O

INTERNAL WEAK OPENS, INTERNAL STABILITY AND
MORSE THEORY FOR SYNTHETIC GERMS

by

Felipe Gago

Department of Mathematics
McGill University, Montreal

March 1988

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Philosophiz Doctor



INT. WEAK OPENS, INT. STABILITY & MORSE THEORY FOR SYNTHETIC GERMS



~  éDuereln, Mavia Elona?



p%hww/e{gmm

S wish lo thank the Groupie Interaniverituire en &udes Catégorigues fon thein
financial helfs duving the lwo yeas S stayed in Monbeal. Siecial thanks ae due
todﬂ..%«mg«,(ﬁcm%lﬁaﬁm,wﬁomwmywwladﬂcw
Defpariment of Mathematics, panbicularty M. Ban and M. Mabibiai, for lhe

Jﬁawaéoﬁwﬁ(edﬂmaomo/écmmyymﬁz&c @%m&al
W@MJMMW%WWW

Lastly, F cannot fogel those feople who laught me things other than
malhemalics: my family and my fiiends; JMMJ&“omaw/ammelo
exfuess my vecognilion lo them .



Abstract ’

In this work, we initiate the classification of singularities in the framework of Synthetic
Differential Geometry; as in the classical setting, we restrict ourselves to the study of the
stable mappings. To this end, we use an internalization of the classical Compact-Open
topology of C*(M, R), particularly useful to show density results (genericy aspect). Using
this topology we present and compare the internal versions of several notions of stability.
Singularities, being a property of the “very near” to the point, are studied here using
infinitesimally represented synthetic germs. We obtain a characterization of stable germs of
functions in the synthetic context as being those with only non-degenerate singularities:
Morse germs

The whole “building” has two cornerstones: Weierstrass' Preparation Theorem, and Sard's
Density of Regular Values Theorem. On the other hand, the keystone is Thom's Homotopy
Method. The three of them are shown to be valid in our test model: the topos of Dubuc.



Résurmeé

Ce travail est un pas en avant sur la route de la classification des singularités dans le contexte
de la Géométrie Différentielle Synthétique. On utilise une version interne de la topologie des
Compacts-Ouverts de C=(V, R) qui se révéle practique 2 I'heure de prouver des resultats de
densité (I'aspect générique). Avec cette topologie on montre comment diverses notions de
stabilité peuvent étre internalissées et comparées.

Les singularités sont étudiées ici pour les germes synthétiques (représentés par des
objects infinitésimals) car cette propiété appartienne au “tout prés” du point. On obtient le
resultat de characterisation suivant: les germes stables de fontions sur R sont exactement les
germes de Morse.

Ce “batiment” a pour piliers le Théoréme de Preparation de Malgrange et leThéoréme
de Densité des valeurs reguliéres de Sard. D'ailleurs, la pierre clef est la méthode
homotopique de Thom. Tout les trois ont été validés dans le topos de Dubuc, le modéle de
test.
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Introduction

The mathematical setting to develop theories of geometry, analysis and continuum physics is
usually considered to be the category of topological spaces or the category of Banach
manifolds. In both cases, an increasing number of smoothness conditions have to be imposed
to obtain some “technical theorems”. Even so, there are some essential constructions whose
physical or geometrical motivation is obscured by the deficiencies or inadequacy of this
background. To mention just one example in continuum physics: the construction of the
function space. v

On the other side, one needs not go far reviewing the works of geometers to realize
that the synthetic reasoning they use to discover or introduce concepts and axioms does not
fit, without violence, into the analytic or set theoretical type of reasoning, on fashion since
last century. We could go even further and say that the lack of an adequate language and
formal setting has retarded, if not made imposible, the presentation of “known” solutions to
some problems. In this sense, we quote from Kock's Synthetic Differential Geometry book
the translation of a text of Lie: The reason why I postponed for so long these investigations,
which are basic to my other work in this field, is essentially the following. I found these
theories originally by synthetic considerations. But I soon realized that, as expedient the
synthetic method is for discovering, as difficult it is to give a clear exposition on synthetic
investigations which deal with objects that till now have almost exclusively been considered
analytically.

With these or similar reasons in mind, in three lectures at the University of Chicago in
1967, Lawvere proposed a vast research program with three points:
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1.- An axiomatic study of categories :

2.- A direct axiomatization of the essence of differential topology using results and
methods of the French work in algebraic geometry.

3.- An intrinsic axiomatization of continuum mechanics as developed by Walter Noll
and others.

In order to get point number 3, the suggestion is to start off with the idea of
smoothness as a property of how smooth spaces interact with each other, instead of basing
everything on a definition of smooth object as a set of atoms with a given structure. This
point of view leads us to taking the notion of map as the primitive concept and the way they
compose; in other words, to considering a category as the basic datum, and therefore to point
number 1. In Lawvere's words, axiomatizing a category as a whole promises to be part of the
simplest approach to certain calculations.

The work presented here can be said to fit into point 2 of Lawvere's program. New
~axioms are added to the basic stock and used to develop the theory further, and then such
axioms are tested in a specific well adapted model which already satisfies the other,
previously introduced axioms and postulates. Before starting with its description, let us
reverse the course of history and go backwards to the early days of calculus.We begin by the
needs imposed by part 3, as explained by Lawvere.

Let E denote ordinary physical space, T a space which represents the notion of time,
and B a space which represents a particular body. Then a particular motion of B may be
represented as a map

BxT—>E,

which is the right way if one wants to compute by composition how particles of the body, at
various times, experience the values of some field defined on space. However, it is also
necessary to construe the same motion as a map

T — EB,

where the space EB of placements of the body is itself independent of T or a particular
motion, if we want to compute by composition the temporal variation of quantities like the
center of mass £8 — E of B. Still a third version

B—ET
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of the same motion, where the space ET of paths in space exists independently of B, is a
necessary step if we want to compute by composition the velocity field on B induced by the
motion.

The general possibility of such transformations within a given category is expressed
by saying that the category in question is cartesian closed, and is much more fundamental for
continuum physics than the precise determination of the concept of spaces-in-general, of
which E, T and B should be examples

The basic framework to develop these ideas is the result of the efforts of many
authors, and came to be called Synthetic Differential Geometry. Some of its features are
described in Chapter 1 of this memoir, as well as the basic references to the promoters.

Lawvere's proposal (even some of his indications and basically the theory of models
developed for this theory) of axiomatizing the original ideas of infinitesimal calculus finds its
antecedents in the work of the Grothendieck school.

Prior to Lawvere's realization of the “curious” resemblance between the category of
sets and the universe of discourse of algebraic geometers, there was no consistent language to
accommodate and with which manipulate the infinitesimals. Even so, they managed to use
these techniques by means of the Théorie des Schémas, and fruitfuly exploited the duality
betweenthe category of affine algebraic varieties over an algebraically closed field X is the
dual of the category of reduced K-algebras of finite type (cf. also [PENON: De l'infinitésimal
au local]). Commutative algebra comes in to help to interpret geometrical objects. The
reduced character of these geometrical objects (or rather of their duals) was an obstacle to the
use of nilpotent elements which have an important role to play. With this state of things, the
right decision seemed to be to “keep in mind” this duality and to consider (duals of) algebras
as generalized algebraic manifolds. This way, a local algebra has a unique point (its maximal
spectrum is just a point, or equivalently its dual has a unique global section,) yet it is different
from K. So, local algebras are like fat points, i. e., points to which other “phantom points”
infinitely close have stuck. In order to handle these “phantom” points of whose presence
there was no doubt despite their incapacity to describe them, the algebraic geometers aimed to
the functorial machinery: they preferred to study the structures by themselves rather that by
their elements or points. So, infinitesimals were to be treated by “bunches” instead of
isolated.

New difficulties confronted them when studying local properties with the brand new

—___tools. For instance, a morphism étale between affine K-schemes of finite type is
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“infinitesimally invertible” though only in very few occasions it is “locally invertible”. Then,
after they had enlarged the scope of algebrafc varieties by adding the infinitesimal machinery,
Grothendieck decided to use the local machinery. The (much too big) Zariski neighborhoods
were dropped in benefit of érale neighborhoods, which in turn are not in general sub-
schemes. So, the local conceptions arising from general topology have to be substantially
modified as the neighborhoods are “outside” rather than “inside” the space. This was the birth
place of those huge categories where all imaginable constructions are possible and where the
coverings are the sought: The U-toposes, their universe of discourse.

Algebraic geometers had learnt from Weil the advantages of using infinitesimals. In
his Théorie des point proches he had proposed to go back to Fermat's methods of first-order
infinitesimal calculus. Indeed, generalizing Ehresmann's theory of jets, he suggested that a
point p of a smooth manifold M admits as nearby points certain R-algebra morphisms from
C>=(M, R) into a given R-algebra A which he called local: exactly those morphisms for which
composition with the canonical morphism A — R gives back the point p (in the sense that the
composite morphism becomes evaluation at the point p.)

A typical example of nearby point to the point p € M is the morphism

.C""(M, R) = R[X] /x2)
f b Ap) +1(f)e,

where 7 is a tangent vector to the manifold at p, and € (that is the generator of the R-algebra
R[e] = R[X]/(x2)) is such that £2= 0. Weil had already resorted on commutative algebra, in
particular on local algebras which intended to generalize R[g], to describe these entities which
had been formally hidden almost since Fermat, one of the strongest advocates of the methods
involving infinitesimally small numbers in the “umbral” of calculus.

The reason why the theory of infinitesimals had gradually fallen into disrepute must
be sought in the fact that neither Fermat nor Leibnitz or any of their successors had been able
to state with sufficient precision just what rules were supposed to govern the use of these
infinitesimal quantities.

Probably the first explicit use made of infinitesimals in geometry is to be found in
Keppler's Nova stereometria doliorum vinariorum (New solid geometry of wine barrels).
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His approach consisted on the dissection of a given solid into an (apparently) infinite number
of infinitesimal pieces, or solid “indivisibles” of a size and shape convenient to the solution of
the particular problem. Cavalieri in his Geometria indivisibilibus continuorum nova quadam
ratione promota devised a method of comparing two solids through their cross-sections, as
well as another to calculate the volume of a single solid in terms of its cross-sections.

---------------------------------------------------------------------

---------------------
..........
......

The latter led Cavalieri in his Exercitationes geometricae sex to a result equivalent to the basic

integral
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However, Cavalieri was far from possessing the views which are expressed in terms
“differential” and “integral”. He himself appears to have regarded his method only as a
pragmatic geometrical devise for avoiding Eudoxus' method of exhaustion (as described in
-Euclid X11,2;) the logical basis of this procedure did not interest him. He used to say that
rigor is the affair of philosophy rather than geometry.

This lack of heed to demands of mathematical rigor made geometers chary of
accepting the method of indivisibles as valid in demonstrations, although they employed it
readily in preliminary investigations. As an example, let us mention Torricelli's twenty-one
demonstrations of the quadrature of the parabola: ten of them are given following the method
of the ancients, including the well-known proof by the method of exhaustion given by
Archimedes in his Quadrature of the parabola. In the other eleven, he uses the new method of
indivisibles; in one of these, he uses that it is possible to inscribe, within the parabolic
segment, a figure, made up of parallelograms of equal height, which shall differ from the
segment by less than any given magnitude.

Almost simultaneously, we have to consider the mathematical french triumvirate of
Roberval, Fermat and Pascal. Whereas Cavalieri and Torricelli had proceeded on the basis of
the purely geometrical considerations involved in the method of exhaustion and in the method
of indivisibles, the french mathematicians combined their interest in the geometry of
Archimedes with an enthusiasm for the theory of numbers, and this colors their work. For
example, in order to determine how to subdivide a segment of length B into two segments of
length A and B - A whose product A(B-A) = AB - A? is maximal, Fermat proceeded as
follows. First he substituted A + E for the unknown A, and then he wrote down the
following pseudo-equality (he used the Latin word adequatio) to compare the resulting
expression with the original one

(A+E)B - (A+E)2 =AB + EB - A2- 2AE - E? ~AB - A2.
After cancelling equal terms, one gets what he wrote “B in E adaequabitur A in E bis + Eq”: |
BE ~2AE+EZ?.
Then he divided through by E to obtain

2A+E ~B.
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Finally he discarded the remaining term containing E, transforming the pseudo-equality into
the equality

a2,

that gives the value of A which makes AB - A2 maximal. The pseudo-equality for him
conveyed the meaning that “near”” of a maximum point the function takes different values
though they should be equal; he then formed this pseudo-equality which would become an
equality by letting E equal 0. It is up to us to admire the beauty of Fermat's method.

Fermat was led by the success of his method to apply it to the determination of
tangent to curves. This he did as follows. He associates with each curve an equation in which
all the properties of the curve are implied: the specific property of the curve. Let the curve be
a parabola; then, from its “specific property” it is clear that if we set

0Q =A,VQ =D and QQ’ = E, we shall have

D__ _4A?
D-E ~ (A-E)?

For small values of E, the point P’ may be regarded as practically on the curve as well as on
the tangent line. This inequality becomes, as in the method for maximum values, a pseudo-
equality, and by allowing E to vanish, this pseudo-equality becomes a true equality, and
gives the desired result,
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A=2D.
From here on...Newton...D'Alembert...Cauchy...€...5.... Does it ring any bells?

Synthetic Differential Geometry, offering a subobject of R of the form
D={xeRI|x2=0},

comes in handy to the large number of mathematicians and physicists who like working with
first-order approximations (neglecting higher-order terms.) The basic axiom of S.D.G. says
preéisely this for functions: a function (with values in R) defined on D is linear (i.e.,
determined by its value at 0 and the the value of its derivative). This axiom can be written as

RD =R xR,

and is incompatible with classical logic (cf. [KOCK: Synthetic Differential Geometry].) For
this reason we resort on intuitionistic logic, and of special manner on some of its models: the
toposes.

In any topos, several notions of topology are available. Among them, the intrinsic
topology defined by Penon (cf. [PENON: Intuitionism et topologie]) seems to be the most
useful and widely used. The success of this topology resides on its logical nature; in
particular in the use it makes of the double negation which is, in general, not equal to the
identity. In particular, if U is a neighborhood of x , then ——{x} < U. This fact allows us “to
consider” germs at x as maps defined on ——{x} rather than equivalence classes of maps and
neighborhoods of x. Synthetic germs, being infinitesimally represented, promise to be a
powerful tool to attack those problems in which the “very close” to the point has a role to
play. One such problem is the study of singularities, which we initiate in this work.

To arrive in Chapter S to the complete characterization of stable singularities of
mappings into R from some part of a given R”, we had to “travel” along several different
roads and visit several “interesting places”. To do this we have equipped our “vehicle” with
the internal weak topology as well as the several achievements of S.D.G.

In the picture of next page we show a map of the territory (in our test model G) which
we have explored in this thesis
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We distinguish two main roads to the Capital (the classification of singularities of germs of
maps into R) coming from the northern territories. One of them starts at Sard (the theorem of
density of regular values) follows by Thom (the theorem of transversality), and from there on
to Morse (density of Morse germs). The other one begins at Weierstrass (the theorem of
preparation) and passes by Mather (criterium of stability) to join the road coming from Morse
(characterization of Morse germs) before entering the City. There are other secondary roads
that we have not visited, as well as two roads leaving the City which we have left for a later
exploration.

In Chapter 2, we investigate in this context a topological structure which turns out to
be useful when proving density results. We call it the Weak Topology, and it has the property
that its “observable opens” are the usual ones. In §1 we review the classical theory and give
some technical results. Only the proofs of Proposition 1.3 and Corollary 1.4 seem to be new.
In §3 we present some results about compactness in a topos which are needed to apply the
_ definition to the space of germs. To the proof of the compactness of A(n) (Proposition 3.3,
also in [BUNGE-GAGO: Synthetic aspects of C™-mappings, II: Mather's theorem for
infinitesimally represented germs]) we have substantially contributed, and the boundness
away from zero of functions defined on compact objects (Proposition 3.4) is new. In §4 we
study the Weak topological structure and give a few properties; we prove that it is subintrinsic
and analyze its separability properties in particular cases. In §5 we study the action of the
global sections functor on weak opens, and obtain a bijection between the weak open parts of
RE and the weak C*- open subsets of I'(RE). Propositions 3.4, 4.4, 4.5, 4.6 and 5.3 are
entirely due to the author.

In Chapter 3, basically by adapting work done by Bunge, we “arrive” to the first
important result to the Theory of Stability: Thom's Transversality Theorem. The machinery
we use includes a proof of the axiom of Density of Regular Values of germs in the test model
G. This we did internally in §3, where we also do a complete study of immersions. In §2 we
give a proof of Sard's Theorem in G which is used to internally derive the Theorem of
Regular Values of §3. As the emphasis in this thesis is on the weak internal rather than on the
Penon topology, there are some changes in the presentation of results also included in
[BUNGE-GAGO: Synthetic aspects of C*-mappings, II: Mather's theorem for infinitesimally
represented germs]. In addition, Propositions 3.4 and 3.5 are new.
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Chapter 4 is dedicated to sightseeing several notions of stability in the framework of
Synthetic Differential Geometry. Since everything in nature is subject to small disturbances,
one expects that natural forms must be described by stable maps. In §1 we meet the basic

-definitions of equivalence for germs and stability. In §2 the concept of infinitesimal stability
appears as an easy-to-check criterium for stability. In §3 we introduce in this context the
original ideas of R. Thom to compare both notions, namely homotopical stability, and give a
proof of the existence of solutions for time-dependent differential equations. §4 is
consecrated to the second main result of the Theory of Stability: the Malgrange-Weierstrass
Preparation Theorem. It is introduced as a postulate of the theory and shown to hold in G.
Finally, §5 is occupied by the celebrated Mather’s Theorem which states the equivalence of
all definitions of stability. We contributed substantially to the choice of definition of
equivalence for germs and to discussions about the nature of unfoldings (in [BUNGE-GAGO:
Synthetic aspects of C*-mappings, II: Mather's theorem for infinitesimally represented
germs] not all included in this thesis.) The definition of stability (Definition 1.3) given here
is, unlike that in [BUNGE-GAGO: op. cit.}, a direct internalization of the classical one, made
possible by my results in Chapter 2. Proposition 1.4 is also new, as well as all considerations
of homotopical stability (§3) and its uses in Chapter 5. We also pointed out the need for a
synthetic version of the theorem of existence and uniqueness of solutions to dynamical
systems (Proposition 3.4 also in [BUNGE-GAGO: op. cit.]) and contributed to its proof.

In Chapter 5 we give a complete characterization of the stable singularities of germs of
functions. The stable maps certainly form an open subobject of RX but the questions were
whether this subobject was dense and whether stable singularities could be classified. In §1
we introduce the notion of non-degeneracy for a singularity, and give some characterization
results. In §2 we define a Morse germ as that one with only non-degenerate singularities, and
prove that they form a dense subobject for the weak topology, and that their singularities are
isolated. In §3 we find the normal form for a Morse germ and in §4 we prove that a
singularity of a function is stable if and only if it is non degenerate. All the results in this
chapter are due to the author and some of them are included in a paper [GAGO: Morse theory
in S.D.G.] submitted to the proceedings of the Louvain-la-Neuve Category Theory
Conference, July 1987.

Our intention was to make the text as readable and self-contained as possible. To the
first end we have included a Chapter 0 with the basics of the formal language and the
particular logical reasoning used in Synthetic Differential Geometry. In so doing we hope to
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gain the reader’s mercy for our “loose talk” in later chapters. Unless explicitly stated to the
contrary, all the work takes place at the internal level, though we very often make use of the
naive approach. For the sake of completeness, Chapter 1 contains a detailed introduction to
the features of the background in which the theory develops. Nothing in Chapters 0 and 1,
with the possible exception of the order of the presentation, is due to the author. Most of the
results are stated without proofs, and references are scattered all along the text.



The logic and the model

§1. Elementary topos

The present work makes use of intuitionistic logic (for details cf. [DUMMET: Elements of
Intuitionism] or [TROELSTRA: Principles of Intuitionism]) to explain and/or understand
situations which have no room within the scope of classical logic. What anyone who has ever
heard of intuitionism knows is that the use of the law of “excluded middle” is forbidden, as
well as any form of the axiom of choice. We do not hesitate to declare that our goal is not the
substitution of a form of mathematic by another. Quite on the contrary, we take good profit of
both of them to enrich our understanding of the realities we deal with. In this direction, by
using a model for our theory, we intend not only to guarantee its non—contradiction but rather
to clarify the interactions between the (at first sight) different situations.

Among the models for this kind of logic, we are particularly interested in toposes (cf.
[LAWVERE: Quantifiers and sheaves], [KOCK-WRAITH: Elementary Toposes], [MIKKELSEN:
Lattice Theoretic and Logical Aspects of Elementary Topoi], [JOHNSTONE: Topos Theory],
[BARR-WELLS: Topos, Triples and Theories])

Definition 1.1 An (elementary) topos is a category £ satisfying the following
conditions:

— E has finite limits
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— E is cartesian closed, i.e., the functor A x— has a right adjoint ( }4.

— E has a subobject classifier; i.e., there exists an object, Q, and an arrow 1 — Q,
such that for each monomorphism P — A there exists a unique arrow A — Q making

a pullback of the following square:! -
' P - A
d l
1 - Q

Apart from the category of sets (an obvious example, with Q = {0,1}), we will see later on,
in certain detail, the case of Grothendieck toposes.

Every topos has its own “internal logic” which we will describe now. We begin with
the first-order ingredients.

Given any object A in E, two monomorphisms, P — A and Q — A, are called
equivalent if there exists a (necessarily unique) isomorphism P — Q rendering commutative
the right triangle. We call subobject of A to any of these equivalence classes, and denote
0 (A) the set of subobjects of A..2

Clearly, go(A) with the obvious order relation (denoted <) is a Heyting algebra:

1) It has a greatest element, denoted TRUE, (the one which corresponds to the identity
monomorphism,) and a smallest element, FALSE, (corresponding to @ — A, where @ is the
initial object of E, which always exists (cf. [MIKKELSEN: Lattice theoretic and logical aspects
of elementary topoi], [PARE: Colimits in topoi])

2) Each pair P, Q of subobjects of A has an infimum, PHQ, (corresponding to the
pullback) and a supremum, PLQ.

3) For each pair P, Q of subobjects of A there always exists a unique subobject P=Q
with the property

RNPcQ iff Rc(P=Q) forany € p(A).

lntitively, Q represents the “set of truth values”, and the unique arrow A — Q the “characteristic function”
associated with the “part” P,
2Clearly g(A) is in a one-to-one correspondence with the parts of A, which justifies the terminology.
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Now, with each arrow f:A — B in E, we associate a monotone application
f1: p(B) = p(A) (by pulling-back along f).

This application preserves the structure of % (B), i.e., TRUEg, FALSEp, intersection, union
and implication. Moreover, there exists a monotone application,

3 p@A) - pB),

such that, for each subobject P of A and Q of B, we have 3 (P) < Q iff P < £1(Q).
Similarly, there exists a monotone application,

Ve 0(A) = p(B),

such that, for each subobject P of A and Q of B, we have £/(Q) < P iff Q < ¥/ (P).
If we consider (A) as a category, then f*/, 3¢ and V} are functors, and we have the
following adjunctions '

Fr—f 1 vy,
In the case of sets, for a map of the form 7t: X x Y — Y, we have
In(P) = {yeY |xeX (x,y)eP} and Vx(P)= {yeY|VxeX (x,y)eP}. |
The intuitionistic character of the logic shows up immediately. Define — as P=FALSE , (this
corresponds to the complement in sets): properties, such as the following

—P =P or PU—:P=TRUEA,’

have no grounds to hold on.

As for the higher-order properties, notice that for each object X of E, there exists an
object PX and a subobject ZX — X x PX (the membership relation of X) satisfying the
following condition!:

For every pair of objects X and Y, and subobject R — X x Y, there exists a unique
arrow [p:Y — PX, such that R = (XxTp)"1(Zy). Define PX = QX, and Xy = ev-{(T),

1 Actually we could have defined a topos with this data, and define Q = P1.
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where ev: QX x X — Q, and T — Q is the subobject corresponding to the map 1 — Q in the
definition of topos.

Before going into the main example for the purposes of this work, let us give a
method for generating new examples. It is contained in the following theorem whose proof
we omit (cf. [JOHNSTONE: Topos Theory] or [BARR-WELLS: Topos, Triples and Theories]).

Theorem 1.2 For any topos E, and any object X on it, E/y (the slice category: its
objects are arrows in E with target X, and its arrows are arrows in E making the right
triangle to commute.) is itself a topos. Moreover, for any arrow f: X — Y in E, the
functor “pullback along £, denoted f*, is a logical functor (i.e., preserves the topos
structure) and has both a left and a right adjoint. O

§2. Grothendieck toposes

The concept of sheaf on a topological space is widely used in mathematics, and the category
of these sheaves (on a fixed space) is an example of topos. We will use a generalization of
this notion, due to Grothendieck (cf. [ARTIN-GROTHENDIECK-VERDIER: SGA 4],
[JOHNSTONE: Topos Theory], [TIERNEY: Sheaf theory and the Continuum Hypothesis])

Definition 2.1 A pretopology © (of Grothendieck) on a left exact category, C, is
given by a family 6, of families of arrows with codomain A, called coverings of A,
for each A in C, satisfying the following:

a) Each singleton (id, : A — A)e 8,.

b) Coverings are stable under change of base, i.e., the pullback of a cover
along any arrow is again a cover; i.e., if (f; : B; = B);c;€ &g, and s :A — B is any
map in C, then (A-XB Bi -3 A)iel € GA.

c) @ is closed under composition; i.e., if (f; : A; = A);; € &, and, for each
1€] (8 : A= Adrer; € O then (f;* gy 1 A = Adel, il € O

The standard example is the canonical topology in Set, where (f; : A; = A);¢; is in 6, if and
C only if ,-éflm(fi) = A. (i.e., it is a jointly epimorphic family.)
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Definition 2.2 A sheaf on (C,O) is a functor F:C°? — Set, such that for every
covering (f; : A; = A);; and a compatible family of elements a;eF(A)), there exists a
unique element ae F(A) whose restriction (image via F(f)) to each F(4)) is a;.

We denote by SN(C) the category whose objects are sheaves for the pretopology, and whose
arrows are the natural transformations between them. A topology for which every
representable functor is a sheaf is called subcanonical.

Definition 2.3 A Grothendieck topos is a category which is equivalent to the
category of sheaves on (C,8), for some small category C and pretopology ©. -

The result which makes Grothendieck toposes important for our work is the following:

Theorem 2.4 Every Grothendieck topos is an (elementary) topos.

Proof. After the theorem of Giraud which characterizes a Grothendieck topos as a category
satisfying certain exactness conditions (cf. [JOHNSTONE: Topos Theory, page 16] or [BARR-
WELLS: Topos, Triples and Theories; page 238]) we only have to show the definition of the
adjoint to the product functor, and of Q. As for the first of them, given F and G any two
sheaves on C, define GF(A) = Nat(F x A,G), where we identify A with the associated sheaf
to the functor representable by A. For the second, define Q(A) = @ (A), where 0 (A) denotes
the set of subsheaves of A. O

Now that we know that any Grothendieck is a topos, let us take a look to the “logic”
of Grothendieck toposes.For any fixed sheaf F, we have:

— TRUEF = (F = F), FALSEr = () — F), where @(A) = F(A) = 1, if the empty
family ( — A) is a covering, otherwise J(A) = &.

— For any two subsheaves P and Q of F
- (PNQ)(A) = P(A) N Q(A).
- ae(PUQ)(A) iff there exists a covering (A; = A);¢, such that the restriction
of a to F(A;) belongs either to P(4;) or Q(A4;).
- as(P=Q)(A) iff, for every arrow B — A in C, whenever the restriction of
a to F(B) is in P(B) it happens to be also in Q(B).
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Given any f: F — G morphism of sheaves (natural transformation), if P is a subsheaf of F
and Q is a subsheaf of G, then we have:

— (F1O)A) = (f,)1(QA)

—_ aeElf(P)(A) iff a admits locally an antecedent; by this we mean that there exists a
covering (A; — A);¢; and elements a;e P(A;) which go via f (rather, via f, ) to the

restriction of a to g;.

— age VI.(P)(A) iff, for every arrow B — A in C, P(B) contains all the antecedents of
ai.e., it contains all the elements of F(B) which go via f to the restriction of a to B.

For the higher-order logic, PF = QF is characterized by PF(A) = g (F x A), and the
membership relation of F is characterized by (a, R) € ZF(A) iff (a, id,) € R(A).

§3. A language for intuitionism

Trying to follow Lawvere's claim: “the notion of topos summarizes in objective categorical
form the essence of higher-order logic” [LAWVERE, 1975], let us present a language suitable
to deal with topos. Along with this language, we include a theory of types, also due to Joyal
[BOILEAU-JOYAL: La logique des topos] which will do quite the same thing as what type
hierarchies do in sets

Definition 3.1 A similarity type consists of the following data:
(1) A set S of sorts, from which we inductively form the set of all types T, as follows
i) any element of S is an element of T,

ii) if Sy,..., S,, are elements of T, then 2 (§) is in T, where Qis notin S, and
n may be 0.1

!ntuitively, the types represent sets, and Q(Ty,...,T;) represents the set of parts of Tjx---xTy,.
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(2) A set of function symbols. To each function we associate a source (finite number
of types), and a target (a single type). Functions with target Q:= Q( ) are called -
relational symbols.

(3) The logical symbols, €, [{ | }], (), and an infinite set of variables of each type.

The terms and formulae are defined as follows:
a) Any variable of type S is a term of type S.

b) If fis a functional symbol with source (S) and target R, and (f) are terms
of types (), then f{(D) is a term of type R

¢) If u and v are terms of the same type, then 4 = v is a formula

d) If () are terms of types (S) and u is a term of type £2((S), then (Deuis a
formula. )

e) If ¢ is a formula and () is a sequence of different variables with types (),
then [{@)e () | ¢}] is'a term of type LX(D).

f) If ¢ and 7y are formulae, then @AY is a formula.
£) TRUE is a formula.
i) the procedure given in ¢) is the only binding-variable operator.

The interpretation of this language in any topos is given by associating to each sort S an
object [S], and to any functional symbol f a morphism in the topos; this correspondence is
done according to the following rules:

1) [Q2(Speees SP1 = P([S;] %+ x [S,])

2) [f1 : [S1 x - x [S,] = [R], f being a function symbol with source (S) and target R
(in particular [Q] = Q). |
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To extend the interpretation to the whole language, the local character of the theory of topos
must be taken into account. So, if (x) is a finite number of variables of types () , and ¢ is any
term whose free variables are all among the (x), one defines the interpretation of the term ¢
relative to the variables (x) as a morphism [(3) : 7] : IT ([S]) — [R], where R is the type of ¢,
according to the inductive rule:

a) If x is a variable of type S, then [x] = [S]

b) [(x) : x;] = canonical projection [T([S]) — [S;]

¢) [@) : A1 =[] ([ : 7], e, [ 2 1] )

d {@:5=01=A4 14 (@: 4], [@ :5]), Ubeing the type of the 7's

e) [{@: W ef}]=evqy) (@ 1], ..., [@) 1], [ 1]

H {@:[{® !¢} H=H{®.@Ie }], provided that the y's do not occur in the x's

g) The interpretation of conjunction and TRUE is by composition with the
corresponding maps.

Notice that all the data defining a topos are used in the interpretation. To present the theory,
due to the lack of quantifiers (so far), the method will be @ la Gentzen, i.e., by means of
sequents.

Definition 3.2 A sequent (entailment) is any expression ¢ =7, where @ and vy are

formulae and U is any set of types containing those of all free variables in ¢ and v.
" We can think of a sequent as an implication, though the real representation is of the form

A FxeT (x=x)—(¢p—Y)
TeV

where xeT stands for x is a variable of type T (cf. [OUELLET: Axiomatisation de la logique
interne du premier ordre des topos, version inclusive et multisorte].)
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Definition 3.3 A sequent ¢ 2V is said to be valid, relative to the interpretation [ ]
and we denote [ ] =@ 2V, iff there exists a sequence xj, ... , x, of distinct

variables containing all free variables of ¢ and v, with types S, ... , S,, and such
that U is the set {S,..., S,}NS (S is the set of all sorts in the similarity type), and
[{(x15eees Xp) | ©}] equals [{(x),..., Xp) | 9AY}]

Definition 3.4 By a local higher-order theory is meant any set I of sequents. A
sequent is said to be valid in the theory I if and only if every interpretation in any
topos which satisfies all sequents in I also satisfies it. We write I" = ¢ =Y

Let us now describe the deductive system complete with respect to this notion of validity,
above defined. The system consists on six axioms and six rules of inference. The first two
axioms and the the four first rules are propositional. Axioms III, IV and rule 5 deal with
identity and substitution. Axioms V and VI, and rule 6 are topos theoretic versions of
comprehension (abstraction) and extensionality.

Axioms

D o=9¢

D o¢=T

II) TRUE=x=x

IV) @ A (x=0) = ¢ (¢/x), provided ¢ is free for x in ¢
V)

QO = (Xgsees Xp) € [{ Kpseees X)) 10 }]
VD (peenxp) € G x) 0} =0

In the above list of sequents, the set U is assumed to be exactly the set of types of free
variables intervening on it.
Rules of inference
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¢?mvcv

(P?Y
P=2Y Y5d

P
P3Y 0338

? 2 YAS
? 5 S P YO
¢ =Y ¢ =38
oY

with ¢ free for x, and W is the the set of sorts of the free
(t/x) = Y (t/x) variables of @(t/x) and Y(#/x) plus those of U, except

the corresponding to .
? A (@) 2 @ A (ery),
¢ A (@Xery) 20A (@er) the x's are different variables none

of which appears free in @,; or 1,
¢ 52 (1=t) '

One proves that these axioms are universally true and that the inference rules preserve the
truth. This gives the soundness of the system (i.e., if a sequent is "derivable" from the
axioms using the rules, then the sequent is valid), and since validity was defined in terms of
the topos, the result becomes a theorem of adequacy.
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An important fact which explains the interest of topos theory is that any topos E gives
rise in a natural way to a language of the above form. The natural language of the topos E,
denoted L(E), comes equipped with a canonical interpretation. L(E) has as sorts the objects
‘of E, and the interpretation is the obvious one.

There are two remarks we want to make about these language and way of presenting
theories. The first one is that the other logic connectives and quantifiers can be defined in
terms of the ones presented. So, for instance, VxeT ¢ stands for {x | ¢} = {x | TRUE}, and
the canonical interpretation is [(x) : VyeT @] =V [(y.X) : ¢]. The second one is that we
could have presented the theory in an axiomatic way, instead of doing it @ la Gentzen, and we
would have found that the first-order axioms and rules of inference which are internally valid
in any topos are those of the intuitionistic first-order predicate calculus with a unique
restriction on the free variables in the rule of Modus Ponens (cf. [BOILEAU: Types vs.
Topos], [COSTE: Logique d'ordre supérieur dans les topos €lémentaires], [OSIUS: Logical
and set theoretical methods in elementary topoi].)

Now we give some “tips” to determine the canonical interpretation of a formula in the
natural language of a topos E.

Let o(x;, ... ,x,) be a formula whose free variables are all among x;, ... ., of types
T,, ... .T,, respectively, and let a;: 1 — IT| be global sections, for i=1, ... ,n. We can
consider these g;'s as being close terms in the language of the same type of the corresponding
variables, and hence they can be substituted for the x/'s. In this case one proves that

Eeoa,, ... a,) iff @, ....a,): 1= IT)Ix . xIT,| factors through [(x, ... x,) : ).

We now generalize this result for the case when the a;'s are not necessary of domain 1 (we

call them generalized elements, or elements defined at a given stage). First of all, recall that if
X is any object in E, then E/X is also a topos, and the functor x*:E- E/X is logical

(Theorem 1.2) This functor, preserving the topos structure, preserves the internal logic; more
specifically, it induces an application (we keep the same name) xX*:LE)-LE /x)-

Ifa;: X — IT), then there are 4;: 1 — IX*(Ti)I in the topos E/X , and we have

E/x EX*0@,, ....4,) iff (a},....a,):X = ITIx - xIT,| factors through [(x,,....x,) : @].
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This trick will be used over and over to characterize [(x 15 -+ %)  @]. Now, to finalize this
section, we will give some rules which will enable us to determine the validity of a formula
for the canonical interpretation in a Grothendieck topos of sheaves on a subcanonical
‘pretopology. This set of rules are known as Joyal-Kripke (also functorial) semantics.

E = TRUE is always true
E=FALSE iff the empty family ( —1) covers 1 (or 1 = &)
EEoay iff EE¢ and EEoay

E = pvy iff there exists a family of representable objects (X)), such that (X; —1);,
is acovering, and Efy =X.*¢ or E/y =X*y, foreachiel.
1 i

E =3xeT o iff there exists a family of representable objects (X));, in the topos E
such that (X; 1), isa covgring, and there are global sections g;: 1 — IX‘.*(T)I in
E/x., such that we have E/x, =X/ "0(a).

E = VxeT @ iff for any representable object X, and any global section a : 1— IX*()
then E/y =X*9(a).

In what follows we shall not make explicit use of these axioms and rules; we rather employ a
sort of naive intuitionistic logic, just in the same sense one uses a naive classical logic in the
practice of mathematics.

§4. The topos of Dubuc

We could say that Dubuc's topos is the result of applying the methods of algebraic geometry
to differential geométry, énd it will be the base model to test and develop our theory. In this
chapter, we sketch the main results employed in its definition, as well as some of its
properties. For more details on the subject we refer to [DUBUC: C*-schemes] and [DUBUC:
Open covers and infinitary operations in C*-rings].

The first step will be the definition, in the context of differential geometry, of a notion
equivalent to that of commutative R-algebra in algebraic geometry. The original idea, as well
as the means which made it possible, came from Lawvere [LAWVERE: Functorial semantics
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of algebraic theories]. He introduced a new way to define algebraic theories which enables
the following definition

Definition 4.1 A C*-ring is a product preserving functor from the category C*,
with objects all natural numbers, and arrows between n and m all smooth mappings
between R”" and R™.

So, while in a commutative ring only polynomials can be interpreted, in a C*-ring every
smooth mapping has an interpretation.

Examples 4.2 The main examples of C*-ring are the following

a) C=(R"™), the set of smooth mappings R"” — R. Actually this is the free C*-ring on
n generators: the projections.

b) C=(M), for M a smooth manifold.

¢) C3(M), the ring of germs at a ’pointx of M of smooth maps.

d) Any Weil algebra [WEIL: Théorie des points proches sur les variétées
différentiables] in particular the R-algebra R[X] /x?) of dual numbers.

Actually, most of the above are examples of the following important result

Theorem 4.3 If A is any C*-ring, and /cA is any ideal (in the usual algebraic
sense), then A/; can be endowed with a unique C*°-structure making A — A/ a

morphism of C*-rings. O

Definition 4.4 A C*-ring is said to be of finite type if there exist a natural number
n and an ideal /cC>@R"), such that A = C=R") /-

To give a morphism of C*-rings C>(R") /; = C>R™) /1 is equivalent to giving a smooth
mapping R™ — R", modulo the ideal 7, and such that

C v Voe C>R") peJ = ¢fel.
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What we mean by “modulo I” is an equivalence class with respect to the relation f ~ g if and
only if xof-npegel,i=1, ... ,n

Theorem 4.5 The category A £1, of C*-rings of finite type has finite colimits, in
particular we have the following descriptions:

a) initial objet C*R) =R =0

b) Coproduct C=(R")/; ® C*R™)/; = C”(R"*'”')/p*, +q*J» Where p”I is the same
ideal 7, but now thought of as being in n+m variables (similarly for p*I) ! |

Note that the set of arrows of C*-rings from ol *(R™) /1 t© R are in a one-to-one
correspondence with the sets Z(I) of zeros of the ideal /, i.e., the set of those xeR" on which

vanishes every function of /. As in the case of algebraic geometry with the Galois connexion,
it will be the dual category A, P(or for that matter of a suitable full subcategory) which will

be used to capture the geometric intuition. In such a category, we have that the set Z(J)
corresponds to the global elements (or points) of the object CR") /r» where by () we

denote the same object, this time in the dual category.

The idea is now to define a Grothendieck pretopology in Af‘_’,f' that retains the

essence of classical open covers of R”. In a more precise manner, we define the so called
open cover topology as the one generated by the empty family (0 —) and the families in A,

of the form

(C=R") = C=(Uy) )y,

for all # and all open covers U, of R".

Once again, the similarity with algebraic geometry is present, as can be seen in the
following proposition.

C 1 Actually, from this theorem it follows, just by “general reasons”, that the category of all C**-rings has finite
colimits.
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Proposition 4.6 Let U — R” be an open set, and let f be a characteristic function
for U, ie., U = {xeR" | f(x) # 0}). Then

C=R") = C=(U) = C=R"{f}
is the universal solution to the problem of making f invertible in the category A o

Explicitly, any open cover (4, — A),, is obtained as a pullback (pushout in A .

C=R" - C=(U,)
A \
A - Alal)

where g, is the class, module the ideal of definition of A, of a characteristic function for U,,.

The basic open coverings, {C=R") — C=(U,,)} are effective epimorphic, but they are not

universal effective epimorphic. Indeed, if one looks at a representative example of the failure
of this universallity (cf. [DUBUC: Open covers and infinitary operations in C*-rings]), namely
the pushout along the arrow

C=R") — C>R")y
with I = {feC=@R") | fis of compact support}, one is led to the following

Definition 4.7 An ideal IcC*=(R") is said of local character if whenever f €
C=(R”) it satisfies the following: if i Uy € Ty for every o, where (U,) is some open

cover of R® then fel. O

Dubuc has given several equivalent conditions for an ideal to be of local character. We collect
them in the following proposition

Proposition 4.8 For an ideal /JcC>(R"), the following conditions are all equivalent

i) I is of local character, in the sense of 4.7.
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ii) f|p € I for all peZ(l) , implies f € I. (Where ﬁp denotes the germ of f at p).!
iii) @f € I, for some partition of unit (P}, implies f € I.

iv) f;el implies el for every locally finite family f;. (Locally finite means that
l

each point of R" has a n open neighborhood U such that f;; = 0, except for a finite

number of i's.) O

Corollary 4.9 (Nullstellensatz) For an ideal I of local character, Z(I) = & iff lel.

Examples 4.10 Among the many examples of ideals local character, we mention:
a) Any finitely generated ideal of C*(R")

b) Any closed ideal / of C=(R") for the C*=-strong topology (see Chapter 2, §1 and
the references therein.)

c) The ideal of germs of functions [ME = (feC=R"™) | Vx&F fj, = 0}, for F a closed
subset of R".

d) An example of ideal which is not of local character is {f| fis of compact support}.
See comment above theorem 4.7.

To end this collection of results, let us mention that every ideal has a closure which is a local
character ideal.2 Moreover the category B, of duals of C>-rings of finite type presented by
ideals of local character, has finite limits (he only difference appears in the product, where the
ideal has to be substituted by its closure), and the open coverings form a universal effective
epimorphic class; as a consequence, the pretopology is subcanonical, i.e., every
representable functor is a sheaf.

Now we have fixed the problem pointed just before definition 4.7, in the sense of

1Duye to this condition, sometimes these ideals are called germ determined.
21t is an actual closure operator for a well determined topology.
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Proposition 4.11 The open covers of A are of the form { Ay; — A } where

the U; form an open cover of I'( A ), and Ay; = C=RYy. - =
:

Definition 4.12 The category of sheaves on B, B"? < SetB, with the open
cover topology is called the Dubuc topos, an will be denoted by G.

As a consequence of Whitney's embedding theorem (cf. [GUILLEMIN-POLLACK: Differential
Topology]) every manifold is a retract of some euclidean space. Therefore, the ideal of
presentation of C*°(M) is finitely generated, and by example 4.10 a), is of local character. The
inclusion C*=(): M — B is full, and composed with Yoneda embedding gives M — G,
full embedding (M denotes the category of smooth paracompact manifolds, and the functor
lands in G by remark above definition 4.11). Moreover, this functor preserves open
coverings (in the sense that they remain effective epimorphic families), transversal pullbacks,
and the terminal object.



'The framework of
Synthetic Differential Geometry

§1. First axioms

It has become a common practice among mathematicians and physicists to employ a sort of
loose talking about first-order approximations. Very often they get to think that the quantities
at hand are so small that their square are negligible (null for all practical purposes.) In those
situations, it would be helpful to have at one's disposal a setting on which explicit
considerations and rules for treating these infinitesimal quantities could be given. To that end,
an object of the form

D =[{deR | & =0}]

is required, while on R we have a commutative ring structure and no need for every element
to have an inverse.

This object, should Pythagoras' Theorem be true in R, is the intersection of the circle
of radius / around (0,]) with the x-axis, as in the picture below
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&

where we identify R with the x-axis in R2. If we extend this intuition to any function
f:D >R,
by saying that fis a linear function, i.e., there is a unique meR (the slope) so that, for any d
fd)=f(0) +dm
we get an identification of tangent vectors with pairs of elements of R.

On the other hand, the concept of smooth manifold, as understood by Riemann's
followers, is not suitable for many of the goals he proposed them for [RIEMANN: Uber
diegen Hypothesen welche der Geometrie zu Grunde Leigen]. In particular, the set of all
smooth mappings between two smooth manifold is not itself a manifold.

These considerations led Lawvere to propose, in a series of conferences given in 1967
at the University of Chicago [LAWVERE: Categorical dynamics], a new setting for the
development of differential geometry. The proposal is to work in a category of “smooth
spaces” (which at least would be a cartesian closed category) where there must be an object
R, “the line”, and D < R an [infinitesimal neighborhood of 0 € R.]

A. Kock took up these ideas and stated the basic axiom in the following form: The
map

RxR S RD,
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defined by the rule [(a,b) - [d > a + d-m] ], is invertible [KOCK: Synthetic Differential
Geometry]: the object D is small enough to make the graph of any function a piece of a
straight line, and big enough to make this line unique. Identifying m with £(0), the function

is determined by its I-jet at 0, and the axiom can be seen as an axiom of I-jet representability.

Kock has also shown how to develop the entire basic calculus of derivatives and
Taylor series expansions. For any function f: R — R, and any given p € R, it follows that,
forallde D

flo+d) = f) + df (p),

an we get a new functionf : R - R. !

As a matter of fact, to determine f(p) is enough to have f defined on all elements of
the form p+d, VdeD. In a similar way, if F € RR" one can define the partial derivatives

oF
F(x;y ... x4, ... x,)=F(x;, ... x,) +d5x—(x1, e Xy

i

and the iteration of these processes allows the construction of the derivatives of higher order.

So, to compute the, say, 2-jet at 0, it is enough to have f defined at any element of the form
d,+d, , with d;,d, € D. Notice that not always does one have that such an element belongs

to D, yet its cube vanishes, and therefore somehow it is infinitesimal of second order. We
could require that the information given by the 2-jer were the same contained in the restriction
of f to the object D; of elements x form R such that x> = 0. If F is defined on D x D, we can

determine %:(O,d), for all deD. Derive again, and get %0,0).

Note that to deﬁnc'%(0,0) one only needs F to be defined in a smaller object, D(2) =

{[ (x.y)eDxD |x2 =y? =xy =0]}.

1The same resuit holds for generalized (not just global) elements of RR for the existence, being unique, is
“on the spot” [KOCK: Synthetic Differential Geometry, p. 140]
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P g
DxD D@2
. O°F PF .
To determine ?9;5-(0,0) and -éyz—-(0,0) we need F defined on D;x{0} and {0}xD3, respectively

The information of the 2-jer is contained in the restriction of F to {0}xD2 \U DxD U D3x{0}
and we impose, by axiom, that it extends to D;(2) = {[(x,y)eD x D | the product of any three
of the coordinates vanishes]}. By doing so, we have that the k-jet at 0 of a function FeRR"
is representable by D(n). Following Bunge and Dubuc [BUNGE-DUBUC: Local concepts in
S.D.G. and germ representability] we call these objects Ehresmann infinitesimal, to honor the
introductor of the notion of jet in differential geometry [EHRESMANN: Les prolongements
d'une variétée différentiable]. '

There is a problem with this class of objects, namely that although the product
Dy(n)xD¢(m) is infinitesimal, it is not Ehresmann; in particular, the iterated jet bundle is not a
jet bundle in the sense of Ehresmann. To treat this pathology, A. Weil [WEIL: Théorie des
points proches sur les variétées diférentiables] introduced a class of algebras and developed a
theory of jets that generalizes the work of Ehresmann for the algebras R[D,(n)]. Essentially, a
Weil algebra is a multiplication table on a finite dimensional module, and this information can
be coded in a matrix with coefficients from the ground ring.

Definition 1.1 A Weil algebra W is an augmented commutative R-algebra of finite

dimension, whose augmentation ideal is nilpotent, i.e., W is equipped with a
morphism «t : W — R, such that:

a) W is local with maximal ideal J = n-1{0}
b) Wis a finite dimensional R vector space

¢) Iisnilpotent
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Since there exists a unique integer / such that W = R™*/, if {ep» ... ,€;} is a linear base, then
we have e = 2,;0 */f] e, in a unique way. The information contained in this matrix can be

used to define an R algebra structure on any category (with finite limits); we denote it by
R[W] or, R®W.1 The presentation (h,) of the R algebra can be used to carve out a subobject

of R"
SpecgW) =[[ (x}, ... x )R B (x) =0, Vi]].

The restriction of a polynomial pe R[X, ... ,X,] to ROW (quotient of R[X, ... ,X,] by the
ideal generated by the h/'s.) This defines a morphism R*/=R®W 3 RSPERM) and the

axiom takes now the form

AXIOM I (Kock-Lawvere) For any Weil algebra W, the morphism R®W >
R7®W) 4efined by [€ I [p €(p)]], is an isomorphism.

Along with this axiom goes a companion axiom which states that those objects representing
jets are tiny in the following sense -

AX1I0M II The functors (-)°*® have right adjoints.
We state the following result [DUBUC: C*-schemes]

Proposition 1.2 AXIOM I and AXIOM II hold in the Dubuc topos G, where R is
the sheaf represented by C°(R) , and D is representable by C=(R) Jx?) 2 a

An important “coincidence” is the following. Weil has shown how to see the tangent bundle
to any manifold, in particular to R, as representable by what he called the local algebra of
dual numbers. He declared that his sources were d'une part le retour aux méthodes de Fermat
dans le calcul infinitésimal du premier order et d'autre la théorie des jets dévelopée dans ces
derniéres années par Charles Ehresmann. In this aspect, Synthetic Differential Geometry is a
natural continuation and completion of Ehresmann's foundational work of the 50's.

11t is well stablished that R[W] is independent of the particular presentation we chose.
2Note that (XZ) is the ideal of presentation of the Weil algebra of dual numbers.
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To define the derivative of a function, another method that goes back, once more, to
Fermat is available, We recall from [REYES (editor): Analyse C*] the following

Definition 1.3 The ring R is a Fermat ring if
VfeRR 3!gosRR2 Vx,yeR [f(y)-f(x) = (7-x)-g(x,y).

This unique g is denoted of, and if R is also of line type, then gf(x,x) =f(x), and we adopt
the following postulate (also discussed in [KOCK: Synthetic Differential Geometry], where it
is related to an axiom of integration, and in [PENON: De 'infinitésimal au local]) !

AXIOM V (Reyes-Fermat) R is a Fermat ring.
Using this new approach, the two corollaries below easily follow

Corollary 1.4 Given f: R" — R, there exist n functions g, ,....8, : R" xR" = R,
such that.

i) VXeR"VyeR" [fix) - fy) = Y g,x:y)(x;¥)]
=1

ii) VxeR" (g, (xx) = % ). g

Corollary 1.5 Given f: R" — RP, there exists g : R" x R" — Mat(nxp) such that
i) VxeR"WyeR" [f(x) - (¥) = g(x,y)(x;-¥;)]
ii) VxeR™(g(x,x) = Dyf). O

NB in both corollaries, everything is meant to be internal as the axiom itself. For instance, the
last one reads Vfe RPR"” 3geRP"R™" ...... .

1Notice that, as Kock has shown, unique existence is decided on the spot, not locally, just the same resuit
used to “describe” internal functions by means of rules, as in AXIOM I (cf. [KOCK: Synthetic Differential
Geometry].)
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As one would expect, AXIOM V holds in our test model G [PENON: De l'infinitésimal au
local, p. 48]

§2. Linear algebra and order

We have indicated in §1 how to define, for any function, say f: R® — R?, its Jacobian 1.
Now, if one wants to introduce the usual concepts which involve this matrix, at least the
notions of field and linear independence are needed.

To introduce them, the first problem appears with the several (classically equivalent)
notions of field, that turn out not to be equivalent at the intuitionistic level. We follow A.
Kock [KOCK: Universal projective geometry via topos theory] to state

Definition 2.1 A commutative ring A in a topos E is a field (we will say Kock's
field) if foreach n=1,2,...

—-(I =0) and

~(AG;=0)) = \’;(xi#b),

i=] i=l

where, by x#0 we mean that x is invertible.

Since we are definitely interested in notions of the type mentioned earlier, we impose in our
setting the following

POSTULATE A The ring R is a field in the sense of Kock.

Fairly easy consequences of this postulate (cf.[KOCK: Synthetic Differential Geometry]) are
collected without proof in the proposition below

Proposition 2.2 If R is a Kock field, then the following hold

a) Ris alocal ring, in the sense of that Vx,yeA (x+y # 0 = x#0 v y#0

10Of course, the same goes for internal functions.
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b) R* =-{0}, where R* denotes the subobject of invertible elements in R.

¢) For any Weil algebra W, Specp(W) < A(n) = ——{0} < R”, for appropriate n a
‘We give, now, the notion of linearly independent

Definition 2.3 A n-tuple of elements {v Ir e ,} (in an R module M) form a
linearly independent set if the following holds

n
YA, oo A €R (A= 0 = Aj= -+ =A,=0).

i=l
Over a Kock field, this notion is equivalent to the following one [ROUSSEAU: Eigenvalues of
symmetric matrices on topoi]

=1

Vi, ... A,eR (\’;(7».,-#0) = YAV #0).
il ,

It is easy to see that POSTULATE A is exactly what is needed to have the “only if” part (the
“if” part is straight forward) of the following

Proposition 2.4 For any matrix AeR™™ we have that row-Rank(A) 2 r if and

only if determinant-Rank(A) 2 r, where we say that the n-tuple of elements of R™ has
row-Rank 2r if there exists a sub-r-tuple linearly independent. Similar result holds for
column-Rank. In particular row-Rank(A) 2 r if and only if column-Rank(A) 2 r .

In a different direction, if we want to introduce notions that utilize intervals in R, an order
relation has to be available. We require R to have defined an order relation, compatible with
the ring structure, strict, local and separated, i.e. we adopt the following

POSTULATE WAL .2 (Bunge-Dubuc) On R there is defined an order relation “<”,
satisfying

R1. Vx,yeR [(x>0) A (y>0) = (x+y>0) A (x-y>0) , and I1>0

R2. VxeR —(x>x)
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R3. Vx,yeR [(x>y) = VzeR [(x>2) v (z>Y) 1]

R4. Vx,, ... x,€R [ﬂ(:(x,.=0))= \';((x,->0)v(x,-<0)) 1.

i=l i=l

Compatibility gives transitivity, and from these conditions and the fact R* = ={0}, we get an
order relation on R, that is total on the units. A useful result can be derived [BUNGE-DUBUC:
Local concepts in S.D.G. and germ representability]

Proposition 2.5 If R satisfies R1 - R4 above, then the following holds

VxYeR x>0 AF>0)=32eRE>0)A(z<)A(z<y)]. O

In algebraic geometry, the right topology has turned out to be the one determined by the ring
structure of R. More precisely, the Zariski process consists on building up the open sets out
of a basic one, namely R* c R, by pulling back and forming unions. In our setting, since we

have an (strict) order relation on R, another way is available: the basic opens in' R are the
open intervals (a-¢, a+€), fora € R, £ € R, € > 0, and in R", just the products of these

intervals; all other opens are formed with unions. This topological structure! is called
Euclidean; given any part M of R", the Euclidean topological structure on M consists on those
parts U of M for which the following holds:

VxeM [xeU < 30 (B(x,&)nM c U)],

n
where B(x,£) = [l yeR" | A(-e<y; x;<€) .
i=1

From POSTULATE WA1.1 we derive the following suggesting property for the ring R

——{x} = (Qg (x-€, X+€)

which talks about the infinitesimal nature of —{x}, and that reminds us of the infinitesimal

11t is important not to confuse up the concepts of (pre) topology of Grothendieck and topological structure
[PENON: De l'infinitésimal au local]. A topological structure on an object X of a topos E is a sublocale of

PX = QX ie., a part closed under finite meets (including empty), and arbitrary unions.
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monad of a point in Nonstandard analysis; however, notice that here the quantification is over
all £> 0, not only over the standard ones.

Once again, the richer meaning of the negation (—) in our setting can be exploited to
.analyze the meaning of the above equality. If one adds a metric content to the balls B(x,¢), to
assert the negation of x=y amounts to saying that x and y are well separated, and —{x} is the
object of those elements which are well separated from x. This way, ——{x} appears as the
object of elements of X which are not well separated from x. The non validity of the
statement ——{x} U —{x} = X says that, in general, there is a part of X with no explicit
description in the topos

X

-{x}

-'1-1{)(} E ]

This can be used to define a topological structure (see definition II.2.1) on any object X of a
topos E [PENON: Topologie et intuitionisme]: a part U of X will be open if it contains ——{x}
and this “no man's land” for each of its elements.

Definition 2.6 Given X, an object in E, a part UcX is Penon (or intrinsic) open if
VyeU VxeX (—(x=y) v xeU).

Now we collect the most important properties of Penon opens, in the following proposition:

Proposition 2.7 Penon opens are stable under the following manipulations:

a) Change of base (i.e., if f: X — Y is an application, and U c Y is any Penon
open, then f~/(U) is Penon open in X.

b) composition (i.e., U open of X, V open of U, then V open of X)
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¢) arbitrary unions (even if indexed by objects of Q)
d) finite intersections. -

The requirements we have imposed on R confer to this topology some nice properties; among
them, let us mention the fact that R is separated (T;) [DUBUC-PENON: Objets compacts dans
les topos]

Proposition 2.8 R is separated (T;) for the Penon topological structure, i.e., it
satisfies any of the following equivalent conditions:

i) Vx,y,2eR (=(x=y) = —=(z=x) v =(z=y))

iil) VxeR —{x} open of R | O

Proposition 2.9 R is separated (T7) for the Penon topological structure, i.e., =Ag
isopenin R xR. : - a

Time has come for us to compare the two topologies we have so far introduced. In the
presence of POSTULATE WA 1., the euclidean topological structure is subintrinsic, i.e. E(X)
< P(X) (cf. [PENON: De l'infinitesimal au local].) The converse is not always true. It will be

so if the object X satisfies the condition given in the following definition

Definition 2.10 The Euclidean topological structure on X satisfies the covering
principle if the following condition holds: |

VH,GeQX(HUG =X = 1(HHuiG) =X),
where 1( ) denotes the interior operator corresponding to E(X) as sublocale of QX
We impose this condition by adopting

POSTULATE WAL.1 (Bunge-Dubuc) The euclidean topology satisfies the covering
principle.
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In our test model G, POSTULATE A, and POSTULATE WA1 (meaning 1 and 2) hold (cf.
[KOCK: Synthetic Differential Geometry, p. 267] and [J**)

In the Dubuc topos G, Penon (cf. [PENON: De l'infinitesimal au local]) has given

interesting classifications for open parts in several cases. Among them we quote the
following

Proposition 2.11 Let A be any representable object in G, say 4 = C=>®Ry

then X < A is Penon open if and only if I'(X) < I'(A) = Z(J) is open in the usual
sense with the induced topology. 0

This result is a consequence of the existence of a right adjoint functor A to the global sections
I' considered as functors from @ (X) to o (I'(X)). If S < T'X, then A(S) c X is
characterized, in terms of generalized elements, as follows:

C eeeees >AS)cX iff re) - >ScTIX.

Apart from the property I'A = id, these functors have other nice properties in our setting, in
particular in G. Among them we single out the following (cf. [DUBUC-PENON: Objects
compacts dans les topos] or [PENON: De l'infinitésimal au local])

Proposition 2.12 Given any map f: X — ¥ in G, we have the commutative
squares

e L e —5 e®
ﬂp ﬁL ﬂL
pCm) L TE) —— p@E)

In addition, as a consequence of the universal property of the functor A, we have
A(TXxP) = XxAP |
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The result contained in 2.11 is that I" and A establish a bijection between Penon open parts of
A and usual open subsets of I'(d4). X <4 is Penon open if and only if I'(X) c T'(A) = Z()
is open and in this case X = AI'(X).

For particular kinds of objects, this bijection admits a concrete interpretation. In this
direction we have [DUBUC: Germ representability and local integration of vector fields in a
well adapted model of S.D.G.]

Proposition 2.13 For any object of the form 1M (where 1: M — G is the full
embedding of comment after definition 0.4.12), " and 1 establish a bijection between
Penon open parts of W and (classical) open subsets of M. O

§3. Germs in S.D.G.

In §1 we saw the definition of the infinitesimal objects D (n) (r =1, 2, ... ,n=1.2, ...),
which played an important rdle in the synthetic theory of jets. For a fixed n, it is clear that one
has a chain of inclusions

Dy(n) = Dy(n) c--- <D _(n) c A(n) = {0},

where D_(n) denotes the inductive limit of the D (n)'s; The last inclusion follows from the
identity A(n) = A", which in turn is a consequence of the two (intuitionistically) valid
inference rules [DUMMET: Elements of intuitionism]

=(p Vv q) and —p VvV —q

—p A —q —'(pAQ)’

together with POSTULATE A (see §2.1). The objet A(n) is the largest infinitesimal object and
has many interesting topological properties; for instance, not only it is true that A(n) is
included in any Penon open part of R” which contains 0, but also A(#) is the largest of such:
A(n) is the intersection of all open parts of R” containing Q. (the same result is true for any
subintrinsic topological structure that satisfies the separation condition (T;) of Proposition
2.8, [BUNGE-DUBUC: Local concepts in S.D.G. and germ representability].) Due to this fact,
if we define the notion of germ at 0 as usual, namely as equivalence classes of pairs (f,U),
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feRR", U e P(R™) ! the restriction to A(n) should be an invariant for each class. We would
have a map

j:CYR™ R) = RA®,

where C§(R", R) denoted the object of germs at 0 of functions RR"

It has been emphasized by several authors (cf. [BUNGE: Synthetic aspects of C*-
mapings], [BUNGE-DUBUC: Local concepts in S.D.G. and germ representability] and
[PENON: De l'infinitésimal au local]) that the notion of germ in S.D.G. should be treated level
with that of jet. In particular, claims have been made in the sense that the true setting to
develop S.D.G. is a model on which germs are representable, just the same as jets are
[BUNGE-DUBUC, op. cit.]. If that is to be so, a clear candidate to represent germs at 0 of
functions in RR” is A(n), and this is the meaning of the following axiom

AXIOM III (first version). For each positive integer n, the restriction map j is
invertible.

N.B. In presence of POSTULATE A, the same axiom applies to the euclidean topology.

We will need a stronger form of this axiom, namely a version identifying germs
around some “closed” manifold rather than around an element of R". So, we require

AXIOM IIT (Bunge-Dubuc) For any pair of positive integers %, n, the restriction map
J: Cel(o) REx R, R) — RESAM),
is invertible.

Before discussing the validity of the axiom in our test model G, let us give some results
concerning the behavior of A.

Proposition 3.1 Foranyx € R*andfe RA® he following holds:

i) There exists an isomorphism @, : A(n) — x + A(n), the addition by x.

YUY ~ (h,V) iff IWe PR™) [0e WUV A fiw = hiw].
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ii) Vx'e-ﬂﬂ{x}ﬂxf) & —l—1{f(X)}
iii) Vx'e=={x} (={x} = -—{x'}) : =

Those (easily checked) assertions have a number of consequences in the form of simplified
definitions.

Definition 3.2 A germ is an element of —{ y}"""m, for some x and y.

We discuss now the validity of AXIOM III in the Dubuc topos, G. In this model, mappings
R" R are essentially “smooth maps” in n variables, and the open neighborhoods in the
axiom are euclidean opens (see N.B. in AXIOM III.) On the other hand, we have the
following results [PENON: De l'infinitésimal au local]

Proposition 3.3 In G, A(n) is representable by the dual of the C=-ring C5(R"™), of
germs at 0 of functions R* —» R. " a

Note that this is a smooth C*-ring, as it has a presentation with an ideal of local character,

namely the ideal I, of functions R" — R whose germ at 0 vanishes.

Proposition 3.4 In G, the global elements are in bijective correspondence with
germs at 0eR” of functions R” — R. O

Proposition 3.3 gives the epi part of the axiom; for the injective part see [DUBUC: Germ
representability and local integration of vector fields in a well adapted model of S.D.G.]

AXIOM IIT comes with a companion axiom stating the tininess of A, namely
AXIOM IV The functor ( )4 has a right adjoint () 4.

This axiom holds in G basically by the same reason AXIOM II does, due to the non existence
of non-trivial covers for A.
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§4. Vector fields in S.D.G.

The theory of vector fields makes clear the need of a cartesian structure on the category E of
smooth sets, as claimed by Lawvere [LAWVERE: Categorical Dynamics]. In his own words,
the representability of tangent bundles by objects like D, leads to considerable simplifications
of several concepts, constructions and calculations. For instance, a first-order differential
equation, or vector field, on R" (we write E for R") is usually defined as a section e of the
projection %t : EP = E, i.e.,

4.1) e : E = ED, satisfying 1t°€ =idp.

But, by the A-conversion rule, é is equivalent to

42) & : ExD — E, satisfying &(p, 0) = p, VpeE,
which, in turn, is equivalent by a further A-conversion to

(4.3) E : D — EE, satisfying £(0) = id.

that is, an infinitesimal path in the space EE of all transformations of E, or an infinitesimal
deformation of the identity map. This is a feature that the classical approach lacks though they
do like talking about infinitesimal transformations as synonymous for vector fields.

In what follows we will use the following terminology

Definition 4.1 A vector field on E is any of the equivalent data (4.1), (4.3)

It is easy to check that the data of (4.2) and the properties of R force & to be an infinitesimal
flow in the sense of the following definition

Definition 4.2 A flow in E is a family of curves, f: U € E xR — E, one for each
D€EE, such that f(p, -) is defined on some part of R that contains D and passes by p at
time 0 and such that

A, t+s) = f(f(p, 1), 5).
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Definition 4.3 A flow is an integral flow of a vector field & : D — EE, if the
velocity vectors are the field vectors, i.e., '

fp, t+d) =E(Rp, 1), d), V(p, De ExR | (p, t+d)e U VdeD.

In presence of AXIOM [, &(p, d) =p + d-g(p), where g : E — R", is called the principal part
of the vector field. Thus, to have an integral flow for £ means having a solution on U for the
differential equation

g(pr N=g(f(p,1),V(p,)eE xR | (p,t+d)e U VdeD
®,0) =p

Therefore, according to these definitions, any vector field & : D — EE, comes automatically

integrated to an infinitesimal D-flow. It is easy to see [BUNGE-DUBUC: local concepts in SDG
and germ representability] that this flow has a unique extension to a D~flow {:E xD.. — E,

i) L, D) =&(p, d), VdeD
ii) {(p, t+d) =L((p, 1), d) Vd,t eD..

In [BUNGE-DUBUC, op. cit.] it was shown that AXIOM III is the key tool to pass from
infinitesimal to local. In particular, to get a result of local integration of vector fields (or a
local solution for a differential equation) it suffices to require

POSTULATE WA2 (A integration of vector fields) For any positive integer n, the
restriction map, Flow(R" x A, R") — Flow(R" x D, R"™), is invertible. (Flow denotes
the object of flows.)

After what we have seen, an alternative formulation can be given in the following terms

POSTULATE WA2 (Alternative formulation) For any positive integer n, the map

Flow(R" x AR™ — R™R", [f.-»% *0)lmp]

is invertible.
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This means that, given a function g : R* — R", the differential equation % &, 0 =g(f(x, 1),

with initial condition f(x, 0) = x, has a unique solution f(x,?), defined for all xeR" and teA.
So, the most suggestive formulation of the postulate is the following

POSTULATE WA2 (solution of differential equations) For all positive integers n,

VgeR™R" AIfeR"R"A VxeR" Vie A [f(x, 0)=x A %’ x, 1) =g(fix, ) ].

We will show, later on, that time dependent systems can also be integrated (see § 4.3.)

Definition 4.4 A local integral flow for a vector field & : R” — RPD is an integral
flow f: G — R", where G is a Penon open neighborhood of R" x {0} in R" x R. O

In the presence of POSTULATE WAL, f{x,?) is a solution to the differential equation associated
to &, defined on some U x (-£,6) (for each peR™). The result is now (cf. [BUNGE-DUBUC:

Local concepts in S.D.G and germ representability])

Proposition 4.5 Given a A-flow, £: R" x A — R", there exists (uniquely) a local
flow that extends &. -

Uniqueness means that two such extensions agree on a neighborhood of R” x {0} in R" x R.
Notice that the extension exists directly by AXIOM III and the only thing left to check is the
flow equation, and for that, POSTULATE WA gives us a hand, giving that addition is open
for the intrinsic topology (it is so for the euclidean.)

The last condition we require in our framework is an infinitesimal version of the
Inverse Function Theorem, due to Penon [PENON: Le théoreme de inversion local en
géométrie algébrique]

POSTULATE LI (Infinitesimal inversion) For every positive n , the following
holds

Ve AmyA® [R0)=0 A %(0#0 =fiso].

In our setting, an equivalent formulation is given by
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POSTULATE LI. (Alternative formulation)

VfeR"R" [f(0)=0 A %(0)#0 = f infinitesimal invertible at 0],

where infinitesimal invertible at 0 means that the restriction to A(n) is an iso. The non trivial
part of the equivalence of both formulations is a consequence of the fact that in G, the

following holds
VfeRAM 3geR™R" Vxe Atn) (fx) = g(¥) ).

To end the section, let us say that POSTULATES WA2 and LI are valid in G (cf. [BUNGE-
DUBUC: Local concepts in S.D.G. and germ representability] and [PENON: De I'infinitésimal
au local].)

§5. Internal manifolds and tangent bundles

The idea of working in a topos is to consider every object as a generalized smooth space, and
every map between two of such objects as a generalized smooth mapping. In particular, the
notion of tangent vector to any object M at a point peM is available: namely, amap ¢t :D - M
taking 0 to p. We can define the tangent vector bundle as the exponential object MD, which
comes equipped with a canonical projection & : MD — M, namely the evaluation at the point
p; () = #(0). We have now that TpM, the tangent space to M at the element p, is the fiber
over p of TM = MD,

ToM =[lteMP110)=p I].

In the case of M =R, TpM comes endowed with a natural structure of R-space; by AXIOM I,
the map [v - [d +- p + d-v ]] defines an isomorphism R — TpR. Therefore, for this object,
the name of tangent vector bundle is fully justified. Are there any other objects for which this
notion applies?. The objects of the form R", in presence of our axioms and postulates,
behave very much as euclidean spaces, and so it seemed worthwhile introducing “euclidean-
like” objects in the internal sense to play the role of smooth manifolds in classical differential
geometry.

To begin with, in the well adapted models we already have that every smooth
manifold can be faithfully embedded (see comment after definition 0.4.12). R itself is a
particular example of these objects.
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In our context, several notions of manifolds are available (cf. [KOCK: Formal
manifolds and synthetic theory of jet bundles] and [PENON: Infinitésimaux et mtumomsm] )
The one that meets better our needs is the one of Penon, which is stronger.

Definition 5.1 An object M in a topos is said to be a (infinitesimal) manifold of
dimension 7 if for every element peM, ——{p} is isomorphic to A".

N.B. There is no difference if we require the isomorphism to carry p to 0 (proposition 3.1.)
Apart from the smooth manifolds (cons1dered as included in G) there are many other
examples of mamfolds they appear as consequence of the following results.

Proposition 5.2 In any topos, if M and N are manifolds of dimensions m and n,
respectively, then M x N is a manifold of dimension m + n. O

Corollary 5.3 R" is a manifold of dimension n.

Proposition 5.4 Letf: M — N be infinitesimally invertible (see definition after
POSTULATE LI (alternative definition).) The following are true in any topos:

a) If N is a manifold of dimension #, then so is M.

b) Iffis surjective and M is a manifold of dimension », then so is N. O

The interesting result is that for any manifold, the tangent bundle is also an R-space; indeed,
(cf. [PENON: De l'infinitésimal au local, p. 58])

Proposition 5.5 Let M be a manifold and let pe M. Then we have the chain of
isomorphisms
TpM = Tp(——{p}) = To(A™) = ToR" = R". m|

The key fact is that A, hence any manifold, inherits from R the property which allows the
introduction of an R-structure. This property, not exclusive of manifolds, is the following
([BERGERON: Objects infinitesimalement linéaires dans un modele bien adapté de G.D.S.]

Definition 5.6 An object M is called infinitesimally linear if for each n = 2,3,...
and each n-tuple of maps ¢, : D — M, such that ¢,(0) = -+~ =¢,(0), there exists a

unique map / : D(n) = M with [ «inc; =1,
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The following really makes a difference with the classical setting

Proposition 5.7 If M is infinitesimally linear, then so is any exponential MX,
Also, the inverse limit of a diagram of infinitesimally linear objects is infinitesimally
linear. O

The result we have choosen to close the chapter is the following (see [REYES-WRAITH: A
note on tangent bundles in a category with a ring object], [KOCK: Synthetic Differential
Geometry, p. 35] or [LAVENDHOME: Legons de Géométrie Différentielle Synthétique
Naive].)

Proposition 5.8 a) If M is infinitesimally linear, then TpM is canonically endowed
with an R-space structure.
b) If M — N is any map between infinitesimally linear objects, then the induced map

Tpf :TpM — Tﬂp)N is linear.

Proof. As for the addition in part a), given two tangent vectors { and &, we define ({+£)(d)
as I(d,d) for the unique  (see definition 5.6) such that /(0,-) = { and I(-,d) =&. a
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§1. Preliminaries

In any object of a topos E, in particular for the functional ones, several topologies are
available. Among them, the intrinsic topology, defined by Penon in [PENON: Topologie et
intuitionisme], seems to be the most useful and widely used.

In this chapter we present an internalization of the Weak C*-topology used by
Wassermann [WASSERMANN: Stability of Unfoldings, page 17] for objects of the form RE,
with R an ordered ring of line type and suitable E which shows particularly helpful when
proving certain density results.

We show that this topological structure is subintrinsic in the sense of Penon (cf.
[BUNGE-DUBUC: Local concepts in SDG and germ representability, page 33]), and point out
some of its properties. ‘

Finally, we show that, in the Dubuc topos G, the "global sections” functor establishes
a bijective correspondence between internal weak open parts of RX and usual weak C=-open
subsets of I"(RX ).

Classically, the Weak topology on C>(R") admits as a basis the collection of sets

V(K,r,g,U) = (heC>R™ | Jr(g-h)Kk g U },

where K < R" is compact, ge C°(R™), r is a positive integer, and U is an open neighborhood
p P

n+
of 0in Jr(n) = R( r) [WASSERMANN: Stability of Unfoldings, page 15]. This topology is
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sometimes called Compact-Open topology, and can be characterized by sequences. A
sequence of functions {f,} < C*(R") converges to a function f € C=(R"), in this topology,

if and only if in any compact set K < R”, {f,} — funiformly, and so do all the sequences of
-derivatives to the corresponding derivative of f (cf. [MICHOR: Manifolds of Differentiable
Mappings, pp. 26-33] or [HIRSCH: Differential Topology, p. 34].)

This topology is different from the so called Strong topology (also Withney C*
topology) which is finer. A sequence {f,} < C=(R") converges to a functionfe C=R"), in
the Withney topology, if and only there exists a compact set K, < R" on which {f,} and the
sequences of derivatives converge uniformly to f and to the corresponding derivative,
respectively (cf. [GOLUBITSKI-GUILLEMIN: Stable Mappings and their Singularities, page 43]
or [MATHER: Stability of C*>-mappings, II].)

Wherever needed, we will consider C=(U), for UCR", endowed with the induced
weak topology (actually the quotient topology C(R™ — C*(U) induced by the restriction
map.) Similarly we consider the sets C*([R") /r»with] C>(R™) any ideal, endowed with
the quotient weak topology.

In the classical setting, among the advantages of wbrking with the weak topology
instead of the strong topology is the following fact [HIRSCH: Differential Topology, page 62]

Proposition 1.1 For every pair, (M, N), of smooth manifolds the set C*(M,N)
with the weak topology has a complete metric. !

This result is not always valid for the strong topology; examples are known in which not
even the first axiom of countability holds [GOLUBITSKI-GUILLEMIN: Stable Mappings and
their Singularities, page 44].

As for countability, the result of the above proposition can be ameliorated for the case
of C=(M), since we have [HIRSCH: Differential Topology, page 64]

Proposition 1.2 For every manifold M, C*(M) with the weak topology is
separable. ‘

A result of general topology gives that C=°(M) is second countable, i.e., it has a countable
basis. We prove now the following result:

Proposition 1.3 Let/ < C=(R") be any ideal. The map © : C*(R") - C=[R")/, is
open for the weak topologies.
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Proof. Take any basic neighborhood of fe C~(R™), say V(K, r, f, U), where K ¢ R" is
compact, r is a positive integer, and U is any open neighborhood of 0 in J7(n). We will show
that =(V(K, r, f, U)) is a neighborhood of =(f) in the quotient topology, in other words, that
VK, r, f, 1)) is open in C*(R"). We claim that

TRV, 1., U) = A, V&, 1, b, U)

So, we have to show that if g € C*(R") is any function congruent with some function

“close” to f, then g is “close” to some other function congruent with f.
To see this, if g+I = f;+1, for some f,eV(K, r, f, U), then we define h = g-(f-f).

Clearly, g is as “close” to & as fis tof;, and f and 4 are congruent module /. |

Corollary 1.4 For any ideal ] ¢ C(R"), C“(R")/I with the induced weak

- topology satisfies the second axiom of countability.

Proof. Any open continuous image of a second countable space is also second countable
[WILLARD: General Topology, page 108.] _ O
There is one more result that shows up as useful when using basic neighborhoods of
elements in I'(RA) = C=R")/; = C=(Z(), where A= C=(R")/; . It is the following: If K
< R"is compact, since Z(J), the set of zeros of the ideal J, is a closed subspace, then in the
induced topology X N Z(I) is compact and V(X r, f, U) goes to VIKNZ(]), r, f/Z(I)’ ).

§2. Topological structures in a topos

We begin this section by recalling that a locale is a partially ordered object L for which
arbitrary suprema and finite infima exist and satisfy the following distributive law:

Examples of locales are 2, the subobject classifier of any elementary topos, as well as the
exponential object QX, for X any object (the supremum and infimum being the internal union
and intersection, respectively.)

We have now ([BUNGE-DUBUC: Local concepts in S.D.G. and germ representability]
and [PENON: De l'infinitésimal au local]) the following definition:
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Definition 2.1 A topological structure on an object X in a topos E, is an object
S(X) in ‘E which is a sublocale of QX. By that, we mean a subobject S(X) < QX
closed under finite infima (including the empty ones) and arbitrary suprema.

If UcXissothat U e S(X), then we call U an S-open part of X.

A base is an object B(X) in £ which is a sub inf-lattice of QX; i.e., BX) c QX is
closed under finite (including empty) infima.
Any base B(X) generates a topological structure S(X) as follows:

- UeSX) ifandonlyif Vxe U3V e BX) xe VcU)
We say that B(X) is a base for S(X).

Using the internal logic, in any topos Z a topological structure can be defined on any
object X of E. This is the intrinsic topology introduced by J. Penon [PENON: Topologie et
intuitionisme].

Definition 2.2 A subobject U € QX is called intrinsic (or Penon) open if the
following formula holds in E:

E=VyeUVxeX (-x=y)vxe U
N.B. We make the usual abuse of notation, and we shall very often omit the change of state.

When the topos under consideration is a Grothendieck topos, the functorial (Kripke-
Joyal) semantics! says that

SHOI=EVyeUVxeX(~(x=y)vxe l) iff

for any representable functor C and any two maps x :C* =X, y :C¥ — U, C¥ being the
associated sheaf,

C#lIl-=~(x=y)vxe U

1 Several facts are involved, namely Yoneda Lemma, every presheaf is colimit of representable functors
(effective epimorphic family), (Ca# - C#)a is an effective epimorphic family iff (Co — C)q is a covering,
ete.
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and this is true if and only if there is a covering in C of C, (Cq — C)q so that, for each o

Co#ll-=(x=y) or Co*l-xeU

§3. Compactness in a topos

In their paper [DUBUC-PENON: Objects compacts dans les topos] Penon and Dubuc
introduced a notion of compactness in an arbitrary topos. From the topological point of view,
this notion recovers a well known property of compact spaces; on the other hand, from the
logical side, it will yield the converse of a intuitionistically valid principle for certain objects
of quantification.

Definition 3.1 An object X in a topos E is called compact iff

£ I=VAeQ Voe QX [VkeK (Avo(k)) — AvVkeK (k) ] !

The next proposition (cf. also [BUNGE-GAGO: Synthetic aspects of C*-mappings, II:
Mather's theorem for infinitesimally represented germs]) gives the equivalent in this setting of
a well-known classical result, and it will be used later

Proposition 3.2 The following holds for any object E of £
VJ.Ke QF [J compact A K compact = JUK compact].

Proof. We have the following chain of deductions, for Ae Q and Be QWK

JUK=nl; nAUB

J=11,AU (JAB) A K =n-1,A U (KNB)

which follows from the identities Tyor’ i; =7, and T JuK)°i ; =T, wherei;: JoJUK

laeQ represents any truth value, and Be QK represents any formula with free values from XK. Equivalent
formulations can be given so to capture the intuition of compact objects in topology, via tubular

neighborhoods. Indeed, it is the case that in the Dubuc topos, C**(M) is a compact object in this sense if and
only if M is a compact manifold in the usual sense. For an arbitrary object K = C*°R”") /r K is compact if

and only if I'(X) = Z(I) < R* is compact in the usual sense.
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1=AUVy (JAB) A 1=4UVy (KNB)

1=A U(VRJ VNB) N V,;K (KNB))

1=Av V"(JuK)(B)

The last derivation being a consequence of the above identities, which give

Vr, UNB) = Vg

o7l OB =V (B)

K

and similarly for K. =

We now prove a result (cf. also [BUNGE-GAGO: Synthetic aspects of C*-mappings,
II: Mather's theorem for infinitesimally represented germs]) that will be of use later on,
namely that the infinitesimal monad A = — {0} is compact in the above sense.

Proposition 3.3 For any n >0, A(n) < R® is compact.

Proof. Let AcQ, Be QAM), A(n) 5 1 the unique morphism into the terminal object (epi,
due to the existence of a global section [07: 1 — A(n) .)

If we start with the assumption
A(n)=mlAUB

POSTULATE WAL.1, the covering principle for the the intrinsic topological structure P(A(n))
gives ’

A(n) = W(r-14) U 1(B), where 1 denotes the interior operator.
Now, the intrinsic topology in A(n) is trivial, if 0 1(r-1A), then 1(n-14) = A(n) = w14, and

if Oe1(B), then W(B) = A(n) = B. In the first case, from the epic character of the top arrow in
the pull-back
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f

A ——— A®)

L

'A——L——>1

it follows that A — 1 is also epi, hence iso. In the second case, VB = 1. In either case, one
concludes

1=AuVves. O

We close this section with a handy result concerning functions defined on compact objects, in
the sense of definition 3.1, with values in R. The result states that “every function defined on
a compact object is bounded away from zero.”

Proposition 3.4 For any compact object X in G, the following holds
G =VfeRK [VxeK fix)>0 = JeeR £>0 VxeK (fix) >¢)]
Proof. By definition, X is compact if and only if
GI=VAeQ VBeQX [VkeK (AVB(k) = AvVkeK B(k)]
equivalently [DUBUC-PENON: Objects compacts dans les topos], for any object X
G=Vx.eX VBe QXX [VxeX VkeK (x #x, vB(kx)) =VxeX (x #x )vVkeK B(kx)]

So, in particular, for OeR, we have

-x-1{0) U B =R xK
-{0} UV B =R

,where t : RxK — R.

Let, then, fe RX be so that VkeK f(k) > 0, and consider
B=[l(xk) e RK | fik)>x1] e QX

Clearly, we have —n-1{0} U B =R x K . Indeed, n-1{0} < Y (-o0,0)xf1[(x,0)] < B,
: X

where (-o0,x) = [lyeR | y <x ], and similarly (eo,x), which is euclidean open, hence Penon



rd

CHAP. 2 , §3. Compactness in a topos 46

open, in the presence of POSTULATE WA.1. The properties of Penon opens (Proposition
1.2.7 ) give us that £/[(x,%0)] is open, as well as ké (-0, x)xf1[(x,2°)], and so the equation
X€

—7-1{0} U B =R xK is the requirement for B to be a Penon neighborhood of 7-1{0}.

Compactness of K gives

={0} U VRB =R.

Since the euclidean topology has the covering property (definition 1.2.10), we must have

-1{0} U VnB =R.

K
7 B

b

%

™ §§r

which means that 0¢ VB . Therefore, there exists £€R, € > 0, such that K x (-£,€) € B,

as we wanted. ' m

§4. The Weak Topology

In this section we give (cf. also [BUNGE-GAGO: Synthetic aspects of C*-mappings, II:
Mather's theorem for infinitesimally represented germs]) an internal version of the weak
topology which will be used throughout the rest of this work.

Definition 4.1 Let (E,R) be a ringed topos which satisfies the generalized Kock-
Lawvere axiom, with R an ordered ring. Let ECR” be an object of E for which given
any element pe E, the objects p+D,(n) are contained in E. We define the "weak
topological structure” as the one whose base is generated by the objects
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3*(f-2)

o

VK, 1, 8, (€a)ys,) = [| fERE | Vxek N
laisr

®) € (-£4,E)]

where KcE is a compact object, 7 is an (external) natural number, geRE, and the
£€,'s are in R>Q.

If E is as above, we denote by W(RE) < Q(RE )the subobject of weak opens of RE. It can be
characterized as follows:

. n
YUe Q(RE) [Ue W(RE) & VgeU IKeQE JeeR [K comp. A £>0A( v V(K,r,g,6) <U)]

r=0
This characterization allows an easy way of seeing that W is indeed a topological
structure. '

Proposition 4.2 For any n >0 and ECR" closed under the addition by elements of
the D, (n), W(RE) is a topological structure, in the sense of definition 2.1.

Proof. We must show that W(RE) = Q(RE) is a sublocale, and for this it is enough to exhibit
its closure under finite infima. Let J,Ke Q£ be compact objects, 0 s7,ssn, ¢, 0> 0 and
g€RE; it is clear that

VUK, t, g, DV, r,g,e)nV(K, s, 8,0

where ¢ = max(r, s) and ¥> 0 is such that y< g, Y< 8 (Proposition 1.2.5). The result now
follows from Proposition 3.2 which asserts that JUK is compact. O

We are now going to compare this easy-to-use topology we have just introduced with
the one introduced by Penon for the objects upon which both are defined. The first result is
the following (cf. also [BUNGE-GAGO: Synthetic aspects of C>-mappings, II: Mather's
theorem for infinitesimally represented germs])

Proposition 4.3 For any n>0 and EcR” closed under the addition by elements of
the D (n) the weak topological structure on RE is subintrinsic, i.e,

W(RE) c P(RE)
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Proof. 1t is clearly enough to show that for any compact K € QE, 0<r<n,and € € R, 90,
for 0 € RE (the proof would go just the same for any other geRE )

V(K,r, 0, ) € P(RE)

First of all, notice that

lael

V&, 70,8=") G—;)l [feRE | VxeK fx) € (e8],
X

and Penon opens are stable under finite infima and change of base; therefore, it would be
enough to show that

W(K, €) = [[feRE | VxeK (f(x) € (-¢, €)]] € P(RE)
in other words, we should show that
E I=VheRE YfeW(K,e) [(f=h) v he W(K, €) ]

Now, (-€, €) C R is an euclidean open, hence (see comment after proposition 1.2.9) Penon
open and the following is true

E |=VheRE erW(K, €) VxeK [(f(x)=h(x) ) v h(x)e(-€, €) ]
and, since

VxeK [ (f=g) = (f(x)=g(x)) ]

VxeK [-(fx)=g(x)) = —(f=g) ]
is intuitionistically valid, from the above we get
E I=VheRE VfeW(K, ) VxeK [-(f=h) v h(x)€(-¢, €) ]

and compactness of K gives

E =VheRE VfeW(K, €) [=(f=h ) v VxeK h(x)e(-¢, &) ]
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i.e.,
E I=VheREVfeW(K, €) [~(f=h ) v he W(K, €) ]

‘as required. g

As for the converse, it is not known to us whether or not it is true. We do know
certain instances of Penon opens which can be shown to be weak opens, namely those which
follow from the following two theorems:

Theorem 4.4 For any n>0 the object RPA™)
topological structure, i.e.:

is separated (T';) for the weak

VfeRPAM _(11crPA™ is weak open.

Proof. Let feRPA(")be given at stage A, and let he—{f} be an element at any later stage
(though we do not make any distinction). We will show that there exist € € R, € >0, so that
the basic neighborhood V(A(n), I, A, €) is contained in —{f}.

But, from —(f=h), it follows that =(f(0)=h(0)); otherwise, we would have the
following derivations (all of them known to be intuitionistically valid [DUMMET: Elements of
Intuitionismy],)

—(f(0)=h(0))

Vxe A(n) =—(f(x)=h(x))

—3xe A(n) —|(f(x)=h(X)) ’

and this would contradict our assumption —(f=g), that reads —VxeA(n)(f(x)=h(x)) or
equivalently ~—3xeA(n) =(f(x)=h(x)).

Now, —~(f(0)=h(0)) & f0)-h(0)>0 v f(0)-h(0)<0 [by R.4 in POSTULATE WAL.2,
section 1.2]. Take £eR to be the "positive" one of both possibilities in each member of the
covering, and the result will follow!. O

INotice that this is a local conclusion, as the existence of ¢ itself.
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The same result can be shown to hold for any object £ for which Kock's Principle is
true [KOCK: Synthetic characterization of reduced algebras], that for representable objects in
G correspond to point determined algebras. '

Theorem 4.5 Let ECR" be any object closed under the addition by elements of the
D (n), for which Kock's Principle holds, i.e.,

VfeRE —VxeE D(x)=0 = Axe E P(x)#0.
Then RE is weak- separated (T)).

Proof. The proof follows a similar pattern to that of theorem 4.4. First of all, one shows that
3xeE —(f(x)=h(x)). Secondly, for this element, x,, one considers the infinitesimal monad

around it and follows the main line of the argument given above for the basic weak
neighborhood V(——{x,}, 1, h, &). 2 O

If we were to have any kind of converse result, from the proof of Proposition 4.3
would follow the need for the basic neighborhoods, V(K r, f, €) in definition 4.1, of being

actually weak open. This is the content of our next proposition.

Proposition 4.6 Let ECR" be closed under addition by elements of the D (n). For
any compact Ke QE, any positive integer n, any map geRE, V(K, 1, f, €) € W(RE).

Proof. Let he V(K, r, f, €) at any given stage (which we do not consider since the result we
are after is of local nature, the final condition of existence of a compact and a positive element
of R are to hold in some cover of this stage at which we keep the same names for the
objects). So, we have

al -
VxeK —%(x)e (-¢,8), lal<r.

We will show that there exists yeR, v> 0, for which

VK,r,h, )< V(K, 1,8, 8).

2Notice that —{x}E, as E is closed under the addition by elements from D,(n).
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. o)
Indeed, let & be so that Il < 7; the function [xeR |- € - J ai}; ) (x) ] is in the conditions

of Proposition 3.4 and therefore there exists §; € R, 87 > 0, such that

e,
VxekK ib(:m—‘g)(x)<.¢s-8}‘.

3 n-g)

pws (x) 1, there exists &€ R, & > 0, such that

Similarly, for the function [xeR > ¢+

I%(h-g)
VxekK 25>e+#—(x)>5§ .

By proposition 1.2.5, there exists 66R, §>0, §< &7 (lal Sr,i=1,2), and for this &

oy oy
w::r a%—:f-)-(x) € (-€ +90, &-9).

Now we can take y= &, and linearity of derivative and compatibility of the order relation

takes care of the rest, namely
- | Jt-h) J%n-g)
S8 () = eg) O
; x x) + x) € (-&,8)

85. Considerations of use

The reason why we introduced this topological structure, among others, is to use it in
proving some density results about special classes of germs. With this goal in mind we
should give the justification for such a decision. It is indeed the aim of this section to
characterize this internal weak topology as corresponding to the classical weak C*-topology,
via the global sections functor I': G — Set. In the process, we will also show that in G, for
objects of interest, the internal weak topology agrees with the Penon topology, thus allowing
us to rephrase important notions of Synthetic Stability Theory of [BUNGE-GAGO: Synthetic
aspects of C*-mappings, II: Mather's theorem for infinitesimally represented germs] in the
usual terms, while exploiting still their logical nature.

We begin by giving a result (also included in [BUNGE-GAGO: Synthetic aspects of
C>-mappings, II: Mather's theorem for infinitesimally represented germs]) which
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characterizes Penon opens of RX, with X a representable object in G, in terms of global
sections:

Proposition 5.1 Let X be any representable object in G. If U — RX is Penon
open, then I'(U) < X is open in the (quotient) weak C*-topology.

Proof. Under these hypothesis we will show that, in the pullback diagram

w —L o o
g
T(A) &)I‘(R?)‘

W is an open subset of Z(J) = I'(&), for any representable A = C”(R")/, , I of local character

and any A L px ,
Indeed, take any aeW, i.e., a global section of A, such that fa factors through U

A —— RX

and consider the A-elements erRXand g*e U (given by AL RX and K15y ,

respectively.) 7
By definition of Penon open object U at stage A we have

=~ (=g vfeU

Using functorial semantics, there exists an epimorphic family (F; —)K)i ¢ (a covering
of A in the site, (4; — A),.,; ) such that, for each ie/

= —(f*=g*) o l—gfteU
4 4



CHAP. 2 §5. Considerations of use 53

where # denotes the change of stage A; — A. Applying global sections we get a surjective
family (T'(4;) =T'(4)),; , and the V;'s = (4] )'s form an open cover of Z(J); therefore,
aeT'(A) must be in I’ (A—,-o ), for some i, . We claim that

— —(fH#= o*#
b —(FP=8"")
For we have

l—f=g corresponding to the factorization 1 — A

l{a ;
A
f —

»&, — A ——— RX

and this would imply 1 = 0, contrary to the Nullstellensatz. Therefore, a belongs to I'(4, i)
with Il— = f #*¢ U, which means g & I"(A',-o ) € W, open, as claimed. !
to

To finish the proof we give a characterization of Weak C*-opens. A set VeX = C~R”)/ 1 is
weak open if for any given smooth path [ﬁ’] : [0,1] = X (i.e., induced by a smooth mapping
F : [0,1] xR? — R) [F1'(V) is open in [0,1].2 Indeed, if V is not weak open, then there
exists a sequence {[g,]} in X\V such that {[g,]} — [g] with the weak topology, and [g] ¢ V
By the definition of quotient topology, there exists a sequence {f,} weak converging 1o f in
C*(RP), and such that [g,] = [f,] and [g] = [f]. A result of Reyes-Van Qué [REYES & VAN
QUE: Smooth functors and synthetic calculus] gives a subsequence {fne) —f; and a smooth
map F: [0,1] x R? - R such that

1The argument given works just the same for any object E in the topos, not only for exponential ones.
2The converse result is also true, as smooth operators between spaces are continuous with respect to the
Fréchet topology [FROLICHER: Applications lisses entre spaces et variétées de Fréchet]
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F (O’ ') Ef
FG, ) =fng Vk

Thus Oe [ﬁ’]'l(V) and 7lc-e [ﬁ']'l(V), and [f:]-l(v) cannot be open.

Now we are done, for [0,1], being a closed set is the zero set of some smooth
function @ [WITHNEY: Analytic extensions of differentiable functions defined in closed sets];
the ideal generated by @ has the same zero set and is of local character [DUBUC: C*>-schemes];
and we apply the result to the pullback

W — T

Ll

[0,1]_[1"(?)_]) D 1 m|
Corollary 5.2 Let X cR"be any representable object, closed under addition by
elements of D,(n) in G. If U — RX is Weak open, then I'(U) € X is open in the
(quotient) weak C>-topology.

Proof. Immediate after Proposition 4.3 and the Lemma. |

So, for representable objects, closed under addition by elements of D,(n), in G, T
establishes an injective correspondence between internal weak open parts of RX and weak
C=-subsets of I'(RX). The question is now wether or not one has a similar result to that of
Proposition 1.2.11. The answer is yes, and is contained in the following proposition

Proposition 5.3 Given any representable object, X <R", closed under addition by
elements of the D(n) in G, if V< T (RX) is a weak C=-open subset, then A(V) C RX
is internal weak open.

IThe reverse implication has been studied by Bruno [BRUNO: Logical opens of exponential objects]. He has
proved that for any representable object X , if Vcl"(RY) is weak C*=-open, then A(V)cRX is Penon open
(actually, this is just an instance of a more general result.)
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Proof. Suppose that X = C=(R")/ , and let V < I'(RX) be a weak C>-open subset. I & is
any representable object, say 4 = C”OR’)/K ,and g :A — RX, factors through the subobject

AV)c RX, or equivalently (Proposition 1.2.11) g : T'(A)— T(RX) factors through V <
Iy (RX), we must show that, for some internal weak open W, geW cA(V), i.e., ’

II—A IWcA(V) [W weak open A geW ].

We keep the same name for g : [(A)— ['(RX).

For each xeT'(4), g(x)eV, and therefore there exists a basic neighborhood around it;
this means that Im(g)cV is covered by a family {(V(K,, r;, k;, €) };.p i-e.. K,CZ())
compact, h;e I'(RX) (see remark after Corollary 1.4). Since ['(RX) = C=(R")/, is second
countable (see Corollary 1.4), the set of index / can be considered countable, and the family
{A; > A}, where A; =gl A(V(K,, r;, h;, €)) is a cover of A (see Proposition 1.4.11);
indeed A(V(K, r;, h;, €))) is Penon open (footnote after proposition 5.1), and therefore each
A; =g A(V(K,, r, h, €)) is Penon open (see Proposition 1.2.7), so I'(4; )cZ(K) is open
(Proposition 1.2.11).

The claim is that, for each iel we have

A- """"" >V(AK", r‘-, h", 8")

l l

i —%

Since AK; < X is compact in the sense of definition 3.1 (TAK; =K; < Z(I) compact), the
claim will finish the proof.
We already know that

A. ......... > A(V(K‘, ri, hl’ 81))

1 |

because we have I'(4)) = g-/ (V(Ki, r, h; 8,-)), and so
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I"(A‘- Yoerenaees >V, h;, E)
ra—-2=2  rgx)

So, it suffices to show that

l_lrx A(V(Kp s by 5;')) c V(AK,, r;, h;, &)

Actually we will show that this inclusion is true at any stage. This amounts to showing that,
for all representable B, any arrow f : B — RX factors through V(AK, r;, h;, €), provided it
does through A(V(K,, r;, h;, €))), or equivalently, provided that the corresponding global
section f : '(B) —» I"(RX) factors through V(K r;, h;, €;) (see section 1.2). This last
requirement gives the factorization

3™ (f-hy)
one

:TB) xK; > (-¢;, &) = R, for every a with lal <r )

and from here, using the definition of A and its properties (Proposition 1.2.12) we get

I -h)

pw :BxAK; > A((-€;, €)) = R, for every a with lal <r,

which gives the required factorization

f:B «>V(AK, r, h, €) = RX. =



Density of regular values

§ 1. Preliminaries

In [BUNGE: Synthetic aspects of C*>-mappings] some definitions concerning different aspects
of C>-mappings were given for the synthetic context; among others, the notion of
submersion, regular and critical values, transversality and submanifold cut out by
independent functions.

Using the Dubuc topos, G, as the test model, external versions of some theorems
were given in order to achieve an (external) version of Thom's Transversality Theorem. One
of the major difficulties in that study was the the lack of a positive (non negative) version of
Sard's theorem in the internal sense as consequence of the intuitionistic character of the
internal logic of the model.

In this chapter we present a way of overcoming these difficulties by postulating a
version of the Theorem of Regular Values (for germs) (cf. also [BUNGE-GAGO: Synthetic
aspects of C*-mappings,IT] which can be internally derived from Sard's Theorem, whjch in
turn we show to be internally valid in G. We begin by recalling some definitions and
notations from [BUNGE: Synthetic aspects of C*°-mappings].

Definition 1.1 An n-tuple of elements v ;s -+ sV, inR? forms a linearly

n

independent set if the following holds
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n n
VYA, .. A€ R[v (L #0) = DA, #0 1.

=l i=1

This notion (equivalent, over a field, to the one introduced by Kock in [KOCK: Universal
Projective geometry via topos theory]) allows the introduction of the basic notions of linear
algebra in the usual manner, in particular the notion of rank A 2 k (we write =p, if p is
maximal) can be defined.

Definition 1.2 LetfeRPR" and xeR™. We say that f is a submersion at x if and

only if rank(Df) = p, where D,f = (i (x)) .
ox;j ij

fis called a submersion if, for every element xeR", f is a submersion at x.
After Proposition 2.2.4, plain commutative algebra constructions give the existence of a right

inverse for any matrix A €RP™ with Rank(A) 2 p .1 With this result in mind it is easy to
prove the following proposition

Proposition 1.3 Let f e RPR" x € R*. Then the following are equivalent:

i) fis a submersion at x.

oy ' F, N .
ii) Gipeip)e (B) ({E(x), cee s ax—ip(x)}lmearly mdependem)

iii) dfy is locally surjective.

Part iii) just says that for the induced linear map between the tangent vector spaces (see
Proposition 1.5.8) which corresponds to the Jacobian D,f (with respect to the canonical
basis) the following holds

VveRPD 1(v) = fix) = JueR"™P [x) = v A Pu =]

Definition 1.4 Letf e RPR" and y € RP. We say that y is a critical value of f if
y y

10f course, the existence is in the internal logic, as the notion of Rank itself is local.



CHAP. 3 §1. Preliminaries 60

IxeR*[flx)=y A A deDxNHy=01,
He (2 )
where (: ) denotes the set of subsets of {1, ... ,n} consisting of p elements.

As in the classical setting, we have the following

Definition 1.5 Letfe RPR" and y € RP. We say that y is a regular value of fif y
is not a critical value.

In the presence of the field property (POSTULATE A in §1.2,) this condition is equivalent to
the following one

VxeR*[fx)#y v V detDf)y#0],
He(:)
i.e.,

VxeR" [f(x)#y v fis a submersion at x].

Corollary 1.6 Letf e RPR”™ be a submersion, then every element y € R? is a
regular value forf,. O

§2. Sard's Theorem

This section is dedicated to prove the negative version of the result we pursue in this chapter,
namely a theorem of Sard's. This theorem is quoted in the classical context to derive several
density results [GOLUBITSKI-GUILLEMIN: Stable Mappings and their Singularities, page 34]
and establishes that the set of critical values of a smooth function has measure zero.
However, what is actually used is the fact that in every non empty interval there are regular
values, equivalent to the above within classical logic.
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In our context, the internal logic of the topos follows the rules of intuitionistic logic
and both results cannot be proven to be equivalent. We will show that when we restrict to
functions defined in an infinitesimal domain, i.e., when we restrict to germs in the good
models, the positive version follows from the negative one, which holds in our test model G,
as we are going to show.

Although we will not make use of the full strength of the result we give the proof in
all generality, as there is no much difference. The result is given by the following theorem
(cf. also [BUNGE-GAGO: Synthetic aspects of C*-mappings, II: Mather's theorem for
infinitesimally represented germs])

Theorem 2.1 Sard's Theorem holds in G, i.e.,
VfeRPR" YUeP(RP) [—VyeRP? [yeU = y critical value of f]]

Proof. Let f €1 RPR” pe represented by F : R” x R® — R?, a smooth mapping defined
modulo /+x;, provided A = C™R") /1 - For our purposes it is certainly enough to suppose U

= (a,b) for a,beR, I a< b. So, we have to show
I~ —VyeRP [ye(a,b) = y critical value of f].
Ifa.be TR are represented by o, : R” — R, smooth mappings defined modulo J

Iy @ <b ifandonlyif VreZ() (o) <B@®),

Assume B = C“(R‘)/J 3 Zin G, such that

I- 5= VYERP [ye(a,b¥ =y critical value of f] .

By functorial semantics, we have to show that B = 0. If not, by the "nullstellensatz"
(Corollary 0.4.9) Z(J) = @. Let r,€ Z(J); then

at(r) < B#(z,),

where o and p* are the induced by o and B through the change of stage 3.
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Take any ze (o*(r,) , B*(z,)) = R. Then there exists AeR with

z=Na() + (1-1)B*C,).
_ Consider the equivalence class, module J of & : xe R® I— A-0#(X) + (1-A)-B*(x)eR;
it defines an element ce ¥ (a,b), and therefore

g ¢ critical value of f .

This amounts to

I~ IxeR* [fix)=c A A det(Dxf)y=0],
He (:)
which means that there exists a covering (B, — B ), and £ : RS¢ — R" whose classes,

module the ideals (of definition of the B 's) J,, satisfy
VteZ(J,)  F(t0)=£@), and

oF -
VieZ(J,) every subset of {%(I,O), vee s ;(t,O)} consisting of
i n

P vectors has zero determinant.

Now, since Z(J) = YZ(J,) (Proposition 0.4.11,) there must exist some o, 5o that
toEZ(J%). Considering the mapping F, = F({,, -) : R® = R?, F, is smooth and z is a critical
value of Fo; but z is any point of the interval (o#(z,) , B¥(z,)), and that contradicts classical

Sard's theorem. Therefore, we must have B = Q. O

§3. Regular values of germs

As we mentioned in previous sections of this chapter, the key result to any study of
transversality or stability seems to be the positive version of Sard's Theorem. We have also
pointed out the difficulties in the synthetic context due to the incompatibility of classical logic
with the basic axiom [KOCK: Synthetic Differential Geometry]. M. Bunge [BUNGE: Synthetic
aspects of C™-mappings] has given a external version of this resuit which is valid in G.

In this section we make use of very particular properties of the infinitesimal monad,
A(n), to show that, when one reduces to spaces of the form RA(M), the result is internally
valid in G, and can actually be derived from Sard's axiom. As a consequence, in the presence
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of the axiom of germ representability, this result will enable us to develop most of the theory
of stability for germs.

We can now safely adopt POSTULATE D (cf. also [BUNGE-GAGO: Synthetic aspects
of C™-mappings, II: Mather's theorem for infinitesimally represented germs]) and prove

Theorem 3.1 (Density of regular values) For n,p > 0 and U < RP open, the
following holds in G

erR"A(") 3yeU [y regular value of 1.

Proof. Spelling out the definition of regular value, and taking into account POSTULATE A (see
§1.2) which § satisfies, what is to be proven takes the following form

VfeRPA ™ 3yey [vxeAm) [~(f=y)v Vv —(denDHy =0)] 1.
re(?)
For a given f €1 RPA("), we consider the map ® RPAMXD) gefined as follows
D(x.y) = (fx)y) + 3, (desDeHy ).
Clearly, a sufficient condition for y to be a regular value of f is, for ye U

Vxe A(n) —~(D(x,y)=0), (A)

and a necessary condition for y to be a critical value of f is, for ye U
dxe A(n) (P(x,y)=0). (B)

Therefore, it suffices for our purposes to establish that (A) implies (B), as (A) is a
consequence of Sard's which holds in G as we have shown in Theorem 3.6.

Using the rules of intuitionistic logic, valid in any topos (cf. CHAPTER 0 and the
references therein) we first derive from (A), the following

e VFeRPAM _GxeA(n) VyeU [®(xy)=0],
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and now we consider the equivalent statement [DUMMET: Elements of intuitionistic logic,
p-291]

iy VreRFAP YxeA(n) —vyeU [@(x.y)=0].

Since U is of the form 1(V) for some V < R open (Proposition 2.2.13), U is point
determined in the sense of Kock in [KOCK: Synthetic characterization 6f reduced algebras]
(see [KOCK: Synthetic Differential Geometry, p. 225]). For these objects, a sort of Marcov
principle is available and allows us to derive from the above the following

e VeRPAM VxeA(n) yeU —(®(xy)=0].
Now we use the fact that in G, the object representing the germs is in turn
representable and the principle of local choice of Fourman (see {MOERDUK-REYES: Smooth

spaces vs. continuous spaces in the models for $.D.G.] for a proof for R, easily translated to
any representable) can be applied to get

e VfeRP Aln)3 e Q(QA™)1 open cover of A(n)jaVVe U 3ge UV Yxe V=[D(x.y)=0]

But, the intrinsic topology of A(n) is trivial (any Penon open object must contain the
infinitesimal monad of each of its elements), and since Oe A(n), and U is a covering, we must
have A(n) =V, for some Ve . In particular, we have

I VFeRPAM 356 UM vxe A(n) ~[®(x.1)=0].

To finish the proof, we use the explicit description of A(n) in G, i.e., A = ——{0}, in
the following sense. First of all, for a given f € R”A("), the above gives the existence of a

covering of A" in the site, (A, — "A),_; such that, for each i€l, there is a g; 1 rPAM)

for which

by Ve A(n) =[Oz, 8;(x))=0].

Finally, since R is a local ring, from the definition of @ we have the formulation
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I VxeAm [~(f=g ) v v —(derDsf)y=0) ]
He (;')

which gives, for any x € A(n),

Iy —~(fx)=g;(x) or = VvV —(det(Dyf)y =0).
He (; )
The second possibility does not depend on g,. As for the first one, the assertion it

makes is entirely equivalent to

Iy, ~(W=g,0),

because of the monotonicity of ——, that guarantees ——(f{x)=0)) and ——(g,(x)=g0)),
from ——(x=0). Therefore for the A, element ¢c; = g; (0) we have

g =(fx)=c,),

and, the A; 's form a covering; thus, we have proved the wanted result

Iy 3yeU VxeA(n) ~(@(x,y)=0). O

With such a handy tool, we can easily obtain the internal validity in G of the results of
[BUNGE: Synthetic aspects of C*-mappings] for germs. We hope that this will contribute to
reinforce the claim made by Bunge (cf. [BUNGE: Synthetic aspects of C*-mappings]), Bunge
and Dubuc (cf. [BUNGE-DUBUC: Local concepts in S.D.G. and germ representability]) and
Penon (cf. [PENON: De l'infinitésimal au local]) that the right place to do (interpret) Synthetic
Differential Geometry is a model in which germs are infinitesimally represented. We
subscribe the claim.

Definition 3.2 A germ feRPA™ is said to be an immersion if rank(D f) = n.
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We now have the following result (cf. also [BUNGE-GAGO: Synthetic aspects of C>=-
mappings, II: Mather's theorem for infinitesimally represented germs]).

Corollary 3.3 If p>2n, then the class of immersions is dense in reA(M) for the
weak topology (see §2.4)

Proof. We will show that, for every basic neighborhood of the weak topology, there exists
an immersion on it. In doing so, we use the fact that A(n) is compact (Proposition 2.3.3) to
reduce ourselves to the consideration of objects of the form V(A(n), r, h, €) with h & rPAM)
1<r<n,and £ € R, £> 0. For such an object, we will show that there exists a polynomial
oe RPR®, of total degree I and coefficients c; € (-€, &)P, such that h + Glp(,) is an
immersion.

Let s=rank(D,h), and define & & RPASH) a5 follows

O, x) = z h ;—u

i=1

by Theorem 3.1, we have

dc,, ,RP [c, € (-68P A c,,, regular value of ®).

Define g IeR”A(") by g;(x)=h(x)+c

++1 X541 - By ordinary differentiation [KOCK:
Synthetic Differential Geometry, §1.2,] we get

%gi.(x) = %hi(x), for every x € A(n), fori <,

o
gL( = ahﬁ’x) +c¢,,; foreveryxe A(n).

ox

s+1 s+1

Since ¢, ; is a regular value of @, and s < n, p = 2n, ® cannot be a submersion at (4, x)

Y(A, x)e A(s+n) [—~(D submersion at (A, x)],
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and ¢, ;,being a regular value of @, cannot be in the image of ®. In particular
=(®(0,0)=c,,,). Using this remark and that s=rank(D,h), it is easily seen (as in [BUNGE:
Synthetic aspects of C*-mappings]) that

VA'I ,}. eR [ﬂ( 21 —(0) _(0) s+] )]’

s+1
i=1

which means that

S
2 2
VA,...AeR [=( E 1=ko) = =140))].
P i s+1

and this amounts to saying that the set

0! d o,
{ Loy, ..., ﬂ(O),i(O)}
axl 8xs axs«r-l
is linearly in dependent.

By repeating this procedure n-(s+I) times, we get Coprs Csipr -+ Cn€ (-E,E)P the
coefficients of G(x) = Coe1Xsep +°°° +C,'X,, the wanted polynomial, as A+GC is an

immersion, and certainly A+ceV(A(n), r, h, €). O

It is also possible to show that the immersions in RPA® gorm a weak open object.

Proposition 3.4 If p 2 n, the object [IfeR"A(") | f is an immersionl] is open for the
weak topology in R"A(").

Proof. Since R is separated (T;) for the Penon topology (Proposition 1.2.8) and R* = —{0}
(Proposition 1.2.2), the object [lAeMat(kxk) | det(A) # 0 ] is also Penon open (Proposition
1.2.7). By the standard equivalence between the definitions of Rank(A) (Proposition 1.2.4)
the object [lAeMar(nxp) | Rank(A) = n 1] = R*? is also Penon open (union of inverse images
of opens), hence euclidean open in presence of POSTULATE WA .1. Then, if a matrix A has
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rank n so does any other whose entries “differ” form those of A by less than &, for some
EER, >0

Now, fe R"A(")is an immersion if Rank(Dqf) = n. By the above, there exists € € R,
.with &> 0, for which V(A(n), 1, £, &) < Imm(RPA™ as required. m|

In our setting, germs of immersions behave particularly well. In this sense we have

Proposition 3.5 If f € RPR” is an immersion at 0 € R", then f is infinitesimally
injective at 0, i.e.

Vx,yeA(n) [(f(x) =) = (x=y)].

Proof. As a consequence of AXIOM V, for f: R® — RP, there exists g : R” x R* = Mat(nxp)
such that for every x and y in R", f(x) - Ay) = g(x, ¥):(x;-y;), and for évery given x of R",
8(x, x) = Dxf (see Corollary 1.1.5.) Now, f immersion at 0 means Rank(D4f) = n , and by
proposition above Rank(A) = n , for every matrix A in ——{D4f}. But Dof = g(0, 0), and if
x,y € A(n), then (x, y) is in A(n+n), and therefore g(x, y) € —{g(0, 0)} = ——{D¢f}. This
means that g(x, y) is left invertible for all x,y € A(n) which yields the wanted result. a

§4. Transversality

To end this chapter, we give one more consequence of the theorem of density of regular
values, namely Thom's Transversality Theorem, the key result in the theory [GOLUBITSKI-
GUILLEMIN: Stable mappings and their singularities, p. 54]

The notion of transversality is a generalization of that of regular value [GUILLEMIN-
POLLACK: Differential Topology,] and can be defined in our context [BUNGE: Synthetic
aspects of C*-mappings]. For this, recall that if X, and X, are R-submodules of a given R-
module ¥, by X, +X, we denote the following subobject of ¥: [[x,+x, | x,€X, A x,€X, ]].
It is an R-submodule of Y.

Recall also, that if fe RPX, with xe XCR", there is induced df,e (T,RP)'", an R-
linear map whose image, Im(df) is an R-submodule of Tﬂx)RP.

We have to choose a notion of manifold, among the several ones available in the
synthetic context. For our general purposes, the right one seems to be the following (see
Definition 1.5.1):
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Definition 4.1 A subobject M of R" is said to be a submanifold of R" of
dimension r < n (also, we could say of codimension n-r,) if for each x € M there is
given an isomorphism o:——{x} = ——{0}", such that the restriction of  to
—{x}"M goes onto ——{0}", considered as subobject of —{0}", the inclusion
map being given by (x;, ... x,) I= (x,,....x,,0, ™ ,0).

However, in stating and proving Thom's theorem, we seem to need a stronger notion

Definition 4.2 For 81s e o8 eRR™ we say that they are independent functions if

Vxe ng,-'l{O} VueT R" [{(dg1),(u) -~ (dgs), (W)} is linearly independent].

i=l
We, now take from [BUNGE: Synthetic aspects of C°>-mappings] the two following theorems

Theorem 4.3 (Submersion theorem) Letf & RPR", Xx € R™ with f a submersion at

x. Then the germ of f at x is locally equivalent to the germ at O of the canonical
projection Z:R"” — RP.

Proof. Without loss of generality we can assume that x is the 0; indeed, the isomorphism
——{x} = ——{0) does not affect the rank of , nor the equivalence of germs. So, let feRPR"
be a submersion at 0eR", i.c.,

_ i F o\,
-~ (i,,...Z)e @) ({ax—il(O), ,ax—ip(O) linearly independent | .

Kripke-Joyal semantics gives the existence of a jointly epimorphic family
(64,4}, in E, such that, for each ie/, there is a p-tuple (iy, ... ,i,) so that

5;'* (gi.f'_(O)), e ;_* (;iL(O)) are linearly independent as vectors at stage A,.,
3] ip

or equivalently (by uniqueness in Kock-Lawvere axiom)

* ]
(%i‘i.ﬁ(O)), e (a(ai—iﬂ(O)) are linearly independent .
i

ip
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We intend to show that, for each i € I, there is a jointly epimorphic family
{Bij—)Ai } jel; such that, for each jeJ;, there are @ EB;‘, R™R" infinitesimal invertible at 0, and

ves; RPR? infinitesimal invertible at f{0) making commutative the following diagram

So, we could, and for simplicity we do now, assume that

{i(O) y eee s if-(O)} linearly independent at stage A.,
oxi ax,-p

Define ¢ €4 R"X" by @ = <f,x, >. Clearly, ¢(0) =0 and rank(Do¢) = n. The
inverse function theorem (POSTULATE LI. [alternative formulation] §1.4) gives @
infinitesimally invertible at 0. Composing f with this inverse (at the corresponding stage) we
get the required projection. O

Corollary 4.4 (Preimage theorem) The following holds in our setting

VfeRPR™YyeRP [reg. val. of f =M=f1{y} submanifold of R" of codimension p.

Proof. Assume f,y to be given both at stage A. If x & 4 M, then f(x) = y; therefore f is

necessarily a submersion at x. By the theorem above, the germ of f at x is equivalent to that
of n; at 0. i.e., there is a jointly epimorphic family (B;—A},.; , and for each ie/
isomorphisms ¢, and ; making commutative the square

f

Jooe

Am) —=— A()

where we have omitted the notation indicating the change of stage and the arrows are to be
interpreted at the corresponding level.l So, for instance, in the topos E/4, we have the
pullback diagram of next page

IThe logical character of the functor involved in a change of stage enables us to make these abuses of

notation. In particular, since these functors ail preserve products, the canonical projections are also preserved.
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(—{x}nM > <={x} —

fiyjl—— R’" flx
f
— RP —

which says that (ﬂ,,)'l{y] = ~r={x}NM.
Now, the result follows from the commutativity of (*), since we have the following
chain of isomorphisms (ﬂ,)'l{wi(O)} = —{x}"\M = (11:;' y1{0} = A(n-p).

The result we have just proved, establishes that the solutions of an equation f(x) =y
form a submanifold of R®, provided y &€ RP is a regular value of f € RPR", Very often, it i
useful to conclude that the object of elements of R*, whose functional values are constrainec
to be, not an element but, to satisfy a certain condition, form a submanifold. We give, in ow
context, an instance of condition to be imposed on N < R? such that the object of solution:
for the equation f(x) € N forms a submanifold of R".

Definition 4.5 Letf e RPR" x € R* N c RP be such that f(x) € N. We say that_
is ransversal to N at x (we write fh N) if Tﬂx)RP = Im(df,) + Tﬂx)N . We say that_
is transversal to N (and we write fAN) if VxeR® (=(f(x)eN) v fh_N.

The following constitutes a generalization of the Preimage theorem (cf. also [BUNGE-GAGC
Synthetic aspects of C*-mappings, II: Mather's theorem for infinitesimally represente:
germs)):

Theorem 4.6 Letfe RPR” and N cRP a submanifold cut out by independen
functions, and of codimension s < p. Assume that fhN. Then M = f 1(N )T R™is
submanifold of codimension s (also cut out by independent functions.)



CHAP. 3 §4. Transversality 72

Proof. Let f € RPR™ and N < RP be both given at stage A, and assume that fhN. By

definition of submanifold cut out by independent functions, there is a jointly epimorphic
family {A;—A};_; such that, for each i€, N is carved out of RP by independent functions

g{,...,gi e‘A,-RRp. Define a new function g = (g{, ,gi ) €4; R°R?_The claim is now,
that gi-f is a submersion at every x €4; R", for which gi-f (x) € N. To see this use the
following diagram in E /4,

d(gi
T R" ____(_g_fl,f__) TyigeR’

df, l I (48

Im(df) ————— Ty R”

Now, since gi is a submersion, (dgé )z is locally surjective, and the result will follow at
once from the condition T, RP = Im(df,) + Ker((dg* )ﬂx)) =Im(df,) + Tg,N, at stage A,.
But the second equality follows from definition of gi , and TgyRP = Im(df)) + TV is what
transversality says at level A,. 1

Using Theorem 4.4, (gi+f)-1{0} is a submanifold of codimension s, and we have the

equalities (gisf )-1{0} =£-1 (gi "1{0}) =f-1(V), which end the proof. m

We are now in a position to state and prove the announced

Theorem 4.7 (Thom's Transversality Theorem) For nym >0, and 1 < r < n, given
any N < RPPr(?) = R* a submanifold cut out by independent functions, the class of
germs g € RPA®) with 57 g\ is dense for the weak topology.

Proof. With the same simplifications of Corollary 3.3, we will find a polynomial ce RPR”,
of total degree ! and coefficients c;€ (-£,6), such that J (h+0| An) YAN. Define the map v, at

level A, given by the following law

[(cHe A(n)xRPPrM) | J7 (h+f)(x)e RPPr(M),

INotice that the notion of transversality is stable in the sense of [KOCK: Synthetic Differential Geometry,
p.141.]
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Investigating the jacobian of y, we find that it is a submersion!, and therefore v, M\N. Since
N is cut out by independent functions, Theorem 4.6 gives that M = ¥,-1(N) is a submanifold
of A(n) x R®, and Theorem 3.1 gives

3(ci'a)ls‘.sp' 1sas("2"‘)5R’ lc; o€ (-6,6) A (c; ) regular value of ™), ]

where M| denotes the germ at 0 of the restriction to M of the projection %: A(n) x R® — R*

Define 6,(x) = ¥ ¢; 41", i=l, ... ,p, and check that G = (), ¢, is the required
latsr

polynomial. O

11t is useful the identification RPP(M) = zs.



Stebility

§ 1. Basic definitions

The aim of this chapter is the introduction of various notions of stability in the context of
Synthetic Differential Geometry. To this end, we exhibit the second basic result (along with
the Theorem of Density of Regular values) for the study of singularities, namely the
Malgrange Theorem. We will see how these notions simplify and will present (internally)
some useful theorems of characterization. In particular, we prove (cf. also [BUNGE-GAGO:
Synthetic aspects of C*=-mappings, II: Mather's theorem for infinitesimally represented
germs]) that a version of Mather's theorem, which characterizes in algebraic terms the
condition for a germ to be stable, holds in our test model G. Finally, we point out (as we did
more extensively in [BUNGE-GAGO: Synthetic aspects of C*>-mappings, II: Mather's theorem
for infinitesimally represented germs]) that, in this context, germs and unfoldings can receive
the same treatment, contrary to what happens in the classical setting (cf. [WASSERMANN:
Stability of Unfoldings]).

The basic notion in the theory of stable C*-mappings is that of equivalence and
similarity for germs, unfoldings, vector fields, etc. (cf. [BROCKER: Differentiable Germs and
Catastrophes], [GOLUBITSKI-GUILLEMIN: Stable Mappings and their Singularities],
[POENARU: Analyse Différentielle], [WASSERMANN: Stability of Unfoldings]).
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For mappings, equivalence means “looking alike” after some change of coordinates. So, for
instance, in the picture above, the dotted function would be equivalent to the black one, while
in the picture below the functions are not equivalent, yet they still are “near” to each other.

For germs, the definition is rather more complicated essentially for two reasons. First of all,
representatives are to be taken; that implies the choice of some open neighborhood of the base
point. Secondly, to avoid being too restrictive keeping fixed the base point, one has to allow
variation; the equivalence is then established between germs at different points, within the
open neighborhood we choose. So, there exist open neighborhoods xe U < R”, x’e U'cR”,
fx)eV <R and f(x)e V'R, such that the following diagram of germs commutes:

U,x) ———-= (V,f0)

Al | | Ay
. l

) —L 5w e,
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In our setting these definitions simplify somehow in the following terms.

Definition 1.1 Givenfe R"R” and x € R", fis said to be infinitesimally invertible
(respectively, surjective) at x if fl__(x} : =—{x} = ——{f(x)} is an isomorphism
(respectively, a surjection).

In the presence of the axiom of germ representability (AXIOM III) it seems coherent to denote
by flx this restriction, and to call it the germ of f at x. If x is not a global section, this notation
should not lead to confusion though there are no "external" grounds to interpret this fi, asa

germ. However we will find useful to employ these intuitively conceived "phantom" germs to
develop our theory.

Definition 1.2 Givenf, f'e RA("), we say that f is equivalent to f, and write f ~ f°
if the following holds:

Axx’eR"Ape R"R"IyeRR [(pinf.inv. at X)ACY inf.inv. at f0)AG(X)=X'Af =Wl ()

In a picture, we have the following commutative diagram

—(x} =2 iy

ol; l [ vl

fler

—={x’} —— ={y’}
1
where /], denotes the composite ——{x} &, A(n) —f—> —{y}, with a_ : A(n) = ——{x}
being the isomorphism adding by x of Proposition 1.3.1(i), and where y = f(0).

With our terminology, the germ of f at x is equivalent to the germ of f” at x’, were we
to start with f € R~—{*} and fe R—{*"). If we interpret this fact internally, say in G, we start
with x € R" and f € R={*}, where the arrow ——{x} : & — QR" corresponds to

—{x} €A xR", hence
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f

—={x} ——— R

I

A xR"
Now, if f € R™™{*), then to say that f is equivalent to f* as germs at x and ',
respectively, amounts to saying that there exist 1 ¢ €+ R"R" and y €r RR infinitesimally
invertible at x and f(x), respectively, i.e.

Py

= {x} ———— {0k}
A xR® &) A xR

where @(x) is the composite T&)'X xR"? —(p—>R" (and similarty for ) such that

f

it

ol = | vl

fl

—|—|{X'} —_— 'ﬂﬂ{y'}

Let us now take a look to the picture for two particular germs defined at stage A = A(r), one
of which is constantly n_g {RA®), a germ at 0 : A(r) — R”, constantly 0€R”, and the other

one is any M : A(r) x A(n) — R®, a germ at x : A(r) = R", with x(0) =0 and n(0, - ) =1,,.
For u “near 0" we have eachn u a germ at (4, x(u )) equivalent to 1, at (i, 0), in fact
the same germ as 1 at (0, 0), according to the picture below

LOf course internal existence, hence on a cover, cover that we ignore for the moment.



CHAPA4 §1. Basic definitions . 78

o is defined here My is defined here
Tw »e
A(n) I e |
= (u,x(w))
t } A(r)
0 u

This is exactly the situation for unfoldings (cf. [WASSERMANN: Stability of Unfoldings]) in
our framework, which we obtain for free!l.

Let us suppose now that fe RA(?) is so that {0) =0 1. We can (internally) define a
map

G :=Inf.inv.,(R"R™) x Inf.inv.,(RR) —L-)RA(")
by means of YL@ W) = lgof o (CTY A a0y

Note that Y(idgn, idg) = £, and that for any pair (9, Y)€ G, Y(@.y) =f € RA®isa
germ at 0 which, when regarded as germ at x = ¢(0) € R", is equivalent to f as germ at 0.

The following definition (unlike the one given in [BUNGE-GAGO: Synthetic aspects of
C*-mappings, II: Mather's theorem for infinitesimally represented germs]) reflects more
faithfully the classical notion.

. Definition 1.3 We say that f € RA() is stable if Im( ¥y < RA() is open for the
weak topology and Y(@, ) =f implies ¢ = idpn and ¥ = idp.

N.B. ——{(idgn, id,é)} = —{idpn} x =—{idp} is contained in G as a consequence of the
following proposition

1This assumption is only to simplify matters and has no other significance
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Proposition 1.4 For every n, the object Inf.inv.,(R"R™) < R™R" is weak open,

hence Penon open.

Proof. After Proposition 3.3.4, the object of immersions at 0 is weak open; by Proposition
3.3.5 every immersion at 0 is infinitesimally injective at 0, and by Proposition 1.1.5 it is
infinitesimally invertible as we claimed.

Since idgn € R"R" is infinitesimally invertible at 0, the infinitesimal monad around it

must be formed also of infinitesimal invertible maps; this completes the remark above, and
gives sense to Definition 1.3.

It should also be pointed out that the second part of the condition in Definition 1.3
does not add any “observable” restriction; by this we mean that if one applies the global
sections functor the condition is trivially satisfied, and f is stable in the usual sense (fhas a
neighborhood of equivalent mappings.)

§2. Infinitesimal stability

In the classical setting, the usual definition of stability proves difficult to apply in practice.
However, using a criterion suggested by René Thom (cf. [THOM-LEVINE: Singularities of
Differentiable Mappings, I, Bonn 1959],) John Mather (cf. [MATHER: Stability of C=-
mappings, II: Infinitesimal stability implies stability]) has produced a theorem which provides
a truly computable method for determining whether or not a mapping is stable. The intuition
behind this useful result finds no room to accommodate within the classical theory of
differentiable manifolds (see the introduction to §1.1) and has to be “disguised” with rather
artificial formulae.

Definition 2.1 A map f € RAM), with f(0) = 0, is infinitesimally stable if we have

Ve Vecr(f) 3oe Vecr(R") 31 VerR) [0 = al(o) ® B(D)].

To understand the notatioh, several comments (most of them from [BUNGE: Synthetical
aspects of C™-mappings] ) are in order; we proceed from left to right in the formula.

With Vecr(f) c RDA™) e denote the object of vector fields “along f”, i.e., (internal)
- maps A(n) — RP making commutative the following diagram
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RD

Jn
Ay —L—s R

where & : DD — R is the canonical projection of the tangent bundle (see §1.4). The A-rules
valid in our models give the identifications Vecr(f) = TRA®), as RD*™= RAGD = RAGYP,

n
0, : Vect(R™) — Vect(f) is defined by al0) (d) = (Glo(d))'l, for oe R"PF , and
therefore o, € R>* ("). Once again, ¢ can be seen as an infinitesimal deformation of idgn,
and for each de D, o(d)e XX has an inverse, namely, 6(-d)e XX (see Definition 1.4.1).

B, becomes the map between the tangent spaces T;,(RR) — T/(RA(")), induced by
the mapping [ye RR |— yof € RAM)],

The key point is now that T, (RR) = T (Inf.inv.,RR), as in Proposition 1.5.5,
since it is a Penon open submanifold (Proposition 1.4) and oL becomes the map induced by
the following composition ' |

Inf.inv., R"R" = Inf.inv., R"R" — RA(™)
-1 -1
? = @ ey 2 fo@ 02y

Finally, RA() is infinitesimally linear (Proposition 1.4.7,) and therefore (RAM)P is fiberwise
an R-module, which gives sense to alo) & Bj(r) (see Definition 1.5.6 and Proposition

1.5.8.)

N.B. The observable part in G of this definition (i.e., when the global sections functor is
applied) states that I'(f) is infinitesimally stable in the sense of [POENARU: Analyse
.Différentielle, pag. 168] (cf. [BUNGE: Synthetic aspects of C**-mappings] and [BUNGE-
GAGO: Synthetic aspects of C*-mappings, II: Mather's theorem for infinitesimally
represented germs)) .

As claimed before, we recover the lost intuition with the following proposition.
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Proposition 2.2 Given fe RA(), with f(0) = 0, f is infinitesimally stable if and
only if a‘Yf( idgmidy) is surjective.

Proof. After what we have seen it is clear that dYJ"(ian de)(d) = [af(c) @ Bf(’C)] (d), for every
deD.

We are now ready to state and prove the first part of the comparison theorem, which
should come as no surprise.

Proposition 2.3 Letf e RA(), with f(0) = 0, be stable. Then f is infinitesimally
stable.

Proof. The call for “no surprise” is based on the following observation: f stable implies that v,
is infinitesimally surjective, meaning that its restriction to ——{(idgn.idg)} = ——{f} is
surjective.! Indeed, by definition of stability, f € Iy, weak (hence Penon) open. This gives
that —{f} < Imy, and by the second part of the condition, whenever 'y/((p,\p) e —f{f},
we have (@, ) € ——{(idpn, idgp)}. Then we must show that d'yf at (idpn, idp) is surjective,
and we know that 'yfis infinitesimally surjective at (idgn, idp).

But, from Y, : ——{(idgn, idg)} = ——{f} surjective and AXIOM II it follows that the
map (¥, }P: (——{(idgn, idg)})P — (—{fNHP is also surjective.

Now, given &g (——{f])P , there exists {& (——{(idgn, idg)})P such that, for any d
in D, §(d) =7, (§(d)); and if £(0) =1, i.e., E& T~—{f}, then, part two on the condition for
stability says that ((0) = (idgn, idp), i.e., & T(idgnyidg) ——{(idgn, idp)}. In other words,

T(idRmidR) —H{(ian, idR)} - Tf—:—1{f}

is surjective, and this is what we wanted, for this is our map

. A
de(ian J dR) . T(‘ an ,ldR)G - TfR (ll).

INotice that (after proposition 1.4) G is weak (hence Penon) open, and ——{(idgn,idp)} < G, as subobjects of
R™R" < RR.
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The reverse implication also holds and will be the subject of the last section of this chapter to
prove it.

§3. Homotopical stability

This section is dedicated to extract the intuitive part of a technical procedure which will be
employed in the proof of Mather's theorem in section 5. We also prove (cf. also [BUNGE-
GAGO: Synthetic aspects of C>-mappings, II: Mather's theorem for infinitesimaily
represented germs]) a theorem of existence and uniqueness of solution for time dependent
vector fields, provided we add to our stock of axioms a postulate of local integration of
ordinary vector fields.

We begin with two definitions

Definition 3.1 Givenf:X —» Y,and € R, £>0, amap F : X x [0,€] = ¥ x [0,€]
is called a deformation of f if the following two conditions are satisfied:

DF:Xx{t}] >Yx(t}, foreacht e [0, €]

i) Fy=1.

It is clear that a deformatioxi, in the above sense, gives rise (actually it is equivalent) to a
unique family of maps F, :X — Y indexed by [0, ], such that F, =f. We can even say more

than that; in our context, this family (or the deformation) represents a curve on the functional
space YX, [0, €] = YX, starting at f.

Definition 3.2 A deformation F : X x[0,€] > Y x[0,€l,ofamapf: X — ¥, is
said to be trivial if there exist deformations of idy, G : X x [0, 8] = X x [0, 8], and
of idy, H:Y x[0,8] = Y x [0, 6], for some 6 € R, 0 < <&, which are
isomorphisms, and such that the diagram in next page

X x [0, 8] ;)YX[O,‘S]
G | H
id
Xx[0, 8 108 Ly o008
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commutes.

Viewing a deformation as a curve on YX, we have the condition on F of being trivial
translated into the commutativity of

for all “small” 7, which means that f ~F;.

We could now introduce the following definition

Definition 3.3 fis homotopically stable (or stable under deformations) if every
deformation of fis trivial.

We are not interested in exploiting this definition (which can be proved to be equivalent to
stable and infinitesimally stable) but in the homotopy method itself. For instance, to prove
that f ~ ¢ we could join g to f by a deformation, and then prove that it is trivial. Also, to show
that f is stable, we could define a weak neighborhood of f consisting of trivial deformed of f.
All this will be used in section 5 and in chapter V.

A useful method to show that a deformation is trivial is to construct the G, and the A,

as the integral flows of some time-dependent vector fields (or, in our context, a dynamical
system.) For this reason we need to establish under what conditions these solutions exist.
By POSTULATE WA.2 (see §1.4) we have established that, given g : R" — R", there

exists a unique f: R” x A — R", such that, for all xeR” and te A

fix,0) =x

%(x, 1) = g(flx, 1)
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We now state the following

Proposition 3.4 (Dynamical systems) Let n > 0. Then the following holds

VgeRMOTIR" 315e RR™A e 7 e AnI0,1] (fx0)=x A &L (r=g (s ftx.0).

Proof. Given g : [0, I] xR™ = R", define § : [0, 1 xR* = RxR" by (s, ) = (, g(s, X)).
For this g, POSTULATE WA.2 gives the existence of a (unique) A-flow

F:00,I1xR*xA—=1[0, 1] xR"
such that, forall s € [0, I],x € R® and ¢ € A, we have
T(s,x2) = (s, %)
{ (5.2, = §F(s,x, 1)
Equivalently (by AXIOM I), for all deD, se[0, I],xeR™and t,r € A,
F(s,x,d) =(s,x) +d-§(s,x)
{ FGox,e4r) =FF (s, x,2), 1)
For the first component of 7 ,
1 [011xR"x A = [0,1],
we get the following set of conditions:
fi(s,x,d)=s +d
{f} (s, x, t+r) = f;(f;(s, x, 1), f5(s, %, 1), 1)

where f, : [0,1] x R" x A — R" denotes the second component.
Since f}(s, x, d) does not depend on x, the second part of the condition says
precisely that, for each se[0, 1], we have a D-flow, which extends (uniquely) to a A-flow.

So, for all te A, se[0, 1] and xeR", we must have fi(s, x, ) =5 +1
With this result, the set of conditions for f5 is now the following
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f2(s,%,0) =x
{ 13 (s, x, t47) = fi(s+1, f3(s, %, ), 1)
-equivalently,
(s, x,0) =x
{4‘%(5, x, 1) = g(s+t, f(5,x, 1))

We can now define f: R" x A — R" by f(x, 1) = f,(0, x, t). This f is unique with the
conditions

{f(x, 0)=x for all xeR"
%(x, t) = g(¢, flx, 1) for all xeR" and te AN[0, I]

as we wanted.

Corollary 3.5 For every n > 0, the following holds

Ve (RO 315 RrA®A 1 A(m) VieANIOT] (fix0)=x A f—ftf (x)=g(tf(x.0)).

Proof. Given g : A(n) — R"w’n, by AXIOM III (see section 1.3) there is an extension (locally
unique) to a map 2 : R* — R91 Eor this £ , the theorem above gives the existence of a
unique 7:R"x A(n) — R", such that

{f(x, 0) =x for all xe R®
% (x,1) = é\(t, f(x, 1) for all xeR™ and te AN[0, I]

Define f: A(n) x A — R" as the restriction (germ) of 7 . This f is indeed the unique which
satisfies the condition, and does not depend of the representative, for Fx, ) e (7 x, 00}
equal to —{x} = A(n) (see Proposition 1.3.1. part iii), ) Ve AN[0,]], Vx& A(n); and all
possible @ 's agree on [0,1] x A(n).
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There is a stronger result which will be used in the next sections, namely the local
existence of solutions for differential equations. The result is a consequence of Proposition
1.4.5. In the case of the flows arising from a dynamical system, if we assume that the open
Part is of the form A" x (-£,€), the flow condition will be on A(z) x ([0,1] N (-&,€)), therefore
on A(n) x[0,6], for some 0 < §< 1.

The last remark about flows, already used for D-flows (vector fields), is the
following.

Proposition 3.6 If§ : M x U = M is a flow, with 0e UcR, and E(x,0) = x, then
themap & : U — MM factors through Iso(MM), provided that -t € U, for each re U.

Proof. For each t € U, define (1)) =f(-1). 0
§4. The Malgrange-Weierstrass preparation theorem

In this section we state the equivalent version of a technical theorem about smooth functions,
used in the proof of Mather's Theorem and in establishing the existence of normal forms for
singularities of certain stable mappings. We are talking about the Weierstrass Theorem (cf.
[MALGRANGE: The preparation theorem for differentiable mappings] and [MATHER: Stability
of C*-mappings, I: the division theorem].)

The statement of this theorem in the classical setting is in algebraic terms. The
richness of our framework allows a geometrical formulation which encloses the essence of

Mather’s theorem, namely the passage from the infinitesimal to the local.
Recall from Proposition 2.2 and Proposition 3.1.3 that f is infinitesimal stable if Vris

a submersion at (idgn,idg) € G. The objective of next postulate is to guarantee a similar
condition for any germ in some neighborhood of f in the weak topological structure on RA(M),

Just as in [BUNGE-GAGO: Synthetic aspects of C*-mappings, II: Mather's theorem
for infinitesimaily represented germs] we adopt the following postulate, except that we use
weak opens here rather than intrinsic ones.

POSTULATE P (Preparation postulate) Let W be a weak neighborhood of fin RA(M),
Let ® : W — wid] be any map, such that ®()(s) =/, for all se[0,/]. Then if dyw)

is surjective at (1tgn : [0,]]1 xR" = R", mp : [0,1] x R — R), it follows that dch'W, is
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surjective at (mpa : W’x [0,1]x R® = R", ®g : W’ x [0,I] xR = R), for some weak
neighborhood W’ so that fe W'eW.

.We hope that now the réle of the material displayed in section 3 becomes more clear. On the
other hand, we should prove that our test model G is good enough for our purposes, in the

sense that on it this last postulate also holds.

Proposition 4.1 (Preparation theorem) POSTULATE P holds in G.

Proof. Letf e— RA( be infinitesimally stable, where A is represented by C=(R)/j, and let

A(n)
Qe (RAMR M0 be o that D(f,s) =f, for every s € [0,1].
Applying the global sections functor, we get a mapping I'(®), which we call F,

F: Z( x Cao‘, (Rn) -> C{:)xlo'u (Rn x [0,1])

which is smooth in the first variable, seeing Z() = I'(A) < R” (Proposition 0.4.5) as a
submanifold, and continuous in the second variable, regarding C;; (R") = I'(RA(")) and
similarly C 3,10 ®" x [0,1]) = TRAMP1Yy (Proposition 1.3.4) endowed with the weak
C>=-topology.

The condition ®(f, s) =f translates into F(A, f(A))(s) = f(A), for each A e Z(]);
moreover f(A) is infinitesimally stable (see remark before Proposition 2.2), and therefore
Cragy © B FOLfh IS surjective. By [POENARU: Analyse Différentielle, Lemma 2.3], there

exists some open Wy in Z(I) x C7; (R") such that Cpyy @ BFIW;_ is surjective, for each -
Ae Z(D).

We can consider that this open is of the form W3 = (Ux"Z({) ) xV», where U cR”
is open in the usual sense, and V) < C7; (R") is open in the (quotient) weak C*-topology.

We can also restrict ourselves to a countable family {Uq} < {U3} such that {UanZ()}
covers Z(I). Now, surjectivity of aFlw;_ @ BF‘W)_ (at the corresponding projections), for the

representable objects A, = C*(Uqy) /n Ug’ gives that

=g, Ol W @ B, vy ) SWiective ,

But A(V) < RA(™) is weak open (see Proposition 2.5.3) and the {A — A} form a cover

(see Proposition 0.4.11). Therefore, we have proved that



O
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= IWe W(RAM) [feW A iy D Bty surjective 1,

as we wanted.

§5. Mather's Theorem

In this section we will put together the material prepared in the previous sections to prove the
following (cf. also [BUNGE-GAGO: Synthetic aspects of C**-mappings, II: Mather's theorem
for infinitesimally represented germs])

Theorem 5.1 (Mather’s Theorem) Let fe RAM) with f(0) = 0. Then f is stable if and
only if fis infinitesimalily stable.

Proof. We have already seen that stability implies infinitesimal stability in an (almost) trivial
way (see Proposition 2.3). For the “hard” part we will make use of POSTULATE P and the
results about dynamical systems, given in section 3.

Consider the map ®e (RA("))RA(n)’[O'I] given by the rule
O(g, ) =rg +-0)f.
This map satisfies the following set of conditions
Of)=f for any re[0,1]
{Cb(g,O) =f for any ge RA(®)

If we consider a weak neighborhood of fin RA() of the type V = V(A(n), 0, f, €), for some
€€R, 1 > £ >0, then the restriction of ® to functions of V takes its values in V. Indeed, given
g€V, and t€[0,1], by the definition of V we have that

VxeA(n) [(g(x)-fx)) € (-68) ],

therefore, for all x in A(n) we have ®(g,1)(x) - f(x) = t-(g(x)-f(x)) € (-r-£,1€) < (-€, €). So
we have the equality ®(V x [0,1]) =V, as @, = idy, . As a matterer of fact, for any other
weak neighborhood, V', of f, and any 0 <7< 1, ®(VNV’'x [0,7]) is also a weak
neighborhood of f. Indeed, VAV’ 2 V(A(n), 0, f, 6), for some § > 0 (see the proof of
Proposition 2.4.2), and we claim that
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O (V(An), 0,f, 8) x [0, 71) = V(A(n), 0, £, T-0).

To see it, take any he V(A(n), 0, £, 7-8); then, for all x in A(n), h(x)-f(x)) € (-7-8, 7:8), and
Since 7> 0, tis invertible (see Proposition 1.2.2 and POSTULATE WA1.1) and we can define
the map

g=7l(hN) +f.

Itis clear that & = 7.g + (I-7), and g(x)-fx) = T/ (h-NX) € (-£,€).
We will show that there exists a weak neighborhood V' of £, and some &’ > 0, such
that if fe®(V" x [0,€7), then h is equivalent to f and the result will follow.

For this @ that we have defined, POSTULATE P gives some weak neighborhood V’ of
fin RAM) for which iy D By is surjective. This means that for any vector field along

’ : . . DcDIV'
the map Pl : V' x [0,1] x A(n) = R, in particular for the vector field given by v

there exist 6 € Vecr(mga: V'x [0,1] x A(n) — R™) and T € Vecr(ng : V' x [0,1]1x A= R),
such that

DOl
—dl_v= a¢|V.(O') ® Bd"V' (%).

e RnV'x[O,I]xA(n) and
< RV A0]

The principal part of these vector fields are, respectively, g,
g RV’x[O,I 1xA
andf ERV'XAX[O,E’] . . . . .e

T satisfying, respectively, the following sets of conditions, for each fixed

feVv,

, and, by the results on dynamical systems, we have unique f

foFsx,0)=x for all xe A(n)
dfc ’ ’ »
-z ox 0 =g, 8, fo(f, x, 1)) for all xe A(n) and t€[0,€’]
and
[y, 0)=x for all ye A

df.
-y 0 =g £y, D) for all ye A and te[0,€]


http:and/'r:eRV'~[O.e1
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Notice that, for f=f, since ®(f, )(x) = f(x), for each xeA(n) and r€[0, 1], we may take G
and 7 satisfying

o, t,x)(d)=x VdeD, VxeA(n), Vte[0, 1]

and
6L y)(d) =y VdeD, VyeA, Vie[0, 1].

Correspondingly, we will have
8t x)=0 Vte(0, 1], VxeA(n)

and
&, )=0 Vie[0, 1], VyeA.

Therefore, the unique solutions £, and f, satisfy

—%(f,x,t)=0 and f,(f,x,0)=x

and
. _
E—(f,y,t)=0 and f.(f,y,0) =y,

which means that f5 and f;, do not depend on ¢, and then we must have

fsfix,t)=x VxeA(n), Vie[0, £

and
LAy, =y VyeA, Vie(0, €1].

In other words, the maps f,(f,?) : A(n) — A(n) and £,(f;r) : A — A are both the identity. Also,
for any f'e V', f4(f, ) : A(n) & ——(x} and f.(f, 1) : A = ——{y]} are isomorphisms for
every te[0, £, where x = 5, (0) and y = £.(f, 1)(0).

DY\ . .
We now claim that if dt|v 0= a¢|v,(o') & Bd)lv' (7), then f is equivalent to

D(f',1) as a germ at x, i.e., the diagram
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¢, 0)

A(n) - > A
[ 0) f 0
—l-ﬂ{x} Q(f, t) > ﬂ—'c{y}

commutes: to put it with the words of section 3, the deformation is trivial. This commutativity
can be reformulated as follows

D,=G, ° P ° Ht-l
where
G= (ul,ft,n::,) :V'xAx[0,e] = V'xAx[0,€], and

H = (%, f5,m3) : V' x An) x [0,€] = V' x An) x [0,€].

The condition reads now

o =oCE: ) @ po(- 2o ity

DG

ZoG! and v=-22

because ¢ = n °H'1.

But, synthetically, we have

DG p D®

DH
dz(cr‘oan)- 2@ HO G oZroHOGH e 0P o

and, from G’ oG = id, for any te[0,€], it follows that %(G'l o G) =0, hence,
synthetically,

DG |
dt(G °G)® (G )D°£—0 and so Dg =-(G )D

which gives
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2 o vom=-GHPBEeglodona P B HO G o aP 2L
=GP -2 °G"°d>€9 ©aP 2 or!oH=

=GP o[- B @2 @ - (@] o H.

Now, (G I)D and H are isomorphisms, hence the last member of the equality vanishes if and

only if Izit—(b = Og,(0) ® Bg(7), that is to say

. . DO
LG o®oH)=0  iff = =ag(0) ® Pe(®);
in particular
.1 .1 \ ) DO
G/ e®,oH =G, o ®yoHp forallte[0,]  iff = =0g(0) D Pyp(0).
But H and G are identities, and therefore the result is that

Lo}
G,’I °®,°H,=®),forall te[0,&] iff DE- = oy (0) D Bep(D),

as we wanted.



Morse theory

§1. Preliminaries

In this chapter we begin the study of Morse Theory (cf. [MILNOR: Morse Theory].) With our
work, we believe that we lay down the first stone of two posible major avenues.

" The first one will lead to the classification of singularities (those which are stable) in
the synthetic framework. We completely characterize the singularities of functions into R,
apart from other partial results about the stability of submersions and immersions which
trivially follow from previous chapters.

The second one will eventually lead to a classification of manifolds via the Euler
characteristic. In this direction, we give a proof of Morse's lemma characterizing Morse
germs (or Morse functions in an infinitesimal neighborhood of a singularity.) A use of this
result, among others, is to determine the behavior of a surface in R3 with respect to its
tangent plane at a given point (cf. [BERGER-GOSTIAUX: Géométrie Différentielle: variétées,
courbes et surfaces, p. 136].)

In the same direction, it easily follows that the Poincaré Lemma (characterizing the De
Rham cohomology groups) holds for A(n) (cf. [MOERDUK-REYES: Cohomology theories in
Synthetic Differential Geometry].) Our results yield a direct proof of Morse Inequalities (cf.
[MILNOR: Morse Theory]) for the manifold A(n).
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We begin our study by recalling some definitions.
Definition 1.1 Given xeR", any map x + D(n) — R is called a 1-jet at x.

‘Notice that in this context, as it happened with germs, there is no need to talk of equivalence
classes of maps.

The legitimacy for this name comes from the basic axiom of Synthetic Differential
Geometry (cf. section 1.1): Forx=0 e R* ina map D(n) — R there is the same information
than in its value at 0, and the value of its partial derivatives also at 0. In this line, RP"™ — R

is called the r-jet bundle, where the projection is the evaluation at 0.

N.B. We are only interested in maps landing on R, but all these notions can be
extended in the same way to any power of R.

In section 1.3, we gave the synthetic basis for relating germs and jets, namely the
inclusions, for each n > 1,

D(n) 2 Dy(n) < --- €D (n) < Aln).

For instance, composition with D(n) — A(r) induces a map, denoted

j}: RA®) — RD(m),

which is said to assign, to a germ at 0, ¢ € RAM), its [-jet at 0, jéq).

Closely related to this map is the following. For each f € R""'{x"}, we have the map

Jif : =—{x,) = RP®

which is the one that to x € ——{x,} associates the restriction of f to x + D(n). This map can
also be defined as follows: for x € ——{x,}, let JIftx) = j§(f), where f; € RA( is defined
by f(¢) = foax(t), with a, is the isomorphism of 1.3.1.

We can now give the definition

Definition 1.2 Given f € RX, where X = ——{x,}, an element x € X is called a
singularity of fif f is constant on x + D(n), i.e., its 1-jet is constant.

1 The definition is 0 be read internally, and it has similar extensions to k-jets through D(n).
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If one analyzes the definition of Jf, it can easily be seen that, for x € X, d € D(n), we have

Tfe)d) = flxrd) =) + e (ord,

and the isomorphism of AXIOM I, RP(®) = R x R", gives us

Jif(x) = (fx), %(x), e %(x)).

Now, if we consider the subobject §; < RP(®), defined by
S1=[[g eRP®) |Vd eD(n) g(d) =gl

which corresponds to 7-1{0} < R x R", where ©t : R x R® — R" is the canonical projection,
we have that x is a singularity of fif and only if JIf(x) € S;.

The first thing to be noticed is that S; is a submanifold of RP(?). Indeed, by Corollary
3.1.6, every value of a submersion is a regular value, and the preimage theorem (see
Corollary 3.4.4) gives that S; is a submanifold of RP(), of codimension .

We are now ready for the key concept of this chapter, the notion of non-degeneracy:

Definition 1.3 Let x € X be a singularity of f € RX. We say that x is
nondegenerate if Jif h, S, i.e., T 7 0) RO =Im[d(Jif)x 1+ T JiryS1 (see

Definition 3.4.5.)

Our next goal is to give an internal characterization of non-degenerate singularities, and it is
achieved at once in the following proposition:

Proposition 1.4 Letf e RX. An element x € X is a non-degenerate singularity of
f if and only if n.J/f is a submersion at x, where & : R x R" — R" is again the

canonical projection.

Proof. Since the functor (-)D preserves productsl, nD is itself a projection, and we have that

Vte TJ’f(x)(R xRM(te TJ’f(x) S; & wP((t) =0).

1General result, as it has a left adjoint cf. [MAC LANE: Categories for the Working Mathematician.]
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Therefore, for any non-degenerate singularity x of f, we have that

T i yRP® = Im{d(J1f); ] + Kerld(m) g ).

"Now, after Proposition 3.1.3, n-Jf is a submersion at x if and only if d(r-J%f), is locally
surjective. But 2, being a projection is a submersion and therefore (equivalently) dr T () is
locally surjective.Thus, the equality

Tyg (x)RD(") =Imld(J'f)x ] + Ker[d(m) i )]

holds if and only if d(x-Jf), (=d=x T d(J1f), ) is locally surjective, and the result
follows. =

An immediate consequence of this proposition is the following property of the
Hessian (the matrix of second-order partial derivatives) of a map at the non-degenerate

singularities:
Corollary 1.5 Letfe RX.If x € X is a non-degenerate singularity of f, then the
Hessian of fatx = (% (x)) is nonsingular.

Proof. By the theorem above, if x is a non-degenerate singularity of £, then the map r-J/f is

a submersion at x. The result now follows from 3.1.3 (ii), since the set of vectors is precisely
the set of rows of the Hessian of f at x. O

§2. Morse germs
We begin this section with the following definition

Definition 2.1 A germ f e RX is called a Morse germ if all its singularities are
non-degenerated, i.e., the following is true

VxeX [x singularity of f = x non-degenerate singularity].

As we mentioned in the introduction to this chapter, an important use of Morse functions
(germs) is the analysis of the behavior of a manifold at a given point. In this sense, it would
be useful to know whether there are any Morse germs at all, and “how much” a given germ is
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allow to differ from being Morse. The answer to the second question is that a germ f € RX,
either it is Morse, or it is “close enough” to a Morse one. Indeed, we have

Proposition 2.2 The object of Morse germs is dense in RX with respect to the
weak topological structure (see Definition 2.4.1.)

The result follows at once from Thom Transversality Theorem (see Theorem 3.4.7) and the
following two observations:

a) S; < RD(), being 7-1{0}, is cut out by an independent function: every submersion
is so (see Definition 3.4.2)

b)f € RX is a Morse germ if and only if JIf i S;. =

Before closing this section, we will prove one of the basic results of Morse theory in
characterizing the behavior of manifolds at points. The result says that non-degenerate
singularities are isolated.

Proposition 2.3 A Morse germ has at most one singularity.

Proof. Let f € RX be a Morse germ. If x € X is a singularity of f, then it must be non-
degenerate, and by Proposition 1.4, ®t-JIf is a submersion at x, and 0 is a regular value for
this map. Now, the corresponding version of Preimage Theorem (see Corollary 3.4.4) for
germs says precisely that

[[x€X | x singuiarity of f]] = (xJ1f)™ {0} =X is a submanifold.
Moreover, it has codimension n, hence dimension 0. u

It is worth pointing out that the object S; can be considered as the universal object of
singularities of co-rank 1. In the case of considering the more general situation of germs
ending in R", for some n, this definition can be extended to S,, for < n. The proof that this
objects are submanifolds of the corresponding jet space is the fundamental result in the so
called Thom-Boardman stratification theory (cf. [BOARDMAN: Singularities of differentiable
maps]) and techniques such as the one of identifying Morse germs as those which are
transversal to the corresponding universal object of singularities are “the” tools to employ



CHAP. 5 . §2. Morse germs 98

towards a characterization of singularities (cf. also [GOLUBITSKI-GUILLEMIN: Stable
mappings and their singularities].)

_ Our last result in this section will give an answer to the the first question posed after
definition, concemning the actual existence of Morse germs.

Exercise 2.4 Letf e RA(M be defined by the rule

[zl—->c+u1t12+---+u,.t,.2],

with the u;'s all invertible in R. Then f is a Morse germ with a non-degenerate
singularity at 0.

Solusion. The usual rules of derivation give us that the I-jet of fat Q is “codified” by the
(n+1)-tuple (c, 0, ..., 0). So Q € A(n) is a singularity (see Definition 1.2 and the comments
after it). As a matter of fact, JIf : A(n) = R x R" has the following description

JIRD =(c + zu;t.-z L2Upty 4o +2Untn ),

which says that 0 is the only possible singularity, as the u;'s are invertible. So, we only have
to check that 0 is non-degenerate, or equivalently, that ®-Jf is a submersion at 0.

Now, to prove this, we use Proposition 3.1.3 (ii), which says exactly what we want,
just taking into account that the vectors

(ul’ 0’ sy 0)9 (0’ u29 ooy 0)1 LA | (0’ ---90, un)a

are linearly independent.
§3. Normal form of a Morse germ

One of the central results in classical Morse Theory (cf. [ARNOLD: Normal forms of
functions in the neighbourhood of degenerate critical points] and [GOLUBITSKI-GUILLEMIN:
Stable mappings and their singularities], [HIRSCH: Differential Topology], [MILNOR: Morse
Theory], [MILNOR: Topology from the differentiable Viewpoint], [MORSE: The behavior of a
function on its critical set] or [MUNKRES: Elementary Differential Topology]) is the
construction of a local chart (for a manifold) or a change of coordinates (for a part of some
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R") around a non-degenerate singularity making the function “look like” a non-degenerate
quadratic form.

In our setting we count with the following result:

Theorem 3.1 Every Morse germ g € RA(M), with g(0) = 0, is right equivalent to a
quadratic form.

Before we begin with the proof, let us make some remarks about the statement of the theorem
and the proof itself.

(1) The condition g(0) = 0 is definitely unessential. We could modify the conclusion
as require right-left equivalent, and apply the same method to the germ g(x) - g(0).

(2) We may assume (see Lemma 3.2, below) that the 2-jet of g is of the form
a xlz +ooe t anxnz ’

with the g;'s invertible elements in R.

2
(3) With the above simplifications, we have g =f+ ¢, where fx) = a;x;° +-++ ayx,

and ¢ is a germ in {113 (IM is the object of germs at 0, & with &0) = 0.) Notice that ¢ has a
zero of order three at 0.

Proof of Theorem 3.1. We will prove that f is equivalent to g = f + ¢. For this we resort on
the method introduced in section 4.3, the homotopy method.

First, we join f to g by the path f + r-¢, with ¢t € [0,1]. Then we show that it is
possible to find a one-parameter family of “local diffeomorphisms”

x € A(n) 1= D(x, 1) € A(n)

such that
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((F+t O)D¢, %) =f(x) VxeAm) Vielo,I]

I\

Dx,0) =x Vx € A(n)

®0,1) =0 Vte[0, 1]
Then, ®(-,1) will do the job. In the words of section 4.3, the deformation is trivial.

We obtain these @, 's as the integral curves of suitable vector fields &, or rather a
time-dependent vector field & (see Corollary 4.3.5.)

%’i(x, 1) = {D(x, 1), 1).

Now, to obtain the equations for §, we can take derivatives, with respect to the parameter ¢,
in the expression

(f +t OO, x) = f (x).
Since the right-hand term does not depend on ¢, we get, by the usual rules of derivation, that

HD(x, 1)) J%‘?ﬂd)(x, 0. %x, 1. =0,

foreacht & [0, 1].
So, if the principal part of &, is expressed by the functions (&, ... , d,), we will
have the following equation:

Vown =" Z On; ID(x,0) *

i=1

where y; = 2ax; +t ¢x‘, . Therefore,

| -p= i&iyi )
i=l

seeing both sides as functions on (x, ?).
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To end the proof we will show that y = (y I» -+« » Y ©) defines an admissible change

of coordinates. For this we use the Theorem of Infinitesimal Inversion (POSTULATE LI, in
§1.4) since

2a;

|§§(0,~z)| -, 01 40

2a,

because ¢ is in (112, as ¢ was in T3,

Then, for each ¢,y is an isomorphism, and so (y, ¢) defines a new system of
coordinates. In this new system, ¢ takes the form

$0.0= D V0,0,

i=]
as ¢ has no component in ¢ ; moreover

v 0,0=0 Vee [0, ]

90) =0

Therefore &;; = -; as functions on y, are the components of our time dependent vector field
whose integral curves give the wanted solution. g

To close the section we will prove the claim we made in remark (2) after Theorem
3.1. This is aim of the following result

Lemma 3.2 Let f € RA() be a germ with a non-degenerate singularity at 0. Then we
can find coordinates z; such that the second-order Taylor polynomial at 0, of f, is

2 2
aIZI +"‘+anzn-
Proof. The lemma states the existence of a linear isomorphism ¢, represented by a non-

singular matrix A, such that f - A has the desired Taylor polynomial of degree two.
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The usual rules of derivation give us the following equality

a(fa;¢) (a) = %(«a» ) ¢'(a) = % (¢(a)) ‘ A’

and therefore,

-A.

¥l

Therefore, the result will be proved if we show that there exists a matrix A which

diagonalizes the non-degenerated (see Corollary 1.4) symmetric bilinear form associated to

%ﬂ , the Hessian of f.

One way of doing this in the classical setting (cf. [STOLL: Linear Algebra and Matrix
Theory]) is by using elementary row operations (and the corresponding elementary column
operations) until the matrix is in diagonal form. Multiplying together all the nonsingular
matrices corresponding to the e.r.o.'s (and its transposed matrices, which correspond to the
equivalent e.c.o.'s) we get the wanted nonsingular matrix.

Among the three basic elementary operations, namely,

a-R; multiply rowiby a
Ri&Rx interchange rows i and k
a-Rj+ Ry substitute row k by a -row i

only a - R; might affect substantially the determinant of the original matrix, as far invertibility
is concerned. So we have to make sure that the g 's we use are all invertible.

The proof goes in two steps:

step 1. Every non degenerate symmetric matrix S can b‘z brought by e.r.o.'s (along
1

with the corresponding e.c.0.'s) to a block diagonal matrix ' ‘ where each
Aq
t -
Aj is either (a) or ( s : ) with a # 0 and ¢,5 nilpotent, according to whether or not there are

invertible entries in the diagonal.
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step 2. Every matrix of the above form can be diagonalized along the following
pattern
t a t+a a t+s+2a a+s
——— —>——
(a%) (i) (Tav 5
Now ¢ +s +2a is invertible, as a was, and g +s can be cleared out. O

N.B. Since the elements in the diagonal are all invertible, they are positive or negative
in our order relation. In order to obtain the validity of Sylvester's Law of Inertia, i.e., the
entries of the diagonal are all +! or -1, we need the existence of square roots for invertible
elements in the sense of [JOYAL-REYES: Separably real closed local rings]. For our present
purposes, it is enough to take into account the number of + (or —) signs.

§4. Stability and Morse germs

As mentioned in the introduction of this chapter, we open the road towards classification of
singularities of stable germs: we completely characterize the singularity of maps into R.
We begin with the following proposition:

Proposition 4.1 Any germ f € RX of the form
[ 2, ... 2
[Gpeen ) ' =2 crup) + - +u ],
with the i; s invertible in R, is stable (see chapter 4.)

Proof. After Mather's Theorem (Theorem 4.5.1,) we have to check f for infinitesimal
stability (Definition 5.2.1.) Without loss of generality, we can assume that f € RA(®), So, the

requisite to meet is the following:

Ve Vect(f) 36e Vect(Rr) teVect(R) [0 = as(0) @ Bs (D]

So, let ® : A(n) — RD be any vector field along f, @(x) = (f(x), @(x)), where @ is the
principal part of .

We may assume that the principal part of w(0), @(0), equalis 0. Otherwise we take any
vector field © on R such that 1(f(0)) = @(0), and then we consider ® - T+f. So, the principal

partis a map @ : A(n) = R, with ©(0) = 0.
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After Carollary 1.1.4, there are unique functions

hiseees By 2 A(n) = R,

) n
such that @() = Y h(0)-1; .
i=]

We now claim that the required vector field ¢ on R” is the one whose principal part is
given by
Q(L)=(-w ceey 7u—n-)

Indeed, by the remarks after Definition 4.2.1, ocf(c) (d) = f+ o(-d), and by the remarks after
Definition 1.2, the principal part of a(o) is given by

Lo (a0,

i.e.,
e
(%(n %m] '
h (D
\2u, /
as we wanted. g

At this point we have accumulated material enough to prove a part of the resulit we are
after. We state the result in the following corollary:

Corollary 4.2 If f € RX has a non degenerate singularity at x, then f is stable.

2
Proof. By Lemma 3.2, this f is equivalent to a Morse germ of the form ¢ + a;x 12 +ee+ax,

On the other hand, by the theorem above, every germ of this form is stable. Now, from the
very definition of stability (see Definition 4.1.3,) a germ equivalent to a stable one is itself
stable, and the result follows. O
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As for the other part, the result will be a consequence of the following easy lemma:

Lemma 4.3 Letf, h € RA() be such that f ~ f (see Definition 4.1.2.) If fis a
Morse germ, then so is A.

Proof. If ¢, y denote the changes of coordinates (infinitesimal invertible maps) of Definition
4.1.2, and x is a singularity of £, then, clearly, (x) is a singularity of A. Just notice that, if ¥
denotes the Jacobian of y at f(x), and ® denotes the Jacobian of ¢ at x, then we have

\P(;a;fl-(x) ;%(x)}(ﬁ";(x) %";(cp(x)))cb,

and both ® and '¥ are invertible, O
The same goes for nondegeneracy.

Corollary 4.4 Letfe RX be a stable germ, and let x € X be a singularity of .
Then x is non degenerate, i.e., fis a Morse germ.

Proof. By definition of stability (see Definition 4.1.3) there is a weak open neighborhood of f
in RX such that every g in this neighborhood is equivalent to f. By density of Morse germs
(Proposition 2.2) in this neighborhood there is a Morse germ. Therefore, f is equivalent to a
Morse germ, hence Morse by the theorem. o
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