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Samir Shah,
Centre for Intelligent Machines,
McGill University,
3480 University St,
Montreal, Quebec, H3A 2A7
tel. (514) 398-8093
fax. (514) 398-7348
Sept 10,1993

Permissions and Copyright officer,
MIT Press,

55 Hayward St.,

Cambridge, Ma 02142

Dear Sir/Madam,

As part of my Master's thesis requirements, my thesis titled "An adaptive
model of information processing in the primate retina" will be
microfilmed and made available in the National Library of Canada and at
McGill University.

I would like your permission to reproduce the figures from the following
sources in my thesis, and in any future journal articles bhased on the
thesis:

Author: J.E. Dowling

Article: Information processing by local circuits: The
vertebrate retina as a model system.

in Book: The Neurosciences: Fourth Study Program

eds. : F.0. Schmitt and F.G Worden
Publ. : MIT Press, Cambridge, 1983
figure : figure 9, pg. 178, (schematic of wiring in retina)

It is understood, of course, that full credit will be given to the author
and publisher as a refrence within the figure text. A release form 1i4
given below for your convenience. The duplicate copy of this request is
for your files.

Yours sincerely,

Samir Shah

Permission is granted rfor use of the material as stipulated.

Date: Signature: R

Title: _
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Federal Identification Permission fes for /
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Please make cneck pavable
Sold to: Samir Shah The MIT D ana *
Centre for Intelligent Machines "o The MIT Press anu remait
to the Permissions Dept.

McGill University
3480 Unviersity St.
Montreal, Quebec, H3A 2A7
CANADA
Thank you for your request for permission to reprint:
Schmitt/THE NEUROSCIENCES 1 fig.

Subject ro the conditions stated below, permission is granted to use the material described

above. The materaial will appear in:
Shah/AN ADAPTIVE MODEL OF INFORMATION PROCESSING...

Published by: Natjonal Library of Canada Form of publication: microfilms

CONDITIONS CF THE PERIJIISSION:

1. 211 rights granted herein are nonexclusive and, unless otherwise sStated, are valid tnrouan-
out the world.

2. This permission does/gipegyPt allow translation of the quoted material into languages other
than English.

3. Full credit and proper copyright notice must be given for material used. Full credit includes
NAME OF AUTHOR (AND TRANSLATOR IF APPLICABLE), TITLE OF THE MIT PRESS PUBLICATION, and THE
MIT PRESS As PUBLISHER. Copyright notice identical to that appearing in the MIT Press pub-
lication must be printed either on the copyright page of your work or on the first pacé of

each guotation covered by this permission.

Payment of the required fee 1s due upon publication of your work or two vears frem tne date
of this invoice, whicnever 1s earlier. Failure to remit witain tne recuired time period
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5. This permission covers the present and all future English lancuage editions of your work,

6. This permission does not cover any material in the MIT Press publication which is credited
to another source. If an original source is credited anywhere in the material, this
permission is contingent upon obtaining permission from that source.

The followina condition applies to photocopy permission only:

7. Permission to photocopy 1s granted for not more than the numeer of coplies svecified above.
The material may be copied for classroom and library use only. Payment of tne fee 1s due
within 30 days of the date of this invoice. Conditions 2,4,and 5 above do not apply to

this permission to photocopy.
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McGill
University

Research Centre tor lutelligent Machimes
McConnell Eugineenng Buildng,

October 6, 1993

Copyright and Permissious Oflicer,
Associated Book Publishets

Il New Felter Lane

London EC4, U.K

Dear Sir/Madam,

As part of my Masters Thesis 1equitements, my thesis titled *An adaptive model of
information processing in the primate retina™ will he microfilmed and nrade available
in the National Library of Canada and at MeGill University

I would like your permission to teproduce inomy thesis the fignres from the following

soutce(s):

Authors: M.H. Pirenne

Book: Vision aud the Eye, 2ed.

Publisher: Associated Book Publishers. 1967

Figres:  Figme 2.5, pg. 32 (photoreceptor distiibntion)

I is understood, of comse, that full credit will e given 1o the anthor and publisher

as a refrence within the fignie caption

Youps sincerely,
T e 0 v s

etk ek

THANK YOU FOR Your «ivyrst oF 6 - 4o - 93

PERAMISSIOM 15 GRANIED SULTLT 1D ACKNOY
LEDGEMENT TO AUTHOR/S, 1'[tE OF jiole

& MQU\W)Q

Samir Shal

. AS PUZLISIIER:
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Postal Address 3480 Umiversity Street. Montiéal, Québec Canada  13A 2A7  FAX (0 14) 398-T31K
Telephone (514) 398-8093  ema) samn o megilloa
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Samir Shah,

Centre for Intelligent Machines,
McGill University,

3480 University St,

Montreal, Quebec, H3A 2ZA7

tel. (514) 398-8093

fax. (514) 398-7348
Sept 10,1993

Permissions and Copyright officer,
Belknap Press,

79 Garden St.,

Cambridge, MA 02138

Dear S5ir/Madam,

As part of my Master'’'s thesis requirements, my thesis titled "An adaptive
model of information prvocessing in the primate retina* will be
microfilmed and made available in the National Library of Canada and at
McGill University.

I would like your permission to reproduce the figures from the following
sources in my thesis, and in any future journal articles based on the
thesis:

2uthor: J.E. Dowling

Book: The Retina: An approachable part of the brain
Publ: Belknap Press, Cambridge, 1987

Figures: fig. 4.5, page 92 (response of gecko rods)

fig 7.20, page 219 (visual threshecld vs. pigment bleached)
fig 7.13 page 207 (light and dark adaptation)

It is understood, of course, that full credit will be given to the author
and publisher as a refrence within the figure text. A release form is
given below for your convenience. The duplicate copy of this request is
for your files.

Yours sjincerely,

/Xﬂméf /u

Samir Shah

Permission is granted for use of the material as stipulated.

Date: Signature:

Title:
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20 September 1993

Samir Shah

Centre for Intelligence Machines
McGill University

3480 University Street

Montreal, Quebec H3A 2A7

Canada

Dear Samir Shah,

Thank you for your letter of 10 September 1993 requesting
permission to use Harvard University Press material in your
forthcoming dissertation.

Permission is hereby granted for the material requested in your
letter to be included in your dissertation. Permission is also
granted for this material to be reprcduced as part of your
dissertation by University Microfilms when they fulfill single
copy requests for your dissertation. Proper acknowledgment to
the material’s original source is requested.

Permission_is not granted for publication in any other form.

W%. 0
Permission for any other publication in any other form must be
renegotiated.

Thank you for your consideration.

Sincerely,

Jueetl KUl

Judith Michelman
Permissions Assistant




Samir Shah,

Centre for Intelligent Machines,
McGill University,

1480 University St,

Montreal, Quebec, H3A 2A7

tel. (514) 398-8093

fax. (514) 398-7348
Sept 10,1993

Permissions and Copyright officer,

IEEE Systems, Man, and Cybernetics Group,
Piv. of IEEE Inc.,

Box 1331, Piscataway, NJ 08855

Dear Sir/Madam,

As part of my Master'’s thesis requirements, my thesis titled "An adaptive
model of 1information processing in the primate retina" will be
microfilmed and made available in the National Library of Canada and at
McGill University.

I would like your permission to reproduce a figure from the following
gsource in my thesis, and in any future journal articles based on the
thesis:

Author: R.E. Kronauer and Y.Y. Zeeva

Article: Reorganization and Diversification of Signals in Vision
Journal: IEEE Transactions on systems, man, and cybernetics
Publ: vol. SMC-15, no.l, 1985, pp91-101

Figure: fig 8, pg. 97 (cone and ganglion cell densities)

It is understood, of course, that full credit will be given to the author
and publisher as a refrence within the figure text. A release form is
given below for your convenience. The duplicate copy of this request 1S
for your files.

Yours sincerely,

samir Shah

T N St T M e e e e e e e e e e e el e e b e e = e e e e o e = - = ms e o = o s e o v - - - — - o on ——

Permission is granted for use of the material as stipulated.

Date: Signature:

Title:




IEEE SERVICE CENTER
THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC
445 HOES LANE. P O BOX 1331 PISCATAWAY NJ 08855-1331 USA TEL (908) 981-0060 TELEX 833033 FAX (9081 981 002/

DIRECT NUMBER (908) 562 3966
September 21, 1993

Mr. Samir Shah

Centre for Intelligent Machines
McGrill University

3480 University St.

Montreal, Quebec, H3A 2A7
Canada

Dear Mr. Shah:

This is in response to your letter of September 10 in which you have requested permission
to reprint, in your upcoming thesis, one IEEE copyrighted figure. We are happy to grant
this permission.

Our only requirements are that you credit the original source (author, paper, and publica-

tion), and that the IEEE copyright line ( © 1985 IEEE) appears prominently with the
reprinted figure.

Sincerely yours,

/C L L (,k;t.—\.
William J. Hage M/anu her
Copyrights and Trademarks
WIH:kI



The Rocketeller
University Press
Tenarnals Othee ’

222 Fast 7oth Street
Nev York, New York oo

20 xRxyxx 327-8011

21 September 1993

Dear Mr. Shah:
We shall be glad to grant you permission for the reproduction

of the material referred to in your lettersof 10 September 1993.

Our only requirements are that you also obtain permission from
the author(s) and give suitable acknowledgement to the source in

the following manner: Reproduced from the Journal of Experimental

Medicine, year, vol., pp., by copyright permission of the Rockefeller

University Press.

Sincerely yours,

THE JOURNAL OF EXPERIMENTAL
MEDICINE
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<:< /{/ 'L,/ki’,('—/L.,C//[L’L‘ L é_—-
Elié#geth Horak
Petfaiissions

Mr. Samir Shah

Centre for Intelligent Machines

McGill University

3480 University Street

Montreal, Quebec, H3A 2A7
Canada

P.S. Kindly write to us each time for permission concerning future
editions and translations, as we do not grant blanket permission.




Samir Shah,

Centre for Intelligent Machines,
McGill University,

3480 University St,

Montreal, Quebec, H3A 2A7

tel. (514) 398-8093

fax. (514) 398-7348

Sept 10,1993

Permissions and Copyright officer,
Rockefeller University Press,

222 E.70th st.,

New York, NY 10021

Dear Sir/Madam,

As part of my Master'’s thesis requirements, my thesis titled "An adaptive
model of information processing in the primate retina* will be
microfilmed and made available in the National Library of Canada and at
McGill University.

I would 1like your permission to reproduce a few figures from the
following sources in my thesis, and in any future journal articles based
on the thesis:

Authors: R.A. Normann, F.S. Werblin, and D.R. Copenhagen
Article: The “ontrol of Sensitivity I,II,and TIII (3 articles)
Journal: Journal of General Physiology, vol. 63, pg.37-110, 1974
Figures: fig. 4, pg. 46 (cone flashed background responses)
fig. 1-4, pg. 66-67, (bipolar and horizontal cell responses)
fig. 8, pg. 98, (ON-OFF ganglion cell response)

It is understood, of course, that full credit will be given to the author
and publisher as a refrence within the figure text. A release form is
given below for your convenience. The duplicate copy of this request is
for your files.

Yours sincerely,

i B
/
U/FW”%{%Z\

Samir Shah

Permission is granted for use of the material as stipulated.

Date: Signature:

Title:




,From werblin@mander.berkeley.edu Tue Jan 11 19:25:17 1994

"Received: from mander.Berkeley.EDU by Lightning.McRCIM.McGill.EDU (5.65) with SMTP
id <9401120025.AA22202@Lightning . McRCIM.McGill.EDU>; Tue, 11 Jan 94 19:25:15 -0500

Received: by mander.berkeley.edu (4.1/1.30)
id AA02713; Tue, 11 Jan 94 16:25:13 PST

Date: Tue, 11 Jan 1994 16:24:14 -0800 (PST)

From: "Frank S. Werblin" <werblinemander.berkeley.edu>

Subject: re: copyright permission letter

To: Samir Shah <samir@cim.mcgill.ca>

In-Reply-To: <9401112039.AA04989@Helios.McRCIM.McGill.EDU>

Message-Id: <Pine.3.87.9401111614.D2676-01000006mander.berkeley.edu>

Mime-Version: 1.0

Content -Type: TEXT/PLAIN; charset=US-ASCII

Status: RO

Dear Samir Shah,

I am sorry you didn’'t receive the letter granting permission to reprint.
Please take this note as my permission to reprint the figures you wish to

use.
Frank Werblin

On Tue, 11 Jan 1994, Samir Shah wrote:
Dec 11th, 1993

Dear Prof. Frank Werblin,

Hello again! I still have not recieved your letter granting permissiion
to reproduce some figures from your 1974 J. Gen. Physiclogy articles
titled "The control of sensitivity I,II, and III" in my masters thesis.
Perhaps with the university closings over christmas things got misplaced.
Could you please print this letter, sign it, and mail it back to me.

Here is the info I sent to you before:

The figures I would like to reproduce are the recordings of cell potentials
you made in Necturus and Mudpuppy retinas in order to make qualitative
comparisons between the outputs of my simple retinal model and biological
retinal neurons when presented with similar stimuli. I have already
obtained permission from Rockefeller University Press, the publisher for

J. Gen Physiology but they require that I also obtain written permission
from you. I require this permission in order to submit my thesis titled
"An adaptive model of information processing in the retina" which

is then microfilmed and made available in the National Library of Canada.

The specific figures used in my thesis are the following:

Articles: "The control of Sensitivity I, II, and III"
Journal: Journal of General Physiology, vol. 63, pg. 37-110, 1974
Figures: fig 4., pg.46 (cone flashed background responses)
fig 1-4, pg.66 (bipolar and horizontal cell responses)
fig 8 , pg.98 (ON-OFF ganglion cell response)

I would appreciate a quick response by mail to the address below so
that I can make my final submission. Thank you vecsy much in advance
(again) for your time in dealing with this request.

VVVVVVVVVVVVYVVVVVVVVVVYVVVVVVVVVVVVYV
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vV Vv

regards,
Samir Shah

Samir Shah X

Centre for Intelligent Machines
McGill University

McConnell Engineering Bldg. 4th Floor
3480 University Street

Montreal, Quebec, Canada H3A 2A7

tel#l
tel#2
fax

email

(514) 398-8093
(514) 398-7493
(514) 398-7348
samir@cim.mcgill.ca




. Form A

REQUEST FOR PERMISSION TO REPRINT MATERIAL FROM SCIENTIFIC AMERICAN

SCIENTIFIC AMERICAN, INC.
415 MADISON AVENUE R
NEW YORK, NEW YORK 10017 DATE __Jept 24, 1923

| request permission to reprint the following from SCIENTIFIC AMERICAN (specify author, title,
date of issue, page number, and fee as noted on covering letter herewith):

Aothese s ToL. Sdr\nqp? and D.A.chs\or
e« How photorecptor cells respond o \(g‘h{“ /

Joords  Scienhfic  Amarican , vol. 156, no.4, \9’%7, rgs 4047
Figores  pa.47 , Hop gt §igure (Membrong Cuirents of cvng)

to appear in the following volume:

Title and Author Samir Shak, “An adgphive vriodgl of informadion processing 0 J(Phe% Prgmie
na.’,

Publisher MGyl Unwtrs&g

Type of Publication (text, professional, trade) M, Eng Thesis

The undersigned agrees:

1. Acknowledgment of an illustration shall be made on the page of the volume where the
illustration appears. See form of acknowledgment below.

2. Payment of the required fee___NA s enclosed herewith. The fee is nonrefundable;
payment is not contingent on publication of the material.

3. Copies of the appropriate pages (illustration and acknowledgment) from your volume shall
be mailed with a copy of this form to the Permissions Department of Scientific American, Inc.

4. This permission applies only to the edition specified above. A new application must be made

for any additjonal us Samir Shah
. Mc Gull Uamersdg Centre & Todellgent Wadhings
SIGNED. ADDRESS___JAB0 University Ave, Montmd, Quetec H3A 247
— Canada (514) 298-T134%  Fax

514) 3BB-R093 M
= Approval of Request ~ ¢

The foregoing application is hereby approved, subject to the conditions stated above, and
pll;ovided that the following form of acknowledgment and copyright notice is used as specified
above:

From (title of article and author). Copyright © (date) by Sclentific American, Inc. All rights reserved.

DATE _EQS{I (43 APPROVED b

Linda Heftz, Permissions & Rights M‘lager
for SCIENTIFIC AMERICAN, INC.




McGill
University

Research Centre for Intelligent Machines
McConnell Engineering Building

November 8, 1993

The Physiological Society
Admin. and Publications Office
P.O. Box 506

Oxford 0X1 3XE, U.K.

Dear Sir/Madam,

As part of my Masters Thesis requirements, my thesis titled “An adaptive model of
information processing in the primate retina” will be microfilmed and made available
in the National Library of Canada and at McGill University.

I would like your permission to reproduce in my thesis the figures from the following
source(s):

Authors: A.M. Derrington and P. Lennie

Article: ”Spatial and temporal contrast sensitivities of neurones...”
Journal: Journal of Physiology, vol. 357, pp.219-240, 1984
Figures: fig 3a and fig 10a (P and M cell spatial freq. sensitivity)

It is understood, of course, that full credit will be given to the author and publisher as
a refrence within the figure caption. A duplicate copy of the request letter is enclosed
for your files.

Yours sincerely,

/yu\ PERAISSION CRARTED

Samir Shah
A m. &mnj"cm ¢ addesm
J P\@ Seryeck S i .
Dep }( hott OVIDED the anthor's “consent Is first obt
/Vé’ﬁ(c(d\/(- SL PP. -

Wﬂe - Upo~-Tope / T 15////75

Postal Address: 3480 University Street, Montréal, Québec Canada H3A 2A7 FAX: (514) 398-7348
Telephone: (514) 398-8093 email: samir@cim.mcgill.ca




McGill
University

Research Centre for Intelligent Machines
McConnell Engineering Building

November 30, 1993

Prol. A.M. Derrington, Dept. of Physilogical Sciences
The Medical School
Neweastle-Upon-Tyme

U.K. NE2 4111

Prof. Derrington,

As part of my Masters Thesis requirements, my thesis titled “An adaptive model of
information processing in the primate retina” will be microfilmed and made available
in the National Library of Canada and at McGill University. I would like your written
permission to reproduce in my thesis two figures from one of your papers. 1 use
the figures to compare the outputs of my model to those you recorded in Macaque
monkeys. 1 would also like your permission to use the figure again in an article which
will he a condensed version of the thesis results to be submitted to IEEE SMC.

Authors:  A.M. Derrington and P. Lennie
Articles: ”Spaltial and temporal contrast sensitivities of neurones in the LGN of ...”
Journal:  Journal of Physiology, vol. 357, pg.219-240, 1984
Figures:  fig. 3a,  P-cell spatial freq. sensitivity
fig. 10a, M-cell spatial freq. sensitivity

I have alrcady obtained permission {rom The Physiological Society, the publisher for
J. Physiol. They requested that I also obtain wriiten permission from you. Full credit
will be given to all the authors and the publisher as refrences within the text. If you
agree o this, please sign and date this letter with “permission granted” and return
it. to me. The duplicate copy is lor your files.

Yours sincerely, P@ w’% ] M ﬂw

7 D 1997

Postal Address: 3480 University Street, Montréal, Québec Canada H3A 2A7 FAX- (514) 398-7348
Telepheone: (514)398-8093 samir@cim.megill.ca




Samir Shabh,

Centre for Intelligent Macliines,
McGill University,

3480 University St.,

Montreal, Quebec, H3A 2A7

tel. (514) 398-8093,

fax. (514) 398-7348

Sept 10,1993

Permissions and Copyright officer,
Cambridge University Press,
40 W.20th street, New York, NY 10011

Dear Sir/Madam,

As part of my Master'’s thesis requirements, my thesis titled "An adaptive model
of information processing in the primate retina" will be microfilmed and made
available in the National Library of Canada and at McGill University.

I would 1like your permission to reproduce a few figures from the following
sources in my thesis, and in any future journal articles based on the thesis:

[1] Authors: K. Purpura, D. Tranchina, and E. Kaplan,
Article: Light adaptation in the primate retina: Analysis
Journal: Visual Neuroscience, vol.4, no.l, pg.75-93, 1990,
Figures: pg.80, fig. 1A - P-cell TMFT
pg.81, fig. 2A - M-cell TMFT

[2] Authors: E.A. Benardete, E. Kaplan, and B.W. Knight,
Article: Contrast gain control in the primate retina: P cells
Journal: Visual Neuroscience, vol.8, pg.483-486, 1992,
Figure: pg.485, fig. 1 - P and M cell contrast gain

[3] Authors: A.M. Derrington and P.Lennie
Article: Spatial and temporal contrast sensitivities of neurones...
Journal: Journal of Physiology, vol.357, pp.219-240, 1984,

Figures: pg.225, fig. 3a - P-cell spatial freq. sensitivity
pg.233, fig. 10a - M-cell spatial freq. sensitivity

It is understood, of course, that full credit will be given to the author and
publisher as a refrence within the tigure text. A release torm 1is given below
for your convenience. The duplicate copy of this request is for your files.

Yours sijﬁerely,

Paits

Samir Shah

Permission is granted for use of the material as stipulated.

Date: Signature:

Title:
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UNIVERSITY PRESS

North American Branch

40 West 20th Street

New York, N Y. 10011-4211
October 31, 1993 US.A.

Telephone 212 924 3900

Samir Shah N

Centre for Intelligent Machines
McGill University

3480 University St.

Montreal, Quebec H3A 2A7
Canada

Dear Samir Shah:

Thank you for your request for permission to include

Fig. la and Fig. 2a, from Purpura, et al.,
Visual Neuroscience, Vol. 4, No. 1 (1990),
and

Fig. 1, from Benardete, et al.,

Visual Neuroscience, Vol. 8 (1992),

in your forthcoming thesis, ONLY, to be microfilmed and made available in the National
Library of Canada and at McGill University.

Permission is granted for this use only, subject to full acknowledgement of our
material and clear indication of the copyright notice as it appears in our publication,
followed by the phrase "Reprinted with the permission of Cambridge University Press."
This permission does not authorize the use of our material in any future publications,
for which separate permission must be requested.
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ABSTRACT

At the retinal level, the strategies utilized by biological visual systems allow them to outpet-
form machine vision systems, serving to motivate the design of electronic or “smart™ sensors
based on similar principles. Design of such sensors in silicon fiist requites a model of retinal
information processing which captures the essential features exhibited by biological 1eti-
nas. In this thesis. a simple retinal model is presented, which qualitatively accounts for the
achromatic information processing in the primate cone system. The computer retina model
exhibits many of the properties found in biological 1etinas such as data reduction thiough
non-uniform sampling, adaptation to a large dvnamic 1ange of illumination levels, varia-
tion of visual acuity with illumination level, and enhancement of spatiotemporal contiast
nformation. The model is validated by replicating expernments commonly petformed by
electrophysiologists on biological 1etinas and comparing the response of the computer 1eting
to data from experiments in fish and monkeys. In addition, the 1esponse of the model to
synthetic and real images is shown. The experiments demonstiate that the model behaves
in a manner qualitatively similar to biological tetinas and thus may serve as a basis for the

development of an “artificial retina”



RESUME

Au niveau de la rétine, les stratégies utilisées par les systémes visuels biologiques leur
permettent de surpasser de loin les systémes de vision artificielle. Ceci motive donc la
conception de senseurs électroniques ou “intelligents”, basés sur des principes similaires.
l.a conception en silicone de tels senseurs nécessite d’abord un model du traitement de
données représentant les charactéristiques essentielles se manifestant au sein des rétines
biologiques. Cette thése décrit un modeéle simple de rétine qui tient qualitativement compte
du traitement de 'information achromatique au sein du systéme de cones chez les primates.
Le modéle de rétine artificielle manifeste plusieurs des propriétés retrouvées dans les rétines
biologiques tel que la réduction de l'information grice & un échantillonnage non-uniforme,
une adaptation locale & des niveaux d’illumination couvrant plusieurs ordres de grandeur
d’intensité, une variation de ’acuité visuelle avec le niveau d’illumination et le rehaussement
des contrastes spatio-temporels. Le modéle est validé en répétant des expériences réalisées
communément par les électro-physiologistes sur des rétines biologiques et en comparant
la réponse de la rétine artificielle avec des données obtenues dans des expériences sur les
poissons et les singes. La réponse du modele lorsque soumis a des images synthétiques et
réelles cst également examinée. Les expériences démontrent que le modéle répond d‘une
maniére qualitativement similaire a la rétine et peut donc servir de base au dévelopement

d’une “rétine artificielle”.
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Chapter 1 INTRODUCTION

1.1 Background

Of the five senses, vision is perhaps the one upon which humans rely the most. Ve depend on
visual feedback for tasks such as navigation. motor control, object 1ecognition, and building
scene descriptions. The brain receives its visual information through approximately one
million nerve fibers carrying visual signals from the 1etina in each eye. These fibers from
both eyes account for nearly half of all the sensory nerve fibers streaming, into the brain,
and a considerable portion of the cortical machinery is used to process the transmitted
information[32]. There are some estimates that, for every nerve fiber carrying signals out
fiom the retina, there are over 2000-4000 cortical neurons involved in processing its signals
(32].

Vision capabilities are also quite important in many computer-controtled applications
such as mobile robot navigation, parts inspection and object recognition tasks, just to name
a few. To be able to see and understand what one obseives seems to be very simple for
humans. Although much 1esearch effort has been expended on understanding vision, the
computer vision community has discovered that practical applications of machine vision
are exceedingly difficult. Traditional computer vision techniques which have for the most
part ignored strategies employed by biological visual systems have not heen very successful,
Some current research efforts are thus focused on studying hiological visual systemis in an
attempt to understand not only how these visual systems function, hut also to guide the
design of future machine vision systemns.

Many of the properties of the human visual system are ultimately limited hy the fidelity
of image sampling within the retina and the strategies used to preprocess the sampled infor-
mation before further processing in the cortex. Even at the retinal level, the performance
of the human visual system far exceeds the capabilities of commercially available visual
sensors and machine vision systems, thereby motivating the study of the human or primate
retina [10][32].

Commercially available visual sensors typically have poorer sampling densities and dy-
namic range than the human retina. Although commercially available charge-coupled-device
(CCD) cameras are beginning to approach a million or more nniformly distributer pixel
outputs (1024 by 1024 resolution), this number is still small compared to the over 5 million
cone and over 100 million rod photoreceptors used to sample the image in the human retina.

Furthermore, the capacity to process all of this information in real-time is beyond the ca-
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pabilities of today’s machine vision systems. While such uniform high-resolution sensors
are ideal for applications such as TV, a nonuniform sampling scheme combined with data
reduction such as that employed in many biological retinas may be more appropriate for
many machine vision applications [32)[82].

The dynamic range of commercial camera photosensors is typically less than 3 log units
of illumination intensity. Even quite sensitive cameras (such as the super-HARP camera
(80]) only have dynamic ranges of slightly over 4 log units of illumination intensity. The
retina, by contrast, has an operational range covering over 12 orders of magnitude in inten-
sity. Another major difference between the retina and commercial cameras is the ability to
deal with a large varwation in intensity levels in a single scene. In order to be sensitive to
sinall variations in contrast, many camera systems use photosensor arrays with very narrow
dynamic ranges (~ 2 log units) and a high contrast gain. A measure of the global ambient
illumination level inay then be used to extend the operating range of the camera by globally
shifting the operating point or gain of the entire receptor array. However, when confronted
with scenes containing a very wide range of illumination levels (> 3 log units), many parts
of the scene appear washed out or underexposed in the camera output but remain perfectly
visible to the naked eye. Again. although restricted dynamic range cameras are adequate
for certain applications in which the lighting conditions are controlled, they may not be ap-
propriate for applications that require operation in both indoor and outdoor environments
where a wide range of illumination may be encountered.

It is apparent that the human retina has superior imaging fidelity and a larger dynamic
1ange than commercial camera systems. Furthermore, uniform resolution camera systems
may also be inappropriate in many machine vision applications that require real-time pro-
cessing of visual information (such as for navigational and object recognition tasks in mobile
robotics). For such applications, it is advantageous to extract or enhance the specific in-
formation which is useful for the particular visual task and reduce or compress peripheral
data, thereby greatly reducing the computational requirements at higher levels. For such
applications, new sensors need to he developed. Our approach is to base the design on
some of the same principles utilized by biological vision systems. Knowledge of the retinal
architecture. along with a model of the processing performed in the retina, can serve as a
basis for the development of “artificial retinas” for machine vision. Towards that end, this
thesis presents a simple retinal model which incorporates various adaptation mechanisms
used to deal with large changes in illumination level, and also mimics the nonuniform sam-
pling scheme used in the primate cone system. It is hoped that this model will ultimately
serve as the foundation for a silicon implementation for an adaptive foveated sensor.

In order to develop a model of information processing in the retina useful for machine

vision applications, it is necessary to study the strategies employed by the primate retina.
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The properties of the retina pertinent to our model are very briefly summarized here and a
more detailed review of retinal structure and models of information processing are presented

in a later chapter.

1.2 Overview of Retinal Information Processing

At a first glance, one may be tempted to compare the retina to a TV camera which simply
converts an optical image to electrical signals for further processing in the brain. However,
the retina does considerably more than that. Each retina contains millions of photoreceptor
cells (rods and cones) which sample the image projected onto it by the optics of the eye.
Photoreceptor cells convert optical information in the image into graded potentials which
then drive further processing in the retina. Intermediate cells in the retina enhance certain
features of the visual signal while discarding other information, until at the last stage,
ganglion cells cenvert the graded potentinl(;ﬁigna]s imto action potentials for transmission to
the brain via the optic nerve.

The principles utilized by the 1etina in processing visual information 1n the cone system

may be summarized as follows:

o Significant data reduction is achieved through a foveated sampling scheme at the
receptor level and increasing convergence of cone inputs into ganglion cell outputs
with increasing eccentricity [32][23][49]. Such sampling schemes have hoen modelled

using log-polar mappings [50][76].

o The cone transduction function is described by a log-like function with saturation

nonlinearities and a dynamic range of 3 log units in intensity [21][R].

¢ Mechanisms within the cone itself and network feedback fiom other retinal colls locally
adapt the sensitivity of cone photoreceptors so that their response range is centred
around a local spatiotemporal ambient intensity.! These mechanisms extend the cone

operating range by several orders of inagnitude.

e Circularly concentric centie-surround receptive field (RF)? structues emerge at the
bipolar cell level. The bipolar cell essentially performs a difference operation hetween

the centre and surround portions of the signal. This serves to strip the 'de’ background

!'Local 1n the above context means a small neighbouthood or area around a given photoreceptor

’The extent of a cell’s receptive field (RF) 15 defined here as the region on the retma which, when
stimulated, influences the cell response The structure of a cell's RF 1s defined by the degree to which
regions within the RF influence the cell output. Bapolar and gangiion cells have RF profiles with two
circularly concentric regions (labeled centre and surround) which are most often modeled by a difference of
two Gaussians weighting profile.
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intensity information from the visual signal and allows the bipolar cell to be sensitive

to local variations in contrast [28].

¢ The retina appears to adapt the size of its receptive fields as a function of illumination
level in an effort to maintain a good balance between high visual acuity and contrast
detectability [1][62])[75][81]. At dim photopic illuminations levels, the input signal-
to-noise ratio (SNR) is relatively low; the retina compensates for this by averaging
information over larger 1eceptive fields to improve absolute contrast detectability at
the expense of slightly poorer visual acuity [81]. With increasing illumination levels,
the input SNR increases, facilitating improvements in both visual acuity and absolute

contrast detectability [65].

e We hypothesize that feedback mechanisms within the retina adapt the spatiotemporal
sensitivity in regions of high spatiotemporal contrast by redacing the relative size of
the surround field of bipolar and ganglion cell receptive fields. This mechanism acts
to sharpen spatial edges in the retinal output and improve sensitivity to temporal
change in the visual input. This hypothesis, which is supported by data on the effects
of wterplexiform cell feedback on horizontal cell RF sizes [68], will be discussed in

more detail in Chapter 3.

¢ Two major classes of ganglion cells (P-cells and M-cells) account for 90% of the retinal
output and represent the two distinct channels of information from the retina [23].
P-cells are more numerous (30% of all ganglion cells), have smaller receptive fields
and respond to higher spatial frequencies than M-cells. M-cells have larger receptive

fields, higher contrast gain, and are more responsive to temporal stimulation [33].

In summary, the biological retina is more than just a simple TV camera. The 1etina not
only converts optical information to electrical signals but performs considerable processing
on the visual signal itself before transmitting it to higher levels. Various local adaptation
mechanisms extend the retina’s dynamic range by several orders of magnitude. In order to
meet the transmission bottleneck at the optic nerve, the retina extracts only those features
required in later stages of visual processing while employing many data reduction strategies

such as nonuniform sampling.

1.3 Summary of Thesis Contributions

Many researchers are interested in modelling, the retina or building artificial retinas. A few
groups have already fabricated silicon chips to model certain aspects of the retinal function

[36](39] [53][66). In addition, many computer models of the retina have also been proposed
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[5] [10][25] [58][77]{82]. All of these models mimic some parts of the retinal function but
ignore others. Some implementations model the nonuniform sampling occurring in the
retina [53][66]. Others simulate the nonlinear transduction and adaptation occurring at
the cones but ignore the nonuniform sampling [10][36][58]. Furthermore, existing computer
models or silicon implementations do not account for the changes in visual acuity associated
with changing illumination level and adaptation to spatiotemiporal contrast.

The contributions of this thesis are in three main areas. First. the work presented here
consolidates variations of existing models with different features of the tetina into a single,
more -ohesive model. The effects of nonuniform sampling, nonlinear transduction at the
cones, and a difference of Gaussians operation at the bipolar cell level are incorporated into
a computer retina model. In addition, the effects of local cone and network feedback mech-
anisms in adapting the cone sensitivity are modelled. The computer retina timplementation
also accounts for the spatial and temporal aspects of retinal processing, and similar to the
retina, provides outputs at two scales to represent the outputs of P-cells and M-cells.

Secondly, adaptive features of the retina which have not previously heen modelled are
incorporated here. The changes observed in human visual acuity over the cone system’s
operating range are accounted for by assuming that the degree of coupling between cells in
the cone and horizontal cell layers is a function of illumination. In addition, it is specu-
lated that interplexiform cells in the retina alter the retina's sensitivity in regions of high
spatiotemporal contrast [68], and the effects of such a mechanisin are incorporated into the
computer retina.

The third contribution consists of verifying the behaviour of the computer retina model
with known data on biological (principally primate) visnal systems by 1eplicating a few
typical experiments performed by electrophysiologists. The model 1espouses are shown Lo
be qualitatively similar to the biological 1etina despite the model’s simphcity. Furthermore,
as the computer 1ctina allows its response to be monitored at all stages of processing and
for the entire visual field. it serves as a useful tool in visualizing what the outputs of the

biological retina may look like in response to complex visual stimuli.

1.4 Model Simplifications

It is beyond the scope of this thesis to present a model of all visual processing occuriing

within the primate retina. Thus, the scope of the model is limited as follows:

e Only the cone system is modeled. Over much of the retina’s 10sponse range, the cone
and rod systers function fairly independently [70]. The cone system with its high
resolution fovea is responsible for our high acuity daylight vision and is thus more

appropriate for modeling when considering a potential silicon implementation.

f)
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e Only achromatic intensity information is considered. Even though the cone system
codes chromatic as well as achromatic information, many visual tasks can be accom-
plished with pure intensity information. It has also been theorized that, although the
chromatic and achromatic information is carried in the same pathway, the two signals

may be processed separately at higher levels [33].

o In the biological 1etina, ganglion cells come in two varieties, on-centre and off-centre,
to code positive and negative contrast signals, respectively. Unlike the biological
retina, the computer can represent positive and negative signals equally well in the
same output. Thus only on-centre type ganglion cell outpuis are generated in the
mnodel here and are implemented to be able to code both positive and negative signals.

This effectively reduces the required number of retinal outputs by a factor of two.

e Many model simplifications are motivated by the desire to implement an “artificial

retina” in stlicon in the future. However, it is not the objective of this thesis to present

a design fo1 a silicon retina.

1.5 Organization of Thesis

This chapter has provided the motivation for studying and modelling the primate retina.
Chapter 2 provides a summary of retinal biology and a review of existing models used to
explain the flow of information through the 1etina. Chapter 3 summarizes the various adap-
tation mechanisms in the retina and the models used to describe them. Chapter 4 presents
the adaptive retinal model of achromatic information processing in the primate cone sys-
tem as developed in this thesis. and discusses some implementation aspects of the computer
retina. Chapter 5 presents the results of a few experiments which illustrate the behaviour
of the computer retana and allow a comparison with published data on biological 1etinas.
The final chapter summarizes the contributions of this thesis and provides suggestions for

future research.
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Chapter 2 RETINAL STRUCTURE AND FUNCTION

This chapter presents a summarv of the primate retina st1ucture and function and a survey
of existing models used to describe 1etinal functions.

Although a great many types of retinal neurons may be distinguished on the basis of
morphology, retinal cells can all be broadly classificd into six cell types. These are photore-
ceptor cells, bipolar cells, liorizontal cells, amacrine colls. ganglion colls, and interplexiform
cells. Excellent surveys of the anatomical structure of the retina ate given by Rodieck
[49][48], Dowling [21] and Hubel [28].

The retinal cell hodies are found in three distinct layers. The synaplic contacts hetween
these layers are confined to two iterposed synaptic layers which are tenimed the mner and
outer plexiform layers. All visual input to the retina is 1ecerved first by the phetorecepton
cells and then processed by other cells Likewise, ganglion cells ate the only cells 1 the retima
that convey output signals through the optic nerves to the visual cottex of the hiajn. The
outer plexiform layer contains the processes of receptor cells, horzontal colls. and hipolar
cells. The inner plexiform layer contains the processes for bipolar cells, interplexiforn cells,
amacrine cells. and ganglion cells. In general. all signals passing liom the the outer to the
inner plexiform layer pass through the bipolar cells and exit the retina thiough the ganglion
cells. The lateral networks of horizontal and amacrine cells form mdieet pathways which
modify and modulate the signal flow thiough the bipolar and ganglion cells  Figure 2.1

shows schematically the layering of different cells found in the human retina,

2.1 Photoreceptors

As in most other vertebrates, theie are two types of photoreceptor cells in the human retina,
rods and cones. Anatomically, 1ods ate shaped like thin cylinders. whereas the cones are
tapered at one end, and wide and flat at the base Rods are far more numerous than cones.
In the human retina, there are approximately 100 million o1 more rods compared to hetweoen
three and five million cones [49].

The rods and their associated circuitry ate specialized for operating i low light con-
ditions. By pooling the responses of many rods. the 10d system is able to detect single
photon events at the expense of a loss of fine spatial 1solution. The cones, together with
the neural pathways of the cone svstem. are specialized to operate in brighter dlumination
conditions and to sample the image at a higher spatial resolution. There are three Lypes

of cones (red. green, and blue), each with a different peak spectral sensitivity. Utilizing
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LEGEND

PE - Pigment Epithelium C -cone

ONL - Outer Nuclear Layer R -rod

OPL - Outer Plexiform Layer B, - midget bipolar
INL - Inner Nuclear Layer B, - diffuse bipolar

IPL - Inner Plexiform Layer H - horizontal cell
GCL - Ganglion Cell Layer [P - interplexiform cell

G - ganglion cell

A -amacrine cell

Figure 2.1: Retinal Cells: Schematic layering of cells in the retina. From Dowl-
ing [20], ©1983 MIT Press.
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the different spectral sensitivities of each cone type, the cone system encodes chromatic
information allowing colour vision to be possible.

Why does the retina require more than one receptor cell type? Rodieck argues that this
is likely because the requirement to respond both to very low-energy signals, consisting of a
very few quanta, and to relatively high-energy signals lead to conflicting requirements [49].
The rods are about 20 times more sensitive than the cones, and by pooling their outputs,
they are even able to detect the reception of single photons during dark adaptation [49].
Maintaining this sensitivity however causes the rods to quickly saturate at increasing light
levels. The cones have a much higher level of int:insic noise, such that their signal output
is distinguishable from the noise only at higher light levels [70]. On the other hand, cones
continue to adapt their sensitivity to the ambient illumination and operate over many orders
of magnitude. Thus, the cone system is responsible for our high acuity chromatic vision in
normal daylight conditions, while the rod system is primarily responsible for vision under
scotopic (low light) conditions. Separate parallel pathways appear to be used by the rod
and cone systems for much of retinal processing, leading researchers to study one system
or the other for simplicity [49][31]. The emphasis here will be on the cone systen: which is

responsible for our high acuity vision.

2.1.1 Transduction Process

The primary function of photoreceptors is the transduction of the captured light cnergy
into electrical neural signals. Photon catch is controlled by the amount of visually sensitive
pigment contained in the outer segment of the cell. Without any visual pigment, the energy
barrier would be too high to permit a receptor cell to capture photons. The visual pigment
molecules lower the energy barrier required to catch a photon. The photon capture hoosts
the pigment molecule into an “excited” state leading to a molecular rearrangement frosm
an 11-cis isomer to the all-trans isomer form. This initiates a chain-reaction of molecular
changes and other intermediate products which eventually results in the closure of some
channels permeable to Nat and Ca* on the plasma membrane [49][21].

The closure of sodium channels while potassium channels remain open results in the
transmembrane potential moving toward the K* equilibrium, thus hyperpolarizing the cell.
This potential passively spreads to the synaptic terminals where it alters the rate of release
of the transmitter substance. Both rods and cones are known to release transmitter in
the dark. Cell hyperpolarization in response to light causes a decrease in this release rate.
Although much is known about the rod and cone transduction process today, the nature of

the transmitters is still uncertain for most vertebrate species [49][9).

10



2, RETINAL STRUCTURE AND FUNCTION

2.1.2 Spatial Distribution

The distribution of the rods and cones is not uniform over the retina. In the center of the
retina (called the fovea), there is a rod-free area consisting of densely packed red and green
cones. Blue cones comprise only about 8 percent of the total cone population and are found
outside the central foveal region regularly interspersed between the two other cone types.
The concentration of cones rapidly diminishes with increasing distance from the fovea, while
the concentration of rods rises and peaks in the parafovea (area surrounding the fovea) and
then also decreases. Figure 2.2 shows the density of rods and cones across the retina as a

function of eccentricity (distance from the center of the fovea).
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Figure 2.2: Distribution of Photoreceptors: Variation in density of rod and
cone photoreceptors with retinal eccentricity. The cone density drops off almost
exponentially from a maximum of 140,000 cones/mm? in the fovea to about 5,000
cones/mm? in the far periphery. Figure from Pirenne [45], © 1967 Methuen & Leo.

Why are the photoreceptors distributed in such a nonuniform manner with very high
resolution cone sampling in the center and progressively coarser sampling in the periphery?
One of the constraints on the sampling and processing of information in the retina is the fact
that only a million or so fibers exit from the retina to the brain. The nonuniform sampling
scheme used by the retina is an important data reduction scheme that complies with the
transmission bottleneck while still retaining a small central area of high resolution sampling,.
Attentional and saccadic movements may then be employed by the visual system to scan
points of high interest at high resolution (79][23]. Van Essen argues that the exponential
drop in photoreceptor density and linear increase in receptive field size of ganglion cells with
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retinal eccentricity is evidence for the retina using a scale-invariant sampling strategy in
the foveal region {23]. In machine vision, such a retinal sampling scheme is often modelled
by space-variant visual sensors with complex-logarithmic geometry [50].

It is puzzling why the biological visual system limits itself to only a million fibers exiting
the retina. Why not double that number? It has been suggested that the limit on the
number of fibers leaving the retina is not due to the physical constraints of the fibers but
rather a constraint imposed by the limited size of the cortex and its ability to process visual
information [33][23]{32]. As a considerably large fraction of our brain is devoted to visual
processing (on the order of 4000 cortical neurons processing visual information for every
ganglion cell). doubling the retinal output would also double the cortical machinery required
to process it.

Quantitatively, the cone density is the highest in the center of the fovea aud approaches
140,000/mm?. This corresponds to about 7 cones per min® of arc. It drops quickly to
25.000/mm? within 0.4 mm (1.4 degrees), eventually declining to about 5000/mm? in the
far periphery [49]. The dropoff in cone density is usually modelled as exponential outside
the fovea. If the cone density in the retina were as high everywhere as in the fovea, it would
require about 100 times more cones than the number that actually exist!

Although the density of cones is not uniform, the arrangement of the cones follows a
very regular hexagonal sampling pattern. There are three types of cones, broken down hy
their spectral sensitivities (red, green, and blue). The blue cones, which are more sensitive
to shorter wavelengths, are much less common than the other two cone types. Because of
chromatic aberrations of the eye-lens system, not all wavelengths of light are in focus on the
retina simultaneously. In fact the retinal image is quite blurry for the shorter wavelengths
that blue cones are sensitive to [49]. Thus this part of the spectrum of the visual signal
may be sampled more coarsely and explains the sparsity of blue cone cells. Lennie in fact
suggests that colour information as a whole is coded at a fairly low resolution compated to

luminance information [33].

2.1.3 Photoreceptor Coupling

In the rod system, coupling between adjacent rods extends the summation area to almost
200xm diameter around the rod. Rod coupling is believed to be part of a mechanism for
preventing the saturation of individual rods when they capture a photon. Rather than
saturating the response of the rod when a photon is captured, the 1od coupling spreads the
signal to many rods which all signal the same event together. This signal is then amplified
at later stages of processing, thereby increasing the rod system’s overall sensitivity (49]

The coupling of cones to neighbouring cones and the presence of gap junctions hetween
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cones is well documented in the periphery [49][70]. Recent anatomical evidence shows that
the basal processes of the cone pedicles project laterally to contact nearby cone pedicles
of between 6 and 12 cones through gap junctions both within the fovea and outside the
fovea [67]. For cones, the effective summation area of coupling has been estimated to have
a diameter of 50um around the cone [20](70]{49]. The coupling is much stronger for cones
of the same spectral type than for mixed types [70]. The function of cone coupling is not
very well understood, although it probably plays a role similar to noise reduction in the rod
system. Psychophysical data shows that visual acuity varies over an order of magnitude
in photopic range of light levels reaching a maximum plateau only at moderately bright
illuminations [75){65]. At these levels, the acuity closely matches the receptor sampling
and ganglion cell densities and rules out extensive cone coupling [2]. However, for dimmer
photopic illuminations, visual acuity is much lower and is likely attributable to increased
cone coupling [67]. Extensive cone coupling would improve the signal to noise ratio and aid
in absolute contrast detection at the expense of slightly lower resolution.

There have heen several recent attempts at incorporating some form of receptor coupling
in silicon retinas as a means of noise reduction. Yagi et al. [77] and Brill [9] both model
1eceptor coupling with a resistive network that passively spreads the 1eceptor potentials of
receptors to neighbouring receptors. The extent of the coupling, and hence relative spread
of the receptor signal, is mainly controlled by the relative conductivities of the network
interconnecting the receptors as compared to the conductivity of connections from receptor
layer to other layers. However, in these models, the degree of coupling does not vary
as a function of the illumination level and thus the summation areas are invariant with

illumination level.

2.1.4 Horizontal Cell Feedback

In several lower order vertebrates, there is physiological evidence of feedback signals from
horizontal cells which inhibit the cone responses [3][17][40][49] and rapidly adapt the cone
sensitivity to match the local'! ambient intensity [21}[58]. Feedback from horizontal cells
to rods has not been found except for the rods of the gecko?, which have many cone-like
properties and are believed to be “transmuted” cones [21]. Figure 2.3 shows the response of
a gecko rod to a flash stimulus with horizontal cell feedback present (left) and the response
again (right) when the horizontal cell feedback is inhibited by aspartate treatment (21].

Studies in the tiger salamander by Skrzypek also indicate that the horizontal feedback

!By local, we imply only mformation from a small neighbourhood or patch of the retina, centred around
the cone, 1s used to compute the local ambient intensity. The size of this neighbourhood 1s comparable to
the size of honizontal cell receptive fields.

2A type of a lizard.
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Figure 2.3: Horizontal Cell Feedback: The figure shows the response of a
gecko “cone-like” rod cell in response to a flash of light first with inhibitory hori-
zontal cell feedback present (left) and again when the feedback signal is dampened
by the application of aspartate (right). Note that the feedback signal is slightly
delayed with respect to the receptor signal response and thus serves to sharpen the
response. From Dowling [21] ©1987 Harvard University Press.

signal acts to almost instantaneously adapt the sensitivity of the cone response curves to
match the local ambient illumination level [60).

There is a small time lag in the feedback signal from the horizontal cells as compared
to the receptor signal because of the synaptic delay through the longer feedback path. T'he
horizontal cell feedback sharpens the transient response of the receptors but is not strong
enough by itself to drive the receptor response back to its resting potential.

Although physiological evidence for horizontal cell feedback to receptors has been mea-
sured in many retinas such as those of the gecko, perch, and goldfish, it is not yet certain
that it is present in the human retina. However, it is certainly anatomically feasible {70].
In general, the function of inhibitory horizontal cell feedback is still poorly understood.

A neural network model of the reciprocative excitatory and inhibitory connections be-
tween receptors and horizontal cells is presented by Yagi et al. [77] and implemented in
VLSI by Boahen [5]. In this model, both the receptor cell layer and horizontal cell layers
are modeled as resistive networks. Each neuron in a layer sends a signal to and receives a
signal from a corresponding cell in the other layer. Skryzpek presents a different model in
which the horizontal cell feedback signal nonlinearly modifies the cone sensitivity and thus

forms the basis of a fast cone adaptation mechanism [58].

2.1.5 Adaptation

Over moderate and bright illumination conditions, the rod system saturates, and it is

mainly the cone system which signals visual information to the cortex. The cone photore-
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Figure 2.4: Visual Threshold vs. Percentage of Pigment Bleached: The
figure indicates the rise in the log visual sensitivity compared to the amount of visual
pigment bleached. The data shown here is actually for rods of the skate retina but a
similar curve is obtained for cones as well. The dashed line shows the expected rise
in visual threshold for rods if reduced photon catch were the only effect of rhodspin
pigment bleaching. From Dowling [21] ©1987 Harvard University Press.

ceptors continue to function under illumination conditions spanning an additional five to six
log units of illumination intensity right up to their light damage level. The cones operate
by continuously adapting their gain to match the ambient background illumination so that
the cone outputs remains close to the center of their useful voltage range [71].

A large part of this adaptation mechanism is intrinsic to the cones themselves and is
believed to be mainly a result of pigment bleaching. As the light level increases in brightness
past a certain point, the photopigment molecules in the cone cells being to bleach. Initially,
the cone response may saturate in response to a bright stimulus causing increased bleaching.
However, bleaching of the pigment reduces the photon catching ability of the cone so that
an equilibrium is eventually reached where the pigment bleaching rate equals the rate of
regeneration of pigment. Thus, the cone system does not saturate and is able to operate in
increasing levels of illumination. Figure 2.4 shows the rise in visual threshold as a fraction

of pigment bleached.
Although pigment bleaching is a major component of sensitivity control in cones at
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high illumination levels, psychophysical studies have shown that the cone system adjusts its
‘ sensitivity even for illumination intensities that do not cause significant pigment bleaching.
These other components are due to several other factors, including neural and synaptic
network feedback mechanisms in the retina [21]. These mechanisms (such as the effects of

horizontal cell network feedbark) are discussed in more detail in chapter 3.

2.1.6 Model of Cell Response

The cone photoreceptors adapt their sensitivity continuously to the ambient background
illumination I, through a mechanism which tends to keep the steady state receptor potential
v, at the middle of its response range (v,,,-/2) [12][84]. Figure 2.5 shows the cone response
curves at various adapting intensities I,. For transient changes in intensity / about the
adapting level, the receptor potential can be modeled by the following simple saturation
equation [32][21]{48][84] [12][8]:

r
b " (2.1)
Mnaa (" + k(1)")
where », = receptor potential

Umaez = IMaxXimum receptor potential
I = flashed stimulus intensity
n = exponent which is very close to | for cones
I, = ambient illumination intensity
k(I,) = function value is semi-saturation intensity

The semi-saturation function & is a highly compiessive function of the local ambient
intensity I, and is the intensity value at which the receptor potential », = v,,,,/2. When
the local ambient illumination [, is very high so that n, is very close to ., /2, then
k(1) =~ I,. Boynton [8] suggests a linearized semi-saturation k(1) function based on a best

fit of the quantitative data and related to pigment hleaching:

b,
l"([u)z T[vl+l'7r (2.2)
b
where &, = half-saturation constant (833 trolands)
ks = half-pigment bleach constant (1000 tiolands)
I, = local ambient illumination intensity

Other photoreceptor models include one by Curlander [17] who presents a dynamic
mode] of photoreceptors in which the receptor potential is the output of an N-stage reaction
. equation. Inhibitory feedback from horizontal cells is also incorporated into this model,

However, for our purposes, the simple saturation function given ahove is a reasonably
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Figure 2.5: Cone Response Curves: The figure shows the expected response of
cone photoreceptors v, with variation of flash intensities [ superimposed on various
background illmnation tensities /,. The log of the background tensity 1, 1s
indicated at the top of each curve At any one given background ntensity I, the
cone response saturates with a 25 log umt change in flash intensity. However,
the entire curve shifts to the right to match any I,, thereby allowing the cone to
adapt to any ambient illumination level. The dashed curve shows the steady state
response of the cones when the local intensity matches the ambient intensity I, All

intensities are i umts of trolands.

accurate model of the receptor response.

2.2 Horizontal Cells

2.2.1 Cell types

At least two types of horizontal cells have been found in every vertebrate studied so far. In
primates, two morphologically different horizontal cells are found and these are termed ‘HI’
and ‘HIDP' [49].

The HI horizontal cell has a tiny cluster of dendritic processes near the cell body which
contact several cones and a long axon which extends several millimeters before branching
into an extensive teleodendritic ? arborization connecting to a number of rods. Although
the electrophysiology of horizontal cells has not been studied in primates, in all species in

which it has been studied, the cells are found to generate graded potentials which spread

3 Dendritic like processes on the end of an axon.
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passively through the cell. In addition, because of the very long length of the axon, it has
been shown that signals generated at the two ends of the horizontal cell do not interact
[49]. HI horizontal cells contact all the cone pedicles within their dendritic fields regardless
of the cone type and thus carry only brightness information. These horizontal cells are also
sometimes classified as luminosity (L-type) horizontal cells.

The HII horizontal cell differs from the HI horizontal cell in a number of ways. The HII
cell does not contact every cone within its dendritic field but may make contact with only
cones of the same spectral type. In addition, the axon of this type of cell is much shorter,
so that about 15% of the amplitude of a signal generated by the cell body (from cone input)
spreads to the end of the axon [49]. The HII horizontal cell is also sometimes referred to as
a chromaticity (C-type) horizontal cell.

It appears that each cone makes at least one or mmore connections to each type of hori-
zontal cell. The horizontal cells also synapse onto bipolar cells and are known to form the

antagonistic surrounds of the bipolar cell receptive fields.

2.2.2 Receptive Fields

In almost all species studied so far, the receptive field sizes of the horizontal cells are much
larger than their actual dendritic spread, often being 40- 100 times larger [21]. ‘The very large
receptive field sizes are the result of gap junctions hetween horizontal cells with relatively
low resistance, which passively spread current from one hotizontal cell Lo ueighbouring
horizontal cells. The extent of this electrical spread is controlled by the relative conductivity
of the gap junctions compared to that of the horizontal cell walls.

The dendritic spread of horizontal cells grows lincarly with eccentricity so that in the
far periphery, hundreds of rods and cones may he contacted by a single hotizontal cell. This
scaling of dendritic field size with eccentricity seems to be a general principle used in the
retina. It is a means of data reduction at the expense of progressively coarser resolution

with eccentricity.

2.2.3 Horizontal Cell Function

Like the cone, the steady-state horizontal cell response may also be fit to the Michaelis-
Menton saturation equation with the exponent n = 0.7 (see equation 2.1) [21]. Compared
to the cone receptors, horizontal cells have a much shallower response curve and thus are
able to signal up to 4 log units of change in input illumination intensity from threshold to
saturation as compared to only 2.5 log units for cones.

Electrophysiological measurements of horizontal cell potentials in fish and other lower

vertebrates show the horizontal cell layer to act like a purely 1esistive network for signals of
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up to 100 Hz [40]. The horizontal cell layer behaves like a resistive sheet that spreads and
diffuses signals received from the receptors and thus computes some sort of spatial average
of these signals.

Mead [39] and Curlander [17] model the horizontal cell layer as a resistive network with
a small capacitance, driven by inputs from many photoreceptors at discrete points. The
horizontal cells then spread the current collected from the receptors and derive a spatially
and temporally averaged signal. The extent of spread of the signals, and thus the effective
size of the receptive fields of the horizontal cells, is controlled by the conductance of the
gap junctions modelled by the resistivity in the network. This kind of operation is usually
modelled by a Gaussian-weighted averaging operation or a diffusion process in computer
vision [32][51][82]. It has also been shown that the conductance of these gap junctions
is modified by signals from interplexiform cell: this may be another sensitivity control
employed by the retina [21][68](78].

Due to the peculiar nature of contacts made by the horizontal cell, it is not always
possible to know where the output of the horizontal cell goes or in which direction infor-
mation is flowing. There exists fairly convincing evidence that the horizontal cells form the
antagonistic surround portion of the bipolar cell receptive fields. In some species, such as
the rabbit retina and the carp, it appears that the bipolar cell surround field is partially
mediated through an inhibitory feedback from the horizontal cells to the cones (40]. In
other mammals, there are instead direct ribbon synapses from horizontal cells to bipolar
cells [49]. In humans, the exact nature of the information flow from horizontal cells remains
uncertain.

Experiments done by Naka [40] on catfish retinas indicate that there is some signal
transmission directly from horizontal cell axons to ganglion cells [10]. Information on the
mean Inminance level is 1equited by the brain for tasks such as pupillary control and a
rough judgement of brightness. It is possible that these horizontal cells with axons to the
innerplexiform layer could be serving this function. However, there is no mention of such
horizontal cells with axons in Rodieck’s authoritative anatomical description of the primate
retina [49].

In summary horizontal cells have large receptive fields which sum information from a
large number of photoreceptors. The outputs of the horizontal cells play a role in influencing
the information flow at the bipolar cell level as well as sensitivity control at the cone cell

level.
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2.3 Bipolar Cells

2.3.1 Bipolar Cell Classification

In primates, there are several anatomically distinguishable types of bipolar cells. Many of
these bipolar cells either have their cell bodies in distinctly different layers, or selectively
make contact with only rods or only cones, or synapse in the inner plexiform layer in different

sub-layers and thus connect to different types of ganglion cells.

Rod Bipolars

In mammals, there is only one type of bipolar cell making ditect contact with rods and it
is aptly named the rod bipolar. There is likely a secondaiy pathway for 1od information
through inter-photoreceptor contacts as well. although it is not well understood. Each 1od
bipolar cell contacts between 15 and 45 rods in the central area, while cach rod contacts
an average of 2.5 bipolat cells [19). Adjacent 10d bipolar cells thus have dendritic fields
overlapping by about 20 percent. The dendritic field size increases with eccentricity, and in

the far periphery, many hundieds of rods may converge onto a smgle bipolar coll.

Cone Bipolars

In contrast to the single type of rod bipolar, there are at least six types of cone hipolars
in the primate retina. Anatomically, Polyak has classified them into four different clusters
based solely on their dendro-dendritic spreads [49]. Recently, Boycott has distingmshed yet
another subclass of bipolar cell named 2C [7]. Figute 2.6 shows the clustering of bipolar

cell types based on Polyak’s classification and these are descibed helow:

¢ Midget cluster: These bipolar cells have small dendritic fields. In the central area,
each midget bipolar cell contacts on average only one cone. There are two varieties
of midget bipolars: those with invaginating tibbon synapses and those with flat con-

nections to the cone photoreceptors.

¢ Diffuse cluster: Each diffuse bipolar contacts six or seven cones in the central area.
It is not known if these contact cones of the same spectral type only or mix sig-
nals from different cones. However, considering the tight bottlencck of transmittable
information through the optic nerve, these cells may be extracting information not
readily extracted from the midget bipolar pathway. Like the midget cluster, the dif-
fuse cluster contains bipolar cells with either invaginating or flat connections to the

cone photoreceptors.
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Figure 2.6: Bipolar Cell Types: Scatter diagram of dendritic field area versus
telecodendritic field area of bipolar cells lying in a 1.4mm? strip 6.2-8.0 mm from
the fovea in a whole-mounted Macaca nemestrina retina. Using this classification,
four natural clusters of bipolar cells are observed and are labeled as midget, diffuse,

blue, and giant. Data from Rodieck [49].

‘ e Blue cone cluster: The complexity of connections made by the blue cones remains
unclear; they connect to a few cones but skip over many cones to do so. The spread

of blue cone bipolars closely matches the spacing of blue cones at all eccentricities in

the retina.

e Giant cluster: This cluster contains bipolar cells having much larger dendritic fields

(50gm - 100pm) which contact approximately 20 cones in the central region.

e 2C cluster: These cells are similar to the midget bipolar cells except that they
contact two or more cones. They are very rare in the central fovea but become much
more frequent outside the fovea. Boycott suggests that these may be functionally

similar to midget ganglion cells {7].

2.3.2 On-centre and Off-centre Pathways

There are at least four distinct bipolar cell information pathways for the more common
red and green cones. The midget and diffuse bipolar cells split cone information into two
pathways. In addition to this, in both the midget bipolar and diffuse bipolar clusters, there
‘ is a dichotomy of cells that depolarize with centre field illumination (on-centre) and those

that hyperpolarize with centre illumination (off-centre). The on-centre cells correspond
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anatomically to the bipolar cells with invaginating terminations at the phototreceptors. The
hyperpolarizing, off-centre bipolar cells make flat connections onto the receptors.

This on/off dichotomy is also exhibited anatomically in the inner plexiform layer where
the axons of the bipolar cells terminate and contact ganglion cells. The inner plexiform layer
is divided into different sublaminae. The axons of the on-centre hipolar cells terminate i
what is called sublamina “b” in the lower part of the inner plexiform layer (IPL) where
they make contact with on-centre ganglion cells and amacrine cells. ‘The axons of off-

L2}

centre bipolar cells terminate in the upper part of the IPL in sublamma *a” where they
synapse with off-centre ganglion cells and amacrine cells. Richter [17) and Rodieck [49] eite
evidence that different transmitters are involved in the on and off pathways, and that the
off pathway is slightly slower than the on pathway. The conneciivity of bipolar cells to
amacrine and ganglion cells in the mmmner plexiform laver and its significance will be covered
in the description of the amacune and ganglion cells.

Why aie there both on and off pathwavs in the retma? It is well known that newrons
reliably code information only by mereasing their firing 1ate from thenn rosting rate, Foi
firing rates lower than the 1esting rate, the intet-spike interval times become significantly
long, and the signal to noise ratio is reduced. Thus to signal the presence of dark features on
bright backgrounds as effectively and quickly as biight features against darker backgrounds,
two pathways are required. In addition, by utilizing both the on and off pathways, the

effective dynamic range of signals coded by the ganglion cells is doubled [2][32].

2.3.3 Bipolar Cell Function

The bipolar cells form one part of the direct pathway for information flow fiom the pho-
toreceptors to the ganglion cells. The hipolar cell’s 1eceptive field consists of a areular
center field driven directly by the photoreceptors and a much latger antaponistic surtound
field that is driven by signals from horizontal cells. 'The bipolar coll is generally assamed to
compute a difference function hetween receptor and horizontal cell signals leeding into it.

The bipolar cell signals only differences of the receptor inputs as measnied against,
the local background average signal provided by the horizontal cells.  The bipolar cell
ilumination response curve is much steeper than that of the photoreceptors and goes from
threshold to saturation within a little more than one logarithinic unit change of centre field
intensity [71]. Thus. the bipolar cell effectively indicates contrast in the image with a high
gain.

As the antagonistic surround signal from the horizontal cell is slightly delayed compared
to the center inputs from the cones. the hipolar cell is also responsive to temporal changes

in the signal [24].
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2 RETINAL STRUCTURE AND FUNCTION

In addition, since each midget bipolar cell connects to only one cone photoreceptor in
the fovea, this is likely the pathway for high visual acuity. These bipolar cells are also color
opponent, with the center and surround of the receptive fields having different spectral
sensitivities. The most prominent are those with red/green (R/G) opponency, with a much
fewer number of blue/yellow (B/Y) opponent cells. The antagonistic receptive field struc-
ture of midget bipolar cells permits it to code both achrematic and chromatic information
on the same channel [23][33]. The midget bipolar cells provide input to parvocellular (P)
ganglion cells which form the high acuity visual pathway (described in a later section).

The role of the diffuse cluster of bipolar cells that contact several cones in the fovea is
not as clear. It is possible that these bipolar cells contact cones of only a single spectral type
and receive antagonistic surround input from the HII horizontal cells. The other alternative
is that they receive information froin cones of mixed spectral types and form the basis of
the magnocellular (M) ganglion cell pathway. This pathway is characterized by cells with
large 1eceptive fields. little colour sensitivity, and properties significantly different from the
parvocellular (P) ganglion cells.

The blue cluster is much more sparse and is again likely involved with one of the colour
pathways The giant bipolar cells are also much less common than the midget and diffuse
bipolar cells and have very large receptive fields. Consequently, these cells are not likely
part of the direct high acuity visnal pathway, but rather are used for extracting information

at a much coarser grain.

2.3.4 Bipolar Cell Summary

o Most results show the bipolar cell to perform a difference function hetween receptor

signals and an antagonistic horizontal signal [39].

o The ratio of diameters of the center field to the diameter of the surround field ranges
from 1:5to 1:10 in most vertebrates [21]. The size of the surround field correlates well

with the size of the horizontal cell receptive fields at all eccentricities [28].

e Fleet [24], Richter [47], Naka [40] and Dowling [21] all give biological evidence that
the antagonistic horizontal cell input to the bipolar cell is delayed compared to the
receptor inputs. This gives the bipolar cell a small transient spike which can be

thought of as a crude time differentiation operation [47).

e Rodieck [18] shows that the bipolar cell dynainic range is very narrowly tuned and goes
from threshold to saturation with only about a 1.6 log unit change in center intensity.
The antagonistic horizontal signal serves to center the response range arcnd the local

average signal. thereby maximizing the available response range [39]. This subtractive
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process is an important factor in the transformation of the visual signal from intensity
to contrast [26].

e Curlander [17] and Richter [47] both model the bipolar cell 1esponse Vi(r,1) as a
temporal low pass filter characteristic, and spatially, as a high pass filter using a
linear model:

Va(ry ) = (ke Vi(r ty = kap Vil r, )]+ hi(t) (2.3)

where Ky, Ky, are constants whose sign and value depend on the type of bipolar cell.
Vi(r,t) and Vj(r, t) are the receptor and horizontal cell potentials, respectively, with r
being the radial spatial variable and ¢ being time. The spatial differencing operation
performs the spatial high pass operation which is then convolved with the temporal
low pass impulse response of the bipolar cell h;(t). This equation may be used to
model both the midget and diffuse class of bipolars by appropiiately adjusting the

receptive field sizes and constants kn, and Ay,

2.4 Interplexiform Cells

The interplexiform cells are unique in the retina in that, although their cell bodies lie in the
inner plexiform layer, they act pre-synaptically and post-synaptically in both the outer and
inner plexitorm layers, making contact with hoth horizontal, hipolar, and amacrine cells.
Not much is known about the distribution or physiological function of the interplexiform
cell, and in fact. it has only been 1elatively recently that these cells have been studied at
all [21](68].

From studies in fish. it has been found that interplexiform cells 1elease dopamine which
locally reduces the conductivity of the gap junctions between honizontal cells and thus
diminishes the size of their receptive fields [21][28][49][68). This also tends to merease the
sensitivity of bipolar cells to centre illumination as the size of the mhibitory surround is
reduced. Studies in fish indicate that interplexiform cells release dopamine under extreme
dark adaptation, at the threshold of vision when only the 10d system is active, and also in
the photopic illumination range in regions of high spatiotemporal contiast (flickering lights,
spatial edges) [68].

No models of the interplexiform cell function have heen proposed to date. However, the
ability of interplexiform cells to vary the receptive field (RF) size of other cells is clearly
advantageous from a retinal information processing point of view [62][81]. Srinivassan [62]
puts forth an argument on the need for modulating the RF size of the inhibitory surround
field of ganglion cells l)asgd solely on tradeoffs between signal-te-noise ratio and acuity in

the coding of information. He suggests that the horizontal cell RF size (which accounts for
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the ganglion cell inhibitory surround field) should diminish as the illumination level rises
and the signal-to-noise ratio improves. A similar argument is used in a very different model
applicable to the rod system put forth by Yellott [81]). Zeevi [83] also suggests that the
interplexiform cell could provide this feedback in the retina for gain and sensitivity control.

In summary, the interplexiform cell collects signals from a large area in the inner plex-
iform layer, likely from many bipolar and amacrine cells. It feeds this signal back to the
horizontal cells in the outer plexiform layer where it locally modifies the effective horizontal
cell receptive field size. It is predominantly involved in a regulatory function and is an

important mechanism of gain and sensitivity control employed in the retina.

2.5 Amacrine Cells

2.5.1 Amacrine Cell Types

Amacrine cells are generally defined as those cells lying in the inner plexiform layer which
lack an axon. All vertebrate retinas studied so far show amacrine cells with a dazzling
diversity of morphological forms and an impressive number of different neurotransmitters
[19]. It has been estimated that there are about 20 types of amacrine cells in the human
retina [38].

No one knows why there are so many types of amacrine cells. They may be partly
responsible for many of the more complex receptive field properties such as orientation
selectivity and movement detection found in some vertebrate retinas. However, this does
not explain why cats or primates, with their much simpler centre-surround receptive field
properties, need such a rich diversity of amacrine cells. Some of the amacrine cells have
been implicated in the rod pathway. linking signals from the 10d bipolar cells to ganglion
cells [63]. They also may be involved in the centre-surround organization of change-sensitive
ganglion cells [71]. However, this still does not explain the need for such a large number of
amacrine cell types.

Despite this rich diversity, Masland [38] indicates that if one groups the amacrine cells
hased on the density of their dendritic fields over the retinal surface. they fall naturally into

three groups:
I. Frequent, narrowly-branched cells
2. Sparse, widely-branched cells

3. Densely overlapping cells
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Figure 2.7: Schematic of AII Amacrine Cell Wiring: The figure shows
schematically how the AIT amacrine cells signal rod information to ganglion cells.
The gap junction made by the AIT amacrine cells with on cone bipolar cells produces
responses in the cone bipolar cells that mimic the responses of the on rod bipolar
cells and the ALl amacrine cells. The All cells also make synaptic junctions with off
ganglion cells. Thus the ALl cells allow both on and off ganglion cells to be excited
by the rod system

Frequent narrowly-branched cells

These amacrine cells are densely packed with narrow dendritic fields. They include the
type AIl amacrine cells which have been extensively studied in the cat. Kolb and Sterling
have implicated the AIl amacrine cell as an obligatory pathway for information flow in the
rod system of the cat [49](63]. Rod bipolar cells appear only to make direct contact with
on-centre ganglion cells in sublamina “b”. However, it is known that the off-centre ganglion
cells also receive both rod and cone inputs. The A1l amacrine cell is believed to communicate
the rod signals from the terminations of rod bipolars in sublamina “b” to sublamina “a”,
where they form an inhibitory input cither directly onto on-centre ganglion cells or via some
of the cone bipolars that also terminate there. Figure 2.7 shows a schematic diagram of
this geometry.

The fact that the AII cells are part of the direct pathway of information flow is consistent
with the finding that they are densely packed with very little spread of their dendritic fields.
Other similar amacrine cells that synapse with the cone bipolars have also been found but

little is known about them or their function[38].
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Sparse, widely-branched cells

These amacrine cells are much more sparsely distributed but have very wide-spreading
dendritic fields enabling them to cover the entire retina. Due to their small number and
the large spread of their dendritic fields, it is postulated that these cells play a global or
regulatory function which modulates the information flow in the retina, but do not form a
direct pathway for this information.

An example of such a cell is the dopaminergic cell known to make synaptic contacts
with type AIl amacrine cells [38][49]. A single dopaminergic cell may contact several All
amacrine cells. Thus a relatively sparsely-distributed amacrine cell is able to hecome a

control point which can influence the direct pathway of rod information throughout the AIl

amacrine cells.

Densely overlapping cells

This class contains numerous amacrine cells with wide and densely overlapping dendritic
spreads. Examples of these are the cholinergic cells and indoleamine-accumulating cells [38].
In the rabbit retina, there are approximately 290,000 cholinergic cells compared to about
350,000 ganglion cells. These cells have dendritic fields ranging from 250 ym in the central
retina to 800gm in the periphery. The indoleamine-accumulating cells are a second group in
this class that have dendiitic field sizes ranging from 300sm in the central retina to 1000xm
in the periphery, with dendritic overlap factors of 30 to 60 [38]. Again. the function of these

cells is poorly understood.

2.5.2 Cell Function and Models

Except for the All amactine celis implicated in the rod pathway, very little is known about
the functional role of any of the amacrine cells in primates or any other vertebrate species
[49].

Werblin suggests that some amacrine cells play an inhibitory role in forming the centre-
surround type receptive fields of change-sensitive or transient ganglion cells [71]. In his
experiments, the response of change-sensitive ganglion cells to changing centre input was
reduced or inhibited if there were corresponding changes also presented in the surround field
of the ganglion cell. He attributed this inhibition as coming from the amacrine cells. Thus
in his model, the amacrine cell layer provides inhibitory input to the ganglion cells from a
large diffuse area, one that matches the ganglion cell receptive field surround size. These
amacrine cells are somehow sensitive to changes in illumination in their receptive fields due
to cither a spatial or temporal change in the visual image.

Richter and Ullman [47] also implicate the amacrine cells in cats to be computing tem-
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poral derivatives of the visual signals through inhibitory recurring synapses feeding from
these amacrine cells back to bipolar cells which drive them. The outputs of these amacrine
cells are then assumed to feed into the Y-type ganglion cells of the cat which are more
sensitive to transient inputs.

In summary, no satisfactory model exists for any of the amacrine cells tor any of the

cone pathways.

2.6 Ganglion Cells

2.6.1 Cell Types

Ganglion cells are the only retinal cells that provide signals cartied on the optic nerves
leaving the retina. In fact it is the ganglion cell axons which comprise the optic nerve.
This fact also makes them one of the easiest cells to study and ganglion cells have been
extensively examined by tecording 1esponses to vatious stimuli and measuring the activity
of optic nerve fibers [22][27][61][52].

Ganglion cells, like bipolar cells. come in a variety of morphological forms. However, in
primates, midget and parasol clars ganglion cells constitute 80% and 10% ol the population,
respectively. These two classes of cells form two distinct streams of information which flow
from the retina to the lateral geniculate nucleus (LGN) and diversify further in the cortex.
The midget ganglion cells project to the parvocellular layers of the LGN and ate termed
P-cells. The parasol ganglion cells project mainly to the magnocellulat layers of the LGN
and are termed M-cells.

The remaining 10% of the ganglion cells come in a vatiety of forms and do not project
to the LGN but instead project primarily to the superior colliculus. Some of these include
cells such as shrub ganglion cells. ganglion cells of the blue-cone pathwav, aund biplexiform
ganglion cells. The biplexiform ganglion cells are truly suipiising as they not only make
conventional synapses with 1od bipolars and amactine cells but also have some erratic
dendritic arborizations which bhranch and directly connect to about 25 1od spherules [49].
These ganglion cells appear to serve very specialized functions and provide the necessary
information to the superior colliculus for such things as pupillary contiol and eye movenments.
They will not be considered futther here.

Anatomically, the midget ganglion (P) cells are small, closely spaced and have narrow
dendritic fields. In the foveal region, each inidget ganglion cell likely connects to only one
cone bipolar and thus preserves the private pathway for each cone [33][49]. The parasol
ganglion (M) cells have much larger dendritic fields (approximately 3-4 times larger) than
the P-cells at all eccentricities {33]). The anatomical differences between the midget (P)

and parasol (M) ganglion cells is further supported by their different electrophysiological
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1esponses to various stimuli.
The P-cell and M-cell class of ganglion cells are further divided into two subclasses based

on their response to illumination presented to the centre of their centre-surround receptive
fields. Separate on-centre and off-centre pathways exhibited at the bipolar cell level are
maintained at the ganglion cell layer. The on-centre ganglion cells have their dendritic
fields synapsing with on-centre hipolar cells in sublamina “b” of the IPL and the off-centre
ganglion cells connect to off-centre bipolars in sublamina “a” [63]. The implications of this
are that in the central foveal region, there are about two ganglion cells serving every cone

which split the information into signals of opposite polarity.

2.6.2 X/Y Classification

There is a very large hody of literature describing the properties of cat ganglion cells
[22](27][52]{61]. Thus pritnate ganglion cells are often compared to or categorized based
on the classifications used for cat ganglion cells [57].

Cat ganglion cells are classified into X, Y and W type cells based on their physiological
properties [22]. X-cells account for about 55% of the ganglion cells in the rod-dominated
1etina of the cat while Y-cells account for 5% of the population. All other cells are lumped
into W-type ganglion cells. X-cells basically behave linearly with respect to summation of
subunit inputs while Y-cells are quite nonlinear. Both X and Y cells have high contrast
gains and simple centre-surround 1eceptive fields. X-cells respond better in a sustained
manner to stitauli, whereas Y-cells show a more transient response.

For primates, P-cells are often compared with or classified as X-cells, while M-cells are
classified as Y-cells. However, Shapely [57] shows that this grouping has many inconsisten-

cies and thus may really not be valid.

2.6.3 Spatial Distribution

It has been estimated that there are hetween 1.1 and 1.3 million ganglion cells in the human
retina. This compares to approximately 5 million cones and 100 million rods which initially
sample the visual image.

Although in total. cones outnumber ganglion cells by a factor of five, the number of
ganglion cells serving the foveal region actually exceeds the density of cone photoreceptors
as there are two midget ganglion cells for virtually every cone in the fovea: one serves the
on-centre pathway, and the other the off-centre pathway. In addition, the cone spacing in
the fovea very closely matches the 1esolution of the image projected by the optics of the
cye-lens system. Thus acuity in the fovea is neither limited by the cones nor the ganglion

cells [2].
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However, outside the fovea, ganglion cell density falls off much faster than the cone
density. Figure 2.8 shows the density of ganglion and cone cells with variation in eccentricity
[32]. The psychophysically measured acuity in the periphery is much worse than the image
quality available to the retina and the acuity that could be expected with the cone spacing
in the periphery [2]. In the periphery, the ratio of cones to ganglion cells increases sharply
and thus visual acuity is limited by the ganglion cell spacing rather than the optics of the

eye or the cone sampling [23].
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Figure 2.8: Cone and Ganglion Cell Densities: The figure shows the distribn-
tion of human ganglion cells and cone receptors with respect to retinal cccentricitics.
For humans, the ganglion cell density slightly exceeds the cone density for eccen-
tricities less than 8 degrees. For retinal eccentricities greater than 5 degrees, the
ganglion cell density decreases much faster than the cones. The figure also shows
the density of cortical neurons in a Macaque monkey that are processing visual in-
formation at a given eccentricity. Figure adapted from Kronauer [32] ©1985 IEEF,

Although M-cells represent 10% of the ganglion cell population, therc are some studies
which indicate that in the very central foveal region, the M-cell population is much sparser
than this [33]. Outside the fovea, M-cells are uniformly distributed in a regular sampling

lattice which accounts for 10% of the ganglion cells.
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The ganglion cell dendritic spreads and thus their receptive field diameters increase
almost linearly with eccentricity for both P-cells and M-cells. Figure 2.9 shows the variation
of receptive field size of P-cells and M-cells with eccentricity [23]. The receptive field size
of M-cells increases about 3 times faster than the P-cells. The percentage overlap factor of

receptive fields is approximately constant outside the fovea [23] and is estimated to be 50%

hased on macaque monkey data[76).

GANGLION CELL DENDRITIC FIELD SIZES vs. RETINAL ECCENTRICITY
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Figure 2.9: Ganglion Cell Dendritic Field Sizes: The figure shows the vari-
ation with eccentricity of ganglion cell dendritic field sizes of parasol (M) cells and
midget (P) cells. At all eccentricities, the diameters of dendritic fields of M-cells
are about 3 times larger than those of P-cells. Data re-plotted from Van Essen [23].

Van Essen and Anderson[23] argue that the retina employs a scale invariant sampling
strategy with linear increase in ganglion cell spacing. Using linear degradation in resolution
with eccentricity, they argue that the image can effectively be represented by 350,000 sam-
pling nodes. Next, they define the functional multiplicity of ganglion cells or equivalently
the “retinal coverage factor” to be the number of ganglion cell receptive fields of a given
class which overlap one another at each sampling node in the retina. Using this as a basis,
in the fovea the functional multiplicity of ganglion cells is about 2 per sampling area corre-
sponding to the on and off pathways of the P-cell lattice [23]. As one moves further out into
the periphery, the sampling regions become much larger with widely overlapping receptive
fields. Thus for P-cells, for a given sampling node in the periphery, there may be as many
as 3-5 ganglion cells whose receptive fields fall into that region. For M-cells, which have

31




2. RETINAL STRUCTURE AND FUNCTION

a much larger and widely overlapping receptive fields. the functional multiplicity starts at
about 2 per area just outside the fovea and increases to as much as 6-10 per area in the

periphery. This may contribute to the increase of sensitivity to peripheral motion.

2.6.4 Receptive Field Properties

The receptive field properties of ganglion cells have been studied quite extensively in both
cats and primates [16][22][27](35)[47] [57][61][63][69][47][71]. Both P-cells and M-cells have
simple centre-surround receptive fields which are usually assumed to be circularly symmet-
ric. This is in contrast to some lower vertebrates snch as the frog or tabbit retinas whose
ganglion cells exhibit some fairly complex receptive field propertics such as direction se-
lectivity, and motion selectivity [21]. However. by extracting and coding such specialized
information in the retina. much of the original visual information is discarded in the retina
and cannot then be recovered by the cortex. For much more sophisticated visual systems,
it seems that the retina is relegated to performing more hasic signal processing on the ini-
tial visual signal, leaving as much raw information as possible for further processing in the
cortex.

The receptive field of a ganglion cell is usually represented mathematically in the litera-
ture by a difference of two Gaussian functions, one computing the response due to the centre
and the other, much wider Gaussian responsible for the antagonistic surround (see Figure
2.10). The output of the ganglion cell is represented as the convolution of this “difference-of-
Gaussians” function with the input image sampled by the cones. This operation results in
enhancement of local contrast or edges and the suppression of uniform backpround signals.
This of course ignores all of the intermediate processes previously deseribed.

Marr and many others looked on such an operation as evidence that the reting was
extracting and coding edge information about the visual image [37). Others have cousidered
it as the coding of local contrast by the retina rather than absolute luminance, Cleary, edge
and contrast information concern spatial properties in the image and are thus related. [t
is doubtful that the purpose of the ganglion cells is just to extract edge information in the
image or to code contrast since the retina also codes information regarding the dynamic
and spectral components of the visual image. It is more likely that the information coded
by the ganglion cells is a result of the constiaints imposed by the dynamic range mismatch
at the input and output to the retina on the one hand, and the transmission bottleneck
imposed by the optic nerve on the other. The multiple parallel pathways of information
in the retina suggest that several different types of information are extracted by the retina

and coded onto the same channels at the ganglion cell level [33].
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Figure 2.10: Ganglion Cell Receptive Field: The figure shows how the sum-
mation of mputs to the ganglion cell are weighted. The receptive field consists of
two regions The centre circular region consists of a narrow Gaussian-wenghting of
direct mmputs from bipolar subumts (sohd line). The mlibitory surround region 1s
represented by a much wider Gaussian (dashed hine) and 1s the result of indirect in-
put from horizontal cells onto the bipolar cells and amacrine cell input to ganglion
cells. The resuit is a “Mexican hat” function used very extensively i computer

vision (dotted line).

2.6.5 The P-cell Pathway and Functional Role

As these cells account for 80% of all ganglion cells in the primate retina, P-cells likely form
the basis of our high spatial acuity vision. In the fovea, they have very small dendritic
spreads, matching the width of the narrow dendritic termination of a single midget bipolar.
Electron microscopy studies by Kolb [30] have shown that P-cells in the fovea receive direct
input mainly from a single midget bipolar cell and a very small number of synapses from
other bipolar cells. However, the bipolar cell providing most of the central input does not
make contact with any other ganglion cells. Kolb’s data indicate that the midget bipolar
cells make exclusive contact with single midget ganglion cells in the fovea. In addition, it
appears that midget ganglion cells also receive input from amacrine cells as there is an equal
number of synapses from amacrine cells as from bipolar cells.

As a result of the centre field being derived from a single cone, and the surround consist-
ing of mixed inputs from cones of all different spectral types, the P-cells also exhibit color
opponency. Most P-cells are red/green opponent cells, with a much smaller proportion of
yellow/blue opponent cells. The yellow/blue opponent cells represent about 7% of the P-
cells matching the proportion of blue cones in the retina. Kolb argues that the yellow/blue
pathway is served not by midget ganglion cells, but by a separate class of giant ganglion
cells which also project to the Parvocellular region of the LGN [30]. This differs from the
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views put forth by Rodieck [49] and Sterling [63] who include the vellow/blue pathway as
part of the P-cell path.

The red-green opponent P-cells are well suited to respond to achromatic spatial con-
trast at moderate and high spatial frequencies and to low frequency chromatic patterns
modulated in time. Although P-cells carry most of the color information about the image,
psychophysical studies indicate that this is only a small percentage of the information 1e-
layed by P-cells [33]. Acuity for isoluminant gratings is only about one-tenth of that for
luminance gratings at all eccentricities [33]. However, the contrast sensitivity is approxi-
mately eight times higher for isoluminant chromatically opponent gratings than achromatic
gratings [11].

P-cells generally give sustained responses to a maintained stimulus. Their response
is best for patterns modulated at 10 Hz, and they are often unable to follow stimulus
modulations more rapid than 20-30 Hz. D-cells in the fovea can 1esolve pratings of §0
cycles/degree which closely matches the psychophysically measured acuity [23].

The P-cell response is fairly linear with respect to summation of inputs from bipolar
and amacrine cell subunits. In this respect, it is very similar to the X-type ganglion cells in
the cat [33][24]. In fact, in much of the literature, primate ganglion cells are often classified
using the X- and Y- type dichotomy used for cat ganglion cells.

Fleet and Jepson [24] model the panglion cell receptive field properties as the difference of
two Gaussians with different spatial and temporal characteristics. The centre and surround
Gaussians have different time constants of integration; the surround is slightly delayed with
respect to the centre. This agrees with the physiologically known data and is similar to
the model used by Richter and Ullman[47]. Using Fleet’s spatiotemporal centre-surround
(CS) filter, both the spatial and temporal characteristics of the P-cell can be modelled by
adjusting the ratio of time and space constants between the centre and snrround inputs.

The linear centre-surround spatiotemporal filter (CS) is defined by the {ollowing equa-

tions:

CS(ret) = a Kl m)0(r;0.) — g K (H — dy )y 0,) (2.4)
‘o ~[r|® .
G(rio) = s exp S (2.5)

Lexp=t ift>0.7>0
(¢t = T T - 2.6
k() {0 if 1< 0 (26)
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where

Te = centre time constant (ms)

Ty = surround time constant (ms)
. = centre Gaussian width (pm)

a, = surround Gaussian width (um)
d = surround time delay (ins)
K(t;T) = low pass impulse response
G(r;o) = 2D Gaussian spatial filter

In the model, the P-cell output is the product of the spatially radially symmetric centre-
surround (CS) filter with the visual input image. The P-cell output amplifies both the local

spatial contrast and temporal change in the visual signal. A block diagram of this process

is shown in Figure 2.11.
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Figure 2.11: Centre-Surround Spatiotemporal Filter:

2.6.6 The M-cell Pathway and Functional Role

M-cells are slightly more complex than P-cells. Although the majority of M-cells hehave
as linear filters over most spatial and temporal frequencies, some M cells have nonlinear

responses.
M-colls have much larger cell bodies and receptive fields than P-cells and scale in size

linearly with eccentricity just like P-cells. Their receptive field diameters are approximately
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3 times larger than P-cells at all eccentricities. The M-cells (parasol ganglion cells) receive
direct input from the diffuse bipolar cells which contact several cones. It is not clear if
the M-cells receive centre input from only one diffuse bipolar cell o1 several bipolar cells.
However, due to the large size of their receptive fields. they likely receive input frow several
bipolar cells. M-cells also possess many reciprocal synapses between amacrine cells, diffuse
bipolar cells and the ganglion cells.

As such, M-cells are tuned to respond more to temporal changes in the visual input and
code spatial information at a coarser level. M-cells account for only 10% of the ganglion
cells in the retina and thus form a much sparser sampling lattice than the P-cells. As a
result, M-cells are only able to spatially resolve gratings with spatial frequencies less than
20 cycles/deg. Temporally, they respond best at patterns wmodulated at 20 Hz but can
follow modulations as high as 60-20 Hz {33].

M-cells do not show much colour opponency and for the most part respond only to
achromatic contrast. They ate very sensitive to low contrast but bhegin to satutate in the
presence of higher contrast signals. )

M-cells are often compared to the nonlinear Y-type cells in the cat. Shapely [57] shows
that this analogy is valid only for a small fraction of the M-cells. For primates, most M-cells
(95%) have simple receptive fields and sum inputs linearly like the cat X-cells and primate
P-cells and thus may be labelled My. Only about 5% of M-cells sum inputs nonhneaily
and behave like the cat Y-cells and are thus labelled My,

Fleet and Jepson[24] propose that much of the temporal characteristics of M g-cells can
be modelled by the same spatio-temporal filters that are used to model P-cells hut with the
parameters tuned more specifically for temporal differentiation (see equations 2 1-2.6).

For Y-type cells, Richter and Ullman [47] wodel the tesponse as being o nonlineas
summation of inputs {rom bipolar cells and amacrine cells. The amaciine cells in they
model form reciprocal synapses with the hipolar cells to achieve a temporal derivative ol
the bipolar cell signal. The nonlinearity of subunit suinmation is achieved by separating
positive and negative contrast signals and weighting them differently.

Shapely suggests that the primate M-cells have properties of both the X-type and Y-type
cells in the cat [57] and that P-cells ate an additional system in primates which accounts
for our high acuity chromatic vision. M-cells have also been explained in tenms of multiple
channel theory as being the coarse resolution on and off channels, while P-cells form the
fine resolution channels [34). To summarize. M-cells signal visual features at a courser
spatial grain and respond better to high temporal frequencies as compated to P-cells. The

properties of P-cells and M-cells are summarized in Table 2.1.
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Table 2.1: P-type and M-type Ganglion Cell Properties

(| P-cell properties

| M-cell properties

midget class ganglion cell
small cell bodies.
small axons, dendritic arbors

parasol class ganglion cell
larger cell bodies, axons.
and larger dendritic arbors
faster axon conduction vel.

S0Y%. of ganglion cells

projects to Parvo LGN
response peak at 10 Hz
cutoff freq at 20-30 Hz

*

10% of ganglion cells
projects to Magno LGN
1tesponse peak at 20 Hz
cutoff freq at G0-80 Hz

sampling multiplicities:
fovea: 2 per sampling area

periph: 3-5 per area

sampling multiplicities:
fovea : 2 per sampling area
15 deg: 4 per area

periph : 10 per area

small 1eceptive fields

linear increase in size of
1ec. field with eccentricity

receptive fields 3-4 times
larger than P-cells.

linear increase in size of
1ec. field with eccentricity

linear summation of subunit
inputs to P-cell

low contrast sensitivity
large contrast range
1espond to high spatial fieq
can tesolve 30 cveles/deg,
color opponent

- fine sampling lattice

code contrast well

R0% of M-cells are linear
20% of M-cells are nonlinear
high contrast amplification
low saturation thieshold
sensitive at lower spatial fieq.
can resolve 20 cycles/deg
little color opponency

coarser sampling lattice
saturate with high contrast

high spatial acuity

fast flicker detection
fast low contrast motion
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2.7 Overall Summary of Retinal Structure and Function

The retina is a highly structured neural network that extracts and pre-processes visual
information from the image projected upon it by the optics of the eye. The processed
information is subsequently transmitted to the cortex thiough the optic nerves. The style of
processing performed by the tetina is dictated by two main requirements. One requirement
is that the retina must function in an environment where the ambient illumination intensity
changes over several orders of magnitude. The second requirement is that all information
extracted by the retina must be transmitted through a limited number of optic fibers hy
ganglion cells with a very limited dynamic range of firing 1ates. This limitation on the
amount of data that may be transmitted requires the retina to perform considerable data
reduction and is one of the reasons for a foveated retinal sampling scheme.

The retinal structure has been well mapped through anatomical studies. However, the
functional nature of many of the retinal cells is still a mystery or at hest poorly understood,
In simplest terms, 1etinal cells can be classified as falling into one of six types. However
each one of these comes in various subtypes and reflects the multiple parallel pathways of
information processing in the 1etina.

To meet the input dynamic range requitements, the retina uses two photoreceptor Lypes,
rods and cones, to subserve different 1egions of the image intensity domain. The 1od system
provides low resolution but high sensitivity vision down to the thieshold of photon detection.
The cone system consists of a high resolution fovea with 1apidly decreasing, sampling density
in the periphery. The cone system operates at higher light levels, and is able to continuously
adapt its sensitivity to the ambient background illumination up to the light-damage limit.

The output of the receptor cells is next processed by bipolar and horizontal cells. Each
horizontal cell connects to many 1eceptor cells and computes some sort. of an averaging,
or summation function. The receptive field size of these horizontal cells is many times
their dendritic field size by the virtue of passive conduction of current across gap junctions
between adjacent horizontal cells. The conductivity of these gap junctions is controlled
by feedback received from inteiplexiform cells. It is the horizontal cell that is believed to
account for the surround fields of the bipolar and ganglion cell 1eceptive fields.

The bipolar cells essentially compute a difference operation between the recoptor signal
and the horizontal cell signals. Thei1r receptive field consists of two parts; the centre is
stimulated by inputs from the receptors: the much larger sutround 1eflects the input from
horizontal cells. The different time constants of integration in the photoreceptor and hori-
zontal cell layer, in addition to a small delay of the horizontal cell inputs, 1esults in temporal
as well as spatial differentiation.

The splitting of visual information into different streams is readily observable at the
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bipolar cell level. An on-centre and an off-centre receptive field split of information is started
at the bipolar cell level and continued to the ganglion cell level. In addition, the scale at
which information is extracted is further subdivided by two major classes of bipolar cells.
Midget bipolar cells connect to a single cone thus maintaining high resolution pathways,
while diffuse bipolars contact several cones and thus likely code information at a coarser
level.

The outputs of bipolar cells feed into amacrine cells, interplexiform cells, and ganglion
cells. The function of amacrine cells, which come in a large variety of forms, is still very
poorly understood. Some of the amacrine cells have been implicated in the rod system
pathway, while others are known to have a diffuse, regulatory function which controls how
other neurons in the retina process visual information. In addition, inhibitory input from
amacrine cells is believed to be responsible for the transient nature of responses of change-
sensitive ganglion cells. One of the functions of the interplexiform cells seems to be to adapt
the nature of the bipolar and ganglion cell receptive fields by modifving the conductivity of
gap junctions in the horizontal cell layer.

The ganglion cells form the output of the retina. They receive input from bipolar cells
and amacrine cells. Two major classes of ganglion cells account for about 90% of the
ganglion cell population.

Midget ganglion cells ( P-cells) receive input mainly from midget bipolar cells and project
to the parvocellular layers of the LGN. These cells accoun?t for 80% of the ganglion cell pop-
ulation and form the high spatial acuity, chromatic pathway. They exhibit simple circular
centre-surround teceptive fields which increase in size lineatly with eccentricity. P-cells
tespond to both chromatic and achromatic signals.

The parasol ganglion cells (M-cells) have larger 1eceptive fields than P-cells at all ec-
centricities and their outputs project mainly to the magnocellular layers of the LGN. These
cells account for only 10% of the ganglion cell population. It is not clear whether the M-
cells receive input only from diffuse bipolars or a mix of midget and diffuse bipolar cells.
These cells respond better to higher temporal frequencies at the expense of lower spatial
resolution. Amongst other things, these cells form the pathway for fast, low contrast motion
detection.

This chapter has summarized the structure and function of biological retinas. The next
chapter addresses and summarizes adaptation mechanisms within the retina that enable it

to operate over a wide range of illumination conditions.
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Chapter 3 ADAPTATION MECHANISMS IN THE RETINA

At any one ambient illumination level, the physiological response range of individual pho-
toreceptors spans enly 3 log units of intensity from threshold to saturation (sce Figure 3.1)
[21][8]. However, various adaptation mechanisms present in the retina which shift the op-
erating range of the receptors to match the background illumination level allow the visual
system to function over an impressive 12 orders of magnitude of illumination intensity [48].
The narrow response range of individual photoreceptors permits the visual system to re-
spond with high gain to local variations in contrast, while the adaptation mechanisms which
shift the operating point of the individual photoreceptors extend the overall dynamic range
of the visual system. Most of these facts have been mentioned in the previous chapter on

retinal structure and function but are summarized in this chapter.
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Figure 3.1: Visual System Operating Range: The figure shows schematically
the operating range of the visual system. The dashed curve represents the cone
stimulus-response function of a single cone at one background intensity. Around
this background illumination level, the cone has a response range of about 3 log
units. The overall cone system response range is achicved by adaptation mechanising
that shift the entire stimulus-response curve along the intensity axis to match the
ambient illumination level. Retinal illuminance for the cone system is measured
in photopic trolands which are defined as the product of luminance (cd/cm?) and
pupil diameter (mm). Data from Walraven et al. [70].

One way in which the retina accomplishes this task is by trying to maintain lightness
constancy over most of its dynamic range: “One aspect of lightness constancy is to maintain
uniformly high sensitivity at the receptor stage regardless of variations in local or global
ambient light level” [58]. The overall retinal response range is facilitated by adaptation
mechanisms that shift the response range of photoreceptors to be centred around the local

ambient illumination level. This extends the receptors’ operating range while still main-
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taining high contrast sensitivity. In addition, receptoral and post-receptoral mechanisms
discard much of the dc-like background illumination information. Thus, they primarily
process contrast information and thereby make better use of the limited transmission band-
width available at the optic tract.

Certain camera systems ate also able to function over a wide range of illumination levels
[64). However, there are key, differences hetween the two in the manner of their operation
and in their response to scenes containing a very wide range of intensities. The clarity with
which the retina is able to process visual scenes with illuminations that span several log
units of intensity is due to the very local sensitivity control exhibited by the retina starting
right at the photoreceptor level. In contrast to the retina. the sensitivity of photosensing
elements in commercial camera systems is controlled by a mmeasure of the global ambient
illumination level. Around this illumination level. individual camera photoreceptors respond
only to a small dynamic range of intensities. In a scene containing a very wide range of
intensities, many regions would be either washed out (saturated sensors) or too dark (below
sensor threshold) for a globally adaptive camera system but would be handled easily by a
ietina with local gain control. Cleatly, locally adaptive control at the photosensing stage is
a desirable feature in machine vision systems and has sparked some recent research interest:
one actual implementation includes Mahowald’s silicon retina with adaptive photoreceptors
[36].

In addition to local gain control, other adaptation mechanisms adjust receptive field
sizes of various retinal neurons in 1esponse to the prevailing local ambient illumination
level. These mechanisms trade off visual acuity against absolute contrast detectability.
At low illumination levels when the input signal-to-noise {SNR) ratio is fairly low, larger
1eceptive fields improve the output SNR 1atio and thus aid contrast detection. At much
higher illumin~tions. when the input SNR is already high, receptive field sizes are shrunk
in order to improve the acuity of the system.

It is apparent that several mechanisins are employed by the retina to achieve its impres-

sive dynamic range. These may be broken down into the following categories:

e Pupillary Control

o Separate Rod and Cone systems

Receptoral Mechanisms

Post. Receptoral Mechanisms

Each of these items is discussed in turn in the following sections.
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3.1 Pupillary Control

One manner in which the visual system controls the amount of light entering the retina is
by adjusting the eye’s pupil size. As the light level increases. the pupil diameter decreases.
However, the pupil size is only controllable to a factor of sixteen [70). This still leaves over

10-11 orders of magnitude of illumination intensity with which the retina must contend.

3.2 Separate Rod and Cone Systems

To cope with the still large range of retinal illuminations encountered, two separate photore-
ceptor systems are used. Individual rod photoreceptors are abount 25 times more sensitive
than cones. Still higher sensitivity is achieved in the 1od system by pooling the tesponses
of many hundreds of rods to so that even the detection of a single photon is possible [70].
In response to increasingly brighter illuminations, the 1od system exhibits response coin-
pression and saturation. In the presence of daytime illumination, the rod system saturatos,
This is where the cone system functions the best. Cones ate much less sensitive than tods
but are able to adapt their sensitivity no matter how bright the illumination is, even right
up to their light damage limit.

For much of 1etinal processing, the rod and cone systems are elatively independent
systems. The rod system se1ves the lower seven orders of magnitude of the visual system's
dynamic range while the cone system serves the upper seven orders. Figure 3.1 illustrates
this fact. It is only in the the mesopic region (twilight conditions) that 1od and cone
systems are both contributing to the visual signal leaving the retina. Anatomical studies of
the merging of rod and cone pathways have been performed in the cat [63], but i general

these interactions aie still pootly understood and for simplicity are ignored i this work,

3.2.1 Rod System Adaptation

Rod adaptation has been studied in considerable detail and summaties of this topic may be
found in [41][21]{43]. Rod light and dark adaptation is controlled largely by the degree of
pooling, not only at the receptor level through rod coupling, but also at a post-roceptoral
site, likely the horizontal cell layer [49][81]. In addition, as the 10d system is normally
functioning at very low light levels, photon statistics and hackground noise play a large
factor in governing the sensitivity of the rod system [81][84].

The arrival of photons is statistically Poisson distributed [81]. The level of noise due
to random photon arrival times grows as the square 100t of ambient intensity. As a result,
the signal-to-noise (SNR) ratio also grows as the square 100t of the ambient intensity (SNR
o V) [81]. Yellott shows that the teliability of absolute contrast detection depends on the
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total “photon catch” {81]. Thus, at very dim illuminations, when the noise is comparable
to the signal, absolute contrast detection is improved if the rod signals are summed over a
much larger area. Some estimates indicate summation of several hundreds or thousands of
rods signals may be occurring at dim illuminations [49][70].

A model proposed by Cornsweet and Yellott {14}[81] based on photon statistics and
adaptive pooling of signals models many aspects of the rod system very well. According to
this model, as illumination levels increase, the signal-to-noise ratio also increases and the
area of summation or pooling in the rods system is decreased. This results in improved
acuity with increasing illumination. The features of rod adaptation will not be discussed

further here as we are primarily concerned with the cone system.

3.2.2 Cone Systein Adaptation

At photopic illumination levels. the input signal-to-noise ratio is sufficiently high that pho-
ton noise is not a large factor in determining the cone systein sensitivity [70]. The system
must instead contend with intrinsic noise such as spontaneous cone pigment isomerizations,
often called “dark noise”. This dark noise likely sets the absolute thieshold for the cone
system.

In contrast to the rod system, a large part of the sensitivity in the cone system is
controlled right at the photoreceptor level. Adaptation mechanisms within the cone shift
its response curves laterally to be centered around the local ambient illumination level, thus
allowing the limited response range of the photoreceptor to signal local intensity variations
with a higher gain. This makes functional sense as it removes the burden of having to cope
with a large range of signals for all subsequent retinal neurons. This local control is due to
both the effects of cone photopigment bleaching and feedback fiom horizontal cells.

In addition to these 1eceptoral mechanisms. there are several post-receptoral mechanisms
which modify the input signal adaptively. Both receptoral and post-receptoral mechanisms

will be summarized in the following sections.

3.3 Receptoral Mechanisms

3.3.1 Weber’s Law and Lightness Constancy

Over the photopic range of light levels, the human visual system obeys Weber's law. This
law states that at any given background illumination level, the added stimulus intensity
required for a change to be just noticeable is proportional to the background illumination
level. This kind of behaviour results in lightness constancy [59]

This behaviour is due in large part to multiplicative and subtractive cone photorecep-

tor adaptation mechanisms which cause the entire cone stimulus-response curves to shift
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laterally while leaving the shape of the curves virtually unchanged along the background
intensity axis (see Figure 2.5). An example of a multiplicative mechanism is pigment
bleaching. Subtractive mechanisms are exhibited both at the photoreceptor level (through
horizontal cell feedback) and at the bipolar cell level. All of these mechanisms will be briefly

discussed in the following sections.

3.3.2 Time Course of Adaptation

Studies of light and dark adaptation in cones have shown there to be several components
that together contribute to the cone system sensitivity. The components may be grouped
as either being photochemical in nature or as network mechanisms involving a feedback
path either within the cone itself or from horizontal cells. The relative contributions of
photochemical and network mechanisms over the dynamic range of the cone system are
shown in Figure 3.2(a). Network mechanisms quickly adapt the cone system sensitivity
even for illumination levels too dim to cause significant photopigment bleac hing,

The different components of adaptation may also be distinguished by their time course
during cone light and dark adaptation [21][42). There are both fast and slow components
to cone light and dark adaptation. Light adaptation is very 1apid and the cone potential
reaches a steady state within 1-2 seconds, with most of the potential change complete almost
instantaneously [21]. It is believed that this fast adaptation is mediated hy network feedback
to the cones from horizontal cells [60]. Dark adaptation is much slower and more readily
observable. Figure 3.2 (right) shows schematically the time course of cone dark adaptation
while (left) shows the 1elative contiibutions of network and photopiginent mechanisis o
the steady state cone potential in cone light adaptation. The initial recovery of sensitivity in
dark adaptation occurs relatively quickly (within 200 ms) and is likely limited by “recepto
persistence™! rather than horizontal cell feedback [21]. The slower component of cone dark
adaptation is generally attributed to regeneration of photopigment within the cone and is

noticeably slower (taking 5-7 winutes to reach a plateau).

3.3.3 Photochemical Adaptation

The effects of photopigment bleaching have heen studied extensively [18]. Pigment bleach-
ing controls the sensitivity of the cone system for all light levels bright enough 1o bleach a
significant portion of the photopigment [8][21]. The efficiency of photon catch of a photore-
ceptor is controlled by the amount of photo-sensitive visual pigment present in the ieceptor.

Absorption of a photon starts a chain-reaction of events which 1esults in the breakdown of

!receptor persistence 1s the phenomenon of contmned perception of a visual signal to a stunuli that has
been removed for a short instant
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Figure 3.2: Light and Dark Adaptation: The figure on the left shows schemat-
ically the relative contributions of the photochemical and network feedback mecha-
nisms in cone sensitivity adaptation. At low background intensities, network mech-
anisms cause cone thresholds to rise despite the absence of photopigment bleaching,.
At higher illumination levels, pigment bleaching is more prominent and controls the
overall sensitivity. The figure on the right shows the time course of the recovery of
sensitivity in dark adaptlation. The initial fast recovery drop in cone thresholds is
due to fast network mechanisms such as horizontal cell feedback to the cones. Sub-
sequent recovery of sensitivity is due to the much slower photopigment regeneration,
From Dowling [21] ©1987 Harvard University Press.

the pigment molecules. These are also constantly being regenerated. Equilibrium is reached
when the rate of pigment bleaching equals the rate of pigment regeneration. This mech-
anism allows the cone photoreceptor to continuously adjust its photon catching ability to
match any illumination level, even one that is energetic enough to damage the receptor.
The effects of pigment bleaching are approximated by assuming that the efficiency of
quantum catch is logarithmically proportional to the remaining amount of (un-bleached)
visual pigment. This implies that the effects of pigment bleaching would be similar to the
effect of a neutral density-filter that scaled down the original image intensity levels [70)].
The equations modeling bleaching-type adaptation are summarized by Chang [10] and
are repeated here for completeness. The model includes two stages: (1) The “adaptive
process” which involves bleaching-type kinetics, and (2) the “response function” which
is the Michaelson-Menton equation used to model response saturation. The dynamics of
photoreceptor bleaching-type kinetics are described by the following first-order differential
equations:
D) < () + kalp(0) + (3.1)

Q(t) = kal(t)p(t) (3:2)
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)

= —— 3.3
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pUr) = p(t — o0)
where I(t) is the light intensity, p(t) describes the fraction of unbleached pigment and the
sensitivity of the photoreceptor at time t. and Q(t) is the rate of quantal absorption. ky,
k, are rate constants, and k3 is a constant of proportionality. The steady-state fraction
of unbleached pigment is given by equation (3.3) where I is the local temporal ambient
illumination level and k; is the half-bleach constant (the illumination fevel at which half the
pigment is bleached). The cone “response function” is described by the Michaelson-Menton

saturation equation:

Q)" (1)

n (I(t)) = m"m«n

where v,.([(t)) is the 1esponse voltage of the receptor, t,,,, 15 the saturation voltage of
vr(I(t)), &, is the half-saturation constant, and n is a positive constant which determines
the slope of the nonlinear function. Upon substitution of equations (3.2) and (3.3) into

equation (3.4), with A3 = 1, one obtains

oe(I(t)) _ I(t)
tmar ()" 4 (R I(1) + k)

(3.5)

Boynton [8] reports a good fit of the curves obtained by equation (3.5) for recordings
of receptor potentials in monkey cones using values for &, and b, of 833 and 1000 photopic
trolands for &, and ky, respectively with n = 1.0.

The effects of pigment bleaching alone are insufficient to explain the very last adaptive
properties of the 1etina o1 adaptation in lower light levels. The retina wdapts 11s sensitivity
even for illumination levels that do not cause significant bleaching of the photopigmen,
[21]. This fast and powerful adaptation process is generally attributed 1o network feedback

mechanisms (such as feedback from the horizontal cell layer).

3.3.4 Horizontal Cell Feedback

Network feedback adaptation mechanisms operate even in dim lighting conditions where
pigment bleaching is negligible. One such mechanism that operates at the photoieceptor
level is a fast inhibitory feedback from the horizontal cells to the cones.

The horizontal cells compute a local spatiotemporal average of the cone signals [10]. The
contacts made by horizontal cells onto cone “pedicles” serve not only as the signal source

for the horizontal cells hut also act as a feedback path fromn the horizontal cells back to the
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cones. The difference hetween the horizontal cell signal and the individual cone potential
nonlinearly modifies the cone sensitivity to match the local ambient intensity. Skrzypek [58]
presents an approach in which inhibitory horizontal cell feedback may be used to :teratively
estimate an effective local spatial ambient illumination Is. In addition to this multiplicative
effect, there may also he a small degree of subtractive inhibitory feedback from horizontal
cells to the cones. Evidence for this has been found in many fish retinas [3][21]){40] and
is anatomically feasible in the primate retina[49]. Figure 3.3 shows schematically the bi-

directional connection hetween cones and horizontal cells.

cone
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Figure 3.3: Horizontal Feedback to the Cones: The figure shows schemat-
ically the wiring of the feedback loop between horizontal cells (H) and cones (C)
The arrows show the direction of information flow The cones convert hght inten-
sity (1} mformation into electrical signals used by the rest of the network Each
cone 15 coupled to neighhouring cones. The contacts made with horizontal cells are
bi-directtonal Each cone provides a signal to several horizontal cells which m turn
slightly mhubit the neighbouring cone responses and alter the adaptation state ot
the cones by returmng the cone potential to near the centre of 1ts operating range
C'ones also provide signals to bipolar cells (represented here by dotted lines).

Chang, [10] shows that the estimated spatial ambient illumination ¢ (using Skryzpek’s
model [58]) can be used to adapt the cone sensitivity function in the same manner as pig-
ment bleaching (I replaces I in equation (3.5)). The horizontal cell signals are used to
iteratively compute an effective spatial ainbient intensity /s which then drives the adapta-
tion of the semi-saturation function in equation (3.5). Skrzypek’s model ignores temporal
factors such as the feedback signal delay introduced by the relatively slow integration time
constant within the horizontal cell layer. This delay in the feedback loop introduces pro-
nounced transient oscillatory behaviour on the cone output signal in response to a step
input, However, intracellular recordings of cone and bipolar cell potentials only show a
single small dip in the output potential following the peak step response [41][47][55][72].
This effect can be attributed to a small inhibitory effect of horizontal cell signals on the

cone output (see Figure 2.3). Skrzypek avoids the oscillation problem by iterating the
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computation until the cone sensitivity stabilizes and then re-computing the outputs of the
cone and horizontal cells. Although the manner in which cone cells adjust their sensitivity
may be different than the simple iterative scheme proposed by Skrzypek, anatomical and
electrophysiological evidence still points to horizontal cell feedback as the most likely source
for the fast sensitivity adjustment by cones.

Subtractive inhibitory feedback from the horizontal cell signal has little effect on the
cone adaptation state but serves to sharpen the cone signal to transient changes in the input
while reducing the cone output by a small fraction (see Figure 2.3) [21]. Judging by eye
from the figure, the horizontal cell signal appears to diminish the cone response by no more
than 10-20%.

In summary, two mechanisms (pigment bleaching and horizontal cell feedback) act to
modify the cone sensitivity to match the local spatio-temporal ambient intensity. The hor-
izontal cell feedback signal acts to provide information about the spatial ambient intensity
while pigment bleaching, localized to single cones. provides information about the tem-
poral ambient intensity. The spatial and temporal ambient intensity signals may then be
combined to adjust the semi-saturation parameter in the cone saturation function.

In addition to gain changes within the cone photoreceptors which adjust sensitivity to
illumination and contrast, other adaptation mechanisms tiade off visual acuity for absolute
contrast detectability. Some of these mechanisms are believed to occur at the cone level

and will be discussed next.

3.3.5 Visual Acuity and Adaptive Cone Coupling

The presence of gap junctions between cones and the ditect coupling of neighbounng cones
is well documented in the periphery [13][19]. Recent anatomical evidence idicates that
there are gap junctions hetween cones (and thus cone coupling) m the fovea as well [67).

The function of cone coupling is still not well understood. One specnlation is that
cone-coupling plays a role in inaintaining a certain mininum output signal-to-noise 1atio
(SNR) in the cone system over a wide range of input illumination levels. At illimination
levels near the cone threshold (=] troland), the noise due to fluctuations in the photon
catch and spontaneous cone pigment isomerizations (“dark noise™) is compatable to the
signal level [70](81]. Coupling of cone signals at these illumimation levels would improve the
reliability of spatial contrast detection but at the expense of degraded visual acuity. The
input SNR increases with rising illumination levels so that at bright illumination intensities,
improvements in hoth visual acuity and contrast sensitivity are possible with a redunced
degree of cone coupling.

Although the largest changes in visual acuity occur at scotopic illumination levels (when
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the rod system is active), visual acuity improves by an additional order of magnitude in
the photopic range (when the cone system is active) [65][75]. Psychophysically measured
visual acuity for the cone system using “Landolt ring” stimuli is shown in Figure 3.4(a)
[65]. With increasing illumination levels, visual acuity quickly reaches a plateau of about
2.6 min~! [65). This corresponds to an ability to resolve a Landolt ring gap width as
small as 23 sec (2.4 ym) and is comparable to the spacing of foveal cones (= 2.5-2.7 um).
However, Figure 3.4(b) shows that at low photopic illuminations, the minimum resolvable
gap may need to span several cone widths before it can be detected. Tsukamoto suggests
that the improvements observed in visual acuity within the photopic illumination range
may be partially due to changes in the degree of cone coupling [67].

Barlow suggests that visual acuity at the retinal level is inversely related to the size and
spacing of the receptive fields (RF) used to sample the image [2]. In the fovea, there is a one-
lo-one correspondence hetween cones, midget bipolar cells. and midget (P) ganglion cells
and thus the spacing of their receptive fields is determined by the cone spacing. At its input.
cach midget bipolar svnapses onto a single cone while contacting a single P-type ganglion
cell at its output [49]. This suggests that the diameters of the centre portions of bipolar
and ganglion cell RF’s are primarily determined by the effective RF size of cones which is
in turn controlled by the degree of cone coupling. The smallest primate P-type ganglion
cell RF centres measured to date (at bright illuminations) have diameters of 10 pm (3-4
cone spacings) [28]. This indicates that even at bright illuminations cones may be coupled
to immediate neighbouring cones of the same spectral type. As the spacing of the receptive
fields is fixed, Barlow’s hypothesis implies that visual acuitv at the retinal level is inversely
related to the size of the ganglion cell receptive fields. The drop in visual acuity in the cone
system for illumination levels below 1000 trolands mav thus be explained by an increase
in the coupling of cones leading to larger ganglion cell RF's[67]. It has been reported that
petipheral cones may be coupled for distances up to 50pn (equivalent to 20 foveal cone
widths) [70], and thus it is not unconceivable that foveal cones may also couple extensively

al low photopic illuminatiou levels.

3.4 Post-Receptoral Mechanisms

Although it is evident that a large part of the gain control in the 1etina is performed at the
photoreceptor level, other retinal neurons also play a vital role. The non-receptoral mech-
anisms involved in retinal adaptation include modulation of horizontal cell receptive field
sizes, lateral inhibition at the bipolar cell level, and amacrine cell feedback for modification

of ganglion cell outputs.

49




3. ADAPTATION MECHANISMS IN THE RETINA
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Figure 3.4: Visual Acuity vs. Illumination Level: Pigure (a) shows the
variation of visual acuity with respect to the log ambient illumnation level for
“Landolt ring” visual stimuli. Visual acuity is measured 1n 1nverse minutes of an
arc subtended by the gap in the Landolt ring. The peak acuity value of 2 6 min=!
corresponds to being able to detect a Landolt ring gap size equal to the cone spacing
in the fovea. Data (unfilled circles) re-plotted frorn Thomas [65] (with permission of
Academic Press (©1979). The same data is shown again in (b), with the minimum
resolvable Landolt ring gap spacing (measured in terms of cone spacing) plotted
against illumination level,
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3 ADAPTATION MECHANISMS IN THE RETINA

3.4.1 Lateral Inhibition at the Bipolar Cell Level

Each bipolar cell essentially performs a difference operation on the cone and horizontal cell
inputs. Since the horizontal cell signal is a spatio-temporal average of the local cone signals,
the bipolar cell operation apparently serves to suppress the “dc” signal from the input. This
permits the bipolar cell to be very sensitive to small contrasts in the scene and to signal
this information with a high gain [71]. It is at the bipolar cell level that the center-surround
antagonistic receptive field properties emerge.

In addition to coding spatial contrast, the bipolar cells also code temporal contrast.
Horizontal cells have a larger integration time constant than cones [17](40]. In addition,
horizontal cell signals are slightly delayed with respect to the cones at the bipolar cell level
[47]. This results in a spatio-temporal difference signal being computed at the bipolar cell.
It is likely that the degree of spatial and temporal contrast tuning of the bipolar cell adapts
with time and prevailing signal levels. Over most of its range, the bipolar cell is linear but

exhibits saturation for large contiast signals.

3.4.2 Modulation of Horizontal Receptive Field Sizes

The horizontal cell 1eceptive field size is greatly extended to beyond its dendritic spread
by electrical coupling of signals through gap junctions between neighbouring horizontal
colls [40]. At least two compouents seem to contribute to the modulation of horizontal
coll receptive field sizes by modifying the conductivity of their gap junctions. Dopamine
1eleased by interplexiform (IPX) cells which feed back to hotizontal cells is one factor known
to reduce the horizontal cell receptive field size [68][78]. Increases in background illumination
ate second factor known to cause 1eduction in horizontal cell coupling although the exact
mechanism 1s unhuown {1]. Fizuie 35 shows schematically the anatomical wiring of the
interplexiforin cells in the retina.

IPX cells have faitly large receptive fields and receive their input from the outputs of
several bipolar cells. As discussed above. the bipolar cell’s output primarily represents a
spatio-temporal contrast signal by virtue of the differencing operation peiformed on the
cone and horizontal cell signals. Thus hoth flickering light (laige tempoial contrast) and
spatial edges (large spatial contiast) elicit large bipolar cell outputs. Consequently, IPX
cell activity and the 1elease of dopamine by these cells is also likely increased in these
regrons, tesulting in the reduction of horizontal cell coupling. This hypothesis is supported
by studies that show increased 1elease of dopamine by interplexiforin cells in fish in response
to Hickering visual stirnuli [68].

A rise m backgronud illumination is another factor known to reduce the size of horizontal

coll 1eceptive tields (1] Interplexiform cells appear to release dopamme under flickering
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cone photoreceptors
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to optic
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Figure 3.5: Interplexiform Cell Feedback: The figures shows schematically
how interplexiform cells recerve mput. from bipolar cells and have feedback paths to
horizontal cells Stimulation of interplexiform cells releases dopamme which rednces
the conductivity of gap junctions between horizontal cells  The teduced spread of
signals in the horizontal cell layer effectively, reduces the size of the horzontal cell
receptive fields

stimuli (or high spatio-temporal excitation) and under prolonged dark adaptation hut not
for steady background illumination [68][78]. Psychophysical tests also support this notion
as visual acuity is known to iise slowly with rising illumination levels [75] [65]. The exaet
mechanism which causes this effect on horizontal cell gap junction conductivity is still
unknown.

We can thus predict that a horizontal cell’s receptive field size should he a function of
both the local spatio-temporal contiast and the local background illumination  Increase i
either of these two signals causes a 1eduction in local hotizontal cell coupling  Figme 31
shows how visual acuity vaties with background illununation level, As acuity 1s mversely
related to the size of the cone and horizontal cell 1eceptive fields, this implies that hoth

cone coupling and horizontal cell coupling adapt to the local background dlumination level.

3.4.3 Amacrine Cell Effects

Although little is known about the functional 1oles of the many vaneties of amacnne cofls
found in the primate retina. it is clear that they play an important role in signal modulation
in the inner plexiform laver judging fiom the large number of synapses amongst amactine
cells and ganglion cells of the Magnocellular pathway (M-cells)

The situation is complicated by the incredibly large variety of anatormically distingumsh-
able amacrine cell types. Furthermorte, there ate possible pitfalls of generalizing amacrine

cell function from studies performed on other species ta primates due to lage interspecies

Y.
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Figure 3.6: Motion Stimuli and on-off Ganglion Cell Output: The fig-
ure shows on-off ganglion cell response to variation in centre spot intensity in the
test, stimulus under two conditions. The test stimulus consists of a bright centre
spot surrounded by a windmill pattern. Spinning the windmill test pattern leads
to increased amacrine cell activity (not shown) and decreased on-off ganglion cell
activity as compared to a stationary windmill stimulus. The decrease in on-off
ganglion cell activity is attributable to inhibitory signals from amacrine cells [74].
Figure from Werblin [74] ©Rockefeller University Press.

differences. Amacrine cell synapses to ganglion cells seem to be more prevalent in visual
systems in which “exotic” properties are exhibited by ganglion cells. Thus, amacrine cells
‘ have often been implicated in the formation of complex receptive field properties at the gan-
glion cell level. In primates, the receptive fields of retinal ganglion cells are quite simple,
with more complex visual processing occurring at later stages. In primates, there are rela-

- tively few synapses between amacrine cells and ganglion cells of the Parvocellular pathway

(P-cells) as compared to the larger number found for some M-cells.

M-cells account for about 10% of the total ganglion cell population and are generally
more sensitive to motion stimuli (higher temporal frequencies) than P-cells. M-cells may
also he classified into two subtypes based on their response properties, My and My [57]. The
majority of M-cells (M x, 80%) are like cat X-cells in that they perform a linear summation
of signals. It is the remaining 20% of M-cells (My) that exhibit nonlinear behaviour like
that of cat Y-cells. It is likely that this small fraction of My-cells receives the bulk of the
amacrine-to-ganglion cell input [57}[47].

Studies by Werblin in the mudpuppy [74] indicate that some amacrine cells respond to
temporal changes in visual stimuli. Furthermore, these amacrine cells provide inhibitory
surround input to on-off ganglion cells. Figure 3.6 shows the change in response of the
on-off ganglion cell in the mudpuppy due to a spinning disk in its RF surround. Motion in
the surround field of the on-off ganglion cell reduces the potential of these ganglion cells as

. well as their firing rates (not shown). This inhibitory effect is directly related to an increase

in the amacrine cell output for the spinning wheel stimuli.
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These on-off ganglion cells are in many respects much like the primate My--cells. Both
are tuned to temporally changing stimuli, and respond transiently to maintained visual
stimuli with a high contrast gain. Both also have considerable input from amacrine colls.

The outputs of’ My -cell ganglion cells are modulated by inhibitory surround mecha-
nisms at two levels. In the outerplexiform layer, horizontal cells provide an inhibitory
spatio-temporal “average” signal which removes the “dc” signal from the input. At the
innerplexiform layer, the output of My-cells is further modulated by inhibitory input from

amacrine cells that respond to motion stimuli over their large receptive fields.

3.5 Summary

Adaptation mechanisms are found to act both at the photoreceptor level and at subsequent
levels in the retina to locally modulate the sensitivity and acuity of the system to match
the prevailing lighting conditions. Mechanisms that adjust the sensitivity of photoreceptors
and centre their response range based on the background illumination level include photo-
chemical pigment bleaching and fast neural feedback from horizontal cells. At the bipolar
cell level, lateral inhibition serves to emphasize spatio-temporal contrast in the visual signal
to suppress the output in homogencous regions.

Adaptation mechanisms also act to adjust the acuity of the visual system to mateh the
prevailing lighting conditions. As illumination levels increase, the signal-to-noise ratio of
the system also improves. In response, the retina modulates the size of cone and horizontal
cell receptive fields by modulating the cone-cone coupling and horizontal cell layer coupling.
Horizontal cell receptive field size is also modulated by feedback from interplexiform cclls
which respond to high spatio-temporal contrast in the input signal.

The next chapter presents a simple retinal model which incorporates the adaptation

features discussed in this chapter.




Chapter 4 RETINAL MODEL

This chapter presents a retinal model which has been developed and based upon the retinal
biology and retinal adaptation discussed in the previous chapters. The model fulfills the
goals set out at the beginning of the thesis in that it mimics many of the adaptive properties
found in biological 1etinas. The model is also fairly simple so that a silicon implementation
inay be considered in the future.

This chapter starts with a very brief summary of existing silicon implementations and
computer models of the 1etina. The remainder of the chapter desciibes both the theoretical
and implementational aspects of the computer refina model. The presentation of the model
is in order of the information flow through the retina. For each laver of “cells” in the
compuler refina. the computations performed at that laver are described, as well as the

assumptions and simplifications made in the model.

4.1 Existing Models

There has been much recent interest in developing artificial retinas. and a few groups have
already fabricated silicon chips [36)[39][53][66). In addition. many computer models have
been developed [5][10][25][58]{77]. Each implementation models certain specific aspects of
the retinal function and most incorporate nonlinear or logarithmic transduction at the pho-
toreceptor level hut not local adaptation. To date, Mahowald’s Adaptive Silicon Retina [36)
is the only device with locally adaptive photoreceptors. Lateral inhibition or a differencing
operation at cither the receptor or a subsequent level is another common feature found
in most models [21][36]{39][66]. One foveated sensor design approximates the nonuniform
sampling scheme employed in the retina [53] but ignores further aspects of retinal process-
mg. In general, most retinal model implementations. whether in softwaie or in silicon, limit
themselves to mimicking logarithmic transduction and lateral inhibition but ignore other
aspects of retinal processing such as adaptation of receptive field (RF) sizes with illumina-
tion level ot local spatio-temporal contrast. The exceptions to this are a 10d svstem model '
by Yellott [S1} and a model for an adaptive gain control camera hy Zeevi [82]. In Zeevi's
desigin, although the REF sizes of “cells™ increase with illumination level, this is the 1everse
of what one would expect if visual acuity rises with brighter illumination levels. Table .1

shows the features of the biological 1etina that are incorporated in each model.
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Retinal Feature

Model Characteristics

Models

Photoreceptor gain is adapted

[Chang, 1991

Locally adaptive
Y P based on local changes in [Mahowald, 1991]*
photoreceptors . . )
illumiation level. [Skryzpek, 1990)
{Boahen, 1991}
Cone coupling Cones are coupled to neighbouring [Chang, 1991]

cones and can etfect their output.

[ Yag, 1089)
[Curlander, 1982)

Horizontal cell

Horizontal cell receptive field sire s
extended by passive spread of the

[Boahen, 1991}
[Meaud, 1988 }*

coupling
signal through gap juncuons Lo [Mahowald, 1991 ]*
neighbouring horizontal cells. [Carlander, 1982)
Modulation of Cone and Honzontal cell receptive [Yellot, 1987]

receptive field
stzes with changing
illumination level

field sizes are adapted to changing
illummaton levels

{Zeevi, 1989

Interplexiform
cell teedback

Feedback trom mner plexiform
layer back to the outerplexiform layer
driven by spatiotemporal contrast.

Foveated sampling

Log-polar sampling and hinear
vartation of receptive ficld size with
mereasing eccentricity.

| Wilson, 1983]

| Yamamoto, (992)
| Sandm, 1989+
[Reyger, 1990)]

Spatio-temporal
propertics

Incorporates spatiotemporal properties
of both P and M type ganglion cells

[Fleel, 1982)
{Richter, 1982]

Table 4.1: Summary of retmal features which are incorporated i pubhshed models
of the retina Citations followed by * indicate those models which are iplemented

n silicon.
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4 RETINAL MODEL

4.2 Implementation Overview

The computer retina model presented here is in part based on the spatiotemporal Centre-
Surround operators (CS) presented by Fleet [24] and described in Section 2.6.5 of this
thesis. The CS operator is essentially a spatiotemporal difference-of-Gaussians operator
which describes some of the receptive field (RF) properties of ganglion cells but ignores the
nonlinear transduction and adaptation occurring at earlier stages of retinal processing. The
building blocks of the CS operator (a Gaussian operator ((7) and an exponential lowpass
temporal filter (1)) are referred tooften in this chapter, and thus, for convenience. equations

(2.4) - (2.6) describing the CS operator are repeated below:

('S(ir.t) = a. K 7.)G(ry0.) — a K (t = d:1y)G(r:0)) (4.1)
({r;o) = ex] il (4.2)
' 2ral 204

le.\'p(l;_—’) ift>0,7>0

Kit;ry=¢ 7 (4.3)
0 ift<0

where
a., 0, = RF centre and surround Gaussian widths (yun)
e, 0, = weighting of centre and surround inputs (hoth set to 1.0)
7., 7, = centre and sutround RF time constants (1ns)
o = surround time delay w.r.t. centre (ms)
r.t = 2D spatial position vector r (pm), and time £ (ms)

The use of a spatiotemporal difference-of-Gaussians operator to describe the structure
and dynamics of bipolat and ganghon cell RF’s is maintained in the computer retina as
it is simple vet stll describes many of the properties of these cells [22](24][37][47]. The
distinguishing features of the present model are its various adaptive properties that deal
with illumination conditions which may vary over several orders of magnitude. These fea-
tures include local gain changes at the photoreceptor level as well as adaptation of cell RF
sizes. The effects of illumination level and spatio-temporal contrast on the horizontal cell
gap junction condu-tivity and cone coupling are hypothesized and incorporated into the
model. Two output streams are produced at the ganglion cell level to represent the distinct
spatiotemporal features of the P-cell (parvo) and M-cell (magno) pathways. Finally, the
effects of nonuniform receptor sampling and linear vanation of RF sizes with eccentricity
are accounted for using a log-polat mapping scheme.

The model has been kept as simple as possible while still emulating many of the features

bt )
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exhibited by the primate retina. To maintain simplicity. only the cone system is considered.
The rod system and rod-cone interactions are ignored. Furthermore, although cones are
responsible for colour vision, only the achromatic luminance information is considered in our
model. In the biological retina, bipolar and ganglion cells come in two varieties, on-centre
and off-centre, to code positive and negative contrast signals respectively. Because the
computer can represent positive and negative values equally well, a further simplification is
made. In the model, only on-centre type bipolar and ganglion cell outputs are generated,
thus effectively reducing the required number of outputs by hall. These computer retina
on-centre cells respond to both positive and negative contrast equally well.

‘The remainder of this chapter presents both the theoretical and computational aspects
of the computer retina model. Brief discussions of how log-polar mappings aie usetul for
modelling the nonuniform sampling occurring in the retina, and the advantages of using
of a diffusion process to generate Gaussian-weighted receptive fields are proesented first.
The remaining sections follow the computations performed at cach laver of =colls™ in the
computer retina model. Wherever possible, the manner of computation or the parameters
used are based on published data on primate 1etinas. Where insuflicient data are avalable,
any assumptions and simplifications that are made are explicitly stated. The imain emphasis
of the model presented here is to demonstraie how different adaptation mechanisms play a

role in extending the operating range of the primate 1etina.

4.3 Nonuniform Sampling and Log-Polar Mappings

4.3.1 Variations in Retinal Information Processing with Eccentricity

The advantages of using a foveated sensor array ate argued by Kronawer [32]. Such an
approach offers a tiemendous reduction in the data that must be processed by all subsequent
levels of the system while still retaining a small high-resolution sampled fovea, In the
hiological retina, the concentration of cone photoreceptors is the highest in its contre (the
fovea). This sampling density drops off exponentially for eccentncitios up to 14 and then
much more gradually fuither into the perphery. The density of other retinal cells also
matches the cone photoreceptor distiibution to some degree Iy the cential 12 region around
the fovea, the number of ganglion cells match the number of cones 1:1 o each of the on-
centre and off-centre pathways. The separate on and off pathwavs essentially form two
overlapping sampling lattices which enable the biological 1etina to code both positive and
negative contrast in the input signal, respectively. Outside the fovea, hoth the cone and
ganglion cell densities drop off approximately exponentially with eccentnaty (see Figure 2.8)
[49]. The progressively coarser retinal sampling with increasing eccentinity 15 matched by

linear increases in the size and spacing of receptive fields of most cells [19]. However, the
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bipolar and ganglion cell density drops off much faster than that for cones in the periphery
(see Figure 2.8), and as a result, the number of cone inputs converging into bipolar and
ganglion cell RF’s grows with eccentricity [23]. The nonuniform sampling scheme utilized
by the retina results in a greater than one hundred-fold reduction in the number of outputs
that would otherwise be 1equited if the high-resolution cone and ganglion cell sampling

found in the fovea was maintained uniformly over the entire retina [32].

4.3.2 Usefulness of Log-Polar Mappings

Although one VLSI foveated sensor has been developed, the number of photosensitive el-
oments in that sensor is rather small [53). Foveated sampling may also be simulated with
uniform-sampling CCD cameras by using log-polar transformations on the input image be-
fore further processing is perforined. In fact. log-polar mappings have been used by several
tesearchers to model the 1eceptive-field size and sampling density variations with retinal
eccentricity [50}[76](79]. The motivation for such mappings is based on the close fit of the
log-polar mappings of the visual field into V1 of the cortex [50]. Using a foveated sampling
scheme for data reduction not only reduces the computations required at the retinal or sen-
sor level but has even greater savings for ali further visual processing. We also use a similar
techmque for data reduction based on Wilson's model [76] and implemented by Bolduc
[6]. Figure 4.1 shows schematically how the input image is transformed by the log-polar
transformation used by the computer retina.

The log-polar transformation essential divides the image into two separate parts with
the number of pixels in each 1egion approximating the number of P-tvpe ganglion cells in
the fovea and the petiphery (see Figure l.1). An assumption is made here that the number
of pixels m the origimal Cartesian domain image approximate the number of cones sampling
the retinal image whereas the number of pixels in the two transformed nnages (fovea and
periphiery) match the number of P-tyvpe ganglion cells [76]. The foveal region is represented
in the original Cartesian coordinates and is an area of uniform sampling, where for every
pixel in the mput image, there is one output pixel. This region models the 1:1 1atio of cones
to on-centre ganglion cells in the central 1° of the 1etina.

The peripheral region is sampled along concentric rings of exponentially increasing di-
ameter. The number of samples along cach 1ing is constaft, while the dimensions of the
sampling, regions grow lineatly with eccentricity. These aspects of the log-polar mapping
model the variations in size and spacing of receptive fields of most retinal cells with increas-
ing eccentrcity [76]. The values assigned to “pixels™ in the log-polar domain periphery
data structure may either he obtained from subsampling the original image (taking the

value of only one pixel from the original image in each sampling region), o1 by computing a
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Figure 4.1: Log Polar Mapping: The figure shows schematically how the onig-
mal 1mage 15 broken down into foveal and peripheral regions using nonnmionm
sampling. The fovea (shaded region) is represented by a stall Qreular region that,
1s untformly sampled Outside the fovea 1s a peripheral tegion that consists of 1udi-
ally concentric rings whose diameters scale exponentially with eccentricity (r) The
number of sampling regions per ring are fixed while the dimensions of the sampling
regions grow linearly with eccentricity (r) This 1s equivalent to a log-polar trans-
formation [76] The peripheral data are represented m the log-polar doman while
the foveal data are represented in the linear-Cartesian domamn  To simphfy the
computations, both the fovea and periphery data structires are extended o that
they slightly overlap each other

weighted average of all the pixels from the ongmal image contamoed i the sampling region,
By “averaging™ the original iinage pixel values over an entite sampling region, the conver-
gence of cone inputs into ganglion cell REF's found in the primate retma penphery may he
partially accounted for immmediately at the input stage The sampling regions may be non-
overlapping annular segments (as shown in the Figure 4.1) o1 dircular 1egions (not shown

in Figure 4.1) which slightly overlap each other. Both sampling schemes are equivalent 1o a

log-polar transformation {76}{79] and thus result in a much more compact reprosentation of
the visual information. We utilize circularly shaped, Ganssian-weighted sampling 1egions
to model the increasing convergence of cone information mto ganglion cell receptive fields

with increasing retinal eccentricity [49].
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4.3.3 Computational Considerations

Using a log-polar transformation offers other advantages in addition to a reduction of data
required to be processed by the computer retina. It allows for easy decoupling of the
processing of foveal and peripheral information. By extending both the fovea and periphery
data structures so that they overlap each other to some degree, information near the fovea-
periphery boundary is available in both data structures. By making the overlap region
larger than the size of the largest operators used in modelling the retinal function, the
processing of the information in the two regions may be performed independently.

In the model, the computations performed to generate the output of each computer
retina “cell” are strictly local, requiring information from only the immediately neighbouring
“colls” (pixels). The lateral spread of information in the retina and the generation of cell
receptive fields is modelled using a discrete. iterative, diffusion process in which a small
“operator” using only local neighbourhood information is 1epeatedly applied (described in
section «4.4), The local nature of information processing in the retina makes working in the
log-polar domaimn advantageous and greatly stinplifies the implementation of the computer
refina. For example, m the biological retina. the diameters of ganglion cell RF’s are known
to scale approxnnately linearly with eccentricity [49]. To model this in the original image
domain would require changing the size of all operators with eccentricity. However, in the
log-polar domain. operator sizes are automatically scaled linearly with eccentricity [50)[76).
Using the same operator in the log-polar domain as in the fovea leads to a slightly distorted
operator shape in the original 1etinal image domain. However. it is assumed here that since
all the computations in the model are spatially localized. distortions in the operator shape

due to the log-polar mapping ate minimal.!

4.3.4 Summary of Foveated Sampling

The use of a log-polat transformation to model the data 1eduction occurring in the 1etina
splits the original image into two separate ones: the fovea and the periphery. The foveal
image is represented in the original Cartesian-coordinate domain while the compressed
peripheral information is 1epresented in the log-polar domain. The transforination as im-
plemented here decouples the processing of information in the ‘ovea an the periphery and
allows cach region to be processed separately and transparently Ly the computer retina.
The retmal model presented in the rest of the chapter Jdec bes the 10*inal processing as

it occurs e the fovea. However, the model is equally valid fur  ompntat.oas in the periphery

"Ihe distortions 1 an operator shape due the log-polar mapping mav be munuized by re-adjusting the
operator weights to give the deaired weighting profile in the onginal retinal domain This 1s discussed further
& &1 8
m osection 4 4 1
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as all of the effects of the scaling of receptive fields and the pooling of cone information
with increasing eccentricity are accounted for by the log-polar transformation and made

transparent to the rest of the model.

4.4 Diffusion, Gaussian Convolution, and Receptive Fields

The summation of inputs within the circular receptive fields (RF) of most cells is usnally
assumed to be a Gaussian-weighted average of the inputs. The size of the Gaussian operator
(G) used to describe such a RF profile is specified by its width parameter @ (see equation
4.2). The response of the receptive field is given by the convolution of the operatot ((r; o)
with the input signal.

It can be shown that a Gaussian convolution is equivalent toa 21 diffusion PLOcess pot-
formed on the input signal [4][85]. Diffusion in two dimenstons is defined by the lollowing
equation:

‘())—'f' =(Vu (1)
where Ju/0t represents the derivative of the input signal with tespect to time, S%u is the
Laplacian of the input signal u, and ¢ 1epresents the rate of diffuston o diffusimty  'The
solution to this diffusion equation for a given input signal and initial conditions 1s given by
the convolution of the signal with a souree kernel K(r.t). where r reprosents the spatial

position, { represents time., and A" is a Ganssian of the form-

~|rf*

let (1)

N(r.t)= —l——vxp

trdd
A discretized implementation of the diftusion process usig finite difforences is very
simple. Equation (-1.6) desctibes the discretized diffusion process in the fovea where |t ul
is the output at position [x,y] at iteration n with degree of diftusivity « [11] As the diffusion
process pioceeds. the value of a given pixel at iteration n + | depends only on 1ts previous

value and the previous values of its four immediate neighbouring pixels:

Untr[r.oy] = (1 —dup [yl elunle = 1oy +ufo+ Loyl u,rog— 14w g4+ 1) (1 6)

Discretized diffusion is equivalent to repeated weighted averaging with the four nearest
neighbours. In order to ensuie that the weight given to the centie pixel 15 at least equal to

the weights given to each of its four immediate neighbonrs. ¢ must he less than 0.2

(2
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By replacing time ¢ in equation (4.5) with the number of iterations n, it can be shown
that the width (o) of the Gaussian generated by discretized diffusion is related to the

diffusivity parameter ¢ and number of iterations n by equation (.7)[85]:

o= +2en where() < e < (.2 (4.7)

4.4.1 Diffusion in the Fovea and the Periphery

In the fovea, equal weights are given to all the four neighbouring pixels and this results in
citcularly symmetric receptive fields. To ensure that diffusion performed in the log-polar
mapped periphery also resnlts in roughly ciicular 1eceptive fields in the original retinal
domain, the weights given to the radially neighbouring pixels are slightly modified for
penpheral retina computations. In the periphery, the radial width of receptive fields from
one sampling ting to the next vartes by a constant factor. say ~ (see Figuie 4.1). Thus,
for any given log-polat mapped peripheral pixel. the radial dimensions of the outer ring
neighbour ate »#4 times larger than the inner ring neighbour. The dimensions of the the
neighbours in the theta direction ate all the same In order to partially compensate for the
distortions in the radial direction. the weighting given to the mnet radial neighbour is x2
times that of the outer radial neighbour. This is schematically shown in Figure 4.2, The

use of such a template was experimentally found to generate reasonablv citcular shaped

receptive fields in the periphery.

1.4.2 Computational Aspects of Diffusion

On a parallel machine, diftusion ofters many implementational advantages. Although dis-
cretized diftusion requires multiple iterations. each operation is simple and only needs in-
formation from the immediate neighbouring pixels.  The width of a Gaussian-weighted
receptive field (RF) 15 contiolled by both the diffusivity parameter ¢ and the nunber of
iterations pettormed o, This allows for easv local adaptation of RF size by locally chang-
ing the diffusivity parameter ¢ while keeping the number of iterations n constant. This is
ideal for VLST implementation o1 execution on SIMD machines where the same operations
must be performed at all pixel locations m order to achieve maximum parallelization and
throughput

In what follows, diffusion is used extensively to model such processes as cone coupling,
the summation and spread of potential through gap junctions in the horizontal cell layer, and
the modeling of cell RF'S. In many cases, the diffusivity parameter is a function of both the

retinal position r and time £, thereby allowing for easy 1mplementation of adaptive receptive

6.3



I RETINAL MODEL

thereasng
radial direction
€ ¥
theta
direction
€ 1-4e € € 1-de £
t = diftusivity coetticient
€ T2 K= nng dimeter mncrease factor
Y= operator normahzation tactor
Foveal Operator Peripheral Operator where 1+ K2

Figure 4.2: Discrete Diffusion Weighting Tewmplates:  The figure shows
schematically the weighting profile of discrete difusion operators used m the
Cartesian-domam foveal and the log-polar mapped pernpheral tnages  For refer-
ence, see Frgure 4 1 which illustrates how the loveal and penplietal mmages we
generated by the log-polar transform  Discretized. iterative didtusion s equivalent
1o a weighted averaging operation performed using only nearest neyghbout mforma-
tion In the sotropic fovea, the werghts given to each of the neghbonnng, pivels ae
equal and are as described by equation (4 6)  Repeated application of this diflusion
operator tesilts i a Gaussian shaped teceptive field piohle For aperation on the
log-polar mapped peripheral image, the werghting profile of the diffusion operator s
altered m the radial direction as shown, so that tepeated application ol the operator

results 1 approximately circular teceptive fields m orginal retinal domarn mage

field sizes. In order to minimize computation time, the number ol diftusion itetations »
that must be performed at a given layer is determined by the width a,,,, of the largest,
Gaussian that must be generated at that level. By setting « = 02, and solving for nm
equation (4.7), one ohtains equation ( £.8). which mav be used to determme the mimumum

number of diffusion iterations (n) requited to generate o Gaussian of width e,

N2 Nat ., k| (18)

Although diffusion with parameters n and ¢ 1s used to implement Gaussian shaped receptive
fields, for comparison purposes, the sizes of the receptive fields in the temainder of the thess

are given in terms of the equivalent Gaussian width parameter o

4.4.3 Repeated Gaussian Convolution

In our model. 1eceptive fields are genetated using diffusion ta obtan Ganssian-weighted
circularly symmetiic fields. The imput signals to colls in any one Liver of the model are

general fed from outputs of cells in one o1 more previous lavers. T hns, the overall tecoptive
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field size of a cell in any given layer must be at least as large as that of cells in any of the
previous layer(s). In each layer, diffusion (equivalent to Gaussian convolution) may be used
to further expand the size of the receptive fields of cells in that layer with respect to those
in the previous layer.

In electrophysiology, the receptive field (RF) of a given cell is defined by the region at
the input to the retina (photoreceptor sampling lattice), which when illuminated, elicits
a change in the response of that cell. This receptive field may cousist of excitatory and
inhibitory regions as exhibited in bipolar or ganglion cell RIs.

In computer vision, it is common to specify the size of a Gaussian-shaped circular RF
by the width o of a Gaussian operator that would generate that RF from the input image.
In our case, we are using the outputs of one layer of cells in the retina as inputs to the
next layer. At each layer, there may be a diffusion / Gaussian blurring operation which
increases the RF size of the cell at that layer in comparison to the previous laver. ¢ In order
to relate all the sequential Gaussian blurring operations at each laver and to estimate the
overall receptive field size measured at the input to the retina, we need to know the effect of
repeated Gaussian convoluticn. Using Friuier transforms, it can be shown that o Gaussian
convolution with an operator of size o followed by convolution of an operator of size o is

equivalent to Gaussian convolution with a single operator of size o, g7, ctine [29], where

2 — 2 2
e ffective = 017 + 02 (4.9)

Thus, in the following sections where diffusion or Gaussian convolution is mentioned,
the overall RF size for a cell in a given layer depends not only on the size of operators used

in that laver. but also the amount of diffusion performed in all previous layers.,

4.5 Cone Cell Output

4.5.1 Cone Transduction and Adaptation

The first stage of processing in the retina is the transduction of the input image intensities
into signals that are used by the remainder of the network. Therefore, this stage must
contend with the full range of intensities that may be encountered in any scene and adjust
its sensitivity to match changing conditions. Each cone photoreceptor locally adjusts its
sensitivity so that its operating range is centred around the local ambient illumination
intensity in a small neighbourhood around the plotoreceptor. This strategy allows the

cone system to adapt to scenes containing alarge dynamic range of illumination intensities.

2By increases 1 RF size, we imply that the number of ongmnal (retinal) tmage pxels that influences o
given model cell’s output mcreases with the number of sequential Gaussian convolut.sn uperations performed
at that pixel location in all previous layers.
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Figure 4.3a shows schematically the connectivity of the cone cells in the retina, while
1.3b shows the sequence of computations leading to the cone output as implemented in this
model. The cone transduction and adaptation stage modifies the input intensity signal into
a potential (/) that drives the rest of the retinal network. The gain or sensitivity of the
tetinal cones is controlled by two local mechanisms: pigment bleaching and horizontal cell
feedback. The effects of these mechanisms are mimicked in the model by rcumputing a local
spatiotemporal ambient intensity /, from a combination of two signals with different time
constants and spatial extents. This ambient signal I, is then used to adapt the gain of the
cone transduction stage to match the local illumination level. The final cone output also
includes the effects of cone coupling and the inherent temporal latency of cone cells. These
aspects of the cone output will be discussed in the following sections. Only the transduction

and adaptation stages are described here

The cone transduction function is modeled by the Michaelson-Menton saturation func-

tion in equation (4.10) [8][48](10].

n(1) _ I (4.10)
Uar I+ (%‘:[a + ke ) .

where

i

vy teceptor potential before cone-coupling
Vma: = maximum receptot potential

Il = Input image stimulus intensity

n = steepness of response curve (= 1.0) (8]

ke = half-saturation constant (333 trolands) * [8]
ke = half-pigment bleach constant (103 trolands) [8]
I, = spatio-temporal ambient illumination intensity

Pigure 1.3(c) shows the cone response curves at various ainbient illumination levels I,.
This nonlinear transduction function provides the cone cell with a dynamic range of =3 log
units around any ambient illumination level [,. Within this range, the response function
is nearly logarithmic. In addition, shifting the ambient intensity value /, shifts the entire
cone response curve virtually unchanged along the intensity axis.

As shown in chapter 3, equation (4.10) may be used to account for the effects of pigment
bleaching and horizontal cell feedback on cone sensitivity. When considering the steady-
state effects of pigment bleaching alone, I, is assumed to be the steady-state intensity
impinging on the cone. Pigment bleacking is very localized and pigment bleached from one
cone does not appear to significantly affect the sensitivity of neighbouring cones(13][49](70].
The dynamic properties of pigment bleaching may be roughly approximated by replacing I,

in equation (4.10) with a temporally lowpass filtered intensity signal I as given by equation
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Figure 4.3: Cone Cell Output: Figure (a) shows schematically the connectivity
of the cone cell in the primate retina. Each cone (C)1s contacted by several horizon-
tal ceils (H), at least one mudget bipolar, and several diffuse bipolars (not. shown)
In addition, cones are electrically coupled with neighbouring cones throngh gap
junctions. Figure (b) shows schematically the computation of the cone output in
our model The transduction stage converts tput image intensities (1) mto signals
used by the rest of the network. Cone coupling 1s modeled using diffusion, wiile
a temporal lowpass filter is used to account for the integration tune of the coues
The effects of pigment bleaching and horizontal cell feedback are accounted for hy
computing an effective spatiotemporal ambient thumnation /, which s then used m
the transduction stage to adapt the cone sensitivity. Figure (¢) shows the expected
steady-state response of cones u, with variation of flash intensity / superimposed
on vartous log background illumination intensities [, (indicated at the top of each
curve). At any one given background I,, the cone response saturates with a ~3
log unit change in flash intensity /  However, the entire response curve adapts to
match any I, by simply shifting along the intensity axis The dashed curve shows
the steady state response of the cones when the local intensity matches the ainbient
intensity I,. All intensities are 1n units of trolands
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(4.11):
[’]‘[l‘, t] = [[!‘, t] * K (t; Toteach) (4.11)
where
K(t;7) = lowpass temporal filter with time constant r (see equation (4.2))
Ir = time-averaged local cone signal (for pigment bleaching)
[(r,t) = input intensity at 2D spatial position (r) and time (#) in ms
Thleach = offective bleaching time constant = 100ms

Light adaptation due to pigment bleaching is known to be quite rapid and the cone
sensitivity usually reaches a new plateau within 1-2 seconds of a step increase in intensity
[21][70]. Since machine vision is not constrained by the limited rates of pigment bleaching or
pigment regeneration it is possible to make this adaptation mechanism significantly faster
while still maintaining robustness to photon shot noise caused by temporal fluctuations in
the input signal. This allows the sensor to very quickly “adapt” to changes in illumination
level. For implementation purposes. the mgment bleach time constant (Tyieqcn ) in the model
was chosen to be shorter than that found in biological systems (= 100ms). This is still
about 10 times longer than the cone integration time and sufficient to filter any photon
noise induced by temporal fluctuations in the intensity signal.

A much faster mechanism which modifies the cone sensitivity to match the local spatial
ambient intensity almost instantaneously is mediated through horizontal cell feedback to the
cones [21]. Chang [10] shows that if the horizontal cell feedback signal is used to compute an
effective local spatial ambient intensity Iy. then equation(4.10) may be used to model the
effects of this adaptation mechanism as well. Each cone is in contact with several horizontal
cells having greatly overlapping receptive fields. Thus, the spatial ambient intensity must be
computed over an areca slightly larger than the receptive field size of a single horizontal cell
(o1, = f:}cr;,m:). The spatial ambient I, here is simply computed by diffusing the original
image with operators slightly larger than the size of hotizontal cell receptive fields and
filtered by a temporal lowpass filter with the same temporal latency as horizontal cells in

equation (4.12):

Is[r ) = I{r 1]« G(r; op[r, ) K (2 Thorz) (4.12)

68



4 RETINAL MODEL

where
G(r;o) = Gaussian operator of width & as defined by equation (4.2)
K(t;7) = lowpass temporal filter with timne constant 7 (see equation (4.3))
Is = spatial average intensity estimated from horizontal cell feedback
I(r,t) = input intensity at 2D spatial position (r) <nd time (¢) in wms
O = spatial extent of ambient slightly larger than o} =~ %(a,,‘,,,)
Thors = horizontal cell time constant = 20ms [7]

To model the effects of both pigment bleaching and hotizontal cell feedback, an overall
spatio-temporal ambient intensity I, is computed and used to control the cone sensitivity.
I, is assumed to be a linear combination of the spatial ambient signal Is (attiibuted to
horizontal cell feedback) and a local temporal ambient signal I7+ (used to account for the
effects of pigment bleaching) (see equation (4.11)). Determination of the relative weights
to assign to ¢y and c; is not easy. For simnplicity, equal weighting 1s given here to both cone

adaptation mechanisms (¢; = ¢3 = 0.5). Thus. we have:

L[e.t]) = eyIplect] + exls[r. () (+4.13)
where
IT = time-averaged local cone signal (for pigment bleaching)
Is = spatial average intensity estimated fiom horizontal cell feedback
I, = spatiotemporal ambient intensity

In summary, equations (4.10)-(4.13) desciibe tiie cone transduction and adaptation fune-
tion. However, the output of the transduction stage (m, (1)) does not represent the final cone
output since it does not account for the temporal latency of cone 1asponse, cone coupling,

or inhibitory horizontal cell feedback. These are discussed next.

4.5.2 Cone Temporal Latency

Both cone and horizontal cells have a short temporal lateucy in responding 1o changes
in the input signal {21][47). This is reflected in many models by incorporating temporal
exponential lowpass filters A'(¢;7) (see equation (d4.3)) with time constants 7., and Tjep:
through which the cone and horizontal cell signals pass (24][17][47]. In the mudpuppy, cone
and horizontal cells have time constants of approximately 100ms and 200ms, tespectively
[47]. Precise estimates of the time constants for these cells in mammals are not avalable
but are believed to be about 10 times shorter. Richter [17] reports a good qualitative fit
using time constants of 7., = 10ms and 7j,,,;= 20ms for primate cone and horizontal cells,

We use similar values in our model.
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4.5.3 Cone Coupling

As discussed in the previous chapter, anatomical evidence of gap junctions between cones
indicates that cones may be coupled both within the fovea and in the periphery [67]. Psy-
chophysical data show that the acuity of the visual system improves with increasing ilumi-
nation levels and reaches a plateau only at moderately bright illumination levels (I =~ 10*
trolands) [75]{65]. At these illumination levels, the measured acuity approaches the maxi-
mum theoretically possible acuity, given the cone and ganglion cell sampling in the fovea
and implies only a small degree of coupling. However, under dimmer photopic illumination
conditions, measured acuity may be as much as an order of magnitude lower (see Figure
4.4). At these illumination levels, increased coupling of signals at tl.e photoreceptor level
makes functional sense since trading off acuity in favour of noise reduction may result in
improved contrast sensitivity. This suggests that the degree of cone coupling may be a
function of both ambient illumination intensity and eccentricity.

Some existing retinal models do incorporate photoreceptor coupling, but the degree of
coupling is invariant with respect to the illumination level [5][10][17][77]. In the model
developed here, the degree of cone coupling is assumed to vary with the illumination level
and is designed to match the data on psychophysically measured visual acuity (see Figure
4.4) [65]. The data in Figure 4.4 (top) show that the visual acuity improves by an order
of magnitude within the photopic range of light levels [65]. We fit the data in Figure 4.4
with equation (4.14) for photopic illumination levels with exponent n = 0.55 and constant

A, = 65 trolands:

2.61,"

m min~! (4.14)

Acuity =

At the retinal level, visual acuity is inversely related to the size of receptive field (RF)
centres of midget bipolar cells and midget ganglion cells [2)[23]. In the fovea, a single
cone feeds the centre input to a midget bipolar cell which in turn is connected to a single
midget ganglion cell {49](54). Consequently, the midget (P-type) ganglion cell RF centre
size is primarily determined by the RF size of individual cones which is dependent upon
the degree of cone coupling. Cone coupling is modeled in the computer retina by a diffusion
process in which the cone diffusivity e.one (and thus o, ) is a function of the local ambient
intensity I, and the retinal position r. For illumination intensities above 1000 trolands
(td), visual acuity quickly reaches a plateau. At these illuminations, the Gaussian-weighted
ganglion cell RF centres have sizes as small as 10 pum (4 cone spacings) which corresponds

to a Gaussian width parameter of g.one = 1.5 cone spacings [28). We assume that ocone
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Figure 4.4: Visual Acuity and Cone Coupling: The top figure shows psy-
chophysically measured visual acmty from Thomas [65] (open cireles) and the curve
given by equation (4 14) used to fit the acuity data (sohd line) The botiom figure
shows the variation of the cone couphng (7.on.) with dlumination level as modelled
in the computer retina by equation (4 15).

which controls the cone coupling, (and is a measure of the cone RF size) is approximately
inversely related to equation (4.14) used to fit the human acuity data and has a minimum
value of @eone = 1.5. The computer retina thus models a.,,. by equation (1.15) with n = 0.5,

6 = .01, and I, measured in trolands:

Ly[e, t]™ + A"
Teonell ] = 1.H————— (4.15
ca "f‘[ ] I,;[l', t]n + Hn )
The parameter ¢ = .01 was added to equation (4.15) to ensure thal .., remains

bounded for all illumination levels. As the illumination level increases from cone threshold
(~ 1 td) over the photopic range, the cone RF size described by ., varics from a high of 12
down to 1.5 foveal cone spacings. At high illumination levels (1 > 104 td), this corresponds

to a RF diameter of 4 pixels (cone spacings). At 10 td, the lowest illumination used in our
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experiments, the RF dianeter is approximately 12 pixels.

' To summarize, adaptive cone coupling allows for some degree of noise-filtering on the
original image and allows the acuity of the system to be adjusted to match the prevailing
lighting conditicns. The degree of coupling in our model diminishes with increasing illumi-

nation in a manner consistent with the published data on variation of visual acuity with

illumina.cion.

4.5.4 Inhibitory Horizontal Cell Feedback

‘T'he connection between a cone and a horizontal cell not only provides the the horizontal cell
with the cone output signal, but also serves as a feedback path allowing the horizontal cell
signal to influence the cone output. The effect of this feedback path on the cone sensitivity
has already been described in the transduction stage. In addition to this, the horizontal
cell signal imparts a small inhibitory influence on the cone signal.

Such inhibitory feedback effects have been modeled by several researchers (17)[77](5). We
use the simplest approach here. The weighted horizontal cell signal is simply subtracted from
the cone ontput. The strength of this feedback path was chosen experimentally to be kj. =
0.15 as it gave close agreement with the 1esponses of monkey cones for flash experiments [55]
and gecko photoreceptors (see Figure 2.3) |[21]. Values smaller than this produce negligible

effect on the cone output while much larger values result in large oscillations.

4.5.5 Summary of Cone Cell Output

The output of the cone cell includes the effects of nonlinear transduction. adaptation, hor-
izontal cell feedback, cone coupling, and cone temporal integration. The final cone output

cone[r, t] is described by equation (4.16), where v, represents the nonlinear transduction

and adaptation as given by equation (4.10). Cone coupling and temporal integration are
represented by convolution with the product of a Gaussian operator GG (equation (4.2))
and an exponential temporal lowpass filter A” (equation (4.3)). Inhibitory horizontal cell
| feedback is modeled by simply subtracting out the horizontal cell signal weighted by k.

from the cone output.

conelr.t] = v.[r,t] * G(r;0cone[r, t)) K (1; Teone) — knchorz[r, ] (4.16)

The computations performed by the remainder of the retinal network are based upon
‘ the outputs of the cone cell layer. The outputs of the cone cells feed into horizontal and

bipolar cells. The computations in the horizontal cell layer shall be described next.
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4.6 Horizontal Cell Output

This section. describes the computations performed by the horizontal cell which are repre-
sented by the box “horizontal cell” in Figure 4.3(b). The primate horizontal cells which are
of concern here are the type HI cells. These horizontal cells ate believed to be achromatic
and receive inputs from many cones within their receptive fields [49]. The sizes of their den-
dritic fields scale up linearly with eccentricity [23][49]. In addition. passive condunction of
signals through gap junctions between neighbouring horizontal cells greatly extends the size
of their receptive fields (RF) in comparison to their dendritic spreads [10][1]. The function
of the horizontal cells is usually modeled by a diffusion process o1 a resistive network which
results in a Gaussian-weighted spatial and temporal averaging of the cone inputs over the
cell’s RF [17][40][73). The connectivity of horizontal cells and the computation of their out-
puts is shown schematically in Figure 4.5. The outputs fiorz[r,t] of the horizontal cell layer
feed into bipolar cells forming the suiround portion of hipolar cell RIs. In addition, the
bidirectional horizontal-cone cell connections serve as a feedback signal path to the cones.

The horizontal cell output may thus be given as the convolution of the cone signals with
a spatiotemporal lowpass filter (the product of a spatial Gaussian ¢ and an exponential
lowpass temporal filter A"). Horizontal cells typically have time constants 2-3 times larger
than cones and thus the horizontal cell time constant in the model is set 1o be 7, , = 20 ms

[47]. The overall horizontal cell output is given by the following equation:

horz[r. t] = conelr 4]« G(r; Tpor o )V K (1 Thors) (1.17)

where the cone output conelr.t] is given by equation(4.16), ¢/ by equation(4.2), and A" hy
equation (4.3). The Gaussian width @pa.-{r,t] 1epresents a measure of the local spread of
signals in the horizontal cell layer and thus locally contiols the size of the horizontal cell

RF.

Most researchers agree that the centre-surround RF structutes observed at the bipolu
and ganglion cell level are due to RF’s of cones and horizontal cells [49][28]. The cones
provide the centre input while the surround fields are attributable to and match the RF
size of horizontal cells. The ratio of the centre field diameter to snrround diameter is usually
in a range between 1:3 and 1:10 in most mammals [21][49]. The summation of signals in
the centre and surround portion of a ganglion cell RF is generally modeled by a convolution
with a difference-of-Gaussians operator. In most primate medels, the ratio of sigmas of the
centre (0.) to surround (os) Gaussians is approximated to be between 1:1.75 and 1:2 as

this gives reasonable agreément with physiologically measuted values [24)[37][47). Using a
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Figure 4.5: Horizontal Cell Output: Figure (a) shows schematically the con-
nectivity of horizontal cells i the primate retina  Each honizontal cell makes den-
dritic contacts with several cones In addition, the receptive field {(RF) size of hor-
1izontal cells 1s greatly extended beyond its dendritic spread by the passive spread
of current. through gap junctions hetween neighbouring horizontal cells. The actual
size of the RF 1s modulated by the conductivity of the gap junctions. Figure (b)
shows a block diagram of the computations performed at the horizontal cell layer
The summation of cone inputs within the horizontal cell 1s modeled by Gaussian
weighted RF’s and is implemented using diffusion. The size of the RF’s is controlled
locally by adapting the values of ap,r, to changing local illurmination levels and to
interplexiform cell (IPX) feedback. The temporal lowpass nature of the horizontal
cell layer 1s modeled by passing the signals through a single exponential lowpass
filter with time constant 7,5, .

difference-of-Gaussians model, a a.:0 ratio of 1:2 results in receptive field surrounds which
are approximately 5-6 times larger in diameter than the centre. This ratio is maintained as
a base level in our model.

Biological evidence suggests that the RF size of horizontal cells is modulated by mod-
ifying the conductivity of gap junctions between horizontal cells [67). Like the cones, the
need for modulating horizontal cell receptive field sizes can be validated by signal processing
arguments [62){81] and supported by psychophysical data showing improved visual acuity
with rising illumination levels [65)[75].

The conductivity of gap junctions between horizontal cells (and hence ay,,:[r,t]) may
be modified in at least two ways. Dopamine released by interplexiform (IPX) cells (and
perhaps amacrine cells) feeds back to the horizontal cell layer and modifies the conduc-
tivity of horizontal cell gap junctions[68]. In addition, there is a yet unknown mechanism

triggered by the local background illumination level which alters the horizontal cell gap
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junction co'.ductivity without any change in dopamine levels released by IPX cells {1]. This
' electrophysiological evidence correlates well with psychophysical evidence which shows a
rise in visual acuity with rising illumination levels [65][67).

Horizontal cell receptive fields are generated in our model by turther diffusing the cone
outputs. The number of iterations of diffusion nj,r; is kept constant whiie the diffusivity
€horz(T) is allowed to vary locally resulting in an equivalent Gaussian opetator of width
Ohorz(r). Diffusion in both the cone and horizontal cell layers is cquivalent to repeated
convolution with Gaussians of width ccone and anor:. From equation (1.9), the overall

effective horizontal cell Gaussian width s is locally given by:

2 2 2
Tsurround = Tcone” + Thor: { 1 18)

The widths of the centie and surround pottions of the difference-of-Gaussians RE field
formed at the bipolar and ganglion celilevel ate aqque and a,,,, gund 1espectively. The ratio of
these values is typically 1:2 in most models of primate ganghon cell RF's [21][37][17]. Using
the equation (4.18), it can be seen that by choosing apa,- to be 3, ..., a contie-surtonnd
sigma ratio (Fcone 10 Gy round) Of 1.2 can be easily obtained. Electiophysiological evidence
shows that horizontal cell RF sizes shrink in response to an merease in local illumination.
The effect of ilumination level on horizontal cell RF size is very similar to the effect it
has on cone coupling. Thus, as equation (1.15) already accounts for the effect of ambient
illumination [, on cone coupling, the effect of the local illutmmation level modulating R
size is also carried over to the horizontel cells.

Horizontal cell RF size is also modulated by a second mechamsm: dopannine release by
interplexiform (IPX) cell feedback. No suitable model or sufficient quantitative data exists
in the literature at this point to accurately model the effects of IPX feedback on hotizontal
cells. It is arbitrarily assumed here that the IPX signal multiplicatively alters the horizontal
gap junction conductivity. The output of the interplexiform cell (/PX[r,t]) and its effect
(HCipx[r,t]) on the horizontal cell coupling will be discussed later in section 4 9. The width

of the Gaussian in the horizontal cell layer is thus specified by the following equation:

(Thm:[l'. t] = (\/:?Ur‘nnr[ra l])( I[C[}{\'[I‘, ,]) (4.19)

In summary, the spatiotemporal lowpass filtering performed by the horizontal cell layer

. on cone outputs is modeled here by equation (4.17). The 1eceptive field size of horizon-
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tal cells is modulated locally to match the local ambient illumination level I,, and the
spatiotemporal contrast in the scene as represented by interplexiform cell feedback signals.
The outputs of horizontal cells form the surround portion of both midget and diffuse bipolar

cells. The next two sections describe the computations performed in the midget and diffuse

hipolar cell layers.

4.7 Midget Bipolar Cell Output / P-cell Pathway

Figure 4.6 shows schematically the signal flow through a midget bipolar cell in the fovea.
Midget bipolar cells receive centre input from a single cone in the fovea and surround input
ftom one or more horizontal cells [49]. In the fovea, for both the on and the off pathways,
there is a I:1 ratio of the number of midget bipolar cells to cones. Furthermore. the outputs
of these bipolar cells make 1:1 contacts with midget ganglion cells which project to the
Parvocellular layers of the LGN and thereby forming the P-cell pathwav. Because of the
one-to-one connections from the midget bipolar to the midget /P-type ganglion cells, many
of the properties of the P-cell pathway exhibit themselves at the bipolar cell level as well.
The P-type panglion cells appear to be little affected by amaciine cell outputs and thus
may be assumed to simply convert the graded midget bipolar cell outputs into spike trains

for transmission of information through the optic nerve [47])[24].
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Figure 4.6: Midget Bipolar Schematic: The figure shows a schematic diagram
of the information tlow through a midget bipolar cell.

In modelling the hipolar cell response, several simplifications or assumptions are made.

It is assumed that bipolar cells essentially perform a simple difference operation on the
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signals from a single cone and a horizontal cell [17][21][28][30][19]. This operation 15 followed
by a saturation nonlirearity and temporal lowpass filtering. In biological retinas, bipolat
cells have two polarities. on-centre and off-centre cells, which signal positive and negative
contrasts. respectively. For simplicity. only the on-centre cell is modeled here. In a computer
model, there is no problem in representing positive and negative contrast signals within the
same neuron and consequently, the implementation of off-centre cell is not necessary,

The differencing operation performed on the cone and horizontal cell signals gives rise
to the spatially antagomistic centre-surround structure of bipolar cell 1eceptive lields. Both
cone and horizontal cells have Gaussian weighted receptive fields due to the coupling with
neighbouring cones and horizontal cells respectively. This implies that the ontput of a given
cone may be influenced by the outputs of several neighbouting cones, 'hus, although the
bipolar cell actually performs the difference operation on a single cone and horizontal coll
output, the resulting RF of the bipolar cell may be modeled by a difference of-Gansstans
operator. The centre portion of the bipolar RF v diiven bv the cone wmput while the
surround poition is attributable to the horizontal cell mput  The size of the centie and
surround portions of bhipolar cell RF's is a function of the size of the REF's of the cones and
horizontal cells. The 1atio of the centre field diameter to suttound diameter s usually
the range of 1:3 to J:10 in most mammals [21][49]. In the present implementation, ths rato
is approximately 1:5.

The temporal tuning of bipolar cells may also be largely attributed to the difference
operation performed by the bipolar cell on the cone and hornzontal cell signals  Haotizon-
tal cells have a much laiger integration time constant than cones and thus, lor temporal
changes in the input signal. thete is a small time-lag in the surtound signal peak 1esponse
as compaied to the cone response at the bipolat cell level, The time coustants chasen
the current implementation are hased on values used bv Richter which give a close hi 1o
biological responses (7. = L0ms, Theo, - = 20ms) [17].

In addition to the difference in time constants, thete is some evidence that the horizontal
cell signal may also be delayed (741a, = 3ins) with tespect to the cone input for some hat
not all bipolar cells at the bipolar cell terminal [47). This 1esults in an mereased transient
spike at the outputs of these hipclar cell. The two main classes of bipolar cells of interest
to us are the midget and diffuse hipolar cells. Midget bipolar cells feed midget ganglion
cells and form the the parvocellular (P-cell) pathway, and diffuse hipolars leed parasol
ganglion cells which form the magnocellular (M-cell) pathway. Recall from Chapter 2 that
the M-cell pathway is characterized by cells that respond vigorously to temporal transients
in the visual signal. The P-cell pathway tesponds with greater sensitivity to high spatial
frequencies hut not to high temporal frequencies. It is thus likely that the horizontal coll

signal delay exhibits itself only in diffuse hipolar cells. This may account for the increased
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temporal responsivity of the diffuse bipolar / M-cell pathway as compared to the other
retinal pathway. Thus, for simplification, it is assumed that this horizontal cell signal delay
is significant only in diffuse bipolar cells and essentially zero for midget bipolar cells. The
midget bipolar cell temporal response in the computer retina model is governed only by the
difference in time constants between cone and horizontal cell responses.

Following the differencing operation is a saturation nonlinearity operation which defines
the dynamic 1ange of the midget bipolar cell. Retinal bipolar cells signal spatio-temporal
contrast with a high gain and have a much narrower response range around a given back-
ground intensity compared to the cones. For low contrast signals, the midget bipolar cell
output is quite lincar; however, at contrast levels exceeding 1.7-2.0 orders of magnitude, the
coll output exhibits saturation [71][72]. For simplicity, an arctangent function (BPsqi()) is
used to model the bipolar cell saturation function in the computer retina. The choice of the
saturation function is arbitrary; however, the arctangent function has some nice properties
in that it behaves fairly linearly for small contrast signals, and is symmetric with respect
to both positive and negative contrast signals. The symmetric nature of the saturation
function is important in our model as it allows the bipolar cell to represent both positive
and negative contrast equally well.

Bipolar cell outputs travel from the outer plexiform layer to amacrine and ganglion
cells in the inner plexiform layer through the bipolar cell axons. Their long axons act as
temporal lowpass filters of the bipolar cell signal, with a time constant on the same order
of magnitude as that for horizontal cells [17][47]. Our familiar simple exponential lowpass
temporal filter K (¢;7) (equation (4.3)) is used once again to model this characteristic with
Tomidger = 15 ms.

The computations at the midget bipolar cell level in the computer rctina are implemented
as in Fleet [24], Richter [47], and Curlander (17] (equation(4.20)) with the addition of a
saturation function (equation(4.21)). As with most other models, the relative weightings
given to the cone and horizontal cell inputs going into the bipolar cell are chosen to be
cqual (ke = Ky = 1) in order to allow equal sensitivity for coding positive and negative

contrasts.

BP,dyetlr, t] = BPyoi(keycone[r, 1) — kpphorz{r, t]) * K(t; Tmidget) (4.20)
1 -1 T
BPyyi(2) = =tan™ (——) (4.21)
T kBPnudget
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where BPpdget[r,t] = midget bipolar cell output

cone[r. t] = cone cell output (equation (.16))

horz[r. t] = horizontal cell output (equation (4.17))

BP,,(r) = symmetric bipolar saturation function

KBP g = controls narrowness of response range (.027 = L7 log units)
K(t; Tmadget) = lowpass temporal filter (equation (4.3))

Tmidget = time constant for midget bipolar (= 15ms)

kehy Knp = weighting given to cone and horizontal cell inputs (1.0)

In summary, the midget bipolar cell output ( BP,4geefr,1]) is computed by taking the
difference of the cone and horizontal cell outputs (cone[r,t], horz[r,]) followed by a gain
amplification (kgpmdgu) and saturation operation (BP,,.(.r)), and finallv by passing this
signal through a temporal lowpass filter A (¢; Tn1dger). The saturation function BP,,, used
here is fairly linear for small signals but exhibits saturation for large positive and negative

contrast signals. The value of kpgp, is chosen so that a centre spot 50 times brighter

1dget
than the surround results in a saturated bipolar cell output (90% of maximum output) (71},

Experimentally, it was found that a value of kpgp, .., = -027 is appropriate in our model

to give the midget bipolar cell a dynamic range of = 1.7 log units. The outputs of midget

bipolar cells go to midget ganglion (P-type) cells that form the parvocellular pathway.

4.8 Diffuse Bipolar Cell Output / M-cell Pathway

Diffuse bipolar cells provide signals which feed the Magnocellular {M-type) ganglion cell
pathway. Just as the midget bhipolar cells exhibit most of the properties of the P-type
ganglion cell pathway, many of the spatiotemporal properties of My-type ganglion cells
begin at the diffuse bipolar cell layer. Figure 4.7 shows schematically the wiring ol the
diffuse bipolar / M-type ganglion cell pathway.

Recall from Chapter 2 that My cells make up the bulk (80%) of the M-cells, are linear
in their summation of signals, and appear to receive relatively little amacrine cell input [57].
This situation is very much like that for midget bipolars and midget ganglion (P-type) cells
whose outputs were assumed to be very similar. Thus, for simplicity, it is assumed in this
model that diffuse bipolar cell outputs and My cell outputs are also similar. The remaining
20% of the M-type ganglion cells (My cells) represent only 2% of the total ganglion cell
population but receive the bulk of the amacrine cell input and have much more complex
RF properties. However, because of the 1elatively small number of these outputs, the My
cell output and amacrine cell outputs are ignored in this model. For the remainder of this
thesis, when we talk about M-cells, we will be referting only to the My cells unless explicitly

stated otherwise.
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‘ Figure 4.7: Diffuse Bipolar Schematic: Figure (a) shows schematically the

connections in the diffuse bipolar cell / M-type ganglion cell pathway. Each dif-
fuse bipolar cell receives centre input from 7-9 cones while horizontal cells provide
surround input. Horizontal cells receive inputs from many cones from both direct
connections with cones and passive conduction of signals through gap junctions in
the horizontal cell layer. Diffuse bipolar cell outputs converge on M-type ganglion
cells. There is approximately 1 M-type ganglion cell output for every 8-9 cones.
Figure (b) shows in block form the computations performed at the diffuse bipolar
cell layer.

The properties of the diffuse bipolar cell relevant to the current model are listed below:

e Ilach diffuse bipolar cell in the fovea receives centre input from at least 7-9 cones [49].
This number grows rapidly in the periphery as the ganglion cell density drops off faster
with increasing eccentricity than does the cone density?. Thus, diffuse bipolar cells

*In the computer retina model, the convergence of an increasing number of cones into the ganglion cells
is partially accounted for at the sampling stage by the log-polar mapping. The log-polar sampling models
the dropoff of ganglion cell density and increasing RF size with increasing eccentricity found in the primate
retina. Cone density drops off much more slowly than ganglion cell density and thus accounts for the

‘ convergence of increasing numbers of cones into ganglion cells. Rather than simply subsampling the input
image in the periphery, the log-polar mapping function implements RF’s which average an increasing number
of pixel values with increasing eccentricity.
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have receptive field centres about 3 times larger than the midget bipolar cells at all
eccentricities. This matches the data on M-cells which show that they have receptive
fields 3 times larger than P-cells [23][49][57]. The larger RF’s of diffuse bipolars and
M-cells leads to a poorer spatial resolution in the M-cell pathway compared to the
high acuity P-cell pathway.

According to Rodieck, there is a 1:1 ratio of the number of diffuse bipolar cells to
cones, and thus there is a great deal of overlap hetween the centre portions of the
diffuse bipolar cell receptive fields [49]. However, at the panglion cell layer, the ratio
of M-type ganglion cells to diffuse bipolars is only about 1:8. Thus, there is only one
M-cell output for approximately every 8-9 cones.

The surround input to these cells consists of input from several horizontal cells.” The
total size of the surround RF is 2-3 times larger than for midget bipolars. This is
accounted for by taking the average of 9 horizontal cells and then further diffusing
this value to model the summation of signals over a large area.

Cells in the diffuse bipolar / M-cell pathway are more responsive than P-cells to higher
temporal frequencies in the visual signal. Furthermore, M-cells typically have faster
axon conduction velocities [57]. The time constants in the cone and horizontal cell
layers (TconesThorz ) are fixed. The larger latency of the horizontal cell layer compared
to the cone layer leads to much of the temporal sensitivity of bipolar cells in general.
Thus, to account for the higher diffuse bipolar cell temporal sensitivity, the temporal
lowpass characteristic of diffuse bipolar cell axons is assumed to have much shorter
time constants than midget bipolars (74ifruse = Hms compatred Lo Tyyqger = 15ms).
This leads to a higher cutoff frequency for diffuse bipolar cell out.puts when compared
to midget bipolars.

In addition to the difference in time constants of integration for the cone (7o) and
horizontal (7j,,.) cell outputs, the surround input is delayed compared to the centre
by Tielay ms [47] for bipolar cells. This delay appears to occur at the diffuse bipolar
cell terminal and not at the horizontal cell output. The value used for 7.4, is chosen
to be 3 ms or & 0.2 7)., as suggested by Richter [47] and Fleet [24]. Fleet also shows
that much of the temporal sensitivity of diffuse bipolar / M-cells may be acconnted
for by this small delay in the surround input.

M-type ganglion cells react to contrast with a much higher gain than P-type ganglion
cells and have a threshold to saturation range of only 1 log unit of contrast [57). It is
assumed here that this feature is exhibited at the diffuse bipolar cell level. The satu-
ration characteristic is once again modeled using an arctan function (equation(4.25))
and the constant kgp, is chosen to be 0.015 to give a | log unit contrast dynamic
range.

t ffuse

Flect [24] shows that the centre-surround (CS) model may be nsed to model operators
with a range of spatiotemporal sensitivities with only a change in some parameters. They

show that the M-cell pathway, with its higher temporal frequency response hut poor spatial

*The actual number of inputs from horizontal cells to diffuse bipolars 1s still unknown [7][21][49).
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response, may be accommodated by CS-like operators using an adjustment of the centre
and surronnd time constants and by introducing a time delay between centre and surround
signals. The same approach is used here.

The basic computation of the outp_ts of diffuse bipolar cells is very similar to that
for midget bipolar cells. It still involves a difference operation between the centre and
surround signals, followed by a gain and saturation operation, and then temporal lowpass
filtering. The main difference in the computation of diffuse bipolar cell outputs as opposed
to midget bipolar outputs stems from their much larger receptive fields. To account for
their larger receptive fields, the centre input for each diffuse bipolar cell is the sum of nine
cone inputs in a 3x3 window centred around that bipolar cell. Likewise, the surround fields
are computed by first summing horizontal cell outputs using 3x3 windows and then further
diffusing to increase the surtound receptive field size to be about 2-3 times larger than for
inidget bipolars. Furthermore, the surround input is delayed by 4e10y = 31ns compared to
the centre input. The diffuse bipolar output is computed by taking the difference of the
centre and surround signals and passing this through a saturation function followed by a
temporal lowpass filter.

The diffuse bipolar cell ontput is modelled here by the following equations:

BPy, ffuselr, 1] = BPsui(kpccentrelr,t] — kppsurround[r,t]) * KN (t; i fruse) (4.22)
centrefr,t] = Z conelr, t] (4.23)
313
surround[r,i] = Z horz[r,t — Tielay) * G(1;30hor2[r, 1]) (4.24)
3r3
| S x

BPyy(x) = ~tan™' (——) (4.25)

T kBPdl]]use
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where  BPyffuse[r,t] = diffuse bipolar cell output
centre|r, t] = centre signal is average of 9 cone inputs
surround(r,t] = surround signal from delayed horizontal cell inputs

cone cell ontput (equation (-.16))
horizontal cell output (equation (4.17))

cone[r, t]
horz[r. ]

BPy,: (&) = symmetric bipolar saturation function

KBP ffuee = controls narrowness of dynamic range (= .015 = | log unit)
K(t; Tqp5use) = lowpass temporal filter (equation (-1.3))

Tdi ffuse = time constant for diffuse bipolar (= 5ms)

Tdelay = time delay between centre and sutround («ppror 3ms)

keb, ki = weighting given to cone and horizontal cell inputs (= 1.0)
G(r;o) = Gaussian operator of width o (equation (4.2))

Ohorz[r, t] = controls size of horizontal cell RF field

In summary, the diffuse bipolar / M-cell pathway is characterized by receptive fields that
are about 3 times larger in diameter than those of the midget hipolar / P-cell pathway at
all eccentricities. It is assumed in the present model that most of these properties exhibited
at the M-type ganglion cell level are generated at the diffuse bipolar cell level. The larger
REF’s of M-cells lead to a poorer spatial resolution than in the P-cell pathway. M-cells ae
instead tuned to respond to higher temporal frequencies than P-cells and are thus better
at signaling motion in the visual stimuli. The M-cells 1espond with a much laiger gain to
spatiotemporal contrast but have a much narrower dynamic range compared to P-cells (i.c.

they saturate in 1esponse to high contrast input).

4.9 Interplexiform Cell Output

Anatomical studies show that interplexiformm (IPX) cells in the primate retina receive input
from bhipolar cells and send their output into the outer plexiform layer to horizontal cells
[21][49](68]. IPX cells have large overlapping receptive fields which, like all retinal cells,
scale up with eccentricity. Figure 4.8 shows schematically the connectivity of interplexiferm
cells in the primate retina. Electrophysiological studies have implicated them in adaptation
of horizontal cell receptive fields sizes [68). The dopamine 1eleased by IPX cells under
stimulation has been shown to reduce the conductivity of gap junctions in the horizontal
cell layer and thus reduce the effective RF size of horizontal cells [68][78).

IPX cells primarily receive a spatio-temporal contrast signal from the outputs of several
bipolar cells in their receptive fields. Foveal IPX dendiitic fields are approximately 100-
200pm in diameter (4-8 cone spacings) [49]. Their outputs feed back to horizontal cells
where they modify the gap junction conductivity and multiplicatively alter the diffusivity.
Umino’s data show that flickering light leads to increased IPX output and up to a 30%

reduction in the horizontal cell gap junction conductivity [68]. His results also show that
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Figure 4.8: Interplexiform Cell Feedback: The figure shows schematically
how interplexiform cells receive input from bipolar cells and have feedback paths
to horizontal cells Stimulation of IPX cells releases dopamine which reduces the
conductivity of gap junctions between horizontal cells. The reduced spread of signals
m the horizontal cell layer effectively reduces the size of the horizontal cell receptive

fields

changes in the background illumination level have no effect on the IPX cell outputs.

Although there are insufficient data in the published literature on which to base a
gquantitative model of the IPX output, it is possible to qualitatively model the effect of
IPX cells on horizontal cells. It is assumed here that large outputs from bipolar cells resuit
in increased release of dopamine by IPX cells. Since the magnitude of the bipolar cell
response is large in 1egions of high spatial or temporal contrast, we propose that these sorts
of stimuli should result in increased dopamine release by IPX cells, decreased horizontal
cell coupling, and thus decreased horizontal cell RF size. To be consistent with Umino’s
data, IPX feedback is assumed to be able to alter the horizontal cell receptive field size by
up to 30% [68]. This hypothesis is supported by Umino’s data on increased IPX output
in response to flickering light stimuli (high temporal contrast) [68]. Since the bipolar cell
output is unaffected by global changes in illumination level (due to the “dc” subtraction
mechanism), it is not surprising that IPX cell outputs are also unaffected for this condition.

The idea of using a measure of local signal contrast to control smoothing is one that is
also prevalent in computer vision. Perona [44] uses a similar idea in a smoothing algorithm
based on anisotropic diffusion in which the local diffusivity of a diffusive smoothing operation
is drastically reduced in imapge regions having a high intensity gradient. Using such an
algorithm smoothes noise in regions of uniform structure. while preserving the localization
of edge information.

The effect of interplexiform (IPX) cell feedback on horizontal cells is modeled here in

two parts:
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IP‘\'[I‘, t] = ktpz‘_l (szmxdget [l‘. !] + BPzrhffusc-[L t]) * ("( r. "1[’.\')1\'(’: 7-Il'.\') (‘1-26)

0.5

HCipyir, tj= 0. s e
Cipxir.t] 07+1P,\’[r,f]+l

(1.27)
Here IPX][r,t] represents the IPX cell output and is essentially a measure of the local
spatiotemporai contrast (derived from a combination of the diffuse bipolar and midget
bipolar cell outputs) over the receptive field of the IPX cell. The IPX receptive field is
represented by a Gaussian of width oypx = 2.0 (G(r; a7pyx)) which is convolved with midget
bipolar cell outputs to give IPX receptive field diameters of between - and 8 cone spacings
in the fovea. This value is chosen to be consistent with the anatomical data from Rodieck
[49]. It is, however, quite possible that IPX receptive fields could be much larger than their
dendritic field size. We assume that IPX cells have slightly longer temporal integration
time constants than horizontal cells and thus a temporal lowpass filter (K(4; r7pv)) with
time constant (7;px = 30ms), is used to model this. kypr is @ constant that determines the
rate with which an IPX cell output varies with the level of bipolar cell output. This was
arbitrarily given a value of k,,;=0.25 so that only bipolar cell outputs greater than 25% of
their maximal value could reduce the horizontal cell coupling.

HC'px[r,t] accounts for the effect of interplexiform cell output on hoiizontal cell cou-
pling. This function has a value that approaches 0.7 in regions of high spatiotemporal
contrast and may be as high as 1.2 in regions of low spatiotemporal contrast. Recall that
this function is assumed to multiplicatively alter the horizontal cell coupling as given by
equation (4.19). The form of this function and its associated parameters wore chosen anbi-
trarily with the main consideration being that interplexiform output preturbs the horizontal
cell receptive fields by only as much as 30% from their nominal values therehy acting as a
fine tuning adaptation mechanism only. This is shown in Figure 4.9 which plots the vari-
ation of horizontal cell coupling due to IPX cell feedback (1{ C;py[r,1]) versus the level of
bipolar cell signal output with k,,,=0.25.

In summary, each interplexiform cell collects signals fiom several bipolar cells over its
large receptive field. Since bipolar cells essentially code spatiotemporal contrast in the
input signal, the IPX cell is responsive to both high spatial contrast (edge regions), and
high temporal contrast (motion, flickering light). When stimulated, interplexiform cells
release dopamine which feeds back to horizontal cells and reduces the conductivity of gap
Jjunctions in the horizontal cell layer. Thus, in regions of high spatiotemporal contrast, the

horizontal cell receptive field size is diminished by IPX cell feedback.
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Figure 4.9: IPX Cell Feedback Effect: The figure shows the factor by which
mterplexiform cell feedback modifies the horizontal cell receptive field size with
variation of the hipolar cell signal level (see eqns (4 26) and (4.27)) Bipolar
cells are responsive to spatial and temporal contrast in the visual image. The

interplexiform cell feedback 1s assumed to modify the hornizontal cell receptive field

s1ze by a factor proportional to the IPX cell output Consequently, 1n regions of

Ingh spatio/temporal contrast, the horizontal cell receptive field size 1s diminished.

4.10 P-type Ganglion Cell Output

In the fovea, there is a one-to-one connection from midget bipolar cells to midget / P-type
ganglion cells. The basic properties of P-type ganglion cells are, for the most part, a direct
result of midget bipolar cell outputs. There are relatively few inputs from amacrine cells to
these P-type ganglion cells and thus. for simplicity, the P-cell output here is assumed to be
identical to the midget bipolar cell output as described in previous sections.

Pcell[r’ t] = BPmidget [l‘, t] (4-28)

Figure 4.10(a) plots the magnitude of the Fourier transform of the adaptive centre-
surround operators as developed in this model at a bright illumination intensity. The figure
shows the expected spatiotemporal tuning of P-type ganglion cells in our model. At bright
iluminations, the model P-type ganglion cells have a peak response to spatial frequencies
near 0.10 cycles/pixel (14 cycles/degree) and are able to resolve spatial frequencies as high
as 0.40 cycles/pixel (60 cycles/degree). The peak model P-cell temporal frequency response
is at 9 Hz. These values are comparable to the highest psychophysically discernible spatial

frequencies of 50-60 cycles/degree and a peak temporal frequency response at 8-9 Hz for the
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primate P-cell system [57][33].. Note that the spatial frequency sensitivity is much greator
than that for temporal frequencies in the parvocellular pathway.

In summary, the P-type ganglion cell outputs represent the high spatial acuity pathway
for the visual systemn. These cells have small receptive fields, and at high illuminations, are
able to resolve features with sizes of the order of a single cone spacing. However, P-type

ganglion cell outputs do not respond well to high spatial frequencies.

4.11 M-type Ganglion Cell Output

M-type ganglion cells receive their input primarily from diffuse bipolar cells and from some
amacrine cells. The basic properties of 80% of the M-type ganglion cells are similar to the
outputs of diffuse bipolar cells. These cells are much like cat X-cells and thus they behave
similarly to P-cells in their linear summation of signals [57). Amacrine cell input does not
seem to have a major impact on the output of these cells. It is only the remaining 20% of
the M-type ganglion cells (My ) that likely receive considerable input from amacrine cells.
As M-type ganglion cells only 1epresent 10% of the total ganglion cell population, My cells
account for only 2% of the total ganglion cell output. For this reason, the My cell ontpuls
are not modeled lere.

It is further assumed here that the outputs of the My cells are sufficiently well repre-

sented by the diffuse bipolar cell outputs. The M-cell output is thus given by:

M.y [l‘, t] = BPd:fjuye[r, "] (4.29)

In summary, our model is constructed so that there is one M-cell output for every 9
cone inputs. A ratio of M-cell outputs to P-cell outputs of 1:9 is comparable to the :8 ratio
found in primates. M-cells have receptive fields which are approximately 3 times as large as
those for P-cells and have a much higher contrast gain. Figure 4.10(h) shows the response
of the My type ganglion cell to spatial and temporal frequency modulation. The much
larger receptive fields of the M-type ganglion cells compared to P-cells results in sensitivity
with a lower peak spatial frequency response. The delay between the cone and horizontal
cell signals at the diffuse bipolar cell level results in a much stronger sensitivity to temporal
frequency modulation for M-type ganglion cells. Thus these cells are ideal for detecting

motion at a coarse spatial resolution.

4.12 Model Summary

The retinal model developed in this chapter is a simple one which attempts to account for

the adaptation of the retina to a wide range of illumination levels. The model is restricted to
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Figure 4.10: P-cell and M-cell Spatiotemporal Tuning: The figures show
the froquency response of P-cells and M-cells in our model as a function of spatial
and temporal frequency at one intensity level for small signal levels The P-cell
responds to higher spatial frequencies than M-cells but has a poorer response to
higher temporal frequencies.
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the processing of achromatic information at photopic light levels. In this way, complications
associated with modelling the rod system, rod-cone interactions, and color constancy are
avoided.

A log-polar transformation is used to account for the data reduction due to nonuniform
sampling, and the convergence of information, occurring within the retina. This mapping
splits the incoming information into two separate streams: the fovea represented in the
Cartesian domain, and the periphery represented in the log-polar domain. Since all com-
putations are spatially localized, the data structures containing the fovea and periphery in-
formation may be processed separately and identically by the rest of the network. Features
of the peripheral processing such as the increase of receptive field sizes with cccentricity are
accounted for by the log-polar mapping and made transparent to the computations required
in the model.

The model is an extension of the spatiotemporal centre-surround operators presented by
Fleet [24] and Richter [47]. The extensions include modelling the nonlinear transduction and
adaptation at the photoreceptor level, and adaptation of receptive fields of varions cells with
varying illumination levels. The model shows that the acuity changes found with changing
illumination levels in the biological retina may be accounted for by the adaptation of cone
and horizontal cell receptive field sizes. Furthermore, we suggest a possible mechanism by
which interplexiform cell feedback modifies the horizontal cell coupling as a function of the
local spatiotemporal contrast.

Figure 4.11 shows schematically the computations petformed at cach layer in our model.
A hyperbolic noulinearity at the receptor level converts image intensities to signals that
are used by the rest of the retinal nctwork. The sensitivity of the cones is controfled
by @ combination of both the local spatial ambient intensity /s (modelling the effect of
horizontal cell feedback), and a long term temporal ambient intensity [ (modelling the
effect of pigment bleaching). These adaptation mechanisms act to centre the 3 log unit
response range of the cones atound the combined ambient intensity signal /,. Cones are
coupled to neighbouring cones. The degree of coupling varies with illumination level and
effectively controls the retinal visual acuity.

Cone outputs go to both horizontal cells and bipolar cells. Horizontal cells compute
a spatiotemporal average of the cone signals over a large receptive field and also provide
signals to bipolar cells. The cones and horizontal cells have different time constants leading
to temporal transients at the bipolar cell level. There are two classes of hipolar cells and
ganglion cells. Each midget bipolars cell 1eceives a centre input from a single cone and a
surround input from a horizontal cell. Each midget bipolar cell provides an output to one
P-type ganglion cell. These cells comprise the high acuity visual pathway. Diffuse hipolar

cells get centre input from nine cones and surround input from many horizontal cells. Both
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4. RETINAL MODEL

the centre and surround portions of their receptive fields are three times larger than those
of midget bipolais. A delay between the centre and surround signals enhances the diffuse
bipolar cell response to high temporal frequencies in the input signal. Diffuse bipolar cells
provide inputs to M-type ganglion cells. There is one M-type ganglion cell output for every
nine cone inputs. This patliway has poorer spatial resolution, higher temporal sensitivity,
and a larger conirast gain than the P-cell pathway. Bipolar cells also provide input to
interplexiform cells which then feed back to horizontal cells. Increased spatiotemporal
contrast causes IPX feedback to reduce the horizontal cell coupling.

In the next chapter, the behaviour of the model is examined in response to a variety of

stimuli and compared to published data on hiological retinas.
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Chapter 5 EXPERIMENTS AND RESULTS

In this chapter, the response of the computer retina model to various simple visual stimuli
is presented and compared to biological retinas. In addition, the response of the model to
more complex images is also shown in order to demonstrate what the outputs in the retina
might look. The aim is to show that the retinal model developed in this thesis, although
quite simple, responds in a manner qualitatively similar to the primate retinal cone system.
In particular, the model qualitatively accounts for the gain and sensitivity changes as well

as visual acuity changes found in the retina with illumination levels varying over 7 orders

of magnitnde.

51 Methods

5.1.1 Model Implementation

The model of the retinal cone system as described in the previous chapter was implemented
in C and executed on Sund Sparc machines.! The computer retina program takes in as
input a sequence of images which are then processed by the model. Several sets of outputs
are produced, one for each of the retinal neuron layers. The output data may be either
displayed as images or analyzed using a mathematical package such as MATLAB.?

The computer retina program simulates both the temporal and spatial characteristics
of retinal processing. The spatial domain is discretized into pixels with each pixel width
assumed to represent the width and spacing of foveal cones in the human 1etina. The
temporal domain is also discretized. The sequence of images read in as visual input is
assumed to have a 3 ms interval between each successive frame. This value was chosen
to simplify the implementation of a 3 ms delay (T4elqy) of the horizontal cell signal to
the diffuse bipolar terminal required in the model [47]. For some experiments. thousands
of image frames had to be processed by the computer retina because these experiments
required the input image stimuli to be presented for several seconds of real-time. Typical
cxecution times on a sequential SPARC-10 machine for 100 x 100 images (without using
log-polar sampling) were about 5 seconds/frame.

The computer retina program allows flexibility in controlling the features of the model
that are enabled or disabled. For example, the use of log-polar sampling can he enabled and

disabled at will. For most of the experiments described in this chapter. log-polar (foveated)

'Sund Sparc 1s a registered trademark of Sun Microsystems, Inc.
‘MATLAB 1s a registered trademark of The MathWorks, Inc.
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5 EXPERIMENTS AND RESULTS

sampling was disabled. With this feature disabled, there was no variation of receptive
field (RF) sizes with eccentricity and the fovea encompassed the entire field of view. This
simplified analysis and comparison of the model cell outputs to responses of biological retinal
cells, most of which were measured in the fovea. Other computer retina program directives
allow enabling/disabling of features such as the effects of horizontal fecdback on cones, and

adaptation of cone and horizontal cell receptive field sizes.

5.1.2 Input Stimuli

In order to test the adaptive aspects of the model, images with a large dynamic range of
intensities (up to 7 orders of magnitude) are required. Commercial camera systems and
frame grabbers are inadequate, as most only use 8 bits to represent the output intensity
level. To represent 6-7 orders of intensity magnitude, at least 20 bits are required. Most
image databases aie also 1estricted to 8 bit intensity dynamic tanges and thus are not
directly suitable.

To circumvent these problems, most of the images used in these experiments were syn-
thetically generated. Two main types of experiments were conducted and the stimuli re-
quired for each type were generated in different ways.

To compare the outputs of this model with published data on biological retinas, some
of the experiments commonly performed by electrophysiologists were 1eplicated. Typically,
these experiments measure the outputs of & few retinal cells in response to very simple
stimuli such as flashed backgrounds, spots of light, step edges, and temporally modulated
sine gratings. Such simple images, with dynamic ranges of up to 12 log units of intensity,
were easily generated in software and used as input to the computer retina.

In addition to experiments with simple stimuli, the outputs produced by the model in
response to more complex stimuli (more realistic images) are also shown. For these tests,
some images were generated using a very simple ray tracing image peneration package.®
This package used 16 bits to quantize the image intensities allowing 4 orders of magnitnde
of image intensities to be represented in a single image. To further increase the input
illumination dynamic range, the intensity values in synthetic images and images from image
databases were exponentially scaled by various factors to crudely approximate the effects

of increased illumination levels.

>The ray tracing package (Makelmage) used in the expernments was developed by Hiro Yamamoto of
Canon, Inc.
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5.1.3 Units

All intensity values in this thesis are expressed in photopic trolands (td) as this is the
unit most commonly used in the biological literature. Photopic trolands are a measure
of retinal illuminance and are defined as the product of luminance (cd/cm?) and the pupil
diameter in (mm). Time is expressed in seconds (s) or milliseconds (ms). Cell output values
are normalized so that a maximal output is one. Spatial frequencies are represented in

cycles/pixel or cycles/degree when compared with the primate data. Temporal frequencies

are expressed in Hertz (Hz).

5.1.4 Model Evaluation

The results of four basic types of experiments are presented in this chapter. These are:
¢ Flashed background experiments
e Experiments with sinusoidal gratings
e Experiment with step edge stimuli
e Experiments with more complex real and synthetic images

The first two types replicate some of the typical experiments performed by electrophys-
iologists on biological retinas and thus allow comparison of the computer ret:na outputs to
biological retinal cell responses. The last two types of experiments show the hehaviour of
the computer relina in response to more complex stimuli and illustrate the data reduction
achieved by using log-polar sampling.

Wherever possible, comparisons of the computer retina outputs to those in biological
retinas are made using published data on the primate retina. Although there have been
a fair number of recordings of the outputs of primate cones and ganglion cells? [4][8][19]
(46][55), the recording of most other retinal cells is extremely difficult to study in mammals
because of their small size. What is available are recordings of these cells in other animals.
Fortunately, for many visual properties, interspecies comparisons are possible when the
underlying behaviour and structure of the retina are similar [15]{57]). Many of the visual
properties of interest here can be qualitatively compared with fish, cat. and monkey retinas.
Therefore, comparisons of the model outputs are made with data from animals whose visual
systems are believed to be similar to primates, when primate data was not available.

In making comparisons of the computer retina responses with biological retinal cells, the

differences in the polarity of some retinal cell outputs as compared to the model responses

*Many of the ganghon cell charactenstics are actually inferred from recordings of cells in the Lateral
Geniculate Nucleus (LGN), where the bulk of the ganglion cell outputs terminate.
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should be noted. In all biological vision systems the output potential of photoreceptors
(rods and cones) and horizontal cells hyperpolarize (become more negative) in response to
increased light stimulation. In contrast, our model cone and horizontal cell outputs are
designed to become more positive to signal increased output levels. In biological retinas,
bipolar cells are of two types: those that hyperpolarize in response to increased stimulation
in their receptive field centres, and those that depolarize (become more positive). The
bipolar cells outputs in the computer retina are positive when the receptive field centre is

brighter than the surround and are negative when the surround is brighter than the centre.

5.2 Flashed Background Experiments

We conducted flashed background experiments similar to those conducted by Normann,
Werblin, and Schnapf in order to show the temporal respouses of our computer retina
cells to full-field flash inputs [41][55][72]. In these experiments, a uniform background
intensity (which fills the entire visual field) was presented to the retina interspersed with
short intervals in which a background of a different intensity was “flashed” o1 substituted.
The response of various cells are recorded for the entirety of the experiment. Four types of
experiments were performed with flashed background stimuli. These were used to determine

the following:
1. The cone “inpulse” responses to short dim flashes
2. The effect of horizontal cell feedback on cone output
3. The temporal response of various cells to long full-field flashes
4. The intensity-response curves for various retinal colls

The following sections describe the results of the above tests.

5.2.1 Cone “Impulse” Response

Figure 5.1 (top) shows the superimposed 1esponses of a model cone cell when the com-
puter retina was subjected to short 30 ms “flashes” of increasing intensity and the responses
of a monkey cone (bottom) in a similar test {55]. The monkey cone response is characterized
by a peak due to the flash followed by an overshoot when returning to the resting potential.
This overshoot is due to the effects of feedback from horizontal cells to the cone. The model
response also exhibits this overshoot with the horizontal cell feedback enabled. The model
cone output reaches a peak 30 ms after presentation of the “flash” while a monkey cone
typically takes 50 ms. This discrepancy indicates that the cone time constant (7., = 10

ms) used in the model may be too small. However, the chosen cone and horizontal cell
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Figure 5.1: Cone Response to Short Full-Field Flashes: The top figure
shows the model cone response to 30 ms full-field flashes at flash intensities of 10,
20, 40, 80, 160, 320, and 640 trolands added onto a background of 100 trolands. The
bottom figure shows membrane current from a monkey cone as the flash intensities
were progressively doubled (from Schnapf [55], ©1987 Scientific American).
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time constants are consistent with the values used by Richter [47]. In all other aspects, the

model’s cone response appears to behave similarly to the monkey cone cell.

5.2.2 Effects of Horizontal Cell Feedback on Cone Output

To isolate the responses of cones alone, without the horizontal cell feedback, electrophysi-
ologists often treat the retina with an aspartate solution. The presence of aspartate blocks
the horizontal cell signal from influencing the cone output [21][41]. In the computer retina
program, it is of course simple to turn off the horizontal cell feedback.

Figure 5.2(a) shows the model cone response to a flashed background test both with and
without horizontal cell feedback. Data on the effects of horizontal cell feedback on primate
cone responses are not available. However, for comparison, data for the gecko “cone-like”
rod photoreceptors is shown in figure 5.2(b).

Although the temporal characteristics of the gecko rod are much slower than a primate
cone and the input stimuli used are slightly different, the effects of horizontal cell feedback
on the gecko photoreceptor responses are comparable to that observed in the model cone
response. It can be seen that when horizontal cell feedback is present, the small delay
in the feedback signal with respect to the cone serves to significantly increase the peak
amplitude and sharpen the cone temporal response to a “flash”. The initial cone peak
response is quickly diminished by the effects of network feedback from the horizontal cells.
This network adaptation mechanisin acts to quickly return the cone potential to the near

the middle of its response range, thereby preventing cone saturation.

5.2.3 Cell Responses to Full-Field Flashes

Shown next are the outputs of the model cone, horizontal, and bipolar cells in response to
flashed background experiments performed at various ambient illumination levels, These
outputs are compared to those recorded in fish retinas by Normann {41] and Werblin [72].

Figure 5.3 shows the model cone outputs (top) and the Necturus (a type of fish) cone
recordings (bottom) when exposed to long (900 ms - 2 s) test flashes of various intensity
at two different background intensities [41]. The Necturus cone recordings were made in an
aspartate treated retina and thus were isolated from the effects of horizontal cell feedback
[41]. To allow for a comparison, a separate experiment recorded the cone outputs in the
absence of horizontal cell feedback. The model cone responses are similar to those recorded
in the Necturus. The main difference is that the model cones have a much sharper decay
from the initial peak response to a flash, and thus reach a stable plateau much faster (within
250 ms) than the Necturus cones (about 1 s). This decay to a stable plateau is a result of

cone temporal adaptation mechanisms which adapt the cone sensitivity to the new ambient
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Figure 5.2: Effect of Horizontal Cell Feedback on Cone Response: (a)
shows the normalized model cone responses to 900 ms flashes of varying intensity
with horizontal cell feedback enabled (left) and disabled (right). The intensity of
the flash is indicated beside each curve in log troland units. The background inten-
sity was 1.0 log troland units. It can be seen that horizontal cell feedback causes
the cone potential to very quickly return from a peak response to one nearer to
the middle of its response range, thus “sharpening” the cone transient response.
These responses may be compared with those obtained from recordings of gecko
“cone-like” rod photoreceptors in (b) with horizontal feedback present (left) and
absent (right) (from Dowling [21] with permission of Harvard University Press).
The gecko rods hyperpolarize in response to increased illumination stimulation and
thus their responses are inverted with respect to the model cone responses. Al-
though the temporal characteristics of gecko photoreceptors are much slower than
the primate cones and the input stimulus is different from that used in (a), the effect
of the horizontal cell feedback in sharpening the photoreceptor transient response
is comparable.
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intensity. The observed difference is thns due to the much shorter time constant chosen
for cone temporal adaptation in the computer retina (modeling pigment bleaching in the
primate system) than exists in the Necturus retina.

Figures 5.4 and 5.5 show the data for horizontal and midget bipolar cells, respectively,
for flashed background experiments as performed on the cones. In this case, horizontal cell
feedback to the cones was enabled to allow comparison of model cell outputs against those
of non-aspartate treated mudpuppy retinas [72]. The model cell outputs are comparable to
those of the mudpuppy but have a much sharper transient responses due to the shorter time
constants used in the model cells. Although primate horizontal and bipolar cell vecordings
are not available, Richter estimates that the time constant in mamials may be anywhere
from 5-10 times shorter than in fish [47).

5.2.4 Intensity-Response Curves

Figure 5.6 shows the intensity-response curves for the model cone, horizontal, midget hipolar
and diffuse bipolar cells. These curves were obtained by plotting the peak awmplitndes of
the cell output vs. the log intensity of the flashes as obtained from the flashed background
experiments described in the previous section. A separate curve was obtained at each of
the background intensities shown. The model cone and horizontal cell plots show that these
cells have a dynamic range of about 2.5-3.0 log units centred around any given background
intensity. Flashed intensities outside this range either clicit negligible cell response or a
saturated response. Increasing the hackground intensity shifts the operating point of cone
and horizontal cells and shifts their entire IR-curve to the 1ight without a change in shape.
Both the midget and diffuse bipolar cells also exhibit similar behaviour. The model midget
bipolar cell has a dynamic range of approximately 1.5 log units while the diffuse hipolar
cell has a very narrow 1.0 log unit response range around a given background intensity. For
background intensities close to the “cone threshold” (< 10% td), most of the response range
of bipolar cells is used to signal intensities brighter than the background (positive contrast ).
It is only at much brighter intensities that the model hipolar cells respond equally well to
negative contrast as well as positive contrast. Figure 5.6 (hottom) shows the corresponding
intensity-response curves obtained by Normann [41] and Werblin {72] in the Necturus (cone)
and mudpuppy (horizontal and bipolar cell) retinas. Note that the slopes of the fish cone and
horizontal cell curves are the negative of those for the corresponding computer retina cells
because of the hyperpolarizing nature of these biological cells. The mudpuppy horizontal
cells appear to have a dynamic range of slightly over 3.0 log units while the bipolar responds
to only a 1.5 log unit range of intensities around the prevailing background intensity.

The flashed background experiments show that the outputs of the computer retina ap-

99




5. EXPERIMENTS AND RESULTS

1 0 A CKGROUND 30 BACKGROUND
{ﬁ_ ’—[H/ 45
B A e
40
— . —
E .
30 30
) W 20 ___\—__[\ 20
15 ___L_—j\ s
10
—_— — L
018 025
05s 0Ss
A DARK ADAPTED B LIGHT ADAPTED
2 O AP ot PP pn, )
25

30 VMt AN ﬁw

35

45 w ' 55 ek,
50 60 W INT
55 W gg : W[\M

75 ™
80 w

i

H

ST

Figure 5.3: Cone Temporal Response to Full-Field Flashes: The top figure
shows the temporal response of model cone cells when 900 ms test flashes were
substituted for the background every 8 seconds at two different log background
intensities (1.0 and 3.0 log td) indicated at the top of each set of curves. The
intensity of the substituted flash is shown to the right of each trace in units of
log trolands. The initial cone response to a “flash” slowly decays to a new resting
potential as the cone adapts to the new illumination level. The model cone cell
response curves are similar to cone responses obtained by Normann in the aspartate
treated Necturus retina shown in the bottom figure [41] (with permission of the
Rockefeller University Press). Note that the cone potential in the Necturus retina
hyperpolarizes (becomes more negative) in response to brighter illumination levels
and thus is opposite in polarity to the model cone responses. Increasing flash
intensities are towards the bottom of the figure for the Necturus and the opposite
of those for the model cone curves.
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Figure 5.4: Horizontal Cell Response to Full-Ficld Flashes: The top fig-
ure shows the temporal response of model horizontal cells to 900 ms test flashes
substituted for the background every 8 seconds at two separate background inten-
sities (shown at the top in units of log trolands). The intensity of the substituted
flash is indicated to the right of each curve in log trolands as in the cone experi-
ment. The bottom figure shows horizontal cell recordings obtained by Werblin in
the mudpuppy retina in a similar experiment [72] (with permission of the Rockefeller
University Press). Note that mudpuppy horizontal cells hyperpolarize in response
to increased stimulation while computer retina horizontal cell outputs increase in
response to increased stimulation. As a result, the polarity of the model horizontal
cell response is the opposite of that of a mudpuppy horizontal cell.
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Figure 5.5: Midget Bipolar Cell Response to Full-Field Flashes: The top
figure shows the time course of model midget bipolar cells to 900 ms test flashes
substituted for the background every 8 seconds at three separate background inten-
sities (indicated at the top in units of log trolands). The intensity of the substituted
flash is shown to the right of each curve in log trolands. The bottom figure shows
recordings from a depolarizing bipolar cell in the mudpuppy retina obtained by
Werblin in a similar experiment [72] (with permission of the Rockefeller University

Press).
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Figure 5.6: Intensity-Response Curves: The top four plots in the Figure
show intensity-response curves for the model cone, horizontal, midget bipolar, and
diffuse bipolar cells as obtained from flashed background experiments. ‘T'he Hottom
plots show (from left to right), the corresponding data for similar experiments in
the Necturus (cone) [41] and mudpuppy (horizontal and bipolar cell) [72] (with
permission of the Rockefeller University Press). Note that the slopes of the fish cone
and horizontal cell curves are the negative of those for the corresponding computer
retina cells because of the hyperpolarizing nature of these biological retinal cells,

103



5. EXPERIMENTS AND RESULTS

proximate to the first order the temporal nature of responses found in biological retinas.
Where differences exist, most may be attributed to a difference in the time constants hetween

fish retinas and those used in the model implementation which were based on estimates for

a mammalian retina.

5.3 Sinusoidal Grating Stimulus Experiments

Sinusoidal grating stimuli are often used in visual psychophysics and electrophysiology since
they allow researchers to characterize the response of the visual system over a wide spec-
trum of spatial and temporal frequencies. Typically, a sinusoidal grating stimulus consists
of a pattern in which the intensity varies sinusoidally along one of the spatial coordinates.
In addition, the stimulus may be modulated temporally so that the intensity also varies
sinusoidally with time. Figure 5.3 shows a typical sinusoidal grating stimulus. The parame-
ters that specify the sinusoidal grating pattern include its spatial frequency k (cycles/pixel),
its temporal frequency of modulation w (Hz), background intensity [, and the contrast or

depth of modulation ¢ of the grating (0 < ¢ < 1.00).

Figure 5.7: Sinusoidal Grating Stimulus

In electrophysiological experiments on primates. the sinusoidal grating stimuli are pre-
seited while the outputs of cells in the parvocellular and magnocellular layers of the lateral
geniculate nuclens (LGN) are recorded. The parvocellular and magnocellular layers ate
where the outputs of retinal P and M ganglion cells terminate. respectively. The LGN cells
have very simple centre-surround receptive-field structures, just like the P and M retinal
ganglion cells, and are thus believed to have properties, in most respects, similar to the
ganglion cells which provide their input.

In these experiments, the recorded monkey P-cell and M-cell data may be expressed in
any number of ways. The most common measures used are contrast sensitivity, gain and
contrast gain. Contrast sensitivity for individual cells is typically defined as the reciprocal
of the contrast required in the input stimulus to produce a criterion response (a minimum
level of output that must, be achieved in order to consider the input stimuli distinguishable
from background nois<) in the cell output. Gain and contrast gain are defined here to be

consistent with Shapely [56) and Purpura [46]:
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Mean cell response
(Stimulus contrast)( Mean retinal lumination)

Gain =

(5.1)

(Mean cell response)

Contrast gain = (5.2)

(Stimulus contrast)

Only measurements of contrast gain or absolute gain are given for the computer retina
ganglion cell responses. Determination of the contrast sensitivity was omitted as it requires
a lengthy iterative procedure to determine the smallest input contrast required to elicit a
criterion output response. Measuring it would have increased the execution time of the
experiments by at least an order of magnitude. However, the measure of contrast gain is
very similar to contrast sensitivity if one assumes a linear system and thus is suflicient for
the qualitative comparisons made here.

Three types of experiments were conducted using sinusoidal grating stunuli to charac-

terize the following features of the computer 1etina:
o Changes in spatial frequency sensitivity caused by illmmination level,
o Changes in temporal frequency gain as a function of illumination level,
o Changes in contrast gain as a function of input contrast and temporal frequency,

The results from these experiments aie presented next.

5.3.1 Spatial Frequency Sensitivity

In this experiment. the spatial frequency sensitivity of the model P-cells and M-cells was
determined at several illumination levels. At each background illumination level, the peak
responses of the P-cell and M-cell outputs were recorded as the spatial lrequency of the
grating was slowly varied over 3 orders of magnitude. The input stimulus was presented
with a temporal modulation of 2 Hz while the grating contrast was kept fixed at ¢ = 0.20
throughout the experiment. The ganglion cell output levels were divided by the contrast ¢
to obtain a measure of contrast gain.

Figure 5.8 (top) shows the contrast gain of model P-cells and M-cells as o function
of spatial frequency at several illumination levels, The spatial frequencies have all been
converted from cycles/pixel to cycles/degree to aid compatison with Macaque monkey data
from Derrington {19] shown at the bottom of Figure 5.8. The figure illustrates several
aspects of the behaviour of the computer retina P-cells and M-cells which may be compaied

with known facts on the primate 1etina.

o The frequency response of primate P-cells and M-cells is spatially bandpass at photopic

illumination levels [81)[57].
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Figure 5.8: Ganglion Cell Spatial Frequency Tuning: The figures at the
top show the contrast gain of the computer retina P-cells (top left) and M-cells (top
right) as a function of the sinusoidal grating spatial frequency at several illumination
levels (10, 100, 1000, 10%, and 107 trolands). The temporal frequency of modulation
was maintained at 2 Hz and the grating contrast was fixed at ¢ = 0.20 throughout
the experiment. The spatial frequencies have been scaled from cycles/pixel to cy-
cles/degree to allow comparison with primate data. Comparable data on the typical
contrast sensitivity of individual Macagque monkey parvocellular (P) and magnocel-
lular (M) LGN cells is shown in the bottom two figures (from Derrington [19] with
permission of The Physiological Society (©1984). The grating stimuli used in the
Macaque monkey experiment were modulated at a temporal frequency of 5.2 Hz at
a background illumination of approximately 320 td.
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¢ Increasing illumination levels are accompanied by increases in visual acuity and thus

an ability to resolve higher sinusoidal grating frequencies [65]{75).

o At low illumination levels, an increase in illumination level is accompanied by an

increase in contrast sensitivity (contrast gain) [81].

¢ At still much higher illumination levels, the contrast sensitivity (contrast gain) as well
as spatial acuity reach a plateau and become insensitive to any further increases in

background illumination level [81].

¢ The M-cell system in the primate retina has a higher contrast gain than the P-cell
system [57][4].

o P-cells are able to respond to much higher spatial frequencies (10-60 cycles/degree)
than M-cells (10-20 cycles/degree) as a result of their much smaller receptive ficlds
[33].

All of the above properties are qualitatively exhibited by our computer retina. As the
illumination levels increase. the P-cell and M-cell contrast gain increases and the outputs
reach a peak at much higher spatial frequencies of modulation. The M-cell outputs exhibit
higher contrast gain (larger peak outputs) and are tuned to lower spatial frequencies than
P-cells at all illumination levels. The model P-cells have a peak sensitivity to spatial fre-
quencies of 12-15 cycles/degree and are able to signal frequencies up to 50-60 cycles/degree
and is consistent with primate data. The model P-cells and M-cells also exhibit a slight
spatial bandpass characteristic.

It should be noted that the shape of the spatial frequency response is dependent upon
the temporal frequency of modulation as well. Figure 4.10, which shows the spatiotemporal
tuning of P and M cells at one illumination level, illustrates this point. At very low temporal
frequencies, both P and M cell responses exhibit a strong spatial bandpass characteristic.
At moderate or high temporal frequencies of modulation, the spatial bandpass characteristic
becomes much less pronounced and eventually becomes a lowpass characteristic. This effect

is also observed in the primate and cat retinas [19][24].

5.3.2 Temporal Frequency Sensitivity

Figure 5.9 (top) shows the gain of the computer retina P and M ganglion cells as a function of
temporal frequency when stimulated by sinusoidal gratings. For this experiment, the spatial
frequency of the sinusoidal grating was held fixed at 3 cycles/degree (0.0208 cycles/pixel),
and the grating contrast was set to ¢=0.30 throughout the experiment. The grating temporal

frequency was varied slowly and held at each frequency for 4 seconds during which time the
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mean P-cell and M-cell outputs were recorded and divided by the mean retinal illumination
level and the contrast ¢ to obtain the gain values. This experiment was repeated for several
illumination levels to examine the effects of illumination level on the temporal frequency
gain. The model response may he compared to data from recordings in the Macaque monkey
LGN made by Purpura [46] shown in bottom of Figure 5.9.

The general temporal frequency properties of the computer retina P-cells and M-cells
may be summarized as follows. Figure 5.9 shows that the M-cell system responds with a
much larger gain to temporal stimulation and is thus able to respond better than the P-cell
system at both low and high temporal frequencies. This is in agreement with generally
cited properties of primate retinal P-cells and M-cells [33). The gain of the computer retina
M-cells is about 5-8 times larger than that for the P-cells and is comparable to the factor of
6-7 difference found in monkey cells. The peak P-cell temporal frequency is around 8-9 Hz
and within the range of values (8-12) Hz found in primates {46]. In addition, the temporal
frequency gain of both M-cells and P-cells is inversely proportional to the mean retinal
illumination level at low temporal flequencies and thus is consistent with Weber's law. At
higher temporal frequencies, the gain of the system depends increasingly on the temporal
frequency and time constants of various cells in the retina and becomes relatively insensitive
to the illumination level.

The computer retina model’s temporal frequency gain compares reasonably well with
the Macaque monkey data in most respects. The main difference is in the shift of the peak
temporal frequency (the temporal frequency which gives a peak ganglion cell output) as a
function of illumination level. In the monkey data, as the illumination levels rise, the peak
temporal frequency also increases fractionally. This seems to indicate that in addition to
modulation of receptive field sizes, the dynamic properties (time constants of various cells)
of the retina also adapt to the illumination level. In our model, for the sake of maintaining
simplicity, the time constants for all the cells are fixed with respect to illumination level
and thus, the computer retina peak temporal frequency does not change with illumination
level. The monkey data is accounted for by Purpura by adapting the time constants of
several lowpass temporal filters (throngh which the input signal passes) as a function of the

illumination level [46].

5.3.3 Contrast Gain

In order to measure the effect of input stimulus contrast on the contrast gain of P-cells and
M-cells, an additional experiment was performed and the responses compared to data on
a similar experiment performed on monkey retinal ganglion cells. In this experiment, the

outputs of model P-cells and M-cells were recorded as a function of temporal frequency at
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Figure 5.9: Ganglion Cell Temporal Frequency Gain: Response curves in
the top two figures shows the gain of foveal model P-cells (top left) and M-cells (top
right) as a function of sinusoidal grating temporal frequency at several background
illumination levels (indicated on the curves). A grating of fixed contrast (¢ = 0.20)
and spatial frequency 3 cycles/degree was used throughout the experiment. The
gain was computed as the mean ganglion cell output level divided by the product
of the stimulus contrast ¢ and the background illumination intensity. The data may
be compared with recordings of P-cells and M-cells made in the Macague monkey
LGN by Purpura [46] (reproduced with permission of Cambridge University Press
©1990). In Purpura’s data, a grating of spatial frequency 3 cycles/degree and
a grating contrast of 64% was used for the P-cell experiments while gratings of
1.6 cycles/degree and contrasts between 4% and 25% were used for the M-cell
experiments.
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several grating contrasts. The contrast gain was computed as defined in Equation 5.2, The
parameters held fixed in this experiment were the retinal illumination level (1000 trolands)
and the grating spatial frequency (0.009 cycles/pixel or 1.3 cycles/degree). Figure 5.10(top)
shows the contrast gain of model M-cells and P-cells as a function of temporal frequency
for several grating contrasts. Comparable data on retinal ganglion M-cells and P-cells in
Macaque monkeys are reported by Benardete [4] and are shown at the bottom of Figure 5.10.

This experiment shows that the P-cell contrast gain is largely unaffected by the stimulus
grating contrast while the M-cell contrast gain diminishes noticeably with increased contrast
input at the cell’s peak temporal frequency. Such behaviour is consistent with the notion
that P-cells, which have a smaller contrast gain than M-cells, respond linearly with respect
to contrast [33]. M-cells, however, are easily saturated by moderate to high contrasts in
the input signal due to their high contrast gain and thus exhibit diminished contrast gain
with increasing stimulus contrast. Again, the computer rctina outputs are similar to the

first order of approximation to the behaviour observed in monkey retinal ganglion cells.

5.4 Step Edge Responses

In order to illustrate the adaptation features of the model when confronted with changing
illumination levels, the computer retzna’s behaviour in the neighbourhood of a spatial step
edges was explored at several background illumination levels. The spatial step edge stimuli
consisted of images in which the right half (of the image) was twice as bright in intensity
as the left half at any given background intensity. The experiment was conducted so that
a uniform intensity background was presented for 2 seconds in order to allow the retinal
responses adapt to this intensity. This was followed by the presentation of the step edge
stimuli for 0.5 s with the left half of the image intensity matching the adapting background
intensity. The outputs of all cells along a line crossing perpendicular to the step edge (in the
x-direction) were recorded. This procedure was repeated at several background intensities.
The background intensities ranged from 100 trolands to 10" trolands in 1.0 log unit steps.
The responses of the cone, horizontal, and midget bipolar, and interplexiform cells, as well
as additional data from this experiment, are shown in Figure 5.4.

The plots (a)-(h) in Figure 5.4 illustrate several aspects about the model retina:

¢ Plot (a) shows the illumination intensity profile across the step edge at pixel position
x=20. The right side of the image is twice as bright as the left half at each background

intensity.

o Plot (b) shows the peak cone response approximately 40 ms after presentation of the
step edge. For retinal illumination levels below 10* trolands (td), increasing back-
ground illumination levels result in a steady increase in the cone potential. However,
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Figure 5.10: P-cell and M-cell Contrast Gain: The top two plots shows the
contrast gain of model M-celis (left) and P-cells (right) as a function of temporal
frequency at several grating contrasts. The tests were performed at a background
illumination level of 103 td and a spatial frequency of 0.009 cycles/pixel (1.3 ¢y-
cles/degree). The bottom figure (left to right) shows similar data for a cat X-ccll,
and a monkey (X-like) M-cell, and a monkey P-cell from Benardete [4] (with per-
mission of Cambridge University Press ©1992). The M-cell is more sensitive to
changes in contrast than the P-cell. Increased levels of contrast lead to diminished
contrast gain in the M-cell system due to the nonlinear saturation function. This
effect is much less pronounced in P-cells because of their smaller contrast gains.
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Figure 5.11: Step Edge Responses: The figures show the results of the spatial
step edge experiment. Shown in the figure are (a) the step edge intensity profile, (b)-
(d) the peak cone, horizontal and midget bipolar cell outputs, (¢) the steady-state
interplexiform cell outputs, (f) the Gaussian width of the Horizontal cell receptive
field (RF) along the step edge profile, (g) variation of cone and horizontal cell
RF’s with illumination level and (h) the steady-state midget bipolar cell outputs.
Explanations of these figures are found in the text.
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for intensities above 10* td, mechanisms modelling the effects of pigment bleaching
and horizontal cell feedback act to keep the cone potential near the middle of its op-
erating range. The magnitude of the peak cone response to the step edge depends on
the contrast of the step edge and very little on the illumination level,

Plot (c) shows that the larger receptive fields of the horizontal cell layer result in a
blurred version of the cone output.

Plot (d) shows the peak midget bipolar cell output approximately 10 ms after pre-
sentation of the edge. Note that for decreasing illumination levels, the width of the
step edge response becomes wider as cone coupling and horizontal cell coupling in-
creases. In all other aspects, the bipolar cell response is insensitive to global changes
in illumination level and instead responds to the contrast in the visual signal.

Plot (e) shows the steady-state output of the interplexiform cell layer in the model.
Interplexiform cells receive their input from bipolar cells and thus their outputs are
large in regions where the bipolar cell outputs are large (like near the step edge).

Plot (f) shows how the depree of horizontal cell coupling (expressed by the width
of its Gaussian shaped receptive field) is reduced by increasing levels of illumination
level. Dopamine released by interplexiform cells in the neighbourhood of the step edge
further reduces the horizontal cell coupling in cells near the step edge.

Plot (g) shows the cone and horizontal cell receptive field (RF) sizes (again expressed
in the widths of the equivalent Gaussians describing their RF’'s) as function of back-
ground illumination level. At low illumination levels, cone and horizontal cell recep-
tive fields expand in size in order to improve absolute contrast detection. At higher
illumination levels, they shrink in order to improve acuity.

Plot(h) shows the midget bipolar cell response 250 ms after presentation of the step
edge. Note that, except in the vicinity of the edge, the bipolar cell response on the
left side and right side of the image has now faded to zero. The figure also shows that
the width of the step edge response gets narrower with increasing illumination levels
and is as a result of the shrinking receptive field sizes.

The step-edge experiment has illustrated some of the adaptive properties of the retinal

model more clearly. The remaining experiments, in the next section, show the response of

the computer retina to real images from image databases and a ray tracing package.

5.5 Complex Images

The previous sections illustrated the response of the romputer retina in 1esponse to very

simple stimuli. We now show the model response to more complex immages. The images

used for this section are of two types. Some of the images were generated using a simple

ray-tracing package which permitted intensity values to range over 4 orders of magnitude.

Others were obtained fronr image databases and their intensities were exponentially scaled

to expand the dynamic range of intensities in the input signal. Because of the considerable
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storage and computational requirements to generate temporally varying images, the images
used in these experiments were all temporally stationary.

In order to display the outputs of various layers of cells on the computer screen and
to make figures for this thesis, the computer retina cell output ranges were scaled to fit
intensity values from 0 to 255. For the bipolar and ganglion cells, which have outputs that
may be positive or negative depending on the input contrast, the zero level of the outputs

was set to a pixel intensity of 127, with the total output dynamic range covering intensities

from O to 255.

5.5.1 Response to Large Dynamic Range Images

Figure 5.12 shows the steady-state outputs of the computer retina to an image containing
3 objects (a complex block, a sphere, and a cylinder) on a table surface. The intensities in
this generated inage varied over 3-4 orders of magnitude.

tven though the intensities in the input image range over 3-4 orders of magnitude, in
any given local neighbourhood of the image, the cones adapt their sensitivity based on the
local ambient intensity level. This adaptation mechanism tends to return the cone potential
to near the middle of its range. As a result, the steady-state response of the cone layer to
a stationary image is for the most part equal to the cone half-maximnm response except in
regions of sharp intensity gradient. The P-cell and M-cell steady-state responses are only
sensitive to spatial edges in the image. All other features fade away in the steady-state
response. This is similar to the “fixation blindness” observed in the primate retina where
stabilized images on the retina fade away after a very short time [36]. Note that there is
ouly one M-cell for every nine P-cells, and thus the outputs of the M-cell layer sample the
image at a much coarser resolution than the P-cell layer.

Figure 5.13 shows the response of the computer retina to another sample image, this
time taken from an image database. This image is of a rock climber on the face of a
mountain. The itnage intensities in the original image (0-255) were exponentially scaled to
cover approximately five orders of magnitude. In the original image, shown at the top left
of Figure 5.13, it is difficult to see details on the relatively dark cliff surface. However,
the computer retina locally adapts its sensitivity at the cone level (top right image) so that
both the bright and dark regions of the scene can be seen. In particular, regions obscured

by shadows in the original scene are more clearly visible in the P-cell and M-cell outputs.

5.5.2 Foveated Sampling and Data Reduction

For all previous experiments in this chapter, the changes in the processing of visual infor-

mation associated with retinal eccentricity have been ignored. All comparisons made with
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Figure 5.12: Steady-State Response to Blocks Image: The top left figure
shows .he input image with the intensities normalized to fit into a greyscale of () Lo
255. The actual intensities in the input stimulus ranged from 1 to 5x10? trolands
(4 log units dynamic range). The very dim cylinder and table are difficult to see
in original image. The top right figure shows the steady-state cone response to the
image after 350 ms. The cones locally adapt their sensitivity so that both bright
regions and dim regions in the image are visible. The P-cell / midget hipolar and
M-cell / diffuse bipolar cell outputs are shown in the bottom left and bottom right
figures, respectively. All outputs are normalized to fit a greyscale of 0 to 255.

biological data were from data in the fovea where the ratio of cone cells to ganglion cells is
one-to-one. For these experiments, the fovea was assumed to cover the entire image. This
greatly simplified the comparison and analysis of the experimental data as the effects of
nonuniform sampling and data reduction that occur in the periphery could be ignored.

However the computer retina is also able to crudely approximate the effects of increas-
ing receptive field sizes and coarser resolution sampling occurring in the periphery. The
computer retina program makes use of log-polar mappings which separate the image data
into two regions: the fovea and the periphery®

In the fovea, there is a one-to-one mapping of the cone inputs to ganglion cell outputs.

5The computer program used to perform the log-polar mappings was developed by Marc Bolduc, McGill
University, as part of his Master’s thesis [6].
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Figure 5.13: Rock Climber: The figures show the outputs of the computer
retina to the “rock climber” image. The intensities in this image were scaled expo-
nentially from 0-255 to cover approximately 5 log units before being processed by
the compuler retina. Shown from left to right, top to bottom, are the original im-
age, followed by the cone, the peak P-cell and M-cell outputs, and the steady-state
P-cell and M-cell outputs. Note that although it is difficult determine the absolute
illumination level from the ganglion cell outputs, the local variations in contrast are
quite visible in all parts of the image.
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In the computer retina periphery, a log-polar sampling scheme, as described in Chapter 4,
is used to model the nonuniform sampling occurring at the receptos fevel, as well as the
convergence of information from the cones to the ganglion cell level.

The primate retina achieves tremendous data reduction through the use of a nonuniform
sampling scheme that samples the image with increasingly coarser 1esclution with increasing
retinal eccentricity. Further data reduction is realized by converging increasing numbers of
cone inputs into ganglion cell outputs. The primate retina has just over a million ganglion
cell outputs for about five million cone inputs and thus realizes a five fold reduction in the
number of outputs to be processed at higher levels.

Figure 5.14 illustrates the data reduction realized by the computer retina when using a
log-polar transformation on the periphery data. The input image size is H12x512 (262,144
pixels). The foveated computer rctina generates separate outputs for the fovea and periphery
for both P-cells and M-cells. The foveal data is represented in the original Cartesian domain
while the peripheral information is represented in the log-polar domain. In the log-polar
domain images. increasing log eccentricity is in the horizontal direction to the right, while
the angular position in the retina is represented along the vertical axis. We arbitrarily
selected the fovea diameter for the computer retina to he approximately 15% of the original
image and required that the size of receptive fields on fovea and periphery boundaries match
each other. The size of the outputs for each layer were as follows: P-cell fovea (79x79), M-celi
fovea (26x26), P-cell periphery (121x305), M-cell periphery (40x102), for a total of 47902
pixels, including a 15% overlap region® between the fovea and periphery data structures.
The computer retina thus achieves a 6 fold reduction in data required to he processed by
subsequent stages of visual processing by the use of a log-polar mapping scheme.

In order to see the representation of the foveal and peripheral information in the original
retinal domain, an inverse-mapping may be performed. Figure 5.15 show . the information

in the fovea and the periphery data structures mapped back to the retinal domain.

5.6 Summary

The experiments in this chapter have illustrated the response of the computer retina for
a variety of conditions. The experiments performed with sinusoidal grating stimuli and
flashed background stimuli have shown, by direct comparison, that at least to a first order

of approximation, the qualitative hehaviour of the computer retina cells is similar to that of

®Near the fovea-periphery houndary the computation of the cell outputs requires iformation from both
the fovea and the periphery. In order to decouple the computations in the fovea and the persiphery, and
thereby greatly reduce the computation complexity, the fovea and peniphery data structures were extended
by over 15% so that they overlapped each other. This allowed the computations in the fovea and the
periphery to be performed independently of each other,
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Figure 5.14: Foveated Retina Outputs: The top figure shows the original
image as presented to the compuler retina. The middle row of figures shows the
foveal representations of the input image, and the cone, horizontal cell, midget
bipolar / P-cell, diffuse bipolar / M-cell layer outputs (from left to right). The
foveal portion of the image is quite small (about 79 pixels in diameter) and is
located at the centre of the original image. The bottom row shows the log-polar
domain periphery representations in the same order as for the fovea. Note that the
actual number of M-cell outputs is only one-ninth of the those for P-cells but the
M-cell output image has been expanded nine-fold for easier comparison here.
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fish and primate retinas. Both the temporal and spatial frequency respouses of the computer
retina cells match the data from experiments on fish and primate 1etinas and thus validates
our model [4]{19][46][55][41]){72]. The step edge experiment was presented to reveal the how
the model responds to a spatial step edge over a large range of background intensity levels.
This experiment also illustrated the manner in which horizontal cell and cone photoreceptor
coupling varies with the illumination level and the local contrast in the scene. The final
experiments, with more realistic images, illustrated that our retinal model accounts for not
only the adaptational aspects of the retinal function but also mumics the data reduction

found in the human retina.
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Figure 5.15: Foveated Data Mapped back to the Retinal Domain: The
figure shows the data from the fovea and periphery data structures mapped back
to the retinal domain using an inverse mapping. The inverse mapping is shown for
the original image (top left), and outputs of the cone (top right), horizontal cell
(bottom left), and midget bipolar / P-type ganglion cell layers (bottom right). The
inverse mapping of the original image illustrates how log-polar mappings model the
foveation in the retina. Although the foveal region is sampled at high resolution,
features become blurrier with increasing eccentricity in the periphery. The P-cell
outputs enhance spatial contrast in the original image. Note that certain regions
in the image such as under the desk are enhanced and slightly easier to see in the
. P-cell output than in the original image.
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Chapter 6 CONCLUSIONS

The aim of this project was to develop a relatively simple model of information processing
in the primate retina. It was required that the retinal model not only account for the data
reduction strategies employed by the biological retina to meet the transmission hottleneck
at the optic nerve, but also strategies used to deal with a large dynamic range of illumination
intensities. It was further required that the model be relatively simple so that a potential
silicon implementation may be considered in the future.

This thesis has presented an overview of primate retinal biology and reviewed existing
models of different aspects of information processing and adaptation in the cone system,
Based on this information, a simmple model of the adaptation and achromatic information
processing in the primate retina cone pathways was presented. The computer retina inte-
grates different aspects of retinal processing such as local neighbouthood sensitivity control,
enhancement of spatiotemporal contrast, and data reduction through nonuniform sampling
into one coherent model. In addition, a model of the local adaptation of cell receptive field
(RF) sizes with illumination level and spatiotemporal contrast was proposed and incorpo-
rated into the computer retine. Experiments similar to those performed by electrophysiolo-
gists on fish and primate retinas were conducted to validate the model. The responses of the
computer retina were compared to those of hiological retinas and shown to be qualitatively
similar. In addition, the model response to synthetic and real images was presented to il-
lustrate the effects of nonuniform sampling and adaptation. The experiments indicate that
the computer retina model captures many of the essential properties of visnal processing in

the primate retina and thus may be used as a basis for a sensor design in silicon.

6.1 Summary of the Retinal Model Features

Figure 4.11 summarizes schematically the computations performed in the retinal model.
The information processing strategies employed in the computer 1etina may be used as a
starting point for the design of “smart” sensors more closely matched in performance to the

human retina. These strategies may be summarized as follows:

e Nonuniform sampling at the photoreceptor level, modelled by the use of a log-polar
mapping, significantly reduces the amount of data that needs to be processed at

subsequent levels.

‘ o The cone layer is responsible for converting the illumination intensity information into

signals used by the rest of the retinal network. A measure of the local neighbourhood
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spatiotemporal ambient intensity is used to locally set the sensitivity of each photore-
ceptor element and allows the computer retina to adapt to scenes containing a large
dynamic range of retinal illumination intensities. This feature models the effects of
pigment bleaching and horizontal cell feedback on the adaptation of cone sensitivity

in biological retinas.

Diffusion is used to model the coupling or spread of signals between cells in any
given retinal layer and to generate Gaussian-weighted receptive fields. The diffusion
operation requires information only frorn immediately neighbouring cells and thus is

relatively simple to iinplement in silicon.

The horizontal cell layer generates a spatial and temporal lowpass version of the
visnal signal. Horizontal cells have much larger receptive fields and integration time

constants than cones.

A difference operation between the computer retina cone and hoiizontal cell signals,
cach with different spatiotemporal characteristics, leads to the extraction and en-
hancement of spatiotemporal contrast in the visual signal at the bipolar and ganglion

cell levels.

Two output channels emeige at the bipolar and ganglion cell levels with visual in-
formation coded at different scales and with distinct spatiotemporal properties. The
smaller receptive field sizes and greater number of midget bipolar and P-type gan-
glion cells make them sensitive to high spatial contrast. In comparison, diffuse bipolar
and M-type ganglion cells have much larger receptive fields, are less numerous, and
are better tuned to respond to temporal frequency modulation. The spatiotemporal
properties of the computer retina P-cells and M-cells appear qualitatively similar to

those of cells in Macague monkey retinas.

The diffusivity or coupling between cells in the cone and horizontal cell layers in the
computer retina is changed as a function of the local neighbourhood illumination level.
Altering the cell coupling in such a manner affects the size of receptive fields at the
ganglion cell level and serves as an adaptation mechanism that attempts to maintain
both high contrast sensitivity and high visual acuity. At low illumination levels,
increased cone and horizontal cell coupling leads to larger receptive field sizes. This
reduces the visual acuity but combats photon noise and improves the output signal-
to-noise ratio (SNR) so that small contrasts in the visual signal can be detected.
At higher illuminations, photon noise hecomes insignificant compared to the intensity
signal so that small contrasts may be detected even with reduced coupling and smaller

receptive fields.
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e Cells in the interplexiform (IPX) layer react vigorously in regions of high spatiotem-
poral contrast in the input image and reduce the RF size of horizontal colls. This
adaptation mechanism reduces the relative size of the surround portion of bipolar and
ganglion cell RF’s in regions of high spatiotemporal contrast (spatial edges, flickering

lights, etc.) which improves the localization of spatial and temporal edges.

6.2 Limitations of the Retinal Model

Although the computer retinabehaves in a manner qualitatively similar to the primate retina
in many respects, there are several limitations of the model. These may be summarized as

follows:

® Only the cone system is modelled. The mode of operation in the biological retina
switches smoothly from the rod regime at very dim illumination levels to the cone
regime at brighter levels. The hehaviour of the computer retina thus differs from the
performance of the biological retina in the mesopic illumination range when both the

cone and rod systems are in operation.

e Primate cone pathways carry chromatic as well as achromatic luminance informadtion
in the same channel. However, the computer retina model ignores the processing
of colour information. The contrast sensitivity of primate P-cells to chromatically
modulated gratings have heen shown to be up to 8 times higher than for achromatic
gratings and thus suggests a vital 10le for chromatic information in visual perception
(11].

e Many simplifications were made in developing the model. The omission of cortain
features may have important consequences in the overall processing of visual informa-
tion. My-cells, which are relatively nonlinear and comprise approximately 2% of the
ganglion cell population, are not incorporated into the model; only Mx and P cells
are modelled. In addition. the effects of amacrine cells on the outputs of ganglion
cells have been omitted. In order to reduce the number of outputs required in the
computer retina at the bipolar and ganglion cell level by two, hoth the positive and
negative contrast signals are carried in a single channel. By comparison, hiological
retinas split this information into separate on-centre and off-centre pathways at the

bipolar cell level.

o The temporal properties of P-cells and M-cells in the computer retina differ from those
of the respective primate ganglion cells in at least two ways. The first difference is in

the peak temporal frequency sensitivity. The peak temporal frequency of the model

123




6. CONCLUSIONS

P-cells and M-cells differs only slightly from each other (10 Hz and 12 Hz respectively)

whereas this difference is much larger in primates (8 Hz and 16 Hz respectively) [33].

e The contrast gain of primate ganglion cells drops off rapidly for temporal frequencies
greater than the peak gain frequency so that P-cells and M-cells are unable to follow
stimulus modulations more rapid than 30 Hz and 60-80 Hz respectively {33]. In
comparison, the computer relina P-cell and M-cell contrast gain diminishes rather
slowly, indicating a requirement for extra stages of temporal lowpass filtering or higher

order lowpass filters in all stages of processing.

6.3 Suggestions for Future Research

This thesis has outlined a simple retinal model which incorporates many of the features
observed in the primate retina. Although the many simplifications made in the model
lead to some discrepancies between the hehaviour of the computer retina and hiological
1etina, the essential properties of adaptation to a wide range of illumination levels and data
reduction have been incorporated. This model was developed with the hope that it may
eventually be tested in silicon. Thus a logical next step mav be to investigate the feasibility
of a silicon implementation of the model.

Future research of possibly great benefit would be the extension of the model to in-
corporate features of the 10d system for operation at very low illumination levels and the
processing of chromatic information. In addition, many of the limitations of the model
outlined above may be addressed at the expense of slight increases in model complexity and
increased number of parameters. However, the benefit would he a more complete model of
retinal information processing,.

Other areas that require further exploration ate the possible effects of the adaptation
of the integration time constants and the relative weightings of the centre and surround
portions of hipolar and ganglion cell receptive fields as a function of illumination intensity
or spatiotemporal countrast.

The retinal model presented here is not a final product. Instead it is hoped that this
will thesis serve as a foundation on which to base the design of “smart” sensors and that

more comprehensive retinal models may be developed in the future.
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