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Abstract

This thesis comprises three essays in empirical asset pricing. My first essay entitled ”Are
stock and corporate bond markets integrated? A Big Data Approach” I document the
existence a growing Factor Zoo of discovered characteristics and factors that predict the
cross-section of corporate bond returns and generate a significant high minus low portfolio
alpha. I determine a higher statistical benchmark, by accounting for those characteristics
and factors that have been discovered in published and working papers and find that in
cross-sectional regressions and portfolio sorts of over a hundred characteristics and factors,
on average 2.4% predict the cross-section of corporate bond returns when adjusting for
higher benchmarks. A multivariate horse-race of all characteristics and factors in cross-
sectional regressions finds a higher number of corporate bond, rather than stock, character-
istics and factors that predict the cross-section of corporate bond returns when adjusting
for higher benchmarks. In addition to the lower number of corporate bond characteristics
and factors that predict the cross-section of stock returns, my results show that the stock
and corporate bond markets are more segmented than previously documented.

My second essay is based on a joint working paper entitled ”Do Option Implied Mea-
sures of Stock Mispricing Find Investment Opportunities or Market Frictions” where we
find that existing option implied stock mis-pricing measures, the portfolios identified as
being the most mispriced (highest quintile), typically have the highest shorting fee. When
those stocks are omitted, the average abnormal returns of the long-short stock portfolios
are insignificant or greatly reduced in economic magnitude. We propose a new measure,
IPD, using a novel intra-day options trades data set, circumvents this and does not require
shorting hard to borrow firms.

My third essay is based on a joint working paper entitled ”Accounting Transparency and
the Implied Volatility Skew”. We show theoretically and empirically that firms with higher
accounting transparency have an implied volatility smirk that is more sensitive to leverage
(vice versa). The more clear the accounting information the more skewed the implied
volatility smirk. Our theoretical predictions rely on extending the Duffie and Lando [2001]
credit risk model to stock option pricing whereby incomplete accounting information and
the risk of bankruptcy together act as an economic source of jump risk for stocks. Empirical
tests confirm the theoretical predictions of the model and the model can be solved in closed
form solution up to Bivariate Standard Normal Cumulative Distribution Function.
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Resume

Cette thèse consiste de trois essaies de finance empirique. Dans la premiére essaie, je
documente l’éxistence d’un Factor Zoo de caractéristiques et de facteurs qui prédisent la
coupe transversale des obligations d’entreprise et génère une long-short alpha portefeuille
significatif. Je détermine un point de référence statistique plus élevé, en tenant compte de
tous les caractéristiques et facteurs qui ont été découverts dans les journeau academique
de finance. Dans les régressions transversales et les exercises portefeuille, en utilisant plus
d’une centaine de caractéristiques et de facteurs, en moyenne 2.4% de ces caractéristiques
et de facteurs prédisent la coupe transversale des obligations d’entreprise en utilisant une
ajustement statistique pour tenir compte de tous les caractéristiques et de facteurs que je
teste. Une horse-race de plus qu centaine de caractéristiques et facteurs dans les régressions
transversales pour prédire la coup transversale des obligations d’entreprise, révèle que la
plupart qui sont significatif vient de la donnée des d’obligations d’entreprise et pas la
donnée des d’actions, quand utilisant une ajustement statistique pour tenir compte de tous
les caractéristiques et de facteurs que je teste. En plus, les caractéristiques des obligations
d’entreprise n’aide pas a prédire la coupe transversale des actions, alors mes résultats
montre que les marchés des actions et des obligations d’entreprise sont plus segmentés que
ce qui avait été précédemment documenté.

Dans mon deuxieme essaie, nous découvrons que les mesures existante de tarification
erronée des actions (actions mal évalués) qui sont construit en utilisant d’infomation des
dérivés d’actions, identifiés les actions qui sont difficile a faire du vent de flash et pas
les actions qui sont mal évalués. Lorsqu’on omises les actions qui sont le plus cher de
faire le vent de flash, les alphas des long-short portefeuilles d’actions sont insignifiants
ou considérablement réduits. Nous proposons une nouvelle mesure, IPD, qui utilise un
nouvel ensemble de données des transactions de dérivés, qui fonctionne bien pour prédire
les retours des actions quand on omises les actions qui sont le plus cher de faire le vent de
flash.

Dans mon troisième essaie, nous montrons théoriquement et empiriquement que les en-
treprises avec une transparence comptable plus élevée ont un sourire de volatilité implicite
qui est plus sensible à l’effet de levier (vice versa). Plus les informations comptables sont
claires, plus le sourire de volatilité implicite est biaisé. Nos résultats théoriques reposent
sur l’extension du modèle de risque de crédit Duffie and Lando [2001] à la tarification
des options d’achat d’actions, dans laquelle des informations comptables incomplètes et le
risque de faillite agissent ensemble comme une source économique de risque de saut pour
les actions.
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Chapter 1

Thesis Roadmap

My thesis comprises three essays based on three separate working papers each of which is
written as a separate chapter in this dissertation. Each of my three essays is rooted in the
empirical asset pricing literature in finance. The common theme of all three essays is to
analyze the relationship and interaction between two related financial markets.

Chapter 2 of this dissertation is based on my job market paper Szaura [2020]. A lit-
erature has emerged in finance that demands a higher hurdle for whether characteristics
and factors predict the cross-section of stock returns. I observe a growing Factor Zoo of
discovered characteristics and factors that predict the cross-section of corporate bond re-
turns and generate a significant high minus low portfolio alpha. Once determining a higher
benchmark, by accounting for those characteristics and factors that have been discovered,
many are no longer significant. In cross-sectional regressions and portfolio sorts of over a
hundred characteristics and factors, on average 2.4% predict the cross-section of corporate
bond returns when adjusting for higher benchmarks. A horse-race of all characteristics
and factors in cross-sectional regressions finds a higher number of corporate bond, rather
than stock, characteristics and factors that predict the cross-section of corporate bond re-
turns when adjusting for higher benchmarks. In addition to the lower number of corporate
bond characteristics and factors that predict the cross-section of stock returns, my results
suggest that the stock and corporate bond markets are more segmented than previously
documented.

Chapter 3 of this dissertation is based on the working paper Cremers et al. [2019]. Many
measures of option implied stock mis-pricing have been proposed in the academic literature.
In this paper we ask: Do these option implied stock mis-pricing (informed trading (pri-
vate information)) measures capture investment opportunities or simply market frictions?

1



Answer: Most existing measures capture market frictions, however, we do propose a new
measure (IPD) using a novel data set of options trades in which abnormal trading profits
are driven by taking a long position in larger firms where there is more option trading and
does not require shorting hard to borrow firms. We find that the average abnormal returns
that existing option implied stock mis-pricing measures require the investor to short a
portfolio of stocks that are hard to borrow (highest quintile of shorting fee). When sorting
stocks into quintile portfolios by existing option implied stock mis-pricing measures, the
portfolios identified as being the most mis-priced (highest quintile) have the highest short-
ing fee. When those stocks that have the highest quintile of shorting fees are omitted, the
average abnormal returns of the long-short stock portfolios of most existing measures are
insignificant or greatly reduced in economic magnitude, however, not for IPD.

Chapter 4 of this dissertation is based on the working paper Doshi et al. [2020]. In
this paper we ask: How does the quality of firm accounting information change the impact
of firm leverage on the implied volatility skew? We show theoretically and empirically
that firms with higher accounting transparency have an implied volatility smirk that is
more sensitive to leverage (vice versa). The more clear the accounting information the
more skewed the implied volatility smirk. Our theoretical predictions rely on extending
the Duffie and Lando [2001] credit risk model to stock option pricing whereby incomplete
accounting information and the risk of bankruptcy together act as an economic source of
jump risk for stocks. Our model can be solved in closed form up to Bivariate Normal
Cumulative Distribution Function.

Chapter 5 concludes with future avenues of research for each of the chapters of re-
search.
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Chapter 2

Are stock and corporate bond
markets integrated? A Big Data
Approach

2.1 Introduction

Recently the cross-section of U.S. corporate bond returns has seen a plethora of signals dis-
covered that predict the cross-section of corporate bond returns.1 We know that corporate
bonds are linked to the firm stock through the structure of the firm and will share varia-
tion in stock risk premia. Through this channel, signals which are significant in predicting
future stock returns, i.e. firm stock risk premium, can be informative about corporate
bond risk premium. Studying the corporate bond return premium, however, is a complex
task compared to the stock premium. Some of the reasons for the challenging nature due
to the fact that corporate bonds trade in a decentralized over-the-counter dealer market
(whereas stocks trade in a liquid centralized limit-order book market), multiple underlying
bonds for the same firm, different times to maturity, different credit ratings, and different
clientele in that bond market investors are largely institutional investors who have long-
term buy-and-hold investment strategies, and other reasons. Despite the challenges, the

1Despite the fact that characteristics are not risk factors, if firm characteristics are correlated with the
cross-section of corporate bond returns, a long-short portfolio can typically be formed in order to proxy
for the unknown risk factor and hence in this form the characteristic can be considered as a risk factor.
Hence we refer to both characteristics and factors that predict the cross-section as signals for simplicity
for the remainder of the paper.
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cross-section of corporate bond returns has had signals discovered from many different risk
categories.2

Recently the empirical cross-sectional analysis of returns literature has been criticized
for not adjusting their testing methods to incorporate all the signals that have already been
discovered in published and working papers in the literature (see Harvey et al. [2016]) as
well as selective reporting of only those signals that are statistically significant (see Green
et al. [2017] and Chordia et al. [2020]).3 Motivated by the increase in the number of
recently discovered signals that predict the cross-section of corporate bond returns, as
well as the recent criticisms in the cross-sectional empirical analysis of returns in this
paper I conduct a comprehensive analysis of the integration between the risk premia of
the corporate bond and stock markets by asking: (1) Do signals that originate from the
corporate bond literature perform better than those that originate from the stock return
literature in predicting the cross-section of corporate bond returns? (2) Do signals that
originate from the corporate bond literature predict the cross-section of stock returns?

To assess whether signals that originate from the corporate bond literature perform bet-
ter than those that originate from the stock return literature in predicting the cross-section
of corporate bond returns, I first analyze which set of signals have lower false rejections in
published papers to see historically which signals are better identified to predict the cross-
section of returns.4 I then test which are significant signals in classical empirical asset
pricing tests (multivariate cross-section regressions and double sorts) adjusting the statis-
tical significance level for the number of signals simultaneously being tested and using a set

2For example, in terms of the market microstructure risk class, bondholders earn higher returns for
more illiquid bonds and illiquid stocks (Lin et al. [2011]), for bonds that have higher financial intermediary
risk exposure and bond supply both positively predicts future bond returns (He et al. [2017] and Goldberg
and Nozawa [2019] respectively). Another example, from return based signals, would be bonds that have
a higher exposure to systematic risk bond market return, or credit risk, or liquidity risk, and downside
risk, all earn higher bond returns (Bai et al. [2019b]). I present a comprehensive study of the signals that
have been already been discovered to predict the cross-section of corporate bond returns in Section 2.4.1.

3Harvey et al. [2016] advocate for adjusting the level of significance in empirical cross-sectional asset
pricing tests based on the number of signals that have already been discovered in published and working
papers in the literature. This is due to the fact that the same null hypothesis, that a signal does not
predict the cross-section of returns, has been tested many times in those published and working papers in
the literature. Harvey et al. [2016] show that using multiple hypothesis testing techniques from statistics
is necessary in order to reduce the probability of getting at least one signal to be statistically significant
result due to random change increases as the number of signals tested in predicting the cross section of
returns increases.

4I analyze whether corporate bond or stocks signals that have been already been discovered to predict
the cross-section of corporate bond returns have lower false discovery rates (by applying the empirical
simulation method from Harvey et al. [2016]) once adjusting the significance level for all the of discovered
signals.
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of over a hundred signals which are an unbiased of selective reporting as well as represen-
tative of different risk categories (stock illiquidity, stock risk, equity options, balance sheet
variables, and corporate bond based signals) and signals that have already been discovered
in published and working papers in the literature. Adjusting the significance level for the
number of signals tested, fewer signals will be statistically significant (as well as including
all signals in multivariate regressions) specifically those signals that are weakly identified
(having a lower t-statistic) in predicting the cross-section of corporate bond returns. Once
adjusting the significance level for the number of signals tested in set of over a hundred
signals which are an unbiased of selective reporting, the number of signals that originate
from the corporate bond literature compared to those that originate from the stock return
literature in predicting the cross-section of corporate bond returns is how I measure how
well integrated the the risk premia of the corporate bond and stock markets are.

When considering a higher threshold of discovered signals in published papers or em-
pirical asset pricing tests, the lower false discoveries in the corporate bond based signals
over stock based signals suggest that corporate bond signals, over stock signals, better
predict the cross-section of corporate bond returns. A horse-race of all signals in a mul-
tivariate cross-sectional regression to predict the cross-section of corporate bond returns
finds a higher frequency of corporate bond, rather than stock, signals that drive return
predictability of the cross-section of corporate bond returns. Results are driven by bond
return skewness, bond age, and bond return standard deviation. In a second horse-race, us-
ing all signals to predict the cross-section of stock returns finds none of the corporate bond
signals drive return predictability of the cross-section of stock returns when considering
higher benchmarks.

In order to measure the ability of combinations of signals in predicting corporate bond
returns (and stock returns), I sort corporate bond returns based on pairs of the all signals
into conditional double sorted quintile portfolios four corner high minus low alphas. When
imposing higher thresholds to the over 40, 000 high-minus-low portfolios, 0.13% of double
sort combinations of signals are statistically significant in predicting the cross-section of
corporate bond returns. Of those double sorted portfolios who exceed the multiple hy-
pothesis testing benchmark, over 60% of them involve sorting on a corporate bond signal.
Similarly, in order to measure the ability of combinations of signals in predicting stock
returns (for firms with corporate bonds outstanding), I sort stock returns based on pairs
of the all signals into conditional double sorted quintile portfolios four corner high minus
low alphas. When imposing higher thresholds to the over 40, 000 high-minus-low portfo-
lios, only one of double sort combinations of signals are true discoveries in predicting the
cross-section of stock returns, and does not use a corporate bond signal. Both sets of horse-
racing results are robust to different factor specifications, value-weighting by firm size (not
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to overweight micro-cap firm corporate bond returns), and different multiple hypothesis
testing methods.

The empirical evidence shows that corporate bond signals drive the predictability in
the cross-section of corporate bond returns and that none of the corporate bond signals,
in either multivariate regressions and double sorts, drive return predictability of the cross-
section of stock returns. These findings are in line with the lower false rejections of corpo-
rate bond signals in historical tests that predict the cross-section of corporate bond returns
and show that the risk premia of the corporate bond and stock markets are not well in-
tegrated. Numerous published papers claim that various signals from the corporate bond
and stock return predictability literature play an important role for understanding the risk
premia of the corporate bond and stock markets, however, once accounting for biases in
selective reporting as well as the number of tests of predictability that have likely been
tried only a few corporate bond signals remain important in predicting the corporate bond
returns and they do not help in predicting the cross section of stock returns.5

The results of my paper have direct implications for the trading and portfolio manage-
ment strategies of institutional investors whose assets under management comprise large
amounts of corporate bonds such as: fixed income hedge funds, pension funds, insurance
companies, and mutual funds. Classic textbook portfolio trading and portfolio manage-
ment strategies teach funds to make use of different signals to earn higher returns for their
portfolios.6 Empirical evidence in Asness et al. [2013] and Moskowitz et al. [2013] show
that the same signal, or variations of them, have been found to exist in asset classes be-
yond U.S stocks, such as currencies, bond futures, options, and across markets. Trading
on signals that are not significant can have adverse and undesirable consequences for the
portfolio and fund returns.

The remainder of this paper is organized as follows: Section 2.2 outlines the related
literature, Section 2.3 provide the details of the data sets used, Section 2.4 presents my
main empirical results, Section 2.5 details my robustness tests performed and Section 2.6
concludes.

5See Lin et al. [2011], Chordia et al. [2017], Choi and Kim [2018], Avramov et al. [2019], Chung et al.
[2019], Bali et al. [2020], and Sandulescu [2020] empirically study various well known signals that predict
the cross-section of stock returns to see if they predict the cross-section of corporate bonds.

6See for example Chapter 7 of Ang [2014] or Section 3.4 of Pedersen [2015].
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2.2 Literature Review and Theoretical Predictions

Amongst the first papers to study corporate bond returns, Fama and French [1993], create
two bond market factors: a default risk factor and a term factor.7 The construction of
the bond market factors is based on corporate bond index returns and not individual
bond transaction prices.8 The Bai et al. [2019b] four factor model was constructed using
individual bond transaction prices in order to capture both the systematic and idiosyncratic
variation of the individual corporate bond trades as opposed to using bond indices where
returns are already pooled across quote and trade prices, maturity, and credit rating.

Theoretically the classical structural credit risk model of Merton [1974] is one of the
simplest frameworks to analyze the joint stock and credit risky bond model of the firm,
with a integrated risk premia of stocks and corporate bonds, under the rigid assumptions
such as the investors have common information set, no transaction costs, etc. Many of
the frictionless market assumptions in the model of Merton [1974] are violated in reality:
corporate bond trading costs are higher than stocks, there are differences in the trad-
ing structure of equities and corporate bonds since equities trade in centralized exchange
whereas corporate bonds trade in a relationship decentralized structured over-the-counter
market, corporate bonds are held for long term investment horizon typically by insurance
companies and pension plans to match expected cash flows whereas stocks held for shorter
term, also there are differences in investor information sets of the investors of ewuities and
corporate bonds since corporate bond investors are sophisticated investors (”smart style”
trading) and stock investors are typically unsophisticated. When decomposing stock and
corporate bond each into cash flow and discount rate risk components, as in the classic
Campbell and Schiller [1988] decomposition, Chen et al. [2013] show that stocks are more
sensitive to cash flow risk. Lochstoer and Tetlock [2020] find that signals that drive stock
return predictability is largely driven by the cash-flow risk channel and hence cash-flow risk
predictors. Nozawa [2017] shows that corporate bond credit spreads are largely driven by
changes in discount rate risk and that discount rate shocks are well explained by corporate
bond signals such as credit rating, changes in interest rates, and duration. Based on the
empirical evidence that corporate bond returns are less driven by cash flow shocks, I would
expect that stock signals are less important in predicting the cross-section of corporate
bond returns.

My paper contributes to three strands of academic literature. First I contribute to

7See Keim and Stambaugh [1986] and Fama and French [1989] for initial studies that test what signals
predict corporate bond index returns.

8See also Elton et al. [1995], Gebhardt et al. [2005a], and Gebhardt et al. [2005b] that use corporate
bond index returns and not individual bonds.
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the literature where signals that predict the cross-section of stock returns are tested as to
whether or not they predict the cross-section of corporate bond returns and vice versa (cross
market integration of stock and corporate bond risk premia). Lin et al. [2011], Avramov
et al. [2019], Chung et al. [2019], empirically study whether illiquidity, momentum, volatil-
ity (constructed from corporate bond and stock returns) to see if they are important to
predict the cross-section of stock and corporate bond returns as well as Chordia et al.
[2017], Choi and Kim [2018], and Cao et al. [2020], show that some of the well known stock
signals (leverage, book-to-market ratio, stock momentum, equity option implied volatility,
etc.) that have been documented to predict the cross-section of stock returns can predict
the cross-section of corporate bonds.9

In a related paper, using a large set of equity and bond signals, Bali et al. [2020]
find that there is no difference in the predicted corporate bond return spread of machine
learning methods when adding stock signals to the corporate bond signals. My paper
complements their recent findings as I find that more corporate bond signals, as oppose to
stock signals, predict future corporate bond returns when adjusting for multiple hypothesis
testing methods. Hence the results of Bali et al. [2020] and this paper both find, using
different methods, that stock signal predictive power is economically insignificant whereas
corporate bond signals are important in predicting corporate bond returns. In a similar
vein, I find that corporate bond signals do not predict future stock returns when adjusting
for multiple hypothesis testing. The result is consistent with the additional findings of Bali
et al. [2020] that corporate bond signals do not provide any incremental predictive power
beyond equity signals in predicting stock returns.

The main difference is in the set of signals that drive the predictability. I find the cor-
porate bond return predictability to be largely driven by bond age, bond time to maturity,
bond return skewness, bond return volatility, and amount outstanding whereas the ML
techniques used in Bali et al. [2020] find the corporate bond return predictability to be
driven by bond Beta uncertainty (UNC), bond market beta, bond return downside risk
(V aR5 and V aR10). Also I find that conditional double sorts that exceed multiple hypoth-
esis testing higher t-statistic thresholds, are driven by conditionally sorting on corporate
bond age, which highlights the importance of the corporate bond age as a signal, whereas
Bali et al. [2020] find corporate bond age to be of relatively low importance compared to all
other signals used. I evaluate the abnormal high-low portfolio alpha (with respect to the
Bai et al. [2019b] four factor model) of a variety of machine learning methods in predicting
the cross-section of corporate bond returns when using multiple hypothesis testing higher

9In a related but different adaptation of stock and corporate bond market analysis, Campello et al.
[2008], Elkamhi and Ericsson [2008], and Zundert and Driessen [2017] use implied stock prices from struc-
tural models estimated from corporate bond yields data to see if they predict stock returns.
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t-statistic thresholds.10

This leads to the second strand of literature that I contribute to: the understanding
which signals predict the cross-section of corporate bond returns. Thanks to advances in
computing power and data storage, economists can now test signals faster than ever before,
from more data sets (publicly and privately available) and use a 50 year history Factor
Zoo of signals from different risk classes.11 Many signals from different risk classes have
already been discovered as predictors of the cross-section of corporate bond returns. There
are, for example: bond return signals (bond return momentum,Jostova et al. [2013], bond
short and long term reversal, Bai et al. [2019a], bond and stock volatility, Chung et al.
[2019]), bond and stock microstuctural (illiquidity, Lin et al. [2011], financial intermediary
bond risk exposure He et al. [2017], bond supply Goldberg and Nozawa [2019]), balance
sheet (Chordia et al. [2017], Choi and Kim [2018], and Chichernea et al. [2019]), equity
option (Cao et al. [2020]), and others.12 I add to this list several signals, that are well
known to predict the cross-section of stock returns which are statistically significant and
have not been discovered to predict the cross-section of corporate bond returns. I find the
change in stock momentum (Gettleman and Marks [2006]) is a positive predictor of future
corporate bond returns and the dispersion of analyst beliefs (Diether et al. [2002]) is a
negative predictor of future corporate bond returns.

Lastly, I contribute to a growing literature in finance which uses multiple hypothesis
testing and accounting for data-snooping methods in the evaluation of signals in the cross-
section of asset returns.13 In the determinants of the cross-section of corporate bond return
literature, my paper is the first to apply multiple hypothesis testing methods in evaluating
whether signals are statistically significant or not both to the t-statistics of those signals
that have already been discovered and in empirical tests of additional signals in the cross
section of corporate bond returns.14

10I provide a description of each of the machine learning methods used in my empirical analysis in
Appendix Section A.1.5 and a description of the performance attribution of the machine learning methods
in Appendix Section A.1.4.

11For a running list of the over 300 signals that have been discovered in predicting the cross-section of
stock returns see Harvey and Liu [2019].

12I provide a comprehensive list of all signals discovered in the cross section of corporate bond returns
in publications or working papers see Section 2.4.1, Table A.1.5.

13For applications of multiple hypothesis testing in finance see: Shanken [1990] Ferson and Harvey [1991]
Boudoukh et al. [2007] and Patton and Timmermann [2010], Harvey et al. [2016], Yan and Zheng [2017],
Green et al. [2017], Chordia et al. [2020], and Harvey and Liu [2020]. For applications of data-snooping
methods in finance see: Lo and MacKinlay [1990], Foster et al. [1997], Sullivan et al. [2001], Conrad et al.
[2003], Cooper and Gulen [2006], and Lynch and Vital Ahuja [2012].

14For applications of multiple hypothesis testing in other areas of finance see: Barras et al. [2010], An-
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2.3 Data

2.3.1 Corporate Bond Data

For the corporate bond data I use the transaction records that are reported in the TRACE
and Enhanced TRACE reporting system for the sample period July 1, 2002 to October
31, 2019. The TRACE data set offers the best quality of corporate bond transactions with
intra-day trades information which include price, trading volume, buy/sell indicators. I use
the TRACE (and Enhanced TRACE) data cleaning procedure and SAS code made publicly
available in Dick-Nielsen [2009] (and Dick-Nielsen [2012]). I then merge the TRACE data
with the Mergent Fixed Income Securities data set in order to obtain bond specific details
such as bond offering date, offering amount, maturity date, coupon rate, coupon type,
interest payment frequency, bond type, bond rating, bond option features, and any issuer
specific information.

I adopt the following standard filtering criteria for the TRACE intraday trades data:

• Remove bonds that are not listed or traded in the U.S. public market, this includes
bonds that are private placements, issued under 144A rule, bonds that do not trade
in U.S. dollars, and bond issuers not in the U.S. jurisdiction.

• Remove bonds that are structured notes, mortgage backed, asset backed, agency
backed, and equity linked.

• Remove bonds that are convertible

• Remove bonds that have floating rate coupons (just include fixed rate).

• Remove bonds that have less than one year to maturity

• Bonds must have prices between 5 and 1000

The monthly corporate bond returns at time t (denoted, Ri,t) are computed as:

Ri,t =
Pi,t + AIi,t + Ci,t
Pi,t−1 + AIi,t−1

− 1 (2.3.1)

drikogiannopoulou and Papakonstantinou [2019] in the mutual fund literature, Mitton [2019] and Mulherin
et al. [2018] for corporate finance, Holland et al. [2010] for accounting literature, and Heath et al. [2020]
for natural experiments.
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where Pi,t is the transaction price, AIi,t is accrued interest, and Ci,t is the coupon payment,
if any, of corporate bond i in monthly t. I compute the bond excess return (ri,t = Ri,t−rf,t)
by subtracting the risk free rate (rf,t) which is a proxy for by using the one-month U.S.
Treasury Bill Rate. With using TRACE intraday bond transaction data I calculate the
daily clean price as the volume-weighted trading average of intra-day prices to minimize
the effect of bid-ask spreads in trade prices as per Bessembinder et al. [2009].

Two scenarios are used in order to compute monthly frequency corporate bond returns
to account for the infrequent trading of corporate bonds. The first scenario to compute a
bond return at time t is (1) when a bond has traded at the end of month t− 1 and at the
end of month t. I take the closest to the last trading of the month as long at is within five
days of the last trading day of the month. The second scenario to compute a bond return
at time t is (2) when a bond has traded at the beginning of month t and at the end of
month t. I take the closest to the first trading of the month as long at is within five days
of the first trading day of the month.

I follow Bai et al. [2019b] (BBW, henceforth) to construct four bond specific factors
based on the individual bond returns from transaction data. The BBW four factor corpo-
rate bond return model is a linear asset pricing factor model which encompasses a bond
market return risk factor (BMKTt), a corporate bond return liquidity risk factor (LRF ),
a corporate bond return credit risk factor (CRFt), and a corporate bond return downside
risk factor (DRFt). In order to construct the corporate bond return factors I compute the
individual bond characteristic values of bond illiquidity, credit quality, and downside risk.
Monthly bond return factors are calculated by sorting individual bond returns each month
into quintiles based on their characteristic values.

Bond illiquidity is measured on an individual bond basis by computing the Roll [1984]
measure on corporate bond transaction data over the month. The credit ratings is used as
a measure of credit quality of individual corporate bonds. Bond-level rating information is
obtained through the Mergent Fixed Income Securities Database (FISD) of historical bond
credit ratings. All credit ratings are assigned a integer number from 1 (AAA rating) to 21
(CCC rating) in order to facilitate credit risk comparability across bonds. Corporate bond
return downside risk is measured as the individual bond’s second lowest monthly return
observation over the past 36 months (then multiplied by negative one for interpretation).
Since the computation of the corporate bond return downside risk measure requires using
36 months of historical data our sample construction for this variable is calculated for the
time period July 1, 2005 to October 31, 2019.

The corporate bond return factors are constructed by sorting individual bond returns
each month into quintiles based on their characteristic values of bond illiquidity, credit
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quality, and downside risk. The bond market excess return factor is computed as the
value-weighted average returns of all corporate bonds in the sample less the one-month
Treasury bill rate. The downside risk factor for corporate bond returns is constructed
for each month from July 1, 2005 to October 31, 2019 by forming bivariate portfolios
by independently sorting bonds into five quintiles based on their credit rating and five
quintiles based on their downside risk (measured by a 5% monthly Value at Risk (V aR)).
I then compute the downside risk factor (DRFt) is the amount-outstanding value weighted
average return difference between the highest-VaR portfolio and the lowest-V aR portfolio
across the rating portfolios. The credit risk factor (CRFt) is the value-weighted average
return difference between the lowest-rating (highest credit risk) portfolio and the highest
rating (lowest credit risk) portfolio across the V aR portfolios. The liquidity risk and the
return reversal factors are constructed in a similar fashion using independent sorts. The
liquidity risk factor (LRFt), is the value-weighted average return difference between the
highest-illiquidity and the lowest illiquidity portfolios across the rating portfolios.

INSERT TABLE A.1.1 HERE

The final sample includes an average of 5, 864 bonds bond-month returns observations
during the sample period July 1, 2002 to October 31, 2019. In Table A.1.1 we report
the pooled, across the time-series and cross-sectional, bond returns and characteristics.
The sample contains a total number of 1.035 million bond return observations (N) with
an average monthly return of 0.58%. The average time to maturity is 9.49 years with
an average age of the bond (time since the bond was issued) of 4.74 years. The average
amount outstanding of the our sample of corporate bonds is 376 million dollars. Corporate
bond returns in Table A.1.1 are windsorized at the 1% and 99% percentiles.

2.3.2 Cross-Sectional Signal Data

The cross-sectional asset pricing literature has largely been developed to determine signals
that help understand, explain, and predict the cross-section of U.S. common stock returns.
Many of the signals have been constructed from stock return, stock microstuctural, ac-
counting/balance sheet ratio data and equity option trade price, signed volume, and order
flow data. Analogous versions of the stock signals have been constructed using corporate
bond returns and other corporate bond data.

Intra-day stock transactions and signed trade volume data is obtained from TAQ. Daily
equity options end of day quotes data is obtained from OptionMetrics. OptionMetrics
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also provides non-parametric calculations of Black-Scholes option implied volatility, delta,
gamma, and vega. I remove contracts from which the absolute Black-Scholes deltas for calls
and puts in which the are above 0.98 and below 0.02 in addition to those that have missing
open-interest and missing trade volume. I also remove option contracts that have less than
10 days to maturity due to rollover of option contracts. Intra-day equity option trade price
data are obtained from LiveVol which provides intra-day options trades data and Black-
Scholes deltas for calls and puts. I filter out those trades in which the implied volatility
are above 0.98 and below 0.02 in addition to those that have missing trade volume and
those have less than 10 days to maturity. These option filters are standard in the literature
see Christoffersen et al. [2018]. End of day equity option signed volume data (new open/
close buy and sell positions) for each contract are obtained from CBOE/ISE Exchanges.
Monthly stock return, price, and volume data are obtained from CRSP. I only consider
common stocks with CRSP share codes of 10 or 11. Quarterly and Annual accounting
data are obtained from the merged CRSP/COMPUSTAT files from the year July 1, 2002
to October 31, 2019. In order to adjust for the availability of the accounting information
at the time of reporting, I lag the quarterly (annual) accounting data 3 (6) months.

I augment the set of signals with a larger more comprehensive set that have historically
been discovered as predictors of the cross-section of stock returns (the signals set used in
Green et al. [2017]). I compute 103 signals (of the 120) from Green et al. [2017] (GHZ,
henceforth).15. The firm characteristics are constructed using all firms with common shares
that are listed on the AMEX, NYSE, or NASDAQ, that have end of month value on CRSP,
quarterly and annual balance sheet reporting on COMPUSTAT and earnings information
reported to the I/B/E/S data. The GHZ data set is available beginning from January 1,
1980, however, I only require data beginning from July 1, 2002 when TRACE corporate
bond reporting began. The list of the 103 signals and their sample statistics that overlap in
the CS of firms that have corporate bond outstanding are listed in Tables A.1.2 and A.1.4.
I provide a complete and detailed list of the 143 signals and their summary statistics in
Table A.1.3.

INSERT TABLES A.1.2, A.1.3, and A.1.4 HERE

15I thank Jeremiah Green for making the SAS code to construct the data set freely available on his
website. The GHZ data has been used in other well known published studies such as Gu et al. [2020]
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2.4 Main Empirical Results

2.4.1 Signal Discovery Rates in the Cross-Section of Corporate
Bonds using Discovered t-statistics

Panel A of Figure A.1.1 below shows the history of signals that have been discovered (in
published and in working papers) to predict the cross-section (CS, henceforth) of U.S.
corporate bond returns. The number of discovered signals has steadily increased since the
introduction of the centralized TRACE reporting system for U.S. corporate bond and fixed
income reporting system in July 1, 2002. Papers published prior to the introduction of
TRACE typically used either smaller subsets of bond data collected from the Wall Street
Journal, Lehman Brothers Fixed Income database, or National Association of Insurance
Companies (NAIC) bond transactions. Since 2015 the number of discovered signals that
have been tested to predict the CS corporate bond returns has increased from less than 10
per year to over 15 per year in 2019.

INSERT FIGURE A.1.1 HERE

Overall I find a total of 56 papers with a total of 111 signals that have been discovered
to predict the CS of corporate bond returns. Signals have been tried from different risk
categories such as stock/bond/equity option return based (return, momentum, volatility,
skewness), accounting/firm balance sheet ratios and levels (size, book-to-market ratio, in-
vestment), behavioural signals (earnings surprises, positive/negative earnings), and market
microstructural (illiquidity measures, dealer inventory, effective spread trade measures). So
far, in the cross-section of corporate bond returns it has been documented that: corporate
bond and stock illiquidity are positive predictors of future bond returns (Lin et al. [2011]),
financial intermediary risk exposure and bond supply both positively predicts future bond
returns (He et al. [2017] and Goldberg and Nozawa [2019] respectively), systematic risk
bond market return, a credit risk, a liquidity risk, and a downside risk factors all posi-
tively predict future bond returns (Bai et al. [2019b]), as well as many stock and balance
sheet variables (Chordia et al. [2017], Choi and Kim [2018], and Chichernea et al. [2019]),
and many others that have been discovered. A complete list of the papers and discovered
signals that predict the cross-section of corporate bonds are reported in Table A.1.5.

INSERT TABLE A.1.5 HERE
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Panel B of Figure A.1.1 shows a distribution of the absolute value of the signal’s reported
t-statistic. The majority of the absolute values of the t-statistics do in fact exceed the
single hypothesis test (SHT, henceforth) level of 1.98 benchmark of a 5% significance (non-
significant signals are typically those where the paper provides multiple different signals
only some of which are significant). In my sample, a t-statistic of 1.98 corresponds to a
αLOS = 5% significance level with a 210 degrees of freedom (nearly 18 years of monthly
data, starting point of July 1, 2002) and a t-statistic of 2.60 corresponds to a αLOS = 1%
significance level with a 210 degrees of freedom. In total I have 78 observations of signals
with a t-statistic greater than 1.98 (with 57 greater than 2.60), 21 observed t statistics in
the interval (1.98, 2.60), 15 observed t statistics in the interval (2.60, 3.12), 19 observed t
statistics in the interval (3.12, 3.87), and 23 with t-statistics greater than 3.87.16

In order to assess whether signals that originate from the bond literature perform bet-
ter than those that originate from the stock return literature in predicting corporate bond
returns, I need to evaluate whether the discovered t-statistic of the signal (in the original
first paper claiming discovery) is statistically significant when considering a higher thresh-
old. I establish the higher threshold by simulating t-statistics from a modified empirical
distribution of that presented in Panel B of Figure A.1.1 and then applying standard statis-
tical adjustments for multiple hypothesis testing. The empirical simulation technique I use
follows from Harvey et al. [2016]. The framework assumes that the discovered t-statistic
for a signal follows an Exponential distribution where the set of t-statistics is truncated
at a particular statistical point (single hypothesis test level of a 5% level of significance)
which is the statistical hurdle that the researcher needs to surpass in order to publish the
discovered signal. There will be under-representation of smaller discovered t-statistics in
the corresponding SHT t-statistics between the 5% and 1% level of significance. Due to this
observation, an additional assumption is made that the sample of discovered t-statistics is
only partially represented in this interval range of t-statistics. Hence the simulation of the
benchmark t-statistics is done under independence sampling of the t-statistics of a sample
size that also includes a fraction (which is termed sampling ratio (S.R.)) of all signals in
the corresponding SHT t-statistics between the 5% and 1% level of significance.

I present the empirically simulated multiple hypothesis testing (MHT, henceforth) t-
statistic benchmarks in Table A.1.6 using the following standard adjustments for MHT that
have been used in the finance literature: Bonferroni [1936] (Bonf/Bonferroni henceforth),
Benjamini and Yekutieli [2001] (BHY henceforth) and Holm [1979] (Holm, henceforth). I

16For the remainder of the paper I denote the statistical level of significance (as well as the Family-Wide
Error Rate and False Discovery Rate error rate (Type I error rate)) for a SHT as αLOS . The use of
the subscript LOS (level of significance) is to differentiate the αs from that used as the intercept in the
portfolio sorts in equation 2.4.1.
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provide a brief overview of MHT techniques in Section A.1.3. Benchmark t-statistics are
presented assuming different sampling ratios of under-representation of smaller discovered
t-statistics. For example a sampling ratio of r = 2 implies that the fraction 1/r = 1/2
of the corresponding SHT t-statistics between the 5% and 1% level of significance were
assumed to not been reported and hence needs to be counted for an additional r = 2
times. Upper and lower 10% confidence intervals (C.I.) are presented around each of the
benchmark t-statistic estimates.

INSERT TABLE A.1.6 HERE

Assuming a sampling ratio of r = 2, I find that the number of discovered signals
that have been falsely rejected, rejected under a SHT framework (57 with an absolute
t-statistic over 2.60) but not rejected under the MHT framework benchmark, are 34 under
the Bonferroni, 34 under Holm, 33 under BHY (at a αLOS = 1% and 15 under BHY (at
a αLOS = 5%). These results imply false discovery rates of signals in the CS of corporate
bond returns of 59.6% under Bonferroni, 59.6% under Holm, 57.9% under BHY (at a
αLOS = 1%), and 26.3% under BHY (at a 5%).

Harvey et al. [2016] find that many of the stock signal discoveries are in fact false
discoveries under their MHT framework. Of the 296 published signals they find false
discovery rates of 53% under Bonferroni, 48% under Holm, 45% under BHY (at a αLOS =
1%), and 27% under BHY (at a αLOS = 5%).17 The false discovery rates that I find for
signals discovered in the CS of corporate bond returns are quite similar to those in Harvey
et al. [2016].

Under the framework presented in this section, some examples well known discovered
signals that are deemed true signals, i.e. predict the CS of corporate bond returns that
have been rejected under BHY (at a αLOS = 5%), are: the stock return momentum, stock
return reversal, expected default frequency measure of Bharath and Shumway [2008], short
term bond reversal discovered in Chordia et al. [2017], the stock and bond illiquidity factor
of Pastor and Staumbaugh [2003] (and bond illiquidity measured using Amihud [2002])
all discovered in Lin et al. [2011], the credit risk factor of Bai et al. [2019b], and others.
Examples of well known discovered signals that predict the CS of corporate bond returns
that are found to be false discoveries under this framework, i.e. have not been rejected
under BHY (at a 5% significance level), are: the default risk factor of Gebhardt et al.

17Of the 296 published factors (requiring an absolute t-statistic to be over 2.57) they find the number
that are false discoveries: 158 under the Bonferroni, 142 under Holm, 132 under BHY (at a αLOS = 1%)
and 80 under BHY (at a αLOS = 5%).
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[2005a], the bond permanent component adaptation of Sadka [2006] in Lin et al. [2011],
seasonal difference in quarterly earnings in Easton et al. [2009], the intermediary factor of
He et al. [2017], the total monthly stock return volatility of Chung et al. [2019], the CV OL
measure of An et al. [2010] in Cao et al. [2020], and others.

Of the 111 signals, 52 (59) are corporate bond (stock) based signals of which 28 (29)
exceed the single hypothesis testing benchmark of 2.62 (at a level of significance of 1%). Of
the 28 corporate bond signals 21, 13, and 12 are found to exceed the multiple hypothesis
testing t-statistic benchmarks of 3.12, 3.67 and 3.87 (benchmarks found in Table A.1.5)
respectively. Corresponding of the 29 stock signals, 21, 11, and 11 are found to exceed the
the multiple hypothesis testing t-statistic benchmarks 3.12, 3.67, and 3.87, respectively.
These frequencies of rejections lead to false discovery rates of 25%, 54% and 57% (using
multiple hypothesis testing t-statistic benchmarks 3.12, 3.67, and 3.87) for corporate bond
signals and 28%, 62%, and 62% (using multiple hypothesis testing t-statistic benchmarks
3.12, 3.67, and 3.87) for the stock signals. The lower false discoveries in the corporate bond
based signals over stock based signals (at each of the different hypothesis testing methods)
suggest that corporate bond signals, over stock signals, better predict the cross-section of
corporate bond returns.

2.4.2 Signal Discovery Rates in the Cross-Section of Corporate
Bonds: Empirical Evidence from Portfolio Sorts and Cross-
Sectional Regressions

In this section I test the empirical performance of 143 different signals in univariate cross-
sectional regressions and portfolio sorts. My goal is to see if how many of the signals
are statistically significant signals in predicting the cross-section of future corporate bond
returns as well how many are statistically significant after incorporating MHT benchmarks.
I briefly outline the univariate cross-sectional regressions and portfolio sort techniques
before proceeding to the main empirical results in Section 2.4.3.

Every month corporate bond returns are sorted into value-weighted (by principal amount
outstanding) decile portfolios based on a one month lagged signal si,t−1 and hold the port-
folio for one month. I choose to re-balance the portfolios on a monthly frequency as oppose
to annually or quarterly in order to account for the effects of short term impacts of signals
such as corporate bond illiquidity and short term reversal return. In order to evaluate the
realized portfolio alphas I use the corporate bond return linear factor model of Bai et al.
[2019b] (BBW henceforth) which includes a bond market return factor (BMKTt), a credit
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risk factor (CRFt), a liquidity risk factor (LRFt), and a downside risk factor (DRFt).

rs,t = αs + βBMKT
s ·BMKTt + βCRFs · CRFt + βLRFs · LRFt + βDRFs ·DRFt + us,t

(2.4.1)

The long-short hedge portfolio as define as taking a long position in the decile 10 and short
in decile 1, hence the long-short portfolio return can be either positive or negative. I then
run a time-series regression of the bond long-short portfolio excess returns rs,t on the BBW
factor returns and record the t-statistic of the long-short portfolio alpha denoted (tαs).
The t-statistic of the long-short portfolio alpha has standard errors that are adjusted for
heteroskedasticity and 3 lags of autocorrelation using the method Newey and West [1987].

Additionally, I evaluate the ability of the signal to predict corporate bond returns
by estimating the following univariate cross-sectional regression18 on signal si,t−1 for each
month:

Ri,t − rf,t − β̂ · Ft = λ0 + λs · si,t−1 + λz · Zi,t−1 + ei,t (2.4.2)

where Ft = {BMKTt, CRFt, LRFt, DRFt}, where si,t−1 represents the signal and Zi,t−1 are
control variables that include the coupon amount, credit rating (from Moody’s provided
in TRACE), log of the age of the bond since issuance, and log of the remaining time to
maturity. The corporate bond excess returns are adjusted as per Brennan et al. [1998] with
the four factor corporate bond factor model of BBW (the same bond factor model is used
to calculate the replicating decile portfolio alphas). In the estimation of the bond return
betas I use 48 months of historical return bond data with at least 12 bond returns. All
bond betas are windsorized at the 1 and 99 percentile levels. I then calculate the average λs
regression slope coefficient using the Fama and Macbeth [1973] (FM henceforth) regression
methodology and it’s heteroskedastic adjusted t-statistic (tλs) where standard errors are
adjusted for 3 lags of autocorrelation using the Newey and West [1987] adjustment.

I evaluate 3 different specifications of the high minus low portfolio alphas using the
time-series regression of the hedge returns in equation 2.4.1: (1) the high-minus-low port-
folio is formed using deciles and portfolio returns are adjusted using the BBW corporate
bond factor model (Decile PS (BBW), henceforth). (2) the high-minus-low portfolio is
formed using quintiles and portfolio returns are adjusted using the BBW corporate bond
factor model (Quintile PS (BBW), henceforth). (3) the high-minus-low portfolio is formed
using quintiles and portfolio returns are adjusted using the corporate bond return linear

18I refer to equation 2.4.2 as a univariate cross-sectional regression since I am only interested in the
magnitude of the signal coefficient (λs) even though I add the control variables: coupon amount, credit
rating, log of the age of the bond since issuance, and log of time to maturity.
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factor model of BBW augmented with the stock market linear factor model of Fama and
French [2015] (Quintile PS (BBW+FF5), henceforth) which includes a stock market factor
(SMKTt), size (SMBt), value (HMLt), profitability (RMWt), and investment (CMAt).

I also evaluate three different specifications of the univariate FM regression equation
2.4.2: (1) the ability of the signal to explain corporate bond returns by estimating the uni-
variate cross-sectional regression for each month as in equation 2.4.2 (FM (BBW) hence-
forth). (2) I also re-compute the univariate λs of the FM regression equation 2.4.2 where
the corporate bond excess returns are adjusted as per Brennan et al. [1998] using the BBW
corporate bond return linear factor model augmented with the stock market linear factor
model of Fama and French [2015] (FM (BBW+FF5), henceforth). (3) I also estimate the
FM equation 2.4.2 based on value weighted least squares weighting bonds on the market
capitalization (size) of the company common shares (VW FM (BBW) henceforth) since
empirical evidence from discovered signals in the CS of stock returns Green et al. [2017]
and Hou et al. [2020] that the existence of predictability has typically been associated with
over-weighting portfolios or stocks that have small market capitalization. In each of the
FM regressions I use the same control variables (coupon amount, credit rating, log of the
age of the bond since issuance, and log of time to maturity).

2.4.3 Empirical Evidence from Univariate Portfolio Sorts and
Cross-Sectional Regressions

The estimated λs and αs for each of the 143 signals (and their corresponding t-statistics
tλs and tαs) for each of the three types of univariate FM regressions and for each of the
three PS regressions are individually reported in Table A.1.7. Of the list of 143 signals
used in my empirical analysis, several are discovered to predict the CS of corporate bond
returns. In particular, I note that the idiosyncratic stock volatility negatively predict the
CS of corporate bond returns (as discovered in Chung et al. [2019]. However, Chordia et al.
[2017] did not find any statistical significance. The CVOL, PVOL, and change in implied
volatility measure of An et al. [2010] (Cao et al. [2020]), the idiosyncratic bond volatility
measure of Bai et al. [2020c] (different from the idiosyncratic bond volatility measure of
Chung et al. [2019]) and the EDF measure (Vassalou and Xing [2004] and Bharath and
Shumway [2008]) all negatively predict the CS of corporate bond return. The systemic
uncertainty risk of Jurado et al. [2015] (Bai et al. [2020a]), and change in non-current
operating accruals (Chichernea et al. [2019]) and one month stock return reversal (Chordia
et al. [2017]) are all positive predictors of the CS of corporate bond returns.

Several signals, that are well known to predict the CS of stock returns, that are statis-
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tically significant under SHT for FM and PS that have not been discovered to predict the
CS of corporate bond returns (the original paper where the signal is discovered in the CS
of stock returns is in parentheses) are: change in stock momentum (Gettleman and Marks
[2006]), dispersion of analyst beliefs (Diether et al. [2002]), and change in analyst forecast
(Hawkins et al. [1984]). Despite the fact that I do evaluate some signals that have already
been discovered in the cross-section of corporate bond returns, my results should not be
taken as an attempt to directly replicate the published bond market anomalies in their
original studies (as was done in the stock market anomalies literature Hou et al. [2020]).
There are three possible reasons for this: (1) The time period of the data will differ from
the original papers since several of the papers use monthly corporate bond quotes data
from the Lehman Brothers Fixed Income database or Thompson Reuters Tick Data which
provide corporate bond quote data from the late 1970’s onwards, or National Association
of Insurance Companies (NAIC) bond transactions data which provides a subset of cor-
porate bond transaction prices made by insurance companies during the 1980s and 1990s.
The Lehman Brothers Fixed Income and NAIC datasets are no longer publicly available
for purchase. (2) my FM and PS results use the BBW factors of Bai et al. [2019b] which
have only recently been published and made available as of 2019, most prior studies use
the stock and bond factors (term and default) of Fama and French [1993] (or Fama and
French [2015]) augmented with stock momentum factor of Cahart [1997] and the market
liquidity factor of Pastor and Staumbaugh [2003] (3) Several of the original papers do not
present FM regressions adjusted using the Brennan et al. [1998] technique.

Table A.1.15 displays the out-of-sample R-squared (R2
OS) for the machine learning

method, as well as the high-minus-low portfolio αs (and corresponding tαs and monthly
Sharpe Ratio), under each of the machine learning methods for each of the three PS regres-
sions.19 Table A.1.15 Panel A presents the results for all corporate bonds and Panels B/C
present the results separately for investment grade and speculative grade respectively. Only
those t-statistics tαs of the LASSO and the Enet methods are significant when considering
all corporate bonds but are only marginally significant when separating into investment
grade and speculative grade bond subsets.

INSERT TABLE A.1.7 HERE

Table A.1.8 summarizes the statistical distribution properties (mean, median, standard
deviation, and percentiles) for each of the three types univariate FM regressions and for

19I provide a description of each of the machine learning methods used in my empirical analysis in
Appendix Section A.1.5 and a description of the performance attribution of the machine learning methods
in Appendix Section A.1.4. Diebold-Mariano test statistics are calculated for all corporate bonds in Table
A.1.16.
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each of the three PS regressions that are individually reported in Table A.1.7. Table A.1.8
Panel A shows the distribution of the three sets of λs and αs whereas Panel B shows the
distribution of the three sets of the tλs and tαs . The mean/median monthly αs for each
of the three PS are close to zero (ranging from −0.025% to 0.00% per month), consistent
with signals earning 0.00% per month on average. The standard deviation of the signal αs
is between 0.18% and 0.29% per month and tail values ranging from −1.33% to 0.84% per
month. The mean/median monthly λs ranges from −0.5% bps to 0.19%. In general, each of
the three FM regression and PS mean/median tλs and tαs are quite close to zero (between
−0.27 and 0.08), however, tail values of tλs and tαs range (in absolute value) from over
2.82 up to 7.64 in the three FM regressions and from 3.31 to 4.89. Figure A.1.2 displays
the histograms of the λs (and corresponding tλs) for each of the three types of univariate
FM regressions and Figure A.1.3 displays the histograms of the αs (and corresponding
tαs) for each of the three PS regressions. The two distributions are centered around zero
and appear to be symmetrically Normally distributed which is consistent with the sample
statistics.

INSERT TABLE A.1.8 HERE

INSERT FIGURE A.1.2 and A.1.3 HERE

The distribution of tλs and tαs range from over −16.57 up to 7.51 in the three FM
regressions and from −4.56 to 3.96 in the three sets of PS. From Panel B in Table A.1.8
it is clear that of the signals in my sample a larger fraction than 5% exceed the SHT
level. I find that the fraction of null hypotheses that are rejected under SHT for each of
the three PS regressions are 53/143 = 37% (Decile PS (BBW)), 38/143 = 34% (Quintiles
PS (BBW)), and 48/143 = 26% (Quintiles PS (BBW+FF5)). Similarly, the fraction of
null hypotheses that are rejected under SHT for each of the three FM regressions are
30/143 = 21% (FM (BBW)), 32/143 = 24% (FM (BBW+FF5)), 24/143 = 17% (VW FM
(BBW)). In general, there are considerably more signals that reject the null hypothesis,
that the signal does not predict the CS of the corporate bond returns, under the three
PS regressions as opposed to the three FM regressions. The fewest rejections occur under
the size-weighted FM CS regression. Nevertheless when considering each of the signals
individually under SHT, the percentage of rejections that is observed is far beyond the
desired 5% level.

INSERT TABLE A.1.9 HERE

21



The left hand side panel of Table A.1.9 displays the benchmark t-statistics for each of
the different specifications of the three univariate FM regressions and each of the three
PS regressions under SHT and under the Bonferroni, Holm, and BHY MHT methods.
Depending on the specification of the FM and PS, the benchmark t-statistics can range up
to from 3.35 to 3.9 but are on average about 3.53. The middle panel of Table A.1.9 shows
the fraction of the 143 signals whose t-statistics, of testing the null hypothesis that the
signal does not predict the CS of corporate bond returns, exceed the SHT and Bonferroni,
Holm, and BHY MHT benchmark t-statistics. The right hand side panel of Table A.1.9
computes the ratio of the number of t-statistics that exceed the SHT threshold but are not
rejected under the MHT thresholds (single not multiple rejection, SnM or false discovery
rates). For each of the three FM regressions and three PS, when imposing the Bonferroni,
Holm, and BHY MHT tests results in rejection rates, of the null hypothesis of no return
predictability, between 0 − 4.2% (on average about 2.49%) which leads to false discovery
rates of 76− 100%. Those signals whose t-statistics are higher than the MHT benchmark
are identified as true discoveries of signals that predict the cross-section of corporate bond
returns.

2.4.4 Integration of Stock and Corporate Bond Markets: Evi-
dence from Multivariate FM Regression Horse Race in the
Cross-section of Corporate Bond Returns

My results in Section 2.4.3 highlight that many of the corporate bond and stock signals
have limited or no ability to predict the cross-section of corporate bond returns when
considering higher statistical thresholds once accounting for all other signals being tested
simultaneously and discovered in the literature. In this section, I ask do corporate bond
signals better predict the cross-section of corporate bond returns than stock signals?

To assess whether corporate bond signals better predict the cross-section of corporate
bond returns than stock signals I run a horse race of a total of 129 corporate bond and
stock signals by simultaneously including 129 of the 143 signals in a multivariate FM cross-
sectional predictive regression in the cross-section of the corporate bond returns.20 In order
to be able to include as many signals as possible, I follow Green et al. [2017] and set missing
values of the signal to the cross sectional average value of that signal.

I present the results in six multivariate FM cross-sectional predictive regressions which
includes using three different dependent variables (allowing for different risk adjustment

20Not all of the 143 signals were able to be included due to a shorter data history or limited cross-sectional
variability.
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in excess returns) and value-weighted least-squares estimates of each of those three spec-
ifications. First I use excess corporate bond return as a baseline but I also present risk
adjusted excess corporate bond returns adjusted for the four factor corporate bond model
of Bai et al. [2019b], in order to account for the different systematic risk exposures that
corporate bond returns face. Additionally I present results using excess corporate bond
returns risk adjusted for corporate bond return and stock return factors (using both the
Bai et al. [2019b] and Fama and French [2015] five factor stock model) in order to adjust
for systematic risk exposures in corporate bonds and stocks.21 Finally I present results
using value weighted least squares which weight bonds by the market capitalization (size)
of the company common shares. This is done to control for the over-weighting of regression
estimates in firms which have small market capitalization and whose signal predictability
might end up only existing in a small subset of the market.

INSERT TABLE A.1.10 HERE

Each two columns in Table A.1.10 report the average regression slope coefficient (λs)
and corresponding t-statistic (tλs) for each of the 129 signals in the six multivariate FM
cross-sectional one-month-ahead predictive regressions of the corporate bond returns when
simultaneously including all 129 signals.22 In Table A.1.10 columns 2 and 3 use excess
corporate bond returns, columns 6 and 7 are risk adjusted using the Bai et al. [2019b] four
factor corporate bond return model, columns 10 and 11 are risk adjusted using the Bai
et al. [2019b] and the Fama and French [2015] factors.23

INSERT TABLE A.1.11 HERE

21As shown in Bao and Hou [2017], there are cases where corporate bond returns can behave, or co-move,
like the firm’s stock return based on the time to maturity, credit riskiness, and de-factor seniority of the
bond. Hence I believe that it is important to control for systematic exposure to the stock market risk
factors.

22Note that all signals are lagged by one month to the left-hand-side corporate bond return variable
and t-statistics are computed using standard errors are adjusted for three lags of autocorrelation using the
Newey and West [1987] method.

23In Table A.1.10 columns 4 and 5 represent the corresponding value-weighted (VW), by one month
lagged firm market capitalization, least squares estimated multivariate FM regression using excess corpo-
rate bond returns as a dependent variable, columns 8 and 9 represent the corresponding VW least squares
estimate multivariate FM regression using risk adjusted corporate bond returns (risk adjusted using Bai
et al. [2019b]) as a dependent variable, and columns 12 and 13 represent the corresponding VW least
squares estimate multivariate FM regression using risk adjusted corporate bond returns (risk adjusted
using Bai et al. [2019b] and Fama and French [2015] five factor stock model) as a dependent variable. The
risk-adjusted corporate bond excess returns are calculated using the method of Brennan et al. [1998].
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For each of the six multivariate regressions shown in Table A.1.10 I compute the bench-
mark t-statistics, using different multiple hypothesis testing methods (Bonferroni, Holm,
and BHY methods), which depend on the t-statistics of all signals used in the multivariate
regression.24 Resulting multiple hypothesis testing benchmark t-statistics for a signal in
the multivariate regressions range from 3.48 to 4.09, which are the required benchmark
that the signal t-statistic must exceed in order to be deemed a true discovery.

Of the 129 signals 17 (or 22 of the 134 signals including the control variables) are
constructed using only corporate bond specific information (data from TRACE). The re-
maining 112 signals are those that have been discovered to predict the cross-section of
stock returns. Of the 129 signals it can be seen that the stock short term return rever-
sal, log (age), log (TTM), log (amount outstanding), corporate bond return volatility, and
corporate bond return skewness are the only signals that have t-statistics that exceed the
multiple hypothesis testing benchmarks t-statistics in each of the different multiple hypoth-
esis testing benchmark methods in at least one of their respective multivariate regressions.

Corporate bond return skewness negatively predicts future corporate bond returns in
each of the six multivariate regressions. In 5 of the 6 multivariate regressions, the corporate
bond return skewness t-statistic (with absolute t-statistics of −4.38 to −7.08) exceeds the
multiple hypothesis testing benchmark for each of the different multiple hypothesis testing
benchmark methods. In the case of the regression in columns 12 and 13 (VW least squares
estimate multivariate FM regression using risk adjusted corporate bond returns as per
BBW and FF5) the absolute t-statistics of −3.5 does not exceed the required benchmark
of 4.08 under any of the three different MHT methods. Stock short term return reversal,
corporate bond return volatility, log (age) and log (TTM) each positively predict future
corporate bond returns in each of the multivariate regressions. However, each of the signals
only exceeds the multiple hypothesis testing benchmark once or twice in each of the six
multivariate regressions.

Hence in each of the six multivariate predictive regressions, there is a higher ratio
of corporate bond signals (at highest 3/17, at lowest 0/17) instead of stock signals (at
highest 1/17, at lowest 0/17), that predict the cross-section of corporate bond returns.
The predictability is driven by corporate bond return skewness (with the exception of
regression in columns 12 and 13). My results, as well as, Bali et al. [2020], find that there
is no difference in the predicted corporate bond return spread of machine learning methods
when adding stock signals to the corporate bond signals. Hence the results of Bali et al.

24The left hand side panel of Table A.1.11 displays the benchmark t-statistics for each of the different
MHT method specifications (and the middle and right-hand side panels show the fraction of the signals
whose t-statistics exceed the single and multiple hypothesis testing benchmark t-statistics and the single
and not multiple rejection ratios, respectively).
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[2020] and this paper both find, using different methods, that stock signal predictive power
is economically insignificant whereas corporate bond signals are important in predicting
corporate bond returns. This result confirms my hypothesis in Section 2.2.

2.4.5 Integration of Stock and Corporate Bond Markets: Evi-
dence from Multivariate FM Regression Horse Race in the
Cross-section of Stock Returns

To assess whether corporate bond signals help in predicting the cross-section of stock re-
turns I run a horse race by simultaneously including 129 of the 143 signals in a multivariate
FM cross-sectional predictive regression on the cross-section of the stock returns. In or-
der to be able to include as many signals as possible, I follow Green et al. [2017] and set
missing values of the signal to the cross sectional average value of that signal. I present
the results in four multivariate FM cross-sectional predictive regressions which includes
value-weighted least-squares estimates (by the market capitalization (size) of the company
common shares) in two of those specifications (see columns 2 and 4 of Table A.1.12) as well
as conditioning the analysis on only firms whose stock price is greater than $5 (see columns
3 and 4 of Table A.1.12) in order to avoid the effect being driven by small micro-cap firms.

INSERT TABLE A.1.12 HERE

INSERT TABLE A.1.13 HERE

The left hand side panel of Table A.1.13 displays the benchmark t-statistics for each of
the different multiple hypothesis testing method specifications (and the middle and right-
hand side panels show the fraction of the signals whose t-statistics exceed the single and
multiple hypothesis testing benchmark t-statistics and the single and not multiple rejection
ratios, respectively). Resulting multiple hypothesis testing benchmark t-statistics for a
signal in the multivariate regressions range from 3.43 to 3.9.

Of the 129 signals tested in Table A.1.12 none have t-statistics that exceed the multi-
ple hypothesis testing benchmarks t-statistics in each of the different multiple hypothesis
testing benchmark methods in any of the multivariate regressions. Bali et al. [2020] find
that corporate bond signals do not provide any incremental predictive power beyond equity
signals when combining stock and bond signals. In a similar vein, I find that corporate
bond signals do not predict future stock returns when adjusting for multiple hypothesis
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testing. The result is consistent with the additional findings of Bali et al. [2020] that cor-
porate bond signals do not provide any incremental predictive power beyond equity signals
in predicting stock returns.

2.4.6 Integration of Stock and Corporate Bond Markets: Ev-
idence from Conditional Double Sorts in Predicting the
Cross Section of Corporate bond and Stock Returns

Muller and Schmickler [2020] study double sort combinations of 102 stock signals and find
hundreds of profitable signals in excess of transaction costs and whose performance is on par
with recent machine learning strategies. Of particular interest would be the performance
of corporate bond specific signals versus stock signals in predicting the cross-section of
corporate bond returns (and separately using the same set of test signals to predict the
cross-section of stock returns).

I perform monthly 5 × 5 conditional double sorts (value-weighted using the amount
outstanding of the corporate bonds) of all combinations of 143 signals in predicting the
cross-section of corporate bond returns. Each month, I sort corporate bonds into quintile
portfolios based on a signal S1 and then within each quintile sort into quintiles on S2.25

This results in
(

143
2

)
= 10, 153 combinations of 5× 5 conditional double sorts. I explicitly

focus on the four corner portfolios of the 5× 5 matrix of conditionally sorted portfolios. I
denote the corner portfolios as HH, HL, LH, and LL depending on whether the corporate
bond return is assigned to the high or low quintile based on the ranking of the first signal
and on the second (conditionally on it’s ranking within the first signal).26 For example, a
corporate bond return is assigned to the high-low portfolio if it has a rank greater than 0.8
on signal S1 and a rank less than 0.2 on signal S2. Once accounting for all four combinations
of corner high minus low portfolios, this results in a total of 4× 10, 153 = 40, 612 high-low
portfolios.

For each of the four high-minus-low quintile portfolios, I compute the portfolio alpha
(αS1,S2) using a time-series regression on the four factor corporate bond return factor model
of Bai et al. [2019b] and t-statistics (tαS1,S2 ) using the Newey and West [1987] method for
computing standard errors adjusted for three lags.27 When imposing standard multiple

25In unreported results I do consider the cases of sorting first on a signal S2 and then within each quintile
sort into quintiles on S1, the set of resulting statistically significant combinations of signals is similar.

26For ease of exposition a diagram of my naming convention is presented in Figure A.1.4.
27Additionally I compute the portfolio alpha adjusting for corporate bond return and stock return factors

using both the Bai et al. [2019b] and Fama and French [2015] five factor stock model.
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hypothesis testing methods (Bonferroni, Holm, and BHY) to the 40, 612 portfolios, 52/
40, 612 = 0.13% of double sort combinations of signals are true discoveries when applying
higher thresholds.28

INSERT TABLE A.1.14 HERE

Table A.1.14 shows the 52 double sorted portfolios whose t-statistics are higher than
the multiple hypothesis testing benchmark (I use the benchmark t-statistic of 5.00). The
portfolios in Table A.1.14 are denoted by the first signal sorted on by S1 then the second
signal S2, then the high-minus-low quintile portfolio corner (PF), the monthly portfolio
Sharpe Ratio (SR), the portfolio alpha (αS1,S2), and the corresponding t-statistics (tαS1,S2 ).
Of the 52 double sorted portfolios who exceed the multiple hypothesis testing benchmark,
31 of them involve sorting on the age of the corporate bond. The 31 double sorted portfolios
involved sorting on the age of the corporate bond, the Sharpe Ratios of these signals are
all positive and range from 0.04 to 0.24 monthly.

As a robustness test, I compute the portfolio alpha adjusting for corporate bond return
and stock return factors using both the Bai et al. [2019b] and Fama and French [2015]
five factor stock model for the 40, 612 portfolios. When imposing standard multiple hy-
pothesis testing methods to the 40, 612 portfolios, using the benchmark t-statistic of 5.00,
64/40, 612 = 0.16% of double sort combinations have t-statistics that exceed the higher
thresholds. Of the 64 double sorted portfolios who exceed the multiple hypothesis testing
benchmark, 32 of them involve sorting on the age of the corporate bond and the Sharpe
Ratios of these signals are all positive and range from 0.04 to 0.24 monthly as in my main
results in Table A.1.14.

I perform monthly 5 × 5 conditional double sorts (value-weighted using the firm size,
market capitalization) of combinations of 143 signals in the cross-section of stock re-
turns(for firms with corporate bonds outstanding). I sort stocks into quintile portfolios
based on a signal S1 and then within each quintile sort into quintiles on S2 For each of
the four high-minus-low quintile portfolios, I compute the portfolio alpha (αS1,S2) using a
time-series regression on the four factor corporate bond return factor model of Bai et al.
[2019b] and t-statistics (tαS1,S2 ) using the Newey and West [1987] method for computing
standard errors adjusted for three lags.29 When imposing higher thresholds to the over
40, 000 high-minus-low portfolios, only one of double sort combinations of signals are true

28Bonferroni, Holm, and BHY benchmark t-statistics range from 4.58 to 5.00, with rejection rates, of the
null hypothesis of no return predictability, of 0.1−0.2%, which leads to false discovery rates of 99−99.4%.

29Additionally I compute the portfolio alpha adjusting for corporate bond return and stock return factors
using both the Bai et al. [2019b] and Fama and French [2015] five factor stock model.
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discoveries in predicting the cross-section of stock returns and it does not rely on sorting
on a corporate bond signal. Table A.1.14 shows that corporate bond signals are important
in predicting the cross-section of corporate bond returns but do not help in predicting the
cross-section of stock returns.

2.5 Robustness Tests

A particular concern that may be affecting the cross-section of corporate bond returns
is that a firm could have many bond issues of varying amount outstanding which could
impact our testing procedure. Bao et al. [2011] show that the firm’s most recently issued
bond and the firm’s bond with the shortest maturity are the most liquid bonds.

In this section I provide several robustness tests, motivated by the findings Bao et al.
[2011], to support our main empirical findings in the Internet Appendix. Robustness tests
of the univariate FM regressions and PS using: (1) a firm’s bond with the shortest time
to maturity, (2) a firm’s bond with lowest age since issuance, and (3) average bond return
across all bonds for the same underlying firm. The resulting estimated λs and αs (and
corresponding t-statistics tλs and tαs) for each signal for each of the three univariate FM
regressions and for each of the three PS regressions are individually reported for the firm’s
bond with the shortest time to maturity, firm’s bond with lowest age since issuance, and
the average bond return across all bonds for the same underlying firm. For each of the
three robustness tests mentioned, I compute the frequency of null hypotheses (no future
predictability of the characteristic) that are rejected under SHT, under each of the MHTs,
and the fraction of false discoveries. The results for each of the three robustness tests
are similar to those in Table A.1.9 where we find a higher percentage of SHT rejections
in the three different portfolio sorts as oppose to the three FM regressions, benchmark t-
statistics and SnM rejection rates under each of the Bonferroni, Holm, and BHY multiple
hypothesis test methods tend to be similar to those in Table A.1.9. Results are presented
for the firm’s: average bond return across all bonds for the same underlying firm, for firm’s
bond with lowest age since issuance, and bond with the shortest time to maturity.

2.6 Conclusion

The infamous Figure 2 in Harvey et al. [2016] shows the increase in the number of signals
being discovered that predict the cross-section of stock returns and the increasing rate
in which they have been discovered over the recent years. Thus coining the phrase from
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Cochrane [2011] Factor Zoo of stock characteristics and factors that predict the cross-
section of stock returns. I notice a similar increase in the number and rate of discovered
signals that predict the cross-section of U.S. corporate bond returns.

I determine higher statistical benchmarks for discovering a signal that predicts the
cross-section of corporate bond returns based on the signals in published/working papers
as well as in empirical tests using Fama and Macbeth [1973] cross-sectional regressions and
portfolio sorts using the bond factor model of Bai et al. [2019b]. When applying higher
benchmarks to the t-statistics of signals in published/working papers of the cross-section
of corporate bond returns under the multiple hypothesis testing framework I find a com-
parable higher benchmark to that documented in Harvey et al. [2016] in the cross-section
of stock returns. When applying higher benchmarks to a sample set of 143 signals in cross-
sectional regressions and portfolio sorts under the multiple hypothesis testing framework I
find roughly 2.4% are true discoveries. Rates of true discoveries and benchmark t-statistics
using the bond with the shortest age, shortest time to maturity, and average across all
bonds for each firm are quantitatively similar.

In a horse-race using a multivariate cross-sectional regression using all signals to pre-
dict the cross-section of corporate bond returns, I find a higher number of corporate bond
signals, rather than stock signals, that drive return predictability of the cross-section of
corporate bond returns. Results are driven by bond skewness, and bond age. In a second
horse-race, using all signals to predict the cross-section of stock returns, I find that no
corporate bond signals drive stock return predictability. Both sets of horse-racing results
are robust to different factor specifications, value-weighting by firm size (not to overweight
micro-cap firm corporate bond returns), and different multiple hypothesis testing methods.
My results have implications for the trading and portfolio management signals that cor-
porate bond institutional investors (pension plans, mutual funds, and fixed income hedge
funds) use.
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Chapter 3

Do Option Implied Measures of
Stock Mispricing Find Investment
Opportunities or Market Frictions?

3.1 Introduction

A number of studies, including An et al. [2010], Cremers and Weinbaum [2010], Hu [2014],
Johnson and So [2012], Manaster and Rendleman [1982], Muravyev et al. [2020], Pan
and Poteshman [2006], and Xing et al. [2010] propose option-based measures of stock
mispricing. These measures are different from each other, but fall into three categories.
Some use differences between implied and actual stock prices, others rely on differences in
implied volatilities across different options or over time, and still other measures are based
on trading volume. Recent research demonstrates that these measures predict abnormal
stock returns. To date however, nobody has compared what these measures capture and
when they do and do not work. In this paper, we use nine option-based measures of
stock mispricing to predict stock returns. Much of the predictability comes from illiquid
or hard-to-borrow stocks, but some of the measures appear to generate significant positive
abnormal returns from long-only strategies.

There are two necessary conditions for options to predict stock returns. First, at least
some informed investors must trade options. There are good reasons for them to do so.
Informed investors with positive information can obtain far greater implicit leverage by
purchasing calls than they could get by buying stock on margin. Similarly, by purchasing
puts, informed investors who believe a stock is overpriced can take a bearish position
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that requires far less collateral than is required to short the stock directly. For informed
investors, buying puts provides additional advantages over shorting stock. If the stock
price increases, an investor with a short position must post additional margin or close part
of his position. No additional money is required from a put holder. A short seller must
borrow shares to short and it is sometimes costly or difficult to do so. If the borrowed
shares are recalled and the short seller is unable to locate new shares, the short position
may have to be closed prematurely. Put buyers, on the other hand, can maintain their
position until the option expires.

The second condition for options to predict stock returns is that stock prices must adjust
slowly to information in options. In general, economists attribute slow adjustment of prices
to information to market frictions or limits of arbitrage. These include the costs of trading,
particularly for illiquid securities, and the risk that prices can move in the wrong direction
before finally incorporating information. There are additional important frictions that can
prevent stock prices from responding quickly to negative information. Many institutional
investors, like mutual funds, are restricted to long positions. They cannot short stocks.
In addition, some stocks are very difficult or expensive to short. These hard-to-borrow
stocks are often smaller companies. Market frictions are likely to be especially important
in slowing the response of stock prices to information in options because market frictions
may lead informed investors to trade options rather than the stock. For example, informed
investors may choose to trade options because it is difficult to sell the underlying stock
short.

We find that the stocks that option-based mispricing measures identify as mispriced
are disproportionately small or hard to borrow. When we sort them into value-weighted,
rather than equal-weighted portfolios, several of the measures appear to have little or no
ability to find mispriced stocks. Some measures pick portfolios that generate significant
negative alphas. After discarding hard-to-borrow stocks, however, the negative alphas
either disappear or shrink dramatically. Option-based measures of stock mispricing, for
the most part, find market frictions rather than investment opportunities.

It would seem that since all of these measures would contain the same information about
future stock returns since all are derived from options. We find though, that correlations
of portfolio placements across mispricing measures are low. This suggests that combining
measures may produce portfolios with larger future abnormal stock returns. This is true,
but only on the short side. The larger negative abnormal returns that are earned on
paper by combining measures are, however, earned by portfolios that contain very high
proportions of hard-to-borrow stocks. Combining measures does not produce portfolios
with larger positive abnormal returns on the long side. For the most part, option-based
measures of mispricing find market frictions. In some cases though, they appear to find
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investment opportunities.

The rest of this paper is organized as follows. Section 3.2 explains why informed
investors may trade options rather than shares. Section 3.3 reviews option-based measures
of stock mispricing and discusses how the measures are estimated in this paper. In Section
3.4 we estimate returns and alphas for portfolios created by sorting stocks on the basis of
option-based measures of stock mispricing. Section 3.5 concludes.

3.2 Literature Review: Informed Trading using Op-

tions

Black [1975] and many subsequent papers, note that investors with information may choose
to trade options rather than stock. For informed investors, trading options provides two
significant advantages over trading shares. First, it is often easier and cheaper to buy put
options or sell call options than it is to short-sell shares. Short-selling can be expensive,
and it may be difficult to find shares to borrow. In addition, short-sellers face the risk
of margin calls if the stock price increases. In those cases, buying puts or writing calls
provide attractive alternatives for investors who believe that a stock is overvalued. In
addition, options provide leverage and relax the investors borrowing constraints. When
buying stock on margin, an investor cannot borrow more than 50% of the stocks cost. A
basis of option pricing theory is that a call option can be replicated by borrowing money
and buying shares. The implicit borrowing in an option purchase, particularly if the option
is out-of-the-money, can be much greater than 50%. The implicit leverage means that for
an informed investor, returns are much higher for an option position than a stock position.

The implicit leverage in call options can be seen in the Black-Scholes model. The value
of a European call is

CALL =

(
S0 −

I∑
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is the present value of dividends paid over the life of the option, K is the strike price
of the option, r is the risk-free interest rate, σ is the stock volatility, T is the time to
expiration, and N (·) is the standard Normal cumulative distribution function. Note that
Black-Scholes option pricing is based on replicating a call option using a portfolio of shares
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of stock combined with riskless borrowing. In the Black-Scholes formula, N (d1) is the

number of shares in the portfolio, and
(
S0 −

∑I
i=1Die

−rti
)
N (d1) is the total value of the

shares. The second term in the formula is the amount borrowed. Hence, the leverage
implicit in a call option, which is the amount borrowed divided by the value of the shares,
can be calculated as

Leverage =
Ke−rTN (d2)(

S0 −
∑I

i=1Die−rti
)
N (d1)

(3.2.2)

We demonstrate the implicit leverage in call options using LiveVol/CBOE intraday prices
for all options over our sample period of 2004-2013. To calculate implicit leverages, we
use the estimates of implied stock prices and implied volatilities from the analysis. We
define in-the-money options as those with an absolute value for their delta of 0.625 to
0.875, at-the-money options as those with absolute values of deltas of 0.375 to 0.625, while
out-of-the money options have absolute values of deltas in the range of 0.125 to 0.375.1

Panel A of Table B.1.1 shows the mean implicit leverage of in-the-money, at-the-money,
and out-of-the-money calls in our sample for various times to expiration. Calls provide
much more leverage than can be obtained by buying stocks on margin. For at-the-money
calls with less than 30 days to expiration, the mean implicit leverage is 0.8835. That is,
buying these calls is like buying shares and borrowing 88.35% of the cost of the shares. This
leverage is much greater than the maximum margin of 50% available for buying shares.
Put another way, an investor who buys at-the-money calls gets exposure to 1/(1-.8835) =
$8.58 worth of stock for $1. The investor who purchases stock on margin gets exposure
to, at most, $2 worth of stock for $1. As Panel A shows, leverage increases as options
move further out of the money and as the time to expiration decreases. For example,
for at-the-money options the implicit leverage decreases from 88.35% for options with less
than 30 days to expiration to 83.1% for options with 30 to 179 days to expiration.2 Even
the options that are in the money and have more than 180 days to expiration do, however,
have much greater implicit leverage than the 50% obtained by buying the stock on margin.

For puts, we calculate the proportion of money from the implicit short position that is
invested at the riskless rate as collateral. When a stock is shorted, the short-seller has to

1This definition of moneyness is also used by Bollen and Whaley [2004] amongst others.
2Johnson and So [2012] use S0N (−d1) /C as a measure of leverage. Their measure can be thought of as

the multiple of the stock return earned by investing in the option rather than the stock. So, S0N (−d1) /
C = 2 the option return is twice the share return. Our measure, on the other hand, gives the proportion
of the position that is financed by borrowing. We use it because it makes for an easy comparison with
margin requirements.
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put up 150% of the short-sale proceeds as collateral. In other words, a short-seller needs
to use all of the proceeds of the short-sale for collateral and put up an additional 50% of
the proceeds out-of-pocket. The Black-Scholes model for puts is given by

PUT = Ke−rTN (−d2)−

(
S0 −

I∑
i=1

Die
−rti

)
N (−d1) (3.2.3)

The put is priced as a short position in N (−d1) shares of the underlying stock and
Ke−rTN (−d2) in the riskless security. The proportion of proceeds that the investor im-
plicitly puts up for collateral out-of-pocket when he purchases a put is the price paid for

the put divided by the
(
S0 −
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−rti
)
N (d1) proceeds from the short position. That

is,

Collateral =
Ke−rTN (−d2)(
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)
N (−d1)

(3.2.4)

Panel B of Table B.1.1 shows the implicit out-of-pocket collateral requirements for puts.
For at-the-money options, the average of the implicit collateral requirement is 0.3933 if the
option has more than 180 days to expiration, 0.2363 for options with 30 to 180 days to
expiration and 0.1416 for options with 10 to 30 days to expiration. Accordingly, buying
puts allows investors to have far lower out-of-pocket collateral requirements than the 50%
minimum in a short sale of stock.

So, regardless of whether informed investors buy puts or calls, trading options rather
than stock of equal value allows investors to earn greater potential returns on their invest-
ments. There are, however, additional reasons why option trading is especially attractive
for informed investors with unfavorable information about a stock. If a short sellers col-
lateral falls below a maintenance level, he or she must post additional collateral. If the
stock price moves against a put buyer, he just has a lower level of collateral. In addition,
short sellers have to borrow shares to sell, and it is difficult or expensive to borrow shares
of some stocks. Dealers who sell puts to investors may hedge by shorting the underlying
stock, but they are typically better able to sell short than most investors. An investor who
is able to borrow shares bears the risk that the borrowed shares will be recalled early and
he will be forced to terminate the short position.

Figlewski and Webb [1993] provide evidence that options trading reduces the effect of
constraints on short selling. Using S&P 500 stocks over 1974-1983, they show that short
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interest is higher for stocks with options than for other stocks. They attribute this to
options market makers shorting to hedge their positions.3

This is not to say that all informed trading should take place in the options market.
Easley et al. [1998] model trading by informed investors across options and shares. In the
pooling equilibrium of their model, informed investors trade in both options and shares.
More of the informed trading goes into options as depth in the options market increases
and as the relative leverage of options increases. More trading takes place in shares as the
depth of the stock market increases.4

Evidence suggests that most informed trading takes place in the stock market. Chakravarty
et al. [2005] use vector autoregressions of stock prices and implied stock prices from options
at one second intervals to estimate the proportion of information impounded in prices by
option and stock prices. Across 60 stocks, they find that the information share of options
varies from 11.8% to 23.5%. The information share is higher for out-of-the money options
than for in-the-money or at-the-money options.

The information share of options increases with the ratio of option volume to stock
volume, and decreases with the ratio of option effective spreads to stock effective spreads.
Kacperczyk and Pagnotta [2019] provide direct evidence of option trading by informed
investors. They hand collect a sample of 5,058 trades in 615 firms that were part of insider
trading investigations by the SEC over 1995-2015. Stocks accounted for 67% of these
trades and options accounted for 32%. Implied volatilities and volume from options were
abnormally high while insiders were trading.

3.3 Option-Based Measures of Stock Mispricing

A number of option-based measures of stock mispricing have been proposed. We are the
first to compare their performance under similar conditions and to show when they do
and do not succeed in predicting stock returns. We are not interested in overnight returns

3Battalio and Schultz [2011] show that the imposition of short-sale bans during the financial crisis led
to a sharp increase in bid-ask spreads for options on banned stocks. Synthetic share prices of banned
stocks became significantly lower than actual share prices suggesting that dealers who could not hedge
discouraged investors from shorting synthetically.

4Bid-Ask spreads for options are wide. In percentage terms, as measured by quoted spreads, it is
typically much more expensive to trade options than the underlying shares. Muravyev and Pearson [2020]
show, however, that trades are more likely to occur at the ask price when the fair value of the option is
close to the ask price, and more likely to occur at the bid price when the options fair value is near the bid.
Quoted spreads overstate trading costs.
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generated by these measures as these returns may be due to microstructure noise. Instead,
we focus on monthly returns that can be earned for up to a year after these measures are
estimated.

We separate option-based measures of stock mispricing into three categories. The first
category is measures based on the difference between implied and actual stocks prices.
These measures use an options pricing model (e.g. Black-Scholes) or an arbitrage bound
to generate an implied stock price. The second category is measures based on implied
volatilities. These measures use an option pricing model to generate implied volatilities
and compare them across options or over time. The third category is measures based on
trading volume. These measures compare bullish and bearish trading volume, or trading
volume across options and the underlying stock.

3.3.1 Measures based on differences between implied and actual
stock prices

An early paper that used implied stock prices from options to predict stock returns is
Manaster and Rendleman [1982]. Their data consists of daily closing prices for call options
from April 26, 1973 June 30, 1976. They omit calls on days when the present value of the
dividends to be paid over the life of the option exceeds the present value of interest foregone
by early exercise. This removes all call options that could rationally be exercised early from
their sample. They calculate implied stock prices each day by finding implied prices and
volatilities that minimize the sum of the squared differences between dividend-adjusted
Black-Scholes prices and market prices of all call options. Manaster and Rendleman [1982]
rank stocks by the percentage difference between implied and actual stock prices, which
they label ∆, and sort stocks into ∆ quintiles. On average, the difference in the returns
the next day for high and low ∆ quintiles is over 18 basis points.

We implement the Manaster and Rendleman [1982] method in the following way. We
jointly estimate the implied stock price and implied volatility using the extended Black-
Scholes-Merton model for a European option on dividend paying stocks. For each option
contract (identified as a call or put, by expiration date, and by strike price), over each
30 minute interval, we use an iterative process to solve for the values of {SIMP , σIMP}
that minimize the sum of the squared differences between option trade prices (or quote
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midpoints) and Black-Scholes-Merton prices. Specifically, for call options we solve

min
SIMP ,σIMP

SSE = min
SIMP ,σIMP

Nt∑
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)
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)2

(3.3.1)

where Cobs
t is the observed option trade price, SIMP is the estimated implied stock price,

σIMP is the estimated implied volatility. {SIMP , σIMP} are calculated for put options in
an analogous manner. We require that there be at least 3 different option trade prices
within a 30 minute interval in order to uniquely identify the implied stock and volatility.
Otherwise the interval is discarded.5

We then calculate daily relative implied prices (RIP ) using the mean difference between
implied prices and stock midpoints in each half hour interval. That is

RIP =

∑
i
SIMP,i−SMID,i

SMID,i

N
(3.3.2)

where i denotes the half-hour interval, SIMP,i denotes the implied stock price computed
during the i-th half hour interval, SMID,i is the stock quoted midpoint in the end of i-th
30 minute interval, N is the number of 30-minute intervals for which implied prices can be
calculated, and RIP is the relative implied price measure based on estimation using option
trade prices.

Our measure of the implied price difference (IPD) of stocks, based on option trades
and actual stock prices, is obtained by averaging RIP for each day across options on a
stock using open interest as weights, and then averaging across all days in a month. IPD
is calculated using only 30-minute intervals for which at least three option trade prices are
available. Hence, it is only calculated during periods of price discovery. As such, we can
think of it as the average percentage difference between option-implied stock prices and
actual stock prices during periods of price discovery.

We also calculate RIP and IPD using option bid-ask midpoints at the time of trades
rather than option trade prices. IPD calculated from bid-ask midpoints is highly correlated

5As a starting point for the iterative process, we use the stock quote midpoint (average of the stock bid
and ask) and the option implied volatility (calculated in LiveVol using the Cox et al. [1979] tree method
adjusted for dividends) of the last trade of the prior 30 minute interval. When solving for {SIMP , σIMP } we
perform the iteration over the log starting values to avoid the situation where the implied stock and implied
volatility become negative and we impose the condition in the joint estimation of SIMP−
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with IPD estimated from trades, but IPD estimated from trade prices is a somewhat
stronger predictor of stock prices. Hence we focus on that measure in the empirical work
to follow.

IPD is based on Manaster and Rendleman [1982], but there are some differences. First,
we use option trades for an entire month to estimate IPD. We are interested in prediction
of long-term stock returns. This requires that information must be incorporated slowly and
hence it is appropriate to use a longer period to estimate IPD. Second, we use intraday
trades. This allows us to match option trades with simultaneous stock quotes. It also
increases the number of observations used in the estimation. Finally, we use puts as well
as calls to estimate implied stock prices.6

In calculating IPD, we do not account for early exercise. It is difficult to simultane-
ously solve for implied volatility, implied stock price, and the early exercise boundary. In
addition, IPD is calculated almost entirely from actively traded options. These tend to be
at-the-money or out-of-the-money options that are unlikely to be exercised early. When
IPD is estimated using only call options on stocks that do not pay dividends, results are
similar to those presented here. As we will see, IPD works very well as a predictor of stock
returns. It is possible that it would work even better if early exercise is incorporated in its
estimation.

Muravyev et al. [2020] derive a related measure of mispricing. They use a non-linear
transformation of put-call parity violations to estimate implied stock borrowing fees that
short-sellers would expect to pay. This is a significant advantage of their measure it is
based on an arbitrage bound rather than a model. They demonstrate that their measure
of implied fees predicts future changes in indicative stock borrowing costs. Using data
from July 2006 through August 2015, they calculate the median implied borrowing fee for
each stock each day. Implied borrowing fees are a highly significant predictor of returns
for the next week and for the following month. When they sort stocks into deciles by
implied borrowing fees, the difference in four-factor alphas between high and low deciles
over the next month is a highly significant 75 basis points. Muravyev et al. [2020] do
not claim to estimate implied stock prices. Nevertheless, a put-call parity violation is
observationally equivalent to a difference between implied and actual stock prices. There
are many potential reasons why implied and actual stock prices can differ, but the implied
borrowing fee measure assumes that differences between implied and actual stock prices
occur because of short selling costs. They use pairs of puts and calls with the same strike

6Muravyev et al. [2013] use a similar technique. They predict returns for 39 stocks using differences
between implied and actual stock prices. Their implied bid and ask prices are calculated from put-call
parity.
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price and time to expiration and attribute violations of put-call parity to borrowing fees.
The estimated borrowing fee for a put-call pair is

hQIMP =
1

δ

(
1−

(
1− St − Ct + Pt − PV (DIV )− PV (K)

St

)1/k
)

(3.3.3)

where hQIMP is the implied borrowing fee, δ is 1/(1 + r), r is the daily discount factor,
St is the stock price at time t, Ct is the call price at time t, Pt is the put price at time
t, PV (DIV ) is the present value of the underlying stocks dividends over the life of the
options, PV (K) is the present value of the strike price and k is the time to expiration.

3.3.2 Measures based on option implied volatilities

If the Black-Scholes model is correct, implied volatilities from different options on a stock
with the same time to expiration should be the same. Differences in implied volatilities
across options indicate that some options have high prices relative to others. Bollen and
Whaley [2004] provide evidence that differences in implied volatilities across options and
time reflect differences in demand for the options by investors. Information about investor
demand for various types of options as reflected in implied volatilities may be useful for
predicting stock returns.

Cremers and Weinbaum [2010] (CW) show that differences between implied volatilities
of calls and implied volatilities of puts predict stock returns. Using all pairs of calls and
puts on a stock with the same strike price and expiration date, and weighting each pair by
its open interest, they calculate weighted average differences between call and put implied
volatilities. A higher (lower) implied volatility for calls than puts means that the call
prices are high (low) relative to the put prices. They divide stocks into five quintiles
based on these differences and calculate abnormal returns over the next week and the
next four weeks for these portfolios. Portfolios with call implied volatilities that exceed
put implied volatilities earn positive abnormal returns while those with larger put implied
volatilities earn negative abnormal returns. A strategy of going long the portfolio with
the greatest difference between call and put volatilities and short the portfolio with the
smallest difference produces four factor alphas of 99 basis points over the following four
weeks. Cremers and Weinbaum show further that the predictive power of option prices
increases as options become more liquid or underlying shares become less liquid.

In our empirical work, CW is the difference between call and put implied volatilities
as in Cremers and Weinbaum [2010]. We calculate CW daily for pairs of puts and calls
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with the same strike price and expiration date. A daily weighted average difference is
calculated across option pairs using the open interest as weights. That is, for day t,
CW =

∑
iwi,t

(
IV Call

i,t − IV Put
i,t

)
where i is the expiration date and strike price combination,

the weight wi,t is the average of the put and call open interest, IV Call
i,t is the implied volatility

of the call and IV Put
i,t is the implied volatility of the put. In calculating daily averages,

option pairs are omitted if the implied volatility, option delta, open interest or option trade
volume are missing, if the best bid or ask quotes are less than or equal to zero or if the
ask quote is less than or equal to the bid. We omit options with absolute values of delta
greater than 0.98 or less than 0.02. The average daily CW is averaged across days of the
month weighting each day equally.

Xing et al. [2010] use skewness, defined as the difference between the implied volatility
of out-of-the-money puts and the implied volatility of at-the-money calls, to predict future
stock returns. Out-of-the-money puts maximize leverage for investors with negative news
or bearish opinions about a stock. Strong demand for out-of-the-money puts will push
up their prices and thus their implied volatilities. At-the-money calls are typically the
most liquid options, hence subtracting the implied volatility of at-the-money-calls from
the implied volatility of out-of-the-money puts provides a measure of the excess demand
for puts. Using closing prices from 1996 2005, Xing et al. [2010] calculate weekly skewness
for individual stocks by averaging daily skewness. They sort stocks into quintiles based
on skewness and show that stocks with high skewness (large implied volatilities for out-
of-the-money puts) underperform stocks with low skewness (small implied volatilities for
out-of-the-money puts) by 15 to 20 basis points over the next week. Stocks with low
skewness continue to outperform stocks with high skewness for up to six months after the
portfolio formation.

An implicit assumption in the skewness measure is that informed trading of options
takes place mainly by investors with negative information. This may be true if options
are a way to get around short-sale constraints. Other measures based on option volume
also assume that informed trading of options comes mostly from bearish investors. We
estimate skewness as the difference between implied volatilities of puts with a delta of -0.2,
and the average implied volatility from put and call contracts with an absolute value of
delta of 0.5. Implied volatilities are obtained from the OptionMetrics volatility surface for
options with 30 days to maturity. We calculate skewness daily and average daily values to
compute a skewness measure for each month.

An et al. [2010] examine the power of changes in implied volatilities to forecast stock
returns. Implied volatilities are obtained from the daily implied volatility surface calcu-
lated by OptionMetrics. Their empirical analysis uses end-of-month call and put implied
volatilities for options with a delta of 0.5 and 30 days to maturity. An et al. sort stocks
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into decile portfolios each month based on the change in the stocks call and put implied
volatilities. Larger increases in call volatilities are associated with larger stock returns the
next month while larger increases in put volatilities are associated with lower stock returns
in the following month. The difference in returns between the portfolio with the largest
(typically positive) change in implied call volatility and the portfolio with the smallest
(typically negative) change in implied volatility is about 1% over the next month. Dif-
ferences in the next months abnormal returns, calculated with either the CAPM or the
Fama-French three factor model, are also about 1%. Differences in returns and abnormal
returns across portfolios of stock with the largest and smallest changes in put implied
volatilities are about 0.5%.

We replicate the An et al. [2010] by calculating ∆CV OL, the monthly change in implied
volatilities of calls and ∆PV OL, the month change in implied volatilities of puts. The data
are from the OptionMetrics volatility surface. We remove observations with missing implied
volatilities and deltas. Only at-the-money series (|∆| = 0.5) with 30 days to maturity are
retained. We use the last available daily observation of the month for each call/put for
each stock to compute the monthly changes.

3.3.3 Measures based on option volume and order flow

Johnson and So [2012] observe that, because of short-sale restrictions, investors with nega-
tive information are particularly likely to choose to trade options rather than shares.7 They
propose that O/S, the natural logarithm of the ratio of options volume to stock volume,
may contain information about future stock returns. A high value of O/S is likely to reflect
a large volume of trading by pessimistic investors who trade options rather than shares
because of short-sale restrictions. Using data from 1996 2010, they calculate O/S using
weekly volume shares of put and call options that expire between five and 35 days after
the trade. They form decile portfolios based on O/S ratios and show that the four-factor
alpha of the lowest O/S decile portfolio is about 34 basis points greater than the alpha of
the highest decile portfolio for the week following portfolio formation.

Ge et al. [2016] confirm that high O/S ratios predict negative stock returns, but also
provide evidence that implicit leverage, not short-sale restrictions, is behind the measures
power to predict stock returns. They break down volume for puts and calls into buy volume
and sell volume, and into trades that open and close positions. Both bullish and bearish
volume predict stock returns with the strongest predictions coming from volume that opens
call positions. Ge et al. [2016] state that high values of O/S are associated with negative

7Roll et al. [2010] originally found the option to stock volume ratio to predict stock returns.
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future returns because more components of options volume negatively predict returns than
positively predict returns, due to the fact that trading volume stemming from the unwinding
of bought call positions negatively predicts returns.

We estimate the O/S measure used in Johnson and So [2012], and Ge et al. [2016] as
the natural logarithm of the option to stock volume ratio. Unlike Johnson and So [2012],
who use just short-term options, we use the total option volume across all strikes and
maturities. We calculate O/S monthly. We measure stock volume in round lots of 100 to
make it comparable to option contracts on 100 shares.

Pan and Poteshman [2006] (PP) show that the daily ratio of the number of put contracts
purchased to the sum of put and call contracts provides information on stock mis-pricing. A
large ratio, reflecting greater public purchases of puts than calls, implies negative private
information while a small ratio, reflecting greater public purchases of calls than puts,
implies that traders have bullish private information. Slope coefficient estimates obtained
by regressing the next-day four-factor adjusted stock return on the ratio indicate that
buying stocks with all volume coming from buys of calls and selling stocks with all volume
coming from put buys yields a highly significant average return of over 50 basis points
over the next day. Larger excess returns are produced when they use options that are
out-of-the-money or close to expiration as these options provide more leverage. Pan and
Poteshman [2006] note that their results are not incompatible with market efficiency. In
their tests, returns are predicted using information that is not available to the public.
Investors are not able to observe whether option trades, and thus option volume, is buyer
initiated. We denote the put-to-call volume ratio as calculated by Pan and Poteshman
[2006] as PP and calculate it this way

PP =
OpenBuyPut

OpenBuyPut+OpenBuyCall
(3.3.4)

where Open Buy Put is the volume from purchases of puts that open put positions for
customers while Open Buy Call is the volume from purchases that open call positions
for customers. Open Buy and Sell trading volumes are obtained from the CBOE/ISE
exchanges. We calculate PP daily and average the daily measure over the month.

Hu [2014] calculates the Options Order Imbalance (OOI) daily by summing the product
of the volume for each option trade times the option trades delta. If most of the volume
occurs in option trades with negative deltas (put purchases or call sales) OOI will be
negative. If most volume is from positive alpha option trades (call purchases or put sales)
OOI will be positive. Options order imbalance predicts stock returns the next day even
after adjusting for order imbalances in the underlying stock. The return associated with
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options order imbalance does not appear to be reversed in succeeding days. Hu [2014]
observes that options order flow contains significant information about stock values. We
compute OOI as the difference between the synthetic positive and negative exposure to
the underlying stock using the signed CBOE/ISE option volume weighted by the absolute
value of the options delta and scaled by total option volume. OOI is calculated daily,
averaged monthly, and is used to predict stock returns in future months.

3.4 Predicting Stock Returns

3.4.1 Data

In the empirical work that follows we use two sources of options data to estimate option-
based measures of stock mis-pricing. CBOE/LiveVol provides intraday option trades and
quotes for 2004-2013. We apply the following standard microstructure data filters to our
option trades data. We remove option trades that occurred before 9:30 am or after 4:00
pm. We discard cancelled trades, trades in which the option trade price is greater than
twice the contemporaneous option quote midpoint, and trades with missing prices or miss-
ing bid or ask quotes. Option trades are also deleted if contemporaneous option quote
midpoints are less than ten cents, the options have zero trade volume, or have ten or fewer
days to maturity. For inclusion, all option best bid and best ask quotes must satisfy the
relationship 0 < Best Bid < Best Ask < 5× Best Bid. Intraday data from CBOE/LiveVol
is used to estimate IPD. Signed CBOE/ISE volume data are used to estimate PP, and
OOI. Our second source of options data is OptionMetrics. OptionMetrics provides daily
summary statistics for individual options. It also estimates an end-of-day implied volatil-
ity surface. We use data from OptionMetrics to estimate ∆CV OL, ∆PV OL, skewness,
implicit borrowing fees, CW, and O/S.

Table B.1.2 provides summary statistics on trading volume in the CBOE/LiveVol data.
The median number of contracts with 10 to 30 days to expiration that trade in one month is
226. That is a daily average of 10 contracts for 100 shares each. The distribution of trading
volume is right-skewed with some options trading a lot and others very little. Options with
greater times to maturity usually have lower volume, but still trade actively. For options
with more than 90 days to expiration, the mean number of contracts traded per month
is 288 and the median is 142. Some measures, like skewness, are estimated from heavily
traded short-term options. Others, like IPD are estimated from several different options
on the same stock. Options on the 500 largest stocks, which are especially important
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in calculating returns of value-weighted portfolios, trade more frequently than options on
other stocks.

Table B.1.3 reports summary statistics for option-based measures of stock mis-pricing.
Measures like IPD, CW, or OOI are typically small on average, as we would expect them
to be. There are outliers in IPD, which could occur if the stock quote midpoint was mis-
estimated. Likewise, O/S has outliers when stock volume is very low. We discard obvious
errors, but in addition, our comparisons of returns and alphas across quintile portfolios
mitigates the influence of outliers.

In this paper we show that stocks that are identified as overpriced by option-based
measures are often hard to borrow to short. We use indicative fee data from Markit
to identify hard-to-borrow stocks. This indicative fee reflects buy side end-users demand.
Table B.1.4 summarizes the distribution of indicative fees by year for the 2004-2013 sample
period. The median fee varies from 33.8 basis points per year in 2009 to 48.2 basis points
in 2004. In each year, the difference between the 1st percentile and the median indicative
fee is small, typically 5-7 basis points. We define hard-to-borrow stocks as those with
indicative fees that are in the top 20%. The 80th percentile indicative fee is usually two
to four times as large as the median fee. For example, in 2013 the median fee is 39.2 basis
points while the 80th percentile fee is 1.72%. The 99th percentile of indicative fees are
much higher than the median fees, and exceed 40% in 2011 and 2012.

3.4.2 Performance of Predicting Stock Returns

The nine option-based measures of mis-pricing used here have been shown to predict ab-
normal stock returns. This could be because informed investors trade options and the stock
market incorporates the information from options slowly. In this case, it should be possible
to earn abnormal returns in practice with the aid of these measures. On the other hand,
it may be that informed traders trade options in part because of market frictions in the
market for the underlying stock, and that these frictions prevent investors from profiting
from mispricings in practice. In this section, we attempt to minimize the impact of market
frictions and see if option-based measures of mis-pricing still yield abnormal returns.

We test whether abnormal returns can be earned using value-weighted portfolios sorted
on option-based measures of mispricing. We test whether abnormal returns can be earned
using value-weighted portfolios sorted on option-based measures of mispricing. Fama and
French [2008] caution against using long-short returns from equal-weighted portfolios to
examine anomalies. They note that the cross-sectional dispersion of anomaly variables is
largest among very small firms. Hence, small, illiquid stocks that are expensive to trade
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dominate long-short returns from equal-weighted portfolios. Fama and French observe that
a similar problem arises stock returns are regressed on anomaly variables. The extremes
of the explanatory variables are likely to be small and illiquid firms. We would add that
small stocks are also more likely to be difficult to borrow and sell short. Strategies that
use value-weighted portfolios are more likely to be implementable in practice.

We are also concerned that the profiting from option-based measures of mispricing
requires investors to short stocks that are costly or difficult to short in practice. The
profitability of many anomalies that seem to promise abnormal returns depends on short-
selling hard-to-borrow stocks. Stambaugh et al. [2015] construct value-weighted decile
portfolios of stocks sorted on 11 anomaly variables over August 1965 through January
2008. Long-short portfolios produce statistically significant three-factor abnormal returns
for each anomaly variable. For ten of the 11, the absolute value of the abnormal returns
is larger on the short leg than long leg. The differences in abnormal returns are usually
large. Stambaugh et al. [2015] show further that the poor (good) performance of overpriced
(underpriced) stocks is especially strong for stocks with high idiosyncratic volatilities and
hence greater arbitrage risk.

Jacobs [2015] examines the returns to 100 anomalies over August 1965 through January
2011. These anomalies are grouped into 19 meta anomalies like earnings surprise anomalies
and long-term reversal anomalies. Jacobs [2015] notes (page 80) that most meta anomaly
returns are effectively driven by the short-leg.

Using value-weighted portfolios reduces but does not eliminate the influence of hard-
to-borrow stocks on the returns from strategies based on of options. We also examine the
returns to option-based measures of mispricing after eliminating hard-to-borrow stocks.
Finally, we examine the returns to long-only strategies that use value-weighted portfolios.
The returns to these strategies are not diminished by the high trading costs of small stocks
or by the costs of borrowing shares for short-selling.

Each month, we sort stocks into quintile portfolios by each of the following option-based
mispricing measures: IPD, Implied Lending Fees, CW, Skewness, ∆CV OL, ∆PV OL, OOI,
PP, and O/S. Each month, we calculate the average market capitalization of stocks in
each quintile portfolio for each option-based mispricing measure. We then calculate grand
averages across months. These average sizes, in billions of dollars are shown in Panel A of
Table B.1.5.

For all option-based measures except Pan-Poteshman, both the low and high quintile
portfolios tend to have smaller firms than the middle portfolios. For example, the average
capitalization of low IPD stocks is just $2.75 billion, while the average size of third quintile
IPD stocks is $13.82 billion. Similarly, the mean size of the stocks in the high implied fee
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portfolio is only $1.7 billion, while the mean capitalization of stocks in the third implied
fee quintile is $10.16 billion. Likewise, the mean firm size for stocks in the high skewness
portfolio is just $2.65 billion while the mean size is $8.36 billion for third skewness portfolio
and $13.58 billion for the second lowest skewness portfolio. Profiting from these option-
based measures of stock mispricing involves trading small firms. Small stocks are illiquid
and expensive to trade. It is difficult to acquire a significant number of shares without
moving the price. The concentration of small stocks in extreme portfolios is an even bigger
problem if decile portfolios are used.

Not only are small firm stocks more expensive to trade than large firm stocks, they are
also more likely to be difficult to borrow for short sales. We obtain indicative lending stock
lending fees for all stocks for each month in our sample period from Markit. We designate
a stock as hard to borrow if the indicative fee for that stock is among the highest 20% of
all stocks, not just stocks with options, during that month. Optionable stocks are larger
and more liquid than those without options, so we would expect fewer than 20% of stocks
with options to be hard-to-borrow. For each quintile portfolio of each mispricing measure,
we calculate the proportion of stocks in the portfolio that are hard to borrow each month,
and average the proportion over the months of our sample period. Table B.1.5 Panel B
reports these averages.

For several measures, the quintile portfolio containing overvalued stocks is overweighted
in stocks that are hard to borrow. The low IPD portfolio contains stocks in which the
implied stock price is low relative to the actual stock price. On average, 33.88% of the
stocks in that portfolio are hard to borrow. In comparison, only 10.74% of the high IPD
stocks are hard to borrow. Similarly, 30.72% of the portfolio with high implied lending fees
is composed of hard to borrow stocks. Only 5.56% of the stocks in the low borrowing fee
portfolio are hard-to-borrow. For the low CW portfolio, which consists of stocks with high
implied volatilities from puts relative to the implied volatilities from calls, 37.07% of stocks
are hard to borrow. In contrast, only 12.34% of the stocks in the high CW portfolio are
hard to borrow. The proportion of stocks that are hard to borrow increases monotonically
from 6.69% in the low O/S portfolio to 21.13% in the high O/S portfolios.

Table B.1.5 Panel B demonstrates that option-based measures of stock mispricing pick
out small and hard-to-borrow stocks. That is, they find stocks with market frictions that
may prevent investors from profiting from mispricing. This may be because informed
investors trade the options because frictions like high borrowing costs make it difficult to
trade shares. Or, it may be that these stocks adjust more slowly to information in options.

In the appendix, we present returns and four factor alphas for equal-weighted quintile
portfolios formed using each of the option-based measures of mispricing. These measures
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appear to produce large long-short returns, but the significant mispricing appears to be
almost entirely on the short-side. As Table B.1.5 Panel B shows, the quintile portfolios
that these measures indicate are overpriced are overweighted with small and hard-to-borrow
stocks. Option-based measures of mispricing are very good at finding market frictions.

We next see if option-based measures of stock mispricing can be used to generate abnor-
mal returns after minimizing the influence of small, hard-to-borrow stocks. We calculate
returns and four-factor alphas for each of the three months following portfolio forma-
tion for value-weighted quintile portfolios. Value-weighting minimizes the contribution of
small, illiquid stocks to the portfolio returns. Because hard-to-borrow stocks are often
small, value-weighting also minimizes the impact on returns of stocks that are difficult to
short. As we will see, some option-based measures of mispricing that work with equal-
weighted portfolios have no ability to predict returns of value-weighted portfolios. Table
B.1.6 presents time-series averages of monthly returns and Fama-French-Carhart four factor
alphas (the original Fama and French [1993] augmented with the Cahart [1997] momentum
factor) for portfolios. Panel A reports results for measures based on differences between
implied and actual stock prices. Long-short portfolios formed both on IPD and implied
borrowing fees produce significant abnormal returns in the three months following portfolio
formation. For IPD, for example, the long-short portfolio produces alphas of 63.64 basis
points, 79.36 basis points, and 83.92 basis points in the three months following portfolio
formation. Both measures produce significant abnormal returns on the short side. For
the high implied borrowing fee portfolio, in Panel B, alphas are -38.73 basis points, -30.61
basis points, and -38.29 basis points in the three months following portfolio formation.
More interesting is that the high IPD portfolio, that is the one in which implied prices are
highest relative to actual prices, earns positive abnormal returns of 26, 39, and 43 basis
points over months t+1 through t+3. Each of these alphas is significantly different from
zero at the 1% level. Short sales are not needed to earn the abnormal returns of the high
IPD portfolios. Because these portfolios are value-weighted, trading costs and price impact
should be minimal.

Panel C to F presents results for value-weighted quintile portfolios formed using mea-
sures based on implied volatility. In general, these results are weak. Portfolios based
on CW, for example, do not provide significant long-short returns or significant long or
short-side abnormal returns. In the appendix, where portfolios are equal-weighted rather
than value-weighted, CW, and other measures produce large and significant returns for
short portfolios. Nevertheless, in value-weighted portfolios, as shown in Panel D, skewness
provides significant long-short returns in months two and three after portfolio formation.
It also provides significant positive long-side alphas in month t+3, and, as we will show,
in later months as well. ∆PV OL fares best of the measures, and provides significant long-
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short abnormal returns as well as significant negative abnormal returns for short portfolios.

Panel G, H, and I reports returns and four-factor alphas for value-weighted portfolios
formed using measures based on option volume. Sorts based on PP do not produce any
statistically significant four-factor alphas. Sorts on OOI yield a statistically significant
negative four-factor alpha for the second month and the second month only. On the other
hand, results for value-weighted portfolios based on O/S are quite strong. Alphas are
statistically significant for the short side (high options to stock volume) each month. In
addition, sorts on O/S, like IPD, produce statistically significant alphas each month on the
long side. Alphas for the low O/S portfolio are 25.60 basis points, 26.75 basis points, and
26.88 basis points for the three months after portfolio formation.

The results in Table B.1.6 show that at least three option-based measures seem to
predict positive alphas for value-weighted portfolios. IPD and O/S based portfolios produce
positive alphas in each of the three months after portfolio formation. The low skewness
portfolio has positive alphas in each of the three months following formation, but it is only
in the third month that the alpha is significantly different from zero. We will show, however,
that the low skewness portfolio continues to earn abnormal returns in succeeding months.
These three measures then generate trading strategies that produce significant alphas but
do not involve shorting stocks and do not rely on trading small firms. Cumulative positive
alphas over the three months following portfolio formation are significant but modest. For
high IPD portfolios they are just over 1% and for low O/S portfolios they are about 80
basis points.

Portfolios formed using four of the option-based measures of mispricing, IPD, implied
fees, ∆PV OL, and O/S, have negative and statistically significant abnormal returns after
portfolio formation. Using value-weighted portfolios as we do in Table B.1.6 reduces the
impact of short-sale constraints, but they may still be a factor. To see if the negative
abnormal returns can be earned by shorting stocks, each month we sort stocks into value-
weighted quintile portfolios based on each of the nine option-based measures of mispricing
after taking out all stocks that are hard-to-borrow that month. The remaining stocks all
have indicative borrowing fees below the 80th percentile that month. We then calculate
returns and four-factor alphas for each of these portfolios over each of the next three
months. We report the alphas in Table B.1.7 alongside the alphas from Table B.1.6 for
portfolios that include the hard-to-borrow stocks. To save space, we report the alphas for
just the high and low portfolios and the long-short portfolio.

Panel A provides results for portfolios formed using measures based on the difference
between implied and actual stock prices. When we exclude hard-to-borrow stocks, the
alphas of the high implied fee portfolios shrink dramatically. For example, the alpha for
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the high implied fee portfolio for month t+1 is -0.3873 with a t-statistic of -2.65 when all
stocks are included, but just -0.0499 with a t-statistic of -0.33 when we exclude hard-to-
borrow stocks. The alpha for month t+2 for portfolios with high implied fees is -0.3061
with a t-statistic of -2.27 when all stocks are included, but 0.0173 with a t-statistic of 0.13
when we exclude hard-to-borrow stocks. The implied fee variable is supposed to identify
hard-to-borrow stocks, so it is not surprising that it loses power when we omit hard-to-
borrow stocks. Results for IPD are also weaker when we omit hard-to-borrow stocks. When
all stocks are included, the alpha of the low IPD portfolio is -0.3810 with a t-statistic of
-2.33. When we exclude hard-to-borrow stocks, the alpha falls to -0.0597 with a t-statistic
of -0.33.

Panels C to F and G to I of Table B.1.7 present results for measures based on implied
volatilities and on option volume. In general, regardless of the measure used, alphas and
t-statistics fall for quintile portfolios of overvalued stocks when we exclude hard-to-borrow
stocks. For O/S in particular, alphas move much closer to zero when hard-to-borrow stocks
are omitted. For the high O/S portfolio with all stocks included, alphas are -0.1854 with
a t-statistic of -4.37, -0.2005 with a t-statistic of -2.41, and -0.2311 with a t-statistic of
-3.94 for the three months after portfolio formation. When the hard-to-borrow stocks are
omitted, the alphas shrink to -0.0662 with a t-statistic of -1.55 for the first month, -0.0714
with a t-statistic of -1.81 for the second month, and -0.1128 with a t-statistic of -2.37 for
the third month. Most of the poor performance of high O/S stocks is explained by the fact
that a high O/S measure is an indication that the stock is hard to borrow.

To summarize, when stocks are value-weighted, some option-based measures of mispric-
ing are unable to produce portfolios with significant negative alphas. Using value-weighed
portfolios but dropping hard-to-borrow stocks eliminates abnormal returns to short-selling
based on IPD or implied fees. There still appears to be some returns to shorting based
on ∆PV OL and O/S, but returns are greatly diminished when hard-to-borrow stocks are
eliminated.

Results in Table B.1.6 showed that three measures, IPD, skewness, and O/S, produced
portfolios that earned positive and significant abnormal returns in the three months after
portfolio formation. These abnormal returns are particularly perplexing. The portfolios
are value-weighted, so tiny illiquid stocks are not driving the results. A long only portfolio
strategy appears to earn these abnormal returns, so no short-selling is required. The
returns over the first three months are, however, relatively small. This raises the question of
whether these portfolios continue to earn positive abnormal returns after the three months.
In Table B.1.8, we report alphas for high and low IPD, skewness, and O/S portfolios for
each of the 12 months following portfolio formation.
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Table B.1.8 reports four-factor alphas for the 12 months after portfolio formation for
portfolios based on IPD, skewness and O/S. In each case, high and low quintile alphas are
reported along with the alphas of the long-short portfolio. What is of particular interest
is that these measures appear to produce portfolios with positive and significant alphas
for several months after portfolio formation. The first column of Table B.1.8 shows that
the high IPD portfolio earns positive and statistically significant abnormal returns for
each month from t+1 through t+6. They continue to earn mostly positive but mostly
insignificant returns for months t+7 through t+12. This suggests that positive alphas can
be earned for several months after portfolio formation through a long-only strategy. Long
only portfolios provide cumulative alphas of 3.10% over months t+1 through t+12. The
low skewness portfolio earns positive alphas for months t+1 through t+11, and the alphas
are statistically significant for months t+3 through t+6. The cumulative return for the
twelve months, obtained by summing the individual month alphas is 2.67% for the low
skewness portfolio. Low O/S portfolios have positive four-factor alphas in each of the 12
months following portfolio formation. They are statistically significant for months t+1
through t+9. After 12 months, the cumulative alpha for low the O/S portfolio is 2.64%.

These positive alphas appear to be abnormal returns that investors could earn. There
are no short selling costs or constraints to with which to contend. Institutional investors
who are constrained to long-only strategies should be able to earn these returns. The
portfolios are value-weighted, so a strategy to exploit these alphas does not require buying
tiny stocks.

3.4.3 Arbitrage Risk

Option-based measures of mispricing may allow investors to earn abnormal returns, but it
may be risky to earn those abnormal returns. Investing in stocks that are indicated to be
underpriced by IPD, O/S, or skewness may lead investors to hold undiversified portfolios
for long periods of time. Each of the quintile portfolios holds a large number of stocks,
but it is possible that portfolios are overweighted in some industries or in stocks with
common characteristics. A way to see if exploiting these measures leads investors to take
extra risks is to compare the Sharpe ratios of these portfolios of stocks that are identified
as underpriced with the Sharpe ratio of the market portfolio. The Sharpe ratio measures
the return to total risk ratio for an investors holdings. We estimate it for the high IPD
portfolio by calculating the excess return of the portfolio (return minus the riskfree rate)
in the month after formation for each month over 2004-2013. The Sharpe ratio for IPD for
the first month after portfolio formation is the ratio of the time-series average of the first
month excess returns to the standard deviation of the first month excess returns. We also

50



calculate Sharpe rations for the high IPD portfolio for each of months 2 through 12 after
portfolio formation. Analogous Sharpe ratios are calculated for the low skewness and low
O/S portfolios. Table B.1.10 reports the Sharpe ratios.

For IPD, the Sharpe ratio for the month after portfolio formation is 0.18, and it exceeds
0.2 for months t+2 through t+68. It is somewhat lower over the next six months but exceeds
0.15 in all but one month. For comparison, the Sharpe ratio for the S&P 500 was 0.1219
over the sample period, while the Sharpe ratio for the CRSP value-weighted index was
0.1236. An investor who invested only in the in the high IPD portfolio had a larger ratio
of return to risk than an investor who held the market portfolio. The last two columns
of Table B.1.10 provide Sharpe ratios for the low O/S and low skewness portfolios. These
Sharpe ratios are a little smaller than the Sharpe ratios for IPD, but still much higher
than the Sharpe ratio of the CRSP value-weighted index. It appears that the mispricing
indicated by O/S and skewness could also be exploited without taking extra risk.

3.4.4 Combining Measures

We have used several option-based measures of stock mispricing to form portfolios that
produce positive or negative abnormal returns in the subsequent months. Even though all
of the measures are derived from options, it is not clear whether the measures are based
on the same information. If different option-based measures contain different information,
they will produce stock sortings that have low correlations with each other. If this is true,
combinations of option-based measures of stock mispricing can be used to produce larger
abnormal returns. We are particularly interested in whether we can combine measures to
produce portfolios that earn larger positive abnormal returns for long positions.

Table B.1.9 reports correlations of quintile sortings of stocks produced by the option-
based measures. There are some high correlations. Quintile portfolio placements by
∆CV OL and ∆PV OL have a correlation of 0.570, while the correlation between place-
ments by CW and implied lending fees is -0.500. For the most part though, correlations
are low. For example, the correlation between IPD and O/S is -0.057. The low absolute
values of correlations suggest that double sorts on two measures may produce portfolios
that will earn larger abnormal returns.

There are 36 possible pairs of our nine option-based measures. We select three pairs of
measures to use in double sorts: IPD and O/S, IPD and skewness, and implied lending fees
and skewness. Each of these measures does a good job of identifying mispricings by itself,

8We do not claim that these ratios are independent.
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and the correlations of quintile portfolio placements between pairs of measures are low. For
each pair of measures, we first sort stocks into quintiles by the first measure (IPD, IPD, and
implied fees) and then sort each quintile into five portfolios by the second measure (O/S,
skewness, and skewness). Each double sort produce 25 portfolios with equal numbers of
stocks. We then calculate the value-weighted return and Fama-French-Carhart four-factor
abnormal return for each portfolio for the month after portfolio formation. Table B.1.11
reports the abnormal returns for these double-sorted portfolios.

Value-weighted portfolios formed from stocks with two bearish option measures, low
IPD and high O/S, low IPD and high skewness, or high implied fees and high skewness,
have large negative alphas. For example, the value-weighted portfolio formed from the
combination of low IPD and high O/S earns a average abnormal return of -96.31 basis
points in the month after portfolio formation. This is far larger in absolute value than
the abnormal return earned by the low quintile IPD portfolio (-38.10 basis points) or the
high quintile O/S portfolio (-18.54 basis points). Likewise, the portfolio formed from the
combination of high skewness and high implied fee stocks earns an abnormal return of -
65.80 basis points in the month after portfolio formation, which is larger than the abnormal
return earned by the implied fee quintile portfolio or the high skewness portfolio. Double
sorts can produce portfolios that underperform by more than portfolios produced by sorting
on one measure at least before shorting costs. The double-sorts do not, however, seem
to produce portfolios with larger positive alphas in the month after portfolio formation.
Table B.1.11 shows that the alpha for the portfolio of low O/S and high IPD stocks is only
22 basis points. The alpha for the portfolio of stocks with low skewness and low implied
fees is positive but less than one basis point. Double sorts do not improve on any positive
alphas earned by value-weighted portfolios formed using just one measure.

Table B.1.12 reports the proportion of stocks that are hard-to-borrow in each portfolio
produced by the double sorts in Table B.1.11. As might be expected, the double-sort
portfolios with the largest negative alphas contain a large fraction of stocks that are hard-
to-borrow. The portfolio formed from stocks in the low IPD high O/S quintiles earns
an alpha of -96.31 basis points, but Table B.1.12 shows that 65.3% of the stocks in that
portfolio are hard-to-borrow. Similarly, the high implied fee high skewness portfolio earns
an abnormal return of -65.80 basis points in the month after portfolio formation, but 31%
of the stocks in that portfolio are hard-to-borrow.
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3.5 Concluding Comments

Several recent empirical papers show that information in options can predict stock returns.
On the one hand, it is not surprising that informed investors would choose to trade options
rather than shares. Options provide greater leverage than can be obtained with shares and
can be used to make bearish bets when it is difficult to sell short. On the other hand, it is
somewhat surprising that stock prices can lag options by several months. Information from
options is readily available and, in the absence of market frictions, should be incorporated
in stock prices quickly.

In this paper, we examine the profitability of stock trading using three categories of
option-based measures of stock mis-pricing: measures based on stock prices implied by
options, measures based on implied volatilities, and measures based on option trading vol-
ume. When we minimize the influence of tiny stocks is by using value-weighted portfolios,
some of these measures appear to have no predictive ability. Some identify portfolios of
overvalued stocks that earn negative alphas in the months after portfolio formation, but
most of this predictive ability disappears when we exclude hard-to-borrow stocks from the
portfolios. Option-based measures of stock mis-pricing do find stocks that adjust slowly
to information because of market frictions.

Three option-based measures of mis-pricing, IPD, the difference between implied and
actual stock prices, O/S, the logarithm of the ratio of option volume to stock volume,
and skewness, the difference between the implied volatilities of out-of-the-money puts and
at-the-money calls, identify undervalued stocks that produce positive abnormal returns in
value-weighted portfolios. These appear to be returns that investors can actually earn.
The portfolios are value-weighted, so the strategies do not involve trading tiny, illiquid
stocks. In addition, short selling is not required. When IPD is used to identify undervalued
stocks, cumulative four-factor alphas for value-weighted portfolios are about 3.1% after 12
months. When O/S is used to find underpriced stocks, four-factor alphas cumulate to
about 2.6% in one year. The low skewness portfolio has a four-factor alpha of 2.7% for
12 months. Arbitrage risk does not appear to be a significant impediment to exploiting
the mis-valuation implied by these option-based measures. Sharpe ratio measures for long
portfolios formed on each of these measures exceed the Sharpe ratio of the market portfolio
over the same time period.

The portfolio placements of stocks by different option-based measures have relatively
low correlations. This suggests that double sorts on different option-based measures of
mis-pricing may produce larger abnormal returns than are produced by single sorts. This
is true, but only on the short side. Double sorts do not generate larger long-side alphas
than do single sorts.
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Option-based measures of stock mis-pricing are good at identifying frictions that slow
the response of stock prices to information in options. The mis-priced stocks are often
small or hard-to-borrow. Some of these measures, however, seem to predict realizable if
modest positive abnormal returns.
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Chapter 4

Accounting Transparency and the
Implied Volatility Skew

4.1 Introduction

The volatility smile in the options market refers to the fact that the Black and Scholes
[1973] implied volatility as a function of the strike price resembles the shape of a skew. A
myriad of more complex models, characterized by jumps and time-varying volatilities, have
since been developed to identify the best model that fits various aspects of the time-series
and cross-sectional properties of option prices.1 Through these studies we have learned
that a sizeable stock price jump risk premium is necessary to fit the time-series and cross-
sectional properties of option prices which highlights the importance of stock price jump
risk in option prices.2

In this paper, we study an economically intuitive explanation for the jump risk embed-
ded in the implied volatility skew in individual stock options. We model the equity option
price where the firm has a capital structure of debt and equity where investors do not know

1The literature began with deterministic models of volatility, giving rise to the so-called local volatility
models (see Cox and Ross [1976], Derman and Kani [1994], Dupire [1994], and Rubinstein [1994]), or
stochastic, as in the case of Heston [1993] as well as including stock price jumps (Merton [1976]), stochastic
jumps in volatility (Bates [1996]), and stochastic jumps in volatility and stochastic jumps in the stock price
process (Duffie et al. [2000]).

2The magnitude of the variance risk premia, stock jump risk premia, and volatility jump risk premia has
been well studied on the stock market index options as well as for individual firms options see for instance:
Eraker et al. [2003], Broadie et al. [2007], Broadie et al. [2009], Christoffersen et al. [2012], Andersen et al.
[2015] and others.
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the precise value of the firm, however, the firm periodically issues noisy accounting reports.
This effect of corporate disclosure quality on equity option pricing allows for the positive
probability per unit time that the firm can instantaneously go bankrupt which introduces
jump risk into the model, as equity value can suddenly go to zero from any positive level.
We study the effect of this jump risk on the volatility skew by extending the Duffie and
Lando [2001] (DL) model to the pricing of stock options in a model that is solved to closed
form solution up to Bivariate Cumulative Standard Normal Distribution.

Since large jumps in stock returns are closely tied to news about future cash flows
and discount rates, one might speculate that the volatility smile of stock options may
have something to do with the quality of corporate disclosures (Maheu and McCurdy
[2004]). Intuitively, a firm with timely, clear, and detailed disclosures will seldomly impose
a surprise on the market. In contrast, a firm that makes only infrequent and sketchy
disclosures is likely to catch investors off guard. In this respect, the quality of corporate
disclosures is perhaps proxying for the overall level of jump risk (both likelihood and
magnitude of jumps) in stock returns.

Our empirical analysis suggests that both the leverage ratio and the quality of cor-
porate disclosure can explain the cross-sectional variation of the implied volatility skew.
Specifically, we highlight an important interaction between the two effects. When a firm
is perceived to be opaque, whether its leverage ratio is high or low has less of an impact
for the pricing of stock options. Similarly, when the firm reports higher level of accounting
transparency, the higher the leverage ratio the more skewed in the implied volatility smile
is i.e. the closeness to default (in terms of higher leverage ratio) is better reflected in the
options market with more expensive out-of the money options.

Our paper is the first, to the best of our knowledge, to suggest and document a relation-
ship between the implied volatility skew, accounting transparency measure, and leverage.
As such it offers an interesting support of the DL insight and also furthers our understand-
ing of the economic sources of the volatility skew. However, our approach is not without
its limitations. For example, to emphasize the role of firm-level accounting noise, we have
avoided modeling economy-wide jump risks that may affect all of the stock returns. These
risk factors are responsible for index option skew and also partly for the skew in individ-
ual stock options through their effect on the pricing kernel. Therefore, our model is not
expected to fully account for the magnitude of the skew. Our empirical results can also
be consistent with the heterogeneous beliefs model of Buraschi and Jiltsov [2006]. From a
Bayesian point of view, the reason why different investors have different beliefs about the
fundamentals of a firm is that they are updating with different information. In the absence
of truthful reporting, any news about a company is necessarily noise, and the difference in
beliefs will be high. The two theories therefore offer very similar empirical predictions.
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We contribute to the research agenda that focuses more on the economic reasons for the
departure from Black-Scholes. Our paper compliments existing models of option models,
Chen et al. [2020] Gamba and Saretto [2020], that use firm investment and other firm
structural components in the implied volatility skew.3

The rest of this paper is organized as follows. We conduct a brief literature review
in Section 4.2 and then in Section 4.3 we present our theoretical model, and in Section
4.4 use numerical examples to illustrate the relationship between accounting transparency
and the volatility smile. In Section 4.5 we document the construction of the volatility
smile, the accounting transparency measures, and other aspects of the data. In Section 4.6
we conduct regression tests of the main predictions of the model with robustness tests in
Section 4.7. We conclude with Section 4.8.

4.2 Literature Review

There has been ample recent research that studies the the risk management behavior of
option market makers. For example Bollen and Whaley [2004] find that the supply and
demand of options can account for the difference in volatility skew across index and stock
option markets (for a theoretical model of option demand pressure on option prices see
Garleanu et al. [2009] as well as Fournier and Jacobs [2020]) and Cetin et al. [2006] show
empirically and theoretically the impact of stock illiquidity on option prices. Despite the
importance of the microstructure of equity options on their prices, the capital structure of
a firm is known to have important bearings on the pricing of stock options. Since equity is
essentially a call option on the value of the firm, one cannot consistently model both firm
value and stock price as geometric Brownian motions. This led to Geske [1979] (Geske et al.
[2016]) treatment of stock options as compound options. Since equity value is equal to zero
when bankruptcy occurs, the stock return attains a heavier left tail than in a Lognormal
distribution, implying a downward-sloping volatility skew—the more levered the firm is,
the more skewed is the implied volatility function. This relationship has been confirmed
empirically by Toft and Pryck [1997] (TP), who apply the compound option approach to
the Leland [1994] model.4

3Xiao and Vasquez [2020] study the impact of measures of default and credit risk on future option
returns with a stylized model of capital structure that prices options (with embedded jumps in the firm
asset value process) which cannot be solved in closed form. Additionally Tian and Wu [2020] also show
empirically a principal risk source component of the cross-sectional variation of individual stock options
implied volatility skew is related to a firm’s default risk.

4Dennis and Mayhew [2002] find less of an impact of leverage on the implied volatility skew as well as
a different sign using a different data set of options data.
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Our modeling of the effect of corporate disclosure quality on equity option pricing is
an amalgamation of TP and the incomplete accounting information model of Duffie and
Lando [2001] (DL). In DL, the firm value is assumed to follow a Geometric Brownian
motion. However, investors do not know the precise value of the firm. Instead, the firm
periodically issues noisy accounting reports. DL show that there is a positive probability
per unit time that the firm can go bankrupt within the next instant even if the firm is
reported to be safe, because the true firm value may lie somewhere close to the default
threshold. This introduces jump risk into the model, as equity value can suddenly go to
zero from any positive level. The crucial parameter in the DL model, the variance of the
accounting noise, governs the intensity of the jump to default.5

A recent literature has emerged that is studying the quality of information (accounting
and other) disclosure on option prices. In particular Dubinsky et al. [2019] quantify the
impact of earnings announcements on option prices using deterministic jump components.6

Our research question is different from that done in Smith [2018] (and Smith [2019]) which
constructs a theoretical option pricing model to specifically incorporate the impact of an
accounting disclosure event date on the price of an option. The paper is modeling the
impact of the event itself directly on prices which is different from modeling the quality of
the information level itself. As well the paper has no direct empirical analysis or support
mentioned whereas our model theoretical predictions are consistent with our empirical
results as defined in our model.

This paper should also not be confused with the work of Vanden [2008] which constructs
a multi-period rational expectations model in which investors have private asymmetric
information and trade using a derivative contract. Our model framework does not make
any predictions regarding investors with different types of information quality.

Note that our research question is different from that done in the thesis work of Chandia
[2014] which analyzes whether the option volatility skew is impacted by the accounting
quality through the channel of accrual choice and quality. The work contains no theoretical
predictions and their definition of accrual choice as well as quality are ambiguous whereas
our model theoretical predictions are consistent with our empirical results as defined in
our model.

5Du et al. [2019] find that a sizeable asset jump risk premia is needed, in addition to priced stochastic
asset volatility, to help reconcile short term observed credit spreads on investment grade firms.

6Additionally see Lee [2012], Jeon et al. [2021], and Baker et al. [2020] for additional components of
economic jump sources.
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4.3 The Model

Our goal is to examine equity option pricing with consideration for the firm’s capital
structure as well as the fact that public information about the firm provides only a noisy
estimate of its true value. The natural framework for this is the DL structural credit
risk model with incomplete accounting information. Our derivation of the stock option
pricing formula takes three steps. Step 1 takes into account endogenous bankruptcy by
shareholders and expresses equity value as the solution to an optimal stopping problem.
Step 2 assumes perfectly observed firm value and prices stock options using the compound
options approach. Step 3 incorporates noisy accounting information into the pricing for-
mula. The results of the first two steps are directly from DL and TP, and the final step is
a combination of the two.

4.3.1 Equities

To begin, assume that we have a firm whose asset level is described by Vt, a geometric
Brownian motion with drift µ and volatility σ. The firm generates cash flow at a rate δVt,
which is distributed to shareholders as well as being used to service a par consol bond with
a total coupon rate C. The tax rate is θ, generating tax benefits for the bond at a rate of
θC. All agents are risk-neutral and discount cash flows at a constant rate of r.

In this setting, one can conjecture that shareholders will choose to liquidate the firm if
the asset level Vt becomes sufficiently low. Namely, the stopping policy that maximize the
discounted present value from operating the firm, including tax benefits,

E

(∫ τ

t

e−r(s−t) (δVs − C + θC) ds|Vt
)
, (4.3.1)

takes the form τ (VB) = inf {t : VtB}. Indeed, DL verify the optimality of such a stopping
rule and show the corresponding equity value as

w (v) =
δv

r − µ
− vB (C) δ

r − µ

(
v

vB (C)

)−γ
− (1− θ) C

r

(
1−

(
v

vB (C)

)−γ)
(4.3.2)

when v > vB (C), and w (v) = 0 for vB (C). The terms represent, respectively, the present
value of future cash flows generated by the assets, the present value of cash flows lost to
bankruptcy, and the cost of debt service minus the tax benefit. Here, vB (C) is the default
threshold

vB (C) =
(1− θ)Cγ (r − µ)

r (1 + γ) δ
, (4.3.3)
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where γ = m+
√
m2+2rσ2

σ2 and m = µ− 1
2
σ2.

Notice that the total coupon rate C can be determined by maximizing the initial value
of equity plus the market value of the consol bond. This is the notion of optimal capital
structure pursued in Leland [1994] and Leland and Toft [1996]. It is not essential to our
subsequent results and is therefore omitted.

4.3.2 Stock Options

Given shareholders’ optimal decision to liquidate the firm once the firm asset level drops
below VB = vB (C), we can price stock options as compound options on the firm’s assets.

To facilitate the derivations, define a standard Brownian motion Zt ≡ log Vt and let
v = log VB. The price at time t of a stock option with maturity T and strike price K is

ht (u) = e−r(T−t)E
((
w
(
eZT
)
−K

)+
1{τ>T}|Zt = u

)
. (4.3.4)

The indicator function means that the option payoff is zero if bankruptcy is declared prior
to its maturity.

Using Bayes’ rule, this can be rewritten as

e−r(T−t)
∫ ∞
v

(w (ex)−K)+ P (ZT ∈ dx, τ > T |Zt = u)

= e−r(T−t)
∫ ∞
v

(w (ex)−K)+ P (τ > T |Zt = u, ZT = x)P (ZT ∈ dx|Zt = u) .(4.3.5)

This expression involves two probabilities. The first is the probability of survival through
T given that the standard Brownian motion Z is pinned at the two end points, and can be

written as ψ
(
u− v, x− v, σ

√
T − t

)
= 1 − exp

(
−2(u−v)(x−v)

σ2(T−t)

)
. The second is simply the

density of a normal random variable with mean u+m (T − t) and variance σ2 (T − t). We
therefore obtain

ht (u) =
e−r(T−t)√

2πσ2 (T − t)

∫ ∞
v

(w (ex)−K)+ exp

(
−(x− u−m (T − t))2

2σ2 (T − t)

)
(

1− exp

(
−2 (u− v) (x− v)

σ2 (T − t)

))
dx. (4.3.6)
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After substituting in the value of equity in equation (4.3.2) and some further manipu-
lations, we arrive at the final expression:

ht (u) = Feu+(m+ 1
2
σ2−r)l

(
N
(
y∗ + σ

√
l
)
− e(2mσ−2+2)(v−u)N

(
y∗ + σ

√
l +

2 (v − u)

σ
√
l

))
+Beγ(v−u)

(
N
(
y∗ − γσ

√
l
)
− e(2mσ−2−2γ)(v−u)N

(
y∗ − γσ

√
l +

2 (v − u)

σ
√
l

))
− (A+K) e−rl

(
N (y∗)− e2mσ−2(v−u)N

(
y∗ +

2 (v − u)

σ
√
l

))
, (4.3.7)

where

l = T − t,

F =
δ

r − µ
,

A =
(1− θ)C

r
,

B =
(1− θ)C
r (1 + γ)

,

y∗ = −x
∗ − u−m (T − t)

σ
√
T − t

,

and ex
∗

is the firm asset level that corresponds to an equity value of K:

Fex − A+Be−γ(x−v) = K. (4.3.8)

With some differences in notations, this pricing formula is first derived by TP. They
show that it leads to a downward-sloping volatility smile. Furthermore, the skewness of the
pattern increases with firm leverage. Our comparative statics in Section 3 will re-examine
these findings.

4.3.3 Incomplete Accounting Information

The pricing formula (4.3.7) assumes that the firm asset level Vt is known to investors, which
may seem like a harmless assumption. However, recent accounting scandals suggest that
this is quite far from reality. DL assume that firm assets are observed only periodically,
and with noise. Therefore, at time t the value of the firm’s assets is not known with perfect
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precision. Instead, it is governed by a conditional distribution that depends on the reported
firm assets as well as the absence of bankruptcy. DL use this framework to investigate the
pricing of defaultable bonds, producing strong predictions for short-maturity credit spreads.
We intend to study its impact on the pricing of stock options.

First, we follow DL in assuming that Z0 is observed without noise. Then, at time t,
the firm reports the value of Yt = Zt + Ut, where Ut is independent of Zt and normally
distributed with mean −a2

2
and variance a2, so that the reported firm asset level V̂t = Vte

Ut

is a noisy but unbiased version of Vt.

Next, we show that the stock option value can be expressed as an integral of equation
(4.3.7) over the distribution of Zt given information available at t. This can be seen by
writing the option price Ht as

Ht = e−r(T−t)E
((
w
(
eZT
)
−K

)+
1{τ>T}|Yt = y, Z0 = z0, τ > t

)
= e−r(T−t)

∫ ∞
v

(w (ex)−K)+ P (ZT ∈ dx, τ > T |Yt = y, Z0 = z0, τ > t) .(4.3.9)

The joint density of ZT and no default until T given the current and lagged asset values,
as well as survival to t, can be decomposed by repeated applications of Bayes’ rule:

P (ZT ∈ dx, τ > T |Yt = y, Z0 = z0, τ > t)

=

∫ ∞
u=v

P (ZT ∈ dx, Zt ∈ du, τ > T |Yt = y, Z0 = z0, τ > t)

=

∫ ∞
u=v

P (τ > T |Zt = u, ZT = x)P (ZT ∈ dx, Zt ∈ du|Yt = y, Z0 = z0, τ > t)

=

∫ ∞
u=v

P (τ > T |Zt = u, ZT = x)P (ZT ∈ dx|Zt = u)P (Zt ∈ du|Yt = y, Z0 = z0, τ > t) .(4.3.10)

Of the three probabilities above, the first is simply the survival probability of the pinned
Brownian motion, previously referred to as ψ

(
u− v, x− v, σ

√
T − t

)
. The second is the

density of a normal random variable with mean u+m (T − t) and variance σ2 (T − t). The
last is the density of Zt given current and lagged asset reports and survival. We denote it
by g (u|y, z0, t) du.

Combining these two equations, we obtain

Ht =
e−r(T−t)√

2πσ2 (T − t)

∫ ∞
v

(w (ex)−K)+

∫ ∞
v

exp

(
−(x− u−m (T − t))2

2σ2 (T − t)

)
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(
1− exp

(
−2 (u− v) (x− v)

σ2 (T − t)

))
g (u|Yt, Z0, t) dudx. (4.3.11)

Switching the order of integration, it is easy to see that

Ht =

∫ ∞
v

ht (u) g (u|y, z0, t) du, (4.3.12)

which is in some sense obvious given the assumed risk-neutrality.

Following DL, the last unknown quantity g can be written as

g (u|y, z0, t) du = P (Zt|Yt = y, Z0 = z0, τ > t)

=
P (Zt ∈ du, τ > t|Yt = y, Z0 = z0)

P (τ > t|Yt = y, Z0 = z0)

=
P (Zt ∈ du, τ > t|Yt = y, Z0 = z0)∫∞
v
P (Zt ∈ du, τ > t|Yt = y, Z0 = z0)

. (4.3.13)

The numerator, denoted as b (u|y, z0, t) du, is equal to

b (u|y, z0, t) du =
P (τ > t|Zt = u, Z0 = z0)P (Zt ∈ du, Yt ∈ dy)

P (Yt ∈ dy)

=
ψ
(
z0 − v, z − v, σ

√
t
)
φU (y − u)φZ (u) du

φY (y)
, (4.3.14)

where φU , φZ and φY are respectively the densities of Ut, Zt and Yt. We note that Ut ∼
N (−a2/2, a2), Zt ∼ N (z0 +mt, σ2t) and Yt ∼ N (−a2/2 + z0 +mt, a2 + σ2t). The last
step above uses the independence between Zt and Ut.

Putting everything together, we obtain

g (u|y, z0, t) =

√
α
2π

(
1− exp

(
− 2
σ2t
z̃0ũ
))

exp
(
− 1

2a2
(ỹ − ũ)2) exp

(
− 1

2σ2t
(ũ− z̃0 −mt)2)

N (
√
αβ)−N

(√
α
(
β − 2

σ2tα
z̃0

))
exp

(
−αη

2
+ 2

σ4t2α
z̃0 (z̃0 − αβσ2t)

) ,

(4.3.15)
where z̃0 = z0 − v, ũ = u− v, ỹ = y − v + a2/2, and

α =
σ2t+ a2

a2σ2t
,

β =
σ2tỹ + a2 (z̃0 +mt)

σ2t+ a2
,
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η =
σ2ta2 (ỹ − (z̃0 +mt))2

(σ2t+ a2)2 .

This expression is slightly different in form from, but equivalent to, the one in DL.

In order to solve for our option pricing model with incomplete accounting information,
given by Ht, in closed form, we first note that the function g (u|y, z0, t) can be re-written
as a difference of Normal distribution probability density functions with different means
and variances in the general form (see appendix for details of derivation and notation):

g (u|z0, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ (4.3.16)

Our formula for Ht involves the integral of the product of the TP option pricing formula
(denoted ht (u)) and the density function g (u|y, z0, t). Expanding the product results in
computing twelve integrals of the form in equation 4.3.17 (see Owen [1980]).

∫ ∞
R

Φ(A+Bx)φ(x)dx = Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, R;

−B√
1 +B2

)
(4.3.17)

The resulting sum of the twelve integrals results in a closed for solution, up to Bivariate
Normal probability function, of the expression Ht. The resulting expression and sketch of
the proof for Ht is available in the appendix of this paper and an online mathematical
appendix for full step by step derivation.

4.4 Numerical Examples

In this section we use numerical examples to illustrate the theoretical model outlined in
the preceding section. We focus on the interaction between accounting transparency and
leverage, asset volatility, as well as the maturity of the equity option in the determination
of the implied volatility smile.

The model parameters are chosen to be as close as possible to those used by TP, so that
comparisons can be made where appropriate. The basic parameters are m = 0.01, σ = 0.2,
r = 0.08, and θ = 0.35. The starting point of the firm value is set to V0 = 100, and the
reported firm value at t = 1 is Y1 = 100. The leverage ratio of the firm is controlled by
the coupon rate of the consol bond, C. Given the payout rate δ, the dividend yield on the

64



stock is set to δY1−(1−θ)C
E1

where E1 is the equity value corresponding to an asset level of
Y1. The dividend yield and the equity value are useful when inverting the Black-Scholes
formula for the implied volatility.

In the examples below, the case of low leverage assumes C = 1.72 and δ = 3.70%;
medium leverage, C = 3.77 and δ = 4.54%; high leverage, C = 6.42 and δ = 5.66%. These
parameter values are taken directly from TP’s Table I. We also assume that the accounting
precision parameter a can take on three values: 0.04, 0.08, and 0.12. Lastly, we take the
maturity of the stock option to be 1 month.

4.4.1 Leverage

We first examine the role of leverage where the accounting reports are assumed to be
precise. We do this by setting a = 0, which reduces the model to that of TP. To isolate
the shape of the volatility smile pattern, we normalize the strike price by the current value
of equity, and divide all of the implied volatilities by the at-the-money implied volatility,
resulting in a standardized plot.

Figure C.1.1 presents the volatility smile for cases with low, medium, or high leverage
ratios. Panel 1 is where the accounting precision is set to zero, representing precisely
observed asset values. It shows that the volatility skew increases with leverage, something
that TP document both in theory and empirically. Notably, the magnitude of the skew is
very close to what TP present in their Table II. The remaining three panels then illustrate
what happens when we have imprecise accounting reports. Notice that for the case with
a = 0.00 (Panel 1) we still have an implied volatility skew that increases with leverage, but
this relationship reverses itself under the presence of somewhat higher accounting noise
(Panels 2, 3 and 4). This observation suggests that there is a level of accounting precision
under which the skewness of the smile is insensitive to leverage. Consequently, one has to
be careful in designing regression tests for the relationship between skewness and leverage.
It is possible, for example, that simply regressing the skewness on leverage would not be
able to uncover any relation at all.

To explain this puzzling behavior, we examine the relationship between the volatility
smile and accounting precision under different assumptions of firm leverage. First, Figure
C.1.2 shows that this relationship is clearly monotonic, with higher skewness associated
with higher accounting noise. Since option value is a convex function of equity value in
TP’s model, the accounting noise boosts option value due to Jensen’s effect. With deep-in-
the-money call options (with low strike prices) that are very close to the no-arbitrage lower
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bound, a small increase in the option value requires a large increase in equity volatility.7

This results in the elevated volatility skew.

In Figure C.1.2, the impact of accounting imprecision can be ostensibly much larger
than the effect of leverage, but one has to keep in mind that we do not yet know what a
reasonable level of a is. A value of a = 0.12, for example, implies an accounting report that
can regularly be 12 percent off target. We also see from Figure C.1.2 that accounting noise
disproportionately affects the left side of the volatility smile. The intuition is of course
that the imprecise observation of firm assets introduces downward jump risk due to the
presence of the default boundary.

The most important observation from Figure C.1.2 is perhaps the decreasing effect of
accounting noise with leverage—the variation of the skew is noticeably smaller in Panel 3
than in Panel 1. This observation, which helps to explain the relationship between skewness
and leverage in Figure C.1.1, can be understood intuitively that in our model the volatility
skew is generated by default through two channels. First, the firm asset level can diffuse
down to the default boundary. Second, the firm value can suddenly jump to default due
to incomplete accounting information. As the firm moves closer to the default boundary
(represented by higher leverage ratios), it becomes easier to default through the normal
diffusion channel, and the relative importance of the jump risk decreases.

Figure C.1.3 shows a bar graph of the change in the implied volatility skewness with
respect to leverage for different accounting transparency (a = 0.04, a = 0.08, and a = 0.12
where a higher value of ′a′ is associated with less transparency). We show bar charts for
three sets of differences in the implied volatility surface where each different bar chart
color (blue, orange, and grey) corresponds to a different point in change in the implied
volatility skewness. For each set differences in the implied volatility surface we show bar
charts for different accounting transparency levels a = 0.04, a = 0.08, and a = 0.12, hence
this results in three bar charts for each set of differences in the implied volatility surface.
For a particular differences in the implied volatility surface (say the set of blue colored bar
charts), we see that the lower the value of ′a′ accounting transparency the more negative the
change in the implied volatility skewness with respect to leverage. The model prediction
is the same for all three sets of differences in the implied volatility surface.

7Another way to understand it is that these options have very low vega according to the Black-Scholes
model.
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4.5 Data

The data used for our empirical tests is merged from the following standard sources: quar-
terly balance sheet data is from COMPUSTAT, daily and monthly stock data is from
CRSP, equity options data is obtained from the OptionMetrics Database, and earnings in-
formation is from the I/B/E/S data. The sample period is from January 1997 to December
2017. OptionMetrics equity options data is first available as of January 1996, however, the
merge between OptionMetrics and the earnings information is sparse during 1996 hence
we begin our sample at January 1, 1997.

Our equity options data consists of closing end of day call and put option best bid and
best offer quotes from the OptionMetrics Database which collects closing option quotes data
from all U.S. equity option exchanges. Equity options for individual firms are American
in nature in the sense that they can be exercised at any time. For each quoted option
contract price the corresponding contract open interest, daily trade volume, and Black-
Scholes delta and implied volatility are reported. The Black-Scholes delta and implied
volatility are computed using the Cox et al. [1979] binomial lattice model in order to
incorporate the early exercise features of American options. We apply filters to our options
data set, specifically we remove contracts with missing implied volatility, open interest,
trade volume, and delta. We remove contracts that have less than 10 days remaining
to maturity in order to account for the rollover of option contracts. We remove option
contracts with option best bid or best offer prices that are less than or equal to zero, and
cases where the best offer is less than or equal to the best bid. We also require the absolute
value of the option contract delta to be between 0.02 and 0.98 to avoid using very deep
in-the-money and out-of-the-money contracts that are mis-priced and have low liquidity.

We take as at-the-money option the closest option contract that as long as the money-
ness ((K/S0)) is between 0.99 and 1.03, with corresponding moneyness ((K/S0)Hight ) and

implied volatility (IV OLHight ) for every firm each day.

For the out-of-the-money put, we choose the closest option contract that as long as the
moneyness below 0.97 and above 0.92 (and if not available below 0.97 then the lowest below
0.92), with corresponding moneyness ((K/S0)Lowt ) and implied volatility (IV OLLowt ). As
a metric for the volatility skew we consider the following variable:

SLOPEt =
IV OLHight − IV OLLowt

(K/S0)Hight − (K/S0)Lowt

(4.5.1)

So for a typical skew, this variable is negative and the more negative the more skewed
the smirk/smile is. In the robustness section 4.7 we show that our results are robust to
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scaling the numerator of equation 4.5.1 by the ATM implied volatility (IV OLHight ). Note
that this variable only measures the left hand side of the skew, which is where our theory’s
predictions are the strongest. Our measure in equation 4.5.1 is computed each day for
every firm and averaged across all options within the time interval of 15 to 45 days (and in
robustness section 4.7 we average across all options of all times to maturity for each day
for each firm) and then averaged over the quarter for each firm.

Our measure of leverage is computed using quarterly COMPUSTAT data as the ratio of
book value of debt divided by sum of debt and market value of equity using quarterly data
from COMPUSTAT. We assume that book values of debt and preferred stock are adequate
proxies for the corresponding market values. In order to account for heterogeneity of firm
characteristics, we use several control variables known to impact the implied volatility
skew in the most recent empirical tests in Morellec and Zhdanov [2019]. Specifically we
control for the: market-to-book ratio (M/B), market capitalization of the firm (Size),
stock momentum (Momentum), stock beta (Beta), idiosyncratic stock return skewness
(Idio Skew), and at-the-money option implied volatility (Atm Ivol). The market-to-book
ratio (M/B) is the ratio of quarterly market equity divided by book equity using quarterly
data from COMPUSTAT. We also control for the market capitalization of the firm (size)
which is the log of the product of the stock price and shares outstanding from CRSP
monthly stock files (firms with share codes 10 and 11 common shares). Momentum is the
past 6 month cumulative monthly stock returns from CRSP which controls for the stock
momentum over the previous 6 months of returns. Beta is the stock beta with the market
estimated from 36 months rolling regressions adjusted by 3 months of lags for asynchronous
trading as per the Dimson [1979] adjustment. Idio Skew is the idiosyncratic skewness of
daily returns estimated quarterly using daily CRSP stock returns. Atm Ivol is average of
call and put contract implied volatility with |∆| = 0.5 and 30 days to maturity, and using
OptionMetrics Volatility surface computed daily on a firm level and then averaged over
the quarter.

Our measures of accounting quality are based on earnings information from I/B/E/S
database. We compute the dispersion in analyst forecast (Disp) and number of analyst
covering stock (Nanalyst) from the data set of firm characteristics in Green et al. [2017]
(GHZ, henceforth).8 The list of firm characteristics in GHZ is constructed using all firms
with common shares that are listed on the AMEX, NYSE, or NASDAQ, that have end
of month value on CRSP, quarterly and annual balance sheet reporting on COMPUSTAT
and earnings information reported to the I/B/E/S data.

8We thank Jeremiah Green for making the SAS code to construct the data set freely available on his
website.
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As the number of analysts (Nanalyst) increases, the quality of the accounting trans-
parency of the firm increases since more analysts are paying attention to the earnings
statement of the firm and will yield a more precise estimate of firm value. As the dis-
persion in analyst forecast (Disp), decreases from a high dispersion quantity to a low
dispersion quantity the quality of the accounting transparency of the firm increases since
more is associated with a more precise statement of the quality of accounting information.

INSERT TABLE C.1.1 HERE

In Section C.1.2, Table C.1.1 presents quarterly summary statistics for main variables
from January 1997 to December 2017. Our implied volatility skewness measure equation
4.5.1 is negative on average and up to the 99-th percentile. A negative value indicates
that the OTM implied volatility (IV OLLowt ) is higher than the ATM implied volatility
(IV OLHight ), the more expensive OTM options are indicated by a higher implied volatility.
The average firm leverage is 0.20 (or 20%)9. The Nanalyst ranges from zero to over 50
with a mean of five and a median number of analysts of three.

INSERT TABLE C.1.2 HERE

Correlations between variables are presented in Table C.1.2. Our implied volatility
skewness measure equation 4.5.1 shows only moderate correlation with leverage, Nanalyst,
and M/B of -0.13, 0.19 and 0.10 respectively. There is also very high correlation between
Nanalyst and size of 0.76, however, this is not a concern in our empirical analysis since we
do not directly use the level of Nanalyst and our analysis is robust to the exclusion of size.

4.6 Empirical Hypothesis and Supporting Evidence

We will focus on the empirical implication of the impact of leverage on the volatility smile
based on the model prediction in Section 4.4. We noted that as the quality of accounting
data declined, one should expect that the reported leverage becomes less influential on
the pricing of options. More precisely, we will test the following hypothesis for different
accounting quality measures and the impact of leverage on the volatility smile.

9Note that we remove financial and utilities firms (sector= 9 (SIC codes 60 to 67) and SIC= 49).
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Main Hypothesis: a higher value of number of Nanalysts (lower value of Disp) is
associated with a higher level of transparency (lower a in our model) which our model

predicts would mean a more negative impact of leverage on skewness.10

Recall that TP predict that firms with higher leverage should exhibit more steeply
negatively sloped skews. Hence when regressing our skew metric on leverage, the coefficient
should be negative as long as the accounting transparency is not too low. Under our main
empirical hypothesis, we expect to see that the coefficient is larger in absolute value for
firms with greater transparency.

To measure the differential impact of leverage, based on the quality of accounting
transparency on the volatility smile, we separate cross-section of firms based on the 50th
percentile of each accounting transparency measure each quarter of each year. We define
those firms that have low accounting transparency as those with the number of Nanalysts
below the 50th percentile (Disp above the 50th percentile) each quarterly cross section.
Correspondingly, We define those firms that have high accounting transparency as those
with the number of Nanalysts above the 50th percentile (and Disp below the 50th per-
centile) each quarterly cross section.

We then estimate the impact of leverage on the volatility smile using quarterly Fama
and Macbeth [1973] regressions within in each subset. The resulting estimates for each of
the measures of accounting quality are reported in Tables C.1.3 and C.1.4 (for Nanalyst
and Disp respectively). Panel A (B) is estimated using the firms with low accounting
transparency (high accounting transparency).

INSERT TABLES C.1.3 and C.1.4 HERE

The variable (and sign) of interest is leverage. In each of the tables C.1.3 and C.1.4,
for panels A and B, column 1 reports the univariate quarterly Fama and Macbeth [1973]
regressions within in each subset regressions using leverage. In columns 2 to 7, we add
individual control variables (Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol) one
at a time to the univariate regression for leverage. Additionally in each of the columns,
in each panel A and B, in the Tables C.1.3 and C.1.4 we report the R-squared (R2) and
average number of firms in each quarterly cross-sectional regressions (N obs). R2, within
each subset of data in Panels A(B), range from 1.6% up to 17.23% (when including leverage
and all control variables). The average number of firms in each quarterly cross-sectional

10A more negative number is a negative number further from zero.
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regressions total between both subset of data in Panels A(B) is roughly 1600 in column 1
to roughly 1200 in column 7.

We first look at Table C.1.3 column 1 in panel A low transparency firms and find that the
coefficient is negative (-0.22) and statistically significant at the 99% level (t-stat of -6.09).
In the corresponding columns 1 in panel B high transparency firms, the leverage coefficient
is again negative (-0.34) and significant at the 99% level (t-stat of -17.36) and more negative
(or larger in absolute magnitude) than the coefficient of leverage in panel A. This provides
preliminary evidence that low accounting transparency implying a less marked impact of
leverage than high accounting transparency (our main empirical hypothesis).

As we add control variables in Table C.1.3 columns 2 to 7 in panel A low transparency
firms and find that the leverage coefficient is negative and statistically significant at the
99% level in each case. In the corresponding columns 2 to 7 in panel B high transparency
firms, the coefficient is more negative (or larger in absolute magnitude) and significant at
the 99% level. In column 7 in panel A (B), the leverage coefficient is -0.21 (-0.29) and
both significant at the 99% level with a t-stat of -8.16 (t-stat of -17.37) and the leverage
coefficient is more negative than the coefficient of leverage in panel A (controlling for
firm characteristics). This provides evidence that low accounting transparency implying
a less marked impact of leverage than high accounting transparency (our main empirical
hypothesis) as measured by Nanalyst. In Table C.1.4 (Disp) for each of columns 1 to 7
in panel A low transparency firms and find that the leverage coefficient is negative and
statistically significant at the 99% level in each case. In the corresponding columns 1 to 7
in panel B high transparency firms, the coefficient is more negative than the coefficient of
leverage in panel A (controlling for firm characteristics).

So our findings appear consistent with low disclosure quality implying a less marked
impact of leverage. This is consistent with the situation depicted in Figure C.1.3 and
confirms our main empirical hypothesis.

4.7 Robustness Tests

In this section we provide several robustness tests for our main empirical findings in Section
4.6. We present our results for all four measures of accounting quality using (i) the average
times to maturity across all options of all for each day for each firm and then averaged
over the quarter, (ii) an alternative measure of implied volatility skewness averaged across
all options within the time interval of 15 to 45 days (iii) using our alternative measure
of implied volatility skewness estimated across the average times to maturity across all
options of all for each day for each firm and then averaged over the quarter for each firm.
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Tables C.1.5 and C.1.6 present our results using equation 4.5.1 estimated using the
average times to maturity across all options of all for each day for each firm and then
averaged over the quarter (for Nanalyst and Disp respectively). In Tables C.1.5 and C.1.6
for each of columns 1 to 7 in panel A low transparency firms and find that the leverage
coefficient is negative and statistically significant at the 99% level in each case. For Table
C.1.5, in the corresponding columns 1 to 7 in panel B high transparency firms, the co-
efficient is more negative than the coefficient of leverage in panel A (controlling for firm
characteristics) which confirms our main empirical hypothesis. For Table C.1.6, in the
corresponding columns 1 to 6 in panel B high transparency firms, the coefficient is more
negative than the coefficient of leverage in panel A (controlling for firm characteristics)
which confirms our main empirical hypothesis (except for column 7 of C.1.6).

When comparing the size of the estimates in Tables C.1.3 and C.1.4 using options with
times to maturity of 15 to 45 days to maturity compared to those of Tables C.1.5 and C.1.6
with the average times to maturity across all options, we find that the difference between
the leverage coefficients in panel A and B for each of the columns in Tables C.1.3 and
C.1.4 is larger than that in Tables C.1.5 and C.1.6 (except for column 7 of C.1.6). This
observation highlights that the impact of leverage is more pronounced for options with
shorter average times to maturity than those with longer average times to maturity.

INSERT TABLES C.1.5 and C.1.6 HERE

We consider an alternative measure of implied volatility skewness to show our results
are robust to different measures of skewness. We define a modified measure of equation
4.5.1 scaling the numerator by the ATM implied volatility (IV OLHight ).

SLOPEt(v2) =

IV OLHight −IV OLLowt

IV OLLowt

(K/S0)Hight − (K/S0)Lowt

(4.7.1)

As implied volatility skew in equation 4.5.1, our skew equation 4.7.1 is negative and is
computed each day for every firm and averaged across all options within the time interval
of 15 to 45 days and then averaged over the quarter. Table C.1.1 shows that the skew
equation 4.7.1 is more negative than equation 4.5.1 on average (-1.01 versus -0.58) and
in median (-0.94 versus -0.55). Table C.1.2 shows that the correlation between the two
measures is quite high at 0.63. The implied volatility skew in equation 4.7.1 is highly
correlated with Atm Ivol at a level of 0.53, however, adding this variable or removing it in
our regression analysis does not change our result.
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Tables C.1.7 and C.1.8 present our results using equation 4.7.1 estimated using the time
interval of 15 to 45 days of all options. In Tables C.1.7 and C.1.8 for each of columns 1 to
7 in panel A low transparency firms and find that the leverage coefficient is negative and
statistically significant at the 99% level in each case. In the corresponding columns 1 to 7
in panel B high transparency firms, the coefficient is more negative than the coefficient of
leverage in panel A (controlling for firm characteristics) which confirms our main empirical
hypothesis using a different measure of implied volatility skewness. When comparing the
estimates in Tables C.1.7 and C.1.8 to those in Tables C.1.3 and C.1.4 using equation 4.5.1,
we find that the difference between the leverage coefficients in panel A and B for each of
the columns in Tables C.1.7 and C.1.8 is larger than those in Tables C.1.3 and C.1.4 for
each accounting transparency variable respectively.

INSERT TABLES C.1.7 and C.1.8 HERE

We consider an alternative version of our implied volatility skew equation 4.7.1 which
is computed as the average across all options of all times to maturity for each day for each
firm then averaged over the quarter for each firm.

INSERT TABLES C.1.9 and C.1.10 HERE

In Tables C.1.9 and C.1.10 present our results using equation 4.7.1 estimated using
the average times to maturity across all options of all for each day for each firm and
then averaged over the quarter. In Tables C.1.9 and C.1.10 for each of columns 1 to 7
in panel A low transparency firms and find that the leverage coefficient is negative and
statistically significant at the 99% level in each case. In the corresponding columns 1 to 7
in panel B high transparency firms, the coefficient is more negative than the coefficient of
leverage in panel A (controlling for firm characteristics) which confirms our main empirical
hypothesis using a different measure of implied volatility skewness and using all average
option times to maturity. When comparing the estimates in Tables C.1.9 and C.1.10 to
those in Tables C.1.7 and C.1.8 using implied volatility skew equation 4.7.1, we find that
the difference between the leverage coefficients in panel A and B for each of the columns in
Tables C.1.7 and C.1.8 is larger than those in Tables C.1.9 and C.1.10 for each accounting
transparency variable respectively. This observation shows the robustness of the same
finding using implied volatility skew equation 4.5.1 (now using equation 4.7.1) that the
impact of leverage is more pronounced for options with shorter average times to maturity
than those with longer average times to maturity.

So our findings confirms our main empirical hypothesis and show that the main con-
clusion is robust to using options of different times to maturity, different specification of
implied volatility skewness, and both.
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4.8 Conclusion

We have developed a model of the interaction between financial leverage, the quality of
corporate disclosure and the implied volatility skew for individual firms. Our model implies
that firms with lower accounting quality have more pronounced skews. In addition, this
relationship is weaker the higher the leverage. From a different angle, we show that the
impact of leverage on the skew is stronger for firms with greater transparency and are able
to provide empirical support for this prediction. We also find that our data is consistent
with the prediction that the negative relationship between the skew and option maturity
is stronger for lower transparency firms.

Our model provides an economically intuitive and empirically testable explanation for
differences in deviations from the Black & Scholes option pricing framework across firms.
Taken together with findings of a relationship between accounting transparency and the
valuation of corporate debt, this provides support for the modeling framework of Duffie
and Lando [2001] who link the precision of accounting information to the valuation of
corporate securities.

74



Chapter 5

Conclusion

Chapter 2 of this dissertation is based on my job market paper Szaura [2020]. In cross-
sectional regressions and portfolio sorts of over a hundred characteristics and factors, on
average only 2.4% predict the cross-section of corporate bond returns when adjusting for
higher statistical benchmarks to take into account all characteristics and factors being
tested in a large unbiased data set. A horse-race of all characteristics and factors in cross-
sectional regressions finds a higher number of corporate bond, rather than stock, character-
istics and factors that predict the cross-section of corporate bond returns when adjusting
for higher benchmarks. In addition to the lower number of corporate bond characteris-
tics and factors that predict the cross-section of stock returns, my results suggest that the
stock and corporate bond markets are more segmented than previously documented. Some
avenues for potential future research currently being explored are whether corporate bond
signals help predict corporate bond index returns (and whether stock signals help) as well
as incorporating transaction costs into a co-entropy modeling approach.

Chapter 3 of this dissertation is based on the working paper Cremers et al. [2019].
Many measures of option implied stock mis-pricing have been proposed in the academic
literature. However, we show that the majority of existing measures rely on shorting
stocks that have high shorting fees. Once we remove stocks that are hard to short, many
of the existing measures’ statistical and economic significance drop or are not significant.
We contribute to the academic literature by proposing a novel measure of option implied
stock mis-pricing whose abnormal trading profits are driven by taking a long position in
larger firms stocks where more option trading is done and whose abnormal trading profits
are robust to removing stocks that are hard to short. Our measure, IPD, is constructed
from a novel intra-day options trades data-set, hence is only calculated during periods of
options trading and periods of price discovery. IPD captures informed trading for value-
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weighted portfolios whose abnormal trading profits are driven by taking a long position in
larger firms and does not require taking a short position in firms that have high shorting
fees. Some avenues for potential future research are to refine the construction of our
IPD measure to consider are using an estimation technique for our IPD measure using a
sequential estimation technique that takes into account the time between trades (say using
Kalman-Filter estimation of the IPD measure).

Chapter 4 of this dissertation is based on the working paper Doshi et al. [2020]. In
this paper we show theoretically and empirically that firms with higher accounting trans-
parency have an implied volatility smirk that is more sensitive to leverage (vice versa). The
more clear the accounting information the more skewed the implied volatility smirk. Our
theoretical predictions rely on extending the Duffie and Lando [2001] credit risk model to
stock option pricing whereby incomplete accounting information and the risk of bankruptcy
together act as an economic source of jump risk for stocks. Our model can be solved in
closed form up to Bivariate Normal Cumulative Distribution Function. Some avenues for
potential future research are whether there is a differential impact of the asset volatility
and firm debt maturity on the implied volatility skew when taking into account account-
ing transparency. Our model, as in the Duffie and Lando [2001], is based on the Leland
[1994] model, however, if there is a differential impact of the asset volatility and firm debt
maturity on the implied volatility skew when taking into account accounting transparency
we would extend the underlying model by using the Leland and Toft [1996] (or in the case
of stochastic asset volatility Du et al. [2018]).
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APPENDICES
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Appendix A

Appendix for Chapter 2

This appendix contains definitions and specific construction of variables used in Chapter
2.
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A.1 Variable Construction, Figures, and Tables

A.1.1 Figures

Figure A.1.1: : Number of Discovered Signals in the Cross-Section of Corporate Bond
Returns

Panel A: # of signals discovered each year
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Panel A is the yearly number of discovered signals that predict the CS of Corporate Bond Returns. Panel

B presents their Absolute t-statistics.
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Figure A.1.2: : Fama-Macbeth λs and tλs
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Each of the three rows of graphs shows the distribution of the average slope coefficient (λs) on the left-

hand-side graph and corresponding t-statistic (tλs) distribution on the right-hand-side for the 3 different

univariate FM CS regressions of one-month-ahead risk-adjusted corporate bond excess returns of each of 143

signals. The first row are risk adjusted using the Bai et al. [2019b] (BBW) four factor corporate bond return

model, second row are risk adjusted using the BBW and the Fama and French [2015] (FF5) five factor stock

model, and third are risk adjusted using the BBW and value weighted least squares weighting bonds using

one month lagged market capitalization.
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Figure A.1.3: : Portfolio Sort αs and tαs
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Each of the three rows of graphs shows the distribution of the high minus low portfolio alpha (αs) on the left-

hand-side graph and corresponding t-statistic (tαs) distribution on the right-hand-side for the 3 different set

of portfolios sorts of each of 103 signals. The first row high minus low portfolio alpha (αs) and corresponding

t-statistic (tαs) using the BBW corporate bond factor model (Decile PS (BBW)). The second row report

the quintile high minus low portfolio αs and tαs using the BBW (Quintile PS (BBW)). The third report the

quintile high minus low portfolio alpha αs and tαs using the BBW and FF5 (Quintile PS (BBW+FF5)).
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Figure A.1.4: : Diagram of 5× 5 conditional double sorts

5 × 5 conditional double sorts where corporate bonds returns are sorted into quintile portfolios based on a

signal S1 and then within each quintile sort into quintiles on signal S2. I focus on the four corner portfolios

of the 5 × 5 matrix of conditionally sorted portfolios. I denote the corner portfolios as HH, HL, LH, and

LL depending on whether the corporate bond return is assigned to the high or low quintile based on the

ranking of the first signal and on the second (conditionally on it’s ranking within the first signal).
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A.1.2 Tables

Table A.1.1: : Corporate Bond Return Summary Statistics

Percentiles
Variable N Mean Median Std. Dev. 10th 25th 75th 90th

Bond Returns (in %) 1, 035, 628 0.58 0.31 5.35 −2.17 −0.61 1.58 3.41
Rating (numerical scores) 1, 661, 839 9.51 8 5.32 4 6 11 21
Time to Maturity (in years) 1, 729, 992 9.49 6.39 9.06 1.88 3.37 12.72 23.17
Age (years) 1, 729, 929 4.74 3.4 4.6 0.65 1.61 6.36 10.2
Amount Outstanding (millions of USD) 1, 729, 992 375.71 250 549.34 3.26 11.9 500 1000
Yield (in %) 1, 575, 156 5.73 4.78 138.3 2.1 3.31 6.1 8.09
Coupon (in %) 1, 729, 766 5.3 5.5 2.2 2.6 4.15 6.63 7.75

Notes: This table reports the number of bond-month observations: the cross-sectional mean,
median, standard deviation and various monthly percentiles of corporate bond excess returns
(in percentage) and bond characteristics including credit rating (numerical scores), time to
maturity (in years), age of the bond since issuance (in years), amount outstanding (Size,
million), yield to maturity (in percentage), and coupon payment rate (in percentage). Ratings
are numerical scores (1 refers to a AAA rating and 21 refers to a C rating) and a higher
numerical score implies higher credit risk. The data ranges from July 1, 2002 to October 31,
2019.
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Table A.1.2: : Stock based characteristics: Variable Definitions

No. Acronym Description/Name
1 spi special items
2 mve f market value of equity fiscal year
3 bm Book to market
4 ep earnings to price
5 cashpr cash productivity
6 dy dividend to price
7 lev leverage
8 sp sales to price
9 roic return on invested capital
10 rd sale R& D to sales
11 rd mve R& D to market capiitalization
12 agr asset growth
13 gma gross profitability
14 chcsho change in shares outstanding
15 lgr growth in long term debt
16 acc Working Capital accruals
17 pctacc percent accruals
18 cfp cash flow to price ratio
19 absacc Absolute Accruals
20 chinv change in inventory
21 cf cash flow
22 hire employee growth rate
23 sgr sales growth
24 chpm ib divided by sales
25 chato change in sales /average total assets
26 pchsale pchinvt % change sales less % change in inventory
27 pchsale pchrect % change in sales less % change in A/R
28 pchgm pchsale % change in gross margin less % change in sales
29 pchsale pchxsga % change in sales less % change in SG& A
30 depr deprecation/PPE
31 pchdepr % change in depreciation
32 chadv Change in Advertising expenses
33 invest capital expenditures and inventory
34 egr growth in common shareholder equity

84



35 pchcapx % change in CAPX
36 grcapx growth in capital expenditure
37 tang debt capacity/firm tangibility
38 currat current ratio
39 pchcurrat % change in current ratio
40 quick quick ratio
41 pchquick % change in quick ratio
42 salecash sales to cash
43 salerec sales to receivables
44 saleinv sales to inventory
45 pchsaleinv percentage change in sales to inventory
46 cashdebt cash flow to debt
47 realestate real estate holdings
48 grltnoa growth in long-term net operating assets
49 rdbias % change in R& D less % change in income over equity
50 roe return on equity
51 operprof operating profitability
52 chpmia Industry adjusted change in profit margin
53 chatoia industry adjusted change in asset turnover
54 chempia industry adjusted change in employees
55 bm ia Industry adjusted book to market
56 pchcapx ia industry adjusted % change in capital expenditures
57 tb tax income to book income
58 cfp ia industry adjusted cash flow to price ratio
59 herf industry sales concentration
60 orgcap organizational capital
61 mve m market value of equity monthly
62 pps lag log price per share
63 rdq research and developpment quarterly
64 prccq price of common shares quarterly
65 chtx change in tax expense
66 roaq return on assets
67 roeq return on equity quarterly
68 rsup revenue surprise
69 stdacc accrual volatility
70 sgrvol sales growth volatility
71 roavol earnings volatility
72 stdcf cash flow volatility
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73 cash casj holdings
74 cinvest corporate investment
75 sue unexpected quarterly earnings
76 aeavol Abnormal earnings announcement volume
77 ear earnings announcement
78 disp dispersion in forecasted EPS
79 chfeps change in forecasted EPS
80 fgr5yr forecasted growth in 5yr EPS
81 MEANREC Mean Analyst Recom.
82 chrec Change in Mean Analyst Recom.
83 nanalyst number of analyst covering stock
84 sfe scaled earnings forecast
85 MEANEST Mean Analyst Estimate
86 mom6m 6 month momentum
87 mom12m 12 month momentum
88 mom36m 36 month momentum
89 mom1m 1 month momentum
90 dolvol dollar trading volume
91 chmom change in 6 month momentum
92 turn share turnover
93 indmom industry momentum
94 maxret maximum daily return
95 retvol return volatility
96 baspread bid ask spread
97 std dolvol std dev dollar trading volume
98 std turn volatility of liquidity share turnover
99 beta beta
100 betasq beta squared
101 rsq1 adjusted rsquared
102 pricedelay Price Delay
103 idiovol idiosyncratic return volatility

Notes: This table presents definitions from Green et al. [2017] (GHZ). The detailed description of each variable is outlined in Green
et al. [2017].
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Table A.1.3: : Variable Construction and Paper References
Variable Name Construction Paper Reference
Bond Market Risk Factor Estimated 48 monthly rolling returns on BBW factors Bai et al. [2019b]
Bond Credit Risk Factor Estimated 48 monthly rolling returns on BBW factors Bai et al. [2019b]
Bond Liquidity Risk Factor Estimated 48 monthly rolling returns on BBW factors Bai et al. [2019b]
Bond Downside Risk Factor Estimated 48 monthly rolling returns on BBW factors Bai et al. [2019b]
Bond VIX Factor Estimated 48 monthly rolling returns on FF5 factors, bond term, bond default, and VIX Chung et al. [2019]
Bond idiosyncratic volatility RMSE from estimated BBW factors Chung et al. [2019]
Bond Total volatility Monthly average squared bond log-prices Chung et al. [2019]
Bond Term Risk Factor Estimated 48 monthly rolling returns on FF5 factors, bond term, bond default, Gebhardt et al. [2005a]
Bond Default Risk Factor Estimated 48 monthly rolling returns on FF5 factors, bond term, bond default, Gebhardt et al. [2005a]
Bond Return Momentum Cumulative Product of lagged 6 months of bond returns Jostova et al. [2013]
Bond Illiquidity (Amihud [2002]) Monthly average of the ratio of absolute daily bond return over dollar volume of trade Lin et al. [2011]
Bond Illiquidity (Pastor and Staumbaugh [2003]) Estimated 48 monthly rolling returns on bond term, default, and liquidity factors Lin et al. [2011]
Stock Illiquidity (Amihud [2002]) Monthly average of the ratio of absolute daily stock return over dollar volume of trade Lin et al. [2011]
Stock Illiquidity (Pastor and Staumbaugh [2003]) Estimated 48 monthly rolling returns on FF5 and liquidity factors Lin et al. [2011]
Intermediary Asset Risk Estimated 48 monthly rolling returns on BBW factors and intermediary factor He et al. [2017]
Expected Default Frequency Joint firm asset value and volatility estimation using method in Bharath and Shumway [2008] Bharath and Shumway [2008]
Change Option implied volatility Change in end of month ATM implied volatilities Cao et al. [2020]
Size log of market capitalization (product of share price and number of common shares outstanding) Chordia et al. [2017]
Stock Return Reversal 1 month lagged stock return Chordia et al. [2017]
Net New Investment Accruals Percentage change in net new investments Bhojraj and Swaminathan [2009]
Net Working Capital Accruals Net working capital investment divided by total assets Bhojraj and Swaminathan [2009]
Total Accruals Total Accruals Chichernea et al. [2019]
Change in WC Working Capital accruals Chichernea et al. [2019]
Change in NCO non-current operating accruals Chichernea et al. [2019]
Change in NOA net operating assets Chichernea et al. [2019]
Change in FIN financial accruals Chichernea et al. [2019]
Options Illiquidity (ORES) Monthly averaged dollar-volume weighted option price relative effective spreads Christoffersen et al. [2018]
Stock Turnover Daily ratio of trading volume over shares outstanding averaged over the month Akbas et al. [2017]
Options Order Flow Delta weighted Option Buy minus Sell Trade Volume over total volume (signed CBOE/ISE volumes) Bollen and Whaley [2004] and Hu [2014]
O/S Ratio Monthly average of the daily log option volume to stock volume ratio Ge et al. [2016]
Option Implied Price Deviation Joint estimation of option trade price implied stock prices using Manaster and Rendleman [1982] Cremers et al. [2019]
Option Implied Borrowing Fee Equation 15 of Muravyev et al. [2020] Muravyev et al. [2020]
Put to Call Volume Ratio Customer Open Buy put-to-call volume ratio (signed CBOE/ISE volumes) Pan and Poteshman [2006]
Risk Neutral Skewness Volatility surface OTM put less ATM average put and call (with d2mat=30) Xing et al. [2010]
Deviations from Put-Call Parity Monthly average Put-call parity deviations weighted by option open interest Cremers and Weinbaum [2010]

Notes: Description of additional variable levels used in Section ??. Filters and description of data used is detailed
in Section 2.3.2.
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Table A.1.4: : Data Summary Statistics

Percentiles

Variable Name N Mean Median Std. Dev. 10th 25th 75th 90th
special items (spi) 1208300 −0.006 −0.001 0.022 −0.018 −0.006 0 0.001
market value of equity fiscal
year (mve f)

1286886 71702.63 33260.02 91488.82 3545.5 10657.46 99076.16 190147.2

Book to market (bm) 1286886 0.635 0.542 0.594 0.177 0.312 0.789 1.183
earnings to price (ep) 1286886 0.022 0.061 0.383 0.002 0.042 0.083 0.108
cash productivity (cashpr) 1285921 −3.012 −3.048 29.704 −17.834 −6.518 1.398 12.109
dividend to price (dy) 1282447 0.027 0.024 0.027 0.002 0.013 0.035 0.05
leverage (lev) 1286866 5.254 1.881 7.438 0.414 0.878 7.78 13.37
sales to price (sp) 1286886 1.208 0.706 1.918 0.326 0.457 1.147 2.238
return on invested capital (roic) 1286438 0.05 0.048 0.521 0.017 0.03 0.091 0.148
R& D to sales (rd sale) 465511 0.048 0.026 0.437 0 0.01 0.043 0.086
R& D to market capiitalization
(rd mve)

466840 0.048 0.02 0.116 0 0.006 0.039 0.097

asset growth (agr) 1279329 0.068 0.04 0.202 −0.066 −0.013 0.103 0.205
gross profitability (gma) 1279329 0.168 0.108 0.176 0.021 0.042 0.244 0.4
change in shares outstanding
(chcsho)

1278524 0.039 0 0.21 −0.054 −0.027 0.015 0.111

growth in long term debt (lgr) 1279273 0.078 0.039 0.261 −0.075 −0.024 0.112 0.229
Working Capital accruals (acc) 1263635 −0.034 −0.03 0.054 −0.085 −0.055 −0.006 0.012
percent accruals (pctacc) 1263635 −2.649 −0.949 7.377 −5.746 −2.077 −0.243 0.619
cash flow to price ratio (cfp) 1271204 0.152 0.116 0.26 −0.001 0.068 0.188 0.364
Absolute Accruals (absacc) 1263635 0.044 0.033 0.047 0.005 0.016 0.059 0.088
change in inventory (chinv) 1257787 0.004 0 0.024 −0.008 −0.001 0.006 0.021
cash flow (cf) 1263635 0.064 0.058 0.064 0 0.02 0.098 0.144
employee growth rate (hire) 1278829 0.023 0.006 0.145 −0.078 −0.03 0.054 0.134
sales growth (sgr) 1278985 0.056 0.036 0.233 −0.12 −0.029 0.118 0.238
ib divided by sales (chpm) 1278947 0.001 0.002 5.534 −0.068 −0.02 0.021 0.066
change in sales /average total
assets (chato)

1271212 −0.007 −0.001 0.105 −0.064 −0.019 0.013 0.055

% change sales less % change in
inventory (pchsale pchinvt)

1109203 −0.127 0.003 1.045 −0.35 −0.11 0.104 0.313
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% change in sales less % change
in A/R (pchsale pchrect)

1268558 −0.012 −0.006 0.271 −0.214 −0.084 0.078 0.189

% change in gross margin less %
change in sales (pchgm pchsale)

1278985 −0.001 0.004 0.513 −0.141 −0.042 0.063 0.175

% change in sales less % change
in SG& A (pchsale pchxsga)

827216 0.001 0.002 0.149 −0.144 −0.051 0.052 0.126

deprecation/PPE (depr) 1194522 0.21 0.163 0.236 0.051 0.098 0.251 0.377
% change in depreciation
(pchdepr)

1183894 0.02 0.001 0.223 −0.166 −0.061 0.076 0.185

Change in Advertising expenses
(chadv)

487296 0.042 0.015 0.228 −0.167 −0.052 0.115 0.304

capital expenditures and
inventory (invest)

1196508 0.03 0.013 0.084 −0.022 0 0.048 0.092

growth in common shareholder
equity (egr)

1279302 0.066 0.043 0.482 −0.179 −0.021 0.136 0.308

% change in CAPX (pchcapx) 1163557 0.098 0.042 11.949 −0.375 −0.122 0.22 0.524
growth in capital expenditure
(grcapx)

1161921 0.27 0.064 1.694 −0.476 −0.199 0.379 0.992

debt capacity/firm tangibility
(tang)

1206314 0.446 0.451 0.146 0.249 0.36 0.522 0.665

current ratio (currat) 1239452 3.463 1.33 6.839 0.776 1.008 2.538 8.733
% change in current ratio
(pchcurrat)

1226611 0.045 0 0.356 −0.19 −0.079 0.086 0.254

quick ratio (quick) 1232426 2.925 1.145 6.033 0.581 0.841 1.767 8.345
% change in quick ratio
(pchquick)

1218649 0.052 0.003 0.394 −0.214 −0.092 0.098 0.288

sales to cash (salecash) 1286043 23.188 4.722 70.482 0.259 0.825 17.042 55.129
sales to receivables (salerec) 1275785 6.898 3.731 14.994 0.125 0.194 7.859 12.065
sales to inventory (saleinv) 1115067 44.554 9.649 126.501 0.397 5.354 21.613 68.556
percentage change in sales to
inventory (pchsaleinv)

1101577 0.08 0.002 0.61 −0.261 −0.101 0.11 0.354

cash flow to debt (cashdebt) 1254023 0.087 0.062 0.14 0.007 0.014 0.134 0.217
real estate holdings (realestate) 221408 0.305 0.269 0.168 0.109 0.191 0.402 0.563
growth in long-term net
operating assets (grltnoa)

946232 0.054 0.036 0.115 −0.019 0.004 0.076 0.14

% change in R& D less %
change in income over equity
(rdbias)

402055 −0.192 −0.144 17.574 −0.439 −0.253 −0.009 0.113
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return on equity (roe) 1279302 0.129 0.126 0.491 −0.012 0.071 0.202 0.326
operating profitability
(operprof)

1279302 0.662 0.472 1.211 0.144 0.261 0.789 1.428

Industry adjusted change in
profit margin (chpmia)

1278947 0.298 −0.003 18.736 −4.295 −0.328 0.411 4.285

industry adjusted change in
asset turnover (chatoia)

1271212 0.007 0.003 0.124 −0.084 −0.021 0.044 0.103

industry adjusted change in
employees (chempia)

1278829 −0.233 −0.063 1.04 −0.45 −0.158 −0.006 0.064

Industry adjusted book to
market (bm ia)

1286886 6.559 0.125 79.608 −3.967 −0.372 0.985 7.29

industry adjusted % change in
capital expenditures (pchcapx
ia)

1163557 15.175 −0.505 132.642 −3.676 −1.43 −0.068 2.918

tax income to book income (tb) 1105392 −0.047 −0.048 1.732 −1.074 −0.558 0.37 0.886
industry adjusted cash flow to
price ratio (cfp ia)

1271204 −2.03 0.06 17.157 −3.036 −0.075 0.266 0.912

industry sales concentration
(herf)

1286886 0.074 0.041 0.072 0.025 0.03 0.086 0.189

organizational capital (orgcap) 609700 0.003 0.002 0.004 0 0 0.005 0.008
market value of equity monthly
(mve m)

1286886 72328865.8 34605005.77 92978675.88 3443634.34 10951661.08 94645948.73 201889909

lag log price per share (pps) 1286886 3.66 3.723 0.991 2.485 3.156 4.195 4.709
research and developpment
quarterly (rdq)

1286613 18921.37 19012 1663.77 16561 17478 20377 21129

price of common shares
quarterly (prccq)

1284405 115.361 41.04 2503.57 12.5 23.78 65.58 105.3

change in tax expense (chtx) 1283207 0 0 0.009 −0.003 −0.001 0.001 0.004
return on assets (roaq) 1286154 0.007 0.005 0.019 −0.001 0.002 0.013 0.023
return on equity quarterly
(roeq)

1286144 0.029 0.03 0.134 −0.008 0.016 0.048 0.082

revenue surprise (rsup) 1284296 −0.002 0.006 0.138 −0.041 −0.007 0.022 0.051
accrual volatility (stdacc) 674986 1.532 0.09 23.062 0.042 0.063 0.142 0.236
sales growth volatility (sgrvol) 1269965 0.078 0.023 0.743 0.006 0.012 0.051 0.111
earnings volatility (roavol) 1271940 0.008 0.004 0.015 0.001 0.001 0.009 0.018
cash flow volatility (stdcf) 674986 3.204 0.104 51.81 0.048 0.07 0.168 0.322
casj holdings (cash) 1286423 0.107 0.078 0.102 0.011 0.028 0.158 0.25
corporate investment (cinvest) 1201633 −0.004 0 0.626 −0.082 −0.022 0.021 0.083
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unexpected quarterly earnings
(sue)

1284405 −0.008 0 0.205 −0.006 −0.001 0.002 0.006

Abnormal earnings
announcement volume (aeavol)

1286569 0.696 0.514 0.801 −0.01 0.213 0.964 1.541

earnings announcement (ear) 1286572 0.001 0 0.063 −0.061 −0.027 0.029 0.062
dispersion inforecasted EPS
(disp)

1263387 0.096 0.026 0.328 0.007 0.013 0.056 0.154

change in forecasted EPS
(chfeps)

1272473 0.002 0 0.564 −0.13 −0.02 0.02 0.17

forecasted growth in 5yr EPS
(fgr5yr)

1213878 10.327 9.9 7.428 4.31 7 12.6 16.18

Mean Analyst Recom.
(MEANREC)

1273363 2.365 2.32 0.412 1.88 2.07 2.63 2.91

Change in Mean Analyst
Recom. (chrec)

1273193 −2.359 −2.315 0.434 −2.933 −2.632 −2.052 −1.85

number of analyst covering
stock (nanalyst)

1286886 17.776 18 7.495 8 13 23 27

scaled earnings forecast (sfe) 1271208 0.044 0.072 0.929 0.032 0.054 0.093 0.119
Mean Analyst Estimate
(MEANEST)

1273647 25.705 2.84 435.834 0.73 1.55 4.88 8.54

6 month momentum (mom6m) 1283840 0.044 0.042 0.244 −0.186 −0.062 0.143 0.258
12 month momentum
(mom12m)

1279142 0.092 0.086 0.361 −0.279 −0.078 0.239 0.422

36 month momentum
(mom36m)

1259470 0.227 0.201 0.55 −0.381 −0.073 0.47 0.776

1 month momentum (mom1m) 1286886 0.008 0.009 0.102 −0.092 −0.037 0.053 0.101
dollar trading volume (dolvol) 1286692 17.411 17.753 1.343 15.696 16.766 18.427 18.678
change in 6 month momentum
(chmom)

1279142 0.003 −0.014 0.408 −0.342 −0.169 0.149 0.343

share turnover (turn) 1286174 1.959 1.476 1.672 0.721 1.003 2.202 3.728
industry momentum (indmom) 1286886 0.095 0.098 0.252 −0.199 −0.046 0.215 0.353
maximum daily return (maxret) 1286886 0.04 0.028 0.045 0.014 0.02 0.043 0.07
return volatility (retvol) 1286886 0.019 0.014 0.017 0.008 0.01 0.021 0.032
bid ask spread (baspread) 1286886 0.025 0.02 0.021 0.012 0.015 0.028 0.042
dollar trading volume (std
dolvol)

1286875 0.348 0.324 0.124 0.225 0.266 0.405 0.493

volatility of liquidity share
turnover (std turn)

1286886 4.13 2.427 6.134 0.954 1.474 4.297 8.021
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beta (beta) 1286286 1.101 1.074 0.547 0.441 0.692 1.416 1.829
beta squared (betasq) 1286286 1.512 1.153 1.468 0.195 0.479 2.004 3.345
adjusted rsquared (rsq1) 1286286 0.322 0.328 0.163 0.102 0.192 0.455 0.526
Price Delay (pricedelay) 1286286 0.042 0.024 0.308 −0.077 −0.017 0.079 0.191
idiosyncratic return volatility
(idiovol)

1286286 0.035 0.028 0.022 0.019 0.023 0.04 0.059

change in WC accurals (d
WCA)

473953 −10.766 0 376.334 −498 −165 156 431

change in non-current operating
accruals (d NCO)

506669 185.497 62 614.241 −308 −58.2 382.9 876

change in financial accruals (d
FIN)

478842 −66.813 −1.169 572.343 −755 −273 163 541.183

EDF (EDF) 1173808 0.066 0 0.185 0 0 0.003 0.22
opt implied fee (implied fee) 1103363 −0.001 −0.001 0.014 −0.011 −0.005 0.004 0.009
CW (cw) 1132525 −0.004 −0.003 0.023 −0.016 −0.008 0.003 0.01
OS ratio (os) 1088493 0.15 0.125 0.124 0.018 0.052 0.208 0.327
IPD (ipd) 1095765 0 0 0.005 −0.003 −0.001 0.001 0.003
OOI (hu oi) 1092563 0 0 0 0 0 0 0
PP (potesh) 1036607 0.463 0.428 0.204 0.234 0.318 0.565 0.751
change in ivol (d ivol) 1051163 −0.001 −0.002 0.151 −0.132 −0.06 0.055 0.127
CVOL (cvol) 1052260 −0.001 −0.001 0.079 −0.068 −0.032 0.029 0.065
PVOL (pvol) 1052346 −0.001 −0.001 0.083 −0.072 −0.032 0.03 0.068
RN Skewness (skewness) 1054619 0.056 0.042 0.047 0.022 0.03 0.064 0.106
IVOL Level (avg ivol) 1016960 0.308 0.25 0.191 0.165 0.198 0.347 0.499
Bond short term reversal (bond
st rev)

871705 0.006 0.004 0.04 −0.019 −0.005 0.016 0.033

bond momentum (bond mom) 247778 0.036 0.022 0.12 −0.026 0.003 0.055 0.105
bond downside risk (bond Var5) 438178 0.041 0.029 0.042 0.011 0.017 0.047 0.076
bond Amihud (bond Amihud) 1120061 0.015 0.003 0.172 0 0.001 0.01 0.026
Std Dev. Log Price (Std. log
Price)

1208997 0.012 0.008 0.019 0.002 0.004 0.013 0.022

bond VIX Beta (d VIX beta) 703401 −0.001 −0.001 0.005 −0.006 −0.003 0.001 0.004
bond Int Beta (int cap rf beta) 692589 0 −0.002 0.168 −0.164 −0.066 0.066 0.164
bond idio vol (bond RMSE) 706716 0.023 0.017 0.021 0.007 0.011 0.028 0.044
bond UNC Beta (UNC 12 beta) 697681 −0.127 −0.002 1.262 −1.453 −0.539 0.442 1.064
bond PS beta (PS VWF beta) 704417 −0.017 −0.015 0.269 −0.287 −0.124 0.102 0.265
Mac Duration (Mac Dur) 1225654 12.425 9.613 6.788 4.915 7.7 17.974 23.674
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Skewness Log Price (Bond
Skewness)

1107368 −0.124 −0.092 0.926 −1.354 −0.676 0.448 1.027

Kurtosis Log Price (Bond
Kurtosis)

1019831 0.302 −0.186 2.144 −1.54 −0.971 1.125 2.912

Default Beta (Default Beta) 717440 0.556 0.394 0.991 −0.18 0.103 0.87 1.492
Term Beta (Term Beta) 717369 0.414 0.369 0.411 0.004 0.175 0.621 0.957
Liquidity Beta (Liquidity Beta) 703763 −0.054 0.014 1.453 −1.283 −0.4 0.454 1.272
bond idio vol (bond RMSE) 713931 0.023 0.018 0.019 0.008 0.011 0.027 0.042
Bond Beta to Stock Factor
(BBeta SMrkt)

717565 0.094 0.068 0.321 −0.195 −0.045 0.222 0.439

Bond Beta to RMW (BBeta
RMW)

716820 −0.054 −0.031 0.58 −0.613 −0.252 0.161 0.486

Bond Beta to CMA (BBeta
CMA)

717766 −0.095 −0.044 0.738 −0.737 −0.318 0.187 0.532

Bond Beta to HML (BBeta
HML)

717718 0.067 0.024 0.454 −0.342 −0.125 0.218 0.529

Bond Beta to SMB (BBeta
SMB)

716825 0.014 −0.007 0.36 −0.323 −0.134 0.136 0.371

bond idio kurt (bond idio kurt) 719248 0.024 0.019 0.021 0.008 0.012 0.029 0.046
bond idio skew (bond idio skew) 719464 0.025 0.019 0.022 0.008 0.012 0.029 0.047

Notes: We compute 143 stock, balance sheet, and earnings signals from the data set used in Green et al. [2017] (GHZ) augmented
with those signals in Table A.1.3 from July 2002 to October 2019. We thank Jeremiah Green for making his SAS code freely
available on his website. The list of firm characteristics from GHZ is constructed using all firms with common shares that are listed
on the AMEX, NYSE, or NASDAQ, that have end of month value on CRSP, quarterly and annual balance sheet reporting on
COMPUSTAT and earnings information reported to the I/B/E/S data. The GHZ data set is available beginning from January
1980, however, we only require data beginning from July 2002 when TRACE corporate bond reporting began. The summary
statistics of the GHZ data is only of those firms that have corporate bonds outstanding.
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Table A.1.5: : Corporate Bond Factor Classification

Risk Type Risk Category Description Paper Reference
Common Financial Bond Market Risk Factor Bai et al. [2019b]
Common Financial Bond Credit Risk Factor Bai et al. [2019b]
Common Microstructure Bond Liquidity Risk Factor (Roll [1984]) Bai et al. [2019b]
Common Financial Bond Downside Risk Factor Bai et al. [2019b]
Common Other Bond Reversal Risk Factor Bai et al. [2019b]
Common Financial Bond Term Risk Factor Gebhardt et al. [2005a]
Common Financial Bond Default Risk Factor Gebhardt et al. [2005a]
Common Financial Bond VIX Factor (Ang et al. [2006]) Chung et al. [2019]
Common Microstructure Intermediary Factor He et al. [2017]
Common Microstructure Bond Illiquidity Factor (Pastor and Staumbaugh [2003]) Lin et al. [2011]
Common Microstructure Stock Illiquidity Factor (Pastor and Staumbaugh [2003]) Lin et al. [2011]
Common Microstructure Bond Permanent Component Factor (Sadka [2006]) Lin et al. [2011]
Common Microstructure Bond Temporary Component Factor (Sadka [2006]) Lin et al. [2011]
Common Financial Systematic bond risk Bai et al. [2020c]
Common Financial Idiosyncratic bond risk Bai et al. [2020c]
Common Macroeconomic Bond Uncertainty Risk (Jurado et al. [2015]) Bai et al. [2020a]
Common Behavioural Bond Mispricing Factor Avramov et al. [2019]
Characteristic Other Short Term Bond Reversal Bai et al. [2019a]
Characteristic Other Long Term Bond Reversal Bai et al. [2019a]
Characteristic Other Bond Momentum Jostova et al. [2013]
Characteristic Financial Bond Total Volatility Chung et al. [2019]
Characteristic Financial Bond Idiosyncratic Volatility Chung et al. [2019]
Characteristic Financial Stock Total Volatility Chung et al. [2019]
Characteristic Financial Stock Idiosyncratic Volatility Chung et al. [2019]
Characteristic Microstructure Bond Illiquidity (Amihud [2002]) Lin et al. [2011]
Characteristic Microstructure Stock Illiquidity (Amihud [2002]) Lin et al. [2011]
Characteristic Financial Change in Option implied volatility (An et al. [2010]) Cao et al. [2020]
Characteristic Financial Change in Call Option implied volatility (An et al. [2010]) Cao et al. [2020]
Characteristic Financial Change in Put Option implied volatility (An et al. [2010]) Cao et al. [2020]
Characteristic Financial Level of Option implied volatility Cao et al. [2020]
Characteristic Financial Exponential GARCH (Glosten et al. [1993]) Cao et al. [2020]
Characteristic Accounting Default Risk (Bharath and Shumway [2008]) Chordia et al. [2017]
Characteristic Accounting Size Chordia et al. [2017]
Characteristic Other Stock Momentum Chordia et al. [2017]
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Characteristic Other Stock Return Reversal Chordia et al. [2017]
Characteristic Accounting Profitability Chordia et al. [2017]
Characteristic Accounting Accruals Chordia et al. [2017]
Characteristic Behavioural Earnings Surprise Chordia et al. [2017]
Characteristic Accounting Asset Growth Choi and Kim [2018]
Characteristic Accounting Investment Choi and Kim [2018]
Characteristic Accounting Gross Profitability Choi and Kim [2018]
Characteristic Accounting Net Issuance Choi and Kim [2018]
Characteristic Accounting Net Book Equity to Market Equity Choi and Kim [2018]
Characteristic Accounting Net New Investment Accruals Bhojraj and Swaminathan [2009]
Characteristic Accounting Net Working Capital Accruals Bhojraj and Swaminathan [2009]
Characteristic Accounting Total Accruals Chichernea et al. [2019]
Characteristic Accounting Change in WC Chichernea et al. [2019]
Characteristic Accounting Change in NCO Chichernea et al. [2019]
Characteristic Accounting Change in NOA Chichernea et al. [2019]
Characteristic Accounting Change in FIN Chichernea et al. [2019]
Characteristic Microstructure Bond Effective Spreads Anderson et al. [2018]
Characteristic Microstructure Bond Lending Fee Anderson et al. [2018]
Characteristic Microstructure Bond Utilization Fee Anderson et al. [2018]
Characteristic Microstructure Unconstrained Insurance Bond Holding Murray and Nikolova [2019]
Characteristic Microstructure Constrained Insurance Bond Holding Murray and Nikolova [2019]
Characteristic Microstructure High Insurance Bond Holding Becker and Ivanisha [2015]
Characteristic Microstructure Low Insurance Bond Holding Becker and Ivanisha [2015]
Characteristic Microstructure Bond Supply Goldberg and Nozawa [2019]
Characteristic Microstructure Bond Demand Goldberg and Nozawa [2019]
Characteristic Behavioural Good News (earnings greater than forecast) Defond and Zhang [2014]
Characteristic Behavioural Bad News (earnings less than forecast) Defond and Zhang [2014]
Characteristic Behavioural Change in Earnings Easton et al. [2009]
Characteristic Behavioural Negative News Dummy Easton et al. [2009]
Characteristic Behavioural Negative News and Change in Earnings Easton et al. [2009]
Characteristic Financial OLS Moving Average Bond Return Lin et al. [2020]
Characteristic Financial Elastic Net Moving Average Bond Return Lin et al. [2020]
Characteristic Financial Trend Moving Average Bond Return Lin et al. [2019]
Characteristic Financial OLS Predicted Bond Return Bali et al. [2020]
Characteristic Financial PCA Predicted Bond Return Bali et al. [2020]
Characteristic Financial PLS Predicted Bond Return Bali et al. [2020]
Characteristic Financial LASSO Predicted Bond Return Bali et al. [2020]
Characteristic Financial RIDGE Predicted Bond Return Bali et al. [2020]
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Characteristic Financial ENET Predicted Bond Return Bali et al. [2020]
Characteristic Financial RF Predicted Bond Return Bali et al. [2020]
Characteristic Financial FFN Predicted Bond Return Bali et al. [2020]
Characteristic Financial LSTM Predicted Bond Return Bali et al. [2020]
Characteristic Financial Combination Predicted Bond Return Bali et al. [2020]
Characteristic Financial Bond Book to Market Ratio Bartram et al. [2020]
Characteristic Financial Bond Return Total Skewness Bai et al. [2020b]
Characteristic Financial Bond Return Total Kurtosis Bai et al. [2020b]
Characteristic Financial Bond Return Coskewness Bai et al. [2020b]
Characteristic Financial Bond Return Cokurtosis Bai et al. [2020b]
Characteristic Financial Bond Return Idiosyncratic Skewness Bai et al. [2020b]
Characteristic Financial Bond Return Idiosyncratic Kurtosis Bai et al. [2020b]
Characteristic Behavioural Merger Bids Asquith and Kim [1982]
Characteristic Behavioural Leveraged Buyouts Asquith and Wizman [1990]
Characteristic Behavioural Merger Bids Billet et al. [2004]
Characteristic Behavioural Poison Puts Cook and Easterwood [1994]
Characteristic Behavioural Super Poison Puts Crabbe [1991]
Characteristic Behavioural Common Share Repurchases Defusco et al. [1990]
Characteristic Behavioural Executive Option SEC Stamp Date Dennis and McConnell [1986]
Characteristic Behavioural Dividend Increases Dhillon and Johnson [1994]
Characteristic Behavioural Dividend Decreases Dhillon and Johnson [1994]
Characteristic Behavioural Pure Stock Exchange Merger Eger [1983]
Characteristic Behavioural Expected Downgrade Hand et al. [1992]
Characteristic Behavioural Unexpected Downgrade Hand et al. [1992]
Characteristic Behavioural Expected Upgrade Hand et al. [1992]
Characteristic Behavioural Unexpected Upgrade Hand et al. [1992]
Characteristic Behavioural Rating Downgrade IG Hand et al. [1992]
Characteristic Behavioural Rating Downgrade SG Hand et al. [1992]
Characteristic Behavioural Rating Upgrade IG Hand et al. [1992]
Characteristic Behavioural Rating Upgrade SG Hand et al. [1992]
Characteristic Behavioural Dividend Announcement Handjinicolaou and Kalay [1984]
Characteristic Behavioural Corporate Spin off Announcements Hite and Owers [1983]
Characteristic Behavioural Going Private Marais et al. [2003]
Characteristic Behavioural Special Dividend Announcement Narayanan and Shastri [1988]
Characteristic Behavioural Leveraged Buyout Warga and Welch [1993]
Characteristic Behavioural Unexpected Dividend Increase Woolridge [1983]
Characteristic Behavioural Unexpected Dividend Decrease Woolridge [1983]
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Notes: This table presents a list of all signals (and which paper they were discovered in) that have been discovered in the cross-
section of corporate bond returns. As in Harvey et al. [2016], we count common risk factors as well as characteristics even though
as HLZ note, characteristics are not risk factors. If firm’s characteristic is correlated with the CS of corporate bond returns a
long-short portfolio can typically be formed in order to proxy for the unknown risk factor and hence in this form the characteristic
can be considered as a risk factor. Note that the following papers only report p-values or asterixes indicating levels of significance
and not t-statistics: Dann [1981], Eberhart and Siddique [2002], Kim and McConnell [1977], Mansi and Reeb [2002], Maxwell and
Stephens [2003], Maxwell and Rao [2003] and Parrino [1997].
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Table A.1.6: : Empirically Simulated Benchmark t-statistics when Number of Discovered
Signals is Estimated

M Bonf. Holm BHYα=1% BHY
S. R. /C.I. 10% 90% 10% 90% 10% 90% 10% 90% 10% 90%
r = 1 288 3.76 3.74 3.81 3.13

207 388.5 3.68 3.86 3.68 3.86 3.68 3.95 2.97 3.33
r = 3/2 421 3.83 3.82 3.81 3.12

322 537 3.76 3.92 3.76 3.92 3.76 3.95 3.01 3.27
r = 2 555 3.90 3.87 3.82 3.12

441 689 3.80 3.97 3.80 3.97 3.61 3.97 3.03 3.30

Notes: Simulated t-statistic benchmarks from empirical distribution of discovered t-statistics
with level of significance of 5% and under of the Bonferroni, Holm, and BHY multiple hy-
pothesis testing methods. M is the estimated number of discovered signals.
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Table A.1.7: : Univariate FM regressions and PS

FM (BBW) FM (BBW+FF5) VW FM (BBW) Decile PS (BBW) Quintiles (BBW) Quintiles (BBW+FF5)
Variable Name λs tλs λs tλs λs tλs αs tαs αs tαs αs tαs
spi −0.0018 −0.26 0.0036 0.46 0.0051 0.63 0.2643 1.99 0.1444 1.65 0.1393 1.96
mve f 0 1.26 0 0.76 0 1.37 0.3934 2.42 0.1927 2.08 0.2003 2.36
bm −0.0008 −0.85 −0.0008 −0.8 0 0.01 0.1644 1.1 0.0645 0.59 0.0754 0.73
ep 0.0017 0.98 0.0031 1.43 0.0027 0.52 0.3017 3.23 0.133 2.09 0.067 1.06
cashpr 0 −0.86 0 −0.97 0 0.03 −0.0642 −0.63 0.0267 0.48 0.0409 0.72
dy 0.008 0.4 −0.0038 −0.18 0.0133 0.5 0.2592 2.08 0.2045 2.18 0.1584 2.01
lev 0 −0.21 −0.0001 −0.98 0 0.4 −0.2299 −1.38 −0.1411 −1.12 −0.0788 −0.61
sp 0 −0.08 −0.0002 −0.77 −0.0004 −1.31 −0.4872 −2.84 −0.1655 −2.55 −0.141 −2.09
roic 0.0042 2.46 0.0065 2.82 0.003 0.53 0.0862 1.1 0.0959 0.93 0.0739 0.72
rd sale 0.0027 0.69 0.0023 0.6 0.0025 1.11 0.1511 3.35 −0.034 −0.48 0.03 0.33
rd mve −0.0055 −1.01 −0.003 −0.46 −0.0019 −0.27 −0.5894 −2.12 −0.3864 −2.57 −0.3034 −1.85
agr 0.0011 1.26 0.0013 1.2 0.0012 0.97 −0.1165 −1.79 0.0057 0.07 −0.0251 −0.32
gma 0.0016 1.29 0.0026 1.84 0.0002 0.12 0.1226 0.85 0.0231 0.17 −0.0208 −0.17
chcsho −0.0002 −0.21 0.0004 0.46 0.0009 0.74 −0.2127 −2.2 −0.108 −1.83 −0.0458 −0.76
lgr 0.0008 1.44 0.0009 1.05 0.0011 1.02 −0.0733 −1.16 −0.0013 −0.02 −0.0225 −0.35
acc 0.0049 1.25 0.006 1.36 0.0067 1.15 0.3091 1.87 0.2635 1.88 0.2156 1.85
pctacc 0 0.62 0 0.38 0 0.19 0.4393 2.63 0.2965 2.69 0.2426 2.68
cfp −0.0006 −0.34 −0.0012 −0.73 0.0008 0.5 −0.5911 −2.16 −0.3851 −2.26 −0.2968 −2.26
absacc −0.0063 −1.49 −0.0081 −1.73 −0.008 −0.95 −0.2648 −1.64 −0.1351 −1.47 −0.1166 −1.34
chinv −0.0004 −0.09 0.0019 0.33 0.0132 1.72 −0.2568 −2.46 0.0171 0.32 −0.0133 −0.22
cf 0.0024 0.52 0.0071 1.34 −0.0003 −0.05 −0.134 −0.85 −0.0942 −0.72 −0.0957 −0.77
hire 0.0014 1.42 0.0021 2.03 0.0008 0.66 0.164 1.89 0.0676 1.12 0.0453 0.73
sgr 0.0016 1.63 0.0024 2.24 0.0012 0.92 −0.1171 −1.66 0.0109 0.14 −0.0041 −0.06
chpm 0.0003 0.48 0.0003 0.33 0.0009 0.7 −0.1537 −1.13 −0.0801 −0.6 −0.0326 −0.28
chato 0.0004 0.32 −0.0002 −0.14 0.0012 0.77 −0.0461 −0.88 −0.0816 −1.37 −0.033 −0.59
pchsale pchinvt −0.0003 −0.8 −0.0001 −0.12 −0.0003 −0.71 0.0274 0.29 −0.036 −0.59 −0.0044 −0.06
pchsale pchrect 0.0001 0.1 −0.0002 −0.24 −0.0001 −0.08 −0.1314 −2.93 −0.0494 −0.78 −0.0533 −0.84
pchgm pchsale 0.0014 1.48 0.0009 0.95 0.0009 0.57 −0.0911 −0.61 −0.1062 −0.85 −0.028 −0.27
pchsale pchxsga −0.0023 −1.46 −0.0005 −0.31 −0.0015 −0.64 −0.1584 −1.3 −0.1096 −1.36 −0.138 −1.69
depr 0 0.04 −0.0001 −0.17 0.0005 0.29 −0.0365 −0.84 0.046 0.97 0.0645 1.24
pchdepr −0.0014 −1.55 −0.0008 −0.96 −0.002 −1.81 −0.0593 −0.59 −0.05 −0.82 −0.0884 −1.32
chadv 0.002 2.11 0.0029 3 0.0009 0.84 −0.1634 −1.51 −0.024 −0.27 0.0216 0.28
invest 0 0.01 0.0014 0.69 0.003 1.1 −0.1307 −1.87 −0.0508 −0.64 −0.0904 −1.01
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egr −0.0003 −0.45 −0.0001 −0.18 0.0004 0.5 0.0836 0.77 −0.0029 −0.04 0.0181 0.25
pchcapx 0.0003 1.03 0.0006 2.19 0.0001 0.12 −0.0539 −0.36 0.0349 0.37 0.009 0.09
grcapx 0.0002 1.06 0.0001 0.4 0.0006 1.05 0.2337 1.73 0.1605 1.88 0.098 1.33
tang 0.0009 0.39 0.0003 0.13 0.0006 0.29 0.1071 0.57 0.016 0.14 0.0211 0.21
currat −0.0001 −1.73 −0.0001 −2.27 −0.0001 −2.18 −0.2589 −1.33 −0.151 −1.39 −0.0932 −0.83
pchcurrat −0.0008 −2.4 −0.001 −2.1 −0.0003 −0.5 0.0348 0.66 0.0084 0.14 0.0463 1.01
quick −0.0001 −1.53 −0.0001 −1.95 −0.0001 −2.24 −0.3765 −2.24 −0.1593 −1.39 −0.1038 −0.88
pchquick −0.0008 −2.65 −0.0008 −1.96 −0.0004 −0.73 0.0438 1.03 0.0025 0.05 0.0363 0.86
salecash 0 −0.68 0 0.55 0 −0.76 −0.1657 −1.07 −0.1544 −1.12 −0.1929 −1.48
salerec 0 0.35 0 0.77 0 0.11 −0.2405 −1.17 −0.1948 −1.24 −0.2038 −1.46
saleinv 0 −0.26 0 −0.1 0 −0.69 −0.0783 −0.62 −0.1114 −1.04 −0.1171 −1.3
pchsaleinv −0.0006 −1.24 −0.0005 −0.97 −0.0007 −1.42 0.012 0.13 −0.0635 −1.06 −0.0292 −0.43
cashdebt 0.0017 1.1 0.0027 1.5 0.0009 0.28 −0.025 −0.17 0.0801 0.52 0.0403 0.27
realestate 0.0008 0.66 0 0 0.0019 2.15 0.3157 2.25 0.0933 1.49 0.0784 1.51
grltnoa −0.0008 −0.51 0.0015 0.87 0.0001 0.1 0.072 0.57 −0.0552 −0.52 −0.0663 −0.66
rdbias −0.0002 −0.59 0.0002 0.5 −0.0006 −1.46 0.8306 2.48 0.3322 1.74 0.1754 1.07
roe 0.0007 1.32 0.0004 0.58 0.0016 1.97 −0.1791 −0.98 −0.0069 −0.07 0.027 0.3
operprof −0.0001 −0.19 0.0002 0.65 −0.0003 −0.79 0.198 1.41 0.0938 0.71 0.0315 0.26
chpmia 0 −0.19 0 −0.09 0 −0.24 −0.0183 −0.36 0.0441 0.67 −0.0111 −0.13
chatoia 0 −0.02 −0.0006 −0.39 −0.0004 −0.17 0.0046 0.06 0.0143 0.17 0.0781 1.21
chempia 0.0001 0.13 0.0003 0.53 0.0006 1.07 0.0324 0.51 0.0972 1.49 0.0728 1.23
bm ia 0 −1.98 0 −1.18 0 −0.04 −0.0768 −0.63 −0.0365 −0.51 −0.0126 −0.18
pchcapx ia 0 0.7 0 0.43 0.0001 2.75 0.0186 0.21 −0.0664 −0.91 −0.04 −0.6
tb 0 0.15 −0.0001 −0.92 0.0002 1.29 −0.0252 −0.49 0.0096 0.14 0.03 0.51
cfp ia 0.0001 0.85 0.0001 1.52 −0.0001 −1.54 0.0883 0.73 0.0149 0.2 0.046 0.53
herf −0.0007 −0.39 −0.0011 −0.52 −0.0026 −0.99 0.0278 0.59 −0.0342 −0.57 −0.0229 −0.4
orgcap 0.0711 1.12 0.12 1.69 −0.0201 −0.18 0.2747 2.83 0.1601 1.59 0.1029 1.08
mve m 0 2.09 0 1.3 0 1.98 0.3683 3.06 0.2912 2.57 0.2861 2.74
pps 0.0004 1.14 0.0006 1.71 0.0002 0.78 0.403 2.86 0.3302 2.76 0.2745 2.48
rdq 0 −1.77 0 −1.14 −0.0001 −2.25 −0.3371 −2.1 −0.2047 −1.79 −0.2014 −1.94
prccq 0 1.36 0 1.66 0 0.49 0.3335 2.62 0.25 2.39 0.1986 2.03
chtx 0.0552 1.81 0.0772 2.39 0.0516 1.32 0.1521 1.18 0.0599 0.77 0.052 0.64
roaq 0.0029 0.21 0.013 0.9 0.0041 0.18 0.4647 2.84 0.2453 2.21 0.1979 1.75
roeq −0.0016 −0.6 −0.0015 −0.58 0.0011 0.27 0.1251 0.83 0.1698 1.52 0.1685 1.43
rsup −0.0002 −0.07 0.0018 0.52 0 −0.01 0.0079 0.05 0.0424 0.36 0.0099 0.08
stdacc −0.0001 −0.64 0.0001 0.88 −0.0002 −1.46 −0.2147 −2.47 −0.161 −2.04 −0.1663 −2.15
sgrvol −0.0023 −0.81 −0.0031 −0.92 −0.0047 −0.76 −0.412 −3.21 −0.2765 −3.22 −0.2139 −2.99
roavol −0.0255 −1.54 −0.0345 −2.03 −0.0349 −1.42 −0.26 −1.87 −0.1314 −0.99 −0.1308 −1.03
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stdcf −0.0001 −0.93 0.0001 1.17 −0.0002 −1.62 −0.3906 −2.15 −0.2521 −2.26 −0.246 −2.37
cash 0.0009 0.33 −0.0001 −0.04 0.001 0.47 0.117 1 0.0029 0.03 0.0566 0.59
cinvest 0.0001 0.42 0.0003 0.77 0 0.01 0.0906 0.6 0.0389 0.44 −0.0228 −0.25
sue 0.0057 1.15 0.0054 0.96 −0.0235 −1.84 −0.13 −0.76 −0.1199 −0.85 −0.1278 −0.98
aeavol 0 −0.14 −0.0001 −0.46 −0.0003 −0.72 −0.0823 −1.3 −0.1714 −1.58 −0.1305 −1.42
ear −0.0055 −1.27 −0.0044 −1.15 −0.0129 −1.94 0.1208 1.54 0.0551 0.85 0.0601 0.89
disp −0.0023 −2 −0.0028 −2.3 −0.0049 −1.68 −0.5894 −2.64 −0.4265 −3.23 −0.3753 −3.12
chfeps 0.0015 2.09 0.0014 1.79 0.0013 1.5 0.5442 2.44 0.3677 3.58 0.3389 3.75
fgr5yr 0 −0.63 0 0.15 −0.0001 −0.77 0.0125 0.14 −0.0611 −0.75 −0.0366 −0.5
MEANREC 0.0007 0.87 0 0 −0.0002 −0.22 −0.2572 −2.26 −0.1555 −2.86 −0.1219 −1.8
chrec −0.0009 −1.63 −0.0001 −0.15 0.0008 1.02 0.0559 0.61 0.1093 2.06 0.0791 1.53
nanalyst 0 0.54 0 0.81 0 1.27 −0.0805 −1.24 −0.0214 −0.43 0.0144 0.3
sfe 0.0016 2.48 0.0025 2.62 0.0022 1.52 0.3381 2.37 0.1642 1.92 0.114 1.43
MEANEST 0 2.05 0 2 0 2.61 0.2524 2.01 0.2377 2.26 0.1892 2.02
mom6m 0.0022 0.98 0.0029 1.31 0.0008 0.3 0.5037 2.51 0.3763 3.16 0.3542 3.03
mom12m 0.0009 0.48 0.0023 1.26 0.0001 0.07 0.4596 2.25 0.3772 3.12 0.3467 2.78
mom36m 0.0005 0.72 0.0021 2.49 0.0001 0.11 0.1252 1.21 0.0701 0.9 0.0677 0.91
mom1m 0.0202 4.74 0.0205 4.84 0.0232 3.98 0.5676 3.11 0.5761 3.38 0.5442 3.96
dolvol 0 −0.19 −0.0001 −0.35 0.0002 0.48 −0.0771 −0.47 0.1196 1.22 0.1359 1.46
chmom 0.0022 2.3 0.0023 2.17 0.0011 0.81 0.4653 3.69 0.2289 2.55 0.2517 2.49
turn −0.0004 −1.9 −0.0006 −2.4 −0.0003 −0.8 −0.2556 −1.77 −0.1889 −2.16 −0.1503 −1.55
indmom 0.0015 0.78 0.0042 2.25 0.0002 0.08 0.1463 1.04 0.2509 2.45 0.2198 2.19
maxret −0.0135 −1.2 −0.0176 −1.51 −0.0168 −1.04 −0.0634 −0.35 −0.1027 −0.84 −0.0925 −0.76
retvol −0.0932 −2.65 −0.1142 −3.25 −0.0747 −1.6 −0.2102 −0.94 −0.1552 −1.13 −0.1607 −1.19
baspread −0.0922 −2.82 −0.1161 −3.49 −0.0733 −1.59 −0.0426 −0.22 −0.184 −1.25 −0.1746 −1.19
std dolvol 0.0019 0.69 0.0022 0.87 −0.0004 −0.09 0.2531 2.08 0.1624 1.56 0.1383 1.55
std turn −0.0001 −1.07 −0.0001 −1.41 −0.0002 −1.64 −0.0097 −0.06 −0.1168 −1.17 −0.1109 −1.09
beta −0.0011 −1.46 −0.0017 −2.17 −0.0002 −0.19 −0.5372 −2.47 −0.2519 −2.11 −0.1765 −1.51
betasq −0.0004 −1.4 −0.0006 −1.91 −0.0001 −0.26 −0.5378 −2.47 −0.2522 −2.12 −0.1767 −1.52
rsq1 0.0004 0.22 −0.0018 −1 −0.0008 −0.25 0.0127 0.16 −0.0605 −0.95 −0.0203 −0.29
pricedelay −0.0009 −0.92 −0.0001 −0.07 0.0031 0.97 0.0989 1.38 0.2501 2.21 0.2644 2.61
idiovol −0.0553 −2.41 −0.0671 −2.65 −0.0167 −0.53 −0.4632 −2.19 −0.358 −2.37 −0.2903 −2.33
d WCA 0 1.34 0 1.7 0 1.01 0.1366 0.8 0.0693 0.66 0.0361 0.45
d NCO 0 2.33 0 2.19 0 2.21 0.3301 2.06 0.2334 2.29 0.2031 2.22
d FIN 0 0.85 0 −1.15 0 1.22 0.0593 0.4 0.0338 0.4 0.0512 0.71
EDF −0.0084 −2.58 −0.0104 −2.8 −0.0081 −2.08 −0.4469 −2.04 −0.3559 −2.2 −0.2963 −1.98
implied fee −0.0201 −1.15 −0.0272 −1.39 −0.0181 −0.68 −0.1747 −1.46 −0.135 −2.22 −0.1242 −1.97
cw 0.0121 0.96 0.0113 0.83 0.0343 1.51 0.2007 1.69 0.1115 1.16 0.1363 1.53
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os −0.0028 −1.42 −0.0024 −1.11 −0.0006 −0.22 0.0839 0.84 0.1318 1.17 0.0912 0.94
ipd 0.023 0.34 0.0617 0.89 −0.0585 −0.65 0.2342 2.38 0.1316 1.61 0.1031 1.32
hu oi −0.5278 −0.74 −0.4152 −0.54 −1.3327 −0.89 −0.0236 −0.24 −0.1498 −2.24 −0.1254 −2.22
potesh 0.0001 0.06 0.0012 0.9 −0.002 −0.58 0.0836 0.71 0.2169 1.55 0.1192 1.25
d ivol −0.0073 −2.6 −0.0053 −1.86 −0.0121 −3.34 −0.5593 −3.24 −0.5383 −4.85 −0.5493 −4.58
cvol −0.0113 −2.04 −0.0063 −1.06 −0.0233 −3.37 −0.3999 −2.37 −0.412 −4.57 −0.423 −4.52
pvol −0.0111 −1.82 −0.0096 −1.7 −0.0235 −3.55 −0.1537 −0.75 −0.2353 −2.04 −0.2802 −2.23
skewness −0.0064 −0.75 −0.0131 −1.36 −0.0222 −1.84 −0.0283 −0.18 0.0098 0.07 −0.0016 −0.01
avg ivol −0.0082 −2.35 −0.0091 −2.7 −0.0044 −0.92 −0.1453 −0.62 −0.2333 −1.65 −0.1834 −1.36
NI monthly 0.0061 0.16 0.0198 0.53 0.0182 0.36 0.0095 0.06 −0.1614 −1.48 −0.1399 −1.4
bond st rev −0.2196 −12.77 −0.207 −9.85 −0.3085 −16.57 −0.8423 −3.01 −0.4687 −2.89 −0.4188 −2.73
bond mom −0.0206 −1.26 −0.0178 −1 −0.0878 −4.6 0.8425 2.47 0.4797 2.03 0.3658 1.43
bond Var5 −0.0418 −1.99 −0.0455 −1.94 −0.0092 −0.6 −0.4903 −2.27 −0.3699 −2.46 −0.2808 −2.29
bond Amihud 0.0441 1.76 0.0489 7.18 0.0591 2.64 0.0015 1.44 0.0006 0.92 0.0004 0.62
Std. log Price 0.0461 1.34 0.0401 1.04 0.0847 3.01 −0.1558 −0.77 −0.1625 −1.44 −0.1814 −1.6
d VIX beta 0.2847 4.8 0.263 4.26 0.2081 3.37 −0.0885 −0.72 0.005 0.07 0.0652 0.84
int cap rf beta 0.0075 2.28 0.006 1.67 0.0068 2.01 0.132 1.04 0.0735 0.87 0.0994 1.19
bond RMSE −0.0498 −1.21 −0.0822 −1.8 0.0158 0.44 −0.4679 −2.85 −0.4022 −2.81 −0.3351 −2.41
UNC 12 beta 0.0013 2.79 0.0014 2.8 0.0007 2 0.3955 2.23 0.3288 2.27 0.3183 2.44
PS VWF beta −0.0013 −1.1 −0.0019 −1.15 0 0.03 −0.26 −1.41 −0.1898 −1.55 −0.1682 −1.53
Mac Dur −0.0005 −2.48 −0.0004 −1.99 −0.0004 −2.65 −0.2551 −1.44 −0.1095 −0.97 −0.1166 −1.08
Bond Kurtosis 0.0001 2.55 0.0001 2.33 0.0001 3.67 0.2301 2.23 0.1159 2.35 0.1064 2.17
Bond Skewness −0.0006 −2.96 −0.0005 −2.58 −0.0007 −4.05 −0.3419 −3.88 −0.2227 −3.55 −0.2006 −3.59
Default Beta −0.0028 −3.41 −0.0023 −2.75 −0.0022 −3.09 −0.2214 −1.74 −0.2533 −2.49 −0.2142 −2.69
Term Beta −0.003 −2.21 −0.0016 −0.97 −0.003 −2.07 0.1704 1.39 0.0599 0.78 0.0428 0.54
Liquidity Beta 0.0002 0.39 0.0001 0.11 −0.0001 −0.36 −0.0497 −0.28 −0.1413 −0.9 −0.134 −0.94
bond RMSE −0.0682 −1.83 −0.112 −2.8 −0.0065 −0.21 −0.4221 −2.4 −0.3508 −2.59 −0.2867 −2.3
BBeta SMrkt −0.0013 −1.12 −0.0041 −2.59 0.0002 0.15 −0.3448 −2.96 −0.2175 −2.65 −0.1874 −2.33
BBeta RMW 0.0008 1.58 −0.0018 −1.82 0.0005 0.91 −0.0885 −0.88 −0.1112 −1.21 −0.0612 −0.86
BBeta CMA 0.0004 0.74 −0.0013 −1.03 0.0002 0.56 −0.1711 −1.28 −0.1128 −1.4 −0.1042 −1.37
BBeta HML −0.0001 −0.14 0.0012 0.71 0.0007 0.84 −0.0422 −0.36 −0.0295 −0.4 −0.0157 −0.19
BBeta SMB −0.0001 −0.08 −0.0007 −0.35 −0.0003 −0.35 0.0547 0.37 −0.0528 −0.44 −0.0399 −0.38
bond idio kurt −0.0679 −1.7 −0.0854 −1.9 0.0184 0.5 −0.474 −2.19 −0.3893 −2.4 −0.3313 −2.45
bond idio skew −0.0727 −1.89 −0.0884 −2 0.0078 0.23 −0.478 −2.26 −0.3953 −2.44 −0.3379 −2.48
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Notes: Columns 2 to 7 report the average slope coefficient (λs) and corresponding t-statistic (tλs) for 3 different univariate FM CS
regressions (equation 2.4.2) of the risk-adjusted corporate bond excess returns of each of the one month lagged signals listed in Table
A.1.4. Columns 2 and 3 are risk adjusted using the Bai et al. [2019b] (BBW) four factor corporate bond return model, columns 4
and 5 are risk adjusted using the BBW and the Fama and French [2015] (FF5) five factor stock model, and columns 6 and 7 are
risk adjusted using the BBW and value weighted least squares weighting bonds using one month lagged market capitalization. The
risk-adjusted corporate bond excess returns are adjusted as per Brennan et al. [1998]. The control variables are: coupon amount,
credit rating, log bond age, and log time to maturity. FM regressions are run each month for the period from July 1, 2005 to
October 31, 2019. Newey and West [1987] t-statistics are reported to determine the statistical significance of the average slope
coefficients. All right-hand-side variables in equation 2.4.2 are lagged by one month to the left-hand-side corporate bond excess
return (or risk adjusted corporate bond excess return) variable. Columns 8 to 13 are 3 sets of univariate portfolio sorts (high minus
low portfolio alpha (αs) and t-statistic (tαs)) of corporate bond returns where portfolios are formed by each of the signals. Portfolio
returns are value weighted using amount outstanding as weights. Columns 8 and 9 report the decile high minus low portfolio
alpha (αs) and corresponding t-statistic (tαs) using the BBW corporate bond factor model (Decile PS (BBW)). Columns 10 and
11 report the quintile high minus low portfolio αs and tαs using the BBW (Quintile PS (BBW)). Columns 12 and 13 report the
quintile high minus low portfolio alpha αs and tαs using the BBW and FF5 (Quintile PS (BBW+FF5)). Alphas are reported in
monthly percentages. Newey and West [1987] t-statistics are reported to determine the statistical significance of the high minus low
portfolio alpha coefficient. All portfolios are formed by one month lagged signals (listed in Table A.1.4) relative to the corporate
bond excess returns and the factors used in the estimation of equation 2.4.1 in each of the specifications Quintile PS (BBW), Decile
PS (BBW), and Quintile PS (BBW+FF5). Numbers are up to four decimal places.103



Table A.1.8: : Distributional Characteristics of FM lambdas (λs) and PS alphas (αs) and t-statistics

Panel A: FM lambdas (λs) and PS alphas (αs)

Percentiles
N Mean Median Std. Dev. Min. 1st 10th 25th 75th 90th 99th Max.

FM (BBW) 143 −0.006 0 0.0567 −0.5278 −0.2196 −0.0113 −0.0009 0.0008 0.0029 0.0711 0.2847
FM (BBW+FF5) 143 −0.0055 0 0.0517 −0.4152 −0.207 −0.0131 −0.0013 0.0014 0.0054 0.12 0.263
VW FM (BBW) 143 −0.0114 0 0.1168 −1.3327 −0.3085 −0.0167 −0.0006 0.0009 0.0051 0.0847 0.2081
Decile PS (BBW) 143 −0.0247 −0.0252 0.2886 −0.8423 −0.5911 −0.4221 −0.2102 0.1366 0.3335 0.8306 0.8425
Quin. PS (BBW) 143 −0.0235 −0.0214 0.2017 −0.5383 −0.4687 −0.2533 −0.1544 0.0959 0.2453 0.4797 0.5761
Quin. PS (BBW + FF5) 143 −0.0194 −0.0133 0.1773 −0.5493 −0.423 −0.246 −0.1307 0.0781 0.2003 0.3658 0.5442

Panel B: FM lambda t-statistics (tλs) and PS alphas t-statistics (tαs)

Percentiles
N Mean Median Std. Dev. Min. 1st 10th 25th 75th 90th 99th Max.

FM (BBW) 143 −0.1426 −0.0768 1.8777 −12.7738 −3.4092 −2.0027 −1.2418 0.9758 1.8068 4.7897 4.8034
FM (BBW+FF5) 143 −0.0551 −0.0433 1.8148 −9.8526 −3.488 −2.103 −1.1492 1.0437 2.169 4.2607 4.8409
VW FM (BBW) 143 −0.0999 0.0772 2.0957 −16.5705 −4.6013 −1.8421 −0.7654 0.8354 1.5155 3.9755 7.5111
Decile PS (BBW) 143 −0.0998 −0.2358 1.7729 −3.8835 −3.2427 −2.3746 −1.4566 1.1822 2.4217 3.3508 3.685
Quin. PS (BBW) 143 −0.1926 −0.2695 1.7554 −4.8544 −4.5693 −2.4408 −1.4018 1.1619 2.2061 3.378 3.5829
Quin. PS (BBW + FF5) 143 −0.129 −0.1801 1.6622 −4.5804 −4.5161 −2.2877 −1.3669 1.0792 2.031 3.7491 3.9554

Notes: The 3 different FM lambdas and 3 different portfolio sorted high-minus low decile alphas are computed
on a monthly basis. The number of observations (N), mean, median, standard deviation (Std. Dev.), and
corresponding percentiles are measured using all 143 signals. Distributional summary statistics (mean, median,
std. dev. and percentiles) are reported in percentages.
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Table A.1.9: : Benchmark t-statistics, percentage of H0 and SnM rejected

Benchmark t-statistics Percentage of H0 rejected Percentage of SnM rejected
Bonf. Holm BHY SHT Bonf. Holm BHY Bonf. Holm BHY

FM (BBW) 3.41 3.41 3.41 21.68 2.8 2.8 2.8 87.1 87.1 87.1
FM (BBW+FF5) 3.49 3.49 3.49 24.48 2.8 2.8 2.8 88.57 88.57 88.57
VW FM (BBW) 3.55 3.55 3.55 17.48 4.2 4.2 4.2 76 76 76
Decile PS (BBW) 3.35 3.35 3.92 37.06 1.4 1.4 0 96.23 96.23 100
Quin. PS (BBW) 3.58 3.58 3.58 33.57 1.4 1.4 1.4 95.83 95.83 95.83
Quin. PS (BBW + FF5) 3.59 3.59 3.59 26.57 2.8 2.8 2.8 89.47 89.47 89.47

Notes: Benchmark t-statistics, percentage of H0 and SnM rejected from FM regressions and PS in Table A.1.7.
Results are presented under single hypothesis test with level of level of significance of 5% and under of the
Bonferroni, Holm, and BHY multiple hypothesis tests.
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Table A.1.10: : Multivariate FM Regressions of Corporate Bond Returns

FM VW FM FM (BBW) VW FM (BBW) FM (BBW+FF5) VW FM (BBW+FF5)
Variable Name λs tλs λs tλs λs tλs λs tλs λs tλs λs tλs
Intercept 0.2229 1.88 0.085 0.59 0.2689 1.99 0.2402 1.51 0.1361 1.15 0.0124 0.07
spi −0.0022 −0.49 0.004 0.8 −0.0018 −0.32 0.0001 0.02 −0.0021 −0.3 0.0009 0.17
mve f 0 0.88 0 −0.28 0 −0.34 0 0.28 0 1.15 0 1.28
bm −0.0005 −0.73 −0.0001 −0.19 0 −0.03 0.0007 0.92 0 0.06 0.0004 0.44
ep 0.0009 0.52 −0.0004 −0.18 0.0011 0.4 −0.0003 −0.12 0.0006 0.25 −0.0005 −0.17
cashpr 0 −1.44 0 −2.17 0 −1.22 0 −1.79 0 −2.05 0 −1.81
lev 0 −0.16 0 0.08 −0.0001 −1.02 −0.0001 −0.34 0 −0.12 0 −0.1
sp −0.0001 −0.43 −0.0001 −0.25 −0.0001 −0.32 −0.0001 −0.49 −0.0002 −1.24 0 −0.11
roic −0.0004 −0.21 0.0014 0.6 −0.0024 −0.81 −0.0001 −0.04 −0.0022 −0.75 0.0044 1.26
agr −0.0002 −0.23 −0.0003 −0.22 −0.001 −0.47 0.0001 0.03 0.0008 0.33 0.002 0.79
gma −0.0017 −1.73 −0.001 −0.99 −0.0014 −1.11 −0.0004 −0.29 −0.0019 −1.77 −0.0019 −1.43
chcsho −0.0004 −0.94 −0.0001 −0.27 −0.0003 −0.62 0.0005 1.02 −0.0009 −1.49 −0.0001 −0.19
lgr 0.0003 0.67 0.0003 0.48 0.0007 0.69 −0.0006 −0.58 −0.0006 −0.51 −0.002 −1.45
acc −0.0003 −0.06 −0.0037 −0.49 0.0093 0.98 0.0026 0.27 0.0056 0.65 0.0001 0.01
pctacc 0 −0.46 0 0.23 0 −0.6 0 −0.64 0 0.12 0 0.89
cfp −0.0019 −1.07 −0.0021 −1.63 −0.0028 −1.65 −0.0031 −2 −0.001 −0.63 −0.002 −1.39
absacc 0.0087 1.62 0.0019 0.48 0.0103 1.67 0.0018 0.4 0.0078 1.27 0.0001 0.03
chinv −0.0068 −1.1 −0.0008 −0.14 −0.0072 −0.92 0.0012 0.17 −0.015 −1.62 −0.008 −1.07
cf −0.0014 −0.34 −0.0026 −0.31 0.012 1.36 0.0065 0.7 0.0082 1.09 0.0064 0.59
hire −0.0006 −0.68 −0.0008 −0.98 0.0004 0.33 −0.0003 −0.26 0.001 0.89 −0.0002 −0.16
sgr 0.001 0.63 0.0004 0.47 0.0012 0.64 0.0015 1.28 0.0008 0.5 0.0016 1.17
chpm −0.0002 −0.84 0.0003 1.3 −0.0005 −0.69 0.0001 0.09 0.0005 1.12 0.0013 1.71
chato −0.0014 −0.86 −0.0007 −0.66 0.0005 0.26 −0.0002 −0.11 0.0006 0.27 0.0003 0.12
pchsale pchinvt 0.0001 0.5 −0.0001 −0.41 −0.0002 −0.77 −0.0001 −0.45 0.0001 0.51 −0.0002 −0.51
pchsale pchrect −0.0003 −0.73 −0.0003 −0.67 −0.0006 −1 −0.0009 −1.19 −0.0003 −0.6 −0.0005 −0.69
pchgm pchsale −0.0003 −0.58 0.0001 0.14 0.0001 0.13 0.0003 0.52 −0.0006 −0.81 −0.0006 −0.91
pchsale pchxsga −0.0007 −0.78 0 0.05 −0.0015 −1.41 −0.0018 −1.48 0.0002 0.19 0.0011 0.82
depr 0.0008 1.29 0.0008 1.77 0.0013 1.56 0.0006 1.08 0.0009 1.15 0.0003 0.4
pchdepr 0 −0.04 0.0001 0.12 −0.0008 −0.82 −0.0006 −0.96 −0.0005 −0.61 −0.0007 −1
chadv 0.0005 0.71 0.0005 0.82 0.0008 1.24 0.0003 0.4 0.0001 0.15 0.0003 0.3
invest 0.0003 0.14 −0.0001 −0.07 0.0008 0.4 0.0004 0.19 0.0031 1.31 0.0035 1.63
egr −0.0003 −0.6 −0.0004 −0.84 0.0001 0.12 −0.0002 −0.26 −0.0004 −0.54 −0.0005 −0.67
pchcapx 0.0001 0.45 −0.0001 −0.44 0.0003 1.31 −0.0001 −0.17 0.0003 1.39 0.0002 0.36
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grcapx −0.0001 −0.59 −0.0001 −0.5 −0.0001 −0.37 −0.0001 −0.51 0 0.26 0.0001 0.29
tang 0.0007 0.54 0.0015 1.31 0.0006 0.42 0.0008 0.66 −0.0001 −0.1 0 0.02
currat 0 0.19 0.0001 0.93 −0.0001 −0.39 0.0001 0.72 0.0001 0.96 0.0003 1.4
pchcurrat −0.0012 −1.19 −0.0001 −0.15 −0.0006 −0.45 0.0001 0.09 −0.0013 −1.2 0 0.01
quick 0 −0.4 −0.0001 −1.03 0 0.15 −0.0002 −0.74 −0.0002 −1.5 −0.0004 −1.74
pchquick 0.0007 0.89 0.0003 0.33 0.0002 0.15 −0.0003 −0.27 0.0005 0.51 −0.0001 −0.1
salecash 0 −1.04 0 0.68 0 −0.13 0 0.71 0 −0.36 0 0.6
salerec 0 −0.36 0 0.04 0 −0.26 0 0.58 0 0.63 0 0.01
saleinv 0 −0.91 0 −0.52 0 −1.08 0 −0.64 0 −1.06 0 −0.67
pchsaleinv −0.0001 −0.32 0 −0.06 0.0003 0.84 0.0001 0.14 −0.0002 −0.43 −0.0002 −0.36
cashdebt 0.0016 1.04 0.001 0.41 −0.0002 −0.07 0.0016 0.53 0.0014 0.65 −0.0004 −0.13
realestate 0.0015 1.4 0.0007 1.01 0.0022 1.61 0.0015 1.24 0.0024 1.71 0.0032 2.16
grltnoa −0.0006 −0.43 −0.0004 −0.26 −0.0032 −1.56 −0.0021 −1.01 −0.0038 −1.76 −0.0039 −1.52
rdbias 0 −0.17 −0.0002 −1.75 −0.0002 −0.79 −0.0002 −0.91 −0.0001 −0.65 −0.0001 −0.78
roe 0.0002 0.43 0.0002 0.33 −0.0001 −0.15 −0.0002 −0.29 0 0.07 0.0001 0.09
operprof 0 −0.08 0.0001 0.59 0 −0.26 0.0001 0.36 0.0001 0.47 0.0001 0.41
chpmia 0 −0.01 0 −0.19 0 −0.44 0 −1.01 0 0.47 0 −0.05
chatoia −0.0002 −0.22 0.0005 0.42 −0.002 −1.36 −0.0004 −0.28 −0.0014 −0.69 −0.0007 −0.28
chempia −0.0002 −0.49 0.0004 1.1 −0.0003 −0.62 0.0003 0.66 −0.0004 −0.72 0.0007 1.27
bm ia 0 −1.13 0 −1.51 0 −1.06 0 −1.39 0 −0.57 0 −0.74
pchcapx ia 0 1.62 0 1.42 0 0.7 0 −0.08 0 0.17 0 1.05
tb 0.0001 0.81 0.0001 1.61 0.0002 0.94 0.0002 1.37 0.0002 0.99 0.0002 1.18
cfp ia 0 0.52 0 1.08 0.0001 1.04 0 0.16 0.0001 0.95 0.0001 0.97
herf 0.0017 1.2 0.0001 0.11 0.0005 0.27 −0.0013 −1.14 0.0001 0.02 −0.0006 −0.26
orgcap 0.0371 0.92 0.0064 0.19 0.0395 0.86 0.0014 0.04 0.0082 0.17 −0.0092 −0.2
mve m 0 −0.86 0 0.83 0 0.4 0 −0.19 0 −0.99 0 −0.79
pps −0.0003 −1.37 −0.0002 −1.28 −0.0003 −1.16 0 −0.06 −0.0004 −1.52 −0.0005 −1.2
rdq 0 −1.79 0 −0.55 0 −1.95 0 −1.51 0 −1.16 0 −0.09
prccq 0 0.19 0 0.12 0 0.52 0 0.25 0 1.4 0 0.66
chtx 0.0099 0.65 −0.021 −1.82 0.0158 0.87 −0.0218 −1.52 0.0334 1.46 −0.009 −0.48
roaq 0.0063 0.69 0.0058 0.62 0.0054 0.58 0.004 0.31 0.0008 0.06 0.0183 1.03
roeq −0.0007 −0.5 −0.0006 −0.4 −0.0018 −0.89 0 0.02 0.0001 0.05 −0.0011 −0.74
rsup 0.0011 0.49 0.0013 0.61 0.0009 0.28 0.0021 0.6 0.0025 0.93 0.0019 0.59
stdacc 0.0002 1.07 −0.0001 −0.3 0.0002 0.41 0.0006 0.87 0.0001 0.12 0.0003 0.46
sgrvol 0.0014 1.24 0.0006 0.54 −0.001 −0.68 −0.0017 −1.04 −0.0001 −0.06 0.0007 0.39
roavol −0.0043 −0.57 −0.0041 −0.51 −0.0158 −1.64 −0.0141 −1.54 −0.0133 −1.23 −0.0116 −1.05
stdcf −0.0001 −1.12 0 0.43 −0.0001 −0.34 −0.0002 −0.67 0 0.08 0 −0.16
cash −0.0004 −0.19 −0.0018 −0.98 −0.0013 −0.42 −0.003 −1.11 −0.0004 −0.1 −0.0035 −1.25
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cinvest −0.0001 −0.34 −0.0002 −0.79 −0.0004 −0.97 −0.0005 −1.37 −0.0002 −0.4 −0.0001 −0.19
sue −0.0009 −0.22 −0.0088 −1.37 0.0005 0.08 −0.0142 −1.45 −0.0037 −0.7 −0.0102 −1.19
aeavol 0 0.03 −0.0001 −1.13 0.0002 1.2 −0.0001 −0.58 0.0004 2.17 0.0001 1.03
ear −0.0021 −1.25 −0.0009 −0.54 −0.0008 −0.38 −0.0013 −0.67 −0.002 −1.06 −0.0026 −1.3
disp −0.0004 −0.55 −0.001 −1.24 −0.001 −1.37 −0.0019 −1.81 −0.0003 −0.4 −0.002 −1.66
chfeps 0.0008 1.7 0.0004 0.99 0.0003 0.72 −0.0002 −0.24 0.0007 1.48 −0.0002 −0.22
fgr5yr 0 −1.78 0 −0.36 0 −1.26 0 0.05 0 −1.34 0.0001 1.85
MEANREC −0.0002 −0.47 0.0002 0.59 0.0005 1.02 0.0002 0.47 0.0004 0.71 0.0001 0.12
chrec −0.0003 −0.94 0 0.03 0 −0.07 0 −0.07 0.0002 0.31 −0.0004 −0.75
nanalyst 0 0.74 0 0.13 0 0.74 0 1.2 0 0.48 0 1.2
sfe 0.0005 1.27 0.0013 2.23 0.0003 0.57 0.001 1.43 0.0008 1.14 0.0006 0.71
MEANEST 0 0.04 0 −1.61 0 −0.49 0 −1.94 0 0.11 0 −1.4
mom6m 0.0076 1.29 0.0042 0.71 0.0175 2.05 0.0148 1.56 0.0138 1.94 0.0051 0.7
mom12m −0.0034 −1.05 −0.0012 −0.38 −0.0086 −1.94 −0.0076 −1.57 −0.0065 −1.52 −0.003 −0.78
mom36m 0 0.03 −0.0003 −0.93 −0.0007 −1.51 −0.001 −1.73 0.0001 0.32 −0.0006 −1.07
mom1m 0.0189 4.95 0.0096 2.67 0.0177 3.55 0.0126 2.42 0.0174 4.7 0.01 2.2
dolvol 0.0002 1.12 0.0001 0.38 0 0.19 0.0002 0.73 0 0.16 −0.0001 −0.22
chmom −0.0028 −0.98 −0.0007 −0.26 −0.0074 −1.8 −0.0056 −1.25 −0.0056 −1.79 −0.0006 −0.18
turn −0.0007 −3.64 −0.0005 −2.14 −0.0006 −3.3 −0.0005 −2.32 −0.0006 −3.57 −0.0005 −1.98
indmom 0.0002 0.14 0.0001 0.08 0.0016 1.21 0.0019 1.38 −0.0001 −0.04 0.0015 0.82
maxret −0.0081 −1 −0.0011 −0.11 −0.0055 −0.57 0.0003 0.03 −0.0068 −0.61 −0.0043 −0.35
retvol −0.068 −2.16 −0.0489 −1.25 −0.0067 −0.18 −0.052 −1.1 −0.0395 −0.98 −0.0547 −0.96
baspread 0.0643 2.25 0.0373 1.12 0.011 0.35 0.0072 0.17 0.0292 0.84 0.0218 0.48
std dolvol 0.0009 0.85 −0.0008 −0.37 −0.0004 −0.24 −0.0012 −0.57 0.0007 0.34 0.0007 0.39
std turn 0.0001 1.64 0.0001 1.13 0.0001 1.17 0.0001 1.31 0.0001 1.35 0.0001 1.41
beta −0.0012 −0.52 −0.0021 −1.15 −0.0019 −0.82 −0.0023 −1.28 −0.0034 −1.41 −0.0013 −0.75
betasq 0.0003 0.49 0.0005 0.81 0.0006 0.98 0.0002 0.35 0.001 1.28 0.0001 0.15
rsq1 0.0011 0.42 0.0009 0.34 0.0019 0.63 0.0034 1.09 0.0027 0.84 0.0001 0.04
pricedelay 0.0004 0.43 0.0004 0.63 −0.0007 −0.67 −0.0007 −0.81 0.0003 0.28 −0.0005 −0.42
idiovol 0.018 0.66 0.0522 1.49 0.027 0.79 0.0641 1.68 0.0225 0.64 0.0132 0.36
d WCA 0 0.56 0 0.76 0 0.68 0 −0.61 0 1.83 0 1.02
d NCO 0 1.85 0 0.68 0 1.73 0 −0.08 0 1.66 0 −0.16
d FIN 0 0.98 0 0.65 0 1.14 0 0.62 0 −0.54 0 −0.94
EDF −0.002 −1 −0.0046 −1.9 −0.0025 −1.13 −0.0063 −2.09 −0.0017 −0.64 −0.0071 −2.04
avg med h Q 0.0007 0.07 0.007 0.85 −0.0132 −1.2 −0.0024 −0.22 −0.0034 −0.27 0.0061 0.48
cw −0.0094 −1.28 −0.0024 −0.29 −0.0086 −0.95 −0.007 −0.6 −0.0108 −0.96 −0.0032 −0.24
os −0.0024 −1.77 0.0001 0.1 −0.0007 −0.57 0 0 −0.0001 −0.07 0.0015 0.85
d ivol −0.0494 −1.88 −0.0283 −1.19 −1.3441 −1.5 −1.3465 −1.19 −0.0636 −0.19 −1.0058 −1.21
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cvol 0.0472 1.77 0.0192 0.8 1.3408 1.5 1.3348 1.18 0.0632 0.19 0.9991 1.2
pvol 0.0448 1.72 0.0254 1.08 1.3439 1.5 1.349 1.19 0.0602 0.18 1.0042 1.21
skewness −0.0067 −2.11 0.0014 0.39 −0.0057 −1.49 −0.0008 −0.17 −0.005 −1.37 −0.0002 −0.03
avg ivol −0.0022 −1.54 −0.0012 −1.14 −0.0029 −1.73 −0.0006 −0.47 −0.001 −0.53 −0.001 −0.69
bond st rev −0.0104 −1.53 −0.0102 −1.35 −0.015 −1.37 −0.0218 −2 −0.033 −2.06 −0.0406 −2.64
bond Amihud 0 0.09 0 0.19 0 0 0 0 0 0 0 0
Std. log Price 0.0417 2.68 0.0557 3.24 0.0587 3.85 0.0751 4.44 0.04 2.7 0.0684 3.66
Mac Dur −0.0005 −3.21 −0.0004 −3.61 −0.0005 −2.85 −0.0005 −3.48 −0.0005 −2.81 −0.0004 −2.96
Bond Kurtosis 0 0.87 0.0001 1.8 0 0.2 0.0001 1.32 0.0001 1.32 0.0001 1.91
Bond Skewness −0.0008 −7.09 −0.0006 −5.59 −0.0008 −4.53 −0.0006 −4.38 −0.0009 −4.81 −0.0006 −3.51
Default Beta 0 −0.21 0.0003 1.39 −0.0034 −3.43 −0.0028 −2.99 −0.0029 −2.83 −0.0025 −2.22
Term Beta 0.0007 1.33 0.0002 0.36 −0.0006 −0.45 −0.001 −0.56 0.0003 0.19 −0.0006 −0.25
Liquidity Beta 0.0001 0.63 0.0001 1.07 −0.0003 −1.23 −0.0003 −1.06 −0.0006 −1.87 −0.0009 −1.96
bond RMSE 0.0323 1.66 −0.0091 −0.38 −0.0296 −1.6 −0.0501 −2.3 −0.0945 −3.18 −0.0689 −2.07
BBeta SMrkt −0.0001 −0.13 0.0005 1.16 −0.0039 −3.72 −0.0027 −2.45 −0.0059 −2.99 −0.005 −2.09
BBeta RMW 0 0.13 −0.0002 −0.56 0.0002 0.46 −0.0002 −0.54 −0.0015 −1.36 −0.0015 −1.25
BBeta CMA −0.0003 −1.52 −0.0001 −0.23 0.0001 0.28 0.0001 0.42 −0.0007 −0.69 −0.0006 −0.57
BBeta HML 0.0003 0.83 0.0004 1.15 0.002 2.39 0.0021 2.67 0.0018 1 0.002 1.1
BBeta SMB 0.0005 1.07 0.0004 1.03 −0.0002 −0.24 −0.0001 −0.12 −0.002 −1.4 −0.0026 −1.66
bond idio kurt −0.0381 −0.88 0.0146 0.53 −0.0228 −0.39 0.1074 3.12 −0.0571 −0.89 0.0575 1.05
bond idio skew 0.0325 0.74 0.0086 0.3 0.0571 0.98 −0.0478 −1.59 0.1168 1.72 −0.0048 −0.08
Bond Credit Rating 0.0002 2.48 0.0001 2.36 0.0001 1.92 0.0001 2.5 0.0001 1.54 0 −0.17
Log(offering amount) −0.0006 −3.78 −0.0004 −3.18 −0.0002 −1.34 −0.0001 −0.57 −0.0004 −2.13 −0.0001 −0.79
log(age) 0.0015 3.7 0.0011 4.22 0.0017 3.39 0.0014 3.67 0.002 3.33 0.0017 3.53
log(TTM) 0.0032 3.58 0.0031 3.83 0.0026 3.32 0.0027 3.82 0.0024 3.25 0.0024 3.46
coupon 0.0002 2.55 0.0003 2.5 0.0002 1.89 0.0002 2.22 0.0002 2.22 0.0002 1.69
R-squared 0.2837 0.2311 0.2564 0.2102 0.3238 0.3026
Avg. Num. CS Obs. 4067.25 4064.85 2826.72 2825.02 2761.11 2759.48
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Notes: Columns 2 to 13 report the average slope coefficient (λs) and corresponding t-statistic (tλs) for 6 different multivariate
FM CS regressions of one-month-ahead corporate bond excess returns of 135 of the 143 signals. Columns 2 and 3 are raw excess
corporate bond returns (columns 4 and 5 represent the corresponding value-weighted (VW), by one month lagged firm market
capitalization, least squares estimated MV FM regression), columns 6 and 7 are risk adjusted using the Bai et al. [2019b] (BBW)
four factor corporate bond return model (columns 8 and 9 represent the corresponding VW, by one month lagged firm market
capitalization, least squares estimated MV FM regression), columns 10 and 11 are risk adjusted using the BBW and the Fama and
French [2015] (FF5) five factor stock model (columns 12 and 13 represent the corresponding VW, by one month lagged firm market
capitalization, least squares estimated MV FM regression). The risk-adjusted corporate bond excess returns are calculated as per
Brennan et al. [1998]. All right-hand-side variables are lagged by one month to the left-hand-side return variable. Newey and West
[1987] t-statistics are reported to determine the statistical significance of the average slope coefficients. Numbers are reported up
to four decimal places for ease of display.

Table A.1.11: : Benchmark t-statistics, percentage of H0 and SnM rejected: Multivariate FM Corporate
Bond Return Regression

Benchmark t-statistics Percentage of H0 rejected Percentage of SnM rejected
Bonf. Holm BHY SHT Bonf. Holm BHY Bonf. Holm BHY

FM 3.59 3.59 3.67 10.85 3.88 3.88 2.33 64.29 64.29 78.57
VW FM 3.61 3.61 3.61 8.53 2.33 2.33 2.33 72.73 72.73 72.73
FM (BBW) 3.6 3.6 3.86 9.3 2.33 2.33 0.78 75 75 91.67
VW FM (BBW) 3.48 3.48 3.66 12.4 3.1 3.1 2.33 75 75 81.25
FM (BBW+FF5) 3.48 3.48 3.48 11.63 1.55 1.55 1.55 86.67 86.67 86.67
VW FM (BBW+FF5) 3.51 3.51 4.09 9.3 0.78 0.78 0 91.67 91.67 100

Notes: Benchmark t-statistics, percentage of H0 and SnM rejected from MV FM regressions in Table A.1.10.
Results are presented under single hypothesis test with level of level of significance of 5% and under of the
Bonferroni, Holm, and BHY multiple hypothesis tests.

110



Table A.1.12: : Multivariate FM Regressions of Stock Returns

FM VW FM FM (Stock Price>$5) VW FM (Stock Price>$5)
Variable Name λs tλs λs tλs λs tλs λs tλs
Intercept 0.3162 0.77 0.859 2.23 0.3762 1.01 0.7965 2.16
spi 0.009 0.41 −0.0029 −0.16 −0.0169 −0.89 −0.0022 −0.12
mve f 0 1.74 0 1.39 0 1.38 0 1.16
bm −0.0004 −0.2 −0.0004 −0.21 −0.0035 −2.07 −0.0008 −0.42
ep 0.0021 0.3 −0.0032 −0.42 −0.001 −0.15 −0.0009 −0.11
cashpr 0 −0.05 0 −0.62 0 0.03 0 −0.41
lev −0.0004 −1.33 −0.0005 −1.57 −0.0001 −0.4 −0.0003 −1.12
sp 0.0001 0.19 0.0005 1.12 0.0009 1.89 0.0006 1.28
roic −0.0075 −1.15 0.0023 0.37 −0.0075 −1.21 0.0015 0.21
agr 0.0015 0.31 −0.0055 −1.15 −0.0034 −0.79 −0.0068 −1.39
gma −0.0029 −0.71 −0.0027 −0.72 −0.0049 −1.28 −0.0018 −0.48
chcsho 0.0007 0.33 −0.0033 −2.42 −0.0006 −0.3 −0.0024 −1.59
lgr 0 0.02 0.0022 0.97 0.0019 0.85 0.0026 1.12
acc 0.0099 0.52 −0.0093 −0.43 0.0094 0.54 −0.0112 −0.51
pctacc 0 0.12 −0.0001 −0.53 0 0.18 0 −0.01
cfp 0.0066 1.03 −0.0007 −0.14 0.0078 1.41 −0.0013 −0.23
absacc 0.0133 0.99 0.0116 0.94 0.0055 0.49 0.0099 0.79
chinv 0.0249 1.11 −0.0008 −0.04 0.0292 1.46 0.0031 0.14
cf 0.01 0.58 −0.0246 −1.42 0.0059 0.33 −0.0238 −1.25
hire 0.002 0.66 −0.0005 −0.2 0.0006 0.23 −0.0009 −0.32
sgr −0.0037 −1.25 −0.0015 −0.4 0.0006 0.18 −0.0017 −0.44
chpm 0.0008 0.7 0.0011 1.36 0.0021 1.84 0.002 1.7
chato −0.0035 −0.5 −0.0014 −0.27 −0.0117 −1.66 −0.0037 −0.71
pchsale pchinvt −0.0002 −0.21 0.0001 0.06 −0.0002 −0.19 −0.0001 −0.05
pchsale pchrect 0.0003 0.19 0.0016 1.55 −0.0004 −0.29 0.0014 1.26
pchgm pchsale 0.0013 0.84 0.0014 1 0.0009 0.69 0.0013 0.88
pchsale pchxsga −0.0018 −0.57 −0.0019 −0.65 −0.003 −0.93 −0.0013 −0.39
depr −0.0011 −0.69 0.0017 1.05 0.0002 0.13 0.0019 1.07
pchdepr 0.0044 2.33 −0.0018 −0.92 0.0015 0.72 −0.0014 −0.65
chadv 0.003 1.16 −0.0008 −0.35 0.0022 1.05 −0.0006 −0.28
invest −0.0051 −0.69 0.0033 0.54 −0.0066 −1.02 0.0036 0.61
egr −0.0025 −2.15 −0.0023 −2.12 −0.002 −1.91 −0.002 −2.12
pchcapx 0.0004 0.79 0.001 1.69 0.001 2.13 0.001 1.62
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grcapx −0.0001 −0.29 0 0.12 0.0002 0.38 0.0001 0.2
tang −0.0024 −0.58 −0.0008 −0.22 −0.0013 −0.36 −0.0001 −0.03
currat 0 −0.17 −0.0003 −0.89 −0.0002 −0.89 −0.0004 −1.31
pchcurrat −0.0011 −0.33 −0.0025 −0.73 −0.0009 −0.29 −0.0034 −0.98
quick 0 −0.09 0.0003 0.84 0.0002 0.74 0.0004 1.3
pchquick 0.0016 0.52 0.003 1 0.0021 0.74 0.0038 1.25
salecash 0 −0.17 0 0.17 0 0.6 0 0.35
salerec 0 0.5 0 1.24 0 0.46 0 1.08
saleinv 0 −0.76 0 −0.78 0 0.15 0 −0.86
pchsaleinv −0.0002 −0.13 −0.0005 −0.41 0.0008 0.67 −0.0004 −0.35
cashdebt −0.0013 −0.24 0.0053 1.25 0.0087 1.76 0.0046 1.01
realestate −0.0021 −0.55 0.003 0.83 0.0007 0.18 0.002 0.57
grltnoa −0.0044 −0.79 0.0034 0.59 −0.0014 −0.26 0.0029 0.5
rdbias 0.0009 1.8 0 −0.05 0.0005 1.03 0 0.08
roe 0.0019 1.53 0.0024 1.6 0.0023 1.5 0.0028 1.79
operprof −0.0004 −0.89 −0.0004 −0.89 −0.0008 −1.59 −0.0007 −1.51
chpmia 0 0.06 0 0.39 0 0.81 0 0.55
chatoia −0.0011 −0.21 −0.0032 −0.68 0.0027 0.56 −0.0014 −0.29
chempia −0.0014 −0.86 0.0021 1.46 −0.0001 −0.09 0.0024 1.7
bm ia 0 −0.04 0 0.03 0 −0.46 0 0.07
pchcapx ia 0.0001 1.05 0 0.28 0.0001 1.31 0 0.24
tb −0.0001 −0.16 0 0.12 0 −0.02 0 0.07
cfp ia 0.0002 0.54 0.0001 0.44 0.0003 1.08 0.0001 0.35
herf −0.0067 −1 −0.0028 −0.46 −0.0091 −1.5 −0.0017 −0.27
orgcap 0.243 1.44 0.046 0.37 0.2545 1.76 0.068 0.55
mve m 0 −1.58 0 −1.5 0 −1.4 0 −1.28
pps −0.0005 −0.6 −0.0001 −0.16 −0.0008 −0.89 0 −0.05
rdq 0 −0.8 −0.0001 −2.25 0 −1.04 0 −2.2
prccq 0 1.55 0 0.52 0 1.26 0 0.38
chtx 0.0863 1.84 0.0596 1.19 0.0339 0.74 0.0607 1.14
roaq −0.0032 −0.11 0.0287 0.87 −0.0093 −0.32 0.034 1.05
roeq 0.0032 0.96 0.0031 0.92 0.004 1.57 0.0008 0.28
rsup 0.01 1.42 0.0071 0.91 0.0096 1.45 0.0075 0.87
stdacc −0.0003 −0.27 0.0005 0.65 0.0021 0.95 0.0032 1.7
sgrvol −0.0043 −1 −0.0072 −1.84 −0.0082 −1.51 −0.01 −1.95
roavol 0.0028 0.1 0.0137 0.42 −0.0035 −0.12 0.0124 0.38
stdcf 0 −0.06 −0.0002 −0.74 −0.001 −1.21 −0.0012 −1.78
cash 0.0057 1.03 0.0016 0.26 0.0001 0.02 0.0008 0.13
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cinvest −0.0001 −0.15 −0.001 −1.19 −0.0009 −0.99 −0.0013 −1.52
sue 0.021 1.5 −0.0007 −0.05 −0.0113 −0.65 −0.0021 −0.1
aeavol 0.0003 0.53 −0.0001 −0.18 0.0001 0.26 −0.0001 −0.26
ear 0.0156 2.85 0.0083 1.45 0.0164 2.97 0.0071 1.22
disp −0.0021 −1.34 −0.0014 −0.55 −0.0026 −1.61 −0.0029 −1.06
chfeps 0.0054 2.79 0.0029 2.07 0.0039 2.54 0.0021 1.45
fgr5yr 0.0001 0.93 0 0.38 0 0.24 0 0.52
MEANREC −0.0005 −0.42 0.0005 0.39 −0.0005 −0.5 0.0008 0.62
chrec −0.001 −1.03 0.0002 0.21 −0.0008 −0.76 0.0005 0.41
nanalyst 0.0001 1.39 0.0001 1.83 0.0001 1.93 0.0002 2.1
sfe −0.0003 −0.24 −0.0043 −2.3 −0.0092 −2.4 −0.0117 −3.37
MEANEST 0 −1.48 0 1.52 0 0.68 0 1.44
mom6m −0.0151 −1.05 0.0181 1.09 0.0213 1.6 0.0331 1.92
mom12m 0.0068 1.1 −0.0076 −1.05 −0.0098 −1.39 −0.0161 −1.99
mom36m 0.0023 1.78 0.0015 1.06 0.0022 1.79 0.0006 0.46
mom1m 0 0 −0.0084 −0.58 0.0095 0.82 −0.0022 −0.15
dolvol −0.0006 −1.13 −0.0009 −1.55 −0.0007 −1.33 −0.0011 −1.9
chmom 0.0033 0.51 −0.0107 −1.33 −0.0133 −2.03 −0.0177 −2.11
turn −0.0011 −1.95 0.0001 0.25 −0.001 −1.97 0.0001 0.29
indmom 0.0031 0.56 0.0052 1.15 0.0022 0.44 0.0041 0.88
maxret 0.0111 0.35 0.0552 1.78 0.0109 0.38 0.0553 1.74
retvol −0.3239 −2.47 −0.3137 −1.86 −0.1696 −1.46 −0.3194 −1.85
baspread 0.3286 2.79 0.0316 0.26 0.1156 1.18 0.0268 0.22
std dolvol −0.0056 −1.47 0.001 0.25 −0.0045 −1.39 0.0017 0.41
std turn 0.0002 1.45 −0.0001 −1.16 0.0001 1.2 −0.0001 −0.98
beta 0.0017 0.26 −0.0081 −1.32 −0.0058 −0.96 −0.0123 −1.74
betasq 0.0001 0.08 0.0018 1.18 0.0022 1.59 0.0031 1.87
rsq1 −0.0055 −0.59 0.0123 1.35 0 0 0.0163 1.61
pricedelay −0.0018 −0.55 −0.0008 −0.28 −0.0032 −1.3 −0.0008 −0.28
idiovol −0.0785 −0.93 0.2126 2.05 0.0349 0.41 0.2611 2.32
d WCA 0 0.62 0 1.74 0 1 0 1.7
d NCO 0 1.05 0 0.22 0 0.09 0 0.15
d FIN 0 2.35 0 1.82 0 2.09 0 1.57
EDF −0.0092 −1.11 −0.0056 −0.77 0.0025 0.27 −0.0005 −0.06
implied fee −0.0336 −1.05 −0.1097 −3.13 −0.0278 −1.02 −0.1047 −2.93
cw −0.0129 −0.49 −0.0356 −1.1 −0.0045 −0.22 −0.0213 −0.66
os −0.0181 −3 −0.0088 −1.94 −0.0129 −2.51 −0.0081 −1.77
d ivol −0.0852 −0.8 0.0399 1.41 0.1961 1.29 −0.1884 −0.57
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cvol 0.1046 0.98 −0.0487 −1.56 −0.1873 −1.23 0.182 0.54
pvol 0.0664 0.62 −0.0339 −1.16 −0.2025 −1.33 0.1927 0.58
skewness −0.0288 −2.6 −0.0175 −1.63 −0.0105 −0.82 −0.0142 −1.23
avg ivol −0.0012 −0.19 −0.0023 −0.51 −0.0048 −1.12 −0.003 −0.68
bond st rev 0.0758 2.24 0.0611 1.75 0.0757 2.65 0.0615 1.79
bond Amihud −0.0337 −1.11 0.0163 0.68 −0.0254 −1.19 0.0157 0.65
Std. log Price −0.1015 −1.14 0.0271 0.42 0.0028 0.05 0.012 0.19
Mac Dur 0.0003 1.27 0.0002 1.27 0.0002 0.77 0.0002 1.08
Bond Kurtosis 0.0004 1.43 0.0001 0.37 0.0002 0.74 0.0001 0.28
Bond Skewness 0.001 1.66 0.0009 1.53 0.0004 0.8 0.0008 1.42
Default Beta 0.0018 1.42 −0.0014 −1.22 0.0003 0.24 −0.0017 −1.44
Term Beta −0.0013 −0.54 0.0007 0.37 0.0011 0.57 0.0013 0.69
Liquidity Beta −0.0005 −0.54 0.0006 0.89 −0.0002 −0.22 0.0006 0.86
bond RMSE −0.0474 −0.42 0.0375 0.35 −0.0688 −0.85 0.0661 0.61
BBeta SMrkt 0.002 0.69 −0.0032 −1.25 −0.0005 −0.2 −0.0041 −1.61
BBeta RMW 0.001 0.77 0.0019 1.36 0.0004 0.34 0.0021 1.46
BBeta CMA −0.0026 −1.6 −0.0023 −1.55 −0.0022 −1.79 −0.0018 −1.28
BBeta HML −0.0007 −0.28 −0.0026 −1.11 −0.0003 −0.16 −0.0018 −0.75
BBeta SMB 0.0019 0.6 0.0004 0.13 0.0012 0.49 −0.0001 −0.03
bond idio kurt 0.4017 0.83 0.0199 0.04 −0.4489 −1.17 −0.2548 −0.49
bond idio skew −0.2736 −0.53 −0.0479 −0.1 0.5505 1.46 0.1795 0.35
Credit Rating 0 0.02 −0.0001 −0.46 0 0.24 0 −0.33
Log(off. amount) 0.0003 0.56 0.0008 1.86 0.0005 1.04 0.0008 2
log(age) 0.0001 0.18 0.0005 1.06 0.0004 0.66 0.0007 1.24
log(TTM) −0.0009 −0.67 −0.0009 −0.74 −0.0012 −0.96 −0.0006 −0.44
coupon −0.0004 −1.05 −0.0005 −1.55 −0.0001 −0.2 −0.0003 −0.99
R-squared 0.2963 0.4731 0.2746 0.4782
Avg. Num. CS Obs. 730.5988 730.5926 690.2901 690.2901

Notes: Columns 2 to 9 report the average slope coefficient (λs) and corresponding t-statistic (tλs) for 6 different multivariate FM CS
regressions of one-month-ahead corporate bond excess returns of 135 of the 143 signals. Columns 2 and 3 are raw excess corporate
bond returns (columns 4 and 5 represent the corresponding value-weighted (VW), by one month lagged firm market capitalization,
least squares estimated MV FM regression), All right-hand-side variables are lagged by one month to the left-hand-side return
variable. FM regressions are run each month for the period from July 1, 2005 to October 31, 2019. Newey and West [1987]
t-statistics are reported to determine the statistical significance of the average slope coefficients. Numbers are reported up to four
decimal places for ease of display.
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Table A.1.13: : Benchmark t-statistics, percentage of H0 and SnM rejected: Multivariate FM Stock Return
Regression

Benchmark t-statistics Percentage of H0 rejected Percentage of SnM rejected
Bonf. Holm BHY SHT Bonf. Holm BHY Bonf. Holm BHY

FM 3.43 3.43 3.9 7.41 0 0 0 100 100 100
VW FM 3.43 3.43 3.9 5.93 0 0 0 100 100 100
FM (Stock Price > $5) 3.43 3.43 3.9 6.67 0 0 0 100 100 100
VW FM (Stock Price > $5) 3.43 3.43 3.9 7.41 0 0 0 100 100 100

Notes: Benchmark t-statistics, percentage of H0 and SnM rejected from Multivariate FM regressions in Table
A.1.12. Results are presented under single hypothesis test with level of level of significance of 5% and under of
the Bonferroni, Holm, and BHY multiple hypothesis tests.
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Table A.1.14: : Top Double Sorted Portfolios by t-statistics

Signals Significance

S1 S2 PF SR αS1,S2
tαS1,S2

MEANEST log bond age HH −HL 0.12 0.23 7.43
Bond Skewness Bond Kurtosis HH −HL −0.22 −0.44 −7.28
sgr log bond age HH −HL 0.24 0.38 7.23
quick log bond age LH − LL 0.11 0.32 7.02
cashdebt log bond age HH −HL 0.07 0.21 6.98
roaq log bond age HH −HL 0.04 0.25 6.85
prccq log bond age HH −HL 0.19 0.22 6.6
salecash log bond age HH −HL 0.16 0.36 6.47
stdcf log bond age LH − LL 0.21 0.22 6.47
pps log bond age HH −HL 0.14 0.18 6.4
ipd log bond age HH −HL 0.18 0.28 6.33
currat log bond age LH − LL 0.16 0.33 6.25
invest log bond age HH −HL 0.12 0.3 6.22
lev log bond age LH − LL 0.11 0.19 6.18
roic log bond age HH −HL 0.1 0.25 6.01
cash log bond age LH − LL 0.13 0.36 6.01
pricedelay log bond age HH −HL 0.24 0.28 5.85
cashpr log bond age HH −HL 0.1 0.24 5.74
Bond Skewness log bond age LH − LL 0.22 0.23 5.72
std dolvol log bond age LH − LL 0.23 0.27 5.71
chadv log bond age HH −HL 0.17 0.33 5.46
d ivol Mac Dur HH − LH −0.28 −0.9 −5.43
roeq Bond Kurtosis HH −HL −0.09 −0.28 −5.39
mom12m log bond age HH −HL 0.24 0.28 5.37
sgrvol log bond age LH − LL 0.11 0.22 5.34
sgrvol d ivol LH − LL −0.28 −0.24 −5.36
grcapx log bond age HH −HL 0.23 0.21 5.31
mom1m baspread HH − LH 0.31 0.87 5.3
depr log bond age LH − LL 0.05 0.27 5.27
lev pvol LH − LL −0.19 −0.22 −5.28
roaq d ivol HH −HL −0.08 −0.23 −5.32
roic pvol HH −HL −0.24 −0.28 −5.29

116



depr cvol LH − LL −0.24 −0.52 −5.23
pchcapx ia log bond age LH − LL 0.19 0.25 5.2
cashpr log bond age LH − LL 0.22 0.47 5.2
tb Bond Kurtosis HH −HL −0.27 −0.33 −5.18
cvol Mac Dur HH − LH −0.23 −0.8 −5.19
pchcapx log bond age HH −HL 0.2 0.25 5.17
turn log bond age LH − LL 0.11 0.14 5.17
herf log bond age LH − LL 0.11 0.23 5.17
cf log bond age HH −HL 0.1 0.24 5.17
bm cvol LH − LL −0.23 −0.42 −5.12
pchquick d ivol LH − LL −0.15 −0.65 −5.09
maxret log bond age LH − LL 0.22 0.17 5.07
roic d ivol HH −HL −0.28 −0.27 −5.13
roe mom1m LH − LL 0.27 0.92 5.02
sgrvol pvol LH − LL −0.27 −0.25 −5.04
rdbias mve m HH − LH 0.07 −0.63 −12.27
sp rdbias HH − LH 0.27 0.66 6.11
pchdepr rdbias HH − LH 0.01 0.12 5.36
rdbias potesh HH − LH 0.75 −0.18 −10.93
rdbias tb HH − LH −0.06 −0.54 −5.77

Notes: Conditional 5×5 double sorts of sorting on signal S1 and then within each quintile of signal S1 sort on the value of signal S2.
Column 3 (PF) reports the portfolio formation combination. Column 4 reports the monthly portfolio Sharpe Ratio (SR). Column
5 and column 6 report the quintile high minus low portfolio alpha (αS1,S2

) and corresponding t-statistics (tαS1,S2 ) using the BBW
four factor corporate bond return factor model. Alphas are reported in monthly percentages. t-statistics are reported using the
Newey and West [1987] method adjusting for 3 lags in order to determine the statistical significance of the high minus low portfolio
alpha coefficient. All portfolios are formed by one month lagged signals (listed in Table A.1.4) relative to the corporate bond excess
returns. Numbers are reported up to four decimal places for ease of display.
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Table A.1.15: : Corporate Bond Return Machine Learning Results

Panel A: All Corporate Bonds

Decile PS (BBW) Quintiles (BBW) Quintiles (BBW+FF5)
Method R2

OS αS tαS S.R. αS tαS S.R. αS tαS S.R.
OLS −4.59 0.24 2.21 0.2 0.18 1.97 0.17 0.16 1.81 0.17
LASSO 3.7 0.47 3.88 0.43 0.31 3.5 0.36 0.29 3.23 0.36
RIDGE 3.46 −0.01 −0.04 0.24 −0.01 −0.05 0.23 0 0.04 0.23
Enet 3.7 0.48 3.9 0.43 0.31 3.5 0.36 0.29 3.24 0.36
PCR 3.42 −0.22 −1.32 0.2 −0.15 −1.26 0.21 −0.12 −1.04 0.21
PLS −0.09 0.21 1.71 0.3 0.13 1.44 0.27 0.12 1.27 0.27

Panel B: Investment Grade

Decile PS (BBW) Quintiles (BBW) Quintiles (BBW+FF5)
Method R2

OS αS tαS S.R. αS tαS S.R. αS tαS S.R.
OLS −2.87 0.07 0.64 0.05 0.02 0.28 0.06 0 0.04 0.06
LASSO 3.81 0.27 2.03 0.22 0.18 1.65 0.17 0.13 1.22 0.17
RIDGE 3.83 0.07 0.53 0.15 0.05 0.54 0.14 0.05 0.49 0.14
Enet 3.81 0.27 2.02 0.22 0.18 1.66 0.17 0.13 1.22 0.17
PCR 3.48 −0.24 −1.55 0.08 −0.16 −1.49 0.08 −0.14 −1.36 0.08
PLS 1.36 0.1 0.76 0.13 0.08 0.8 0.11 0.04 0.42 0.11

Panel C: Speculative Grade

Decile PS (BBW) Quintiles (BBW) Quintiles (BBW+FF5)
Method R2

OS αS tαS S.R. αS tαS S.R. αS tαS S.R.
OLS −9.38 0.25 1.4 0.1 0.16 1.39 0.05 0.16 1.35 0.05
LASSO 3.77 0.43 1.86 0.22 0.33 1.99 0.22 0.35 2.06 0.22
RIDGE 3.34 −0.03 −0.14 0.19 −0.02 −0.1 0.19 0.01 0.07 0.19
Enet 3.77 0.43 1.86 0.22 0.33 1.99 0.22 0.35 2.06 0.22
PCR 2.95 −0.38 −1.23 0.15 −0.24 −1.09 0.16 −0.21 −1 0.16
PLS −1.56 0.15 0.97 0.15 0.16 1.33 0.23 0.2 1.61 0.23
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Notes: Column 2 is the computed out-of-sample R2
OS of the machine learning predicted corporate bond returns using ordinary least

squares (OLS), penalized linear, LASSO, RIDGE regression, elastic net (Enet), principal component regression (PCR) and partial
least square (PLS). Column 3 to 5 report the decile high-minus-low portfolio alpha (αS), corresponding t-statistics (tαS ), and
monthly Sharpe Ratio (S.R.) when forming portfolios using the machine learning predicted corporate bond returns and adjusting
the returns using the BBW four factor corporate bond return model. Columns 6 to 8 (9 to 11) report quintile high-minus-low
portfolio alphas adjusted using the BBW (both the BBW and FF5) factor models. Alphas are reported in monthly percentages. t-
statistics are reported using the Newey and West [1987] method adjusting for 3 lags in order to determine the statistical significance
of the high minus low portfolio alpha coefficient. All portfolios are formed by one month lagged relative to the corporate bond
excess returns. Details of the R2

OS methodology and machine learning techniques are found in Appendix Section A.1.4 and A.1.5.

Table A.1.16: : Monthly Out-of-Sample Performance Statistics using the Diebold-Mariano Tests

LASSO RIDGE Enet PCR PLS
OLS 5.88 5.55 5.88 5.38 5.81
LASSO 0 1.3 0.22 −3.69
RIDGE 0.01 0.3 −3.76
Enet 0.22 −3.69
PCR −4.16

Notes: Table reports all pairwise Diebold and Mariano [1995] test statistics which compare the out-of-sample
corporate bond return prediction amongst the machine learning models presented in Table A.1.15. A positive
test statistic indicate that the model in the column outperforms that in the row model. A test statistic larger
than 2 corresponds to statistically significant at the 5% level.
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A.1.3 Overview of Multiple Hypothesis Testing Methods

In this section we briefly describe standard adjustments to p-values for multiple hypothesis
testing that have been used in the finance literature: Bonferroni [1936] (Bonf/Bonferroni
henceforth), Holm [1979] (Holm, henceforth), Benjamini and Hochberg [1995] (BH hence-
forth), and Benjamini and Yekutieli [2001] (BHY henceforth). For an excellent compre-
hensive overview of multiple hypothesis testing methods in finance see Harvey et al. [2016]
and Harvey et al. [2020].

In the following descriptions of the different MHT methods we assume that there are a
total of M tests and we choose the Family-wise Error rate (FWER), False-Discovery Rate
(FDR), and False-Discovery Proportion (FDP) to be all equal αLOS = 5%.

Bonferroni Method

The Bonferroni test is a single-step procedure that adjusts all p-values. The Bonferroni
adjustment will reject any hypothesis with a p− value ≤ αLOS

M
, hence:

pBonferronii = min [M × pi, 1].

The Bonferroni adjustment applies the same adjustment to each of the hypothesis tests.

Holm Method

The p-value adjustment of Holm [1979] is constructed as:

• Order the non-adjusted p-values such that p(1) ≤ p(2) ≤ · · · p(b) ≤ · · · ≤ p(M) where
H(1), H(2), · · · , H(b), · · · , H(M)

• k is the minimum index such that p(k) >
αLOS
M+1−b

• Reject the null hypotheses: H(1), · · · , H(k−1) but not reject H(k), · · · , H(M)

The equivalent adjusted p-values are then computed as:

pHolmi = min
[
maxj≤i{M − j + 1}p(j), 1

]
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BHY Method

The p-value adjustment of Benjamini and Yekutieli [2001] is constructed as:

• Order the non-adjusted p-values such that p(1) ≤ p(2) ≤ · · · p(b) ≤ · · · ≤ p(M) where
H(1), H(2), · · · , H(b), · · · , H(M)

• k is the maximum index such that p(b) >
αLOS×b
M
∑M
j=1

1
j

• Reject the null hypotheses: H(1), · · · , H(k) but not reject H(k+1), · · · , H(M)

The equivalent adjusted p-values are then computed as:

pBHYi = min

[
pBHYi+1 ,

M×
∑M
j=1

1
j

i
pi

]
if i ≤M − 1 and pBHYi = p(M) if i = M

A.1.4 Machine Learning Performance Evaluation

I compare and evaluate a variety of machine learning methods in predicting the cross-
section of corporate bond returns, including the ordinary least squares (OLS) with all
covariates; penalized linear regression methods such as LASSO of Tibshirani [1996], RIDGE
regression of Hoerl and Kennard [1970], and elastic net (Enet) of Zhou and Hastie [2005];
dimension reduction techniques such as principal component analysis (PCA) and partial
least square (PLS). I use the out-of-sample R2

OS as the performance metric to assess the
predictive power of individual bond return predictors. The R2

OS statistic pools prediction
errors across bonds and over time into a grand panel-level assessment of each model, and
it measures the proportional reduction in mean squared forecast error (MSFE) for each
model relative to a naive forecast of zero benchmark, which assumes that the one-month-
ahead expected return on corporate bonds equals the time t+ 1 risk-free rate. To estimate
the out-of-sample R2

OS I follow:

R2
OS = 1−

∑
(i,t)∈τ3 (ri,t − r̂i,t)2∑

(i,t)∈τ3 r
2
i,t

(A.1)

and the most commonly used approach in the literature and divide our full sample (July
2002 to October 2019) into three disjoint time periods; (i) the first five years of training or
estimation period, τ1, (ii) the second two years of validation for tuning the hyperparameters,
τ2, and (iii) the rest of the sample as the test period, τ3, to evaluate a model’s predictive
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power, which represents the truly out-of-sample evaluation of the model’s performance. I
use the mean squared forecast error MSFE-adjusted statistic of Campbell and Thompson
[2008] to test the statistical significance of R2

OS. Given that there will be strong cross-
sectional dependence among individual excess bond returns, as is standard in the literature
I employ the modified MSFE-adjusted statistic of Clark and West [2007] based on the cross-
sectional average of prediction errors from each model instead of prediction errors among
individual returns. The p-value from the MSFE-adjusted statistic tests the null hypothesis
that the MSFE of a naive forecast of zero is less than or equal to the MSFE of a machine
learning model against the one-sided (upper-tail) alternative hypothesis that the MSFE
of a naive forecast of zero is greater than the MSFE of a machine learning model (H0:
R2
OS ≤ 0 against HA: R2

OS > 0).

The predictive ability of two machine learning methods is compared to one another
using the modified Diebold and Mariano [1995] test statistic DM12 = d̄12/σ̂d̄ where d̄12 and
σ̂d̄ are the time-series average and Newey and West [1987] standard error (respectively)
of the forecast error differentials (denoted d12,t+1) from each model over the period t + 1.

The forecast error differential is computed as d12,t+1 =
∑n3

i=1

(
(ê

(1)
i,t+1)2 − (ê

(2)
i,t+1)2

)
/n3,t+1

where ê
(1)
i,t+1 and ê

(1)
i,t+1 are the corporate bond return forecasts from each of model under

comparison and n3,t+1 is the number of observations.

A.1.5 Machine Learning Methodologies

The corporate bond excess return (ri,t+1) at month t+1 is defined as ri,t+1 = Et+1 [ri,t+1]+
εi,t+1 where Et+1 [ri,t+1] = g∗ (zi,t) is the time t expected return with the function g (·) is a

function of the matrix set of characteristics/factors zi,t = (z1,t, . . . , zK,t)
′

with i = 1, . . . , N
indexing the number of characteristics/factors and t = 1, . . . , T indexes the number of
months.

Linear Regression

The linear regression framework assumes that g∗ (zi,t; θ) = z
′
i,tθ where θ = (θ1, · · · , θK)

′

can be estimated by the ordinary least squares objective function optimization problem:

min
θ
L (θ) =

1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − g (zi,t; θ))
2 (A.2)
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The estimate of the sensitivities θ is unbiased as long as the number of characteristics/
factors (K) is small relative to the length of the time series of observations T . Since
K is usually larger than T the linear regression estimates are typically inefficient and
inconsistent and result in in-sample over-fitting of the estimates.

Penalized Linear Regression: LASSO, RIDGE, and Enet

To deal with the over-fitting in linear regression (i.e. when the number of characteris-
tics/factors (K) is large relative to the length of the time series of observations T ) it is
typically common to include a penalty term to the objective function equation A.2 in order
to impose a tradeoff between the in-sample performance and out-of-sample performance.
When adding a penalty function minθ L (θ; ·) = L (θ) + φ (θ; ·) where φ (θ; ·) is the penalty
function of θ. The specification of the functions form of the penalty φ (θ; ·) are quite gen-
eral to allow for the θ that can be shrunk towards zero (or equal to zero). A generalized
penalty function can be written as:

φ (θ;λ, ρ) = λ (1− ρ)
P∑
j=1

|θj|+
1

2
λρ

P∑
j=1

θ2
j (A.3)

The penalized estimation in equation A.2 simplifies to simple linear regression when the
hyperparameter (λ) controlling the amount of shrinkage, is λ = 0.

When ρ = 0 then equation A.2 corresponds to the LASSO models estimation which
will set values of the vector θ exactly to zero. When ρ = 1 then equation A.2 corresponds
to the RIDGE regression model estimation which will shrink values of the vector θ closer
to zero but not exactly to zero. For a value of ρ between zero and one, then equation
A.2 corresponds to the Enet regression model estimation which is a combination of the
RIDGE and LASSO estimation techniques which allows for a combination of sparse and
dense modeling.

Dimension Reduction: PCA and PLS

The excess monthly corporate bond return can be written as ri,t+1 = z
′
i,tθ + εi,t+1 which

in matrix notation is R = Zθ + E where R is an NT × 1 vector of ri,t+1, Z is a NT ×K
matrix of stacked predictors zi,t and E is an NT × 1 vector of residuals εi,t+1.

Dimension reduction techniques are a useful way to handle the over-fitting problems
in ordinary least squares regression when the number of characteristics/factors K is larger
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than the time-series of available data T . Dimension reduction projects a larger number of
characteristics/factors into a small number of factors.

The main dimension reduction techniques are principal component analysis (PCA) and
the partial least squares (PLS). PCA transforms the set of characteristics in independent
components where the first component has the largest variance and then the second and
so on. The decomposition is such that:

wj = maxw V ar (Zw), s.t. w
′
w = 1, Cov (Zw,Zwl) = 0, l = 1, 2, · · · , j − 1

PLS links the K linear combinations of Z for covariance maximization with the corpo-
rate bond returns (R). The weights of the j-th PLS component solve for:

maxν,wj Cov (Rν,Zwj), s.t. w
′
jwj = 1, Cov (Zwj, Zwl) = 0, l = 1, 2, · · · , j − 1
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Appendix B

Appendix for Chapter 3

This appendix contains tables from Chapter 3.
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B.1 Tables

Table B.1.1: : Implicit leverage in Options

Moneyness Time-to-maturity (days)
d2mat ≤ 30 30 < d2mat ≤ 179 d2mat ≥ 180

In-the-money 0.845 0.766 0.657
At-the-money 0.884 0.831 0.768
Out-of-the-money 0.915 0.881 0.839
Moneyness Time-to-maturity (days)

d2mat ≤ 30 30 < d2mat ≤ 179 d2mat ≥ 180
In-the-money 0.197 0.378 0.618
At-the-money 0.142 0.236 0.393
Out-of-the-money 0.118 0.204 0.359

Notes: Panel A is mean leverage for call options which is calculated as Leverage =

Ke−rTN(d2)

(S0−
∑I
i=1Die

−rti)N(d1)
where d1 =

log

(
S0−

∑I
i=1 Die

−rti
K

)
+
(
r+σ2

2

)
T

σ
√
T

, d2 = d1 − σ
√
T , S0 is the

stock price,
∑I
i=1Die

−rti is the present value of dividends paid over the life of the option,
K is the strike price of the option, r is the risk-free interest rate, σ is the stock volatility, T
is the time to expiration, and N (·) is the standard Normal cumulative distribution function.
Panel B is mean put collateral requirements. The implicit collateral for puts is calculated as

Collateral = Ke−rTN(−d2)
(S0−

∑I
i=1Die

−rti)N(−d1)
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Table B.1.2: : Distribution of the Number of Option Contracts Traded per Month

All Stocks
Mean Median Std. Dev. Min. Max.

10 ≥ d2mat ≤ 30 482 226 1, 334 1 147, 196
30 < d2mat ≤ 60 378 194 893 0 104, 670
60 < d2mat ≤ 90 335 154 892 1 100, 634
d2mat ≥ 90 288 142 585 0 43, 873

Top 500 Stocks
Mean Median Std. Dev. Min. Max.

10 ≥ d2mat ≤ 30 806 385 2, 044 1 127, 942
30 < d2mat ≤ 60 552 293 1, 369 0 104, 670
60 < d2mat ≤ 90 442 212 1, 263 1 100, 634
d2mat ≥ 90 366 197 719 3 43, 873

Notes: Distribution of the Number of Option Contracts Traded per Month across different
times to maturity for all stocks and top 500 largest firms based on firm size.

Table B.1.3: : Summary statistics for option-based measures of stock mispricing

Mean Median Std. Dev. Min. Max.
IPD −0.135 −0.035 1.952 −96.526 78.817
Imp. Fee. 0.008 0.005 0.037 −1.551 0.914
CW −0.012 −0.006 0.069 −2.169 2.039
∆CV OL −0.001 −0.002 0.164 −2.562 2.544
∆PV OL −0.001 −0.002 0.165 −2.598 2.749
Skewness 0.064 0.048 0.076 −0.885 2.218
PP 0.567 0.542 0.265 0 1
OOI 0 0 0.001 −0.091 0.083
O/S 0.09 0.051 0.144 0 17.283

Notes: Summary statistics for option-based measures of stock mispricing.
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Table B.1.4: : Average Indicative Short Selling Stock Fee

# Stocks 1st Prcnt Median 80th Prcnt 99th Prcnt
2004 3, 295 0.375 0.482 0.625 6.941
2005 3, 875 0.409 0.476 0.804 11.125
2006 4, 109 0.392 0.464 1.352 12.838
2007 4, 237 0.387 0.458 1.181 12.161
2008 4, 086 0.391 0.469 1.839 17.161
2009 3, 931 0.271 0.338 0.71 24.474
2010 3, 936 0.335 0.373 0.897 32.819
2011 4, 008 0.367 0.381 1.75 47.899
2012 3, 924 0.371 0.397 1.885 41.131
2013 3, 874 0.372 0.392 1.72 39.032

Notes: Average indicative short selling fee for stocks during 2004 to 2013
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Table B.1.5: : Average Firm Size and Average Indicative Fee Portfolio Sorts

Panel A: Average Firm Size

IPD Implied Fees CW ∆CV OL ∆PV OL Skewness PP OOI O/S
Low 2.75 9.3 3.08 4.38 4.49 8.16 15.18 7.45 3.08
2 7.96 12.49 7.65 8.57 8.51 13.58 17.83 11.26 7.65
3 13.82 10.16 10.31 10.43 10.24 8.36 9.33 3.53 10.31
4 12.12 4.82 9.82 8.94 8.99 4.21 4.89 9.72 9.82
High 5.32 1.7 5.66 4.61 4.82 2.65 2.65 7.17 5.66

Panel B: Average Indicative Fee

IPD Implied Fees CW ∆CV OL ∆PV OL Skewness PP OOI O/S
Low 0.3388 0.0556 0.3707 0.175 0.1792 0.1596 0.1841 0.1659 0.0669
2 0.112 0.0313 0.0698 0.0897 0.0899 0.0765 0.1078 0.0741 0.0858
3 0.0526 0.0336 0.0384 0.0741 0.0736 0.0857 0.107 0.1115 0.1062
4 0.0499 0.0592 0.0364 0.0864 0.0819 0.1257 0.1087 0.0959 0.1335
High 0.1074 0.3072 0.1234 0.1705 0.1713 0.155 0.1001 0.1715 0.2113

Notes: Characteristics of portfolios formed from option-based mispricing measures. Panel A. Average firm sizes.
Firm sizes, in billions of dollars are calculated for each portfolio each month and then averaged across months.
Panel B. The proportion of stocks in quintile portfolios formed on option-based mispricing measures that are
hard to borrow. A stock is defined as hard-to-borrow if the stocks indicative borrowing fee from Markit is among
the highest 20% across all stocks.
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Table B.1.6: : Value-Weighted Portfolio Sorts

Panel A: IPD

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.3543 −0.381 −2.33 0.3887 −0.4061 −2.34 0.4275 −0.4094 −1.92
2 0.4851 −0.1244 −1.25 0.4884 −0.1466 −1.2 0.4833 −0.203 −1.89
3 0.4759 −0.0934 −1.51 0.4651 −0.1472 −2.09 0.5602 −0.116 −1.76
4 0.7056 0.1628 2.48 0.7303 0.1618 1.82 0.7514 0.1572 1.81
High 0.8748 0.2553 2.95 1.0216 0.3875 3.75 1.0427 0.4299 3.52
H-L 0.5205 0.6364 3.31 0.6329 0.7936 3.59 0.6151 0.8392 2.89

Panel B: Implied Fees

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.6517 0.1298 1.59 0.5051 −0.0357 −0.32 0.6575 0.0776 0.57
2 0.6525 0.0961 1.39 0.5722 −0.0077 −0.14 0.6479 0.0582 0.69
3 0.4827 −0.1078 −1.96 0.7039 0.0658 0.97 0.5866 −0.057 −0.93
4 0.5816 −0.0656 −0.52 0.6339 −0.0443 −0.45 0.5891 −0.1253 −1.04
High 0.3621 −0.3873 −2.65 0.4931 −0.3061 −2.27 0.4698 −0.3829 −2.37
H-L -0.2896 −0.5171 −2.87 −0.0121 −0.2704 −1.54 −0.1877 −0.4604 −2.31

Panel C: CW

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.5901 −0.1406 −0.96 0.7604 0.0015 0.01 0.6582 −0.1163 −0.7
2 0.5256 −0.0804 −0.59 0.5538 −0.09 −0.69 0.6023 −0.0387 −0.35
3 0.6532 0.1068 1.68 0.6629 0.0965 1.25 0.6562 0.0469 0.71
4 0.51 −0.0546 −0.66 0.5427 −0.0543 −0.71 0.5315 −0.0872 −0.94
High 0.5645 −0.082 −0.5 0.7768 0.0694 0.41 0.6924 −0.0397 −0.21
H-L -0.0256 0.0586 0.25 0.0165 0.0679 0.27 0.0343 0.0766 0.26

Panel D: Skewness

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.7612 0.1844 1.45 0.7804 0.2002 1.39 0.9092 0.2952 2
2 0.6021 0.0918 1.69 0.662 0.1141 1.46 0.6393 0.078 1.23
3 0.6423 0.0468 0.49 0.579 −0.0559 −0.52 0.6261 −0.0273 −0.24
4 0.6836 0.0366 0.28 0.8197 0.1198 1.1 0.7085 0.0261 0.22
High 0.451 −0.2096 −1.28 0.3976 −0.2835 −1.41 0.4417 −0.3091 −1.67
H-L -0.3102 −0.394 −1.77 −0.3828 −0.4837 −2.03 −0.4675 −0.6044 −2.3

Panel E: ∆CV OL

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.5607 −0.0641 −0.35 0.5975 −0.1296 −0.72 1.012 0.2698 1.34
2 0.619 0.1046 1.14 0.7728 0.1269 1.34 0.5353 −0.1086 −0.99
3 0.6078 0.0655 0.71 0.6925 0.0915 1.11 0.705 0.1068 1.13

130



4 0.6086 0.0222 0.18 0.5605 −0.0513 −0.48 0.5791 −0.0856 −0.73
High 0.3618 −0.4087 −2.24 0.6098 −0.1354 −0.88 0.5897 −0.1975 −0.96
H-L -0.1988 −0.3447 −1.21 0.0123 −0.0058 −0.03 −0.4224 −0.4674 −1.39

Panel F: ∆PV OL

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.8217 0.2038 1.29 0.6306 −0.1042 −0.61 1.0225 0.2867 1.89
2 0.6273 0.1231 1.12 0.7736 0.1549 1.51 0.6471 0.0122 0.11
3 0.6012 0.0764 1.01 0.6994 0.109 1.23 0.7262 0.1243 1.54
4 0.6455 0.0483 0.52 0.5376 −0.0855 −0.72 0.5172 −0.142 −1.78
High 0.2555 −0.5231 −3.21 0.6599 −0.081 −0.6 0.4974 −0.3325 −2
H-L -0.5662 −0.7269 −2.73 0.0293 0.0232 0.1 −0.5252 −0.6192 −2.36

Panel G: PP

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.5498 −0.0758 −0.63 0.6181 −0.0524 −0.49 0.6122 −0.0759 −0.7
2 0.6045 0.0524 0.78 0.545 −0.0385 −0.64 0.6292 0.0227 0.44
3 0.5775 0.0061 0.07 0.5735 −0.0418 −0.43 0.5922 −0.0488 −0.42
4 0.6404 0.0272 0.27 0.7123 0.0999 1.03 0.5782 −0.1312 −1.16
High 0.6073 −0.0379 −0.33 0.7283 0.0421 0.37 0.7843 0.0878 0.81
H-L 0.0575 0.0378 0.18 0.1102 0.0944 0.51 0.1721 0.1637 0.9

Panel H: OOI

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.5066 −0.147 −1.42 0.6312 −0.0309 −0.26 0.5803 −0.1599 −1.24
2 0.6168 0.1003 1.54 0.6018 0.0619 0.73 0.6056 0.0094 0.14
3 0.5303 −0.0551 −0.48 0.7245 0.1179 1.15 0.7687 0.1664 1.77
4 0.5565 0.0148 0.13 0.7313 0.1268 1.31 0.7781 0.1686 2.14
High 0.6658 −0.0437 −0.34 0.4304 −0.3469 −2.7 0.6155 −0.1287 −1.06
H-L 0.1593 0.1032 0.57 −0.2008 −0.316 −1.65 0.0352 0.0313 0.15

Panel I: O/S

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.8463 0.256 3.81 0.8914 0.2675 3.21 0.8955 0.2688 3.74
2 0.8082 0.1873 2.54 0.884 0.2388 2.69 0.9105 0.2383 2.68
3 0.7696 0.1531 2.17 0.8006 0.1623 1.95 0.7604 0.1226 1.82
4 0.6993 0.1066 1.33 0.6941 0.0676 0.81 0.7751 0.1553 2.02
High 0.3645 −0.1854 −4.37 0.3877 −0.2005 −2.41 0.3971 −0.2311 −3.94
H-L -0.4818 −0.4414 −4.73 −0.5037 −0.468 −5.62 −0.4984 −0.5019 −4.73
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Notes: Each month over 2004-2013, stocks are sorted into quintiles based on option based measures
of stock mispricing. IPD is the average percentage difference between implied and actual stock
prices. Implied borrowing fees is the stock borrowing fee implied by violations of put-call parity.
CW is the difference between implied volatilities of calls and puts. Skewness is the difference in
implied volatilities of a put with a delta of 0.2 and a call with a delta of 0.5. ∆PV OL is the monthly
change in implied volatilities for 30 day puts with deltas of -0.5. ∆CV OL is the change analogous
change in call implied volatilities. PP is the ratio of put buy volume that opens positions to the
sum of put and call buy volume. OOI is the difference between synthetic positive and negative
options volume. O/S is the natural logarithm of the ratio of stock and options volume. The FFC
four factor model is used to calculate portfolio α. Newey and West [1987] adjusted standard errors
with three lags are used. Returns and portfolio α are in percentages.

Table B.1.7: : Value Weighted Portfolio Sorts Including and Excluding Hard to Short
Stocks

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel A: IPD

Low −0.381 −0.0597 −0.4061 0.0635 −0.4094 −0.1291
(−2.33) (−0.33) (−2.34) (0.26) (−1.92) (−0.78)

High 0.2553 0.3412 0.3875 0.4562 0.4299 0.5003
(2.95) (3.78) (3.75) (3.96) (3.52) (3.77)

High-Low 0.6364 0.4009 0.7936 0.3926 0.8392 0.6294
(3.31) (1.93) (3.59) (1.88) (2.89) (2.72)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel B: Implied Fees

Low 0.1298 0.2615 −0.0357 0.0314 0.0776 0.1758
(1.59) (3.09) (−0.32) (0.29) (0.57) (1.14)

High −0.3873 −0.0499 −0.3061 0.0173 −0.3829 0.0088
(−2.65) (−0.33) (−2.27) (0.13) (−2.37) (0.05)

High-Low −0.5171 −0.3114 −0.2704 −0.0141 −0.4604 −0.167
(−2.87) (−1.61) (−1.54) (−0.08) (−2.31) (−0.68)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel C: CW

Low −0.1406 −0.0336 0.0015 0.2507 −0.1163 −0.0173
(−0.96) (−0.25) (0.01) (1.98) (−0.7) (−0.14)

High −0.082 0.0446 0.0694 0.1984 −0.0397 0.1999
(−0.5) (0.23) (0.41) (1.17) (−0.21) (1.26)
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High-Low 0.0586 0.0783 0.0679 −0.0523 0.0766 0.2172
(0.25) (0.3) (0.27) (−0.22) (0.26) (0.96)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel D: ∆CV OL

Low −0.0641 0.0325 −0.1296 0.0763 0.2698 0.2432
(−0.35) (0.2) (−0.72) (0.45) (1.34) (1.3)

High −0.4087 −0.208 −0.1354 −0.0084 −0.1975 −0.1832
(−2.24) (−1.16) (−0.88) (−0.06) (−0.96) (−0.88)

High-Low −0.3447 −0.2405 −0.0058 −0.0846 −0.4675 −0.4264
(−1.21) (−0.89) (−0.03) (−0.39) (−1.39) (−1.27)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel E: ∆PV OL

Low 0.2038 0.23 −0.1042 0.0072 0.2867 0.3099
(1.29) (1.54) (−0.61) (0.05) (1.89) (2.03)

High −0.5231 −0.3885 −0.081 0.0637 −0.3325 −0.2513
(−3.21) (−2.47) (−0.6) (0.5) (−2) (−1.58)

High-Low −0.7269 −0.6185 0.0232 0.0565 −0.6192 −0.5611
(−2.73) (−2.35) (0.1) (0.26) (−2.36) (−2.17)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel F: Skewness

Low 0.1844 0.2682 0.2002 0.2171 0.2952 0.2882
(1.45) (2.18) (1.39) (1.62) (2) (1.94)

High −0.2096 −0.0178 −0.2835 0.0597 −0.3091 −0.1068
(−1.28) (−0.11) (−1.41) (0.38) (−1.67) (−0.7)

High-Low −0.394 −0.2861 −0.4837 −0.1574 −0.6044 −0.395
(−1.77) (−1.29) (−2.03) (−0.76) (−2.3) (−1.64)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel G: PP

Low −0.0758 0.0597 −0.0524 0.0182 −0.0759 −0.0827
(−0.63) (0.47) (−0.49) (0.19) (0.7) (−0.81)

High −0.0379 −0.0002 0.0421 0.0111 0.0878 0.1134
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(−0.33) (0) (0.37) (0.93) (0.81) (0.99)
High-Low 0.0378 −0.0599 0.0944 0.0929 0.1637 0.1961

(0.18) (−0.28) (0.51) (0.51) (0.9) (1.07)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel H: OOI

Low −0.147 −0.1051 −0.0309 0.0585 −0.1599 −0.0612
(−1.42) (−1.02) (−0.26) (0.53) (−1.24) (−0.55)

High −0.0437 0.1434 −0.3469 −0.1844 −0.1287 −0.018
(−0.34) (1.09) (−2.7) (−1.45) (−1.06) (−0.13)

High-Low 0.1032 0.2486 −0.316 −0.2429 0.0313 0.0433
(0.57) (1.32) (−1.65) (−1.32) (0.15) (0.21)

αt+1 αt+2 αt+3

Include Exclude Include Exclude Include Exclude
Panel I: O/S

Low 0.256 0.2741 0.2675 0.2993 0.2688 0.2905
(3.81) (3.9) (3.21) (3.75) (3.74) (3.87)

High −0.1854 −0.0662 −0.2005 −0.0714 −0.2311 −0.1128
(−4.37) (−1.55) (−2.41) (−1.81) (−3.94) (−2.37)

High-Low −0.4414 −0.3402 −0.468 −0.3706 −0.5019 −0.4033
(−4.37) (−3.57) (−5.62) (−3.57) (−4.73) (−4.03)

Notes: Four-factor average alphas for quintile portfolios formed on the basis of option-based mea-
sures of stock mispricing when the portfolio include and exclude hard-to-borrow stocks. A stock
is defined as hard-to-borrow if the indicative fee to borrow the stock is among the highest 20%
across all stocks. Alphas are in percent (i.e. 0.61 is 61 basis points) and are for the first three
months following portfolio formation. T-statistics are in parentheses under the alphas. They are
calculated using Newey-West adjusted standard errors with three lags.

Table B.1.8: : High, Low, and H-L Returns and Alphas over Time

IPD Skewness O/S

Month High Low H-L High Low H-L High Low H-L
t+1 0.2553 −0.381 0.6364 −0.2096 0.1844 −0.394 −0.1854 0.256 −0.4414

(2.95) (−2.33) (3.31) (−1.28) (1.45) (−1.77) (−4.37) (3.81) (−4.73)
t+2 0.3875 −0.4061 0.7936 −0.2835 0.2002 −0.4837 −0.2005 0.2675 −0.468

(3.75) (−2.34) (3.59) (−1.41) (1.39) (−2.03) (−4.3) (3.53) (−4.76)
t+3 0.4299 −0.4094 0.8392 −0.3091 0.2952 −0.6044 −0.2331 0.2688 −0.5019

134



(3.52) (−1.92) (2.89) (−1.67) (2) (−2.3) (−3.94) (3.74) (−4.73)
t+4 0.3379 −0.4127 0.7506 −0.2865 0.4246 −0.711 −0.1953 0.2728 −0.4681

(3.18) (−1.53) (2.58) (−1.24) (2.62) (−2.2) (−3.28) (3.56) (−4.24)
t+5 0.3059 −0.6516 0.9575 −0.4286 0.4739 −0.9025 −0.1934 0.2135 −0.4068

(3.13) (−2.11) (2.8) (−1.61) (3.04) (−2.66) (−3.03) (2.49) (−3.57)
t+6 0.5547 −0.3136 0.8683 −0.3205 0.3658 −0.6864 −0.1873 0.2021 −0.3894

(7.16) (−1.23) (3.07) (−1.4) (2.13) (−2.07) (−3.04) (2.72) (−3.93)
t+7 0.1334 −0.1236 0.257 −0.2575 0.1835 −0.441 −0.1252 0.2436 −0.3688

(1.33) (−0.54) (0.94) (−1.25) (1.33) (−1.52) (−2.07) (3.4) (−3.6)
t+8 -0.0687 0.0855 −0.1542 −0.0488 0.1066 −0.1554 −0.1179 0.2319 −0.3498

(−0.6) (0.36) (−0.57) (−0.26) (0.81) (−0.59) (−1.74) (2.83) (−3.32)
t+9 0.0527 0.0499 0.0028 −0.1092 0.2991 −0.4082 −0.1378 0.1845 −0.3223

(0.42) (0.21) (0.01) (−0.48) (1.87) (−1.26) (−2.31) (2.19) (−2.94)
t+10 0.1536 −0.3196 0.4732 −0.1881 0.1998 −0.3879 −0.0935 0.1117 −0.2051

(1.13) (−2.08) (2.25) (−0.81) (1.51) (−1.46) (−1.45) (1.52) (−1.87)
t+11 0.1692 −0.0545 0.2237 −0.1086 0.0118 −0.1204 −0.101 0.2051 −0.3061

(1.31) (−0.3) (0.91) (−0.51) (0.08) (−0.46) (−1.46) (2.33) (−2.8)
t+12 0.3895 0.3044 0.0852 −0.0381 −0.0782 0.0401 −0.1497 0.186 −0.3357

(2.79) (1.07) (0.27) (−0.16) (−0.6) (0.14) (−2.08) (2.44) (−3.33)
Sum 3.1009 −2.6323 5.7333 −2.5881 2.6667 −5.2548 −1.9201 2.6435 −4.5634

Notes: Fama-French four factor alphas for the 12 months following portfolio formation for quintile
portfolios formed on option-based measures of stock mispricing. Portfolios are value-weighted.
Average alphas for the high and low quintile portfolios, along with the difference in alphas are
reported. Each month over 2004-2013, stocks are sorted into quintiles based on option based
measures of stock mispricing. IPD is the average percentage difference between implied and actual
stock prices. Implied borrowing fees is the stock borrowing fee implied by violations of put-call
parity. Skewness is the difference in implied volatilities of a put with a delta of 0.2 and a call with
a delta of 0.5. O/S is the natural logarithm of the ratio of stock and options volume. The FFC
four factor model is used to calculate portfolio α. Newey and West [1987] adjusted standard errors
with three lags are used. Returns and portfolio α are in percentages.

Table B.1.9: : Correlations

IPD Imp. Fee. CW ∆CV OL ∆PV OL Skewness PP OOI O/S
IPD 1
Imp. Fee. -0.232 1
CW 0.216 −0.5 1
∆CV OL 0.031 −0.046 0.052 1
∆PV OL 0.031 −0.005 0.019 0.57 1
Skew -0.097 0.175 −0.205 −0.037 −0.034 1
PP -0.063 0.067 −0.042 0.013 0.015 0.172 1
OOI 0.054 −0.081 0.11 0.061 0.047 −0.084 −0.155 1
O/S -0.057 0.02 −0.091 0.012 0.015 −0.067 −0.317 −0.04 1
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Notes: Correlations of monthly quintile portfolio assignments for various measures of option-based stock

mispricing. IPD is the average percentage difference between implied and actual stock prices. Implied

borrowing fees is the stock borrowing fee implied by violations of put-call parity. CW is the difference

between implied volatilities of calls and puts. Skewness is the difference in implied volatilities of a put

with a delta of 0.2 and a call with a delta of 0.5. ∆PV OL is the monthly change in implied volatilities for

30 day puts with deltas of -0.5. ∆CV OL is the change analogous change in call implied volatilities. PP

is the ratio of put buy volume that opens positions to the sum of put and call buy volume. OOI is the

difference between synthetic positive and negative options volume. O/S is the natural logarithm of the

ratio of stock and options volume.

Table B.1.10: : Sharpe Ratios over Time

IPD Skewness O/S
T+1 0.1804 0.1858 0.1591
T+2 0.2114 0.1891 0.1625
T+3 0.2245 0.1943 0.1875
T+4 0.2096 0.1948 0.2184
T+5 0.2022 0.1843 0.224
T+6 0.2575 0.1805 0.1981
T+7 0.1708 0.1896 0.1838
T+8 0.1378 0.1932 0.1742
T+9 0.1547 0.1742 0.1952
T+10 0.1721 0.1632 0.1876
T+11 0.1718 0.1711 0.1433
T+12 0.2132 0.167 0.1196

Notes: Sharpe ratios of value-weighted quintile portfolios of underpriced stocks formed using
IPD, O/S, and skewness. Each month over 2004-2013, stocks are sorted into five quintiles
for each of the mis-pricing measures: IPD, O/S, and skewness. For the high IPD, low O/S,
and low skewness quintile portfolios, Sharpe ratios are calculated for each of the following
12 months. The excess return for the 1st month after portfolio formation is computed by
subtracting the risk-free rate from the portfolio return. The time-series average monthly
excess return for the first month after portfolio formation is divided by the time series stan-
dard deviation of first month excess returns to calculate the Sharpe ratio for the first month.
Sharpe ratios for months 2-12 are calculated analogously. For comparison, the mean monthly
Sharpe ratio is 0.1219 for the S&P 500 and 0.1236 for the CRSP value-weighted index over
the same period.
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Table B.1.11: : Value-Weighted Double Sorted Portfolio Alphas

O/S
Low 2 3 4 High H-L

Low IPD 0.1527 −0.1766 −0.0408 −0.7992 −0.9631 −1.1158
(1.07) (−0.8) (−0.19) (−2.16) (−2.43) (−2.69)

2 0.3163 0.0535 0.2865 −0.2075 −0.5291 −0.8453
(3.04) (0.31) (1.68) (−1.14) (−1.97) (−2.6)

3 0.3095 0.0712 −0.125 0.1403 −0.1861 −0.4957
(2.87) (0.57) (−0.82) (0.98) (−1.42) (−2.62)

4 0.0554 0.133 0.2802 0.2251 −0.0715 −0.127
(0.43) (0.82) (2.13) (1.87) (−0.53) (−0.71)

High IPD 0.2207 0.4794 0.4487 0.2202 0.3261 0.1054
(1.56) (3.41) (2.75) (1.09) (1.49) (0.38)

High - Low 0.068 0.656 0.4895 1.0194 1.2892
(0.36) (3.7) (1.77) (2.35) (2.93)

Skewness
Low 2 3 4 High H-L

Low IPD 0.2179 0.1765 −0.4943 −1.1891 −0.3788 −0.5967
(0.78) (0.76) (−2.23) (−3.99) (−1.34) (−1.49)

2 −0.0288 0.0159 −0.0762 0.0229 −0.348 −0.3192
(−0.18) (0.09) (−0.36) (0.11) (−1.29) (−1.08)

3 0.1307 0.2233 −0.0739 0.1176 −0.2561 −0.3868
(0.86) (1.69) (0.54) (0.67) (−1.47) (−1.5)

4 0.2534 0.0329 −0.031 0.1503 0.2119 −0.0415
(1.42) (0.25) (−0.21) (0.82) (1) (−0.14)

High IPD 0.149 0.1495 0.5096 0.268 0.382 0.233
(0.57) (0.92) (3.09) (1.62) (1.9) (0.74)

High - Low −0.0689 −0.027 1.0039 1.457 0.7608
(−0.18) (−0.09) (3.68) (4.07) (2.17)

Skewness
Low 2 3 4 High H-L

Low Imp. Fee 0.0039 0.293 0.3379 0.3641 −0.1953 −0.1991
(0.02) (1.96) (2.05) (1.62) (−0.75) (−0.61)

2 0.2416 0.0946 0.3048 0.0671 0.3675 0.1259
(1.51) (0.69) (2.54) (0.33) (1.81) (0.42)

3 0.2489 0.0224 −0.3119 −0.0617 −0.2961 −0.5451
(1.71) (0.16) (−2.06) (−0.36) (−1.24) (−1.76)

4 −0.0931 −0.0134 0.128 −0.2074 −0.1196 −0.0265
(−0.48) (−0.08) (0.69) (−1.12) (−0.37) (−0.09)

High Imp. Fee 0.1257 −0.3088 −0.6165 −0.5463 −0.658 −0.7837
(0.52) (−1.47) (−3.12) (−1.93) (−2.01) (−2.22)

High - Low 0.1218 −0.6018 −0.954 −0.9104 −0.4628
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(0.37) (−2.14) (−3.53) (−2.66) (−1.43)

Notes: In Panel A, portfolios formed by double sorts on the log of the ratio of option to stock volume

(O/S), and on the percentage difference between the actual stock price and the price implied by options

(IPD). In Panel B, portfolios formed by double sorts on skewness, measured as the difference between the

implied volatility of a short-term out-of-the-money put and the implied volatility of an at-the-money call,

and the percentage difference between the actual stock price and the price implied by options (IPD). In

Panel C, portfolios formed by double sorts on skewness, measured as the difference between the implied

volatility of a short-term out-of-the-money put and the implied volatility of an at-the-money call, and

implied stock borrowing fees estimated from put-call parity violations.

138



Table B.1.12: : Percentage of stocks in portfolio that are hard-to-borrow

O/S
Low 2 3 4 High

LowIPD 0.123 0.195 0.28 0.415 0.653
2 0.045 0.065 0.089 0.134 0.204
3 0.035 0.039 0.052 0.054 0.075
4 0.036 0.039 0.045 0.055 0.066
HighIPD 0.064 0.08 0.09 0.106 0.149

Skewness
Low 2 3 4 High

LowIPD 0.309 0.258 0.297 0.38 0.417
2 0.121 0.078 0.095 0.117 0.138
3 0.065 0.036 0.036 0.049 0.073
4 0.062 0.036 0.035 0.042 0.07
HighIPD 0.193 0.077 0.066 0.082 0.1

Skewness
Low 2 3 4 High

LowFees 0.088 0.046 0.04 0.05 0.054
2 0.039 0.025 0.027 0.031 0.035
3 0.039 0.028 0.028 0.034 0.038
4 0.068 0.055 0.054 0.056 0.06
HighFees 0.265 0.284 0.329 0.343 0.31

Notes: Percentage of stocks in portfolio that are hard-to-borrow. Hard-to-borrow is defined
as having borrowing fees that are among the highest 20% across all stocks. Panel A. Portfolios
formed by double sorts on the log of the ratio of option to stock volume (O/S), and on the
percentage difference between the actual stock price and the price implied by options (IPD).
Panel B. Portfolios formed by double sorts on skewness, measured as the difference between
the implied volatility of a short-term out-of-the-money put and the implied volatility of an
at-the-money call, and the percentage difference between the actual stock price and the price
implied by options (IPD). Panel C. Portfolios formed by double sorts on skewness, measured
as the difference between the implied volatility of a short-term out-of-the-money put and the
implied volatility of an at-the-money call, and implied stock borrowing fees estimated from
put-call parity violations.

Table B.1.13 reports returns and four-factor Fama-French-Carhart alphas for equal-
weighted quintile portfolios formed using nine option-based measures of stock mispricing.
Panel A reports returns and alphas of portfolios formed on IPD and implied lending fees,
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the two measures that are based on differences between actual and implied stock prices.
Both of these measures successfully predict stock returns in each of the three months
following portfolio formation. A long-short strategy of buying the quintile of stocks with
the highest IPD, that is the greatest differences between implied and actual stock prices,
and selling the quintile of stocks with the lowest IPD, produces four-factor alphas of 77 basis
points, 73 basis points, and 43 basis points in the three months after portfolio formation.
Similarly, the long-short strategy of buying the quintile of stocks with low implied lending
fees and selling the portfolio with high implied lending fees produces four-factor alphas
of 77 basis points, 58 basis points and 53 basis points for the three months following
portfolio formation. These alphas, like the alphas from the IPD long-short strategy are
all statistically significant at any conventional level. It is significant that investors could
wait one or two months after the calculation of IPD or implied fees and still earn abnormal
returns. This suggests that the returns are not an artifact of microstructure noise. They
could not, for example, be a result of stale trade prices or bid-ask bounce.

The ability of these measures to predict stock returns appears to come almost entirely
from the short-side. In Panel A, the portfolio with the lowest IPD, that is the lowest
implied prices relative to actual prices, has an alpha of -62 basis points with a t-statistic of
-4.86 for month t+1. In contrast, the portfolio with the highest IPD, or greatest implied
price relative to actual prices, has an alpha of 16 basis points with a t-statistic of 1.53.
Similarly, the portfolio of stocks with high implied lending fees earns abnormal returns of
-65 basis points with a t-statistic of -6.65 for the month after portfolio formation. The
quintile of stocks with low implied fees earns abnormal returns of 12 basis points with
a t-statistic of 2.23. Results for months t+2 and t+3 are similar for portfolios based on
both IPD and implied lending fees. In both months t+2 and t+3, significant negative
abnormal returns are earned in the bearish portfolio, but none of the other portfolios have
significantly positive alphas.

These results suggest that for equal-weighted portfolios, which consist mainly of small
stocks, the costs of short-selling and short-sale restrictions are behind the ability of option-
based measures to predict stock returns. In each case, negative alphas, which provide
profit opportunities for short-sellers, are larger and more significant than positive alphas.
These portfolios are equal-weighted, so small stocks, which may be difficult to short, make
up a significant part of the portfolios. It seems likely that the high and low portfolios in
particular may be heavily weighted with small stocks.

Panels C to F reports results for portfolios formed using option based measures of
mispricing derived from implied volatilities. Sorts based on Skewness, ∆PV OL, and CW
all produce portfolios that provide significant abnormal returns from long-short strategies
in one or more months following portfolio formation. The abnormal returns produced by
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skewness, ∆CV OL, and ∆PV OL are small relative to those produced by measures based
on differences in implied and actual stock prices. Long-short alphas from portfolios based
on CW are of similar magnitude to the alphas portfolios produced by IPD and implied
lending fees. The other implied volatility measures generate smaller long-short portfolio
alphas.

The abnormal returns earned by portfolios sorted on these measures also come from
the short side. For example, the low CW portfolio, that is the portfolio where implied
volatilities of calls are low relative to the implied volatilities of puts, earns abnormal returns
of -61 basis points, -53 basis points and -42 basis points in the three months following
portfolio formation. Each of these is significantly less than zero at the 1% level. In
contrast, the abnormal returns of the high CW portfolio are less than 14 basis points in
each of the three succeeding months and never significant. Similar results are obtained
from portfolios based on skewness and ∆PV OL.

Panels G to I provides results for portfolios formed using options order imbalance
(OOI), Pan Poteshman (PP) and the log ratio of option to stock volume (O/S). Each of
these measures is based on trading volume. The results for OOI and PP are weak. A long-
short strategy produces abnormal returns for OOI but only for the first month following
portfolio formation. The long-short strategy fails to produce significant abnormal returns
at all for PP. This is not entirely surprising though as the PP measure was originally
used to predict returns over shorter intervals. For O/S, a long-short strategy produces
significant abnormal returns in each month. The returns again come primarily from the
short-side. Again, for all these measures, short-sale restrictions appear to be the source of
returns to option based strategies.

We also calculate average returns and alphas for the equal-weighted quintile portfolios
for the two five year periods 2003-2008 and 2009-2013. Results (not shown) are very
similar for the two subperiods. In both periods, most of these option-based measures
are able to find overpriced stocks that underperform by statistically significant amounts.
Quintile portfolios of underpriced stocks may have positive alphas, but they are generally
insignificant in both periods. SEC Rule 10b-21, which cracked down on naked shorting and
failures to deliver, became effective in mid-October 2008, very close to the end of the first
subperiod. Our finding that option-based measures of mispricing had similar predictive
power in both subperiods suggests that Rule 10b-21 had little impact on bearish investors
decisions whether to trade stock or options.

All of these measures of stock mispricing are taken from options, so it might seem
that they contain the same information. We find, though, that portfolio sortings across
measures have surprisingly low correlations (see Table C.1.2 in the text). Hence it seems
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possible that double-sorts on these measures may produce larger returns.

In Panel A of Table B.1.14 we first sort stocks into quintiles by IPD, and then sort each
IPD quintile into quintiles by O/S. In Panel B, we sort first on IPD, and then on skewness.
In Panel C, we first sort stocks by implied borrowing fees and then by skewness. These
double sorts do produce portfolios of stocks with very large negative abnormal returns.
In Panel A, the low IPD/High O/S portfolio earn an average alpha of -1.0192 in the first
month after portfolio formation. The low IPD/high skewness portfolio in Panel B earns an
abnormal return of -1.3620% for month t+1. Finally, the high implied fee/high skewness
portfolio in Panel C earns an alpha of -0.9038 in the month following portfolio formation.
As Table B.1.12 in the text shows, however, the portfolios that appear to generate large
returns from shortselling are very heavily weighted with hard-to-borrow stocks. In contrast,
none of the double sorts yields a portfolio with especially large positive alphas.

Table B.1.13: : Equally-Weighted Portfolio Sorts

Panel A: IPD

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.2639 −0.6168 −4.86 0.3078 −0.6199 −4.74 0.532 −0.3921 −2.75
2 0.7817 0.0174 0.24 0.7619 −0.0459 −0.69 0.7586 −0.0637 −0.92
3 0.7289 0.0032 0.04 0.7647 −0.0049 −0.06 0.722 −0.0391 −0.44
4 0.7757 0.0374 0.4 0.87 0.0897 0.89 0.8493 0.074 0.78
High 1.0051 0.1566 1.53 0.9691 0.1068 1.02 0.8967 0.0356 0.39
H-L 0.7412 0.7734 5.91 0.6613 0.7268 5.16 0.3647 0.4277 3.05

Panel B: Implied Fees

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.8509 0.1223 2.23 0.8169 0.0441 0.72 0.8381 0.0702 0.94
2 0.9148 0.2006 2.7 0.8479 0.0962 1.15 0.8708 0.126 1.63
3 0.8063 0.0773 1.07 0.8597 0.0912 1.07 0.8212 0.0642 0.79
4 0.7201 −0.0453 −0.55 0.8442 0.0283 0.37 0.8789 0.0638 0.67
High 0.1994 −0.6524 −6.65 0.354 −0.5336 −5.58 0.4271 −0.4609 −3.95
H-L -0.6515 −0.7747 −7.68 −0.4629 −0.5777 −5.47 −0.4109 −0.531 −4.11

Panel C: CW

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.2523 −0.6053 −4.42 0.3814 −0.5282 −4.42 0.4894 −0.4203 −3.28
2 0.7937 0.0274 0.39 0.7317 −0.0683 −0.89 0.7755 −0.0203 −0.26
3 0.815 0.0898 1.3 0.9612 0.2084 2.95 0.8913 0.129 1.84
4 0.9219 0.1815 3.06 0.8957 0.1158 1.67 0.8884 0.111 1.49
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High 0.9992 0.112 0.9 1.0526 0.1359 0.89 1.0234 0.1322 0.95
H-L 0.7469 0.7173 5.48 0.6712 0.6641 4.24 0.534 0.5526 3.78

Panel D: Skewness

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.9702 0.0926 0.64 0.9637 0.0566 0.39 0.9982 0.1204 0.88
2 0.879 0.1596 1.75 0.8551 0.0845 1.03 0.8678 0.0893 1.05
3 0.7277 −0.0388 −0.48 0.822 0.0187 0.2 0.756 −0.0404 −0.49
4 0.6271 −0.1814 −2.53 0.757 −0.0988 −1.57 0.7907 −0.0394 −0.54
High 0.5275 −0.2549 −2.69 0.5454 −0.266 −2.72 0.5579 −0.2819 −2.65
H-L -0.4427 −0.3475 −1.89 −0.4184 −0.3226 −1.85 −0.4403 −0.4026 −2.31

Panel E: ∆CV OL

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.5308 −0.2933 −2.39 0.7063 −0.1989 −1.62 0.848 −0.0466 −0.46
2 0.8168 0.0847 1.25 0.8551 0.0573 0.75 0.8266 0.0129 0.14
3 0.8072 0.0758 0.92 0.8975 0.1177 1.44 0.9306 0.1266 1.47
4 0.8163 0.0475 0.68 0.8421 0.0525 0.63 0.845 0.0119 0.14
High 0.7767 −0.1264 −1.18 0.731 −0.1736 −1.81 0.7502 −0.1617 −1.33
H-L 0.2459 0.1669 1.22 0.0246 0.0253 0.18 −0.0978 −0.1151 −0.78

Panel F: ∆PV OL

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.8012 −0.0163 −0.13 0.6605 −0.2404 −2.07 0.8703 −0.0372 −0.41
2 0.7859 0.0481 0.66 0.9083 0.1009 1.29 0.9015 0.0942 1.1
3 0.8253 0.1066 1.24 0.935 0.1603 1.87 0.9102 0.1073 1.33
4 0.7812 0.0032 0.05 0.8459 0.0418 0.5 0.7959 −0.033 −0.41
High 0.5544 −0.353 −3.43 0.6823 −0.2077 −2.23 0.7224 −0.1886 −1.56
H-L -0.2469 −0.3366 −2.55 0.0218 0.0327 0.25 −0.1479 −0.1514 −1.19

Panel G: PP

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.3806 −0.4407 −4.88 0.5994 −0.2514 −2.67 0.7145 −0.1728 −2.21
2 0.8083 0.0661 0.93 0.8439 0.0644 1.01 0.8324 0.0205 0.2
3 1.0514 0.2439 2.12 1.0287 0.1976 1.92 0.918 0.0542 0.69
4 0.9208 0.1215 1.24 1.0303 0.1742 1.91 1.0336 0.1419 1.28
High 0.9194 0.0189 0.17 0.7201 −0.2181 −1.81 0.8298 −0.1157 −1.01
H-L 0.5387 0.4596 3.83 0.1206 0.0333 0.3 0.1153 0.0571 0.48
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Panel H: OOI

Port. rt+1 αt+1 tαt+1
rt+2 αt+2 tαt+2

rt+3 αt+3 tαt+3

Low 0.6282 −0.2846 −1.69 0.5976 −0.3576 −2.44 0.6183 −0.333 −2.33
2 0.7396 −0.045 −0.038 0.7539 −0.0819 −0.67 0.8445 −0.0253 −0.25
3 0.767 0.0021 0.03 0.803 −0.0274 −0.27 0.8138 −0.0296 −0.34
4 0.6597 −0.1063 −1.06 0.7392 −0.0528 −0.53 0.8005 −0.0499 −0.56
High 0.6852 −0.0936 −1 0.71 −0.0921 −0.89 0.7971 −0.0346 −0.41
H-L 0.0569 0.1911 0.89 0.1124 0.2655 1.26 0.1788 0.2985 1.85

Panel I: O/S

Port. rt+1 αt+1 tαt+1 rt+2 αt+2 tαt+2 rt+3 αt+3 tαt+3

Low 0.8785 0.1142 1.55 0.9473 0.1476 2.02 0.9143 0.1145 1.86
2 0.8716 0.0706 0.92 0.8259 −0.0206 −0.31 0.8316 −0.011 −0.14
3 0.7821 −0.0026 −0.03 0.8961 0.0688 0.85 0.834 0.0191 0.31
4 0.6911 −0.1187 −1.31 0.6799 −0.1465 −1.63 0.7673 −0.0485 −0.52
High 0.4044 −0.3728 −4.25 0.4706 −0.3627 −3.95 0.4797 −0.3615 −3.64
H-L -0.4741 −0.487 −4.18 −0.4768 −0.5103 −4.15 −0.4346 −0.476 −4.53

Notes: Each month over 2004-2013, stocks are sorted into quintiles based on option based measures
of stock mispricing. IPD is the average percentage difference between implied and actual stock
prices. Implied borrowing fees is the stock borrowing fee implied by violations of put-call parity.
CW is the difference between implied volatilities of calls and puts. Skewness is the difference in
implied volatilities of a put with a delta of 0.2 and a call with a delta of 0.5. ∆PV OL is the monthly
change in implied volatilities for 30 day puts with deltas of -0.5. ∆CV OL is the change analogous
change in call implied volatilities. PP is the ratio of put buy volume that opens positions to the
sum of put and call buy volume. OOI is the difference between synthetic positive and negative
options volume. O/S is the natural logarithm of the ratio of stock and options volume. The FFC
four factor model is used to calculate portfolio α. Newey and West [1987] adjusted standard errors
with three lags are used. Returns and portfolio α are in percentages.
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Table B.1.14: : Equal-Weighted Double Sorted Portfolio Alphas
O/S

Low 2 3 4 High H-L
Low IPD −0.0032 −0.3225 −0.6042 −0.8547 −1.0192 −1.0159

(−0.02) (−1.66) (−3.45) (−4.29) (−4.31) (−3.56)
2 0.3213 0.0379 0.1625 −0.06 −0.3714 −0.6928

(2.06) (0.28) (1.14) (−0.45) (−2.18) (−2.81)
3 0.2734 0.0392 −0.0615 −0.0246 −0.2433 −0.5166

(2.41) (0.32) (−0.45) (−0.17) (−1.72) (−2.77)
4 −0.0235 −0.0183 0.1824 0.0744 −0.2594 −0.2359

(−0.21) (−0.13) (1.22) (0.65) (−1.59) (−1.47)
High IPD −0.1633 0.0669 0.2611 0.157 0.0865 0.2498

(−0.99) (0.49) (1.57) (0.9) (0.59) (1.35)
High - Low −0.16 0.3894 0.8653 1.0117 1.1057

(−0.67) (1.83) (3.53) (3.75) (3.89)
Skewness

Low 2 3 4 High H-L
Low IPD 0.045 −0.0109 −0.4105 −1.0919 −1.3169 −1.362

(0.14) (−0.06) (−2.2) (−5.57) (−5.08) (−3.48)
2 0.1229 0.1622 0.0464 −0.0995 −0.0311 −0.154

(0.67) (1.33) (−0.31) (−0.72) (−0.18) (−0.59)
3 −0.0077 0.0483 −0.018 0.1518 −0.2061 −0.1984

(−0.05) (0.38) (−0.14) (0.96) (−1.65) (−0.98)
4 0.1488 −0.0195 −0.0537 −0.026 −0.0573 −0.2061

(0.95) (−0.12) (−0.38) (−0.18) (−0.4) (−0.98)
High IPD −0.1243 0.3437 0.108 −0.1192 0.2228 0.347

(−0.53) (2.03) (0.84) (−0.82) (1.32) (1.48)
High - Low −0.1693 0.3546 0.5185 0.9727 1.5397

(−0.61) (1.66) (2.24) (4.15) (4.52)
Skewness

Low 2 3 4 High H-L
Low Imp. Fee −0.1743 0.163 0.1755 0.2693 0.1886 0.3629

(−1.17) (1.52) (1.59) (2.42) (1.44) (1.69)
2 0.1946 0.1531 0.2036 0.2062 0.2276 0.0329

(1.37) (1.25) (2) (1.49) (1.59) (0.16)
3 0.2358 0.0892 −0.074 0.2263 −0.112 −0.3478

(1.65) (0.69) (−0.6) (1.59) (−0.85) (−1.72)
4 0.0007 −0.0493 −0.0765 −0.1348 0.0072 0.0065

(0) (−0.34) (−0.55) (−1.29) (0.06) (0.03)
High Imp. Fee −0.2159 −0.4013 −0.9707 −0.7615 −0.9038 −0.6879

(−0.99) (−2.52) (−6.73) (−4.4) (−4.82) (−2.45)
High - Low −0.0416 −0.5643 −1.1462 −1.0308 −1.0924

(−0.16) (−3.23) (−6.99) (−5.13) (5.82)

Notes: Panel A. Portfolios formed from double sorts of stocks on IPD and O/S. All stocks,
equal-weighted portfolios. Panel B. Portfolios formed from double sorts of stocks on IPD
and Skewness. All stocks, equal-weighted portfolios. Panel C. Portfolios formed from double
sorts of stocks on implied borrowing fees and skewness. All stocks, equal-weighted portfolios.
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Appendix C

Appendix for Chapter 4

This appendix contains additional proofs from Chapter 4.

C.1 Mathematical Proofs, Figures, and Tables
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C.1.1 Figures

Figure C.1.1: : Impact of Leverage Ratio on Implied Volatility Smile For Different Accounting Transparency
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Figure C.1.2: : Impact of Accounting Transparency on Implied Volatility Smile For Different Leverage
Ratios
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Figure C.1.3: : Change in Implied Volatility Skewness with respect to Leverage for different
Accounting Transparency
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C.1.2 Tables

Table C.1.1: : Summary Statistics

Percentiles
Variable Name N Mean Std. Dev. 25th Median 75th
Slope Skew 140611 −0.58 0.49 −0.72 −0.46 −0.28
Slope Skew v2 141201 −1.01 0.83 −1.41 −0.89 −0.46
Disp 181540 0.16 0.41 0.02 0.04 0.11
Nanalyst 290063 5.54 6.79 0.00 3.00 8.00
Leverage 319606 0.20 0.22 0.01 0.12 0.32
Momentum 307111 0.06 0.43 −0.18 0.02 0.22
M/B 319606 3.69 5.68 1.22 2.06 3.77
Beta 272691 1.52 1.69 0.49 1.26 2.28
Size 311655 19.48 2.17 17.9 19.42 20.94
Idio Skew 312269 0.4 1.32 −0.17 0.33 0.92
Atm Ivol 133414 0.49 0.24 0.32 0.43 0.61

Notes: The table presents quarterly summary statistics for main variables. We compute the dispersion in analyst forecast (Disp)
and number of analyst covering stock (Nanalyst) from I/B/E/S quarterly earnings data. M/B is the ratio of market and book equity
computed using quarterly data from COMPUSTAT. Leverage is the book value of debt divided by sum of debt and market value of
equity using quarterly data from COMPUSTAT. M/B and Leverage are lagged by one quarter in order to account for the timing of
the release of accounting statements. Size is the log of the product of the stock price and shares outstanding (times 1000) from CRSP
monthly stock files (of firms with share codes 10 and 11 common shares). Momentum is the past 6 month cumulative monthly stock
returns from CRSP. Beta is the stock beta with the market estimated from 36 months rolling regressions adjusted by 3 months of lags
for asynchronous trading as per the Dimson [1979] adjustment. Idio Skew is the idiosyncratic skewness of daily returns estimated
quarterly using daily CRSP stock returns. Atm Ivol is average of call and put contract implied volatility with |∆| = 0.5 and 30 days
to maturity, and using OptionMetrics Volatility surface. Slope Skew (and v2) and Atm Ivol are computed daily on a firm level and
then averaged over the quarter. The sample period is quarterly observations from January 1997 to December 2017.
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Table C.1.2: : Correlations
Correlations

Variable Names
Slope Skew Slope Skew v2 Disp Nanalyst Leverage Momentum M/B Beta Size Idio Skew Atm Ivol

Slope Skew 1.00 0.63 −0.08 0.19 −0.13 0.11 0.10 0.01 0.21 −3.7e− 3 0.03
Slope Skew v2 0.63 1.00 0.08 −0.10 −0.16 0.05 0.10 0.19 −0.29 0.02 0.51
Disp −0.08 0.08 1.00 −0.09 0.07 −0.05 −0.02 0.09 −0.18 0.02 0.20
Nanalyst 0.19 −0.10 −0.09 1.00 −0.05 0.01 0.09 −0.10 0.76 −0.11 −0.30
Leverage −0.13 −0.16 0.07 −0.05 1.00 −0.05 −0.18 −0.06 −0.08 0.01 −0.07
Momentum 0.11 0.05 −0.05 0.01 −0.05 1.00 0.08 0.01 0.16 0.05 −0.13
M/B 0.1 0.10 −0.02 0.09 −0.18 0.08 1.00 0.08 0.12 2e− 3 0.09
Beta 0.01 0.19 0.09 −0.1 −0.06 0.01 0.08 1.00 −0.16 0.05 0.30
Size 0.21 −0.29 −0.18 0.76 −0.08 0.16 0.12 −0.16 1.00 −0.12 −0.59
Idio Skew −3.7e− 3 0.02 0.02 −0.11 0.01 0.05 2e− 3 0.05 −0.12 1.00 0.03
Atm Ivol 0.03 0.51 0.20 −0.30 −0.07 −0.13 0.09 0.30 −0.59 0.03 1.00

Notes: Table contains pooled correlations between all control and accounting quality measures from Table C.1.1. The sample period
is quarterly observations from January 1997 to December 2017.
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Table C.1.3: : FM Regression with Nanalyst as Accounting Transparency (Options with 15 ≤ d2mat ≤ 45)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.22 −0.21 −0.19 −0.28 −0.27 −0.27 −0.21

(−6.09) (−5.98) (−6.13) (−9.79) (−9.58) (−9.74) (−8.16)
Momentum 0.20 0.21 0.13 0.13 0.13 0.13

(8.83) (8.75) (5.78) (5.55) (5.89) (4.63)
Beta −2.2e− 3 0.02 0.02 0.02 0.01

(−0.44) (3.56) (3.6) (3.86) (2.07)
Size 0.14 0.14 0.14 0.15

(11.54) (11.47) (11.41) (13.88)
M/B 3.1e− 3 3.1e− 3 1.8e− 3

(3.72) (3.74) (1.69)
Idio Skew −0.01 −0.01

(−3.96) (−3.42)
Atm Ivol 0.17

(2.92)
R2 1.03 2.87 3.20 8.88 8.92 9.11 9.59
N obs 362.00 362.00 341.00 341.00 341.00 341.00 294.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.34 −0.33 −0.32 −0.33 −0.32 −0.32 −0.29

(−17.36) (−17.51) (−16.77) (−17.5) (−18.21) (−18.28) (−17.37)
Momentum 0.18 0.20 0.15 0.14 0.14 0.14

(10.36) (10.95) (8.72) (8.43) (8.39) (9.09)
Beta 3.1e− 3 0.02 0.02 0.02 0.01

(0.75) (3.4) (3.37) (3.41) (3.48)
Size 0.05 0.05 0.05 0.06

(8.75) (8.8) (8.79) (7.27)
M/B 1.9e− 3 1.9e− 3 1e− 3

(2.89) (2.88) (2.03)
Idio Skew −1.8e− 3 −1.9e− 3

(−1.37) (−1.25)
Atm Ivol 0.25

(3.73)
R2 3.00 4.75 5.04 9.39 9.51 9.55 10.32
N obs 1236.00 1236.00 1175.00 1175.00 1175.00 1175.00 991.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table C.1.4: : FM Regression with Disp as Accounting Transparency (Options with 15 ≤ d2mat ≤ 45)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.23 −0.21 −0.19 −0.28 −0.27 −0.27 −0.24

(−9.32) (−8.83) (−7.75) (−14.18) (−13.69) (−13.69) (−11.4)
Momentum 0.20 0.22 0.14 0.14 0.14 0.14

(9.39) (9.95) (7.98) (7.67) (7.72) (7.16)
Beta −0.01 0.01 0.01 0.01 0.01

(−1.75) (2.16) (2.04) (2.09) (2.98)
Size 0.11 0.11 0.11 0.11

(10.76) (10.79) (10.76) (9.52)
M/B 2.5e− 3 2.5e− 3 2.9e− 3

(4.62) (4.56) (4.47)
Idio Skew −3e− 3 −3.7e− 3

(−1.71) (−1.8)
Atm Ivol 0.01

(0.26)
R2 1.66 3.94 4.41 14.14 14.18 14.21 14.62
N obs 668.00 668.00 628.00 628.00 628.00 628.00 520.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.40 −0.39 −0.38 −0.40 −0.38 −0.38 −0.33

(−14.27) (−14.3) (−13.92) (−14.67) (−16.41) (−16.41) (−16.03)
Momentum 0.15 0.16 0.14 0.13 0.14 0.12

(9.95) (9.74) (9.5) (9.52) (9.46) (8.32)
Beta 0.01 0.02 0.02 0.02 0.02

(4.03) (4.77) (4.76) (4.8) (4.29)
Size 0.04 0.04 0.04 0.05

(5.43) (5.4) (5.4) (5.98)
M/B 2.6e− 3 2.6e− 3 1.4e− 3

(3.04) (3.04) (2.48)
Idio Skew −1.6e− 3 −0.1e− 3

(−0.99) (−0.08)
Atm Ivol 0.33

(5.43)
R2 3.71 4.83 4.95 8.27 8.42 8.46 9.35
N obs 814.00 814.00 780.00 780.00 780.00 780.00 675.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table C.1.5: : FM Regression with Nanalyst as Accounting Transparency (Avg d2mat)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.10 −0.10 −0.09 −0.11 −0.10 −0.10 −0.08

(−6.35) (−6.38) (−5.96) (−7.16) (−7.06) (−7.15) (−5.9)
Momentum 0.05 0.06 0.04 0.04 0.04 0.04

(5.49) (6.05) (4.46) (4.15) (4.6) (3.38)
Beta 3.2e− 3 0.01 0.01 0.01 3.1e− 3

(1.81) (4.09) (4.05) (4.31) (1.44)
Size 0.03 0.03 0.03 0.04

(7.91) (7.9) (7.95) (7.29)
M/B 1.7e− 3 1.7e− 3 1.2e− 3

(3.82) (3.79) (2.61)
Idio Skew −0.01 −0.01

(−4.18) (−4.26)
Atm Ivol 0.11

(4.74)
R2 0.77 1.77 1.94 3.51 3.68 4.07 5.31
N obs 380.00 380.00 358.00 358.00 358.00 358.00 308.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.13 −0.12 −0.11 −0.12 −0.11 −0.11 −0.1

(−15.95) (−17.46) (−17.05) (−17.8) (−19.03) (−19.14) (−19.84)
Momentum 0.06 0.06 0.05 0.05 0.05 0.05

(7.79) (8.09) (7.67) (7.54) (7.54) (7.17)
Beta 3.6e− 3 0.01 0.01 0.01 3.3e− 3

(2.41) (4.03) (4) (4.04) (2.53)
Size 0.01 0.01 0.01 0.02

(6.57) (6.69) (6.7) (5.64)
M/B 0.8e− 3 0.8e− 3 0.3e− 3

(2.89) (2.89) (1.58)
Idio Skew −1.2e− 3 −1e− 3

(−1.78) (−1.43)
Atm Ivol 0.13

(4.08)
R2 2.1 3.21 3.47 5.24 5.37 5.42 6.74
N obs 1255.00 1255.00 1194.00 1194.00 1194.00 1193.00 1005.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew v3.
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Table C.1.6: : FM Regression with Disp as Accounting Transparency (Avg d2mat)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.10 −0.10 −0.09 −0.11 −0.11 −0.11 −0.10

(−12.2) (−13.48) (−13.41) (−19.46) (−18.87) (−18.91) (−15.33)
Momentum 0.07 0.08 0.05 0.05 0.05 0.05

(8.01) (8.05) (7.07) (6.82) (6.86) (5.87)
Beta −0.3e− 3 4.5e− 3 4.3e− 3 4.4e− 3 3.7e− 3

(−0.17) (3.05) (2.98) (3) (2.71)
Size 0.03 0.03 0.03 0.03

(10) (10.09) (10.05) (7.82)
M/B 1.1e− 3 1.1e− 3 0.9e− 3

(3.61) (3.65) (3.09)
Idio Skew −0.9e− 3 −0.6e− 3

(−1.06) (−0.64)
Atm Ivol 0.05

(2)
R2 1.37 2.94 3.32 8.20 8.28 8.33 9.00
N obs 689.00 689.00 648.00 648.00 648.00 648.00 535.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.13 −0.13 −0.12 −0.13 −0.12 −0.12 −0.10

(−11.24) (−11.44) (−10.74) (−10.97) (−11.86) (−11.88) (−11.72)
Momentum 0.05 0.05 0.05 0.05 0.05 0.04

(6.91) (7.67) (7.84) (7.84) (8.04) (6.66)
Beta 0.01 0.01 0.01 0.01 3.8e− 3

(5.23) (5.03) (5.01) (5.06) (2.85)
Size 0.01 0.01 0.01 0.01

(3.1) (2.98) (3) (4.12)
M/B 1.2e− 3 1.1e− 3 0.7e− 3

(3.44) (3.42) (2.79)
Idio Skew −1.5e− 3 −1.2e− 3

(−2.23) (−1.86)
Atm Ivol 0.15

(5.2)
R2 2.08 2.83 2.92 4.25 4.38 4.41 5.38
N obs 825.00 825.00 791.00 791.00 791.00 791.00 683.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew.
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Table C.1.7: : FM Regression with Nanalyst as Accounting Transparency (Options with 15 ≤ d2mat ≤ 45)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.53 −0.53 −0.5 −0.44 −0.41 −0.41 −0.28

(−8.95) (−9.03) (−9) (−7.8) (−7.34) (−7.39) (−7.16)
Momentum 0.09 0.11 0.16 0.15 0.15 0.12

(2.91) (4.03) (5.96) (5.58) (5.8) (4.17)
Beta 0.08 0.07 0.06 0.06 0.02

(11.73) (11.24) (10.95) (10.85) (3.14)
Size −0.09 −0.09 −0.09 0.07

(−6.82) (−6.96) (−7.02) (4.71)
M/B 0.01 0.01 −0.9e− 3

(9.78) (9.56) (−0.63)
Idio Skew −0.01 −0.01

(−2.04) (−2.95)
Atm Ivol 1.61

(18.31)
R2 2.53 3.98 6.11 8.23 8.67 8.96 17.74
N obs 366.00 366.00 345.00 345.00 345.00 345.00 296.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.73 −0.73 −0.71 −0.66 −0.61 −0.62 −0.5

(−11.67) (−12.65) (−11.18) (−11.39) (−11.65) (−11.7) (−13.44)
Momentum 0.01 0.02 0.13 0.12 0.12 0.19

(0.18) (0.31) (3.25) (2.95) (2.85) (6.56)
Beta 0.14 0.11 0.11 0.11 0.03

(8.16) (8.52) (8.41) (8.46) (4.39)
Size −0.13 −0.13 −0.13 −0.01

(−10.35) (−10.65) (−10.64) (−0.84)
M/B 0.01 0.01 −1.4e− 3

(4.92) (4.91) (−1.91)
Idio Skew 2.8e− 3 2.4e− 3

(1.34) (1.21)
Atm Ivol 2.33

(11.61)
R2 4.29 6.56 11.48 19.5 19.74 19.78 31.40
N obs 1238.00 1238.00 1177.00 1177.00 1177.00 1177.00 992.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew v2.
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Table C.1.8: : FM Regression with Disp as Accounting Transparency (Options with 15 ≤ d2mat ≤ 45)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.54 −0.53 −0.49 −0.46 −0.42 −0.42 −0.33

(−9.83) (−10.04) (−9.6) (−9.44) (−8.82) (−8.85) (−11.27)
Momentum 0.08 0.09 0.11 0.1 0.09 0.14

(2.31) (3) (3.73) (3.16) (3.08) (4.98)
Beta 0.06 0.06 0.06 0.06 0.02

(12.36) (12.34) (11.92) (11.79) (4.67)
Size −0.03 −0.04 −0.04 0.05

(−4.94) (−5.22) (−5.19) (6.2)
M/B 0.01 0.01 1.6e− 3

(8.85) (8.77) (2.58)
Idio Skew 3.5e− 3 0.3e− 3

(1.61) (0.15)
Atm Ivol 1.53

(14.62)
R2 4.61 6.20 8.19 9.67 10.25 10.28 20.42
N obs 676.00 676.00 636.00 636.00 636.00 636.00 526.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −1.11 −1.10 −1.05 −0.97 −0.93 −0.93 −0.63

(−13.36) (−13.65) (−12.28) (−12.45) (−13.03) (−13.01) (−11.74)
Momentum 0.14 0.15 0.2 0.19 0.19 0.18

(2.15) (3.23) (5.25) (5.13) (5.09) (6.07)
Beta 0.16 0.12 0.12 0.12 0.04

(7.98) (8.58) (8.6) (8.66) (4.55)
Size −0.15 −0.15 −0.15 −0.03

(−11.15) (−11.86) (−11.85) (−2.56)
M/B 0.01 0.01 0.2e− 3

(3.71) (3.71) (0.23)
Idio Skew −0.3e− 3 3.4e− 3

(−0.11) (1.33)
Atm Ivol 2.66

(11.97)
R2 6.04 8.09 12.41 22.04 22.22 22.26 31.63
N obs 813.00 813.00 779.00 779.00 779.00 779.00 673.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew v2.
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Table C.1.9: : FM Regression with Nanalyst as Accounting Transparency (Avg d2mat)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.27 −0.27 −0.25 −0.20 −0.18 −0.18 −0.13

(−10.82) (−11.22) (−10.36) (−7.49) (−7.06) (−7.07) (−5)
Momentum 4.2e− 3 0.01 0.06 0.05 0.06 0.04

(0.22) (0.86) (4.19) (3.74) (4.15) (2.44)
Beta 0.04 0.03 0.03 0.03 0.01

(12.14) (10.48) (10.06) (10.15) (2.49)
Size −0.09 −0.09 −0.09 2.3e− 3

(−9.15) (−9.22) (−9.31) (0.27)
M/B 0.01 0.01 −0.4e− 3

(8.71) (8.82) (−0.54)
Idio Skew −0.01 −0.01

(−2.23) (−2.72)
Atm Ivol 0.90

(13.88)
R2 1.67 2.73 4.74 9.49 9.83 10.14 17.5
N obs 383.00 383.00 361.00 361.00 361.00 361.00 309.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.34 −0.34 −0.33 −0.29 −0.27 −0.27 −0.21

(−13.83) (−15.01) (−11.22) (−11.34) (−11.89) (−11.95) (−10.5)
Momentum −0.04 −0.04 0.06 0.05 0.05 0.1

(−1.07) (−1.41) (2.84) (2.51) (2.42) (5.66)
Beta 0.09 0.06 0.06 0.06 0.01

(7.96) (8.22) (8.09) (8.13) (4.22)
Size −0.1 −0.1 −0.1 −0.03

(−9.84) (−9.96) (−9.96) (−5.15)
M/B 4e− 3 4e− 3 −0.8e− 3

(5.47) (5.49) (−2.01)
Idio Skew 0.5e− 3 0e− 3

(0.42) (0e− 3)
Atm Ivol 1.31

(10.79)
R2 2.96 5.28 10.74 23.85 24.07 24.11 35.52
N obs 1257.00 1257.00 1194.00 1194.00 1194.00 1194.00 1005.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew v2.
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Table C.1.10: : FM Regression with Disp as Accounting Transparency (Avg d2mat)

Less Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.30 −0.29 −0.27 −0.23 −0.21 −0.21 −0.17

(−13.2) (−13.68) (−13.55) (−12.45) (−11.67) (−11.73) (−15.2)
Momentum 0.01 0.01 0.05 0.04 0.04 0.06

(0.27) (0.79) (3.25) (2.64) (2.62) (4.42)
Beta 0.04 0.03 0.03 0.03 0.01

(11.07) (11.41) (10.77) (10.71) (4.57)
Size −0.05 −0.05 −0.05 2.5e− 3

(−8.9) (−8.95) (−8.95) (0.58)
M/B 0.01 0.01 0.7e− 3

(8.72) (8.78) (1.76)
Idio Skew 1.4e− 3 −0.1e− 3

(1.17) (−0.1)
Atm Ivol 0.87

(12.73)
R2 3.93 5.18 7.34 11.98 12.53 12.58 22.61
N obs 695.00 695.00 654.00 654.00 654.00 653.00 539.00

More Accounting Transparency

Variable (1) (2) (3) (4) (5) (6) (7)
Leverage −0.51 −0.50 −0.47 −0.41 −0.39 −0.39 −0.23

(−13.71) (−13.91) (−11.19) (−11.15) (−11.64) (−11.62) (−7.87)
Momentum 0.05 0.05 0.09 0.09 0.09 0.08

(1.17) (1.93) (4.72) (4.54) (4.61) (4.86)
Beta 0.09 0.06 0.06 0.06 0.02

(7.67) (8.52) (8.54) (8.59) (4.4)
Size −0.11 −0.11 −0.11 −0.04

(−10.43) (−10.71) (−10.7) (−5.85)
M/B 3.8e− 3 3.8e− 3 0.3e− 3

(4.52) (4.51) (0.69)
Idio Skew −1.6e− 3 −0.3e− 3

(−1.03) (−0.24)
Atm Ivol 1.43

(11.09)
R2 4.00 6.07 10.63 25.54 25.67 25.72 34.6
N obs 824.00 824.00 790.00 790.00 790.00 790.00 683.00

Notes: Quarterly regressions are estimated using Fama and Macbeth [1973] from January 1997 to December 2017 on all firms with
listed equity options. Panel A (B), each of the 7 FM regression models is estimated using the subset of data each quarter that is below
(above) 50th percentile level of Accounting Transparency. The variable (and sign) of interest is Leverage in regression (1). Control
variables are added individually from regressions (2) to (7): Momentum, Beta, Size, M/B, Idio Skew, and Atm Ivol. R-squared (R2)
and quarterly number of observations (N obs) are computed in each regression. t-statistics are computed using Newey and West
[1987] standard errors with 3 lags and reported in parentheses below the coefficient. The dependent variable is the Slope Skew v2.
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C.1.3 Mathematical Proofs

We re-write equation g (u|z, y) in the following form.

g (u|z, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ (C.1)

where ũ = u− ν,

M1 = ν +
(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

M2 = ν +
(ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)
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−(ỹσ2t+a2(z̃0+mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)



L2 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t−a2(z̃0−mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


(C.2)

We then compute a closed form expression for an option pricing model of Toft and Pryck [1997] in the
spirit of Duffie and Lando [2001] where the firm value is imperfectly observed. We derive the call option
pricing model as:

DLCALL =

∫ ∞
ν

TPCALL (eu, VB, C, r, δ, τ, σA, T,K, t) g (u|z, y) du

=

∫ ∞
ν

eu+(−r+m+σ2/2)(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du
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+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (C.3)

where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(C.4)

To compute the integral in equation C.21, note that equation C.19 is essentially a difference in the
Normally distributed random variable probability distribution functions (PDF) being integrated over the
TP option pricing formula, which is a function of Normal distributed cumulative distribution functions
(CDFS). As such the end product will be an integral, over the range of either (−∞, ν) for a put or (ν,∞)
for a call, of the product of a Normally distributed CDF and the Normally PDF. To compute this integral
we make use of the equations 10, 010.1 and 10, 010.4 in Owen [1980] (stated in Lemmas C.1.3 and C.1.4
respectively) which allows for a closed form expression of the integral. The result itself is then just a function
of the Bivariate Normally distributed cumulative probability distribution function.

Lemma C.1.1. Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative)
distribution function denoted φ(z) (Φ(z)) respectively then∫ ν

−∞
Φ(A+Bz)φ(z)dz = Φ2

(
A√

1 +B2
, ν;

−B√
1 +B2

)
(C.5)

where Φ2 (z1, z2; ρ) is the cumulative bivariate normal distribution of two joint random variables Z1 and
Z2 with correlation ρ.

Lemma C.1.2. Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative)
distribution function denoted φ(z) (Φ(z)) respectively then∫ k

h

Φ(A+Bx)φ(x)dx =

∫ A/
√

1+B2

−∞
φ(x)Φ

(
k
√
B2 + 1 +Bx

)
dx
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−
∫ A/

√
1+B2

−∞
φ(x)Φ

(
h
√
B2 + 1 +Bx

)
dx

= Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(C.6)

Taking k −→∞ in equation C.26 yields:∫ ∞
h

Φ(A+Bx)φ(x)dx = lim
k→∞

Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
= Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(C.7)

In order to solve for our option pricing model with incomplete accounting information, given by Ht,
in closed form, the function g (u|y, z0, t) can be re-written as a difference of Normal distribution probabil-
ity density functions with different means and variances in the general form (see appendix for details of
derivation and notation):

g (u|z0, y) =
L1

L0

× e
−(u−M1)

2

2ψ − L2

L0

× e
−(u−M2)

2

2ψ (C.8)

Our formula for Ht involves the integral of the product of the TP option pricing formula (denoted ht (u))
and the density function g (u|y, z0, t). Expanding the product results in computing twelve integrals of the
form in equation 4.3.17 (see Owen [1980]). The resulting sum of the twelve integrals results in a closed for
solution, up to Bivariate Normal probability function, of the expression Ht.

Next we apply the framework of Duffie and Lando [2001] to the above call option option pricing formulas
above:

g (u|z, y) =

√
α/(2π)

[
1− e(

−2z̃0ũ

σ2t
)
]
e

(
−(ỹ−ũ)2

2a2

)
e

(
−(ũ−z̃0−mt)

2

2σ2t

)

Φ (
√
αβ)− Φ

(√
α
(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) (C.9)

162



where
z̃0 = z0 − ν α = σ2t+a2

a2σ2t

ũ = u− ν β = σ2tỹ+a2(z̃0+mt)
σ2t+a2

ỹ = y − ν η = a2σ2t(ỹ−(z̃0+mt))2

(σ2t+a2)2

(C.10)

The denominator of equation C.9 is a constant in u since it does not depend on u whereas the numerator
of equation C.9 can be broken down (working in the exponential term) as:

σ2t (ỹ − ũ)2 + a2 (ũ− z̃0 −mt)2

= σ2t
(
ỹ2 − 2ỹũ+ ũ2

)
+ a2

(
ũ2 − 2ũ (z̃0 +mt) + (z̃0 +mt)2)

=
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t+ a2(z̃0 +mt)

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ2 − 2ũ

(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)
+

(
(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

)2
]
− (ỹσ2t+ a2(z̃0 +mt))

2

(a2 + σ2t)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ− (ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

]2

− (ỹσ2t+ a2(z̃0 +mt))
2

(a2 + σ2t)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2) (C.11)

This results in the simplified expression of the second part of the numerator:

e

(
−σ2t(ỹ−ũ)2

2a2σ2t
−a

2(ũ−z̃0−mt)
2

2a2σ2t

)

= e−
(a2+σ2t)

ũ−(ỹσ2t+a2(z̃0+mt))
(a2+σ2t)


2

−
(ỹσ2t+a2(z̃0+mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)

2a2σ2t (C.12)

We then combine the intermediate step in equation C.12 to obtain the first part of the numerator in
equation C.9 (working on the terms in the exponentials):

4a2z̃0ũ+
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t+ a2(z̃0 +mt)

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t+ a2(z̃0 +mt)− 2a2z̃0

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)

=
(
a2 + σ2t

)
ũ2 − 2ũ

(
ỹσ2t− a2(z̃0 −mt)

)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2)
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=
(
a2 + σ2t

) [
ũ2 − 2ũ

(ỹσ2t− a2(z̃0 −mt))
(a2 + σ2t)

+

(
(ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

)2
]
− (ỹσ2t− a2(z̃0 −mt))2

(α2 + σ2t)
+
(
ỹ2σ2t+ α2 (z̃0 +mt)2)

=
(
a2 + σ2t

) [
ũ− (ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

]2

− (ỹσ2t− a2(z̃0 −mt))2

(a2 + σ2t)
+
(
ỹ2σ2t+ a2 (z̃0 +mt)2) (C.13)

Which results in the following exponential term:

= e

−

(a2+σ2t)

ũ−(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)


2

−
(ỹσ2t−a2(z̃0−mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t (C.14)

We can then re-write the numerator of equation C.9 as the difference between equations C.12 and C.14,
hence:

[
1− e(

−2z̃0ũ

σ2t
)
]
e

(
−(ỹ−ũ)2

2a2

)
e

(
−(ũ−z̃0−mt)

2

2σ2t

)
= e−

(a2+σ2t)

ũ−(ỹσ2t+a2(z̃0+mt))
(a2+σ2t)


2

−
(ỹσ2t+a2(z̃0+mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)

2a2σ2t

− e

−

(a2+σ2t)

ũ−(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)


2

−
(ỹσ2t−a2(z̃0−mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t

(C.15)

we can then re-write equation C.9 as

g (u|z, y) =
e−

(a2+σ2t)

ũ−(ỹσ2t+a2(z̃0+mt))
(a2+σ2t)


2

−
(ỹσ2t+a2(z̃0+mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t

Φ (
√
αβ)− Φ

(√
α
(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) − e

−

(a2+σ2t)

ũ−(ỹσ2t−a2(z̃0−mt))
(a2+σ2t)


2

−
(ỹσ2t−a2(z̃0−mt))

2

(a2+σ2t)
+(ỹ2σ2t+a2(z̃0+mt)2)


2a2σ2t

Φ (
√
αβ)− Φ

(√
α
(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

)
(C.16)
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We then denote the following constants, which are not a function of ũ to simplify the notation of equation
C.16

L0 =
(

1/
√
α/2π

)Φ
(√

αβ
)
− Φ

(√
α

(
β − 2z̃0

σ2tα

))
e

(
−αη

2
+

2z̃0(z̃0−αβσ2t)
σ4t2α

) (C.17)

L1 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t+a2(z̃0+mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


L2 = e

−(a2+σ2t)
2σ2a2t

−(ỹσ2t−a2(z̃0−mt))2

(a2+σ2t)2
+

(ỹ2σ2t+a2(z̃0+mt)2)
(a2+σ2t)


(C.18)

which results in

g (u|z, y) =
L1

L0

× e
−[u−M1]

2

2ψ − L2

L0

× e
−[u−M2]

2

2ψ (C.19)

where ũ = u− ν,

M1 = ν +
(ỹσ2t+ a2(z̃0 +mt))

(a2 + σ2t)

M2 = ν +
(ỹσ2t− a2(z̃0 −mt))

(a2 + σ2t)

ψ =
σ2a2t

(a2 + σ2t)
(C.20)

We then compute, using equation C.16 to compute a closed form expression for an option pricing model
of Toft and Pryck [1997] in the spirit of Duffie and Lando [2001] where the firm value is imperfectly observed.
We derive the call option pricing model as:

DLCALL =

∫ ∞
ν

TPCALL (eu, VB, C, r, δ, τ, σA, T,K, t) g (u|z, y) du

=

∫ ∞
ν

eu+(−r+m+σ2/2)(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du

165



+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (C.21)

where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(C.22)

To compute the integral in equation C.21, note that equation C.19 is essentially a difference in the
Normally distributed random variable probability distribution functions (PDF) being integrated over the
TP option pricing formula, which is a function of Normal distributed cumulative distribution functions
(CDFS). As such the end product will be an integral, over the range of either (−∞, ν) for a put or (ν,∞)
for a call, of the product of a Normally distributed CDF and the Normally PDF. To compute this integral we
make use of the equations 10, 010.1 and 10, 010.4 in Owen [1980] which allows for a closed form expression
of the integral. The result itself is then just a function of the Bivariate Normally distributed cumulative
probability distribution function. We provide a description and proof in Lemma C.1.3.

Lemma C.1.3. Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative)
distribution function denoted φ(z) (Φ(z)) respectively then∫ ν

−∞
Φ(A+Bz)φ(z)dz = Φ2

(
A√

1 +B2
, ν;

−B√
1 +B2

)
(C.23)

where Φ2 (z1, z2; ρ) is the cumulative bivariate normal distribution of two joint random variables Z1 and
Z2 with correlation ρ.

Proof. ∫ ν

−∞
Φ(A+Bz)φ(z)dz =

∫ ν

−∞

∫ A+Bz

−∞
φ(x)φ(z)dxdz
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=

∫ ν

−∞

∫ A+Bz

−∞

e
−1(x2+z2)

2

√
2π
√

2π
dydz

=

∫ ν

−∞

∫ A/
√

1+B2

−∞

√
1 +B2e

−1((y
√

1+B2+Bz)2+z2)
2

√
2π
√

2π
dydz

=

∫ ν

−∞

∫ A/
√

1+B2

−∞

e
−1(y2(1+B2)+2yzB

√
1+B2+B2z2+z2)

2

√
2π
√

2π
√

1/(1 +B2)
dydz

= Φ2

(
A√

1 +B2
, ν;

−B√
1 +B2

)
(C.24)

where we let y = (x−Bz)/
√

1 +B2 (x = y
√

1 +B2 +Bz) hence dy = dx/
√

1 +B2 and

y2(1 +B2) + 2yzB
√

1 +B2 + z2(1 +B2) = (1 +B2)

[
y2 + 2yz

B√
1 +B2

+ z2

]
=

1

1 +B2

[
y2 − 2yz

(
−B√
1 +B2

)
+ z2

]
(C.25)

Lemma C.1.4. Let A and B are real valued constants and Z ∼ N (0, 1), with probability (cumulative)
distribution function denoted φ(z) (Φ(z)) respectively then∫ k

h

Φ(A+Bx)φ(x)dx =

∫ A/
√

1+B2

−∞
φ(x)Φ

(
k
√
B2 + 1 +Bx

)
dx

−
∫ A/

√
1+B2

−∞
φ(x)Φ

(
h
√
B2 + 1 +Bx

)
dx

= Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(C.26)

Proof. ∫ k

h

Φ(A+Bx)φ(x)dx =

∫ k

−∞
Φ(A+Bx)φ(x)dx−

∫ h

−∞
Φ(A+Bx)φ(x)dx
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= Φ2

(
A√

1 +B2
, k;

−B
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B
1 +B2

)
(C.27)

Taking k −→∞ in equation C.26 yields:∫ ∞
h

Φ(A+Bx)φ(x)dx = lim
k→∞

Φ2

(
A√

1 +B2
, k;

−B√
1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
= Φ

(
A√

1 +B2

)
− Φ2

(
A√

1 +B2
, h;

−B√
1 +B2

)
(C.28)

We next derive the following transformation to evaluate an integral∫ ∞
ν

eθuΦ (A+Bu)φ(u;m, s2)du

=

∫ ∞
ν

eθuΦ (A+Bu)
e
−(u−m)2

2s2

√
2πs2

du

=

∫ ∞
ν

Φ (A+Bu)
e
−(u2−2um+m2−2s2uθ)

2s2

√
2πs2

du

=

∫ ∞
ν

Φ (A+Bu)
e
−(u2−2um+m2−2s2uθ)

2s2

√
2πs2

du

= e
−m2+(m+s2θ)2

2s2

∫ ∞
ν

Φ (A+Bu)
e
−(u2−2u(m+s2θ)+(m+s2θ)2)

2s2

√
2πs2

du

= e
−m2+(m+s2θ)2

2s2

∫ ∞
ν

Φ (A+Bu)
e
−(u−(m+s2θ))2

2s2

√
2πs2

du

= e
−m2+(m+s2θ)2

2s2

∫ ∞
ν′

Φ
(
A+B(sz + (m+ s2θ))

)
φ(z)dz
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= eθm+(sθ)2/2

[
Φ

(
A′√

1 + (Bs)2

)
− Φ2

(
A′√

1 + (Bs)2
, ν ′;

−Bs√
1 + (Bs)2

)]
(C.29)

where we let z = (u− (m + s2θ))/s which results in A′ = A + B(m + s2θ) and ν ′ = (ν − (m + s2θ))/s. In
the resulting equation C.29 we then set θ = {1,−2m/σ2 − 1,−γ,−2m/σ2 + γ,−2m/σ2} to evaluate some
of the integrals in equation C.30.

DLCALL =

∫ ∞
ν

eu−δ(T−t)
[
Φ (−z1)− e(2m/σ2+2)(ν−u)Φ (−z2)

]
g (u|z, y) du

+

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ2−2γ)(ν−u)Φ (−z4)

]
g (u|z, y) du

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ2)(ν−u)Φ (−z6)

]
g (u|z, y) du (C.30)

where

−z1 =
−y∗+(m(T−t)+u+σ2(T−t))

σ
√
T−t −z2 =

−y∗+(m(T−t)−u+2ν+σ2(T−t))
σ
√
T−t

−z3 =
−y∗+(m(T−t)+u−γσ2(T−t))

σ
√
T−t −z4 =

−y∗+(m(T−t)−u+2ν−γσ2(T−t))
σ
√
T−t

−z5 = −y∗+(m(T−t)+u)

σ
√
T−t −z6 = −y∗+(m(T−t)−u+2ν)

σ
√
T−t

(C.31)

For evaluating the first integral in equation C.30 we make use of the result from equation C.29

∫ ∞
ν

eu−δ(T−t)
[
Φ (−z1)− e(2m/σ

2+2)(ν−u)Φ (−z2)
]
g (u|z, y) du

=

∫ ∞
ν

eu−δ(T−t)
[
Φ (−z1)− e(2m/σ

2+2)(ν−u)Φ (−z2)
] [L1

L0
× e−

(u−M1)2

2ψ −
L2

L0
× e−

(u−M2)2

2ψ

]
du

= e−δ(T−t)
∫ ∞
ν

euΦ (−z1)

[
L1

L0
× e−

(u−M1)2

2ψ −
L2

L0
× e−

(u−M2)2

2ψ

]
du

− e−δ(T−t)
∫ ∞
ν

eue(2m/σ
2+2)(ν−u)Φ (−z2)

[
L1

L0
× e−

(u−M1)2

2ψ −
L2

L0
× e−

(u−M2)2

2ψ

]
du
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= e−δ(T−t)
∫ ∞
ν

euΦ (−z1)
L1

L0
× e−

(u−M1)2

2ψ du− e−δ(T−t)
∫ ∞
ν

euΦ (−z1)
L2

L0
× e−

(u−M2)2

2ψ du

− e−δ(T−t)
∫ ∞
ν

eue(2m/σ
2+2)(ν−u)Φ (−z2)

L1

L0
× e−

(u−M1)2

2ψ du

+ e−δ(T−t)
∫ ∞
ν

eue(2m/σ
2+2)(ν−u)Φ (−z2)

L2

L0
× e−

(u−M2)2

2ψ du

= e−δ(T−t)
L1

L0
×
∫ ∞
ν

euΦ (−z1) e
− (u−M1)2

2ψ du− e−δ(T−t)
L2

L0
×
∫ ∞
ν

euΦ (−z1) e
− (u−M2)2

2ψ du

− e−δ(T−t)e(2m/σ
2+2)(ν)L1

L0
×
∫ ∞
ν

eu(−2m/σ2−1)Φ (−z2) e
− (u−M1)2

2ψ du

+ e−δ(T−t)e(2m/σ
2+2)ν L2

L0
×
∫ ∞
ν

eu(−2m/σ2−1)Φ (−z2) e
− (u−M2)2

2ψ du (C.32)

= e−δ(T−t)
L1

L0

√
2πψeM1+ψ/2

Φ

 −y
∗+(M1+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2



− e−δ(T−t)
L1

L0

√
2πψeM1+ψ/2Φ2

 −y
∗+(M1+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M1 + ψ)

√
ψ

;

 −(
√
ψ)/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2



− e−δ(T−t)
L2

L0

√
2πψeM2+ψ/2

Φ

 −y
∗+(M2+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2



+ e−δ(T−t)
L2

L0

√
2πψeM2+ψ/2Φ2

 −y
∗+(M2+ψ)+(m(T−t)+σ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M2 + ψ)

√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2



− e−δ(T−t)e(2m/σ
2+2)ν L1

L0

√
2πψeM1(−2m/σ2−1)+ψ(−2m/σ2−1)2/2 ×

Φ

 −y
∗+(M1+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2



+ e−δ(T−t)e(2m/σ
2+2)ν L1

L0

√
2πψeM1(−2m/σ2−1)+ψ(−2m/σ2−1)2/2

× Φ2

 −y
∗+(M1+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M1 + ψ(−2m/σ2 − 1))

√
ψ

;−

 √
ψ/(−σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2



+ e−δ(T−t)e(2m/σ
2+2)(ν)L2

L0

√
2πψeM2(−2m/σ2−1)+ψ(−2m/σ2−1)2/2 ×

Φ

 −y
∗+(M2+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2


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− e−δ(T−t)e(2m/σ
2+2)(ν)L2

L0

√
2πψeM2(−2m/σ2−1)+ψ(−2m/σ2−1)2/2

×

Φ2

 −y
∗+(M2+ψ(−2m/σ2−1))+(m(T−t)+2ν+σ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M2 + ψ(−2m/σ2 − 1)2)

√
ψ

;−

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2


 (C.33)
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For evaluating the second integral in equation C.30 we make use of the result from equation C.29∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ

2−2γ)(ν−u)Φ (−z4)
]
g (u|z, y) du

=

∫ ∞
ν

Be−γ(u−ν)
[
Φ (−z3)− e(2m/σ

2−2γ)(ν−u)Φ (−z4)
] [L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

=

∫ ∞
ν

Be−γ(u−ν)Φ (−z3)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

−
∫ ∞
ν

Be−γ(u−ν)e(2m/σ
2−2γ)(ν−u)Φ (−z4)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

=

∫ ∞
ν

Be−γ(u−ν)Φ (−z3)
L1

L0
× e

−(u−M1)2

2ψ du−
∫ ∞
ν

Be−γ(u−ν)Φ (−z3)
L2

L0
× e

−(u−M2)2

2ψ du

−
L1

L0
×
∫ ∞
ν

Be−γ(u−ν)e(2m/σ
2−2γ)(ν−u)Φ (−z4) e

−(u−M1)2

2ψ du

+

∫ ∞
ν

Be−γ(u−ν)e(2m/σ
2−2γ)(ν−u)Φ (−z4)

L2

L0
× e

−(u−M2)2

2ψ du

(C.34)

=
L1

L0
Beγ(ν)

∫ ∞
ν

e−γ(u)Φ (−z3) e
−(u−M1)2

2ψ du−
L2

L0
Beγ(ν)

∫ ∞
ν

e−γ(u)Φ (−z3) e
−(u−M2)2

2ψ du

−
L1

L0
Beγ(ν)e(2m/σ

2−2γ)(ν)

∫ ∞
ν

e−(2m/σ2−γ)(u)Φ (−z4) e
−(u−M1)2

2ψ du

+
L2

L0
Beγ(ν)e−(2m/σ2−2γ)ν

∫ ∞
ν

e−(2m/σ2−γ)(u)Φ (−z4) e
−(u−M2)2

2ψ du

+
L1

L0
Beγ(ν)

√
2πψe(−γ)M1+(−γ)2ψ/2 ×

Φ

 −y
∗+(M1+ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2



−
L1

L0
Beγ(ν)

√
2πψe(−γ)M1+(−γ)2ψ/2

×

Φ2

 −y
∗+(M1+ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M1 + ψ(−γ))

√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




−
L2

L0
Beγ(ν)

√
2πψeM2(−γ)+(−γ)2ψ/2 × Φ

 −y
∗+M2+(ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2


172



+
L2

L0
Beγ(ν)

√
2πψeM2(−γ)+(−γ)2ψ/2

×

Φ2

 −y
∗+(M2+ψ(−γ))+(m(T−t)−γσ2(T−t))

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M2 + ψ(−γ))

√
ψ

;

 −(
√
ψ)/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




−
L1

L0
Beγ(ν)e(2m/σ

2−2γ)(ν)
√

2πψeM1(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

×

Φ

 −y
∗+(M1+(ψ(−2m/σ2+γ)))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2



+
L1

L0
Beγ(ν)e(2m/σ

2−2γ)(ν)
√

2πψeM1(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

× Φ2

 −y
∗+(M1+(ψ(−2m/σ2+γ))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M1 + ψ(−2m/σ2 + γ))

√
ψ

;−

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2



+
L2

L0
Beγ(ν)e−(2m/σ2−2γ)ν

√
2πψeM2(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

×

Φ

 −y
∗+(M2+(ψ(−2m/σ2+γ)))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2
−


−
L2

L0
Beγ(ν)e−(2m/σ2−2γ)ν

√
2πψeM2(−2m/σ2+γ)+ψ(−2m/σ2+γ)2/2

× Φ2

 −y
∗+(M2+ψ(−2m/σ2+γ))+(m(T−t)+2ν−γσ2(T−t))

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M2 + ψ(−2m/σ2 + γ))

√
ψ

;−

 −
√
ψ/(−σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2

 (C.35)

For evaluating the third integral in equation C.30 the result of equation C.29

−
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ

2)(ν−u)Φ (−z6)
]
g (u|z, y) du

= −
∫ ∞
ν

e−r(T−t) (A+K)
[
Φ (−z5)− e(2m/σ

2)(ν−u)Φ (−z6)
] [L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

= −
∫ ∞
ν

e−r(T−t) (A+K) Φ (−z5)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M2)2

2ψ

]
du

+

∫ ∞
ν

e−r(T−t) (A+K) e(2m/σ
2)(ν−u)Φ (−z6)

[
L1

L0
× e

−(u−M1)2

2ψ −
L2

L0
× e

−(u−M1)2

2ψ

]
du

= −
∫ ∞
ν

e−r(T−t) (A+K) Φ (−z5)
L1

L0
e

−(u−M1)2

2ψ du+

∫ ∞
ν

e−r(T−t) (A+K) Φ (−z5)
L2

L0
e

−(u−M2)2

2ψ du
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+

∫ ∞
ν

e−r(T−t) (A+K) e(2m/σ
2)(ν−u)Φ (−z6)

L1

L0
e

−(u−M1)2

2ψ du−
∫ ∞
ν

e−r(T−t) (A+K) e(2m/σ
2)(ν−u)Φ (−z6)

L2

L0
e

−(u−M2)2

2ψ du

= −e−r(T−t) (A+K)
L1

L0

∫ ∞
ν

Φ (−z5) e
−(u−M1)2

2ψ du+ e−r(T−t) (A+K)
L2

L0

∫ ∞
ν

Φ (−z5) e
−(u−M1)2

2ψ du

+ e−r(T−t) (A+K)
L1

L0
e(2m/σ

2)(ν)

∫ ∞
ν

e−(2m/σ2)(u)Φ (−z6) e
−(u−M1)2

2ψ du

− e−r(T−t) (A+K) e(2m/σ
2)(ν)L2

L0

∫ ∞
ν

e−(2m/σ2)(u)Φ (−z6) e
−(u−M2)2

2ψ du

(C.36)

174



= −e−r(T−t) (A+K)
L1

L0

√
2πψ

Φ

 −y∗+(m(T−t)+M1)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2
− Φ2

 −y∗+(m(T−t)+M1)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 , ν −M1√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




+ e−r(T−t) (A+K)
L2

L0

√
2πψ

Φ

 −y∗+(m(T−t)+M2)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2
− Φ2

 −y∗+(m(T−t)+M2)

σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 , ν −M2√
ψ

;

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(σ

√
T − t)

)2




+ e−r(T−t) (A+K)
L1

L0
e(2m/σ

2)(ν)
√

2πψeM1(−2m/σ2)+ψ(−2m/σ2)2/2

×

Φ

 −y
∗+(M1+(ψ(−2m/σ2)))+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2
− Φ2

 −y
∗+(M1+ψ(−2m/σ2)2)+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2 ,
ν − (M1 + (ψ(−2m/σ2)))

√
ψ

;−

 −
√
ψ/(−σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2




− e−r(T−t) (A+K)
L2

L0
e(2m/σ

2)(ν)
√

2πψeM2(−2m/σ2)+ψ(−2m/σ2)2/2

×

Φ

 −y
∗+(M2+(ψ(−2m/σ2)))+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(−σ

√
T − t)

)2
− Φ2

 −y
∗+(M2+ψ(−2m/σ2))+(m(T−t)+2ν)

−σ
√
T−t√

1 +
(√
ψ/(σ

√
T − t)

)2 ,
ν − (M2 + (ψ(−2m/σ2)))

√
ψ

;−

 −
√
ψ/(σ

√
T − t)√

1 +
(√
ψ/(−σ

√
T − t)

)2



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