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ABSTRACT 

Measures, dimensionality, and complexity are coupled notions, and the relationships 

between them are important practically as well as theoretically. Measures on curves 

might include their length, the number of components, or the area covered (such as 

the one for space-filling curves). In differential geometry, curves are characterized as 

mappings from an interval to the plane. In topology, curves are characterized as a 

Hausdorff space with certain countability properties. Neither of these definitions cap­

tures the role that curves play in vision, however, in which curves can denote simple 

objects (such as a straight line), or complicated objects (such as a jumble of string). 

The difference between these situations is in part a measure of their complexity, and 

in part a measure of their dimensionality. This thesis lays the groundwork for a formal 

theory of curves appropriate for computational vision in general, and for addressing 

problems such as separating straight lines from jumbles in particular. 

Specifically, after presenting a parameterisation-free intermediate representation, 

the Besicovitch tangent set, we build a measure of complexity on it, the complexity 

map. This naturally decomposes into two distinct components, the tangential and 

the normal complexity indexes, which separate (0-dimensional) dust patterns, from 

(1-dimensional) contours, from (2-dimensional) textures. One main consequence of 

this analysis is that an intermediate representation, such as the discrete tangent map, 

is necessary for properly separating curve-like patterns that fill areas from those that 

extend mainly along their length. Most importantly, it provides the basis of a classi­

fication scheme for curve-like sets such as those encountered in edge/line detection. 
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RESUME 

Mesure, dimension et complexite sont des notions liees et leur apparentement s'avere 

important tant au niveau pratique que theorique. Les mesures pour les courbes du 

plan peuvent inclure leur longueur, le nombre de composantes, ou l'aire couverte. 

En geometric differentielle, les courbes planes sont caracterisees comme etant une 

application de l'intervalle au plan. En topologic, elles sont caracterisees comme un 

espace de Hausdorff avec certaines proprietes de denombrement. Aucune de celles-ci 

ne capture vraiment !'essence de ces courbes en vision cependant, c'est-a-dire qu'elles 

puissent representer des objets simples, comme un segment de droite, ou des objets 

compliques, comme un paquet de lignes tracees au hasard. La difference entre ces 

deux situations depend a la fois d'une mesure de leur complexite, et de leur dimension. 

Cette these jette les bases pour une theorie formelle des courbes appropriee pour 

la vision par ordinateur en general, et pour des problemes tels la separation des 

ensembles de segments simples de ceux formes d'un paquet de lignes. 

Apres avoir presente une representation locale exempte de parametrisation, 1' en­

semble des tangentes de Besicovitch, nous lui associons une mesure de complexite: 

la carte de complexite. Celle-ci, qui se divise en deux composantes distinctes, les 

index de complexite normal et tangentiel, est liee a une notion abstraite de la di­

mension, puisque c'est elle qui marque la distinction entre les poussieres de courbes 

( 0-dimensionnelles), les contours simples ( unidimensionnels) et les textures (bidimen­

sionnelles). La consequence premiere de l'analyse presentee est qu'une representation 

intermediaire telle la carte des tangentes est necessaire pour pouvoir distinguer cor­

rectement les ensembles qui couvrent une aire de ceux qui s'etendent sur leur longueur. 

De plus, elle procure les bases d'un procede de classification pour les ensembles a 
structure de courbes tels ceux que nous rencontrons lors de la detection de contours. 
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CONTRIBUTIONS 

How should edge elements be organized so they can be grouped into curves? How can 

curves be segmented from texture flows? How can "dust-like" patterns be segmented 

from textures? What is the proper representation for early visual information? How 

do representations change as a function of scale? These questions are all examined by 

a novel approach based on tangential and normal dilations of a set. In this thesis we 

will be concerned with a generalization of geometric measure theory that is relevant to 

computer vision. It both provides a formal connection between previously unrelated 

problems, and an algorithm for solving them. In particular, the following points have 

been addressed: 

• reflexion on the problems inherent to integration of local information; 

• introduction of the tools from geometric measure theory to computational 

vision in the context of curve detection; 

• characterization of the structure of the tangent maps through the tangent 

separation theorems; 

• definition of a new intermediate representation, the complexity map, which 

splits both the normal and tangential components of complexity in a curve­

like set; 

• classification scheme for the type of patterns and a rule on the choice of rep­

resentation subtending integration; 

• justification for an oriented local representation at an early stage m curve 

detection. 
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CHAPTER 1 

Introduction and motivation 

"How complex or simple a structure is depends critically upon the way we describe it. Most of the 

complex structures found in the world are enormously redundant, and we can use this redundancy 

to simplify their description. But to use it, to achieve the simplification, we must find the right 

representation" HERBERT A. SIMON (1968] 

A classical problem in the design of a general purpose artificial vision system is 

the localization and description of image curves (edges or bars). For instance, imagine 

a dark cube against a white background. The task of early vision is to abstract a 

description of this cube sufficiently rich to enable its recognition, while segmenting 

it as a figure from the background. Such a description must certainly involve the 

bounding contour around this cube, and it is the task of boundary detection to 

recover this contour1
. Complexity and dimension issues arise immediately. From 

an intuitive geometrical point of view, surfaces are boundaries of solids, lines are 

boundaries of surfaces and points are boundaries of lines, as was pointed out by the 

French mathematician Poincare (1926). Because the cube may subtend a large visual 

angle covering an enormous number of pixels, "re-presenting" it by its edges reduces 

the amount of information tremendously while keeping the essence of the information 

about the object. Line drawings are another example of abstraction of information 

in which the essence of the scene is kept and reduced to its minimal expression. Look 

for instance at the graffiti by Zilon in Figs. 1.1 and 1.2: his drawings clearly illustrate 

1 Throughout this work, when referring to curve , edge or boundary detection, we imply the process just described 
here. 
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) 

FIGURE 1.1. A man and a woman. Two graffiti by Zilon (one of Montreal's most 
prolific graffitist) illustrating the point that just a few lines can capture the essence 
of a scene. 

the point that just a few lines are sufficient to provide the percept of a fairly complex 

scene. Thus, it made intuitive sense thirty years ago to begin to build computer 

vision systems by developing algorithms that would extract these edges and segment 

images automatically. At the same time, neurophysiology was providing important 

conceptual support for these techniques. The result is that now, among the stages 

for the processing of visual information, edge detection is one of the best understood. 

1. Structure detection in early vision 

Edge detection implies however a basic problem in perceptual grouping: once 

the local structure is established, the transition to global ones must be effected. To 

illustrate, imagine standing on an edge element in an unknown image, as in Fig. 1.4a 

or Fig. 1.4b. Is this edge element part of a curve, or perhaps part of a texture? If the 

former, which is the next element along the curve? If the pattern is a texture, is it a 

hair pattern (in which nearby elements are oriented similarly) or a spaghetti pattern 

2 
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( ~ 
FIGURE 1.2. Shouting out! Two more graffiti by Zilon again illustrating the fact 
that just a few lines can capture the essence of a scene. This time the curve inter­
sections are more severe. The number of lines stays small nevertheless inducing an 
elaborate percept. 

(in which they are not)? These questions are in part about complexity since curves are 

"simpler" than textures, and in part about dimensionality, since some discontinuities 

are 0-D, curves are 1-D, and textures are 2-D. In this thesis a complexity measure 

that seeks to address these questions will be proposed. The ultimate goals are to 

show, in the context of curve detection, that the choice of representation and support 

for the grouping process is an important issue, and to provide a means of making an 

appropriate decision regarding the choice of representations. 

Measures, dimensionality, and complexity are coupled concepts, and the relation­

ships between them are important practically as well as theoretically. Measures for 

curves might include their length, the number of components (cardinality), or the 

area covered. However, the situation is more subtle than this, as is illustrated in 

several examples. The first example is taken from a classical demonstration by the 

Italian psychologist Kanizsa (1979). Figure. 1.3a, in which a pinstriped surface ap­

pears to be occluding a rectangle, demonstrates that curves, or sets of curves, can 

actually connote either the outline of objects (as in the rectangle) or surfaces (the pin­

stripes). Closer examination reveals that the rectangle is actually continuous through 

the surface, suggesting that visual inferences somehow group the pinstripes together 

and ignore the fact that the rectangle is the longest curve in the image. Neither the 

3 
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(a) (b) 

FIGURE 1.3. Two Kanizsa patterns. (a) a pattern due to Kanizsa (1979) (b) cir­
cle/triangle pattern due to Galli & Zama (1931). Both these examples illustrate 
the need of using different representations for integration. Why does the texture 
"absorb" portions of the rectangle in (a) and of the triangle in (b)? In both cases 
the grating seems to predominate over the perception of the closed curve. 

length of the curve, defining the rectangle, nor the number of components, defining 

the pinstripes, is dominant. Figure 1.3b, a triangle, is similarly camouflaged within a 

horizontal grating, and once more illustrates what Kanizsa (1979) called the "social 

conformity of a line". 

Our second example is an image of a statue (which Pietro Perona refers to as 

"Paolina", see Fig. 1.4e). The result of an edge operator [Iverson & Zucker 1995] at a 

given scale is shown in Fig. 1.4f, and the problem of integrating local information raises 

the following observations. For the shoulder region (Fig. 1.4c), the underlying object 

is simple and a curve representation seems appropriate to group the edge elements. 

If we examine instead regions subtending part of the hair structure (Fig. 1.4d), then 

choosing a curve representation and walking along a hair would lead very quickly 

4 
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(a) zoom on shoulder (c) Paolina's shoulder (e) Paolina: original image 
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I l '' /'/-'-.'-, 
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(b) zoom on hair (d) Paolina's hair (f) Paolina: edge map 

FIGURE 1.4. The subtlety of "walking through" a tangent map: (a & c) curves, 
(b & d) texture. Moving from right to left, the gray shaded areas are expanded to 
show the need for different representations to support the grouping of local edge 
elements. Integrating the responses of local edge detectors in the hair region is 
problematic. By what principles should the tangents be grouped? 

to confusion, since it will be difficult to know on which part of the curve one is. A 

texture representation in this case seems more appropriate. 

2. The problem 

The leading question of this thesis is: given the output of edge/line detectors at 

a given scale and for a given resolution, how can these be grouped together? This 

clearly involves a local-to-global transition which has been described as "collecting 

individual edge points together to form continuous curves" [Cox et al. 1993]. However, 

it assumes that edge points should be grouped into curves; but local edges can arise 

from other image structures, such as a texture (hair, or field of grass, for instance). 

5 
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We therefore question this assumption that edges should be grouped only into curves, 

and rather seek to determine which representation should be chosen for the grouping, 

together with the dimension of its support. 

A second view of grouping is that it is a noise problem (Zucker 1993]. Since 

there are spurious responses from the local detectors, a global estimation procedure 

is necessary to eliminate them (Kalman filtering, for instance). Another is that it 

is simply an image-domain phenomenon linked to scale. Since larger operators have 

more image support, they should be less susceptible to such local variations. However, 

they are also more likely to average across features belonging to different objects. 

This thesis questions all these assumptions and will try to shine light on the 

grouping and representation problems through arguments of complexity. The start­

ing point of our investigation will be the search for edges, positive or negative contrast 

lines. The local structure will be given by the output of an edge/line detector (Iverson 

& Zucker 1995) sometimes followed by a few iterations of relaxation labeling [Zucker 

et al. 1977, Iverson 1993). The process that will be described in this thesis in some 

cases would decide where those of Cox et al. (1993), David & Zucker (1990) or Mum­

ford (1992) could be used, i.e. where a curve support is appropriate and over which 

extent. In the case when the support indicates a surface (textures for instance), 

then approaches such as [Zucker 1985] and [Kass & Witkin 1987] for integral curves, 

or [Malik & Perona 1990] for oriented texture characterization should rather be used. 

3. Three approaches to complexity 

But what exactly is complexity? Until now we have been rather vague in defining 

the concept and relied on its colloquial meaning. The Webster dictionary states that 

complexity is the quality or state of being hard to separate, analyze or solve. But 

how can one quantify complexity? How can it be defined as a quantitative measure 

assigned to a physical system or computation? How can we measure complexity for 

those patterns encountered in curve detection and not only determine that a certain 

representation is no longer appropriate, but also indicate a suitable one? 

The following will open three parentheses about three different lines of thought on 

complexity. We will therefore quickly introduce: (i) the notion of computable number 

6 
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and algorithmic complexity; (ii) the notion of saliency map in edge grouping; (iii) the 

notion of confusion and the link between fractal dimension and complexity. These 

are in no way intended to be complete presentations, as they each portray informally 

a large body of research, but should rather provide the 'toile de fond' to what will 

follow. 

3.1. Computable numbers and algorithmic complexity. Alan Turing's 

work on computable numbers [Turing 1936) is a key step toward the definition of 

algorithmic complexity (sometimes called Kolmogorov complexity). According to his 

theory, it is possible to characterize different numbers by the length of the program 

that is required to compute them. A number will be computable if there is a simple 

algorithm that gives the number even if the number is infinitely long [Pagels 1988]. 

A number will be called non-computable if the only algorithm we know is to explic­

itly specify the number itself within the program (the number is then said to be 

incompressible). For instance, let us look at the following sequences: 

(i) 0.0101010101010101010101010101010101010101 

(ii) 0.4285714285714285714285714285714285714285 

(iii) 0.1234567891011121314151617181920212223242 

(iv) 0.4142135623730950488016887242096980785696 

(v) 0.8120961395426294503517263064533891042827 

The first sequence is easy to describe in that it consists of 20 sets of 01 after the decimal 

point. The second sequence, although it looks more complicated shows periodicity 

very early on: it is simply the decimal expansion of 3 divided by 7. Therefore a 

program saying "Divide 3 by 7 and print the result" would be sufficient to describe 

the sequence. The third sequence is Champernowne's number C which is constructed 

by writing out the integers in order. Again a simple number since it could be generated 

by the program: "Print the integers in order after the decimal point". The fourth 

example displays the first digits in the numerical estimation of ..;2 1. 

Thus far, there was a simple algorithm to give the number even if it was very 

long. The last example shows the output of a random number generator simulating the 

flipping of a 10-sided die. For truly random numbers there would be no better program 

for such a sequence than simply saying "Print the following: 0.8120961395426 ... ". 

7 
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Thus the descriptive complexity of a truly random sequence is as long as the sequence 

itself. 

Algorithmic complexity [Kolmogorov 1965, Kolmogorov 1987], is based on the 

definition of a minimal program: the shortest one following encryption as a string of 

integers. The algorithmic complexity of a number will therefore be the length of the 

minimal program required to compute it. This gives a quantitative measure to every 

number in the continuum, and results in the algorithmic definition of complexity. 

Algorithmic complexity can also be intuitively thought of as follows [Cover & Thomas 

1991]: "if one person can describe a sequence to another person in such a manner as 

to lead unambiguously to a computation of that sequence in a finite amount of time, 

then the number of bits in that communication is an upper bound on the algorithmic 

complexity". Although the link to vision is not immediate, we will propose one in 

the next section. 

3.2. The saliency map for edge grouping. In an attempt to use the notion 

of complexity in the grouping of edge elements, Ullman defined a saliency measure and 

a saliency map to be able to represent what he calls 'globally conspicuous locations' 

(i.e. the structural saliency of structures as a whole) in the image [Ullman 1990, 

Sha'ashua & Ullman 1988]. He states that context is important when it comes to 

integrating information. Objects are rarely seen in isolation, so the question of how 

they can be segmented or selected from their environment arises. Using the edge map, 

he suggests building a saliency measure for each position in the image. This measure 

will favor image contours that are long and smooth; i.e., those that maximize length, 

but minimize curvature and curvature variation. Long curves, that are as straight as 

possible, and have the least number of gaps, will then be preferred. The two global 

properties considered in this construction are therefore length and shape (curvature 

and curvature variation). 

As a demonstration, let us recall two of his figures [Ullman 1990]. These, which 

are reproduced in Fig. 1.5, show three large closed blob-like curves drawn within 

two different contexts. We notice that when the object is different from its context, 

it induces a "pop-out" effect [Treisman 1985]2
• This, in fact, was also present in 

2 In Chapter 6 we will come back to the fact that the circles in (b) tend to blend in more into their environment. 
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(a) Ullman pop-out (b) Ullman hidden 

FIGURE 1.5. Curve complexity and context. In these two figures taken from Ullman 
(1990), notice how in (a) the big circles pop-out as opposed to (b) where they tend 
to blend more into the scene. 

the Kanizsa examples, but is illustrated at its best in Fig. 1.5a. When applied to the 

patterns, Ullman's saliency measure will be higher for the three blob-like closed curves 

in both cases: in (a) because these are the longest with the smallest average curvature, 

and in (b) since they have small curvature variation (as opposed to the long, wiggly 

curve) and are relatively long (as opposed to the distractors). Based on the saliency 

map, three blob-like figures would then be the detected salient structures on which 

subsequent processes such as segmentation and recognition can focus [Ullman 1990]. 

In this thesis, we will build a measure of complexity that in part resembles the 

saliency index described by Ullman. We will use it to define which representation is 

adequate for the grouping of edge elements, but will also argue that a measure that 

only considers length and shape is not sufficient. In order to show this, reconsider the 

Kanisza example. According to Ullman's theory, the most salient curves in Fig. 1.3a 

should be the two long sides of the rectangle, yet these are camouflaged by the grating. 

Furthermore, the Ullman saliency index says nothing about the whether the global 
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structure is a curve or a texture. This index, preceptor to perceptual grouping, needs 

more than what we will call the "tangential component", it needs also to consider the 

context in a direction normal to the local edge elements. 

Our belief is that, although global entities such as length and shape play an 

important factor for the grouping of local elements, complexity in the normal direction 

plays a role in determining which objects will "pop out" within the scene. While 

Fig. 1.5 illustrated the fact that objects that differ from their context pop out, the 

Kanizsa example brought a counterexample to Ullman's original saliency measure. 

Different representations are needed prior to the integration process. 

3.3. Complexity, entropy and fractal dimension. In a series of articles, 

Men des-France has developed mathematical tools to characterize the complexity of 

curves linked to models of physical systems. His contributions led to notions such as 

• the temperature of a curve [DuPain et al. 1986]: the entropy of a plane curve 

is defined in terms of intersection points with a random line [Santal6 1976]. 

The Gibbs distribution which maximizes the entropy can be used to define the 

"temperature of a curve". At zero temperature, the curve reduces to a line 

segment, the more complicated the curve is, the higher its temperature; 

• the confusion index [Mendes-France 1991b]: which is a measure of the un­

certainty in the location of a point on the curve. As seen earlier in the hair 

texture, when the branches of a curve are tightly packed, it becomes impossible 

to decide which branch of a curve contains a given point; 

• the Planck constant of a curve [Mendes-France 1991b]: calculating this resulted 

in saying that if the entropy is not zero, it is impossible to define with infinite 

precision both the location of a point on a curve and its tangent. 

Much of Mendes-France's contributions in the area of curve complexity has been 

motivated by the work of the mathematician Benoit Mandelbrot [1982], who argues 

that many physical processes and structures are best modeled by a class of non­

differentiable functions called jractals. The resulting theory, fractal geometry, has 

popularized the notion of fractal dimension which has roots in the formalization of 

general topology and geometric measure theory developed at the beginning of this cen­

tury. In his classical paper, entitled "How long is the coast of Britain?", Mandelbrot 
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(1970) discussed the link between measure and dimension. His theory suggests that 

notions such as length, surface area, slope, and surface orientation ought to be aban­

doned entirely in favor of global measures of the processes' behavior over scale (rate of 

growth of measured arc length, for instance). In perception, Pentland [1984, 1985] has 

shown how fractals and the notion of fractal dimension can capture striking regulari­

ties in highly complex visual structures. Fractal dimension and complexity therefore 

seem related and Mendes-France (1991a) showed that indeed there is a relationship 

between the dimension of a curve and its entropy, a quantity known to correlate with 

the complexity of an object. One is therefore justified to draw a parallel between 

fractal dimension and complexity more deeply than by the enumeration of examples. 

Although we will not use Men des-France constructions directly, his work supports 

the nomenclature we will use in this thesis. In this thesis, we will work with curves 

as they occur in computational vision, and will thus choose definitions of dimension 

suited to the problem. Our measure of complexity will be linked to the types of calcu­

lations done in fractal analysis, but will differ in many respects. We will borrow from 

Mendes-France's analysis to justify its name: the complexity map. More formally, 

dimensional analysis classically takes place in the limit as scale tends to zero. Our 

analysis, relevant to computer vision, must take place at a finite scale. The phrase 

complexity map denotes this difference. 

4. Complexity in early vision? 

Not considering complexity could be disastrous in the design of a general com­

puter vision system. Unfortunately, formally proving that complexity is necessary 

turns out to be a very difficult task. Most researchers assume that the only exam­

ples are "pathological" and would not occur in practice anyway. Our goal will be 

to show that confusion arises even with the simplest combination of building blocks. 

The following examples are chosen to highlight the issues involved and to show the 

interrelationships between the concepts of complexity and representation. 

Example 1.1 (The loop and the spaghetti). Consider two images, one of a cir­

cle, and the other of a plate of spaghetti. Two tasks can be envisioned: to draw the 

curves and the other, to follow them. In order to draw the circle, the algorithm can 
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\/ 
(a) one single line (b) three lines (c) one hundred lines 

FIGURE 1.6. Line segments or texture? Three examples of sets composed of line 
segments. Notice how difficult it is to follow every path in (c). 

be very simple: repeat n times: take 1 pixel step, rotate 21r jn. In the case of the 

spaghetti pattern: repeat n times: take a long step, rotate random amount. Now, 

suppose one would like to reproduce the two patterns. In the first case the complexity 

is bounded, while in the second case we need remember the various random rotations. 

Another issue is the one of following the path. In the case of the circle, the task 

is very easy. In the case of the spaghetti pattern, the task is much more complicated 

and confusing. The fact that there are many branching points makes the path not 

unique: there are many different paths. In fact it leads to a combinatorial explosion 

of possibilities. The "curve" representation then fails to be efficient. Following the 

pattern leads to integration but the representation that needs to be used varies from 

one case to the next. 

Example 1.2 (Pick-up sticks). Suppose we are only working with line segments 

and we want to find out when the segment representation is no longer appropriate. 

Three instances are shown in Fig. 1.6. Now, let us make a parallel with the game 

called "Pick-Up Sticks"3 . Complexity will be related to the difficulty of picking up 

a stick without moving the other sticks. In Fig. 1.6a, the task is trivial since there 

is only one segment. In Fig. 1.6b, it is a little more difficult, but still very easy. In 

Fig. 1.6c, the task is hard. Contrary to intuition, the task is not simply a matter of 

the number of line segments. Even with only two segments, the task can be hard if 

3 Actually in this example the length of the sticks is random. 
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the sticks are parallel and close one to another, or if they cross at a small angle. This 

is due in part to the width of our fingers. With tweezers, the class of "manageable 

configurations" becomes larger. Even other factors come into play: we could imagine 

sticks with variable lengths and widths. A stick that is too short, would be hard to 

pick up. 

Example 1.3 (Frequency). An example taken from the representation of numbers 

states that, at first glance, it is very unlikely that somebody would be able to dis­

tinguish between the numbers 99999999999999 and 9999999999999 without serially 

scanning each digit. The same point can be made with grating patterns, suggesting 

that our organization of understanding for visual patterns is richer than the simple 

enumeration of the individual curves. In Fig. 1.7, we reconsider the Kanizsa pattern 

to determine whether the percept changes when a pinstripe is added or removed4
• 

For instance, compare Fig. 1.3a and Fig. 1.7a: which has 20 and which has 21 lines? 

The distinction is very hard to make, but the one between Fig. 1.7a and Fig. 1.7b is 

immediate. Rounding the corners would be noticeable, however, even though these 

events are isolated. 

Taken together, Examples 1.1 and 1.2 show how algorithmic complexity relates 

to computational vision. The first example stressed the complexity of communica­

tion of a pattern and of a visual task through the pattern following example. The 

second example introduced some of the central principles we will develop in this the­

sis. Most importantly, it showed how the class of all patterns could be partitioned 

through a complexity measure into equivalence classes of equally hard tasks. There 

are many games of Pick-Up Sticks that are equivalent in terms of difficulty~ i.e., in 

terms of complexity- even though the particular arrangement of the sticks may differ 

enormously. 

One goal of this thesis is to make clear that such a partitioning is necessary for 

the transition from local to global representations in computer vision. Complexity 

analysis is not, however, sufficient for all aspects of the local-global transition. Con­

sider another local-global problem: connectedness. Fig. 1.8 clearly illustrates this 

4 Note that the placement of the figures is a deliberate strategy we adopted to make the task harder: having to 
flip from one page to another, helps to make our point unambiguous. 
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(a) (b) 

FIGURE 1. 7. Kanizsa patterns again but this time with different grating frequencies. 
Notice how easy it is to tell these two apart but how difficult it is to differentiate 
between (a) and Fig. 1.3a. 

point: it is very difficult to tell which of the two figures is connected and which is 

not. The explanation we propose for this, returning to the analogy of our Pick-Up 

Sticks example, is that the two figures belong to the same equivalence class; they 

constitute two equally hard tasks, and are thus very difficult to differentiate from 

each other. The further question- which is connected and which is not will require 

other techniques for solving. 

How can one relate algorithmic complexity to vision? Recalling the intuitive 

description of algorithmic complexity presented earlier, let us build the following ex­

periment. Take three persons: Robert, Bruno, and Veronica. Bruno has a pattern 

that he shows to Veronica who then describes it to Robert. From this description, 

Robert reproduces the pattern. He then shows his reproduction to Veronica. If Veron­

ica cannot distinguish the reproduced pattern from the original in a bounded amount 
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(a) (b) 

FIGURE 1.8. Connected or not? This figure, taken from the classical work of Min­
sky & Papert (1972) illustrates well the local-global problem. The problem is to 
determine which of the two figures is connected and which is not. Indeed, one of 
these two figures is composed of only one curve, while the other has two. 

of time, then we will say that the representational complexity is bounded by the length 

of the description. Representational complexity would thus build equivalence classes 

of patterns. Relating back to our Pick-Up Sticks example, within each equivalence 

class, the visual tasks are equally hard. The question now is how to build a measure 

of complexity that will define these equivalence classes of patterns, and then how to 

assess it. 

Returning to our examples, the last one showed that, for some patterns, approx­

imation is sufficient. For instance, in the case of grating patterns, the exact number 

of lines and their exact location might not be relevant. There is an obvious differ­

ence between a pattern with one segment and one with two segments provided the 

lines are (i) sufficiently long and (ii) sufficiently apart one from one another. In the 

grating part of the Kanizsa pattern, for instance, the difference between n and n + 1 

lines is irrelevant for our percept if n is large enough and if the lines are reasonably 

distributed. Compare the gratings between Fig. 1.3a and Fig. 1. 7 and try to say 

at a quick glance the difference between the two. The difference between 20 and 

200 lines would however be noticeable (provided again that they are reasonably posi­

tioned), again reinforcing the suggestion of equivalence classes of patterns that would 

be indexed by complexity measures. 
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The take-home message from all these examples is that, within a single represen­

tation and within a general setup, integration from local to global representations is 

intractable. On the other hand, integration is a key step in moving from an image­

centered representation to an object-centered one. It has been done successfully in 

controlled environments where one knows the complexity of the scene a priori, or 

assumes the complexity to be within some bounds. The blocks world is an example of 

such a constrained environment. How does one build a general theory of integration 

for edge detection? 

The core of this thesis will show that different actions in the integration stage 

should be taken depending on the context. First, we need to choose and define both 

an intermediate representation and a complexity measure. Given this representa­

tion, the local information can be integrated only if the underlying object is simple 

enough. Knowing this can make feasible the transition from early to intermediate 

levels of vision. If the complexity of an object at a certain scale and for a particular 

representation exceeds some value, then two choices could be made: 

(i) keep the same scale but adopt another representation, or 

(ii) change scale. 

Keeping status quo, i.e. keeping the sole curve representation under the current scale, 

is bound to failure. 

5. Mapping complexity and indexing representation 

As curve detection is central to vision, what is required is a measure of the com­

plexity of curves, and our specific goal in this thesis is to propose one. We will show 

how it successfully handles the Kanizsa and the Paolina examples, among others. It 

is based on an intermediate representation-the discrete tangent map, or a discretized 

tangent field-and a consequence of our analysis is that such intermediate represen­

tations are necessary for a proper segregation of curve-like patterns that fill areas, 

from curve-like patterns that extend mainly along their length and also from dust 

patterns ( discontinuities, for instance). These representational differences capture 

the first stages of segmentation; but via complexity analysis not pixel grouping. 
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(a.) tangential for continuity (b) normal for density 

FIGURE 1.9. The main idea: examine the rate of growth of oriented dilations, in 
the normal direction N to test density ("space-fillingness") and in the tangential 
direction T to test continuity. 

The complexity measure we derive will be tailored to discrete "curve-like" sets 

such as those we seek in edge detection. The basic idea will be to look in two di­

rections: in the tangential direction to assess continuity and in the normal direction 

to assess density of the object within a local extent (Fig. 1.9). This will lead to 

two complexity indexes, that we call the normal and tangential complexity indexes, 

and constitute the basis for our complexity map. Although the tangential complexity 

captures the same line of thought as previous researchers such as Ullman and M urn­

ford, it is the normal complexity that provides some further insight into segregating 

textures from curve patterns. Both must be used together. 

6. Outline of the thesis 

This thesis will explore a broad range of concepts. Chapter 2 briefly reviews the 

detection of structure in early vision: i.e. edge detection, texture analysis, early per­

ceptual grouping and scale-space analysis. The reader well aware of the material can 

therefore skip this chapter. Chapter 3 is the most "mathematically concentrated". 

Classical techniques of geometric measure theory are introduced and placed in per­

spective to articulate their relevance for computer vision. The important notion of 

curve-like set is brought to the forefront. These sets form a richer class of objects than 
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Jordan curves and are independent of any specific functional form or pararnetriza­

tion. Curve-like sets are appropriate for vision in that they are not unlike the set of 

pixels through which a curve might pass (at a finite scale). From this we introduce a 

parametrization-free intermediate representation, the Besicovitch tangent set, which 

will be the basis for the construction of our complexity map. Tangent sets are related 

to the discrete domain as discrete tangent maps and these are obtained from image 

operations. Finally, the rectifiability property of curve-like sets will allow us to study 

the properties of the local representation. This will lead to our main results in the 

continuous domain, namely what we call the tangent separation theorems. 

Chapter 4 is the heart of the thesis. It will concentrate on performing a finer 

characterization of patterns. This will be done by dilating sets and looking at the 

Minkowski functional locally, both in space and in scale, using the fact that measures, 

dimensionality, and complexity are coupled. Measures for curves such as length, 

number of components, or area covered, are all captured by the Minkowski functional. 

The major novelty of our approach is to perform oriented dilations to define both 

the normal and tangential complexity indexes. These will be the building blocks 

of the complexity map. The complexity indexes are linked to an abstract notion of 

dimension, since it is dimension that separates (0-dimensional) dust patterns from 

(!-dimensional) contours and from (2-dimensional) texture flows. In the Kanizsa 

example (Fig. 1.7a), for instance, the occluding surface is 2-D, while the protruding 

top and bottom portions of the rectangle are 1-D and some of the discontinuities 

(the corners) are 0-D. The end of Chapter 4 shows how to build the complexity map 

on a discrete grid. It illustrates the different steps involved before computing the 

complexity indexes and highlights the parameters that need to be set. 

Chapter 5, will be devoted to the choice of representation and parameter estima­

tion. It starts by using the complexity map to perform a segmentation on the image. 

The idea will be to partition the complexity space and to lift the partition off the 

image. This will provide us with an early perceptual grouping that is based on the 

type of representation appropriate for integration. The segmentation scheme and a 

series of experiments on simple patterns will enable us to obtain a strategy to set the 

parameters involved in the analysis. Finally, we will show in Chapter 6 that, when 
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applied to our test images, the complexity map agrees with our intuition and with 

the preset requirements. 

While much of the thesis is mathematical, we stress that it is not a goal to only 

develop a mathematical structure. Rather, we believe that complexity analysis of 

the sort proposed is essential for vision systems. Our goal is therefore to lay out 

the structure of an appropriate complexity theory, and to illustrate its properties 

by computational experiments as well as mathematical analysis. Much is formally 

incomplete and we hope that our conjectures will be taken as incentives for future 

research both in mathematics and in computer vision. 

7. A note on the experiments 

A series of examples will be carried over throughout this thesis. These will serve 

to illustrate the points we are trying to make and clarify different concepts related to 

the algorithms involved. We will constantly refer to these as 

(i) the Kanizsa pattern: Fig 1.3a; 

(ii) the Perceptron spirals: one curve (Fig 1.8a) and two curves (Fig. l.Sb ); 

(iii) the Ullman patterns: pop-out (Fig. 1.5a) and hidden (Fig. 1.5b ); 

(iv) the Paolina image: Fig. 1.4e. 

These examples are not all equivalent. Some are sets that can be described easily, 

others are images in which the underlying curve-like sets must be inferred. For the 

Kanizsa pattern and the Perceptron spirals, the structure was known a priori. The 

tangent map will be discretized from the continuous one only for the Kanizsa pattern 

however. The discrete tangent map of the Perceptron spirals and the Ullman pat­

terns will be obtained by analyzing the corresponding images and provide structural 

properties. The Paolina image is our example of a full grey level image for which we 

will infer edges and interpret the inference process. Note the difference between both 

the Ullman patterns and Perceptron spirals, in which we will try to detect negative 

contrast lines (i.e. dark lines on a light background), and the Paolina image, for which 

we are seeking edges (i.e. boundaries between light/dark regions). 

In all cases we will project the set or the image into the unit square, so our 

numbers (scale for grouping and resolution) will be relative to the unit square. Two 
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different scales will be considered: (i) the scale of the operator u, expressed in pixels 

and (ii) the scale for complexity analysis 8. 8 is linked with the spatial extent n over 

which grouping should be considered. Resolution is the inverse of the size of smallest 

element of the digitized grid. Finally, whenever a variable is "hatted", w, for instance, 

it means it is expressed in image coordinates (pixels ). 
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Edge detection and early vision 

Vision is the process which interprets the patterns of light projected on a photosen­

sitive device that allows an organism to interact with its environment. There are 

two key observations one can make about biological vision: (i) its immediacy, and 

(ii) its complexity. Although just the action of opening our eyes allows us to see, a 

complete understanding of vision still remains a challenging problem, and a general 

artificial vision system remains elusive. One question then with hard problems is "is 

this problem solvable"? Evolution has surely found an elegant solution, since we are 

equipped with a highly sophisticated visual system: we have two eyes, and use the 

information for stereopsis, we have different types of photoreceptors (the rods and 

the cones) to allow the perception of color and patterns with low contrast, we have 

a fovea to focus attention, but most importantly, almost half of our brain with its 

1015 synapses is devoted to visual processing of one sort or another. The resulting 

system, which is highly adaptable and flexible, provides us with the necessary visual 

information processing to ensure our survival. 

The sophistication of our visual system and its versatility has driven man to try to 

understand and even duplicate it. With the advent of the general computer, the ad­

vances in neurophysiology and psychology, the question that arose was: can we make 

a machine see1? A computer that could process visual inputs would allow the au­

tomation or control of tasks, which until now have required human supervision. This 

is especially important when tasks are dangerous, repetitive or time-consuming. The 

challenge has therefore triggered the interest of scientists from various disciplines. As 

1 Actually, the question was even more general: can we make a machine think? And this was the basis for 
artificial intelligence. 
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neurophysiologists and psychophysicists pursued their effort to understand biological 

vision and its intricate behavior, mathematicians, engineers, and computer scientists, 

among others, tried to develop the necessary paradigms that would provide vision to 

a machine. 

Early and later vision. The human visual system being highly organized, it 

is natural to model vision as proceeding in stages, each stage producing increasingly 

more useful descriptions of the images, and increasingly abstracting toward scene 

properties. At the end of the last century von Helmholtz (1867) advocated a bimodal 

hierarchy of vision: early and later vision (sometimes referred to as low-level and high­

level vision). Early vision is typically based on estimating scene properties, while later 

vision relates to the recognition and meaning of objects (an excellent presentation, 

well beyond the scope of this chapter, can be found in Zucker (1992)). This is why 

low-level vision is thought to use very general knowledge, such as the physics of 

imaging, while high-level vision is related to domain specific knowledge. Examples 

of low-level vision problems are edge detection, stereovision, texture analysis, shape 

from X (where X can be motion, shading, texture, etc). Shape analysis (such as 

the decomposition of an object into parts, for instance), and object recognition are 

examples of high-level vision processes. 

Top-down and bottom-up approaches. There are at least two types of in­

formation involved in the vision process: data and knowledge. Visual information 

is usually represented by images or two-dimensional arrays of numbers. The im­

age represents the activity of photosensitive cells in the retina, or the response of 

CCD-elements in a camera. The data is therefore the information provided by these 

sensors. Knowledge can be obtained from different sources: it can be knowledge about 

the visual system (sensors, optical system, body position), about the environment, 

past experience, etc. A spectrum of approaches in the development of theories for 

machine vision then emerges [Breton 1994]. At one end of this spectrum is what is 

called the "bottom-up" (or data-driven) approach, which builds on the data and in­

fers more structured information. At the other end is what is called the "top-down" 
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(or model-based) approach, which uses the data to answer specific questions. Hy­

potheses are verified from the knowledge base and conclusions are confirmed by the 

data. Knowledge-based approaches, where the knowledge is rich and specific (such 

as in OCR, for example), make the vision problem (e.g., recognizing text) easier, but 

the solution may have only limited interest (for the autonomous land vehicle, for in­

stance). On the other hand, when the knowledge is more general, the solution might 

be more widely applicable, but may also be more difficult to reach. 

The approach advocated in this thesis is to enrich the data with more structured 

representations, carefully organizing the information to break complexity (recalling 

our opening quote). We will consider a vision system with only one single intensity 

image I. We assume the surface of the photosensitive array to be a square lattice 

composed of square cells which all have the same response, and the value of the 

intensity at a given point will be written I(x), where x = (xi, Yi) is one of the pixels 

of the square lattice. The theories that will be developed will be mostly bottom­

up, following Marr's principle of least commitment (i.e., postpone decisions as far 

as possible) [Marr 1982], and will sit at the upper limit of what we described to be 

low-level vision. In this chapter, the first topic will be edge detection, one of the 

most primitive perceptual tasks. Then, issues of grouping will be addressed, and we 

will close the chapter with a quick survey of the basic principles underlying texture 

analysis and scale-space theory. 

1. Edge detection ... 

Given an intensity image I, we seek to detect edges (light/dark boundaries), 

or lines (positive contrast lines, i.e., light lines on a dark background, or negative 

contrast lines, i.e., dark lines on a light background). How can this be done? We now 

briefly sketch two lines of investigation that have coupled to define current approaches 

to solving this problem. 

1.1. ... in neurobiology. Viewed in the large, the architecture of the visual 

cortex appears ideally suited as an edge/curve detection machine [Zucker 1993]. In 

particular, patterns of light projected onto the retina influence the activity of cells in 

the visual system, either in an excitatory manner, leading to an increase in that cell's 
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firing rate, or an inhibitory manner, leading to a decrease. The resultant map of the 

activity of an individual cell as a function of light distribution is called a receptive 

field. Cells participating in the processing of visual information have been classified 

into different functional categories. Simple cells are those cells whose receptive fields 

are separated into distinct subzones. They most resemble line and edge detectors in 

computer vision (see Fig 2.1a); they are orientationally selective, as well as selective 

for a number of other properties including stimulus contrast, direction of motion and 

stereo disparity. They appear at a range of sizes, and are optimally selective to differ­

ent spatial frequencies, or to bars of different widths. The pioneering work of Hubel 

& Wiesel on cats [1962b] and monkeys [1962a] was seminal and led to the develop­

ment of different mathematical models for simple cells. Some models are based on 

Gabor functions [Jones & Palmer 1987], others on difference of Gaussians (Hochstein 

& Spitzer 1984] or derivatives of Gaussians [Young 1985]. In most cases, the data fit 

the various models. The derivative of Gaussian model is often the one adopted for 

computational vision because of its theoretical implications [Koenderink 1990]. The 

graph of such an operator is represented as grey values on Fig. 2.1 b. 

We will not go into the details of the models at this moment. The important 

point is that the visual cortex has an apparatus sensitive to local orientation; i.e., 

there are cells that respond to lines of a given length, width, orientation and con­

trast. One other point about these cells as a group however, is that, at any given 

time, only a small fraction of them are active. Over orientation hypercolumns, the 

pattern of activity is very sparse as opposed to other regions of the striate cortex 

where the activity is much more sustained. This observation has led to a conjecture 

that there exists a functional classification for regions of the visual cortex which segre­

gates cells into those representing scalar variables from those representing geometric 

variables [Allman & Zucker 1990]. For our investigation, this prefigures a point devel­

oped in the next chapter: curves in an image should be of "measure zero", i.e., sparse 

with respect to other types of structure. This observation raises an important issue 

that is rarely discussed in the physiological literature. Since orientation selective cells 

will respond to oriented stimuli that are part of edges and part of textures (such as 

"hair patterns"), how can it be determined, from the responses of such cells, whether 
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(a) (b) 

FIGURE 2.1. Edge detection: from neurophysiology to models: (a) arrangement of 
simple cortical receptive fields sketched by Hubel & Wiesel (1962b) {b) a biological 
model of edge detection: the second derivative of Gaussian operator. The patterns 
of activity for the receptive fields in (a) are noted by the crosses, areas giving 
excitatory responses, and by the triangles, areas giving inhibitory responses. In 
{b) the intensity correlates with the desired activity: the light central region is 
excitatory, while the dark side bands are inhibitory. 

the stimulus was an edge or a texture. The model developed in this thesis will provide 

an answer to this question. 

1.2 .... in computer vision. An edge in a picture can roughly be defined as 

a discontinuity or abrupt change in the grey level or color (see Fig. 2.2). That is 

why idealized edges have been represented at first as a singularity in the graph of 

a function, the intensity map, and have been conceptually linked to the process of 

digital differentiation. In general, we can say that local edge detection is typically 

accomplished in two steps [Zucker 1993]: {i) the convolution of an operator against 

the image, and (ii) some process of interpretation of the operator's responses. 

An early significant paper on this topic was due to Roberts (1965), who employed 

a simple 2x2 operator, the so-called Roberts cross operator, to enhance edges in digital 

images of polyhedra. Because of its high sensitivity to noise, more sophisticated masks 

were developed such as the Sobel and Prewitt operators [Levine 1985]. 
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FIGURE 2.2. Edge detection in computer vision. The top row shows on the left an 
image of an ideal edge. On the right, we displayed the grey value along one scan line 
(corresponding to the dotted line on the left) of the original pattern as a function of 
position. The position of the edge corresponds with the discontinuity in the graph 
and this is what needs to be detected. (b) A more realistic lD signal, and (c) the 
output obtained after applying the Gaussian second derivative operator. The large 
dots on the x-axis give the position of the so-called zero-crossings (figures (b) and 
(c) are reproduced from [Hildreth 1992]). 

The new family of operators were still not satisfying in a general case. The 

idealized edge model was not very realistic (see Fig.2.2b for a more realistic lD signal). 

Moreover, edges as they occur in images, have not only a position, but an orientation. 
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The need for multiple orientations at a position, the fact that edges could occur at 

different scales, and the search for an optimal operator, were all factors that drove the 

development of more sophisticated algorithms. A new trend of approaches arrived 

that tried to mimic the physiology of the visual system or to optimize the operator's 

response. Marr & Hildreth (1980) based their theory of edge detection on physiological 

findings. They used unoriented Laplacian operators and based the decision stage 

on the coincidence of zero-crossings across scale. Canny (1986) developed an edge 

operator based on optimality principles: the optimal edge operator tuning having to 

be a trade-off between detection and localization. He arrived at a line operator whose 

cross-section is similar to a Gaussian second derivative and an edge operator similar 

to a Gaussian derivative. His operators had the difference of being oriented but only 

allowed a single edge element at each position. 

Although these (together with the more modern approaches of Deriche (1987), 

Perona & Malik (1990), Freeman & Adelson (1991)) are probably among the most 

popular edge detection techniques, they have two major shortcomings [Zucker 1993]. 

First, the assumption of linearity, which inevitably blurs nearby structures together 

and smoothes around corners and discontinuities. Secondly, the assumption of a single 

value at each position, failing to represent the places where there are orientation 

discontinuities such as corners and T-junctions [Guzman 1968, Waltz 1975]. 

A different approach to local line/edge detection has been presented by Iverson 

& Zucker (1995). It is based on what they called logical/linear operators, in which 

a set of non-linearities were developed to significantly improve the sensitivity of the 

initial operators over the optimal linear ones. These non-linearities implement a test 

on continuity of support along the preferred direction of the operator, and a test on 

variation across it. The non-linearities are formulated within a logic that accumulates 

consistent evidence linearly, but in which incompatible evidence provokes a nonlinear 

suppression. This approach is particularly well suited to detect the ends of lines and 

to report places where there are multiple orientations. It also makes a clear distinction 

between the detection of positive and negative contrast lines versus the detection of 

edges. It is the approach we will adopt in this thesis, since it better represents the 

local structure of an edge/line scene. 
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1.3 .... but then what? The work of Hubel and Wiesel demonstrated that 

there exist some cells in the brain that respond to elementary geometrical patterns: 

namely lines and bars of various lengths and orientations. If these constitute the 

building blocks for a theory of computational vision, the question to answer now is 

how can the local information be combined to eventually be able to interpret the 

scene? How can local edge detector responses be glued together into global entities 

such as 'contours' or 'textures'? This, in the context of edge detection, constitutes 

the local to global transition. 

2. The local to global transition 

The perceptual grouping problem is a key issue to fill the gap between low-level 

and high-level processes and has been addressed by various groups of researchers 

in computational vision. Many directions have been explored, but none seems to 

predominate. One of the biggest problems is that it is not clear what should be the 

output of the process. The following is an attempt to sketch some of the different 

solutions proposed to group edge information into more global representations, to 

illustrate the diversity of approaches, assumptions, and conceptualizations. 

Fitting polynomials to edge points. For a long time, research related to 

curve detection has had two main thrusts: (i) designing operators and {ii) fitting 

global functions through their responses. In his early system, Roberts (1965) fitted 

long straight lines to edge detector outputs, because he was working in a world only 

composed of a relatively small number of blocks such as cubes. Even now, modern 

investigators are still fitting lines [Vieville & Faugeras 1990]. A world of lines being 

rather restrictive (although sufficiently rich to be intractable), approximations with 

higher order polynomials ( spline fitting, for instance) were attempted. As a compro­

mise, Saund (1992) suggested token grouping with arcs of circles over multiple scales 

to link edge/line elements to reduce the complexity of the search space. Any fitting 

procedure however is confronted with the problem that errors are large in both the 

dependent and independent variable due to the digitization process and to the infer­

ence process itself. This makes the curve fitting very unreliable. Moreover, it is not 

clear what the final representation should be. 
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Edge following and graph search. Following in the steps of Montanari 

(1972), much research have been made around edge following. As its name indi­

cates, it is mainly concerned with following the paths in the edge map based on 

the local tangent and (sometimes) curvature information available. This originally 

seemed to be the right thing to do since, after all, it is the basis the Fundamental 

Theorem of the Local Theory of Curves [do Carmo 1976], which asserts that the com­

bination of local orientation and curvature defines a plane curve uniquely modulo 

rigid body motion. The problem was therefore expressed as a graph search trying 

to optimize some cost function associated with the grouping process. Ramer's [1975] 

early strokes and streaks suggested an algorithm to merge oriented edge elements us­

ing a minimum cost state space. The cost function was based on the connectedness of 

the elements, their orientation compatibility (leading to a low overall curvature), and 

a unique assignment rule. Even today approaches dealing with building up decision 

trees to provide the grouping are advocated. Cox et al. (1993) recently enhanced the 

tree with multiple hypotheses allowing decisions to be taken at a later stage. They 

stress the fact that earlier approaches lacked the ability to handle intersections and 

to extrapolate over significant gaps, and they suggest that any edge grouping scheme 

should 

(i) provide a mechanism to integrate information in the neighborhood of an edge 

and to avoid making irrevocable grouping decisions based on insufficient data; 

(ii) have a prior model for the smoothness of curves on which to base grouping 

decision; 

(iii) incorporate noise models for the edge detector; 

(iv) be able to handle intersecting edges. 

But even approaches meeting all these criteria would get lost on images like Fig. 1.4d. 

In fact, it is not clear that the dimensionality of the support is known in advance. It is 

therefore not surprising that techniques trying to blindly follow the paths lead to very 

deceiving results in general cases. Because they assume a curve-based representation, 

local-to-global grouping schemes modeled on edge following fail on highly textured 

Images. 
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Lowe: organization and grouping. Lowe [Lowe 1989, Lowe & Binford 1987, 

Lowe & Binford 1979] stressed that, by grouping together features that are likely to 

have been produced by a single object, an object search can be intelligently ordered. 

He suggests [Lowe & Binford 1987] computing a measure of meaningfulness: how likely 

a grouping could have arisen from an underlying physical relationship rather than by 

accident. His solution forms all potential groupings and then tests for meaningfulness 

of the combination based on parallelism, collinearity and proximity. These groupings 

can then be used as an index for the next step in the search. The advantage of the 

proposed approach is the ability to detect globally significant features from locally 

weak information, since it groups over a wide range of sizes. The other aspect to 

be considered is the fact that he does not start from an idealized model, therefore 

there is no need to make assumptions about the amount of noise, and other domain 

specific assumptions. The problem, once more, is that testing linearity, parallelism 

and proximity is intractable when the scene is highly complex. 

Mumford et al.: gaps, T-junctions, 2.1D sketch. Gaps arise as image 

features, but also because edge detectors are rarely perfect. In a series of papers, 

Mumford and his team [Nitzberg & Mumford 1990, Mumford 1992] complements the 

integration of contour information by a technique for filling out gaps as they occur in 

edge detection. The gap filling problem is modelled as a stochastic process that min­

imizes an energy functional. Their representation is called the 2.1D sketch [Nitzberg 

& Mumford 1990], where they advocate a partition of the intensity image into re­

gions. They stress the use and detection ofT-junctions (see Fig. 3.12), since they 

constitute such important perceptual clues but they avoid the complexity issue by 

assuming there is no texture. Edges must group into curves by definition. The edge 

recovery algorithm presented by this team [Nitzberg et al. 1993] would be comple­

mentary to the steps following our complexity analysis, as we shall present a method 

for validating the "curve assumption" (introduced in the next chapter). 

2.1. Heitger & von der Heydt: occluding contours. A dreadful challenge 

to any theory of edge detection and edge grouping is the detection of subjective con­

tours2 [Kanizsa 1979), vivid percepts that arise at locations where discontinuities in 

2 Also called illusory contours, anomalous contours or contours without gradient. 
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the intensity image are totally nonexistent. Heitger & von der Heydt (1993) presented 

recently a technique to group key points responsible for occluding contours including 

subjective contours. These key points include T-junctions, corners and line endings. 

The grouping, which provides improved definition of occluding contours where con­

trast is weak, proceeds into four stages: (i) convolution with a set of orientation 

selective kernels; (ii) nonlinear pairing; (iii) enriched curve representation including 

the information about the potential occluding contours; (iv) final contours from lo­

cal maxima of combined representations. The subjective contours could be classified 

into two extreme categories: ortho, when the grouping goes along the perpendicular 

direction to the key points, and para when it goes in the same direction ( extrapola­

tion). The pairing itself was made possible by setting rules for valid configurations. 

Their results successfully detected the completion not only for some of the classical 

patterns in the perception literature, but also on natural images. As opposed to 

Mumford (1992), who presented a mathematically-based model for the completion of 

gaps, this one is based on neural mechanisms suggested by physiological experiments. 

Once more however, it is not obvious how this would behave on complex scenes. 

Ullman et al.: saliency maps. In Chapter 1, we outlined Ullman's contri­

butions to the grouping of local edge elements. More generally, he observed that 

"segmentation should be conducted on an area of interest rather than applied to the 

entire image, implying that some preattentive process is required to detect promi­

nent locations from which an area of interest is defined prior to the act of segmen­

tation" [Ullman 1990]. Our approach is consistent with the observation. However 

Ullman's solution, the saliency map, is incomplete in the sense that we showed ear­

lier. Our solution will not only overcome the problems pointed out in Chapter 1, but 

will also provide a unified scheme to work with curves, textures and sparse patterns. 

David and Zucker: dynamic coverings. David & Zucker (1990) presented 

an alternate view of grouping of edge elements. Their method was based on the 

minimization of an energy functional which would provide a covering of the curves 

in the image. This process was done in parallel over the image domain by setting 

up small dynamic elements and a potential field built from the information provided 
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by the tangent (edge) map. Problems with curve crossings (multiple orientations) 

occured however, and the representation for the global recovery of objects was not 

explicitly described. These questions in part motivated this thesis. In the end, we 

shall provide a technique for properly segmenting the tangent (edge) map so that 

corners and crossings can be properly handled. 

3. Textures in intensity images 

Natural scenes are rich in image textures: just think of images of a brick wall, of a 

field of grass, of a pebble beach, or of a plaid jacket3 . Although textures are ubiquitous 

in our visual environment, they admit no rigorous definition. A textbook definition 

states that a texture is "something composed of closely interwoven elements" [Ballard 

& Brown 1982]. The intuitive characteristic that applies to most cases is that image 

textures are underlaid by a two-dimensional support: textures, as we see them, cover 

an area. 

The analysis and description of visual textures has quite a long history. One of 

the first pioneers was Gibson (1950), trying to infer shape from texture gradients. The 

history of texture analysis is also linked to the study of aerial photographs, trying to 

segment different regions in images. This was then considered as a pattern recognition 

problem. Julesz (1981) and Beck (1982), in psychology, studied the intricate nature 

of texture perception. This led to the texton theory [Julesz 1981] and triggered a 

whole line of research in the organization of texture patterns. 

One view of texture is that it is based on the repetition of a pattern, called a 

texture primitive or texel. Take the example of a checkerboard. The basic elements 

would be the black and white tiles. Their careful arrangement of interwoven black and 

white squares in two orthogonal directions, provides the final pattern. The checker­

board texture is deterministic in nature since there is a clear (and short) set of rules 

to describe the placement of the tiles. These types of textures, which fall under the 

class of structural models [Ballard & Brown 1982], are very common in man-made 

objects. 

3 A classic collection of such image textures is presented in Broda.tz' [1966] well-known book. 
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(a) Textons (b) TYPE 11 pattern 

FIGURE 2.3. Textures. (a) example of a typical pattern from the texton theory 
(reproduced from [Levine 1985]) (b) example of a typical TYPE 11 pattern: fur 
(reproduced from [Zucker 1985]). 

In nature, the organization of the basic patterns tends to be more probabilistic, 

leading to statistical texture models4 • We therefore need to consider the statistical 

distribution of the basic patterns (such as the first moments, autocorrelation, cooc­

curence). Classical theories of texture [Julesz 1981, Beck 1982] attribute preattentive 

texture discrimination to difference in first order statistics of stimulus features ( tex­

tons) such as orientation, size, color, and brightness of their constituents. These ideas 

were developed for black and white patterns such as those in Fig. 2.3. More recently, 

Malik & Perona (1990) applied it to grey-level images. The image, I, needed first to 

be filtered by a bank of linear filters (spanning a range of orientations), followed by 

half-wave rectification and then a model of intracortical inhibition. The result, once 

averaged out by a second set of oriented filters with large receptive fields, provided 

the texture gradient, and showed an excellent degree of texture discrimination. 

A complete survey of texture analysis is beyond the scope of this introduction. 

The important point that will be used for image textures is their 2-dimensional sup­

port. The type of textures we will be interested in are those induced by curves (hair 

4 It is interesting to see that the study of texture analysis is closely related to the one of fractals [Mandelbrot 1982], 
in which they talk about deterministic and statistical self-similarity. The rules for the organization of the basic patterns 
tend to be more complicated but the same distinction applies with respect to the type of arrangement of the primitives. 
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patterns, fur, fields of grass, arborizations, etc). Their underlying texture elements 

are curves or pieces or curves, and the grouping of these basic elements clearly has a 

2-dimensional support. The study of TYPE I and TYPE II patterns [Zucker 1985] 

has a direct relationship to some of the ideas we will present in this thesis. TYPE 

I patterns were originally defined as those having !-dimensional support (occluding 

contours, for instance), while TYPE II patterns were those with 2-dimensional sup­

port such as flows (fur, for instance). One of our contributions will be to extend 

(and alter a little) the classification, and to provide a scheme to decide which kind of 

pattern one is confronted with. 

4. Scale-space theory and scale selection 

One message that stands out from the foundations of edge detection is that raw 

numerical signals are insufficient for tasks requiring any sophistication (a justification 

for this can be found for instance in Ullman (1990)). Since one wants to have a 

representation as compact as possible that will correlate with meaningful events, the 

observation that significant changes in the image occur at multiple resolutions is of 

paramount importance. Consider for instance a leopard's coat. At a fine scale, one's 

attention will be driven by the individual hairs making the fur, while at a coarser 

scale, the spot patterns on the coat will emerge. Two scales, two drastically different 

texture patterns. Which scale should one choose? 

The study of scale-space was pioneered by Witkin (1983) and Koenderink (1984). 

If we consider the study of ID-signals, then meaningful events seem to correlate with 

extrema of the signal and of the derivatives. The derivative operator and the local 

extrema operator depend on the signal but also on the spatial support of the operator. 

In edge detection, for instance, the events sought were the zero-crossings of the second 

derivative of Gaussian (a technique for detecting inflection points). The multiscale 

representation is then obtained by embedding the signal in a one-parameter family of 

derived signals, the scale-space, where the scale parameter er is the standard deviation 

of the Gaussian kernel 
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FIGURE 2.4. The scale-space theory. First, the signal on the bottom. The x-axis 
shows position and the y axis, signal amplitude. On the top are shown the trace of 
the zero-crossings of a second derivative of Gaussian operator through scale-space. 
The x-axis corresponds again to space, but this time the y-axis represents scale. 
The bottom part of the scale-space loops corresponds to fine scales while the upper 
part is for coarser scales. Figure reproduced from Witkin (1992). 

and then tracking the zero-crossings across scales (see Fig. 2.2c for the detection and 

Fig. 2.4 for the tracking). One main result to justify the technique is the causality 

principle which states that events can appear at a finer scale but existing ones (the 

ones from coarser scales) cannot (in general) disappear, cross each other, or change 

direction. The resulting patterns in scale-space have the characteristic shape of em­

bedded, non-intersecting open loops. The main advantage of such patterns was the 

ability to continuously track events across scale. The scale of the event was then 

defined to be the scale at which it vanishes, while the location of the event was the 

one at the finest scale. This is also what Witkin (1983) calls the identity and the 

localization assumptions, respectively. 

Having set the foundations for a continuous theory of scale-space, efforts have 

been made to apply it to images (not only continuous 1D signals). A good survey of 

the work done in scale-space since the early 90s can be found in Lindeberg (1991 ). 

One of the most important issues, however, is the one of scale selection (remember 

the leopard's coat example). Originally, the existence of a single fixed scale for analysis 

was advocated [Witkin 1992]. This became a very controversial subject, and continues 

to be even now. After presenting a technique to select interesting scales from local 
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extrema of normalized scale invariant derivatives, Lindeberg (1993) concludes that the 

selection of "the best scale" without a priori knowledge is an impossible mathematical 

problem. His method instead proposes reasonable "initial hypotheses". In another 

line of thought, Elder & Zucker (1995) argue that there should not be one single scale 

for the entire image, but rather multiple local (in space) scales. Their claim was that 

these could be uniquely determined when using a priori information about the sensor 

noise, with the end result called the minimum reliable scale. 

In this thesis, issues of scale will also arise. It will not be a scale for the operator, 

since we assume this to be fixed and given, but rather a scale for complexity analysis 

that we will seek. Our definition of scale will emerge in Chapter 4, and our approach 

to select it will be presented later, in Chapter 5. 

5. Summary 

Early vision encompasses a wide range of processes intending to obtain from raw 

numerical signals a richer representation, yet more compact description of the image 

structure. Different modules for early vision have been presented and edge detection 

is one of them. In this thesis we will not consider issues of finding "optimal" edge 

operators in terms of sensitivity to noise and localization, but rather focus on the 

choice of intermediate representation, setting desired requirements. 

Texture analysis also is thought of as being a low-level vision problem. Although 

the definition of texture still stays ambiguous, it is confronted with this same problem­

atic issue of scale selection, or representation of the signal at multiple scales. Texture 

analysis, edge detection, edge grouping, scale selection, are all intrically related con­

cepts, as will be shown in this thesis. The coupling of these different issues will be the 

solution we will provide to bridge the gap from retinotopic maps to object-centered 

ones. 
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Curve-like sets and curve detection 

In the case of the world on a human scale you don't care much about problems involving infinities 

or infinitesimals, whereas you certainly care whether something is line-like or point-like. 

JAN. J. KoENDERINK [1990] 

This chapter is an attempt to answer the question "what is a curve?'' in the 

context of curve detection. From an elementary analysis textbook [Simmons 1963], 

we get that "a continuous curve is usually thought as the path of a continuous moving 

point and this rather vague notion is often felt to carry with it the even vaguer attribute 

of 'thinness' or 'one-dimensionality' ". This definition of a curve is bound to the one 

of dimension. The first section of this chapter will informally address the issue of 

dimension to give a feel for what will follow. Then the notion of "curve" as usually 

presented in elementary differential geometry, namely the one of Jordan, will be 

presented. It will remind us of concepts such as local linear representation (the 

tangent) and global measure (the length). But curves, such as those encountered in 

early vision, are not Jordan curves and the required parametrization, among other 

things, is exactly what is sought after and not what is given. A generalization of 

the previous ideas through measure theory to maps that are not necessarily smooth 

needs therefore to be introduced. The resulting curve-like sets and their associated 

parametrization-free tangents will constitute a much better basis for our needs and 

will represent the core apparatus for our work. 

When inferring curve-like objects from images, one is confronted with issues such 

as discretization, quantization and choice of scale. One of the main characteristics 
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of curve-like sets is that they lie in the continuous domain. How can one make a 

parallel between these sets and the output of a finite set of "edge detectors"? An 

answer to this will lead to a definition of what we will call discrete curve-like sets. 

The underlying philosophy will be somewhat different since we are trying to infer the 

set from images. We start by getting the discrete tangent map and then infer the 

curve-like set from its local properties. The local structure of the discrete curve-like 

sets will be obtained through edge detection. From our previous description of the 

edge we will be able to present the implications of our choice of operators and decision 

method. 

1. The A-B-C of dimension 

The history of the various notions of dimension involves the greatest mathe­

maticians of the turn of the century: Poincare, Lebesgue, Brouwer, Cantor, Peano, 

Hilbert, just to name a few. That history is very closely related to the creation of 

space-filling curves and early fractals [Peitgen et al. 1992]. Hausdorff remarked that 

the problem of creating the right notion of dimension is very complicated. People had 

an intuitive idea about dimension: the dimension of a set, say E, is the number of 

independent parameters (coordinates), which are required for the unique description 

of its elements. This turned out to be incorrect, as the counterexamples of Cantor and 

Peano showed. In this section, we will review three different approaches to defining 

the concept of dimension. These will help in setting up the framework for our own 

intuitive requirements (presented last) which we call the curve assumption. 

1.1. Poincare's cut dimension. Poincare's cut dimension is inductive by na­

ture and starts with a point. A point has dimension 0. Then he observes that " .. .if 

to divide a continuum it suffices to consider as cuts a certain number of elements all 

distinguishable from one another, we say that this continuum is of one dimension; if 

on the contrary, to divide a continuum it is necessary to consider as cuts a system of 

elements themselves forming one or several continua, we shall say that this continuum 

is of several dimensions" [Poincare 1926]. 

From this definition we get that a segment has dimension 1 since it can be split 

by a point (dimension 0). The same happens for a circle, since it can be disconnected 
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using a pair of points (dimension 0). The unit square has dimension 2, since it needs 

a line (dimension 1) to get disconnected. Finally, the cube has dimension 3, since can 

be disconnected using a plane (dimension 2). 

Poincare's definition has the advantage of being very intuitive and easy to grasp. 

It will be used later to motivate the proofs of the tangent separation theorems (Sec­

tion 4). This idea of dimension also formed the basis of the now accepted one devel­

oped by Menger and Urysohn [Hurewicz & Wallman 1948]; namely that 

(i) the empty set has dimension -1, 

(ii) the dimension of a space is the least integer n for which every point has ar­

bitrarily small neighborhoods whose boundaries have dimension smaller than 

n. 

1.2. Lebesgue covering dimension. The Lebesgue covering dimension is the 

most frequently used in point set topology to define the notion of dimension for a 

topological space [Munkres 1975, Edgar 1990]. It consists in covering the set E with 

little disks (such as those used in point set topology) and then focusing on the maximal 

number of disks in the cover which have non-empty intersection. This is called the 

order of the cover. 

An object E has covering dimension n provided any cover admits an open refine­

ment of order n + 1, but not of order n. Taking the line segment as an example, it 

is easy to see that the order of the cover cannot exceed 2, leading to a topological 

dimension smaller than 1 (see Fig. 3.1). 

Another equivalent definition would be that the topological dimension of a set E 

is the smallest integer k such that, for all c > 0, there exists a covering Ai of E by 

closed sets of diameter S c, with the following property: the intersection of any k 2 

sets A is empty. 

1.3. Measure and dimension. In their classical monograph, Hurewicz & 

Wallman (1948) presented different approaches to defining dimension. The one we will 

adopt here will associate the concepts of measure and dimension. An object will be 

called one-dimensional if it has length (one-dimensional measure), 2-dimensional if it 

has an area (2-dimensional measure), 3-dimensional if it has a volume (3-dimensional 
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(a) toward cut dimension (b) toward covering dimension 

FIGURE 3.1. Illustration of Poincare's cut and Lebesgue's covering dimension of a 
line. (a) a simple line disconnected by a single point; (b) covers of orders 2, 3, and 
more. Since it is possible to cover the curve with a cover of order 2, its dimension 
is not bigger than 1 from the definition. 

measure), and so on. The measure that will be used in this case is the one developed 

by Hausdorff. It will also allow us to study in more details the local structure of the 

set. 

1.4. The curve assumption. We are interested in developing a definition 

applicable to the kinds of objects encountered in curve detection within computer 

vision. Three intuitive guidelines will drive the development of our theory: 

(i) a notion of "thinness": curves extend along their length; 

(ii) curves are "of measure zero" with respect to surfaces; 

(iii) discontinuities are of "measure zero" with respect to curves. 

These further relate to the fact that, typically, there is more than one curve in an 

image and these intersect causing discontinuities in orientation. The properties listed 

are necessary for a suitable definition of the type of objects perceived when doing curve 

detection, and will imply constraints on the representation of visual information. We 

will say that an object satisfying these rules verifies the curve assumption. Thus far, 
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the curve assumption is very informal and intuitive; in Chapter 5, we will make the 

definition more precise. 

Before introducing geometric measure theory, we will review the concepts of local 

linear approximation and rectifiability for Jordan simple curves in R 2
• This is most 

easily approached through differential geometry. We will then try to extend it to a 

more general class of objects that we will call curve-like sets. It will be shown that 

the concept of rectifiability allows us to derive important properties and constraints 

on the local structure of the sets to be studied. 

2. Elementary differential geometry: Jordan curves 

The most common definition of a curve is the one of Jordan, namely that a 

curve r is the range of a continuous map 1 from an interval I to Euclidean space 

(typically R 2 or R 3). In elementary differential geometry, this definition precedes two 

other basic notions, namely the length and the best local linear approximation or the 

tangent to r at 'Y( t). 

Definition 3.1 (Jordan curve [Tricot 1995]). A curve r in R 2 is the range of 

a continuous function 1(t) = ('Y1(t),!2(t)) defined on an interval [a,b]. If 1 is an 

injection, the curve r is called simple. Its end points are 'Y( a) A and 1(b) B. The 

mapping 'Y is called a parametrization for the curve r. 

Remark 3.1. In the rest of this section, when using the word "curve", we mean a 

simple Jordan curve. Although too restrictive a definition for the type of patterns 

detected in edge detection, it will be useful to study the basic concepts. We will widen 

the definition in the next section to include the types of sets sought for in computer 

VISIOn. 

Two examples of Jordan curves are shown on Fig. 3.2. In (a), a simple Jordan 

curve, i.e. a Bezier curve with 7 control points. In (b), a Jordan curve that is not 

simple (since the curve cuts itself). This is a drawing due to Pablo Picasso that we 

adapted from [Mendes-France 1991b], and it illustrates the fact that the definition of 

"curve" is indeed very large. The following definition builds an equivalence relation 

between different parametrizations of a curve. 
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(a) a very simple curve (b) a Jordan curve that is not simple! 

FIGURE 3.2. Examples of Jordan curves. In (b) we reproduced a drawing due to 
Picasso entitled "Le Jongleur" (adapted from [Mende&-France 1991b]). 

Definition 8.2 (Frechet equivalence [Cesari 1965]). A mapping r: 1 = 1(t), t E 

I is said to be Frechet equivalent to another mapping f 1 : 1 = lt(s), sE It iffor every 

( > 0 there exists a homeomorphism he from I 1 to I such that b( he( s)) 11 ( s) I < ( 
for all s E I 1• This defines an equivalence relation between f and f t, and then we 

write r I'V r 1 • 

2.1. A curve in the small: tangent. The notion of a tangent, the best 

linear approximation to a curve at a point, is key in the study of curves in the small. 

Intuitively, it is defined as follows: 

Definition 3.3 (Tangent to a curve [Hilbert & Cohn-Vossen 1990]). If r IS 

a simple (parametrized) curve and xis a point on r, the tangent T(x) to the curve 

at X is the limit (if it exists) of the straight line passing through X and y when y E r 
and y -t x. 

The reason why we called this an intuitive definition is the fact that the limit 

x -t y is not always defined. Furthermore, in applications such as computer vision, 

for one, the parametrization is exactly what one is trying to infer. Thus a more 

general model is required. However, when the parametrization is given, the tangent 
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T(x) 

(a) the tangent T(x) tor at X (b) Besicovitch tangent 

FIGURE 3.3. This figure illustrates in (a) the intuitive definition of a tangent T to 
a curve r at a point x = "Y(t). Take a sequence {Yl, y2, · · ·} of points on the curve 
converging to x. Draw the lines passing through Yi and x. The "limit line" gives 
us the tangent T( x) to the curve at x. In (b) we illustrate the parametrization­
free definition of the tangent, looking at a cone that shrinks around the point x 
(presented later in the text). 

is the first derivative of the map 1· We will see in the next section that this local 

notion is tightly linked to the global one of length. In this highly structured situation, 

there is a clear model of the local-to-global transition. 

2.2. The length of a curve. We mentioned previously that a curve was a set 

extending along its length. How can we compute such a length? And even before 

that, does such a measure exist for a particular set? First we review what is usually 

used to compute the length of a parametrized simple curve and then we present a 

non-parametric algorithm to calculate the length of a linear set based on projections. 

2.2.1. Parametric. Our formalisation of the intuitive definition of the length of 

a curve will be derived from the ancient device of inscribed polygons. 
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Definition 3.4 (Partition and its norm [Tricot 1995]). Let [a, b] C R, then a 

partition P((a, b]) is a set of points { t0 , it,··· , tn} such that 

a = to < it < ... < tn b 

The norm IPI of a partition is defined as being 

IPI = max(ti+I - ti), i = 0, 1, 2, ... , n - 1 

Given r, a simple curve in R 2
, let Pn be a sequence of partitions such that 

liiDn-+oo IPnl = 0. Define 
n-1 

L(Pn, r) = L l!(ti+t) -{(ii)l 
i=O 

From the triangle inequality we see that the insertion of new points of subdivision 

will produce an increase in L(Pn, f). 

Definition 3.5 (Jordan length [Burkill & Burkill 1970]}. If L(P, r) is bounded 

for all dissections P of [a, b], the length of a curve r in the Jordan sense is as follows: 

L(r) = suJYpL(P, r). 

It is sufficient to obtain the length from a limit of a sequence of partitions: 

Theorem 3.1 (Length as a limit [Tricot 1995]). If (Pn) is a sequence of parti­

tions such that liiDn-+oo IPnl = 0 then 

L(f) = lim L(Pn, f). 
n-+oo 

This last theorem implies that the length is independent of the choice of polygonal 

approximations as these get finer and finer. 

Definition 3.6 (Rectifiability [Burkill & Burkill 1970]). A curve r is called rec­

tifiable if it has finite length in the Jordan sense. 

Remark 3.2. It is interesting to see that the word RECTIFIABLE derives from the 

Latin word rectus which means STRAIGHT. In French, the expression RECTIFICATION 

D 'UNE COURBE means calculating the length of a curve as if it were a straight line 

segment. Not being able to unfold a curve into a straight line segment implies that 

the curve is not rectifiable. 
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(a) coarse partition (b) fine partition 

FIGURE 3 .4. Two different partitions leading to two different approximations of the 
length of a simple Jordan curve. If the curve is rectifiable, the finer the partition 
gets, the more accurate the estimate of length will be. 

A few more results need to be mentioned. These provide the invariance properties 

one would like for the calculation of length and link a local notion (the tangent) to a 

global one (the length): 

(i) Length and rigid body motions: the length of a curve is invariant under 

rigid body motions, i.e. translations and rotations; 

(ii) Length and arclength [Smith 1971]: if the mapping r is differentiable, 

then 

L(r) = lb lr'(t)ldt 

i.e., the notion of length as just presented corresponds with the one of arclength 

in differential geometry; 

(iii) Length and parametrization [Cesari 1965]: length L(r) is independent of 

the parametrization (Frechet-independent ), i.e., r,...., r 1 implies L(r) = L(r I). 

2.2.2. Non-parametric. The definition of length through polygonal approxima­

tions has the disadvantage of relying on the existence of a parametrization. It can be 

shown that length is independent of the parametrization, but one was nevertheless 
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needed to perform calculations. In vision, no such parametrization is given. Rather, 

for many applications, this is what is sought. We therefore now turn to various defini­

tions of "linear measure" that are independent of the parametrization. The Hausdorff 

measure and the integral geometric measure (see [Morgan 1987]) are examples of such 

measures. The integral geometric measure takes its roots from the middle of the 19th 

century, when Cauchy (1850) discovered a parametrization-free algorithm to compute 

the length of a curve. His idea was to project the set to be measured on lines with 

different orientations. We begin with this historically-important algorithm which can 

be considered as the first step toward what is now called integral geometry: 

Theorem 3.2 (Projective length [Cauchy 1850]). Let r be a curve of length 

L(r). Let p be a line of direction () passing through the origin. Let m(r, p) be the 

measure of the projection of r on p counting multiplicities1
• Then 

111f' L(r) = 4 -'If' m(f,p)dp 

Example 3.1. Taker to be a straight line of length l with orientation 0. Since the 

length is invariant under rigid body motion, we can translate the original curve and 

rotate so it sits on the x-axis. If pis a line with orientation~' then m(f,p) = ll cos~~ 
and we get 

111f' L(r) = 4 -'If' ll cos ~Id</>= t 

Example 3.2. Take r to be a circle of radius r centered at the origin. Then 

m(f,p) = 4r (twice the radius two times since we have to count multiplicities) for all 

p (see Fig. 3.5 for a given p), and we get: 

L(r) = 1: rdp = 21rr 

Cauchy went further and determined what would be the bounds on the error of 

the estimation of the length if one were to take only a finite number of lines for the 

projection. 

1Counting multiplicities means that if a curve projects on a segment more than once, say n times, then the 
length of the segment is counted n times. See Ex. 3.2. 
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y 

p 

X 

FIGURE 3.5. Cauchy projective length for a circle 

Theorem 3.3 (Projective length approximation [Cauchy 1850]). Let r be a 

curve of length L(r). Let {pt,p2 , • • • ,pn} be a collection of lines passing through the 

origin with orientation Oi, such that (Oi- Oi-l) 2n'/n (i.e., equispaced in orienta­

tion). If m(f,pi) is the measure of the projection of r on Pi counting multiplicities, 

then ifn > 2 
n n 

(3.1) L(r)-
2
7rn """. m(f,pi) < ~""" m(r p·) .LJ - 2n3 ~ ' t 

t=l t=l 

Remark 3.3. This theorem shows us the consequences of discretizing orientation 

space in terms of the computation of the length of a "linear" set (a curve in this 

case). To demonstrate this, let us take a simple example: the approximation of the 

perimeter of a circle. For every orientation defined by Pi, we have m(r, Pi) = 2r. 

Therefore the error is bounded by 2~2 , where L is the perimeter. Choosing n > 8 in 

Eq. 3.1 ensures us to get an error smaller than 1%. Later in this document we will 

be interested in knowing what are the consequences of digitizing space coordinates. 

We end this section by stating another version of Theorem 3.2 as presented in 

Steinhaus (1954) and do Carmo (1976). A line in the plane being uniquely determined 

by an orientation (} E [-1r, 1r], and a distance to the origin p > 0, we can consider 

the "area" of a set in this strip. Given a line defined by (p,O), let m(f,O,p) be the 

number of its intersection points with the curve r (that we call multiplicity). The 
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FIGURE 3.6. Estimating length from projections. A grating with parallel lines is 
overlaid on the set. Then count the number of intersections repeat by rotating the 
grating. Integrating the result provides an estimate of the length of the set. Figure 
reproduced from [do Carmo 1976]. 

measure of a set of straight lines (counted with multiplicities) which meet with r is 

related to L(f): 

Theorem 3.4 (Cauchy-Crofton formula [do Carmo 1976]). Let f be a curve 

with length L(f). The measure of the set of straight lines (counted with multiplicities} 

which meet r is equal to 2L(r), i.e. 

(3.2) 1100 1'/f' L(f) =- m(f,fJ,p)dOdp. 
2 -oo 0 

The Cauchy-Crofton formula allows us to dismiss the condition of studying only 

a simple Jordan curve. In fact Eq. 3.2 can define the length of any plane set E in 

all cases for which the function m(f, 0, p) is integrable. Thus, we have arrived at 

a definition of length that does not rely on any a priori parametrization. It is also 

independent of the notion of a tangent, of a derivative and of the approximation of 

the set by inscribed polygons. This definition covers more than rectifiable arcs: a 

finite or an enumerable set of such arcs gets a length in this new sense, provided the 

sum of lengths of its components is finite [Steinhaus 1954]. In the next section, we 

will elaborate on the definition of such sets; they will be called 1-sets. 
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Remark 3.4. The Cauchy-Crofton theorem can be used to develop an algorithm 

for estimating the length of curves. Imagine having a curve r drawn on a piece of 

paper for which an estimate of length is needed. Take a transparent sheet on which 

is drawn family of parallel straight lines equispaced with distance d (we will call it 

a grating). Overlay this grating on the original drawing and count the number of 

intersections with the curve r. Rotate the grating and repeat the counting process 

fork orientations 1r jk. If m is the total number of intersections of a curve r (over all 

orientations), then 

(3.3) 
A 1 1r 
L(f) = -md-

2 k 

is a good approximation to Eq. 3.2 [do Carmo 1976]. An example of this measurement 

process is shown on Fig. 3.6. The number of intersection points found is 153, the 

separation between the lines is d 7 millimeters (mm) and the number of orientation 

is k = 4, therefore the estimate 

1 1r 1 1r 
2mdk = 2(153)(7)"4 ~ 421 mm 

while the actual value is 413.4 mm (adapted from [do Carmo 1976, p.46]). 

3. Curve-like sets in geometric measure theory 

As we mentioned before, we need a wider class of objects as an underlying model 

for curve recovery. Simple curves are too restrictive since they do not allow multi­

ple curves and various kinds of discontinuities that are key in our description and 

understanding of the visual world. Even some of the simplest patterns could not 

be expressed by the Jordan definition (see Figs. 1.1 and 1.2). Mathematicians have 

however described a wider class of objects which would be more suited for our needs 

and these are called 'curve-like sets' (regular sets with finite positive Hausdorff mea­

sure). Instead of considering a mapping, we will rather consider sets. The notion of 

length will be kept implicit: it will be one of the basic requirements for these sets 

to exist. This section is a brief introduction to curve-like sets. It starts with the 

definition of the Hausdorff measure, and leads to the one of 1-sets, or those with 

finite length. Then we present density properties which will provide a hierarchy for 

one-dimensional sets. It is within this hierarchy that the type of sets to be considered 
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FIGURE 3. 7. Parametrization-free approximation of the length of a set by a covering 
with 15-balls: a first step to the calculation of the Hausdorff measure. 

throughout this thesis arise: the curve-like sets. A fine study of the local structure 

of curve-like sets will lead in the next section to constraints on the distribution of 

tangents and discontinuities. 

3.1. Hausdorff measure. One way to compute the length, area or volume of 

an object is to use the Hausdorff s-dimensional measure 1-l8
, where, in the case of a 

smooth rectifiable curve, s = 1, in the case of a surface, s 2 (classical references for 

this are [Rogers 1970, Federer 1985], but one can also look at [Falconer 1987], a more 

readable presentation). Consider the problem of defining the length 1-£1 of a set E in 

the plane. Hausdorff's idea was to cover the set with small circles and to take the sum 

of the diameters (Fig. 3. 7). If the balls are restricted to be smaller than some given 

value o > 0, and if the 'most economical' covering is chosen, we get an approximation 

of the length of the set at resolution o. Allowing arbitrary covers, instead of covers 

by balls, gives us an outer measure, and for o > 0 we write 

where IUI is the diameter of U, (i.e., IUI sup{lx- Yl : x, y E U}) and {Ui} is 

any sequence of sets of diameter less than o covering E. The infimum here is taken 

over all (countable) 6-cover {Ui} of E. It can be shown that 1i8(E) increases as o 
decreases, therefore: 
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Definition 3.7 (Hausdorff measure [Falconer 1987]). The one dimensional Haus­

dorff measure of E is given by 

1l1(E) = lim HHE) =sup HHE). 
o-+O o>o 

Since no confusion will arise in this thesis, we will write 1l for 1£1
. 

Remark 3.5. One can show that the Hausdorff measure is in fact a measure in the 

measure theoretic sense [Falconer 1987]. It then can be used to define the notion of 

"almost". In this thesis we will use the terms "for almost all x in E" and "almost 

everywhere" (sometimes denoted a.e.). This means that the property applies for all 

x E E, except maybe on a (very small) set G with H(G) = 0. When writing 1£-almost 

everywhere, or 1£-a.e., we want to emphasize that this is with respect to the Hausdorff 

measure 1£, and not with respect to another measure (the Lebesgue measure, 1·1 1 , for 

instance). The term "almost nowhere" (which is used only once in this document) 

means that the property holds at most on a set of measure 0. 

One might wonder if the Hausdorff measure coincides with the Jordan length for 

simple Jordan curves, or with the Lebesgue one-dimensional measure for Lebesgue­

measurable subsets of the real line. 

Theorem 3.5 (Hausdorff, Lebesgue and Jordan measures [Falconer 1987]). 

If r is a curve, and E a Lebesgue measurable subset of R then 

(i) the Jordan length L and the Hausdorff measure coincide, z.e. H(f) = L(f). 

(ii) the Lebesgue measure I· h and the Hausdorff measure coincide, i.e. 

H(E) = IEil· 

Hausdorff measure permits a classification of sets. One of its most popular uses is 

as the basis for Hausdorff dimension, an important construction which was used as an 

abstract formulation for the concept of dimension. Among other results, it led to the 

definition of a class of sets called 'fractals' [Mandelbrot 1982]: sets with non-integer 

Hausdorff dimension. In this chapter, we are not considering non-rectifiable curves 

and rather concentrate on those with positive but finite measure: 
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FIGURE 3.8. Example of an set where the density is not always 1: the truncated 
cone in R 2 . The cross is the set studied. The grey regions are places where we 
wanted to focus attention for the density. 

Definition 3.8 (1-set [Falconer 1987]). An 1£-measurable set E with 0 < 1l(E) < 
oo, will be called a 1-set (originally called 'linearly measurable set' by Besicovitch 

(1928) ). 

3.2. Basic density properties. The notion of densities for sets will be used 

in the definition of the local approximation of a set (tangent). Intuitively, densities 

indicate of the local measure of a set compared with the expected measure [Falconer 

1987]. The definition is as follows: 

Definition 3.9 (Density [Falconer 1987]). Let Br(x) denote the closed ball of 

centre x and radius r. The upper and lower densities of a 1-set E at a point x E R 2 

are defined as 

D (E ) 1
. 1l(E n Br(x)) 

u ,x = 1msup 
r-tO 2r 

and 

D (E ) 1
. . f1l(E n Br(x)) 

l , X = Imin 
r-tO 2r 

respectively. If Du(E,x) = D1(E,x), we say that the density of Eat x exists and 

write D(E,x) for the common value. 
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(a) (b) (c) (d) (e) 

FIGURE 3.9. Example of an irregular 1-set in R 2 : the Sierpinski triangle. 

Example 3.3. To better understand the previous definition, let us consider the fol­

lowing subset of R 2 

has density 

D(E,x) 

1 for x E E\ {(0,0), end points}, 

0 for x rf; E, 

~ for x E {end points}, 

2 for x = (0,0) 

Note that in the last example the density is zero when outside the set and non­

zero otherwise. In fact, one of the most interesting results about densities is that the 

density is zero almost everywhere outside the set: 

Proposition 3.1 (Falconer (1987)). If E is a 1-set in R 2 , then 

(i) D(E, x) = 0 at 1-l-almost all x outside E, and 

(ii) 2-s ~ Du(E,x) ~ 1 at almost all x E E. 

The last proposition is used mainly in the structure study of one-dimensional 

sets. Requiring Du(E, x) to be greater than zero insures that we are almost surely on 

the set E. 

Definition 3.10 (Regular and irregular sets [Falconer 1987]). A point x E E 

at which Du(E,x) = D1(E,x) = 1 is called a regular point of E; otherwise it is called 

an irregular point. A 1-set is said to be regular if 1-l-almost all of its points are regular, 

and irregular if 1-l-almost all of its points are irregular. 
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Remark 3.6. Examples of irregular 1-sets in R 2 include constructions similar to the 

one of the Cantor set [Falconer 1987]. An example taken from Morgan (1987) defines 

E C R 2 by starting with an equilateral triangle and removing triangles at different 

scales. Start with E0 , a closed equilateral triangular region of side 1 (Fig. 3.9a). 

Let E1 be the three equilateral triangular regions of side 1/3 in the corners of Eo 

(Fig. 3.9b ). In general let Ei+l be the triangular regions, a third the size, in the 

corners of the triangles of Ei. Finally, let E = n Ei (an approximation is shown in 

Fig. 3.9e). 

E is a 1-set since the projection of each Ei onto the x-axis is the unit segment, 

therefore the projection of E n Ei is also the unit segment which gives that 1l(E) 2:: 

1. As for the other inequality we have that Ej is covered by 3i equilateral triangles 

of side G)i, therefore 1l(E) :5 1, confirming that E is a 1-set. The proof that E is 

irregular, i.e. that its density is different than 1 1l-a.e. on E, can be found in Tricot 

(1991 ). 

1-sets and regularity lead to the cornerstone definition for our work. They consti­

tute the basic types of objects to be studied within the rest of this thesis. Originally, 

they were called Y-sets by Besicovitch (1928) (and this nomenclature still persists in 

some books [Tricot 1995, Falconer 1987]), but we decided to adopt the nomenclature 

used by Falconer (1990), since it fits more closely to intuition: 

Definition 3.11 (Curve-like set [Falconer 1990]). A 1-set contained in a count­

able union of rectifiable curves will be called a curve-like set. 

This definition is more general than the one of Jordan. It allows for multiple 

curves and these can intersect. It does not require a parametrization, since it is 

rather based on the notion of a set. Moreover 

Theorem 3.6 (Regularity [Falconer 1990]). A curve-like set is a regular 1-set. 

This therefore assures us that curve-like sets are free of the potential curve-free 

structures that the more general class of 1-sets could contain. Curve-like sets will 

suit our needs for edge detection, where we know that some kind of curve structure 
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FIGURE 3.10. Decomposition of a 1-set. This figure, reproduced from Falconer 
(1990), illustrates the concept of decomposing a rectifiable one-dimensional set into 
a regular "curve-like" part and an irregular "curve-free" part. 

is present, since the set to inferred is provided by the output of oriented line/edge 

operators. 

3.2.1. Hierarchy for one-dimensional sets. In the continuous domain, measures 

and densities have allowed mathematicians to partition the space of one-dimensional 

sets (not only the 1-sets), and to build a hierarchy for them. The first distinction, 

a rather crude one, is between those that have finite measure, the 1-sets, and those 

that have infinite length. Among the 1-sets, a finer subdivision provides regular 

(curve-like) and irregular (curve-free) sets. One nice result, called the decomposition 

theorem [Falconer 1990], enables a split of 1-sets into a regular and an irregular part, 

as shown in Fig. 3.10. It can be shown that each part from the set can be analyzed 

separately and then recombined without affecting density properties. The spirit of this 

decomposition is similar to what we will do with the discrete tangent map obtained 

though edge/ curve detection. While our decomposition scheme will be different than 

the one presented here, the underlying idea is very similar. For vision applications, 

of course, further types of structures will be important. This will be discussed in 

detail in Chapter 5. Until then, the reader should keep in mind what was shown in 

Fig. 3.10. 

3.3. Local structure of curve-like sets. Before discussing the existence of 

tangents for curve-like sets, we will present an alternate definition of a tangent that 
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(a) Besicovitch tangent T(~) (b) Tangent set e(~) 

FIGURE 3.11. Illustrating the parametrization-free definition of tangents (Besicov­
itch tangent) at a point. Such definitions require that a significant part of E lies 
near x, of which a negligible amount lies outside the wedges. In (a) we illustrate 
the Besicovitch tangent at one scale, adapted from Falconer (1990), and in (b) the 
tangent set (multiple tangents) at one point. 

does not rely on a parametrization of the set. This definition is due to Besicovitch 

(1928): 

Definition 3.12 (Tangent: Besicovitch [Falconer 1987]). A curve-like set E has 

a tangent T 8 ( x) at x in the direction ±0 if 

(i) Du(E,x) > 0 and 

(ii) for every angle <P > 0, 

(3.4) lim 1i(E n (Br(x)\Sr(x, 0, <P)\Sr(x, -0, <P))) = 
0 

r~O r 

where Br(x) is the ball of radius r centered at x, Sr(x,O,<P) is the sector of 

radius rat angle 0 with opening <P, and Sr(x, -0, </>)is the sector in the opposite 

direction (it could have been written Sr(x,0+7r,<P)). 

Suppose x E E, then this definition means that at x the set E is locally concen­

trated around the line TB(x) with orientation 0 passing through x. The first condition 

in this definition ensures that x is indeed on the set. The second condition ensures 
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that the concentration is around the tangent line only. Fig. 3.11a illustrates the def­

inition, namely that the second condition consists in looking at the rate of growth of 

what is found outside the local angular sector centered at x. If this rate of growth is 

much faster than r, the curve is ensured (from the first condition) to be concentrated 

around the line with orientation () at x. 

How does this definition of tangent relate to the usual definition of a tangent 

to a parametrized curve? In his seminal work, Besicovitch (1928) showed that this 

parametrization-free definition was indeed equivalent to the classical definition we 

presented in Section 2. 

Theorem 3.7 (Besicovitch and classical tangent [Besicovitch 1928]). Let E 

be a parametrized simple curve. lfx E E, and if both T(x) and TB(x) exist, then the 

Besicovitch and the usual definition of the tangent at x correspond, i.e., T(x) = TB(x). 

PROOF. The original proof can be found in Besicovitch (1928), but a modern presen­

tation can be found in Tricot (1995). D 

Remark 3. 7. Since we know now that the Besicovitch tangent and the usual tangent 

to a parametrized curve coincide, we will denote the tangent to a set Eat x by T(x) 

and always imply the Besicovitch construction. 

One can now wonder if the Besicovitch tangent is solving some of the problems 

encountered with the classical definition for representing data obtained from edge 

detection. We will focus here on line endings and intersections. For this, let us recall 

Example 3.3 in which one of the lines was at an angle 01 = Jr/4, while the other was 

at 02 = 37r /4. Suppose we are at one of the end points of the line with orientation 01 . 

The density D(E, x) = 1/2 > 0, and the rate of growth outside a sector is zero since 

for all 0 < c/J < 1r /8 and r > 0. A tangent at the end points is thus defined with the 

same orientation as for the rest of the line. At the intersection, i.e. for x = (0, 0), the 

density D(E,x) = 2 > 0, but 

1-l(E n (Br(x)\Sr(x,Ot,c/J)\Sr(x, -Ot,c/J))) = 
1 

r ' 
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for all r < 1 and 0 < tf> < 1r /8, therefore the Besicovitch tangent at x = (0, 0) fails to 

exist. Since these events (curve intersections) are of paramount importance for the 

description of an edge map, we will present in the next section a wider representation 

for the local structure of a set than the Besicovitch tangent. 

The study of the distribution of tangents for curve-like sets will be based on this 

critical result about the existence on tangents: 

Theorem 3.8 (Tangent a.e [Falconer 1987]). A curve-like set E has a tangent 

at almost all its points. 

SKETCH OF PROOF. The proof has several steps and is the subject of [Falconer 1987, 

chapter 3]. First, one proves that a rectifiable curve r has a tangent at almost all its 

points. This can be done using the following 

Lemma 3.1 (Falconer (1987)). If t/> > 0 and E is the set of points on a rectifiable 

curve r that belong to pairs of arbitrarily small subarcs of r subtending chords that 

make an angle of more than 2t/> with each other, then 1i( E) = 0. 

which characterizes the distribution of tangents for a rectifiable curve. It says that 

on a rectifiable curve, the chords defined by triples of points that are sufficiently close 

should almost never make a large angle between them. The existence of a tangent 

almost everywhere for a single rectifiable curve then follows from the continuity of the 

mapping. Once one knows that a rectifiable curve has a tangent almost everywhere, 

properties of densities, together with Thm 3.6 provide with the final result. 0 

Although for this thesis the central theorem will be Thm 3.8, we end our review 

of the classical results from geometric measure theory by the structure theorem, which 

constitutes a very deep result about the structure of arbitrary subsets of Rn [Morgan 

1987]. We will cite here its one-dimensional version and a corollary that partly follows 

from the previous theorem. Recalling that a continuum is a compact connected set, 

we have 

Theorem 3.9 (Structure theorem [Falconer 1987]). If E is a continuum with 

1i(E) < oo, then it consists of a countable union of rectifiable curves together with a 

set of 1-l-measure zero. 
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FIGURE 3.12. T-junctions. When objects occlude one another, they induce discon­
tinuities in the edge map. T-junctions such as those shown in this figure are one 
type of these occlusion discontinuities. Reproduced from [Nitzberg et al. 1993]. 

Corollary 3.1. If E is a continuum with 1-l(E) < oo, then E is regular and has a 

tangent at almost all its points. 

The material we presented in this chapter so far is standard in elementary differ­

ential geometry and in geometric measure theory. We have briefly established links 

with relevant issues in computer vision, and have presented the mathematical appa­

ratus needed for the development of our intermediate representation. The rest of this 

chapter begins the presentation of my original contributions. 

3.4. Multiple tangents. The Besicovitch tangent must be extended for ap­

plications in computer vision. This is due to the fact that when objects occlude, they 

create discontinuities in hounding contours, leading to T-junctions (Guzman 1968, 

Waltz 1975, Nitzherg et al. 1993, Heitger & von der Heydt 1993] such as those pre­

sented in Fig. 3.12. At these points of discontinuity in orientation, "multiple tangents" 

must he represented [Zucker et al. 1989]. Intuitively the rationale is as follows: in the 

limit, as the discontinuity is approached from one side, one tangent is obtained, while 

59 



c 

0 

CHAPTER 3. CURVE-LIKE SETS AND CURVE DETECTION 

from the other side, the second tangent is obtained. The following is an extension of 

the Besicovitch tangent to allow the representation of multiple tangents at a point: 

Definition 3.13 (Multiple tangents). A curve-like set E has a tangent set 8(x) 

at x if Du(E,x) > 0 and for every angle</>> 0, 

lim 1i(E n (Br(x)\(Uoee(x)[Sr(x, 0, cp) u Sr(x, -0, cp)]))) = 
0 

r~O r 
(3.5) 

but also, for each 0 E 8(x), 3 r0 and c/Jo such that VO < </> < cp0 and 0 < r < r0 , 

(3.6) 1
. 1i(E n (Br(x) n (Sr(x, 0, </>) U Sr(x, -0, cp)))) O 
1msup 

2 
> 

r~O r 

As in the definition of the Besicovitch tangent, the density condition makes (al­

most) sure we are on the set. The condition given by Eq. 3.5 prevents things from 

being too crumpled around the point, while the third (Eq. 3.6) ensures that indeed 

there is something going on in the directions contained in the tangent set. Eq. 3.6 can 

be interpreted as the requirement that the conical density around each tangent direc­

tion be positive. In the case of the usual Besicovitch tangent (Defn 3.12), we know 

that this is true (see for instance [Morel & Solimini 1995]), therefore both definitions 

agree. 

Remark 3.8. The value chosen for </>0 will be linked to the orientation resolution of 

the operators when doing curve detection, while r0 will be linked to their tangential 

extent (partly defining the scale of the operator). 

EXISTENCE OF MULTIPLE TANGENTS. It is easy to build a set with multiple tangents. 

The set E from Example 3.3, for instance, has multiple tangents at x = (0, 0). In this 

case 8(x) = {7r/4,37r/4}. For both 0 E 8(x), we have for all r > 0 and 0 < cp < 1rj8 

1i(E n (Br(x) n (Sr(x, 0, cp) U Sr(x, -0, cp)))) = r > 0, 

while 

En (Br(x)\( U [Sr(x, 0, cp) u Sr(x, -0, cp)])) = 0 
Oee(x) 

which ends the verification. D 
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Until now we did not put any constraint on the cardinality of the tangent set 

E>( x) at a point. This first result addresses part of the issue: 

Corollary 3.2 (Unique tangent a.e.). If E is a curve-like set and x E E, then 

the set of tangents E>( x) at x is composed of a unique tangent for almost all x in E. 

PROOF. The proof follows from Thm 3.8. D 

3.5. The tangent map. The definition of multiple tangents allows us to de­

fine a new structure essential for the development of our complexity measure. This 

structure will give the orientation of the set at each of its points: 

Definition 3.14 (Tangent map). Given a curve-like set E, the tangent map 7 is 

7 U(x,E>(x)). 
xEE 

The tangent map will provide the mechanism for relating geometric structure to 

visual structure. The links will be provided by showing that the geometric structure 

is directly analogous to that obtained in computer vision. Thus we must define the 

tangent map in the discrete domain. This is how the structure we just defined will 

be linked to the output of edge detectors. The resulting intermediate representation 

will be the one used to characterize the complexity of the tangent (edge) map, and 

to provide a decision scheme for the representation underlying the grouping process. 

Before describing the discrete counterpart of the tangent map, we will investigate the 

structure of the underlying tangent map for continuous curve-like sets. 

4. Tangent separation theorems 

Rectifiability constrains the global and local distribution of tangents. Basically, 

for a one-dimensional set to be rectifiable, it cannot be too crumpled and cannot 

cut itself too often. The following theorems will try to capture this last statement, 

and will provide constraints on the underlying local approximation to a curve-like set. 

Recall that a set is totally disconnected if no two of its points lie in the same connected 

component. Thus, given any pair of points in the set, there is a decomposition into 

two disjoint closed subsets, each containing one of the points [Falconer 1987]. Now, 
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N(w) 

T(w) 

(a) parallel tangents separation (b) multiple tangents separation 

FIGURE 3.13. Illustration of the tangents separation theorems. The key idea is 
that for a curve to be rectifiable, the parallel or the multiple tangents cannot form 
a continuum. (a) illustrates the parallel tangents separation, where w E E is the 
point with the circle around it. The tangent T(w) and the normal N(w) are drawn 
and for this particular example the set 'D(w, E) is composed of all the other dots. 
(b) multiple tangents separation. 

looking in the neighborhood of a tangent, in the normal direction for instance, we get 

the following: 

Theorem 3.10 (Separation of parallel tangents). Let E be a curve-like set. Con­

sider a point w on E with tangent T ( w). If N ( w) is a line passing through w with 

orientation different than T(w), then V(w,E) ={yE EnN(w): T(w) = T(y)} is 

a totally disconnected set. 

PROOF. We will proceed by contradiction. Suppose there exists a connected compo­

nent C C V( w, E). Since C C N( w) we have 

L(C) = ICI1 = 1-l(C) = diam(C) > 0 

where l·l1 is the usual one-dimensional Lebesgue measure and L( ·),the Jordan length. 

Take now any point z inside C. For small enough p we get 

1-l(C n Bp(z)) = 2p 
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Therefore, if() is the angle for T( w ), then we have for all </> sufficiently small 

lim 1t(C n (Br(z)\Sr(z, 0, 4>)\Sr(z, -0, </>))) > 
1 

r-+0 r -

which shows that there is no tangent at that point. This being true for all interior 

points of C, and since diam( C) > 0, we have found a set of 'H-measure > 0 for which 

there does not exist a tangent. However E being a rectifiable set, this contradicts the 

fact that it should have a tangent almost everywhere. D 

This says that, if a curve gets squeezed into itself too much, it reaches a point 

where it may be difficult to know on which portion of the curve one is. The branches 

of the curve are tightly packed. When walking along the set, such as was tried for 

Paolina's hair in Chapter 1, one is confused. 

Now consider the distribution of multiple tangents. More importantly, however, 

Theorem 3.11 will be the equivalent of Theorem 3.10 but in orientation space rather 

than in the spatial domain. 

Theorem 3.11 (Separation of multiple tangents). If w is a point on a curve­

like set E, then E>(w), the set of multiple tangents at w, is a totally disconnected 

set. 

SKETCH OF PROOF. Suppose there exists a connected component CC E>(w). We can 

then find a circular arc in the neighborhood of w for which each point has a multiple 

tangent. That means we would be able to build a set of measure greater than zero 

with more than one tangent everywhere, which contradicts Theorem 3.2 since E is 

rectifiable. 0 

Remark 3.9. Proofs of Theorems 3.10 and 3.11 show the spirit of Poincan?s cut 

dimension idea [Poincare 1926]. In both proofs (using contradiction) we showed that 

in order to disconnect the set, we needed a continuum; a straight line in the case of 

Theorem 3.10, an arc of circle in Theorem 3.11. This led to a contradiction because 

then the object couldn't be a rectifiable curve. 
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5. From curve-like sets to edge detection 

One of the central features of the theory of curve-like sets was the Besicovitch 

tangent formulated in a parametrization-free manner. This is interesting for com­

puter vision, because it is analogous to parametrization-free methods for estimating 

tangents, namely edge detection. We shall place tremendous emphasis on this anal­

ogy. In particular, just as Besicovitch sought a dense collection of points within a 

cone, "edge,, operators seek a dense collection of pixels at a certain contrast [Marr & 

Hildreth 1980, Canny 1986, Hubel & Wiesel1962a]. There are two important differ­

ences, however, and these differences will motivate the rest of this thesis. First is the 

notion of scale. The Besicovitch tangent was defined in the infinitesimal limit, and is 

related to a classification of curves as being either finite length (rectifiable) or infinite 

(non-rectifiable). Those with finite length were called 1-sets. The second difference 

is resolution. Orientation for the Besicovitch tangent is a real variable, as is spatial 

location; for any computation on a computer, these will be quantized numbers. 

To develop the analogy between Besicovitch tangent sets and curve detection, we 

must face several subtleties. Finite scale and finite resolution have deep consequences, 

which we shall now attempt to illustrate. The result will both help us to frame 

the measure-theoretic problems that are appropriate for vision, and will lead to a 

statement of what we seek formally: discrete curve-like sets. To avoid the impression 

that all the mathematical questions are resolved, we also switch to a more informal 

style of presentation. 

5.1. The paradox of length. Length is a discontinuous functional in the 

following sense [Steinhaus 1954]. In the vicinity of a rectifiable curve r, another 

curve r 1 can be defined whose length exceeds an arbitrary, previously defined limit, 

or even is infinite: this is what Steinhaus (1954) called the paradox of length. One 

aspect is a problem of numerical errors. If we measure the circumference of a circular 

object, we will not obtain 1rd, d the diameter, but rather something close to it. We 

know we are inaccurate, but we don't worry because, if a more accurate result is 

needed, we can just increase the level of precision in our measurement (as we showed 

in Section 2.2.2). Measurement requires units such as meters, yards: all idealized 
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FIGURE 3.14. An example of a set with no tangents almost everywhere. Named 
"la couronne flamboyante" after Dubuc (1982), this set doesn't have an integer 
Hausdorff dimension and constitutes an interesting example of a fractal set. 

straight line segments (we saw that a rectifiable curve meant it could be "unfolded" 

somehow). Curved objects, such as circles, also have a definitive length that can be 

measured as accurately as necessary. Somehow, our experience is that objects which 

fit on a piece of paper have finite length, but this is a misleading intuition. 

We introduced Hausdorff measure to study the local structure of sets, and to 

provide constraints on the distribution of tangents. However, it is more popularly 

known for its use in the study of 'fractals', or sets with non-integer Hausdorff di­

mension [Mandelbrot 1982]. Fractal curves are those in which tangents exist almost 

nowhere (in a measure theoretic sense). These led to very intricate figures such as 

Fig. 3.14. Returning to Mandelbrot's famous question: "How long is the coast of 

Britain?" [Mandelbrot 1970], we have that, in some cases, the length of certain ob­

jects depends on the precision of the measuring instrument. The length of the coast 

of Britain gets longer and longer as the resolution of the measuring instrument is 

increased. Could we neglect such objects with infinite lengths? The answer is 'no', 

since most curves encountered in nature are not rectifiable: they tend to be the rule 

rather than the exception. This statement is contrary to the belief that unrectifiable 

curves are an invention of mathematicians, and that natural curves are rectifiable: 

it's the opposite that is true. 
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Steinhaus's [1983] solution to overcome the paradox of length was to compute a 

length of finite order. The Cauchy-Crofton formula provided a technique to compute 

length by counting the number of intersections of a grating of parallel lines with the 

curve, and rotating this grating over a set of orientations (see Eq. 3.3). The exact 

formula integrates over all orientations, and the spacing between the lines is meant 

to be infinitesimal. It was mentioned that the length could be approximated by 

taking a positive spacing d, and averaging over a finite set of k orientations. To avoid 

the paradox of length, one can count the intersections up to some number n, and 

neglect subsequent intersections with the curve. Thus we get Ln, the length of order 

n. Steinhaus (1983) states that this concept is free from the paradox of length. If 

the resolution of the image is increased, the distance d between the lines in the grid 

is reduced, the number of orientations increased, then keeping the order fixed, the 

numbers Ln computed will approach more and more closely a definite limit: the ideal 

value of length of order n. 

In computer vision we are confronted with a similar problem in the context of 

determining how, and when, to seek a transition from local representations to global 

ones. These are indeed the central questions of this thesis, and the answer is based 

on the observation that for curves, the computation of length is an archetypal local­

to-global transition. But, as we learned from the Steinhaus paradox, the length 

computation is not always sensible or well-defined. Thus the central philosophi­

cal proposal on which this thesis is based can be summarized with the following 

statement: 

The length of objects should only be considered 

when the result will be meaningful and of practical 

value. 

Curves in the world are projected on an image. At a given resolution and scale for 

detection, fractals and unrectifiable curves make no sense. Returning to our fractal 

set (Fig. 3.14), and projecting it onto an image with a given resolution, we obtain 

clusters of points, and few parts that extend along their length (the tips of the crown 

for instance, or the linking units). Now, applying edge detection (for this example, 
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6. Discrete equivalent to the tangent separation theorems 

Theorem 3.10 has its discrete equivalent: if there is a discrete tangent at position 

x, then there is a limit on the number of tangents that can be locally parallel to it 

(i.e., with the same orientation). The same applies at a single image location, where 

all tangents cannot exist at a point, giving a discrete equivalent to Theorem 3.11. 

The detection of edges or lines therefore constrains the discrete tangent map: not all 

tangents can be on, even if the image is of a bowl of spaghetti. 

In the continuous domain, this constraint was defined as the fact that, given an 

orientation (), one cannot find an interval in a direction different from () for which 

one would have tangents with the same orientation (). Two key changes need to be 

considered for the discrete equivalent: 

• different orientation: Suppose the discrete orientations considered are 01, 62 , • • • , 

ONrn and that a discrete tangent ()i is on at a given position x. An orientation 

Oj will be said to be "different" if d(OJ, Oi) ;::: 2 where 

d(O· (i ·) = I( Oi - Oj) mode rl 
1

' 
3 1r /No 

and where r = 1r for lines, and r = 21r for edges. Details about this distance 

between orientation cells can be found in [Iverson 1993]; 

• interval: The discretization induces a lateral spreading of tangents as we saw 

earlier. An interval here will therefore be defined as a set of M adjacent (8-

connected) pixels within a given orientation. It is the value that M will take 

that will define the minimum size of contiguous pixels to be considered as an 

interval. For instance, if the resolution of the image is N, then a discrete 

interval is definitely smaller than N. To refine this assertion, we will need to 

use the scale of the operator a = ( O"N, ar ). 

Both these notions then lead to a conjecture about the size of the largest neigh­

borhood over which information can spread laterally: 

Conjecture 3.1 (Separation of discrete parallel tangents). Let I be an image 

with spatial resolution N. Let f be its discrete tangent map obtained through a 

bank of L/L operators for No orientations with normal scale extent O'N < N. If the 

response at x for orientation Oi is positive, then there exists a constant k such that 
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FIGURE 3.18. Discrete tangent map for a line segment at an orientation(}= 45° 
obtained from L/L operators. Notice the spreading of tangents over a 3 pixels 
connected linear neighborhood: i.e. drawing a line at 0° orientation can hit 3 
contiguous tangents. 

the coexistence of M - 1 contiguous tangents. What needs to be understood out of 

this conjecture is that at a given pixel, not all tangents ( orientations) should have 

significant response at the same time. 

This type of analysis of image operator's behavior is not completely new. Canny's 

[1986] original analysis presented something along these lines when trying to char­

acterize Xzc, the mean distance between zero-crossing of f' and Xmax, the distance 

between adjacent maxima in the noise response to the filter f. This was used as a 

constraint to limit the number of peaks in the response. 

7. Summary 

Now the appropriate tools are gathered to attack the grouping problem and to set 

the ground for integration: namely choosing the appropriate support and representa­

tion. After briefly reviewing the notion of "dimension", we have seen that the Jordan 

curve definition was too restrictive, especially for passing from local to more global de­

scriptions. An approach from geometric measure theory was then introduced, leading 
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Characterizing complexity 

In Chapter 3 we introduced curve-like sets through the Hausdorff measure and studied 

their local properties: densities and tangents. We also presented a discrete equivalent 

to curve-like sets, and interpreted this as the result of edge detection. In the same 

spirit as the decomposition scheme presented in Chapter 3, we will present here a 

finer classification of curve-like sets. This refinement will provide a means of deciding 

which representation should be used for a grouping process. 

In order to assess the complexity of the tangent map, we will use a variant of an 

approach due to Minkowski. Originally Minkowski's approach consisted in covering a 

set with balls of radius €, and computing the measure of the dilated set. The rate of 

growth of this measure as scale E changes can be linked to the complexity of the set. 

Our approach differs in the way that the dilation is achieved; in particular, it will 

not be done isotropically. After reviewing the standard technique, we will present 

our variation. The end result will be a covering of the tangent map with oriented 

segments of "size" 2E. The rate of growth of the measure of the dilated sets with 

respect to scale in a neighborhood of a fixed scale 6 > 0 will provide our normal and 

tangential complexity measures. This chapter is the heart of the thesis. 

1. Minkowski polynomials 

1.1. Isotropic dilations. Minkowski dilations are routinely used in mathe­

matical morphology [Matheron 1975, Serra 1982], and for the estimation of fractal 

dimension [Falconer 1990, Tricot 1995]. The approach consists in creating a new set, 

which is the Minkowski sum of the original set with a dilating kernel, sometimes called 
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a structuring element. The dilation is done isotropically over the set. More formally, 

given a set E C R 2 , we have 

Definition 4.1 (Dilation [Serra 1982]}. The dilation1 of a subset E of R 2 by an­

other subset F of R 2 , called structuring element, is obtained through their Minkowski 

sum 

E ffi F {a+ b, a E E, bE F} 

where here denotes a vector sum2 • 

An example of the isotropic dilation of a curve with a ball is shown in Fig. 4.1. 

In fractal analysis, the case of a dilation with a ball is often called the Minkowski 

sausage. Dilations with other shapes (squares, segments, etc.) lead to generalized 

Minkowski sausages [Tricot et al. 1988]. 

Remark 4.1. In the case where the dilation is done with a ball as structuring ele­

ment, we will write E(f) forE ffi f.B. The resulting set can also be thought of as the 

set of points that are at a distance from E that is smaller than f.: 

E(€) ={yE R 2
: (3x E E) lx -yl < t:}. 

1.2. The Minkowski functional. When dilating with balls B of radius t:, the 

n-volume of the dilated object (for sets E C R 2 , the studied measure will be the area 

and will be denoted by 1·1 2) can be computed, and its rate of growth with respect to 

f. is related to the complexity of the set. 

Example 4.1. To illustrate the concept we will take three elementary examples: a 

point, a segment of length l, and a circle of radius r. Dilating each set with a ball of 

radius f gives us three different Minkowski sausages: a ball in the case of the point 

and the disk, a "wiener-shaped" object in the case of the segment (see Fig. 4.2). The 

corresponding areas for the dilated sets are: 

1 Matheron (1975) actually calls this 'dilatation', but the term 'dilation' is more common in mathematical 
morphology. 

2 Formally, the definition needs another twist. Considering F:r = F EB {x }, then the set {z :En Fz :#; 0} of the 
points z such that E hits the translate F,., is called the dilation of E by F. We deliberately omitted this step, since 
in this thesis our structuring elements will always be balls which are symmetric. 
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FIGURE 4.1. Illustration of a Minkowski dilation with a ball ofradius L In black is 
the original set, in grey is the resulting dilated set. The resulting set is often called 
a Minkowski sausage. 

• for the point 

( 4.1) 

• for the segment of length l 

(4.2) 

• for the disk of radius r 

(4.3) 

This simple example just illustrates that for some subsets E of R 2 , 

( 4.4) 

where the functions <P, 1/J, and 1 are independent of the scale t. Equations such as 

Eq. 4.4 are called Minkowski functionals [Matheron 1975]. In the case of image curves, 

we would like to detect which term dominates as f is changed. Intuitively we have 

(i) terms in t:0 : intersections and "dense" (space-filling) regions, 

(ii) terms in c1: parts that extend along their length, 

(iii) terms in c2
: line endings, points of high curvature, sharp tangent discontinu­

ities. 
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point segment disk 

2t: 
f-------1 2r 

2t: f-------1 

f-------1 

J~ 
2(r + t:) 

FIGURE 4.2. Dilating simple sets with a ball. Three elementary sets are shown 
with their corresponding dilations: (left) a point, (middle) a segment of length l, 
(right) a disk of radius r. 

Suppose we were able to detect these regions. Then, for places in which surface 

information dominates (terms in t:0 ), any attempt to integrate the information from 

the tangent map using one-dimensional support would not end up in an efficient 

representation. A field or density representation would be better to describe the 

image than counting the number of parts or following the path. To be more specific, 

let us recall the Perceptron example from Chapter 1. The interpretation with respect 

to what we just laid out could be as follows: when seen as a whole, the dominating 

term in the Perceptron spirals is the area covered, not the number of components, 

not the length. The areas of the dilated sets being more or less equivalent, the 

patterns are almost indistinguishable. Yet, the distinction between the two is the 

number of components: one has a single curve, while the other has two. Since the 

term corresponding to the number of components (term in t:2 ) is not dominating, the 

differentiation between the two is hard. 

When the dominating term is the one with respect to linear measure (length or 

perimeter), then grouping under a curve representation (i.e. with a one-dimensional 

support) results in a useful and efficient description of the scene. This is the case for 

global curve detection. 
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1.3. The Steiner formula. In some cases, the Minkowski functional can be 

linked to metric properties of the set. For instance, if the set E is a non-empty 

compact convex set, and if the dilation is done with a ball B (Minkowski sausage), 

then the area IE(c)l2 is determined by the Steiner formula [Matheron 1975): 

where the Wk are called the Minkowski coefficients. For n = 2, we have that Wo 

is the area of the set E, 2W1 is the perimeter and W 2 j1r is the number of compo­

nents [Matheron 1975]. Recalling the examples for the point, segment and disk in the 

previous section, the last statements can be easily verified. 

Although the Steiner formula looks very appealing, it cannot be applied in our 

case because the sets studied are non-convex. However, we would like to keep in mind 

the "idea" behind this formula, that different coefficients in the polynomial relate to 

metric properties of the set (the area, the perimeter and the number of components). 

We might then seek the functional for more complicated but still simple examples 

such as: (i) a pair of parallel lines; (ii) a pair of crossing lines; or (iii) a set of n 

equidistant parallel lines. We shall study these elementary sets to understand our 

complexity proposal, and to infer the various parameters needed for the analysis. 

This is the subject of Chapter 5. 

1.4. Rate of growth and complexity. Our complexity measure will reflect 

the dominating term at a scale € for lE( €) b. For instance, in the case of the segment of 

length l, in the neighborhood of 0, the term in €1 dominates, while in the neighborhood 

of oo, the dominating term is the one in €2• At a given scale c, if the functional grows3 

like €
01

, we let the complexity be 2 - a. In the small (around 0) the segment looks 

like a "line" ( 2 a = 1), in the large, i.e. seen from very far away (around oo), the 

segment looks like a point (2 - a = 0). 

3The reader interested in a more complete treatment of rate of growths should consult [Tricot 1995] 
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1.4.1. Log-log domain. Given a set E, and its Minkowski sausage E( c), the rate 

of growth around zero gives the well-known Minkowski-Bouligand4 (fractal) dimension 

fl.(E). ForE C R 2 , this is formally written as follows 

(4.5) fl.(E) = limsup (2- log IE(t)h) 
(-+0 log f. 

Applying this formula to the point, segment, and disk examples, gives dimensions of 

0, 1, and 2 respectively. 

In applications however (i.e., when working with measured data), instead of esti­

mating this limit, a standard practice is to go into the "log-log domain" and determine 

the rate of growth from the slope of a straight line fit to the data [Dubuc et al. 1989]. 

For the Minkowski-Bouligand dimension, the log-log data used are 

(4.6) 

In practice, a finite list of scales { tk}, k = 1, 2, · · · , K, is used and the estimated 

fractal dimension .6.( E) is obtained by fitting a straight line to the data points 

(4.7) 

Since the fractal dimension is defined in a neighborhood of zero, the tk are chosen to 

be small. The € and t 2 in the denominators of Eqs. 4.6 and 4. 7 are just a trick to 

obtain the dimension directly from the fit and not having to do a small arithmetic 

adjustment. Similar formulas will also be used for our measures of complexity. 

Before jumping to our complexity measures, we will further illustrate the ap­

proach by providing log-log plots for the point, segment and disk examples (see 

Fig. 4.3). The data for these three sets (that can be calculated from Eqs. 4.1-4.3) are 

displayed on the same plot, together with their straight line fits. The slopes of these 

fits provide the estimate of the estimated fractal dimension A( E). 

Two different ranges of scale were selected, leading to two sets of estimates. The 

results are shown in Table 4.1. The first column gives the estimates for the scale 

range 2-15 S t ·::::; 2-lO (the points in Fig. 4.3 are those corresponding to this scale 

range). The results are clearly as expected. The ones for the coarser scale range, 

2-5 S E S 2°, are more intriguing, since they differ from the expected values (i.e., 

4 Also called the Cantor-Minkowski dimension. 
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E !:t.(E) !:t.(E) 
2-15 ~ t ~ 2-10 2-5 ~ t ~ 2° 

point 0.00 0.00 

segment 1.00 0.75 

disk 2.00 1.64 

TABLE 4.1. Estimating the fractal dimension of simple sets in R 2
• This table gives 

the estimates obtained while fitting a straight line to the respective log-log data 
(Eq. 4.6). The difference between the two columns is the range of scales chosen. In 
both cases, 10 equidistant points in the log-log domain were computed. 

the topological dimensions: a point is 0-dimensional, a segment is !-dimensional, and 

a disk is 2-dimensional). One reason for this discrepancy is that, over this range of 

scales, the terms in c2 are coming into play (if this is not intuitive, the reader should 

go back to Eqs. 4.1-4.3 and 4.5), inducing errors in the estimation of the dimension. 

This behavior has been observed in the past, and was the main justification for the 

development of a new technique for estimating the fractal dimension of graphs of 

functions: the variation method [Tricot et al. 1988]. It was noticed that, in the case 

of the Minkowski sausage, when the scale was too large, it induced "rolls" on the 

dilated set, which themselves induced a concavity in the log-log plot, affecting the 

estimates of the dimension [Dubuc et al. 1989]. This is one of our main motivations 

for splitting the dilations into their normal and tangential components. 

2. Oriented dilations 

One of the key differences between our approach and the standard fractal analysis 

techniques is that the dilations will not be done isotropically, but will adapt to the 

local structure of the set. We call them oriented dilations, and we will show that they 

are necessary for separating sets of different complexity. Let E be a line segment. 

Fig. 4.4a shows the dilation with a ball, while Figs. 4.4b,c illustrate the normal and 

tangential dilations. The normal and tangential dilations become possible, of course, 

because we have a notion of (Besicovitch) tangent at each point. 
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log( lE( e:) !2/ e:2) 

25 -- 20 

15 .... 

- 10 

5 

10.5 11.5 12 12.5 13 13.5 
log(l/t:) 

FIGURE 4.3. Obtaining the complexity from log-log plots. In this example we show 
the Minkowski-Bouligand log-log plots (Eq. 4.6) for a point (stars), a segment of 
length l = 1 (triangles), and a disk of radius r = 1 (diamonds). The rate of growth 
can be obtained from the slope of the straight line fit to the log-log data. 

t 

(a) (b) (c) 

FIGURE 4.4. Isotropic and oriented dilations. (a) isotropic dilation with a ball of 
radius c. (b) normal dilation (c) tangential dilation. Oriented dilations are possible 
because of the intermediate representation provided by the Besicovitch tangent sets. 

Definition 4.2 (Normal and tangential dilations). Let E be a curve-like set, 

and r its tangent map. The normal dilation EN( f.) of E at a scale f. is the dilation of 

the set E with the segment (-f., €) in the direction normal to the tangents () E e( X) 

at x (Fig. 4.4b). The tangential dilation ET(t) is obtained by dilating E with the 

segment ( -f, f) in the direction of the tangents (Fig. 4.4c). 
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This departure from the standard Minkowski dilation approach will be essential 

for our analysis, since it will segregate the classification of curves from textures (using 

normal dilation), from the one of dust from curves (using tangential dilation). 

2.1. Applying oriented dilations to test data. One way of building intu­

itions about the implications of oriented dilations and discrete complexity maps is 

through computational experiments. In the following examples, the dilation will be 

done at two scales, E1 and E2, with E1 < E2, that were carefully chosen to highlight 

various issues. The dilated sets will be displayed with two different greys: the darker 

grey for the smaller scale; and the union of the darker and the lighter grey for the 

dilation at the larger scale. The case of the Kanizsa pattern is shown in Fig. 4.5, 

where on bottom is displayed the result of the tangential dilation, and on the top 

is shown the normal dilation. A close-up of the process is shown in the middle and 

right columns of Fig. 4.5. Taking a closer look, we see first that in the neighborhood 

of the largest scale E2 : 

(i) the growth of the normal dilation within the grating patch has stopped because 

it is saturated (to verify this, just look at the top left panel). For the top and 

bottom parts of the rectangle, the growth can continue well beyond E2 • 

(ii) for the tangential dilation, the growth is saturated everywhere in the pattern, 

except at the four corners, and at the tips of the pinstripes. 

A technical point now arises. The local approximations, the discrete tangents, have 

a length and a width that we call normal and tangential extents (denoted WN and WT 

respectively). These stay fixed when doing the dilations, but then have initial values 

that are set beforehand. In the top right panel, one can see the effect of setting the 

tangential extent smaller than the size of a pixel (it looks like a dotted pattern rather 

than a continuous line). In the bottom right panel, we see the effect of the normal 

extent: the width of the dilation. The chosen values for these two parameters will 

help overcome the effects of digitization as shown in the next chapter. 

The second example shows a closeup of the tangential dilation for one of the 

Ullman discrete tangent maps. The results are shown in Fig. 4.6. What can be seen 

here (Fig. 4.6b) are the "star-shaped" patterns obtained on the small blobs, while, for 

the larger blob, the dilated set more or less resembles the original set (except for its 
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+--.··.·.· ~~ . 
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! 

FIGURE 4.5. Oriented dilated sets for the Kanizsa pattern (Fig. 1.7a). Top row 
gives the normal dilation, while the bottom row is for the tangential dilation. Going 
from left to right shows increasingly large close-ups at the corner of the rectangle 
discrete tangent map dilations. 

thickness). This is due to the difference in the rate of growth for these two types of 

objects, and illustrates the point that tangential dilations are sensitive to curvature, 

making them useful to detect regions of high curvature. 

Fig. 4. 7 displays the tangential and normal dilations on the hair and shoulder 

regions for the discrete tangent map of the Paolina image. In the shoulder region 

(Fig. 4. 7a,b ), the normal dilated set seems to grow linearly, while the tangential 

dilations saturate very early on. In the hair region (Fig. 4. 7c,d), the normal dilation 

stops growing at an early stage, leading to a nil (zero) rate of growth. Being able 

to capture the rate of growth and select the appropriate scale, will provide anchors 

for perceptual grouping. This grouping process could then select regions that extend 

along their length (such as the shoulder), but could avoid textures (such as those 

encountered in the hair region). Although this is still an intuitive statement, it will 

be clearly laid out in the next chapter. 

88 



0 

0 

CHAPTER 4. CHARACTERIZING COMPLEXITY 

(a) ta.ngentia.l dilation (b) tangential dilation: zoom 

FIGURE 4.6. Tangential dilation for the Ullman pop-out figure (Fig. 1.5a). 

Density vs continuity. From the examples in the previous sections, we can 

provide a second justification for oriented dilations (the first being given in Sec­

tion 1.4.1 ). The normal dilations provide a way of testing the density or "space­

fittingness" of a set, while the tangential dilations will test for continuity (look back 

at Fig. 1.9). These concepts will be captured by the normal and tangential complexity 

indexes induced by the oriented dilations, in the neighborhood of a fixed scale 8 > 0. 

3. A measure of complexity 

3.1. The normal complexity. The local information contained in the tangent 

map r can be used to calculate what we will call the normal complexity CN( 8) of a 

curve-like set at a given scale 8. The main idea is to look at the rate of growth of 

IEN(c:)l2 in the neighborhood dictated by a scale 8 > 0. In fractal analysis [Tricot 

1995], the rate of growth of the measure of isotropically dilated sets, E(c:), is studied 

in the neighborhood of zero. If the area IE(c:)l2 , is of order a, the fractal dimension 

is 2 - a. Here we rather consider the left derivative of the rate of growth, evaluated 

at 8 > 0, and call this the normal complexity CN(8) for E. We stress that, since our 

measures are evaluated at a finite scale, we refer to them as complexities rather than 

fractal dimensions, even though some of the formulas are analogous. 
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(a) shoulder: normal dilation (b) shoulder: tangential dilation 

(c) hair: normal dilation (d) hair: tangential dilation 

FIGURE 4.7. Oriented dilations for the Paolina subregions. 

Definition 4.3 (Normal complexity). Let E be a curve-like set and r its tangent 

map. Let EN( t) be the normal dilation of Eat scale c, and let I ·lz denote its area. 

Then the normal complexity log-log plot is defined as follows 

(4.8) 

The normal complexity, CN( b') at scale b' > 0, will be the left derivative of the normal 

complexity log-log plot evaluated at c = b'. 
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Remark 4.2. Two aspects of this definition require clarification. First, the "trick" 

in the denominators is to ensure that the resulting number corresponds directly to 

the expected topological dimension for simple sets. We could have also considered 

the log-log plot 

(4.9) 

calculated the left derivative at &, say a, but then we would have had to set CN( &) 

2- a. Secondly, (if one forgets for a moment about the left derivative), this definition 

can be interpreted as finding the tangent of the log-log plot at a given scale d 

a= dlog IEN(t)h I 
dlog f ~=o 

To ensure existence however, we need to consider the left derivative. 

Returning to Paolina (Fig. 4. 7): in the hair region, the rate of growth a is ap­

proximatively 0 at the chosen scale&, thus the complexity at this scale is 2- a~ 2 

(indicating a texture). For the shoulder, the rate of growth is linear (a~ 1), leading 

to a normal complexity of 2- a ~ 1 (indicating a curve). To develop a more solid 

intuition about normal complexity we next show how to calculate it for several basic 

patterns. These calculations are based on the following lemma: 

Lemma 4.1. Suppose IEN(f)l2 = af0 + bt1 + C(?. Then the normal complexity at 

scale d will be 

(4.10) 

PROOF. From I EN( t)l 2 we obtain the following normal complexity log-log plot 

Setting x = log(l/t) (equivalently f =e-x), we can rewrite the previous equation as 

follows 

(x,f(x)) = (x,log(ae2
x + bex +c)) 
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2ae2x ± bex 
ae2x ± bex ± c 

_ 2a ± be-x 
- a ± be :c ± ce 2:c 

0 

Example 4.2 (A set of n equidistant line segments). If E is the set composed 

of n equidistant line segments of length l, where 80 > 0 is the spacing between the 

lines, then 

(4.11) 
if t < 8o/2 

otherwise 

and, from the last lemma, 

if 8 < 8o/2 
( 4.12) 

otherwise. 

The result for a set E composed of four lines of unit length is shown in Fig. 4.8. 

Notice the discontinuity at 80 /2 and the decreasing behavior of the complexity after 

this point. We can show that CN( 8) will be decreasing for 8 ~ 8o/2, therefore the 

normal complexity attains a maximum for 8 = 8o/2, for which 

1 
2--. 

n 

In the case of two parallel lines, the normal complexity will therefore be smaller than 

1.5, and, for a given 8, we now know that, if the computed normal complexity is 

bigger than 1.5, the object is more "complex" than 2 parallel lines. In Chapter 5 we 

will generalize this example to arbitrary finite sets of lines with the same orientation. 

The discontinuities in the last example are key to appreciate the behavior of the 

normal complexity (see Fig. 4.8b for instance). Remember, our definition involved 

taking the left derivative at a fixed scale instead of looking at the rate of growth in a 
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2 

0.5 

~-2o--~--1~o---~o ----:':10~~-""77'20 log2 ( 8) 

(a) (b) 

FIGURE 4.8. Plotting the normal complexity of a set of equidistant parallel lines. 
(a) the pattern to be studied: n equidistant lines with an inter-line spacing of &o = 
2-3 (b) its normal complexity: a discontinuity occurs at & = Oo/2 with CN(&o/2) = 
2- ~-

neighborhood around zero or at infinity. What can insure that this definition is well 

formed? What values should it take and do these correlate with the complexity of 

the set? 

From the structure of curve-like sets, we would like show that the normal com­

plexity is indeed well-defined. For this we could first show that I E( E) 12 is a concave 

function of E and then, using a standard result from analysis [Valiron 1966], we would 

get that the left and right derivatives of the complexity log-log plot exist everywhere. 

A proof for the concavity of I E( E) l2 would most probably use Theorems 3.10 and 3.11. 

This will provide the connection between Minkowski dilations, normal complexity and 

the Hausdorff measure of the curve-like set E. Our main conjecture is therefore 

Conjecture 4.1 (Existence of normal complexity). If Eisa curve-like set, then 

the corresponding normal complexity CN( 8) exists for all 8 > 0. 

Although we do not have a complete proof for this result, we will present here 

several results in support of it. First we recall the following Lemma from [Dubuc & 

Dubuc in press]: 

Lemma 4.2. If A is a bounded subset of the real line, then the Lebesgue measure of 

the Minkowski sum of A with ( -t, t), where t > 0, is a concave function oft. 
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PROOF. Let A(t) ={a+ x: a EA and lxl < t}. For all t, A(t) is a bounded open 

subset of the real line, therefore it consists of a disjoint union of intervals, each of 

which is at least of length 2t. If f. is positive, then A( f.) is a finite union of open 

intervals (ai, bi), i = 1, 2, · .. , N. We can suppose that the ai and bi are such that 

a 1 < b1 < a 2 < b2 <···<aN< bN. 1ft> f., we can compute the length of A+ ( -t, t) 

as a sum of N + 1 functions fi, where 

with 

• f 0 (t) is the measure of A(t) n ( -oo, al), 

• fi(t) is the measure of A(t) n (ai,ai+l), for 1 :5 i :5 N 1, 

• JN(t) is the measure of A(t) n (aN, oo ), 

fo(t) t-f. 

{ 
2(t- €) + (bi- ai) 

ai+l- ai 

1sisN 1 

if t t :5 (ai+l- bi)/2 

if t- f.> (ai+l- bi)/2 

Since each of the h are concave, this is also true for the sum. This being true for all 

f.> 0, we get the final result. D 

Lemma 4.3. If E is a curve-like subset of [0, 1] 2 containing only lines with the same 

orientation, then I EN (f.) l2 is a concave function of f.. 

PROOF. Since E is composed only of curves with one orientation, there is only one 

normal that can be chosen. Let N11 be the line oriented normal to the pattern at y. 

Without loss of generality, we will assume that N11 is parallel to the x-axis. Since E 

is rectifiable, then from Theorem 3.10 we have that En N 11 is a totally disconnected 

set and we can write: 

From the last lemma we know that I ( E n N11 ) El) ( -€, t) 12 is concave. Since 

IEN(t)b = 11 

I(E n N11 ) EB ( -t, t)l2dy, 
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we obtain the final result. 

If Eisa curve-like set for which IEN(t:)l 2 is concave, then the complexity log-log 

plot corresponding to normal dilation will be concave. A standard result from analy­

sis (for instance, see [Valiron 1966]), that says that for a concave function the left and 

right derivatives exist everywhere could then be applied. However, the previous ma­

terial does not provide a proof in the general case. Constraining the set to a bounded 

region can still be kept since it makes sense for computer vision applications. One 

would have however to allow different orientations (not only one orientation). The 

argument might then use the result with respect to the multiple tangents separation 

theorem. This time, given a point x subtending non empty tangent set, the intersec­

tion of a circle centered at x with the tangent map, will provide a totally disconnected 

set. We suggest using this to prove the concavity of the area of the normal dilation. 

With this background, and accepting the existence of normal complexity, we now 

calculate bounds on its value. It is instructive, once again, to consider the case of 

finite linear sets. This will predict the values taken by our algorithm developed at 

the end of the chapter. 

Theorem 4.1 (Normal complexity bounds for finite linear sets). If E is a 

curve-like set composed of a finite number m of line segments, then the normal com­

plexity takes values between 1. 0 and 2. 0. 

PROOF. Let the segments be s1,s2 , • • • ,sm, each of finite length L(si)· For the 

upper bound, consider a, the left derivative for (logt:,logjEN(t:)b) at t = o. Then 

CN(o) = 2- a. Since IEN(c)l 2 is a monotonic (increasing) function, then a ~ 0, 

giving the upper bound 2.0. 

For the second inequality, notice that, for any t, the area of the dilated set can 

be split into two parts, a linear part (for the region where growth still occurs) and 

a constant part (for the saturated regions). Therefore the area can be written as 

IEN(c) = a+ bt:. Since the number of segments is finite, there will be only a finite 

number of scales for which the parameters for the area will change. Then using 

Lemma 4.1, we obtain that 
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since a, b, J > 0. D 

3.2. The tangential complexity . We just defined a complexity measure 

that was based on normal dilations. Its main feature was to determine whether a 

curve was dense (i.e., space-filling) or not. But the normal complexity alone is not 

sufficient (in the same spirit as length and shape were not sufficient for Ullman's 

saliency measure): we also need to test for continuity. This will be done through 

tangential dilations, which will enable discrimination between "curves" and isolated 

events (which we shall call "dust"). 

An intuitive illustration of why we need to consider the distribution of the tan­

gents in the tangential direction (actually, it could be any direction, provided it is 

different from the normal direction) is as follows. Take a vertical, unit length, line 

segment centered in the unit square. Divide this segment into n subsegments of equal 

size, then shift each subsegment horizontally a random distance, but such that it still 

stays within the unit square. The resulting set has the same normal complexity as 

the original segment, but its structure is very different. A test on continuity would 

detect the difference, and this is one of the characteristics of the tangential complex­

ity. Looking only in the normal direction (and then only using normal complexity) is 

therefore not enough since we do not know the structure of the set a priori. This was 

not the case in previous work [Dubuc et al. 1989], where the objects to be studied were 

graphs of continuous non-constant functions. Taking only the normal component was 

then sufficient to characterize the complexity of the curve. 

Another important technical detail needs to be discussed. In the case of normal 

complexity, we considered the rate of growth of the area of the dilated set. For 

tangential dilations, the area of the dilated set is not the appropriate measure to take, 

since it is zero for some curve-like sets (the area of the tangential dilation of a line, 

for instance, is zero). To obtain a definition analogous to what we had for the normal 

complexity, we will take a measure of length of the dilated set. Since, in some cases, 

the dilated set can cover an area, we specifically consider the perimeter [Santal6 1976], 

i.e. the length of the boundary of the dilated set, 8Er(£), denoted 18Er(E)j1. 
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Definition 4.4 (Tangential complexity). Let E be a curve-like set, and r its tan­

gent map. If ET( f) is the tangential dilation of Eat scale f, and if jaET(e)h denotes 

its perimeter, then the tangential complexity log-log plot is defined as follows 

(4.13) 

The tangential complexity CT( 8) at scale 8 > 0 will be the left derivative of the 

tangential complexity log-log plot evaluated at f = 8. 

To illustrate, let E be a set of lines with the same orientation. Dilate the set 

tangentially and look at the rate of growth of the perimeter for the dilated set. For 

instance, a line of length l becomes a line of length l + 2f when dilated tangentially. 

Therefore we have 

The "measure' chosen being the perimeter, we expect the rate of growth, a, to 

be between 0 and 1 (consider the example of the line segment to convince yourself). 

We defined CT( 8), the tangential complexity, to be 1 a. In our example, when l is 

large with respect to f, the rate of growth is small and a is "close" to zero, and E has 

a "curve" structure: continuity and smoothness are verified. Otherwise, if l is small 

with respect to e, then a is closer to 1 and the object would be better described as 

having a "dust-like" or curve-free structure. For large 8, i.e. from far away, a line is 

seen as a point. Thus it is necessary to consider the scale 8 in the definition as well. 

The following lemma is the tangential equivalent to what we had in Lemma 4.1. 

This will then provide answers to elementary calculations, and will confirm quite a 

number of things in the case of sets with a finite number orientations. Then, the case 

of a circle, where there is a continuum of orientations, will be studied. So we first 

start with 

Lemma 4.4. Suppose 1a ET( f) h = a€0 + bf1 
• Then the tangential complexity at scale 

8 will be 

( 4.14) 

PROOF. The proof is similar to the one of Lemma 4.1 and was omitted here. D 
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CT(6) CT(8) 
1.2 1.2 

(a) tangential complexity: line segment (b) tangential complexity: circle 

FIGURE 4.9. The tangential complexity for (a) a single line of length l 1, (b) a 
circle with radius r = 1. 

Example 4.3 (Single line, equispaced lines). If E is a line of length l, then we 

have 

(4.15) !8ET(t:)it = 2(l + 2c:) 

and from the last lemma we get 

(4.16) 
l 

CT(J)= l+2J 

A plot of CT( J) with respect to scale J for a line of length l = 1 is shown in Fig. 4.9a. 

Notice the sigmoid shape which leads to the following observations: 

(i) for a given line of length l to have a tangential complexity CT( J) bigger than 

some value 0 < ll..T s; 1, we must have 

[ 2Jfl..T 
> 1 -fl..T' 

therefore making it easy to predict conditions in which a set will be character­

ized as being represented as curves (as opposed to dust), an issue that will be 

further discussed in Chapter 5; 

(ii) since l and € (also J) are coupled within this definition, we have that, for 

ljJ c, 

c 
CT(J) = -2, c+ 
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or in other words, a line of length l has the same tangential complexity at scale 

8 as a line of length 2l at scale 28, for instance; 

(iii) the tangential dilation is related to the idea that, as the scale becomes bigger, 

the half-perimeter of the dilated object diverges from the length of the curve. 

Example 4.4 (Circle of radius r). Let E be a circle of radius r. Try to imagine 

the tangential dilated set: it will be an annulus exterior from the circle of width ( 

(which itself can be calculated from E and r). Moreover, we get that 

loET(t)h 2rr (r + . ( ( ( I ))) sm arctan E r 

leading to the following tangential complexity 

( 4.17) 

A graph of the tangential complexity for a circle of radius r = 1 as a function of scale 

is shown in Fig. 4.9b. Notice that the shape is similar to what we had for the line. 

Changing the radius shifts the function. We therefore conclude that the tangential 

complexity of a circle is close to 1 when the radius is large with respect to the scale. 

The opposite situation, namely a small circle considered at a large scale, looks like a 

point and its tangential complexity will be close to 0; exactly as we would expect. 

Theorem 4.2 (Tangential complexity bounds for finite linear sets). If E is 

a curve-like set composed of a finite number m of line segments, then the tangential 

complexity take values between 0.0 and 1.0. 

PROOF. Let the segments be sb s2, · · · , sm, each of finite length L( Si). The upper 

bound follows from the monotonicity of loET(t)! 1• The rate of growth is bounded 

above by growth of all the segment line endings. In the worse case we therefore have 
m 

18ET(e:)h = 2(2mt + L L(si)) 
i=l 

and, from Lemma 4.4, we get the desired inequality 

C (8) Z::;-:1 L(si) 
T = 2 8 ":n L( ·) :::::: o. m + L.....1= 1 s~ 

0 
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In the next two chapters we will present results using a discrete implementation 

of Definition 4.4 and show that the tangential complexity will be sensitive to ends of 

lines, corners, and points of high curvature. The result saying that our definition is 

well-formed stays conjectural. We presented here the intuition behind the definition 

and showed that it made sense on elementary sets. 

4. Mapping complexity 

The complexity measures presented in the last sections depended on scale. This 

is a major departure from the standard 'fractal analysis' approach in which the rate 

of growth is studied around zero [Tricot 1995]. The other key difference is to make 

the complexity measure local in space, by computing it over a given compact region 

1t(x) centered at x. The normal complexity at x can be obtained by first restricting 

the dilation to the region n(x): 

( 4.18) 

where E0 = Enn(x). This means that the tangent sets considered from the tangent 

map are only those within 11( x) and the dilations are limited to this region. The case 

of the tangential dilation is slightly more complex and consists in not dilating any 

further than the region n( X)' therefore leading to ET( X' f.). 

Definition 4.5 (Complexity indexes). The normal and tangential complexity in­

dexes at x over a region 11(x) are denoted CN(x,tS) and CT(x,J) and are obtained by 

looking at the rate of growth of their local oriented dilations. More formally they are 

obtained as the left derivatives of their corresponding log-log plots 

( 4.19) 

for CN(x, 8), and 

( 4.20) 

for CT( x, tS). 
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Remark 4.3. In some cases, we will consider the entire set E within a bounding 

region n (in Chapter 5, for instance) . We then write CNL 8) and CT(·, 8) for the 

normal and tangential complexities restricted to the region n. 

In a similar fashion as we did in the case of the tangent map, we can bundle all 

the complexity indexes and build our main tool, the complexity map: 

Definition 4.6 (Complexity map). Given a curve-like set E and its tangent map 

r, we define the complexity map C to be 

C = U (x, CN(x, 8), CT(x, 8)). 
:cEE 

5. Computing discrete complexity maps 

Chapter 3 introduced curve-like sets, and we just developed a tool to get a finer 

classification of these sets at a given scale through the complexity map. Issues now 

arise of how to calculate or approximate the tangential and normal complexity of 

discrete curve-like sets. We end this chapter by describing, step by step, the algorithm 

used to numerically estimate the maps on the discrete tangent maps obtained from 

the edge/line detection operators. Once the algorithm is clearly laid out, we discuss, 

in the next chapter, decisions that need to be made about proper parameter choices. 

The algorithm consists of several steps. The dilations are done digitally, therefore 

the tangents must be projected onto an image. Once the tangent map is projected, 

the oriented dilations need to be performed and their measures need to be estimated. 

From the measures of the discretely dilated sets, the rate of growth is estimated 

through a best fit line in much the same way as presented in Section 1.4.1. The result 

of the fit provides the two complexity indexes, at each non-empty entry of the tangent 

map. Bundling these gives the discrete complexity map. 

5.1. Step 1: Projecting the discrete tangent map. The line/edge opera­

tors as presented in Chapter 3 provide the discrete tangent map at a given scale a. 

The first step toward the discrete complexity map consists in projecting the discrete 

tangents and generating the tangent map image. Each tangent within the discrete 

tangent map is attached to a pixel from the original image. We further subdivide 
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each pixel into an array of Px x Pu pixels and project each individual tangent from 

the discrete tangent map. Each discrete tangent can be thought of a "needle". It 

has an orientation fJ, a width WN (the normal extent) and a length WT (the tangential 

extent). The resulting image is what we call the tangent map image. 

As we will see in the next section, isotropic dilations could be done directly on 

the tangent map image but, for oriented dilations, the algorithm we used will link 

together the projection and the dilation into a single step. 

5.2. Step 2: Dilating the projected discrete tangent map. In order to 

compute the complexity we need to look at the rate of growth of the area of a dilated 

set around a fixed scale J > 0. Many dilations will be done in the neighborhood of J, 

so let { Jk} be the sequence of scales in this neighborhood that will be used to obtain 

the straight-line fit of the corresponding log-log plot. In the following subsections, 

the case of isotropic dilations will be presented first, since it is standard; then the 

technique to approximate the oriented dilations will be addressed. 

5.2.1. Isotropic dilations using distance transforms. The information in the dis­

crete tangent map will be used to generate the oriented dilations. If one only needed 

isotropic dilations, the dilated sets could be obtained by applying a dilation on the 

tangent map image as is currently done in mathematical morphology [Serra 1982]. We 

would then choose the appropriate structuring element and dilate the tangent map 

with respect to it in the neighborhood of a scale J. For instance if the structuring 

element was a disk (leading to a Minkowski sausage), then we would take a range of 

scales { ok}k in the neighborhood of J, and dilate with disks of radius ok by iterating 

through the list. 

Although mathematical morphology operations are appealing theoretically, the 

problem can also be solved in practice by applying distance transforms [Borgefors 

1984]. A distance transform is an operation on an input binary image (object- non­

object points) over a domain S, which returns a real value, the minimum distance 

from the point to the object, given a particular metric. The first step then consists 

in choosing the desired metric [Dubuc 1988, Borgefors 1986], and then in applying a 

distance transform to the image. For instance, in the case of the Minkowski sausage, 
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there exist simple algorithms that can give a good approximation to the Euclidean 

metric [Leymarie & Levine 1992]. Using one of these, one could first project the unit 

tangents on a discrete lattice and consider the result of the projection as the object 

points. The Euclidean metric distance transform of this binary image could then be 

used to assess the complexity of the object once the areas have been extracted. 

Isotropic dilations however are not appropriate to compute the complexity map, 

but will nevertheless be used in Chapter 5 to obtain a rough estimate for the local 

extent over which to do the analysis. The algorithm just described in this section will 

therefore be recalled later. 

5.2.2. Approximating oriented dilations. Section 2.1 stressed the need for ori­

ented dilations. One suggestion would be to develop oriented distance transforms. 

But due to our choice of intermediate representation (the discrete tangent map), we 

can do it much more easily in a very straightforward manner. Given a PostScript5 

interpreter, it is possible to use the features of PostScript to generate the approxi­

mated dilated sets. The end result is not efficient but has the advantage of being 

fast to implement and easy to debug, therefore ideal to generate a prototype. The 

main idea is to repetitively draw the tangent map with the appropriate unit tangent 

properties (normal extent, tangential extent, color). The generation of the oriented 

dilated set will therefore incorporate the projection step as well (Step 1). We now 

describe our approach in greater detail. 

Most drawing operations in PostScript are done through a "virtual pen" which 

has various properties: a width, a color, a tip shape, etc. Taking a wider pen generates 

wider lines. A red pen draws red lines, and so on. To simulate normal dilations, we 

will change the width of the drawing pen. To simulate tangential dilations, we will 

change the length of the unit tangents. Scale will therefore be linked to the width 

of the unit tangent (in the case of normal dilation), or to its length (in the case of 

tangential dilation). If for each scale 8k we draw the tangent map by changing the 

pen parameters (its size and color). Then there will be a direct correlation between 

the resulting "colored" image and the oriented dilation of the set. 

5 PostScript is a device-independent page description language developed by Adobe Systems Incorporated which 
has become the industry standard for printing high-quality integrated text and graphics. 
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5.2.3. Local extent. Another issue that needs to be discussed is the one of local 

extent. The complexity indexes within the complexity map are computed over a 

bounded region n( X). Since we are working on a square lattice, we will take n( X) to 

be a square with side n < 1 centered at x, therefore resulting in a square window 

of n X n pixels in image coordinates (where n = l n * N J ) . For a given X in the 

image domain subtending a non-empty tangent set in the discrete tangent map, we 

will restrain the computations within a bounded window f!( X) (an fl X fl window 

in image coordinates). Sliding the window over the image domain will eventually 

provide the discrete complexity map. 

5.3. Step 3: Estimating the measures and rate of growth. Once the 

dilated sets are generated, calculating their measures is very straightforward. A 

simple histogram on the data provides the result. Integrating through the histogram 

gives estimates of the measures at the various scales 6k in a neighborhood of 6. If 

HN(6k) is the number of pixels covered for the (local) normal dilation and HT(6k) is 

the one for the tangential dilation at scale 6k, then the discrete normal and tangential 

complexity indexes, denoted 6N(x, o) and 6T(x, o) respectively, are given by a straight 

line fit through the data: 

(4.21) 

for the normal complexity and 

(4.22) 

for the tangential complexity. Bundling the indexes gives us the desired discrete 

complexity map: 

Definition 4. 7 (Discrete complexity map). Given an image I, and f its discrete 

tangent map, we define the discrete complexity map 6 to be 

6 = U (x, 6N(x, a), 6T(x, 6)). 
xEDom(f) 

where x denotes a pixel in the image domain. 
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Remark 4.4. In our computations, dilations are defined as a set of "pixels". The 

distinction between area and perimeter did not apply, and we kept the same measure 

in both cases: counting the number of pixels of the dilated set. Experiments in 

Appendix B show that this approach leads to good approximations. The calculation 

of the perimeter would be possible but more computationally expensive. 

Corollary 4.1 (Bounds for discrete complexity indexes). Given a discrete tan­

gent map f, the discrete normal complexity index takes values between 1.0 and 2.0, 

while the discrete tangential complexity index takes values between 0.0 and 1.0. 

PROOF. Both complexity maps being generated by local linear approximations of the 

set by a finite number of line segments, we can apply two previous theorems (Thm 4.1 

and Thm 4.2) to obtain the result. D 

6. The parameters involved 

The algorithm to compute the complexity map of the discrete tangent map being 

clearly laid out, we can now list the various parameters that need to be determined. 

Starting from the original image, with resolution N, the discrete tangent map was 

obtained at a scale (j with Ne different orientations, and the algorithm for the discrete 

complexity maps needed the following parameters (see also Table 4.2): 

e the local extent f!( X) for the calculation of the indexes: here it will be set to 

a square f! X f!; 

• the scale for the analysis o > 0; 

• the range of scales over which to dilate { 8k}, k = 1, 2, ... , K or stated dif­

ferently, given 8, choose {8k}, its neighborhood, at which the dilations are 

done. 

• the subresolution for the projection of the tangents given by Px and py; 

• the extent of the projected tangents WT (tangential extent: original length) 

and WN (normal extent: original width); 

Two indexes need to be calculated for each position where there is at least one tangent, 

i.e. the tangential and the normal indexes. The above mentioned set of parameters 

will be different for each of these two. This is why in Table 4.2 we indicate by a 

subscript (N or T), the process to which it belongs. As far as the extent for the 
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Effect Parameter Symbol 

• Structure/ local extent nN,nr 

• geometry issues scale of the analysis fw, Jr 

neighborhood of Jr JTl . · · dr K 
' l l ' T 

neighborhood of JN dNt •·· dNK 
' ' ' ' N 

Numerical/ extents wr,WN 

I quantization issues precision (subresolution) (Px,Py) 

TABLE 4.2. Parameters to be set for the calculation of the complexity indexes. The 
subscripts reflect the fact that the values could be different for the tangential and 
the normal analysis. 

projected tangents are concerned, only one of the two is important in any case: the 

tangential extent, in the case of the normal dilations, and the normal extent in the case 

of tangential dilations. This is why the order in Table 4.2 is reversed for that entry. 

In the next chapter we discuss methods for automatically setting these parameters. 

7. Summary 

This chapter presented a technique that will be used to eventually partition the 

ensemble of (discrete) curve-like sets. It is based on a complexity analysis, done 

through normal and tangential dilations. The rate of growth of the area of the 

dilated sets provided the normal and tangential complexities which, when restricted 

to a bounded region in space, form the basis of our complexity measure. The different 

steps of the algorithm to obtain discrete estimates of both the normal and tangential 

complexity indexes were laid out, and the parameters to be set were clearly presented. 

We have shown that the discrete normal complexity index was a number between 1.0 

and 2.0, and the tangential complexity index a number between 0.0 and 1.0. How 

should this new layer of organization be used to group the edge elements and prepare 

the ground for grouping? This is the question we shall address in the next chapter. 
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From complexity to decision 

Let us return to questions of computer vision, and ask which types of geometric ob­

jects are natural for early representations. For instance, looking back at Paolina's 

discrete tangent map, we notice the emergence of different types of curve-like sub­

structures (see Fig. 5.1 ). Curves are clearly among them, as are textures. But is 

texture a distinct class; is there a difference between texture flows, as they arise from 

hair patterns that are well combed, and turbulent patterns such as wind-blown hair? 

What sort of object is the edge of the Kanizsa pinstripes? The complexity map 

provides an answer, by classifying discrete curve-like sets into: 

dust-like: sets in which the tangent map is sparse, the object almost nowhere 

extends along its length locally; 

curve-like: discrete tangent maps for which a curve representation is completely 

adequate. Objects extend along their length, like Paolina's shoulder, and the 

density of other tangents is low almost everywhere along it in a local neigh­

borhood; 

turbulence-like: tangent maps that are characterized by objects that do not 

extend along their length but are dense in the normal direction; e.g., Paolina's 

uncombed hair or the edge of a grating; 

texture-flow-like: tangent maps for which the objects extend along their length 

and are also dense in the normal direction; e.g. Paolina's combed hair or the 

grating part of the Kanizsa pattern. 

In this chapter we show how to use the complexity map to partition the tangent 

map into these classes. In the process, we show how to set the various parameters that 
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'I 

(a) zoom on back: dust? 

_, l 
I 

(b) zoom on hair: turbulent? 

(c) zoom on shoulder: curves? 

(d) zoom on hair: flow? 

FIGURE 5.1. Curve-like sets substructures. Zooming in different parts of Paolina's 
discrete tangent map highlights different types of curve-like substructures: dust 
(spurious responses in the back), curves (the edge of the shoulder), flow (well­
combed hair), and turbulence (wind-blown hair). 

emerged from the last chapter. From a purely mathematical perspective, these pa­

rameters are arbitrary. However, from the perspective of computational vision, there 

are two principles that dictate basic relationships between them. We describe these 

principles in Section 2, and then derive constraints on the parameters by studying 

the behavior of our measure on simple sets. The key idea is that image segmentation 

will be lifted onto the tangent map and effected through notions of complexity. 
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0 0.5 1.0 

1.0 

1.5 

2.0 

FIGURE 5.2. THE COMPLEXITY SPACE. The tiled square represents the space of 
complexity indexes pairs that can be encountered. The normal complexity varies 
between 1.0 and 2.0 while the tangential complexity is between 0.0 and 1.0. Each 
of the corners of the complexity space corresponds to a different type of curve-like 
substructure. Partitioning the complexity space will result in an image segmentation 
scheme bound to the structure of the objects in the visual scene. 

1. Indexing representations through the complexity map 

The four patterns listed in the introduction arise as the extrema in normal and 

tangential complexity space. In general, the space of valid tangential/normal com­

plexity pairs is a subset of R 2, namely [0.0, l.O]x[l.O, 2.0]. This is because the tangen­

tial complexity is a number between 0.0 and 1.0, and the normal complexity a number 

between 1.0 and 2.0. Partitioning this space allows us to organize the space of pos­

sible patterns into equivalence classes (see Fig. 5.2). In this thesis the partition will 

consist in setting two values 1.0 < tJ..N < 2.0 and 0.0 < tJ..T < 1.0 and then looking 

at the four regions that they induce. This provides us the following nomenclature: 
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low normal complexity: 1.0 ~ CN(x, o) < /:).N 

low tangential complexity: 0.0 ~ CT(x, o) < /:).T 

low normal complexity: 1.0 ~ CN(x,o) < !.lN 

high tangential complexity: /.).T ~ CT(x, o) < 1.0 

high normal complexity: /:).N ~ CN(x, o) < 2.0 

low tangential complexity: 0.0 ~ CT(x, o) < /:).T 

high normal complexity: /:).N ~ CN(x, o) < 2.0 

high tangential complexity: /:).T ~ CT(x, o) < 1.0 

We will show shortly that under an appropriate choice of parameters this parti­

tioning scheme can successfully segment an image in terms of these various kinds of 

curve-like substructures. 

2. The anchor problem: verifying the curve assumption 

Our approach will be to focus on the top right quadrant in the complexity space 

(see Fig. 5.2), i.e. curves1 and verifying the guiding curve assumption from Chap­

ter 3, namely that {i) a curve must extend along its length; (ii) it should not be 

space-filling; and (iii) the number of discontinuities must be negligible. 

We claim that a set satisfying these conditions should belong to the upper right 

corner of the complexity space. Detecting regions in an image for which this is true 

constitutes our anchor problem, i.e. verifying the curve assumption. Recalling our 

philosophical proposal from Chapter 3, we claim that curves are the objects for which 

the notion of length is meaningful and of practical value. Now, if there are curves in 

the image, what is their maximal local extent? How can we make the local to global 

transition? Curves in the shoulder region of Paolina have a large local extent while 

those in the hair region have a small one. The sole fact that the discrete tangent 

map was obtained from edge-detection operators puts a lower bound on the size of 

the local extent to verify the curve assumption. But it could be verified on larger 

extents. For normal complexity, we will seek the largest extent fl for which the curve 

1 From now on in this chapter, when refering to "curves", we imply objects from the upper right corner of the 
complexity space. 
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[ 

[ 

(a) normal complexity tree (b) neigh boring tangents 

FIGURE 5.3. Relative complexity and wiggles. (a) normal complexity tree: a line 
is simpler than a grating which is simpler than a jumble of random lines (b) com­
patibility between pairs of tangents: a line is simpler than a wiggle. 

assumption is verified over at least one point in the discrete tangent map, and use this 

local extent to compute the complexity. This provides the following notion of relative 

complexity: a line is simpler than a grating, which itself is simpler than a bunch of 

oriented random lines, as illustrated in Fig. 5.3a; we call this the normal complexity 

tree. The lower in the tree an object is, the simpler the object is, but always relative 

to the rest. On the right are shown two samples of pairs of local orientations with 

their centers both displaced € apart. This illustrates tangential complexity, for which 

a line is simpler than a wiggle. The first pair is aligned, while for the second pair, the 

orientation of the bottom tangent is random. How can we pass from one to another 

with the shortest path? If the length of the link correlates with the complexity of the 

interpolated piece of curve, a line is simpler than a wiggle. Both the tangential and 

normal complexity can capture the last statements and we will set the parameters 

111 



0 

0 

I I 
I I 

I 
I 
\ ...., ___ + 

--

CHAPTER 5. FROM COMPLEXITY TO DECISION 

\ \ 
\ 
\ 
1---

-----+-
/~~ ..... I 

\ I 
\ I I 
\ \ I I 

\ I I 
\\ 1 I 

' I ,, 11 

''' // '''/ \ ,, 

.... 

\ 

' 

~ ..... ~:......-_,.,...._ _..,., 
I '' I '\.\ 

\ \ \ 
\ \ \ 
\'\. I I ... , I I ,,, I 

......................... ,....?"- ...... 

FIGURE 5.4. Transversality and quantization revisited. 

for this to be so. But this process needs also to take into account the constraints 

imposed by the discretization, namely that the detection of tangents tends to spread 

both spatially and in orientation. Since the operators were originally seeking pieces 

of curves at a given scale a, we can therefore now put forward two principles to guide 

the local to global transition. These two principles will constrain the guiding curve 

assumption from Chapter 3. To verify it, one needs to select from 

(i) the quantization principle: the scale 8 as small as possible, but large enough 

to overcome the effects of digitization and to detect curve intersections; 

(ii) the simplicity principle: the local extent n as small as possible, but large 

enough to segregate curves from textures. 

The first point is illustrated in Fig. 5.4. As can be seen, the tangents do not align 

perfectly and multiple tangents occur in three cases: (i) when the orientation cannot 

be represented due to the discretization, (ii) when the curvature is high, (iii) at curve 

intersections. The complexity analysis should be able to discriminate between these 

cases, since this is necessary for effecting the local-to-global transition. 

The second point was illustrated by the Kanizsa and Paolina examples. As men­

tioned in Chapter 2, events occur at different scales. Even at a fixed scale for the 

edge detection process, different types of structures may emerge. Since we are doing 

curve detection, if there were curves in this image, where would they be, and what 

should be the scale and extent for grouping? One can realize that given a local ex­

tent n and a discrete tangent map, not all scales are interesting. Scales smaller than 

the pixel size provide little information, while scales on the order of the chosen local 
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extent yield saturated growth. The interesting range therefore lies in between these 

two extremes. 

The parameters that need to be set to obtain the complexity map were given in 

Chapter 4. Some are bound to geometric/structural properties of the object and the 

scene, while others are used to obtain reliable numerical estimates and to overcome 

the effects of digitization. The discretization scheme and the parameters of the op­

erator are known a priori for our analysis. We chose a square lattice and used 1/L 

operators for detection of lines and edges. Using this knowledge will help selecting 

the parameters of the complexity analysis in such a way as to overcome the effects of 

digitization. 

Our decision strategy parallels the notions of integration scale and local scale de­

scribed by Lindeberg (1993). The integration scale in our case will be the local extent 

n, while the local scale is the scale a at which the normal and tangential complexity 

are estimated. It will be large enough to overcome the effect of digitization, but then 

its value for the normal complexity will be directly correlated with the frequency al­

lowed within the spatial extent. A large scale allows only for very few distinct parallel 

lines for instance. We will therefore be biased toward Koenderink's assessment that 

counting beyond 3 is a rare capability in vision and has to be subsumed under the 

heading of combinatorics [Koenderink 1990, p.64]. However, we stress the difference 

that Lindeberg's scales were applied to image operations, and ours are applied to the 

tangent map. 

3. Some simple curve-like sets 

Normal complexity for a line segment on a discrete grid is always greater than or 

equal to one. Tangential complexity of a line is a number between 0 and 1 depending 

on the length of the line, the scale of analysis, and the local extent. According to 

the simplicity and tangent quantization principles, parameters must be set so this is 

clear. To obtain the proper values, we therefore begin with a detailed analysis of a 

segment and circle discrete tangent map and then proceed with patterns containing 

multiple curves. 
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3.1. A single line segment and a circle. Given spatial and orientation res­

olutions, how can we choose scale and local extent for the complexity? Length, scale, 

spatial extent and complexity are coupled notions. The first cases analyzed here 

will focus on tangential complexity, having in mind the detection of line endings and 

points of high curvature while palliating the effects of digitization. The choices will 

assume for tangential complexity a fixed spatial extent for all images using a given 

operator. The choices will therefore be a function of the spatial and orientation reso­

lutions and of the operator. Various constraints will be set up. Most constraints will 

be bound to the operator and expressed in image coordinates. The derivation of the 

curvature and orientation constraints is done by studying the discrete tangent maps 

(obtained through 1/L) of classes of test patterns. All test images (see Fig. 5.5) had 

a resolution of N = 51, which was used to calculate the values with respect to the 

image coordinates; i.e. in pixel units. 

3.1.1. Continuity. The tangential complexity will provide a means for detecting 

line endings. Suppose f!( x) is centered on a line ending that extends on the other 

side beyond the border of the bounding region (see Fig. B.lg in Appendix B). For 

small enough o, i.e. o < f!/2, we have (using Lemma 4.4) 

l 
CT( X' 5) = l + 0' 

where l is the length of the line within the spatial extent. This can be used to build 

the following constraint on length for detecting line endings: 

Constraint # 1 (Continuity). Given the local extent f2 and 0 < f).T < 1, a line 

segment of length vf2f2/2 with line ending at x, will have CT(x,o) < f).T if 

vf2f2/2(1 - f).T) ~ 0 / 

f).T < u < ~t 2 

3.1.2. Curvature. It was shown in the previous chapter that tangential complex­

ity can be used for constraining curvature (see Eq. 4.17). The tangential complexity 

is therefore sensitive to the distribution of orientation differences along the curve. 

Curvature of a curve as the rate of change of the angle of the tangent vector field 

was originally due to Euler. We will use here the tangential complexity to control the 
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FIGURE 5.5. Discrete tangent maps for segments and arcs obtained from L/L op­
erators. (a)-(f) for a single line segment with varying orientation 0; (g)-(I) arcs of 
circles with varying radii r, in pixels (~~: = 1/r). 
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bending of a curve by restricting the range of valid "curves" to some given so-called 

"curvature classes". These were first described by Parent & Zucker (1989), and used 

subsequently in Iverson (1993) to partition the space of curvatures encountered in the 

local analysis of curves (see Fig. 5.5g-l for discrete tangent maps of arcs with various 

curvatures). We will therefore set up the parameters such that curves with low cur­

vature will he treated as such. In his thesis, Iverson (1993) chose 5 curvature classes 

which were bounded by digital radii of 5 pixels, since this "is close to the minimum 

radius of a circle which can he reliably distinguished from a blob and simultaneously 

categorized into either a line or edge-like discontinuity" [Iverson 1993, p.l22]. The 

decision we took is to keep all curves having a curvature radius bigger than 10 pixels, 

i.e. from straight to slightly curving lines: 

Constraint # 2 (Curvature). Given a local extent 0 = 8 pixels, and l::!..r = 0.73, 

objects with curvature radius higher than 10 pixels will have tangential complexity 

Cr( X' n) 2:: l::!..r whenever 

A plot of the tangential complexity as a function of scale (Fig.5.6), provides a 

justification for the choice of scale for tangential dilations. The limiting circle radius 

was chosen to he 10 pixels (K = 0.10) and l::!..r was set to 0. 73. Searching through 

spatial and normal extents, we found that n = 8 pixels for the spatial extent, and 

WN = 1.1 pixels for the normal extent provided a good split for curvature. With 

these chosen, we get that in order to satisfy the condition, the scale needs to be 

between 1.29 and 2.25 pixels as can be derived from Fig. 5.6 and from the fact that 

the resolution was N = 51 for this experiment. 

3.1.3. Discretization. A straight line of a given length intersects a different num­

ber of pixels of a digital grid depending on its orientation. The scale o and the normal 

extent WN will therefore he set to overcome the quantization and digitization (see 

Fig. 5.5a-f), and ensure that a line is seen with tangential complexity greater than 

some l::!..r < 1, no matter how it is oriented with respect to the digitizing grid. 
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t:J.T 
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FIGURE 5.6. Finding the scale for tangential complexity to select curves with low 
curvature and reject those with high curvature. This plot shows the estimation of 
the tangential complexity across all scales of arcs of circles. The local extent was 
8 pixels in all cases and the normal extent was 1.1 pixels. The legend gives the 
curvature x; for each plot. The goal is to be able to segment the two bundles: high 
curvature from low curvature. 

A constraint was built by considering the set of lines passing through a square 

lattice at various orientations and infering the discrete tangent map with L/L oper­

ators. The goal was to make sure that, over the chosen local extent (0) and with 

the normal extent (wN ), a line would be seen with tangential complexity larger than 

~T· To find the appropriate scale, we set ~T 0. 73 and used the same extents as 

those found for curvature, i.e. WN = 1.1 and n = 8. Doing the tangential analysis 

at all scales using these parameters, we derived that in order to have a tangential 

complexity greater than ~T = 0. 73 for lines at any orientation, we must take the 

scale J to be within some bounds: 

Constraint # 3 (Orientation). Given the image resolution N =51, for the com­

plexity of a line to be larger than ~T 0. 73, we need to have 

Looking at the complexity as a function of scale provides the possible values for 

the scale as shown in Fig. 5. 7. Looking at the graph one sees that we need to choose 
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FIGURE 5.7. Finding the scale for tangential complexity such that a line is seen 
with high tangential complexity no matter what its orientation is. This plot shows 
the estimation of the tangential complexity across all scales of lines with different 
orientations. The local extent was 8 pixels in all cases and the normal extent was 
1.1 pixels and the resolution N =51. 

the scale o to be between 1.39 and 1.96 pixels to ensure the tangential complexity of 

a line to be larger than ~T 0. 73 no matter what its orientation is. 

3.2. Multiple lines. So far the objects that have been studied were elemen­

tary, but most importantly, there was only a single one in the image. What happens 

when the scene is composed of more than one line or curve? The normal complex­

ity will eventually grow larger than 1. When is it too large, i.e. when does linear 

structure start to become confusing? The study of simple gratings and crossings will 

provide constraints that will be used for the scale selection for the normal complexity. 

This time, as opposed to the constraints obtained for the tangential complexity, the 

values will mostly be in relation to the structure of the image and expressed with 

respect to the unit square. The values will therefore vary from one image to the next. 

3.2.1. A set of parallel lines. Let us first consider a set of lines with the same 

orientation and length, but spaced arbitrarily. The spacing between the lines will be 

strictly positive and finite. A general algorithm to find the normal complexity of this 

kind of pattern will therefore emerge from: 
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Theorem 5.1. Let E be a set of n aligned and parallel vertical segments s1, s2, · · · , Sn 

of length l < 1, bounded by the unit square. The segments are separated by the 

distances d0 , dt, · · · , dn, where d0 is the distance between the left edge and s 1 , di = 

d(si, Si+I), and dn is the distance between the last segment Sn and the right edge. Let 

now bo =do, b2i-l = b2i di/2 fori= 1, 2, · · · , n- 1, and b2n-I = dn. If the bi are 

reordered such that 

then 

(5.1) CN(·,8) = 

1 
i 

(2n - i - 1 )8 + 2 L bu(k) 

2 

k=O 
i 

(2n- i- 1)8 + L bu(k) 

k=O 

if 8 < bu(O) 

if bu(i) :::; 8 < bu(i+l), i < 2n - 1 

if 0 ~ bu(2n-l) 

Remark 5.1. A series of results will be presented in this and the following sections. 

The main idea is that the analysis will be done within a bounded region !1 (most of 

the time, the unit square). By writing CN(·,8) or CT(·,8), we assume that E and all 

the operations (dilations, area, perimeters) are limited by the region n. 

PROOF. First we show that 

2nh if f. < bu(O) 

l if f. 2::: bu(2n-1) 

The case when t: < bu(o) is trivial, while for e. 2::: bu(2n-l)l it follows from the fact that 

L:!::~ 1 
bu(k) by construction. Suppose now that bu(i) :::; e. < bu(i+l)· The growth occurs 

on both sides of the lines Si. The lines where j < i is saturated while it is not for the 

rest leading to 

i 

IEN(e.)b = lLbu(k) + (2n- i -1)d 
k=O 
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(a) (b) 

FIGURE 5.8. Plotting the normal complexity of a set of parallel lines over a bounded 
region (for sake of understanding the bounding box is a little bit wider to allow to see 
the complete pattern): (a) six parallel lines spaced according to a geometric sequence 
with (b) its normal complexity. Notice the discontinuities in the complexity for each 
of the grating separation. 

Finally, applying Lemma 4.1 gives the desired result. 

An example of such a pattern is shown in Fig. 5.8a and the corresponding graph 

of normal complexity is shown in Fig. 5.8b. The values for the complexity can be 

computed from the Mathematica routine GratingNormalLocalC provided in Appen­

dix B. Notice in Fig. 5.8b the peaks occurring at the half spacing distance of each of 

the lines. This suggests a tentative answer to the local extent selection problem for 

the normal complexity: calculate the complexity on the whole image at all scales in 

order to obtain a pattern like the one shown in Fig. 5.8b, then choose the peak in the 

coarsest scale to set the local extent. 

Example 5.1 (Regular grating revisited). Let us now recall the example of a 

pattern with n equidistant lines of unit length as introduced in Chapter 4. Suppose 

the spacing between the lines is 0 < 0'1 < 1, that x is on a point underlying a non­

empty tangent set closest to the center of the pattern, and the pattern is at a distance 

0'1 < o2 < 1 to the edges of !l(x). In this case we have 
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(a) (b) 

FIGURE 5.9. Plotting the normal complexity of a set of equidistant parallel lines 
over a bounded region. (a) the pattern to be studied: n equidistant lines with an 
inter-line spacing of §1 = 2-3 and with o2 = 23 (b) its normal complexity: the first 
discontinuity occurs at o = 61/2 with CN(·,ot/2) = 2- *· 

and applying the last theorem, we obtain the normal complexity index 

1 if 8 < 8d2 

(5.3) if 81/2::::; 8 < 82 

2 

which corresponds to what was derived before except for the discontinuity at 8 = 82 , 

as can be seen by comparing Figs. 4.8 and 5.9. We now put these computations 

together to specify a constraint on the quantization principle. 

Constraint # 4 (Lateral spreading). If a quantization artifact leads to as many 

as n parallel tangents for a single line, then the scale 8 to ensure a dimension smaller 

than l:l.N needs to be 

(5.4) 

where 81 is the spacing between the centers of adjacent pixels. 

3.2.2. A pair of lines. We just saw what the normal complexity would be for 

parallel lines, the case of a pair of lines just being a special case. The last theorem and 

a result from Chapter 3 can be used to show that, provided the lines are sufficiently 
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far from the edges of the local extent, the normal complexity attains a maximum at 

8/2, if 8 is the spacing between the line segments, with a value of CN(·,8/2) = 1.5. 

Now, what happens if the lines are crossing each other at an angle 0? 

Lemma 5.1. Given two lines of length l centered in a disk n( X) of radius r and 

crossing with angle () (see Fig. 5.10a}, then the area of the local normal dilation of 

the set is given by 

(5.5) 

4 (r2 arcsin (M + tv'r2 - t 2 - £-u) if 0 < t :5 to 

!EN(x, t) 12 = Or2 + 2 (r2 arcsin (¥) + tv'r2 - £
2

- t 2 tan ( ~)) if to < t :5 £1 

where x is the center of the crossing and with to = r sin( 0 /2) and t 1 = r cos( 0 /2). 

PROOF. The proof of this result is given in Appendix A. The idea is that IEN(x, t)l2 

will grow smoothly with t until the growth within the sectors saturates. This happens 

when t reaches to rsin(0/2) and £1 = rcos(0/2). 0 

Given the area of the dilated set, the normal complexity can be estimated. It 

was done by applying a straight line fit to the normal complexity log-log plot. In 

Fig. 5.10b, we plotted the estimated normal complexity as a function of scale. This 

shows that, given the local extent and the scale, you know how sensitive the normal 

index will be to line crossings and could use this information to detect these: 

Constraint # 5 (Intersections). Given n, two lines crossing with an angle 1f' I 4 ::; 

(}::; 1f' /2 at X will have normal complexity CN(x, 8) greater than !J.N = 1.5 if 8 = nN /4. 

The justification for this constraint is given by Fig. 5.10c, where we see that if 

the orientation is within some bounds, the normal complexity will be larger than 1.5. 

3.2.3. A pattern of radial lines. In much the same way as we did for the case 

of parallel lines, we can look at the complexity for a set of n radial line segments of 

length l, which somehow can be considered as a generalization of what was shown in 

Section 3.2.1 for parallel lines. The result is given in Appendix A. It relies on the 

definition of a convenient bounding polygon. A plot for the normal complexity of 
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FIGURE 5.10. Plotting the normal complexity for a pair of crossing lines over a 
bounded region. (a) two lines of length l crossing at angle () and the dilated set at 
scale t shown in grey (b) its normal complexity as a function of scale. Notice the 
bump in the complexity. (c) the normal complexity foro= 0/4 as a function of 
the separation angle (in radians). We see that then if the angle is larger than 1r /3, 
the normal complexity is larger than !.l.N = 1.5. 

a radial pattern is shown on Fig. 5.11b. It corresponds to a pattern of 5 lines with 

separation at Oi = 71' /2i, i = 1, · · · , 4, and 05 = 71'- ~:=1 (Ji (see Fig. 5.11a). Notice the 

same kind of peak pattern can be observed as in the case of parallel lines (Fig. 5.8b). 

This time the discontinuities in the complexity arise at the scales corresponding to 

the half-angles of the sectors. 

As just mentioned, for technical reasons, the shape of the bounding polygon 0( x) 

within which the analysis is carried out, has an effect on the normal complexity index 

of the set at X. Our algorithm is using a square window of size n X n (or n X n in 
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2,2 

(a) (b) 

FIGURE 5.11. Plotting the normal complexity for a set of radial lines over a 
bounded region. (a) five lines of length l crossing at angles following a geomet­
ric sequence. (b) the normal complexity as a function of scale over the bounding 
polygon. Notice the bumps in the complexity for each of the angles. 

image coordinates). Specifically, the complexity of a line will be affected by the shape 

of this region. Suppose a line is centered within the bounding square. The area of the 

dilated set is unaltered by the enclosing region when the line is horizontal or vertical 

(if the scale remains within S1). It starts getting clipped when the line is at an angle, 

and the worst case occurs when the line is at an orientation (} J 4: 

Theorem 5.2. Let E be the diagonal to the square f!(x) with side n, centered on X. 

Then 

if 0 < S1v'2/2 

otherwise 

• 
PROOF. If o ~ v'2S1/2, the growth is saturated, otherwise the area of the dilated set 

lS 

[ 
nv'2 €2] 

IEN(t)l2 = 2 2€-2-- 22 

= 2 [nht- t2
] 

and Lemma 4.1 provides the final result. 

124 



0 

0 

CHAPTER 5. FROM COMPLEXITY TO DECISION 

Constraint # 6 (Shape of bounding region). Given a square bounding region 

n( x) centered on x with side n, its shape has an impact on the normal complexity 

index. From the last theorem, to ensure that the resulting normal complexity index 

CN(x, 8) of a line segment centered at x be smaller than 1 < I!::..N < 2, we must choose 

3.2.4. The Kanizsa pattern. The ground is now set to calculate the normal com­

plexity for the Kanizsa pattern. This will provide a piece of justification for our choice 

of local extent in the next section. The general case is developed in Appendix 1.3. 

To simplify matters we will suppose that n( X) is the bounding box for the pattern, 

where x is a point inside the grating somewhere around the middle. The Kanizsa 

pattern can be described by a set of variables: n, k, l, 82, 83, 85,86 where 

• n: the number of lines for the grating 

• k < (n- 2): the number of lines inside the grating 

• 8i different key spacings: 

82: between the lines in the grating 

83 : between the rectangle and the grating 

- 85 : between the rectangle and the side of the unit square 

- 86 : between the two side lines of the rectangle 

• l the length of the lines in the grating. 

Based on this definition of the pattern and on the assumption that 86 /2 > 83 , we get 

the following for the computation of the area of the normal dilation of the set: 

(£ < 82/2) [2(n- 1)1£, (n- 1)182] + 

(t: < 85) [48at:,48385] + 
( € < 86/2) [483£, 48386/2] + 

( £ < 83,£ < 86/2) [(28s + 483)£- 4t:2
, 28683] 

where here, the quantities in the parentheses denote a test, and, depending on the 

result of this test, we take the first (if true) or the second (if false) action between 

the square brackets. The area can be rewritten as I EN( t:)l 2 = at:0 + bt: + ct:2, and from 

Lemma 4.1 we can explicitly compute the normal complexity. 
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1 
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FIGURE 5.12. Emergence of natural scales. On top is the graph of the normal 
complexity for the Kanizsa pattern as a function of scale. The discontinuities occur 
at scales tied to key image structures. 

A plot of the normal complexity as a function of scale is shown in Fig. 5.12. The 

Kanizsa pattern studied has been included as well to relate to the graph. Each of the 

grey squares corresponds to a discontinuity in the normal complexity graph. Those 

at which complexity changes rapidly are therefore of special significance, and define 

the natural scales for this pattern. 

For any pattern, it would be possible to look at the values obtained for the normal 

complexity as a function of scale over the whole field of view. An application of this to 

texture analysis led to what was called the local fractal dimension [Peleg et al. 1984] 

and was used in other work [Pimienta et al. 1994] as a means to select the scale. In 

the case of a pattern with events occuring at a finite number of scales, you can obtain 

interesting results as was shown in Figs 5.8 and Section 3.2.3. The Kanizsa pattern 

and the Ullman images are other examples of such cases. In the case of natural 

images however, jumps are often blurred together and no spectral pattern emerges. 

This indicates that events do not cluster but are distributed across a range of scales. 

4. Parameter evaluation 

The approach we will adopt is as follows: given the parameters for the operator, 

how can we set those for both the normal and tangential complexity such that, within 

the local extent, a line is detected as a line? Our goal is therefore to find the conditions 
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under which something simple will be found by applying the simplicity and tangent 

quantization principles. The procedure we chose will first proceed with the normal 

complexity parameters, and then concentrate on tangential complexity. We now 

write explicitly nN and 8N for the spatial extent and scale for the normal analysis, 

and denote by flT and JT those for the tangential complexity. 

4.1. ... for the normal complexity. Because the parameters are interrelated, 

we will first set D..N to be 1.5, and then find the size of the local extent nN over which 

to perform the computations. This will be fixed for the whole image, and will be 

driven by the curves with the largest separation, i.e. we are trying to find the largest 

extent for which the curve assumption is satisfied. The idea in principle is to perform 

the computations for all spatial extents at every position x subtending a non empty 

tangent set with nN(x) c ! 2 • The spatial extent chosen (ON) will be the maximum 

extent such that there exists a point x with non-empty tangent set with low normal 

complexity and high tangential complexity. This ensures that, at this position and 

over this extent, the curve assumption is satisfied. For small spatial extents, and 

if the discrete tangent map is not empty, one will always find such points from the 

definition of the edge detection operator. Moreover, the extent is bounded above by 

the total extent of the image. 

However, since this procedure is very computationally expensive, we selected the 

spatial extent in the neighborhood of the maximal separation dmax between two en­

tries in the discrete tangent map. The value for dmax was obtained by applying 

isotropic dilations to the discrete tangent map at all scales through a distance trans­

form [Borgefors 1986], as was described in Chapter 4. This then ensures that there 

is a set of points F over which the separation is at least dmax, taking this to be a 

lower bound for the local extent nN. We then verified that for the chosen extent, the 

required conditions were met. 

Once the local extent nN is obtained, the characteristics of the operator con­

strain the choice of the scale 8N for the analysis to satisfy the tangent separation 

and quantization principles. For instance, 8N has to be larger than the image res­

olution but smaller than (ONv"i)/2. What then would be an interesting choice for 

8N? This will be answered by our constraints. Given the operator, we want to test 
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the "curve assumption" from our principles and overcome the discretization artifacts. 

For instance, we empirically observed that our line detector can allow up to 4 par­

allel tangents to occur when the line is at an awkward orientation (see Section 6 in 

Chapter 3), therefore 

Decision rule 1 (Scale for normal complexity). Given ON, Constraints #4 (par­

allel spreading), #5 {intersections), and #6 (shape of bounding region) provide that, 

to have CN(x,8N) less than ilN = 1.5 for a line, the scale should be taken as 

max{l.5/N, ON/4} :5 8N :5 ON/2. We will therefore choose 8N max{l.5/N, nN /4}. 

Constraint #4 says that, in the case where 81 is the spacing between adjacent 

pixels and for a line detector requiring up to 4 parallel lines to represent a single line 

passing at a given orientation, then the scale dN so that the complexity is smaller 

than ilN = 1.5 needs to be 8N > 1.5 pixels. Note that in all cases studied in this 

thesis, the dominating constraint was the one with respect to intersections. 

Let us look at the results obtained for the Kanizsa pattern. The extent for the 

normal complexity obtained from our method is shown Fig. 5.13a by the grey square. 

The tangent map image being embedded in the unit square, we find nN = 0.162. 

The driving feature for the choice of local extent is the spacing between the side 

of the rectangle and the edge of the unit square (see Fig. 5.12). The scale for the 

computation is then set to be 8N = ON/4 = 0.045 in this case. 

Extents for the Perceptron images and the Ullman examples are shown in Fig. 5.14. 

In all cases the chosen local extent ON(x) will be a translated version of the grey square 

shown in the figures. The chosen local extent for Paolina is shown in Fig. 5.13b. The 

actual numbers for the extent and scale are given in Table 6.1 (at the beginning of 

the next chapter). 

4.2 .... for the tangential complexity. As mentioned before, the approach 

for the tangential complexity will be slightly different. Our algorithm to estimate 

tangential complexity will provide useful results only if the dilations are done at 

small scales. The parameters will therefore be bound to the digitization and the 

operator. The spatial extent we choose will be fixed for all the images to nT = 8 

pixels. One exception is the Kanizsa pattern for which we chose nT to be 5 pixels, 
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(a) Discrete tangent map for the Kanizsa pattern 

with its local extent ON for the normal complex­
ity 

(b) Discrete tangent map for the Paolina image with 

its local extent ON 

FIGURE 5.13. Local extent ON for the complexity analysis. In both cases, the 
extent ON is obtained by the size of the side of the grey square. The position of 
the square shows where the conditions were met. 

since the discrete tangent map was derived directly from the structure of the set. As 

mentioned before, we chose D..T to be 0.73. The normal extent WN was set to 1.1 

pixels, therefore 

Decision rule 2 (Scale for tangential complexity). Given flT = 8 pixels, N = 
51 and D..T 0.73, the scale JT = 1.59 pixels ensures satisfaction of Constraints #1 

(continuity), #2 (curvature), and #3 {orientation). 

5. Local extent and scale selection 

A discussion about our choice for selecting the scale and the spatial extent is 

appropriate at this moment. Following our approach, the spatial extent nN for a 

single line centered in the unit square will be the unit square itself. The scale will 

be 8N 0.25 and a point on the middle of the line will be seen as a piece of line 

with a normal complexity of 1.0. Our choice for 8N ensures that quantization effects 

will not alter the result desired. But a single line would not be the only pattern to 

satisfy the curve assumption. A grating of n equidistant lines, for instance, would 
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(a) Ullman pop-out (h) Ullman hidden 

(c) Perceptron: one curve (d) Perceptron: two curves 

FIGURE 5.14. Local extent for the normal complexity: in each subfigure, the local 
extent is shown as a grey square. 

also be considered as such, but over a different local extent, and at a different scale. 

This time the local extent nN will be approximately ~ and the scale CN ~ 2~. All 

the tangents in the map will satisfy the curve assumption, with respect to the {much 

smaller) spatial extent. If one were to compare the grating and the line however (as 

in Fig 5.3a), the results would be totally different and the grating would be seen as 

being complex, texture-like, 2-dimensional as soon as n would be bigger than 2. This 

illustrates the idea of relative complexity that we introduced at the beginning of this 

chapter which is central to our approach as will be shown in the next chapter. 

Another justification for our approach can be given from Paolina's discrete tan­

gent map. The leading feature for the choice of the spatial extent was the shoulder 
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FIGURE 5.15. Camouflage on the discrete tangent map. Adding contours to cam­
ouflage the "curves" (in the complexity space sense). 

Normal complexity Tangential complexity 

intersections 

parallel spreading 

bounding shape 

continuity 

discretization 

curvature 

TABLE 5.1. The constraints for the complexity analysis parameters. 

region. We can force the spatial extent to be smaller by adding contours to the image 

(see Fig. 5.15). One notices now that the shoulder, the chin, and part of the arm 

structure are camouflaged. Taking the same local extent on this new image would 

result in an empty curve substructure. The line for the shoulder is nothing special 

now. It is part of another equivalence class- a texture flow and would be detected 

as such. 

6. Summary 

This chapter presented one of the most important concepts in this thesis, namely 

the use of the complexity map to segment an image based on its structural properties. 

This was achieved by partitioning the complexity space into four distinct regions 

leading to a classification of objects into dust, curves, turbulence and flow. We then 
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showed how it was possible to set the parameters to achieve such a segmentation. 

Experimental results are kept for the next chapter. 

The partitioning scheme that we chose was elementary. Single values of the 

scale and spatial extent parameters were chosen for the entire image. However, more 

involved schemes are certainly possible, if not desirable. The partition could be refined 

by taking smaller regions of the complexity space, and extent parameters could vary 

over the image. The advantage is that the pattern discrimination scheme could then 

be much stronger and better suited for specific visual tasks. The price to pay will be 

that it will make the choices of the complexity map parameters much more complex. 
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Experiments and results 

The last three chapters have presented a new intermediate representation to be used 

for bridging the gap between image-based and object-based representations. The goal 

is to be able to group local elements into the appropriate structure: in our case we 

chose dust (curve-free), curves (satisfying the curve assumption), turbulence, andflow 

(oriented textures). Four examples were carried along from the first chapter: the 

Kanizsa pattern, the Perceptron spirals, the Ullman figures, and the Paolina image. 

This chapter will show the results obtained when first estimating the complexity map 

on these images, and then applying our grouping scheme. 

For the first two types of patterns we analyzed, the geometrical structure was 

known ahead of time, therefore the discrete tangent map could be estimated. Origi­

nally, the discrete tangent map was defined in terms of the output of edge detectors. 

But for the Kanizsa pattern we simulated it by setting up a grid and discretizing 

position and orientation as was described in Chapter 3. It was a reasonable thing to 

do because the curves were not crossing (except for the corners in the Kanizsa pat­

tern), and the spacing between distinct curves was always known ahead of time. This 

example can be seen as a somewhat "ideal discrete world" and will be used to en­

lighten the concepts presented in the previous chapters. The second section presents 

examples with real images for which the tangent map structure must be inferred. It 

starts with the analysis of the Perceptron spirals for which the discrete tangent map 

was obtained from the output of line detectors, and is then followed by the Ullman 

patterns. We end with the Paolina image. 
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The values computed for the various parameters are given in Table 6.1. The 

parameters in this table are those that are case dependent. In all cases the scale ~N 

for the normal complexity was set to ON j 4, according to the analysis in the previous 

chapter. For the tangential complexity, the scale JT was set to be 1.59 pixels except 

for the Kanizsa pattern to reflect the difference in spatial extent. The tangential 

extent WT (for the normal analysis) was set to 1.4 pixels to account for the square 

tessellation, while the normal extent WN (for the tangential complexity) was set to 

1.1 pixels for the same reasons. The values for the partition of the complexity space 

were ,6.N = 1.5 and ,6.T = 0. 73. 

In all cases the subresolution Px py = 10, i.e. each pixel from the domain of the 

discrete tangent map was further divided in a 10x10 subgrid for the projection of the 

tangents and the oriented dilations. As far as the scale neighborhood is concerned, 

we took in each case 8 points equidistant; i.e. KT = KN = 8. The spacing between 

the scale was in "subresolution" units (resolution * subresolution): 2 in the case of 

normal complexity, 1 in the case of tangential complexity. To justify these choices, a 

series of experiments on groundtruth values were performed and the results are given 

in Appendix B. 

1. When structure is known a priori. .. 

1.1. The Kanizsa pattern. The complexity map was estimated for the Kanizsa 

pattern (Fig. 1. 7 a) and the results are shown in Fig. 6.1. In (a) we display the normal 

complexity mapped as black and white, while in (b) we map the tangential complex­

ity. For the normal complexity, black stands for low normal complexity while white 

refers to tangents embedded in a dense region. From this we see that, at the studied 

scale, the patch stands out as requiring a different representation from the "curves" 

part (the parts of the hollow rectangle in the top and in the bottom). But our clas­

sification can be finer if we add the tangential complexity component (Fig.6.1b ), and 

would be incomplete if we did not consider it (see Section 3.2 in Chapter 4). Now 

black stands for low tangential complexity, and white for high tangential complexity: 

places where the object extends along its length. The only black spots here are the 
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I Test image Res Normal complexity Tangential complexity 

parameters parameters 

N nN dN nT JT 
Kanizsa pattern 100 0.162 0.0405 5 0.90 

• Perceptron spirals 200 0.070 0.0175 8 1.59 

• (one curve) 

Perceptron spirals 200 0.070 0.0175 8 1.59 

(two curves) 

· Ullman pattern 250 0.032 0.0080 8 1.59 

I (pop-out) 

Ullman pattern 350 0.062 0.0155 8 1.59 

(hidden) 

Paolina 512 0.120 0.0300 8 1.59 

TABLE 6.1. The values computed for the complexity analysis. The parameters that 
stayed constant throughout the analysis are discussed in the text. 

four corners and the tips of the grating pattern. The tangential complexity is there­

fore a good means of detecting corners and ends of lines (we will show later how it 

can detect points of high curvature), while the normal complexity is ideal to segregate 

textures from curves, when the two coexist within the scene. 

The normal and tangential indexes can be collated and bundled to form the 

complexity map. Applying the classification scheme presented in the last section, it 

is possible to extract the various components: dust, curves, turbulence, and flow. 

This is shown in Fig. 6.2. The segmentation successfully extracts the corners, the end 

of lines in the grating, the "curves" part and the grating itself. We recall that the 

partition for the complexity space was f:l.N = 1.5 and f:l.T 0. 73. Most interestingly, 

this computational experiment reveals surprising aspects of our structural classes, e.g., 

the emergence of subjective borders as 1-D turbulence distributions (somehow similar 

to Heitger & von der Heydt's ortho groupings [Heitger & von der Heydt 1993]), and 

orientation discontinuities (corners) as dust. 
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(a) normal complexity (b) tangential complexity 

FIGURE 6.1. Computing the normal and tangential complexity for the Kanizsa 
pattern. In both cases the complexity has been remapped as black or white. For the 
normal complexity map, the white pixels refer to tangents embedded in a complex 
region while the black ones represent low complexity. The "curves" regions clearly 
stand out in black here. In the case of tangential complexity, this time the white 
pixels represent regions where the set extends along its length and the black pixels, 
regions where the tangential complexity is low, i.e. end of lines, corners, points of 
high curvature. 

(a) dust (b) curves (c) turbulence (d) flow 

FIGURE 6.2. Segmented image of the Kanizsa pattern using the complexity map 
and our classification rule. 

2. When structure must be inferred ... 

2.1. The Perceptron spirals. The case of Perceptron spirals is interesting 

but, once more, exceptional since it is highly degenerate: we will see that some of 

the subclasses will be empty. Fixing a value f!Rr for the normal complexity, applying 

our rule provides the following: computations for the normal complexity with extents 
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larger than nN > nt leads to almost all points being categorized as being high 

normal (textures); computations for extents smaller than nN < nt leads to almost 

all points being categorized as being low normal (curves). It is interesting that the 

singular "transition" point, taking the extent to be nN = nt, emphasizes the effects 

of digitization. We therefore chose nN < nt. 
As shown in Fig. 6.3, the complexity maps have identical distributions both for 

the normal and tangential complexity. From the segmentation only, it is now almost 

impossible to tell which of the two sets satisfying the curve assumption belongs to 

the "one curve" pattern and which belongs to the "two curves" pattern. Remember 

that the extent over which one can safely integrate (follow the edges) is very small: 

nN = 0.035. This confirms our early prediction that the two objects belong to the 

same equivalence class for this scale, therefore they are very difficult to distinguish 

from one another; i.e., it is hard to decide which of the two is connected and which 

is not . 
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(a) dust (b) curves (c) turbulence (d) flow 
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(e) dust (f) curves (g) turbulence (h) flow 

FIGURE 6.3. Segmented image of the Perceptron spirals using the complexity map 
and our classification rule. (a) and (e) low normal, low tangential: dust (b) and 
(f) low normal, high tangential: curves (c) and (g) high normal, low tangential: 
turbulence (d) and (h) high normal, high tangential: flow. Where is the "one 
curve" figure, where is the "two curves" figure? 
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2.2. The Ullman patterns. The algorithm was applied to the Ullman pat­

terns (Fig. 1.5). In the case of the Ullman pop-out pattern (Fig. 1.5a), we already 

reported that tangential dilations should allow the segregation between the small and 

the large blobs by allowing only curves with small curvature to be classified in the 

curves substructure. This is shown on Fig. 6.4, where the three large blobs emerge in 

the "curves" section, while most of the rest is classified as dust, a segmentation much 

in the spirit of what was originally proposed by Sha'ashua & Ullman (1988). 

The case of the Ullman "hidden" pattern (Fig. 1.5b) is more subtle: the tangential 

complexity is more uniformly distributed, not allowing anything to stand out. This 

is further verified in the segmented maps. As opposed to Fig. 6.4, where the large 

blobs were clearly poping out in the curve section, no such structure emerges in the 

"curves'' substructure. This clearly goes against Ullman's [1990] analysis according 

to which the three blobs were supposed to pop-out. 

Fig. 6.5 reveals a few interesting points. First, notice the points of high curvature 

and the line endings appearing in black in the tangential complexity image (Fig. 6.5a). 

These points of high curvature are known to have perceptual significance as advocated 

originally by Attneave (1954). Secondly, notice how the intersections show up in the 

flow section (Fig. 6.6d). This was to be expected from the choice of the parameters 

for the complexity analysis and the segmentation scheme. Since the crossings are 

uniformly distributed, it is hard to perceive the circles. The distracters therefore 

play a big role in the partial camouflage of the blobs. If the distracters are removed 

(as it was in the original version of this image [Mahoney 1987] shown in Fig. 6.7a), 

then the circles tend to be more salient. A cue to these circles is obtained in the 

"flow" region, as shown in Fig. 6.8c, where the crossings outline the circles. Compare 

the "curves" and "flow" substructures between the two figures (Figs 6.6 and 6.8). 

We mentioned in the introduction two papers related to the saliency map: [Ullman 

1990] and [Sha'ashua & l.Jllman 1988]. It is interesting to see the evolution of 

Fig. 1.5b. Originally [Mahoney 1987, Sha'ashua & Ullman 1988], the distracters 

were not present in the image (as shown in Fig. 6.7a). They were added in a sub­

sequent paper [Ullman 1990]. I believe that, this is to support Ullman's statement 

about the fact that in this case "the local structure has no conspicuous local part 
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(a) dust (b) curves 
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(c) turbulence (d) flow 

FIGURE 6.4. Segmented image of the Ullman pop-out image using the complexity 
map and our classification rule. (a) low normal, low tangential: dust (b) low normal, 
high tangential: curves (c) high normal, low tangential: turbulence (d) high normal, 
high tangential: flow. 

having a distinguishing local property" (Ullman 1990, p.892]. In the original image, 

this was not true as the curve crossings were such conspicuous local parts. Adding 

the distractors (Fig. 1.5b) made the statement correct, and this fact was captured by 

our complexity analysis and the subsequent grouping. 
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(a) tangential complexity 

(b) normal complexity 

FIGURE 6.5. Normal and tangential complexity for the Ullman patterns. Once 
more the complexity has been remapped as black or white. Normal complexity: 
white pixels refer to tangents embedded in a dense region while the black ones 
represent those sufficiently separated. Notice the intersections being captured in 
the high normal complexity. Tangential complexity: white pixels represent regions 
where the set extends along its length, and the black pixels, regions where the 
tangential complexity is low: line endings, corners, points of high curvature. 

140 



0 

0 

CHAPTER 6. EXPERIMENTS AND RESULTS 

) 
( .. 
I • .. 

( 

- .. l~-· ·-·-
>1 t. ....... ,_ 

... .. ( ... #o 

·; ) -· ( . l r . _ ........ ,;>' 

., .., .. _ 

' l .• . ' ,. .. J ... .. 

l - ) .... ~ . - .-· 
;" • • -" ' , A ' 

( ,.I 

... , .. ·-' 
• J 

( 

, 
...... , .... J • ~ ..... 

(a) dust 

.. ___ I ~~ •" ~ 

..!' (' • .... :"'~ - *.:...- ·;;' ~ -. \ •• / .. -
-.... ; ; .... .~ " ~;. ~ c...... t" "~: 
.~. ,L -j• '·· ' ~ 

J,.. - --~· ·: . • -
• "'• : 

1
;· \ , 4 .. :~ • I 

., ) f .( . '- •. \-
... - .. -·,..J,• .... ·~ *•' .... ~--· !_... • .. , .. ~~ •• -

J,·~·-J_ ... _:., ..... J~ ~.·,·· 
' '"'~ ""' •" ( I, •• .. :.J •• 
~ ::. (,_ ;. ..... ·.... ..-..... ') J -

f' .- ) ·, ... , 7" - 'y 
' ... t • '. .., ' " .. ..... .... • -

., ., . r . : '""' ;.-./". "'1 
·, • .. '··~, ) /, .. ( ~ ,.1t ., J • -

·-'.·.I • !I' 
- •• - .~ • 1 "\ ' ~ •• • . ., ( - .. 

I • 

(c) turbulence 

\ 

\ '· . \ ~ 
( ... \ I _' __ ~ \ : 

• I • 

'* \ • ""' 

1 -· i~i ( ~ ... 
'•\ \ \ . \ .. . . ~- "' ... - ... •"" _ ......... _ 
\ ~- ,.,. -· " 
- ' /' ·--.... ::...:.··. -· ' :......--

.. ( ·-__ __..,; 

(b) curves 

(d) flow 

•-.-

FIGURE 6.6. Perceptual grouping from complexity. Segmented image of the Ullman 
pop-in image using the complexity map and our classification rule. 

(a) original image (b) discrete tangent map 

FIGURE 6.7. The original Ullman (hidden) pattern as can be seen in [Mahoney 
1987]. In (a) we have the original image and in (b) the discrete tangent map 
obtained as the output of L/L operators. Compare this with Fig. 1.5b and decide 
in which of the two the three circles are the most salient. 
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(a) normal complexity 
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FIGURE 6.8. The segmented Ullman (hidden) pattern as can be seen in [Mahoney 
1987]. (a) and (b) show the normal and tangential complexity maps remapped as 
black and white, while the usual substructures are shown in (c)-(f). Although the 
blobs do not really pop-out in the curves substructure, cues are given within the 
flow substructure from the curve intersections. 
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2.3. Our dearest Paolina... Now we proceed to the analysis of the Paolina 

image. The original image had a resolution of 512x480. The discrete tangent map 

(for the edges) was computed as explained in Chapter 3. The result was shown in 

Fig. 1.4f. The complexity maps are shown in Fig. 6.9. For the tangential complexity, 

we see that the spurious responses in the back get low tangential complexity. The 

same goes for line endings. One surprising result is the fact that the wind-blown hair 

has mostly high tangential complexity even if many points have high curvature. This 

is due to our choice of parameters. The extent being very small, and the normal extent 

being large, most growth is saturated within this region. In the normal complexity, 

the curves clearly stand out in black, namely the shoulder, chin and arm. Most of 

the hair structure is seen as being complex. 

With the complexity map in hand, we can apply our segmentation scheme. Re­

sults of the grouping are shown in Fig. 6.10. The segmentation is as expected. The 

curves contain the tangents that are sufficiently separated, with no curve intersec­

tions. The flow, contains the curves that are dense and extend along their length. 

The dust substructure contains the spurious responses, some ends of lines, etc. It 

is within the "curves" substructure that the grouping into curves should go on, but 

spatial extent is then limited by nN which was set to 0.12. This means that one can 

integrate safely only over that size of a region, since it is over that neighborhood that 

the conditions for the curve assumption were verified. Taking a neighborhood larger 

would not ensure that curves would be sufficiently separated, and that a curve rep­

resentation would be efficient. To further illustrate, let us take back the camouflaged 

shoulder in Fig. 5.15. Doing the complexity analysis and our segmentation using the 

same local extent and scale for the normal complexity as we did for the original image 

will have the effect of eliminating most of the edges in the curves substructure. The 

shoulder at this scale would disappear. To link back with Chapter 1 and the Pick-Up 

Sticks example, our fingers would then be too wide to pick the (camouflaged) shoulder 

as opposed to the original image. 

We also did the experiment with different parameters for the tangential complex­

ity. These results were originally reported in [Dubuc & Zucker 1995]. Taking a larger 
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(a) tangential complexity (b) normal complexity 

FIGURE 6.9. Normal and tangential complexity for the Paolina image. As usual, 
the complexity {normal and tangential) has been remapped as black or white. 

spatial extent for the tangential analysis provided the segmentation in Fig. 6.11. No­

tice the difference between this (Figs. 6.11c-d) and our previous attempt (Fig. 6.10c­

d). This time the turbulence substructure region captures more of the windblown 

hair, while the flow consists primarily of the well-combed hair; i.e., those that extend 

along their length but are dense in the normal direction. This difference in tangential 

structure as a function of scale is analogous to what happened for normal complexity 

in Fig. 5.12, but much less extreme. 

We should point out the fact that most of the analysis done was uniquely geo­

metric. There is also a photometric aspect that should be studied [Breton 1994]: i.e. 

the existence of lines with various contrasts and in particular positive and negative 

contrast lines. These coexist with edges. In this example, we only considered edges, 

but the relationship between the two (edges and lines) needs to be taken care of in a 

complete treatment of the integration of local information. 
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FIGURE 6.10. Segmented image of the Paolina image using the complexity map 
and our classification rule. The integration under a 'curve' representation should 
only take place within the "curves" substructure. 
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FIGURE 6.11. Segmentation using a different tangential complexity map. This time 
the spatial extent for the tangential analysis was taken to be larger, resulting into a 
larger portion of windblown hair getting classified in the "turbulence" substructure. 
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3. Back to the transversality / quantization problem 

We are now ready to return to the problem of distinguishing between transversal­

ity and quantization, as presented in Chapter 3. It can be solved from an argument 

linked to the multiple tangent separation theorem (Thm 3.2). The idea is that, if the 

normal complexity is low, multiple tangents would be simply an artifact of the dis­

cretization of orientation space. From our analysis design, the hypothesis of multiple 

tangents at a point can only be retained in the high normal complexity substructures. 

We saw earlier that the normal complexity for two lines crossing at a sufficiently 

large angle would be bigger than .6.N = 1.5 if the scale and spatial extent were chosen 

appropriately. This is how we will determine if, when two tangents are "on" at the 

same location, it is due to two lines crossing or to an artifact of quantization1
. In the 

case of two lines crossing, the normal complexity will be higher than the value for the 

partition that would select the point as being simple. Our partitioning scheme will 

therefore ensure us not to allow crossings per se to occur in the low normal complexity 

substructures. One can then use this information to take the appropriate decision, as 

shown in Fig. 6.12, where we show the values for the normal and tangential complexity 

indexes obtained for the parts of the Ullman patterns discrete tangent maps shown 

in Fig. 5.4. A grouping scheme for the tangent map of simple curve-like sets was 

proposed by David & Zucker (1990). In their paper, they mentioned the use of 

branching potentials (or what they describe as "a split of the potential distribution 

into layers") for places where curves would intersect. Our technique provides now 

a way of detecting where the branching could occur: when integrating through the 

'curves' substructure, if one loses track at some point, in the neighborhood of an 

intersection, and if in this neighborhood one finds multiple tangents in the 'flow' 

substructure, then one has found a candidate for branching potentials. This is exactly 

what is meant by a local to global transition for curves. 

1 Note that two lines crossing do not necessary imply that a point in the discrete tangent map will have a tangent 
set with more than one tangent, as is pointed out in [Nitzberg et al. 1993] and shown in Fig. 5.4. 
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FIGURE 6.12. The complexity indexes for the transversalityjquantization problem. 

4. An application: clusters in axonal arbors 

As our final example, we will present an application of the technique to axonal 

reconstruction data [Dubuc et al. 1994]. In neuroscience, a central issue in charac­

terizing neuronal growth patterns is whether their arbors form clusters [Antonini & 

Stryker 1993]. Formal definitions of clusters have been elusive, although intuitively 
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5. Summary and discussion 

The analysis of discrete tangent maps through their complexity provided a group­

ing scheme prior to integration. Clearly it split the sets into perceptually meaningful 

classes. Later processes can come now into play. In the case of curves, one can use 

edge following [Ramer 1975], dynamic coverings [David & Zucker 1990], token group­

ing [Saund 1992], or spline fitting (see for instance [Nitzberg et al. 1993]). In the 

case of flows, one could use the approaches of [Kass & Witkin 1987, Zucker 1985] 

while for turbulence, one might opt for a statistical characterization [Haralick 1979, 

Gagalowicz 1980] or approaches such as [Malik & Perona 1990]. 

How do these results relate to other edge grouping approaches? We have tried 

to make clear in this thesis that all aspects of the distribution of local information 

were important before performing the grouping. The "curves" substructure is where 

the curve grouping should happen. Hazardous positions in the image, as well as 

issues of usefulness of the representation, are captured by the spatial extent chosen 

and the other substructures. Is this approach following the criteria of Cox et al. 

(1993) presented in Chapter 2? It (i) provided a mechanism to group edges from the 

segmentation of the complexity space; (ii) has a model of smoothness through the 

tangential complexity; (iii) included the noise model at a prior stage, but digitization 

artifacts were dealt with for both types of complexity analysis; (iv) set up explicitly a 

process to detect curve intersections. But it went further in that it did not presuppose 

a representation a priori allowing for curves and textures to coexist and to be treated 

as such. 
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Conclusion 

The transition from local representations to global ones is a key problem in computer 

vision. In this thesis, we have presented an intermediate representation scheme for 

the local structure of a curve-like set, the discrete tangent map, and addressed the 

problems that are encountered when attempting to blindly follow local information. 

The example with the Kanizsa pattern was to that extent very informative. Within 

a single scale, one observes different types of objects coexisting within the scene: 

(i) discontinuities: these were of two kinds 

(a) the four corners, 

(b) the subjective edge generated by the line endings of the grating patch. 

(ii) curves: the top and bottom of a hollow rectangle, 

(iii) texture: the grating patch 

The complexity map, computed from the discrete tangent map, clearly supported what 

was observed. We have therefore demonstrated that the complexity of the tangent 

map, obtained through normal and tangential dilations, was key to determine the 

representation underlying the grouping of edge elements and the dimensionality of 

its support. Stated differently, we showed how the idea of early or primitive image 

segmentation could be lifted onto the tangent map, and effected through notions of 

complexity. 

While curves and textures have been part of the descriptive repertoire for early 

vision, they are traditionally viewed as having no relationship. Curves are normally 
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conceptualized via differential geometry, and textures via statistics. We have pre­

sented a unifying theory of early visual structure from the more abstract perspective 

of geometric measure theory. The theory is built upon the notion of a tangent map, 

as this derives from "edge detection", and results in a measure of structural complex­

ity that requires separate normal and tangential components. Thus the descriptive 

repertoire is defined not just by the tangents, or the salient length property of curves, 

but by the full spatial context in which tangents are distributed. Natural extrema in 

the complexity map defined semantically-meaningful structural categories, including 

dust, curves, turbulence, and flows. 

This thesis concentrated first on the careful definition of the type of objects to be 

studied, and stressed the need for a discrete tangent map, while providing constraints 

on its structure. It then introduced oriented dilations to allow the quantification of 

density (from the normal dilations), and continuity (from the tangential dilations), 

which eventually led to the complexity map. Our approach differs from the classical 

ones in fractal analysis [Tricot 1995], in the sense that it studies sets dilated with 

respect to their local structure. Another key difference is the use of the rate of 

growth at a particular scale rather than around zero. The separation from normal 

and tangential dilations is crucial to be able to classify the types of objects, therefore 

justifying the use of the discrete tangent map as an intermediate representation: only 

the tangent could provide the local orientation of the set at a particular scale. 

1. Future directions 

We have presented in this thesis a technique to characterize the complexity of 

the edges prior to grouping. As satisfying as the work done so far is, however, I now 

realize that this is only the beginning. Many readers have probably found within 

our arguments places for further investigation and are curious about how the theory 

presented relates to other areas of visual information processing. The following is an 

attempt to place pointers to key issues. 

1.1. In mathematics. I have tried to introduce concepts from geometric mea­

sure theory to computer vision, and hope it will inspire researchers involved in edge 

detection and grouping. There are many technical aspects that remain to be resolved 
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in the theory presented. Amongst the most important are the verification of the 

existence conjectures for the normal and tangential complexity. Moreover, a careful 

analysis is needed to predict under which conditions one is ensured to obtain reliable 

results. Some of this work as already been started for a small class of functions [Dubuc 

& Dubuc in press], a first step toward a general solution. In this thesis, we showed the 

validity and relevance of the analysis by applying it to a range of practical examples, 

and by studying its behavior on simple sets. 

The local extent selection procedure, in Chapter 5, also needs to be refined. We 

based the selection on isotropic dilations of the edge map, but a formal scheme for 

selection entirely related to the work presented here is missing. One possibility would 

be to select the spatial extent with respect to the scale of the operator (as we did for 

the tangential complexity) and keep this fixed for all images. The results would not 

be as relevant to the choice of a final representation however. The same remark can 

be made about the extent for tangential complexity. Most was related to the scale of 

the operator. It would be nice to investigate avenues that would rather consider the 

structure of the image. 

1.2. In psychology. The local to global problem has been extensively studied 

in psychology. The work presented in this thesis could be particularly relevant to the 

following: 

(i) Theory of attention. How do different objects grab one's attention within a 

scene? Treisman (1985) has done extensive work on all aspects involved in 

attention. How can one, in a general setting, decide on which objects in the 

scene should be of interest? In this thesis we leaned toward the idea that 

complexity is driving attention, that objects different from their context pop 

out, that representations leading to simple descriptions are the ones that win. 

Psychological experiments along these lines would provide better evidence for 

our approach. 

(ii) Gestalt principles. The Gestalt psychologists [Kofika 1935] postulated a series 

of grouping principles, such as the principle of good continuation for curves, 

which suggests why we perceive a figure "8" as a single, non-simple curve that 
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FIGURE 7.1. Connected or not? Again the Perceptron spirals leave us with a 
tremendous challenge: why is is so difficult to tell the two panels apart? 

crosses itself, rather than two "circles", one on top of the other. Other princi­

ples include proximity, closure, symmetry and familiarity. One interpretation 

of the Gestalt theory is that people seem to perceive the simplest interpretation 

of any given data. A lack of ability to quantify this notion of "simplicity" made 

the theory unsatisfactory. How do Gestalt theories relate to our technique? 

1.3. In theory of computing. The complexity map constitutes the first build­

ing block of an emerging representational complexity theory for curve-like sets, which 

should take its root from the theory of computing. In the vein of Turing computable 

numbers, it should now be possible to define the notion of representable curve. Rep­

resentational complexity theory would generalize the notions presented in this thesis 

and would dictate the action that could be taken before integrating information. The 

goal would be to predict what should be the salient features in the scene and justify 

unambiguously the choices of possible final representations. One main result that 

one should get is that two patterns falling within the same equivalence class ought to 

be difficult to tell apart. This takes us back to the Perceptron spirals (see Fig. 7.1): 

why are the two patterns so hard to tell apart (besides the obvious rotation of the 

pattern)? 

The connection to theoretical computer science is necessary to generalize the 

formal basis from geometric measure theory to include algorithmic complexity. In 

particular, as algorithmic complexity is based on the notion of a minimal program, 
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the parallel between the time needed to perform a visual task and a minimal length 

algorithm is clearly central. The resulting theory would provide a complexity measure 

that will enable the feasibility of particular algorithms and representations to be evalu­

ated against task requirements. Such measures have been completely lacking, making 

the approach to many vision tasks ad hoc and opportunistic. Such opportunism is 

of course frustrating, as it is impossible to ascribe cause to failure. In computer vi­

sion, such frustration is widespread, but representational complexity would provide 

an elegant solution. 

2. Back to scale-space 

In Chapter 2, we briefly discussed the selection of scale within the scale-space 

representation. This remains a controversial subject. Even if it seemed clear to many 

researchers that a unique fixed scale is an inappropriate solution, it is always discussed 

even in the latest studies (see for instance [Lindeberg 1993] or [Elder & Zucker 1995]). 

The classical scale-space approach advocated this detection-localization scheme 

where coarse scales were used to detect features, and fine scales localized them. Re­

cently, Elder & Zucker (1995) have questioned this approach and suggested a different 

use of the scale-space representation by selecting a "reliable scale" at each point in 

the image (which can vary from one point to the next). Did we advocate something 

different? One important point in my opinion is that one cannot get everything. For 

instance, using the finest scale to represent all the features in the image would be 

very inefficient. Fine scales are for small regions, large scales for larger regions: keep 

the scale size/spatial extent ratio constant. Once information is needed at fine scale, 

one needs to focus in that region, but then the information from coarser scales is lost. 

This notion of sacrifice seems to be unnatural, but I think is needed to provide any 

sophistication in the processing of visual information. 

3. Le mot de la fin ... 

Because of the connection between vision and geometry, this research was based 

on the mathematics of geometric measure theory. It now forms part of a curve de­

tection system, and could be considered for applications in areas as diverse as image 

coding (for telecommunications), optical character recognition, and mobile robotics. 
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To keep this theory concrete and industrially relevant, we have already begun ap­

plying the use of complexity measures to characterize the roughness of surfaces in 

pharmaceutical sciences [Pimienta et al. 1994] and the study of neuronal arboriza­

tions in neuroscience [Dubuc et al. 1994]. Its extension to higher dimensions is so 

natural that one could consider using it for other information areas. The resultant 

theory should provide a key to break complexity and to organize information 

ciently: an essential asset these days where information is becoming one of the most 

valuable resources. 
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APPENDIX A 

The complexity of simple sets 

1. Normal complexity 

1.1. For a pair of crossing segments. To calculate the complexity of a pair 

of crossing segments at a given scale 5, we need first to calculate IEN(c)l2· In this 

case we have 

Proposition A.l. Let E be a pair of lines of length 2r crossing at an angle 0 < (} :5 

1r /2 and centered in a disk of radius r, Then 

(A.l) 

4 (r2 arcsin ( ¥) + f.Vr2 - f 2- sfn-u) if 0 < f :5 Eo 

IEN(E)b = Or2 + 2 (r2 arcsin (~) + EVr2
- E2

- £
2 tan(~)) if fo < E :5 E1 

where to r sin((} /2) and £1 = r cos((} /2). 

PROOF. The case when E > £1 is trivial. The proof therefore splits into two parts: 

First part: 0 < E :5 fo First let us look at Fig. A.la and notice that, for £ < Eo, we 

have 

where Y is the area of an element with respect to angle a (i.e. the dark grey regions 

in Fig. A.la) and W is the one with respect to angle (} (the light grey regions in 

Fig. A.la), where a= 1r- 8. Analyzing Fig. A.lb, we get that W is the sum of the 
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y 

X 

(a) (b) 

FIGURE A.l. Calculating the area of the dilated crossing within a circle or radius 
r = l /2. In (a) we have the elementary region for the calculation of the area. In (b) 
a close-up at one of these to calculate t/J. 

areas of {i} a sector of angle 'ljJ and {ii} a triangle: 

smce 

xy r 2 'lj; r€sin(0/2-'lj;) 
-2 = -2- + -2-s--'-in--'-( 8-/,.....,2 ),.....;.-.:.. 

x = € and y = r sin (~2 - 'lj;) . 
sin(O /2) 

We get the same for Y but this time we replace () by a and from the relationship 

between () and a we finally obtain 

IEN(€)i
2 

= 4 [r2 'lj; + n (sin(1rj2- 8/2- 'lj;) + sin(0/2- 'lj;))] 
2 sin(1rj2 8/2) sin(0/2) 

which after simplification gives us 

Now we just need to find 'lj;, which from the sine law is given to be 

'ljJ = arcsin(c/r) 
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and then substituting we get 

[ ( 
. sin(arcsin(c/r)))] 

!EN(c)b = 4 r 2 arcsin(c/r) +re cos(arcsm(c/r))- sinO 

[ ( 
J r2 - c2 c ) l 

= 4 r
2 

arcsin( c/r) +re r - r sin f) 

= 4 (r
2 

arcsin(c/r) + cVr2
- c2 - si: f)) 

Second part: eo :::; c :::; c1 Having f) < a, then 

the area of the filled sectors and the rest. But from before we know that 

y r2'1/J nsin(a/2-,P) 
-2- + -2-s-'-in-'-( a-/-2 )___;, 

= r2'if; + re (sin( 7!' /2 f) /2 '1/J)) 
2 2 sin(7l'/2- 0/2) 

= r
2

'if; +re (cos(0/2 + '1/J)) 
2 2 cos(0/2) 

r 2 '1/J re . = T + 2 (cos'I/J- sm ,Ptan(0/2)) 

Substituting '1/J = arcs in( c/ r) and simplifying gives the final result: 

!EN(x, c)l2 = Or2 + 2 (r2 arcsin; + cVr2
- c2

- c2 tan~) . 

1.2. For a radial pattern. In much the same way as was done for the set of 

parallel lines, we can characterize the complexity of a set of radial lines. The result 

will be similar to what we had if we use the following trick: we will bound the set by 

a convex polygon n. This polygon will define the spatial extent onto which we will 

do the analysis. This trick will simplify the result, compared with what we had for a 

circle of radius r. 

Proposition A.2. Let E be a set of n > 1 lines of length l intersecting at their 

midpoints. Let X be the point in R2 where they intersect and n be the polygon obtained 
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by joining the perpendiculars to the ends of lines. The lines induce n cones with angles 

ab··· , an} and O:j > 0. If the O:i are reordered such that 

then 

1+ 
2nr- L cot(ai/2) 

j::::l 

i 

2r2 'L::tan(au(j)/2) + 2t::r(n- i) 
j=l 

i n 

r2 L tan(au(j)/2) + 2t::r(n- i)- <::2 L cot(auu)/2) 
j=l j=i+l 

2 

where fj = r tan( auu)/2). 

PROOF. Before starting the proof, there are a few things that need to be stated: (i) 

n is a closed, convex polygon circumscribed to the circle of radius r centered on x 

(the intersection point of the lines); (ii) the intersections occur on the bisectors of the 

cones. This can be proven easily using elementary geometry. 

The normal complexity will be obtained from the rate of growth of the area of 

the dilated sets. Suppose that <:: is sufficiently small. Then the area of the dilated set 

inside one cone is comprised of four elements of same area (see Fig. A.2). Let A be 

one of the elements; it can be split into a rectangle and a triangle and we have 

IAI2 = <=:x + <=:y = <::r- <::2 cot(ai/2) 
2 2 

smce 

y = fcot(ai/2) and x = r- y. 
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(a) (b) 

FIGURE A.2. Calculating the area of the dilated radial pattern within a polygon 
Q. In (a) we have the bounding diamond shaped polygon for the calculation of the 
area of the bounded dilated set (in grey). In (b) a close-up to calculate an element 
of area (in dark grey). 

The area of the dilated region inside the cone is therefore 4IAI2 • Summing over all 

angles (therefore taking the union of the dilated cone interiors) yields 

n 

!EN(x,t)l2 = :L)4t:r- 2t:2 cot(o:i/2)) 
j=l 

= 2 (2nrt:- t:2 t cot(o:i/2)) 
;=1 

As t gets larger and larger, some of the dilated branches collapse and the growth 

within them stops. That is where we will use the permutation of the angles into 

increasing order 
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The area of the dilated set for fi ::; f < fi+t will then be the sum of the area of 

the "saturated" cones plus the "unsaturated" ones: 

[ 

i 2 n l 
IEN(x, c)l2 = 4 ~ t~r + (n- i)tr- ~ j~l cot(auu)/2) 

= 2 [t r 2 tan(au(j)/2) + 2r(n- i)t- f
2 .t cot(auu)/2)] 

pl J=+l 

Putting all the pieces together, we obtain the following: 

2 ( 2nr<- <'t. cot(a;/2)) if<< <1 

IEN(x, €)1 2 = 2 [r2 t tan(auu)/2) + 2r(n- i)t- t 2 .t cot(auu)/2)] if fi::; f < Ei+l 

J=l J=t+l 

lfll2 if € ~ fi 

where lflb is the area of the bounding polygon. Finally, from a previous lemma 

(Lemma 4.1 ), we obtain the desired result. 0 

1.3. For the Kanizsa pattern. The Kanizsa pattern can be described by a 

set of variables: n, k, l, 1h, · · · , J6 • We assume that the pattern is embedded and 

centered in the unit square. We then denote by 

• n: the number of lines for the grating 

• k < (n- 2): the number of lines inside the grating 

• Ji different key spacings: 

J1: between the borders of the unit square and the first line in the grating 

- J2 : between the lines in the grating 

- J3 : between the rectangle and the grating 

- J4 : between the rectangle and the top (bottom) of the unit square 

J5 : between the rectangle and the side of the unit square 

- J6 : between the two side lines of the rectangle 

• l the length of the lines in the grating 
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Based on this definition of the pattern and on the assumption that 86 /2 > 83 , we get 

the following equation for the area of the normal dilation: 

IEN(c)12 = (c < ol) [2lc, 2ldl] + 
(t: < 82/2) [2(n- l)h, (n l)l£2] + 

( ( < 04) [206f, 28684) + 
( f < 85 ) (4o3t:, 48385] + 

( t: < 86/2) [48gt:, 48386/2] + 

( f < 83, ( < 86/2) [(286 + 48g)E- 4t:2
' 28683] 

where here, the expressions in the parentheses denotes a test, and, depending the 

result of this test, we then take the first (if true) or the second (if false) action 

between the square brackets. The final result is that we have IEN(t:)b = at:0 +bt:+ct:2 

and therefore from Lemma 4.1 

C ( 8) 2a + bt: 
N X' = a + bt: + Cf2 

The following algorithm provides us with the normal complexity of the Kanizsa pat­

tern as just described: 

KanizsaNormalCindex[l_,n_,d1_,d2_,d3_,d4_,d5_,d6_,e_] := 

Block[ {a, b, c}, 

a = 0; b = 0; c = 0; 

If [e < d1, b+= (2 1), a+= (2 1 d1)]; 

If [e < (d2/2), b += (2 (n-1) 1), a+= ((n-1) 1 d2)]; 

If [e < d4, b += (2 d6), a+= (2 d6 d4)]; 

] 

If [e < d5, b += (4 d3), a+= (4 d3 d5)]; 

If [((e < d3) && (e < (d6/2))), 

b += ((2 d6) + (4 d3)); c -= 4, 

a+= (2 d6 d3)]; 

Return[(2a + b e)/(a +be+ c e-2)]; 
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Troubleshooting the algorithm 

The algorithm presented in this thesis is divided into several steps, and one can make 

mistakes at various places. We present here a check list and a series experiments 

that can be performed to make sure that the results are valid. Since it is possible 

to compute analytically the complexity of some simple patterns, we can use this 

knowledge to verify the output of the algorithm. This is what we did. Various 

patterns were used and these are shown in Fig. B.l. The results of the analysis are 

shown later. 

(i) discretization: in x and in y (resolution) 

(ii) region setting 

(iii) tangent projection (normal and tangential extents) 

(iv) scales produced: from region to scale 

( v) dilations: both normal and tangential 

(vi) regression 

(vii) normal complexity on simple patterns 

(viii) tangential complexity on simple patterns 

For the normal complexity, the test patterns we chose were: (i) n vertical lines 

aligned with the grid (Fig. B. la); (ii) a diagonal line (Fig. B.lb ); (iii) a pair of diagonal 

lines crossing in the middle of the unit square (Fig. B.lc); (iv) a pair of lines crossing 

and aligned with grid (Fig. B.ld); (v) a pair of lines centered horizontally (Fig. B.le); 

(vi) a pair of lines off centered (Fig. B.lf). These will capture different aspects of the 

complexity analysis. We applied the algorithm to estimate CN(·, 8) and calculated the 

exact values from our derivations in Chapter 5. In Table B we list the Mathematica 
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GratingNormalLocalC[l_,seplist_,e_] := 

] 

Block[ {doubleseparray, doubleseplist, sortedseplist, 

i , j • n , a, b , c , sumb} , 

n = Length[seplist]; 

Array[doubleseparray,2n-2]; 

doubleseparray[1] = First[seplist]; 

doubleseparray[2n-2] = Last[seplist]; 

For [j=2, j<=n-1, j++, 

doubleseparray[2(j-1)] = seplist[[j]]/2; 

doubleseparray[2(j-1)+1] = seplist[[j]]/2]; 

doubleseplist = Table[doubleseparray[i],{i,2n-2}]; 

sortedseplist = Sort[doubleseplist]; 

i = 0; 

While[((i<2n-2) && (e > sortedseplist[[i+1]])), i++]; 

For [j=1; sumb=O, j<=i, j++, sumb += sortedseplist[[j]]]; 

a = 1 sumb; 

b = 1 (2n- 2 - i); 

c = 0; 

Return[(2a + b e)/(a +be+ c e~2)]; 

TABLE B.l. Mathematica routine to calculate the normal complexity of patterns 
of vertical grating with arbitrary positive spacing. 

routine GratingNormalLocalC used to implement the result given in Thm 5.1. This 

was used as groundtruth for the normal complexity of the vertical lines, centered and 

shifted pairs of lines. 
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TangentialLocalC[llist_,seplist_,e_] := 

] 

Block[ {sortedseplist, i, j, n, m, a, b}, 

n = Length[seplist]; 

m= Length[llist]; 

sortedseplist = Sort[seplist]; 

Append[sortedseplist,O]; 

i = 0; 

While[((i<n) && (e > sortedseplist[[i+1]])), i++]; 

For [j=1; a=O, j<=m, j++, a+= llist[[j]]]; 

For [j=1, j<=i, j++, 

a+= sortedseplist[[j]]]; 

b = (n- i); 

Return[a/(a +be)]; 

TABLE B.2. Mathematica routine to calculate the tangential complexity of simple sets. 

We therefore used this with the estimated values from our algorithm. The results 

are shown in Fig. B.2 where the solid line gives the analytical result, and the dots 

are the estimated values. The results clearly agree with the expected behavior. Ob­

serve discrepancies at the discontinuities in the complexity values. Taking a tighter 

neighborhood improves the precision of the estimated values around discontinuities. 

Satisfied with this result we chose the subresolution to be P:c = p11 = 10 for the 

experiments. 

For the tangential complexity, the test patterns chosen were: (i) a line ending 

(Fig. B.1g); (ii) a corner/wedge (Fig. B.1h); (iii) a line segment (Fig. B.li). 

The tangential complexity of all the patterns was calculated using the Mathe­

matica routine TangentialLocalC given in Table B. By providing the appropriate 

separation list, we could obtain groundtruth result for the tangential complexity of 

our simple patterns. 
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Once more the output of our algorithm was compared to the calculated values, 

and the results agreed beautifully (see Fig. B.3). Optimally, it would have been 

nice to be able to have groundtruth for curvature, but this amounts to much more 

complicated calculations, so we left the results out for this analysis. 
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(a) vertical lines (b) diagonal line (c) crossing (diagonal) 

(d) crossing (aligned) (e) pair ( centered) (f) pair (shifted) 

(g) line ending (h) corner (i) segment 

FIGURE B.l. Patterns to test the algorithm. (a)-(f) for the normal complexity 
(g)-(i) for the tangential complexity. 
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1.2 2.2 

1.8 

1.6 

1.4 

1.2 

-4 -2 2 

0.8 0.8 

(a) vertical lines (b) diagonal line 

2.2 2.2 

1.8 1.8 

1.6 1.6 

1.4 1.4 

1.2 1.2 

2 2 

0.8 0.8 

(c) crossing (diagonal) (d) crossing (aligned) 

2.2 2.2 

1.8 1./l 

1.6 1.6 

1.4 

1.2 

2 

0.8 0.8 

(e) pa.ir ( centered) (f) pa.ir (shifted) 

FIGURE B.2. Plotting the normal complexity across all scales for the test patterns. 
The solid line is the reference. The points are the estimated values. 
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Cr(-, &) Cr(·, &) 
1.2 1.2 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

-6 -4 -2 0 2 -4 -2 0 2 

(a) line end (b) corner 

Cr(·, o) 
1.2 

0.8 

0.6 

0.4 

0.2 

·6 -2 0 2 

(c) segment 

FIGURE B.3. Plotting the tangential complexity accross all scales for the test pat­
terns. The solid line is the reference. The points are the estimated values. 
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