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Abstract

We show that if G is a finitely generated group hyperbolic relative to a finite collection

of subgroups P , then the natural action of G on the geodesic boundary of the associated

relative Cayley graph induces a hyperfinite equivalence relation. As a corollary of this,

we obtain that the natural action of G on its Bowditch boundary ∂(G,P) also induces a

hyperfinite equivalence relation. This strengthens a result of Ozawa obtained for P consisting

of amenable subgroups and uses a recent work of Marquis and Sabok.

Résumé

Nous montrons que si G est un groupe de type fini hyperbolique relatif à une collection finie

de sous-groupes P , alors l’action naturelle de G induit une rélation d’équivalence hyperfini

sur le bord géodésique du graphe de Cayley relatif associé. Comme corollaire de cela, nous

obtenons que l’action naturelle de G sur son bord de Bowditch ∂(G,P) induit une rélation

d’équivalence hyperfini. Ceci renforce un résultat d’Ozawa obtenu pour P constitué de sous-

groupes moyennables et utilise un travail récent de Marquis et Sabok.



Claim of Originality

The following contributions are presented in this thesis:

• Establishment of the finite sections property of geodesic ray bundles in relative Cayley

graphs, giving rise to local finiteness of geodesic ray bundles in relative Cayley graphs.

• Establishment of the finite symmetric difference property of modified geodesic ray

bundles in relative Cayley graphs.

• Hyperfiniteness of the action of a relatively hyperbolic group on the geodesic boundary

of some (equivalently, any) relative Cayley graph.

• Hyperfiniteness of the action of a relatively hyperbolic group on its Bowditch boundary.
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1. Introduction

This thesis studies equivalence relations induced by boundary actions of relatively hyperbolic

groups. The study of boundary actions began with the work of Connes, Feldman and Weiss

in [12] and Vershik in [37] who studied the actions of free groups on their boundaries. They

showed that for a free group, its action on the Gromov boundary is µ-hyperfinite for every

Borel quasi-invariant probability measure µ on the boundary. Adams [1] later generalized

this result to all hyperbolic groups.

Relatively hyperbolic groups were introduced by Gromov [20]; see also the monograph of

Osin [29]. Given a relatively hyperbolic group G with a collection of parabolic subgroups

P there is a natural boundary called the Bowditch boundary, denoted ∂(G,P), which is a

compact metrizable space on which G acts naturally by homeomorphisms.

In [31], Ozawa generalized the work of Adams [1] to the actions of relatively hyperbolic

groups on their Bowditch boundary under the assumptions that the parabolic subgroups are

exact. When the parabolic subgroups of G in P are amenable, Ozawa [31] proved that the

action of G on ∂(G,P) is topologically amenable, and, more generally, when the parabolic

subgroups are exact, Ozawa [31] proved that the group G is exact. Alternative proofs of the

exactness of the group were given by Osin [28] who worked with parabolic subgroups with

finite asymptotic dimension and by Dadarlat and Guentner [13] who worked with parabolic

subgroups that are uniformly embeddable into a Hilbert space.

In [38], Zimmer introduced the notion of amenability of equivalence relations; see also
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the work of Connes, Feldman and Weiss [12]. By [2, Theorem 5.1], a measurable action of

a countable group G on a standard probability space (X,µ) is µ-amenable if and only if

µ-almost all stabilizers are amenable and the orbit equivalence relation is µ-amenable.

In this thesis we generalize the result of Ozawa and work with relatively hyperbolic groups

without any assumptions on the parabolic subgroups. In fact, we consider boundary actions

from the Borel perspective. A countable Borel equivalence relation is called hyperfinite if it

is a countable increasing union of finite Borel sub-equivalence relations. Dougherty, Jackson

and Kechris showed in [17, Corollary 8.2] that the boundary action of any free group induces

a hyperfinite orbit equivalence relation. The result of Dougherty, Jackson and Kechris was

generalized to cubulated hyperbolic groups by Huang, Sabok and Shinko in [22], and later

to all hyperbolic groups by Marquis and Sabok in [26]. In this thesis, we prove the following:

Theorem A. Let G be a finitely generated group hyperbolic relative to a finite collection of

subgroups P and let Γ̂ be the associated relative Cayley graph. Then the natural action of G

on the geodesic boundary ∂Γ̂ induces a hyperfinite orbit equivalence relation.

Corollary B. Let G be a finitely generated group hyperbolic relative to a finite collection

of subgroups P. Then the natural action of G on the Bowditch boundary ∂(G,P) induces a

hyperfinite orbit equivalence relation.

Corollary B in particular strengthens the result of Ozawa [31] in case the parabolic sub-

groups are amenable. Indeed, hyperfiniteness implies µ-amenability for every invariant Borel

probability measure µ and by [3, Theorem 3.3.7], an action of a countable group on a locally

compact space by homeomorphisms is topologically amenable if and only if it is µ-amenable

for every invariant Borel probability measure µ.

We proceed by following a similar approach to [22] and [26], studying geodesic ray bundles

Geo(x, η) in relative Cayley graphs (Definition 2.23). For the case of a cubulated hyperbolic

group G studied in [22], the crucial property from which the hyperfinitess of the bound-

ary action of G follows is the finite symmetric difference of geodesic ray bundles: for any
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x, y ∈ G and any η ∈ ∂G, Geo(x, η)4Geo(y, η) is finite (see [22, Theorem 1.4]). In [36],

Touikan showed that this symmetric difference need not be finite in Cayley graphs of general

hyperbolic groups, although in [25], Marquis provides many examples of groups acting geo-

metrically on locally finite hyperbolic graphs where this finite symmetric difference property

does hold. In [26], Marquis and Sabok define a modified version of the geodesic ray bundle,

denoted Geo1(x, η) for x ∈ G and η ∈ ∂G (see [26, Definition 5.5] and Definition 2.41 in

our thesis) and show ([26, Theorem 5.9]) that these modified geodesic ray bundles satisfy

a finite symmetric difference property: |Geo1(x, η)4Geo1(y, η)| < ∞ for each x, y ∈ G and

for each η ∈ ∂G. Marquis and Sabok then deduce hyperfiniteness of the boundary action as

a consequence of this finite symmetric difference property of the modified bundles (see [26,

Section 6])

Local finiteness of the Cayley graph plays a crucial role in establishing the finite symmetric

difference property of the Geo1 bundles in [26]. However, relative Cayley graphs of relatively

hyperbolic groups are not locally finite. To make up for this loss of local finiteness, we rely

on finiteness results about relative Cayley graphs of relatively hyperbolic groups from [29]

(namely, [29, Theorem 3.26]).

The main difference between this thesis and [26] is in Section 3. In Section 3, we prove the

crucial "finite sections property" (Definition 3.1) of geodesic ray bundles in relative Cayley

graphs (Theorem 3.2, whose proof is the main source of new content in this thesis) which

yields the uniform local finiteness of these bundles (Corollary 3.6), and we establish the

finite symmetric difference property of the modified (Geo1) bundles (Theorem 3.9), which

is the main goal of the section. Equipped with the results of Section 3, in Section 4 we

show the hyperfiniteness of the action of G on ∂Γ̂ as a consequence of the finite symmetric

difference property of Geo1 bundles, closely following the approach in [26, Section 6]. The

main difference between Section 4 of our thesis and [26, Section 6] is our different way of

coding labels of geodesic rays in the non locally finite relative Cayley graph Γ̂. We finish
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Section 4 by showing Corollary B, which follows immediately from Theorem A. We conclude

by discussing further work and open problems in Section 5.
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2. Preliminaries

2.1 Geodesics and Quasi-Isometry

Definition 2.1. A geodesic path p between two points x, y in a metric space (X, d) is an

isometric embedding of an interval p : [0, `]→ X such that p(0) = x and p(`) = y.

We parameterize all paths to unit speed, so the length `(p) of a path p : [0, `]→ X equals

`. In this thesis, we frequently abuse notation and identify a path in a metric space with its

image. For a path p : [a, b]→ X, we will denote its endpoints p− = p(a) and p+ = p(b).

We will sometimes denote a geodesic path between two points x, y ∈ X by [x, y]. Note

that every subpath of a geodesic path is a geodesic path.

Definition 2.2. A geodesic ray γ based at a point x in a metric space (X, d) is an isometric

embedding γ : [0,∞)→ X with γ(0) = x.

Definition 2.3. We say that two geodesic rays γ1, γ2 are asymptotic if dHaus(γ1, γ2) <∞

(where dHaus denotes Hausdorff distance with respect to the metric d).

Definition 2.4. A geodesic metric space is a metric space (X, d) such that any two

points x, y ∈ X can be joined by a geodesic path.

Definition 2.5. A geodesic triangle in a geodesic metric space is a closed path that is the

concatentation of three geodesic paths.
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Geometric group theory is often concerned with the coarse structure of spaces. The maps

which preserve distances coarsely are known as quasi-isometric embeddings.

Definition 2.6. For λ ≥ 1, ε ≥ 0, a map f : X → Y between metric spaces (X, dX) and

(Y, dY ) is a:

• (λ, ε)-quasi-isometric embedding if ∀x, y ∈ X, we have:

1
λ
dX(x, y)− ε ≤ dY (f(x), f(y)) ≤ λdX(x, y) + ε

• (λ, ε)-quasi-isometry if it is a (λ, ε)-quasi-isometric embedding and ∃C ≥ 0 such

that Y = NC(f(X)).

Supressing constants, a map f : X → Y as above is a quasi-isometric embedding if it

is a (λ, ε)-quasi-isometric embedding for some λ ≥ 1 and ε ≥ 0 and a quasi-isometry if it

is a (λ, ε)-quasi-isometry for some λ ≥ 1 and ε ≥ 0.

Note that if f is a (λ, ε)-quasi-isometric embedding (resp. quasi-isometry), then it is a

(λ′, ε′)-quasi-isometric embedding (resp. quasi-isometry) for any λ′ ≥ λ and ε′ ≥ ε. Note

also that isometric embeddings are precisely (1, 0)-quasi-isometric embeddings.

It is not hard to show that the relation of being quasi-isometric is an equivalence relation

on the class of all metric spaces. For symmetry, if f : X → Y is a quasi-isometry and

Y = NC(f(X)), then we can define g : Y → X by g(y) = x where x is any element of X

such that d(f(x), y) ≤ C. Then g is a quasi-isometry.

Definition 2.7. For λ ≥ 1 and ε ≥ 0, a path p in a metric space (X, d) is a (λ, ε)-quasi-

geodesic if for each subpath q of p we have:

`(q) ≤ λd(q−, q+) + ε

11



Note that if p is a (λ, ε)-quasi-geodesic, then it is a (λ′, ε′)-quasi-geodesic for any λ′ ≥ λ

and ε′ ≥ ε. Note also that geodesics are precisely (1, 0)-quasi-geodesics.

2.2 Graphs

In this subsection we introduce some basic graph-theoretic terminology that we will use

throughout this thesis.

Definition 2.8. A graph consists of a vertex set X and a set of edges E ⊆ X×X connecting

pairs of vertices in X (we allow loop edges about vertices but we do not allow multiple edges

connecting two vertices). For a graph Γ, we say that x, y ∈ X are Γ-adjacent if x, y are

connected by an edge in Γ. If e is an edge connecting vertices x, y, we will denote the vertex

set of e by V (e) = {x, y}. We can orient the edges by defining a source vertex e− and

target vertex e+ for each edge e. A graph with oriented edges is called an oriented graph.

Given a graph Γ, we denote the vertex set of Γ by Γ(0).

Definition 2.9. A combinatorial path in a graph Γ from a vertex x to a vertex y is a

sequence of edges p = e1, ..., en of Γ from x to y. The length of such a path p is the number

of edges in the path. We say that a graph Γ is connected if for any two vertices of Γ there

exists a path in Γ having endpoints those vertices. The length of a path p is the number

of edges comprising it. We say that a graph Γ is locally finite if every vertex is adjacent

to finitely many vertices and we say that Γ is uniformly locally finite if there exists a

constant B such that for every vertex v of Γ the number of vertices adjacent to v is at most

B.

Given a connected graph Γ, we can turn Γ into a geodesic metric space as follows. For any

two vertices x, y of Γ, we define d(x, y) to be the infimal length of paths from x to y. We

can extend this metric to be defined on edges themselves as follows. Isometrically identify

each edge e, having vertices x, y, with [0, 1] by a map φe such that x 7→ 0, y 7→ 1. Then for
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points x, y on different edges e, f , respectively, put d(x, y) = d(x, vx) + d(vx, vy) + d(vy, y),

where vx, vy are the nearest vertices to x, y, respectively, that minimize the sum d(x, vx) +

d(vx, vy) + d(vy, y).

Definition 2.10. The metric d on the graph Γ as above is called the combinatorial metric

on Γ.

Note that in the combinatorial metric, the inclusion Γ(0) ↪→ Γ is a (1,1)-quasi-isometry.

By default, we will always equip connected graphs with their combinatorial metric.

Definition 2.11. Let Γ be a connected graph. A combinatorial geodesic ray (CGR)

in Γ is a geodesic ray based at a vertex of Γ.

CGRs are isometric embeddings of N into Γ(0). If λ is a CGR, we often write λ = (xn)n,

where xn are the vertices on λ.

In connected graphs, we are free to move the starting vertex of a combinatorial geodesic

ray to any other vertex to obtain a geodesic ray with the same tail as the original ray. This

is shown by the following lemma.

Lemma 2.12. ([26, Lemma 3.1]) Let Γ be a connected graph. If γ = (xn)n≥0 is a geodesic ray

in Γ and if y ∈ Γ(0), then there exists N such that for any geodesic path [y, xN ] connecting

y and xN , the concatenation [y, xN ](xn)n≥N of [y, xN ] with the geodesic ray (xn)n≥N is a

geodesic ray.

Since we will use this lemma often and since its proof is straightforward, let us prove it.

Proof. Consider the map g : N → Z given by g(n) = d(y, xn) − d(xn, x0) = d(y, xn) − n.

Our goal is to show that g is eventually constant, i.e. that ∃N such that for all n ≥ N ,

g(n) = g(N), which will show that d(y, xn) = d(y, xN) + d(xN , xn) for all n ≥ N , which will

show that the concatenation [y, xN ](xn)n≥N is a geodesic for any geodesic path [y, xN ].

Note that g is non-increasing. Indeed, for any n ∈ N,
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g(n+ 1)− g(n) = d(y, xn+1)− (n+ 1)− d(y, xn) + n

= d(y, xn+1)− d(y, xn)− 1

≤ d(xn+1, xn)− 1, by the triangle inequality

= 0

Also, g is bounded. Indeed, for any n ∈ N,

|g(n)| = |d(y, xn)− d(xn, x0)|

≤ d(y, x0), by the triangle inequality

Therefore, since g is Z-valued, it is eventually constant.

Let us illustrate Lemma 2.12 with an example.

Example 2.13. Consider the standard Z2 lattice (i.e. the graph with vertex set Z2 and

vertical and horizontal edges joining the vertices). Consider the diagonal geodesic ray γ

starting from the origin (0, 0) and the vertices y = (4, 0) and z = (−3,−1) shown in Figure

2.1. Joining y to the vertex (4, 3) on γ by the dotted geodesic path results in a geodesic ray

from y. Similarly, joining z to the vertex (0, 0) on γ by the dotted geodesic path results in a

geodesic ray from z. Notice that joining y to γ via any geodesic path to (0, 0) (or any vertex

on γ before (4, 3)) does not result in a geodesic ray from y.
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Figure 2.1: An illustration of Lemma 2.12.

2.3 Hyperbolic Metric Spaces

In this subsection, we introduce the notion of hyperbolicity of metric spaces and the geodesic

boundary of a metric space.

Definition 2.14. Given a geodesic triangle ∆ with sides p, q, r, we say that ∆ is δ-slim for

a constant δ ≥ 0 if each of its sides is contained in the closed δ-neighbourhood of the union

of the other two sides: p ⊆ Nδ(q ∪ r), q ⊆ Nδ(p ∪ r) and r ⊆ Nδ(p ∪ q) (here, for R ≥ 0

and a subset A of a metric space X, the closed R-neighbourhood of A is NR(A) := {x ∈ X :

∃a ∈ A such that d(x, a) ≤ R}).

Recall that a metric space is proper if all finite radius closed balls are compact. Note that

a connected graph is a proper metric space if and only if it is locally finite.

Definition 2.15. For δ ≥ 0, a geodesic metric space is called δ-hyperbolic if each of its
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geodesic triangles are δ-slim. We say that a geodesic metric space is hyperbolic if it is

δ-hyperbolic for some δ ≥ 0.

An important fact about hyperbolicity of metric spaces is that it is quasi-isometry invariant,

which is a consequence of the following theorem.

Theorem 2.16. ([9, Theorem III.H.1.9]) Let X, Y be geodesic metric spaces with Y hyper-

bolic. If there exists a quasi-isometric embedding f : X → Y , then X is hyperbolic.

Let us look at some examples and non-examples of hyperbolic metric spaces.

Example 2.17. (a) Any bounded geodesic metric space is hyperbolic (take δ to be the

diameter of the metric space).

(b) Trees (connected graphs with no closed loops) are 0-hyperbolic. Indeed, geodesic trian-

gles in trees are "tripod" shaped so that each side is contained in the union of the other

two sides.

(c) Euclidean space Rn is hyperbolic if and only if n = 1. Indeed, R is 0-hyperbolic as every

side of a geodesic triangle is contained in the union of the other two, and if n > 1,

then for any δ ≥ 0, any isosceles right angled triangle with legs of length 2(δ + 1) is

not δ-slim (see Figure 2.1).

Figure 2.2: A geodesic triangle in Rn, n > 1, that is not δ-slim. The midpoint x of the

hypotenuse is not δ-close to the other two sides of the triangle.
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In a hyperbolic metric space (X, d), we have the following theorem, which says that asymp-

totic geodesic rays are uniformly close.

Theorem 2.18. ([9, Lemma III.H.3.3(1)]) Let (X, d) be a δ-hyperbolic metric space and let

γ1, γ2 be asymptotic geodesic rays based at a point x ∈ X. Then for each t ∈ R, we have

d(γ1(t), γ2(t)) ≤ 2δ.

Let us give a proof of this theorem to illustrate the definition of δ-hyperbolicity and some

techniques involved in geometry of hyperbolic metric spaces.

Proof. Let C be an upper bound on the Hausdorff distance between γ1, γ2 and let t ∈ R.

Choose T > C + t + δ. Then there exists s ∈ R such that d(γ1(T ), γ2(s)) ≤ C. By the

triangle inequality, we have that s > t+ δ.

Now connect γ1(T ) and γ2(T ) with a geodesic α. The sides γ1 from x to γ1(T ), γ2 from x

to γ2(s) and α form a geodesic triangle ∆. Consider the point γ1(t). By δ-hyperbolicity, ∆ is

δ-slim, so there exists some point p on γ2 or α such that d(p, γ1(t)) ≤ δ. Note that p cannot

be on α because then we would have d(γ1(t), γ1(T )) ≤ C + δ, which implies T − t ≤ C + δ,

yielding T ≤ C + t + δ, a contradiction. Therefore, p must be on γ2. Write p = γ2(r) for

some r < s.

Figure 2.3: The geometric arrangement of the proof of Theorem 2.18.

We will show that d(p, γ2(t)) ≤ δ, yielding d(γ1(t), γ2(t)) ≤ 2δ by the triangle inequality.

We consider two cases on where r can lie:
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Case (i): r ≤ t. Then we have

d(x, γ2(t)) = d(x, γ1(t))

≤ d(x, γ2(r)) + δ

Therefore, we obtain d(p, γ2(t)) = d(x, γ2(t))− d(x, γ2(r)) ≤ δ.

Case (ii): r > t: Then we have:

d(x, γ1(r)) = d(x, γ2(r))

≤ δ + d(x, γ1(t))

So, we obtain d(p, γ2(t)) = d(x, γ2(r))− d(x, γ2(t)) = d(x, γ1(r))− d(x, γ1(t)) ≤ δ.

We conclude that d(p, γ2(t)) ≤ δ in all cases and so d(γ1(t), γ2(t)) ≤ 2δ.

If (X, d) is any metric space, we can associate to it a natural object called its geodesic

boundary, defined as follows. Note that the relation on geodesic rays defined by γ ∼ λ if

γ, λ are asymptotic, is an equivalence relation.

Definition 2.19. For a metric space X and x ∈ X, the geodesic boundary based at

x, ∂xX, is the set of all asymptotic equivalence classes of geodesic rays in X starting at x.

Removing reference to a basepoint, the geodesic boundary ∂X is defined as the set of all

geodesic rays in X modulo the equivalence relation of being asymptotic.

If X is a proper δ-hyperbolic space or a hyperbolic graph (i.e. a graph that is a hyperbolic

metric space equipped with its combinatorial metric), then ∂X = ∂xX for each x ∈ X.
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For proper δ-hyperbolic metric spaces, this follows from [9, Lemma III.H.3.1] and if X is a

hyperbolic graph, then this follows from Lemma 2.12.

If X is δ-hyperbolic, for each x ∈ X, we can equip ∂xX with a natural topology with

neighbourhood base V (p, r)x = {q ∈ ∂xX : ∃γ ∈ q and ∃λ ∈ p such that d(γ(t), λ(t)) ≤

2δ for each t ≤ r} for each p ∈ ∂xX and each r ∈ N (see [11, Page 10] for this exact

defiinition or [23, Definition 2.12] for a different but equivalent definition). If X is a proper

hyperbolic metric space then the topology on ∂X is defined having neighbourhood base

V (p, r)x for any choice of basepoint x ∈ X, i.e. q ∈ V (p, r) if there exist geodesic rays γ ∈ p

and λ ∈ q that start at the same point x and are 2δ close for a distance of at least r (the

independence of the topology on the basepoint is shown in [9, Lemma III.H.3.7]).

It can be shown (see [16, Proposition 3.4.18]) that ifX is a separable hyperbolic space, then

the topology on ∂xX defined above is a Polish topology (i.e. second countable and completely

metrizable), and that ∂X is a quasi-isometry invariant for proper hyperbolic spaces: if

f : X → Y is a quasi-isometry, then there is an induced homeomorphism f∂ : ∂X → ∂Y

(see [9, Theorem III.H.3.9]).

Example 2.20. (Examples of geodesic boundaries)

(a) If X is a bounded geodesic metric space, then ∂X = ∅ because there are no geodesic

rays in X.

(b) If X = R, then ∂X = {±∞}.

(c) If X is a d-regular tree with d < ∞ (i.e. each vertex has d edges coming out of it),

then ∂X is homeomorphic to the Cantor space {0, 1}N (where {0, 1} is equipped with

the discrete topology, and the product space has the product topology).

(d) If X is a regular tree with countably infinite valence (i.e. the set of edges from each

vertex is countably infinite), then ∂X is homeomorphic to the Baire space NN (where N

is equipped with the discrete topology, and the product space has the product topology).
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(e) If X is a wedge of countably infinitely many rays [0,∞) (which is a tree, hence hyper-

bolic), then ∂X = N.

(f) In general, if X is a proper hyperbolic space, then ∂X is compact (see [9, Proposition

III.H.3.7 (3), (4)]). If X is not proper, then ∂xX need not be compact as examples

(d), (e) above show.

Remark 2.21. If X is a hyperbolic space and if a group G acts on X by isometries, then

G acts on ∂X by putting g[γ] := [gγ] for every g ∈ G and every geodesic ray γ in X. This

action induces a homeomorphism ∂xX → ∂gxX for every x ∈ X. In particular, if X is

a hyperbolic graph and G acts transitively on X(0), then ∂xX is homeomorphic to ∂yX for

every x, y ∈ X(0). In this case, we can define a topology on ∂X by putting ∂X = ∂xX for

each x ∈ X(0).

2.4 Horoboundary

In this subsection, we introduce a refinement of the geodesic boundary called the horobound-

ary that will prove to be a crucial geometric tool. The following terminology is from [10,

Section 3].

Let X be a connected graph equipped with its combinatorial metric d. Fix a basepoint

z ∈ X(0) and define F(X, z) = {f : X(0) → R : |f(x) − f(y)| ≤ d(x, y) for all x, y ∈

X(0) and f(z) = 0}. We equip F(X, z) with the topology of pointwise convergence.

For each x ∈ X(0), we associate the Busemann function fx ∈ F(X, z) defined by fx(y) =

d(x, y)− d(x, z). Define ι : X(0) → F(X, z) by ι(x) = fx

Definition 2.22. The horofunction space of X, denoted Choro(X) is the closure of ι(X(0))

in F(X, z). The horoboundary of X is Chb(X) := Choro(X) \ ι(X(0)).

It can be shown that neither Choro(X) nor Chb(X) depend on the basepoint z, since F(X, z)
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can be identified with the space of all 1-Lipschitz functions X(0) → R modulo the constant

functions.

2.5 Combinatorial Geodesic Ray Bundles

In this section, we discuss the important notions of combinatorial geodesic rays (CGRs) and

collect lemmas and definitions from [26, Sections 3 and 4] that will come in handy later. We

omit most proofs of the lemmas we present and we refer the reader to [26, Sections 3 and 4]

for any omitted proofs.

Let X be a connected graph equipped with its natural combinatorial metric.

Definition 2.23. For x ∈ X(0) and η ∈ ∂X, the combinatorial geodesic ray bundle

CGR(x, η) is the set of all combinatorial geodesic rays based at x and having asymptotic

equivalence class η. Define Geo(x, η) to be the set of all vertices on combinatorial geodesic

rays based at x and in the equivalence class η.

Combinatorial geodesic rays determine unique limit points in Chb(X) by the following

lemma:

Lemma 2.24. [26, Lemma 3.2] Let X be a connected graph and γ = (xn)n a CGR. The

sequence of functions (fxn)n converges in Choro(X) to some ξ ∈ Chb(X).

Proof. This follows from Lemma 2.12. Let z ∈ X(0) be a basepoint and let y ∈ X(0). By

Lemma 2.12, there exists N such that [y, xN ](xn)n≥N and [z, xN ](xn)n≥N are geodesics. We

then have for all n ≥ N :
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fxn(y) = d(xn, y)− d(xn, z)

= d(xN , y) + d(xN , xn)− (d(xN , z) + d(xN , xn)), by choice of N

= d(xN , y)− d(xN , z)

= fxN (y)

Therefore, (fxn(y)) converges to fN(y). We conclude that (fxn)n converges pointwise in

Choro(X). Since (xn)n is a geodesic ray, the limit ξ = lim fxn is not of the form fy for some

y ∈ X(0), so ξ ∈ Chb(X).

In the above lemma, we denote such limit of a CGR γ by ξ = ξγ.

Definition 2.25. ([26, Definition 3.3]) Fixing a basepoint z ∈ X(0), for η ∈ ∂X, define the

limit set Ξ(η) = {ξγ : γ ∈ CGR(z, η)}.

By Lemma 2.12, the definition of Ξ(η) is independent of the basepoint (i.e. for any z1, z2 ∈

X(0) and ξ ∈ Ξ(η), we have ξ = ξγ for some γ ∈ CGR(z1, η) if and only if ξ = ξγ′ for some

γ′ ∈ CGR(z2, η)).

Definition 2.26. ([26, Definition 3.4]) For x ∈ X(0), η ∈ ∂X and ξ ∈ Ξ(η), define the

combinatorial sector Q(x, ξ) = {y ∈ X(0) : y ∈ γ for some γ ∈ CGR(x, η) with ξγ = ξ}.

Definition 2.27. ([26, Definition 4.8]) For η ∈ ∂X, a vertex x ∈ X(0) is η-special if⋂
ξ∈Ξ(η) Q(x, ξ) contains a CGR γ. The set of all η-special vertices is denoted Xs,η.
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Figure 2.4: The "bad ladder" X. Taken from Figure 2 of [26].

Example 2.28. Consider the graph X as in Figure 2.3. We have ∂X = {η} and Ξ(η) =

{ξx, ξy}. We see that for each n ∈ N,

• Q(xn, ξx) = {xm : m ≥ n},

• Q(yn, ξy) = {ym : m ≥ n},

• Q(yn, ξx) = Q(xn, ξy) = {xm : m ≥ n} ∪ {ym : m ≥ n} ∪ {zm : m ≥ n},

• Q(zn, ξx) = {zn} ∪ {xm : m ≥ n}, and

• Q(zn, ξy) = {zn} ∪ {ym : m ≥ n}.

Therefore, Xs,η = {xn : n ∈ N} ∪ {yn : n ∈ N}. Also, note that Geo(x1, η) = X(0) while

Geo(z1, η) = X(0) \ {zn : n ≥ 2}, so that Geo(x1, η)4Geo(z1, η) = {zn : n ≥ 2}, which is

infinite.

Lemma 2.29. ([26, Lemma 4.3]) Let x ∈ X(0), η ∈ ∂X, ξ ∈ Ξ(η) and y ∈ Q(x, ξ). Then

Q(y, ξ) ⊆ Q(x, ξ).
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Lemma 2.30. ([26, Lemma 4.5]) Let x ∈ X(0), η ∈ ∂X, ξ ∈ Ξ(η) and γ ∈ CGR(x, η). If

γ ⊆ Q(x, ξ) and if ξγ denotes the limit of ξ, then Q(x, ξγ) ⊆ Q(x, ξ).

Lemma 2.31. ([26, Lemma 4.6]) Let x ∈ X(0) and η ∈ ∂X. If Q(x, ξ) = Q(x, ξ′) for some

ξ, ξ′ ∈ Ξ(η), then ξ = ξ′.

Lemma 2.32. ([26, Lemma 4.7]) Let x ∈ X(0) and η ∈ ∂X. If ⋂
ξ∈Ξ(η) Q(x, ξ) contains a

CGR from x to η, then there exists a unique limit point ξx,η ∈ Ξ(η) such that Q(x, ξx,η) =⋂
ξ∈Ξ(η).

By Lemma 2.30 and Lemma 2.32, if x ∈ X(0) is η-special, then for any CGR γ contained

in ⋂
ξ∈Ξ(η) Q(x, ξ) with limit ξγ, we have ξγ = ξx′η.

For any x, y ∈ X(0), denote γ(x, y) to be the union of all geodesic paths from x to y in X.

Definition 2.33. ([26, Definition 4.9]) A geodesic ray γ ∈ CGR(x, η) is straight if γ ⊆⋃
n∈N γ(x, yn) for any (yn)n ∈ CGR(x, η).

The following lemma gives a characterization of straight geodesics.

Lemma 2.34. ([26, Lemma 4.12]) Let x ∈ X(0), η ∈ ∂X and γ = (xn)n∈N ∈ CGR(x, η).

Then the following assertions are equivalent:

(a) γ is straight

(b) γ ⊆ ⋂
ξ∈Ξ(η) Q(x, ξ)

(c) For any (yn)n∈N ∈ CGR(y0, η) and any n ∈ N, there exists M ∈ N such that d(x, xn) +

d(xn, ym) = d(x, ym) for all m ≥M .

(d) For each m, the CGR (xn)n≥m is straight.

There is a relationship between special vertices and straight geodesics. It is expressed by

the lemma below.
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Lemma 2.35. ([26, Lemma 4.13]) Let x ∈ X(0) and η ∈ ∂X. The following are equivalent.

(a) x is η-special.

(b) There exists a straight γ ∈ CGR(x, η).

If any of the above assertions hold, then ξx,η = ξγ.

Lemma 2.36. ([26, Lemma 4.14]) Let x ∈ X(0), η ∈ ∂X and let y ∈ Geo(x, η) be η-special.

Then [x, y]γ ∈ CGR(x, η) for any geodesic [x, y] between x, y and any CGR γ ∈ CGR(y, η)

converging to ξy,η.

Lemma 2.37. ([26, Lemma 4.15]) Let η ∈ ∂X and let x ∈ Xs,η. Then Q(x, ξx,η) ⊆ Xs,η

and ξy,η = ξx,η for every y ∈ Q(x, ξx,η).

The following functions will prove to be an important tool in the geometry that we do in

Section 3.

Definition 2.38. ([26, Definition 4.16]) For x ∈ X(0) and ξ ∈ Ξ(η) define the function

dx,ξ : X(0) → Z by dx,ξ(a) = d(x, a) + ξ(a)− ξ(x).

Lemma 2.39. ([26, Lemma 4.17]) Let x ∈ X(0), η ∈ ∂X and ξ ∈ Ξ(η). Let γ = (xn)n∈N ∈

CGR(x, η). Then the following hold.

(a) The sequence (dx,ξ(xn))n∈N is non-decreasing.

(b) dx,ξ(xn) ≤ dHaus(γ, γ′) for any n ∈ N and any γ′ ∈ CGR(x, η) converging to ξ.

(c) There is some N ∈ N such that dx,ξ(xn) = dx,ξ(xN) for all n ≥ N .

(d) If N is as in (c), then for any γ′ = (yn)n∈N ∈ CGR(y0, η) converging to ξ, and for

any n ≥ N , there exists M ∈ N such that d(xN , xn) + d(xn, ym) = d(xN , ym) for all

m ≥M .

Lemma 2.40. ([26, Lemma 4.18]) Let x ∈ X(0), η ∈ ∂X and (xn)n∈N ∈ CGR(x, η). If Ξ(η)

is finite, then there is some N ∈ N such that the CGR (xn)n≥N is straight.
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Our main objects of interest will be the following modified geodesic ray bundles, first

defined in [26, Definition 5.5].

Definition 2.41. Let x ∈ X(0) and η ∈ ∂X. For ξ ∈ Ξ(η), let Y (x, ξ) be the set of η-special

vertices y ∈ Geo(x, η) with ξy,η = ξ at minimal distance to x. Put

Geo1(x, η) =
⋃

ξ∈Ξ(η)

⋃
y∈Y (x,ξ)

Q(y, ξ)

Note that if Ξ(η) is finite, then by Lemma 2.40, each CGR eventually consists of η-special

vertices, so that Y (x, ξ) is non-empty. If in addition Geo(x, η) is locally finite, then Y (x, ξ)

is a finite, non-empty set.

2.6 Cayley Graphs

In this subsection, we introduce the notion of a Cayley graph of a group and establish some

terminology.

Definition 2.42. Let G be a group generated by some set S. The Cayley graph of G with

respect to S is the graph Γ(G;S) whose vertices are elements of G and such that two vertices

x, y are connected by an edge if there exists s ∈ S such that y = xs.

Definition 2.43. If G is a group and S is a generating set for G, then for each path

p = (xn)0≤n≤k (resp p = (xn)n∈N), define the label of p to be (x−1
n xn+1)0≤n≤k−1 ∈ (S±)k

for finite paths and (x−1
n xn+1)n∈N ∈ (S±)N for infinite paths, where S± := {t : t = s or t =

s−1 for some s ∈ S} is the symmetrized generating set.

Given an element g ∈ G, we denote |g|S the distance between the vertices 1 and g in the

Cayley graph Γ(G;S) (equivalently, |g|S is the minimal length of a word over S± representing

g). Then d(g, h) = |g−1h|S for any g, h ∈ G defines a metric on G, which coincides with the

combinatorial metric on Γ(G;S).
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Definition 2.44. A metric on G induced from a generating set S as above is called the

word metric on G with respect to S.

Example 2.45. (Examples of Cayley graphs)

(a) Cay(Z/nZ, {1}) is a directed n-gon.

(b) For n ≥ 1 (including n = ω), if S is a free generating set for Fn, then Cay(Fn;S) is a

2n-regular tree.

(c) Cay(Zn; {e1, ..., en}), where ei are the standard basis for Rn, is the lattice Zn in Rn.

If X, Y are two finite generating sets for a group G, then the Cayley graphs Γ1 = Γ(G;X)

and Γ2 = Γ(G;Y ) are quasi-isometric. Indeed, it suffices to show that G with the word

metrics fromX, Y are quasi-isometric spaces, since the vertex set of a graph is quasi-isometric

to the graph (see Section 2.2). Let C = max{maxx∈X{|x|Y },maxy∈Y {|y|X}}. Then for any

g ∈ G, 1
C
|g|Y ≤ |g|X ≤ C|g|Y . It follows that for any g, h ∈ G, 1

C
dY (g, h) ≤ dX(g, h) ≤

CdY (g, h). Thus, the identity map G→ G is a (C, 0)-quasi-isometry from (G, dX) to (G, dY ).

In particular, by Theorem 2.16, hyperbolicity of Cayley graphs with respect to finite gen-

erating sets is an invariant of finite generating set (i.e. if the Cayley graph with respect to

one finite generating set is hyperbolic, then the Cayley graph with respect to any other finite

generating set is hyperbolic).

Remark 2.46. If a Cayley graph Γ of a group is hyperbolic, then since the group acts

isometrically on the Cayley graph and transitively on the vertex set, by Remark 2.21, up to

homeomorphism, ∂xΓ is independent of x for every x ∈ Γ(0) and so we can define a topology

on ∂Γ to be the topology on ∂xΓ for any choice of x ∈ Γ(0).
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2.7 Hyperbolic and Relatively Hyperbolic Groups

In this subsection, we discuss the notions of hyperbolic group and relatively hyperbolic

groups. Both of these objects were introduced by Gromov in his seminal paper [20], though

for relatively hyperbolic groups, we will work with a different (but equivalent) definition

than that given in [20].

Definition 2.47. A finitely generated group G is called hyperbolic if its Cayley graph with

respect to some (equivalently, any; see Section 2.6) finite generating set is hyperbolic.

Definition 2.48. The boundary of a hyperbolic group G, denoted ∂G, is the boundary of

any of its Cayley graphs with respect to finite generating sets.

Note that the boundary of a hyperbolic group does not depend, up to homeomorphism, on

the choice of finite generating set because the Cayley graphs for different finite generating

sets are all quasi-isometric, hence their boundaries are homeomorphic; see Section 2.3.

Let us now turn to defining relatively hyperbolic groups.

Definition 2.49. Let G be a group, {Hλ}λ∈λ a collection of subgroups of G, with H :=⋃
λ∈ΛHλ, and suppose X is a set such that G is generated by X∪H, (such a set X is called a

relative generating set with respect to the collection {Hλ}λ∈Λ). The relative Cayley graph

associated with {Hλ}λ∈Λ and X is the Cayley graph Γ̂ := Γ(G;X ∪H). The relative Cayley

graph can be identified (quasi-isometrically) with the coned-off Cayley graph obtained by

starting with the Cayley graph Γ of G with respect to X, adjoining to Γ a vertex vgHi for

each left coset gHi and connecting each vertex of gHi in Γ to vgHi by an edge of length 1
2 .

In Γ̂, edges may be labeled by an element from X or an element from a subgroup Hλ.

Definition 2.50. A subpath p of a path α in Γ̂ whose label is a word in some Hλ is called

an Hλ-subpath of α. A maximal Hλ-subpath of α is called an Hλ-component of α. By a

(parabolic) component of α, we mean an Hλ-component of α for some λ ∈ Λ.
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Definition 2.51. Two Hλ-components p, q of a path α in Γ̂ are called connected if there

exist h1, h2 ∈ Hλ such that p−h1 = q− and p+h2 = q+. If an Hλ-component p of α is not

connected to any other Hλ-component of α, then p is called an isolated Hλ-component

of α. A path α that contains two connected Hλ-components for some λ ∈ Λ is said to

backtrack, otherwise it is said to be a path without backtracking.

Figure 2.5: An example of a backtracking path in Γ̂.

Definition 2.52. We say that a group G is weakly hyperbolic relative to the collection

{Hλ}λ∈Λ of subgroups if there exists a finite generating set X of G such that Γ̂ is a hyperbolic

metric space. In such a case, we call the subgroups {Hλ}λ∈Λ the parabolic subgroups.

We refer to the word metric on G from the generating set X as dX (as opposed to the

metric from the generating set X ∪ H which we denote by d). Note that d ≤ dX because

X ⊆ X ∪H.

Definition 2.53. For a group G, a collection of subgroups {Hλ}λ∈Λ and a relative generating

set X, the relative Cayley Γ̂ satisfies the bounded coset penetration property (BCP) if

for any C ≥ 1 and D ≥ 0 there exists a constant k depending only on C,D such that for any

(C,D)-quasi-geodesics α, β without backtracking and with the same endpoints (i.e. α− = β−

and α+ = β+), if p is a component of α or β which is not connected to any component of α

or β then dX(p−, p+) ≤ k.
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Definition 2.54. We say that G is hyperbolic relative to {Hλ}λ∈Λ if G is weakly hyper-

bolic relative to {Hλ}λ∈Λ and some associated relative Cayley graph Γ̂ satisfies the BCP. We

say that a group is relatively hyperbolic if it is hyperbolic relative to a collection of proper

subgroups.

Remark 2.55. Note that relative hyperbolicity is invariant under change of finite relative

generating set, that is, if X, Y are finite relative generating sets of G with respect to {Hλ}λ∈Λ,

then G is hyperbolic relative to {Hλ}λ∈Λ with respect to X if and only if G is hyperbolic

relative to {Hλ}λ∈Λ with respect to Y , i.e., Γ(G;X ∪H) is hyperbolic and satisfies the BCP

if and only if Γ(G;Y ∪ H) is hyperbolic and satisfies the BCP. Indeed, this follows because

the metrics dX∪H and dY ∪H are Lipschitz equivalent: ∃C ≥ 1 such that 1
C
dY ∪H ≤ dX∪H ≤

CdY ∪H, which is proved similarly to how the quasi-isometry type of a Cayley graph does

not change when changing finite generating set as we saw below Example 2.45 (see [29,

Proposition 2.8]).

Throughout this thesis, we fix a group G generated by a finite set X hyperbolic relative

to subgroups {H1, ..., HN}.

The notation Br(x) denotes the closed ball of radius r about the vertex x ∈ G in Γ̂ with its

natural combinatorial metric and similarly BX
r (x) denotes the closed ball of radius r about

the vertex x ∈ G in Γ(G;X) with its natural combinatorial metric.

Example 2.56. (Examples of Hyperbolic and Relatively Hyperbolic Groups)

(a) Finite groups are hyperbolic as their Cayley graphs with respect to the generating set

that is the whole group is a bounded, geodesic metric space, hence hyperbolic.

(b) Finitely generated free groups are hyperbolic as their Cayley graphs with respect to a

free generating set is a tree, which is hyperbolic.

(c) Zn for n > 1 is not hyperbolic as its Cayley graph with respect to the standard basis of

Zn, is quasi-isometric to Rn, which is not hyperbolic. In fact, any group containing Z2
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as a subgroup is not hyperbolic (this follows from the fact that if g is an infinite order

element in a hyperbolic group, then 〈g〉 has finite index in the centralizer C(g); see [9,

Corollary III.Γ.3.10 (2)]).

(d) Consider a finitely generated group G which is hyperbolic relative the collection con-

sisting of only the trivial subgroup {1}. Then G is a hyperbolic group. Indeed, the

left cosets of the trivial subgroup are just singletons consisting of each group element.

So, the relative Cayley graph is obtained from the non-relative Cayley graph by adding

loops to each vertex, hence it is quasi-isometric to the non-relative Cayley graph. Con-

versely, this reasoning also shows that hyperbolic groups are hyperbolic relative to the

trivial subgroup (or more generally, hyperbolic relative to finite subgroups).

(e) Consider the free abelian group G = 〈a, b|[a, b]〉 and subgroup H = 〈a〉. Then G is

weakly hyperbolic relative to {H}. Indeed, the map f : Z → Γ(G; {a, b} ∪ 〈a〉)(0)

given by f(n) = bn is a quasi isometry since it is a (1,0)-quasi-isometric embedding

as d{a,b}∪H(f(n), f(m)) = d{a,b}∪H(bn, bm) = |n − m| for all n,m ∈ Z. In addition,

G ⊆ N1(f(Z)) since for any n,m ∈ Z, d{a,b}∪H(anbm, bm) = 1. Therefore, f is a quasi-

isometry. However, the pair (G,H) with the generating set {a, b} does not satisfy the

BCP because we may produce a geodesic bigon as in the picture below and the isolated

H-component η in the lower geodesic portion of the bigon has d{a,b}(η−, η+) = n→∞.

This implies that G is not hyperbolic relative to {H} (as relative hyperbolicity is an

invariant of finite generating set by Remark 2.55).

(f) If H is a hyperbolic group, then Z2 ∗H is hyperbolic relative to Z2 (the relative Cayley

graph is quasi-isometric to the Cayley graph of H which is hyperbolic and the BCP

holds because there cannot be isolated components in any bigon in the relative Cayley

graph due to the free product structure), but is not hyperbolic since it contains Z2 as a

subgroup. This, together with (d) above, shows that relatively hyperbolic groups form a

strictly larger class than the class of hyperbolic groups.
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Figure 2.6: The bigon and parabolic component η from Example (e).

(g) Every finitely generated group G is hyperbolic relative to {G}. Indeed, let X be a

finite generating set for G. We see that the relative Cayley graph Γ(G;G ∪ X) is a

bounded metric space (it has diameter 1 as we may join any two vertices labeled by

elements g, h ∈ G by an edge labeled g−1h ∈ X ∪ G), so it is hyperbolic. To show the

BCP, suppose we have a (λ, ε)-quasi-geodesic bigon c = αβ in Γ(G;X ∪ G). Then a

component η of c is isolated iff it is the only component in c (because if there were

another component of c, then this would be connected to the first component because

any two vertices in Γ(G;X ∪G) are connected by an edge labeled by an element of G).

However, note that we have `(α) ≤ λdX∪G(α−, α+)+ε ≤ λ+ε because dX∪G(α−, α+) ≤

1 and similarly `(β) ≤ λ+ε. Therefore, by the triangle inequality, for any component η

of, say, β we have dX(η−, η+) ≤ dX(α−, η−)+dX(α−, α+)+dX(η+, α+) ≤ `([α−, η−]β)+

`([α−, α+]) + `([η+, α+]β) ≤ 3(λ+ ε). Therefore, the BCP property holds for C(λ, ε) =

3(λ + ε). Thus, we conclude that any group G is hyperbolic relative to itself. This is

the reason why we demand hyperbolicity relative to proper subgroups in the definition

of a relatively hyperbolic group.
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Figure 2.7: The (λ, ε)-quasi-geodesic bigon from (g) above.

In this thesis, we will use the following result from Osin’s book [29]:

Theorem 2.57. (Theorem 3.26 in [29]) Let G be a group hyperbolic relative to a collection

of subgroups {H1, ..., Hn}. There exists a finite generating set X of G such that the following

holds. There exists a constant ν such that for any geodesic triangle pqr in the relative Cayley

graph Γ̂ and any vertex u on p, there exists a vertex v on q ∪ r such that dX(u, v) ≤ ν.

Theorem 2.57 implies that geodesic triangles in Γ̂ are ν-slim with respect to dX and hence

also with respect to d. Therefore, we can take ν as our hyperbolicity constant for Γ̂, so that

vertex sets on geodesic triangles are ν-slim with respect to both dX and d. We will do so

throughout this thesis whenever we apply Theorem 2.57.

Let us also briefly discuss Bowditch’s definition of relative hyperbolicity. Bowditch gives

a more dynamical definition of relative hyperbolicity, in terms of actions on so-called fine

hyperbolic graphs.

Definition 2.58. Let G be a group together with a collection P of subgroups of G. We say

that G is hyperbolic relative to P (in the sense of Bowditch, see [8]) if G admits an action

on a connected graph K such that the following hold:

(i) K is hyperbolic and each edge of K is contained in only finitely many circuits of a

given length n (a circuit in a graph is a closed path that does not have repeated edges)

for every n ∈ N. (The property of a graph having each edge contained in only finitely
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many circuits of a given length is called fineness).

(ii) There are only finitely many orbits of edges and each edge stabilizer is finite.

(iii) The conjugates of elements of P are precisely the infinite vertex stabilizers of K.

(iv) Every element of P is finitely generated.

From this fine hyperbolic graph K that G acts on, we obtain a proper hyperbolic metric

space X(K) on which G acts isometrically and such that ∂K embeds G-equivariantly as a

topological subspace into ∂X(K), whose complement can be identified with the countable

set of all left cosets of subgroups in P (see [8, Page 26] for the isometric action of G on X(K),

[8, Page 17] for the construction of X(K), [8, Proposition 8.5] for the embedding of ∂K into

∂X(K) and see [8, Proposition 9.1] for the countable complement of ∂K in ∂X(K)).

Definition 2.59. For G, P, K, X(K) as above, the Bowditch boundary ∂(G,P) of the

pair (G,P) is defined to be ∂X(K).

We see therefore that ∂(G,P) is a compact metrizable space on which G acts naturally by

homeomorphisms. We can embed ∂Γ̂ into ∂(G,P), as the next theorem shows.

Theorem 2.60. Let G be hyperbolic relative to a collection of subgroups P, with relative

Cayley graph Γ̂. Then ∂Γ̂ embeds G-equivariantly and homeomorphically into ∂(G,P) with

countable complement.

Proof. In [15, Proposition 1, Section A.2], it is shown that the coned-off Cayley graph Γ̂

is a fine hyperbolic graph satisfying Definition 2.58. Therefore, using the notation above,

∂(G,P) = ∂X(Γ̂), so ∂Γ̂ embeds G-equivariantly and topologically into ∂(G,P) with count-

able complement consisting of all left cosets of conjugates of elements of P .
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2.8 Descriptive Set Theory

In this subsection, we go over the necessary descriptive set theory background that we will

need. A standard reference includes [24].

The main objects of study in descriptive set theory are standard Borel spaces.

Definition 2.61. A standard Borel space is a Polish space (i.e. separable, completely

metrizable topological space) equipped with its Borel σ-algebra.

Examples of standard Borel spaces include countable discrete spaces, compact metrizable

spaces and boundaries of separable hyperbolic spaces. The class of standard Borel spaces

is closed under taking closed subsets and countable products ([24, Proposition 3.3 (ii) and

(iii)]).

Definition 2.62. An analytic set subset of a standard Borel space Z is an image of a

Borel set under a Borel measurable function. A co-analytic set is the complement of an

analytic set.

Definition 2.63. A Borel equivalence relation E on a standard Borel space Z is an

equivalence relation on Z that is a Borel set as a subset of Z × Z.

Definition 2.64. Given a Borel subset A of a standard Borel space X, if E is a Borel

equivalence relation on X, then E|A denotes the restriction of E to A defined by E|A :=

E ∩ (A× A).

Definition 2.65. Given a Borel equivalence relation E on a standard Borel space X and a

Borel subset A ⊆ X, the E-saturation of A is the set [A]E = {x ∈ X : xEa for some a ∈

A}.
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Definition 2.66. A Borel equivalence relation is finite (resp. countable) if its equivalence

classes are all finite (resp. countable).

Definition 2.67. A Borel equivalence relation is hyperfinite if it is a countable increasing

union of finite Borel equivalence relations.

Definition 2.68. For two Borel equivalence relations E on X and F on Y (for X, Y

standard Borel spaces), a map f : X → Y that satisfies xEy =⇒ f(x)Ff(y) for all

x, y ∈ X is called a Borel homomorphism.

Definition 2.69. For two Borel equivalence relations E on X and F on Y (for X, Y

standard Borel spaces), a map f : X → Y is called a Borel reduction from E to F if it

satisfies xEy ⇐⇒ f(x)Ff(y) for all x, y ∈ X.

Definition 2.70. A Borel equivalence relation E is Borel reducible to a Borel equivalence

relation F if there exists a Borel reduction from E to F .

Definition 2.71. A Borel equivalence relation is called smooth if it is Borel reducible to

the equality relation (i.e. x ∼ y iff x = y) on some standard Borel space.

Definition 2.72. A Borel equivalence relation is called hypersmooth if it is a countable

increasing union of smooth Borel equivalence relations.

Definition 2.73. An analytic Borel equivalence relation E on a standard Borel space

X is a Borel equivalence relation that is an analytic subset of X ×X.

In Section 4 of this thesis, we will make use of the following results.

Theorem 2.74. (Lusin-Novikov Theorem) Let X, Y be standard Borel spaces and let B ⊆

X × Y be a Borel set whose vertical sections Bx = {y ∈ Y : (x, y) ∈ B} have size at most

r. Then there are Borel functions fi : X → Y , i = 1, ..., r such that B is the union of the

graphs of the fi.
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Theorem 2.75. [24, Theorem 18.18] Let X, Y be standard Borel spaces and let B ⊆ X ×Y

be a Borel set whose vertical sections Bx = {y ∈ Y : (x, y) ∈ B} are σ-compact (i.e. a

countable union of compact sets). Then the projection πX(B) ⊆ X is Borel.

In particular, Theorem 2.75 can be applied when the vertical sections are countable.

Theorem 2.76. [24, Theorem 14.12] Let f : X → Y be a map between standard Borel

spaces X, Y . Then f is Borel if and only if its graph {(x, f(x)) : x ∈ X} ⊆ X × Y is Borel.

The following lemma is an application of [24, Theorem 35.16].

Lemma 2.77. ([22, Lemma 4.1]) Let Z be a standard Borel space, A ⊆ Z be analytic and

let E be an analytic equivalence relation on Z such that there is some K > 1 such that

every E|A-class has size less than K. Then there is a Borel equivalence relation F on Z with

E|A ⊆ F such that every F -class has size less than K.
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3. Geodesic Ray Bundles in Relative

Cayley Graphs

In this section, we examine modified geodesic ray bundles and prove that these modified

bundles have finite symmetric difference for a fixed boundary point. This section generalizes

[26, Theorem 5.9].

We will be interested in the following property of a graph.

Definition 3.1. A hyperbolic graph Γ has the finite sections property if there exists a

constant B such that for any x ∈ Γ(0), for any η ∈ ∂Γ and for any i ∈ N, we have

|{γ(i) : γ ∈ CGR(x, η)}| ≤ B

Note that any uniformly locally finite hyperbolic graph has the finite sections property.

Here is the main result of this section, which is the main source of original content in this

thesis.

Theorem 3.2. Let G be a group hyperbolic relative to a collection of subgroups {H1, ..., Hn}.

There exists a finite generating set X of G such that the associated relative Cayley graph Γ̂

has the finite sections property.

Proof. Take the finite generating set X to be as in Theorem 2.57. Choose a hyperbolicity

constant ν ∈ N for Γ̂ as in Theorem 2.57. Let i ∈ N. Fix any γ0 ∈ CGR(x, η) and let
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k = i+ 3ν+ 1. We will show that for each γ ∈ CGR(x, η), there exists a vertex v on γ0 with

d(v, γ0(i)) ≤ 3ν and such that dX(γ(i), v) ≤ ν.

Let γ ∈ CGR(x, η) be arbitrary. Begin by joining γ(k) and γ0(k) with a geodesic α (see

Figure 3.1). By Theorem 2.18, we have that d(γ(k), γ0(k)) ≤ 2ν, so α has length at most

2ν.

Figure 3.1: The arrangement of geodesics in the proof of Theorem 3.2.

Letting |k denote the restriction of a geodesic to {0, 1, ..., k}, we apply Theorem 2.57 to

the geodesic triangle with sides γ0|k, α and γ|k. By Theorem 2.57, there exists a vertex v on

γ0|k or on α such that dX(γ(i), v) ≤ ν. We cannot have v on α because then we would have

d(γ(i), v) ≤ ν (since d ≤ dX), which would imply by the triangle inequality that

k − i = d(γ(i), γ(k)) ≤ d(γ(i), v) + d(v, γ(k)) ≤ d(γ(i), v) + `(α) ≤ ν + 2ν = 3ν

contradicting our choice of k. Therefore, we must have that v is on γ0|k.

Lastly, let us show that d(v, γ0(i)) ≤ 3ν. By Theorem 2.18, we have d(γ(i), γ0(i)) ≤ 2ν,

and note that dX(γ(i), v) ≤ ν implies d(γ(i), v) ≤ ν, so by the triangle inequality,

d(v, γ0(i)) ≤ d(v, γ(i)) + d(γ(i), γ0(i)) ≤ ν + 2ν = 3ν
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,

We conclude that for each i ∈ N and each γ ∈ CGR(x, η), γ(i) must be ν-close in dX to

a vertex v on γ0 with d(v, γ0(i)) ≤ 3ν. There are at most 6ν + 1 such vertices on γ0, so we

obtain that |{γ(i) : γ ∈ CGR(x, η)}| ≤ (6ν + 1)|Bν
X(1)|. Thus, we set B = (6ν + 1)|Bν

X(1)|.

As a corollary of this theorem, we obtain the following results. We assume from now on

that G is a relatively hyperbolic group generated a finite set X as in Theorem 3.2.

Corollary 3.3. Let (γn)∞n=0 be a sequence of elements of CGR(x, η) for some x ∈ G and

some η ∈ ∂Γ̂. Then (γn)∞n=0 has a convergent subsequence which converges to a CGR γ ∈

CGR(x, η) (where convergence of a sequence of CGRs is pointwise convergence).

Proof. By Theorem 3.2, for each i, {γn(i) : n ∈ N} has cardinality bounded above by

B(ν). We may view the sequence (γn)∞n=0 as a sequence of elements of the product space∏∞
i=0{γn(i) : n ∈ N}, which is compact by Tychonoff’s theorem since {γn(i) : n ∈ N} is a finite

(hence, compact) metric space for each i (with the metric being the restriction of d to this

set). Therefore, (γn)∞n=0 has a subsequence which converges to some γ ∈ ∏∞
i=0{γn(i) : n ∈ N}.

Since γ(i) ∈ {γn(i) : n ∈ N} for each i, and d(γn(i), γm(i)) ≤ 2ν for each m,n, it follows that

γ is at bounded Hausdorff distance to each γn, so γ ∈ CGR(x, η).

Corollary 3.4. There exists a constant B such that for any x ∈ G and η ∈ ∂Γ̂, we have

|Ξ(η)| ≤ B.

Proof. We follow the proof of [26, Proposition 5.2]. Let B be the constant from Theorem 3.2.

Suppose for contradiction that there exists a subset Ξ = {ξ0, ξ1, ..., ξB} ⊆ Ξ(η) of cardinality

B+1. For each ξ ∈ Ξ(η), choose a CGR γξ = (xξn)n∈N ∈ CGR(x, η) which converges to ξ. By

Lemma 2.39(3), for each ξ, ξ′ ∈ Ξ(η), there exists Nξ,ξ′ ∈ N such that dx,ξ(xξ
′
n ) = dx,ξ(xξNξ,ξ′ )
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for all n ≥ Nξ,ξ′ . Taking the maximum of all these Nξ,ξ′ as ξ, ξ′ range over Ξ, we have that

there exists N ∈ N such that dx,ξ(xξ
′
n ) = dx,ξ(xξ

′

N) for all n ≥ N and for all ξ, ξ′ ∈ Ξ(η).

We claim that the vertices xξN , for ξ ∈ Ξ(η), are pairwise distinct.

Suppose that xξN = xξ
′

N =: y for some ξ, ξ′ ∈ Ξ(η). We will show that ξ = ξ′. By Lemma

2.31, it is sufficient to show thatQ(y, ξ) = Q(y, ξ′). It is sufficient to show (xξn)n≥N ⊆ Q(y, ξ′),

which will show Q(y, ξ) ⊆ Q(y, ξ′) by Lemma 2.30 (the opposite inclusion Q(y, ξ′) ⊆ Q(y, ξ)

follows symmetrically). Let n ≥ N . Since dx,ξ(xξ
′
n ) = dx,ξ(xξ

′

N) for all n ≥ N , by Lemma

2.39(4), there exists M ∈ N such that d(y, xξn) + d(xξn, xξ
′
m) = d(y, xξ′

m) for all m ≥ M .

Therefore, xξn ∈ Q(y, ξ′). Hence (xξn)n≥N ⊆ Q(y, ξ′), as desired, and we conclude that

Q(y, ξ) = Q(y, ξ′) which yields ξ = ξ′ by Lemma 2.31.

This immediately yields a contradiction as by Theorem 3.2, |{xξN : ξ ∈ Ξ(η)}| ≤ B. We

conclude therefore that |Ξ(η)| ≤ B.

Corollary 3.5. Let γ = (xn)n∈N ∈ CGR(x0, η). Then there is some N ∈ N such that

(xn)n≥N is a straight CGR. In particular, γ \ Γ̂s,η is finite.

Proof. We have that Ξ(η) is finite by Corollary 3.4, so by Lemma 2.40, there exists some

N ∈ N such that (xn)n≥N is straight. By Lemma 2.34, we have (xn)n≥m is straight for each

m ≥ N and so by Lemma 2.35, we have that xm is special for each m ≥ N , hence the second

claim holds.

The next corollary does not appear in [26].

Corollary 3.6. For any g ∈ G and any η ∈ ∂Γ̂, we have that Geo(g, η) is uniformly

locally finite (with respect to the metric d), where balls of radius r have cardinality at most

(2(r + 2ν) + 1)B, where B is the constant from Theorem 3.2.
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Proof. Let h ∈ Geo(g, η) and choose γ ∈ CGR(g, η) containing h. Write h = γ(i), where i =

d(g, h). Let x ∈ Geo(g, η) be such that d(h, x) ≤ r. Write x = λ(j) for some λ ∈ CGR(g, η)

and some j ∈ N. By the triangle inequality and Theorem 2.18, we have:

|i− j| = d(γ(i), γ(j)) ≤ d(γ(i), λ(j)) + d(λ(j), γ(j)) ≤ r + 2ν

Therefore, x ∈ ⋃
j≥0:|i−j|≤r+2ν{λ(j) : λ ∈ CGR(g, η)}. This shows that the ball of radius

r about h in Geo(g, η) is a subset of ⋃
j≥0:|i−j|≤r+2ν{λ(j) : λ ∈ CGR(g, η)}, which has

cardinality at most (2(r + 2ν) + 1)B by Theorem 3.2. We conclude that balls of radius r in

Geo(g, η) have cardinality at most (2(r + 2ν) + 1)B. Hence, Geo(g, η) is uniformly locally

finite.

Lemma 3.7. Let x ∈ Γ̂s,η and y ∈ G. Then Q(x, ξx,η) \Q(y, ξx,η) is finite.

Proof. We proceed as in the proof of [26, Lemma 5.4]. Suppose for contradiction that there

exists an infinite sequence (xn)n∈N ⊆ Q(x, ξx,η) \ Q(y, ξx,η). Then by Lemma 2.37, we have

xn ∈ Γ̂s,η and ξxn,η = ξx,η. For each n ∈ N, choose a CGR γn ∈ CGR(x, η) that converges to

ξx,η and passes through xn. By Corollary 3.3, up to extracting a subsequence, we may assume

that (γn)n∈N converges to a CGR γ = (yn)n∈N in CGR(x, η). Since γn → γ, we have that

γ ⊆ Q(x, ξx,η). By Lemma 2.30, this implies Q(x, ξγ) ⊆ Q(x, ξx,η). Therefore, by definition

of ξx,η, we obtain that Q(x, ξγ) = Q(x, ξx,η), and so ξγ = ξx,η by Lemma 2.31. By Lemma

2.12, we can find an N ∈ N such that yN ∈ Q(y, ξγ) and since γn → γ and since xn ∈ γn

for all n, we can find M ∈ N large enough such that yN ∈ γM ∩ γ(x, xM) (i.e. yN is before

xM on γM), which yields xM ∈ Q(yN , ξx,η). By Lemma 2.29, we have Q(yN , ξγ) ⊆ Q(y, ξγ).

Therefore, we obtain xM ∈ Q(y, ξx,η), contradicting that (xn)n∈N ⊆ Q(x, ξx,η) \Q(y, ξx,η).

Proposition 3.8. Let x ∈ G and η ∈ ∂Γ̂. Then Geo1(x, η) ⊆ Geo(x, η) ∩ Γ̂s,η and for any

γ ∈ CGR(x, η), γ \Geo1(x, η) is finite.
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Proof. We proceed as in the proof of [26, Proposition 5.8].

Geo1(x, η) ⊆ Geo(x, η): Let y ∈ Geo1(x, η). Then y ∈ Q(h, ξh,η) for some h ∈ Y (x, ξh,η), so

there exists γ ∈ CGR(h, η) such that y ∈ γ and γ converges to ξh,η. Choosing any geodesic

γxy joining x and h, by Lemma 2.36 we have that the concatenation γxyγ ∈ CGR(x, η).

Thus, y ∈ Geo(x, η).

Geo1(x, η) ⊆ Γ̂s,η: If y ∈ Geo1(x, η), then y ∈ Q(h, ξ) for some h ∈ Y (x, ξ). But by

definition of Y (x, ξ), h ∈ Γ̂s,η and ξ = ξh,η. By Lemma 2.37, Q(h, ξ) ⊆ Γ̂s,η, so h ∈ Γ̂s,η.

Now let γ = (xn)n ∈ CGR(x, η). By Corollary 3.5, there exists N ∈ N such that (xn)n≥N

is straight. By Lemma 2.35, we have xN ∈ Γ̂s,η and ξγ = ξxN ,η. Denote ξ = ξγ = ξxN ,η.

By definition of Q(xN , ξ), we have (xn)n≥N ⊆ Q(xN , ξ). For each y ∈ Y (x, ξ), we have

that Q(xN , ξ) \ Q(y, ξ) is finite by Lemma 3.7, and so (xn)n≥N \ Geo1(x, η) is finite, since

(xn)n≥N \Geo1(x, η) ⊆ Q(xN , ξ) \Q(y, ξ). Therefore, γ \Geo1(x, η) is finite.

We are now in a position to prove that the modified geodesic ray bundles Geo1 have finite

symmetric difference. Note that Y (g, ξ) is finite in our case because Geo(x, η) is locally

finite by Theorem 3.2. Also, by Corollary 3.5, Y (g, ξ) is non-empty, since for any CGR γ in

CGR(x, η), we can find a special vertex on γ.

Theorem 3.9. Let x, y ∈ G and η ∈ ∂Γ̂. Then Geo1(x, η) \Geo1(y, η) is finite.

Proof. We follow the proof of [26, Proposition 5.9].

For contradiction, suppose that there exists an infinite sequence (xn)n ⊆ Geo1(x, η) \

Geo1(y, η). Since Ξ(η) is finite and Y (x, ξ) is finite for each ξ ∈ Ξ(η), up to taking a

subsequence, we may assume that (xn)n ⊆ Q(x′, ξx′,η) for some x′ ∈ Γ̂s,η. Then for any

y′ ∈ Y (y, ξx′,η), we have Q(y′, ξx′,η) ⊆ Geo1(y, η) by definition of Geo1(y, η). By Lemma

3.7, we have that Q(x′, ξx′,η) \ Q(y′, ξx′,η) is finite. But (xn)n = (xn)n \ Geo1(y, η) ⊆
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Q(x′, ξx′,η) \ Q(y′, ξx′,η), giving that (xn)n is finite, a contradiction. We conclude that

Geo1(x, η) \Geo1(y, η) is finite.

Note that interchanging the roles of x, y, we also have that Geo1(y, η)\Geo1(x, η) is finite.

Thus, Geo1(x, η)4Geo1(y, η) is finite.

Lemma 3.10. For any g, x ∈ G and η ∈ ∂Γ̂ we have gGeo1(x, η) = Geo1(gx, gη).

Proof. This follows exactly as in the proof of [26, Lemma 5.10]:

Note that G acts by isometries on Γ̂ (by left translation) and by homeomorphisms on RG

(via the shift (gf)(h) = f(g−1h) for f ∈ RG and g, h ∈ G), where RG has the topology of

pointwise convergence.

Let us first verify that the G-action preserves the following sets: CGR(x, η), Ξ(η), Q(x, ξ),

Γ̂s,η, ξx,η, Geo(x, η) and Y (x, ξ).

gCGR(x, η) = CGR(gx, gη): Let γ ∈ CGR(x, η). Then gγ is a geodesic ray begin-

ning at gx and pointing in the direction gη. Therefore, gγ ∈ CGR(gx, gη), showing that

gCGR(x, η) ⊆ CGR(gx, gη) for all g ∈ G and for all x ∈ G, η ∈ ∂Γ̂. The reverse inclusion

follows from the forward inclusion. Indeed, for each g, x ∈ G and each η ∈ ∂Γ̂, by above

we have g−1CGR(gx, gη) ⊆ CGR(g−1gx, g−1gη) = CGR(x, η). Therefore, CGR(gx, gη) ⊆

gCGR(x, η).

gΞ(η) = Ξ(gη): If γ ∈ CGR(x, η) converges to some ξ ∈ Ξ(η), then since G acts by

isometries on Γ̂, for each g ∈ G, we have gγ ∈ CGR(gx, gη) and converges to gξ. Therefore,

gξ ∈ Ξ(gη). This shows that gΞ(η) ⊆ Ξ(gη) for each g ∈ G and each η ∈ ∂Γ̂. The reverse

inclusion follows from the forward inclusion as above.

gQ(x, ξ) = Q(gx, gξ): If y ∈ gQ(x, ξ), then y ∈ gγ for some γ ∈ CGR(x, η) converging

to ξ. But gγ ∈ CGR(gx, gη) and converges to gξ, so y ∈ Q(gx, gξ). The reverse inclusion
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follows as above, acting by g−1.

gΓ̂s,η = Γ̂s,gη: If y ∈ Γ̂s,η, then
⋂
ξ∈Ξ(η) Q(y, ξ) contains a CGR γ. Then g⋂

ξ∈Ξ(η) Q(y, ξ) =⋂
ξ∈Ξ(η) Q(gy, gξ) = ⋂

ξ∈Ξ(gη) Q(gy, ξ) contains the CGR gγ, so gy ∈ Γ̂s,gη, showing that

gΓ̂s,η ⊆ Γ̂s,gη. The reverse inclusion follows as above, acting by g−1.

gξx,η = ξgx,gη: If x is η-special and γ ∈ CGR(x, η) with γ ⊆ ⋂
ξ∈Ξ(η), hence converges

to ξx,η, then gξx,η is the limit of gγ ∈ CGR(gx, gη). We have gx ∈ Γ̂s,gη and by above

gγ ∈ ⋂
ξ∈Ξ(gη) Q(gx, ξ), so gξx,η, the limit of gγ, is equal to ξgx,gη. Thus, gξx,η ⊆ ξgx,gη. The

reverse inclusion follows as above, acting by g−1.

gGeo(x, η) = Geo(gx, gη): If y ∈ Geo(x, η), then y ∈ γ for some γ ∈ CGR(x, η), so gy ∈

gγ ∈ CGR(gx, gη). Therefore, gy ∈ Geo(gx, gη). This shows that gGeo(x, η) ⊆ Geo(gx, gη),

which implies the reverse inclusion by acting by g−1 as above.

gY (x, ξ) = Y (gx, gξ) : Let y ∈ Y (x, ξ). Then y ∈ Γ̂s,η, ξy,η = ξ and d(x, y) is minimal.

Then gy ∈ Γ̂s,gη, ξgy,gη = gξy,η = gξ, and d(gx, gy) is minimal possible (because otherwise

if there was a y′ satisfying the same above properties as gy with d(gx, y′) < d(gx, gy), then

g−1y would satisfy the same above properties as y but would have d(x, g−1y) < d(x, y), a

contradiction). Therefore, gY (x, ξ) ⊆ Y (gx, gξ) and as above this also implies the reverse

inclusion.

Finally, gGeo1(x, η) = Geo1(gx, gξ). Indeed, using our results above:

gGeo1(x, η) = g
⋃

ξ∈Ξ(η)

⋃
y∈Y (x,ξ)

Q(y, ξ) =
⋃

ξ∈Ξ(η)

⋃
y∈Y (x,ξ)

gQ(y, ξ) =
⋃

ξ∈Ξ(η)

⋃
y∈Y (x,ξ)

Q(gy, gξ)

=
⋃

ξ∈gΞ(η)

⋃
y∈gY (x,ξ)

Q(y, ξ) =
⋃

ξ∈Ξ(gη)

⋃
y∈Y (gx,gξ)

Q(y, ξ) = Geo1(gx, gη)
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4. Hyperfiniteness of the Boundary Ac-

tion

In this section, we establish the hyperfiniteness of the boundary action of our relatively

hyperbolic group G as a consequence of Theorem 3.9. Our arguments follow [26, Section 6].

The main difference here is in our coding of labels of geodesics. Recall that throughout we

are working in the relative Cayley graph Γ̂ with respect to a finite generating set X as in

Theorem 3.2.

First, we give a binary coding to the symmetrized generating set S := (X ∪H)±. Since S

is countably infinite, we can fix a bijection f : S → 2<N from S to the set 2<N of all infinite

binary sequences with only finitely many ones. The label of a geodesic ray is then coded as

an element of (2<N)N, which can be thought of as an "infinity by infinity" matrix with binary

coefficients, with row i corresponding to the binary string representing si for each i ∈ N (see

the figure below).
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Figure 4.1: A matrix representation of an element of (2<N)N

We can similarly also think of elements of (2n)n (i.e. a length n sequence of length n binary

sequences) as an n×n matrix by letting the ith row of the matrix be the ith-entry sequence.

We will need to order elements of (2n)n for each n.

We will need to order elements of (2n)n (i.e. the set of length n sequences of length

n binary strings) for each n. Following [17, Section 7], for each m1,m2 ∈ N, each w =

(w0, w1, ..., wn−1) ∈ (2m1)m2 and for each n ∈ N with n ≤ m1,m2, we put

w|n = ((w0)|n, (w1)|n, ..., (wn−1)|n), where (wj)|n is the restriction of the length m1 binary se-

quence wj to the first n entries. Similarly, if w ∈ (2N)N, we put w|n = ((w0)|n, (w1)|n, ..., (wn−1)|n).

If we visualize w ∈ (2n)n as an n × n matrix, then w|i is an i × i submatrix of the n × n

matrix w, starting at the top left corner of w.

For each n ∈ N, we fix a total order <n on (2n)n as in [17, Section 7] such that for all

w, v ∈ (2n+1)n+1, w|n <n v|n =⇒ w <n+1 v.

Given γ ∈ CGR(g, η), we define lab(γ) ∈ (2<N)N its coded label. Therefore, according to

above, lab(γ)|n ∈ (2n)n denotes the restricted label.
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Figure 4.2: The element s, which is a restriction of t, represented as matrices.

Now, analogously to [26, Definition 6.1], we have:

Definition 4.1. For η ∈ ∂Γ̂, define:

Cη = {(g, s) ∈ G×
⋃
m∈N

(2m)m : g ∈ Geo1(e, η), s = lab(γ)|n for some γ ∈ CGR(g, η), n ∈ N}

Definition 4.2. An s in (2n)n occurs in Cη if (g, s) ∈ Cη for some g ∈ Geo1(e, η). An s

in (2n)n occurs infinitely often in Cη if (g, s) ∈ Cη for infinitely many g ∈ Geo1(e, η).

Note that for each n ∈ N, there exists s ∈ (2n)n which occurs infinitely often in Cη because

taking any γ ∈ CGR(e, η), by Proposition 3.8, γ \ Geo1(e, η) is finite, so there exists some

N such that for all k ≥ N , γ(k) ∈ Geo1(e, η). Then (γ(k), lab((γ(i))i≥k)|n) ∈ Cη and

lab((γ(i))i≥k)|n ∈ (2n)n for each k ≥ N . Since (2n)n is finite, by the Pigeonhole Principle,

some s ∈ (2n)n must repeat infinitely often in Cη, that is, (γ(k), s) ∈ Cη for infinitely many

k ≥ N . For each n ∈ N, we can therefore choose the minimal (in the order <n defined above)

such s ∈ (2n)n occuring infinitely often in Cη. We shall denote this element by sηn.

For each n ∈ N, note that (sηn+1)|n = sηn. Indeed, s
η
n+1 appears infinitely often in Cη, thus

so does (sηn+1)|n, so sηn <n (sηn+1)|n or sηn = (sηn+1)|n. If sηn <n (sηn+1)|n, then since there are
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only finitely many extensions of sηn to an element of (2n+1)n+1 and since sηn appears infinitely

often in Cη, there would exist s ∈ (2n+1)n+1 such that s|n = sηn and s appears infinitely often

in Cη. Since s|n <n (sηn+1)|n, we obtain that s <n+1 s
η
n+1, contradicting the minimality of

sηn+1. Therefore, sηn = (sηn+1)|n.

We now fix a total order ≤ on the group G such that g ≤ h =⇒ d(e, g) ≤ d(e, h) (for

instance, fixing a total order on S, we can define ≤ to be lexicographic order on elements of

G as words over S, where we choose for each element of G the lexicographically least word

over S representing it).

Using the same notation as in [26, Section 6], we have:

Definition 4.3. For each n ∈ N and η ∈ ∂Γ̂, put T ηn = {g ∈ Geo1(e, η) : (g, sηn) ∈ Cη} and

put gηn = minT ηn (where the minimum is with respect to the above total order on G). Put

kηn = d(e, gηn) for each n ∈ N.

Note that the minimum exists because T ηn ⊆ Geo(e, η) and Geo(e, η) is locally finite by

Corollary 3.6. By definition of ≤ and since sηn = (sηn+1)|n for each n, we have that (T ηn )n

is a non-increasing sequence of sets and therefore the sequence (kηn)n∈N is a non-decreasing

sequence of natural numbers.

We shall now generalize the remaining results of [26, Section 6]. We recall that the topology

on G is the discrete topology induced by the relative metric d, the topology on ∂Γ̂ is the

topology having countable neighbourhood base (V (η,m)g)m∈N for each η ∈ ∂Γ̂ and basepoint

g ∈ G (see Section 2.3; recall that ∂Γ̂ is independent of the basepoint g by Remark 2.46

and Lemma 2.12), GN has the product topology and Chb(Γ̂) has the topology of pointwise

convergence.

Let us establish a link between the topology of ∂Γ̂ and sequences of CGRs in Γ̂. The

condition in the following proposition is often used as the definition of the topology on ∂X

when X is a proper hyperbolic space, but in general does not give the same topology on ∂X
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that we defined in Section 2.3.

Proposition 4.4. Suppose that ηn → η in ∂Γ̂. Then for any g ∈ G, there exists a sequence

of CGRs (γn)n such that γn ∈ CGR(g, ηn) for each n and such that every subsequence of

(γn)n has a subsequence converging to some CGR γ ∈ CGR(g, η).

Proof. Since ηn → η, then by definition of the topology on ∂Γ̂, we have that for each m ∈ N,

there exists a CGR γm ∈ CGR(g, ηm) and λm ∈ CGR(g, η) such that d(γm(t), λm(t)) ≤ 2ν

for every t ≤ m. We can replace these λm with a single geodesic λ ∈ CGR(g, η) (such as λ1)

to obtain that d(γm(t), λ(t)) ≤ 4ν for every t ≤ m and every m, since λm, λ are 2ν close for

each m. We claim that every subsequence of (γn)n has a convergent subsequence.

First, let us argue as in the proof of Theorem 3.2 to show that for each i, |{γn(i) : n ∈ N}|

is finite.

Given i ∈ N, set k = i + 5ν + 1. Then for n ≥ k, we have d(γn(k), λ(k)) ≤ 4ν. Let u

denote a geodesic between γn(k) and λ(k) (see Figure 4.3). Then arguing as in the proof of

Theorem 3.2, there exists a vertex v on λ with dX(γn(i), v) ≤ ν.Therefore, |{γn(i) : n ≥ k}|

is finite, and so |{γn(i) : n ∈ N}| is finite. It follows that ⋃
n γn ∪ λ is locally finite.

Since ⋃
n γn∪λ is locally finite, arguing as in Corollary 3.3 it follows that every subsequence

of (γn)n has a convergent subsequence.

Figure 4.3: The geometry of the geodesics γn, λ.
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We now generalize the claims of [26, Section 6] to relatively hyperbolic groups. We begin

by generalizing Claim 1 of [26]. In Claim 1 in [26], the set C below is proved to be compact,

while here it is only closed.

Claim 4.5. The set C = {γ ∈ GN : γ is a CGR} is closed. Furthermore, for any g ∈ G and

any η ∈ ∂Γ̂, the set CGR(g, η) ⊆ GN is compact.

Proof. Let (γn)n be a sequence of elements of C converging (pointwise) to some γ ∈ GN. We

claim that γ is a geodesic. Indeed, since γn → γ, for each m ∈ N, there exists N ∈ N such

that for all n ≥ N , we have γn|m = γ|m. In particular, it follows that γ|m is a geodesic, since

γn|m is a geodesic for each n. Thus, γ is a geodesic ray based at limn γn(0) and is hence a

CGR, so γ ∈ C. Therefore, C is closed.

The "furthermore" statement follows immediately from Corollary 3.3.

The next claims are the exact relatively hyperbolic analogues of claims from [26] and their

proofs are almost identical (most proofs are completely identical), however, we present all

proofs for completeness.

Claim 4.6. The set R = {(η, g, γ) ∈ ∂Γ̂×GN : γ ∈ CGR(g, η)} is closed in ∂Γ̂×GN.

Proof. Suppose that (ηn, gn, γn) ∈ R for all n and that (ηn, gn, γn) → (η, g, γ). Then ηn →

η ∈ ∂Γ̂, gn → g in G (so that (gn) is eventually equal to g, by discreteness of G) and γn → γ

in GN, so that γ ∈ CGR(g, η′) for some η′ ∈ ∂Γ̂ (by Claim 4.5). We will show that η = η′.

Since (gn) is eventually g, we can assume that gn = g for all n.

As ηn → η, by Proposition 4.4, there exists a sequence (γ′n)n with γ′n ∈ CGR(g, ηn) which

has a subsequence (γ′nk)k that converges to some γ′ ∈ CGR(g, η).
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We have γnk , γ′nk ∈ CGR(g, ηnk) for every k. so d(γnk(m), γ′nk(m)) ≤ 2ν for eachm. Taking

k →∞, we obtain that d(γ(m), γ′(m)) ≤ 2ν for all m, and therefore that η = η′.

Thus, (ηn, gn, γn)→ (η, g, γ) with γ ∈ CGR(g, η), so (η, g, γ) ∈ R and so R is closed.

Claim 4.7. The set F = {(η, g, (γ(0), γ(1)..., γ(n))) ∈ ∂Γ̂ × G × G<N : γ ∈ CGR(g, η)} is

Borel in ∂Γ̂×G×G<N.

Proof. Let F ′ = {(η, g, (γ(0), γ(1), ..., γ(n)), γ′) ∈ ∂Γ̂×G×G<N×GN : (η, g, γ′) ∈ R and γ′(i) =

γ(i) for each 0 ≤ i ≤ n}. By Claim 4.6, F ′ is closed in ∂Γ̂×G×G<N ×GN. Note that F is

the projection of F ′ to the first 3 coordinates. Note also that the section F ′(η,g,(γ(0),γ(1),...,γ(n)))

is compact for every (η, g, (γ(0), γ(1), ..., γ(n))) ∈ ∂Γ̂ × G<N. Indeed, F ′(η,g,(γ(0),γ(1),...,γ(n))) =

{γ′ ∈ CGR(g, η) : γ′(i) = γ(i) for all 0 ≤ i ≤ n}. This is a closed subset of the com-

pact set CGR(g, η), hence it is compact. By Theorem 2.75, it follows that F is Borel in

∂Γ̂×G×G<N.

Claim 4.8. The set M = {(η, ξ) ∈ ∂Γ̂× Chb(Γ̂) : ξ ∈ Ξ(η)} is Borel in ∂Γ̂× Chb(Γ̂).

Proof. We follow a similar proof to the proof of Claim 4 in [26].

We will show that M is both analytic and coanalytic, hence Borel by [24, Theorem 14.11].

By definition of Ξ(η), we have that (η, ξ) ∈M if and only if

∃γ ∈ GN : (η, γ(0), γ) ∈ R and ξγ = ξ

We also have that

ξγ = ξ ⇐⇒ ∀g ∈ G,∃n ∈ N ∀m ≥ n fγ(m)(g) = ξ(g)
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which gives a Borel definition of the set {(ξ, γ) ∈ Chb(Γ̂) × C : ξγ = ξ}. Thus, since R is

closed, we have that M is analytic.

To show that M is coanalytic, we will show that:

(η, ξ) ∈M ⇐⇒ ∀λ ∈ GN if (η, e, λ) ∈ R, then ∀k ∈ N,∃γk ∈ Gk+1 a geodesic path with

γk(0) = e such that γk ⊆ N2ν(λ) and such that ∀g ∈ G,∃ng ∈ N such that ∀i, j > ng,

fγj(i)(g) = ξ(g)

This formula defines a coanalytic set since there is a single universal quantifier ∀ ranging

over an uncountable standard Borel space GN.

For the forward direction, if (η, ξ) ∈ M , then there exists γ ∈ CGR(e, η) converging to ξ.

We simply take γk = γ|k (the restriction of Γ from 0 to k) for each k ∈ N. Then for each

λ ∈ CGR(e, η), we have d(γ(n), λ(n)) ≤ 2ν for each n ∈ N, so γ|k ⊆ N2ν(λ) for each k.

Furthermore, since γ converges to ξ, we have that for all ∀g ∈ G, there exists ng such that

for all i, j > ng, i ≤ j, we have fγ|j(i)(g) = ξ(g).

For the reverse direction, let λ ∈ CGR(e, η). Then by assumption, there exists a sequence

γk ∈ Gk+1 of geodesic paths starting at e, each contained in N2ν(λ) and such that fγi(j)(g)→

ξ(g). For each i, fix k = i + 2ν + 1 and using Theorem 2.18, choose an N sufficiently large

such that for all n ≥ N , we have

d(γn(t), λ(t)) ≤ 2ν

for all t ≤ k. Arguing as in the proof of Theorem 2.57, we have that{γj(i) : j ≥ N} is finite,

so that {γj(i) : j ∈ N} is finite for each i. Therefore, arguing as in the proof of Corollary

3.3, (γk)k has a subsequence converging to some CGR γ based at e, and γ ⊆ N2ν(λ),
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so γ ∈ CGR(e, η). From fγi(j)(g) → ξ(g) as i, j → ∞, we have that ξγ = ξ. Since

γ ∈ CGR(e, η), we conclude that (η, ξ) ∈M .

By Corollary 3.4, for each η ∈ ∂Γ̂, we have that the section Mη = Ξ(η) is finite, having

cardinality bounded above by the constant B = B(ν) from Theorem 3.2. Since M is Borel

and has finite sections of size at most B, by Theorem 2.74, we have Borel functions ξ1, ..., ξB :

∂Γ̂→ Chb(Γ̂) such that M is the union of the graphs Gξi = {(η, ξi(η)) : η ∈ ∂Γ̂} of the ξi.

Claim 4.9. For each i = 1, ..., B, Qi = {(η, g, h) ∈ ∂Γ̂ × G2 : h ∈ Q(g, ξi(η))} is Borel in

∂Γ̂×G2.

Proof. By [26, Lemma 4.2], we have Q(g, ξi(η)) = ⋃
n∈N γ(g, xn) for some, equivalently any,

CGR (xn)n ∈ CGR(g, η) converging to ξi(η).

From this, we obtain that h ∈ Q(g, ξi(η)) ⇐⇒ ∃λ ∈ C (resp. ∀λ ∈ C) with λ(0) = g

and ξλ = ξi(η) and ∃n ∈ N such that h ∈ γ(g, λ(n)). This yields the analyticity (from the ∃

above) and coanalyticity (from the ∀ above) of Qi, hence Borelness of Qi.

Claim 4.10. The set P = {(η, h) ∈ ∂Γ̂×G : h ∈ Γ̂s,η} is Borel in ∂Γ̂×G.

Proof. We have that h ∈ Γ̂s,η if and only if:

∀n ∈ N,∃γn ∈ Gn+1 : (η, h, γn) ∈ F and ∀i ≤ B ∀k < n, (η, h, γn(k)) ∈ Qi

Indeed, if h ∈ Γ̂s,η, then
⋂
ξ∈Ξ(η) Q(h, ξ) contains a CGR γ ∈ CGR(h, η), so we can take

the restriction γn = γ|n for all n ∈ N and for all k < n, γn(k) = γ(k) to satisfy the above

condition.

Conversely, if the above condition holds, then by local finiteness of Geo(h, η) (Corollary

3.6), the sequence (γn)n∈N with (η, h, γn) ∈ F will have a subsequence converging to some
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γ ∈ CGR(h, η) and the above condition yields that γ ⊆ ⋂
ξ∈Ξ(η) Q(h, ξ), so that h ∈ Γ̂s,η.

Then, because F and Qi are Borel, we have that P is Borel.

Claim 4.11. The set P1 = {(ξ, η, h) ∈ Chb(Γ̂)× ∂Γ̂×G : h ∈ Γ̂s,η and ξ = ξh,η} is Borel in

Chb(Γ̂)× ∂Γ̂×G.

Proof. We have (ξ, η, h) ∈ P1 if and only if (η, h) ∈ P and ∃i ≤ B such that (η, ξ) ∈ Gξi

and ∀j ≤ B, Q(h, ξi(η)) ⊆ Q(h, ξj(η)). Since P is Borel (Claim 4.10), Gξi is Borel (as ξi is

Borel), and Qi is Borel (Claim 4.9), the above yields that P1 is Borel.

Claim 4.12. The set L = {(h, ξ, η) ∈ G × Chb(Γ̂) × ∂Γ̂ : h ∈ Y (e, ξ), ξ ∈ Ξ(η)} is Borel in

G× Chb(Γ̂)× ∂Γ̂.

Proof. We have that (h, ξ, η) ∈ L if and only if (η, ξ) ∈ M and h is the closest element

to e (in the metric d) such that h ∈ Geo(e, η) and (ξ, η, h) ∈ P1. Thus, by Claims 4.8,

4.9, 4.11, L is Borel (note that h ∈ Geo(e, η) ⇐⇒ (η, e, h) ∈ Qi for some i ≤ B, so

{(h, η) ∈ G× ∂Γ̂ : h ∈ Geo(e, η)} is Borel in G× ∂Γ̂ by Claim 4.9).

Claim 4.13. The set B = {(g, h, ξ, η) ∈ G2×Chb(Γ̂)×∂Γ̂ : g ∈ Q(h, ξ), h ∈ Y (e, ξ), ξ ∈ Ξ(η)}

is Borel in G2 × Chb(Γ̂)× ∂Γ̂.

Proof. We have that (g, h, ξ, η) ∈ B if and only if ∃i ≤ r such that ξ = ξi(η) and (η, h, g) ∈ Qi

and (h, ξ, η) ∈ L. Since L,Qi and ξi are Borel, it follows that B is Borel.

Claim 4.14. The set A = {(η, g) ∈ ∂Γ̂×G : g ∈ Geo1(e, η)} is Borel in ∂Γ̂×G.

Proof. Since Geo1(e, η) = ⋃
ξ∈Ξ(η)

⋃
h∈Y (e,ξ) Q(h, ξ), we have (η, g) ∈ A if and only if ∃ξ ∈

Ξ(η),∃h ∈ Y (e, ξ) : g ∈ Q(h, ξ) if and only if ∃ξ ∈ Ξ(η),∃h ∈ Y (e, ξ) : (g, h, ξ, η) ∈ B. Thus,
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A is the projection (g, h, ξ, η) 7→ (η, g) of B onto ∂Γ̂×G. By Claim 4.13, B is Borel. Also,

the sections {(h, ξ) ∈ G×Chb(Γ̂) : h ∈ Y (e, ξ), ξ ∈ Ξ(η)} of B are finite by Theorem 3.2 and

Corollary 3.4. Therefore, by Theorem 2.74, A is Borel.

Claim 4.15. The set D = {(η, (γ(0), γ(1), ..., γ(n))) ∈ ∂Γ̂×G<N : γ(0) ∈ Geo1(e, η) and γ ∈

CGR(γ(0), η)} is Borel in ∂Γ̂×G<N.

Proof. We have that (η, (γ(0), γ(1), ..., γ(n))) ∈ D if and only if (η, γ(0), (γ(0), γ(1), ..., γ(n))) ∈

F and (η, γ(0)) ∈ A. By Claim 4.14, A is Borel in ∂Γ̂ × G. Also, F is Borel by Claim 4.7.

Therefore, D is Borel.

Claim 4.16. For each n, the set Sn := {(η, sn) ∈ ∂Γ̂×(2n)n : sn = sηn} is Borel in ∂Γ̂×(2n)n.

Proof. We have that (η, sn) ∈ Sn if and only if sn is the <n-minimal element in (2n)n for

which the following holds:

∀m ∈ N,∃(γ(0), γ(1), ..., γ(n)) ∈ Gn+1 : d(γ(0), e) ≥ m, (η, (γ(0), γ(1), ..., γ(n))) ∈ D and lab(γ)|n = sn

The "only if" holds by Corollary 3.6. Thus, Sn is Borel by Claim 4.15.

Now let E denote the orbit equivalence relation of the action of G on ∂Γ̂.

Definition 4.17. Let Z = {η ∈ ∂Γ̂ : kηn 9∞}.

We can characterize elements η ∈ Z in terms of geodesic rays having label sη:

Proposition 4.18. Z = {η ∈ ∂Γ̂ : ∃g ∈ Geo1(e, η) and ∃γ ∈ CGR(g, η) : lab(γ) = sη}

Proof. Suppose η ∈ Z. Then (kηn) converges, so ∃N and ∃r ∈ N such that for all n ≥ N ,

kηn = r. Therefore, d(e, gηn) = r for all n ≥ N . Since gηn ∈ Geo1(e, η) for all n and since
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Geo1(e, η) is locally finite (by Corollary 3.6), we have that ∃gη ∈ Geo1(e, η) such that gη

equals gηn for infinitely many n. Therefore, gη ∈ T ηn for infinitely many n, and so since

(T ηn )n is non-increasing, we have that g ∈ T ηn for all n. Therefore, for each n, there exists a

γn ∈ CGR(gη, η) with lab(γn)|n = sηn. By Corollary 3.3, the sequence (γn)n has a subsequence

converging to some γη ∈ CGR(gη, η). Since (sηn+1)|n = sηn for all n, we have that lab(γ) = sη.

Conversely, suppose ∃g ∈ Geo1(e, η) and ∃γ ∈ CGR(g, η) such that lab(γ) = sη. Then

g ∈ T ηn for all n ∈ N, so kηn ≤ d(e, g) and therefore η ∈ Z.

Lemma 4.19. The map α : (Z,E|Z)→ (∂Γ̂,=) given by η 7→ g−1
η η is a Borel reduction.

Proof. We argue as in [26]. First, let us show that sηn = sgηn for each g ∈ G, each η ∈ ∂Γ̂ and

each n ∈ N.

If there are infinitely many couples (h, sηn) ∈ Cη, then since the left action of G on Γ̂

preserves labels of geodesics, there are infinitely many couples (gh, sηn), where sηn = lab(γ)|n

for some γ ∈ CGR(γ(0), gη) and where γ(0) ∈ gGeo1(e, η) = Geo1(g, gη) (using Lemma 3.10

in the last line).

By Theorem 3.9, the symmetric difference between Geo1(g, gη) and Geo1(e, gη) is finite

and so there are infinitely many couples (gh, sηn) ∈ Geo1(e, gη). Hence, there are infinitely

many couples (gh, sηn) ∈ Cgη. Thus, as sηn is least in the order <n that appears infinitely

often in Cη, we have that sηn = sgηn . As sηn = sgηn for each n, we have sη = sgη.

This implies that α is constant on G-orbits. Indeed, suppose θ = gη for some g ∈ G,

η, θ ∈ Z. We have that α maps the boundary point [γθ] to the boundary point [g−1
θ γθ].

Note that g−1
θ γθ ∈ CGR(e, g−1

θ θ) and lab(g−1
θ γθ) = sθ, because γθ has label sθ and left

multiplication preserves labels of geodesics.

On the other hand, αmaps η = [γη] to g−1
η η = [g−1

η γη]. We have that g−1
η γη ∈ CGR(e, g−1

η η)

and lab(g−1
η γη) = sη.
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But by above, sη = sgη = sθ. Therefore, g−1
η γη and g−1

θ γθ both start at e and have the

same label. Therefore, they are the same geodesic. Hence, g−1
θ θ = g−1

η η i.e. α(θ) = α(η).

It follows that α is reduction to = on ∂Γ̂. Indeed, the above shows that θEη =⇒ α(θ) =

α(η). Conversely, if α(θ) = α(η), then g−1
η η = g−1

θ θ, so θ = gθg
−1
η η, so θEη.

It remains to show that α is Borel. To show this, let us first show that the set U :=

{(η, s) ∈ Z × (2N)N : s = sη} is Borel. We have s = sη if and only if (η, s|n) ∈ Sn for

each n ∈ N, so {(η, s) ∈ Z × (2N)N : s = sη} is Borel by Claim 4.16 (note that the map

(η, s) 7→ (η, s|n) is continuous, hence Borel, for each n ∈ N).

Now the Borelness of U implies the Borelness of the graph of α. Indeed, note that for

η ∈ Z and θ ∈ ∂Γ̂, we have θ = g−1
η η ⇐⇒ ∃γ ∈ C : γ ∈ CGR(e, θ) and lab(γ) = sη ⇐⇒

∃γ ∈ C : (θ, e, γ) ∈ R and (η, γ) ∈ Lab−1(U), where Lab : Z × C → Z × (2N)N is the

continuous map (η, γ) 7→ (η, lab(γ)). Putting T = {(η, θ, γ) ∈ Z × ∂Γ̂ × C : (θ, e, γ) ∈

R and (η, γ) ∈ lab−1(U)}, we have that T is Borel because R and U are Borel (see Claim

4.6 for the Borelness of R). By above, the graph of α is the projection projZ×∂Γ̂(T ) of T

onto the first two coordinates (η, θ). For each (η, θ) ∈ Z × ∂Γ̂, the section T(η,θ) = {γ ∈ C :

(η, θ, γ) ∈ T} = {γ ∈ C : γ ∈ CGR(e, θ) and lab(γ) = sη} is finite, being either a singleton

or the empty set (because a geodesic ray is uniquely determined by its basepoint and label).

Therefore, by Theorem 2.75, we have that projZ×∂Γ̂(T ) is Borel. Thus, the graph of α is

Borel, so α is Borel by Theorem 2.76.

Lemma 4.20. E is smooth on the saturation [Z]E = {η ∈ ∂Γ̂ : ∃θ ∈ Z such that θEη}.

Proof. By Lemma 4.19, E is smooth on Z, hence it is smooth on its saturation.

Definition 4.21. The shift action of G on 2G ∼= P(G) is the action g · A := gA = {ga :

a ∈ A} for each g ∈ G and A ⊆ G,
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Definition 4.22. Let Y = ∂Γ̂ \ [Z]E. For each n ∈ N, define Hn : ∂Γ̂ → 2G by Hn(η) =

(gηn)−1T ηn . Let Fn be the restriction of the orbit equivalence relation of the shift action of G

on 2G to imHn.

The following lemma is a generalization of [26, Lemma 6.7].

Lemma 4.23. There exists a constant K such that for each n ∈ N, each equivalence class

of Fn has size at most K.

Proof. By Corollary 3.6, each closed ball of radius r has cardinality at most (2(r+2ν)+1)B,

where B is the constant from Theorem 3.2. We will show that we can take K = (20ν+ 1)B.

Let η, θ ∈ Y and suppose that Hn(η) = gHn(θ). By the proof of [26, Lemma 6.7] (which

only relies on the hyperbolicity of the Cayley graph and local finiteness of geodesic ray bun-

dles and so holds in our context when applied to Γ̂), we have d(e, g) ≤ 8ν. For completeness,

let us reproduce this proof.

By defiinition, T ηn (resp. T θn) is an infinite subset of Geo(e, η) (resp. Geo(e, θ)). Since

Geo(e, η) is locally finite, this means that T ηn (resp. T θn) uniquely determines η (resp. θ).

From Hn(η) = gHn(θ), we have (gηn)−1T ηn = g(gθn)−1T θn and since T ηn and T θn determine their

boundary points, this implies that σ := (gηn)−1η = g(gθn)−1θ.

We have that g, e ∈ (gηn)−1T ηn = g(gθn)−1T θn ⊆ Geo(g(gθn)−1, σ), so there exists λ ∈

CGR(g(gθn)−1, σ) passing through g and λ′ ∈ CGR(g(gθn)−1, σ) passing through e. Write

g = λ(m1) and e = λ′(m2) for some m1,m2 ∈ N. Note that by Theorem 2.18, we have

d(e, λ(m2)) ≤ 2ν. Also, we have m2 ≥ m1. Indeed, since gθng−1 ∈ gθng−1(gηn)−1T ηn = T θn , we

have:

m2 = d(e, g(gθn)−1) = d(e, gθng−1) ≥ d(e, gθn) = d(e, (gθn)−1) = d(g, g(gθn)−1) = m1
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Where d(e, gθng−1) ≥ d(e, gθn) by ≤ minimality of gθn in T θn .

Similarly, from g, e ∈ (gηn)−1T ηn , we have g, e ∈ Geo((gηn)−1, σ), and so there exists γ ∈

CGR((gθn)−1, σ) passing through g and γ′ ∈ CGR((gθn)−1, σ) passing through e. Write g =

γ(m3) and e = γ′(m4) for some m3,m4 ∈ N. By Theorem 2.18, we have d(e, γ(m4)) ≤ 2ν

and m4 ≤ m3 because gηng ∈ gηng(gθn)−1T θn = T ηn and so by the ≤-minimality of gηn in T ηn , we

have that:

m3 = d((gηn)−1, g) = d(e, gηng) ≥ d(e, gηn) = d(e, (gηn)−1) = m4

Let us now consider the sub-CGRs of λ and γ starting at g. Using Theorem 2.18, since

m2 ≥ m1, there exists m5 ≥ m3 such that d(λ(m2), γ(m5)) ≤ 2ν. Then by the triangle

inequality and our above estimates, we have:

d(γ(m4), γ(m5)) ≤ d(γ(m4), e) + d(e, λ(m2)) + d(λ(m2), γ(m5)) ≤ 6ν

Therefore,

d(e, g) = d(e, γ(m3)) ≤ d(e, γ(m4)) + d(γ(m4), γ(m3)) ≤ 2ν + d(γ(m4), γ(m5)) ≤ 8ν

where we have d(γ(m4), γ(m3)) ≤ d(γ(m4), γ(m5)) because m5 ≥ m3 ≥ m4. where we

have d(γ(m4), γ(m3)) ≤ d(γ(m4), γ(m5)) because m5 ≥ m3 ≥ m4.
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Figure 4.4: The geometry of the proof of Lemma 4.23

Thus, Hn(η) = gHn(θ) implies that g is in the ball of radius 8ν about e in Geo((gnη )−1, σ),

which has cardinality at most (2(8ν + 2ν) + 1)B = (20ν + 1)B = K. Thus, Fn-classes have

cardinality at most K.

Claim 4.24. For each n ∈ N, the map φ : ∂Γ̂→ G given by φ(η) = gηn is Borel.

Proof. For each g ∈ G, we have φ−1(g) = {η ∈ ∂Γ̂ : g = gηn}. We have g = gηn if and only if

g is the least element in T ηn . Now,

g ∈ T ηn ⇐⇒ (g, sηn) ∈ Cη

⇐⇒ ∃(γ(0), γ(1), ..., γ(n)) ∈ Gn+1 : γ(0) = g and (η, (γ(0), γ(1), ..., γ(n))) ∈ D

and (η, lab((γ(0), γ(1), ..., γ(n))|n) ∈ Sn

Since Gn+1 is countable, since D, Sn are Borel and since the label map ∂Γ̂ × Gn+1 →

∂Γ̂ × (2n)n given by (η, (γ(0), ..., γ(n))) 7→ (η, lab(γ(0), ..., γ(n))|n) is continuous (hence,

Borel), we have that the set of all η which satisfy the latter condition is Borel. Therefore,

φ−1(g) is Borel for all g ∈ G. Therefore, since G is discrete, it follows that φ is Borel.
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Claim 4.25. For each n ∈ N, the map ψ : ∂Γ̂→ 2G given by ψ(η) = T ηn is Borel.

Proof. Note that 2G has countable clopen basis for its topology consisting of the sets Ug =

{A ⊆ G : g ∈ A} for each g ∈ G. Thus, it suffices to show that ψ−1(Ug) = {η ∈ ∂Γ̂ : g ∈ T ηn}

is Borel for each g ∈ G.

From the proof of Claim 4.24, we have:

g ∈ T ηn ⇐⇒ ∃(γ(0), γ(1), ..., γ(n)) ∈ Gn+1 : γ(0) = g and (η, (γ(0), γ(1), ..., γ(n))) ∈ D

and (η, lab((γ(0), γ(1), ..., γ(n))|n) ∈ Sn

As noted in the proof of Claim 4.24, the set of all η which satisfy the latter condition is

Borel, since Gn+1 is countable and the sets Sn and D are Borel. Therefore, ψ−1(Ug) is Borel

for every g ∈ G, and so ψ is Borel.

The following remaining results have the same proof as in [26].

Lemma 4.26. Let n ∈ N. Then the map Hn is Borel and so imHn is analytic.

Proof. By Claims 4.24 and 4.25, the maps φ : η 7→ gηn and ψ : η 7→ T ηn are Borel for each n.

Next, since multiplication m : G × 2G 3 (g,S) 7→ gS and inversion ι : g 7→ g−1 are

continuous (hence, Borel) and since Hn is the composition Hn(η) = m(φ(η)−1, ψ(η)), it

follows that Hn is Borel.

Since Hn is Borel, we conclude that imHn is analytic.

By Lemma 4.23, the equivalence classes of Fn have size at most K, so applying Lemma

2.77 to Fn for each n, there exists a finite Borel equivalence relation F ′n on 2G with Fn ⊆ F ′n.

Since F ′n is finite Borel, there exists a Borel reduction fn : 2G → 2N from F ′n → E0 for each
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n ∈ N (as finite Borel equivalence relations are smooth; see for instance [34, Proposition

1.4.4]), using which we define f : ∂Γ̂ → (2N)N by f(η) = (fn(Hn(η)))n. Put E ′ = f−1(E1)

(so that θE ′η ⇐⇒ f(θ)E1f(η)).

Lemma 4.27. The equivalence relation E ′ is a hyperfinite countable Borel equivalence rela-

tion.

Proof. Since Hn is Borel, we have that E ′ is Borel. We also have that E ′ is hypersmooth by

definition, and so it is hyperfinite by [19, Theorem 8.1.5]. We follow the same proof as the

proof of [26, Lemma 6.9], to show that E ′ is countable.

For each n ∈ N, define the relation E ′n on ∂Γ̂ by ηE ′nθ if fm(Hm(η)) = fm(Hm(θ)) for all

m ≥ n. Each E ′n is countable because if ηE ′nθ, then fn(Hn(η)) = fn(Hn(θ)), but fn ◦Hn is

countable-to-one (because Hn is countable-to-one because if Hn(η) = Hn(θ), then ηEθ and

fn is finite-to-one since F ′n is finite), which implies that there are only countably many choices

for η such that ηE ′nθ once θ is fixed. Thus, E ′n is countable. Noting that E ′ = ⋃
n∈NE

′
n, we

obtain that E ′ is countable.

Lemma 4.28. f is a homomorphism from E|Y to E1.

Proof. Suppose η, θ ∈ Y are E-related, as witnessed by g ∈ G (so gη = θ). By Theorem 3.9

and Lemma 3.10, we have that gGeo1(e, η) and Geo1(e, θ) differ by a finite set. Since η ∈ Y ,

we have that d(T ηn , e) → ∞ as n → ∞, so there exists N1 ∈ N such that gT ηn ⊆ Geo1(e, θ)

for all n ≥ N1. By the proof of Lemma 4.19, we have sηn = sθn, so since gT ηn ⊆ Geo1(e, θ)

for all n ≥ N1 we have that gT ηn ⊆ T θn for all n ≥ N1. Repeating the above argument with

the roles of η, θ reversed, we obtain g−1T θn ⊆ T ηn , i.e. T θn ⊆ gT ηn for all n ≥ N2, for some

N2 ∈ N. Letting N = max{N1, N2}, we then have gT ηn = T θn for all n ≥ N . This yields

(gθn)−1ggηnH
η
n = Hθ

n for all n ≥ N . Thus, we have Hn(η)FnHn(θ) and so Hn(η)F ′nHn(θ) for

all n ≥ N . Thus, we have fn(Hn(η)) = fn(Hn(θ)) for all n ≥ N and so f(η)E1f(θ).
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Let us now establish Theorem A on the hyperfiniteness of E, following the proof of [26,

Theorem A].

Proof of Theorem A:

Note that E|Y is a sub-relation of E ′. Indeed, if θ, η ∈ Y and θEη, then by Lemma 4.28,

f(θ)E1f(η), which implies θE ′η. By Lemma 4.27, E ′ is hyperfinite, so E|Y is hyperfinite,

since a sub-relation of a hyperfinite equivalence relation is hyperfinite. On ∂Γ̂ \ Y = [Z]E,

E is smooth by Lemma 4.20, and hence hyperfinite. Therefore, E is hyperfinite on ∂Γ̂.

Recall that we fixed a finite generating set X as in Theorem 3.2. If we use any other finite

generating set X ′ for G, then the boundary ∂Γ̂′ of the relative Cayley graph Γ̂′ corresponding

to X ′ is G-equivariantly homeomorphic to ∂Γ̂. One way to see this is to use Theorem 2.60.

By Theorem 2.60, ∂Γ̂′ and ∂Γ̂ are both G-equivariantly homeomorphic to the same subspace

of ∂(G,P), hence are G-equivariantly homeomorphic. It follows that the orbit equivalence

relation of G on ∂Γ̂′ is also hyperfinite. �

As a corollary, we obtain Corollary B on the hyperfiniteness of the action of G on ∂(G,P),

where P is the collection of parabolic subgroups.

Proof of Corollary B:

By Theorem 2.60, the orbit equivalence relation of G on ∂Γ̂ is a subrelation of the orbit

equivalence relation of G on ∂(G,P). Since the orbit equivalence relation of G on ∂Γ̂ is

hyperfinite (by Theorem A) and since ∂(G,P) \ ∂Γ̂ is countable, it follows that the orbit

equivalence relation of G on ∂(G,P) is also hyperfinite (because every equivalence relation

on a countable standard Borel space is hyperfinite). �
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5. Conclusion and Further work

In this thesis, we have used the machinary of relatively hyperbolic groups from [29] to gener-

alize the hyperfiniteness of the boundary action of hyperbolic groups from [26] to relatively

hyperbolic groups. We have shown that relatively hyperbolic groups admit a hyperfinite or-

bit equivalence relation through their action on the boundary of their relative Cayley graphs

and as a quick corollary, we have obtained hyperfiniteness of the orbit equivalence relation

of the action of relatively hyperbolic groups on their Bowditch boundary.

5.1 Boundary Actions of Acylindrically and Hierarchi-

cally Hyperbolic Groups

Beyond relative hyperbolicity, one can ask the question of hyperfiniteness of the action of the

more general acylindrically hyperbolic groups on the boundaries of some or all acylindrical

Cayley graphs.

Following [30], an isometric action of a group G on a metric space X is acylindrical if

∀ε > 0,∃R,N such that for all x, y ∈ X with d(x, y) ≥ R,

|{g ∈ G : d(x, gx), d(y, gy) ≤ ε}| ≤ N

Let G act isometrically on a hyperbolic metric space X. The limit set of G on the

sequential boundary ∂X is Λ(G) = Gx ∩ ∂X in the topology on X ∪ ∂X (defined using
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Gromov product and sequences converging at infinity; see [16, Chapter 3.4] and [9, Pages

432-433] for the definition of sequential boundary and the topology) for any x ∈ X (note that

Gx ∩ ∂X is the same set for any x ∈ X). An isometric action of a group G on a hyperbolic

metric space X is called non-elementary if |Λ(G)| > 2.

A group G is called acylindrically hyperbolic if G admits a non-elementary acylindrical

action on some hyperbolic space. A Cayley graph for a group G is called acylindrical (resp.

non-elementary) if it is hyperbolic and the natural action of G on it is acylindrical (resp.

non-elementary). The class of acylindrically hyperbolic groups contains many examples, in

particular, all non-virtually cyclic relatively hyperbolic groups (hence all non-virtually cyclic

hyperbolic groups).

Acylindrically hyperbolic groups can also be characterized in the language of relative Cay-

ley graphs via hyperbolically embedded subgroups.

Let H be a subgroup of a group G. If X is a relative generating set of G with respect

to H, then we can put a natural metric on H as follows. For any x, y ∈ H, a path p in

the relative Cayley graph Γ̂ = Γ(G;X ∪ H) is admissible if p does not contain any edges

from the complete subgraph associated to H in Γ̂. We define a (potentially infinite valued)

metric d̂ on H by putting d̂(x, y) to be the least length of an admissible path between x, y in

Γ̂, if one exists, else we define d̂(x, y) = ∞. Then H is hyperbolically embedded in G with

respect to X (written H ↪→h (G,X)) if d̂ is a locally finite metric on H.

A subgroup H of G is called non-degenerate if it is proper and infinite. By [30, Theorem

1.2], G is acylindrically hyperbolic if and only if G has a non-degenerate hyperbolically

embedded subgroup. It is shown in [14, Proposition 4.28] that G is hyperbolic relative to

{H} if and only if H ↪→h (G,X) for some finite relative generating set X.

With the characterization of acylindrically hyperbolic groups in terms of hyperbolically

embedded subgroups, we can perform similar geometry as we did above for relatively hy-
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perbolic groups in the relative Cayley graph Γ̂. The main difficulty in the acylindrical case

is that the relative generating set X need no longer be finite, so the proof of Theorem 3.2

(which was the main ingredient in showing hyperfiniteness of the boundary action) no longer

works. So far, the author has not succeeded in further generalizing the results of this thesis

to acylindrically hyperbolic groups and believes that new techniques might be required to

establish hyperfiniteness of the action of acylindrically hyperbolic groups on the boundaries

of their acylindrical or relative Cayley graphs (if the result is even true for acylindrically

hyperbolic groups).

There are examples of acylindrically hyperbolic groups that are not relatively hyperbolic

and induce hyperfinite orbit equivalence relations on boundaries of their Cayley graphs.

Mapping class groups of surfaces of finite type are acylindrically hyperbolic ([32]) but not

relatively hyperbolic in general ([4]) and are known to induce a hyperfinite equivalence

relation on the boundary of the curve graph of the surface ([33]). Since the action on the

curve graph is cobounded and by isometries, this translates to an isomorphic action of such

mapping class groups on the boundary of some acylindrical Cayley graph quasi-isometric

to the curve graph, hence establishing the hyperfiniteness of the action of the group on

the boundary of this Cayley graph. However, it is not known if the action of the mapping

class group on the boundary of every non-elementary acylindrical Cayley graph induces

a hyperfinite equivalence relation. To the author’s knowledge, mapping class groups of

surfaces of finite type are the only known examples of non-relatively hyperbolic acylindrically

hyperbolic groups inducing hyperfinite orbit equivalence relations on boundaries of their

Cayley graphs.

A related problem to hyperfiniteness of the boundary action is boundary amenability of

a group. A group is boundary amenable if it admits a topologically amenable action

by homeomorphisms on a compact Hausdorff space (see [7] for the definition of topological

amenability). Relatively hyperbolic groups with boundary amenable parabolic subgroups
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were shown to be boundary amenable by Ozawa in [31]. It is deduced in [33] from the

hyperfiniteness of the action of a mapping class group on the space of complete geodesic

laminations (which is compact Hausdorff) and the fact that point stabilizers are amenable

that mapping class groups are boundary amenable. Also, it is shown in [7] that the outer

automorphism group of a free group, Out(Fn), is boundary amenable for all n (note that

for n ≥ 3, Out(Fn) is acylindrically hyperbolic but not relatively hyperbolic; see [6] and

[4]). However, in [27], Osajda has constructed a non-exact (hence not boundary amenable)

acylindrically hyperbolic group. The author hopes to study Osajda’s construction to see

if it provides a counterexample to hyperfiniteness of the boundary action for acylindrically

hyperbolic groups.

Aside from acylindrically hyperbolic groups, another generalization of hyperbolic groups

are hierarchically hyperbolic groups. We shall not define these here but refer the reader to

[5] for their definition and theory. Hierarchically hyperbolic groups are modeled off of the

structure of mapping class groups and also have a notion of boundary, which is a com-

pact metrizable space on which the group acts naturally (see [18]). Therefore, we may ask

if hierarchically hyperbolic groups induce a hyperfinite orbit equivalence relation on their

boundary. The author hopes to generalize the work of Przytycki and Sabok in [33] from

mapping class groups to general hierarchically hyperbolic groups in the future.

5.2 Thin ends

If X is a graph, then we can define an equivalence relation on the set of all geodesic rays in

X by putting, for geodesic rays γ1, γ2, γ1 ∼ γ2 if for every finite subset S ⊆ X(0), γ1, γ2 have

tails in the same connected component of X(0) \S. An end of X is an equivalence class with

respect to ∼. The degree of an end is the maximum number of pairwise disjoint geodesic

rays in the end. An end is thin if it has finite degree (see [21]).

Thin ends are used to show that accessibility of finitely generated groups is a quasi-isometry
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invariant (see [35]).

For the case of a relative Cayley graph Γ̂ of a relatively hyperbolic group, Theorem 3.2

implies that if the set of ends of Γ̂ equals ∂Γ̂, then Γ̂ has thin ends. This appears to not

have been known for relatively hyperbolic groups.
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