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Abstract

This thesis is devoted to the kinematic synthesis of parallel manipulators at large,
special attention being given to three versions of a novel class of manipulators,
named double-triangular. These are conceived in planar, spherical and spatial double-
triangular varicties.

The treatment of planar and spherical manipulators needs only planar and spher-
ical trigonometry, a fact that inductively leads to the successful treatment of spatial
varieties with methods of spatial trigonometry, wherein the relationships are cast in
the form of dual-number algebraic expressions. Using the foregoing tools, the direct
kinematics of the three types of double-triangular manipulators is formulated and
resolved.

. .Moreoier, a general three-group classification, to deal with singularilies encoun-

tered in parallel manipulators, is proposed. The classification scheme relies on the
properties of Jacobian matrices of parallel manipulators. It is shown that all singu-
larities, within the workspaces of the manipulators of interest, are readily identified
if their Jacobian matrices are formulated in an invariant form.

Finally, the optimal design of the manipulators is studied. These designs min-
imize the roundofl-error amplification effects due to the numerical inversion of the
underlying Jacobian matrices. Such designs are called isolropic. Based on this
concept the multi-dimensional isotropic design continua of several manipulators arce

derived.

—
—



Résumé

Cette these porte sur la synthese cinématique des manipulateurs paralléles généraux,
el plus particulierement, sur une nouvelle classe de manipulateurs, dite & double-
triangle. Ces manipulateurs se présentent en version planaire, sphérique et spatiale.

I.’analyse de ces manipulateurs, en version planaire et sphérique, nécessite seule-
ment des relations trigonométriques planaires et sphériques, induisant ainsi I'utilisation
avee sucees de relations trigonométriques spatiales pour la version spatiale de ces ma-
nipulateurs. Ces relations sont écrites sous forrne d’expression algébrique a nombres
duals. Le probléme géométrique direct des trois versions de manipulateurs a double-
triangle est formulé et résolu avec cet outil mathématique.

De plus, une classification générale des manipulateurs paralléles en trois groupes
est proposée. Celle-ci repose sur les propriétés de la matrice Jacobienne des manip-
ulateurs. Elle montre que toutes les singularités, situées 4 'intérieur de I’espace de
travail du manipulateur étudié sont facilement identifiées si la matrice Jacobienne
st ¢éerite sous forme invariante,

Finalement, la conception optimale des manipulateurs est étudiée, afin de min-
imiser les effets d’amplification des erreurs d’arrondissement lors de 'inversion de la
matrice Jacobienne. Les manipulateurs ainsi congus sont appelés isotropes. En se
basant sur ce concept, I’auteur obtient le continuum multi-dimensionnel de plusieurs

manipulateurs isotropes.
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Claim of Originality

‘I'he author claims the originality of ideas and results presented here, the main con-

tributions being listed below:

¢ Introduction of three versions of a novel class of parallel manipulators, namely,

planar, spherical and spatial double-triangular manipulators;
e solutions of the associated direct kinematic problems;

¢ derivation of the Jacobian matrices for these and other classes of parallel ma-

nipulators, based on an invariant representation;

o classification of singularities in parallel manipulators into three groups, and

identification of all three groups within the workspaces of the manipulators;

e derivation of multi-dimensional continua of isotropic designs for some parallel

manipulators;

e expression of the screw matrix and its invariant parametars in invariant form.

The material presented in this thesis has been partially reported in (Mohammadi
Danialt, Zsombor-Murray and Angeles, 1993a, 1993b, 1994a, 1994b, 1994c, 1994d,
1995a, 1995b, 1995¢, 1995d and Mohammadi Daniali and Zsombor-Murray, 1994).
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Chapter 1

Introduction

1.1 General Background

A manipulator, according to IFToMM!’s Commission A Standards for Terminology
(1991), is a device for gripping and the conlrolled movement of objects. Examples
of manipulators appear in Figs. 1.1a-1.4a and 1.5. For the purpose ol this thesis,
we regard the manipulator as a kinematic chain of rigid links coupled by kinemalic
pairs. A kinematic pair is, in turn, the coupling of two links so as to constrain their
relative motion. Kinematic chains are classified as simpic or complex, open or closed.
If the chain contains at least one link coupled to only one other link, the chain is
called open, as depicted in Fig. 1.1b; otherwise it is closed, as depicted in Fig, 1.2b,
Moreover, a simple kinematic chain is one with links coupled to at most two other
links, while a complez kinematic chain is one with at least onc link connected to
three or more links. Both Figs. 1.1b and 1.2b show simple kinematic chains, while a
complex kinematic chain is depicted in Fig. 1.3b.

Manipulators are classified here into four categories, namely, serial, tree-type,
parallel and hybrid. The term serial manipulator denotes an open, simple kinematic

chain structure, as shown in ['ig. 1.1. A manipulator is said to have a tree-type

'International Federation for the Theory of Machines and Mechanisms



Chapter 1. Introduction 2

(b)

Figure 1.1: (a) A serial manipulator, and (b) its kinematic chain

structure if it has an open complex kinematic chain, while parallel manipulalors
have complex, closed-kinematic chains. The former is depicted in Fig. 1.4, while the
manipulator of Fig. 1.3 has a parallel structure. Moreover, a hybrid manipulator
contains both serial and parallel subchains, as shown in Fig. 1.5. The kinematic
chain of this manipulator is a serial concatenation of that of the Stewart platform,
like the one shown in Fig. 1.3b.

Consider now the large class of parzllel manipulators wherein two bodies are
connected to cach other by several simple, open kinematic chains, called legs. It is
proposed that these manipulators be classified into three subgroups based on the
concepl of degree of parallelism (dop), defined as:

number of legs
degrees of freedom

dop = (L.1)

A manipulator may have any number of legs from one to infinity, while the maximum
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Figure 1.2: (a) Two cooperating manipulators, and (b) their kinematic chains

degree of freedom is six. Thus, for parallel manipulators, this number can be any
integer fraction n/d, where 0 < d < 7 and n > 0. If the fraction is less than unity,
the manipulator is called partially parallel, while if it is greater than unity, we call
the device highly parallel. Moreover, fully parallel manipulators arc those with a
dop equal to unity. This thesis is mainly devoted to the kinematic synthesis of fully

. parallel manipulators, henceforth abbreviated parallel manipulators. However, the
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()

Figure 1.3: (a) Stewart platform, and (b) its kinematic chain

kinematics of some partially parallel manipulators is also included. The characteris-
tics of the latter are slightly different from those of fully parallel manipulators, based
on their dop.

Most industrial robots are serial manipulators. In general, these have the ad-
vantages of large workspace and design simplicity. However, they suffer from some
drawbacks, such as lack of rigidity, operating inaccuracy, poor dynamic character-
istics and small pay-load capacity. The source of the foregoing deficiencies of serial
manipulators is their cantilever type of link loading. This indicates that providing
the end-effector (EE) with multiple-point support could alleviate the aforementioned
problems. Therefore, the obvious alternative is a parallel architecture. While load-
to-weight ratios in serial manipulators are in the order of 5%, according to Merlet
(1990), this ratio for some parallel manipulators like the flight simulator shown in
Fig. 1.3a, is more than 500%. The simulator can shake its 10000 kg payload in a con-

trolled manner at a frequency of 20 Hz and an amplitude of 50 mm, a performance
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Chapter 1. Introduction 6
that would be impossible with any known serial manipulator. A general compari-
son of some characteristics of serial and parallel manipulators is given in Table 1.1.
Characleristics of a tree-type manipulator are similar to those of a serial one, while
those of a hybrid manipulators constitute a compromise between serial and parallel

manipulators.

Characteristics Serial manipulators | Parallel manipulators
Accuracy lower higher
Workspace larger smaller

Stiffness lower higher

Load-to-weight ratio lower higher
Design complexity simple complex

Inertial load higher lower

Operating speed lower higher
Bandwidth narrow wide

Repeatability lower higher
Density of singularities lower _higher

Table 1.1: General comparison of serial and parallel manipulators

1.2 Literature Survey and Motivation

1.2.1 Parallel Manipuiators

For many applications, patallel manipulators are without rival. One application is
micro-motion, where a very accurate robot in a limited workspace is required. Several
micro-robots have been designed and built, e.g., a planar paralle] three degree-of-
Jreedom (dof) micro-robot was built by Behi et al. (1990). The length of each link
of the ma\t‘l\‘fpulator is only 100 um, while its workspace is 0.01 mm?. Hara and
Sugimoto (1989) built another parallel micro-manipulator whose range of motion is

only in the order of 10 ym, but the micro-manipulator makes it possible to obtain
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a resolution of 0.01 um. The latter device is used in semiconductor manufacturing
equipment and electron microscope. Moreover, NASA built a 6-dof paraliel robot
EE, for fine motion, to study velerobotic assembly of hardware in space (Nguyen and
Pooran, 1989). Furthermore, a high-performance parallel drive micro-robot capable
of nanometer-resolution movements has been developed and is being used at McGill
University for micro-manipulation and mechanical testing (Hunter et al., 1989).

Another application of parallel manipulators is in manufacturing processes that
require a rigid robot for holding and handling workpieces. In this case, a single rigid
manipulator reduces set-up time if it can hold as well as manipulate the workpieces.
Lee and Yien (1989) designed and built a 3-dof parallel robot for this purposc.

Many macro-motion parallel robots are available. The best known are probably
those of the platform type (Stewart, 1965), like the one shown in Fig. 1.3, which is
widely used in flight simulators to train pilots. Apart from this, several spherical
3-dof parallel manipulators have been designed and built (Hayward and Kurtz, 1991;
Gosselin and Hamel, 1993). A novel class of parallel-manipulator architectures has
been developed, namely, the 3-dof DELTA robot designed by R. Clavel (1988), of the
Ecole Polytechnique Fédérale de Lausanne. ARIA, of Swilzerland, deg’igncd, built
and installed several versions of this robot, namely, the ARIA DELTA (300 and
the ARIA DELTA C1000, for the handling of light objects at very high specds, to
be used in assembly lines. As an extension of the DELTA robot, researchers af
Laboratoire de Robotique, Informatique et Microdlectronique de Montpcllicr (Pierrot
et al., 1991) designed and commissioned a 6-dof parallel manipulator, the HEXA
robot, with an architecture resembling that of the DELTA robot. Furthermore, J.
M. Hervé, of Ecole Centrale de Paris, designed and built a prototype of a 3-dof
parallel manipulator, the Y-STAR robot, for 3-dimensional positioning tasks (Herveé
and Sparacino, 1991). |

Although all these parallel macro-robots are more rigid and move faster than

their serial counterparts, they have long slender legs like a serial manipuiator chain.
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Long, slender legs produce undesirable flexibility and kinematic instabilities. Here, a
novel class of architecture that certainly does not. have this drawback is introduced.
It is called double-triangular (DT), because it is based on a pair of triangles that
move with respect to each other. The three obvious subclasses of this manipulator
class are planar, spherical and spatial DT manipulators, based, respectively, on a pair
of planar, spherical and spatial triangles. A common feature of DT manipulators is
their short, possibly zero-length, legs, thereby avoiding the objectionable flexibility
of long-legged robots like the Stewart platform, HEXA, Y-STAR and all versions of
DELTA, while retaining desirable parallel manipulator features like high stiffness,
load-carrying capacily and speed. Although they have a parallel architecture, they
do not introduce the drawbacks of the conventional parallel manipulators, namely,
cxtremely reduced workspace volume and high density of singularities within their
workspaces. A very important issue here is the structural stiffness, which can be
controlled at will, for the double-triangular architecture, similar to the double tetra-
hedral mechanism (Tﬁfnai and Makai, 1988, 198%a, 1989b; Zsombor-Murray and
Hyder, 1992), is free of long links and flexible joints that mar the performance ~"
many parallel manipulators.

Double-triangular robotic devices do not exist; the concept is quite novel and
offers many possibilities for innovation and can find many applications. In a flexible
manufacturing system, the planar DT manipulator could be designed to manipulate
workpicces or tools in a planar motion with one rotation about an axis perpendicular
to the plane of motion. Moreover, augmented with an axis, to allow translation in a
direction perpendicular to the plane of motion, this device can perform the motions
of what are known as SCARA (Selective Compliance Assembly Robot Arm) robots.
These are widely used, particularly to assemble printed circuit boards and other
clectronic hardware. The spherical device, in turn, may serve as a robotic wrist
at the end of a positioning arm. A very large class of tasks involving spherical

motion includes the orientation of antennas, radars and solar collectors, where very
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heavy objects must be moved accurately. A spatial DT manipulator, by virtue of
its 6-dofl capabilities, can arbitrarily pose workpieces in 3D space. Alternalively,
these manipulators can operate in a 3-dof mode, if orientation is either irrelevant or

provided by other means, e.g., by a spherical wrist. The latter could be, in fact, the

spherical DT manipulator.

1.2.2 Direct Kinematics

Manipulator kinematics is the study of the rclationship between joint and EE mo-
tion. disregarding how the motion is caused. It provides a basis for the study and
applications of robotics. There exist two basic problems in manipulator kinematics,
namely, the direct kinematic problem and the inverse kinemalic problem, as delined
below:

Direct kinematics:

Gliven the acluator variables, find the Carlesian coordinales of the EFE.

Inverse kinematics:

Given the Cartesian coordinales of the EE, find the aclualor variables.

For most serial manipulators, the direct kinematics i straightforward, while the
inverse kinematics is challenging. The literature on the latier is extensive {Picper,
1968; Dufly and Derby, 1979; Duffy and Crane; 1980; Albala, 1982; Alizade et al,,
1983; Primi~se, 1986), but only recently has a systematic solution procedure, for
general 6R architectures, been reported (Lee and Liang, 1988; Raghavan and Roth,
1990; Lee et al., 1991).

For parallel manipulators, as a rule, the inverse kinematics is straightforward,
while the direct kinematic problem is quite challenging. A major issuc in the conirol
of manipulators with this architecture is their direct kinematics. The kinematics
of several planar parallel manipulators was investigated by Gosselin and Angeles
(1990a), Hunt (1983) and Gosselin and Sefrioui (1991). Moreover, the kinematics of

a few spherical parallel manipulators was investigated by Gosselin and Angeles (1989,
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1990a), Craver (1989) and Gosselin et al. (1994a, 1994b). The direct kinematics of the
flight simulator admits up to sixteen different poses for a given set of leg extensions
(Charentus and Renaud, 1989; Nanua et al. , 1990). Once this problem was solved,
the next challenge to researchers became the direct kinematics of the most general
platform. Numecrical experiments conducted by Raghavan (1993} indicate that the
dircet kinematics of this device admits up to forty solutions. Recently, Husty (1994)
proposed an algorithm for solving the problem and obtaining the characteristic 40th-
degree polynomial.

Here, we solve the direct kinematics of all versions of DT manipulators. The
kinematics of the planar and the spherical mechanisms require only the tools of
planar and spherical trigonometries. This fact has inductively led us to expand the
solution concept to three dimensions by invoking methods of spatial trigenometry.
Although the latler is less known than its planar and spherical counterparts, its
principles are well established and appear to be well suited to the direct kinematics
of the spatial double-triangular mechanisms. Spatial trigonometric relationships are
expressed in dual-number algebra (Clifford, 1873; Yang, 1963; Yang and Freudenstein,
1964). This tool is used to describe the geometric relations among lines in space by
Lreating them as relations among points lying on the surface of a sphere centred at the
origin of the dual space. While dual-number algebra was devised more than a century
ago, owing its origins to Clifford (1873), it is not yet commonly used in the realm
of kinematic design and analysis. However, it is the most suitable tool to handle
the kinemadtics of rigid bodies in the context of screw theory, which owes its origins,
in turn, to the work of Sir Robert Ball {1900). A milestone in the development of
dual-number algebra, applied to mechanism analysis, is the work of Yang (1963) and
of Yang and Freudenstein (1964). Yang extended the concept of dual number to that
of dual vector and dual quaternion, thereby laying the foundations for the design and
analysis of spatial kinematic chains. However, using this tool, he presented examples

of application involving the kinematics of relatively simple problems. Here we derive
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the dual screw matrix and its linear invariants in an invariant form. Morcover,
building upon the work on dual-number algebra reported above, we analyze the
- spatial double-triangular mechanisms introduced here, thereby showing that more
complicated direct kinematic problems can be solved conveniently with dual number

algebra.

1.2.3 Singularities

A manipulator singularity occurs at the coincidence of diflerent direct or inverse
kinematic solutions. Algebraically, a singularity amounts to a rank deficiency of
the associated Jacobian matrices while, geometrically, it is observed whencver the
manipulator gains some additional, uncontrollable degrees of {rcedom, or loses some
degrees of freedom.

The concept of singularity has been extensively studied in connection with serial
manipulators (Sugimoto et al., 1982; Litvin and Parenti-Castelli, 1985; Litvin ct al.,
1986; Hunt, 1986, 1987; Lai and Yang, 1986; Angeles et al., 1988; Shamir, 1990).
On the other hand, as regards mauipulators with kinematic loops, the literature
is more limited (Mohamed, 1983; Gosselin and Angeles, 1990b; Ma and Angeles,
1992; Sefrioui, 1992; Zlatanov et al., 1994a, 1994b; Notash and Podhorodeski, 1994;
Husty and Zsombor-Murray, 1994). Mohamed (1983) classified singularities into
three groups, based on the underlying Jacobian matrices, namely, stalionary config-
uration, uncertainly configuration and immovable siructure. Gosselin and Angeles
(1990b) suggested a classification of singularities pertaining to parallel manipulators
into three main groups. Later, Ma and Angeles (1992) introduced another classifi-
cation for singularities, namely, configuration singularities, archilecture singularilics
and formulation singularities. The latter is caused by the failure of a kinematic model
at particular configurations of a manipulator and can be avoided by a proper forinu-
lation of the problem, while a conﬁgur};‘tion singularity is an inherent manipulator

property and occurs at some configurations within the workspace of the manipulator.
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An architecture singularity is caused by a particular architecture of a manipulator.
Such a singularity prevails in all configurations inside the workspace. Moreover, Se-
frioui (1992) considered architecture and configuration singularities, and classified
the latter into two groups. Finally, Zlatanov et al. (1994a, 1994b) classified singu-
larities of a non-redundant general mechanism into six groups. However, some of
" those groups always occur simultaneously. The above-mentioned singularity classifi-
cations fail in more general cases; the author has been unable to find reference to any
other sinzularily classification methods for general kinematic chains with multiple
kinematic loops. This motivated the study of singularities, which forms part of this
thesis.

Here, an alternative classification of singularities encountered in parallel manip-
ulators is proposed. Similar to the classification of singularities given in Gosselin
and Angeles (1990b), the classification suggested here relies on the properties of
the Jacobian matrices of the manipulator. These Jacobians, for the case of parallel

manipulators, occur in kinematic relations of the form
JO+Kt=0 (1.2)

where @ is the vector of joint rates, t is the twist array and K and J are the Jacobian
matrices.

Deriving the Jacobian matrices for the manipulators of interest, in an invariant
form, enables the detection of all singularities within the workspaces of the manipu-
lators. Moreover, contrary to earlier claims, (Gosselin, 1988; Gosselin and Angeles,
1990b; Sefrioui, 1992), it is proven that the third type of singularity is not necessarily

architecture-dependent.

1.2.4 Isotropy

An important property of robotic manipulators, which has attracted the attention of
researchers for many years, is kinematic dexterity. However, dexterity bears different

connotation in different contexts. One definition of dexterity is given as that fraction
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of the workspace volume in which a manipulator can assume all orientations (Gupta
and Roth, 1982). Dexterity has also been interpreted as a specification of the dynamic
response of a manipulator (Yoshikawa, 1985}, its joint range availability (Liegeois,
1977), and as global measures over a whole trajectory (Suh aud Hollerbach, 1987).

With regard to dexterity in the context of local kinematic accuracy, a number
of measures, based on the Jacobian matrices, have been proposed for quantifica-
tion, namely, the Jacobian delerminant, manipulability, minimum singular value,
and condition number. For non-redundant manipulators, the determinant has been
used to evaluate the accuracy of wrist configurations (Paul and Stevenson, 1983).
Yoshikawa (1985) has extended the definition based on the Jacobian determinant to
non-square matrices by using the determinant of the product of the Jacobian matrix
by its transpose, thereby proposing the concept of manipulability. Klein and Blaho
(1987) used the minimum singular value as a dexterity index. .

If the determinant approaches zero, the value of the determiﬁant cannot be used
as a practical measure of ill-conditioning. This is true as well for the minimum
singular value approaching zero. These two measures have dimensions of length to
a certain power, their value thus depending on the choice of units. Nevertheless,
to evaluate ill-conditioning, the matrix condition number has been recommended by
numerical analysts (Issacson and Keller, 1966). This measure does not share the
drawback of determinants and minimum singular value pointed out above.

The Jacobian matrices of parallel manipulators are configuration-dependent, and
hence, a manipulator can be designed with an architecture that allows for postures
entailing isotropic Jacobian matrices. An isotropic matrix, in turn, is a matrix with
a condition number of unity. Such designs are called isotropic. The concept of
isotropy was first introduced by Salisbury and Craig (1982), for the optimum design
of multi-fingered hands. Later, isotropic Jacobian matrices were used as a design
criterion to configure various manipulators (Gosselin, 1988; Gnsselin and Angeles,

1988 and 1989; Klein and Miklos, 1991; Angeles and Lépez-Cajin, 1992; Angeles
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et al., 1992; Gosselin and Lavoie, 1993; Pittens and Podhorodeski, 1993; Husty and
Angeles, 1994).

The foregoing concept is used here to find isotropic designs of several parallel
manipulators. Parallel manipulators, contrary to their serial counterparts, have two
Jacobian matrices, as expressed in eq.(1.2). Thus, the condition numbers of the two
Jacobian matrices should be minimized. For DT and some other parallel manipu-
lators, we fin herein the complete set of isotropic designs. This is possible only
because we cc.mld find the Jacobian matrices in an invariant form. Moreover, the
continuum of design variables is at least one-dimensional, thereby allowing designers
the freedom to investigate and incorporate optimality criteria other than isotropy,

e. g., workspace volume and global dexterity.

1.3 Scope and Organization of the Thesis

The main theme of this thesis is the kinematic study of parallel manipulators. How-
ever, our focus will be on a novel class of parallel devices, namely, double triangular
parallel manipulators. Other parallel robots are included in our study to show that
some of the methods developed here are widely applicable and not confined to the
DT class.

The kinematics of the planar and spherical mechanisms require only the tools
of planar and spherical trigonometry. This fact has led us to expand the solution
concept to three dimensions by invoking methods of spatial trigonometry. In Chapter
2, the analytic tools, including dual numbers, quaternions, dual quaternions and
sPati;xl trigonometry are studied.

Planar and Spherical DT manipulators, along with a generalization of the con-
cept, are developed in Chapter 2, the spatial version of these manipulators being
introduced in Chapter 3. Other parallel manipulators, namely, those to which our
methods have been applied in the later chapters, are introduced in Chapter 3 as well.

Among these, we have two general classes of planar parallel manipulators.
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Chapter 4 is devoted to the direct kinematics of planar, spherical and spatial
DT manipulators; for each, an example is included. The direct kinematics of all the
manipulators mentioned in Chapter 3 is addressed here as well.

In Chapter 5, we introduce a classification of singularities in parallel manipula-
tors, which is based on their Jacobian matrices. The Jacobian matrices of scveral
parallel manipulators are derived in an invariant form, their singularities being iden-
tified according to the new scheme.

Chapter 6 is devoted to the study of the isotropic design of parallel manipulators.
Using isotropy criteria, multi-dimensional parameters of isotropic designs are found,
which we claim are exhaustive as regards the manipulators at hand.

Chapter 7 summarizes the work accomplished in this thesis and suggests further
avenues of research.

Finally, five appendices provide additional theoretical and application depth. A
brief account of Bezout’s method to eliminate unknowns in a system of multivariate
polynomials is included in Appendix A. The coefficients of long equations are tabu-
lated in Appendices B, C and D. Appendix E contains mechanical designs to show

how planar and spherical DT manipulators might be implemented.



Chapter 2

Analysis Tools

2.1 Introduction

The analysis tools on which this thesis relies are duai number algebra and spatial
trigonometry. An extensive treatment of these can be found in Clifford (1873), Study
(1903), Yang (1963), Yang and Freudenstein (1964), Ogino and Watanabe (1969),
Pradecp ct al. (1989), Funda and Paul (1990), Ge and McCarthy (1991), Gonzalez-
Palacios and Angeles (1993), Cheng (1993), Ge (1994) and Thompson and Cheng
(1994). For quick reference, and also with the purpose of giving more insight into
these concepts, while introducing new viewpoints, we give in this chapter an account

of Lthese valuable concepts.

2.2 Dual Numbers

A dual number a, first introduced by Clifford (1873), is defined as an ordered pair,

namely,

i = (a, ao) 2.1)

with specific addition and multiplication rules. In the foregoing definition, a is the

primal part and agp is the dual part, both being real numbers. Moreover, if ag =0, @
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. is called a rea! number; if @ = 0, @ is called a pure dual number and, if neither is

zero, @ is called a proper dual numbcr.

Let ¢ denote the dual unit, which is a quasi-imaginary unit with two properties,

namely,

Then, a dual number can be written as
@ =a+ cay (2.2)

The dual number &, whose Cartesian coordinates are ¢ and @y as shown in Fig, 2.1,
can be associated with a point in a plane called the dual plane. Each dual num-
ber corresponds to one point in that plane, and vice versa. Morcover, @ can be

represented as a vector from the origin of the dual plane to the point (e, ap).

Dual axis

(@, ap)

P o

0 1 Real axis

Figure 2.1: Dual planc

Let b = b + by be another dual number. Equality, addition, multiplication and

division are defined, respectively, as

&=f)4=>a=b, ug = by (2.3a)

+
=)
i

a

(¢ 4+ b) + ¢(ap + bo) (2.3b)
ab + ¢(abg + agb) (2.3¢)

=13
f Y
il
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=), b#0 (2.3d)

[ 2T i~ 33

Fromn ¢q.(2.3d) it is obvious that division by a pure dual is not defined. Hence, dual
numbers do nol form a field.

All formal operations involving dual numbers are identical to those of ordinary
algebra while taking into account that €2 = ¢3 = ... = 0. The series expansion of an

analytic function of a dual number is of great importance, i.e.,

(&) = Jla+ cta) = (&) + cap ) (2.4)

where all higher terms vanish because of the foregoing property of c.

2.2.1 Dual Quantities

The dual angle 6 between two skew lines £, and £, introduced by Study (1903), is
defined as

"

0=0+cs (2.5)

where 0 and s are, respectively, the twist angle and the distance between the two
lines, as shown in Fig. 2.2,

Three trigonometric identities arise directly from eq.(2.4), namely,

sinf) = sinf + es cos 0 (2.6a)
cosf = cos 0 — ¢ssin0 (2.6b)
tand = tan 0 + essec? 0 (2.6c)

Moreover, all ordinary trigonometric identities hold for dual angles.

A dual veclor a is defined as the sum of a primal part a and dual part ag, namely,
a=a+eap (2.7)

Morcover, a line A can be specified by a unit dual vector a*, whose 6 real coefficients

in & and ay are the Pliicker coordinates of .4, namely,

a"=a+eag (2.8)
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L1

Figure 2.2: Dual angle between two skew lines

with a-a = | and a-ap = 0. Figure 2.3 shows a as defining the direction of A, while

ag is the moment of a with respect to the origin O, namely,

aQp=pxa

Figure 2.3: Pliicker coordinates of a linc
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2.2.2 Quaternions

Quaternions were introduced by Hamilton (1844). They have recently played a
significant role in several areas of science and engineering, namely, in differential
geometry, in analysis and synthesis of mechanisms and machines, simulation of par-
ticle motion in molecular physics, and in the formulation of the relativistic equation
of motion (Agrawal, 1987). Funda and Paul have shown that quaternions offer the
most cfficient alternative among point transformation formalisms (Funda and Paul,
1990). However, they havea not received wide publicity in the area of kinematics and
dynamics of mechanisms. This is mainly because quaternion algebra is complicated
and leads to tedious operations.

The word qualernion is derived from the Latin word quaeterni and means a set of

four. It is a linear combination of four quaternion units, 1, 1, j and k, namely,
g=d+ai+by+ck (2.9)

with the definitions

Pre-multiplying both sides of ij = k, jk = i and ki = j by i, j and k, respectively,

leads lo
ik=—j, Ji==k, ki=-i

Morcover, d, a, b and c are all real numbers. The three quaternion units i,j and k
can be considered as orthogonal unit vectors with respect to the scalar product. For
this reason i,j and k are also identified as an orthogonal triad of unit vectors in a
d-dimensional Euclidean space.

A quaternion consists of two parts, the scalar part s, and the vector part v,
namely,

qg=s+v (2.10a)
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where

s=d (2.100)
v=ait b+ ck (2.10¢)
The norm of a quaternion is defined as

N = /qk(q) (2.11)

where k(q) is called the conjugate of ¢, dcfined as

EHey=s—v (2.12)

Then, eq.(2.11) leads to

N=vVd+4a+bh+c? (2.13)

Furthermore, the reciprocal of a quaternion is delined as

k ,
¢ ' = T&f%l (2.14)
and, as a result, we have
g lg=qqt =1 (2.15)

A unit quaternion ¢* is a quaternion whose norm is unity, and takes on the general

form
q" =cosf +ssinl (2.16a)
where
d
0= —
cos N
sinf = — N

and s is the unit vector representing the axis of the unit quaternion ¢ it is given as

_ ait+bj+ck |
= TrirTe (2.16b)
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2.2.3 The Product of T'wo Vectors

Given two unit vectors a and b, their product ab, in this order, is defined as

ab=-a-b+axb
= —cosl +ssinl (2.17)

where 0 is the angle between a and b, and s is the unit vector perpendicular to them,

as shown in Fig. 2.4,

Figure 2.4: Vectors a, b and s

The conjugate of both sides of eq.(2.17) is readily calculated as
k(ab) = —(c.osa + ssin §) (2.18)
The left-hand-side, in the light of eq.(2.17), can be written as
k(ab) = k(—a-b+axb)
=—a-b-axb

=-b:-a+bxa
= (~b)(~a) (2.19)

But the negative of a vector is the same as its conjugate; hence, the foregoing equation

leads to

k(ab) = k(b)k(a) C(2.20)
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Substitution of the value of k(ab) from eq.(2.20) into eq.(2.18), and noting that the
right-hand-side of the latter is equal to —g", leads to

k(b)k(a) = —¢" (2.21)
But, from eq.(2.14), we have
k(a) =a™ (2.22)
Substitution of the value of k(a) from eq.(2.22) into eq.(2.21), with the fact that
k(b) is equal to —b, yields =
¢" =ba™! (2.23)

Furthermore, post-multiplying both sides of the foregoing equation by a yields
ga=Db (2.24)

which implies that a unit quaternion ¢" is a rolation operator. It rotates a vector
a through an angle & about an axis s, called the quaternion axis that intersects the

vector at right angles, as shown in Fig. 2.4. Moreover, this operation preserves the

Euclidean norm of vectors.

The relation between a unit quaternion ¢* and the corresponding rotation matrix

Q follows directly from definitions (2.16a} and (2.16b), namely,

¢ = -;-[tr(c;) — 1] + vect(Q) (2.250)

where tr(Q) and vect(Q) are the linear invariants of Q , as defined in (Angcles, 1988)

as
tr(Q)=1+2cosf (2.25b)
vect{Q) = sin 0s (2.25¢)
Moreover, Q is given in an invariant form in this reference as
Q =887 + cos (1 — 887) +5in 0S (2.25d)

in which 8, 0 and S are the axis of rotation, the rotation angle and the cross-product

matrix of vector s.

v
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2.2.4 Dual Quaternions

The quaternion concept was combined with that of dual numbers by Yang (1963)
to produce the dual quaternion. Moreover, he applied the latter to analyze four-bar
linkages. Recently, Funda and Paul showed tilat dual quaternions provide the most
compact and computationally efficient formalism for motion in parallel and serial
screw computations (Funda and Paul, 1990).

A dual quaternion § is a quaternion with dual components, namely
G=d+ai+bj+éek (2.26)

where d, a, b and ¢ are dual numbers. Similar to an ordinary quaternion, a dual

qualernion consists of two parts, the scalar part 3, and the vector part ¥, namely,

G=4+V (2.27a)

where
§=d (2.27h)
v=ai+bj+ék (2.27¢)

Morcover, the conjugate of a dual quaternion is defined as
E§=35-v (2.28)

while the norm of a dual quaternion is defined as

F=Jakg) =V +a2 + b2 4 & (2.29)
Furthermore, the reciprocal of a dual quaternion is defined as
i = HQ (2.30)

and, as a result, we have

i'g=¢" =1 (2:31)
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A unit dual quaternion ¢ is a dual quaternion with norm equal to unity, namely,

§" = cosl + s™ sin f (2.32a)
where
cosl = —
1'\1'
LA etk
sinf = —5——
N

and hence, s™ represents the Pliicker coordinates of the axis of the unit dual quater-

nion §*, which is given as .
- = ai+ 0+ ck

= (2.32b)
Va4 b2 4 @2

2.2.5 The Product of Two Lines

Given the Pliicker coordinates of two lines A and B in dual-vector form, a® and b*®,

the product of A by B, in this order, is defined as the product of a* by b, in the

corresponding order, namely,

a’b"=-a"-b*+a"xb" (2.33a)

where
a~-b"=a-b+ca by +tag:b)=cosd (2.33D)
a*Xxb" =axb+e(axhbg+axb)=s"sind (2.33¢)

in which 8 is an unit dual vector representing the Pliicker coordinates of the common

perpendicular between a* and b". Moreover, § is given as

0=10+c¢s

in which  is the twist angle and s is the distance between the two lines, respectively,

as shown in Fig. 2.5.
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Figure 2.5: Layouts of lines A, B and §
Equation {2.33a), in the light of eqs.(2.33b) and (2.33c), can be written as
a"b" = —cosf + s"sin § (2.34)
Moreover, taking the conjugate of both sides of eq.(2.34) leads to
k(a"b") = —(cosf + s*sin ) (2.35)
The left-hand-side, in the light of eqs.(2.33b) and (2.33c), can be written as
k(a"b”) = k(—a"-b" +a" x b")
=-a"-b"-a"xb"

=-b*-a"+b" xa’
= (-b*)(—a") (2.36)

But the negative of a dual vector, based on eq.(2.28), is the same as its conjugate,

the foregoing equation thus leading to

k(a'b") = k(b")k(a") (2.37)
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Substitution of the value of k(a*b”) from ¢q.(2.37) into eq.(2.35), with the lact that

the right-hand-side of the latter is equal to —4*, leads to
k(b™)k(a™) = —¢" (2.38)

But, from eq.(2.30), we have
k(a®) = (a*)™! (2.39)
Substituting the value of k(a") froin eq.(2.39) into eq.(2.38), and noting that k(b*®)
is equal to —~b*, we obtain
¢" = ba™! (2.10)

Post-multiplying both sides of the above equation by a* leads to
§a" =b* (2.41)

which implies that a unit dual quaternion ¢* is a screw operalor. It rotales a line
A through an angle # about an axis & that intersects the line at right angles, and
slides it along that line through a distance s, as shown in Fig. 2.5.

As explained earlier, the main drawback of quaternions is that their algebra is
quite involved, the complexity related to that of dual quaternions being even ore
so. To overcome this obstacle, the author implemented some user-defined functions
in a MATHEMATICA environment to handle computations such as the product of
two lines, the product of two dual quaternions, and the product of a line by a dual
quaternion, to be used in Chapter 4.

All the dual quantities and their properties are summinarized in Table 2.1.

2.2.6 Dual Screw Matrices

Here, we combine the concept of rotation matrix with that of dual numbers, and
will find a dual screw malriz in an invariant form. Let us define two lines A and S

in dual-vector form as a* and 8*, respectively. Line A rotates through an angle 0
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Quantity Symbol | Primary part Dual part Constraints No. of independent
1]i|J ) k |eleilejlek variables 1
Real number a a;0]0) 0 ojojoq0 T 1
Pure dual number do 0(0]0] O |agl O] O] 0O 1
Proper dual number a al0]0] O |ap) O] O | O 2
Distance s 0[0JO[ 0 [s[O]O] O 1
Angle 0 00|00 6 jolofo] 0 1
Dual angle ] (010]0] 0 s|10fj0] O 2
Vector a 0Jla|b| c J[OTOJO[ O T 3
Quaternion q dlalb]| ¢ |O]JO]|]0]| O 4
Unit quaternion q dlalb] c [O0]O[O0] O & +at+bP+ct=1 3
Dual vector a Olajdb] ¢ |0 ]a || c 6
Line a* Olald]| ¢ 10]as|ba]| o a2+ +et=1 4
aag+bbo+cco =0
Dual quaternion q dla|b| ¢ |dy|lay| by | co 8
Unit dual g dla|b| ¢ |do|lao] by | co &+a+b+ci=1 6
quaternion ddp + aag + bbg +- cco =0

Table 2.1: Dual quantities and their properties

82
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Figure 2.6: Screw motion of line A, about line §

about § and slides along that line through a displacement s, as shown in Fig. 2.6,

to coincide with line B whose direction b is given as ) {

' b=Qa (2.42)

Q being the rotation matrix given“in eq.(2.25d). Moreover, the moment of line B

with respect to the origin O, by, is given as
: by = Pe X b - (2.438.)
where pg is a vector directed from O to a point on line B, and is given as

Pz = ps + 38+ 'Q(pa — ps) - (2.43b)
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Substituting the values of b and pg from eqs.(2.42) and {2.43b) into eq.(2.43a) leads

io

bo = [ps + 55+ Q(p4 — Ps)] x (Qa) (2.44)

Equation (2.44), upon expansion, yields

bo = ps « (Qa) + ss x (Qa) + (Qp4) x (Qa) — (Qps) x (Qa)  (2.45)

Upon substitution of the value of Q from eq.(2.25d) into eq.(2.45a) and expansion,

the first term of the foregoing equation leads to

ps % (Qa) = (ps x 8)s”a + cos#(ps x a) — cos §(ps x s)sTa + sin Ofps x (s x a)]

= 508" a + cos f(ps x a) — cosfsos” a + sinO[(pFa)s — (pis)a] (2.45b)

Similarly, for the second, third and fourth terms of eq.(2.45a), we have

s8 x (Qa) = s(s x 8)s’a + scosf(s x a) — scosf(s x s)s"a

+ssinffs x (s x a)]
= scos0(s x a) + ssinf[(sTa)s — (s7s)a)] (2.45¢)
(Qp.a) x (Qa) = Q(pa x a) = Qag (2.45d)
(Qps) x (Qa) = Q(ps x a)
=887 (ps x &) + cos O(ps x a) — cos H(ss” )(ps x a)
+sinf[s x (ps x a))
= —ssla + cos O(ps x a) + cosfssla

+sin 0](s7a)ps — (8" ps)a] (2.45€)

Substituting the values of ps x (Qa), s8 x (Qa), (Qpa) % (Qa) and (Qps) x (Qa)

from eqs.(2.45b-¢) into eq.(2.45a), upon simplification, yields
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by = Qag + (sgsT + ssg)a — ssinf(1 — ss' )a — cos O(SUST + ssg’)a -+
sin0[(pta)s — (sTa)ps) + scosO(s x a)
= Qag + [(s¢s” + 552 ) — ssin (1 —ss”) — cosO(sps’ + s8] ) +
sin #Sp + scos #S]a (2.46)

in which Sp is the cross-product matrix of vector so. From eqs.(2.42) and (2.46), b*

can be written as

b* = b + ¢bo = Qa + cQap + c[(508” + 587 ) — ssin (1 — ss”)
~cos(sos” +ss)) + sin0Sy + s cos 0S]a (2.47)

Equation (2.47) leads to a simple form, namely,

b" = Qa* (2.48a)

where Q is the dual screw matrix in invariant form, i. e.,

-

Q =5"s"" + cos 0(1 —5"s"") +5in 68 (2.48b)

with 5°7 and S are defined as

57 = 8T 4+ es] (2.48¢)

§=S+So (2.48d)

We have thus shown that a dual screw matrix can readily be derived by changing the
real quantities of the rotation matrix of eq.(2.25d) into dual quantities. The same
is true for its linear invariants, namely, tr(Q) and vect(Q), as we show helow. From
the invariant representations of the dual screw matrix, eq.(2.48b), it is clear that the

first two terms of Q, namely, 8°s*” and cos (1 — s"s"T) are symmetric, while the

last term is skew-symmetric. Hence

tr(Q) = tr[s*s™ + cos (1 - s8)) =1+ 2cos § (2.49a)
vect(Q) = vect(sin #S) = sin fs" (2.49b)
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'T'herefore, the relation between a unit dual quaternion ¢§” and the corresponding dual

screw matrix Q follows directly from definitions (2.32a) and (2.32b), namely,

N Py A

i = E[tr(Q) — 1] + vect(Q) (2.50)
Morcover, cqs.(2.49a) and (2.49b) should find extensive applications in the realm of
motion determination whereby the displacement of some lines of a rigid body are

given, and, from these, the screw parameters are to be determined.

2.3 Spatial Trigonometry

2.3.1 Spatial Triangle

A spatial triangle consists of three skew lines in space and their three common
perpendiculars, as depicted in Fig. 2.7. In that figure, the three lines are labelled
{£: 1, their corresponding normals being { N; }}, where A} is the common normal
between lines £, and Ly, J\Jfg is that between £, and L3, with a similar definition for

Na. The lines are given by the three unit dual vectors { AT }3, defined as
Al =it e, 1=1,2,3 (2.51)

where A; and Ag; are, respectively, the direction and the moment vectors of £; about
origin,
Morcover, the three common perpendiculars of the foregoing lines, {N; }3, are

given by the three unit dual vectors { v} }3, defined as
Vi =vi+evg, 1=1,2,3 (2.52)

with »; and pg; representing, respectively, the direction and the moment vectors of

line NV; about the origin.

5N
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Figure 2.7: Spatial triangle

Similar to the planar and spherical trigonometries, one may deline three sides of

the spatial triangle as the associated dual angles, namely,
Gi=m+ay i=1,2,3 (2.53)

where v; is the distance and a; is the twist angle between £, and £;..;, the sum and
the difference in the subscripts throughout this thesis being understood as maodulo 3.

The three angles of the triangle, similarly, are defined as
0;=0;+cx, i=1,2,3 (2.54)

where J; is the distance and 0; is the twist angle between Ny, and Ny, respectively.
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2.3.2 Planar Triangle

If the three axes Aj, A7 and A] are parallel, the triangle reduces to a planar triangle,
as shown in Fig, 2.8. Since the three lines are parallel, the twist angles hetween
them, {0}, of eq.(2.53), vanish, and the three sides of the triangle arc represented
by pure dual numbers, namely,

&,‘ = iy, i= 1,2,3

With the three common perpendiculars represented by {v;}} lying in the same

2
0,
AL

)} },-
n s Al

v
/2 U5 p
1
< I X

Figure 2.8: Planar triangle

plane, their common distances, {A;}3, of eq.(2.54), vanish and the three angles of the

triangle are given by real numbers, i.c.,

2.3.3 Spherical Triangie

If the three axes A7, A and X; intersect at a point, the triangle reduces to a spherical

triangle, as shown in Fig.' 2.9, Since the three lines intersect, the distances between
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. them, {1, of €q.(2.53), vanish and the three sides of the triangle are represented
by real numbers, namely,
Gi=a; i=1,23
As the three lines intersect at a common point, the common perpendiculars intersect

at the same point, as well. Then, the distances between them, {N} of eq.(2.54),

vanish an< the three angles of the triangle are given by

Figure 2.9: Spherical triangle

2.3.4 Trigonometric Identities

A unit dual quaternion is a screw operator that transforms a line into another line,

. as explained in Subsection 2.2.5. Then, the relationship between A}, A7 and Aj can
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he expressed as

A= A (2.55a)
A =05 A; (2.55h)
A =07 A (2.55¢)

where 27, for i = 1,2,3, is a unit dual quaternion, given as
7] = cos @; + V] sin q; (2.55d)
Substituting the value of A3 from ¢q.(2.55¢) into eq.(2.55a) yields
Al =0y 07 Ay (2.56)

Moreover, substituting the value of A from eq.(2.55b) into eq.(2.56), upon simplifi-
calion, leads to
=1 (2.57)
The foregoing identity is called the angular closure equation for spatial triangles; it
stales that the three consecutive screw motions of Aj, represented by &5, 27 and 25,
transforms A], via the intermediate poses A; and Aj, back into itself. .
Similarly, the side closure equation for spatial triangles transforms u;, via the

intermediate poses v3 and v, back into itself, namely,
MA=1 (2.58a)
where 3‘5, for i = 1,2,3, is a unit dual quaternion, given as
A = cosf; + AT sin; (2.58b)

One may conclude from eqs.(2.57) and (2.58a) the following spatial trigonometric
identitics { Yang, 1963):

Sine law:

sinf; sinfp; sinfy

(2.59)

sind; sindy sindg
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J7
Cosine laws:
COS (j = €05 G €OS Oy — Sl Gy sl Ay cos (2.60a)
cos Oy = cos 0y cos 0y — cos dysin ) sin (2.60Dh)
— sin & cos 0z = sin &y cos Gy + €os a9 5in &g cos (2.60¢)
—sin @ sinds = sin ) cos &y + cos Gy cos 0, sin (2.60d)

The foregoing identities hold for spherical triangles. Indeed, if (7} is changed to (),
these identities become the sine and cosine laws of spherical triangles. Morcover, for
planar triangles, the sine law and the cosine law reduce to the elementary sine and

cosine laws of planar trigonometry.
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Parallel Manipulators

3.1 Introduction

Here, we introdﬁce planar and spherical DT manipulators and, based on spatial
trigonometry, which was introciiced in Chapter 2, we generalize the concept of DT
manipulators to that of spatial DT manipulators. Moreover, two general classes of
planar manipulators are given, wherein the first class contains 20 manipulator types
and the second contains four types. For the sake of completeness, the spherical

3-RRR manipulator is included as well.

3.2 Planar Manipulators

Planar tasks, whereby objects undergo two independent translations and one rota-
tion about an axis perpendicular to the plane of the two translations, are common
in manufacturing operations. These can be accomplished by planar parallel manip-
ulators that consist of two rigid bodies connected to each other via several coplanar
legs. 7

:- One of the general classes of planar parallel manipulators consists of two elements,
nameiy the base (P) and the moving (Q) plates, connected by three legs, each with

three degrees of freedom. These will be called three-legged (3L) manipulators. The
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graph of such a manipulator is shown in Fig. 3.1 in which j, for i = 1,2,3, is a
revolute (R) or a prismatic (P) pair.

The degree of freedom ! of the manipulator is determined by means of the
Chebyshev-Griibler-Kutzbach formula (Angeles, 1988), which for planar manipu-
lators is given as

I=3(n-1)-2p (3.1)

where n and p are, respectively, the number of links and the number of R or I* pairs.

Figure 3.1: The graph of a general 3-dof, 3L parallel manipulator

For the manipulator of Fig. 3.1, we have n = 8 and p = 9, and hence, the dof of

the manipulator is
[=3xT-2x9=3

We can build several 3-dof manipulators with three legs, each leg containing three
elementary pairs. These legs are PRR, PRP, PPR, RRR, RRP, RPR and RPP. Since
we can choose to actuate any one of the three joints of the legs, we have 3 x 7 = 21
different legs and actuation modes. It is convenient, however, to actuate the joints
attached to P, in order to have stationary motors. This limits the choice to seven
types of leg and actuation architectures. Mq_rct_)i\r_qr,"wc cannot have a 3-dof, 3,

manipulator if more than one leg is of the ili’P type Therefore, this type of leg is

left aside. -
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Let us classify the remaining legs into two categories, based on their third joints.
Those legs attached to @ with a revolute joint form the first category, i.e., PRR,
PPR, RRR and RPR. The 31, manipulators constructed with these legs are called
manipulators of class A. Morcover, those legs attached to @ with a prismatic joint
form the legs of another 3L parallel manipulator class that will be called class B.

The joint, sequences for the legs are PRP and RRP.

3.2.1 3-DOF Manipulators of Class A

As explained above, the class-A manipulator has three legs and can be built with
any three combinations of four types of legs, namely, PRR, PPR, RRR and RPR.

Then, the number of manipulators in this class is given as
1
n=Y (4—i+1)=20
i=1

The geometric model of all of the foregoing manipulators is depicted as in Fig. 3.2,
in which Z; represents the ith motor and C is the operation point of Q. Moreover,
joint @; is a revolute, while joints P; and A; can be either revolute or prismatic. The
axes of all revolute joints are perpendicular to the plane of motion, while the axes
of prismatic joints lie in the plane. If P; is a prismatic joint, its axis is given by a
vector a; directed from P to A;. Similarly, il A; is a prismatic joint, its axis is given

by a vector r; directed from A; to @;.
Example 3.2.1.1: Planar 3-RRR Manipulator

An example of the manipulator of class A is the planar 3-RRR manipulator, which
has been the subject of extensive research (Hunt, 1983; Mohamed, 1983; Gosselin,
1988; Gossclin and Angeles, 1989; Gosselin and Sefrioui, 1991).. This manipulator is

constructed with two bodies, P and Q, connected to each other via three RRR legs,

as depicted in Fig. 3.3. Moreover, all three motors P; are fixed to the ground.
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At e P or R pairs
® R pair

A

Figure 3.2: The manipulator of class A
3.2.2 3-DOF Manipulators of Class B

The manipulators of this class have two bodies connected to each other via any
three combinations of two types of legs, namely, PRP and RRP. Then, the number
of manipulators in this class is given as

2

n=3Y (2-i+1)i=4

i=1
The geometric model of all of the foregoing manipulators is depicted as in Fig. 3.4,
in which P, represents the ith motor and C is the operalion point of €. Morcover,
joints A; and R; are revolute and prismatic, respectively, while joint P can be either
revolute or prismatic. The axes of all revolule joints are perpendicular-to the plane
of motion, while the axes of prismatic joints lie in the plane. If P is a prismalic
joint, its axis is given by a unit vector a; directed from P; to A;. Furthermore, the

axis of joint R; is given by the unit vector b;.
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® Fized joint

Figure 3.3: Planar 3-dof, 3-RRR parallel manipulator
Example 3.2.2.1: Planar DT Manipulator

A special type of class-B manipulator, which has three PRP legs, is the 3-dof plarar
DT manipulator. A sketch of the kinematic chain and a typical design of this device is
dbpictcd in Fig. 3.5. The manipulator consists of two rigid planar triangles connected
to cach other via three PRP legs. Moreover, the leg lengths are virtually zero, which
enhances the structural stiffness of this manipulator. One of these triangles is fixed
and is, thus, termed the fized triangle ; the other moves with respect to the fixed
one and thus is called the movable iriangle . Furthermore, the movable triangle is
displaced by actualing three prismatic joints along the sides of the fixed triangle,
denoted by three unit vectors, {a;}3.

This manipulator is novel and offers some possibility for innovation. For example,
augmented with a fourth axis, to allow translation in a direction perpendicular to

the plane of the first 3-dof motion, the device can perform the motions of what are

known as SCARA robots.
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® P or R pairs

® R pair P,

¢l p pair

Figure 3.4: The manipulator of class B

Movable triangle @

Fixed triangle P

Figure 3.5: Planar 3-dof, DT manipulator
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3.3 Spherical Manipulators

Spherical motion allows the arbitrary orientation of workpieces in 3D space. Here,
two Lypes of spherical paralle! manipulators, namely, the spherical 3-RRR and the
spherical DT manipulators, are included. Both of these devices consist of two bodies
connected by three 3-dof legs, the graph of such a device being that of Fig. 3.1. More-
over, the dof of spherical manipulators is determined by means of the Chebyshev-
Griibler-Kutzbach formula, as given in eq.(3.1). Here we have n = 8§, p = 9 and,

again, the dolf, [, of the device is

[=38-1)-2x9=3

3.3.1 Spherical 3-DOF, 3-RRR Manipulator

'T'his manipulator consists of two bodies connected by three RRR legs, as shown
in Fig. 3.6. Moreover, three actuators are attached to the base and rotate the
links connected to the base about {u;}}. Similar to its planar counterparti, this
manipulator is well documented in the research literature (Cox and Tesar, 1989;
Craver, 1989; Gosselin and Angeles, 1989; Gosselin et al., 1994a, 1994b; Gosselin

and Lavoie, 1993).

3.3.2 Spherical 3-DOF, DT Manipulator

The spherical 3-dof, DT manipulator consists of two spherical triangles connected
by threc legs. Similar to its planar counterpart, itr leg lengths are virtually zero,
which makes it particularly stiff. One of these triangles is fixed, and is thus termed
the fixed triangle; the other moves with respect to the fixed one, and thus is called
the movable triangle. Moreover, the movable triangle is driven by three actuators

placed along the sides of the;{fi?ed triangle, with actuated-joint variables {y; 3.
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Figure 3.6: The spherical 3-dof, 3-RRR manipulator

3.4 Spatial DT Manipulators

Now, by way of generalization, the spatial DT manipulator can be introduced. A
spatial DT manipulator consists of two spatial triangles connected by three multi-dof
legs. Similar to its planar and spherical counterparts, one of these triangles is fixed,
and thus termed the fixed triangle, the other moving with respect to the fixed one,
and thus termed the movable triangle. Several versions of the spatial DT manipulator

are possible, based on the topology of the connecting legs and the actuated joints,

as discussed below.

3.4.1 Spatial 6-DOF, DT Manipulator

Consider two spatial triangles, P and @, with P connected to @ via three 6-dof
PRRPRP legs. The graph of such an array is shown in Fig. 3.8.

The degree of freedom [ of the foregoing array is determined by means of the
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Fixed triangle P

Ug Movable triangle @

Figure 3.8: The graph of a general 6-dof, DT array
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Chebyshev-Griibler-Kutzbach formula for spatial mechanisms {( Angeles, 1988), namely,
{=6(n~-1)->5p (3.2)

where n and p are, respectively, the numbers of links and of elementary R or P pairs.

For this array, we have n = 17 and p = 18, and hence, the dof is
l=6x16-5x18=6 (3.3)

Triangle P is designated the fixed triangle, while @ is thic movabie triangle.
Moreover, the previous array is, in fact, the graph of the manipulator depicted in
Fig. 3.9. The manipulator has six degrees of freedom, but only three legs. Then,
the degree of parallelism dop, based on eq.(1.1}, is equal to 0.5, which mecans that
we should actuate two joifits per leg. If one chooses to actuate the first two joints
in each leg, the manipulator is the gereral DT manipulator, of which the planar
and spherical DT manipulators are special cases. Some alternative designs of this

manipulator are given in the subsection below.

3.4.2 Other Versions of Spatial DT Manipulators.

As explained in the previous subsection, one can choose alternative sets ol actuating
joints for the 6-dof, DT manipulator. One practical alternative would be to actuate
the first two prismatic joints of each leg, instead of actuating the first two joints.

Moreover, we can also have a 3-dof spatial DT' manipulator. The structure of this
device is similar to that of its 6-dof counterpart, except that we omit the intermediate
prismatic joint of each leg. The graph of such a manipulator is depicted in Fig. 3.10.
The interesting feature of this manipulator is that we can make the distance between
the two prismatic joints of each leg a-. small as possible. In this way, we can get rid
of long legs, which are a major souréé of structural flexibility.

For this manipulator, we have a number of links n = 14 and the number of cle-

mentary joints p = 15. The dof of the manipulator, thus, is obtained by substituting
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Movable triangle @

L .
Fixed triangle 'P—/

Figure 3.9: Spatial DT manipulator

Figure 3.10: The graph of a general 3-dof, DT array
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these values into eq.(3.2), namely,
l=6x13-5x15=3 (3.4)

Therefore, the degree of parallelism dop, based on eq.(1.1), is equal to one, which
means that one can actuate one joint per leg to move triangle @. This motion can
be produced by actuating the first prismatic joints of the legs, so that all the motors

remain conveniently fixed to the ground.
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Direct Kinematics

4.1 Introduction

The direct kinematics {DK) of the manipulators introduced in Chapter 3 is the
subject of study of this chapter. The DK problem leads to a quadratic equation for
the planar DT manipulator and to a polynomial of 16t~ degree for the spherical DT
manipulator. Moreover, the DK of all versions of the spatial DT manipulators are
formulated. For the sake of completeness, the solution of the DK problem for planar

and spherical 3-RRR manipulators are included.

4.2 Planar Manipulators

4.2.1 Planar 3-DOF, 3-RRR Manipulator

The DK problem of the planar 3-RRR manipulator, introduced in Example 3.2.1.1,
is the subject of this subsection. This problem is well represented in the literature.
Hunt (1983) showed that the problem has at most six real solutions, but he failed to
find the underlying polynomial. Merlet (1989) found a polynomial of degree 12 for

the problem, which is not minimal. Recently, Gosselin and Sefrioui (1991) derived

the minimal 6th-degree polynomial and gave an example having six real solutions. =~
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4.2.2 Planar 3-DOF, DT Manipulator

The DK of the manipulator depicted in Fig. 3.5 is the subject of this subsection. The
geometric model of the manipulator is shown in Fig. 4.1. It consists of two triangles,
the fixed triangle P and the movable triangle @, with vertices P P, Py and 1 Q2Q3,
respectively. Triangle @ can move or: triangle P such that P Py intersects Q2@ at
point Ry, P3P, intersects @1@ at Rz and P, P intersects 12 at 3. Morcover,
R;, for i = 1,2,3, cannot lie outside its corresponding vertices. Thus, feasible or

admissible motions maintain R; within edges Q4.1Q;-y and Py Picy, for i =1,2,3.

b,
Figure 4.1: Geometric model of the planar 3-dof, DT manipulator

The motion of triangle @ can thus be described through changes in the edge length
parameters, p;, which locate R; along a side of P, measured from Py, fori =1,2,3.
The non-negative displacements p; are assumed to be produced by actuators, and
hence, they are termed the actualor coordinales. The coordinates of the moving
triangle @, in turn, are the set of variables used to define its pose. Note that the

Cartesian coordinates of the three vertices of @ can be used to define this pose.
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The problem may be formulated as: Given the acluator coordinales p;, for i =
1,2,3, find the Carlesian coordinates of the vertices of iriangle Q.

We solve this problem by kinemalic inversion, i.e., by fixing the movable triangle
Q and letting the fixed triangle P to accommodate itself to the constraints imposed.
"To this end, we define points R; at given distances p;, for i = 1,2, 3, on the edges of
P, thereby defining a triangle £, 3 R3, henceforth termed triangle R, that is fixed to
P. Next, we let d,e and f be the lengths of the sides of this triangle. The problem
now consists of finding the set of all possible positions of triangle R for which vertex
RR; lies within the side Q4.1 @Qi—1, for i = 1,2,3, as shown in Fig. 4.2. By carrying R
back into its fixed configuration, while attaching Q rigidly to it, we determine the
set of possible configurations of the movable triangle for the given values of actuator

coordinates.

Figure 4.2: Triangles @ and R

In Fig. 4.2 we note that each vertex R; is common to three angles labeled 1, 2
and 3. We will denote these angles by a subscripted capital letter. The subscript
indicates one of the three angles commb’r'l.to that vertex, while the capital letter
_ eoriesponds to the lower-case label of the opposite side of the triangle Ry R2Rz. We

 thus have at vertices Ry, R and Rj the angles D;, E; and F}, fori =1,2,3.

=
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Considering triangle @, 3 Ra, the law of sines for triangles yields

Qle = ay sin(Fl) (‘l.l)

where

d

| = ————

sin(Q1)

Similarly, for triangle @2/, R, we have

QaR: = aasin(Da) (4.2)
where
_
= §n(@Qy)

Adding sidewise eq.(4.1) to eq.(4.2) gives

i Sil](F;) + aq Sil’l(Da) =b (4.3)

where
b= Q le

From triangle @, R, B3, we have

Dl =T=-= Fa—Qg (44)
But
F3=7T-F|—F2 (4.5)

Substitution of Fy from eq.(4.5) into ¢q.(4.4) yields

Di=F+F-0Q (4.6)
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Again, we have

[)3 =T— D1 - Dg (47)

Substitution of D, from eq.(4.6) into eq.(4.7) yields, in turn,

Da = G— Fl (4.8)

where

G=m—=D;-F+Q,

Substituting the expression for sin{ D3) from eq.(4.8) into eq.(4.3}, we obtain

bysin{( ) + bacos(Fy) = b (4.9)
with &; and b, defined as
b = a; — a2 cos(G), b = as5in(G)

In eq.(4.9), we substitute now the equivalent expressions for cosines and sines

given below:

2 2z

14 a2

l—=z
1422°

cos(f}) = sin(f) =

where 2 is the tangent of one half of the angle F).

Upon simplification, eq.(4.9) leads to

gl +cr+ea=0 (4.10)
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f=iy )

with ¢, ¢2 and ¢3 defined as

C|=—bg—b, C2=2b|, C3=b2—b

Solving eq.(4.10) for = gives

—by /6 + b3 - b2
z= (4.11)
—(bz + b) ’

The above expression thus leading to the result below:

Theorem 1: Given lwo Iriangles R and Q, we can inscribe R in Q in al mos!
two poses such thal verter R; is localed on the edges Qi1 Qioy of Iriangle Q, for

i=1,23.
Example 4.2.2.1:

Consider the following sides assigned to the triangles P and Q:

QiQ:=04m, @Q:Q3=05m, @:@Q; =0.6m T
PPy ==0.29065 m, PPs=05m, P3P =047875 m

Choose three points, Ry, R; and Ra, located hy three actuator coordinates specified
as py = 0.2 m, p, = 0.14161 m and p3 = 0.03064 . These values produce the

lengths d, e and f given below:

d = 0.33166 m, e = 0.26458 m, f=02m

The two roots of eq.(4.11) are:

z, = 1.0788 , zg = (.4447
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e (1)1 = 94.34°, (F)); = 48°. Equations (4.1-4.8) are used to compute the other
parameters, which leads to two poses of the triangle, Fig. 4.3. The two triangles @
and @' represent {he two solutions that ~errespond to the assembly modes of the

manipulator.

g

Figure 4.3: ‘Triangles @, @', P and R

4.3 Spherical Manipulators

4.3.1 Spherical 3-DOF, 3-RRR Manipulator

The solution of the DK problem of the manipulator of Fig. 3.6 can be found in the
literature. Gosselin et al. (1994a, 1994b) derived a polynomial of eighth degree and

gave an example having eight real solutions, the polynomial thus being minimal.
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4.3.2 Spherical 3-DOF, DT Manipulator

The DK of the manipulator depicted in Fig. 3.7 is the subject of this subscction,
The manipulator consists of two triangles, the fixed triangle P and the movable
triangle @, with vertices P, P2 Py and G1Q2Q3, respectively. Morcover, the side PPy
of P intersects the arc Q2Qs of @ at point 1,. We denote by I, and Rj the other
intersection points, that are defined correspondingly. Moreover R;, for i = 1,2,3,
cannot lie outside its corresponding vertices. Thus, [casible or admissible motions
maintain R; within edges Q;4:1Q:-1 and Py Poy, for i = 1,2,3.

Thus, the motion of triangle @ can be described through the arc lengths j; of
Fig. 3.7, or actualor coordinales, for i = 1,2,3. Likewise, the Cartesian coordinates
of the moving triangle @ are the set of variables defining its orientation. Note that
the Cartesian coordinates of the threc vertices of @ can be determined once its
orientation is given.

Similar to the direct kinematics of the planar DT manipulator, the same problem,
as pertains to the spherical manipulator, may be formulated as: Given the actualor
coordinates p;, fori =1,2,3, find the Cartesian coordinales of the vertices of lriangle
Q.

Again, we solve this problem by kinematic inversion, i.c., by fixing the movable
triangle @ and letting the fixed triangle P accommodate itsell to the constraints
imposed. To this end, we define points R; at given arc lengths u;, for i = 1,2,3,
on the edges of P, thereby defining a triangle Ry R2; 5, henceforth termed triangle
R, that is fixed to P. Next, we let d,e and [ be the sides of this triangle. The
problem now consists of finding the set of all possible orientations of triangle R for
which vertex R; lies within the side Qi41Qi-1, for i = 1,2,3, as shown in Fig. 4.4.
By carrying R back into its fixed configuration, while attaching @ rigidly to it, we
determine the set of possible configurations of the movable triangle for the given

values of actuator coordinates.

In Fig. 4.4 we note that each vertex R; is common to the three spherical angles
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Ry Q.
Figure 4.4: Spherical triangles Q and R

labelled with numbers 1, 2 and 3. Similar to the planar mechanism, we label them
Di, E;and Fy,fori=1,2,3.

We intreduce now the definitions below:

s= i+—f‘;—ﬂ (4.122)
b= \J sin{s — d) smgs —¢e) sin(s — f) (4.12b)
sin(s) =
From spherical trigonometry we have
D; = 2a.rctan(—-k;—) (4.13a)
sin(s — d)
) == 9 _r .
E, a.rct.a.n(s_m(‘s — e)) (4.13b)
Fy = 2arctan(——) (4.13c)

sin(s — f)

Cousider now the spherical triangle @, R3 R,. Using the law of cosines for spherical
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triangles, we have

cos (@ — — ¢o3 ¥y cos L3 + sin F sin By cosd (4. 14a)

Similarly, for the spherical triangles Q22 Ry and @312 R, we have

cos Q2 = — cos [J) cos I3 + sin Dy sin Fycose (1.14b)
cos QQa = — cos I cos Dy + sin Ky sin Dycos f (4.14¢)
However,
E;; =T - El - Ez (415«1)
B=n-FH-FK (4.15b)
Da =T - Dl - 1)2 (‘1.15(3)

Substitulion of the expressions for cos Ej3 and sin £y [rom cq.(4.15a) into cq.(4.14a},

we obtain

aycicz2 + aypc182 + @138152 + apsicp + 4y =0 (4.16a)
where
1 = COs Ez g = —sin lb‘g
ayg = cos d cos Iy a4 = cosdsin By
a5 = — cos (9, c| = cos I
s, = sin [ c2 = cos [y

s2 = sin )

Similarly, substitution of eq.(4.15b) into eq.(4.14h) yields:

a21€3Cy + d22C38) + 38381 + dzas3c) + a5 =0 (4.16h)
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where

ag; = cos Uy = —sin [
gy = COS eCos I a4 = cosesin kY,
tqp = — cos Q2 cz = cos Dy

sa = cin Dy

Likewise, substitution of eq.(4.15¢) into eq.(4.14c) yields:

(123)C2C3 + 32C253 + U33S283 + 634823 + ags = 0 (4.16¢)
where
g = cos [ a3z = —sin Dy
33 = cos f cos Dy 34 = cos fsin D,
(g5 = — cos (3

Equations (4.16a-c) must be solved simultaneously to determine the values of
angles Dy, I} and Fy. In the above equations, we substitute now the equivalent
expressions for cosines and sines given below:

23:,'
1+ a?

11—z
€T

1+

Lt Ll ]

C = ’ § =

-

where @y, for 2 = 1,2,3, are the tangents of one half of the angles Fy, £, and D,,
respectively.
Upon simplification, egs.(4.16a—c) lead to these trivariate polynomial equations

in &, &7 and x3, namely,



»
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dl.'l?% + (123.'2 + da =10 (-’1.[7?\)
dyz? +dsza +dg =0 (4.17Dh)
d7xd + dgra + dg =0 (4.17¢)

where

dy = (an + ars)al = 2a14z) + (@15 — an)
d2 = —2ay37} + dejaz + 20y,

ds = (@15 — an)z? + 2e 42 + (@15 — ayy)
dy = (aa; + a35)22 — 2az473 + (azs — azy)
ds = —2a322 + dasrs + 2as

de = (a3s — “3[)-1::23 + 2az423 + (a5 — am)
dr = (ag1 + ags)x? — 2a347) + (azs — az1)
dg = —2aga? + daxpz| + 2axn

dg = (azs — az1)a? + 2auz, + (a5 — az)

We now eliminate z; from eqgs.(4.17a) and {4.17b), using Bezout’s method (Salmon,

1964). A short account of this method is given in Appendix A. The resulting equation

thus contains only x; and 23, namely,

Ay A |
det| =" T (=0 (4.18)
A?l All

where quantities Ay, Aj2 and Agy are defined below:

d, d d d )
Ansdet| " P, Apzde| T P, Ays=de| P ®
d4 dﬁ d.; dl dﬁ d(i

After expansion and simplification, eq.(4.18) reduces to

Almg + Azwg + Asmg + Ayzs+ A =0 (4.19&)
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where

q
Ai= Apzl, i=1,--+,5 (4.19b)

p=0

and the cocfficients Az, given in Appendix B, depend only on the data.
Now, x is climinated from egs.(4.17a) and (4.17b), while x5 is likewise eliminated

from eqs.(4.17c) and (4.19a), thereby obtaining a single equation in z;, namely,

d” d|2 A-IdT ASdT
dgy dpy Auds + Asd;  Asd,
dot | @2 @2 A s+ As L (4.20)
dy dg dy 0

0 d; ds do

where

din = Agdy — Aydg,  dya = Azdr — Ardy
dyy = Aady — Aidy,  dyp = Asdg — Aady + Aydr

The foregoing determinant is now expanded and simplified, which then leads to

16
S kzi=0 (4.21a)

i=0

where k; depend only on kinematic parameters, and are related by
ki = (=Dkgy, i=1,---,7 (4.21b)

T'lie detailed expressions for k; are not given here because these expansions would
be too large (more than 100 pages in the most compact form) to serve any useful
purpose. What is important to point out here is that the above equation admits

16 solutions, whether real or complex, among which we are interested only in the
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real positive solutions. The real negative solutions lcad to the same conligurations
as the positive ones, with the exception that the sides of the triangle R, d,e and f.
are replaced by another triangle with the same vertices 2y 2 23, but different sides,
namely, 27 — d, 27 — e and 27 — f. So the negative solutions can be discarded. The
upper bound for the number of real positive solutions of a polynomial is given by
Descartes theorem (Householder, 1970), namely,

The number of real positive solutions of a polynomial is given by the number of
change of signs of the coefficients ko, ky, -+« ky minus 2m, wherc m 2 0.

The maximum of change of sign in the foregoing polynoinial is eight. Therefore,
the problem leads to a maximum of eight real positive solutions and, as a result,
triangle @ of Fig. 3.7 admits up to eight different orientations, for the specified

values of j, 3 and pa.
Example 4.3.2.1:

Consider the spherical triangles P and @ given as:

@1Q2 =60°,  Q20Q3 =70°, Q.G = H50°
PP = 700, P Py = 58.6°, PP, = 81.5°

and three points, R, Ry and Rg, located by the three values y; = 10°, jiz = 49.5°

and ps = 40°. These values correspond to the angles Dy, 3 and I% given below:

D, = 43.4745°, Lk =37.9120°, F, = 106.7287°

Equation (4.21a) is now solved for z;, the solutions heing shown in Table 4.1. For this
particular problem, we were able to find two real positive solutions. These solutions,

which are depicted in Fig. 4.5, correspond to the assembly modes of the manipulator.
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No. ) D, (deg.) E; (deg.) Fy (deg.)
] —3.52853659 180° + (Dy )13 | 180° + (E1 )1z | 180° + (Fi)1a
2 —~1.81193883 180° + (D))16 | 180° + (E) )1s | 180° + (Fi)1e
3 | —0.7122360 — ;0.9461246 : - .
4 | =0.7122360 + 70.9461246 - - -
5 | —0.4987636 — 71.64486621 - - -
6 | —0.4987636 + 71.6448662 - - -
7 | —0.0110361 — ;1.7618028 . - -
8 | —0.0110361 + 517618028 - - -
9 | 0.00355500 — 0.5A75491 . - .
10 | 0.0035550 + 70.5675491 - - -
11 | 0.1688234 — 50.5567607 - - -
12| 0.1688234 + 30.5567607 - B -
13 0.28340360 31.64584216 | 76.17273858 | 42.53021089
14 | 0.5078577 — 0.6746313 - - -
15 | 0.5078577 + 70.6746313 - - -
16 0.55098275 57.70801252 | 99.32576667 | 64.01849185
Table 4.1: The sixteen solutions of Example 4.3.2.1
4.4 Spatial DT Manipulators

4.4.1 6-DOF Manipulator

The DK of the spatial manipulator discussed in Subsection 3.4.1 is the subject of

this subscction. The manipulator consists of two spatial triangles, the fixed triangle

P and the movable triangle Q. Triangle P consists of three lines given by {vi}}

and their three common perpendiculars given by {af }3, with v} defined as

v = v + evo;,

i=1,2,3

(4.22)

where v; and vg; are the direction and the moment vectors of the ith line of P

with respect to the origin, respectively. In the foregoing discussion, a}, the common

perpendicular between v}, and v;_,, is defined as

a; = a; + eag;,

=123

(4.23)
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2!

Ps

Figure 4.5: Spherical iriangles @, Q and P

where a; and ay; are, respectively, the direction and the moment vectors of the line
represented by a; with respect to the origin.
Similarly, triangle @ consists of three lines given by {u? }3 and their three com-

mon perpendiculars given by { b} }, with u; defined as
u; =u;teuy, i=12,3 (4.24)

where u; and ug; are the direction and the moment, vectors of the ith line of Q
with respect to the origin, respectively. In the foregoing discussion, b7, the common

perpendicular between uj,, and uj_,, is defined as
b = b; + chyg, t1=1,2,3 (4.25)

where b; and by; are, respectively, the direction and the moment vectors of the line
represented by b} with respect to the origin.
Moreover, the movable triangle can move [reely on the fixed triangle, so that rj,

for i = 1,2,3, does not lie outside its corresponding line segments, Fig. 4.6. Thus,
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Figure 4.6: Geometric model of spatial DT manipulators
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for feasible or admissible motions, r} must intersect al and b} witain their line-
segments. The motion of triangle @ can thus be described through changes in the
edge-lengtl, parameters p;, which locate r} along a side of P, measured from Py,
and changes in the twist angle between vj,, and r§, g, for i = 1,2,3. In other words,
this motion can be described through changes in the dual angles ji;, for i = 1,2,3.

In this discussion, r} is the dual representation of a line whose direction and moment

vectors are specified by r; and rg;, respectively, i.e.,

r=riterg, i=1,23 (4.26a)
and fi; is the dual angle defined as

gi=pitep, 1=1,23 (4.26h)

The changes in j;, for i = 1,2,3, are assumed to be produced by actuators,
and hence, they are termed the aclualor coordinates. 'The three lines { b} }] of the
moving triangle, in turn, are the set of variables used to define its pose. Note that
three lines can be used to define a spatial triangle.

The DK problem may be formulated as: Given the acluator coordinales fi;, for
1 =1,2,3, find the three lines of triangle @, namely, b}, for i = 1,2,3. Thus, given
{4: 13, we define a spatial triangle whose three axes are {r} }3. The DK problem
thus consists of finding all triangles @ whose three common perpendiculars, { b} },
intersect these three axes at right angles.

The problem can be formulated in the same way that was formulated for the
spherical DT manipulators, given in eqs.(4.14a-4.15¢), by changing all the angles Lo
the corresponding dual angles. Thus, we would have 12 cquations in 18 unknowns,
namely, D;, E; and [',, for i=1,2,3. ‘Therefore, we need, at least, six extra equations,
which makes the problem more complicated. Here, an alternative formulation is
given.

Note that a; can be transformed into b} via a screw motion represented by a
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unit dual quaternion 77, namely,

b; =#a;, i=1,23 (4.27a)
where #7 is defined as
77 =cosy; +risingy, 1=1,2,3 (4.27h)
in which 4 is the dual angle defined as
di=diter, i=1,2,3 (4.27¢)

with 1; and »; defined, in turn, as the twist angle and the distance between lines af
and b}, respectively.

Substitution of the value of #; from eq.(4.27b) into eq.(4.27a), upon simplification,
leads to

b} = cos 1/:'.-a,7 + r} sin iﬁ;a;, 1=12,3 (4.28)

Morcover, r} is a transformation of vj,, via a screw motion represented by a unit

dual quaternion @, as shown in Fig. 4.6, namely,
r; =avi,, i=123 (4.29a)

where

a; =cosfi;+aysinf;, :=1,23 (4.29b)

Substitution of the value of r} from eq.(4.29a} into eq.(4.28), upon simplification,

leads to

b; = cos ¢;a} + cos fi; sin &;v,-‘_,_la‘,-' + sin ji; sin ﬁ;a;v,ﬁ_,a;, i=1,2,3  (4.30)

Squation (4.30) leads to 18 scalar equations in 24 unknowns, namely, the three lines
represented by { b7 }3 and the three dual quantities { ;)3 .

Mercover, we recall the angular closure equation from €q.(2.57), wliich, for mov-
able tri‘ai.dle, leads to

by by by =1 (4.31a)
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where f)‘,-‘, for i =1,2,3, are unit dual quaternions, defined as
b = cos#; + b <ing;, i=1,2,3 (4.31b)
in which 4; is the dual angle defined as
Yisyiteh, =123 (4.31¢c)

where v; and b; are the twist angle and the distance between lines uf,, and u;

i—1

respectively. Moreover, pre-multiplying both sides of ¢q.{4.31a) by (83}, leads to
b; b3 = k(53) (4.32)

Equation (4.32) thus leads to eight extra equations to give a total of 26 cquations
in 24 unknowns, whose roots are the solutions of the DK problem at hand
Moreover, substituting the values of 5}, by and f)_-', from eq.(4.31b) into cq.(4.32),

upon simplification, leads to

cos 43 €os 4 + bj cos 4y sin 93 + bl sin4; cos 43 +
bib3sin4; sinds — cos§2 + bysingy = 0 (4.33)
Finally, substituting the values of b}, for i = 1,2, 3, from cq.(4.30) into cq.(4.33),
leads to eight equations in six unknowns, namely, six parameters in three dual quan-

tities ¥;, for i = 1,2,3. Among the eight equations, only six are independent, and

the problem should admit some solutions.
Example 4.4.1.1:

The fixed triangle is given by three dual vectors v;, for i = 1,2,3, via their direction
and moment vectors, as explained in eq.(4.22), i.e.,
vy =(1,0,01", wvi=[0,0,0"
va =[0,0,1]", va =11,0,0,)" (4.34)
va =[0,-1,07, wvao=[1,0,1}7
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The direction and moment vectors of the three common perpendiculars to the fore-
going given lines, { af }3, are
a; = [-1,0,0]7, a=[0,~1,1]7
a; = [0,0,—1]7, axp=[0,-1,07 (4.35)
2 = [V ’ 20 — Y, J .
az = [Oa ]sOJTs ayy = [01 0$ O]T

Moreover, the toving triangle *- given by its three sides, namely,

4 = 1.99133 + ¢0.37268
42 = 0.876816 + 0.737494 (4.36)
43 = 174577 + €0.123211

IFinally, six actuator coordinates are given in dual form as

ﬁ] = -7+ 0.5
fiz = —2.15873528 + c0.75 (4.27)
jia = =3n/4 4 €0.25

Substitution of the foregoing data into eq.(4.33), upon simplification, leads to
q=0 (4.38)

where q is an S-‘(limcnsional vector with only six independent components. The eight
components of q are given in Appendix C,

Solving eq.(4.38) for r; and ¥;, for 7 = 1,2,3, leads to the six real solutions in
Table 4.2.

Substitution of the data from eqs.(4.34 - 4.37) and the foregoing values for r; and
i, for ¢ = 1,2,3, into eq.(4.30), gives b}, for i = 1,2,3. For example, for solution

No. 4, one may obtain three lines of the moving triangle as
b} = [~0.894427, —0.447214, 0] + €[0.223608, —0.447214, 1.11803)7
b; = [0.5547, —0.83205,0]7 + €[0.208013, 0.138676, 0.416026]7
b; = [0.707107,0,0.707107])7 + €[0.176777,0.353553, —0.176777]"
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No. rym re m r3m ¥ (deg.) | ¥2 (deg.) | ¢3 (deg.)
L__ I I A SR B
0.0558852 | 1.0740471 | 0.4072191 6 | -154.806 | S.32983 21.746

0.34708068 | 1.17104435 | -0.20553218 | 62.084 | -7.16017 | 152.624
0.46406054 | 1.03938365 | 0.28097901 | 135.155 | -39.8682 | 101.556
0.4999920 | 0.4160031 0.3535622 | -26.5655 | -89.999 { -90.0004
0.74620074 1 -0.10399796 | 1.54681873 | -46.5857 | 146.239 9.86011
1.34650493 | 1.13581347 | 0.01708774 | -10.8435 | -161.372 | -46.3652

[=- T L IR TR ]

Table 4.2; The six solutions of Example 4.4.1.1

With the foregoing data, which are the three mutual perpendiculars to the three

lines given by {uf }3, we obtain

u} = [0.639602, 0.426401, —0.639602]" + {—0.163819, —0.218046, —0.339183]"
uj = [—0.408249, 0.816496. 6.408249]7 + ¢[—0.0340218,0.0680398, —0.170101]"
uj = [0,0,1)7 + ¢[—0.75,~1,0]” |

which correspond to the pose of the moving triangle.

4.4.2 Other Versions of Spatial DT Manipulators

The structure of the 3-dof spatial DT manipulator is similar to that of its 6-dof
counterpart, except that the distances between the three common perpendiculars of
the movable triangle, given by {a! }3, and the three common perpendiculars of the
fixed triangle, given by {b} }}, namely, r;, for i = 1,2,3, are 1_ﬁxef,l.' In other words,
we omit the prismatic joints along r}, for i = 1,2,3. |

Contrary to the 6-dof device, we need only three actuators to move triangle
Q. This motion can be described through changes in the edge-length parameters,
pi, which locate r} along a side of P, measured from Py, as shown in Fig. 4.6,
for i = 1,2,3. The changes in p;, for i = 1,2,3, are assumed to be produced by
actuators, and hence, they are termed the acluator coordinates. The three lines of

the moving triangle, {u} }3, in turn, are the set of variables used to define its pose. .
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The direct kinematic problem of the manipulator described above is the subject of
this subsection. This problem may be formulated, similarly, as: Given the actuator
coordinales p;, for i = 1,2,3, find the three lines of triangle @, namely, b}, for
1=1,2,3. In order to solve this problem, we define three circles in planes of normals
{ar }3, their radii being given by 7, for given valuc of p;, for ¢ = 1,%,3. The DK
problem thus consists of finding all triangles @ whose three common perpendiculars,
b;, for i = 1,2,3, intersect these three circles and are perpendicular to r}.

The governing equations are the same as described in eq.(4.33), in which we have
cight equations in six unknowns, However, r;, for i = 1,2,3, are given and our six
unknowns arc the six angles g; and ¥;, for i = 1,2,3. Again, among these eight

cquations, only six are independent, and the problem should admit some solutions.
Example 4.4.2.1:

Given arc the same fixed and movable triangles as in Example 4.4.1.1, and three

lengths 7, for i = 1,2,3, as
ry =05 r =0416024, r3=0.353553 (4.39)
Moreover, the three actuator coordinates are given as
m =05 p=075 p3=0.25 (4.40)

Substitution of the foregoing data and the data from eqs.(4.34-4.36) into eq.(4.33),
upon simplification, leads to
._\_ a=0 (4.41)
where q is an 8-dimensional vector with only six independent components. The eight
components of q are given iiv Appendix D.

Solving eq.(4.41) for y; and ¥, for i = 1,2,3, leads to 26 sets of solutions, as
given in Table 4.3.

Substitution of the data from eqs.(4.34-4.36) and the foregoing values for y; and

i, fori = 1,2,3, 'illt9799,(4.30), gives { b }3. For example, for solution No. 1, we
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‘obtain three lines of the moving triangle as

b} = [—0.894427, —0.447214,0]" + ¢[0.223608, —0.447214, 1.11803]7

b3 = [0.5547, —0.83205,0]7 + €[0.208013, 0.138676, 0.416026]"

b3 = [0.707107, 0,0.707107]" + €[0.176777, 0.353553, —0.176777]"

Z
=]

p1 (deg.)

-179.999

-176.718
-126.093
-125.473
-85.2722
-75.3172
-51.2519
-45.2596
-37.785
-28.1238
-26.3322
-8.45381
81.177
91.8349
100.096
101.174
103.32
117.739
122.777
132.959
136.783
159.15
170.861
175.467
176.191
177.005

p2 (d:g.) | pa (deg.) | oy (deg.) | 2 (deg.) | ¥a (deg.)
I C— — S
-123.686 [ -134.999 | -26.5618 | -89.999 | -90.0028
1.31301 | 97.1191 | -75.8075 | 18.6912 | 65.2472
-107.015 | 118.478 | -78.2416 | -50.4778 | 81.853
139.856 | 87.5191 | -119.658 | -75.6438 | -16.4706
-123.952 | -159.37 40.829 | -69.3651 | -130.402
-15.2051 | 22.5639 | -91.6247 | 71.1107 | -58.0193
-152.467 | -6.54424 | 85.3781 | -114.432 | 100.82
39.4541 | 91.8851 | -128.594 | -61.7801 | -92.9408
-18.5311 | 8.64666 | 105.239 | 102.775 | 83.1113
-35.9133 | -110.721 | 78.6906 | 43.5577 | -69.116
-132.262 | -108.315 | -100.215 | 28.9265 | 113.547
-15.3744 | -72.1787 | -76.5418 | -44.0751 144.75
105.925 | -76.7579 | 43.9773 | 56.8596 | -125.883
117.557 | 124.249 | 70.1942 | 74.6192 | 130.785
135.56 | 135.103 | -83.4981 | 108.845 | -67.097
143.636 | -73.8456 | -112.476 | 85.1327 | 62.6571
-90.5657 | 115.96 | 78.7748 | -96.1684 | 115.42
-50.666 | -84.423 | -117.533 | -101.001 | 73.2703
116.778 56.217 125.037. | -38.9503 | -68.0906
-116.331 | 173.181 | -57.1777 |--124.547 | -80.606
175.627 | -14.0032 | 85.7295 | -81.1182 | -86.3128
-100.046 | 63.5271 | 157.301 | 14.3701 | -104.853
-135.938 | -144.949 | -39.9405 | -98.5047 | -79.2944
-93.879 | -138.774 | 3.25529 | -89.8733 | -110.663
-151.8Y 89.169 128.299 25.691 | -90.8829
-21.5867 | 17.7063 | -104.144 | 84.8916 A7.7

Table 4.3: The 26 solutions of Example 4.4.2.1

T3
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"I'he foregoing data define the three mutual perpendiculars to the three lines, uf,

for i = 1,2,3, namecly,

u; = [0.639602, 0.426401, —0.639602]" + ¢[~6.193819, —0.218046, —0.339183}"
uj = [—0.408249,0.816496,0.408249]" 4 ¢[~0.0340218,0.0680398, —0.170101)7
uj = [0,0, 1]7 + ¢[-0.75, 1,07

Lthereby defining the pose of the moving triangle.

Similar to the DK problem of the 3-dof spatial DT manipulator, the DK problem
of the 6-dof spatial DT manipulator with prismatic actuators can be formulated, the
result being the same as that given in eq.(4.33), except that the unknown variables
are p; and ry, for i=1,2,3, and the other parameters are known. Then, the equations

can be solved similarly.



Chapter 5

Singularity Analysis

5.1 Introduction

The Jacobian matrices of several manipulators, introduced in Chapter 3, are derived
here in an invariant form. A classificalion of singularities in parallel manipulators
into three groups, which is based on the characteristics of their Jacobian matrices,
is proposed and the singularities are identified for these manipulators. Deriving the
Jacobian matrices in an invariant form allows us to detect all singulacities within the

manipulator workspaces.

5.2 Jacobian Matrices

The differential kinematic relations pertaining to parallel manipilators take on the
form o

JO+Kt=0 (5.1a)
where J and K arc the two Jacobian matrices of the manipulator at hand. Morcover,
8 is the vector of joint rates and t is the lwist array, which assumes different forms,

depending on the nature of the task space, namely,

w w
tE[_],'tEw, t:“-_[_] (5.1b)
¢ ¢
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where Lhe first form corresponds to planar; the second to spherical; and the third to
spatial tasks. Morcover, in the foregoing forms, w is the scalar angular velocity of
the moving platform and ¢ is the two-dimensional velocity vector of the operation
point C of the moving platform for the planar case. Likewise, for spherical and
spatial tasks, w denotes the three-dimensional angular-velocity vector of the moving
platform. Finally, for 6-dof positioning and orienting tasks, ¢ denotes the three-
dimensional velocity of the operation point of the moving body. Therefore, t is a
three-dimensional array for planar and spherical tasks, while it is six-dimensional lor
spatial tasks. So, the Jacobian matrices are of 3 x 3 for the planar and spherical
devices. For six-dof spatial manipulators both J and K are 6 x 6 matrices.

Below we derive expressions for J and K for the manipulators introduced in Chap-
ter 3. Thesc are the two general classes of planar parallel manipulators, spherical

3-RRR and DT manipulators, and spatial 6-dof, DT manipulators,

5.2.1 Planar Manipulators of Class A

Here, the Jacobian matrices of the 20 different class-A manipulators, discussed in
Subsection 3.2.1, are derived. ‘Thec manipulator, in general form, is depicted in
Fig. 3.2,

The velocity ¢ can be written for the ith leg as
é=éi+(d£_éi)+(é'_éﬂ)s 1=1,2,3 (5'2)

where a; and q; are the vector directed from P; to A; and from A; to @;, respectively.
Morcover, we have

a =0;Am, i=1,23 . (5.3a)
where 6; is the rate of the ith actuator and A; is defined as

E, if the first joint is revolute
A= . (5.3b)
(1/llail)1, if the first joint is prismatic
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in which 1 is the 2 x 2 identity matrix and E is the 2 x 2 orthogonal matrix rotating

vectors in a plane through an angle of 90° counterclockwise, i. e,

0 -1
E=
1 0
Moreover, we have
qi— & =%Bir; +0,Cir;, i=1,2,3 (5.1a)

where ; is the rate of the second joint, r; is the vector directed from A; to Q; and

B; and C; are defined as

E, il the second joint is revolute
Bi = (5.4'))
(1/]ir:IN1, if the second joint is prismatic
E, if the first joint is revolute
C; = (5.4c)
0O, il the first joint is prismatic
with O denoting the 2 x 2 zero matrix. Furthermore, ¢ — q; is given as
¢—q;=wEs;, i=1,2,3 (5.5)

with vector s; directed from ); to C, as shown in Fig. 3.2.
Substitution of the values of &;,€; — &; and ¢ — §; from eqs.(5.3a), (5.4a) and

(5.5) into eq.(5.2), and simplification of the expression thus resulting leads to
0;-A.-a.- + 4;B;r; + 0;0.‘[‘,‘ +wEs;—¢ = 0, =123 (5.6)

where %¥;, being associated with an unactuated joint, should be climinated. To this

end, we define E; as

1, if the second joint is revolute
E,‘ = (5°7)
E, if the second joint is prismatic

Upon multiplication of the two sides of eq.(5.6) by r/ E;, we obtain

0‘.-r?'E,-(A;a,- +Ciri) + wl"{E;ES; - r?'E;é =0, 1=1,2,3 (5.8)
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Parameters Leg Type
PRR PPR RRR RPR
A; (/D2 | (Y]l | E E
B, E (U1 | E | (1/]lr:l1)2
C O O E E
E; 1 E 1 E

Table 5.1: A;,B;,C; and E; for different legs of the manipulators of class A
Morecver, cq.(5.8) written for i = 1,2,3, produces
Jo+Kt=0 (5.92)

where t, the fwist vector, was delined above, and the 3 x 3 matrices J and K are

given as

r}"E,(A.a, + C]l‘l) 0 0
J= 0 ri Ex(Aja; + Cor,) 0 (5.9b)
0 0 r3 E3(Aaag + Cyrg)

and
r’E\Es;, -r{E, '
K= | rlE;Es; —-rlE; (5.9¢)
riEsEss —rlE;
in which A;,B;,C; and E;, for i = 1,2,3, are chosen for each row of the foregoing

matrices based on the corresponding leg. as explained in eqs.(5.3b), (5.4b), (5.4¢c)

and (5.7) and summarized in Table 5.1.

5.2.2 Planar Manipulators of Class B

Here, the Jacobian matrices of the four diflerent manipulators of class B, discussed

in Subsection 3.2.2, are derived. The manipulator, in general form, is depicted in

Fig. 3.4.
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The velocity € can be now written for the ith leg as
e=vayt+(vai—vail+(€—vm), =123 (5.10)
Moreover, we have
vai=0Ba;, i=1,23 (5.11a)

where a; is the unit vector directed from P, to A; and 0; is the rate of the ith actuator,

while E; is defined as

piE, il the first joint is revolute
E; = {5.11h)
1, il the first joint is prismatic

in which p; = P;A;.

Furthermore, we have
Vii~va=wEr;, i=1,2,3 (h.
where r; is the vector directed from A; to R;. Finally, ¢ — vp; is given as
¢—vpi=Ab; +wBs;, i=1,2,3 (5.13)

with /'\,- denoting the rate of the third joint. A unit vector b; represents the direction
of the third joint, which is prismatic, and s; is vector direcled from R; Lo C, as shown

in Fig. 3.4.
Substitution of the values of v4i, va; — va; and € — vy from egs.(5.11a), (5.12)

and (5.13) into eq.(5.10), and simplification of the expression thus resulling leads to
0.-E.-a;+z'\,-b.-+wE(r,-+s.-) —e=0, 1=1,2,3 (.14}

where J; is associated with an unactuated joint and should be eliminated, Multipli-

cation of the above equation by b} E accomplishes this, namely,
0;bTEE;a; —wb! (r; +s;)—bl/E¢ =0, i=1,2,3 (5.15)
Upon writing eq.(5.15) for i = 1,2, 3, we obtain

Jo+Kt=0 (5.16a)
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where matrices J and K are given as

bTEE.a, 0 0
J= 0 bl EE.a, 0 (5.16h)
0 0 b;fEE;,a;;

and

—b'lr(ﬁ + Sl) —b{E
K=| -bl(r;+s;) -blEk (5.16¢)
—b?{'(r:; + s3) —b;{E

5.2.3 Spherical 3-RRR Manipulator

A 3-RRR spherical parallel manipulator is depicted in Fig. 3.6. All the joints of this
manipulator are revolutes and the three motors Py, % and Py are fixed to the base.

The angular velocity w of the EE can be written as
Oa; + ;v +5w,=w, 1=1.23 (5.17)

where u;, v; and w; are the unit vectors pointing from the center of the sphere to
points %, Ay and Q;, respectively. Morcover., 0.,-, 6; and 4; are the rates of the joint
attached to the base, the intermediate joint and the joint attached to EE, respectively.,
Below we eliminate the rates of the unactuated joints by dot-multiplying both sides

of the foregoing equation by v; x w;. thereby obtaining

O - (vix wi) =w - (vixw;). i=1.2.3 (5.

ot
—
[# 2]
ot

which can be written in turn as
0,-(v,-><u,-)-w,-+(v,-xw,-)’w=0. r=1,2.3 (5.19)
The above equations, for i = 1,2,3, are now assembled in the form

JO+Kw=0 (5.202)
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where the 3 % 3 matrices J and K are defined as

a, 0 0
0 a 0O (5.20b})
0 0 ag

~
i

and

(vy x W:)T

(v x wa)7T (5.20c)

~
I

(va x Ws)T

in which

a;=(vixuw) -w;, 1=1,213

5.2.4 Spherical DT Manipulator

The Jacobian matrices of a spherical parallel manipulator, as depicted in Fig. 3.7,
are derived here. Let us introduce the normalized vectors a; and by, for i = 1,2,3,
which are perpendicular to the planes of arcs P P2 and Qi1 @itz respectively,
as shown in [Fig. 5.1.

Thus,
a: = Vig1 X Vigs b: = Wit1 X Uiz
b Ve X Viga|| U v X U]

where u; and v; are both unit vectors directed from O to Q; and P, respectively.

(5.21)

The angular velocity w of the EE can now be written as
iy +ari —vibi=w, t=1,23 (5.22)

where r; is the urit vector directed from the center of the sphere to ;. Moreover,
a; is the angle between planes of Py, Piy2 and Qiyy, Qiy2, while ; is the angle
between u;y, and r;.

The inner product of both sides of eq.(5.22) with r; x b;, upon simplification,

leads to an equation free of unactuated joint rates, namely,

fi(r;xby)-ai—(r;xb) - w=90, i=123 (5.23)
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Figure 5.1: The ith leg of spherical DT manipulator

The above equations, for 7 = 1,2, 3, are now assembled and expressed in vector form
as

J8+Kw=0 (5.24a)

where J and K are as defined below:

Cy 0 0
J=|[0 ¢ 0 (5.24b)
0 0 Cy

and

[ —(ry x by)T
K= | —(r; xby)7 (5.24¢)
—(r3 x ba)T

in which

¢ = (l‘.‘ X b,-)-a.-, i= 1,2,3

5.2.5 Spatial 6-DOF, DT Manipulator

Here, the Jacobian matrices of the spatial 6-dof, DT manipulator, introduced in

Subsection 3.4.1, are derived. The geometric model of the manipulator, in general,
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is depicted in Fig. 4.6.

The angular velocity w of the moving triangle can be written, for the ith leg, as
fiai + i + b =w, i=1,2,3 (5.25)

Below we eliminate the rates of the unactuated joints by dot-multiplying both sides

of the foregoing equation by b; x r;, thereby obtaining
— - (b xrn)+w-(b;xr) =0, i=12,3 (5.26)

Moreover, the velocity ¢ of the operatlion point of the EE can be written, for the

ith leg, as shown in Fig. 4.6, namely,
e=di+(ds—d) +(e—dy), i=1,23 (5.27a)

where d; and d’; are the position vectors of D; and I, in which D; is fixed to the
line r; while D} is attached to the prismatic joint along that linc; so, for 2 = 1,2,3

we have

di = pia; + juria; x r;)

2
|
_q_.
It

Fir (5.27h)
¢—d = éb; + w x (eb; + ci)
where ¢; is a vector whose end-point is the operation point and is normal to line b,
and e; = D F;.
Substituting d;, d’; — d; and &~ d’; from eq.(5.27b) into eq.(5.27a), upon simpli-
fication, leads to

¢ = p;ia; + firi(a; x ri)+rri+ébitewxb+wxe, i=1,23 (5.28)
where 7; and ¢é;, the velocity of the unactuated joints, should be eliminated, This
can be done by post-multiplying both sides of eq.(5.28) by (b; x r;), i.e.,

'CT(b.' X r,-) = ﬁ,-a?‘(b,- X I',') + ﬂ;?';(a.' X l‘,')T(b,' X l‘,') + e.-(w x b,-)T

(b,‘ X l',') + (w X C,')T(b,' x l’,') =0, i=12,3 (529)
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Dividing the foregoing equation by ;. upon stmplification, leads to
—&T(b; x r;)/r; + pial (b; x v;)/r; + jria; x 1) (b % i)+
wli—eri+cix (b xr)))/ri=0. i=1,23 (5.30)

Writing eqs.(5.26) and (5.30) for / = [,2.3. we obtain
Je+Kt=0 (5.31a)

where t is the fwist or Cartesian-velocity vector, and 8 is the joint-velocity vector,
defined below as

t= [w"", (':"]"
9= [f').,f)g,f);;,;'u.[.rg.;'m]T (5.31b)

Morcover, the 6 x 6 Jacobian matrices J and K are given as

[ 0 0 0 —alm, 0 0 ]
0 0 0 0 —alm, 0
0 0 0 0 0 —alm
J = B 3T (5.31(:)
alm,/r 0 0 M 0 0
0 almy/r, 0 0 P2 0
] 0 0 a‘:fm-‘/ I'y 0] 0 s ]
o l]]-lr 07. .
m} o’
ml  of
K= , N (5.31d)
ql —nlll /F';
q) -ml/r
| af -mi/rs |
in which my, p; and q;, for i = 1, 2,3, are defined as
m;=b; xr;
pi=(a; x ) my; (5.31e)

qi = (—eiri + ¢ xmy)/r;
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One may write eq.(5.31a) in dual form as

Ji+Ko=0 (5.32a)
where
alm, + epr 0 0
J= 0 alm, + epy 0 (5.32hb)
] 0 0 alms + s
-mi +cq]
K=|-ml+cq" (5.32¢)
| —m +cqf

i LA S N - g
o = [fhy ypha iz )T (5.32d)
w=w+ cefr; (5.32¢)
in which
i = i+ il (5.321)

Equations (5.32a-c) reduce to velocity relationships of the spherical DT ma-
nipulator as expressed in egs.(5.24a-c) by omitting the dual parts of the foregoing

equations.

5.3 Classification of Singularities

In parallel manipulators, singularities occur whenever J, K, or both become singu-
lar. Thus, for these manipulators, a distinction can be made among three types of
singularities, which have different kinematic interpretations, namely,

1) The first type of singularity occurs when J becomes singular but K is invertible,
i. e., when

det(J) =0 and det(K)#0 (5.33)
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This type of singularity consists of the sct of points where at lcast two branches of
the inverse kinematic problem meet. Since the nullity of J is not zero, we can find a
sel, of non-zero actuator velocity vectors @ for which the Cartesian velocity vector t
is zero. Then, nonzero Cartesian velocity vectors Kt, those lying in the nullspace of
J7, cannot be produced, the manipulator thus losing one or more degrees of freedom.

2) The second type of singularity, occurring only in closed kinematic chains, arises

when K becomes singular but J is invertible, i. e., when
det{(J)#0 and det(K) =0 (5.34)

This type of singularity consists of a point or a set ol points whereby different
branches of the direct kinematic problem meet. Since the nullity of K is not zero, we
can find a set, of nonzero Cartesian velocity vectors t for which the actuator velocity
vector @ is zero. Then, the mechanism gains one or more uncontrollable degrees of
freedom or, equivalently, cannot resist forces or moments in one or more directions,
even il all the actuators are locked.

3) The third type of singularity occurs when both J and K are simultancously
singular, while none of the rows of K vanishes. Under a singularity of this type,
confligurations arise for which link @ of the manipulator can undergo finite motions
even if the actuators are locked or, equivalently. it cannot resist forces or moments in
one or more directions over a finite portion of the workspace, even if all the actuators
are locked. As well, a finite motion of the actuators produces no motion of € and
some of the Cartesian velocity vectors cannotl be produced. This type of singularity,
as shown here, is not necessarily architecture-dependent, contrary to earlier claims
(Gosselin, 1988; Gosselin and Angeles, 19901 Sefrioui, 1992).

Furthermore, depending on the formulation, it can happen that one or more rows
of K vanish. It turns out, then, that the corresponding rows of J vanish as well, J
and K thus becoming singular simultaneously. In other words, the formulation leads
to the third type of singularity. In this case, il is possible to reformulate the problem,

and the new formulation may lead to any of the three types of singularities. If this
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is not the case, we do not have a singular configuration at all. Therelore, this type
of singularity, which arises merely from the way in which the kinematic relations are

formulated, is, in fact, a formulation singularity.

5.3.1 Planar Manipulators of Class A

In this subsection the three types of singularities discussed above are investigated
for the case of manipulators of class A.
1) It is recalled that the first type of singularity occurs when the determinant of

J vanishes. From eq.(5.9b) this condition yields
r?E.-(A,-a,- + C,‘l‘,‘) =0, i=1lor2or3 (535)

This type of configuration is reached whenever either Ef r; is perpendicular to (A;a;+
Cirj)or A;a; + Cir; =0, for i =1 or 2 or 3. Then, the motion of one actuator does
not produce any motion of @ and the manipulator loses one dof.

2) The second type of singularity occurs when the determinant of K vanishes.
This type of configuration can be inferred from eq.(5.9¢} by imposing the linear
dependence of the columns or the rows of K.

Let us define

vi=rlE;, i=1,23 (5.36)

Then, K of eq.(5.9c) can be written as

vTEsl —'V'{‘
K= vg'Esz —vg' (5.37)

viBsy —vi

Inspection of eq.(5.37) reveals two instances of this type of singularity. The first
occurs when the three vectors v; are parallel, the second and third columns of K
thus becoming linearly dependent. Then, the nullspace of K represents the set of

pure translations of @ along a direction normal to v;. Platform @ can move in
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that direction even if the actuators arc locked; likewise, a force applied to Q in that
direction cannot be balanced by the actuators.

The second case in which K is singular occurs when cach of the three vectors v;
passes through @; and all three intersect at a common point . This is proven as
follows:

-
Let us define the three vectors t; =@Q; D, for i = 1,2,3, as shown in Fig. 5.2. Since

Figure 5.2: Example of the second type of singularity for the manipulators of class
A in which the three vectors v; intersect at a point

the three vectors v;. for i1 = 1,2,3, are coplanar, we can express vy as a linear

combination of the first two, namely.
Vg =V + azVvy (538)
The inner product of eq.(5.38) by vector Ed leads to
viEd = a,v'Ed + a,v!Ed (5.39)
—
where d =C D. But we have
T -— P 1 ¢
viEt; =0, i=1,23
So, eq.(5.39) can be written as

viE(t3 — d) = o\ vV E(t; — d) + azvIE(t, — d) (5.40)
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which, upon simplification, yields
v;Ess = a;vlrEsl + Q’gV{ESg (5.41}

From eqs.(5.38) and (5.41), it is obvious that we can write the third row of K as a
linear combination of the first two rows, hence proof is demonstrated.

Then, the nullspace of K represents the set of pure rotations of € aboul the
common intersection point D. The platform Q can rotate about that point even if
the actuators are locked; likewise, a moment applied to @ cannot be balanced by the
actuators.

3) The third type of singularity occurs when the determinants of J and K hoth
vanish. We have this type of singularity whenever the two previous types of singu-
larities occur simultaneously.

By inspection of eq.(5.37) it is obvious that the 7th row of K vanishes only il
v; = 0. In this case we have a degenerate manipulator. Such a manipulator is

irrelevant to our study and is thus left aside.
Example 5.3.1.1: Planar 3-RRR Manipulator

The three types of singularities discussed above are investigated here, for a particular
case of class-.A manipulator, with three RRR legs, as shown in Fig. 3.3.

It is recalled that the first type of singularity occurs when the determinant of
J vanishes. Assigning A; = E,C; = Eand E; = 1, for i = 1,2,3 from Table 5.1,
eq.(5.35) yields

r’'Ea; =0, i=1lor2or3 (5.42)

This type of configuration is reached whenever r; and a;, for i = 1 or 2 or 3, are
parallel, which means that one or some of the legs are fully extended, Fig. 5.3a, or

fully folded, Fig. 5.3b'. At each of these configurations the motion of one actuator,

'Whenever a pair of rigid-body lines are overlapping they will be depicted, as in Fig. 5.3b,
merely close to each other.
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that corresponding to the fully extended or fully folded leg, does not produce any

motion of @ along the axis of the corresponding leg.

€@ Fixed joint

(b)

Figure 5.3: Examples of the first type of singularity for the planar 3-RRR manipu-
lator with (a) one leg fully extended. and (b) one leg fully folded

The sccond type of singularity occurs when the determinant of K vanishes. As-

signing E; = 1. for i = 1,2, 3. ¢q.(5.36) vields
vi=r,, (=1,2.3 (5.43)

Henee, all the reasoning set forth in the second part of Subsection 5.3.1 applies again
il we exchange the roles of v; and ri. Similarly, this type of singularity can arise
in two ways. The [lirst occurs when the three vectors r; are parallel. Therefore,
the second and third columns of K are linearly dependent, and the nullspace of K
represents the sel of pure translations of @ in a direction normal to r;, indicated
by veclor u of Fig. 5.4a. The platform Q can move along the direction of u even if
the actuators are locked; likewise, a force applied to @ in that direction cannot be

balanced by the actuators.

The second way in which K is singular occurs when the three vectors r; intersect



Chapter 5. Singularity Analysis 91

@  Fixed joint

Figure 5.4: Examples of the second type of singularity for the planar 3-RRR ma-
nipulator in which (a) the three vectors r; are parallel, and (b) the three vectors r;
intersect at a point

al a common point D, as shown in Fig. 5.4b. Then, the nullspace of K represents
the set of pure rotations of @ about the common intersection point . The platform
Q@ can rotate about that point even if the actuators are locked; likewise, a moment
applied to @ cannot be balanced by the actuators.

The third type of singularity occurs when the determinants of J and K both
vanish, such that none of the rows of K vanishes. We have this type of singularity
whenever the three vectors r; are either parallel or concurrent at. a common point, and
al least one leg is fully extended or fully folded. In the case in which one leg is fully
extended, the manipulator might be configured as in Fig. 5.5a or, correspondingly,
as in Fig. 5.5b. At these configurations the moticn of at least one actuator does
not produce any Cartesian velocity along the corresponding leg axis. As well, @ can
move freely in cae or more directions even if all actuators are locked and some forces
or torque appliea to @ cannot be balanced by the actuators.

By inspection of Figs. 5.5a and 5.5b it is obvious that this type of singularity is

not architecture-dependent, because we can change the lengths attached to the base
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® [Fixed joint

(b)

Figure 5.5: Examples of the third type of singularity for the pianar 3-RRR manip-
ulator in which (a) the three vectors ry are parallel, and (b) the three vectors r;
intersect at a point

and intermediate links, while maintaining the third type of singular posture.

5.3.2 Planar Manipulators of Class 55

Here, Lthe three types of singularities discussed above are investigated for manipula-
tors of class B.
1) It is recalled that the fivst type of singularity occurs when the determinant of

J vanishes. From eq.(5.16b), this condition yvields
b'EEia; =, i=1lor2or3 (5.44)

This type of configuration is reached whenever by is parallel to E;a;, for i = 1 or 2
or 3. Then, the motion of one actuator does not produce any motion of @ and the
b [ - o
mantpulator loses one dof.
2) The sccond type of singularity occurs when the determinant of K vanishes.
This type of configuration can be inferred from eq.(5.16¢) by imposing the linear

dependence of the columns or the rows of K. By inspection of this equation, two

different cases for which we have this type of singularity can be identified. The first
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one occurs when the three vectors b; are parallel. Therefore, the second and third
columns of K are linearly dependent, the nullspace of K thus representing the set of
pure translations of @ along a direction parallel to b;. Platform Q can move along
that direction even if the actuators are locked; likewise, a force applied to @ in that
direction cannot be balanced by the actuators.

We will show that the second case in which K is singular occurs when the three
vectors t; through point A; and perpendicular to b; intersect at 2 common point.

Let us call the intersection point D, as shown in Fig. 5.6.

A

Az

Figure 5.6: Example of the second type of singularity for the manipulators of class
53 in which the three vectors t; intersect at a point

Since the three vectors by, for i = 1,2,3, are coplanar, we can write by in terms
of the first two, namely,

b3 = {Y]bl + Q’zbg (545)

Moreover, the inner product of both sides of eq.(5.45) by vector d, leads to
bid = a;b’d + asbld (5.46)
-—}
where d =C' D. But we have

bit; =0, i=1,2,3
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Then, eq.(5.46) can be written as
b (d +t3) = ayb] (d + t;) + azbj (d + t2) (5.47)
Morcover, we have
d+ti=—(r;+s;), 1=1,2,3

Substituting the values of d + t;, for i = 1,2.3, from the foregoing equation into

¢q.(5.47), yields
bl (rs +53) = ayb] (r1 +51) + azb] (r2 + 52) (5.48)
Moreover, from eq.(5.43), it is apparent that
bJE = a;b'E + a;blE (5.49)

From cqgs.(5.48) and (5.49), it is obvious that onc can write the third row of K
as a lincar combination of the first two rows, thereby completing the proof.

Then, the nullspace of K represents the set of pure rotations of @ about the
common intersection point D). The platform Q can thus rotate about that point even
il the actuators are locked; likewise, a moment applied to Q cannot be balanced by
the actuators.

3) The third type of singularity occurs when the determinants of J and K both
vanish, This type of singularity occurs whenever the two types of singularities arises
simultancously.

Inspection of eq.(5.16¢) reveals that the rows of K cannot vanish, because ||bi]| =

l,fori=1,23.
Example 5.3.2.1: Planar DT Manipulator

The three types of singularities discussed above are investigated here for a special
type of class-B manipulator that has three PRP legs, namely the double-triangular

(DT) manipulator shown in Fig, 3.5.
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It is recalled that the first type of singularity occurs when the determinant of J

vanishes. Assigning E; = 1 from eq.(5.11b), for i = 1,2, 3, eq.(5.44) leads to

b'Ea; =0, i=1lor2or3 (5.50)

This type of configuration is reached whenever a; and b;, for 2 = 1 or 2 or 3,
coincide, which means that one or more edges of the triangles coincide, as shown in
IYig. 5.7. In this configuration the motion of the ith actuator does not produce any

motion of Q, the moving triangle, and the manipulator cannot move in a direction

perpendicular to the coincident edges.

\3.

P (Fixed)

@ (Movable)

Figure 5.7: Example of the first type of singularity for the planar DT manipulator

The second type of singularity occurs when the determinant of K vanishes. As
we explained in Subsection 5.3.2, this type of singularity arises in two cases. The
first occurs when the three vectors b; are parallel, but such a manipulator is not a
DT manipulator and is thus left aside. The second case in which K is singular occurs
when the three vectors t;, perpendicular to b;, intersect at a common point D, as

shown in Fig. 5.8. In this configuration the moving triangle Q can undergo a finite
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rotation about D, even if the actuators arc locked; likewise, a torque applied to Q

cannot be balanced by the actuators.

b

P (Fixed)
Q (Movable)

Figure 5.8: Example of the second type of singularity for the planar DT manipulator

The third type of singularity occurs when the determinants of J and K both
vanish, We have this type of singularity whenever the three perpendiculars to the
three edges of the moving triangle intersect at a common point and at least one pair of
the edges of the two triangles coincide, as shown in Fig. 5.9. At this configuration the
motion of one actuator does not produce any Cartesian velocity and the manipulator
loses one dof. As well, the moving triangle @ can undergo a finite rotation about D,
even if the acluators are locked; likewise, a torque applied to @ cannot be balanced
by the actuators.

Again, for DT manipulators, this type of singularity is not architecture-dependent,
since we can find one point in the plane of the moving triangle @ from which we can

draw three perpendicular to the three edges. Let us call the intersection points f;,
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P (Fixed)
¢ (Movable)

ar

Figure 5.9: Example of the third type of singularity for the planar DT manipulator

for ¢ = 1,2, 3, as shown in Fig. 5.9. It is obvious that any three lines passing through
points R; such that one of them coincides with one of the edges of the moving tri-
angle can form the fixed triangle P. Needless to say, such a triangle is not unique.

In other words, we can choose the fixed and moving triangles arbitrarily.

5.3.3 Spherical 3-RRR Manipulator

In this subsection, the three types of singularities discussed above are investigated
for the manipulator of Fig. 3.6. It is recalled that the first type of singularity occurs

when the determinant of J vanishes. From eq.(5.20b), this condition yields
(vixu)-w;=0, i=1lor2or3 (5.51)

This type of configuration is reached whenever u;, v; and w;, fori =1 or 2 or 3, are

coplanar, which means that one or some of the legs are fully extended, Fig. 5.10, or
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fully folded, Fig. 5.11. At cach of these configurations the motion of one actuator,

that corresponding to the fully extended or folded leg, does not produce any motion

of the EE.

Figure 5.10: The first type of singularity ol the spherical 3-RRR manipulator with
onc leg fully extended

The second type of singularity occurs when the determinant of K vanishes, which,
in turn, occurs when the rows or columus of K are linearly dependent. By inspection
of eq.(5.20¢), we now show that this type of singularity occurs when the three planes
defined by the axes of the revolutes parallel to the unit vectors {v;, w;}3 intersect at
a common line. This can be readily scen by noting that the three vectors v; x wy,
for i = 1,2,3, which are perpendicular to the plane of v; and w;, are perpendicular
to the intersection line. Then, these vectors are coplanar and each of them, which
represents a row of K, can be written as a linear combination of the other two. This
is what we set out to show. This type of singularity is depicted in Fig, 5.12.

The third type of singularity occurs when the determinants of J and K both
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Figure 5.11: The first type of singularity of the spherical 3-RRR manipulator with
one leg folded

vanish. We have this type of singularity whenever the two foregoing singularitics
occur simultaneously. In this case k; # 0, where k7, for i = 1,2, 3, is the ith row of
K, the manipulator would then be configured as in Fig. 5.13. At this configuration,
at least one actuator cannot produce any Cartesian velocity. As well, the gripper
can rotate freely about the common intersection line of the planes defined by the
axes of the revolutes parallel to the unit vectors {v;, w;}3, even if all of the actuators
are locked and certain torques applied to the gripper cannot be balanced by the
actuators.

Inspection of eq.(5.20c) reveals that the ith row of K vanishes only if v; = £w,.
In this case we have a degenerate case of a 3-RRR manipulator with one leg of zero

or 7 length. Such a manipulator is irrelevant to our study and is thus left aside.
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Figure 5.12: The sccond type of singularity of the spherical 3-RRR manipulator
5.3.4 Spherical DT Manipulator

In this subsection, the three types of singularities arc investigated for the manipulator
of Fig. 3.7. It is recalled that the first type of singularity occurs when the determinant

of J vanishes. From eq.(5.24b), this condition yields
(ri xb;)-a; =0, i=lor2or3 (5.52)

This type of configuration is reached whenever a; is perpendicular to r; x b;, but
r; lies in the plane whose normal is a;, as shown in Fig. 5.1. Then, this type of
singularity occurs whenever b; and a; coincide. In other words, each pair of two
stcdes of two triangles lie in the same plane, as shown in Fig. 5.14. In this case the
actuator along a; does not produce any Cartesian velocity.

The second type of singularity occurs when the determinant of K vanishes, which

occurs when the rows or columns of K are linearly dependent. By inspection of
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Figure 5.13: The third type of singularity of the spherical 3-RRR manipulator

eq.(5.24c), we will show that this type of singularity occurs when the three planes
containing vectors r; and b; intersect at a common line, This can be readily seen
by noting that the three vectors r; x by, for i = 1,2,3, which are perpendicular to
the planes, are perpendicular to the intersection line as well. Then, these vectors are
coplanar and each of them, which represents a row of K, can be written as a linear
combination of the other two, thereby completing the proof. This type of singularity
is depicted in Fig. 5.15.

The third type of singularity occurs when the determinants of J and K both
vanish. We have this type of singularity whenever the two foregoing singularities
occur simultaneously. In this case, k; # 0, where kI, for i = 1,2,3, is the ith row of
K, the manipulator would then be configured as in Fig. 5.16. In this configuration
the motion of at least one actuator does not produce any Cartesian velocity. As

well, the gripper can rotate freely about the common intersection line of the planes
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2(movable)

Figure 5.14: Spherical DT manipulator at the first type of singularity

defined by {r; x b;}3, even if all of the actuators are locked, and certain torques
applied to the gripper cannot be balanced by the actuators.

Inspection of eq.(5.24¢) reveals that the rows of K cannot vanish, because by is
always perpendicular to r;, both being unit vectors.

Morcover, this type of singularity is not architecture-dependent, since we can find
one point in the moving triangle @ from which we can draw three perpendiculars to
the thiree edges. Let us call the intersection points R;, for i = 1,2,3, as shown in
Fig. 5.16. It is obvious that any three arcs passing through points f;, for : = 1,2,3,
such that one of them coincides with one of the edges of the moving triangles, can
form an edge of the fixed triangle P. Needless to say, such a triangle is not unique.

In other words, we can choose the fixed and moving triangles arbitrarily.

5.3.5 Spatial 6-DOF, DT Manipulator

In this subsection, the three types of singularities are investigated for the manipulator

introduced in Subsection 3.4.1. It is recalled that the first type of singularity occurs
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2(movable)

Figure 5.15: Spherical DT manipulator at the second type of singularity

when the determinant of J vanishes. From eq.(5.31¢), this condition yields

almy=al(bjxr)=0, i=1lor2or3 (5.53)

This type of configuration is reached whenever a;, b; and r; lic in a plane. But, r;
is perpendicular to a; and b;. Then, this type of singularity occurs whenever a; and
b; arc parallel, and the prismatic actuator along a; does not produce any Cartesian
velocity, as shown in Fig. 5.17.

The second type of singularity occurs when the determinant of K vanishes, which
occurs when the rows or columns of K are linearly dependent. By inspection of
eq.(5.31d), three different cases in which this type of singularity arises can be identi-
fied. The first oceurs when the three vectors b; are parallei. Since b; is perpendicular

to ry, {r:}3 are coplanar. Theretore, {m; = b; x r;}3 lic in a plane, and we can write
m3/7'3 = a1m|/1'1 + Crgmgli"g (554)

As a result, the sixth column of K is a linear combination of the fourth and the

fifth columns. This will render det(K) = 0. In this type of singularity, the movable
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2(movable)

Fignure 5.16: Spherical DI manipulator at the third type of singularity

triangle @ can move along b;. even if all the actuators are locked, and any force
applied 1o @ along b; cannot be balanced by the actuators, as shown in Fig. 5.18.

The second case, in which this type of singularity occurs, arises when b; of two
legs are parallel to r; of the third leg. The reasoning set forth in the foregoing
discussions for {m; = b; x r;}} applies here if we exchange the roles of r; and b; of
the third leg. Then. ¢q.(5.54) holds. {m;}] are coplanar, and. as a result. the sixth
column of K is a lincar combination of the fourth and the fifth columns and the
movable triangle @ can move along the three parallel axes, even if all the actuators
are locked.

The third case, in which we have this type of singularity. occurs when r; of two
legs are parallel to by of the third leg. The reasoning set forth in the foregoing
discussions for {m; = b; x r;}{, again, applies if we exchange the roles of r; and by,
Then, eq.(5.54) holds as well, {m;}] are coplanar and, similarly, K is singular.

The third type of singularity occurs when the determinants of J and K both

vanish. We have this type of singularity whenever threc of the six vectors {b;} and
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Figure 5.17: Spatial 6-dof, DT manipulator at the first type of singularity

{r;}3 are parallel, and a; and by, for i = 1 or 2 or 3, are parallel as well. In this case
the movable triangle Q can move freely about an axis parallel to the three parallel
axes, even if all actuators are locked and any force applied to @ in that direcuon
cannot be balanced by the actuators. Moreover, at least one actuator cannot produce

any Cartesian velocity along the corresponding leg axis, as shown in Fig. 5.19.
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Movable triangle Q

Fixed triangle P

Fixed triangle P

Figure 5.19: Spatial 6-dof, DT manipulator at the third type of singularity



Chapter 6

Isotropic Designs

6.1 Introduction

The concept of manipulator isotropy, based on the condition numbers of the Jaco-
bian matrices, is now explained, as pertaining to parallel manipulators. Using this
concept, the isotropic designs of two general classes of planar parallel manipulators,
of spherical DT and 3-RRR parallel manipulators, and of spatial 6-dof, DT mecha-
nism, introduced in Chapter 3, are found. Having derived the Jacobian matrices of
the manipulators, in an invariant form in Chapter 5, allow us to find all isotropic

designs.

6.2 Isotropic Designs

Mechanism control accuracy depends upon the condition number of the Jacobian
matrices J and K. The condition number is based on a concept common to all
matrices, whether square or not, i.e., their singular values. For an m X n matrix
A, with m < n, we can define its m singular values as the non-negative square
roots of the non-negative eigenvalues of the m x m matrix AA”. Because AAT is
square, symmetric and at least positive-semidefinite, its eigenvalues are all real and

non-negative. Also, if the matrix under investigation is dimensionally homogeneous
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which, in our case, happens for J and K only in the spherical case, then we can
meaningfully order the singular values of these matrices from smallest to largest.
If, on the other hand, these matrices are not dimensionally homogencous, which
is the case for planar and spatial tasks involving both positioning and orienting,
or manipulators with both prismatic and revolute actuators; then we can redefine
these matrices by recalling the concept of characleristic length, first introduced in
(Tandirci et al., 1992), and dividing the elements that have units of length by this
quantity. Therefore, we can always produce a dimensionally-homogenecous Jacobian
matrix, which enables a meaningful ordering of its singular values from smallest to
largest. Thus, if &,, and ¢ denote the smallest and the largest singular values of a
matrix, its condition number is then defined as

TAf
(@)= — 6.1
K - (6.1)

and hence, the larger the variance of the singular values, the larger the condition
number. The significance of the condition number of a matrix pertains to the nu-
merical inversion of this matrix when solving a system of linear equations associated
with the matrix. Clearly, in the case of non-square matrices, this inversion is un-
derstood as a generalized inversion. Indeed, when inverting a matrix with finite
precision, a roundoff error is always present, and hence, a roundoff-error amplifica-
tion affects the accuracy of the computed results. Furthermore, this amplification
is bounded by the condition number of the matrix. It is apparent that a singular
matrix has a minimum singular value of zero, and hence, its condition number be-
comes infinite. Conversely, if the singular values of a matrix are identical, then the
condition number of the matrix attains a minimum value of unity, matrices with such
a property being called isolropic. The reason why isotropic matrices are desirable is
that they can be inverted at no cost because the inverse of an isoiropic matrix, or
the generalized inverse of a rectangular isotropic matrix for that matter, is propor-
tional to its transpose, the proportionality factor being the reciprocal of its multiple

singular value.
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Irom the above discussion, and considering that the Jacobian matrices are
configuration-dependent, it is apparent that the condition number of the Jacobian
matrices of a manipulator is configuration-dependent as well, and hence, a manipu-
lator can be designed with an architecture that allows for postures entailing isotropic
Jacobian matrices, such a design being called isotropic. However, this property disap-
pears in all other postures. This is a fact of life and nothing can be done about it, but
one can design for postures that are isotropic, and then plan tasks that lie well within
a region where th:: condition number is acceptable. For manipulators with isotropic
designs, such regions cover a substantial percentage of the overall workspace, the
condition number degenerating only for postures very close to singularities, which
should be avoided in trajectory planning, in any event.

Below we will find the isotropic designs of several manipulators introduced in

Chapter 3.

6.2.1 Planar Manipulators of Class A

In this subsection we find isotropic designs for planar manipulators of class A. It
is recalled that a design is isotropic if both J and K are isotropic, i.e., il positive

scalars o and 7 exist such that

17 =% (6.22)
KKT =71 (6.2b)

where J and K are given in eqs.(5.9b) and (5.9¢c), respectively. But J is not
dimensionally-homogeneous if we have different types of actuators, i.e., if some ac-
tuators are revolute and the others are prismatic. If this is the case, in order to
render J dimensionally-homogeneous we divide the i¢th column of J by a length {;,

the characteristic length of the ith leg of the manipulator, understood here as defined
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in (Tandirci ct al., 1992) for serial manipulators, and redefine J as

rlEi(Aa; + Ciry)/l; 0 0
J < 0 r; Ez(Azag + Caorp)/l2 0
0 0 r;{E;;(A:;a:; + Cal’s)/l;;

(6.3)

where [; = 1, for i = 1, 2,3, if we have the same types of actuators in all legs or the
actuator of the 7th leg is prismatic.

Matrix K is not dimensionally-homogeneous cither. To render K dimensionally-
homogeneous we divide the first column of K by a length L, the characteristic length

of the manipulators, and redefine the Jacobian K as
r'E,Es,/l. —-r]E,
K« l‘g‘EzESﬂL —-l‘gVEz (64)
I‘;{E;;ES:;/L —P;'E;;
Substitution of the values of J and K of eqs.(6.3) and (6.4) into eqs.(6.2a) and

(6.2b}, respectively, upon sitplification yields

(bT(Aja; + Ciry) /1) 0 0
0 (bg'(Azag + C-gl‘g)/[g)? 0 = 0'21
0 0 (b (Agay + Cars)/l3)?
{6.9a)
and

a?/L?2+blb, «ayax/L?+bTb, ajas/L? +blb;
wag/L2 +bIb,  2/L2 +blb, asas/L? +blby | =721 (6.5b)
aras/L? +blb, aas/L?+blb, a2/L? 4+ blby

where a; and by, for i = 1,2, 3, are defined as

a; = r! E;Es; (6.5¢)

b; = ETr; (6.5d)
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Equations (6.5a) and (6.5b) lead to the conditions for isotropic design of this class

of manipulators, namely,

(bT(Aja; + Cyry)/))? = o° (6.6a)
(bT (Aqag + Carp)/13)? = o (6.6b)
(bg'(A:;aa + 031‘3)/[3)2 = 0’2 (GGC)
b:lrbl = b;bg = bg-b:g (6.6(1)
)2
g+ ’L—2 —0 (6.6¢)
where
gy =ar=da3=p (6.6f)
blb; = blbs = blby = ¢ (6.6g)
and hence
2
L2 = 2—- (6.7&1)
—q
T(A.q o
l; = !lbi (Ala:j Sir) l, i=12,3 (6.7b)

Example 6.2.1.1: Planar 3-RRR Manipulator

Here, we find isotropic designs for a particular case of class-A manipulator, with
three RRR legs, as shown in Fig. 3.3. The isotropic design of this manipulator
has been addressed in the literature, namely, by Gosselin (1988) and Gosselin and
Angeles (1988). By resorting to numerical methods, they found a number of discrete
isotropic designs for the manipulator.

Assigning A; = E,C; =E,E; =1, from Table 5.1, and {; = 1, for: = 1,2,3, the

conditions for isotropic design, namely, eqs.(6.6a-e) yield

(+7Eay)? = (:Eay)? = (x Bag)’ = o7 (6.82)
ri"r, =rir,= rg'r;, (6.8b)

p?
g+ 53 = (6.8¢)
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where

e;i=r'Bs;=p, i=123 (6.8d)

I"‘Fl'z = I'TI';; = I';I‘l‘a =q (688)

Equations (6.8a- 6.8c), the conditions for isotropic design, produce manipulators
with the following characteristics:
1) The base and the EE triangles are equilateral and share a common centroid at
the isotropic configuration;
2) corresponding leg links have the same length;
3) the angles between the leg links are equal.

The foregoing characteristics lead to a three-parameter continuum for isotropic
designs of the manipulator. The three-dimensional design parameters p, @ and 3 are

defined as follows:

¢ = |lai|} = [|laz|| = |las]|
el 2l (el
p = = =
a a a
lg
== 6.
p, (6.9)
I

where {g and {§ are the side lengths of the EE and the fixed triangles, respectively.

The continuum of isotropic designs is given as

0 <a< @
0 <f< (6.10)

0 <p< oo

But the condition for feasibility of the design leads to the only constraint, i.e.,

Vi(a - f)

51y S (6.11)
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A typical isotropic design of the manipulator is depicted in Fig. 6.1. The manip-
ulator remains in an isotropic configuration while the centroids of the two triangles
coincide. The orientation of the EE triangle is not important, unless the three lines
along the second links of the legs intersect at a common point, and hence, the ma-
nipulator assumes a singular configuration, as explained in Subsection 5.3.1.

It is now apparent that the set of eight specific isotropic designs of the manipulator
reported by Gosselin (1988) and Gosselin and Angeles (1988} is a subset of the three-

dimensional continuum derived above.

End—-effector

Base triangle

@D Fized joint

Figure 6.1: An isotropic design of a planar 3-RRR manipulator

6.2.2 Planar Manipulators of Class B

In this subsection we find isotropic designs for planar manipulators of class B. It is
recalled that a design is isotropic if the manipulator Jacobians satisfy eqs.(6.2a) and
(6.2b), where J and K are given in eqs.(5.16b) and (5.16¢c), respectively. But J is
not dimensionally-homogeneous if we have different types of actuators, i.e., if some
actuators are revolutes and the others are prismatic. If this is the case, in order to

render J dimensionally-homogeneous, we divide the ith column of J by a length [,
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the characteristic length of the ith leg of the manipulator, understood here, again,

as defined in (Tandirci et al., 1992) for serial manipulators, and redefine J as

b'IrEElalfh 0 0
J L 0 szEgag/lg 0 (6'12)
0 0 bg-EEga:;/[:j

where {; = 1, for i = 1,2, 3, il we have the same types of actuators in all legs or the
actuator of the ith leg is prismatic.

Matrix K is not dimensionally-homogeneous cither. To render K dimensionally-
homogeneous we divide the first column of K by a length L, the characteristic length

of the manipulator, and redefine the Jacobian K as

—b'{'(l‘l + 8 )/L —b{E
K« | =bl(r;+s,)/L. -blE (6.13)
—b;{([‘:; +53)/L —b{E
Substitution of the values of J and K from eqs.(6.12) and (6.13) into eqs.(6.2a)

and (6.2b), respectively, upon simplification yiclds

(bTEE,ai /1, )? 0 0
0 (bT EE,a,/l;)? 0 0"l  (6.14a)
0 0 (bTEEqay/ls)?
and
alfL? 41 aaz/ L +blb, aja3/L? + blb,
araz/L? + bT'b, al/l?+1 azas/L? +bIb; | =721 (6.14b)
masf/ L2 +blby azas/L?+ bib, as/L® + 1
where

U = b;'l.(ri + Si)s i= 11233 (6°14C)

Equations (6.14a) and (6.14h) lead to the conditions for isotropic design of this class

of manipulators, namely,
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(bTEE,alﬂl )2 = (b;EEgazllg)z = (b?;EEaag/la)z = 0'2

2
P
=0

where

) =a=az=p

b"lrbg = b’lrba = b;bg =q

and hence

[? = P
b“ EEiaf
li=||——

I, i=1,2,3
g

Example 6.2.2.1: Planar DT Manipulator

(6.15a)
(6.15h)

(6.15¢)
(6.15d)

(6.16a)

(6.16b)

Here, we find isotropic designs, for a particular case of class-B manipulator, i.c., the

planar DT manipulator shown in Fig. 3.5.

Assigning E; = 1 of eq.(5.11b), l; =l and r; = 0, for i = 1,2,3, the condilions

for isotropic designs, namely, eqs.(6.15a) and (6.15b) yield

(b Ea;)? = (b;Ea;)’ = (b]Eay)? = o
»
q+ = 0
where, again
a) =dy=dzg=p

b‘{bg = bTba = bg‘ba ={q

in which

i; = b;rrs,-, 1= 1,2,3

(6.17a)
(6.17h)

(6.17¢)
(6.17d)

(6.17e)
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Considering the foregoing conditions and the geometry of the problem, we find
that isotropic designs are only possible for an equilateral DT manipulator. This type
of manipulator has a one-parameter continuum of isotropic designs. This parameter

is

o=E (6.18)
Ir

where I and {F are the side lengths of the EE and the fixed triangle, respectively.

The continuum of isotropic designs is given as
0h<a<?2 {6.19)

A typical isotropic design of the manipulator is depicted in Fig. 6.2. The manip-
ulator remains in an isotropic configuration while the centroids of the two triangles
coincide, The orientation of the movable triangle is not important. unless the two
triangles coincide, where the manipulator assumes a singular configuration. as ex-

plained in Subsection 5.3.2.

Movable triangle

Fized triangle

Figure 6.2: An isotropic design of a planar DT manipulator
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6.2.3 Spherical 3-RRR Manipulator

In this subsection we find isotropic designs for the spherical 3-RRR manipulator,
as shown in Fig. 3.6. The isotropic design of this manipulator has been addressed
in the literature. Gosselin (1988) claimed that an isotropic design is impossible for
this type of manipulators. Later, Gosselin and Lavoie (1993) found some isotropic
designs for this class.

It is recalled that a design is isotropic if both J and K are isotropic, i.e., il
eqs.(6.2a) and (6.2b) hold. Equation (6.2a), upon substituting the value of J of

eq.(5.20b) and simplification, yields a diagonal matrix, namely,

a2 0 0
0 a2 0 | =071 (6.20)
0 0 a

Similarly, eq.(6.2b), upon substituting the value of K from ¢q.(5.20c) and simplifi-

cation, yields

blb; bib; blb;
b’b, blb, blb; | =7%1 (6.21)
b™bs blb; blb,

where
b;=vixw, i=123

Equations (6.20) and (6.21) lead to the conditions for isotropy, i.e.,

a® = ak = dk = o? (6.22a)
2 .r . = .

b;b,:{ i (6225)
, Hiz#]

The foregoing equations are the necessary and sufficient conditions for an isotropic

design, which lead to manipulators with the following characteristics:

1) The middle links, A; @), A2Q2 and A3@Qs lie on the arcs of an equilateral spherical
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triangle W whose sides are all 90°, as shown in Fig. 6.3;
2) corresponding leg links have the same length;

3) the angles between the leg-link plancs are equal.

Figure 6.3: An isotropic design of a spherical 3-RRR manipulator

The foregoing characteristics lead to a six-parameter continuum for isotropic
designs of the manipulator. First, one may choose the movable triangle @ such that
its vertices {@;1}3 lie anywhere on the sides of triangle W. In other words, one is free
to choose the three independent vertices {Q;}; to define triangle Q.

Sccond, one may choose two arc lengths and the angle between the planes of the

first and the second links o in the ranges specified as
0 < Qi< 2, AQit (6.23a)
0< AiPic 2, AP (6.23b)
0<a<2r, a#lba#nw (6.23¢)



Chapter 6. Isotropic Designs 119

In the case in which we choose three vertices of triangle @ such that it cannot
be inscribed in triangle W, an isotropic design is impossible. That is why Gosselin
(1988) could not find any. A typical isotropic design of the manipulator is depicted in
Fig. 6.3. Clearly, the set of isotropic designs of the manipulator reported by Gosselin
and Lavoie (1993) is a subset of the six-dimensional continuum, described above,

which constitutes the complete set of isotropic designs for the manipulator at hand.

6.2.4 Spherical DT Manipulator

In this subsection, we find isotropic designs for the spherical DT manipulator, as
shown in Fig. 3.7. It is recalled that a design is isotropic if both J and K are
isotropic, i.e., if eqs.(6.2a) and (6.2b) hold. Equation (6.2a), upon substituting the

value of J of eq.(5.24b) and simplification, yields a diagonal matrix, namely,

¢ 0 0
0 & 0 |=d2 (6.24)
0 0 &
Similarly, eq.(6.2b), upon substituting the value of K of eq.(5.24c) and simplification,
yields
did, did, dids
did; did, dld; [=+%1 (6.25)
did; didy did,
where

di=r;xt, i=1,23

Equations (6.24) and (6.25) lead to the conditions for isotropy, namely,

E=c=cl=0" (6.26a)
2 lr . —
dld; = { ; ‘r’_# (6.26b)
y UH1FE]
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Considering the foregoing conditions and the geometry of the problem, we find
that isutropic designs are only possible for an equilateral DT manipulator in which
the sides of the movable triangle @ are all equal to 90°. The one-dimensional con-

tinuum of isotropic designs comprises a single variable whose range is given as
60° < {p < 109.4° (6.27)

in which {p is the side of the fixed triangle P. A typical isotropic design of the

manipulator is depicted in Fig. 6.4.

2(movable)

ut

Figure 6.4: An isotropic design of a spherical DT mmanipulator

6.2.5 Spatial 6-DOF, DT Manipulator

Here, we derive the isotropic designs of the spatial G-dof, D'I' manipulator, as shown
in Iig. 3.9. It is recalled that a design is isotropic if the manipulator Jacobians
satisly eqs.(6.2a) and (6.2b), where J and K are given in eqs.(3.31¢) and (5.31d),
respectively. But J is not dimensionally homogencous. To render J dimensionally-

homogeneous we divide the (i + 3)th column of J by a length {;, for i = 1,2,3, and
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redefine the Jacobian J as

0 0 0
0 0 0
0 0 0
J
aTmI/rl 0 0
0 a;m2/1‘2 0
L 0 0 a{mglr's

—alm,/l,
0
0
P/l
0
0

121

0 0
~al'm,/l; 0
0 —a?;m;,/lg
0 0
peflz 0
0 pa/ls

where [; 1s the characteristic length of the ith leg of the manipulator.

Matrix K is not dimensionally-homogeneous either. To render K dimensionally-

homogeneous we divide the first three columns of K by a length L, the characteristic

length of the manipulator, and redefine the Jacobian K as

I m!/L
mi/L
mi/L
qi /L
q;/L

| ql/L

OT

0"

o’
-m{/r

—mj /7,

—m;‘;/rg ]

-

(6.29)

Substitution of the values of J and K from e¢s.(6.28) and (6.29) into eqs.(6.2a)

and (6.2h), respectively, upon simplification yields

st 0 0
0 s2/2 0
0 0 s2/12
—psi B 0 0
0 —pasg /i3 0
I 0 0 —~pasafl?

~msi/f 0 0 1
0 —p2sa/l} 0
0 0 —pasa/l:
si/ri + i/t 0 0
0 s3/r3 + 3/ 13 0
0 0 s3/r3 + 3/l |

= ¢?1 (6.30a)
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and

where

-m'{'m./[ﬂ
mim,/L?
mjim,/L*
qimy/L?

q;m,/L?

Lqzmy/ L

mimy/L?2 mims/L?
mlm,/L? mjmy/L?
mimy/L? mimgy/l?
qimy/L?  qima/L?
qima/L?  qyma/L?
aima/L} qim/I?
si=alm

m{q./L?
m;q,/L?
miq;/L?
St
S21

$3)

m{ qz/L*

m; qz/ L2

miqa/L?
$)2
592

32

si; =gl q;/ L2+ mim;/(rir;)

m7qs/L?|

m; qa/ L

m3qa/L?
$13

$23
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533

= 7.21

-(6.30b)

(6.30¢)
(6.30d)

Equations (6.30a) and (6.30b) lead to the conditions for isotropy, i.c., for i, j =

1,2,3,

we have

and hence,

sl it = ot

m!m;/L? = {

.~_¢:-"/l-2 =g

s = 0

q/ m; =0

li =

pi=0

T2, ili=
0, ili#j
i ili=j
0, ifij

afqi = L3(1 = L2/1})r”

(6.31a)
(6.31b)
(6.31c)

(6.31d)
(6.31¢)

(6.311)

(6.32a)
(6.32h)
(6.32¢)
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bl = bg = b3 (6.32(])
(e; x m;)T(e; x my) = (ca x m2)T(€2 x my) = (c3 x m3)’ (¢ x my)

(6.32¢)

Moreover, eqs.(6.31a~f), the isotropy conditions, produce manipulators with the fol-
lowing characteristics:
1) The three planes containing vectors r; and b;, for i = 1,2,3, are orthogonal;
2) the set{r;}} is orthogonal;
3) the set {b;}3 is orthogonal;
4) a;, for 1 = 1,2, 3, is perpendicular to the plane of vectors r; and by;
5) the distances between a; and by, for i = 1,2, 3, are equal.
The foregoing characteristics lead to a one-parameter continuum for isotropic
designs of the manipulator. The one-dimensional design parameter r is defined as

follows:
r=ri=ry=13 (6.33)
The continuum of isotropic design is given as
0<r<oo (6.34)

A typical isotropic design of the manipulator is depicted in Fig. (6.5).
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\ o Fixed triangle

Moveable triangle

Figure 6.5: An isotropic design of a spatial 6-dof, DT manipulator
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Concluding Remarks

7.1 Conclusions

Research interest in parallel manipulators was prompted by the realization that
serial-manipulator performance is deficient. The source of deficiencies in these ma-
nipulators is their cantilever type of link loading, Therelore, the obvious alternative
is a parallel architecture, in which the end-effector is supported with a multiple point
support. However, long slender legs, which are the source of flexibility, are present
in parallel manipulators. A novel class of parallel device, namely, double-triangular
(DT) manipulators, in three versions, was introduced to alleviate this problem. Min-
imum leg lengths occur as a common feature of this new class of manipulators.
Solutions to the direct kinematics (DK) of planar, spherical and spatial D'I' ma-
nipulators were attempted and obtained. Using planar trigonometry, we found a
quadratic equation solution for the planar DT manipulator. The DK of the spherical
DT device was solved, as a 16th order polynomial, by means of spherical trigonom-
etry. These results inductively led us to invoke methods of spatial trigonometry to
treat skew lines. Spatial trigonometric relationships, in turn, were expressed in dual-
number algebra, while the 6 real components of a unit dual vector are the Pliicker

coordinates of a line. With the aid of spatial trigonometry, we formulated and solved
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the direct kinematic problem of several versions of spatial DT manipulators. These
results revealed that screw operators and the Pliicker coordinates of a line expressed
by unit dual quaternions and unit dual vectors, respectively, provide the most efficient
means to formulate, manipulate and solve the kinematics of complicated problems
where motion is constrained by line contact.

A dual 3 x 3 matrix representing a screw motion was derived in an invariant
form. It was shown that the lincar invariants of this matrix provide a convenient
way to compute the screw axis, the angle of rotation and the displacement along the
screw axis of a general motion. These invariants have been traditionally computed
by equation solving, which should be avoided in real-time applications. Thercfore,
obtaining these parameters from the linear invariants of the dual matrix reduces the
computational burden to simple sums and diflerences.

Il is customary to express Jacobian matrices of parallel manipulators component-
wise. Indeed, this practice is frequently encountered in the robotics literature. This
practice leads to equations that are frame-dependent and cumbersome to interpret.
The compiient-wise expressions in such Jacobian matrices are lengthy and do not
give much geometric insight into the behaviour of the manipulator. As an alternative,
we derived the Jacobian matrices of certain large classes of parallel manipulators in
an invariant form. The Jacobian matrices found in this way are compact, give direct
geometric interpretations of the manipulator behaviour, are frame-independent, and
are algebraically simpler. Moreover, we proposed a general method to derive the
Jacobian matrices of parallel manipulators at large. For example. we unified the
Jacobian matrices for a large class containing 20 manipulator types into a single
formula.

A general classification of singularities encountered in parallel manipulators was
introduced and categorized in three singularity types. This classification scheme re-
lies on the conditioning of the Jacobian matrices. Having derived the Jacobian matri-

ces in an invariant form, allowed us to detect all singularities within the workspaces
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of the manipulators under study. Moreover, we showed that, contrary to earlier
claims, the third type of singularity is not necessarily architecture-dependent.

An important property of robotic manipulators is their dexterity. We regarded
dexterity in the context of local kinetostatic accuracy. Among various measures pro-
posed for quantification of dexterity, we adopted the condition number. This measure
does not share the drawbacks suffered by other measures like the determinant, the
manipulability and the minimum singular value. A manipulator design with opti-
mally conditioned Jacobian matrices was called isotropic. Having formulated the
Jacobian matrices of the manipulators at hand, in an invariant form, we found the
conditions leading to isotropic designs. For several manipulators, we were able to find
the complete set of isotrepic designs. The isotropic design parameter spaces of these
manipulators turn out to be a continuum of at least one dimension. This provides
a substantial domain of dextrous design choice to fit many situations, which should

admit design criteria other than isotropy, e.g., workspace volume, global dexterity.

7.2 Consideration for Future Work

A few recommended topics for future research are listed below:

1. A polynomial of degree 16 was found for the direct kinematic problem of spher-
ical DT manipulator. The result implies that the polynomial has at most 16
solutions, among which only eight would be real positive. Since only the real
positive solutions are acceptable, the direct kinematic problem of this device
has at most eight solutions. However, in tests we ran, we could find no instance
with more than two geometrically distinct solutions. Therefore, the polynomial
is not minimal. Finding the minimal polynomial would be a topic of further

research.

2. The direct kinematic problem of all versions of spatial DT manipulators was

formulated in this thesis, without closed form solutions. This issue remains as
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ubs §

a challenging research problem.

It has been shown that dual quaternion algebra is an excellent tool to handle
the kinematics of line-contact constrained mechanisms. The kinematic study
of other mechanisms of this type, such as the double-tetrahedral mechanism,

by this means, constitutes another possible extension to our wurk.

The main reason why dual numbers, quaternions and dual quaternions are not
popular is that they are difficult to work with. To overcome this obstacle the
author implemented some user-defined functions in MATHEMATICA to han-
dle some dual number algebraic operators. It is suggested that a computational
algebraic code be developed to make these computations as convenient as those

currently available for complex, vector and matrix algebras.

It was shown that expressing the Jacobian matrices in an invariant form makes
it easier to effectively handle the issues of isotropy and singularity. Another
challenging and fruitful problem is to find the continuum of isotropic designs
and singular configurations of the most common parallel manipulator, i.c., the

Stewart-Gough platform, with invariant forms of its Jacobian matrices.

Multi-parameter continua of isotropic designs for some manipulators were found.
This allows one to incorporate design criteria other than isotropy. Clearly, de-
signing manipulators with multi-variate objective functions, including isotropy,

is a topic worthy of further research.
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Appendix A

Bezout’s Method

Given k& homogeneous equations in /- variables, or & non-homogeneous equations in
k — 1 variables, it is always possible to combine the equations so as to obtain from
them a single monovariate equation A = 0. A being called the eliminant of the
system of equations.

There are several methods to do this. A method, known as Bezoul’s method, is
faster than others (Salmon, 1964). It is demonstrated with an example here where
two homogencous quartic equations in two variables are reduced to a univariale

polynomial. Consider the two equations

4 3 4
age + ayx v+ tt2m2y2 + a;,:r:y3 + a.;y' =0

b0$4 + bl.'!:ay + b2w2y2 + bail.'ys + b4y" =0

Multiplying the first equation by by, and the second by aq, and subtracting, then

dividing the result by y, gives
aghz® + aghsz®y + agbazy® + apgbyzy® =0 (A.1)

Again, using the same procedure with respective multipliers box + b1y and agz + a1y,

and the divisor y*, gives

agbsa® + (aobs + ayby)x?y + (aghs + a1ba)zy® + arbyy® =0 (A.2)
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Now, repeating the procedure for the third time, s/ith respective multipliers bpa? +

bizy + bay® and apx® + ayzy + azy?. and divisor y*, produces
apbyx® + (aoby + a103)2%y + (ay by + agbs)ry® + azbyy® = 0 (A.3)

Finally, the fourth equation is derived with respective multipliers bpa® + by +

boxy? + bay® and agz® 4+ a,x%y + azxy? + ayy’. and divisor y*, namely,
agbaa® + a1bazy + axbyry® + azbyy® =0 (AA)

From the four eqs.(A.1-A.4), we can eliminate linearly the four quantities, 2%, 2%y, riy?

and y°, and obtain the climinant

-

aphy agbs aoby gy
tobs  apby + @by apgby + by b
A= dot | 1002 Q0% 12 aply 103 a1y (A.5)
(lub;; ﬂub.| + (I|b3 (l]b.; + ﬂgbu ([2[)4
\_ toby by b, tsby |

In a similar manner we derive the eliminant of higher-orders equations.
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Coefficients of Equation (4.19b)

In this Appendix we tabulate the coefficients of eq.(4.19b) which were obtained with

MATHEMATICA, a software package for symbolic computations.

Ao = 4(c@%cD2 + 2¢Q1cQacDacEy + cQicE? + cQicf?s D2 — cDiskE} —
2cQ1¢QscfsDysEy — 2cfcDyclz,sDas By + cQ3sEL — cf*ckisD?)

Ay = 16cd(cfelas Dy + cDas ) (c@cls + cDackEr — cfsDqsE,)

Arz = 8(cQicD? — cQicEL 4 2cQ3cd*c 2 — cQ3sEZ + cQ¥cf*s D} +
defedcDycErsDasF — 2¢f2cd®sDEsE? 4 cf*cE2s D2 — 2cd?cD2cl? +
2cfcDycErs DysEqcD3sE2 + 2cQ%cd? sE2)

Ay = 16ed(cfclys Dy + cDysEq)(c@QeQs — cDackn + cfsDasksy)

Ay = McQicDE + cQicE? + cQisE2 — cQicf?sD? — cf*cE2s D2 +
2c¢@1cQacfsDysEy + cDgsEf, —2¢cfeDqcly D08 E, — 2¢Q1cQacDycEy)

Az = 16(cf cDycE2sD; + cQ1eQacfcDasEy + cQicDysDy — cQicf?eDysDy —
cfcEy8D2sEy + cfeDickys By + ¢QcQacks Dy — ¢DysDysER)

Azt = 32cd(cQ1cQ33DasEy + 2cDacEasDys By + cfcDisE — cfsD3sE? +
2cf2cDycEysDysEy + cfcE2s D2 — cQeQcfeDycEy — cfeDicE?)
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Azs = 32(=2cd*cDycE2sDy — cfcDicErsEy + cQicDas Dy — cQicfPeDys Dy —
cf2cDycE2sDy + 2 cd®cDysDysEE — 2cfed*cDicEysEy + cfcEas D2 E,
+2cfed®*cEys DisEy + cDysDasE2)

Ags = 32cd(cQ1cQasDrsEy — 2cDacEysDys By — cfeDISE? + cstgsEg -
2¢f2cDycloas Dys By + cfcD3cEE — cQeQacfeDacksy - cfekls D)

Agq = 16(—cQ1cQacfcDasE; — cfclsDIsE; + ¢f?cDacEis Dy + cfeDickys By —
cDysDysER 4 cQicDys Dy — cQ3cf2eDas Dy — cQieQaclias Dy)

Ago = 8(—cQ3eD? + 2cQicf?eDE + cQick] — 2¢f*cD2cE? 4+ 2¢Q3s D2 -
cQicf?sD? 4 cf?ch2s D2 + 6cfeDrckysDys b + cQisEZ + eDEsEZ —
2sD2sI?)

Asy = 32ed(2cli2s Disley — 3cfeDacElsDy — cDieloys By — 2cf?eDickys ks +
cf*clysDisEy 4+ 3cfeDys Das )

Auz = 16(—cQicDE + 2cQicf2cD} - cQcE} + 2eQcd?cEE2 + 2cf?cDick? +
2ed?clicli? +2cQs DY — cQief?sD3 — 12¢fed?eDyckrs Dy — dcdcE2sD? —
6cfeDycliysDysEy — cDEsEL — ef*cEZsD3sEy — cQ3s B2 + 2cQ3cd?sE? —

dcfled?cDEsE2 + 2 D3 ER + 2cfed®s DEsER)

and

Ars = (— 1 )g_r_".‘h;_,-ﬂ_‘,

for (r,s) = (3,3), (3. 4) and r = 4,5, s = 0, ...,4, where ¢(-) = cos(-) and s(-) = si(-).
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Coefficients of Equation (4.38

Here we tabulate ¢;, for i = 1,--.,8, of eq.(4.38)which were obtained with MATHE-
MATICA, a software package for symbolic computations.

g = 0.1589146384409058 cos 1, - 0.284268244827663 sin 13
—0.6356385402223707 sin 153 sinyy — 0.4264022119870481 sin v,

g2 = —0.4020142020702365 cos 13 — 0.6356385402246087 cos 1) sin 1z —
0.1589146384403463 sin 1; + 0.6396018356438479 sin 1,

ga = —0.898932680742382 cos 15 cos 1, — 0.7687062862670159 cos 32 +
0.2842656920009319 sin 13 + 0.6356442485266173 sin 3 sin ¢

g4 = 0.284268244827663r; cos 3 + 0.0842725261027617 cos 3y —
0.898932680742382 cos 3 cos 1 — 0.4264022119870481 73 cos 2 +
.3017665551147022 sin 33 4 0.6356385402246087 cos v sin 15 —
0.6356385402223707r, cos ¢, sin 93 + 0.1589142167460837 sin ¢ —
0.1589146384409058; sin 3 + 0.4494667898948425 cos 13 sind; —
0.6356385402223707r; cos 3 sin ¢, + 0.2786954677580153 sin 13 sin ¥
—0.4215550405217529 sin 3,
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gs = —0.3262577907206018 cos ¥3 + 0.1589146384409058 cos ¢y —
0.1589146384403463r; cos 3, — 0.6356385402246087r; cos ¢z cos ) —
0.7687062862670159 cos 1, + 0.6396018356438479r; cos f, +
0.40201420207023657) sin y3 — 0.3569479374078874 cos ¥, sin i3 —
0.0842727369495963 sin ¥y — 0.3178148330523365 sin ¢3sin ¢ +
0.6356385402246087r, sin 3 sin ¢y + 0.2858790240055581 sin ¢,

ge = 0.2842656920009319r cos ¢z — 0.1589146384409058 cos 1y +
0.1694026843444782 cos 3 cos ¢ — 0.471702595330201 cos 1, +
0.1596309991409217 sin 3 — 0.6356442485288552 cos v sin ¢3 +
0.898932680742382r cos, sin pz + 0.6356442485266173r; cos i sin g +
0.07945709559545802 sin ¢, — 0.89893029534063 cos y3sin 3 +
0.6356442485266173r, cos ¥3sin ¥y + 0.898932680742382r, cos 3 sin i +
0.03912415371435915 sin 3 sinep; — 0.6396018356438479 sin o2 +
0.7687062862670159ry sin 1y

g7 = —0.5685332823940687 — v.6356442485288552 cos ) sin g3 —
0.898932680739217 cos ¥ sin ¥

¢s = 0.6756731531896393 + 0.898932680742382 cos ¥ cos ¢ —
0.6356442485288552r cos 3 cos ¢, — 0.898932680739217r; cos ¥3cos 3y +
0.5965152298796568 cos ¢, sin ¥3 + 0.1694014916445885 cos 3 sin ¢,
—0.953462571444399 sin 13 sin ¢, + 0.89893268073921 77, sin 3 sin ¢ +
0.6356442485288552r sin 13 sin iy
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Coefficients of Equation (4.41)

Here we tabulate ¢;, for ¢ = 1,-.-,8, of eq.(4.41) which were obtained with MATH-
EMATICA, a software package for symbolic computations.

q1 = —0.898932680742382 cos g cos py sin g singh; —
0.4020142020702365 sin g sin 13 — 0.898932680742382 cos 13 sin yy sin 4
+0.1589146384409058 cos 3 + 0.7687062862670159 cos jig sin ¢,

g2 = —0.4020142020702365 cos 3 + 0.898932680742382 cos y3 cosfy sin ¢ +
0.1589146384409058 cos y; sin; — 0.7687062862670159 sin pq sin 1 +
0.898932680742382 sin pa sin py sin s sin ¢,0.7687062862670159 sin py sin 1,

g3 = —0.898932680742382 cos 13 cos 3y — 0.7687062862670159 cos 35 —
0.4020142020702365 cos p3 sin 13 — 0.1589146384409058 sin j¢; sin ¢y +
0.898932680742382 cos y; sin pasin i3 sin i,

g4 = 0.0842725261027617 cos 1p; — 0.898932680742382 cos i3 cos b, +
0.3198002640379491 cos 3 cos 1 — 0.1421333271845383 cos 3 sin pg —
0.4494645425058293 cos P53 cos ¥, sin ) — 0.10050355051 75591 cos pz sin i,
—0.898932680742382 cos p3 cos iy sin i3 —
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0.4494645425058293 cos p cos piq cos Y sin ¢

—0.3262577907206018 sin p3siny — 0.07945700139117601 sin ¥, —
0.1589146384409058 cos g, sin 1, — 0.4494663403711908 cos g cos 3 sin ¢
—0.31782034607451 12 cos p3 €os jty cos PP sin ¥y —

0.1589146384409058 sin yy sin ¥, + 0.471702595330201 cos jt2 sin 2 +
0.4494663403711908 cos peg sin g2y sin ssinyyy +

0.2247331701855954 cos p; sin gz sin Py sin ¥y +

0.31782034607451 12 sin gy sin ¢ysin ¢y

+0.1694026843444782 cos 1 sin g; sin ¢y

+0.1694026843444782 cos 3 cos jiy sin Py sin 4y

+0.1921773402730402 sin jrosin 2

—0.3262577907206018 cos ¢35 + 0.1589146384409058 cos ¢, +
0.07945700139117601 cos jiy cos ¢y + 0.31782034607451 12 cos 13 cos v cos i
—0.7687062862670159 cos ¢y — 0.3198002640379491 cos ¥y sinpta +
0.1421333271845383 sin ¢y — 0.1694026843444782 cos pe3 cos ¢ sin ¢s +
0.6741995105567862 cos ¢ sin gy sin g +

0.4494645425058293 cos ¢ sin jig sin py sin gy

+0.08:4272526 1027617 cos ¢y sin ¢y — 0.0794573192204529 sin ge) sin ¢y +
0.3178203460715112 cos vy sin ey sin ) sin ¢y ~

0.4494645425058293 cos gy sin ¢y sin

—0.898932680742382 cos 13 cos ji) sin ¢ sin ¥ +

0.44946634037 1 1908 cos p¢; sin gz sin Pasin ¢y —

0.6741995105567862 cos gy sin jeq sin g sin ¢y —

0.1694026843444782 sin jeg sin g sin ¢y sin ¢y +

0.1921773102730402 cos geg sin yp — 0.471702595330201 sin pa siny,
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ge = —0.1421333271845383 cos ji3 cos ¥3 — 0.1589146384409058 cos 1) +
0.1694026843444782 cos 13 cos ¥y — 0.471702595330201 cos ¢, —
0.07945700139117601 cos ¥ sin gy — 0.3262577907206018 cos g3 sin s +
0.3178203460745112 cos #, sin 43 + 0.1005035505175591 sin g3 sin 3y +
0.898932680742382 cos 1 sin u3 sin s +
0.4494645425058293 cos p; cos 1P sin pa sin 3 —
0.0794573192204529 cos u sin i + 0.4494645425058293 cos Pasin 3 +
0.898932680742382 cos 1) cos Pz sinyh; +
0.3178203460745112 cos p; cos ta sin pa sin ¢y —
0.0842725261027617 sin y; sin ¢; + 0.898932680742382 cos 13 sin p) sin
+0.2247331701855954 cos p3 cos py sin ¥z siny; —
0.1694026843444782 cos 1 sin pa sin asiny; —
0.4494663403711908 sin u3 sin ; sin 3 sin 3, + 0.3198002640379491 sin v,
+0.7687062862670159 sin g2 sin i

g = —0.5685332823940687 + 0.898932680742382 cos #; sin u3 sin 3 +
0.898932680742382 cos g cos 3 siny, —
0.898932680742382 cos 3 sin iy sin¥ssin g,

ge = 0.6756731531896393 - 0.898932680742382 cos ¢ cos ¢, +
0.4494645425058293 cos p; cos i3 cos P +
0.3178203460745112 cos 13 cos ¢ sin uz —
0.6741995105567862 cos 3 cos i sin s —
0.1694026843444782 cos v, sin g sin i3 —
0.4494645425058293 cos 3 cosy sin py sin iz —
0.1624026843444782 cos p) cosyzsin ) —
0.4494663403711908 cos 13 sin gy sin 1,
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—0.3178203460745112 cos g3 cos 3 sin g, sin ¢y —
0.3178203460745112 cos y, sin Yz sin; —
0.4494645425058293 sin i3 sin Y3 sin ¥,
—0.4494663403711908 cos p3 cos p; sin ¢gsin ¥,
~0.898932680742382 cos 4 sin pg sin g sin ), +
0.1694026843444782 cos 13 sin gy sin Yasin i, —
0.6741995105567862 sin 3 sin g sin ¢z sin ¥,



Appendix E

Mechanical Designs of Planar and

Spherical DT Manipulators

Typical designs of the planar and spherical DT manipulators are depicted in Figs. (I£.1)
and (E.2), respectively.

151



Appendix E. Mechanical Designs of Planar and Spherical DT Manipulators

e

Wn] S et | — e W ALY\
TS ———— - PN
g

Figure E.1: A typical design of planar DT manipulators
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Figure E.2: A typical design of spherical DT manipulators
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