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ABSTRACT

The mine production schedule defines the sequence of extraction of selected
mine units over the life of the mine, and consequentially establishes the ore
supply and total material movement. This sequence should be optimized so as to
maximize the overall discounted value of the project. Conventional schedule
approaches are unable to incorporate grade uncertainty into the scheduling
problem formulation and may lead to serious deviations from forecasted
production targets. Stochastic mine production schedulers are considered to
obtain more robust mine production schedule solutions.

The application of stochastic approaches to the mine production schedule
problem is recent and additional testing is required to better understand these
tools and to define the value of a stochastic solution as compared to the
conventional result. Two stochastic schedulers are tested in a low-grade
variability copper deposit, optimization parameters are discussed and their
results compared with a conventional schedule.

The first method uses a stochastic combinatorial optimization approach based on
simulated annealing to address the mine production schedule problem. The
method aims for maximization of the net present value (NPV) of the project and
minimization of deviations from the production targets. These objectives are
attained by incorporating grade uncertainty into the mine production schedule
problem formulation. The second method formulates the problem as a stochastic
integer programming problem, in which the objective is the maximization of the
projects' NPV and the minimization of production targets deviations. The model
can also manage how the risk of deviating from the targets is distributed
between production periods.
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Both stochastic approaches were tested in a low-grade variability copper deposit.
In both case studies, the value of a stochastic solution is demonstrated to be
higher than the conventional one. This fact demonstrated the misleading results
that a conventional schedule may produce and shows the importance of not
ignoring the presence of uncertainty when defining the mine production schedule
for a project.
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RESUME

Les étapes de la production minière définissent les séquences d'extraction des
unités des mines pendant la durée de vie des mines et conséquemment établit la
quantité de minerai produite et le mouvement de matériel requis dans sa
production. Cette séquence devait être optimisée afin de maximiser la valeur du
projet. Les méthodes conventionnelles sont incapables d'incorporer l'incertitude
dans la formulation d'un problème de planification et peuvent mener à des
déviations par rapport aux productions atteintes. Les analyses stochastiques de
production de mine sont considérées comme étant des solutions plus robustes
afin de déterminer le plan de production minière optimal.

L'application des approches stochastiques pour l'obtention d'un plan de
production minière est récente et des tests additionnels sont requiss afin de
mieux comprendre ces outils et définir la valeur d'une solution stochastique en
comparaison à une méthode conventionnelle. Deux programmes stochastiques
ont été testés pour un dépôt de cuivre à teneur faible variable. Les paramètres
d'optimisation sont discutés et les résultats comparés à une méthode
conventionnelle.

La première méthode utilise une approche combinatoire basée sur le recuit
simulé pour obtenir un plan de production minière. La méthode vise la
maximisation de la valeur actualisée nette du projet et la minimisation des
déviations des cibles de production. Ces objectifs sont atteints en incorporant des
nuances d'incertitude dans la formulation du problème de planification minière.
La seconde méthode formule le problème de programmation de manière
stochastique en nombres entiers, dans lequel l'objectif est la maximisation de la
valeur actualisée nette et une déviation minimale des cibles de production. Le
modèle peut gérer la manière dont les risques de déviations dans les cibles de
production sont distribués entre les différentes périodes de production.
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Les deux approches stochastiques ont été testées dans un dépôt de cuivre à
faible teneur variable. Dans les deux études, la valeur de la solution stochastique
a été démontrée comme étant préférable à l'étude conventionnelle. Ce fait
démontre les résultats trompeurs qu'une méthode conventionnelle peut produire
et montre l'importance de ne pas ignorer la présence d'incertitude lorsque le
programme de production minière est défini pour un projet.
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CHAPTER 1 INTRODUCTION

Mining activity has considerably changed over the past few decades. The
previous scenario in which large, rich and superficial deposits were available has
now changed to one where new deposits tend to be smaller in size, harder to
mine and in some cases, only marginally economically viable. More strict
environmental regulations have to be considered and a more competitive global
market requires companies to be more efficient. As a result, mining companies
face the challenging tasks of developing new mineral deposits and selecting from
their portfolio the deposits that will generate the best return on their investment.

In this new scenario, so as to provide a solid base for investment decisions,
evaluating a project should be done in the most robust and concise way possible.
Mining ventures are intrinsically risky yet high capital investment decisions are
often made with limited information. Project evaluation approaches should be
able to account for risk when assessing the value of a project. The value of a
mining project is defined by a set of activities, which are recursive by nature.
These activities involve the selection of a sequence of extraction, cut-off grade
strategies, and mining and processing capacities over the life-of-mine. Due to the
limited amount of information available, true optimum decisions for these tasks
are not possible; approximations and mathematical and statistical assumptions
have to be made. The alternatives to obtaining an optimum solution for the
activities mentioned above and maximizing project value involve the use of
deterministic/conventional or probabilistic models.

The conventional approach for economic evaluation of a mine assumes the
understanding of geological boundaries and grade distribution, mining
parameters including recovery and dilution, and the economic scenario.
Convention dictates the use of average responses of these parameters to define
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the available ore supply. In the mine-planning framework, a final economic
boundary, ore and waste mining capacities and a sequence of extraction
ultimately define the ore supply, which is fixed in time and space. The forecasted
ore supply defines the expected revenues over the life of the project. The
revenues, associated with the production costs and a discount rate, are utilized
to compute the discounted cash flow (DCF) and to define the present value (PV)
of the project. Final project selection is done using the computed PV. The
drawbacks of the conventional approach start with the assumption of a risk-free
environment. This assumption leads to misleading results obtained by the
application of non-linear transfer functions, such as final pit and sequence of
extraction, using average type scenarios1. The selection of the discount rate to
be used in the DCF analysis represents the other limitation of the conventional
approach. This rate is normally composed of both an opportunity cost portion
and a risk related portion. In all cases, the risk portion is arbitrarly defined, since
the given deterministic approach is not able to map the associated risk. DCF
method also suffers from its inability to account for the managerial flexibility to
react to unlikely scenarios and to take corrective actions.

Alternatives to the conventional project evaluation framework should be able to
make decisions in the presence of uncertainty. Since uncertainty is an intrinsic
characteristic of mining ventures, it should be considered in order to provide
robust and realistic solutions. Therefore, it can be stated that a successful
assessment of the economics of a mine is conditional to properly mapping the
sources of uncertainty, or at least the ones that could jeopardize the economics
of the project. Different sources of risk around economic or technical parameters
can be considered. Common sources of uncertainty are geological boundaries, in-
situ ore reserves and metal content (geological risk), dilution and recovery,
geotechnical constraints, market (demand and prices), mining and processing
costs and political environment. Each of the previously mentioned sources has a
different impact in the economics of a project, and may or may not be
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predictable. One of the current alternative avenues of research involves the use
of stochastic simulations to map sources of uncertainty. Since geological risk is
considered to be the most frequent reason for the non-realization of the
forecasted ore/metal production 2'3,4, among all potential sources of risk , there
can be significant benefits when it is accounted for it in the mine planning and
design stage of a project. Godoy and Dimitrakopoulos5 present a stochastic
solution based on simulated annealing that improves the expected return of a
project by 28%. Menabde et al6 describes a 4% increase in the NPV of a project
when comparing a conventional scheduler with a stochastic integer programming
(SIP) formulation for long-term production schedule. Ramazan and
Dimitrakopoulos7, 8 propose an approach able to directly incorporate uncertainty
into the long term mine schedule framework by the use of an SIP method and
obtain an increase of 10% on the project NPV when compared with the
conventional approach.

It is reasonable to expect that risk should not be ignored as it substantially
impacts the economics of a project and improved results should be expected by
incorporating uncertainty in the context of mining planning, design and
production scheduling. Further investigation is required, however, to understand
and assess the possible improvements that stochastic solutions may have to
offer, as compared to present conventional (deterministic) mining practices.
1.1 Goal and objectives

A modern life-of-mine production scheduling method must have the capacity to
incorporate grade and, in general, geological uncertainty into the scheduling
process, in order to produce more robust and realistic solutions as compared to
conventional schedulers that ignore uncertainty. The use of stochastic mine
schedulers to solve the mining production problem is relatively new. The goal of
this thesis is to test and contribute to the understanding of two different
stochastic long-term mine scheduling methods, one founded upon simulated
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annealing and one on stochastic integer programming, analyse their
characteristics, asses their impact, as well as quantify their value and
contribution. To achieve this goal the following objectives are set:

• Review the literature concerning stochastic mine production schedule
formulations, and conditional simulation methods for mining related
problems.

• Apply a stochastic mine production scheduling formulation based on a
simulated annealing algorithm in a copper deposit and comparison with a
conventional scheduler.

• Apply a stochastic integer programming formulation to solve the mine
production scheduling problem at the same deposit, testing and discussing
the impact of the geological discount rate and different ore selection
criteria.

• Facilitate the efficient generation of inputs to the above schedulers by
using the direct block simulation method.

• Analyse results, compare methods, document the value of stochastic
solutions as found in this study and recommend future work.

1.2 Thesis outline

This thesis is organized into the following chapters.

Chapter 1 is an introduction to the work presented herein and briefly discusses
the topic covered by this thesis.

Chapter 2 presents a literature review on fundamental topics related to mine
planning optimization and in particular stochastic mine production scheduling and
stresses the value of stochastic solutions in past studies and simulation methods
for orebody modelling.
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Chapter 3 describes a stochastic optimizer based on simulated annealing,
presents its detailed application to a copper deposit and makes comparisons with
the traditional approach
Chapter 4 describes a stochastic scheduler based on a stochastic integer
programming formulation, presents its application to a copper deposit, discusses
the major parameters involved and their impact on the stochastic schedules
obtained.

Chapter 5 addresses the conclusions, revisits the contribution of stochastic
solutions and suggests related future work.

5



CHAPTER 2 LITERATURE REVIEW

2.1 Incorporating geological uncertainty in mine production
scheduling

Geological uncertainty is recognized to be the major reason for the non-
realization of forecasted cash flows of mine ventures, as it has a direct impact in
the ore and metal supply. The question of how to define the available ore supply
is not easily answered, as it is not only a function of the metal content and
spatial distribution of ore but also depends on the selected extraction sequence
over time. Different sequences of extractions would produce different ore
supplies from the same deposit. The definition of ore is variable over time as it is
a function of economic parameters and is time dependent. Defining available ore
supply is traditionally evaluated with the assumption of technical and economical
constraints fixed both in time and space. In the conventional mine design and
production scheduling framework, an average type of deposit is used in
combination with geotechnical, economic and environmental constraints to define
the extraction sequence that generates the maximum economical return. The
use of a risk-free scenario has been shown to cause serious discrepancies
between the forecasted and the actual economic return.

Several authors have studied the impact of geological uncertainty on the
economics of a project using conditional simulations for risk-analysis of
performance parameters of mine schedules1, 2· 3' 9. All of them conclude that the
use of a smoothed image or representation of the geological reality leads to
unpredictable under- or over-evaluation of the performance parameters under
consideration, when non-linear transfer functions such as mine plan and design
are applied. Figure 2.1 shows a risk-analysis on the PV of a mine planning pit
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optimization from a gold mine in Australia1. Each pit is evaluated using a set of
simulated models and a cumulative PV probability distribution is obtained,
represented by the grey lines. The black line represents the result obtained using
the average type of deposit. Differences stem from the fact that an average type
of deposit does not reproduce the true grade variability of the orebody and
spatial correlation. One can conclude that an estimated model or average type of
input does not produce an average type of response when conventional
optimizers are considered. In fact, for the case presented by Dimitrakopoulos et
al1, the estimated model substantially over-estimates the PV of the pits since the
risk profile shows that the estimated PV only has 2-4% possibilty of success, and
a 25% difference in PV on average.
This makes clear the need to consider stochastic approaches which are able to
account for risk and generate more risk-robust solutions, the natural avenue to
include uncertainty into the mine design and production schedule problem
formulation.

25,000,000 t 1
Probability

The NPV determined from
OK has only a 2-4% probability

20,000,000 of occunng

The most likely NPV for this
optimum pit is m$16.5

25% less than the knged model
15,000,000

(A
< S SSÍ

OO
> Il

10,000,000

Pit design and production schedules
might typically be founded on pit

shell 41
5,000,000 with the highest NPV

CS Realisations

iOrdinary Kriging
0

35 40 45 5025 302010 50

Optimised Pit Shells

Figure 2-1 - Risk analysis of NPV distribution for a set of 41 nested pitsl

The idea of incorporating geological uncertainty in the mine production schedule
problem dates back to David et al10. In their study, the variability of the final pit
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boundary, generated using the Komogorov algorithm, is evaluated using a
simulated orebody and the pit obtained by using the estimated orebody model.
As initial observations were not fully understood at the time and due to their high
computational processing and storage cost, the development of new stochastic
approaches to the problem did not happen for decades. The use of a stochastic
approach has been the focus of more recent studies.

A logical way to account for geological uncertainty in the mine design process
would be to directly apply a conventional optimizer to a stochastic scenario.
Dimitrakopoulos, Martinez and Ramazan11 introduce the concepts of
upside/downside potential to solve the long-term design and production
scheduling problem in an open pit mine. Using a set of simulated orebodies, the
method first defines a final pit and a set of pushbacks for each simulated
orebody using a conventional pit optimizer. The set of mine designs are then
evaluated using the set of simulated orebodies. A minimum mill feed requirement
is first utilized to filter designs that do not meet this minimum requirement. The
designs that pass the first filter are then evaluated, considering their chances of
producing the minimum acceptable return (MAR). Finally, a design is selected
from among those remaining by considering different price forecasts and
selecting the one which has the highest upside/ lowest downside potential over
the highest price scenario. The method is time consuming, as a design has to be
done for each simulated model and the solution will not correspond to the
optimum one, since it only considers a small and finite number of alternative
mine designs.

The next logical step is to develop tools able to incorporate geological
uncertainty directly into the mine production schedule problem formulation.
Dimitrakopoulos and Ramazan12 present a mathematical programming
formulation to incorporate grade uncertainty into the long-term production
schedule. The proposed formulation aims to minimize deviations form production

8



targets. The probability to deviate at each production period over the life-of -
mine (LOM) is considered in the objective function weight by a variable unit cost.
Probabilities are defined from a set of simulation scenarios of the orebody. These
costs are discounted over time using a rate defined as geological discount rate.
The discounting process accounts for the fact that lower risk is preferable over
the earlier periods of mining than later, therefore the costs to deviate from
production targets decrease over time. This strategy to manage risk reflects the
common need to ensure the payment of invested capital over the earlier periods.
The probability of deviating in a given period is computed considering all blocks
scheduled to be mined in that period and the probability of each one of them
being in a given grade interval. The formulation also incorporates constraints to
ensure equipment access and to minimize equipment movement.

The use of mixed integer programming (MIP) gives the option of solving the
problem of mining partial blocks. These formulations are able to find the true
optimum solution but may not be able to do it in a reasonable amount of time
especially if a large number of integer variables are to be considered. Ramazan
and Dimitrakopoulos13 introduced another mixed integer programming
formulation to address the mine scheduling problem. The formulation first
defines the probability of each block being mined in a given period. These
probabilities are obtained by applying an MIP formulation to a set of simulated
models producing a set of schedules. The schedules are then used to map the
probability distribution of each block being mined in all the periods of the LOM.
Finally, an MIP formulation, accounting for the probability computed in the
previous step and aiming to maximize the NPV of the project, is applied. The
new objective function considers the probability of each block being mined in a
given period. The formulation also includes constraints to ensure a feasible
schedule, if equipment access is considered. Apart from successfully
incorporating grade uncertainty in the scheduling process, the proposed method
requires the solution of an MIP for each simulated model and one MIP to obtain
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the final stochastic schedule. The utilization of integer variables may render the
application of the method difficult as a large number of integer variables imply an
impractical solution time.

Ramazan and Dimitrakopoulos14 further extend the use of an MIP formulation for
application in complex multi-elements deposits such iron or nickel latérites. The
method starts by computing the probability that each block has to be in a given
grade interval or above a set of cut-off grades using simulated models of the
deposit to compute such probabilities. The MIP is formulated to maximize the
economic return of all blocks weighted by the respective probabilities. By stating
the problem in this way, the produced probabilistic schedule mines more certain
blocks to respect the quality constraints in earlier periods and postpones less
certain blocks to later periods. This feature guarantees a schedule that reduces
the risk of producing material which would not satisfy quality requirements. In
the case study presented, a considerable difference between the probabilistic
schedule and the conventional one is observed. The probabilistic schedule
substantially reduced the risk of producing material outside of the quality
expectations in the first years of mining, relegating the production of material
with high risk of not meeting the quality expectations to later years. The
conventional schedule produced a schedule with higher risk of producing material
outside the quality specification in the earlier years. The method only requires
one schedule to be produced but long solution times may be required as integer
variables are utilized.

Godoy5, 1S proposes a different approach to the long-term mine production
schedule problem. It is an adaptation of a combinatorial optimization algorithm
based on simulated annealing, and involves four stages. In the first stage, a
stable solution domain for ore and waste production is defined, considering a set
of simulated models. A stable solution domain is defined using concepts first
introduced by Rzhenevisky16, stating that a mine is a system with only two types
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of products, ore or waste, and that it is adapted to the mine schedule
optimization using the concept of nested pits17 which are used to define two
possible extraction sequences. By construction, nested pits set the upper and
lower limits for ore and waste production18. The best extraction sequence is
defined by incrementally mining each nested pit bench-by-bench, which
guaranties the maximum possible ore extraction with a corresponding minimum
amount of waste extraction. This extraction sequence corresponds to the
maximum cash flow, as it defers the waste production as long as possible. The
worst-case scenario is obtained by incrementally mining each bench inside the
selected final pit completely, and not considering the nested pits as separated
units; this would have the highest possible stripping ratio over the LOM and
therefore corresponds to the minimum possible cash-flow. These extreme
scenarios are used to define the set of all possible feasible combinations of
extraction rates for ore and waste. The set of all feasible combinations
considering a set of orebody simulations is defined as "stable solution domain",
comparing the common area of all cumulative ore with cumulative waste
production considering all the simulations and defines all possible feasible
combinations for ore and waste production, for a given orebody.

The second stage of Godoy's approach involves the definition of the optimum
mining rates over the LOM. This problem is solved using a linear programming
formulation, and the possible mining rates are constrained by the stable solution
domain defined in stage one. In the third stage, a set of mining sequences are
obtained, one for each simulated model, utilizing the optimum mining rates
defined in stage two. In the forth and final stage, a stochastic solution is
obtained by using a simulated annealing formulation, aiming to minimize the
possible deviations from the optimum ore and waste production targets. The
input for the algorithm is a set of schedules produced in stage three. The result
is a final schedule that reduces the risk of not feeding the mill at the planned
capacity and respecting the imposed mining capacity. The results of the
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stochastic schedule, when compared with the ones obtained by a conventional
approach, produce a 28% increase in the project's NPV. There is also a lower risk
of deviating form production targets, a 3% likelihood of deviating from
production targets, while the conventional approach presents a 13% chance
overall. The method successfully incorporates geological uncertainty into the
long-term production schedule framework and the improvement in the NPV can
be attributed to the better use of the available information regarding when a
given block should be mined. The weakness of the method is that it does not
allow control over the way risk is distributed over the LOM between mining
periods. As it is a new method, it requires further testing to fully understand its
capabilities and potential contribution to mining practices.

All stochastic mine production schedules described so far require that a set of
schedules first be defined to feed a final optimization stage that combines them
to produce a stochastic solution and that does not provide control on grade risk
management. Ramazan and Dimitrakopoulos7,8 propose an approach that directly
incorporates uncertainty into the long term mine schedule framework and also
provides control of grade risk management. A stochastic integer programming
(SIP) formulation is proposed to solve the problem. Its objective is to maximize
the PV of the project considering a set of simulated orebodies and also minimize
the risk of deviating from production targets (ore tonnage, head grade, metal
production). It has features that allow the mine planner to have more control
over the risk of not reaching the expected targets. The user can define different
penalties for deviating from each target under consideration, allowing one to not
only define the priority of production targets but also the weight associated with
the deviations of each of them. The method also uses the concept of a geological
discounting rate. This rate is used to discount the cost of ore production
deviations over time which reflects the principle that the cost to deviate from the
production target earlier in time has a higher cost then it would later. Therefore,
penalties for ore production deviations will decrease over time at a rate defined
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by the geological discounting rate. These penalties may be differentially defined
for excess or under production variations, allowing more control over the type of
variation which should be penalized more severely. As discussed in previous
sections, IP formulations can be impractical if a large number of integer variables
are considered. In the proposed formulation, to reduce the number of integer
variables, only blocks classified as ore are set as integer variables, a practice that
generally maintains optimal solutions12. By considering a probability cut-off
associated with a cut-off grade, the classification of blocks is done. Both cut-off
values are defined by the planner and can be variable over time. To classify a
block, the probability of the block grade being greater than the grade cut-off is
first computed. This probability is then compared with the probability cut-off; if
greater, the block is classified as ore.

Benndorf19 presents a SIP formulation similar to the one presented by Ramazan
and Dimitrakopoulos7,8 but that is extended to multi-element type deposits. The
formulation is tested at a multi-element iron deposit in Australia. In the proposed
framework, a multiple variable joint-simulation algorithm37 is first utilized to
produce simulations that respect and reproduce the spatial correlation between
the variables under consideration. The simulations are then utilized as input for
the multi-element SIP schedule formulation. The formulation aims for
maximization of the overall economic value of the mine, but also for minimization
of production targets in terms of tonnes and quality of the ore, respecting user-
specified smooth mining constraints. The formulation also includes a geological
risk discount rate, which is directly applied to the penalties for ore production
deviation. The study shows how the proposed formulation can considerably
decrease the costs associated with deviation from ore grade production targets,
150% lower than the results obtained by a conventional approach that does not
include grade uncertainty in its formulation.
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Jewbali20 describes the application of a SIP formulation and the use of future
data to update simulated models. The method can be divided into three
components: first, a conditional Gaussian co-simulation is applied and the
realizations utilized as the source of future grade control data available only at
the time mining is conducted and not available at the time the production
schedule is defined. Secondly, a conditional simulation based on successive
residuals is developed and used to update existing representations of the
orebody in order to include new information that may now be available, here
represented by the future data. The third and final component is the application
of the SIP formulation to the updated orebody models, which generates an
optimized schedule that is consistent with the level of information available at the
time mining takes place. The stochastic solution presents a higher PV, around
40%, than the handmade conventional schedule for a South African mine does.

Menabde et al6 implements an SIP formulation for long-term production
scheduling that maximizes NPV considering several possible simulated orebodies
and simultaneously optimizing cut-off grades. The formulation defines a final
schedule and a cut-off strategy that, combined, aim to maximize the NPV. Due to
the larger number of integer variables, an aggregation procedure is done in order
to reduce this number and therefore decrease the solution time.

Modeling Geological Uncertainty

As demonstrated in the previous section, all alternative solutions to the mine
scheduling production problem involve the use of a set of stochastic or
geostatistical simulations as the input for the geological uncertainty and local
variability of orebodies. This section explains the principles of the simulation
process and provides a more detailed description of common simulation methods
available.
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There are many simulation methods available. They can be classified into three
major groups: simulation of discrete variables, continuous variables, or objects21,
22. The major focus of this discussion will be on simulation methods of
continuous variables. The aim of simulation methods presented herein is to
provide ways to generate equally probable representations of a given attribute
respecting the following requirements:

1 - Simulations are conditional to the data.

2 - Simulations reproduce the frequency distribution of the data.
3 - Simulations respect the spatial correlation of the data.

To determine whether or not a simulation method is appropriate to mine-related
problems under consideration, the method must be able to efficiently handle a
large number of nodes to be simulated and produce conditional simulations that
can map the uncertainty around the attributes of interest in order to provide the
proper input for the stochastic schedules or to assess the risk associated with it.
These restrictions to simulation methods are intrinsically related to their practical
application on the commonly large grid of nodes to be simulated such as the
ones found at Escondida in Chile, 2.5 billion, or Superpit in Australia, 500 million,
(e.g.: large deposits modelled using millions/ billion of blocks), and with the need
to honour and use sample points (drillhole samples) to condition the simulations.

In most simulation methods presented herein, the mining-related attribute of
interest is considered as a stationary and ergotic random function (RF), eg.
Kolmogorov23. Considering this framework, Matheron24 introduced conditional
simulation to geostatistics as a tool to map the uncertainty around a given
spatially-distributed attribute. Simulations are obtained by drawing equally
probable realizations of the RF model. A complete knowledge of the multi-point
cumulative probability distribution function or the spatial law of the RF is not
required, once the first two moments (expectation and variogram and covariance
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functions) of the RF are utilized to model the spatial variability. The
characterization of the RF model is done considering the available information as
a single realization. For that, the RF is assumed to be stationary and ergotic,
meaning that its moments are invariant under translation. In general, this
assumption is only extended to the first and second moments. However, non-
stationary models and conditional simulation methods do exist25, though they are
rarely used due to their complexity.

Matrix decomposition or LU simulation is a method presented by Davis26, based
on the decomposition of the covariance matrix. The method is named LU
decomposition since it is based on the Cholesky decomposition of the covariance
matrix into a lower triangular matrix and an upper triangular matrix, and
represented the first simulation method able to directly conditional simulations.
By multiplying the lower triangular matrix by a vector of independent random
numbers, a conditional simulation can be obtained and by construction,
reproduces the original covariance matrix. The method is extremely efficient if a
relatively small set of nodes has to be simulated. The method's efficiency comes
from the fact that once the LU decomposition has been done, other simulations
can be generated by performing a matrix multiplication and addition. Problems
arise when large simulation grids (10,000 nodes or more) are considered; in this
case, the covariance matrix decomposition generates computational problems
related with the requirement to invert. Alabert27 proposed the use of a local
window to decrease the problem size. The simulation space is divided into
overlapping windows and simulations are done inside each window, a fact that
may generate artefacts when the conditioning inside each cell diverges
considerably from other cells nearby. Down and Sarac28 proposed using ring
decomposition to replace the Cholesky decomposition. Neither alternative
method eliminates issues related to the size of the grid to be simulated. Vargaz-
Guzman and Dimitrakopoulos29 introduce a simulation method based on column
decomposition of the covariance matrix and capable of dealing with large grids of
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nodes. The method is based on the column-wise partitioning of the lower
triangular matrix. Residual covariances of a column are calculated using the
results of the previous one. By stating the problem in this way, the lower
triangular matrix does not need to be inverted and the method can be applied to
large simulation grids. It also has the unique capability of updating pre-existing
simulations to include additional information, although to efficiently handle large
grids at each iteration, memory has to be allocated to the previous residual
covariances, which slows down the process. The implementation of this method
is detailed by Jewbali20 and shows that for computational reasons simulation is
done using a combined row and column decomposition of the covariance matrix.

Sequential Gaussian simulation (SGS) as introduced by Isaaks30, a variation of
the Monte Carlo simulation31, has become the most extensively used method for
mining-related problems. The decomposition of a multivariate probability density
function into the product of conditional distributions is the basis of the
method32,33,34. SGS considers the decomposition of a multi-Gaussian RF into the
product of its univariate Gaussian conditional distributions. Simulation is done by
randomly visiting all nodes to be simulated, one at a time; the conditional mean
and conditional variance are defined at each node, characterizing a conditional
Gaussian distribution. From this conditional distribution a value is randomly
sampled. This method is able to deal with large grid of nodes but can be time
consuming, as a kriging system has to be solved for each node, a process that
involves a matrix inversion operation.

Dimitrakopoulos and Luo35 propose a generalization of sequential Gaussian
simulation (GSGS). The method simulates a group of nodes at each iteration,
instead of node-by-node as done by SGS. SGS can be viewed as a particular case
of the LU method in which the solution is interactively implemented row-by-row.
As a result, a local neighbourhood replaces the full simulation domain utilized by
the LU method and each node is individually and sequentially simulated. It
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makes used of screen effect approximation and uses a local and common
neighbourhood to define the conditional distribution that is randomly sampled to
obtain the simulated node values. The method considerably reduces the time
needed to produce a set of realizations, making it propitious to be used in an
industrial type of problem. Benndorff and Dimitrakopoulos36 discuss the major
issues related with neighbourhood and group size and the accuracy of the
simulations. It is shown that accuracy is possible but it is a function of group and
neighbourhood size. The method is fast and applicable to large problems
commonly found in the industrial environment but still requires the manipulation
of large files as simulations are generated in point support and have to be post-
processed to the appropriated selective mine unit (SMU).

Godoy5,15 proposes a method to overcome the post-processing issue that can
also speed up the simulation process. Direct block simulation (DBSIM) is a
sequential Gaussian simulation method that generates simulations directly into
block support. The method uses the same principle of GSGS: a group of nodes
defining a block is simulated, the block value is computed by the average of the
internal points, the points are discarded and only the simulated block value is
added to the set of conditioning data. It assumes that the normal RF describing
the attribute of interest in point and block support is joint Gaussian. (Appendix B
provides a detailed description of DBSIM, as it is the selected simulation method
utilized in both case studies of this thesis.)

The so-called "turning bands" (TB) method24, a simulation method based on the
simulation of independent, one-dimensional lines. The method first produces
uniformly spaced lines in a plane, then a covariance function in one dimension is
used to produce independent simulations in each line and the simulation in the
plane is obtained by adding the values of the projections in the lines of the
points to be simulated. The one-dimension covariance model is obtained by the
convolution of the two-dimension covariance function. Journel38 expanded on the
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method to produce three-dimensional simulations. The method maps the three-
dimensional space using a maximum of 15 lines; more lines may be used if sets
of 15 lines are randomly place in the space. The conditioning is done by kriging
in a post-simulation stage. The method is certainly computationally efficient but
once simulation is performed in lines discretizing the space, artefacts may be
created. Mantouglou and Wilson39 present a simulation method that utilizes the
spectral domain approach to simulate lines in one dimension and then applies
the TB algorithm to generate the simulation in two or three dimensions. Borgman
et al.40 present a spectral domain algorithm to directly simulated in two
dimensions. It utilizes a discretization of the spectral density function to replace
the discrete spectrum of the covariance matrix. Pardo-Iguzquiza and Chica-
Olmo41 fully expand the algorithm to three dimensions.

Spectral or frequency domain simulation methods take advantage of the
computational efficiency of fast Fourier transforms (FFT) to simulate a stationary
RF with an associated covariance function by simulating uncorrelated random
spectral coefficients obtained by the FFT of the covariance function. To back-
transform the simulations, from the spectral or frequency domain to data space,
a reverse Fourier transform is applied, producing simulations with the desired
variance and variogram function. The proposed method is able to account in one
step for several covariance components, also allowing the presence of geometric
or zonal anisotropy. First, the covariance function model is sampled at a regular
grid. The discretization of the covariance function is then utilized to compute the
spectral density function at all grid locations using discrete Fourier transform
(DFT). By taking the square root of the density function, the spectral amplitude is
obtained and if combined with a discrete phase spectrum randomly sampled in
the interval 0 to 2p, defines the Fourier coefficients. An inverse Fourier transform
is then applied to the coefficients to finally obtain simulation in the data space
reproducing the covariance model. In general, methods based in the FFT of the
covariance function do not fit the requirements of simulated mining-related
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problems, as a regular simulation grid is required. This is not a common situation
encountered in mining. Another drawback is the requirement for post-
conditioning the simulations, which increases the processing time.

Sequential indicator simulation developed by Alabert42 is the most frequently
used simulation model that requires a strictly stationary RF model and
approximations of the ccdf. The method uses the same sequential approach as
previously described for the Gaussian simulation methods; the difference lies in
the fact that at each node an indicator kriging system is solved considering a set
of thresholds. The solutions of this set of indicator systems are used to define a
local probability distribution function, from which a simulated value is randomly
sampled.

Multi-point simulation methods were developed essentially to deal with problems
in which reproduction of two-point statistics (covariance, variogram) by the
simulations is not the major concern. They aim to produce simulations that
reproduce complex geological units or structures. To do so, modeling of multi-
point statistics is required, therefore it incorporates much more information than
the standard two-point statistics used so far by the methods previously
described. Guardiano and Srivastava43 were the first to introduce the idea of
using training images to map the joint probability distribution function of multi-
point geological patterns. The proposed algorithm uses the map of probability as
conditional information during the simulation process. The algorithm requires the
scan of the full training ¡mage at each node, therefore implying a large
computational cost. Strebelle44 proposes a solution to avoid the high
computational cost, which utilizes the same principle of using training images to
map probabilities of a given multi-point geological pattern, but makes use of a
search tree in order to scan the training images only once. Using the search tree,
the conditional probabilities for all existing patterns can be read. A conditional
distribution at each location can then be defined and randomly sampled to
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generate the node's simulated value. This procedure considerably decreases the
processing time required. The method is named single normal equation
simulation (SNESIM), as only one normal variable is considered. Zhang, Switzer
and Journel45 expand on the SNESIM by filtering spatial patterns in order to
avoid cutting off information as is done by SNESIM if a given pattern is not
present in the training image but is present in a simulation. The algorithm
defines smaller templates in a first stage, to compute reduced pattern
probabilities. These probabilities are utilized if a given pattern is not present in
the training image but it is obtained in a given simulation. The algorithm sets the
probability of an unmapped pattern equal to one of the reduced pattern
probabilities. The selection is done by considering the reduced pattern most
similar to the pattern being simulated.

There are several simulation methods able to jointly simulate two or more
variables; as they are not an integral part of the work presented in this thesis, no
detailed description will be provided.
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CHAPTER 3 Stochastic optimization model for open pit mine
planning: application and risk analysis at copper deposit

3.1 Abstract

Life-of-mine (LOM) production scheduling is a critically important part of open pit
mining ventures and deals with the efficient management of cash flows in the
order of hundreds of millions of dollars. A LOM production schedule determines
the quantity and quality of ore and waste materials to be mined over time, so as
to maximize the net present value of the mine. LOM production scheduling is an
intricate and complex problem to address and it is adversely affected by
geological risk, which can, however, be accounted for and managed while
constructing production schedules. In this study, the LOM scheduling process of
a disseminated copper deposit demonstrates the intricacies of a new scheduling
approach based on the technique of simulated annealing and stochastically
simulated representations of the copper orebody. The study documents the
benefits of incorporating geological uncertainty in the mine scheduling process
through the proposed approach. The stochastic approach is found to generate a
LOM schedule with a NPV 26% higher than that of the conventional schedule.
Risk analysis results show that the stochastic schedule has low chances to
significantly deviate from targets; the probability that the conventional schedule
will deviate from production targets is high. In addition, comparisons suggest
that in this specific study the conventional scheduling approach overestimates
ore tonnages and underestimates the NPV of the mine design. The above
suggests that LOM schedules that incorporate geological uncertainty may lead to
more informed investment decisions and improved mining practices.

3.2 Introduction

A life-of-mine (LOM) production schedule aims to optimize the sequence of
extraction and quantity of ore and waste mined out in each mining period
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throughout the life of the mine, so as to maximize its net present value (NPV).
Generating such a schedule depends, among other factors, on the grade and
tonnage of the ore deposit being considered. Conventional optimization
techniques are typically used to generate production schedules under pre-
determined technical, economic and environmental constraints using
mathematical optimization algorithms. These techniques assume that the grade
distribution within the mineral deposit under study is exactly as described.
Orebodies, however, are only partially known through exploration drilling
programs and, therefore, it is not possible to precisely define the quantity and
quality of the materials available in each location within an orebody. As a result,
in the presence of uncertainty, it is unlikely that conventionally constructed mine
designs and production schedules are optimal and have, in fact, been shown to
be misleading in some cases. For example, Dimitrakopoulos et al.1 show the
limits of conventional optimization techniques in dealing with uncertainty through
the presentation of conventionally generated results in key performance
indicators of a project that are shown to be misleading in the presence of
geological uncertainty and grade variability. Similar concepts and risk analysis
using stochastic simulation techniques have been discussed in the past2,3 in the
context of assessing the impact of uncertainty and in-situ grade variability in
conventional open pit designs, production schedules and related economic
evaluations.

Stochastic simulation techniques available for modelling uncertainty in orebody
attributes quantify geological uncertainty by generating equally probable
scenarios of the orebody under consideration and assist in enhancing mine
planning. The availability of these techniques lead to the development of new
scheduling techniques integrating uncertainty into the mine planning process. For
example, Dimitrakopoulos and Ramazan4'5 develop an optimization formulation
introducing the new concept of production scheduling with geological risk
discounting. Dimitrakopoulos et al.6 propose an approach in which an open pit
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mine design is selected from a set of possible designs, using the concept of
maximum upside potential and minimum downside risk for all possible designs
and their key project performance indicators. Grieco and Dimitrakopoulos8,7
propose a mixed integer programming approach for stope design in underground
operations that determines optimum location, size and number of stopes based
on the concept of acceptable level of risk in a design. Ramazan and
Dimitrakopoulos9,10 develop a stochastic integer programming model that uses
multiple simulated orebodies to minimize deviations of ore production from LOM
schedules, and show substantial monetary benefits from stochastic scheduling. A
stochastic integer programming approach is also shown in Menabde et al. n.
Godoy12 and Godoy and Dimitrakopoulos13 develop a new approach for mine
production and scheduling optimization under uncertainty. The method
integrates several new elements; these are the stable solution domain which is a
characterization of all feasible combinations of ore and waste extraction rates

possible from a given pit, the optimization of production rates over the life of
mine for a given mine setup and mining equipment available, and a simulated
annealing algorithm for scheduling optimization given multiple simulated orebody
representations, given optimal production rates. The latter algorithm generates
schedules that meet the optimal production rates, and minimize potential
production deviations in the presence of grade uncertainty. In the same work,
the associated case study shows an increase of 28% in the NPV of the mine
compared to the conventional LOM schedule accompanied by substantially lower
potential deviations from production.

In this study, an approach based on simulated annealing, and variant of the
stochastic scheduling approach presented in Godoy12, is first presented and then
tested in a relatively low grade variability copper deposit. The objectives are
several; (a) to test the simulated annealing based scheduling approach; (b) to
assess the significance of incorporating geological uncertainty when scheduling a
deposit with relatively low variability; (c) to ascertain if the previously reported
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increase in NPV when using stochastic approaches is the same in different case
studies; (d) to assess the previously reported reduction in risk to deviate from
production targets; and (e) to analyze the results and suggest future work. In
the following sections, the stages of a stochastic scheduling approach based on
simulated annealing, are stated first. Then, the case study at a copper deposit
follows and results are presented. Lastly, the mine's LOM schedule from the
stochastic approach is compared to a conventionally developed LOM schedule for
the same copper deposit, and conclusions follow.

3.3 A stochastic production scheduling approach
The mine scheduling approach presented in this section is a multi-stage
framework generating a final schedule, which considers geological uncertainty so
as to minimize the risk of deviations from production targets. A basic input to
this framework is a set of equally probable scenarios of the orebody, generated
by the technique of conditional simulation. The stages of the approach include
the (a) definition, through a conventional optimization approach, of the ultimate
pit limits and mining rates to be used in subsequent stages; (b) development of
a set of schedules within the predetermined pit limits that meet the ore and
waste production targets defined in the previous stage; this set of schedules is
developed using a conventional scheduler and simulated orebodies one at a
time; and (c) generation of a single production schedule that minimizes the risk
of deviation from production targets using a simulated annealing formulation.
Figure 3.1 shows the stages of the stochastic production schedule framework
used in this study. Each of the three stages is explained in the following
subsections.
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Figure 3-1- The three stages of the mine production scheduling process in this
study

3.3.1. Stage 1 - Final pit and mining rates selection
In this first stage, a conventional approach is used to define the ultimate pit
limits and mining rates. Without loss of generality, the approach applied in this
study is based on the nested-pit implementation of the Lerchs-Grossman
algorithm14. This procedure determines the ultimate pit limits and allows for the
development of a practical sequence of extraction using a conventionally
modeled obebody. Mining rates are either defined by a commonly used
interactive procedure within the above framework based on the so-called Milawa
scheduler15, or are pre-selected for mine operational reasons related to mill
demand and geometric constraints. Any approach to defining mining rates can be
accommodated in this stage. The ultimate pit limits and mining rates are used in
the subsequent stages of the scheduling approach followed in the present study.

3.3.2. Stage 2 - LOM schedules using simulated models
This second stage aims to produce a series of physical schedules describing the
evolution of the working zones in the pit over the life-of-mine. Any formulation
performing mining sequencing can be used for this task, provided that
engineering requirements are met. These include sequencing that obeys slope
constrains and satisfies mill requirements, while matching the mining rates
previously derived in Stage 1. The process consists of producing multiple mining
sequences, one for each simulated grade model of the orebody. These multiple
alternative mining sequences are based on distinct but equally probable models
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of the spatial distribution of grades within the deposit. It is important to note
that selecting and using one or few "representative" simulated realizations of the
orebody for scheduling proposes is an erroneous practice, leading to misleading
schedules.

The mining sequences generated are used next to compute the probability that a
mining block belongs to a given period of the LOM schedule. The map of such
probabilities defines a cumulative distribution function (cdf) for each block and
this cdf forms the basic input for simulated annealing in Stage 3, where the final
LOM production schedule is developed. The simulated realizations of the
orebody required for Step 2 can be generated from efficient conditional
simulation techniques, such as the direct block simulation used herein 16 and
briefly explained next.

Direct block simulation (DBS) is a conditional simulation technique that generates
realizations directly on the required block support, as detailed in Godoy12. The
major advantages of DBS relate to substantial savings in processing time and
data storage requirements. These are important issues because mining problems
involve simulation of tens to hundreds of millions of nodes that need to be

grouped into mining blocks. The steps of implementing the algorithm are
summarized as follows:

1. Normalize the available data.

2. Select a random path to visit each block to be simulated.
3. Simulate internal nodes discretising a block in the Gaussian space using the LU
simulation method, if no previously simulated blocks are involved; or otherwise
using the joint LU of data points and previously simulated blocks.
4. Compute the simulated block value by averaging simulated internal nodes in
both the Gaussian space and data space.
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5. Discard values of internal nodes and add the average value in the Gaussian
space to the conditioning dataset and the block value in the data space to the
output.
6. Repeat steps 3 to 5 until all blocks are simulated.
7. Repeat steps 2 to 6 to generate additional realizations.
8. Validate the simulations generated.

Note that LU in Step 3 above stands for the simulation method based on the
lower - upper decomposition of the covariance matrix.

3.3.3. Stage 3 - Simulated annealing and final schedule
Simulated annealing is a heuristic optimization approach based on the so-called
stochastic relaxation17,18. The general principle of simulated annealing is to
perturb an initial stage, for example, an initial mine sequence as in the present
case, while respecting possible constraints. Perturbations are performed in order
to improve an objective function which can be of any type, linear or non-linear,
and include several components. For each perturbation, the relative change in
the objective function is evaluated. Perturbations leading to an improvement in
the objective function are readily accepted. Different rules may be defined to
accept or reject unfavorable perturbations. Such a rule is the frequently used
acceptance probability distribution given by

Prob {Accept Pertubation} =
1, if Onew < Oold
OqU-O^ (3-1)
e '' ,otherwise

where onew is the value of an objective function after a perturbation, oold is the
value of the same objective function before the perturbation, and t is the so-
called annealing temperature. The idea is to start with a higher temperature, that
is, with a higher probability of accepting unfavorable perturbations and gradually

28



decrease this temperature, consequentially decreasing the chances of an
unfavorable perturbation being accepted. This reduction is obtained by
multiplying the temperature by a "cooling" factor. The magnitude of this factor
determines how fast the probability to accept an unfavorable perturbation
decreases. The perturbations mechanism continues until stopping criteria are
met. Possible stopping criteria may be the maximum number of perturbations
accepted without changing the objective function value, maximum number of
perturbations, or reaching an upper/lower limit of the objective function value.

The simulation annealing technique used in the present study combines several
mine schedules to obtain one which minimizes the risk to deviate from pre-
established ore and waste production targets. The algorithm minimizes an
objective function that is defined in this study as the sum of deviations from
production targets for Nmining periods

????=S?S??-^?|+S??-^(5)|] (3'2)
where N is the number of mining periods, S is the number of simulated models,
and /7=1, ..., N; s = 1, ...5; 9'„{s) and <o» are, respectively, ore and waste

quantities of the perturbed mining sequence in simulation {s = l,..-,S} for period
{n=\...,N\ ; en(s) and (on(s) are, respectively, ore and waste targets for the
mining sequence in simulation {s = 1,...,S] for period {«=l,...,iV"} . The objective
function in Eq. 3.2 measures the average deviations from ore and waste targets
considering a perturbed state over all available 5 representations (simulations) of
the deposit. The proposed algorithm perturbs a given state by swapping a block
between possible candidate periods. Candidate periods are defined by the cdf
computed in Stage 2 described above. The algorithm allows swapping either all
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blocks or a set of blocks defined by applying a probability threshold. A block is
included in this set, if its probability to belong to any given period is smaller than
the proposed threshold. Perturbed states are generated until one of the stopping
criteria is met. The stopping criteria implemented in this study are the maximum
number of attempted swaps, the number of acceptable swaps, the number of
times the annealing temperature is reduced, the number of attempted swaps
without a significant change in the value of the objective function, and if a
specified lower bound on the objective function value is reached.

As noted above, the way in which a new perturbed state is obtained and the
criteria that determine its acceptability are important characteristics of Eq. 3.2.
Perturbations are done in such a way so as to respect slope constraints and a
feasible sequence of extraction. This is achieved through the use of a
connectivity test. A block is said to have connectivity, if at least one of the four
surrounding blocks at the same level is scheduled in the same candidate period,
the block just above it is scheduled in a previous or in the same period, and the
block just below it is scheduled after or in the same period. If a block has
connectivity it can be swapped to the candidate period. The objective function is
then tested and the swap is accepted if the value of the objective function is
improved. Otherwise, the swap is accepted or rejected by a negative exponential
probability distribution such as that presented in Eq. 3.1.

The steps of implementing the simulated annealing algorithm may be
summarized as follows:

1. Define all blocks that may be swapped.
2. Define the possible candidate periods with associated probabilities.
3. Loop through the steps below until a stopping criterion is met:

• randomly draw a block to be swapped;
• verify if the block has connectivity;
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• if the block has connectivity, swap the block to the candidate period;
• update the objective function (Eq. 3.2);
• accept the swap if the objective function has improved, if not

accept/reject using a negative exponential probability function (Eq. 3.1).

3.4 Case study: Risk based schedule at a low-grade disseminated
copper deposit
The deposit is located in a typical archean greenstone belt. The region consists
predominantly of mafic lavas with lesser amounts of intermediate to felsics
volcaniclastics. Rocks are moderately deformed with a prominent cleavage sub-
parallel to what is considered to be the original bedding, an E-W trend with
average 64° South. The deposit itself is in a sequence of moderately to strongly
foliated, sulphidic, mafic to intermediate volcanic rocks, which have been
intruded by numerous sub-volcanic felsite and feldspar porphyry and/or
intermediate volcanic tuff, with size ranging from lapilli to agglomerate, within a
strongly chloritic and biotitic matrix. It can be traced over a strike length of
1.5km with a thickness varying from a few meters to more than 75m.
Mineralization consists of about 10% sulphides, mostly chalcopiryte, pyrite and
pyrrhotite, occurring as disseminations, streaks and stringers apparently
controlled by the strong rock cleavage.

The geological database is compounded by 185 drillholes with 10m copper
composites in a pseudo-regular grid of 50m ? 50m covering an approximately
rectangular area of 1600x900 m2; the average dip is 60° North. Figure 3.2 shows
the histogram and statistics for Cu% of 10m composites. Using the geological
information, one mineralization domain is defined and modeled through a
geostatistica I study.
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Figure 3-2 - Cu (%) histogram of 10m composites

3.4.1. Developing the mine's stochastic production schedule
Stage 1: As noted earlier, the nested Lerchs-Grossman algorithm for pit
optimization15 is used here to define a final pit. Mining, processing and selling
costs, metal price, slope angles and processing recovery parameters are given in
Table 3.1. In addition, this algorithm requires a single representation of the
orebody as an input. In this respect, a conventionally estimated orebody model is
created using ordinary kriging and 20x20x10m3 blocks. This model is utilized in
this and subsequent sections for comparisons.

Table 3-1 - Economic and technical parameters
Copper price (US$/lb) 2.0
Selling cost (US$/lb)
Mining cost ($/tonne)
Processing cost ($/tonne)

0.3
1.0
9.0

Slope angle
Processing recovery

45°
0.9

Using the above parameters and the conventionally estimated orebody model, a
set of nested pits is generated. Pit 16 is selected as the ultimate pit limit because
it corresponds to the maximum net present value. There are 14,480 ore and
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waste blocks inside the pit limits. After the ultimate pit definition, an interactive
process is followed to define the mining rates through the life-of-mine, based on
scheduling the mine with the Millawa algorithm16 and testing different
combinations of feasible mining rates given a predetermined mill demand. The
mining rate is defined to be 7.5 million tonnes of ore per year with a constant
striping ratio of 2.7 over the LOM. Within the limits of the conventionally
constructed schedule in Stage 1, this rate appears to ensure a constant mill feed
over the seven out of an expected 8 years LOM with no significant variations in
the striping ratio. Note that the specifics here refer to a conventionally conduced
pit optimization study.

Stage 2: This second stage produces a series of multiple mining sequences
within the ultimate pit limits and with the mining rates from Stage 1. All LOM
schedules are produced using the same economic parameters presented in Table
3.1, a 0.3 % Cu cut-off grade and the Milawa algorithm. Each mining sequence
is generated from scheduling an equally probable realization of the copper
deposit. Twenty realizations of the deposit are available and generated with the
direct block simulation algorithm previously discussed. To obtain a simulated
model, the orebody is divided into blocks of 20x20xl0m3 within the mineralized
domain defined previously. Each block is then represented by 10x10x1 nodes.
This number of nodes, 100 per block, is large enough to ensure that the actual
block scale variability is reproduced by the simulated orebodies.
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Figure 3-3 - Examples of five simulations scenarios of the copper deposit and
their corresponding schedules in an East-West section
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Figure 3.3 shows 5 conditionally simulated models of the copper deposit and
their respective production schedules. Note that there are seven production
years in all the 20 production schedules generated and the discussion of this
topic is deferred for a subsequent section.

Stage 3: In Stage 3, the mining rates and the 20 mine sequences obtained in
Stages 1 and 2 respectively are inputted into the simulated annealing algorithm.
As defined in Stage 1, there are 14,480 ore and waste blocks inside the pit limits
scheduled to 7 possible production periods. As described earlier, the algorithm
works by swapping blocks among the possible periods and updates the objective
function described by Eq. 3.2 after each swap. This process continues until one
of the stopping criteria, described in previous section, is met. In this study, an
initial annealing temperature of 10"5 is used, with an associated cooling factor of
0.1. The algorithm stops, in this case, after 1,581 accepted swaps since the
criterion of the maximum number of perturbations without a change is met (107
swaps). A risk-based schedule corresponding to a 7-year mine life is finally
obtained. An East-West section of the physical schedule is represented in Figure
3.4.

Risk analysis for the produced stochastic schedule is carried out using the 20
simulated orebody models. The maximum, minimum and expected (average)
amounts of ore, waste, cumulative metal and cumulative net present value for
each period are computed and presented in Figures 3.5, 3.6, 3.7 and 3.8,
respectively. As shown in Figures 3.5 and 3.6, the differences between the
expected and targeted ore and waste productions are not significant. This
reflects the fact that the risk-based production scheduling approach minimizes
the chances to deviate from ore and waste production targets. Figures 3.7 and
3.8 also demonstrate low potential for deviations from metal production and
consistently low variations in cash flow expectations over the LOM. The
evolutions of the objective functions for ore and waste components with the
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number of attempted swaps are shown in Figure 3.9. It is obvious that both
components stabilize at approximately 2000 attempted swaps and no further
significant improvements in the objective functions are achievable from
additional swaps.
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3.4.2. Comparison with a conventional schedule
To compare the results of the stochastic LOM production schedule with those of
a conventional approach, the conventional schedule produced in Stage 1 is used
here. Recall that this conventional schedule is based on the same final pit,
mining rates, technical and economic parameters, cut-off grade of 0.3% Cu, and
uses the conventionally estimated model of the deposit. As shown in Figure
3.10, the conventional schedule forecasts an eight-year long mine life. In
addition, no significant shortage or surplus of ore production, considering a
target of 7.5 million tonnes of ore per year, is expected. This mine life is greater
than that of the stochastic scheduling approach, which is forecasted at 7 years.
The two schedules have different requirements for production capacity and
associated equipment fleet. To assist with the upcoming economic comparison
discussed in this section, please note that the comparison considers time costs
and assumes some flexibility in the variation of production capacities and
equipment fleet during the last 2 periods of production. In the last 2 periods, a
decreasing stripping ratio is allowed and requires adjustment of the equipment
fleet. Note that the schedules could be compared in the same timeframe, by
assuming that the material mined in the last year of production of the
conventional schedule is mined and stockpiled in the 7th production period. The
requirement for stockpiling would lead to an even lower NPV for the conventional
approach once costs for stockpiling the material are included in the economic
evaluation.

Mining Period

WfW.

s^HPs m

B

Figure 3-10 - East-west section of the conventional schedule
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Risk analysis for the quantity of ore produced from this conventional schedule is
carried out using the simulated orebody models. Figure 3.11 presents the ore
tonnages reported by the conventional schedule as well as the maximum,
minimum and expected (average) amounts obtained by evaluating the sequence
using 20 simulated orebodies; it shows that the results obtained by the
conventional approach are misleading. Considering that the simulations are
possible representations of the actual deposit, the conventional schedule has a
high probability of not meeting the ore production targets over the life of the
mine. The conventional approach overestimates the ore tonnages since its
estimates are higher than the expected tonnages throughout the mine's lifetime
(Figure 3.11). A main contributor to this overestimate is the smoothing of the
grade distribution produced by the conventional estimation techniques. It is
important to emphasize that this result is specific to this case study and cannot
be generalized. Conventional optimization approaches may overestimate or
underestimate ore tonnages depending on the selected cut-off grade and the
local grade variability in the deposit. As shown in Figure 3.12, for low cut-off
grades, the conventional approach overestimates ore tonnages while for
relatively high cut-offs it underestimates them.

In summary, there are significant differences between the stochastic schedule
and the conventional one. First, as the conventional approach overestimates ore
tonnages at the selected 0.3 % Cu cut-off, the mine life obtained by the
conventional approach is longer than that suggested by the stochastic approach.
Second, there are differences between the extraction sequences of the two
schedules. Third, comparing Figures 3.5 and 3.11, it is clear that ore tonnages of
the stochastic schedule are not significantly different from the targeted ones,
while those of the conventional schedule are significantly different from the
expected tonnages over the mine lifetime. The main reason for the differences
between the stochastic and the conventional schedules is the dissimilar ways
geological uncertainty is managed in each schedule. While the conventional
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scheduling approach ignores geological uncertainty, the stochastic approach
integrates it into the scheduling process and manages this risk so as to minimize
the risk of deviation from production targets. This management is essentially a
'blending' over a mining period of materials with more certain with less certain
grade.
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Figure 3-11 - Conventional LOM production schedule (risk profile for ore tonnes)
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The economic implications of the differences between the stochastic and the
conventional schedules are substantial, as shown in Figure 3.13. In the figure,
the risk profile of cumulative discount cash-flows for the stochastic schedule is
compared with the results obtained by the conventionally generated schedule.
In addition, the risk profile for the conventional schedule is shown. A 26.2%
higher NPV is obtained by the stochastic schedule when compared to the results
obtained by the conventional approach. If the average NPV of the stochastic
schedule is compared with the average values from the risk profile of the
conventional schedule, a 15% higher NPV is obtained by the stochastic schedule.
Note that the conventional scheduling practice would not be able to provide the
information about the performance of such schedule. These substantial
differences are mainly due to the ability of the stochastic scheduler to better
assess the chances of a block to be ore or waste, and to schedule each block
accordingly so as to minimize the chances of deviating from target production for
ore and waste over a mining period.
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The results of the study presented here are not sensitive to additional simulated
representations of the orebody. This is documented also in the Appendix A and
also expected. The reason is that the 'spaces of uncertainty' being mapped,
from NPV, to metal content, waste and so on for designs discussed above are
not highly variable. This also suggests that it is possible to generate comparable
results to this study by using less than twenty simulated representations of the
orebody. Similarly, this lack of sensitivity suggests that the use of additional
simulated representations of the orebody to the 20 used herein, would not add
any additional relevant information for the problem at hand.

3.5 Conclusions

This study explores the practical intricacies and performance of a stochastic
scheduling approach based on simulated annealing, in an application at a copper
deposit with relatively low grade variability. Despite the relatively low grade
variability of the deposit, the results of the study show that there are significant
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differences between the stochastic and the conventional schedules. Firstly, the
NPV of the stochastic schedule is found to be 26% higher than that of the
conventional schedule; this is comparable to the 28% difference reported in
Godoy and Dimitrakopoulos13 for a large gold deposit. Secondly, risk analysis
shows that the stochastic schedule has low chances to significantly deviate from
targets; the probability that the conventional schedule will deviate from
production targets is high. This is also similar to past studies mentioned above.
Finally, the mine life predicted by the stochastic approach is 14% shorter than
that of the conventional approach.

The results of this study suggest that the conventional approach overestimates
ore tonnages and underestimates the NPV. This conclusion cannot be
generalized because the conventional approach to scheduling may overestimate
or underestimate ore tonnage and NPV depending on the selected cut-off grade
and local grade variability within the deposit. The important point to be
considered is that regardless of whether it overestimates or underestimates, a
conventional approach may produce ore tonnages and NPV that are unrealistic
and have low chances to be realized. This may result in misleading investment
decisions where a good project is rejected or a marginal project is accepted. The
results herein are not sensitive to additional stochastically simulated
representations of the orebody. Future work should address the dynamics of
cut-off grade, ultimate pit limit and pushback design optimization under
uncertainty.
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Appendix A - Sensitivity analysis of the results
The results presented herein are found to be insensitive to the use of additional
simulated representations of the orebody, and this is shown in the following test.
A new set of twenty different simulations is used to evaluate the schedule
generated with the stochastic scheduling approach presented in this paper. This
risk profiles for NPV, ore tonnages and waste production are respectively shown
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in Figures 3.14, 3.15 and 3.16 respectively. The figures clearly show that there is
no impact in the results when different realizations are considered. This is not
surprising and, as also discussed in the main part of the paper, is the due to the
fact that the 'space of uncertainty' being mapped in Figures 3.14, 3.15 and 3.16
are not highly variable. While using less than twenty realizations of the copper
orebody may provide the same results, the use of additional simulations would
not in this case add any useful additional relevant information for the problem at
hand.
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Figure 3-16 - Risk based LOM production schedule (waste production and risk
profile) using a different set of simulations than those in the case study
presented in the main body of this text
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CHAPTER 4 Stochastic integer programming formulation applied
to the mine production schedule of a copper deposit

4.1 Abstract

Determining the long-term mine production schedule of open pit mines is of
major importance as it defines the ore supply that the mine can provide as well
as aims to maximizes its present value. The conventional mine scheduling
approach requires a single, average type representations of reality and, as a
result, it ignores uncertainty around technical and economic parameters. From all
sources of uncertainty affecting the planned ore supply of a given schedule,
uncertainty about ore reserves is acknowledged as the most critical one. It is
known that the use of a single, average type of deposit model to define reserves
produces a smoothed image of the real deposit, and this smoothing may lead to
a misleading forecast of ore supply, waste and related cashflow forecasts over
the life of the mine. To overcome this problem, a stochastic mining production
scheduling approach is considered here. The approach explicitly integrates the
uncertainty of parameters or inputs to the scheduling problem aiming at
generating a more risk robust solution. In this study, a stochastic integer
programming (SIP) formulation for mining production scheduling is applied and
tested at a low-grade variability copper deposit. The stochastic solution as
implemented here aims to maximize the economic value of a project and
minimise deviations from production targets in the presence of geological
uncertainty. Unlike the conventional approach, the method is able to account for
and manage risk. As a result, the mine production schedule obtained as a
solution using the SIP formulation is shown to have a 29% higher NPV than the
schedule obtained from a conventional scheduler.
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4.2 Introduction

Open pit mine design and production scheduling is traditionally divided, for
practical reasons, into two major tasks: first, an ultimate economic boundary
beyond which mining becomes uneconomical is delineated and then, the
extraction sequence of the set of selective mining units (SMU) contained inside
this final boundary or pit is defined. Both problems are typically formulated such
that an optimum maximum economical return for the mine is obtained. The
optimum open pit mine production schedule is defined as the sequence of
extraction that maximizes the present value of the project. This task is one of the
most challenging and important in the mine planning framework as it defines the
ore supply produced over the life-of-mine (LOM) and consequentially has an
impact on the net present value (NPV) of the project. The conventional mine
design and production framework defines the extraction sequence considering a
single, average type of orebody model as input. As a result, it does not account
for uncertainty in the related project parameters. The weaknesses of such an
approach are well documented. It has been demonstrated that the use of an
average model of the orebody, one that does not reproduce its actual local
variability as an input for mine planning optimization algorithms, may lead to
misleading results1,2'3. This finding makes clear that there is a need to address
the mine production schedule problem using stochastic approaches. Stochastic
approaches use as input a set of equally probable representations of the orebody
which representations reproduce, by construction, its actual spatial variability and
distribution. As a result, this set of representations is able to directly incorporate
uncertainty into the formulation of the problem.

Different stochastic approaches have been considered in order to provide more
robust solutions dealing with uncertainty. Dimitrakopoulos et al4 utilize the
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concepts of upside/downside potential to include grade uncertainty in the long-
term production schedule. Several mine designs for a set of simulated orebodies
are obtained and a final one selected by considering the one with a minimum
downside or maximum upside potential. Dimitrakopoulos and Ramazan5 present
a mathematical programming formulation minimizing deviations form production
targets by considering a probabilistic approach. The new concept of geological
discounted rate is introduced and produces a decreasing unit cost for deviation
of target over the LOM. Ramazan and Dimitrakopoulos6 introduced a mixed
integer programming (MIP), which also uses a probabilistic approach.
Probabilities are computed by scheduling simulated models; the final schedule
uses these probabilities to maximize the NPV of the project. Godoy and
Dimitrakopoulos7 propose a different stochastic approach using a simulated
annealing algorithm to obtain a stochastic mine schedule. The proposed solution
is divided in three stages; in the first stage optimum mining rates are defined
using a LP formulation, in the second stage the rates are utilized to schedule a
set of simulated ore bodies, and the schedules are then used in a final stage in
which a stochastic schedule is obtained by using a simulated annealing algorithm
and then scheduled as an input. The study shows a 28% difference in NPV as
compared to the conventional schedule. Leite and Dimitrakopoulos8 apply a
variant of this approach in a copper deposit and show an improvement of 25% in
NPV when compared to the conventionally derived schedule. Ramazan and
Dimitrakopoulos9 extend the use of a stochastic MIP formulation to be applied in
complex multi-elements type of deposits such iron or nickel latérites. Menabde et
al10 implements a stochastic integer programming (SIP) formulation for long-
term production schedule that maximizes NPV considering several possible
simulated orebodies and simultaneously optimizing cut-off grades. Ramazan and
Dimitrakopoulos11 propose an approach that accounts for all available realizations
of the orebody simultaneously in a stochastic integer programming (SIP)
formulation. Their formulation has as objectives the maximization of NPV and
minimization of deviation from production targets. Different penalties may be
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defined for deviations of different targets. A probability cut-off, associated with a
cut-off grade, is utilized for ore/waste classification proposes and shows a
difference of 10% in NPV. Benndorf12 expands and applies this formulation to a
multi-element type of the deposit, also considering blending constraints.
Jewbali13 combines the use of the SIP formulation with the use of simulated
future data, updating simulated models to produce an optimum stochastic mine
schedule and shows a 30% inclease in NPV at a gold deposit.

Despite substantial monetary benefits, the application of stochastic schedulers is
relatively recent and the value of this solution when applied to different type of
deposits is still not completely understood. Therefore it is important to test the
application of stochastic schedulers in different types of mineralization to assess
the complexities and intrinsic characteristics of such schedulers. In the present
study, the approach presented by Ramazan and Dimitrakopoulos9,11 is applied to
a low-grade variability copper deposit. The study tests the approach, quantifies
the associated value of the stochastic solution, assesses the risk profile of
pertinent mining parameters and, finally, analyses the results to propose future
improvements. The study aims to explore the method's capability to incorporate
geological uncertainty in the mine production schedule problem formulation and
to manage the risk of deviating from production targets. The following sections
describe the stochastic integer programming formulation in detail, present its
application in a copper deposit and the results obtained, and compare the results
with those obtained by a conventional scheduler. Conclusions follow.

4.3 SIP formulation for long-term open pit production scheduling

Stochastic mathematical programming approaches to the mine schedule problem
are venues to directly incorporate uncertainty about ore supply in the formulation
of the problem, so as to minimize risk of meeting the mine production targets. In
the mine production schedule case, the decision to be made is the time period in
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which each block is mined, in order to maximize the overall discounted value of
the project (NPV), subject to slope, reserves and processing and mining capacity
constraints. The set of blocks available to be scheduled are the ones contained

within the ultimate pit. The SIP formulation presented herein includes uncertainty
in the formulation of the problem by considering a set of different and equally
probable stochastic simulated orebody realizations in the optimization process.

4.3.1 The economic value of a block

The optimization process considers the economic value of the set of blocks to be
scheduled. The expected value of a block E[V,) is defined herein using its
expected return NR1 , which is defined as the expected gain from a set of possible
stochastic simulated grades (metal content) for the given block /. The value of a
given block / is therefore defined as:

[NR1 -MC1 -PCn if NR, > PC,.
1 '' [ -MC1 ,otherwise

Given that

JVR1. = T1 ? G,. ? REC ? {price - SellingCost) (4.2)

where NR¡ represents the expected net revenue, MQ the mining cost, Pd the
processing cost, T¡ the tonnage, G, the grade and RECthe recovery.

4.3.2 Objective function

The formulation aims to maximize the NPV of the mine by minimizing the risk of
falling short of previously defined production targets. It includes two possible
destinations for a block: processing plant or waste dump. The objective function
includes two components and it is
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where

/ ¡s the block identifier;
t is the time period;
to flags the ore production target type;
/ stands for lower bound;
u stands for upper bound;
s stands for the simulation number

P is the maximum number of scheduling periods;
N is the total number of blocks to be scheduled;
b\ is a variable representing the portion of block / to be mined in period t; if
defined as a binary variable, it is equal to 1 if the block / is to be mined in period
t and equal to 0 otherwise.

e\{npv)\\s the expected NPV to be generated by mining block ì in period t; it is
computed as the discounted value of Eq. 4.1
c'° is the unit cost for excess of ore production

d'°u is the excess amount of ore production in period t considering simulation s;
c',° is the unit cost for the deficient ore production
d'¡ is the deficient amount of ore production in period t considering simulation s;

The first component (Part A) in Eq. 4.3 contributes to the maximization of NPV of
the project. The expected NPV of a block is computed as the expected present
value if the block is mined in period t, considering all simulated values. The
second part (Part B) is responsible for minimizing deviations from ore production
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targets, also managing the distribution of risk within and between periods over
the LOM. Risk management is accomplished by the use of a geological discount
rate d, which discount over time the penalties applied to the unit cost deviations
as explained below. The initial penalties for excess, c°u° , or shortage production,
c°° , are user defined and should be at same order of magnitude as the first part
of the objective function to ensure the second part is being properly considered.
The impact of discounted penalties is a progressive decrease in the unit cost over
the periods. This setup ensures that less "risky" mining blocks will be scheduled
in early periods, therefore decreasing the risk of not attaining the planned
targets and guarantying the minimization of production target deviations.

The unit costs in Eq. (4.3) are

c°°for excess production c'° = / » . (4.4)
(\+d)

where d is the discount factor mentioned earlier

or

c°°for deficient production c'° = ' (4.5){l + d)

Constraints

Processing constraints

lower bound Ítosib¡ + d'° - <°, = Omin vs,t (4.6)
i=l
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upper bound S°«·# "0^ +< = ömax Ví,í (4.7)

where

°s< is the ore tonnage of block / if simulation s is considered;
a'°u # a'su are dummy variables to balance the equality;
°™ maximum ore production in a period;
°™n minimum ore production in a period;

Slope constraints
Two different formulations for the slope constraints are made available, though
neither one is deemed better as they only differ in the final solution time which is
case dependent.

The first formulation uses one constraint for all overlying blocks per period

/=1 k=\

The second is using y constraints for each block per period

*;-¿#<o V/ (4.9)
k=\

where

y is the number of overlying blocks

Reserve constraints
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S?>/,=1 ?/ (4-10)

4.3.3 Definition of ore and decision variable type

A block is classified as ore or waste on a purely economic basis. A block with
positive return is classified as ore, otherwise as waste. Ideally, all blocks
considered should be defined as integer (binary) variables; this setup would for
most mining applications lead to impractical solution times as the number of
blocks to be scheduled is normally quite large. Reducing the number of integer
variables reduce the solution time, which can be accomplished by relaxing
integrality constraint of some variables. The logical option is to define ore blocks
as binary variables and waste blocks as linear ones. This approximation is
proposed and shown to not alter the optimality of the solution obtained by
Ramazan and Dimitrakopoulos5. Following this, the SIP formulation allows for a
size reduction strategy. A probability cut-off is utilized in combination with a
grade cut-off to classify blocks as ore or waste. First, the probability of the block
grade to be greater than the cut-off grade is computed, which is done by
counting the number of simulated grade values that are greater than the cut-off
grade and dividing the total by the total number of simulated values. Then, if the
computed probability is greater than the probability cut-off the block is classified
as ore, if not, it is defined as a waste. Once again, variables associated to waste
blocks are defined as linear variables.

4.4 Case study: Application at a copper deposit

4.4.1 The deposit
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The deposit ¡s located ¡? a typical archean greenstone belt. The region consists
predominantly of mafic lavas with lesser amounts of intermediate to felsics
volcaniclastics. Rocks are moderately deformed with a prominent cleavage sub-
parallel to what is considered to be the original bedding, an E-W trend with
average dip 64° South. The deposit itself is in a sequence of moderately to
strongly foliated, sulphidic, mafic to intermediate volcanic rocks, which have
been intruded by numerous sub-volcanic felsite and feldspar porphyry and/or
intermediate volcanic tuff, with size ranging from lapilli to agglomerate, within a
strongly chloritic and biotitic matrix. It can be traced over a strike length of
1.5km with a thickness varying from a few meters to more than 75m.
Mineralization consists of about 10% sulphides, mostly chalcopiryte, pyrite and
pyrrhotite, occurring as disseminations, streaks and stringers apparently
controlled by the strong rock cleavage.

The geological database consists of 185 drillholes with 10m copper composites in
a pseudo-regular grid of 50m ? 50m covering an approximately rectangular area
of 1600x900 m2; the average dip is 60° North. Figure 4.1 shows the histogram
and statistics for Cu% of 10m composites.
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Figure 4-1 Cu (%) histogram of 10m composites

Using the geological information, one mineralization domain is defined and
modeled through a geostatistical study. An estimated model, obtained using
ordinary kriging, and a set of simulated models, generated using a direct block
simulation method14 are produced. All models are constrained by the ore domain
previously defined. Figure 4.2 brings a section of the estimated model and three
of the simulated ones. The smoothing effect on the grade, produced by the
ordinary kriging model, is made clear in Figure 4.2
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Figure 4-2 East-West sections of three simulated models (left column) and the
corresponding single estimated model (right).

4.4.2 Production scheduling

The SIP formulation in Eq. 4.3 to Eq. 4.10 used to generate the mine production
schedule first requires the definition of the ultimate pit and push-backs. The
nested pit implementation of the Lerchs-Grossman algorithm15 for pit
optimization is used here to define a final pit and push-backs. This algorithm
requires as an input a single representation of the orebody, which is created
using ordinary kriging on a 20x20x10m3 block support. The associated economic
and technical parameters are given in Table 4.1. This model and parameters are
utilized in the following sections for comparison with the results obtained by the
SIP.

Table 4-1 Economic and technical parameters
Copper price (US$/lb)
Selling cost (US$/lb)
Mining cost ($/tonne)
Processing cost ($/tonne)
Slope angle
Processing recovery

2.0

0.3

1.0

9.0

45°

0.9

62



Using the parameters in Table 4.1 and the conventionally estimated orebody
model, a set of nested pits is generated. Pit 16 is selected as the ultimate pit
limit as it corresponds to the maximum net present value. There are 14,480 ore
and waste blocks inside the pit limits. In this study, a previously established ore
processing capacity of 7.5 M tonnes per year is used. The yearly maximum
mining capacity is set to 28 M tonnes although there is no constraint to
guarantee a constant material movement over the LOM. With this setup the
scheduler is free to define the optimum waste production strategy. Twenty
realizations of the deposit are available and generated with the direct block
simulation method7. To obtain a simulated model, the orebody is divided into
blocks of 20x20x10m3 within the mineralized domain. Each block is then
represented by 10x10x1 nodes. This number of nodes, 100 per block, is large
enough to ensure that the actual block scale variability is reproduced by the
simulated orebodies. These stochastic simulated orebodies are used as an input
for the SIP models and to produce risk profiles of performance parameters of the
schedules generate throughout the study.

In the present study, a base case SIP schedule is first considered and then the
sensitivity of pertinent key project parameters is tested and their impact on the
project's NPV and performance evaluated. The stochastic schedule is generated
considering a 20% geological discount rate with an associated 20% probability
cut-off. All cases utilize the same parameters as specified in Table 4.2. A fixed
copper grade cut-off of 0.3% is used in combination with the probability cut-off
to classify ore and waste blocks. Penalties for excess and shortage production
are select accordingly to the magnitude of the first part of the objective function
in order to ensure that the second component, which accounts for minimization
of production targets and risk management, is properly weighted in the objective
function. Past work has shown12 that it is the order of magnitude of the penalties
rather that the actual values that effect the optimization process. A higher
penalty for shortage production is imposed as it has a more severe impact in the
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project than an excess production, which could be handled by the use of
stockpiles. Risk profiles for ore and waste production, cumulative NPV and
production deviations are generated and presented respectively by Figure 4.3,
Figure 4.4, Figure 4.5 and Figure 4.6. Two additional schedules are generated, as
one of the objectives of the work is to test and better understand the effect of
the geological discount rate on the schedule produced.
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Table 4-2 SIP related parameters

!Geologic risk discount rate 20%

Cost of shortage in ore production (unit/tonne) 10,000

Cost of excess ore production (unit/tonne) 1,000

Economic discount rate (%) 10

Cut-off (% Cu) 0.3

Number of simulated orebody models 20
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Figure 4-3 Risk profile for ore production of the base case schedule
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Figure 4-6 Deviations from ore production targets for the base case schedule

4.4.3 Geological discount rate and sensitivity analysis

To evaluate the impact that the geological risk discount rate has on the base
case schedule, an alternative schedule is obtained using the same parameters
applied to the base case schedule above, except that the geological discount rate
set to 30%. With the increased geological discount rate further additional weight
is given to deviations from production targets at earlier periods than later ones.
Therefore would be expected a possible decrease on the variability around ore
production targets in the first years of production and an increase in later ones.
Figure 4.7 shows the ore production risk profile for the resulting schedule; no
major difference can be observed when compared to Figure 4.3. The same
situation is found when analysing Figures 4.8, 4.9 and 4.10, respectively,
showing the risk profiles for waste, cumulative NPV and deviation from
production targets, when compared to Figures 4.4, 4.5 and 4.6 respectively.
Therefore, for is case study a 10% increases on the geological discount rate
would not improve the economics of the project as it does not further decrease
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the deviations of production targets. The comparison of the physical schedules is
presented in Figure 4.11 and Figure 4.12. There are differences in the mine's
schedules produced, but in general the same areas are being scheduled to be
mined in the same time periods. The most relatively significant difference is
found in the two final production years. It is important to stress that the absence
of a geological discount rate would have a substantive impact in the deviations
from production target, thus impacting the expected NPV of the project. This is
further discussed in the following section, where results obtained by a
conventional scheduler is compared with the ones obtained by the base case of
the SIP model.
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Figure 4-7 Risk profile of the mine's ore production schedule with a 30%
geological discount rate
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Figure 4-10 Deviations from ore production targets for the mine's schedule for
the 30% geological discount rate
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Figure 4-11 East - West section of the base case stochastic schedule (20%
geological discount rate)
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Figure 4-12 East West section of the schedule with a 30 % geological discount
rate (same section as in Fig. 4.11)

To test the effects the probability cut-off has on the base case schedule, an
alternative schedule is obtained using the same parameters applied to the base
case except that the probability cut-off is changed to 35%. The use of a higher
probability cut-off implies that a more risk-averse schedule is produced and more
blocks are classified as waste. The solution time decreases as there are less
integer variables in the problem formulation with more blocks being classified as
waste. The impact of this new classification strategy is observed in Figure 4.13,
which shows the ore production risk profile for both schedules. The alternative
schedule obtained using a 35% probability cut-off has a lower ore tonnage than
the base case schedule. Figure 4.14, 4.15 and 4.16, respectively show the risk
profiles for waste, cumulative NPV and deviation from production targets. The
major difference from the base schedule is associated with the waste material
quantity and movement. The comparison of the physical schedule is presented in
Figure 4.17 and Figure 4.18. There are major differences in the schedules
produced with different areas are being scheduled in the related mining periods.
The schedule with a high probability cut-off presents a slightly lower NPV. The
difference is associated with the lower ore tonnage produced by a more
restricted ore classification. The magnitude of the difference is not significant
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once the scheduler is able to mine less waste tonnes over the first years of
production. The difference would be more significant if a stockpile is considered,
given more flexibility to the scheduler to deal with an excess of ore production.
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Figure 4-13 Risk profile for ore production of the schedule produced using a 35%
probability cut-off
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Figure 4-14 Risk profile for waste production of the schedule produced using a
35% probability cut-off
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Figure 4-15 Risk profile for cumulative NPV of the schedule produced using a
35% probability cut-off
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Figure 4-16 Deviations from ore production targets for the schedule produced
using a 35% probability cut-off
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Figure 4-17 East - West section of the base case stochastic schedule
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Figure 4-18 East -West section of the 35% probability cut-off schedule case

4.5 Comparison to a conventional scheduler

To assess the value of the stochastic solution in the case study presented above,
a conventional LOM production schedule is developed in this section and the
economic difference between the stochastic and conventional approaches
evaluated. The conventional schedule is generated using the average type of
deposit model previously described and obtained using the technique of ordinary
kriging. The same final pit and push-backs are utilized with the associated
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technical and economic parameters as before (Table 4.1). The schedule is
obtained using Millawa NPV algorithm15 using a fixed 7.5 M tonnes ore
production target and a maximum material movement of 28M tonnes. No
constraint or limitation is imposed to the scheduler, so as to keep the total
material movement constant over time. The intent is to let the optimizer decide
the best waste removal strategy and to replicate the condition imposed on the
SIP scheduler.

Figure 4.19 presents the ore production of the conventional schedule and its risk
profile. It is clear in the figure and the related risk profile that the conventional
schedule generated misleading results in the presence of grade uncertainty; the
forecasted ore supply has about 5% chances (one in the twenty equally likely
scenarios of the deposit will produce what is expected) to materialise for almost
all years. Only in two years the forecasted production is expected to be realized,
year 5 and year 7. The economic implication of such deviations can be seem in
Figure 4.20 where the risk profile of cumulative NPV for both the base case
stochastic schedule and the conventional schedule are shown. The average NPV
difference between the conventional and the stochastic solution is approximately
29%. The higher NPV obtained by the stochastic solution is obtained by first
incorporating grade uncertainty into the mine production scheduling formulation,
minimizing the possible deviations of ore production target and at the same time
managing the risk between mine periods. The difference between the value of
the stochastic solution and the conventional one comes from the capacity of the
stochastic optimizer to obtain an optimum schedule considering simultaneously
several equally probable orebody models. The equally probable orebody models,
obtained by conditional simulation, better than the smoothed model, utilized by
the conventional scheduler, represent the spatial grade distribution of the
deposit.
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The conventional scheduler forecasts a LOM of 8 years in contrast with the 7
years LOM forecasted by the stochastic scheduler. By using a smoothed scenario,
the conventional scheduler overestimates the amount of ore above the 0.3% Cu

cut-off therefore the extra one year of production is required to fully mine the
deposit. It is interesting to emphasise that this fact can not be generalized as it is
a function of the grade distribution and cut-off applied.

This study first evaluates the impact of the use of different geological discount
rates and probability cut-offs in the stochastic schedule produce. The finds are
that there is no major change if a higher geological discount rate is utilized, and
that a higher probability cut-off produces a different schedule with different
ore/waste quantity and mining strategies. The value of the stochastic solution is
then computed by comparing the results obtained by the base case stochastic
schedule with the one obtained by a conventional scheduler. The difference is
significant and derived from the incapability of the conventional scheduler to
include grade uncertainty in its formulation, in comparison with the stochastic
scheduler which not only capable to account for the grade uncertainty in its
formulation but also to manage the risk associate with it in the deviation of
production targets.

The fact that a stochastic integer formulation solution of the mine production
schedule problem generates a higher value reflects the importance of
incorporating geological uncertainty into the scheduler problem formulation.
Similar finding is presented by Leite and Dimitrakopoulos16, which tested a
different stochastic scheduler using the same cupper deposit. Both studies make
it clear the advantages to use a stochastic approach in the mine production
schedule formulation.
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CHAPTER 5 CONCLUSIONS

In the present work, two stochastic mining production schedule methods are
tested in order to improve the understanding of the value of a stochastic solution
to the mine production schedule problem. The stochastic schedules generated
are analysed, their mechanisms understood and the results compared with the
ones obtained by a conventional scheduler.

In Chapter 2, a comprehensive literature review of stochastic mine production
schedules and methods to generate stochastic simulations is provided in order to
ensure a full understanding of the subsequent sections of the thesis.

Chapter 3 proposes an application of the stochastic mine production scheduling
formulation based on a simulated annealing algorithm at a low-grade variability
copper deposit. Independent of the low-grade variability of the deposit, the
results obtained by the stochastic schedulers are considerably more robust than
the ones obtained by the conventional scheduler. The stochastic solution
presents an average cumulative NPV which is approximately 26% higher than
the conventional solution. The risk analyses conducted for both schedules show
that the stochastic approach successfully minimizes deviations from production
targets, in contrast with the conventional schedule which has a high probability
of not producing the targets in any year of the life of the mine.

Chapter 4 describes the application of an SIP formulation to the mine production
schedule problem, discusses the rule of the geological discount rate with
examples and the probability cut-off on the stochastic schedule obtained and
finally compares the stochastic results with the ones obtained by a conventional
scheduler. The value of the stochastic solution is approximately 29% higher than
the one obtained by the conventional schedule. As previously described, this
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difference ¡s due to the ability of the stochastic scheduler to directly include
grade uncertainty into the problem formulation.

Both stochastic mine production schedule approaches herein presented proved
the value of a stochastic solution over a conventional one. The increase of the

NPV value of the project is considerable and can be attributed mainly to the
inclusion of grade uncertainty directly into the problem formulation. Further
developments for the stochastic approach could involve the development of an
open pit optimizer capable of defining the ultimate pit including uncertainty
about the grade distribution of the orebody, as well being able to define push-
backs of a fixed size. The size reduction problem also presents another issue,
which requires future studies, as it is the major constraint for the application of
stochastic integer programming formulations.
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Appendix B - application of direct block simulation in a copper deposit

The conventional approach to assess the value of a mine requires the
assumption of a risk-free scenario and ultimately leads to single estimated
valued. It is well documented and understood1?2'3'4 that such assumption may
lead to misleading results. The first step required to incorporate uncertainty into
the mining planning framework involves its proper map. In the case of geological
uncertainty, in this study grade uncertainty, conditional simulation methods are
the logical choice for the task.

There is a large gamma of simulation methods available21. Simulation methods
appropriate to deal with mining related problems should be able to efficiently
simulate large grids in a reasonable amount of time, reproducing the spatial
characteristics of the deposit and conditioning to the available data. The regular
approach to the problem of simulate a given property of deposit, involves first
the discretization of the deposit into a set of nodes. Simulation methods such as
Sequential Gaussian Simulation30, Turning Bands or, more recently, Generalized
Sequential Gaussian Simulation35 can produce simulations respecting all required
properties but in a point support. It means that after simulation be performed an
additional step has to be done in order to group nodes/points in a meaningful
volume (mining blocks) in which decisions will be made. This process can be
extremely timing consuming when a large number of blocks have to be
simulated. To over come this problem Godoy15, proposes a simulation method
able to directly generate simulations in the selective mining unit support size.
The method uses scream effect approximations to simulate group of nodes
defining a block, using conditioning data with different support sizes. The next
sections describe in detail direct block simulation and discuss and present the
results of its application into a copper deposit.
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Simulating directly at the block support

Considering that the attribute under study can be properly modelled by a
stationary and ergodic random function (RF). Direct block simulation (DBSIM)
extends the principles utilized by the sequential Gaussian simulation method to
generate simulations directly at the block support. As all other flavours of
Gaussian simulations it requires the transformation of the RF Z(u), describing an
attribute over the mineralized domain, into a normally distributed RF Y(u) =
(|)(Z(u)). As the objective is to simulate the attribute of interest directly at the
block support, each block is sequentially simulated only using the original
conditional data and the previously simulated blocks as conditional data. A block
is simulated by simultaneously simulating N discritizing points/nodes Y(u¡)
i=l,...N, discritizing the given block over the its volume V. The average of the
simulated nodes in the normal space is stored in memory for further
conditioning. This average value can be interpreted as a RF Yv(v) (Eq. B.l), ? 0
Rn discritized over the volume V. The simulated block value Zv(v) is computed
and later recorded as the average of all black-transformed node values as
expressed by Equation B.2. This approximation is required as no direct back-
transformation in the form of Zv(v) = «^(YvOO) exits.

Yv{v) = ±-fjY{ui),uizv\/i (B.l)
2viy) = ]z^-\Y{ui)\uievyi (B.2)
DBSIM algorithm randomly visits all blocks inside the simulation domain. The
group of points defining a block is simulated by LU using only local conditional
data in point and block support. Let Cnw be the covariance matrix of all
conditional information, where II stands for point support data and W for block

88



support data; and Cpiv be the covariance matrix of discretizing points (?) and
local conditional data in point (I) and block (V) support.

^ pIV — V^pI ^pVl
'C11 C

CUVV
'VI

IV

^1Z1 ^W

(B.3)

(B.4)

where Cu, Qv and Cw are respectively the point to point, point to blocks and
block to block covariance matrixes; CpV and Cpi are the covariance matrixes of
discritizing points and conditional blocks and points. To compute the covariance
between different supports, a regularized covariance is considered for point to
block and block-to-block as follow:

C{ua,v) * ^C[Ua,u)

NlN2 M j=l

(B.5)

(B.6)

The simulation of the nodes discritizing a block is done by means of Cholesky
decomposition of the covariance matrix and can be defined as follow:
CHW CIVp

CpIV CPP

m = Lw
mIV

mr

-1IlVV

LpIV
L

PP.

L1

UVV

-1PlV

'WII

0

W

-1IVp

PP

PP

IV

W.

(B.7)

(B.8)

where m™ represents the matrix of conditional data, including points and blocks.
The final vector containing the simulated values mp can be described by
mp = LplVL'lIwmiV +LppWp (B.9)
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The algorithm can be synthesized as follow:
• Each block to be simulated is randomly visited;
• Simultaneously simulate the internal nodes discritizing the block (Eq. B.9);
• Average the nodes values in the normal space and store for future

conditioning (Eq. B.l);
• Average the back-transformed node values and record as the simulated

value for the block (Eq. B.2);
• Discard the simulated internal points;
• Repeat the previous steps until all blocks have been simulated;

Application of DBSIM to simulate a copper deposit

The deposit under study is in a sequence of moderately to strongly foliated,
sulphidic, mafic to intermediate volcanic rocks, which have been intruded by
numerous sub-volcanic felsite and feldspar porphyry and/or intermediate volcanic
tuff, with size ranging from lapilli to agglomerate, within a strongly chloritic and
biotitic matrix. It can be traced over a strike length of 1.5 km with a thickness
varying from a few meters to more than 75m. Mineralization consists of about
10% sulphides, mostly chalcopiryte, pyrite and pyrrohotite, occurring as
disseminations, streaks and stringers apparently controlled by the strong rock
cleavage. The geological database is compounded by 185 drillholes with 10 m
copper composites in a pseudo-regular grid of 50 ? 50 m covering all the deposit
area totalizing 1629 samples with associated mean grade of 0.426 % Cu and
relatively lower coefficient of variation (1) indicating the low grade variability of
the orebody. Copper is the only mineral of interest and its distribution is
represent below.
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Figure B. 1 copper grade histogram for a 10m composite length

The simulation process of an orebody using DBSIM starts by the specification of
a mineralized enveloped. This enveloped is discritized using a set of regular
blocks, the considered selective mining unit (SMU), which represents the
simulation grid. In this case study a SMU of 20 ? 20 ? 10 m3 is considered. Each
block is further discritized by a set of nodes defining a regular internal grid of 2 ?
2 ? 10 m3. The block discritization should be such that the block grade variability
of the simulated orebody reproduces the expected theoretical one obtained using
regularized semi-variogram models. Other parameters involved in the simulation
process are minimum and maximum number of hard sample data to be utilized,
maximum number of previously simulated blocks to be considered as well the
size of the search neighbourhood. In the case study herein presented, the
algorithm restricts the conditional data to minimum of 3 and a maximum of 15
samples and a maximum of 7 previously simulated blocks. Using these
parameters, a total of 20 simulations are generated. Sections of the simulated
orebody models are presented below in Figure B.2.
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Figure B. 2 - simulations of copper grade in an east-west cross section

After simulation has been conducted a validation procedure is done to ensure the
realizations adequately reproduce the spatial correlation model assumed for the
deposit and also its grade distribution. The check is done comparing the
variograms, computed at the block support, with the regularized variogram
model utilized as simulation parameters. The results can be seem in Figure B.3,
Figure B.4 and Figure B.5 which show respectively the variogram in the major,
intermediate and minor directions of continuity. As expected, simulations
satisfactory reproduce the desired spatial characteristics of deposit. The
histogram of mean copper grades of simulations and the drillhole information
utilized is also presented in order to show that simulations do reproduce the
average values (Figure B.6).
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Figure B. 3 - experimental and model regularized variograms in the major
direction of continuity at a block support
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Appendix C - SIP implementation and execution: the LTSPS program

The stochastic integer program formulation present by Ramazan and
Dimitrakopoulos7 is implement in the LTSPS program. LTSPS requires input files
following certain standards. These standards are here discussed as well as the
sequence of execution of the program.

LTSPS requires a set of simulation models, a result final containing the push-back
number of each block and a parameter file. The simulation files have to be
produced using Whittle 4X and after exported reformatted to include a
mineralized and waste parcel for each block as these fields are expected by the
program. The result files also have to be reformatted to exclude the increment
comments (lines starting with an exclamation mark) included by Whittle in the
output file. The program should first be run to produce the SIP model to be feed
into the optimizer (CPLEX). After a solution is obtained, it should be exported in a
plan text format into a file. To accomplish that it is necessary to follow the given
commands in CPLEX :

Change the problem type by typing changeprob fíxed_mip
Re optimize by typing optimize
Export the solution file by typing write mod.txt TXT

The mod.txt file should then be copied inside the same folder that the model was
first created. The parameter file needs to be properly modified in order to do not
generate files related with slope constrains. The solution is evaluated and a
result file written in the same working folder.
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