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Abstract

The objective of this thesis is the use and design of analytics methods (i.e., methods from
operations research and management science, artificial intelligence, and statistics) for
medical decision making. In particular, this work focuses on methods to assist physicians
towards achieving remission in patients suffering from treatment-resistant depression, a
severe form of the major depressive disorder. Following a literature review of medical
decision making methods relevant for treating depression, this thesis proposes medical
decision making methods for (1) finding the best initial treatment modification for incom-
ing patients, (2) characterizing the current timing decisions between appointments and
(3) recommending potential successful treatments. All of these tasks are addressed using
observational longitudinal data from the Depressive and Suicide Disorders Program of the
Douglas Mental Health University Institute in Montreal.

In particular, the first method focuses on the task of using observational data to de-
termine which of five treatment modification strategies is best at the initial visit. To do
so, the proposed method balances the five strategy groups using an improved approach
for causal inference. The chapter associated with this method is also used as a tutorial to
causal inference for the operations research and management science community.

The second method identifies the relevant variables among the patient’s, physician’s
and clinic’s characteristics for the timing decisions between appointments. This decision
is of importance due to the trade-off between high-frequency appointments that lead to
a waste of resources and low-frequency appointments that lead to the degradation of
patients. Using imitation learning on data, this method infers these variables and their
weights. This knowledge can then be used by the physicians to refine and standardize
their practice with respect to this decision.

The third method recommends potential successful treatments using similarities be-
tween past patients and treatments. This recommender system consists somewhat of an
extension of the first method where causal inference is again used. However, the treatment
drugs are now considered instead of the five treatment modification strategies. For this
method, we assume that the sequence of treatments that have been administered to the

patient does not affect the efficacy of the current treatment.
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Abrégé

L’objectif de cette thése est I'utilisation et la conception de méthodes analytiques (c.-a-d.
des méthodes issues de la recherche opérationnelle, de l'intelligence artificielle et des
statistiques) pour la prise de décisions médicales. En particulier, ces travaux portent sur les
méthodes visant a aider les médecins a obtenir une rémission chez les patients souffrant de
dépression résistante au traitement, une forme grave du trouble dépressif majeur. A la suite
d’une revue de la littérature sur les méthodes de prise de décision médicale pertinentes
pour le traitement de la dépression, cette these propose des méthodes de prise de décision
médicale pour (1) trouver la meilleure modification initiale du traitement pour les patients
entrants, (2) caractériser les décisions actuelles concernant le délai entre les rendez-vous et
(3) recommander des traitements potentiellement efficaces. Toutes ces tdches sont abordées
a I’aide de données longitudinales d’observation du programme des troubles dépressifs et
suicidaires de I'Institut universitaire en santé mentale Douglas & Montréal.

En particulier, la premiére méthode est axée sur l'utilisation de données d’observation
pour déterminer laquelle des cing stratégies de modification du traitement est la meilleure
lors de la visite initiale. Pour ce faire, la méthode proposée équilibre les cinq groupes
de stratégies en utilisant une approche améliorée pour l'inférence causale. Le chapitre
associé a cette méthode est également utilisé comme un tutoriel d'inférence causale pour
la communauté de la recherche opérationnelle.

La deuxieme méthode identifie les variables pertinentes parmi les caractéristiques du
patient, du médecin et de la clinique pour la prise de décision du délai entre les rendez-
vous. Cette décision est importante en raison de l’arbitrage entre les rendez-vous a haute
fréquence qui entrainent un gaspillage de ressources et les rendez-vous a basse fréquence
qui entrainent la dégradation des patients. En utilisant ’apprentissage par imitation sur
les données, cette méthode infere ces variables et leur pondération. Ces connaissances
peuvent ensuite étre utilisées par les médecins pour affiner et normaliser leur pratique en
ce qui a trait a cette décision.

La troisieme méthode recommande des traitements potentiellement efficaces en util-
isant les similitudes entre les anciens patients et les traitements. Ce systeme de recomman-

dation consiste en quelque sorte en une extension de la premiere méthode ot I'inférence
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causale est de nouveau utilisée. Cependant, les médicaments des traitements sont main-
tenant considérés au lieu des cinq stratégies de modification du traitement. Pour cette
méthode, nous supposons que la séquence des traitements qui a été administrée au patient

n’affecte pas 1'efficacité du traitement actuel.
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Chapter 1
Introduction

Operations research and management science (OR/MS) methods have been applied suc-
cessfully to a wide range of healthcare settings in the past (i.e., system design and planning,
management of operations and medical management) (Pierskalla and Brailer, 1994). In
particular, more recently, there has been a surge of interest in the application of OR/MS
methods to medical decision making (MDM) problems due to the increasing healthcare
costs, the increasing access to better data, the high level of preventable medical errors and
the trend towards the uniformization of medical practice (Tunc, Alagoz, and Burnside,
2014). In parallel, while OR/MS was traditionally a practice-oriented field, it has become
associated with a defined set of methods and problems; a potentially harmful association
in this time of renewed interest in analytics, a field unconstrained with respect to the
methods used and problems addressed (Liberatore and Luo, 2010).

This thesis expands over the traditional OR/MS methods by using methods from other
tields (e.g., artificial intelligence, statistics, causal inference) that are pillars of analytics
to address innovative MDM problems. In particular, this work consists in the use of
analytics for MDM to manage treatment-resistant depression (TRD). To do so, this work
uses observational longitudinal data from the depressive and suicide disorders program
(DSDP) of the Douglas Mental Health University Institute in Montreal.

The rest of this chapter defines and discusses the topics of analytics, medical decision
making, treatment-resistant depression and observational data, four fundamental topics to
this thesis. Then, the thesis structure and contributions are presented.

1.1 Analytics

There exists multiple definitions of analytics. For example, INFORMS (2017) defines
analytics as “the scientific process of transforming data into insights for the purpose of
making better decisions” while Gass and Fu (2013) defines it as “data-driven modeling



2 Chapter 1. Introduction

and analysis for decision making”. Both of these definitions contain two important aspects.
First, the analytics process needs to be data-driven, i.e., based on data and not on intuition
or personal experience. Second, the analytics process is used for decision making, i.e.,
some action needs to be taken in the end.

The analytics process consists of four steps (Liberatore and Luo, 2010). The first step
encompasses the collection, extraction and manipulation of data. The second step consists
in the analysis generally categorized as descriptive (What has happened?), predictive
(What might happen?) and prescriptive (How to improve the predicted future?). It is
important to note that prescriptive analytics needs to understand both what might happen
and why it will happen in order to suggest how to act.! The third step consists in the
extraction of the insights from the previous questions. Finally, the last step consists in the
implementation of the action at the strategic, tactical or operational level. This process
does not have to be a linear sequence; there can be several back and forths between the
different steps.

The use of the word analytics in this thesis assumes both aspects of the previous
definitions, i.e., data-driven and decision making. While the latter aspect cannot be
enforced, the proposed applications at least try to provide some minimal insights to
encourage decision making. With respect to the analytics process, the three original
works within this thesis can be classified as descriptive for the work in Chapter 4, and as
prescriptive for the works in Chapters 3 and 5.

1.2 Medical Decision Making

The definition of medical decision making given by the Society for Medical Decision
Making (Definition of Medical Decision Making, n.d.) consists of the following quotation
from Schwartz and Bergus (2008):

Medical decision science is a field that encompasses several related pursuits.
As a normative endeavor, it proposes standards for ideal decision making. As a
descriptive endeavor, it seeks to explain how physicians and patients routinely
make decisions, and has identified both barriers to, and facilitators of, effective
decision making. As a prescriptive endeavor, it seeks to develop tools that can
guide physicians, their patients, and health care policymakers to make good
decisions in practice.

!Refer to Spirtes (2010) for a formal definition of predictive and prescriptive modeling.
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This definition highlights that the field of MDM is interested in (1) proposing stan-
dards/guidelines, (2) explaining decisions and (3) developing tools to make better de-
cisions. In this thesis, we address the latter two objectives. In particular, the work in
Chapter 4 consists in the study of the timing decision between appointments while the
works in Chapters 3 and 5 propose tools to make better decisions.

Due to the continuous progress in medicine, several open opportunities for analytics lie
ahead in the field of MDM. In particular, the OR/MS community identified the following
opportunities (Zhang et al., 2013b; Denton et al., 2011):

e personalized medicine: the customization of interventions to individual patients

* patient behavior: the integration within the models of the patient behavior (e.g., the
compliance to treatment);

* natural history of disease: the development of new models of the progression of
diseases from observational data;

* future medical interventions: the inclusion of the possibility of new future treatments
within the model;

* burden of treatment: new methods and studies to evaluate the impact of treatments
(e.g., determination of quality-adjusted life years (QALYs));

* decision aids: the development of easy-to-use tools for the physicians and patients
with these models;

* real time decision making: real time optimization to be used in a variety of context like
mobile health;

e integration of prevention, detection and treatment: the design of models that encompass
the full spectrum of the clinical pathway.

With respect to these opportunities, this thesis involves personalized medicine with
Chapter 5, decision aids? with Chapters 3 and 5, and partially the integration of prevention,
detection and treatment by addressing the timing decision between appointments, in
Chapter 4, and the treatments in Chapters 4 and 5.

It is interesting to note that the main challenge in most MDM studies remains the
availability, cost and complexity of the data used to construct these models (Zhang et al.,
2013b). This challenge supports the need to use observational data, a topic discussed in
Section 1.4.

Note that the decision aids tools developed in this thesis are not an operationalization of the current
knowledge; they are data-driven.
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1.3 Treatment Resistant-Depression

Major depressive disorder (MDD), is amongst the top ten causes of the global burden of
disease and is predicted to become the leading cause by 2030 (World Health Organization,
2008). This translates to an estimated economic burden of US$210.5 billion in 2010 for
MDD in the United States alone (Lam et al., 2016b).? In addition to these aspects, people
suffering from MDD are also more prone to commit suicide; their past-year prevalence of
suicide attempts in 2012 was twenty times higher than people seeking healthcare for other
mental illnesses (Patten et al., 2015).

Unfortunately, up to 15% of the population affected by MDD* remains significantly
depressed despite the aggressive use of multiple pharmacological and psychotherapeutical
approaches. These patients are generally referred to as suffering from treatment-resistant
depression (TRD). Although there is no consensus regarding the definition of TRD, a
patient suffering from MDD is usually considered treatment-resistant (or refractory) when
at least two trials with antidepressants from different pharmacologic classes (adequate in
dose, duration, and compliance) fail to produce a significant clinical improvement (Berlim
and Turecki, 2007).

TRD patients are quite hard to treat by definition and necessitate a referral to a special-
ized mental health clinic where pharmacotherapy, psychotherapy and neurostimulation
therapy are all possible treatment options. In fact, it is important to note that each of
these treatment options consists of a wide array of treatment options, which leads to a
combinatorial search for the best treatment.

Adding to this complexity, the current medical literature regarding this best treatment
is unclear. While some of the literature covers the treatment of TRD, few of the studies
compare more than two treatments, and it is hard to reconcile the prevailing studies
because of their different inclusion and exclusion criteria and the multiple definitions of
TRD (Berlim, Fleck, and Turecki, 2008). In addition, the guidelines (Kennedy et al., 2016)
are primarily designed to treat MDD, i.e., they are mostly concerned in identifying a good
initial treatment. Thus, they are of limited use to treat patients suffering from TRD who
followed non-effective treatments for some time.

It is also important to note that mental illnesses are generally quite different than

physical diseases and complications (e.g., acquired immune deficiency syndrome (AIDS),

3There exist no estimates for the economic burden of MDD in Canada, but the economic burden of mental
illness was estimated to C$51 billion for 2003 (Lam et al., 2016b).

#In Canada, the past-year prevalence of MDD in 2012 was 3.9% with higher prevalence for women and
younger age groups (Patten et al., 2015).



1.4. Observational Data 5

diabetes, cancer). For example, in contrast with most physicial diseases and complications,
the pathophysiology of MDD is currently unknown (Hasler, 2010) as is also the case for
other mental illnesses. Hence, MDM approaches for these mental illnesses might differ
substantially from the ones for physical diseases and complications. For example, due
to the unavailability of a biological model, these approaches might require to be based
entirely on data without any a priori model.

The complexity of treatment, and incomplete knowledge with respect to treatment
efficiency and pathophysiology makes the area of TRD interesting for this thesis. In
particular, this area seems opportune for the use of analytics methods and appears to be
untouched by the OR/MS literature as shown in Chapter 2.

1.4 Observational Data

Observational data consists of data that has been collected without any interference in the
assignment of treatment (Rosenbaum, 2005). This data can be primarily collected for an
observational study, or can be collected for other reasons (e.g., health record) and then
analyzed with an observational study. This latter setting is defined as secondary analysis
of observational data and is usually more challenging because of an increased missingness
of data for example.

While a randomized controlled trial (RCT) (also known as a randomized experiment) is
considered the gold standard, there exists several circumstances in which an observational
study is a viable option. For example, an observational study can be used to formulate
hypotheses to be tested in further RCTs and it can be used for ethical reasons when a
treatment is harmful or unwanted.

In addition, of importance to this thesis, observational studies can be used to reduce
the gap between the evidence needed and the evidence produced in healthcare. Currently,
it appears that only 10-20% of the medical decisions and 50-60% of the medical guidelines
recommendations are based on formal evidence (Institute of Medicine, 2013). While it is
financially inconceivable to perform RCTs for all the possible decisions faced by physicians,
it is more reasonable to address these questions by performing secondary analyses of data.

It is important to note however that observational studies doing prescriptive analytics
can be biased because of the uncontrolled treatment assignment. Hence, careful design of
observational studies, a topic of the causal inference literature, is required to reduce this
bias and approach the reliability of the RCTs.
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The MDM methods developed in this thesis are based on observational data, in par-
ticular health record data. Thus, this thesis explicitly addresses the limitations of using
observational data for prescriptive analytics in Chapters 3 and 5, in contrast to most studies
in the healthcare OR/MS literature that use observational data for prescriptive tasks with

no explicit discussions of the related issues (see Chapter 2).

1.5 Thesis Structure and Contributions

Chapter 2 reviews methodologies that could assist psychiatrists for MDM at the pharma-
cotherapy level in order to achieve remission for TRD patients. In particular, this review
focuses on analytics (i.e., methodologies from operations research and management sci-
ence (OR/MS), artificial intelligence (Al) and statistics) and identifies how the different
methodologies could be applied to our problem. This chapter also discusses the possible
synergies and complementarities among the different methodologies from OR/MS, Al
and statistics. In this chapter, it is found that no OR/MS studies are applied to MDD while
several such studies exist in the Al and statistics literature. In addition, it is found that the
mathematical models from both domains differ in their focus and characteristics.

Chapter 3 discusses some of the challenges of working with observational data (e.g.,
electronic health records, administrative and claims data), one of the most prominent
source of data for the past healthcare OR/MS studies. In particular, it exposes the funda-
mentals of causal inference (the field addressing inference when manipulating decisions),
and improves an existing method to determine the causal effects of the initial treatment
modifications for treatment-resistant depression. In this chapter, the improved method
is shown to obtain similar results and in many cases the best results when compared to
other similar causal inference methods on different simulation models. Then, for the TRD
case study where the goal is to determine which of five treatment modification strategies
is best at the initial visit, the treatment effects obtained with this improved method are
unfortunately not statistically significant with respect to the 95% confidence intervals. Still,
some findings are consistent with the medical literature and guidelines.

Chapter 4 studies an often neglected decision within the medical literature, i.e., the time
between appointments. This is an important trade-off decision given that more frequent
appointments can decrease the total number of different patients seen while less frequent
appointments can decrease the patients” well-being. In this chapter, we characterize how
this decision is taken at the DSDP using a two-stage framework. First, with the use of semi-

structured interviews, potential features used to determine the time between consecutive
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appointments are elicited from the four psychiatrists at the DSDP. Unsurprisingly, it
appears that similar features are used by each of these psychiatrists; yet, the importance
of these features to each psychiatrist cannot be captured by these interviews, the reason
for the existence of the framework’s second stage. Still, these interviews also capture the
variable experience and variable typical times between appointments for each of these
psychiatrists. Then, the second stage of the framework consists in the use of different
imitation learning (IL) methods. After a brief review of the existing IL methods, three
methods are selected for the case study, with one method being a proposed extension. The
results of the case study show that methods using discretization do not perform well in
this setting and that the importance of each feature appears to differ across physicians
when making this timing decision.

Chapter 5 consists in the personalized recommendations of TRD treatments using
recommender systems. This chapter consists somewhat of an extension of Chapter 3
where the treatments are now recommended in a personalized way and the treatments
now consist of drugs instead of treatment modification strategies. For this chapter, we
assume that the sequence of treatments that have been administered to the patient does
not affect the efficacy of the current treatment. In this chapter, two different treatment
definitions, which make sense from a medical point of view, are used. On these two
treatment definitions, we then fit models that use different features available in the data
set such as features describing the patient, the treatment and the outcomes resulting from
other treatments. According to different metrics, it appears that the models using the
most features from the data provide the best results. Thus, the limited number of features
describing the patient and the treatment does contain some relevant information. Yet these
models are not performing well enough to be used as decision aids. In this work, it is also
found that no treatment consistently leads to remission for all patients, but some patients’
subgroups are found to respond to the same treatments. These particular treatments could
then be assumed as being better than the other treatments which appear to only work for
one or two patients.

Finally, Chapter 6 provides concluding remarks and future directions for research.






Chapter 2

A Survey of Medical Decision Making
Methods Relevant for Treating
Depression

The motivation of this chapter is to review methodologies that could assist psychiatrists for
medical decision making (MDM) at the pharmacotherapy level in order to achieve remis-
sion for treatment-resistant depression (TRD) patients. In particular, this review focuses on
analytics (i.e., methodologies from operations research and management science (OR/MS),
artificial intelligence (Al) and statistics) and identifies how the different methodologies
could be applied to our problem. Finally, this chapter discusses the possible synergies and
complementarities among the different methodologies from OR/MS, Al and statistics.

2.1 Review Process

We define some inclusion/exclusion criteria in order to find the relevant papers to our
issue. In order to be considered by this review, a paper needs to respect all of the following

criteria:

1. focus on the treatment’s part of the clinical pathway (see Figure 2.1), in particular on
prescriptive models for the pharmacotherapy (e.g., optimization of the selection, timing
or dosage of the drugs);

2. focus on the patient and/or physician perspective(s) (see Table 2.1);

3. incorporate some notion of the wider definition of personalized medicine, i.e., not only
restricted to biological markers but also considers any other characteristics (e.g.,

sociodemographic, clinical) and extrinsic factors (e.g., lifestyle and environmental
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RECOVERY

PALLIATIVE
& END-OF-
LIFE CARE

FIGURE 2.1: Clinical pathway.

TABLE 2.1: Common stakeholder perspectives in medical decision making

(Denton et al., 2011).

Perspective

Description

Patient

Physician

Third part payer

Societal

Considers mostly the treatment effect (e.g., control or cure of the
disease, quality of life, side effects, disablement, life expectancy) but
might also consider the cost of the treatment if the third party
insurance doesn’t cover the expenditures.

Often aligned with that of the patient due to the shared
patient-physician decision making process but might have some
personal incentives to recommend a particular treatment or no
treatment (e.g., profitability, experience, time, difficulty).

Trade-off between the immediate cost of medical treatment and
long-term potential cost associated with serious health outcomes
due to an not-well treated disease.

Simultaneously considers the patient, physician and third part payer
perspectives. Uses the concept of willingness-to-pay to transform
these different criteria in monetary value or employ the concept of
an efficient frontier.

exposures) that induces an adaptation of a treatment to a particular patient (Simon
and Perlis, 2010; Burke and Psaty, 2007; Liebman, 2007);

4. use longitudinal data, preferably observational data (claims or clinical data) (Hunter,
2006; Overhage and Overhage, 2011); and

5. focus on data-driven methods (i.e., methods that are based on data and that do not

use biological models).
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2.2 Excluded Papers

The inclusion and exclusion criteria lead us to focus only on a small part of the MDM
literature. Before reviewing the papers that correspond to our criteria in Section 2.3 and
Section 2.4, we will acknowledge some of the excluded papers that also seem important
to MDM. These papers were found during our literature review but they unfortunately
didn’t correspond to one or many of our inclusion/exclusion criteria.

In the excluded papers from the OR/MS literature, there seems to be a great interest
in MDM research at the policy level. For example, there is research on the timing of the
screening decisions (Helm et al., 2015; Erenay, Alagoz, and Said, 2014; Yang, Goldhaber-
Fiebert, and Wein, 2013; Ayer, Alagoz, and Stout, 2012; Zhang et al., 2012¢; Alagoz, Ayer,
and Erenay, 2010; Chhatwal, Alagoz, and Burnside, 2010; Rauner et al., 2010; Ivy, 2009;
Liberatore et al., 2009; Tafazzoli et al., 2009; Maillart et al., 2008; Harper and Jones, 2005;
Leshno, Halpern, and Arber, 2003) and on the cost-effectiveness of several drug treatments
(Mason et al., 2014; Mason et al., 2012; Denton et al., 2009; Cooper et al., 2006; Paltiel
et al., 2004). There is also some research on non-pharmacological treatments such as
radiation therapy (Chan et al., 2014; De Boeck, Belién, and Egyed, 2014; Lavieri et al., 2012;
Taskin et al., 2010; Simon, 2009; Bortfeld et al., 2008; Romeijn et al., 2006), dialysis therapy
(Lee, Chertow, and Zenios, 2008), organ transplantation (Bertsimas, Farias, and Trichakis,
2013; Alagoz et al., 2007a; Alagoz et al., 2007b; Alagoz et al., 2004; Zenios, 2002) and hip
replacement (Keren and Pliskin, 2011; Hazen, 2004). Finally, there is some limited work on
the diagnostic of diseases (Lee and Wu, 2009; Rubin, Burnside, and Shachter, 2004).

In the excluded papers from the Al and statistics literature, we found many papers
from the areas of data mining (Yoo et al., 2012; Chaovalitwongse, 2009; Bellazzi and
Zupan, 2008; Cios and William Moore, 2002), expert systems (Wagholikar, Sundararajan,
and Deshpande, 2012; Pandey and Mishra, 2009; Shu-Hsien Liao, 2005), and artificial
intelligence and machine learning (Amato et al., 2013; Kononenko, 2001). These papers
mostly focus on the diagnostic part of the clinical pathway and are more concerned with
the predictive task.

There are also some excluded papers on MDM that wouldn't fall in either of the two
previous categories. In particular, there is some work done on the treatment of cancer (Shi
et al., 2011) and diabetes (Parker, Doyle, and Peppas, 2001): two diseases with known
pathophysiologies that can be represented by biological models. These papers are not
truly data-driven because they only use data to parametrize a mathematical model of
the disease. Unfortunately, the pathophysiology of major depressive disorder (MDD) is
currently unknown (Hasler, 2010) and hence these approaches are not relevant to our case.
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Finally, there are some excluded papers that are covering MDD. Some of them study
the predictors of quality of life (Ay-Woan et al., 2006), outcome (Berman and Hegel, 2014),
response to treatment (Simon and Perlis, 2010) or remission (Gudayol-Ferré et al., 2012; Lin
et al., 2011). Others are more concerned with a one-time prediction of the onset (Huang
et al., 2014; de Man-van Ginkel et al., 2013; Wong et al., 2012), outcome (Pfeiffer et al., 2015;
Berman and Hegel, 2014; Huang et al., 2014), response to treatment (Patel et al., 2015),
remission (Liu et al., 2014) or recurrence (Wang et al., 2014) of MDD. Instead of doing a
one-time prediction, some papers model the full dynamic of the disease with a Markov
chain (Marostica et al., 2015; Bhattacharya, 2014; Oskooyee, 2011), a finite state machine
(Demic and Cheng, 2014) or a simulation model (Patten, 2007). There is also some work on
the diagnostic of MDD (Wu et al., 2015). Finally, there is some work in expert systems in
mental health (Ohayon, 1993; Bronzino, Morelli, and Goethe, 1989) with more powerful
frameworks starting to appear (Bennett and Hauser, 2013).

2.3 Operations Research and Management Science

Operations research and management science (OR/MS) methods have been applied suc-
cessfully to a wide range of healthcare settings in the past (i.e., system design and planning,
management of operations and medical management) (Pierskalla and Brailer, 1994). In
particular, more recently, there has been a surge of interest in the application of OR/MS
methods to MDM because of the increasing healthcare costs, the increasing access to
better data, the high level of preventable medical errors and the trend towards the uni-
formization of medical practice (Tunc, Alagoz, and Burnside, 2014). This section covers
applications of OR/MS methods to MDM issues that fit within our previously described
inclusion/exclusion criteria. For other examples of OR/MS methods applied to MDM,
you can refer to Schaefer et al. (2004) and Zhang et al. (2013b).

2.3.1 Methodologies

Much of the early literature of OR/MS in MDM have focused on Markov models (Alagoz
et al., 2010). These models were used to represent disease progressions and compare
different policies. They are however limited when optimizing for the best policy. For
example, Alagoz et al. (2010) compared a Markov model and a Markov decision process
(MDP) model on the problem of the optimal timing of liver transplantation. The solution
time was under one second for the MDP and about one minute for the Markov model.
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Both gave the same optimal policy and optimal value. However, the Markov model only
explored the threshold policies while the MDP model was able to explore all possible
policies.

This is why MDP models are becoming increasingly popular for MDM (Alagoz et
al., 2010). Schaefer et al. (2004) provided an overview of MDP in the context of MDM.
Variants and extensions of this framework such as partially observable Markov decision
processes (POMDPs), semi-Markov decision processes (SMDPs) and approximate dynamic
programming (ADP) have also been used in this context (Schaefer et al., 2004). For more
information regarding these methodologies, refer to Puterman (2005), Bertsekas (2005),
Bertsekas (2012), and Powell (2011).

2.3.2 Applications

We now review some applications of OR/MS methods that respect our inclusion/exclusion
criteria. These are classified according to whether they address the issue of initiation,
switching, sequencing or dosage of treatment.

Treatment Initiation

Shechter et al. (2008) looked at the trade-off between benefits (e.g., avoid side effects
and development of resistance) and risks (e.g., irreversible damage to immune system,
complications and death) of delaying human immunodeficiency virus (HIV) therapy. They
developed an infinite-horizon MDP model to find the optimal time to initiate HIV therapy
that maximizes total expected lifetime or quality-adjusted life years (QALYs). They applied
their model to data from the Veterans Aging Cohort Study: an observational cohort study
of 25,000 HIV+ and 67,000 HIV- individuals. The action space at each state consists in
whether to initiate treatment or wait. The state h € H = {0,1,2,3,4} was either death
(i.e., h = 0) or one of the four CD4 count range (i.e., h € H' £ {1,2,3,4} where higher
is better). Interpolating splines on CD4 count prior to treatment were used in order to
determine the transition probability matrix (TPM) P (i.e., natural history model) under
constant time intervals. The expected remaining lifetime R(h) upon initiating therapy (i.e.,
survival model) was computed with Cox proportional hazard ratios between HIV+ and
HIV- for each CD4 category that were applied to standard life table data. Their model is
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given by:

4

V (k) = max {r(h) + ) eIV (), R(h)} forh e H

V(0)=0

where 7(h) is the immediate reward and p(j|h) is given by the TPM P. Their model can
work without discounting because of the absorbing state (i.e., death) that is reachable from
all states. They provided structural results for the optimal policy and, quality of life and
adherence variants of their model. Finally, some sensitivity analysis were done in order
to test the sensitivity of the optimal policy and optimal value to changes in the natural
history model or survival model.

Shechter, Alagoz, and Roberts (2010) improved over the model proposed by Shechter
et al. (2008) by incorporating the possibility of a new treatment development. Their model
consists in a finite-horizon model solved by backward induction where the terminal values
are given by infinite-horizon models. They apply their model to the same data as in
Shechter et al. (2008). An irreversible treatment 7} is always available to the patient and
there exists a possibility that a better treatment 75, currently under clinical trials, may
become available in N months with probability ¢. They set N to 12 months and they
explore different values for ¢ and R”? (defined later). The state is represented by the health
state h (as defined in Shechter et al. (2008)) and by the number of treatments available
m € {1,2}. The action space is either {W,T}} when m = 1 or {W, 73,71} when m = 2.
However, because 7> dominates 7}, the latter action space is reduced to {W,T5}. The

models are the following;:

Vi(h, 1) = max {T(h) + Y p(ih)Via (5. 1), RTl(h)}

=0

forheH , t=N,N—-1,...,2

Vi(h,1) = max {T(h) +(1—q) Y p(IMVeG, 1) +q > p(ilh)Va(i,2), RTl(h)}

=0 =0
forh € H'
4
Vo(h, m) = max {r(h) + Zp(j[h)Vo(j, m), RTm(h)} forh e H', m € {1,2}
=0

Vi(0,m)=0form e {1,2}, t=N,N—-1,...,0

where R (h) indicates the expected remaining lifetime upon initiating therapy with
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treatment m and health state i. They denoted by W (h) the perceived expected value when
considering only T; (same model as in Shechter et al. (2008)) and by W, (h) the actual
expected value when considering only 7} in the decision process but with an unknown
possibility of T, becoming available in N months. All these values have the following
ordering: W (h) < W7, y(h) < Vy(h,1). They proved some structural results for their
models and then compared the different optimal policies and values of W (h), W7, (h)
and Vy(h,1).

Liu, Brandeau, and Goldhaber-Fiebert (2017) also looked at the issue of technological
advances in treatment. They however assumed that the disease progression is deterministic
and that the irreversible treatment effectiveness can improve by random amounts over the
time horizon. Their model consists in a finite-horizon MDP where the goal is to maximize
the total expected QALYs. The available actions at each stage is to treat according to the
current treatment effectiveness or to wait for it to improve. The treatment effectiveness (i.e.,
the state of the model) consists in the probability of success of the treatment. It improves
stochastically according to either an incremental innovation model or radical innovation
model. After deriving structural properties of their model, they applied it to the treatment
of chronic hepatitis C. With three time periods and multiple scenarios, they were able to
capture intuitive results on this application.

Kurt et al. (2011) optimized the statin initiation policies for patients with Type 2 diabetes.
With a MDP model, they tried to identify the optimal time to initiate the irreversible statin
treatment in order to maximize the patient’s QALYs. Once the statin treatment is initiated
(m = 1), the patient’s lipid ratio (i.e., the health state), h, is improved by a factor w before
progressing according to the natural history model. The transition probability from health
state h to health state j at time ¢ under treatment status m is given by:

(

(1 —p*(H +1|h]q(j|h) ifh,j€H,
-y pit(H +1/|h) ifheH j=H+1
) = ther

1 ith=j7=H+1

0 otherwise

\

where p;"(H + 1]h) is the probability of an adverse event (i.e., state H + 1) and ¢(j|h) is the
probability of transitioning to j from h given that the patient does not incur an adverse
event. The rewards r™(h) are defined as the QALYs between each time periods and as
0 if in the absorbing state H + 1. There are N + 1 time periods. The last time period is
used as an infinite horizon MDP where we assume that the parameters don’t change. The
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optimality equations are given by:

max {ro(h) A jen PG Ve (), Rt(h)} forheH,t=1,...,N
max {ro(h) + AZjeHP?—l(ﬂh)Vt(j),Rt(h)} forhe H,t=N+1

PU(R) + A e PG Resa (j) forh € Hyt=1,..., N

Rt(h) =
PH(R) + A e P (IR Ri(j) forh e H,t =N + 1.

R;(h) corresponds to the total expected rewards of starting statin at time ¢ in health h. A
corresponds to the discount factor. Kurt et al. (2011) derived structural properties for their
model and applied it to longitudinal data from Mayo Clinic in Rochester. Through their
numerical application, they found that their optimal solutions are both sensitive to the
definition of the rewards function and to the treatment effect w. They also found that their
model leads to improvements in QALY's over the current treatment guidelines.

Zhang and Denton (2015) provided a robust MDP model for the glycemic control of
patients with type 2 diabetes. It is built upon the Markov chain model proposed by Zhang
et al. (2014). The goal of the model is to decide which of the multiple available treatments
to initiate (or not) at each stage according to the state of the system (i.e., the health state and
the remaining treatments) in order to maximize the patient’s QALYs. They proposed an
interval matrix model with a budget of uncertainty for the uncertainty set of the transition
probabilities between health states. The full transition probability matrix consists in the
transition probabilities between health states and the probability of entering the absorbing
state (i.e., probability of an adverse event). The uncertainty set respects the rectangular
uncertainty property to maintain tractability. They provided algorithms in order to solve
their robust counterpart and applied this model to the claims data of Zhang et al. (2014) in
order to provide the Pareto frontier. They showed that their robust model can be solved in

a timely fashion while allowing for the adjustment of conservativeness.

Treatment Switching

Hsih (2010) worked on the glycemic control of type 2 diabetes patients. They developed a
MDP model to optimize the selection of medication in order to keep the health measures in
the normal ranges. Their objective function is a combination of piecewise linear functions
of the four health state’s dimensions. The health state is discretized in order to solve
it as a MDP model. Their study includes the process of optimal learning to the MDP
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model. This model can thus be viewed as a multi-armed bandit model where there is
an exploration-exploitation tradeoff. They used a Dirichlet distribution to represent the
transition probability matrix. They compared a model called pure exploitation (PE) that
uses the current Dirichlet distribution in order to find the optimal action at a stage with
a model called knowledge gradient (KG) that also takes into account the learning value
of each possible action at that stage. The KG model puts a greater emphasis on the
exploration than the PE model. It is however much more expensive to compute. From their
experimental results, they found that the KG model outperforms the PE model especially
when a prior underestimates the probability of mild effects for a chosen action. They also
found intuitive results regarding the use of the different drugs in order to treat type 2
diabetes.

Jiang and Powell (2015) developed a convergent ADP algorithm for monotone value
functions. By exploiting the structure of the value functions, it increases the convergence’s
rate significantly over the other ADP algorithms. It is also faster than backward dynamic
programming while providing really good solutions. For the MDP setting without optimal
learning of Hsih (2010), they found that their algorithm was able to provide solutions

within 1.5% of the optimal solution while significantly less computation.

Treatment Sequencing

Kahruman et al. (2010) optimized the adjuvant endocrine therapy plan for HR+ early stage
breast cancer patients who are postmenopausal. They used a mixed integer nonlinear
programming model in order to determine the drugs to use for the first and second phases,
and the length of these phases. The parameters of their model are based on data from
published randomized controlled trial (RCT) results. Their model tries to maximize the
disease-free survival (DFS) percentage at the end of the treatment period. It takes into
account the different side effects associated with these drugs (i.e., thromboembolic events,
cardiovascular disease events, endometrial cancer, bone fractures, hot flushes and vaginal
bleeding) through constraints that bound their risk. The equations deriving these risks
for each treatment plan are derived from the RCTs data. These equations are the one
rendering the model nonlinear. Kahruman et al. (2010) tested different parameters values
for their model. They found that the recommended treatment plans depends on the risk
bounds for the side effects. They also found that a shorter first phase leads to promising
results. Hence, they recommended conducting such RCTs. Finally, they evaluated the
DEFS percentage and the different side effects risks for treatment plans that were tested in
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the published trial results. They found that their model represented well these treatment

plans.

Treatment Dosage

He, Zhao, and Powell (2010) worked on the controlled ovarian hyperstimulation cycle of
the in vitro fertilization-embryo transfer therapy. They built a discretized finite-horizon
stochastic model of the problem in order to minimize the risk of ovarian hyperstimula-
tion syndrome and maximize the probability of pregnancy. Their state consists in three
measures frequently used in the medical practice. The decision consists in whether to give
two or three ampoules of gonadotropin at each of the time epoch. The time horizon has a
maximum length of 20 days but can be stopped before (down to 6 days after initiation of
therapy) if the mean diameter of the larger ovary (i.e., one of the state variables) grows
larger than 18 mm. The transition probability matrix of the states is splitted into two
parts: (1) a deterministic part that depends on the patient class and the dosage and (2) a
correlated stochastic part that depends on the patient class and the previous state. The
patient class (i.e., normally responsive or highly responsive) is assumed to be known a
priori and is assumed to stay the same throughout the full time horizon. The cost function
is defined as an additive piecewise linear convex function that depends on two variables
of the state. It is incurred when the time horizon finishes or when the stopping condition is
met. He, Zhao, and Powell (2010) provided a modified backward dynamic programming
(DP) algorithm to solve their problem and did several analysis of their discretized model
against a simulation model. They tested the effect of different levels of discretization, the
impact of a wrong patient classification and the robustness of their cost function. They
were not able to find a structural characterization of the optimal policy.

He, Zhao, and Powell (2012) solved the same problem as He, Zhao, and Powell (2010)
but by using an ADP model. They did this in order to improve the solution time of He,
Zhao, and Powell (2010) without affecting too much the quality of the solution found. Three
different ADP approaches were proposed. The first one, the lookup-table ADP, consists in a
lookup table for the value function that is updated according to simulated trajectories. The
second one, the separable piecewise linear (PWL) value function approximation, leverages
the convexity and separability properties of the value function. It updates the slopes of the
linear segments of the value function according to simulated trajectories. It also ensures
that the convexity property is maintained. The last one, the indexed piecewise linear
function, improves over the second one by indexing these slopes according to intervals of
the ovary diameters (i.e., a dimension of the state variable). This indexing allows to take



2.3. Operations Research and Management Science 19

into account the correlation with the ovary diameters. It, however, increases the number of
functions to evaluate. They, thus, use a weighted sum of the indexed functions and PWL
functions for this last ADP model. Numerical comparison of these ADP models with the
MDP model of He, Zhao, and Powell (2010) shows that the two PWL approximations are
superior to the lookup-table approximation because they leverages characteristics of the
problem. They are both close to the optimal solution value of the MDP benchmark and
they allow to reduce the solution time from 41.2 hours (MDP benchmark) to seconds.

Ibrahim et al. (2016) worked on personalizing the dosage of warfarin; a drug used to
prevent hearth attacks, strokes and bloth cloths that accommodates a narrow therapeutic
window. They developed a two-stage solution that is in line with medical practice. Their
tirst model corresponds to the initiation stage and learns sequentially about the patient
sensitivity to warfarin using POMDP until it converges to an exogenous required accuracy.
It is described by the following Bellman’s equation:

Vi(b) = min {R(b, d)+ 60> p(b.d,0)Vii(r(b,d, 0))}

de
oeO

where t is the time period, b is the belief state for the sensitivity v, d is the dosage action,
R(b,d) is the immediate risk of having dosage d with a belief for sensitivity b, 6 is the
discount factor, o is the international normalized ratio (INR) measure, p(b,d, o) is the
probability of observing o given b and d and 7(b, d, 0) is the update function for the belief.
Assuming a linearly additive Gaussian form for the dose-response model, they provided
a closed-form update function for the belief. Their risk function is a quadratic function
where the minimum is located at an INR value of 2.5. Their second model corresponds to
the maintenance stage and optimize the dosage with respect to the expected risk. It used
the final updated distribution for the sensitivity that was learned in the first model. Their
second model is the following MDP:

Vi(s) = Zréi,ﬁl {7’(3, d) + 9§PS(S7 d, S’)V}_l(sl)}
where s is the INR measure. They proved that the myopic policy is optimal for this MDP
model and they are thus able to solve this problem analytically. They also solve this
problem for the case where the objective consists in maximizing the time in the therapeutic
range. Their two-stage approach was applied to observational data from the Jewish
General Hospital in Montreal. They fitted their linearly additive Gaussian model on the
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data of the 503 patients in order to find the variance of the error term and the parameters
for the relevant fixed effects at the population level. They discretized their states and action
space according to the data and literature. It gave them three levels for the sensitivity, five
intervals for the INR values and five possible actions. The state-transition probabilities
were determined according to the dose-response model. With their application, they found
that it suffices to have a short initiation stage in practice and that, if the physician is unsure

about the sensitivity, it is better to underestimate it.

2.4 Artificial Intelligence and Statistics

This section covers methodologies and applications at the intersection of artificial intelli-
gence and statistics. In particular, this section will discuss the dynamic treatment regimes
(also known as adaptive treatment strategies) literature (Chakraborty and Moodie, 2013),
which is an emerging field that specifically address our problem and that is mainly based
on the reinforcement learning and causal inference literature.

Reinforcement learning (RL) is a subfield of machine learning that focuses on the search
for the best sequence of actions in order to maximize the rewards of a learner while he is
interacting with the environment. It includes Markov decision processes (MDPs) seen in
Section 2.3 but it also includes settings with unknown system dynamics (i.e., unknown
state transition probabilities and reward functions), limited data (i.e., no generative models
or expensive data collection) and non-Markovian set-ups (i.e., history dependent). These
latter settings are similar to what medical decision making is generally facing. Under
these settings, RL is also known as a specific setup of ADP. In this section, we only cover
some particuliar methodologies from RL. For a more general overview, refer to Sutton and
Barto (1998), Bertsekas and Tsitsiklis (1996), and Kaelbling, Littman, and Moore (1996).
For a general framework for designing and testing a RL approach for dynamic treatment
regimes (DTRs), refer to Vincent (2014).

Causal inference is a subfield of statistics, epidemiology, economy and social sciences.
It is interested in determining the causal effect (i.e., not the association) of a treatment,
exposure or intervention on an outcome. There has been a lot of work done over the years
by James Robins and colleagues on approaches to model and estimate the joint effects of a
sequence of treatments (Vansteelandt and Joffe, 2014). The prior work of Robins described
by Vansteelandt and Joffe (2014) is, however, not dynamic (i.e., personalized) with respect
to previous observations (i.e., past outcomes and treatments) so it will be skipped in favor

of the work done on dynamic treatment regimes described here. Causal inference is also
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interested in the statistical estimation of error which will be discussed at the end of this
section. For more information about causal inference, refer to Hernan and Robins (2018).

With the dependence of DTRs on subfields of artificial intelligence and statistics, it
is easy to see how it can be seen as analytics. There are several good references in the
literature that review the work that has been done on DTRs. For a quick introduction,
refer to Chakraborty and Murphy (2014), Zhao and Laber (2014), Moodie, Richardson, and
Stephens (2007), and Murphy et al. (2007). For a more comprehensive overview, refer to
Chakraborty and Moodie (2013).

2.4.1 Methodologies

The DTR literature is generally interested in one of two goals. It either compares two
(or more) preconceived DTRs in terms of their outcomes or solves for the optimal DTR
(Chakraborty and Moodie, 2013). Many approaches have been developed for these two
goals. These approaches are based on the potential-outcome framework that has been
developed in the causal inference literature. We first review this framework and some
notation before looking at the indirect and direct approaches to accomplish these goals.
In this subsection, we also cover some other interesting methodological aspects and the
confidence sets that can be constructed over the parameters or the values of the DTRs.
Finally, we discuss the sequential multiple assignment randomized trial (SMART) design
which is the randomized controlled trial design generally used with DTRs.

Potential-Outcome Framework and Notation

The potential-outcome framework (Robins, 1986) that was developed in the causal infer-
ence literature is the basis for the methods that will be discussed next. This framework is
necessary to infer the expected potential outcomes that would occur for an individual if
he receives treatments different than the ones observed. In order to take the population
averages for these expected potential outcomes, the following assumptions are necessary
in the context of DTRs (Chakraborty and Moodie, 2013):

1. axiom of consistency (i.e., potential outcome under the observed treatment and the

observed outcome agree);

2. stable unit treatment value assumption (i.e., a subject’s outcome is not influenced by

other subjects’ treatment allocation); and

3. no unmeasured confounders.
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The first assumption requires that it is possible for all treatment options to be assigned to
all individuals in the population. The second assumption requires that there are no inter-
personal dynamics between the population’s individuals that could influence the outcomes.
The third assumption always holds under randomization and may be approximately true in
observational studies when all confounders have been measured. Additional assumptions
might also be necessary depending on the context and the methodology.

We will now introduce some notation that will be reused in the following subsections.
Assume there are K stages. Let A; denote the random variable (RV) describing the
treatment/action taken at stage j. Let O; denote the RV describing the observation/state
at stage j. Let H; £ (O, A1,0,,...,A;_1,0;) denote the RV describing the history at
stage j. Let Y, denote the RV describing the outcome/reward at stage j. For all the
previous RVs, let a;, 0;, h; and y; denote their respective observed values. A DTR is
often represented by a policy d £ (dy,ds, . . ., dy) that gives the action a; that needs to be
taken at each stage j according to the decision rules d; that depends on the history H;,
i.e. a; £ d;(H;). The optimal policy is denoted by d,,. Finally, for each RVs or observed
values, let ; £ (v1, 7y, ...,2;), 2; = (zj,%11,. .., 7x) and & denote the estimated value of

J
x.

TABLE 2.2: Notation reference for Section 2.4.

Notation Description
A, Action/treatment at stage j
0, State/observation of a patient at stage j
H; = (0j,A; 1) History at stage j
Y; =Y;(Hj, Aj,Oj11) = Y;(04, A;,0;41) Reward/outcome at stage j
d; = d;(H;) Decision rule at stage j that depends on
history H;
d=(dy,dy,...,dg) Policy
dopt Optimal policy
Indirect Methods

Indirect methods were the first methods to be proposed for DTRs. These are called indirect
because they use a model in order to evaluate the value of regimes. These can be split in
three categories: (1) quality learning, (2) advantage learning and (3) G-computation. The
tirst two are semi-parametric while the last one is fully-parametric. We review all of them
and give a short comparison of the first two.
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Quality Learning Quality learning (Q-learning) was brought from the reinforcement
learning literature. It was originally proposed by Watkins (1989) as a method to solve
multi-stage decision problems from sample data trajectories. In contrast with dynamic
programming (Bellman, 1957), it doesn’t require the complete knowledge of the system
dynamics and it is able to deal with the curse of dimensionality with the use of function
approximations. Q-learning can be viewed as an ADP approach.

As described in Chakraborty and Moodie (2013), Q-learning consists in learning a
Q-function at each stage, j, that is parameterized by an action, a;, and an history, &,. The
Q-function computes the total expected reward-to-go starting from the history h; at stage
J, using the action a; and then following the policy d until the end of the horizon:

Q(hj,a;) = E[Y;(Hj, Aj, Oj1) + Vi (Hj) | Hy = hy, Aj = a;)

where V| (H;41) = Ed[Zf:jH Yi(Hy, Ak, Og41)|Hj41]. If this policy d is optimal, we then
called this Q-function the optimal Q-function, Qjo.p *. Once the optimal Q-functions have
been learned by backward induction for all the stages, finding the optimal policy consists
only in solving at each stage and for all histories the action that maximize the corresponding
Q-function.

It is rarely the case that we can represent this Q-function exactly, especially when it
depends on the full history as described here. We must therefore approximate this function
by a model. Almost any model can be used to approximate this function. There are many
types of models that are proposed in the reinforcement literature such as trees (Ernst,
Geurts, and Wehenkel, 2005) and kernels (Ormoneit and Sen, 2002). Refer to Vincent
(2014) for other examples in the RL literature. However, the most often used model for
the Q-functions in the DTR literature is the linear parametric model. Only few papers in
the DTR literature have applied different models. Moodie, Dean, and Sun (2013) used
the generalized additive model (GAM) framework for the Q-functions and compared
this approach to Q-learning with linear models and other variants on simulated data.
The GAM approach showed low bias and low variance compared to these other models.
Pineau et al. (2007) used kernel regression as proposed by Ormoneit and Sen (2002) on
data from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial that
is described below. The concept of kernel regression is to regress on the patients instead of
their variables. This is why it is called an instance-based approach. You regress by putting
more weights on the patients that are similar to the one you are trying to explain. Similarity
is measured as the distance between the states of a pair of patients with a same treatment
history. If the treatment histories are different, then the similarity measure is equal to
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zero. Unfortunately, this paper was not able to identify a clear drug winner because there

weren’t enough data or enough difference between the different drug effects.

Advantage Learning The Q-learning approach models the conditional mean outcomes.
This section describes methods that model the contrast of conditional means, i.e., advantage
learning (A-learning) methods. Most of the following methods were originally developed
in the causal inference literature in contrast to the Q-learning approach that were developed
in the Al literature.

Murphy (2003) proposed to model the regret function at each stage by a parametric
model. The regret function captures the increase in the total expected reward-to-go that
we forego by taking action a; instead of the optimal action at stage j from history h;:

py(hs05) = max Q" (hy, a5) = Q" (hy, a5) = V¥ (hy) = Q' (hy. ).

The proposed parametric model for 1i;(h;, a;) use (1) a link function that is parameterized
by the difference between the chosen action and the optimal action and, (2) a scaling
parameter applied to this link function. By changing the shape of the link function, it is
possible to influence differently the regret function when the action chosen deviates from
the optimal decision. Murphy (2003) also proposed an iterative procedure to estimate the
parameters of these regret functions. This procedure is based on an equation that the regret
functions should respect.

Robins (2004) extended the earlier work done by Robins and colleagues (Vansteelandt
and Joffe, 2014) on structural nested mean models (SNMMs) and G-estimation to the DTR
setting. Like Murphy (2003), the proposed approach models the contrast of conditional
means. However, this contrast is defined differently. It is defined by the optimal blip-to-
reference function:

Yy, a) = EIY (@5, d2%) — Y (@, 40 2| Hy = ]

it LA
where optimal refers to the policy, c_l?’fl, followed after stage j and blip refers to the single-
stage change in treatment at stage j for the reference regime d;ef instead of a;. The most
often used reference regime is a “zero regime” such as placebo or standard care in which
case we call the function the optimal blip-to-zero function. We can easily see that the
approach proposed by Robins (2004) captures the model proposed by Murphy (2003) by
taking the negative of the optimal blip-to-reference function where the reference regime is
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the optimal regime. Robins (2004) proposed G-estimation in order to find the parameters

of the optimal blip functions.

Q-Learning vs. A-Learning Due to their differences, Q-learning and A-learning show
different properties. Blatt, Murphy, and Zhu (2004) showed that A-learning is less subject
than Q-learning to exhibit bias due to the function approximation. However, A-learning
was shown to produce more variability than Q-learning. On a similar note, Schulte et
al. (2014) found that A-learning offer robustness to model misspecification compared to
Q-learning but it may not be as good when the model is correctly specified. Schulte et al.
(2014) also mentions that many diagnostic tools are available for Q-learning and that
A-learning increases in complexity rapidly when increasing the number of treatments at

each stage.

G-Computation G-computation (Dawid and Didelez, 2010; Robins, 1986) is a fully para-
metric approach that models and then simulates data forward in time. It thus solves the
dynamic program going forward in time. It is able to compute the value of a policy, d, by
titting a model ¢;(h;, a;; ;) for the inner conditional expectation of the following equation
(Chakraborty and Moodie, 2013):

Vd:E{ Z ﬂ_[dl(hl):al,...,dK(hK):CLK]
{(

hj,a;)1<j<K}

x F

K
D YilH; = hyj, A; = aj] }

j=1

The main advantage of G-computation is that it doesn’t require knowledge or estimation of
the exploration policy = which is unknown in observational data. It requires, however, to
keep track of many trajectories in complex settings with many stages and dimensions, and
it is also prone to model mispecification (Chakraborty and Moodie, 2013). G-computation

easily extends to a Bayesian framework instead of the frequentist framework.

Direct Methods

Direct methods, also known as value maximization methods or policy search methods,
evaluate directly the value function of dynamic treatment regimes V. Thus, in order to
tind the optimal DTR, we only need to find the policy, d, that maximizes the estimator,

V. These approaches suffer less bias than the indirect methods but may lead to more
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variance (Zhao and Laber, 2014). These approaches also lack a prognostic model but
are suitable when we want to find an optimal DTR among a restricted set. There are
currently three main approaches to directly estimate the value of an arbitrary regime:
(1) inverse probability of treatment weighting, (2) classification-based methods and (3)

dynamic marginal structural mean models. We will now discuss these.

Inverse Probability of Treatment Weighting Inverse probability of treatment weighting
(IPTW) is used when computing a statistics for a population different than the one we
observed. In our case, we are trying to compute V¢ under policy d for data that has been
generated according to an exploration policy 7. This can be done with:

Vd = EdY = /ded == /wdﬂrYde

where

Y = Zle Y;(H;, A;,O;41) and 7;(A;|H;) denotes the probability of selecting A; under
history H; for an exploration policy 7; (Chakraborty and Moodie, 2013). You can refer to
Hernén et al. (2006) for a comparison between IPTW and G-estimation.

In order to accommodate the case where the exploration policy, 7, is unknown (i.e.,
observational data). Zhang et al. (2013a) extended the augmented IPTW method proposed
by Zhang et al. (2012a) to the multi-stage setting. The approach focuses on a restricted class
of regimes and offers comparable performance against Q- and A-learning under correctly
specified models. However, it is computationally burdensome due to the maximization of
a discontinuous objective function and there are no theoretical results available for this

approach.

Classification-Based Methods Zhao et al. (2015) extended the approach proposed by
Zhao et al. (2012), a particular case of the framework proposed by Zhang et al. (2012b),
to the multi-stage setting. It consist in transforming the search of an optimal DTR into a
sequence of weighted classification problems or into a single classification problem. In
order to work, these nonparametric approaches require data generated from a SMART
design (see Section 2.4.1) with a known generative policy that respects certain conditions.
However, Zhao et al. (2015) note that extension of the framework to observational data
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should be possible. Zhao et al. (2015) showed that their proposed approaches have better

or equal empirical performance than Q-learning and A-learning.

Dynamic Marginal Structural Mean Models Orellana, Rotnitzky, and Robins (2010)
extended the marginal structural mean (MSM) approach to the dynamic multi-stage
setting. This approach consists in augmenting the dataset with a replicate of an individual’s
trajectory for each regime of interest with which it (partially) agrees up to some stage.
These replicates are then censored at the time when they stop agreeing with this particular
regime. Finally, these censored trajectories are weighted with IPTW in order to compute
the corrected value V¢ for each regime d of interest. This approach can be easily applied to
a small set of regimes like identifying a threshold for switching treatment (Shortreed and
Moodie, 2012). Recent developments on this approach have been done from a Bayesian
perspective for non-dynamic treatment (Saarela et al., 2015).

Other Interesting Aspects

Most of the previously presented approaches were developed for a discrete action space
with a single continuous outcome where the outcome usually represents an health state.
Depending on the problem at hand, however, it might be interesting to look at variants
of this context. For instance, Rich, Moodie, and Stephens (2016) applied SNMMs with
a continuous action space while Moodie, Dean, and Sun (2013) worked on the aspect of
discrete-valued outcomes.

Laber, Lizotte, and Ferguson (2014) focused instead on the issue of multiple reward
functions (e.g., symptoms and side effects). Past works have usually compounded multiple
outcomes into a single score. While the work by Lizotte, Bowling, and Murphy (2012) was
able to estimate an optimal regime for all linear trade-offs simultaneously, it still assumed
that the composite score was a linear combination of all the outcomes. The set-valued
DTRs approach developed by Laber, Lizotte, and Ferguson (2014) differs. It constructs a
set of DTRs that are dominating all the other regimes by at least a predefined margin over
the different outcomes. A physician can then select a regime within this set.

Zhao et al. (2011) worked on a different definition of the outcome. The outcome in
this case is the survival time. This outcome can be described as a censored time-to-event
outcome. They used support vector regression with a Gaussian kernel in Q-learning in
order to solve this problem.

Finally, Shortreed et al. (2011) applies multiple imputation (i.e., fully conditional speci-
tication and Bayesian mixed effects methods) to fill in the missing values of their dataset
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in the context of Q-learning. Missing data is an issue that must usually be addressed in

both observational and controlled studies. If unaddressed, it can lead to biases.

Confidence Sets

One of the last methodological subject that we cover is the construction of confidence sets.
These can be either constructed for (1) the parameters or (2) the value of a regime. These
two types of confidence sets are discussed in the context of Q- and A-learning. You can
consult Orellana, Rotnitzky, and Robins (2010) for information regarding confidence sets

for parameters in dynamic MSM models.

Confidence Intervals for the Parameters of a Regime Confidence intervals (Cls) for the
parameters of a regime is important because it can help with variable selection (e.g., which
part of the history does not need to be collected) and can help to determine whether there
is sufficient support to recommend one treatment over another one. A major complication
with constructing these CIs consists in the phenomenon of non-regularity. Non regularity
results from the non-smooth maximization operation at each stage and usually happens
when the optimal decision rule is not unique (Chakraborty and Moodie, 2013). Non-
regularity causes an asymptotic bias to the CIs computed with standard methods. It must
thus be addressed. A number of approaches have been developed to devise CIs for the
parameters in the context of non-regularity.

Robins (2004) used the idea of projection CIs and improved it for DTRs. This approach
construct a joint CI for all of the parameters and then projects this CI to obtain the CIs of
interest. It is however conservative and computationally expensive. Hence, it has not yet
been implemented (Chakraborty and Murphy, 2014).

Chakraborty, Murphy, and Strecher (2010) proposed hard- and soft-thresholds estima-
tors for Q-learning. These consist in setting to zero (for the hard-threshold) or shrinking to
zero (for the soft-threshold) the contribution of the treatment effect for a particular history
if we can’t reject the null hypothesis of the treatment effect with this history. The resulting
functions are still non-smooth but they can be assumed to be less non-regular (Chakraborty
and Moodie, 2013). We can thus use the usual bootstrap approach to devise CIs for the
parameters. Chakraborty, Murphy, and Strecher (2010) proposed a data-driven approach
to select the tuning parameters in the soft-threshold estimator but none was proposed to
select the tuning parameters for the hard-threshold estimator. A variant of this approach
for G-estimation (i.e., Zeroing Instead of Plugging In) has been proposed by Moodie and
Richardson (2009).
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Song et al. (2015) proposed a similar shrinking framework called penalized Q-learning.
The big difference with this new approach is that the shrinking happens during the fitting
of the parameters with a penalized least squares optimization. This new approach allows
the computation of CIs explicitly (i.e., without relying to bootstraps) and is hence less
computationally expensive. The drawback of this approach is that it can only deals with
discrete observations; a concern that has been addressed in the improved version proposed
by Goldberg, Song, and Kosorok (2013). Finally, this approach can be easily adapted for
G-estimation.

Different bootstrap variants have also been proposed in order to compute Cls in the
face of non-regularity. Chakraborty, Murphy, and Strecher (2010) implemented the double
bootstrap CI for Q-learning. It was empirically found to offer valid CIs in the face of
non-regularity. It can also be applied for G-computation. It is however computationally
very intensive. Laber and Murphy (2011) proposed an adaptive bootstrap procedure. It
is theoretically based and provide valid (but potentially conservative) CIs. It is however
again computationally expensive. It requires to solve a difficult nonconvex optimization
problem. Finally, Chakraborty, Laber, and Zhao (2013) proposed the m-out-of-n bootstrap
scheme for Q-learning with a data driven approach to select the resample size m. It
also provides valid (but potentially conservative) CIs. However, it is conceptually and
computationally simple.

Confidence Intervals for the Value of a Regime Little work has been done on the con-
struction of ClIs for the value of an estimated regime, even though this challenge has been
addressed by multiple studies for RCTs specifically designed for pre-specified regimes
(Chakraborty and Murphy, 2014). The only work that almost accomplish this goal is the
work by Laber and Murphy (2011). They proposed a CI in the context of classification,
which is close to the direct estimation of DTR as we saw earlier. More work is however
needed in order to apply this method to the DTR setting (Chakraborty and Murphy, 2014).

Sequential Multiple Assignment Randomized Trial Design

These previously discussed methodologies can be applied to data originating from either
longitudinal observational studies or sequentially randomized trials (Chakraborty and
Moodie, 2013). While we decided to focus mainly on observational data in this paper, we
will briefly introduce the sequential multiple assighment randomized trial (SMART) design
that is frequently used to develop optimal DTRs. Murphy (2005) proposed the general
framework of the SMART design for the development of adaptive treatment strategies. A
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SMART is a multi-stage trial where randomization occurs at each stage usually conditional
on some past observations (i.e., past outcomes and/or actions). This type of trial design
conforms better to the way clinical practice for chronic disorders occurs while retaining
the advantages of randomization (e.g., the elimination of confounders) (Chakraborty and
Moodie, 2013). The methodologies developed around this design allows, for example, the
designer of a study to compute the optimal sample size in order to answer its primary
research question with confidence.

One SMART that is of particular interest to us is the Sequenced Treatment Alternatives
to Relieve Depression (STAR*D) (Fava et al., 2003; Rush et al., 2004). It is a multi-site,
multi-level randomized controlled trial designed to assess the comparative effectiveness
of different treatment regime for patients with MDD (Chakraborty and Moodie, 2013).
There were 4,041 patients enrolled in this study. There were several clinic visits during
each treatment level of the study. If a patient was considered unsuccessful with his
assigned treatment (i.e., a score of more than 5 on the Quick Inventory of Depressive
Symptomatology (QIDS) scale), he was rerandomized to the next level according to his
preferences (i.e., switch or augment) if these apply. If a patient was successful with his
treatment, he entered the follow-up phase. An overview of the different levels of the
STAR*D trial is available in Figure 2.3 of Chakraborty and Moodie (2013).

2.4.2 Applications

We will now review some applications of these methodologies that fit with our inclu-
sion/exclusion criteria. Rosthgj et al. (2006) focused on the problem of dynamically dosing
warfarin to control the risk of blood clothing and excessive bleeding. It is one of the first
studies to apply the regret approach proposed by Murphy (2003). They looked at the first
14 clinic visits of 303 patients and started their analysis after the fourth visit. The state is
defined as a deviation measure from the standard INR range. The action is the change
in the warfarin dosage; a discrete variable determined by the 0.5, 1, 3 and 5 mg tablet
sizes. They did not take into account the timing of visits. The outcome is the estimated
percentage time in range between the visits. Their semi-parametric model for the regret
only depends on the current state and selected action, i.e. it does not depend on the
previous history, and it forces the parameters to be the same for all stages. With the use
of a simple bootstrap estimate, they justified that all the parameters of the model were
necessary. They were able to get a 10% improvement over the current dosing policy.
Cain et al. (2010) explored DTRs of the form “initiate treatment within m months after

the recorded CD4 cell count first drops below z cells/mm?” in the context of HIV-infected
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patients. They used a dynamic MSM method to find the optimal DTR. They allowed z to
take values between 200 and 500 in increments of 10 and, they fixed m at zero and then
at three. There were 4,237 HIV-infected individuals in their database. The outcome of
interest is clinical acquired immune deficiency syndrome (AIDS) or death. In the end, they
found the same optimal DTR with m = 0 and m = 3.

Cotton and Heagerty (2011) searched for the optimal hematocrit range that does not
require a change of epoetin dosage in order to maximize survival time for patients with
end-stage renal disease. Their approach uses a dynamic MSM model and is based on
Medicare claims for hemodialysis of 7,495 subjects. The DTRs that they looked at are of
the form (Chakraborty and Moodie, 2013):

Ay e Ay % (0.75,1.25) if O, € (& — 3,9 +3)
Aj—l X (125, OO) if Oj < 1/1 +3

where A; and A;_; are the epoetin dose respectively at stage j and j — 1, O; is most
recent hematocrit measurement, and 1 is the middle value of the target range. They did
pairwise comparisons between the regime defined by 1) = 33 and the ten regimes defined
by ¢ = 31,...,40. They found that the range (34, 40) significantly improves survival over
the range (30, 36) for this population.

Li et al. (2014) compared a fixed set of pre-specified DTRs for antidepressants on
a database maintained at the Department of Veterans Affairs” Serious Mental Illness
Treatment Research and Evaluation Center. There were 100,517 records of veterans taking
antidepressant medication. Their outcome of interest is the adherence time. They used
IPTW to adjust for censoring.

Laan and Petersen (2007) applied a dynamic MSM model to data from the Study of
the Consequences of the Protease Inhibitor Era in order to determine when to switch
antiretroviral therapy. They analyzed 100 subjects within this cohort study. Their results
shows that “immediately following loss of viral suppression, individuals with high CD4
T-cell counts can wait to switch, while individuals with low CD4 T cell counts should
switch immediately”. The dependance on CD4 T cell count is less important at later time

points.
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2.5 Discussion

In this section, we reflect over the papers that we saw in the last two sections. We start by
going over the papers that directly addressed the treatment of major depressive disorder
(MDD). We then discuss some of the differences in the methodologies of the last two
sections. Finally, we discuss the natural synergy between these two fields.

2.5.1 Applications to Major Depressive Disorder

Among the previously discussed papers, there are seven papers (see Table 2.3) who focused
on MDD. All of them were described in Section 2.4. No studies applied to depression and
titting our criteria were found in the OR/MS literature. Five of these papers used the data
from the STAR*D trial described in Section 2.4.1 and analyzed some different aspects of the
data. One paper (Zhao et al., 2012) used the data from the Nefazodone-CBASP trial, a trial
comparing the use of Nefazodone, cognitive behavioral-analysis system of psychotherapy
and the combination of both. Finally, a last paper (Li et al., 2014) used observational data
from the Department of Veterans Affairs” Serious Mental Illness Treatment Research and
Evaluation Center in order to see the effects of different antidepressants on adherence
time.

While all these applications used different methodologies, the issues they addressed
were limited to the framework of the trials except for the study by Li et al. (2014) that used
observational data. Thus, these studies only explored some limited decision set that might
not be relevant for every day’s practice. However, these studies might be insightful, for
example, when trying to decide on which variables to include within the history and how
to define the outcome. We can’t necessarily define them the same way that it was done in
the studies, due to data or goals, but these studies will give us a rough idea of what should
be done.

2.5.2 Methodologies

We now discuss some of the differences between the methodologies proposed in Section 2.3
and 2.4.

Discrete State vs. Continuous State

In Section 2.3, most papers used a MDP or POMDP model in order to optimize the

treatment. To do so, they discretized their continuous state space into a number of intervals.



TABLE 2.3: References focusing on MDD within the inclusion/exclusion criteria.

Reference

Methodology

Issue

Data source

Pineau et al. (2007)

Song et al. (2015)

Zhao et al. (2012)

Chakraborty, Laber, and Zhao (2013)

Zhang et al. (2013a)

Li et al. (2014)

Schulte et al. (2014)

Q-learning with kernel
regression

Penalized Q-learning

Weighted support vector
machine

Q-learning with a linear
model and adaptive
m-out-of-n bootstrapping

Doubly robust augmented
IPTW

IPTW logrank test

Q- and A-learning with
linear models

Sequencing of the optimal
treatments according to the
prefered categories (switch
or augment)

Sequencing of the optimal

treatments within a reduced

set

Selection of the optimal
treatment Nefazodone,
CBASP or Nefazodone +
CBASP

Sequencing of the
SSRI/non-SSRI treatments

Sequencing of the
switch/augment decisions

Effects of antidepressant
selection on adherence time

Sequencing of the
switch/augment decisions

STAR*D trial

STAR*D trial

Nefazodone-CBASP clinical
trial

STAR*D trial

STAR*D trial

Department of Veterans
Affairs’ Serious Mental
Illness Treatment Research
and Evaluation Center

STAR*D trial
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They generally selected these intervals to be the same as in the medical guidelines. This
lead to a small number of intervals with two advantages. First, this small number of
intervals is more computationally tractable because it limits the curse of dimensionality.
Second, this small number of intervals also leads to a TPM that suffers less from sampling
error because there are more observations within each intervals.

However, the lumping of these states introduces a lumping error and may lead to a
lost of the Markov property in the reduced model (if this Markov property even existed at
tirst) (Regnier and Shechter, 2013). Regnier and Shechter (2013) showed that the lumping
error is generally bigger than the sampling error. They also found that the number of
intervals should depend on the amount of available data and a modeler should consider a
large state space even if there are few observations in each intervals. Otherwise, this bad
predictive model will lead to bad treatment recommendations.

On the other hand, in Section 2.4, most of the papers dealt with a continuous state.
They used models that accept continuous values so they didn’t need to discretize the state
like in a Markov chain. These models were carefully postulated for the problem at hand
and tested for appropriateness when possible. Even though the selection of these models
might seems like a big assumption that can lead to a bias, a similar assumption is made
when selecting a Markov chain as the underlying predictive model (see next section).

In the end, we believe that a modeler should select the most appropriate model for the
data at hand. In that sense, we believe that continuous data should be kept as continuous

data when possible even though it might requires an increase in the computational burden.

Markovian State vs. History-Dependent State

Another interesting difference between Section 2.3 and 2.4 is the fact that models within the
former section generally assume the Markov property while the models within the latter
section generally use a state that is history dependent. The Markov property simplifies the
model by reducing the size of the state space. It can be relevant for different issues like,
for example, the initiation of treatment. However, it might not work for other contexts.
For instance, for the sequencing of treatments, we might decide on the new treatment
according to the previously given treatments, their effects and the order by which they
were given.

Hence, the Markov property might not be appropriate for all contexts. It is therefore
important to carefully evaluate its appropriateness when modeling and not only assume it

because of its computational tractability.
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2.5.3 Synergy Between the Fields

When looking at the methodologies used in Section 2.3 and 2.4, it is easy to see the potential
for synergy between these fields. There are many aspects that needs to be looked at when
designing a new model to resolve an issue. On one hand, it is necessary that this model
is appropriate for the issue at hand and is computationally tractable. This is probably
the biggest strengths of the OR/MS literature. On the other hand, it is also necessary to
validate the results of this model before using them in every day’s practice; particularly
when this model is used on observational data. This is probably the biggest strength of the
DTR literature. Hence, it is easy to see the potential for synergy between these fields.

A nice example of this synergy is the paper of Nikolaev et al. (2013). In their paper,
they used optimization in order to open a new light to the causal inference literature. In
particular, they used discrete optimization in order to balance the covariates distribution
of the treatment and control groups in observational data. By doing so, they are able to
minimize the bias of observed confounders. This proposed method compared well to the
matching methods and showed to be superior over the IPTW approaches.

We believe that this synergy between the fields is a great avenue for future research
and for the applications to the treatment of MDD.

2.6 Conclusion

This chapter did a review of some relevant papers to the treatment of major depressive
disorder in the operations research and management science, artificial intelligence and
statistics literature. A wide array of issues, models and methodologies were shown from
papers respecting our inclusion/exclusion criteria. We also showed and discussed some
of the significant differences between the OR/MS literature, and the Al and statistics
literature. Finally, we discussed the strong potential for synergy between these fields.

We believe that the complexity of the treatment of MDD requires methodologies from
all these fields in order to obtain results that will be useful for the psychiatrists. We also
believe that methodologies at the intersection of OR/MS, Al and statistics are a great
avenue for future research.
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Chapter 3

Causal Inference from Observational
Data: A Case Study on
Treatment-Resistant Depression

3.1 Introduction

With the randomization of the treatment assignment among the patients, randomized
controlled trials (RCTs) ensure that the treated and control groups are similar in the
distribution of their pre-treatment (observed as well as unobserved) characteristics. For
example, a RCT on the efficacy of a new drug to treat major depressive disorder (MDD)
splits participants randomly between a treated group (i.e., the group receiving the new
drug) and a control group (i.e., the group receiving the current standard treatment). If
large enough, these two groups are homogeneous with respect to gender (observed) and
genes (unobserved). This similarity in the distribution of the pre-treatment characteristics
is necessary in order to make an unbiased comparison of these two groups. Unfortunately,
it is not always practical (i.e., time and funding) or deemed ethical to run such RCTs. In
these cases, using the available observational data is the only viable option but it should
be used carefully. Given that the distribution of the pre-treatment characteristics might
differ between treatment groups in observational data, it is necessary to adjust for this
potential bias using methods from causal inference, the field addressing inference when
making decisions. Refer to Appendix A.1 for an illustrative example of why this imbalance
is problematic in the case of medical decision making.

Within the healthcare operations research and management science (OR/MS) literature,
however, it appears that not all prescriptive studies explicitly discuss causal inference
issues when using observational data; an important issue to address in order to obtain the
buy-in of the healthcare professionals that are used to the gold standard of RCTs (Wagner
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and Jopling, 2017). In particular, it appears that no prescriptive optimization modeling studies
using observational data discuss these issues (e.g., Ibrahim et al. (2016), Mason et al.
(2014), Kurt et al. (2011), He, Zhao, and Powell (2010), Lee, Chertow, and Zenios (2008),
Shechter et al. (2008), and Alagoz et al. (2007a)) while some prescriptive empirical studies
using observational data discuss these issues (e.g., Staats, Kc, and Gino (2018), Ramdas
et al. (2018), Staats et al. (2017), Chan, Farias, and Escobar (2017), Kim et al. (2015), Song,
Tucker, and Murrell (2015), KC and Terwiesch (2011), and KC and Terwiesch (2009)). In
fact, even within the much wider scope of the operations management literature, it appears
that less than 37% of the prescriptive empirical studies using observational data directly
address the causal inference issues (Ho et al., 2017).

An objective of this work is to bring to light the issue of using observational data
within prescriptive optimization models without considering causal inference. To our
knowledge, this issue is not addressed in the OR/MS literature and hence not also in the
healthcare OR/MS literature. In particular, Nikolaev et al. (2013) and Sauppe, Jacobson,
and Sewell (2014), the first and only prescriptive optimization modeling papers discussing
causal inference in the OR/MS literature, did not address this issue. They have however
shown how optimization methods from OR/MS can improve the causal inference methods.
We are also motivated by Van De Klundert (2016) that recently encouraged the OR/MS
literature to evaluate empirically their proposed policies in order to improve the level
of evidence provided to the healthcare sector and, hence, the impact of these proposed
policies. While causal inference is not a substitute for empirical evaluation, we do believe
that its use will reduce the gap between a policy’s predicted value and its empirical
evaluation and hence improve the proportion of useful policies proposed in the OR/MS
literature.

The contributions of this work applies both to the methods and the domain. On the
methodological side, we revisit the kernel matching with probability weights approach of
Kallus (2017) (referred to as kernel mean matching for causal inference in this chapter).
In particular, we rederive this approach from the kernel mean matching approach used
for the covariate shift problem in machine learning; in doing so, we prove for the first
time a link between kernel mean for causal inference and stabilized inverse probability
of treatment weighting. We also show for the first time how kernel mean matching for
causal inference can be used to compute different treatment effects over multiple treatment
groups. Finally, we propose a new tuning approach that applies to the approaches for
causal inference and the covariate shift problem. On the domain side, we discuss and

highlight for the first time the particular challenges related to treatment optimization of a
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mental illness (i.e., treatment-resistant depression) in the OR/MS literature.

Several links can be made between the methods developed for causal inference for
the Markov decision process (MDP) setting (i.e., dynamic treatment regime (Chakraborty
and Moodie, 2013)) and methods developed for off-policy MDPs; for example, refer to
Paduraru (2013) for links regarding policy evaluation. However, an important difference
between these methods is the explicitly stated assumptions of the causal inference methods.
“Causal conclusions are only as valid as the causal assumptions upon which they rest”
(Pearl, 2009a) and thus these assumptions should be made explicit so that decision makers
can understand the basis of conclusions. Yet, it is unclear how the framework of causal
inference translates to other optimization modeling methods from the OR/MS literature
such as mathematical programming. For a mathematical programming model to be valid,
it is required that both the qualitative information (i.e., the structure of the problem such
as the objective function and the constraints) and the quantitative information (i.e, the
parameters of this model) be representative of the problem addressed. While a good
discussion is generally given with respect to the structure of the problem, there also needs
to be a discussion around the issues of using observational data to determine the value
of these parameters. This discussion of both the chosen structure of the problem and the
titting of the parameters is somewhat equivalent to the causal inference assumptions.

The chapter is organized as follows. Section 3.2 describes the fundamentals of causal
inference, followed by the related work in the causal inference literature in Section 3.3.
Next, Section 3.4 presents the kernel mean matching approach for causal inference, Sec-
tion 3.5 presents a new tuning approach for kernel mean matching, Section 3.6 presents
a comparative analysis of the kernel mean matching method with the state-of-the-art
approaches in causal inference, and Section 3.7 illustrates the use of the method with data

from patients suffering from treatment-resistant depression. We conclude in Section 3.8.

3.2 The Fundamentals

In this work, we adopt the Neyman-Rubin potential-outcome framework (Splawa-Neyman,
Dabrowska, and Speed, 1923; Rubin, 1974). While this framework is subsumed by the
structural causal model (Pearl, 2009b), it is the most prevalent framework in the health
sciences and the one for which many well-known methods have been developed to
compute treatment effects. In this section, we will explain the framework for the single
stage multiple discrete treatments but this framework also holds for more general settings

(e.g., continuous treatments or multi-stage treatments).
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3.2.1 Notation

Let the tuple of random variables (RVs) (X, Z,Y') be the generative model of a population
of interest where X € X denotes a k-dimensional vector of pre-treatment RVs, Z € Z £
{1,2,...,T}is a RV indicating the treatment used amongst the 7" possible treatments and
Y € Y is a RV denoting the value of the post-treatment variable (i.e., the outcome). Let
{(xi, zi,y;) }1-, denote the set of the n iid observed realizations of this tuple of RVs, i.e., a
sample of n individuals from the population of interest. Let the RVs YD) Y@ y(T)
represent the potential outcomes, i.e., Y(!) represents the outcome if treatment ¢ had been
used. It is important to note that although the RVs Y'¥) are defined for all ¢ € Z, we only
observe the value of one after the treatment. If a potential outcome is observed, it is called
a factual; otherwise, it is called a counterfactual.

A measure of interest is the distribution of the pre-treatment variables conditional on
the treatment variable 2 € Z, i.e., Pr(X | Z = z).! We refer to this distribution, unless
otherwise noted, as the distribution of pre-treatment characteristics for treatment group
z. Itis a “joint” distribution if the full vector of X is taken into account, otherwise it is a
“marginal” distribution if only a subvector of X is taken into account.

In this work, a covariate denotes a pre-treatment variable that is not affected by treat-
ment while an outcome denotes a post-treatment variable that may be affected by treat-

ment.

3.2.2 Treatment Effects

We are interested in the effect of using one treatment versus another, i.e., a causal effect. For
an individual, a causal effect is defined as the difference between two potential outcomes:
D(u,v) = Y® —Y® foru € Zand v € Z\{u}. If there are many treatment options (i.e.,
T > 2), then many such causal effects exist. Unfortunately, we only observe one potential
outcome per individual and thus can’t compute these causal effects: an issue referred to as
the fundamental problem of causal inference (Holland, 1986). We can however compute

the expected causal effects. Three popular expected causal effects are:

1. Average treatment effect (ATE) (Imbens and Wooldridge, 2009): The average treat-
ment effect of treatment u relative to treatment v is defined as
ATE,, = E[D(u,v)]
= E[Y®™] —E[y").

!For the sake of clarity, we abuse notation for probability density functions.
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There are T'(7" — 1) /2 ATEs.

2. Conditional average treatment effect (CATE)? (Abrevaya, Hsu, and Lieli, 2015): The
conditional average treatment effect of treatment « relative to treatment v conditional

on the covariates e is defined as

CATE, .. = E[D(u,v) | E = €]
=EY®W |E=¢ -E[Y" | E=¢

where E is a feature summary of X that takes on values of e; through ¢, i.e., [ possible

discrete values of a subset of covariates X. There are 7'(T" — 1) /2 CATEs per value e.

3. Average treatment effect among the treated (ATT) (McCaffrey et al., 2013): The

average treatment effect among the treated of treatment u relative to treatment v is
defined as®

ATT,, £ E[D(u,v) | Z = ]
=EYW | Z=u]-E[Y"|Z=u]

There are T'(T' — 1) ATTs.

ATE is used to compute the effect of a treatment on the population. CATE is used to
compute the effect of a treatment on a subpopulation characterized by some covariate
values. Finally, ATT is used to compute the effect of a treatment on a subpopulation that
received some treatment. ATT makes sense in a setting such as a social program in which
only a subpopulation might come forward to benefit from this program.

In the context of a randomized experiment, these expected causal effects can be com-
puted directly because all treatment groups are similar with respect to their covariates
due to the randomization of treatment. In the context of observational data, we cannot
take for granted this similarity and hence need to balance the treatment groups prior
to the computation of these expected causal effects. This balancing procedure requires
assumptions that are described next.

2The literature has a variety of definitions for CATE. We use the definition of Abrevaya, Hsu, and Lieli
(2015).

3While it is possible to compute the more general definition E[D(u,v) | Z = w], this definition has limited
utility in practice and this is why we won’t consider it.
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3.2.3 Assumptions

Two fundamental assumptions are required to express the treatment effects in terms of
data. If these assumptions do not hold, causal inference is still possible in theory but more

complicated assumptions are required.

Assumption 1 (Consistency Assumption (Robins, 1986)). An individual’s potential outcome
under a hypothetical treatment that happened to materialize is precisely the outcome experienced by
that individual. Formally,

Z=z=Y® =Y

Assumption 2 (Strong Ignorability (Rosenbaum and Rubin, 1983)). Conditional on the
covariates, the treatment assignment strategy used is independent of the potential outcomes. In
addition, conditional on the covariates, all treatments are possible. Formally, the following holds for
all treatment z € Z and covariate vector x € X

@Z LYV y®D vD | Xand®) Pr(Z=2|X=2)>0

with 1 denoting independence.

These assumptions are required in order to balance the treatment groups with respect
to the covariates (i.e., obtain Pr(X | Z = u) = Pr(X | Z = v) Yu,v € Z). Assumption 1 is
required to define the observed potential outcomes, while Assumption 2 is required to
infer the unobserved potential outcomes. In particular, Assumption 2a means that all the
confounders are included in X and therefore the covariates to include within X must be
carefully selected. With a causal diagram of the problem at hand, it suffices to select a set
of covariates X that satisfies the back-door criterion (Pearl, 2009b). Refer to Appendix A.2
for a discussion.

Unfortunately, the available subject-matter knowledge is often inadequate to construct
a causal graph. In these cases, one must rely on the available literature and on expert
opinions to select the covariates; it is unfortunately not possible to statistically test which
covariates to include (Pearl, 2009b). There is an ongoing debate on whether it is worse to
include in X or exclude from it too many covariates, and if it is even possible to answer
such a question (Myers et al., 2011a; Pearl, 2011; Myers et al., 2011b). This leads to many
heuristic strategies on how to select these covariates (e.g., Schneeweiss et al. (2009) and
Brookhart et al. (2010)).
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3.3 Related Work

There exist many different types of methods for determining causal effects from observa-
tional data such as instrumental variables and regression discontinuity design; refer to
(Hernan and Robins, 2018) for more information. Among these, the matching and inverse
probability of treatment weighting (IPTW) methods are two traditional types of methods re-
lated to this work. Matching methods use the most similar individuals in a treatment group
u to infer the counterfactual Y of an individual in a treatment group v. Different variants
of matching are constructed around the definition of similarity and the numbers of individ-
uals in a group that can be matched to a individual in another group. IPTW methods use a
function of the propensity score (i.e., the probability of treatment assignment conditional
on the observed covariates) in order to weight the individuals in a treatment group u. The
expectation of the missing counterfactuals Y™ for the individuals in treatment group v is
then inferred using the weighted group u. Many variants of IPTW methods are constructed
around the the estimation of the propensity score and the computation of the weights
from it. Both matching and IPTW usually requires several iterations of parameters tuning
before obtaining treatment groups that are sufficiently balanced. To these traditional types
of methods, we now add the direct balancing methods.

Direct balancing methods are newer methods that try to balance directly the covariates
between two treatment groups while eliminating the need for several iterations and
limiting the number of required user inputs. To the best of our knowledge, five such
approaches exist in the causal inference literature. Four of them are now briefly described.
The last one is described in more details in Section 3.4.

Nikolaev et al. (2013) introduced the balance optimization subset selection (BOSS)
approach that consists in minimizing the distance between the discretized empirical
covariate density of the treatment groups by selecting only the relevant individuals in one
of the treatment groups. They solve this combinatorial search problem for the ATT with a
simulated annealing algorithm and restrict themselves to balancing marginal distributions
to limit the size of the problem. This method proves to be comparable to the existing
matching methods, when exact matching is not possible, by only balancing with respect to
the marginal distributions. For a discussion of the relationship between the BOSS approach
and matching, refer to Sauppe, Jacobson, and Sewell (2014). The two papers mentioned
above constitute the only OR/MS work that we know of on causal inference and their
focus is purely methodological.

Ratkovic (2015a) introduced support vector machine matching (SVMMatch) that uses

support vector machines in order to determine the largest subset of individuals in a
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treatment group v that is balanced with a treatment group . This subset corresponds to
the individuals in the treatment group v that are difficult to classify as whether they belong
to treatment group u or v based on the centered covariates. By doing so, they can compute
the ATT of treatment v relative to treatment v.

Hainmueller (2012) introduced entropy balancing (EBal). This approach optimizes
weights over the individuals in order to satisfy empirical moment constraints while remain-
ing as close as possible (according to the Kullback-Leibler divergence (KL divergence))
to a set of uniform weights. With an iterative algorithm that is globally convergent, they
solve this mathematical program to compute the ATT. In some cases, this mathematical
program might be unfeasible if the sample moment constraints are too restrictive.

Zubizarreta (2015) introduced stable balancing weights (SBW). This approach optimizes
weights over the individuals in order to satisfy empirical moment constraints up to a certain
precision while minimizing the variance of the weights. They solve this convex program
using an optimization solver. They focus on the issue of incomplete outcome data but
discuss how their approach can easily be used to compute treatment effects.

Direct balancing methods were shown superior to matching or IPTW for correcting the
treatment imbalance error in observational data in the previous papers. The approaches
of Nikolaev et al. (2013) and Ratkovic (2015a) are selecting individuals to include into
the balanced data set. The approaches of Hainmueller (2012) and Zubizarreta (2015) are
instead weighting the different individuals. While the previous approaches other than
Zubizarreta (2015) focused on the ATT, they can all be adapted to any of the previously
described treatment effects. None of these approaches, however, balance all moments of
the joint distributions of the covariates; an issue addressed by the approach in the next

section.

3.4 Kernel Mean Matching for Causal Inference

In this section, we revisit the kernel matching with probability weights approach of Kallus
(2017). In particular, we rederive this approach from the kernel mean matching (KMM)
approach, an approach used for the covariate shift problem in machine learning, we show
for the first time how to use this approach to compute different treatment effects over
multiple treatment groups, and we prove for the first time a link between this approach
and stabilized IPTW.

The covariate shift problem, a special case of domain adaptation (Daume and Marcu,
2006; Jiang, 2008), happens when there is a shift of the independent variables” distribution
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between a training and a test data set (i.e., Pryin (X) # Pries: (X)), while the conditional
distribution of the dependent variables given the independent variables remains the same
(i-e., Pripgin(Y | X) = Priest(Y | X)). This problem is similar to the primary challenge in the
potential-outcome framework where the covariates distribution of each treatment group
are not equal in general (i.e., Pr(X | Z = u) # Pr(X | Z = v)). However, in the potential-
outcome framework, the conditional distributions Pr(Y | X, Z = u) and Pr(Y | X, Z = v)
are not assumed to be equal. In fact, assuming them to be equal would be equivalent
to assuming a null causal effect. The similarity between the covariate shift problem and
the primary challenge in the potential outcome framework motivated us to adapt KMM,
originally presented in Huang et al. (2007) for the covariate shift problem.* While the link
between covariate shift and causal inference has been previously noted in Scholkopf et al.
(2012) and Johansson, Shalit, and Sontag (2016), in this section we formalize this link in the
context of KMM.

Our approach is along the lines of Hainmueller (2012) and Zubizarreta (2015) but
differs from them because we minimize the difference in the distributions” moments
using a reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950). This allows us to
simultaneously balance all moments of the full joint distribution. Our approach also
always converges to the best possible solution; it cannot suffer from inconsistent balance
constraints like the approach of Hainmueller (2012).

We now give a sketch of the population and empirical versions of KMM for causal
inference described below. Given a causal effect of interest and two treatment groups u
and v, KMM is executed on each treatment group with the respective treatment group
(denoted prime) and some other group that we are trying to replicate (denoted double
prime) as inputs. The output of these two KMM problems gives weights (3, and (3, that are
then used with the respective treatment outcomes to compute the causal effect of interest.

3.4.1 Population Version

The KMM involves minimizing the mean discrepancy between two distributions Pr'(X =
z) and Pr"’(X = z) in a RKHS by optimizing a weight function §(z), subject to normal-
ization and non-negativity constraints. In the following definition, the feature function
¢ : X — F denotes a map into a feature space F that can be used to define a universal
kernel k(z;,z;) = ®(z;)"®(z;). In the sense of Steinwart (2002), a universal kernel can
induce any continuous function to arbitrary precision. In this work, we focus on the
Gaussian radial basis function (RBF) kernel k(z;, ;) = exp(—|jz; — z;||*/20?), where o is

“We discovered the work of Kallus (2017) after our adaptation of KMM for causal inference.
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the bandwidth parameter, that is known to be universal (Steinwart, 2002). This kernel
allows us to simultaneously balance all moments of the full joint distributions, instead of
only a finite number of moments, because a Gaussian RBF kernel is an inner product of

two feature functions that are proportional to an infinite polynomial expansion.

Definition 1 (Population Kernel Mean Matching (Huang et al., 2007)).
mimgnize ‘ ‘EzNPr’(X:z) [5(3:) q)(x)] - IEzNPr”(X:z) [(I)(Ilf)] ‘ ‘

SubjeCt to Ea:NPr’(X:x) [B(x)] = 17
B(x) = 0.

It is known that under certain conditions KMM converges to a unique 3 as explained
in the following Lemma from Huang, Smola, and Scholkopf (2006).

Lemma 1. Assume that Pr"(X = z) is absolutely continuous with respect to Pr'(X = z) (i.e.,
Pr'(X = z) = 0 implies Pr" (X = z) = 0) and that the kernel k is universal. Then the solution of
the population KMM (Definition 1) is 5*(xz) = Pr"(X = z)/ Pr'(X = z).

Proof. See Lemma 2 of Huang, Smola, and Scholkopf (2006). O

In addition to Lemma 1, in order to compute the treatment effects of Section 3.2.2
using KMM,, it is necessary to define how these treatment effects can be computed using
balancing weights. The following Lemma is an adaptation of previous proofs for a different
approach (i.e., stabilized IPTW (Robins, 1998; Robins, Hernan, and Brumback, 2000)). The
proof is given in Appendix A.3 for the sake of completeness.

Lemma 2 (Balancing Weights). Under Assumptions 1 and 2, the expected treatment effects can
be computed using Table 3.1

TABLE 3.1: Definition of the weighting functions for population kernel mean

matching.
Causal effect Bu(z) By(x)
ATEu . Pr(X=zx) Pr(X=z)

Pr(X=z|Z=u) Pr(X=z|Z=v)

Pr(X=xz|E=e) Pr(X=xz|E=e)

CATEuvvve Pr(X=z|Z=u) Pr(X=z|Z=v)
Pr(
Pr(

X=z|Z=u
ATT,., 1 —X:M:U;
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and the following causal effect equation

TEYY = /E[Y | Z =u, X =2]f,(x) Pr(X =2 | Z =u)dx
(3.1)
— /E[Y | Z =v, X =2|8,(x) Pr(X =2 | Z =v)dx.

We are now ready to put together the above building blocks to state the main theorem
of this chapter, i.e., how to define Pr'(X = z) and Pr"(X = z) as inputs to KMM to enable

its use for causal inference.

Theorem 1 (Population KMM for Causal Inference). Assume that Assumptions 1 and 2
hold, and that k is universal. Then, for a causal effect of interest in Table 3.1 (i.e., a row), each
cell corresponds to an associated KMM (Definition 1) that takes as inputs the denominator for
Pr'(X = z) and the numerator for Pr"(X = z). Using the obtained B,(x) and B,(z), the
estimation of the causal effect of interest follows with Equation 3.1.

Proof. ltis easy to see that Assumption 2b implies that Pr”(X = x) is absolutely continuous
with respect to Pr'(X = z) because it imposes Pr'(X = z) > 0 for all treatment effects

through Bayes’ theorem. The rest of the proof follows from Lemmas 1 and 2. O

Additional results proving a link between KMM and stabilized IPTW (Robins, 1998;
Robins, Herndn, and Brumback, 2000) are given in Appendix A .4.

3.4.2 Empirical Version

We now turn to the empirical version of KMM. Let 77, 7", be samples of individuals
for whom the distribution of the covariates, X, is given by Pr'(X = z) and Pr"(X = x),
respectively. If we want to balance the covariates of the individuals in 7" to the covariates
of the individuals in 7" using KMM, we have to solve the following quadratic problem

that now gives a vector 3*.

Definition 2 (Empirical Kernel Mean Matching (Huang et al., 2007)).
minémize BTKB —26"5
1
77|
B; €0,B], VieT.

subject to ‘ 175 — 1' <e,
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with | - | denoting the absolute value for the left-hand side of the first constraint and the cardinality of

a set everywhere else, K;; = k(x;,x;) fori,j € T'and r; = ';,,” > iern k(i ;) fori € T'. The

first constraint brings é’/ Pr'(X = ;) close to a probability distribution and the second constraint
limits the scope of the distribution change.

Knowing that the dot product of two feature functions results in a kernel function (in
our case, the Gaussian RBF kernel k(z;, z;) = exp(—||z; — z; 1?/20?)), the objective function
in Definition 2 is obtained by squaring the empirical version of the objective function in
Defintion 1 (i.e., the norm of the discrepency between the two empirical means):

= B"KB — 2k B + constant.

Zﬁfp(ﬂfz 7‘//‘ Z (I)

€T’ T

g

The constraints are obtained by introducing a normalization slack € and an upper bound
B to reduce variability in the resulting /3;. This convex quadratic program can be solved
efficiently using interior point methods (Boyd and Vandenberghe, 2004).

In order to compute a causal effect of interest using empirical KMV, it suffices to follow

the procedure given in Corollary 1 that directly follows from Theorem 1.

Corollary 1 (Empirical KMM for Causal Inference). Assume that Assumptions 1 and 2 hold,
and that k is universal. Then, for a causal effect of interest in Table 3.2, the associated KMM models
(Definition 2) are defined using the corresponding samples of individuals T and T" as inputs.

TABLE 3.2: Definition of the samples of individuals used within empirical
kernel mean matching to compute the weighting vectors. Te; denotes the
observed feature summary of x; while e denotes one of its [ discrete values.

Causal effect B Bo
T’ T T T
ATE,, {i:zz=u} {i=1,....n} {i:z;=v} {i=1,...,n}
CATE . {i:zi=u} H{ires=e}t {iizz=v} {ize;=c¢}l
ATT,, {i:z =v} {i:z;=u}

Then, the causal effect of interest is computed using the following equation

1
TEemp = widi — T viYi 3.2
IT’!;B Yi m’;nﬂ y (3.2)

where T, and T correspond to the samples T' used to compute respectively (3, and f3,,.
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3.5 Tuning of Kernel Mean Matching

As per definition, solving KMM requires the specification of an upper bound B, a nor-
malization slack € and a kernel function k. No work has been done on the identification
of the optimal value for B. This upper bound B is however related to weight trimming
in the IPTW literature (Lee, Lessler, and Stuart (2011)); the upper bound B is applied
directly on the weights while weight trimming constrains the propensity score (e.g.,
Pr(Z = u | X = z)) that is used to compute the weights. In this regard, Lee, Lessler, and
Stuart (2011) found that the optimal level of trimming is difficult to identify and “analysts
should focus on the procedures leading to the generation of weights (i.e., proper specifica-
tion of the propensity score model) rather than relying on ad-hoc methods such as weight
trimming.” In our setting, this translates to finding the proper kernel function £ instead of
optimizing the value B.

For the normalization slack ¢, Huang et al. (2007) showed that it should be O(B//|T|)
when given the true weight function §(z) that lies within [0, B]. For their application, they
proposed to use € = (1/|T’| — 1)/1/|T'| and B = 1000; values that were reused in most
KMM applications. In practice, we believe that there is no way to set € correctly for a given
data set and, if it is set incorrectly, it might increase the bias.

For the kernel function £, Yu and Szepesvari (2012) showed analytically that its selection
highly affects the convergence rate of the KMM. In this regard, Miao, Farahat, and
Kamel (2013) proposed an approach that automatically selects the kernel function or tunes
the kernel function parameters in KMM using an independent objective function, the
normalized mean squared error (NMSE). They tuned the bandwidth o of a Gaussian RBF
kernel k(z;, 2;) = exp(—||x; — x;||*/20?) with a grid search over the range [0.1: 0.1 : 3,4 :
1 : 10] * 0eq, Where 0,4 is the median of the individual’s pairwise distances.

In our own experiments (see Section 3.6), the NMSE tuning approach appears highly
variable—probably because it is based on the prediction of the weights for the individuals
in 7". Hence, in this study, we propose a new approach to tune the bandwidth o of a
Gaussian RBF kernel (or the parameters of any other kernel function) by minimizing the
entropy of the normalized KMM solution, i.e., the scaled solution that integrates/sums to
one. In particular, we select the bandwidth with the lowest entropy for a given B when
doing a grid search over a pre-defined discretized set of parameter values as defined in
Definition 3.
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Definition 3 (Entropy Tuning). For a given B, select the parameter values of the kernel k for
which the normalized KMM solution, i.e., 3; = f3; / > icr Bi, has the lowest entropy H (B)

- Z filog fi.
€T’

It is important to note that the normalization slack € in Definition 2 can significantly
worsen the solution because of the normalization requirement of the entropy function.
Therefore, the proposed approach sets € to zero, i.e., the first constraint of Definition 2 is
13 =T

Refer to Section 3.6 for an empirical comparison of the different tuning approaches for
KMM with the direct balancing approaches of Section 3.3. We now provide some intuition

regarding this entropy tuning approach.

Remark 1. Let Pr” denote the distribution that we are trying to replicate and let Pr’ be our initial
distribution. In addition, let P’ = B(z) Pr'(z) denote our approximation with B(x) corresponding
to the normalized solution of the population version of KMM, i.e., 5(x) x)/ | B(x)dx. Then,
assume that we want to minimize the KL divergence (Kullback, 1968) between the distribution Pr”

and our approximation P’: °

g P U
minimize Dyy, <Pr” | Pr” ) = minimize B, p. |log /r\(x)
3 B Pr’(x)
P !
= minimize E, p» {log ! (:U/) ]
5 B(x) Pr'(x)
Pr”(x)

= minimize [E, p, log — E, p log B ().

5 Pr'(x)

In this KL divergence expression, only the second term of the last equation is relevant given that it
is the only term that our tuning affects. Unfortunately, we do not have access to the distribution

*Minimizing Dy, (Pr’ "l Ep) instead of D, (Ijr7 | Pr” ) , the usual approach, rewards a Pr” that has
high probability where Pr” has high probability. In other words, no probability mass of Pr” is left out even if
it requires Pr” to put some probability mass where there is none in Pr”.
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Pr” to compute this second term. We can however approximate it as:

minimize — B, py log f(x) = minimize —— /log (B(x)
B B

~ minimize — /log (B(x)
B

= minimize — /B(x) log (ﬁ(x)) Pr'(z)dx

where the last term is the entropy of 5(x).

3.6 Comparative Analysis

3.6.1 Simulation Model

The comparative analysis is done with a simulation model adapted from Hill (2011) which
consists of experimental data from the Infant Health and Development Program (IHDP)
where an imbalance is created by removing a nonrandom portion of the treated group:
all children with nonwhite mothers. This imbalanced data set consists of 608 control
and 139 treated individuals with 25 covariates. These 25 covariates consist of 17 distinct
covariates (i.e., six continuous, nine binary and two categorical covariates) where each
of the categorical covariates is replaced by n — 1 dummy covariates. Using this data, we
tit a propensity scoring function that consists of a L2-regularized logistic regression with
the treatment indicator variable as the dependent variable and a polynomial expansion of
degree three of the 25 covariates as the independent variables.

To form a data set, we sample covariates X; in particular, we sample with replace-
ment 700 individuals from the data set of Hill (2011) to generate X € R™*2°, Next, we
generate Z € {0,1}" by sampling from the above logistic regression model using as
covariates each row of X. Then, as in Hill (2011), we sample the potential outcomes
from ¥ ~ N(exp(¥T (1,25 + W)),1) and " ~ N(®T(1,2:") — w,1) where ¢ is a 26-
dimensional vector with each element randomly sampled from the set {0,0.1,0.2,0.3,0.4}
with probabilities (0.6,0.1,0.1,0.1,0.1), 2™ is a row of the matrix X** (i.e., the matrix X

with the continuous covariates standardized to a unit Gaussian), W is an offset vector of

std
A

the same dimension as =
ATTis4,1i.e.,

with every value equal to 0.5 and w is set such that the expected

A S 2 [T (L, sty — exp (v (1, 25 + W))]

4,
PO

W
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Both 1) and w are fixed for the 700 individuals but vary across the data sets. Finally, we set
= yizi) fori =1,...,700 to formY € R™,

This simulation model respects Assumptions 1 and 2. Thus, it is possible to compute
the causal effect from its generated data. We refer to the data sets sampled from this
simulation model as the data sets with no unmeasured confounding.

Since Assumption 2a might not always hold in practice, we also present comparative
results where this assumption does not hold. These data sets, referred to as the data sets
with hidden bias, are obtained by removing four random covariates out of the 17 distinct
covariates from X after computing Z and Y.°

3.6.2 Approaches

The different approaches compared in this analysis are:

¢ Difference in Means (Diff. in Means), i.e., the unbalanced difference between the two

treatment groups.

¢ KMM with a Gaussian RBF kernel using different tuning approaches for the kernel
bandwidth o (N for NMSE or E for entropy) and different values for B (B1 for 1000
or BO for no upper bound) and e (el for (/|77 — 1)/+/]T"| or €0 for no slack). As
discussed in Section 3.5, B = 1000 and ¢ = (/77| — 1)/+/]T"| have been the usual
values in the past KMM applications. All KMM approaches use the same range
of kernel bandwidths as in Miao, Farahat, and Kamel (2013). The data for these
approaches is also preprocessed by using one-hot encoding for categorical variables
and by normalizing variables to the [0, 1] range.

* BOSS (Nikolaev et al., 2013) using the default parameters and encoding each categor-
ical covariate as one variable with integer values.

¢ SVMMatch (Ratkovic, 2015b) using the default parameters.
* EBal (Hainmueller, 2014) using the default parameters.

e SBW (Zubizarreta and Allouah, 2016) using a value of 1 x 10~ for the parameter
bal_tols since there is no default value for this parameter and the value of 1 x 1074

®If any of these covariates are categorical, then all binary indicators of these covariates are removed. In
other words, removing one covariate can result in removing multiple columns of X. Removing a covariate
can also have no effect since its associated v value can be zero; if the 1) values of all four removed covariates
are zero, then the associated data set is still with no unmeasured confounding.
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corresponds to the smallest tolerance used in Zubizarreta (2015). We use the default

values for the other parameters.

Note that, except Diff. in Means and KMM, the above approaches correspond to the direct
balancing approaches described in Section 3.3 that have been previously shown to be
superior to matching or IPTW.

KMM is implemented in Python 3 using CVXOPT (Andersen, Dahl, and Vandenberghe,
2015) and the BOSS approach with the code in Nikolaev et al. (2013). SVMMatch, EBal
and SBW use the previously cited R packages (R Core Team, 2017). We use the default
parameters for BOSS, SVMMatch, EBal and SBW because there is no available way to tune
the parameters without the ground-truth; some balance measures have been proposed but
they are all incomplete (e.g., they look only at the marginal distributions). Finally, note
that we use KMM only with the Gaussian RBF kernel (i.e., the kernel function that is the
most used with the KMM approach); using other kernel functions might alter the results
of the comparative analysis but these are not explored in this study.

3.6.3 Results

We now compare the performance of the previously described approaches with respect
to the bias, RMSE, range and time. The bias is the difference between the estimated
ATT and the expected ATT of 4, averaged over the different simulations. The root mean
squared error (RMSE) is the square root of the average value of (m — 4)? where ATT
is the estimated ATT. The time is the average wall clock time on a single core, i.e., no
parallelization is used. These comparisons are done on data sets with no unmeasured
confounding and on data sets with hidden bias as described previously.

First, we compare all approaches on 1000 data sets with no unmeasured confounding,
generated as described above. The results of Table 3.3 show that our proposed approach
(KMM-E-B0-e0) obtains the lowest RMSE.” Also, the mean computation time of our
proposed approach is good; it can be easily reduced by parallelizing the grid search
over the 37 bandwidth values. Note that, as expected, KMM-E-B1-el and KMM-E-B0-el
give inferior solutions due to the normalization requirement of the entropy function (see
Section 3.5); these approaches are shown for completeness but should not be used. In
addition, note that SVMMatch is not able to balance all 1000 data sets.

"The other variants of KMM-E-* are shown in the table for completeness even if we believe that KMM-E-
B0-e0 is the best approach.
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TABLE 3.3: Bias, RMSE, range and mean computation time of the 1000 esti-
mated ATTs for each approach on data sets with no unmeasured confounding.
Proposed approach is in bold font. fSVMMatch only succeeded on 967 data

sets.
Approach Bias RMSE Range Time
Minimum Maximum S

Diff. in Means 0.01 1.16 —2.73 11.46
KMM-N-B1-el 0.00 0.29 1.68 6.30 5.2
KMM-N-B1-e0 0.00 0.28 1.83 6.03 3.3
KMM-N-B0-el 0.00 0.31 1.72 6.30 4.6
KMM-N-B0-e0 —0.00 0.28 1.67 6.28 2.9
KMM-E-B1-el 4.49 5.54 4.48 32.58 5.5
KMM-E-B1-e0 0.00 0.22 2.95 5.58 3.4
KMM-E-B0-el 4.49 5.55 4.48 32.58 4.8
KMM-E-B0-e0 0.00 0.22 2.94 5.62 2.9
BOSS 0.00 0.37 2.06 6.86 50.5
SVMMatch’ 0.00  0.41 1.15 6.90 2.2
EBal 0.00 0.33 1.79 6.62 0.4
SBW 0.01 0.33 1.90 6.83 0.6

Second, we compare all approaches on 1000 data sets with hidden bias, generated as
described above.® The results of Table 3.4 show that our proposed approach (KMM-E-B0-
e0) performs reasonably well in the presence of hidden bias in comparison with the other
approaches, since it obtains again the lowest RMSE. Note however that all approaches
have a higher RMSE in the presence of hidden bias.

Third, note that additional results, for both the data sets with no unmeasured confound-
ing and the data sets with hidden bias, are given in Table A.2 and A.3 of Appendix A.5.
These results were generated by increasing the standard deviations of y;(0) and y;(1) to 4,
i.e., by decreasing the signal-to-noise ratio from 4 to 1. In Table A.2, the proposed approach
does not obtain the lowest RMSE anymore, but it has however the tightest range after
KMM-E-B1-e0. For Table A.3, it appears that the proposed approach suffers somewhat
more than the other approaches from the effect of hidden bias and a low signal-to-noise
ratio.

Finally, note that additional results on the estimation of the ATE, that are unreported
for the sake of clarity, provide a different conclusion with respect to the ranking of the

8These data sets differ from the data sets with no unmeasured confounding with respect to the rows of X,
Z and Y, and not only with respect to the missing columns of X.
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TABLE 3.4: Bias, RMSE, range and mean computation time of the 1000 es-
timated ATTs for each approach on data sets with hidden bias. Proposed
approach is in bold font. 'SVMMatch only succeeded on 960 data sets.

Approach Bias RMSE Range Time
Minimum Maximum 5

Diff. in Means 0.04 1.26 —3.74 14.35
KMM-N-B1-el 0.01 0.55 —2.94 7.54 5.6
KMM-N-B1-e0 —0.01 0.52 —2.64 7.49 3.9
KMM-N-B0-el 0.00 0.51 0.01 7.51 5.4
KMM-N-B0-e0 —0.01 0.50 —1.10 7.08 3.5
KMM-E-B1-el 3.56 4.71 2.91 29.96 5.8
KMM-E-B1-e0 —0.00 0.48 1.02 11.56 3.6
KMM-E-B0-el 3.62 4.73 2.56 29.96 5.0
KMM-E-B0-e0 —0.01 0.47 1.30 11.57 3.1
BOSS 0.00 0.60 —0.96 12.99 42 .4
SVMMatch' —0.01 0.62 —3.60 7.86 2.0
EBal 0.01 0.57 —0.10 10.40 0.4
SBW 0.01 0.52 1.35 8.79 0.6

approaches. In these results, KMM-E-B0-e0 is just behind SBW and EBal in terms of bias
and RMSE.

3.7 Treatment-Resistant Depression Case Study

MDD, is amongst the top ten causes of the global burden of disease and is predicted to
become the leading cause by 2030 (World Health Organization, 2008). Up to 15% of the
population affected by MDD remains significantly depressed despite the aggressive use
of multiple pharmacological and psychotherapeutical approaches. These patients are
generally referred to as suffering from treatment-resistant depression (TRD). Although
there is no consensus regarding the definition of TRD, a patient suffering from MDD
is usually considered treatment-resistant (or refractory) when at least two trials with
antidepressants from different pharmacologic classes (adequate in dose, duration, and
compliance) fail to produce a significant clinical improvement (Berlim and Turecki, 2007).

TRD patients are quite hard to treat by definition and necessitate a referral to a special-
ized mental health clinic where pharmacotherapy, psychotherapy and neurostimulation

therapy are all possible treatment options. The psychiatrist equipped with these many
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options has to determine the next best option for his/her patient. Given that TRD pa-
tients are already following a treatment, the “next best option” refers to the treatment
selected at the initial visit to the specialized clinic. In particular, the five options related
to pharmacotherapy are (1) the optimization of current treatment in dosage or duration,
(2) the augmentation with a non-antidepressant drug, (3) the combination with another
antidepressant, (4) the switch to a different antidepressant or (5) watchful waiting.” There
are different types of psychotherapy but a psychiatrist usually only decides on whether to
initiate it or not and psychotherapy usually only begins a couple of months after the initial
visit. Hence, its effect is less immediate. There are also different types of neurostimulation
therapy but it is mostly used as a last resort. While future changes to the patient’s treatment
will generally be made, the next best option is of high importance because it can initiate a
response to a patient that might be at risk of suicide and that has been suffering from MDD
for a significant time (i.e., duration of previous treatments and waiting time for initial visit
at the clinic).

Selecting the next best option is challenging because it requires taking a decision with
important consequences for the patient (e.g., side effects). The medical literature regarding
this next best option is unclear. While some of the literature covers the treatment of TRD,
few of the studies compare multiple treatments, and it is hard to reconcile the prevailing
studies because of their different inclusion and exclusion criteria and the multiple defini-
tions of TRD (Berlim, Fleck, and Turecki, 2008). In addition, the guidelines (Kennedy et al.,
2016) are primarily designed to treat MDD, i.e., they are mostly concerned in identifying a
good initial treatment. Thus, they are of limited use to treat patients suffering from TRD
who have been following non-effective treatments for some time.

The goal of this case study is to provide medical decision making guidance to physi-
cians regarding these five pharmacotherapy options (i.e., optimization, augmentation,
combination, switch and watchful waiting) at the patient’s initial visit to the specialized
outpatient clinic; we focus on these five options since they are the ones used in medi-
cal guidelines such as Kennedy et al. (2016). In particular, we quantify the effects and
the uncertainties regarding these different treatment options using a data set collected
at the depressive and suicide disorders program (DSDP) of the Douglas Mental Health
University Institute in Montreal.

The OR/MS literature is starting to become a mature field with respect to medical
decision making for physical diseases (e.g., acquired immune deficiency syndrome (AIDS),
diabetes, cancer, infertility, thrombosis). In particular, with respect to pharmacological

This categorization of the options comes from the medical literature on MDD and TRD; for example,
Kennedy et al. (2016) use this categorization.
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treatments, there is some work on treatment initiation (Shechter et al., 2008), switching
(Jiang and Powell, 2015), sequencing (Kahruman et al., 2010) and dosage (He, Zhao, and
Powell, 2010; He, Zhao, and Powell, 2012; Ibrahim et al., 2016).

However, mental illnesses are generally quite different than the physical diseases and
complications previously addressed by the OR/MS literature. For example, in contrast
with the previously listed diseases and complications, the pathophysiology of MDD is
currently unknown (Hasler, 2010) as is also the case for other mental illnesses. Hence,
models for these mental illnesses might differ substantially from models for physical diseases and
complications. With this case study, we expose for the first time, to our knowledge, the
challenges related to treatment optimization of mental illnesses in the OR/MS literature.

3.71 Problem Setting

Our data set consists of all the unarchived medical records for adult patients suffering
from TRD who started receiving treatment between August 2006 and August 2015 at the
DSDP. A patient file is archived when it has not been used for more than a year so that
additional storage space is available in the front office for new patient files. Of these 463
patient files, we analyzed the 87 with no missing values in the covariates, treatment and
outcome described below. In addition, when several different values were available for a
patient, we kept the last value since this value was often found to be a correction of the
previous values.

We selected the first QTDS-SR-16 total score (Rush et al., 2003) measured in the 30 to
90 days period after the initial visit as the outcome of interest. The QIDS-SR-16 consists
of the 16-item quick inventory of depressive symptomatology self-reported score, a score
often used in the medical literature to evaluate the severity of MDD. This score lies
between 0 and 27 with a higher score denoting a worse outcome. A delay of at least 30
days is given in order to let the treatment show its full potential.

Note that the QIDS-SR-16 total score corresponds to only one very specific outcome;
the broader objective of treatment consists in the general well-being of patients. Thus,
when making treatment modifications, the physicians need to take into considerations
additional elements such as the preferences of the patients with respect to the side-effects
of the treatments (e.g., weight gain), the restrictions associated with the treatments (e.g.,
low tyramine diet) and an acceptable frequency of commuting between his home and the
clinic for various appointments (e.g., drug dosage using blood tests, psychotherapy). It is
however not possible to capture this broader perspective in this study without additional
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features describing these patients’ preferences; hence, this work focuses on the very specific
QIDS-SR-16 total score as the outcome.

The treatments consist of the five options discussed above. The treatment strategy
category is determined with Algorithm 3.1 from the current drugs taken by the patient
at the time of the initial visit and the new drugs prescribed at that time. Because there
could be multiple prescriptions given to a patient within 30 days following the initial visit,
Algorithm 3.2 is used to determine the overall strategy that was used on the patient, i.e.,

the strategy with the most potential effect on the outcome.

Algorithm 3.1: Get strategy category

Input :CurrentDrugs, NewDrugs
Output: StrategyCategory
begin
Strip CurrentDrugs & NewDrugs of all drugs that are non-related to TRD.
Change all drugs’ names in CurrentDrugs & NewDrugs to their chemical names.
Categorize all drugs in CurrentDrugs & NewDrugs as either antidepressant or
add-on. /* Table A.4 x/

= W N =

U1

if NewDrugs is empty or NewDrugs’ drugs and dosages are the same as the ones in
CurrentDrugs then

6 | StrategyCategory < WatchfulWaiting

7 else if all NewDrugs’ antidepressants exist in CurrentDrugs then

8 if all NewDrugs’ add-ons exist in CurrentDrugs then

9 \ StrategyCategory < Optimization

10 else

11 L StrategyCategory +— Augmentation

12 else if CurrentDrugs’” antidepressants exist in NewDrugs then
13 \ StrategyCategory +— Combination

14 else

15 L StrategyCategory < Switch

We consider several different treatment effects in this study. In particular, for these
tive treatment options, we compute the corresponding ATEs and ATTs. In addition,
we compute two sets of CATEs. The first one is conditional on whether the treatment
groups suffer from severe MDD at the initial visit. Here, severe MDD is defined as a
17-item Hamilton depression rating scale (HAM-D-17) total score greater than or equal to
24 (Zimmerman et al., 2013). Multiple versions of the original Hamilton depression rating
scale (Hamilton, 1960) exist. Ours is consistent with the one used in Zimmerman et al.
(2013); its score lies between 0 and 52 with a higher score denoting again a worse outcome.
There are 65 individuals with HAM-D-17 < 24 and 22 individuals with HAM-D-17 > 24.
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Refer to Appendix A.6 for a histogram of the HAM-D-17 total score per treatment group.
The second set of CATEs is conditional on the gender. There are 37 males (i.e., IsMale ==
True) and 50 females (i.e., IsMale == False).

3.7.2 Discussion of Assumptions

We believe that Assumption 1 holds for our data set because the only interactions between
the individuals occur under group therapies and these are unlikely to begin (if prescribed)
until a couple of months after the initial appointment, rendering the significance of the
effect negligible within less than 90 days. Hence, when a treatment is prescribed, we only
observe the effect of this treatment on an individual.

We also believe that Assumption 2 holds because, except for extreme cases, each
treatment can be prescribed to any patient (Assumption 2b) and our data set contains
an extensive number of covariates which increases the probability of observing all con-
founders (Assumption 2a). In addition, our problem consists of only one stage which
limits the range of possible imbalances, i.e., here, the imbalance is only a consequence of
the covariates. However, we do not have access to a causal diagram due to the unknown
pathophysiology of MDD which complicates the selection of the covariates as described
in Section 3.2.3. We thus decided, like other authors working on the effects of pharma-
cotherapy from medical record data have done (Schneeweiss et al., 2009; Brookhart et al.,
2010), to include a covariate within our covariates X as long as it resembles a potential
confounder, i.e., a covariate that predicts both treatment Z and outcome Y (Brookhart
et al., 2010). In this work, like in Schneeweiss et al. (2009) and Brookhart et al. (2010), we

are more inclusive than exclusive with respect to the covariates.

3.7.3 Covariates

With these previous considerations in mind and with the active involvement of the DSDP
chief, we selected the following covariates. Age indicates the age at the initial visit.
IsMale indicates whether the patient is male or otherwise female. Education is an
ordinal variable indicating the highest education level obtained by the patient among
four levels: (1) less than secondary school graduation, (2) secondary school diploma or
equivalent, (3) some postsecondary education or (4) postsecondary certificate, diploma
or degree. Abused indicates whether the patient has been a victim of abuse in the past.
FamP syHx indicates whether the patient has first-degree relatives (i.e., parents, siblings
or offsprings) with psychiatric disorders. HAM-A consists in the Hamilton anxiety rating
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scale (Hamilton, 1959) score that lies between 0 and 56, a measure of the anxiety’s severity.
HAM-D-17 consists of the 17-item Hamilton depression rating scale (Zimmerman et al.,
2013) score that lies between 0 and 52, a measure of the severity of MDD. SCID1Dx is
a binary vector indicating the comordibities evaluated through the Structured Clinical
Interview for DSM Axis I Disorders (SCID-I) (First et al., 2002) where DSM denote the
Diagnostic and Statistical Manual of Mental Disorders. We consider three diagnoses of
these comorbidities, namely SCID1Dx4, SCID1Dx26 and SCID1Dx32. PastEpi indicates
whether the patient had past MDD episodes. SCID2 indicates whether the patient suffers
from comorbidities evaluated with the Structured Clinical Interview for DSM Axis 1II
Personality Disorders (SCID-II) (First et al., 1997). PastSuiAtt indicates whether the
patient has committed past suicidal attempts. Finally, SST consists in the scale of suicide
ideation (Beck, Kovacs, and Weissman, 1979) score that lies between 0 and 38. An higher
score for HAM—A, HAM-D-17 or SSI denotes a worse outcome.

A description per treatment group of the unbalanced previous covariates and outcome

is available in Appendix A.6.

3.7.4 Results

To compute the ATEs, CATEs and ATTs, we applied KMM-E-B0-e0 (see Section 3.6.2 for
the definition) to the 87 patients. The results are given in Table 3.5. In each cell, the
expected treatment effect and its 95% confidence interval are given. The latter is estimated
with the percentile method (Efron, 1981) from 5000 bootstrap replications. Following the
notation of Section 3.2.2, Table 3.5A gives the average treatment effects ATFE, ,, Table 3.5B
and C give the average treatment effects CATE,, , . conditional on the depression severity
and Table 3.5D gives the average treatment effects among the treated ATT, ,; for the sake
of space, the results for the average treatment effects CATFE,, , . conditional on gender
are given in Table A.6.1° If ATE,, is negative, then treatment u is more effective than
treatment v to reduce the QIDS-SR-16 total score. If CATE,, , . is negative, then treatment
u is more effective than treatment v to reduce the QIDS-SR-16 total score for patients with
characteristics e. If ATT,, , is negative, then treatment u is more effective than treatment v
to reduce the QIDS-SR-16 total score for patients that received treatment u.

The estimated treatment effects in the 1st row of Table 3.5A indicate that on average
across patients an optimization of treatment is best. Also focusing on patients with lower
HAM-D-17 scores, the strategy of treatment optimization is best (see 1st row of Table 3.5B).

OWithin Table 3.5A-C and Table A.6, the results in the lower triangular are the opposite of the results in
the upper triangular and are given for ease of exposition.
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However this same finding does not hold for patients with greater pre-treatment severity;
here augmentation generally appears to perform best (see 2nd row of Table 3.5C). This is
consistent with the Canadian Network for Mood and Anxiety Treatments (CANMAT) rec-
ommendation (Kennedy et al., 2016) to use adjunctive medication (i.e., augmentation and
combination) when depression is more severe. When focusing on gender (see Table A.6),
it appears that treatment optimization is best for females and males. When we consider
the ATT, it appears that among patients whose treatment was optimized, this treatment
indeed appears to be the most effective option (indicated by all negative numbers in the
1st row of Table 3.5D). In addition, optimization does appear to be more effective than the
selected treatment within all other treatment groups (indicated by all positive numbers in
the 1st column of Table 3.5D). In fact, it is the most effective treatment for patients under
any treatment other than augmentation.

Unfortunately, none of the above treatment effects are statistically significant with
respect to the 95% confidence intervals. This is most likely due to the relatively small
number of patients with complete data out of the 463 patients that were included in
this case study; note that 376 patients were excluded from this case study because of
missing data. Yet, another possible reason for the absence of statistically significant results
might be the inappropriateness of the five strategies; remember that these strategies are
broadly defined, i.e., each strategy might contain several different drug modifications.
Thus, interestingly, the absence of statistically significant results might call into question
the use of these five strategies within the medical literature.

Finally, the focus of this work is on establishing the importance of balancing observa-
tional data prior to the assessment of intervention alternatives. To this end, we estimated
the ATEs on the unbalanced observational data as well (see Table 3.6). In this case, it
appears that augmenting the treatment is the most preferable strategy; a different result
than the result obtained from the balanced data. This may partially explain the medical
communities reluctance to follow advice derived on unbalanced observational data, that

has been the common practice among the OR/MS community.
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Algorithm 3.2: Get overall strategy

Input :EvalDate, CurrentDrugs, Prescriptions
Output: OverallStrategy
1 begin
2 | Sort Prescriptions by ascending date.
3 | Remove items from Prescriptions that precedes EvalDate or aren’t within 30
days after EvalDate
4 | Store the number of days between each prescription’s date of Prescriptions and
EvalDate in Prescriptions.diff
5 | Store length of Prescriptions in !
6 Set OverallStrategy.length to 0

if Prescriptions(1).diff != 0 then

8 | Strategy.category +— WatchfulWaiting

9 Strategy.length «+ Prescriptions(1).diff
10 Append Strategy to Strategies

11 fori=1tol—1do

12 NewDrugs <+ Prescriptions(i)

13 Strategy.category < GetStrategy(CurrentDrugs, NewDrugs)
/* Algorithm 1 =/

14 Strategy.length < Prescriptions(i+1).diff-Prescriptions(i).diff
15 Append Strategy to Strategies

A
o)

16 NewDrugs «+ Prescriptions(1)

17 Strategy.category «+— GetStrategy(CurrentDrugs, NewDrugs) /» Algorithm 1
*/

18 Strategy.length < 30 - Prescriptions(l).diff

19 Append Strategy to Strategies

20 Group Strategy objects in Strategies by category and compute the cumulative
lengths for each group

21 Set OverallStrategy to the category with the longest cumulative length; if ties exist,
set OverallStrategy to the category, out of the ties, occurring first in Strategies
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TABLE 3.5: Treatment effects with 95% confidence intervals for the TRD case

study. The row is u and the column is v. 1st row/column is Optimization,

2nd row/column is Augmentation, 3rd row/column is Combination, 4th
row /column is Switch and 5th row /column is Watchful Waiting.

(A) ATE, ,
—0.70 (—3.57, 3.62) —2.99 (—5.77, 1.43) —3.06 (—6.49, 2.32) —1.14 (—4.33,
0.70 (—3.62, 3.57) —2.29(—=5.14, 0.57) —2.36(—5.67, 1.67) —0.44 (—3.85,
2.99(—1.43, 5.77) 2.29(—0.57, 5.14) —0.07(—3.60, 4.00) 1.85(—1.45,
3.06(—2.32, 6.49) 2.36(—1.67, 5.67) 0.07(—4.00, 3.60) 1.92 (—2.64,
1.14(—4.18, 4.33) 0.44(—3.19, 3.85) —1.85(—5.52, 1.45) —1.92(—6.24, 2.64)
(B) CATE, y.¢; €is HAM-D-17 < 24
—2.09(—3.63, 3.65) —3.47(=5.95, 1.50) —3.07(—6.49, 2.44) —0.42 (—4.35,
2.09(—3.65, 3.63) —1.38(-5.19, 0.69) —0.99(—5.68, 1.73) 1.67(—3.86,
3.47(—1.50, 5.95) 1.38(—0.69, 5.19) 0.40 (—3.75, 4.15) 3.05(—1.56,
3.07(—2.44, 6.49) 0.99 (—1.73, 5.68) —0.40 (—4.15, 3.75) 2.66 (—2.68,
0.42 (—4.19, 4.35) —1.67(—3.27, 3.86) —3.05(—5.56, 1.56) —2.66(—6.29, 2.68)
(c) CATE,, 4 ¢; €is HAM-D-17 > 24
1.76 (—4.08, 3.95) —2.98 (—6.42, 1.81) —2.68(—6.97, 2.72) —1.59(—5.19,
~1.76 (—3.95, 4.08) —4.74(—=5.60, 1.17) —4.44(—5.97, 2.03) —3.35(—4.22,
2.98(—1.81, 6.42) 4.74(-1.17, 5.60) 0.30(—4.14, 4.54) 1.39(—2.01,
2.68(—2.72, 6.97) 4.44(—2.03, 5.97) —0.30 (—4.54, 4.14) 1.09 (—3.25,
1.59 (—4.40, 5.19) 3.35 (—3.42, 4.22) —1.39 (—5.90, 2.01) —1.09 (—6.49, 3.25)
(D) ATT
—0.26(—2.84, 3.19) —2.42(—5.44, 0.81) —3.14(—6.39, 2.50) —1.13 (—4.54,
0.01 (—4.60, 3.94) —0.65(—5.18, 3.59) —1.52(—5.88, 2.72) 2.95(—3.49,
3.18(—4.28, 6.96) —0.15(—3.89, 4.55) —3.25(—=7.04, 2.30) —0.52(—3.94,
5.31(—1.82, 9.94) 2.59(—0.79, 6.60) —0.53 (—4.50, 4.09) 1.82(—3.25,
2.62 (—2.50, 5.60) 1. 27( 2.08, 4.27) —1.89 (—4.94, 1.57) 1.16 (—4.63, 4.13)
TABLE 3.6: Unbalanced ATE with 95% confidence intervals for the TRD
case study. For the unbalanced ATE,, ,, the row is v and the column is v.
1st row/column is Optimization, 2nd row/column is Augmentation, 3rd
row/column is Combination, 4th row /column is Switch and 5th row/column
is Watchful Waiting.
0.25(—3.00, 3.60) —0.82(—4.60, 3.14) —2.56 (—6.74, 1.55) —0.66 (—3.75,
—0.25(—3.60, 3.00) —1.07(-5.42, 3.24) —2.81(—7.21, 1.71) —0.91 (—4.61,
0.82(—3.14, 4.60) 1.07(—3.24, 5.42) —~1.74(—6.69, 3.19) 0.16 (—4.08,
2.56 (—1.55, 6.74) 2.81(—1.71, 7.21) 1.74(—3.19, 6.69) 1.90 (—2.53,
0.66 (—2.59, 3.75) 0.91(—2.88, 4.61) —0.16(—4.43, 4.08) —1.90(—6.28, 2.53)
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3.8 Conclusion

In this work, we described the fundamentals of the Neyman-Rubin potential-outcome
framework, rederived kernel matching with probability weights (Kallus, 2017) from kernel
mean matching and provided a new tuning approach for kernel mean matching. Next,
we explicitly stated and justified our assumptions, and used the kernel mean matching
approach to compute the treatment effects from observational data on treatment-resistant
depression, a challenging setting given the unknown pathophysiology of depression.
While some of these assumptions in our work might seem strong at first, it is important
to note that these would have been even stronger in some of the prevailing healthcare
OR/MS papers due to the more elaborate methods used (e.g., our single-stage policy
evaluation vs. their multi-stage policy optimization) if only these assumptions had been
acknowledged. We hope that this work will increase awareness within the healthcare
OR/MS community of the implicit assumptions that are made when optimizing decisions
over observational data.

There are several limitations to our treatment-resistant depression case study. First, we
used observational data that was not purposely collected for research and thus contained
several missing values. This resulted in the analysis of a subset of patients that may
be different from the larger set of patients in ways that lead to bias in the estimation
of the treatment effects. Second, we focused exclusively on pharmacotherapy and did
not consider other types of therapy (e.g., psychotherapy, nutrition). Therapies other
than pharmacotherapy are known to have an effect on remission of MDD (Lam et al,,
2016a). Finally, we considered strategies that are composed of multiple drug treatments.
Because the types of medications and dosing of these medications are evolving, the
strategies considered here will not include newly available medications nor will include
new approaches to dosing of presently available medications.

Future research areas regarding kernel mean matching include (1) the generalization
of kernel mean matching to continuous and multi-stage treatments and (2) the further

analysis of the use of entropy for tuning kernel mean matching.
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Chapter 4

When to Set the Next Appointment of
Patients Suffering from
Treatment-Resistant Depression

4.1 Introduction

Setting the frequency of appointments for patients suffering from treatment-resistant
depression (TRD), a severe form of major depressive disorder (MDD), is an important
decision due to the trade-off that high-frequency and low-frequency appointments entails.
On one hand, high-frequency appointments can lead to a waste of highly-specialized
resources with limited availability such as specialized outpatient clinic, which might
decrease the access to these resources. On the other hand, low-frequency appointments can
lead to degradation of patients” health and to further adverse effects; for example, a patient
who suffers from side effects can decide to stop the ongoing treatment if the concerns of
this patient are not captured in time, and can then suffer from low quality of life and be at
risk of suicide. However, even if this decision is important, it remains unclear what should
be the optimal frequency of appointments since different factors can affect this decision
such as (1) the patient’s characteristics (e.g., health state, treatment, availability), (2) the
physician’s characteristics (e.g., experience, availability) and (3) the clinic’s characteristics
(e.g., staff availability, opening hours, waiting list’s length, budget).

While the Canadian Network for Mood and Anxiety Treatments (CANMAT) guide-
lines (Lam et al., 2016a) do not indicate what should be the time between appointments,
the Kaiser Permanente guidelines (National Guideline Directors, 2016) recommend, for
patients starting an antidepressant treatment for MDD, one follow-up contact within the
tirst month and then one other follow-up contact four to eight weeks afterwards. After

remission, they recommend one follow-up contact five or six months afterwards. Finally
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for asymptomatic patients with MDD who are continuing a pharmacological treatment,
they recommend at least one contact per year. In contrast, Trangle et al. (2016) recommend
weekly contacts first to ensure engagement and then monthly contacts for mild MDD.
For moderate MDD, they recommend weekly contacts to ensure engagement and then
one contact every two to four weeks. Finally, for severe MDD, they recommend weekly
contacts until the severity decreases. Thus, it appears that there exists a disparity in the
recommended times between appointments in the literature (when any recommendations
are given) and, thus, it appears that no single best practice exists. Note that the previous
recommendations (National Guideline Directors, 2016; Trangle et al., 2016) are for contacts
that could be done over the phone by a care manager and not necessarily in-person with a
psychiatrist.

The goal of this study is to identify which factors affect the time to the next appointment
and the relative importance of these factors in this decision. To address this goal, we first
elicit a set of potential features from physicians (i.e., the main decision makers in this
decision) with semi-structured interviews and then use machine learning (ML) methods
on data to estimate the importance of each of these features. In particular, we use methods
from the field of imitation learning (IL) that are used to reproduce the behavior of an expert
from demonstrations; we justify the use of such methods to characterize the behavior by
assuming that a model used to reproduce a behavior is a potential model to explain the
behavior. The data set used in this work, collected prior to the semi-structured interviews,
consists of 463 adult patients suffering from treatment-resistant depression (TRD) with an
initial visit at the depressive and suicide disorders program (DSDP) of the Douglas Mental
Health University Institute in Montreal between August 2006 and August 2015. Each
of these patients is followed by one of the four psychiatrists working at this specialized
outpatient clinic.

This two-stage framework (i.e., semi-structured interviews and IL methods) is selected
for three reasons. First, this framework allows the modeling of the potentially complex
timing decision by requiring less interventions and time from the physicians in comparison
to fully eliciting this knowledge from them. Second, we believe that this framework
provides results which are subject to less biases than a full expert elicitation method, since
the second stage does not require the interventions of physicians and is fully data-driven.
For an overview of expert elicitation methods and associated biases, refer to Meyer and
Booker (2001). Third, since data generally require pre-processing before it can be used,
it is not practically possible to only have a fully data-driven stage without any expert

knowledge; this would be too much time consuming for large data sets and would lead to
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the omission of relevant features which are engineered from raw features with the help of
expert knowledge.

This chapter is organized as follows. Section 4.2 recalls the basics of Markov decision
processes (MDPs) and semi-Markov decision processes (SMDPs), followed by an overview
of imitation learning (IL) in Section 4.3. Next, Section 4.4 introduces our proposed models
to identify the potential relevant factors, and Section 4.5 presents the results with respect
to our application, i.e., the timing of appointments for patients suffering from TRD. We

conclude in Section 4.6.

4.2 Preliminaries

4.2.1 Markov Decision Process

A Markov decision process (MDP) (Puterman, 2005) is a tuple M = (S, A, T, R.v,«)
where § = {si,...,s,} is a finite set of states, A = {ay,...,a;} is a finite set of ac-
tions, T : § x A x § — [0,1] is the stochastic transition function where T'(s,a,s") =
Pr(ss;1 = s | ss = s,as = a) is the probability that action a in state s at decision epoch §
will lead to state s” at decision epoch d + 1, R : S x A — R is the bounded reward function
where R(s, a) is the reward obtained after taking action a in state s, v € [0, 1) is the discount
factor and « is the initial state distribution. Using matrix notations, the transition function
is denoted as an |S||.A| x |S| transition probability matrix (TPM) T and the reward function
as an |S||A|-dimensional vector R.

A deterministic and stationary policy 7 is defined as a mapping m: S — A. The
value of a policy 7 is the expected discounted sum of rewards and is defined as V'™ =
E [> 52, 7°R(ss, a5) | a, 7| where s, is distributed according to a and the action as is 7(ss).
The value function of a policy 7 for state s is computed using the Bellman equation (Puter-
man, 2005) V7 (s) = R(s,m(s)) + v yes T(s,m(s),s)V™(s') sothat V™ = 3" _ca(s)V7(s).
Similarly, the Q-value function Q™ (s,a) : S x A — R of a state-action pair when following
the policy 7 afterwards is computed as Q7 (s, a) = R(s,a) +7v .5 T(s,a,s)V7(s"). Under
matrix notation, these equations are

V™ = RTI' + ,yTﬂ'Vﬂ'
Q7 = R +7TV"

where V7 is an |S|-dimensional vector with the sth element being V" (s), R™ is an |S|-
dimensional vector with the sth element being R(s, 7 (s)), T™ is an |S| x |S| matrix with
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the (s, s’) element being T'(s, 7(s), s’), Q7 is an |S|-dimensional vector with the sth element
being ()" (s, a), R" is an |S|-dimensional vector with the sth element being R(s, a), and T“
is an |S| x |S| matrix with the (s, s’) element being T'(s, a, s').

An optimal policy 7* is defined as the policy with the largest expected discounted
sum of rewards, i.e.,, V™ (s) > V™(s), Vs € S for all possible deterministic and stationary
policies 7. The value and Q-value functions of this optimal policy 7*(s) are computed as

* _ NT/*( o
V*(s) = max R(s,a) +7§T(S,Q,S)V (s")

Q*(s,a) = R(s,a) +~ Z T(s,a,s)V*(s)

s'eS

with V*(s) and Q*(s, a) denoting respectively V™ (s) and Q™ (s, a).

4.2.2 Semi-Markov Decision Process

Semi-Markov decision processeses (SMDPs) (Puterman, 2005) generalize MDPs by allow-
ing action choices at random times in contrast to predefined equidistant time points. In the
most general form of this framework, the system state is allowed to change several times
between decision epochs and is continuously modeled throughout time by the natural
process.

This framework goes as follows. As a consequence of choosing action a € A in state
s € §, the next decision epoch occurs within ¢ time units after the current decision epoch,
and the system state becomes s’ € S with probability U(s, a, 0, s’).

For the sake of this work, we only consider, from now on, a special SMDP variant.
In this variant, after taking an action in a given state, the system remains in this state
for a random amount of time before transitioning to a new state at the next decision
epoch. In this case, the joint probability U(s, a, 0, s’) can be conveniently expressed as
U(s,a,0,8') =T(s,a,s)F(s,a,0) where T'(s, a, s'") denotes the probability that the state at
the next decision epoch is s’ if action « is taken in state s at the current decision epoch, and
F(s,a,0) denotes the probability that the next decision epoch occurs within ¢ time units
after the current decision epoch when action « is taken in state s at the current decision
epoch. In this variant, the delay ¢ is independent of the next state s’ to which the system
transitions.

Using these previously defined quantities, it is possible to compute the expected reward

R(s, a) which is composed of a lump sum reward r(s, a) and a continuous reward obtained
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at rate c(s, a). The lump sum reward (s, a) is obtained when taking action « in state s at
the current decision epoch while the continuous reward is obtained at a rate ¢(s, a) when
action a is taken in state s at the previous decision epoch.! This expected reward R(s, a) is

computed as
R(s,a) =r(s,a)+ c(s, a)/ / e *do F(s,a,du)
o Jo

where o > 0 is the continuous-time discounting rate and F'(s, a,du) denotes the time-
differential of F.

Similarly to MDPs, the value function of a deterministic and stationary policy © under
this SMDP variant is

V™(s) = R(s,m(s)) + > _ P(s,m(s),s)V7(s)
s'eS
where

P(s,m(s),s) =T(s,m(s),s) /000 e Y F(s,m(s),do).

Furthermore, the Q-value function is
Q" (s,a) = R(s,a) + Z P(s,a,s)V™(s).
s'eS

Under matrix notation, these equations are

VT =R"+P"V"
QTaI' — RTI' + PaVTI'

where P7 is an |S| x |S| matrix with the (s, s’) element being P(s, 7 (s),s’), and P is an
|S| x |S| matrix with the (s, s’) element being P(s, a, s').
The value and Q-value functions of the optimal policy 7* are computed as

* — ! K0!
V*(s) = max R(s,a) +SZ€;P(S,CL,S)V (s")

Q*(s,a) = R(s,a) + Z P(s,a,s)V*(s).

s'eS

IRemember, that in the variant described, the natural process remains in the state of the previous decision
epoch until the next decision epoch. Thus, we simplified the usual reward rate c(s, a, s"), that also depends
on the the state of the natural process s/, to ¢(s, a).
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4.3 Imitation Learning

As previously described, imitation learning (IL) is used to reproduce an expert’s behavior.
It generally consists of five key ingredients: (1) an access to pre-collected demonstrations
or to an interactive demonstrator (i.e., the expert to imitate), (2) a model of the environment
(i-e., a simulator)?, (3) a policy class to search?, (4) a loss function to evaluate the candidate
policy against the agent policy and (5) a learning algorithm (i.e., a method to optimize the
policy or reward). Formally, the general IL problem can be formulated as

argmin Es o)p,, L(7*(s), a)
0
where D, is the state-action distribution under the candidate policy 7y and L is a loss
function (Yue and Le, 2018).

Depending on the goal and requirements as shown in Table 4.1, the IL approaches can
be split into one of three categories: (1) behavioral cloning (BC), (2) interactive direct policy
learning (IDPL) and (3) inverse reinforcement learning (IRL). We now briefly describe
each of them.

TABLE 4.1: Overview of the goals and requirements for the behavioral cloning
(BC), interactive direct policy learning (IDPL) and inverse reinforcement

learning (IRL) approaches (adapted from Yue and Le (2018)). v'denotes a
goal/requirement while [v'] denotes an optional requirement.

Goal Requirement
Direct policy Reward Model of Pre-collected  Interactive
learning learning environment  demonstra- demonstrator
tions
BC v v
IDPL v v [vV] v
IRL v v v

4.3.1 Behavioral Cloning

BC corresponds to a reduction of imitation learning to supervised learning by considering
that the state-action distribution is provided exogenously and that the observations under

2This item is not required for behavioral cloning as described below.
30r, somewhat equivalently, a reward class to search in the case of some inverse reinforcement learning
approaches, as described below.
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this distribution are iid. There are two possible interpretations for this reduction. First,
this reduction can be interpreted as the minimization of the 1-step deviation error along
the expert trajectories. Second, it can be interpreted as, by assuming perfect imitation so
far, it learns to continue imitating perfectly. Formally, BC is formulated as the following

supervised learning problem

arg min B, o+yop_. L(a*, my(s))
0
where D, - is the state-action distribution under the policy of the demonstrator 7* (Yue and
Le, 2018).
A notable result regarding BC is that its worst-case error grows quadratically in the
trajectory length H. More formally, this result is defined as

V7T9 > Vﬂ'* . 6]¥2Rmax

where € is an upper bound on the expected 0-1 loss under the state-action distribution of

the demonstrator’s policy, i.e.,
Eoarymn,. [La” # mo(s)]] < e,

and R™ is an upper-bound on the absolute value of the expected reward R(s, a). Refer to
Theorem 2.1 in Ross and Bagnell (2010) or Lemma 3 in Syed and Schapire (2010) for the
proof of this result.

While such theoretical result appears to discredit the use of behavioral cloning for
imitation learning, it is important to note that this framework is much simpler than the
following frameworks; it consists only in using any off-the-shelf classifier or regressor.
Thus, it is still useful in practice. However, it is important to note that the policy found
with BC might lead to catastrophic errors, since an expert rarely makes mistakes and
thus the pre-collected demonstrations contain few examples of how to recover from them
(Pomerleau, 1989). In addition, BC does not generalize well to new environment since
it only replicates the expert’s policy in the current environment and thus doesn’t learn
the intrinsic motivation of the expert. Finally, BC requires lots of data if the agent or the
environment is stochastic to cover all possible state-action pairs (Ho and Ermon, 2016).

4.3.2 Interactive Direct Policy Learning

IDPL corresponds to a reduction of imitation learning to a sequence of supervised learning
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problems; note that BC is a special case of this framework with only one iteration. An
iteration of this framework works as the following. First, a policy is used to generate some
state trajectories. Second, the optimal action for each of these states is queried from the
expert to generate state-action trajectories. Finally, a new candidate policy is obtained by
minimizing a loss function over the state-action trajectories. Formally, IDPL is formulated

as minimizing a sequence of loss functions
LZ(T(') = E(S,CL*)NDi L(a*, W(S))

where D! is the state-action distribution of iteration i (more on this below) (Yue and Le,
2018). The loss function used at the first iteration is generally the loss over the pre-collected
demonstrations, i.e.,

Li(m) = E(s.04)op,. L(a®, 7(s)).

The optimization of the policy with respect to these losses can be done by two options,
which ensures convergence to an optimal policy by slowly modifying the candidate policy.
These options are (1) policy aggregation (e.g., SMILe (Ross and Bagnell, 2010)) and (2) data
aggregation (e.g., DAgger (Ross, Gordon, and Bagnell, 2011)).

In policy aggregation, the state trajectories used to construct the state-action distribution
D' are generated using a policy that is a mixture of expert queries and policies of the
preceding iterations. For example, this mixture in SMILe (Ross and Bagnell, 2010) puts
exponentially decaying weights on the policies of the preceding iterations and the expert
queries (considered the initial policy). This approach returns a stationary stochastic policy
that never queries the expert.

In data aggregation, the state trajectories are generated using a policy that is a mixture
of expert queries and the previous policy. Then, these state trajectories as well as all the
previous trajectories are used with the corresponding expert’s actions to construct the
state-action distribution D*. This approach returns a stationary deterministic policy.

As can be seen, this framework requires an interactive demonstrator which is a major
limitation for our application. However, when this interactive demonstrator is available,
this framework enables better theoretical guarantees and practical performances than
BC (Ross, Gordon, and Bagnell, 2011; Ross and Bagnell, 2010), since the policy learns to
recover from deviations of the expert’s policy by exploring relevant states in an efficient
manner. Finally, note that, as for BC, IDPL does not generalize well to new environment
since it only learns to replicate an expert’s policy in the current environment and not the

expert’s intrinsic motivation.
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4.3.3 Inverse Reinforcement Learning

IRL consists in learning a reward function R such that the optimal policy under this reward
function is the policy executed by the expert (Yue and Le, 2018), i.e., find R such that

7" = argmaxE o.p, R(s,a).
An iteration of this framework goes as the following. First, the reward function is updated.
Second, the reinforcement learning problem is solved with this updated reward function
to obtain a candidate policy. Finally, this candidate policy is compared with the expert
policy to determine how to update the reward function.

The IRL approaches can be model-given or model-free. In the model-given case, the
dynamics 7" is known and the reward function R is generally assumed to be linear. In
addition, since the dynamics needs to be stored, this type of approach is generally limited
to MDPs with small discrete state and action spaces. In the model-free case, the dynamics T
is unknown, but there exists a simulator. Thus, since there is no need to store the dynamics,
this model-free case allows large and continuous spaces where the reward function is often
modeled using a derivable function (e.g., deep neural net).

The major advantage of IRL is that it accounts for transfer and generalizability by first
learning the reward function (i.e., the intrinsic motivation of the expert (Ng and Russell,
2000)), and computing the policy only a posteriori. A major disadvantage of IRL is that this
framework requires solving, fully or partially, a reinforcement learning problem within
each iteration; thus, it requires a simulator or the dynamics, and it is more computationally
intensive.

In this work, we focus on the model-given IRL problem since it appears easier and
more sensible to derive the dynamics 7' than to construct a simulator with limited data.
In addition, since we are interested in interpretable results (which we discuss in the next
section), the simpler reward and policy functions of model-given IRL are more appropriate.
Hence, we now refer only to model-given IRL whenever we discuss IRL. A formal
definition of model-given IRL and an overview of the literature are now given.

Formally, model-given IRL consists in recovering a reward function R from a set
of trajectories D = {(,...,(u} given a MDP without the reward function M \ R £
(S, A, T,v,a) (Ng and Russell, 2000). In this framework, these trajectories are assumed to
be generated by executing an (unknown) optimal policy 7* with respect to the (unknown)
reward function R where (,, is a state-action pairs sequence of length H,,, ie., ¢, =

{(s1,al"), -, ($H,,, a3,,) )
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Ng and Russell (2000) proved that the IRL problem is ill-posed, i.e., there exists multiple
reward functions R for which the observed policy 7 is optimal. The region defining these

reward functions is given in the following condition.

Condition 1 (Reward Optimality Condition (Choi and Kim, 2011; Ng and Russell, 2000)).
Given M \ R, policy m is optimal if and only if reward function R satisfies

[I-(I*—~4T)I-~T")'E"|R <0,

where T denotes an identity matrix, 1* is an |S||.A| x |S| matrix constructed by stacking the
|S| x |S| identity matrix |A| times, and E™ is an |S| x |S||A| matrix with the (s, (s',a’)) element
being1ifs = s and n(s') = d'.

Proof. See Corollary 1 of Choi and Kim (2011) for proof. O

Since the IRL problem is ill-posed, multiple approaches were proposed in the literature
to identify a unique reward function R among the region defined in Condition 1; these
different approaches could be seen as some form of “regularization” over the region. For
example, the approaches of Ng and Russell (2000), Abbeel and Ng (2004), and Ratliff,
Bagnell, and Zinkevich (2006) search for a reward function where the value under the
expert’s policy (i.e., the policy creating the trajectories) is larger than or equal to the value
under any other policy. In particular, the approach of Ng and Russell (2000) optimizes
for a reward function that maximizes the expected gap between the values of the expert’s
policy and the other policies; the approach of Abbeel and Ng (2004) optimizes for a
reward function that maximizes the gap between the values of the expert’s policy and
the second-best policy; and the maximum margin planning (MMP) approach of Ratliff,
Bagnell, and Zinkevich (2006) optimizes for a reward function where the value under the
expert’s policy is larger than or equal to the value under any other policy by a predefined
margin that depends on the state-action pairs. As another example, the method of Ziebart
et al. (2008) uses the principle of maximum entropy to resolve the ambiguity over the
distribution of trajectories, i.e., they assume that two trajectories are as probable if they
have the same value and that trajectories with higher values are exponentially more
preferred; using this likelihood, they identify with maximum likelihood the distribution
over the trajectories that is parameterized with a linear reward function. Taking a different
perspective, the multiplicative weights for apprenticeship learning (MWAL) method (Syed
and Schapire, 2007) approaches IRL from a game-theoretic perspective, i.e., this method
identifies a policy for which its value approaches the one of the expert or even surpass
it for the worst-case reward function. Finally, in contrast to the previous non-Bayesian
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approaches, Ramachandran and Amir (2007) introduced a Bayesian IRL model that outputs
a distribution over the reward functions. This approach was later modified by Choi and
Kim (2011) with the maximum a posteriori inference for Bayesian inverse reinforcement
learning (MAP-BIRL) that recovers a single reward function with the maximum a posteriori
estimation. In addition to being easier to implement than the approach of Ramachandran
and Amir (2007), MAP-BIRL was shown to generalize many of the previous non-Bayesian
IRL approaches (Choi and Kim, 2011).

In this work, we focus on the MAP-BIRL approach (Choi and Kim, 2011) and a variant of
this approach proposed by Kim and Pineau (2016) since they subsume previous approaches
and are easy to implement. Hence, we now describe in more details these two approaches.

The MAP-BIRL algorithm goes as follows. Assuming that (1) the agent is attempting to
maximize the total accumulated rewards (i.e., the agent is not acting completely at random),
(2) the policy used by the agent is stationary, (3) the initial belief about the expected rewards
are i.i.d.*, and (4) the likelihood of the set of trajectories is an independent exponential

distribution, the prior and likelihood are given as

H Pr(R(s,a

s€S,acA
M H M H
T T exp(BQ*(sy, ;s R))
r(D|R) Pr(a;' | si', R
yl;H e nHqu D aca eXp(BQ*(s7', a; R))

where 3 is a parameter representing our confidence in the agent choosing the optimal
action.”

The goal of MAP-BIRL is to identify the reward function that maximizes the log-
posterior distribution Ryi4p = arg maxg [log Pr(R | D)] where Pr(R | D) < Pr(D | R) Pr(R).
This optimization (Choi and Kim, 2011) is done using a gradient method with the following
update rule

R;i1 + R; + A; Vg, logPr(R; | D) (4.1)

where A, is the learning rate at iteration i and Vg, log Pr(R; | D) is the gradient of the
log-posterior with respect to R,;.
Since the gradient with respect to R of the log-posterior is proportional, up to a

constant that does not depend on R, to the sum of the gradients of the log-prior and the

4Note that, in infinite-horizon MDPs, rewards are assumed to be identically distributed for tractability,
and independent since the process is Markov.

>The parameter 3 is strictly greater than zero whenever we are confident that the agent is not acting
completely at random.
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log-likelihood, this log-posterior is equivalently computed as
VR, logPr(R; | D) =~ Vg, log Pr(D | R;) + Vg, log Pr(R;) (4.2)

by which the same reward Ry4p is obtained. Assuming a differentiable log-prior with
known gradient Vg log Pr(R), the only piece missing is the gradient of the log-likelihood
Vg log Pr(D | R). The log-likelihood is given as

M H"L
logPr(D | R) Z

m=1 h=1

[/3@ >—1og2exp<ﬁQ*<shm,a;R>>], (4.3)

acA

while its gradient is

M Hy,
VrlogPr(D | R) ZBZZ [VRQ sy, ap s R Z¢ a,sp; R)YVRQ* (s}, a; R)] (4.4)
=1 h=1 acA
with 'QD(CL, s; R) — exp(BQ* (s,a;R))

> area xp(BQ*(s,0";R))
Given VRQ"(R) where Q*(R) is an |S||.4|-dimensional vector with the (s, a) element

being Q*(s, a; R), it is possible to compute the previous gradient. Choi and Kim (2011)
proved the following two properties for Q"(R):

Lemma 3. Each element of Q" (R) is convex.
Proof. See Theorem 2 of Choi and Kim (2011) for proof. O]

Lemma 4. Each element of Q"(R) is differentiable almost everywhere. In particular, for R €
C(m) where C () is the reward optimality region with respect to m, Q*(R.) is differentiable with
VrQ'(R) = VRQ™(R) = (I—yTE") ! strictly inside reward optimality regions and Vr Q" (R)
is a subgradient of Q*(R.) on the boundaries.

Proof. See Theorem 3 of Choi and Kim (2011) for proof. O

Given that multiple rewards give the same optimal policy, Choi and Kim (2011) pro-
posed Algorithm 4.1 to reduce the number of MDPs to solve and the number of gradients
of the Q-value function to compute.® This algorithm uses Condition 1 (i.e,, H'R < 0) in
order to reuse past results (i.e., 7, VR Q) when possible.

If R is a linear parametric function (i.e., R = ®w with ® € RISI4*4) and that we want

to optimize its weights w, the previous results hold by replacing R by ®w. For example,

®1t is easy to see in Lemma 4 that the computation of the gradient requires 7 to formulate E™ but does not
require R.
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Algorithm 4.1: MAP-BIRL algorithm (Choi and Kim, 2011).
Input : M\ R, trajectories D, step-size sequence {A,;}, number of iterations v

Output:R
1 Initialize R
2 m + solveMDP(R) /* Compute the optimal policy =*/
3 H™ <~ computeRewardOptRgn(m) /* Condition 1 x/
1 VRrQ < computeQGradient(r) /* Lemma 4 x/
5 [T+ {(m,H",VRQ)} /* Store these results x/

6 fori=1tor do

7 Vg logPr(R | D) < computeLPGrad(R, 7, VRQ,D) /+ Equation 4.2 =/
8 Ry < R+ A;VrlogPr(R | D) /* Equation 4.1 x/
9 if H'R,., > 0 then
/+* If R,y and R don’t lead to the same optimal policy
m and Q-value function gradient VgrQ, then search in
the past results. */
10 (m,H", VR Q) + findRewardOptRgn(R, IT)
11 if isEmpty((m, H", VR Q)) then
/* If no past reward optimality region H" gives
H'R,., <0, then compute the relevant quantities. x/
12 7 <+ solveMDP(R,,.,,) /* Compute the optimal policy =x/
13 H"™ < computeRewardOptRgn(m) /* Condition 1 */
14 VrQ < computeQGradient(r) /* Lemma 4 */
15 O+ TuU{(r,H",VRQ)} /* Store these results =/
16 R+ R,

the derivation of the Q-value function changes to V,Q*(w) = (I — yTE™)"!'®. In this
setting, even if the ® matrix is problematic for large state and action spaces, learning w
instead of R does however allow to interpolate R(s, a) for unseen states and/or actions.

Finally, to conclude on IRL, there exist approaches that have been proposed to regularize
the weight vector w, without having to specify a prior Pr(w), when R is a linear parametric
function. This is the approach taken by Kim and Pineau (2016) that we focus on in this
work. Their approach maximizes the L1-regularized log-likelihood

w* = argmax [log Pr(D | w) — Al|w]|,]

wcRd

where \ > 0 is the regularization parameter’. This allows them to obtain a sparse weight
vector. In their approach, they reuse the same definition of the log-likelihood for a linear

"Note that if @ contains a bias term (which is generally the case) then the corresponding element of w is
not regularized; this particularity is assumed everywhere within this study.
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reward function as in Choi and Kim (2011).

4.4 Proposed Models

We now discuss the proposed models which are adaptations of existing models to our
problem. The proposed models were selected for their capacity to (1) identify the relevant
factors used in making the timing decisions, and (2) estimate the relative importance of
these factors. While there are many different interpretable models which could have been
selected for these tasks, we focus in this study on sparse linear models since we believe
that this class is an adequate proxy to interpretability with respect to the goal of this study.
Note that the literature on the adequacy of interpretable machine learning models relative
to the tasks is still in its infancy (see, e.g., Doshi-Velez and Kim (2017)).

The proposed models consist of IRL and BC models; we omit IDPL approaches since we
don’t have access to the interactive demonstrator required by these approaches. The IRL
model, referred to as semi maximum likelihood inverse reinforcement learning (SMLIRL),
recovers a linear reward function from a set of trajectories that contains static, dynamic and
time dependency information based on the model of Kim and Pineau (2016) and SMDP.
In particular, SMLIRL maximizes the L1-regularized log-likelihood as in Kim and Pineau
(2016) for a discrete version of SMDP. On the one hand, we select the approach of Kim
and Pineau (2016) since we want to recover a small subset of relevant features. On the
other hand, we use SMDP with a discrete state and action spaces due to the challenges of
working with continuous spaces.

The BC models consist of off-the-shelf supervised models, i.e., a multiclass logistic
regression model and least absolute shrinkage and selection operator (LASSO). These
models offer another perspective on the behavior of the physicians and can be seen as
myopic variants of the IRL model.

In this section, we first describe the components of the SMLIRL model, the formulation
of the associated Bellman equations in matrix notation and the SMLIRL algorithm. Then,
we analyze the myopic version of SMLIRL and show that it is equivalent to BC approaches
that we plan to use. Next, we present our procedures for the discretization of the state and
action spaces, and our model selection procedure. Finally, we discuss how the proposed
models differ when they are used to characterize instead of reproducing a behavior.
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4.41 Components and Notation of SMLIRL Model

We now describe the different components of the semi maximum likelihood inverse
reinforcement learning (SMLIRL) model and the formulation of the associated Bellman

equations in matrix notation.

State

The state of the system is defined as s € S and can be decomposed as s = (b, g,t) € BxGxT
where b is the static information on the patient, physician and clinic, g is the dynamic
information on the patient, physician and clinic, and ¢ is the time since the first appointment.
We assume that the sets B, G and 7 are all discrete sets. In addition, note that the time
dependency ¢ is added to the state in order to capture whether a physician spaces out the

appointments after some time.

Action

The action set, assumed discrete, consists of only one action, i.e., the delay before the next

appointment. Thus, we denote the action as a € A = {ay,as, ..., ax}.

Observations

The set of observations is defined as D = {(,...,(u} with trajectories ¢, =
{om, (g7, 17, a), ..., (g% th. af ), (95 41, Uh 1)} where b € B is the static informa-
tion for the trajectory m, g;* € G is the dynamic information for the trajectory m at decision
epoch h, tj* € T is the time since the initial appointment for the trajectory m at decision
epoch h, and a}' = 77, | — 7" is the observed action (i.e., delay before next appointment)
for the trajectory m at decision epoch h. Note that the last decision epoch of the sequence

(i.e., H,, + 1) does not contain an action as we do not observe this value.

Transition Functions

We now define the functions F'(s,a,0), T(s,a,s’) and P(s,a, s’) that are needed to define
this SMDP. The function F(s, a, o) is defined as

0 ifo<a
F(s,a,0) =
1 ifo>a,
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and its time differential is F'(s,a,do) = d(c — a) do where 4(-) is the Dirac delta function.

The function 7'(s, a, s') is defined as

Wy(g,a,g") ift' =t+aandd' =0
T((b.g,t).0, (¥, g,#)) = 3 1909 ,
0 otherwise

where s = (b,g,t) and Wy(g,a,9') = Pr(gs11 =¢' | g5 = g,a5 = a,bs = b). It is important
to note here that, while the dynamic information g transition stochastically to ¢’, the
static information b stays the same and the time ¢ since the initial appointment transition
deterministically to ¢’ = ¢ + a. Also, note that we assume that ¥, does not depend on ¢ nor
t.

Finally, the function P(s, a, s') is defined as

P(s,a,s") = T(s,a,s’)/ e *F(s,a,do)
0

=T(s,a, S’)/ e *d(0c—a)do
0

=e “T(s,a,s)

since [ f(2)0(z — a) dz = f(a) when a € [0, c0). When expanding the state s, it reduces
to
e “Wi(g,a,q") ift' =t+aandd/ =b
P((b,g1).a, (¥, g, ¥)) = )
0 otherwise.
Note that in this model, we assume that o > 0 is given. If it is not, then we have to
search for the best value of a from a predictive performance point of view like for the other

parameters.

Reward Function

The reward function is defined as R : S x A — R where R(s, a) is the reward obtained after
choosing action « in state s = (b, g, t). In this model, it is assumed that the reward function
R(s,a) is composed only of the lump sum reward (s, a), i.e., the continuous reward c(s, a)
is zero. In addition, it is assumed that this reward function is a linear function of a set of
features, i.e., R(s,a) = .0, wi¢s(s,a) with {w;}~, denoting the parameters and {¢;}%
denoting the feature transformation functions ¢; : S x A — [0, 1]. Inferring this reward
function (i.e., the parameters {w; }¢ ;) is the goal of this model in order to understand the

important features (i.e., the features with w; # 0) and their importance (i.e., the magnitude
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of |w;| relative to min;—; __4|w;|). This reward function is written in matrix notation as
R = ®w where ® is an |S||A| x d matrix with element ((s, a), ) equal to ¢;(s,a), and w is
an d-dimensional vector.

In this work, we assume that the feature transformation functions are given by

La = a]¢(s)
¢(s,a) = E (4.5)

where ¢(s,a)" is a row of ® and ¢(s) is composed of the features characterizing the state

s and a bias term.?

Matrix Notation

For the previously defined model components, we denote the Bellman equation and the
Q-value function in the following matrix notation:

V™= ®"w+P"V"
QT = ®'w + P*V”

where s = (b, g,t), V" is an |S|-dimensional vector with element s equal to V" (s), ®" is
an |S| x d matrix with row s equal to row (s, 7(s)) in ®, P" is an |S| x |S| matrix with
element (s, s') equal to P(s,n(s),s’), Q7 is an |S|-dimensional vector with element s equal
to Q7 (s, a), ®*is an |S| x d matrix with row s equal to row (s, a) in ®, and P* is an |S| x |S|
matrix with element (s, ) equal to P(s, a, s').

4.4.2 SMLIRL Algorithm

We now present the proposed semi maximum likelihood inverse reinforcement learning
(SMLIRL) model that extends the approach of Kim and Pineau (2016) with the SMDP
framework to take into account decision epochs of variable lengths. We describe it with
the equivalent subroutines to Algorithm 4.1.

8Note that we use ¢ and ¢ to denote several different components. However, the meaning should be
clear from the arguments and indexes of this component, and whether this component is in bold.
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Computing the Optimal Policy: solveMDP(w)

Using value iteration, the proposed model is solved as

V*(s) = max Q*(s, a)

acA
where s = (b, g,t) and
d
Q*(s,a) = Zwiqbi(s, a) + Z P(s,a,s")V*(s).
i=1 s'eS

Then, the optimal policy is obtained with

7*(s) = arg max Q*(s, a).
acA

This subroutine replaces the subroutine solveMDP(R) in Algorithm 4.1.

Computing the Reward Optimality Region: computeRewardOptRgn(7)

For the proposed model, Condition 1 is rewritten as the following:

Condition 2 (Reward Optimality Condition for Proposed Model). Given (S, A, P, ®), policy
7 is optimal if and only if reward parameters w satisfy

[ - (I"-P)I-P")'®"|w<0

where 14 is an |S||A| x |S| matrix constructed by stacking the |S| x |S| identity matrix | A| times,
P is an |S||A| x |S| matrix with element ((s,a), s") equal to P(s,a, s"), and 1 is an identity matrix.

Proof.
Policy 7 is optimal
Q< V7, Va € A
S PWw+PVT<P"w+PTVT, Va € A
S Pw+PI-P) ¢ "w < ®"w+P"(1I-P") '®"w, Va € A

SPw—-I-PYI-P)'®"w<®w-I-P)I-P")'®"w, Vacd
S [ - 1I-P)(I-P") '@ w<0O, Va € A
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The third equivalence holds by V™ = (I — P™)~'®"w. The fifth equivalence holds because
the right-hand side is 0. Stacking up the last equivalence for all a € A gives the condition.
O

This subroutine replaces the subroutine computeRewardOptRgn(7) in Algorithm 4.1.

Computing the Q-Value Function Gradient: computeQGradient(r)

Similarly to Lemma 4, the Q-value function gradient with respect to w is computed as

vVQ" = (I-PE")"'®

where VQT is a |S||A| x d matrix with element ((s,a),?) equal to w;—u(j’“), since Q" =
®w +PE"Q" where E" is an |S| x |S||.A| matrix with element (s, (s',a’)) equal to 1 if s = &’
and 7(s’) = @/, and Q" is an |S||.A|-dimensional vector with element (s, a) equal to Q™ (s, a).

This subroutine replaces the subroutine computeQGradient(7) in Algorithm 4.1.

Computing the Log-Likelihood and its Derivatives: computeLLDeriv(w,m, Q,V,Q, D)

Let s}* denote the state (b, g, t7"). Then, similarly to Equation 4.3, the log-likelihood is

=Y i [BQ*(ST,aZ";w) - 10gzexp(ﬁQ*(SZnaa5w))] :

acA

Similarly to Equation 4.4, the gradient of this log-likelihood with respect to w is

M Hp
VLW) = 83 [VQ (sihaiw) = 3 v(si,a:w)VQ' (57, aiw)]
m=1 h=1 acA

where VL(w) is a d-dimensional vector with element ¢ equal to 85—5;’) and (s, a;w) =

exp(BQ* (s ,a;w))
ZG/EA eXp(BQ* (S;ana/;w)) )
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Finally, the hessian of this log-likelihood with respect to w is

acA a’'eA

#33 [ (Zw s ) VO (5 s ) (z w(SZ”‘,a’;w)VQ*(shm,a’;w))
> 0

(sh' a;w) (VQ" (53", a; w)) (VQ*(Shm,a;w))T]
acA

()
Ow; 0w

This subroutine replaces the subroutine computeLPGrad(R 7,VrQ, D) in Algo-
rithm 4.1.

where V2L (w) is a d x d matrix with element (i, j) equal to 2

Minimizing the L1-Regularized Negative Log-Likelihood

In this proposed model, the goal is to minimize the L1-regularized negative log-likelihood
(as in Kim and Pineau (2016))

w* = argmin [~ L(w) + Al|w]],] (4.6)
weRd
where |||, is the L1-norm and A is the regularization parameter.
However, we cannot use the standard gradient descent approach (e.g., Equation 4.1) to
optimize this objective since the L1-norm is not differentiable at zero. Fortunately, there
exists approaches to minimize general loss function with L1-regularization (e.g., Schmidt

(2010)). This optimization replaces the update rule in Algorithm 4.1.

4.4.3 Myopic Model Analysis

We now analyze the myopic variant of the SMLIRL model and show that this variant is
equivalent to BC. A myopic model considers only the immediate rewards, i.e., it consists of
the model obtained in the limit o — oo; hence, it is an interesting approach since it does not
need to model the discounted dynamics P. In this model, the Q-value function reduces to
Q(s,a) = S0 wig(s,a). Hence, the gradient of the Q-value function is given by VQ = &
and it does not depend on the policy. So, it is easy to see that this model is much easier
to optimize since we only need to minimize the L1-regularized negative log-likelihood
without having to solve for the optimal policy as a subroutine at each iteration. In addition,
this model is equivalent to a classification model over the state-action pairs as shown in
Proposition 1; thus, this myopic model is equivalent to a BC approach.
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Proposition 1. Let ¢(s\¥), a;) be defined as in Equation 4.5, and let the features transformations
o(s9)) and ¢(xD) contain a bias term and be equivalent. Then, the myopic model loss function
(without reqularization)

ARNES Tor(s? a;
J(w) — Z Z ﬂ[a(z) _ aj] 10g EXP(/BW d)(S 7@])) (47)
i=1 j=1 Py exp(fw (s, ap))
for the trajectory {(sV) aW), ... (s™),a™))} and action set a¥) € {ay, ..., ay} is equivalent to

the loss function of the multiclass logistic regression (Bishop, 2006)

; T (200
J(©) = — 1y = y,]1 exp(6; $(a)) 48
(©) gZ 7 = willog o ) (4.8)

for the training set {(x(V,y™M), ... (z™), y"™)} and the class labels y) € {y1, ..., y}.

Proof. Since ¢(s) contains a bias term, (3 is redundant and can be omitted. Then it is
easy to see that Equation 4.7 with Equation 4.5 is equivalent to Equation 4.8 since the
corresponding kd-dimensional vector w is the vectorization of the k£ x d matrix ® =
01, ...,0,]" with all rows set to zero except row j. O

We now provide two remarks regarding this myopic model.

Remark 2. Because of this equivalence between Equations 4.8 and 4.7, we have that the myopic
case cannot be solved in closed-form in general.

Remark 3. Under the features in Equation 4.5, the myopic case is overparameterized. Thus, even
though it is convex, it contains multiple minimizers. Fortunately this overparametrization is easily
addressed with regularization.

Finally, since the myopic case does not require to solve for the optimal policy as a
subroutine and is equivalent to a BC model, it can also be addressed without discretizing
the action values. Hence, we propose to use LASSO (i.e., L1-regularized regression) (Hastie,
Tibshirani, and Friedman, 2009) as well as the previously described multiclass logistic

regression (MLR) model to recover relevant features and their relative importance.

4.4.4 Discretization of the Observations

We now describe several discretization procedures that are used for the SMLIRL model and

can be used for the BC models. Let the set of raw extracted observations be denoted by D =
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{Ci,- -+ Cu} with trajectories G, = {0, (g1, 81", @{"), .- ., (34, TH,.. aH) (FH1: EH 1) }-
Since the raw values 0™, g, 1}, a;* may constitute large or uncountable sets, it may be
required (e.g., to model the dynamics) or preferable (e.g., for computational performance)
to discretize these values (or discretize them further) for the proposed SMLIRL and BC
models.

In particular, since the action a and the time since the initial appointment ¢ are real
numbers, these values need to be discretized for the SMLIRL model. However, noting that
t is linked to a through 511 = t5 + as, the discrete set 7 arises directly from the discrete set
A. Thus, it is only necessary to define the set .4 to obtain the set 7. It is important to note
that the size of the set .A shouldn’t be too big to limit the size of the set 7; see Proposition 2
for an upper bound on the size of the set 7 given the size of the set .A. For example,

according to Proposition 2, for k = 5 and H = 10, the upper bound is 1% = 3003.
Proposition 2. For a particular discrete action set A, the size of the associated discrete time set T

k+H) _ (k+H)!
H ) = THE

is upper bounded by ( where k = | Al and H = max,eq1,... vy Hin.

Proof. There are (") ways to choose from 0 to H actions from a set of k actions if
repetitions are allowed. Since different supersets of 0 to H actions can sum to the same

value, this result is an upper bound. O

There exist a variety of discretization approaches that can be classified as global vs.
local, supervised vs. unsupervised, and static vs. dynamic (Dougherty, Kohavi, and
Sahami, 1995). Global discretization methods apply the same discretization procedure on
the full instance space while local discretization methods apply different discretization
procedures to the different regions of the instance space. Supervised discretization methods
use additional information, such as the instance labels in supervised learning, to discretize
the instance space while unsupervised discretization methods do not use such information.
Finally, static discretization methods are applied at the outset of the learning algorithm
while dynamic discretization methods are used within the learning algorithm.

In this work, we focus on global, unsupervised and static discretization approaches.
In particular, we test how equal width, equal frequency and k-means discretization ap-
proaches compare for the proposed models. Note that in past IRL models (e.g., Abbeel and
Ng (2004), Choi and Kim (2011), and Kim and Pineau (2016)), discretization was generally
done according to the equal width discretization method or heuristically without any
considerations to other potential discretization approaches. Yet, different discretization
approaches can lead to different intervals and discretized values. Thus, the selection of the
discretization approach can affect the predictive accuracy of the SMLIRL and BC models;
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an example of the equal width, equal frequency and k-means discretization approaches
applied to the times between consecutive appointments (i.e., the action of our application)

for three intervals is given in Figure 4.1.
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FIGURE 4.1: Equal width, equal frequency and k-means discretization of the
times between consecutive appointments in three intervals.

We now describe the equal width, equal frequency and k-means discretization ap-
proaches for the discretization of the raw action values a;'. The same methods can also be
used to discretize the raw state values b™ and g". Note that the raw state values b™ and g"

can be discretized within each dimension or across their dimensions.

Equal Width Discretization

Equal width discretization (Dougherty, Kohavi, and Sahami, 1995) splits the interval of
the raw action values a}" into k intervals of equal width where the interval boundaries
are given by Gy, + 1€ for i = 0,....k with & = (Guax — Amin)/k, Gmexr = Mmax,,  aj', and
amin = Min,, 5 a;'. Yet, since these intervals are determined using only the trajectories in
the training set (see Section 4.4.5), some action values in the validation or testing set might
be smaller than the left-boundary of the first interval or larger than the right-boundary of
the last interval. Thus, each raw value @} is replaced by the closest interval center value,
where the interval center value is defined as the mean of the interval boundary values, to

obtain the discretized values aj".
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Equal Frequency Discretization

Equal frequency discretization (Dougherty, Kohavi, and Sahami, 1995) divides the sorted
raw action values @}’ into % intervals so that each interval contains approximately the
same number of instance, i.e., each interval contains approximately N/k instances where
N =M H,,. Similarly to the equal width discretization method, each raw value @ is
then replaced by the closest interval center value to obtain the discretized values aj".

K-Means Discretization

It is also possible to use a clustering algorithm, such as k-means clustering (Lloyd, 1982), to
discretize data. In this case, since k-means clustering identify & clusters that minimize the
average Euclidean distance from the cluster’s observations to the centroid (i.e., the mean
of the cluster’s observations), it is coherent to replace each raw value a;' by the label or
centroid of the corresponding cluster to obtain the discretized values aj'. Note that in this
work, we use the algorithm k-means++ (Arthur and Vassilvitskii, 2007) which improves
the initialization step of the k-means clustering algorithm.

4.4.5 Model Selection

Because of the different parameters and subroutines used (e.g., size of action set %,
continuous-time discounting rate «, regularization parameter ), discretization proce-
dure) within the proposed approaches, it is required to have a way to validate which
choices are the best. For this task, we propose to use cross-validation.

Since we only have access to a batch of data and cannot run the models online, we
evaluate the models’ results by comparing the estimated optimal policy with the observed
policy over one decision epoch at a time; we cannot evaluate the full trajectory defined by
the estimated optimal policy since we cannot query the expert for this trajectory.

In addition, since our state definition may not capture all the dependencies between the
different decision epochs, we construct the training, validation and testing sets by splitting
randomly the M trajectories (,,, from the data D. Thus, no complete nor partial trajectories
contained in the validation and testing sets have been used during the training.

The validation procedure for a model that requires discretized state and action sets
goes as follows:

1. With the knowledge elicited from the semi-structured interviews, define the variables
that should be part of the state b and g, and define the features matrix .
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2. Extract the relevant data to obtain the raw trajectories D, and the raw sets B,G, T

and A.

3. Leave out a number of trajectories from D for the test set such that D = D, U D,
with ,[)cv N ﬁtest = @

4. For each fold of the cross-validation procedure, split the trajectories D,, randomly

across a training set Dy, and a validation set D,

(a) For each potential models (e.g., selected model parameters, discretization proce-
dure), do the following:
i. Discretize the trajectories in the training set D irain to Obtain Diyuin.
ii. Train the model on the training set Dy, qip.-

iii. Discretize the observed states in the validation set D, using the same state
set as for the training set D,

iv. Evaluate the model expected error using > _.(7(s;) — a@;)> where 7 is the
estimated optimal policy, s; is the discretized state from the validation set

and a; is a raw observed action from the validation set.
5. Identify the best model according to the expected validation error.
6. Train this best model on the full discretized cross-validation data D..,.

7. Discretize the observed states in the test set D, using the same state set as for the

previous step.

8. Evaluate the best model expected error Y (7 (s;) — a;)? on the test set and report the

results.

For a model that can take raw values as input, the validation procedure simply skips

over the discretization steps and always use the raw values.

4.4.6 From Imitation to Understanding

While the proposed SMLIRL and BC (i.e., multiclass logistic regression and LASSO) ap-
proaches all predict an action given a state, their underlying algorithm works quite dif-
ferently. Thus, when trying to explain a behavior (i.e., the goal of this study), each model
provides a different perspective. We now discuss these differences and how they provide
different perspectives.
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First, SMLIRL fits a reward function and thus returns a function that isolates the
intrinsic motivation/goal of the expert, i.e., it returns a function in which the discounting
and environmental effects are removed. With this model, we obtain information regarding
how one action is preferable to another one in a particular state. In contrast, the BC models
tit a policy function and thus provide a description of how the actions are taken under
these effects. With these models, we just obtain information regarding which action is
taken under a particular state.

Second, in SMLIRL, the linearity constraint is on the reward function and not on
the policy function; in fact, the policy function in SMLIRL is a table mapping a discrete
state to a discrete action. In contrast, the linearity constraint within multiclass logistic
regression and LASSO is on the policy function; in particular, in the case of multiclass
logistic regression there is one linear model per discretized action.

Third, the approaches use discretization to a different degree: SMLIRL discretizes the
states and actions, multiclass logistic regression discretizes only the actions and LASSO
does not discretize.

In the end, these differences lead to results that have different meanings. Within
SMLIRL, the nonzero weights identify the relevant discretized state-action pairs within
the reward function, i.e., the combination of states and actions that are tried to be avoided
or sought. Within multiclass logistic regression, the nonzero weights identify the relevant
state variables that trigger a particular discretized action. Within LASSO, the nonzero
weights identify the relevant state variables that make the action increase or decrease.

Finally, these differences in the models should also result in different models’ capacities
and predictive performances. It is however hard to compare these models” capacities
analytically since these models’ classes are so distinct. In addition, it is not possible to
compare these models” predictive performances analytically since they are highly data
dependent. For example, while it appears much more natural to use LASSO with the raw
targets than multiclass logistic regression with the discretized targets for a prediction task,
some applications have shown that classification with a discretized target is sometimes
superior to regression with a raw target (e.g., Oord, Kalchbrenner, and Kavukcuoglu
(2016), Bogucki (2016), and Kaggle Team (2015)).

4.5 Application

As discussed previously, setting the frequency of appointments for patients suffering
from treatment-resistant depression (TRD) is an important decision; yet, the guidelines
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are unclear with respect to this decision and it appears to the best of our knowledge that
this decision has not been studied in the literature. Hence, later in this section, we use
our proposed two-stage framework to better understand how this decision is made. In
particular, we apply our framework to a data set collected at the depressive and suicide
disorders program (DSDP) of the Douglas Mental Health University Institute in Montreal,
which is an outpatient clinic treating patients suffering from TRD. However, prior to the
framework, we provide some context to the application by describing the process of an
appointment and the collected data set.

At the DSDP, an appointment with a psychiatrist generally consists in the four follow-
ing steps:

1. The patient answers four computerized tests that evaluates his health state (i.e.,

quality of life, depression, side effects and suicide ideation).
2. The patient meets and discusses with the psychiatrist.
3. The psychiatrist makes treatment modifications if necessary.

4. The psychiatrist decides on the time of the next appointment and this time is generally

respected.

Note however that the process at the initial appointment with the psychiatrist differs since
a patient passes a set of baseline tests prior to this visit instead of the computerized tests.
In addition, on some rare occasions, the process might differ due to a patient that does not
pass the computerized tests (e.g., when a patient arrives late at an appointment) or that is
seen earlier than planned (e.g., expedited appointment due to too much side effects). In
this work, we ignore the initial appointment and the appointments where no computerized
tests have been logged, and we treat the unscheduled/off schedule appointments as if
they have been initially scheduled on this date.

For this application, the data set consists of 463 adult patients suffering from treatment-
resistant depression (TRD) with an initial visit at the depressive and suicide disorders
program (DSDP) between August 2006 and August 2015. This data set is composed of
clinical and research data. The clinical variables include the treating psychiatrist (i.e., one
of four psychiatrist), patient gender, age, date of initial visit, origin of referral (i.e., ED,
internal, external), medical file closing date and reason, whether there are comorbidities on
the first axis (i.e., major mental disorders) and second axis (i.e., personality disorders), the
medications (i.e., drugs and dosages) taken at the initial visit, the prescribed medications

(i.e., drugs and dosages) at all the following appointments and the computerized tests
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scores (i.e., tests for quality of life, depression, side effects and suicide ideation) done prior
to the appointments. On the other hand, the research data is composed of questionnaires
on the socio-demographics and suicidal behavior history, of standardized tests for the
evaluation of anxiety, depression and suicide ideation, and of diagnostic tests for the first
and second axis.

In the rest of this section, we discuss the results of the semi-structured interviews with
the psychiatrists (i.e., the first stage of the framework). Then, we describe the ensuing data
set that is used in the second stage of the framework. Finally, we provide the parameters
used for the proposed models of the second stage, and discuss the main and additional

results.

4.5.1 Semi-Structured Interviews

The potential features used to determine the time between consecutive appointments are
elicited from the four psychiatrists at the DSDP with semi-structured interviews. With
these interviews, we also collect information on the experience of the physicians, the
decisions they find challenging, and the typical and maximal times between appointments.
Note that the results in this subsection were validated with the chief of the DSDP. Refer to
Appendix B.1 for the interview guide.

Experience

For confidentiality reasons, it was decided not to associate, in this text, the experience
with a specific physician (i.e., Dr. A, B, C or D). Also note that these experiences are given
with respect to 2015 as the reference date. One physician worked three years in general
psychiatry and then 13 years on MDD at the DSDP. A second physician worked 11 years
on mood disorders after his specialty degree and then five years on MDD at the DSDP.
Then, a third physician worked 13 years in general psychiatry and then five years on MDD
at the DSDP. Finally, the last physician worked for five years on MDD at the DSDP after
his specialty degree.

Challenging Decisions

Dr. A identified the decisions related to patient’s rights and autonomy as the most chal-
lenging; for example, the decision of whether to call the police or not if a patient seems
determined to commit a suicide. In contrast, this physician said that the timing decision

between appointments was “automatic”.
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Dr. B mentioned that the diagnostic of depression, the exclusion of a bipolar disorder,
the identification of an imminent suicidal risk and the identification of the somatic aspects
(e.g., age, diseases, treatments) that can influence the treatment are the most challenging
decisions. This physician also thinks that the timing decision between appointments is not
difficult. It might only be if there are not enough availabilities.

Dr. C identified the diagnostic (e.g., understanding of the problem, reason that the
patient is here) and the treatment (e.g., pharmacological, psychological) as the difficult
decisions. This physician did not identify the decision of whether to intervene with respect
to a risk of suicide as a difficult decision. This physician did not think either that the
frequency of appointments is a difficult decision. He generally consults the patient to
understand his preferences with respect to this decision.

Finally, Dr. D identified the evaluation of the health state, the intervention with respect
to a risk of suicide and the choice of the treatment as the difficult decisions. This physician
did not find that the timing decision between the appointments was a difficult decision.
This physician said that, while there are no precise scientific markers for this decision, it is
common sense.

Note that, even though the four physicians did not identify the timing decision as a
challenging decision, it still remains an important one. In fact, there is currently a waiting
list to access this specialized outpatient clinic, and this timing decision most probably has

an effect on the size of this waiting list.

Potential Features

Dr. A identified the following important variables for the timing decision: (1) major
treatment modifications (e.g., adding an antidepressant or certain add-on agents such as
lithium) and (2) health state of the patient (e.g., suicidal risk, symptoms” severity, side
effects).

Dr. B identified the following important variables for the timing decision: (1) suicidal
risk, (2) doubts on whether the patient is suffering from a bipolar disorder, (3) tolerance to
treatment and (4) fragility of patient with respect to the somatic aspects.

Dr. C identified the following important variables for the timing decision: (1) severity of
symptoms, (2) treatment modifications (e.g., adding a drug, changing dosage), (3) stability
of the health state and (4) patient preferences. This physician also highlighted that a patient
might misinterpreted a frequency decision and this is why it is important to discuss it with
the patient.
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Finally, Dr. D identified the following important variables for the timing decision: (1)
risk of suicide, (2) tolerance to treatment (i.e., side effects), (3) presence of anxiety and
panic attacks, (4) presence of sleeping disorders, (5) modification of treatment (e.g., 4-6
weeks for antidepressants, 1 week after stable dosage for lithium). This physician also
highlighted as an important variable the differences in the availabilities of the psychiatrists,

and the number and severity of patients they are following.

Typical and Maximal Times Between Appointments

The usual timing decisions for Dr. A are: (1) two to six weeks for an unstable patient, (2)
three months for an almost stable patient, (3) four months for a more stable patient, (4)
six months for a truly stable patient on which we need to make some minor treatment
modifications (e.g., remove unnecessary drugs as a second or third antidepressant) and,
finally, (5) one year for a truly stable patient that doesn’t need treatment modifications but
still need to have follow-up at the clinics since, for example, this patient does not have a
family physician. Finally, this physician mentioned that there should not be more than 18
months between two consecutive appointments if these are scheduled.

The usual timing decisions for Dr. B are: (1) one week for a patient with high suicidal
risk, (2) two to four weeks for a patient with a lower suicidal risk and with some treatment
modifications, (3) three months for a stabilized patient, and finally (4) six months for a
patient that is going very well. This physician does not schedule appointments beyond six
months; if a patient is this healthy, then he is told to call on need.

The usual timing decisions for Dr. C are: (1) one week when a new drug that has been
never tried is introduced, the patient is severely depressed or the patient is at a high risk of
suicide without needing an intervention, (2) two to three weeks for a dosage modification,
(3) two months to remove medication with the possibility of a sooner appointment on call
if necessary and (4) two to three months if the patient is stable and does not have a family
physician. This physician does not schedule appointments beyond three months.

The usual timing decisions for Dr. D are: (1) five to seven days if the patient poses a
risk towards his security, (2) one to two weeks if the patient is highly unstable or has a
bad tolerance to treatment, (3) four to six weeks for most of the patients (e.g. unstable,
good social support, good tolerance to treatment, modification of antidepressants), (4) two
months for more stable patients and (5) up to three to four months for patients who will
have their medical leave in the next three to six months or patients who are chronically
depressed. This physician does not schedule appointments beyond four months. If a
patient is not seen within six months, his file is closed.
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4.5.2 Data Set

With the help of these interviews, a list of features characterizing the state was selected.
These are described in Table 4.2; the first 5 rows are for the static information b, the next
16 rows are for the dynamic information ¢g and the last row is the time since the initial
appointment ¢.

A few remarks are in order regarding these features. First, we believe that these
features are reasonable to describe the state since the physicians claimed to use them
in the interviews. Yet, for the IRL models, these features might be insufficient to fully
characterize the transitions. Thus, the IRL models could show more variability than the
BC models due to this issue. Second, some of these features are intentionally designed
more specific than others; for example, some features focus on specific drugs (e.g., lithium
carbonate) and drug classes (e.g., tricyclic antidepressants (TCAs), monoamine oxidase
inhibitors (MAOQISs), anticonvulsants) since these drugs and drug classes require a tighter
follow-up. On the other hand, we also include features which are more general and might
include other features as a subset (e.g., ADAdded_Any includes ADAdded_TCA) since they
might account for other characteristics. The goal of these specific and general features
is to try to capture all potential relevant characteristics in a relatively small number of
features due to the limited available data (discussed next). Third, note that some of these
features (e.g., Age) may need to be discretized (or further discretized) depending on the IL
approach. Fourth, note that 4 binary values indicating the physicians are included within
the features. Thus, each model is trained over the full data; in other words, we do not train
a model per physician.’ There are two motivations behind this approach. Since the size of
the data set is small, this approach allows us to use more data per model. In addition, this
approach allows us to compare the physician factor against the other factors. Finally, note
that the action a is computed in weeks since the feature FollowingTime is also in weeks.
We believe that this granularity provides enough precision from a practical point of view.

These selected features were then extracted of the DSDP data set as follows. For
each patient, a raw trajectory (,, is built by setting ™ to the static information (e.g.,
gender, treating physician) and creating a new decision epoch with (g;*, ", ;") for each
time a computerized test is passed where g;" is the dynamic information (e.g., treatment
modifications, computerized tests), ¢} is the time since the initial appointment and a}" =
ty', — ty is the observed timing decision (i.e., timing of next appointment). The last

decision epoch consists in (g3 ..t} ) since we do not observe the action a; . If the

The expert being replicated can now be considered as a meta physician that can switch between different
physician’s policies or reward functions with the help of a bias.



TABLE 4.2: List of state features.!See Table B.1.

Feature Type Description

MD_A, MD_B, MD_C, MD_D 4 binary values Indicators of the patient’s treating
psychiatrist

IsMale Binary value Patient gender

Age Real value Patient age (in years) at the initial
appointment

FirstAxis Binary value Indicator of comorbidities on the first axis
at the initial appointment

SecondAxis Binary value Indicator of comorbidities on the second

ADDosageIncrease_TCA,

ADDosagelIncrease_Any

ADAdded_TCA, ADAdded_MAOI,
ADAdded_Any

AODosagelIncrease_Li,
AODosageIncrease_AED,

AODosagelIncrease_Any

axis at the initial appointment

2 binary values Indicators of increased dosage for
antidepressants from the tricyclic
antidepressant (TCA) class, or for any
antidepressants since last appointment’

3 binary values Indicators of the addition of
antidepressant drugs from the TCA or
monoamine oxidase inhibitor (MAQOI)
classes, or of any antidepressants since
last appointment’

3 binary values Indicators of increased dosage for add-on
drugs that are either lithium carbonate or
from the anticonvulsant class, or for any

add-on drugs since last appointment

Continued on next page. ..
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TABLE 4.2 — continued from previous page.

Feature

Type

Description

AOAdded_Li, AOAdded_ AED,

AOAdded_Any

FIBSERScore

FIBSERTrend_Inc,
FIBSERTrend_Dec

OverallFIBSERTrend_1Ingc,
OverallFIBSERTrend_ Dec

QIDSScore

QIDSTrend_Inc,QIDSTrend_Dec

OverallQIDSTrend_Inc,
OverallQIDSTrend_Dec

3 binary values

Integer value between 0 and 18

2 binary values

2 binary values

Integer value between 0 and 27

2 binary values

2 binary values

Indicators of the addition of add-on drugs
that are either lithium carbonate or from
the anticonvulsant class, or of any add-on
drugs since last appointment

Current Frequency, Intensity, and Burden
of Side Effects Rating (FIBSER) score
Indicator of strict increase or decrease in
FIBSERScore with respect to the
previous score

Indicator of strict increase or decrease in
FIBSERScore with respect to the initial
score

Current 16-item Quick Inventory of
Depressive Symptomatology (QIDS)
self-reported score

Indicator of strict increase or decrease in
QIDSScore with respect to the previous
score

Indicator of strict increase or decrease in
QIDSScore with respect to the initial
score

Continued on next page. ..
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TABLE 4.2 — continued from previous page.

Feature

Type

Description

SSIScore

SSITrend_Inc, SSITrend_Dec

OverallSSITrend_Inc,

OverallSSITrend_Dec

QLDSScore

QLDSTrend_Inc, QLDSTrend_Dec

OverallQLDSTrend_1Inc,

OverallQLDSTrend_Dec

FollowingTime

Integer value between 0 and 38

2 binary values

2 binary values
Integer value between 0 and 34

2 binary values

2 binary values

Real value

Current Scale for Suicide Ideation (SSI)
score

Indicator of strict increase or decrease in
SSIScore with respect to the previous
score

Indicator of strict increase or decrease in
SSIScore with respect to the initial score
Current Quality of Life in Depression
Scale (QLDS) score

Indicator of strict increase or decrease in
QLDSScore with respect to the previous
score

Indicator of strict increase or decrease in
QLDSScore with respect to the initial
score

Time (in weeks) since the initial

appointment
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delay between two consecutive decision epochs for a trajectory m is longer than 52 weeks
(e, tj, — 7' > 52), then we end trajectory m with (g}, "), and start a new trajectory
m+ 1 with o™ = b, g7t = g and 77! = 67, .

Within the extracted data set, there are 316 out of the 463 patients with at least one
usable state-action pair, where a usable state is defined as a state with no missing values
in the features and a usable action is defined as an action with a value less or equal to 52
weeks. These 316 patients yield a total of 3949 usable state-action pairs and 3949 usable
state-action-state tuples, where the latter is the data available to estimate the transition
function. Descriptive statistics of the states features and actions are given in Appendix B.3
for the observations that are part of the usable state-action pairs.

4.5.3 IL Models

The different IL. models used on the extracted data set are:

¢ Least absolute shrinkage and selection operator (LASSO) from the scikit-learn library
(Pedregosa et al., 2011) where the regularization weight is optimized with a grid
search over 30 values spaced evenly on a log scale between 102 and 10°.

* Multiclass logistic regression with L1-regularization (L1-MLR) from the scikit-learn
library (Pedregosa et al., 2011). The parameters are optimized with a grid search over
30 regularization weights spaced evenly on a log scale between 1072 and 10%, and
over the 3 previously discussed method of discretization (i.e., equal width, equal

frequency and k-means) with either 2 or 3 discrete action values.

¢ Semi maximum likelihood inverse reinforcement learning (SMLIRL) implemented
with an adaptation of some of the code of Choi and Kim (2013) and the L1General2
library (Schmidt, 2010). The parameters are again optimized with a grid search over
the regularization weights, the discounting values and the discretization parameters.
The grid for the regularization weights consists in 10 values spaced evenly on a log
scale between 1072 and 10* while the grid for the discounting values consists in 10
values of e™* spaced evenly on a linear scale between 0.1 and 0.95. The grid for the
discretization of the action consists in the 3 discretization approaches with 3 discrete
values. Then, the discretization of the state is done using one of two approaches.
The first approach consists in discretizing (1) the static information values into 2
values using k-means, (2) the dynamic information value into 3 values using k-means

and (3) the FollowingTime values into 5 values using the equal frequency method.
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The second method consists in discretizing the state values (i.e., static and dynamic
information, and the FollowingTime values) into 20 values using k-means. Finally,

the confidence parameter [ is set to a value of 1.

Note that we scale the features prior to running the models since we want the weights
to be on a similar scale and be comparable. In particular, we scale all features to the [0, 1]
interval which allows the binary features to keep their meaning and allows all features
to be comparable in their effect.!’” As with the other preprocessing approaches (e.g.,
discretization), the same procedure used for training is used on the data to predict.

Also note that we select the previous two discretization procedures for the state of
the SMLIRL model in order to do a trade-off between having enough state values (i.e., a
meaningful state) and having a state space size that is manageable (i.e., a state space that
is small enough to obtain many observations per state-action-state value in order to fit the
TPM). We do a uniform initialization of the TPM before fitting it to the data in order to
limit the impact of having too few observations per state-action-state tuple (i.e., we add a
bias to the TPM in order to limit its variance).!!

To conclude this section, note that 90% of the patients (rounded down) are used for
cross-validation while the others are used for the testing. Cross-validation is done with
5 folds and the mean of the root mean squared error (RMSE) across the validation sets is

used to select the best parameters for each model.

4.5.4 Main Results

In order to characterize the behavior, we first determine the best parameters for each
model using cross-validation. Then we retrain these models on the data set used for
cross-validation and compare these best models on a test set, in order to obtain a sense
of the performance of each model. Finally, we retrain these best models on the full data
set (which includes the test set) to obtain the weights associated with each feature; note
that these weights are provided without confidence intervals since these are not trivial to
obtain for these particular regularized models.

According to cross-validation, the best regularization weight for the LASSO model is
0.01, the lowest value of the range. For the L1-MLR model, the best parameters are 2.21

for the regularization weight and a discretization of the action in 3 values using the equal

0This scaling is done with the MinMaxScaler procedure of the scikit-learn library.

1This uniform initialization consists in setting a fake count of 1 to each state-action-state value before
counting the real state-action-state observations. The TPM is then obtained by scaling this 2-dimensional
matrix of counts such that each of its rows sums to 1.
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width approach. For the SMLIRL model, a discretization of the action values with the
equal width approach. This model is indifferent to the other parameters.

The root mean squared error (RMSE) and mean absolute error (MAE) on the test set for
the best LASSO, L1-MLR and SMLIRL models are given in Table 4.3. These results show
that LASSO is better than L1-MLR and SMLIRL in this case to replicate the behavior (i.e.,
lower RMSE and MAE) and, thus, LASSO should provide better explanations.

TABLE 4.3: Root mean squared error (RMSE) and mean absolute error (MAE)
of the LASSO, L1-MLR and SMLIRL models on the test set.

Model @ RMSE MAE

LASSO  6.25 4.32
L1-MLR 6.85 5.08
SMLIRL 6.85 5.08

The weights obtained by training the best LASSO model on the full data set are
given in Table 4.4. Most features are used by LASSO with the exception of 7 features
(i.e., MD_D, FirstAxis, ADDosagelIncrease_TCA, ADAdded_TCA, ADAdded_MAOT,
AODosagelIncrease_Li, AODosageIncrease_AED); in fact, the LASSO model might
have used all features if we allowed the regularization weight to go below 0.01. The two
most important features are FollowingTime and MD_A and their weights are somewhat
above the others. It feels logical that FollowingTime is an important feature since over
time, a physician gets to know his patient and might be more willing to spread out the
appointments; in addition, this patient might feel better after some time, motivating again
appointments which are more distant. Rather interestingly, however, it appears that MD_A
is the second most important feature. This finding implies that Dr. A sets appointments
which are much more spaced out than the other physicians; the other physicians” weights
are —1.336, 0.684 and zero respectively for MD_B, MD_C and MD_D.

The weights obtained by training the best L1-MLR model on the full data set are given in
Table 4.5. In the case of a small action value (i.e., action value close to 9.024), there are many
factors that are taken into account with the most important ones being FollowingTime,
FIBSERScore, SSIScore and MD_A (i.e., a large FollowingTime value and a true
MD_A value decrease the chance of a small action value while large FIBSERScore and
SSIScore values increase the chance of a small action value). Then, in the case of a
moderate action value (i.e., action value close to 26.214), there are a lot less factors taken
into account with the most important ones being Overal1lQLDSTrend_Dec and IsMale

(i.e., a true Overal1QLDSTrend_Dec value decreases the chance of a moderate action
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value while a true IsMale value increases the chance of a moderate action value). Finally,
in the case of a large action value (i.e., action value close to 43.405), the most important
factors are ADAdded_Any and MD_B (i.e., true ADAdded_Any and MD_B values decrease
the chance of a large action value). A few remarks are in order. First, note that there are a
lot less moderate and large action values than small action values (see Figure 4.1). Thus,
since these weights were trained with less data, these results should be taken with caution.
Second, rather interestingly, it appears that the features used to predict a small, moderate
or large action value are not the same (e.g., Age plays a role mostly in the moderate action
value); this effect might be due to the preceding remark. Finally, note that the top factors
found in LASSO are similar to the ones found for the small action value in L1-MLR. This
is probably due in part to the large number of small action values.

The weights obtained by training the best SMLIRL model (i.e., a discounting factor
e”® = 0.1, a regularization factor A = 0.01, a discretization of the state using the first
previously discussed approach and a discretization of the action using the equal width
approach) on the full data set are given in Table 4.6; note that several other SMLIRL models
are also considered best. In the case of a small action value (i.e., action value close to 9.024),
the most important factors taken into account are MD_B and FollowingTime (i.e., a large
FollowingTime value decreases the reward associated with a small action value while a
true MD_B value increases the reward associated with a small action value). Then, in the
case of a moderate action value (i.e., action value close to 26.214), the most important factor
isFollowingTime (i.e., a large FollowingTime value increases the reward associated
with a moderate action value). Finally, in the case of a large action value (i.e., action value
close to 43.405), the most important factors are MD_B and QLDSScore (i.e., a true MD_B
value decreases the reward associated with a large action value while a large QL.DSScore
value increases the reward associated with a large action value). A few remarks are in order.
First, note again that the results for moderate and large action values should be taken with
caution. Second, these weights are only for the reward function; the optimal policy also
takes into account the environment (i.e., the transition function). Yet, the optimal policy
consists in the smallest action value for all state values, i.e., it is static and does not depend
on the state. Third, there appears to be some inconsistencies in these weights. For example,
it is unclear why a large QLDSScore value provides a high reward with any action value.
This might be due to the limited number of observations for large action values, to the
association of the QLDSScore to other features across the discrete state values or just that
these weights are so small that they should be ignored. Finally, note that the top factors
found in LASSO (e.g., MD_2) are not necessarily present in SMLIRL. This might be due to
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the discretization of both the state and action values, and to the estimation of the TPM
with limited data in SMLIRL.

In summary, it appears that both FollowingTime and MD_A have a large effect on the
time to the next appointment. In addition, it appears that features capturing the side effects,
suicide ideation and depression severity (i.e., FIBSERScore, SSIScore and QIDSScore)
are important. Finally, it appears that the cost of discretization is quite high, and, probably
because in part from this, LASSO appears better than L1-MLR and SMLIRL.
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TABLE 4.4: Trained weights for the LASSO model sorted by decreasing abso-
lute values. Null values are not shown. The intercept is 11.643.

Feature Weights
FollowingTime 4.896
MD_A 3.708
FIBSERScore -2.512
QIDSScore -1.762
SSIScore -1.470
QLDSScore -1.429
AOAdded_AED 1.339
MD_B -1.290
OverallQLDSTrend_Inc -1.287
AOAdded_Li -1.253
AOAdded_Any -1.205
AODosagelIncrease_Any -1.189
Age 1.074
QLDSTrend_Inc -1.021
ADAdded_Any -0.962
OverallQlLDSTrend Dec -0.912
QLDSTrend_Dec -0.841
OverallFIBSERTrend_Inc -0.819
MD_C 0.749
OverallSSITrend_Inc -0.529
SecondAxis 0.473
FIBSERTrend_Dec -0.448
IsMale 0.395
QIDSTrend_Inc -0.372
OverallSSITrend_Dec -0.368
ADDosageIncrease_Any -0.341
OverallQIDSTrend_ Dec 0.319
OverallQIDSTrend_Inc 0.251
FIBSERTrend_Inc 0.223
SSITrend_Inc 0.197
QIDSTrend_Dec -0.153
SSITrend_ Dec 0.132

OverallFIBSERTrend_Dec 0.038
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TABLE 4.5: Trained weights for the L1-MLR model. Each column corresponds

to a discrete action value. The action values are 9.024, 26.214 and 43.405. The

intercepts are 1.518, 0.106 and —1.624. The 8 features with only null weights
are not shown.

Feature Action 1 weights Action 2 weights Action 3 weights
MD_A -0.866 0.345
MD_B 0.513 -0.513
MD_C -0.005

MD_D 0.045 -0.246
IsMale -0.018 0.313

Age -0.037

SecondAxis -0.154 0.121
ADDosagelIncrease_Any 0.090 -0.144

ADAdded_Any 0.195 -0.607
AODosagelIncrease_Any 0.372 -0.108
AOAdded_AED -0.176

AOAdded_Any 0.303 -0.076

FIBSERScore 1.338 -0.022
FIBSERTrend_Inc -0.219

FIBSERTrend_Dec 0.099 -0.184
OverallFIBSERTrend_Inc 0.056

OverallFIBSERTrend_Dec -0.118 0.063
QIDSScore 0.484

QIDSTrend_Inc 0.054

QIDSTrend_Dec -0.022
OverallQIDSTrend_Inc -0.008

SSIScore 0.885

SSITrend_ Inc -0.137

SSITrend_Dec -0.060 0.090
OverallSSITrend_Inc 0.143 -0.114
OverallSSITrend_Dec 0.075 -0.097
QLDSScore 0.283

QLDSTrend_Inc 0.454

QLDSTrend_Dec 0.366 -0.075
OverallQLDSTrend_Inc 0.319

OverallQLDSTrend_Dec 0.038 -0.355

FollowingTime -1.491
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TABLE 4.6: Trained weights for the SMLIRL model. Each column corresponds
to a discrete action value. The action values are 9.024, 26.214 and 43.405. The
intercepts are 1.666, 0.790 and —0.536. The 9 features with all null weights are

not shown.

Feature Action 1 weights Action 2 weights Action 3 weights
MD_A 0.002 -0.062 0.004
MD_B 0.979 0.020 -0.810
MD_C -0.001

MD_D -0.146 -0.023
IsMale 0.012 -0.115 0.014
Age 0.007 0.007 -0.075
FirstAxis 0.468 -0.012 -0.003
SecondAxis 0.008 -0.013 -0.085
ADAdded_Any 0.002

AOAdded_Any -0.003
FIBSERScore 0.047 -0.023

FIBSERTrend_ Inc 0.155

FIBSERTrend_Dec -0.100 -0.007
OverallFIBSERTrend_Inc 0.026 -0.002
OverallFIBSERTrend_Dec 0.001 -0.001

QIDSScore 0.209 -0.051 -0.334
QIDSTrend_Inc 0.272 -0.464
QIDSTrend_Dec 0.013 -0.004 -0.294
OverallQIDSTrend_Inc 0.292

OverallQIDSTrend_Dec 0.018 -0.007 -0.006
SSIScore 0.001

SSITrend_Inc 0.002 -0.026 -0.053
SSITrend_Dec 0.003 0.001
OverallSSITrend_Inc 0.103 -0.010
OverallSSITrend_Dec -0.071 0.058 -0.004
QLDSScore 0.399 -0.024 0.634
QLDSTrend_Inc 0.391 -0.005 -0.185
QLDSTrend_Dec 0.689

OverallQLDSTrend_Inc 0.172 -0.024 -0.279
OverallQLDSTrend_Dec -0.020 -0.138 0.029
FollowingTime -0.820 0.427 0.458
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4.5.5 Additional Results

In this section, additional results are provided. These complement the main results of the

application.

How good can SMLIRL become when using only the “best” features?

This first additional section tests if it is possible to improve the fit of the SMLIRL method
when using only the “best” features identified by the LASSO method in the state definition;
if the SMLIRL method can still not improve over the LASSO method in this case, then it is
clearly not the best approach for this context. Two discretization schemes are again tried
for this experiment. In the first discretization scheme, the top 3 features of LASSO are
discretized individually as follows:

* FollowingTime is discretized in 4 bins using equal frequency,
e MD_Ais kept as is (i.e., binary), and
* FIBSERScore is discretized in 2 bins using equal frequency.

In the second discretization scheme, these 3 features are discretized together into 20
values using k-means. For both schemes, the action is discretized in 3 values using equal
frequency, equal width and k-means. All the other parameters are the same as in the main
results section.

It appears that this reduced set of features leads to a SMLIRL model that is again
indifferent to all parameters except the discretization of the action; the best models use a
discretization of the action in 3 values using the equal width approach. In Table 4.7, it is
shown that the SMLIRL model with the best 3 features from LASSO performs worst on
the test set than the SMLIRL model with all features. In summary, this procedure does
not appear to improve the predictive performance of the SMLIRL model, and thus the
SMLIRL model still does not appear as the appropriate model for this context.

TABLE 4.7: Root mean squared error (RMSE) and mean absolute error (MAE)
of the SMLIRL model on the test set with 3 state features.

Model RMSE MAE
SMLIRL (3 state features) 8.0736 5.7507
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How does the feature weights differ across physicians?

In the main results section, it was found that if a patient is followed by MD_A then its time
between appointments is larger. Thus, it is interesting to check how these weights differ
across physicians. Yet, to make sure that these four models are still good from a predictive
point of view since they are trained only on a subset of the data, the cross-validation and
validation on a test set procedures were redone for these models with the same parameters
as before. The RMSE and MAE of these four models are given in Table 4.8. It appears
that the models for MD_A and MD_D are worst than the full model while the models for
MD_B and MD_C are better or equivalent. Thus, the results of MD_A and MD_D should be

interpreted with caution.

TABLE 4.8: Root mean squared error (RMSE) and mean absolute error (MAE)
of the LASSO model for each physician on the test sets.

Model RMSE MAE

MD_A 9.49 7.64
MD_B 4.94 3.32
MD_C 6.41 5.01
MD_D 7.72 4.99

In Table 4.9, the trained weights of the four models are given. For MD_Aa, it
appears that the most important features are FollowingTime, QIDSScore, and
then to a smaller degree FIBSERScore, SSIScore, AOAdded_Any, QLDSScore,
QLDSTrend_Inc, AODosageIncrease_Any and Age. For MD_B, it appears that the
most important features are FIBSERScore and QLDSScore. For MD_C and MD_D, it ap-
pears that no features have a weight larger than 2 or smaller than -2; thus, the measured
features do not affect significantly (from a practical point of view) the time between
appointments.

In summary, with limited confidence due to data limitations, it appears that these
weights do differ across the physicians. Yet, additional data and features should be

collected to establish the correct weights for each physician with appropriate confidence.

Which physician’s patients are better off?

At the DSDP, the assignment of new patients to physicians is done at random every week;
unless a patient has some history with a particular physician. Hence, it is possible to
compare the outcomes of each physician panel without having to deal with confounders.
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As shown in Table 4.10, the panel of patients of each physician appears similar in their
baseline characteristics (i.e., IsMale, Age, FirstAxis, SecondAxis). For example, the
mean age is close to 44 years old for all panels; a one-way analysis of variance (ANOVA)
on this covariate leads to a p-value of 0.0458.

Yet, these panels might differ in their outcomes due to the combined effect of the
treatments’ selection and the selection of the timing between appointments by the different
physicians. Results of one-way ANOVAs indicate a p-value of < 0.001, 0.108, 0.002 and
< 0.001 respectively for the FIBSERScore, QIDSScore, SSIScore and QLDSScore
covariates. These results indicate that for each of these scores, except QIDSScore, at least
one panel score mean is statistically significantly different than the other panel means.
Since these differences are however insignificant from a practical point of view, it appears
that no physician is better than the others with respect to these patients” outcomes.
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TABLE 4.9: Trained weights for the LASSO model for each physician. Null
values are not shown. The intercepts are respectively 19.587, 9.236, 9.035 and
8.326 for the model of MD_A, MD_B, MD_C and MD_D.

Feature MDA MD B MD C MDD
IsMale 1.113  0.203

Age 2216  0.081
FirstAxis -1.107 1.597
SecondAxis 0.512
ADDosagelIncrease_Any -0.236 -0.550
ADAdded_Any -1.308 -0.716
AODosagelIncrease_Any -2.365 -0.793
AOAdded_Any -2.585 -1.065 -0.281
FIBSERScore -2.968 -2.533 -1.026
FIBSERTrend_Inc 0.318
FIBSERTrend_Dec -1.108 -0.273

OverallFIBSERTrend_Inc -1.764 -0.440
OverallFIBSERTrend_Dec 0.486

QIDSScore -6.302 -0.130
QIDSTrend_Inc -0.379 -0.049
QIDSTrend_Dec -0.624
OverallQIDSTrend_Inc 0.288
OverallQIDSTrend_Dec 0.130
SSIScore -2.690

SSITrend_Inc 0.381
OverallSSITrend_Inc -1.501
OverallSSITrend_Dec -1.331

QLDSScore -2.517 -2.492
QLDSTrend_Inc -2.452 -0.351
QLDSTrend_Dec -1.233  -0.129
OverallQLDSTrend_Inc -0.732 -1.340
OverallQLDSTrend_Dec -0.751

FollowingTime 9.522  1.985
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TABLE 4.10: Descriptive statistics of the state features and action per physician.
The following means and standard deviations (in parentheses) are computed
using respectively 876, 1689, 517 and 867 observations for MD_A, MD_B, MD_C

and MD_D.

Feature MD_A MD_B MD_C MD_D

IsMale 0.51( 025)  0.27( 0.20)  0.38( 0.24)  0.37( 0.23)
Age 44.44(10.10)  43.62(10.74)  44.92(10.23)  44.17( 9.68)
FirstAxis 049( 025)  0.68( 0.22)  0.44( 0.25)  0.76( 0.18)
SecondAxis 0.73( 020)  0.57( 0.25)  0.47( 0.25)  0.90( 0.09)
ADDosageIncrease TCA 0.01( 0.01)  0.02( 0.02)  0.05( 0.05)  0.03( 0.03)
ADDosageIncrease Any 0.13( 0.11)  0.18( 0.15)  0.15( 0.13)  0.25( 0.19)
ADAdded_TCA 0.02( 0.02)  0.01( 0.01)  0.06( 0.06)  0.02( 0.02)
ADAdded_MAOT 0.01( 0.01)  0.00( 0.00)  0.00( 0.00)  0.00( 0.00)
ADAdded_Any 0.13( 0.11)  0.10( 0.09)  0.19( 0.15)  0.15( 0.13)
AODosageIncrease_Li 0.01( 0.01)  0.03( 0.03)  0.01(0.01)  0.00( 0.00)
AODosagelIncrease_ AED 0.00 ( 0.00) 0.03 ( 0.03) 0.00 ( 0.00) 0.00 ( 0.00)
AODosagelncrease_Any 0.17( 0.14) 0.20( 0.16) 0.09 ( 0.08) 0.18( 0.15)
AOAdded_Li 0.02( 0.02)  0.01( 0.01)  0.02( 0.02)  0.01( 0.01)
AOAdded_AED 0.01( 0.01)  0.03( 0.03)  0.00( 0.00)  0.01( 0.01)
AOAdded_Any 0.22( 0.17)  0.22( 0.17)  0.19( 0.15)  0.19( 0.15)
FIBSERScore 6.58( 5.17)  6.13( 5.49)  5.40( 473)  6.04( 5.19)
FIBSERTrend_Inc 0.35( 0.23) 0.30 ( 0.21) 0.33( 0.22) 0.31( 0.21)
FIBSERTrend_Dec 0.38 ( 0.24) 0.31( 0.21) 0.38 ( 0.24) 0.37( 0.23)
OverallFIBSERTrend_Inc 0.39( 0.24) 0.35( 0.23) 0.29( 0.21) 0.31( 0.21)
OverallFIBSERTrend_Dec 0.50 ( 0.25) 0.44( 0.25) 0.57( 0.25) 0.50 ( 0.25)
QIDSScore 13.62( 5.91) 13.19( 6.10)  12.95( 6.57)  13.58( 6.52)
QIDSTrend_Inc 0.40( 0.24)  0.39( 0.24)  0.41( 0.24)  0.40( 0.24)
QIDSTrend_Dec 049( 025)  0.46( 0.25)  0.47( 0.25)  0.47( 0.25)
OverallQIDSTrend_Inc 0.22( 0.17) 0.25( 0.19) 0.23( 0.18) 0.23( 0.18)
OverallQIDSTrend_Dec 0.72( 020)  0.67( 0.22)  0.70( 0.21)  0.67( 0.22)
sSIScore 552( 7.45)  5.03( 8.18)  4.00( 5.67)  4.73( 6.37)
SSITrend_Inc 0.31( 021)  0.26( 0.19)  0.28( 0.20)  0.30( 0.21)
SSITrend _Dec 0.33( 0.22)  0.29( 0.21)  0.27( 0.20)  0.34( 0.22)
OverallSSITrend_Inc 0.30( 0.21) 0.25( 0.19) 0.25( 0.19) 0.26 ( 0.19)
OverallSSITrend_Dec 0.47 ( 0.25) 0.42( 0.24) 0.37( 0.23) 0.49 ( 0.25)
QLDSScore 19.32(10.08)  17.05(10.69)  18.30(10.00)  20.38(10.81)
OLDSTrend_Inc 0.41( 0.24)  0.38( 0.24)  0.42( 0.24)  0.39( 0.24)
QLDSTrend_Dec 048( 0.25)  0.46( 0.25)  0.43( 0.25)  0.43( 0.25)
OverallQLDSTrend_Inc 0.35( 023)  0.32( 0.22)  0.28( 0.20)  0.35( 0.23)
OverallQLDSTrend_Dec 0.60 ( 0.24) 0.60 ( 0.24) 0.62 ( 0.24) 0.55 ( 0.25)
FollowingTime 100.82 (85.20)  67.71(51.69)  64.82(50.89)  93.08 (80.83)
Action 11.94( 991)  6.65( 5.53)  9.01( 7.47)  8.28( 6.40)
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4.6 Conclusion

In this work, we provided an overview of the field of imitation learning (IL) and proposed
a new inverse reinforcement learning (IRL) approach (i.e., semi maximum likelihood
inverse reinforcement learning (SMLIRL)). Next, we discuss the difference between these
IL approaches when trying to explain a behavior instead of imitating it. Finally, we applied
a two-stage framework (i.e., semi-structured interviews and IL) in order to understand
the factors that affect the time to the next appointment. In particular, we applied our
framework to a data set collected from a specialized outpatient clinic treating patients
suffering from treatment-resistant depression (TRD). By doing so, we found out that
LASSO is the most appropriate method for this context, even if the SMLIRL method is
better from a theoretical point of view.

There are several limitations to our TRD case study. First, we used observational data
that was not purposely collected for research and thus contained several missing values.
This resulted in the analysis of a subset of patients that may be different from the larger set
of patients in ways that lead to a mischaracterization of the timing decisions. Second, we
omitted several features that contained too many missing values or that were not part of
our data set. These features might have been more predictive that the features used in this
study. For example, non-pharmacological treatments (e.g., psychotherapy) are not part of
this data set but should be predictive of the time between appointments. Third, we used
linear models which might not be the most appropriate model’s class. Other classes (e.g.,
decision trees) might have lead to better predictions and a different characterization of the
timing decisions. Finally, we did not validate that the identified features were the true
cause of the actions.

Future research areas include (1) the further characterization of these timing decisions
and (2) an analysis to determine which timing policies is best.
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Chapter 5

Using Recommender Systems to Improve
the Treatment of Treatment-Resistant

Depression

5.1 Introduction

Major depressive disorder (MDD), is amongst the top ten causes of the global burden of
disease and is predicted to become the leading cause by 2030 (World Health Organization,
2008). Up to 15% of the population affected by MDD remains significantly depressed de-
spite the aggressive use of multiple pharmacological and psychotherapeutical approaches.
These patients are generally referred to as suffering from treatment-resistant depression
(TRD). Although there is no consensus regarding the definition of TRD, a patient suffering
from MDD is usually considered treatment-resistant (or refractory) when at least two trials
with antidepressants from different pharmacologic classes (adequate in dose, duration,
and compliance) fail to produce a significant clinical improvement (Berlim and Turecki,
2007).

The treatment of patients suffering from treatment-resistant depression (TRD) is a
hard task requiring a referral to a specialized clinic. Due to the limited evidence on
predictors of differential response to alternative treatments (Simon and Perlis, 2010) and to
the vague medical guidelines (e.g., Lam et al. (2016a)), the psychiatrists, at this specialized
outpatient clinic, usually rely on their past experiences on similar patients to decide the
next treatment to prescribe. However, this large amount of information cannot necessarily
be fully processed by their human brains (Miller, 1994). Thus, the successful treatment (if
any) is found through a trial-and-error process probably much longer than needed; a long

and difficult time for the patients.
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This work addresses this issue by building a recommender system (RS) for the pharma-
cological treatments of patients. This RS is trained on an observational data set collected
at the depressive and suicide disorders program (DSDP) of the Douglas Mental Health
University Institute in Montreal, a specialized outpatient clinic treating TRD. This work
consists somewhat in an extension of Chapter 3 where the drug treatments over the
full treatment path are now considered instead of only the five treatment modification
strategies at the initial appointment. In addition, in this chapter, we assume that the
sequence of treatments that have been administered to the patient does not affect the
efficacy of the current treatment, a medically reasonable assumption according to our
medical collaborator.

After correcting for potential confounders in the observational data with an approach

from causal inference, we use this system to try to address the following questions:

* Isitpossible to accurately predict the outcome of a particular treatment on a particular
patient?

* Do some treatments consistently provide good response for all patients?

* Do some treatments consistently provide good response within a particular patient
subgroup?

Note that the first question consists in the main objective of this study and that the
following questions are somewhat dependent on the results to this first question. Also
note that further replications of this study, ideally in randomized controlled trials (RCTs),
are needed to fully answer these questions.

This chapter is organized as follows. Section 5.2 introduces some preliminaries and
Section 5.3 describes the related work in the RSs literature. Then, Section 5.4 presents the

results of our treatment-resistant depression case study. We conclude in Section 5.5.

5.2 Preliminaries

5.2.1 Notation

Let a;; € {0,1} denote whether an outcome score r;; € R is observed for patient i €
T 2 {1,...,m} and treatment j € J = {1,...,n}. In addition to these variables, let
y; € R° and z; € R? denote vectors of features characterizing respectively a patienti € 7
and a treatment j € J. The full data set is denoted by D = {(y;, 2, a;;,7i;)} and the
observed entries as O £ {(i,7) € T x J | a;; = 1}. Note that in this work, we will refer
interchangeably to user/patient, item/treatment and rating/score with a prevalence of
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the former terminology; the former coming from the RS literature and the latter from our

application.

5.2.2 Baseline Model

In this work, we assume that all the methods are applied to the normalized ratings
Tij — fL— Gy — Bj where /i is the estimated overall mean, ¢; is the estimated user effect
and Bj is the estimated item effect. Thus, to obtain the predicted ratings, it is necessary to
compute 7;; + ji + & + 3; where ;; is the predicted rating. However, to simplify notation,
we omit this normalization step in the following discussion. In addition, note that this
baseline model can sometime be directly included into another model, for example matrix
factorization (Equation 5.1). We omit however these variants in the following discussion

for ease of exposition.

5.3 Related Work

In this work, we focus on the prediction of the ratings to understand whether it is possible
to accurately predict them from the available data. In particular, we focus on models
that can predict for each patient the outcomes of all treatments (observed as well as
unobserved), so that we can evaluate the effect of standard as well as non-standard
treatments. In addition, another goal of this work is to understand what data is the most
relevant for these predictions. Hence, we omit, from this work and literature review,
contextual multi-armed bandit models that focus on the operationalization of the best
decisions and models that directly rank the ratings. Finally, we keep for future research
multi-criteria models (e.g., models that predict multiple types of ratings such as depression
severity, quality of life, suicide ideation and side effects).

We now discuss the related literature with a focus on hybrid recommender systems
(RSs) (Burke, 2002) because these appear to be the most appropriate for our application. In
particular, the most appropriate system appears to be an hybrid of collaborative filtering
models (i.e., models using the similarity in ratings 7;; to predict new ratings) and features
based models (i.e., models using the vectors of features y; and z; to predict new ratings),
since an hybrid system using these two models appears to be able to recommend treatments
to patients with observed scores (i.e., patients with an history at the clinic) as well as to
patients with no observed scores (i.e., new patients). Note that our system needs to address

new patients but doesn’t often encounter new treatments. Also note that the cold-start
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aspect (i.e., predicting ratings to patients with no observed ratings) is quite important to us
in order to avoid multiple treatment attempts on a patient. See Table 5.1 for an overview of
the background information that the collaborative filtering and features based models use,
the input they require and the process they use to predict scores. In the rest of this section,
we describe in more details the related models in the literature and other noteworthy

aspects.

TABLE 5.1: Recommendation models (adapted from Burke (2002)).

Model Background Input Process

Collaborative Filtering Ratings from 7 of = Ratings from 7 of Identify users in 7
itemsin J. itemsin 7. similar to 7, and
extrapolate from
their ratings of j.

Features Based Auxiliary Auxiliary Learn parameters

informationonZ  information on ¢ for auxiliary

and 7, and the and j. information on 7

ratings from 7 of and J, and

items in J. extrapolate from
these parameters
to predict rating of
J by user 1.

5.3.1 Collaborative Filtering Model

Collaborative filtering models can be seen as the generalization of the regres-
sion/classification models since we do not have anymore a clear distinction between
the dependent and independent variables. There exist two types of methods within
collaborative filtering models. One one hand, there are memory-based methods, also
known as neighborhood-based methods, which predict the rating of an item j for an
user 7 from the ratings of the neighborhood; this neighborhood can either be defined
among the users/rows (i.e., user-based collaborative filtering) or the items/columns (i.e.,
item-based collaborative filtering). These methods are often used for their simplicity and
interpretability. However, they do not address well sparsity in the ratings.

On the other hand, there are model-based methods which creates a summarized
model of the data first and then use this model to make predictions. These methods are
generally found to better address sparsity in the ratings than the memory-based methods,
at the expense of interpretability. While most regression/classification methods can be
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implemented as a collaborative filtering model, it appears that the latent factor models

(also known as matrix factorization models within the collaborative filtering literature) are

the most accurate and the most popular. We focus on them for the rest of this section.
One of these popular matrix factorization models consists in the following formulation

where the predicted score is given by

k
721']‘ = Zuis’l}js (51)
s=1

with u; as the user latent factors and v; as the item latent factors. It is important to note that
k is generally selected such that ¥ < m and k < n, i.e., it is a low-rank matrix factorization.
The coefficients U € R™* and V € R™* are fitted by minimizing the following

regularized least squares loss function

i 2
Lyr = Z <7’ij —Zuisvjs> + MU+ Ao [V]]
s=1

(4,7)€O

where ||A]| £ ||vec(A)|| can be a L1 or L2 norm, and vec(A) represent the vectorization of a
matrix A. There exist a variety of approaches to solve the previous optimization problem
such as gradient descent and iterated least squares.

To conclude this section, note that previous work by Koren (2010) has combined
memory- and model-based methods with great success, improving the accuracy with
respect to both approaches.

5.3.2 Features Based Model

While there exist an extensive literature on models that only use the features of the items
z;, there is limited literature on models that use both the features of the users y; and the
items z;. To our knowledge, one notable work combining both types of features is the
work of Ansari, Essegaier, and Kohli (2000).

Ansari, Essegaier, and Kohli (2000) proposed to do a linear regression of the user
features, item features and user-item feature interactions. The predicted score, in a similar
model, is given by

Pij = a1+ Qg yi + a3 25 + a vec(y; ® z)) (5.2)

where a; € R, € R% a3 € RP and oy € R? are coefficient vectors, and ® represent

the Kronecker product of two vectors (i.e., all possible cross-product combinations). The
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coefficient vectors «, a9, 3 and a4 can be fitted again by minimizing a regularized least

squares loss function with gradient descent.

5.3.3 Hybrid Model

The different approaches described earlier (i.e., Equations 5.1 and 5.2) each have their
strengths and weaknesses. For example, matrix factorization (Equation 5.1) tends to make
good predictions but it is not able to predict ratings for new users; an issue that is resolved
with a features based model (Equation 5.2). In addition, it is highly probable that the
matrix factorization model and the features based model do not capture the same patterns
in the data; a difference due to the models and /or the data used. Hence, combining the
strengths of these models and their variants, and the different types of data within an
hybrid model seem to be a promising avenue. This claim is supported by the Netflix Prize
contest, the most popular RS competition, where the winning approach consisted of a
blending of 800 models (Feuerverger, He, and Khatri, 2012).

Thus, we now describe different types of hybrid models. In particular, we describe five
types of hybrid models out of the seven types of Burke (2002); we omit meta-level and
mixed hybrids since they cannot be easily used with the earlier models (i.e., Equations 5.1
and 5.2). These five hybrids are described in Table 5.2. They are also discussed below
with examples of how they can be used with our proposed models and their variants. The
reader can refer to Jahrer, Toscher, and Legenstein (2010) for other hybrid models that

were used in the Netflix Prize contest.

TABLE 5.2: Hybridization methods (adapted from Burke (2002) and Aggarwal

(2016)).
Hybridization methods Description
Weighted The system weights scores of several models to produce one
score.
Switching The system switches between models depending on the
situation.
Cascade The system uses a series of models where each model

improves the predictions of the previous models.

Feature Augmentation = The system uses a series of models where the previous
models augment the features of the next models.

Feature Combination The system uses several inputs in an unified representation.




5.3. Related Work 119

Weighted Hybrids

Weighted hybrids use a weighting of several scores to produce one score. For example, if
we have ¢ predictive models, then it is possible to weight the predictions to get

q
i =) Bl (5.3)
h=1
where f{; is the prediction for user-item pair (i, j) of model h and f, . .., 5, are parameters

to fit. These parameters can be fitted in order to minimize a loss function on a holdout set.
For example, these parameters could be set to minimize the following mean squared error
(MSE) or mean absolute error (MAE) on a holdout set &:

» e — Ti)?

MSE(f3 |
v €]
MAE(p) £ Z(i,j)ej;ij‘ — Py

If the MSE is used, then this problem becomes a linear least-squares regression. If the MAE
is used, then this problem can be solved using gradient descent.

Unfortunately, this type of hybrid model (with Equations 5.1 and 5.2) cannot address
cold-starts since matrix factorization by itself cannot address cold-starts. Variants of this
hybrid model could be formulated to address this issue. For example, the weights could
depend on the number of observed ratings of a user such that a weight of zero is given to
matrix factorization if there are not enough observed ratings. This is somewhat similar to
the switching hybrid models discussed next.

Weighted hybrids also consist of approaches such as bagging and randomness injection

that can improve the predictions of a model (Bar et al., 2013).

Switching Hybrids

Switching hybrids switch between models depending on the situation and are thus good
to address cold-start issues. For example, a switching hybrid can use one model when few
ratings are observed for a user and then switch to another model once there is sufficient
data:

iy, Y00 ay <,

77, otherwise,
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where 7; and 77; are predictions coming from two different models, and 7 is a threshold
parameter that can be fitted to minimize the MSE or MAE on a holdout set.
It is also possible to construct a switching hybrid model that makes a smoother transi-

tion between the models according to the number of observed ratings.

Cascade Hybrids

Cascade hybrids consist in a series of models where each model improves the predictions
of the previous models. For example, it is possible to adapt boosting to RSs (Bar et al.,
2013). The adapation of boosting is as follows. First, the weights b}; are initialized to 1/|O]
for all tuples (i, j) € O. Then, for each model h =1, ..., ¢:

1. the model % learns from the weighted observations,

2. the absolute error is computed for its predictions as AE% = |ry — 7,

3. the error rate of model h is computed as 8, = >, ;co.apt > b,
J)EOAE,

4. the next weights are computed as

£ Aph
bt = b o Brif AE; < A,

Zn 1 otherwise,

where the normalization factor Zj, assures that the weights sum to 1.

Finally, the prediction from the boosting model is given as

om (Sml)e) (B2))

Feature Augmentation Hybrids

Feature augmentation hybrids are similar to stacking ensemble in classification. They use
previous models to augment the features of the next models. For example, it is possible to
use a features-based model to fill the missing values in the rating matrix. Then, the matrix
factorization model learns from this dense matrix that consists of observed ratings and
pseudo-ratings (i.e., predicted ratings). This approach allows the use of matrix factorization
for new user with no ratings, i.e., it addresses the cold-start problem. This example is
similar to Melville, Mooney, and Nagarajan (2002) that used a content-based model prior
to a neighborhood-based model.
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Since the the pseudo-ratings are only predictions, the second model should put less
weight on them in order to improve accuracy. Assuming that the observed ratings are given
weights of one, the weight b;; of a pseudo-rating should approach one when )", a;; — m
and 37 | a;; — n since the features-based model will give better predictions.

Feature Combination Hybrids

Feature combination hybrids use input data from various sources within a unified represen-
tation. For example, it is possible to use the features y; and z; within matrix factorization
using either alignment-based collaborative filtering or regression-constrained factorization.
In addition, it is possible to use the features y; and z; along latent features in factorization
machines. Finally, it is possible to incorporate meta-features.

First, alignment-based collaborative filtering uses similarity conditions. For binary
vectors y; and z;, these are defined as S.(i) = {i' | i’ # i and y; y» > ¢} and T4(j) £ {j' |
j' # jand ijzj/ > d}. Then, using these similarity conditions, alignment-based CF (an

extension of Nguyen and Zhu (2013)) minimizes the following loss function

Lag & Ly — >\3Z Z uul Z Z

i=1 §'€S.(3) ]1JGT])

It is also possible to formulate a smoothed-generalization of alignment-based collaborative

filtering (as in Nguyen and Zhu (2013)) that minimizes the following loss function

gAB_LMF_AJZZ¢ZZUUz’_A4Z Z ’UU]‘/

=1 /€S, ( J=1 j'€Ta(j)

with ¢(i, 1) oc o(yy yw — ¢), (4, j') x 0(dz] zy — d) and o(x) = 1/(1 + exp(—z)). The
weights ¢(i, ') and ¢ (j, j') are generally normalized to sum to one, i.e., > ;e ;) ¢(i,7) =
Lvi=1,...omand Y ;i r,¥(,J) =1 Vi=1...,n

Second, regression- constramed factorization constrains the latent features within matrix
factorization using observed features. For example, regression-constrained factorization
using user and item features (an extension of Nguyen and Zhu (2013)) minimizes the

following loss function

LRC £ Z (T” —Y; UVTZ]) + >‘1”U|| + )‘2||VH
(i,5)e0O

where U is a 0 X k matrix and V is a p X k matrix.
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Third, factorization machines (FMs) (Rendle, 2010) associate each rating » with a
d = (m +n + o + p)-dimensional vector  where m is the number of users, n is the number
of items, o is the number of user features and p is the number of item features; this vector
x is used to indicate the user and item corresponding to rating r, and the associated
feature values. Then, using this vector z, the predicted unnormalized' rating #(z) of a

second-order factorization machine is

d d d
7(x) = p+ Z Qs + Z Z usTusszs:BS/ (5.4)
s=1

s=1 s/=s+1

where p is the global bias, «; is the bias associated with the element z,, and v, is a k-
dimensional latent vector associated with the element x,. Note that although the number
of interaction terms in FMs might appear large, most of them evaluate to zero when z is
sparse; in the case of an unknown user and/or item, even more entries of = are 0. Also
note that FMs are optimized with methods similar to the ones used for matrix factorization
models.

Finally, it is possible to use meta-features (e.g., number of items rated by a user, number
of users that rated this item) extracted from the ratings or other features in order to
improve the approaches. For example, it is possible to use these meta-features to refine the
weights in Equation 5.3. Since introducing weights 3]’ for each user-item pair (i, j) might

lead to overfitting, these weights are constrained to be a function of meta-features, i.e.,
ihj
" and z}; is the value of the meta-feature s for the user-item pair (i, j). Thus, the refined

= Zizl vpss; where vy is the importance of each meta-feature s toward the weight

Equation 5.3 is given by
q l
’l%j = Z Z ’Uhsl’fjfzhj
h=1 s=1
where v, can again be learned to minimize, for example, the MSE or MAE on a holdout

set.

5.3.4 Evaluation of the System

The evaluation of the system is a critical step, especially if we need to do model selection
or adjust hyperparameters. While this evaluation can generally be done online or offline,

in this work, we focus on offline evaluation on a batch of data. We now describe different

IRefer to Section 5.2.2 for a reminder of what is meant by an unnormalized /normalized rating.
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evaluation goals, the design of the evaluation process and different evaluation metrics

which we categorize as accuracy, ranking and decision support metrics.

Evaluation Goals

There exist several evaluation goals. While the most popular and the most objective goal is
the accuracy of the predictions, other evaluation goals such as novelty, confidence, trust,
coverage or serendipity are covered in the literature (Aggarwal, 2016). In addition to
accuracy, two important evaluation goals with respect to this work are confidence and
trust.

On one hand, confidence measures the “system’s faith in the evaluations” (Aggarwal,
2016). For example, if the predictions are given with confidence intervals, then it is possible
to evaluate the coverage and the width of these confidence intervals and compare them
between different systems. These confidence intervals can be obtained by bootstrapping
the system (Efron, 1981). Otherwise, they can also be obtained if we use a probabilistic
graphical model instead of a discriminative model. For example, there exist several
probabilistic models for matrix factorization: Salakhutdinov and Mnih (2007), Xin and
Steck (2011), and Hernandez-Lobato, Houlsby, and Ghahramani (2014).

On the other hand, trust measures the “user’s faith in the evaluations” (Aggarwal,
2016). This goal is much harder to evaluate objectively but it can be improved if, for
example, logical explanations of the predictions are given. While interpreting the features
based model is relatively straightforward, it is not as easy to do with matrix factorization.
Fortunately several approaches have been proposed that either explain the matrix factor-
ization solutions or that replace standard matrix factorization with an explainable matrix
factorization model: Hyvonen, Miettinen, and Terzi (2008), Brun, Aleksandrova, and Boyer
(2014), Sanchez et al. (2015), Carmona and Riedel (2015), and Heckel et al. (2017).

Evaluation Design

When evaluating a system offline, it is important not to evaluate it on the same data
as it has been trained. Generally, different systems (e.g., different models and different
hyperparameters such as regularization parameters) are trained on a training data set,
then the best system is determined using a validation data set and finally this best system
is evaluated on a testing data set. These training, validation and testing data sets are
disjoint data sets. They are generally splitted along a 2:1:1 ratio for training, validation and
testing with respect to the observed ratings. It is important that the testing data set is used
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only one time at the end to evaluate the performance of the final system on unseen data,
otherwise it won’t give an unbiased estimate. On the contrary, the data used for training
and validation can be reused multiple times. For example, with k-fold cross-validation,
the data without the testing set is splitted into £ folds. Then, k — 1 folds are used to train
the systems while the remaining fold is used for validation. After repeating this process
for the k different validation sets, the results are averaged. The best system is selected with

respect to the average performance and its variability.

Accuracy Metrics

The accuracy metrics are generally based on the following equation:

1/~
_ [Z(m)eg wij|€ij|7]

e =
2 g)ee Wis

where e;; = r;; — 75 is the prediction error (also known as the residual), v is a constant, w;;
is a weight and £ is a data set on which we evaluate (e.g., test set).

Two popular values for  are 1 and 2 which gives the following metrics when w;; =
1V(i,j) €é&:

MAE = % > el (5.5)

(i,7)€E

1
RMSE = /|g—| Z les;]2 (5.6)
(4,5)€E

where MAE denote the mean absolute error and RMSE denote the root mean squared
error. Note that here we discuss RMSE instead of MSE since the units of RMSE are the
same as MAE. RMSE is good to penalize large deviations while MAE is robust to outliers.

It is also possible to normalize these metrics such that their values are within the range
0, 1]:

Tmax — Tmin

Tmax — Tmin

where NMAE denote the normalized MAE and NRMSE denote the normalized RMSE.
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It is also possible to average these metrics on each item (or user) to correct for the
impact of the long tail, i.e., to give the same weight in the metric to items (users) with
few ratings than to items (users) with many ratings. Let £ £ {j € J | 3, (i,j) € £} and
Ez(5) £ {i € T| (i,j) € £}, then these average metrics with respect to the items are:

JjeEET 1€€1(j)

1
Average MAE = Z %0 Z leij]
1

Average RMSE = Z

JjEES

%0 | €.
Note that it is also possible to put more weight on some items (users) depending on the
importance or utility of them.

Finally, if needed, it is possible to weight asymmetrically the error, i.e., to penalize
more when the predicted rating is smaller or larger than the true rating. For example,
similarly to the loss function used within expectile matrix factorization (Zhu et al., 2017), it
is possible to define the following asymmetric metrics:

Asymmetric MAE = Z leijl|w — Ie,; <ol
(i,5)€€
Asymmetric RMSE = \/ 5 Z leij 2w — Ie,; <ol
(i,9)€E

where w € (0, 1) is a chosen constant and I, is the indicator function that returns 1 if
e < 0 and 0 otherwise. In these metrics, the positive errors e;; are weighted by w and the
negative errors by 1 — w. Note that if w = 0.5 then these metrics are symmetric. Also
note that, if such metrics are desirable, then it would also be beneficial to make the loss
functions associated with Equations 5.1 and 5.2 asymmetric.

These asymmetric metrics are useful with skewed data set (here, with respect to the
rating value) since a symmetric metric, such as RMSE, is impacted by the outliers in the
long tail. In addition, using these asymmetric metrics is useful when we want to improve
our predictions in the lower or upper range. For example, in this work, we want to
recommend treatments which lead to a low severity score (i.e., effective treatments) and it
happens that there are few effective and many ineffective treatments. In this case, we do
not necessarily care about good predictions of the high scores. So, we could set w = 0.1
in order to get better predictions for the low scores since we penalize more the negative
residuals (Zhu et al.,, 2017). This setting would also make our recommendations more



126 Chapter 5. Using Recommender Systems to Improve the Treatment of TRD

conservative since we do not want to predict a lower score than the true score. We can
also obtain somewhat similar results by using the ranking and decision support metrics
described next.

Ranking Metrics

One interesting and intuitive ranking metric is the fraction of concordant pairs (FCP)
(Koren and Sill, 2013) which looks at the number of concordant and discordant pairs
between the predicted and true ratings. Let & £ {i € Z| 3§, (i,j) € £} and E5(i) = {j €
J | (4,7) € £}, then the numbers of concordant, n’, and discordant, n’;, pairs for user i are:

(7,3 1 3,5 € E5(i), 745 > Fiyr and ry; > 1y}

(G, 3) 1 4,7 € E7 (i), 745 > Py and 15 < 150 }]

. . _ ,L . 7/ .
Summing over all users, we obtain n, = ;. n. and ng = > ;.. ny and can finally

compute the FCP as:
N

Ne +ng
Note that the FCP always lies in the range [0, 1].

However, this previous metric places the same emphasis on all pairs whatever their

FCP = (5.7)

relevance. It also only looks at the pairs within a list and not at the list itself. One popular
ranking that also looks at the relevance of the items in a listwise fashion is the normalized
discounted cumulative gain (NDCG) (Jarvelin and Kekaldinen, 2002). There exists several

variants of this metric in the literature. The variant we use in this work is the following:

| <~ DCG,
D = .
NDCG = ; IDCG, 8)

where the discounted cumulative gain (DCG) for user ¢ is defined as

27‘611']' _ 1

DCG; = _
0 IOgQ(TFiJ‘ + 1)

Jj€ES(

In DCG, rel;; consists in the true relevance of an item j to user i (e.g., often the true rating
ri; if it is non-negative and if a higher rating value denotes a higher relevance), and 7;; is
the estimated rank of the item j in £7(i) (e.g., according to the predicted rating 7;;).2 The
ideal discounted cumulative gain (IDCG) consists in replacing 7;; by the ideal ranking ;;

?In the case of ties, we follow the approach of McSherry and Najork (2008).
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that is obtained using the relevances rel;;. Note that the NDCG does not penalize directly
the ranking of bad items (i.e., items with a relevance of 0); it focuses on ranking correctly
the highly relevant items in the top ranking positions. Also note that the NDCG always

lies in the range [0, 1].

Decision Support Metrics

Let 7 be some threshold that differentiates the good items from the bad ones, and let ¢;; = 1

(respectively t;; = 0) indicate a good (bad) item according to

1if’f’ij 27’,

tz‘j = .
0 otherwise .

Also let t;; be defined similarly using 7;; instead of r;;. Then, it is possible to define the

precision and recall as:

recision = tp
P o tp+fp
_tp
recall = b f

where the number of true positives, false positives and false negatives are computed as

tp = Z Itijzljfij:17
(

4,5)€EE
fp: Z ‘[tijzolfij:l?
(i,5)e€
fa=>" I, I;
(i,9)€€

These two metrics focus on different aspects; focusing on precision removes bad items
from our recommendations while focusing on recall includes good items into our recom-
mendations. Note that these are not the typical definitions of precision and recall in the RS
literature; for the typical definitions, refer to Section 7.5.4 of Aggarwal (2016).

Since it is generally not preferable to focus on only one of these two metrics, precision
and recall are often combined using the following F1 measure (Chinchor, 1992)

precision - recall

F1 =2 (5.9)

precision + recall’
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This measure puts equal emphasis on both the precision and the recall. Note that this
measure doesn’t care about the ranks, it just care about identifying the good items from
the bad ones. Also note that we set /; = 0 when tp + fp = 0 and/or tp + fn = 0. The F1
measure lies in the range [0, 1].

5.3.5 Confounding

An issue with offline training and evaluation of a recommender system on observational
data consists in the biases introduced by confounders. For example, users might be exposed
only to items which they tend to like, or patients might only be provided treatments with a
high probability of success. Thus, in these cases, most items with observed ratings should
have better ratings than the (unobserved) ratings of the other items and, hence, RSs trained
naively on this observational data provide poor predictions for these unobserved ratings,
the ones that we are interested in. Yet, the RS literature addressing this issue is relatively
new (e.g., Marlin and Zemel (2009), Hernandez-Lobato, Houlsby, and Ghahramani (2014),
Liang, Charlin, and Blei (2016), Schnabel et al. (2016), and Wang et al. (2018)).

In this work, we follow the deconfounded recommender approach of Wang et al. (2018).
For all user-item pairs (i.e., V(i,j) € Z x J), let respectively r;;(0) and r;;(1) denote the
potential outcomes of the Neyman-Rubin potential-outcome framework (Splawa-Neyman,
Dabrowska, and Speed, 1923; Rubin, 1974); here, r;;(0) denotes the rating that user : would
provide to item j if this user isn't exposed to item j while r;;(1) denotes the rating that
user ¢ would provide to item j if this user is exposed to item j. Note that these potential
outcomes are not all necessarily observed. In fact, this RS setting is in contrast to most
causal inference applications where exactly one of the two potential outcomes is observed.
Here, we only observe a few of the potential outcomes r;;(1) (i.e., if a;; = 1, then we
observe r;;(1) = r;;) and none of the potential outcomes r;;(0).

Unfortunately, not observing the potential outcomes r;;(0) removes, among other
things, the ability to identify whether a patient would be better off without any treatments.
Yet, it is still possible to identify the best treatment for a patient. The identification of
this best treatment consists in finding the best individualized treatment effect (ITE) for a
particular patient i over all treatment j where the ITE is defined as ITE;; = r;;(1) — 7;;(0).
Now, since 7;;(0) is equivalent to the outcome under no treatment, it is reasonable to
assume the same outcome whatever the omitted treatment for a particular patient , i.e.,
ri;(0) = 135+(0), Vj,j" € J. Hence, the identification of the best treatment for a particular
patient ¢ can be done by only looking at the potential outcomes 7;;(1), and, fortunately, the
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unobserved potential outcomes 7;;(1) can be recovered with the following theorem since

several patients received several treatments.

Theorem 2 (Theorem 1 of Wang et al. (2018)). Assume stable unit treatment value assumption
(SUTVA), single ignorability, consistency of substitute confounders and overlap of a subset of
causes. Then, the deconfounded recommender forms unbiased causal inference

E[rij(a)] = E [E [rij(ay) | a; = a,n6;]], V(i,j) €T x T

when a;; ~ Poisson(n, 6;) for some independent random vectors n;’s and 6;’s.

In other words, under the previous assumptions, the deconfounded recommender
estimates the unobserved potential outcomes r;;(1) with the use of the propensities a;,;, i.e.,
the probabilities of exposure; these propensities can be obtained with any factor model
such as the previous Poisson factorization (PF) model.> We now describe the different
steps of our deconfounded recommender implementation:

1. We do cross-validation on the observed exposure for all users in the training set, a,
to identify the best hyper-parameters of a propensity factor model.

2. After retraining the factor model on the full exposure training set a, the propensities
a;; are estimated for all entries in the training set.

3. Finally, the outcome model is fitted by minimizing the following weighted loss:

1 .
L= Z A—'l('r’ij,rl-j)

(iyeo
where 7; is the output the outcome model. Note that this weighted procedure differs
from the procedure used in Wang et al. (2018) for the outcome model; it is however
acknowledged as an alternative approach in Wang and Blei (2018). Note also that
this procedure is similar to inverse probability of treatment weighting (IPTW) in

the causal inference literature; it mostly differs from the traditional causal inference
approaches by using a factor model (i.e., latent features) to compute the weights.

Refer to Wang et al. (2018) and Wang and Blei (2018) for the proof of Theorem 2 and details about the
assumptions.
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5.4 Case Study

We now present our TRD case study, in the following order. First, we present the setting
and characterize our data set. Then, we describe the methods. Finally, we discuss the

associated results.

5.4.1 Setting

In this section, we introduce the setting, i.e., we define the treatment and outcome, and we

describe the patient and treatment features.

Definition of Treatment

Our application is different than the standard RS applications with respect to many aspects.
In particular, one important difference consists in the definition of the treatment. While
it is clear that the patient is the user, it is unclear what the treatment (i.e., the item) is.
Should a treatment take into account the antidepressants and the add-on drugs (i.e., drugs
that are used to complement the antidepressants)? Should it also take into account the
dosage of these drugs and the total time they were taken? While most of these aspects are
probably important, it is not practically possible to all take them into account, since we
would end up with too many treatments and too few observations for each of them. Thus,
with the help of our medical collaborator, we selected two treatment definitions which
make sense from the clinical point of view. Note that both of these treatment definitions
will be pursued in the remainder of the chapter.

Our treatment definitions consist of two parts: (1) the antidepressants and (2) the add-
on drugs. Within our treatment definitions, the antidepressants can be identified as coming
from the monoamine oxidase inhibitors (MAQIs) (AD_MAOTI), serotonin-norepinephrine
reuptake inhibitors (SNRIs) (AD_SNRI), selective serotonin reuptake inhibitors (SSRIs)
(AD_SSRI) or tricyclic antidepressants (TCAs) (AD_TCA) class, or can be identified as
bupropion (AD_Bupropion) or mirtazapine (AD_Mirtazapine). Note that one or many
of these six binary variables can have a true value at the same time for a particular treatment.
Note also that a treatment with two SNRIs is considered the same, with these treatment
definitions, as a treatment with only one SNRI. Then, our treatment definitions include
some of the add-on drugs used. In particular, we plan on trying two alternatives to indicate
these add-on drugs. On the one hand, one alternative consists in identifying many of these
add-on drugs by categories. In this case, we have the antipsychotic (AO_Antipsychotic),
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anxiolytic (AO_Anxiolytic), hypnotic (AO_Hypnotic) and stimulant (AO_Stimulant)
categories, and the aripiprazole (AO_Aripiprazole), liothyronine (AO_Liothyronine)
and lithium (AO_Lithium) drugs that are identified individually. On the other hand, an-
other alternative consists in identifying only the most prescribed add-on drugs without any
categories, i.e., aripiprazole (AO_Aripiprazole), atomoxetine (AO_Atomoxetine), lio-
thyronine (AO_Liothyronine), lithium (AO_Lithium), lurasidone (AO_Lurasidone),
methylphenidate (AO_Methylphenidate), modafinil (A0_Modafinil), pramipexole
(AO_Pramipexole), quetiapine (AO_Quetiapine) and trazodone (AO_Trazodone). It
is important to note that we categorize trazodone in this study as an add-on drug, even
tough it is an antidepressant, since it is mostly used as an hypnotic at our collaborating
clinic and not as an antidepressant. Also note that many binary variables indicating add-on
categories and drugs can again be present at the same time. See Appendix C.1 for the list
of drugs within each antidepressant class and add-on category.

In summary, our definitions of the treatment can be seen as a vector of binary values
where each of these binary values indicate the presence or absence of a component within
the treatment. Then, two treatments are considered to be the same if they have the same
binary representations. A list of the binary variables considered within the two treatment

definition alternatives is given in Table 5.3.

Definition of Outcome

In this work, we define the outcome for a patient-treatment pair as the minimum Quick
Inventory of Depressive Symptomatology (QIDS) score (Rush et al., 2003) for this patient
in the period that begins 28 days after the treatment and ends at the next different treatment.
The QIDS score used in this study is the 16-item self-reported score, a score often used in
the medical literature to evaluate the severity of MDD and TRD. This score lies between
0 and 27 with a higher score denoting a worse outcome; remission is often defined as a
QIDS score less or equal to 5 (Rush et al., 2006). Also, the severity of depression is often
determined with respect to different thresholds of this score (Rush et al., 2006): normal
(0-5), mild (6-10), moderate (11-15), severe (16-20) and very severe (21-27). Note that the
period of observation begins 28 days after the treatment to let the treatment shows its full
potential. Also note that we use the minimum score in the period instead of the mean or
median since we want to predict the best potential outcome under a treatment. By using the
mean or median score, we would obtain a prediction that is influenced by the period of time
that a patient undergoes a particular treatment; it is often the case that a patient relapses
after responding to this same treatment. Finally, note that the QIDS score corresponds to
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TABLE 5.3: List of binary variables considered in the two treatment definition
alternatives.

Variable Alternative1 Alternative 2

AD_MAOI v
AD_SNRI

AD_SSRI

AD_TCA
AD_Bupropion
AD_Mirtazapine
AO_Antipsychotic
AO_Anxiolytic
AO_Hypnotic
AO_Stimulant
AO_Aripiprazole
AO_Atomoxetine
AO_Liothyronine
AO_Lithium
AO_TLurasidone
AO_Methylphenidate
AQO _Modafinil
AO_Pramipexole
AO_Quetiapine
AO_Trazodone

SN NN
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only one very specific outcome; the broader objective of treatment consists in the general
well-being of patients. Thus, when making treatment selection, the physicians need to
take into considerations additional elements such as the preferences of the patients with
respect to the side-effects of the treatments (e.g., weight gain), the restrictions associated
with the treatments (e.g., low tyramine diet) and an acceptable frequency of commuting
between his home and the clinic for various appointments (e.g., drug dosage using blood
tests). It is however not possible to capture this broader perspective in this study without
additional features describing these patients” preferences; hence, this work focuses on the
very specific QIDS score as the outcome.

Patient Features

The patient features consist in 4 features (i.e., 1 real number variable and 10 binary variables
associated with the 3 other categorical features) collected at the initial appointment of

the patient to the clinic and that correspond, to our knowledge, to good predictors of
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the response. In particular, the features are the age (Pt_Age) and gender (Pt_Gender_F
and Pt_Gender_M) of the patient, and the indication of comorbidities on the first axis
(Pt_FirstAxis_N,Pt_FirstAxis_TBI,Pt_FirstAxis_YandPt_FirstAxis_NA)
and second axis (Pt_SecondAxis_N, Pt_SecondAxis_TBI, Pt_SecondAxis_Y and
Pt_SecondAxis_NA). The first and second axis are evaluated respectively through the
Structured Clinical Interview for DSM Axis I Disorders (SCID-I) (First et al., 2002) and the
Structured Clinical Interview for DSM Axis II Personality Disorders (SCID-II) (First et al.,
1997), where DSM denote the Diagnostic and Statistical Manual of Mental Disorders. Note
that they are no missing values for age and gender while they are some for the first and
second axes (indicated by _N2). Also note that _TBI indicates a possible diagnosis of a
comorbidity on the first or second axis that needs to be further investigated. Finally, note
that this one-hot encoding of all features (even the binary gender feature) is necessary to

improve the predictive performance of our proposed model.*

Treatment Features

The treatment features consist in the binary variables of the selected alternative in Ta-
ble 5.3 and in five additional binary variables that define the desired effects of the add-
on categories and drugs. The desired effects for an add-on category or drug can be
to increase the effect of antidepressants (AODE_ADBooster), and can be antipsychotic
(AODE_Antipsychotic), anxiolytic (AODE_Anxiolytic), hypnotic (AODE_Hypnotic)
and stimulant (AODE_St imulant). Note that while there might be several add-on drugs
prescribed, the features for the desired effects are only binary, i.e., the features are not
counting the number of add-on drugs given for a particular effect but are rather indicating
whether these effects are desired at all or not within the treatment. Also note that to again
improve the predictive performance of our proposed model all these binary variables are
further one-hot encoded (in _False and _True variables).” Finally, note that, in total,
there are 36 binary treatment features for alternative 1 and 42 binary treatment features
for alternative 2 when counting the one-hot encodings. See Appendix C.1 for the desired

effects associated with the add-on categories and drugs.

“This one-hot encoding leads to the same number of active binary variables whether you are male or
female for example.

5For example, the binary variable AD_MAOI = 0 is one-hot encoded with AD_MAOI_False = 1 and
AD_MAOI_True = 0.
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5.4.2 Data Set

Our data set consists of all the unarchived medical records for adult patients suffering
from TRD who started receiving treatment between August 2006 and August 2015 at the
DSDP. A patient file is archived when it has not been used for more than a year so that
additional storage space is available in the front office for new patient files. Of these 463
patient files, we kept the 364 (respectively 365) patient files with at least one outcome
subsequent to a treatment according to our first (second) treatment definition.

The characterization of the 364 patients relevant to our first treatment definition is
provided in Table 5.4. Since the characterization of the patients relevant to our second
treatment definition is similar, it is provided in Appendix C.2. As detailed in the tables, an
average patient at this clinic consists in a female patient of around 40 years old with first-

and second-axis comorbidities.

TABLE 5.4: Sample means and standard deviations of the patient features for

the first treatment definition. The one-hot encoding of binary variables has

been removed to improve readability. These means and standard deviations
are computed using proportions.

Variable Mean Std
Pt_Age 43558 10.615
Pt_Gender Mf 0.368 0.482
Pt_FirstAxis_Nf 0.365 0.482
Pt_FirstAxis_TBI' 0.047 0.211
Pt_FirstAxis_y! 0.453 0.498
Pt_FirstAxis_nan' 0.135 0.341
Pt_SecondAxis_ Nt 0.297 0457
Pt_SecondAxis_TBIT 0239 0.426
Pt_SecondAxis_Y' 0.327 0.469

Pt_SecondAxis_nan' 0.137 0.344

In Table 5.5, the characterization of the treatment variables is provided by taking into
account the frequency of the different treatments in the data set. For both treatment
definitions, it appears that the most prescribed antidepressants are from the SSRI and
SNRI classes. Then, under the first treatment definition, it appears that antipsychotics and
hypnotics are often prescribed as add-on drugs. It also appears that the most common
desired effects of the add-on drugs are to manage anxiety (anxiolytic) and psychosis
(antipsychotic). Finally, under the second treatment definition, it appears that quetiapine,
an antipsychotic, is the most prescribed add-on drug, and that the antipsychotic and
stimulant effects of the add-on drugs are the most desired. Note that the difference
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between these results are due to the treatment definitions; there are 393 different observed
treatments and 1401 patient-treatment pair’s observed outcomes under the first definition
of treatment while there are 287 different observed treatments and 1271 patient-treatment

pair’s observed outcomes under the second definition of treatment within the data set.

TABLE 5.5: Sample means and standard deviations of the treatment features

in the two treatment definition alternatives. The one-hot encoding of binary

variables has been removed to improve readability. All means and standard

deviations are computed using proportions, and take into account the fre-
quency of treatments in the data set.

(A) Alternative 1 (B) Alternative 2

Variable Mean  Std Variable Mean  Std
AD_MAOI 0.012 0.109 AD_MAOI 0.011 0.104
AD_SNRI 0.348 0476 AD_SNRI 0.345 0475
AD_SSRI 0.435 0.496 AD_SSRI 0.430 0.495
AD_TCA 0.138 0.345 AD_TCA 0.141 0.348
AD_Bupropion 0.269 0.443 AD_Bupropion 0.265 0.441
AD_Mirtazapine 0.110 0.313 AD_Mirtazapine 0.110 0.313
AO_Antipsychotic 0.398 0.490 AO_Aripiprazole 0.149 0.357
AO_Anxiolytic 0.198 0.398 AO_Atomoxetine 0.009 0.097
AO_Hypnotic 0.258 0.438 AO_Liothyronine 0.026 0.159
AO_Stimulant 0.183 0.386 AO_Lithium 0.108 0.310
AO_Aripiprazole 0.146 0.353 AO_Lurasidone 0.009 0.093
AO_Liothyronine 0.024 0.152 AO_Methylphenidate 0.149 0.357
AO_Lithium 0.105 0.306 AO_Modafinil 0.025 0.157
AODE_ADBooster 0.126 0.332 AQO_Pramipexole 0.020 0.139
AODE_Antipsychotic 0.490 0.500 AO_Quetiapine 0.286 0.452
AODE_Anxiolytic 0.516 0.500 AO_Trazodone 0.105 0.307
AODE_Hypnotic 0.258 0.438 AODE_ADBooster 0.131 0.338
AODE_Stimulant 0.304 0.460 AODE_Antipsychotic 0.394 0.489

AODE_Anxiolytic 0.292 0.455

AODE_Hypnotic 0.105 0.307

AODE_Stimulant 0.314 0.464

With respect to the outcomes, the density of the rating matrix is 0.979% (respectively
1.213%) with a mean outcome score of 11.8 (11.7) and a standard deviation of 6.5 (6.6)
for alternative 1 (alternative 2). Thus, only few patient-treatment pairs are observed
with respect to all possible combinations of the observed patients and treatments, and on

average the best observed outcomes are around the middle of the QIDS range.® For both

6Remember that the outcomes in the ratings matrix are the minimum for each patient-treatment pair.
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alternatives, about 20% of all observed patient-treatment outcomes are less or equal to 5,
i.e., corresponds to remission. In addition, about 51% of the users and 34% of the items
have at least one observed outcome that corresponds to remission. This demonstrates that
most patient-treatment matches do not lead to remission under the current practice. In
addition, only half of the patients experience remission at some point and only one third
of the treatments lead at least one patient to remission.

When looking at the most frequent treatments (see Figure 5.1 and C.1), there is a wide
range in their associated outcomes; thus the most prescribed treatments do not necessarily
lead to remission. This is the case even though all results in this section are biased towards
better patient-treatment matches, when assuming reasonably that the treatment selection

done by physicians is better than uniformly random treatment selection.

Q0

|

15 ~

Qutcome score

10 4

) I

T T T T T T T T T T
1-276 1-150 1-374 1-251 1-129 1-210 1-267 1-344 1-193 1-92
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FIGURE 5.1: Boxplot of outcome score for the 10 most frequent treatments
under the first definition of treatment.

Even when looking at the treatments with lowest 95" percentile for outcome score and
at least three observations (see Figure 5.2 and C.2), treatments do not consistently lead to
remission. Hence, no treatment appears to consistently lead to remission for all patients,
even under the bias towards better patient-treatment matches; this partially addresses
our third research question. Histograms showing the frequency of treatment for different
number of observed outcomes are provided in Appendix C.2; these histograms show that
most treatments are prescribed only a few times.
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FIGURE 5.2: Boxplot of outcome score for the 10 treatments with lowest 95t
percentile for outcome score under the first definition of treatment.
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Finally, it appears that among the patients which experienced remission (i.e., have at

least one outcome score less or equal to 5) about 5 patients required up to seven times

more ineffective treatments than the number of effective treatments received while others

received an effective treatment on their first trial (see Figure 5.3 and C.5); here effective

(ineffective) denotes a treatment that leads to remission (doesn’t lead to remission). This

could be explained by some patients being easier to treat (or just having good luck with

their treatment selection). Figure 5.4 and C.6 also reemphasize this point; it is easy to see

that some patients are still not able to get into remission even after many treatment trials.

Histograms showing the frequency of patient for different number of observed outcomes

are provided in Appendix C.2; these histograms show that most users are prescribed only

a few treatments.
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FIGURE 5.3: Histogram of the ratio of ineffective to effective treatment num-
bers for patients with at least one remission under the first definition of

treatment.
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FIGURE 5.4: Boxplot of the number of ineffective treatments for patients with
no remission and at least one remission under the first definition of treatment.
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5.4.3 Methods

We now describe the procedure to obtain the main results of this chapter, i.e., whether it
appears possible to accurately predict the outcome of a particular treatment on a particular
patient.

First, we randomly split the data in a training and test set with 75% of the ratings in the
training set and 25% of the ratings in the test set. Hence, there might be some users and
items from the test set that are unobserved in the training set.

Second, since we believe that the assumptions of Theorem 2 hold in our setting, we
compute the IPTW weights as described in section 5.3.5 on the full training set. To compute
the propensities, we use a FM model (Equation 5.4) with a sigmoid on the output

d d d
~ T
ai;j =0 |+ E AsTs + E g Uy Ug T Tyt
s=1

s=1 s/=s+1

where o(z) = 1/(1 + exp(—x)). The weights obtained by taking the inverse of the propen-
sities are then used to fit the IPTW variants of the outcome models in the cross-validation
phase and the retraining phase on the full training set; both phases are described below.
The implementation details of the propensity model are provided in Appendix C.3.
Third, we do cross-validation on the training set in order to identify the best hyper-

parameters for each of the following outcome models.

¢ Constant: Model that returns the estimated global mean, fi, of the training set as the

prediction.

¢ Baseline: Model that uses the global mean with the user and item biases, i.e., 7;; =

fi + &; + B3;, of the training set as the prediction (see section 2.1 of Koren, 2010).

¢ FM-base: Second-order factorization machine (Equation 5.4) with one-hot vectors
identifying the corresponding user and item in the feature vector z; this is equivalent
to biased matrix factorization. Note that the size of the feature vector z is dependent
on the training set.

¢ FM-features: FM-base model with the addition of patient and treatment features (see

Section 5.4.1) to the feature vector .

¢ FM-outcomes: FM-base model with the addition of a vector providing the other

treatment outcomes divided by the number of other treatment outcomes to the feature
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vector z (i.e., for user i and item j, the additional features consist of (71, 72, - . . , Tin)
where 7, = 1/ (Z?Zl a;j — 1) if j/ # jand (i, 5') € O, otherwise 7;;; = 0).”

e FM-full: FM-base model with the additional features of both FM-features and FM-

outcomes to the feature vector z.

We mostly use the factorization machine models since they generalize several models of the
literature by only modifying the feature vector x and since they can easily take into account
external data. Note that each of these models are trained using the uncorrected training
set (i.e., no prefix) and the IPTW weighted training set (i.e., IPTW prefix); in the case of the
IPTW-Constant model it is the weighted global mean that is returned while in the case of
the other models it is the weighted loss that is optimized. The implementation details of
these models as well details regarding the random search over their hyper-parameters are
provided in Appendix C.3.

Finally, we compare all of these models on different test sets using the following metrics.

* Root mean squared error (RMSE): Equation 5.6.
* Mean absolute error (MAE): Equation 5.5.
¢ Fraction of concordant pairs (FCP): Equation 5.7.

* Normalized discounted cumulative gain (NDCG): Equation 5.8. Note, that in our
setting, a higher rating denotes a worst outcome. Thus, for the relevance function,
we use rel;; = 27 — r;;. We also order the items in increasing order of 7;; to obtain 7;;.

* F1 score: Equation 5.9. The good items are the ones with a rating score less than or

equal to 5 while the other items are considered bad.

In total, three different test sets of the same size are used: 1 random test set and 2 intervened
test sets. The random test set consists in the test set described at the beginning of this
section. The first intervened test set is constructed by sampling with replacement each
(i,7) entry from the random test set according to the probability p(i, j) oc 1/(1 + freq;)
where freg; is the frequency of item 7 in the training set. The second intervened test set
is constructed by sampling with replacement each (i, j) entry from the random test set
according to the probability p(, j) o< 1/(1 + ;). These additional intervened test sets are
used to analyze the models” performance on infrequent items and items with a low rating;

remember that a low rating is preferable.

"Note that all algorithms use the ratings offsetted to the 1-28 scale. Thus, setting 7;;; = 0 is equivalent to
no rating instead of a rating of zero.
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5.4.4 Main Results

Following the steps of the previous section, we split the data into a training set of 1050
(respectively 953) ratings and a random test set of 351 (318) ratings for the first (second)
definition of treatment. We also compute the IPTW weights for the training sets of both
definitions of treatment. Then, after doing cross-validation, we obtain the following results
on the different test sets for each of the best models. Table 5.6, 5.7 and 5.8 provide the
results for the first definition of treatment on the random test set and the two intervened
test sets. The results for the second definition of treatment are provided in Table C.4, C.5
and C.6.

With respect to the results on the random test set (see Table 5.6 and C.4), it appears that
different metrics benefit different models, and these models that benefit are not necessarily
the same in both definitions of treatment. Second, it appears that Constant and IPTW-
Constant do relatively well on the NDCG for both definitions of treatment even if their
predictions are always the same. Note also that the range of values for NDCG is not that
big even for differences of 1.5 on the RMSE. Thus, it appears that NDCG, as defined in
this case study;, is not that useful as a metric; we omit it from later discussions. Third, it
appears that most of the models under both treatment definitions obtain a value of zero
for F1. This is probably due to a threshold with a value that is too extreme in order to
define the good/bad classes in F1. Thus, it appears that F1, as defined in this case study;, is
not that useful as a metric; we also omit it from later discussions. Finally, for the RMSE,
MAE and FCP metrics, it appears that FM-full obtains some of the best results under the
tirst definition of treatment while IPTW-FM-full obtains some of the best results under
the second definition of treatment. Yet, the absolute results obtained under the second
definition of treatment are somewhat worst for the RMSE and MAE but somewhat better
for the FCP than under the first treatment definition.

With respect to the results on the first intervened test set (see Table 5.7 and C.5), it
appears that IPTW-Baseline performs best; FM-full (under the first treatment definition)
and IPTW-FM-full (under the second treatment definition) are however not too far with
respect to RMSE and MAE while providing a better FCP metric. Second, note that IPTW-
FM-full still appears not to perform well under the first treatment definition as is also the
case on the random test set. Finally, it appears that the IPTW variant of most of the models
performs better on the RMSE and MAE metrics; this is logical given the definition of this
first intervened test set. Yet, the IPTW variants appear to perform worst on the FCP.

With respect to the results on the second intervened test set (see Table 5.8 and C.6),

it appears that no model performs best overall. However, the IPTW variants appear
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TABLE 5.6: RMSE, MAE, FCP, NDCG and F1 metrics of the Constant, Baseline,
FM-base, FM-features, FM-outcomes and FM-full models, and their IPTW
variants on the random test set under the first definition of treatment.

Model RMSE MAE FCP NDCG F1
Constant 6.47 5.32 0.000 0.911 0.000
IPTW-Constant 6.47 532 0.000 0.911 0.000
Baseline 517 4.17 0.422 0.905 0.000
IPTW-Baseline 515 411 0.405 0.906 0.054
FM-base 594 480 0427 0.905 0.000
IPTW-FM-base 592 481 0.379 0.902 0.000
FM-features 543 444 0470 0.905 0.027
IPTW-FM-features 542 444 0474 0.910 0.080
FM-outcomes 7.05 552 0418 0915 0457
IPTW-FM-outcomes 6.38  4.83 0.405 0.906 0.460
FM-full 496 3.96 0.453 0.914 0.365
IPTW-FM-full 530 4.21 0.483 0.905 0.000

somewhat better than the non-IPTW variants. This is again logical since ratings with small
values are infrequent in the data set. Yet, note that IPTW-FM-full still performs badly
under the first treatment definition. Finally, note that the absolute results are worst in the
second intervened test set than in other test sets. This might be due to the ratings with
small values being harder to predict.

Overall, we would like to highlight that FM-full (under the first treatment definition)
and IPTW-FM-full (under the second treatment definition) appear as reasonable models.
We hypothesize that IPTW-FM-full (under the first treatment definition) is not performing
well due to incorrect IPTW weights; note that the model fitting the weights deals with
about a 100 times more data and it is thus computationally expensive to execute several
randomized search iterations. While these models do not improve the RMSE and MAE
metrics so much with respect to the Constant and IPTW-Constant models, they do provide
some ordering of the treatments; even if the FCP values are not that great, these orderings
can still make sense when the ratings values are low and the differences in ratings are
significant. In addition, while the RMSE and MAE values appears somewhat high, they
correspond to about the range of one QIDS severity category. Remember that these
categories are often defined as: normal (0-5), mild (6-10), moderate (11-15), severe (16-20)
and very severe (21-27).

To conclude this section, we would like to try to answer the following question: Is it

possible to accurately predict the outcome of a particular treatment on a particular patient?
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TABLE 5.7: RMSE, MAE, FCP, NDCG and F1 metrics of the Constant, Baseline,

FM-base, FM-features, FM-outcomes and FM-full models, and their IPTW

variants on the first intervened test set under the first definition of treatment.

This first intervened test set is sampled proportionally to the inverse frequency
of items in the training set.

Model RMSE MAE FCP NDCG F1
Constant 6.63 5.39 0.000 0.928 0.000
IPTW-Constant 6.63  5.39 0.000 0.928 0.000
Baseline 5.08 4.06 0.243 0.938 0.000
IPTW-Baseline 499 3.88 0.226 0.940 0.000
FM-base 6.12 495 0.241 0.929 0.000
IPTW-FM-base 6.11 495 0.201 0.920 0.000
FM-features 529 435 0.589 0.933 0.029
IPTW-FM-features 525 431 0.519 0.940 0.058
FM-outcomes 6.57 5.31 0.180 0.919 0.273
IPTW-FM-outcomes 6.01 478 0.223 0924 0.234
FM-full 517 4.18 0.444 0.928 0.141
IPTW-FM-full 552 436 0.373 0.910 0.000

While it appears somewhat possible to improve over simply predicting the mean outcome,
this task is not easy. In particular, with our limited data set, we improve by about 1 to
1.5 points the RMSE and MAE. Thus, additional data and research are necessary in order
to obtain a model that can be used as a decision aid. Still, we proceed cautiously with
additional results in the following section using the IPTW-FM-full model.
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TABLE 5.8: RMSE, MAE, FCP, NDCG and F1 metrics of the Constant, Baseline,
FM-base, FM-features, FM-outcomes and FM-full models, and their IPTW
variants on the second intervened test set under the first definition of treatment.
This second intervened test set is sampled proportionally to the inverse rating.

Model RMSE MAE FCP NDCG F1
Constant 8.36 7.46 0.000 0.958 0.000
IPTW-Constant 8.39 749 0.000 0.958 0.000
Baseline 7.08 6.12 0.441 0.953 0.000
IPTW-Baseline 6.98 599 0.315 0.955 0.068
FM-base 750 6.53 0.409 0.958 0.000
IPTW-FM-base 745  6.52 0.291 0.957 0.000
FM-features 713 6.16 0.339 0.950 0.010
IPTW-FM-features 6.91 598 0.346 0.952 0.113
FM-outcomes 6.20 456 0425 0.961 0.687
IPTW-EM-outcomes 6.09 4.39 0.291 0.947 0.636
FM-full 5.78 4.87 0.457 0.953 0.500

IPTW-FM-full 698 598 0.504 0.953 0.000
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5.4.5 Secondary Results

Using the IPTW-FM-full model from the previous section (still fitted on the full training
set), we now try to answer the following additional questions. Again note that these results
should be taken cautiously given the limited quality of the results in the previous section.
Also note that further replications of this study, ideally in RCTs, are needed to fully answer
these questions.

Do some treatments consistently provide good response for all patients?

To answer this question, the missing entries of the rating matrix are predicted with the
IPTW-FM-full-model. Then, after filling the missing entries with the predictions and
keeping the true ratings for the other entries, we obtain the results in Figure 5.5 and 5.6
where the top 10 treatments with respect to the lowest 95" percentile are shown. In these
tigures, it appears that no treatment consistently provides good response for all patients,
i.e., no treatments provide an outcome less or equal to five to all patients. In fact, the best
median of all the treatments (not only these 10 treatments) is around 10 for both treatment
definitions. This variability in the response to treatment shows that a non-personalized
approach for the treatment of TRD doesn’t work.
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FIGURE 5.5: Boxplot of filled outcome score for the 10 treatments with lowest
95t percentile for filled outcome score under the first definition of treatment.
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FIGURE 5.6: Boxplot of filled outcome score for the 10 treatments with low-
est 951 percentile for filled outcome score under the second definition of
treatment.

These results are consistent with the comments provided in Section 5.4.2 for the posi-
tively biased data, i.e., data that is biased toward better patient-treatment matches. When
looking at the average of the true ratings from the original data set, we should expect a
better average than if we observed all ratings; otherwise, the physicians are acting worst
than uniformly random treatment selection.

Finally, note that these results support the claim that the physicians are better than
random since the boxplots in the current section are worst than the ones in Section 5.4.2,

i.e., the additional ratings we observe are bad.

Do some treatments consistently provide good response within a particular patient

subgroup?

To answer this last question, we count, for each treatment, the number of ratings less or
equal to five (i.e., the number of normal ratings) from the previous filled rating matrix.
We then keep the treatments (i.e., the clusters) with at least 10 of these normal ratings.
For the first treatment definition, seven such treatments are identified. In Table 5.9,
the composition of these treatments is provided; the frequency of these treatments in

the original data (Freq_Data), the number of normal ratings (Cluster_Size) and
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the number of predicted entries among all these normal ratings (Filled_Nb) are also
provided for each treatment.® Among the seven treatments, three of them are more frequent
in the original data and all their normal ratings consist of true ratings. For the other four
treatments, all the normal ratings are predicted. In addition, the three previous treatments
consist of a single drug category (i.e., AD_SNRI, AD_SSRI or AO_Antipsychotic). Thus,
the identified patients in remission (i.e., the normal ratings) for these three treatments may
actually correspond to patients not suffering from TRD since they appear easy to treat.
Finally, for the other four treatments, these appear to consist of many categories and drugs;
from one to two antidepressant indicators and from three to four add-on indicators. Still,
these can be considered realistic treatments since they are prescribed one time each in the
original data. Additional psychiatric expertise is required to further understand why (or
why not) these treatments appear promising.

When looking at the patients in remission in these clusters, it appears that respectively
44 patients belong to only one treatment cluster, 4 patients belong to 2 clusters, 16 patients
belong to 4 clusters and 2 patients belong to 5 clusters. The sample means and standard
deviations of these patients are provided in Table 5.11. A first cluster than stands out with
respect to these numbers is the 1-374 since it appears to consist of young patients (Pt_Age);
this cluster also contains more male patients than the other patients (Pt_Gender_M). With
respect to the first axis, it appears that most patients in the cluster 1-276 do not have
these disorders (Pt_FirstAxis_N), while most patients in clusters 1-150 and 1-374 have
them (Pt_FirstAxis_Y). For the second axis, the numbers are much more uniformly
distributed. Thus, overall, it is at the moment quite difficult to understand the composition
of these clusters with the limited amount of information we have describing these patients;
a retrospective analysis of these patients” medical records is needed.

A similar analysis is also done for the second definition of treatment. However, since
there exist 16 treatments with at least 10 normal ratings, we increase that threshold to 20
normal ratings and obtain 8 corresponding treatments (see Table 5.10); note that overall
the clusters are larger than under the first treatment definition. Contrary to the results
under the first treatment definition, only one treatment is frequent in the original data and
its identified normal ratings all consist of true ratings. Note that the identified patients in
this cluster could also correspond to patients not suffering from TRD since this treatment
appears simplistic, i.e., only AD_SSRI. The other treatments again consist of several
drugs and are observed only one time in the original data; further expertise is needed
to understand how these treatments work. With respect to the the responsive patients

8Remember that the predicted ratings of these treatments are not all normal ratings as shown in the
boxplots of the previous question.
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TABLE 5.9: Description of the identified clusters under the first treatment
definition. The cluster IDs correspond to the treatment IDs. v'corresponds to
a variable with true value.

Variable 1-150 1-217 1-276 1-288 1-289 1-353 1-374

AD MAOI

AD_SNRI v
AD_SSRI v v
AD_TCA
AD_Bupropion
AD_Mirtazapine
AO_Antipsychotic
AO_Anxiolytic
AO_Hypnotic
AO_Stimulant
AO_Aripiprazole
AO_Liothyronine
AO_Lithium
AODE_ADBooster
AODE_Antipsychotic
AODE_Anxiolytic
AODE_Hypnotic
AODE_Stimulant
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in these clusters (see Table 5.12), it is again hard to identify a pattern. It does however
appear that the cluster 2-241 consists of younger patients while the cluster 2-200 consists
of patients with fewer first axis disorders than the other clusters. Note also that 26 patients
belong to one or two clusters while the other 37 patients are members of three to seven
clusters. In particular, 19 patients belong to seven clusters. Hence, there appears to be
more overlap in these clusters than in the ones under the first definition of treatment.

To conclude this section, it does appear that some treatments work well on some
patients’ subgroups. These subgroups are however somewhat small; a maximum of 23
patients out of 364 patients (6.3%) under the first treatment definition and a maximum of 38
patients out of 365 patients (10.4%) under the second treatment definition. Additionally, the
number of treatments is also small; there are respectively 7 and 16 treatments with at least
10 normal ratings under the first and second definition of treatment. It is thus important to
correctly understand these subgroups to obtain interesting outcomes. Unfortunately, with
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TABLE 5.10: Description of the identified clusters under the second treatment
definition. The cluster IDs correspond to the treatment IDs. v'corresponds to
a variable with true value.

Variable 2-1 2-136 2-164 2-200 2-238 2-241 2-244 2-270

AD_MAOTI v

AD_SNRI

AD_SSRI v v v

AD_TCA

AD_Bupropion v v v v
AD_Mirtazapine

AO_Aripiprazole v v v
AO_Atomoxetine v v
AO_Liothyronine

AO_Lithium v v v

AO_Lurasidone

AO_Methylphenidate v v v v
AO_Modafinil v v
AO_Pramipexole
AO_Quetiapine

AO_Trazodone

AODE_ADBooster v v
AODE_Antipsychotic
AODE_Anxiolytic
AODE_Hypnotic
AODE_Stimulant v v v v

Freq Data 1 1 1 94 1 1 1 1
Cluster_Size 39 37 25 31 27 21 36 32
Filled_Nb 38 36 24 0 27 20 36 31
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the currently available data, it is not possible to characterize these patients” subgroups to a
sufficient level to construct a decision aid.



TABLE 5.11: Sample means and standard deviations (in parentheses) of the patients in remission in the identified
clusters under the first treatment definition. The cluster IDs correspond to the treatment IDs. 'These means and

standard deviations are computed using proportions.

Variable 1-150 1-217 1-276 1-288 1-289 1-353 1-374
Pt_Age 43.33(9.89) 42.95(12.66) 42.86(12.62) 40.22 (11.56) 43.26 (12.46) 39.47 (11.46) 35.17 (9.59)
Pt_Gender M 042(049) 036(048) 0.36(048)  0.39(049) 0.35(048)  0.41(049) 0.50 ( 0.50)
Pt_FirstAxis_NT 0.17(037)  036(048) 059 (0.49)  0.33(047) 0.35(048)  0.29(0.46) 0.08(0.28)
Pt_FirstAxis_TBIT  0.08(028)  009(029) 005(021) 0.11(031) 0.09(028)  0.12(0.32) 0.0 (0.00)
Pt_FirstAxis_ v 058 (049) 032(047) 0.18(0.39) 028(045)  0.35(048)  0.29(046) 0.67 (0.47)
Pt_FirstAxis_nani  0.17(037) 023(042) 0.18(039) 028(045  022(041) 029(0.46) 0.25(0.43)
Pt_SecondAxis_NT 033(047) 0.18(0.39) 041(049) 0.17(037) 0.17(038)  0.12(032) 0.33(0.47)
Pt_SecondAxis_TBIT  0.17(037) 041(049) 023(042) 039(049) 039(049) 041(049) 0.17(0.37)
Pt_SecondAxis_y! 033(047) 0.18(0.39) 0.18(0.39) 0.17(0.37) 022(041) 0.18(0.38) 0.25(0.43)
Pt_SecondAxis_nan!  017(037) 023(042) 0.18(039) 028(045)  022(041) 029(0.46) 0.25(0.43)

TABLE 5.12: Sample means and standard deviations (in parentheses) of the patients in remission in the identified
clusters under the second treatment definition. The cluster IDs correspond to the treatment IDs. 'These means
and standard deviations are computed using proportions.

Variable 2-1 2-136 2-164 2-200 2-238 2-241 2-244 2-270
Pt_Age 42,62 (12.63) 42.35(12.83) 37.12(12.13) 42.23(12.97) 38.81(12.58) 34.19(10.13) 42.44(13.00) 40.53 (12.62)
Pt_Gender M! 041(049)  041(049)  040(049) 035(048)  041(049) 0.33(047)  042(049)  0.41(0.49)
Pt_FirstAxis_ NI 044 (050) 043 (0.50) 036 (0.48)  0.52(0.50) 044 (0.50)  0.38(049)  0.44(050) 0.4 (0.50)
Pt_FirstAxis_TBIT 0.05(022) 0.05(0.23) 0.04(020) 0.03(0.18)  0.04(0.19) 0.05(021) 0.06(0.23)  0.03(0.17)
Pt_FirstAxis_v! 033(047) 035(048)  040(049) 029(045)  033(047) 0.38(049) 0.36(048)  0.38(0.48)
Pt_FirstAxis_nan' 0.18(0.38) 0.16(0.37) 020(040) 0.16(0.37) 0.19(0.39) 0.19(039) 0.14(035  0.16(0.36)
Pt_SecondAxis_NT 033(047) 032(047) 028(045)  042(049) 0.30(046) 024(043) 0.33(047)  0.31(0.46)
Pt_SecondAxis_TBIT  0.18(0.38) 0.19(039) 020(0.40) 026(0.44) 0.19(039) 0.19(039) 0.19(0.40)  0.16(0.36)
Pt_SecondAxis_y! 031(046) 032(047) 032(047) 0.16(037) 033(047) 038(049) 0.33(047)  0.38(0.48)
Pt_SecondAxis_nanf  0.18(0.38) 016(037) 020(040) 0.16(037) 0.19(039) 0.19(039) 0.14(035  0.16(0.36)
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5.5 Conclusion

In this work, we try using recommender systems (RSs) to improve the selection of phar-
macological treatments for patients suffering from treatment-resistant depression. After
describing the setting of our case study and the acquired observational data, several RS
models are tested. Since the best RMSE found on the test set is around 5, additional
research and training data are necessary before using any of these models as a medical
decision aid. Yet, this degree of accuracy still allows some insights. In particular, it is found
that no treatments appear to provide good response for all patients. In addition, it is found
that some subgroups of patients respond to the same treatments.

There are several limitations to our case study. First, we use observational data that
is not purposely collected for research and thus contains several missing values. Thus,
we have to infer the drugs the patients are taking since we only have access to the pre-
scriptions made at this hospital. Second, we make some (informed) choices regarding
the preprocessing of data (e.g., treatment definition, time-window for outcome). Doing
other choices could lead to different results as is observed in this case study with our two
treatment definitions. Finally, we focus only on the pharmacological treatments while
other types of treatments such as psychotherapy are well known to help towards remission;
psychotherapy is often prescribed to patients of the DSDP.

Future research areas include (1) testing other RS models and (2) analyzing which
patient’s and treatment’s features are good predictors and mediators of outcome.
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Chapter 6

Concluding Remarks and Future

Research

In this thesis, we use and develop several analytics methods to improve medical decision
making with respect to the management of patients suffering from treatment-resistant
depression (TRD). We focus on TRD, a severe form of the major depressive disorder
(MDD), since this is a growing global health concern that is both complex and not well
understood; in addition, it appears that mental illnesses (in particular, TRD) are not
addressed by the operations research and management science (OR/MS) literature.

The analytics methods in this thesis expand over the traditional OR/MS methods by
borrowing methods from other other fields (e.g., artificial intelligence, statistics, causal
inference). The goal of these non-traditional methods is to expand the problems’ types
that can be addressed. In particular, this research focus on medical decision making
(MDM) using observational data. While there exists OR/MS literature on MDM that uses
observational data, most of this literature does not explicitly address the limitations of
using observational data. In this thesis, we take into account explicitly these limitations
whenever we are using the observational data collected at the depressive and suicide
disorders program (DSDP) of the Douglas Mental Health University Institute in Montreal.

6.1 Summary of Research Findings

In Chapter 2, a survey of MDM methods relevant for treating depression is done across
the OR/MS literature, and the artificial intelligence and statistics literature (in particular,
the dynamic treatment regimes (DTRs) literature). This survey highlights that no OR/MS
studies are applied to MDD while several studies exist in the DTR literature. In addition,
this survey highlights two major differences between these fields. First, while most
OR/MS literature uses Markov decision process (MDP) or partially observable Markov
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decision process (POMDP) models with discrete states, the DTR literature mostly deals
with continuous states. Second, the OR/MS literature assumes Markovian states while
the DTR literature uses history-dependent states. These two differences exist probably
because of the focus of these two fields. On the one hand, the OR/MS literature typically
focuses on devising models with good computational tractability to be able to address
complex decisions. By doing so, they however somewhat neglect the validity of these
models. On the other hand, the DTR literature is typically limited to models that address
simple decisions to increase the probability that these models are valid even when using
observational data. By not limiting itself to traditional OR/MS methods, this research tries
to exploit the synergy between these fields.

In Chapter 3, an improved approach for causal inference is proposed; this approach is
able to balance all distributions” moments by balancing the treatment groups in a repro-
ducing kernel Hilbert space (RKHS). When compared to other similar causal inference
methods on different simulation models, this approach is shown to obtain similar results
and in many cases the best results. This approach is also used in a TRD case study where
the goal is to determine which of five treatment modification strategies is best at the initial
visit. Unfortunately, while some findings are consistent with the medical literature and
guidelines, the obtained treatment effects are not statistically significant with respect to the
95% confidence intervals. This is most likely due to the small data set obtained after the
exclusion of missing data. Another possible explanation could be the inappropriateness of
the five strategies; while these are often used in the medical literature, they could be too
broadly defined. Still, this case study consists in a helpful tutorial to causal inference for
the OR/MS community. In particular, it demonstrates, with a case study, that omitting to
address the causal inference issues can lead to opposite results.

In Chapter 4, different imitation learning (IL) methods are used to identify the relevant
variables among the patient’s, physician’s and clinic’s characteristics for the timing decision
between appointments. This timing decision is important since it implies a trade-off
between the consequences of low- and high-frequency appointments. Yet, it appears that
there is a disparity in the medical recommendations regarding this decision. A two-stage
framework is used in this study to identify the relevant variables. First, with the use of semi-
structured interviews, potential features used to determine the time between consecutive
appointments are elicited from the four psychiatrists at the DSDP. Unsurprisingly, it
appears that similar features are used by each of these psychiatrists; yet, the importance
of these features to each psychiatrist cannot be captured by these interviews, the reason

for the existence of the framework’s second stage. Still, these interviews also capture the
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variable experience and variable typical times between appointments for each of these
psychiatrists. Then, the second stage of the framework consists in the different IL methods.
After a brief review of the existing IL methods, three methods are selected for the case
study, with one method being a proposed extension. The results of the case study first
show that the cost of discretization is quite high for this setting; the proposed approach that
uses discretization doesn’t perform well even when trying to favor this approach. Thus, it
appears that the best approach to identify the relevant variables is a simple least absolute
shrinkage and selection operator (LASSO) model. In the case study, the top two identified
teatures are the time since the initial appointment and the indication of one particular
treating psychiatrist; both increasing the time between appointments. Additional results
also tend to show that the identified features vary across the physicians. Yet, additional
data and features are needed to further establish this claim. Finally, it appears that the
outcomes of each physician panel are statistically significantly different with respect to
several outcome scales. This leads to believe that the compounding of the treatment and
timing decisions is better done by some of the physicians. Yet, these outcomes do not
appear to significantly differ from a practical point of view.

In Chapter 5, different recommender system (RS) models are used to try to provide
personalized recommendations of treatments to patients suffering from TRD. In order to do
so, we assume that the sequence of treatments that have been administered to the patient
does not affect the efficacy of the current treatment. In addition, we define two different
treatment definitions which make sense from a medical point of view. On these two
treatment definitions, we then fit models that use different features available in the data set
such as features describing the patient, the treatment and the outcomes resulting from other
treatments. Note also that some models use weights over the training observations (i.e.,
inverse probability of treatment weighting (IPTW)) to correct for potential confounders in
the observational data. According to different metrics, it appears that the models using
the most features from the data provide the best results. Thus, the limited number of
features describing the patient and the treatment does contain some relevant information.
Yet these models are not performing well enough to be used as decision aids. In this
work, it is also found that no treatment consistently leads to remission for all patients.
This result is found by imputing the unobserved patient-treatment outcomes with the
best RS model found. Finally, some patients” subgroups are found to respond to the
same treatments. These particular treatments could then be assumed as being better
than the other treatments which appear to only work for one or two patients. Further

characterization of these patients’ subgroups is however necessary to be able to identify
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whether a particular patient belongs to one of these subgroups.

These above studies show different ways in which methods, that are not traditionally
used in OR/MS, can be used to address MDM problems; there also exists a large number of
other methods that could be used to address other types of relevant problems. In addition,
these above studies highlight the importance and difficulties of addressing causal inference
issues when using observational data for prescriptive tasks.

To conclude, note that the quality of data is of uttermost importance; as the saying goes
“garbage in, garbage out”. Unfortunately, this quality is not always present, especially
in observational data that is not purposely collected for research, as is the case in this
research. Thus, several of the above findings could be improved with additional and better
quality data. Better quality data would also have helped a lot during this journey. Clinics,
hospitals and other institutions that would like to accomplish research using observational
data should define and document strict processes for the collection of data; by thinking
about the questions they would like to answer in the future and the data that could be
necessary to address these tasks. They should also ideally store this data with the use of
a common data format. This would help tremendously the researchers and would also

ensure to use this data to its full potential.

6.2 Future Research

While this thesis addresses several questions around the management of TRD using
different approaches, there is still a lot of research to be done. First and foremost, replication
of the above results in similar and different contexts is key to obtain what can be called
scientific evidence. These replications can also answer additional questions such as:
Do the treatment effects found in Chapter 3, the features found in Chapter 4 and the
recommended treatments found in Chapter 5 only apply to the DSDP or they also apply
to other healthcare organizations? These replications can be done using observational
data but ideally some of these replications should also be done in randomized controlled
trials (RCTs). An interesting opportunity for replication (and even new research) consists
in the use of patient-level data from past RCTs; this data is now available to researchers
through different platforms. Another interesting opportunity lies in the combination of
this randomized patient-level data with observational data.

Second, future research could also be done on additional questions related to TRD. In
particular, in most of this research (e.g., Chapter 3 and 5), the focus is on pharmacological
treatments. Yet, the medical guidelines and literature acknowledge the importance of
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psychological treatments as well as other alternative treatments (Lam et al., 2016a). Thus,
it would be interesting to see how these other treatments alter the current results; for
example, could the use of psychotherapy reduce the need to use certain drugs? In addition,
these additional treatments also raise additional questions on how to better select them.
For example, when prescribing psychotherapy, one needs to select the type of therapy (e.g.,
cognitive-behavioural therapy, interpersonal therapy), the mode of delivery (e.g., online
therapy, group therapy, individual therapy) and the frequency (e.g., weekly, monthly)
(Lam et al., 2016a); it is also necessary to decide at first whether psychotherapy is beneficial
at all.

Third, additional methods could be also be explored in future research. For example,
exploring probabilistic graphical models for causal inference in Chapter 3 and 5 could
be interesting in order to directly obtain confidence intervals around the estimates. In
addition, the use of a model-free inverse reinforcement learning (IRL) model in Chapter 4
could be interesting in order to avoid discretizing the states and actions; yet, a procedure
would then be needed to interpret the results since the goal of this chapter is to characterize
and not to imitate the timing decisions. Then, as shown in Chapter 5, there exist a vast
literature on RSs. There are thus many other approaches that could be tested in order
to recommend treatments (e.g., probabilistic graphical models, deep learning models);
exploring such other models could lead to the identification of a model that outperforms
the ones in Chapter 5. Finally, an interesting avenue to explore consists in the use of
generative adversarial nets (GANs) (Goodfellow et al., 2014) for data augmentation. This
data augmentation procedure could enable the use of complex models in settings with
limited data, as is the case in this research. Note that there already exist some successful
GANSs applications to medical data (Choi et al., 2017; Esteban, Hyland, and Rétsch, 2017).
Yet, it remains to be seen to which point the medical literature would accept the models
fitted with these augmented data sets.

Finally, future research could be done on how to best implement decision aids based
on the above and future related results; for example, these decision aids could suggest the
best treatment modification strategy, the best delay before the next appointment and/or
the treatments with potentially the best outcomes. This implementation phase isn’t as easy
as it could seem, even when a correct model is available for the task at hand. It requires
research on the design of the decision aid’s interface, a topic addressed in the field of
human-computer interaction (HCI) (Shneiderman et al., 2016). In particular, this design
should lead to a good user experience in order for the physician to keep using this decision

aid in the future and to not make mistakes. In addition, this design could take into account
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the patient perspective since it is the patient that is affected by the decisions, and engaging

the patient in the decision process could improve its adherence to the resulting decisions.
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Appendix A

Appendix to Chapter 3

A.1 Causal Inference Illustrative Example

We have a population of patients in which we want to compute the effect of a treatment.
In this population, suppose that patients with high social support do better and that
their response is independent of whether they are treated (Z = 1) or not (Z = 0), i.e.,
the treatment has no effect. Furthermore suppose that patients with high social support
(X = 1) have a 60% response rate and that patients with low social support (X = 0) have
a 40% response rate. Thus, E]Y | Z =2, X =1 =06and E[Y | Z = 2, X = 0] = 0.4 for
z = 0, 1. Finally, suppose that 50% of the patients have high social support (X = 1).

If we randomize the treatment to the patients, we obtain a treated and a control group
that contains an equal proportion of patients with low social support (X = 0) and high
social support (X = 1). We thus obtain the following response rates for the controls

M-

E[Y | Z = 0] EY | Z=0,X=2a]Pr(X=2|Z=0)

o

4)(5) + (.6)(.5)
.5

I
o o~ &

and for the treated

1
EY|Z=1=) EY|Z=1X=2Pr(X=z|Z=1)

=0

I

.

=~
~

(.5) + (.6)(.5)
=0.5.
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In a randomized experiment, the data provides an unbiased estimator of the true treatment
effect (i.e., a null effect).

Lets now suppose that it is not possible to run a randomized experiment and that
instead we are given (observational) data by a clinician. Suppose that this clinician
(incorrectly) suspects that patients with strong social support (X = 1) benefit more
from the treatment. Thus this clinician treats 90% of his patients with high social sup-
port (Pr(Z=1|X =1) = 0.9) and only 50% of his patients with low social support
Pr(Z=1|X=0)=0.5).

TABLE A.1: Propensity for treatment given social support covariate.

Treatment =~ Low social support High social support
X =0 X =1
Z=0 Pr(Z=0|X=0)=05 Pr(Z=0|X=1)=0.1
Z=1 Pr(Z=1|X=0)=05 Pr(Z=1]X=1)=0.9

If we blindly use this data to estimate the response rates, we obtain the following

response rates for the controls

EY | Z=0] = > o EIY | leo,X:x]Pr(Z:O | X = 2)Pr(X = 2)
e Pr(Z=0] X =2)Pr(X =)
(A)(5)(5) + (B)(1)(5)
(.5)(.5) + (.1)(.5)
=0.43

and for the treated

EY |Z=1]= Yo EIY | le 1,X =2]Pr(Z =1| X =2)Pr(X =z
YowoPr(Z=1]X =2)Pr(X =)
(A)(5)(5) + (.6)(9)(.5)
(.5)(.5) + (.9)(.5)
= 0.53.

We easily see that we do not obtain the true treatment effect. We obtain a treatment effect
of 0.1 while the true effect is null.

If we instead balance the treatment groups with respect to X, we obtain in the balanced
groups that the treatment is independent of the social support, i.e., Pr(Z = 0|X =z) =
Pr(Z =0) and Pr(Z =1|X = z) = Pr(Z =1). We thus obtain the following corrected
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response rates for the controls

YL LEY [ Z=0,X=2|Pr(Z=0| X =2)Pr(X =2)

E[Y | Z=0] = .
Yowo Pr(Z=0]| X =2)Pr(X =2)
_ Pr(Z =0)[(.4)(.5) + (.6)(.5)]
Pr(Z = 0)[(.5) + (.5)]
=0.5
and for the treated

Y| Z=1,X=2x|Pr(Z=1|X =2)Pr(X =2)
S Pr(Z=1]X=2)Pr(X =2)
_ Pr(Z = 1)[(A4)(:5) + (6)(.5)
Pr(Z = 1)[(5) + (.5)]
= 0.5.

By | 2 = 1] = 2=

This corresponds to the true treatment effect. It is now easy to see the benefit of using
balancing approaches when computing a treatment effect from observational data.

Using the potential outcome notation of Section 3.2, here we have that Y@ Y are
independent of Z conditional on X. It is easy to see here because the response rate
depends only on X. For example, E[Y® | Z = 0,X = 0] = E[Y© | X = (0] = 0.4.
However, Y Y are not marginally independent of Z. For example, E[Y©) | Z =
0] = E[Y|Z = 0] = 0.43 while E[Y®] = 0.5 % 0.4 + 0.5 % 0.6 = 0.5. After balancing
using X, Y@ Y are marginally independent of Z. In the balanced data, we have
E[Y(© | Z =0] = E[Y | Z = 0] = 0.5 which is the same as E[Y ("] = 0.5.
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A.2 Covariates Selection

A causal graph is a useful representation of causality assumptions. In a causal graph,
nodes represent variables while directed edges represent direct causal effects between
variables. Thus, the causal assumptions are represented by missing edges. For example, in
Figure A.1, A has a direct effect on Z while A only has an indirect effect on Y through Z
and B.

Ay B

A

Y

FIGURE A.1: Simple causal graph. Z denote treatment, Y denote outcome,
and A and B denote covariates.

As discussed in Section 3.2.3, in order for Assumption 2 to hold and for the computed
treatment effects to be unbiased, it suffices to select a set of covariates X that satisfies the

following back-door criterion:

Definition 4 (Back-Door Criterion (Pearl, 2009b)). A set of variables X satisfies the back-door
criterion relative to an ordered pair of variables (Z,Y) in a causal diagram if:

(a) no node in X is a descendant of Z; and
(b) X blocks every path between Z and Y that contains an arrow into Z.

With respect to Figure A.1, X should then be constituted of either {A, B} or {B}. If
it consists of only {A}, the back-door criterion will not be respected and the estimated
treatment effect might be biased.

In practice, it is important to note however that selecting { A, B} instead of { B} might
amplify the residual bias due to an additional unobserved covariate (Pearl, 2010).
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A.3 Proof of Lemma 2

Proof.

1. ATE,, 2 EYW] —E[Y®)]

EY®™ | X])| - EE[Y"™ | X]

E[Y®™ | Z =u,X]] —E[E[Y"Y) | Z = v, X]]
[

EY | Z =u,X]] —EE[Y | Z =, X]]

E[
E[
E[
E[
/E[Y | Z =u, X = x| Pr(X = z)dz

—/E[Y|Z:v,X:x]Pr(X:x)dx
PriX=xz|Z=u)
Pr(X =2 |Z=u)

Pr( X =xz|Z=v)
Pr( X =x|Z=v)

dz

:/E[Y]Z:u,sz]Pr(X:x)
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=REY®™ | Z=u,X]|Z=u]-EEY® |Z=0v,X]|Z=u1]

—EEY | Z=u,X]|Z=u—-EE[Y | Z=0vX]]|Z=u

:/E[Y|Z:u,X:x]Pr(X:a:|Z:u)dx
—/E[Y|Z:v,X:x]Pr(X:x|Z:u)dx

—/E[Y!Z—u,X—x]Pr(X—x|Z—u)dx

Pr(X=z|2=
PriX=z|2=

—/E[Y|Z:v,X:x]Pr(X:x|Z:u) Z;dx
:/E[Y|Z:u,X:x]ﬁu(x)Pr(X:m|Z:u)dx
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A4 Link with Stabilized Weights

Corollary 2. When kernel mean matching (KMM) is used to compute treatment effects as in
Theorem 1, it is equivalent to stabilized IPTW (Robins, 1998; Robins, Herndn, and Brumback,
2000).

Proof. We will only prove it for average treatment effect (ATE). It is easy to prove for
conditional average treatment effect (CATE) and average treatment effect among the
treated (ATT) using a similar process. For ATE,, ,, the first set of weights that KMM finds
gives

B Pr(X =x)
ful) = Pr(X=z|Z=u)
~ Pr(X =u2)Pr(Z = u)
C Pr( X =2,Z =)
B Pr(Z = u)
S Pr(Z=ul| X =2)
while the second gives
8,(x) Pr(Z =)

:Pr(Z:v|X:m)'

These weights correspond to stabilized IPTW for ATE,, ,. The numerator corresponding to

the stabilization weight and the denominator corresponding to the propensity score. [

Remark 4. While Corollary 2 states that KMM and stabilized IPTW are equivalent in theory, we
do believe that KMM is superior to stabilized IPTW empirically because it directly computes the
weights instead of fitting a propensity function and then using a transformation of it to compute
the weights.
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A.5 Additional Results to the Comparative Analysis

The results in this section are obtained by increasing the standard deviations of y;(0) and

yi(1) to 4, i.e., decreasing the signal-to-noise ratio from 4 to 1.

TABLE A.2: Bias, RMSE, range and mean computation time of the 1000 esti-

mated ATTs for each approach on data sets with no unmeasured confounding

and a signal-to-noise ratio of 1. Proposed approach is in bold font. {SVMMatch
only succeeded on 967 data sets.

Approach Bias RMSE Range Time
Minimum Maximum s

Diff. in Means —0.01 1.22 —2.54 11.50
KMM-N-Bl-el —0.02 0.51 1.75 5.86 4.8
KMM-N-B1l-e0 —0.02 0.51 1.89 6.24 3.0
KMM-N-B0O-el —0.01 0.52 1.79 6.28 4.3
KMM-N-B0-e0 —0.03 0.51 1.72 6.39 2.7
KMM-E-Bl-el 4.47 5.54 3.92 32.24 5.3
KMM-E-Bl-e0 —0.01 0.54 2.45 5.91 3.2
KMM-E-B0-el 4.47 5.54 3.92 32.24 4.6
KMM-E-B0-e0 —0.01 0.54 2.46 5.96 2.7
BOSS —0.02 0.59 1.33 6.98 49.2
SVMMatchf ~ —0.02  0.57 0.79 6.98 2.1
EBal —0.02 0.51 1.79 6.75 0.4

SBW —0.01 0.51 1.61 6.93 0.6
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TABLE A.3: Bias, RMSE, range and mean computation time of the 1000 es-
timated ATTs for each approach on data sets with hidden bias and a signal-
to-noise ratio of 1. Proposed approach is in bold font. 'SVMMatch only

succeeded on 960 data sets.

Approach Bias RMSE Range Time
Minimum Maximum S

Diff. in Means 0.03 1.32 —3.27 14.15
KMM-N-B1-el 0.01 0.71 —3.21 7.86 4.9
KMM-N-B1-e0 —-0.01 0.68 —2.91 7.27 3.2
KMM-N-B0-e1 —0.00 0.67 —0.15 7.87 5.0
KMM-N-B0-e0 —0.01 0.66 —1.35 6.86 3.1
KMM-E-B1-el 3.55 4.71 2.81 30.10 5.5
KMM-E-B1-e0 —-0.01 0.70 0.81 11.23 3.3
KMM-E-B0-el 3.60 4.73 2.83 30.10 4.7
KMM-E-B0-e0 —0.01 0.70 0.95 11.24 2.7
BOSS —0.01 0.77 —-0.71 12.81 41.8
SVMMatch’ -0.01  0.74 —3.48 7.53 1.9
EBal 0.00 0.69 0.34 10.15 0.4
SBW 0.00 0.65 1.05 8.51 0.5
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A.6 Characterization of the DSDP Data Set and Additional

Results

TABLE A.4: List of the antidepressants and add-on drugs used at the clinic.

Antidepressant Add-on
Amitriptyline Alprazolam Methotrimeprazine
Bupropion Amphetamine aspartate Methylphenidate
Citalopram Aripiprazole Modafinil
Clomipramine Atomoxetine Naltrexone
Desipramine Bromazepam Nitrazepam
Desvenlafaxine ~ Buspirone Olanzapine
Doxepin Carbamazepine Oxazepam
Duloxetine Chlorpromazine Paliperidone
Escitalopram Clonazepam Paliperidone inj
Fluoxetine Dextroamphetamine Periciazine
Fluvoxamine Diazepam Pimozide
Imipramine Diphenhydramine Pramipexole
Mirtazapine Docusate Pregabalin
Moclobemide Flupentixol Propranolol
Nortriptyline Flurazepam Quetiapine
Paroxetine Gabapentin Riluzole
Sertraline Haloperidol Risperidone
Tranylcypromine Hydroxyzine Temazepam
Trazodone Lamotrigine Topiramate
Venlafaxine Liothyronine Valproic acid
Lisdexamfetamine Ziprasidone
Lithium carbonate Zolpidem
Lorazepam Zopiclone
Loxapine Zuclopenthixol

Lurasidone
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FIGURE A.2: Histogram of the HAM-D-17 total score per treatment group.

TABLE A.5: Sample means and standard deviations of the unbalanced covari-
ates and outcome for each treatment category. 'These means and standard
deviations are computed using proportions.

Variable Optimization Augmentation Combination Switch Watchful waiting
(n = 25) (n=11) (n=13) (n=14) (n=24)
Age 441 £ 79 46.1 + 10.2 46.6 + 11.7 443 £ 10.9 44.0 £ 11.6
IsMalef 0.48 £ 0.50 0.55 £ 0.50 0.38 £ 049 0.14 + 0.35 0.50 £+ 0.50
Educationl®  0.12 £ 0.32 0.27 £ 045 0.15 £ 0.36  0.00 + 0.00 0.04 £ 0.20
Education2t  0.08 + 0.27 0.09 £ 0.29 0.31 £ 046 0.29 £ 0.45 0.12 £ 0.33
Education3’  0.08 £ 0.27 0.09 £+ 0.29 0.15 £ 0.36  0.00 = 0.00 0.04 £ 0.20
Education4  0.72 + 0.45 0.55 £ 0.50 0.38 £ 049 0.71 £ 0.45 0.79 £ 041
Abused! 0.56 £ 0.50 0.27 + 0.45 0.54 £ 0.50 0.36 £ 0.48 0.29 + 0.45
FamPsyHx! 0.72 £ 045 0.55 £ 0.50 0.77 £ 042  0.50 + 0.50 0.46 £+ 0.50
HAM-A 21.0 £ 6.9 20.7 £ 8.8 24.0 £ 121 231 £ 9.1 18.3 £ 9.9
HAM-D-17 17.0 + 6.1 14.8 £ 7.0 21.1 £ 9.5 18.6 + 5.8 16.8 £ 7.9
SCID1Dx4f 0.92 + 0.27 0.73 £ 0.45 0.69 = 046 0.86 £ 0.35 0.71 + 0.45
SCID1Dx26" 0.12 £ 0.32 0.18 £ 0.39 0.08 = 0.27 0.21 + 041 0.17 = 0.37
SCID1Dx32f 0.24 £ 0.43 0.27 £ 0.45 0.15 £ 0.36  0.07 £ 0.26 0.12 £ 0.33
PastEpif 1.00 £+ 0.00 0.91 £+ 0.29 1.00 £ 0.00 1.00 £ 0.00 1.00 + 0.00
scip2pxf 0.36 £ 0.48 0.27 £ 0.45 0.15 £ 0.36  0.43 £ 0.49 0.42 £ 0.49
PastSuiAtt!  0.24 + 043 0.09 £ 0.29 0.23 £ 042 0.21 £ 041 0.29 £+ 0.45
SSI 17.0 + 10.6 18.1 + 10.0 19.0 £ 74 159 + 9.6 20.2 £ 8.7
QIDS-SR-16 12.8 + 4.9 12,5 + 4.5 13.6 + 6.2 154 £ 7.0 135 £ 64
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TABLE A.6: Additional treatment effects with 95% confidence intervals for
the TRD case study. The row is v and the column is v. 1st row/column is
Optimization, 2nd row/column is Augmentation, 3rd row/column is Combi-
nation, 4th row /column is Switch and 5th row /column is Watchful Waiting.

(A) CATE,, v.; € is IsMale == False

—0.31(-=3.71, 3.70) —4.42(—5.95, 1.52) —2.40(—6.64, 2.44) —1.75(—4.55, 4.20)
0.31(—3.70, 3.71) —4.11(-5.28, 0.77) —2.09(—5.78, 1.78) —1.45(—3.92, 3.31)
442 (-1.52, 5.95) 4.11(-0.77, 5.28) 2.02(—3.63, 4.14) 2.66(—1.58, b5.65)
2.40(—2.44, 6.64) 2.09(—1.78, 5.78) —2.02(—4.14, 3.63) 0.65(—2.74, 6.28)
1.75(—4.20, 4.55) 1.45(-3.31, 3.92) —2.66 (—5.65, 1.58) —0.65(—6.28, 2.74)

(B) CATE,, ,; eis IsMale == True

—1.85(—3.92, 3.75) —0.74(—6.08, 1.65) —0.55(—6.81, 2.67) —2.02(—4.67, 4.31)
1.85(=3.75, 3.92) 1.11(-5.25, 0.85) 1.30(—5.88, 1.88) —0.17(—4.07, 3.42)
0.74(—1.65, 6.08) —1.11(—0.85, 5.25) 0.19(—3.91, 4.26) —1.27(—1.68, 5.67)
0.55(—2.67, 6.81) —1.30(—1.88, 5.88) —0.19(—4.26, 3.91) —1.46 (—2.89, 6.50)
2.02(—4.31, 4.67) 0.17(-3.42, 4.07) 1.27(-5.67, 1.68) 1.46(—6.50, 2.89)
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Appendix to Chapter 4

B.1 Interview Guide

* Background questions: What are the psychiatrist’s characteristics?

— Name, age, gender, role at the clinic, types of patients seen, number of years as
psychiatrist, number of years working with TRD, number of years working at

the clinic.

* Opening question: What are the challenging/important decisions that you face when

treating patients suffering from TRD at the clinic?

— Are there other decisions (operational or clinical) that are difficult to make?
— If the time of the next appointment is not part of the answer, probe for it:

+ Do you find that the time of the next appointment is a challenging decision?

* Main topic: What factors do you account for when deciding on the time of the next

appointment?

— Probe for different areas:
+ the medical state of the patient (e.g., depression severity, suicide ideation,
side effects),
+ the trend of his medical state (e.g., stable, improving, worsening),

+ his treatment (e.g., drugs necessitating a close follow-up, newly prescribed
drugs, other treatment modifications),

+ other relevant characteristics of the patient,

+ the availability of the patient and physician (e.g., number of days per week
the physician is working), and
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+ the clinic’s characteristics (e.g., available resources such as nurses and
psychotherapists, size of waiting list).

— Probe for precision on the features.

— Probe for exceptions.

¢ Secondary topic: What are the typical times between consecutive appointments?

— Probe to check if there exists a discrete set of decisions (e.g., {2 weeks, 6 weeks,
6 months}).

— If yes, then probe for this set and the reasons when each of these decisions are
used.

¢ Tertiary topic: What is the maximal scheduled time between consecutive appoint-
ments?

— Probe to check if 365 days is a good upper bound. Otherwise, what is a good
upper bound? This upper bound is going to be used to differentiate between
follow-up appointments and appointments due to a relapse.
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B.2 List of Relevant Drugs

TABLE B.1: List of the antidepressants and add-on drugs used at the clinic.

!Drug from the TCA class. ?Drug from the MAOI class. 3Drug from the

anticonvulsant class.

Antidepressant Add-on
Amitriptyline! Alprazolam Methotrimeprazine
Bupropion Amphetamine aspartate Methylphenidate
Citalopram Aripiprazole Modafinil
Clomipramine’ Atomoxetine Naltrexone
Desipramine’ Bromazepam Nitrazepam
Desvenlafaxine Buspirone Olanzapine
Doxepin' Carbamazepine® Oxazepam
Duloxetine Chlorpromazine Paliperidone
Escitalopram Clonazepam Paliperidone inj
Fluoxetine Dextroamphetamine Periciazine
Fluvoxamine Diazepam Pimozide
Imipramine’ Diphenhydramine Pramipexole
Mirtazapine Docusate Pregabalin®
Moclobemide® Flupentixol Propranolol
Nortriptyline® Flurazepam Quetiapine
Paroxetine Gabapentin® Riluzole
Sertraline Haloperidol Risperidone
Tranylcypromine* Hydroxyzine Temazepam
Trazodone Lamotrigine® Topiramate®
Venlafaxine Liothyronine Valproic acid®
Lisdexamfetamine Ziprasidone
Lithium carbonate Zolpidem
Lorazepam Zopiclone
Loxapine Zuclopenthixol

Lurasidone
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TABLE B.2: Descriptive statistics of the state features and action.

Variable Mean Std Min 25% 50% 75% Max
MD_A 022 042 0.00 0.0 0.00 0.00 1.0
MD_B 043 049 000 00 0.00 1.00 1.0
MD_C 0.13 034 0.00 0.0 0.00 0.00 1.0
MD_D 022 041 0.00 0.0 0.00 0.00 1.0
IsMale 036 048 0.00 0.0 0.00 1.00 1.0
Age 44.09 1031 19.00 36.0 45.00 53.00 64.0
FirstAxis 063 048 0.00 0.0 1.00 1.00 1.0
SecondAxis 066 047 000 00 1.00 1.00 1.0
ADDosageIncrease_TCA 0.02 015 0.00 0.0 0.00 0.00 1.0
ADDosagelIncrease_Any 0.18 038 0.00 0.0 0.00 0.00 1.0
ADAdded_TCA 002 015 0.00 0.0 0.00 0.00 1.0
ADAdded_MAOI 0.00 0.06 0.00 0.0 0.00 0.00 1.0
ADAdded_Any 013 033 0.00 0.0 0.00 0.00 1.0
AODosagelIncrease_Li 0.02 013 0.00 0.0 0.00 0.00 1.0
AODosageIncrease_AED 0.01 012 0.00 0.0 0.00 0.00 1.0
AODosagelIncrease_Any 0.17 038 0.00 0.0 0.00 0.00 1.0
AOAdded_Li 002 012 0.00 0.0 0.00 0.00 1.0
AOAdded_AED 002 013 0.00 0.0 0.00 0.00 1.0
AOAdded_Any 021 041 0.00 0.0 0.00 0.00 1.0
FIBSERScore 6.11 527 0.00 00 6.00 10.00 18.0
FIBSERTrend_Inc 032 047 0.00 0.0 0.00 1.00 1.0
FIBSERTrend_Dec 035 048 0.00 0.0 0.00 1.00 1.0

OverallFIBSERTrend_Inc 0.34 047 0.00 0.0 0.00 1.00 1.0
OverallFIBSERTrend_Dec 0.48 0.50 0.00 0.0 0.00 1.00 1.0

QIDSScore 13.34 6.22  0.00 9.0 13.00 18.00 27.0
QIDSTrend_Inc 040 049 0.00 0.0 0.00 1.00 1.0
QIDSTrend_Dec 0.47 0.50 0.00 0.0 0.00 1.00 1.0
OverallQIDSTrend_Inc 0.24 0.43 0.00 0.0 0.00 0.00 1.0
OverallQIDSTrend_Dec 0.68 047 0.00 0.0 1.00 1.00 1.0
SSIScore 494 736  0.00 0.0 2.00 5.00 36.0
SSITrend_Inc 0.28 045 0.00 0.0 0.00 1.00 1.0
SSITrend_Dec 0.31 0.46  0.00 0.0 0.00 1.00 1.0
OverallSSITrend_Inc 0.26 0.44 0.00 0.0 0.00 1.00 1.0
OverallSSITrend_Dec 0.44 0.50 0.00 0.0 0.00 1.00 1.0
QLDSScore 18.45 1058 0.00 10.0 19.00 28.00 34.0
QLDSTrend_Inc 040 049 0.00 0.0 0.00 1.00 1.0
QLDSTrend_Dec 045 050 0.00 0.0 0.00 1.00 1.0
OverallQLDSTrend_Inc 0.33 047  0.00 0.0 0.00 1.00 1.0
OverallQLDSTrend_Dec 0.59 0.49 0.00 0.0 1.00 1.00 1.0
FollowingTime 80.25 68.93 014 260 61.14 11729 391.0

Action 849 743 043 40 6.00 10.00 52.0
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TABLE C.1: Drugs taken into account within the antidepressant classes and
add-on categories.  Trazodone is an antidepressant but it is used as an add-on
drug.

(A) Antidepressant classes and drugs (B) Add-on categories and drugs

Class Drug Category Drug
MAOI Moclobemide Antipsychotic Chlorpromazine
Tranylcypromine Flupentixol
SNRI  Desvenlafaxine Halop.endOI
Duloxetine Loxapme
Venlafaxine Lurasidone
Methotrimeprazine
SSRI Citalopram Olanzapine
Escitalopram Paliperidone
Fluoxetine Periciazine
Fluvoxamine Pimozide
Paroxetine Quetiapine
Sertraline Risperidone
TCA  Amitriptyline ?pra&done.
Clomipramine uclopenthixol
p
Desipramine Anxiolytic Alprazolam
Doxepin Bromazepam
Imipramine Buspirone
Nortriptyline Clonazepam
Diazepam
Lorazepam
Oxazepam
Hypnotic Diphenhydramine
Flurazepam
Hydroxyzine
Nitrazepam
Temazepam
Trazodone!
Zolpidem
Zopiclone
Stimulant Amphetamine aspartate
Atomoxetine
Dextroamphetamine
Lisdexamfetamine
Methylphenidate
Modafinil

Pramipexole




TABLE C.2: Desired effects of the add-on categories and drugs.

Variable

AODE__ AODE_

ADBooster Antipsychotic Anxiolytic Hypnotic Stimulant

AO_Antipsychotic
AO_Anxiolytic
AO_Hypnotic
AO_Stimulant
AO_Aripiprazole
AO_Atomoxetine
AO_Liothyronine
AO_Lithium
AO_Lurasidone
AO_Methylphenidate
AQO _Modafinil
AO_Pramipexole
AO_Quetiapine
AO_Trazodone

AODE_ AODE_ AODE_
v v
v
v
v
v
v v
v v
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C.2 Characterization of Data Set

TABLE C.3: Sample means and standard deviations of the patient features for

the second treatment definition. The one-hot encoding of binary variables has

been removed to improve readability. 'These means and standard deviations
are computed using proportions.

Variable Mean Std
Pt_Age 43.556 10.600
Pt_Gender Mf 0.367 0.482
Pt_FirstAxis_ Nf 0.364 0.481
Pt FirstAxis_ TBI' 0.047 0.211
Pt FirstAxis_Y' 0.455 0.498
Pt _FirstAxis_nanf 0.134 0.341
Pt_SecondAxis_ Nf 0.296 0.456
Pt_SecondAxis_TBI' 0.238 0.426
Pt_SecondAxis_Y! 0.329 0.470

Pt SecondAxis_nanf 0.137 0.344
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FIGURE C.1: Boxplot of outcome score for the 10 most frequent treatments
under the second definition of treatment.
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FIGURE C.2: Boxplot of outcome score for the 10 treatments with lowest 95t

percentile for outcome score under the second definition of treatment.
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FIGURE C.3: Histogram of treatment frequency with respect to number of
observed outcome scores under the first definition of treatment.
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observed outcome scores under the second definition of treatment.
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FIGURE C.5: Histogram of the ratio of ineffective to effective treatment num-
bers for patients with at least one remission under the second definition of
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FIGURE C.6: Boxplot of the number of ineffective treatments for patients
with no remission and at least one remission under the second definition of
treatment.
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FIGURE C.7: Histogram of patient frequency with respect to number of ob-
served outcome scores under the first definition of treatment.
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FIGURE C.8: Histogram of patient frequency with respect to number of ob-
served outcome scores under the second definition of treatment.
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C.3 Implementation Details

First, note that all the models are implemented using the code available at Cousineau
(2019), my fork of the Surprise library (Hug, 2017). Thus, we will refer to each model using
their class’s name and parameters.

Second, the implementation of the propensity model consists in the FM class with the fol-
lowing defined and searched hyper-parameters: rating_lst = ['userID', 'itemID'],
user_lst and item_lst defined respectively with the user and item features of Sec-
tion 5.4.1, n_factors ~ U{20,300}, dev_ratio = 0.3, patience = 20, n_epochs =
100, init_std = 0.01, 1r ~ logl4(0.00001,0.1), reg ~ logl{(0.00001,0.1), refit = True,
binary = True and random_state = 123. We execute the RandomizedSearchCV
class for 10 iterations of a 5-fold cross-validation and keep the best parameters according
to the mean log loss to retrain the model on the full exposure training set.

Third, for each outcome model, the implementation and the distributions of the differ-

ent hyper-parameters for the random search are provided below.

e Constant: The constant model consists in the GlobalOnly class. There are no

hyper-parameters for this model.

* Baseline: This model consists in the BaselineOnly class. It is fitted by minimizing
the L2-regularized RMSE between 7;; and #;; = ji + &; + (; using alternating least
squares (ALS). This loss is weighted when using IPTW. For this model, the searched
hyper-parameters are reg_i ~ logl{(0.001,1000), reg_u ~ logl{(0.001,1000) and
n_epochs ~ U{5,100}, where U{-, -} corresponds to the discrete uniform distribu-
tion, U(-, -) corresponds to the continuous uniform distribution and logl/(-, -) corre-
sponds to the loguniform distribution, i.e., logU(a, b) = expU(log(a),log(b)).

¢ factorization machine (FM) models: p, a and u are fitted by minimizing the L2-
regularized RMSE between 7;; and 7;; (see Equation 5.4 for the definition of 7))
using Adam. This loss is weighted when using IPTW. If only the user or item is
unknown, then the model uses a x vectors with values of zeros for the features
associated respectively with the user or the item. The defined and searched hyper-
parameters for all FM models are: n_factors ~ U{20,300}, dev_ratio = 0.3,
patience = 20, n_epochs = 300, init_std = 0.01, 1r ~ [logl/(0.00001,0.1),
reg ~ logl{(0.00001,0.1), refit = True and random_state = 123. We now

define the additional parameters of each FM model:
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— FM-base: This model consists in the FM class with rating_lst =
['userID','itemID'].
— FM-features: This model consists in the FM class with rating_lst =

['userID','itemID'], and user_lst and item_lst defined respectively
with the user and item features of Section 5.4.1.

— FM-outcomes: This model consists in the FM class with rating_lst =

["userID','itemID', 'exp_u_rating'].

— FM-full: This model consists in the FM class with rating lst =
["userID','itemID', 'exp_u_rating'|, and user_lst and item_ lst

defined respectively with the user and item features of Section 5.4.1.

Note that the predictions of all outcome models are clipped to the 0-27 range. Also note,
that for unknown user and item, all outcome models return the same prediction as the
Constant or IPTW-Constant models.

Finally, for each outcome model that requires randomized search, we execute the
RandomizedSearchCV class for 500 iterations of a 5-fold cross-validation. We then keep
the best parameters according to the mean RMSE to retrain the models on the full training
set.
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C.4 Additional Results

TABLE C.4: RMSE, MAE, FCP, NDCG and F1 metrics of the Constant, Base-
line, FM-base, FM-features, FM-outcomes and FM-full models, and their IPTW
variants on the random test set under the second definition of treatment.

Model RMSE MAE FCP NDCG F1
Constant 6.92 5.88 0.000 0.931 0.000
IPTW-Constant 6.93 5.88 0.000 0.931 0.000
Baseline 5.60 446 0.487 0.935 0.049
IPTW-Baseline 555 4.44 0475 0.936 0.050
FM-base 6.39 539 0487 0.929 0.000
IPTW-FM-base 6.36 537 0.481 0.932 0.000
FM-features 599 4.88 0.506 0.929 0.000
IPTW-FM-features 6.04 496 0.513 0.928 0.000
FM-outcomes 6.66 5.04 0.468 0.929 0.434
IPTW-FM-outcomes 740 5.73 0.449 0.934 0.483
FM-full 542 435 0.500 0.926 0.000

IPTW-FM-full 541 4.34 0487 0.924 0.000
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TABLE C.5: RMSE, MAE, FCP, NDCG and F1 metrics of the Constant, Base-

line, FM-base, FM-features, FM-outcomes and FM-full models, and their IPTW

variants on the first intervened test set under the second definition of treat-

ment. This first intervened test set is sampled proportionally to the inverse
frequency of items in the training set.

Model RMSE MAE FCP NDCG F1
Constant 6.97 590 0.000 0.942 0.000
IPTW-Constant 6.95 5.89 0.000 0.942 0.000
Baseline 535 433 0.355 0.948 0.000
IPTW-Baseline 5.27 4.25 0.231 0.946 0.000
FM-base 6.61 556 0.368 0.953 0.000
IPTW-FM-base 6.54 551 0.357 0.950 0.000
FM-features 5.86 4.87 0471 0.938 0.000
IPTW-FM-features 583 4.74 0.460 0.936 0.000
FM-outcomes 598 452 0.319 0941 0.400
IPTW-FM-outcomes 6.80 5.53 0.348 0.946 0.407
FM-full 533 434 0.564 0.933 0.000
IPTW-FM-full 530 4.31 0.531 0.935 0.000

TABLE C.6: RMSE, MAE, FCP, NDCG and F1 metrics of the Constant, Base-
line, FM-base, FM-features, FM-outcomes and FM-full models, and their IPTW
variants on the second intervened test set under the second definition of treat-
ment. This second intervened test set is sampled proportionally to the inverse

rating.
Model RMSE MAE FCP NDCG F1
Constant 8.81 7.96 0.000 0.968 0.000
IPTW-Constant 8.90 8.04 0.000 0.968 0.000
Baseline 7.89  6.73 0.500 0.979 0.078
IPTW-Baseline 7.89 6.73 0.464 0.976 0.078
FM-base 796 712 0476 0.975 0.000
IPTW-FM-base 795 710 0.583 0.978 0.000
FM-features 713 6.16 0.488 0.975 0.000
IPTW-FM-features 8.39 7.33 0.583 0.976 0.000
FM-outcomes 732 531 0.345 0.965 0.655
IPTW-EM-outcomes 7.02 4.83 0476 0.973 0.667
FM-full 6.87 572 0.429 0.967 0.000

IPTW-FEM-full 6.86 572 0.429 0.967 0.000
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