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Abstract

During long-tenn EEG monitoring ofepileptic patients. seizure detectil!1 assists in

selecting infonnation imponant for diagnosis. We present a new gencration ofdetection

methods with self-adapting, more specifically patient-adapting, algorithms for two

functions: (1) Reduction offaise seizure detections (FSDs), thus increasing the

sensitivity ofdetection. (2) Detection of seizure onser. thus providing a warning which is

useful to patient and observers, allowing appropriate precaution, :md observations.

The self-adapting algorithm for reducing FSDs utilizes FSDs from one baseline

monitoring session as template patterns. In subsequent sessions, events having a pattern

similar to any template pattern are eliminated from the detection. A unique "similarity"

measure was used to reflect the relation between two multichannel EEG patterns. An

extensive test was done on twenty patients with 2600 hours of monitoring. Results show

an average reduction in FSDs by 61% with a risk ofmissing seizures of2.7%, comparing

to the most commonly used method.

The self-adapting algorithm for seizure onset detection assumes one seizure has been

recorded and uses that seizure and one set ofnon-seizure EEG to train a patient-specific

classifier. By using special features and a modified nearest-neighbor classifier, this

algorithm reached an onset detection rate of 100% with an average delay of9.6 seconds

after onset. The average false alann rate was only 0.21/hour, making it an acceptable

waming device. This test was done on 17 patients with 77 seizures.

In conclusion, our self-adapting algorithms make seizure detection more accurate

and effective than was possible before. They are also efficient, practical and capable to

work in real time.
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Résumé

Au cours des sessions prolongées d'enregistrement EEG chez des patients

épileptiques, la détection de crises aide à obtenir des renseignements diagnostiques.

Nous présentons ici une nouvelle génération de méthodes de détection consistant en des

algorithmes allio-adaptatifs ayant deux fonctions: (1) la réduction du nombres de

fausses detections, permettant ainsi d'augmenter la sensibilité de la détection et (2) la

détection àu début des crises, procurant aux patients et observateurs un avertissement

leur permettant de r-::agir et de d'ajuster I~urs observations en conséquence.

L'algorithme auto-adaptatif pour la réduction des fausses detections utilise les

fausses detections de la première session d'enregistrement comme pattern de base.

Pendant les sessions suivantes, les événements dans lesquels on retrouve un pattern

semblable à un des patterns de base sont éliminés de la détection. Une mesure unique de

similarité a été ul.ilisée pour déterminer la relation entre deux patterns apparaissant dans

plusieurs voies d'EEG. Un examen approfondi a été mené auprès de vingt patients pour

un total de 260C heures d'enregistrement. Les résultats obtenus indiquent une réduction

des fausses detections de 61% avec un risque de perte de vraies crises de 2,7%, en

comparaison avec la mèthode la plus couramment utilisée.

L'algorithme auto-adaptatif pour la détection du début des crises suppose qu'une

:rise a déjà été enregistrée et utilise cette crise ainsi qu'un échantillon représentatif de

l'EEG sans crise pour former un classificateur particulier à chaque patient. À partir de

caractéristiques spéciales et d'un classificateur modifié basé sur la méthode des plus
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proches voisins, l'algorithme atteint un taux de détection du début des crises de 100%

avec un délai moyen de 9,6 secondes après le début. Le taux moyen de fausses alarmes

est seulement de 0,21 par heure, rendant la methode utilisable comme appareil

d'avenissement. Nous avons evalué cette methode sur les EEGs de 17 patients ayant eu

un total de 77 crises.

En conclusion, ncs algorithmes aUlo-adaptatifs rendent la détection de crises plus

précise et_efficace qu'auparavant. Ils sont aussi plus efficaces, pratiques et capables de

fonctionner en temps réel.
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Claim of Originality

This dissertation contains following original contributions:

With respect to the methods used:

a. A new definition of similariry: Different l'rom other definitions of

similarity, the new similarity defined in this proposai relies not only on

the Euclidean distance of two patterns in a detection space. but also on

probability distributions of their own class. A modification factor is

also imposed to avoid negative effects of extreme cases. This measure

is used to determine if a new pattern is similar enough to a previously

stored pattern.

b. The quantitative expression of inter-channel informarion: Traditionally,

EEG channels are considered to be independent. In this proposai, a

quantitative expression of distance between channels is presented. This

makes it possible to take distance between channels as one of the

dimensions in a detection space.

c. 77le average power in a main energy zone: This feature is created to

measure the concentration of energy of a section of EEG in the

frequency domain. It reveals important characteristics of ictal EEG

patterns. By using a logarithmic scale, this feature cao make il easier to

distinguish ictal EEGs from interictal EEGs.

d. Self-adapting algorithms: The algorithms presented in this proposaI cao

automatically adjust their c1assifiers to fit each patient's situation, as

long as there is a known prototype of this patient's seizure as an input.

These aIgorithms will be shown to be capable to reach the optimal
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c1assiticr for cach paticnt without any human interaction. It makes

these algorithms vcry cfticicnt and practical.

With respect [0 the prohlems to he solved:

a. The use of patient specitic data to improve the performance of a

method for the aUlOmatic detection of epileptic seizures has never been

done.

b. The very concept of an "early seizure detection device" capable of

waming the patient or hospital staff that a seizure has just staned is

original and its implementalion has never been attempled before.

despile ils obvious medical importance.
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Chapter 1: Introduction

Chapter 1:

Introduction

Since the electroencephalogram (EEG) was tirst recorded on humans by Berger

in 1929 (Gloor, 1969), it has been playing a signiticant role in the diagnosis and the

evaluation oftreatments for brain related diseases (Gloor, 1985a). Among the main

neurodiagnostic procedures, ~~;C:1 as EEG, positron emission tomography, magnetic

resonance measurements, EEG is the only one which can provide continuous recording

ofcerebral function over a long period of time. In studying epileptic patients, long-term

EEG monitoring olten provides information which is difficult or even impossible to

obtain by any other means. For instance, seizures are the most important clinical and

diagnostic features of the disease and they occur only rarely and unpredictably. Another

epileptiform EEG abnormality, the spike, usually occurs more frequently than seizures,

but it still occurs intermittently and unpredictably. EEG recording during a short period
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of time is most often not sufficient to record a seizure or even a spike. Therefore, long­

term EEG monitoring. which lasts from several hours to several days, even several

weeks. can greally increase the probability of recording seizures.

Monitoring an epileptic patient continuously over a long period of time. with an

observer watching the patient's behavioral manifestations and EEG patterns

simultaneously, is one way to capture ail seizures and spikes. This procedure is,

however, very labor intensive and expensive. Another way is to record the patient's EEG

and behavior continuously but to review them after the monitoring is fini shed. The

biggest disadvantage of this procedure is that it generates a large amount of data and

review is therefore velj time consuming.

During a long-term monitoring session ofa patient with epilepsy, most data are

redundant and sometimes irrelevant because most EEG p!llterns are repetitive and not

specifie to epilepsy. A data reduction method is therefore usefoJlto decrease redundancy

and extract specifie features ofinterest for epilepsy. Seizure and spike detection methods

are examples ofdata reduetion methods uselùl in long-term monitoring of epilep~ic

patients.
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The seizure detection method of Gotman (1982. 1990a) has been used for severa!

years at the Montreal Neurological Hospital and in many other hospitals. Although this

method can detect many seizures with a reasonable false a1arm rate (Pauri et al. 1992),

there is still much room for improvement. This dissertation aims at creating a new

generation of seizure detection method having a much lower false alarm rate, a higher

seizure detection rate and earlier seizure detection. A lower false alarm rate can lead to

higher seizure detection rate because the detection sensitivity can thus be increased

(Pauri et al. 1992). In addition. detecting seizures as soon as they start can give

observers a chance to interact with patients to obtain information which cannot be

acquired otherwise.

In the method of Gotman (1982. 1990a), a universai classifier is used to

determine if a section of EEG is pan of a seizure. Although there are sorne common

characteristics to many seizures, seizures from different patients are different, as is the

background EEG. Therefore. we think it is necessary to consider patient-specifie

information to create a different classifier for each patient so that the performance of

seizure detection methods can be improved significantly. As a result, the main objectives

in this dissertation are to use patient-specifie information to develop a seizure detection

method with (1) a much lower false seizure detections rate than the current method and

consequently a better seizure deteetion sensitivity. (2) the ability to detect seizures early

in their development.
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The need for a low false alann rate in long-tenn EEG monitoring is obvious: to

reduce uninteresting and redundant data. At the Montreal Neurological Hospital, five

patients are currently under long-tenn EEG monitoring every day; on average, a patient

is monitored during 12 days. The false seizure detections (FSDs) cause unwanted data to

be stored and therefore reduce the e!fectiveness of a seizure detection method. The FSD

rate of the system of Gotman (1982, 1990a) was estimated to be 0.84/hour for scalp

electrode patients and 1.35/hour for depth electrode patients (Gotman, 1990a). In

another study (Pauri et al. 1992), the same seizure detection system was evaluated.

Depending on the detection threshold, the average FSD rates were between 2.70/hour

and 5.38/hour. It was confinned in that study that a higher detection threshold results in

a lower false alann rate, as weil as a lower seizure detection rate.

Whereas the FSD rate averaged over many patients is acceptable, it can become

significantly higher and reach an unacceptable level in sorne patients. This usually

happens when one or a small number ofEEG patterns occur repeatedly in a given patient

and cause many FSDs during several consecutive monitoring sessions. These FSD

patterns vary from one patient to another. Thus, they can be called patient-specific FSD

patterns.

As indicated in the study ofPauri et al. (1992), it is difficuIt to reduce FSD rates

without reducing seizure detection rates because, by changing detection thresholds,

lower FSD rates can only be achieved at the expense oflower seizure detection rates.

For patient-specific FSDs, however, il may be possible to reduce FSDs with Iittle e!fect
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in detecting seizures. Because a patient is typically monitored for several days, we are

proposing a monitoring system that can be "taught" to recognize and stop detecting EEG

patterns clearly identified as FSOs ear1y in the monitoring. However. the reduction of

this kind of patient-specific FSOs should not result in a reduction in the ability to detect

seizures. Reduction in false detections without major effects in detecting seizures is

possible because we are no longer classifYing ail seizures trom ail non-seizures in ail

patients. Instead, we focus on eliminating EEG patterns similar tO those pre-defined FSD

patterns from each patient.

1.2 Seizure Onset Detection

The early part of seizures is always interesting to electroencephalographers

(EEGers) since it reveals important information about the location in the brain of the

epileptic focus Moreover. interaction with a patient during the early part ofa seizure,

such as testing the patient's consciousness, can help to determine the type ofseizure.

Since observers are not watching a patient ail the time during long-term monitoring, a

warning signal when a seizure occurs would be very helpful in This situation so that

observers can take appropriate actions.

Although we talk about a method of seizure onset detection, we actually mean

detecting seizures early. This is because there is no specific pattern called "seizure

onset" in ail seizures. When a seizure occurs, it is possible to detect it only when enough

information is processed, which may take at least a few seconds.
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It is difficult to detect seizurcs carly because seizures from different patients are

different and the early pattern of a patient's seizure may look similar to non-seizure

patterns in another palient. As a result. no on-line seizure onset detection melhod has

been developed. Seizure deleclion methods only anempl to capture promillellt seizure

patterns rather than early seizure panerns. For instance. the seizure detection method of

GOlman (1982. 1990a) captures seizures by using information over a long period oftime

before and after the current detection window. It is not appropriate to detect seizures

early since. al the time a seizure panern is found, the method has to wail a dozen

seconds to increase the probability that the detection is correct.

It has been observed that most patients have one or somelimes two or three types

ofseizures which are repetitive. Seizures of each type are very much alike in terms of

EEG panerns, including the carly pan of seizures. Although early EEG patterns in sorne

seizures of a patient may be similar to sorne background EEG panerns of other patients,

these seizures are usually different from the background ~EG of the patient in whom

they occur We can therefore use the concept of"patient-specifie seizure onsets".

According to the above observations, it is possible that a seizure can be detected

soon after onset if(l) a template ofthis type ofseizure was acquired in advance; (2) a

match couId be made between the template and the seizure. Detection of this kind of

patient-specifie seizure onset must not, however, cause frequent false alarms because

they would annoy patients and observers, and ail the detections would eventually be

ignored.
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The dissenation has five chapters. Chapter 1 is an introduction. Motivations and

objectives of the dissenation are presented.

In chapter 2, we first review sorne basic notions about EEG signais, EEG

recording systems and abnormal EEG patterns, including spikes and seizures. The

previous work on long-term EEG monitoring and automatic detection of spikes and

seizures is then reviewed. Finally, sorne pattern recognition theory and applications are

described, as they may re/ate to our applications.

In chapter 3, we prescnt a pattern recognition systcm designed to reduce false

seizure dctections by automatically adapting to each patient's situation. A unique

"similarity" measure is explained in detail. It reflects the relation between two EEG

patterns in a detection space. A comprehensive evaluation of performance was done and

is described in this chapter.

ln chapter 4, the method for detecting seizures early is presented. After

explaining the algorithm, we present comprehensive tests of detection rate, detection

delay and the false alarm rate, showing promising results.

The last chapter, chapter 5, summarizes the work and provides possible

directions for funher development of seizure analysis and detection.
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Chapter 2:

Literature Re"iew

In this chapter, we will describe first the features ofthe EEG in epilepsy, then give

a description oflong-term EEG monitoring systems and ofexisting spike and seizure

detection methods. Finally, we will present a review ofsorne pattern recognition

rnethods that are related to this project.

1 Characteristics of the EEG in Epilepsy

The EEG-is a randorn and stochastic signal (Lopes da Silva 1987a). It is the

recording ofcortical neuronal activity. The recording can be done near the brain (scalp

EEG), directly on the brain (cortical EEG) and within the brain (depth EEG)

(Sharbrough 1990).

8
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The main generators of the EEG are cortical neurons. more particularly pyramidal

neurons (G1oor 1985b). The amplitude ofEEG signais depends on the distance between

generators and a recording electrode, and on the tissues between the generators and the

electrode. Since depth electrodes are usua1ly closer to cortical neurons than scalp

electrodes, the amplitude of EEGs recorded by depth electrodes is usua1ly larger than by

scalp electrodes. In addition, EEGs recorded by depth electrodes have less artifact than

EEGs recorded by scalp electrodes because non-eerebral sources ofelectrical activity

are also recorded at the scalp. This is particularly the case for electrical activity from

scalp muscles and from the movement ofeyeballs (The potential of the anterior part of

the eyeball is different from that of the posterior part and its movement thus creates an

electrical field). When EEGs are recorded with scalp electrodes, the amplitude is of the

order of20/.1V to 100/.1V, which is approximately one hundredth ofthat ofthe

electrocardiogram (Morris and Luders 1985).

1.2 EEG Recording System

Electrodes in different locations pick up signais from a same source differently

because the amplitude ofthe EEG is determined by tissues between electrodes and

generators. In our study, we only study patients with scalp e1ectrodes and depth

electrodes. The different EEG recording systems for the different kinds ofelectrodes are

described below.
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ln order to sample scalp electricai fields adequately, one must systematically place

an appropriate number of electrodes (Reilly 1987; Sharbrough 1990). The distance

between electrodes should reflect the spatial frequency ofthe EEG. In many situation 16

electrodes are sufficient, but it has been shown that for sorne patterns, up to 128 may be

required (Gevins, 1994). Placing more electrodes results in a higher spatial resolution

because the distances between electrodes decrease. However, placing more electrodes

also results in more data to be processed and stored in the same period oftime. The

computation and storage capacity ofthe computer becomes the decisive factor in the

determination ofthe number ofelectrodes to be placed. For instance, with the advance of

computer technology, the number ofeleetrodes in each patient has been increased from

16 channels to 32 channels and now even to 64 channels at the Montreal Neurological

Hospital. The most common system ofelectrode placement for scalp electrodes is the

international 10-20 system (Jasper 1958) which is used in our studies and the placement

ofthe 19 electrodes is shown in figure 2-1. A more recent system (Chatrian et al 1988)

has 81 electrodes placed a c10ser intervals, but it is rarely used because of its large

number ofelectrodes.

1.2.2 Depth Recording

When a patient's epileptic focus cannot be determined from scalp recordings, the

patient may undergo implantation ofintracerebral electrodes because the location ofthe

focus may be too far away from the scalp. The depth electrodes record the EEG directly

from inside the brain. They are placed as close to the suspeeted epileptic focus as

possible. Since every patient's epileptic focus is different, there is no standard system of

depth electrode placement, which is therefore individualized. Figure 2-2 is an example of

the electrode placement in a patient (Olivier et al. 1987).
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Figure 2-1: The international 10-20 system for determining locations ofscalp

electrodes. Schematic representation ofthe head seen from the top.

II
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Figure 2-2: An example ofthe location ofdepth electrodes in a patient: Depth

eleetrodes are implanted into the brain to record the EEG signal from regions

inaccessible by scalp recordings and to be free ofmuscle artifact. The exact location of

electrodes is determined by a frame with fixation pins and by magnetic resonance

imaging. A are an epidu-aI electrodes. B, C and D are intracerebrai multicontact

electrodes.
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1.3 Metbods ofEEG Analysis

There are many methods to analyze the EEG signal. Visual interpretation by

EEGers is the one that has been used since the EEG was first recorded. Computerized

EEG analysis has developed rapidly in the last several d~cades. We review briefly

below sorne ofthese methods.

.Lll.. The EEG Montal1e

13

•

In order to delineate the spatial distribution ofa changing electricaI field, an

orderly arrangement (caIled a montage) of multiple channels is required. According to

IFSECN (1974), the montage is "the particular arrangement by which a number of

derivations are displayed simultaneously in an EEG recording." Montages cao be

divided into two categories: referential and bipolar. The referential montage displays the

difference in potential between each electrode and a common reference electrode. Each

channel in a bipolar montage displays the difference in potential between two different

electrodes. Figure 2-3 is an example of montages for scalp eIectrodes recordings, while

figure 2-4 is the one for depth eIectrodes recordings.
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Figure 2-3: Bipolar montage for scalp electrode recording: Every channel ofEEG is

a subtraction ofactivity from two eleetrodes and the recording system is baso:d on the

intemationallO-20 system. For instance, channell is the difference between the

potential at electrodes Fp1 and F7.
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Figure 2-4: A montage for deplh eleclrode recordings: This bipolar monlage is spccific for a particular paticnt. Evcry patient has a

spccifie location ofelectrodes. LB, RB, LA, RA, elc. arc the names ofclectrode stands. The nUlllber at cach c1ectrode indicates the

aclual contacllocation. The montage is a combination of pairs ofelcclrodes.
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Traditionally, the EEG is interpreted visually by experienced EEGers for c1inical

purposes. This procedure has been used since the EEG was first recorded. For instance,

the sleep EEG is usually c1assified into sleep stages so that a person's sleep normality

cao be determined. For epileptic patients, the EEG is usually reviewed visually to detect

epileptic patterns, like spikes and seizures, so that the type and the origin ofseizures cao

be determined. Sorne patients with migraine may have their EEG interpreted to mIe out

cerebra! pathology (Niedermeyer 1987d). The Interpretation ofthe EEG is also used in

psychiatric disorders to determine states ofmental retardation, attention deficit disorder,

behavior disorders. (Small 1987). Visual Interpretation ofthe EEG is, however,

qualitative and subjective. When th,~ recording is long, lasting many hours or even

severa! days, the recording and Interpretation becomes tedious, labor-intensive and

expensive. Therefore, the computer is utilized to fulfill sorne parts of EEGers' tasks.

Moreover, the computer cao perform tasks which are not included in the traditional

EEG analysis, such as making precise measurements oftime relations between events in

severa! channeIs, performing digital filtering without distortion, and statistica1ly

ana1yzing features ofan EEG (Gotman 1990b),.

.lJ...l. Computerizesi BEG Analysjs

Since computerlzed EEG analysis is objective and quantitative, it has been used

wiclely in extracting statistica1 features, spectral ana1ysis, digital filtering and display of

results.

Computerized ana1ysis cao extraet statistica1 features ofthe EEG. For instance,

parametric representation ofthe EEG, such as the autoregressive model for the study of

epileptic patterns (as reviewed by Lopes da Silva 1987b), used a smaIl number of



parameters to represent a section of EEG. Mimetic methods. like those ofGotman

(1976) and Frost (1987). attempt to mimic the process ofhuman interpretation of the

EEG by finding waves comprising the various known EEG patterns: alpha waves.

spindIes. seizures and spike.

Spectral analysis is the quantitative method that has been used most commonly.

Since the Fast Fourier Transform (FFT) was developed by Cooley and Tukey in 1965. it

has been commonly used in the analysis of EEG background. For instance. Oken and

Chiappa (1988) used spectral analysis to study variability among different frequency

features. such as rnean frequency, peak frequency and average power in background

EEG. Techniques to perfc.rm spectral analysis of EEG background activities. as weil as

primary and postprocessing techniques currently used in c1inical and experimental

settings were reviewed by Dumermuth and Molinari (1987). Computerized EEG

analysis can also quantitatively present the correlation between two channels of the

EEG by computing cross-correlation (Gevins 1987b) and coherence (Brazier 1972:

Gotman 1983).

Digital filtering is another utilization of comP1.!terized EEG analysis. Because

digital filtering can filler the EEG '.~ithout phase distortion. for instance with a finite

impulse response filter. it has been used by Urbach and Pratt (1986) to distinguish the

superposition ofdifferent waves which have distinctive frequency bands in the study of

auditory evoked potential signais.

The computer is also used to display results ofanalysis ofsevera! EEG channels on

a map ofthe head or brain so that spatial relationships can be easily observed. This kind

oftopographic display has been used to present ratio ofEEG activities (Gotman 1981),

number ofspikes (Gotman 1976) or degree ofnormality (Matousek and Petersen 1973).

•
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The EEG is a non-stationary signaI (Barlow and Dubinsky 1985). However, it can

most often be considered time-invariant within 20 seconds (Lopes de Silva 1987b). In

computerized EEG anaIysis, the EEG is dividcd into sequences ofanaIysis windows so

that computations cao be done in each window. These windows are aIso caIled

segments, or epochs. The EEG inside an epoch has to be considered time-invariant and

wide-sense stationary so that sorne transforms, such as the Fourier transform. cao be

performed (Shanmugan and Breipohl 1988). Segmentation ofthe EEG should aIso take

into account the characteristics of the particular EEG being anaIyzed. For instance, in

the anaIysis of the EEG when an epileptic patient is not ha"ing a seizure, an epoch of

under 10 seconds is adequate because the EEG in each epoch cao be considered time­

invariant (Cohen and Sances 1977). In the study of.sleep, epochs of30 seconds are

commonly used (Barlow 1985) because most sleep patterns do not have a rapid change

in a period of30 seconds. It is not the case for studying the EEG during seizures.

Because patterns during seizures, especiaIly at seizure onset, have a more rapid change

than interictaI patterns, it is then better to use a short epoch so that the time-invariance

and wide-sense stationarity cao be considered appropriate. While most EEG anaIysis

uses fix epoch lengths, Praetorius et aI. (1977) used an autoregressive model to do

automatic segmentation ofthe EEG. In that method, the EEG is first divided into

sections lasting a few seconds. Each section is then described using an autoregressive

model and compared with the subsequent one to determine iftwo sections cao be

accurately represented by the same mode!. Ifthey do, these two sections are combined

into one. The same procedure continues until one section ofthe EEG is no longer

represented by the same autoregressive mode!. This method thus divides the EEG into

epochs ofsimilar charaeteristics. Although this segmentation method is good, it requires

a lot ofcomputations and therefore it cao hardly he implemented to work on-line.



Moreover, this method may create different length of segments in different channels and

therefore time a1ignment between segments in different channels becomes a problem.
•
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1.4 Abnonnal EEG Patterns in Epilepsy

The principal tasks ofa cIinical EEGer are to recognize particular waveform of

diagnostic significance, such as spikes. sharp waves and delta waves. and to identify the

likely location oftheir generators within the brain (Gloor 1985a). The scheme in figure

2·5 describes the overaIl way in which EEGers cIassify the EEG ofa patient with

epilepsy. Although in our studies only seizures are dealt with. characteristics ofspikes

are briefly described because spikes and seizures are highly related and are the patterns

most characteristic ofepilepsy.

The spike is an abnormal EEG waveform specific to epilepsy. Spikes occur

randomly. with a rate ranging from one in a few seconds to one in a few hours. Wave

morphology and spatial distribution ofspikes can reveal information about the type of

spikes and their sources. As a result, they are very i.mportant in the cIinical diagnosis

(Niedermeyer 1987b).

According to IFSECN (1974), the spike is "a transient, cIearly distinguished from

background activity, with pointed peak at conventional paper speeds and a duration

from 20 to under 70 milliseconds, Le.. 1150 to 1114 sec, approximately. Main

component is genera!ly negative relative to other aieas. Amplitude is variable." A spike

can exist isolated, or severa! spikes may group together to form a burst, like 3/sec

spikes-and-waves, which usually lasts a few seconds.
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Figure 2-5: Scheme ofEEG classification for epileptic patients by EEGers.
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The ictal EEG is the EEG during seizures. Epileptic seizures are abnormal reactions

of the brain caused by a nurnber ofdiseases. The entire brain or parts of it may be

involved and the extent of involvement largely determines the type of seizure

(Niedermeyer 1987c). A seizure can last !Tom a few seconds to dozens of minutes, but

usually lasts about one or two minutes. There are two aspects ofa seizure which are of

interest to us: ciinical manifestations and ictal EEG patterns. Most seizures have both

clinical manifestations, which may inciude limb movements, absence ofconsciousness,

screarning, or staring, and ictal EEG patterns, such as a sudden decrease in amplitude, or

a sudden increase in amplitude and frequency . However. sorne seizures may have only

cIinicai manifestations but no change in EEG !Tom the background. This may be caused

by the fact that the electrodes are too far away !Tom the epileptic focus. the part of the

brain where the seizure is generated. Sorne seizures may not have clinical manifestation

but have significant epileptic discharges in the EEG. This kind of seizure is called

"subclinical seizure". When a patient has focal seizures and seizures do not spread to

areas ofthe brain that cause cIinicai manifestations. a subcIinical seizure occurs.

In our studies, we only analyze the EEG. Therefore, ail seizures in our studies have

ictal EEG patterns. These seizures may or may not be accompanied by cIinical

manifestations. According to the IFSECN (1974). ictal EEG patterns are defined as:

"phenomenon consisting ofrepetitive EEG discharges with relativeiy abrupt onset and

termination and characteristic pattern ofevolution, lasting at least severa! seconds. The

component waves or complexes vary in form, frequency and topography. They are

genera!ly rhythmic and frequently display increasing amplitude and decreasing

frequency during the sarne episode. When focal in onse!, they tend to spread

subsequently to other areas."
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The EEG ofan epileptic patient at a time when no seizure is taking place is caIled

the interictal EEG. It is also referred to as background EEG. The interictaI EEG

comprises normal patterns, and abnormal patterns. such as spikes.

MA. Relation between Spjkes and Sejzures

Although spikes may originate from several regions, most spikes are caused by the

same epileptic foci as those which cause seizures. Therefore, the spatial distribution of

spikes may give useful information about the localization ofthe focus. For instance, ifa

patient bas 90% ofhis spikes in the right temporal region, it is likely that his seizures

origÏi:ate from the right temporal lobe. However, this is not always true and it is rarely

possible to localize the epileptic focus ofa patient by simply using one single

measurement.

Spikes are most often isolated but sometimes cao appear in bursts. When this kind

ofburst lasts less than two or three seconds, it will not he identified as a seizure

according to the definition. When spike bursts last long enough, however, they could be

caIled seizures. For instance, severa! 3/second spike-and-waves are considered as spikes

ooly. When this kind ofspikes and waves last longer than sevt.ral seconds continuously,

it could represent the EEG pattern ofa so caIIed "absence" seizure.

1.5 Characteristics oflctal EEG

There is no stereotype pattern for all seizures. Most seizures however have sorne

common characteristics, such as a rhythmic discharge oflarge amplitude or a low

amplitude desynchronized EEG at onset, and repetitive spikes and irregular slow waves



later (Golman 1985; Niedenneyer 1987c). The definition ofa seizure still remains vague

because seizure patterns are highly variable and sorne seizures may not have these

characteristics while sorne may have only sorne of!hem. For instance. in tenns ofictaI

EEG manifestations. the grand mal seizure is initiated by an abruptloss ofvoltage ofa

few seconds duration. Then in patients with primary genera!ized epilepsy, severa!

genera!ized bursts ofpolyspike-wave complexes may follow. Otherwise. rhythmic

activity at about 10Hz with rapidly increasing amplitude will then dominate the EEG.

About 10 seconds after the onset ofa seizure. slower frequencies are notee!, gradually

slowing into a frequency range between 2Hz to 7 Hz. The EEG then becomes postictaI

with slow waves. For absence seizures, the ictaI EEG is characterized by the genera!ized

synchronous 3Hz spike wave discharge. This kind ofspike wave discharge is maximal

over the frontaI midline and starts at a rate ofaround 4Hz. quickly slo....ing down to 3Hz

and during the final phase ofthe seizure, slo....ing to about 2.5Hz. Onset and termination

are abrupt and the seizure may he preceded and immediately followed by nonnal EEG

activity (Niedenneyer 1987c).

Nevertheless, ictaI EEG patterns can be differentiated from the interictaI EEG

patterns ofa given patient (Sharbrough 1993). This characteristic is the most essential

one in the identification ofa seizure and was used in our studies. In addition. a patient

may have severa! t:;pes ofseizures. For a given type ofseizure in a patient, the same

ictaI EEG patterns appear in the same electrodes because the ictaI EEG cornes from the

•
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same generators.

There have been documented disagreements between readers ofthe same EEG

record for the presence ofepileptic transients, as weIl as inconsistency in the same

EEGer (Ktonas 1987). The same thing happens to the recognition ofseizures, especially

subclinical seizures, and the determination ofseizure onset. This is because spikes and

seizures are not weIl defined morphologically and leave many aspects ofthe
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interpretation to EEGers. This increases the complexity of the problem of automatic

detection.
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Long-term EEG monitoring. which is usually combined with video and audio

monitoring. is one of the most important tools in the diagnosis ofepilepsy and the

understanding of its mechanism. This is because long-term EEG monitoring allows

recording during long periods of time and thus allows capturing unpredictable EEG

events. such as spikes and seizures. No other measurements. even with the most

advanced methods like positron emission topography (PET) or magnetic resonance

imaging (MPJ), can offer the continuous monitoring provided by the EEG (Gloor

1985a). Long-term EEG monitoring can provide answers to severa! important questions

in the diagnosis and therapeutic management of seizures. The first one is: does the

patient have epilepsy or another episodic disturbance? This is one ofthe most important

diagnostic questions. The second is: what kind ofepilepsy does the patient have?

Correct determination ofthe type ofepilepsy can ensure that the optimal medical

therapy is given to the patient. The third one is: which part of the brain is the focus of

this patient's epilepsy? The answer to this question is essential to neurosurgeons who

make a decision regarding which part of the brain is to be removed to stop medically

intractable seizures. Long-term EEG monitoring can also be used to compare the result

ofa treatment by measuring seizure and spike frequency. as well as background EEG,

before and after the treatment.

Although long-term EEG monitoring could theoretica1ly be implemented as early

as the EEG was fust discovered in 1929, it has not been possible in practice unti11960s,

when it was first used in sleep research. Long-term EEG monitoring is now mostly used

in monitoring epileptic patients because epileptic events, Hke spikes and seizures, occur

rarely and unpredictably. A typical EEG monitoring session lasts lOto 24 hours and a

patient may undergo severa! monitoring sessions. There are severa! drawbacks in the

traditional EEG recording procedure, consisting ofthe EEG recorded on paper charts



and visually reviewed by EEGers. The first drz.wback is that it generates a large arnount

ofpaper. The second is that such a long EEG takes a long time to review and most of

the recording is redundant. This makes it difficuit for EEGers to be attentive to details

aIl the time and therefore the accuracy ofthe interpretation suffers. The third drawback

is that in ortier to catch aIl seizures, including those with electroencephalographic but no

or very minor behavioraI manifestation, it is necessary to have a person watching the

patient and the EEG continuously. This is a labor intensive and expensive procedure. As

a resuIt, it wouid be usefui to have a system which can replace this labor intensive

procedure by detecting and presenting only the EEG patterns ofdiagnostic significance.

A typical long-terrn EEG monitoring system consists ofelectrodes, arnplifiers, AID

conversion and computer software for recording, storage and processing. In addition, a

video-audio recording system is used to record the patients' behavior sirnuitaneously.

Synchronization between EEG recording by computer and video-audio recording is

realized by a system aIlowing to write on the video signal the time coming from the

computer (Gotrnan et al. 1985).

At the Montreal Neurological Hospital, a long-terrn EEG monitoring system has

been used for many years. The configuration is shoWn in figure 2-6. This system is aIso

used in aIl data collection and analysis for the studies presented in this thesis.
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Figure 2-6: Block diagram ofmonitoring system at the Montreal Neurological

Hospital. This system bas been used in the hospital for many years. Today, the recording

media ha"e been changed from digital tapes to optical disks.
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There are currently not many other types of long-term epilepsy EEG monitoring

systems. Ives and Woods (1975) developed an ambulatory cassette EEG system to

perform monitoring in routine laboratory EEGs and intensive inpatient monitoring. The

system is portable, less cumbersome and aIso usable for monitoring outside the hospital.

A seizure and spike detection methoù has been used to anaIyze the EEG recorded in

an ambulatory cassette by Ives (1994). The system can reduce a 24-hour recording into

a much shorter length «1 hour) so that EEGers can review only the EEG with spikes

and seizures.
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Seizure and spike detection methods are data reduction methods. During long-term

monitoring, most of the EEG is not interesting to EEGers and therefore can be

discarded. Only the EEG related to epileptic activities. spikes and seizures. is interesting

and therefore should be retained. As a result. the first priority ofa detection method is to

keep as many spikes and seizures as possible. In other words. the detection rate should

be as high as possible. False alarms will cause non-interesting data to be retained. Thus.

false alarms should be as few as possible. Given the complexity of EEG patterns in

epileptic patients. a trade-off between seizure detection rate and false alarm rate has to

be considered.

3.1 Detection of Spikes

There are numerous spike detection methods, according to Ktonas (1987). They fall

into five categories:

I.Orthogonai transform: The Fourier analysis was used by Principe and Smith

(1982) for band fiItering to separate sustained 3Hz spike and wave from background

EEG.

2.Correlation methods, including matched fiitering: Barlow and OubinsJ..:y (1976)

c:aIculated a correlation coefficient hetween presel~ted EEG templates containing

spikes and sharp waves and the EEG trace in order to detect new spikes and sharp

waves.

3.Inverse filtering: Praetorius et al. (1977) used an autoregressive model to filter the

EEG. If the prediction errer exceeds a preset threshold, it means this section ofEEG is

no longer considered stationary. This may indicate a transient signal, which could he a

spike or sharp wave.



4.Waveform der.'lmposition: Gotman (1976, 1980) used a waveform decomposition

method to break down the EEG into half-waves and detect spikes by measuring the

amplitude, the duration and the sharpness ofhalf-waves.

5.Discriminant analysis based on parameterization of the EEG: Five variables,

inc1uding first and second derivatives, were used by Chik et al. (1977) in a lil1ear

discrimination function to detect spikes.

Glover et al. (1986, 1989) developed a microprocessor-based multichannel system

to detect spikes. In that system, the comprehensive use ofspatial and temporal

information reduces false detections caused by a wide variety ofartifacts in EEG

recordings. Results show that the system is more reliable then those using less context

information. The concept of interchannel information is used in our studies as weil.

Gotman and Wang (1991,1992) significantly improved the method ofGotman by

dividing the EEG into five states and applying different detection criteria to cach state.
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3.2 Detection ofSeizures

There are not many seizure detection methods, in contrast to spike detection

methods. This may be because seizure patterns are !Dore variable and they only occur

rarely. Moreover, EEG seizure patterns can be usually noticed by a technologist when

they occur. However, when long-term EEG monitoring is performed in the absence of

observers or there is a seizure with minor or no behavioral manifestations, a seizure

detection method is very useful. It is impossible to detect all seizures by using only the

EEG because some seizures start deep in the brain ànd may not spread to the location of

electrodes (Gotman 1985; Sharbrough 1993). In addition, in scalp electrode patients,

seizure patterns are sometimes obscured by muscle activity or artifacts.

Most seizures do not have significant seizure characteristics in their early part, but

the prominent patterns gradual1y appear as seizures.evolve. This is why most seizure



detection aIgorithms (Gotman 1982. 1990a: Murro et al. 1991: Liu et ai. 1992: and

Harding 1993) aim at detecting prominent seizure patterns rather than early seizure

patterns which may not have prominent characteristics. In those algorithms. a seizure

onset could be detected if the early seizure patterns are prominent. The detection cano

however, only be reported about a dozen seconds later. This is because the system

coIIects information during a dozen seconds to increase the probability of having a vaIid

detection. When early seizure patterns are not prominent enough, those aIgorithms

cannot detect them.

Different seizure detection methods use different lengths ofepochs. Howpver. ail

use short epochs (2 to 8 seconds) because most ictaI patterns change more rapidly than

most interictaI EEG patterns. In the study of Hilfiker and Egli (1992). a 2-second epoch

was used to study the evolution ofrhythmic components. An epoch oftwo seconds was

aIso used by Gotman (1982. 1990a). In other studies. Liu et ai. (1992) used six seconds

as an epoch to study neonataI seizures because neonataI seizures tend to have rhythmic

discharges at a very low frequency (0.5Hz to 2Hz). and Murro et ai. (1991) used 6.83

seconds as an epoch to anaIyze complex partiaI seizures. In another study of Murro et ai.

(1993), an epoch of3.4 seconds was used to study the localization oftemporai lobe

seizures.

An automated seizure monitoring system for patients with intracerebrai electrodes

has been developed by Harding (1993). In that systèm, a real-lime automatic seizure

detection performs with an accuracy of95% in detection rate. This was evaIuated in 792

clinical and subclinical seizures during 1578 hours ofmonitoring. The faIse aIarm rate

ofthe system was estimated at 1.93/hour. However, this system is only used for patients

with intracerebrai electrodes.

Gotman (1982, 1990a) presented a method attempting to detect a variety of

seizures. It stores EEGs which are detected as seizures for later review. This method is a

mimetic one which simulates the way humans anaiyze the EEG. It uses waveform
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decomposition to break waves into half-waves. By using average amplitude, average

duration and coefficient of variation ofhalfwaves in an epoch ofthe EEG, it detects a

seizure ifsevera! preset conditions are satisfied. It is currently used at the Montreal

Neurological Hospital and in many other hospitals. It was formally evaluated by

Gotrnan (1990a) and Pauri et al. (1992). In the evaluation of Pauri et al. (1992),

dependiI'g on the detection thresholds. seizure detection rates vary from 47.8% to

81.4% and false seizure detection rates range from 2.70/hour to 5.38/hour. While there

is room from improvemp.nt, this method is very practical and usefuL Details ofthis

detection method will be discussed in the next section.

Few reports have made a specific effort to reduce false seizure detections. It may be

because most seizure detection methods have not been used on-Hne (Aziz et al. 1986,

Murro et al. 1991, Liu et al. 1992) and thcrefore false detections are not causing major

problems in EEG storage and review.

3.3 Seizure Detection Method ofGotman

In our attempts to reduce false seizure detections and detect seizure onsets, we used

sorne features from the detection method ofGotrnan (1982, 1990a). These features have

proven useful in the detection ofseizures in patient.; with either scalp or depth

electrodes. 1be waveform decomposition method will he explained first becausc il is the

foundation ofthe method. Features used in the dete~tion are then discussed. Finally, the

detection criteria are presented.

.:uJ.. Wayeform Decomposjtion Method

The waveform decomposition method ofGotnian performs an initial digital

filtering to remove high frequeney activity and then breaks down the EEG into
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halfwaves. As shown in figure 2-7. the original EEG is first represented by a set of

segments. A segment is the section between two consecutive extrema ofamplitude.

Since sorne small amplitude waves. like muscle and beta waves. may be superimposed

on waves of longer duration. segments are regrouped into sequences. called halfwaves.

by using sorne constraints. A sequence ends when a segment which may not belong to

that sequence is found. Each halfwave is then characterized by its duration and

amplitude.

~Features

Before features are discussed. it is important to define how the ccncept of

background is used in this method because features are often measured in relation to the

background. In figure 2-8. it is shown that there are two backgrounds. background A

and background B. A gap of20 seconds is used to separate the current epoch from

background A. which lasts 16 seconds. This is because sorne seizures start gradually

and the gap can make the detection more reliable by not including the graduai onset in

the background. The background B, which lasts 8 seconds. is used to make sure that an

event lasts long enough to be a seizure. For each epoch and for each channel ofEEG,

six features have to be computed for the determination ofa seizure detection.

I. Average amplitude ofthe current epoch: It is expressed
.V

'LCURRAMp,
as:Avg",,,,,,,,p = 1.' N • where CURRAMp' is amplitude ofhalfwave i and N

is the nurnber ofhalfwaves in the current epoclr.

2. Average duration ofthe current epoch: It is expressed as:
N

'LDURCURRj

AvgDURCURR = .!:j.~1--N--- where DURCURRj is duration ofhaIfwave i and N is

the nurnber ofhalfwaves in the current epoch.



3. Coefficient ofvariation of the CUITent epoch: It is expressed as:

t (DURCURR, - AVG DURCURR)/

CaVA = , N • where N is the number of
AVG DURCURR .

halfwaves in the current epoch, DURCURR, is duration ofhalfwave i in the CUITent

epoch and AVGDURCURR is the average duration ofhalfwaves in the CUITent epoch
N

LBACKAAMp'
4. Average amplitude of the background A: AvgbodA...p= ,., , where

N
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BACKAAMp' is amplitude ofhalfwave i and N is the number ofhalfwaves in the

background A.
N

LBACKADUR,
5. Average duration ofthe waves in the background A: AvgbodAdu, = -",.....'----­

N

where BACKADUR, is duration ofhalfwave i and N is the number ofhalfwaves in

the background A.
N

LBACKBAMP,
6. Average amplitude ofthe background B: Avgl>«J&mp = ,.\ , where

N

BACKABAMP, is amplitude ofhalfwave i and N is the number ofhalfwaves in the

background B.
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a. Original EEG

b. EEG after Digital

Rltering

c. Represeritation in
Segments

d. Representation in M/\ 1\ 1\ I\fv\ Ar
Half-Waves \/ V V v V v

•

Figure 2-7: Waveform decomposition method ofGotman (1976): This figure

iUustrates the procedure ofthe decomposition ofthe EEG into half-waves. "a" is

original EEG, "b" b. EEG following digital filtering, "c" is EEG broken down into

segments and "d" is EEG broken down into half-waves.
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Background A

Seizure Current elloch
~ Background B

~' ".-+l -i."_ . ~

25 85

Figure 2-8: Schematic use ofthe background in the seizure detection method of

Gotman (1982, 1990a). The graduaI onset ofa seizure is not included in the background

because ofthe gap (20s). A detection takes place in the second line because the

frequency during the current epoch is much higher than that ofbackground A. In the

third line, there is no detection because the activity in the background following the

1
current epoch is too low (b'\ckground B).
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An epoch of EEG is declared a seizure pattern when the following criteria are

satisfied.

1. The average amplitude of haIfWaves in the CUITent epoch is three times larger than

that in background A, or the amplitude ofhaIfWaves in the CUITent epoch is the same

or larger than that in background A. provided the average duration of haIfWaves in

the current epoch is one third shorter than that in the background A.

2. The average duration ofhaIfWaves in the CUITent epoch is between 25 and 150

milliseconds (roughly corresponding to frequencies of 20Hz a.,d 3Hz).

3. The coefficient ofvariation ofhaIfWaves is less than 0.6.

4. The average amplitude ofhaIfWaves in the background B is at least 1.6 times that of

the background A.

5. Ali above criteria have to be satisfied not only in the CUITent epoch, but aIso in an

adjacent epoch or the same epoch in a different channel.

3.4 Conclusion ofSpike and Seizure Detection

Existing methods for the detection ofspikes and seizures are primitive and far from

perlect, despite the fact that sorne are in cIinicaI use. While much effort has been made

on the detection ofspikes and more is currently being carried out, very few methods

have been developed for the detection ofseizures. As a result, seizure detection methods

still detect many false events and miss many reaI events. There is certainly room for

improvement ifmore sophisticated pattern recognition methods are used. It would he

particularly useful to incorporate in the detection process information about a wide

context, including information about patterns having taken place in the hours and days

preceding a recording session. We review in the next section sorne pattern recognition
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methods and their applications, specially the methods dealing with pattern

classification.
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There are many approaches to pattern recognition. such as statistical. syntactic.

heuristic and ad hoc methods. Among them. statistical methods have played a

prominent role in the deve10pment ofpattern recognition techniques (Devijver 1982).

Statistical methods provide the proper framework for studying pattern recognition

problems when the pattern-generating mechanism can be faithfully represented by a

statistical model, and the goal of the recognition is to decide whether or not a given

pattern belongs to sorne pre-specific c1ass ofpatterns. Sta:istical methods have been

widely applied to many fields, such as character recognition. medical diagnosis.

automatic inspection. speaker recognition, etc...

Few problems are more challenging than decoding the meaning ofthe electrical

activity ofthe human brain. The lack ofsufficient knowledge ofthe origin and

significance ofthe electrical activity of the brain is.a fundamental obstacle to analyze

and interpret the EEG. However, statistical methods are especially useful for extracting

information from the human brain's electrical and magnetic fields (Gevins J987a).

In this section, a genera! description ofsorne statistical pattern recognition methods

related to EEG analysis will be given flI'St. Then, sorne oftheir applications will be

presented.

4.1 StatisticaI Pattern Recognition Methods

The design ofa typical pattern recognition system for EEG ana1ysis comprises

severa! basic steps: selection of data, feature extraction and selection, classification and

finally the performance estimation. Due to the vast varieties ofproblems in EEG

analysis, the design ofeach step should closely relate to the problems in each

applicatio~
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Features can be extracted from many sources. For one dimensional signals, such as

speech and EEG signals, features usually come from either time domain or frequency

domain or both. In EEG analysis, features from spectral analysis (Walter 1963; Walter

et al. 1966; Dumermuth and Fluhler, 1967; Dumermuth et al. 1970; Gotman et al. 1973)

and linear prediction (Zetterberg 1969, Gersch 1970) are commonly used, while sorne

waveform decomposition methods, zero-cross COUDts and various types ofpeak-picking

methods are also used (Leader et al. 1967; Hjorth 1970; Gotman 1976). For instance.

amplitude and average duration ofwaves (Gotman .1976,1980) are features from a

waveform decomposition method and they were used to detect spikes and seizures.

Mean frequency (Walter et al. 1967), band power (Murro et al. 1993) and coherence

(Walter et al. 1967; Sklar et al. 1973) are features from spectral analysis and they have

also been used to detect seizures, as weIl as to cIassifY sleep stages and evoked

potentials.

Gasser (1977), Cohen and Sances (1977) and Huber et al. (1971) have studied the

effect on the estimation ofanalytÏc quantities ofdepartures from normality and

nonstationaries ofthe EEG. As a practical matter, the consequences ofviolations ofthe

assumption ofstationarity and the necessity for a time-varying analysis should be

assessed for each application. For instance, characterizing sleep stages lasting dozens of

minutes, changes within a few seconds are not importanL At the other extreme, a few

dozens ofmilliseconds may he important in the study ofevoked potentials (Gevins

1980). As a result, the length ofthe analysis window in each application should reflect

the characteristics ofthe application so that stationary assumption can he considered

satisfied. As indicated by Cohen and Sances (1977), an epoch ofthe normal EEG which



is shorter than 12 seconds can be considered a stationary random process based on

mean-value and frequency-structure.

Feature selection is a step to maximize separability among different classes

(Devijver and Kittle 1982). It is the least straight-forward part ofan EEG pattern

recognition study (Fu 1968: Mendel and Fu 1970: Foley 1972; Gray and Schicany 1972:

Meisel 1972; GonzaIez and Thomason 1978). Different procedures produce different

feature subsets, and there is no way of knowing that a chosen subset is the optimal one

other than trying ail possible subsets (Gevins 1980). Adding more features to the

classification function will generaIly improve performance on the training data, but the

generaIization performance may actua1ly decrease (Foley 1972). In most of the EEG

analysis problems, stepwise discriminant analysis was used to select usefu! features

(Walter et al. 1967; Berhout et al. 1969; Donchin et al. 1970; Sklar et al. 1973; Squires

and Donchin 1976; John 1977; Sencaj et al. 1979; Horst and Donchin 1980; Yunck and

Tuteur 1980), while in sorne cases non-linear trainable classification ne!Works have

been applied (Viglione 1970; Martin et al. 1972; Gevins et al. 1979a, 1979b). Sïnce

feature selection methods in the EEG analysis have an arbittary aspect (Gevins 1980).

each application should make the selection accordiI.lg to the situation. In sorne cases, a

subset of features does not perform better in classifications than the whole feature set

(Yunck and Tuteur 1980).
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ll.2.. ClassjficatioD

There are !wo types ofstatistica1 classification methods: parametric and non­

parametric. Parametric classification represents data with a simple statistica1 model,

such as the autoregressive model (Zetterberg 1969), and uses parameters ofthis model

to do the classification. The assumption ofstatistica1 model ofa signal depends on the

mechanism ofthe generation ofthe signal. Many parametric statistica1 methods have



been used. For instance, Fukunaga and Kessell (1971) compared the error rates ofa

parametric Bayes' classifier with a non-parametric one in !Wo sets ofartificial data with

the normal distribution. Yunck and Tuteur (1980) used the maximum a posteriori

(MAP) classifiers to compare classification accuracy with non-parametric classifiers.

Gath and Bar-on (1980) used autoregressive model to represent the EEG in classifying

sleep stages.

In the case that a signal cannot be represented by a simple statistical model, a non­

parametric classification should be used. The most cornmonly used non-parametric

classification methods are the nearest-neighbor (NN) ruIe and the k-nearest-neighbor (k­

NN) ruIe. The NN ruIe classifies data ofan unknoWn class into the class in which the

nearest data is. The k-NN ruIe assigns data ofan unknown class into the class in which

the majority of the k nearest data are (FuI..-unaga 1972; Duda and Hart 1973; Batchelor

1974; Devijver and Kittle 1982; James 1985). These non-parametric classification

methods heavily depend on the local data distributi!,n (one or k nearcst data) instead of

global data distribution as parametric classification does. The error rate of the NN

classifiers is bounded between the Bayes error rate and twice ofthe Bayes error rate,

and k-NN classifiers will approximate!Île Bayes error rate ifk is chosen properly

(Cover and Hart 1967; Bhattacharya et al. 1992).

It bas been demonstrated by Yunck and Tuteur (1980) that the k-NN ruIe performs

better !han parametric classifiers, such l:~ the MAP classifiers, in classifying the EEG

into five categories according to different tasks. The tasks include rest, performing

arithmetic exercises, Iistening to music, performing verbal exercises, Iistening to speech,

performing pietorial exercises and .. :zwing a film. As indicated in Gevins (1 987a), non­

linear and non-parametric classifiers have consistently performed better!han linear and

parametric ones in EEG analysis. This is possibly because the mechanism ofthe

generation ofthe EEG is too complex to be described by a simple statistical model and
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non-parametric methods do not make any assumption about the data distribution as

parametric ones do.

In the NN classification ruie. as well as other classification rules. the distance

measure is one of the most important factors. There are several distance measures. such

as the Euclidean distance. the city block distance. the Mahalanobis distance. the

Minkoski r-distance. the square distance and the weighted distance (quadratic distance)

(Batchelor 1974; Devijver and Kittie !982). Among them. the weighted distance is

expressed as: jj = (X - nM(X- n. where the matrix Ü has different weights in

different dimensions. This distance can reflect the importance ofeach dimension. and a

weighted space is constituted by these dimensions (Bow 1984). We used a modified

version of thi~ type ofdistance in our studies. A similar weighted distance measure has

been used in electromyography (Zhang et al. 1991).
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tl.J.. performance Estimation

The validation ofa classifier is ::ritical in the design ofa pattern recognition system

since it reveais the futu."e performance ofthe classifier. A biased resuit may give

misleading information. Therefore. ail possible measures. including the collection of

data and the evaluation procedure. have to be chosen carefully to rnake sure that results

are as unbiased as possible.

The collection ofdata bas to ensure wat it represents at least those properties of the

data which are invariant from sample to sample and which distinguish the classes. It is

certain that more data resuit in a better representation ofail properties within the data.

However, since it is difficuit and expensive to colleet neurophysiologic data, the sample

size in EEG pattern recognition studies has usually 'been determined by the availability

ofdata or other practical restrictions, rather!han by the usual statistical power anaIysis

(Gevins 1980).



There are many ways to estimate misclassifications (Toussaint 1974). Risk

averaging is one ofthem. The resubstitution. holdout, leave-one-out and rotation

methods are the four methods oferror estimation by error counting (Devijver and Kittle

1982). They are non-parametric error estimators.

1. The resubstitution method uses the sarne set ofdata for training and for testing.

This method has a major drawback: it may give a very misleading result, especially

when the data set is small. For instance, if the NN rule is used as a classifier, there wiIl

never be any error by using the resubstitution method. This is because the decision

boundary is trained by a set ofdata to classifY all points into correct classes by using

the NN rule. When the sarne set ofdata is used as testing data, the classifier is already

perfect for this set ofdata and therefore no error wiIl be found. It may not be the case if

another set ofdata were used as testing data.

2. The holdout method divides data into two mutually exclusive sets and uses one

ofthem for training a classifier and the other one for testing. This method makes poor

use ofdata and gives pessimistic error estimation. (Devijver and Kittle 1982) However,

when the data set is large enough, this method has a significant advantage in terrns of

computation costs because bath training and testing need to be done only once. This

method has been used in our studies.

3. The leave-one-out method consists in removing one sarnple from the data set

and using this sarnple as testing data and others as training data. After this is done, the

testing data is returned to the data set Another data wiIl then hecome a testing data,

while the rest become a training set This procedure will he repe.!lted until all data

become testing data once. This method gives an unbiased error estimate and makes full

use ofevery single sarnple. It is particularly useful for small data sets. However, it

increases the variance ofthe error estimation (Devijver and Kittle 1982) and has a high

computation cast
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4.2 Applications ofStatisticaI Pattern Recognition Methods

4. The rotation method is a combination ofleave-one-out and holdout method.

Instead of removing one sample from the data set, severa! samples are removed. This

method is a compromise between the variance ofthe estimation and the computation

costs. It can be used in both small and moderate size data sets. This method is chosen

for the error estimation ofprobability of missing detection of seizures in our study of

reduction of false detection ofseizures.

In the study of physiological signais, validation ofclassifications is most often

obtained with a completely independent data sample from the one used for the training

ofclassifiers. However. because ofthe difficulties and expenses in data collection, the

rotation or the leave-one-out methods are sometimes used for validation. Obviously.

these methods cao produce an unbiased estimate ofthe classification accuracy ifthis

data set has not been used in the previous steps ofanalysis (Devijver and Kittie 1982). If

the validation is done in a data set including different persons from those included in the

training data set, the accuracy is obviously much more reliable. Nevertheless, when the

number ofpersons used for training is adequate to represent the variability ofthe

genera! population, and when the between-class differences are large, both ways of

using the validation data sets produce the same results (Gevins 1980).

Error estimation by error counting has been used in many pattern recognition

studies. For instance, Fukunaga and Kessell (1971)'used the leave-one-out method to

compare classification errors oftwo different classifiers: Bayes' classifier and

nonparametric classifier using the parzen approximation. The comparison was done on

the mean error and standard deviation. In the study ofOliver et a! (1979), a holdout

experiment wa. carried out to test the average correct recognition rates (85%) of

abnormal ceUs and an error rate (1%) on normal ceUs.
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Stationarity of the EEG has been studied by Cohen and Sances (1977). Time­

varying value and time-varying frequency value of 104 clinical EEGs were used in the

study and results showed that the EEG can be considered to be a stationary random

process for epochs shorter than 12 seconds. For a probability oferror of 10%, an epoch

of24 seconds ofthe EEG can be considered stationary too. The EEG can be treated as

stationary for as long as 64 seconds with a probability oferror of35%.

Many parametric methods have been used in EEG analysis. The autoregressive

model has been used to detect spikes (Zenerberg 1969; Lopes da Silva et al. 1975) and

in sleep stages classification (Gath and Bar-on 1980, 1985). Correlation was used by

Barlow and Dubinsky (1976) to detect spikes by template matching. Liu et al. (1992)

used the autocorrelation function as a basic function to deteet neonatal seizures. Larson

and Walter (1970) used spectral analysis followed by stepwise discrimination analysis

to c1assify sleep stages. Gath and Bar-on (1980,1985a) used fuzzy subset theory, fuzzy

deeision making and optimal fuzzy partition to c1assify sleep stages with linear

prediction coefficients as features. In the study ofFriedman and Jones (1984), a cluster

anaiysis method, which used both the Euclidean distance to centroids ofeach clm.'ter

and structure features ofsleep EEG, was used to classify three states, wakefulness, slow

wave sleep and paradoxical sleep, in cats. A fuzzy c1ustering method, which uses the "k­

nearest prototypes" method and adaptive segmentation ofthe EEG, has been also used

to distinguish waking EEG with dominant alpha and low amplitude mixed frequency

EEG as two different background stages in the evoked potential study by Gath et al.

(1985)

Non-parametric methods are also popular in the analysis ofthe EEG. Leader et al.

(1967) used apeak-picking method to determine the minimum and maximum ofthe

EEG waves. The amplitude and duration ofthe EEG waves were then used in a step-



wise discrimination classifier to separate the EEG waves into 12 predefined categories.

This method is similar but much simpler than the one ofGotman (1976). In order to

separate subjectively stressful from non-stressful verbal stimuli. and to determine

distinctive EEG responses to verbal stimuli of similar stress value differing only in

semantic content, Berkhout et al. (1969) used intensity and bandwidth ofauto-spectral

analysis, and coherence pairs ofchannels as features. The classification was done by a

step-wise discriminant function to separate the detection space into different regions and

place each epoch ofthe EEG into one ofthem. It is interesting to notice that in this

method the definition ofthe bandwidth has a similar concept to our main energy zone

feature used in the detection ofseizure onset (see chapter 4). The method achieved a

92% overa!l correctness in the classification.

The hold-out method has been widely used for the evaluation in many applications.

Gevins et al. (I979a 1979b) used this method to evaluate a nonlinear multivariate

pattern recognition system and an 87.5% ofaccuracy was estimated. The system was

used to distinguish the spatial distribution of the EEG patterns associated with severa!

complex tasks, including Koh's block design, writing sentences, mental paper folding,

and reading silently. Horst and Donchin (1980) also used the holdout method to

estimate the correctness (87.8%) in c1assifying the evoked potentials elicited by a

cheekerboard presented to the upper or lower visual half-field.
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~ App!icatien jn ether Fjelds

We will only review briefly a few applications having sorne aspects in common

with our problems.

Many applications use parametric classification methods. In the study ofDurand et

al. (1990), severa! c1assifiers were compared in the ~lassification of speetra ofheart

sounds in patients with a porcine bioprosthetic valve implanted in the mitral position. In



this study, the Gaussian-Bayes model is performing slightly better than the NN mie

(98% vs. 94%). Results of the study also show that among classifiers using the NN mie,

the classifier using Mahalanobis distance pcrforms better than the classifier using

Euclidean distance. Automatic clustering and patient-specifie classificaticn ofnew

patterns was used by Swenne et ai. (1973) in the recognition ofventricular complexes

during ECG-monitoring. In that study, it is assumed that ail signai clusters can be

described by eIIipsoids. Human interaction is needed ifa pattern is rejected by the

automatic clustering method during the training ofclassifiers. The classification then

determines ifa new pattern belongs to the predetermined clusters in the detection space.

Non-parametric methods have been utilized in rnany applications too. In seismic

wave interpretation, the NN mie has been used to cIassifY exploration waves and

earthquake waves (Chen 1982). In that study, autocovariance and autocorrelation were

used as features and 89.2% correct recognition was achieved. In speech recognition,

template matching has been widely used (De Mori 1982). Linear time warping is aIse

commoniy used in speech recognition for time aIignment. Our studies use both template

matching and time aIignment between patterns, but they are different from the ones in

speech recognition because ofthe differences between signais. The k-NN mie has been

used in the multicategory classification ofbody surface potentiaI maps (Reich et ai.

1990). By using leave-one-out method, the methodwas evaIuated in 123 patients

belonging to four categories and the accuracy is 94% for nonnaI patients, 88% for

ischemia patients, 91% formyocardiai infarction patients and 100% for left bundle

branch b10ck patients. Dube et ai. (1988) designed an ECG monitoring system for

ischemic patients by using a stepwise discriminant ~ction to detect heart beats and

ST-segment changes. Results indicated that the system can work reliably in adverse

conditions.
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Long-tenn monitoring is an established procedure to record seizures in patients

with intractable epilepsy. It is very tedious and expensive to have a person observe

patients and EEGs continuously so that every single seizure cao be recorded, including

seizures with electroencephalographic but no behavioral manifestations. A

computerized automatic seizure detection system cao often detect and record seizures in

the absence ofobservers or when patients do not notice their seizures (Gotrnan 1985,

1990a). However, it is unavoidable that sorne false seizure detections (FSDs) occur, and

in sorne cases very frequently. A very high FSD rate causes a large amount ofEEG to

be stored and reviewed, and consequently reduces the practical value ofseizure

detection.



In the long-tenn EEG monitoring system used at the Montreal Neurological

Hospital, the FSD rate was estimated to be 0.84/hour for scalp electrode patients and

1.35/hour for depth electrode patients (Gotman 1990a). This study was done by

evaluating 241 recordings from 44 patients with scalp electrodes and 52 recordings from

5 patients with depth electrodes. In another study (pauri et al. 1992), the same seizure

detection system was evaluated on !Welve patients with a total of461 hours in

monitoring, Depending on the detection threshold, the average FSD rates were be!Ween

2.70/hour and 5.38/hour. In that study, it was found that artifacts were the main cause of

FSDs (80%) while nonnal and abnonnal EEG patterns represented each 10% ofFSDs.

Whereas the average FSD rate is acceptable, it can become significantly higher and

reach unacceptable values in sorne patients. This usually happens when, in a given

patient, one or a small number ofpattems occur repeated1y and cause many FSDs

during severa! consecutive monitoring sessions. These FSD patterns vary from one

patient to another. Thus, they can be called patient-specifie FSD patterns. Because a

patient is typically monitored for severa! days, a monitoring system can be "taught" to

recognize and stop detecting EEG patterns that have been identified early in the

monitoring as FSDs.

Few reports have dealt with reducing FSDs. It may be because other seizure

detection methods have not been used on-line (Aziz et al. 1986; Murro et al. 1991; Liu

et al. 1992) and therefore FSDs are not causing major problems in EEG storage and

review. Alternative solutions were tried before in our own system. For instance, ifthe

EEG patterns causing FSDs occurred in one or a fe~ channels only,the monitoring

system could simply stop detecting any seizure from these channels. Another solution is

to cise detection thresholds to reduce the FSD rate (pauri et al. 1992). These relatively

undiscriminating ways ofeliminating FSDs may cause a serious problem: the true

seizure detection rate is reduced, in some cases significantly (pauri tt al. 1992).
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In order to eliminate patient-specifie FSDs \\ith a minimal prubability of losing true

seizures. we propose a method based on the learning ofa trial session. Ifthere are many

FSDs in a patient in one monitoring session and most are caused by similar EEG

patterns. this session becomes a trial session. EEG patterns of FSD during this ~ession

are collected in a set specifie to this patient and labeled as the initial FSD set. In

subsequent monitoring sessions of the same patient. an EEG pattern which is detected as

a seizure but is similar to any pattern in the initial FSD set is regarded as a FSD and not

reported as a seizure detection. In a given patient, the patterns oftrue seizures are not

likely to be similar to the patterns of FSD; the probability of losing truc seizures by this

method is therefore reduced. One difficulty in the implementation of this method is that

we must define a measure ofsimilarity between two EEG patterns. in order to determine

ifa detection occurring one day is "similar" to false detections having occurred earlier.

The concept ofleaming about false detection from a training session couid apply to

any existing seizure detection method. We have selected to evaluate this concept on the

seizure detection method ofGotrnan. which is therefo;-e used as the basic seizure

detection method on which we are grafting a patient-adaptive algorithm.

In this chapter. the algorithm will be discussed f1I'St, followed by the

implementation procedure. Details of the evaluation procedure are given next, followed

by results and discussions.
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2 Aigorithm

This pattern recognition system involves feature e:l.1raction. classifier design and

classifier training. Before the design of the classifier is discussed. features used in this

method are presented. Training ofc1assifiers is then explained.

2.1 Feature Extraction and Nonnalization

Seven features are used in the seizure detection system ofGotman (Gotman 1982,

1990a). AlI these seven features are used in the recognition ofpatient-specific faIse

detections. These features constitute the detection space, which is shared by bath true

and faIse seizure detections. Each detection is presented in the detection space as a

seven-dimensionaI point. Before describing the features, sorne basic definitions have to

be given.

(1) An epoch is defined as a section ofEEG with a duration of2 seconds.

(2) HaIfwaves are basic segments ofEEG waves and computed by using the waveform

deeomposition method of Gotman (1982).

(3) A section ofbackground EEG is defined as between 36 seconds and 20 seconds

before the current epoch, as defined in Gotman (1990a).

The seven features used in the method are defined as foIlows:

1. Ratio ofthe average amplitude ofhalfwaves in the current epoch to the average

amplitude ofr.alfwaves in the background: It is expressed as:

tAMPCURRi

RAMPC,,",B«I< = M iN ,where N and M are number ofhalfwaves in
'LAMPBACKj
)01

M

the current epoeh and the background respective1y, AMPCURR1 is the amplitude of
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a halfwave in current epoch and AMPBACK) is ampiitude ofa halfwave in the

background.

2. Averagefrequency ofcurrent epoch: It is actually the inverse oftwice the average

duration of halfwaves in the current epoch. The fonnula is:

Freqe," = ,\, 1 f' where N is the number ofhalfwaves in the
2 x L DURCURR,,-,

N

clli:ent epoch and DURCURR, is the duration of a halfu'ave in the current epoch.

3. Averagefrequency in the background: It is the sarne as the average frequency of

current epoeh except it is computed in the background. The equation

• '" 1
IS:rreqllod< =.\f i'

2x LDURBACK,,.,
M
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4. Ratio ofthe average amplilUde ofhalfwaves in the eight secondsfollowing the

current epoch and the average amplitude ofhalfivaves in the background: It is the

sarne as the tirst feature except the average amplitude ofhalfwaves in the eight

seconds following the current epoch is used instead that of the current epoch. It can

tAMPNEXTf

he presented as: RAMP,\,,,,,,,,,,! = At . iN
LAMPBACK)
).\

M

5. Location ofelectrodes (channels): It is an expression of electrode position in a

montage. Since there is no simple quantitative expression for il, the presentation of

this feature in the detection space is complex and will be explained later.

6. Detection type: There are four detection types for different kinds of EEG patterns.

They are: slow waves, bursts, epileptic forms and fast activity. These four types are

presented in the detection space as four values, 1,2,3 and 4 respeetively. The

difference between any two types, however,~ot he represented by the difference



oftheir values because these four types are unrelated and their relationship can only

be either "same" or "different". As a result, the difference between any two types is

expressed by a binary value, 0 or 1. The value 0 is used when two types are the same

and 1 is used for any two different types.

7. Coefficient ofvariation ofduration ofhalfivaves in the current epoch: It is

t(DURCURR, - AVG DURCURR)~/
expressed as: CaVA = / N • where N is the

AVG~URCURR

•
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nurnber of halfwaves in the current epoch, DURCURR1 is duration ofa halfwave in

the current epoch and AVG DURCURR is the average duration ofhalfwaves in the

current epoch.

The expression ofthe location ofelectrodes can be done by labeling nurnbers to

cach electrode or naming them differently. However, to quantize the distance between

any two electrodes in the detection space is very d~cult. This is because two aspects

have to be taken into consideration in the determination ofdistance between two

electrodes. One is the physical distance between them and the other is the anatomic

relation between two electrodes. From the physical distance point ofview, ail electrodes

are located in nodes ofa matrix-like shape (figure 2-3), according to the international

standard 10-20 system. A distance iletween two eleetrodes can therefore be computed

using the Manhattan distance (Devijver and Kittle 1982). A Manhattan distance unit

here is defined as the distance between any two adjacent electrodes. From the point of

view ofanatomie relation between electrodes, the distance between two electrodes in

the two cerebral hemispheres is larger!han that in the same hemisphere because the two

hemispheres often function independently ofeach other. In ocder to reflect these two

aspects, we use two criteria to determine the distance between any two electrodes.



1. If two electrodes are loeated in the sarne hemisphere. their distance is their

Manhattan distance. The typicaI distance between two electrodes is betv.-een 1 and 4.

2. If two electrodes are loeated in different hemispheres, their distance is their

Manhattan distance plus a constant to reflect the anatomicaI distance between the

hemispheres. The constant was set empiricaIly at lOin our study beeause it is large

enough to separate two hemispheres in the detectl':!!! space.

Since each feature, which serves as a dimension in the detection space, has its own

physicaI unit, it is necessary to normaIize them into a universaI unit by considering the

effects ofeach dimension in a seizure detection. This universaI unit contains different

physicaI distances in different dimensions. This normaIization makes it possible to

compare distances between any two points in the detection space.

•
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2.2 Classifier Design

The most essentiaI part of the classifier in this method is the similarity measure.

Therefore. before the design ofthe classifier is pres.entee!, the similarity measure will be

introduced and e"'Plained in details.

2.2..l... Sjmnarjtv Measure

For a given patient with a triaI EEG monitoring session in which there are many

FSDs, FSD patterns from this session are caIled the initial FSD set and represented as

prototype pcints in the detection space. Every point in the detection space represents an

epoch ofthe EEG which has its seven features transformed into a universaI unit as

discussed above. As a result, the transformation offeatures will not be shown in aIl

computations later beeause every dimension in the detection space has the same

universaI unit. When a new pattern is detected in a subsequent monitoring session, we
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need to know if it is similar to any ofthe FSD patterns in the trial session and is

therefore to be eliminated. or different from them and is therefore to be retained. We

introduce a measurc in the detection space cal1ed "similarity".

56

Similarity hetween two points in the detection space. one ofthem belonging to an

initial FSD set. takes into account not ooly the Euclidean distance between the two

points, but also the probability distribution ofthe initial FSD set. Tne point 0,

represents a prototype point in an initial FSD set and is represented as a vector 0, in the

detection space. Its probability in this initial FSD set is Po' Po is the probability for, ,

dimension j at this point 0,. This value was computed by projecting ail data into the jth

dimension to form a probability distribution and Po is the probability corresponding to
•

the projection point of 0, in this dimension. A point N., representing a new EEG

pattern and represented as a vector fi., in the detection space. bas a statistically

weighteddistanceto â, of(O,-N.,l fj-I(O,-N,,!),

SIMIL(â"fI.,) is the value ofsimilarity hetween 0, and fi.,. G(Oi,fI."po) is the
7

main function to measure the similarity hetween 0, and fi., and COR(L Po,) is a
j-l

modification and normalization function whicb will he discussed later. The similarity

between â, and fi., is then defined as:

•

7

SIMlL(O"fI.,) = G(o"fI."po ) xCOR(" Po ), L.. ,
)-1

- - - 100
G(o"N."Po) = (O,-NJ ,M-1(O,-N.,)+1

100=-.--_":":"':_--
7

2:(Oy -N.,ji x (PJ.,> +1
)-1

,
7 Hx2:Pq,+1

COR(2: Po,)=Cx(e-c r' )
)-1

Where: j indicates jth dimension,

(1)

(2)

(3)

(4)
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• 0,=[°'1 O,~ 0,) 0" O'l 0,. o"y.
Nm= [Nml Nm~ Nm) Nm, Nml Nm• Nm,r:

1
C=-.

e-I
p'2 0 0 0 0 0 n0"

0 p'2 0 0 0 00,:

0 0 p'2 0 0 0 0
0"

M-1 = 0 0 0 p'2 0 0 0
0"

0 0 0 0 p'2 0 0
0"

0 0 0 0 0 p'2 0
0"

0 0 0 0 0 0 p'2
0"

H is a modification parameter and C is a normalization constant. The value of

SIMIL (0" Nm) ranges from 0 to 100, where 0 means no similarity and 100 means

perfect similarity.

The function G(o.,Nm' po. ) is inversely proportional to the statistically weighted

distance (0, -Nmf M-'(O, - Nm) between points 0. and Nm as defined in equation (2)

and (3). There are two reasons for this. First, the simi!arity should increase with a

shorter Euclidean distance between two points in the detection space. In order words,

the c10ser two points are, the more similarity they have. This is reflected in equation (3),
where :L(0. - Nml)2 is the Euclidean distance between two points in the detection

)-1

•

space. Secondly, the similarity monotonically increases when the square ofthe

probability P;', which is used in the jVf-' matrix, decreases. The reason for taking P;'
into account is that this can make the similarity meàsure adapt to the data distribution.

This is illustrated on figure 3-1. Iftwo new detection points NI and N2 have the same

Euclidean distance to two faIse detection points F; and 0., but F; is in a dense area

(high probability P'o)' and 0. is in a sparse area (Iow probability PF,), then N, is less

similar to F; than N2 to 0. (figure 3-1). In other words, ifF is in a dense area, a high

similarity between N and F is only possible ifN is èlose to F; conversely ifF is in a

sparse area, a high similarity between N and F can be obtained even ifN is not very

close to F.
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* FSD in initial FSD Set

+ New EEG pattern

0 1
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Figure 3-1: Use ofprobability density in the definition ofsimilarity. FI and F2 are

points belonging to an initial FSD set. NI and N2 rèpresent two new EEG patterns.

Although the Euclidean distance between FI and NI is the same as that between F2 and

N2, the similarity between NI and FI is smaIler than that between N2 and F2 because FI

is located in a denser area than F2. Axes r~resent any two ofthe seven dimensions.



Tbe above logic causes sorne problems. however. when p,), is low for ail seven

dimensions. This is the case if 0, is a point which is isolated in the detection space. In

this case, the vaiue ofthe similarity function could be very high even for a point Nm at a

large Euclidean distance from 0,. We have therefore introduced a correction function
7

CORCL Po,) which depends on the SUffi ofail seven probability density values for a
j-I

•
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point 0,. As the SUffi ofseven probabilities gets higher, the function becomes very close

to 1. It thus does not affect the value ofsimilarity defined by the function

GCo"Nm , Po,). As the SUffi ofall seven probabilities becomes small, the function
7

CORCL Po,) decreases rapiclIy, thus reducing the value ofsimilarity when the point 0,
)-1

is nearly isolated. The parameter H was set empirically and can be adjusted to define

what is meant here by a "small" or "large" SUffi of the probabilities. The function
7

CORCL Po,) is norrnalized from 0 to 1 and consequently the value ofsimilarity
)0\

remains between 0 and 100.

Empirical values, such as H or the weight ofeach feature, have been set according

to experience. For instance, the range ofthe weight for each feature was set hetween 1

and 4. The most important feature, amplitude ratio, was assigned a weight at 4 and the

least important feature, detection type, has a weight at 1. The settings, of course, may

not be optimal. However, they reflect our hest knowledge from experience.

The above similarity function allows the definition ofa part ofthe detection space

in which faIse detections from a particular patient are likely to he. This portion ofspace

is caIled "false detection subspace" and is constituted by ail the points which have a

simiIarity to the FSOs ofthe trial session larger than a given threshold Cfigure 3-2). It is

ofcourse possible that some ofthe patient's true seizure patterns also faIl within this

"faIse detection subspace". In this case, such seizures will he lost. Unfortunately we do

not know, after one monitoring session, ail the possible seizure patterns ofa particular



patient. It is possible, however, to represent in the detection space a variety oftrue

seizure patterns from many patients. We cao then determine how many fall within this

patient's false detection subspace, thus giving an indication ofthe probability oflosing

seizures in this patient. Ifmany do, it may be better to shrink the false detection

subspace (by increasing the similarity threshold) in order to reduce the probability of

losing true seizures. Ifvery few true seizures fall within the false detection subspace, it

may be possible to enlarge that subspace to increase the probability ofeliminating false

detections.

In the following sections, a question ofterminology requires classification: (1) We

cali a "detection" or "seizure detection" an event detected by the original method of

Gotman (1982, 1990a). The procedure described here results in the elimination ofsorne

ofthese detections: they are first detected by the c1assic method and then eliminated by

the new method. (2) In the original method ofGotman (1982), a detection occurred

when ail the detection criteria were satisfied in one 2-second epoch ofEEG in one

channel. Each such detection is called here a detection point. An event cao he detected

severa! times ifsevera! epochs satisfY the detection criteria. The set ofdetection points

relating to one event is caI1ed here a detection section. A large detection section may

contain up to severa! hundred detection points because detections cao he made in

severa! epochs and in severa! channels. Ifa detection point is separated by more than 30

seconds from the previous detection point, it is considered the beginning ofa new

detection section. This makes sure that a single seizure corresponds to a single detection

section. Although sorne seizures last more than 30 seconds, they are not separated into

two or more detection sections because two detection points within a seizure are not

usuaIly separated by 30 seconds.

•

•
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Figure 3-2: Description ofthe false detection subspace. Axes are two ofthe

seven dimensions. For a given similarity threshold, boundaries ofsubspace are

described by ellipses because they are determined by the probability distn'bution

ofthe initial FSD set. The subspace corresponding to one FSD point covers more

in the dimension where the probability distn'bution value is lower and less in the

dimension where the value is higher.

61
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2.2.2... Classjfier

For a given similarity threshold T. a set of prototype points 0, and a new pattern

NJ' the classifier is defined as: C(T,N) = maxSIMIL(O;,N)- T,

for ail 0;, where SIMIL (0" Nm) is the similarity defined above.

62
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J
E False Seizure Class

The classification rule is: _
NJ E Faise Seizure Class

ifC(T,jV'j) ~ 0

Otherwise

•

In other words, if Nj has a maximum similarity to an element 0; larger than the

threshold T, Nj will be considered as an element ofthe false seizure c1ass. If the

similarity is smaller than T, Nj will not be c1assified into the false seizure c1ass. Ali

false seizure detections c1assified as elements oHaise seizure class will be eliminated

and others are retained. True seizures which are c1aSsified as elements ofthe false

seizure c1ass are unfortunately lost

2.3 Classifier Training

The goal ofthe training is to determine a patient-specifie optimal similariry

threshold for a classifier. It is easy to understand that the smaller the similarity threshold

is, the more FSDs will be eliminated; and also the larger is the probability ofJosing

seizures. As a result, a good compromise is to select a similarity threshold that leads to a

high FSD eliminating rate and a reasonably low probability ofJosing seizures. This can

he done by using FSDs from the second monitoring session to determine a predictive

FSD eliminating rate ofthis patient in the future, and a seizure reference set to

determine a predictive probability oflosing seizures ofthis patient Therefore, three sets

ofdata are required to train a patient-specifie classifier. They are: patient-specifie false



seizure prototypes. !rue seizure reference data set and patient-specifie false seizure

detection training data set. Their definitions folIow: Selection criteria of these data sets
•
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are discussed in the evaluation section.

1. Patient-specificfaise seizure prototypes are false seizure detections acquired

from a trial monitoring session ofa patient. and are calIed the initial FSD set.

The trial monitoring session is usually the first monitoring session.

2. True seizure reference data set is a colIection of !rue seizure patterns from a lot

ofpatients. It can be used to represent possible seizure patterns in a patient. This

reference set is a colIection ofseizures from a lot of patients instead of the

patient currently under study because the patient may not have any seizure in the

first monitoring session or only has too few seizures to form enough training

data.

3. Faise seizure detection training data set is a colIection offalse seizure

detections from the second monitoring session. which is the session subsequent

to the trial session.

The !rue seizure reference data set and the false seizure detection training data set

are used to determine how large shouid the area around the prototype points be to ensure

a good elimination oHalse detection and avoid losing genuine seizures.

A patient-specifie similarity threshold is determined by using the folIowing optimal

similarity threshold selection criterion function:
( RateFSD(T) )

J(T) = m~RateTSD(T)+ K •

where RateFSD(T) is the patient-specifie false detection eliminating rate at a given

similarity threshold T and RateTSD(T) is the pencentage ofseizures from the seizure

reference set lost for a given distance threshold T. K is a constant to avoid J(T)

becoming infinite when RateTSD(T) is zero. The optimal T is the one with the highest

value ofJ(T).



We will first ilIustrate in an example the selection ofthe optimal value of

similarity. After the initia! FSO set was acquired, results [Tom the second monitoring

session were obtzined (figure 3-3). Curve 1 shows \he percentage ofFSOs eliminated

from the second session as a function ofdifferent similarity thresholds. The percentage

of seizures lost from the true seizure reference set is shown in curve 2. The ratio of

percentage of FSOs eliminated to seizures Iost from the seizure referenee set is shown in

curve 3 (a constant is added to the denominator of the ratio to avoid a division by zero

when no seizu.-e is lost; the constaI!t remains the same for every patient). From curve 3,

it is obvious that the best threshold of similarity is 74 because it corresponds to the

highest ratio. That threshold was used for the five subsequent monitoring sessions in

this patient, resulting in the elirnination of88% offaIse detection; 2.9% ofthe seizures

of the true seizure referenee set fell within this patient's false detection subspaee, giving

an indication ofthe probability that true seizures would be lost in this patient.

•

•
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Figure 3-3: Selection of the optimum similarity threshold. The X axis

represents the similarity threshold. Curve 1 is RateFSD(T): it shows the

percentage of FSDs from the FSD training data eliminated as a function of

similarity threshold. Curve 2 is RateTSD(T): it represents the percentage oflost

seizures from the seizure reference set. The last curve is J(T): it is the ratio of

•
percentage ofFSDs eliminated to percentage oflost seizures (a constant is added

to the denominator of the ratio to avoid a division by zero when no seizure is

lost). The ratio curve has a maximum when the similarity is 74; this becomes the

threshold for this patient in subsequent monitoring sessions.
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3 Implementation
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The implementation of the method requires only few human inteIVentions, which

makes it easy to use. When many FSDs occur in a patient for two monitoring sessions, a

patient-specific classifier with the optimal simila.rity threshold can be trained

automatically by simply providing FSDs. Details ofthe implementation procedures

follow.

1. AlI false seizure detections from the first monitoring session should be collected

as the original patient-specific false detection prototypes.

2. When false detections are available from the next monitoring session, they are

used to train a patient-specific classifier to ffiaxïrnize the probability of

eliminating false seizure detections in the future. In addition, a set of true

seizures collected from a lot ofpatients are used to train the classifier to

minimize the probability ofmissing seizures in the future monitoring sessions of

the patient.

3. For ail following monitoring sessions, every detection has to pass the classifier.

The ones which belong to the false seizure class will be eliminated. The rest are

retained.

Figure 3-4 iIlustrates the implementation procedure ofour method, including the

use ofFSDs and the seizure reference set, and the training ofa classifier. FSDs from the

first monitoring session are used te form the false seizure prototype pohlts. FSDs from

the second session, prototypes and the seizure reference set are ail used to train a

classifier. This classifier is then used in the third and subsequent monitoring sessions of

the same patient to reduce the patient-specific FSDs. More details about the

implementation can be seen in Appendix A in the form ofa block diagram•
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Monitoring Sessions Classifier
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FSOs
First

, Form prototype points;

Seizure
reference set

Prototypes
FSOs

Second
, ~
; Classifier training ,

\

FSOs
Use the classifier to,

Third reduce FSOs

FSOs -II

Fourth Use the classifier to- reduce FSOs

Figure 3-4: Implementation procedure ofour method: FSOs from the firstmonitoring session provide false deteelion prototype

points, whieh are used together with FSOs from the seeond session and the seizure referenee selto train a patient-specifie classifier.

The classifier is then used to reduee FSOs during subsequent monitoring sessions.
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The evaluation was done on data from 20 patients. They belong to two groups: 10

patients with depth electrodes and 10 patients with scalp electrodes. The implementation

procedure discusscd above was used to evaluate thè reduction in false detections (figure

3-4). Therefore, for each patient, FSDs from the first monitoring session were used to

form the false detection prototypes; FSDs from the second monitoring session and a

seizure reference set were used te' train a patient-specifie classifier; and the rest of the

monitoring sessions were used for testing. The seizure reference set was also used to

evaluate the probability oflosing seizures by using the rotation method.

The collection ofboth training and testing data will he discussed first. The

evaluations ofthe reduction ofFSDs and the probability oflosing seizures are explained

in detail next.

4.1 Data Collection

In order to evaluate our method, we collected the following data: (1) fa]se

detections in severa! monitoring sessions ofeach patient to constitute fa]se detection

prototypes, to train classifiers, and for the eva1uation ofthe reduction ofFSDs. (2) !rue

seizure detections to form the seizure reference set for the training ofc1assifiers and the

eva1uation ofthe probability oflosing seizures. At the Montreal Neurological Hospital,

a bipolar montage of32 channels for scalp electrodes recordings and one of 16 channels

from depth recordings are used clinically for seizure detection. In order to truly evaluate

the practical usage ofthe method, we used the same montages in ail our evaluations.
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~ False Detections:
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FaIse detections came from twenty patientE who were selected from the 114

patients who were subjected tù long-tenn monitoring at the Montreal Neurological

Hospital from January 1991 to April 1992. Two criteria were used in the selection of

these patients:

(1) Patients had to be monitored from 4 to II consecutive days. For each patient.

aIl selected monitoring sessions had to have the sarne montage and the sarne

detection thresholds.

(2) The FSD rate had to he high: patients with depth electrodes had to have a FSD

rate higher than 2/hour and patients with scalp electrodes a rate higher than

1.5/hour.

The reason for the use ofa different FSD rate in different group ofpatients is that

usually the FSD rates are higher in patients with depth electrodes than in patients with

scalp electrodes. Although aIl EEGs were recorded.with 32 channels. seizure detection

was perfonned in 16 channels for patients with depth electrodes, and in 32 cha;";llels for

patients with scalp electrodes.

In 10 patients with depth electrodes. 64 monitoring sessions were collected with

5,029 FSDs (detection sections) during 1.301 monitoring hours. The average FSD rate

was 3.86/hour. In 10 patients with scalp electrodes; there were 70 monitoring sessions

wit:l 4,195 FSDs during 1,325 monitoring hours. The average FSD rate was 3.17/hour.

~ True $ejzure Detections:

True seizure detections are used to constitute the true seizure reference set. Two

seizure reference sets are needed for two groups ofpatients: patients with depth

electrodes and patients with scalp electrodes. This is because seizure patterns from



patients v.ith depth electrodes are different from those v.ith scalp electrodes, as we

discussed in the chapter 2 "Literature Review".

AlI seizures in both seizure reference sets satisfy three criteria: (1) They are ail

smaIl seizures which have a smaIl number (10 or less) ofdetection points (each

detection point represents an epoch ofthe EEG which is detected as a seizure by the

cIassic seizure detection method). A seizure including a large number ofdetection

points is not very likely to be eliminated by our method since it is unIikely that ail of its

detection points would belong to the faIse detection subspace. For this reason, we

selected only smaIl seizures as the seizures at risk to be lost by our method. We

estimated that smaIl seizures represent approximately haIfofail the seizures detected by

our system. (2) They include a large variety ofseizure patterns so that the)' can be as

representative as possible. (3) They do not come from the 20 selected patients for the

evaluation of the reduction ofFSDs. This is because patients rarely have seizures in the

first one or two monitoring sessio:lS in the practical cIinical environment. As a result,

only seizures from other patients can be used to train cIassifiers. Moreover, since each

seizure reference set was collected in advance and then used to trai.., cIassifiers for ail

patients in each group later on, no seizure from the5e 20 selected patients could be

included in the seizure reference sets.

Forty-four seizures were obtained from 13 patients with scalp dectrodes, with an

average of4 seizures and maximum of 10 seizures per patient. This set ofdata is caIled

seizure set A. Forty-nine seizures were coIJected from 10 patients with depth electrodes,

with an average of5 seizures and maximum of 10 seizures per patient. This set ofdata

is named seizure set B.

•
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The holdout method was used to estimate the FSO elimination rate because it is

possible for us to obtain a large arnount ofFSOs from severa! monitoring sessions of

cach patient. Another reason is that we "vant to test our method in a practical c1inical

situation since the acquisition ofFSOs has its time sequence. Our method is designed to

function as soon as enough FSOs are acquired from the first !Wo monitoring sessions. If

the rotation method were used, sorne FSOs acquired from monitoring sessions later than

the first !Wo would be used to train the classifier and FSOs from the first !wo sessions

would he used as testing data. This does not represent the actuaI clinical environment.

Therefore, the rotation method is not suitable in this situation.

ln the evaIuation, on1y FSOs from the first !Wo monitoring sessions were used to

form faIse detection prototypes and to train the classifier for cach patient. and the rest

were used for testing. as indicated in figure 3-4. For instance. ifthere were four

monitoring sessions in a patient, the FSOs from the first monitoring session represents

the faIse detection prototype points: the FSOs from the second session are used together

with a seizure reference set to train a classifier specific to the patient. FSOs from the

remaining NO monitoring sessions then passed the.c1assifier to test the reduction in

faIse detection rate. On average, cach classifier was tested on FSOs acquired during

about 100 hours of monitoring. Results are shown in the "Results" section..

4.3 Estimation of Error Rate

In the estimation oft'le error rate (the probability ofeliminating genuine seizures),

the rotation method is used. The seizure reference set is used for both training and

testing. There are four reasons: (1) The error rate could he estimated by counting

seizures eliminated by our method in the same monitoring sessions as for the evaIuation



ofthe reduction of false detections. However, the number ofseizures occurring in those

sessions is too small to ensure a small variance in t!.Je resuit. We therefore had to tum to

the seizure reference set to estimate the error rate because they contain many seizures

with a large variety ofpatterns. (2) Since we do not know the characteristics of the

seizures ofa particular patient at the time ofthe first monitoring sessil'n, we use a large

group ofseizures as a representation for these unknown patterns. However, because of

the difficulties in the collection ofseizures, the number ofseizures included in each

seizure reference set is still not very large (42 seizures for scalp electrode patients and

49 for depth electrode patients). Therefore, the holdout method is not suitable. The

rotation method can achieve a better, unbiaseà estimation when the data set is small

(Devijver and KittIe, 1982). (3) Since the seizures are pooled together, the sequence of

occurrence is no longer a problem as it is in the evaluation ofthe reduction ofFSDs. (4)

Ifthe substitution method were used, resuIts might be misleading since our classifier is

a non-parametric one and the data set is too small (Devijver and Kittle 1982).

In order to use the rotation method, each seizure reference set has to be divided

into subsets first. The criterion for the division is: each subset contains ail the seizures

from one patient only. As a resuIt, the seizure reference set A (scalp electrodes) was

divided into 13 subsets, while there are 10 subsets in the seizure reference set B (depth

electrodes). Details about the division ofsubsets, the rotation sequence and the

averaging method are discussed below.

The evaluation ofthe error rate was carried out in the procedure described in figure

3-5. A classifier is provided with a set offalse detection prototype points from a patient,

is trained with a set ofFSD training data ofthe sarne patient and with a portion ofa

seizure reference set (seizure training data), and then tested with the other portion ofthe

seizure reference set (seizure testing data). In each rotation, seizure training data and

seizure testing data are changed, while prototypes and FSD training data remain the

•

•
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same. Ofcourse, when another classifier (corresponding to another patient) is used for

the evaluation, both prototypes and FSD training data \\ill be changed.•
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~ Scalp Electrodes

The seizure reference set A was divided into 13 subsets because seizures come

from 13 patients (N=13) with scalp electrodes. The number ofseizure in each subset is

shown below.

Subset 1 2 3 4 5 6 7 8 9 la 11 12 1

SEZ 1 1 1 la la 1 4 1 4 2 1 2 4

By using these seizure subsets. each classifier has to he trained by twelve seizure

subsets and tested on the one left for each rotation. For instance. ifa classifier. which is

named classifier #1. is trained by data containing subsets #2 to #13 and tested on subset

#1, an error rate e, is obtained. Then after the same classifier is trained by the other 12

subsets and tested on subset #2, another error rate e~ is obtained. When each subset has

been the testing data once and only once, a total of 13 error rates has been obtained. The
.-
Le,

average error rate for classifier j is therefore: EAl = ,.~ .

p
is: SDA =

The same procedure applies to the other c1assifiers and la error rates can be

obtained (P=10) because there are la patients in this group. The average error rate of
p

LEAj

c1assifiers trained and tested by seizure set Ais: EA = )., p and the standard deviation

p

L(EA-E",f
)_1

•
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D.2.. Depth Electrodes
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The seizure reference set B was divided into to 10 subsets (N=IO) because

seizures were contributed by 10 patients with depth electrodes. The number of seizures

in cach subset can be seen below.

Subset 1 2 3 4 5 6 7 8 9 10

SEZ 10 7 6 6 4 2 1 3 4 6

By using the same procedure as in the section ofscalp electrodes, the classifier j has
N

Le;
an average error rate at: Es} =.!.:.!-. and N=10.

N

Since there are 10 classifiers (P=10, one classifier for cach patient) in this group,

10 error rates cao be obtained. The average error rate ofthis set ofclassifiers is:
p • p

LES} L(Es-EsY
Es = Joi and the standard deviation is: SDs = .!.,Jo:;.I_--::-__

p p
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Monitoring Sessions Classifier

•75

FSOs Seizure

1 First
1 - Form prototype points reference set
1

(training subset)

FSOs
Il Prototypes

1 Second
1
1 Classifier training

Use the classifier to
test the error rate

Seizure

reference set

(testing subset)

Figure 3·5: Diagram iIIustrating the evalualion of the probability oflosing seizlires: For a partieular palient, the classifier specifie

to him is trained with a same set ofprolotype points and the same FSO training data, but wilh dilTerenl seizure referenee training

subset in different rotations. A seizure referenee testing subsel, whieh changes in eaeh rotalion, is used 10 test the error rate.
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5 Results
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After the evaluation procedures were executed. results were computed and will be

discussed in this section. False detection elimination ra'es will be prese'nted first.

followed by probability ofiosing seizures. Sorne examples of results will be shown at

the last.

5.1 False Detection Elimination Rate

A total of20 patients with FSDs acquired from 2,0681 hours of monitoring were

used in the evaluation ofthe reduction oHalse detections. The average false detection

rate in the classic seizure detection method ofGotman (1982, 1990a) is 3.25/hour in

these monitoring sessions. By using our method, the false alarm rate was reduced to

1.26/hour in the same set ofdata. Average results from ail the patients inclicated that

most FSDs (61%) could be eliminated. There was a higher FSD elimination rate for

depth recorclings (71%) than that for scalp recorclings (50%). This is probably because

most FSDs from depth recorclings are more similar to each other than FSDs from scalp

recordings. Results = shown in detai1 in table 3-1.
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Table 3-1: Results of the false detection elimination rate
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Depth Scalp Total

Number ofpatients 10 10 20

FSDs acquired from (hours) 997.5 1.070.6 2,068.1

Original FSD rate (/hour) 3.63 2.90 3.25

New FSD rate (/hour) 1.07 1.45 1.26

Elimination rate .70.6% 50.0% 61.1%

5.2 Probability of Losing Seizures (Error Rate)

Results are shown in tables 3-2 and 3-3. Each "cls" represents the classifier

corresponding to one patient. In each colurnn starting with "cls", the error rate ofeach

rotation is presented, with the average error rate for this classifier in the last row. For

instance, in table 3-2 for patients with scalp electrodes, classifier #1, which is

specifically for patient #1. has an error rate in each of 13 rotations. In all these rotations,

!h:s classifier has the same false detec:ion prototypes, and is trained with the same FSD

training data (figure 3-5). However, it is trained with different partitions ofthe seizure

reference set and tested on the other, according to the details discussed in the section of

"Evaluation". The average error rate for this classifier is 7.72%. A similar procedure

was applied to the other classifiers in this group. as weil as classifiers in the group of

patients with depth electrodes. The number ofseizures used in the testing set for each

rotation is shown in the second colurnn from the left. The overall average error rate and

its standard deviation are shown in the last row ofthe last IWO colurnns.

The average error rate is 2.78% for patients with scalp electrodes and 2.58% for

patients with depth electrodes. This indicates that tlie method has a very low error rate.
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ln other words. the method has a yery small probability of climinating a true seizurc

detection.

5.3 Examplcs:

ïS

•

Examples of FSOs which are successfully climinated are shown in ligure 3-6.

Pattern A is !)'pical alpha activity and pattern B is an artifact. The EEG pattern C is a

rhythmic burst ofUl'" .nov.n significance in the hippocampus. It occurred in a patient

every night and caused a lot ofFSOs. Such patient-specific FSOs can be frequent in

long-terrn EEG monitoring and they were largely eliminated by our method.

A small number of seizures from the refcrence sei were lost. The reason is thm

these seizures were srnall and also sirnilar in sorne of their electrographie eharacteristics

to the FSDs of the patient. An example is shown in figure 3-7. Pattern A is a seizurc in

the referenee set and pattern Bis a FSD frorn the initial FSD set in a patient: ifthat

seizure had occurred in that patient. it would have been lost as a result of our procedure.

Not ail FSDs were elirninated by using the algorithm. An example is shown in

figure 3-8. This is a FSD pattern in a new monitoring session and it is very different

frorn rnost of the FSD patterns from the initial FSD set (figure 3-6. pattern C) of the

sarne patient. When a FSD pattern is not sirnilar to the patterns found in the initial FSO

set, it cannot be elirninated by our rnethod.
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Table 3·2: Results of the error rate from patients \Vith scalp eleetrodes: "R" mcans rotation, "Err" mcans crror ratc, "lst" mean5 number

ofseizures in a seizure reference testing set, "cls" mcans classificr, "Avg" mcans avcrage and "SD" mcans standard dc\'ialion. lhe

same abbreviations apply to table 3·3.

tst clsl cls2 cls3 c1s4 c1s5 c1s6 cls7 c1s8 c1s9 elslO Avg SD
RI 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R3 1 100% 0% 0% 0% 100% 100% 0% 0% 0% 0%
R4 10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R5 10 0% 10% 10% 20% 0% 0% 10% 10% 0% 0%
R6 1. 0% 0% .0% 0% 0%. 0% 0% 0% 0% 0%
R7 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R8 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R9 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RIO 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RII 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RI2 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Rl3 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Err 7.72% 0.77% 0.77% /.54% 7.72% 7.72% 0.77% 0.77% 0.0% 0.0% 2.78% 3.26%
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Table 3·3: Results of the error rate from patients with depth elcctrodcs

tst c1s1 c1s2 c1s3 c1s4 cls5 c1s6 cls7 c1s8 c1s9 c1slO Avg sn
RI 10 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R2 7 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R3 6 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R4 6 0% 0% 0% 0% 0% 0% 0% 0% 16.6% 0%
R5 4 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R6 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R7 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R8 3 0% 0% 33.3% 0% 0% 0% 0% 0% 0% 0%

4 0% 25% 0% 0% 0% 50% 25% 25% 0% 0%
.-

R9
RIO 6 0% 0% 0% 16.7% 16.7% 0% 0% 0% 16.6% 33.3%
Err 0% 2.50% 3.33% 1.67% 1.67% 5.00% 2.50% 2.50% 3.33% 3.33% 2.58% 0.96%

•RO
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Figure 3-6: Examples of FSDs eliminaled. These are EEG patterns which camed a lot of FSDs in some patients; mosi of

lhem were eliminaled. Pallern A is a Iypical alpha aClivily pattern and pattern B is an artif.1cl. Pattern C is a rhyllullic bursi of
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6 Discussion
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We presented a procedU!e for the reduction in false detections in an al1l0mahc

seizure detection mcthod used during long-term monitoring ofepileptie patients. It is

diffieult to reduce false detections signifieantly with a method applicable to ail patients

because seizure patterns as weil as the main causes of false detection arc quite dilTerent

from patient to patient. The same pattern can be a cause for frequcnt false deteetions in

one patient but be eharacteristic of a seizure in another. Since automatic SciT.o.ITC

detection is most useful in the contell."! oflong-term monitoring sessions whieh ean last

one, two or severa! weeks. we deciden to use information gained in the first one or two

days of monitoring to learn about the patterns specific to a particular patient.

Instead ofteaching the system about a patient's seizures. we clected to teach it

about the patient's faIse detections. In our experience. when faIse detections are frequent

it is usually because one paroxysmaI pattern tends to repeat often. We devcloped a

rneasure ofsimilarity between a new pattern and the patterns of faIse detections in each

patient to determine whether the new pattern resembles known faIse detections. We

have applied this rneasure of similarity to the seizure dctection method ofGoLnan

(1982, 1990a) but it could aIso be applied to any seizure detection rnethod for which

each detection is characterized by a set ofvariables.

This aIgorithm can eliminate not only FSDs caused by normaI or abnormal EEG

patterns, but aIso artifacts, as long as these patterns are persisting for severa! monitoring

sessions. This is particularly important because artefact cause more than 80% ofFSDs

(pauri et aI. 1992). In figure 3-6, we can sec that artefact, normal and abnormaI EEG

patterns which cause a lot of FSDs can be eliminated well. Sorne FSDs are not

eliminated yet. The main reason is that these FSDs have EEG patterns which were not

included in the initiaI FSD set frorn the triaI session (as shown in figure 3-8). This



problem eould be soIved by adding new l'50 patterns. whenever they oeeur. to the

initial l'50 sel.

/1. small nurr:ber of seizures were lost. The main eharaelerislies ofthese seizures are

(1) they arc rdatively sirnilar to sorne l'SOs patterns in an initial FSO set from the

p:.llienl. An example ean be seen in figure 3-7. (2) These seizures have a few deteetion

points only. Il is mueh more likely to lose a seizure with only a few deteeùon points

than seizures with Many deteeùon points. The results show that the probability ofiosing

small seizurcs is toierable (bdow 3%). Although we have not measured il. the

probability of losing larger seizures is eertainly mueh lower. Sinee a signifieant

reduetion of l'50 rates eould lead to the use ofiower deteeùon thresholds and

eonsequently to a rise of seizure deteeùon sensiùvity, this small priee appears justified.

The inerease ofseizure detection rate by lowering detecùons thresholds (pauri et al.

1992) can he much higher than the rate of the loss ofseizures caused by this method.

Although this method was evaluated off-line. it can be implemented on-line to

work with deteetion programs because it does not require a lot of memory space and

the computations are not very complex. Ifthere are M detecùon points in an iniùal

FSO sel. a maximum ofM distance computaùons are required to determine ifa new

detection point belongs to the FSD subspaee. Since M can he typically of the order

of severa! hundred, the calculaùon is not too long.

Although there are not Many papers about seizure detection, severa! aspects ofthis

field can be discussed. For instance, even with our !11ethod, there is still a false deteetion

rate at about I.3/hour despite the fuet that our method reduced the rate by an average of

61 %. This rate eould be redueed further so that lower detection thresholds eould be used

and eonsequently more seizures eould he detected. Although the estimated probability

of losing seizures in our method is very low (below 3%), the actuaI probability eould be

even lower because we onl) took small seizures inte aeeount in the error estimation, and

larger seizures are.mueh 1= likely to he lost than small seizures. As a result, the

•
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optimal distance coefficient could be higher than wc have now: more l'SOs could he

eliminated. while the probability to lose a seizure would remain low and acceptahle.

This can be done by ehanging the constant K in the optimal similarity selection.

Reduction ofFSOs can be achieved by our method. and it could be achieved by

other methods as well. One way is to use a patient-adaptive algorithm to vary the

detection thresholds in a detection program. When FSOs are rare in a certain period

oftime. the algorithm eould lower the detection threshold 50 that more seizures and

more FSDs would be deteeted. as proven by Pauri et al. (1992). However. when

FSDs are frequent. the algorithm could raise the threshold according to the FSD

patterns and therefore FSD rate will decrease with the disadvantagt that sorne

seizures may be missed. As long as the algorithm balances the trade-ofTbetween the

elimination of FSDs and the probability ofmissing detecting seizures. the overall

performance ofthe detection method could improve. One of the important aspects of

such an algorithm is that il would keep the FSD rate at a constant levcl for ail

patients at ail time. This will malœ full use of the storage capacity of the computer.

If it is used with our method, the system can have a better seizure detection rate than

the original one or the one with our method alone. Another aspect is that this

algorithm is an unsupervised one and therefore even the minimum human

interventions, as required by our methocl, would not be nccessary any more.

We used an orthognal space for the detection and assume the independence

between features. A1though we have not tested their independen;:e, we used difTerent

features to describe different characteristics of the EEG and therefore it is reasonablc to

assume their independence. Moreover, the satisfactory performance of the method

proves the usefulness and.effectiveness ofthe features. Ofeourse, the indepcndcnee of

features should be tested systematically and future performance and efficiency could be

improved by using a better set offeatures.
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Figure 3.7: Example ofa seizure lost because it is similar to a FSD: Pattern A is a seizure from Ihe seizure reference sel and

Pattern B is a FSD from the initial FSD set ofa patient. In figure B the deteclion look place in channel RH l-RH3, LS I-LS3 and

RI-13-RH5; in figure A the deteclion was in channel RS3·RS5. The simila:ily belween Ihe delecled pattern in A and Ihe false

deteclion in B resulted in the elimination of the seizure in A.
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Figure 3-8: Example ofa FSO retained. This EEG pattern ofa FSO \l'as delecled and not eliminalcd because il is differcnl from the

same patienl's FSOs \l'hich occurred during the trial monitoring session (figure 3-6, pallern Cl.
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Chapter 4:

Seizure Onset Detection

1 Introduction
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Changes in the EEG at the onset of a seizure are ofconsiderable interest because of

the information they reveal about an epileptic focus. Detection ofseizures at an early

stage may allow precautions to be taken to avoid danger to the patient, and may improve

observation ofearly behavioral changes, and allow behavioral testing to better define the

anatomical structures involved in the epileptic focus. Once a seizure is fully developecl,

this subtle information abOlit location may be ur.available.

Interaction with an epileptic patient during the early part ofa seizure is very

important. As a part of the normal procedure for caring for an epileptic patient in the

hospital (Engel 1989), the observation during the ictal phase includes: (1) the type and

anatomical distribution of movements at the beginning ofthe seizure; (2) initial

alterations in consciousness; (3) responsiveness and memory during the ictal event, and
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(4) postictal neurological and mental dcticits. These observations can help l,) determine

the type of scizure. For instance. complcx partial seizures h:1\'e symptoms similar to

those of simple partial seizures. with an additiona! impairment of consciousness at

seizure onse!. The consciousness of a patient cannot be known ifthere is no interaction

between observer a'ld patient. In addition, the earlier the interaction takes place aner

seizure onset. the better the information to determine the type of seizure. Many patients

are not aware oftheir seizures~ as a result. a seizure warning system is very usctùl to give

observers a chance to interact with patients as carly as possible.

There are three difficulties in the detection ofall seizure onset: (1) The earlv seizure

pattern is highly variable from a patient to another. (2) Although it is sometimes abrupt,

the seizure onset often involves small changes and evolves into a tùll seizure pattern

during a period of about 20 seconds. (3) The seizure onset in one patient can be very

similar to non-seizure EEG patterns of other patients. esp~cially when artifacts and

muscle activity are involved. This is why the seizure onset is more difficult to detect than

prominent seizure patterns occurring later in the seizure. This is also why most seizure

detection algorithms (Gotman 1982. 1990a; Murro ct al. 1991; Liu. et al. 1992) aim at

detecting prominent seizure patterns rather than carly seizure patterns. In Ihose

algorithms. a seizure onset might be detected ifthere is a c1ear. abrupt pattern at onset.

but the detection can only be reported about a dozen seconds later. This is because the

system waits during this time to make sure the detection is val id. When early seizure

patterns are not prominent enough. those algorithms cannot detect them.

The following observations may he1p design a system for seizure onset detection: ln

most patients. one or several types of seizures tend to repeat ail the time. This is

reasonable since the sources that cause seizures in a patient usually do not change during

the usual period of observation and therefore similar seizures tend to occur repeatedly in

a patient. A1though this phenomenon has not been proven by a large scale study. it has

been our conclusion based on extensive c1inical experience. In these cases, the seizures of



each type arc "cr"\' similar ta each other. including the seizure onset For a panicul;;r

patient. the seizure onset is most olien distingüishable from the EEG background.

although it may resemble sorne background patterns of other patients. as mentioned

abo"e

On the basis ofthese obser,·ations. we propose a method to detect patient-specific

seizure onsets by using template matching Once a seizure occurs in a patient. it can be

memorized During prolonged EEG monitoring sessions subsequent to the recording of

that seizure. if an EEG pattern has a good match to the stored seizure. it will be reponed

immediatcly as a seizure onse!. Howe"er. extreme caution has to be taken to avoid faise

alanns because frequent alanns will annoy the staff and patient. and be ignored. In

addition to detecting early seizure onset. this method has the potential of detecting sorne

seizurcs that are missed by traditional detection methods: if one seizure is missed by a

detection method. similar seizures which occur iater are also likely to be missed. \Vith

the template matching method. if one ofthis kind of seizures is somehow captured. ail

other similar seizures will probably be detected.

Although it could appear that such a method couId be used for standard seizure

detection. this is not the case because standard detection must be able to detect all kinds

of seizures. not just seizures having a known pattern.

•
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2 Method

This method rdies on the 3v3ibbility oi one seizure for e3eh patient A p3tient­

specific classifier is trained by using this seizure to detectthe onset of subsequent

occurrences of similar seizures The algorithm will be discussed tirs!. followed by the

implementation procedure and the evaluation of the method.

The method uses si" features to reveal important characteristics of ict3\ EEG

patterns. After a seizure and sorne interictal EEG are acquired l'rom a patient. a classilier.

which is specilic to the patient. is trained with the patient' s dat3 only ln subsequent EEG

monitoring sessions of the same patient. the classilier is used to determine if a seizure

onset occurs If it does. an alarm is triggered.

2.1 Aigorithm

Features used in this method are discussed first. followed by the criteria in sdecting

a temp\ate. The distance measure is then presented and finally the design and training of

the classifier are discussed.

2.1. \ Feature Extraction

2.1.1.1 EJloch Sck-ction

The EEG is broken down into sections. or epochs. for the purpose of feature

selection. The length of an epoch depends on the type of application. ln sleep research.

for instance. the analysis is done in epochs 000 seconds (Gath and Bar-on 1985) or

longer (Friedman and Jones 1984). ln the study ofseizures. epochs 01'2 seconds

(Gotman 1982; Hilfiker and Egli 1992). 6 seconds (Liu et al. 1992) or 6.83 seconds
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(Murro ct ~l 1991) have been used. The reason that shoner epochs are used in seizure
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analysis than in sleep rcscarch is that seizure patterns change faster than sleep stages. In

our mcthod. an epoch of 2. 56 seconds is used for three reasons: (1) It is just long

enough to capture statistical characteristics of EEG and shon enough to capture the

evolution of seizures. (2) Since the aim of the project is to detect seizure onsets as soon

as possible. a shon epoch length may increase the chance of carly detection. (3) Since

the EEG is digitized at a sampling rate of 200Hz. an epoch 01'2.56 seconds contains 512

samples. ft is a convenient length to compute the Fast Fourier Transform (FIT).

2.1.1.2 Fcaturcs

There is a total of six features in this method. including a special one ta describe

spatial information about electrodes. These six features are: average wave amplitude.

average wave duration. coefficient of variation of wave duration. dominant frequency.

average power in a main energy zone. and the location feature.

1. Average wave amplitude in one epoch: The waveform decomposition method

of Gotman (1982) basically divides the EEG into halfwaves. The amplitude

and duration of each halfwave can therefore be measured. The average wave

amplitude is the average amplitude of halfwaves in one epoch. It is expressed
.,.
L. Amp,

as: A\~~Amp = ' 1 • where N is the number ofhalfwaves in one epoch
N

and Amp, is the amplitude ofa halfwave.
N

:L. DII1;
AvgDur =..:.,-",1_-

2. Average wave duration in one epoch: It is expressed as: N

where N is the number of halfwaves il' one epoch and Dur, is the duration of

a halfwave.



3 Coet1icient ofyariation ofwaye duration in one epoch: lt is expressed as:
\

;(Dllr - /)lIr)'- '
COI:~ = ' 1 • where N is the number ofhalfwavcs in one epoeh.

N, Dllr'
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Dw; is the duration of a halfwaye and DilI' is the average duration of

halfwaves in One epoch. This feature rellects the regularity of the duration of

halfwaves in One epoch.

4. Dominant frequency: To every peak in a spectrum corresponds a peak

frequency. Two other frequencies can be defined in relation to this peak: One

is in the rising slope and the other is in the falling siope. and they correspond

to amplitudes equalto halfthe amplitude of the peak. These Iwo frequencies

define a frequency band calledjiil' width halfmaximllm hal/d of the peak.

Among ail peaks in a spectrum. the peak which has the largest average power

in its full width half maximum band is called the dominant peak. The dominant

frequency is defined as the peak frequency of the dominant peak.

5. Average power in the main energy zOne: The main energy zOne is a frequency

band that centers at the average frequency and contains 80% of the total

energy in a spectrum. The average power in the nwin el/ergy =ol/e is used to

rellect the concentration of energy in a spectrum. If the power in a spectrum

concentrates in one area, the main energy zone is narrow and the average

power within it is large.

The ictal EEG has a special characteristic: the main frequency in similar

seizures varies more in the high frequency zone and less in the low frequency

zone. ln other words. if a seizure has a dominant frequency at 20Hz. a similar

seizure could have its dominant frequency at 21Hz or at 19Hz. However, ifa

seizure has its dominant frequency at 3Hz. a similar seizure is unlikely to have

its dominant frequency at 4Hz. ln order to rellect this characteristic, a

logarithmic scale is used in the frequency axis, i.e., F(l)=logf. AIl frequency



bands arc measured according 10 F(!) instead offrequency. In this way. a same

frequency difTerence in the lower frequency zone has a greater weight than in

the higher frequency zone because F(!) is a logarithmic mapping offrequency.

6. Location feature: This feature contains the positions of electrodes where a

seizure onset occurs. Our method attempts 10 detect seizures with similar

patterns illlhe same hraill regiolls. This characteristic is very important in the

detcrmination of a seizure and its onse!. The location feature is translated in

thc classification into a requirement that the seizure onset occurs in the same

channcls as that of the tempiate seizure.

•
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2.1.1.3 Rationalc for Usin:=, the Fcaturcs

The first three features come l'rom the waveform decomposition method ofGotman

(1976. 1982). They represent the most important characteristics of the EEG and they

were used in the seizure detection system ofGotman (1982. 1990a). They have proven

usclùl in the dctection of seizures. Other features used in the seizure detection method of

Gotman (1982). such as information about the EEG bel'ore or after the current epoch

(the context). are not necessary because our method uses template matching and

therefore only information about the current epoch should be compared with the

tcmplate.

T\Vo features. dominant frequency and average po\Ver in the main energy zone.

represent important characteristics of the EEG in the frequency domain. Simi1ar features

\Vcrc used in the system ofMurro et al. (1991) to detect complex partial seizures.

The reason for using the dominant frequency instead of the more common average

frequency is that average frequency is a gross estimation ofail frequency components. In

ietal EEGs. especially in the prominent part of a seizure, there is usually a main

frequency component because the EEG tends to be rhythmic, as defined in IFSECN
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(1974). However. ictal EEG can also be aeeompanied by frequency components of

noise. such as those of muscle activity or baseline movement. This is why the dominant

frequency is useful in terms of rellecting this characteristie of ieta! EEG. while the

average frequency mixes ictal eharacteristies with those of noise. ln addition. similar

seizures have similar main frequency components. as shown in ligure 4-1. even though

sorne other activities. such like slow waves and the noises. ean vary from one seizure to

another. In this case, the dominant frequencies are the same in two similar seizures while

the average frequencies are ditTerent due to the ditTerent slow activities.

The main energy ~one is defined to rellect the rhythmicity and the frequency content

of the rhythmicity in an epoch of EEG: when the EEG is rhythmie. its energy

concentrates in a small frequency region. This ereates a small main energy zone and the

average power in the main energy zone is high. The location of the main energy zone

indicates the frequency content of the rhythmieity. As shown in figure 4-2a. for an epoch

of ietal EEG, the spectrum shows a narrow main energy zone beeause of rhythmic

aetivity. For another epoeh ofEEG from a similar seizure of the same patient, as shown

in figure 4-2b, in the same frequency band as the main energy zone of the template, the

average power in the band are very similar to that of figure 4-2a. Figure 4-2e is an

example ofan epoeh of interietal EEG of the same patient Crom the same e1eetrode. ils

speetrum shows a very ditTerent pattern in terms of the average power in the same zone

as the main energy zone of the template. Figure 4·2d shows an example of interictal

rhythmic activity. Although its main energy zone is also small and the average power

within is large, it can be distinguished from figure 4·2a and figure 4·2b bccause the

location of the main energy zone is ditTerent. In other words. in the same frcquency band

as the main energy zone of the template, the average power in this band in figure 4·2d is

much smaller than that in the template. Therefore, patterns in figure 4-2d and figure 4-2a

are distinguishable even though both of them are rhythmic. As a result, the average



power in a main cnergy zone is a useful feature ta distinguish the rhythmic activity in a

seizure from bath interictal non-rhythmic activity ar,d interictal rhythmic activity.

The last feature in our method is the location femure. This feature imposes spatial

restraints in our detection method. Spatial information has been used in other EEG

pattern detection systems (Gotman 1982; Glover et al. 1989). It has been proven that the

use ofboth temporal and spatial information can provide better results in the detection of

EEG patterns than the use of temporal information alont. In our false seizure reduction

method. the spatial information was also used to make detection more reliable. Unlike

the other five features. which are characteristics of EEG morphology. electrode positions

are the characteristic of physicallocation and they are diflicult to express in the detection

space. especially in the case of intracerebral electrodes. Although distances between

c1ectrodes were a dimension of the detection space in the reduction of false seizure

detections, this is not applicable in the onset detection because similar false seizure

patterns can occur in electrodes close to the ones in the prototype patterns while similar

seizure onsets always occur in the same electrodes as in the template. For instance,

artefact. which are the main cause offalse detections (Pauri et al. 1992), do not

necessarily occur in exactly the same electrodes.

•
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Pattern A

F _d=5.Q8H:;:
~

F _a=S.98H=
~

Pattern B

•

Figure 4-1: Dominant frequency and average frequency: Pattern A and pattern B are

EEG and their spectra oftwo similar seizures. A1though these two seizures are similar,

seizure A has more higher frequency components and therefore its average frequency

(10.94 Hz) is different from the one in seizure B (8.98 Hz). However, the dominant

frequencies ofthese two patterns remain the same (5.08 Hz). This iIIustrates how the

dominant frequency is a better feature than the average frequency in terms of

representing major frequency components ofthe seizure.
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Figure 4-2: (see next page for captions)•
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Figure 4-2: Examples ofusing average power in a main energy zone as a fealure:

Pattern A is a seizure EEG and a spectrum of one epoch. In the ligure. MEZ stands for

main energy zone. The rhythmicity of EEG is represented in the spectrum as an area of

concentrated energy. i.e., a major peak. The main energy zone in this case is smal1 (1 Hz

to 10Hz) and the average power in it is high. Pattern B is a seizure similar 10 pattern A

trom a same patient. The two spectra show great similarity in terms of main energy

zones and average power within them. Pattern C is a section ofinterictal EEG and its

speetrum. Since there is not much rhythmicity in the EEG. the average power within the

same main energy zone as the one in the template (pattern A) is low. For an interictal

rhythmie activity (pattern D), the average power in its own main energy zone may be

similar to the one in the template. However, sinee its main energy zone is different l'rom

that of the template, the average power in the same energy zone as the one in the

template is lower than that in the template. This figure shows that average power within

a main energy zone is a good feature to rellect rhythmicity and frequency of the seizure.

As a result, it can be used as one of features to distinguish ietal EEG l'rom interietal

rhythmie and non-rhythmie EEG.
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Tcmplatc sclcction has two stcps: selcction oftemp\ate EEG and the generation of

tcmplatc points. A scizure can last as much as several minutes. or as little as a few

scconds. In this scction. we dcscribe how a pan of seizure is chosen as a template and

how a tcmplate is rcprcsentcd in thc detection space.

2.1.2.1 Sclcction of Tcmlliatc EEG

A tcmplate is a portion of a selected seizure. A template should contain the early

part of the seizure so that the detection can be made as early as possible. Also. a

lemplate must have a reasonable length to increase the probability of detecting seizures

in case the very early pan of the seizure cannot be detected. Selecting the template aIso

includes thc selection of the location feature: a set of channels should be selected from

thc tcmplate. The template selection criteria are the following.

1. A template EEG stans at seizure onset.

2. A template EEG ends 20 seconds after the onset or at the end of a seizure,

whichever occurs tirst.

3. The set of channels in which the seizure onset occurs is selected as the location

feature.

Template selection must be done visually by an EEGer. The reasons for choosing 20

seconds as the length of a template are: (1) Most seizures last more than 20 seconds. (2)

Twenty seconds is normally long enough to catch the predominant patterns ofa seizure.

(3) A template shoner than 20 seconds may decrease the chance of detecting onsets, and

a detection 20 seconds after the onset is not considered too late. (4) Although a

detection 20 seconds later than onset is still considered better than no detection at ail, a



longer template creates more template points. as explained bdow. It therefore increases

the probability of causing tàlse alarms. as weil as increasing the computation burden.
•
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2.1.2.2 Gcncr:ltion of Tcmplatc Points

A temp\ate EEG is divided into epochs of2.56 seconds. Every epoch generates a

template point in the detection space after the five features are extracted from this epoch.

As a result. a template EEG is represented in the detection space as a set of template

points. one for each epoch. We will discuss the question ofhow to divide the temp\ate

inlo epochs.

Since our method compares EEG patterns epoch by epoch. the division into epochs

of the template and ofa new EEG in which we are looking for a match to the tcmplatc

affects the probability of finding a match. For instance. as shown in figure 4·3a. pattcrn

A is a template seizure and is divided into cpochs from the beginning of the seizure.

Pattern B is a new seizure which is random\y divided into epochs since the beginning of

the seizure is unknown at the time of the search. In this case. the two seizures do not

have a good time alignment and therefore a match may not be found or may bc found

late after the onset. although these two seizures arc similar. If pattern B is dividcd into

epochs staning at the beginning of the seizure. a match can be made correctly. As a

result. the time alignment between a template seizure and a new seizure is imponant.

The first idea to solve the time alignment problem could be to divide a new EEG

into epochs staning at every sample (figure 4-3b). The advantage is that there are always

some epochs with the best possible time alignment with template epochs because at lcast

one of the epochs stans from the beginning of the new seizure. However, there is a

major disadvantage: the computational burd ~n is too high. because every epoch in a new

recording has to be processed on-line and some offeatures have to be extracted From the

frequency domain. Doing the FIT in cach epoch staning From each sample is too time



consuming because this is a multichannel recording and the computation power of

personal computers is too sma!1. there is a sample every 5 milliseconds in each channel.

Therefore. this method is not suitable to solve the time alignment problem.

The other way to solve is problem is to divide the template seizure into as many

epochs as possible 50 that, independently of the kind of division in a new EEG, there is

always one epoch in the template having a good time alignment with epochs in a new

seizure. This can be done by dividing the template seizure into epochs starting from

every sample, as shown in figure 4-3c. There are two advantages in doing so: (l) The

best time alignment can be obtained since this division has the same time alignment

resolution as the previous method, which is also the best possible time alignment. (2) The

feature extraction of template epochs is done off-line and only once, and the heavy

computationalload resulting from many epochs is not a problem. Nevertheless, there are

two disadvantages: (1) There is too much overlap between epochs starting at every

sample in the template. EEG patterns, even ictal patterns, do not change rapidly enough

to alter significantly the statistical properties of epochs lasting 2.56 seconds and starting

at 5 milliseconds intervals. (2) This method creates many points in the detection space

(4,000 points for a 20-second template) and every new epoch ofEEG being analyzed has

to be compared tll ail template points in the detection space. This results in an important

computational burden for on-line processing.

The division of template seizure into epochs is therefore done by compromising

computationalload for on-line processing and the precision oftime alignment. We

consider that the template seizure can be divided into epochs starting every 320

milliseconds (figure 4-3d); 320 milliseconds is a convenient value because it corresponds

to 64 samples, which is the basic processing unit in our programs. There are two rcasons

for the choice of 320 milliseconds: (1) For a template seizure and a new seizure, a

mismatch is unlikely to occur when two epochs of seizure EEG have a time alignment

difference at 320 milliseconds. This is because changes in the EEG within 320

•
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milliseconds rarely changes dralllatically the statistica! charaeteristics of a:! 56-second

epoch of EEG. (2) ln comparison with the division of epochs starting every salllp\c. this

division reduces the number oftemplate points by a làctor of64. thus reducing by the

same factor the on-line proccssing timc for classification. This hclps in accomlllodating

the limitcd computational power of personal computers

•
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Figure4-3A

•
Figure 4-3: Epoch division and time alignment: Pattern A is a template and pattern

B is a new coming seizure. In figure 4-3a, the template and the new seizure are divided

in adjacent epochs. In this case, a time alignment problem arises and a mismatch is Iikeiy

to occur. (to be continued in the next page)
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Figure4-3: (continue from the last page) In figure 4-3b, the new sei::Zlre is divided

into a large number ofoverlapping epochs and therefore the time alignment problem cao

be solved. (to be continued to the next page)
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Figure 4-3: (continued from the last page) Figure 4-3c shows another way to solve

the time alignment problem by dividing the temp/aJe into a large number ofepochs. Both

solutions required a large amount ofcomputation. (to be continued to the next page)
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Figure 4-3: (continued from the last page) One way to solve the time alignment

problem without increasing too much the computational burden is to divide the template

into epocbs starting every 64 samples, or 320 milliseconds, as shown in figure 4-3d. In

this case, even ifthe division ofepocbs in the new seizure :Ioes not start at the onset, a

good match still oceurs between the first epoch ofthe new seizure and the first epoch in

the division number 3 in the template because both epocbs start 640 milliseconds after

onset.
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We have ta define the distance between two points of the detection space so that we

can measure how close the features of a new epoch are from those of the template

epochs. A weighted distance is used to rellect the different effects of each feature in a

detection. The distance between two points, .4 and B, in the detection space is defined

as D(.4.B) = ll<A - B)M '(.4 - B)II. where

M, 0 0 0 0

0 M. 0 0 0

tVt 1 = 0 0 M, 0 0 and M, is the weight for each dimension.

0 0 0 M. 0

0 0 0 0 M,. ,

The difference between the Euclidean distance and this distance is that each feature

is not considered equally weighted in this measure. This is because some features are

more imponant in the determination of onsets than others. The weight in each feature

also acts as a normalization factor to conven different physical units in different

dimensions into a universaI unit so that comparisons of distances can be performed. In

this method. ail M, are set empirically.

A1though the distance measure looks similar to the Mahalanobis distance (Devijver

and Kittle 1982), there are some differences. The first one is that the distance measure is

used to measure distance between two points in a detection space. while the

Mahalanobis distance is used to rellect the distance between two classes by using the

mean of each c1ass. The second difference is that the matrix M, in our distance measure

is the weight of each dimension and it is a covariance matrix in the Mahalanobis distance.
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2 1.4 Classifier Design and Training

2.1.4.1 The Classifier

110

For a new EEG pallern. designated as NI' a set oftemplate points. 1:. and a set of

interictal EEG points. a patient-specific classifier can be expressed as

{
~I is a possible seizure onset

NI is NOT a seizure onset

if D (l~.NI) < T "Ds." for ail i

if D (l~.N,) ~ T X 1\.\., for ail /

•

where D (/~. NI) is the distance defined above. 7' is a distance threshold coellicient

for ail template point I~, D,s, is the distance between a template point 1: and its nearest

interictal EEG point.

If NI is a candidate seizure onsel, we must still check whether il occurs in a channel

selected as part of the location feature (the location feature was discussed above; il

represents the channels involved in seizure onset). ln any patient, two seizures arc never

absolutely identical. The variability between seizure onsets in some channels could be

such that a mismatch could occur, even though the seizure onsets arc quite similar. Wc

decided therefore to require a match in at\east half of the channels in the location

feature. As a result. in each epoch of EEG, if 50% of channels selected in the location

feature have matches with the template at the same time, it is considered that a seizure

onset is detected.

The distance threshold coefficient T, when it is smaller or equal to 0.5, is used to

bias the system to have a small chance of causing false alarms, at the expense of

detecting fewer seizure onsets or detecting them later. This is because the classification

boundary tends to be closer to template points when T is smaller than 0.5 (figure 4-4).



When r is larger than 0 5. the opposite results may occur because the classification

boundary gets c10ser to interictal EEG points.

This classifier can be considered a modified nearest-neighbor (NN) classifier. As in

the NN rule. each template point I~ has a distance to its nearest interictal EEG point.

Sorne I~ are more similar to sorne interictal EEG points than other I~ and therefore have

a small distance to their nearest neighbors. We use smaller distance thresholds for these

I~ This allows the classifier to adjust itselfto accommodate the situation of each

template point and thus be able to detect seizure onsets more accurately with Jess

probability of causing false alarms The modification to the NN rule in our method is that

the distance between a template point and the classification boundary arOl!nd it is a

constant in ail directions (figure 4-4) ln other words. the classification boundary in our

method is a five-dimensional bail centered at a template point and with a radius of

r x /),.". This makes the c1a~sification boundary of the method c10ser to the template

point even when T is 0.5 than that ofNN rule (figure 4-4). This reflects the bias we
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want to place in our method. Another reason for the modification is that there are much

fewer template points than interictal EEG points, the difference being of the order of

several hundred times. Therefore. it is better to be conservative by shrinking the decision

boundary toward template points. This results in having a lower probability oi

misclassit:ying interictal EEGs as early seizure EEGs, at the expense of having a higher

probability of missing seizures. The last reason for the modification is that the

computation cost of our method is much less than that in the NN rule. For M template

points and N interictal EEG points. a NN classifier needs M+N distance computations

and M+N comparisons to c1assit:y a new point, while our method only needs M distance

computations and M comparisons. Since N is of the order ofseveral hundred times M,

the reduction in computation in our method is considerable.
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Figure 4-4: Discrimination hyperplane of the NN rule and that of the current

method: "*,, represents interictal EEG points and "0" represents template points. DI and

02 are two of the dimensions used in the detection space. The bold straight lines which

connect template points and interictal EEG points indicate the distance between these

points. The thin straight lines mark the hyperplane of the NN rule. The circles show the

classification boundary of our method with a distance threshold coefficient of 0.5. Il is

obvious that the classification boundary of our method is always c10ser to template

points than that of the NN rule when T is equal to 0.5 .
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As indieated in figure 4-5, a classifier is trained with seizure template and intericaI

EEG. The classifier should be trained with appropriate amount of data 50 that it can

aehieve a high seizure onset deteetion rate and a low false alarm rate. It is always the

ease that the more training data there are. the better a classifier can be trained. In our

method, the more seizures are used for training. the more aeeurately a classifier can

deteet onsets: the more interietal EEG is used for training. the lower the false alarm rate

will be. However. more ietal data as training data could result in more false alarms, while

more interictal data as training data could result in a lower probability of deteeting

onsets. Therefore. we earried out experiments to determine the most appropriate amount

of training data for our classifier. in particular the balance between the number of

seizures and the amount of interictal data. One important limitation is the availability of

seizures. a factor whieh must also be eonsidered in the determination of the amount of

training data. E.xperiments and results are explained in the "Results" section.

Our method is based on patient-specific information by using patient-specifie ietal

and interictal data as training data. ln order to assess whether our method is optimal, we

designed two additional experiments. One is to use semi-patient-speeifie information,

whieh includes patient-specifie ietal information and non-patient-specifie interietal

information. to train c1assifiers. The other one is to use both non-patient-speeifie ietal

and interietal data to train c1assifiers. Experiments and results are explained in the

"Results" section.

2.1.-1.3 Rclabclin): Tcmillatc Points

Il can happen that seizure patterns, when divided into epoehs, are not

distinguishable from some interietal EEG patterns of the same patient. This is because



the identification ofa seizure by an EEGer takes into accountthe evolution of the EEG.

ln other words. every epoch of the seizure may be considered as pan ofa scizure

because of the pattern in neighboring epoehs. beeause of the evolution of the seizure

pattern. This is not the case in our method beeause eaeh epoeh is eonsidered

independently from neighboring epoehs. Therefore, sorne seizure patterns eould cause

false alarms beeause similar EEG patterns ean be found in the interietal EEG. In order to

solve this problem, we relabeled sorne template points as interietal EEG points during

classifier training. We set a relabeling threshold empirieally for ail classiliers. Ifa

template point has a distance to its nearest interietal EEG point smaller than the

relabeling threshold. this template point is relabeled as an interietal EEG point. This will,

of course, delay the possible onset deteetion due to the elimination of template points.

However, trading earlier onset deteetion for a lower false alarm ratc is justilied beeause a

low false alarm rate is a high priority.

Theoretieally. it is possible but very unlikcly that alltemplate points are relabcled if

ail EEG patterns in the template ean be found in the interietal EEG of the same patient.

This means that the seizure onset patterns are not distinguishable from the interietal EEG

patterns in the patient and therefore the computer ean either deteet it at the expense of

many false alarms or is not able to deteet it at ail.

We did not relabel interietal EEG points that are very close to template points as

template points beeause :his would inerease the false alarm rate.

•
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2.1.5 The Oualitv Mcasure of the Classifier

The aims ofthis projeet are to deteet as many seizures as possible, as carly as

possible and with as few false alarms as possible. In order to compare different

classifiers, a measure has to be defined to rellect the overall quality of the classifier. The

quality of a classifier is determined by three factors: detection rate, detection delay and



false alarm rate. A measure indicating the quality of a classifier should reflect these three•
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factors appropriately. We called "quality value", or "QV", the measure ofquality. It is

defined as: Of' = C , where C is a constant to scale the
- (R,,, +0.2) <(7~,. < 1'J" +60< 1'm'J)

value of QV, R,,, is the number of false alarms per hour, 1~". is the average delay of onset

detections in seconds, 1'J<I is the percentage of seizures detected and pm•J is the

percentage of seizures missed. There are several reasons for using this formula.

(1) QV monotonically increases when Rf" decreases. It means the lower the false

alann rate is. the better the classifier is.

(2) 1~,. < I~" + 60 < I>""J is actually the weighted average of the delay of onset

detections. While 1~". is the average delay of onset detections, 60 seconds is used as a

delay for seizures missed by the method. We decided that a detection 60 seconds after

the onset is equivalent to missing the seizure, in terms of the benefits of seizure onset

detection. The weights for the average delay of detected or missed seizures are the

percentages of detected and missed seizures. Consequently. the weighted average de1ay

reflects the quality of a classifier with respect to detection delay.

(3) As a result of(2), QV is inversely proportional to the weighted average of the

delay of onset detections. This reflects the fact that the shorter the onset detection delay,

the better the classifier.

(4) The constant "0 2 false-alarrnlhour" is added to R,. in the formula of QV. In

our method, the false alarm rate is low and it usually ranges From 0 to 0.5. A false alarm

rate higher than 0.5 false-alarmlhour is considered unacceptable. Without the constant, a

change in R,. From 0.01 to 0.02 results in the reduction ofQV by half, while a change

From 0.2 to 0.3 only reduces QV by 33%, although in the latter case the false alarm rate

increases much more significantly than the previous one. This constant is therefore

necessary to make sure that the change of RI;' has an appropriate effect on the QV.



(5) The constant C is empirically setto 10 because this scalcs the value ofQV to an

easy reading range. The constant does not change the meaning of the results. but only

affects the readability of the results.

(6) We carefully considered the range ofeach factor. ho\\' their changes atTectthe

quality of classifiers and the trade-offbetween factors. We used two constants. 0.2 and

60. to scale the effect of each factor in the QV appropriatcly. As a result. the risk that

extreme values of one of the factors results in an aberrant QV has been greatly reduccd.

ifnot eliminated.Inconclusion. QV isjustified in terms of the combination ofall the

aspects ofour classifier. The higher the value ofQV. the b-::tter the classifier Among

different classifiers. the classifier with the highest QV should be the best

•
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2.2 Implementation

The implementation is simple if the number ofhuman interventions is limited. In our

implementation. only one human intervention is required: selection of the template EEG

and location feature. This human intervention is indispensable because only a human

operator can accurately provide this vital information. The details of the implementation

procedures are described below. and also illustrated in figure 4-5.

1. When a seizure occurs in a patient during a long-term EEG monitoring session, a

section of this seizure will be stored as the seizure onset template of this patient

according to the criteria mentioned earlier. The template points are generated

automatically by extracting features l'rom epochs of the template.

2. The template EEG should be reviewed to determine the location feature, i.e. the

channels in which the seizure onset takes place.

3. A set ofinterictal EEG training data has to be collected. This is done

automatically. according to criteria discussed in the section on data collection.



4. The template EEG and the interictal EEG training data are used to train the

classifier

5. The patient-specifie classifier is then used to detect seizure onsets during long­

lerm EEG monitoring. Each epoch of new EEG should pass through the classifier. If a

seizure onsel is delected. a warning signal will be given so that observers can take

appropriate action.

More details about the implementation can be seen in Appendix B in the form of a

block diagram.

•
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Seizure

Interictal EEG

Template selection

Classifier Training

Use the classifier to

detect seizure onset

Figure 4-5: Implemcntation proeedurc of our seizure onset dctcetion mcthod: Allcr

a seizure is eaptured, a human intervcntion has to be madc to scleet thc tcmplatc, as wcll

as the location feature. A set of interietal EEG should be eollectcd at thc same time

Both sets of data are used to train a patient-specifie classifier. This classifier is then uscd

to deteet seizure onsets in subsequent monitoring scssions.
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2.3 Subjccts

Subjects for this study \Vere sclected from patients undergoing long-term EEG

119

monitoring at the Montreal Neurological Hospital from January 1993 to August 1993. A

total of24 types of seizures coming from 17 patients was selected. Allthese patients

satisfY the following conditions:

Each patient has at least one type of seizure. Sorne patients may have up to three

types

., For cach type of scizurc thcrc are three to seven similar seizures from the same

patient.

We need at least three seizures to test the consistency of the method. We limited the

total number of seizures per type to seven to avoid giving too much weight to that type

in the overall average result

., -.,_,..l._ Data Collection

•

ln order to train and test classifiers. interictal EEGs. as weil as ictal EEGs, have to

be collected. We selected the holdout method for error estimation (Devijver and Kittle

1982). in which the data are separated into two mutually exclusive sets, so that one of

them is used to train c1assifiers and the other is used for testing. The reason for using the

holdout method is that it is not very difficult to acquire a large size of interictal EEGs in

long-terrn EEG monitoring. The holdout method for estimating error rates of c1assifiers

has the advantage of having less variance in the estimation. but the disadvantage of
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requiring a large data set (De\'ij\'er and Kittle 1982) Although there are not many

seizures. we still use the holdout method for the estimation of onset detection rate for

two reasons: (1) This method is better than the resubstitution method. especially when

the N]'\·rule-like c1assifiers are used (De\'ij\'er and Kittle 1982). (2) Although the

rotation method may look suitable for this situation. the associated eomputationalload

and eomplexity made it impraetieal for our purpose.

2.3.2.] Tr:linin~ Data

Only one seizure. whieh serves as a template, and a set of interietal EEGs are used

as training data for eaeh patient. Interietal EEGs are easy to obtain. The interietal EEG

training data should represent as many as possible of the interieta: EEG patterns present

in a patient. The more interietal EEG data are used for the training. the less chance false

alarms will oeeur. Praetieally, a set ofinterietal EEGs sampled evenly over a period of24

hours is suitable. There are three reasons for this: (1) The main factors affeeting the

EEG, sleep and level ofaetivity, have a period of24 hours. (2) Although a data set with

the complete 24-hour EEG has ail the interietal EEG patterns, a sample rate of one

minute every twenty to thiny minutes is praetieally suitable. Of course. the longer sample

results in a better interietal EEG training data set, but also results in greater computation

and storage eost. (3) Aeeording to the hospital records at Montreal Neurologieal

Hospital from January 1 1993 to Deeember 31 1993, as shown in table 4-1, there is on

average about one seizure per day per patient for both depth c1eetrode patients and scalp

eleetrode patients. This is the a priori knowledge of seizure frequeney. As a result, using

one seizure and a set of interietal EEG from 24 hours to train a patient-specifie classifier

appears justified. This seizure frequeney ean also be interpreted as two seizures per 48

hours. This means that using two seizures and interietal EEG from 48 hours to train a

classifier is also justified.
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Table 4-1 . Statistics of patients' records from Montreal Neurologica! Hospital
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Time ncriod Januar\' 1 1993 to December 31 1993

Elr.:clrodcs Denth Scaln Tolal

TOI,,1 Ilumber of muients 17 135 152

Total number of monilOntu! d:l\'s 344 1036 1380

Tolal number of seizures 301 1032 1333

A\'Cr:l11C nurnbcr of scizurcs nc!r monitoring cL.1\' 0.875 0.996 0.966

2.3.2.2 TcstinJ: Data

Two types of EEGs were eolleeted as testing data: interietal EEGs and seizures

similar to template seizures. Interietal EEGs were eolleeted to test false alarm rates,

while seizures were used to determine the seizure onset detection rates as weil as delays

in onset detection. Since the false alarm rate is very low in this method, a lot ofinterictal

EEGs are needed so that the variance of the false alarm rate estimates can be small. This

is also the reason we are using the holdout method, sinee it gives a smaller variance than

those determined by the leave-one out method and the rotation method (Devijver and

Kittle 1982).
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3 Results

EEGs were recorded according to the c1inical protocol of the Montreal Neurologic'll

Hospital. They included 32 or 64 electrodes and therefore there are 32 or 64 channels in

each referential montage. Seizure detection. however. was performed with a bipolar

montage. Ali patients with scalp electrodes used 32-channcl bipolar montages and

patients with depth electrodes used 16-channel bipolar montages. 1n the 12 patients with

scalp electrodes. the average number ofseizures per type is 3.9. ln the 12 seizure types

from patients with depth electrodes. there are 4.5 seizures per type. The average length

ofinterictal EEGs used for training is 0.7 hours and 2.7 hours for testing. Ali training

and testing data required appro)(imate1y 4 gigabytes of memory.

The results show that this method can detect seizure onsets accurately and quickly.

lt can also detect sorne seizures missed by the c1assic seizure detection method. This

proves that it is possible to have a reliable patient-specifie on-Iine seizure onset detection

system.

We first compare different kinds of c1assifiers with different parameters. The results

for the best classifier for ail patients are presented at the end.

3.1 Comparisons Among Different Classiliers

The performance of c1assifiers can be affected by the distance threshold coefficient

and the training data. ln order to find out the optimal classifier, we designed three groups

of e)(periments to compare results: (1) c1assifiers with different distance threshold

coefficients (2) c1assifiers with different amounts of training data (3) c1assifiers with

different proportions of patient-specifie and non patient-specifie information.
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J 1 1 C1assiticrs_"ithJ2iO:CCCtlLDisl.ance Threshold Coefficients

Therc is one major parameter to be adjusted in the design of a classifier in this

method the distance threshold coefficient T. As mentioned before, the distance threshold

coefficient determines if the classification boundary is c10ser to template points or c10ser

to interictal EEG points. When the classification boundary is c10ser to template points,

there will be fewer false alarms. as weil as fewer onset detections. In order to find the

optimal value of the distance threshold coefficient, we tried c1assifiers with five distance

threshold coefficients and compared the QV ofthese five c1assifiers. The implementation

procedures of the experiments are the same as the one illustrated in figure 4-5 by using a

seizure as the template and a set of interictal EEG of the same patient sampled from 24

hours of monitoring. The only ditTerence among c1assifiers in this group of experiments is

that their distanee threshold coefficients are ditTerent. The results are shown in table 4-2.

Also, figure 4-6 presents the change of QV according to distance threshold coefficients

in the case of scalp electrode patients. depth electrode patients and ail the patients.

Theoretically, we should try many distance thresholds with a small increment so that

,he optimalthreshold can be determined precisely. However, because computation and

memory required in the experiment are huge, it takes about one month ofa personaI

computer's time to compute results from each distance threshold coefficient. Therefore,

we can only try five distance threshold coefficients.

From table 4-2 and figure 4-6, it is noticeable thatthe classifier with the distance

threshold coefficient of 0.5 is the best one because the QV values are always the highesl.
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Figure 4-6: Quality values of c1assifiers \Vith difTerent distance threshold coefficient: Il can be seen that c1assifiers \Vith a distance

threshold coefficient of 0.5 have the highest QV. Results are the same for c1assifiers designed for patients \Vith scalp e1ectrodcs and for

patients \Vith dcpth e1ectrodes.
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Table 4-2 Results of ciassifiers with different distance threshold coefficients.

1~.-)

•

Distance threshold Il, ~ o.~ 0,:; 0.6 0.7

coefficient

Seizure Scala 37 7~ 100 100 100

detection Deoth 76 90 100 100 100

rate (%) Total SR 83 100 100 100

Delay (s) Scalo (,. J 9.1 9.5 9.2 8.8

Deoth IlI.R Ill. 7 9.6 9.3 8.3

Tota! R.7 9.9 9.6 9.2 8.5

False Scalo 0 0 0.03 0.57 2.7

alarm Deoth 0.09 0.2S 0.37 1.02 2.1

rate (lh) Total 0.05 lUS lUI 0.82 ' ._.,

QV Scalo 1.25 2.2~ -l.5S 1.41 0.39

Deoth I.:n 1.33 1.83 O.SS 0.52

Total 1.32 1.55 2.5* 1.07 0.*7

3 1 2 Classifiers with Different Amounts ofTraining Data

The amounts of training data will cenainly affect the quality ofa classifier.

Theoretically, the more training data there are, the better a classifier can be trained. ln

our method, a modified NN rule is used for the classification. As shown in table 4-1, the

probability of seizure is about one seizure per day per patient. As a result, in our

experiment to compare classifiers with different training data sets, we maintained the

right proponion of seizure points in the detection space by seleeting two sets oftraining

data: one is the first available seizure and interictal EEG sampled from 24 hours (set 1)
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and the other is the tirst two available seizures and interictal EEG sampled from 48 hours

(set 2) The distance threshold coellicient used in this experiment is 0.5 because the

evidence seen in the last section suggests that this is the best one. The implementation

procedure ofthis group of experiments is similar ta the one in ligure 4-5. The dilTerence

only exists in the amount ofseizures selected as templates (one seizure or two) and the

amount of interictal EEGs (EEGs samplcd from 24 hours or 48 hours) used ta tr~in

classitiers. These experiments were carried out in patients with depth clectrodes because

only this set of patients has enough interictal EEGs for both training and testing. The

results are shawn in table 4-3.

Table 4-3: Results of classitiers trained with different amount of data.

Training data set One seizure and EEG Two scizures and EEG

from 24 hours from 48 hours

Detection rate (%) \00 100

Weighted delav (s) 9.6 92

False alarm rate (th) 0.37 0.20

Qualitv Value (QV) \.83 2.73

As shawn in table 4-3. the classifier trained with two seizures and interietal EEG

sampled from 48 hours performs better. This verifies the fact that increasing the amount

of training data results in a better classifier. In this case. more template seizures result in

a shorter detection delay; the more interictal EEGs are used for the training, the smaller

the number of false alarms.
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3 1 3 Classifiers with PatienH;!'-ec;;'c, Serni-patÎent-specific and Non Patient-specific

!DfuCl1]aligD
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We carricd ouI lhrce experirnents to explore the effects of patient-specific and non­

patient-specific data as training data on the performance of classifiers. Our method was

dcsigned to usc patient-specifie information, which includes seizures and interictal EEGs

l'rom one single patient, to train classifiers and use it to detect seizure onsets in the same

patient. It is reasonable to think that a classifier trained with information l'rom more than

one person could possibly beller than the one trained with information l'rom one patient

only, because morc training data could result in a beller performance in a classifier. We

therefore first design an experiment to train classifiers with semi-patient-specific

information which includes scizures l'rom a patient A and interical EEGs l'rom many

patients, and utilize the classifier to detect seizures of the patient A. In order to fully

explore this issue, another experiment was designed to train classifiers with non patient­

specifie information only which consists ofboth seizures and interictal EEGs from many

patients, and use it to detect seizures of a new patient. Details of experiments are

explained later.

The experiment for using totally patient-specific information was done by training

the classifier with the first available seizure and interictal EEG sampled during 24 hours

in each patient. Details ofthis experiments were discussed in the previous section. With a

distance threshold coefficient at O.s, the results are shown in table 4-4.

J.I.J, t Cla.'-'ilicrs with Scmi-llaticnt-sl,,'Cilic Infonnation

The experiment for training the classifier with semi-patient-specific information

includes one seizure for a patient and interictal EEGs from many patients. It was

implemented in the same way as in figure 4-5, e.xcept that interictal EEG training data



come from many patients instead of a specifie patient whose first seizure is used to train

the same classifier.

This experiment could be carried out in the patients with scalp c1ectrodes only

because this set of patients has the same detection montage. This makes it possible 10

compare EEGs between different patients because ail EEGs were recorded from the

same electrodes. This is not the case for patients with depth electrodes because these

patients have individualized electrode placement. As a result, patients with depth

electrodes are not included in this experiment. We combined interictal EEGs of ail

patients except one and used them to train a classifier for that lelt-over patient. Every

patient's classilier was trained in this way. With the distan~;; ,ilreshold coetlicient set at

1.2, as shown in table 4-4, there is an average false alarm rate at 0.04/hour. With this

distance threshold coefficient, the seizure onset detection rate is 48.6% and the average

weighted delay is 34.3 seconds. This gives the classifier a QV of 1.22.

We only use a distance coefficient of 1.2 in this experiment instead of any other

value for the following reasons: (1) This is a very computationally and memory intensive

experiment: computing results for one distance threshold coefficient takes about one

month of personal computer time. Therefore, it is very dillicult to search the best

distance coefficient in this experiment as it was done in the first experiment. (2) The goal

of the experiment is to compare performance among classifiers. If the classifier with

patient-specifie information and a distance threshold coellicient of 0.5 is called

"classifier A", the classifier in this experiment can be called "classifier B". As shown in

table 4-4, classifier B with a distance threshold coefficient of 1.2 has a higher false alarm

rate and a lower onset detection rate than classifier A, and therefore is worse than

classifier A. As explained carlier, both onset deteetion rate and false alarm rate increase

when the distance thresholc' coefficient increases, and vice versa. Classifier B with a

distance threshold coefficient higher than 1.2 will not have a better result than classifier

A because the onset detection rate in classifier A is maximum (100%) and the false alarm

•
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rate in classifier B already surpasses that of classifier A. If classifier B has a distance

threshold coellicient lower than 1 2. its QV has an upper bound at the QV of classifier B

with a distance coellicient of 1.2 but for which the l'aise alarm rate is setto zero. Even

for classifier B with upper-bound. the QV is only 1.46. still much lower than classifier A.

As a result. knowing the performance of classifier B with the distance threshold

coellicient of 1.2, it can be concluded that classifier B is worse than classifier A. More

details about the proof ofthis conclusion can be seen in Appendix C.

•
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J.l.J.2 Cl.;lssificrs with Non P;'llicntwsllccilic Inform;ltinn

Wc also dcsigncd an cxpcrimcnt to train c1assifiers with non patient-specifie

information. Only patients with scalp electrodes were used in this experiment beeause

only this group of patient has the same montage so that their EEGs can be combined into

a single training data set. Since there are twelve patients in this group, we used template

seizures of eleven patients and their interictal EEGs sampled l'rom 24 hours as training

data sets. A non patient-specific classifier is then trained with these training sets. In other

words, as in figure 4-5, the seizure training data contain first seizures of eleven patients;

the interictal EEG training data consist of the same eleven patients' interietal EEGs

sampled l'rom 24 hours in each patient. This classifier is then used to evaluate the onset

deteetion rate and the false alarm rate on the seizures and interietal EEGs from the

patient who is not included in the training sets. This classifier is therefore a non patient­

specific one because this classifier was not trained with any information eoming from the

pati..;.t whose data are used for the testing. The same procedure was applied to every

patient until eaeh patient' s data have becn a testing set once and only once. A distance

threshold coefficient of 1.0 instead of 1.2 was used because of the same reasons

described in the previous e.xperiment. This classifier is much worse than the classifier in

the first experiment because il only has the QV value at 0.46.
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Results can be seen in table 4-4 It shows that c1assifiers trained with patient-specifie

information have beller results than classitiers trained with cithcr scmi-pmicnt-spccitie or

non-patient-specific information

Table 4-4: Comparison of c1assifiers with patient-specifie. scmi-pmient-spccitic and

non patient-specific information

Classifier PS Semi-PS Non PS

Template seizures come from one patient one patient manv patients

Interictal EEGs come from same patient manv patients manv patients

Interictal EEG sampled from 24 hours 264 hours 264 hours

Number of training seizures 1 1 II

Distance threshold coefficient 0.5 1.2 1.0

Detection rate 100% 48.6% Il.4%

Weighted delav 9.6s 34.3s 53.9s

false alarm rate 0.03/h 0.04/h 0.20/h

Quality Value (QV) 4.58 1.22 0.46

3.2 The Best Classifier

From ail above c1assifiers. we find that the best classifier has a distance threshold

coefficient of 0.5 and it is trained by two seizures and interictal EEG sampled from a

period of48 hours However. the availability of seizures has to be considered as a factor

because seizures are rare events. A classifier trained by one seizure and interictal EEG

from 24 hours is therefore more practical while maintaining a high quality. This classifier

can detect 100% ofseizures with an average dc:ection de1ay of9.6 seconds after seizure



anset Although the cJassical seizure detection method of Gotman (1982. 1990a) was not

meant for seizure onset detection, one can compare the results of the two methods to get

an idea of the order of magnitude of the difference because there is no existing onset

detection method for direct comparison, The cJassical method gave a seizure detection

rate ofll7% and an average onset detection delay of22.4 seconds, The average false

alarm rate for our method is 0,21/hour, compared to an average of2,2/hour in the

cJassical method. The details are shown in table 4-5.

Sorne seizure onsets can be detected very carly if they are abrupt. Figure 4-7A shows

a template seizure with an abrupt onset. In figure 4-7B. the seizure is from the same

patient and its onset was reported 2.5 seconds after the onset occurred. The de1ay was

caused by the detection epoch which has a length of2.56 seconds. From figure 4-7C, we

can see a template seizure which evolves gradually after the onset. The earliest seizure

pattern is hard to distinguish from sorne interictal EEGs from the same patient. This is

why an onset detection was reported only 9.9 seconds after the onset of a simi1ar seizure

(figure 4-70). These examples iIlustrate that abrupt seizure onsets are easier to detect

than graduai ones,
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Table 4-5: Results of the best classifier

1 -~-'-

•

Scalp Dcpth Total

Number oftvpes ofseizures 12 12 24

Number of oatients 12 5 17

Number of seizures tested 35 42 77

ASZ1 detection rate 83~/o 90% 87%

Seizure onset detectiol\ mte 100% 100% 100%

ASZ detection delav (sec) 19.7 23.6 22.4

Onset detections delnv (sec) 9.5 9.6 9.6

False alarm rate of ASZ (lh) 1.8 2.5 2.2

False alnrm rate lIhl 0.03 0.37 0.21

Interictal EEG tested (hrs) 29.7 35.2 64.9

1ASZ mcans c1assic automatic scil.urc dClcction mcthod of Gotm'm (19H2. 199U).



•
Chapter 4: Seizure Onset Detection Proll.jf""B

"Yt' Onsol
,MS. 93-216,3 JIt 07, 1~93 i , , ,
1t-..:3----1~~i~r '"v\J\A1~j~'"

1~~''I1''j~ ~.~1~tN'.,~v~M
1~~~: ,:nA-".n~rlJ 'iAAl\/\)
.flr--:r,erl~, A ,ÀJWirA , , rAf\ll~!
Jp~! ! ,~1Wyv1 'h(V'.,..
~.0IG4> ' ... " 1 ~

~4-et i !. .-·!~~\H~A'-M~
!PI'Il~~~!~~\I!V'{v
f~~~~~~tv:...vNJv~&t'VfW1\N'Y''t,'
~~~ : : 'h'V\~1 l , 1 1 1 1 1

i!r"1J~I~~IV\rvvvvIV\NVvV\'1"'wV'v-V""I~I~'
• 1 • • 1 1 1 1

jP2-i'p l ' ~~~~\f\J'v

i8~~----1~~V'y;.
1 1 • 1 1 1 1 1r 1 28 1 l~~i 1 l "''v,
1 1 1 1 1 1

'lWDa~ 1 • i . 1-- •• ..! 1 I~'-
Pattern A

•13.1

Figure 4·7: Detected seizure onsets and their templates: Paltern A is a template seizlIre with an abmpt onse\. Pallern D is a similar

seizure from the same patient and the onset detection was made 2.5 seconds aller the onse\. Pallern C is another template seizure with a

graduaI evollltion aller the onse\. Pattern D is a similar seizure and the onset detection was made 9.9 seconds aller the onse! becallse of

the graduaI evolution ofthe seizure pattern.
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The results show that this method is able to detect patient-specific seizure onsets

aecuratcly. rcliably and quickly Large sets ofinterictal EEGs sampled evenly from a very

long period of time ensure that the estimation of false alarm rates is accurate and

unbiased. ft can be noticed that there is not a large difference in results between scalp

cJectrode patients and depth clectrode patients except for false alarm rates. which are

more frequent in depth cJectrode patients. This is also the case for the chssic seizure

detection method. This is because the EEG of patients with depth electrodes has a larger

variety of patterns and greater dynamic range than the EEG of patients with scalp

clectrodes.

4.1 Motiv:ltions :\IId Goals

During long-term EEG monitoring. a patient may have a seizure at any time. In most

cases. if the patient does not feel the seizure coming. seizures can only be noticed when

behavioral manifestations or prominent EEG patterns occur and the patient is under

constant observation. Since constant observation of a patient is a tiresome and expensive

procedure. a seizure onset warning device allows observers to interact with the patient

when a seizure occurs. thus revealing sorne important information. such as memory and

speech ability. The problem is particularly serious for apparently subclinical seizures or

seizures with minor behavioral manifestation: these kinds ofseizures are usually missed

by observers and no interaction takes place during them. A system that can give a

warning signal when a seizure onset occurs is therefore very useful in this situation.

Since this system is designed as an independent on-lïne detection system with high



accuracy. it could possibly be used as a warning device outside the hospital. such as in tm

ambulance. or while monitoring at home

The goal of this method is tr detect seizures with a high seizure detection rate. a

shon detection dclay from onset and a low làlse alarm rate. It is impossible to obtain a

perfect performance in ail these conditions at the same time. A compromise has to be

made. Among these three goals. a low false alarm rate is the most imponant one. :\ high

false alarm rate ruins the elTectivencss of the device because warnings will be ignored by

observers if most of them are false \Vith a reasonably low false alarm rate. a high seizure

detection rate is the next thing to be considered 1\1issing a seizure is worse than

detecting a seizure with a longer delay from its onse!. :\ shon deteetion dclay should be

considered when the system maintains a low false alarm rate and a high seizure detection

rate. In our method. using the distance threshold coefficient and rclabeling sorne

template points are measures used to reduce false alarm rates. ail at the expense of

longer detection delays and possibly lower seizure detection rates.

In addition to making early seizure onset detections. this method also detects sorne

seizures that are missed altogether by other detection methods· if a seizure is missed by

the standard seizure detection method. similar seizures occurring later are also likcly to

be missed. By using our method. ifone ofthis kind ofseizures is somehow captured. ail

other similar seizures will also be detected.

•
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4.2 Tnlining of C1:1ssiliers

In data selection for the method. 12 types of seizures are used from patients with

scalp electrodes and 12 in patients with depth electrooes. This is to reduce the variance

of results between patients with dilTerent electrodes. Each type of seizures contains three

to seven seizures. There are two reasons for this selection criterion: (1) Ifthere are fewer

than three seizures. there are not enough seizures to test the consistency of Ihe



performance ofa c1assifier in a patient (2) Too many seizures ofone type will give a

highcr wcight to this typc when results are averaged from ail types. In this case. results

may be misleading

ft is shown in the results that the amount of training data affects the quality of

c1assifiers When both seizure and interictaltraining data are used appropriately to reflect

a priori knowledge of the frequency of seizures in patients. which is one seizure with

interictal EEG from 24 hours or twice as much in both. c1assifiers can be weil trained. In

contrast. using too much seizure training data. or too much interictaltraining data. will

result in deterioration of the overall performance of c1assifiers even though one aspect of

the performance is improved This is because there are three aspects in the determination

of c1assitier performance. Improving one of them may deteriorate others. The amount of

seizure and interictaltraining data have to be balanced. From our experiments, a seizure

with interictal EEG from 24 hours is the minimum training set. Any training data set

having a multiple ofthis minimum training set in both seizure and interictal data will train

c1assifiers better.

The amount of EEG used to train a classifier determines the quality of the classifier.

When a training data set contains ail interictal EEG patterns of a patient, the quality of

the classifier with respect to false alarm rate is the highest. Obviously, putting ail

interictal EEGs available into the training data set is the best way. However, this is

unnecessary because most of them are redundant data. The most important thing in

selecting the interictal data is not the size of data, but the period of time during which the

data are sampled because the longer that period, the more variety in the EEG patterns

likely to be included. For instance, one hour of EEG acquired continuously does not

include as many kinds of EEG patterns as one hour of EEG made trom samples taken

evenly throughout a period of24 hours. Because of the human biological clock, most

EEG patterns have a repetition rate of24 hours or less. Although sorne interietal EEG

patterns may occur or disappear from one day to the next, most interietal EEG patterns

•

•
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can be found within a day Thercfore. getting interietal EEG l'rom a period 01'::-1 hours is

a minimum requirement to represent most interietal EEG patterns Sinee a high sampling

rate results in too mueh data and a low sampl;ng rate takes the risk of being less

representative. a compromise has to be made. We used a sampling rate of one minute

every thirty minutes to eolleet interietal EEGs in an interval 01'::-1 hours for these two

reasons: (1) This will ereate a set of EEG with a totallength at OS hours whieh is a

reasonable size for proeessing. (2) This set of data ean be eonsidered representative of

most interietal EEG patterns of a patient.

lt is possible to retrain a classifier with new interietal EEGs itït appears that they

have ehanged during the monitoring session. By doing so. the c1assitier is kept up to date

with respect to possible slow changes oeeurring over several days

•
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4.3 Method

False alarms oeeur only when patterns in interietal EEGs are similar to sorne

patterns in the template seizure. Ifan onset occurs in a total ofN channels, an interictal

event is unlikely to trigger a false alarm because it is unlikely that EEG patterns in half of

N channels have matches with the template at the same time. lt is likely though that in

one of N channels at sorne time an EEG pattern has a match with the template. As a

result. the location feature plays an important role in the elimination of false alarms. ln

sorne patients with depth electrodes. seizures may be very focal and include only one or

two channels. ln terms of the constraint of the location feature. as long as there is a

match in one oftwo selected channels. th~ constraint is satisfied. In this case, a false

alarm is more likely to occur because there is a high probability that the constraint can be

satisfied. Although the location feature is very important in our method, it also relies on

the right features, practical distance measure and a conscrvative approach in the selection



of the classification boundary Alithese steps combine to make our system accurate and

reliable.

Our method is totally based on patient-~pecific information 10 detect patient-specifie

events We designed experiments to compare c1assifiers trained with patient-specifie.

semi-patient-specific and non-patient-specifie information. Results indicate thatthe use

of patient-specifie information provides the best performance. This provides confirmation

of the validity of our original approach.

The method was implemented and tested off-line. However. our method has taken

into account memory management and computationalload so that it may be eventually

implemented on-line For instance. the classifier uses the modified NN rule rather than

the k-NN rule. This is not just because both can achieve the similar error rate in the

recognition of EEG pattern (Gevins 1987a). but also because the k-NN rule needs much

more memory and computation, as discussed in the section on classifiers.

Our method has one major shortcoming: it only detects seizures similar to the

template. ln epilepsy monitoring. one wants to explore as many kinds of seizures as

possible. Therefore. our method cannot replace traditional unbiased seizure detection

which aims al recording ail kinds of seizures. Our method. however, can be used

together \Vith traditional seizure delection methods to detect possibly many seizures and

detcct some known ones as early as possible.

Although there is no seizure onset detection method with which to compare our

method, the! e are some methods in speaker recognition which aim at solving a similar

problem. ror instance. the speech signal is an one-dimensional signal, similar to the EEG

signal. Speaker recognition uses pre-recorded speeches from speakers as templates and

compares them to a new speech when speaker recognition is required. Soong et al.

(1985) used short-time linear predictive coding vectors as feature vcctors, and a veetor

quantization codebook to efficient1y charaeterize the short-time spectral features ofa

speaker. and a minimum distance (distortion) classification rule to recognize a speaker

•
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according to pre-recordcd speeches l'rom N speakers A minimum distortion is computcd

for each speaker by comparing this speakers spectral features \Vith other speakers'

spectral features Colombi et al. (1993) compared a similar method to a neural network

approach in the recognition of speakers. His results showed that the neural network

approach performs as weil as the other method in clean environments and better in noisy

environments The speaker recognition problem is similar to our problems because our

goal is to distinguish a seizure similar to a pre-recorded one (template) l'rom non-seizure

patterns and patterns of other kinds of seizures. DiITerent l'rom EEG signal which is a

multichannel signal. speech signal is a single channel signal. That is the reason wc used

the inter-channel information and there is no similar method in speaker recognition. Both

l'aise positive and negative detection in our method are very serious bccause l'aise alarnls

will annoy staIT people and missing a seizure means the loss of important information

about a patient. However. in speaker recognition. l'aIse negative detection is not very

serious because the speaker can try again. but l'aise positive detection is very serious

because a wrong person may be identilied.

Our method is not restrained to dctect only one type of seizure per patient. lt can be

used to df'tect multiple types of seizures in a patient. This has been demonstrated in our

evaluation of patients with depth electrodes. ln this group of patients. some patients have

up to three types of seizures. In that situation. each type of seizures has its own classilier

and therefore detecting three types of seizures in a patient means running three classiliers

concurrently. There is a signilicant negative eITect of such a situation: the l'aise alarm rate

will increase. possibly by as much as the number of seizure types.

ln our evaluation. we only selected similar seizures l'rom 17 patients. Although this

set of data is quite representative. it would be better if the data set was larger so that

results could be more reliable. ln addition. we did not select patients with two similar

seizures only because there are not enough data for testing in these patients. ln practice,

these patients can a1so use our method because, as long as there is a template. a patient



can start using our method to make onset detection. As a result. our evaluation may not

include ail possible cases
•
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4.4 Future Improvements

Our method needs an operator to determine the location feature and the time of

onse!. Ifthis step can be replaced by a program, the whole system will become fully

automatic and therefore no human interaction will be needed. Since this would be done

ofT-line, it is possible to develop a more sophisticated method to analyze a seizure and

determine its onset because the computational cost is no longer a serious threatto the

implementation.

It would be helpfulto re-evaluate our method on a group ofunselected patients. Our

method was only evaluated in 17 selected patients. (fwe redo our evaluation in a

practical clinical situation without any restrictions, several interesting questions can be

answered: (1) What is the percentage of ail kinds ofseizures which can be detected? (2)

What is the percentage of patients who can benefit from our method? (3) ln what sense

can seizures be called "similar" in our method?

Our method pays much attention to keep the false alarms as few as possible. When a

patient has a very low false alarm rate. it will be possible to increase the distance

threshold coefficient so that onset detection delay can be shorter at the expense of

possibly a higher false alarm rate, as shown in results. Therefore, a false alarm rate

rclated adapting algorithm could be utilized to keep false alarm rate at a constant low

leveI. for instance one in 24 hours. by changing the distance threshold coefficient for

each patient at difTerent times. This algorithm will make the system reliable with a

constant level of false alarm rate. while the onset detection can be as early as possible.

In our method, aIl features are computed from the current epoch only. This

contributes to false alarms since some isolated patterns in the background may be similar



10 sorne patterns in templates These làlse alarms could be avoided ifthere is a ne'"

feature containing the information about the evolution of scizures to distinguish those

isolated patterns similar to the template from real seizures. ln this case. only patterns.

similar to the template and with evolution characteristics similar to the template scizure.

will be detected as seizures. This will decrease the probability of false alarms

significantly However. since this feature considers the evolution of a scizure. it needs

more than one epoch to measure. This will delay the possible detection of a scizure and

therefore is a shortcoming in the onset detection. The best system should use our method

together with a method using the evolution feature. Since in sorne cases our method

cannot detect onsets early enough. this system will decrease the dclay of the onset

detection in these cases with few chances to cause additional false alarms.

•
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Our work represent a new approaeh to the field oflong-term epilepsy monitoring,

partieularly in the area ofthe reduetion offaise seizure deteetions and early deteetion of

seizures. Sinee ietai EEG pattems are highly variable from patient to patient, a universal

aIgorithm to detect ail seizures without causing many faise deteetions is very diffieult to

aehieve. An attempt has been made by Gotman (1982, 1990), but the performance of

this system has mueh room for improvement (pauri, 1992). In some patients, the ietai

EEG patterns, as weil as interietai EEG patterns, tend to repeat frequently during 10ng­

term EEG monitoring. Therefore, patient-specifie aIgorithms can foeus better on certain

patient-specifie patterns. By using a new "similarity" measure and a patient-specifie

classifier, the method for redueing false seizure detections inereases the performance of

seizure detection greatly in terms ofsensitivity and"aeeuracy. A comprehensive

evaluation has been done by using the holdout method and the rotation method.



Although on-line seizure anser detection has never been allempted before beeause

of the diversity of onset patterns. our algorithm for deteeting seizure onseL' indicates

that a high aeeuraey of deteetion. a rcasonable short dc1ay and a lo\\' làlse alarm rate an:

possible. It has also been shown that a modified NN rule ean perform weU in onset

deteetion while it has a minimum eomputational eost. Therefore. this method is able to

perform in real time to serve as a waming deviee.

Beeause there is a large variety in the EEG among patients. a universal c1assilier

can hardly perform weU in the deteetion of abnormal EEG patterns. sueh as spikes and

seizures. It has been illustrated by our methods that a classifier whieh has more patient­

specifie information performs better. Gotman (1990) indieated that. by extraeting the

eontext from a few seconds to approximately one minute. his scizure deteetion method

performed better than before. Our methods used patient-specifie information obtained

hours and even days preeeding the reeording and therefore performed very weil. This

brings the eomjluter method c10ser to human interpretation of the EEG sinee the EEGer

uses, consciously or uneonsciously, information from past recordings when intcrprcting

an EEG. This concept can certainly be used in the detection of other EEG patterns, sueh

as spikes and seizures in children and infants, or other physiological signais. such as

abnormal ECG patterns. The main disadvantage of the concept is that sorne paticnt­

specifie information has to be acquired before the system can star! working. This is

certainIy a major problem during short-term recordings, but it is much less critical

during long-term monitoring.

•
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Appendix B:

Block Diagram of the Algorithm for the
Detection of Seizure Onsets
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Appendix C:

Comparison of the Quality of Classifiers

Let us start with the foliowing known conditions:
C

( 1) QV = -.:-::-.--'-:------:-c----=---:-
(RI" + 0.2)' Ud), x Pd" ;. GO x p~d)

(2) T is the distance coefficient.

(3) Both RI" and P.,,, monotonicaliy increase with T.
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(4) J'm.d = I-J~"

(5) Wcighted delay J)= 1~), "~.: + GOxpm •d·

(6) Classifier A has RI" =0.03. pd,,=I. 1~(,.=9.G and WD=9.6 when T=0.5 and

therefore has a QV of 4.58.

(7) Classifier B has RI. =0.04. l'da =0.486. 1~",=7.11 and WD=34.3 whel' T= 1.2 and

therefore has a QV of 1.22.

We need to prove that classifier B with the optimal T cannot perform better than

classifier A with T=0.5.

Now let us look at ail threc possible cases:

Case 1: c1assifi~r A with T=0.5 and classifier B with T=I.2

As wc have computcd. the QV of classifier A is 4.58, which is higher than that of

classifier B. 1 22.

Case 2: classifier A with T=0.5 and classifier B with T<1.2

As we mentioned in the above conditions, both Rf0 and Pda will decrease when T

decreases. ln order to find the highest possible upper bound for QV in this case, we set

R,. to the lowest possible value, 0; l'oc to the highest possible value, 0.486 (the value



corresponding to T= 1.2, since lowcr values ofT result in lower values of I~",); and 1:11"

to the 10\Vest possible value, 0 \Vith allthese senings, the upper bound ofQ\' of

classifier B is only 162, whieh is làr lower than c1assitier A \Vith T=OS

Case 3: classifier A \Vith T=05 and_c1assitier B with T>l)

We already know that both R", and l'J" inerease when T inereases. As a result,

when T> 1.2, R,. beeomes larger, although it is already larger than the R,. of classifier A

with T=O.5. Sinee l'J" has the highest possible value. 1. it is also the highest upper bound

for the l'J" of classifier B. Assuming classifier B could possibly reduce the weighted

delay WD to the level of that of classifier A without increasing R ,." the QV would be

4.3. This extremely unlikely high value for the QV ofclassilier B is stilliower than that

of classifier A with T=O.5.

By analyzing ail three possible cases, we ean conciudc here that classifier A with

T=O.5 always has a higher QV than classifier B with any value ofT.

•
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