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Résumé v

Acknowledgements vi

1 Introduction 1

2 Model 7
2.1 Dispersive transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Summary of parameter assumptions . . . . . . . . . . . . . . . . . . . . . . . 11

3 Measurement 13
3.1 Preliminaries: cavity dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Preliminaries: defining the measurement rate . . . . . . . . . . . . . . . . . . 17
3.3 Measurement rate in linear response . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Long-time measurement rate beyond linear response . . . . . . . . . . . . . . 23

3.4.1 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Measurement rate: amplifier mode . . . . . . . . . . . . . . . . . . . 25
3.4.4 Measurement rate: squeezer mode . . . . . . . . . . . . . . . . . . . . 27

3.5 Signal-to-noise ratio at finite times . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Measurement time for three-nines fidelity . . . . . . . . . . . . . . . . 32

4 Back-action dephasing 35
4.1 The quantum limit on QND qubit readout . . . . . . . . . . . . . . . . . . . 36
4.2 Dephasing and quantum efficiency in linear response . . . . . . . . . . . . . . 39

4.2.1 Dephasing rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Quantum efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Dephasing and quantum efficiency beyond linear response . . . . . . . . . . . 43
4.3.1 Dephasing calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Dephasing rate in the long-time limit . . . . . . . . . . . . . . . . . . 46
4.3.3 Quantum efficiency in the long-time limit . . . . . . . . . . . . . . . . 46

4.4 Quantum efficiency at finite times . . . . . . . . . . . . . . . . . . . . . . . . 50

i



5 Conclusions and outlook 54

A Susceptibility, stability, and scattering 56

B Output noise in linear response 58

C The “paramp-modulation” interaction 60

D Non-QND effects 62

E ODEs for the cavity covariances 64

F Calculating the readout noise at finite times 66

Bibliography 73

ii



List of Figures

1.1 Schematic representation of dispersive measurement setups. . . . . . . . . . . 3
1.2 Circuit diagram of the “transamp,” a qubit coupled to a flux-pumped para-

metric amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Enhancing the measurement rate by using on-chip amplification. . . . . . . . 26
3.2 Measurement rate in squeezer mode. . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Schematic representation of the measurement protocol. . . . . . . . . . . . . 30
3.4 Measurement time required for three-nines fidelity (F = 0.999) when operat-

ing in amplifier mode with realistic device parameters. . . . . . . . . . . . . 33
3.5 Measurement time required for three-nines fidelity (F = 0.999) when operat-

ing in squeezer mode with realistic device parameters. . . . . . . . . . . . . . 34

4.1 Long-time quantum efficiency in amplifier mode. . . . . . . . . . . . . . . . . 48
4.2 Long-time quantum efficiency in squeezer mode. . . . . . . . . . . . . . . . . 51
4.3 In blue: pump strength λopt yielding the fastest long-time measurement rate

in squeezer mode for each value of χ with coherent cavity population |α|2 = 10
and no added noise (n̄add = 0). In red: corresponding squeezing in dB of the
on-resonance noise power in the readout quadrature (Ŷout). . . . . . . . . . . 51
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Abstract

We investigate the quantum measurement physics of a system in which a phase-sensitive

parametric amplifier is used to directly measure a qubit to which it is coupled dispersively.

By analytic calculation of the signal-to-noise ratio, we show that the amplification properties

of the paramp can be exploited to achieve on-chip gain of the qubit readout signal, mitigating

the damage done to the measurement rate by circulator added noise and losses in between

the readout cavity and any following amplification chain. With a different choice of drive

phase, we show that when added noise is not a concern, the squeezing properties of the

paramp can be used to enhance the measurement rate relative to a standard dispersive

readout by reducing the readout noise without corresponding reduction of qubit signal. We

then proceed to calculate the back-action dephasing of the qubit by way of a phase-space

technique, and find analytic results valid in the long-time limit while numerically handling the

finite-time case. We show how in both operating modes, in the long-time limit, the back-

action dephasing of the qubit can be made as small as is allowed by quantum mechanics

by using using sufficiently many photons in the measurement, i.e. by using a sufficiently

strong coherent measurement drive. Crucially, we find that in the presence of experimentally

realistic amounts of added noise, the on-chip gain afforded by such a device can be used to

come significantly closer to the quantum limit than is possible with a standard dispersive

measurement setup, allowing for efficiencies of ∼ 75% under conditions that would yield

efficiencies . 1% when applying the usual scheme.
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Résumé

Nous étudions la physique de la mesure quantique d’un système pour lequel un amplifica-

teur paramétrique sensible à la phase est utilise pour mesurer directement un qubit auquel

il est couple dispersivement. Par un calcul analytique du rapport signal sur bruit, nous

démontrons que les propriétés d’amplification de l’amplificateur peuvent être utilisées pour

obtenir l’amplification du signal. Ceci peut réduire l’impact du bruit ajouté par des cir-

culateurs ainsi que la châıne d’amplification qui suit. Avec un choix different de la phase

du signal d’entrée, nous démontrons que quand il n’y a pas de bruit ajouté, les propriétés

de compression de l’amplificateur peuvent être utilisées pour une amélioration du rapport

signal sur bruit. Ensuite, nous utilisons une méthode d’espace des phases pour calculer le

déphasage de l’action-retour. Dans la limite des temps longs, nous obtenons des résultats

analytique, et nous utilisons des calculs numériques pour des durées de temps arbitraire.

Nous démontrons que pour les deux approches, dans la limite des temps longs, le déphasage

d’action-retour peut être rendu aussi petit qu’est autorisée par la mechanique quantique en

utilisant suffisamment de photons. Crucialement, nous démontrons que dans la presence

d’un montant réaliste de bruit ajouté, l’amplification causée par le paramp peut être utilisé

pour se rapprocher plus près de la limite quantique que l’approche standard de la mesure

dispersive, permettant des efficacité quantique à ∼ 75% pour des conditions qui donnerait

une efficacité de ∼ 1% avec l’approche standard de la mesure dispersive.
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Chapter 1

Introduction

Quantum theory, since its earliest days, has reserved a place of particular importance for

the process of measurement. In the simplest case, that of a projective measurement, the

state of the measured system “collapses” instantaneously into an eigenstate of the measured

observable. This standard picture is found in any quantum mechanics textbook (e.g. [1, 2]);

it is not, however, the most general description of measurement in quantum mechanics.

One extension of this description concerns itself with the time-dependence of a measurement

process: if the coupling of the detector to the measured system is not overwhelmingly strong,

the detector acquires information about the system only gradually in time. Correspondingly,

the projection of the measured system onto its eventual final state occurs not instantaneously,

but at a finite rate. By considering the quantum dynamics of both the measured system

and the detector which measures it, one can study the properties of such a continuous

measurement [3].

A particularly appealing setting in which to study quantum measurement is found in

circuit quantum electrodynamics (circuit QED) [4, 5]. This field bears strong analogy to

that of cavity QED, with superconducting LC resonators taking the place of optical cavities,

and with anharmonic superconducting resonators involving Josephson junctions playing the

role of “artificial atoms.” These superconducting artificial atoms can be used to implement
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readily controllable qubits, making circuit QED an extraordinarily promising platform for

quantum information processing [4], in addition to the fundamental interest of the field. In

the dispersive regime of circuit QED, the effective interaction between a cavity and a qubit

amounts to a frequency shift experienced by each, dependent on the state of the other. The

qubit-dependent frequency pull exerted on the cavity leads to a qubit-dependent phase shift

in light reflected by the cavity, providing a measurement of the qubit state; this is the well-

known dispersive measurement scheme [4]. In addition to its conceptual simplicity, dispersive

readout has the useful and important property of being a “quantum non-demolition” (QND)

measurement: the interaction Hamiltonian between the qubit and the detector commutes

with the qubit Hamiltonian (i.e. [Ĥmeas, Ĥqb] = 0), and so the measurement process does

not induce any transitions between qubit eigenstates. This means that the outcome of the

measurement truly corresponds to the state of the qubit after the measurement — if the

qubit is measured to be in its excited state, then one can rest assured that the qubit really

is in its excited state some time after the measurement is complete (provided that no extra

non-QND effects are relevant). In the ideal case, the dispersive readout method is capable of

reaching the so-called quantum limit on QND qubit detection, causing the minimum possible

amount of back-action disturbance of the qubit as is allowed by quantum mechanics [3].

In a realistic dispersive measurement, the readout signal coming from the cavity is tiny

by macroscopic standards, and thus requires significant amplification in order to reach a

level at which an experimentalist can feasibly measure its phase shift. In order to separate

the signal-carrying reflected light from the light which is on its way to the cavity, a circu-

lator will typically be placed in between the readout cavity and the following amplifier, as

shown schematically in figure 1.1a. This circulator is a bulky device, which cannot be easily

integrated directly on-chip with the qubit and amplifier. Furthermore, the functionality of

a circulator relies upon the use of magnetic materials, which are intrinsically incompatible

with the need to maintain superconductivity in the qubit and amplifier circuitry. For these

two reasons, size and magnetism, it is not practical to fabricate circulators on-chip, and their

2



use is therefore inevitably accompanied by insertion losses. In addition to slowing down the

measurement, these losses destroy the efficiency of the measurement by reducing the rate of

information gain without correspondingly reducing the measurement back-action. This loss

of efficiency renders one unable to implement e.g. quantum feedback protocols [6, 7, 8, 9, 10]

which require detection close to the quantum limit.

(a) The standard dispersive readout setup of a
qubit in a linear cavity. Each exclamation mark
indicates a source of noise and loss. Even if the
following amplifier is noiseless, each circulator in-
troduced into the setup will unavoidably bring
with it loss and added noise.

(b) A qubit inside of an amplifier. By using
the amplifier to measure the qubit directly, one
removes the need for the qubit signal to pass
through a noisy circulator on its way to the first
amplification stage, mitigating the damage done
to the readout by added noise.

Figure 1.1: Schematic representation of dispersive measurement setups. By placing a qubit
inside of an amplifier, one hopes to avoid the losses associated with circulators in between
the readout cavity and the following amplification chain in such a setup.

To overcome the following noise of the measurement chain, one would naturally like

to achieve some degree of signal amplification directly on-chip. One way to do this is to

place the qubit inside of a nonlinear cavity, which is coherently pumped in order to achieve

gain [11, 12, 13]. Unfortunately, this setup has been found to result in excess back-action

dephasing of the qubit beyond the quantum limit [12]. One way of mitigating this excess

dephasing would be to place the qubit in a linear cavity as usual, and to parametrically couple

the linear cavity to a pumped nonlinear cavity serving as an amplifier [14]; in this way, one

can achieve on-chip gain without directly exposing the qubit to the excess back-action of

the nonlinear cavity. As an alternative to complicating the system with a second cavity in
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such a fashion, in this work we investigate theoretically a return to the “qubit inside of an

amplifier” concept, but employing a more direct method to achieve the amplification. In

particular, we consider a system involving a degenerate parametric amplifier (DPA) (see e.g.

[3, 15]) directly coupled to a qubit. Such a device has recently been designed and fabricated

by the group of Irfan Siddiqi at UC Berkeley, consisting of a superconducting flux-pumped

paramp coupled to a transmon qubit; the setup is thus referred to as the “transamp” [16]

(see figure 1.2).

Figure 1.2: Circuit diagram of the “transamp,” a qubit coupled to a flux-pumped parametric
amplifier. An oscillating current through the flux line (drawn in red at the right of the
figure) modulates the magnetic flux threading through a SQUID array which provides the
inductance of an LC oscillator (microwave resonant cavity). By modulating the flux at twice
the resonant frequency of the cavity, a degenerate parametric amplifier is realized. The
cavity is coupled capacitively to a qubit, as shown in the leftmost branch of the circuit, and
the entire circuit is coupled capacitively to a transmission line (drawn in grey at top left).

Flux-pumping [17] represents a particularly clean and direct implementation of degen-

erate parametric amplification in the superconducting circuits context. This approach is

based on an approximately linear superconducting LC microwave resonator in which the

inductance is provided by a SQUID loop (or array thereof). The SQUID loop effectively

behaves as a single Josephson junction with Josephson energy EJ determined by the applied

flux threading the SQUID:

ĤSQUID = −EJ [Φext(t)] cos

(
πΦ̂

Φ0

)
, (1.1)

where πΦ̂/Φ0 represents the difference in phase of the superconducting order parameter
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across the SQUID, with Φ0 = π~/e the magnetic flux quantum. The Josephson energy

depends upon the applied flux according to

EJ [Φext] = E0 cos

(
πΦext

Φ0

)
. (1.2)

Taking the external flux to consist of a constant bias and a component oscillating at angular

frequency ωpump, i.e. Φext(t) = Φ̄ext +δΦ i
2
(e−iωpumpt−eiωpumpt) and performing a Jacobi-Anger

expansion on the resulting EJ(t), one obtains the leading-order time-dependent terms in the

Hamiltonian

ĤSQUID ∼ (const.)× i
(
e−iωpumpt − eiωpumpt

)
cos

(
πΦ̂

Φ0

)
. (1.3)

Expressing the flux operator Φ̂ ∼ i(â − â†) with cavity annihilation and creation operators

â, â† and expanding the cosine to leading order, one obtains terms

ĤSQUID ∼ (const.)× i
(
e−iωpumpt − eiωpumpt

) (
â− â†

)2
. (1.4)

By taking the external flux to modulate at twice the cavity frequency, i.e. ωpump = 2ωc, the

ââ and â†â† terms are made resonant; in the rotating wave approximation where we keep

only the resonant terms, we are then left with the standard DPA Hamiltonian

ĤSQUID ∼ ĤDPA =
iλ

2

(
e−2iωctâ†â† − e2iωctââ

)
. (1.5)

We have presented here only a sketch outlining the manner in which a resonant circuit

involving a flux pumped SQUID can be used to obtain parametric amplification. For a

detailed study of this system, see [18].

As a quantum-limited phase sensitive amplifier, the standard DPA is capable of noise-

lessly amplifying signals incident in one quadrature [3, 15]. At the same time, due to the

Haus-Caves limit [19, 20], noiseless linear amplification of one quadrature is necessarily ac-

companied by corresponding squeezing of the complementary quadrature. We will show
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how these two behaviours of the DPA, amplification and squeezing, provide two (mutu-

ally exclusive) means by which the transamp setup can be used to enhance the dispersive

measurement of a qubit. The first mode, called “amplifier mode,” is useful when the fol-

lowing measurement chain adds an appreciable amount of noise. We will demonstrate how

in this situation, the on-chip gain afforded by the DPA can significantly improve both the

measurement rate and the quantum efficiency of dispersive qubit readout as compared to

the conventional approach (which uses a standard linear cavity). On the other hand, when

the following measurement chain adds no noise, we will show how one can instead use the

squeezing behaviour of the paramp to enhance the rate of a dispersive measurement; in this

case, the improvement is achieved by reducing the noise of the readout without significantly

reducing the signal. We will also compare this “squeezer mode” of operation to the use of

squeezed input light in dispersive measurement with a standard linear cavity, as has been

discussed recently by [21, 22].
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Chapter 2

Model

We consider a qubit (level splitting Ωqb) interacting with the cavity mode of a flux-pumped

degenerate parametric amplifier (resonant frequency ωc) via the Jaynes-Cummings interac-

tion. Working in a frame rotating at the cavity frequency for both the cavity and the qubit,

the coherent Hamiltonian is (~ = 1)

Ĥcoh =
∆

2
σ̂z +

iλ

2
(â†â† − ââ) + g(âσ̂+ + â†σ̂−). (2.1)

Here ∆ = Ωqb−ωc is the qubit-cavity detuning, λ characterizes the strength of the parametric

driving, and g is the Jaynes-Cummings interaction strength. The full Hamiltonian is given

by Ĥ = Ĥcoh + Ĥκ. The dissipation Hamiltonian Ĥκ describes the coupling of the cavity to

a transmission line, serving as a Markovian bath which both drives the cavity and damps it

at a rate κ. We will handle Ĥκ via input-output theory (e.g. [3, 15]) or a Lindblad master

equation (e.g. [15]) as appropriate.

When the cavity and qubit are strongly detuned from one another, the transitions induced

by the Jaynes-Cummings interaction g(âσ̂+ + â†σ̂−) are far from resonant, and thus occur

only virtually. In this situation, known as the dispersive regime, the principle effect of the

Jaynes-Cummings interaction is that the qubit and cavity each experience a frequency shift

which is dependent on the state of the other. In a standard linear cavity (λ = 0), this effect
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is revealed at the level of the Hamiltonian by the well-known dispersive transformation [4].

The standard dispersive transformation requires modification in the presence of parametric

driving; we now determine the modified transformation, and the corrections that it introduces

into the effective dispersive Hamiltonian.

2.1 Dispersive transformation

The virtual exchange of excitations which leads to the dispersive interaction is a second

order process — an excitation must hop from the cavity (qubit) to the qubit (cavity) and

back again. So, in order to see this effect in the Hamiltonian, we eliminate the first-order

Jaynes-Cummings interaction in (2.1) by way of a Schrieffer-Wolff transformation Û , and

find the resulting effective interaction at order g2.

Writing the unitary Û = eŜ with anti-Hermitian generator Ŝ, one has to second order

ÛĤcohÛ † = eŜĤcohe
−Ŝ ≈ Ĥcoh + [Ŝ, Ĥcoh] +

1

2!
[Ŝ, [Ŝ, Ĥcoh]]. (2.2)

We seek an Ŝ such that [Ŝ, Ĥcoh] cancels the Jaynes-Cummings interaction to linear order in

g. Thinking about the commutation structure, one can recognize that a sufficiently general

generator is

Ŝ = uâσ̂+ + vâσ̂− − u∗â†σ̂− − v∗â†σ̂+. (2.3)

Demanding the desired cancellation, one finds the appropriate choice of coefficients to be

u =
g

∆

1

1 + λ2/∆2
, (2.4a)

v =
iλg

∆2

1

1 + λ2/∆2
. (2.4b)

Note that in order for a low-order expansion to be trustworthy, we need Ŝ to be “small.”
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Crudely, this requires

|〈â〉| × g

∆

1

1 + λ2/∆2
� 1 (2.5)

yielding a critical photon number of

n̄crit =
∆2

g2

(
1 + λ2/∆2

)2
. (2.6)

We expect our low-order approximation to fail when 〈â†â〉 becomes comparable to n̄crit. As

〈â†â〉 ∼ G, the parametric photon-number gain of the amplifier, this puts an upper limit on

the amount of usable gain for a given input power. At first glance, (2.6) seems to suggest

that parametric driving λ 6= 0 increases the critical photon number making the dispersive

approximation more reliable. This is not in fact the case. Because of the parametric driving,

the anomalous correlators 〈ââ〉, 〈â†â†〉 which appear in 〈Ŝ2〉 are nonzero. Therefore, n̄crit is

only a crude measure of the validity of the dispersive approximation, as for sufficiently large

λ, the anomalous correlators can become large enough to break the assumption that 〈Ŝ2〉 is

small even if |α|2 < n̄crit. However, because (very roughly speaking) |〈ââ〉| ∼ 〈â†â〉, we expect

that 〈â†â〉 � n̄crit should still ensure the safety of our low-order approximation. In addition,

there is an extra prefactor of (λ/∆)2 (see (2.3), (2.4)) appearing with the anomalous terms

in 〈Ŝ2〉; as we will discuss momentarily, λ/∆ will be a very small parameter in the regime of

interest, providing further assurance that the dispersive approximation remains valid when

〈â†â〉 � n̄crit.

Keeping terms only to order g2, we obtain the effective Hamiltonian

Ĥeff =
∆ + χ

2
σ̂z +

iλ

2
(â†â† − ââ) + χ

[
â†â+

iλ

2∆
(â†â† − ââ)

]
σ̂z (2.7)

where the dispersive frequency pull is χ = g2/[∆(1 + λ2/∆2)]. This reveals two types of

effective interaction. First, we have the desired dispersive interaction χâ†âσ̂z. This can be

thought of as an ac-Stark shift felt by the qubit due to the cavity population, and a simul-
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taneous qubit-dependent modulation of the cavity frequency. We also have an additional

interaction in the form of a qubit-dependent modulation of the parametric drive strength λ.

Note that this interaction is suppressed by a factor of λ/∆ relative to the dispersive interac-

tion. Since stability of the paramp will require |λ| <
√
κ2/4 + χ2, and since κ, χ� ∆ in the

dispersive regime of interest, this paramp-modulation interaction is unimportant compared

to the dispersive interaction and will be neglected in our treatment of the system — see

Appendix C. Furthermore, note that this paramp-modulation interaction does not induce

qubit transitions, and so it does not spoil the QND nature of the cavity-qubit interaction.

We thus arrive at the Hamiltonian we will use for the remainder of our analysis:

Ĥeff =
∆ + χ

2
σ̂z +

iλ

2
(â†â† − ââ) + χâ†âσ̂z. (2.8)

In addition to this coherent Hamiltonian, we also have the dissipation Hamiltonian Ĥκ

describing the damping and driving of the cavity by a transmission line. As shown in

Appendix D, the action of the dispersive transformation on Ĥκ leads to an effective cavity-

mediated interaction between the qubit and the transmission line (i.e. the cavity bath).

In contrast to the usual case (λ = 0), the presence of parametric driving means that the

qubit sees an effective finite temperature, even when the true physical cavity bath is at zero

temperature. However, since the corresponding induced qubit excitation and decay rates are

small in the relevant regime where ∆ � λ, g, we will ignore them in the remainder of our

discussion.

Note that 〈â†â〉 ∼ |α|2 where α = 〈â〉 implies that we must keep |α|2 � n̄crit to main-

tain the validity of the dispersive approximation, and hence to avoid the onset of qubit

transition-inducing, non-QND effects (see (2.6) and following discussion). This motivates us

to parametrize our results in terms of |α|2, rather than the coherent photon flux (∝ ˙̄Nin)

used to drive the cavity. In addition, while it is not included in our model, the cavity may

exhibit nonlinearity which becomes relevant for sufficiently large intracavity power — this
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further motivates the use of |α|2, rather than ˙̄Nin, in expressing our results.

2.2 Summary of parameter assumptions

Our considerations thus far lead to a handful of constraints on the system parameters that

must be satisfied in order to guarantee the validity of our model and subsequent analysis.

Sufficient conditions, and the motivation for each, are collected in table 2.1. These conditions

ensure both that the paramp is stable, and that the dispersive approximation is valid when

|α|2 � n̄crit. Notice that all of these constraints are satisfied by taking ∆� g, κ — the same

conditions required for standard (λ = 0) dispersive readout — and enforcing the paramp

stability condition (3.4) 1. Also notice that there is no restriction on the ratio χ/κ — the

dispersive coupling need not be weak compared to the cavity damping.

1Since χ = g2/[∆(1 + λ2/∆2)], and since λ2 < κ2/4 + χ2 for stability, g � ∆ immediately implies that
χ� ∆. Together with κ� ∆ and the stability condition, this then gives |λ| <

√
κ2/4 + χ2 � |∆|.
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Desiderata Constraint Reference(s) in text

Paramp is stable
λ2 < κ2/4 + χ2

(necessary and
sufficient)

Stated in (3.4), shown in
Appendix A.

Large critical photon
number n̄crit

χ� ∆ (sufficient)
(2.6), using

χ ≡ g2/[∆(1 + λ2/∆2)]

When α = 0,
cavity-mediated qubit

decay is slow
(Γ↑→↓ � min {χ, κ})

max {χ, κ} � ∆
(sufficient, assuming

that κ[Ωqb] . κ ≡ κ[ωc])
(D.5a), Appendix D

When α = 0,
cavity-mediated qubit

excitation is slow
(Γ↓→↑ � min {χ, κ})

Guaranteed by previous
constraints, provided

that
κ[2ωc−Ωqb] . κ ≡ κ[ωc].

(D.5b), Appendix D

Table 2.1: Summary of parameter constraints employed to achieve desired behaviour. These
constraints can all be satisfied by choosing a sufficiently large qubit-cavity detuning ∆ ≡
Ωqb − ωc. Note that κ[ω] denotes the damping that would be induced by the transmission
line on a cavity with resonant frequency ω — the cavity damping rate is κ[ωc] ≡ κ.
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Chapter 3

Measurement

The standard degenerate parametric amplifier (DPA), with Hamiltonian Ĥλ = (iλ/2)(â†â†−

ââ), is a quantum limited phase-sensitive amplifier: it can noiselessly amplify incident signals

in one quadrature, while simultaneously squeezing signals in the complementary quadrature

by the same amount (see e.g. [3, 15]). In this section, we will show how either one of these

features, amplification or squeezing, can be used to enhance the dispersive measurement of

a qubit.

The most obvious approach is to encode the qubit information in the amplified quadra-

ture. We will show that this mode of operation, the appropriately named “amplifier mode,”

takes advantage of the on-chip gain of the paramp to mitigate the damage done to the

signal-to-noise ratio (SNR) by noise associated with circulators and following amplifiers in

the measurement chain.

One might expect that there is no way to make use of the squeezing generated by the

paramp in a direct dispersive qubit measurement: since the qubit lives inside the squeezing

source, one might reasonably guess that any squeezing of noise would be accompanied by

the same amount of squeezing of the desired qubit signal, providing no enhancement of the

measurement rate. We will demonstrate that this intuition is in fact incorrect. While the

output squeezing achieved by a DPA relies on interference between the directly reflected
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output signal and the signal leaving the amplifier cavity at the same instant [23], the qubit

readout signal originates inside the paramp. As we will show, this means that by encoding

the qubit information in the squeezed quadrature of the paramp, the noise in a dispersive

readout can be reduced without corresponding reduction of the qubit signal. Provided that

one has a following amplifier which approaches the quantum limit, this “squeezer mode”

can thus be used to fundamentally enhance the measurement rate relative to the standard

dispersive approach involving a simple linear cavity with coherent light. We note that the

potential for using the squeezing behaviour of a DPA to enhance a measurement in this

fashion, where the signal source is inside of the squeezer (DPA), was recently pointed out

independently by [24] in the context of optomechanical position detection. We also note

that squeezer mode is similar in spirit to the use of phase-squeezed input light in a standard

linear cavity-based dispersive readout, discussed recently by [21, 22]. We will comment on

some important distinctions between squeezer mode and this squeezed-input approach.

After a little bit of setup, we will begin our analysis by determining the linear response

of the paramp to the dispersive interaction in both modes of operation in order to determine

the measurement rate for each. Though only valid in the limit of a weak dispersive coupling

χ→ 0 and in the long-time limit, these linear-response results will help us to develop useful

intuition before then extending the calculation to handle arbitrary dispersive couplings, as

well as the finite-time behaviour of the signal-to-noise ratio (SNR).

3.1 Preliminaries: cavity dynamics

From standard input-output theory [3], the cavity operator â satisfies the Heisenberg-Langevin

equation

d

dt
â(t) = i[Ĥ, â(t)]− κ

2
â(t)−

√
κâin(t). (3.1)
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Using the effective Hamiltonian (2.8), this yields

d

dt
â(t) =

(
−iχσ̂z −

κ

2

)
â(t) + λâ†(t)−

√
κâin(t). (3.2)

Here we have introduced the input field âin(t) which drives the cavity. It will be useful

to express this field in terms of its average value and fluctuations, as âin = αin + d̂in with

〈âin〉 = αin and 〈d̂in〉 = 0. We assume that the input field is coherently displaced to an

amplitude

αin =

√
˙̄Nine

iδ (3.3)

by e.g. a laser in the optical context, or a coherent microwave tone in the superconducting

circuit context. ˙̄Nin is the average incoming coherent photon flux, and δ is the phase of

the coherent drive. The input noise operator d̂in(t) has nonzero correlators 〈d̂in(t)d̂†in(t′) =

〈d̂†in(t)d̂in(t′)〉+ δ(t− t′) = (n̄T + 1)δ(t− t′), where n̄T is the thermal occupancy of the bath

at the cavity frequency. Note that since the Langevin equation (3.2) is linear, α = 〈â〉 and

d̂ = â− α solve completely analogous equations of motion.

The stability of (3.2) requires that the parametric drive not be too strong. In particular,

the requirement is that

λ2 <
κ2

4
+ χ2. (3.4)

Conditioned on the qubit state σ̂z → σ = ±1, the Hamiltonian (2.8) is precisely that of a

detuned DPA with detuning σχ; naturally, the stability condition (3.4) is nothing but the

usual threshold of parametric instability for such a detuned DPA. This condition follows

immediately from the cavity susceptiblity — see Appendix A. Note that we will frequently

denote quantities Aσ conditioned on σ = ±1 by subscript arrows A↑/↓ rather than A±1.

In absence of the coupling to the qubit (χ = 0), the steady-state intracavity amplitude

satisfies

α(0) = −
√
κ ˙̄Nin

(
cos δ

κ/2− λ
+

i sin δ

κ/2 + λ

)
, (3.5)
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where we use the superscript (0) to indicate that this value corresponds to χ = 0. Note that

the cos δ ∝ Reαin contribution diverges as λ → κ/2, the point of parametric instability

for a resonant DPA: a drive phase of δ = 0 corresponds to driving only the amplified

quadrature of the paramp (X̂ = (â + â†)/
√

2), while δ = π/2 corresponds to driving only

the squeezed quadrature (Ŷ = −i(â− â†)/
√

2). Since the qubit information will be encoded

in the complementary (i.e. out-of-phase) quadrature to the one which is driven, driving the

amplified quadrature (δ = 0) corresponds to operating in squeezer mode, while driving the

squeezed quadrature (δ = π/2) corresponds to operating in amplifier mode.

Turning on the dispersive coupling χ 6= 0, the cavity amplitude becomes qubit-dependent.

In the steady-state,

ασ =

√
κ ˙̄Nin

κ2/4− λ2 + χ2

[
(iχσ − κ/2)eiδ − λe−iδ

]
(3.6a)

=
−
√
κ ˙̄Nin

κ2/4− λ2 + χ2
[{(κ/2 + λ) cos δ + (κ/2− λ)i sin δ}+ χσ {sin δ − i cos δ}] . (3.6b)

Note that given fixed ˙̄Nin (∝ drive power), the magnitude of the qubit-dependent part of ασ

is independent of the drive phase δ. However, the total magnitude |ασ|2 is dependent on δ.

In the two modes of interest (δ = π/2 and δ = 0), |α↑|2 = |α↓|2 ≡ |α|2 is independent of the

qubit state and we can unambigously write


|α|2amp =

κ ˙̄Nin

(κ2/4− λ2 + χ2)2

[
(κ/2− λ)2 + χ2

]
|α|2sqz =

κ ˙̄Nin

(κ2/4− λ2 + χ2)2

[
(κ/2 + λ)2 + χ2

]
(3.7a)

(3.7b)

in amplifier mode and squeezer mode respectively.

Parametrizing by the average coherent photon number, we can re-express the qubit-
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conditioned steady-state amplitudes (3.6) in amplifier and squeezer modes:


ασ,amp = − |α|√

(κ/2− λ)2 + χ2
[i(κ/2− λ) + χσ]

ασ,sqz = − |α|√
(κ/2 + λ)2 + χ2

[κ/2 + λ− iχσ] .

(3.8a)

(3.8b)

3.2 Preliminaries: defining the measurement rate

In practice, an experimenter does not directly measure the intracavity amplitude α, nor does

she measure the output amplitude αout in a single shot. Rather, she continuously monitors

the qubit information-carrying quadrature of the output field over an integration time τ . We

thus define the integrated signal operator

m̂(τ) =

∫ τ

0

dt Î(t) (3.9)

where

Î(t) =
√
κ(cosφX̂out(t) + sinφŶout(t)) =

√
κ/2(e−iφâout + eiφâ†out). (3.10)

The angle φ parametrizes the output quadrature that we detect: Î =
√
κQ̂(φ), where

Q̂(φ) =
e−iφâout + eiφâ†out√

2
. (3.11)

X̂out and Ŷout are the standard quadratures of the output field, which is connected to the

input field via the scattering matrix — see Appendix A. We will frequently refer to the

standard quadratures X̂ and Ŷ throughout this thesis, so we define them here explicitly:


X̂ =

â+ â†√
2
,

Ŷ =
â− â†√

2i
.

(3.12a)

(3.12b)
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Dispersive readout involves detection of the out-of-phase quadrature of the light reflected

from the cavity, which corresponds to |φ − δ| = π/2. In amplifier mode, we measure the

amplified quadrature (φ = 0, Î =
√
κX̂out), while in squeezer mode we measure the squeezed

quadrature (φ = π/2, Î =
√
κŶout).

Integrating the operator Î(t) over time yields the integrated output operator m̂(τ) (3.9).

The signal-to-noise ratio (SNR) is then defined by

SNR2(τ) =
(〈m̂(τ)〉↑ − 〈m̂(τ)〉↓)2/4

(〈〈m̂2(τ)〉〉↑ + 〈〈m̂2(τ)〉〉↓)/2
, (3.13)

with 〈〈m̂2(τ)〉〉 ≡ 〈m̂2(τ)〉 − 〈m̂(τ)〉2. The SNR characterizes how easy it is to distinguish

between the output fields corresponding to each of the two qubit states. Eventually, we

will want to consider the behaviour of SNR2(τ) for finite integration times τ . However, in

the long-time limit, SNR2 grows linearly with τ and can thus be simply characterized by a

measurement rate:

Γmeas ≡ lim
τ→∞

SNR2(τ)

2τ
=

1

2

(〈Î〉↑ − 〈Î〉↓)2/4

(S̄II,↑[0] + S̄II,↓[0])/2
(3.14)

where the averages 〈Î〉σ are evaluated in the steady state, and where

S̄II,σ[ω] =
1

2

∫ ∞
−∞

dt eiωt
〈{(

Î − 〈Î〉
)

(t),
(
Î − 〈Î〉

)
(0)
}〉

σ
(3.15)

is the (symmetrized) noise power in the detected quadrature Î at frequency ω, conditioned on

the qubit state σ. Note that since we are working in the rotating frame, ω = 0 corresponds

to the bare cavity frequency ωc (which is also the frequency of the measurement drive tone).
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3.3 Measurement rate in linear response

We begin by calculating the measurement rate to lowest-order in χ. First off, we need the

signal amplitude. In each operating mode, one finds to linear order

〈Î〉↑ − 〈Î〉↓
2

∣∣∣∣∣
amp,0

= − 〈Î〉↑ − 〈Î〉↓
2

∣∣∣∣∣
sqz,0

= −
κ3/2χ

√
2 ˙̄Nin

κ2/4− λ2
(3.16)

yielding signal power

(
〈Î〉↑ − 〈Î〉↓

2

)2
∣∣∣∣∣∣
amp/sqz,0

=
2κ3χ2 ˙̄Nin

(κ2/4− λ2)2
. (3.17)

We thus notice that when expressed in terms of the input coherent photon flux ˙̄Nin (see

(3.3)), the signal power is the same in both amplifier and squeezer modes 1. However, as

was discussed at the end of section 2.1, this is not the most useful parametrization. Rather,

the intracavity coherent photon number |α|2 (see (3.7)) is the appropriate parameter, as this

controls the onset of non-QND effects (as well as any cavity nonlinearities present).

Expressed in terms of the intracavity |α(0)|2 (with the superscript (0) indicating the linear-

response value), one has for each mode



(
〈Î〉↑ − 〈Î〉↓

2

)2
∣∣∣∣∣∣
amp,0

=
2κ2χ2|α(0)|2

(κ/2− λ)2

(
〈Î〉↑ − 〈Î〉↓

2

)2
∣∣∣∣∣∣
sqz,0

=
2κ2χ2|α(0)|2

(κ/2 + λ)2
.

(3.18a)

(3.18b)

We thus see that in amplifier mode, the paramp (λ) does indeed yield amplification of the

qubit signal, while in squeezer mode, even as one approaches the parametric instability at

1In fact, it is the same for any drive phase: one can see from (3.6) that for an optimal detection angle

φ = δ + π/2, the qubit signal power is entirely independent of drive phase δ when the incoming flux ˙̄Nin is
held fixed.
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λ = κ/2 (where the gain and noise squeezing diverge), the signal is only squeezed by a

factor of at most 4 in power. This is because the qubit signal originates inside the amplifier,

and thus is not subject to the interference which leads to arbitrarily strong squeezing of the

output noise [23].

At a casual glance, (3.18a) appears to imply that in amp mode, the signal diverges at

the parametric instability even though |α|2 is finite, which is clearly impossible. This is an

artifact of our linear-response approximation. In the full calculation, we will find that the

denominator is modified to (κ/2− λ2) + χ2. We already know that linear response assumes

a vanishingly small χ — the unphysical divergence in (3.18a) reflects the fact that for linear

response to be valid, we need not only χ� κ, but the stricter requirement χ� κ/2−λ. As

we approach the parametric instability of the uncoupled paramp, our linear response results

will be good approximations over an ever-decreasing range of χ. Hence, as the denominator

of (3.18a) shrinks, so too does the maximum allowable value of χ2 in the numerator, yielding

a finite result for the signal power.

We now turn our attention to the noise in the detected readout quadrature. As we are

currently interested in the measurement rate within linear response, we calculate this noise

in absence of the coupling χ. For an arbitrary detection angle φ, one has the simple result

(see appendix B)

S̄
(0)
II,φ[0] = κ

[
(n̄T + 1/2)

(
G0 cos2 φ+

1

G0

sin2 φ

)
+ n̄add

]
(3.19)

where

G0 =

(
κ/2 + λ

κ/2− λ

)2

(3.20)

is the parametric gain of the uncoupled paramp for signals incident in the (amplified) X̂

quadrature. The noise power coming from the readout cavity itself is very simple to interpret:

the fluctuations (both thermal and vacuum) in the output quadratures X̂out and Ŷout are

amplified and squeezed respectively by a factor of G0, and a quadrature at angle φ shows the

20



appropriate contribution from each of these. Note that we have also added by hand a noise

contribution κn̄add — this models the effect of the noise added by the following amplification

chain, which we assume adds n̄add photons of broadband noise referred to its input.

With the signal and noise in hand, we find the measurement rate in each operating mode

for fixed |α(0)|2: 
Γ

(amp)
meas,0 =

χ2|α(0)|2(1 +
√
G0)2

κ [(n̄T + 1/2)G0 + n̄add]
,

Γ
(sqz)
meas,0 =

χ2|α(0)|2(1 + 1/
√
G0)2

κ [(n̄T + 1/2)/G0 + n̄add]
.

(3.21a)

(3.21b)

Referring to the λ = 0 = n̄add signal as noise as the “original” signal and noise, we can

rewrite (3.21) in the large-gain limit
√
G0 →∞ as


Γ

(amp)
meas,0 ≈

original signal× G0/4

original noise× G0 + κn̄add

,

Γ
(sqz)
meas,0 ≈

original signal/4

original noise/G0 + κn̄add

.

(3.22a)

(3.22b)

Note the factor of 1/4 in the numerators; in both cases, this is the result of the fact that the

qubit signal (originating inside of the cavity) and the associated noise (originating outside of

the cavity) are affected differently by the parametric driving. Operating in amplifier mode,

we have that the “signal gain” is a factor of 4 smaller than the “noise gain” in the large-gain

limit. In squeezer mode, again in the large-gain limit, we have that the signal is squeezed by

only up to a factor of 4, while the DPA output noise in the relevant quadrature is squeezed

by an arbitrarily large amount.

It is worth taking a moment to further comment on the results (3.22). In amplifier mode,

(3.22a) shows that the impact of the added noise contribution κn̄add is reduced by a factor

of the gain G0 while the signal only suffers a factor of 4 reduction in the large-
√
G0 limit,

where one has

Γ
(amp)
meas,0 ≈

1

4

original signal

original noise + κn̄add/G0

(3.23)

Therefore, when the added noise n̄add dominates over the intrinsic noise, by working with
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a sufficiently large amount of gain one can use amplifier mode to achieve up to 1/4 of the

measurement rate that would be achieved by a linear cavity without any following noise.

However, if the intrinsic output noise dominates over the added noise so that we can ap-

proximate n̄add ≈ 0, the mismatch between “signal gain” and “noise gain” means that

amplification is no longer useful, and is in fact harmful. In this case, without taking the

large-
√
G0 limit, one has

Γ
(amp)
meas,0 ≈

1

4

(
1 +
√
G0

)2

G0

original signal

original noise
(3.24)

This shows that using any gain G0 > 1 yields a slower measurement than a standard linear

cavity: if the amplification chain does not add noise, then using the transamp in amplifier

mode reduces the SNR, and is hence counterproductive.

On the other hand, (3.22b) shows that if one has available a very (very) good following

amplification chain such that n̄add ≈ 0 2, squeezer mode can be used to enhance the mea-

surement rate by a large factor G0/4, where the factor of 1/4 comes from the mild squeezing

of the qubit signal and the factor G0 comes from the significant squeezing of noise by the

paramp. As we will discuss further in subsections 3.4.4 and 3.5.3, this enhancement of the

measurement rate afforded by the transamp in squeezer mode is similar to that obtained

by using squeezed input light with a standard cavity [21, 22]. If one is interested in using

squeezing to enhance readout, the transamp thus presents a good way to do so, as it can

achieve essentially the same improvement as input squeezing but without requiring the ex-

perimentalist to overcome the significant practical challenge of moving a squeezed state from

its source to the readout cavity.

2Note that due to the Haus-Caves limit on linear amplification [19, 20], achieving n̄add < 1/2 requires the
use of a phase-sensitive following amplifier, as any phase-preserving amplifier must necessarily add at least
1/2 of a photon’s worth of noise power.
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3.4 Long-time measurement rate beyond linear response

3.4.1 Signal

We now wish to extend the results of the preceding section to handle an arbitrary dispersive

coupling χ. Because the Langevin equation (3.2) conditioned on the qubit state σ̂z → σ = ±1

is linear, it is straightforwardly solved analytically. In the steady-state (reached in the long-

time limit τ →∞), one finds that


(〈Î〉↑ − 〈Î〉↓)2

4

∣∣∣∣∣
amp

=
2χ2κ2|α|2

(κ/2− λ)2 + χ2

(〈Î〉↑ − 〈Î〉↓)2

4

∣∣∣∣∣
sqz

=
2χ2κ2|α|2

(κ/2 + λ)2 + χ2

(3.25a)

(3.25b)

We thus see that for λ ≥ 0, the signal is maximized (for fixed |α|2) in amplifier mode by

taking λ = κ/2, which leads to

(〈Î〉↑ − 〈Î〉↓)2

4

∣∣∣∣∣
amp,max

= 2κ2|α|2. (3.26)

This corresponds to the situation where, roughly speaking, “all of” the coherent state am-

plitude is used for the readout, that is α↑ = −α↓, which clearly gives the largest possible

signal for a fixed value of |α|2. This places an upper limit on how much gain can be achieved

in the qubit signal, and on how hard it is worth pumping the paramp — while there is

room in between λ = κ/2 and the parametric instability at λ =
√
κ2/4 + χ2, increasing λ

beyond κ/2 for fixed |α|2 reduces the signal power from its optimum value. This is not as

surprising as it may seem: we reiterate that we are considering the signal power for fixed

|α|2. While increasing the amplifier gain would be expected to increase the signal power

for given fixed input flux ( ˙̄Nin), there is no reason to expect the fixed-|α|2 optimal-signal

condition α↑ = −α↓ to occur at the parametric instability.

In squeezer mode, use of any λ > 0 leads to some reduction of signal power. To see how
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squeezer mode can nonetheless enhance the SNR, and to determine which value of λ does so

optimally, we must naturally consider the noise. Note that λ < 0 exchanges the amplified

and squeezed quadratures of the uncoupled (χ = 0) paramp, and we accordingly restrict

ourselves to λ > 0 without loss of generality.

3.4.2 Noise

In amp and squeezer modes, the noise power remains independent of σ for all values of χ,

and is given by


S̄II,amp[0] = κ

[
(n̄T + 1/2)

[(κ/2 + λ)2 − χ2]
2

+ χ2κ2

(κ2/4− λ2 + χ2)2 + n̄add

]
,

S̄II,sqz[0] = κ

[
(n̄T + 1/2)

[(κ/2− λ)2 − χ2]
2

+ χ2κ2

(κ2/4− λ2 + χ2)2 + n̄add

] (3.27a)

(3.27b)

in the two cases. Recall that due to the dispersive interaction χσ̂zâ
†â, the qubit-conditioned

effective cavity Hamiltonian Ĥσ = χσâ†â+ (iλ/2)
(
â†â† − ââ

)
is that of a DPA driven by an

off-resonant pump. For such a detuned DPA, there exists no pair of orthogonal quadratures

which do not get mixed by the paramp — in other words, there is no pair of orthogonal

quadratures relative to which the scattering matrix of a detuned DPA is diagonal [25].

Amplification and squeezing get mixed up with one another and, in particular, X̂ and Ŷ

(see (3.12)) are no longer the amplified and squeezed quadratures respectively. Instead, both

X̂out and Ŷout see an amplified contribution. One result of this is that the noise in both of

these quadratures diverges at the parametric instability, as revealed in (3.27).

In addition, because the paramp detuning is qubit-dependent, the quadrature angles

corresponding to the amplified and squeezed quadratures (i.e. the detection angles φ —

see (3.11) — which maximize or minimize the detected noise power respectively) will both

now depend on the qubit state σ and hence we cannot use only the amplified or only the

squeezed quadrature to make the measurement. However, crudely speaking, for small values
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of the dispersive coupling χ . 1
10
κ, the standard quadratures X̂ and Ŷ (see (3.12)) will still

be “nearly lined up with” the amplified and squeezed quadratures respectively. The rough

intuition developed in our linear-response analysis will continue to hold approximately, with

limitations resulting from the finite paramp detuning ±χ.

3.4.3 Measurement rate: amplifier mode

Combining our results for the signal and noise, we obtain the long-time amplifier-mode

measurement rate

Γ(amp)
meas =

χ2κ|α|2

(κ/2− λ)2 + χ2
×

[
(n̄T + 1/2)

[(κ/2 + λ)2 − χ2]
2

+ χ2κ2

(κ2/4− λ2 + χ2)2 + n̄add

]−1

. (3.28)

Note that the measurement rate goes to zero at the parametric instability (when λ2 →

κ2/4+χ2). We emphasize that this is the case when |α|2 is held fixed; as one approaches the

instability, the incoming flux ˙̄Nin must be turned down to maintain a fixed intracavity |α|2.

Heuristically, this means that the amplifier is using more and more gain to boost a smaller

and smaller signal, without a corresponding decrease in the accompanying noise upon which

the amplifier also acts. Simply put, using a diverging amount of gain to get a finite |α|2 (and

hence a finite signal) means encountering a diverging amount of noise, driving the SNR to

zero. We also note that driving towards the parametric instability does not maximize the

signal power on its own (i.e. ignoring noise) for fixed |α|2 in amplifier mode — see subsection

3.4.1.

We have already seen that even in linear response, when there is no added noise (n̄add =

0), amplifier mode provides no advantage relative to a linear cavity. In the presence of added

noise, one can numerically optimize (3.28) to determine which paramp strength λ yields the

fastest possible measurement rate; the result is based on balancing the mismatch in signal

and noise gains against the reduction of the effect of n̄add afforded by parametric gain. The

optimal enhancement for a measurement chain adding n̄add = 30 photons of noise is shown
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in figure 3.1a. This value of n̄add is reasonable for current experiments. For example, recent

work led by John Martinis [26] has made use of HEMT amplifiers cooled to 4 K, leading one

to expect (very roughly) n̄add ∼ kBT/~ω ∼ O(10) photons added noise for signals around ∼ 7

GHz. Such a value only accounts for the HEMT added noise; using n̄add = 30 incorporates

the possibility of additional added noise due to e.g. circulator insertion losses between the

readout cavity and the HEMT amplifier.

30 added noise photons

(a) Enhancement of the measurement rate
when operating in amplifier mode. The
solid curve indicates the ratio of the fastest-
achievable long-time amplifier mode measure-
ment rate to the standard linear-cavity mea-
surement rate for each value of the dispersive
coupling χ when the following measurement
chain adds n̄add = 30 photons of noise in both
cases. The horizontal dashed line is a visual
aid indicating no improvement (a ratio of 1).

tra
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mp (a
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standard cavity

(b) Measurement rate per coherent intracavity
photon in amplifier mode (blue curve) and for
a standard cavity (orange curve). The amplifier
mode curve is obtained by choosing the paramet-
ric pump strength λ to maximize the measure-
ment rate at each value of χ. Both curves as-
sume that the following amplification chain adds
n̄add = 30 photons of noise. The ratio of these
curves is shown in figure 3.1a.

Figure 3.1: Enhancing the measurement rate by using on-chip amplification.
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3.4.4 Measurement rate: squeezer mode

Turning over to squeezer mode, we find the long-time measurement rate

Γ(sqz)
meas =

χ2κ|α|2

(κ/2 + λ)2 + χ2
×

[
(n̄T + 1/2)

[(κ/2− λ)2 − χ2]
2

+ χ2κ2

(κ2/4− λ2 + χ2)2 + n̄add

]−1

. (3.29)

In linear response, we also found that squeezer mode can be used to significantly enhance

the measurement rate when n̄add ≈ 0. Here we take this a step further, considering a weak

but finite dispersive coupling χ. Considering the zero-temperature, no-noise-added case

where n̄T = n̄add = 0 and focusing on the limit where χ/κ → 0, one finds that the optimal

parametric drive strength is λopt = κ/2−√κχ, which yields a measurement rate satisfying

Γ
(sqz)
meas,opt.

κ
≈ |α|2

(χ
κ

)
. (3.30)

Again, we emphasize that this optimization holds only in the limit χ/κ → 0. In the

same limit, the optimal rate achieved by a linear cavity with coherent input light satis-

fies Γ
(standard)
meas,opt. /κ ≈ |α|2(χ/κ)2 — optimal use of squeezer mode enhances the measurement

rate by one power of the parameter κ/χ (which is assumed to be large for this optimization

to hold).

It is worth noting that in the given limit of interest (where χ/κ → 0), one can achieve

precisely the same enhancement of the measurement rate by using a linear cavity with

appropriately squeezed input light [21, 22]. However, compared to such use of squeezed

input light, squeezer mode has the advantage that it does not require one to transport a

fragile squeezed state from the place it is generated to the readout cavity where it is to be

used; instead, the squeezing is generated precisely where and when it is needed.

As is the case for amplifier mode, analytic optimization of (3.29) becomes infeasible when

moving beyond the weak-coupling limit. Numerical results are shown in figure 3.2. These

results demonstrate how in squeezer mode, on-chip squeezing can be used to enhance the
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measurement rate in a similar way to the input squeezing scheme [21, 22].

squeezed inputsqueezer mode

standard
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Figure 3.2: Measurement rate in squeezer mode. In each panel, the solid blue curve uses
a parametric drive strength λ chosen to maximize the squeezer-mode measurement rate for
each value of the dispersive coupling χ. The dashed orange curve corresponds to the input
squeezing scheme using a standard linear cavity [21, 22], where the squeezing strength is
chosen to maximize the measurement rate for each value of χ. The dotted green curve
indicates the rate for a standard linear cavity (using coherent input). All curves assume no
added noise (n̄add = 0). At weak coupling (χ/κ � 1), squeezer mode and squeezed input
yield similar enhancement of the measurement rate. Increasing the coupling, as χ → κ/2,
squeezed input with a standard cavity can provide an arbitrarily fast measurement rate, but
the squeezer mode of the transamp provides only a modest enhancement.

In both amplifier and squeezer modes, the improvement in Γmeas relative to a standard

readout is largest when the coupling χ is weak (χ� κ). This is because χ gives the paramp

an effective finite detuning, which generally makes the paramp less useful (largely due to the

mixing of amplified and squeezed quadratures [25]). In amplifier mode, as χ grows larger,

less and less amplification of qubit signal is available (relative to the associated noise in the

readout quadrature), while in squeezer mode, as χ increases, less and less squeezing of noise

in the signal-carrying quadrature is possible.

Notice that by using squeezed input, one can achieve an arbitrarily large measurement

rate as χ → κ/2 [21, 22]. Specifically, the measurement rate increases monotonically with

the amount of squeezing in this limit. This is because for a standard linear cavity setup,

if χ = κ/2, then in the long-time limit the input state gets rotated by ±π/2 in optical
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phase space. This means that if the in-phase quadrature of the input light is squeezed, the

out-of-phase quadrature of the output light will be squeezed, and since this is precisely the

quadrature used for dispersive readout, a large amount of squeezing can be used to provide

a correspondingly large enhancement of the measurement rate. In contrast, if we consider

the squeezer mode of our system, the only way to ensure that the squeezed quadrature is

nearly lined up with the qubit information-carrying quadrature is by taking a weak coupling

χ→ 0.

3.5 Signal-to-noise ratio at finite times

In a realistic experiment, the long-time measurement rate may not be an accurate character-

ization of the actual time needed to perform readout to a given fidelity. An experimenter will

begin integrating the readout signal the moment that she turns on the coherent measurement

drive, rather than waiting for the cavity to reach its steady-state and throwing away useful

information in the meantime. We are interested in integration times τ short enough that

attention must be payed to the initial transients of the system as the cavity rings up from a

state containing no coherent photons (α(t = 0) = 0) to the qubit-conditioned steady-state

amplitude ασ. We consider a measurement protocol as indicated schematically in figure 3.3.

In the distant past t → ∞, the qubit is initialized in its ground state and the flux pump

(λ > 0) is turned on such that by the time t = 0, the cavity has reached the steady-state

conditioned on the qubit ground state. At t = 0, the qubit is instantaneously prepared in an

unknown state to be measured, and the measurement drive (αin) is turned on. Integration

begins as soon as the measurement drive is turned on, and carries on until the measurement

is complete at time τ .
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qubit in
ground state

integrate
output

qubit suddenly initialized 
to unknown state,

measurement begins

time

parametric drive

coherent drive

measurement ends

Figure 3.3: Schematic representation of the measurement protocol. Long before t = 0, the
parametric drive is turned on and the qubit is prepared in its ground state. The cavity is
allowed to reach the appropriate conditional steady-state before t = 0. At t = 0, the qubit
is suddenly initialized into an arbitrary unknown state, and the coherent measurement tone
is turned on. The readout signal is integrated over a time τ .

3.5.1 Signal

For each operating mode, one finds the time-dependent signal amplitude for fixed input

power to be given by

〈m̂(τ)〉↑ − 〈m̂(τ)〉↓
2

∣∣∣∣
amp

= − 〈m̂(τ)〉↑ − 〈m̂(τ)〉↓
2

∣∣∣∣
sqz

= 23/2χ

√
κ ˙̄Nin

[
κ√

λ2 − χ2

(
e−κ+τ/2

κ2
+

− e−κ−τ/2

κ2
−

)
− 8κ2

(κ+κ−)2
+

2κτ

κ+κ−

]
(3.31)

where we have introduced the “fast” and “slow” rates

κ± = κ± 2
√
λ2 − χ2, (3.32)
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with + and − denoting the fast and slow rate respectively. As seen in (3.31), the parametric

driving of the cavity means that it is these rates, and not just the bare cavity decay rate κ,

which provide the relevant timescales for cavity processes. In particular, notice that reaching

the long-time limit takes longer than in a linear cavity due to the exponential transients at

the slow rate: the long time limit now requires κ−τ � 1, rather than simply κτ � 1. This

is particularly important near the parametric instability, where κ− → 0.

Note that as was the case in linear-response (see (3.17)), even with finite coupling χ and

finite time τ , the signal power for fixed ˙̄Nin is the same in amplifier and squeezer modes. As

was the case in linear response, this equality does not hold when the comparison is performed

for fixed steady-state |α|2.

3.5.2 Noise

We now turn our attention to the noise in the measurement. The noise power in the inte-

grated readout signal is

〈〈m̂2(τ)〉〉 = 〈m̂2(τ)〉 − 〈m̂(τ)〉2. (3.33)

Since m̂(τ) commutes with itself, we can rewrite this as

〈〈m̂2(τ)〉〉 =
1

2
〈〈{m̂(τ), m̂(τ)}〉〉 =

∫ τ

0

∫ τ

0

dt1 dt2
1

2
〈〈{Î(t1), Î(t2)}〉〉. (3.34)

As we are interested in the finite-time behaviour of the SNR, we must pay attention to the

initial conditions used in determining the noise. As mentioned in the introduction to this

section (see figure 3.3), we imagine a scenario where the qubit is initialized in its ground

state in the distant past t → −∞, and the flux-pump turned on in the distant past as well

such that by time t = 0, the paramp has reached its steady-state conditioned on the qubit

ground state. At time t = 0, the qubit is suddenly initialized into some unknown state, and

the measurement drive αin is turned on. This leads to different initial cavity transients for

the two qubit states. While the calculation of (〈〈m̂2(τ)〉〉↑ + 〈〈m̂2(τ)〉〉↓) /2 is conceptually
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straightforward, it is somewhat tedious and the results are not particular enlightening. This

calculation is well-suited to the use of computer algebra, and its setup is sketched in appendix

F.

3.5.3 Measurement time for three-nines fidelity

With the time-dependent signal and noise thus determined, a natural question to ask is the

following: for what time τ must one integrate in order to obtain a given desired readout

quality? A standard metric for the readout quality is provided by the fidelity F , where

1−F is the probability that after the readout, one has assigned the wrong value to σz. For a

Gaussian pointer such as ours (m̂), one straightforwardly finds that the fidelity is connected

to the SNR by

F =
1

2

(
1 + erf

[
SNR√

2

])
(3.35)

where erf is the error function. Figures 3.4 and 3.5 show the time required for a fidelity of

F = 0.999, i.e. a 0.001 = 0.1% probability of error, in amplifier mode and squeezer mode

respectively.

These numerics show that even at finite measurement times, amplifier mode and squeezer

mode provide similar improvements to the speed of the measurement as were found in the

long-time limit. As was the case in that limit, both modes are particularly useful at weak

couplings χ, for which the amplified or squeezed quadrature of the paramp can be made to

line up closely with the signal-carrying quadrature. Furthermore, again as was the case in the

long-τ limit, squeezer mode provides the same scaling enhancement (as a function of χ) as

does the use of squeezed input. However, we reiterate that unlike the input squeezing scheme,

squeezer mode does not require one to overcome the experimental challenge of transporting

a squeezed state from its source to the readout cavity with good fidelity.
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standard (                 )
amp mode (                 )

standard (               )

Figure 3.4: Measurement time required for three-nines fidelity (F = 0.999) when operating
in amplifier mode with realistic device parameters. Here, the bare cavity linewidth κ/(2π) =
40 MHz, |α|2 = 100 and the vertical dashed red line indicates a dispersive coupling χ/(2π) =
0.11 MHz, corresponding to the present experimental device developed by the group of Irfan
Siddiqi at UC Berkeley. The solid blue curve is obtained by using the transamp in amplifier
mode when n̄add = 30, with the pump strength λ chosen to minimize the measurement time
for each value of χ. The dashed orange curve corresponds to a standard linear cavity, again
with n̄add = 30. The dotted green line corresponds to a standard linear cavity with no
added noise (n̄add = 0). All curves assume |α|2 = 100 in the steady-state. While amplifier
mode does not completely mitigate the effect of added noise, it does provide a significant
improvement in measurement time.
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squeezed input

squeezer mode

standard

Figure 3.5: Measurement time required for three-nines fidelity (F = 0.999) when operating
in squeezer mode with realistic device parameters. Here, the bare cavity linewidth κ/(2π) =
40 MHz, |α|2 = 100 and the vertical dashed red line indicates a dispersive coupling χ/(2π) =
0.11 MHz, corresponding to the present experimental device developed by the group of Irfan
Siddiqi at UC Berkeley. The solid blue curve is obtained by using the squeezer mode of the
transamp with pump strength λ chosen to minimize the measurement time for each value
of the dispersive coupling χ. The dotted green and dashed orange curves correspond to a
standard linear cavity with coherent input and squeezed input respectively; for the squeezed
input curve, the degree of input phase-squeezing is chosen to minimize the measurement
time for each value of χ. All curves ignore added noise (n̄add = 0) and assume |α|2 = 100 in
the steady-state. Squeezer mode provides a similar enhancement of the measurement rate
to input squeezing.
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Chapter 4

Back-action dephasing

It is a basic notion encountered in any first course on quantum mechanics that any mea-

surement of a quantum system necessarily involves back-action on the measured system by

the detector. Our system is no different. As is always the case, the very same interaction

χâ†âσ̂z which allows the cavity to measure the qubit also means that the qubit level splitting

experiences an ac-Stark shift which is dependent on the cavity photon number â†â. As the

cavity is in general not in a Fock state, the cavity photon number fluctuates. This in turn

means that the qubit level splitting fluctuates, and qubit superpositions with respect to σ̂z

acquire a randomized phase. This is the dephasing back-action associated with a dispersive

σ̂z measurement.

As we consider a qubit inside an amplifier, the qubit is no longer dephased by the simple

shot-noise of a coherently populated cavity mode but is rather dephased by the amplified

fluctuations of the paramp. We will show that even in this more complicated situation,

the back-action dephasing in both amplifier and squeezer modes can be made as small as

is allowed by quantum mechanics. We will also demonstrate one of our setup’s most useful

features: that when including realistic amounts of following noise, exploiting the on-chip

gain of the transamp setup allows one to come close far closer to the quantum limit than is

possible with a standard dispersive readout with a similar amount of following noise.
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As much of our discussion will be centred on the the quantum limit on QND readout of

qubits, we will first provide a review of this limit as it applies both at finite times and in

the long-time limit. Analogously to our preceding discussion on measurement, we will then

calculate the back-action dephasing first in linear response, and then for arbitrary dispersive

coupling and for finite measurement times. In all cases, we will pay particular attention the

quantum efficiency, which quantifies how close the readout comes to reaching the quantum

limit.

4.1 The quantum limit on QND qubit readout

In this section we provide a review of the well known quantum limit on QND qubit mea-

surement (see e.g. [3, 12]) as it applies both at finite times and in the long-time limit. This

fundamental limit places a strict lower bound on the minimum possible amount of dephasing

that can occur in any QND readout. Following the derivation presented in [3, 12], we will

show how for any such readout, the very fact that the qubit-conditioned detector states are

distinguishable directly implies that a certain minimum amount of qubit dephasing must

occur as a direct consequence of the measurement process.

Consider abstractly a qubit which is to be measured by some detector. We suppose that

the initial state |ψ(0)〉 is factorizable, allowing us to write

|ψ(0)〉 = (β↓ |↓〉+ β↑ |↑〉)⊗ |D(0)〉 (4.1)

where |D(0)〉 is the initial state of the detector. Since the measurement is QND, linearity

implies that after a time t the combined state is

|ψ(t)〉 = β↓ |↓〉 ⊗ |D↓(t)〉+ β↑ |↑〉 ⊗ |D↑(t)〉 (4.2)

where |Dσ(t)〉 is the state to which the detector would evolve at time t provided that the
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qubit is initially in state |σ〉.

In order to determine the state of the qubit, we make a measurement of some observable

ŝ of the detector. Let pσ(s) denote the qubit-conditioned probability distribution for the

outcomes of our ŝ measurement. We can then write the pointer states as

|Dσ〉 =

(∫
ds eiφσ(s)

√
pσ(s) |s〉

)
⊗ |Eσ〉 (4.3)

where |Eσ〉 allows for the possibility that the qubit becomes entangled with some additional

degrees of freedom that we do not measure, and where φσ(s) allows for the possibility that

the component of the pointer state along |s〉 acquires a qubit-dependent phase. One then

finds that ρ̂↑↓ ≡ 〈↑| ρ̂ |↓〉 = β↑β
∗
↓ |D↑〉 〈D↓| so that

ρ↑↓(t) ≡ Tr [|↓〉 〈↑| ρ̂(t)] = ρ↑↓(0) 〈D↓(t)
∣∣D↑(t)〉 (4.4)

or

C(t) ≡ ρ↑↓(t)

ρ↑↓(0)
= 〈D↓(t)

∣∣D↑(t)〉 . (4.5)

This clearly expresses the very essence of the quantum limit: the degree of coherence re-

tained by the qubit after the measurement has taken place is precisely equal to the overlap

between the two states of the detector (or, more generally, of the detector + environment)

corresponding to the two possible measurement outcomes. Since these detector (or detector

+ environment) states may involve unmeasured degrees of freedom, they may have non-unity

overlap even though the measurement we actually make cannot distinguish between them.

Hence, the qubit may dephase faster than we gain information, but it cannot dephase more

slowly than we gain information.

Re-expressing (4.5), we can write

C(t) = 〈E↓
∣∣E↑〉∫ ds ei[φ↑(s)−φ↓(s)]

√
p↑(s)p↓(s). (4.6)
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Taking absolute values and using the triangle inequality, one finds

|C(t)| ≤
∣∣〈E↓∣∣E↑〉∣∣ ∫ ds

√
p↑(s)p↓(s) ≤

∫
ds
√
p↑(s)p↓(s) (4.7)

where we recognized that normalization ensures
∣∣〈E↓∣∣E↑〉∣∣ ≤ 1. It is clear from (4.6) that

two conditions must be met in order to reach the quantum limit, that is, in order to saturate

(4.7). First, there must be no unmeasured degrees of freedom which we could have measured

to learn more about the qubit (i.e.
∣∣〈E↓∣∣E↑〉∣∣ = 1). Additionally, there must be no qubit

information in the phase of the pointer state wavefunction written in the |s〉 basis (i.e. φ↑(s) =

φ↓(s)) — if there were, a measurement of ŝ could not be ideal, as such a measurement does

not access this phase information. We can concisely summarize these two requirements by

stating that in order to reach the quantum limit, a measurement must waste no information.

In the case of a Gaussian pointer such as ours (m̂), it follows straightforwardly that

∫ ∞
−∞

dm
√
p↑(m)p↓(m) = exp

[
−SNR2

2

]
. (4.8)

This leads immediately to an upper bound on the qubit coherence at time t:

∣∣∣∣ ρ↑↓(t)ρ↑↓(0)

∣∣∣∣ ≤ exp

[
−SNR2

2

]
. (4.9)

Using this equality, it is standard to define an efficiency ratio which is bounded by 1 by

taking logarithms. Working with the parameter ν(t) ≡ − ln ρ↑↓(t) one defines the finite-time

quantum efficiency as

SNR2(t)

2 Re [ν(t)− ν(0)]
≤ 1. (4.10)

To reiterate, the numerator (SNR2(t)) quantifies how much information has been gained

about the qubit after measuring for a time t, while the denominator (∝ Re [ν(t)− ν(0)])

quantifies how much qubit coherence has been lost by time t. 1 The efficiency (4.10) thus

1Recall that |C(t)| ≡ |ρ↑↓(t)/ρ↑↓(0)| = exp {−Re [ν(t)− ν(0)]}.
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answers the question: “how much of the entanglement formed between the qubit and other

degrees of freedom has been used to actually learn something about the qubit?”

In the long-time limit, where SNR2(τ) ≈ 2Γmeasτ and Re [ν(τ)− ν(0)] ≈ Γφτ , we can

instead work with just the measurement and dephasing rates, and the finite-time expression

(4.10) for the quantum efficiency reduces to the usual (long-time limit) version [3]:

η =
Γmeas

Γφ
≤ 1. (4.11)

With our review of the quantum limit thus concluded, we now proceed to study the dephasing

and quantum efficiency in our particular qubit-paramp system.

4.2 Dephasing and quantum efficiency in linear response

The random part of the back-action “force” due to the dispersive interaction χâ†âσ̂z is

F̂ = â†â− 〈â†â〉 = α∗d̂+ αd̂† + d̂†d̂− 〈d̂†d̂〉 (4.12)

where the second equality follows from writing â = α + d̂ with 〈â〉 = α and 〈d̂〉 = 0. It will

be useful to consider this expression in terms of its linear- and quadratic-in-d̂ pieces,

F̂ = F̂L + F̂Q (4.13)

with

F̂L = α∗d̂+ αd̂† (4.14a)

and

F̂Q = d̂†d̂. (4.14b)

Note that through α, the linear piece F̂L “knows about” the qubit measurement as it knows

about the cavity amplitude. We will see that in both amplifier and squeezer modes, if we
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had only this term, the readout would be quantum-limited. F̂Q = d̂†d̂ knows only about

the (amplified) fluctuations of the paramp and leads to excess dephasing which can become

significant.

4.2.1 Dephasing rate

To leading order in perturbation theory, an interaction χF̂ σ̂z induces a long-time exponential

dephasing rate [3]

Γφ,0 = 2χ2SFF,0[0]. (4.15)

As throughout, the subscript 0 denotes that the noise power SFF,0[0] =
∫∞
−∞ dt 〈F̂ (t)F̂ (0)〉0

is evaluated in absence of the coupling to the qubit, that is, with χ = 0. Note that (4.15)

essentially amounts to treating the fluctuations of F̂ as Gaussian. Now, because 〈d̂〉 = 0,

Wick’s theorem means that all cross-terms between F̂L and F̂Q appearing in SFF,0 are zero

and we have SFF,0[0] = SFLFL,0[0] + SFQFQ,0[0]. Working from the Heisenberg-Langevin

equation (3.2) with χ = 0, one finds the two contributions

SFLFL,0[0] = (2n̄T + 1)κ2 ˙̄Nin

[
cos2 δ

(κ/2− λ)4
+

sin2 δ

(κ/2 + λ)4

]
(4.16)

= (2n̄T + 1)κ

[(
Reα(0)

κ/2− λ

)2

+

(
Imα(0)

κ/2 + λ

)2
]

(4.17)

and

SFQFQ,0[0] =
κ2n̄T (n̄T + 1) + λ(κ− λ)

8 (κ/2− λ)3 +
κ2n̄T (n̄T + 1)− λ(κ+ λ)

8 (κ/2 + λ)3 (4.18)

which lead immediately to the linear-response dephasing rate

Γφ,0 = 2χ2

[
(2n̄T + 1)κ2 ˙̄Nin

(
cos2 δ

(κ/2− λ)4
+

sin2 δ

(κ/2 + λ)4

)
+
κ2n̄T (n̄T + 1) + λ(κ− λ)

8 (κ/2− λ)3 +
κ2n̄T (n̄T + 1)− λ(κ+ λ)

8 (κ/2 + λ)3

]
. (4.19)

The dependence of the dephasing rate on the drive phase (δ) is completely intuitive:
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writing α = |α|eiθ, one can rewrite the linear part of the back-action “force” operator as

F̂L = |α|(e−iθd̂ + eiθd̂†). 2 Thus, via its effect on the phase of the cavity amplitude, the

drive phase δ ultimately determines which quadrature of the intracavity noise is seen by the

qubit at linear order. In squeezer mode (δ = 0), one excites the amplified quadrature of the

paramp; the qubit talks linearly to the amplified quadrature of the intracavity noise and the

dephasing rate is correspondingly increased, diverging at the parametric instability. On the

other hand, in amplifier mode (δ = π/2), the qubit sees the “squeezed” quadrature of the

intracavity noise and the dephasing rate is correspondingly reduced. Note that because the

noise inside a DPA is only ever squeezed by at most a factor of 4 in power (hence the quotes

around the word “squeezed” in the preceding sentence), there is a limit to this reduction in

the dephasing.

4.2.2 Quantum efficiency

Expressed in terms of the parametric gain

G0 =

(
κ/2 + λ

κ/2− λ

)2

, (4.20)

one has for each operating mode in the zero-temperature case


Γ

(amp)
φ,0,L =

2χ2
∣∣α(0)

∣∣2 (
√
G0 + 1)2

κG0

Γ
(sqz)
φ,0,L =

2χ2
∣∣α(0)

∣∣2 (
√
G0 + 1)2

κ
.

(4.21a)

(4.21b)

Note that the contributions (4.21) to the dephasing rates are exactly equal to the linear-

response measurement rates (3.21), given that n̄T = n̄add = 0. So, in this ideal case, the

2Note that because of the parametric driving (λ 6= 0), the cavity responds differently to signals in the X̂
and Ŷ quadratures; the phase θ of the cavity amplitude is thus not simply equal to the drive phase δ, but
is affected by the parametric driving strength λ as well.
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quantum efficiency for each mode can be written as

η
(amp/sqz)
0 ≡

Γ
(amp/sqz)
meas,0

Γ
(amp/sqz)
φ,0

=
1

1 + Γφ,0,Q/Γ
(amp/sqz)
φ,0,L

. (4.22)

This reveals explicitly that in both amplifier and squeezer modes, within the regime of

leading-order perturbation theory, deviation from perfect quantum efficiency is entirely due

to the back-action associated with F̂Q.

To reach the quantum limit, we must therefore ensure that the linear part of the back-

action dephasing Γφ,0,L dominates over the quadratic part Γφ,0,Q. At zero-temperature, one

has

Γφ,0,Q =
2χ2(G0 − 1)

32κ

(√
G0 + 3− 3

G0

− 1

G3/2
0

)
. (4.23)

One thus finds that in the large-gain (
√
G0 →∞) limit,


Γφ,0,Q

Γ
(amp)
φ,0,L

≈ G3/2
0

32 |α(0)|2

Γφ,0,Q

Γ
(sqz)
φ,0,L

≈
√
G0

32 |α(0)|2

(4.24a)

(4.24b)

and the readout therefore approaches the quantum limit (η → 1) in the large-
√
G0 limit pro-

vided that |α(0)|2 � G3/2
0 /32 (amplifier mode) or |α(0)|2 �

√
G0/32 (squeezer mode). Again,

we reiterate that these are requirements for each operating mode that must be satisfied in

order for the coherently-assisted linear contribution Γφ,0,L to dominate over the quadratic

contribution Γφ,0,Q. Intuitively, for the “measurement-aware” part of the dephasing to dom-

inate, the measurement must involve sufficiently many photons. Note that as discussed in

section 2.1, in order to avoid non-QND backaction effects (as well as any cavity nonlinear-

ities),
∣∣α(0)

∣∣2 cannot be made arbitrarily large. This in turn puts a limit on the amount of

gain that can be used if one wishes to reach a given efficiency target (see (4.24)).
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4.3 Dephasing and quantum efficiency beyond linear

response

To understand the dephasing back-action beyond the regime of weak χ, we must move

beyond the linear-response quantum noise approach employed in the previous section — the

dephasing of the qubit is no longer straightforwardly connected to the noise properties of

the uncoupled paramp. Going beyond perturbation theory, we will find an exact analytic

expression for the measurement-induced dephasing rate in the long-time limit by following

the same procedure as was applied to the case of a driven nonlinear readout cavity in [12].

We note that the same procedure has also been applied to similar problems in [27, 28].

4.3.1 Dephasing calculation

Working at zero-temperature, we begin with the standard Lindblad master equation for the

density matrix ρ̂ of the cavity-plus-qubit system,

d

dt
ρ̂(t) = −i

[
Ĥ, ρ̂(t)

]
+ κD[â]ρ̂(t), (4.25)

where

D[â]ρ̂ = âρ̂â† − 1

2
{â†â, ρ̂} (4.26)

is the usual Lindblad superoperator describing the damping of the cavity, and where

Ĥ =
iλ

2

(
â†â† − ââ

)
+ χâ†âσ̂z − i

√
κ(αinâ

† − α∗inâ) (4.27)

is the Hamiltonian, in which we now include the coherent drive αin explicitly.

Now, we do not really need to keep track of the entire density matrix ρ̂. We are here

interested only in the qubit dephasing, the decay in magnitude over time of the qubit off-
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diagonal density matrix element

ρ↑↓(t) = Tr [|↓〉 〈↑| ρ̂(t)] = Trcav [〈↑| ρ̂(t) |↓〉] = Trcav [ρ̂↑↓(t)] (4.28)

where in the last equality we have introduced the operator ρ̂↑↓(t) ≡ 〈↑| ρ̂(t) |↓〉 which acts on

the cavity Hilbert space.

Taking the appropriate (operator-valued) “matrix element” of (4.25), one obtains

d

dt
ρ̂↑↓(t) =

[
λ

2
(â†â† − ââ)−

√
κ(αinâ

† − α∗inâ), ρ̂↑↓(t)

]
− iχ

{
â†â, ρ̂↑↓(t)

}
+ κD[â]ρ̂↑↓(t). (4.29)

Next, we move to the Wigner representation, according to

W↑↓(x, p; t) =
1

π

∫ ∞
−∞

dy e−2ipy 〈x+ y| ρ̂↑↓(t) |x− y〉 (4.30)

Note the possibly-confusing notation — y is an integration variable, while p is the variable

corresponding to the Ŷ quadrature. |x〉 is an X̂-quadrature eigenstate: e.g. X̂ |x+ y〉 =

(x+ y) |x+ y〉. Applying the Wigner map to (4.29), one obtains the PDE

∂

∂t
W↑↓(x, p; t) =

κ

2

(
1

2
∂2
x +

1

2
∂2
p + x∂x + p∂p + 2

)
W↑↓(x, p; t)

+ iχ

(
1− x2 − p2 +

1

4
∂2
x +

1

4
∂2
p

)
W↑↓(x, p; t) + λ(p∂p − x∂x)W↑↓(x, p; t)

+
√
κ
(
X̄in∂x + Ȳin∂p

)
W↑↓(x, p; t) (4.31)

where X̄in and Ȳin are the average values of the standard input quadratures X̂in and Ŷin.

Because the underlying equation (4.29) is quadratic in the field operators (â and â†), we

know immediately that the PDE (4.31) can be solved by a Gaussian ansatz. We express this
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ansatz in Fourier space,

W↑↓[k, q; t] =

∫
dx

∫
dpei(kx+qp)W↑↓(x, p; t) (4.32)

= e−ν(t)exp

{
i[kx̄(t) + qp̄(t)]− 1

2

[
k2Vx(t) + 2kqVxp(t) + q2Vp(t)

]}
. (4.33)

Note that the parameter ν(t) is related to the trace by

ν(t) = − ln Trρ̂↑↓(t), (4.34)

which is easily verified by using the identity

〈x| ρ̂↑↓(t) |y〉 =

∫ ∞
−∞

dp eip(x−y)W↑↓

(
x+ y

2
, p; t

)
(4.35)

and evaluating the trace over the |x〉 basis. We can therefore extract the long-time dephasing

rate as

Γφ = lim
t→∞

Re ν(t)

t
. (4.36)

Fourier transforming the PDE (4.31) and equating terms on the left and right at each

power in k and q yields the following system of ODEs for the Gaussian parameters:



ν̇(t) = iχ
(
x̄2(t) + p̄2(t) + Vx(t) + Vp(t)− 1

)
˙̄x(t) = −

(κ
2
− λ
)
x̄(t)− 2iχ [x̄(t)Vx(t) + p̄(t)Vxp(t)]−

√
κX̄in

˙̄p(t) = −
(κ

2
+ λ
)
x̄(t)− 2iχ [x̄(t)Vxp(t) + p̄(t)Vp(t)]−

√
κȲin

V̇x(t) =
κ

2
− (κ− 2λ)Vx(t)− 2iχ

(
V2
x(t) + V2

xp(t)−
1

4

)
V̇xp(t) = −Vxp(t) (κ+ 2iχ [Vx(t) + Vp(t)])

V̇p(t) =
κ

2
− (κ+ 2λ)Vx(t)− 2iχ

(
V2
p (t) + V2

xp(t)−
1

4

)
.

(4.37a)

(4.37b)

(4.37c)

(4.37d)

(4.37e)

(4.37f)
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4.3.2 Dephasing rate in the long-time limit

Solving (4.37) for the steady-state and expressing X̄in =

√
2κ ˙̄Nin cos δ, Ȳin =

√
2κ ˙̄Nin sin δ,

one finds that in the long-time limit

ν̇ =
2χ2κ2 ˙̄Nin

(κ2/4− λ2 + χ2)2

[
(κ/2 + λ)2 − χ2 + iχκ

(κ/2− λ)2 − χ2 + iχκ
cos2 δ +

(κ/2− λ)2 − χ2 + iχκ

(κ/2 + λ)2 − χ2 + iχκ
sin2 δ

]

− κ

2
+

1

2

√
(κ/2 + λ)2 − χ2 + iχκ+

1

2

√
(κ/2− λ)2 − χ2 + iχκ

+ (additional purely imaginary terms) (4.38)

Taking the real part, we obtain the long-time dephasing rate:

Γφ = 2χ2κ2 ˙̄Nin

[
cos2 δ(

(κ/2− λ)2 − χ2
)2

+ χ2κ2
+

sin2 δ(
(κ/2 + λ)2 − χ2

)2
+ χ2κ2

]

+
1

2
Re

{√
(κ/2 + λ)2 − χ2 + iχκ+

√
(κ/2− λ)2 − χ2 + iχκ

}
− κ

2
. (4.39)

Note that while this expression does require one to take the long-time limit (which leads

to exponential dephasing), it does not assume that the fluctuations of F̂ = â†â − 〈â†â〉 are

Gaussian. As will be discussed shortly, the non-Gaussian nature of these fluctuations is

reflected in the fact that (4.39) contains terms to all powers in χ.

4.3.3 Quantum efficiency in the long-time limit

As was the case in linear-response, we can write Γφ = Γφ,L + Γφ,Q, where we identify a

“measurement-aware” part of the dephasing rate (Γφ,L ∝ ˙̄Nin) and a “pure noise” contribu-

tion Γφ,Q associated with the linear- and quadratic-in-d̂ parts of the backaction force operator

F̂ = F̂L + F̂Q respectively (see (4.14)). As was also the case in linear-response, in both am-

plifier and squeezer modes (δ = π/2 and δ = 0 respectively), the linear-in-d̂ piece Γφ,L is

exactly equal to the measurement rate (c.f. (3.28) and (3.29)). We hence have that once

again the readout is quantum-limited in both modes of operation (in the long-time limit and
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assuming n̄T = n̄add = 0) provided that the measurement involves sufficiently many photons

that the linear backaction term Γφ,L dominates over the quadratic term Γφ,Q, which would

be present even with no measurement tone applied (i.e. with α = 0). We note that excess

dephasing beyond the quantum limit is associated with missing information; there exists

some unrecorded detector observable that could be measured to learn more about the qubit.

We heuristically attribute this missing information to the squeezing angle of the paramp

output noise — we measure only an average value of some particular output quadrature,

and no properties of the phase-dependence of the output noise. Since the paramp detuning

depends on the qubit state, so too does the (unmeasured) phase-dependence of the output

noise, resulting in a deviation from perfect quantum efficiency. In linear-response, this devi-

ation was neatly expressible in terms of the amplifier gain G0 (see (4.21), (4.22), and (4.23)).

Unfortunately, as there is no longer a unique straightforward definition of the paramp gain,

the required conditions for quantum-limited operation can no longer be simply expressed in

terms of such a gain as was possible in the linear-response case.

One possible way to define the gain of a detuned paramp we dub the “noise gain” Gnoise:

this is defined as the ratio of the noise power in the loudest output quadrature of the paramp

to the corresponding input noise power (= 1/2 for vacuum noise), i.e.

Gnoise ≡ max
φ∈[0,2π)

{
S̄QQ,φ[0]

S̄QQ,φ[0]
∣∣
vacuum

}
= max

φ∈[0,2π)

{
S̄QQ,φ[0]

1/2

}
(4.40)

where

S̄QQ,φ[ω] =
1

2

∫ ∞
−∞

dt eiωt
〈{(

Q̂(φ) − 〈Q̂(φ)〉
)

(t),
(
Q̂(φ) − 〈Q̂(φ)〉

)
(0)
}〉

(4.41)

is the noise power in Q̂(φ), the output quadrature at angle φ (see (3.11)). This definition

coincides with the X̂-quadrature power gain for the resonant (χ = 0) paramp — that is,

Gnoise
χ→0−−→ G0 (see (3.20)). Figure 4.1a shows that at a given value of parametric gain (quanti-

fied by G0 in the linear-response case and by Gnoise in the arbitary-χ case), the linear-response
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result underestimates the efficiency of the readout in amplifier mode. This underestimation

can be partially explained by the fact that the fluctuations in the integrated photon number

N̂(τ) =
∫ τ

0
dt (â†â)(t) are non-Gaussian.

standard,

standard,

amp mode,                ,                 

(linear response)

amp mode,                ,                 
amp mode,                  , optimal               

(a) The solid blue curve uses a paramp strength
λ chosen to maximize the efficiency for each value
of the dispersive coupling χ with n̄add = 30 pho-
tons of added noise, showing dramatic efficiency
enhancement relative to the standard (λ = 0)
case with the same n̄add (solid orange curve).
The red dashed curve and dotted blue curve com-
pare linear response to the full theory in the case
of no added noise (n̄add = 0) and with a fixed
value of the parametric gain, quantified by G0

(3.20) in linear response and Gnoise (4.40) in the
full theory. Note that G0 and Gnoise coincide in
the limit χ → 0. All curves use an intracavity
coherent population |α|2 = 100 (|α(0)|2 = 100 in
the linear-response case).

linear response

full c
alcu

latio
n    

    
    

    
 

quantum limit

(b) Holding the parametric pump fixed at λ/κ =

0.45 and the coherent input flux fixed at ˙̄Nin/κ =
10 as χ varies explicitly demonstrates that the
higher cumulants of the integrated photon num-
ber N̂(τ) =

∫ τ
0 dt â†â(t) can reduce the de-

phasing and improve the quantum efficiency of
the readout as compared to the linear-response
Gaussian noise approximation (see (4.42)).

Figure 4.1: Long-time quantum efficiency in amplifier mode.

As discussed in [12, 29, 30], the dephasing is related to the fluctuations of N̂ according

to

Γφ = lim
τ→∞

1

τ

∞∑
j=1

(−1)j−1 (2χ)2j

(2j)!
〈〈N̂2j(τ)〉〉, (4.42)

that is, the dephasing rate Γφ expressed as a power series in χ directly yields the (Keldysh-

ordered [29, 30]) cumulant-generating function for N̂ in the long-τ limit. In the weak-χ

(linear-response) limit, the dephasing is determined only by the variance 〈〈N̂2(τ)〉〉; it is as
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if N̂ has Gaussian fluctuations. Increasing the coupling χ, the qubit dephasing becomes sen-

sitive to higher cumulants of the time-integrated photon-number fluctuations. For example,

at next-to-leading order (j = 2 in (4.42)), the kurtosis 〈〈N̂4〉〉 impacts the dephasing rate

with a minus sign: if the fluctuations of N̂ are more sharply peaked than a Gaussian (and

thus have positive kurtosis), then when the next-to-leading-order approximation is valid,

the dephasing is smaller than linear-response would indicate. Note that because both λ

and ˙̄Nin vary as χ increases in figure 4.1a, that figure alone does not prove that the higher

cumulants are responsible for the improvement in amplifier-mode quantum efficiency over

the linear-response (Gaussian) approximation; this is demonstrated explicitly in figure 4.1b,

where the only parameter in the Hamiltonian which changes is χ itself.

Figure 4.1a also demonstrates what is perhaps the most practically useful feature of the

transamp setup: for realistic values of the measurement chain added noise n̄add, the on-chip

gain of amplifier mode can be used to recover a significant amount of lost quantum efficiency.

For example, when n̄add = 30, which is not an unreasonable value for a measurement chain

involving a HEMT amplifier and associated circulators, an optimally chosen pump strength

λ brings the efficiency up to ∼ 75% from its value ∼ 1% in the standard linear cavity case.

The dependence of the efficiency on χ seen in figure 4.1a can be understood as a com-

petition between two effects. As previously discussed, increasing χ increases the sensitivity

of the qubit dephasing to higher cumulants of the time-integrated cavity photon-number

fluctuations, and these higher cumulants can reduce the dephasing rate and increase the

efficiency. On the other hand, as one increases χ, one is working with an increasingly de-

tuned paramp, and a decreasing amount of signal gain is available relative to the associated

intrinsic output noise (i.e. the noise ignoring n̄add). This limits the degree of improvement

that can be achieved in the efficiency.

Figure 4.2 shows that the dependence of the efficiency on χ is dramatically different in

squeezer mode. Here, when the paramp gain is held fixed, the efficiency is seen to decrease

with increasing χ/κ. In contrast with amplifier mode, linear response overestimates the
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efficiency in squeezer mode when holding the paramp gain fixed. This emphasizes that

while the higher cumulants of the time-integrated photon number fluctuations can lead to

improved quantum efficiency, they needn’t necessarily do so.

If, instead of holding the paramp gain fixed, one instead considers the fastest possible

squeezer-mode measurements, obtained by optimizing the measurement rate (3.29) with

respect to λ for each given value of χ, then the efficiency is seen to increase with χ (refer

again to figure 4.2). We attribute this to the reduction in gain used when maximizing the

measurement rate as χ increases. At weak couplings χ, a significant degree of squeezing can

yield a tremendous increase in the measurement rate (since the signal-carrying quadrature

almost perfectly lines up with the squeezed quadrature). Therefore, a large paramp gain is

used, yielding low efficiency — recall that in linear response, we found that squeezer mode

requires
√
G0 � 32

∣∣α(0)
∣∣2 for high efficiency, while in figure 4.2, a relatively small coherent

photon number |α|2 = 10 is used. As the coupling χ increases, there is no longer any point in

pumping hard (i.e. using large λ), as the squeezed quadrature no longer lines up well with the

signal-carrying quadrature. The degree of squeezing used for a maximally-fast measurement

thus decreases, and the efficiency is observed to increase. See also figure 4.3, which shows

the value of λ used to achieve the fastest measurement rate, as well as the corresponding

degree of squeezing in the readout quadrature.

4.4 Quantum efficiency at finite times

As was mentioned in the earlier discussion of the SNR, a realistic measurement process may

occur too quickly to be accurately described by long-time limit results. Therefore, we now

investigate the efficiency of the readout at finite times. We will handle this by numerically

solving the ODEs (4.37). First, we must determine the appropriate initial condition to use

in our numerical solution.

We consider the experimental protocol as discussed early in section 3.5 and displayed
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squeezer mode 
(fastest measurement)

squeezer mode

squeezer mode, linear response

Figure 4.2: Long-time quantum efficiency in squeezer mode. The solid and dotted blue
curves compare the results of the full theory to the linear-response approximation when the
paramp gain is held fixed at 300 (quantified by Gnoise (see (4.40)) in the full theory and by
G0 (see (3.20)) in linear response, which coincide in the weak-coupling χ→ 0 limit). For the
orange curve, the paramp strength λ is chosen to maximize the measurement rate for each
value of χ — see also figure 4.3. All curves use |α|2 = 10 (|α(0)|2 = 10 in the linear-response
case). The dotted green line indicates ideal efficiency η = 1.

Figure 4.3: In blue: pump strength λopt yielding the fastest long-time measurement rate in
squeezer mode for each value of χ with coherent cavity population |α|2 = 10 and no added
noise (n̄add = 0). In red: corresponding squeezing in dB of the on-resonance noise power in
the readout quadrature (Ŷout).

schematically in figure 3.3. In the distant past, the qubit is initialized in its ground state

ρ̂qb(t < 0) = |↓〉 〈↓|, and the flux-pump is turned on. By time t = 0, we assume that the
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cavity has reached its appropriate steady state ρ̂cav(0) conditioned on the qubit being in

its ground state. Then, at t = 0, we suppose that the qubit is suddenly initialized into

some arbitrary state ρ̂qb(0) =
∑

σσ′ cσσ′ |σ〉 〈σ′| immediately before the measurement tone is

turned on. The total initial state (at t = 0) is then given by the product state

ρ̂(t = 0) = ρ̂qb(0)⊗ ρ̂cav(0) =
∑
σσ′

cσσ′ |σ〉 〈σ′| ⊗ ρ̂cav(0). (4.43)

Now, in terms of the operators ρ̂σσ′ (which act on the cavity), we have ρ̂ =
∑

σσ′ |σ〉 〈σ′|⊗ρ̂σσ′ ,

thus yielding the initial condition

ρ̂↑↓(0) = c↑↓ρ̂cav(0). (4.44)

So, to determine the initial condition for the Gaussian parameters of ρ̂↑↓ (in the Wigner

representation), we determine the corresponding parameters for the actual cavity density

matrix ρ̂cav in the steady state, conditioned on the qubit being in its ground state. As

derived in Appendix E, one finds



ν(0) = − ln ρ↑↓(0) = − ln c↑↓,

x̄(0) = 0,

p̄(0) = 0,

Vx(0) =
κ

2

κ+ 2λ+ 4χ2/κ

κ2 − 4λ2 + 4χ2
,

Vp(0) =
κ

2

κ− 2λ+ 4χ2/κ

κ2 − 4λ2 + 4χ2
,

Vxp(0) =
2χλ

κ2 − 4λ2 + 4χ2
.

(4.45a)

(4.45b)

(4.45c)

(4.45d)

(4.45e)

(4.45f)

Numerically integrating the ODEs (4.37) with these initial conditions (4.45) for arbitrarily

chosen example parameters is shown in figure 4.4. These results show that the quantum

efficiency does not reach its long-time limit value immediately. For a simple linear cavity, the
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relevant timescale is 1/κ — for n̄add = 0, perfect efficiency is reached only when κτ � 1. For

amplifier mode, the relevant timescale to reach steady-state efficiency is increased. However,

it is not simply the slow rate κ− = κ − 2
√
λ2 − χ2 which controls this scale. Further

investigation would be required to determine the specific timescale controlling this approach

to the long-time limit. More generally, additional study is needed in order to understand the

reason for the lack of efficiency at short times: while excess dephasing is in general associated

with wasted information, it is unclear at the time of writing where this wasted information

is. We note that while this lack of efficiency was previously noticed by [31] in the linear

cavity case, no adequate explanation has been provided.

standard,

amp mode,

standard,

Figure 4.4: Quantum efficiency of the measurement at finite times. Dashed curves show
the steady-state results, reached in the long-time limit. Solid curves show the full time-
dependent result. The standard cavity requires κτ � 1 to reach the long-time limit with
regard to efficiency. Parametric driving increases the integration time τ necessary to reach
this limit. All curves assume |α|2 = 100 in the steady-state.
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Chapter 5

Conclusions and outlook

We have shown that by replacing the linear readout cavity of an ordinary dispersive read-

out scheme with a degenerate parametric amplifier, several improvements over the standard

scheme are made possible. We demonstrated that by exploiting the amplification properties

of the paramp, on-chip gain is achieved which can be used to overcome the loss in measure-

ment rate introduced by circulator losses in between the readout cavity and the following

amplification chain. As well, by exploiting the squeezing behaviour of the paramp, a funda-

mental enhancement of the measurement rate is possible as compared to the usual scheme.

By applying a conceptually straightforward but versatile phase-space technique to calculate

the dephasing back-action experienced by the qubit, we demonstrated that the measurement

can be made nearly quantum-limited in both amplifier and squeezer modes of operation by

using a sufficiently large intracavity coherent photon number (i.e. a sufficiently strong mea-

surement drive). We have also shown that the preceding enhancements are achievable with

system parameters corresponding to already-existing devices fabricated by the group of Ir-

fan Siddiqi at UC Berkeley. This places the results of this thesis within the grasp of current

experimental capabilities.

By considering the full time-dependence of the measurement and back-action, we have

shown that the dephasing back-action is not quantum-limited at short times, as was pre-
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viously noticed (but not explained) in the linear cavity case by [31]. As excess dephasing

corresponds to wasted information, this raises the most pressing open question of this thesis:

where is the wasted information at short times?

The use of two-mode squeezed light to enhance readout was discussed recently by [22].

This leads to another potential line of investigation: can one implement the analogy of the

transamp’s “squeezer mode” with a two-mode squeezer (i.e. with a non-degenerate paramp)?

What are the properties of such a device? Such questions could be addressed by use of directly

analogous methods to those employed in this thesis.
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Appendix A

Susceptibility, stability, and scattering

The response of the cavity to a coherent drive αin (conditioned on the qubit eigenstate σ)

is most succinctly expressed via a susceptibility matrix. To find this matrix, we re-express

the Langevin equation (3.2) in terms of the standard quadratures X̂ = (â + â†)/
√

2 and

Ŷ = (â− â†)/(
√

2i). These operators are canonically conjugate ([X̂, Ŷ ] = i), and satisfy the

equations of motion (after replacing σ̂z → σ = ±1)


d

dt
X̂σ(t) = −

(κ
2
− λ
)
X̂σ(t) + χσŶσ(t)−

√
κX̂in(t)

d

dt
Ŷσ(t) = −

(κ
2

+ λ
)
Ŷσ(t)− χσX̂σ(t)−

√
κŶin(t).

(A.1a)

(A.1b)

Solving (A.1) in frequency space 1, one finds the cavity susceptibility matrix (in the basis

(X̂, Ŷ ))

χ(σ)
cav[ω] =

1

(−iω + κ/2)2 − λ2 + χ2

−iω + κ/2 + λ χσ

−χσ −iω + κ/2− λ

 . (A.2)

The cavity quadratures (in frequency space) are given by Q̂σ[ω] = −
√
κχ

(σ)
cav[ω]Q̂in[ω], with

Q̂ = (X̂, Ŷ )T . The cavity susceptiblity has poles at ω = −i(κ/2±
√
λ2 − χ2), which directly

1For time/frequency Fourier transforms, we use the convention where f(t) = (1/2π)
∫∞
−∞ dω f [ω]e−iωt.
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leads to the stability condition (3.4) (i.e. λ2 < κ2/4 + χ2).

From input-output theory [3], the output field is determined by âout = âin +
√
κâ. Going

to quadratures, we can then introduce the (qubit-dependent) scattering matrix s(σ)[ω] =

1− κχ(σ)
cav[ω] which connects the input and output fields:

Q̂out,σ[ω] = s(σ)[ω]Q̂in[ω]. (A.3)

Explicitly, the scattering matrix elements are



s
(σ)
XX [ω] = 1− κ(−iω + κ/2 + λ)

(−iω + κ/2)2 − λ2 + χ2
,

s
(σ)
XY [ω] = −s(σ)

Y X [ω] =
−κχσ

(−iω + κ/2)2 − λ2 + χ2
,

s
(σ)
Y Y [ω] = 1− κ(−iω + κ/2− λ)

(−iω + κ/2)2 − λ2 + χ2
.

(A.4a)

(A.4b)

(A.4c)
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Appendix B

Output noise in linear response

Using the results (A.4) in the limit χ→ 0, one obtains a simple result for the scattering off

of a resonantly-pumped DPA:

X̂out[ω] = s
(0)
X [ω]X̂in[ω]

Ŷout[ω] = s
(0)
Y [ω]Ŷin[ω]

(B.1a)

(B.1b)

with 
s

(0)
X [ω] =

−iω − κ/2− λ
−iω + κ/2− λ

s
(0)
Y [ω] =

−iω − κ/2 + λ

−iω + κ/2 + λ
.

(B.2a)

(B.2b)

Now, the input noise satisfies


〈X̂in(t)X̂in(t′)〉 = 〈Ŷin(t)Ŷin(t′)〉 =

(
n̄T +

1

2

)
δ(t− t′)

〈X̂in(t)Ŷin(t′)〉 = −〈Ŷin(t)X̂in(t′)〉 =
i

2
δ(t− t′),

(B.3a)

(B.3b)

leading to 
〈X̂in[ω]X̂in[ω′]〉 = 〈Ŷin[ω]Ŷin[ω′]〉 = 2π

(
n̄T +

1

2

)
δ[ω + ω′]

〈X̂in[ω]Ŷin[ω′]〉 = −〈Ŷin[ω]X̂in[ω′]〉 = iπδ[ω + ω′]

(B.4a)

(B.4b)
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in the frequency domain.

Recalling that Î =
√
κ
[
cosφX̂out + sinφŶout

]
(see (3.10)), one thus finds the noise power

S̄
(0)
II,φ[ω] = κ

(
n̄T +

1

2

)[∣∣∣∣−iω − κ/2− λ−iω + κ/2− λ

∣∣∣∣2 cos2 φ+

∣∣∣∣−iω − κ/2 + λ

−iω + κ/2 + λ

∣∣∣∣2 sin2 φ

]
+κn̄add (B.5)

where we add the following noise contribution κn̄add by hand. Defining the resonant X̂-

quadrature gain

G0 ≡
∣∣∣s(0)
X [0]

∣∣∣2 =

(
κ/2 + λ

κ/2− λ

)2

, (B.6)

one arrives at (3.19):

S̄
(0)
II,φ[0] = κ

[
(n̄T + 1/2)

(
G0 cos2 φ+

1

G0

sin2 φ

)
+ n̄add

]
. (B.7)
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Appendix C

The “paramp-modulation” interaction

In section 2.1, we saw that the full coherent Hamiltonian after the dispersive transformation

is given by (2.7)

Ĥeff =
∆ + χ

2
σ̂z +

iλ

2
(â†â† − ââ) + χ

[
â†â+

iλ

2∆
(â†â† − ââ)

]
σ̂z, (C.1)

containing the usual dispersive interaction χâ†âσ̂z as well as the new (and still QND)

“paramp-modulation” interaction (iχλ/2∆)(â†â† − ââ)σ̂z. As far as the measurement rate

is concerned (see chapter 3), the effects of this extra interaction are completely captured by

making the qubit-conditional replacements λ → λσ = λ(1 + χσ/∆) in each expression. As

χ/∆� 1, this represents a small effect which we are safe in neglecting.

To make absolutely sure that we can safely ignore this extra interaction completely, we

must also ensure that it does not significantly impact the dephasing. To do so, we redo the

calculation of section 4.2 for the dephasing rate in linear response, but with the paramp-

modulation interaction included to show that it is not important. As in section 4.2, we write

the full interaction as

Ĥint = χ
(
F̂ + F̄

)
σ̂z, (C.2)
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only now the “force” operator is

F̂ = â†â+
iλ

2∆
(â†â† − ââ)−

[
〈â†â〉+

iλ

2∆

(
〈â†â†〉 − 〈ââ〉

)]
(C.3)

≡ â†â+
iλ

2∆
(â†â† − ââ)− F̄ . (C.4)

As usual, in linear response, the dephasing rate is given by (4.15):

Γφ,0 = 2χ2SFF,0[0] (C.5)

with SFF,0[0] =
∫∞
−∞ dt 〈F̂ (t)F̂ (0)〉0 evaluated at χ = 0. As was the case without the paramp-

modulation interaction, by writing â = α + d̂, one can express F̂ in terms of pieces F̂L and

F̂Q which are linear and quadratic in the cavity noise operator d̂: F̂ = F̂L + F̂Q, with


F̂L = α∗d̂+ αd̂† +

iλ

∆

(
α∗d̂† − αd̂

)
,

F̂Q = d̂†d̂+
iλ

2∆

(
d̂†d̂† − d̂d̂

)
− 〈d̂†d̂〉 − iλ

2∆

(
〈d̂†d̂†〉 − 〈d̂d̂〉

)
.

(C.6a)

(C.6b)

Carrying out the remainder of the calculation analogously to section 4.2, one obtains the

modified long-time limit dephasing rate:

Γφ,0 = 2χ2

[
κ

{(
Re [(1− iλ/∆)α]

κ/2− λ

)2

+

(
Im [(1 + iλ/∆)α]

κ/2 + λ

)2
}

+
λ(κ− λ)

(κ− 2λ)3 −
λ(κ+ λ)

(κ+ 2λ)3 +
1

2

λ2

∆2

(
κ

κ2 − 4λ2
+

1

κ

)]
(C.7)

Note that in contrast to (4.19), we have here immediately assumed a zero-temperature bath

(n̄T = 0). As we hoped, (C.7) confirms our intuition that because λ � ∆, the paramp-

modulation interaction does not significantly impact the dephasing. We have thus shown

that we are indeed justified in ignoring this interaction in the effective Hamiltonian (2.8).
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Appendix D

Non-QND effects

In the lab frame, the dissipation Hamiltonian describing the coupling of the cavity to a

bosonic bath (annihilation operators b̂q) is given by

Ĥκ = −i
∑
q

(
fqâ
†b̂q − f ∗q b̂†qâ

)
. (D.1)

This is unchanged upon moving to the frame rotating with ωc

(
â†â+ 1

2
σ̂z +

∑
q b̂
†
q b̂q

)
as

used throughout. However, note that in this rotating frame, the bath modes have energies

δq = ωq − ωc which may in general be negative.

In section 2.1, we found that the Jaynes-Cummings interaction is eliminated from the

coherent Hamiltonian at leading order by the modified dispersive transformation Û = e−Ŝ ,

with generator

Ŝ =
g

∆

1

1 + λ2/∆2

[
âσ̂+ − â†σ̂− +

iλ

∆

(
âσ̂− + â†σ̂+

)]
. (D.2)

To first order, this acts on the cavity annihilation operator according to

â→ Û â Û † ≈ â+
g

∆

1

1 + λ2/∆2

(
σ̂− −

iλ

∆
σ̂+

)
, (D.3)
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which leads to the cavity-mediated qubit-bath coupling

Ĥ(qb)
κ =

−ig
∆

1

1 + λ2/∆2

∑
q

[
fq

(
σ̂+ +

iλ

∆
σ̂−

)
b̂q − f ∗q

(
σ̂− −

iλ

∆
σ̂+

)
b̂†q

]
. (D.4)

We assume an initially zero-temperature bath, so that 〈final| Ĥ(qb)
κ |initial〉 ∼ 〈final| b̂†q |0〉 =

δfinal,1q . That is, the only relevant final bath states in a golden rule calculation are those with

exactly 1 excitation in mode q and all other modes in their ground state. Applying Fermi’s

Golden Rule and summing over final bath states, we obtain the induced transition rates for

the qubit:


Γ↑→↓ = 2π

g2

∆2

1

(1 + λ2/∆2)2

∑
q

|fq|2δ(∆− δq) =
g2

∆2

κ [Ωqb]

(1 + λ2/∆2)2

Γ↓→↑ = 2π
λ2

∆2

g2

∆2

1

(1 + λ2/∆2)2

∑
q

|fq|2δ(∆ + δq) =
λ2

∆2

g2

∆2

κ [2ωc − Ωqb]

(1 + λ2/∆2)2 .

(D.5a)

(D.5b)

Equation (D.5a) is just the usual Purcell decay rate [22, 32] of a qubit coupled to a

damped cavity mode, modified by the factor 1/ (1 + λ2/∆2)
2

due to the parametric driving.

Equation (D.5b) gives the rate of qubit transitions from the ground state to the excited

state — even with the zero-temperature bath under consideration, the parametric driving of

the cavity can lead to an effective finite temperature for the qubit. Again, note that both

∆ and δq can be negative, so the δ-functions in (D.5b) needn’t be zero. However, since

∆ + δq = Ωqb + ωq − 2ωc ≥ Ωqb − 2ωc = ∆ − ωc, taking a sufficiently large positive qubit

detuning ∆ ≡ Ωqb − ωc > ωc ensures that the effective qubit temperature remains zero.

Note that we have used κ[ω] to denote the damping that would be induced on an oscillator

with resonant frequency ω by the bath which damps and drives the cavity — the κ used

throughout the main text corresponds to κ [ωc].
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Appendix E

ODEs for the cavity covariances

In this appendix we seek to derive the ODEs satisfied by the cavity covariances. As we aim to

connect with the Wigner representation, we are in particular concerned with the symmetrized

covariances like 1
2
〈{X̂(t), Ŷ (t)}〉. To find these ODEs, we begin with the qubit-conditioned

Langevin equations (A.1):


d

dt
X̂(t) = −

(κ
2
− λ
)
X̂(t) + χσzŶ (t)−

√
κX̂in(t)

d

dt
Ŷ (t) = −

(κ
2

+ λ
)
Ŷ (t)− χσzX̂(t)−

√
κŶin(t).

(E.1a)

(E.1b)

Now, since

d

dt
{Q̂1, Q̂2} = { ˙̂

Q1, Q̂2}+ {Q̂1,
˙̂
Q2}, (E.2)

we will need averages like 〈{X̂, X̂in}〉. To obtain these, we formally integrate the Langevin

equations leading to e.g.

〈{X̂(t), X̂in(t)}〉 =

∫ t

0

dt′
[
−(κ/2− λ)〈{X̂(t′), X̂in(t)}〉+ χσz〈{Ŷ (t′), X̂in(t)}〉

−
√
κ〈{X̂in(t′), X̂in(t)}〉

]
+ 〈{X̂(0), X̂in(t)}〉. (E.3)

Since we assume that 〈{X̂(t), X̂in(t)}〉 is finite, and since, by causality, t′ < t implies
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〈{X̂(t′), X̂in(t)}〉 = 0, we know that the first term in the integral is zero, as is the very

last term outside of the integral (involving the initial condition X̂(0)). The same arguments

together with the fact that 〈{X̂in(t′), Ŷin(t)}〉 = [i/2 + (−i/2)] δ(t − t′) = 0 tell us that the

second term in the integral is also zero. We are thus left with only the final term, which is

simply evauated:

∫ t

0

dt′ 〈{X̂in(t′), X̂in(t)}〉 =

∫ t

0

dt′
1

2
δ(t− t′)× 2 =

1

2
(E.4)

where we have assumed a zero-temperature bath (n̄T = 0). Note that we only catch 1/2 of

the weight of the δ-function, as we integrate only up to time t where the δ-function is located

(and not to some tf > t).

Applying identical reasoning, mutatis mutandis, one finds

〈{X̂(t), X̂in(t)}〉 = 〈{Ŷ (t), Ŷin(t)}〉 = −
√
κ

2
(E.5)

and

〈{X̂(t), Ŷin(t)}〉 = 〈{Ŷ (t), X̂in(t)}〉 = 0 (E.6)

Identifying Vx = 〈X̂2〉, Vp = 〈Ŷ 2〉, and Vxp = 1
2
〈{X̂, Ŷ }〉, we then arrive at the desired

(σz-conditioned) ODEs:


V̇x =

κ

2
− (κ− 2λ)Vx + 2χσzVxp,

V̇p =
κ

2
− (κ+ 2λ)Vp − 2χσzVxp,

V̇xp = −κVxp − χσz(Vx − Vp).

(E.7a)

(E.7b)

(E.7c)

Combined with the trivial result that 〈X̂〉 = 〈Ŷ 〉 = 0 in the steady state when αin = 0, the

steady state of (E.7), conditioned on the qubit ground state (σz → −1) directly yields the

initial conditions (4.45) we use in our finite-time analysis of the measurement efficiency.
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Appendix F

Calculating the readout noise at finite

times

In terms of the vector of quadratures Q̂(t) =
(
X̂(t), Ŷ (t)

)T
, the qubit-conditioned Heisenberg-

Langevin equations can be expressed as

[
M (σ) +

d

dt

]
Q̂(t) = −

√
κQ̂in(t) (F.1)

where

M (σ) =

κ/2− λ −χσ

χσ κ/2 + λ

 . (F.2)

As we are interested only in the noise, we take Q̂in(t) to consist purely of vacuum noise (so

〈X̂out〉 = 〈Ŷout〉 = 0). The linear ODE (F.1) has solution

Q̂(t) = −
√
κ

∫ t

0

dt′ e−M
(σ)(t−t′)Q̂in(t′) + e−M

(σ)tQ̂(0) (F.3)

= −
√
κ

∫ t

0

dt′R(σ)(t− t′)Q̂in(t′) +R(σ)(t)Q̂(0) (F.4)
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where we denote the qubit-conditioned time-domain cavity response function

R(σ)(t− t′) ≡ e−M
(σ)(t−t′) =

R(σ)
XX(t− t′) R

(σ)
XY (t− t′)

R
(σ)
Y X(t− t′) R

(σ)
Y Y (t− t′)

 . (F.5)

Applying the input-output relation âout(t) = âin(t)+
√
κâ(t), one then finds for the output

quadratures

Q̂out(t) = Q̂in(t) +
√
κR(σ)(t)Q̂(0)− κ

∫ t

0

dt′R(σ)(t− t′)Q̂in(t′). (F.6)

We are interested in the time-integrated noise in some output quadrature. We will present

the calculation for squeezer mode (where Ŷout is detected); the calculation for amplifier mode

(where X̂out is detected) is entirely analogous. For squeezer mode, we need the integral

〈〈m̂2(τ)〉〉 =

∫ τ

0

dt1

∫ τ

0

dt2
κ

2
〈{Ŷout(t1), Ŷout(t2)}〉. (F.7)

The input noise operators satisfy


〈X̂in(t)X̂in(t′)〉 = 〈Ŷin(t)Ŷin(t′)〉 =

1

2
δ(t− t′)

〈X̂in(t)Ŷin(t′)〉 = −〈Ŷin(t)X̂in(t′)〉 =
i

2
δ(t− t′).

(F.8a)

(F.8b)

For the case of phase-squeezed input with a standard linear cavity, one makes the replace-

ments 〈X̂in(t)X̂in(t′)〉 = 1
2
e2rδ(t− t′) and 〈Ŷin(t)Ŷin(t′)〉 = 1

2
e−2rδ(t− t′) (as well as using the

appropriate λ = 0 version of the response function R(σ)).

Using these corellators, and keeping in mind the causality requirement that

〈Â(t′ < t) B̂in(t)〉 = 0 (F.9)
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for a system operator Â and input operator B̂in, one can show that

〈{Ŷout(t1), Ŷout(t2)}〉 = 〈{Ŷin(t1), Ŷin(t2)}〉+ κ
[
R

(σ)
Y X(t1)R

(σ)
Y X(t2)〈{X̂(0), X̂(0)}〉

+
(
R

(σ)
Y X(t1)R

(σ)
Y Y (t2) +R

(σ)
Y Y (t1)R

(σ)
Y X(t2)

)
〈{X̂(0), Ŷ (0)}〉+R

(σ)
Y Y (t1)R

(σ)
Y Y (t2)〈{Ŷ (0), Ŷ (0)}〉

−
∫ t1

0

dt′R
(σ)
Y Y (t1 − t′)〈{Ŷin(t′), Ŷin(t2)}〉 −

∫ t2

0

dt′R
(σ)
Y Y (t2 − t′)〈{Ŷin(t′), Ŷin(t1)}〉

]
+ κ2

∫ t1

0

dt′
∫ t2

0

dt′′
[
R

(σ)
Y X(t1 − t′)R(σ)

Y X(t2 − t′′)〈{X̂in(t′), X̂in(t′′)}〉

+ R
(σ)
Y Y (t1 − t′)R(σ)

Y Y (t2 − t′′)〈{Ŷin(t′), Ŷin(t′′)}〉
]

(F.10)

Allowing for the possibility of phase-squeezed input (squeeze strength e2r), one finds for the

qubit-conditioned integrated noise (again, assuming detection of the Ŷout quadrature)

〈〈m̂2(τ)〉〉σ =
κτ

2
e−2r + κ2

[
Vx(0)

(∫ τ

0

dt1R
(σ)
Y X(t1)

)2

+ 2Vxp(0)

∫ τ

0

dt1R
(σ)
Y X(t1)

∫ τ

0

dt2R
(σ)
Y Y (t2) + Vp(0)

(∫ τ

0

dt1R
(σ)
Y Y (t1)

)2

− e−2r

∫ τ

0

dt1

∫ t1

0

dt2R
(σ)
Y Y (t1 − t2)

]
+ κ3

∫ τ

0

dt1

∫ t1

0

dt2

∫ t2

0

dt′
[
R

(σ)
Y X(t1 − t′)R(σ)

Y X(t2 − t′)e2r

+ R
(σ)
Y Y (t1 − t′)R(σ)

Y Y (t2 − t′)e−2r
]
. (F.11)

This expression allows for an arbitrary initial condition for the cavity covariance matrix V(0).

Several physically relevant initial conditions can be obtained by solving for the steady-state

of (E.7) with the appropriate parameter choices. For example, the initial condition used in

the main text, where the cavity begins in its steady-state conditioned on the qubit ground

state (with the flux-pump having been on since the distant past), corresponds to solving

for the steady-state of (E.7) with σz → −1 and with λ as chosen. One could also imagine

using initial conditions with the flux-pump off (λ = 0), or with the coupling to the qubit off

(χ = 0).
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We reiterate that the response functions used for the input squeezing scheme (i.e. the case

where e2r 6= 1) are for λ = 0, while for the transamp schemes (where e2r = 1 corresponding

to coherent input), we use the response functions with λ 6= 0. One could in principle combine

the two schemes, driving the transamp with squeezed input; we do not consider this option

in the present thesis.
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