
Monte Carlo Algorithms for
Nonlinear Filtering, Bayesian Graph
Neural Networks, and Probabilistic

Forecasting

Soumyasundar Pal

Department of Electrical & Computer Engineering
McGill University

Montréal, Québec, Canada
May 22, 2022

A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

©2022 Soumyasundar Pal

Abstract
Computational Bayesian inference has numerous applications in many branches of signal
processing and machine learning. Bayesian techniques allow for principled modeling of
uncertainty in the design of inference algorithms and offer better empirical performance
than their non-Bayesian counterparts in diverse problem settings. However, the posterior
distribution of the quantity of interest is not analytically tractable in most practical
inference tasks. Approximating the posterior distribution using Monte Carlo methods
provides an avenue for implementing Bayesian approaches in these cases. Such
approximations often require tremendous computational efforts and scale poorly to
complex, high-dimensional settings. Designing scalable and computationally efficient
Monte Carlo methods for Bayesian inference is thus of paramount importance in many
tasks, and is the main topic of this thesis. The main novel contributions of this thesis can
be organized into the following three categories.

First, we address the task of sequential inference of the state of a hidden Markov model in
the presence of Gaussian mixture distributed noises. In this setting, the filtering distribution
is multi-modal and existing techniques fall short in providing accurate state estimates. We
propose several particle flow based algorithms which are suitable for this scenario and offer
significant improvement compared to the current state-of-the-art filtering techniques.

Second, we develop a general Bayesian Graph Convolutional Neural Network (BGCN)
framework and apply it in a semi-supervised node classification problem. Viewing the
observed graph as a realization from a parametric family of random graphs, the Bayesian
approach targets inference of the joint posterior of the random graph parameters and the
node labels. We also propose an extension of the BGCN by incorporating a non-parametric
graph inference approach, which extends the applicability of the Bayesian framework to
other learning tasks beyond node classification.

Third, we tackle a probabilistic spatio-temporal forecasting task, where utilizing the spatial
relationships among the time-series is beneficial for accurate forecasting. We treat the time-
series data as a random realization from a nonlinear state-space model and target Bayesian
inference of the hidden states for probabilistic forecasting. Particle flow is used as the tool
for posterior inference of the states, due to its effectiveness in complex, high-dimensional
scenarios. Our approach provides a better characterization of uncertainty while maintaining
comparable accuracy to the state-of-the-art point forecasting methods.

i

Abrégé
L’inférence bayésienne computationnelle a de nombreuses applications dans plusieurs
branches du domaine de traitement du signal et de l’apprentissage automatique. Les
techniques bayésiennes permettent une modélisation fondée sur des principes de
l’incertitude dans la conception des algorithmes d’inférence et offrent de meilleures
performances empiriques que leurs homologues non bayésiennes dans divers contextes.
Cependant, la distribution postérieure de la quantité d’intérêt n’est pas traitable
analytiquement dans la plupart des tâches d’inférence pratiques. L’approximation de la
distribution a postériori à l’aide des méthodes de Monte Carlo permet de mettre en œuvre
des approches bayésiennes pour ces cas-ci. De telles approximations nécessitent souvent
d’énormes efforts de calcul et s’adaptent mal à des paramètres complexes de grande
dimension. La conception de méthodes Monte Carlo évolutives et efficaces en termes de
calcul pour l’inférence bayésienne est donc d’une importance primordiale dans de
nombreuses tâches, et constitue le sujet principal de cette thèse. Les principales
contributions de cette thèse peuvent être classées dans les trois catégories suivantes.

Premièrement, nous abordons la tâche d’inférence séquentielle de l’état d’un modèle de
Markov caché en présence de bruits distribués selon un mélange gaussien. Dans ce cadre,
la distribution de filtrage est multimodale et les techniques existantes ne parviennent pas à
fournir des estimations d’état précises. Nous proposons plusieurs algorithmes basés sur le
flux de particules qui conviennent à ce scénario et offrent une amélioration significative par
rapport à l’état de l’art actuel des techniques de filtrage.

Deuxièmement, nous développons le cadre général Bayesian Graph Convolutional Neural
Network (BGCN) et l’appliquons à un problème de classification de nœuds semi-supervisé.
En considérant le graphe observé comme une réalisation d’une famille paramétrique de
graphes aléatoires, l’approche bayésienne cible l’inférence de la distribution conjointe a
postériori des paramètres du graphe aléatoire et des étiquettes de nœuds. Nous proposons
également une extension du BGCN en incorporant une approche d’inférence de graphe non
paramétrique, qui étend l’applicabilité du cadre bayésien à d’autres tâches d’apprentissage
au-delà de la classification des nœuds.

Troisièmement, nous abordons une tâche de prévision spatio-temporelle probabiliste, où
l’utilisation des relations spatiales entre les séries chronologiques permet une prévision
précise. Nous traitons les données de séries chronologiques comme une réalisation aléatoire

ii

à partir d’un modèle espace-état non linéaire et l’inférence bayésienne cible des états cachés
pour la prévision probabiliste. Le flux de particules est utilisé comme outil pour l’inférence
des états a postériori, en raison de son efficacité dans des scénarios complexes de grande
dimension. Notre approche permet une meilleure caractérisation de l’incertitude tout en
maintenant une précision comparable à l’état de l’art des méthodes de prévision
ponctuelle.

iii

Acknowledgements
First and foremost, I would like to express my sincere gratitude toward my supervisor Prof.
Mark Coates. I am tremendously grateful for his continuous support, for many in-depth
discussions, and for his tireless efforts in supervising my research. As a student in his
research group, I got many opportunities to learn valuable research skills. His insightful
feedback and invaluable guidance contributed greatly in my progress as a graduate student.
I am also truly grateful for the thoughtful feedback, that I have received from my graduate
committee members, Prof. David Stephens and Prof. Ioannis Psaromiligkos, during several
presentations in course of my PhD.

I have been extremely fortunate to work with many talented researchers from McGill and
Huawei, including Dr. Yunpeng Li, Dr. Deniz Üstebay, Florence, Liheng, Yingxue,
Antonios, Arezou, Fatemeh, Saber, Yishi and Jianing. Collaborative research has always
been a learning experience for me, and I am grateful to all of you for being fantastic
collaborators.

The lab has always been a stimulating environment, thanks to everyone in the group. The
friendship and support of the labmates have been a key factor in dealing with the pandemic-
induced stress. I also appreciate the support and guidance provided by the department of
Electrical and Computer Engineering of McGill University.

Last but not least, I am forever indebted to my family for their relentless love, support, and
encouragement throughout my life.

iv

Contents
Abstract . i
Acknowledgements . iv
List of Acronyms . xii

1 Introduction 1
1.1 Thesis Organization and Contributions . 5

1.1.1 Publications and Contributions of Collaborators 6

2 Background Material and Literature Review 10
2.1 Sequential Inference Techniques . 10

2.1.1 Hidden Markov Models . 10
2.1.2 Kalman Filter . 11
2.1.3 Extended Kalman Filter . 13
2.1.4 Gaussian Sum Filter . 14
2.1.5 Particle Filter . 16
2.1.6 Particle Flow . 23
2.1.7 Particle Flow Particle Filter . 28
2.1.8 Sequential Markov Chain Monte Carlo 31
2.1.9 SMCMC with Invertible Particle Flow 35

2.2 Graph Neural Networks and Graph Generative Models 40
2.2.1 Graph Neural Networks . 41
2.2.2 Graph Convolutional Networks . 43
2.2.3 Topology Uncertainty in Graph Neural Networks 46
2.2.4 Learning a Graph from Observed Data 47
2.2.5 Parametric Random Graph Models 48
2.2.6 Machine Learning Based Graph Models 49

2.3 Time-Series Forecasting . 50
2.3.1 Statistical Forecasting Models . 51
2.3.2 Deep Learning Based Point Forecasting Models 52
2.3.3 Deep Learning Based Probabilistic Forecasting Models 56
2.3.4 Spatio-Temporal Forecasting Models 59
2.3.5 Stochastic RNNs and Parameter Inference in State-Space Models . . 64

v

2.4 Summary . 67

3 Sequential Inference in Presence of Gaussian Mixture Noise Models 69
3.1 Introduction . 69
3.2 Problem Statement . 70
3.3 Particle Flow for GMM Noises . 71
3.4 Particle Flow Particle Filter for GMM Noises 73
3.5 SmHMC with LEDH for GMM Noises . 77
3.6 Numerical Experiments and Results . 79

3.6.1 Linear Model with GMM Noises . 81
3.6.2 Nonlinear Model with GMM Noises 83

3.7 Summary . 85

4 Bayesian Graph Convolutional Neural Networks 86
4.1 Introduction . 86
4.2 Graph Convolutional Networks . 87
4.3 Bayesian Neural Networks . 88
4.4 BGCN using Parametric Graph Models . 89

4.4.1 Assortative Mixed Membership Stochastic Block Model 90
4.4.2 Posterior Inference for a-MMSBM . 91
4.4.3 Expanded Mean Parameterization . 92
4.4.4 Stochastic Optimization and Minibatch Sampling 93

4.5 BGCN using Non-Parametric Graph Learning 95
4.5.1 Semi-Supervised Node Classification 97
4.5.2 Link Prediction . 99

4.6 Numerical Experiments and Results . 101
4.6.1 Datasets . 101
4.6.2 Semi-Supervised Node Classification 102
4.6.3 Node Classification under Adversarial Attack 107
4.6.4 Link Prediction . 110

4.7 Summary . 112

5 RNN with Particle Flow 114

vi

5.1 Introduction . 114
5.2 Problem Statement . 115
5.3 Methodology . 116

5.3.1 State-Space Model . 116
5.3.2 Inference . 118

5.4 Numerical Experiments and Results . 122
5.4.1 Datasets . 122
5.4.2 Definitions of Evaluation Metrics . 123
5.4.3 Experiments on PeMS datasets . 125
5.4.4 Experiments on Non-Graph Datasets 136
5.4.5 Computational Complexity, Memory Requirement, and Execution Time140

5.5 Summary . 141

6 Conclusions and Future Work 142
6.1 Conclusions . 142

6.1.1 Sequential Inference in Presence of Gaussian Mixture Noise Models . 142
6.1.2 Bayesian Graph Convolutional Neural Networks 144
6.1.3 RNN with Particle Flow . 145

6.2 Future Work . 147
6.2.1 Sequential Inference in Presence of Gaussian Mixture Noise Models . 147
6.2.2 Bayesian Graph Convolutional Neural Networks 148
6.2.3 RNN with Particle Flow . 150

A Convergence Results for SMCMC 152
A.1 Introduction . 152
A.2 Convergence of MC Estimates . 157
A.3 Convergence of Normalizing Constants . 159

B Additional Results for Semi-supervised Node Classification 161

C Additional Results for Time-Series Forecasting 163
C.1 Results for PeMSD4, PeMSD7, and PeMSD8 163
C.2 Effect of Number of Particles . 163

vii

C.3 Effect of Different Learnable Noise Variance at Each Node 164
C.4 Comparison with a Variational Inference (VI) Approach 164

viii

List of Tables
3.1 Average and 5th and 95th sample percentiles of MSE of state estimation,

acceptance rates, and execution time per step in the linear model. 82
3.2 Average and 5th and 95th sample percentiles of MSE of state estimation,

acceptance rates, and execution time per step in the nonlinear model. 84

4.1 Statistics of the benchmark citation datasets. 101
4.2 Accuracy of semi-supervised node classification on random splits. 104
4.3 Accuracy and classifier margin for adversarial attack 110
4.4 AUC and AP for link prediction. 111

5.1 Summary statistics of the PeMS road traffic datasets. 123
5.2 Summary statistics of the multivariate non-graph datasets. 123
5.3 Average MAE, MAPE and RMSE for PeMSD3 dataset. 130
5.4 Average CRPS, P10QL, P50QL, and P90QL for PeMSD3 dataset. 131
5.5 Average MAE, MAPE, and RMSE for the flow based approaches and encoder-

decoder models. 134
5.6 Average MAE, MAPE, and RMSE for AGCGRU+flow and AGCGRU+BPF. 135
5.7 Average CRPS, P10QL, and P90QL for AGCGRU+flow and AGCGRU+BPF. 136
5.8 Average MAE, MAPE, and RMSE for ensembles and AGCGRU+flow. . . . 137
5.9 Average CRPS, P10QL, and P90QL for ensembles and AGCGRU+flow. . . . 138
5.10 Normalized Deviation on Electricity and Traffic datasets. 139
5.11 Average CRPSsum for Electricity, Traffic, Taxi, and Wikipedia datasets. . . . 139
5.12 Execution time, memory consumption, and model size for AGCRN-ensemble,

GMAN-ensemble, and AGCGRU+flow. 140

B.1 Accuracy of semi-supervised node classification on fixed splits. 161

C.1 Average MAE, MAPE and RMSE for PeMSD4 dataset. 166
C.2 Average MAE, MAPE and RMSE for PeMSD7 dataset. 167
C.3 Average MAE, MAPE and RMSE for PeMSD8 dataset. 168
C.4 Average CRPS, P10QL, P50QL, and P90QL for PeMSD4 dataset. 169
C.5 Average CRPS, P10QL, P50QL, and P90QL for PeMSD7 dataset. 170
C.6 Average CRPS, P10QL, P50QL, and P90QL for PeMSD8 dataset. 171

ix

C.7 Average MAE, MAPE, and RMSE for AGCGRU+flow with different number
of particles. 175

C.8 Average CRPS, P10QL, and P90QL for AGCGRU+flow with different number
of particles. 176

C.9 Average MAE, MAPE, and RMSE for AGCGRU+flow with learnable and
fixed noise variance settings. 177

C.10 Average CRPS, P10QL, and P90QL for AGCGRU+flow with learnable and
fixed noise variance settings. 178

C.11 Average MAE, MAPE, and RMSE for AGCGRU+flow and AGCGRU+VI. . 179
C.12 Average CRPS, P10QL, and P90QL for AGCGRU+flow and AGCGRU+VI. 180

x

List of Figures
2.1 Migration of particles from a 2-d Gaussian prior to a 2-d Gaussian posterior

distribution. 25

4.1 Visualization of error correction of BGCN (NP) for lower and higher degree
nodes . 106

4.2 Visualization of the MAP estimate of adjacency matrix (AĜ) from the non-
parametric model for Cora. 107

4.3 Boxplots of the average classification margin 109

5.1 The graphical model representation of the state-space model in Section 5.3.1 117
5.2 Probabilistic forecasting from the state-space model using particle flow. . . . 120
5.3 Boxplot of ranks of the top 10 algorithms across the four PeMS datasets . . 128
5.4 Scatter-plots of MAE at each node for AGCGRU+flow v.s. that of AGCRN. 129
5.5 Confidence intervals at different nodes of PeMSD3 dataset. 133

C.1 Confidence intervals at different nodes of PeMSD4 dataset. 172
C.2 Confidence intervals at different nodes of PeMSD7 dataset. 173
C.3 Confidence intervals at different nodes of PeMSD8 dataset. 174

xi

List of Acronyms

TPU Tensor processing unit
HMM Hidden Markov model
SSM State-space model
SMC Sequential Monte Carlo
MCMC Markov chain Monte Carlo
SIS Sequential importance sampling
SISR Sequential importance sampling with resampling
ESS Effective sample size
BPF Bootstrap particle filter
APF Auxiliary particle filter
UPF Unscented particle filter
DH Daum-Huang
EDH Exact Daum-Huang
LEDH Localized exact Daum-Huang
PFPF Particle flow particle filter
GSMC Guided Sequential Monte Carlo
GPFIS Gaussian particle flow importance sampling
SMCMC Sequential Markov chain Monte Carlo
SIMCMC Sequentially interacting Markov chain Monte Carlo
HMC Hamiltonian Monte Carlo
mHMC manifold Hamiltonian Monte Carlo
MAP Maximum a posteriori
MLP Multi-layer perceptron
CNN Convolutional neural networks
RNN Recurrent neural networks
GNN Graph neural network
GCN Graph convolutional networks
VGAE Variational graph autoencoder
DGLFRM Deep generative latent feature relational model
SBM Stochastic block model
MMSBM Mixed membership stochastic block model

xii

AR Auto-regressive
ARMA Auto-regressive moving average
ARIMA Auto-regressive integrated moving average
SARIMA Seasonal auto-regressive integrated moving average
LSTM Long short-term memory
GRU Gated recurrent unit
TRMF Temporal regularized matrix factorization
N-BEATS Neural basis expansion analysis for time-series
MQRNN Multi-quantile recurrent neural networks
TGCN Temporal graph convolutional network
DCRNN Diffusion convolutional recurrent neural network
AGCRN Adaptive graph convolutional recurrent network
STGCN Spatio-temporal graph convolutional network
LSGCN Long short-term graph convolutional network
MTGNN Multivariate Time-series forecasting with Graph Neural Network
SLCNN Structure learning convolutional neural network
STSGCN Spatial-temporal synchronous graph convolutional network
ASTGCN Attention spatial-temporal graph convolutional networks
GMAN Graph multi-attention network
STGRAT Spatio-Temporal GRaph ATtention
FC-GAGA Fully Connected GAted Graph Architecture

xiii

Chapter 1
Introduction
As per the Bayesian interpretation, a degree of belief in an event is expressed via probability.
This is considerably different from the ‘frequentist’ approach, which views probability as the
limit of the relative frequency of an event, after a large number of trials have been conducted.
In the Bayesian setting, the unknown parameters of a statistical model are considered random
variables and a ‘prior’ distribution is adopted to the model parameters to assign one’s beliefs
about them before observing any data. Any background knowledge, such as information from
previous experiments and/or subjective assessment of an expert can be utilized to determine
a suitable prior over the parameters. In light of the observed data, one updates this belief
from the ‘prior’ to the ‘posterior’ distribution of the parameters by applying Bayes’ theorem.
Prediction from the model for new data is obtained by computing the posterior predictive
distribution, which involves marginalization with respect to the posterior distribution over
the model parameters.

Aside from interesting theoretical connotations [1] that go back to the work of de Finetti,
the Bayesian framework offers several advantages. Incorporation of the uncertainty
associated with model parameters into the statistical inference task and gauging the
uncertainty in the predictions of a statistical model are principled yet seamlessly natural in
the Bayesian context. Computation of the posterior distribution of parameters is
inherently sequential, i.e., in settings where data is observed in a streaming fashion, the
current posterior distribution serves as the prior to account for the effect of the next
observation. In addition, handling of nuisance parameters is elegantly accomplished by
marginalization. The Bayesian approach also provides a straightforward probabilistic
interpretation of the confidence intervals without resorting to asymptotics. In view of
these, an eminent statistician and a vocal proponent of Bayesian approaches, Dennis V.
Lindley, claimed, “the only good statistics is Bayesian statistics” [2], and predicted “a
Bayesian 21st century” in 1975.

There are two key ingredients of the Bayesian approach: a) computing the posterior
distribution; and b) obtaining the posterior predictive distribution. Except for simple
settings, such as the parametric models with conjugate priors, the posterior distribution of
interest does not have a closed form in most practical problems. Computing the posterior

1

predictive density requires evaluation of a potentially high-dimensional integral, depending
on the complexity of the model. Practical implementation of Bayesian methodology is thus
not straightforward and often requires approximation. Monte Carlo methods offer an
elegant solution to both of these problems. The posterior distribution is approximated by a
set of Monte Carlo samples, which are subsequently used for estimating the predictive
distribution.

There are several classes of Monte Carlo methods, such as rejection sampling [3],
importance sampling [4], and Markov Chain Monte Carlo [5]. The choice of a suitable
algorithm typically depends on the complexity of an inference task and the availability of
the computational resources. The rapid improvement of both hardware and software
suitable for large scale computations in recent decades has been a key driving force of the
research for the development of novel Monte Carlo algorithms and their applications to
solve challenging, practical problems. As an illustrative example, one can observe the
historical evolution of Bayesian neural networks. Earlier approaches [6–8] were scalable to
only a few hidden layers because of the limited computing power available thirty years ago,
whereas training of Bayesian deep learning architectures with millions of parameters has
been carried out recently using several clusters containing hundreds of tensor processing
units (TPUs) [9].

Despite their practical utility, generic Monte Carlo methods often perform poorly when
used to solve challenging inference problems in signal processing and machine learning
applications. They often have extremely high computational requirements and fail to scale
to high-dimensions. The design of scalable and computationally efficient techniques for
Bayesian inference thus requires careful consideration and is an active area of research. In
this thesis, we focus on the development of novel Monte Carlo algorithms for three different
tasks: high-dimensional nonlinear filtering, learning from graph structured data, and
probabilistic spatio-temporal forecasting.

Effective and efficient online learning of high-dimensional states is an important task in
many domains where we need to regularly update our knowledge by processing a deluge of
streaming data. Relevant applications include robotic navigation [10], multi-target
tracking [11], and weather forecasting [12]. In this setting, we aim to estimate the states of
a hidden Markov model (HMM) from a sequence of observations. Since the state-transition

2

and the observation process of the HMM are noisy, exact estimation is infeasible and a
Bayesian framework is adopted for recursive computation of the filtering distribution, i.e.,
the marginal posterior distribution of the states. However, except for idealized scenarios,
such as a linear-Gaussian model, filtering cannot be performed analytically. Use of particle
filters [13] has become a standard approach for state estimation in nonlinear systems.
However, their performance usually deteriorates if the dimension of the state space is high
or the measurements are highly informative [14, 15]. Although there have been multiple
proposals to address this issue [14–19], the methods rely on the posterior having a special
structure or are computationally expensive. Particle flow filters [20, 21] can achieve
impressive performance for a much reduced computational overhead. Instead of sampling,
particles are migrated from the prior to the posterior by identifying and solving differential
equations that link these two distributions. The approximations needed to implement these
filters can lead to particles not being a genuine sample from the posterior. To address this,
several recent algorithms combine particle flow and particle filtering [22–26]. Another class
of algorithms are the sequential Markov Chain Monte Carlo (SMCMC) [15, 27] methods,
which use a Metropolis-Hastings (MH) accept-reject approach to improve filtering
performance in high dimensions.

A major limitation of many of these existing approaches is that their design relies on
implicit uni-modality assumptions (e.g., Gaussian density or log-concavity) regarding the
predictive and the posterior distributions [15, 21, 23]. As a result, they exhibit poor
performance in tracking multi-modal posteriors. Several approaches [28–31], which can
deal with multi-modality, either scale poorly to high dimensions or break down in the
presence of high nonlinearity. In Chapter 3 of this thesis, we address a setting where the
dynamic and measurement models can be approximated by a nonlinearity with additive
noise distributed according to a Gaussian mixture. We develop several particle flow based
filtering algorithms, which are demonstrably superior to existing techniques in
high-dimensional state estimation.

A significant body of research focuses on using neural networks to analyze structured data
when there is an underlying graph describing the relationship between data items.
Alleviating the difficulties associated with the computational inefficiency of the earlier
approaches [32–34], numerous graph neural network (GNN) [35, 36] models have been
proposed in recent years for addressing various graph based learning tasks such as node

3

classification [37, 38] and link prediction [39, 40]. These approaches process the observed
graph as if it depicts the true relationship among the nodes. In practice, the observed
graphs are often formed based on imperfect observations and approximate modelling
assumptions. Spurious edges might be present and important links might be deleted. The
vast majority of existing algorithms cannot take the uncertainty of the graph structure into
account during training as there is no mechanism for removing spurious edges and/or
adding informative edges in the observed graph.

Several algorithms that do address this uncertainty by incorporating a graph learning
component have been proposed recently [41–45]. However, these methods either use
variational approximation that introduces a bias in the approximate posterior of the graph
or have limited applicability, since these models focus only on the task of node
classification. In Chapter 4 of this thesis, we consider a generally applicable Bayesian
framework for node- and edge-level learning tasks by viewing the ‘true’ graph as a random
quantity. We target posterior inference of the graph topology, and combine this graph
inference procedure with the training of graph neural network architectures to account for
the uncertainty arising from the graph structure.

We also consider a spatio-temporal forecasting task, which has numerous applications in
analyzing wireless, traffic, and financial networks. For example, accurate forecasting of car
speed at different roads of a city can potentially improve traffic management and reduce
congestion. This ensures faster commute for the drivers and helps in reducing air pollution.
In this case, there are useful similarities among the time-series at adjoining roads. Suppose
congestion is observed at a particular junction of a road. Then, one can expect a similar
phenomenon to happen at the preceding segments that lead to that junction. If an
algorithm can model these type of spatial dependencies effectively, then it can achieve
improved forecasting performance. Such spatial relationships are often encoded in the form
of a graph.

Many classical statistical models [46, 47] disregard this graph completely and fall short in
handling the complexity and high non-linearity present in time-series data. Recent
advances in deep learning [48–51] allow for better modelling of spatial and temporal
dependencies. While most of these models focus on obtaining accurate point forecasts, they
do not characterize the prediction uncertainty, which is crucial for intelligent use of the

4

obtained forecasts in other downstream tasks. On the other hand, existing probabilistic
forecasting models [52–54] are not equipped to exploit the spatial relationships among the
time-series. In order to address these issues, we cast the forecasting task in a Bayesian
framework using a graph cognizant, nonlinear state-space model in Chapter 5 of this thesis
and derive a probabilistic forecasting technique that can incorporate the graph structure.
We conduct experiments on several time-series datasets to demonstrate the effectiveness of
the proposed algorithm.

1.1 Thesis Organization and Contributions

We describe the organization of the thesis and summarize the main technical contributions in
this section. The material presented in this thesis has been published in various journals and
conferences such as IEEE Transactions on Signal Processing, 2019 [55], the Advancement
of Artificial Intelligence Conference (AAAI), 2019 [56], the Conference on Uncertainty in
Artificial Intelligence (UAI), 2020 [57], and International Conference on Machine Learning
(ICML), 2021 [58].

• Chapter 2 - Background Material and Literature Review: We present a comprehensive
coverage of background material required for this thesis. The first part reviews the
common sequential inference techniques in a state-space model and the recent
developments in particle filter, particle flow, particle flow particle filter, and
sequential MCMC (SMCMC) methods. The second part of the chapter is devoted to
graph neural networks and some material concerning generative models for graphs.
We provide a literature review of time-series forecasting models in the third part.

• Chapter 3 - Sequential Inference in the Presence of Gaussian Mixture Noise Models:
In this chapter, we propose three novel algorithms for sequential inference in a state-
space model when both process and measurement noises are distributed as mixtures of
Gaussians. These algorithms are compared to existing techniques in challenging high-
dimensional filtering problems with multi-modal posteriors. We introduce Particle
Flow for Gaussian Mixture Models (PF-GMM) [59], which generalizes the particle flow
approach to multi-modal posterior distributions. We then propose a novel particle
filtering algorithm, called the Particle Flow Particle Filter for Gaussian Mixture Models
(PFPF-GMM) [60], for the same problem setting to mitigate the effect of the improper

5

model assumptions and numerical approximations required for computing the flow.
Finally, we propose the Sequential Markov Chain Monte Carlo method for Gaussian
Mixture Models (SMCMC-GMM) [55], which uses a modified version of invertible
particle flow to construct a suitable multi-modal proposal distribution in the joint
draw step of the SMCMC algorithm.

• Chapter 4 - Bayesian Graph Convolutional Neural Networks: This chapter presents a
Bayesian framework for learning on graphs. We view the observed graph as a realization
from a parametric random graph model and target inference of the joint posterior of
the random graph parameters and the GNN weights [56]. The resulting algorithm
is compared to several baseline techniques in a transductive node classification task
and in the face of adversarial attacks. We then propose a novel non-parametric graph
model for constructing the posterior distribution of graph adjacency matrices in the
Bayesian framework [57]. This allows us to extend the proposed methodology to other
graph related learning tasks beyond node classification.

• Chapter 5 - RNN with Particle Flow: In this chapter, we introduce a novel Bayesian
framework for probabilistic spatio-temporal forecasting [58]. We view the
spatio-temporal data as a sequence of random observations from a graph cognizant,
nonlinear state-space model and cast the forecasting task in the Bayesian framework.
The effectiveness of particle flow [21] in complex, high-dimensional settings motivates
its use as the Monte Carlo method for posterior inference of the hidden states.
Thorough experimentation on several real world time-series datasets demonstrates
the benefits of the proposed methodology.

• Chapter 6 - Conclusions and Future Work: In this chapter, we summarize the main
contributions of this thesis and discuss the main results. In addition, we identify
potential future research directions, including several strategies for improving the
methodologies developed in this thesis.

1.1.1 Publications and Contributions of Collaborators

• Chapter 3

– S. Pal and M. Coates, “Gaussian sum particle flow filter,” in Proc. IEEE Int.
Workshop Comput. Adv. Multi-Sensor Adaptive Process., Curacao, The

6

Netherlands, Dec. 2017, pp. 1–5. [59]

Prof. Mark Coates proposed the idea of extending particle flow approaches to
track multi-modal posterior distributions. I derived the proposed PF-GMM
algorithm, implemented it along with other baseline algorithms, and evaluated
their performance in several numerical simulation setups.

– S. Pal and M. Coates, “Particle flow particle filter for Gaussian mixture noise
models,” in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., Calgary,
Canada, Apr. 2018, pp. 4249–4253. [60]

Prof. Mark Coates proposed the idea of viewing the hidden Markov model with
Gaussian mixture noises as a switching state-space model for facilitating the
development of a particle flow particle filter. I derived and implemented the
proposed PFPF-GMM algorithm and compared its performance with several
baseline methods.

– Y. Li, S. Pal, and M. Coates, “Invertible particle flow-based sequential MCMC
with extension to Gaussian mixture noise models,” IEEE Trans. Signal Process.,
vol. 67, no. 9, pp. 2499–2512, May 2019. [55]

Dr. Yunpeng Li and Prof. Mark Coates published a conference paper [61] on
incorporating invertible particle flow into the joint draw step of Sequential
MCMC. In this journal paper, we provided a more detailed description of the
proposed approach, presented more computationally efficient algorithms, and
proposed a sequential MCMC method with mixture model-based flow for
efficient exploration of multi-modal distributions. We also derived theoretical
results regarding asymptotic convergence of the algorithms. I proposed the novel
SmHMC-GMM (LEDH) algorithm, conducted its implementation, and
participated in the derivation of the theoretical results. I was co-first author
(with Dr. Li) in recognition of our joint effort in developing the methodology.

• Chapter 4

– Y. Zhang, S. Pal, M. Coates, and D. Üstebay, “Bayesian graph convolutional
neural networks for semi-supervised classification,” in Proc. AAAI Conf.
Artificial Intell., Honolulu, HI, USA, Feb. 2019, pp. 5829–5836. [56]

7

Prof. Mark Coates proposed the idea of incorporating the uncertainty associated
with the graph topology into graph convolutional networks (GCN) [37, 62] and
provided a derivation of the resulting algorithm. I was a co-first author (with
Yingxue Zhang) and my responsibilities were implementation of the stochastic
gradient maximum a posteriori (MAP) estimation algorithm of the
assortative-Mixed Membership Stochastic Block Model (a-MMSBM) parameters
and integrating it with the Graph Convolutional Network (GCN) module.
Yingxue Zhang helped in designing the experimental setup, ran several baseline
algorithms, and conducted the experiment to test the adversarial robustness of
the proposed algorithm. Dr. Deniz Üstebay and Prof. Mark Coates provided
valuable advice on designing the experiments and contributed greatly in writing
the manuscript.

– S. Pal, S. Malekmohammadi, F. Regol, Y. Zhang, Y. Xu, and M. Coates, “Non-
parametric graph learning for Bayesian graph neural networks,” in Proc. Conf.
Uncertainty in Artificial Intell., Virtual, Aug. 2020. [57]

Prof. Mark Coates asked me to consider extension of the Bayesian learning
framework to other learning tasks beyond node classification. I derived and
implemented the non-parametric graph inference based node classification and
link prediction algorithms. Florence Regol contributed in designing the
experimental setups and data visualization. Using my implementation of the
non-parametric graph inference algorithm, Saber Malekmohammadi and Yishi
Yu conducted the recommendation system experiments (not included in this
thesis for conciseness). Yingxue Zhang and Prof. Mark Coates supervised the
research plan and edited the manuscript.

• Chapter 5

– S. Pal, L. Ma, Y. Zhang, and M. Coates, “RNN with particle flow for probabilistic
spatio-temporal forecasting,” in Proc. Int. Conf. Machine Learning, Virtual, Jul.
2021. [58]

Prof. Mark Coates proposed the initial idea of conducting posterior inference of
the RNN states using particle flow. I derived the proposed algorithms and
implemented them along with most of the baselines. Liheng Ma conducted

8

implementation of the rest of the baseline algorithms and helped in data
visualization. Yingxue Zhang and Prof. Mark Coates provided valuable advice
on designing the experiments and contributed immensely in writing the
manuscript.

9

Chapter 2
Background Material and Literature
Review
In this chapter, we cover the key background material and literature review for the three
main topics addressed in this thesis. In Section 2.1, we introduce notation, state the
filtering task, and review several classes of sequential inference techniques, such as particle
filter, particle flow and sequential MCMC (SMCMC) algorithms. An introduction to graph
neural networks and some relevant material on generative models for graphs is provided in
Section 2.2. Section 2.3 presents a detailed review of the existing work on time-series
forecasting algorithms.

2.1 Sequential Inference Techniques

In this section, we introduce the hidden Markov model and state the sequential inference
task in the Bayesian framework. Subsequently, we review several classes of filtering
techniques such as Kalman filters, particle filters (a.k.a. sequential Monte Carlo), and
sequential Markov Chain Monte Carlo (MCMC) methods. Particle flow filters, which
exhibit impressive performance for many high-dimensional filtering problems in nonlinear
and non-Gaussian models, are discussed briefly. We also provide a review of advanced
particle filtering and sequential MCMC approaches, which are based on particle flow.

2.1.1 Hidden Markov Models

In many settings such as robotic learning [10], financial modelling [63], multi-target
tracking [11], and weather forecasting [12], online inference of evolving states by processing
a sequence of observed data is essential. The hidden Markov model (HMM) is a natural
choice as a statistical model to explain the state transition and the observation process in
these cases. In this model, the dynamics of the unobserved (hidden) state are governed by
the Markov property; that is, the current state is conditionally independent of the past
state trajectory given the most recent state. There is another process, called the
observation or measurement process, which is modelled as independent of all past states

10

and measurements conditioned on the current state. Let x0 denote the initial state before
any measurement arrives and xk and zk represent the hidden state and the measurement at
time k, respectively. The hidden Markov model is described as:

x0 ∼ p(x0), (2.1)
xk = gk(xk−1, vk) for k > 1 , (2.2)
zk = hk(xk, wk) for k > 1 . (2.3)

Here p(x0) is an initial probability density function, gk : Rdx × Rdv → Rdx is the state-
transition function of the unobserved state xk ∈ Rdx , zk ∈ Rdz is the measurement generated
from the state xk through a potentially nonlinear measurement model hk : Rdx×Rdw → Rdz .
vk ∈ Rdv is the process noise, and wk ∈ Rdw is the measurement noise. vk and wk are assumed
to be mutually independent and independent of the initial state x0.

Based on this model, the discrete time filtering task is to compute the marginal posterior
distribution of the state trajectory p(xk|z1, · · · , zk) recursively with time k. For conciseness,
we use xa:b to denote the set {xa, xa+1, · · · , xb} and za:b to denote the set {za, za+1, · · · , zb},
where a and b are integers and a < b. The posterior distribution p(xk|z1:k) summarizes the
uncertainty in the state xk given all measurements up to k-th time step and is used for state
estimation.

2.1.2 Kalman Filter

If the HMM is linear-Gaussian, i.e., the initial state x0 is normally distributed and both the
dynamic and measurement models are linear with additive Gaussian noises, the predictive
distribution and the posterior distribution at each time step are Gaussian as well. In that
case, the Kalman filter [64, 65] provides a closed-form solution to obtain p(xk|z1:k) from
p(xk−1|z1:k−1) recursively. Suppose the linear-Gaussian HMM is represented as:

x0 ∼ N (x0;µ0, P0) , (2.4)
xk = Gkxk−1 + vk for k > 1 , (2.5)
zk = Hkxk + wk for k > 1 . (2.6)

11

Here, µ0 ∈ Rdx and P0 ∈ Rdx×dx are the mean and covariance matrix of x0. Gk ∈ Rdx×dx

and Hk ∈ Rdz×dx denote the state transition and measurement matrices respectively. vk ∼
N (0, Qk) and wk ∼ N (0, Rk) are zero-mean additive Gaussian noises.

Suppose the normal posterior distribution at time k−1, p(xk−1|z1:k−1), has mean µk−1|k−1

and covariance matrix Pk−1|k−1. We initialize µ0|0 = µ0 and P0|0 = P0 at k = 0. At each
subsequent time step k > 1, the Kalman filter performs the following two steps:

Predict step computes the predictive posterior distribution p(xk|z1:k−1) at time step k from
the posterior distribution p(xk−1|z1:k−1) of the previous time step as follows:

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 . (2.7)

Since both terms of the integrand in eq. (2.7) are Gaussian in a linear-Gaussian HMM, the
predictive posterior distribution is also normal and its mean µk|k−1 and covariance matrix
Pk|k−1 can be computed in closed form as follows:

µk|k−1 = Gkµk−1|k−1 , (2.8)
Pk|k−1 = GkPk−1|k−1G

T
k +Qk . (2.9)

Update step uses the predictive posterior distribution p(xk|z1:k−1) as the prior in time
step k in conjunction with the observation likelihood p(zk|xk) and applies Bayes’ theorem to
compute the current step posterior p(xk|z1:k) as follows:

p(xk|z1:k) = p(xk|z1:k−1)p(zk|xk)∫
p(x̃k|z1:k−1)p(zk|x̃k) dx̃k

. (2.10)

For a linear-Gaussian HMM, p(xk|z1:k) = N (xk;µk|k, Pk|k) and the recursive computation for
µk|k and Pk|k are given as:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 , (2.11)

µk|k = µk|k−1 +Kk(zk −Hkµk|k−1) , (2.12)
Pk|k = (I −KkHk)Pk|k−1 . (2.13)

12

2.1.3 Extended Kalman Filter

If the HMM has nonlinearity in its state-transition and/or measurement model and the
process and measurement noises are additive, then it is represented as:

xk = gk(xk−1) + vk for k > 1 , (2.14)
zk = hk(xk) + wk for k > 1 . (2.15)

In this case, the posterior distribution of the state is non-Gaussian and cannot be computed
in closed form in general using the Kalman filter in Section 2.1.3. A first order Taylor
expansion based approximation of the dynamic and measure models is employed in the
Extended Kalman Filter (EKF) [65] to obtain a Gaussian approximation of the posterior
distribution.

Formally, linearization of the dynamic model at the mean of the posterior distribution of the
previous state yields:

Gk = ∂gk(x)
∂x

∣∣∣∣∣
x=µk−1|k−1

. (2.16)

Similarly, the measurement model is linearized at the mean of the predictive posterior
distribution of the state to obtain

Hk = ∂hk(x)
∂x

∣∣∣∣∣
x=µk|k−1

. (2.17)

Subsequently, Gk and Hk are used in eq. (2.9), (2.11), and (2.13). The computation of the
approximate mean of the predictive posterior distribution in eq. (2.8) is modified as:

µk|k−1 = gk(µk−1|k−1) . (2.18)

Similarly, the computation of the approximate posterior mean in eq. (2.12) is changed
to

µk|k = µk|k−1 +Kk(zk − hk(µk|k−1)) . (2.19)

13

Although the EKF is widely used to perform nonlinear filtering, it shows poor performance
when the linear approximation of the HMM is severely inaccurate.

2.1.4 Gaussian Sum Filter

In many cases, the predictive posterior distribution and/or the measurement likelihood are
multi-modal [29–31] and the Gaussian approximations result in a large estimation error.
The Gaussian Sum Filter (GSF) [30] framework considers a setting where both
vk ∼

∑M
m=1 ψk,mN (τk,m, Qk,m) and wk ∼

∑N
n=1 βk,nN (ζk,n, Rk,n), are distributed according

to Gaussian mixture models (GMMs).

Suppose the posterior distribution at time step k−1 is approximated by L component
Gaussian mixture as follows:

p(xk−1|z1:k−1) ≈
L∑
`=1

γk−1,`N (xk|µk−1,`, Pk−1,`) . (2.20)

The predictive posterior distribution at time k can be approximated as:

p(xk|z1:k−1) ≈
L∑
`=1

M∑
m=1

αk,`mN (xk|µ̄k,`m, P̄k,`m) , (2.21)

where

αk,`m = γk−1,lψk,m , (2.22)
µ̄k,`m = gk(µk−1,`) + τk,m , (2.23)

Gk,` = ∂gk(x)
∂x

|x=µk−1,` , (2.24)

P̄k,`m = Gk,`Pk−1,`G
T
k,` +Qk,m . (2.25)

Resampling of GMM components, as in [30] (see Algorithm 2.1), can be employed for
further approximation of this predictive posterior distribution. This ensures that the
number of mixture components does not grow exponentially with time k. Suppose the
predictive posterior is approximated as an L′-component GMM after component

14

resampling as follows:

p(xk|z1:k−1) ≈
L′∑
`′=1

αk,`′N (xk; µ̄k,`′ , P̄k,`′) . (2.26)

The likelihood of the observation zk is given as:

p(zk|xk) =
N∑
n=1

βk,nN (zk;hk(xk) + ζk,n, Rk,n) . (2.27)

The posterior distribution of the state at time step k can be approximated as:

p(xk|z1:k) ≈
L′∑
`′=1

N∑
n=1

γk,`′nN (xk;µk,`′n, Pk,`′n) , (2.28)

From the interaction of the `′-th component in the predictive posterior and the n-th
component of the likelihood, we have the usual extended Kalman filter update:

Hk,`′ = ∂hk(x)
∂x

|x=µ̄k,`′ , (2.29)

Kk,`′n = P̄k,`′H
T
k,`′(Hk,`′P̄k,`′H

T
k,`′ +Rk,n)−1 , (2.30)

µk,`′n = µ̄k,`′ +Kk,`′n(zk − ζk,n − hk(µ̄k,`′)) , (2.31)
Pk,`′n = (I −Kk,`′nHk,`′)P̄k,`′ . (2.32)

The mixture proportion γk,`′n is given as follows:

γk,`′n = ξk,`′n
ΣL′
i=1ΣN

j=1ξk,ij
, (2.33)

ξk,ij = αk,iβk,jN (zk;hk(µ̄k,i) + ζk,j, Hk,iP̄k,iH
T
k,i +Rk,j). (2.34)

Since the predictive posterior and likelihood have L′ and N Gaussian components
respectively, the posterior is composed of L′N components. As in the predict step,
resampling of GMM components is performed to reduce the number of components in the

15

final representation to L. The posterior is then approximated as:

p(xk|z1:k) ≈
L∑
`=1

γk,`N (xk;µk,`, Pk,`) . (2.35)

Each component of the predictive and posterior distribution follows the extended Kalman
filter (EKF) equations. We can recursively track the posterior by employing parallel EKFs.
However, in higher dimensions, if gk or hk is highly nonlinear, this approach performs
poorly.

Algorithm 2.1 Resampling of Gaussian components in a GMM in [30].
Input: GMM ∑M

i=1 αiN (µi, Pi), number of output components N < M , threshold αth > 0.
Output: GMM ∑N

j=1 βjN (µ̃j, P̃j).
1: Sort {αi}Mi=1 in descending order to obtain i1, i2, · · · , iM ∈ {1, 2, · · · ,M} such that αi1 >
αi2 > · · · > αiM .

2: Set β′j = αij for j = 1, · · · , N .
3: if β′N < αth then
4: for j = 1, · · · , N do
5: Sample k ∈ {1, · · · , N} with probability proportional to {β′1, · · · , β′N}.
6: Set βj = 1

N
, µ̃j = µik , and P̃j = Pik .

7: end for
8: else
9: Set βj =

β′ij∑N

k=1 β
′
ik

, µ̃j = µij , and P̃j = Pij , for j =, · · · , N .
10: end if

2.1.5 Particle Filter

Although there were several similar earlier attempts [66, 67] of using Monte Carlo methods
in nonlinear filtering, the seminal work by Gordon et al. in [13] is generally considered to
be the first instance of modern particle filters. These constitute a class of algorithms based
on sequential importance sampling (SIS) to solve the discrete-time nonlinear filtering task
in a Bayesian framework. Particle filtering methods use a set of weighted samples
(particles) drawn from a proposal distribution to recursively approximate the filtering
distribution in time. Unlike EKFs, these algorithms do not rely on linearization of the

16

dynamic and measurement models and do not require the Gaussian assumption on the
predictive and posterior distributions. As a result, particle filters are widely applicable in
many challenging nonlinear state-estimation tasks, where the EKF performs poorly. The
approximation of the state posterior from a particle filter is statistically consistent [68], i.e.,
it converges to the true posterior distribution as the number of particles approaches
infinity.

Sequential Importance Sampling (SIS)

At each time step k, particle filters aim to approximate the filtering distribution of the hidden
state in a recursive manner. The joint posterior of the entire state trajectory p(x0:k|z1:k) can
be factorized as:

p(x0:k|z1:k) ∝ p(x0:k, z1:k) ,
= p(z1:k−1)p(x0:k−1|z1:k−1)p(xk|xk−1)p(zk|xk) ,
∝ p(x0:k−1|z1:k−1)p(xk|xk−1)p(zk|xk) . (2.36)

Suppose the joint posterior distribution of the previous time step k−1 is approximated by a
set of Np weighted particles {ωik−1, x

i
0:k−1}

Np
i=1 as follows:

p(x0:k−1|z1:k−1) ≈
Np∑
i=1

ωik−1δxi0:k−1
(x0:k−1) . (2.37)

Here, xi0:k−1 denotes the trajectory of the i-th particle and ωik−1 > 0 is the importance weight

associated with it. The importance weights are assumed to be normalized, i.e.,
Np∑
i=1
ωik−1 = 1.

Suppose the particles {xi0:k}
Np
i=1 are sampled from a proposal distribution q(x0:k|z1:k). The

(unnormalized) importance weights {ωik}
Np
i=1 are defined as:

ωik ∝
p(xi0:k|z1:k)
q(xi0:k|z1:k)

. (2.38)

17

Assume that the proposal distribution q(x0:k|z1:k) can be factorized as follows:

q(x0:k|z1:k) = q(x0:k−1|z1:k)q(xk|x1:k−1, z1:k) ,
= q(x0:k−1|z1:k−1)q(xk|xk−1, zk) , (2.39)

which allows recursive sampling of the state-trajectory and ensures that the computational
complexity of the particle filtering algorithm is fixed at each time step. Since xi0:k−1 ∼
q(x0:k−1|z1:k−1), xi0:k can be drawn from q(x0:k|z1:k) by first sampling xik ∼ q(xk|xik−1, zk) and
appending xik to the past trajectory xi0:k−1. Using eqs. (2.36), (2.37), (2.38), and (2.39), the
recursive update of importance weights is given by:

ωik ∝
p(xi0:k−1|z1:k−1)p(xik|xik−1)p(zk|xik)
q(xi0:k−1|z1:k−1)q(xik|xik−1, zk)

,

∝ ωik−1
p(xik|xik−1)p(zk|xik)
q(xik|xik−1, zk)

. (2.40)

The weights are subsequently normalized so that
Np∑
i=1
ωik = 1 and the joint posterior

distribution of the state at the current time step k is approximated as:

p(x0:k|z1:k) ≈
Np∑
i=1

ωikδxi0:k
(x0:k) . (2.41)

In the filtering task, we are only interested in approximating the marginal posterior
distribution p(xk|z1:k), which can be obtained by discarding the past trajectory of each
particle as follows:

p(xk|z1:k) ≈
Np∑
i=1

ωikδxik(xk) . (2.42)

From eq. (2.40), we observe that for the filtering task, only {wik−1, x
i
k−1}

Np
i=1 need to be stored

from the previous time step k−1 instead of the full trajectories {xi0:k−1}
Np
i=1 of the particles.

This ensures that the memory requirement does not grow with time.

18

Resampling

A major drawback of the SIS approach is that the variance of the importance weights
increases rapidly with time [69]. In other words, most of the ωiks become negligible when k

is moderately high and the Monte Carlo approximation of the joint posterior in eq. (2.41)
is effectively determined by only a few particles. In the literature, this phenomenon is
referred to as weight degeneracy [23, 70] and it results in a poor representation of the
posterior distribution. When the state dimension is high and/or when measurements are
highly informative, designing a proposal distribution which is well matched to the target
posterior becomes computationally challenging, and a larger discrepancy between these two
distributions causes high variance of the importance weights.

In order to combat weight degeneracy to some extent, many practical particle filters
perform a resampling of the particles after the importance sampling. This operation is
termed resampling as it refers to sampling from an approximated distribution, which itself
has been obtained by sampling [69]. There are several approaches for resampling in the
literature such as multinomial resampling [71], stratified resampling [72], residual
resampling [73], and systematic resampling [73, 74]. Detailed studies of the theoretical
properties, computational complexity and empirical performance of various resampling
schemes can be found in [75–78]. Intuitively, resampling discards particles with negligible
weights and makes several copies of the particles with high weights in a probabilistic
manner. This allows the particle filter to focus on those regions of the state-space where
the posterior is high. A particle filter that uses resampling of the particles is often termed a
Sequential Importance Sampling with Resampling (SISR) method.

Although in most cases the resampling step improves the estimation performance of particle
filters with fixed number of particles, the variances of the SISR algorithm based estimators
are greater than the variances of SIS algorithm based estimators for the same proposal
distribution [79]. A standard practice in the literature is to assess the weight degeneracy at
each time step by computing the effective sample size (ESS) [80, 81] using the normalized
importance weights as follows:

ESS = 1∑Np
i=1(ωik)2

. (2.43)

19

From eq. (2.43), we note that 1 6 ESS 6 Np. If ωik = 1
Np

for i = 1, · · · , Np, the ESS
becomes Np. This refers to the case when the proposal distribution matches the target
distribution exactly so that importance sampling becomes equivalent to traditional Monte
Carlo sampling. On the other hand, if ωik = 1 for only one particle and ωik = 0 for all
other particles, ESS takes its lowest value, which corresponds to the most severe degeneracy
of the importance weights. Instead of every time step, in most particle filters, resampling
is performed only if the ESS is lower than some acceptable threshold (e.g., 50% of Np).
Pseudocode for a generic SISR is provided in Algorithm 2.2.

Algorithm 2.2 A generic SISR algorithm
1: Initialization: Draw {xi0}

Np
i=1 from the initial probability density p(x0). Set ωi0 = 1

Np
for

i = 1, · · · , Np. Estimate x̂0 = 1
Np

∑Np
i=1 x

i
0.

2: for k = 1 to K do
3: Sample particles from the proposal distribution xik ∼ q(xk|xik−1, zk), for i = 1, · · · , Np.

4: Compute ω̃ik = ωik−1
p(xik|xik−1)p(zk|xik)
q(xik|xik−1, zk)

for i = 1, · · · , Np.

5: Normalize ωik = ω̃ik∑Np
j=1 ω̃

j
k

for i = 1, · · · , Np.

6: Estimate x̂k = ∑Np
i=1 ω

i
kx

i
k.

7: if ESS < threshold then
8: Resample {ωik, xik}

Np
i=1 to obtain { 1

Np
, xik}

Np
i=1.

9: end if
10: end for

Although there is a wide variety of particle filters, they mostly differ from each other in the
design of the proposal distribution q(xk|xk−1, zk). The bootstrap particle filter (BPF) [13]
uses the dynamic model to sample the particles, i.e., q(xk|xk−1, zk) = p(xk|xk−1). As a
result, the importance weight update step in eq. (2.40) only requires the computation of the
measurement likelihood at the sampled particles.

ωik ∝ ωik−1
p(xik|xik−1)p(zk|xik)

p(xik|xik−1) ,

= ωik−1p(zk|xik) . (2.44)

The implementation of the BPF algorithm is straightforward. However, it can be highly

20

inefficient if the state dimension is high and/or the measurements are highly informative (in
other words, the likelihood is highly localized in certain regions of the state-space). In these
cases, the weight degeneracy exhibited by the BPF is severe [70], even if a large number
of particles is employed. In order to mitigate the weight degeneracy of the particles, more
sophisticated particle filtering methods incorporate the measurement zk in the construction
of their proposals. Although several avenues have been explored for better design of the
proposal distribution, high-dimensional particle filtering remains extremely challenging and
computationally expensive for many conventional SMC approaches [14,82,83].

If the proposal q is chosen such that q(xk|xk−1, zk) = p(xk|xk−1, zk) is satisfied, then the
importance weights in eq. (2.40) do not depend on the sampled particles {xik}

Np
i=1.

ωik ∝ ωik−1
p(xik|xik−1)p(zk|xik)
p(xik|xik−1, zk)

,

= ωik−1
p(xik, zk|xik−1)
p(xik|xik−1, zk)

,

= ωik−1
p(zk|xik−1)p(xik|xik−1, zk)

p(xik|xik−1, zk)
,

= ωik−1p(zk|xik−1) . (2.45)

This proposal distribution minimizes the variance of the importance weights over different
realizations of {xik}

Np
i=1 and is referred to as the ‘optimal’ proposal distribution in the

literature [69, 84]. Although the use of this proposal is desirable, its implementation is
impossible in most cases as sampling from p(xk|xk−1, zk) cannot be carried out and the
importance weight update step in eq. (2.45) requires evaluation of an integral

p(zk|xk−1) =
∫
p(zk|xk)p(xk|xk−1) dxk , (2.46)

which cannot be computed in closed form in a general nonlinear, non-Gaussian HMM.

A prominent research direction in the particle filtering literature aims to approximate the
optimal proposal distribution using various techniques. A locally linear-Gaussian
approximation of the true HMM is employed in [84], whereas [85, 86] consider optimization
based approaches to minimize the discrepancy between the target and the proposal
distributions. The auxiliary particle filter (APF) [87] constructs a measurement-driven

21

proposal by resampling the particles at time step k−1 according to weights that depend on
the measurement at time step k. As a result, the particles with higher predictive likelihood
are sampled more often than the others, which improves the approximation of the
posterior. The unscented transform is used for designing an approximation of the optimal
proposal in the Unscented Particle Filter (UPF) [88]. The Rao-Blackwellised particle
filter [89] marginalizes some states analytically in order to reduce the variance of the Monte
Carlo estimates. The marginal particle filter [90] considers the marginal posterior of the
hidden state as the target distribution and thus avoids performing importance sampling in
a state-space whose dimension grows with time k. Computational techniques for reducing
the complexity of such an approach from O(N2

p) to O(Np logNp) are also proposed. While
these filters are statistically consistent, the equivalent weights particle filter [91, 92]
sacrifices the statistical consistency of the conventional SISR approach for ensuring that a
large number of particles always have substantial weight. This is extremely beneficial for
combating weight degeneracy, particularly in high-dimensional scenarios.

Factorization or partitioning of the state-space is another avenue for improving the
performance of the particle filters in high dimensions. The multiple particle filtering [16,17]
approaches are constituted of several particle filters, run in parallel on low-dimensional
subspaces that partition the high-dimensional state-space. The low-dimensional filters need
to share their estimates amongst each other for their weight updates. The block particle
filter [19] relies on partitioning the state-space into several independent blocks; the
measurement space can also be partitioned into corresponding blocks. The filtering
distribution of the state variables in one block is updated using only the corresponding
block of measurements. However, the performance of this algorithm is heavily dependent
on the partitioning/blocking process, since it leads to a bias, which is difficult to
characterize. The space-time particle filters [18, 93] use factorization of the conditional
posterior to guarantee statistical consistency of the Monte Carlo estimates as the number
of particle grows. Although these algorithms are promising, they rely on the posterior
having a special structure, which limits their applicability.

Another class of particle filters, which deviates from the generic SISR approach in
Algorithm 2.2, uses MCMC algorithms for improving particle diversity. The resample-move
particle filters [94] perform MCMC moves after the resampling step to improve the quality
of the approximate posterior distribution. Similar ideas are adopted in drift homotopy

22

particle filters [95–97]. These modify the state-dynamics to facilitate the MCMC moves.
Although these approaches often show better performance because of the incorporation of
MCMC algorithms, the number of MCMC moves required to diversify the particles can be
considerable in high-dimensional settings, which results in high computational
complexity.

2.1.6 Particle Flow

In the last decade, a new class of Monte Carlo-based filters [20, 21, 24, 98–118] has emerged
that achieves impressive performance in high-dimensional filtering. Suppose the posterior
at time k−1 is approximated by a set of Np unweighted particles {xik−1}

Np
i=1. Propagating

the particles through the dynamic model yields {x̃ik}
Np
i=1, which represent the predictive

posterior p(xk|z1:k−1) at time k. Particle flow methods gradually migrate these particles
{x̃ik}

Np
i=1 towards the correct regions of state-space so that they approximate the posterior

distribution p(xk|z1:k) at time k, when the flow is complete. The ‘flow’ of the particles is
typically specified through a partial differential equation (PDE). The weight degeneracy
issue associated with a particle filter is absent in particle flow algorithms since the
importance sampling using a proposal distribution and the resampling of the particles are
eliminated in the latter class of techniques.

A particle flow can be modelled by a background stochastic process ηλ in a pseudo-time
interval λ ∈ [0, 1], such that the distribution of η0 is the predictive distribution p(xk|z1:k−1)

and the distribution of η1 is the posterior distribution p(xk|z1:k) = p(xk|z1:k−1)p(zk|xk)
p(zk|z1:k−1) . The

time index k is temporarily omitted to simplify notation, because the particle flow only
concerns migration of particles within a single time step. ηiλ denotes the stochastic process’s
i-th realization, and we initialize the flow by setting ηi0 = x̃ik for i = 1, · · · , Np.

In [20, 21], the trajectory of ηiλ follows an ordinary differential equation (ODE) with zero
diffusion resulting in deterministic flows of particles:

dηiλ
dλ

= ϕ(ηiλ, λ) , (2.47)

where, ϕ : Rdx → Rdx is governed by the Fokker-Planck equation and additional flow
constraints [21]. Eq. (2.47) can lead to a variety of particle flow filters. An analytically

23

tractable solution exists if the predictive distribution is Gaussian and the measurement
model is linear with additive Gaussian noise. The exact flow [21] for the linear Gaussian
model (specified by eq. (2.4), (2.5), and (2.6)) is:

ϕ(ηiλ, λ) = dηiλ
dλ

= A(λ)ηiλ + b(λ) , (2.48)

where,

A(λ) = −1
2 P̄H

T (λHP̄HT +R)−1H , (2.49)

b(λ) = (I + 2λA(λ))[(I + λA(λ))P̄HTR−1z + A(λ)µ̄] . (2.50)

Here, µ̄ and P̄ are the mean and the covariance matrix of the predictive posterior distribution,
respectively. z denotes the new observation and H is the measurement matrix, i.e., h(xk) =
Hxk. R represents the covariance matrix of the measurement noise. Both P̄ and R are
assumed to be positive definite matrices. We refer to this method as the exact Daum-Huang
(EDH) filter, and its implementation is described in [103]. If the measurement model is
nonlinear, a linearization of h is performed at η̄λ = 1

Np

∑Np
i=1 η

i
λ and the observation z is

corrected for the linearization error e. We define,

H(λ) = ∂h(η)
∂η

∣∣∣∣∣
η=η̄λ

, (2.51)

e(λ) = h(η̄λ)−H(λ)η̄λ . (2.52)

This H(λ) is used in place of H and z is replaced by (z− e(λ)) for computing the EDH flow
in eq. (2.49) and (2.50) in a nonlinear setting. The extended Kalman filter (EKF) [65] or
the unscented Kalman filter (UKF) [119] is run in parallel to estimate the covariance matrix
of the predictive posterior distribution.

Discretized pseudo-time integration is usually employed to approximate the solution to the
ODE in eq. (2.47). Suppose that a sequence of discrete steps are taken at Nλ positions
[λ1, λ2, · · · , λNλ], where 0 = λ0 < λ1 < · · · < λNλ = 1. The step size εp = λp − λp−1 for
p = 1, · · · , Nλ can be possibly varying, and we require that ∑Nλ

p=1 εp = λNλ − λ0 = 1. The
linearization of H(λp) subsequently used to compute A(λp) and b(λp) is performed at η̄λp−1 .

24

Figure 2.1: Migration of particles from a 2-d Gaussian prior to a 2-d Gaussian posterior
distribution. a) The particles/samples (asterisk) from the prior distribution; b) The contours
of the posterior distribution and the direction of flow for the particles at an intermediate
step; c) The particles after the flow, approximately distributed according to the posterior
distribution.

The Euler update rule approximates the integration of the EDH flow of ηiλ between λp−1 and
λp as

ηiλp = fλp(ηiλp−1)
= ηiλp−1 + εp

(
A(λp)ηiλp−1 + b(λp)

)
. (2.53)

Figure 2.1 demonstrates the migration of the particles from the prior to the posterior
distribution according to the EDH flow for a Gaussian predictive distribution and a
linear-Gaussian measurement model. The pseudocode for the EDH particle flow is
summarized in Algorithm 2.3.

If the measurement function h is highly nonlinear, then the common linearization at η̄λp−1

for all particles results in large estimation error. A computationally intensive variation of
EDH, that linearizes the system and updates the drift term for each individual particle, is
proposed in [105]. This approach is referred to as the localized exact Daum-Huang (LEDH)

25

Algorithm 2.3 EDH particle flow.
1: Initialization: Draw {xi0}

Np
i=1 from the initial probability density N (µ0, P0). Set x̂0 =

1
Np

∑Np
i=1 x

i
0. Set λ0 = 0.

2: for k = 1 to K do
3: Apply EKF/UKF prediction: {x̂k−1, Pk−1} → {mk|k−1, P̄k}.
4: Propagate particles through dynamic model ηi0 = gk(xik−1) + vk, for i = 1, · · · , Np.
5: Compute η̄0 = 1

Np

∑Np
i=1 η

i
0, set µ̄ = η̄0.

6: for p = 1, · · · , Nλ do
7: Set λp = λp−1 + εp.
8: Calculate A(λp) and b(λp) from (2.49) and (2.50) with linearization of hk performed

at η̄λp−1 , and with z = zk − e(λp), P̄ = P̄k, and R = Rk.
9: Migrate particles: ηiλp = ηiλp−1 + εp

(
A(λp)ηiλp−1 + b(λp)

)
for i = 1, · · · , Np.

10: Compute η̄λp = 1
Np

∑Np
i=1 η

i
λp .

11: end for
12: Set xik = ηi1 for i = 1, · · · , Np.
13: Apply EKF/UKF update: {mk|k−1, P̄k} → {mk|k, Pk}.
14: Estimate x̂k = η̄1.
15: (Optional) Redraw particles {xik}

Np
i=1 ∼ N (x̂k, Pk).

16: end for

filter and is shown to outperform the EDH filter significantly for nonlinear models. For the
i-th particle, the drift term of LEDH is

ϕ(ηiλ, λ) = Ai(λ)ηiλ + bi(λ) , (2.54)

where,

Ai(λ) = −1
2 P̄H

i(λ)T (λH i(λ)P̄H i(λ)T +R)−1H i(λ) , (2.55)

bi(λ) = (I + 2λAi(λ))[(I + λAi(λ))P̄H i(λ)TR−1(z − ei(λ)) + Ai(λ)µ̄] , (2.56)

H i(λ) = ∂h(η)
∂η

∣∣∣∣∣
η=ηi

λ

, (2.57)

ei(λ) = h(ηiλ)−H i(λ)ηiλ . (2.58)

The implementation of the LEDH particle flow is detailed in Algorithm 2.4.

26

Algorithm 2.4 LEDH particle flow.
1: Initialization: Draw {xi0}

Np
i=1 from the initial probability density N (µ0, P0). Set x̂0 =

1
Np

∑Np
i=1 x

i
0. Set λ0 = 0.

2: for k = 1 to K do
3: Apply EKF/UKF prediction: {x̂k−1, Pk−1} → {mk|k−1, P̄k}.
4: Propagate particles through dynamic model ηi0 = gk(xik−1) + vk, for i = 1, · · · , Np.
5: Compute η̄0 = 1

Np

∑Np
i=1 η

i
0, set µ̄ = η̄0.

6: for p = 1, · · · , Nλ do
7: Set λp = λp−1 + εp.
8: for i = 1, · · · , Np do
9: Calculate Ai(λp) and bi(λp) from (2.55) and (2.56) with linearization of hk

performed at ηiλp−1 , and with z = zk, P̄ = P̄k and R = Rk.
10: Migrate particles: ηiλp = ηiλp−1 + εp

(
Ai(λp)ηiλp−1 + bi(λp)

)
.

11: end for
12: end for
13: Set xik = ηi1 for i = 1, · · · , Np.
14: Apply EKF/UKF update: {mk|k−1, P̄k} → {mk|k, Pk}.
15: Estimate x̂k = 1

Np

∑Np
i=1 x

i
k.

16: (Optional) Redraw particles {xik}
Np
i=1 ∼ N (x̂k, Pk).

17: end for

The EDH [21,103] and the LEDH [105] are constructed as zero-diffusion deterministic flow.
However, there are several stochastic particle flow approaches [24, 106, 114, 116–118], where
a non-zero diffusion term is present in the flow equations. In these cases, the trajectory of
the particles follows a stochastic differential equation (SDE). Although the stochastic
particle flow approaches sometimes attain better particle diversity compared to their
deterministic counterparts, this comes at a cost of increased computational complexity in
most cases. There are several other types of particle flow approaches, such as the small
curvature flow filter [104], the Coulomb’s law flow filter [102], and the renormalization
group flow filter [107]. However, the implementation of these filters is often challenging and
computationally demanding. Although the particle flow approaches are governed by a
continuous differential equation, their practical implementation requires approximation
using discrete steps. In many cases, the underlying model assumptions required for
deriving various particle flow equations are not satisfied for the true state-space model
(SSM). These approximation errors and model mismatches cause the particles to deviate

27

from the true posterior distribution, which can potentially lead to poor performance of
particle flow techniques in practical scenarios.

2.1.7 Particle Flow Particle Filter

As discussed in the previous section, the migrated particles after the particle flow process are
not exactly distributed according to the posterior because of the discretization errors made
while numerically solving eq. (2.47), and the mismatch of modelling assumptions between a
general HMM and a linear Gaussian setup (which was assumed in deriving eq. (2.49) and
(2.50)). Instead ηi1 can be viewed as being drawn from a proposal distribution q(ηi1|xik−1, zk),
which is possibly well matched to the posterior, because of the flow procedure. If the LEDH
flow parameters, (Ai(λp), bi(λp)) are computed based on linearization of the measurement
function h at an auxiliary particle location η̄iλp , starting from η̄i0 = gk(xik−1, 0), then under a
mild smoothness condition on h and with small enough step sizes εp, the discretized particle
flow process introduces a deterministic, invertible mapping ηi1 = T i(ηi0;xik−1, zk), as shown
in [26]. This property enables efficient evaluation of the importance density:

q(ηi1|xik−1, zk) = p(ηi0|xik−1)
| det(Ṫ i(ηi0;xik−1, zk))|

, (2.59)

where Ṫ i(·) ∈ Rd×d is the Jacobian matrix of the mapping function T i(·) with respect to ηi0
and | · | denotes the absolute value. The determinant of Ṫ i(·) is given as:

det(Ṫ i(ηi0;xik−1, zk)) =
Nλ∏
p=1

det(I + εpA
i(λp)) . (2.60)

In [26], a particle flow particle filter (PFPF) is proposed which uses the proposal in
eq. (2.59). The resulting PFPF (LEDH) algorithm is highly effective in approximating
high-dimensional posterior distributions and it has lower run-time compared to several
other high-dimensional particle filtering approaches. Its pseudocode is summarized in
Algorithm 2.5. A computationally efficient version of the PFPF algorithm based on the
EDH flow which uses a common invertible mapping for all particles is also described
in [26].

There are several other approaches which use particle flow or optimal transport [120] inside

28

Algorithm 2.5 PFPF (LEDH)
1: Initialization: Draw {xi0}

Np
i=1 from the initial probability density p(x0). Set ωi0 = 1

Np
for

i = 1, · · · , Np. Estimate x̂0 = 1
Np

∑Np
i=1 x

i
0. Set {P i

0}
Np
i=1 to be the covariance of p(x0). Set

λ0 = 0.
2: for k = 1 to K do
3: for i = 1, · · · , Np do
4: Apply EKF/UKF prediction, {xik−1, P

i
k−1} → {mi

k|k−1, P̄
i
k}.

5: Calculate η̄i0 = gk(xik−1, 0), set µ̄ = η̄i0.
6: Propagate particle ηi0 = gk(xik−1, vk).
7: Set θi = 1.
8: for p = 1, · · · , Nλ do
9: Set λp = λp−1 + εp.

10: Calculate Ai(λp) and bi(λp) from eq. (2.55) and (2.56) with linearization of hk
performed at η̄iλp−1 and with z = zk, µ̄ = η̄i0, and P̄ = P̄ i

k.
11: Migrate auxiliary particle: η̄iλp = η̄iλp−1 + εp

(
Ai(λp)η̄iλp−1 + bi(λp)

)
12: Migrate particle: ηiλp = ηiλp−1 + εp

(
Ai(λp)ηiλp−1 + bi(λp)

)
13: θi = θi|det(I + εpA

i(λp))|
14: end for
15: Set xik = ηi1

16: Calculate importance weights: ω̃ik = ωik−1
p(xik|xik−1)p(zk|xik)
p(ηi0|xik−1)/θi

17: end for
18: for i = 1, · · · , Np do
19: Normalize ωik = ω̃ik/

∑Np
s=1 ω̃

s
k

20: Apply EKF/UKF update, {mi
k|k−1, P̄

i
k} → {mi

k|k, P
i
k}

21: end for
22: Estimate x̂k = ∑Np

i=1 ω
i
kx

i
k

23: (Optional) resample particles : {xik, P i
k, ω

i
k}

Np
i=1 to obtain {xik, P i

k,
1
Np

}Npi=1

24: end for

29

a particle filtering framework. The Guided Sequential Monte Carlo (GSMC) [22] algorithm
constructs a transport map based on Ensemble Kalman filter (EnKF) [121] for designing an
efficient proposal distribution for a particle filter. Although, this approach is effective, the
computational burden of the EnKF is substantial. The Gibbs flow [25] approach solves the
Liouville equation to identify the transport map from the prior to the posterior distribution.
Numerical implementation for a dx-dimensional state involves computation of dx coupled one-
dimensional conditional flows, which does not scale favorably with dx. Although the Gibbs
flow does not require any distributional assumptions about the prior and the posterior, it is
not computationally tractable in most cases.

The proposal distribution in the stochastic particle flow filter [24] is formed based on the
stationary solution of Fokker-Planck equation with non-zero diffusion. Since the numerical
solution is approximate, importance sampling is required to account for the mismatch
between the target and the proposal distributions. Although this approach shows
impressive performance in high dimensions, evaluation of the diffusion matrix in each flow
step results in a significantly high computational complexity.

Bunch et al. employ approximate Gaussian flow to design a proposal distribution for a
particle filter in the Gaussian particle flow importance sampling (GPFIS) [23] algorithm. The
underlying particle flow is modelled by a stochastic differential equation, which can be solved
analytically for a linear-Gaussian HMM. This solution is used to approximate the optimal
flow for nonlinear models. In this approach, the proposal distribution cannot be evaluated in
closed form in general, instead the authors derive and numerically solve a differential equation
for the importance weights. It is also shown that if the step size to integrate the particle flow
is decreased to approach zero, this algorithm ensures that the particles after the flow are
properly weighted so that they can approximate the current step posterior distribution. The
overall algorithm can be interpreted as an effective approximation of the optimal proposal
distribution within the SMC framework. Despite its impressive performance in many high-
dimensional settings, a major disadvantage of this algorithm is its computational burden,
which is exceptionally high, mostly due to computation of the square roots of matrices and
solution of the Sylvester equation.

30

2.1.8 Sequential Markov Chain Monte Carlo

A promising research direction to combat weight degeneracy in high-dimensional particle
filtering is to use Markov chain Monte Carlo (MCMC) methods to improve the diversity of
samples. Sequential Markov chain Monte Carlo (SMCMC) [15, 27, 61, 122] methods were
proposed as an effective alternative to particle filters, especially for challenging
high-dimensional state-estimation problems. MCMC is often considered as the most
effective method for sampling from a high-dimensional distribution [123]. More effective
MCMC techniques in high-dimensional spaces use Hamiltonian or Langevin dynamics to
construct efficient proposals [124–126]. Although effective, these techniques cannot be
directly used in sequential inference tasks, as MCMC typically targets a static distribution.
To use MCMC to diversify samples in a sequential setting, the resample-move particle filter
incorporates MCMC methods by performing MCMC moves after the resampling step of
the particle filte [94]. Unfortunately, the resampling step can lead to degeneracy, so many
MCMC moves may be required to diversify particles.

Sequential Markov chain Monte Carlo (SMCMC) methods use MCMC techniques to
sample directly from the approximate target distribution. A unifying framework of the
various SMCMC methods was provided in [15]. In [122], sampling directly from the
filtering distribution is targeted. This approach is computationally expensive since it
requires the numerical integration of the predictive density at each time step. Instead,
sampling from the joint state distribution is proposed in [15, 27, 61]. In the algorithms
presented in [15, 27, 61], a fixed number of samples is used to approximate the empirical
posterior distribution for each time step. By contrast, in the sequentially interacting
MCMC (SIMCMC) framework described in [127], one can continue to generate interacting
non-Markovian samples of the entire state sequence to improve the empirical
approximation of joint posterior distribution successively. The resulting samples are
asymptotically distributed according to the joint posterior distribution. The fundamental
difference between the SMCMC and the SIMCMC techniques is that the SMCMC
algorithm consists of sequential implementation of static MCMC schemes (justifying the
name ‘sequential MCMC’), whereas this interpretation does not hold for the SIMCMC
algorithm. Hence the analysis of SIMCMC in [127] cannot be applied to SMCMC (and
vice-versa) and SMCMC cannot be expressed as a special case of SIMCMC. From a

31

practical viewpoint, if a fixed number of particles is to be used, the effect of error in
approximating the posterior distribution at the previous time step might be severe for the
SIMCMC algorithm and limit its applicability in high-dimensional online filtering problems
compared to advanced SMC or SMCMC techniques.

As shown in eq. (2.36) in Section 2.1.5, the joint posterior distribution πk(x0:k) = p(x0:k|z1:k)
can be computed pointwise up to a normalizing constant in a recursive manner:

πk(x0:k) = p(x0:k|z1:k) ∝ p(x0:k, z1:k) ,
= p(xk|xk−1)p(zk|xk)p(x0:k−1|z1:k−1)p(z1:k−1) ,
∝ p(xk|xk−1)p(zk|xk)πk−1(x0:k−1) . (2.61)

As πk−1(x0:k−1) is not analytically tractable, it is impossible to sample from it in a general
HMM. In all SMCMC methods, the distribution is replaced by its empirical approximation
in (2.61), which leads to an approximation of πk as follows:

π̆k(x0:k) ∝ p(xk|xk−1)p(zk|xk)π̂k−1(x0:k−1) , (2.62)

where,

π̂k−1(x0:k−1) = 1
Np

Nb+Np∑
j=Nb+1

δxj
k−1,0:k−1

(x0:k−1) . (2.63)

Here δa(·) is the Dirac delta function centred at a, Nb is the number of samples discarded
during a burn-in period, and Np is the number of retained MCMC samples.
{xjk−1,0:k−1}

Nb+Np
j=Nb+1 are the Np samples obtained from the Markov chain at time k− 1, whose

stationary distribution is π̆k−1(x0:k−1). At time step k, Nb + Np iterations of the
Metropolis-Hastings (MH) algorithm [5] with proposal qk(·) are executed to generate
samples {xjk,0:k}

Nb+Np
j=Nb+1 from the invariant distribution π̆k(x0:k), and πk(x0:k) is

approximated as:

π̂k(x0:k) = 1
Np

Nb+Np∑
j=Nb+1

δxj
k,0:k

(x0:k) . (2.64)

32

The purpose of the joint draw of π̆k(x0:k) is to avoid numerical integration of the predictive
density when the target distribution is p(xk|z1:k) [27]. Note that if we are only interested
in approximating the marginal posterior distribution p(xk|z1:k), only {xjk−1,k−1}

Nb+Np
j=Nb+1 needs

to be stored instead of the full past state trajectories {xjk−1,0:k−1}
Nb+Np
j=Nb+1. The Metropolis-

Hastings (MH) algorithm used within SMCMC to generate one sample is summarized in
Algorithm 2.6.

Algorithm 2.6 MH Kernel in SMCMC [15].
Input: xi−1

k,0:k.
Output: xik,0:k.

1: Propose x∗(i)k,0:k ∼ qk(x0:k|xi−1
k,0:k).

2: Compute the MH acceptance probability ρ = min
(
1, π̆k(x∗(i)

k,0:k)

qk(x∗(i)
k,0:k|x

i−1
k,0:k)

qk(xi−1
k,0:k|x

∗(i)
k,0:k)

π̆k(xi−1
k,0:k)

)
.

3: Accept xik,0:k = x
∗(i)
k,0:k with probability ρ, otherwise set xik,0:k = xi−1

k,0:k.

Composite MH Kernel in SMCMC

Different choices of the MCMC kernel for high-dimensional SMCMC are discussed in [15]. In
most SMCMC algorithms, an independent MH kernel is adopted [15], i.e., qk(x0:k−1|xi−1

k,0:k) =
qk(x0:k), meaning that the proposal is independent of the state of the Markov chain at the
previous iteration. The ideal choice is the optimal independent MH kernel, i.e., qk(x0:k) =
π̆k(x0:k) such that the MH acceptance rate in line 2 of Algorithm 2.6 is always 1. However,
as shown in [15], it is impossible to sample from the proposal density p(xk|zk, xk−1) or
evaluate p(zk|xk−1) =

∫
p(zk|xk)p(xk|xk−1)dxk in most cases. It is difficult to identify an

effective approximation to the optimal independent MH kernel. The choice of independent
MH kernel using the prior as the proposal can lead to very low acceptance rates if the state
dimension is very high or the measurements are highly informative.

Septier et al. propose the use of a composite MH kernel [15, 27], which is constituted of
a joint proposal qk,1 (to update x0:k) followed by two individual state variable refinements
using proposals qk,2 (to update x0:k−1) and qk,3 (to update xk), based on the Metropolis
within Gibbs approach, within a single MCMC iteration. The composite kernel approach is
summarized in Algorithm 2.7.

Any of the MCMC kernels mentioned before can be used in the joint draw step of a composite

33

Algorithm 2.7 Composite MH Kernels in a unifying framework of SMCMC [15,27].
Input: x(i−1)

k,0:k .
Output: x(i)

k,0:k.
Joint draw of xik,0:k:

1: Propose x∗(i)k,0:k ∼ qk,1(x0:k|xi−1
k,0:k).

2: Compute the MH acceptance probability ρ1 = min
(
1, π̆k(x∗(i)

k,0:k)

qk,1(x∗(i)
k,0:k|x

i−1
k,0:k)

qk,1(xi−1
k,0:k|x

∗(i)
k,0:k)

π̆k(xi−1
k,0:k)

)
.

3: Accept xik,0:k = x
∗(i)
k,0:k with probability ρ1, otherwise set xik,0:k = xi−1

k,0:k.
Individual refinement of xik,0:k−1:

4: Propose x∗(i)k,0:k−1 ∼ qk,2(x0:k−1|xik,0:k).

5: Compute the MH acceptance probability ρ2 = min
(
1, π̆k(x∗(i)

k,0:k−1,x
i
k,k)

qk,2(x∗(i)
k,0:k−1|x

i
k,0:k)

qk,2(xik,0:k−1|x
∗(i)
k,0:k−1,x

i
k,k)

π̆k(xi
k,0:k)

)
.

6: Accept xik,0:k−1 = x
∗(i)
k,0:k−1 with probability ρ2.

Individual refinement of xik,k:
7: Propose x∗(i)k,k ∼ qk,3(xk|xik,0:k).

8: Compute the MH acceptance probability ρ3 = min
(
1, π̆k(xik,0:k−1,x

∗(i)
k,k

)

qk,3(x∗(i)
k,k
|xi
k,0:k)

qk,3(xik,k|x
i
k,0:k−1,x

∗(i)
k,k

)
π̆k(xi

k,0:k)

)
.

9: Accept xik,k = x
∗(i)
k,k with probability ρ3.

kernel. For example, the independent MH kernel based on the prior as the proposal is used
in the joint draw step of the implementation of the sequential manifold Hamiltonian Monte
Carlo (SmHMC) algorithm in [15] as follows:

1. Sample x∗(i)k,0:k−1 ∼ π̂k−1(x0:k−1).

2. Sample x∗(i)k,k ∼ p(xk|x∗(i)k,k−1).

Using eq. (2.62), the MH acceptance rate of the joint draw step in Algorithm 2.7 can be
simplified as :

ρ1 = min
(
1,
π̆k(x∗(i)k,0:k)π̂k−1(xi−1

k,0:k−1)p(xi−1
k,k |xi−1

k,k−1)
π̂k−1(x∗(i)k,0:k−1)p(x∗(i)k,k |x

∗(i)
k,k−1)π̆k(xi−1

k,0:k)

)
,

= min(1,
p(zk|x∗(i)k,k)
p(zk|xi−1

k,k)
) . (2.65)

For individual refinement of xik,0:k−1, [15] uses the independent proposal qk,2 = π̂k−1, which

34

leads to the following simplification of MH acceptance rate in Line 5 of Algorithm 2.6, using
eq. (2.62).

ρ2 = min
(
1,
π̆k(x∗(i)k,0:k−1, x

i
k,k)π̂k−1(xik,0:k−1)

π̂k−1(x∗(i)k,0:k−1)π̆k(xik,0:k)

)
,

= min
(
1,
p(xik,k|x

∗(i)
k,k−1)

p(xik,k|xik,k−1)
)
. (2.66)

The aim of the refinement steps is to explore the neighborhood of samples generated in the
joint draw step. For the MCMC kernel of the individual refinement step of xk, Langevin
diffusion [128] or Hamiltonian dynamics [125] have been proposed to more efficiently traverse
a high-dimensional space [15]. The manifold Hamiltonian Monte Carlo (mHMC) [129] kernel
qk,3(·) of the individual refinement step of the SmHMC algorithm efficiently samples from
the target filtering distribution, making the SmHMC algorithm one of the most effective
algorithms for filtering in high-dimensional spaces.

In [55, 61], the capability of particle flow to migrate samples into high posterior density
regions is utilized to construct a composite Metropolis-Hasting (MH) kernel that significantly
increases the acceptance rate of the joint draw. Here, we briefly review the SMCMC methods
with particle flow, since these approaches are closely related to the methodology presented
in the next chapter. In Appendix A, we derive some convergence results for the SMCMC
algorithms.

2.1.9 SMCMC with Invertible Particle Flow

In order to construct MH kernels based on invertible particle flow, a new formulation of the
invertible mapping with particle flow is considered.

Invertible Mapping with Particle Flow

The particle flow particle filters (PFPFs) [26] construct invertible particle flows in a pseudo-
time interval λ ∈ [0, 1] in order to gradually move particles drawn from the prior distribution
into regions where the posterior density is high.

35

Using the Euler update rule specified in eq. (2.53) recursively over p = Nλ, Nλ − 1, · · · , 2, 1,
the invertible mapping for the PF-PF (EDH) can be expressed as:

ηi1 =fλNλ (fλNλ−1(· · · fλ1(ηi0)) ,
=(I + εNλA(λNλ))ηiλNλ−1

+ εNλb(λNλ) ,

= · · ·
=Cηi0 +D , (2.67)

where

C =
Nλ∏
p=1

(
I + εNλ+1−pA(λNλ+1−p)

)
, (2.68)

and

D = εNλb(λNλ) +
Nλ−1∑
m=1

Nλ−m∏
p=1

(
I + εNλ+1−pA(λNλ+1−p)

) εpb(λp)
 . (2.69)

In [26], an auxiliary flow is constructed such that the deterministic flow parameters (C,D) do
not depend on ηi0. It is shown that the equivalent mapping is invertible with sufficiently small
εp, so the matrix C is invertible. The procedure to obtain C and D by performing an auxiliary
particle flow based on successive linearization of the measurement function h at intermediate
auxiliary particle location η̃λp−1 , starting from η̃0 is summarized in Algorithm 2.8. Since, the
migration of the particles in eq. (2.67) is equivalent to applying an affine transform with
deterministic parameters, the proposal density can be evaluated as follows:

q(ηi1|xik−1, zk) = p(ηi0|xik−1)
| det(C)| . (2.70)

Similarly, for the PF-PF (LEDH), the invertible mapping can be expressed as

ηi1 = Ciηi0 +Di , (2.71)

where different flow parameters (Ci, Di) are computed for each particle. The proposal density

36

Algorithm 2.8 Computation of the flow parameters (C,D).
Input: η̃0, P, R, z, µ̄.
Output: (C,D).

1: Initialize: C = I,D = 0.
2: for p = 1, · · · , Nλ do
3: Set λp = λp−1 + εp.
4: Calculate A(λp) and b(λp) from eq. (2.55) and (2.56) with linearization of h performed

at η̃λp−1 .
5: Migrate particle η̃λp = η̃λp−1 + εp

(
A(λp)η̃λp−1 + b(λp)

)
.

6: Set C =
(
I + εpA(λp)

)
C.

7: Set D =
(
I + εpA(λp)

)
D + εpb(λp).

8: end for

becomes

q(ηi1|xik−1, zk) = p(ηi0|xik−1)
| det(Ci)| . (2.72)

SmHMC with LEDH

The composite MH kernel using the invertible mapping established by the auxiliary LEDH
flow is presented in Algorithm 2.9. In the i-th MCMC iteration at time step k, x∗(i)k,0:k−1 ∼
π̂k−1(x0:k−1) is sampled from the approximate joint posterior distribution at time k−1. Then,
an auxiliary LEDH particle flow starting from η̄

∗(i)
0 = gk(x∗(i)k,k−1, 0) using Algorithm 2.8 is

performed to obtain the auxiliary LEDH flow parameters (C∗(i), D∗(i)), and this flow is
applied to the propagated particle η

∗(i)
0 = gk(x∗(i)k,k−1, vk). Thus the proposed particle is

generated as: xik,k = η
∗(i)
1 = C∗(i)η

∗(i)
0 +D∗(i).

For this proposal, the acceptance rate of the joint draw in Algorithm 2.9 can be derived
using eq. (2.62) and (2.72):

37

Algorithm 2.9 Composite MH Kernels constructed with the manifold Hamiltonian Monte
Carlo kernel and the invertible particle flow with LEDH, at the i-th MCMC iteration of k-th
time step.
Input: xi−1

k,0:k, η
i−1
0 , Ci−1.

Output: xik,0:k, η
i
0, C

i.
Joint draw of xik,0:k:

1: Draw x
∗(i)
k,0:k−1 ∼ π̂k−1(x0:k−1).

2: Sample η∗(i)0 = gk(x∗(i)k,k−1, vk).
3: Calculate η̄∗(i)0 = gk(x∗(i)k,k−1, 0).
4: Perform invertible particle flow (Algorithm 2.8) to compute (C∗(i), D∗(i)) by starting the

auxiliary particle flow from η̄
∗(i)
0 .

5: Calculate x∗(i)k,k = C∗(i)η
∗(i)
0 +D∗(i).

6: Compute the MH acceptance probability ρ1 = min
(
1, p(x

∗(i)
k,k
|x∗(i)
k,k−1)p(zk|x

∗(i)
k,k

)|det(C∗(i))|p(ηi−1
0 |xi−1

k,k−1)

p(η∗(i)0 |x∗(i)
k,k−1)p(xi−1

k,k
|xi−1
k,k−1)p(zk|xi−1

k,k
)| det(Ci−1)|

)
.

7: Accept xik,0:k = x
∗(i)
k,0:k, ηi0 = η

∗(i)
0 , Ci = C∗(i) and Di = D∗(i) with probability ρ1.

Otherwise set xik,0:k = xi−1
k,0:k, ηi0 = ηi−1

0 , Ci = Ci−1 and Di = Di−1.
8: Perform individual refinements of xik,0:k using Algorithm 2.10.
9: Calculate ηi0 = (Ci)−1(xik,k −Di).

ρ1 = min
1,

π̆k(x∗(i)k,0:k)π̂k−1(xi−1
k,0:k−1)q(xi−1

k,k |xi−1
k−1, zk)

π̂k−1(x∗(i)k,0:k−1)q(x∗(i)k,k |x
∗(i)
k−1, zk)π̆k(xi−1

k,0:k)

 ,

= min
1,

p(x∗(i)k,k |x
∗(i)
k,k−1)p(zk|x∗(i)k,k)| det(C∗(i))|p(ηi−1

0 |xi−1
k,k−1)

p(η∗(i)0 |x
∗(i)
k,k−1)p(xi−1

k,k |xi−1
k,k−1)p(zk|xi−1

k,k)| det(Ci−1)|

 . (2.73)

When evaluating eq. (2.73) in Line 5 of Algorithm 2.9, the values of xi−1
k,k , ηi−1

0 and Ci−1

are needed. Since xi−1
k,k may be generated by the manifold Hamiltonian Monte Carlo kernel

qk,3(·) as shown in Algorithm 2.10, the corresponding ηi−1
0 is not available through Lines 2

and 6 of Algorithm 2.9. This can be resolved using the invertible mapping property of the
invertible particle flow. As Ci−1 is invertible, ηi−1

0 can be calculated from xi−1
k,k by solving

eq. (2.71):

ηi−1
0 = (Ci−1)−1(xi−1

k,k −Di−1) . (2.74)

38

Algorithm 2.10 Individual refinement steps of composite MH Kernels constructed with the
manifold Hamiltonian Monte Carlo kernel, at the i-th MCMC iteration of k-th time step.
Input: xik,0:k.
Output: xik,0:k.

Individual refinement of xik,0:k−1:
1: Draw x

∗(i)
k,0:k−1 ∼ π̂k−1(x0:k−1).

2: Compute the MH acceptance probability ρ2 = min
(
1, p(x

i
k,k|x

∗(i)
k,k−1)

p(xi
k,k
|xi
k,k−1)

)
.

3: Accept xik,0:k−1 = x
∗(i)
k,0:k−1 with probability ρ2.

Individual refinement of xik,k:
4: Propose x∗(i)k,k ∼ qk,3(xk|xik,k−1:k, zk) using the manifold Hamiltonian Monte Carlo kernel.

5: Compute the MH acceptance probability ρ3 = min
(
1, p(x

∗(i)
k,k
|xik,k−1)p(zk|x

∗(i)
k,k

)

qk,3(x∗(i)
k,k
|xi
k,k−1:k,zk)

qk,3(xik,k|x
i
k,k−1,x

∗(i)
k,k

,zk)
p(xi

k,k
|xi
k,k−1)p(zk|xik,k)

)
.

6: Accept xik,k = x
∗(i)
k,k with probability ρ3.

SmHMC with EDH

Calculation of individual flow parameters at every MCMC iteration in Algorithm 2.9 can
be computationally expensive. Similar to the spirit of the PF-PF (EDH) [26], common flow
parameters C and D can be computed only once using an auxiliary state variable derived
from the samples, and these flow parameters can be applied for all MCMC iterations. The
resulting procedure is described in Algorithm 2.11. The flow parameters C and D are
calculated only once in the initialization of each time step k, using Algorithm 2.12.

The calculation of the acceptance rate in the joint draw step can be further simplified
compared to eq. (2.73) as the same mapping of the flow is applied to each particle. The
candidate particle x∗(i)k,k and the particle xi−1

k,k share the same value of C in their proposal
densities in eq. (2.70). Thus, for the SmHMC algorithm with the EDH flow, the acceptance
rate of the joint draw is:

ρ1 = min
1,

p(x∗(i)k,k |x
∗(i)
k,k−1)p(zk|x∗(i)k,k)p(ηi−1

0 |xi−1
k,k−1)

p(η∗(i)0 |x
∗(i)
k,k−1)p(xi−1

k,k |xi−1
k,k−1)p(zk|xi−1

k,k)

 . (2.75)

39

Algorithm 2.11 Composite MH Kernels constructed with the manifold Hamiltonian Monte
Carlo kernel and the invertible particle flow with EDH, at the i-th MCMC iteration of k-th
time step. C and D were pre-computed using Algorithm 2.12.
Input: xi−1

k,0:k, η
i−1
0 , C,D.

Output: xik,0:k, η
i
0.

Joint draw of xik,0:k:
1: Draw x

∗(i)
k,0:k−1 ∼ π̂k−1(x0:k−1).

2: Sample η∗(i)0 = gk(x∗(i)k,k−1, vk).
3: Calculate x∗(i)k,k = Cη

∗(i)
0 +D.

4: Compute the MH acceptance probability ρ1 = min
(
1, p(x

∗(i)
k,k
|x∗(i)
k,k−1)p(zk|x

∗(i)
k,k

)p(ηi−1
0 |xi−1

k,k−1)

p(η∗(i)0 |x∗(i)
k,k−1)p(xi−1

k,k
|xi−1
k,k−1)p(zk|xi−1

k,k
)

)
.

5: Accept xik,0:k = x
∗(i)
k,0:k, ηi0 = η

∗(i)
0 with probability ρ1.

Otherwise set xik,0:k = xi−1
k,0:k, ηi0 = ηi−1

0 .
6: Individual refinements of xik,0:k using Algorithm 2.10.
7: Calculate ηi0 = C−1(xik,k −D).

Algorithm 2.12 The flow parameter calculation for SmHMC (EDH).
1: Draw x0

k,0:k−1 ∼ π̂k−1(x0:k−1).
2: Sample η0

0 = gk(x0
k,k−1, vk).

3: Calculate η̄0 = gk(x̄k−1,k−1, 0).
4: Perform invertible particle flow (Algorithm 2.8) to compute (C,D) by starting the

auxiliary particle flow from η̄0.

2.2 Graph Neural Networks and Graph Generative
Models

In this section, we provide a brief review of learning apparatus adapted to graph structured
data. Beginning with a gentle introduction of earlier graph neural network (GNN) approaches
and a general framework that describes many existing GNN models, we focus primarily on
the graph convolutional networks (GCNs), since they are adopted in our work. We discuss the
GNN models that are closely related to the methodology presented in this thesis subsequently.
We also present some material on data-driven graph inference algorithms, parametric random
graph models, and machine learning based graph generative approaches, since some of these
techniques are employed in the implementation of the Bayesian methodology proposed in

40

this thesis.

2.2.1 Graph Neural Networks

Most traditional supervised and unsupervised machine learning algorithms deal with
classification, regression, and representation learning of independent and identically
distributed (i.i.d.) data instances. If there is a regular structure, such as the regular grid
present in images, convolutional neural networks (CNNs) [130, 131] constitute a highly
successful learning approach by exploiting local translational invariance of such data to
extract rich features. Similarly, recurrent neural networks (RNNs) [132, 133] are applied
widely in addressing learning tasks concerning sequential data. However, the ubiquity of
graph structured data in many application areas, such as, wireless networks, social
networks, biological networks, poses several challenges to the conventional machine learning
algorithms. The i.i.d. assumption for different entities does not hold for data residing on
the vertices of a graph, since the graph topology might represent correlation or causal
relationships among the data instances, depending on the strength and directionality of the
edges. The irregular, non-Euclidean structure prohibits straightforward application of
existing CNNs to analyze data on graphs. In addition, since there is no notion of a natural
ordering of the nodes of a graph in most cases, recurrent architectures are not ideal for
these settings. As a result, there has been an extensive research focus on building neural
architectures for efficient processing of graph data by addressing these issues.

Early work led to the development of several GNN models [32–34, 134]. These approaches
rely on recurrent architectures for recursive processing and message passing for propagation
of information across the graph. Training can often take a long time and the required time
scales undesirably with respect to the number of nodes in the graph, restricting the use of such
models to smaller graphs. An approach for improving the scalability of GNNs by partitioning
the graph into several subgraphs was proposed in [135]. This technique alternates between
propagating information among nodes in local subgraphs and propagating information among
the subgraphs.

Although there is a great variety of GNNs, most of them are constructed based on the same
high level idea. They strive to learn a deeper representation (embedding) for each node in
the graph using a standard neural network architectures such as a multi-layer perceptron

41

(MLP) and then account for the graph structure by allowing the node embeddings at each
layer to be influenced by the embeddings of the neighboring nodes from the previous layer.
Formally, a graph G uses its vertices to represent entities, whose pairwise relationships are
encoded by the edges. Thus, we define G = (V , E), where, V = {1, 2, · · · , N} denotes the
set of N nodes and E is the set of (directed) edges. We assume that the ordering of the
nodes is arbitrary but fixed, i.e., each node is represented by a unique index i ∈ V . An
ordered pair (i, j) ∈ E implies that there is an edge from node i to node j. We do not
permit self-loops for any node, so (i, i) /∈ E , ∀i ∈ V . For an undirected graph, the links are
bidirectional, i.e, (i, j) ∈ E iff (j, i) ∈ E . For any node i, we define the set of its neighbors
as Ni = {j ∈ V : (i, j) ∈ E}. Suppose xi and xij denote the feature vector associated with
node i and link (i, j) respectively. We denote the representation of node i and edge (i, j) at
`-th layer by h

(`)
i and h

(`)
ij .

The message passing neural network (MPNN) [35] framework performs the following
recursive operation at each layer for updating the node representations.

h
(`+1)
ij = f (`)

message(h
(`)
i ,h

(`)
j ,xij) ,∀(i, j) ∈ E , (2.76)

a
(`+1)
i = f

(`)
aggregate({h

(`+1)
ij : j ∈ Ni}) ,∀i ∈ V , (2.77)

h
(`+1)
i = f

(`)
combine(h

(`)
i ,a

(`+1)
i) ,∀i ∈ V . (2.78)

Here, f (`)
message(·, ·, ·) computes the message from node j to i at `-th layer using a standard

neural architecture. f
(`)
aggregate(·) aggregates the messages from all neighbors of node i.

Typical choices for this function include neighborhood sampling followed by
concatenation [136] or weighted sum [37, 38]. f

(`)
combine combines the aggregated message

from the neighborhood with h
(`)
i to compute the representation of node i at the (` + 1)-th

layer. It usually applies learnable weights and a nonlinear activation function. It is shown
in [35] that the MPNN model encompasses many existing GNNs, including various graph
convolutional architectures [37, 62, 137, 138] and gated GNNs [134]. Successive
developments, such as the graph isomorphism network (GIN) [139] can also be cast in this
framework. However, eqs. (2.76), (2.77), and (2.78) cannot describe all GNNs. For
example, the node representations potentially depend on global attributes of the graph
in [140], which cannot be represented by these steps.

For addressing node classification or regression problems [37, 38], several message passing

42

layers are stacked and this overall architecture is trained via backpropagation. Similarly,
edge-level tasks, such as link prediction [39, 40], can be carried out by forming the output
for each edge using the embeddings of the incident nodes. A graph embedding for graph
classification [136,139] can be obtained using a readout function after the last layer. Recent
surveys on various GNN architectures are provided in [141,142].

2.2.2 Graph Convolutional Networks

Graph convolutional networks (GCNs) have emerged more recently, with the first proposals
in [137, 138, 143]. These approaches use spectral graph convolution [144], which we now
review briefly. Let A ∈ RN×N

+ denote the adjacency matrix of the graph G, i.e.,

Ai,j =

ai,j, if (i, j) ∈ E

0, otherwise.
(2.79)

Here, we denote the non-negative weight of edge (i, j) by ai,j. For the rest of this section, we
assume that the graph G is undirected, i.e. ai,j = aj,i. As there are no self-loops in E , ai,i = 0,
∀1 6 i 6 N . If the graph is unweighted, then ai,j ∈ {0, 1}. However, for a weighted graph
ai,j > 0. The degree of node i is defined as: di = ∑N

j=1 ai,j. The degree matrix D ∈ RN×N
+

is diagonal and positive semidefinite with diagonal entries, Di,i = di. So, we can write,
D = diag(A1), where 1 is N -dimensional column vector of all ones and diag(·) returns a
diagonal matrix of a column vector. The (unnormalized) graph Laplacian, L̃ = D−A, can
be noramalized to L = D−1/2L̃D−1/2 = I − D−1/2AD−1/2. L is a real symmetric positive
semi-definite matrix, whose complete set of orthonormal eigenvectors {ui}N−1

i=0 spans RN

and are termed the graph Fourier modes [144]. The (ordered) real non-negative eigenvalues
{λi}N−1

i=0 , are referred to as the frequencies of the graph G. The Laplacian matrix can be
diagonalized as: L = UΛUT , where the graph Fourier basis U = [u0, . . . ,uN−1] ∈ RN×N is
constructed by stacking the eigenvectors columnwise and Λ = diag([λ0, . . . , λN−1]T) ∈ RN×N

+

is the diagonal matrix of the corresponding eigenvalues.

If x ∈ RN denotes a signal on the vertices of graph G, its Graph Fourier Transform (GFT)
is defined as: x̂ = UTx. Using the orthonormality of U, the inverse GFT can also be
obtained as x = Ux̂. Since a suitable translation operator in the vertex domain cannot be

43

characterized, convolution of two graph signals x,y ∈ RN is defined in the Fourier domain,
x ∗G y = U

(
(UTx)� (UTy)

)
, where � denotes Hadamard product.

Similarly, spectral convolution of a graph signal x with a graph filter gw = diag(w) ∈ RN×N

to obtain an output y can be computed as: y = UgwUTx. Here, the entries of the vector of
Fourier coefficients, w ∈ RN , are the free parameters of the non-parametric filter gw.

There are several disadvantages associated with non-parametric filtering. We need to
compute U, which has O(N2) runtime and the parameter complexity is O(N), i.e., it
grows with the number of nodes. Thus non-parametric filtering based GNN models [143]
cannot be scaled to large graphs.

A computationally efficient approach involves expressing the Fourier coefficients of the filter
as a function of the eigenvalues of L. For example, if a K−1-th order polynomial filter is
applied, then we can express the filter as:

gw′(Λ) =
K−1∑
k=0

w′kΛk , (2.80)

and the computation of the output y can be simplified as:

y = Ugw′(Λ)UTx =
K−1∑
k=0

w′kLkx . (2.81)

This approach has a fixed complexity of O(K) for learning the new parameters w′ ∈ RK ,
irrespective of how large N is. Moreover, we do not need to compute the Fourier basis U for
filtering. Evaluation of eq. (2.81) scales as O(K|E|) using sparse matrix multiplication.

Multi-scale clustering of nodes is combined with spectral convolution in [137] to derive a
graph neural network that mimics the CNN in Euclidean data. However, this approach
is not scalable to large graphs because of the increased parameter complexity associated
with the multi-scale analysis. The model in [138] applies a convolution-like propagation
rule on graphs for a graph classification task. However, this approach uses degree-specific
weight matrices, which requires extensive computation if the degree distribution has a large
variance.

These early models are simplified to obtain a Chebyshev polynomial based spectral filtering

44

approach in [62]. Defferrard et al. modifies eq. (2.80) slightly to obtain:

gw(Λ) =
K−1∑
k=0

wkTk(Λ̃)k , (2.82)

where Tk(·) is the k-th order Chebyshev polynomial and Λ̃ = 2
λmax

Λ − I has eigenvalues in
[−1, 1], which improves the numerical stability during model training. If an input X ∈ RN×dx

has dx input channels and the output Y ∈ RN×dy requires dy feature maps, then a single layer
of the K-th order ChebyNet first applies the filter in eq. (2.82) to the input and then passes
the filtered result through a potentially nonlinear activation function σ(·) to compute:

Y = σ
(K−1∑
k=0

L̃kXWk

)
. (2.83)

Here L̃ = 2
λmax

L − I and the weight matrices {Wk ∈ Rdx×dy}K−1
k=0 are learned through

backpropagation. For the design of the popular GCN model [37] of Kipf and Welling, K = 2
is used in eq. (2.83) with additional approximations to obtain:

Y = σ
(
AGXW

)
, (2.84)

where AG = (I + D)−1/2(I + A)(I + D)−1/2 is the normalized, modified adjacency matrix
(a self-loop is added at each of the nodes). More sophisticated spectral filters are designed
in [145,146] for improved spatial localization.

While the models discussed so far are based on spectral filtering, several spatial filtering
methods or aggregation strategies were adopted in [136, 147]. A general framework for
training neural networks on graphs and manifolds was presented by [148] and Monti et al.
explain how several of the other methods can be interpreted as special cases. The
performance of the graph convolutional neural networks can be improved by incorporating
attention mechanism over the neighboring nodes [38], leading to the graph attention
network (GAT). Experiments have also demonstrated that gates, edge conditioning, and
skip connections can prove beneficial [149–151]. In some problem settings it is also
beneficial to consider an ensemble of graphs [152], multiple adjacency matrices [153] or the
dual graph [154].

45

GCN models are mostly employed in a transductive setting, where features of the test set
nodes are required to be stored and used for computing the node embeddings during training.
Additionally, due to the message passing structure of the GCNs, the receptive field size grows
exponentially for each node with respect to the number of layers. Thus, the computational
complexity and memory requirement becomes a bottleneck for applying GCNs to large,
dense graphs. Several algorithms have been proposed with the goal of improving training
efficiency and scalability based on node sampling [155], neighbor sampling [156], layer-wise
sampling [157], layer-dependent importance sampling [158], sub-graph sampling [159], and
graph clustering [160].

The GCN propagation rule applies low-pass filtering to the node representations [161], i.e.,
nodes within each others receptive fields tend to have similar representations. As the
number of layers increases, this leads to over-smoothing and eventual convergence to
indistinguishable representations of nodes [162–164]. Several approaches have been
proposed to address this issue including adaptive adjustment of the receptive field [162],
characterization of the continuous dynamics of node representations [165], improved
propagation schemes using PageRank [166], decoupling of the representation
transformation and the message propagation [167], and stochastic
regularization [168,169].

2.2.3 Topology Uncertainty in Graph Neural Networks

In Chapter 4, we propose a Bayesian framework and treat the observed graph as additional
data to be used during inference. We published a paper disseminating this research in
2019 [56]. Following the proposal of our general framework to deal with the issue of
uncertainty on graphs, several related techniques [41–45] that jointly perform inference of
the graph while addressing a learning task such as node classification have been proposed
recently. In [41], variational inference is employed to learn the graph structure. This
formulation allows consideration of additional data such as features and labels when
performing graph inference, but the technique is still tied to a parametric model. The
approach in [42] is based on a similar idea; this algorithm forms several k-nearest neighbor
graphs using the embedding of each layer of the GCN and subsequently use these graphs in
conjunction with the observed graph to estimate a better approximation of the ‘true’

46

topology based on parametric graph modelling. An iterative optimization is adopted for
joint optimization of the graph and the GCN weights. In [43], Elinas et al. take a
non-parametric approach, but their probabilistic formulation is focused on improving only
very noisy graphs. In [44], simultaneous optimization of the graph structure along with the
learning task is considered. A contrastive framework is adopted in [45], which combines a
generative model similar to the variational graph autoencoder (VGAE) [39] to generate
another view for the node embeddings. In all of these works, only the node classification
task has been explored. Our methodology extends the applicability of the Bayesian
framework beyond node classification by incorporating a more flexible non-parametric
graph model.

2.2.4 Learning a Graph from Observed Data

Originating primarily from the signal processing community, several algorithms focus
exclusively on learning a graph from some observed data [170–172]. In this setting, data
entities are associated with different nodes and the connectivity pattern among them is to
be inferred. The learned graph might be unweighted [170] or weighted [172]. The central
idea followed in many of these techniques is that if two nodes are highly similar, then it is
more likely that there is a link (for the unweighted graph case) or a higher edge weight (for
the weighted graph case) between them. The notion of this similarity between nodes
depends on the assumptions on the observed data, the graph to be estimated, and the
relationship between them. Since this task is often unsupervised, i.e., there is no ‘true’
underlying graph, the evaluation of the estimated topology is not well-defined and depends
heavily on the application domain. These methods include statistical approaches which
rely on (partial) correlations or coherence measures [173, Chapter 7] among signals,
approximate nearest neighbor (A-NN) methods [170, 174, 175], Gaussian graphical model
based estimation techniques [171, 176, 177], algorithms relying on some signal smoothness
criterion [172, 178–180], and diffusion process based methods [181]. A detailed survey of
these algorithms is provided in [182]. These approaches differ from our work considerably,
since the end goal of the graph learning algorithms is topology inference, whereas our
objective is to address node- or edge-level learning tasks for data on graphs.

The correlation based approaches are often informal, requiring tuning of thresholds of ad-

47

hoc scoring functions. Statistical model based algorithms perform poorly if the underlying
assumptions are not satisfied. Assessing the usefulness of inferred graphs in some appropriate
sense is difficult in many cases. Many of these methods have O(N2) complexity, where
N is the number of nodes. As a result, they do not scale well to large graphs. A-NN
graph learning [170, 174, 175] has O(N logN) complexity, which is more suitable for large
scale applications, but the learned graph generally has poor quality compared to the k-
NN graph. The algorithms [172, 178, 179], which typically appeal to a smoothness criterion
for the graph by minimizing a regularized version of Dirichlet energy [183] (also known as
the total variation [184] of the graph signal with respect to the Laplacian matrix), also have
O(N2) complexity. However, a more recent method in [180] introduces an approximate graph
learning algorithm which provides an efficient trade off between runtime and the quality of
the solution. We use this approach for the maximum a posteriori (MAP) estimation of the
non-parametric graph in our Bayesian framework. However, our graph model is tailored to
the specific learning task we address.

2.2.5 Parametric Random Graph Models

There is a rich history of research and development of parametric models of random
graphs. These models have been designed to generate graphs exhibiting specific
characteristics and their theoretical properties have been studied in depth. They can yield
samples representative of an observed graph provided that the model is capable of
representing the particular graph structure and parameter inference is successful. The
Barabasi-Albert model [185], exponential random graphs [186], and exchangeable random
graph models [187] fall into this category. Configuration model [188, 189] variants preserve
the degree sequence of a graph while changing the connectivity pattern in the random
samples. A recent survey of various random graph models is provided in [190].

Detection of community memberships of the nodes of graph structured data has many
applications, including analyzing collaboration networks [191], protein interaction
networks [192], and social networks [193]. Communities can be loosely defined as sets of
nodes which have dense internal connectivity and few external connections [194]. A class of
models, termed stochastic block models (SBMs), is used extensively in the
literature [195–198] for modelling such community structures. The stochastic block model

48

assumes that each node can only participate in one of the communities and different node
pairs having the same community memberships are stochastically equivalent. While this is
simple to understand, in real world networks, often a node can be a part of more than one
community with varying membership strengths. To address this possibility, the mixed
membership stochastic block model (MMSBM) is proposed in [199]. Exact inference in this
model becomes intractable in large networks and several algorithms for approximate
inference have been developed [200, 201]. For the implementation of our Bayesian
framework in a node classification setting in Chapter 4, we adopt the MMSBM as the
parametric generative model of the observed graph. The overlapping SBMs [202, 203]
provide another approach for allowing nodes to belong to multiple communities. Another
shortcoming of the SBM is that it cannot accurately model a heavy tailed degree
distribution [204]. Such degree distributions are observed in many real world networks.
Several modifications to tackle degree heterogeneity within a community have been
proposed in various degree-corrected SBMs [196,204–208].

Despite interpretable modelling of specific graph properties, a disadvantage of using these
parametric graph models is that they impose relatively strict structural assumptions in
order to maintain tractability. As a result, they often cannot model characteristics like
large clustering coefficients [209], small world connectivity and exponential degree
distributions [210], observed in many real-world networks. Additionally, most cannot
readily take into account node or edge attribute information, and high-dimensional
parameter inference can be prohibitively computationally expensive for larger graphs.

2.2.6 Machine Learning Based Graph Models

Various generative graph models have emerged from the machine learning community,
incorporating an autoencoder structure. These models are commonly trained to accurately
predict the links in the graph, and as a result, tend to fail to reproduce global structural
properties of the observed graph [211]. A variational autoencoder model, whose inference
distribution is parameterized by a graph convolutional network (GCN), is introduced
in [39] to learn node embeddings. The link probabilities are derived from the dot product
of the obtained node embeddings. A similar approach is adopted in [212], but the proposed
algorithm employs adversarial regularization to learn more robust embeddings. Both of

49

these models exhibit impressive clustering of node embeddings. Adding a message passing
component to the decoder based on intermediately learned graphs is considered in [40].
This leads to improved representations and better link prediction. The strengths of the
parametric models and the graph-based learning methods are combined in [213] to propose
the deep generative latent feature relational model (DGLFRM), which aims to retain the
interpretability of the overlapping SBM (OSBM) paired with the flexibility of the graph
autoencoder. The incorporation of the OSBM improves the ability of the model to capture
block-based community structure. In Chapter 4, we incorporate many of these
architectures in the design of the Bayesian versions of these methods using non-parametric
graph inference for improved link-prediction.

An alternative approach is to use generative adversarial networks (GANs) as the basis for
graph models. Edge probability is modelled through an adversarial framework in the
GraphGAN [214] model. The NetGAN model represents the graph as a distribution on
random walks [215]. Compared to autoencoder methods, the GAN based methods seem
more capable of capturing the structural characteristics of an observed graph. The major
disadvantage is that the models are extremely computationally demanding to train and the
success of the training can be sensitive to the choice of hyperparameters.

We focus on learning a graph model based on a single observed graph. By contrast, there
is a growing body of work that aims to learn graph models that can reproduce graphs that
have characteristics similar to a dataset of multiple training graphs. Evaluation is typically
done based on the likelihood of sampled graphs and comparing graph characteristics. These
approaches can preserve important structural attributes of the graph(s) in the dataset, but
the sampled graphs do not retain node identity information. So, they cannot be applied
in the node- and edge-oriented learning tasks we focus on. In this category, there have
been variational autoencoder approaches [216, 217], GAN-based approaches [218], models
based on iterative generation [219], normalizing flow based models [220], and auto-regressive
models [221,222].

2.3 Time-Series Forecasting

This section provides a literature review of relevant time-series forecasting techniques. We
discuss statistical forecasting models in Section 2.3.1. Although these approaches allow

50

for interpretable modelling of the time-series in most cases, as a result of recent advances,
neural network-based techniques have started to outperform the statistical approaches for
multivariate time-series prediction. We present an overview of these deep learning based
algorithms in Section 2.3.2. Recently, powerful multivariate forecasting algorithms that are
capable of providing uncertainty characterization have been proposed. We provide a review
of these approaches in Section 2.3.3. In some settings, a graph is available that specifies
spatial or causal relationships between the time-series. Numerous algorithms have been
proposed that combine GNNs with temporal neural network architectures. Algorithms that
take into account the graph provide superior forecasts, if the graph is accurate and the
indicated relationships have predictive power. These deep learning based spatio-temporal
forecasting models are outlined in Section 2.3.4.

Another related area is constituted of various flavours of stochastic recurrent networks [223,
224], which have been introduced for modelling of time-series data in an unsupervised setting.
In most cases, variational inference is applied to learn model parameters, although sequential
Monte Carlo has also been employed [86, 225, 226]. Many of these methods determine the
parameters of sequential Monte Carlo models via optimizing Monte Carlo objectives [225–
227]. These approaches are discussed in Section 2.3.5.

2.3.1 Statistical Forecasting Models

Historically, time-series forecasting has been studied by extensive application of various
statistical models to fit the time-series data. Some common approaches include univariate
forecasting based on Auto-Regressive (AR) [46] and Auto-Regressive Moving Average
(ARMA) [228] models. Relying on a weak stationarity assumption, such models aim for a
parsimonious representation of time-series. Generalization of ARMA by introducing first
differencing steps results in the Auto-Regressive Integrated Moving Average (ARIMA) [47]
model, which is capable of handling a non-stationary trend in the mean of the time-series
data. However, these approaches are not capable of modelling seasonality. Incorporation of
additional seasonal terms in the ARIMA model leads to the Seasonal ARIMA
(SARIMA) [229] model, which can represent periodic patterns. When used in a
multivariate problem, prediction capability of these univariate forecasting techniques is
rather limited, since they ignore any correlation between different time-series. For

51

modelling the relationships among multiple time-series, AR and ARMA models can be
generalized to Vector Auto-Regressive (VAR) and Vector Auto-Regressive Moving Average
(VARMA) [230] models. A promising recent advancement in statistical modelling of
time-series data is Prophet [231], which is a nonlinear regression approach incorporating
various components to capture a trend, multiple seasonalities, and the effects of irregular
events, e.g., holidays. Although its impressive performance on small-scale datasets and
interpretable modelling makes Prophet a widely used algorithm in many practical tasks, it
cannot outperform deep learning based forecasting models on large datasets [48].

If the number of time-series is large compared to the total duration of individual time-
series, fitting a VAR model for forecasting becomes challenging. Various types of sparse
VAR models, which aim to represent the dependency among individual time-series by using
probabilistic graphical models [232] or `1-type non-smooth regularization [233–235], have
been proposed to address such scenarios. If a graph is available in addition to the multivariate
time-series, the Graph VARMA [236] model incorporates it by designing suitable graph
filters. Kernel-based methods [237, 238] are derived for the cases where a linear model is
inadequate to represent the complexity of the time-series data. Although, these approaches
are theoretically appealing, the recent deep learning models often achieve significantly better
forecasting accuracy for real-world time-series datasets and exhibit better scalability.

2.3.2 Deep Learning Based Point Forecasting Models

Although there is a history of persistent successes of state-of-the-art statistical forecasting
techniques on many small to medium sized datasets, these models often show poor
scalability to a larger number of time-series and rely heavily on hand-crafted features or
domain knowledge. These issues potentially hinder the applicability of such models to
many practical settings. Recent years have seen significant advances in the development of
effective point forecasting models using neural networks. Several types of architectures
have been considered, including recurrent network based models [239–245], matrix
factorization based approaches [48, 246], and the deep learning approach of [49].

Recurrent neural networks (RNNs) [132, 133, 247–250] are a class of neural network
architectures with feedback connections to process sequence data of variable lengths.
Recurrent models process the input sequences to recursively update their internal states

52

(memory), which are subsequently used to form the predictions. This feature makes them a
popular choice in diverse application areas including natural language processing [250], text
generation [251], audio modelling [252], image generation [253], and time-series
forecasting [254]. Despite their widespread use, many primitive RNN architectures cannot
learn long-term dependencies in the sequence data well [255], primarily due to gradient
vanishing and exploding [256] during training. The most effective RNNs are equipped with
gates to control the flow of information to combat this issue. Such gated RNNs include the
long short-term memory (LSTM) [133] and the gated recurrent unit (GRU) [250]. In
particular, the LSTM has the capability to adaptively memorize or forget historical
information to mitigate gradient vanishing or exploding for processing long sequences.
Another drawback of RNN models is that they have limited capacity to represent complex
dependencies among multiple variables [245].

Several modifications and innovations have been proposed for using recurrent architectures
in time-series forecasting task. Among them, the approach in [239] combines an LSTM with
the wavelet transform and a stacked autoencoder (SAE) [257]. First, the time-series data is
denoised using a wavelet-based decomposition. Subsequently, a SAE is employed to generate
high-level representations, which are used as inputs of a LSTM model for forecasting. The
long and short-term time-series network (LSTNet) [240] approach combines an RNN with
a convolutional neural network (CNN) [130,131]. The first layer consists of a CNN without
pooling, which strives to learn time-localized patterns. Its output is then fed to a RNN with
skip connections to capture long-term tendencies of the time-series data.

The attention mechanism [258] provides an alternate avenue for representing long-term
dependencies in time-series data. In addition, it also has the capability to extract
meaningful interactions between different time-series, which can be beneficial in
multivariate forecasting problems. The dual-stage attention-based RNN (DA-RNN) [241]
model employs an encoder-decoder architecture for forecasting one step ahead. The
encoder is an RNN endowed with an attention module to determine which dimensions of
the multivariate time-series are important. The decoder forms the forecast by applying a
temporal attention mechanism, which focuses more on relevant encoder states. Although
temporal attention is effective in determining which time-lags are important for forecasting,
its point-wise nature is not particularly suitable for capturing continuous periodical
patterns present in many real-world datasets. The memory time-series network

53

(MTNet) [242] architecture strives to address this issue by designing a long-term memory
component. It has three encoders, each of which is constructed by stacking a convolutional
layer that extracts time-localized features, an attention mechanism that determines their
importance, and a GRU that summarizes the output of the attention module. Two out of
the three encoders use long-term historical data as their inputs to build the memory
component, which allows the model to remember long-term temporal patterns. The third
encoder processes the recent historical data to obtain short-term contexts. Finally, outputs
of the memory unit are combined with the short-term contexts to obtain the
forecasts.

Another limitation of temporal attention is its inability to incorporate the effect of different
importance of input variables in a multivariate setting. In the multi-variable LSTM
(MV-LSTM) [243] model, Guo and Lin modify the LSTM architecture to accommodate
tensorized hidden states such that each element of the hidden state tensor captures
information regarding a specific input variable. Successively, they apply a temporal and
variable attention mechanism, designed using the hidden states, for forecasting. This
specific implementation of the attention mechanism is analogous to the probabilistic
mixture of experts model [251], where each variable and lag pair acts as an expert, and the
attention mechanism computes the confidence scores for these experts’ predictions. A
similar motivation is considered for the design of the adaptive input selection RNN
(AIS-RNN) [244] model, which combines an RNN with an AIS module to incorporate
potentially different importance of various input variables and lags. However, the AIS
module is built using another RNN, instead of an attention mechanism. Another attention
based approach is the hybrid model in [245], which combines a stacked residual LSTM
encoder-decoder architecture with a multi-attention module, comprised of temporal and
layer-wise attentions. It also incorporates ensemble empirical mode decomposition
(EEMD) [259] to decompose the data into multiple sub-series, which are subsequently
clustered to reduce the computational complexity for obtaining the predictions. However,
this architecture cannot be trained end-to-end since the prediction step is separate form
the decomposition and clustering operations. Another major drawback of this model is
that in spite of the claim of tackling a multivariate forecasting task, this approach
essentially focuses on the recent historical data for each individual time-series for forming
its predictions.

54

The temporal regularized matrix factorization (TRMF) [246] framework views multivariate
time-series modelling as a regularized matrix factorization problem, which supports
temporal dependency modelling. The main technical novelty in the TRMF approach stems
from the use of an autoregressive model (AR) to describe the time evolution of the
low-dimensional temporal coefficients and incorporating it as a regularizer term in the
matrix factorization problem. The resulting algorithm naturally addresses the tasks of
missing data imputation and forecasting based on the learned AR model of temporal
coefficients. Contrary to the graph-based regularization [260] employed in prior temporal
matrix factorization models [261, 262], the TRMF model shows improved forecasting
performance, since it is capable of capturing negative temporal correlations through the
design of its temporal regularizer. Another benefit of this approach is that compared to
several statistical forecasting techniques, such as the AR model [46] and linear SSM-based
learning [64], TRMF scales more favourably with respect to the number of time-series
present in the multivariate data. However, the TRMF method can only represent linear
temporal dependencies, which might be inadequate in modelling complex, real-world
datasets. Moreover, this approach solely focuses on the global patterns arising form the AR
model for forming its predictions. This can result in poor approximations of temporally
local behaviours [48].

The DeepGLO [48] model is another related multivariate forecasting approach, which learns
both global and local patterns during training and utilizes them for prediction. This is in
contrast to univariate models, such as [52–54], which form the forecasts for individual time-
series using only the historical evolution of the same time-series, despite being trained on
the whole dataset. The hybrid architecture of DeepGLO consists of a global module for
capturing common features across all time-series and a local prediction module for learning
local individual properties. The global module uses a matrix factorization approach, which is
regularized by a temporal convolution [263] operation. The local prediction module is another
temporal convolution network, whose predictions are constructed by using the obtained
factors from the global module as covariates. Similar to TRMF [246], this approach can
scale to thousands of time-series because of the computational efficiency of the underlying
matrix factorization component. Empirical results show the efficacy of DeepGLO in handling
multivariate data with drastically different scales across individual time-series.

The neural basis expansion analysis for time-series (N-BEATS) [49] model is a recently

55

proposed univariate time-series forecasting method, which demonstrates state-of-the-art
prediction accuracy on several large-scale benchmark datasets. Unlike the recurrent
models, which are inherently sequential in nature, this approach considers the
multi-horizon forecasting as a nonlinear multivariate regression problem. The basic
building block of the N-BEATS architecture consists of several fully connected layers,
followed by interpretable basis functions to represent local trend and seasonality. Each
block has two outputs, termed forecast and backcast. Several blocks are connected
hierarchically using doubly-residual links to form a stack. Multiple stacks are used with
residual connections to form the overall forecast. This design facilitates interpretable
decomposition of the forecasts across stacks; deeper stacks focus on predicting more
complex temporal patterns, whereas shallower stacks learn the global features. Since this
architecture consists of fully connected layers and residual links, the training time is
considerably lower compared to recurrent models.

The deep learning models presented in this section provide point forecasts of the future, as
the model parameters are learned by optimizing suitable point forecasting criteria. As a
result, these models cannot assess the forecast uncertainty by forming confidence intervals
around the mean/median forecasts. Another drawback is that they cannot utilize spatial
dependencies between time-series in the form of a graph adjacency for improving their
predictions.

2.3.3 Deep Learning Based Probabilistic Forecasting Models

In recent years, there has been substantial research focus on applying deep learning for
probabilistic forecasting. For example, the hybrid model combining exponential smoothing
with a recurrent network in [254] was the official winner of the M4 competition on forecasting.
More sophisticated probabilistic forecasting methods include DeepAR [52], DeepFactors [53],
DeepState [54], the Multi-horizon Quantile Recurrent Neural Network (MQRNN) [264], the
Gaussian copula process approach of [265], and deep Rao-Blackwellised particle filtering
approach of [266]. Normalizing flow [267] has also been combined with temporal neural
network architectures [268,269].

DeepAR [52] is a univariate forecasting algorithm based on an autoregressive recurrent
network architecture. The probabilistic forecast is assumed to have a Gaussian distribution

56

for real valued time-series. The negative binomial density is chosen for modelling count
data. The mean and variance of the Gaussian forecast or the mean and shape of the
negative binomial forecast are parameterized by applying linear or softplus layers to the
output of the recurrent network. The model is trained end to end by minimizing the
negative log-likelihood of the forecasts on the training data. Typical implementation of this
approach is based on a multi-layer LSTM [133] network, which uses the recent history of
the time-series to be predicted along with any additional covariates as its input. Handling
the covariates in this way alleviates the need to perform elaborate and dataset specific
feature engineering to learn the seasonal behaviour.

DeepFactors [53] is a more general hybrid, univariate forecasting framework which combines
a global, non-random, deep learning architecture for capturing efficient representations with
a local classical time-series model to handle forecast uncertainty. Typically, one or several
RNNs are used to design the global component, whereas the local randomness for different
time-series is implemented using additive Gaussian noise, a linear dynamic model, or a
Gaussian process. If the forecast likelihood is non-Gaussian, a variational lower bound is
maximized for learning the model parameters. The DeepAR architecture can be obtained
as a specific instantiation of the DeepFactors framework.

The DeepState [54] approach performs Kalman filtering of the hidden states of a
time-varying, linear-Gaussian (SSM) to address univariate probabilistic forecasting. The
time-dependent parameters of the SSM are different for each time-series in the dataset, and
are learned using a multi-layer recurrent architecture, which uses the additional covariates
as its input. Although, the linear-Gaussian modelling adopted in this approach results in
improved interpretability for the obtained forecasts, the DeepState model has several
disadvantages. A linear-Gaussian SSM might not be able to adequately model complex,
rapidly varying temporal patterns, which are present in many practical datasets. Since the
parameterization of the underlying time-varying, linear-Gaussian SSM depends on the
associated covariates, the forecasting performance can be poor in settings where the
covariates are loosely correlated with the time-series of interest or where no meaningful
covariate is available. A generalization of the DeepState model is the deep state-space
model for forecasting (DSSMF) [270] approach, which sacrifices the analytically tractable
inference of linear-Gaussian hidden states in order to achieve more effective modelling of
the state-transition and emission processes using nonlinear, neural architectures. A

57

variational inference procedure is adopted for computing the approximate posterior of
hidden states.

In the Multi-Quantile RNN (MQRNN) [264] model, a multi-quantile loss is minimized
during training to learn several quantiles of the multi-horizon forecasts. This approach is
an example of the encoder-decoder architecture, which addresses the sequence to
sequence [251] prediction task. The encoder is composed of multiple LSTM layers, which
summarizes the historical evolution of the time-series to be predicted and the associated
covariates. The decoder consists of two multi-layer perceptrons (MLPs), one of which,
termed the global MLP, uses the the encoder output and the future covariates to form both
horizon-specific context vectors for each prediction horizon and a horizon-agnostic context
to capture the common information. The quantile predictions are formed by applying the
other MLP, which is shared across horizons and uses the two contexts and the
corresponding future covariate as its input. This approach has the capability to
accommodate both temporal and static covariates, shifting seasonality, known events that
cause large spikes, and cold starts. However, a major drawback of this approach is that it
only provides estimates of the pre-specified quantiles instead of characterizing the forecast
distribution.

The GP-Copula approach in [265] can be thought of as a generalization of the DeepAR [52]
model to a multivariate setting. A Gaussian copula process modelling of the forecasts
provides a principled way to deal with the difficulty associated with different scales of
individual time-series [52, 53]. A low-rank covariance structure is designed to capture the
relationship among the forecasts with reduced computational complexity. The resulting
algorithm is shown to scale well for datasets containing a few thousand time-series.

Generalizing the adoption of linear state-space model in the DeepState [54] algorithm, Kurle
et al. propose to use a more flexible switching Gaussian linear dynamical system model
in [266] for multivariate forecasting. The Rao-Blackwellised particle filter [89] is employed
for tractable inference of the hidden states. The conditionally linear-Gaussian emission
model might not be adequate to represent the generation of complex, typically non-Gaussian,
multivariate time-series data. Hence, an auxiliary variable approach, which allows for more
complex nonlinear emission models with a decoder neural network is adopted. An encoder,
similar to the Ladder VAE [271], is used for designing an efficient proposal mechanism with

58

dependencies in the same direction as the generative model. The parameters of the overall
architecture are learned by variational lower bound maximization approach.

Use of normalizing flow [267] constitutes another research direction in probabilistic
forecasting. Normalizing flow is a powerful, scalable, and general approach, which allows
modelling of arbitrarily complex distributions of correlated, high-dimensional data by
applying a sequence of deterministic, invertible transformations to a simple initial
distribution. In [268], a flexible, nonlinear, and bijective transformation of the
linear-Gaussian emission mechanism in a SSM is considered as the generative process of
multivariate time-series data. As in normalizing flow models, the resulting likelihood
function can be computed in closed form using the change of variables formula. Similar
to [54], an RNN with covariates as inputs is used to model the time-varying parameters of
the SSM. In addition to impressive probabilistic forecasting, this approach shows improved
capability in dealing with missing observations. Another approach in [269] applies more
sophisticated transformations, such as Real NVP [272] and masked autoregressive flow
(MAF) [273], to the RNN states for representing forecasting uncertainty. The resulting
algorithms achieve state-of-the-art performance on several benchmark multivariate
time-series datasets. Aside from these forecasting approaches, normalizing flow has been
combined with RNNs for other tasks such as stochastic video generation [274] and
modelling the density of sequential data [275].

In addition to the restrictive assumptions on the univariate forecast distributions in some
of these approaches [52–54], extending them to the multivariate setting is often not
straightforward due to the increased computational complexity. Since the probabilistic
algorithms mainly focus on learning the forecasting distributions, they perform poorly in
terms of the point forecasting metrics. Another major drawback of all of these probabilistic
forecasting techniques is that when applied in a spatio-temporal setting, these models
cannot utilize the graph information for better learning.

2.3.4 Spatio-Temporal Forecasting Models

With the advent of graph neural networks [37, 62], there has been extensive research effort
towards developing spatio-temporal forecasting algorithms that are capable of modelling
the complex spatial relationships among multivariate time-series to achieve more accurate

59

predictions. These algorithms either utilize an observed graph adjacency matrix [50,276] or
learn a plausible topology from the data [51, 277, 278]. Graph convolution [37, 62] or
attention [38] mechanism is applied to capture complex topological structures for
representing spatial dependency in conjunction with various deep learning modules for
handling the temporal dynamics. We broadly categorize these algorithms based on their
temporal neural network architectures, including recurrent networks [133, 250], temporal
convolutions [263,279], and attention mechanisms [258].

The Temporal Graph Convolutional Network [280] (TGCN) combines a GCN [37] with a
GRU [250] so that the input to the GRU layers at any time instant is obtained by performing
a spatial aggregation of the multivariate time-series at that instant using a GCN layer. A
similar architecture using an LSTM [133] is proposed in [281] for classification of skeleton-
based action sequences. In the Traffic Graph Convolutional Recurrent Neural Network [282]
(TGCRNN), Cui et al. incorporate additional spatial constraints, depending on whether
traffic at one node can be impacted by another node within a specific time, for designing the
adjacency matrix.

Li et al. propose a more general approach, termed Diffusion Convolutional Recurrent
Neural Network [50] (DCRNN). This model use an encoder-decoder model for sequence to
sequence forecasting using multi-layer Diffusion Convolutional GRUs (DCGRU). The
DCGRU module is constructed by replacing the feedforward matrix multiplications by a
graph diffusion convolution for each cell of a GRU as follows:

rt = σ (Θr ?G [yt, xt−1] + br) , (2.85)
ut = σ (Θu ?G [yt, xt−1] + bu) , (2.86)
ct = tanh (Θc ?G [yt, (rt � xt−1)] + bc) , (2.87)
xt = ut � xt−1 + (1− ut)� ct . (2.88)

Here, rt, ut, and ct are the outputs of the reset, update, and candidate activation gates of
the DCGRU respectively. [·, ·] stands for column-wise concatenation operation, �
represents elementwise multiplication, and Θ-s and b-s are the learnable weights and biases
respectively. rt and ut use sigmoid activation function, whereas ct is computed using a
hyperbolic tangent nonlinearity. The overall computation in a DCGRU layer can be
summarized as xt = DCGRU(yt, xt−1), where yt and xt denote the input and the output to

60

the layer at time step t. The K-th order diffusion convolution of input graph signal X on
(possibly) directed graph G with adjacency matrix A is denoted by ?G, and is defined
as:

Θ ?G X =
K−1∑
k=0

(
Tk(D−1

O A)Xθk,O + Tk(D−1
I AT)Xθk,I

)
, (2.89)

where, DO = diag(A1) and DI = diag(AT1) are the out-degree and the in-degree matrices
of graph G respectively. The k-th order Chebyshev polynomial is denoted by Tk(·). The
learnable parameters are grouped into Θ = {θk,O, θk,I}K−1

k=0 . Eq. (2.89) contains polynomial
terms of both (normalized) row and column adjacency matrices, which facilitates efficient,
bidirectional modelling of traffic patterns on real-world datasets. The overall
encoder-decoder architecture is trained to minimize a suitable point forecasting criterion
such as mean absolute error (MAE) of the predictions using scheduled sampling [283].

Huang et al. propose an extension of DCRNN by accommodating more flexible spatial
aggregation through a rank influencing mechanism [284]. The rank influence factor matrix
term is similar to graph attention [38] and its inclusion results in improved performance at
the expense of a moderate increase of computational complexity.

The Multiple Residual Recurrent Graph Neural Network [285] models recent and various
periodic temporal dependencies by employing several graph convolutional recurrent modules
with additional residual shortcut path, gates and hop connections.

The Adaptive Graph Convolutional Recurrent Network [51] (AGCRN) model improves the
graph-based recurrent architecture by equipping it with node adaptive parameter learning
(NAPL) for efficient graph convolution and a data-adaptive graph learning module. The
AGCRN architecture is formed by stacking Adaptive Graph Convolutional GRUs
(AGCGRU). The AGCGRU has a learnable node embedding matrix E ∈ RN×de , whose
i-th row denotes the embedding for the i-th node in the graph and the embedding
dimensionality de�N , the number of nodes. The learnable adjacency matrix is formed
as:

Aadap = softmax
(
EET

)
, (2.90)

where, the softmax function is applied row-wise. The NAPL enhanced adaptive graph

61

convolution of K-th order is defined as:

Zn
j =

K−1∑
k=0

(
Tk(Aadap)X

)n
i

(
En
` θ

`
ki,j

)i
j

+ En
` b

`
j , (2.91)

where, X ∈ RN×di is the input and Z ∈ RN×do is the output of the NAPL-GCN layer. The
subscripts and superscripts indicate the Einstein summation notation. The node specific
weights and biases are formed based on a matrix factorization approach using the node
embedding matrix E. The learnable parameters are {θk ∈ Rde×di×do}K−1

k=0 and b ∈ Rde×do .
This NAPL-GCN layer is used to construct each gate in the AGCGRU module.

Although the graph based recurrent models achieve impressive performance on several
traffic datasets, RNN approaches are known to have difficulty in modelling long-term
temporal dependencies and to have a long training time. As an alternative approach, the
Spatio-Temporal Graph Convolutional Network [276] (STGCN) model uses graph
convolution for spatial aggregation and 1-D causal convolutions with Gated Linear Units
(GLU) to process the temporal features. The Long Short-term Graph Convolutional
Network [286] (LSGCN) approach can be viewed as a generalization of the STGCN model.
Compared to the STGCN, which uses convolutions in both space and time, the main
novelty in the LSGCN model is to integrate a spatial attention with gated temporal
convolutions. The Graph WaveNet [287] (GWN) stacks graph convolutional layers with
dilated causal convolutions [263], whose receptive field grows exponentially with the
number of layers. In addition, the GWN model has the capability of learning a graph from
the time-series data and using it to improve forecasting.

The Multivariate Time-series forecasting with Graph Neural Network [288] (MTGNN)
approach combines a directed graph learning module, graph convolutional layers, and
temporal convolutions using residual and skip connections. Similar ideas are explored in
the design of the Structure Learning Convolutional Neural Network (SLCNN) [277], which
strives to extract global and local temporal patterns by two separate learnable adjacency
matrices. The 3D-Temporal Graph Convolutional Networks [289] (3D-TGCN) approach
ignores the graph structure based on geographical data and learns an adjacency matrix
based on the similarities among the time-series on different nodes. These similarities are
computed using the Dynamic Time Warping [290] (DTW) algorithm. The 3D
convolutional architecture allows better fusing of the spatial and temporal relationships. In

62

the Dynamic Spatial-Temporal Graph Convolutional Network [291] (DSTGCN), Diao et al.
propose to capture time-varying spatial dependencies by learning a dynamic graph
Laplacian matrix, with the goal of achieving better modelling of the fluctuations of the
spatio-temporal data. Gated CNNs are used for extracting the temporal features. The
Spatial-Temporal Synchronous Graph Convolutional Network [292] (STSGCN) model
constructs a localized spatio-temporal graph by connecting each node with itself at the
previous and the next time steps. Subsequently, this graph is used for several convolutions
to obtain spatial and temporal embeddings, which are aggregated to form the forecasts.
Most of these temporal convolution based architectures exhibit favourable computational
requirements compared to the recurrent models.

Another avenue for capturing long-term dependency in the time-series data is explored by
integrating various types of attention mechanisms with spatial aggregations. The Attention
Spatial-Temporal Graph Convolutional Networks [293] (ASTGCN) architecture is composed
of three independent components, which aim to learn recent temporal patterns, daily
seasonality, and weekly seasonality. Each component contains spatial and temporal
attention modules, whose output is then aggregated using graph convolutions. In the
Spatial-Temporal Graph to Sequence [294] (STG2Seq) model, a long-term encoder and a
short-term encoder are formed using separate Gated Graph Convolutional Modules
(GGCMs). The output forecast is obtained by applying both temporal and channel-wise
attention. Multiple spatio-temporal attention blocks are stacked to form an
encoder-decoder model, referred to as the Graph Multi-Attention Network [295] (GMAN).
A transform attention layer, which conveys the encoder’s learned features to the decoder, is
utilized to circumvent the effect of error propagation, typically observed in recurrent
encoder-decoder architectures. This results in improved accuracy for long horizon forecasts.
The GMAN model relies on existing node embedding algorithms, such as node2vec [296],
to obtain structural representations, which are incorporated in the attention modules. The
Attention-based Periodic Temporal neural Network [297] (APTN) consists of three
components; a recurrent module with temporal skip connections for learning the periodic
patterns, an encoder with spatial attention, and a decoder with temporal attention. The
Spatio-Temporal GRaph ATtention [298] (STGRAT) is a sophisticated, recent
encoder-decoder model, which shows high accuracy for larger traffic datasets. Pre-trained
node embeddings from the Line [299] algorithm are used as input of the spatial attention

63

module, whose output is fed to the temporal attention blocks in the encoder and decoder.
Another model, termed the Spatial-Temporal Transformer Network [300] (STTN), adapts
the Transformer [258] architecture for improving the long-range spatio-temporal
forecasting. Although these attention-based approaches often outperform the convolutional
architectures, they typically have considerably higher number of learnable parameters
compared to the convolution-based models.

There are some deep learning models that do not fall into any of these three categories
discussed above. Among them, Oreshkin et al. introduce the Fully Connected GAted Graph
Architecture [278] (FC-GAGA) as a generalization of the N-BEATS [49] model for spatio-
temporal forecasting. The FC-GAGA model is endowed with a graph learning module in
each layer and for each node, this learned graph is used to weigh the historical data of all
other nodes. Subsequently a gating mechanism is applied; the gated outputs for all nodes
are stacked together and fed to fully connected residual blocks. Use of such fully connected
residual architecture results in a considerably lower training time and memory requirements.
The Spatio-Temporal U-Network [301] (ST-UNet) model adapts the U-Net [302] architecture,
which was originally proposed for image segmentation. The use of the U-Net model along
with spatial pooling and temporal downsampling allows the ST-UNet model to capture the
spatio-temporal relationships at multiple scales, which might be beneficial for larger traffic
datasets.

All of the spatio-temporal models, discussed in this section, mainly focus on designing
novel deep learning architectures for the spatio-temporal data and are trained end to end
to optimize a point forecasting objective. As a result, despite their impressive performance
in the point forecasting task, none of these algorithms is capable of characterizing the
uncertainty of the provided predictions.

2.3.5 Stochastic RNNs and Parameter Inference in State-Space
Models

Several avenues for incorporating stochasticity in recurrent architectures for improved
unsupervised learning of high-dimensional sequences have been explored in the literature.
In [223], Boulanger et. al. strive to capture the harmonic and rhythmic probabilistic
patterns of polyphonic music scores using a RNN-RBM model. This architecture can be

64

thought of a sequence of conditional restricted Boltzmann machines (RBMs) [303], whose
parameters are evolving in time and are represented by the output sequence of a
deterministic RNN.

The stochastic RNN in [224] considers a latent variable approach for sequence modelling in a
variational inference setting. The encoder and the decoder are parameterized using modified
RNNs with an additional latent variable input. Compared to the mixture density approach
in [251], incorporation of such latent variables enhances the representation capability of
the architecture. A similar idea is pursued in the design of the variational RNN [304],
which has a variational autoencoder (VAE) [305] with shared parameters for each time-step
of the sequence data. Compared to standard RNNs, this architecture enhances flexibility
in learning complex dependencies present in highly structured data, since its probabilistic
sequence generative mechanism has an additional source of randomness in the form of the
latent variable. In contrast to [224], this model benefits by allowing the prior distribution of
the latent variable sequence to have some temporal structure.

A considerably different and more complex approach in [306] proposes sequence modelling
by stacking a SSM on top of a RNN such that the deterministic hidden states of the RNN
acts as inputs to the stochastic state-transition in the SSM. Skip connections from the RNN
states to the observations introduce additional coupling between the RNN and the SSM.
Following the probabilistic dependency structure, the inference distribution of the hidden
states is assumed to have a backward-recursive factorization and is parameterized using a
backward RNN. The main advantage of this approach for modelling longer sequences arises
from the clear separation of deterministic and stochastic units in the architecture, which
allows improved posterior inference via smoothing.

For temporal modelling of video data, the Kalman variational autoencoders (KVAE) [307]
model aims to separate the low-dimensional dynamics from a complex object recognition
module. A linear-Gaussian SSM with time-varying parameters represents the temporal
dynamics, whereas its emissions are used as input in the decoder recognition network. An
efficient variational inference procedure, which exploits the analytical tractability of the
filtering and smoothing distributions of the hidden state in a linear-Gaussian setting, is
derived for parameter inference. The resulting algorithm shows impressive performance in
both synthetic video generation and missing data imputation tasks. Allowing for a

65

time-varying, potentially nonlinear dynamics in the latent space, the deep variational
Bayes filter (DVBF) [308] strives to achieve reliable system identification. Since this
approach focuses more on having richer latent representations instead of data compression,
it can provide plausible long-term predictions in some settings.

The recurrent Gaussian process (RGP) [309] model adopts GP-priors for auto-regressive
state transition and nonlinear emission. A sequential recognition model based on RNN is
proposed to reduce the parameter complexity of the inference distribution. Another approach
combining a SSM and with GP-prior is proposed in [310]. In comparison to [309], this work
builds a more flexible variational distribution, which allows better modelling of temporal
correlations between latent states.

Several earlier approaches propose use of SMC algorithms as a key ingredient for maximum
likelihood estimation [311,312] or Bayesian inference [313] of SSM parameters. More recent
advancements [86,225–227] employ various neural network models to parameterize the SSM
and/or the proposal distribution. In [86], an adaptive proposal mechanism inside the SMC
framework is implemented using a combination of recurrent architectures and a mixture
density network [314]. Parameter learning resorts to a variational inference approach, which
utilizes the reparameterization trick [305] to compute the stochastic gradient of the evidence
lower bound (ELBO) for minimizing the discrepancy between the true posterior and the
proposal distributions of the unobserved state.

The Auto Encoding SMC (AESMC) [225] algorithm considers joint learning of the model
and the proposal distribution via maximization of the lower bound to the log marginal
likelihood of observed sequential data. Variational RNN [304] is used to parameterize the
generative model and the proposal distribution. The ELBO formulation adopted in this
work stems from the Importance Weighted Auto Encoders (IWAE) [315] and an efficient
sequential implementation of the importance sampling is achieved by the incorporation of
the SMC scheme. This idea of optimizing the log likelihood estimate of the observed data
using a particle filter is explored independently and concurrently in [226, 227]. In
addition, [226] provides a characterization of the asymptotic properties of the resulting
Monte Carlo objective. Both [225] and [226] derive the Monte Carlo objective using
Jensen’s inequality on the expectation of the log marginal likelihood estimate computed
using an SMC algorithm, whereas [227] obtains the same objective as a lower bound to the

66

exact ELBO for the variational SMC family. Various other algorithms combining RNN and
SMC are proposed for language modelling [316], visual localization [317], and sequence
prediction [318].

Since our work on time-series forecasting in Chapter 5 considers a probabilistic setting
using an RNN, it is related to these approaches to some extent. However, there are several
important differences. Most of the approaches discussed in this section focus on learning
SSM based generative mechanisms for sequence data and are evaluated using the ELBO for
the unobserved test data for this generation task. In contrast, the Monte Carlo objective
function derived in our work directly addresses the probabilistic forecasting task. For the
Bayesian inference of the hidden states, our forecasting algorithm relies on the particle
flow [21] procedure because of its impressive performance in approximating complex,
high-dimensional posterior distributions. Since particle flow methods can obtain samples
from an approximate posterior, there is no need for variational inference. We can also
avoid importance sampling, which involves using a proposal distribution and resampling
the particles. This eliminates the need to design suitable proposals using neural
architectures and running an SMC algorithm for computing and optimizing the resulting
Monte Carlo objective.

2.4 Summary

This chapter presents background material and literature reviews for the three main topics
addressed in this thesis. A review of sequential inference reveals that existing
techniques [30, 31] for tracking a multi-modal state posterior scale poorly to high
dimensions. More sophisticated techniques [15, 21, 26], which work well for
high-dimensional state estimation, rely on Gaussian or uni-modal assumptions for the
posterior. This motivates the development of novel algorithms in Chapter 3 for efficient
inference of multi-modal filtering distributions .

In recent years, a plethora of research has been conducted into applying machine learning
algorithms on graph structured data. The emergence of advanced GNN models has resulted
in improved accuracy for node classification [37,38] and link prediction [39,40]. However, we
observe that most of these approaches treat the observed graph as ground truth, whereas
the observed topology might be susceptible to estimation errors due to noisy observation or

67

imperfect modelling assumptions. This motivates the derivation of a Bayesian framework
for handing the graph topology. Although there are a few recent methods [41, 43] that
aim to account for the potential imperfections in the observed topology, these approaches
have limitations. They cannot address tasks other than node classification and they rely on
variational approximations for parametric modelling of the underlying graph structure. This
motivates the development of Bayesian GCN algorithms in Chapter 4 using a non-parametric
graph learning technique, which alleviates these difficulties.

A detailed survey of time-series forecasting techniques shows that, although the recent
deep learning models [48–51] outperform statistical techniques in terms of point forecasting
accuracy for large scale real-world datasets, these models cannot obtain confidence
intervals for the forecasts. Existing probabilistic forecasting approaches [52, 54, 265]
disregard the spatial relationship among the time-series, when applied to a spatio-temporal
setting. This motivates the design of probabilistic spatio-temporal forecasting algorithm in
Chapter 5 of this thesis.

68

Chapter 3
Sequential Inference in Presence of
Gaussian Mixture Noise Models

3.1 Introduction

In this chapter, we consider the task of high-dimensional nonlinear filtering in the presence
of Gaussian mixture distributed noise. In this setting, the filtering distribution becomes
multi-modal [29, 30]. Many sophisticated particle filters [22, 23, 26], which show impressive
performance in high-dimensions, are not particularly suitable for this scenario, since their
proposal mechanisms implicitly depend on Gaussian assumptions regarding the predictive
and the posterior distributions. Although the particle flow filters [21, 105, 106, 114] have
emerged as an effective alternative to particle filters in high-dimensions, numerical
tractability demands the Gaussian or log-concave assumption on the posterior distribution.
Sophisticated sequential MCMC approaches [15, 61] are no exception, since they often
require the posterior to be log-concave for applying manifold Hamiltonian Monte
Carlo [129] based refinement steps. Such restrictions lead to deterioration in the
performance of these approaches when they are employed to track multi-modal posterior
distributions.

Several works [28–30] employ Gaussian mixtures to approximate non-Gaussian posteriors
in general nonlinear HMMs. However, they are unfit for inference in highly nonlinear
models and/or high-dimensions, since they rely on linearization of dynamic and
measurement models or employ poor proposal mechanisms. In [31], an approximate
particle flow is derived for the case of a Gaussian mixture model prior and a linear
Gaussian measurement model. However, this approach scales poorly to high-dimensions as
the computation of the flow requires inversion of a matrix whose size grows rapidly with
respect to the state dimensionality.

In this chapter, we develop a) a particle flow algorithm that combines exact particle flow with
the extended Kalman filter implementation of the Gaussian sum filter to address the case
where the dynamic and measurement models can be approximated by a nonlinearity with
additive noise distributed according to a Gaussian mixture; b) a particle flow particle filter

69

for the same setting, which considers importance sampling in an extended state-space by
reformulating the HMM as a switching state space model and designing an efficient proposal
distribution based on invertible particle flow [26]; and c) a sequential MCMC algorithm,
which uses the flow-based proposal in conjunction with measurement-driven sampling of the
auxiliary switching variables in its joint draw step for effective traversal of the multi-modal
posterior distribution.

The rest of the chapter is organized as follows. In Section 3.2, we specify the problem we
address. We present the proposed particle flow filter, particle flow particle filter, and
sequential MCMC algorithm for the Gaussian mixture noise models in Sections 3.3, 3.4,
and 3.5 respectively. Simulation examples and results are presented and discussed in
Section 3.6. The contributions of this chapter are summarized in Section 3.7.

3.2 Problem Statement

We consider the discrete-time filtering problem where our goal is to track the marginal
posterior distribution p(xk|z1:k) recursively with time k, starting from an initial probability
density function p(x0). The unobserved state at time k is denoted by xk and
z1:k = {z1, · · · , zk} is a sequence of measurements up to time step k. The dynamic and
measurement models are specified as:

xk = gk(xk−1) + vk for k > 1 , (3.1)
zk = hk(xk) + wk for k > 1 . (3.2)

Here gk : Rdx → Rdx is the state-transition function of the hidden state xk ∈ Rdx , and
the measurement zk ∈ Rdz is generated conditioned on the current state xk through a
potentially nonlinear measurement model hk : Rdx → Rdz . We assume that hk(·) is a
C1 function, i.e., hk(·) is a differentiable function whose first derivative is continuous. The
additive process and measurement noises are denoted by vk ∈ Rdx and wk ∈ Rdz respectively.
We assume that p(x0) = N (x0;µ0, P0) is Gaussian, whereas vk ∼

∑M
m=1 ψk,mN (τk,m, Qk,m)

and wk ∼
∑N
n=1 βk,nN (ζk,n, Rk,n) are white noise processes independent of each other and

are distributed according to Gaussian mixtures.

70

3.3 Particle Flow for GMM Noises

When the process and measurement noises are distributed as Gaussian mixtures, the
predictive and posterior distributions of xk become multi-modal. In this section, we
propose a filter that combines exact particle flow with the Gaussian sum filter [30]
(discussed in Section 2.1.4) to recursively compute GMM approximations of these
distributions. Particles associated with each Gaussian in the mixture representing the
predictive distribution are migrated using particle flow to form one component of the
mixture representing the posterior. Extended Kalman filters are run in parallel (one for
each component of the mixture), but the means of these EKFs are updated using the
component means calculated from the migrated particles. The particle flow filter and the
parallel EKFs are thus intertwined, with the covariance matrices being computed by the
EKF used for particle flow and the means being computed by particle flow used for EKF
updates. The algorithm is summarized in Algorithm 3.1.

The filter is initialized at time k=0 by sampling Np particles from the initial density
N (µ0, P0). As there is only one Gaussian component in the initial density, the parallel
EKF prediction step (line 4 in Algorithm 3.1) results in an M -component predictive
distribution at k=1. For all subsequent time steps, the approximate predictive distribution
has LM Gaussian components, where L denotes the number of components in the filtering
distribution of the previous step k−1. Resampling of the Gaussian components (lines 5 and
8 in Algorithm 3.1) using Algorithm 2.1 is performed to restrict the number of components
in the predictive distribution to L′. In our experiments, we use L′=M and L=N .

The particles associated with each component of the previous step’s posterior are propagated
through each component of the GMM dynamic model and are thus distributed according to
the corresponding components of the predictive distribution for the current time step. The
mixture proportions, means and covariances of the components of the predictive distribution
are calculated based on parallel EKF predictions (eqs. (2.22), (2.23), and (2.25)). We only
keep the particles corresponding to the L′ retained Gaussian components of the predictive
distribution.

We loop over each component in the resampled Gaussian mixture predictive distribution,
applying particle flow to the particles that correspond to the component (lines 12-24 in

71

Algorithm 3.1 Particle flow for GMM predictive distribution and likelihood (PF-GMM).
1: Initialization: Draw {xi0}

Np
i=1 from the initial probability density N (µ0, P0). Estimate

x̂0 = 1
Np

∑Np
i=1 x

i
0. Set λ0 = 0.

2: for k = 1 to K do
3: if k=1 then
4: Apply parallel EKF prediction: {µk−1, Pk−1} → {αk,m, µ̄k,m, P̄k,m}Mm=1.
5: Resample GMM components: {αk,m, µ̄k,m, P̄k,m}Mm=1 → {αk,`′ , µ̄k,`′ , P̄k,`′}L

′
`′=1.

6: else
7: Apply parallel EKF prediction: {γk−1,`, µk−1,`, Pk−1,`}L`=1 → {αk,`m, µ̄k,`m, P̄k,`m}

L,M
`,m=1.

8: Resample GMM components: {αk,`m, µ̄k,`m, P̄k,`m}L,M`,m=1 → {αk,`′ , µ̄k,`′ , P̄k,`′}L
′

`′=1.
9: end if

10: Propagate particles: ηi0,m = gk(xik−1) + vk,m (if k=1) or ηi0,`m = gk(xik−1,`) + vk,m (if
k>1), where vk,m ∼ N (τk,m, Qk,m) for i = 1, · · · , Np, ` = 1, · · · , L, and m = 1, · · · ,M .

11: Keep only the particles corresponding to the L′ retained Gaussian components of
the predictive distribution: {ηi0,m}

M,Np
,m,i=1 → {ηi0,`′}

L′,Np
`,i′=1 (if k=1) or {ηi0,`m}

L,M,Np
`,m,i=1 →

{ηi0,`′}
L′,Np
`,i′=1 (if k>1). Set µ̄`′ = 1

Np

∑Np
i=1 η

i
0,`′ for `′ = 1, · · · , L′.

12: for `′ = 1, · · · , L′ do
13: for n = 1, · · · , N do
14: for i = 1, · · · , Np do
15: Set ηi0,`′n = ηi0,`′ .
16: for p = 1, · · · , Nλ do
17: Set λp = λp−1 + εp.
18: Calculate Ai`′n(λp) and bi`′n(λp) from eq. (2.55) and (2.56) with linearization

of hk performed at ηiλp−1,`′n, and with z = zk − ζk,n, µ̄ = µ̄`′ , P̄ = P̄k,`′ , and
R = Rk,n.

19: Migrate particles: ηiλp,`′n = ηiλp−1,`′n + εp(Ai`′n(λp)ηiλp−1,`′n + bi`′n(λp))
20: end for
21: Set xik,`′n = ηi1,`′n.
22: end for
23: end for
24: end for
25: Apply parallel EKF update: {αk,`′ , µ̄k,`′ , P̄k,`′}L

′
`′=1 → {γk,`′n, µk,`′n, Pk,`′n}

L′,N
`′,n=1.

26: Set µk,`′n = 1
Np

∑Np
i=1 x

i
k,`′n.

27: Estimate x̂k = ∑L′

`′=1
∑N
n=1 γk,`′nµk,`′n.

28: Resample GMM components: {γk,`′n, µk,`′n, Pk,`′n}L
′,N

`′,n=1 → {γk,`, µk,`, Pk,`}L`=1.
29: Keep only the Np particles corresponding to each of the L retained Gaussian

components of the posterior distribution: {xik,`}
L,Np
`=1,i=1.

30: (Optional) Redraw particles {xik,`}
Np
i=1 ∼ N (µk,`, Pk,`) for ` = 1, · · · , L.

31: end for
72

Algorithm 3.1). A separate flow is applied for each of the N components in the mixture
representing the observation model, so at the end of this loop we have L′N sets of particles,
each representing a different component of the posterior. The mean of each component is
estimated using the sample mean of the particles associated with that component. Parallel
EKFs update the covariances and proportions of the mixture components (eqs. (2.32) and
(2.33)). At each time step, the posterior is approximated by an L component Gaussian
mixture, via resampling of Gaussian components (line 28 in Algorithm 3.1).

The most computationally demanding parts of the algorithm are the inverse operations in
calculating Ai`′n(λp) and bi`′n(λp). Since individual flow parameters are calculated for each
of the Np particles, and there are a total of L′N separate flows at each time step with Nλ

pseudo time steps, the total computational complexity of the matrix inverse operations is
O(`′NNpNλd

3
z), where dz is the measurement dimension. This shows that the computational

requirements of our approach scale in the same way to high-dimensions as the exact particle
flow filter [21, 105].

3.4 Particle Flow Particle Filter for GMM Noises

In this section, we develop a novel particle flow particle filter to address the setting where
the process and measurement noises are distributed as Gaussian mixtures. We observe that
the HMM specified by eqs. (3.1) and (3.2) can be alternatively expressed as a switching
state space model. We introduce two unobserved scalar-valued discrete random variables
dk ∈ {1, . . . ,M} and ck ∈ {1, . . . , N} such that p(dk = m) = ψk,m and p(ck = n) = βk,n.
The dk and ck variables are independent for different k and independent of each other.
Let p(xk|xk−1, dk=m) = N (xk|gk(xk−1) + τk,m, Qk,m),∀1 6 m 6 M and p(zk|xk, ck=n) =
N (zk|hk(xk) + ζk,n, Rk,n), ∀1 6 n 6 N . The state transition density is then:

p(xk|xk−1) = ∑M
m=1ψk,mN (xk|gk(xk−1) + τk,m, Qk,m) ,

= ∑M
m=1P (dk = m)p(xk|xk−1, dk = m) . (3.3)

73

Similarly, the likelihood is

p(zk|xk) = ∑N
n=1βk,nN (zk|hk(xk) + ζk,n, Rk,n) ,

= ∑N
n=1P (ck = n)p(zk|xk, ck = n) . (3.4)

We augment xk with the unobserved discrete variables dk and ck and consider the target
joint density to be p(x0:k, d1:k, c1:k|z1:k). We require that the importance distribution q

factorizes:

q(x0:k, d1:k, c1:k|z1:k) = q(x0:k−1, d1:k−1, c1:k−1|z1:k−1)q(xk, dk, ck|x0:k−1, d1:k−1, c1:k−1, z1:k) .
(3.5)

Samples {xi0:k, d
i
1:k, c

i
1:k}

Np
i=1 are obtained by augmenting each existing sample,

(xi0:k−1, d
i
1:k−1, c

i
1:k−1) ∼ q(x0:k−1, d1:k−1, c1:k−1|z1:k−1) , (3.6)

with the new state at time step k,

(xik, dik, cik) ∼ q(xk, dk, ck|xi0:k−1, d
i
1:k−1, c

i
1:k−1, z1:k) . (3.7)

The target joint density can be expressed as follows:

p(x0:k, d1:k, c1:k|z1:k) ∝ p(xk, dk, ck|xk−1, dk−1, ck−1)p(zk|xk, dk, ck)p(x0:k−1, d1:k−1, c1:k−1|z1:k−1) .
(3.8)

Using eqs. (3.5) and (3.8), we can calculate the unnormalized importance weights as:

ωik = p(xi0:k, d
i
1:k, c

i
1:k|z1:k)

q(xi0:k, d
i
1:k, c

i
1:k|z1:k)

,

∝ ωik−1
p(xik, dik, cik|xik−1, d

i
k−1, c

i
k−1)p(zk|xik, dik, cik)

q(xik, dik, cik|xi0:k−1, d
i
1:k−1, c

i
1:k−1, z1:k)

, (3.9)

We design a proposal such that

q(xk, dk, ck|x0:k−1, d1:k−1, c1:k−1, z1:k) = q(xk, dk, ck|xk−1, dk−1, ck−1, zk) (3.10)

74

Algorithm 3.2 Particle flow particle filter for Gaussian mixture noise models (PFPF-
GMM).

1: Initialization: Draw {xi0}
Np
i=1 from the prior N (µ0, P0). Set {ωi0}

Np
i=1 = 1

Np

, {P i
0}
Np
i=1 = P0,

and x̂0 = ∑Np
i=1 ω

i
0x

i
0. Set λ0 = 0.

2: for k = 1 to K do
3: for i = 1, · · · , Np do
4: Sample dik = m ∈ {1, · · · ,M} with probability {ψk,1, · · · , ψk,M}.
5: Apply EKF prediction: {xik−1, P

i
k−1} → {mi

k|k−1,m, P
i
k,m}, using N (τk,m, Qk,m).

6: Calculate η̄i0 = gk(xik−1) + τk,m.
7: Propagate particle ηi0 = gk(xik−1) + vk,m, where vk,m ∼ N (τk,m, Qk,m)
8: Sample cik = n ∈ {1, · · · , N} with probability {βk,1, · · · , βk,N}.
9: Set θimn = 1.

10: for p = 1, · · · , Nλ do
11: Set λp = λp−1 + εp.
12: Calculate Aimn(λp) and bimn(λp) from eq. (2.55) and (2.56) with linearization of hk

performed at η̄iλp−1 , and with z = zk− ζk,n, µ̄ = η̄i0 and P̄ = P i
k,m, and R = Rk,n.

13: Migrate auxiliary particle: η̄iλp = η̄iλp−1 + εp(Aimn(λp)η̄iλp−1 + bimn(λp)).
14: Migrate particle: ηiλp = ηiλp−1 + εp(Aimn(λp)ηiλp−1 + bimn(λp)).
15: θimn = θimn|det(I + εpA

i
mn(λp))|.

16: end for
17: Set xik = ηi1.
18: Calculate importance weights:

ω̃ik ∝ ωik−1
p(xik|xik−1, d

i
k = m)p(zk|xik, cik = n)

p(ηi0|xik−1, d
i
k = m)/θimn

.
19: end for
20: for i = 1, · · · , Np do
21: Normalize ωik = ω̃ik/

∑Np
s=1 ω̃

s
k.

22: Apply EKF update: {mi
k|k−1,m, P

i
k,m} → {mi

k|k, P
i
k} using N (ζk,n, Rk,n).

23: end for
24: Estimate x̂k = ∑Np

i=1 ω
i
kx

i
k.

25: (Optional) resample particles : {xik, P i
k, ω

i
k}

Np
i=1 to obtain {xik, P i

k,
1
Np

}Npi=1.
26: end for

is satisfied, so that we only need to store the particles and weights from the previous time
step, instead of the full trajectories. For the filtering problem, our focus is the marginal

75

posterior, and we approximate this as

p(xk|z1:k) ≈
Np∑
i=1

ωikδxik(xk) , (3.11)

where δa(·) is the Dirac delta-function centred at a. From the dynamic model, we have

p(xk, dk, ck|xk−1, dk−1, ck−1) = p(dk)p(ck)p(xk|xk−1, dk) , (3.12)

and similarly the measurement model satisfies

p(zk|xk, dk, ck) = p(zk|xk, ck) . (3.13)

We design q such that

q(xk, dk, ck|xk−1, dk−1, ck−1, zk) = q(dk)q(ck)q(xk|xk−1, dk, ck, zk) (3.14)

is satisfied. We choose q(dk) = p(dk), q(ck) = p(ck), and conditioned on (dk = m, ck = n),
we construct the proposal density q(xik|xik−1, d

i
k, c

i
k, zk) using eq. (2.59) by performing an

invertible particle flow [26] (details in Section 2.1.7) using the m-th Gaussian component
of the dynamic model and the n-th Gaussian component of the measurement model. The
resulting proposal can be evaluated as

q(xik|xik−1, d
i
k=m, cik=n, zk) = p(ηi0|xik−1, d

i
k = m)

|∏Nλ
p=1 det(I + εpAimn(λp))|

. (3.15)

Using eqs. (3.12), (3.13), (3.14), and (3.15), the importance weight update step in eq. (3.9)
can be rewritten as

ωik ∝ ωik−1
p(xik|xik−1, d

i
k)p(zk|xik, cik)

q(xik|xik−1, d
i
k, c

i
k, zk)

. (3.16)

The resulting PFPF-GMM algorithm is summarized in Algorithm 3.2. The most
computationally demanding parts of the algorithm are the matrix inverse operations
needed to calculate the flow parameters Aimn(λp) and bimn(λp). Since individual flow
parameters are calculated for each of the Np particles at each time step and there are a

76

total of Nλ discrete pseudo time steps, the total computational complexity of the matrix
inverse operations is O(NpNλd

3
z), where dz is the measurement dimension.

3.5 SmHMC with LEDH for GMM Noises

In order to explore different modes of the posterior efficiently, we consider an extended state-
space (xk, dk, ck), as in Section 3.4, and rewrite the joint posterior distribution in eq. (3.8)
as

πk(x0:k, d1:k, c1:k) = p(x0:k, d1:k, c1:k|z1:k) ,
∝ p(dk)p(ck)p(xk|xk−1, dk)p(zk|xk, ck)πk−1(x0:k−1, d1:k−1, c1:k−1) , (3.17)

which admits πk(x0:k) = p(x0:k|z1:k) as its x0:k marginal. Similar to eq. (2.62), based on
the approximate joint posterior π̂k−1(x0:k−1, d1:k−1, c1:k−1), of the previous time step k−1, we
approximate πk(x0:k, d1:k, c1:k) as follows:

π̆(x0:k, d1:k, c1:k) ∝ p(dk)p(ck)p(xk|xk−1, dk)p(zk|xk, ck)π̂k−1(x0:k−1, d1:k−1, c1:k−1) . (3.18)

For this model, in the joint draw step of SMCMC, we adopt the following strategy. First we
sample

(x∗(i)k,0:k−1, d
∗(i)
k,1:k−1, c

∗(i)
k,1:k−1) ∼ π̂k−1(x0:k−1, d1:k−1, c1:k−1) . (3.19)

Similar to the spirit of auxiliary particle filtering [87], we design efficient measurement-driven
proposal distributions for sampling (dk, ck), which allows for efficient traversal of multiple
modes of the posterior distribution. This is in contrast to the PFPF-GMM algorithm in
Section 3.4, where the switching variables are sampled from their respective priors. To
sample d∗(i)k,k , we use the following proposal:

q(d∗(i)k,k =m|x∗(i)k,k−1, zk) ∝ p(d∗(i)k,k =m)p(η̄∗(i)0 |x
∗(i)
k,k−1, d

∗(i)
k,k =m)p(zk|η̄∗(i)0) , (3.20)

77

where η̄∗(i)0 = gk(x∗(i)k,k−1) + τk,m. Conditioned on d
∗(i)
k,k =m, we sample c∗(i)k,k from

q(c∗(i)k,k =n|x∗(i)k,k−1, d
∗(i)
k,k =m, zk) ∝ p(c∗(i)k,k =n)p(zk|η̄∗(i)0 , c

∗(i)
k,k =n) . (3.21)

Then conditioned on (d∗(i)k,k = m, c
∗(i)
k,k = n), we calculate η̄∗(i)0 = gk(x∗(i)k,k−1) + τk,m to initialize

the auxiliary LEDH particle flow with parameters (C∗(i), D∗(i)), using the m-th and the n-th
Gaussian component of the dynamic and measurement model respectively. Then this flow
is applied to the propagated particle η∗(i)0 = gk(x∗(i)k,k−1) + vk,m, where vk,m ∼ N (τk,m, Qk,m)
is the m-th component in the process noise. The proposed particle is generated as: xik,k =
η
∗(i)
1 = C∗(i)η

∗(i)
0 +D∗(i). Using the invertible mapping property, established by the flow, we

can calculate

q(x∗(i)k,k |x
∗(i)
k,k−1, d

∗(i)
k,k =m, c

∗(i)
k,k =n, zk) =

p(η̄∗(i)0 |x
∗(i)
k,k−1, d

∗(i)
k,k =m)

| det(C∗(i))| . (3.22)

Using eqs. (3.18), (3.20), (3.21) and (3.22), the acceptance rate for the joint draw of
(x∗(i)k,0:k, d

∗(i)
k,1:k, c

∗(i)
k,1:k) using the proposed kernel can be calculated as:

ρ1 = min
(

1, p(d∗(i)
k,k

)p(c∗(i)
k,k

)p(x∗(i)
k,k
|x∗(i)
k,k−1,d

∗(i)
k,k

)

q(d∗(i)
k,k
|x∗(i)
k,k−1,zk)q(c∗(i)

k,k
|x∗(i)
k,k−1,d

∗(i)
k,k

,zk)

q(di−1
k,k
|xi−1
k,k−1,zk)q(ci−1

k,k
|xi−1
k,k−1,d

i−1
k,k

,zk)
p(di−1

k,k
)p(ci−1

k,k
)p(xi−1

k,k
|xi−1
k,k−1,d

i−1
k,k

)

× | det(C∗(i))|p(η̄i−1
0 |xi−1

k,k−1,d
i−1
k,k

)p(zk|x
∗(i)
k,k

,c
∗(i)
k,k

)

p(η̄∗(i)0 |x∗(i)
k,k−1,d

∗(i)
k,k

)|det(Ci−1)|p(zk|xi−1
k,k

,ci−1
k,k

)

)
. (3.23)

For individual refinement of xik,0:k−1, we use the independent proposal qk,2 = π̂k−1. We can
compute the acceptance rate of the refinement as follows:

ρ2 = min
(

1, π̆k(x∗(i)
k,0:k−1,x

i
k,k,d

i
k,1:k,c

i
k,1:k)

π̂k−1(x∗(i)
k,0:k−1)

π̂k−1(xik,0:k−1)
π̆k(xi

k,0:k,d
i
k,1:k,c

i
k,1:k)

)

= min
(

1, p(x
i
k,k|x

∗(i)
k,k−1,d

i
k,k)

p(xi
k,k
|xi
k,k−1,d

i
k,k

)

)
. (3.24)

Conditioned on (dik,k, cik,k), the individual refinement of xik,k is performed using an mHMC
kernel as in [15, 55]. The overall procedure to generate one sample from the resulting
SmHMC-GMM (LEDH) algorithm is summarized in Algorithm 3.3. From eq. (3.23), we
note that we can discard {(djk,k, c

j
k,k)}

Nb+Np
j=Nb+1 after every time step k, if we are only

78

Algorithm 3.3 Composite MH Kernels for state-space models with Gaussian mixture noises,
constructed with the manifold Hamiltonian Monte Carlo kernel and the invertible particle
flow with LEDH, at the i-th MCMC iteration of k-th time step.
Input: xi−1

k,0:k, η
i−1
0 , di−1

k,k , c
i−1
k,k , C

i−1.
Output: xik,0:k, η

i
0, d

i
k,k, c

i
k,k, C

i.
Joint draw of xik,0:k:

1: Draw x
∗(i)
k,0:k−1 ∼ π̂k−1(x0:k−1).

2: Sample d∗(i)k,k =m ∈ {1, · · ·M} from q(dk|x∗(i)k,k−1, zk).
3: Sample η∗(i)0 = gk(x∗(i)k,k−1, vk,m), where vk,m ∼ N (τk,m, Qk,m).
4: Calculate η̄∗(i)0 = gk(x∗(i)k,k−1, τk,m).
5: Sample c∗(i)k,k =n ∈ {1, · · ·N} from q(ck|x∗(i)k,k−1, d

∗(i)
k,k =m, zk).

6: Perform invertible particle flow (Algorithm 2.8) (C∗(i), D∗(i)) by starting the auxiliary
particle flow from η̄

∗(i)
0 using m-th and n-th component of dynamic and measurement

models respectively.
7: Calculate x∗(i)k,k = C∗(i)η

∗(i)
0 +D∗(i).

8: Compute the MH acceptance probability ρ1 = min

1,
p(d∗(i)k,k)p(c∗(i)k,k)p(x∗(i)k,k |x

∗(i)
k,k−1, d

∗(i)
k,k)

q(d∗(i)k,k |x
∗(i)
k,k−1, zk)q(c

∗(i)
k,k |x

∗(i)
k,k−1, d

∗(i)
k,k , zk)

q(di−1
k,k |x

i−1
k,k−1, zk)q(c

i−1
k,k |x

i−1
k,k−1, d

i−1
k,k , zk)

p(di−1
k,k)p(ci−1

k,k)p(xi−1
k,k |x

i−1
k,k−1, d

i−1
k,k)

| det(C∗(i))|p(η̄i−1
0 |xi−1

k,k−1, d
i−1
k,k)p(zk|x∗(i)k,k , c

∗(i)
k,k)

p(η̄∗(i)0 |x∗(i)k,k−1, d
∗(i)
k,k)| det(Ci−1)|p(zk|xi−1

k,k , c
i−1
k,k)

.

9: Accept xik,0:k = x
∗(i)
k,0:k, ηi0 = η

∗(i)
0 , dik,k = d

∗(i)
k,k , cik,k = c

∗(i)
k,k , Ci = C∗(i) and Di = D∗(i) with

probability ρ1.
Otherwise set xik,0:k = xi−1

k,0:k, ηi0 = ηi−1
0 , dik,k = di−1

k,k , cik,k = ci−1
k,k , Ci = Ci−1 andDi = Di−1.

10: Individual refinements of xik,0:k using Algorithm 2.10 given dik,k and cik,k.
11: Calculate ηi0 = (Ci)−1(xik,k −Di).

interested in approximating πk(x0:k).

3.6 Numerical Experiments and Results

We conduct numerical simulations for two scenarios to evaluate the proposed PF-GMM,
PFPF-GMM, and SmHMC-GMM (LEDH) algorithms. The first is a linear scenario, which
allows us to compare the performance of the proposed filter with an (almost) optimal
solution in the form of the Gaussian mixture model Kalman filter. The second nonlinear

79

scenario requires a particle filter for accurate state estimates. We compare with an
extended Kalman filter derived for Gaussian mixture models (EKF-GMM), the Gaussian
Sum Particle Filter (GSPF) [30], an unscented Kalman filter (UKF) [119], the exact Daum
Huang (EDH) filter [21] and its localized version (LEDH) [105], the Particle Flow Particle
Filters (PFPFs) based on EDH and LEDH [26], and a Bootstrap Particle Filter [13] using 1
million particles. All numerical simulations in this section are executed using an Intel
i7-4770K, 3.50GHz CPU and 32GB RAM.

As in [26, 106], we use Nλ = 29 exponentially spaced step sizes for all particle flow based
algorithms so that εp = qp−1ε1 is satisfied for p = 2, · · · , Nλ. We set the geometric ratio
q = 1.2, so the initial step size is ε1 = 1−q

1−qNλ ≈ 0.001. We employ the EKF algorithm to
estimate the predictive covariance matrix required to calculate the flow parameters in
eq. (2.55) and (2.56). Following [105], the particles are redrawn from the approximate
posterior distribution for the EDH and LEDH algorithms after each time step. The UKF
uses 2d + 1 sigma points, where d denotes the dimensionality of the state. For all particle
filters employing Np particles, stratified resampling [72] is performed if the effective sample
size (ESS) [80] is lower than Np

2 . We skip comparison to ensemble Kalman filter
(EnKF) [121] and several sophisticated particle filters such as unscented particle filter
(UPF) [88], guided sequential Monte Carlo (GSMC) [22], and Gaussian particle flow
importance sampling (GFPIS) [23] algorithms, since the PFPF [26] is shown to outperform
these approaches. For the EKF-GMM, the PF-GMM, and the GSPF algorithms,
resampling of Gaussian components is performed after each prediction and update step and
we set L′=M and L=N . In addition, the PF-GMM uses redraw and the GSPF uses
resampling of the particles representing each Gaussian component in their GMM
approximations of the posterior distribution. The SmHMC based algorithms employ a
manifold Hamiltonian Monte Carlo kernel [129] for performing the individual refinement
for the particles of the current step. Following [15], 20 leapfrog steps with step size 0.5 are
used for generating the mHMC proposal. Since the SmHMC [15] is not particularly
suitable for multi-modal posteriors that do not satisfy log concavity, we consider the joint
inference in the switching state-space model as in the SmHMC-GMM (LEDH) algorithm to
establish a suitable SmHMC baseline. The resulting SmHMC-GMM algorithm is an
SmHMC variant such that after sampling of (dk, ck) using the same proposal distributions
as in the SmHMC-GMM (LEDH) in the joint draw, xk is proposed using the particular

80

component of the dynamic model specified by dk. The acceptance rate of the joint draw
step in the SmHMC-GMM algorithm is thus computed as:

ρ1 = min
(

1, p(d
∗(i)
k,k

)p(c∗(i)
k,k

)q(di−1
k,k
|xi−1
k,k−1,zk)q(ci−1

k,k
|xi−1
k,k−1,d

i−1
k,k

,zk)p(zk|x
∗(i)
k,k

,c
∗(i)
k,k

)

q(d∗(i)
k,k
|x∗(i)
k,k−1,zk)q(c∗(i)

k,k
|x∗(i)
k,k−1,d

∗(i)
k,k

,zk)p(di−1
k,k

)p(ci−1
k,k

)p(zk|xi−1
k,k

,ci−1
k,k

)

)
. (3.25)

The individual refinement steps of the SmHMC-GMM algorithm are the same as those of
the proposed SmHMC-GMM (LEDH) approach.

3.6.1 Linear Model with GMM Noises

We first consider a linear dynamic and measurement model as follows:

xk = αxk−1 + vk , (3.26)
zk = xk + wk , (3.27)

where xk ∈ Rd and zk ∈ Rd are the state and observation vectors, respectively. We set
d = 64 and α = 0.9. The process and measurement noises are drawn from GMMs:
vk ∼

∑3
m=1

1
3N (µm1d×1, σ

2
vId×d), where µ1 = −1, µ2 = 0, µ3 = 1 and σv = 1,

wk ∼
∑3
n=1

1
3N (δn1d×1, σ

2
wId×d), where δ1 = −5, δ2 = 0, δ3 = 5 and σw = 0.1. The true

state starts with x0 = 0d×1. All filters are initialized with an initial distribution
p(x0) = N (x0; 0d×1, Id×d). The experiment is executed 200 times for 50 time steps.

Table 3.1 summarizes the results, reporting the mean-squared error (MSE) in the state
estimation. The EKF-GMM algorithm is optimal in this case except for the error introduced
by Gaussian component resampling. We observe that the PF-GMM also attains close to the
(almost) optimal performance. The PFPF-GMM method performs only slightly worse than
the EKF-GMM algorithm. Although the MSE of the SmHMC-GMM (LEDH) is the same as
that of the SmHMC-GMM algorithm, the acceptance rate in the joint draw step (ρ1) for the
SmHMC-GMM (LEDH) is significantly higher than that of the SmHMC-GMM algorithm.
This demonstrates the efficacy of the particle flow based joint draw in the SmHMC-GMM
(LEDH). The SmHMC based methods with 100 particles achieve better performance than
PFPF-GMM algorithm with 200 particles. This shows that MCMC based techniques are in
general more suitable than importance sampling in higher dimensions. The GSPF algorithm,

81

Table 3.1: Average and 5th and 95th sample percentiles of MSE of state estimation,
acceptance rates (if applicable) and execution time per step in the linear model with GMM
process and measurement noises, based on 100 simulation trials.

Algorithm No.
particles

Avg.
MSE

5th and 95th.
percentile MSE

Acceptance rate Exec.
time (s)ρ1 ρ2 ρ3

SmHMC-GMM
(LEDH) 100 0.010 (0.009, 0.010) 0.225 0.62 0.87 2.25

SmHMC-GMM 100 0.010 (0.009, 0.010) 0.004 0.62 0.89 1.95
PFPF-GMM 200 0.012 (0.011, 0.012) - - - 1.77

PF-GMM 50 per
comp. 0.011 (0.010, 0.011) - - - 1.85

GSPF 104 per
comp. 78.93 (52.86, 105.60) - - - 2.02

EKF-GMM N/A 0.010 (0.009, 0.010) - - - 0.026
UKF N/A 1.99 (1.05, 3.16) - - - 0.019

LEDH 500 2.00 (1.05, 3.20) - - - 3.40
EDH 500 1.99 (1.06, 3.16) - - - 0.013

PFPF (LEDH) 500 0.20 (0.02, 0.70) - - - 4.53
PFPF (EDH) 105 0.033 (0.012, 0.020) - - - 1.97

BPF 106 8.14 (6.08, 11.33) - - - 4.21

which approximates each component of the predictive and posterior densities by a Gaussian
distribution by performing importance sampling exhibits poor representation capability in
higher dimensions. Our approaches outperform the LEDH and EDH filters and the UKF
significantly, since these techniques rely on incorrect Gaussian approximations for the multi-
modal predictive distribution and measurement likelihood. The PFPF (LEDH) and PFPF
(EDH) algorithms attain lower MSE compared to the corresponding particle flow filters,
since the PFPF algorithms employ an importance weight update after the flow. However, the
PFPFs calculate predictive covariances using incorrect Gaussian dynamic model assumption
and the computation of the particle flow based proposal distribution is reliant on the incorrect
Gaussian assumption of the likelihood; therefore they are ill-suited for approximating the
multi-modal posterior distribution. The BPF suffers from severe weight degeneracy in this
high dimensional state-space, even if 1 million particles are employed.

82

3.6.2 Nonlinear Model with GMM Noises

We consider a nonlinear dynamical model gk : Rd → Rd and measurement function hk :
Rd → Rd. The c-th dimension of the state-transition function gck : R → R is defined as
follows:

gck(xk−1) = 0.5xck−1 + 8 cos(1.2(k − 1)) +

2.5 xc+1
k−1

1+(xc
k−1)2 , if c = 1

2.5 xc+1
k−1

1+(xc−1
k−1)2 , if 1 < c < d

2.5 xck−1

1+(xc−1
k−1)2 , if c = d

(3.28)

The c-th dimension of the measurement function hck : R→ R is:

hck(xk) = (xck)
2

20 , ∀1 6 c 6 d. (3.29)

Process noise vk ∼
∑3
m=1

1
3N (µm1d×1, σ

2
vId×d), with µ1 = −1, µ2 = 0, µ3 = 1 and σv =

0.5, and measurement noise wk ∼
∑3
n=1

1
3N (δn1d×1, σ

2
wId×d), with δ1 = −3, δ2 = 0, δ3 =

3 and σw = 0.1. The true state starts at x0 = 0. For all the filters, we use p(x0) =
N (x0; 0d×1, Id×d). The experiment is executed 100 times for 50 time steps. We perform two
different experiments with d = 144 and d = 400.

Table 3.2 shows that while the SmHMC-GMM (LEDH) achieves the same smallest average
MSE as the PFPF-GMM algorithm among all evaluated methods in the 144 dimensional
scenario, the SmHMC-GMM (LEDH) leads to the smallest average MSE in the 400
dimensional scenario. The comparison of acceptance rates in the joint draw and MSE for
these two SmHMC approaches shows that the use of particle flow in the SmHMC-GMM
(LEDH) method allows it to explore the state space more efficiently than the
SmHMC-GMM algorithm. Although the PF-GMM algorithm performs reasonably well for
both d = 144 and d = 400, the posterior approximation provided by this approach is not
statistically consistent because of the nonlinearity in the model, numerical solution of the
flow equation, and the approximation errors due to resampling of the Gaussian
components. The particle flow algorithms LEDH, EDH, the UKF, and the PFPFs perform
poorly as they are better suited for uni-modal posterior distributions. The GSPF approach
shows poor performance, since its proposal mechanism is inefficient in a high-dimensional

83

Table 3.2: Average and 5th and 95th sample percentiles of MSE of state estimation,
acceptance rates (if applicable) and execution time per step in the nonlinear model with
GMM process and measurement noises, based on 100 simulation trials.

d Algorithm No.
particles

Avg.
MSE

5th and 95th
percentile MSE

Acceptance rate Exec.
time (s)ρ1 ρ2 ρ3

144

SmHMC-GMM
(LEDH) 100 0.10 (0.06, 0.17) 0.072 0.17 0.74 7.12

SmHMC-GMM 100 0.12 (0.06, 0.23) 0.005 0.17 0.76 3.3
PFPF-GMM 200 0.10 (0.07, 0.13) - - - 7.4

PF-GMM 50 per
comp. 0.18 (0.06, 0.79) - - - 12.4

GSPF 104 per
comp. 4.53 (3.02, 6.26) - - - 3.7

EKF-GMM N/A 2.12 (0.63, 3.80) - - - 0.05
UKF N/A 1.30 (0.57, 2.42) - - - 0.15

LEDH 500 9.05 (1.68, 24.88) - - - 13.9
EDH 500 11.54 (8.43, 17.67) - - - 0.04

PFPF (LEDH) 500 5.90 (2.98, 11.92) - - - 19
PFPF (EDH) 105 3.01 (1.06, 8.30) - - - 4.60

BPF 106 0.94 (0.71, 1.43) - - - 9

400

SmHMC-GMM
(LEDH) 100 0.09 (0.06, 0.12) 0.018 0.096 0.60 59.5

SmHMC-GMM 100 0.11 (0.06, 0.21) 0.005 0.085 0.64 13.3
PFPF-GMM 200 0.11 (0.08, 0.14) - - - 80.2

PF-GMM 50 per
comp. 0.11 (0.06, 0.46) - - - 142.7

GSPF 104 per
comp. 5.17 (3.57, 6.87) - - - 9.4

EKF-GMM N/A 1.61 (0.07, 3.80) - - - 0.3
UKF N/A 5.18 (0.99, 18.72) - - - 1.37

LEDH 500 23.42 (5.96, 32.32) - - - 152.6
EDH 500 30.45 (23.70, 46.69) - - - 0.42

PFPF (LEDH) 500 16.38 (10.73, 27.19) - - - 194
PFPF (EDH) 105 12.27 (7.93, 24.85) - - - 16.8

BPF 106 1.31 (0.95, 1.95) - - - 26.2

84

state-space. The extended Kalman filter for GMM noises (EKF-GMM) cannot handle the
high nonlinearity and leads to large estimation errors. Compared to our approaches, the
BPF also has considerably higher MSE, even with 106 particles, due to the weight
degeneracy in the high-dimensional state space.

3.7 Summary

In this chapter, the problem of estimating the state of a hidden Markov model with
Gaussian mixture distributed noises is considered. Existing particle flow, particle flow
particle filter, and sequential MCMC algorithms often inherently rely on Gaussian or
log-concavity assumptions for the predictive and/or filtering distributions, which makes
them ill-suited for the inference of multi-modal state posteriors. Algorithms that rely on
the extended Kalman filter or unsophisticated particle filters to approximate the
multi-modal filtering distribution using a Gaussian mixture exhibit poor performance in
complex, high dimensional settings, as they cannot handle the nonlinearity or show severe
weight degeneracy. The proposed PF-GMM, PFPF-GMM, and SmHMC-GMM (LEDH)
algorithms demonstrate close to the (almost) optimal performance in a high-dimensional
linear scenario, and obtain considerably lower estimation errors compared to existing
filtering techniques in the high-dimensional nonlinear example. Although the
SmHMC-GMM algorithm attains impressive performance in state-estimation, our
experiments show that the invertible particle flow based joint draw step in the proposed
SmHMC-GMM (LEDH) method results in a significantly better exploration of the
high-dimensional state-space in all cases.

85

Chapter 4
Bayesian Graph Convolutional Neural
Networks

4.1 Introduction

Novel approaches for applying convolutional neural networks to graph-structured data have
emerged in recent years. Commencing with the work in [137,143], there have been numerous
developments and improvements. Although these graph convolutional networks (GCNs) are
promising, the current implementations have limited capability to handle uncertainty in the
graph structure, and treat the graph topology as ground-truth information. This in turn
leads to an inability to adequately characterize the uncertainty in the predictions made by
the neural network.

In contrast to this past work, we employ a Bayesian framework and view the observed
graph as a realization from a parametric random graph family. The observed adjacency
matrix is then used in conjunction with features and labels to perform joint inference. The
results reported in this chapter suggest that this formulation, although computationally more
demanding, can lead to an ability to learn more from less data, a better capacity to represent
uncertainty, and better robustness and resilience to noise or adversarial attacks.

In this chapter, we present the novel Bayesian GCN framework and discuss how inference
can be performed. To provide a concrete example of the approach, we focus on a specific
random graph model, the assortative mixed membership block model. We address the task of
semi-supervised classification of nodes and examine the resilience of the derived architecture
to random perturbations of the graph topology.

In addition, we propose a non-parametric graph inference technique which is incorporated
in a Bayesian framework to tackle node and/or edge level learning tasks. Our approach has
the following key benefits. First, it generalizes the applicability of the Bayesian techniques
outside the realm of parametric modelling. Second, flexible, task specific graph learning can
be achieved; this makes effective use of the outputs of existing graph-learning techniques
to improve upon them. Third, the graph learning procedure scales well to large graphs, in

86

contrast to the increased difficulty of parametric approaches. The resulting algorithms offer
advantages in node classification and link prediction.

The remainder of the chapter is organized as follows. Section 4.2 reviews some background
material on GCNs and a brief introduction to Bayesian Neural Networks is provided in
Section 4.3. The proposed Bayesian GCN (BGCN) framework and its instantiation for a
node classification task using a specific parametric family of random graphs are presented
in Section 4.4. The non-parametric graph learning approach and its incorporation in the
BGCN framework for node classification and link prediction are detailed in Section 4.5.
Section 4.6 presents and discusses the experimental results on benchmark graph datasets.
We summarize the chapter’s contribution in Section 4.7.

4.2 Graph Convolutional Networks

Although graph convolutional neural networks have been applied to a variety of inference
tasks, in order to make the description more concrete we consider the task of identifying the
labels of nodes in a graph. Suppose that we observe a graph Gobs = (V , E), comprised of a
set of N nodes V and a set of edges E . For each node we measure data (or derive features),
denoted xi ∈ Rd0×1 for node i. These node features are stacked row-wise to obtain the input
feature matrix X = [x1, · · · ,xN]T . For some subset of the nodes L ⊂ V , we can also measure
labels YL = {yi : i ∈ L}. In a classification context, the label yi identifies a category; in a
regression context yi can be real-valued. Our task is to use the features X and the observed
graph structure Gobs to estimate the labels of the unlabelled nodes YL, where L = V \ L
denotes the test set.

A GCN performs this task by performing graph convolution operations within a neural
network architecture. Collecting the feature vectors as the rows of a matrix X, the layers of
a GCN [37,62] are of the form:

H(1) = σ0(AGXW(0)) (4.1)
H(`+1) = σ`(AGH(`)W(`)) , ` ∈ {1, 2, ..., L− 1}. (4.2)

Here W(`) ∈ Rd`×d`+1 are the learnable weights of the GCN at layer ` and we group them to
form the set W = {W(`)}L−1

`=0 . We denote the output features from layer `−1 by H(`) ∈ RN×d`

87

and σ`(·) is a non-linear activation function at layer `. The matrix AG ∈ RN×N is derived
from the observed graph and it determines how the output features are mixed across the
graph at each layer. The final output for an L-layer network is Z=H(L). Training of the
weights of the neural network is performed by backpropagation with the goal of minimizing an
error metric between the observed labels YL and the network predictions ZL = {zi : i ∈ L}
at the nodes in the training set. Performance improvements can be achieved by enhancing
the architecture with components that have proved useful for standard CNNs, including
attention nodes [38], and skip connections and gates [134,149].

Although there are many different flavours of GCNs, all current versions process the graph
as though it is a ground-truth depiction of the relationship between nodes. This is despite
the fact that in many cases the graphs employed in applications are themselves derived
from noisy data or modelling assumptions. Spurious edges may be included; other edges
may be missing between nodes that have very strong relationships. Incorporating attention
mechanisms as in [38] addresses this to some extent; attention nodes can learn that some
edges are not representative of a meaningful relationship and reduce the impact that the
nodes have on one another. But the attention mechanisms, for computational expediency,
are limited to processing existing edges — they cannot create an edge where one should
probably exist. This is also a limitation of the ensemble approach of [152], where learning is
performed on multiple graphs derived by erasing some edges in the graph.

4.3 Bayesian Neural Networks

There is a rich literature on Bayesian neural networks, commencing with pioneering
work [6–8, 319] and extending to more recent contributions [320–323]. Since our work in
this chapter is primarily focused on carrying out posterior inference of graph structure to
improve graph-based learning tasks and not on developing novel Bayesian approaches for
the inference of neural network weights, here we only provide a brief exposition of Bayesian
neural networks.

We consider the case where we have training inputs X = {x1, ..., xn} and corresponding
outputs Y = {y1, ..., yn}. Our goal is to learn a function y = f(x) via a neural network
with fixed configuration (number of layers, activation function, etc., so that the weights are
sufficient statistics for f) that provides a likely explanation for the relationship between x

88

and y. The weights W are modelled as random variables in a Bayesian approach and we
introduce a prior distribution over them. Since W is not deterministic, the output of the
neural network is also a random variable. Prediction for a new input x can be formed by
computing an expectation of the random prediction with respect to the posterior distribution
of W as follows:

p(y|x,X,Y) =
∫
p(y|x,W)p(W|X,Y) dW . (4.3)

The term p(y|x,W) can be viewed as a likelihood; in a classification task it is modelled
using a categorical distribution by applying a softmax function to the output of the last
layer of the neural network; in a regression task a Gaussian likelihood is often an appropriate
choice. The integral in eq. (4.3) is in general intractable. Various techniques for inference of
p(W|X,Y) have been proposed in the literature, including expectation propagation [320],
variational inference [321–323], and Markov Chain Monte Carlo (MCMC) methods [8, 324,
325]. In particular, in [321], it was shown that with suitable variational approximation
for the posterior of W, Monte Carlo dropout is equivalent to drawing samples of W from
the approximate posterior and eq. (4.3) can be approximated by a Monte Carlo integral as
follows:

p(y|x,X,Y) ≈ 1
T

S∑
i=1

p(y|x,Wi) , (4.4)

where S weights Wi are obtained via dropout.

4.4 BGCN using Parametric Graph Models

We consider a Bayesian approach, viewing the observed graph as a realization from a
parametric family of random graphs. We then target inference of the joint posterior of the
random graph parameters, weights in the GCN and the node (or graph) labels. Since we
are usually not directly interested in inferring the graph parameters, posterior estimates of
the labels are obtained by marginalization. The goal is to compute the posterior

89

probability of labels, which can be written as:

p(Z|YL,X,Gobs) =
∫
p(Z|W,G,X)p(W|YL,X,G)p(G|λ)p(λ|Gobs) dW dG dλ . (4.5)

Here W is a random variable representing the weights of all layers of a Bayesian GCN
over random graph G, and λ denotes the parameters that characterize a family of random
graphs. The term p(Z|W,G,X) can be modelled using a categorical distribution by applying
a softmax function to the output of the GCN, as discussed previously.

This integral in eq. (4.5) is intractable. We can adopt a number of strategies to
approximate it, including variational methods and MCMC. For example, in order to
approximate the posterior of weights p(W|YL,X,G), we could use variational
inference [321–323] or MCMC [8, 324, 325]. Various parametric random graph generation
models can be used to model p(λ|Gobs), for example a stochastic block model [197], a mixed
membership stochastic block model [199], or a degree corrected block model [207]. For
inference of p(λ|Gobs), we can use MCMC [326] or variational inference [200].

A Monte Carlo approximation of eq. (4.5) is:

p(Z|YL,X,Gobs) ≈
1
V

V∑
v

1
NGS

NG∑
i=1

S∑
s=1

p(Z|Ws,i,v,Gi,v,X) . (4.6)

In this approximation, V samples λv are drawn from p(λ|Gobs); the precise method for
generating these samples from the posterior varies depending on the nature of the graph
model. The NG graphs Gi,v are sampled from p(G|λv) using the adopted random graph
model. S weight matrices Ws,i,v are sampled from p(W|YL,X,Gi,v) from the Bayesian
GCN corresponding to the graph Gi,v.

4.4.1 Assortative Mixed Membership Stochastic Block Model

For the Bayesian GCNs derived in this section, we use an assortative mixed membership
stochastic block model (a-MMSBM) for the graph [200, 326] and learn its parameters
λ = {π, β} using a stochastic optimization approach. The assortative MMSBM, described
in the following section, is a good choice to model a graph that has relatively strong
community structure (such as the citation networks we study in the experiments section).

90

It generalizes the stochastic block model by allowing nodes to belong to more than one
community and to exhibit assortative behaviour, in the sense that a node can be connected
to one neighbor because of a relationship through community A and to another neighbor
because of a relationship through community B.

Since Gobs is often noisy and may not fit the adopted parametric block model well, sampling
πv and βv from p(π, β|Gobs) can lead to high variance. This can lead to the sampled graphs
Gi,v being very different from Gobs. Instead, we replace the integration over π and β with a
maximum a posteriori estimate [327]. We approximately compute

{π̂, β̂} = arg max
β,π

p(β, π|Gobs) (4.7)

by incorporating suitable priors over β and π and use the approximation:

p(Z|YL,X,Gobs) ≈
1

NGS

NG∑
i=1

S∑
s=1

p(Z|Ws,i,Gi,X) . (4.8)

In this approximation, Ws,i are approximately sampled from p(W|YL,X,Gi) using Monte
Carlo dropout over the Bayesian GCN corresponding to Gi. The Gi are sampled from
p(G|π̂, β̂).

4.4.2 Posterior Inference for a-MMSBM

For the undirected observed graph Gobs = {yab ∈ {0, 1} : 1 6 a < b 6 N}, yab = 0 or 1
indicates absence or presence of a link between node a and node b. In an MMSBM, each node
a has aK dimensional community membership probability distribution πa = [πa1, · · · , πaK]T ,
where K is the number of categories/communities of the nodes and we denote the set of πa-s
for all nodes by π = {πa}Na=1. For any two nodes a and b, if both of them belong to the
same community, then the probability of a link between them is significantly higher than
the case where the two nodes belong to different communities [199]. The generative model
is described as:

For any two nodes a and b,

• Sample zab ∼ πa and zba ∼ πb.

• If zab = zba = k, sample a link yab ∼ Bernoulli(βk). Otherwise, yab ∼ Bernoulli(δ).

91

Here, 0 6 βk 6 1 is termed the community strength of the k-th community. We group
these intra-community link probabilities in a K-dimensional vector β = [β1, · · · , βK]T . The
cross-community link probability δ is usually set to a small value. The joint posterior of the
parameters π and β is given as:

p(π, β|Gobs) ∝ p(β)p(π)p(Gobs|π, β) ,

=
K∏
k=1

p(βk)
N∏
a=1

p(πa)
∏

16a<b6N

∑
zab,zba

p(yab, zab, zba|πa, πb, β) . (4.9)

We use a Beta(η) distribution for the prior of βk and a Dirichlet distribution, Dir(α), for the
prior of πa, where η and α are hyperparameters.

4.4.3 Expanded Mean Parameterization

Maximizing the posterior of eq. (4.9) is a constrained optimization problem with

βk, πak ∈ (0, 1) and
K∑
k=1

πak = 1. Employing a standard iterative algorithm with a gradient

based update rule does not guarantee that the constraints will be satisfied. Hence, we
consider an expanded mean parameterization [328] as follows. We introduce the alternative
parameters θk0, θk1 > 0 and adopt as the prior for these parameters a product of
independent Gamma(η, ρ) distributions. These parameters are related to the original
parameter βk through the relationship βk = θk1

θk0 + θk1
. This results in a Beta(η) prior for

βk. Similarly, we introduce a new parameter φa ∈ RK
+ and adopt as its prior a product of

independent Gamma(α, ρ) distributions. We define πak = φak
K∑
l=1

φal

, which results in a

Dirichlet prior, Dir(α), for πa. We form two vectors θ = [θ10, θ11, · · · , θK0, θK1]T and
φ = [φ11, · · · , φ1K , · · · , φN1, · · · , φNK]T to group these alternative parameters. The
boundary conditions θki, φak > 0 can be handled by simply taking the absolute value of the
update.

92

4.4.4 Stochastic Optimization and Minibatch Sampling

In this section, we derive the preconditioned gradient ascent algorithm, which is used to
maximize the joint posterior in eq. (4.9) over θ and φ. If X is a Bernoulli random variable
with parameter ρ, we denote its probability mass function p(X = x|ρ) = ρx(1 − ρ)(1−x) as
B(x; ρ) for x ∈ {0, 1}, to simplify notation. We first define the following probabilities:

f
(y)
ab (k, l) = p(yab, zab = k, zab = l|πa, πb, β) ,

=
π

akπbkB(yab; βk) , if k = l

πakπblB(yab; δ) , if k 6= l,
(4.10)

Z
(y)
ab = p(yab|πa, πb, β) =

K∑
k=1

K∑
l=1

f
(y)
ab (k, l) ,

= B(yab; δab) +
K∑
k=1

(
B(yab; βk)− B(yab; δab)

)
πakπbk , (4.11)

and

f
(y)
ab (k) = p(yab, zab = k|πa, πb, β) =

K∑
l=1

f
(y)
ab (k, l) ,

= πak
(
B(yab; βk)πbk + B(yab; δab)(1− πbk)

)
. (4.12)

Based on these probabilities, we can compute the partial derivatives of the log likelihood of
yab as follows:

gab(θki) = ∇θki log p(yab|π, β) ,

= f
(y)
ab (k, k)
Z

(y)
ab

 |1− i− yab|
θki

− 1
θk0 + θk1

 , for i ∈ {0, 1}, (4.13)

and

gab(φak) = ∇φak log p(yab|π, β) ,

= f
(y)
ab (k)
Z

(y)
ab φak

− 1∑K
l=1 φal

. (4.14)

93

In many graphs that are appropriately modelled by a stochastic block model, most of the
nodes belong strongly to only one of the K communities, so the MAP estimate for many
πa lies near one of the corners of the probability simplex. This suggests that the scaling
of different dimensions of φa can be very different. Similarly, as Gobs is typically sparse,
the community strengths βk are very low, indicating that the scales of θk0 and θk1 are very
different. We use preconditioning matrices G(θ) = diag(θ)−1 and G(φ) = diag(φ)−1 as
in [328], to obtain the following update rules:

θ
(t+1)
ki =

∣∣∣∣θ(t)
ki + εt

(
η − 1− ρθ(t)

ki + θ
(t)
ki

N∑
a=1

N∑
b=a+1

gab(θ(t)
ki)
)∣∣∣∣ , (4.15)

φ
(t+1)
ak =

∣∣∣∣φ(t)
ak + εt

(
α− 1− ρφ(t)

ak

N∑
b=1,b 6=a

gab(φ(t)
ak)
)∣∣∣∣ , (4.16)

where εt = ε0(t+ τ)−κ is a decreasing step-size.

Direct implementation of eq. (4.15) and (4.16) is O(N2K) per iteration, where N is the
number of nodes in the graph and K denotes the number of communities. This can be
prohibitively expensive for large graphs. We instead employ a stochastic gradient based
strategy as follows. For update of θki’s in eq. (4.15), we split the O(N2) sum over all edges
and non-edges, ∑N

a=1
∑N
b=a+1, into two separate terms. One of these is a sum over all observed

edges and the other is a sum over all non-edges. We calculate the term corresponding to
observed edges exactly (in the sparse graphs of interest, the number of edges is closer to
O(N) than O(N2)). For the other term we consider a minibatch of 1 percent of randomly
sampled non-edges and scale the sum by a factor of 100.

At any single iteration, we update the φak values for only n randomly sampled nodes (n < N),
keeping the rest of them fixed. For the update of φak values of any of the randomly selected
n nodes, we split the sum in eq. (4.16) into two terms. One involves all of the neighbors
(the set of neighbors of node a is denoted by N (a)) and the other involves all the non-
neighbors of node a. We calculate the first term exactly. For the second term, we use
n−|N (a)| randomly sampled non-neighbors and scale the sum by a factor of N − 1− |N (a)|

n− |N (a)|
to maintain unbiasedness of the stochastic gradient. Overall the update of the φ values
involve O(n2K) operations instead of O(N2K) complexity for a full batch update.

Since the posterior in the MMSBM is very high-dimensional, random initialization often

94

does not work well. We train a GCN [37] on Gobs and use its softmax output to initialize
π and then initialize β based on the block structure imposed by π. The resulting BGCN
(MMSBM) algorithm is summarized in Algorithm 4.1.

Algorithm 4.1 BGCN (MMSBM)
Input: Gobs, X, YL
Output: p(Z|YL,X,Gobs)

1: Initialization: train a GCN to initialize the inference in MMSBM and the weights in the
Bayesian GCN.

2: for i = 1 : NG do
3: Perform Nb iterations of MMSBM inference to obtain (π̂, β̂).
4: Sample graph Gi ∼ p(G|π̂, β̂).
5: for s = 1 : S do
6: Sample weights Ws,i via MC dropout by training a GCN over the graph Gi.
7: end for
8: end for
9: Approximate p(Z|YL,X,Gobs) using eq. (4.8).

4.5 BGCN using Non-Parametric Graph Learning

Although the parametric graph modelling approach in Section 4.4 is effective, it has several
disadvantages. Choosing an appropriate random graph model is very important and the
correct choice can vary greatly for different problems and datasets. For example, the a-
MMSBM based graph modelling and inference cannot be performed if the observed graph
Gobs contains weighted edges. Bayesian inference of the model parameters is often challenging
for large graphs (e.g., batch inference of a-MMSBM parameters scales as O(N2), where N
is the number of nodes in Gobs). Another significant drawback of the technique is that
the posterior inference of the ‘true’ graph G is carried out solely conditioned on Gobs by
marginalizing with respect to the random graph parameters. As a result, any information
provided by the node features X and the training labels YL is completely disregarded for
the posterior inference of G. This can be highly undesirable in scenarios where the features
and labels are highly correlated with the true graph connectivity.

In order to alleviate these shortcomings, we propose a non-parametric generative model for
the adjacency matrix AG ∈ R+

N×N of the random undirected graph G. AG is assumed to

95

be a symmetric matrix with non-negative entries. We emphasize that our model retains
the identities of the nodes and disallows permutations of nodes (permutations of adjacency
matrices are not equivalent graphs when node identities are preserved). This characteristic
is essential for its use in node and edge level inference tasks. We define the prior distribution
for G as

p(G) ∝
e

(α1> log(AG1)−β‖AG‖2F) , if AG ∈ R+
N×N AG = A>G

0 , otherwise .
(4.17)

The first term in the log prior is a logarithmic barrier on the degree of the nodes which
prevents any isolated node in G. The second term is a regularizer based on the Frobenius
norm which encourages low weights for the links. α and β are hyperparameters which control
the scale and sparsity of AG.

In a typical graph-based leaning task, we usually have access to some training data D,
in addition to Gobs. The data D can include feature vectors, labels, and other available
information, depending on the task at hand. In the proposed non-parametric model, the
joint likelihood of Gobs and D conditioned on G is defined as:

p(Gobs,D|G) ∝ exp (−‖AG �D(Gobs,D)‖1,1) , (4.18)

where D(Gobs,D) ∈ R+
N×N is a symmetric pairwise distance matrix which encodes the

dissimilarity between the nodes. The symbol � denotes the Hadamard product and ‖ · ‖1,1

denotes the elementwise `1 norm. The likelihood encourages higher edge weights for the
node pairs with lower pairwise distances and vice versa.

Bayesian inference of the graph G involves sampling from its posterior distribution. The
space is high dimensional (O(N2), where N is the number of the nodes). Designing a
suitable sampling scheme (e.g., MCMC) in such a high dimensional space is extremely
challenging and computationally demanding for large graphs. Instead we pursue maximum
a posteriori estimation, which is equivalent to approximating the posterior by a point mass
at the mode [327]. We solve the following optimization problem:

Ĝ = arg max
G

p(G|Gobs,D) , (4.19)

96

which is equivalent to learning an N×N symmetric adjacency matrix of Ĝ.

AĜ = arg min
AG∈R+

N×N ,
AG=A>G

‖AG �D‖1,1 − α1> log(AG1) + β‖AG‖2
F . (4.20)

The optimization problem in (4.20) has been studied in the context of graph learning from
smooth signals. In [172], a primal-dual optimization technique is adopted to solve this
problem. However the complexity of this approach scales as O(N2), which can be prohibitive
for large graphs. Instead, we employ the scalable, approximate algorithm in [180], which
has several advantages as follows. First, it can use existing approximate nearest neighbor
techniques, as in [175], to reduce the dimensionality of the optimization problem. Second,
the graph learning has a computational complexity of O(N logN) (the same as approximate
nearest neighbor algorithms), while the quality of the learned graph is comparable to the
state-of-the-art. Third, if we are not concerned about the scale of the learned graph (which
is typical in many learning tasks we consider, since a normalized version of the adjacency or
Laplacian matrix is used), the approximate algorithm allows us to effectively use only one
hyperparameter instead of α and β to control the sparsity of the solution and provides a
useful heuristic for automatically selecting a suitable value based on the desired edge density
of the solution.

We use this approximate algorithm for inference of the graph G, which is subsequently used
in various learning tasks. Since, we have freedom in choosing a functional form for D(·, ·),
we can design suitable distance metrics in a task specific manner. This flexibility allows us
to incorporate the graph learning step in diverse problem settings. In the next subsections,
we present how the graph learning step can be applied to develop Bayesian algorithms for
node classification and link prediction.

4.5.1 Semi-Supervised Node Classification

We revisit the semi-supervised node classification task addressed in Section 4.4. In this
setting, we have access to the node attributes X and the training labels YL in addition
to Gobs. So, D = (X,YL). We aim to predict the labels of the nodes in L = V \ L. We
propose to incorporate a non-parametric model for inference of G in the BGCN framework.
We aim to compute the marginal posterior probability of the node labels, which is obtained

97

via marginalization with respect to the graph G and GCN weights W:

p(Z|YL,X,Gobs) =
∫
p(Z|W,Gobs,X)p(W|YL,X,G)p(G|Gobs,X,YL) dW dG . (4.21)

As in Section 4.4, the categorical distribution of the node labels p(Z|YL,X,Gobs) is modelled
by applying a softmax function to the output of the last layer of the GCN. The integral
in (4.21) cannot be computed in a closed form, so we employ Monte Carlo to approximate
it as follows:

p(Z|YL,X,Gobs) ≈
1
S

S∑
s=1

p(Z|Ws,Gobs,X) . (4.22)

Here, we learn the maximum a posteriori (MAP) estimate Ĝ = arg max
G

p(G|Gobs,X,YL)

and subsequently sample S weight matrices Ws from p(W|YL,X, Ĝ) by training a Bayesian
GCN using the graph Ĝ.

In order to perform the graph learning step, we need to define a pairwise distance matrix D.
For this application, we propose to combine the output of a node embedding algorithm and
a base classifier to form D:

D(X,YL,Gobs) = D1(X,Gobs) + δD2(X,YL,Gobs) . (4.23)

Here δ is a hyperparameter which controls the importance of D2 relative to D1. The (i, j)’th
entries of D1 and D2 are defined as follows:

D1,ij(X,Gobs) = ‖zi − zj‖2 , (4.24)

D2,ij(X,YL,Gobs) = 1
|Ni||Nj|

∑
k∈Ni

∑
l∈Nj

1(ĉk 6=ĉl) . (4.25)

Here, zi is any suitable embedding of node i and ĉi is the predicted label at node i obtained
from the base classification algorithm. D1 measures pairwise dissimilarity in terms of the
observed topology and features and D2 summarizes the discrepancy of the node labels in
the neighborhood. For the experiments, we choose the Variational Graph Auto Encoder
(VGAE) algorithm [39] as the node embedding method to obtain the zi vectors and use the
GCN [37] as the base classifier to obtain the ĉi values. The neighborhood of the i-th node is

98

defined as:

Ni = {j|(i, j) ∈ EGobs} ∪ {i} .

Here, EGobs is the set of edges in Gobs. With the regard to the choice of the hyperparameter
δ, we observe that

δ =
max
i,j

D1,ij

max
i,j

D2,ij

works well in our experiments, although it can be tuned if a validation set is available.
Following the approach adopted in the BGCN (MMSBM) algorithm in Section 4.4, we use
Monte Carlo dropout [321] to perform variational inference of GCN weights W. The resulting
BGCN (Non-Parametric) algorithm is provided in Algorithm 4.2.

Algorithm 4.2 BGCN (NP)
1: Input: Gobs, X, YL
2: Output: p(Z|YL,X,Gobs)
3: Train a node embedding algorithm using Gobs and X to obtain zi for 1 6 i 6 N . Compute

D1 using eq. (4.24).
4: Train a base classifier using Gobs, X and YL to obtain ĉi for 1 6 i 6 N . Compute D2

using eq. (4.25).
5: Compute D using eq. (4.23).
6: Solve the optimization problem in (4.20) to obtain AĜ (equivalently, Ĝ).
7: for s = 1 to S do
8: Sample weights Ws using MC dropout by training a GCN over the graph Ĝ.
9: end for

10: Approximate p(Z|YL,X,Gobs) using eq. (4.22).

4.5.2 Link Prediction

In this setting, some of the links in Gobs are hidden or unobserved. The task is to predict the
unseen links based on the knowledge of the (partially) observed Gobs and the node features
X. Thus in this case, the additional data beyond the graph is D = X.

In existing works, the link prediction problem is addressed by building deep learning based

99

generative models for graphs. In particular, various architectures of variational graph
autoencoders (VGAEs) [39, 40, 213] aim to learn the posterior distribution of the node
embedding Z conditioned on the observed graph Gobs and the node features X. The
inference model (encoder) often uses simplifying assumptions (e.g. mean-field
approximation over nodes, diagonal covariance matrices for each node embedding) for the
parametric form of the approximate variational posterior distribution q(Z|Gobs,X). Various
GNN architectures are used to learn the parameters of the model. The decoder is another
deep learning model which explains how the graph is generated from the embeddings, i.e.,
it parameterizes p(Gobs|Z,X). Typically the probability of a link in these models is
dependent on the similarity of the embedding of the two incident nodes. Assuming a
suitable prior p(Z), the encoder and decoder is trained jointly to minimize the KL
divergence between q(Z|Gobs,X) and the true posterior p(Z|Gobs,X). The learned
embeddings are evaluated based on an amortized link prediction task for the unseen
portion of the graph.

By contrast, we consider a Bayesian formulation, where we conduct Bayesian inference of
the graph G in the encoder. Let us introduce a function J (G,Gobs) that returns a graph such
that the unobserved entries of the adjacency matrix of Gobs are replaced by the corresponding
entries of G. We then model the inference distribution as follows:

q(Z|Gobs,X) =
∫
q(Z|J (G,Gobs),X)p(G|Gobs,X)dG ,

≈ q(Z|J (Ĝ,Gobs),X) , (4.26)

where Ĝ = arg max
G

p(G|Gobs,X) is the MAP estimate from the non-parametric model. The
intuitive idea behind this modeling is that if the non-parametric inference provides a
reasonable approximation of the unobserved adjacency matrix entries, then an autoencoder
trained on a graph that incorporates these approximate entries should learn better
embeddings. For the graph learning step, we form the distance matrix D using the output
of a graph autoencoder model as follows:

Dij(X,Gobs) = ‖Eq[zi]− Eq[zj]‖2 . (4.27)

The resulting Bayesian VGAE algorithm is summarized in Algorithm 4.3.

100

Algorithm 4.3 Bayesian VGAE
1: Input: Gobs, X
2: Output: q(Z|Gobs,X)
3: Train a node embedding algorithm using Gobs and X to obtain q(zi|Gobs,X) for 1 6 i 6 N .
4: Compute D using eq. (4.27).
5: Solve the optimization problem in (4.20) to obtain AĜ (equivalently, Ĝ).
6: Build a new graph J (Ĝ,Gobs) and train the autoencoder on it to obtain q(Z|Gobs,X)

using eq. (4.26).

4.6 Numerical Experiments and Results

We evaluate the performance of the proposed BGCN (MMSBM) and BGCN (NP)
algorithms in a transductive, semi-supervised node classification task. Additionally, we test
the robustness of the BGCN (MMSBM) approach against an adversarial attack. Finally,
we conduct a link prediction experiment by incorporating the non-parametric graph
learning approach into several graph autoencoder models.

4.6.1 Datasets

We conduct experiments on benchmark citation network datasets: Cora [329], Citeseer [329],
and Pubmed [330]. In these datasets, each node represents a research article and is associated
with a bag-of-words feature vector derived from the keywords. Edges are formed whenever
one document cites another. The direction of the citation is ignored and an undirected
graph with a symmetric adjacency matrix is constructed. The node labels indicate the
primary research topics addressed in the articles. The statistics of the citation datasets are
summarized in Table 4.1.

Table 4.1: Statistics of the benchmark citation datasets.

Dataset No. classes No. features No. nodes No. Edges Edge Density
Cora 7 1,433 2,485 5,069 0.04%
Citeseer 6 3,703 2,110 3,668 0.04%
Pubmed 3 500 19,717 44,324 0.01%

101

4.6.2 Semi-Supervised Node Classification

In this setting, we assume that we have access to several node labels per class and the goal
is to predict the labels of the rest of the nodes. We consider three different experimental
scenarios where we have 5, 10 and 20 labeled nodes per class in the training set. The
data is split into train and test sets in two different ways. The first is the fixed data
split with 20 training labels per class originating from [331], which has been extensively
adopted in subsequent works [37, 38, 146]. In 5 and 10 training labels per class cases, we
construct the fixed split of the data by using the first 5 and 10 labels in the original partition
of [331]. On these fixed data partitions, each algorithm is run 50 times using different random
initializations of the learnable weights. The second type of split is random where the training
and test sets are created at random for each run. This provides a more robust comparison
of the model performance as the specific split of data can have a significant impact in the
limited training labels case. For this random splitting, we conduct 50 trials, where each
trial is carried out on a different random partition of the data with a different random
initialization of the learnable model parameters. The randomness solely arises in the fixed
split scenarios due to the random initialization of weights, whereas random split settings
show higher variance due to the additional randomness induced by the split of data.

We compare the proposed BGCN (MMSBM) and BGCN (NP) algorithms with the
ChebyNet [62], the GCN [37], the GAT [38], the DFNET [146] (for only Cora and Citeseer
due to runtime considerations), the SBM-GCN [41] and the BGCN (Copy) [211]. The
hyperparameters of GCN are the same for all of the experiments and are based on [37].
The GCN has 2 layers with 16 hidden units, the learning rate is set to 0.01, the `2

regularization parameter is 0.0005, and the dropout rate is 50% at each layer. These
hyperparameters are also used in the BGCN algorithms. In addition, the hyperparameters
associated with MMSBM inference are set as follows: η = 1, α = 1, ρ = 0.001, n = 500,
ε0 = 1, τ = 1024, and κ = 0.5. The hyperparameters of the non-parametric graph model
are set using the heuristic in [180], such that the inferred graph (Ĝ) is approximately 10
times denser compared to the observed graph (Gobs). The hyperparameters of the other
baseline models are borrowed from the original papers. The implementation of the GAT
method, provided by the authors, employs a validation set of 500 node labels to monitor
validation accuracy during training. The model that yields the minimum validation error is

102

selected as final model and is used for computing test set accuracy. We report results
without this validation set monitoring as large validation sets are not always available and
the other methods examined here do not require one.

We report the average classification accuracies along with their standard errors for the
random partition scenario in Table 4.2. The results for the fixed split case are qualitatively
similar and are deferred to Appendix B for conciseness. In order to highlight the advantage
of graph modelling in the BGCN models, we conduct a Wilcoxon signed rank test to
determine whether the BGCN algorithms are significantly better than the GCN.
Statistically significant improvements of the BGCN models over the GCN at the 5% level
are marked with asterisks.

We observe that the GCN outperforms the ChebyNet in most cases, which indicates that
higher order graph convolutions are not advantageous for these datasets. Although the GAT
requires much higher training time compared to the GCN, the incorporation of the attention
mechanism is not particularly beneficial for these datasets. The DFNET-ATT model, which
employs a complex, higher order convolution using feedback loop filters shows comparable
performance to the GCN in most cases. The SBM-GCN approach targets joint learning
of the node labels and a likely graph structure using an SBM. However, its performance is
poor in scarce training data settings, possibly due to the ineffectiveness of the variational
inference procedure employed for approximating the posterior of the graph. Motivated by
the homophily property, present in real-world graph datasets, the recently proposed BGCN
(Copy) model uses a simple node-copying based generative procedure for computationally
efficient graph sampling and performs comparably to the other BGCN approaches in most
cases.

The results illustrate the improvement in classification accuracy provided by the proposed
BGCN (MMSBM) algorithm for Cora and Citeseer datasets. The improvement compared
to the GCN is more pronounced when the number of available labels is limited to 10 or 5.
In addition to increased accuracy, the BGCN (MMSBM) provides lower variance results in
most tested scenarios. For the Pubmed dataset, the BGCN (MMSBM) has higher accuracy
compared to the GCN for the 5-label case, but it is outperformed by other techniques for
the 10 and 20-label cases. The Pubmed dataset has a much lower intra-community density
than the other datasets and a heavy-tailed degree distribution. The assortative MMSBM is

103

Table 4.2: Accuracy (in %) of semi-supervised node classification on random splits. The
best and the second best results in each column are shown in bold and marked with underline
respectively. Higher numbers are better.

Algorithms 5 labels 10 labels 20 labels

C
or

a

ChebyNet 61.7±6.8 72.5±3.4 78.8±1.6
GCN 70.0±3.7 76.0±2.2 79.8±1.8
GAT 70.4±3.7 76.6±2.8 79.9±1.8
DFNET-ATT 72.3±2.9 75.8±1.7 79.3±1.8
SBM-GCN 46.0±19 74.4±10 82.6±0.2
BGCN (Copy) 73.8±2.7* 77.6±2.6* 80.3±1.6
BGCN (MMSBM) 74.6±2.8* 77.5±2.6* 80.2±1.5
BGCN (NP) 74.2±2.8* 76.9±2.2* 78.8±1.7

C
ite

se
er

ChebyNet 58.5±4.8 65.8±2.8 67.5±1.9
GCN 58.5±4.7 65.4±2.6 67.8±2.3
GAT 56.7±5.1 64.1±3.3 67.6±2.3
DFNET-ATT 60.5±1.2 63.2 ±2.9 66.3±1.7
SBM-GCN 24.5±7.3 43.3±12 66.1±5.7
BGCN (Copy) 63.9±4.2* 68.5±2.3* 70.2±2.0*
BGCN (MMSBM) 63.0±4.8* 69.9±2.3* 71.1±1.8*
BGCN (NP) 64.9±4.6* 70.1±1.9* 71.4±1.6*

Pu
bm

ed

ChebyNet 62.7±6.9 68.6±5.0 74.3±3.0
GCN 69.7±4.5 73.9±3.4 77.5±2.5
GAT 68.0±4.8 72.6±3.6 76.4±3.0
SBM-GCN 59.0±10 67.8±6.9 74.6±4.5
BGCN (Copy) 71.0±4.2* 74.6±3.3* 77.5±2.4
BGCN (MMSBM) 70.2±4.5 73.3±3.1 76.0±2.6
BGCN (NP) 71.1±4.4* 74.6±3.6* 77.6±2.9

104

thus a relatively poor choice for modelling the observed graph, and this might be the reason
which prevents the Bayesian approach from improving the prediction accuracy.

In order to provide some insight into the information available from the posterior inference
of the MMSBM parameters, we examine the 50 observed edges with lowest average posterior
probability for both the Cora and Citeseer graphs. In the majority of cases the identified
edges are inter-community (connecting edges with different labels) or have one node with
very low degree (lower than 2). This accounts for 39 of the 50 edges for Cora and 42 of
the 50 edges for Citeseer. For the unobserved edges, we analyze the most probable edges
from the posterior. Most of these are intra-community edges (connecting nodes with the
same label). For Cora, 177 of the 200 unobserved edges identified as most probable are
intra-community, and for Citeseer, 197 intra-community edges are detected out of 200 most
probable unobserved edges.

The proposed BGCN (NP) algorithm achieves either higher or competitive accuracies in
most cases. The relative improvement compared to the GCN is more significant if the
labelled data is scarce. Comparison with the BGCN (MMSBM) demonstrates that better or
comparable accuracies can be achieved from this model, even if it does not target modelling
the community structure of the graph explicitly. From Figure 4.1, we observe that in most
cases, for the Cora and the Citeseer datasets, the proposed BGCN (NP) algorithm corrects
more misclassifications of the GCN for low degree nodes. The same trend is observed for
the Pubmed dataset. The empirical success of the GCN is primarily due to aggregating
information with neighbors. As the low degree nodes have less opportunity to aggregate,
performance is worse at these nodes. The proposed BGCN (NP) approach generates many
additional links between similar nodes (Figure 4.2). This improves learning, particularly at
low degree nodes.

In Figure 4.2, we compare the adjacency matrix (AĜ) of the MAP estimate graph Ĝ with the
observed adjacency matrix AGobs for the Cora dataset. This reveals that compared to AGobs ,
AĜ has denser connectivity among the nodes with the same label. This provides a rationale
of why the proposed BGCN (NP) outperforms the GCN in most cases.

105

Figure 4.1: Boxplots of different categories of nodes in the Cora and Citeseer datasets
based on the classification results of the GCN and the proposed BGCN (NP) algorithm.
The two groups are formed by thresholding the degree of the nodes in the test set at the
median value.

106

Figure 4.2: (a) the observed adjacency matrix (AGobs) and (b) the MAP estimate of
adjacency matrix (AĜ) from the non-parametric model for the Cora dataset. The node
are reordered based on labels. The red lines show the class boundaries.

4.6.3 Node Classification under Adversarial Attack

Several studies have shown the vulnerability of deep neural networks to adversarial
examples [332]. An adversarial attack with limited perturbation of the input graph is
introduced in [333], which aims to demonstrate the vulnerability of the graph-based
learning algorithms. Motivated by this study, we use a random attack mechanism to
compare the robustness of the GCN and the BGCN (MMSBM) algorithms in the presence
of noisy edges.

In each experiment, we target one node to attack. We choose a fixed number of perturbations
∆ = dv0 +2, where dv0 is the degree of a target node v0. The random attack involves removing
d(dv0 + 2)/2e nodes from the target node’s set of neighbors, and adding d(dv0 + 2)/2e cross-
community edges (randomly adding neighbors that have different labels than the target
node) to the target node. For each target node, this procedure is repeated 5 times so that
five perturbed graphs are generated. There are two types of adversarial attack mechanisms
in [333]. In the first type, called an evasion attack, data is modified to fool an already
trained classifier, and in the second, called a poisoning attack, the perturbation occurs before
the model training. All of our experiments in this section are examples of the poisoning
attack.

107

Similar to the setup in [333], we choose 40 nodes from the test set that are correctly classified
and simulate attack on these nodes. The margin of classification for node v is defined as:

marginv = scorev(ctrue)− max
c 6=ctrue

scorev(c) , (4.28)

where ctrue is the true class of node v and scorev denotes the softmax classification score
vector reported by the classifier for node v. A correct classification leads to a positive
margin; incorrect classifications are associated with negative margins. For each algorithm
we choose the 10 nodes with the highest margin of classification and 10 nodes with the lowest
positive margin of classification. The remaining 20 nodes are selected at random from the
set of nodes correctly classified by both algorithms. Thus, among the 40 target nodes, the
two algorithms are sharing at least 20 common nodes.

For each targeted node, we run the algorithm for 5 trials, where each trial corresponds to
a different attacked graph and a different random initialization of the GCN and BGCN
(MMSBM) weights. The average classification accuracy and margin with and without the
random attack are reported in Table 4.3 and are computed using 40 selected target nodes and
conducting 5 runs of the algorithms for each target. The accuracies in Table 4.3 are different
from the ones in Table 4.2, since we report the accuracy for the 40 selected target nodes in
this experiment, whereas results in Table 4.2 are accuracies on the entire test set.

Overall, the attack affects both algorithms severely. The GCN loses 30% in prediction
accuracy for the Cora dataset and 44.5% for Citeseer whereas the decrease in prediction
accuracy is more limited for the BGCN (MMSBM) algorithm with 17% for Cora and 20.5%
for the Citeseer dataset. The BGCN (MMSBM) is able to maintain the classifier margin
much better compared to the GCN. For the Citeseer dataset, the random attack almost
eliminates the GCN’s margin whereas the BGCN (MMSBM) suffers a 34% decrease, but
retains a positive margin on average.

Figure 4.3 provides further insight concerning the impact of the attack on the two algorithms
by depicting the distribution of average classifier margins over the targeted nodes before and
after the random attack. Each circle in the figure shows the margin for one target node
averaged over the 5 random perturbations of the graph. Note that some of the nodes have a
negative margin prior to the random attack because we select the correctly classified nodes
with lowest average margin based on 10 random trials and then perform another 5 random

108

(a)

(b)

Figure 4.3: Boxplots of the average classification margin for 40 nodes before and after
random attack for the GCN and the BGCN (MMSBM) on (a) Cora and (b) Citeseer datasets.
The box indicates 25-75 percentiles; the triangle represents the mean value; and the median
is shown by a horizontal line. Whiskers extend to the minimum and maximum of data points.

109

No attack Random attack

Cora Accuracy

GCN 85.55% 55.50%
BGCN (MMSBM) 86.50% 69.50%

Classifier Margin

GCN 0.557 0.152
BGCN (MMSBM) 0.616 0.387

Citeseer Accuracy

GCN 88.5% 43.0%
BGCN (MMSBM) 87.0% 66.5%

Classifier Margin

GCN 0.448 0.014
BGCN (MMSBM) 0.507 0.335

Table 4.3: Accuracy and classifier margin for the no attack and random attack scenarios
on Cora and Citeseer datasets.

trials using different initialization of the GCN and BGCN (MMSBM) weights to report the
margins before attack. We observe that the attack causes nearly half of the target nodes to
be wrongly classified for the GCN, whereas there are considerably fewer prediction changes
for the BGCN (MMSBM) algorithm.

4.6.4 Link Prediction

We consider a link prediction task to demonstrate the usefulness of the learned embeddings
from the Bayesian autoencoders using the non-parametric graph inference approach. As
in [39], we split the links in 85/5/10% for training, validation and testing respectively. The
validation and test sets contain the same number of non-links as links. During model training,
the links in the validation and test sets are hidden while the node features are unaltered.
We compare the Bayesian approach with the GAE and VGAE [39], the GRAPHITE-AE
and VAE [40], and the DGLFRM [213] models. The hyperparameters of these baseline
algorithms are selected according to the corresponding papers. Other common baselines,
e.g., spectral clustering [334], Deepwalk [335], and node2vec [296], are not included since it
has been demonstrated in [39] that the baselines we include significantly outperform them.

110

Table 4.4: Area Under the ROC Curve (AUC) and Average Precision (AP) (in %) for link
prediction.

Algorithm Cora Citeseer Pubmed

AUC

GAE 91.5±0.9 89.4±1.5 96.2±0.2
BGAE 91.8±0.8* 89.6±1.6* 96.2±0.2
VGAE 91.8±0.9 90.7±1.0 94.5±0.7
BVGAE 92.2±0.8* 91.2±1.0* 94.4±0.7
Graphite-AE 92.0±0.9 90.8±1.1 96.0±0.4
BGraphite-AE 92.4±0.9* 91.1±1.1* 96.0±0.4
Graphite-VAE 92.3±0.8 90.9±1.1 95.2±0.4
BGraphite-VAE 92.7±0.8* 91.4±1.1* 95.2±0.4
DGLFRM 93.1±0.6 93.9±0.7 95.9±0.1
BDGLFRM 93.2±0.6* 94.1±0.7* 95.9±0.2

AP

GAE 92.6±0.9 90.0±1.7 96.3±0.3
BGAE 92.8±0.9* 90.2±1.7* 96.3±0.2
VGAE 92.9±0.7 92.0±1.0 94.7±0.6
BVGAE 93.3±0.7* 92.5±1.0* 94.6±0.6
Graphite-AE 92.8±0.9 91.6±1.1 96.0±0.4
BGraphite-AE 93.1±0.9* 92.0±1.1* 96.0±0.4
Graphite-VAE 93.3±0.7 92.1±1.0 95.3±0.4
BGraphite-VAE 93.7±0.7* 92.6±1.0* 95.3±0.4
DGLFRM 93.8±0.6 94.5±0.7 96.4±0.1
BDGLFRM 93.9±0.6* 94.7±0.7* 96.3±0.1

111

We incorporate the non-parametric graph inference technique in the existing autoencoders
to build a Bayesian version of these algorithms.

The Area Under the ROC Curve (AUC) and the Average Precision (AP) score are used
as performance metrics. Table 4.4 shows the mean AUC and AP, together with standard
errors, based on 50 trials. Each trial corresponds to a random split of the graph and a
random initialization of the learnable parameters. We conduct a Wilcoxon signed rank test to
determine the statistical significance of the improvement compared to the corresponding base
model. Results marked with asterisks indicate settings where the test declares a significance
at the 5% level.

From the results in Table 4.4, we observe the proposed approach improves link prediction
performance for the Cora and Citeseer datasets compared to the baseline autoencoder
models. The improvement is small but consistent over all autoencoder architectures and
almost all of the random trials. No improvement is observed for Pubmed. To examine this
further, we conducted an experiment where the ground-truth for the test set was provided
to the autoencoders. The performance does not change from the reported values; this
suggests that the models have reached accuracy limits for the Pubmed dataset.

4.7 Summary

In this chapter, we have introduced Bayesian graph neural networks, which provide an
approach for incorporating uncertain graph information into graph based learning tasks.
We provide an example of the Bayesian framework using a parametric random graph
model, called assortative mixed membership stochastic block model and explain how
approximate inference can be performed using a combination of stochastic optimization (to
obtain maximum a posteriori estimates of the random graph parameters) and approximate
variational inference through Monte Carlo dropout (to sample weights from the Bayesian
GCN). The resulting BGCN (MMSBM) algorithm offers improved accuracy in
semi-supervised node classification, particularly for the case where the number of training
labels is small. The BGCN (MMSBM) is considerably more resilient to attack than the
GCN. In addition, we propose the use of non-parametric modelling and inference of graphs
for various learning tasks. In the proposed model, a higher edge weight between two nodes
is more likely if the nodes are close in terms of a distance metric. An appropriate distance

112

metric can be chosen depending on the learning task which results in flexible, task-specific
design of learning algorithms. The proposed model is adapted to a Bayesian learning
framework to improve performance over baseline algorithms for node classification and link
prediction.

113

Chapter 5
RNN with Particle Flow

5.1 Introduction

Spatio-temporal forecasting has many applications in intelligent traffic management,
computational biology and finance, wireless networks and demand forecasting. Inspired by
the surge of novel learning methods for graph structured data, many deep learning based
spatio-temporal forecasting techniques have been proposed recently [50, 51]. In addition to
the temporal patterns present in the data, these approaches can effectively learn and
exploit spatial relationships among the time-series using various Graph Neural Networks
(GNNs) [37, 62]. Recent works establish that graph-based spatio-temporal models
outperform the graph-agnostic baselines [50, 288]. In spite of their accuracy in providing
point forecasts, these models have a serious drawback as they cannot gauge the uncertainty
in their predictions. When decisions are made based on forecasts, the availability of a
confidence or prediction interval can be vital.

There are numerous probabilistic forecasting techniques for multivariate time-series, for
example, DeepAR [52], DeepState [54], DeepFactors [53], and the normalizing flow-based
algorithms [266, 269]. Although these algorithms can characterize uncertainty via
confidence intervals, they are not designed to incorporate side-knowledge provided in the
form of a graph.

In this Chapter, we model multivariate time-series as random realizations from a nonlinear
state-space model, and target Bayesian inference of the hidden states for probabilistic
forecasting. The general framework we propose can be applied to univariate or multivariate
forecasting problems, can incorporate additional covariates, can process an observed graph,
and can be combined with data-adaptive graph learning procedures. For the concrete
example algorithm deployed in experiments, we build the dynamics of the state-space
model using graph convolutional recurrent architectures. We develop an inference
procedure that employs particle flow, an alternative to particle filters, that can conduct
more effective inference for high-dimensional states.

The novel contributions in this chapter are as follows: a) we propose a graph-aware

114

stochastic recurrent network architecture and inference procedure that combine graph
convolutional learning, a probabilistic state-space model, and particle flow; b) we
demonstrate via experiments on graph-based traffic datasets that a specific instantiation of
the proposed framework can provide point forecasts that are as accurate as the
state-of-the-art deep learning based spatio-temporal models. The prediction error is also
comparable to the existing deep learning based techniques for benchmark non-graph
multivariate time-series datasets; and c) we show that the proposed method provides a
superior characterization of the prediction uncertainty compared to existing probabilistic
multivariate time-series forecasting methods, both for datasets where a graph is available
and for settings where no graph is available.

The rest of the chapter is organized as follows. Section 5.2 describes the forecasting problem
we address. The proposed approach is detailed in Section 5.3. Experimental results on several
real-world datasets are reported and discussed in Section 5.4. We provide a summary of this
chapter in Section 5.5.

5.2 Problem Statement

We address the task of discrete-time multivariate time-series prediction, with the goal of
forecasting multiple time-steps ahead. We assume that there is access to a historical dataset
for training, but after training the model must perform prediction based on a limited window
of historical data. Let yt ∈ RN×1 be an observed multivariate signal at time t and Zt ∈ RN×dz

be an associated set of covariates. The i-th element of yt is the observation associated with
time-series i at time-step t.

We also allow for the possibility that there is access to a graph G = (V , E), where V is the set
of N nodes and E ⊂ V × V denotes the set of edges. In this case, each node corresponds to
one time-series. The edges indicate probable predictive relationships between the variables,
i.e., the presence of an edge (i, j) suggests that the historical data for time-series i is likely
to be useful in predicting time-series j. The graph may be directed or undirected.

The goal is to construct a model that is capable of processing, for some time offset t0, the
data Yt0+1:t0+P , Zt0+1:t0+P+Q and (possibly) the graph G, to estimate Yt0+P+1:t0+P+Q. The
prediction algorithm should produce both point estimates and prediction intervals. The

115

performance metrics for the point estimates include mean absolute error (MAE), mean
absolute percentage error (MAPE), and root mean squared error (RMSE). For the
prediction intervals, the performance metrics include the Continuous Ranked Probability
Score (CRPS) [336], and the P10, P50, and P90 Quantile Losses (QL) [52, 53]. Expressions
for these performance metrics are provided in Section 5.4.2.

5.3 Methodology

5.3.1 State-Space Model

We postulate that yt ∈ RN×1 is the observation from a Markovian state space model with
hidden state Xt ∈ RN×dx . We denote by xt and zt the vectorizations of Xt and Zt,
respectively. The state space model is:

x1 ∼ p1(·, z1, ρ) , (5.1)
xt = gG,ψ(xt−1,yt−1, zt,vt), for t > 1 , (5.2)
yt = hG,φ(xt, zt,wt), for t > 1 . (5.3)

Here vt ∼ pv(·|xt−1, σ) and wt ∼ pw(·|xt, γ) are the noises in the dynamic and measurement
models respectively. ρ, σ and γ are the parameters of the distribution of the initial state
x1, process noise vt and measurement noise wt respectively. g and h denote the state
transition and measurement functions, possibly linear or nonlinear, with parameters ψ and
φ respectively. The subscript G in g and h indicates that the functions are potentially
dependent on the graph topology. We assume that hG,φ(xt, zt, 0) is a C1 function in xt,
i.e., hG,φ(xt, zt,0) is a differentiable function whose first derivative with respect to xt is
continuous. The complete set of the unknown parameters is formed as: Θ = {ρ, ψ, σ, φ, γ}.
Figure 5.1 depicts the graphical model relating the observed variables (yt and zt) to the
latent variables (vt, wt) and the graph (G).

With the proposed formulation, we can modify recurrent graph convolutional architectures
when designing the function g. When a meaningful graph is available, such architectures
significantly outperform models that ignore the graph. For example, we conduct experiments
by incorporating into our general model the Adaptive Graph Convolutional Gated Recurrent

116

Figure 5.1: The graphical model representation of the state-space model in Section 5.3.1

Units (AGCGRU) presented in [51]. The AGCGRU combines (i) a module that adapts the
provided graph based on observed data, (ii) graph convolution to capture spatial relations,
and (iii) a GRU to capture evolution in time. The example model used for experiments thus
employs an L-layer AGCRU with additive Gaussian noise to model the system dynamics
g:

xt = AGCGRU
(L)
G,ψ(xt−1,yt−1, zt) + vt , (5.4)

yt = Wφxt + wt . (5.5)

In this model, we have pv(vt) = N (0, σ2I), i.e., the latent variables for the dynamics are
independent. The initial state distribution is also chosen to be isotropic Gaussian, i.e.,
p1(x1, z1, ρ) = N (0, ρ2I). The parameters ρ and σ are learnable variance parameters. The
observation model g incorporates a linear projection matrix Wφ. The latent variable wt for
the emission model is modelled as Gaussian with variance dependent on xt via a learnable
softplus function:

pw(wt|xt) = N
(
0, diag

(
softplus(Cγxt)

)2
)
. (5.6)

117

5.3.2 Inference

We assume that a dataset Dtrn is available for training. Although this data may be derived
from a single time-series, because our task is to predict yt0+P+1:t0+P+Q using a limited
historical window yt0+1:t0+P , we splice the time-series and thus construct multiple training
examples, denoted by (y(m)

1:P ,y
(m)
P+1:P+Q). In the training set, all of these observations are

available; in the test set yP+1:P+Q are not. In addition, the associated covariates z1:P+Q are
known for both training and test sets.

Inference involves an iterative process. We randomly initialize the parameters of the model
to obtain Θ0. Subsequently, at the k-th iteration of the algorithm (processing the k-th
training batch), we first draw samples {yiP+1:P+Q}

Np
i=1 from the distribution

pΘk−1(yP+1:P+Q|y1:P , z1:P+Q). With this set of samples, we can subsequently apply a
gradient descent procedure to obtain the updated model parameters Θk. We discuss each
of these steps in turn as follows.

Sampling

In a Bayesian setting with known model parameters Θ = Θk−1, we would aim to form
a prediction by approximating the posterior predictive distribution of the forecasts, i.e.,
pΘ(yP+1:P+Q|y1:P). (For conciseness we drop the time-offset t0).

pΘ(yP+1:P+Q|y1:P , z1:P+Q) =
∫ P+Q∏

t=P+1

(
pφ,γ(yt|xt, zt)pψ,σ(xt|xt−1,yt−1, zt)

)
pΘ(xP |y1:P , z1:P)dxP :P+Q . (5.7)

Since the integral in eq. (5.7) is analytically intractable for a general nonlinear state-space
model, we take a Monte Carlo approach as follows:

Step 1: For 1 6 t 6 P , we apply an EDH [21] particle flow algorithm (details in
Section 2.1.6) with Np particles for the state-space model specified by eqs. (5.1), (5.2)
and (5.3) to recursively approximate the posterior distribution of the states:

pΘ(xt|y1:t, z1:t) ≈
1
Np

Np∑
j=1

δxit(xt) . (5.8)

118

Here {xjt}
Np
j=1 are approximately distributed according to the posterior distribution of xt.

The past trajectory of each sample xj1:P−1 can be discarded since the proposed model only
needs samples of xP to construct the forecast.

Step 2: For P + 1 6 t 6 P +Q, we iterate between the following two steps:

a. We sample xjt from pψ,σ(xt|xjt−1,y
j
t−1, zt) (for t > P + 1) or from pψ,σ(xt|xjt−1,yt−1, zt)

(for t = P + 1) for 1 6 j 6 Np. This amounts to a state transition at time t to obtain
the current state xjt from the previous state xjt−1, using eq. (5.2).

b. We sample yjt from pφ,γ(yt|xjt , zt) for 1 6 j 6 Np, i.e., we use xjt in the measurement
model, specified by eq. (5.3), to sample yjt .

A Monte Carlo (MC) approximation of the integral in eq. (5.7) is then formed as:

pΘ(yP+1:P+Q|y1:P , z1:P+Q) ≈
P+Q∏
t=P+1

1
Np

Np∑
j=1

δ(yt − yjt) . (5.9)

Each yjP+1:P+Q is approximately distributed according to the joint posterior distribution of
yP+1:P+Q. The resulting algorithm is summarized in Algorithm 5.1. A block diagram of the
probabilistic forecasting procedure is shown in Figure 5.2.

Parameter Update

With the predictive samples {yjP+1:P+Q}
Np
j=1, we can update the model parameters via

Stochastic Gradient Descent (SGD) to obtain Θ = Θk.

If our focus is on obtaining a point estimate of the forecast, then we can perform optimization
on the training set with respect to a loss function derived from Mean Absolute Error (MAE)
or Mean Square Error (MSE). The point forecast ŷ(m)

P+1:P+Q is obtained based on a statistic
such as the mean or median of the samples {yj,(m)

P+1:P+Q}
Np
j=1. The MAE loss function on a

dataset indexed by D can then be expressed as:

LMAE(Θ,D) = 1
NQ|D|

∑
m∈D

P+Q∑
t=P+1

∥∥∥y(m)
t − ŷ(m)

t

∥∥∥
1
. (5.10)

In an alternate approach, we could consider the maximization of the marginal log-likelihood

119

In
it

ia
l s

ta
te

...

...

T
h

e
jo

in
t

p
o

st
er

io
r

d
is

tr
ib

u
ti

o
n

 o
f

th
e

fo
re

ca
st

s:

P
ar

ti
cl

e
fl

o
w

E
m

is
si

o
n

 m
o

d
el

S
ta

te
 t

ra
n

si
ti

o
n

m

o
d

el

P
ar

ti
cl

e
fl

o
w

P

ar
ti

cl
e

fl
o

w

P
ar

ti
cl

e
fl

o
w

S

ta
te

 t
ra

n
si

ti
o

n

m
o

d
el

S
ta

te
 t

ra
n

si
ti

o
n

m

o
d

el

S
ta

te
 t

ra
n

si
ti

o
n

m

o
d

el
S

ta
te

 t
ra

n
si

ti
o

n

m
o

d
el

S
ta

te
 t

ra
n

si
ti

o
n

m

o
d

el

E
m

is
si

o
n

 m
o

d
el

E
m

is
si

o
n

 m
o

d
el

E
m

is
si

o
n

 m
o

d
el

(c
)

(b
)

(a
)

(a
)

T
h

e
sa

m
p

le
s

(a
st

er
is

k)
 f

ro
m

 t
h

e
p

ri
o

r
d

is
tr

ib
u

ti
o

n

(b
)

T
h

e
co

n
to

u
rs

 o
f

th
e

p
o

st
er

io
r

d
is

tr
ib

u
ti

o
n

 a
n

d
 t

h
e

d
ir

ec
ti

o
n

 o
f

fl
o

w
 f

o
r

th
e

p
ar

ti
cl

es
 a

t
an

 in
te

rm
ed

ia
te

 s
te

p
(c

)
T

h
e

p
ar

ti
cl

es
 a

ft
er

 t
h

e
fl

o
w

,
ap

p
ro

xi
m

at
el

y
d

is
tr

ib
u

te
d

 a
cc

o
rd

in
g

 t
o

 t
h

e
p

o
st

er
io

r
d

is
tr

ib
u

ti
o

n

F
ig

ur
e

5.
2:

Pr
ob

ab
ili

st
ic

fo
re

ca
st

in
g

fro
m

th
e

st
at

e-
sp

ac
e

m
od

el
us

in
g

pa
rt

ic
le

flo
w

.
M

ig
ra

tio
n

of
pa

rt
ic

le
s

fro
m

a
2-

d
G

au
ss

ia
n

pr
io

r
to

a
2-

d
G

au
ss

ia
n

po
st

er
io

r
di

st
rib

ut
io

n
is

ill
us

tr
at

ed
as

an
ex

am
pl

e.

120

Algorithm 5.1 Sequence to sequence prediction
1: Input: y1:P , z1:P+Q, and Θ
2: Output: {yjP+1:P+Q}

Np
j=1

3: Initialization: Sample ηj0 ∼ p1(x1, z1, ρ), j = 1 : Np.
4: for t = 1, 2, ..., P do
5: if t > 1 then
6: Sample ηj0 ∼ pψ,σ(xt|xjt−1,yt−1, zt), j = 1 : Np as: ηj0 = gG,ψ(xjt−1,yt−1, zt,vt).
7: end if
8: Use EDH particle flow (Algorithm 2.3) to obtain {ηj1}

Np
j=1 from {ηj0}

Np
j=1, zt, and yt.

9: Set xjt = ηj1.
10: end for
11: for t = P + 1, P + 2, ..., P +Q do
12: if t = P + 1 then
13: Sample xjP+1 ∼ pψ,σ(xP+1|xjP ,yP , zP+1), j = 1 : Np as: xjP+1 = gG,ψ(xjP ,yP , zP+1,vP+1).
14: else
15: Sample xjt ∼ pψ,σ(xt|xjt−1,y

j
t−1, zt), j = 1 : Np as: xjt = gG,ψ(xjt−1,y

j
t−1, zt,vt).

16: end if
17: Sample yjt ∼ pφ,γ(yt|xjt , zt), j = 1 : Np as: yjt = hG,φ(xjt , zt,wt).
18: end for
19: Form the Monte Carlo estimate using eq. (5.9).

over the training set. In that case, a suitable loss function is:

Lprob(Θ,D) = − 1
|D|

∑
m∈D

log pΘ(y(m)
P+1:P+Q|y

(m)
1:P , z

(m)
1:P+Q) , (5.11)

where we approximate the predictive likelihood as:

p̂Θ(yP+1:P+Q|y1:P , z1:P+Q) =
P+Q∏
t=P+1

 1
Np

Np∑
j=1

pφ,γ(yt|xjt , zt)
 , (5.12)

using eq. (5.7). This loss formulation is similar to the MC variational objectives in [225–227].
If we use the particle flow particle filter [26], then the sampled particles and the propagated
forecasts form an unbiased approximation of the distribution pΘ(yP+1:P+Q|y1:P , z1:P+Q). By
Jensen’s inequality, the summation over the log terms in eq. (5.11) is thus a lower bound for
the desired E[log pΘ(yP+1:P+Q|y1:P , z1:P+Q)] that converges to it as Np →∞.

In each training mini-batch, for each training example, we perform a forward pass through

121

Algorithm 5.2 Model training and testing

1: Input: Training and test data: {y(m)
1:P+Q, z(m)

1:P+Q}m∈Dtrn , {y(n)
1:P , z

(n)
1:P+Q}n∈Dtest

2: Output: {p̂Θ̂(y(n)
P+1:P+Q|y

(n)
1:P , z

(n)
1:P+Q)}n∈Dtest

3: Hyperparameters: Number of iterations Niter, step-size {ζk}Niterk=1

4: Initialization: random initialization for the system parameters Θ0.
5: Model training:
6: Set k = 1.
7: while k 6 Niter do
8: Sample a minibatch D ⊂ Dtrn.
9: Compute the approximate posterior distribution of the forecasts

{p̂Θk−1(y(m)
P+1:P+Q|y

(m)
1:P , z

(m)
1:P+Q)}m∈D using Algorithm 5.1 with the current parameters

Θk−1.
10: Compute the gradient of the chosen loss function L(Θ,D) with respect to model

parameters Θ at Θk−1.
11: Update the system parameters using SGD: Θk = Θk−1 − ζk∇ΘL(Θ,D)

∣∣∣
Θ=Θk−1

.
12: k = k + 1.
13: end while
14: Save the estimated model Θ̂ = ΘNiter .
15: Testing:
16: Compute the test set forecast posterior distributions {p̂Θ̂(y(n)

P+1:P+Q|y
(n)
1:P , z

(n)
1:P+Q)}n∈Dtest

using Algorithm 5.1 with the estimated model parameters Θ̂.

the model using Algorithm 5.1 to obtain approximate forecast posteriors and then update
all the model parameters using SGD via backpropagation. Algorithm 5.2 summarizes the
learning of the model parameters Θ.

5.4 Numerical Experiments and Results

We perform several experiments on four graph-based and four non-graph based public
datasets to evaluate the proposed methods.

5.4.1 Datasets

We evaluate our proposed algorithm on four publicly available traffic datasets, namely
PeMSD3, PeMSD4, PeMSD7, and PeMSD8. These datasets are obtained from the Caltrans

122

Performance Measurement System (PeMS) [337] and have been used in multiple previous
works [51, 276, 286, 292, 293]. Each of these datasets consists of traffic speed records,
collected from loop detectors, and aggregated over 5 minute intervals, resulting in 288 data
points per detector per day. The statistics of these PeMS datasets are summarized in
Table 5.1. In the non-graph setting, we conduct experiments on the Electricity [338],
Traffic [338], Taxi [265], and Wikipedia [265] datasets. The Electricity1 dataset contains
electricity consumption for 370 clients. The Traffic2 dataset is composed of 963 time-series
of lane occupancy rates in San Francisco. The Taxi3 dataset contains counts of taxis on
different roads of New York, and the Wikipedia4 dataset specifies the number of daily clicks
of 2000 web links. The detailed statistics of these datasets are provided in Table 5.2.

Table 5.1: Summary statistics of the PeMS road traffic datasets.

Dataset PeMSD3 PeMSD4 PeMSD7 PeMSD8
No. nodes 358 307 228 170
No. time steps 26208 16992 12672 17856
Interval 5 min 5 min 5 min 5 min

Table 5.2: Summary statistics of the multivariate non-graph datasets.

Dataset No. time
series (N) Domain Freq. No. time

steps
Prediction
length (Q)

Electricity 370 R+ Hourly 5833 24
Traffic 963 (0, 1) Hourly 4001 24
Taxi 1214 N 30 Minutes 1488 24
Wikipedia 2000 N Daily 792 30

5.4.2 Definitions of Evaluation Metrics

The point forecasts are evaluated by computing mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean squared error (RMSE). For the test-set indexed by
Dtest, let y(m)

t ∈ RN and ŷ(m)
t ∈ RN denote the ground truth and the prediction at horizon t

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets

123

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets

for m-th test example respectively. The average MAE, MAPE, and RMSE at horizon t are
defined as follows:

MAE(Dtest, t) = 1
N |Dtest|

∑
m∈Dtest

∥∥∥y(m)
t − ŷ(m)

t

∥∥∥
1
, (5.13)

MAPE(Dtest, t) = 1
N |Dtest|

∑
m∈Dtest

N∑
i=1

∣∣∣y(m)
t,i − ŷ(m)

t,i

∣∣∣
|y(m)
t,i |

, (5.14)

RMSE(Dtest, t) =
√√√√ 1
N |Dtest|

∑
m∈Dtest

∥∥∥y(m)
t − ŷ(m)

t

∥∥∥2

2
. (5.15)

For comparison among the probabilistic forecasting models, we compute the Continuous
Ranked Probability Score (CRPS) [336], and the P10 and P90 Quantile Losses (QL) [52,53].
Let F (·) be the Cumulative Distribution Function (CDF) of the forecast of the true value
x ∈ R. We denote by 1(x 6 z) the indicator function that attains the value 1 if x 6 z and
the value 0 otherwise. The continuous ranked probability score (CRPS) is defined as:

CRPS(F, x) =
∫ ∞
−∞

(
F (z)− 1

(
x 6 z

))2
dz . (5.16)

CRPS is a proper scoring function, i.e., it attains its minimum value of zero when the forecast
CDF F is a step function at the ground truth x. The average CRPS at horizon t is defined
as the average marginal CRPS across different time-series.

CRPSavg(Dtest, t) = 1
N |Dtest|

∑
m∈Dtest

N∑
i=1

CRPS(F (m)
t,i ,y

(m)
t,i) , (5.17)

where F (m)
t,i (·) is the marginal CDF of the forecast at horizon t for i-th time-series in m-th

test example.

Let F (m)
t,sum(·) be the CDF of the sum of the forecasts of all time-series at horizon t in the

m-th test example. The (normalized) CRPSsum is defined as:

CRPSsum(Dtest) =
∑
t

∑
m∈Dtest CRPS(F (m)

t,sum,
∑N
i=1 y(m)

t,i)∑
t

∑
m∈Dtest|

∑N
i=1 y(m)

t,i |
. (5.18)

For a given quantile α ∈ (0, 1), a true value x, and an α-quantile prediction x̂(α) = F−1(α),

124

the α-quantile loss is defined as:

QL
(
x, x̂(α)

)
= 2

α(x− x̂(α)
)
1
(
x > x̂(α)

)
+ (1− α)

(
x̂(α)− x

)
1
(
x 6 x̂(α)

) . (5.19)

The average (normalized) quantile loss (QL) is defined as follows:

QLavg(Dtest, t, α) =
∑
m∈Dtest

∑N
i=1 QL

(
y(m)
t,i , ŷ

(m)
t,i (α)

)
∑
m∈Dtest

∑N
i=1|y

(m)
t,i |

. (5.20)

The P10QL metric is obtained by setting α = 0.1 in eq. (5.20); the P90QL metric corresponds
to α = 0.9 and the ND (P50QL) metric is obtained using α = 0.5.

5.4.3 Experiments on PeMS datasets

Preprocessing

For the PeMS datasets, missing values are filled by the last known value in the same series.
The training, validation and test split is set at 70/10/20% chronologically and standard
normalization of the data is used as in [50]. We use one hour of historical data (P = 12)
to predict the traffic for the next hour (Q = 12). Graphs associated with the datasets are
constructed using the procedure in [286].

Baselines

To demonstrate the effectiveness of our approach, we compare the proposed AGCGRU+flow
algorithm with four different classes of forecasting techniques, listed as follows5:

Graph agnostic statistical and machine learning based point forecasting models:

• HA (Historical Average) uses the seasonality of the historical data.

• ARIMA [47] (Auto-Regressive Integrated Moving Average) model is implemented using
a Kalman filter.

Some of the recent spatio-temporal models such as [277, 298, 339] do not have publicly available code.
Although the codes for [288, 292, 340] are available, these works use different datasets for evaluation. We
could not obtain sensible results from these models for our datasets, even with considerable hyperparameter
tuning. The code for [266,268] is not publicly available.

125

• VAR [230] (Vector Auto-Regressive) model is a generalization of AR model to
multivariate setting.

• SVR [341] (Support Vector Regression) is implemented using a linear kernel.

• FNN (Feedforward Neural Network) uses a 2-layer architecture with ReLU activation
function at the hidden layer.

• FC-LSTM [342] (Fully Connected Long Short Term Memory) is an encoder-decoder
RNN architecture for sequence to sequence prediction using fully connected LSTM
layers.

Spatio-temporal point forecast models:

• DCRNN [50] (Diffusion Convolutional Recurrent Neural Network) combines diffusion
convolution with GRU to form an encoder-decoder architecture for sequence to
sequence prediction.

• STGCN [276] (Spatio-Temporal Graph Convolutional Network) uses gated temporal
convolution with graph convolution.

• ASTGCN [293] (Attention Spatial-Temporal Graph Convolutional Network) employs
spatial and temporal attentions to learn recent and seasonal patterns.

• GWN [287] (Graph WaveNet) is built using graph convolution and dilated causal
convolution, it also has a provision for learning a graph.

• GMAN [295] (Graph Multi-Attention Network) consists of multiple spatio-temporal
attention blocks to form an encoder-decoder architecture with transform attention
between encoder and decoder.

• AGCRN [51] (Adaptive Graph Convolutional Recurrent Network) is equipped with
a node adaptive parameter learning for graph convolution using adaptive adjacency
within a GRU.

• LSGCN [286] (Long Short-term Graph Convolutional Network) combines a novel
attention mechanism and graph convolution, integrated into a spatial gated block.

Deep learning based point forecasting methods:

• DeepGLO [48] is a hybrid model which combines global matrix factorization,
regularized using temporal convolution with another temporal network that can

126

model local properties of each individual time-series.

• N-BEATS [49] (Neural Basis Expansion Analysis for Time-Series) is an interpretable,
univariate model, which is built using backward and forward residual connections and
deep stack of fully-connected layers.

• FC-GAGA [278] (Fully Connected GAted Graph Architecture) is composed of fully
connected hard graph gating combined with N-BEATS.

Deep learning based probabilistic forecasting methods:

• DeepAR [52] (Deep Auto-Regressive) is a RNN based probabilistic model using
parametric likelihood for forecasts.

• DeepFactors [53] combines global deep learning component along with a local classical
model to account for uncertainty.

• MQRNN [264] (Multi Quantile Recurrent Neural Network) is a RNN based multiple
quantile regression.

Hyperparameters and Training Setup

For our model, we use an L = 2 layer AGCGRU [51] as the state-transition function. The
dimension of the learnable node embedding is de = 10, and the number of RNN units is
dx = 64. We treat ρ and σ as fixed hyperparameters and set ρ = 1 and σ = 0 (no process
noise). We train for 100 epochs using the Adam optimizer, with a batch size of 64. The initial
learning rate is set to 0.01 and we follow a decaying schedule as in [50]. Hyperparameters
associated with scheduled sampling [283], gradient clipping, and early stoppng are borrowed
from [50]. We set the number of particles Np = 1 during training and Np = 10 for validation
and testing. The number of exponentially spaced discrete steps [26] for integrating the
flow is Nλ = 29. For each dataset, we conduct two separate experiments minimizing the
training MAE (results are used to report MAE, MAPE, RMSE, and P50QL) and the training
negative log posterior probability (results are used to report CRPS, P10QL, and P90QL).
In addition to the AGCGRU architecture, we also conduct experiments using DCGRU [50]
and GRU [343] as alternative state transition functions. For these architectures, we keep the
number of layers L and the number of RNN units dx the same as the AGCGRU. The other
hyperparameters are fixed to the same values as presented above.

127

Figure 5.3: Boxplot of ranks of the top 10 algorithms across the four PeMS datasets. The
means of the ranks are shown by the black triangles; whiskers extend to the minimum and
maximum ranks.

Results and Discussion

The MAE, MAPE, and RMSE of predictions for 15, 30, 45, and 60 minutes horizons from
all the baseline algorithms on PeMSD3 dataset are provided in Table 5.3. The results for
PeMSD4, PeMSD7, and PeMSD8 are qualitatively similar and are reported in Tables C.1,
C.2, and C.3 respectively in Appendix C. We present a comparison of the average rankings
across datasets in Figure 5.3. We observe that most of the spatio-temporal models perform
better than graph agnostic baselines in most cases. Statistical models such as HA, ARIMA,
and VAR and basic machine learning models such as SVR, FNN, and FC-LSTM show poor
predictive performance as they cannot model the complex spatio-temporal patterns present
in the real world traffic data. Graph agnostic deep learning models such as DeepGLO and
N-BEATS perform better than the statistical models, but they cannot incorporate the
graph structure when learning. FC-GAGA has lower forecasting errors as it is equipped
with a graph learning module. The spatio-temporal graph-based models (especially

128

(a) PeMSD3 (b) PeMSD4

(c) PeMSD7 (d) PeMSD8

Figure 5.4: Scatter-plots of average MAE at each node for AGCGRU+flow v.s. that of
AGCRN on PeMS datasets. The AGCGRU+flow has lower average MAE compared to
AGCRN at most of the nodes for all four datasets.

129

Table 5.3: Average MAE, MAPE and RMSE for PeMSD3 dataset for 15/30/45/60 minutes
horizons. The best and the second best results in each column are shown in bold and marked
with underline respectively. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 31.58 33.78 52.39
ARIMA 17.31/22.12/27.35/32.47 16.53/20.78/25.66/30.84 26.80/34.60/42.37/49.98
VAR 18.59/20.80/23.06/24.86 19.59/21.81/24.24/26.44 31.05/33.92/36.93/39.32
SVR 16.66/20.33/24.33/28.34 16.07/19.45/23.31/27.57 25.97/32.19/38.30/44.57
FNN 16.87/20.30/23.91/27.74 19.59/23.67/30.09/35.44 25.46/30.97/36.27/41.86
FC-LSTM 19.01/19.46/19.92/20.29 19.77/20.23/20.82/21.30 32.96/33.59/34.24/34.83
DCRNN 14.42/15.87/17.10/18.29 14.57/15.78/16.87/17.95 24.33/27.05/28.99/30.76
STGCN 15.22/17.54/19.74/21.59 16.22/18.44/20.13/21.88 26.20/29.10/32.19/34.83
ASTGCN 17.03/18.50/19.58/20.95 18.02/19.28/20.18/21.61 29.04/31.81/33.98/36.37
GWN 14.63/16.56/18.34/20.08 13.74/15.24/16.82/18.75 25.06/28.48/31.11/33.58
GMAN 14.73/15.44/16.15/16.96 15.63/16.25/16.99/17.91 24.48/25.68/26.80/27.99
AGCRN 14.20/15.34/16.28/17.38 13.79/14.47/15.14/16.25 24.75/26.61/28.06/29.61
LSGCN 14.28/16.08/17.77/19.23 14.80/16.01/17.15/18.21 25.88/28.11/30.31/32.37
DeepGLO 14.79/18.89/19.11/23.53 14.12/16.92/17.75/21.68 22.97/29.17/30.48/35.64
N-BEATS 15.57/18.12/20.50/23.03 15.56/18.05/20.50/23.19 24.44/28.69/32.62/36.72
FC-GAGA 14.68/15.85/16.40/17.04 15.57/15.88/16.32/17.16 24.65/26.85/27.90/28.97
DeepAR 15.84/18.15/20.30/22.64 16.26/18.42/20.19/22.56 26.33/29.96/33.12/36.65
DeepFactors 17.53/20.17/22.78/24.87 19.22/24.42/29.58/34.43 27.62/31.83/35.36/37.91
MQRNN 14.60/16.55/18.34/20.12 15.17/17.34/18.94/20.66 25.35/28.77/31.50/34.40
AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43

AGCRN, GMAN, GWN, and LSGCN) display better performance. These models either
use the observed graph or learn the graph structure from the data. In general, the deep
learning based probabilistic forecasting algorithms such as DeepAR, DeepFactors, and
MQRNN do not account for the spatial relationships in the data as well as the graph-based
models, although MQRNN is among the best performing algorithms. DeepAR and
DeepFactors aim to model the forecasting distributions and thus do not perform as well in
the point forecasting task. The training loss function (negative log likelihood of the
forecasts) does not match the evaluation metric. However, MQRNN shows better
performance, possibly because it does target learning the median of the forecasting
distribution along with other quantiles. The proposed AGCGRU+flow algorithm

130

demonstrates comparable prediction accuracy to the best-performing spatio-temporal
models, such as GWN, GMAN and AGCRN and achieves the best average ranking across
the four datasets. Figure 5.4 demonstrates that the proposed AGCGRU+flow has lower
average MAE in most of the nodes compared to the second best performing AGCRN
algorithm, for all four PeMS datasets.

Table 5.4: Average CRPS, P10QL, P50QL, and P90QL for PeMSD3 for 15/30/45/60
minutes horizons. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm CRPS (15/ 30/ 45/ 60 min)
DeepAR 11.41/13.11/14.62/16.27
DeepFactors 14.16/15.87/17.59/18.99
GRU+flow 11.23/12.70/13.98/15.25
DCGRU+flow 11.21/12.14/12.87/13.64
AGCGRU+flow 10.53/11.39/12.03/12.47

P10QL(%) (15/ 30/ 45/ 60 min)
DeepAR 4.11/4.69/5.21/5.69
DeepFactors 5.85/6.33/6.91/7.51
MQRNN 4.03/4.60/5.13/5.68
GRU+flow 4.19/4.71/5.14/5.55
DCGRU+flow 4.28/4.69/4.99/5.28
AGCGRU+flow 4.01/4.44/4.76/4.97

P50QL(%) (15/ 30/ 45/ 60 min)
DeepAR 9.11/10.44/11.68/13.03
DeepFactors 10.08/11.60/13.11/14.31
MQRNN 8.40/9.52/10.55/11.58
GRU+flow 8.28/9.26/10.15/11.04
DCGRU+flow 8.33/9.01/9.50/9.99
AGCGRU+flow 7.93/8.54/8.96/9.24

P90QL(%) (15/ 30/ 45/ 60 min)
DeepAR 4.40/5.13/5.70/6.40
DeepFactors 6.19/6.95/7.61/8.04
MQRNN 3.75/4.27/4.70/5.09
GRU+flow 4.33/4.94/5.48/6.04
DCGRU+flow 4.30/4.67/4.97/5.31
AGCGRU+flow 4.06/4.38/4.63/4.82

131

Table 5.4 summarizes the results for probabilistic forecasting on PeMSD3, reporting the
average CRPS, (normalized) P10QL, P50QL, and P90QL for the predictions at 15, 30, 45,
and 60 minutes horizons. Qualitatively similar results for PeMSD4, PeMSD7, and PeMSD8
datasets are summarized in Tables C.4, C.5, and C.6 respectively in Appendix C. We
observe that in most cases, the proposed particle flow based algorithms outperform the
competitors. MQRNN also shows impressive performance in predicting the forecast
quantiles, as it is explicitly trained to minimise the quantile losses. We cannot compute the
CRPS for MQRNN, since instead of attempting to characterize the forecast distribution, it
only provides a few discrete quantiles of the forecast. In particular, comparison of
GRU+flow with the DeepAR model reveals that even without a sophisticated RNN
architecture, the particle flow based approach shows better characterization of prediction
uncertainty in most cases. Some qualitative visualization of the confidence intervals for
15-minute ahead predictions for the PeMSD3 dataset is shown in Figure 5.5. Similar
confidence intervals for the other datasets are shown in Figures C.1, C.2, and C.3 in
Appendix C. We observe that the confidence intervals from the proposed algorithm are
considerably tighter compared to its competitors in most cases, whereas the coverage of the
ground truth is still ensured.

Comparison to Deterministic Encoder-Decoder Models

Table 5.5 shows that in comparison to deterministic encoder-decoder based sequence to
sequence prediction models, the proposed flow based approaches perform better in almost
all cases for three different architectures of the RNN. In each case, both the encoder-decoder
model and our approach use a 2-layer architecture with 64 RNN units. Moreover, for each
RNN architecture, we use the same values for the hyperparameters associated with model
training for the encoder-decoder model and the proposed particle flow based algorithm.

Comparison to the Particle Filter

In order to demonstrate the effectiveness of particle flow [20], we compare the proposed
AGCGRU+flow to a Bootstrap Particle Filter (BPF) [13] based approach with the same
number of particles. The use of the bootstrap particle filter leads to a computationally
faster algorithm (requiring approximately 60% of the training time of the particle

132

Figure 5.5: 15 minutes ahead predictions from the probabilistic forecasting algorithms with
confidence intervals at nodes 37, 54, 100, and 187 of PeMSD3 dataset for the first day in the
test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval than
its competitors in most cases, which leads to lower quantile error.

133

Table 5.5: Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for the proposed flow based approaches and
deterministic encoder-decoder models. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
FC-AGCGRU 13.96/15.37/16.52/17.45 14.26/15.61/16.69/17.37 25.28/27.43/29.09/30.43
DCGRU+flow 14.48/15.67/16.52/17.36 15.06/16.06/16.91/17.84 23.86/26.12/27.54/28.76
FC-DCGRU 14.42/15.87/17.10/18.29 14.57/15.78/16.87/17.95 24.33/27.05/28.99/30.76
GRU+flow 14.40/16.10/17.63/19.18 14.56/15.99/17.33/18.89 23.06/26.15/28.64/30.97
FC-GRU 15.82/18.37/20.61/22.93 15.87/18.82/21.32/23.75 25.85/30.09/33.37/36.94

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
FC-AGCGRU 1.37/1.74/2.00/2.20 2.69/3.67/4.41/5.00 2.92/3.96/4.62/5.09
DCGRU+flow 1.38/1.71/1.92/2.08 2.72/3.63/4.23/4.67 2.93/3.93/4.49/4.87
FC-DCGRU 1.38/1.78/2.06/2.29 2.69/3.72/4.51/5.16 2.95/4.09/4.81/5.34
GRU+flow 1.37/1.76/2.02/2.23 2.70/3.74/4.52/5.15 2.95/4.05/4.74/5.23
FC-GRU 1.46/1.91/2.25/2.54 2.84/3.97/4.88/5.66 3.10/4.35/5.20/5.85

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
FC-AGCGRU 2.21/2.99/3.56/4.05 5.18/7.39/9.12/10.64 4.18/5.88/7.03/7.94
DCGRU+flow 2.19/2.87/3.29/3.61 5.16/7.17/8.48/9.42 4.16/5.66/6.54/7.14
FC-DCGRU 2.23/3.06/3.67/4.18 5.19/7.50/9.31/10.90 4.26/6.05/7.28/8.24
GRU+flow 2.24/3.02/3.55/3.96 5.27/7.58/9.30/10.60 4.28/5.97/7.00/7.73
FC-GRU 2.41/3.40/4.17/4.84 5.60/8.27/10.47/12.40 4.56/6.68/8.17/9.34

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
FC-AGCGRU 1.16/1.48/1.70/1.87 2.30/3.17/3.78/4.25 2.58/3.53/4.12/4.54
DCGRU+flow 1.17/1.44/1.58/1.70 2.35/3.12/3.57/3.87 2.64/3.54/4.00/4.28
FC-DCGRU 1.16/1.49/1.70/1.87 2.25/3.16/3.85/4.37 2.54/3.49/4.08/4.49
GRU+flow 1.12/1.41/1.59/1.74 2.17/2.94/3.50/3.92 2.55/3.47/4.02/4.40
FC-GRU 1.20/1.56/1.81/2.02 2.29/3.09/3.70/4.22 2.63/3.61/4.24/4.73

134

flow-based method). Tables 5.6 and 5.7 provide the detailed comparison both in terms of
point forecasting and probabilistic forecasting metrics. We observe that the proposed
AGCGRU+flow algorithm outperforms the particle filter based approach in most
cases.

Table 5.6: Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow and AGCGRU+BPF. Lower
numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+BPF 14.19/15.13/15.85/16.35 14.21/14.86/15.40/15.82 25.69/27.38/28.51/29.26

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+BPF 1.36/1.65/1.80/1.90 2.71/3.46/3.90/4.18 2.91/3.81/4.25/4.52

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+BPF 2.19/2.73/2.99/3.17 5.27/6.86/7.69/8.21 4.18/5.52/6.16/6.53

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+BPF 1.18/1.41/1.52/1.59 2.47/3.13/3.50/3.74 2.69/3.53/3.92/4.15

Comparison to Ensembles

We compare the proposed approach with an ensemble of competitive deterministic
forecasting techniques for both point forecasting and probabilistic forecasting tasks. We
choose the size of the ensemble so that the algorithms have an approximately equal
execution time. We use AGCRN and GMAN to form the ensembles, as they are the best
point-forecast baseline algorithms. From Table 5.8, we observe that our approach is
comparable or slightly worse compared to the ensembles in terms of the MAE, MAPE and
RMSE of the point forecasts. However, the proposed AGCGRU+flow shows better

135

Table 5.7: Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow and AGCGRU+BPF. Lower
numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+BPF 11.32/11.94/12.55/12.92 4.36/4.66/4.98/5.13 4.39/4.65/4.88/5.07

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+BPF 1.10/1.32/1.45/1.54 1.29/1.60/1.79/1.92 1.06/1.26/1.37/1.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+BPF 1.79/2.24/2.49/2.66 2.35/3.02/3.40/3.67 1.86/2.29/2.53/2.69

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+BPF 0.96/1.13/1.22/1.28 1.19/1.47/1.63/1.74 0.91/1.03/1.09/1.13

characterization of the prediction uncertainty compared to the ensemble methods in almost
all cases, as shown in Table 5.9.

5.4.4 Experiments on Non-Graph Datasets

Point Forecasting Results on Non-Graph Datasets

We evaluate our proposed flow-based RNN on the Electricity and Traffic datasets,
following the setting described in Appendix C.4 in [49]. We augment the results table
in [49] with the results from an FC-GRU (a fully connected GRU encoder-decoder) and
GRU+flow. We use a 2 layer GRU with 64 RNN units in both cases. We follow the
preprocessing steps described by Oreshkin et al. in [49]. In the literature, four different
data splits have been used for the Electricity dataset, and three different splits have been
used for the Traffic dataset. Since the official implementations of the baseline methods such
as DeepAR, DeepState, and DeepFactors are not publicly available and different baselines

136

Table 5.8: Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCRN-ensemble, GMAN-ensemble, and
AGCGRU+flow. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 14.21/15.12/15.73/16.22 13.91/14.56/14.93/15.38 25.49/27.16/28.20/28.90
GMAN-ensemble 14.48/15.20/15.90/16.66 15.01/15.64/16.41/17.36 23.96/25.20/26.31/27.44
AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 1.35/1.61/1.76/1.91 2.75/3.40/3.79/4.17 2.89/3.65/4.09/4.47
GMAN-ensemble 1.33/1.57/1.72/1.84 2.64/3.27/3.70/4.04 2.89/3.62/4.04/4.33
AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 2.17/2.69/2.95/3.20 5.25/6.75/7.55/8.22 4.09/5.29/5.94/6.45
GMAN-ensemble 2.42/2.80/3.08/3.35 6.08/7.18/8.00/8.74 4.68/5.54/6.08/6.51
AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCRN-ensemble 1.19/1.36/1.46/1.58 2.67/3.10/3.38/3.68 2.88/3.41/3.76/4.06
GMAN-ensemble 1.13/1.28/1.39/1.49 2.37/2.78/3.10/3.37 2.71/3.25/3.61/3.87
AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09

might have used different preprocessing steps to report the results in the corresponding
papers, Oreshkin et al. compiled results for different splits from the original papers
introducing the baseline algorithms. If the result for an algorithm using a particular split
does not appear in any of those papers, ‘n/a’ (not available) is used to denote that
scenario. We follow this approach and run the GRU+flow and FC-GRU algorithms for all
splits. The evaluation metric is P50QL (Normalized Deviation) in this experiment.

From Table 5.10, we observe that the flow based approach performs comparably or better
than the state-of-the-art N-BEATS algorithm for the Electricity dataset, even with a
simple GRU as the state transition function. The better performance of the univariate
N-BEATS compared to the multivariate models suggests that most time-series in these

137

Table 5.9: Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCRN-ensemble, GMAN-ensemble, and
AGCGRU+flow. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 12.64/13.44/13.96/14.27 6.90/7.40/7.54/7.53 6.10/6.43/6.79/6.96
GMAN-ensemble 12.79/13.49/14.13/14.77 7.17/7.67/8.08/8.45 5.86/6.16/6.44/6.68
AGCGRU+flow 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 1.20/1.44/1.56/1.68 1.82/2.21/2.39/2.57 1.53/1.82/1.93/2.08
GMAN-ensemble 1.16/1.38/1.51/1.62 1.73/2.11/2.35/2.54 1.45/1.70/1.82/1.92
AGCGRU+flow 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 1.90/2.39/2.60/2.81 3.22/4.15/4.55/4.89 2.55/3.19/3.35/3.58
GMAN-ensemble 1.96/2.31/2.53/2.73 3.16/3.83/4.23/4.53 2.20/2.59/2.81/3.00
AGCGRU+flow 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCRN-ensemble 1.03/1.20/1.28/1.38 1.63/1.97/2.14/2.34 1.18/1.34/1.39/1.48
GMAN-ensemble 0.95/1.10/1.19/1.28 1.40/1.68/1.88/2.04 1.12/1.26/1.34/1.41
AGCGRU+flow 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14

datasets do not provide valuable additional information for predicting other datasets. This
is in contrast to the graph-based datasets, where the performance of N-BEATS was
considerably worse than the multivariate algorithms. The proposed flow-based algorithm
achieves prediction performance on the Traffic dataset that is comparable to N-BEATS
except for one split with limited training data. Across all datasets and split settings, our
flow-based approach significantly outperforms the FC-GRU. The proposed algorithm
outperforms TRMF, DeepAR, DeepState and DeepGLO. It outperforms DeepFactors for
the Electricity dataset, but is worse for the Traffic dataset (for the same split with limited
available training data).

138

Table 5.10: Normalized Deviation on Electricity and Traffic datasets. The best and the
second best results in each column are shown in bold and marked with underline respectively.
Lower numbers are better.

Algorithm Electricity Traffic
2014-09-01 2014-03-31 2014-12-18 last 7 days 2008-06-15 2008-01-14 last 7 days

TRMF 0.160 n/a 0.104 0.255 0.200 n/a 0.187
DeepAR 0.070 0.272 0.086 n/a 0.170 0.296 0.140
DeepState 0.083 n/a n/a n/a 0.167 n/a n/a
DeepFactors n/a 0.112 n/a n/a n/a 0.225 n/a
DeepGLO n/a n/a 0.082 n/a n/a n/a 0.148
N-BEATS 0.064 0.065 n/a 0.171 0.114 0.230 0.110
FC-GRU 0.102 0.118 0.098 0.203 0.259 0.528 0.233
GRU+flow 0.070 0.071 0.069 0.140 0.133 0.322 0.125

Probabilistic Forecasting Results on Non-Graph Datasets

For comparison with state-of-the-art deep learning based probabilistic forecasting methods
on standard non-graph time-series datasets, we evaluate the proposed GRU+flow algorithm
following the setting in [269]. The results reported in Table 1 of [269] are augmented with the
results of the GRU+flow algorithm. We use a 2 layer GRU with 64 RNN units in each case.
We follow the preprocessing steps as in [265, 269]. The evaluation metric is (normalized)
CRPSsum, which is obtained by first summing across the different time-series, both for the
ground-truth test data, and samples of forecasts, and then computing the (normalized)
CRPS on the summed data. The results are summarized in Table 5.11. We observe that the
proposed GRU+flow achieves the lowest CRPSsum for all datasets.

Table 5.11: Average CRPSsum for Electricity, Traffic, Taxi, and Wikipedia datasets. The
best and the second best results in each column are shown in bold and marked with underline
respectively. Lower numbers are better

Dataset Vec-LSTM
ind-scaling

Vec-LSTM
lowrank-Copula

GP
scaling

GP
Copula

LSTM
Real-NVP

LSTM
MAF

Transformer
MAE

GRU+
flow

Electricity 0.025 0.064 0.022 0.024 0.024 0.021 0.021 0.013
Traffic 0.087 0.103 0.079 0.078 0.078 0.069 0.056 0.028
Taxi 0.506 0.326 0.183 0.208 0.175 0.161 0.179 0.140
Wikipedia 0.133 0.241 1.483 0.086 0.078 0.067 0.063 0.054

139

5.4.5 Computational Complexity, Memory Requirement, and
Execution Time

For simplicity, we consider a GRU instead of a graph convolution based RNN and we only
focus on one sequence instead of a batch. Our model has to perform both GRU computation
and particle flow for the first P time steps and then apply the GRU and the linear projection
for the next Q steps to generate the predictions. For an L-layer GRU with dx RNN units
and N -dimensional input, the complexity of the GRU operation for Np particles is O((P +
Q)NpLNd

2
x) [343]. The total complexity of the EDH particle flow [103] is O(PNλN

3) for
computing the flow parameters and O(PNpNλNd

2
x) for applying the particle flow. The total

complexity of the measurement model for Np particles is O(QNpNd
2
x). Since in most cases

N � dx and N � Np, the complexity of our algorithm for forecasting of one sequence is
O(PNλN

3). Many of the other algorithms exhibit a similar O(N3) complexity, e.g. TRMF,
AGCRN, GMAN.

Table 5.12: Execution time, memory consumption (during training) and model size for
AGCRN-ensemble, GMAN-ensemble, and AGCGRU+flow for the four PeMS datasets.
Lower numbers are better.

Algorithm Execution time (minutes)
PEMS03 PEMS04 PEMS07 PEMS08

AGCRN-ensemble 369 243 183 224
GMAN-ensemble 444 224 195 185
AGCGRU+flow 325 205 154 177

Algorithm GPU memory (GB)
PEMS03 PEMS04 PEMS07 PEMS08

AGCRN-ensemble 6.55 5.19 4.09 3.47
GMAN-ensemble 15.45 9.45 8.46 4.45
AGCGRU+flow 25.27 18.76 12.45 8.45

Algorithm Model Size (MB)
PEMS03 PEMS04 PEMS07 PEMS08

AGCRN-ensemble 11.52 11.52 11.45 11.45
GMAN-ensemble 9.54 9.51 9.45 9.35
AGCGRU+flow 12.88 12.86 12.86 12.85

140

Table 5.12 reports the run time, GPU usage during training, and the size of the learned
model for AGCRN-ensemble, GMAN-ensemble, and the proposed AGCGRU+flow for the
four PeMS datasets. We observe that if we choose the ensemble size so that the algorithms
have an approximately equal execution time, then the model-size of the ensemble
algorithms are comparable to our approach as well. However, our method requires more
GPU memory compared to the ensembles during training because of the particle flow in
the forward pass.

5.5 Summary

In this chapter, we propose a state-space probabilistic modeling framework for multivariate
time-series prediction that can process information provided in the form of a graph that
specifies (probable) predictive or causal relationships. We develop a probabilistic
forecasting algorithm based on the Bayesian inference of hidden states via particle flow.
For spatio-temporal forecasting, we use GNN-based RNN architectures to instantiate the
framework. Our method demonstrates comparable or better performance in point
forecasting and considerably better performance in uncertainty characterization compared
to existing techniques.

141

Chapter 6
Conclusions and Future Work

6.1 Conclusions

The overarching goal of this thesis is to derive scalable, effective, and computationally
efficient Monte Carlo methods for carrying out approximate Bayesian inference in diverse
tasks. We have considered three different problem settings: a) conducting sequential
inference using particle flow in the presence of noise distributed as Gaussian mixtures, b)
improving graph-based learning tasks by proposing Bayesian approaches to account for the
uncertainty associated with the graph structure, and c) designing novel probabilistic
spatio-temporal forecasting algorithms using a combination of graph-aware recurrent
architectures and particle flow.

Chapter 2 provides the necessary background material and detailed literature review
related to these research areas. The main novel contributions of this thesis are presented in
Chapters 3, 4, and 5. We summarize the key aspects of the proposed methodology and
obtained results in the following sections.

6.1.1 Sequential Inference in Presence of Gaussian Mixture Noise
Models

In Chapter 3, we investigate effective nonlinear filtering techniques for multi-modal posterior
distributions, which arises due to the Gaussian mixture densities of the dynamic and/or
measurement noises [30,31] in a state-space model. Unimodal approximation of the posterior
in such cases leads to inaccurate state estimates [29]. We use particle flow [21,105] as a key
ingredient in the design of the proposed algorithms, since it has a demonstrably superior
capability of representing high-dimensional and/or highly localized posterior distributions
compared to many existing approaches. We propose three novel algorithms; the PF-GMM,
the PFPF-GMM, and the SmHMC-GMM (LEDH).

The PF-GMM approach approximates the state posterior by a Gaussian mixture distribution
at each time step where each component mean is computed using a separate LEDH [105]
particle flow and the mixture proportions and the covariance matrices are obtained from

142

the extended Kalman filter implementation of the Gaussian sum filter [30]. Resampling of
GMM components is employed to prevent the exponential growth of the number of mixture
components over time. This approach scales in the same manner as LEDH with the state
dimension, whereas existing particle flow algorithms for mixture models [31] struggle in high
dimensions.

Although the PF-GMM achieves impressive empirical performance, particle flow cannot yield
true samples from the posterior distribution due to the potentially mismatched modelling
assumptions used for the derivation of the flow equation and the numerical approximations
employed for solving it. In order to obtain a statistically consistent alternative solution, we
adapt the particle flow particle filter (PFPF) [26] to our problem setting by reinterpreting
the hidden Markov model with Gaussian mixture distributed noises as a switching state-
space model. The PFPF algorithm conducts an auxiliary particle flow with a deterministic,
invertible mapping property and use it to construct a proposal distribution for a particle filter.
The resulting proposal is easy to evaluate because of the invertible mapping established by
the flow and is expected to be well-matched to the target posterior due to the effectiveness of
particle flow methods in transporting the particles to the high posterior density regions of the
state-space. The proposed PFPF-GMM algorithm augments the switching variables to the
state vector to perform importance sampling in an extended state-space using a invertible
particle flow based conditional proposal distribution for the state.

As another extension, we derive a sequential MCMC (SMCMC) [15, 344] method, which
exhibits superior performance compared to the importance sampling based PFPF-GMM
algorithm in high dimensions. The proposed SmHMC-GMM (LEDH) algorithm combines
efficient, measurement-driven proposal distributions for the discrete switching variables with
the invertible particle flow based proposal for the state to perform the joint draw step
inside the composite kernel based SMCMC framework. This leads to efficient traversal of
different modes of the state posterior. The subsequent Metropolis within Gibbs refinement
step for the state uses a recent MCMC technique, termed manifold Hamiltonian Monte
Carlo (mHMC) [129], to further improve the quality of the posterior approximation by local
exploration of the state-space. We also present some theoretical convergence results for the
SMCMC methods in Appendix A.

Empirical results reveal that the proposed algorithms closely match the performance of the

143

(almost) optimal performance in the linear setting and achieve considerably more accurate
state-estimates for the nonlinear state-space model, whereas many existing particle flow
and particle filters fail abysmally, either due to the use of implicit Gaussian or unimodal
assumption for the target posterior in their derivation, or because of the weight degeneracy
in high dimensions.

6.1.2 Bayesian Graph Convolutional Neural Networks

In Chapter 4, we consider learning tasks on graph structured data, where some additional
information, encoded by a graph that represents data points as nodes and the relationships
as edges, is available for model training. However, the provided graph is likely to be
incomplete and/or contain spurious edges due to a noisy measurement process or the lack
of knowledge concerning its generative mechanism. In such cases, incorporating the
uncertainty associated with graph structure into learning can result in improved
performance. To that end, we strive to achieve scalable and effective Bayesian modelling
and inference for the graph topology. We propose a Bayesian Graph Convolutional
Networks (BGCN) framework which views the observed graph as a realization from a
suitable parametric family of random graphs, targets inference of the ‘true’ graph
connectivity, and combines this procedure with the GCN [37]. For a node classification
problem, we instantiate this approach by modelling the observed graph using an assortative
mixed membership stochastic block model (a-MMSBM) [200, 326], which strives to capture
the community structure in homophilic graphs. The resulting BGCN (MMSBM) algorithm
provides better performance when there are very few node labels available during the
training process. It is also shown to have improved resilience to adversarial node attacks,
compared to its non-Bayesian version. To the best of our knowledge, this was the first
attempt to propose incorporation of the Bayesian inference of graphs in graph neural
networks.

Despite its effectiveness, parametric modelling of graph topology has several disadvantages.
Choice of a suitable random graph model is heavily task-dependent and often the
parameter inference of the chosen model is computationally expensive for large graphs.
Another severe shortcoming of our proposed approach is that if the parametric graph
model is not dependent on training data, such as node/edge features and/or labels, then

144

the graph inference procedure disregards them. Although subsequent works address some
of these issues, they either still use parametric graph models [41] or form a variational
approximation [43] of the graph posterior. Moreover, these approaches focus solely on the
node classification task.

By contrast, we propose to incorporate a non-parametric graph inference step into the graph-
based learning tasks. In this non-parametric graph model, a higher edge weight is more likely
if the incident nodes are more similar to each other. The notion of similarity between nodes
depends on the nature of the node/edge level learning objective and is measured in terms of
a suitably designed distance between them. This non-parametric graph learning approach
scales gracefully to larger graphs and the flexibility in designing the pairwise distance matrix
among nodes allows its use in other graph related tasks in addition to node classification.
Using this approach, we observe increased accuracy of node classification for settings where
the amount of labeled data is very limited. For the setting of unsupervised learning, we
demonstrate that incorporating a graph learning step when performing variational modelling
of the graph structure with autoencoder models leads to better link prediction.

6.1.3 RNN with Particle Flow

The methodology presented in Chapter 5 addresses the task of spatio-temporal forecasting,
where topological information about the relationships among different time-series are
available or learned from the data and is effectively utilized to achieve superior
performance. With contemporaneous research efforts on developing sophisticated neural
networks suitable for graph structured data, recent years have seen a tremendous amount
of focus on deriving spatio-temporal forecasting [50, 51, 276, 278] algorithms. Despite the
empirical success in providing accurate point forecasts, a major limitation of these
algorithms is that we cannot construct confidence intervals around the obtained
predictions. In order to remedy this issue, we propose a novel probabilistic forecasting
framework. The time-series is assumed to be a random observation sequence from a graph
cognizant, nonlinear state-space model, whose parameters are to be learned from the
training data. The state-transition in our model is represented by recent graph
convolutional recurrent architectures [50, 51], which show commendable accuracy in point
forecasting. The randomness present in the state-transition and/or emission mechanisms

145

within the state-space model allows us to incorporate the uncertainty in the forecasts
seamlessly in our method. Forecasting using our model is equivalent to computing the
posterior predictive distribution of the forecasts. This requires computation of an integral,
which is an expectation with respect to the posterior distribution of the hidden state of the
model. In order to deal with the intractability of this integral, we resort to Monte Carlo
sampling. Motivated by its impressive performance in high-dimensional nonlinear filtering,
we employ particle flow [21] as the tool for posterior inference of the hidden states. During
model training, we aim to minimise a point forecasting criterion, such as mean absolute
error, if the model is to be evaluated using a performance metric based on such a criterion.
For probabilistic forecasting, we derive a Monte Carlo approximation of the negative
log-likelihood of the model parameters, which is used as a loss function in an end to end
learning setup. The resulting algorithm combines graph convolutions, recurrent
architectures, and particle flow.

The general framework we propose is extremely flexible. It can be adapted to the univariate
or multivariate setting, can handle additional covariates, and has the capability of processing
an observed graph or learning one from the data depending on the choice of the deployed
recurrent architecture. Moreover, sophisticated nonlinear filtering algorithms can be used
for inference of the state-posterior.

We conduct extensive point and probabilistic forecasting experiments on several real-world,
graph-based and non-graph, multivariate time-series datasets. For the point forecasting
task for the PeMS traffic datasets, a specific instantiation of the proposed approach
achieves the lowest average rank, outperforming a wide range of baseline algorithms. In
comparison to existing probabilistic forecasting techniques, the proposed flow based RNN
models obtain considerably lower CRPS and quantile errors. Our algorithms attain lower
errors compared to the corresponding deterministic encoder-decoder models in most cases.
Comparison with ensembles of state-of-the-art spatio-temporal point forecasting models
reveals the superiority of the proposed algorithms in characterizing the prediction
uncertainty. The choice of using particle flow instead of using a particle filter is shown to
be justified empirically. For the datasets with no graphs, a GRU-based implementation of
our framework performs comparably to the state-of-the-art NBEATS [49] algorithm for
point forecasting, whereas it yields substantially lower CRPSsum in comparison to a
state-of-the-art normalizing flow-based probabilistic forecasting algorithm [269].

146

6.2 Future Work

The research presented in this thesis can be improved and extended in several ways. We list
some potential future research directions in the following sections.

6.2.1 Sequential Inference in Presence of Gaussian Mixture Noise
Models

In Chapter 3, the numerical simulations are conducted in an ideal setting that ignores
important practical considerations. We have chosen to report the results for the ideal
scenario because it allows us to focus on the sampling capabilities of the algorithms and
present a fair comparison with state-of-the-art baseline techniques. The incorporation of
such deviations from the idealized assumptions into the simulations is definitely important,
but in a first performance assessment it can obfuscate or exaggerate the advantage of the
proposed algorithms, as these imperfections typically affect the performance of different
algorithms in a non-uniform way.

One such example of the real-world challenges in sensor networks is data incest due to the
inadvertent re-use of the same measurements [345], which can be mitigated to some extent
by a data incest management strategy that takes into account the network topology [346]
or information fusion techniques with copula processes [347]. Other problems common in
practical sensor networks are missed detections, false alarms, and finite measurement
resolution. Addressing such practical problems is important and can lead to interesting
research directions, e.g., designing an appropriate combination of sequential MCMC,
particle flow and random finite sets.

Another important future research direction is a more extensive experimental evaluation of
the proposed algorithms. These experiments should investigate the impact of the initial
state values, the process noise variance, the measurement noise variance, coupling in the
dynamic models, partial observations, the data rate and measurement uncertainty. Such
experiments can shed light on the robustness of the proposed particle flow-based approaches
in practical applications and motivate the development of new algorithms that address any
exposed deficiencies.

Beyond experimentation, there are important methodological and theoretical issues to

147

explore in future work. In terms of particle flow, the PFPF-GMM and the SmHMC-GMM
(LEDH) algorithms use deterministic flows in order to obtain an invertible mapping. It is
more challenging to incorporate stochastic particle flow, but the stochastic flow algorithms
have been demonstrated to attain considerably better performance [112], so integration is
desirable. For example, an initial exploration of constructing a particle flow particle filter
using a stochastic Gromov’s particle flow is considered in [348], which leads to increased
diversity of the particles. This approach could be adapted to modify the PFPF-GMM and
the SmHMC-GMM (LEDH) algorithms. Theoretical and empirical results suggest that
non-reversible Markov processes have better mixing properties and thus provide estimates
of ergodic averages with lower variance [349]. Use of recently proposed non-reversible
MCMC algorithms [350–353] for the individual refinement steps of SMCMC, as shown
in [354], could prove to be beneficial.

The stiffness of the differential equations is an issue in particle flow as it can lead to
numerical instability. For this reason, and also to guarantee the invertible mapping
property for the flows, we use a very small step size in the particle flow procedure. This
leads to a greater computational overhead. Alternative strategies for addressing stiffness
have been proposed in [108, 112], and it would be interesting to explore their incorporation
in the flow-based SMCMC framework. We focus on the asymptotic convergence results of
the proposed algorithms. Finite sample analysis of filter errors is an important direction to
explore; a valuable finite sample bound for SMCMC errors is provided in [344]. In a similar
manner to [355], it may be possible to identify a relationship between the magnitude of the
error and the stiffness of the flow.

6.2.2 Bayesian Graph Convolutional Neural Networks

The methodology presented in Chapter 4 is primarily suited for learning in a transductive
setting, i.e., it requires that all nodes in the graph are present during model training. For
example, in the BGCN (MMSBM) algorithm, the features and connectivity of the nodes in
the test set are used in the inference of MMSBM parameters and GCN-based feature
aggregation. The non-parametric approach is no exception, since we need to compute the
pairwise distances between all nodes for estimating the MAP graph. Other work [41, 43]
that considers graph inference for improving graph-based learning also operates in the

148

transductive setup. However, inductive learning is required in many cases. In many
settings, nodes are added to and/or removed from the graph. Generalization across graphs
with the same form of features is required. For extremely large graphs, adopting a
transductive setup is infeasible due to the high computational burden and storage
requirements. Development of Bayesian approaches for inductive graph neural
networks [136] is thus an important direction for future research.

Both the assortative MMSBM and the non-parametric graph model rely on the homophily
of the underlying ‘true’ graph. SBM approaches strive to learn the community structure
imposed by the node labels in a homophilic graph, whereas the non-parametric model
assigns higher edge-weight between two nodes if a suitable distance between them is lower.
Using these approaches in conjunction with local neighborhood aggregation based GNN
models, such as the GCN is thus advantageous for node classification in homophilic
datasets. However, the proposed BGCN implementations are not suitable for disassortative
graphs, where the relationships among nodes are more complex and capturing meaningful
long-range dependencies are crucial for the learning task. Choosing suitable statistical
models for such graphs, designing efficient inference procedures, and combining the graph
inference with structure aware GNNs, such as the Geom-GCN [356], are some promising
avenues for future explorations.

Our work deals with Bayesian modelling of a static graph. However, in many application
domains, such as social networks, financial transactions, and recommender systems, the
graph is inherently time-varying. Effective GNN architectures to process the time-varying
graphs are investigated in [357–359]. Extending our approach to such GNN models via
Bayesian modelling of time-evolving graph structures can be undertaken in future work.

In recent years, various versions of our Bayesian approach have been adopted in diverse
problem settings, such as recommender systems [57, 211, 360], multi-instance learning [361],
and spatio-temporal forecasting [362]. Identifying such novel application areas, where the
inference of the graph topology can improve performance, is of great practical interest and
can lead to many interesting applications of our methodology in the future.

149

6.2.3 RNN with Particle Flow

For the numerical experiments in Chapter 5, the largest dataset we have considered is
Wikipedia, which is a multivariate time-series with 2000 dimensions. Scaling the proposed
methodology to extremely high dimensional settings is of significant importance and can be
addressed in several ways. For spatio-temporal predictions using the graph-based recurrent
architectures, this can be achieved if the graph can be partitioned meaningfully. For
non-graph datasets, we can use the cross-correlation among different time-series to group
them into several lower-dimensional problems. Alternatively, we can train a univariate
model based on all the time-series as in [53, 54], at the expense of losing the capability to
model any potential relationships among the time-series.

Although the particle flow based inference of the hidden states exhibits impressive
performance in our experimental studies, our approach cannot generate true samples from
the joint distribution of the forecasts even if the time-series are observations from a
state-space model, whose parameters are known and available while computing the integral
in eq. (5.7). This is due to the approximations employed in the particle flow
implementation, as discussed in Section 2.1.6. Incorporating sophisticated particle filters
into our framework is thus desirable. For example, we could use the particle flow particle
filter [26] algorithms, which enjoy the impressive performance of the particle flow, while
ensuring statistical consistency like any other particle filter. However, in most practical
particle filters, there is a resampling step, which results in non-differentiability of the
training loss function with respect to model parameters in learning problems involving
particle filters. Although several existing particle filter based learning approaches [225–227]
ignore this dependence of the resampling probabilities on model parameters, recent
advances in differentiable particle filtering [363,364] provide principled ways to address this
issue. Incorporation of these ideas in our framework could lead to improved
forecasting.

Our probabilistic approach can incorporate any RNN since the time-evolution in recurrent
architectures can be interpreted as a state-transition in a state-space model. However,
many state-of-the-art point forecasting techniques use different architectures, e.g., temporal
convolution [276, 286], attention mechanisms [293], and residual connections [49, 278].
Development of probabilistic frameworks for such models is another promising direction for

150

future research endeavors.

151

Appendix A
Convergence Results for SMCMC
In this chapter, we provide theoretical results regarding asymptotic convergence of the
SMCMC algorithms. These results are not restricted to the invertible particle flow
composite kernel case, but hold for SMCMC methods provided the kernel and filtering
problem satisfy certain assumptions (see Section A.1). While similar in spirit to results
presented in [127] for the SIMCMC algorithm, the key assumptions are slightly less
restrictive and the theorem directly addresses the sequential implementation in [15, 55, 61].
Recently, Finke et al. carry out a rigorous statistical analysis of SMCMC algorithms to
establish upper bounds on finite sample filter errors, in addition to providing asymptotic
convergence results and a central limit theorem for the SMCMC based estimators
in [344].

A.1 Introduction

We present some theoretical results regarding convergence of the approximate joint posterior
distribution π̂k(x0:k) obtained from SMCMC to the true joint posterior πk(x0:k) for every
k > 0. As in Section 2.1.8, we use πk(x0:k) to denote our target distribution p(x0:k|z1:k).
We initialize by setting π0(x0) = p(x0). To facilitate concise presentation of the results,
we use a simplified notation in this chapter, where xi0:k and x

∗(i)
0:k denote xik,0:k and x

∗(i)
k,0:k,

respectively. We also use π̂(Np)
k and π̆

(Np)
k to denote π̂k and π̆k to indicate explicitly that

they are comprised of Np MCMC samples. While proving the theorems, we assume that
the burn-in period Nb = 0, for simplicity. The results are, however valid for any non-zero
Nb. Our results are derived for Algorithms (2.6), (2.7), (2.9) and (2.11). However, they can
be easily extended to apply to Algorithm (3.3) as well, by considering convergence in the
extended state space (x0:k, d1:k, c1:k) which implies convergence of x0:k.

We assume that πk(x0:k) is defined on a measurable space (Ek,Fk) where E0 = E, F0 = F ,
and Ek = Ek−1 × E, Fk = Fk−1 × F . We denote by P(Ek) the set of probability measures
on (Ek,Fk). We also define Sk = {x0:k ∈ Ek : πk(x0:k) > 0}. For k > 0, πk is known up to a

152

normalizing constant 0 < Zk <∞. We have

πk(x0:k) =
p(x0)

k∏
l=1

p(xl|xl−1)p(zl|xl)

p(z1:k)
= γk(x0:k)

Zk
, (A.1)

where γk : Ek → R+ is known point-wise and the normalizing constant Zk =
∫
Ek
γk(dx0:k) =

p(z1:k) is the unknown marginal likelihood of the observations. For the joint draw step in
SMCMC, the proposal distribution at time k = 0 is q0(x0), and for k > 0 it is qk(x0:k−1, xk),
where qk : Ek−1×E → R+ is a probability density in its last argument xk conditional on its
previous arguments x0:k−1. For k > 0 and for any measure µk−1 ∈ P(Ek−1), we define

(µk−1 × qk)(dx0:k) = µk−1(dx0:k−1)qk(x0:k−1, dxk) . (A.2)

Based on the proposal distributions q0(x0) and qk(x0:k−1, xk), we define importance
weights:

w0(x0) = γ0(x0)
q0(x0) ; (A.3)

and for k > 0

wk(x0:k) = γk(x0:k)
γk−1(x0:k−1)qk(x0:k−1, xk)

. (A.4)

Combining eq. (A.1), (A.2), (A.3) and (A.4), it is easy to derive that

Z0 =
∫
E0
w0(x0)q0(dx0) , (A.5)

and for k > 0

Zk
Zk−1

=
∫
Ek

wk(x0:k)(πk−1 × qk)(dx0:k) . (A.6)

We note that, x
∗(i)
0:k is distributed according to (π̂(Np)

k−1 × qk)(x0:k), where π̂
(Np)
k−1 (x0:k−1)

approximates πk−1(x0:k−1) and is obtained from the SMCMC algorithm in the previous

153

time step k − 1. Thus, the (ratio of) normalizing constants can easily be estimated as

Z0
∧(Np)

= 1
Np

Np∑
i=1

w0(x∗(i)0) , (A.7)

and for k > 0

(
Zk
Zk−1

)∧(Np)

= 1
Np

Np∑
i=1

wk(x∗(i)0:k) . (A.8)

We use π̂(Np)
k (x0:k) to denote the empirical measure approximation of the target distribution

πk(x0:k).

π̂
(Np)
k (x0:k) = 1

Np

Np∑
i=1

δxi0:k
(x0:k) . (A.9)

For any measure µ and integrable test function f : E → R, we define µ(f) =
∫
E f(x)µ(dx).

We denote that Lp(Ek,Fk, µk) = {fk : Ek → R such that fk is measurable with respect to
Fk and µk(|fk|p) < ∞} for p > 1. In other words, Lp(Ek,Fk, µk) is the set of real-valued,
Fk-measurable functions defined on Ek, whose absolute p’th moment exists with respect to
µk. We require the following relatively weak assumption to be satisfied:

Assumption 1. For any time index k > 0, there exists Bk <∞ such that for any x0:k ∈ Sk,
we have wk(x0:k) 6 Bk.

Our first result in Section A.2 establishes almost sure convergence of the Monte Carlo
estimates to their true values. As a corollary, convergence of the normalizing constants is
shown in Section A.3.

We begin with several notations and propositions in order to characterize the MCMC kernel
employed in the SMCMC algorithm. For k > 0, the proposal distribution qoptk that minimizes
the variance of importance weights is the conditional density of xk given x0:k−1 under πk [127]
and is defined as follows:

qoptk (x0:k−1, xk) = πk(x0:k−1, xk) := πk(x0:k)
πk(x0:k−1) ,

= p(xk|xk−1, zk) , (A.10)

154

where πk(x0:k−1) =
∫
E πk(x0:k)dxk. With this ‘optimal’ proposal density, the optimal

importance weight woptk (x0:k) does not depend on xk.

woptk (x0:k) ∝ πk/k−1(x0:k−1) ,

:= πk(x0:k−1)
πk−1(x0:k−1) = p(zk|xk−1) . (A.11)

In the SMCMC algorithm, at iteration i of any given time step k, there is a joint draw of xi0:k

which is then followed by individual refinements of x(i)
0:k using the Metropolis within Gibbs

technique, if k > 0. There is no refinement step at time k = 0. Using eq. (2.61), (2.62),
(A.3), and (A.4), we calculate the acceptance probability of the joint draw as follows:

α0(xi−1
0 , x

∗(i)
0) = min

1, π0(x∗(i)0)q0(xi−1
0)

q0(x∗(i)0)π0(xi−1
0)

 ,

= min
1, w0(x∗(i)0)

w0(xi−1
0)

 , (A.12)

and for k > 0,

αk(xi−1
0:k , x

∗(i)
0:k) = min

1, π̆k(x
∗(i)
0:k)π̂(Np)

k−1 (xi−1
0:k−1)qk(xi−1

0:k−1, x
i−1
k)

π̂
(Np)
k−1 (x∗(i)0:k−1)qk(x∗(i)0:k−1, x

∗(i)
k)π̆k(xi−1

0:k)

 ,

= min
1, πk(x

∗(i)
0:k)πk−1(xi−1

0:k−1)qk(xi−1
0:k−1, x

i−1
k)

πk−1(x∗(i)0:k−1)qk(x∗(i)0:k−1, x
∗(i)
k)πk(xi−1

0:k)

 ,

= min
1, wk(x

∗(i)
0:k)

wk(xi−1
0:k)

 . (A.13)

We define the independent MH kernel to initialize the algorithm, Kdraw
0 : E0 × F0 → [0, 1]

as follows:

Kdraw
0 (x0, dx

′

0) = α0(x0, x
′

0)q0(dx′0) +
(

1−
∫
E0
α0(x0, y0)q0(dy0)

)
δx0(dx′0) . (A.14)

For k > 0, we use π̂(Np)
k−1 ∈ Pk−1(Ek−1) to construct the joint proposal (π̂(Np)

k−1 × qk) for the
joint draw, which is associated with the Markov kernel Kdraw

k : Ek × Fk → [0, 1], defined

155

by

Kdraw
k (x0:k, dx

′

0:k) = αk(x0:k, x
′

0:k)(π̂
(Np)
k−1 × qk)(dx

′

0:k)

+
(

1−
∫
Ek

αk(x0:k, y0:k)(π̂(Np)
k−1 × qk)(dy0:k)

)
δx0:k(dx

′

0:k) . (A.15)

Lemma A.1.1. Given Assumption 1, Kdraw
0 (x0, dx

′
0) is an independent Metropolis kernel,

uniformly ergodic of invariant distribution π0(dx1).

Proof. From eq. (A.12), we see that Kdraw
0 is an independent Metropolis kernel with target

distribution π0 and proposal q0. If Assumption 1 is satisfied, uniform ergodicity follows from
Corollary 4 in [365].

Proposition 1. Given Assumption 1, for any k > 0, Kdraw
k (x0:k, dx

′
0:k) is uniformly ergodic

of invariant distribution

π̆
(Np)
k (dx0:k) = πk/k−1(x0:k−1) · (π̂(Np)

k−1 × πk)(dx0:k)
π̂

(Np)
k−1 (πk/k−1)

, (A.16)

where πk(x0:k−1, dxk) and πk/k−1(x0:k−1) are defined by eq. (A.10) and (A.11), respectively.

Proof. From eq. (A.13), we see that Kdraw
k is an independent Metropolis kernel with target

distribution π̆
(Np)
k and proposal π̂(Np)

k−1 × qk. From eq. (2.61), (2.62), (A.10) and (A.11) we
have

π̆
(Np)
k (x0:k) = πk/k−1(x0:k−1)πk(x0:k−1, xk)π̂(Np)

k−1 (x0:k−1)∫
Ek
πk/k−1(x0:k−1)πk(x0:k−1, xk)π̂(Np)

k−1 (x0:k−1)dx0:k
,

= πk/k−1(x0:k−1) · (π̂(Np)
k−1 × πk)(x0:k)∫

Ek−1
πk/k−1(x0:k−1)π̂(Np)

k−1 (x0:k−1)dx0:k−1
,

= πk/k−1(x0:k−1) · (π̂(Np)
k−1 × πk)(x0:k)

π̂
(Np)
k−1 (πk/k−1)

. (A.17)

We denote the cumulative MCMC kernel of all the refinement steps by Krefine
k : Ek ×Fk →

[0, 1] for k > 0. We note that Krefine
k also has the same invariant distribution π̆

(Np)
k , like

156

Kdraw
k . We define the overall MCMC kernel for SMCMC, Kk : Ek ×Fk → [0, 1] for k > 0 as

follows,

K0(x0, dx
′

0) := Kdraw
0 (x0, dx

′

0) , (A.18)

and for k > 0,

Kk(x0:k, dx
′

0:k) : = Krefine
k Kdraw

k (x0:k, dx
′

0:k) ,

=
∫
Ek

Krefine
k (y0:k, dx

′

0:k)Kdraw
k (x0:k, dy0:k) . (A.19)

Proposition 2. For any k > 0, Kk(x0:k, dx
′
0:k) is uniformly ergodic of invariant distribution

π̆
(Np)
k (dx0:k).

Proof. For k = 0, the result is trivially true from the definition of K0 in eq. (A.18) and
Lemma A.1.1. For k > 0, the assertion follows from application of Corollary 4 and
Proposition 4 in [365] to the definition of Kk in eq. (A.19).

Proposition 3. Suppose π ∈ P(E) and K : E × F → [0, 1] is an ergodic MCMC kernel of
invariant distribution π(dx). For any f : E → R, if f ∈ L1(E,F , π), π̂(Np)(f) converges to
π(f) almost surely, irrespective of the starting point of the Markov chain x(0).

Proof. This follows directly from Theorem 3 in [365].

A.2 Convergence of MC Estimates

Theorem A.2.1. Given Assumption 1, for any k > 0, x(0)
0:l ∈ Sl for 0 6 l 6 k and

fk ∈ L1(Ek,Fk, πk),

π̂
(Np)
k (fk) −→ πk(fk) (A.20)

almost surely, as Np →∞.

Proof. We prove the theorem using induction over k. For k = 0, the theorem is trivially true
which can be seen by applying Proposition 3 with Lemma A.1.1. Let us assume that the

157

theorem is true for k − 1. We consider the following decomposition and examine each term
individually.

π̂
(Np)
k (fk)− πk(fk) = [π̂(Np)

k (fk)− π̆(Np)
k (fk)] + [π̆(Np)

k (fk)− πk(fk)] . (A.21)

From eq. (A.16), we have

lim
Np→∞

π̆
(Np)
k (fk) =

lim
Np→∞

π̂
(Np)
k−1 (πk/k−1f̄k)

lim
Np→∞

π̂
(Np)
k−1 (πk/k−1)

, (A.22)

where,

f̄k(x0:k−1) =
∫
E
fk(x0:k−1, xk)πk(x0:k−1, dxk) . (A.23)

We note that, from eq. (A.11),

πk−1(πk/k−1) =
∫
Ek−1

πk(dx0:k−1) ,

=
∫
Ek

πk(dx0:k) = 1 , (A.24)

and from eq. (A.23),

πk−1(πk/k−1f̄k) =
∫
Ek−1

f̄k(x0:k−1)πk(dx0:k−1) ,

=
∫
Ek

fk(x0:k)πk(dx0:k) ,

= πk(fk) 6 πk(|fk|) <∞ , (A.25)

because fk ∈ L1(Ek,Fk, πk). As Theorem A.2.1 holds for k − 1, we have from eq. (A.24)
and (A.25)

π̂
(Np)
k−1 (πk/k−1) −→ 1 , (A.26)

158

and

π̂
(Np)
k−1 (πk/k−1f̄k) −→ πk(fk) , (A.27)

almost surely, as Np → ∞ for any x
(0)
0:l ∈ Sl for 0 6 l 6 k − 1. Applying eq. (A.22), this

implies that

lim
Np→∞

π̆
(Np)
k (fk)− πk(fk) = 0 , (A.28)

almost surely.

In the SMCMC algorithm, at time step k, the MCMC kernel used to sample {xi0:k}
Np
i=1 is

Kk, which, from Proposition 2, is uniformly ergodic of invariant distribution π̆
(Np)
k . The

applicability of Proposition 3 depends on the integrability of fk with respect to lim
Np→∞

π̆
(Np)
k .

From (A.28), if fk ∈ L1(Ek,Fk, πk), we also have fk ∈ L1(Ek,Fk, lim
Np→∞

π̆
(Np)
k) with

probability 1, which allows us to use Proposition 3 to obtain

π̂
(Np)
k (fk)− lim

Np→∞
π̆

(Np)
k (fk) −→ 0 , (A.29)

almost surely, as Np → ∞, for any x
(0)
0:k ∈ Sk. We use the equivalence in (A.28) and the

almost sure convergence in (A.29) in eq. (A.21) to complete the proof of the theorem.

A.3 Convergence of Normalizing Constants

With eq. (A.7) and (A.8), a straightforward corollary of Theorem A.2.1 follows.

Corollary A.3.0.1. Given Assumption 1, for any k > 0 and x(0)
0:l ∈ Sl for 0 6 l 6 k,

Z0
∧(Np)

−→ Z0 , (A.30)

and for k > 0,

(
Zk
Zk−1

)∧(Np)

−→ Zk
Zk−1

, (A.31)

159

almost surely, as Np →∞.

Proof. From eq. (A.5), we have Z0 = q0(w0), where w0 ∈ L1(E0,F0, q0), because of
Assumption 1. A straightforward application of Kolmogorov’s Strong Law of Large
Numbers (SLLN) proves the Corollary for k = 0.
For k > 0, from eq. (A.6), we have

Zk
Zk−1

= (πk−1 × qk)(wk) 6 Bk ,

because of Assumption 1. As {x∗(i)0:k }
Np
i=1 are i.i.d samples from π̂

(Np)
k−1 ×qk, we have, from (A.8)

 Zk
Zk−1

∧(Np)

−→
(

lim
Np→∞

π̂
(Np)
k−1 × qk

)
(wk)

= (πk−1 × qk)(wk) = Zk
Zk−1

almost surely, as Np → ∞ for any x
(0)
0:l ∈ Sl for 0 6 l 6 k. The first step follows from

Kolmogorov’s SLLN and the second step follows from Theorem A.2.1.

160

Appendix B
Additional Results for Semi-supervised
Node Classification

Table B.1: Accuracy (in %) of semi-supervised node classification on fixed splits. The best
and the second best results in each column are shown in bold and marked with underline
respectively. Higher numbers are better.

Algorithms 5 labels 10 labels 20 labels

C
or

a

ChebyNet 67.9±3.1 72.7±2.4 80.4±0.7
GCN 74.4±0.8 74.9±0.7 81.6±0.5
GAT 73.5±2.2 74.5±1.3 81.6±0.9
SBM-GCN 59.3±1.3 77.3±1.2 82.2±0.8
BGCN (Copy) 75.1±1.3* 76.7±0.7* 81.4±0.6
BGCN (MMSBM) 75.3±0.8* 76.6±0.8* 81.2±0.8
BGCN (NP) 76.0±1.1* 76.8±0.9* 80.3±0.6

C
ite

se
er

ChebyNet 53.0±1.9 67.7±1.2 70.2±0.9
GCN 55.4±1.1 65.8±1.1 70.8±0.7
GAT 55.4±2.6 66.1±1.7 70.8±1.0
SBM-GCN 20.8±2.0 66.3±0.6 71.7±0.1
BGCN (Copy) 61.4±2.3* 69.6±0.6* 71.9±0.6*
BGCN (MMSBM) 57.3±0.8* 70.8±0.6* 72.2±0.6*
BGCN (NP) 59.0±1.5* 71.7±0.8* 72.6±0.6*

Pu
bm

ed

ChebyNet 68.1±2.5 69.4±1.6 76.0±1.2
GCN 69.7±0.5 72.8±0.5 78.9±0.3
GAT 70.0±0.6 71.6±0.9 76.9±0.5
SBM-GCN 64.8±0.8 71.7±0.7 80.6±0.4
BGCN (Copy) 71.2±0.5* 73.6±0.5* 79.1±0.4
BGCN (MMSBM) 70.9±0.8* 72.3±0.8 76.6±0.7
BGCN (NP) 73.3±0.7* 73.9±0.9* 79.2±0.5

In Chapter 4, we perform random partitioning of the nodes in training and test sets to report
the average of node classification accuracies across different splits. We conduct another
experiment where the same fixed training-test split of [331] with 20 known labels per class

161

is used for 50 random intializations of the learnable model parameters. The fixed splits with
5 and 10 labels per class are formed by taking the first 5 and 10 labels for each class from
the original split in [331]. The hyperparameters for all algorithms are set to the same values
as in the experiment with random partitioning. The average classification accuracies along
with their standard errors are provided in Table B.1 for this setting. We observe that, all
models have considerably lower standard errors compared to the results in Table 4.2, since
the variability due to random training-test splits is absent here.

162

Appendix C
Additional Results for Time-Series
Forecasting
In Section C.1 of this chapter, we provide point and probabilistic forecasting results and
visualization of confidence intervals for PeMSD4, PeMSD7, and PeMSD8 datasets. We
examine the effect of the number of particles on forecasting performance in Section C.2.
The effect of learnable noise variance is investigated in Section C.3. Comparison with a
variational inference based approach is summarized in Section C.4.

C.1 Results for PeMSD4, PeMSD7, and PeMSD8

We summarize MAE, RMSE, and MAPE of different techniques for point forecasting task
on the PeMSD4, PeMSD7, and PeMSD8 datasets in Tables C.1, C.2, and C.3 respectively.
Tables C.4, C.5, and C.6 contain the results for probabilistic forecasting, reporting the
CRPS, P10QL, P50QL, and P90QL. Figures C.1, C.2, and C.3 show some examples of
confidence intervals, obtained from various probabilistic approaches, for PeMSD4,
PeMSD7, and PeMSD8 datasets.

C.2 Effect of Number of Particles

For this experiment, we consider three different settings with varying number of particles
Np = 1/10/50 for testing. The model is trained using 1 particle in each case. From
Table C.7, we observe that increasing the number of particles cannot improve the point
forecasting accuracy significantly, whereas the results in Table C.8 show that
characterization of the prediction uncertainty is improved as more particles are used to
form the approximate posterior distribution of the forecasts.

163

C.3 Effect of Different Learnable Noise Variance at
Each Node

In this experiment, we compare the proposed state-space model with different learnable
noise variance at each node (parameterized by the softplus function in eq. (5.6) in
Chapter 5) with fixed and uniform noise standard deviation γ = 0.01/0.05/0.10 at all
nodes. Other hyperparameters and the training setup remain unchanged. The results in
Table C.9 demonstrate that the learnable noise variance approach is not particularly
beneficial in comparison to a uniform, fixed variance approach in most cases. However, we
note that the probabilistic metrics reported in Table C.10 are the lowest for the learnable
noise variance model in all cases. This suggests that different time-series in these road
traffic datasets have different degrees of uncertainty which cannot be effectively modelled
by the uniform, fixed noise variance approach.

C.4 Comparison with a Variational Inference (VI)
Approach

Although there is no directly applicable baseline forecasting method in the literature that
incorporates VI, RNNs, and GNNs, we can derive a variational approach using equivalent
GNN-RNN architectures and compare it to the particle flow approach. We wish to
approximate pΘ(yP+1:P+Q|y1:P , z1:P+Q). So, the ELBO is defined as follows:

L(Θ,Ω) = EqΩ

 log pΘ(yP+1:P+Q,x1:P |y1:P , z1:P+Q)− log qΩ(x1:P |y1:P+Q, z1:P+Q)
 . (C.1)

Now, we approximate

pΘ(yP+1:P+Q,x1:P |y1:P , z1:P+Q) =
∫ P+Q∏

t=P+1

(
pφ,γ(yt|xt, zt)pψ,σ(xt|xt−1,yt−1, zt)

)
dxP+1:P+Q ,

≈
P+Q∏
t=P+1

 1
Np

Np∑
j=1

pφ,γ(yt|xjt , zt)
 , (C.2)

164

where, in the decoder, we first sample xjt from pψ,σ(xt|xjt−1,y
j
t−1, zt) (for t > P + 1) or from

pψ,σ(xt|xjt−1,yt−1, zt) (for t = P + 1) for 1 6 j 6 Np and then sample yjt from pφ,γ(yt|xjt , zt)
for 1 6 j 6 Np to form the MC approximation. This decoder is initialized using the output
of the encoder, i.e., we sample xj1:P from the inference distribution qΩ(x1:P |y1:P+Q, z1:P+Q)
for 1 6 j 6 Np, which is assumed to be factorized as follows:

qΩ(x1:P |y1:P+Q, z1:P+Q) = qΩ(x1:P |y1:P , z1:P) ,

= q1(x1, z1, ρ)
P∏
t=2

qψ′,σ′(xt|xt−1,yt−1, zt) . (C.3)

Here, we set q1(x1, z1, ρ) = p1(x1, z1, ρ) for simplicity and we use the same RNN architecture
(i.e. AGCGRU) for qψ′,σ′ and pψ,σ.

We treat ρ, σ and σ′ as hyperparameters and set ρ = 1 and σ = σ′ = 0. This implies
that qψ′,σ′ is a Dirac-delta function and the maximization of ELBO (in eq. (C.1)) using SGD
(SGVI) amounts to minimization of the same cost function as defined in eq. (5.11). The
only difference is that now a) we have two separate AGCGRUs for encoder and decoder
and b) there is no particle flow in the forward pass. We call this model AGCGRU+VI and
compare it to AGCGRU+flow. The other hyperparameters are set to the same values as
for the AGCGRU+flow algorithm. From Table C.11, we observe that for comparable RNN
architectures, the flow based algorithm significantly outperforms the variational inference
based approach in the point forecasting task. The results in Table C.12 indicate that in
the probabilistic forecasting task, both particle flow and VI approaches show comparable
performance despite AGCGRU+flow having approximately half of the learnable parameters
of the AGCGRU+VI model.

165

Table C.1: Average MAE, MAPE and RMSE for PeMSD4 dataset for 15/30/45/60 minutes
horizons. The best and the second best results in each column are shown in bold and marked
with underline respectively. Lower numbers are better.

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 3.16 7.00 6.13
ARIMA 1.53/2.01/2.37/2.68 2.92/4.06/4.96/5.73 3.11/4.36/5.25/5.95
VAR 1.66/2.12/2.39/2.57 3.27/4.33/4.95/5.36 3.09/4.02/4.51/4.83
SVR 1.48/1.91/2.23/2.49 2.88/3.97/4.86/5.61 3.11/4.29/5.08/5.66
FNN 1.48/1.90/2.23/2.51 3.04/4.09/4.98/5.80 3.08/4.27/5.08/5.68
FC-LSTM 2.20/2.22/2.23/2.26 4.95/4.97/4.99/5.05 4.89/4.92/4.95/5.01
DCRNN 1.38/1.78/2.06/2.29 2.69/3.72/4.51/5.16 2.95/4.09/4.81/5.34
STGCN 1.42/1.85/2.14/2.39 2.82/3.92/4.71/5.34 2.94/4.03/4.70/5.21
ASTGCN 1.69/2.15/2.40/2.55 3.70/4.85/5.46/5.79 3.54/4.71/5.35/5.62
GWN 1.37/1.76/2.03/2.24 2.67/3.73/4.52/5.15 2.94/4.07/4.77/5.28
GMAN 1.38/1.61/1.76/1.88 2.80/3.42/3.84/4.18 2.98/3.70/4.11/4.41
AGCRN 1.41/1.67/1.84/2.01 2.88/3.55/3.99/4.40 3.04/3.83/4.33/4.73
LSGCN 1.40/1.78/2.03/2.20 2.80/3.71/4.27/4.68 2.87/3.90/4.50/4.89
DeepGLO 1.61/1.89/2.25/2.51 3.13/4.06/5.03/5.77 3.06/4.14/4.92/5.55
N-BEATS 1.49/1.90/2.20/2.44 2.93/4.00/4.84/5.48 3.13/4.29/5.05/5.58
FC-GAGA 1.43/1.78/1.95/2.06 2.87/3.80/4.32/4.67 3.06/4.09/4.55/4.82
DeepAR 1.51/2.01/2.38/2.68 3.06/4.41/5.45/6.25 3.11/4.27/5.04/5.60
DeepFactors 1.54/2.01/2.34/2.61 3.07/4.26/5.17/5.90 3.11/4.21/4.90/5.40
MQRNN 1.37/1.76/2.03/2.25 2.68/3.72/4.51/5.17 2.94/4.05/4.73/5.20
AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46

166

Table C.2: Average MAE, MAPE and RMSE for PeMSD7 dataset for 15/30/45/60 minutes
horizons. The best and the second best results in each column are shown in bold and marked
with underline respectively. Lower numbers are better.

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 3.98 10.92 7.20
ARIMA 2.49/3.52/4.32/5.03 5.66/8.30/10.46/12.35 4.53/6.64/8.17/9.42
VAR 2.70/3.71/4.37/4.87 6.23/8.75/10.37/11.56 4.38/5.95/6.89/7.56
SVR 2.43/3.40/4.15/4.78 5.62/8.23/10.38/12.31 4.52/6.53/7.93/9.02
FNN 2.36/3.32/4.06/4.71 5.56/8.20/10.41/12.44 4.45/6.46/7.84/8.90
FC-LSTM 3.55/3.59/3.64/3.70 9.12/9.17/9.25/9.37 6.83/6.91/6.99/7.11
DCRNN 2.23/3.06/3.67/4.18 5.19/7.50/9.31/10.90 4.26/6.05/7.28/8.24
STGCN 2.21/2.96/3.47/3.90 5.20/7.32/8.82/10.09 4.09/5.72/6.76/7.55
ASTGCN 2.71/3.72/4.28/4.60 6.68/9.51/11.06/11.86 4.64/6.53/7.60/8.13
GWN 2.23/3.03/3.56/3.98 5.26/7.63/9.25/10.56 4.27/5.99/7.03/7.76
GMAN 2.40/2.76/2.98/3.16 5.93/6.96/7.66/8.16 4.74/5.57/6.06/6.37
AGCRN 2.19/2.81/3.15/3.42 5.22/7.09/8.19/9.01 4.12/5.49/6.27/6.79
LSGCN 2.23/2.99/3.50/3.95 5.22/7.18/8.40/9.37 4.03/5.59/6.54/7.30
DeepGLO 2.55/3.32/4.16/4.85 6.10/8.31/11.16/13.19 4.53/6.30/7.68/8.84
N-BEATS 2.44/3.34/4.02/4.57 5.75/8.30/10.31/11.94 4.55/6.51/7.84/8.80
FC-GAGA 2.22/2.85/3.18/3.36 5.32/7.09/8.00/8.51 4.29/5.77/6.46/6.82
DeepAR 2.53/3.61/4.48/5.20 6.15/9.30/12.17/14.49 4.55/6.50/7.84/8.87
DeepFactors 2.51/3.47/4.17/4.71 6.14/9.04/11.21/12.93 4.47/6.21/7.30/8.08
MQRNN 2.22/3.03/3.58/4.00 5.26/7.70/9.53/10.97 4.23/5.91/6.98/7.73
AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54

167

Table C.3: Average MAE, MAPE and RMSE for PeMSD8 dataset for 15/30/45/60 minutes
horizons. The best and the second best results in each column are shown in bold and marked
with underline respectively. Lower numbers are better.

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

HA 2.47 5.66 5.19
ARIMA 1.24/1.61/1.89/2.12 2.33/3.15/3.77/4.31 2.63/3.62/4.28/4.81
VAR 1.37/1.79/2.04/2.23 2.66/3.62/4.23/4.69 2.67/3.53/4.01/4.36
SVR 1.21/1.56/1.80/2.01 2.32/3.12/3.72/4.24 2.64/3.57/4.18/4.63
FNN 1.19/1.54/1.79/2.01 2.27/3.12/3.75/4.30 2.59/3.55/4.17/4.63
FC-LSTM 1.91/1.93/1.94/1.95 4.63/4.66/4.69/4.72 4.71/4.75/4.78/4.81
DCRNN 1.16/1.49/1.70/1.87 2.25/3.16/3.85/4.37 2.54/3.49/4.08/4.49
STGCN 1.22/1.56/1.79/1.98 2.49/3.43/4.06/4.48 2.67/3.65/4.22/4.59
ASTGCN 1.36/1.64/1.81/1.92 3.04/3.79/4.23/4.51 2.98/3.77/4.20/4.47
GWN 1.11/1.40/1.59/1.73 2.14/2.94/3.49/3.90 2.52/3.45/4.00/4.38
GMAN 1.23/1.36/1.46/1.55 2.73/3.09/3.38/3.63 3.05/3.50/3.82/4.06
AGCRN 1.16/1.39/1.53/1.67 2.49/3.10/3.50/3.84 2.67/3.44/3.91/4.25
LSGCN 1.21/1.54/1.75/1.89 2.56/3.44/3.95/4.30 2.71/3.64/4.14/4.46
DeepGLO 1.30/1.75/2.04/2.21 2.48/3.42/4.06/4.50 2.67/3.63/4.24/4.69
N-BEATS 1.33/1.69/1.92/2.12 2.74/3.85/4.45/4.90 2.81/3.94/4.52/4.92
FC-GAGA 1.18/1.47/1.62/1.72 2.37/3.21/3.76/4.11 2.65/3.61/4.10/4.39
DeepAR 1.25/1.61/1.87/2.10 2.53/3.40/4.08/4.67 2.67/3.59/4.17/4.61
DeepFactors 1.26/1.63/1.88/2.07 2.51/3.42/4.08/4.61 2.63/3.54/4.11/4.52
MQRNN 1.13/1.43/1.62/1.77 2.19/2.99/3.56/4.00 2.54/3.48/4.02/4.40
AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09

168

Table C.4: Average CRPS, P10QL, P50QL, and P90QL for PeMSD4 for 15/30/45/60
minutes horizons. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD4
DeepAR 1.13/1.52/1.82/2.07
DeepFactors 1.52/1.84/2.07/2.26
GRU+flow 1.14/1.50/1.75/1.95
DCGRU+flow 1.13/1.43/1.63/1.79
AGCGRU+flow 1.08/1.32/1.46/1.56

P10QL(%) (15/ 30/ 45/ 60 min)
DeepAR 1.37/1.96/2.45/2.86
DeepFactors 2.13/2.61/3.01/3.34
MQRNN 0.95/1.18/1.31/1.40
GRU+flow 1.36/1.87/2.25/2.56
DCGRU+flow 1.33/1.75/2.06/2.30
AGCGRU+flow 1.28/1.62/1.82/1.97

P50QL(%) (15/ 30/ 45/ 60 min)
DeepAR 2.37/3.15/3.73/4.20
DeepFactors 2.42/3.15/3.68/4.10
MQRNN 2.15/2.77/3.19/3.53
GRU+flow 2.16/2.76/3.17/3.50
DCGRU+flow 2.16/2.69/3.01/3.26
AGCGRU+flow 2.11/2.55/2.79/2.94

P90QL(%) (15/ 30/ 45/ 60 min)
DeepAR 1.10/1.45/1.67/1.84
DeepFactors 1.98/2.24/2.39/2.50
MQRNN 1.22/1.68/2.03/2.32
GRU+flow 1.11/1.43/1.63/1.77
DCGRU+flow 1.10/1.34/1.50/1.61
AGCGRU+flow 1.05/1.26/1.37/1.45

169

Table C.5: Average CRPS, P10QL, P50QL, and P90QL for PeMSD7 for 15/30/45/60
minutes horizons. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD7
DeepAR 1.92/2.78/3.44/3.99
DeepFactors 2.35/3.00/3.48/3.87
GRU+flow 1.88/2.61/3.09/3.46
DCGRU+flow 1.85/2.51/2.95/3.27
AGCGRU+flow 1.73/2.18/2.43/2.58

P10QL(%) (15/ 30/ 45/ 60 min)
DeepAR 2.56/3.90/4.92/5.78
DeepFactors 3.49/4.53/5.46/6.26
MQRNN 1.70/2.20/2.47/2.66
GRU+flow 2.50/3.57/4.29/4.85
DCGRU+flow 2.41/3.35/3.97/4.43
AGCGRU+flow 2.27/2.97/3.36/3.60

P50QL(%) (15/ 30/ 45/ 60 min)
DeepAR 4.35/6.21/7.70/8.95
DeepFactors 4.31/5.97/7.16/8.10
MQRNN 3.82/5.21/6.16/6.88
GRU+flow 3.84/5.19/6.10/6.81
DCGRU+flow 3.77/4.94/5.66/6.20
AGCGRU+flow 3.70/4.65/5.14/5.49

P90QL(%) (15/ 30/ 45/ 60 min)
DeepAR 2.13/3.03/3.65/4.08
DeepFactors 3.22/3.70/3.97/4.14
MQRNN 2.19/3.12/3.78/4.30
GRU+flow 2.02/2.74/3.16/3.44
DCGRU+flow 2.00/2.62/3.01/3.28
AGCGRU+flow 1.83/2.25/2.48/2.62

170

Table C.6: Average CRPS, P10QL, P50QL, and P90QL for PeMSD8 for 15/30/45/60
minutes horizons. The best and the second best results in each column are shown in bold
and marked with underline respectively. Lower numbers are better.

Algorithm PeMSD8
DeepAR 0.94/1.24/1.46/1.64
DeepFactors 1.26/1.51/1.69/1.83
GRU+flow 0.95/1.23/1.42/1.57
DCGRU+flow 0.94/1.18/1.35/1.47
AGCGRU+flow 0.90/1.10/1.20/1.28

P10QL(%) (15/ 30/ 45/ 60 min)
DeepAR 1.14/1.59/1.93/2.24
DeepFactors 1.77/2.17/2.49/2.76
MQRNN 0.77/0.94/1.04/1.10
GRU+flow 1.12/1.52/1.80/2.04
DCGRU+flow 1.10/1.43/1.67/1.87
AGCGRU+flow 1.10/1.43/1.61/1.73

P50QL(%) (15/ 30/ 45/ 60 min)
DeepAR 1.97/2.52/2.94/3.30
DeepFactors 1.97/2.55/2.95/3.25
MQRNN 1.77/2.24/2.54/2.77
GRU+flow 1.76/2.21/2.49/2.72
DCGRU+flow 1.83/2.25/2.49/2.66
AGCGRU+flow 1.78/2.15/2.34/2.46

P90QL(%) (15/ 30/ 45/ 60 min)
DeepAR 0.93/1.22/1.40/1.53
DeepFactors 1.62/1.82/1.93/1.99
MQRNN 0.99/1.34/1.59/1.80
GRU+flow 0.93/1.18/1.33/1.44
DCGRU+flow 0.93/1.13/1.25/1.34
AGCGRU+flow 0.87/1.01/1.09/1.14

171

Figure C.1: 15 minutes ahead predictions from the probabilistic forecasting algorithms
with confidence intervals at nodes 2, 44, 57, and 213 of PeMSD4 dataset for the first day
in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval
than its competitors in most cases, which leads to lower quantile error.

172

Figure C.2: 15 minutes ahead predictions from the probabilistic forecasting algorithms
with confidence intervals at nodes 43, 108, 163, and 201 of PeMSD7 dataset for the first day
in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval
than its competitors in most cases, which leads to lower quantile error.

173

Figure C.3: 15 minutes ahead predictions from the probabilistic forecasting algorithms
with confidence intervals at nodes 1, 17, 95, and 164 of PeMSD8 dataset for the first day
in the test set. The proposed AGCGRU+flow algorithm provides tighter confidence interval
than its competitors in most cases, which leads to lower quantile error.

174

Table C.7: Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow with different number of
particles. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 13.82/14.87/15.60/16.08 14.04/14.78/15.36/15.82 22.33/24.41/25.70/26.54
AGCGRU+flow (Np = 10) 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+flow (Np = 50) 13.79/14.84/15.58/16.06 14.01/14.74/15.33/15.79 22.02/24.20/25.55/26.42

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 1.35/1.63/1.78/1.88 2.68/3.45/3.89/4.18 2.89/3.78/4.22/4.47
AGCGRU+flow (Np = 10) 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+flow (Np = 50) 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 2.16/2.71/3.00/3.20 5.14/6.77/7.63/8.20 4.12/5.47/6.14/6.56
AGCGRU+flow (Np = 10) 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+flow (Np = 50) 2.15/2.70/2.99/3.19 5.12/6.75/7.61/8.18 4.11/5.46/6.12/6.54

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (Np = 1) 1.14/1.38/1.50/1.57 2.31/3.02/3.41/3.67 2.60/3.46/3.87/4.11
AGCGRU+flow (Np = 10) 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+flow (Np = 50) 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.44/3.85/4.09

175

Table C.8: Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow with different number of
particles. Lower numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 19.34/20.44/21.24/21.80 11.79/12.80/13.46/13.91 10.46/10.72/10.98/11.18
AGCGRU+flow (Np = 10) 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+flow (Np = 50) 10.02/10.86/11.49/11.92 3.67/4.05/4.33/4.53 3.83/4.15/4.41/4.59

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 1.95/2.34/2.58/2.73 3.11/3.75/4.16/4.47 3.00/3.59/3.92/4.10
AGCGRU+flow (Np = 10) 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+flow (Np = 50) 1.03/1.26/1.40/1.49 1.21/1.54/1.73/1.87 0.98/1.17/1.27/1.35

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 3.18/3.95/4.35/4.61 5.57/6.96/7.67/8.15 5.38/6.63/7.29/7.69
AGCGRU+flow (Np = 10) 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+flow (Np = 50) 1.64/2.09/2.32/2.47 2.16/2.83/3.20/3.44 1.71/2.10/2.31/2.45

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (Np = 1) 1.63/1.90/2.07/2.18 2.73/3.28/3.63/3.87 2.38/2.68/2.86/2.98
AGCGRU+flow (Np = 10) 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+flow (Np = 50) 0.86/1.05/1.16/1.22 1.04/1.35/1.52/1.63 0.83/0.95/1.03/1.08

176

Table C.9: Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow with learnable and fixed
noise variance settings. The best result in each column is shown in bold. Lower numbers
are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+flow (γ = 0.01) 13.68/14.75/15.49/16.02 14.57/15.37/16.02/16.57 21.74/23.95/25.27/26.21
AGCGRU+flow (γ = 0.05) 13.96/15.05/15.76/16.25 15.87/16.66/17.23/17.62 22.08/24.33/25.64/26.54
AGCGRU+flow (γ = 0.10) 13.86/14.91/15.68/16.17 14.42/15.20/15.87/16.39 22.04/24.25/25.60/26.41

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+flow (γ = 0.01) 1.35/1.63/1.79/1.89 2.68/3.45/3.89/4.20 2.88/3.77/4.20/4.47
AGCGRU+flow (γ = 0.05) 1.36/1.65/1.80/1.91 2.69/3.47/3.91/4.21 2.88/3.76/4.20/4.46
AGCGRU+flow (γ = 0.10) 1.36/1.65/1.80/1.90 2.70/3.47/3.89/4.18 2.92/3.81/4.24/4.49

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+flow (γ = 0.01) 2.14/2.69/2.98/3.16 5.07/6.66/7.47/8.00 4.10/5.43/6.09/6.49
AGCGRU+flow (γ = 0.05) 2.16/2.71/3.00/3.20 5.13/6.74/7.61/8.19 4.09/5.41/6.06/6.48
AGCGRU+flow (γ = 0.10) 2.16/2.73/3.01/3.20 5.15/6.77/7.62/8.15 4.12/5.48/6.15/6.54

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow (learnable) 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+flow (γ = 0.01) 1.13/1.37/1.49/1.57 2.31/3.03/3.44/3.71 2.60/3.43/3.84/4.09
AGCGRU+flow (γ = 0.05) 1.13/1.37/1.49/1.57 2.26/2.95/3.35/3.62 2.53/3.34/3.75/4.01
AGCGRU+flow (γ = 0.10) 1.13/1.38/1.51/1.60 2.31/3.04/3.49/3.80 2.57/3.41/3.86/4.14

177

Table C.10: Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow with learnable and fixed
noise variance settings. The best result in each column is shown in bold. Lower numbers
are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+flow (γ = 0.01) 12.83/13.90/14.63/15.17 7.26/8.10/8.46/8.77 6.68/7.08/7.55/7.86
AGCGRU+flow (γ = 0.05) 11.58/12.61/13.28/13.74 5.78/6.52/6.99/7.25 5.14/5.54/5.81/6.06
AGCGRU+flow (γ = 0.10) 13.14/14.18/14.95/15.43 7.79/8.57/9.22/9.53 6.64/7.05/7.28/7.53

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+flow (γ = 0.01) 1.28/1.55/1.70/1.81 2.09/2.58/2.87/3.08 1.74/2.08/2.26/2.38
AGCGRU+flow (γ = 0.05) 1.19/1.47/1.62/1.72 1.82/2.30/2.57/2.77 1.48/1.84/2.04/2.15
AGCGRU+flow (γ = 0.10) 1.32/1.60/1.75/1.85 2.19/2.68/2.95/3.15 1.84/2.23/2.43/2.54

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+flow (γ = 0.01) 2.02/2.55/2.82/3.01 3.59/4.57/5.05/5.35 3.00/3.77/4.22/4.54
AGCGRU+flow (γ = 0.05) 1.90/2.42/2.70/2.90 3.18/4.20/4.76/5.15 2.56/3.27/3.65/3.91
AGCGRU+flow (γ = 0.10) 2.09/2.65/2.94/3.12 3.80/4.87/5.41/5.77 3.18/4.04/4.47/4.73

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow (learnable) 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+flow (γ = 0.01) 1.07/1.29/1.41/1.49 1.81/2.29/2.56/2.75 1.35/1.57/1.67/1.73
AGCGRU+flow (γ = 0.05) 1.00/1.23/1.35/1.43 1.58/2.04/2.31/2.50 1.21/1.43/1.52/1.58
AGCGRU+flow (γ = 0.10) 1.10/1.34/1.47/1.56 1.88/2.41/2.72/2.93 1.47/1.71/1.81/1.87

178

Table C.11: Average MAE, MAPE, and RMSE for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow and AGCGRU+VI. Lower
numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 13.79/14.84/15.58/16.06 14.01/14.75/15.34/15.80 22.08/24.26/25.55/26.43
AGCGRU+VI 15.08/16.10/16.83/17.53 15.26/16.10/16.74/17.43 26.17/28.02/29.13/30.17

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.35/1.63/1.78/1.88 2.67/3.44/3.87/4.16 2.88/3.77/4.20/4.46
AGCGRU+VI 1.46/1.76/1.94/2.06 2.94/3.73/4.20/4.52 2.97/3.78/4.22/4.48

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 2.15/2.70/2.99/3.19 5.13/6.75/7.61/8.18 4.11/5.46/6.12/6.54
AGCGRU+VI 2.33/2.92/3.23/3.45 5.59/7.26/8.16/8.78 4.22/5.48/6.10/6.50

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
MAE MAPE(%) RMSE

AGCGRU+flow 1.13/1.37/1.49/1.57 2.30/3.01/3.40/3.65 2.59/3.45/3.85/4.09
AGCGRU+VI 1.29/1.52/1.65/1.74 2.94/3.51/3.86/4.10 2.96/3.59/3.94/4.17

179

Table C.12: Average CRPS, P10QL, and P90QL for PeMSD3, PeMSD4, PeMSD7, and
PeMSD8 for 15/30/45/60 minutes horizons for AGCGRU+flow and AGCGRU+VI. Lower
numbers are better.

Algorithm PeMSD3 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 10.53/11.39/12.03/12.47 4.01/4.44/4.76/4.97 4.06/4.38/4.63/4.82
AGCGRU+VI 11.00/11.80/12.38/12.94 4.14/4.53/4.82/5.10 4.27/4.58/4.81/5.02

Algorithm PeMSD4 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.08/1.32/1.46/1.56 1.28/1.62/1.82/1.97 1.05/1.26/1.37/1.45
AGCGRU+VI 1.08/1.31/1.45/1.54 1.26/1.59/1.79/1.93 1.04/1.25/1.36/1.45

Algorithm PeMSD7 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 1.73/2.18/2.43/2.58 2.27/2.97/3.36/3.60 1.83/2.25/2.48/2.62
AGCGRU+VI 1.72/2.18/2.42/2.60 2.25/2.97/3.39/3.66 1.80/2.24/2.47/2.63

Algorithm PeMSD8 (15/ 30/ 45/ 60 min)
CRPS P10QL(%) P90QL(%)

AGCGRU+flow 0.90/1.10/1.20/1.28 1.10/1.43/1.61/1.73 0.87/1.01/1.09/1.14
AGCGRU+VI 0.95/1.13/1.24/1.31 1.15/1.44/1.62/1.76 0.90/1.03/1.10/1.15

180

Bibliography
[1] G. J. Kerns and G. J. Székely, “Definetti’s theorem for abstract finite exchangeable

sequences,” J. Theoretical Probab., vol. 19, no. 3, pp. 589–608, Jul. 2006.

[2] D. V. Lindley, “The future of statistics: A Bayesian 21st century,” Adv. Appl. Probab.,
vol. 7, pp. 106–115, 1975.

[3] G. Casella, C. P. Robert, and M. T. Wells, “Generalized accept-reject sampling
schemes,” in A Festschrift for Herman Rubin. Institute of Mathematical Statistics,
Jan. 2004, pp. 342–347.

[4] T. Kloek and H. K. van Dijk, “Bayesian estimates of equation system parameters: An
application of integration by monte carlo,” Econometrica, vol. 46, no. 1, pp. 1–19, Jan.
1978.

[5] W. K. Hastings, “Monte carlo sampling methods using markov chains and their
applications,” Biometrika, vol. 57, no. 1, pp. 97–109, Apr. 1970.

[6] N. Tishby, E. Levin, and S. Solla, “Consistent inference of probabilities in layered
networks: Predictions and generalization,” in Proc. Int. Joint Conf. Neural Networks,
Washington, WA, USA, Jun. 1989.

[7] D. J. MacKay, “A practical Bayesian framework for backpropagation networks,” Neural
Comp., vol. 4, no. 3, pp. 448–472, May 1992.

[8] R. M. Neal, “Bayesian learning via stochastic dynamics,” in Proc. Adv. Neural Info.
Process. Syst., San Francisco, CA, USA, Dec. 1992, pp. 475–482.

[9] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. Wilson, “What are Bayesian neural
network posteriors really like?” in Proc. Int. Conf. Machine Learning, Virtual, Jul.
2021.

[10] R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos, and A. Doucet, “A
Bayesian exploration-exploitation approach for optimal online sensing and planning
with a visually guided mobile robot,” Autonomous Robots, vol. 27, no. 2, pp. 93–103,
Aug. 2009.

[11] S. Nannuru, Y. Li, Y. Zeng, M. Coates, and B. Yang, “Radio-frequency tomography
for passive indoor multitarget tracking,” IEEE Trans. Mob. Comput., vol. 12, no. 12,
pp. 2322–2333, Dec. 2013.

181

[12] P. J. van Leeuwen, H. R. Künsch, L. Nerger, R. Potthast, and S. Reich, “Particle filters
for high-dimensional geoscience applications: A review,” Quarterly J. Royal Meteor.
Soc., vol. 145, no. 723, pp. 2335–2365, Apr. 2019.

[13] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-Gaussian
Bayesian state estimation,” in IEE Proc. F Radar and Signal Process., vol. 140, no. 2,
Apr. 1993, pp. 107–113.

[14] A. Beskos, D. Crisan, and A. Jasra, “On the stability of sequential Monte Carlo
methods in high dimensions,” Ann. Appl. Prob., vol. 24, no. 4, pp. 1396–1445, Aug.
2014.

[15] F. Septier and G. W. Peters, “Langevin and Hamiltonian based sequential MCMC
for efficient Bayesian filtering in high-dimensional spaces,” IEEE J. Sel. Topics Signal
Process., vol. 10, no. 2, pp. 312–327, Mar. 2016.

[16] P. M. Djurić, T. Lu, and M. F. Bugallo, “Multiple particle filtering,” in Proc. IEEE
Int. Conf. Acoust., Speech and Signal Process., vol. 3, Honolulu, HI, USA, Apr. 2007,
pp. 1181–1184.

[17] P. M. Djurić and M. F. Bugallo, “Particle filtering for high-dimensional systems,” in
Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process., St. Martin,
France, Dec. 2013, pp. 352–355.

[18] A. Beskos, D. Crisan, A. Jasra, K. Kamatani, and Y. Zhou, “A stable particle filter in
high-dimensions,” ArXiv e-prints: arXiv 1412.3501, Dec. 2014.

[19] P. Rebeschini and R. van Handel, “Can local particle filters beat the curse of
dimensionality?” Ann. Appl. Probab., vol. 25, no. 5, pp. 2809–2866, Oct. 2015.

[20] F. Daum and J. Huang, “Nonlinear filters with log-homotopy,” in Proc. SPIE Signal
and Data Process. Small Targets, San Diego, CA, USA, Sep. 2007, p. 669918.

[21] F. Daum, J. Huang, and A. Noushin, “Exact particle flow for nonlinear filters,” in
Proc. SPIE Conf. Signal Process., Sensor Fusion, Target Recog., Orlando, FL, USA,
Apr. 2010, p. 769704.

[22] S. Reich, “A guided sequential Monte Carlo method for the assimilation of data
into stochastic dynamical systems,” in Recent Trends in Dynamical Systems. Basel,
Switzerland: Springer, 2013, vol. 35, pp. 205–220.

182

[23] P. Bunch and S. Godsill, “Approximations of the optimal importance density using
gaussian particle flow importance sampling,” J. Amer. Statist. Assoc., vol. 111, no.
514, pp. 748–762, Aug. 2016.

[24] F. E. de Melo, S. Maskell, M. Fasiolo, and F. Daum, “Stochastic particle flow for
nonlinear high-dimensional filtering problems,” ArXiv e-prints: arXiv 1511.01448,
Nov. 2015.

[25] J. Heng, A. Doucet, and Y. Pokern, “Gibbs flow for approximate transport with
applications to Bayesian computation,” ArXiv e-prints: arXiv 1509.08787, Sep. 2015.

[26] Y. Li and M. Coates, “Particle filtering with invertible particle flow,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4102–4116, Aug. 2017.

[27] F. Septier, S. K. Pang, A. Carmi, and S. Godsill, “On MCMC-based particle methods
for Bayesian filtering: Application to multitarget tracking,” in Proc. IEEE Int.
Workshop Comput. Adv. Multi-Sensor Adaptive Process., Aruba, The Netherlands,
Dec. 2009, pp. 360–363.

[28] D. Alspach and H. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum
approximations,” IEEE Trans. Automatic Control, vol. 17, no. 4, pp. 439–448, Aug.
1972.

[29] B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall,
1979.

[30] J. H. Kotecha and P. M. Djuric, “Gaussian sum particle filtering,” IEEE Trans. Signal
Process., vol. 51, no. 10, pp. 2602–2612, Oct. 2003.

[31] M. A. Khan, M. Ulmke, and W. Koch, “A log homotopy based particle flow solution
for mixture of Gaussian prior densities,” in Proc. IEEE Int. Conf. Multisensor Fusion
and Integration for Intell. Syst., Munich, Germany, Sep. 2016, pp. 546–551.

[32] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adaptive processing
of data structures,” IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 768–786, Nov.
1998.

[33] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,”
in Proc. IEEE Int. Joint Conf. Neural Networks, vol. 2, Montreal, Canada, Aug. 2005,
pp. 729–734.

183

[34] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Trans. Neural Networks, vol. 20, no. 1, pp. 61–80, Jan.
2009.

[35] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in Proc. Int. Conf. Machine Learning, Sydney,
Australia, Aug. 2017, pp. 1263–1272.

[36] W. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods
and applications,” ArXiv e-prints: arXiv 1709.05584, 2017.

[37] T. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in Proc. Int. Conf. Learning Representations, Toulon, France, Apr. 2017.

[38] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
attention networks,” in Proc. Int. Conf. Learning Representations, Vancouver, Canada,
May 2018.

[39] T. Kipf and M. Welling, “Variational graph auto-encoders,” in Proc. Bayesian Deep
Learning Workshop, Adv. Neural Info. Process. Syst., Barcelona, Spain, Dec. 2016.

[40] A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative modeling of
graphs,” in Proc. Int. Conf. Machine Learning, Long Beach, CA, USA, Jun. 2019,
pp. 2434–2444.

[41] J. Ma, W. Tang, J. Zhu, and Q. Mei, “A flexible generative framework for graph-
based semi-supervised learning,” in Proc. Adv. Neural Info. Process. Syst., Vancouver,
Canada, Dec. 2019, pp. 3276–3285.

[42] R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and X. Xie, “Graph structure
estimation neural networks,” in Proc. Int. Conf. World Wide Web, 2021, pp. 342–353.

[43] P. Elinas, E. V. Bonilla, and L. Tiao, “Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings,” in Proc. Adv. Neural
Info. Process. Syst., vol. 33, Virtual, Dec. 2020, pp. 18 648–18 660.

[44] B. Jiang, Z. Zhang, J. Tang, and B. Luo, “Graph optimized convolutional networks,”
ArXiv e-prints: arXiv 1904.11883, Apr. 2019.

[45] S. Wan, S. Pan, J. Yang, and C. Gong, “Contrastive and generative graph convolutional
networks for graph-based semi-supervised learning,” in Proc. AAAI Conf. Artificial

184

Intell., Virtual, Feb. 2021.

[46] G. U. Yule, “On a method of investigating periodicities in disturbed series, with special
reference to Wolfer’s sunspot numbers,” Philosophical Trans. Royal Soc. London. Ser.
A, vol. 226, pp. 267–298, Feb. 1927.

[47] S. Makridakis and M. Hibon, “ARMA models and the box-Jenkins methodology,” J.
Forecasting, vol. 16, no. 3, pp. 147–163, Jan. 1997.

[48] R. Sen, H.-F. Yu, and I. S. Dhillon, “Think globally, act locally: A deep neural
network approach to high-dimensional time series forecasting,” in Proc. Adv. Neural
Info. Process. Syst., Vancouver, Canada, Dec. 2019, pp. 4837–4846.

[49] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting,” in Proc. Int. Conf.
Learning Representations, Virtual, May 2020.

[50] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting,” in Proc. Int. Conf. Learning Representations,
Vancouver, Canada, May 2018.

[51] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph convolutional recurrent
network for traffic forecasting,” in Proc. Adv. Neural Info. Process. Syst., Virtual, Dec.
2020.

[52] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR: Probabilistic
forecasting with autoregressive recurrent networks,” Int. J. Forecasting, vol. 36, no. 3,
pp. 1181 – 1191, Sep. 2020.

[53] Y. Wang, A. Smola, D. Maddix, J. Gasthaus, D. Foster, and T. Januschowski, “Deep
factors for forecasting,” in Proc. Int. Conf. Machine Learning, Long Beach, California,
USA, Jun 2019.

[54] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski, “Deep state space models for time series forecasting,” in Proc. Adv.
Neural Info. Process. Syst., Montreal, Canada, Dec. 2018.

[55] Y. Li, S. Pal, and M. Coates, “Invertible particle flow-based sequential MCMC with
extension to Gaussian mixture noise models,” IEEE Trans. Signal Process., vol. 67,
no. 9, pp. 2499–2512, May 2019.

185

[56] Y. Zhang, S. Pal, M. Coates, and D. Üstebay, “Bayesian graph convolutional neural
networks for semi-supervised classification,” in Proc. AAAI Conf. Artificial Intell.,
Honolulu, HI, USA, Feb. 2019, pp. 5829–5836.

[57] S. Pal, S. Malekmohammadi, F. Regol, Y. Zhang, Y. Xu, and M. Coates, “Non-
parametric graph learning for Bayesian graph neural networks,” in Proc. Conf.
Uncertainty in Artificial Intell., Virtual, Aug. 2020.

[58] S. Pal, L. Ma, Y. Zhang, and M. Coates, “RNN with particle flow for probabilistic
spatio-temporal forecasting,” in Proc. Int. Conf. Machine Learning, Virtual, Jul. 2021.

[59] S. Pal and M. Coates, “Gaussian sum particle flow filter,” in Proc. IEEE Int. Workshop
Comput. Adv. Multi-Sensor Adaptive Process., Curacao, The Netherlands, Dec. 2017,
pp. 1–5.

[60] ——, “Particle flow particle filter for Gaussian mixture noise models,” in Proc. IEEE
Int. Conf. Acoust., Speech and Signal Process., Calgary, Canada, Apr. 2018, pp. 4249–
4253.

[61] Y. Li and M. Coates, “Sequential MCMC with invertible particle flow,” in Proc. IEEE
Int. Conf. Acoust., Speech and Signal Process., New Orleans, LA, USA, Mar. 2017.

[62] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on
graphs with fast localized spectral filtering,” in Proc. Adv. Neural Info. Process. Syst.,
Barcelona, Spain, Dec. 2016, pp. 3844–3852.

[63] D. Creal and R. Tsay, “High dimensional dynamic stochastic copula models,” J.
Econometrics, vol. 189, no. 2, pp. 335–345, Dec. 2015.

[64] R. E. Kalman, “A new approach to linear filtering and prediction problems,” J. Basic
Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960.

[65] G. Welch and G. Bishop, “An introduction to the Kalman filter,” Univ. North Carolina
Chapel Hill, USA, Tech. Rep., 1995.

[66] J. E. Handschin and D. Q. Mayne, “Monte carlo techniques to estimate the conditional
expectation in multi-stage non-linear filtering,” Int. J. Control, vol. 9, no. 5, pp. 547–
559, 1969.

[67] J. E. Handschin, “Monte carlo techniques for prediction and filtering of non-linear
stochastic processes,” Automatica, vol. 6, no. 4, pp. 555–563, Jul. 1970.

186

[68] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering methods
for practitioners,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 736–746, Mar. 2002.

[69] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing: Fifteen
years later,” in The Oxford Handbook of Nonlinear Filtering. Oxford, UK: Oxford
University Press, 2009, ch. 24, pp. 656–704.

[70] P. Bickel, B. Li, and T. Bengtsson, “Sharp failure rates for the bootstrap particle filter
in high dimensions,” in Pushing the limits of contemporary statist.: Contributions in
honor of Jayanta K. Ghosh. Institute of Mathematical Statist., May 2008, pp. 318–
329.

[71] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, ser. Monographs on
Statist. and Applied Probab. Boca Raton, Florida, USA: Chapman & Hall/CRC,
1993, no. 57.

[72] G. Kitagawa, “Monte-Carlo filter and smoother for non-Gaussian nonlinear state space
models,” J. Comput. and Graphical Statist., vol. 5, no. 1, pp. 1–25, Dec. 1996.

[73] D. Whitley, “A genetic algorithm tutorial,” Statist. and Comput., vol. 4, no. 2, pp.
65–85, Jun. 1994.

[74] J. Carpenter, P. Clifford, and P. Fearnhead, “An improved particle filter for non-linear
problems,” Proc. IEE Radar Sonar and Navigation, vol. 146, no. 1, pp. 2–7, Feb. 1999.

[75] H. Sangjin, P. Djuric, and M. Bolic, “Resampling algorithms for particle filters: A
computational complexity perspective,” EURASIP J. Adv. Signal Process., vol. 15, p.
2267–2277, Nov. 2004.

[76] R. Douc, O. Cappé, and E. Moulines, “Comparison of resampling schemes for particle
filtering,” in Proc. IEEE Int. Symposium on Image and Signal Process. and Analysis,
Zagreb, Croatia, Jul. 2005, pp. 64–69.

[77] J. D. Hol, T. B. Schön, and F. Gustafsson, “On resampling algorithms for particle
filters,” in Proc. IEEE Nonlinear Statist. Signal Process. Workshop, Cambridge, UK,
Sep. 2006, pp. 79–82.

[78] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle filtering:
classification, implementation, and strategies,” IEEE Signal Process. Magazine, vol. 32,
no. 3, pp. 70–86, May 2015.

187

[79] N. Chopin, “Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference,” Ann. Statist., vol. 32, no. 6, pp. 2385–2411, Dec.
2004.

[80] A. Kong, “A note on importance sampling using standardized weights,” Univ. Chicago,
Dept. Statist., USA, Tech. Rep. 348, Jul. 1992.

[81] A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and Bayesian missing
data problems,” J. Amer. Statist. Assoc., vol. 89, no. 425, pp. 278–288, Mar. 1994.

[82] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality revisited: Collapse of
the particle filter in very large scale systems,” in Probab. Statist.: Essays in Honor of
David A. Freedman. Beachwood, OH, USA: Institute of Mathematical Statist., Apr.
2008, vol. 2, pp. 316–334.

[83] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, “Obstacles to high-dimensional
particle filtering,” Mon. Weather Rev., vol. 136, no. 12, pp. 4629–4640, Dec. 2008.

[84] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods
for Bayesian filtering,” Stat. Comput., vol. 10, no. 3, pp. 197–208, Jul. 2000.

[85] J. Cornebise, É. Moulines, and J. Olsson, “Adaptive methods for sequential importance
sampling with application to state space models,” Statist. Comput., vol. 18, no. 4, pp.
461–480, Aug. 2008.

[86] S. S. Gu, Z. Ghahramani, and R. E. Turner, “Neural adaptive sequential Monte Carlo,”
in Proc. Adv. Neural Info. Process. Syst., vol. 28, Montreal, Canada, Dec. 2015, pp.
2629–2637.

[87] M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” J. Amer.
Statist. Assoc., vol. 94, no. 446, pp. 590–599, Jun. 1999.

[88] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan, “The unscented particle
filter,” in Proc. Adv. Neural Info. Process. Syst., Denver, CO, USA, Dec. 2000, pp.
584–590.

[89] A. Doucet, N. d. Freitas, K. P. Murphy, and S. J. Russell, “Rao-Blackwellised particle
filtering for dynamic Bayesian networks,” in Proc. Conf. Uncertainty in Artificial
Intell., San Francisco, CA, USA, Jul. 2000, pp. 176–183.

[90] M. Klaas, N. de Freitas, and A. Doucet, “Toward practical n2 Monte Carlo: the

188

marginal particle filter,” in Proc. Conf. Uncertainty in Artificial Intell., Edinburgh,
Scotland, Jul. 2005, pp. 308–315.

[91] P. J. van Leeuwen, “Nonlinear data assimilation for high-dimensional systems,” in
Nonlinear Data Assimilation. Switzerland: Springer, 2015, ch. 1, pp. 1–73.

[92] M. Ades and P. J. van Leeuwen, “The equivalent-weights particle filter in a high-
dimensional system,” Q. J. Royal Met. Soc., vol. 141, no. 1, pp. 484–503, Jan. 2015.

[93] A. Beskos, D. Crisan, A. Jasra, K. Kamatani, and Y. Zhou, “A stable particle filter
for a class of high-dimensional state-space models,” Adv. Appl. Probab., vol. 49, no. 1,
p. 24–48, Mar. 2017.

[94] W. R. Gilks and C. Berzuini, “Following a moving target–Monte Carlo inference for
dynamic Bayesian models,” J. R. Statist. Soc. B, vol. 63, no. 1, pp. 127–146, Jan. 2002.

[95] K. Kang, V. Maroulas, and I. D. Schizas, “Drift homotopy particle filter for non-
gaussian multi-target tracking,” in Proc. Int. Conf. Info. Fusion, Salamanca, Spain,
Jul. 2014, pp. 1–7.

[96] V. Maroulas and P. Stinis, “Improved particle filters for multi-target tracking,” J.
Comput. Phys., vol. 231, no. 2, pp. 602–611, Jan. 2012.

[97] V. Maroulas, K. Kang, I. D. Schizas, and M. W. Berry, “A learning drift homotopy
particle filter,” in Proc. Int. Conf. Info. Fusion, Washington, WA, USA, Jul. 2015, pp.
1930–1937.

[98] U. D. Hanebeck, K. Briechle, and A. Rauh, “Progressive Bayes: a new framework
for nonlinear state estimation,” in Proc. SPIE Multisensor, Multisource Info. Fusion:
Architectures, Algorithms, and Applications, vol. 5099, Orlando, FL, USA, Apr. 2003,
pp. 256–267.

[99] F. Daum and J. Huang, “Particle flow for nonlinear filters with log-homotopy,” in
Proc. SPIE Signal and Data Process. Small Targets, Orlando, FL, USA, Apr. 2008, p.
696918.

[100] F. Daum, J. Huang, A. Noushin, and M. Krichman, “Gradient estimation for particle
flow induced by log-homotopy for nonlinear filters,” in Proc. SPIE Conf. Signal
Process., Sensor Fusion, Target Recog., Orlando, FL, USA, Apr. 2009, p. 733602.

[101] F. Daum and J. Huang, “Exact particle flow for nonlinear filters: seventeen dubious

189

solutions to a first order linear underdetermined PDE,” in Proc. Asilomar Conf.
Signals, Syst. and Comput., Pacific Grove, CA, USA, Nov. 2010, pp. 64–71.

[102] F. Daum, J. Huang, and A. Noushin, “Coulomb’s law particle flow for nonlinear filters,”
in Proc. SPIE Conf. Signal Process., Sensor Fusion, Target Recog., San Diego, CA,
USA, Sep. 2011, p. 81370B.

[103] S. Choi, P. Willett, F. Daum, and J. Huang, “Discussion and application of the
homotopy filter,” in Proc. SPIE Conf. Signal Process., Sensor Fusion, Target Recog.,
Orlando, FL, USA, May 2011, p. 805021.

[104] F. Daum and J. Huang, “Small curvature particle flow for nonlinear filters,” in Proc.
SPIE Signal and Data Process. of Small Targets, Baltimore, MD, USA, May 2012, p.
83930A.

[105] T. Ding and M. J. Coates, “Implementation of the Daum-Huang exact-flow particle
filter,” in Proc. IEEE Statist. Signal Process. Workshop, Ann Arbor, MI, USA, Aug.
2012, pp. 257–260.

[106] F. Daum and J. Huang, “Particle flow with non-zero diffusion for nonlinear filters,”
in Proc. SPIE Conf. Signal Process., Sensor Fusion, Target Recog., Baltimore, MD,
USA, May 2013, p. 87450P.

[107] ——, “Renormalization group flow and other ideas inspired by physics for nonlinear
filters, Bayesian decisions, and transport,” in Proc. SPIE Conf. Signal Process., Sensor
Fusion, Target Recog., Baltimore, MD, USA, May 2014, p. 90910I.

[108] ——, “Seven dubious methods to mitigate stiffness in particle flow with non-zero
diffusion for nonlinear filters, Bayesian decisions, and transport,” in Proc. SPIE Conf.
Signal Process., Sensor Fusion, Target Recog., Baltimore, MD, USA, May 2014, p.
90920C.

[109] M. A. Khan and M. Ulmke, “Non-linear and non-Gaussian state estimation using log-
homotopy based particle flow filters,” in Proc. Sensor Data Fusion: Trends, Solutions,
Applications, Bonn, Germany, Oct. 2014, pp. 1–6.

[110] ——, “Improvements in the implementation of log-homotopy based particle flow
filters,” in Proc. Int. Conf. Info. Fusion, Washington, WA, USA, Jul. 2015, pp. 74–81.

[111] S. Mori, F. Daum, and J. Douglas, “Adaptive step size approach to homotopy-

190

based particle filtering Bayesian update,” in Proc. Int. Conf. Info. Fusion, Heidelbreg,
Germany, Jul. 2016, pp. 2035–2042.

[112] F. Daum, J. Huang, and A. Noushin, “Generalized Gromov method for stochastic
particle flow filters,” in Proc. SPIE Conf. Signal Process., Sensor Fusion, Target Recog.,
Anaheim, CA, USA, May 2017, p. 102000I.

[113] C. Kreucher and K. Bell, “A geodesic flow particle filter for non-thresholded
measurements,” in Proc. IEEE Radar Conf., Seattle, WA, USA, May 2017, pp. 0891–
0896.

[114] F. Daum, J. Huang, and A. Noushin, “New theory and numerical results for Gromov’s
method for stochastic particle flow filters,” in Proc. Int. Conf. Info. Fusion, Cambridge,
UK, Jul. 2018, pp. 108–115.

[115] K. C. Ward and K. J. DeMars, “Information-based particle flow for high uncertainty
estimation,” in Proc. AIAA Scitech Forum, Orlando, FL, USA, Jan. 2020.

[116] L. Dai and F. Daum, “A new parameterized family of stochastic particle flow filters,”
ArXiv e-prints: arXiv 2103.09676, Mar. 2021.

[117] ——, “Stiffness mitigation in stochastic particle flow filters,” ArXiv e-prints: arXiv
2107.04672, Jul. 2021.

[118] ——, “Stability and convergence of stochastic particle flow filters,” ArXiv e-prints:
arXiv 2108.05255, Aug. 2021.

[119] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear
systems,” in Proc. SPIE Conf. Signal Proc., Sensor Fusion, Target Recog., Orlando,
FL, USA, Apr. 1997, pp. 182 – 193.

[120] C. Villani, Optimal Transport: Old and New. Berlin, Germany: Springer, 2008.

[121] G. Evensen, “The ensemble Kalman filter: Theoretical formulation and practical
implementation,” Ocean Dynamics, vol. 53, no. 4, pp. 343–367, Nov. 2003.

[122] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based particle filtering for tracking a
variable number of interacting targets,” IEEE Trans. Pattern Analysis and Machine
Intell., vol. 27, no. 11, pp. 1805–1819, Nov. 2005.

[123] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction to MCMC
for machine learning,” Machine Learning, vol. 50, no. 1, pp. 5–43, Jan. 2003.

191

[124] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,”
Phys. Lett. B, vol. 195, no. 2, pp. 216 – 222, Sep. 1987.

[125] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of Markov Chain
Monte Carlo. Boca Raton, USA: Chapman and Hall/CRC, May 2011, ch. 5, pp.
113–162.

[126] G. O. Roberts and O. Stramer, “Langevin diffusions and Metropolis-Hastings
algorithms,” Method. Comput. Appl. Probab., vol. 4, pp. 337–357, Dec. 2002.

[127] A. Brockwell, P. D. Moral, and A. Doucet, “Sequentially interacting Markov chain
Monte Carlo methods,” Ann. Statist., vol. 38, no. 6, pp. 3387–3411, Nov. 2010.

[128] P. J. Rossky, J. D. Doll, and H. L. Friedman, “Brownian dynamics as smart Monte
Carlo simulation,” J. Chem. Phys., vol. 69, pp. 4628–4633, Jun. 1978.

[129] M. Girolami and B. Calderhead, “Riemann manifold Langevin and Hamiltonian Monte
Carlo methods,” J. R. Stat. Soc. B, vol. 73, no. 2, pp. 123–214, Mar. 2011.

[130] Y. Lecun and Y. Bengio, Convolutional Networks for Images, Speech and Time Series.
Cambridge, MA, USA: MIT Press, Jan. 1995, pp. 255–258.

[131] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proc. Adv. Neural Info. Process. Syst., Lake Tahoe,
NV, USA, Dec. 2012, p. 1097–1105.

[132] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proc. Natl. Acad. Sciences, USA, vol. 79, no. 8, pp. 2554–
2558, Apr. 1982.

[133] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comp., vol. 9,
p. 1735–1780, Nov. 1997.

[134] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” in Proc. Int. Conf. Learning Representations, San Juan, Puerto Rico, May
2016.

[135] R. Liao, M. Brockschmidt, D. Tarlow, A. L. Gaunt, R. Urtasun, and R. Zemel, “Graph
partition neural networks for semi-supervised classification,” ArXiv e-prints: arXiv
1803.06272, Mar. 2018.

[136] W. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large

192

graphs,” in Proc. Adv. Neural Info. Process. Syst., Long Beach, CA, USA, Dec. 2017,
pp. 1024–1034.

[137] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” in Proc. Int. Conf. Learning Representations, Banff,
Canada, Apr. 2014.

[138] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learning
molecular fingerprints,” in Proc. Adv. Neural Info. Process. Syst., Montreal, Canada,
Dec. 2015, pp. 2224–2232.

[139] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
in Proc. Int. Conf. Learning Representations, New Orleans, LA, USA, May 2019.

[140] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre,
F. Song, A. Ballard, J. Gilmer, G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston,
C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and
R. Pascanu, “Relational inductive biases, deep learning, and graph networks,” ArXiv
e-prints: arXiv 1806.01261, 2018.

[141] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on
graph neural networks,” IEEE Trans. Neural Networks and Learning Systems, vol. 32,
no. 1, pp. 4–24, Jan. 2021.

[142] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp.
57–81, Apr. 2021.

[143] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-structured
data,” ArXiv e-prints: arXiv 1506.05163, Jun. 2015.

[144] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE Signal Process. Magazine,
vol. 30, no. 3, pp. 83–98, May 2013.

[145] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets: Graph

193

convolutional neural networks with complex rational spectral filters,” IEEE Trans.
Signal Process., vol. 67, no. 1, pp. 997–109, Jan. 2019.

[146] A. Wijesinghe and Q. Wang, “DFNets: Spectral CNNs for graphs with feedback-looped
filters,” in Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada, Dec. 2019, pp.
6009–6020.

[147] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” in Proc. Adv.
Neural Info. Process. Syst., Barcelona, Spain, Dec. 2016.

[148] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model CNNs,” in
Proc. IEEE Conf. Comp. Vision and Pattern Recog., Honolulu, US, Jul. 2017.

[149] X. Bresson and T. Laurent, “Residual gated graph ConvNets,” ArXiv e-prints: arXiv
1711.07553, Nov. 2017.

[150] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent communication with
backpropagation,” in Proc. Adv. Neural Info. Process. Syst., Barcelona, Spain, Dec.
2016, pp. 2244–2252.

[151] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convolutional
neural networks on graphs,” in Proc. IEEE Conf. Comp. Vision and Pattern Recog.,
Honolulu, HI, USA, Jul. 2017.

[152] R. Anirudh and J. J. Thiagarajan, “Bootstrapping graph convolutional neural networks
for autism spectrum disorder classification,” in Proc. IEEE Int. Conf. Acoust., Speech
and Signal Process., Brighton, UK, May 2019, pp. 3197–3201.

[153] F. Petroski Such, S. Sah, M. Dominguez, S. Pillai, C. Zhang, A. Michael, N. Cahill,
and R. Ptucha, “Robust spatial filtering with graph convolutional neural networks,”
IEEE J. Sel. Topics Signal Process., vol. 11, no. 6, pp. 884–896, Sep. 2017.

[154] F. Monti, O. Shchur, A. Bojchevski, O. Litany, S. Günnemann, and M. M. Bronstein,
“Dual-primal graph convolutional networks,” ArXiv e-prints: arXiv 1806.00770, Jun.
2018.

[155] J. Chen, T. Ma, and C. Xiao, “FastGCN: fast learning with graph convolutional
networks via importance sampling,” in Proc. Int. Conf. Learning Representations,
Vancouver, Canada, May 2018.

194

[156] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolutional networks
with variance reduction,” in Proc. Int. Conf. Machine Learning, Stockholm, Sweden,
Jul. 2018.

[157] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling towards fast graph
representation learning,” in Proc. Adv. Neural Info. Process. Syst., Montreal, Canada,
Dec. 2018, p. 4563–4572.

[158] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, “Layer-dependent importance
sampling for training deep and large graph convolutional networks,” in Proc. Adv.
Neural Info. Process. Syst., Dec. 2019.

[159] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “GraphSAINT:
Graph sampling based inductive learning method,” in Proc. Int. Conf. Learning
Representations, Virtual, May 2020.

[160] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-GCN: An
efficient algorithm for training deep and large graph convolutional networks,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. & Data Mining, Aug. 2019.

[161] H. NT and T. Maehara, “Revisiting graph neural networks: All we have is low-pass
filters,” ArXiv e-prints: arXiv 1905.09550, May 2019.

[162] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka, “Representation
learning on graphs with jumping knowledge networks,” in Proc. Int. Conf. Machine
Learning, Stockholm, Sweden, Jul. 2018, pp. 5449–5458.

[163] Q. Li, Z. Han, and X. Wu, “Deeper insights into graph convolutional networks for
semi-supervised learning,” in Proc. AAAI Conf. Artificial Intelligence, S. A. McIlraith
and K. Q. Weinberger, Eds., New Orleans, LA, USA, Feb. 2018, pp. 3538–3545.

[164] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view,” in Proc.
AAAI Conf. Artificial Intelligence, New York, NY, USA, Feb. 2020.

[165] L.-P. Xhonneux, M. Qu, and J. Tang, “Continuous graph neural networks,” in Proc.
Int. Conf. Machine Learning, Virtual, Jul. 2020, pp. 10 432–10 441.

[166] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural
networks meet personalized pagerank,” in Proc. Int. Conf. Learning Representations,

195

New Orleans, LA, USA, May 2019.

[167] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. & Data Mining, virtual, Aug. 2020, p. 338–348.

[168] Y. Rong, W. Huang, T. Xu, and J. Huang, “DropEdge: Towards deep graph
convolutional networks on node classification,” in Proc. Int. Conf. Learning
Representations, Virtual, May 2020.

[169] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou, N. Duffield, K. Narayanan,
and X. Qian, “Bayesian graph neural networks with adaptive connection sampling,”
in Proc. Int. Conf. Machine Learning, Virtual, Jul. 2020, pp. 4094–4104.

[170] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high dimensional
data,” IEEE Trans. Pattern Analysis and Machine Intell., vol. 36, no. 11, pp. 2227–
2240, Nov. 2014.

[171] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, “High-dimensional
covariance estimation by minimizing `1-penalized log-determinant divergence,”
Electron. J. Statist., vol. 5, pp. 935–980, Nov. 2008.

[172] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Int. Conf. Artificial
Intell. and Statist., Cadiz, Spain, May 2016, pp. 920–929.

[173] E. Kolaczyk, Statistical Analysis of Network Data: Methods and Models. New York,
NY, USA: Springer, 2009.

[174] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for
generic similarity measures,” in Proc. Int. Conf. World Wide Web, Hyderabad, India,
Mar. 2011, p. 577–586.

[175] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs,” IEEE Trans. Pattern Analysis
and Machine Intell., vol. 42, no. 4, pp. 824–836, Apr. 2020.

[176] S. Hassan-Moghaddam, N. K. Dhingra, and M. R. Jovanović, “Topology identification
of undirected consensus networks via sparse inverse covariance estimation,” in IEEE
Conf. Decision and Control, Las Vegas, NV, USA, Dec. 2016, pp. 4624–4629.

[177] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under laplacian
and structural constraints,” IEEE J. Sel. Topics in Signal Process., vol. 11, no. 6, pp.

196

825–841, Sep. 2017.

[178] C. Hu, L. Cheng, J. Sepulcre, G. El Fakhri, Y. M. Lu, and Q. Li, “A graph theoretical
regression model for brain connectivity learning of Alzheimer’s disease,” in IEEE Int.
Symp. Biomed. Imaging, San Francisco, CA, USA, Apr. 2013, pp. 616–619.

[179] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix
in smooth graph signal representations,” IEEE Trans. Sig. Process., vol. 64, no. 23,
pp. 6160–6173, Dec. 2016.

[180] V. Kalofolias and N. Perraudin, “Large scale graph learning from smooth signals,” in
Proc. Int. Conf. Learning Representations, New Orleans, LA, USA, May 2019.

[181] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat diffusion graphs,”
IEEE Trans. Signal and Info. Process. over Networks, vol. 3, no. 3, pp. 484–499, Sep.
2017.

[182] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the dots:
Identifying network structure via graph signal processing,” IEEE Signal Process.
Magazine, vol. 36, pp. 16–43, May 2019.

[183] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada, Dec.
2001.

[184] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, “Graph
signal processing: Overview, challenges, and applications,” Proc. IEEE, vol. 106, no. 5,
pp. 808–828, Apr. 2018.

[185] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Rev.
Modern Phys., vol. 74, no. 1, p. 47–97, Jan. 2002.

[186] P. Erdös and A. Rényi, “On random graphs I,” Publicationes Mathematicae Debrecen,
vol. 6, p. 290, 1959.

[187] F. Caron and E. B. Fox, “Sparse graphs using exchangeable random measures,” J.
Royal Statist. Soc. Ser. B (Statist. Method.), vol. 79, no. 5, pp. 1295–1366, Sep. 2017.

[188] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, “Configuring random
graph models with fixed degree sequences,” SIAM Review, vol. 60, no. 2, pp. 315–355,
May 2018.

197

[189] G. Casiraghi, “Analytical formulation of the block-constrained configuration model,”
ArXiv e-prints: arXiv 1811.05337, Nov. 2018.

[190] M. Drobyshevskiy and D. Turdakov, “Random graph modeling: A survey of the
concepts,” ACM Comput. Surv., vol. 52, no. 6, pp. 1–36, Dec. 2019.

[191] B. Ball, B. Karrer, and M. E. J. Newman, “Efficient and principled method for
detecting communities in networks,” Phys. Rev. E, vol. 84, no. 3, p. 036103, Sep.
2011.

[192] H. Mahmoud, F. Masulli, S. Rovetta, and G. Russo, “Community detection in protein-
protein interaction networks using spectral and graph approaches,” in Proc. Int.
Meeting Comput. Intell. Methods for Bioinformatics and Biostatistics, Jul. 2014, pp.
62–75.

[193] K. He, Y. Li, S. Soundarajan, and J. E. Hopcroft, “Hidden community detection in
social networks,” Inform. Sci., vol. 425, pp. 92–106, Jan. 2018.

[194] M. E. J. Newman, “Modularity and community structure in networks,” Proc. Natl.
Acad. Sciences, USA, vol. 103, no. 23, pp. 8577–8582, Jun. 2006.

[195] K. Nowicki and T. A. B. Snijders, “Estimation and prediction for stochastic
blockstructures,” J. Amer. Statist. Assoc., vol. 96, no. 455, pp. 1077–1087, Sep. 2001.

[196] B. Karrer and M. E. Newman, “Stochastic blockmodels and community structure in
networks,” Physical review E, vol. 83, no. 1, p. 016107, 2011.

[197] T. P. Peixoto, “Bayesian stochastic blockmodeling,” ArXiv e-prints: arXiv 1705.10225,
Feb. 2017.

[198] E. Abbe, “Community detection and stochastic block models,” Found. and Trends
Commun. and Inform. Theory, vol. 14, no. 1-2, pp. 1–162, Jun. 2018.

[199] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership
stochastic blockmodels,” in Proc. Adv. Neural Inf. Process. Syst., Vancouver, Canada,
Dec. 2009, pp. 33–40.

[200] P. K. Gopalan, S. Gerrish, M. Freedman, D. Blei, and D. Mimno, “Scalable inference
of overlapping communities,” in Proc. Adv. Neural Info. Process. Syst., Lake Tahoe,
NV, USA, Dec. 2012.

[201] Y. Li, L. Zhao, and M. J. Coates, “Particle flow for particle filtering,” in Proc. IEEE

198

Int. Conf. Acoust., Speech and Signal Process., Shanghai, China, Mar. 2016.

[202] P. Latouche, E. Birmelé, and C. Ambroise, “Overlapping stochastic block models with
application to the french political blogosphere,” Ann. Applied Statist., vol. 5, Oct. 2009.

[203] K. T. Miller, T. L. Griffiths, and M. I. Jordan, “Nonparametric latent feature models
for link prediction,” in Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada,
Dec. 2009, p. 1276–1284.

[204] Y. Zhao, E. Levina, and J. Zhu, “Consistency of community detection in networks
under degree-corrected stochastic block models,” Ann. Statist, vol. 40, no. 4, pp. 2266–
2292, Aug. 2012.

[205] C. Gao, Z. Ma, A. Y. Zhang, and H. H. Zhou, “Community detection in degree-
corrected block models,” Ann. Statist., vol. 46, no. 5, pp. 2153–2185, Oct. 2018.

[206] A. A. Amini, A. Chen, P. J. Bickel, and E. Levina, “Pseudo-likelihood methods for
community detection in large sparse networks,” Ann. Statist., vol. 41, no. 4, pp. 2097–
2122, 2013.

[207] L. Peng and L. Carvalho, “Bayesian degree-corrected stochastic blockmodels for
community detection,” Electron. J. Statist., vol. 10, no. 2, pp. 2746–2779, Sep. 2016.

[208] S. Pal and M. Coates, “Scalable MCMC in degree corrected stochastic block models,”
in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., Brighton, UK, May
2019, pp. 5461–5465.

[209] K. Bringmann, R. Keusch, and J. Lengler, “Geometric inhomogeneous random graphs,”
Theoretical Comput. Science, vol. 760, pp. 35–54, Feb. 2019.

[210] V. Veitch and D. M. Roy, “The class of random graphs arising from exchangeable
random measures,” ArXiv e-prints: arXiv 1512.03099, Dec. 2015.

[211] F. Regol, S. Pal, J. Sun, Y. Zhang, Y. Geng, and M. Coates, “Node copying: A random
graph model for effective graph sampling,” Signal Process., vol. 192, p. 108335, Mar.
2022.

[212] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially regularized
graph autoencoder for graph embedding,” in Proc. Int. Joint Conf. Artificial Intell.,
Stockholm, Sweden, Jul. 2018, pp. 2609–2615.

[213] N. Mehta, L. C. Duke, and P. Rai, “Stochastic blockmodels meet graph neural

199

networks,” in Proc. Int. Conf. Machine Learning, Long Beach, CA, USA, Jun. 2019,
pp. 4466–4474.

[214] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo,
“GraphGAN: Graph representation learning with generative adversarial nets,” in Proc.
AAAI Conf. Artificial Intell., San Francisco, CA, USA, Feb. 2017, pp. 2508–2515.

[215] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “NetGAN: Generating
graphs via random walks,” in Proc. Int. Conf. Machine Learning, Stockholm, Sweden,
Jul. 2018, pp. 609–618.

[216] M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation of small graphs
using variational autoencoders,” in Proc. Int. Conf. Artificial Neural Networks, Rhodes,
Greece, Oct. 2018, pp. 412–422.

[217] T. Ma, J. Chen, and C. Xiao, “Constrained generation of semantically valid graphs
via regularizing variational autoencoders,” in Proc. Adv. Neural Info. Process. Syst.,
Montreal, Canada, Dec. 2018, pp. 7113–7124.

[218] N. De Cao and T. Kipf, “MolGAN: An implicit generative model for small molecular
graphs,” in Proc. Workshop Theoretical Foundations and Applications of Deep
Generative Models, Int. Conf. Machine Learning, Stockholm, Sweden, Jul. 2018.

[219] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. W. Battaglia, “Learning deep generative
models of graphs,” ArXiv e-prints: arXiv 1803.03324, Mar. 2018.

[220] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. J. Swersky, “Graph normalizing flows,”
in Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada, Dec. 2019, pp. 13 578–
13 588.

[221] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “GraphRNN: Generating
realistic graphs with deep auto-regressive models,” in Proc. Int. Conf. Machine
Learning, Stockholm, Sweden, Jul. 2018, pp. 5708–5717.

[222] R. Liao, Y. Li, Y. Song, S. Wang, C. Nash, W. L. Hamilton, D. Duvenaud, R. Urtasun,
and R. S. Zemel, “Efficient graph generation with graph recurrent attention networks,”
in Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada, Dec. 2019, pp. 4255–
4265.

[223] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal

200

dependencies in high-dimensional sequences: Application to polyphonic music
generation and transcription,” in Proc. Int. Conf. Machine Learning, Edinburgh, UK,
Jul. 2012, p. 1881–1888.

[224] J. Bayer and C. Osendorfer, “Learning stochastic recurrent networks,” ArXiv e-prints:
arXiv 1411.7610, Nov. 2014.

[225] T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood, “Auto-encoding sequential Monte
Carlo,” in Proc. Int. Conf. Learning Representations, Vancouver, Canada, May 2018.

[226] C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet,
and Y. W. Teh, “Filtering variational objectives,” in Proc. Adv. Neural Info. Process.
Syst., Long Beach, CA, USA, Dec. 2017.

[227] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei, “Variational sequential Monte
Carlo,” in Proc. Int. Conf. Artificial Intell. and Statist., Lanzarote, Canary Islands,
Apr. 2018, pp. 968–977.

[228] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series Analysis:
Forecasting and Control, 5th ed. Hoboken, NJ, USA: John Wiley & Sons, 2015.

[229] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed.
Melbourne, Australia: OTexts, 2018.

[230] J. D. Hamilton, Time Series Analysis, 1st ed. Princeton University Press, Jan. 1994.

[231] S. J. Taylor and B. Letham, “Forecasting at scale,” The Amer. Statist., vol. 72, no. 1,
pp. 37–45, Apr. 2018.

[232] F. R. Bach and M. I. Jordan, “Learning graphical models for stationary time series,”
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2189–2199, Aug 2004.

[233] J. Songsiri and L. Vandenberghe, “Topology selection in graphical models of
autoregressive processes,” J. Machine Learning Research, vol. 11, p. 2671–2705, Dec.
2010.

[234] A. Bolstad, B. D. Van Veen, and R. Nowak, “Causal network inference via group sparse
regularization,” IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2628–2641, Jun. 2011.

[235] J. Mei and J. M. F. Moura, “Signal processing on graphs: Causal modeling of
unstructured data,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 2077–2092, Apr.
2017.

201

[236] E. Isufi, A. Loukas, N. Perraudin, and G. Leus, “Forecasting time series with VARMA
recursions on graphs,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4870–4885,
Jul. 2019.

[237] N. Lim, F. d’Alché Buc, C. Auliac, and G. Michailidis, “Operator-valued kernel-based
vector autoregressive models for network inference,” Machine Learning, vol. 99, no. 3,
pp. 489–513, Dec. 2014.

[238] Y. Shen, G. B. Giannakis, and B. Baingana, “Nonlinear structural vector autoregressive
models with application to directed brain networks,” IEEE Trans. Signal Process.,
vol. 67, no. 20, pp. 5325–5339, Oct. 2019.

[239] W. Bao, J. Yue, and Y. Rao, “A deep learning framework for financial time series
using stacked autoencoders and long-short term memory,” PloS One, vol. 12, no. 7,
Jul. 2017.

[240] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term temporal
patterns with deep neural networks,” in Proc. ACM SIGIR Int. Conf. Research &
Development in Info. Retrieval, Ann Arbor, MI, USA, Jul. 2018, pp. 95–104.

[241] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell, “A dual-stage
attention-based recurrent neural network for time series prediction,” in Proc. Int. Joint
Conf. Artificial Intell., Melbourne, Australia, Aug. 2017.

[242] Y.-Y. Chang, F.-Y. Sun, Y.-H. Wu, and S.-D. Lin, “A memory-network based solution
for multivariate time-series forecasting,” ArXiv e-prints: arXiv 1809.02105, Sep. 2018.

[243] T. Guo and T. Lin, “Multi-variable LSTM neural network for autoregressive exogenous
model,” ArXiv e-prints: arXiv 1806.06384, Jun. 2018.

[244] L. Munkhdalai, T. Munkhdalai, K. H. Park, T. Amarbayasgalan, E. Erdenebaatar,
H. W. Park, and K. H. Ryu, “An end-to-end adaptive input selection with dynamic
weights for forecasting multivariate time series,” IEEE Access, vol. 7, pp. 99 099–99 114,
Jul. 2019.

[245] F. Liu, Y. Lu, and M. Cai, “A hybrid method with adaptive sub-series clustering and
attention-based stacked residual LSTMs for multivariate time series forecasting,” IEEE
Access, vol. 8, pp. 62 423–62 438, Mar. 2020.

[246] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularized matrix factorization for

202

high-dimensional time series prediction,” in Proc. Adv. Neural Info. Process. Syst.,
Barcelona, Spain, Dec. 2016, p. 847–855.

[247] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[248] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211,
Jun. 1990.

[249] B. Kosko, “Bidirectional associative memories,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 18, no. 1, pp. 49–60, Feb. 1988.

[250] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical
machine translation,” ArXiv e-prints: arXiv 1406.1078, Sep. 2014.

[251] A. Graves, “Generating sequences with recurrent neural networks,” ArXiv e-prints:
arXiv 1308.0850, Aug. 2013.

[252] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet: A generative model
for raw audio,” ArXiv e-prints: arXiv 1609.03499, Sep. 2016.

[253] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra, “DRAW: A recurrent
neural network for image generation,” in Proc. Int. Conf. Machine Learning, Lille,
France, Jul. 2015, pp. 1462–1471.

[254] S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting,” Int. J. Forecasting, vol. 36, no. 1, pp. 75 – 85, Mar. 2020.

[255] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 157–166, Mar.
1994.

[256] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural
networks,” in Proc. Int. Conf. Machine Learning, Atlanta, GA, USA, Jun. 2013, pp.
1310–1318.

[257] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of
deep networks,” in Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada, Dec.
2007, p. 153–160.

203

[258] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Info. Process.
Syst., Long Beach, CA, USA, Dec. 2017.

[259] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: A noise-assisted
data analysis method,” Adv. Adaptive Data Analysis, vol. 01, no. 01, pp. 1–41, 2009.

[260] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in Proc. Kernel
workshop, Annual Conf. Learning Theory, Washington, WA, USA, Aug. 2003, pp.
144–158.

[261] Z. Chen and A. Cichocki, “Nonnegative matrix factorization with temporal smoothness
and/or spatial decorrelation constraints,” Laboratory for Advanced Brain Signal
Processing, RIKEN Brain Science Institute, Wako-shi, Japan, Tech. Rep. 68, 2005.

[262] M. Roughan, Y. Zhang, W. Willinger, and L. Qiu, “Spatio-temporal compressive
sensing and internet traffic matrices (extended version),” IEEE/ACM Trans.
Networking, vol. 20, no. 3, pp. 662–676, Jun. 2012.

[263] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in
Proc. Int. Conf. Learning Representations, San Juan, Puerto Rico, May 2016.

[264] R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka, “A multi-horizon quantile
recurrent forecaster,” ArXiv e-prints: arXiv 1711.11053, Jun. 2017.

[265] D. Salinas, M. Bohlke-Schneider, L. Callot, R. Medico, and J. Gasthaus, “High-
dimensional multivariate forecasting with low-rank Gaussian copula processes,” in
Proc. Adv. Neural Info. Process. Syst., Vancouver, Canada, Dec. 2019.

[266] R. Kurle, S. S. Rangapuram, E. de Bézenac, S. Günnemann, and J. Gasthaus, “Deep
Rao-Blackwellised particle filters for time series forecasting,” in Proc. Adv. Neural Info.
Process. Syst., Virtual, Dec. 2020.

[267] I. Kobyzev, S. Prince, and M. Brubaker, “Normalizing flows: An introduction and
review of current methods,” IEEE Trans. Pattern Analysis and Machine Intell., vol. 43,
no. 11, pp. 3964–3979, Nov. 2020.

[268] E. de Bézenac, S. S. Rangapuram, K. Benidis, M. Bohlke-Schneider, R. Kurle,
L. Stella, H. Hasson, P. Gallinari, and T. Januschowski, “Normalizing Kalman filters
for multivariate time series analysis,” in Proc. Adv. Neural Info. Process. Syst., Virtual,

204

Dec. 2020.

[269] K. Rasul, A.-S. Sheikh, I. Schuster, U. Bergmann, and R. Vollgraf, “Multivariate
probabilistic time series forecasting via conditioned normalizing flows,” in Proc. Int.
Conf. Learning Representations, Virtual, May 2021.

[270] L. Li, J. Yan, X. Yang, and Y. Jin, “Learning interpretable deep state space model for
probabilistic time series forecasting,” in Proc. Int. Joint Conf. Artificial Intell., Macao,
China, Aug. 2019, pp. 2901–2908.

[271] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, “Ladder
variational autoencoders,” in Proc. Adv. Neural Info. Process. Syst., Barcelona, Spain,
Dec. 2016, p. 3745–3753.

[272] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,” in
Proc. Int. Conf. Learning Representations, Toulon, France, Apr. 2017.

[273] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive flow for density
estimation,” in Proc. Adv. Neural Info. Process. Syst., Long Beach, CA, USA, Dec.
2017, p. 2335–2344.

[274] M. Kumar, M. Babaeizadeh, D. Erhan, C. Finn, S. Levine, L. Dinh, and D. Kingma,
“VideoFlow: A conditional flow-based model for stochastic video generation,” in Proc.
Int. Conf. Learning Representations, Virtual, May 2020.

[275] D. Gammelli and F. Rodrigues, “Recurrent flow networks: A recurrent latent variable
model for spatio-temporal density modelling,” ArXiv e-prints: arXiv 2006.05256, Jun.
2020.

[276] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting,” in Proc. Int. Joint Conf. Artificial Intell.,
Stockholm, Sweden, Jul. 2018.

[277] Q. Zhang, J. Chang, G. Meng, S. Xiang, and C. Pan, “Spatio-temporal graph structure
learning for traffic forecasting,” in Proc. AAAI Conf. Artificial Intell., New York, NY,
USA, Feb. 2020, pp. 1177–1185.

[278] B. N. Oreshkin, A. Amini, L. Coyle, and M. J. Coates, “FC-GAGA: Fully Connected
Gated Graph Architecture for spatio-temporal traffic forecasting,” in Proc. AAAI Conf.
Artificial Intell., Virtual, Feb. 2021.

205

[279] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” in Proc. Int. Conf. Machine Learning, Sydney,
Australia, Aug. 2017, p. 1243–1252.

[280] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-GCN:
A temporal graph convolutional network for traffic prediction,” ArXiv e-prints: arXiv
1811.05320, Nov. 2018.

[281] R. Zhao, K. Wang, H. Su, and Q. Ji, “Bayesian graph convolution LSTM for skeleton
based action recognition,” in Proc. IEEE/CVF Int. Conf. Comp. Vision, Seoul, Korea,
Oct. 2019.

[282] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional recurrent
neural network: A deep learning framework for network-scale traffic learning and
forecasting,” IEEE Trans. Intell. Transport. Syst., vol. 21, no. 11, pp. 4883–4894,
Nov. 2020.

[283] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence
prediction with recurrent neural networks,” in Proc. Adv. Neural Info. Process. Syst.,
Montreal, Canada, Dec. 2015, p. 1171–1179.

[284] Y. Huang, Y. Weng, S. Yu, and X. Chen, “Diffusion convolutional recurrent neural
network with rank influence learning for traffic forecasting,” in Proc. IEEE Int. Conf.
Big Data Science and Engineering, Rotorua, New Zealand, Aug 2019, pp. 678–685.

[285] C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng, “Gated residual
recurrent graph neural networks for traffic prediction,” in Proc. AAAI Conf. Artificial
Intell., Honolulu, HI, USA, Feb. 2019, pp. 485–492.

[286] R. Huang, C. Huang, Y. Liu, G. Dai, and W. Kong, “LSGCN: Long short-term traffic
prediction with graph convolutional networks,” in Proc. Int. Joint Conf. Artificial
Intell., Virtual, Jan. 2021, pp. 2355–2361.

[287] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph WaveNet for deep spatial-
temporal graph modeling,” in Proc. Int. Joint Conf. Artificial Intell., Macao, China,
Aug. 2019, pp. 1907–1913.

[288] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting the
dots: Multivariate time series forecasting with graph neural networks,” in Proc. ACM

206

SIGKDD Int. Conf. Knowl. Disc. Data Mining, Virtual, Aug. 2020, pp. 753–763.

[289] B. Yu, M. Li, J. Zhang, and Z. Zhu, “3D graph convolutional networks with temporal
graphs: A spatial information free framework for traffic forecasting,” ArXiv e-prints:
arXiv 1903.00919, Mar. 2019.

[290] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining, Seattle, WA,
USA, Jul. 1994, p. 359–370.

[291] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic spatial-temporal
graph convolutional neural networks for traffic forecasting,” in Proc. AAAI Conf.
Artificial Intell., Honolulu, HI, USA, Feb. 2019, pp. 890–897.

[292] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data
forecasting,” in Proc. AAAI Conf. Artificial Intell., New York, NY, USA, Feb. 2020,
pp. 914–921.

[293] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-temporal graph
convolutional networks for traffic flow forecasting,” in Proc. AAAI Conf. Artificial
Intell., Honolulu, HI, USA, Feb. 2019.

[294] L. Bai, L. Yao, S. Kanhere, X. Wang, and Q. Sheng, “STG2Seq: Spatial-temporal
graph to sequence model for multi-step passenger demand forecasting,” in Proc. Int.
Joint Conf. Artificial Intell., Macao, China, Aug. 2019, pp. 1981–1987.

[295] C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A Graph Multi-Attention Network
for Traffic Prediction,” in Proc. AAAI Conf. Artificial Intell., New York, NY, USA,
Feb. 2020.

[296] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining, San Francisco, CA, USA, Aug.
2016, p. 855–864.

[297] X. Shi, H. Qi, Y. Shen, G. Wu, and B. Yin, “A spatial-temporal attention approach
for traffic prediction,” IEEE Trans. Intell. Transport. Syst., pp. 1–10, Apr. 2020.

[298] C. Park, C. Lee, H. Bahng, T. won, K. Kim, S. Jin, S. Ko, and J. Choo, “ST-GRAT: A
spatio-temporal graph attention network for traffic forecasting,” in Proc. AAAI Conf.

207

Artificial Intell., New York, NY, USA, Feb. 2020.

[299] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding,” in Proc. Int. Conf. World Wide Web, Florence, Italy,
May 2015, pp. 1067–1077.

[300] M. Xu, W. Dai, C. Liu, X. Gao, W. Lin, G.-J. Qi, and H. Xiong, “Spatial-temporal
transformer networks for traffic flow forecasting,” ArXiv e-prints: arXiv 2001.02908,
Jan. 2020.

[301] B. Yu, H. Yin, and Z. Zhu, “ST-UNet: A spatio-temporal U-network for graph-
structured time series modeling,” ArXiv e-prints: arXiv 1903.05631, Mar. 2019.

[302] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Proc. Medical Image Computing and Computer-
Assisted Intervention, Munich, Germany, Oct. 2015, pp. 234–241.

[303] G. E. Hinton and T. J. Sejnowski, “Optimal perceptual inference,” in Proc. IEEE
Conf. Comp. Vision and Pattern Recog., Washington, WA, USA, Jun. 1983.

[304] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, “A recurrent
latent variable model for sequential data,” in Proc. Adv. Neural Info. Process. Syst.,
Montreal, Canada, Dec. 2015, pp. 2980–2988.

[305] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc. Int. Conf.
Learning Representations, Banff, Canada, Apr. 2014.

[306] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther, “Sequential neural models
with stochastic layers,” ArXiv e-prints: arXiv 1605.07571, May 2016.

[307] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled recognition
and nonlinear dynamics model for unsupervised learning,” in Proc. Adv. Neural Info.
Process. Syst., Long Beach, CA, USA, Dec. 2017.

[308] M. Karl, M. Soelch, J. Bayer, and P. Van der Smagt, “Deep variational Bayes filters:
Unsupervised learning of state space models from raw data,” in Proc. Int. Conf.
Learning Representations, Toulon, France, Apr. 2017.

[309] C. L. C. Mattos, Z. Dai, A. Damianou, J. Forth, G. A. Barreto, and N. D. Lawrence,
“Recurrent Gaussian processes,” in Proc. Int. Conf. Learning Representations, San
Juan, Puerto Rico, May 2016.

208

[310] A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint,
and S. Trimpe, “Probabilistic recurrent state-space models,” ArXiv e-prints: arXiv
1801.10395, Jan. 2018.

[311] T. B. Schön, A. Wills, and B. Ninness, “System identification of nonlinear state-space
models,” Automatica, vol. 47, no. 1, pp. 39–49, Jan. 2011.

[312] G. Poyiadjis, A. Doucet, and S. S. Singh, “Particle approximations of the score and
observed information matrix in state space models with application to parameter
estimation,” Biometrika, vol. 98, no. 1, pp. 65–80, Feb. 2011.

[313] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov Chain Monte Carlo
methods,” J. Royal Statist. Soc. Ser. B (Statist. Method.), vol. 72, no. 3, pp. 269–
342, May 2010.

[314] C. M. Bishop, “Mixture density networks,” Dept. Comp. Science and Appl. Math.,
Aston Univ., UK, Tech. Rep. 004, Feb. 1994.

[315] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,” in
Proc. Int. Conf. Learning Representations, San Juan, Puerto Rico, May 2016.

[316] X. Zheng, M. Zaheer, A. Ahmed, Y. Wang, E. P. Xing, and A. J. Smola, “State space
LSTM models with particle MCMC inference,” ArXiv e-prints: arxiv 1711.11179, Nov.
2017.

[317] P. Karkus, D. Hsu, and W. S. Lee, “Particle filter networks with application to visual
localization,” in Proc. Conf. Robot Learning, Zurich, Switzerland, Oct. 2018, pp. 169–
178.

[318] X. Ma, P. Karkus, D. Hsu, and W. S. Lee, “Particle filter recurrent neural networks,”
in Proc. AAAI Conf. Artificial Intell., New York, NY, USA, Feb. 2020, pp. 5101–5108.

[319] J. S. Denker and Y. Lecun, “Transforming neural-net output levels to probability
distributions,” in Proc. Adv. Neural Inf. Process. Syst., Denver, CO, USA, Dec. 1991.

[320] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation for scalable
learning of Bayesian neural networks,” in Proc. Int. Conf. Machine Learning, Lille,
France, Jul. 2015, pp. 1861–1869.

[321] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning,” in Proc. Int. Conf. Machine Learning, New York,

209

NY, USA, Jun. 2016, pp. 1050–1059.

[322] S. Sun, C. Chen, and L. Carin, “Learning structured weight uncertainty in Bayesian
neural networks,” in Proc. Int. Conf. Artificial Intell. and Statist., Ft. Lauderdale, FL,
USA, Apr. 2017, pp. 1283–1292.

[323] C. Louizos and M. Welling, “Multiplicative normalizing flows for variational Bayesian
neural networks,” in Proc. Int. Conf. Machine Learning, Sydney, Australia, Aug. 2017,
pp. 2218–2227.

[324] A. Korattikara, V. Rathod, K. Murphy, and M. Welling, “Bayesian dark knowledge,”
in Proc. Adv. Neural Info. Process. Syst., Montreal, Canada, Dec. 2015.

[325] C. Li, C. Chen, D. Carlson, and L. Carin, “Pre-conditioned stochastic gradient
Langevin dynamics for deep neural networks,” in Proc. AAAI Conf. Artificial Intell.,
Phoenix, ARI, USA, Feb. 2016, p. 1788–1794.

[326] W. Li, S. Ahn, and M. Welling, “Scalable MCMC for mixed membership stochastic
blockmodels,” in Proc. Int. Conf. Artificial Intell. and Statist., Cadiz, Spain, May
2016, pp. 723–731.

[327] D. J. C. MacKay, Maximum entropy and Bayesian methods. Springer Netherlands,
1996, ch. Hyperparameters: Optimize, or Integrate Out?, pp. 43–59.

[328] S. Patterson and Y. W. Teh, “Stochastic gradient Riemannian Langevin dynamics on
the probability simplex,” in Proc. Adv. Neural Info. Process. Syst., Lake Tahoe, NV,
USA, Dec. 2013.

[329] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI Magazine, vol. 29, no. 3, p. 93, Sep. 2008.

[330] G. Namata, B. London, L. Getoor, and B. Huang, “Query-driven active surveying for
collective classification,” in Proc. Workshop on Mining and Learning with Graphs, Int.
Conf. Machine Learning, Edinburgh, Scotland, Jun. 2012.

[331] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised learning
with graph embeddings,” in Proc. Int Conf. Machine Learning, New York, NY, USA,
Jun. 2016, p. 40–48.

[332] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in Proc. Int. Conf. Learning Representations, San Diego, CA, USA, May

210

2015.

[333] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural
networks for graph data,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data
Mining, London, UK, Aug. 2018.

[334] L. Tang and H. Liu, “Leveraging social media networks for classification,” Data Mining
and Knowl. Disc., pp. 447–478, Jan. 2011.

[335] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social
representations,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining, New
York, New York, USA, Aug. 2014, pp. 701–710.

[336] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and
estimation,” J. Amer. Statist. Assoc., vol. 102, no. 477, pp. 359–378, Mar. 2007.

[337] C. Chen, K. Petty, and A. Skabardonis, “Freeway performance measurement system:
Mining loop detector data,” Transport. Research Record, vol. 1748, Jan. 2000.

[338] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[339] W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, and X. Feng, “Multi-range attentive
bicomponent graph convolutional network for traffic forecasting,” in Proc. AAAI Conf.
Artificial Intell., New York, NY, USA, Feb. 2020, pp. 3529–3536.

[340] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban traffic prediction
from spatio-temporal data using deep meta learning,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Disc. Data Mining, Anchorage, AK, USA, Aug. 2019, p. 1720–1730.

[341] W. Chun-Hsin, H. Jan-Ming, and L. D. T., “Travel-time prediction with support vector
regression,” IEEE Trans. Intell. Transport. Syst., vol. 5, no. 4, pp. 276–281, Dec. 2004.

[342] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proc. Adv. Neural Info. Process. Syst., Dec. 2014, pp. 3104–3112.

[343] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” in Proc. Workshop on Deep
Learning, Adv. Neural Info. Process. Syst., Montreal, Canada, Dec. 2014.

[344] A. Finke, A. Doucet, and A. M. Johansen, “Limit theorems for sequential MCMC
methods,” Adv. Applied Probab., vol. 52, no. 2, p. 377–403, Jul. 2020.

211

http://archive.ics.uci.edu/ml

[345] C. Fantacci, B. Vo, B. Vo, G. Battistelli, and L. Chisci, “Robust fusion for multisensor
multiobject tracking,” IEEE Signal Process. Lett., vol. 25, no. 5, pp. 640–644, May
2018.

[346] T. Brehard and V. Krishnamurthy, “Optimal data incest removal in Bayesian
decentralized estimation over a sensor network,” in Proc. IEEE Int. Conf. Acoust.,
Speech and Signal Process., vol. 3, Honolulu, Hawaii, USA, Apr. 2007, pp. III–173–III–
176.

[347] J. Liu, I. Nevat, P. Zhang, and G. W. Peters, “Multimodal data fusion in sensor
networks via copula processes,” in Proc. IEEE Wireless Comm. Networking Conf.,
San Francisco, CA, USA, Mar. 2017, pp. 1–6.

[348] S. Pal and M. Coates, “Particle flow particle filter using Gromov’s method,” in Proc.
IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process., Guadeloupe, West
Indies, Dec. 2019.

[349] M. Ottobre, “Markov Chain Monte Carlo and irreversibility,” Reports on Math.
Physics, vol. 77, no. 3, pp. 267–292, Jun. 2016.

[350] A. Bouchard-Côté, S. J. Vollmer, and A. Doucet, “The bouncy particle sampler: A
non-reversible rejection-free Markov chain Monte Carlo method,” J. Amer. Statist.
Assoc., vol. 113, no. 522, pp. 855–867, Jun. 2018.

[351] C. Sherlock and A. H. Thiery, “A discrete bouncy particle sampler,” ArXiv e-prints:
arXiv 1707.05200, Jul. 2017.

[352] P. Fearnhead, J. Bierkens, M. Pollock, and G. O. Roberts, “Piecewise deterministic
Markov processes for continuous-time Monte Carlo,” Statist. Science, vol. 33, no. 3,
pp. 386–412, Aug. 2018.

[353] J. Bierkens, P. Fearnhead, and G. Roberts, “The zig-zag process and super-efficient
sampling for Bayesian analysis of big data,” Ann. Statist., vol. 47, no. 3, pp. 1288–1320,
Jun. 2019.

[354] S. Pal and M. Coates, “Sequential MCMC with the discrete bouncy particle sampler,”
in Proc. IEEE Statist. Signal Process. Workshop, Freiburg, Germany, Jun. 2018, pp.
663–667.

[355] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, “Underdamped Langevin

212

MCMC: A non-asymptotic analysis,” in Proc. Conf. Learning Theory, vol. 75, Jul.
2018, pp. 300–323.

[356] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-GCN: Geometric graph
convolutional networks,” in Proc. Int. Conf. Learning Representations, Virtual, Apr.
2020.

[357] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “DyRep: Learning representations
over dynamic graphs,” in Proc. Int. Conf. Learning Representations, New Orleans, LA,
USA, May 2019.

[358] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,
T. Schardl, and C. Leiserson, “EvolveGCN: Evolving graph convolutional networks for
dynamic graphs,” in Proc. AAAI Conf. Artificial Intell., New York, NY, USA, Feb.
2020, pp. 5363–5370.

[359] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein,
“Temporal graph networks for deep learning on dynamic graphs,” ArXiv e-prints:
arXiv 2006.10637, Jun. 2020.

[360] J. Sun, W. Guo, D. Zhang, Y. Zhang, F. Regol, Y. Hu, H. Guo, R. Tang, H. Yuan,
X. He, and M. Coates, “A framework for recommending accurate and diverse items
using Bayesian graph convolutional neural networks,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. & Data Mining, Virtual, Aug. 2020, p. 2030–2039.

[361] S. Pal, A. Valkanas, F. Regol, and M. Coates, “Bag graph: Multiple instance learning
using Bayesian graph neural networks,” in Proc. AAAI Conf. Artificial Intell., Virtual,
Feb. 2022.

[362] J. Fu, W. Zhou, and Z. Chen, “Bayesian Spatio-Temporal Graph Convolutional
Network for Traffic Forecasting,” ArXiv e-prints: arXiv 2010.07498, Oct. 2020.

[363] A. Corenflos, J. Thornton, G. Deligiannidis, and A. Doucet, “Differentiable particle
filtering via entropy-regularized optimal transport,” in Proc. Int. Conf. Machine
Learning, Virtual, Jul. 2021.

[364] A. Ścibior and F. Wood, “Differentiable particle filtering without modifying the forward
pass,” ArXiv e-prints: arXiv 2106.10314, Jun. 2021.

[365] L. Tierney, “Markov chains for exploring posterior distributions,” Ann. Statist., vol. 22,

213

no. 4, pp. 1701–1728, Dec. 1994.

214

	Abstract
	Acknowledgements
	List of Acronyms
	Introduction
	Thesis Organization and Contributions
	Publications and Contributions of Collaborators

	Background Material and Literature Review
	Sequential Inference Techniques
	Hidden Markov Models
	Kalman Filter
	Extended Kalman Filter
	Gaussian Sum Filter
	Particle Filter
	Particle Flow
	Particle Flow Particle Filter
	Sequential Markov Chain Monte Carlo
	SMCMC with Invertible Particle Flow

	Graph Neural Networks and Graph Generative Models
	Graph Neural Networks
	Graph Convolutional Networks
	Topology Uncertainty in Graph Neural Networks
	Learning a Graph from Observed Data
	Parametric Random Graph Models
	Machine Learning Based Graph Models

	Time-Series Forecasting
	Statistical Forecasting Models
	Deep Learning Based Point Forecasting Models
	Deep Learning Based Probabilistic Forecasting Models
	Spatio-Temporal Forecasting Models
	Stochastic RNNs and Parameter Inference in State-Space Models

	Summary

	Sequential Inference in Presence of Gaussian Mixture Noise Models
	Introduction
	Problem Statement
	Particle Flow for GMM Noises
	Particle Flow Particle Filter for GMM Noises
	SmHMC with LEDH for GMM Noises
	Numerical Experiments and Results
	Linear Model with GMM Noises
	Nonlinear Model with GMM Noises

	Summary

	Bayesian Graph Convolutional Neural Networks
	Introduction
	Graph Convolutional Networks
	Bayesian Neural Networks
	BGCN using Parametric Graph Models
	Assortative Mixed Membership Stochastic Block Model
	Posterior Inference for a-MMSBM
	Expanded Mean Parameterization
	Stochastic Optimization and Minibatch Sampling

	BGCN using Non-Parametric Graph Learning
	Semi-Supervised Node Classification
	Link Prediction

	Numerical Experiments and Results
	Datasets
	Semi-Supervised Node Classification
	Node Classification under Adversarial Attack
	Link Prediction

	Summary

	RNN with Particle Flow
	Introduction
	Problem Statement
	Methodology
	State-Space Model
	Inference

	Numerical Experiments and Results
	Datasets
	Definitions of Evaluation Metrics
	Experiments on PeMS datasets
	Experiments on Non-Graph Datasets
	Computational Complexity, Memory Requirement, and Execution Time

	Summary

	Conclusions and Future Work
	Conclusions
	Sequential Inference in Presence of Gaussian Mixture Noise Models
	Bayesian Graph Convolutional Neural Networks
	RNN with Particle Flow

	Future Work
	Sequential Inference in Presence of Gaussian Mixture Noise Models
	Bayesian Graph Convolutional Neural Networks
	RNN with Particle Flow

	Convergence Results for SMCMC
	Introduction
	Convergence of MC Estimates
	Convergence of Normalizing Constants

	Additional Results for Semi-supervised Node Classification
	Additional Results for Time-Series Forecasting
	Results for PeMSD4, PeMSD7, and PeMSD8
	Effect of Number of Particles
	Effect of Different Learnable Noise Variance at Each Node
	Comparison with a Variational Inference (VI) Approach

