with parameter U = 3.6, SPC-SD U = 3.2,SPC

SD U = 3.0, SPC-SD U = 2.8, and the ZF detector. Since, among the three SPC-SD 

detectors, the SPC front-end with U = 3.2 has the largest PD lower bound it has the 

best performance. For those curves with small U, SPC-SD has worse diversity than 

SD since not all transmitted symbols are jointly detected. The performance reduction 

of SPC-SD for small U is due to error propagation from the SPC front-end. 

a: 
w 
co 

10-
1 

F::::: .. :: .. : .. ::.1: .. :: .. : .. ::. ::::::::1: .. :: .. : .. ::.::. :-::::-:T:. :::::: ::: ::. :::: :::: ::: T.:.:: .. :: .. :.::. ::::7======::::r=======i1 
-e- ZF . . ............................... -+- SPC-SD U=2.8 
-e- SPC-SD U=3.0 
--e-- SPC-SD U=3.2 

: :::::::;: ..... . -+- SPC-SD U=3.6 
~SD , ...... ,.... . .... , ., ..... , . 

. ........... . 

-3 10 .: : : : : 

10-
4 

.::::.:::::::;:::::::...................... ...... 
. . . . . . . , . 

' .............. \ .. , .. , .. 

10-5 
... 

............. . 
.', ............. \ ..... . ... .... ' ........ ', .............. ,.... . ..... ' .. . ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 

10-6~------~------~------~------~------~~------~----~ 
16 17 18 19 20 21 22 

SNR 

Fig. 3.3 Uncoded SPC-SD detector BER performance: 16-QAM, 
NTX = 5, NRX = 7 

23 

The BER performance graph, figure 3.3, shows the same trends as the SER perfor-
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mance graph. The BER performance of SD and SPC-SD have near identical perfor

mance below an SNR of 19dB for the given system. At lower SNR, SD errors dominate 

additional errors introduced by the SPC front-end. At higher SNR the performance 

of the SPC-SD detector is dominated by errors introduced by the SPC front-end and 

the performance becomes noticeably suboptimal. 

-e-- SD 
--*-- SPC-SD U=3.6 
-4- SPC-SD U=3.2 
-- SPC-SD U=3.0 
-e-- SPC-SD U=2.8 

10°L-------~------~------~------~--------~------~------~ 
16 17 18 19 20 21 22 

SNR 

Fig. 3.4 Uncoded SPC-SD detector complexity: 16-QAM, NTx = 5, 
NRX =7 

23 

In figure 3.4 the SPC-SD detector is seen to have mu ch less computationa1 com

plexity than the standalone SD detector for aU simulated values of U. The complex

ity advantage of SPC-SD over SD becomes greater the larger the SNR. An SPC-SD 
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detector with a smaller U has a smaller PF and therefore a smaller computational 

complexity. 

3.4.2 LD Coded Framework 

The SPC front-end simulations for the LD coded framework consider a system with 

NTX = 2, NRX = 2 with symbols drawn from a QPSK constellation. The information 

symbols are encoded by the LD code described in section 2.6. As explained in appendix 

A, the coded results are obtained by running the executable obtained by compiling 

the LDcodedMIMO.cpp file. The system parameters as weIl as the range of SNRs 

can be adjusted in this program file. The SPC front-end parameter, U, influences 

the performance-complexity tradeoff of the system and so simulations are done for 3 

informative values: U = {2.4, 2.6, 2.8}. 

The performance and complexity trends of the decoder SPC-SD for the LD coded 

framework are similar to those for the uncoded framework. In figure 3.5, the SER 

performance of SPC-SD is shown. As analytically predicted by equation (3.26), an 

SPC-SD decoder with a larger U has better performance. As a comparison, figure 

3.5 also shows the SER performance of uncoded transmission with the same system 

parameters (NTX = 2,NRX = 2,QPSK) at the same rate (Rc=Ru=4). The uncoded 

transmission detection is done using the SD to achieve ML performance. It is seen 

that the performance of the LD coded system, decoded with the SD, is better than 

the performance of the uncoded system with the plots matching the results published 

by Hassibi and Hochwald [10]. 

Figure 3.6 shows the BER performance of the same 3 SPC-SD decoders. The 

SPC-SD decoder with the largest U has the best performance but aIl three SPC-SD 

decoders are seen to have only marginally worse performance than the SD decoder. 

When decoding LD coded symbols the simulation results, presented in figure 3.7, 
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10-1~.~.~:~::~:~:.~~~.~ .. ~ .. ~.~.~.~~~~~~.~ .. ~.~ .. ~.~ .. ~~~=c======~======~ 
-e- uncoded SD 

............ " .... . . , ............. '., .... . 

-e- LD SPC-SD U=2.4 
- LD SPC-SD U=2.6 
-+ LD SPC-SD U=2.8 
-4- LD coded SD 

. .... ........ . 

10-5~ ______ J-______ ~ ________ L-______ J-______ ~ ________ L-______ ~ 

12 14 16 18 20 22 24 
SNR 

Fig. 3.5 LD coded SPC-SD decoder SER performance: QPSK, NTX = 

2, NRX = 2 

26 

show that SPC-SD has lower computational complexity than SD. The complexity ad

vantage of the two-stage decoder increases exponentiaUy with the SNR. The relative 

difference in complexity between the various SPC-SD decoders is constant for aU sim-

ulated SNRs. Furthermore, the difference in complexities for the various SPC-SD 

decoders is smaU compared to their difference from the complexity of the SD decoder. 
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10-1~~~~T,.~.~. ~~ .. ~ .. ~:~:~:.~~~~~ .. ~.~ .. ~ .. ~ .. ~.T .. ~.~~~=C======~======~ 
--a- uncoded SD 

ffi 10-3 
.:::: ... . 

fIl ........ . 

--v- LD SPC-SD U=2.4 
......... --- LD SPC-SD U=2.6 

--4-- LD SPC-SD U=2.8 
~ LD coded SD 

. ...... . ...... . 

10-5~------~------~------~------~------~--------~----~ 
12 14 16 18 20 22 24 

SNR 

Fig.3.6 LD coded SPC-SD decoder BER performance: QPSK, NTx = 

2, NRX = 2 

3.5 Comparison of the SPC Front-End to a Previously 

Published MIMO Detection Scheme 

26 

The SPC front-end is similar to a MIMO detection scheme recently proposed by Choi 

in [30]. Choi's basic scheme is called projection based maximum likelihood (PR-ML) 

and, unlike SPC, it isn't a front-end but rather a full detector with equal performance, 

in the case of uncoded transmission, as ZF detection [30]. 

The PR-ML detector, like the SPC front-end, operates on a symbol-by-symbol 

basis. Each symbol in the constellation has the following associated metric, where Si, 
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ëi.. 
E 
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ü --a- LD SD 

~ uncoded SD 
-A-- LD SPC-SD U=2.8 
-- LD SPC-SD U=2.6 
-e- LD SPC-SD U=2.4 

100~------~------~------~------~------~------~------~ 
12 14 16 18 20 22 24 

SNR 

Fig. 3.7 LD coded SPC-SD decoder complexity: QPSK, NTx = 2, 
NRX =2 

Vi, and hi are defined as before, and r is the received vector. 
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(3.40) 

(3.41) 

(3.42) 

M PR (lli) is computed for each Ui E U, where U is the set of aIl symbols in the 
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constellation, so that the detected i th symbol UiPR is: 

(3.43) 

It has been proved, and it can be seen from the analysis in section 2.4.2, that Ui PR is 

always equal to the i th element of the output of the ZF detector, Ûi [26]. 

Central to SPC and PR-ML respectively are the following projections. 

(3.44) 

(3.45) 

One difference between these two projections is the subspace onto which the noise is 

projected. The two subspaces, (Vi) and (Si)~, are related by Vi = P§:hi. Besides 
1 

including the noise in the subspace of Vi, the PR-ML metric also includes the noise 

outside of the subspace of H. The SPC front-end also allows for the pre-calculation of 

w = r - J NTx Hû which then only needs to be projected onto Vi for each dimension 

~. 

Another difference between SPC and PR-ML is the way in which they are used. 

The SPC scheme is a complexity reducing front-end to the SD, however, the PR-ML 

scheme can be extended to the projection-based conditional ML (PBC-ML) scheme to 

improve on zero-forcing performance. The PBC-ML scheme is a recursive detection 

scheme where at each recursion a certain number of hard-decisions are made based 

upon a reliability measure. The reliability measure assumes that the information 

symbols were modulated using BPSK and therefore the PBC-ML can only detect 

BPSK symbols. In contrast, the SPC front-end can handle any squared QAM symbol 

constellation and is thus better adapted to higher rate applications. The metric used 
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for PBC-ML is the same as the one used for PR-ML except that those symbols deemed 

to have been previously detected are always subtracted out of the received vector. 

Letting Hd be a subset of the channel matrix H whose columns correspond to the 

decided symbols, Ud, then the PBC-ML metric for the symbol Ui is: 

(3.46) 

In this case the Ci subspace is the matrix of all columns of H except hi and all of the 

columns of Hd' The metric MPBC(Ui) is minimized in the same way as was done for 

the PR-ML scheme in equation (3.43) and the performance improves the more correct, 

decided, symbols there are. 

3.6 Channel Estimation Errors 

The assumption that the receiver knows H perfectly is instrumental in the derivation 

of the ZF detector, the SD detector, and the SPC front-end. In practice, however, the 

receiver is required to estimate H and the estimation error will be non-zero. Figure 

3.8 shows the performance impact of channel estimation errors on SPC-SD and SD. 

In the simulations the detector uses an estimated channel, H, rather than the 

actual channel, H. 

H=H+~. (3.47) 

Each element of the channel estimation error matrix, ~, is modeled as independent 

and identically distributed real Gaussian random variables: 

t0.ij rv N[O, No/2],i E [1,2NRx ],j E [1,2NTx ]. (3.48) 
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Fig. 3.8 SPC-SD detector BER performance comparison in the presence 
of channel estimation uncertainty: 16-QAM, N TX = 5, NRX = 7 

23 

Figure 3.8 shows the impact of channel estimation errors for three values of the 

estimation error variance and when there are no errors. It is seen that the ML perfor-

mance, obtained with the SD, is very dependent on an accurate estimation of H. In 

fact, the introduction of a variance of 0.002 in the estimation of the channel matrix 

elements causes SD performance reduction of over 1 dB. 

Figure 3.8 also shows that the SPC front-end performance is not especiaIly depen-

dent on the estimation uncertainty. The two-stage SPC-SD detector performs nearly 

as weIl as the SD detector even as channel estimation uncertainty is introduced. 
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Fig. 3.9 SPC-SD detector complexity comparison in the presence of 
channel estimation uncertainty: 16-QAM, NTX = 5, NRX = 7 

23 

Figure 3.9 shows the complexity of SPC-SD and SD for the same channel estima-

tion error variances. It is seen that channel estimation uncertainty does not influence 

the complexity reducing potential of SPC-SD. Increasing estimation errors causes in-

creased complexity SD and SPC-SD but do es not change the relation between the 

two. 



Chapter 4 

Statistical Full Coverage (SFC) 

Front-End 

57 

A detector combining the SFC front-end with the SD (SFC-SD) reduces computa

tional complexity compared to the standalone SD detector. The lower computational 

complexity as compared to the SD cornes from only needing to detect a percentage 

of the symbol vectors with the SD. For the remaining symbol vectors the output of 

the ZF detector is used. The performance of the SFC-SD detector is kept close to the 

performance of the SD by ensuring that only symbol vectors very likely to have been 

correctly detected by the ZF detector are chosen. The steps in the SFC front-end are: 

1. Obtain the output of the ZF detector (û from Section 2.4). 

2. Obtain the output of a decision feedback step. This step is identical to the SPC 

front-end's decision feedback step (Section 3.1) and calculates w. 

3. Perform a hypothesis test to see whether or not to detect the entire transmitted 

symbol vector, u, sent in one channel-use from the NTX transmit antennas, with 

the SD. 



4.1 Hypothesis Test 

The SFC hypothesis test can be formulated as follows: 

Ho : Û = u -t e = 0 -t W : N [0, Il vs 

Hl : Û =1= u -t e =1= 0 -t W : N [He, Il . 
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( 4.1) 

This is a composite hypothesis test since e can assume multiple values un der Hl. 

Deciding on Ho results in Û being chosen as the output of the SFC-SD detector. 

Otherwise, the SD is used to detect this entire vector of transmitted symbols. 

Maximum Likelihood Estimates (MLE) 

We use the notational convention that the MLE of a particular variable will have 

the same variable name with the addition of a hat. The particular hypothesis being 

assumed will be indicated by a superscript. 

The MLE of e under Hl, êt, can be obtained using the orthogonal projection 

matrix PH. 

He~l P 
HW 

( 4.2) 

The MLE of e under Ho is êO = O. 
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4.1.1 Generalized Likelihood Ratio (GLR) 

Following the same reasoning as for the SPC front-end in Section 3.2.2 the GLR, 

ÂlO(w), can be obtained. 

ÂlO(W) (21f)-NTX exp{ -~llw - HêlllD 
(21f)-NTX exp{ -~llw - HêoliD 

1 2 1 2 exp{"2llwI12 - "2 llw - PHw112} 

exp{~llwll~ - ~II[I - PH]wlln 

exp{~llwll~ - ~IIPiiwlln. (4.3) 

The GLR can be simplified further by replacing it by a scaled logarithmic GLR [21]. 

L(w) 21n AlO(W) 

Ilwll~ - IlPiiwll~ 

- wTw - wTpiiw 

wTlw - wTpiiw 

wT(I - pii)w 

WTpHw 

IIPHWII~· (4.4) 

The SFC front-end does its hypothesis test using the scaled logarithmic GLR, 

L(w). 

Ho 

< 
L(w) T2. (4.5) 

> 

Hl 
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The distribution of w is N[He, Il and so the distribution of L(w) is chi-squared with 

nonconcentrality parameter >.2 and NTX degrees of freedom. 

(4.6) 

>.2 (Hef(He) 

eTHTHe. (4.7) 

For the SFC front-end, we define the false alarm (PF ) and detection (PD) proba

bilities as follows. 

The PD probability is an indication of the SFC-SD's reduction from ML perfor

mance. If PD = 1 then the SFC-SD detector has ML performance. If PD < 1 then 

the SFC-SD detector will have worse then ML performance. The PF probability is an 

indication complexity reduction of the SFC-SD detector compared to the SD detector. 

If PF = 1 then the SFC-SD has the same complexity as the SD since every transmitted 

symbol vector is detected by the SD. A low PF results in a large complexity reduction 

since a larger percent age of symbol vectors that were correctly detected by the ZF 

detector are not also detected the SD. 
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4.1.2 Selection of the GLR Threshold, T 

The decision threshold, T, can be selected using either a performance or complexity 

target. If a certain performance with respect to ML performance is desired than the 

PD equation is set equal to a value close to one and and this equation is solved for 

T. If a certain complexity reduction target is desired then the PF equation can be set 

equal to a value lower than one and then solved for T. Either of these equations can 

be solved with the use of a chi-squared distribution lookup table. 

4.2 Simulation of the SFC Front-End 

4.2.1 Uncoded Framework 

The simulations of the two-stage SFC-SD detector for an uncoded framework consider 

a 5 transmit antenna and 7 receive antenna system. The symbols transmitted are 

chosen from a 16-QAM symbol constellation. 

The SER performance of the combined SFC-SD detector for four distinct values of 

T is shown in figure 4.1. The SD detector and the ZF detector performance curves are 

also included for comparison. The linear ZF detector has the worst performance and 

the SD detector with ML performance has the best performance. Of the two-stage 

decoders, the best performance is achieved when the threshold, T, is low, and most 

of the frames are detected by the SD. For a low T the performance of the SFC-SD 

detector is nearly identical with the SD detector. As T is increased the performance of 

the SFC-SD detector becomes marginally worse than the SD detector. The reduction in 

performance of the SFC-SD detector is independent of SNR since the GLR threshold 

is independent of SNR. The BER performance graph, figure 4.2, exhibits the same 

trends as the SER performance graph. The performance slope of the SFC-SD detector 
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Fig.4.1 Uncoded SFC-SD detector SER performance: 16-QAM, NTX = 

5, NRX = 7 

23 

is seen to be nearly identical to that of SD detector whereas the performance slope of 

the ZF detector is less steep. 

In figure 4.3, the complexity of these detectors is plotted in terms of the average 

number of nodes visited in the SD search tree. The single-stage SD detector has the 

highest complexity followed by the two-stage SFC-SD detector with the lowest value 

of T. The lowest complexity is achieved by the SFC-SD detector with the largest 

value of T. A larger T ensures a greater complexity reduction since, in this case, fewer 

frames are required to be detected by the SD. 
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Fig. 4.2 Uncoded SFC-SD detector BER performance: 16-QAM, 
NTX = 5, NRX = 7 

23 

The SFC-SD detector results, taken as a whole, show that by adjusting the thresh-

old, T, we can adjust the fundamental tradeoff that exists between performance and 

complexity. For the uncoded framework it is possible, using the two-stage decoder, to 

achieve a meaningful complexity reduction with only a marginal reduction in perfor-

mance. 
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Fig. 4.3 Uncoded SFC-SD detector complexity: 16-QAM, NTx = 5, 
NRX =7 

4.2.2 LD Coded Framework 

23 

Computer simulations of the LD coded framework and the two-stage SFC-SD decoder 

show all of the same trends as were described for the uncoded framework. Our com-

puter simulations are of a system with 2 transmit antennas and 2 receive antennas 

where the symbols are taken from a QPSK constellation. The information symbols 

are encoded by the LD code described in section 2.6. The results of the simulations 

of this coded system, in terms of both performance and complexity, show the same 

trends as the uncoded system. 
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Fig. 4.4 LD coded SFC-SD decoder SER performance: QPSK, NTX = 

2, NRX = 2 
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The SER performance of SFC-SD for four values of T is shown in figure 4.4. For 

comparison, the SER performance of an uncoded system at the same rate is also 

included. The rate of the coded system is found using equation (2.5) and, for this 

particular system, Re = 4. To achieve Ru = 4 the uncoded system also transmits 

QPSK symbols. It can be seen that the LD coded system has better performance 

than the uncoded system but has only a slightly steeper slope. The BER performance 

graph, figure 4.5, exhibits the same trends as the SER performance graph. 

In figure 4.6, the complexity of the two-stage SFC-SD decoder is seen to be less 
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Fig.4.5 LD coded SFC-SD decoder BER performance: QPSK, NTX = 

2, N RX = 2 

26 

than the complexity of the single-stage decoder. The complexity is lowest when the 

parameter, T, is largest, and SD is done the least. The reduction in complexity 

achieved by increasing T becomes less however as T becomes larger. For a small 

T where the performance of the associated two-stage decoder is very close to ML a 

significant complexity reduction is still achieved. 



67 

10
2 

,---.-.-.. -.. -.'.-.. -.-.. -.-.. -.. -.-.. ,-----.. -.-.. -.. ' .. -.. -.. -.-.---,r-------,--------.-------, 

-a- LD SD 
~ uncoded SD 
~ LD SFC-SD T =2.2 
-A- LD SFC-SD T =2.6 
-V- LD SFC-SD T =3.0 
-e- LD SFC-SD T =3.4 

10-1L-______ J-______ ~ ________ L_ ______ ~ ______ ~ ________ L-______ ~ 

12 14 16 18 20 22 24 
SNR 

Fig. 4.6 LD coded SFC-SD decoder complexity: QPSK, NTX = 2, 
NRX =2 

4.3 Channel Estimation Errors 

26 

The assumption that the receiver knows H perfectly is instrumental in the derivation 

of the ZF detector, the SD detector, and the SFC front-end. In practice, however, 

the receiver is required to estimate H and the estimation error will be non-zero. The 

channel estimation errors are modeled as additive real Gaussian random variables and 

is further described in Chapter 3 using Equation (3.47) and Equation (3.48). 

Figure 4.7 shows the impact of channel estimation errors for three values of the 

estimation error variance and when there are no errors. Figure 4.8 shows the complex-
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Fig. 4.7 SFC-SD detector BER performance comparison in the presence 
of channel estimation uncertainty: 16-QAM, NTX = 5, N RX = 7 

ity of SD and SFC-SD for the same estimation errors. Both of these plots are done 

keeping the SFC parameter T = 3.4 constant so as to emphasize the performance-

complexity tradeoff. In Figure 4_7 we see that as the estimation variance increases 

the performance of both SD and SFC-SD decreases. However, the difference in perfor-

mance between SD and SFC-SD also decreases as the estimation variance increases. 

Figure 4.7 shows that the SFC front-end performance can still be good in the presence 

of estimation uncertainty. 

Figure 4.8 shows the complexity of SFC-SD and SD for the same channel estima-
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tion errors. By looking at Figure 4.7 and Figure 4.8 we see that, even with channel 

estimation errors, the complexity-performance tradeoff remains. For example, when 

T = 3.4, with No = 0.01 the performance of SFC-SD and SD are nearly identical but 

the complexity reduction is very smaU; however, with No = 0.002 the performance of 

SFC-SD is worse than SD but the complexity reduction of SFC-SD is more significant. 
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Chapter 5 

Detector Combinations and 

Comparisons 

ln this chapter we compare aU of the MIMO detection schemes previously discussed 

and sorne promising combinations thereof. These comparisons are done using com

puter simulations for both the uncoded and LD coded frameworks. Both error rate 

performance and computational complexity are considered to emphasize how a tradeoff 

can be achieved. 

It is shown that SE/SD can be combined with either the SFC front-end or the 

SPC front-end. Indeed, it is seen that any two, or even aH three, of these complexity 

reducing techniques can be combined to even further reduce computational complexity 

with near ML performance. 

5.1 Complexity Red ucing Detector Combinations 

ln the last two chapters SPC and SFC front-ends were derived, analyzed, and sim

ulated. It was seen that when either of these front-ends is appended to the SD the 
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combined detector is able to reduce computational complexity as compared to the 

standalone SD at very little cost to performance. It should not be surprising then 

that the same is true when either of these front-ends are appended to SEjSD. The 

SEjSD has the same inputs and outputs as the SD. Most importantly, thought, it 

has the exact same performance as the SD but lower complexity. Therefore, in order 

to achieve the lowest complexity detector possible, it makes sense to always append 

either the SPC front-end or the SFC front-end to the SEjSD rather than to the SD. 

It is also possible to combine the SFC front-end, the SPC front-end, and the 

SEjSD to form what will be called the SFC-SPC-SEjSD detector. The SFC-SPC-

SEjSD detector is a seriaI concatenation of first the SFC front-end, which attempts 

to pre-detect the entire symbol vector, then the SPC front-end, which pre-detects as 

many individual symbols as possible, and finally the SEjSD, which jointly detects the 

remaining symbols in the symbol vector. The block diagram, figure 5.1 below, shows 

how these three detection techniques are serially concatenated. 

_r_....-;:;.~I_Z_F_------' 
1 

û>1 H 1 : :1 
SFC SPC SE/SD 

t t u t 
Û Ûd û r 

Fig. 5.1 Block diagram of SFC-SPC-SEjSD 

The output of the SFC-SPC-SEjSD detector is either Û or the combination of 

Ûd and û r . The SFC and SPC front-ends function in exactly the same way as they 

were described in the previous two chapters. The SFC-SPC-SEjSD detector has two 

parameters which affect its performance and computational complexity: T (for the 

SFC front-end) and U (for the SPC front-end). 
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5.2 Uncoded Detector Comparison: 16-QAM, NTx = 5 and 

The detector comparison for the uncoded framework considers the same NTX = 5 

N RX = 7 and 16-QAM system as was considered in the SFC and SPC front-end 

simulations. We present the results for certain parameters (T for SFC and U for SPC) 

that achieve near-ML performance . 
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Fig. 5.2 Uncoded detector SER performance comparison: 16-QAM, 

NTX = 5, NRX = 7 

23 

In terms of SER performance figure 5.2 shows that both two-stage detectors, SPC

SD and SFC-SD, have near-ML performance. In the range of simulated SNRs both 
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of these two-stage detectors have a significant performance advantage over the linear 

ZF detector. The SFC-SD detector performance, for a given value of T, has the same 

slope as the SD detector performance. The SPC-SD detector performance, for a given 

value of U, has nearly identical performance as the SD detector, below a certain SNR. 

Above that SNR the SPC-SD detector performance has a less steep slope than the SD 

detector performance. 

It is therefore seen that the SPC-SD and SFC-SD detectors have different per-

formance characteristics as a function of SNR. Either two-stage detector can have 
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performance as close to ML as desired at any SNR by proper parameter selection. 

The three-stage SFC-SPC-SD detector performance characteristics are a combina-

tion of the performance characteristics of the SFC-SD and SPC-SD detectors. Below 

the SNR where the SPC-SD performance slope changes SFC-SPC-SD has identical 

performance to SFC-SD. Above this SNR SFC-SPC-SD has an equal performance 

slope as SPC-SD. 

The BER performance curves for these same detectors are shown in figure 5.3 and 

they have the same trends as the SER performance curves. 
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The complexity of the various detectors is shown in figure 5.4. When the SD is re-

placed by the SEjSD in any of the multi-stage decoders the performance is unchanged 

but the complexity is decreased. The complexity reduction from the substitution of 

SEjSD is seen to decrease as the SNR is increased. 

Besides the substitution of the SD by the SEjSD there is seen to be always a 

cost of increased complexity associated with improved performance. The SPC front-

end and the SFC front-end allow for different performance-complexity tradeoffs. It 

is never the case where either SPC-SD or SFC-SD achieves better performance and 

lower complexity. The lowest complexity detector presented is the SFC-SPC-SEjSD 

detector but this detector is not the best performing multi-stage detector. 

5.3 LD Coded Decoder Comparison: QPSK NTX = 2 and 

The detector comparison for the coded framework considers the same LD coded NTX = 

2 N RX = 2 QPSK system as was considered in the SFC and SPC front-end simulations. 

The LD code used was described in section 2.6. Like the uncoded comparison we 

present the results for certain parameters (T for SFC and U for SPC) that achieve 

near-ML performance. However, in our de co der comparison, we consider the results 

for other parameter values presented in the previous two chapters. 

In figure 5.5 it is seen that both two-stage detectors, the SPC-SD and the SFC-SD, 

have near-ML SER performance. Figure 5.6 presents the BER performance results for 

the same set of detectors. For the presented parameters, LD coded transmission de-

coded by either two-stage detector has better performance then uncoded transmission 

decoded by the SD but worse performance than coded transmission decoded by the 

SD. Both two stage decoders have the same performance trends as described in the 
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Fig. 5.5 LD decoder SER performance comparison: QPSK, NTx = 2, 
NRX=2 

uncoded case. 

26 

To further emphasize that neither front-end has intrinsically better performance 

the presented LD coded results use parameter values that result in SPC-SD having 

better performance (but higher complexity) than SFC-SD. In the uncoded detector 

comparison the chosen parameters resulted in SFC-SD having better performance (but 

higher complexity) than SPC-SD. 

For the coded system, the SFC-SPC-SEjSD decoder is seen in figure 5.7 to have 

the lowest complexity. It is still the case that replacing the SD by the SEjSD in the 
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Fig. 5.6 LD decoder BER performance comparison: QPSK, NTx = 2, 
NRX =2 

multi-stage decoders reduces complexity with no reduction in performance. 

26 
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Fig. 5.7 LD decoder complexity comparison: QPSK, NTX = 2, NRX = 
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Chapter 6 

Conclusions 

There is a fundamental tradeoff between decoding complexity and error-rate perfor

mance. The two SD front-ends introduced in this work, SPC and SFC, allow both the 

LD decoder and the uncoded detector to exploit this tradeoff. Simulations of both 

SPC-SD and SFC-SD decoders demonstrate this tradeoff. Changing the system pa

rameter, U for SPC and T for SFC, is the means by which the complexity-performance 

tradeoff is adjusted. Moreover, these simulations show how this tradeoff is affected 

by SNR. SPC-SD achieves ML performance up to a certain threshold. SFC-SD has 

a performance slope parallel to ML performance. By combining both front-ends into 

a SFC-SPC front-end further tradeoffs between complexity and performance can be 

achieved. It is possible to choose the parameters so that the performance of the two

stage decoder has only slightly worse performance but mu ch lower complexity than 

the SD. Both SPC and SFC have their own advantages and disadvantages and each 

achieves a unique complexity-performance tradeoff. 

A key feature of both the SPC front-end and the SFC front-end is their ability 

to precede any variant of the SD. These techniques can therefore leverage existing 

and future enhancements of the SD. By substituting SD by SE/SD the complexity 
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of the two-stage decoder is reduced with no reduction in performance. Although 

computer simulations show that, in the presence of channel estimation uncertainty, 

the performance of SD decreases it is also seen that SPC and SFC remain a viable 

means of obtaining a complexity-performance tradeoff. 

Compared to a benchmark uncoded MIMO system detected with the SD, a LD 

coded MIMO system, transmitting at the same data rate, decoded with a sub-ML 

decoder, either the SPC-SD or the SFC-SD, can achieve better performance with 

lower complexity. 
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Appendix A 

Computer Simulation Overview 

and Guide 

This section explains how to use the C++ programs that were used to generate the 

simulations in this thesis. The capabilities and limitations of these programs are also 

discussed. The following table provides an overview of each source code file used in 

the simulations. All of these files can be found on the attached CD. 

Source file name 

uncodedMIMO.cpp 
LDcodedMIMO .cpp 

sphere1.cpp 
sphere2.cpp 
QR.cpp 
utilities.cpp 
matrix.cpp 

Table A.l C++ source files 

Description 

Uncoded simulation entry point and primary fiow. 
LD coded simulation entry point and primary fiow. 
Implements SD based on the fiowchart of [11]. 
Implements SEjSD based on the fiowchart of [14]. 
QR factorization on an arbitrary matrix. 
Miscellaneous procedures. 
Various matrix operations. 

To run a simulation put all of the above files in the same direct ory. These programs 

have been successfully compiled and run using the Linux standard g++ version 3.2.3-

42 compiler and the Microsoft Visual C++ version 6.0 compiler. To run a simulation 
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of the uncoded framework compile uncodedMIMO.cpp and run the executable and 

redirect the standard output to a text file. For example, you can simulate the uncoded 

framework on the Linux operating system by running the following commands: 

Linux> g++ uncodedMIMO.cpp -0 execute_test 

Linux> execute_test> outpuLtesLfile.txt & 

When the execute_test executable finishes, the text file outpuLtesLfile.txt stores 

the results. To run a simulation of the LD coded framework compile the LDcoded

MIMO.cpp file. For example, you can simulate the coded framework on the Linux 

operating system by running the following commands: 

Linux> g++ LDcodedMIMO.cpp -0 execute_coded 

Linux> execute_coded > outpuLcoded_file.txt & 

The adjustable constants for an uncoded simulation and their allowable values are 

presented in table A.2. The range of SNR values to be simulated can also be set in both 

Table A.2 Simulation adjustable constants 

Description 
The number of transmit antennas. 
The number of receive antennas. 
The size of the symbol constellation. 
The minimum number of channel ralizations per SNR. 
The minimum number of symbol errors per SNR. 
The SPC front-end U parameter. 
The SFC front-end T parameter. 
Channel matrix elements error variance 

Allowable values 
1::; ACTUALNUM_TX ::; 25 
1 ::; ACTUAL_NUM_RX ::; 25 

PAM = {2, 4, 8, 16} 
1 ::; TRIALS 

o ::; MIN _ERRO R 
o ::; SPC_NOISE 

o ::; pure_Ph 
0::; VAR_UNCERT 

the uncoded simulation and in the LD coded simulation. The adjustable variables are 

the same in the LD coded simulation except that the number of transmit and receive 

antennas are not adjustable. 
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