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Abstract

An accurate understanding of the equilibration timescale of organic aerosol particles with sur-

rounding water vapour is difficult due to the strong concentration-dependent diffusivities that

are present in these systems. We examine this problem along with the closely related problem

of the time-dependent radius of a binary aerosol particle during the uptake or loss of water.

The governing equations and boundary conditions are discussed and a boundary value problem

is formulated and solved. The resulting expressions are applied to water uptake and loss in

two systems of atmospheric importance: aqueous-inorganic particles and high viscosity organic

particles. Accuracy is evaluated through a comparison with numerical solutions. For particles

whose diffusivity has a strong dependence on water concentration and whose viscosity remains

above 1 Pa·s during water uptake or loss, the expression for the characteristic equilibration time

is found to be in excellent agreement with numerical results. Moreover, it provides physical

insight into the mass transport processes.
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1 Introduction

The treatment of the time-dependent radius of a single component droplet using Maxwell’s de-

scription of the condensational growth and evaporation and quasi-stationary analysis has been

found to be accurate for most cases of meteorological interest.1 Consideration of multicompo-

nent particles introduces additional complexities to the analysis and a common simplification is

that the composition of the condensed phase is uniform (the particle is spatially homogeneous

during evaporation or condensation).2,3 However, this assumption will not be satisfactory when

condensed phase diffusion determines the equilibration timescale for gas-particle partitioning.4

In the atmosphere, one well-studied example of this type of behaviour is the uptake and loss of

water by high viscosity secondary organic aerosol particles.5–11

As uptake or loss of volatile species occur, the density profile inside the particle changes

and particle growth or shrinkage takes place. For a spherical particle, numerical methods have

been used to calculate the resulting time-dependent concentration profile and radius.12–15 In

these methods, space is discretized by dividing the particle into concentric shells. As mass

transport takes place, the volume of each shell is adjusted and the overall particle radius can

be determined by simply adding up all of the resulting shell thicknesses after each time step.14

Due to the physical accuracy of these numerical methods it is somewhat surprising to realize

that the underlying models are not amenable to an analytic solution. There are two reasons

for this. First, the appropriate condition for the conservation of mass at a moving boundary is

absent from these models. Second, because of the way diffusion and density changes are treated,

the convection-diffusion and continuity equations are not directly used when calculating mass

transport. In Section 2, we formulate the boundary value problem using the moving boundary
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condition and we use the convection-diffusion equation and the continuity equation as the

governing equations. In Section 3, using several approximations, we solve the boundary value

problem within the continuum regime under isothermal conditions and determine an expression

for the time-dependent radius of a spherical particle containing two species, one volatile and

one non-volatile. The case that is considered is one where the vapour phase concentration of

the volatile species is instantaneously changed. We restrict our attention to the case where the

volatile species is water. Using the derived expression, in Section 4, the time-dependent radius

during the uptake and loss of water by aqueous-inorganic and high viscosity organic particles

are calculated and these results are compared to numerical calculations.

Understanding how condensed phase diffusion controls water uptake and loss in secondary

organic aerosol has important implications for atmospheric particles in terms of growth, phase,

optical properties, and nuclei activity.6,9,16–21 In Section 5, we consider the characteristic equi-

libration time of high viscosity aerosol particles with the surrounding relative humidity (RH).

This problem is closely connected to that of the time-dependent particle radius that is dis-

cussed in the earlier sections. To our knowledge, aside from expressions that provide limits on

the equilibration time,9 currently only numerical methods allow for the determination of this

characteristic time. We derive an expression for the equilibration time and assess its accuracy

using the three model organic systems with high viscosity.
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2 The Uptake and Loss of Water from a Binary Aerosol

Particle

For a spherical particle with a time-dependent radius a(t), composed of water, w, and a non-

volatile solute, s, with mass concentrations ρw and ρs, mass fractions ww and ws, and velocities

vw and vs, the mass density of the solution will be ρ = ρw+ρs and the mass average velocity will

be v = wwvw+wsvs. We will assume that the velocity field is entirely radial so its components

are vr = vr(r, t) and vθ = vφ = 0. Then, inside the particle, the convection-diffusion equation

for water will be

∂ρw
∂t

+
1

r2
∂

∂r
(r2ρwvr) =

1

r2
∂

∂r

󰀕
r2ρD

∂ww

∂r

󰀖
, (1)

where D is the concentration-dependent diffusivity, and the continuity equation will be

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρvr) = 0. (2)

We will assume that mass transport in the vapour phase is governed by the steady-state

equation

∂

∂r

󰀕
r2
∂ρvw
∂r

󰀖
= 0 for a(t) < r < ∞, (3)

where ρvw is the vapour phase mass concentration of water.

If the time-dependent vapour phase concentration of water at r = a(t) is ρvwa
(t) and the

concentration of water at r = ∞ is ρvwf
, the solution to Eq. 3 is

ρvw(r, t) = ρvwf
+

a(t)

r
(ρvwa

(t)− ρvwf
). (4)

At the centre of the spherical particle, the boundary conditions from symmetry are

∂ρw
∂r

= 0,
∂ρ

∂r
= 0, and vr = 0 at r = 0. (5)
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Conservation of mass for water at the particle surface gives the boundary condition

(ρvw − ρw)
da

dt
= Dρ

∂ww

∂r
−Dv

∂ρvw
∂r

− vrρw at r = a(t). (6)

where Dv is the diffusivity of water in the vapour phase. In Eq. 6 we have assumed that the

mass average velocity in the vapour phase is zero and the mass density of the vapour phase is

constant. These two assumptions are consistent with Eq. 3.

When the solute is non-volatile, conservation of mass yields the boundary condition22,23

da

dt
= vr +

D

1− ww

∂ww

∂r
at r = a(t). (7)

Initially, the mass concentration of water inside the particle will be uniform and set to a constant

value of ρwi
and the mass average velocity will be zero. Therefore,

ρw = ρwi
and vr = 0 for 0 < r < a0, t = 0, (8)

where a0 is the initial radius of the spherical particle.

We are interested in a model that describes how a(t) changes in response to a stepwise

change in the vapour phase concentration of water. For t > 0, the vapour phase concentration

of water at r = ∞ is changed from its initial value to its final value, ρvwf
. As t → ∞, the

concentration of water inside the particle will approach a uniform distribution with a constant

value of ρwf
. To proceed, we assume that between ρwi

and ρwf
, the mass density can be

accurately expressed as a linear function of ρw:
24

ρ = ρm + α(ρw − ρwm), (9)

where

ρwm =
ρwi

+ ρwf

2
, ρm = ρ(ρwm), and α =

dρ

dρw

󰀏󰀏󰀏󰀏
ρw=ρwm

.
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Inserting Eq. 9 into the partial time derivative in Eq. 2 and combining the result with Eq. 1

we find

1

r2
∂

∂r
(r2ρwvr)−

1

αr2
∂

∂r
(r2ρvr) =

1

r2
∂

∂r

󰀕
r2ρD

∂ww

∂r

󰀖
. (10)

Integrating Eq. 10 from 0 to r and applying the boundary conditions from Eq. 5 yields the

following expression for vr:

vr =
αρD

αρw − ρ

∂ww

∂r
. (11)

Inserting Eq. 11 into Eq. 1 gives

∂ρw
∂t

=
1

r2
∂

∂r

󰀕
r2ρDc

∂ww

∂r

󰀖
, (12)

where Dc = D (1− αρw/(αρw − ρ)).

Eq. 12 is then integrated from r = 0 to r = a(t) to obtain

d

dt

󰀣󰁝 a(t)

0

r2ρwdr

󰀤
= a2

󰀕
ρw

da

dt
+ ρDc

∂ww

∂r

󰀖󰀏󰀏󰀏󰀏
r=a(t)

. (13)

Inserting Eq. 11 into Eq. 7 and applying the result to Eq. 13 yields

d

dt

󰀣󰁝 a(t)

0

r2ρwdr

󰀤
= 󰂃a2

da

dt
, (14)

where 󰂃 = (αρwm − ρm)/(α− 1).

Integrating Eq. 14 from 0 to t one obtains the integral equation

󰂃a(t)3 = 3

󰁝 a(t)

0

r2ρwdr + a30(󰂃− ρwi
). (15)

It can readily be seen that when ρw = ρwi
, Eq. 15 gives the expected result of a = a0. Also,

when t → ∞, ρw = ρwf
and a(t) approaches its final value

a∞ = a0

󰀕
󰂃− ρwi

󰂃− ρwf

󰀖1/3

. (16)
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In single particle experiments, the total amount of water in a particle, Qw, can, in principle,

be obtained by integrating the scattered Raman intensity of the water bands (although the

presence of Mie resonances will complicate this type of analysis).25–27 The relationship between

ρw and Qw at any t will be

Qw(t) = 4π

󰁝 a(t)

0

r2ρwdr. (17)

Inserting Eq. 17 into Eq. 15 gives us

a(t) =

󰀕
3

4π󰂃
Qw(t) + a30

󰀓
1− ρwi

󰂃

󰀔󰀖1/3

. (18)

Eq. 18 provides an experimentally accessible way to track a(t) as it does not require knowledge

of ρw(r, t) but only the potentially measurable quantity Qw(t). When deriving Eq. 18, no

assumptions concerning the concentration profile inside the particle were made nor was it ever

necessary to assume that D was constant. Although it is beyond the scope of this work, if

a particle is large enough that a(t) can be tracked using optical microscopy then Qw(t) can

readily be calculated from Eq. 18 using such measurements.

While a(t) can be obtained without knowing the time-dependent concentration profile of

water, the same is not true for D. Inserting Eq. 11 into Eq. 7 one finds that the relationship

between a(t) and D is

da

dt
= − ρD

󰂃(ww − 1)

∂ww

∂r
. (19)

Therefore, in addition to a(t), knowledge of both the time-dependent ww and its gradient at

r = a(t) is required to determine D.
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3 An Expression for the Time-dependent Radius of a

Binary Aerosol Particle

To determine ρw(r, t) for Eq. 15 that is suitable across all t we will formulate a linear boundary

value problem where we will assume that a(t) is stationary and fixed at a0. With this consider-

ation in mind, we set Dc = D̄ in Eq. 12, where D̄ is a constant to be subsequently determined.

This gives the linear partial differential equation:

∂ρw
∂t

=
D̄

r2
∂

∂r

󰀕
r2
∂ρw
∂r

󰀖
for 0 < r < a0, (20)

where the boundary condition at the centre of the sphere is

∂ρw
∂r

= 0 at r = 0, (21)

and, for the assumption that the radius of the particle is not changing with time, conservation

of mass of water gives the boundary condition

D̄
∂ρw
∂r

= Dv
∂ρvw
∂r

at r = a0. (22)

Finally, the initial condition for this problem is

ρw = ρwi
for 0 < r < a0, t = 0. (23)

Eq. 22 requires the concentration profile of water in the vapour phase and a relationship

between ρw and ρvw at r = a0. In order to describe the concentration profile in the vapour phase,

we use Eq. 4 (again, setting a(t) = a0). For the relationship between the liquid and vapour

phase concentration of water at the particle surface, we ignore the effect of surface curvature

and write the modified Raoult’s law as

γxw = pw/p
◦
w at r = a0, (24)
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where xw is the mole fraction of water, γ is the activity coefficient of water for xw, pw is the

partial pressure of water at the surface, and p◦w is the saturation vapour pressure of water.

When expressed in terms of mass concentrations, Eq. 24 becomes

γ
ρw/Mw

ρw/Mw + ρs/Ms

=
ρvwRT

Mwp◦w
at r = a0, (25)

where Mw and Ms are the molar masses of water and the solute, respectively, R is the gas

constant, and T is the temperature. If Eq. 25 is combined with Eq. 4 and the result is

inserted into Eq. 22 then a nonlinear boundary condition will be obtained. To avoid this, an

approximate form of Eq. 25 is used here instead. This form is found by expanding the left-hand

side of Eq. 25 using a first order power series about the point ρw = ρwf
to yield

ρvw = kρw + q at r = a0, (26)

where

k =
γfM

2
wMsp

◦
w(ρm − αρwm)

RT (Mw((α− 1)ρwf
− αρwm + ρm) +Msρwf

)2
,

q =
γfMwMsp

◦
wρ

2
wf
((α− 1)Mw +Ms)

RT (Mw((α− 1)ρwf
− αρwm + ρm) +Msρwf

)2
,

and γf is the activity coefficient of water when ρw = ρwf
. The point ρw = ρwf

was chosen for

the expansion in order to ensure that a(t → ∞) = a∞.

Combining Eqs. 4, 22, and 26 results in the linear boundary condition

D̄
∂ρw
∂r

= −kDv

a0
(ρw − ρwf

) at r = a0. (27)

The solution to the boundary value problem defined by Eqs. 20, 21, 23, and 27 is

ρw(r, t) = ρwf
− 2a0ϑ

r
(ρwf

− ρwi
)

∞󰁛

n=1

Bn sin
λnr

a0
e−D̄λ2

nt/a
2
0 , (28)
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where

Bn =
(λ2

n + ξ2) sinλn

λ2
n(λ

2
n + ξ(ξ − 1))

, λn cotλn = ξ, ξ = 1− ϑ, and ϑ = kDv/D̄.

Inserting Eq. 28 into Eq. 15 yields the desired expression

a(t)3 =
(ρwi

− 󰂃)a30
ρwf

− 󰂃+ 6ϑ2(ρwi
− ρwf

)
󰁓∞

n=1(Bn/λ2
n) sinλn e−D̄λ2

nt/a
2
0

. (29)

Additionally, defining the dimensionless variables

ã = a(t)/a0, ci = ρwi
/󰂃, cf = ρwf

/󰂃, and t̃ = D̄t/a20,

allows Eq. 29 to be put in a dimensionless form

ã3 =
ci − 1

cf − 1 + 6ϑ2(ci − cf )
󰁓∞

n=1(Bn/λ2
n) sinλn e−λ2

n t̃
. (30)

Examination of Eq. 30 reveals that ã can be represented by a one-parameter family of

curves. Fig. 1 shows ã as a function of t̃ for several values of ϑ. As ϑ increases, the ã curves

converge and become indistinguishable from each other (e.g. the curves for ϑ = 1000 and 10000

overlap). The physical situation for this large ϑ limit is one where the concentration at the

surface of the particle is fixed at cf for all t̃ and transport of water is limited by diffusion inside

the particle. This limiting behaviour can occur in the atmosphere during water uptake or loss

by high viscosity aerosol particles.28 In Fig. 2 we use the dimensionless concentration

c = cf −
2ϑ

r̃
(cf − ci)

∞󰁛

n=1

Bn sinλnr̃ e
−λ2

n t̃, (31)

where c = ρw/󰂃 and r̃ = r/a0, to illustrate that for large ϑ the concentration at the surface

(r̃ = 1) becomes fixed at its final value (c = cf ) as uptake or loss take place. In fact, it is often

an excellent approximation to replace the boundary condition in Eq. 22 with ρw = ρwf
. This
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Figure 1: Dimensionless radius as a function of dimensionless time for several different values

of ϑ. Curves were calculated using Eq. 30. The dimensionless initial concentration, ci, and

the dimensionless final concentration, cf , were (a) ci = 0.01 and cf = 0.1 and (b) ci = 0.1 and

cf = 0.01.

condition assumes that the concentration at the particle surface instantaneously reaches its

final concentration. It has been used when analyzing isotopic water diffusion experiments29,30

as it is satisfactory for a wide range of atmospherically relevant temperatures and RHs.28

4 Evaluating the Time-dependent Radius during Water

Uptake or Loss

In order to apply the expressions derived in Section 3, D̄ needs to be defined. For a viscous

organic aerosol during a stepwise change in RH, diffusivity can vary as a function of concen-
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Figure 2: Dimensionless concentration profiles inside a particle and outside its surface during

uptake (left panels: a, c, and e) or loss (right panels: b, d, and f) for three different values of ϑ at

various dimensionless times. The dimensionless initial concentration, ci, and the dimensionless

final concentration, cf , were (a, c, and e) ci = 0.1 and cf = 1 and (b, d, and f) ci = 1 and

cf = 0.1. Concentration profiles were calculated using Eq. 31 and a dimensionless version of

Eq. 4.
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tration by orders of magnitude during water uptake and loss. This is known to lead to a large

difference in the timescale of uptake and loss of water when the RH is cycled between two val-

ues.7,8,12,31,32 During an RH cycle, water uptake will be much faster than water loss. Numerical

simulations have shown that this behaviour can be explained with a concentration-dependent

diffusivity.12,31 Motivated by these observations and calculations, the value of Dc that will be

used when calculating D̄ will be more heavily weighted towards its value at ρwf
. We define D̄

as a weighted average

D̄ =

󰁕 ρwf

ρwi
φ(ρw)Dc(ρw)dρw

󰁕 ρwf

ρwi
φ(ρw)dρw

. (32)

The weight function, φ, used here is the Heaviside step function, H(x− x0), where x = (ρw −

ρwi
)/(ρwf

−ρwi
) and x0 is set to 0.35 during all calculations. The accuracy of this simple weight

function will be subsequently demonstrated.

We now consider three different aqueous systems that have been used as a model system

for a wide range of atmospheric organic aerosols: water and either shikimic acid, citric acid,

or sucrose.9 For instance, aqueous shikimic acid particles have been used to investigate hetero-

geneous chemistry and mass transport in high viscosity, solid and semi-solid aerosols.28,29,33–36

Across a range of atmospherically relevant temperatures and RHs, the diffusivity of the shikimic

acid-water system has a very strong concentration dependence.34

Fig. 3 shows the time-dependent radius of aqueous organic aerosol particles in response to

several different stepwise changes in RH. In all calculations presented in this work for these

systems, parameters for aqueous shikimic acid were taken from Ref. 34 and parameters for

aqueous sucrose were taken from Ref. 12. The density and activity parameterizations for
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Figure 3: The dimensionless radius, a(t)/a0, as a function of dimensionless time, t/τ , for

particles consisting of water and either shikimic acid (a and d), citric acid (b and e), or sucrose

(c and f) in response to several different stepwise changes in RH calculated using either Eq. 29

(solid lines) or the numerical method from Ref. 12 (dotted lines). The changes in RH occur at

t = 0 and the initial and final values of the RH are indicated next to their calculated curves.

For each pair of RHs, the value of τ used to non-dimensionalize the time was found using the

numerical calculation and is listed in the figure. For all calculations, the initial radius, a0, was

set to 1 µm and T = 298 K.

aqueous citric acid were taken from Ref. 37 and the activity-dependent diffusivity, DCA, was
23,29

log10 DCA = b1 + b2aw + b3a
2
w + b4a

3
w, (33)

where aw is the water activity, b1 = −16.077, b2 = 16.116, b3 = −17.532, b4 = 8.7575, and the

units of DCA are m2/s. Due to the strong dependence of the diffusivity on concentration, the

timescale of water uptake and loss can vary tremendously for different stepwise changes in RH.

For example, in aqueous shikimic acid at an RH of 20%, D = 8.38× 10−15 m2/s whereas at an

RH of 50%, D = 9.37× 10−13 m2/s at T = 298 K.

As shown in Fig. 3, during water uptake (a-c), Eq. 29 yields results that are in good
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agreement with the numerical solution. For water loss (e-f), Eq. 29 is similar to the numerical

solution for the 50 to 40% change in RH but for larger decreases in RH, the correspondence

between the two results is less satisfactory. Based on the derivation presented in Sections 2

and 3, there are several approximations that could lead to inaccuracies in the calculated time-

dependent radius. Here, though, the main source of error between Eq. 29 and the numerical

results is the assumption of a constant diffusivity used in the derivation of Eq. 29. The solution

to the resulting linear boundary value problem cannot accurately describe the “long-tail” that

is seen at longer times in the numerical results. The nonlinear behaviour that dominates at

longer times cannot be captured by the linear solution no matter what value of D̄ is chosen.

This discrepancy makes the results that will be discussed in Section 5 all the more surprising:

the characteristic time for these cases can be accurately calculated using the linear solution.

In addition to our consideration of water uptake and loss by organic aerosols, we can also

examine the RH-dependent change in size of an aqueous inorganic aerosol particle due to water

uptake and loss using Eq. 29. Here we consider a particle composed of water and ammonium

sulfate. The activity and density of aqueous ammonium sulfate are well-characterized,38 how-

ever measurements of the concentration-dependent diffusivity are limited to a smaller range of

concentrations.39 Using available data, the diffusivity, DAS, was fitted as a function of the mass

fraction of ammonium sulfate, w, to give

DAS = d1 + d2w
1/2 + d3w

1/3 + d4w
1/4 (34)

where d1 = 1.531 × 10−9, d2 = 5.751 × 10−10, d3 = −4.006 × 10−10, d4 = −9.042 × 10−10, and

the units of DAS are m2/s.

Fig. 4 shows the time-dependent radius of an aqueous ammonium sulfate particle in response
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to several different stepwise changes in RH. In all cases, at t = 0 the RH is changed from its

initial value to its final value. For small changes in RH, it can be seen that Eq. 29 closely

matches the numerical results. For larger changes in RH, the differences between the numerical

and analytic results increase although the accuracy is still reasonably good. The main reason

for the good agreement is that, in the regions across which the RH is being changed for the

calculations in Fig. 4, the diffusivity is approximately constant. This is in contrast to the

aqueous organic examples considered in Fig. 3 where, in some cases, the diffusivity changed by

orders of magnitude across the RH range present in the stepwise changes.

5 The Characteristic Equilibration Time of an Aqueous

Aerosol Particle

For a stepwise change in RH at t = 0, the total amount of water at the characteristic equili-

bration time, Qw(τ), is defined as

Qw(τ) = (Qwi
−Qwf

)/e+Qwf
, (35)

during either water uptake or loss. In this expression, Qwi
is the total amount of water in the

particle prior to the stepwise change in RH and Qwf
is the total amount of water in the particle

as t → ∞.

Using results from Sections 2 and 3, it is useful for our subsequent discussion to define the

dimensionless amount of water as

Q̃w = cf + 6ϑ2(ci − cf )
∞󰁛

n=1

Bn

λ2
n

sinλn e
−λ2

n t̃, (36)

where Q̃w = 3Qw(t)/4π󰂃a
3
0.
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Figure 4: The time-dependent dimensionless radius, a(t)/a0, for an aqueous ammonium sulfate

particle in response to several different stepwise changes in RH calculated using either Eq. 29

(solid lines) or the numerical method from Ref. 12 (dotted lines). The changes in RH occur at

t = 0 and the initial and final values of the RH are indicated next to their calculated curves.

For all calculations, the initial radius, a0, was set to 1 µm and T = 298 K.
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Despite the definition in Eq. 35, it should not be assumed that the uptake and loss of water

are first-order processes.40 Consequently, calculating the characteristic equilibration time (or

e-folding time), τ , using numerical methods can be a time consuming process as the simulation

needs to be run until Qw(τ) is reached in order to accurately determine τ . Therefore, a simple

expression for the rapid calculation of τ is very desirable. Examining the n = 1 term in Eq.

36 and recognizing that λ1 approaches π as ϑ becomes much greater than one, we arrive at the

simple definition of τ ∗ = a20/π
2D̄. However, evaluation of Eq. 36 showed that τ was always

approximately equal to 0.55τ ∗ when ϑ ≫ 1. This is shown in Fig. 5. Therefore, a suitable

expression for the characteristic equilibration time of viscous aqueous aerosol particles should

be

τ = 0.55
a20
π2D̄

. (37)

Figs. 6 to 8 show a comparison between τ calculated using a numerical method12 and τ

calculated using Eq. 37 for the model systems of (a) aqueous shikimic acid, (b) aqueous citric

acid, and (c) aqueous sucrose. In all calculations, a0 = 1 µm. The range of initial and final

RHs considered is 0 to 99% (the binary particle has no equilibrium at 100% RH). For viscous

aerosol particles, equilibration with the surrounding RH can vary from seconds to years for

typical particle sizes and atmospheric conditions.9 In Figs. 6 to 8, where the temperature and

initial radius are fixed, τ still shows a variation of up to six orders of magnitude across the RH

range. Overall, Eq. 37 yields excellent agreement with the numerical calculation for τ > 10−1 s

for all three systems. In this regime, Eq. 37 also correctly predicts that the τ = 0 line that

occurs when the initial RH is equal to the final RH is not a line of reflection for the contour

lines of τ . The function τ is not symmetric for all pairs of RHs. Specifically, for two given

RHs, τ is always greater when the lower RH value is used as the final RH. In contrast, a naive
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Figure 5: The dimensionless total amount of water, Q̃w, in a particle as a function of dimen-

sionless time for several different values of ϑ. Curves were calculated using Eq. 36. The

dimensionless initial concentration, ci, and the dimensionless final concentration, cf , were (a)

ci = 0.01 and cf = 0.1 and (b) ci = 0.1 and cf = 0.01. First-order (a) uptake and (b) loss is also

shown. The line indicated by Q̃w(τ) intersects the first-order curve at t̃ = 0.101 and the curves

with large values of ϑ (1000 and 10000) at t̃ = 0.0558. The ratio of these two dimensionless

times leads to the choice of τ = 0.55τ ∗ in Section 5.
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Figure 6: Characteristic equilibration time, τ , for an aqueous shikimic acid aerosol particle for

various stepwise changes in RH. For all calculations, the initial radius, a0, was set to 1 µm

and T = 298 K. Dynamic viscosity was calculated with the Stokes-Einstein equation where the

molecular radius of water was 0.2 nm. The τ = 0 line is added to guide the eye.

expression for the lifetime, e.g. a20/π
2Dm, where Dm is simply the diffusivity at a midpoint

between the initial and final RH, would not only be inaccurate but it would also incorrectly

predict the τ = 0 to be a line of reflection. At high initial or final RHs, i.e. when τ < 10−1 s,

the agreement between the two calculations is poor. This is because the assumption that ϑ ≫ 1

that we relied on in our derivation of Eq. 37 is no longer valid and that equation becomes very

inaccurate.

In order to understand the phase states over which Eq. 37 is applicable we apply the Stokes-

Einstein equation to relate diffusivity to viscosity. Setting the molecular radius of water to

0.2 nm,5 we can calculate the dynamic viscosity of the particle when it is in equilibrium with

the surrounding RH. These viscosities are shown as axes in Figs. 6 to 8 as initial and final
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Figure 7: Characteristic equilibration time, τ , for an aqueous citric acid aerosol particle for

various stepwise changes in RH. For all calculations, the initial radius, a0, was set to 1 µm

and T = 298 K. Dynamic viscosity was calculated with the Stokes-Einstein equation where the

molecular radius of water was 0.2 nm. The τ = 0 line is added to guide the eye.
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Figure 8: Characteristic equilibration time, τ , for an aqueous sucrose aerosol particle for various

stepwise changes in RH. For all calculations, the initial radius, a0, was set to 1 µm and T =

298 K. Dynamic viscosity was calculated with the Stokes-Einstein equation where the molecular

radius of water was 0.2 nm. The τ = 0 line is added to guide the eye.
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viscosities. A dynamic viscosity of around 102 Pa·s is commonly used as the transition from the

liquid to semi-solid phase state.41,42 It can be seen that, during water uptake and loss, Eq. 37

will be accurate so long as the particle remains in a phase state whose viscosity is that of a

semi-solid or greater (e.g. it will also produce accurate results for solid glassy particles). In

fact, Eq. 37 produces results that are accurate down to 1 Pa·s, so it can be applied to high

viscosity liquids as well.

6 Conclusion

We have derived expressions for (i) the time-dependent radius and (ii) the characteristic equi-

libration time of a binary aqueous particle in response to a stepwise change in the surrounding

RH. The derivation illustrates the role that both convection and diffusion play in water trans-

port in a particle and the associated increase or decrease in size that occurs during a stepwise

change in RH. Specifically, the diffusion of water in the particle induced convection by changing

the density of the aqueous medium. These density changes led to either swelling or shrinkage

and allowed us to derive an expression for the time-dependent radius of the particle. Evaluation

of the equations demonstrated that heavily weighting the diffusivity towards its value at the

final RH produced accurate results. This was applied to aqueous systems that are considered

to be models for high viscosity aerosol particles. Even though diffusivity can vary by several

orders of magnitude during water uptake or loss, the calculated characteristic equilibration time

during a change in RH was in excellent agreement with the numerical solution for semi-solid

and solid phases as well as liquids whose viscosity is above 1 Pa·s. As it is known that the

characteristic equilibration time is not a symmetric function of the initial and final RH states, it

was expected that weighting the diffusivity more heavily towards its final state would improve
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the accuracy of the calculation. What was surprising, though, was that a simple weighting

function could yield such a close match to numerical calculations and maintain this accuracy

over such a wide range of initial and final conditions. This illustrates the importance of the

final state during water uptake and loss and, of course, provides an expression that can be used

to rapidly calculate the characteristic equilibration time.
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