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Abstract

During long-term EEG monitoring of epileptic patients, seizure detectic n assists in
selecting information important for diagnosis. We present 2 new generation of detection
methods with self-adapting, more specifically patient-adapting, algorithms for two
functions: (1) Reduction of false seizure detections (FSDs), thus increasing the
sensitivity of detection. (2) Detection of seizure onser, thus providing a warning which is
useful to patient and observers, allowing appropriate precauticns and observations.

The self-adapting algorithm for reducing FSDs utilizes FSDs from one baseline
monitoring session as template patterns. In subsequent sessions, events having a pattern
similar to any template pattern are eliminated from the detection. A umque "similarity"
measure was used to refiect the relation between two multichannel EEG patterns. An
extensive test was done on twenty patients with 2600 hours of monitoring. Results show
an average reduction in FSDs by 61% with a risk of missing seizures of 2.7%, comparing
to the most commonly used method.

The self-adapting algorithm for seizure onset detection assumes one seizure has been
recorded and uses that seizure and one set of non-seizure EEG to train a patient-specific
classifier. By using special features and a modified nearest-neighbor classifier, this
algorithm reached an onset detection rate of 100% with an average delay of 9.6 seconds
after onset. The average false alarm rate was only 0.21/hour, making it an acceptable
warning device. This test was done on 17 patients with 77 setzures.

In conclusion, our self-adapting algorithms make seizure detection more accurate
and effective than was possible before. They are also efficient, practical and capable to

work in real time.



I

Résumé

Au cours des sessions prolongées d enregistrement EEG chez des patients
épileptiques, la detection de crises aide a obtenir des renseignements ditagnostiques.
Nous présentons ici une nouvelle génération de méthodes de détection consistant en des
algorithmes auto-adapiatifs ayant deux fonctions : (1) la réduction du nombres de
fausses detections, permeztant ainsi d'augmenter la sensibilité de la détection et (2) la
détection du début des crises, procurant aux patients et observateurs un avertissement
leur permettant de réagir et de d ajuster lzurs observations en conséquence.

L’algorithme auto-adaptatif pour la réduction des fausses detections utilise les
fausses detections de la premiére session d’enregistrement comme pattern de base.
Pendant les sessions suivantes, les événements dans lesquels on retrouve un pattern
semblable a un des patterns de base sont éliminés de la détection. Une mesure unique de
similarité a éte uiilisée pour déterminer la relation entre deux pattems apparaissant dans
plusieurs voies d"EEG. Un examen approfondi a été mené auprés de vingt patients pour
un total de 260C heures d’enregistrement. Les résultats obtenus indiquent une réduction
des fausses detections de 61% avec un risque de perte de vraies crises de 2,7%, en
comparaison avec la méthode la plus couramment utilisée.

L’algorithme auto-adaptatif pour la détection du début des crises suppose qu’une
crise a déja eté enregistrée et utilise cette crise ainsi qu’un échantillon représentatif de
I'EEG sans crise pour former un classificareur particulier 2 chaque patient. A partir de

caractéristiques spéciales et d’un classificatenr modifié basé sur la méthode des plus
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proches voisins, I"algorithme atteint un taux de détection du début des crises de 100%
avec un délai moyen de 9.6 secondes aprés le début. Le taux moyen de fausses alarmes
est seulernent de 0.21 par heure, rendant la methode utilisable comme apgpareil
d’avertissement. Nous avons evalué cette methode sur les EEGs de 17 patients ayant eu
un total de 77 crises.

En conclusion, nes algorithmes anro-adaptatifs rendent la détection de crises plus
précise et_efficace qu’auparavant. Ils sont aussi plus efficaces, pratiques et capables de

fonctionner en temps réel.
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Claim of Originality

This dissertation contains following original contributions:

1. With _respect to the methods used:

a.

A new definition of similariry. Different from other definitions of
similarity, the new similarity defined in this proposal relies not only on
the Euclidean distance of two patterns in a detection space. but also on
probability distributions of their own class. A modification factor is
also imposed to avoid negative effects of extreme cases. This measure
is used to determing if a new pattern is similar enough to a previously
stored pattern.

The quantitative expression of inrer-channel informarion: Traditionally,
EEG channels are considered to be independent. In this proposal, a
quantitative expression of distance between channels is presented. This
makes it possible to take distance between channels as one of the
dimensions in a detection space.

The average power in a main energy zone: This feature is created to
measure the concentration of energy of a section of EEG in the
frequency domain. It reveals important characteristics of ictal EEG
patterns. By using a logarithmic scale, this feature can make it easier to
distinguish ictal EEGs from interictal EEGs.

Self-adapring algorithms: The algorithms presented in this proposal can
automatically adjust their classifiers to fit each patient's situation, as
long as there is a known prototype of this patient's seizure as an input.

These algorithms will be shown to be capable to reach the optimal



classificr for each patient without any human interaction. It makes

these algorithms very efficient and practical.

2. With respect to the problems to be solved:

a. The use of patient specific data to improve the performance of a
method for the automatic detection of epileptic seizures has never been
done.

b. The very concept of an "early seizure detection device" capable of
warning the patient or hospital staff that a seizure has just started is
original and its implementation Las never been attempted before.

despite its obvious medical importance.
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Chapter 1: Introduction

Chapter 1:

Introduction

Since the electroencephalogram (EEG) was first recorded on humans by Berger
in 1929 (Gloor, 1969), it has been playing a significant role in the diagnosis and the
evaluation of treatments for brain related diseases (Gloor, 1985a). Among the main
neurodiagnostic procedures, s.:ch as EEG, positron emission tomography, magnetic
resonance measurements, EEG is the only one which can provide continuous recording
of cerebral function over a long period of time. In studying epileptic patients, long-term
EEG monitoring often provides information which is difficuit or even impossible to
obtain by any other means. For instance, seizures are the most important clinical and
diagnostic features of the disease and they occur only rarely and unpredictably. Another
epileptiform EEG abnormality, the spike, usually occurs more frequently than seizures,

but it still occurs intermittently and unpredictably. EEG recording during a short period
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of time is most often not sufficient to record a seizure or even a spike. Therefore, long-
term EEG monitoring, which lasts from several hours to several days, even several
weeks, can greatly increase the probability of recording seizures,

Monttoring an epileptic patient continuously over a long period of time, with an
observer watching the patient’s behavioral manifestations and EEG patterns
simultaneously, is one way to capture all seizures and spikes. This procedure is,
however, very labor intensive and expensive. Another way is to record the patient’s EEG
and behavior continuously but to review them after the monitoring is finished. The
biggest disadvantage of this procedure is that it generates a large amount of data and
review is therefore veiy time consuming,

During a long-term monitoring session of a patient with epilepsy, most data are
redundant and sometimes irrelevant because most EEG patterns are repetitive and not
specific to epilepsy. A data reduction method is therefore useful to decrease redundancy
and extract specific features of interest for epilepsy. Seizure and spike detection methods
are examples of data reduction methods useful in long-term monitoring of epileptic

patients.
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1 Motivations and Objectives of the Cissertation

The seizure detection method of Gotman (1982, 1990a) has been used for several
years at the Montreal Neurological Hospital and in many other hospitals. Although this
method can detect many seizures with a reasonable false alarm rate (Paun et al. 1992),
there is still much room for improvement. This dissertation aims at creating a new
generation of seizure detection method having a much lower false alarm rate, a higher
seizure detection rate and earlier seizure detection. A lower false alarm rate can lead to
higher seizure detection rate because the detection sensitivity can thus be increased
{Pauri et al. 1992). In addition, detecting seizures as soon as they start can give
observers a chance to interact with patients to obtain information which cannot be
acquired otherwise.

In the method of Gotman (1982, 1990a), a universal classifier 1s used to
determine if a section of EEG is part of a seizure. Altﬁough there are some common
characteristics to many seizures, seizures from different patients are different, as is the
background EEG. Therefore, we think it is necessary to consider patient-specific
information to create a different classifier for each patient so that the performance of
seizure detection methods can be improved significantly. As a result, the main objectives
in this dissertation are to use patient-specific information to develop a seizure detection
method with (1) a much lower false seizure detections rate than the current method and
consequently a better seizure detection sensitivity. (2) the ability to detect seizures early

in their development.
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1.1 Reduction of False Seizure Detection

The need for a low false alarm rate in long-term EEG monitoring is obvious: to
reduce uninteresting and redundant data. At the Montreal Neurological Hospital, five
patients are currently under long-term EEG monitoring every day; on average, a patient
is monitored during 12 days. The false seizure detections (FSDs) cause unwanted data to
be stored and therefore reduce the effectiveness of a seizure detection method. The FSD
rate of the system of Gotman (1982, 1990a) was estimated to be 0.84/hour for scalp
electrode patients and 1.35/hour for depth electrode patients (Gotman, 1990a). In
another study (Paun et al. 1992}, the same seizure detection system was evaluated.
Depending on the detection threshold, the average FSD rates were between 2.70/hour
and 5.38/hour. It was confirmed in that study that a higher detection threshold results in
a lower false alarm rate, as well as a lower seizure detection rate.

Whereas the FSD rate averaged over many patients is acceptable, it can become
significantly higher and reach an unacceptable level in some patients. This usually
happens when one or a small number of EEG patterns occur repeatedly in a given patient
and cause many FSDs during several consecutive monitoring sessions. These FSD
patterns vary from one patient to another. Thus, they can be called patient-specific FSD
patterns.

As indicated in the study of Pauri et al. (1992), it is difficult to reduce FSD rates
without reducing seizure detection rates because, by changing detection thresholds,
lower FSD rates can only be achieved at the expense of lower seizure detection rates.

For patient-specific FSDs, however, it may be possible to reduce FSDs with little effect
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in detecting seizures. Because 2 patient 1s typically monitored for several days, we are
proposing a monitoring system that can be “taught” to recognize and stop detecting EEG
patterns clearly identified as FSDs early in the monitoring. However, the reduction of
this kind of patient-specific FSDs should not result in a reduction in the ability to detect
seizures. Reduction in false detections without major effects in detecting seizures is
possible because we are no longer classifying ail seizures from all non-seizures in all
patients. Instead, we focus on eliminating EEG patterns similar to those pre-defined FSD

patterns from each patient.

1.2 Seizure Onset Detection

The early part of seizures is always interesting to electroencephalographers
{EEGers) singe it reveals important information about the location in the brain of the
epileptic focus. Moreover, interaction with a patient during the early part of a seizure,
such as testing the patient’s consciousness, can help to determine the type of seizure.
Since observers are not watching a patient all the time during long-term monitoring, a
warning signal when a seizure occurs would be very helpful in this situation so that
observers can take appropriate actions.

Although we talk about a method of seizure onset detection, we actually mean
detecting seizures early. This is because there is no specific pattern called *“seizure
onset” in all seizures. When a seizure occurs, it is possible to detect it only when enough

information is processed, which may take at least a few seconds.
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It is difficult to detect seizures early because seizures from different patients are
different and the early pattern of a patient’s seizure may look similar to non-seizure
patterns in another patient. As a result, no on-line seizure onset detection method has
been developed. Seizure detection methods only attempt to capture prominent seizure
patterns rather than earfy seizure patterns. For instance, the seizure detection method of
Gotman (1982, 1990a) captures seizures by using information over a long period of time
before and after the current detection window. It is not appropriate to detect seizures
early since, at the time a seizure pattern is found, the method has to wait a dozen
seconds to increase the probability that the detection is correct.

It has been observed that most patients have one or sometimes two or three types
of seizures which are repetitive. Seizures of each type are very much alike in terms of
EEG patterns, including the early part of seizures. Although early EEG patterns in some
seizures of a patient may be similar to some background EEG patterns of other patients,
these seizures are usually different from the background SEG of the patient in whom
they occur We can therefore use the concept of “patient-specific seizure onsets™.

According to the above observations, it is possible that a seizure can be detected
soon after onset if (1) a template of this type of seizure was acquired in advance; (2) a
match could be made between the template and the seizure. Detection of this kind of
patient-specific seizure onset must not, however, cause frequent false alarms because
they would annoy patients and observers, and all the detections would eventually be

ignored,
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2 Organization of the Dissertation

The dissertation has five chapters. Chapter 1 is an introduction. Motivations and
objectives of the dissertation are presented.

In chapter 2, we first review some basic notions about EEG signals, EEG
recording systems and abnormal EEG patterns, including spikes and seizures. The
previous work on long-term EEG monitoring and automatic detection of spikes and
seizures is then reviewed. Finally, some pattern recognition theory and applications are
described, as they may relate to our applications.

In chapter 3, we present a pattern recognition system designed to reduce false
seizure detections by automatically adapting to each patient's situation. A unique
"similarity" measure is explained in detail. It reflects the relation between two EEG
patterns in a detection space. A comprehensive evaluation of performance was done and
is described in this chapter.

In chapter 4, the method for detecting seizures early is presented. After
explaining the algorithm, we present comprehensive tests of detection rate, detection
delay and the false alarm rate, showing promising results.

The last chapter, chapter 5, summarizes the work and provides possible

directions for further development of seizure analysis and detection.
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Chapter 2:

Literature Review

In this chapter, we will describe first the features of the EEG in epilepsy, then give
a description of long-term EEG monitoring systems and of existing spike and seizure
detection methods. Finally, we will present a review of some pattern recognition

methods that are related to this project.

1 Characteristics of the EEG in Epilepsy

The EEG is a random and stochastic signal (Lopes da Silva 1987a). It is the
recording 6f cortical neuronal activity. The recording can be done near the brain (scalp
EEG), directly on the brain (cortical EEG) and within the brain (depth EEG)
(Sharbrough 1990).
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1.1 EEG Signal

The main generators of the EEG are cortical neurons, more particularly pyramidal
neurons (Gloor 19835b). The amplitude of EEG signals depends on the distance between
generators and a recording electrode, and on the tissues between the generators and the
electrode. Since depth electrodes are usually closer to cortical neurons than scalp
electrodes, the amplitude of EEGs recorded by depth electrodes is usually larger than by
scalp electrodes. In addition, EEGs recorded by depth electrodes have less artifact than
EEGs recorded by scalp electrodes because non-cerebral sources of electrical activity
are also recorded at the scalp. This is particularly the case for electrical activity from
scalp muscles and from the movement of eyeballs (The potential of the anterior part of
the eyeball is different from that of the posterior part and its movement thus creates an
electrical field). When EEGs are recorded with scalp electrodes, the amplitude is of the
order of 20pV to 100V, which is approximately one hundredth of that of the
electrocardiogram (Morris and Luders 1985).

1.2 EEG Recording System

Electrodes in different locations pick up signals from a same source differently
because the amplitude of the EEG is determined by tissues between electrodes and
generators. In our study, we only study patients with scalp electrodes and depth
electrodes. The different EEG recording systems for the different kinds of electrodes are
described below.
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1.2 1 Scalp Recording

In order to sample scalp electricai fields adequately, one must systematically place
an appropriate number of electrodes (Reilly 1987; Sharbrough 1990). The distance
between electrodes should reflect the spatial frequency of the EEG. In many situation 16
electrodes are sufficient, but it has been shown that for some patterns, up to 128 may be
required (Gevins, 1994). Placing more electrodes results in a higher spatial resolution
because the distances between electrodes decrease. However, placing more electrodes
also results in more data to be processed and stored in the same period of time. The
computation and storage capacity of the computer becomes the decisive factor in the
determination of the number of electrodes to be placed. For instance, with the advance of
computer technology, the number of electrodes in each patient has been increased from
16 channels to 32 channels and now even to 64 channels at the Montreal Neurological
Hospital. The most common system of electrode placement for scalp electrodes is the
international 10-20 system (Jasper 1958) which is used in our studies and the placement
of the 19 electrodes is shown in figure 2-1. A more recent system {Chatrian et al 1988)
has 81 electrodes placed a closer intervals, but it is rarely used because of its large

number of electrodes.

1.2.2 Depth Recording

When a patient’s epileptic focus cannot be determined from scalp recordings, the
patient may undergo implantation of intracerebral electrodes because the location of the
focus may be too far away from the scalp. The depth electrodes record the EEG directly
from inside the brain. They are placed as close to the suspected epileptic focus as
possible. Since every patient’s epileptic focus is different, there is no standard system of
depth electrode placement, which is therefore individualized. Figure 2-2 is an example of

the electrode placement in a patient {Olivier et al. 1987).
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Figure 2-1: The international 10-20 system for determining locations of scalp

electrodes. Schematic representation of the head seen from the top.

11
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Figure 2-2: An example of the location of depth electrodes in a paticnt: Depth
electrodes are implanted into the brain to record the EEG signal from regions
inaccessible by scalp recordings and to be free of muscle artifact. The exact location of
electrodes is determined by a frame with fixation pins and by magnetic resonance
imaging. A are an epidu-al electrodes. B, C and D are intracerebral multicontact

electrodes.
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1.3 Methods of EEG Analysis

There are many methods to analyze the EEG signal. Visual interpretation by
EEGers is the one that has been used since the EEG was first recorded. Computerized
EEG analysis has developed rapidly in the last several decades. We review briefly

below some of these methods.

1.3.1 The EEG Montage

In order to delineate the spatial distribution of a changing electrical field, an
orderly arrangement (called a montage) of multiple channels is required. According to
IFSECN (1974), the montage is "the particular arrangement by which a number of
dertvations are displayed simultaneously in an EEG recording.” Montages can be
divided into two categories: referential and bipolar. The referential montage displays the
difference in potential between each electrode and a common reference electrode. Each
channel in a bipolar montage displays the difference in potential between two different
electrodes. Figure 2-3 is an example of montages for scalp electrodes recordings, while

figure 2-4 is the one for depth electrodes recordings.
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Figure 2-3; Bipolar montage for scalp electrode recording: Everv channel of EEG is
a subtraction of activity from two electrodes and the recording system is based on the
international 10-20 system. For instance, channel 1 is the difference between the

potential at electrodes Fpl and F7.
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Figure 2-4: A montage for depth electrode recordings: This bipolar montage is specific for a particular patient. Every patient has a
specific location of electrodes. LB, RB, LA, RA, etc. are the names of electrode stands. The number at each electrode indicates the

actual contact location. The montage is a combination of pairs of electrodes.
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1.3.2 Traditional Interpretation of the EEG

Traditionally, the EEG is interpreted visually by experienced EEGers for clinical
purposes. This procedure has been used since the EEG was first recorded. For instance,
the sleep EEG is usually classified into sleep stages so that a person’s sleep normality
can be determined. For epileptic patients, the EEG is usually reviewed visually to detect
epileptic patterns, like spikes and seizures, so that the type and the origin of seizures can
be determined. Some patients with migraine may have their EEG interpreted to rule out
cerebral pathology (Niedermeyer 1987d). The interpretation of the EEG is also used in
psychiatric disorders to determine states of mental retardation, attention deficit disorder,
behavior disorders. (Small 1987). Visual interpretation of the EEG is, however,
Jualitative and subjective. When the recording is long, lasting many hours or even
several days, the recording and interpretation becomes tedious, labor-intensive and
expensive. Therefore, the computer is utilized to fulfill some parts of EEGers’ tasks.
Moreover, the computer can perform tasks which are not included in the traditional
EEG analysis, such as making precise measurements of time relations between events in
several channels, performing digital filtering without distortion, and statistically
analyzing features of an EEG (Gotman 1990b),.

133 Computerized EEG Analysis

Since computerized EEG analysis is objective and quantitative, it has been used
widely in extracting statistical features, spectral analysis, digital filtering and display of
results. .

Computerized analysis can extract statistical features of the EEG. For instance,
parametric representation of the EEG, such as the autoregressive model for the study of

epileptic patterns (as reviewed by Lopes da Silva 1987b), used a small number of
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parameters to represent a section of EEG. Mimetic methods, like those of Gotman
(1976) and Frost (1987), attempt to mimic the process of human interpretation of the
EEG by finding waves comprising the various known EEG patterns: alpha waves.
spindles, seizures and spike.

Spectral analysis is the quantitative method that has been used most commonly.
Since the Fast Fourier Transform (FFT) was developed by Cooley and Tukey in 1965. it
has been commonly used in the analysis of EEG bapkground. For instance, Oken and
Chiappa (1988) used spectral analysis to study variability among different frequency
features, such as mean frequency, peak frequency and average power in background
EEG. Techniques to perfocrm spectral analysis of EEG background activities, as well as
primary and postprocessing techniques currently used in climical and experimental
settings were reviewed by Dumermuth and Molinari (1987). Computerized EEG
analysis can also quantitatively present the correlation between two channels of the
EEG by computing cross-correlation (Gevins 1987b) and coherence (Brazier 1972;
Gotman 1983).

Digital filtering is another utilization of computerized EEG analysis. Because
digital filtering can filter the EEG without phase distortion, for instance with a finite
impulse response filter, it has been used by Urbach and Pratt (1986) to distinguish the
superposition of different waves which have distinctive frequency bands in the study of
auditory evoked potential signals.

The computer is also used to display results of analysis of several EEG channels on
a map of the head or brain so that spatial relationships can be easily observed. This kind
of topographic display has been used to present ratio of EEG activities (Gotman 1981),

number of spikes (Gotman 1976) or degree of normality (Matousek and Petersen 1973).
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1.3.4 Segmentation of the EEG

The EEG is a non-stationary signal (Barlow and Dubinsky 1985). However, it can
most often be considered time-invariant within 20 seconds (Lopes de Silva 1987b). In
computerized EEG analysis, the EEG is divided int§ sequences of analysis windows so
that computations can be done in each window. These windows are also called
segments, or epochs. The EEG inside an epoch has to be considered time-invariant and
wide-sense stationary so that some transforms, such as the Fourier transform. can be
performed (Shanmugan and Breipohl 1988). Segmentation of the EEG should also take
into account the characteristics of the particular EEG being analyzed. For instance, in
the analysis of the EEG when an epileptic patient is not having a seizure, an epoch of
under 10 seconds is adequate because the EEG in each epoch can be considered time-
invariant (Cohen and Sances 1977). In the study of sleep, epochs of 30 seconds are
commonly used (Barlow 1985) because most sleep patterns do not have a rapid change
in a period of 30 seconds. It is not the case for studying the EEG during seizures.
Because patterns during seizures, especially at seizure onset, have a more rapid change
than interictal patterns, it is then better to use a short epoch so that the time-invariance
and wide-sense stationarity can be considered appropriate. While most EEG analysis
uses fix epoch lengths, Praetorius et al. (1977) used an autoregressive model to do
automatic segmentation of the EEG. In that method, the EEG is first divided into
sections lasting a few seconds. Each section is then described using an autoregressive
model and compared with the subsequent one to determine if iwo sections can be
accurately represented by the same model. If they do, these two sections are combined
into one. The same procedure continues until one section of the EEG is no longer
represented by the same autoregressive model. This method thus divides the EEG into
epochs of similar characteristics. Although this segmentation method is good, it requires

a lot of computations and therefore it can hardly be implemented to work on-line.
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Moreover, this method may create different length of segments in different channels and

therefore time alignment between segments in different channels becomes a problem.
1.4 Abnormal EEG Patterns in Epilepsy

The principal tasks of a clinical EEGer are to recognize particular waveform of
diagnostic significance, such as spikes, sharp waves and delta waves, and to identify the
likely location of their generators within the brain (Gloor 19835a). The scheme in figure
2-5 describes the overall way in which EEGers classify the EEG of a patient with
epilepsy. Although in our studies only seizures are dealt with, characteristics of spikes
are briefly described because spikes and seizures are highly related and are the patterns

most characteristic of epilepsy.
141 Spike

The spike is an abnormal EEG waveform specific to epilepsy. Spikes occur
randomly, with a rate ranging from one in a few seconds to one in a few hours. Wave
morphology and spatial distribution of spikes can reveal information about the type of
spikes and their sources. As a result, they are very important in the clinical diagnosis
(Niedermeyer 1987b).

According to IFSECN (1974). the spike is "a transient, clearly distinguished from
background activity, with pointed peak at conventional paper speeds and a duration
from 20 to under 70 milliseconds, i.e., 1/50 to 1/14 sec, approximately. Main
component is generally negative relative to other areas. Amplitude is variable.” A spike
can exist isolated, or several spikes may group together to form a burst, like 3/sec

spikes-and-waves, which usually lasts a few seconds.
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Figure 2-5: Scheme of EEG classification for epileptic patients by EEGers.
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142 lctal EEG

The ictal EEG 1s the EEG during seizures. Epileptic seizures are abnormal reactions
of the brain caused by a number of diseases. The entire brain or parts of it may be
involved and the extent of involvement largely determines the type of seizure
(Niedermeyer 1987¢). A seizure can last from a few seconds to dozens of minutes, but
usually lasts about one or two minutes. There are two aspects of a seizure which are of
interest to us: clinical manifestations and ictal EEG patterns. Most seizures have both
clinical manifestations, which may include limb movements, absence of consciousness,
screaming, or staring, and ictal EEG patterns. such as a sudden decrease in amplitude, or
a sudden increase in amplitude and frequency . However, some seizures may have only
clinical manifestations but no change in EEG from the background. This may be caused
by the fact that the electrodes are too far away from the epileptic focus, the part of the
brain where the seizure is generated. Some seizures. may not have clinical manifestation
but have significant epileptic discharges in the EEG. This kind of seizure is called
“subclinical seizure”. When a patient has focal seizures and seizures do not spread to
areas of the brain that cause clinical manifestations, 2 subclinical seizure occurs.

In our studies, we only analyze the EEG. Therefore, all seizures in our studies have
ictal EEG patterns. These seizures may or may not be accompanied by clinical
manifestations. According to the IFSECN (1974), ictal EEG patterns are defined as:
"phenomenon consisting of repetitive EEG discharges with relatively abrupt onset and
termination and characteristic pattern of evolution, lasting at least several seconds. The
component waves or complexes vary in form, frequency and topography. They are
generally rhythmic and frequently display increasing amplitude and decreasing
frequency during the same episode. When focal in onset, they tend to spread

subsequently to other areas."
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143 Interictal EEG

The EEG of an epileptic patient at a time when no seizure is taking place is called
the interictal EEG. It is also referred to as background EEG. The interictal EEG

comprises normal patterns, and abnormal patterns, such as spikes.

Although spikes may originate from several regions, most spikes are caused by the
same epileptic foci as those which cause seizures. Therefore, the spatial distribution of
spikes may give useful information about the locali.zation of the focus. For instance, ifa
patient has 90% of his spikes in the right temporal region, it is likely that his seizures
origi:ate from the right temporal lobe. However, this is not always true and it is rarely
possible to localize the epileptic focus of a patient by simply using one single
measurement.

Spikes are most often isolated but sometimes can appear in bursts. When this kind
of burst lasts less than two or three seconds, it will not be identified as a seizure
according to the definition. When spike bursts last long enough, however, they could be
called seizures. For instance, several 3/second spike-and-waves are considered as spikes
only. When this kind of spikes and waves last longér than several seconds continuously,

it could represent the EEG pattern of a so called "absence” seizure.
1.5 Characteristics of Ictal EEG

There is no stereotype pattern for all seizures. Most seizures however have some
common characteristics, such as a rhythmic discharge of large amplitude or a low
amplitude desynchronized EEG at onset, and repetitive spikes and irregular slow waves
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later (Cotman 1985; Niedermeyer 1987¢). The definition of a seizure still remains vague
because seizure patterns are highly variable and some seizures may not have these
characteristics while some may have only some of them. For instance, in terms of ictal
EEG manifestations, the grand mal seizure is initiated by an abrupt loss of voltage of a
few seconds duration. Then in patients with primary generalized epilepsy. several
generalized bursts of polyspike-wave complexes may follow. Otherwise, rhythmic
activity at about 10Hz with rapidly increasing amplitude will then dominate the EEG.
About 10 seconds after the onset of a seizure, slower frequencies are noted, gradually
slowing into a frequency range between 2Hz to 7 Hz. The EEG then becomes postictal
with slow waves. For absence seizures, the ictal EEG is characterized by the generalized
synchronous 3Hz spike wave discharge. This kind of spike wave discharge is maximal
over the frontal midline and starts at a rate of around 4Hz, quickly slowing down to 3Hz
and during the final phase of the seizure, slowing to about 2.5Hz. Onset and termination
are abrupt and the seizure may te preceded and immediately followed by normal EEG
activity (Niedermeyer 1987c¢).

Nevertheless, ictal EEG patterns can be differentiated from the interictal EEG
patterns of a given patient (Sharbrough 1993). This‘ characteristic is the most essential
one in the identification of a seizure and was used in our studies. In addition, a patient
may have several tvpes of seizures. For a given type of seizure In a patient, the same
ictal EEG patterns appear in the same electrodes because the ictal EEG comes from the
same generators.

There have been documented disagreements between readers of the same EEG
record for the presence of epileptic transients, as well as inconsistency in the same
EEGer (Ktonas 1987). The same thing happens to the recognition of seizures, especially
subclinical seizures, and the determination of seizure onset. This is because spikes and

seizures are not well defined morphologically and leave many aspects of the
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interpretation to EEGers. This increases the complexity of the problem of automatic

detection.
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2 Long-term EEG Monitoring

Long-term EEG monitoring. which is usually combined with video and audio
monitoring, is one of the most important tools in the diagnosis of epilepsy and the
understanding of its mechanism. This is because long-term EEG monitoring allows
recording during long periods of time and thus allows capturing unpredictable EEG
events, such as spikes and seizures. No other measurements, even with the most
advanced methods like positron emission topography (PET) or magnetic resonance
imaging (MRI), can offer the continuous monitoring provided by the EEG (Gloor
19852). Long-term EEG monitoring can provide answers to several important questions
in the diagnosis and therapeutic management of seizures. The first one is: does the
patient have epilepsy or another episodic disturbance? This is one of the most important
diagnostic questions. The second is: what kind of epilepsy does the patient have?
Correct determination of the type of epilepsy can ensure that the optimal medical
therapy is given to the patient. The third one is: which part of the brain is the focus of
this patient's epilepsy? The answer to this question is essential to neurosurgeons who
make a decision regarding which part of the brain is to be removed to stop medically
intractable seizures. Long-term EEG monitoring can also be used to compare the result
of a treatment by measuring seizure and spike frequency, as well as background EEG,
before and after the treatment. .

Although Iong-term EEG monitoring could theoretically be implemented as early
as the EEG was first discovered in 1929, it has not been possible in practice until 1960s,
when it was first used in sleep research. Long-term EEG monitoring is now mostly used
in monitoring epileptic patients because epileptic events, like spikes and seizures, occur
rarely and unpredictably. A typical EEG monitoring session lasts 10 to 24 hours and a
patient may undergo several monitoring sessions. There are several drawbacks in the

traditional EEG recording procedure, consisting of the EEG recorded on paper charts
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and visually reviewed by EEGers. The first drawback is that it generates a large amount
of paper. The second is that such a long EEG takes a long time to review and most of
the recording is redundant. This makes it difficult for EEGers to be attentive to details
all the time and therefore the accuracy of the interpretation suffers. The third drawback
is that in order to catch all seizures, including those with electroencephalographic but no
or very minor behavioral manifestation, it is necessary to have a person watching the
patient and the EEG continuously. This is a labor intensive and expensive procedure. As
a result, it would be useful to have a system which can replace this labor intensive
procedure by detecting and presenting only the EEG patterns of diagnostic significance.

A typical long-term EEG monitoring system consists of electrodes, amplifiers, A/D
conversion and computer software for recording, storage and processing. In addition, a
video-audio recording system is used to record the patients’ behavior simultaneously.
Synchronization between EEG recording by computer and video-audio recording is
realized by a system allowing to write on the video signal the time coming from the
computer (Gotman et al. 1985).

At the Montreal Neurological Hospital, a long-term EEG monitoring system has
been used for many years. The configuration is shown in figure 2-6. This system is also

used in all data collection and analysis for the studies presented in this thesis.
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Figure 2-6: Block diagram of monitoring system at the Montreal Neurological
Hospital. This system has been used in the hospita! for many years. Today, the recording
media have been changed from digital tapes to optical disks.
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There are currently not many other types of long-term epilepsy EEG monitoring
systems. Ives and Woods (1975) developed an ambulatory cassette EEG system to
perform monitoring in routine laboratory EEGs and intensive inpatient monitoring. The
system is portable, less cumbersome and also usable for monitoring outside the hospital.

A seizure and spike detection method has been used to analyze the EEG recorded in
an ambulatory cassette by Ives (1994). The system can reduce a 24-hour recording into
a much shorter length (<1 hour) so that EEGers can review only the EEG with spikes

and seizures,
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3 Automatic Spike and Seizure Detection

Seizure and spike detection methods are data reduction methods. During long-term
monitoring, most of the EEG is not interesting to EEGers and therefore can be
discarded. Only the EEG related to epileptic activities, spikes and seizures, is interesting
and therefore should be retained. As a result, the first priority of a detection method is to
keep as many spikes and seizures as possible. In other words, the detection rate should
be as high as possible. False alarms will cause non-interesting data to be retained. Thus,
false alarms should be as few as possible. Given the complexity of EEG patterns in
epileptic patients, a trade-off between seizure detection rate and false alarm rate has to

be considered.

3.1 Detection of Spikes

There are numerous spike detection methods, according to Ktoras (1987). They fall
into five categories:

1.Orthogonal transform: The Fourier analysis was used by Principe and Smith
(1982) for band filtering to separate sustained 3Hz spike and wave from background
EEG.

2.Correlation methods. including matched filtering: Barlow and Dubinsky (1976)
calculated a correlation coefficient between preselected EEG templates containing
spikes and sharp waves and the EEG trace in order to detect new spikes and sharp
waves.

3.Inverse filtering: Praetorius et al. (1977) used an autoregressive model to filter the
EEG. If the prediction error exceeds a preset threshold, it means this section of EEG is
no longer considered stationary. This may indicate a transient signal, which could be a

spike or sharp wave.
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4. Waveform decomposition: Gotman (1976, 1‘;380) used a waveform decomposition
method to break down the EEG into half-waves and detect spikes by measuring the
amplitude, the duration and the sharpness of half-waves.

5.Discriminant analysis based on parameterization of the EEG: Five variables,
including first and second derivatives, were used by Chik et al. (1977) in a linear
discrimination function to detect spikes.

Glover et al. (1986, 1989) developed a microprocessor-based multichannel system
to detect spikes. In that system, the comprehensive use of spatial and temporal
information reduces false detections caused by a wide variety of artifacts in EEG
recordings. Results show that the system is more reliable then those using less context
information. The concept of interchannel information is used in our studies as well.
Gotman and Wang (1991, 1992) significantly improved the method of Gotman by

dividing the EEG into five states and applying different detection criteria to each state.
3.2 Detection of Seizures

There are not many seizure detection methods, in contrast to spike detection
methods. This may be because seizure patterns are more variable and they only occur
rarely. Moreover, EEG seizure patterns can be usually noticed by a technologist when
they occur. However, when long-term EEG monitoring is performed in the absence of
observers or there is a seizure with minor or no behavioral manifestations, a seizure
detection method is very useful. It is impossible to detect all seizures by using only the
EEG because some seizures start deep in the brain and may not spread to the location of
electrodes (Gotman 1985; Sharbrough 1993). In addition, in scalp electrode patients,
seizure patterns are sometimes obscured by muscle activity or artifacts.

Most seizures do not have significant seizure characteristics in their early part, but

the prominent patterns gradually appear as seizures evolve. This is why most seizure
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detection algorithms (Gotman 1982, 1990a: Murro et al. 1991; Liu et al. 1992; and
Harding 1993) aim at detecting prominent seizure patterns rather than early seizure
patterns which may not have prominent characteristics. In those algorithms, a seizure
onset could be detected if the early seizure patterns are prominent. The detection can,
however, only be reported about a dozen seconds later. This is because the system
collects information during a dozen seconds to increase the probability of having a valid
detection. When early seizure patterns are not prominent enough, those algorithms
cannot detect them.

Different seizure detection methods use different lengths of epochs. However, all
use short epochs (2 to 8 seconds) because most ictal patterns change more rapidly than
most interictal EEG patterns. In the study of Hilfiker and Egli (1992). a 2-second epoch
was used to study the evolution of rhythmic components. An epoch of two seconds was
also used by Gotman (1982, 1990a). In other studies. Liu et al. (1992) used six seconds
as an epoch to study neonatal seizures because neonatal seizures tend to have rhythmic
discharges at a very low frequency (0.5Hz to 2Hz). and Murro et al. (1991) used 6.83
seconds as an epoch to analyze complex partial seizures. In another study of Murro et al.
(1993), an epoch of 3.4 seconds was used to study the localization of temporal lobe
seizures.

An automated seizure monitoring system for patients with intracerebral electrodes
has been developed by Harding (1993). In that system. a real-time automatic seizure
detection performs with an accuracy of 95% in detection rate. This was evaluated in 792
clinical and subclinical seizures during 1578 hours of monitoring. The false alarm rate
of the system was estimated at 1.93/hour. However, this system is only used for patients
with intracerebral electrodes.

Gotman (1982, 1990a) presented a method attempting to detect a variety of
seizures. It stores EEGs which are detected as seizures for later review. This method is a

mimetic one which simulates the way humans analyze the EEG. It uses waveform
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decomposition to break waves into half-waves. By using average amplitude, average
duration and coefficient of variation of halfwaves in an epoch of the EEG, it detects a
seizure if several preset conditions are satisfied. It is currently used at the Montreal
Neurological Hospital and in many other hospitals..lt was formally evaluated by
Gotman (19902) and Pauri et al. (1992). In the evaluation of Pauri et al. (1992),
dependirg on the detection thresholds, seizure detection rates vary from 47.8% to
81.4% and false seizure detection rates range from 2.70/hour to 5.38/hour. While there
is room from improvement, this method is very practical and useful. Details of this
detection method will be discussed in the next section.

Few reports have made a specific effort to reduce false seizure detections. It may be
because most seizure detection methods have not been used on-line (Aziz et al. 1986,
Murro et al. 1991, Liu et al. 1992) and therefore false detections are not causing major

problems in EEG storage and review.
3.3 Seizure Detection Method of Gotman

In our attempts to reduce false seizure detections and detect seizure onsets, we used
some features from the detection method of Gotman (1982, 1990a). These features have
proven useful in the detection of seizures in patients with either scalp or depth
electrodes. The waveform decomposition method will be explained first because it is the
foundation of the method. Features used in the detection are then discussed. Finally, the

detection criteria are presented.
331 WaveformD :tion Method

The waveform decomposition method of Gotman performs an Initial digital

filtering to remove high frequency activity and then breaks down the EEG into
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halfwaves. As skown in figure 2-7, the original EEG is first represented by a set of
segments. A segment is the section between two consecutive extrema of amplitude.
Since some small amplitude waves, like muscle and beta waves, may be superimposed
on waves of longer duration, segments are regrouped into sequences, called halfwaves,
by using some constraints. A sequence ends when a segment which may not belong to
that sequence is found. Each halfwave is then characterized by its duration and

amplitude.
3.3.2 Features

Before features are discussed. it is important to define how the concept of
background is used in this method because features are often measured in relation to the
background. In figure 2-8, it is shown that there are two backgrounds. background A
and background B. A gap of 20 seconds is used to separate the current epoch from
background A. which lasts 16 seconds. This is because some seizures start gradually
and the gap can make the detection more reliable by not including the gradual onset in
the background. The background B, which lasts 8 seconds, is used to make sure that an
event lasts long enough to be a seizure. For each eppch and for each channel of EEG,
six features have to be computed for the determination of a seizure detection.

1. Average amplitude of the current epoch: It is expressed

S CURRAMP,

aS: AV iy = 7 . where CURRAMP, is amplitude of halfwave i and N

is the number of halfwaves in the current epoch.

)

Average duration of the current epoch: It is expressed as:

N
> DURCURR,
AVE purcurr == ¥ where DURCURR, is duration of halfwave i and N is

the number of halfwaves in the current epoch.
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Coefficient of variation of the current epoch: It is expressed as:

N
Z (DURCURR‘ - A VG DURCURR )/
N

in]

COVA = . where N is the number of

AVG 1'2)URC URR
halfwaves in the current epoch, DURCURR, is duration of halfwave i in the current

epoch and AVGppcpre is the average duration of halfwaves in the current epoch

iBACKAAMP,

ju}

Average amnplitude of the background A: Avg, iem, = ¥ . where

BACKAAMP, is amplitude of halfwave i and N is the number of halfwaves in the

background A.
N
> BACKADUR,
Average duration of the waves in the background A: Avg, ., ... = -!'—'——N—

where BACKADUR, is duration of halfwave i and N is the number of halfwaves in

the background A.
N
> BACKBAMP,

Average amplitude of the background B: Avg, s == N , Where

BACKABAMP, is amplitude of halfwave i and N is the number of halfwaves in the

background B.
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Decomposition of the EEG into Half-Waves

a. Original EEG MWIU\'\(WN\JW\J
b. EEG after Digital WVWWWW
Filtering

1sec ' 100 v
c. Representationin
Segments
Halt-Waves |

Figure 2-7: Waveform decomposition method of Gotman (1976): This figure
illustrates the procedure of the decomposition of the EEG into half-waves. “a” is
original EEG, “b” is EEG following digital filtering, “c” is EEG brokea down into

segments and “d” is EEG broken down into half-waves.
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Figure 2-8; Schematic use of the background in the seizure detection method of
Gotman (1982, 1990a). The gradual onset of a seizure is not included in the background
because of the gap (20s). A detection takes place in the second line because the
frequency during the current epoch is much higher than that of background A. In the
third line, there is no detection because the activity in the background following the

current epoch is too low (background B).
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An epoch of EEG is declared a seizure pattern when the following criteria are
satisfied.
1. The average amplitude of halfwaves in the current epoch is three times larger than
that in background A, or the amplitude of halfwaves in the current epoch is the same
or larger than that in background A. provided the average duration of halfwaves in

the current epoch is one third shorter than that in the background A.

N

The average duration of halfwaves in the current epoch is between 25 and 150
milliseconds (roughly corresponding to frequencies of 20Hz and 3Hz).

The coefficient of variation of halfwaves is less than 0.6.

:.l’

4. The average amplitude of halfwaves in the background B is at least 1.6 times that of
the background A.
5. All above criteria have to be satisfied not only in the current epoch, but also in an

adjacent epoch or the same epoch in a different channel.
3.4 Conclusion of Spike and Seizure Detection

Existing methods for the detection of spikes and seizures are primitive and far from
pertect, despite the fact that some are in clinical use. While much effort has been made
on the detection of spikes and more is currently being carried out, very few methods
have been developed for the detection of seizures, As a result, seizure detection methods
still detect many false events and miss many real events. There is certainly room for
improvement if more sophisticated pattern recognit?on methods are used. It would be
particularly useful to incorporate in the detection process information about a wide
context, including information about patterns having taken place in the hours and days

preceding a recording session. We review in the next section some pattern recognition
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methods and their applications, specially the methods dealing with pattern

classification.
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4 Statistical Pattern Recognition and Applications

There are many approaches to pattern recognition. such as statistical. syntactic,
heuristic and ad hoc methods. Among them, statistical methods have played a
prominent role in the development of patiern recognition techniques (Devijver 1982).
Statistical methods provide the proper framework for studying pattern recognition
problems when the pattern-generating mechanism can be faithfully represented by a
statistical model, and the goal of the recognition is to decide whether or not a given
pattern belongs to some pre-specific class of patterns. Statistical methods have been
widely applied to many fields, such as character recognition. medical diagnosis,
automatic inspection, speaker recognition, etc...

Few problems are more challenging than decoding the meaning of the electrical
activity of the human brain. The lack of sufficient knowledge of the origin and
significance of the electrical activity of the brain is a fundamental obstacle to analyze
and interpret the EEG. However, statistical methods are especially useful for extracting
information from the human brain’s electrical and magnetic fields (Gevins 1987a).

In this section, a general description of some statistical pattern recognition methods
related to EEG analysis will be given first. Then, some of their applications will be

presented.

4.1 Statistical Pattern Recognition Methods

The design of a typical pattern recognition system for EEG analysis comprises
several basic steps: selection of data, feature extraction and selection, classification and
finally the performance estimation. Due to the vast varieties of problems in EEG
analysis, the design of each step should closely relate to the problems in each

applicatios.
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4.1.1 Feature Extraction and Selection

Features can be extracted from many sources. For one dimensional signals, such as
speech and EEG signals, features usually come from either time domain or frequency
domain or both. In EEG analysis, features from spectral analysis (Walter 1963; Walter
et al. 1966; Dumermuth and Fluhler, 1967; Dumerrnuth et al. 1970; Gotman et al. 1973)
and linear prediction (Zetterberg 1969, Gersch 1970) are commonly used, while some
waveform decomposition methods, zero-cross counts and various types of peak-picking
methods are also used (Leader et al. 1967; Hjorth 1970; Gotman 1976). For instance,
amplitude and average duration of waves (Gotman 1976, 1980) are features from a
waveform decomposition method and they were used to detect spikes and seizures.
Mean frequency (Walter et al. 1967), band power (Murro et al. 1993) and coherence
(Walter et al. 1967; Sklar et al. 1973) are features from spectral analysis and they have
also been used to detect seizures, as well as to classify sleep stages and evoked
potentials.

Gasser {1977), Cohen and Sances (1977) and Huber et al. (1971) have studied the
effect on the estimation of analytic quantities of departures from normality and
nonstationaries of the EEG. As a practical matier, the consequences of violations of the
assumption of stationarity and the necessity for a time-varying analysis should be
assessed for each application. For instance, characterizing sleep stages lasting dozens of
minutes, changes within a few seconds are not important. At the other extreme, a few
dozens of milliseconds may be important in the study of evoked potentials (Gevins
1980). As a result, the length of the analysis window in each application should reflect
the characteristics of the application so that stationziry assumption can be considered
satisfied. As indicated by Cohen and Sances (1977), an epoch of the normal EEG which
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is shorter than 12 seconds can be considered a stationary random process based on
mean-value and frequency-structure,

Feature selection is a step to maximize separability among different classes
{Devijver and Kittle 1982). It is the least straight-forward part of an EEG pattern
recognition study (Fu 1968; Mendel and Fu 1970; Foley 1972; Gray and Schicany 1972:
Meisel 1972; Gonzalez and Thomason 1978). Different procedures produce different
feature subsets, and there is no way of knowing that a chosen subset is the optimal one
other than trying all possible subsets (Gevins 1980). Adding more features to the
classification function will generally improve performance on the training data, but the
generalization performance may actually decrease (Foley 1972). In most of the EEG
analysis problems, stepwise discriminant analysis was used to select useful features
(Walter et al. 1967; Berhout et al. 1969; Donchin et al. 1970; Sklar et al. 1973; Squires
and Donchin 1976; John 1977; Sencaj et al. 1979; Horst and Donchin 1980; Yunck and
Tuteur 1980), while in some cases non-linear trainable classification networks have
been applied (Viglione 1970: Martin et al. 1972; Gevins et al. 1979a, 1979b). Since
feature selection methods in the EEG analysis have an arbitrary aspect (Gevins 1980).
each application should make the selection according to the situation, In some cases, a
subset of features does not perform better in classifications than the whole feature set

(Yunck and Tuteur 1980).

4.1.2_ Classification

There are two types of statistical classification methods: parametric and non-
parametric. Parametric classification represents data with a simple statistical model,
such as the autoregressive model (Zetterberg 1969), and uses parameters of this model
to do the classification. The assumption of statistical model of a signal depends on the
mechanism of the generation of the signal. Many parametric statistical methods have
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been used. For instance, Fukunaga and Kessell (1971) compared the error rates of a
parametric Bayes’ classifier with 2 non-parametric one in two sets of artificial data with
the normal distribution. Yunck and Tuteur (1980) used the maximum a posteriori
(MAP) classifiers to compare classification accuracy with non-parametric classifiers.
Gath and Bar-on (1980) used autoregressive model to represent the EEG in classifving
sleep stages.

In the case that a signal cannot be represented by a simple statistical model, 2 non-
parametric classification should be used. The most commonly used non-parametric
classification methods are the nearest-neighbor (NN) rule and the k-nearest-neighbor (k-
NN) rule. The NN rule classifies data of an unknown class into the class in which the
nearest data is. The k-NN rule assigns data of an unknown class into the class in which
the majority of the k nearest data are (Fukunaga 1972; Duda and Hart 1973; Batchelor
1974; Devijver and Kittle 1982; James 1985). These non-parametric classification
methods heavily depend on the local data distribution (one or k nearest data) instead of
global data distribution as parametric classification does. The error rate of the NN
classifiers is bounded between the Bayes error rate and twice of the Bayes error rate,
and k-NN classifiers will approximate the Bayes error rate if k is chosen properly
(Cover and Hart 1967; Bhattacharya et al. 1992).

It has been demonstrated by Yunck and Tuteur (1980) that the k-NN rule performs
better than parametric classifiers, such i:s the MAP classifiers, in classifying the EEG
into five categories according to different tasks. The tasks include rest, performing
arithmetic exercises, listening to music, performing verbal exercises, listening to speech,
performing pictorial exercises and . ‘zwing a film. As indicated in Gevins (1987a), non-
linear and non-parametric classifiers have consistently performed better than linear and
parametric ones in EEG analysis. This is possibly because the mechanism of the

generation of the EEG is too complex to be described by a simple statistical model and
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non-parametric methods do not make any assumption about the data distribution as
parametric ones do.

In the NN classification rule. as well as other ciassiﬁcation rules, the distance
measure is one of the most important factors. There are several distance measures. such
as the Euclidean distance. the city block distance, the Mahalanobis distance, the
Minkoski r-distance, the square distance and the weighted distance (quadratic distance)
{Batchelor 1974; Devijver and Kittle 1982). Among them. the weighted distance is
expressed as: D=(X- ?)M()? — ¥). where the matrix M has different weights in
different dimensions. This distance can reflect the importance of each dimension, and a
weighted space is constituted by these dimensions (Bow 1984). We used a modified
version of this type of distance in our studies. A sirpilar weighted distance measure has

been used in electromyography (Zhang et al. 1991).
113 Perf Estimai

The validation of a classifier is critical in the design of a pattern recognition system
since it reveals the future performance of the classifier. A biased result may give
misleading information. Therefore, all possible measures, including the collection of
data and the evaluation procedure, have to be chosen carefully to make sure that results
are as unbiased as possible.

The collection of data has t3 ensure tnat it represents at least those properties of the
data which are invariant from sample to sample and which distinguish the classes. It is
certain that more data result in a better representation of all properties within the data.
However, since it is difficult and expensive to collect neurophysiologic data, the sample
size in EEG pattern recognition studies has usually been determined by the availability
of data or other practical restrictions, rather than by the usual statistical power analysis
(Gevins 1980).
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There are many ways to estimate misclassifications (Toussaint 1974), Risk
averaging is one of them. The resubstitution, holdout, leave-one-out and rotation
methods are the four methods of error estimation by error counting (Devijver and Kittle
1982). They are non-parametric error estimators.

1. The resubstitution method uses the same set of data for training and for testing.
This method has a major drawback: it may give a very misleading result, especially
when the data set is small. For instance, if the NN rule is used as a classifier. there will
never be any error by using the resubstitution method. This is because the decision
boundary is trained by a set of data to classify all points into correct classes by using
the NN rule. When the same set of data is used as testing data, the classifier is already
perfect for this set of data and therefore no error will be found. It may not be the case if
another set of data were used as testing data.

2. The holdout method divides data into two mutually exclusive sets and uses one
of them for training a classifier and the other one for testing. This method makes poor
use of data and gives pessimistic error estimation. (Devijver and Kittle 1982) However,
when the data set is large enough, this method has a significant advantage in terms of
computation costs because both training and testing need to be done only once. This
method has been used in our studies.

3. The leave-one-out method consists in removing one sample from the data set
and using this sample as testing data and others as training data. After this is done, the
testing data is returned to the data set. Another data will then become a testing data,
while the rest become a training set. This procedure will be repeated until all data
become testing data once. This method gives an unbiased error estimate and makes full
use of every single sample. It is particularly useful for small data sets. However, it
increases the variance of the error estimation (Devijver and Kittle 1982) and has a high

computation cost.
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4. The rotation method is a combination of leave-one-out and holdout method.
Instead of removing one sample from the data set, several samples are removed. This
method is a compromise between the variance of the estimation and the computation
costs. It can be used in both small and moderate size data sets. This method is chosen
for the error estimation of probability of missing detection of seizures in our study of
reduction of false detection of seizures. ‘

In the study of physiological signals, validation of classifications is most often
obtained with a completely independent data sample from the one used for the training
of classifiers. However, because of the difficulties and expenses in data collection. the
rotation or the leave-one-out methods are sometimes used for validation. Obviously.
these methods can produce an unbiased estimate of the classification accuracy if this
data set has not been used in the previous steps of analysis (Devijver and Kittle 1982). If
the vaiidation is done in a data set including different persons from those included in the
training data set, the accuracy is obviously much more reliable. Nevertheless, when the
number of persons used for training is adequate to 1:epresent the variability of the
general population, and when the between-class differences are large, both ways of
using the validation data sets produce the same results (Gevins 1980).

Error estimation by error counting has been used in many pattern recognition
studies. For instance, Fukunaga and Kessell (1971) used the leave-one-out method to
compare classification errors of two different classifiers: Bayes' classifier and
nonparametric classifier using the Parzen approximation. The comparison was done on
the mean error and standard deviation. In the study of Oliver et 2! (1979), a holdout
experiment was carried out to test the average correct recognition rates (85%) of

abnormal cells and an error rate (1%) on normal cells.

4.2 Applications of Statistical Pattern Recognition Methods
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4.2.1 Application in EEG Analvsis

Stationarity of the EEG has been studied by Cohen and Sances (1977). Time-
varying value and time-varying frequency value of 104 clinical EEGs were used in the
study and results showed that the EEG can be considered to be a stationary random
process for epochs shorter than 12 seconds. For a probability of error of 10%, an epoch
of 24 seconds of the EEG can be considered stationary too. The EEG can be treated as
stationary for as long as 64 seconds with a probability of error of 35%.

Many parametric methods have been used in EEG analysis. The autoregressive
model has been used to detect spikes (Zetterberg 1969; Lopes da Siiva et al. 1975) and
in sleep stages classification (Gath and Bar-on 1980, 1985). Correlation was used by
Barlow and Dubinsky (1976) to detect spikes by tel"nplate matching. Liu et al. (1992)
used the autocorreiation function as a basic function to detect neonatal seizures. Larson
and Walter (1970) used spectral analysis followed by stepwise discrimination analysis
to classify sleep stages. Gath and Bar-on (1980,19852) used fuzzy subset theory, fuzzy
decision making and optimal fuzzy partition to classify sleep stages with linear
prediction coefficients as features. In the study of Friedman and Jones (1984), a cluster
analysis method, which used both the Euclidean distance to centroids of each cluster
and structure features of sleep EEG, was used to classify three states, wakefulness, slow
wave sleep and paradoxical sleep, in cats. A fuzzy clustering method, which uses the "k-
nearest prototypes” method and adaptive segmentat'ion of the EEG, has been also used
to distinguish waking EEG with dominant alpha and low amplitude mixed frequency
EEG as two different background stages in the evoked potential study by Gath et al.
(1985)

Non-parametric methods are also popular in the analysis of the EEG. Leader et al.
(1967) used a peak-picking method to determine the minimum and maximum of the

EEG waves. The amplitude and duration of the EEG waves were then used in a step-
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wise discrimination classifier to separate the EEG waves into 12 predefined categories.
This method is similar but much simpler than the one of Gotman (1976). In order to
separate subjectively stressful from non-stressful verbal stimuli. and to determine
distinctive EEG responses to verbal stimuli of similar stress value differing only in
semantic content, Berkhout et al. (1969) used intensity and bandwidth of auto-spectral
analysis, and coherence pairs of channels as features. The classification was done by a
step-wise discriminant function to separate the detection space into different regions and
place each epoch of the EEG into one of them. It is interesting to notice that in this
method the definition of the bandwidth has a similar concept to our main energy zone
feature used in the detection of seizure onset (see chapter 4). The method achieved a
92% overall correctness in the classification.

The hold-out method has been widely used for the evaluation in many applications.
Gevins et al. (1979a. 1979b) used this method to evaluate a nonlinear multivariate
pattern recognition system and an 87.5% of accuracy was estimated. The system was
used to distinguish the spatial distribution of the EEG patterns associated with several
complex tasks, including Koh’s block design, writing sentences, mental paper folding,
and reading silently. Horst and Donchin (1980) also used the holdout method to
estimate the correctness (87.8%) in classifying the ;:voked potentials elicited by a

checkerboard presented to the upper or lower visual half-field.

422 Apolication in other Field

We will only review briefly a few applications having some aspects in common
with our problems.

Many applications use parametric classification methods. In the study of Durand et
al. (1990), several classifiers were compared in the Flassification of spectra of heart

sounds in patients with a porcine bioprosthetic valve implanted in the mitral position. In
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this study, the Gaussian-Bayes model is performing slightly better than the NN rule
(98% vs. 94%). Results of the study also show that among classifiers using the NN rule,
the classifier using Mahalanobis distance performs better than the classifier using
Euclidean distance. Automatic clustering and patient-specific classificaticn of new
patterns was used by Swenne et al. (1973) in the recognition of ventricular complexes
during ECG-monitoring. In that study, it is assumed that all signal clusters can be
described by ellipsoids. Human interaction is needed if a pattern is rejected by the
automatic clustering method during the training of classifiers. The classification then
determines if a new pattern belongs to the predetermined clusters in the detection space.
Non-parametric methods have been utilized in many applications too. In seismic
wave interpretation, the NN ruie has been used to classify exploration waves and
earthquake waves {Chen 1982). In that study, autocovariance and autocorrelation were
used as features and 89.2% correct recognition was achieved. In speech recognition,
template matching has been widely used (De Mori 1982). Linear time warping is also
commonly used in speech recognition for time alig;unent. Our studies use both template
matching and time alignment between patterns, but they are different from the ones in
speech recognition because of the differences between signals. The k-NN rule has been
used in the multicategory classificatior of body surface potential maps (Reich et al.
1990). By using leave-one-out method, the method was evaluated in 123 patients
belonging to four categories and the accuracy is 94% for normal patients, 88% for
ischemia patients, 91% for myocardial infarction patients and 100% for left bundle
branch block patients. Dube et al. (1988) designed an ECG monitoring system for
ischemic patients by using a stepwise discriminant ﬁmction to detect heart beats and
ST-segment changes. Results indicated that the system can work reliably in adverse

conditions.
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Chapter 3:

Reduction of False Seizure Detection

1 Introduction

Long-term monitoring is an established proceciure to record seizures in patients
with intractable epilepsy. It is very tedious and expensive to have a person observe
patients and EEGs continuously so that every single seizure can be recorded, including
seizures with electroencephalographic but no behavioral manifestations. A
computerized automatic seizure detection system can often detect and record seizures in
the absence of observers or when patients do not notice their seizures (Gotman 19835,
1990a). However, it is unavoidable that some false seizure detections (FSDs) occur, and
in some cases very frequently. A very high FSD rate causes a large amount of EEG to
be stored and reviewed, and consequently reduces the practical value of seizure

detection.
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In the long-term EEG monitoring system used at the Montreal Neurological
Hospital, the FSD rate was estimated to be 0.84/hour for scalp electrode patients and
1.35/hour for depth electrode patients (Gotman 1990a). This study was done by
evaluating 241 recordings from 44 patients with scalp electrodes and 52 recordings from
5 patients with depth electrodes. In another study (Pauri et al. 1992), the same seizure
detection system was evaluated on twelve patients with a total of 461 hours in
monitoring. Depending on the detection threshold, the average FSD rates were between
2.70/hour and 5.38/hour. In that study, it was found that artifacts were the main cause of
FSDs (80%) while normal and abnormal EEG patterns represented each 10% of FSDs.

Whereas the average FSD rate is acceptable, it can become significantly higher and
reach unacceptable values in some patients. This usually happens when, in a given
patient, one or a small number of patterns occur repeatedly and cause many FSDs
during several consecutive monitoring sessions. These FSD patterns vary from one
patient to another. Thus, they can be called patient-:speciﬁc FSD patterns. Because a
patient is typically monitored for several days, a monitoring system can be "taught” to
recognize and stop detecting EEG patterns that have been identified early in the
monitoring as FSDs.

Few reports have dealt with reducing FSDs. It may be because other seizure
detection methods have not been used on-line (Aziz et al. 1986; Murro et al. 1991; Liu
et al. 1992) and therefore FSDs are not causing major problems in EEG storage and
review. Alternative solutions were tried before in our own system. For instance, if the
EEG patterns causing FSDs occurred in one or a few channels only, the monitoring
system could simply stop detecting any seizure from these channels. Another solution is
to rise detection thresholds to reduce the FSD rate (Pauri et al. 1992). These relatively
undiscriminating ways of eliminating FSDs may cause a serious problem: the true

seizure detection rate is reduced, in some cases significantly (Pauri ¢t al. 1992).
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In order to eliminate patient-specific FSDs with a minimal probability of losing true
seizures, we propose a method based on the !eaming of a trial session. If there are many
FSDs in a patient in one monitoring session and most are caused by similar EEG
patterns, this session becomes a trial session. EEG patterns of FSD during this session
are collected in a set spectfic to this patient and labeled as the initial FSD set. In
subsequent monitoring sessions of the same patient. an EEG pattern which is detected as
a seizure but is similar to any pattern in the initial FSD set is regarded as a FSD and not
reported as a seizure detection. In a given patient, the patterns of true seizures are not
likely to be similar to the patterns of FSD; the probability of losing true seizures by this
method is therefore reduced. One difficuity in the implementation of this method is that
we must define a measure of similarity between IW;) EEG patterns, in order to determine
if a detection occurring one day is "similar” to false detections having occurred earlier.

The concept of learning about false detection from a training session could apply to
any existing seizure detection method. We have selected to evaluate this concept on the
seizure detection method of Gotman, which is therefore used as the basic seizure
detection method on which we are grafting a patient-adaptive algorithm.

In this chapter, the algorithm will be discussed first, followed by the
implementation procedure. Details of the evaluation procedure are given next, followed

by results and discussions.
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2 Algorithm

This pattern recognition system involves feature extraction, classifier design and
classifier training. Before the design of the classifier is discussed, features used in this

method are presented. Training of classifiers is then explained.
2.1 Feature Extraction and Normalization

Seven features are used in the seizure detection system of Gotman (Gotman 1982,
1990a). All these seven features are used in the recognition of patient-specific false
detections. These features constitute the detection space, which is shared by both true
and false seizure detections. Each detection is presented in the detection space as a
seven-dimensional point. Before describing the features, some basic definitions have to
be given.

(1) An epoch is defined as a section of EEG with a duration of 2 seconds.

(2) Halfwaves are basic segments of EEG waves and computed by using the waveform
decomposition method of Gotman (1982). |

(3) A section of background EEG is defined as between 36 seconds and 20 seconds
before the current epoch, as defined in Gotman (1990a).

The seven features used in the method are defined as follows:

1. Ratio of the average amplitude of halfwaves in the current epoch to the average
amplitude of kalfwaves in the background: It is expressed as:

i AMPCURR,

im)

RAMP 0k = N where N and M are number of halfwaves in

Z AMPBACK /
wl
’ M

the current epoch and the background respectively. AMPCURR, is the amplitude of
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a halfwave in current epoch and AMPBACK | is ampiitude of a halfwave in the
background.

Average frequency of current epoch: It is actually the inverse of twice the average

duration of halfwaves in the current epoch. The formula is:
]

l\'
2x > DURCURR /
tu]
N

cu:zent epoch and DURCURR, is the duration of a halfwave in the current epoch.

Freg.,,. = . where N is the number of halfwaves in the

Average frequency in the background: 1t is the same as the average frequency of

current epoch except it is computed in the background. The equation
1

A M
2xZ:DURBACK/
M

Ratio of the average amplitude of halfwaves in the eight seconds following the

is:Freqg,, =

current epoch and the average amplitude of halfwaves in the background: It is the
same as the first feature except the average amplitude of halfwaves in the eight
seconds following the current epoch is used instead that of the current epoch. It can

3" AMPNEXT,

be presented as: RAMP ., 0 = 57 A

S AMPBACK /
Jul M

. Location of electrodes (channels): 1t is an expression of electrode position in a

montage. Since there is no simple quantitative expression for it, the presentation of
this feature in the detection space is complex and will be explained later.

Detection type: There are four detection types for different kinds of EEG patterns.
They are: slow waves, bursts, epileptic forms and fast activity. These four types are
presented in the detection space as four values, 1, 2, 3 and 4 respectively. The

difference between any two types, however, cannot be represented by the difference



Chapter 3: Reduction of FSD 54

of their values because these four types are unrelated and their relationship can only
be either “same” or “different”. As a result, the difference between any two types is
expressed by a binary value, 0 or 1. The value 0 is used when two types are the same
and 1 is used for any two different types.

7. Coefficient of variation of duration of halfwaves in the current epoch: It is

N
D (DURCURR, - AVG pumcyrs ) /
/N

in]

expressed as: COVA = » where N is the

A VG ;URCURR
aumber of halfwaves in the current epoch, DURCURR, is duration of a halfwave in
the current epoch and AVG jpcps is the average duration of halfwaves in the

current epoch.

The expression of the location of electrodes can be done by labeling numbers to
each electrode or naming them differently. However, to quantize the distance between
any two electrodes in the detection space is very difficult. This is because two aspects
have to be taken into consideration in the determination of distance between two
electrodes. One is the physical distance between them and the other is the anatomic
relation between two electrodes. From the physical distance point of view, all electrodes
are located in nodes of a matrix-like shape (figure 2-3), according to the international
standard 10-20 system. A distance oetween two electrodes can therefore be computed
using the Manhattan distance (Devijver and Kittle 1982). A Manhattan distance unit
here is defined as the distance between any two adjacent electrodes. From the point of
view of anatomic relation between electrodes, the distance between two electrodes in
the two cerebral hemispheres is larger than that in the same hemisphere because the two
hemispheres often function independently of each other. In order to reflect these two

aspects, we use two criteria to determine the distance between any two electrodes.
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1. If two electrodes are located in the same hemisphere, their distance is their
Manhattan distance. The typical distance between two electrodes is between 1 and 4.

2. If two electrodes are located in different hemispheres, their distance is their
Manhattan distance plus a constant to reflect the anatomical distance between the
hemispheres. The constant was set empirically at 10 in our study because it is large
enough to separate two hemispheres in the detection space.

Since each feature, which serves as a dimensiop in the detection space, has its own
physical unit, it is necessary to normalize them into a universal unit by considering the
effects of each dimension in a seizure detection. This universal unit contains different
physical distances in different dimensions. This normalization makes it possible to

compare distances between any two points in the detection space.

2.2 Classifier Design

The most essential part of the classifier in this method is the similarity measure,
Therefore, before the design of the classifier is presented, the similarity measure will be

introduced and explained in details.

221 Similarity M

For a given patient with a trial EEG monitoring session in which there are many
FSDs, FSD patterns from this session are called the initial FSD sert and represented as
prototype peints in the detection space. Every point in the detection space represents an
epoch of the EEG which has its seven features transformed into a universal unit as
discussed above. As a result, the transformation of features will not be shown in all
computations later because every dimension in the detection space has the same

universal unit. When a new pattern is detected in a subsequent monitoring session, we
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need to know if it is similar to any of the FSD patterns in the trial session and is
therefore to be eliminated, or different from them and is therefore to be retained. We
introduce a measure in the detection space called "similarity"”.

Similarity between two points in the detection space, one of them belonging to an
initia] FSD set, takes into account not only the Euclidean distance between the two
points, but aiso the probability distribution of the initial FSD set. The point O,
represents a prototype point in an initial FSD set and is represented as a vector O, in the
detection space. Its probability in this initial FSD set is }_’q . B, is the probability for
dimension j at this point O,. This value was computed by projecting all data into the jth
dimension to form a probability distribution and Po. is the probability corresponding to
the projection point of O, in this dimension. A point N, representing a new EEG
pattern and represented as a vector N, in the detection space, has a statistically
weighted distance to 0, of (0, - N,,)” #7'(0,-N,).

SIMIL(O,,N,)) is the value of similarity between O, and N,,. G(O,,N,,, Pq ) is the

7
main function to measure the similarity between 0, and N,, and COR(D P,)isa
Jul

modification and normalization function which will be discussed later. The similarity

between 0, and N, is then defined as:

SIMIL(O,,N.) =G(5,,N,,Pq)xCOR(i P)) 1))
J=l
= = = 100

_— 2
G(O,N,,B,) B Ry IO N+l @
S — ©

(0= N, ) x (B3 )+1

fwl

!

- Hxi? +1
COR(Y_ Py y=Cx(e—c = " ) @)
Jml

Where: j indicates jth dimension,
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Fo=[Nw N Nu Npo Ny Ny No T,
c=——.
e~-1 _
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0 0 02” 0 0 0 0
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H is a modification parameter and C is a normalization constant. The value of
SIMIL(O,, N,)) ranges from 0 to 100, where 0 means no similarity and 100 means
perfect similarity.

The function G(0,. N, f’q ) is inversely proportional to the statistically weighted
distance (O, - N,)” M~(0, - N,,) between points O, and N, as defined in equation (2)
and (3). There are two reasons for this. First, the similarity should increase with a
shorter Euclidean distance between two points in the detection space. In order words,

the closer two points are, the more similarity they have. This is reflected in equation (3)

7
where Z(O,Jr -N, ) is the Euclidean distance between two points in the detection
LY

space. Secondly, the similarity monotonically increases when the square of the
probability £, which is used in the A/~ matrix, decreases. The reason for taking P
into account is that this can make the similarity measure adapt to the data distribution.
This is illustrated on figure 3-1. If two new detection points N, and N, have the same
Euclidean distance to two false detection points F, and F,, but F| is in a dense area
(high probability F,.),and F; is in a sparse area (low probability Py, ), then N, is less
similar to F; than N, to F, (figure 3-1). In other words, if F is in a dense area, a high
similarity between N and F is only possible if N is close to F; conversely if Fisina
sparse area, a high similarity between N and F can be obtained even if N is not very
close to F.
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Figure 3-1: Use of probability density in the definition of similarity. F1 and F2 are
points belonging to an initial FSD set. N1 and N2 represent two new EEG patterns.
Although the Euclidean distance bewﬁeen F1 and N1 is the same as that between F2 and
N2, the similarity between N1 and F1 is smaller than that between N2 and F2 because F1

is located in a denser area than F2, Axes represent any two of the seven dimensions.
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The above logic causes some problems, however, when P, is low for ail seven

dimensions. This is the case if 0, is a point which is isolated in the detection space. In
this case, the vaiue of the similarity function could be very high even for a point N, ata
large Euclidean distance from O,. We have therefore introduced a correction function

7
C’OR(Z ) which depends on the sum of all seven probability density values for a

=l
point O.. As the sum of seven probabilities gets higher, the function becomes very close
to 1. It thus does not affect the value of similarity defined by the function

G(0,.N,,, B, ). As the sum of all seven probabilities becomes small, the function

T .
COR(Z Fp, ) decreases rapidly, thus reducing the value of similarity when the point O,

Jjul
is nearly isolated. The parameter H was set empirically and can be adjusted to define
what is meant here by a "small” or "large" sum of the probabilities. The function

7
COR(Z F) is normalized from 0 to 1 and consequently the value of similarity
Jnl .

remains between 0 and 100.

Empirical values, such as H or the weight of each feature, have been set according
to experience. For instance, the range of the weight for each feature was set between 1
and 4. The most important feature, amplitude ratio, was assigned a weight at 4 and the
least important feature, detection type, hasa weigh£ at 1. The settings, of course, may
not be optimal. However, they reflect our best knowledge from experience.

The above similarity function allows the definition of a part of the detection space
in which false detections from a particular patient are likely to be. This portion of space
is called "false detection subspace” and is constituted by all the points which have a
similarity to the FSDs of the trial session larger than a given threshold (figure 3-2). Itis
of course possible that some of the patient's true seizure patterns also fall within this
"false detection subspace”. In this case, such seizures will be lost. Unfortunately we do

not know, after one monitoring session, all the possible seizure patterns of a particular
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patient. It is possible, however, to represent in the detection space a variety of true
seizure patterns from many patients. We can then determine how many fall within this
patient's false detection subspace, thus giving an indication of the probability of losing
seizures in this patient. If many do, it may be better to shrink the false detection
subspace (by increasing the similarity threshold) in order to reduce the probability of
losing true seizures. If very few true seizures fall within the false detection subspace, it
may be possible to enlarge that subspace to increase the probability of eliminating false
detections.

In the following sections, a question of terminology requires classification: (1) We
call a "detection” or "seizure detection” an event detected by the original method of
Gotman (1982, 19902). The procedure described here results in the elimination of some
of these detections: they are first detected by the classic method and then eliminated by
the new method. (2) In the original method of Gotman (1982), a detection occurred
when all the detection criteria were satisfied in one 2-second epoch of EEG in one
channel. Each such detection is called here a derection point. An event can be detected
several times if several epochs satisfy the detection criteria. The set of detection points
relating to one event is called here a detection section. A large detection section may
contain up to several hundred detection points because detections can be made in
several epochs and in several channels. If a detection point is separated by more than 30
seconds from the previous detection point, it is considered the beginning of a new
detection section. This makes sure that a single seizure corresponds to a single detection
section. Although some seizures last more than 30 seconds, they are not separated into
two or more detection sections because two detection points within a seizure are not

usually separated by 30 seconds.
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Figure 3-2: Description of the false detection subspace. Axes are two of the
seven dimensions. For a given similarity threshold, boundaries of subspace are
described by ellipses because they are determined by the probability distribution
of the initial FSD set. The subspace corresponding to one FSD point covers more
in the dimension where the probability distribution value is lower and less in the

dimension where the value is higher.
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e Classifier

For a given similarity threshold T. a set of prototype points 5, and a new pattern
N, the classifier is defined as: C(T.N,)=maxSIMIL(O,.N }-T

for all O,. where SIMIL(0,. N, ) is the similarity defined above.

N, € False Seizure Class if C(T,N,)<0
The classification rule is:y _ )
N, e False Seizure Class Otherwise

In other words, if ¥ ; has a maximum similarity to an element O, larger than the
threshold T, N ; will be considered as an element of the false seizure class. If the
similarity is smaller than T, N ; will not be classified into the false seizure class. All
false seizure detections classified as elements of false seizure class will be eliminated
and others are retained. True seizures which are classified as elements of the false

seizure class are unfortunately lost.
2.3 Classifier Training

The goal of the training is to determine a patient-specific optimal similarity
threshold for a classifier. It is easy to understand that the smaller the similarity threshold
is, the more FSDs will be eliminated; and also the larger is the probability of losing
seizures. As a result, a good compromise is to select a similarity threshold that leads to a
high FSD eliminating rate and a reasonably low probability of losing seizures. This can
be done by using FSDs from the second monitoring session to determine a predictive
FSD eliminating rate of this patient in the future, and a seizure reference set to
determine a predictive probability of losing seizures of this patient. Therefore, three sets

of data are required to train a patient-specific classifier. They are: patient-specific false
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seizure prototypes, true seizure reference data set and patient-specific false seizure
detection training data set. Their definitions follow. Selection criteria of these data sets
are discussed in the evaluation section.

1. Patient-specific false seizure prototypes are false seizure detections acquired
from a trial monitoring session of a patient, and are called the initial FSD set.
The trial monitoring session is usually the first monitoring session.

2. True seizure reference data set is a collection of true seizure patterns from a lot
of patients. It can be used to represent possible seizure patterns in a patient. This
reference set is a collection of seizures from a lot of patients instead of the
patient currently under study because the patient may not have any seizure in the
first monitoring session or only has too few seizures to form enough training
data.

3. False seizure detection training data set is a collection of false setzure
detections from the second monitoring session, which is the session subsequent
to the trial session.

The true seizure reference data set and the false seizure detection training data set
are used to determine how large should the area around the prototype points be to ensure
a good elimination of false detection and avoid losing genuine seizures.

A patient-specific similarity threshold is determined by using the following optimal

similarity threshold selection criterion function:

_ RateFSD(T)
JI) = maX B e TSD() + KJ ‘

where RateFSD(T) is the patient-specific false detection eliminating rate at a given
similarity threshold T and RateTSD(T) is the percentage of seizures from the seizure
reference set lost for a given distance threshold T. K 1s a constant to avoid J(T)
becoming infinite when Rate TSD(T) is zero. The optimal T is the one with the highest
value of J(T).
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We will first illustrate in an example the selection of the optimal value of
similarity. After the initia' FSD set was acquired, results from the second monitoring
session were obtained (figure 3-3). Curve 1 shows the percentage of FSDs eliminated
from the second scssion as a function of different similarity thresholds. The percentage
of scizures lost from the true seizure reference set is shown in curve 2. The ratio of
percentage of FSDs eliminated to seizures lost from the seizure reference set is shown in
curve 3 (a constant is added to the denominator of the ratio to avoid a division by zero
when no seizuze is lost; the constant remains the same for every patient). From curve 3,
it is obvious that the best threshold of similarity is 74 because it corresponds to the
highest ratio. That threshold was used for the five subsequent monitoring sessions in
this patient, resulting in the elimination of 88% of false detection; 2.9% of the seizures
of the true seizure reference set fell within this patient's false detection subspace, giving

an indication of the probability that true seizures would be lost in this patient.
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Figure 3-3: Selection of the optimum similanity threshold. The X axis
represents the similarity threshold. Curve 1 is RateFSD(T): it shows the
percentage of FSDs from the FSD training data eliminated as a function of
similarity threshold. Curve 2 is RateTSD(T): it represents the percentage of lost
seizures from the seizure reference set. The last curve is J(T): it is the ratio of
percentage of FSDs eliminated to percentage of lost seizures (a constant is added
to the denominator of the ratio to avoid a division by zero when no seizure is
lost). The ratio curve has a maximum when the similarity is 74; this becomes the

threshold for this patient in subsequent monitoring sessions.
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3 Implementation

The implementation of the method requires only few human interventions, which
makes it easy to use. When many FSDs occur in a patient for two monitoring sessions. a
patient-specific classifier with the optimal similarity threshold can be trained
automatically by simply providing FSDs, Details of the implementation procedures
follow.

1. All false seizure detections from the first monitoring session should be collected

as the original patient-specific false detection prototypes.

D

. When false detections are available from the next monitoring session, they are
used to train a patienc-specific classifier to maximize the probability of
eliminating false seizure detections in the future. In addition, a set of true
seizures collected from 2 lot of patients are used to train the classifier to
minimize the probability of missing seizures in the future monitoring sessions of
the patient.

. For all following monitoring sessions, every detection has to pass the classifier.

W

The ones which belong to the false seizure class will be eliminated. The rest are
retained.

Figure 3-4 illustrates the implementation procedure of our method, including the
use of FSDs and the seizure reference set, and the trammg of a classifier. FSDs from the
first monitoring session are used vo form the false seizure prototype potiits. FSDs from
the second session, prototypes and the seizure reference set are all used to train a
classifier. This classifier is then used in the third and subsequent monitoring sessions of
the same patient to reduce the patient-specific FSDs. More details about the
implementation can be seen in Appendix A in the form of 2 block diagram.
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Monitoring Sessions Classifier

FSDs l’

First >lForm prototype points ] Seizure

reference set
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Second > | Classifier training J<
FSD Y
. ° - [Use the classifier to
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Figure 3-4: Implementation procedure of our method: FSDs from the first monitoring session provide false detection prototype
points, which are used together with FSDs from the second session and the seizure reference set to train a patient-specific classifier.

The classifier is then used to reduce FSDs during subsequent monitoring sessions.
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4 Evaluation

The evaluation was done on data from 20 patients. They belong to two groups: 10
patients with depth electrodes and 10 patients with scalp electrodes. The implementation
procedure discussed above was used to evaluate the reduction in false detections (figure
3-4). Therefore, for each patient, FSDs from the first monitoring session were used to
form the false detection prototypes; FSDs from the second monitoring session and a
seizure reference set were used te train a patient-specific classifier; and the rest of the
monitoring sessions were used for testing. The seizure reference set was also used to
evaluate the probability of losing seizures by using the rotation method.

The collection of both training and testing data will be discussed first. The
evaluations of the reduction of FSDs and the probability of losing seizures are explained

in detail next.
4.1 Data Collection

In order to evaluate our method, we collected the following data: (1) false
detections in several monitoring sessions of each patient to constitute false detection
prototypes, to train classifiers, and for the evaluation of the reduction of FSDs. (2) true
seizure detections to form the seizure reference set for the training of classifiers and the
evaluation of the probability of losing seizures. At the Montreal Neurological Hospital,
a bipolar montage of 32 channels for scalp electrodes recordings and one of 16 channels
from depth recordings are used clinically for seizur;a detection. In order to truly evaluate

the practical usage of the method, we used the same montages in all our evaluations.
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4.1.1 False Detections:

False detections came from twenty patients who were selected from the 114
patients who were subjected to long-term monitoring at the Montreal Neurological
Hospital from January 1991 to April 1992. Two criteria were used in the selection of
these patients:

(1) Patients had to be monitored from 4 to 11 consecutive days. For each patient,
all selected monitoring sessions had to have the same montage and the same
detection thresholds.

(2) The FSD rate had to be high: patients with depth electrodes had to have a FSD
rate higher than 2/hour and patients with scalp electrodes a rate higher than
1.5/hour.

The reason for the use of a different FSD rate in different group of patients is that
usually the FSD rates are higher in patients with depth electrodes than in patients with
scalp electrodes. Although all EEGs were recorded with 32 channels. seizure detection
was performed in 16 channels for patients with depth electrodes, and in 32 cha:mels for
patients with scalp electrodes.

In 10 patients with depth electrodes, 64 monitoring sessions were collected with
5,029 FSDs (detection sections) during 1.301 monitoring hours. The average FSD rate
was 3.86/hour. In 10 patients with scalp electrodes, there were 70 monitoring sessions

wita 4,195 FSDs during 1,325 monitoring hours. The average FSD rate was 3.17/hour.
True seizure detectiors are used to constitute the true seizure reference set. Two

seizure reference sets are needed for two groups of patients: patients with depth

electrodes and patients with scalp electrodes. This is because seizure patterns from



Chapzer 3: Reduction of FSD 70

patients with depth electrodes are different from those with scalp electrodes, as we
discussed in the chapter 2 “Literature Review™,

All seizures in both seizure reference sets satisfy three criteria: (1) They are all
small seizures which have a small number (10 or less) of detection points (each
detection point represents an epoch of the EEG which is detected as a seizure by the
classic seizure detection method). A seizure including a large number of detection
points is not very likely to be eliminated by our method since it is unlikely that all of its
detection points would belong to the false detection subspace. For this reason, we
sclected only small seizures as the seizures at risk to be lost by our method. We
estimated that small seizures represent approximately half of all the seizures detected by
our system. (2) They include a large variety of seizure patterns so that they can be as
representative as possible. (3) They do not come from the 20 seiected patients for the
evaluation of the reduction of FSDs. This is because partients rarely have seizures in the
first one or two monitoring sessioas in the practical clinical environment. As a result,
only seizures from other patients can be used to train classifiers. Moreover, since each
seizure reference set was collected in advance and then used to train classifiers for all
patients in each group later on, no seizure from these 20 selected patients could be
included in the seizure reference sets.

Forty-four seizures were obtained from 13 patients with scalp clectrodes, with an
average of 4 seizures and maximum of 10 seizures per patient. This set of data is called
seizure set A. Forty-nine seizures were collected from 10 patients with depth ¢lectrodes,
with an average of 5 seizures and maximum of 10 seizures per patient. This set of data

is named seizure set B.
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4.2 Estimation of FSD Elimination Rate

The holdout method was used to estimate the FSD elimination rate because it is
possible for us to obtain a large amount of FSDs from several monitoring sessions of
each patient. Another reason is that we want to test our method in a practical clinical
situation since the acquisition of FSDs has its time sequence. Our method is designed to
function as soon as enough FSDs are acquired from the first two monitoring sessions. If
the rotation method were used, some FSDs acquired from monitoring sessions later than
the first two would be used to train the classifier and FSDs from the first two sessions
would be used as testing data. This does not represent the actual clinical environment.
Therefore, the rotation method is not suitable in this situation.

In the evaluation, only FSDs from the first two monitoring sessions were used to
form false detection prototypes and to train the classifier for each patient. and the rest
were used for testing. as indicated in figure 3-4. Fot instance, if there were four
monitoring sessions in a patient, the FSDs from the first monitoring session represents
the false detection prototype points; the FSDs from the second session are used together
with a seizure reference set to train a classifier specific to the patient. FSDs from the
remaining two monitoring sessions then passed the classifier to test the reduction in
false detection rate. On average, each classifier was tested on FSDs acquired during

about 100 hours of monitoring. Results are shown in the “Results™ section..
4.3 Estimation of Error Rate

In the estimation of the error rate (the probability of eliminating genuine seizures),
the rotation method is used. The seizure reference set is used for both training and
testing. There are four reasons: (1) The error rate could be estimated by counting

seizures eliminated by our method in the same monitoring sessions as for the evaluation
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of the reduction of false detections. However, the number of seizures occurring in those
sessions is too small to ensure a small variance in the result. We therefore had to turn to
the seizure reference set to estimate the error rate because thev contain many seizures
with a large variety of patterns. (2) Since we do not know the characteristics of the
seizures of a particular patient at the time of the first monitoring session, we use a large
group of seizures as a representation for these unknown patterns. However, because of
the difficulties in the collection of seizures, the number of seizures included in each
seizure reference set is still not very large (42 seizures for scalp electrode patients and
49 for depth electrode patients). Therefore, the holdout method is not suitable, The
rotation method can achieve a better, unbiased estimation when the data set is small
(Devijver and Kittle, 1982). (3) Since the seizures are pooled together, the sequence of
occurrence is no longer a problem as it is in the evaluation of the reduction of FSDs. (4)
If the substitution method were used, results might be misleading since our classifier is
a non-parametric one and the data set is too small (Devijver and Kittle 1982).

In order to use the rotation method, each seizure reference set has to be divided
into subsets first. The criterion for the division is: éach subset contains all the seizures
from one patient only. As a result, the seizure reference set A (scalp electrodes) was
divided into 13 subsets, while there are 10 subsets in the seizure reference set B (depth
electrodes). Details about the division of subsets, the rotation sequence and the
averaging method are discussed below.

The evaluation of the error rate was carried out in the procedure described in figure
3-5. A classifier is provided with a set of false detection prototype points from a patient,
is trained with a set of FSD training data of the same patient and with a portion of a
seizure reference set (seizure training data), and thgn tested with the other portion of the
seizure reference set (seizure testing data). In each rotation, seizure training data and

seizure testing data are changed, while prototypes and FSD training data remain the
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same. Of course, when another classifier (corresponding to another patient) is used for

the evaluation, both prototypes and FSD training data will be changed.
43.]1 Scalp Electrodes

The seizure reference set A was divided into 13 subsets because seizures come
from 13 patients (N=13) with scalp electrodes. The number of seizure in each subset is

shown below.

Subset 1 2 3 4 5 6 7 8 9 1011 12 1
SEZ 1 1110101 414 21 2 4

By using these seizure subsets, each classifier has to be trained by twelve seizure
subsets and tested on the one left for each rotation. For instance, if a classifier, which is
named classifier #1, is trained by data containing subsets #2 to #13 and tested on subset
#1, an error rate ¢, is obtained. Then after the same classifier is trained by the other 12
subsets and tested on subset #2, another error rate e, is obtained. When each subset has

been the testing data once and only once, a total of 13 error rates has been obtained. The

N
e
average error rate for classifier j is therefore: £, = #
The same procedure applies to the other classifiers and 10 error rates can be

obtained (P=10) because there are 10 patients in this group. The average error rate of

p
LE,

classifiers trained and tested by seizure set A is: E, = % and the standard deviation

£ -
Z(EA —E,)
is: SD, =)<

P
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4.3.2 Depth Electrodes

The seizure reference set B was divided into to 10 subsets (N=10) because
seizures were contributed by 10 patients with depth electrodes. The number of seizures

in each subset can be seen below.

Subset 1 2 3
SEZ 10 7 6

—
o

4 7
6 1

w o
LT =]
(=)

5 6
4 2

By using the same procedure as in the section of scalp electrodes, the classifier j has
N
2.
an average error rate at: Ej; = —'='N—- and N=10.
Since there are 10 classifiers (P=10, one classifier for each patient) in this group,
10 error rates can be obtained. The average error rate of this set of classifiers is:

P |.r
2 Ey 2(Ey—Ep)
Ey= J"P and the standard deviation is: SD, = | <= >
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Figure 3-5: Diagram illustrating the evaluation of the probability of losing scizures: For a particular patient, the classifier specific
to him is trained with a same set of prototype points and the same FSD training data, but with different scizure reference training

subset in different rotations. A seizure reference testing subset, which changes in each rotation, is used 1o test the error rate.
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5 Results

After the evaluation proccdures were executed, results were computed and will be
discussed in this section. False detection elimination ra‘es will be presented first,
followed by probability of losing seizures. Some examples of results will be shown at

the last.
5.1 False Detection Elimination Rate

A total of 20 patients with FSDs acquired from 2,0681 hours of monitoring were
used in the evaluation of the reduction of false detections. The average false detection
rate in the classic seizure detection method of Gotman (1982, 1990a) is 3.25/hour in
these monitoring sessions. By using our method, the false alarm rate was reduced to
1.26/hour in the same set of data. Average results from all the patients indicated that
most FSDs (61%) could be eliminated. There was a higher FSD elimination rate for
depth recordings (71%) than that for scalp recordings (50%). This is probably because
most FSDs from depth recordings are more similar.to each other than FSDs from scalp

recordings. Results 2r2 shown in detail in table 3-1.
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Table 3-1: Results of the false detection elimination rate
Depth Scalp Total
Number of patients 10 10 20
FSDs acquired from (hours) 997.5 1.070.6 2.068.1
Original FSD rate (/hour) 3.63 290 3.25
New FSD rate (/hour) 1.07 1.45 1.26
Elimination rate .70.6% 50.0% 61.1%

5.2 Probability of Losing Seizures (Error Rate)

Results are shown in tables 3-2 and 3-3. Each “cls” represents the classifier

corresponding to one patient. In each column starting with “cls”, the error rate of each

rotation is presented, with the average error rate for this classifier in the last row. For

instance, in table 3-2 for patients with scalp electrodes, classifier #1, which is

specifically for patient #1, has an error rate in each of 13 rotations. In all these rotations,

this classifier has the same false detection prototypes, and is trained with the same FSD

training data (figure 3-5). However, it is trained with different partitions of the seizure

reference set and tested on the other, according to the details discussed in the section of

“Evaluation”™. The average error rate for this classifier is 7.72%. A similar procedure

was applied to the other classifiers in this group. as well as classifiers in the group of

patients with depth electrodes. The number of seizures used in the testing set for each

rotation is shown in the second column from the left. The overall average error rate and

its standard deviation are shown in the last row of the last two columns,

The average error rate is 2.78% for patients with scalp electrodes and 2.58% for

patients with depth electrodes. This indicates that the method has a very low error rate.
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In other words. the method has a very small probability of climinating a true seizure

detection.
5.3 Examples:

Examples of FSDs which are successfully eliminated are shown in figure 3-6.
Pattern A 1s typical alpha activity and pattern B is an artifact. The EEG pattern C is a
rhythmic burst of ur’ nown significance in the hippocampus. It occurred in a patient
every night and caused a lot of FSDs. Such patient-specific FSDs can be frequent in
long-term EEG monttoring and they were largely eliminated by our method.

A small number of seizures from the reference sei were lost. The reason is that
these seizures were small and also similar in some of their electrographic characteristics
to the FSDs of the patient. An example is shown in figure 3-7. Pattern A is a scizure in
the reference set and pattern B is a FSD from the initial FSD set in a patient: if that
seizure had occurred in that patient, it would have been lost as a result of our procedure.

Not all FSDs were eliminated by using the algorithm. An example is shown in
figure 3-8. This is a FSD pattern in a new monitoring session and it is very different
from most of the FSD patterns from the initial FSD set (figure 3-6, pattern C) of the
same patient. When a FSD pattern is not similar to the patterns found in the initial FSD

set, it cannot be eliminated by our method.
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Table 3-2: Results of the error rate from patients with scalp electrodes: "R" means rotation, "Err" micans error rate, "tst" means number

of seizures in a seizure reference testing set, "cls” means classifier, "Avg" means average and "SD" means standard deviation. The

same abbreviations apply to table 3-3.

tst | clsl cls2 cls3 clsd cls5 cls6 cls? cls8 cls9 cls10 | Avg SD

Rl ] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R2 1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R3 1 100% | 0% 0% 0% 100% | 100% | 0% 0% 0% 0%

R4 10 | 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R5 10 0% 10% [10% |20% |0% 0% 10% | 10% |0% 0%
R6 1. [0% 0% 0% 0% 0%. 0% 0% 0% 0% 0%

R7 |4 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R8 ] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RO |4 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RIO |2 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
R11 |1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Ri2 |2 | 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
RI13 14 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Err 7.72% | 0.77% | 0.77% | 1.54% | 7.72% | 7.72% | 0.77% | 0.77% | 0.0% | 0.0% | 2.78% | 3.26%
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Table 3-3: Results of the crror rate from patients with depth electrodes

tst | clsl cls2 clsl clsd4 clss cls6 cls7 cls8 cls9 clsl0 { Avg SD

Rl 10 | 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R2 |7 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R3 |6 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R4 |6 |0% 0% 0% 0% 0% 0% 0% 0% 16.6% | 0%

RS |4 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R6 |2 |0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R7 | 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

R8 {3 0% 0% 33.3% | 0% 0% 0% 0% 0% 0% 0%

RO [4 J0% [25% [0% 0% [0% [50% [25% [25% J0% 0% T
R10 |6 0% 0% 0% 16.7% | 16.7% | 0% 0% 0% 16.6% | 33.3%

Err 0% 250% | 3.33% | 1.67% | 1.67% | 5.00% | 2.50% | 2.50% | 3.33% | 3.33% | 2.58% | 0.96%
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Pattern A
Figure 3-6: Examples of FSDs eliminated. These are EEG patterns which caused a lot of FSDs in some patients; most of
them were eliminated. Pattern A is a typical alpha activity pattern and pattern B is an artifact. Pattern C is a rhyihimic burst of
unknown significance occurring in the hippocampus. On the top of the figure, "ASZ" indicates this section is an automatic

scizure detection section and "A" indicates the time a detection occurred. The time of day is zlso indicated. These symbols stay
the same in all following figures.
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6 Discussion

We presented a procedure for the reduction in false detections in an automatic
seizure detection method used during long-term monitoring of epileptic patients. it is
difficult to reduce false detections significantly with a method applicable to all patients
because seizure patterns as well as the main causes of false detection are quite different
from patient to patient. The same pattern can be a cause for frequent false detections in
one patient but be characteristic of a seizure in another. Since automatic scizire
detection is most useful in the context of long-term monitoring sessions which can last
one, two or several weeks, we decided to use information gained in the first one or two
days of monitoring to learn about the patterns specific to a particular patient.

Instead of teaching the system about a patient's seizures, we clected to teach it
about the patient's false detections. In our experience, when false detections are frequent
it is usually because one paroxysmal pattern tends to repeat often. We developed a
measure of similarity between a new pattern and the pattemns of false detections in each
patient to determine whether the new pattern resembles known false detections. We
have applied this measure of similarity to the seizure detection method of Got:nan
(1982, 19902) but it could also be applied to any seiiure detection method for which
each detection is characterized by a set of variables.

This algorithm can eliminate not only FSDs ca-used by normal or abnormal EEG
patterns, but also artifacts, as long as these patterns are persisting for several monitoring
sessions. This is particularly important because artefact cause more than 80% of FSDs
(Pauri et al. 1992). In figure 3-6, we can see that artefact, normal and abnormal EEG
patterns which cause a lot of FSDs can be eliminated well. Some FSDs are not
eliminated yet. The main reason is that these FSDs have EEG pattemns which were not

included in the initial FSD set from the trial session (as shown in figure 3-8). This
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problem could be solved by adding new FSD patterns, whenever they occur, to the
initial FSD set.

A small number of seizures were lost. The main characteristics of these seizures are
(1) they are relatively similar to some FSDs patternls in an initial FSD set from the
paticnt. An example can be seen in figure 3-7. (2) These seizures have a few detection
points only. It is much more likely to lose a seizure with only a few detection points
than seizures with many detection points. The results show that the probability of losing
small seizures is toierable (below 3%). Although we have not measured it, the
probability of losing larger seizures is certainly much lower. Since a significant
reduction of FSD rates could lead to the use of lower detection thresholds and
consequently to a rise of seizure detection sensitivity, this small price appears justified.
The increase of seizure detection rate by lowering c!etections thresholds (Pauri et al.
1992) can be much higher than the rate of the loss of seizures caused by this method.

Although this method was evaluated off-line, it can be implemented on-line to
work with detection programs because it does not require a lot of memory space and
the computations are not very complex. If there are M detection points in an initial
FSD set. a maximum of M distance computations are required to determine if a new
detection point belongs to the FSD subspace. Since M can be typically of the order
of several hundred, the calculation is not too long.

Although there are not many papers about seizure detection, several aspects of this
field can be discussed. For instance, even with our method, there is still a false detection
rate at about 1.3/hour despite the fact that our method reduced the rate by an average of
61%. This rate could be reduced further so that lower detection thresholds could be used
and consequently more seizures could be detected. Although the estimated probability
of losing seizures in our method is very low (below 3%), the actual probability could be
even lower because we only took small seizures into account in the error estimation, and

larger seizures are much l2ss likely to be lost than small seizures. As a result, the



Chapter 3: Reduction of FSD 86

optimal distance coefficient could be higher than we have now: more FFSDs could be
eliminated. while the probability to lose a seizure would remain low and aceeptable.
This can be done by changing the constant K in the optimal similarity selection,

Reduction of FSDs can be achieved by our method. and it could be achieved by
other methods as well. One way is to use a patient-adaptive algorithm to vary the
detection thresholds in a detection program. When FSDs are rare in a certain period
of time, the algorithm could lower the detection threshold so that more seizures and
more FSDs would be detected. as proven by Pauri ¢t al. (1992). However, when
FSDs are frequent, the algorithm couid raise the threshold according to the FSD
patterns and therefore FSD rate will decrease with the disadvantage that some
seizures may be missed. As long as the algorithm balances the trade-off between the
elimination of FSDs and the probability of missing detecting seizures, the overall
performance of the detection method could improve. One of the important aspects of
such an algorithm is that it would keep the FSD rate at a constant level for all
patients at all time. This will make full use of the storage capacity of the computer.

If it is used with our method, the system can have a better seizurc detection rate than
the original one or the one with our method alone. Another aspect is that this
algorithm is an unsupervised one and therefore even the minimum human
interventions, as required by our method, would not be necessary any more.

We used an orthognal space for the detection and assume the independence
betvveen features. Although we have not tested their independence, we used different
features to describe different characteristics of the EEG and therefore it is reasonable to
assume their independence. Moreover, the satisfactory performance of the method
proves the usefulness and effectiveness of the features. Of course, the independence of
features should be tested systematically and future performance and efficiency could be

improved by using a better set of features,
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Figure 3-7: Example of a seizure lost because it is similar to a FSD: Pattern A is a seizure from the seizure reference set and

Pattern B is a FSD from the initial FSD set of a patient. In figure B the detection took place in channe! RH1-RH3, LS1-LS3 and

RH3-RHS5; in figure A the detection was in channel RS3-RSS5. The similasity between the detected pattern in A and the false

detection in B resulted in the elimination of the seizure in A.
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Figure 3-8: Example of a FSD retained. This EEG pattern of a FSD was detected and not eliminated because it is different from the

same patient's FSDs which occurred during the trial monitoring session {figure 3-6, pattern C).
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Chapter 4:

Seizure Onset Detection

1 Introduction

Changes in the EEG at the onset of a seizure are of considerable interest because of
the information they reveal about an epileptic focus. Detection of seizures at an early
stage may allow precautions to be taken to avoid danger to the patient, and may improve
observation of early behavioral changes, and allow behavioral testing 1o better define the
anatomical structures involved in the epileptic focus. Once a seizure is fully developed,
this subtle information about location may be uravailable.

Interaction with an epileptic patient during the early part of a seizure is very
important. As a part of the normal procedure for caring for an epileptic patient in the
hospital (Engel 1989), the observation during the ictal phase includes: (1) the type and
anatomical distribution of movements at the beginning of the seizure; (2) initial

alterations in consciousness; (3) responsiveness and memory during the ictal event, and
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(4) postictal neurological and mental deficits. These observations can help to determine
the type of seizure. For instance, complex partial seizures have svmptoms similar to
those of simple partial seizures, with an additional impairment of consciousness at
seizure onset. The consciousness of a patient cannot be known if there is no interaction
between observer and patient. In addition, the carlier the interaction takes place after
seizure onset, the better the information to determine the type of scizure. Many patients
are not aware of their seizures; as a result, a scizure warning system is very usciul to give
observers a chance 10 interact with patients as carly as possible.

There are three difficulties in the detection of all seizure onset: (1) The early seizure
pattern is highly variable from a patient to another. (2) Although it is sometimes abrupt,
the seizure onset often involves small changes and evolves into a full seizure pattern
during a pertod of about 20 seconds. (3) The seizure onset in one patient can be very
similar to non-seizure EEG patterns of other patients, espzcially when artifacts and
muscle activity are involved. This is why the seizure onset is more difticult to detect than
prominent seizure patterns occurring later in the seizure. This is also why most scizure
detection algorithms (Gotman 1982, 1990a; Murro et al. 1991, Liu, et al. 1992) aim at
detecting prominent seizure patterns rather than early seizure patterns. In those
algorithms, a seizure onset might be detected if there is a clear, abrupt pattern at onset,
but the detection can only be reported about a dozen seconds later. This is because the
system waits during this time 1o make sure the detection is valid. When early seizure
patterns are not prominent enough, those algorithms cannot detect them.

The following observations may help design a system for seizure onset detection: In
most patients, one or several types of seizures tend to repeat all the time. This is
reasonable since the sources that cause seizures in a patient usually do not change during
the usual period of observation and therefore similar seizures tend to occur repeatedly in
a patient. Although this phenomenon has not been proven by a large scale study, it has

been our conclusion based on extensive clinical experience. In these cases, the seizures of
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cach tvpe are very similar 1o each other, including the seizure onset For a panticular
patient, the seizure onset is most often distinguishable from the EEG background.
although it may resemble some background patterns of other patients. as mentioned
above.

On the basis of these observations, we propose a method to detect patient-specific
seizure onsets by using template matching. Once a seizure occurs in a patient, it can be
memorized During prolonged EEG monitoring sessions subsequent to the recording of
that seizure, if an EEG pattern has a good match to the stored seizure, it will be reported
immediately as a seizure onset. However, extreme caution has to be taken to avoid false
alarms because frequent alarms will annoy the staff and patient, and be ignored. In
addition to detecting early seizure onset, this method has the potential of detecting some
seizures that are missed by traditional detection methods: if one seizure is missed by a
detection method, stmilar seizures which occur later are also likely to be missed. With
the template matching method. if one of this kind of seizures is somehow captured, all
other similar seizures will probably be detected.

Although it could appear that such a method could be used for standard seizure
detection, this is not the case because standard detection must be able to detect all kinds

of seizures. not just seizures having a known pattern.
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2 Method

This method relies on the availability of one seizure tor each patient. A patient-
specific classifier is trained by using this seizure to detect the onset of subsequent
occurrences of similar seizures. The algorithm will be discussed first, tollowed by the
implementation procedure and the evaluation of the method.

The method uses six features to reveal important characteristics of ictal EEG
patterns. After a seizure and some tnterictal EEG are acquired from a patient. a classificr,
which 1s specific to the patient, is trained with the patient’s data only. In subsequent EEG
monitoring sessions of the same patient. the classifier is used to determine it a seizure

onset occurs. If it does, an alarm is triggered.
2.1 Algorithm

Features used in this method are discussed first, followed by the ¢ritenia in selecting
a template. The distance measure is then presented and finally the design and training of

the classifier are discussed.

2. 1.1 Feature Extraction

2.1.1.1 Epoch Sclection

The EEG is broken down into sections, or epochs, for the purpose of feature
selection. The length of an epoch depends on the type of application. In sleep research,
for instance, the analysis is done in epochs of 30 seconds (Gath and Bar-on 1985) or
longer (Friedman and Jones 1984). In the study of seizures, epochs of 2 seconds

(Gotman 1982; Hilfiker and Egli 1992), 6 seconds (Liu et al. 1992) or 6.83 seconds
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{Murro ¢t 2l 1991} have been used. The reason that shorter epochs are used in seizure
analysis than in sleep research is that seizure patterns change faster than sleep stages. In
our method, an epoch of 2.56 seconds is used for three reasons: (1) It is just long
enough to capture statistical characteristics of EEG and short enough to capture the
evolution of scizures. (2) Since the aim of the project is to detect seizure onsets as soon
as possible, a short epoch length may increase the chance of early detection. (3) Since
the EEG is digitized at a sampling rate of 200Hz, an epoch of 2.56 seconds contains 512

samples. It is a convenient length to compute the Fast Fourier Transform (FFT).
2.1.1.2 Features

There is a total of six features in this method, including a special one to describe
spatial information about electrodes. These six features are: average wave amplitude,
average wave duration, coeflicient of variation of wave duration, dominant frequency,
average power in a main energy zone, and the location feature,

1. Average wave amplitude in one epoch: The waveform decomposition method
of Gotman (1982) basically divides the EEG into halfwaves. The amplitude
and duration of each halfwave can therefore be measured. The average wave

amplitude is the average amplitude of halfwaves in one epoch. It is expressed
N
> Amp,

as: Avgdmp = --'—N— where N is the number of halfvaves in one epoch

and Amp, is the amplitude of a halfwave.

N
> Dur,

o . AvgDur == ——
2. Average wave duration in one epoch: It is expressed as: N

where N is the number of halfwaves in one epoch and Dur, is the duration of

a halfwave,
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3 Coefficient of vanation of wave duration in one epoch: It is expressed as:
N
Z(Dur, - Dury

Corg=+ ——. where N 1s the number of halfaves in one epoch,
N <« Dur’

Dur. is the duration of a halfiave and Dur is the average duration of
halfwaves in one epoch. This feature reflects the regularity of the duration of
halfwaves in one epoch.

4. Dominant frequency: To every peak in a spectrum corresponds a peak
frequency. Two other frequencies can be defined in relation to this peak: one
is in the rising slope and the other is in the falling slope. and they correspond
to amplitudes equal to half the amplitude of the peak. These two {requencies
define a frequency band called full width half maximum band of the peak.
Among all peaks in a spectrum, the peak which has the largest average power
in tts full width half maximum band is called the dominant peak. The dominant
frequency is defined as the peak frequency of the dominant peak.

5. Average power in the main energy zone: The main encrgy zone is a frequency
band that centers at the average frequency and contains 80% of the total
energy in a spectrum, The average power in the main energy zone is used to
reflect the concentration of energy in a spectrum. It the power in a spectrum
concentrates in one area, the main energy zone is narrow and the average
power within it is large.

The ictal EEG has a special characteristic: the main frequency in similar
seizures varies more in the high frequency zone and less in the low frequency
zone. In other words, if a seizure has a dominant frequency at 20Hz, a similar
seizure could have its dominant frequency at 21Hz or at 19Hz. However, if a
seizure has its dominant frequency at 3Hz, a similar seizure is unlikely to have
its dominant frequency at 4Hz. In order to reflect this characteristic, a

logarithmic scale is used in the frequency axis, i.e., F(f)=logf. All frequency
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bands are measured according to F(f) instead of frequency. In this way, a same
frequency difference in the lower frequency zone has a greater weight than in
the higher frequency zone because F(f) is a logarithmic mapping of frequency.
6. Location feature: This feature contains the positions of electrodes where a
seizure onset occurs. Our method attempts to detect seizures with simtlar
patterns in the sume brain regions. This characteristic is very important in the
determination of a seizure and its onset. The location feature is translated in
the classification into a requirement that the seizure onset occurs in the same

channels as that of the tempiate seizure.

2.1.1.3 Rationale for Using the Features

The first three features come from the waveform decomposition method of Gotman
(1976, 1982). They represent the most important characteristics of the EEG and they
were used in the seizure detection system of Gotman (1982, 19902). They have proven
useful in the detection of seizures. Other features used in the seizure detection method of
Gotman (1982), such as information about the EEG before or after the current epoch
(the context), are not necessary because our method uses template matching and
therefore only information about the current epoch should be compared with the
template.

Two features, dominamt frequency and average power in the main energy zone,
represent important characteristics of the EEG in the frequency domain. Similar features
were used in the system of Murro et al. (1991) to detect complex partial seizures.

The reason for using the dominant frequency instead of the more common average
frequency is that average frequency is a gross estimation of all frequency components. In
ictal EEGs, especially in the prominent part of a seizure, there is usually a main

frequency component because the EEG tends to be rhythmic, as defined in IFSECN
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(1974). However, ictal EEG can also be accompanied by trequency components of
noise, such as those of muscle activity or baseline movement. This ts why the dominant
frequency is useful in terms of reflecting this characteristic of ictal EEG, while the
average frequency mixes ictal characteristics with those of noise. In addition, similar
seizures have similar main frequency components, as shown in figure 4-1, even though
some other activities, such like slow waves and the noises, can vary from one scizure to
another. In this case, the dominant frequencies are the same in two similar seizures while
the average frequencies are different due to the different slow activities.

The main energy zone is defined to reflect the rhythmicity and the frequency content
of the rhythmicity in an epoch of EEG: when the EEG is rhythmic, its energy
concentrates in a small frequency region. This creates a small main energy zone and the
average power in the main energy zone is high. The Iocatic.m of the main encrgy zone
indicates the frequency content of the rhythmicity. As shown in figure 4-2a, for an ¢poch
of ictal EEG, the spectrum shows a narrow main encrgy zone because of rhythmic
activity. For another epoch of EEG from a similar seizure of the same patient, as shown
in figure 4-2b, in the same frequency band as the main energy zone of the template, the
average power in the band are very similar to that of figure 4-2a. Figure 4-2¢ is an
example of an epoch of interictal EEG of the same patient from the same electrode. Its
spectrum shows a very different pattern in terms of the average power in the same zone
as the main energy zone of the template. Figure 4-2d shows an example of interictal
rhythmic activity. Although its main energy zone is also small and the average power
within is large, it can be distinguished from figure 4-2a and figure 4-2b because the
location of the main energy zone is different. In other words, in the same frequency band
as the main energy zone of the template, the average power in this band in figure 4-2d is
much smaller than that in the template. Therefore, patterns in figure 4-2d and figure 4-2a

are distinguishable even though both of them are rhythmic. As a result, the average
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power in a main energy zone is a useful feature to distinguish the rhythmic activity in a
scizure from both interictal non-rhythmic activity and interictal rhythmic activity.

The last feature in our method is the location feature, This feature imposes spatial
restraints in our detection method. Spatial information has been used in other EEG
pattern detection systems (Gotman 1982; Glover et al. 1989). It has been proven that the
use of both temporal and spatial information can provide better results in the detection of
EEG patterns than the use of temporal information alone. In our false seizure reduction
method, the spatial information was also used to make detection more reliable. Unlike
the other five features, which are characteristics of EEG morphology. electrode positions
are the characteristic of physical location and they are difficult to express in the detection
space, especially in the case of intracerebral electrodes. Althcugh distances between
clectrodes were a dimension of the detection space in the reduction of false seizure
detections, this is not applicable in the onset detection because similar false seizure
patterns can occur in electrodes close to the ones in the prototype patterns while similar
seizure onsets always occur in the same electrodes as in the template. For instance,
artefact, which are the main cause of false detections (Pauri et al. 1992), do not

necessarily occur in exactly the same electrodes.
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Figure 4-1: Dominant frequency and average frequency: Pattern A and pattern B are
EEG and their spectra of two similar seizures. Although these two seizures are similar,
seizure A has more higher frequency components and therefore its average frequency
(10.94 Hz2) is different from the one in seizure B (8.98 Hz). However, the dominant
frequencies of these two patterns remain the same (5.08 Hz). This illustrates how the
dominant frequency is a better feature than the average frequency in terms of

representing major frequency components of the seizure,
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Figure 4-2: Examples of using average power in a main energy zone as a feature:
Pattern A is a seizure EEG and a spectrum of one epoch. In the figure, MEZ stands for
main energy zone. The rhythmicity of EEG is represented in the spectrum as an area of
concentrated energy, i.e., a major peak. The main energy zone in this case is small (1Hz
to 10 Hz) and the average power in it is high. Pattern B is a scizure similar to pattern A
from a same patient. The two spectra show great similarity in terms of main encrgy
zones and average power within them. Patiern C is a section of interictal EEG and its
spectrum. Since there is not much rhythmicity in the EEG. the average power within the
same main energy zone as the one in the template (pattern A) is low. For an interictal
rhythmic activity (pattern D), the average power in its own main energy zone may be
similar to the one in the template. However, since its main energy zone is different from
that of the template, the average power in the same energy zone as the one in the
template is lower than that in the template. This figure shows that average power within
a main energy zone is a good feature to reflect rhythmicity and frequency of the scizure.
As a result, it can be used as one of features to distinguish ictal EEG from interictal

rhythmic and non-rhythmic EEG.
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2 12 Template Selection

Template selection has two steps: sclection of template EEG and the generation of
template points. A seizure can last as much as several minutes, or as little as a few
seconds. In this section, we describe how a part of seizure is chosen as a template and

how a template is represented in the detection space.

2.1.2.1 Sclection of Template EEG

A template is a portion of a selected seizure. A template should contain the early
part of the seizure so that the detection can be made as early as possible. Also, a
template must have a reasonable length to increase the probability of detecting seizures
in case the very early part of the seizure cannot be detected. Selecting the template also
includes the selection of the location feature: a set of channels should be selected from
the template. The template selection criteria are the following,

1. A template EEG starts at seizure onset.

2. A template EEG ends 20 seconds after the onset or at the end of a seizure,
whichever occurs first.

3. The set of channels in which the seizure onset occurs is selected as the location
feature.

Template selection must be done visually by an EEGer. The reasons for choosing 20
seconds as the length of a template are: (1} Most seizures last more than 20 seconds. (2)
Twenty seconds is normally long enough to catch the predominant patterns of a seizure.
(3) A template shorter than 20 seconds may decrease the chance of detecting onsets, and
a detection 20 seconds after the onset is not considered too late. (4) Although a

detection 20 seconds later than onset is still considered better than no detection at all, a
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fonger template creates more template points, as explained below. It therefore increases

the probability of causing false alarms, as well as increasing the computation burden.

2.1.2.2 Generation of Template Points

A template EEG is divided into epochs of 2.56 seconds. Every epoch generates a
template point in the detection space after the five features are extracted from this epoch.
As a result, a template EEG is represented in the detection space as a set of template
points, one for each epoch. We will discuss the question of how to divide the template
into epochs.

Since our method compares EEG patterns epoch by epoch, the division into epochs
of the template and of a new EEG in which we are looking for a match to the template
affects the probability of finding a match. For instance, as shown in figure 4-3a, pattern
A is a template seizure and is divided into epochs from the beginning of the scizure.
Pattern B is 2 new seizure which is randomly divided into epochs since the beginning of
the seizure is unknown at the time of the search. In this case, the two seizures do not
have a good time alignment and therefore a match may not be found or may be found
late after the onset, although these two seizures are similar. If pattern B is divided into
epochs starting at the beginning of the seizure, a match can be made correctly. As a
result, the time alignment between a template seizure and a new seizure is important.

The first idea to solve the time alignment problem could be to divide a new EEG
into epochs starting at every sample (figure 4-3b). The advantage is that there are always
some epochs with the best possible time alignment with template epochs because at least
one of the epochs starts from the beginning of the new seizure. However, there is a
major disadvantage: the computational burdzn is too high, because every epoch in a new
recording has to be processed on-line and some of features have to be extracted from the

frequency domain. Doing the FFT in each epoch starting from each sample is too time
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consuming because this is 2 multichannel recording and the computation power of
personal computers is too small. there is a sample every 5 milliseconds tn each channel.
Therefore. this method is not suitable to solve the time alignment problem.

The other way to solve is problem is to divide the template seizure into as many
epochs as possible so that, independently of the kind of division in a rew EEG, there is
always one epoch in the template having a good time alignment with epochs in a new
seizure. This can be done by dividing the template seizure into epochs starting from
cvery sample, as shown in figure 4-3¢. There are two advantages in doing so: (1) The
best time alignment can be obtained since this division has the same time alignment
resolution as the previous method, which is also the best possible time alignment. (2) The
feature extraction of template epochs is done off-line and only once, and the heavy
computational load resulting from many epochs is not a problem. Nevertheless, there are
two disadvantages: (1) There is too much overlap between epochs starting at every
sample in the template. EEG patterns, even ictal patterns, do not change rapidly enough
to alter significantly the statistical properties of epochs lasting 2.56 seconds and starting
at 5 milliseconds intervals. (2) This method creates many points in the detection space
{4,000 points for a 20-second template) and every new epoch of EEG being analyzed has
1o be compared to all template points in the detection space. This results in an important
computational burden for on-line processing.

The division of template seizure into epochs is therefore done by compromising
computational load for on-line processing and the precision of time alignment. We
consider that the template seizure can be divided into epochs starting every 320
milliseconds (figure 4-3d); 320 milliseconds is a convenient value because it corresponds
to 64 samples, which is the basic processing unit in our programs, There are two reasons
for the choice of 320 milliseconds: (1) For a template seizure and a new seizure, a
mismatch is uniikely to occur when two epochs of seizure EEG have a time alignment

difference at 320 milliseconds. This is because changes in the EEG within 320
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milliseconds rarely changes dramatically the statistical characteristics of a 2 S6-second
epoch of EEG. (2) In comparison with the division of epochs starting every sample, this
division reduces the number of template points by a factor of 64, thus reducing by the
same factor the on-line processing time for classification. This helps in accommodating

the limited computational power of personal computers
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Figure 4-3: Epoch division and time alignment: Pattern A is a template and pattern
B is 2 new coming seizure. In figure 4-3a, the template and the new seizure are divided
in adjacent epochs. In this case, a time alignment problem arises and a mismatch is likely

to occur. (to be continued in the next page)
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Figure4-3: (continue from the last page) In figure 4-3b, the new seizure is divided
into a large number of overlapping epochs and therefore the time alignment problem can

be solved. (to be continued to the next page)
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Figure 4-3: (continued from the last page) Figure 4-3¢ shows another way to solve
the time alignment problem by dividing the template 1nto a large number of epochs. Both

solutions required a large amount of computation. (to be continued to the next page)
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Figure 4-3: (continued from the last page) One way to solve the time alignment

problem without increasing too much the computational burden is to divide the template

into epochs starting every 64 samples, or 320 milliseconds, as shown in figure 4-3d. In

this case, even if the division of epochs in the new seizure does not start at the onset, a

good match still occurs between the first epoch of the new seizure and the first epoch in

the division number 3 in the template because both epochs start 640 milliseconds after

onset.
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2 1.3 Distance Measure

We have to define the distance between two points of the detection space so that we
can measure how close the features of a new epoch are from those of the template
epochs. A weighted distance is used to reflect the different effects of each feature in a
detection. The distance between two points, 4 and B, in the detection space is defined

as: D(A.B)=|(4- B)M '(4- B)|. where

(M, © 0 0 0)
o M, 0 0 0
M'=| 0 M, 0 0 |and M, is the weight for each dimension.
0 0 M, 0
Lo 0 0 0 M,

The difference between the Euclidean distance and this distance is that each feature
is not considered equally weighted in this measure. This is because some features are
more important in the determination of onsets than others. The weight in each feature
also acts as a normalization factor to convert different physical units in different
dimensions into a universal unit so that comparisons of distances can be performed. In
this method, all M, are set empirically.

Although the distance measure looks similar to the Mahalanobis distance (Devijver
and Kittle 1982), there are some differences. The first one is that the distance measure is
used to measure distance between two points in a detection space, while the
Mahalanobis distance s used to reflect the distance between two classes by using the

mean of each class. The second difference is that the matrix A7, in our distance measure

is the weight of each dimension and it is a covariance matrix in the Mahalanobis distance.
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2.1.4 Classifier Design and Training

2.1.4.1 The Classifier

For a new EEG pattern, designated as N ,» a set of template points, F_and a set of

interictal EEG points, a patient-specific classifier can be expressed as:

f\"} is a possible seizure onset ifD (!_5,,1;’] Y< T <D, foralli

ﬁj 1s NOT a setzure onset if (]"{./'\7J y2 T~ D, forall i

where 2 (PN ) is the distance defined above, 7 is a distance threshold coeflicient
for all template point P, D,,,, is the distance between a template point P and its ncarest
interictal EEG point.

if N , s a candidate seizure onset, we must still check whether it occurs in a channel
selected as part of the location feature (the location feature was discussed above; it
represents the channels involved in seizure onset). In any patient, two seizures ar¢ never
absolutely identical. The variability between seizure onsets in some channels could be
such that a mismatch could occur, even though the seizure onsets are quite similar. We
decided therefore to require a2 match in at least half of the channels in the location
feature. As a result, in each epoch of EEG, if 50% of channels selected in the location
feature have matches with the template at the same time, it is considered that a seizure
onset is detected.

The distance threshold coefficient 7°, when it is smaller or equal to 0.5, is used to
bias the system to have a small chance of causing false alarms, at the expense of

detecting fewer seizure onsets or detecting them later. This is because the classification

boundary tends to be closer to template points when 7" is smaller than 0.5 (figure 4-4).
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When 17 is larger than 0.5, the opposite results may occur because the classification

boundary gets closer to interictal EEG points.

This classifier can be considered a modified nearest-neighbor (NN) classifier. As in
the NN rule, cach template point 7 has a distance to its nearest interictal EEG point.
Some 7 arc more similar to some interictal EEG points than other 7 and therefore have
a small distance to their nearest neighbors. We use smaller distance thresholds for these
. This allows the classifier to adjust itself to accommodate the situation of each
template point and thus be able to detect seizure onsets more accurately with less
probability of causing false alarms. The modification to the NN rule in our method is that
the distance between a template point and the classification boundary around it is a
constant in all directions (figure 4-4). In other words, the classification boundary in our

method is a five-dimensional ball centered at a template point and with a radius of

1" xD,,,. This makes the classification boundary of the method closer to the template

point even when 7 is 0.5 than that of NN rule (figure 4-4). This reflects the bias we

want to place in our method. Another reason for the modification is that there are much
fewer template points than interictal EEG points, the difference being of the order of
several hundred times. Therefore, it is better to be conservative by shrinking the decision
boundary toward template points. This results in having a lower probability of
misclassifying interictal EEGs as early seizure EEGs, at the expense of having a higher
probability of missing seizures. The last reason for the modification is that the
computation cost of our method is much less than that in the NN rule. For M template
points and N interictal EEG points, a NN classifier needs M+N distance computations
and M+N comparisons to classify a new point, while our method only needs M distance
computations and M comparisons. Since N is of the order of several hundred times M,

the reduction in computation in our method is considerable.
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Figure 4-4; Discrimination hyperplane of the NN rule and that of the current
method: "*" represents interictal EEG points and "o" represents template points. D1 and
D2 are two of the dimensions used in the detection space. The bold straight lines which
connect template points and interictal EEG points indicate the distance between these
points. The thin straight lines mark the hyperplane of the NN rule. The circles show the
classification boundary of our method with a distance threshold coefficient of 0.5, It is

obvious that the classification boundary of our method is always closer to template

points than that of the NN rule when 7" is equal 10 0.5.
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2.1.4.2 Training the Classifier

As indicated in figure 4-35, a classifier is trained with seizure template and interical
EEG. The classifier should be trained with appropriate amount of data so that it can
achieve a high scizure onset detection rate and a low false alarm rate. It is always the
casc that the more training data there are, the better a classifier can be trained. In our
method, the more seizures are used for training, the more accurately a classifier can
detect onsets; the more interictal EEG is used for training, the lower the false alarm rate
will be. However, more ictal data as training data could result in more false alarms, while
more interictal data as training data could result in a lower probability of detecting
onsets. Therefore, we carried out experiments to determine the most appropriate amount
of training data for our classifier, in particular the balance between the number of
seizures and the amount of interictal data. One important limitation is the availability of
seizures, a factor which must also be considered in the determination of the amount of
training data. Experiments and results are explained in the “Results™ section.

Our method is based on patient-specific information by using patient-specific ictal
and interictal data as training data. In order to assess whether our method is optimal, we
designed two additional experiments. One is to use semi-patient-specific information,
which includes patient-specific ictal information and non-patient-specific interictal
information, to train classifiers, The other one is to use both non-patient-specific ictal
and interictal data to train classifiers. Experiments and results are explained in the

“Results™ section,

2.1.4.3 Relabeling Template Points

It can happen that seizure patterns, when divided into epochs, are not

distinguishable from some interictal EEG patterns of the same patient. This is because
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the identification of a seizure by an EEGer takes into account the evolution of the EEG.
In other words, every epoch of the seizure may be considered as part of a scizure
because of the pattern in neighboring epochs, because of the evolution of the seizure
pattern. This is not the case in our method because each epoch is considered
independently from neighboring epochs. Therefore, some seizure patterns could cause
false alarms because similar EEG patterns can be found in the interictal EEG. In order to
solve this problem, we relabeled some template points as interictal EEG points during
classifier training. We set a relabeling threshold empirically for all classifiers. If a
template point has a distance to its nearest interictal EEG point smaller than the
relabeling threshold. this template point is relabeled as an interictal EEG point. This will,
of course, delay the possible onset detection due to the climination of template points.
However, trading earlier onset detection for a lower false alarm rate ts justified because a
low false alarm rate is a high priority.

Theoretically, it is possible but very unlikely that ail template points are relabeled if
all EEG patterns in the template can be found in the interictal EEG of the same patient.
This means that the seizure onset patterns are not distinguishable from the interictal EEG
patterns in the patient and therefore the computer can either detect it at the expense of
many false alarms or is not able to detect it at all.

We did not relabel interictal EEG points that are very close to template points as

template points because this would increase the false alarm rate.

2.1.5 The Quality Measure of the Classifier

The aims of this project are to detect as many seizures as possible, as early as
possible and with as few faise alarms as possible. In order to compare different
classifiers, a measure has to be defined 1o reflect the overall quality of the classifier. The

quality of a classifier is determined by three factors: detection rate, detection deiay and
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false alarm rate. A measure indicating the quality of a classifier should reflect these three

factors appropriately. We called "quality value”, or "QV", the measure of quality. It is
¢ .
defined as: Q) = — , where C i1s a constant 1o scale the
- (RI.J +0'2)x(lsﬂr x !3(,4‘60)( I)nud)

value of QV, R, is the number of false alarms per hour, 7, is the average delay of onset

detections in seconds, 7, is the percentage of seizures detected and P, is the

md

percentage of seizures missed. There are several reasons for using this formula.

(1) QV monotonically increases when R/, decreases. It means the lower the false
alarm rate is, the better the classifier is,
{2y 7, < P, +60 = P, is actually the weighted average of the delay of onset

detections. While 7, is the average delay of onset detections, 60 seconds is used as a

delay for seizures missed by the method. We decided that a detection 60 seconds after
the onset is ¢quivalent to missing the seizure, in terms of the benefits of seizure onset
detection. The weights for the average delay of detected or missed seizures are the
percentages of detected and missed seizures. Consequently, the weighted average delay
reflects the quality of a classifier with respect to detection delay.

(3) As aresult of (2), QV is inversely proportional to the weighted average of the
delay of onset detections. This reflects the fact that the shorter the onset detection delay,
the better the classifier.

(4) The constant 0 2 false-alarm/hour” is added to R, in the formula of QV. In
our method, the false alarm rate is low and it usually ranges from 0 to 0.5. A faise alarm
rate higher than 0.5 false-alarm/hour is considered unacceptable. Without the constant, a
change in R, from 0.01 to 0.02 results in the reduction of QV by half, while a change
from 0.2 to 0.3 only reduces QV by 33%, although in the laiter case the false alarm rate

increases much more significantly than the previous one. This constant is therefore

necessary to make sure that the change of R, has an appropriate effect on the QV.
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(3) The constant C is empirically set to 10 because this scales the value of QV to an
easy reading range. The constant does not change the meaning of the results, but only
affects the readability of the results.

(6) We carefully considered the range of each factor. how their changes affect the
quality of classifiers and the trade-off between factors. We used two constants, 0.2 and
60, to scale the effect of each factor in the QV appropriately. As a result, the risk that
extreme values of one of the factors results in an aberrant QV has been greatly reduced,
if not eliminated.Inconclusion, QV is justified in terms of the combination of all the
aspects of our classifier. The higher the value of QV, the better the classifier. Among

different classifiers, the classifier with the highest QV should be the best.

2.2 Implementation

The implementation is simple if the number of human interventions is limited. In our
implementation, only one human intervention is required: selection of the template EEG
and location feature. This human intervention is indispensable because only a human
operator can accurately provide this vital information. The details of the implementation
procedures are described below, and also illustrated in figure 4-5.

I. When a seizure occurs in a patient during a long-term EEG monitoring session, a
section of this seizure will be stored as the seizure onset template of this patient
according to the criteria mentioned earlier. The template points are generated
automatically by extracting features from epochs of the template.

2. The template EEG should be reviewed to determine the location feature, i.e. the
channels in which the seizure onset takes place.

3. A set of interictal EEG training data has to be collected. This is done

automatically, according to criteria discussed in the section on data collection.
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4. The template EEG and the interictal EEG training data are used to train the
classifier

5. The patient-specific classifier is then used to detect scizure onsets during long-
term EEG monitoring Each epoch of new EEG should pass through the classifier. If a
setzure onset is detected, a warning signal will be given so that observers can take
appropriate action.

More details about the implementation can be seen in Appendix B in the form of a

block diagram.
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Figure 4-5: Implementation procedure of our seizure onset detection method: After
a seizure is captured, a human intervention has to be made to sclect the template, as well
as the location feature. A set of interictal EEG should be collected at the same time.
Both sets of data are used to train a patient-specific classifier. This classifier is then used

to detect seizure onsets in subsequent monitoring sessions.
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2.3 Subjects

2.3 1_Cnruteria_in Subject Selection

Subjects for this study were selected from patients undergoing long-term EEG
monitoring at the Montreal Neurological Hospital from January 1993 to August 1993. A
total of 24 types of scizures coming from 17 patients was selected. All these patients
satisfy the following conditions:

I Each patient has at least one type of seizure. Some patients may have up to three
types.

2. For each type of seizure there are three 1o seven similar seizures from the same
patient.

We need at least three seizures to test the consistency of the method. We limited the
total number of seizures per type to seven to avoid giving too much weight to that type

in the overall average result

2.3.2 Data Collection

In order to train and test classifiers, interictal EEGs, as well as ictal EEGs, have to
be collected. We selected the holdout method for error estimation (Devijver and Kittle
1982), in which the data are separated into two mutually exclusive sets, so that one of
them is used to train classifiers and the other is used for testing. The reason for using the
holdout method is that it is not very difficult to acquire a large size of interictal EEGs in
long-term EEG monitoring. The holdout method for estimating error rates of classifiers

has the advantage of having less variance in the estimation, but the disadvantage of
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requiring a large data set (Devijver and Kittle 1982). Although there are not many
seizures, we still use the holdout method for the estimation of onset detection rate for
two reasons: (1) This method is better than the resubstitution method, especially when
the NN-rule-like classifiers are used (Devijver and Kittle 1982). (2) Although the
rotation method may look suitable for this situation, the associated computationa! load

and complexity made it impractical for our purpose.

2.3.2.1 Training Data

Only one seizure, which serves as a template, and a set of interictal EEGs are used
as training data for each patient. Interictal EEGs are easy to obtain. The interictal EEG
training data should represent as many as possible of the interictai EEG patterns present
in a patient. The more interictal EEG data are used for the training, the less chance false
alarms will occur. Practiczlly, a set of interictal EEGs sampled evenly over a period of 24
hours is suitable. There are three reasons for this: (1) The main factors affecting the
EEG, sleep and level of activity, have a period of 24 hours. (2) Although a data set with
the complete 24-hour EEG has all the interictal EEG patterns, a sample rate of one
minute every twenty to thirty minutes is practically suitable. Of course, the longer sample
results in a better interictal EEG training data set, but also results in greater computation
and storage cost. (3) According to the hospital records at Montreal Neurological
Hospital from January 1 1993 to December 31 1993, as shown in table 4-1, there is on
average about one seizure per day per patient for both depth electrode patients and scalp
electrode patients. This is the a priori knowledge of seizure frequency. As a result, using
one seizure and a set of interictal EEG from 24 hours to train a patient-specific classifier
appears justified. This seizure frequency can also be interpreted as two seizures per 48
hours. This means that using two seizures and interictal EEG from 48 hours to train a

classifier is also justified.
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Table 4-1. Statistics of patients” records from Montreal Neurological Hospital

Time period Januarv 1 1993 to December 31 1993
Elcctrodes Depth Scalp Total
Total number of paticnts 17 135 152
Total number of monitoring davs 344 1036 1380
Total number of scizures 301 1032 1333
Averape number of scizures per monitoring day 0.875 1.996 0.966

2.3,2.2 Testing Data

Two types of EEGs were collected as testing data: interictal EEGs and seizures
similar to template seizures. Interictal EEGs were collected to test false alarm rates,
while seizures were used to determine the seizure onset detection rates as well as delays
in onset detection. Since the false alarm rate is very low in this method, a lot of interictal
EEGs are needed so that the vartance of the false alarm rate estimates can be small. This
is also the reason we are using the holdout method, since it gives a smaller variance than
those determined by the leave-one out method and the rotation method (Devijver and

Kittle 1982).
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3 Results

EEGs were recorded according to the clinical protocol of the Montreal Neurological
Hospital. They included 32 or 64 clectrodes and therefore there are 32 or 64 channels in
each referential montage. Seizure detection, however, was performed with a bipolar
montage. All patients with scalp clectrodes used 32-channel bipolar montages and
patients with depth electrodes used 16-channel bipolar montages. In the 12 patients with
scalp electrodes, the average number of seizures per type is 3.9. In the 12 seizure types
from patients with depth electrodes, there are 4.5 scizures per type. The average length
of interictal EEGs used for training is 0.7 hours and 2.7 hours for testing, All training
and testing data required approximately 4 gigabytes of memory.

The results show that this method can detect seizure onsets accurately and quickly.
It can also detect some seizures missed by the classic seizure detection method. This
proves that it is possibie to have a reliable patient-specific on-line sctzure onset detection
systern.

We first compare different kinds of classifiers with different parameters. The results

for the best classifier for all patients are presented at the end.

3.1 Comparisons Among Different Classificrs

The performance of classifiers can be affected by the distance threshold coefficient
and the training data. In order to find out the optimal classifier, we designed three groups
of experiments to compare results: (1) classifiers with different distance threshold
coefficients (2) classifiers with different amounts of training data (3) classifiers with

different proportions of patient-specific and non patient-specific information.
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311 Classifiers.with Different Distance Threshold Cocefficients

There is one major parameter to be adjusted in the design of a classifier in this
method: the distance threshold coefficient T. As mentioned before, the distance threshold
coeflicient determines if the classification boundary is closer to template points or closer
1o interictal EEG points. When the classification boundary is closer to template points,
there will be fewer false alarms, as well as fewer onset detections. In order to find the
optimal value of the distance threshold coefficient, we tried classifiers with five distance
threshold coefficients and compared the QV of these five classifiers. The implementation
procedures of the experiments are the same as the one illustrated in figure 4-5 by using a
scizure as the template and a set of interictal EEG of the same patient sampled from 24
hours of monitoring. The only difference among classifiers in this group of experiments is
that their distance threshold coefficients are different. The results are shown in table 4-2.
Also. figure 4-6 presents the change of QV according to distance threshold coefficients
in the case of scalp electrode patients, depth electrode patients and all the patients.

Theoretically, we should try many distance thresholds with a small increment so that
ihe optimal threshold can be determined precisely. However, because computation and
memory required in the experiment are huge, it takes about one month of a personal
computer’s time to compute results from each distance threshold coefficient. Therefore,
we can only try five distance threshold coefficients.

From table 4-2 and figure 4-6, it is noticeable that the classifier with the distance

threshold coefficient of 0.5 is the best one because the QV values are always the highest.
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threshold coefticient of 0.5 have the highest QV. Results are the same for classifiers designed for patients with scalp electrodes and for

patients with depth electrodes.
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Table 4-2 Results of classifiers with different distance threshold coefficients,

Distance threshold 03 0.4 0.3 0.6 0.7
coeflicient
Scizure Scalp 37 74 100 100 100
detection Depth 76 90 100 100 100
rate (%) Total 58 83 100 100 100
Delay (s) Scalp 6.1 9.1 9.5 9.2 8.8
Depth 10.8 10.7 9.6 9.3 83
Tota! 8.7 9.9 9.6 9.2 8.5
False Scalp 0 0 0.03 (.57 2.7
alarm | Depth 0.09 0.28 0.37 1.02 2.1
rate (/h) Total 0.05 0.135 0.21 0,82 2.3
Qv Scalp 1.25 2.24 1.358 1.41 0.39
Depth 1.53 1.33 1.83 0.88 0.52
Total 1.32 1.55 2.54 1.07 047

3 1.2 Classifiers with Different Amounts of Training Data

The amounts of training data will certainly affect the quality of a classifier.
Theoretically, the more training data there are, the better a classifier can be trained. In
our method, a modified NN rule is used for the classification. As shown in table 4-1, the
probability of seizure is about one seizure per day per patient. As a result, in our
experiment to compare classifiers with different training data sets, we maintained the
right proportion of seizure points in the detection space by selecting two sets of training

data: one is the first available seizure and interictal EEG sampled from 24 hours (set 1)
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and the other is the first two available seizures and interictal EEG sampled from 48 hours
{set 2). The distance threshold coetficient used in this experiment is 0.5 because the
evidence seen in the last section suggests that this is the best one. The implementation
procedure of this group of experiments is similar to the one in figure 4-5. The difterence
only exists in the amount of seizures selected as templates (one setzure or two) and the
amount of interictal EEGs (EEGs sampled from 24 hours or 48 hours) used to train
classifiers. These experiments were carried out in patients with depth electrodes because
only this set of patients has enough interictal EEGs for both training and testing. The

results are shown n table 4-3.

Table 4-3: Results of classifiers trained with different amount of data.

Training data set One seizure and EEG | Two seizures and EEG
from 24 hours from 48 hours

Detection rate (%) 100 100

Weighted delay (s) 9.6 92

False alarm rate (/h) 0.37 0.20

Quality Value (QV) 1.83 273

As shown in table 4-3, the classifier trained with two scizures and interictal EEG
sampled from 48 hours performs better. This verifies the fact that increasing the amount
of training data results in a better classifier. In this case, more template seizures result in
a shorter detection delay; the more interictal EEGs are used for the training, the smaller

the number of false alarms.
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3 1.3 Classifiers with Patient-specific, Semi-patient-specific_and Non_Patient-specific

Information

We carried out three experiments to explore the effects of patient-specific and non-
patient-specific data as training data on the performance of classifiers. Our method was
designed 1o use patient-specific information, which includes seizures and interictal EEGs
from one single patient, to train classifiers and use it to detect seizure onsets in the same
patient. It is reasonable to think that a classifier trained with information from more than
one person could possibly better than the one trained with information from one patient
only, because more training data could result in a better performance in a classifier. We
therefore first design an experiment to train classifiers with semi-patient-specific
information which includes scizures from a patient A and intericai EEGs from many
patients, and utilize the classifier to detect seizures of the patient A. In order to fully
explore this issue, another experiment was designed to train classifiers with non patient-
specific information only which consists of both seizures and interictal EEGs from many
patients, and use it to detect seizures of a new patient. Details of experiments are
explained later.

The experiment for using totally patient-specific information was done by training
the classifier with the first available seizure and interictal EEG sampled during 24 hours
in each patient. Details of this experiments were discussed in the previous section. With a

distance threshold coefficient at 0.5, the results are shown in table 4-4,

3.1.3.1 Classifiers with Semi-patient-specific Information

The experiment for training the classifier with semi-patient-specific information

includes one seizure for a patient and interictal EEGs from many patients. It was

implemented in the same way as in figure 4-5, except that interictal EEG training data
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come from many patients instead of a specific patient whose first seizure is used to train
the same classifier.

This experiment could be carried out in the patients with scalp electrodes only
because this set of patients has the same detection montage. This makes it possible to
compare EEGs between different patients because all EEGs were recorded from the
same electrodes. This is not the case for patients with depth clectrodes because these
patients have individualized electrode placement. As a result, patients with depth
electrodes are not included in this experiment. We combined interictal EEGs of all
patients except one and used them to train a classifier for that left-over patient. Every
patient’s classitier was trained in this way. With the distanzc ihreshold coeflicient set at
1.2, as shown in table 4-4, there is an average false alarm rate at 0.04/hour. With this
distance threshold coefficient, the seizure onset detection rate is 48.6% and the average
weighted delay is 34.3 seconds. This gives the classifier a QV of 1.22.

We only use a distance coefficient of 1.2 in this experiment instead of any other
value for the following reasons; (1) This is a very computationally and memory intensive
experiment: computing results for one distance threshold coeflicient takes about one
month of personal computer time. Therefore, it ts very difficult to search the best
distance coefficient in this experiment as it was done in the first experiment. (2) The goal
of the experiment is to compare performance among classifiers. If the classifier with
patient-specific information and a distance threshold coefficient of 0.5 is called
“classifier A”, the classifier in this experiment can be called “classifier B”. As shown in
table 4-4, classifier B with a distance threshold coefficient of 1.2 has a higher false alarm
rate and a lower onset detection rate than classifier A, and therefore is worse than
classifier A. As explained earlicr, both onset detection rate and false alarm rate increase
when the distance threshol¢ coefficient increases, and vice versa. Classifier B with a
distance threshold coefficient higher than 1.2 will not have a better result than classifier

A because the onset detection rate in classifier A is maximum (100%) and the false alarm
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rate in classifier B already surpasses that of classifier A. If classifier B has a distance
threshold coeflicient lower than 1 2, its QV has an upper bound at the QV of classifier B
with a distance coeflicient of 1.2 but for which the false alarm rate is set to zero. Even
for classifier B with upper-bound, the QV is only 1.46, still much lower than classifier A.
As a result, knowing the performance of classifier B with the distance threshold
coeflicient of 1.2, it can be concluded that classifier B is worse than classifier A. More

details about the proof of this conclusion can be seen in Appendix C.

3.1.3.2 Classifiers with Non Patient-specific Information

We also designed an experiment 1o train classifiers with non patient-specific
information. Only patients with scalp electrodes were used in this experiment because
only this group of patient has the same montage so that their EEGs can be combined into
a single training data set, Since there are twelve patients in this group, we used template
scizures of eleven patients and their interictal EEGs sampled from 24 hours as training
data sets. A non patient-specific classifier is then trained with these training sets. In other
words, as in figure 4-3, the seizure training data contain first seizures of eleven patients;
the interictal EEG training data consist of the same eleven patients’ interictal EEGs
sampled from 24 hours in each patient. This classifier is then used to evaluate the onset
detection rate and the false alarm rate on the seizures and interictal EEGs from the
patient who is not included in the training sets. This classifier is therefore a non patient-
specific one because this classifier was not trained with any information coming from the
pati*.it whose data are used for the testing. The same procedure was applied to every
patient until each patient’s data have been a testing set once and only once. A distance
threshold coefficient of 1.0 instead of 1.2 was used because of the same reasons
described in the previous experiment. This classifier is much worse than the classifier in

the first experiment because it only has the QV value at 0.46.
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Results can be seen in table 4-4. It shows that classifiers trained with patient-specific

information have better results than classifiers trained with either semi-patient-specitic or

non-patient-specific information.

Table 4-4: Comparison of classifiers with patient-specific, semi-patient-specific and

non patient-specific information

Classifier

PS

Semi-PS

Non PS

Template seizures come from

one patient

one patient

many patients

Interictal EEGs come from

same patient

manv patients

many paticnts

Interictal EEG sampled from 24 hours 204 hours 264 hours
Number of training seizures i | 11
Distance threshold coefficient 0.5 1.2 1.0
Detection rate 100% 48.6% 11.4%
Weighted delay 9.6s 34.3s 53.9s
false alarm rate 0.03/h 0.04/h 0.20/h
Quality Value (QV) 4.58 1.22 0.46

3.2 The Best Classifier

From all above classifiers, we find that the best classifier has a distance threshold

coefficient of 0.5 and it is trained by two seizures and interictal EEG sampled from a

period of 48 hours However, the availability of seizures has to be considered as a factor

because seizures are rare events. A classifier trained by one seizure and interictal EEG

from 24 hours is therefore more practical while maintaining a high quality. This classifier

can detect 100% of seizures with an average dciection delay of 9.6 seconds after seizure
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onset Although the classical seizure detection method of Gotman (1982, 1990a) was not
meant for seizure onset detection, one can compare the resuits of the two methods to get
an idea of the order of magnitude of the difference because there is no existing onset
detection method for direct comparison. The classical method gave a seizure detection
raic of 87% and an average onset detection delay of 22 4 seconds. The average false
alarm rate for our method is 0.21/hour, compared to an average of 2.2/hour in the
classical method. The details are shown in table 4-5.

Some seizure onsets can be detected very early if they are abrupt. Figure 4-7A shows
a template seizure with an abrupt onset. In figure 4-7B, the seizure is from the same
patient and its onset was reported 2.5 seconds after the onset occurred. The delay was
caused by the detection epoch which has a length of 2.56 seconds. From figure 4-7C, we
can sce a template seizure which evolves gradually after the onset. The earliest seizure
pattern is hard to distinguish from some interictal EEGs from the same patient. This is
why an onset detection was reported only 9.9 seconds after the onset of a similar seizure
(figure 4-7D). These examples illustrate that abrupt seizure onsets are easier to detect

than gradual ones.



Chapter 4: Seizure Onset Deteclion 132

Table 4-5: Results of the best classifier

Scalp Depth Total
Number of types of seizures 12 12 24
Number of patients 12 5 17
Number of seizures tested 35 42 77
ASZ' detection rate $3% 90% 87%
Seizure onset detection rate 100% 100% 100%
ASZ detection delay (sec) 19.7 23.6 22.4
Onset detections delay (sec) 9.5 9.6 9.6
False alarm rate of ASZ (/h) 1.8 2.5 22
False alarm rate (/h) 0.03 0.37 0.21
Interictal EEG tested (hrs) 29.7 352 64.9

! ASZ mcans classic automatic scizurc detection method of Gotman (1982, 1990).
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Figure 4-7: Detected seizure onsets and their templates: Pattern A is a template seizure with an

seizure from the same patient and the onset detection was made 2.5 seconds after the onset. Pattern C is another templ

Pattern A

abrupt onset. Pattern B is a similar

ate seizure with a

gradual evolution after the onset. Pattern D is a similar seizure and the onset detection was made 9.9 seconds afier the onset because of

the gradual evolution of the scizure pattern,
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4 Discussion

The results show that this method is able to detect patient-specific seizure onsets
accurately, reliably and quickly. Large sets of interictal EEGs sampled evenly from a very
long period of time ensure that the estimation of false alarm rates is accurate and
unbiased. It can be noticed that there is not a large difference in results between scalp
clectrode patients and depth electrode patients except for false alarm rates, which are
more frequent in depth electrode patients. This is also the case for the classic seizure
detection method. This is because the EEG of patients with depth electrodes has a larger
varicty of patterns and greater dynamic range than the EEG of patients with scalp

clectrodes.

4.1 Motivations and Goals

During long-term EEG monitoring, a patient may have a seizure at any time. In most
cases, if the patient does not feel the seizure coming, seizures can only be noticed when
behavioral manifestations or prominent EEG patterns occur and the patient is under
constant observation. Since constant observation of a patient is a tiresome and expensive
procedure, a seizure onset warning device allows observers to interact with the patient
when a seizure occurs, thus revealing some important information, such as memory and
speech ability. The problem is particularly serious for apparently subclinical seizures or
seizures with minor behavioral manifestation: these kinds of seizures are usually missed
by observers and no interaction takes place during them. A system that can give a
warning signal when a seizure onset occurs is therefore very useful in this situation,

Since this system is designed as an independent on-line detection system with high
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accuracy. it could possibly be used as a warning device outside the hospital, such as in an
ambulance. or while monitoring at home.

The goal of this method is e detect seizures with a high seizure detection rate, a
short detection delay from onset and a low false alarm rate. It is impossible to obtaina
perfect performance in all these conditions at the same time. A compromise has to be
made. Among these three goals, a low false alarm rate is the most important one. A high
false alarm rate ruins the effectiveness of the device because warnings will be ignored by
observers if most of them are false. With a reasonably low false alarm rate, a high seizure
detection rate is the next thing to be considered. Missing a scizure is worse than
detecting a seizure with a longer delay from its onset. A short detection delay should be
considered when the system maintains a low false alarm rate and a high seizure detection
rate. In our method, using the distance threshold coefficient and relabeling some
template points are measures used to reduce false alarm rates, all at the expense of
longer detection delays and possibly lower seizure detection rates.

In addition to making early seizure onset detections, this method also detects some
seizures that are missed altogether by other detection methods: if' a seizure is missed by
the standard seizure detection method, similar seizures occurring later are also likely to
be missed. By using our method, if one of this kind of seizures ts somehow captured, all

other similar seizures will also be detected.

4.2 Training of Classifiers

In data selection for the method, 12 types of seizures are used from patients with
scalp electrodes and 12 in patients with depth electrodes. This is to reduce the variance
of results between patients with different electrodes. Each type of seizures contains three
to seven seizures. There are two reasons for this selection criterion: (1) If there are fewer

than three seizures, there are not enough seizures to test the conststency of the
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performance of a classifier in a patient. (2) Too many seizures of one type will give a
higher weight to this type when results are averaged from all types. In this case, results
may be misleading.

It is shown in the results that the amount of training data affects the quality of
classifiers When both setzure and interictal training data are used appropriately to reflect
a priori knowledge of the frequency of seizures in patients, which is one seizure with
interictal EEG from 24 hours or twice as much in both, classifiers can be well trained. In
contrast, using too much seizure training data, or too much interictal training data, will
result in deterioration of the overall performance of classifiers even though one aspect of
the performance is improved. This is because there are three aspects in the determination
of classifier performance. Improving one of them may deteriorate others. The amount of
scizure and interictal training data have to be balanced. From our experiments, a seizure
with interictal EEG from 24 hours is the minimum training set. Any tratning data set
having a multiple of this minimum training set in both seizure and interictal data will train
classifiers better.

The amount of EEG used to train a classifier determines the quality of the classifier.
When a training data set contains all interictal EEG patterns of a patient, the quality of
the classifier with respect to false alarm rate is the highest. Obviously, putting all
interictal EEGs available into the training data set is the best way. However, this is
unnecessary because most of them are redundant data. The most important thing in
selecting the interictal data is not the size of data, but the period of time during which the
data are sampled because the longer that period, the more vartety in the EEG patterns
likely to be included. For instance, one hour of EEG acquired continuously does not
include as many kinds of EEG patterns as one hour of EEG made from samples taken
evenly throughout a period of 24 hours. Because of the human biological clock, most
EEG patterns have a repetition rate of 24 hours or less. Although some interictal EEG

patterns may occur or disappear from one day to the next, most interictal EEG patterns
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can be found within a day. Therefore, getting interictal EEG from a period of 24 hours is
a minimum requirement to represent most interictal EEG patterns Since a high sampling
rate results in too much data and a low sampling rate takes the risk of being less
representative, a compromise has to be made. We used a sampling rate of one minute
every thirty minutes to collect interictal EEGs in an interval of 24 hours for these two
reasons: (1) This will create a set of EEG with a total length at 0.8 hours which isa
reasonable size for processing. (2) This set of data can be considered representative of
most interictal EEG patterns of a patient.

It is possible to retrain a classifier with new interictal EEGs i’ it appears that they
have changed during the monitoring session. By doing so. the classifier is kept up to date

with respect to possible slow changes occurring over several days.

4.3 Method

False alarms occur only when patterns in interictal EEGs are similar to some
patterns in the template seizure. If an onset occurs in a total of N channels, an interictal
event is unlikely to trigger a false alarm because it is unlikely that EEG patterns in haif of
N channels have matches with the template at the same time. It is likely though that in
one of N channels at some time an EEG pattern has a match with the tempiate. As a
result, the location feature plays an important role in the elimination of false alarms. In
some patients with depth electrodes, seizures may be very focal and include only one or
two channels. In terms of the constraint of the location feature, as long as there isa
match in one of two selected channels, the constraint is satisfied. In this case, a false
alarm is more likely to occur because there is a high probability that the constraint can be
satisfied. Although the location feature is very important in our method, it also relies on

the right features, practical distance measure and a conservative approach in the selection
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of the classification boundary. All these steps combine 1o make our system accurate and
rcliable.

Our method is totally based on patient-cpecific information to detect patient-specific
events We designed experiments to compare classifiers trained with patient-specific,
semi-patient-specific and non-patient-specific information. Results indicate that the use
of patient-specific information provides the best performance. This provides confirmation
of the validity of our original approach.

The method was implemented and tested off-line. However, our method has taken
into account memory management and computational load so that it may be eventually
implemented on-line. For instance, the classifier uses the modified NN rule rather than
the k-NN rule. This is not just because both can achieve the similar error rate in the
recognition of EEG pattern (Gevins 1987a), but also because the k-NN rule needs much
more memory and computation, as discussed in the section on classifiers.

Our method has one major shortcoming; it only detects seizures similar to the
template. In epilepsy monitoring, one wants to explore as many kinds of seizures as
possible. Therefore, our method cannot replace traditional unbiased seizure detection
which aims at recording ali kinds of seizures. Our method, however, can be used
together with traditional seizure detection methods to detect possibly many seizures and
detect some known ones as early as possible.

Although there is no seizure onset detection method with which to compare our
method, theie are some methods in speaker recognition which aim at solving a similar
problem. For instance, the speech signal is an onie-dimensional signal, similar to the EEG
signal. Speaker recognition uses pre-recorded speeches from speakers as templates and
compares them to a new speech when speaker recognition is required. Soong et al,
(1985) used short-time linear predictive coding vectors as feature vectors, and a vector
quantization codebook to efficiently characterize the short-time spectral features of a

speaker, and a minimum distance (distortion) classification rule to recognize a speaker
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according to pre-recorded speeches from N speakers. A minimum distortion is computed
for each speaker by comparing this speaker's spectral features with other speakers’
spectral features. Colombi et al. (1993) compared a similar method 10 a neural network
approach in the recognition of speakers. His results showed that the neural network
approach performs as well as the other method in clean environments and better in notsy
cnvironments The speaker recognition problem is similar to our problems because our
goal is to distinguish a seizure similar to a pre-recorded one (template) from non-seizure
patterns and patterns of other kinds of seizures. Different from EEG signal which is a
multichannel signal, speech signal is a single channel signal. That is the reason we used
the inter-channel information and there is no similar method in speaker recognition. Both
false positive and negative detection in our method are very serious because false alarms
will annoy staft people and missing a seizure means the loss of important information
about a patient. However, in speaker recognition, false negative detection is not very
serious because the speaker can try again, but false positive detection is very scrious
because a wrong person may be identified.

Our method is not restrained to detect only one type of seizure per paticnt, It can be
used to detect multiple types of seizures in a patient, This has been demonstrated in our
evaluation of patients with depth electrodes. In this group of patients, some patients have
up to three types of seizures. In that situation, each type of scizures has its own classifier
and therefore detecting three types of seizures in a patient means running three classifiers
concurrently, There is a significant negative effect of such a situation: the false alarm rate
will increase, possibly by as much as the number of seizure types.

In our evaluation, we only selected similar seizures from 17 patients. Although this
set of data is quite representative, it would be better if the data set was larger so that
results could be more reliable. In addition, we did not select patients with two similar
seizures only because there are not enough data for testing in these patients. In practice,

these patients can also use our method because, as long as there is a2 template, a patient
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can start using our method to make onset detection. As a result, our evaluation may not

include all possible cases.

4.4 Future Improvements

Our method needs an operator to determine the location feature and the time of
onset. If this step can be replaced by a program, the whole system will become fully
automatic and therefore no human interaction will be needed. Since this would be done
off-line, it is possible to develop a more sophisticated method to analyze a seizure and
determine its onset because the computational cost is no longer a serious threat to the
implementation.

It would be helpful to re-evaluate our method on a group of unselected patients, Our
method was only evaluated in 17 selected patients. if we redo our evaluationina
practical clinical situation without any restrictions, several interesting questions can be
answered: (1) What is the percentage of all kinds of seizures which can be detected? (2)
What is the percentage of patients who can benefit from our method? (3) In what sense
can seizures be called “similar™ in our method?

Our method pays much attention to keep the false alarms as few as possible. When a
patient has a very low false alarm rate, it will be possible to increase the distance
threshold coefficient so that onset detection delay can be shorter at the expense of
possibly a higher false alarm rate, as shown in results. Therefore, a false alarm rate
related adapting algorithm could be utilized to keep false alarm rate at a constant low
level, for instance one in 24 hours, by changing the distance threshold coefficient for
each patient at different times. This algorithm will make the system reliable with a
constant level of false alarm rate, while the onset detection can be as early as possible.

In our method, all features are computed from the current epoch only. This

contributes to false alarms since some isolated patterns in the background may be similar
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10 some patterns in templates. These faise alarms could be avoided if there is a new
feature containing the information about the evolution of scizures to distinguish those
isolated patterns similar to the template from real seizures. In this case, only patterns,
similar to the template and with evolution charactenistics similar to the template seizure,
will be detected as seizures. This will decrease the probability of false alarms

significantly However, since this feature considers the evolution of a seizure, it neceds
more than one epoch to measure. This will delay the possible detection of a seizure and
therefore is a shortcoming in the onset detection. The best system should use our method
together with a method using the evolution feature. Since in some cases our method
cannot detect onsets early enough, this system will decrease the delay of the onset

detection in these cases with few chances to cause additional false alarms.
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Chapter 5:

Conclusion

Our work represent a new approach to the field of long-term epilepsy monitoring,
particularly in the area of the reduction of false seizure detections and early detection of
seizures. Since ictal EEG patterns are highly variable from patient to patient, a universal
algorithm to detect all seizures without causing many false detections is very difficult to
achieve. An attempt has been made by Gotman (1982, 1990), but the performance of
this system has much room for improvement (Pauri, 1992). In some patients, the ictal
EEG pattemns, as well as interictal EEG patterns, tend to repeat frequently during long-
term EEG monitoring. Therefore, patient-specific algorithms can focus better on certain
patient-specific patterns. By using a new "similarity" measure and a patient-specific
classifier, the method for reducing false seizure detections increases the performance of
seizure detection greatly in terms of sensitivity and'accuracy. A comprehensive

evaluation has been done by using the holdout method and the rotation method.
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Although on-line seizure onser detection has never been attempted betore beeause
of the diversity of onset patterns, our algorithm for detecting seizure onsets indicates
that a high accuracy of detection. a reasonable short delay and a low false alarm rate are
possible. It has also been shown that a modified NN rule can perform well in onset
detection while it has a minimum computational cost. Therefore, this method is able to
perform in real time to serve as a warning device.

Because there is a large variety in the EEG among patients. a universal classifier
can hardly perform well in the detection of abnormal EEG patterns. such as spikes and
seizures. It has been illustrated by our methods that a classifier which has more patient-
specific information performs better. Gotman {1990) indicated that. by extracting the
context from a few seconds to approximately one minute, his scizure detection method
performed better than before. Our methods used patient-specific information obtained
hours and even days preceding the recording and tﬁcrefore performed very well. This
brings the computer method closer to human interpretation of the EEG since the EEGer
uses, consciously or unconsciously, information from past recordings when interpreting
an EEG. This concept can certainly be used in the detection of other EEG patterns, such
as spikes and seizures in children and infants, or other physiological signals, such as
abnormal ECG patterns. The main disadvantage of the concept is that some paticnt-
specific information has to be acquired before the system can start working. This is
certainly a major problem during short-term recordings, but it is much less critical

during long-term monitoring.
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Appendix A:

Block Diagram of the Algorithm for the
Reduction of False Detections
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Appendix B:

Block Diagram of the Algorithm for the
Detection of Seizure Onsets
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Appendix C:

Comparison of the Quality of Classifiers

Let us start with the following known conditions:

() Q¥ = < .
(R, +02) (7, xP,, +60 <P._,)

(2) T is the distance coefficient.

(3) Both R,, and P,, monotonically increase with T.

(P, =1-r,

(5) Weighted delay D=7, «.+60xF ,.

(6) Classifier A has R, =0.03, P, =1, 7,,=9.6 and WD=9.6 when T=0.5 and
therefore has a QV of 4.58.

(7) Classifier B has R,;,=0.04, P, =0.486, 7,,=7.11 and WD=34.3 wher T=1.2 and

thercfore has a QV of 1.22.

We need to prove that classifier B with the optimal T cannot perform better than

classifier A with T=0.5.

Now let us look at all three possible cases:

Case |: classifier A with T=0.5 and classifier B with T=} 2

As we have computed, the QV of classifier A is 4.58, which is higher than that of
classifier B, 1 22,

Case 2: classifier A with T=0.5 and classifier B with T<1.2

As we mentioned in the above conditions, both R, and F,, will decrease when T

decreases. In order to find the highest possible upper bound for QV in this case, we set

R,, 10 the lowest possible value, 0; 7 to the highest possible value, 0.486 (the value
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corresponding to T=1.2, since lower values of T result in lower values of £, ). and 7,
10 the lowest possible value, 0. With all these settings, the upper bound of QV of
classifier B is only 1.62, which is far lower than classifier A with T=0.5.

Case_3; classifier A with T=0.5 and_classifter B with T>12

We already know that both R, and /*, increase when T increases. As a result,
when T>1.2, R, becomes larger, although it is already larger than the R, of classifier A
with T=0.5. Since P,, has the highest possible value, I, it is also the highest upper bound
for the P, of classifier B. Assuming classifier B could possibly reduce the weighted
delay WD to the level of that of classifier A without increasing K., the QV would be
4.3, This extremely unlikely high value for the QV of classifier B is still lower than that
of classifier A with T=0.5.

By analyzing ali three possible cases, we can conciude here that classifier A with

T=0.5 always has a higher QV than classifier B with any valuc of T.
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