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ABSTRACT

As an emerging paradigm in recent years, Software-Defined Networking (SDN)

promises flexible programmability and simplified management of networks, and it has

gained considerable momentum in both academia and industry. Although the de-

coupling of the control plane and data plane contributes to the significant benefits of

SDN, it also creates challenges in controlling the network consistently and efficiently.

First, the control plane manipulates flow tables in the data plane frequently, but the

timescales of applying updates in switches vary, such that inappropriate update order

would lead to incorrect processing behaviors. Second, with various control programs

from different domains running simultaneously to control the network, it is inevitable

that control programs may make contradictory decisions, which could cause chaos in

configuring the network without reconciliation. Third, as SDN is still in a relatively

early stage, the upgrade from a traditional network to a full SDN deployment is usu-

ally an incremental process, which necessitates the centralized SDN control and the

distributed traditional network protocols working in the same network harmoniously

with considerable coordination.

A correct and consistent SDN control is essential to ensure the effective and

efficient network behaviors. However, the consistency maintenance always requires

extra overhead by introducing further checking, which delays the reactions to network

events. Moreover, the consistency requirements restrict the flexibility of SDN by

prohibiting some control decisions with potential high performance but violating

consistency properties.
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In this dissertation, we propose systematic approaches to enhance the control

consistency and reduce the overhead and limitations of consistency maintenance.

1) To maintain a consistent view among flow tables during data plane updating,

we schedule a fast and efficient update order for forwarding path updates while pre-

serving throughputs of flows. We design a divide-and-conquer approach to overcome

the long ordering latency in prior methods and improve the update parallelism.

2) We propose a control coordination approach with declarative languages to

compose control programs and reconcile conflicts conveniently. It guarantees the

effectiveness of generated control decisions and maximizes the control utility by sat-

isfying the maximum control objectives.

3) To handle the heterogeneity of network devices in hybrid SDN, we design a

series of mechanisms to adapt the centralized SDN control to the remaining tradi-

tional networking technology, ranging from the placement planning of SDN switches

to hybrid traffic engineering. These mechanisms not only coordinate the SDN control

with traditional network protocols consistently, but also exert the benefits of SDN.

Together these systems propose a consistent SDN control platform. This control

platform has the properties of fast data plane updating, elegant conflicts resolution

and effective hybrid control to promise correct enforcement of control policies.
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ABRÉGÉ

En tant que paradigme émergent au cours des dernières années, Networking

Défini par Logiciel (SDN) promet une programmation flexible et une gestion sim-

plifiée des réseaux, et elle a gagné un élan considérable dans les milieux universitaires

et l’industrie. Bien que le découplage du plan de contrôle et du plan de données con-

tribue aux avantages importants de SDN, il crée également des défis dans le contrôle

du réseau de manière cohérente et efficace. Tout d’abord, le plan de contrôle manipule

fréquemment les tables de flux dans le plan de données, mais les délais d’application

des mises à jour dans les commutateurs varient, de sorte que l’ordre de mise à jour in-

approprié entrâınerait des comportements de traitement incorrects. Deuxièmement,

avec divers programmes de contrôle de différents domaines exécutés simultanément

pour contrôler le réseau, il est inévitable que les programmes de contrôle puissent

prendre des décisions contradictoires, ce qui pourrait provoquer un chaos dans la

configuration du réseau sans rapprochement. Troisièmement, comme SDN est tou-

jours dans un stade relativement précoce, la mise à niveau d’un réseau traditionnel

vers un déploiement complet de SDN est habituellement un processus incrémental,

ce qui nécessite le contrôle SDN centralisé et les protocoles de réseau traditionnels

distribués travaillant dans le même réseau harmonieusement avec une coordination

considérable.

Un contrôle SDN correct et constant est essentiel pour assurer des comporte-

ments de réseau efficaces et efficients. Cependant, la maintenance de la cohérence

nécessite toujours des frais généraux supplémentaires en introduisant une vérification

supplémentaire, ce qui retarde les réactions aux événements du réseau. En outre, les
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exigences de cohérence limitent la flexibilité de SDN en interdisant certaines décisions

de contrôle avec des performances élevées potentielles mais violant les propriétés de

cohérence.

Dans cette dissertation, nous proposons des approches systématiques pour améliorer

la cohérence du contrôle et réduire les frais généraux et les limites de la maintenance

de la cohérence.

1) Pour maintenir une vue cohérente entre les tables de flux lors de la mise à jour,

nous organisons une commande de mise à jour rapide et efficace pour les mises à jour

des chemins de routage. Nous concevons une approche de partage et de conquête

pour surmonter la longue latence de commande dans les méthodes antérieures et

améliorer le parallélisme de mise à jour.

2) Nous proposons une approche de coordination de contrôle avec des langages

déclaratifs pour composer des programmes de contrôle et concilier facilement les

conflits. Il garantit l’efficacité des décisions de contrôle générées et maximise l’utilité

de contrôle en satisfaisant les objectifs de contrôle maximum.

3) Pour gérer l’hétérogénéité des périphériques réseau dans le SDN hybride, nous

concevons une série de mécanismes pour adapter le contrôle SDN centralisé à la tech-

nologie de réseau traditionnelle restante, allant de la planification de placement des

commutateurs SDN à l’ingénierie du trafic hybride. Ces mécanismes ne collaborent

pas seulement avec le protocole SDN avec les protocoles réseau traditionnels, mais

aussi exercer les avantages de la SDN.

Ensemble, ces systèmes proposent une plate-forme de contrôle SDN cohérente.

Cette plate-forme de contrôle possède les propriétés d’une mise à jour rapide du plan

de données, d’une résolution de conflits élégante et d’un contrôle hybride efficace afin

de garantir une application efficace des politiques de contrôle.
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CHAPTER 1

Introduction

Computer networks typically interconnect a large number of network devices

such as routers, switches and numerous types of middleboxes. With more and more

business and enterprise network requirements in enhancing connectivity and perfor-

mance, networking protocols have evolved significantly over the last few decades. In

this chapter, we will describe the features of traditional networking, and the need

for a more flexible network management. The birth of Software-Defined Networking

(SDN) creates a new perspective to overcome the ossification of traditional net-

working for network innovations. However, SDN also faces challenges to ensure the

correctness and efficiency with the new networking architecture. We describe the

contributions to address these challenges in this dissertation.

1.1 Current Networking Paradigms

1.1.1 Traditional Networking

Traditional networks consist of a collection of devices which are running various

network protocols to process packets. Each network device is composed of the control

plane and data plane as Figure 1.1 shows. The control plane makes forwarding

decisions and instructs the data plane to enforce policies in the forwarding table.

The data plane processes packets at high speed using fast on-chip memory which

stores packet-processing rules, such as filtering, forwarding, buffering, scheduling,

etc. Each device plays an equal role in the network, and contributes substantially
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Figure 1.1: Traditional networking

to the robustness of the traditional networking systems. A single node failure would

not impact the rest of the network beyond the loss of connectivity caused by that

failure. However, the widely applied traditional networking architecture is ossified,

which hinders the innovation of network algorithms in the past over 20 years.

Difficulty of new protocol design: Network switches process packets based

on the layers defined by the network protocol stacks, e.g., TCP/IP, UDP/IP. The

design and development of new network protocols and mechanisms in traditional net-

works also follow the protocol stacks. Because of the layered architecture, designing

an effective protocol usually involves information of multiple layers, so that modifi-

cations to a layer inevitably require the awareness or even changes in other layers,

especially with cross-layer optimizations [1, 2]. Moreover, as the control plane is dis-

tributed in each device, it can not make network-wide decisions effectively without

a global view of the network. This further adds to the difficulty of designing new

control algorithms. Changing the basic nature of IP, TCP, DNS, or the Sockets API

is quite difficult [3]. Therefore, Internet protocol stack has become ossified to an

hourglass-shaped architecture [4, 5].
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Difficulty of new algorithm deployment: The control plane is tightly cou-

pled with the data plane in traditional networks. The control functionality is im-

plemented within each device, and most functionality is implemented in dedicated

hardware, e.g., Application Specific Integrated Circuit (ASIC). Due to the distributed

control, introducing new functionality to the network requires deploying the new

functionality in each device independently with a heavy labor cost, or even hardware

replacement with a large economic cost. These costs impede the fast and wide de-

ployment of innovative algorithms. Even the transition from IPv4 to IPv6 started

more than a decade ago is still largely incomplete [6].

Difficulty of device configuration: A network is usually composed of a

variety of devices from different vendors. Devices of different vendors usually equip

with different, closed and proprietary implementations and interfaces. To successfully

complete a configuration, an administrator needs extensive knowledge of all device

types. Therefore, it requires a high level of expertise. Moreover, manually translating

high-level policies into low-level vendor specific configurations is a time-cosuming

and error-proning task due to the complex dependencies among policies. Therefore,

device configuration can be a challenging process for complex networks such as data

center networks and enterprise networks.

These characteristics of traditional networking make the management and con-

figuration of networks difficult, and hinder the evolving of network protocols. The

architecture ossification leads to overly complex and inflexible networks, which is

hard to support today’s growing network traffic and performance requirements.

1.1.2 Software-Defined Networking

Software-Defined Networking (SDN) is an emerging networking paradigm to con-

trol network in recent years. It promises to simplify network management and enable

3
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innovation and evolution. SDN could be abstracted as three layers in Figure 1.2: ap-

plication layer, control plane layer and data plane layer. SDN separates the control

functionality from data plane, and the control plane bridges the application layer

and data plane with well-defined north bound and south bound APIs.

• Application layer: SDN applications are control programs that communicate

their network requirements and desired network behaviors to the control plane

via a northbound API. These applications include networking management,

measurement, analytics, etc.

• Control plane layer: The control plane layer usually runs as a SDN controller

which is a logically centralized entity. The controller receives instructions or

requirements from the application layer and relays them to the network devices.

It also extracts information about the devices and communicates back to the

SDN control programs with an abstract view of the network, including network

events and statistics.

• Data plane layer: The data plane layer consists of network devices that expose

their visibility and control to the controller. As control functionality is removed

4



from network devices, SDN switches are pure forwarding devices and process

packets based on the instructions received from the control plane.

SDN eliminates the complex and static nature of the traditional networking

architecture, and it offers more programmability and fine-grained control for the

network.

Decoupled control plane and data plane: SDN decouples the control plane

from the data plane, and the control plane is a logically centralized controller. Novel

network control algorithms could be developed and integrated in the controller conve-

niently and control the network programmatically, which overcomes the deployment

difficulty of innovative protocols in traditional networks. The controller gathers in-

formation from the data plane and has a global view of the network. Thus, control

programs running on top of the controller could make network-wide optimized control

decisions with the global information, which used to be a design difficulty of effective

protocols in traditional networks. This change promises to greatly accelerate the

pace of innovation in networks [7].

Standardized device configuration: The control plane is responsible for

translating requirements of control programs into policies which are to be applied

in the data plane. The controller configures the data plane with remote commu-

nication. OpenFlow [8, 9] defines a standard configuration API, so that devices

of different types and vendors are configured in a generic and convenient manner,

which resolves the device configuration difficulty in traditional network. An Open-

Flow switch initially establishes a communication channel over a TCP connection

with a controller, and then exchanges information with the controller to allow it to

configure the switch’s flow table. The controller is able to add, modify or delete rule

5



entries in flow tables with control messages through the channel, which essentially

controls the processing behaviors of the data plane.

Generalized packet processing: Switches process packets based on the rules

in flow tables, which are installed by the controller. Each rule entry is in the format

of match-action. The match field specifies the header pattern of packets, and the

action field specifies the processing action for matched packets. Upon the arrival of

a packet at an OpenFlow switch, if a matching entry is found in the flow table, the

switch applies the corresponding action to the packet. Otherwise, a message is sent

to the controller requesting the processing action. The match-action abstraction is

general enough to support a variety of functions beyond simple L2 or L3 forwarding,

e.g., access control rules and traffic monitoring [10, 7]. The generalization of match-

action flow table makes the configuration of network devices simplified. It also drives

the development of the network device hardware of various vendors, e.g., Cisco, HP,

Arista, BigSwitch, etc.

The separation of control functionality and underlying forwarding is the key to

the flexibility of SDN, which breaks the control problem into tractable pieces. There-

fore, it is easier to create and introduce new abstractions in networking, simplifying

network management and facilitating network evolution and innovation [11]. While

SDN was originally considered in the context of campus networks and data centers,

it gains significant attractions in the industry over the past few years, e.g., Google

[12, 13], Facebook, Yahoo, Microsoft [14, 15], and is being considered in Wide Area

Networks (WANs) [16, 17], carrier networks, and mobile backhaul networks [18] for

traffic engineering, network monitoring, network virtualization, etc.
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1.2 Challenges Of Control Consistency In Software-Defined Networking

While the decoupling of control plane and data plane makes SDN more flexible

and programmable, it also creates a lot of challenges to maintain network processing

correctness and control efficiency due to the remote control [19, 20], which do not

exist in traditional networks. To ensure the correctness and performance of SDN, in

this dissertation, we focus on the consistency and efficiency of SDN control.

1.2.1 Control Consistency In SDN

Data plane update consistency: As the control plane regulates the network

states by manipulating flow tables in data plane, flow tables should be updated timely

to react to network events correctly and efficiently. Today, SDN is widely applied for

load balancing and failure recovery. In these applications, the controller schedules

flows to redundant paths to avoid network congestions and failures by updating flow

tables in switches with control messages. Flow table updates may take effect in a

delayed and asynchronous manner: not only because updates have to be transmitted

from the controller to the switches over the network, but also the reaction time of

the switches to updates may differ, depending on hardware or concurrent load [21].

However, inconsistency may occur if a switch is updated before another improperly.

Due to the coexistence of old rules and new rules in switches, inconsistent flow table

updating may lead to transient incorrect network behaviors (e.g., loops, black-holes)

or undesired performance degradation (e.g., transient communication interruption).

For example, a flow is forwarded to a switch A which has not been updated, while the

old rules for this flow on other switches have been removed. The flow still follows the

old rule on A which probably leads it into an undesired forwarding path with incorrect

matching or no matching on downstream switches, and no matching would initiate

a request to the controller for the forwarding rule with some processing delay. Thus,
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lack of consistency during the data plane update could adversely impact the stability

and availability of the network. Although flow tables are distributed in switches, the

manipulations made by the control plane should ensure flow tables have a consistent

view at any time to guarantee the forwarding correctness and availability without

any loops or black-holes.

Control plane consistency: With the increasing applications of SDN in real-

world networks, especially enterprise network, more and more SDN control programs

from multi-domains are running simultaneously to configure a network. It is in-

evitable that control programs make conflicting control decisions, e.g., contradictory

forwarding actions. The control decisions made by different control programs must

be reconciled to be consistent before applying in the data plane. Otherwise, incon-

sistent control decisions would lead to misconfiguration or performance degradation

in the network. For instance, a firewall control program would block a flow, while

the routing control program has already calculated the forwarding path for it. With

the contradictory decisions, only one decision should be applied in the data plane,

in which switches simply process packets according to the matched rules with the

highest priority. It is the controller’s responsibility to decide which policy to take

effect to ensure the correctness and concision of the data plane. Moreover, to relieve

the performance bottleneck on the control plane, the control plane is usually logically

centralized with multiple control nodes. Maintaining a consistent global view among

all the controllers is essential to ensure desired network operations.

Consistency in hybrid SDN: The upgrade of a legacy network to a full SDN

deployment is usually an incremental process, during which SDN switches controlled

by the controller and legacy switches running traditional network protocols coexist in

the hybrid network. However, distributed protocols in legacy switches are out of SDN
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control, which probably restricts the flexibility of SDN. For instance, the forwarding

on legacy switches is decided by distributed routing protocols, while SDN switches

could forward packets to their neighbours flexibly based on instructions from the

controller. The controller has to avoid generating contradictory forwarding decisions

with distributed routing, e.g., leading packets into a loop without the awareness of

distributed routing decisions, otherwise the network will be in a chaos. Therefore,

the hybrid SDN requires considerable coordination between the centralized control

and traditional network protocols to maintain the consistency.

Considering these consistency requirements, an inappropriate design of control

programs violating any consistency could not exert the advantages of SDN, and it

even results in performance degradation or erroneous network behaviors.

1.2.2 Efficiency And Effectiveness Of Consistent SDN Control

Consistency maintenance overhead: The consistency maintenance usually

imposes further checking and coordination of SDN control decisions before applied

in the data plane, e.g., update sequence ordering [22, 23], locks on variables [24],

which introduces extra overhead and control delay. An efficient and consistent SDN

controller should have low overhead and short latency to react to network events

quickly [25]. Moreover, the controller may install multiple rules of different versions

in switches to maintain the consistency during data plane updating, e.g., two-phase

update [26], which adds overhead to the limited flow table space. Although the

consistent network update problem is not introduced by SDN, the decoupling of

control plane and data plane as well as the flexibility of SDN are likely to increase

the frequency of data plane update, e.g., for supporting more fine-grained and fre-

quent optimization of forwarding paths [21]. Therefore, maintaining the consistency

efficiently is a great challenge for SDN.
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Restricted SDN performance and flexibility: The dependencies among

rules imposed by consistency (e.g., one rule must update before another) fundamen-

tally limit how quickly the data plane can be updated, e.g., updating rules according

to the calculated sequence [22, 23], which adds to the delay of network processing.

Furthermore, the consistency requirements limit the potential flexibility of SDN,

e.g., restricted SDN forwarding in hybrid SDN to avoid conflicting with traditional

routing. Due to the limitation, the SDN controller has to avoid a lot of control

policies with potential high performance but not complying with consistency re-

quirements, which constricts the desired network performance. Therefore, there is a

trade-off between the consistency and performance. An effective and efficient SDN

control program should achieve high network performance utilizing the benefits of

SDN while without violating the consistency.

Enforcing policies consistently and efficiently across the network is a basic re-

quirement for SDN [27]. Therefore, SDN requires considerate control designs to

ensure the correctness and performance.

1.3 Contribution

The motivation for this dissertation is to deal with the consistency concerns in

Section 1.2 efficiently and effectively, and we develop control approaches to maintain

the control consistency in three aspects. Figure 1.3 shows an overview of the contri-

bution architecture. First, we design a fast and efficient update ordering algorithm to

ensure consistent and congestion-free update in data plane (Chapter 2). Second, we

propose an approach to coordinate control programs to generate consistent policies

and reconcile control conflicts (Chapter 3). Third, we design SDN control to exert

the benefits of partially deployed SDN in hybrid SDN, while complying with the

traditional networking features (Chapter 4). These components are deployed in the
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Figure 1.3: Overview of contributions to SDN control consistency

control plane, and each component interacts with another: the data plane update

component schedules the update order for the reconciled control policies from the

control program reconciliation component, and the reconciliation component checks

decisions made by the hybrid coordination component for consistency, forming a

bottom-up design.

Consistent and congestion-free data plane update (Chapter 2): The

consistency among flow tables is critical to ensure correct network behaviors during

data plane updating. As the consistency requirements impose dependencies among

rules in flow tables, the order of updates must be carefully considered. To update

flow tables consistently and efficiently, we propose an efficient and effective update

ordering approach – Cupid. To avoid large overhead in update ordering, we divide

the global dependencies among updates into local restrictions, which is the key to

reduce the dependency complexity and overcome the long ordering latency of prior

approaches. We design a heuristic algorithm in resolving the dependency to calcu-

late the update order, which promises a fast and parallel update in the data plane.

This part of the work is published in IEEE International Conference on Computer

Communications (INFOCOM 2016) [23].
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Reconciling SDN control programs (Chapter 3): Existing SDN control

coordination approaches either compose control programs to derive consistent deci-

sions jointly or examine the decisions of each control program to ensure the consis-

tency. However, the former is usually of great complexity and hard to be conducted

automatically, and the latter probably results in suboptimal solutions due to the

independent execution of control programs. Moreover, these approaches all fail to

maximize the utility of the control programs. To reconcile the SDN control, we

propose Redactor to optimize the consistency and utility of network control in an

automatic and dynamic manner. In order to make network control consistent, we

implement SDN control programs with declarative language Prolog, and compose

control programs automatically to execute together to make consistent decisions.

When conflicts occur, we use a heuristic approach to compromise a subset of control

programs to maximize the control utility. This part of the work is published in IEEE

International Conference on Network Protocols (ICNP 2016) [28].

Boosting the benefits of hybrid SDN (Chapter 4): The long incremental

upgrade process from a traditional network to a full SDN deployment requires co-

ordination between the centralized SDN control and traditional distributed network

protocols to guarantee correct behaviors of the hybrid network during upgrading.

To ensure the control consistency and manage the network efficiently, we design

considerate SDN control to handle the heterogeneity caused by distinct forwarding

characteristics of SDN and legacy switches, aiming to boost the benefits of hybrid

SDN. Our solutions range from the placement of SDN switches in the hybrid network

to the hybrid traffic engineering. We consider the features of both the centralized

SDN control and traditional networking in the SDN control design. Therefore, the

benefits of the partially deployed SDN are achieved while the consistency between

12



the SDN control and traditional networking maintains. The preliminary results have

been published in IEEE International Conference on Distributed Computing Systems

(ICDCS 2017) as a short paper [29], and the full paper is in submission and under

review.
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CHAPTER 2

Cupid: Congestion-free Consistent Data Plane Update

This chapter focuses on the consistency during updating forwarding rules in the

data plane. When the forwarding paths of flows change for load balancing or fail-

ure recovery purpose, the controller updates rules in switches with control messages

for these flows. The consistency requirements impose dependencies among updates

of rules (e.g., one rule must update before another) in different switches across the

network. Therefore, finding a correct and efficient update order is critical to ensure

the desired network behavior. Previous update methods usually check the global

dependency among updates dynamically to schedule an update order, in which the

complex dependencies make the scheduling slow and can not adapt to runtime net-

works. In this chapter, we divide the global dependency into local dependencies to

reduce the dependency complexity and improve the scheduling parallelism, which

finally speeds up the update scheduling.

2.1 Introduction

Software-Defined Networking has been widely applied for traffic engineering [16,

30] and failure recovery [31] with its global view. The SDN controller schedules

flows to other available paths and updates flow tables in concerned switches for

load balancing or failure recovery. Although plenty of researches [32, 33, 34, 35,

36] have been carried out to compute optimized routing paths based on current

network topology and traffic distribution to protect against failures and congestions,
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a common challenge faced in all centrally-controlled networks is updating the data

plane consistently and efficiently [22].

The consistency requires that flows are migrated to new routing paths seam-

lessly, never with loops nor black-holes during flow tables updating, which imposes

dependencies among rules in flow tables along a routing path [37]. The missing or

mismatch of forwarding rules in switches may interrupt a flow for a while. Therefore,

the order of updating flow tables in concerned switches must be carefully considered.

Moreover, in networks where communications usually have sensitive performance re-

quirements, such as data centers, a stronger consistency instructs that traffic should

not exceed link bandwidth capacity during updating, i.e., congestion-free consistency

[17]. With limited bandwidth resource of links, even though the bandwidth demands

of flows are satisfiable before and after data plane updating, flows may be rerouted to

a link before offloading original flows on the link, which may result in congestions and

throughput degradation during updating. Therefore, the congestion-free consistency

further poses more dependencies among updates.

To update flows to new routing paths without any performance degradation,

[17, 38] formulates the problem as LP (Linear Program) to find a transition sequence

from the initial state to the target state. However, this approach would be quite

slow and does not scale to large networks with a large number of flows. Heuristic

approaches trying to find an updating order to resolve dependencies among updates,

e.g., [22, 39], also suffer substantial overhead due to the high dependency complexity.

Meanwhile, to ensure the loop free and black-hole free consistency of each flow, two-

phase update [26] is proposed which forwards packets either with the new path or the

old path, but never with a mixed path. Unfortunately, the atomic commit adds to the

complexity of dependencies among updates. As congestions may occur on any hop
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of a new routing path during updating, to avoid throughput degradation, a flow only

could migrate to the new path until all these hops have enough available bandwidth,

which brings down updating efficiency. Moreover, a flow table may hold multiple

entries of different versions for each flow in two-phase update. This may overload

the limited flow table space. Attempts to reduce flow table space overhead during

updating have been made in [40, 41, 42], but they always have to make trade-offs

between flow table space and updating efficiency.

In this chapter, we present a congestion-free update ordering approach while

maintaining the black-hole free, loop free consistency properties. We firstly find

that the new routing path of each flow could be divided into several independent

segments, and identify the critical nodes which control traffic shifting between the

old path and new path. To avoid congestions during updating, instead of resolving

a global dependency graph composed of updates and network resources in [22], we

divide dependencies among updates into local dependencies among critical nodes, and

then construct a dependency graph with potential congested links. The divided local

dependencies improve update parallelism, and ensure the efficiency and scalability

of congestion-free updating. In this way, we successfully restrict the problem space

while keeping the dependency. We then design and implement a heuristic dependency

resolution algorithm to schedule a fast data plane update order. Meanwhile, to reduce

the flow table space overhead, we use multiple input and output ports with weights

in each flow entry, so that a switch keeps only one rule for each flow during updating.

The results of simulation show that Cupid schedules update ordering at least 2 times

faster than Dionysus [22] and has less throughput losses in both fat-tree and mesh

topologies.
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2.2 Challenges And Related Work

2.2.1 Complexity Of Congestion-free Updating

To achieve high network utilization during flow tables updating, [17, 38] formu-

lates the updating problem as a LP problem to find a transition sequence from the

initial state to the target state for inter-data center WANs and inside data center

networks respectively. However, real-world networks are usually more complicated

than the well organized inter- and intra- data center networks. A more complex

network tends to involve more complicated dependency among updates and even

dependency deadlocks which complicate the update ordering. In Figure 2.1a, flows

f1 and f2 are rerouted to other paths to release more available bandwidth for future

flows on links A → B, C → E and E → D. With different rerouting schemes,

the target routing paths (dotted lines) are different in Figure 2.1b, 2.1c, 2.1d, which

result in differences in update ordering. Moreover, the three updating scenarios vary

in dependency complexity.

In Figure 2.1b, when flow f1 is rerouted from subpath C → E → D to C → D,

it has to wait for the removal of f2 on link C → D due to the bandwidth limitation.

Meanwhile, the rerouting of f2 from subpath A → E → B to A → B depends on

the remove of f1 on link A→ B. As f1 could update from A→ B to A→ F → B,

and f2 could also shift from C → D to C → G → D freely without any bandwidth

restriction, the dependencies are released. Thus, we can schedule a feasible update

order to solve the dependencies.

In Figure 2.1c, when f1 updates from subpath A→ B to A→ E → B, it requires

moving f2 from A → E → B to A → B firstly. However, due to the bandwidth

restriction, it is impossible to make the exchange without any performance reduction

with single path forwarding. Therefore, [22, 17, 38] use multipath to migrate flows

17



A

B C

D

E

s1

s2

d1

d2

f1: 0.8

f2: 0.5

(a) Initial state

A

B C

D

E

s1

f2: 0.5

s2

d1

d2

f1: 0.8

F G

(b) Target state 1

A

B C

D

E

s1

s2

d1

d2

G

f1: 0.8

f2: 0.5

(c) Target state 2

A

B C

D

E

s1

s2

d1

d2

f1: 0.8

f2: 0.5

(d) Target state 3

Figure 2.1: Routing update of flows: (a) shows the current routing paths (solid lines)
of flows f1 (blue from s1 to d1) and f2 (red from s2 to d2), and then f1 and f2 may be
rerouted to new paths (dotted lines) in (b), (c), (d) respectively with three different
routing schemes. The bandwidth capacity of each link is 1 unit, and throughputs of
f1 and f2 are 0.8 unit and 0.5 unit.

gradually to new paths, e.g., splitting f1 into 0.5 unit and 0.3 unit on subpaths

A→ E → B and A→ B respectively, thus f2 could shift to A→ B completely with

0.5 unit, and then f1 finally migrates 0.3 unit on the old subpath to A → E → B.

Unfortunately, in this scenario, if we split f1 into two subflows with A → B and

A → E → B before updating the rule in C from C → E to C → D, we will get a

loop {E,B,C} on f ′1s routing path.

Despite of the multipath transition with A→ B and A→ E → B, Figure 2.1d

also requires multipath transition with C → D and C → E → D for f1 and f2.

Furthermore, to avoid loop {E,B,C}, the removal of rule C → E for f1 in switch

C requires the multipath transition of f1 and f2 with C → D and C → E → D,
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which further requires the removal of rule A → E for f2 in switch A to avoid loop

{E,D,A}, so that a deadlock occurs between the two multipath transitions.

2.2.2 Efficiency Of Update Ordering

Although congestion-free updating is usually complicated in real-world networks,

updates should react in time to routing changes to minimize the duration of perfor-

mance degradation and network failures [43]. However, maintaining congestion-free

consistency during updating usually requires global coordination due to complex de-

pendencies among updates, which poses challenges to update ordering efficiency. LP

[17, 38] would be too slow to find a feasible ordering with the complex dependency.

Dionysus [22] proves that finding the fastest update scheduling is a NP-complete

problem, and dynamically schedules a dependency graph among updates and net-

work resources with a heuristic algorithm. However, with the complicated topology

and strong dependencies in real-world networks, the global dependency graph coor-

dination is of great overhead. Hong et al. [17] and Shi et al. [44] also note that careful

ordering of updates cannot always guarantee congestion freedom during updating.

Zhou et al. [43] and McClurg et al. [45] reduce the consistency problem to a model

checking problem instead of designing a new ordering algorithm.

In spite of the low efficiency due to the global coordination overhead, the consis-

tency in two-phase update [26] requires forwarding packet either with the new or the

old path, but never with a mixed path, so that all the switches in a new path must

be updated before shifting any traffic of a flow to the new path. Thus, the strong

property of consistency would lead to a long delay for rerouting update. Moreover,

we must make sure neither the new path nor the old path is congested, while any

hop on a routing path may be exposed to congestions during updating. Ordering

and two-phase approaches both could benefit from time-triggered updates [46, 42]
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but with extra clock synchronization in switches. To improve the update efficiency,

[37, 47] note that dependency structures are simpler for weaker consistency properties

than stronger properties, and make a trade-off between the strength of consistency

property and dependencies.

2.3 Independent Segments Of A Single Flow

2.3.1 Consistency With Mixed Path

Considering the low efficiency of the strong consistency, we note that the black-

hole free and loop free consistency could still be preserved with mixed paths without

the atomic committing in two-phase update. For instance, in Figure 2.1b, a packet

of flow f1 going through s1 → A → B → C → D → d1 or s1 → A → F →

B → C → E → D → d1 with mixed subpaths still ensures the connectivity of

f1. Zhou et al. [43] notes that the black-hole free and loop free consistency is a

downstream-dependent property. Updating from downstream switches to upstream

switches sequentially is sufficient to ensure the consistency, and we call it reverse

order updating in Lemma 1.

Lemma 1. The reverse order updating of a routing path is black-hole free and loop

free.

However, upstream switches always have to wait for the update completion of

downstream switches in reverse order updating. Actually, some upstream switches

are independent from downstream updates as long as connectivity maintains. In

Figure 2.1b, switch A does not need to know the downstream path of C is C →

E → D → d1 or C → D → d1 for flow f1 provided the connectivity between

C and d1. Similarly, C also does not care about the upstream path of flow f1 is

s1 → A→ F → B or s1 → A→ B as long as packets arrive at C correctly. In other

words, the updates of flow f1 to subpaths A→ F → B and C → D are independent.
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To understand how switches migrate a flow from its old routing path to a new

routing path, we identify the critical nodes which control the routing path switching.

The critical nodes C(f) of a flow f are the common switches on both the old path

Po(f) and the new path Pn(f), but using different rules.

C(f) = {nf |nf ∈ Po(f) ∩ Pn(f), rule(nf , Po(f)) 6= rule(nf , Pn(f))}

As critical nodes connect the new path with the old path, such as switches

A,E,B on f1’s routing paths in Figure 2.1c, these critical nodes control the traffic

shifting between the old path and new path. Therefore, the updates of critical nodes

are of great importance during updating. Based on the modifications made to flow

entries, critical nodes could be divided into three classes: (inport, output) in which

both the input and output ports require to be modified (e.g., E for f1), (∗, output)

changes the output port of flow entry while the input port stays unchanged (e.g., A

for f1), and (inport, ∗) only changes the input port (e.g., B for f1).

To save flow table space, each flow entry is equipped with multiple input or

output ports in updating critical nodes. Thus, there is only one flow entry kept for

each flow in a switch. Especially for the critical nodes which require output port

modifications, these nodes control how to forward packets through mixed paths with

multiple outports. Each outport is associated with a weight, so that these weights

determine the amount of traffic on the new path and old path to avoid congestions

during updating.

2.3.2 Segment Partition Of A flow

To make the updating flexible and reduce the updating latency, we divide the

new routing path of flow f into several segments Sg(f) = {sg}, and each segment sg

could be updated independently. Each segment sg consists of a minimum sequence of
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switches on the new path which starts and ends with critical nodes (or the source and

destination switches for the first and last segments), so that the beginning and ending

nodes control traffic shifting between the old subpaths and new segments. Adjacent

segments only share the ending or beginning nodes and never overlap on nodes inside

segments. Thus, each segment is an atomic sequence, and can be represented as:

Sg(f) ={sg ⊆ Pn(f)|min {sg.length}, sg.start, sg.end ∈ C(f) ∪ {Pn(f).start, Pn(f).end},

∀sg′ ∈ S(f), sg ∩ sg′ = ∅ or = sg.start ≡ sg′.end or = sg.end ≡ sg′.start,

lasthop(sg) 6∈ cycle(Po(f), Pn(f))}

As the beginning and ending nodes of each segment are critical nodes, they

always need to update either input port or output port. Even though a beginning

node may require updating the input port field, to make each segment independent,

the updating of the beginning node in a segment only modifies the output port field

(∗, outport) of the flow entry, while the modification of the input port (inport, ∗)

belongs to the ending node of last segment. Similarly, the ending node of each

segment only modifies the input port field (inport, ∗), while the update of output

port (∗, outport) belongs to the beginning node of the next segment.

To avoid loops during updating, the last hop of a segment should not belong to

any cycle formed by the old path and new path with lasthop(sg) 6∈ cycle(Po(f), Pn(f)).

If there is a segment of flow f1 in Figure 2.1c ending with → E → B → C which is

involved in the cycle {E,B,C}, packets will be circulated if we update the routing

path to E → B → C in the segment before removing the rule C → E in C which

belongs to the next segment. Hence, the cycle makes the updating of E → B → C

depends on updating f1 to C → D. Thus, C → D should be added to the end of
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Algorithm 1 Segment Partition

1: Sg(f) = ∅
2: for n : Pn(f) do
3: sg = n
4: m = successor node of n on Pn(f)
5: while m 6= ∅ ∧ (m 6∈ C(f) or (n→ m) ∈ cycle(Po(f), Pn(f))) do
6: sg = sg → m
7: n = m, m = successor node of n on Pn(f)
8: end while
9: sg = sg → m

10: Sg(f) = Sg(f) ∪ sg
11: n = m
12: end for

the segment to break the cycle, otherwise the updating of the segment depends on

the next segment.

We design an algorithm to calculate segments set Sg(f) for each flow f in Algo-

rithm 1. Non-critical nodes and the nodes belonging to any cycle are added to a seg-

ment until meeting a critical node breaking the cycle in Line 5-8. cycle(Po(f), Pn(f))

is the cycle set formed by the old path and new path, such as cycles {E,B,C} formed

by f1’s routing paths and {E,D,A} formed by f2’s routing paths in Figure 2.1d. By

traversing switches along a new path (Line 2), any switch on the new path is assigned

to its segment.

2.3.3 Properties Of Segments

Theorem 1. A segment sg ∈ Sg(f) is black-hole free and loop free with reverse

order updating.

Proof. As sg.start, sg.end ∈ C(f)∪{Pn(f).start, Pn(f).end} are the common nodes

of the new and old paths, we construct a flow f ′ from sg.start to sg.end with the
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same header field of f . The routing update of f ′ between sg.start and sg.end fol-

lows Lemma 1 with reverse order updating, thus the black-hole free and loop free

properties preserve in sg.

Theorem 2. Segments in Sg(f) are independent from each other, which means

updates in a segment do not depend on updates in other segments.

Proof. If the updating of switch sg[i] in segment sg depends on another segment

sg′ ∈ Sg(f), the updating of sg[i] before updates in sg′ will result in a loop l or

black hole b.

Switch sg[i](0 6 i < sg.length−1) updates rule(sg[i], Po(f)) to rule(sg[i], Pn(f))

which establishes a path sg[i]→ sg[i+1] ∈ sg. As sg[i] 6∈ sg′, sg[i]→ sg[i+1] 6∈ sg′,

which means no path changes in segment sg′.

As no path changes in sg′, the loop and black-hole l, b 6∈ sg′. According to

Theorem 1, segment sg is black-hole free and loop free with reverse order updating,

which conflicts with l, b. Therefore, sg[i] does not depend on any node in sg′.

With Theorem 1 and 2, each segment acts as an independent routing path with

reverse order updating. Thus, segments could be updated in parallel to improve up-

dating parallelism and flexibility. During updating of independent segments, packets

of a flow f may be forwarded along a path composed of mixed nodes belonging to

Po(f) or Pn(f), while the connectivity always maintains.

According to Algorithm 1, the segments of flows in Figure 2.1b,2.1c,2.1d are

showed in Table 2.1. Although segments start and end with critical nodes, a lot of

segments do not need any update due to the divided updating of inport and outport

between beginning and ending nodes on inport and outport fields. For instance, the

segment s1 → A of flow f1 ends with a critical node A in Figure 2.1b. Switch A
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Table 2.1: Segments of flows

Figure Segments of f1 Segments of f2

2.1b {s1 → A,A → F → B,
B → C,C → D,D → d1}

{s2 → C,C → G → D,
D → A,A→ B,B → d2}

2.1c {s1 → A,A → E,E → B → C →
D,D → d1}

{s2 → C,C → G → D,
D → A,A→ B,B → d2}

2.1d {s1 → A,A → E,E → B → C →
D,D → d1}

{s2 → C,C → E,E → D → A →
B,B → d2}

only needs to update the outport field for f1 with the beginning node in the next

segment A → F → B, so that no node requires updating in segment s1 → A.

Therefore, segments requiring no update are shadowed in Table 2.1, such that only

partial segments require updates, which further reduces updating overhead.

2.4 Congestion-free Updating Of Multiple Flows

Even though the independent segment partition and reverse order updating

improve updating parallelism and efficiency of each flow while ensuring connectivity,

topology changes and load balancing usually require rerouting multiple flows to other

available forwarding paths in a short time. However, with bandwidth limitation

on links, multiple flows may congest on a link during the migration, which results

in performance reduction of several flows. To ensure performance of flows during

updating, we have to schedule a feasible congestion-free updating order to update

flow tables for multiple flows.

2.4.1 Potential Congested Links During Updating

To avoid congestions during updating, we have to discover potential congestions

at first. We define the criteria to identify a potential congested link l between switch

u and v as follow:
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Definition 1 (Potential Congested link l = u → v). With flows desire to use the

link Fn(l) = {f | ∀f, l ∈ Pn(f) − Po(f)}, flows to be moved away from the link

Fo(l) = {f | ∀f, l ∈ Po(f) − Pn(f)}, and unchanged flows going through this link

Fu(l) = {f | ∀f, l ∈ Pn(f) ∩ Po(f)} during updating, the throughputs of flows b(f)

on a potential congested link l satisfy

∑
fi∈Fo(l)∪Fu(l)

b(fi) ≤ c(l),
∑

fi∈Fn(l)∪Fu(l)

b(fi) ≤ c(l) (2.1)

∑
fi∈Fo(l)

b(fi) +
∑

fi∈Fn(l)

b(fi) +
∑

fi∈Fu(l)

b(fi) > c(l) (2.2)

The consumed bandwidth does not exceed the bandwidth capacity c(l) in both

the initial and final states (2.1). However, flows in Fn(l) may be scheduled to link

l at any time before moving some old flows in Fo(l) away during updating, which

exceeds the link bandwidth capacity (2.2). To avoid any throughput degradation,

we must find all potential congestion combinations of Fn(l) and Fo(l) on link l. The

ordering of updates related to potential congested links must be carefully considered

to avoid congestions. With Definition 1, we can find a set of potential congested

links CL which contains all the links that may be congested during updating.

Proof. If link l is congested during updating, but l 6∈ CL, there must exist a subset

of newly added flows F ′n(l) ⊆ Fn(l) and old flows F ′o(l) ⊆ Fo(l) on link l when the

congestion occurs.

∑
fi∈Fo(l)

b(fi)+
∑

fi∈Fn(l)

b(fi)+
∑

fi∈Fu(l)

b(fi) ≥
∑

fi∈F ′o(l)

b(fi)+
∑

fi∈F ′n(l)

b(fi)+
∑

fi∈Fu(l)

b(fi) > c(l)

Therefore, l must be a potential congested link.
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2.4.2 Dependency Graph For Congestion-free Updating

Intuitively, if flows in Fo(l) are moved away from the potential congested link l

before flows in Fn(l) shifting to l, congestions will be avoided. Unfortunately, flows

are usually blocked by multiple potential congested links on the new path. Thus, the

rerouting of a flow may depend on updates of several flows, which makes the update

scheduling complicated.

As Figure 2.1b shows, the update of f1 depends on the removal of f2 on potential

congested link C → D, while f2 depends on the removal of f1 on potential congested

link A → B. The dependencies seem making a deadlock. With segments partition,

the updating of f1 to C → D falls into segment (C → D)f1 (we use (segment)flow

to indicate a segment of a flow) while the removing of f2 from C → D is in segment

(C → G→ D)f2 . Similarly, the updating of f2 to A→ B is in segment (A→ B)f2 ,

while the removing of f1 falls into (A→ F → B)f1 . Thus, dependencies among flows

could be divided into local dependencies among segments, e.g., (A → F → B)f1

depends on (A→ B)f2 while (C → G→ D)f2 depends on (C → D)f1 .

To resolve local dependencies, we would like to find the exact local critical nodes

controlling traffic on potential congested links for each flow. Thus, the updates of

these nodes are critical to avoid congestions locally.

Lemma 2. For flows ∀f ∈ Fn(l) ∪ Fo(l) on a potential congested link l = u → v ∈

Pn(f)−Po(f) or Po(f)−Pn(f), there must exist at least a critical node ∃nf ∈ C(f)

preceding u on Pn(f) or Po(f) respectively.

Proof. If u ∈ C(f), nf = u. Otherwise, u 6∈ C(f):

For ∀f ∈ Fo(l), l 6∈ Pn(f). If we can not find a critical node from Po(f)[0] to

u along Po(f), as the source node Po(f)[0] ∈ Pn(f) ∩ Po(f) and Po(f)[0] 6∈ C(f),
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rule(Po(f)[0], Pn(f)) = rule(Po(f)[0], Po(f)), thus link Po(f)[0]→ Po(f)[1] ∈ Pn(f).

Iteratively, Po(f)[1] → Po(f)[2], ..., u → v ∈ Pn(f), which conflicts with l 6∈ Pn(f).

Therefore, there must ∃nf ∈ C(f) between Po(f)[0] and u.

For ∀f ∈ Fn(l), l 6∈ Po(f). According to Algorithm 1, any switch in the new

path belongs to a segment sg, and the beginning node of the segment sg.start ∈

C(f) ∪ {Pn(f).start}. If sg.start ∈ C(f), nf = sg.start. Otherwise, sg.start =

Pn(f).start 6∈ C(f). If we can not find a critical node from Pn(f)[0] to u along

Pn(f), similar with the proof of flows in Fo(l), u → v ∈ Po(f), which conflicts with

l 6∈ Po(f). Thus, there must ∃nf ∈ C(f) between Pn(f)[0] and u.

As we always could find a preceding critical node for each flow on a potential

congested link with Lemma 2, these critical nodes control the amount of traffic of

each flow on the potential congested link. Especially during the multipath transition

[22, 17, 38], the critical node splits traffic of a flow between the old subpath and new

subpath and shifts traffic gradually to the new path with different weights on the new

path and old path. Therefore, the dependency among segments could be transformed

into dependency among critical nodes controlling traffic on each potential congested

link.

Definition 2 (Critical nodes dependency for potential congested link l = u → v).

The last critical node nf (l) of each flow f ∈ Fn(l)∪Fo(l) preceding u controls traffic

on l. Thus, the critical node set of Fn(l) depends on the critical node set of Fo(l):

CN(Fn(l)) = {nfn(l)|∀fn ∈ Fn(l)}⇀ CN(Fo(l)) = {nfo(l)|∀fo ∈ Fo(l)}.

We use ⇀ to indicate the dependency in Definition 2. With local critical nodes

dependencies for potential congested links, we get a dependency graph in which

each potential congested link l matches a directed edge from the critical node set
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Table 2.2: Dependency graph

Figure Dependency Graph

2.1b Af2 ⇀ Af1 Cf1 ⇀ Cf2

2.1c Af1 
 Af2 ↼ Ef1 Cf1 ⇀ Cf2

2.1d Af1 
 Af2 Cf1 
 Cf2 Ef1 
 Ef2

CN(Fn(l)) to CN(Fo(l)). The critical nodes dependency of link A → B in Fig-

ure 2.1b is Af2 ⇀ Af1 in which Af2 and Af1 are critical nodes of f2 and f1 respectively

for link A → B. Likewise, the dependency graphs for the three updating scenarios

in Figure 2.1 are showed in Table 2.2. For the dependency graph of Figure 2.1b,

Af1 and Cf2 should update before Af2 and Cf1 to resolve the two dependencies in-

dependently. With independent segments in Table 2.1, the updates in Figure 2.1b

could be scheduled by updating segments (A → F → B)f1 , (C → G → D)f2 before

(A→ B)f2 and (C → D)f1 , so that Af1 and Cf2 update before Af2 and Cf1 .

2.5 Dependency Resolution

While the global dependency among updates is divided into local dependen-

cies among critical nodes to reduce resolution complexity, switches in each segment

should also follow the reverse order updating to preserve black-hole free and loop free

consistency. In this section, we design a heuristic algorithm to resolve the depen-

dency graph while considering update order inside each segment. The key notations

of the following algorithms are summarized in Table 2.3.

2.5.1 Direct Dependency Resolution

After constructing the dependency graph (Line 5-8) in Algorithm 2, the nodes

which do not belong to the dependency graph could be updated with UpdateSegment(sg)
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Table 2.3: Key notations in Cupid
Notation Definition

f flow
b(f) bandwidth requirement of flow f
c(l) bandwidth capacity of link l
a→ b a precedes b along a forwarding path
a ⇀ b a depends on b
Po(f) the old forwarding path of flow f
Pn(f) the new forwarding path of flow f
C(f) critical nodes C(f) of a flow f
Sg(f) segments of a flow f
Fo(l) flows to be moved away from link l
Fn(l) flows desire to use link l
Fu(l) unchanged flows going through link l
nf node n on the forwarding path of flow f

d(l)
dependency among critical nodes

for potential congested link l
CN(Fn(l)) or d(l).CN(Fn) critical node set of Fn(l)
CN(Fo(l)) or d(l).CN(Fo) critical node set of Fo(l)

nf .old/nf .new
the amount of traffic on the old/new path

controlled by node n for flow f

(Line 9) and added to the update sequence US, as long as the downstream nodes in

the same segment have already been updated.

For the nodes involved in the dependency graph D, if the update of a crit-

ical node nf ∈ d(l).CN(Fo) does not depend on others, which means no other

d(l′).CN(Fn) contains nf and the downstream nodes in the same segment have been

updated (CanUpdateInSegment(nf )), nf could be updated immediately (Line 11-

15). After the update of nf , nodes in the same segment sg previously blocked by

nf due to the reverse order updating are able to update with UpdateSegment(sg),

and then nf is removed from the dependency graph (Line 14). Furthermore, if the

updates of some nodes in d(l).CN(Fo) relieve potential congestions on l (Line 16),
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Algorithm 2 Direct Dependency Resolution

1: # Initialization:
2: US = ∅ #update sequence
3: D = ∅ #dependency of critical nodes
4: CL = potential congested links
5: for each link l : CL do
6: d(l) = CN(Fn(l)) ⇀ CN(Fo(l))
7: D = D ∪ d(l)
8: end for
9: US = US + UpdateSegment(sg) (∀f, sg ∈ Sg(f))

10: # Critical node nf update without deadlocks:
11: if (∃d(l) ∈ D) ∧ (d(l).CN(Fo) = ∅ or nf ∈ d(l).CN(Fo) ∧ nf 6∈ ∀d(l′).CN(Fn))

then
12: if CanUpdateInSegment(nf ) then
13: US = US + nf + UpdateSegment(sg) (nf ∈ sg)
14: remove nf from all D
15: end if
16: if IsPotentialCongested(l) == false then
17: for nf : d(l).CN(Fn) ∪ d(l).CN(Fo) do
18: if CanUpdateInSegment(nf ) ∧ nf 6∈ ∀d(l′).CN(Fn) then
19: US = US + nf + UpdateSegment(sg) (nf ∈ sg)
20: remove nf from D
21: end if
22: end for
23: D = D − d(l), CL = CL− l
24: end if
25: end if
26: # Schedulable critical node nf update in deadlock:
27: if (∃d(l) ∈ D) ∧ (nf ∈ d(l).C(Fo) ∧ InDeadlock(nf ) ∧ CanSchedule(nf )) then
28: if CanUpdateInSegment(nf ) then
29: US = US + nf + UpdateSegment(sg) (nf ∈ sg)
30: remove nf from D
31: end if
32: end if

Line 17-22 update free critical nodes in d(l).CN(Fn) and d(l).CN(Fo), and Line 23

removes the dependency d(l) from dependency graph D and deletes l from potential

congested link set CL.
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Although the dependency Cf1 ⇀ Cf2 in Figure 2.1c could be scheduled sequen-

tially with Line 11-25 in Algorithm 2, Af1 and Af2 depend on each other which makes

a deadlock. The deadlocks in Table 2.2 are clear, as each critical node set has only

one node. However, the critical node sets of each link may contain several critical

nodes. We define the deadlock as a cycle in which CN(Fo) and CN(Fn) of adjacent

critical node dependencies share at least one critical node.

Definition 3 (Deadlock L). For a set of potential congested links {l0, l1, l2, ..., lk},

CN(Fo(l0)) ∩ CN(Fn(l1)) = cn0 6= ∅, CN(Fo(l1)) ∩ CN(Fn(l2)) = cn1 6= ∅, ...,

CN(Fo(lk))∩CN(Fn(l0)) = cnk 6= ∅, the intersection critical node sets cn0, cn1, ..., cnk

form a deadlock L.

Actually, not all the nodes involved in a deadlock are blocked. As Figure 2.2

shows, there are 4 flows from A to D using A → B → D and A → C → D re-

spectively. If we want to exchange the routing paths of f1, f2 with f3, f4 to release

more available bandwidth for other flows on link A → C, the exchanging is recog-

nized as a deadlock in Figure 2.2b. Indeed, the exchanging could be serialized with

the update sequence f3, f1, f2, f4, as the available bandwidth on new paths is large

enough to reroute flows directly. Therefore, schedulable nodes in a deadlock may be

updated directly with an appropriate update order. In Algorithm 2, Line 27 checks

whether nodes in deadlocks (InDeadlock(nf )) could be scheduled with enough band-

width (CanSchedule(nf )), and then add schedulable nodes to the update sequence

in Line 28-31.

2.5.2 Updating With Multipath Transition

Although schedulable critical nodes could update directly to resolve the deadlock

in Figure 2.2, there may be situations in which no node in a deadlock could update

completely in a step due to the limitation of bandwidth capacity. For example, if
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f1: 0.2

f3: 0.5

f4: 0.4

f2: 0.3
A

B

C

D

(a) Current state

Af1 , Af2 
 Af3 , Af4

(b) Dependency graph

Figure 2.2: Schedulable flows in deadlock: the link bandwidth capacity is 1 unit, and
f : b means the throughput b of flow f .

throughputs of f2 and f3 are both 0.4 unit, none of these 4 flows could be updated

directly. Therefore, we use multipath transition by spitting traffic of a flow between

the old path and new path with critical nodes. For the deadlock Af1 
 Af2 in

Figure 2.1c, we split both flows f1 and f2 with link A → B and A → E to shift

traffic to their new paths gradually. To reduce the multipath transition overhead, we

design a greedy algorithm to shift the largest amount of traffic to minimize multipath

transition steps. For example, Af1 in Figure 2.1c shifts 0.5 unit of f1 to A → E

firstly, as 0.5 unit on A → E available for f1 is larger than 0.2 unit for f2 on

A → B. In Algorithm 3, Line 2 searches the non-blocked critical node with the

largest available bandwidth ab in deadlock L. The available shifting bandwidth ab

for nf is the minimum value of the amount of traffic on the old path nf .old and

minimum available bandwidth along the new subpath. If ab > 0, Line 6-7 reassign

weights nf .old : nf .new for the old path and new path, and add the node to update

sequence. With the multipath migration, all the traffic on the old path is finally

shifted to the new path (Line 8), so that Line 10 removes nf from the dependency

graph. After the completion of multipath transition in Figure 2.1c, Ef1 is able to

update as the dependency on Af2 has been resolved.
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Algorithm 3 Multipath Transition

1: while L 6= ∅ do
2: {nf , ab} = max

nf∈L
{min{nf .old, min

nf∈∀d(l′).CN(Fn)
AvailBw(l′)}} ∧

CanUpdateInSegment(nf )
3: if ab ≤ 0 then
4: RateLimit(fr = max

f ′∈Pn(f)
(b(f ′)))

5: end if
6: nf .old : nf .new = (nf .old− ab) : (nf .new + ab)
7: US = US + nf
8: if nf .old == 0 then
9: US = US + UpdateSegment(sg) (nf ∈ sg)

10: L = L− nf , remove nf from D
11: end if
12: end while

Unfortunately, multipath transition may be blocked by fully utilized links. For

example, in Figure 2.2, if throughputs of all the 4 flows are 0.5 unit, no flow could

migrate as there is no available bandwidth at all. In this case, the maximum available

bandwidth ab ≤ 0 (Line 3), so that we need to limit throughputs of some flows to

release a small amount of available bandwidth for multipath transition. Thus, if we

would like to shift f1 with multipath in Figure 2.2, we should limit rate of flows f3

or f4 on the new path of f1, e.g., reducing 0.2 unit of f3, so that f1 could split traffic

with weights 0.2 : 0.3 on the new path and old path, and then multipath transition

is able to carry out as normal. After the multipath transition, the throughputs of

rate-limited flows are restored to reduce throughput losses.

2.5.3 Dependency Resolution With Segments

2.5.3.1 Feasibility of Dependency Resolution

For Figure 2.1d, the dependency graph requires multipath transitions for (Af1 , Af2),

(Cf1 , Cf2) and (Ef1 , Ef2) as Table 2.2 indicates. While a multipath transition updates
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E B C D

D

C E

E BA

f2-sg1

f1-sg1

f1-sg2

f2-sg2

(a) Dependencies and segments in
Figure 2.1d

fa-sga

fb-sgb

A B C D

E F G

(b) Conflicts between dependency graph
and segments

Figure 2.3: Combining dependency graph with segments: f -sg means segment sg of
flow f

multiple nodes in a deadlock simultaneously, nodes should follow reserve order updat-

ing in each segment, which is checked by CanUpdateInSegment(nf ) in Algorithm 3.

Combining the dependency graph and segments of Figure 2.1d together, Figure 2.3a

shows that multipath transitions of (Af1 , Af2) and (Cf1 , Cf2) are independent from

each other, so that these two deadlocks could be scheduled concurrently as long as

their downstream nodes have been updated. After the resolution of Af1 
 Af2 and

Cf1 
 Cf2 , switch D in segment sg2 of f2 and switch B in segment sg2 of f1 are able

to update, and then the multipath transition of (Ef1 , Ef2) resolves the dependency

graph finally.

Even though dependency graph could be resolved following reverse order up-

dating of each segment in Figure 2.3a, there are still situations in which dependency

can not be solved due to conflicts between the dependency graph and segments. Fig-

ure 2.3b requires multipath transitions for (Afa , Ffb) and (Cfa , Efb). Meanwhile, the

reserve order updating of segments sga and sgb instructs that Cfa updates before Afa

and Ffb updates before Efb respectively. Consequently, the multipath transition of

(Afa , Ffb) has to wait for the update completion of Cfa , while the update of Cfa in
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multipath transition of (Cfa , Efb) requests Ffb in (Afa , Ffb) to update firstly. Thus,

there is a conflict between dependency graph and segment. We detect this kind of

conflicts by checking cycles formed by the dependency graph and reserve order of

segments. The cycle A → B → C 
 E → F 
 A in Figure 2.3b is composed

of critical nodes dependencies and sub-segments, while there is no cycle formed in

Figure 2.3a.

Theorem 3. If no cycle forms with the dependency graph and reverse order of seg-

ments, we could always find an update order with Algorithms 2 and 3.

The update scheduling for the dependency graph and reverse order of segments

forming no cycle is as follows: Algorithm 2 first updates free nodes and schedulable

nodes in deadlocks, and then Algorithm 3 resolves deadlocks with multipath transi-

tion and rate-limit. After resolving deadlocks, nodes previously blocked by deadlocks

are now relieved and could be scheduled by running Algorithm 2 again. Iteratively,

all the updates and deadlocks are scheduled with Algorithm 2 and 3.

2.5.3.2 Dependency Resolution And Update Efficiency

The dependency resolution generates an update order for rules. As different

update orders would result in different update delays in the data plane, scheduling

a fast update order is critical to reduce the duration of updating. Intuitively, the

update delay depends on the updates in the most complicated dependency chain.

In Figure 2.3a, the update time depend on segments E → B → C → D of f1,

E → D → A → B of f2, and critical nodes dependency Ef1 
 Ef2 . Thus, Df1

and Bf2 should start to update as early as possible, so that the finishing time could

be earlier. However, the complexity of dependency chain is difficult to estimate.

We design a heuristic scheduling algorithm (Algorithm 4) for dependency resolution

based on the length of the dependency chain. The dependency chains consist of not
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Algorithm 4 Efficient Dependency Resolution Scheduling

1: DGraph = dependency graph ∪ segments
2: for each pair d(l1), d(l2) ∈ D do
3: if d(l1).CN(Fn) ∩ d(l2).CN(Fo) then
4: DGraph = DGraph ∪ (d(l1)→ d(l2))
5: end if
6: end for
7: while DGraph.nodes 6= ∅ do
8: Nodes = sort node ∈ DGraph.nodes in decreasing order of dclength(n)
9: for node ∈ Nodes do

10: resolve node with Algorithm 2 and 3
11: end for
12: end while

only the dependency graph and segments but also the dependencies among critical

nodes dependencies (Line 1-6). We select the nodes with long dependency chains

for scheduling first (Line 7-12), and expect that the nodes at the beginning of these

long dependency chains could be updated as early as possible with less short update

completion delays. The dclength of node is defined as the length of upstream depen-

dency chain depending on node in (2.4), which is the sum of the weights of nodes on

the upstream chain. For a critical nodes dependency node, the weight is the number

of nodes in CN(Fo) and CN(Fn). Otherwise, for a single update node, the weight

is 1.

weight(node′) =


size(node′.CN(Fo)) + size(node′.CN(Fn)) node′ ∈ D

1 node′ 6∈ D

(2.3)

dclength(node) = max
chain.end=node

∑
node′∈chain

weight(node′) (2.4)
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Although the sequential update in the data plane could ensure the correctness,

it hinders the update efficiency. As rules on different switches could update con-

currently, we note that parallel update of rules will reduce the overall update delay.

When we resolve a rule from dependency, we also assign it with the exact update

time slot on the concerned switch to ensure the correct update order in the data

plane. Assuming a switch could only update one rule at a time slot. The update

time of rules not only depends on the dependency resolution sequence but also the

available slots in the related switches. We should update nf after the update of the

next-hop of nf in the same segment (slotnf→mf∈sg∈Sg(f)(m)) and the currently maxi-

mum update time d(l).CN(Fn).maxslot of scheduled old rules on which nf depends

(nf ∈ d(l).CN(Fn)). Moreover, switch nf .sw should update nf with an empty time

slot (nf .sw.atslot(t) = null). We update nf at the first time (slot(nf )) when these

conditions are satisfied to ensure updates are applied as soon as possible with (2.5).

slot(nf ) = min{t|t > max{slotnf→mf∈sg∈Sg(f)(m), max
∀l,nf∈d(l).CN(Fn)

d(l).CN(Fn).maxslot},

nf .sw.atslot(t) = null}

(2.5)

2.6 Implementation

We implement Cupid with 2000+ lines of Java code. Cupid sits between the

routing modules (e.g., failure recovery, load balancing) and the control message com-

munication module in the controller. In the architecture showed in Figure 2.4, all

control messages to manipulate forwarding rules in flow tables are captured to sched-

ule an appropriate updating order before applied in switches. The new routing path
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Dependency Graph Generation

potential congested links

update sequence

[flows, new paths, old paths]

Dependency Resolution

Figure 2.4: Cupid architecture

of each flow is partitioned into several independent segments with Algorithm 1. We

identify potential congested links with Definition 1, and then generate a dependency

graph among critical nodes for these links with Definition 2. Loops in routing paths

and deadlocks in the dependency graph are recognized with strong connected com-

ponents. Finally, with Algorithm 2, 3 and 4, a feasible and efficient updating order

is scheduled to update flow tables consistently without congestions.

Instead of two-phase commit update, we use only one rule for a flow at any time

with multiple ports in input and outport fields. The outport field of flow entries

allow multiple output ports with different weights on critical switches. During the

migration, the critical nodes shift traffic to the new path with assigned weights of

output ports on the old path and new path respectively. As a downstream switch

may have been updated while packets arrive at the old input port, the inport field

also allows multiple input ports to make sure all packets arrived are handled by

switches correctly. We set timeout for ports of old path, so that the old ports are

deleted when expire in a flow entry.

2.7 Case Study

We first provide a case study to show the advantages of Cupid. We study a

network in Figure 2.5 with 8 switches shifting the forwarding paths of 7 flows from
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Figure 2.5: Case study

initial state to target state. The throughputs of flows are shown on the figure, and

the bandwidth capacities of links are 1 unit. We compare the performance of Cupid

with Dionysus [22] in the flows migration.

Update Delay In Data Plane: Figure 2.6 shows the timeline of applying

updates in switches for Cupid and Dionysus. Although these two update orders

both ensure the correctness of updating, the update time of Cupid is only 10 slots,

which is much shorter than 22 slots of Dionysus. This is due to two main reasons: 1)

we divide the global dependency into local dependencies so that a lot of independent

rules in different segments could update in parallel; 2) as we keep multiple inports

and outports in each rule entry, there is only one flow entry for each flow in a switch

at any time, and most actions in Cupid are modifications to inport and outport

fields, while Dionysus has to add a new rule for a flow in each related switch and

then modify the weights of the new rule and old rule to migrate traffic before finally

deleting the old rule, which leads to more operations in the data plane.

Flow Table Space In Switches: Because of the single flow entry with multiple

inports and outports, Cupid always consumes a less number of flow table entries than

Dionysus during updating in Figure 2.7, so that Cupid promises to save flow table

space in data plane, which is encouraging for the limited flow table space.
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2.8 Evaluation

2.8.1 Evaluation Setup

We evaluate Cupid in fat-tree and mesh networks with simulation. These two

topologies have different path deployments and traffic distributions, so that the de-

pendencies imposed by congestion-free consistency are quite different. Each network

consists of 100 switches connected by 1Gbps links.

• Fat-tree: We use a three-layer fat-tree topology [48] with 66 edge switches, 22

aggregate switches and 12 core switches, so that link bandwidth capacities of

aggregated layer and core layer are balanced. Traffic distribution in the fat-tree

network follows the data center traffic characteristics in [49].

• Mesh: The diameter of the mesh topology is 18, and the degree of each node in

the network is 4. The traffic in the mesh network is randomly generated and

uniformly distributed among all node pairs.

More than 10,000 flows are running simultaneously in each network. During

simulation, we assign link failures in the network and reroute affected flows to other

available paths, and also schedule flows to other less loaded paths for load balancing.

The simulations are evaluated with quad-core 2.4GHz processor and 8GB RAM. We

compare the update ordering efficiency of Cupid with Dionysus [22] and random

update ordering.

2.8.2 Evaluation Results

2.8.2.1 Update Ordering Latency

Figure 2.8 shows the ordering latency of updating 1000 flows simultaneously

under light (<30% network utilization), medium (30∼70% network utilization) and

heavy (>70% network utilization) traffic load. The network utilization is measured

by weighted link utilization. In both fat-tree and mesh networks, Cupid takes shorter
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Figure 2.8: Ordering latency under different traffic load

time to schedule a feasible updating order than Dionysus. With divided independent

segments and local dependencies among critical nodes, Cupid reduces dependency

resolution complexity and ensures a faster update ordering. For the three layer

fat-tree network, the longest routing path is only 4 hops and each switch has its

own dedicated links to the higher and lower layer switches, so that flows have fewer

chances to collide to congest links during updating. Thus, the dependency graph is

relatively simple due to the short and dedicated routing paths in the fat-tree. There-

fore, Cupid could finish ordering within 500ms in most cases while Dionysus solves

the global dependency graph in 1000ms. On the other hand, the mesh network tends

to encounter more congestions during updating compared with fat-tree, especially

on links in the middle of network shared by a lot of flows. Meanwhile, the routing

paths in the mesh topology are usually longer than 4 hops in the fat-tree, and there

may be loops formed with new and old paths during updating, which adds to the

complexity of dependency graph. For the light and medium traffic load, although

Dionysus could schedule the ordering within 2000ms, the ordering time of Cupid

is 500ms which is 4 times faster than Dionysus. The situation is much worse for

43



0 500 1000 1500 2000

time(ms)

0

0.2

0.4

0.6

0.8

1

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Dionysus S

Dionysus M

Dionysus L

Cupid S

Cupid M

Cupid L

(a) Fattree

0 5000 10000 15000

time(ms)

0

0.2

0.4

0.6

0.8

1

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Dionysus S

Dionysus M

Dionysus L

Cupid S

Cupid M

Cupid L

(b) Mesh

Figure 2.9: Ordering latency with different flow size

Dionysus under heavy traffic load. As the highly complex dependency graph is more

difficult to resolve due to the scarcity of available bandwidth, Dionysus takes even

tens of seconds to find a feasible ordering, while Cupid is still able to schedule the

ordering within 1000ms.

Although a lot of researches [32, 33, 34] discover and reroute large flows to less

congested path for load balancing, large flows are more likely to be stuck by limited

bandwidth resource during updating. Thus, large flows tend to migrate to new paths

with multipath transition, while small flows probably could be scheduled freely with

a small amount of available bandwidth. To show this difference in updating, we

classify flows into three classes according to flow size: small flow (<1M), medium

flow (1∼10M) and large flow (>10M). Figure 2.9 shows the order scheduling time for

1000 flows with the three classes under heavy traffic load. In the fat-tree topology,

the update ordering of small and medium flows in Cupid takes much shorter than

Dionysus. However, the ordering of large flows updates in Cupid may be worse than

Dionysus at times. Figure 2.10 shows most of flows in the fat-tree topology have

only one segment, as the ingress and egress switches are the only common nodes in
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the new and old paths, so that the segment partition brings few benefits for fat-tree.

Moreover, with large flows under heavy traffic load, Cupid identifies almost all the

links as potential congested links and constructs dependencies for these links, so that

the resolution of the large dependency graph takes longer. Nevertheless, the overall

update ordering time of Cupid is much shorter than Dionysus in most cases (over

90%). Compared with the fat-tree topology, flows usually have longer routing paths

in mesh network and also larger number of segments as Figure 2.10 shows. With the

benefits of independent segments and local dependencies, Cupid always outperforms

Dionysus in mesh network. Especially for large flows, Dionysus takes even tens of

seconds to resolve the complicated global dependency graph, while Cupid is able to

finish ordering within 2000ms.

2.8.2.2 Dependency Resolution Analysis

To understand how dependencies are resolved, we divide the resolution process

into 4 phases: non-deadlock, sched-deadlock, multipath and rate-limit, which corre-

spond to the updates without deadlock, schedulable updates in deadlocks, multipath

transition and rate-limit respectively in Algorithm 2 and 3. Figure 2.11 shows phases
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Figure 2.11: Dependency resolution phases

at which dependencies are resolved for different size of flows under heavy traffic load.

As small flows almost could be freely scheduled in the fat-tree network, there are few

potential congestions and few flows are involved in dependency resolution, so that

these dependencies could be solved in the non-deadlock phase. Compared with the

mesh topology, the update ordering in fat-tree could be scheduled in the first three

phases, while updates in mesh network tend to be scheduled in the last three phases

due to the higher dependency complexity. Especially for the large flows updating in

the mesh network, over 2% orderings fall into the rate-limit phase which results in

throughput losses.

2.8.2.3 Data Plane Update Delay

The update ordering calculates an update sequence for the rules in the data

plane. Figure 2.12 and 2.13 show the update delay in the data plane when apply-

ing the update sequences in switches under different traffic load and with different

flow size respectively. As we schedule the update ordering based on the length of

dependency chain in Cupid, updates with long downstream dependency chains are

scheduled as early as possible to reduce the completion time. Updates in Cupid
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Figure 2.12: Switch update latency under different traffic load
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Figure 2.13: Switch update latency with different flow size

always take less time to take effect than Dionysus in mesh network. The divided

local dependency contributes to the parallelism of updating. Updates are sched-

uled as soon as the concerned switches have available slots after the dependency on

other rules are resolved. These ensure a highly parallel and efficient updating in

the data plane. However, for the fat-tree network, the data plane update latency of

Cupid is similar to Dionysus. As most flows in fat-tree have a single segment, this

requires sequential reverse order update of the new paths. Moreover, flows usually

go through shared core switches and aggregate switches in fat-tree, and updates in
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Table 2.4: Network utilization losses (90th percentile)
Topology Approach Small Medium Large

Fattree
Cupid 0 0 0

Dionysus 0 1.59 ×10−16 2.46 ×10−9

Random 0 0.06% 0.48%

Mesh
Cupid 0 0 0.16%

Dionysus 0.12% 0.79% 4.71%
Random 0.54% 1.41% 7.39%

these switches are restricted by available time slots. Therefore, although the update

ordering latency takes shorter time due to the less complicated dependency in fat-

tree, updates take longer to be applied in the data plane than the mesh network.

Unlike the update ordering latency, the data plane update delay does not vary a lot

when the traffic load or flow size changes. Especially for Cupid, as we update rules

as early as possible with available time slots, the data plane update process is highly

compacted and the switch time slots are efficiently utilized.

2.8.2.4 Throughput Losses

Due to the limited link bandwidth, flows have to reduce their throughputs once

fall into the rate-limit phase during updating. Cupid could schedule updates without

any throughput loss in non-deadlock, sched-deadlock and multipath phases. Only a

small percentage of orderings fall in the rate-limit phase as Figure 2.11 shows. We

compare the network utilization losses of Cupid with Dionysus and random update

ordering. In Table 2.4, there are always less network utilization losses with Cupid

than Dionysus and random update ordering in both fat-tree and mesh networks.

Even though the losses in the fat-tree network are quite low using Dionysus, Cupid

does not experience any loss. Moreover, for the large flows migration in the mesh
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network, the network utilization loss in Cupid is 0.16% while the losses of Dionysus

and random update order are 10 times larger than Cupid.

2.8.2.5 Scalability

We further study how the update ordering latency scales with the number of

involved flows under heavy traffic load, and find that Cupid always schedules faster

than Dionysus when migrating 0∼20% of flows in the network to new paths in Fig-

ure 2.14. Especially for mesh topology, the ordering time in Dionysus rises steeply

with the increasing number of involved flows, as more flows adds to the global de-

pendency graph size and complexity. Cupid is able to schedule the ordering within

4000ms, while Dionysus takes more than 10 seconds for updating 20% flows in mesh

network.

2.9 Conclusion

With increasing SDN applications scheduling flows for load balancing and failure

recovery, in this chapter, we focus on updating flow tables in data plane consistently

and efficiently while preserving throughputs of flows. To reduce the overhead of find-

ing a feasible updating order, we firstly partition the rerouted path into independent
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segments, and then divide the global dependency among updates into local depen-

dencies among critical nodes. We then design and implement a heuristic dependency

resolution algorithm with the dependency graph and reverse order updating within

each segment. To reduce the flow table space overhead, we use multiple ports with

weights in each flow entry during updating, so that there is only one rule kept for

each flow in a switch. The results of simulation show that Cupid is able to schedule

update ordering at least 2 times faster than Dionysus and has less throughput losses

in both fat-tree and mesh topologies.
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CHAPTER 3

Redactor: Reconcile Network Control With
Declarative Control Programs

This chapter shows how control programs generate consistent control decisions

to ensure correct network behaviors. The controller is responsible for composing

multiple control programs and policies into a single consistent policy before apply-

ing it in the data plane. Otherwise, contradictory control decisions made by con-

trol programs for different objectives would misconfigure the network. Moreover,

large SDN networks may consist of multiple controllers in different control domains,

which necessitates the coordination of control decisions. Among the existing solu-

tions, composing control programs dynamically is tricky, and coordinating decisions

of independent control programs usually results in suboptimal decisions. In this

chapter, we propose an approach for control reconciliation with declarative language

Prolog instead of defining a new programming language. It could compose control

programs easily with the declarative property and reconcile control conflicts with the

knowledge base.

3.1 Introduction

Software-Defined Networking provides separated control logic from the forward-

ing plane with flexible control programs. These third-party control programs act

as blackboxes to produce rules independently to control the network. However, the

independence of control programs may lead to conflicts in their control decisions.
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These conflicts must be resolved before being applied to data plane, otherwise, they

may result in performance degradation or even unexpected network behaviors. Espe-

cially in large organizations, multiple policy sub-domains exist, e.g., server admins,

network engineers, different departments, which set their own control programs to

manage the network components [50]. With more number of entities generating

control plans independently, the control conflicts would get more serious.

It is quite challenging to coordinate independent control programs unless nego-

tiation process is allowed among control programs, which makes the implementation

of control programs complicated and error-prone. Moreover, to avoid bottleneck

at the control plane, SDN usually utilizes a logically centralized control plane with

multiple distributed control nodes. It is more difficult to coordinate decisions made

by distributed control nodes with remote negotiations due to the increasing number

and diversity of control programs. Manual analysis of the interaction among control

policies with different syntax and semantics is impractical [51]. Besides the control

consistency, an efficient control decision should also satisfy as many control objec-

tives as possible to ensure the network performance. As each control program aims

at improving a sub-aspect of resource utilization, maximizing the control utility is

expected to achieve the desired network performance to the most extent. Therefore,

maintaining a consistent and efficient network control logic is critical to ensure the

correctness and performance of the data plane.

To achieve control consistency, the controller has to reconcile requests and de-

cisions of SDN control programs. As each control program generates solutions sat-

isfying its own objective, the reconciliation of control programs is a kind of multiple

objectives optimization. According to the point of optimization, the reconciliation

52



approaches could be divided into two categories: beforehand control programs co-

ordination which reconciles control intents before making decisions, and afterwards

decisions checking which determines the rules to be applied after each control pro-

gram generating its decisions.

For the beforehand coordination, a lot of researches express intents of control

programs at a high level of abstraction. They usually check relationships among

intents [50] or dependencies on network resources [52, 53, 24]. As intents of control

programs may change dynamically, e.g., a stateful firewall dropping flows after de-

tecting the source host generating too many connections, the controller has to model

and check the relationships of control intents in real time, which usually takes a long

latency. These existing approaches devote a lot of efforts in maintaining consistency

at the level of potential policies, instead of coordinating the behaviors of independent

control programs to make a feasible control plan during the decision-making process.

Despite the low efficiency of policies modelling and checking, an efficient way to rec-

oncile control programs is composing diverse programs to produce a consistent policy.

Although [54, 55, 56, 57] support module composition, they usually focus on certain

types of programs, e.g., composing monitoring and routing programs, and require

manual composition because of complicated implementation details. An automatic

and dynamic composition approach of diverse control programs is absent. Moreover,

these existing composition approaches fail to deal with control conflicts.

As network configurations are usually low-level, the afterwards decisions check-

ing is widely used in control consistency maintenance, which usually resolves conflicts

with priority or voting mechanisms [58, 59, 60]. With priority-based coordination,

rules are arranged in order based on pre-defined prioritization which should be care-

fully designed. In voting approaches, control programs propose their own proposals
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independently which are probably suboptimal, and then the controller chooses the

seemly “best” solution with the highest vote value but actually suboptimal among

a set of suboptimal proposals. Moreover, neither prioritization nor voting ensures

satisfying the maximum number of control objectives, as they both ignore the control

utility in their control plan selection process. Verification is also used to afterwards

examine the desired properties of control decisions [51, 61, 62], and it also could not

ensure the best control utility.

Declarative languages provide an abstracted high-level way to express network-

wide policies. While numerous authorization and verification approaches [63, 64, 65]

have been proposed with declarative languages, few focuses on conflict checking

and reconciling during the generating process of network rules. In this chapter,

to reconcile network control automatically and dynamically, we propose the control

program composition and coordination approach – Redactor, which makes consistent

control decisions while maximizing the control utility. We implement SDN control

programs with the declarative language Prolog, so that control programs could be

composed with names and consistent requirements to execute together. To get better

network performance, among the feasible decisions, we use the voting mechanism

to decide the control plan with the most preferences of control programs. When

conflicts occur, we design the control program compromise algorithms to resolve

conflicts and maximize control utility in a single control node and distributed control

nodes respectively. The evaluation shows that Redactor always satisfies more control

objectives in improving control consistency and utility compared with Athens [58]

and static priority schemes.
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Figure 3.1: Conflicts of control programs

3.2 Background

3.2.1 Problem Statement

Due to the independent implementation and execution of SDN control programs,

decisions made by different control programs may violate each other. In Figure 3.1a,

h1 communicates with h2 through path s1 → s2 → s5 with a 7.5Mbps flow. To relieve

load on switch s2, a load balancing program load-balance would like to migrate a part

of traffic to paths s1 → s3 → s5 and s1 → s4 → s5 in Figure 3.1b. Meanwhile, some

other control programs also intend to process the flow, i.e., energy-save, firewall,

waypoint, rate-limit. However, simultaneous processing may result in conflicts.

1) Action Conflicts: Control program firewall does not allow any traffic gen-

erated by h1 travel through switch s3, as this path is reserved for other traffic.

Therefore, packets of flow h1 → h2 are blocked by the firewall rule in s3, while con-

trol programs load-balance and waypoint instruct the flow going through s3. This

kind of conflicts usually results in contradictory actions, and is obvious to recognize

by checking the action fields of rules.

2) Consequent Conflicts: However, some consequent conflicts may be difficult

to identify. These conflicts may lead to low performance, although conflicts are not
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revealed in action fields of rules. Control program rate-limit restricts the available

bandwidth of flow h1 → h2 to 2Mbps on path s1 → s4 → s5. Meanwhile, control

program energy-save would turn a switch into sleep mode to save energy when it

experiences low utilization. If these control programs act independently without

noticing each other, load-balance instructs switch s1 split the flow traffic equally to

the three subpaths with 2.5Mbps. energy-save detects the low utilization of s2 and

makes it into sleep mode, while path s1 → s4 → s5 only allows 2Mbps for the flow

and s1 → s3 → s5 blocks the flow. At this time, the actual available bandwidth for

the flow is only 2Mbps through s1 → s4 → s5, which is even less than 7.5Mbps with

single path forwarding in Figure 3.1a.

In the control plane, each control program acts independently and aims at

achieving its objective to optimize a sub-aspect of the network resources, e.g., max-

imizing available bandwidth, lowering energy consuming. If the controller could

assign weights 5.5:2 for the paths s1 → s2 → s5 and s1 → s4 → s5, this control plan

satisfies the maximum objectives of programs {load-balance, energy-save, firewall,

rate-limit}. Meanwhile, the expected performance of the flow is also guaranteed

to the most extent, as the maximum control objectives are satisfied. Therefore, to

achieve the desired performance, the control decision sol should maximize the con-

trol utility Ocps(sol), which satisfies the maximum number of objectives {Opi} of the

control programs cps = {pi}.

Ocps(sol) = max
∑
pi∈cps

Opi(sol) Opi(sol) =


1 sol satisfies Opi

0 otherwise

As control programs are planning on the same network resources but running

independently, it is usually impossible to generate a global optimal plan for all the
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control programs. If the controller could sense intents of control programs and co-

ordinate them in the decision-making process, it would generate solutions satisfying

the most objectives of control programs.

3.2.2 Related Work

Existing conflict resolution approaches usually check rules generated by control

programs before applying in the network. Jin et al. [60] coordinate rules based on

priorities. AuYoung et al. [58] and Mogul et al. [59] use a policy-evaluated approach

to select a proposal to implement. Ferguson et al. [66] and Ferguson et al. [67]

merge control requirements into a policy tree and resolve conflicts with user-defined

conflict-resolution operators. However, as control programs run independently, the

proposals are usually suboptimal and could not satisfy all the control objectives.

High level abstractions are used to express control programs for composition [54,

55, 56, 57], which pay more attention on composition than the decision consistency.

PGA [50] abstracts intents of policies related to network endpoints, and uses a graph

structure to detect and resolve policy conflicts. Due to the long composition latency,

it pre-composes input graphs, which is inconvenient to integrate policies dynamically.

To avoid the inaccuracy of coarse-grained coordination, finer-grained methods with

state checking are proposed [24, 52]. However, for these state-based coordination,

the large number of state variables results in high complexity and long latency.

Declarative languages are also used to implement network management and op-

eration systems [63, 65, 68], which enable verification and prevent misconfiguration

with network-wide reasoning. The consistency of declarative programs is little stud-

ied, while [64, 69] use simple fixed prioritization for conflict coordination.
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3.3 Collaborative Control Programs

3.3.1 Declarative Control Program Composition

To avoid the suboptimum problem of afterwards rules checking, we prefer to

reconcile control programs during the decision-making process. The controller is

responsible for coordinating control programs to generate consistent configurations.

Due to the diversity and complexity of imperative programming, it is impossible

for the controller to understand every detail of control programs, so that control

programs need to indicate their requirements and intents explicitly to the controller.

The essence of the network processing is to find appropriate forwarding paths for

communications while obeying the concerned policies, e.g., going through a firewall

or ensuring quality of service. Therefore, the objectives of control programs could be

described as two aspects O = {Ns, Fr}: the desired state Ns of network resources

(e.g., link utilization), and the resources demands Fr for flows (e.g., bandwidth

requirement).

Instead of imperative programming, we use declarative languages to implement

control programs, which do not need to care about the searching details to find

solutions, but only express the logical objectives. A declarative control program

p(A,B, c, ...) : −rule1(A,B), rule2(B, c), ...

satisfies a series of logical rules rule1, rule2, ..., which are predicates or functions

describing the desired network state Ns or flow requirements Fr objectives. The

names of predicates, functions and constants begin with a lower-case letter, while

variable names begin with an upper-case letter.

To express network processing with declarative languages, a flow from source

S with port Sp to destination port Dp on D could be represented by a vector
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F = [S,D, Sp,Dp, ...] which consists of typical fields indicating a flow. A short-

est path routing program shortest(F, P ) for flow F is defined with functions path

and minimal, in which path searches all the available paths Set and minimal finds

the shortest Path from the available paths.

shortest(F, Path) : −setof([P,L], (path(F.S, F.D, P ), length(P,L)), Set),

Set = [ | ],minimal(Set, [Path, Len]).

path(S,D, P ) : −travel(S,D, [S], Q), reverse(Q,P ).

travel(S,D,R, [D|R]) : −link(S,D).

travel(S,D, V,R) : −link(S,A), A\ == D, \+member(A, V ), travel(A,D, [A|V ], R).

Similarly, a minimum bandwidth guarantee program mbg(F, P,Rb) is constructed

with functions path and minbwcheck which checks whether a path P satisfies the

minimum bandwidth demand Rb.

mbg(F, P,Rb) : −path(F.S, F.D, P ),minbwcheck(P,Rb).

minbwcheck([X, Y ], Rb) : −bw(X, Y,Ab), Ab > Rb.

minbwcheck([X, Y |T ], Rb) : −bw(X, Y,Ab), Ab > Rb,minbwcheck([Y |T ], Rb).

f irewall(F, P ) : −path(F.S, F.D, P ), forall(member(A,P ), firewallrule(F,A)).

With declarative control programs, the logics of control programs, configuration

settings (e.g., firewall rules) and the network information (e.g., network topology,

switch information, available bandwidth) are stored in a knowledge base. Thus,

control program firewall is able to check whether the flow violates firewallrule

stored in the knowledge base along routing path P . With the knowledge base, the

behaviors of control programs are queries and modifications to the knowledge base.

Any decisions made by control programs should follow logics and information in the
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knowledge base. Therefore, the common knowledge base enables the controller to

ensure the decision consistency of control programs.

When a set of control programs cps = {p1, p2, ..., pn} would like to process a flow

F simultaneously for various objectives, a consistent forwarding plan should meet all

the objectives. For declarative programming, the program composition requires to

combine the logics of programs. As control programs are stored in the same knowl-

edge base, the composition could be achieved with the conjunction of programs with

consistent inputs, by simply assembling the interfaces of control programs without

reorganizing the logic details. Thus, the composition of control programs p1, p2, ..., pn

is

cnj(V1, ..., Vm) : −p1(V 1, c1), p2(V 1, V 2), ..., pn(V 2, Vm, c1)

in which Vi ∈
⋃
pj.vars (i = 1, ...,m) are the variables of the participating control

programs pj ∈ cps, and ci are the constant parameters of control programs. Similar to

the variables coordinating rules in a program, variables are also used to coordinate

control programs in the conjunction, e.g., V1 in p1 and p2. Therefore, to find a

suitable forwarding plan for flow f supporting shortest, mgb and firewall, we use

conjunction cnj(P ) : −shortest(f, P ),mgb(f, P, b), firewall(f, P ) to compute path

P for f satisfying firewall policies and bandwidth requirement b, in which f and b

are known as constants.

The conjunction assembles control programs to be a multiple-objective program

to produce solutions satisfying all previously independent objectives with once ex-

ecution. The solutions of the composed program are also the conjunction of each

control program’s solutions Sol(p1, p2, ..., pn) = Sol(p1) ∩ Sol(p2) ∩ ... ∩ Sol(pn). If

there is no conflict in the logics of the control programs, we can get feasible composed
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solutions Sol(p1, p2, ..., pn) 6= ∅ which are also suitable solutions for each control pro-

gram Sol(p1, p2, ..., pn) ⊆ Sol(pi)(i = 1, ..., n). Otherwise, the conjunction of control

programs could not generate any solution Sol(p1, p2, ..., pn) = ∅ when conflicts exist

among participating control programs, e.g., waypoint requires the flow going through

s3 while firewall drops f on s3 in Figure 3.1b. In the case of contradictions, the

controller has to sacrifice some control programs to resolve conflicts and achieve the

maximum control objectives.

3.3.2 Generating Control Program Composition

Different types of flows usually trigger diverse kinds of control programs, there-

fore, control program composition requires to be generated dynamically at run-time.

The key to compose control programs is to coordinate requirements of control pro-

grams and then generate the correct conjunction.

3.3.2.1 Consistent Requirements

Before deriving the composition, the requirements of different control programs

should be consistent. Firstly, we distinguish requirements from the objectives of

control programs. Requirements are the input parameters specified by control pro-

grams exposed to the controller, and objectives are encoded and hidden in the log-

ics of control programs which are invisible for the caller. For control programs

ratelimit(F, P,B) : −path(F.S, F.D, P ), bwcheck(P,B) and ratelimit(F, P ) : −

path(F.S, F.D, P ), bwcheck(P, b) which both use predicate bwcheck to ensure the

limitation, the bandwidth limitation B in ratelimit(F, P,B) is a requirement speci-

fied by the control program, while ratelimit(F, P ) does not propose any bandwidth

requirement in its parameters but uses constant b in logics as its objective. In the

requirement checking, we only focus on requirements in parameters and do not deal

with logic details which are left to reasoning in the knowledge base.
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Figure 3.2: Requirement checking graph

We check the relationship between control programs and their requirements with

Figure 3.2 for the control programs in Figure 3.1b. Each rectangle node indicates a

potential parameter which is usually a resource item or variable to be calculated, and

the oval nodes are the control programs. An edge is connected between a control

program and a parameter node if the program requires to access the parameter,

e.g., the parameters of load-balance are Flow, Path and the corresponding Weight.

Therefore, when a control program is newly added to the control node, it needs to

define its concerned parameters. The value on each edge is specified by the control

program for the connected parameter. As parameters of a control program consist of

variables and constants, variables to be computed are indicated by upper-case letters

without any instantiation, e.g., P and W in Figure 3.2.

With the requirement relationship graph, it is obvious that the control programs

associated with a same parameter node should have a consistent view about it. For

the nodes indicating resource requirements, e.g., bandwidth requirement Bw(s1 →

s4 → s5), although control programs may propose different requirements for a same

resource item, only one value is admitted, thus we call them exclusive nodes. For

each exclusive parameter node N , the values on edges connected with N should

be identical ∀ei, ej = (N, ∗), l(ei) ≡ l(ej). In Figure 3.2, if a minimum bandwidth

guarantee program mbg requests at least 2.5Mbps bandwidth for the flow on path
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s1 → s4 → s5, while rate-limit restricts it to 2Mbps, the requirement inconsistency

could be detected as the values on edges between parameter node Bw(s1 → s4 → s5)

with mbg and rate-limit are different. Contrarily, some nodes may admit multiple

values, e.g., Wp allows multiple waypoint nodes for a flow. The inputs of these

parameters do not need to be unified into a value.

3.3.2.2 Control Programs Conjunction

With the consistent inputs, most control programs could be composed directly

to generate feasible solutions, and then the controller gets the corresponding result

with the unified variable names.

However, the straightforward conjunction can not be applied directly when con-

trol programs make modifications to flows, e.g., changing the destination of flows for

server load balancing. A flow modification program may deploy modification rules

at any position A on its forwarding path, so that a flow is f = [s, d, sp, dp, ...] on

path s → ... → A before arriving at A, and changed to f ′ = [s′, d′, sp′, dp′, ...] on

A → ... → d′. The modified flow should follow different policies between A and the

destination from the original flow. Especially for the packet-level control programs

(e.g., firewall) which check each packet of the flow, the modified packets are probably

processed differently. Therefore, we treat the flow as two independent flows, i.e., f

from s to A and f ′ from A to d′, such that the packet-level control programs in the

conjunction are divided for f and f ′ on subpath s→ A and A→ d′ respectively:

p(f, s, d, P )⇒ p(f, s, A, P1), p(f ′, A, d′, P2), P = P1 − A+ P2

For flow-level control programs, e.g., routing, they only concern about reach-

ability and performance of flows instead of modified details of packets. Therefore,
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modifications only affect the overall features (e.g., forwarding path P ), and the con-

trol program does not need to process the original and modified flows separately with

p(f, s, d, P )⇒ p(f ∪ f ′, s, d′, P ).

3.3.3 Solution Selection

There are usually a lot of available solutions Sol(p1, p2, ..., pn) satisfying the

control program composition, and we use Sol for simplicity. Nevertheless, these so-

lutions may lead to diverse consequences with different performance when applied

to the network. To achieve better network performance, we would like to select one

with the best efficiency among the available solutions. However, control programs

may prefer different solutions for their objectives. To reflect control programs’ pref-

erences, control program p defines its criteria eval(p, sol) to evaluate solution sol.

For example, the routing program would check the reachability and length of the

routing path eval(route, sol) = sol.get(P ).reachable · R
sol.get(P ).length

in which R is the

radium of the network, so that shorter paths are preferred. Voting is a mechanism

usually used for proposal selection [58, 59], which evaluates the potential efficiency

of solutions. In this chapter, we use the cumulative voting scheme in [58], and

choose the best solution based on the vote value of participating control programs

solbest := max
sol∈Sol

n∑
i=1

eval(pi,sol)∑
solj∈Sol

eval(pi,solj)
.

3.4 Conflict Coordination In A Control Node

The declarative control programs enable the coordination of multiple control

programs to find a feasible solution. However, there may be conflicts among con-

trol programs, so that the participating control programs cps can not generate any

feasible plan, resulting in an empty solution Sol(p1, p2, ..., pn) = ∅. In this case,

we would like to find a compromised solution with a subset of control programs
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Figure 3.3: Control programs conjunction relationship graph

cps′ ⊆ cps satisfying the most number of control programs, which also maximizes

the control objectives max | cps′ = {pi |
⋂

pi∈cps′
Opi 6= ∅} |.

To check the conjunction relationships of control programs, we construct a graph

G =< V,E > in which nodes V correspond to control programs and edges E indicate

the conjunctions of each pair of control programs pi and pj. If S(pi, pj) 6= ∅, we add

an undirected edge (pi, pj) in the graph. Intuitively, the nodes with more neighbours

have higher probability to produce a solution in the control program composition.

The subset cps′ that could generate feasible solutions must form a complete graph,

as each pair of control programs could always generate at least a feasible solution.

Figure 3.3a shows the conjunction relationship of control programs in Figure 3.1b.

Due to the conflict between waypoint and firewall, the maximum complete graphs

consist of 4 control programs, i.g., {waypoint, load-balance, energy-save, rate-limit}

and {firewall, load-balance, energy-save, rate-limit}.

However, a complete graph does not absolutely mean feasible composed solu-

tions. For example, with Figure 3.1’s topology, three control programs processing

a flow h1 → h2 form the complete graph showed in Figure 3.3b. Each control pro-

gram generates two available solutions, e.g., cp1 instructs the flow going through

path s1 → s2 → s5 or s1 → s3 → s5. Although each pair of control programs has
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available solutions marked on the edges, the composition of these three programs

derives no solution. Thus, the number of composed control programs that could

generate feasible solutions is always no more than the largest complete graph size in

the relationship graph. Therefore, the problem of compromised solutions is to find n′

control programs cps′ ⊆ cps in the participating control program set cps satisfying

Sol(cps′) 6= ∅, n′ = max |cps′|, 0 < n′ ≤ max
complete(G)

|G|

We design Algorithm 5 to find the best compromised solution, in which Line 2-7

construct the conjunction relationship graph and find all complete graphs. Control

programs may be defined with different priorities, e.g., firewall programs have the

highest priorities to ensure security properties of flows. For the complete graphs of

the same size, in Figure 3.3a, we would like to choose control programs {firewall,

load-balance, energy-save, rate-limit} with higher priority. Therefore, we have to

deduce priority of each complete graph with the control programs in it and sort

graphs based on the priority.

Priority comparison: We first sort complete graphs in descending order of

graph size, and then compare priorities of complete graphs with the same graph size

respectively. In each complete graph G, we sort control programs composing G in

decreasing order of priority to be G = {pG1 , pG2 , ..., pGk } with priority rG1 , r
G
2 , ..., r

G
k . For

complete graphs G and G′ with the same size k, if ∃0 ≤ i ≤ k, such that rGi < rG
′

i

and ∀0 ≤ j < i, rGj = rG
′

j , we decide the priority r(G) of G is lower than r(G′).

Therefore, we can sort complete graphs with the same size based on the priority

relationship.

Complete graph checking: To reduce the solution searching complexity, we

check whether each complete graph could generate a feasible solution in descending
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Algorithm 5 Conflict Coordination In A Control Node

1: CRG = ∅ #control programs conjunction relationship graph
2: for each pair (pi, pj) in cps = {p1, p2, ..., pn} do
3: if Sol(pi, pj) 6= ∅ then
4: add edge (pi, pj) in CRG
5: end if
6: end for
7: CG = {G | complete(G), G ⊆ CRG}
8: sort CG according to graph size and priority
9: r = Priority.Lowest, cpcount = max

G∈CG
|G|

10: Soln = ∅
11: while Soln = ∅ ∧ cpcount > 0 do
12: for G ∈ CG, |G| == cpcount do
13: if Sol(G) 6= ∅ ∧ r(G) ≥ r then
14: Soln = Soln ∪ Sol(G), r = r(G)
15: end if
16: end for
17: cpcount = cpcount− 1
18: end while
19: return solbest = max

sol∈Soln
vote(sol)

order of complete graph priority and size. We reduce the number of participating

control programs cpcount gradually until finding feasible solutions with Line 9-18.

For the complete graphs of the same size and priority, to get a solution with advanced

performance, we generate all the feasible solutions and choose the solution with the

highest vote value among these potential solutions to be the best in Line 19.

Complexity analysis: With n control programs processing a flow, the complex-

ity for checking conjunction relationship of control programs is O(n(n−1)
2

), and the

complexity of conflict coordination is O(|CG|) in the worst case when the complete

graph checking could not find any feasible solution until checking all the complete

graphs.
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3.5 Consistency Coordination With Distributed Control Nodes

For networks with distributed control nodes, as these physically separated con-

trol nodes could not access logics of control programs deployed on other nodes, we

can not compute the conjunction of control programs from different control nodes

directly. Therefore, the coordination of control programs in distributed control nodes

is more sophisticated.

For the requirement consistency, although requirements on each control node

have been unified, demands among control nodes should also be consistent. We

compare the parameter nodes in the relationship graphs of control programs on each

control node and decide unified values for exclusive items before generating any

solutions.

Each control node Ci (i = 1, 2, ..., t) produces potential solutions Sol(Ci) =

{soli1, soli2, ...} independently. We use soli to simplify any solution in Sol(Ci). A

solution soli = {< Vx, rvx > |Vx ∈ V ar(Ci)} of control node Ci consists of pairs

of each variable Vx and its result value rvx = soli.get(Vx). To check the feasibility

Cj(soli) of solution soli on another control node Cj, we test soli with the control

programs on Cj by replacing the undetermined variables with results in soli while

the requirements are still specified by these control programs. Cj(soli) is the control

program composition on Cj, in which for all the variables ∀V ∈ V ar(Cj), if ∃V ∈

V ar(Ci), we substitute V.value = soli.get(V ), otherwise, V.value keeps unchanged.

If solution soli satisfies logics of all the control programs on all the control nodes

∀Cj, Cj(soli) = true, soli is a feasible solution maximizing the control consistency

and utility. Even though control programs on different control nodes may focus on

different aspects of network resources, the solution substitution checking ensures the

global feasibility of solutions.
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Figure 3.4: Control programs of multiple control nodes

However, a control node may make modifications to a flow, while other nodes

process the flow straightforwardly without any changes. For the two control nodes in

Figure 3.4, control node C1 runs control programs {shortest, mbg, firewall} for a flow

h1 → h2, and C2 applies a nat service on the flow by setting the destination h2 to h3

and the waypoint program requires the flow going through s3. The control programs

on C1 find a route to h2 satisfying their objectives, e.g., h1 → s1 → s2 → s5 → h2,

while the destination of the flow on C2 is h3, so that the solutions of these two nodes

could never satisfy each other. Therefore, it is impossible to find a consistent solution

when control nodes support inconsistent views for flow modification.

We design Algorithm 6 to coordinate decisions of control programs on multiple

control nodes. At the beginning, all the control nodes must make an agreement for

flow modification with Line 1-8. In Figure 3.4, nat could be added to programs

on C1 to reproduce solutions, so that C1 and C2 both support flow modification.

Line 3 regenerates solutions by applying modification to nodes previously without

flow modification. There may be situations that applying the flow modification

violates existing control programs on a control node, such that removing the flow

modification from all the nodes would generate solutions supporting more objectives.
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Algorithm 6 Coordination Of Multiple Control Nodes

1: if ∃cps(Ci).has(mod) ∧ ∃¬cps(Cj).has(mod) then
2: for ∀Cj,¬cps(Cj).has(mod) do
3: Sol(Cj) = Sol(Cj) ∪ Sol(cps(Cj) ∪mod)
4: end for
5: for ∀Ci, cps(Ci).has(mod) do
6: Sol(Ci) = Sol(Ci) ∪ Sol(cps(Ci)−mod)
7: end for
8: end if
9: Soln = ∅

10: for each node Ci do
11: Sol′(Ci) = {sol|sol ∈ Sol(Ci),∀j, Cj(sol) = true}
12: Soln = Soln ∪ {Sol′(Ci)}
13: end for
14: if Soln == ∅ then
15: ∀Ci, soli ∈ Sol(Ci), count(soli) = 0
16: for ∀Ci, soli ∈ Sol(Ci),∀Cj, pj ∈ cps(Cj) do
17: count(soli) = count(soli) + (pj(soli) == true)
18: end for
19: Soln = {sol | max

sol∈∪Sol(Ci)
count(sol)}

20: end if
21: return solbest = max

sol∈Soln
vote(sol)

Line 6 calculates none flow modification solutions for nodes previously with modifi-

cations. Thus, we can select the best solution considering both applying and none

modification situations.

It is also probably that we can not get a consistent solution due to the contra-

dictory objectives of different control nodes (Line 14). In Figure 3.4, firewall on

C1 blocks flows on switch s3 while waypoint on C2 requires flows to go through s3.

When no solution could fit all the control nodes, each solution sol always could not

satisfy at least one control node Cj(sol) = false, which further means sol can not

70



satisfy at least one control program pj(sol) = false on Cj.

Sol(C1, ..., Ct) = ∅→ ∀sol ∈
t⋃
i=1

Sol(Ci),∃Cj, Cj(sol) = false

→ ∃pj ∈ cps(Cj), pj(sol) = false

To generate consistent solutions, we have to sacrifice some control programs

to make a compromised solution. We would like to choose a solution which could

support the most objectives of control programs to maximize the control utility.

We test solution sol with each control program pj on control node Cj, if sol sat-

isfies pj(sol) = true, the supported control program count count(sol) is increased

in Line 17. The solutions with maximum count(sol) that support the most control

programs are probably the best solutions (Line 19). Among the solutions satisfying

the most objectives, we choose the one with the highest vote value to be the best

solution (Line 21).

The coordination among multiple control nodes selects the best solution sat-

isfying the maximum number of control programs to achieve the highest control

utility. When there is no flow modification, the satisfied number is always no

more than the summation of objectives supported by each control node O(solbest) =

max
sol∈

⋃
Sol(Ci)

c(sol) 6
t∑
i=1

OCi(Sol(Ci)). For situations applying flow modifications, the

relationship between O(solbest) and
t∑
i=1

OCi(Sol(Ci)) is undetermined, as there may be

control programs previously missed but now satisfied (e.g., mgb) due to the changing

of flows and paths.

Complexity analysis: As each solution has to test its feasibility on all the control

nodes, the complexity of control nodes coordination O(Ncps · NSol) depends on the

number of participating control programs Ncps and solutions NSol.
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Figure 3.5: Redactor architecture

3.6 Implementation

3.6.1 Architecture

We develop declarative control programs with the logic programming language

Prolog, and these control programs could be integrated as modules with the Pro-

log engine in existing controllers, e.g., Floodlight, NOX. The architecture for control

programs coordination is showed in Figure 3.5 implemented with 1000+ lines of Java

codes. Each control node has a network information base (NIB) which stores net-

work information and configurations, e.g., network topology, available bandwidth,

and logics of programs. Declarative control programs search available solutions for

their unknown variables with defined logics according to the information in NIB.

Therefore, NIB acts as a database and control programs query NIB to find solu-

tions that do not violate existing facts in the database. With Algorithm 5, control

programs in the same control node produce rules consistently. While each control

node generates decisions independently, for the control plane with distributed control

nodes, Algorithm 6 coordinates proposals from control programs on multiple control

nodes before deploying in the data plane.
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3.6.2 Knowledge Query And Update

With NIB acting as a database, information (e.g., available bandwidth of links

and utilization of switches) must be stored and updated in real time to make queries

precise. Prolog provides retract function to remove existing knowledge and assert

to insert new facts. Therefore, administrators could deploy new policies at run-

time, e.g., security policies, by adding new facts in NIB. However, the facts to be

inserted may conflict with the current knowledge base. The controller is responsible

for checking whether facts to be inserted violate the knowledge base, and removes

out-of-date facts to ensure no contradiction. Moreover, for the distributed control

situation, network knowledge should be applied in all the control nodes consistently

and concurrently. In this chapter, we assume the control coordination is based on

the consistent knowledge bases on multiple control nodes, but do not address the

NIB update problem for multiple nodes.

Comparing with control programs for policy checking (e.g., firewall) or ensuring

service (e.g., mbg), routing programs (e.g., shortest in Section 3.3.1) have to reason

available paths hop-by-hop according to the defined logics and topology information

in NIB, which is a great overhead for a large-scale network. Considering the low

performance of reasoning in Prolog, we relieve partial computation tasks to compu-

tation/management modules which are implemented by imperative languages. These

modules compute and store available solutions as facts in NIB. Thus, the queries of

declarative control programs to NIB just need to fetch the concerned information

and select the facts satisfying specified conditions.
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3.7 Evaluation

We evaluate Redactor with simulation in fat-tree networks and compare it with

existing conflict resolution strategies. We implement eight types of declarative con-

trol programs: shortest path routing, load balancing, waypoint, firewall, nat, energy

saving, minimum bandwidth guarantee, rate limit. The simulations are evaluated

with 2-core 3.3GHz processor and 16GB RAM, and the network traffic is randomly

generated and uniformly distributed among end nodes.

3.7.1 Declarative Control Programs Coordination

As declarative control programs always query logic and knowledge in NIB, the

size and structure of NIB affect the performance of declarative programs. With

the increase of network size, the size of NIB also grows quickly. Redactor could

generate feasible solutions by composing control programs within tens of milliseconds

for networks consisting of from 10 to 500 switches in Figure 3.6. Especially for the

small-size networks with less than 200 switches, Redactor is able to find satisfiable

solutions in less than 10 ms. As we have stored all the available paths in NIB,

the query to NIB is searching paths satisfying objectives of control programs. The

NIB query only accounts for a small portion of the total coordination time, which

means the declarative searching is not a bottleneck for network control. For the

larger fat-tree networks, there are more available paths for each flow. Therefore, the

composition of control programs tends to generate more feasible solutions, and most

of the coordination time is spent on solutions evaluation and selection.

To show the benefits of Redactor, we compare Redactor with SP (static priority

prioritization), Athens-k (each control program generates k proposals), Redactor-

sp and Redactor-vote which generate solutions with static prioritization and voting

respectively when conflicts occur. Static priority always applies the rules with the

74



10 100 200 300 400 500
0

10

20

30

40

50

network size

T
im

e
(m

s
)

 

 

coordination time

evaluation time
NIB time

10 100 200 300 400 500
0

20

40

60

80

100

N
u
m

b
e
r 

o
f 
S

o
lu

ti
o
n
s

 

 

solutions

Figure 3.6: Control coordination with increasing network size

highest priority, while Athens generates independent proposals with each control

program and determines the best solution with vote values of control programs.

We evaluate these schemes in a fat-tree network with 100 switches. Although

Redactor takes a little longer than other schemes in Figure 3.7a, Redactor selects

the best solution among all the feasible plans generated by the composed control

program, which avoids the suboptimal problem. During the control coordination,

some control programs may be compromised to make control decisions consistent

because of conflicts. Redactor maximizes the global control objectives and uses

voting to select a solution with preferred network performance. Therefore, there

is less probability of control program compromise and less number of compromised

control programs with Redactor than other schemes in Figure 3.7b and 3.7c, which

means Redactor achieves the best control utility.

3.7.2 Control Programs Coordination In A Single Node

Various control programs are deployed in a single control node to configure the

network. With the more number of deployed control programs, a flow is probably

processed by more control programs, which tends to result in more control conflicts.
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Figure 3.7: Comparison with other coordination strategies

In this section, we evaluate how the number of participating control programs affects

the control coordination.

Figure 3.8 shows the possibility of requirement inconsistency grows almost lin-

early when the number of participating control programs increases. As the variables
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Figure 3.8: Requirement inconsistency probability

related to a flow are usually limited, the more control programs processing a flow

at the same time, the higher possibility to access a variable related to the flow si-

multaneously. When 10 control programs are processing a flow, the probability of

requirement inconsistency will be as large as 50%. Therefore, requirement consis-

tency checking is essential for control programs coordination.

A lot of control programs are deployed to ensure quality of service for flows, e.g.,

minimum bandwidth guarantee, but these programs probably can not be satisfied

under heavy traffic load. Therefore, the traffic load usually determines the control

decisions, and the decision generation processes are also different under different

traffic load. We evaluate Redactor in low (network utilization <30%), medium (net-

work utilization 30%∼70%), and heavy (network utilization >70%) traffic load in

Figure 3.9. The network utilization is measured by weighted link utilization. In Fig-

ure 3.9a, the control programs coordination under heavy network load always takes

longer latency. Especially with more number of participating control programs, it

could be as much as 5 times larger than the low and medium load situations, as it

has to sacrifice a subset of control programs to regenerate a feasible solution satis-

fying the maximum objectives. Hence, the compromise possibility and the number
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Figure 3.9: Control coordination under
different traffic load in a single node
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Figure 3.10: Control coordination with
different flow size in a single node

of compromised control programs under heavy load are significantly larger than the
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low and medium situations, in which the compromise possibility approaches 1 when

10 control programs are processing a flow simultaneously.

Meanwhile, the flow size also affects the solution generation process, especially

under heavy network load, in which large flows probably could not be allocated with

enough resources while small flows are satisfied with a small amount of resources. We

experiment flows of different sizes (small flows <1M, medium flows 1∼10M and large

flows >10M) under heavy network load in Figure 3.10. With less requirements for

network resources, the small and medium flows have higher probability to be satisfied,

while large flows tend to sacrifice more compromised objectives in Figure 3.10b and

3.10c. As Redactor searches compromised solutions with the decreasing number of

participating control programs when conflicts occur, a large flow takes more rounds

to find feasible solutions during the coordination. Hence, the coordination time for

large flows is also longer than small and mediums flows in Figure 3.10a.

3.7.3 Multiple Control Nodes Coordination

In a logically centralized control plane with multiple control nodes, each control

node runs several control programs independently. The increasing number of control

nodes produces more solutions. As each solution has to test its feasibility with control

programs on other control nodes, the time of control nodes coordination increases

almost exponentially in Figure 3.11a when the number of control nodes grows, which

demonstrates the complexity of multiple nodes coordination.

The control nodes coordination is expected to discover and resolve conflicts

among control programs in distributed nodes, while decisions made by each control

node are consistent for control programs on it. When the number of control nodes

is small, most conflicts could be resolved locally inside each control node. As the

more control nodes introduce more conflicts among distributed control programs,
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Figure 3.11: Control coordination with multiple control nodes

the control nodes coordination plays an important role in resolving conflicts among

nodes. In Figure 3.11c and 3.11b, when the number of control nodes increases, the

control nodes coordination resolves more conflicts with more compromised control

programs. Even though the nodes coordination takes almost 10 times longer in

Figure 3.11a than control programs coordination in a single control node, it is critical

to ensure the global consistency. Nevertheless, the latency is still acceptable for a

feasible solution with the best control utility.
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3.8 Discussion

As the control reconciliation is based on the assumption that all the control

programs are modelled with the declarative programming framework, the logic pro-

gramming restricts the diversity and expressiveness of control programs, and poses

challenges to the integration of imperative control programs. For instance, impera-

tive programs could check and modify details in packets flexibly, while declarative

programming is incapable to manipulate data outside the knowledge base. As the

solution computation and coordination of declarative programs are all left to the

compiler, another limitation is that the performance of logic reasoning strongly de-

pends on the implementation of logic, which is usually slower than the imperative

programs to find all the solutions satisfying the defined logic. To support both

imperative programs and declarative programs, we would model the network infor-

mation as a database, so that decisions made by imperative programs could also

be verified with the database. The imperative programs are not involved in pro-

gram composition during the decision-making process, and require an interface to

query the feasibility of their decisions in the database. The interface program checks

whether the decisions (e.g., forwarding path, allocated resource) made by imperative

programs (e.g., C, Java) satisfy objectives of other declarative programs and current

knowledge in the database. Meanwhile, the database is not limited for Prolog, and it

could support other declarative languages, e.g., Datalog, SQL. To overcome the low

efficiency of reasoning, we could relieve computation tasks to imperative programs,

and logic programs are only responsible for searching and checking to ensure the

consistency. Therefore, programs could be separated into computation and checking

parts. For example, an imperative program calculates bandwidth guaranteed paths,

and the logic checking ensures the paths generated by the corresponding imperative
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program or other control programs (e.g., routing, rate-limiting) indeed satisfy the

required bandwidth demand. However, imperative control programs run indepen-

dently without sensing the objectives of each other and probably lead to suboptimal

results. Therefore, there is a trade-off for control consistency coordination.

3.9 Conclusion

Considering the increasing number and types of SDN control programs deployed

by various control domains, we design Redactor to reconcile control programs to make

consistent and efficient network control decisions. Redactor reconciles network con-

trol by implementing and composing control programs with declarative languages.

We use a heuristic approach to resolve control conflicts, and then generate control

decisions to maximize the control utility considering the priority and control objec-

tives. Redactor ensures the control consistency and utility both in a single control

node and distributed control nodes. The evaluation results show Redactor always

achieves the maximum control utility compared with static prioritization and Athens,

and the coordination overhead is acceptable.
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CHAPTER 4

Boosting The Benefits Of Hybrid SDN

This chapter talks about coordinating the centralized SDN control with tradi-

tional network protocols in hybrid SDN which consists of both SDN switches and

legacy switches. As legacy switches are controlled by distributed network protocols

running insides them, they are out of the SDN control. Decisions made by the SDN

controller should be consistent with the uncontrolled distributed protocols to avoid

network misbehaviors. Moreover, distributed network protocols may restrict the flex-

ibility of SDN, e.g., forbidding SDN’s forwarding decision because of conflicting with

distributed routing, which constrains the potentially achieved network performance.

Therefore, an effective coordination between SDN control and traditional networking

not only requires to maintain the consistency, but also needs to exert the flexibility

of partial deployed SDN to improve the network performance. In this chapter, we

enhance the SDN controllability and flexibility over the entire hybrid network by

planning the placement of SDN switches and designing hybrid traffic engineering

algorithms, while complying with the principles of traditional network protocols.

4.1 Introduction

The birth of SDN brings new opportunities and solutions to computer networks

with its flexibility and programmability, especially in traffic engineering and network

management. Today, more and more network administrators would like to upgrade
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their network infrastructures to support SDN technology for its benefits. The evolv-

ing of a traditional network towards a full SDN deployment is usually an incremental

process, during which administrators have to upgrade each network infrastructure

manually and design considerable control for the hybrid network. Thus, the network

upgrade takes several days or even years to deploy Google’s fully software-defined

WAN [16]. Moreover, network operators would like to deploy SDN technology in-

crementally in order to build confidence in its reliability and familiarity with its

operations [70, 71]. Therefore, the benefits of SDN should be manifest at the early

stage of upgrade in the hybrid network, which would make SDN more appealing for

adoption.

During the upgrade process, with the coexistence of legacy and SDN switches in

the network, inappropriate deployment of SDN switches and inconsiderate design of

hybrid control logic would result in a more complex network with severely degraded

performance [72, 73]. Coordinating the centralized SDN control with distributed

network protocols is critical to ensure the correctness of network processing and

improve the network resource utilization. For example, in the hybrid network with

SDN nodes A, E, G shown in Figure 4.1, packets of a flow A → F arrive at G

through path A → B → G or A → B → E → G. Although SDN switch G

could forward packets flexibly to any neighbour according to the software-defined

control decisions, G is not allowed to send the flow to A and B to avoid loops,

e.g., A → B → G → A, B → G → B. Even though neither SDN control nor

distributed routing generates any loop in its own decisions, the hybrid forwarding

may lead to loops due to the isolated control domains. Therefore, a hybrid SDN has

to maintain the forwarding consistency to guarantee the connectivity and stability of

communication. To cope with the uncontrollable and inflexible distributed routing,
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Figure 4.1: Forwarding of flow A → F in hybrid SDN: the number on each link is
the available bandwidth, and the routing cost of each link is 1.

the flexible software-defined control should adapt to distributed decisions to avoid

inconsistency.

With partially SDN controlled network, the SDN controllability over the hy-

brid network varies with different deployed locations of SDN switches. To upgrade

networks incrementally, existing approaches [30, 74] usually select the switches cap-

turing the maximum traffic for upgrade, expecting most flows could be controlled by

at least one SDN switch. However, the traffic pattern of a network is usually unknown

and changes dynamically, so that it is hard to predict which switches are involved

in maximum traffic. Moreover, when flows leave SDN switches, the SDN control

over the flow is probably lost, as the downstream legacy switches may interrupt the

desired forwarding path by choosing another next-hop. To extend the controllabil-

ity, the placement planning of SDN nodes should consider the forwarding paths and

forwarding characteristics of switches of different types. In addition, switches close

to sources of flows are capable to control the access to the network, e.g., dropping

blocked traffic based on rules in flow tables as early as possible to reduce resource

consumption, so that these switches are expected to be upgraded to improve the ac-

cess control. Therefore, the placement of SDN nodes requires considerate planning,

otherwise the benefits of hybrid SDN will be limited.
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To take advantage of SDN, it is essential to extend the flexibility of partially

deployed SDN potentially over the entire network. Agarwal et al. [30] pioneer the

traffic engineering in hybrid SDN, but they primarily focused on cooperating SDN

control with single path routing on legacy switches. In traditional multipath rout-

ing, legacy switches would split traffic into multiple subpaths, which breaks the

desired forwarding paths of SDN control. Due to the unsymmetric network topology

and heterogeneous forwarding flexibility of switches, hybrid traffic engineering with

legacy multipath routing is more complicated. In Figure 4.1, the next-hops of legacy

switch B to F are E and G with equal-cost multipath routing. With the available

bandwidth on links, we prefer flow A → F to take path A → B → E → F with

8 units bandwidth. However, B may split traffic equally into B → E and B → G

with packet-level multipath routing. Unfortunately, the available bandwidth on link

B → G is only 2 units, so that equally splitting on B will result in packet losses

without network-wide information and optimization. To cooperate with both legacy

single path and multipath routing protocols effectively, traffic engineering in hybrid

SDN must take the forwarding capability of SDN switches and distributed rout-

ing into consideration. Furthermore, as most existing approaches adapt the flexible

SDN forwarding to distributed routing to maintain forwarding consistency, the effec-

tiveness of hybrid traffic engineering strongly depends on the next-hops and traffic

splitting weights on SDN switches. However, existing hybrid traffic engineering ap-

proaches usually focus on the traffic splitting weights, ignoring the importance of

forwarding next-hops, which probably restricts the potential effectiveness of hybrid

traffic engineering.

Moreover, the forwarding on legacy switches is limited to the least-cost paths cal-

culated by distributed routing protocols of which the link metrics should be carefully
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designed. These least-cost paths restrict the flexibility of forwarding and potential

performance of traffic engineering. Although path A → B → C → D → F has

more available bandwidth (10 units) than other paths in Figure 4.1, it is impossible

to transport flow A → F with this path, as legacy switch B can not forward flows

destined for F to C in the least-cost routing with current metrics setting.

In this chapter, we aim to design a generalized solution to handle the hetero-

geneity of different control domains in hybrid SDN, and therefore enhance the con-

trollability and flexibility of the network with SDN placement planning and hybrid

traffic engineering. We first check the property of hybrid forwarding considering the

different control flexbility of SDN and traditional networking, and design the deploy-

ment positions of SDN switches based on potential hybrid forwarding paths. In SDN

placement planning, we consider the controllability of software-defined control over

the hybrid network, and design a heuristic method to incrementally select legacy

switches for upgrade in order to achieve the maximum SDN controllability.

We then exploit the partially deployed SDN switches to control the traffic dis-

tribution to improve the network performance. First, we design a generic traffic

engineering approach complying with the forwarding characteristics and capabilities

of SDN and distributed routing, which supports both traditional single path and mul-

tipath routing protocols in legacy switches. To ensure the effectiveness of the hybrid

traffic engineering, we also consider the influence of structures of hybrid forwarding

graphs. Second, to overcome the limitation of distributed routing, we reconstruct

forwarding paths for flows based on the proposed traffic engineering to achieve more

forwarding flexibility. To apply the reconstructed paths, we use SDN controller to

inject lies to control the distributed link-state routing protocols without modifying

the implementation and configuration of legacy switches. The evaluation results with
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Figure 4.2: Forwarding paths to F

5 topologies show that our SDN placement planning guarantees more controllability

over the network, and the hybrid traffic engineering ensures higher throughput and

less packet losses especially in the early upgrade stage.

4.2 Hybrid Forwarding Graph

In traditional networks, legacy switches usually forward packets with the least-

cost paths calculated by distributed routing protocols. These forwarding paths to

the same destination could be constructed into a tree rooted with the destination

node, e.g., the forwarding tree to F in Figure 4.2a. For a hybrid SDN G = (V,E), in

which switches V = S ∪L consist of SDN nodes S and legacy nodes L, legacy nodes

always forward packets based on next-hops on the least-cost paths, while SDN nodes

could forward flows to their neighbours flexibly according to the decisions of software-

defined control logic. Due to the flexibility of SDN nodes, flows from different sources

to the same destination usually follow different forwarding rules. In Figure 4.2b with

SDN switches B and G, switch G forwards flow G→ F to B, while it can not send

flow B → F which is received from B → G and B → A → G back to B to avoid

the loop. Therefore, the per-destination forwarding tree in traditional routing is

insufficient to express forwarding of flows correctly in hybrid SDN. Although [30, 73]
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conduct traffic engineering with per-destination or per-source forwarding, we argue

that:

Remark 1. In hybrid SDN, flows ∀si, si → d to the same destination should fol-

low different forwarding graphs fg(si, d) in traffic engineering to achieve efficient

forwarding.

Definition 4. Hybrid forwarding graph fg(s, d):

(1) ∀n ∈ L,∀m ∈ n.next(lc(n, d)), (n,m) ∈ fg(s, d)

(2) ∀n ∈ S, if (n,m) ∈ E ∧ cycle(fg(s, d), (n,m)) = true, (n,m) 6∈ fg(s, d)

(3) ∀n ∈ fg(s, d), n 6= d, fg(s, d).outdegree(n) > 0

(4) ∀n ∈ fg(s, d), n 6= s, fg(s, d).indegree(n) > 0

To avoid inconsistency (e.g., loops, black-holes) in hybrid forwarding, we define

a consistent forwarding graph for flow s → d with Definition 4. We keep next-

hops n.next(lc(n, d)) of legacy switches on the least-cost paths lc(n, d) to destination

d with Definition 4(1), and ensure the outputs of SDN switches form no loop in

the forwarding graph with Definition 4(2). Therefore, the hybrid forwarding graph

is loop-free, as neither SDN nodes nor legacy switches forward packets into loops.

Definition 4(3) guarantees the blackhole-free property as each node in the forwarding

graph has at least an output port to forward the flow, and (4) gets rid of the irrelevant

nodes and edges to make the forwarding graph concise. With hybrid forwarding

graphs fg(s, d), we can derive hybrid forwarding paths P (fg(s, d), s, d) for flow s→ d

following the next-hops.

To be noted, different path discovery algorithms usually result in various hy-

brid forwarding graphs for a flow by applying distinct forwarding decisions on SDN

89



switches following Definition 4. We will discuss the differences of these forwarding

graphs for traffic engineering in Section 4.4.2.

4.3 Hybrid SDN Placement Planning

4.3.1 SDN Placement Planning

As the upgrade of a traditional network to a full SDN deployment is usually a

long process spanning several months or even years, different SDN switches placement

probably results in different controllability and flexibility with the software-defined

control. Therefore, the positions of SDN switches in the hybrid network should be

carefully designed to grasp the most controllability of the entire network. With the

hybrid forwarding graphs in Section 4.2, we consider three factors in deploying SDN

nodes during the upgrade process: traffic controllability, path controllability and

access controllability.

4.3.1.1 Traffic Controllability

In practical network planning, traffic pattern and distribution are usually un-

known without extra network measurements. In this case, we have to estimate the

traffic that switches probably capture based on the hybrid forwarding characteristics.

The forwarding flexibility of legacy switches is limited compared to SDN nodes.

To support both traditional single path and multipath routing protocols, we assume

legacy switch n could forward fp(n,m, s, d) percent of traffic s→ d to next-hop m.

For the single path routing, the ratio fp(n,m, ∗, d) of legacy switch n forwarding

to the exact single next-hop m is 1 for all the flows with destination d, while the

possibility of forwarding traffic to the other nodes is 0. However, there are various

next-hop selection algorithms in multipath routing. For instance, legacy switches

usually use ECMP in multipath routing. ECMP decides the next-hop with hash-

threshold algorithm [75], in which legacy switches perform a hash key (e.g., CRC16)
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over the packet header to decide the next-hop, while N next-hops have been assigned

unique regions in the key space. fp(n,m, d) = (m == b key
regionsize

c) is calculated

based on the hashing value and region design. Therefore, the forwarding of legacy

switches depends on the distributed routing protocols, while the software-defined

control algorithms determine the next-hops and forwarding ratio of SDN switches

dynamically according to the network situation. We define that switch n is able to

forward tc(n,m, s, d) percentage of traffic s → d explicitly to next-hop m. As the

forwarding percentage from a SDN switch n to m could be determined to be any

value in [0, 1], we use the maximum value 1 as tc(n,m, s, d) on SDN switch n. tc

reflects the forwarding flexibility from node n to node m.

tc(n,m, s, d) =


fp(n,m, s, d) n ∈ L

1 n ∈ S
(n,m) ∈ fg(s, d) (4.1)

The amount of traffic going through node n depends on the upstream paths

from s to n on each forwarding path p(s, n) ⊆ p ∈ P (fg(s, d), s, d). Thus, the traffic

from s to d that SDN node n could control TC(n, s, d) is defined as the summation

of potential traffic on each subpath p(s, n), which is the product of traffic forwarding

flexibility of switch ni to its next-hop nj. TC(n, s, d) indicates the percentage of

traffic from s to d that SDN switch n potentially captures. We limit TC(n, s, d)

within [0, 1], as we estimate the maximum amount of traffic going through each path

with tc(n,m, s, d) = 1 on SDN switches, which would make TC larger than 1 on a
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downstream node.

TC(n, s, d) =
∑

p(s,n)⊆p∈P (fg(s,d),s,d)

∏
(ni,nj)∈p(s,n)

tc(ni, nj, s, d) (4.2)

TC(n, s, d) =


1 TC(s, d, n) > 1

TC(n, s, d) otherwise

(4.3)

In Figure 4.2b, for flow G → F , B could capture all the traffic as G is able to

forward the flow explicitly through link G → B, such that TC(B,G, F ) = 1. For

switch D, although G and B could fully control the flow on its upstream subpath

G → B → C → D, legacy node C may forward the flow with next-hop E with

ECMP which results in TC(D,G, F ) = 0.

4.3.1.2 Path Controllability

SDN switches are able to manipulate and control the forwarding of traffic going

through them, and the controllability should remain even if flows leave SDN nodes

to ensure the effectiveness of SDN control. Therefore, the SDN deployment should

ensure that the downstream paths of a SDN node could be controlled with few

branches interrupted by legacy nodes.

A downstream path of node n for traffic s→ d is p(n, d) ⊆ p ∈ P (fg(s, d), s, d).

We define the subpath controlled by SDN node n as [n, n1, ..., nl] ⊆ p(n, d), in which

if nj ∈ L, fg(s, d).outdegree(nj) = 1, so that the outgoing traffic of SDN nodes

could follow the subpath explicitly without being redirected by legacy switches. The

length of subpath controlled by node n on p is pc(n, p) = l, so that n is able to

control pc(n, p)/p.length of the path. Thus, the path controllability of SDN node n
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for traffic s→ d is the average path control among all the paths going through n.

PC(n, s, d) =
∑

p∈P (fg(s,d),s,d)

pc(n, p)

p.length
· 1

|P (fg(s, d), s, d)|
(4.4)

In Figure 4.2b, node B could control subpath B → E → F for flow G → F , while

it can not fully control subpath B → C → ∗ → F as the forwarding of C is out of

SDN control.

4.3.1.3 Access Controllability

SDN switches are capable to control the access of flows to the network with rules

installed by access control programs, e.g., dropping blocked packets, which is far

more convenient than policy configruations on legacy switches. The denied packets

should be dropped as early as possible to avoid resource consumption. To reflect the

capability of SDN switches reacting to access control, we define access controllability

AC(n, s, d) which concerns positions of SDN nodes on hybrid forwarding paths.

The position of SDN node n on path p ∈ P (fg(s, d), s, d) is ac(n, p) = p.pos(n).

Intuitively, the closer to the source, SDN nodes serve better access control for the

flow. Therefore, the access controllability of n for traffic s→ d is the average access

control among all the paths going through n.

AC(n, s, d) =
∑

p∈P (fg(s,d),s,d)

(1− ac(n, p)

p.length
) · 1

|P (fg(s, d), s, d)|
(4.5)

In Figure 4.2b, the accessibility of flow G → F could be determined at the first

switch G which acts as a SDN node. Conversely, for flow F → G which always goes

through link F → G directly, it almost arrives at the destination when G blocks it,

while it is difficult to configure access control policies on legacy switch F .
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The placement planning of SDN switches in hybrid SDN is to maximize the

controllability and management of software-defined control over the network, such

that it is able to achieve more benefits with the partial SDN deployment. Considering

the path controllability and access controllability on the potentially captured traffic,

the hybrid SDN upgrade planning task is to upgrade a set of switches (|S| 6 k) in

appropriate positions to be SDN-enabled satisfying

max
∑
(s,d)

∑
n∈V

xn(TC(n, s, d)(αPC(n, s, d) + βAC(n, s, d))) (4.6)

xn =


1 n ∈ S

0 n ∈ L

∑
n∈V

xn 6 k (4.7)

in which α, β are the weights tuning the focus of the controllability. For instance, if

we set α and β to make αPC(n, s, d) +βAC(n, s, d) to be 1, it will upgrade switches

capturing the maximum traffic. Thus, we provide a generalized model to formulate

the SDN deployment problem to maximize the concerned controllability. It is a 0-1

integer programming problem by modelling type xn of legacy switch n to be 0 and

SDN switch to be 1, and it is known as a NP-complete problem [76]. In the initial

network planning, it does not have strict time restrictions, so that the planning could

be conducted by enumerating Ck
|L| combinations to find the best SDN placement plan

in the hybrid network.

4.3.2 Heuristic Upgrade Planning With Traffic Engineering

The purpose of upgrading a traditional network towards SDN is to provide better

network service with the flexibility of SDN, e.g., high network utilization, fast failure

recovery. For the online SDN placement planning in a running network, it should

not only consider the network controllability but also serve the traffic demands.
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To achieve better network performance, we use traffic engineering to optimize

the network performance, e.g., minimizing the maximum link utilization µ (4.8).

With the traffic distribution directed by traffic engineering, the traffic controllability

TC(n, s, d) of flow s→ d on node n could be calculated with (4.9) in which f(p) is the

amount of traffic travelling through path p instead of the estimation in Section 4.3.1.1.

(4.10) indicates the traffic demand t(s, d) of flow s → d could be satisfied without

any losses, and (4.11) means the occupied bandwidth on each link never exceeds the

bandwidth capacity c(e).

max

∑
(s,d)

∑
n∈V

xn(TC(n, s, d)(αPC(n, s, d) + βAC(n, s, d)))

µ
(4.8)

TC(n, s, d) =

∑
n∈p∈P (fg(s,d),s,d)

f(p)

t(s, d)
∀n ∈ S ∀s, d (4.9)∑

p∈P (fg(s,d),s,d)

f(p) > t(s, d) ∀s, d (4.10)

∑
e∈p∈

⋃
∀s,d

P (fg(s,d),s,d)

f(p) 6 µ · c(e) ∀e ∈ E (4.11)

xn =


1 n ∈ S

0 n ∈ L

∑
n∈V

xn 6 k (4.12)

For the online upgrade in a running network, administrators may expect to up-

grade some legacy switches to be SDN switches quickly in a short period to serve

better network performance for a traffic surge, e.g., upcoming Black Friday online
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shopping. In this case, choosing legacy switches for upgrade by enumeration in Sec-

tion 4.3.1 along with traffic engineering seriously delays the upgrade process. We de-

sign a heuristic approach to select legacy switches for upgrade together with traffic en-

gineering. We use C(S,G, td) =
∑
(s,d)

∑
n∈V

xn(TC(n, s, d)(αPC(n, s, d)+βAC(n, s, d)))

to indicate the controllability of S over network G under traffic distribution td. We

first compute the traffic distribution td := minµ minimizing the maximum link uti-

lization with current SDN deployment S, and then choose a legacy node to upgrade

which achieves the best controllability node := max
n∈L

C(S ∪ n,G, td). Iteratively, we

select nodes incrementally until achieving the desired number of SDN nodes. Com-

pared to the enumeration planning, our heuristic approach searches only |L|k− k(k−1)
2

times, which significantly reduces the network planning overhead.

4.4 Dynamic Traffic Engineering In Hybrid SDN

With the partially deployed SDN nodes, we expect to utilize the flexibility of

SDN to accommodate more traffic and reduce chances of congestions. The traffic

distribution in hybrid SDN should be carefully designed to avoid performance degra-

dation due to the distinct forwarding characteristics of SDN and legacy switches,

especially when legacy switches are running multipath routing protocols, e.g., the

multipath forwarding of B in Figure 4.1. In this section, we propose a generic traffic

engineering approach by adapting the forwarding of SDN nodes to cooperate with

legacy nodes in both single path and multipath routing scenarios.

4.4.1 Forwarding Capability Of Hybrid SDN

Although SDN nodes could forward traffic flexibly based on the decisions of

software-defined control, traffic engineering has to satisfy both the forwarding char-

acteristics of SDN and legacy switches. With the single path routing, legacy switches
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just need to forward a flow to the solo next-hop according to the destination. How-

ever, different multipath forwarding algorithms usually pose different restrictions to

the forwarding of legacy switches by selecting different next-hops. We consider the

flow-level and packet-level multipath forwarding on legacy switches, and describe

their restrictions on forwarding with Definition 5.

Definition 5. The amount of traffic f(e, s, d) on link e for flow s→ d should satisfy

(1) n ∈ L,∀ei = (n, ni), ej = (n, nj) ∈ fg(s, d)

for single path and flow-level multipath forwarding:

∃fp(n, ni, s, d) = 1, f(ei, s, d) > 0,∀ej 6= ei, fp(n, nj, s, d) = 0, f(ej, s, d) = 0

for packet-level multipath forwarding:

f(ei, s, d)

fp(n, ni, s, d)
≡ f(ej, s, d)

fp(n, nj, s, d)

(2) ∀n 6= s, d,
∑

e∈(∗,n)∈fg(s,d)

f(e, s, d) ≡
∑

e′∈(n,∗)∈fg(s,d)

f(e′, s, d)

Flow-level multipath forwarding: Legacy switches running flow-level mul-

tipath protocols forward a flow along a single path to reduce the likelihood of out-

of-order arrivals, and different flows to a same destination may be forwarded to

different next-hops on a legacy switch. ECMP is a flow-level multipath protocol,

which forwards flows of the same IP source-destination pair along the same single

path [77]. Flow-level multipath forwarding requires only one output link of a legacy

switch could be used for a flow in Definition 5(1), which is similar to the single path

forwarding.

Packet-level multipath forwarding: Packet-level multipath forwarding spreads

packets of each flow along multiple least-cost paths, e.g., random and equal packet

spraying algorithm RPS [78]. Chiesa et al. [77] and Dixit et al. [78] show that traffic
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splitting at packet-level granularity leads to significantly better load balancing in

fat-tree topologies. To make it generic, the amount of traffic that a legacy switch n

forwards to multiple output ports should be proportional to fp(n, ni, s, d) in Defini-

tion 5(1) which is decided by the multipath routing algorithm.

Switches should ensure no packet losses with Definition 5(2). These restrictions

on legacy switches limit the amount of traffic that they could forward. Hence, we

can infer the forwarding capability of each switch for a flow with Definition 6.

Definition 6. The forwarding capability c(n, s, d) of switch n for flow s→ d is

(1) n = d, c(n, s, d) = +∞

(2) n ∈ S, c(n, s, d) =
∑

e=(n,ni)∈fg(s,d)

min{c(ni, s, d), u(e)}

(3) n ∈ L with single path or flow-level multipath forwarding:

c(n, s, d) = min
e=(n,ni),fp(n,ni,s,d)=1

{c(ni, s, d), u(e)}

n ∈ L with packet-level multipath forwarding:

c(n, s, d) =
∑

e=(n,ni)∈fg(s,d)

fp(n, ni, s, d)·

min
e=(n,nj)∈fg(s,d)

{min{c(nj, s, d), u(e)}/fp(n, nj, s, d)}

The forwarding capability of a switch is the maximum amount of traffic that

it could forward, which depends on the available bandwidth u(e) on output links

{e} and capability of downstream switches {ni}. SDN switches are capable to for-

ward traffic to any next-hops with the flexible software-defined control. Thus, the

maximum amount of forwarded traffic is the summation of available throughput go-

ing through all the next-hops in Definition 6(2). For the legacy switches running

flow-level multipath, the capability depends on the only next-hop. With packet-level
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multipath forwarding, the capability of a legacy switch is calculated by proportion-

ally forwarding traffic to the next-hops while not violating the bandwidth restrictions

in Definition 6(3).

With paths derived from the forwarding graph, we can get the forwarding ca-

pability of each switch. In Figure 4.1, the capability of B for flow A → F depends

on c(G,A, F ) = 3 and c(E,A, F ) = min{5, c(G,A, F )} + 8 = 11 with packet-level

multipath forwarding. If the splitting ratio of the two next-hops fp(B,E,A, F ) :

fp(B,G,A, F ) is 1:1, the forwarding capability of legacy switch B is finally restricted

by link B → G to be c(B,A, F ) = 4. To be noted, the forwarding capability does

not mean the exact amount of traffic the switch could forward to the destination. In

Figure 4.1, if E forwards 3 units to G by assuming the capability of G is 3 units while

B also sends 2 units to G, G is incapable to forward the 5 units. The capability only

indicates the maximum amount of traffic that the node could process considering

the forwarding characteristic and topology, which guides traffic engineering to avoid

congestions.

4.4.2 Effectiveness Of Hybrid Traffic Engineering

Traffic engineering is usually formulated as a multi-commodity flow problem,

e.g., [79, 80, 81], to satisfy the maximum fraction λ of traffic demands without

violating the capability of links.

maxλ (4.13)∑
e∈p∈

⋃
∀s,d

P (fg(s,d),s,d)

f(p) 6 c(e) ∀e ∈ E (4.14)

∑
p∈P (fg(s,d),s,d)

f(p) > λt(s, d) ∀s, d (4.15)
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Figure 4.3 shows the network topology with bandwidth capacity of links, in which
B and C are SDN switches while the other switches are legacy switches. Figure 4.4
and 4.5 are two different forwarding scenarios in which forwarding graphs for flows
A → D and A → B (with throughput on links) are constructed respectively with
different next-hop adapting approaches.

Thus, traffic engineering is conducted by scheduling traffic with available paths

in the hybrid forwarding graphs. However, different path discovery algorithms prob-

ably result in distinct consistent hybrid forwarding graphs. Figure 4.4 and 4.5 show

different forwarding graphs for flows A→ D and A→ B in topology shown in Fig-

ure 4.3. The forwarding graphs for flow A → B in the two scenarios are identical,

while there is only a slight difference between the forwarding graphs of flow A→ D

on link B → C and C → B. Even though these forwarding graphs all satisfy Defini-

tion 4, the slight difference in forwarding graphs would result in absolutely different

consequences in traffic engineering. With the available paths in forwarding graphs,

we can calculate the optimal traffic distribution with linear programming. In Fig-

ure 4.4, the network could accommodate 2 units for each flow with the forwarding

graphs. However, Figure 4.5 shows that only 1.5 units are forwarded for each flow,

which is 25% less than the amount of traffic in Figure 4.4. Although the traffic

distributions in the two scenarios are both optimal with linear programming, the
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network performance varies due to the differences of the forwarding graphs. There-

fore, the structure of forwarding graphs ultimately determines the effectiveness of

hybrid traffic engineering.

To improve the potential optimal performance of traffic engineering, the for-

warding graphs should be not only consistent but also effective in hybrid traffic

engineering. As the next-hops of legacy switches are predetermined by distributed

routing protocols, we only need to adjust the next-hops of SDN switches in forward-

ing graphs. We choose the forwarding graph with the maximum throughput for each

flow to ensure potential large available bandwidth for flows.

4.4.3 Polynomial Time Approximation For Traffic Engineering

Although we can calculate the optimal traffic distribution for the two flows

in Figure 4.4 and 4.5, computing optimal traffic distribution for a large number

of concurrent flows is of great overhead together with frowarding restrictions on

legacy switches. As the maximum concurrent flow problem is of NP-hard complexity,

existing researches usually utilize approximation approaches for the dual problem

that guarantee a solution within a logarithmic factor of the optimal solution, e.g.,

fully polynomial time approximation scheme (FPTAS) [82, 83, 84].

min
∑
e∈E

c(e)l(e) (4.16)

∑
e∈p∈P (fg(s,d),s,d)

l(e) > z(s, d) ∀e, l(e) > 0, ∀s, d (4.17)

∑
(s,d)

t(s, d)z(s, d) > 1 ∀s, d, z(s, d) > 0 (4.18)

In the dual problem, l(e) and z(s, d) are introduced as dual variables, and l(e) could

be viewed as the routing cost of link e. The core idea of FPTAS is to forward flows
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Algorithm 7 Hybrid Traffic Engineering

1: ∀e, u(e) = c(e)
2: for each flow s→ d do
3: t(s, s, d) = t(s, d),∀n 6= s, t(n, s, d) = 0
4: while D(l) < 1 ∧ ∃n, t(n, s, d) > 0 do
5: p(n, s, d) := min

p∈P (fg(s,d),n,d)
cost(p) with {l(e)}

and ∀(ni, nj) ∈ p, ni ∈ L, fp(ni, nj, s, d) > 0
6: for e = (ni, nj) : p(n, s, d) from last to first do
7: c = min{c, u(e)}
8: if ni ∈ L then
9: c = min{ c

fp(ni,nj ,s,d)
, c(ni, s, d)}

10: end if
11: end for
12: c = min{t(n, s, d), c}, t(n, s, d) = t(n, s, d)− c
13: for e = (ni, nj) : p(n, s, d) do
14: if ni ∈ L then
15: for ∀e′ = (ni, n

′
j 6= nj) ∈ fg(s, d) do

16: t(n′j, s, d) = t(n′j, s, d) + c · fp(ni, n′j, s, d)
17: u(e′) = u(e′)− c · fp(ni, n′j, s, d)
18: f(e′, s, d) = f(e′, s, d) + c · fp(ni, n′j, s, d)
19: end for
20: c = c · fp(ni, nj, s, d)
21: end if
22: u(e) = u(e)− c, f(e, s, d) = f(e, s, d) + c
23: end for
24: ∀e, l(e) = l(e)(1 + ε∆f(e)

c(e)
)

25: end while
26: end for

with the least-cost paths calculated with {l(e)} and update the cost l(e) iteratively

until exceeding the threshold D(l) =
∑
e∈E

c(e)l(e) < 1.

Considering the forwarding restrictions and capability of switches in Defini-

tion 5 and 6, we design the forwarding Algorithm 7 based on FPTAS, such that the

forwarding on SDN switches is adapted to maximize network throughput while com-

plying with the forwarding characteristics of legacy switches. As FPTAS processes in
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phases until reaching the threshold, Algorithm 7 only shows a phase which consists

of |{s→ d}| iterations, and each iteration processes a flow in {s→ d}. Initially, the

amount of traffic s→ d on s to forward is t(s, s, d) = t(s, d) (Line 3). For any other

node n 6= s, as no traffic of flow s → d arrives, t(n, s, d) = 0. Similar to the gen-

eral FPTAS approaches, we also choose the least-cost paths for flows. However, the

least-cost path may contain legacy nodes of which the forwarding depends on the dis-

tributed routing protocols. We must ensure the availability of the path by checking

the forwarding restrictions on legacy switches ∀(ni, nj) ∈ p, ni ∈ L, fp(ni, nj, s, d) >

0 (Line 5). To determine the potential throughput along the path, we check the

available bandwidth along the least-cost path and available downstream bandwidth

of legacy nodes reversely from the destination to the source with Line 6-11. As

legacy switches conduct traffic splitting with flow-level or packet-level multipath al-

gorithms, the available downstream bandwidth depends on the splitting ratio and

available bandwidth of downstream paths. To be noted, the available downstream

bandwidth of legacy switch n does not equal the forwarding capacity c(n, s, d), as the

forwarding of SDN nodes along the selected path is determined and does not need

the estimation with Definition 6(2). Thus, the amount of traffic could be forwarded

from a legacy node n is the minimum value between c
fp(ni,nj ,s,d)

which is restricted

by the least-cost path and the forwarding capability of the node (Line 9). Line 13-23

forward traffic along the selected path, and divide the traffic among available next-

hops with c · fp(ni, nj, s, d) when it meets legacy nodes. We do not forward the

traffic directly to the destination along the branches at this time, but just forward

it to the next-hop n′j of each branch, so that the traffic to be transported t(n′j, s, d)

on node n′j is increased (Line 16). The traffic on branches will be forwarded in sub-

sequent loops. In Figure 4.2b, when G sends out traffic c for flow G → F along
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G → B → C → D → F , switch C forwards c/2 along the path to destination and

another c/2 to E on the branch with equally packet-level splitting, so that t(E,G, F )

is increased by c/2 which will be processed later with paths from E to F in fg(G,F ).

With the amount of traffic f(e, s, d) on each link for flow s→ d in Algorithm 7,

the traffic distribution among output ports on SDN node n ∈ S could be determined

with td(e, s, d) = f(e,s,d)∑
e,e′∈(n,∗)∈fg(s,d)

f(e′,s,d)
.

An FPTAS guarantees that the solution has objective function value within

(1 + ε)-factor of the optimal for any ε > 0 [30]. We set δ = 1

(1+ε)
1−ε
ε

(1−ε
|E| )

1
ε in

Algorithm 7. Although Algorithm 7 considers the splitting characteristics of legacy

switches in forwarding traffic, it still follows the general FPTAS procedure, so that

the complexity is identical to [82] which is proved to be O(ε−2|E|2logO(1)|E|) and

independent of the number of flows.

4.5 Path Reconstruction In Hybrid SDN

Even though the traffic engineering in hybrid SDN could leverage the flexibility

of SDN to improve network performance, the forwarding on legacy nodes is still re-

stricted to the paths calculated by distributed routing protocols, e.g, the incapability

of B to forward packets destined for F to C in Figure 4.1. Thus, the forwarding

flexibility and potential performance of hybrid SDN are still limited. If the rout-

ing calculation of distributed protocols in legacy switches could be controlled by

software-defined algorithms, a more flexible forwarding scheme will be obtained. In

traditional networks, this is usually conducted by either optimizing link weights [85]

or using MPLS tunnels [86] to redirect traffic, which sophisticates distributed routing

protocols or requires configurations on switches. With the partially deployed SDN

switches, SDN is able to control distributed routing decisions by injecting lies [87]

to control legacy switches running traditional link-state based protocols, e.g., OSPF
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or IS-IS, such that it enables flexible forwarding in both SDN switches and legacy

switches. In this section, to achieve superior performance, we construct optimal

paths with traffic engineering to break the restrictions of distributed routing, and

redirect distributed routing by adapting the lies injection based approach in [87].

4.5.1 Paths Reconstruction With Traffic Engineering

To overcome the limitation of next-hops on legacy switches, we ignore the de-

cisions of distributed routing and reconstruct next-hops of legacy switches to each

destination based on traffic engineering. We consider an empty forwarding graph

initially for each flow s → d. Paths for a flow are constructed following the for-

warding restriction and capability of switches and added into a graph, which form a

reconstructed forwarding graph for each flow in Definition 7.

Definition 7. Reconstructed forwarding graph rfg(s, d)

(1) ∀n ∈ L, e = (n,m) ∈ rfg(s, d),∀s′, e ∈ rfg(s′, d)

(2) ∀n ∈ S, e = (n,m) ∈ rfg(s, d), e ∈ ∃p ∈ P (rfg(s, d), s, d)

(3) cycle(rfg(s, d)) = false

For different flows ∀s, s→ d to the same destination d, a legacy node should have

identical next-hops for d in these reconstructed forwarding graphs ∀s′, rfg(s′, d) with

Definition 7(1). As the forwarding on SDN nodes is flexible, the edges associated

with SDN nodes n are only established for the specific flow when a new path is

reconstructed for it based on Definition 7(2). Definition 7(3) requires no loop in a

reconstructed forwarding graph.

To achieve optimal forwarding, we reconstruct paths with traffic engineering in

Algorithm 8. The least-cost path from node n to d for flow s → d is selected from
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all the available paths P (G, n, d) in the topology G (Line 1). If the selected path

does not exist in rfg(s, d), and does not form any loop with the existing forwarding

graphs, it is a newly constructed path. To avoid loops, we examine the selected

path against rfg(s, d), and check edges (n, ∗) associated with legacy nodes n ∈ L in

other forwarding graphs ∀s′ 6= s, rfg(s′, d) to the same destination d (Line 2). If the

reconstructed edges do not generate loops in any rfg(∗, d), it is a feasible path. The

edges associated with legacy switches and SDN switches are updated in concerned

reconstructed forwarding graphs (Line 3-6) based on (1) and (2) in Definition 7.

Otherwise, we keep on searching the least-cost paths despite the paths that have

been checked until finding out a feasible path.

Lemma 3. Flow s → d has at least one feasible reconstructed path in rfg(s, d) as

long as s and d are reachable in G.

Proof. If there is no path reconstructed for s→ d, each path p ∈ P (G, s, d) generated

from G forms loops with at least a rfg(∗, d). If n ∈ cycle(p, rfg(s′, d)) is the first

node along n ∈ p that forms the loop, rfg(s′, d).indegree(n) > 0. As edge (∗, n) ∈

rfg(s′, d) is established by a flow s′′ → d, there must be a path n → n′′... →

d ∈ rfg(s′′, d). If n → n′′... → d does not form loop with rfg(s, d), and path

s → ... → n → n′′... → d is a feasible path for s → d in rfg(s, d). Otherwise,

for the loop lp formed by n → n′′... → d and rfg(s, d), there must be an edge

(ni, nj) ∈ lp, ni ∈ S, otherwise lp ∈ rfg(s′′, d). According to (2) in Definition 7,

∃p∗, ni ∈ p∗, and p∗ is a feasible path in rfg(s, d).

We use the paths reconstructed by Algorithm 8 to replace Line 5 in Algorithm 7,

so that the hybrid traffic engineering could utilize the reconstructed paths to achieve

more forwarding flexibility.
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Algorithm 8 Forwarding Path Reconstruction

1: p(n, s, d) := min
p∈P (G,n,d)

cost(p) with {l(e)}

2: if p(n, s, d) 6∈ rfg(s, d) ∧ ¬cycle(p(n, s, d), rfg(s, d)) ∧ ∀s′ 6=
s,¬cycle({(ni, nj) ∈ p | ∀ni ∈ L}, rfg(s′, d)) then

3: for each e = (ni, nj) ∈ p(n, s, d) do
4: if ni ∈ S, then rfg(s, d) = rfg(s, d) ∪ e
5: if ni ∈ L, then ∀s′, rfg(s′, d) = rfg(s′, d) ∪ e
6: end for
7: end if

4.5.2 Apply Reconstructed Path With Fake Nodes

The topology and routing costs of links determine routing path calculation in

legacy switches, but have no influence on SDN nodes. Moreover, SDN nodes differen-

tiate the forwarding for different flows, while the next-hops of a legacy switch to the

same destination in ∀s, rfg(s, d) are identical. Therefore, to apply the reconstructed

paths, we ignore the forwarding of SDN nodes and only enforce the reconstructed

next-hops of legacy nodes. We consider the reconstructed forwarding graph rfg(d)

of all the legacy switches to destination d, e.g., reconstructed next-hops of legacy

switches A,C,D,E to F in Figure 4.6. New next-hops A→ B and C → B are intro-

duced for A and C respectively in Figure 4.6, which are unavailable in Figure 4.2a.

To enforce the reconstructed paths, we adapt Fibbing [87] to augment the topol-

ogy from G to G′. Fibbing [87] coaxes legacy switches into computing forwarding

decisions by presenting them with a carefully constructed augmented topology that

includes fake nodes and fake links (with link cost), and applies augmented topology

by injecting lies into link-state routing. The reconstructed next-hops in Figure 4.6

could be enforced by attaching fake destination nodes (i.g., F ′ which is a fake node

for the destination in the subnet of F ) to the next-hop changing switches (i.g., A,

C) and designing the costs between the switches and fake nodes. For instance, the
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Figure 4.6: Augmented topology for traffic to F : the routing cost of each real link
is 1, and the costs between the fake nodes and switches are shown on the fake link.

fake node is inserted between A and B with cost 2. Thus, A has two shortest paths

A → G → F and A → F ′ both with cost 2 to reach the destination in subset of F .

Since the fake nodes do not really exist, packets forwarded to the fake node by A

actually flow through B.

Fibbing [87] reduces the augmented topology with globally-scope lies which are

visible to all the switches instead of locally-scoped lies for each switch. The fake

nodes generated by globally-scope lies must be consistent to redirect the legacy for-

warding correctly. However, due to the absence of SDN nodes’ next-hops in the

reconstructed forwarding graph, adding fake nodes only to the legacy switches with

next-hop changes is insufficient to ensure the correctness. In the reconstructed for-

warding graph to O with SDN nodes I and J depicted in Figure 4.7, we add fake

nodes to legacy switches C, E, H, K, M which change their next-hops according to

the augmentation algorithm in Fibbing [87]. As downstream switches with fake nodes

probably attract traffic from an upstream switch without fake node, e.g., A with un-

changed next-hops, because the cost going through a fake node is usually lower than

original path to redirect forwarding, the fake node connected with C attracts traffic

on A going through C to reach O, while another subpath A → D → F → J has
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Figure 4.7: Reconstructed paths and fake nodes to O

no fake node to attract the traffic. Although there is a fake node connected with

M on the downstream path, it does not attract A since SDN node J isolates them

without any forwarding. Thus, the only next-hop of A for O is B instead of B and

D, which violates the desired forwarding. To deal with the isolation problem in hy-

brid SDN, we reinvestigate the fake nodes injection for the reconstructed forwarding

graph without next-hops of SDN nodes. We identify three kinds of switches to attach

fake nodes in reconstructed forwarding graph rfg(d) for destination d:

1) For the legacy switches with newly constructed next-hops rn(d) = {n | n ∈

L, {n′ | (n, n′) ∈ rfg(d)} 6= {n′ | (n, n′) ∈ fg(d)}}, e.g., C,E,H,K,M , we attach a

fake node fk(n, d) to each switch n ∈ rn(d) to redirect the traffic.

2) To avoid potential isolations of SDN nodes, we add fake nodes to the legacy

switches connected with SDN nodes sn(d) = {n | ∃n′ ∈ G.neighbour(n), n′ ∈ S, n ∈

L}, e.g., F,G.

3) The fake nodes connect to rn(d)∪sn(d) may affect the forwarding of upstream

switches, e.g., the fake node connected with C attracts traffic from A and B. There-

fore, we can generate an affected forwarding tree aft(d) = {n, e | p ∈ rfg(d), p.end ∈
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rn(d) ∪ sn(d), e = (n, ∗) ∈ p} in which the forwarding of switches depends on fake

nodes connected to rn(d) ∪ sn(d), e.g., A → B → C → E/G, A → D → F ,

H → (D) → F . To avoid a large number of fake nodes, we only add fake nodes to

the switches with multiple next-hops mn(d) = {n | rfg(d).outdegree(n) > 1, n ∈

aft(d)}, e.g., A, to prevent potential imbalanced attractions of downstream fake

nodes. For a switch with only one next-hop, the first downstream fake node is re-

sponsible for ensuring its correct forwarding, e.g, the fake node connected with C

attracts traffic on B destined for O.

Therefore, the fake nodes are attached to real switches fn(d) = rn(d)∪ sn(d)∪

mn(d) in augmented topologyG′, and each fake node fk(n, d) connected to n ∈ fn(d)

is responsible for controlling the forwarding of the closest upstream switches without

fake nodes cn(fk(n, d)) = {ni | ni ∈ p ∈ aft(d), p.end = n, p ∩ fn(d) = n}.

To apply the reconstructed next-hops correctly, we adapt the bound propaga-

tion and merging algorithms in Fibbing [87] to calculate the routing costs between

switches and fake nodes in G′. As each fake node fk(n, d) controls the forwarding of

a bunch of switches cn(fk(n, d)), the cost between n and fk(n, d) ensures the correct

forwarding of controlled switches with:

1) attracting traffic on controlled switches ni ∈ cn(fk(n, d)) with cost(n, fk(n, d), G′) <

min
ni∈cn(fk(n,d))

dist(ni, d, G)− dist(ni, n,G′).

2) never attracting traffic on the other switches ni 6∈ cn(fk(n, d)) with dist(ni, n,G
′)+

cost(n, fk(n, d), G′) > dist(ni, n
′, G′) + cost(n′, fk(n′, d), G′) or dist(ni, d, G

′) for ni

controlled by fk(n′, d) or not controlled by any fake node respectively.
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4.6 Evaluation

To show the effectiveness of the proposed SDN placement planning and traffic

engineering approaches, we evaluate them in various topologies with simulation: Fat-

tree (100 switches, 3 layers) and Mesh (64 switches with degree 4 for each switch)

topologies which are widely used in data center networks and local area networks re-

spectively, and three real-world ISP topologies in [88]: Telstra (108 nodes, 153 links),

Ebone (87 nodes, 161 links), Exodus (79 nodes, 147 links). The traffic is randomly

generated and uniformly distributed among nodes. As the traffic engineering with

hybrid forwarding depends on the structure of forwarding graphs, different path dis-

covery algorithms would result in diverse forwarding graphs. To avoid inconsistency

and achieve high effectiveness, we accommodate the forwarding of upgraded SDN

switches to the existing forwarding graph during the incremental upgrade process as

Section 4.4.2 shows, so that the SDN placement planning plays an important role in

composing forwarding graphs for traffic engineering. The simulations are evaluated

with 2-core 3.3GHz processor and 16GB RAM.

4.6.1 SDN Placement Planning

SDN nodes deployed by different placement strategies usually result in diverse

controllability and flexibility over the network. As our SDN placement planning

(named tap) is a generic approach, it could achieve concerned controllability by

tuning weights α and β. To show the general effectiveness of tap, we set α and

β to 1, and compare it with the sequential approach which upgrades switches in

topological order. To evaluate the robustness of tap, we test both the initial hybrid

network planning without traffic pattern (initial-tap) and online upgrade planning

with traffic engineering (online-tap). The traffic controllability could be reflected by

the performance of traffic engineering. Figure 4.8 shows the throughput improvement
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Figure 4.8: Throughput with different SDN placement strategies

of hybrid packet-level multipath forwarding during upgrading process with different

upgrade strategies compared to traditional multipath routing T (multiHyb−Pkt,SDN%)
T (multiHyb−Pkt,0%)

.

Online-tap always achieves the most throughput, and the throughput of initial-tap

is slightly less than online-tap, which demonstrates the robustness of the placement

planning without traffic pattern. The situation of sequential upgrade is much worse

due to the poor placement of SDN nodes. Only for Fat-tree network, the sequential

approach first upgrades core switches, aggregate switches and then edge switches,

such that it is similar to the planning considering traffic controllability.

To evaluate the access control of SDN, we normalize the access controllabil-

ity (Section 4.3.1.3) of these placement planning approaches with the online-tap

AC(planning,SDN%)
AC(online−tap,SDN%)

in Figure 4.9. We find that the access controllability of online-

tap and initial-tap is always superior than the sequential upgrade, which means the

hybrid SDN requires a considerate upgrade planning to control the access of traffic.
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Figure 4.9: Access control with different SDN placement strategies

Although the traffic pattern is unknown in initial-tap, it achieves high access con-

trollability which is similar to online-tap, as it considers access control over all the

potential traffic. Therefore, our placement approach initial-tap could still plan the

SDN placement for a dynamic network even if the traffic pattern is unknown. To be

noted, the sequential upgrade from core switches to edge switches in Fat-tree could

achieve almost the same controllability over the traffic. As we set α, β to be 0.5, and

the path controllability concerns the downstream paths while the access controlla-

bility is determined by the upstream paths, tap is similar to only considering traffic

controllability with the symmetric topology and uniform traffic in Fat-tree, in which

the core and aggregate switches capture more traffic than edge switches.
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Figure 4.10: Throughput improvement of hybrid forwarding

4.6.2 Hybrid Traffic Engineering

To evaluate the effectiveness of hybrid traffic engineering, we compare the through-

put of hybrid forwarding with traditional routing in single path and multipath sce-

narios. We employ ECMP as flow-level multipath routing in legacy switches, and

use equal packet spraying as packet-level multipath forwarding. To show the im-

provement of hybrid forwarding, throughputs of these hybrid forwarding schemes

are normalized by the throughput of traditional single path routing T (hybrid,SDN%)
T (single,0%)

with different amount of SDN deployment in Figure 4.10. The hybrid forwarding

always achieves larger throughput than traditional routing. Meanwhile, the traffic

engineering ensures growing throughput with increasing SDN deployment, as the

more SDN nodes would introduce more forwarding flexibility. We also find that,
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Figure 4.11: Path diversity of hybrid forwarding in traffic engineering

with 60% deployment of SDN nodes, the hybrid forwarding with traffic engineer-

ing could achieve as much throughput as a full SDN in most experiment networks

(except Fat-tree), which means the early upgrade planning and hybrid control are

quite important to ensure the performance of the network. In Fat-tree network,

as edge switches are upgraded after the core and aggregate switches, this restricts

the available path diversity between the edge layer and aggregate layer, and further

constrains the forwarding flexibility at the beginning stage of upgrade.

The five topologies in Figure 4.10 show distinct forwarding characteristics. For

Telstra, Ebone and Exodus, the hybrid forwarding improves 50% - 100% throughput

of traditional routing in both single path and multipath routing scenarios. As the

available traditional routing paths for each flow in these network are limited as

Figure 4.11 shows, hybrid forwarding enhances the number and diversity of available

forwarding paths. However, the hybrid forwarding with multipath routing in Fat-tree

115



  0%  20%  40%  60%  80% 100%

percentage of SDN switches

0%

1%

2%

3%

4%

5%

re
d
u
c
e
d
 p

a
c
k
e
t 
lo

s
s
e
s Fattree

Mesh

Telstra

Ebone

Exodus

Figure 4.12: Losses reduction for large flows

and Mesh networks gains little improvement, as the traditional multipath routing has

already utilized a lot of paths for load balancing in these topologies. Especially with

packet-level multipath on legacy switches, packets could utilize more redundant paths

in Fat-tree and Mesh networks than ISP topologies even if the SDN deployment

is limited, which also results in higher throughput compared to flow-level hybrid

multipath forwarding using a single next-hop for each flow on legacy switches.

As we consider the forwarding capability of switches in hybrid multipath for-

warding, the packet-level hybrid forwarding helps to reduce 0%-5% packet losses

compared with straightforward multipath splitting [30] on legacy switches in Fig-

ure 4.12. Especially for large flows at the early upgrade stage, legacy switches avoid

congesting downstream subpaths with the estimated forwarding capability. Different

from the deceasing reduced losses in other networks, Mesh witnesses an increase of

reduced losses at the beginning of upgrade and then a decrease with a high fraction

of SDN deployment. As flows tend to share links in Mesh compared with the dedi-

cated and localized paths in other topologies, straightforward multipath splitting on

legacy switches collides with the forwarding of SDN switches on shared links, and

the collision becomes severer with more mixed network devices inside Mesh. When
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most legacy switches are upgraded to be SDN-enabled, these devices are under the

centralized control and avoid straightforward traffic splitting.

4.6.3 Applying Reconstructed Paths

Without the limitation of distributed routing, path reconstruction is expected

to achieve more throughput than hybrid forwarding. Figure 4.10 shows path recon-

struction could achieve high throughput even if the proportion of SDN deployment

is quite small in Telstra, Ebone and Exodus. As Figure 4.11 shows path reconstruc-

tion is able to forward a flow with significantly more paths in these ISP topologies,

especially for packet-level hybrid multipath routing, so that the throughput expe-

riences remarkable increases in these networks. For Fat-tree and Mesh networks,

although there are a lot of available paths, the path reconstruction only reconstructs

a similar number of paths compared with hybrid multipath. As links in Mesh are

usually shared by a lot of flows, especially in the middle of the network, compulsory

multipath may add to congestions on links, so that the path reconstruction selects

an appropriate set of paths to ensure the performance.

Although path reconstruction breaks the limitation of traditional routing proto-

cols, the reconstructed forwarding graphs still have to maintain identical next-hops

of a legacy switch for different flows to a destination, which restricts the flexibil-

ity of path reconstruction. Therefore, path reconstruction also expects more SDN

deployment, such that traffic engineering has more freedom to construct a less-cost

path flexibly, which is reflected in the growing throughput when SDN deployment

increases.

To apply the reconstructed paths, we identify the next-hop changes on legacy

switches and inject fake nodes to redirect the traditional routing. Figure 4.13a shows

the possibility of next-hop changes on legacy switches in path reconstruction for
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Figure 4.13: Next-hop changes and injected fake nodes

each destination compared with traditional packet-level multipath routing. In Fat-

tree, as path reconstruction almost uses the same paths as multipath routing in

Figure 4.11a, the possibility of next-hop changes is quite small. For Ebone and

Exodus, we construct a lot of new paths which lead to high change possibility in

Figure 4.13a. Fake nodes are injected to redirect forwarding of legacy switches in

Figure 4.13b. We find that more next-hop changes usually require more fake nodes

for redirection. As we never attach a fake node to a SDN node, it ensures a decreasing

number of fake nodes when the SDN deployment increases.

4.7 Related Work

Vissicchio et al. [71] suggest that the combination of centralized and distributed

paradigms can provide mutual benefits after analyzing a series of hybrid SDN models,

which is validated in [70, 89, 90, 91] with various SDN control approaches over legacy

hardware. Meanwhile, Vissicchio et al. [92] also show that the coexistence can create

forwarding anomalies that ultimately defeat the benefits.

SDN deployment planning: Panopticon [70] investigates the problem of in-

crementally introducing SDN into an existing network. Hong et al. [74] model SDN

deployment and traffic engineering problems to improve network utilization. Caria
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et al. [93] consider the path diversity in deploying SDN nodes. Poularakis et al. [94]

consider the traffic controllability over flows with the reducing upgrade cost during

a long upgrade period spanning several years. However, these approaches primarily

focus on traffic processing performance or costs in deploying SDN nodes. We further

propose the controllability of SDN over the hybrid network which can be independent

of the traffic demands.

Traffic engineering in hybrid SDN: A lot of researches utilize the flexibility

of SDN to enhance the hybrid network performance. B4 [16] presents the deployment

experience of Google’s software-defined WAN with various hybrid traffic engineering

approaches. Agarwal et al. [30] pioneer the traffic engineering in hybrid SDN with

“admissible paths” which are fully controlled by software-defined control, and He

et al. [73] complement it with more practical traffic engineering models and solu-

tions. Xu et al. [95] design h-splittable flow routing with “permissible” paths. Wang

et al. [96] study hybrid traffic engineering to save energy. We also tried to enhance

the effectiveness of hybrid forwarding graphs by designing SDN forwarding in [97].

However, a generalized hybrid traffic engineering approach considering forwarding

characteristics of SDN and legacy switches is absent. Our solution is motivated by

[30, 73], but we provide a more general model to deal with both the traditional single

path and multipath routing protocols.

Limitation of distributed routing: To control the distributed routing con-

veniently, Fibbing [87] introduces fake nodes, but it mainly focuses on the control

over traditional networks and can not be applied in hybrid SDN directly. We adapt

Fibbing [87] for hybrid SDN in this chapter. Magneto [98] is a similar approach to

Fibbing, but it operates at the data link layer by affecting the forwarding behavior

of legacy L2 switches. Guo et al. [99] optimize traffic engineering by adjusting OSPF

119



weights and SDN forwarding. Chu et al. [31] redirect traffic with IP tunnels to avoid

link failures. These approaches usually require modifications to distributed routing

protocols or configurations on switches, which makes them inconvenient.

4.8 Conclusion

Upgrading a traditional network towards SDN makes the centralized control

and traditional distributed network protocols coexist in the hybrid network, and

the heterogeneity of the mixed network control complicates the network. To ex-

ert the potential flexibility and controllability of SDN in hybrid network during the

long upgrade process, in this chapter, we design the SDN placement planning and

traffic engineering approaches. Considering the heterogeneous forwarding character-

istics of SDN switches and legacy switches, we deploy SDN nodes to maximize the

controllability of SDN over the hybrid network. We then consider the forwarding

characteristics and capability of switches to maximize network throughput in traf-

fic engineering. Furthermore, to overcome the forwarding limitation of distributed

routing, we design a path reconstruction approach and apply the reconstructed paths

with fake nodes. The evaluation results with various topologies show that the hy-

brid traffic engineering ensures better performance especially in the early 60% SDN

deployment, and the SDN placement planning guarantees more controllability than

existing approaches.
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CHAPTER 5

Conclusion

The benefits of flexibility and convenience introduced by SDN make it more and

more appealing in both academic and industrial areas, so that SDN maturates over

time with the increasing attention. With the decoupling essence of the control plane

and data plane in SDN, maintaining a correct, stable and reliable control plane is

critical to ensure the network performance. Especially for the correctness, making

consistent control decisions efficiently is the key to achieve desired network behaviors.

This dissertation presents a series of approaches to ensure effective and consistent

control over the network. In this chapter, we first summarize the contributions of

this dissertation, and then briefly discuss open issues and future directions of our

work, and finally conclude the dissertation.

5.1 Summary Of Contributions

This dissertation enhances the SDN control consistency in three aspects, ranging

from flow table update scheduling to the design of control programs. The contribu-

tions are summarized as follows:

Efficient data plane update scheduling algorithm: To update flow ta-

bles in the data plane consistently and efficiently, we propose an update ordering

approach – Cupid. To avoid the heavy overhead of update ordering in previous ap-

proaches, we divide the global dependencies among updates into local restrictions by:

1) partitioning a new routing path into several independent segments, 2) identifying
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critical nodes controlling traffic shifting between the old path and new path, and 3)

constructing a dependency graph among critical nodes for potential congested links.

We then design a heuristic algorithm to resolve the dependency graph based on the

dependency chain to reduce the data plane update completion time. Our simulation

shows that Cupid schedules updates at least 2 times faster and has less throughput

losses than the state-of-the-art approaches in both fat-tree and mesh networks. Cu-

pid schedules an efficient update order for the decisions made by control programs

before applied in the data plane to ensure packets are processed by correct rules.

Control program coordination prototype: To reconcile the SDN control

conflicts, we propose a control coordination prototype – Redactor to optimize the

consistency and utility of network control in an automatic and dynamic manner. We

implement SDN control programs with declarative language Prolog, and compose

control programs automatically to execute together to make consistent decisions.

To ensure the effectiveness of the generated policy, we use the voting mechanism to

select the best policy among the feasible decisions with the most preferences of control

programs. When conflicts occur, we use a heuristic approach to compromise a subset

of control programs to maximize the control utility. We compare Redactor with

the static priority mechanism and Athens [58], and the results show that Redactor

always satisfies more control objectives to achieve better control consistency and

utility. Redactor integrates control programs flexibly and dynamically to ensure the

effectiveness and consistency of generated control decisions.

Design of SDN control in hybrid SDN: To exert the flexibility of SDN

control in a hybrid SDN, we propose a solution to handle the heterogeneity caused

by distinct forwarding characteristics of SDN control and traditional distributed net-

work routing protocols, therefore boosting the benefits of hybrid SDN. Our solution

122



spans three aspects: 1) planning SDN placement to enhance the SDN controllabil-

ity over the hybrid network, 2) traffic engineering considering both the forwarding

characteristics of SDN and legacy switches, 3) reconstructing and applying optimal

forwarding paths to overcome the limitation of distributed routing. The experiments

with various topologies show that the SDN placement planning and hybrid forward-

ing yield better network performance especially in the early 60% SDN deployment,

while path reconstruction achieves much higher throughput with more flexibility.

This design promises effectiveness and consistency of hybrid SDN control over het-

erogeneous network devices.

5.2 Open Issues And Future Work

Preserving policies consistency: Cupid only preserves the congestion-free

consistency of forwarding paths during data plane updating, and the hybrid SDN

control also focuses on the hybrid forwarding correctness and consistency. They

do not consider other policies, e.g., waypoint (each packet is required to traverse a

certain kind of checkpoint) [100, 101], per-packet consistency [102]. Thus, the appli-

cation of this dissertation may be limited for other consistency properties. However,

preserving all kinds of policies during updating is more complicated than the forward-

ing consistency. Moreover, enforcing the waypoint policy may even conflict with the

loop-free property [101]. While the two-phase commit update [26] could preserve

both the correctness and policies, it is highly inefficient with a double number of

entries for the initial and final rules on each switch, which is a great challenge for the

limited flow table space. Preserving various kinds of policies correctly and efficiently

is still an open issue.

Consistent and distributed network knowledge base: In the design of

Redactor, we focus on the control conflicts reconciliation by assuming the prototype
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running upon a common knowledge base. Other newly designed declarative lan-

guages for network programming, e.g., [55, 64, 103], also require reliable knowledge

bases. Especially for a distributed control plane, synchronization among multiple

control nodes is essential to maintain the control plane consistency. However, most

distributed control planes offer weak consistency semantics [6]. Although data up-

dates on distinct nodes will eventually be updated on all the control nodes, there

is a period of time in which distinct nodes may read different values (old value or

new value) for a same property. There are some existing distributed network control

platforms supporting the strong consistency (all the control nodes read the most

updated property value after a write operation), e.g., Onix [104], ONOS [105]. We

can extend these consistent control planes to design distributed knowledge base for

declarative queries. However, strict state synchronization may carry excessive per-

formance or complexity penalties [106]. Striking a balance between the consistency

and synchronization efficiency requires further exploration.

Consistency in data plane: We only consider the SDN control consistency

before applied in the data plane. Actually, there are still consistency issues in the

data plane when applying consistent control decisions. Due to the expensive TCAM

and limited flow table space [107, 108], mapping all the rules into the data plane

may overflow the flow table/TCAM space. Packets failing to match TCAM or flow

table entries will trigger requests to software switch or the controller. Although the

matching failure does not affect the correctness of network behavior as the control

plane has made consistent control decisions, it may add to the processing latency.

To reduce frequent requests and long latency, the cached flow entries in TCAM and

flow table should have a consistent view with the network traffic considering both

temporal and spatial locality. Moreover, since rules with different priorities may
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overlap in match field, this creates dependencies among the rules in a flow table or

TCAM [109, 110]. Simply caching the requested rules without considering the rule

dependency may lead to wrong matching and incorrect processing decisions for newly

arrived flows [111]. Thus, maintaining consistency of the data plane is also important

to apply control decisions correctly. Despite the efforts to maintain consistency on

the control plane, a lot of researches [112, 113, 114, 115] are trying to make the data

plane more programmable, which complicates the consistency maintenance in data

plane.

5.3 Concluding Remarks

While the emerging SDN technology attracts more and more attention and ap-

plications with its benefits in flexibility and programmability, controlling the network

correctly and efficiently with the new architecture is challenging. This dissertation

presents a series of mechanisms to enhance the consistency in making SDN control

decisions. We design efficient approaches to reduce the consistency maintenance over-

head and avoid the limitations to the control flexibility imposed by the consistency

requirements. The contributions in this dissertation provide systematic solutions to

ensure an effective SDN control.

There are still a lot of open issues for an absolute consistent SDN, e.g., preserving

all kinds of policies, consistent and distributed control plane, consistency in the data

plane, etc. A consistent architecture reveals no contradictions when viewed from any

perspective [106]. We believe this is a fruitful research area [116], and are excited

about future research on designing powerful network control platforms with next-

generation programmable switches to make the SDN architecture more effective,

stable and reliable.
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