
Algorithms and Systems for Robot
Videography from Human

Specifications

Florian Shkurti

This thesis is submitted to McGill University in partial fulfillment
of the requirements of the degree of Doctor of Philosophy

School of Computer Science

McGill University, Montreal

c©Florian Shkurti, 2018

http://www.johnsmith.com
http://researchgroup.university.com
http://department.university.com

i

Abstract

In this thesis we view autonomous mobile robots as visual data collection plat-
forms that work alongside human experts to help them record the type of footage
they need. This viewpoint is useful in applications such as human-robot collabora-
tive environmental monitoring, where for example, a diver needs to explore a ma-
rine environment assisted by an underwater robot; in visual search and inspection,
where a farmer needs to get footage of crops that are at risk of disease; or in robot
cinematography of athletic events. In all these cases, robots act as videographers on
behalf, and in assistance, of humans who have a well-defined objective with respect
to the type of visual data they want to collect. The two main questions examined in
this thesis are: (a) how can we efficiently learn the objective function with respect to
which a human expert records visual data, and (b) how can we enable robots to re-
liably visually navigate in 3D, alongside humans, in order to help them collect data
that will be of use to their users? The main contributions of this thesis are twofold:
for (a) we propose an active learning based approach for modeling human prefer-
ences over visual data, and for (b) we propose visual tracking systems that take into
account the uncertainty of the behavior of the human learned via inverse reinforce-
ment learning, as well as visual navigation approaches based on stereo cameras and
inertial information. We show validation of these algorithms in the context of col-
laboration between humans and multiple robots for environmental monitoring in
multiple large-scale robot field trials.

ii

Abrégé

Dans cette thèse, nous considérons les robots mobiles autonomes comme des plate-
formes de collecte de données visuelles qui fonctionnent aux côtés d’experts hu-
mains pour les aider enregistrer le type de métrage dont ils ont besoin. Ce point
de vue est utile dans des applications telles que la surveillance environnementale
collaborative homme-robot, où par exemple, un plongeur doit explorer un envi-
ronnement marin assisté par un robot sous-marin; dans la recherche visuelle et
l’inspection, où un agriculteur doit obtenir images de cultures à risque de maladie;
ou dans la cinématographie robotique d’événements sportifs. Dans tous ces cas,
les robots agissent en tant que vidéographes pour le compte de et en assistance,
des personnes ayant un objectif bien défini en ce qui concerne le type de données
visuelles qu’elles souhaitent collecter. Les deux questions principales examinées
dans cette thèse sont: (a) comment pouvons-nous apprendre efficacement la fonc-
tion objective à laquelle un expert humain enregistre donnèes visuelles, et (b) com-
ment permettre aux robots de naviguer visuellement de manière fiable en 3D, aux
côtés des humains, afin de les aider à collecter des données qui seront utiliser pour
leurs utilisateurs? Les principales contributions de cette thèse sont doubles: pour
(a) nous proposons une approche basée sur l’apprentissage actif pour modéliser les
préférences humaines données visuelles, et pour (b) nous proposons des systèmes
de suivi visuel qui tiennent compte de l’incertitude du comportement de l’homme
appris par l’apprentissage par renforcement, ainsi que les approches de naviga-
tion visuelle basées sur des caméras stéréoscopiques et des informations inertielles.
Nous montrons la validation de ces algorithmes dans le cadre d’une collaboration
entre des humains et de multiples robots pour la surveillance de l’environnement
dans le cadre d’essais multiples sur le terrain à grande échelle.

iii

Acknowledgements

I want to express my gratitude towards my supervisor, Prof. Gregory Dudek. It
is not an exaggeration to say that my life would have taken a completely different
trajectory if it weren’t for the opportunities that he gave me at different key points
in my career, starting with admitting me to his lab. Aside from expectations of sci-
entific excellence and true care, vision, creativity, and enthusiasm about the future
of robotics, what sets Greg apart in terms of supervision style is that he constantly
sees the people he works with not as they are, but as what they can be. As the
pace of research becomes more fast-paced in A.I.-related fields, it is a privilege to
have had a supervisor who allows his students the academic freedom to focus on
important, foundational, long-term problems in the field. I also want to thank him
for keeping field robotics active and healthy in Canada, and showing us glimpses
of visions of what robots can do for us, despite the cost, and the large effort and
time required on his part to organize these experiments. I consider it a highlight of
my education to have spent time getting machines to work intelligently in the wild.
Nothing beats having the ocean, or the forest, or the Utah desert, as your office for
a few days, even if it means getting a few scratches, scrapes, and seeing fires(!) and
unscheduled landings from robots in the meantime. I also want to thank his wife,
Kris, for welcoming me and my labmates, while we invaded their family vacations
on many occasions to do experiments.

Speaking of labmates, with so many talented colleagues, where does one begin?
I want to thank Anqi Xu, who has been a wonderful friend since I joined the lab and
an inspiring labmate. I am a big fan of his gusto and joie de vivre. I also want to
thank my colleagues, amazing friends, and roommates for many years, Juan Camilo
Gamboa Higuera and Arnold Kalmbach, for being exceptionally creative and tech-
nical. Travis Manderson has been a great friend, collaborator, and a source of con-
stant learning for me. I am amazed by the sheer breadth and depth of his knowl-
edge at the intersection of hardware and software. Yogesh Girdhar has had a huge
influence on which problems I view as important, and has always been extremely
fun to work with. I missed his presence in the lab dearly after he graduated. Ma-
lika Meghjani has been my officemate, friend and collaborator on many papers and
projects. I will never forget the adventures we had while trying to get our robots
to work in the ocean. Sandeep Manjanna has been a source of serenity amid chaos,

iv

and always a great friend and officemate. Johanna Hansen has been an amazing
friend and colleague and a source of leadership, technical knowledge, and machine
learning wisdom. I regret the fact that I never got the chance to work on a paper
with Sandeep and Johanna. I also want to say thanks to Jimmy Li, whose focus
and organization has been inspiring, and to Nikhil Kakodkar for being an amazing
collaborator, and for raising the spirits of the lab in high pressure situations. Wei-Di
Chang has been a fantastic and reliable collaborator. So has Peter Henderson. Also,
Karim Koreitem, Andrew Holliday, Lucas Berry, Auguste Lalande, Yi Tian Xu, and
Monika Patel who always made it a pleasure to go to the lab. Scott Fujimoto and Ed
Smith have also been extremely inspiring, both in research discussions but also so-
cially. I also want to acknowledge the “old guard”: Philippe Giguere, Junaed Sattar,
and Ioannis Rekleitis, who have supported me time and again over the years with
career and research advice. I’m lucky to have met them.

I owe many overdue, but heartfelt, thanks to the engineers who worked tire-
lessly in the lab and made our research possible: Chris Prahacs, who designed and
built Aqua, Bikram Dey, Nik Pateromichelakis and Ian Karp. Without them I would
be stuck in simulation.

On the professors’ end I want to thank Luc Devroye for his inimitable enthusi-
asm and contagious love for probability. I also want to thank Joelle Pineau, Doina
Precup, and Mike Langer for their feedback and research discussions. I have learned
a lot from them. David Meger has always been a voice of research wisdom, espe-
cially during brainstorming sessions. It has always been fun working with him on
many projects and papers, and I’m going to miss having him around.

Many thanks also to Isabelle Lacroix, Jan binder, Nick Wilson, Laurena Deligny,
Diti Anastasopoulos, Tricia Bernier, Sheryl Morrissey and Ann Jack, for doing heavy
lifting on the admin side to support our work.

Last, but not least, I want to thank my parents, Tasim and Adriana and my sister,
Vjosana, for their patience and encouragement, and for providing an environment
where we could pursue self-indulgent activities, such as a Ph.D. degree. Through
their hard work they made us lucky.

v

Contents

Abstract i

Abrege ii

Acknowledgements iii

List of Figures ix

List of Tables xv

1 INTRODUCTION 1
1.1 Visual Attention Models for Robotics via Human Specifications . . . 2
1.2 Collaborative Human-Robot Visual Exploration 2
1.3 Contributions . 3
1.4 Statement of Originality . 4
1.5 Outline . 5

2 BACKGROUND 6
2.1 Sequential Decision Making Under Uncertainty 6

2.1.1 Markov Decision Processes . 6
2.1.2 Partially Observable Markov Decision Processes 7
2.1.3 Non Markovian Reward Decision Processes 8

2.2 Reward Learning . 9
2.2.1 Inverse Optimal Control . 10
2.2.2 Maximum Entropy Inverse Reinforcement Learning 11
2.2.3 Bayesian Inverse Reinforcement Learning 13
2.2.4 Task-Level Inverse Reinforcement Learning 15
2.2.5 Query-Efficient Reward Learning 16
2.2.6 Preference Elicitation . 17

2.3 Visual Attention and User Specifications 18
2.3.1 Bottom-Up Attention Models 18
2.3.2 Top-Down Attention Models 18

2.4 Visual Exploration . 19

vi

2.4.1 Why Should Robots Explore? 19
2.4.2 What Should Robots Explore? 19

2.5 Pursuit and Tracking . 20
2.5.1 Pursuit Evasion Games . 20
2.5.2 Vision-Based Tracking . 21

2.6 Robotic Platforms . 21
2.6.1 Aqua Amphibious Robot . 21
2.6.2 Unicorn Unmanned Aerial Vehicle 22
2.6.3 MARE Autonomous Surface Vehicle 23

3 COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL MONITOR-
ING 25
3.1 Robot Team Explores On Behalf Of Scientists 25

3.1.1 Heterogeneous Multi-Robot Team 27
3.1.2 Aqua: Control and Porpoising Motion 28
3.1.3 Interaction with Marine Scientists 29
3.1.4 Coral Reef Monitoring Trials 30

3.2 A Robot Videographer Explores in Tandem with Scientists 34
3.2.1 Modeling Visual Rewards . 34
3.2.2 Field Trials . 35

3.3 Discussion . 36

4 ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 38
4.1 Model Uncertainty vs Aleatoric Uncertainty 38
4.2 Model Uncertainty via the Bootstrap vs Monte Carlo Dropout 38

4.2.1 The Bootstrap Method . 39
4.2.2 Monte Carlo Dropout . 40

4.3 Active Learning of Visual Rewards . 41
4.4 Evaluation . 44
4.5 Discussion . 47

5 MODEL-BASED PURSUIT 48
5.1 Modeling the Subject’s Behavior via Inverse RL 48

5.1.1 Maximum Entropy Inverse Reinforcement Learning 50
5.1.2 Terrain-Based Prediction Model For Navigation 52

5.2 Model-Based Single-Follower Probabilistic Pursuit 53
5.2.1 Particle Filter and Bayesian Updates of the Belief 55
5.2.2 Pursuer Navigation . 57
5.2.3 Pursuit Algorithm . 58

vii

5.3 Evaluation and Results . 60
5.3.1 Setup . 60
5.3.2 Findings . 61

5.4 Modeling the Subject’s Behavior via Topologically Distinct Trajectories 64
5.4.1 Related Work . 65
5.4.2 Topologically Distinct Short Paths via the GVG 66
5.4.3 Computational Complexity . 68
5.4.4 Ranking Topologically Distinct Paths 68

5.5 Evaluation and Results . 69
5.5.1 Setup . 69
5.5.2 Human Baseline for Probabilistic Pursuit 72
5.5.3 Benchmarking Algorithmic Performance 72

5.6 Discussion . 74

6 MODEL-FREE PURSUIT 76
6.1 Convoying Pursuit: A Case Study . 76

6.1.1 Related Work . 78
6.1.2 Detection Methods: Feedforward CNNs 78

VGG . 78
YOLO . 80

6.1.3 Detection Methods: Recurrent CNNs 82
6.1.4 Detection Methods: Based on Frequency-Domain Analysis . . 83
6.1.5 Visual Servoing Controller . 84
6.1.6 Experimental Results . 86

Non-Recurrent Methods . 86
Recurrent Methods . 88
Frequency-Domain Detection 89
Field Trial: Setup . 89
Field Trial: Results . 90

7 VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 93
7.1 Scale Drift In Visual Localization And Mapping 93
7.2 Inertial And Multi-Camera Localization 94

Benefits Of IMU Measurements 95
Related Work . 96

7.2.1 Frame Definitions . 96
7.2.2 Tracking Thread . 98

Single-Frame Map Initialization via Stereo Triangulation . . . 99
Sub-Map Initialization . 102

viii

Short-Term Feature Prediction Using Inertial Measurements . 102
Frame Pose Refinement & Tight IMU Coupling 103

7.2.3 Local Mapping Thread . 104
Creating New Map Points . 105
Merging New Map Points With Existing Map 106
Local Bundle Adjustment . 106

7.2.4 Loop Closing Thread . 107
7.3 Experimental Results . 107

7.3.1 Synchronized Sensor Module 107
7.3.2 Validation From Vicon Ground Truth 108
7.3.3 Reconstruction Of An Underwater Shipwreck 109

8 FUTURE WORK 113
8.1 Active Semi-Supervised Learning for Visual Rewards 113
8.2 Predictive Topological Tracking in 3D 113
8.3 Combining Intermittent Tracking and Visual Exploration 114
8.4 Combining Model-Based Visual Attention with Surprise-Based Ex-

ploration . 115
8.5 Interactive, Long-Term Visual Search and Exploration 115

9 CONCLUSIONS 116

A Worst Case Computational Complexity of Model-Free Pursuit 118

ix

List of Figures

1.1 Typical active vision and informed exploration scenarios in robotics:
(a) underwater robot tasked with monitoring the health of corals (b)
ground robot controlling a pan-tilt-zoom camera while moving. . . . 2

2.1 The Aqua amphibious robot navigating over a coral reef. 22
2.2 The Unicorn is a fixed-wing UAV with an on-board autopilot micro-

processor and a gimbal-mounted camera. 23
2.3 The Marine Autonomous Robotic Explorer (MARE) is a catamaran

robotic airboat that can operate in turbulent open water environments. 23

3.1 Two divers, one manually taking notes about a single coral head, the
other taking samples. At the Great Barrier Reef. 25

3.2 Our heterogeneous multi-robot system used for the monitoring of
marine environments in collaboration with remote scientists. 26

3.3 The four states of the porpoising motion for the Aqua underwater robot. 28
3.4 Event timeline for our muli-robot coral reef monitoring sessions, last-

ing 2 hours and 30 minutes on average. Abbreviations: Umanned
Aerial Vehicle, Autonomous Surface Vehicle, Autonomous Under-
water Vehicle. Note: timeline is not to scale. 30

3.5 (a) The Unicorn plane carried out aerial coverage of a 150 m × 100 m
reef region at both 100 m and 50 m altitudes. Star icon depicts loca-
tion of the MARE boat. (b) The resulting images depict high resolu-
tion reef views, which enabled our expert biologist to identify diverse
coral colonies and other areas of interest, and to estimate the relative
depth of the reef, based on texture and color cues. (c) Frames ac-
quired at 50 m provided close-up views while still being able to cover
all three zones found on fringing reefs, namely spur and groove, crest,
and back reef ; the high complexity substratum area, characterized by
strong variations in color and texture, is an especially interesting site
to inspect from a biologist’s perspective. 31

3.6 Porpoising trajectory of the Aqua underwater robot. 32

x

3.7 (a) Overhead view of the Aqua underwater robot’s trajectory. Dia-
mond icons depict target locations suggested by the biologist for fur-
ther inspection. Circular icons denote porpoising ascents during this
session. (b) The cross-track error for Aqua’s trajectory suggests that
it was pushed off-course due to strong currents. 33

3.8 Durations for each of the porpoising modes during a navigation ses-
sion for the Aqua underwater robot. 34

3.9 SegNet encoder-decoder architecture. The indeces of the max pool-
ing operations are copied into the decoder’s upsampling operations,
thereby reducing memory and avoiding interpolation. Rectified Lin-
ear Units are the activation functions used in all layers. The output of
the network is the user’s visual reward map, here shown preferring
coral compared to sand and the diver. 35

3.10 The Aqua robot following a scientist who inspects coral. The robot
has been given an a priori model of the scientist’s reward model
based on input from the front camera. The robot rolls in order to
direct its downward-looking videography camera towards parts of
the scene that are of interest to the scientist (in this case, coral). 36

3.11 Images from the front camera of the Aqua robot are used for diver
tracking and pixel-level reward estimation, which will determine which
part of the scene the robot will roll towards to record. In the bottom
images, white denotes uninteresting content, while red denotes very
interesting content. 37

3.12 Top: images recorded using a rolling policy informed by the trained
user model recorded sand about 17% of the time. Bottom: periodic
rolling policy, agnostic to image content, ended up recording sand
almost 50% of the time. 37

4.1 Bayesian SegNet . 41
4.2 Top: sample images from the MIT Scene Parsing dataset. Bottom:

sample images from the Berkeley Deep Drive dataset. 45
4.3 Dropout-based active learning on the MIT Scene Parsing dataset. The

number of possible classes for each pixel is C=150. Left: the differ-
ence between selection according to variance and disagreement com-
pared to uniformly random selection. Right: Percentage of correctly
labeled pixels. Standard deviation is plotted for 3 random seeds. . . . 45

xi

4.4 Dropout-based active learning on the Berkeley Deep Drive dataset.
The number of possible classes for each pixel is C=19. Left: the dif-
ference between selection according to variance and disagreement
compared to uniformly random selection. Right: Percentage of cor-
rectly labeled pixels. Standard deviation is plotted for 3 random seeds. 46

4.5 Bootstrap-based active learning on the MIT Scene Parsing dataset.
The number of possible classes for each pixel is C=150. Left: the
difference between selection according to variance and disagreement
compared to uniformly random selection. Right: Percentage of cor-
rectly labeled pixels. Standard deviation is plotted for 3 random seeds. 46

4.6 Bootstrap-based active learning on the Berkeley Deep Drive dataset.
The number of possible classes for each pixel is C=19. Left: the differ-
ence between selection according to variance and disagreement com-
pared to uniformly random selection. Right: Percentage of correctly
labeled pixels. Standard deviation is plotted for 3 random seeds. . . . 47

5.1 Red denotes destinations. (A) The follower sees the target. (B) Visual
contact is lost. Destinations are predicted and particles (green) start
to diffuse. (C) Particles split on two different roads. The follower
chooses one group of particles as more promising. (D) The follower
re-establishes visual contact. Destinations on the top side of the map
become unlikely. 49

5.2 100 paths sampled by iterative application of the stochastic policy of
Eqn. 5.14 at test time. Homotopically-distinct samples are possible,
as long as the approximate value function is comparable between the
two homotopy classes. In practice, we observed that this is not a
typical event. 53

5.3 Paparazzi frames around the current target pose. They describe con-
figurations from which the follower can observe the target. Trees are
treated as obstacles. Yellow denotes the field of view. Better seen in
color. 58

5.4 Relative duration of visual contact across each available test maps.
Bars denote 1σ standard deviation. Averages were taken with respect
to target trajectories and episodes. The horizontal axis denotes map id. 62

5.5 Relative duration of successful pursuit as a function of maximum
speed advantage of the follower. Bars denote 1σ standard deviation.
Averages were taken with respect to maps, target trajectories, and
episodes. 63

xii

5.6 Relative duration of visual contact as a function of the false negative
detection rate. Bars denote 1σ standard deviation. Averages were
taken with respect to maps, target trajectories, and episodes. 64

5.7 Some of the satellite maps and the human-annotated target paths that
we used in our test set. Red denotes destinations. 65

5.8 A view of the initial configuration of the simulator. The blue robot is
the follower, with an associated limited field of view. The red robot
in the field of view is the target. The red cube denotes the destination
of the target. Videos and more info about the project can be found at
http://www.cim.mcgill.ca/~mrl/topological_pursuit 66

5.9 Three homotopically distinct paths found by applying Yen’s 3-shortest
paths on the GVG and then refining the paths to reduce their length. 67

5.10 The percentage of deviation in length of the target’s trajectories com-
pared to the optimal path from the initial configuration to the final
destination. 71

5.11 Bit difference of homotopy signature vectors between each target tra-
jectory that was recorded for Groups 1-4 vs. the shortest paths in each
scenario. The median is 4, meaning that in half of the pursuit tasks,
if we were to deform the target’s trajectory to the shortest path, we
would hit 4 out of the approximately 90 obstacles present in the map. 71

5.12 Comparison between average human performance and the NNm pur-
suit algorithm (Nearest Neighbor with multi-homotopy prediction).
The top bar in each triple is the average total time required for the
completion of the trajectory. The middle is the average time humans
managed to remain in visual contact with the target robot during that
time. The bottom is the average time that NNm maintained visual
contact. NNm performed at least as well as humans in 14/20 trajec-
tories. (Seen better in color) . 73

5.13 Average percentage of time that the target was in view during pursuit
in different maps. Higher is better. NNm is the third column, and it
does at least as well or outperforms the other two methods. 74

6.1 A sample image from our underwater convoying field trial using
Aqua hexapods [Sattar et al., 2008a]. Videos of our field trials, datasets,
code, as well as more information about the project are available at
http://www.cim.mcgill.ca/~mrl/robot_tracking 77

6.2 Overview of our Recurrent ReducedYOLO (RROLO) architecture.
The original ROLO work [Ning et al., 2016] did not use bidirectional,
dense layers, or multiple LSTM cells in their experiments. 83

http://www.cim.mcgill.ca/~mrl/topological_pursuit
http://www.cim.mcgill.ca/~mrl/robot_tracking

xiii

6.3 Outline of mixed-domain periodic motion (MDPM) tracker [Islam
and Sattar, 2017] . 84

6.4 Errors used by the robot’s feedback controller. δx is used for yaw
control, δy for depth control, and the error in bounding box area, δA
is used for forward speed control. 85

6.5 Histogram of true positive and false negative detections as a function
of the area of annotated bounding boxes, as obtained from in-ocean
robot tracking runs. 90

6.6 Histogram of average biases between detected vs. annotated bound-
ing box centers, as obtained from in-ocean robot tracking runs. Bars
indicate 1σ error. 91

6.7 Histogram of true negative and false negative classifications in terms
of their duration for our ReducedYOLO model, as obtained from in-
ocean robot tracking runs. 92

7.1 Pelican quadrotor with mounted sensor module 94
7.2 System Overview . 98
7.3 The probability that the 3-sigma uncertainty ellipse around the map

point’s least squares estimator includes its true position quickly drops
off as depth increases. This is for keypoint localisation error of 3
pixels. This empirical probability drops faster at higher noise lev-
els. This further supports the argument for not trusting triangulation
results that are too far away, given the camera’s and the keypoint
detector’s error characteristics, as they lead to inconsistent estimators. 101

7.4 Sub-map initialization following an occlusion: the green points in
the tracking phase correspond to 3D map points that are stable in the
map. As the cyclist occludes those points, visual tracking gets lost,
but IMU integration maintains spatial continuity. When the occlu-
sion stops, a new map is initialized and merged with the previous
one. 102

7.5 View of the estimated vs Vicon ground truth path projected on the xy
plane. 108

7.6 Estimated velocity in x of the IMU in world coordinates. Our sys-
tem’s velocity state estimate almost coincides with our system’s and
Vicon’s differentiated position estimates. 109

7.7 (a) Our system’s map in North-East-Down frame (b) ORBSLAM1’s
map in the first camera’s frame (c) ORBSLAM2’s map in the first cam-
era’s frame . 111

xiv

7.8 Map of the Helion shipwreck, estimated by our system with loop
closure enabled. Color represents time. Blue points were visited first. 112

A.1 An example of a tree construction used in the reductions. In this ex-
ample, (y1, y2, y3) = (2, 3, 4) and (y4, y5, y6) = (5, 6, 7) are two triples
of positive integers, some of the 3n numbers that are the input of a
3PARTITION instance . 119

xv

List of Tables

6.1 TinyYOLOv2 architecture . 81
6.2 Our ReducedYOLO architecture . 81
6.3 Comparison of all tracking methods. Precision and recall values based

on an optimal confidence threshold. 87

7.1 Estimation error compared to Vicon. Reported error is standard de-
viation. 108

7.2 Number of times the estimator got lost while reconstructing the He-
lion shipwreck . 110

xvi

Dedicated to my mentors.

1

1 INTRODUCTION

The unifying research objective of this thesis is to enable robots to autonomously
perform visual exploration in challenging, unknown, outdoor environments in a
way that is informed by human preferences and specifications. The main applica-
tion area that we aim to have an impact on is the robotic automation of environ-
mental monitoring.

Field robotics provides an abundance of long video sequences collected from a
large number of robot deployments in various outdoor scenes ranging from snowy
forests, to deserts and underwater environments. The volume of this data is of-
ten overwhelming to the human who has to inspect it for useful insights, as robots
are typically oblivious to the type of data that humans need. This problem is of
particular importance in environmental monitoring, since scientists often need to
closely examine the recorded data to make observations and measurements about
the health of ecosystems. There are two complementary ways to address this prob-
lem: active vision and video summarization. In active vision the robot visits regions of
the environment, and directs the camera towards parts of the scene that are most
informative according to some objective. Video summarization on the other hand
makes no assumptions about whether the data has been deliberatively collected or
not, and presents the highlights of the video to the user.
Our approach in this thesis is to follow the active vision approach, in a way that the
human’s preferences are taken into account in the robot’s visual attention model
during exploration. In order to enable this type of informed visual exploration we
asked the following two guiding questions:

1. How can users efficiently specify the type of visual data that they want their
robots to record?
2. How should robots help humans explore unknown natural environments
according to that specification?

For the first question we seek data-efficient learning methods that will enable users
to quickly affect the visual attention process their robots use for exploratory behav-
ior. For the second we focus on scenarios in which the robot videographer occa-
sionally tracks the human using vision, while at the same time actively explores the
environment, being robust to uncertainty due to intermittent observations.

Chapter 1. INTRODUCTION 2

FIGURE 1.1: Typical active vision and informed exploration scenarios
in robotics: (a) underwater robot tasked with monitoring the health
of corals (b) ground robot controlling a pan-tilt-zoom camera while

moving.

1.1 Visual Attention Models for Robotics via Human

Specifications

The problem of formulating computational models of visual attention in robotics
has a rich history, which has been summarized in [Frintrop et al., 2010]. A broader
treatment, looking at modeling the stages of visual attention in the brain is given
in [Bruce et al., 2015, Tsotsos, 2011, Zhaoping, 2014, Bruce and Tsotsos, 2008]. This
thesis is only broadly related to that literature insofar as the long-term goal is to find
how to best incorporate top-down cues for visual attention from human input [Tsot-
sos, 2011]. More concretely, however, we look at modeling saliency maps, a special
case of visual attention in robotics, without investigating issues related to neuro-
science or psychophysics. We also establish connections between learned saliency
maps, and reward functions based on images, which so far has mostly been exam-
ined in the context of inverse reinforcement learning and simple low-dimensional
scenarios [Sadigh et al., 2017, Ramachandran and Amir, 2007].

1.2 Collaborative Human-Robot Visual Exploration

Collaborative exploration [Doherty et al., 2018, Burgard et al., 2000] between hu-
mans and robots in outdoor environments provides a number of advantages over
robot-only or human-only exploration. The major difference that humans can make
is that they have better judgment over the parts of the environment worth pay-
ing attendion to. Robots on the other hand can have mobility advantages such as
speed, or in the case of flying and underwater vehicles, the capability to view the
scene from multiple altitudes.

If robots are able to explore around the human’s vicinity, and understand the
user’s preferences and intent, they will be more effective at exploration than if they
ignore such preferences. Enabling a robot to remain in the vicinity of a human,

Chapter 1. INTRODUCTION 3

using visual observations, is a problem with rich history. That said, allowing for in-
termittent visual contact is typically beyond the consideration of existing research.
Pursuit-evasion games [Vidal et al., 2002], for example, where this aspect of the
problem is typically dealt with, mostly comprise impractical methods that make a
large number of unreasonable assumptions about idealized environments and op-
timality guarantees.

In this thesis we examine visual tracking and pursuit methods that are robust to
intermittent visual contact. These methods make predictions about the short-term
and long-term behavior of humans based on patterns of navigation from historical
observations. We also look at the problem of visual state estimation and navigation
in 3D space, which conceptually underlies the navigation process in scenarios of
collaborative human-robot exploration.

1.3 Contributions

This thesis includes the following contributions:

• Active learning of informed visual attention models: an active supervised
learning approach that minimizes the model uncertainty of a distribution of
pixel-level saliency maps. This method actively selects the most informative
images to present to the expert user for pixel-level annotation of their regions
of interest as captured in the image. This will be presented in Chapter 4.

• Collaborative human-robot visual exploration: we present robot field trials
involving cooperation between aerial, sea surface, and underwater vehicles
exploring environments in a semi-autonomous fashion, according to the spec-
ifications of a human. These types of multi-robot systems working in concert
with humans are unique in the robotics literature and have paved the way
for novel environmental monitoring applications. Relevant publications for
this topic include [Shkurti et al., 2012] and [Shkurti et al., 2017], which are
presented in more detail in Chapters 3 and 6, respectively.

• Predictive pursuit in belief space using known behavior models: a method
that combines visual tracking, prediction, planning and control so as to be
able to follow a known target with intermittent observations. Unlike many
existing trackers, it is able to deal with the case where visual contact with the
subject is lost, by making informed predictions about its subject’s behavior,
which is learned through inverse reinforcement learning. This is one of the
first works to enable practical pursuit at scale in realistic environments. The

Chapter 1. INTRODUCTION 4

main publication for this method is [Shkurti et al., 2018] and it is discussed in
Chapter 5 of this thesis.

• Topological constraints in predictive pursuit: a way to topologically con-
strain the predictions of a pursuit algorithm in order to condense the expanse
of possibilities that the algorithm must consider, which enables target track-
ing in large environments, surpassing related methods for planning under
uncertainty. This was presented in [Shkurti and Dudek, 2017] and it will be
discussed in Chapter 5.

• The complexity of pursuit: we prove complexity theory results that show the
hardness of the pursuit problem even when the follower has speed advantage
over the target. This was published in [Shkurti and Dudek, 2013] and the main
results appear in Appendix A.

• Stereo vision and inertial localization and mapping: a method that allows
real-time visual navigation based on sensory inputs from a stereo camera and
an inertial measurement unit. We have used this method for GPS-free navi-
gation in many of the environments explored and the scenarios examined in
the field trials mentioned above. In particular we demonstrate the real-time
3D mapping of an entire shipwreck, which is one of the few deployments of
its kind. This method and experiments were extended in a collaboration with
my labmate, Travis Manderson, and published in [Manderson et al., 2016].
The method and the results are presented in Chapter 7.

1.4 Statement of Originality

Most of the chapters of this thesis contain work that has been published in robotics
conferences, in collaboration with and under the guidance of my supervisor, Prof.
Gregory Dudek. The major results from field trials presented in this thesis could
not have been achieved by a single person, and several of my labmates have made
key contributions: Anqi Xu, Juan Camilo Gamboa Higuera, Yogesh Girdhar, and
Malika Meghjani were indispensable in the environmental monitoring experiments
between a multi-robot team and a human, both in terms of the logistics of the exper-
iment, but also in terms of infrastructure code for the communication of different
vehicles. The visual and inertial navigation work was done in collaboration with
my labmate, Travis Manderson, who contributed to the numerical optimization
code and validation of the software in many different robotics platforms, ranging
from aerial, to ground, to underwater. Travis’ expertise in hardware and software

Chapter 1. INTRODUCTION 5

systems integration enabled a number of outdoor experiments, many of which fall
outside the scope of this thesis. I would also like to acknowledge my labmate,
Nikhil Kakodkar, who made key contributions to the pursuit via inverse reinforce-
ment learning work. He implemented the Monte Carlo Tree Search baseline in the
experimental validation and was also extremely patient in giving expert demon-
strations on different maps, which formed the training set for our method. Finally,
I want to acknowledge Wei-Di Chang and Peter Henderson, and Anqi Xu for soft-
ware and hardware infrastructure and for experimenting with different tracking
models in our joint robot convoying paper.

I also want to acknowledge many fruitful discussions with Prof. David Meger,
with whom I have collaborated on many projects and papers not covered by this
thesis. I also had many exchanges and research discussions with Prof. Joelle Pineau,
Prof. Doina Precup, and Prof. Luc Devroye, about a variety of topics mostly related
to inverse reinforcement learning and machine learning in general.

1.5 Outline

This thesis begins with an extensive literature review in Chapter 2 that covers multi-
ple areas touched upon by the research described herein. The areas include reward
learning, visual attention, visual tracking, pursuit evasion, and visual navigation.
In Chapter 3 we present two major field trials that focus on collaborative visual ex-
ploration and informed videography between a human and a team of robots. These
experiments fully motivate the algorithmic contributions and the choice of research
directions pursued in this thesis. Chapter 4 describes an active learning method for
learning user-specific saliency maps, which can be used for informed exploration.
Chapter 5 presents tracking algorithms that learn such a behavior model for the
target using inverse reinforcement learning, or use topological constraints to model
plausible future behaviors. Chapter 6 presents results and theoretical analysis of
pursuit methods that do not rely on a behavior model of the target being tracked,
so they cannot make informed long-term predictions of future trajectories. Chapter
7 describes our localization and mapping algorithm that fuses stereo images and
inertial measurements in a nonlinear optimization framework, which has provided
the basis for the GPS-free, visual navigation capabilities of the underwater robotic
vehicles presented in our experiments. Finally, this thesis concludes by outlining
directions for future research that are attainable based on progress made by this
work.

6

2 BACKGROUND

2.1 Sequential Decision Making Under Uncertainty

Throughout this thesis we rely on decision-making frameworks that model the
robot as a rational agent with an objective trying to plan ahead and act optimally in
the world, according to external feedback from the environment. These frameworks
comprise Markov Decision Processes (MDP) [Bellman, 1957], Partially-Observable
Markov Decision Processes (POMDP) [Sondik, 1978][Aström, 1965] and Non-Markovian
Reward Decision Processes (NMRDP) [Bacchus et al., 1997].

2.1.1 Markov Decision Processes

An MDP is a tuple M = (S, A, T, r) where S denotes the set of states, A denotes
the set of actions available to the agent, T denotes the stochastic dynamics model or
transition probability distribution p(st+1|st, at). r(st, at, st+1) denotes the instanta-
neous reward that the agent receives from the environment, depending on its objec-
tive, when the agent finds itself at state st, takes action at and ends up at st+1. This
reward typically ignores the next state and has the form r(st, at). It can be either
deterministic or stochastic. A policy, representing the agent’s strategy for choosing
actions at a particular state, can be deterministic at = π(st) or stochastic π(at|st).
The value function of state s induced by a particular stochastic policy and reward is

Vπ(s) = Es′∼p(·|s, a), a∼π(·|s), r∼p(·|s,a)
[
r + γVπ(s′)

]
(2.1)

The state-action value function of taking action a at state s and then following policy
π is denoted by:

Qπ(s, a) = Es′∼p(·|s, a), r∼p(·|s,a)
[
r + γVπ(s′)

]
(2.2)

= Es′∼p(·|s, a), r∼p(·|s,a), a′∼π(·|s′)
[
r + γQπ(s′, a′)

]
(2.3)

Chapter 2. BACKGROUND 7

In the case of planning up to a finite time horizon these functions can be written as

Vπ(s) =
T

∑
t=0

Est∼dt
π(·), at∼π(·|st), rt∼π(·|st,at)

[
γtrt | s0 = s

]
(2.4)

Qπ(s, a) =
T

∑
t=0

Est∼dt
π(·), at∼π(·|st), rt∼π(·|st,at)

[
γtrt | s0 = s, a0 = a

]
(2.5)

where dt
π(s) is the distribution of states induced by the execution of the policy

π, or in other words, the Markov chain with stochastic transitions p(st+1|st) =

∑at∈A p(st+1|st, at) π(at|st).

A policy π′ is better than another policy π iff ∀s ∈ S, Vπ′(s) > Vπ(s). The optimal
value functions are

Q∗(s, a) = max
π

Qπ(s, a) (2.6)

V∗(s) = max
π

Vπ(s) = max
a

Q∗(s, a) (2.7)

Planning in an MDP means finding the best policy for selecting actions at each state:

π∗(a|s) ∝

1 if a = argmax

a′
Q∗(s, a′)

0 otherwise
(2.8)

MDP planning algorithms such as value iteration [Puterman, 1994] rely on the fol-
lowing iterative update rule for the value function:

Vk+1(s) = max
a

Es′∼p(·|s, a)
[
r(s, a) + γVk(s′)

]
(2.9)

Their need to perform this iteration on all states does not scale to high dimensions
due to discretization. The same issue plagues solutions based on linear program-
ming [Guestrin et al., 2011]. Several methods address this problem, ranging from
sampling-based methods such as Monte Carlo Tree Search [Kocsis and Szepesvári,
2006], and several variants of reinforcement learning with parametric policies [Sut-
ton and Barto, 1998, Szepesvari, 2010, Bertsekas and Tsitsiklis, 1996, Mnih et al.,
2013, Sutton et al., 1999].

2.1.2 Partially Observable Markov Decision Processes

A Partially Observable MDP is a tuple P = (S, A, T, r, O, Z) where all elements are
the same as in MDPs, except Z, which is the set of possible observations and O(z|s),

Chapter 2. BACKGROUND 8

the observation model, i.e. the distribution of observations given the current state.
The crucial difference between MDPs and POMDPs is that in MDPs the true state
of the system is fully observed after each action. In POMDPs the state is a latent
variable upon which observations z depend. The observable history of a POMDP
is denoted by ht = (z0, a0, z1, a1, ..., at−1, zt). The posterior over states given this
history is called the belief over states b(st, ht) = p(st|ht) and it can be computed
recursively using Bayes Filters [Thrun et al., 2005].

b(st, ht) ∝ O(zt|st) ∑
st−1∈S

p(st|st−1, at−1)b(st−1, ht−1) (2.10)

A POMDP policy can be deterministic at = π(ht) or stochastic π(at|ht). The value
functions corresponding to a history ht induced by a particular stochastic policy
and deterministic reward is

Vπ(ht) = E st∼b(·, ht), at∼π(·|ht)
st+1∼p(·|st,at), zt+1∼O(·|st+1)

[r(st, at) + γVπ(htatzt+1)] (2.11)

Finding the policy that has the highest value function in this case suffers from the
curse of dimensionality (exponential state-space) and the curse of history. Some of
the algorithms that address this problem are based on sampling and tree search [Ross
et al., 2014, Silver and Veness, 2010, Shani et al., 2013b]. More recent methods rely
on viewing planning as an inference problem and using variational inference to
optimize the policy which is parameterized using [Igl et al., 2018].

2.1.3 Non Markovian Reward Decision Processes

Another decision theoretic framework for planning which stands in between MDPs
and POMDPs are Non Markovian Reward Decision Processes (NMRDP). Similarly
to MDPs they are a tupleM = (S, A, T, r) and the state of the system is observed at
each step. The main difference with MDPs is that the reward function depends on
the history of states and not only on the current state. This is a useful abstraction for
modeling scenarios where the agent gets a reward only when a sequence of events
or states are visited, and otherwise no reward is obtained [Bacchus et al., 1996]. The
majority of existing planning methods for this category of decision processes tra-
ditionally relied on representing the sequence of states mentioned above in terms
of Linear Temporal Logic [Emerson, 1990]. Converting the LTL specification into a
new MDP with expanded state space allows the use of MDP planning algorithms to
solve this problem [Bacchus et al., 1997], although this does not address the curse of

Chapter 2. BACKGROUND 9

dimensionality. More recent methods have relied on optimizing a policy parameter-
ized as a Recurrent Neural Network via recurrent policy gradients [Wierstra et al.,
2010, Heess et al., 2015, Thiébaux et al., 2006].

2.2 Reward Learning

In all the decision theoretic frameworks outlined above the reward function of the
agent was considered to be known (i.e. a model of it was given) or at least sam-
pled from the environment. In many prediction problems we care about building
a model of this reward function by observing the behavior of the agent, so that we
can optimize and plan on behalf of the agent. Having access to the expert’s reward
function means at least two things: first, that a robot with a completely different
mechanical embodiment can attempt to optimize that same function as the expert;
second, that the optimization of the reward function can take place in states that
were not part of the demonstrations, as long as they are representative of the task
being performed.

Reward estimation has been studied from an engineering point of view as an
instance of system identification, or inverse optimal control. It can also be seen from a
machine learning perspective as a problem of estimating energy-based models [Le-
Cun et al., 2006], learning the parameters of probabilistic graphical models, or learn-
ing the reward function assuming optimal behavior examples from a Markov De-
cision Process, whose dynamics and state space are known, but whose reward is
not.

The first example of reward estimation was done by Kalman in the context of
estimating the parameters of linear quadratic controllers [Kalman, 1964]. More re-
cently, the problem of inverse reinforcement learning (IRL) was introduced in [Ng and
Russell, 2000], in which we want to estimate the reward function of an MDP from a
set of optimal trajectories (sequences of state-action pairs) that were generated from
its optimal policy. IRL is clearly a degenerate problem in that there are many re-
ward functions that would explain observed optimal behavior1. For example, mul-
tiplying any reward function by a positive scalar will not change optimal behavior
for that MDP. Therefore, we need additional assumptions for constraining the esti-
mated reward functions. It is worth mentioning that robustly estimating rewards
and inspecting them properly has assumed a central role in discussions around AI
safety [Amodei et al., 2016]. Given that reward estimation can be seen as a system
identification problem, it is worth discussing issues of identifiability or lack thereof,

1Paul Christiano’s [Christiano, 2018] and Jacob Steinhardt’s blog [Steinhardt, 2018] on pitfalls and
considerations for reward estimation are recommended reading.

Chapter 2. BACKGROUND 10

and how to actively select how to test the behavior of the system in order to extract
maximum information about its reward function [Amin and Singh, 2016].

Reward estimation in general and IRL in particular is not constrained to observ-
ing the behavior of a single agent in a vacuum. In cooperative IRL [Hadfield-Menell
et al., 2016] for example a human has access to the true reward, but the robot can
only estimate a distribution of reward parameters, and interacts with the human to
reduce the uncertainty of this reward distribution.

Other instances of IRL learn rewards based on demonstrated behavior in POMDPs [Choi
and Kim, 2011]. Related to this is the problem of inverse planning, typically used in
cognitive science papers, where we for example try to estimate the navigation desti-
nation of a moving agent by observing its trajectory so far [Baker et al., 2009], under
the assumption that they plan to move efficiently. Methods in this category are
useful for predicting pedestrian behavior, both short-term and long-term [Karasev
et al., 2016]. Problems like this also arise in psychology and economics, under the
term structural estimation.

It is worth mentioning that instead of modeling and inferring the behavior and
beliefs of agents using techniques from probabilistic graphical models, one can opt
for more expressivity and represent agent behavior in terms of probabilistic pro-
grams[Evans et al., 2017, Roy, 2017]. They combine general-purpose programming
languages and probabilistic graphical models, together with algorithms to perform
efficient inference on the distributions resulting from program execution. For in-
stance, one can represent uncertainty in planners, beliefs, state, rewards, and per-
form inference, all under one framework.

2.2.1 Inverse Optimal Control

In optimal control we are given a cost function and a set of constraints, such as
dynamics, control limits, or state constraints, and we are asked the control vec-
tors that will drive the system to minimize the cumulative cost over a period of
time. In inverse optimal control we are given optimal trajectories of the system and
the dynamics, and we are asked to infer the cost function. Such algorithms have
been shown in the context of the Linear Quadratic Regulator [Kalman, 1964], Lin-
ear Quadratic Regulator with Gaussian noise [Chen and Ziebart, 2015], as well as
in nonlinear optimal control problems [Englert et al., 2017, Puydupin-Jamin et al.,
2012]. Some of this literature is broadly related to inverse optimization in eco-
nomics, for example computing the cost function of linear programs given an opti-
mal solution [Ahuja and Orlin, 2001].

Chapter 2. BACKGROUND 11

2.2.2 Maximum Entropy Inverse Reinforcement Learning

In this framework the expert demonstrator is treated as planning in an MDP whose
parametric reward function rθ(s, a) is unknown, to be estimated from the demon-
strated trajectories. We assume the existence of feature vectors f (s) = [f1(s), f2(s), ..., fN(s)]>

where s is the discrete state of the system. For example, for navigation these N
feature maps could be boolean images that indicate semantic labels over satellite
maps, such as roads, vegetation, trees, automobiles, buildings, as well as dilations
of these boolean maps. We also assume that the instantaneous reward is a linear
transformation of the features, rθ(s, a) = θ> f (s), parameterized by the weight vec-
tor θ. Maximum Entropy IRL factors the probability distribution over trajectories
τ = (s0, a0, s1, ..., aT−1, sT) as an instance of the the Boltzmann distribution:

p(τ|θ) = 1
Z(θ)

exp

(
T

∑
t=0

θ> f (st)

)
(2.12)

where Z(θ) is the partition function that acts as a normalization term. In this for-
mulation, paths that have accumulated equal reward will be assigned the same
probability mass, and differences in cumulative reward will be amplified exponen-
tially. This distribution arises from the constrained optimization problem of max-
imizing entropy subject to first-moment matching constraints, which specify that
the expected feature count from trajectories drawn from the estimated distribution
should be the same as the empirical mean feature count in the dataset S of demon-
stration trajectories. More formally, p(τ | θ) is the solution vector to the following
problem:

p(τ|θ) = argmin
q∈M

KL(q || uniform) = argmax
q∈M

H(q)where (2.13)

M = {q : q ≥ 0, ∑
τ

q(τ) = 1, Eτ∼q[fi(τ)] =
1
|D| ∑

τ∈D
fi(τ) ∀i} (2.14)

In other words, it is the closest discrete distribution to uniform that satisfies the
empirical features measured in the demonstration dataset D. It is worth mentioning
that Eqn. 5.1 assumes deterministic dynamics for the system being modeled, as
well as no noise in the observation of the demonstrated trajectories. Learning in
the Maximum Entropy IRL model can be done by maximizing the log-likelihood

Chapter 2. BACKGROUND 12

function of the trajectories in the demonstration dataset D, as follows:

θ∗ = argmax
θ

|D|
∑
i=1

log p(τi|θ) (2.15)

= argmax
θ

|D|
∑
i=1

Ti

∑
t=0

(
θ> f (s(i)t)− log Z(θ)

)
(2.16)

Nonlinear Rewards & Reducing Assumptions Maximum Entropy IRL was ex-
tended to model deep, nonlinear rewards on a planar grid in [Wulfmeier et al.,
2015]. It was later used in [Wulfmeier et al., 2017] to estimate traversability and
driveability of terrain given trajectories from cars driving in different parts of Ox-
ford. In this work the dynamics model is still assumed to be known and determin-
istic, and the states and actions are discrete.

Finn et al. [Finn et al., 2016b] extended the Maximum Entropy framework by
assuming deep, nonlinear reward function, continuous states and actions, and un-
known dynamics to be estimated from the training dataset. The major computa-
tional issue here is how to compute the partition function, which in high dimen-
sions is intractable. In this work they resort to importance sampling for computing
the partition function, and trajectory optimization to guide the proposal distribu-
tion for the importance sampling step. This method was demonstrated to work
in manipulation scenarios, however, it is sensitive to the estimate of the partition
function. This line of work was shown [Finn et al., 2016a] to have connections to
GAIL [Ho and Ermon, 2016], because Maximum Entropy problems can be inter-
preted as trying to discriminate between trajectories that were demonstrated and
trajectories generated by the current trajectory distribution or current policy esti-
mate. This has close connections to the method of contrastive divergence in Con-
ditional Random Fields and other similar probabilistic models, such as Restricted
Boltzmann Machines.

Inverse Optimal Control is cast as policy search in [Doerr et al., 2015], so as to
avoid the repeated invocation of an inner RL method inside the MaxEnt IRL re-
ward update loop in Step 4. Specifically, this method uses black-box optimization
in order to find the parameters of a policy that directly maximizes the similarity
of policy-generated trajectories to the set of demonstrated trajectories (a stochastic
objective). The advantage of this is that it is simple to implement, can handle con-
tinuous systems and nonlinear rewards. The inherited disadvantage of black-box
optimization (Covariance Matrix Adaptation in their case) is that it is better suited
for lower-dimensional systems, and could prove to be sample-inefficient.

Levine and Koltun [Levine et al., 2011] formulated the reward using Gaussian

Chapter 2. BACKGROUND 13

Processes, thus modeling uncertainty around the average reward function, and al-
lowing for continuous states and actions. In [Levine and Koltun, 2012] the same
authors showed how the maximum likelihood problem over observed trajectories
under a nonlinear reward could be formulated in terms of iterative linear approxi-
mations of the likelihood by linearizing the reward and the dynamics.

Boularias et al. [Boularias et al., 2011] targeted continuous states and actions, lin-
ear rewards, and stochastic dynamics. They also changed the MaxEnt optimization
problem in 2.14, into the following problem, which is called Relative Entropy IRL:

p(τ|θ) = argmin
q∈M

KL(q || β) (2.17)

M = {q : q ≥ 0, ∑ q = 1, |Eτ∼q[fi(τ)]−
1
|D| ∑

τ∈D
fi(τ)| ≤ εi ∀i} (2.18)

where β(τ) is a distribution that favors trajectories that satisfy the dynamics, and
the set of constraints allows for suboptimal demonstrations from the expert. In [Aghasadeghi
and Bretl, 2011] the problem addressed involved systems with continuous states
and actions, stochastic dynamics, and used the path-integral method [Theodorou
et al., 2010] for forward reinforcement learning, which is based on sampling-based
optimization.

Finally, Sermanet et al. [Sermanet et al., 2017] used reward functions whose fea-
tures come from pretrained deep networks on ImageNet, and they identify the ones
that explain a set of video demonstrations. Since the object being generated is now
an image and not a trajectory, computing the partition function is intractable. To
overcome this difficulty this work makes a very aggressive assumption which says
that video frames are independent. This work offers a few heuristics to segment
steps shown in the video, and it demonstrates that the learned reward is useful for
reinforcement learning for tasks such as opening a door. This is however unproven
in large environments.

2.2.3 Bayesian Inverse Reinforcement Learning

The majority of IRL problem formulations presented in the section above have been
focusing on maximum likelihood or maximum-a-posteriori estimation to get a sin-
gle hypothesis for a reward function that explains the observed trajectories. With
the exception of [Levine et al., 2011] which relies on Gaussian Process, and Coop-
erative IRL [Hadfield-Menell et al., 2016], none of these methods provide measures
of uncertainty or a sense of ambiguity about the estimated reward function. Given
that one needs to take into account issues of identifiability of the reward [Amin and

Chapter 2. BACKGROUND 14

Singh, 2016], because the demonstrations are not sufficiently rich, it is important to
take a Bayesian approach to the reward estimation problem, and consider the full
posterior of rewards that is consistent with the data and a reward prior.

Bayesian IRL [Ramachandran and Amir, 2007] was the first paper to introduce
this approach to IRL. This work shows that both the problem of reward estimation
and the problem of apprenticeship learning and policy search based on a distri-
bution of rewards require computing the expected value of the reward’s posterior
distribution. The paper introduces a rapidly-mixing MCMC sampler for estimating
this expected value, and shows that better estimation accuracy can be obtained by
selecting good reward priors. The main assumption that enables all of this is that
the distribution of a trajectory is factorized into independent state-action pairs, as
follows:

p(τ|θ) =
T

∏
t=1

p((st, at)|θ) =
T

∏
t=1

exp(Q∗θ(st, at))

Zt(θ)
(2.19)

where Q∗θ(st, at)) is the optimal state-action value function, given a reward with pa-
rameters θ. This is similar to the aggressive assumption in [Sermanet et al., 2017].
Notice the difference between this distribution and the one in 5.1, where the parti-
tion function couples all the state-action pairs.

Bayesian IRL was extended to the case where demonstrations come from mul-
tiple reward functions [Choi and eung Kim, 2012]. The number of clusters of pos-
sible rewards was modeled according to a nonparametric Dirichlet process mixture
model.

Risk bounds on the expected value difference between the any policy and the op-
timal policy, based on a distribution of rewards, are given by [Brown and Niekum,
2017]. In this Bayesian IRL method, multiple possible rewards are sampled from
the posterior, in order to evaluate the risk. In addition, this work provides risk-
aware policy iteration and policy selection algorithms. The main drawback is that,
like most Bayesian IRL methods, it requires a planning/RL step inside the reward
update loop in order to compute Q∗θ(st, at)), which is inefficient.

Finally, a paper that is related to Bayesian IRL is Inverse Reward Design [Hadfield-
Menell et al., 2017]. In this work the specified reward for an MDP world is treated
as a proxy of the true reward that the user intended. Similar to reward shaping,
methods, a proxy reward can be a better choice for more efficient planning. It can
also be easier to specify than the true reward. This paper treats proxy rewards as ob-
servations of the user’s intended reward and associates them with the MDP world
in which they were trained. This means that if the agent is tested on an MDP world

Chapter 2. BACKGROUND 15

that differs from where it was trained2, its reward function will have to be treated
as uncertain and planning might need to be risk-averse.

2.2.4 Task-Level Inverse Reinforcement Learning

In many demonstration settings the process being showcased involved multiple
sub-tasks whose execution completes the main task of interest. Cooking with the
guidance of a recipe, for example, involves a sequence of such sub-tasks. Changing
from the leftmost lane to the rightmost on a highway also involves a series of sub-
tasks. Ideally, the demonstrator would not have to provide a demonstration for
each subtask and then specify the order in which they should be executed; the robot
should be able to infer them from a single demonstration. In other words, the robot
should be able to do sub-task segmentation given a demonstration trajectory, and
learn both high-level behaviors and low-level sub-task-dependent rewards.

Niekum et al. [Niekum et al., 2015, Niekum et al., 2013] address the automated
segmentation of trajectories using a Beta Process Autoregressive Hidden Markov
Model, which is a nonparametric hierarchical generative model that can represent
infinitely many sub-tasks, and switches among them. These sub-tasks are clustered
into states in a finite-state machine which describes the high-level behavior of the
system. Dynamic Movement Primitives are used to control motion between states
in the finite state machine. In this method additional demonstrations are requested
when transitions in the finite state machine are uncertain. The method is demon-
strated in furniture assembly tasks.

Similar ideas on sub-task segmentation appear in [Krishnan et al., 2017], where
the objective is to identify transition states, where trajectories are generated from
a switching linear dynamical system. The sub-tasks are determined by a Dirichlet
Process that affects a set of Gaussian Mixture Models. The difference with Niekum
et al. [Niekum et al., 2015, Niekum et al., 2013] is that the state of the system includes
both kinematic and visual features from deep neural networks. The main applica-
tion examined is robotic surgery. This technique was extended to deal with delayed
rewards in Sequential Windowed IRL [Krishnan et al., 2016] where trajectory seg-
mentation and learning of sub-tasks is followed by learning sub-task-specific re-
wards using either model-based MaxEnt IRL 5.1 or model-free cost-function learn-
ing in Linear Quadratic Regulators. Finally, when the sequence of sub-goal-specific
rewards is learned, this method invokes Q-learning to learn a policy that will max-
imize the learned sequence of rewards. This method was evaluated on simulated
parallel parking and real surgical robotics tasks.

2The main example in the paper involves testing the agent on MDP grid world where there is
lava, while all the demonstrations came from environments where no lava existed.

Chapter 2. BACKGROUND 16

It is also worth mentioning that we can frame the joint problem of task and
motion planning, or hybrid (discrete and continuous) control, in terms of context-
free grammars. These grammars are more expressive than deterministic finite-state
automata and Turing Machines. They involve a sequence of production rules and
terminal symbols that can be used to generate structured language. For example,
in [Dantam and Stilman, 2012] they were used to represent policies for task and
motion planning problems in robotics. Doing IRL while at the same time fitting a
policy that will respect the context-free grammar is still very much an open research
problem. This of course has many connections with imitation learning based on
learned program representations [Xu et al., 2017, Reed and de Freitas, 2015].

2.2.5 Query-Efficient Reward Learning

In the previous sections the majority of papers formulated the reward estimation
problem in terms of learning in probabilistic graphical models. This lead to issues
regarding the estimation of partition functions and in many occasions lead to hav-
ing to invoke an RL method inside the IRL reward update loop, which is inefficient.

Sadigh et al. [Sadigh et al., 2017] take an energy-based method approach, by
trying to directly estimate the reward parameters using active supervised learning.
Their main application task is learning a person’s driving style as a linear reward
over a set of fixed features. The contribution of the paper is that active learning can
be used to generate driving simulation scenarios that will provide the most informa-
tion about the human’s driving style. The user provides preference feedback, by
choosing which generated trajectory they prefer. This ends up being quite query-
efficient, however, the simulation scenarios are limited in their fidelity to the real
world. Nevertheless, this is a very promising approach. This work was extended
in [Basu et al., 2018] to allow users to express preferences over binary comparisons
between a queried pair of trajectories, but also to express which feature was most
responsible for their binary preference. This work shows that actively choosing
comparison-feature queries on pairs of trajectories, such that they will provide max-
imal information about the user’s reward function, converges faster to the reward
parameters than simply using comparison queries, as in [Sadigh et al., 2017]. The
main limitation of this work is that the set of features being considered is fully inter-
pretable and tailor-made for the scenario of inferring driving styles in a low-fidelity
simulator.

Active learning for Bayesian IRL has been addressed in [Lopes et al., 2009]. The
learning method in this work asks the human for another action demonstration

Chapter 2. BACKGROUND 17

at the state where the entropy/uncertainty of the estimated policies, from a set of
rewards sampled from the posterior, is maximal.

Other approaches, such as Maximum Margin Planning [Ratliff et al., 2006] are
query-efficient without resorting to active learning. This method learns cost maps
for traversability and navigation from a set of features, as well as value functions
for navigation. It estimates a linear reward over those features by trying to match
either trajectories or state-action frequency counts from the demonstration dataset,
and also a value function based on that reward. The problem is setup as a max-
margin quadratic programming problem, and an efficient sub-gradient optimiza-
tion method is proposed to solve it. The main limitation of this method is that it
operates on a discretized state-action space and its constraints scale linearly with
the number of state-action pairs and training examples.

Another approach for estimating the expert’s reward function, distinct from
most of the existing literature in IRL, can be found in [Metelli et al., 2017]. This
work considers the policy parameters that make the policy gradient zero, to find
potential maxima, minima, or saddle points of the expected cumulative reward ob-
jective. This leads to finding feature maps that can be used to linearly represent
the expert’s reward function, thus leading to automatic feature construction. Then
the method computes the Hessian of the expected cumulative reward objective to
find the maxima among the critical points, and selects the reward that least deviates
from the expert’s demonstrations. This method however, has been only validated
on low-dimensional systems.

2.2.6 Preference Elicitation

Preference elicitation [Braziunas, 2006, Furnkranz and Hullermeier, 2010] is the
problem of recovering the latent ranking, or relative weighting, that a user places
on a set of available items/features. We already saw examples of preference-based
reward learning in [Sadigh et al., 2017, Basu et al., 2018], but a similar method for
preference-based Bayesian IRL can be found in [Rothkopf and Dimitrakakis, 2011].

The general version of the problem also includes applications in combinatorial
auctions [Blum et al., 2003, Sandholm and Boutilier, 2006, Braziunas and Boutilier,
2010, Boutilier, 2002], where the auctioneer needs to estimate the valuations of each
of the bidders before setting the price of the items of interest. There are close ties
between designing queries for preference elicitation and the field of optimal exper-
iment design.

One of the challenges of using preference-based learning to estimate rewards
is that the user’s answers might be inconsistent over time or violate transitivity.

Chapter 2. BACKGROUND 18

In [Evans et al., 2016] the authors deal with such inconsistent observations by mod-
eling the agent via a probabilistic program, in order to model sub-optimality and
noise at different steps of the planning process. A distribution of possible rewards
can be recovered by doing Bayesian inference.

2.3 Visual Attention and User Specifications

2.3.1 Bottom-Up Attention Models

Computational models of visual attention in robotics promise to increase the ef-
ficiency of visual search and visual exploration by enabling robots to focus their
field of view and sensory stream towards parts of the scene that are informative
according to some definition [Frintrop et al., 2010]. So called bottom-up attention
methods define an image region as salient if it is significantly different compared to
its surroundings or from natural statistics. Some of the basic features for bottom-up
attention have included intensity gradient, shading, glossiness, color, motion [Frin-
trop et al., 2010, Tsotsos, 2011, Zhaoping, 2014] as well as mutual information [Bruce
and Tsotsos, 2008, Gottlieb et al., 2013].

2.3.2 Top-Down Attention Models

The ability of bottom-up features to determine and predict fixations is not widely
accepted [Underwood et al., 2006], especially when a top-down task is specified,
such as “find all the people in the scene”. Top-down attention models are task ori-
ented, with knowledge coming externally from a user that is looking for a particular
object. Some of the first attention models to have combined these two types of at-
tention are: Wolfe’s Guided Search Model [Wolfe, 1994] which comprises a set of
heuristics for weighing bottom-up feature maps, and the Discriminative Saliency
Model [Gao and Vasconcelos, 2005], which defines top-down cues as the feature
maps that minimize the classification error of classes specified by the user. There’s
also the Contextual Guidance Model [Oliva et al., 2003, Torralba et al., 2006] uses
the gist descriptor [Oliva and Torralba, 2001] that provides a summary of the en-
tire scene to guide the set of possible locations where the desired target might be.
Finally, there’s the Selective Tuning Model [Tsotsos, 1995], which relies on a hier-
archical pyramid of feature maps, the top of which is biased or determined by a
task and the lower levels of which are pruned according to whether they contribute
to the winner-takes-all or soft-max processes that are applied from one level of the
hierarchy to the next. Notably, it does not only operate in a feedforward fashion.

Chapter 2. BACKGROUND 19

2.4 Visual Exploration

2.4.1 Why Should Robots Explore?

In many cases exploration is treated as a secondary task that aims to reduce the
robot’s uncertainty in order to facilitate a primary task. For example, exploration
in reinforcement learning is typically based on taking actions that aim to reduce
the entropy of the distribution of possible dynamics models, either internal to the
robot, or also external to the physics of environment [Houthooft et al., 2016], or
value functions [Osband et al., 2016, Lipton et al., 2016]. In other words, exploration
is seen as active learning in order to reduce the space of possible models and get
closer to estimating the true one. In multi-task learning robots often explore to
learn useful behaviors independent of the particular goal [Eysenbach et al., 2018].
Robots perform frontier-based exploration [Yamauchi, 1997] in order to reduce their
uncertainty about the true map of the environment [Sim et al., 2004], and eventually
cover it completely.

2.4.2 What Should Robots Explore?

Rather than treating visual exploration as a secondary task, we want to give it first-
class status and reward the robot for recording images that are important to the user
in addition to being representative of the environment. Combining bottom-up and
top-down attention mechanisms for the purpose of getting the user the data they
need is one of our objectives in this thesis. Top-down task specification expresses
the user’s evolving preferences about what kind of visual content is desired. We
treat this bottom-up and top-down visual attention model as a user-tunable reward
function/saliency map for visual content that guides the exploration of the robot so
that it records more footage of scenes that are deemed important by the user. Not
all visual exploration strategies obtain user input. Many of them focus the camera
towards parts of the scene that are surprising with respect to a summary of the his-
tory of observations [Girdhar and Dudek, 2011, Girdhar and Dudek, 2012, Girdhar
and Dudek, 2014a, Paul et al., 2014]. We argue in this thesis that exploration should
be combined with visual search and the robot should balance surprise-based explo-
ration with recording data that is going to be useful to the user.

Chapter 2. BACKGROUND 20

2.5 Pursuit and Tracking

2.5.1 Pursuit Evasion Games

In order to enable systems for human-robot collaborative visual exploration, one
essential element is to allow a robot to robustly track the human collaborator in the
presence of misdetections, lack of line-of-sight, noise and occlusion.

This problem is related to the large body of existing work on the theoretical
bounds for maintaining continuous surveillance of a moving target. This problem
has received extensive consideration in the literature of pursuit-evasion games [Isaacs,
1969]. For most work in this category, issues related to the optimization of visibility
based on the structure of the environment are critical, so there are natural connec-
tions with the classic “art gallery” problem and its variants [O’Rourke, 1987].

Generally, continuous visibility maintenance has been considered mostly for the
case of adversarial targets. Such is the case for example in [Sourabh Bhattacharya,
2008, Bhattacharya and Hutchinson, 2009, Isler et al., 2005, Stiffler and O’Kane,
2012]. The question of identifying whether a target is being cooperative or eva-
sive and modifying the pursuer’s plans in response to this degree of information
is something that currently lacks a precise characterization in the literature. It is
worth mentioning nevertheless, that if the target is adversarial there exist settings
under which the evader can escape the follower’s field of view, no matter what the
follower does [Sourabh Bhattacharya, 2008, Bhattacharya and Hutchinson, 2009].

The tracking problem has also been addressed by approximate sampling-based
POMDP solvers such as SARSOP [Hsu et al., 2008], which extends a Monte Carlo
Search Tree and maintains both the upper and lower bounds of the state-action
value function, which enables pruning of provably suboptimal actions. The pro-
posed method, however, is demonstrated to work on small grids and runs in the
order of minutes.

In [Lavalle et al., 1997] the problem of planning the trajectory of a single observer
trying to maximize visibility of a fully-predictable or partially-predictable target is
considered. The problem setting is augmented in [Murrieta-Cid et al., 2005] which
examines planning the paths of several observer robots whose goal is to provide
continuous visual coverage of several unpredictable targets.

Chapter 2. BACKGROUND 21

2.5.2 Vision-Based Tracking

The extensive literature on visual tracking can be separated into model-based and
model-free methods, each with their own set of advantages and drawbacks. In model-
free tracking the algorithm has no prior information on the instance or class of ob-
jects it needs to track. Algorithms in this category, such as [Yu et al., 2008], are
typically initialized with a bounding box of an arbitrary target, and they adapt to
viewpoint changes through weakly-supervised learning. The TLD tracker [Kalal
et al., 2012], for example, trains a detector online using positive and negative feed-
back obtained from image-based feature tracks. In general, tracking systems in this
category suffer from tracking drift, which is the accumulation of error over time ei-
ther from false positive identification of unseen views of the target, or errors due to
articulated motion, resulting in small accumulating errors leading to a drift away
from the target object.

In model-based tracking, the algorithm is either trained on or has access to prior
information on the appearance of the target. This can take the form of a detailed
CAD model, such as in [Manz et al., 2011], which uses a 3D model describing the
geometry of a car in order to improve tracking of the vehicle in image space. Typi-
cally, line and corner features are used in order to register the CAD model with the
image. We want to avoid these methods because of their susceptibility to errors in
terms of occlusion and non-rigid motion.

Works such as [Bolme et al., 2010, Nam and Han, 2016] use convolutional neural
networks and rely on supervised learning to learn a generic set of target represen-
tations. Template tracking methods, such as [Comaniciu et al., 2003, Yang et al.,
2009] model the object with a (static or dynamic) target template and compute the
motion as the transformation which minimizes the mismatch between a new candi-
date patch and the last template. Generative methods have been proposed in order
to model more appearance variations of the object. In the last few years at the Vi-
sual Object Tracking (VOT) Challenge, the top performing trackers use correlation
filters as well as convolutional neural networks to extract features.

2.6 Robotic Platforms

2.6.1 Aqua Amphibious Robot

Aqua, shown in Fig. 2.1, is a six-legged amphibious robot that can both swim un-
derwater and walk on land. It maneuvers in water by actuating its six flippers, and
its aluminum shell is designed to operate at depths up to 40 m. It is powered by

Chapter 2. BACKGROUND 22

FIGURE 2.1: The Aqua amphibious robot navigating over a coral reef.

high-capacity Lithium-Ion batteries, and can operate under full load for more than
five hours underwater.

Aqua is equipped with a variety of sensors within its waterproof shell, which
includes: three USB cameras (two front-facing and one at the back), an inertial
measurement unit (IMU), a pressure-based depth sensor, and an XBee digital ra-
dio transceiver. The two front-facing cameras are used for visual navigation and
tracking, while the back camera is typically used for human-robot interaction with
the diver. We also equipped it with an externally-mounted sensor kit to facilitate
wireless communications, since the AUV’s metallic shell acts as a Faraday cage and
therefore highly attenuates the transmission of radio signals. This detachable and
self-powered sensor kit contains a GPS unit and an XBee module, and augments
Aqua’s sensing capabilities by relaying GPS data and messages from the MARE sur-
face vehicle using the XBee communications link. Sensor processing and high-level
planning is carried out by an embedded computer which interacts with another
computer that regulates the six leg motors in a real-time operating system.

2.6.2 Unicorn Unmanned Aerial Vehicle

The Unicorn UAV is a kite-sized fixed-wing aerial vehicle. This robot has a 1 m
wingspan and is built from expanded polypropylene (EPP) foam, which is used to
absorb and dissipate the collision force during touchdown. The Unicorn’s brushless
motor is powered by Lithium Polymer batteries, which allows the vehicle to operate
at average ground speeds of 14 m/s for up to 30 minutes of flight time.

This UAV is equipped with multiple sensors, including an IMU, a GPS, and
pressure-based altitude and speed sensors. These devices are integrated with the
on-board autopilot micro-processor, which uses them to navigate autonomously

Chapter 2. BACKGROUND 23

FIGURE 2.2: The Unicorn is a fixed-wing UAV with an on-board au-
topilot microprocessor and a gimbal-mounted camera.

FIGURE 2.3: The Marine Autonomous Robotic Explorer (MARE) is a
catamaran robotic airboat that can operate in turbulent open water en-

vironments.

based on waypoint directives issued from the home base. Communication be-
tween the autopilot and the home base is established via radio frequency using a
high-power XTend modem; this allows the UAV to be controlled at multi-kilometer
ranges. The Unicorn is also equipped with a CCD camera mounted on a pan-tilt
gimbal, which allows the home base to receive live aerial feed through an analog
radio frequency channel.

2.6.3 MARE Autonomous Surface Vehicle

The Marine Autonomous Robotic Explorer (MARE) [Girdhar et al., 2011] is a robotic
airboat developed to explore coral reefs and shallow seabeds. Its open catamaran,
twin-pontoon design provides sufficient hydrodynamic stability to operate in tur-
bulent open water environments. This vehicle is actuated using air propellers in
a differential drive configuration, which is preferred over water-based propulsion
mechanisms as it causes less underwater disturbance to shallow reefs. MARE’s mo-
tors are powered by Lithium Polymer batteries, which provides over two hours of
continuous operations.

Chapter 2. BACKGROUND 24

Most of the electronics on-board are stored inside a large water-proof enclosure
at the center of the chassis. The primary computing unit is a netbook computer that
is responsible for interfacing with the motor micro-controller, powering and collect-
ing data from sensors, and managing high-level autonomous behaviors. MARE is
a vision-centric platform and is equipped with a high-definition downward-facing
camera. It also uses an IMU and a GPS device to track its location and pose in the
water. Furthermore, MARE is capable of communicating over a variety of channels,
including a WiFi link used to stream video, low-power XBee and long-range XTend
radio transceivers used to relay information between the Unicorn UAV and Aqua,
and an analog transceiver that enables manual tele-operation at multi-kilometer
distances.

25

3 COLLABORATIVE
HUMAN-ROBOT
ENVIRONMENTAL MONITORING

This chapter includes two large scale field robotics experiments which both demon-
strate and at the same time motivate the entire set of problems chosen in this thesis.
Both of these experiments show how a robot or a multi-robot team can act in col-
laboration with human scientists to help them collect useful data on a larger scale
than what is possible through manual data collection, as shown in Fig. 3.1.

FIGURE 3.1: Two divers, one manually taking
notes about a single coral head, the other tak-

ing samples. At the Great Barrier Reef.

The first experiment describes how
a team of heterogeneous robots can help
a marine biologist collect the underwa-
ter data that she needs without requir-
ing her to dive. The second experi-
ment shows how an underwater robot
can follow a diver around, while at
the same time directing the camera to-
wards interesting parts of the scene, ac-
cording to a user-specified model. In
the next chapters we will describe the-
oretical and practical improvements on
many aspects of these systems.

3.1 Robot Team Explores On Behalf Of Scientists

In this section we present a multi-robot system developed for environmental mon-
itoring and surveying, which operates in the aerial, water surface, and underwater
domains. Our primary objective is to use autonomous robots to perform environ-
mental monitoring, for instance by helping marine scientists conduct repeated in-
spections in a consistent, efficient, and comprehensive manner. To this end, we have
deployed a heterogeneous robot team that interacts with human experts through

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

26

the Internet to identify areas of interest based on live aerial feedback. The team
then autonomously collects visual footage of these areas at different scales and from
multiple domains.

We are especially motivated to help marine biologists survey the long-term health
of coral reefs. Coral reefs are extremely precious ecosystems: they occupy less than
0.1% of the world’s ocean surface, yet they provide a habitat for 25% of all ma-
rine species [Mulhall, 2007]. Unfortunately, coral reefs have been decaying at an
alarming rate in recent decades [Hodgson and Liebeler, 2002], and there has been
a long-standing need among scientific communities to identify methods for their
preservation [Rogers et al., 1994].

RF (XBee)

RF (XTend)Internet

Remote
Scientists Home Base

RF
(X

Te
nd

)

Unicorn UAV

Mare ASV Aqua AUV

FIGURE 3.2: Our heterogeneous multi-robot system used for the mon-
itoring of marine environments in collaboration with remote scientists.

Coral reefs are monitored conventionally by scientists, who must dive to reef
sites on a regular basis to inspect their health visually. This approach is laborious
and slow, since the scientists have to travel potentially large distances between live
coral sites. A common complementary strategy is to plan each dive beforehand
by identifying potentially rich reef patches based on aerial footage [Rogers et al.,
1994], although its effectiveness depends on having up-to-date satellite imagery
with sufficient visual resolution and clarity.

We address the drawbacks of conventional reef monitoring methods by automat-
ing the data collection process using a team of robots, which is comprised of an
autonomous flying vehicle, an autonomous surface vehicle, and an autonomous
underwater vehicle. During a typical monitoring session, our flying vehicle con-
tinuously collects aerial footage of a reef region and relays them to scientists via
the Internet. Based on this live footage, the scientists then suggest sites for further

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

27

inspection to the team of robots, which subsequently coordinate with each other to
autonomously collect visual footage of these target regions. Our system thus pro-
vides comprehensive visual coverage of the specified reef sites, both from a broad
aerial view and a close-up underwater view. This autonomous robotic team also
significantly improves the efficiency of the monitoring process, by shifting the sci-
entists’ focus from laborious data collection to the selection of survey regions.

This is the first human-robot coordination system where a remote expert (marine
biologist) guides in real time a team of heterogeneous robots operating in air, sea
surface and underwater, to inspect the health of a coral reef. Over 18 kilometers
of flight and 1.5 kilometers of underwater traverses validate the robustness of our
approach. In the sections below we will elaborate on individual components in this
integrated multi-robot system, along with other important aspects of the marine
monitoring tasksuch as scheduling and coordination of various roles occupied by
the human and robot participants. We then discuss our field trial results, which
demonstrate the efficiency of this multi-robot system for marine biologists to study
coral reefs.

3.1.1 Heterogeneous Multi-Robot Team

This team of robots operates in a top-down hierarchical structure that arises due
to the diversity in each vehicle’s operational range, and the need to communicate
with remote scientists and the home base. This hierarchy, depicted in Fig. 3.2, is
also beneficial to the monitoring process: the flying vehicle can obtain coarse vi-
sual coverage of the entire reef region quickly, which allows the surface vehicle and
underwater robot to then focus on inspecting the most potentially interesting sub-
regions at a finer resolution, while minimizing the time spent traveling over less
important regions.

• The Unicorn plane is responsible for performing coverage of the entire survey
region and provide up-to-date large-scale aerial imagery to the remote human
scientists. After obtaining the expert-selected inspection sites, the plane then
re-broadcasts these waypoint directives to the other two robots underneath,
while continuing to collect updated aerial footage of the entire region.

• The MARE boat serves two primary roles: it is used to cache waypoint direc-
tives received from the Unicorn plane, and it also relays these messages to the
Aqua underwater robot when it surfaces. These roles are needed because the
plane has limited battery life, making it unable to wait until the Aqua under-
water robot surfaces.

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

28

• The Aqua [Sattar et al., 2008b] underwater robot is responsible for gather-
ing fine-scale imagery by performing close-up inspection of the target sites.
While Aqua mainly operates underwater to navigate to these sites and collect
footage, it also regularly ascends to the surface to listen for further messages
from MARE and to update its localization using GPS.

3.1.2 Aqua: Control and Porpoising Motion

Aqua’s motion is regulated by an autopilot that allows both attitude control and
depth control based on the IMU and depth sensor readings. For the purposes of our
marine monitoring task, we deployed a GPS-based waypoint follower on top of the
autopilot. This navigation system iteratively implements the following sequence
of actions: ascend to the surface, collect GPS position estimates, descend to a fixed
depth, adjust bearing towards current waypoint, and move forward for a given
amount of time.

Mstraight

Msurface

Mheave_down Mheave_up

FIGURE 3.3: The four states of the porpoising motion for the Aqua un-
derwater robot.

The combination of ascending, descending, and forward movement constitutes
the porpoising motion of the Aqua robot. This navigation strategy was chosen to ad-
dress several fundamental challenges imposed by the underwater environment on
existing long-range localization algorithms. For instance, vision-based techniques
for position estimation must cope with the possibility of severely limited underwa-
ter visibility, whereas acoustic localization methods would need to address multi-
path interference issues when operating in shallow underwater environments. We

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

29

therefore chose the porpoising motion and GPS localization for increased reliabil-
ity. To enable this motion, we configured the autopilot to implement the following
three modes:

• Mstraight: straight forward motion at a fixed depth;

• Mheave: controlled heave for ascent and descent; and

• Msur f ace: sustained backwards pitch at 45 degrees to elevate the external sen-
sor kit above the sea surface.

The autopilot implements proportional (P) controllers for the pitch and roll axes,
and a proportional-derivative (PD) controller for the yaw axis. The latter derivative
gain is essential to counteract the slow response time of this vehicle about the yaw
axis [Giguere et al., 2006].

While executing Mstraight, the autopilot maintains a straight trajectory along a
fixed heading angle at constant depth by regulating the roll angle about 0◦ and the
pitch angle based on the target depth. The Mheave and Msur f ace modes rely on a
hovering gait described in [Sattar et al., 2009], in which the roll and pitch gains are
downscaled from Mstraight by a factor of ten to minimize oscillatory behaviors.

Since sea water is conductive, it is infeasible to receive GPS signals underwa-
ter. This was corroborated through empirical studies where we determined that
less than 1 cm of seawater over a 12 cm2 patch GPS antenna is sufficient to preclude
GPS reception Thus, Aqua’s body must be inclined backwards to elevate the GPS
antenna above the water surface. The Msur f ace mode implements this behavior by
combining a target pitch angle of 45◦ with an upwards heave command. In this
mode, Aqua’s four back flippers are oriented downwards and oscillate with a large
amplitude, while its two front flippers are pointed upwards with minimal oscilla-
tion. This results in both a net positive force and a net moment, which counteracts
forces due to the back of the robot being raised above the water surface.

3.1.3 Interaction with Marine Scientists

This multi-robot marine monitoring system incorporates input from marine biolo-
gists, who are responsible for identifying marine sites that are worth inspecting at
a finer scale, based on the coarse-scale aerial footage captured by our plane. These
scientists, however, are not responsible for direct tele-operation control over any of
the robots; robot navigation and the data collection process are both carried out au-
tonomously. We developed a web interface that allows scientists off-site to remotely
monitor aerial images obtained by our plane and mark points of interest on indi-
vidual images. These coordinates are transmitted as target GPS waypoints to the

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

30

home base, and then broadcasted sequentially to the Unicorn plane, to the MARE
boat, and finally to the Aqua underwater robot. This web interface allows scientists
to interact with our robot team within the visual task domain while concealing un-
derlying communication and control aspects, to ensure a smooth and intuitive user
experience.

Time (h:mm)

Robot teams
and home
base set up

 UAV
takes off

Biologist identifies
sites of interest

UAV
lands

AUV visits each site and
collects video footage

AUV returns to the
location of ASV to acquire
more points to visit

UAV

AUV

ASV

Home base

Biologist

0:00 0:40 0:45 0:50 1:00 1:151:10

Home base initiates
UAV reef coverage

1:20 2:20

Home base transmits
sites to UAV

AUV relays sites
to ASV

ASV relays sites
to AUV

UAV transmits images
to home base

Home base publishes
images to the web

FIGURE 3.4: Event timeline for our muli-robot coral reef monitoring
sessions, lasting 2 hours and 30 minutes on average. Abbreviations:
Umanned Aerial Vehicle, Autonomous Surface Vehicle, Autonomous

Underwater Vehicle. Note: timeline is not to scale.

3.1.4 Coral Reef Monitoring Trials

We conducted an extensive field trial comprised of multiple coral reef monitoring
sessions, to evaluate the feasibility of our approach and to optimize system param-
eters. Fig. 3.4 depicts a simplified timeline for each monitoring session, starting
with the launch of the Unicorn plane and ending with the Aqua underwater robot
visiting and recording underwater footage at a number of sites of interest within a
tropical reef region. These sites were chosen by a biologist located about 4,000 km
away from our reef region, who interacted with our system in real time through a
web interface.

Each monitoring session lasted over 2 hours long, though a significant portion of
that time was devoted to setting up the various robots at distinct operational sites,
both on land and at sea. Each vehicle is supported by a small team of roboticists
with the exclusive purpose of passively monitoring their operations during each
session. Furthermore, given the complexity of communications arising from the
nature of the experiment, a home base team was deemed necessary. Members of the
home base team were responsible for monitoring the timing of the entire experiment
and informing other teams of event progressions.

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

31

(a) (b) (c)

FIGURE 3.5: (a) The Unicorn plane carried out aerial coverage of a
150 m × 100 m reef region at both 100 m and 50 m altitudes. Star icon
depicts location of the MARE boat. (b) The resulting images depict
high resolution reef views, which enabled our expert biologist to iden-
tify diverse coral colonies and other areas of interest, and to estimate
the relative depth of the reef, based on texture and color cues. (c)
Frames acquired at 50 m provided close-up views while still being able
to cover all three zones found on fringing reefs, namely spur and groove,
crest, and back reef ; the high complexity substratum area, characterized
by strong variations in color and texture, is an especially interesting

site to inspect from a biologist’s perspective.

The results presented in this section are from a single marine monitoring session,
in which our team of robots operated within a 150 m × 100 m coral reef region.
Although this operational area may be considered small according to some marine
monitoring standards, the current range of our system is predominantly limited by
the plane’s operational capabilities, and hence can be easily resolved by upgrading
to more efficient and higher capacity batteries, or switching to a more capable aerial
vehicle.

We recorded both visual data and state information from all three vehicles, to
allow the team’s performance to be benchmarked and improved upon. Two im-
portant metrics used in the evaluation of our field trials consist of the durations for
each phase in the reef monitoring process, and the distances traversed by the three
robots.

Our monitoring session began with the launch of the Unicorn plane, which was
directed to cover the entire reef region in a circular orbit. The plane flew at speeds
between 10 m/s and 20 m/s in moderately turbulent wind conditions, and carried
out aerial coverage first at 100 m and subsequently at 50 m, as shown in Fig. 3.5(a).
Aerial footage from the plane was being continuously streamed to the home base
through a radio frequency channel, and subsequently relayed to our web server.
Therefore, this allowed the remotely-located biologist to inspect the entire reef re-
gion using aerial views at two different scales, within 15 minutes following the
launch of the plane.

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

32

The scientist identified 4 sites of interest for up-close inspection after analyzing
the aerial views for 10 minutes, and issued the corresponding waypoint directives
to the home base using the web interface. These directives were then transmitted
to the plane, which began re-broadcasting the commands repeatedly while orbiting
above the boat in its coverage of the reef region. The boat received all four target
locations, after 25 minutes since the launch of the plane. After completing both of its
tasks of providing aerial footage of the coral reef and relaying waypoint directives
from the biologist, the plane proceeded to land while delegating the rest of the
monitoring workload to the other two robots.

The boat was operating as a caching station and relay unit, by re-broadcasting
the target locations that it had received from the plane continuously until the un-
derwater robot had confirmed their reception. Upon receiving the target locations,
the underwater robot activated its GPS waypoint follower to visit them one-by-one,
navigating via the porpoising motion to each of the specified waypoints. Through
the porpoising motion, the underwater robot’s piecewise linear path incorporated
both localization and forward motion. The resulting trajectory executed by the un-
derwater robot is shown in Fig. 3.6.

FIGURE 3.6: Porpoising trajectory of the Aqua underwater robot.

The Aqua underwater robot autonomously carried out the remainder of the
monitoring task, namely visiting all four target locations selected by the biologist,
in about an hour. 20 minutes of that time were devoted to forward motion at about
0.6 m/s. The remaining 40 minutes were devoted to heaving up and down and GPS
localization on the surface. As shown in Fig. 3.8 the underwater robot spent on av-
erage about 50 s at each porpoising stop to collect GPS readings with small spatial

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

33

0

123
4

5

6

7
8
9

10
11

12
13

14
15

16

17

18

19
20

21

22

23
24

25

26
0

1

2

3

4

50 m

Aqua’s Trajectory

Target Waypoints

(a)

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

Time (min)

C
ro

s
s
−

T
ra

c
k
 E

rr
o

r
(m

)

Cross−Track Error for Aqua AUV (avg.=13.77m, std.=11.61m)

Wpt. 1 Wpt. 2 Wpt. 3 Wpt. 4

(b)

FIGURE 3.7: (a) Overhead view of the Aqua underwater robot’s trajec-
tory. Diamond icons depict target locations suggested by the biologist
for further inspection. Circular icons denote porpoising ascents dur-
ing this session. (b) The cross-track error for Aqua’s trajectory suggests

that it was pushed off-course due to strong currents.

variance, and 40 s moving forward. We found that, although significant, this time
interval was required to assure an accurate position estimate could be obtained.

As illustrated by Fig. 3.7(a), the porpoising trajectory of the Aqua robot did not
exhibit straight line paths from one waypoint to the next. Fig. 3.7(b) shows that the
cross track error of the GPS waypoint follower based on that motion was 13 meters
on average. Deviations from the specified path are due to two factors: one is the
presence of strong currents and waves, especially when the robot is heaving to the
surface, and the other is the bearing correction based on the IMU yaw readings. The
effects of these two factors on the resulting trajectory are independent and additive.
This can be seen by considering the fact that each forward motion segment lasted
the same amount of time, and thus noting that the variances in distances traveled
between porpoising stops (red edges in Fig. 3.7(a)) is solely due to strong currents.
In contrast, the heading errors and the resulting curvature of the trajectory is due to
the drift of the IMU yaw, while the robot is pitching on the surface in order to obtain
concentrated GPS readings. Despite these path deviations, the Aqua underwater
robot reached each of the target locations at the accuracy of commercial GPS at <
5 m, which was suffient for it to capture underwater footage of the designated coral

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

34

patches. The underwater robot returned to the initial location of the boat 90 minutes
after the launch of the plane, at which point the experiment ended successfully, with
the entire session lasting for two and half hours.

0

20

40

60

80

100

Porpoising Cycles

D
u
ra

ti
o
n
 (

s
e
c
)

Segment Durations of Aqua AUV for Different Navigation Modes

Surface

Heave Down

Swim Straight

Heave Up

FIGURE 3.8: Durations for each of the porpoising modes during a nav-
igation session for the Aqua underwater robot.

3.2 A Robot Videographer Explores in Tandem with Sci-

entists

We posit that in order for a robot to collect visual data of the environment that
will ultimately be useful to the user, surprise-based exploratory behavior is insuf-
ficient. We argue that we need a user model to recognize the type of data that
matters most to the user. In other words, we need to balance identification of
interesting/salient scenes with visual exploration for surprising scenes. Previous
work [Girdhar and Dudek, 2014a] has addressed curiosity- and surprise-based vi-
sual scene exploration. We focus on the former problem of identifying parts of the
scene that will be salient according to a user-specified model.

3.2.1 Modeling Visual Rewards

We model the user’s pixel-level visual reward map as an encoder-decoder model,
shown in Fig. 3.9, where the input is an RGB image and the output is a 1D image
with values in [0,5]. 0 denotes no interest and 5 denotes a very interesting part of
the scene. While pixel-level estimation of the user’s visual reward function can be
seen as having unnecessarily high resolution, and superpixel-level modeling can
also be as useful for the purposes of visual navigation and search, we have opted
for pixel-level rewards in order to have access to a broader set of labeled semantic
segmentation datasets from different settings, such as driving environments [Yu
et al., 2018] and various household and outdoor environments [Zhou et al., 2017].

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

35

The network architecture that we use is SegNet [Badrinarayanan et al., 2015], a
convolutional encoder-decoder architecture, shown in Fig. 3.9. The loss function
we use is the categorical cross-entropy for C-category classification:

L = −
C

∑
c=1

p̄clog(pc) (3.1)

where p̄c denotes the true probability that the given pixel is of class c, and pc is the
estimated probability output by the network.

Max Pooling Upsampling Conv2D + Batch
Normalization

FIGURE 3.9: SegNet encoder-decoder architecture. The indeces of the
max pooling operations are copied into the decoder’s upsampling op-
erations, thereby reducing memory and avoiding interpolation. Rec-
tified Linear Units are the activation functions used in all layers. The
output of the network is the user’s visual reward map, here shown

preferring coral compared to sand and the diver.

3.2.2 Field Trials

We present a system that demonstrates the concept of a robot videographer in an
underwater coral monitoring scenario, where a robot follows a human diver and at
the same time collects useful data for later analysis. The physical setup is shown in
Fig. 3.10. The forward camera is used for diver tracking and visual servoing, so that
the robot does not have to plan in the long-term or navigate, while the back camera
is used for videography of interesting visual content as the robot rolls, following the
diver. The user’s visual reward model has been trained using supervised learning
on underwater datasets, totalling about 10K pixel-level labeled images. The details
of the training and evaluation procedure are presented in Section 4.4.

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

36

FIGURE 3.10: The Aqua robot following a scientist who inspects coral.
The robot has been given an a priori model of the scientist’s reward
model based on input from the front camera. The robot rolls in order
to direct its downward-looking videography camera towards parts of

the scene that are of interest to the scientist (in this case, coral).

3.3 Discussion

These two systems are some of the first instances of collaborative human-robot ex-
ploration. The heterogeneous multi-robot team is able to collectively cover large
areas, however, it has the disadvantage of the robots being too reliant on the sci-
entist to collect data. In fact, the scientist has to be involved throughout the entire
experiment because none of the robots know what type of data is deemed valuable.
This is addressed by the second system presented above, but at the cost of the robot
being again too reliant on the human scientist, this time for navigation. Our goal
is to have robots that are capable of navigating and searching for interesting visual
content on their own, separately and away from the scientist, and then eventually
relocate them and call their attention to any interesting scenes that they might have
observed. This would truly open the road to collaborative exploration among a
team of robots and a team of humans.

Chapter 3. COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL
MONITORING

37

FIGURE 3.11: Images from the front camera of the Aqua robot are used
for diver tracking and pixel-level reward estimation, which will deter-
mine which part of the scene the robot will roll towards to record. In
the bottom images, white denotes uninteresting content, while red de-

notes very interesting content.

FIGURE 3.12: Top: images recorded using a rolling policy informed by
the trained user model recorded sand about 17% of the time. Bottom:
periodic rolling policy, agnostic to image content, ended up recording

sand almost 50% of the time.

38

4 ACTIVE LEARNING OF VISUAL
REWARD FUNCTIONS

In this chapter we focus on how to make the specification process of the user’s visual
reward model as efficient as possible – we do not want scientists to spend a lot of
time providing expert annotations. To this end, in this chapter we evaluate whether
active learning methods can provide any advantages in terms of sample-efficiency.

4.1 Model Uncertainty vs Aleatoric Uncertainty

There are two types of uncertainty that arise when modeling a stochastic phenomenon:
epistemic (or model) uncertainty, and aleatoric uncertainty. Model uncertainty refers
to the type of uncertainty that is reduced to zero asymptotically, as we collect more
samples. Aleatoric uncertainty describes inherent stochasticity in the phenomenon
that will not reduce with more data.

The typical way of illustrating their difference is by using the example of throw-
ing a fair die. In the limit of throwing it infinitely many times we are going to be sure
that the outcome follows a uniform distribution from one to six. Having converged
to a single distribution/model was the same as reducing the model uncertainty to
zero. That said, trying to predict the outcome of the next throw is still stochastic,
and no matter how much data we collect we are not going to be able to reduce the
entropy of the uniform distribution. This irreducible uncertainty in observation is
aleatoric uncertainty.

4.2 Model Uncertainty via the Bootstrap vs Monte Carlo

Dropout

To obtain model uncertainty it is necessary to go beyond directly modeling the dis-
tribution p(y|x, D) assuming a single set of weights for the network. Note here that
y is the reward map, x is the given image, and D is the training set. We need to
perform model averaging, p(y|x, D) =

∫
w p(y|w, x)p(w|D)dw in order to explicitly

take into consideration the possible weights, w, of the neural network. In order to

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 39

draw weight samples from p(w|D) and evaluate p(y|w, x) we use either an ensem-
ble of networks trained using the bootstrap method [Efron and Stein, 1981, Breiman,
1996], or Monte Carlo Dropout [Gal and Ghahramani, 2016a]. We note that these
are not the only options for representing uncertainty in neural networks [Blundell
et al., 2015, Lakshminarayanan et al., 2017, Zhang et al., 2017, Sun et al., 2019].

4.2.1 The Bootstrap Method

The bootstrap is one of the most significant advances in modern statistical theory. It
provides a theoretically grounded way of obtaining variance estimates (and other
properties) of arbitrary estimators, by estimating these properties from an approx-
imate distribution. This distribution is typically obtained by resampling with re-
placement. The main idea is to sample datasets D1, ..., DM, each of which is con-
structed from the original i.i.d. dataset D via sampling |D| = N elements with re-
placement, so that each resulting dataset Di might have multiple copies of a labeled
example and the same size as D. Then, the bootstrap method trains M different
copies of the estimator, in our case a neural network as shown in Fig. 3.9, each on
a different dataset, Di, which results in different weights. The aggregate output
reported at the end is the empirical average of the M outputs and the variance is
estimated by computing the empirical variance of the M network outputs. In our
case the output of each network is a pixel-level categorical distribution.

It is worth mentioning that each dataset Di contains about 63% of the unique
labeled examples in D. To see why this is the case, consider a single dataset Di.
The probability of an element from D not being selected in Di after N samples with
replacement is 1− 1/N. After N such draws the probability of an element not being
selected is:

(1− 1/N)N −−−→
N→∞

e−1 ≈ 0.37 = 1− 0.63 (4.1)

The chief advantage of the bootstrap method has traditionally been its simplicity of
implementation. In the case of neural networks, however, implementing the boot-
strap method comes with a set of difficulties. First, for networks with a significant
GPU memory footprint, such as the SegNet architecture, there are often hardware
limits with respect to M, and how many of them can be in memory at any point
in time. This makes training slower. Second, similar issues exist with respect to
making physical copies of the dataset: minibatch training needs to be modified to
ensure sampling with replacement. We do this by increasing the weight of an im-
age by the number of times it has been selected for replacement by the training set
sampling procedure.

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 40

4.2.2 Monte Carlo Dropout

Dropout is a method for randomly sampling which connections in the network
should be independently dropped, in the sense that their output should be mul-
tiplied by zero. This effectively removes activation units from the network and pro-
duces variability in weights and outputs. When originally introduced in [Hinton
et al., 2012, Srivastava et al., 2014] Dropout was used for regularization at training
time via model averaging. Recent work [Gal and Ghahramani, 2016b] has shown
that by approximating p(w|D) by a distribution over weights with a Bernoulli mask
applied to them, we can estimate a predictive distribution that approximates p(y|x),
and therefore both the empirical mean and variance of the approximating distribu-
tion can be computed via multiple forward passes along the network.

Specifically, [Gal and Ghahramani, 2016b] approximate p(w|D), where w =

{W1, W2, ..., WL} are the weight matrices of the layers in a multilayer perceptron,
by a simpler distribution qθ(w), defined as follows:

Wi = Mi · diag([zi,j]j=1...Ki) (4.2)

zi,j ∼ Bernoulli(pi) (4.3)

Here pi is the probability of keeping unit i, j, and the variational parameters are
θ = (M1, ..., ML). The objective of approximating p(w|D) can be expressed in terms
of minimizing KL divergence:

θ∗ = argminθ KL(qθ(w)||p(w|D)) (4.4)

Using this approximatation to the original weight posterior, p(w|D), we have the
following approximation of the predictive distribution p(y|x, D):

qθ∗(y|x) =
∫

w
p(y|w, x)qθ∗(w)dw (4.5)

The end result is that instead of computing predictive mean and variance, we can
sample weights multiple times from qθ∗(w) and for each sample evaluate the net-
work at test-time, without making any significant architectural changes, as shown
in Fig. 4.1. This will give us the empirical mean and variance of qθ∗(y|x), which we
can use for active learning.

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 41

Max Pooling Upsampling Conv2D + Batch
Normalization

Test-Time
Dropout2D

FIGURE 4.1: Bayesian SegNet

4.3 Active Learning of Visual Rewards

Now that we have an estimate of model uncertainty in terms of empirical variance,
we evaluate if active learning approaches can help reduce the number of annota-
tions that the user has to provide, by showing the user images to label such that
model uncertainty is going to be most reduced. Active learning has seen signifi-
cant activity in the last two decades [Seung et al., 1992, Balcan et al., 2007, Geifman
and El-Yaniv, 2017, Lewis and Gale, 1994, Roy and McCallum, 2001, Settles, 2010].
Recently, active vision-based learning has also been used in the context of deep
convolutional neural networks, in the context of categorical image-level classifica-
tion [Gal et al., 2017], for example on datasets such as MNIST or CIFAR-10. To the
best of our knowledge, active learning has not been carefully examined for deep
semantic segmentation.

The method we use here for active reward learning, shown in Algs. 1 and 2, is
a variant of the query-by-committee algorithm [Seung et al., 1992]. This method is
characterized by a training algorithm, an acquisition/selection criterion, a pool of
unlabeled data, and a set of classifiers/learners whose output on the unlabeled data
we can measure efficiently. The label acquisition criterion is a measure of disagree-
ment between the learners, for example model uncertainty as presented previously.
In our case, the learners are the neural networks outlined in Fig. 3.9 or 4.1, obtained
via a bootstrap ensemble or test-time dropout. The training procedure is super-
vised learning based on the growing set of labeled data, using the Adam optimizer.
In the case of the bootstrap ensemble each model in the ensemble is trained sepa-
rately, while in the Bayesian encoder decoder, training-time Dropout is deactivated
and a single network is trained.

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 42

Algorithm 1 Query-By-Committee Active Learning Algorithm (Bootstrap)

1: L := {} // set of labeled data
2: U := X // set of unlabeled data
3: //wi := weights for learner p(y|x, wi) ∀i = 1...M
4: S := batch size for new labels to be queried
5: while U not empty do
6: wi ← wi,0 initialize learner weights
7: Li := sample with replacement from L
8: w∗i ← TRAIN(wi, Li, U) ∀i = 1...M
9: uj ← UNCERTAINTY({w∗i }i=1...M, xj) ∀xj ∈ U

10: QUERY labels yj for unlabeled batch B ⊆ U of size |S|, with highest uj
11: U ← U \ B
12: L← L ∪ {(xj, yj) : xj ∈ B}

Algorithm 2 Query-By-Committee Active Learning Algorithm (Dropout)

1: L := {} // set of labeled data
2: U := X // set of unlabeled data
3: //wi := weights for learner p(y|x, wi) ∀i = 1...M
4: S := batch size for new labels to be queried
5: while U not empty do
6: w← w0 initialize network weights
7: w∗ ← TRAIN(w, L, U)
8: Test-time Dropout sample weights w∗i , i = 1...M
9: uj ← UNCERTAINTY({w∗i }i=1...M, xj) ∀xj ∈ U

10: QUERY labels yj for unlabeled batch B ⊆ U of size |S|, with highest uj
11: U ← U \ B
12: L← L ∪ {(xj, yj) : xj ∈ B}

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 43

Uncertainty: We measure label uncertainty of an unlabeled image x in two ways:

1. Variance in the pixel class probabilities among all learner models

H×W

∑
i=1

C

∑
c=1

Ew

[
(p(yi = c|x, w)−Ew[p(yi = c|x, w)])2

]
(4.6)

where i denotes pixels and c denotes possible classes for each pixel. The vari-
ance is taken with respect to the possible models.

2. Disagreement in the mode of pixel-level predictions between each model and
the average model’s mode prediction

ymode
w,i (x) = argmax

yi

p(yi|x, w) (4.7)

ymode
avg,i (x) = argmax

yi

Ew [p(yi|x, w)] (4.8)

H×W

∑
i=1

Ew

[
ymode

w,i (x) 6= ymode
avg,i (x)

]
(4.9)

We note that, unlike the two acquisition functions described above, information
gain is the actual quantity of interest for active learning [Gal et al., 2017, Houlsby
et al., 2011, Cohn et al., 1996, MacKay, 1992]:

I(y ; w |x, L) = H(w|L)−Ey∼p(y|x,L) H(w|L ∪ {(x, y)}) (4.10)

= H(y|x, L)−Ew∼p(w|L) H(y|x, w) (4.11)

The reason we do not use it in our case is that Eqn. 4.10 requires sampling segmen-
tations from the average model p(y|x, L). On the other hand, estimating H(y|x, w)

requires segmentation samples from p(y|x, w). In both cases, the number of possi-
ble segmentations is CH×W where C is the number of possible classes for each pixel
and H ×W is the resolution of the image. This output space is much larger than C,
which is what previous active learning methods have considered.

We also note that computing H(y|x, w) where y is a segmentation is much easier
in the case where p(y|x, w) is modeled as a conditional autoregressive model, such
as PixelCNN [van den Oord et al., 2016a] and its variants [van den Oord et al.,
2016b], where the distribution over possible segmentations is modeled as

p(y|x, w) = p(y1|x, w)
H×W

∏
i=2

p(yi|y1...i−1, x, w) (4.12)

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 44

In this case the entropy is easily computed as a sum

H(y|x, w) = H(y1|x, w) +
H×W

∑
i=2

H(yi|y1...i−1, x, w) (4.13)

as long as the entropy is easy to compute for the distribution p(yi|y1...i−1, x, w),
which is the case for the Categorical distribution. Although we experimented ex-
tensively with this approach we found that the segmentation output produced by
Conditional PixelCNN models of p(y|x, w) did not produce accurate segmentation
outputs compared to convolutional encoder-decoder networks. In light of this we
did not further examine the thread of approximating the information gain using
autoregressive models, and instead we mainly relied on the variance and disagree-
ment measures presented above.

4.4 Evaluation

We evaluate the bootstrap- and dropout-based active learning algorithms in Algs. 1
and 2. We compare the pixel-level semantic segmentation accuracy of the two ac-
quisition functions in Eqns. 4.6 and 4.9 on the following datasets:

• A subset of the MIT Scene Parsing dataset, ADE20K [Zhou et al., 2016], con-
taining 6K randomly selected images and their annotations.

• The Berkeley Deep Drive dataset [Yu et al., 2018], containing 7K labeled im-
ages for semantic segmentation training and 1K for testing.

Representative images from the two datasets are shown in Fig. 4.2. We compare
our two acquisition functions against the baseline of randomly selecting the next
batch of images to label. We run each experiment setting with 3 random seeds,
unless otherwise noted. There are various sources of stochasticity in the algorithms
presented above. For example, training is done using the Adam optimizer [Kingma
and Ba, 2014], a variant of stochastic gradient descent, where the order of seeing
labels varies according to the seed. For dropout the seed affects sample weights
and, thus, the uncertainty estimates. For bootstrap estimates the seed affects which
subset of the original labeled dataset each member of the ensemble will be trained
on. We note that each training session was run for 200 epochs with the default
parameters of the optimizer, and batch size of 8.

Dropout: Our findings show that on average the disagreement measure outper-
forms random selection by 2%, when M = 5 models are sampled from the weight
posterior. On the MIT Scene Parsing dataset, shown in Fig. 4.3, the performance

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 45

FIGURE 4.2: Top: sample images from the MIT Scene Parsing dataset.
Bottom: sample images from the Berkeley Deep Drive dataset.

of selection by variance has high variability and on average performs worse than
the random baseline. One likely reason might be that the test accuracy of the sys-
tem is reported based on the most likely segmentation. Other likely segmentations
from the output of the average model are essentially thrown out. The disagreement
criterion operates directly on the most likely segmentation, while the variance crite-
rion takes into account the entire categorical distribution of each pixel. It is possible
that the variance criterion focuses on images where there is disagreement among
models for less likely pixel labels.

50 100 150 200 250 300 350 400 450
labeled images

−5

0

5

%
di

ff
er

en
ce

co
m

pa
re

d
to

ra
nd

om

random disagreement variance

50 100 150 200 250 300 350 400 450
labeled images

15

20

25

30

35

40

pi
xe

l
la

b
el

ac
cu

ra
cy

(%
)

random disagreement variance

FIGURE 4.3: Dropout-based active learning on the MIT Scene Parsing
dataset. The number of possible classes for each pixel is C=150. Left:
the difference between selection according to variance and disagree-
ment compared to uniformly random selection. Right: Percentage of
correctly labeled pixels. Standard deviation is plotted for 3 random

seeds.

On the Berkeley Deep Drive dataset, the disagreement criterion is on average 1%
better than random, while the difference between variance and random is insignif-
icant. It is worth mentioning that the performance of active learning approaches
is highly dataset dependent. The most illustrative work that shows this is [Muss-
mann and Liang, 2018], which evaluates the data efficiency of a commonly used
active learning algorithm across 21 datasets from OpenML, and finds that there is

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 46

inverse correlation between data efficiency and the error of a classifier that has ac-
cess to the full dataset.

50 100 150 200 250 300 350 400
labeled images

−6

−4

−2

0

2

4

%
di

ff
er

en
ce

co
m

pa
re

d
to

ra
nd

om

random disagreement variance

50 100 150 200 250 300 350 400
labeled images

60

65

70

pi
xe

l
la

b
el

ac
cu

ra
cy

(%
)

random disagreement variance

FIGURE 4.4: Dropout-based active learning on the Berkeley Deep
Drive dataset. The number of possible classes for each pixel is C=19.
Left: the difference between selection according to variance and dis-
agreement compared to uniformly random selection. Right: Percent-
age of correctly labeled pixels. Standard deviation is plotted for 3 ran-

dom seeds.

Bootstrap: The comparison here is much more time-consuming than for dropout
because we train each model in the ensemble serially. The bootstrap ensemble that
we used for these experiments consists of M = 5 models. Our findings for the
MIT Scene parsing dataset indicate that the disagrement selection strategy performs
worse than the random selection, on average by about 0.5%, whereas on the Berke-
ley Deep Drive dataset it outperforms random by about 0.3% on average.

50 150 250 350 450 550 650 750 850
labeled images

−4

−2

0

2

4

%
di

ff
er

en
ce

co
m

pa
re

d
to

ra
nd

om

random disagreement variance

50 150 250 350 450 550 650 750 850
labeled images

25

30

35

40

45

pi
xe

l
la

b
el

ac
cu

ra
cy

(%
)

random disagreement variance

FIGURE 4.5: Bootstrap-based active learning on the MIT Scene Parsing
dataset. The number of possible classes for each pixel is C=150. Left:
the difference between selection according to variance and disagree-
ment compared to uniformly random selection. Right: Percentage of
correctly labeled pixels. Standard deviation is plotted for 3 random

seeds.

Chapter 4. ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS 47

50 200 350 500 650 800 950 1100 1250 1400
labeled images

−4

−2

0

2

%
di

ff
er

en
ce

co
m

pa
re

d
to

ra
nd

om

random disagreement variance

50 200 350 500 650 800 950 1100 1250 1400
labeled images

60

65

70

75

80

pi
xe

l
la

b
el

ac
cu

ra
cy

(%
)

random disagreement variance

FIGURE 4.6: Bootstrap-based active learning on the Berkeley Deep
Drive dataset. The number of possible classes for each pixel is C=19.
Left: the difference between selection according to variance and dis-
agreement compared to uniformly random selection. Right: Percent-
age of correctly labeled pixels. Standard deviation is plotted for 3 ran-

dom seeds.

4.5 Discussion

The improvements of the query-by-committee active learning method that is used
here compared to random selection of images to annotate is very modest. The per-
formance improvement achieved by active learning algorithms in general depends
on the distribution of the underlying data. One case in which these methods are
expected to produce notable improvements is when the data forms a small number
of well-separated clusters and the labels are identical for all data grouped under
the same cluster. It is unclear whether this is the case for semantic segmentation on
the datasets we tested herein. Evaluations of active learning methods on a large set
of datasets (with uncertainty sampling as the active selection criterion) have been
conducted in [Mussmann and Liang, 2018]. The main observation is that the data
efficiency of active learning is inversely correlated to the error rate of the resulting
classifier on the collection of datasets that was examined. It is also reported that
previous works on active learning provide a mixed set of conclusions for the gains
of active learning of random sampling: from worse than random [Yang and Loog,
2018], to no gain [Schein and Ungar, 2007], to moderate gain [Luo et al., 2013], to
double data efficiency [Tong and Koller, 2002]. Further work is needed to char-
acterize the possible gains from active learning from a given data distribution, or
methods to transform that distribution so that active learning methods can be more
effective than random sampling.

48

5 MODEL-BASED PURSUIT

In this chapter we propose a model-based predictive pursuit algorithm that enables
a robot photographer to maintain visual contact with a subject whose motion is
independent of the photographer. We explicitly address the case where visual con-
tact is lost and propose an algorithm that aims to minimize the expected time to
recover it. This is novel with respect to previous work, particularly pursuit-evasion
games, which do not consider the scenario of intermittent loss of visibility, which is
inevitable in practice. In many variants of pursuit-evasion games, once line-of-sight
is lost, the game ends. Our work addresses this issue by developing methods that
implement the broad algorithmic template shown in Alg. 3:

Algorithm 3 Template For Model-Based Pursuit

1: while true do
2: if subject is in field of view then
3: do reactive or model-predictive control
4: else
5: predict subject’s location at t, t + 1, ..., t + H based on history
6: visit predictions so as to minimize expected time to find the subject

The sections that follow address lines 5 and 6 in Alg. 3. In particular, we propose
and evaluate two methods for making predictions: First, by making predictions
for the subject’s behavior based on a navigation reward that is learned through
past observations. Second, in the absence of past observations, we make trajectory
predictions that are topologically distinct, so that they cover a diverse set of possible
behaviors.

5.1 Modeling the Subject’s Behavior via Inverse RL

We make use of navigation demonstrations by the target, which we exploit via Max-
imum Entropy Inverse Reinforcement Learning (IRL) [Ziebart et al., 2008] in order
to estimate a reward function that expresses their preferences over the terrain fea-
tures of the map. For example, the target might prefer to take paved roads, as
opposed to grass or sand, in order to navigate to its destination. We can integrate
that information in a behavior model for more accurate predictions, thus increasing

Chapter 5. MODEL-BASED PURSUIT 49

FIGURE 5.1: Red denotes destinations. (A) The follower sees the tar-
get. (B) Visual contact is lost. Destinations are predicted and particles
(green) start to diffuse. (C) Particles split on two different roads. The
follower chooses one group of particles as more promising. (D) The
follower re-establishes visual contact. Destinations on the top side of

the map become unlikely.

the chance of re-establishing visual contact. Most importantly, feature preferences
can be learned in a data-efficient way from as few as ten demonstrations, on a single
map, and are typically transferable to other maps that share the same appearance
and semantic classes. Using the reward learned from IRL and treating the target as
an efficient navigator with respect to that reward, we identify a class of stochastic
policies that can very efficiently simulate target behavior without having to perform
planning at runtime for the purpose of prediction. This learned predictive and gen-
erative model for plausible paths marks an improvement over our prior work on
this topic [Shkurti and Dudek, 2017], which did not make use of prior knowledge of
the target’s navigation behavior. We assume that the robot photographer receives
noisy observations of the target within a limited-range and field of view sensor, but
has no other means of communication. We also assume that the target navigates
purposefully while heading for a destination, and its motion is independent of the
actions of the photographer, as opposed to being evasive or cooperative.

Our method operates on both positive and negative observations and maintains

Chapter 5. MODEL-BASED PURSUIT 50

a belief distribution on the target’s possible locations. While the target remains un-
seen, the belief expands spatially and uncertainty grows. Our planning algorithm
generates actions that shrink uncertainty or even completely clear it. The key en-
abling insight that allows us to plan over the vast array of potential target paths is
the use of the learned navigation reward, which we use to reduce the set of possible
hypotheses into a few possibilities that are compatible with the target’s demon-
strated navigation behavior and the set of available destinations.

5.1.1 Maximum Entropy Inverse Reinforcement Learning

Making long-term and short-term predictions about the future behavior of a pur-
posefully moving target requires that we know the instantaneous reward function
that the target is trying to approximately optimize. Given a set of demonstration
paths that trace the target’s motion on a map, we can infer which parametric trans-
formation of features of the map explains them, using the framework of Maximum
Entropy Inverse Reinforcement Learning (IRL) [Ziebart et al., 2008].

We assume the existence of feature vectors f (s) = [f1(s), f2(s), ..., fN(s)]> where
s is a location on the map. In our case, these N feature maps are boolean images
that indicate semantic labels over satellite maps, such as roads, vegetation, trees,
automobiles, buildings, as well as dilations of these boolean maps. We also assume
that the instantaneous reward is a linear transformation of the features, rθ(s, a) =

θ> f (s), parameterized by the weight vector θ. As mentioned in the background
section, Maximum Entropy IRL factors the probability distribution over trajectories
τ = (s0, a0, s1, ..., aT−1, sT) as an instance of the the Boltzmann distribution:

p(τ|θ) = 1
Z(θ)

exp

(
T

∑
t=0

θ> f (st)

)
(5.1)

where Z(θ) is the partition function that acts as a normalization term. As mentioned
in the background section, this distribution arises from the constrained optimiza-
tion problem of maximizing entropy subject to first-moment matching constraints,
which specify that the expected feature count at each state should be the same as
the empirical mean feature count in the demonstration dataset. It is worth mention-
ing that Eqn. 5.1 assumes deterministic dynamics for the system being modeled, as
well as no noise in the observation of the demonstrated trajectories. Maximizing the
log-likelihood function of the trajectories in the demonstration dataset D, is done as

Chapter 5. MODEL-BASED PURSUIT 51

follows:

θ∗ = argmax
θ

|D|
∑
i=1

log p(τi|θ) (5.2)

= argmax
θ

|D|
∑
i=1

Ti

∑
t=0

(
θ> f (s(i)t)− log Z(θ)

)
(5.3)

This optimization problem is convex for deterministic dynamics, so gradient-based
optimization methods are sufficient to solve it. In our case we use the exponentiated
gradient ascent method from [Kitani et al., 2012] to obtain an estimate of the opti-
mal reward weight parameters. The gradient of the scaled log likelihood function
L(θ) = 1

|D| ∑
|D|
i=1 ∑Ti

t=0

(
θT f (s(i)t)− log Z(θ)

)
is

∇θL(θ) =
1
|D|

|D|
∑
i=1

Ti

∑
t=0

(
f (s(i)t)−∇θlog Z(θ)

)
(5.4)

=
1
|D|

|D|
∑
i=1

Ti

∑
t=0

(
f (s(i)t)− dZ(θ)/dθ

Z(θ)

)
(5.5)

=
1
|D|

|D|
∑
i=1

Ti

∑
t=0

f (s(i)t)−∑
τ

p(τ|θ) fτ (5.6)

= f̄ −∑
s

p(s|θ, π) f (s) (5.7)

where fτ = ∑s∈τ f (s) is the vector of features accumulated by the trajectory τ,
p(s|θ, π) is the probability of visiting state s from a policy that solves the MDP with
the induced reward function rθ, and f̄ is the empirical average of features in the
dataset. The Maximum Entropy IRL algorithm for estimating the optimal reward
weights is shown in Alg. 4.

Algorithm 4 MaxEnt IRL

1: D : set of demonstrated paths
2: θ ← θ0
3: while not converged do
4: Use value iteration to solve MDP(θ) for the optimal policy π(a|s, θ)
5: Compute state visitation frequencies p(s|θ, π)

using dynamic programming as in [Ziebart et al., 2008]
6: Compute gradient as in Eqn. 5.7
7: θ ← θ exp(η∇θL(θ)) [Kitani et al., 2012]

Chapter 5. MODEL-BASED PURSUIT 52

5.1.2 Terrain-Based Prediction Model For Navigation

Once we learn the parameters of the target’s reward function from a set of example
paths we can make predictions about the target’s actions. We treat the target as an
efficient navigator through the environment, approximately optimizing its trajec-
tory while trying to reach its destination. We want to account for the fact that the
target’s optimization process is approximate. In existing literature [Ziebart et al.,
2009, Tamar et al., 2016], one way to perform approximate planning on MDPs, and
also in particular in step 4 of Alg. 4, is done through softmax value iteration. Instead
of the standard update rules in value iteration:

Q∗θ(s, a) = rθ(s, a) + V∗θ (s
′
) (5.8)

V∗θ (s) = max
a

Q∗θ(s, a) (5.9)

the max operation is replaced by a softmax:

Q̃θ(s, a) = rθ(s, a) + Ṽθ(s
′
) (5.10)

Ṽθ(s) = softmax
a

Q̃θ(s, a) (5.11)

where (s, a) → s
′

is a known dynamics model. In order to sample paths on which
the target can move towards one of the available destinations, we perform offline
computation of one approximate value function per destination d, denoted here by
Ṽ(d)

θ (s). This denotes the approximate value of the optimal path from location s to
destination d on the map. We use similar notation for the state-action value function
Q̃(d)

θ (s, a).
Given a value function for each destination, we can model the distribution of

paths, conditioned on their endpoints, by comparing a path’s accumulated value to
the value of the optimal path on those endpoints:

p(τA→B|start A, dest C) ∝
exp

(
Rθ(τA→B) + Ṽ(C)

θ (B)
)

exp
(

Ṽ(C)
θ (A)

) (5.12)

This model is useful in order to perform destination prediction, given the history of
a path so far:

p(dest C|start A, τA→B) ∝ p(τA→B|start A, dest C)p(dest C) (5.13)

where p(dest C) is the initial prior distribution on the destinations. In our case this
is uniform, and the set of possible destinations is already known and of small size.

Chapter 5. MODEL-BASED PURSUIT 53

Offline pre-computation of the value function for each destination d also gives
us access to a destination-conditional stochastic policy:

πθ(a|s, d) = exp(Q̃(d)
θ (s, a)− Ṽ(d)

θ (s)) (5.14)

which amplifies the advantage of action a at the given state. If iteratively applied
from any location in the map, this stochastic policy typically leads to an attractor1

at the given destination d. Examples of this are shown in Fig. 5.2. In effect this gives

FIGURE 5.2: 100 paths sampled by iterative application of the stochas-
tic policy of Eqn. 5.14 at test time. Homotopically-distinct samples are
possible, as long as the approximate value function is comparable be-
tween the two homotopy classes. In practice, we observed that this is

not a typical event.

us a fast and direct way of sampling paths from any location to a specific destina-
tion, as opposed to performing MCMC or other sampling methods on Eqn. 5.12.
This has a crucial effect on our probabilistic pursuit algorithm, because it enables
the generation of possible paths without any planning at runtime for the purposes
of prediction, which allows the pursuer to dedicate its resources to formulating a
navigation plan that will re-establish visual contact.

5.2 Model-Based Single-Follower Probabilistic Pursuit

We want to enable a single agent to persistently follow a target that is independent
of the follower and which moves purposefully in an environment with obstacles.

1As long as the softmax value iteration has converged and the feature maps in the given environ-
ment are not conflicting.

Chapter 5. MODEL-BASED PURSUIT 54

We assume the follower is equipped with: (a) knowledge of the map and its pose
in it (b) demonstrated trajectories that the target has executed in the past in similar
environments, revealing its preferences with respect to both potential destinations
and routes that lead to them.

We pose the probabilistic pursuit problem as an integrated combination of plan-
ning and prediction of the future long-term behavior of the target’s state. One way
to see this is as a reinforcement learning problem, where the discrete state st of the
pursuer-target system is defined as st = [xt, yt, dt] where xt and yt denote the pla-
nar poses (row, column, and yaw) of the target and the pursuer respectively, and d
denotes the latent destination of the target. The instantaneous reward is the indi-
cator function of whether the follower sees the target or not. In particular, if we let
FOV(yt) denote the field of view of the follower at time t, then the reward function
is r(st, at) = 1[xt∈FOV(yt)], where at is the action that the follower takes at that time.

The follower does not always have full information about the pose of the target,
so it needs to maintain a belief bel(st) = p(st|ht) about the system’s state st, given a
history vector ht = [z1:t, a1:t], where z1:t is the history of sensor observations 2. We
assume that the follower has full knowledge of its own state as well as of the map,
so the bel(st) is really3 bel(xt, dt), which factors into p(xt|ht)p(dt|ht). Therefore, this
formulation allows us to describe the problem as a Partially-Observable Markov
Decision Process (POMDP), more specifically as a Belief MDP, for the target’s pose
and a classification problem for its future destination. We assume that the initial
distribution over destinations is uniform.

The POMDP transition model Tθ(st+1, st, at) = p(st+1|st, at, θ) is stochastic, and
depends on the behavior of the target, parameterized here by the vector θ of re-
ward weights, which we learn through inverse reinforcement learning. The transi-
tion model factors into p(st+1|st, at, θ) = p(xt+1|xt, dt, θ)p(yt+1|yt, at)p(dt+1|dt, xt).
We assume for simplicity that the follower’s dynamics model is deterministic4, so
p(yt+1|yt, at) = 1[(yt,at)→yt+1]

. We also assume that the destination of the target is
a discrete latent variable that remains constant throughout the duration of the ex-
periment, so p(dt+1|dt, xt) = 1[dt=dt+1]

. This formulation is related to the POMDP-
lite [Chen et al.,] and the Hidden Parameter MDP [Doshi-Velez and Konidaris,
2016] formulations. The POMDP transition model is therefore Tθ(st+1, st, at) =

p(xt+1|xt, dt, θ) which is the learned stochastic policy in Eqn. 5.14.

2zt = ∅ indicates not seeing the target. zt = xt indicates it was seen
3This assumption allows us to decouple the tracking problem from that of Simultaneous Lo-

calization and Mapping, although this work is not affected should one need to model localization
uncertainty.

4Note that the methods presented here do not rely on this assumption.

Chapter 5. MODEL-BASED PURSUIT 55

One of the advantages of using behavior prediction models based on reward
parameters learned through IRL, is that we have access to a very fast generative
model (xt+1, yt+1, zt+1, rt+1) ∼ Gθ(xt, yt, dt, at) that simulates the system. The more
representative this simulator is of the target’s actual behavior, the more certain the
follower is about the value of each available action.

The POMDP transition model that we use accounts for the possibility of false
negative detection errors (not recognizing the target when it is in the field of view
of the follower), which is a common case for visual object detectors, particularly at
large distances. On the other hand, we assume no false positive detections (recog-
nizing the target when it is in fact not there). The observation model we use has
false negative detection probability of q:

p(zt = ∅|st) =

q if xt ∈ FOV(yt)

0, otherwise
(5.15)

The pursuit problem of finding the target after it has escaped the follower’s field
of view can be formulated as finding a pursuit policy π(at+1|ht) that maximizes
the follower’s value function5 Vπ(ht) = Eπ,Tθ

[Rt|ht], where Rt = ∑t+T
i=t γi−tr(st, at)

is the discounted cumulative reward function. Solving this problem exactly is in
general intractable, so sampling-based POMDP solvers, such as [Silver and Veness,
2010, Shani et al., 2013a] have been introduced in the literature.

Instead of resorting to general-purpose POMDP solvers that need to maintain
some level of suboptimal exploratory behavior, we design an algorithm that ex-
ploits domain knowledge about the problem and uses a greedy planning behavior
to determine which location to navigate to next, in order to maximize the chance
of re-establishing visual contact with the moving target. We demonstrate in the re-
sults section that this approach outperforms state-of-the art POMDP solvers and
provides a better solution to the problem. In the sections that follow we present an
analysis of the different components of this algorithm, which is described in detail
in Alg. 5.

5.2.1 Particle Filter and Bayesian Updates of the Belief

We represent the belief bel(xt) about the target’s location as a set of particles x(i),
whose weights w(i) are updated by a particle filter. When a particle is created we
associate it with a fixed speed, a fixed destination d(i) and a single path γ(i) to that
destination. It travels along this path without deviation. The destination of the

5Note that the follower’s value function and policy are different than the target’s value function
and policy.

Chapter 5. MODEL-BASED PURSUIT 56

particle is sampled according to Eqn. 5.13. The sequence of states on the path are
sampled iteratively through actions from the learned policy in Eqn. 5.14.

We model the motion of the particle as always traveling at that speed, and we
rely on including enough particles in the belief to represent a wide range of speed
combinations, without modeling variable speed on any single particle. This is a
crucial element because it allows us to deterministically predict where each particle
is going to be at a specific time.

The transition model: The design choice of fixed speed and fixed path makes the
problem of predicting where the particle is going to be in a few time steps purely de-
terministic. In our case the only stochasticity for a particle’s transition model arises
from the initial choice of destination d(i), the reference path γ(i) to it, and the fixed
speed v(i) at which the particle traverses the path. After those stochastic samples
have been drawn the motion of the particle is deterministic. So, the particle dy-
namics model, p(x(i)t+1|x

(i)
t , d(i), at) = ∑γ,v p(x(i)t+1|x

(i)
t , d(i), at, γ, v)p(γ, v|x(i)t , d(i), at),

depends entirely on the sampled path and speed because after the independence as-
sumptions it can be simplified to p(x(i)t+1|x

(i)
t , d(i), at, γ(i), v(i))p(γ(i)|d(i))p(v(i)). The

conditional transition model p(x(i)t+1|x
(i)
t , d(i), at, γ(i), v(i)) is completely determinis-

tic [Ng and Jordan, 2000] in our system.
We model the speed distribution for particles using two criteria: first, that we

guarantee that the maximum possible target velocity is assigned to many particles,
so that their diffusion can catch up with the target’s motion, even if it is being eva-
sive; second, that no particles are too slow because they might cause the follower to
stay behind and try to clear up hypotheses that move very slowly, while the target
progresses to its destination. Thus, we set:

p(v) =

Uniform[vmax/2, vmax] b = 1

1[v=vmax], otherwise
(5.16)

where b ∼ Bernoulli(0.5) and vmax is the maximum speed of the target. Approxi-
mately half the particles have full speed under this model while the remaining half
will be at least half as fast as the target. Again, this encourages progress towards
the known destination.

The observation model of the particle filter incorporates a maximum range and
field of view limitation to model depth sensors such as the Kinect, but also to re-
flect the fact that today’s target trackers are not generally reliable at large distances.
The observation model may also encode particularities of the detector, such as its
susceptibility to false negative errors as well as dependence to viewpoint, which is
becoming less crucial given recent advances in object detection using supervised

Chapter 5. MODEL-BASED PURSUIT 57

deep learning. The observation model we use in the particle filter is the one pre-
sented in Eqn. 5.15.

The choice of the particle filter as the main Bayesian filtering mechanism was
made because it is able to incorporate negative information, in other words, not being
able to currently see the target makes other locations outside the field of view more
likely. This is something that most other filters cannot provide.

5.2.2 Pursuer Navigation

Our algorithm assumes for simplicity that navigation is done on a 2D plane. We
start by using the Voronoi diagram of the environment to find points that are equidis-
tant from at least two obstacles, and on top of that structure we build the General-
ized Voronoi Graph [Choset, 1997]. Its edges include points that are equidistant
to exactly two objects, while its nodes are at the remaining points of the Voronoi
diagram, either as meetpoints of at least three edges, or as endpoints of an edge
into a dead-end in the environment. These two structures provide a roadmap for
navigation in the environment on which graph-based path planning takes place.

One of the main advantages of using the structure of the GVG in order to facil-
itate topological and shortest path queries is that for realistic environments its size
is usually small enough to be suitable for real time reasoning. The path obtained
from executing a shortest-path algorithm on the GVG is not suitable for fast navi-
gation, in terms of length, curvature and appearance. Shortest paths on the GVG
are not globally optimal paths in the rest of the environment. We partially address
this issue by using an iterative refinement procedure, where we replace parts of the
path that are joinable by a straight line with the points on that line, until little im-
provement is possible. This is essentially the Douglas-Peucker algorithm, referred
to here as REFINE.

We use Yen’s K-shortest paths algorithm [Yen, 1971] on the GVG to compute
multiple topologically-distinct paths to a given goal, and then we iteratively refine
each of the paths to reduce their length. We use this as a heuristic in order to avoid
the scenario where the shortest path found on the GVG belongs to a homotopy
class that does not contain the globally optimal path to the goal. After executing
Yen’s algorithm and refining the paths, we return the one with shortest length as an
estimate of the shortest path.

Once we have the shortest path, we compute the optimal velocity and linear
acceleration controls that will traverse the path in minimum time. We assume that
the follower dynamics is omnidirectional y′ = φ(y, a) = y + aδt, which simplifies
significantly optimal control for path execution.

Chapter 5. MODEL-BASED PURSUIT 58

5.2.3 Pursuit Algorithm

Our pursuit algorithm incorporates two modules, depending on whether the target
is currently in view or not. If it is, the follower uses reactive feedback PID or model-
predictive control to reach a so called “paparazzi” reference frame behind the target
(or whichever the desired viewing pose happens to be). This frame of reference gets
updated as the target moves in compliance with the surrounding environment, so as
to not hit any obstacles. This is illustrated in Fig. 5.3.

FIGURE 5.3: Paparazzi frames around the
current target pose. They describe configura-
tions from which the follower can observe the
target. Trees are treated as obstacles. Yellow
denotes the field of view. Better seen in color.

When visual contact is lost, planning
replaces reactive following. We sam-
ple destinations and paths for the par-
ticles, as explained in the previous sec-
tion, and we start the sampling and re-
sampling steps in the particle filter ac-
cording to incoming observations. Dur-
ing a sequence of incoming observa-
tions with no detections, the distribu-
tion of the destinations p(dt|ht) is not
updated; it is only updated when the
target is detected.

The follower plans a path that will lead to a high-value location, as outlined in
Alg. 5, and executes that path. When the end of path is reached, if unsuccessful,
the follower plans another one. If the target re-enters the field of view, the path hy-
potheses and the particles are discarded and reactive control resumes its operation.

In the previous section we insisted on being able to deterministically query
where a particle is going to be at a particular time in the future. The main rea-
son behind this was to be able to compute the possible times and places at which
the follower could visually intercept it. To this end we assume the functionality of a
function called T, τ = MIN-TIME-TO-VIEW(GVG, yt, p), which is a trajectory plan-
ner in space and time that enables the follower to navigate from its current state yt

to the paparazzi frame p in minimum time, so as to bring itself in view of a potential
target location, as quickly as possible. T is the time it will take to navigate to p, and
τ is the trajectory that is planned. We implemented MIN-TIME-TO-VIEW for the
case where the follower is an omnidirectional robot, by using iterative refinement
of the shortest path obtained from the GVG, as described in the previous section6.

We restrict the set of candidate locations for visual interception to be points
along the reference paths of the particles, for the sake of computational efficiency.

6Trajectory optimization and following is required for other types of dynamical systems, but that
is outside the scope of this paper.

Chapter 5. MODEL-BASED PURSUIT 59

Our pursuit algorithm computes the minimum times to reach paparazzi frames for
a set of waypoints along these reference paths. The possible waypoints include the
final destination of the target. So, heading directly to the destination without in-
termediate stops is one of the considered strategies. The algorithm then selects as
the next navigation waypoint the paparazzi frame that sees the particle with the
highest ratio of probability over distance , and heads over to reach that paparazzi
frame. This is a greedy nearest neighbor algorithm, and we term it NNm for “near-
est neighbor pursuit along multiple homotopy classes”, or more simply, “topologi-
cal pursuit.”

Algorithm 5 NNm(zt, bel(xt) = {(x(i)t , w(i))}i=1...M, yt)

1: zt : the follower’s observation
2: bel(xt) : the follower’s belief about the target’s pose
3: yt : the follower’s pose
4: B : set of potential destinations
5: if zt = xt i.e. the target is visible then
6: bel(xt+1)← PF-UPDATE(GVG, bel(xt), zt, yt, B)
7: x̄t ← desired paparazzi frame based on xt (e.g. behind the target)
8: δθ, δr ← yt − x̄t
9: at ← feedback control from δθ, δr

10: yt+1 ← φ(yt, at)
11: Update p(dt|ht) as in Eqn. 5.13
12: NNm(zt+1, bel(xt+1), yt+1)
13: else
14: for i = 1...M do
15: Sample destination d(i)t ∼ p(dt|ht) as in Eqn. 5.13
16: Sample path γ(i) ∼ p(γ|d(i)t) as in Eqn. 5.14
17: Sample speed v(i) ∼ p(v) as in Eqn. 5.16
18: Assign path γ(i) and speed v(i) to particle x(i)t

19: Tji, τji ← MIN-TIME-TO-VIEW(GVG, yt, pji), ∀j, i
for paparazzi frames pji sampled along γ(i)

20: ∆lji, ∆θji ← total length and rotation in the path πji

21: I ← (i, j) such that particle x(i)t is predicted to reach
pji ∈ γ(i) close to follower’s arrival time Tji

22: i∗, j∗ ← argmax
(i,j)∈I

w(i)

∆lji+∆θji

23: while not reached pj∗i∗ do
24: bel(xt+1)← PF-UPDATE(GVG, bel(xt), zt, yt, B)
25: at ← next action in follower’s trajectory τj∗i∗

26: yt+1 ← φ(yt, at)
27: t← t + 1
28: Go to step 5

Chapter 5. MODEL-BASED PURSUIT 60

5.3 Evaluation and Results

5.3.1 Setup

We set up a simulation environment in order to benchmark our algorithm against
existing MDP and POMDP solvers. This environment includes 20 different aerial
images, with top-down view, shown in Fig. 5.7, each of which covers areas where
the dominant semantic labels of the terrain are: roads, vegetation, trees, buildings,
and vehicles.

Each map was annotated offline by human annotators, who also provided exam-
ples of target trajectories to pre-specified destinations, from various starting points
on the aerial image. The 280 target trajectories, which were demonstrated across
the range of all maps, expressed preference for roads and vegetation, avoiding trees
and buildings, which were treated as obstacles.

We compared our algorithm with variations on the three following baseline
methods: (i) full-information pursuit, (ii) UCT [Kocsis and Szepesvári, 2006], and
(iii) POMCP [Silver and Veness, 2010]:

(i) Full-information pursuit refers to the variant of the problem, where the fol-
lower knows a priori the trajectory of the target, so it can make use of techniques
similar to Model Predictive Control (MPC), which recompute a control sequence at
each time step, based on known dynamics, and select the best action at each time
step, discarding the rest of the plan. Following similar rationale, at each time step,
our full-information pursuit algorithm replans a trajectory from the current state
of the follower to the closest valid paparazzi frame for the target, and executes the
first action prescribed by that trajectory, similarly to MPC. The performance of the
full-information pursuer provides an upper bound on the performance of pursuit
methods, in which the state of the target may be latent.

(ii) UCT is a sampling-based MDP solver that grows a Monte Carlo Search Tree,
using the Upper Confidence Bound (UCB1) rule to trade off exploration vs exploita-
tion. We apply UCT to the variant of our problem in which the state of the target
is revealed to the follower at each time step, but the future states of the follower-
target system are stochastic, according to the latent preferences of the target, such
as destination, route, type of terrain etc.

(iii) POMCP is one of the state-of-the-art sampling-based POMDP solvers. Like
UCT, it also performs Monte Carlo Tree Search. It differs from UCT by the fact that
each state node in the tree contains action edges that lead to observation nodes,
as opposed to other state nodes. It avoids propagating and updating the particle
filter belief at each simulation path through the tree, by sampling a particle from
the belief according to its weights in the filter, and simulating its evolution through

Chapter 5. MODEL-BASED PURSUIT 61

the tree. POMCP addresses the same version of the problem that our method does.
It is worth noting that both in our method as well as in POMCP we use the same
particle filter settings, and the same learned IRL reward weights, so the prediction
mechanism for the target behavior is identical among the two methods7.

We compared our methods against these baselines across approximately 4500
experiment scenarios in total, each of which was repeated under the exact same
settings across 5 different episodes, to get an estimate of variance in the outcomes
of each scenario. These experiment scenarios included variations on:

• the start and destination

• the follower’s / target’s maximum speed

• the time limit allowed to UCT and POMCP to generate a single action

• the probability of false negative detections

• the speed profile of the target, as it executes its trajectory

For the performance of UCT and POMCP baselines we report the success rate for
planning each action within 5 seconds; this of course implies offline operation for
these methods, whereas our topological pursuit method runs in real-time at 4Hz.

5.3.2 Findings

Our experiments demonstrate that our method outperforms both POMCP and UCT
when the follower and the target share the same maximum speed. This is better
shown in Fig. 5.4, which demonstrates the duration of successful pursuit (i.e. how
long the follower sees the target) relative to the full-information pursuit, which
achieves 100% success rate, managing to maintain visual contact with the target
during the entire duration of the experiment. In Fig. 5.4 the probability of false neg-
ative observations is set to 0.5, which means that half the time, when the target is in
the field of view of the follower, it is not detected, in addition to other times when
visual contact is necessitated by the structure of the environment. Our method
scores on average approximately 40%, whereas POMCP is at 15% and UCT is un-
der 5%. The main reason why POMCP and UCT perform poorly in this regime of
equal maximum speed for the follower and the target is that any suboptimal pursuit
actions performed early on in an episode have critical consequences throughout its
duration, in the sense that there is little time to recover visual contact if the target is

7Also for both UCT and POMCP the Upper Confidence Bound exploration constant was set to√
2, and the default leaf expansion policy is the uniform distribution.

Chapter 5. MODEL-BASED PURSUIT 62

0 5 10 15 20

satellite maps

0

20

40

60

80

du
ra

tio
n

of
vi

su
al

co
nt

ac
t

%

Topological pursuit (ours) POMCP UCT

FIGURE 5.4: Relative duration of visual contact across each available
test maps. Bars denote 1σ standard deviation. Averages were taken
with respect to target trajectories and episodes. The horizontal axis

denotes map id.

moving at full speed. POMCP and UCT are prone to committing such suboptimal
moves due to their tendency to explore and be optimistic in the face of uncertainty,
whereas our algorithm is greedy and focused on navigating to a single destination
at a time, so it does not make use of exploratory actions. Additionally, without an
explicit penalty term in the design of the reward function, actions produced by UCT
and POMCP tend to have high variance as well, which is problematic for deploy-
ment in a real vehicle.

As the follower becomes faster relative to the target, suboptimal actions for ex-
ploration become less critical because there is time for the pursuer to recover visual
contact with the target. This is better illustrated in Fig. 5.5, which shows that the
tracking performance of POMCP gradually improves as the follower becomes twice
as fast as the target. T his is not surprising as POMCP is an anytime algorithm. Our
method, however, does not demonstrate the same property. One hypothesis that
might explain this has to do with step 21 of Alg. 5, where we are searching over
points along the sampled particle paths, such that the particles are projected to ar-
rive there approximately at the same time as the follower, which means that they
are suitable to become rendezvous locations. As the relative speed of the follower
increases, the range of locations that are reachable by the target at the same time as

Chapter 5. MODEL-BASED PURSUIT 63

1.0 1.5 2.0 2.5

max follower speed / max target speed

0

10

20

30

40

50

60

70

80

du
ra

tio
n

of
vi

su
al

co
nt

ac
t

%

Topological pursuit (ours) POMCP

FIGURE 5.5: Relative duration of successful pursuit as a function of
maximum speed advantage of the follower. Bars denote 1σ standard
deviation. Averages were taken with respect to maps, target trajecto-

ries, and episodes.

the follower becomes smaller and smaller, which means that the number of options
for the next best paparazzi frame to navigate to is gradually reduced. As the num-
ber of good hypotheses for rendezvous locations becomes more limited the quality
of pursuit deteriorates.

It is worth mentioning, however, that many practical pursuit scenarios belong
in this regime, where the pursuer does not need to be more than twice as fast as the
target (aerial photography with vehicles carrying heavy camera equipment, or div-
ing assistant underwater robots). In this neighborhood of relative speed advantage
our algorithm still outperforms Monte Carlo Tree Search-based methods.

The third axis of variation that we examined is the false negative detection rate,
whose effect is shown in Fig. 5.6. Our method is more robust compared to POMCP,
with more than 3× longer tracking on average, when the observation model is
prone to false negative errors with probability up to 0.5, which is significant, par-
ticularly in vision-based tracking and detection at large distances, where the target
occupies a small part of the image.

Chapter 5. MODEL-BASED PURSUIT 64

0.1 0.2 0.3 0.4 0.5

false negative detection probability

0

10

20

30

40

50

60

du
ra

tio
n

of
vi

su
al

co
nt

ac
t

%

Topological pursuit (ours) POMCP

FIGURE 5.6: Relative duration of visual contact as a function of the
false negative detection rate. Bars denote 1σ standard deviation. Aver-
ages were taken with respect to maps, target trajectories, and episodes.

5.4 Modeling the Subject’s Behavior via Topologically

Distinct Trajectories

What can we do when no historical data about the subject behavior exist and there-
fore, the reward cannot be estimated from data? The simple option of modeling
the target as a random walk is a bad idea because of lack of any destination and
impractically long hitting times for any location (in many cases infinite8). On the
other extreme, assuming perfect information about which route the target is going
to follow and which speed it is going to use, is also not a realistic assumption.

We take the middle ground and we assume extra information about the long-
term behavior of the target, namely that we know its final destination, but we do not
know the route it is going to take to get there, nor the speed at which it will be travel-
ling. We assume that the target is trying to efficiently reach its destination, even if it
does not choose the optimal route. So, it tries to make monotonic progress towards
reaching it. This precludes looping behavior, or strange intermediate stops, and it
is an assumption inspired by the concept of navigation functions [LaValle, 2011] in

8For example, the expected time for Brownian motion starting at 0 to hit a horizontal line is
infinity.

Chapter 5. MODEL-BASED PURSUIT 65

FIGURE 5.7: Some of the satellite maps and the human-annotated tar-
get paths that we used in our test set. Red denotes destinations.

potential fields and control theory. It is also worth mentioning that in this behav-
ior model the target is completely oblivious to the actions of the follower, unlike in
pursuit-evasion games in which the target has to come up with best responses to
the possible actions of the follower.

Since we are to model the target as an efficient navigator, we need to predict or
sample routes along which it will be traveling. Given the target’s destination, and
lacking any other information, for instance about visual landmarks along the route,
or preferred routing information about the target, the only actionable information
that the follower has in order to rank some routes more highly than others is the
topology and visibility structure of the environment. Intuitively, we want to gener-
ate plausible paths that do not deviate from the length of the shortest path by a lot,
but manage to explore a rich set of alternatives about how the target might want to
go to its destination. In this work we search among these alternatives, and make
predictions about the target’s short- to long-term behavior, by using the concept of
topologically distinct shortest paths.

5.4.1 Related Work

The use of computational topology methods [Hatcher, 2000, Edelsbrunner and Harer,
2010] in robotics has seen a rennaissance, particularly in the domain of planning.
Some of the first examples of this line of work were [Bhattacharya et al., 2010a, Efrat
et al., 2006], which presented a method to constrain the shortest path found from A∗

search to lie on a particular homotopy class, and which was later extended to 3D
workspaces in [Bhattacharya et al., 2011a] through the concept of homology. The

Chapter 5. MODEL-BASED PURSUIT 66

FIGURE 5.8: A view of the initial configuration of the simulator. The
blue robot is the follower, with an associated limited field of view. The
red robot in the field of view is the target. The red cube denotes the
destination of the target. Videos and more info about the project can
be found at http://www.cim.mcgill.ca/~mrl/topological_pursuit

difference between the concepts of homotopy and homology is better illustrated
in [Narayanan et al., 2013] and [Hatcher, 2000, Edelsbrunner and Harer, 2010]. They
are equivalence relations in the space of paths, according to how they traverse the
space of obstacles (how they form a sequence of winding numbers around obsta-
cles). We say that two paths are topologically distinct if they belong to different
homotopy classes. Two paths that share the same endpoints are homotopic if there is
a continuous function that deforms one into the other, without hitting any obstacles
in the environment. Homotopy is a stricter constraint than homology. In homotopy,
the order of winding around obstacles matters, while in homology it does not.

5.4.2 Topologically Distinct Short Paths via the GVG

It is important to clarify at this point that all the upcoming sections make the fol-
lowing two assumptions: (a) the pursuit is being done purely in 2D worlds9, and
(b) the homotopy classes considered contain simple paths, i.e. paths without self-
intersections, having a winding number of zero for any obstacle. The concept of
enumerating simple homotopy classes as a way of reasoning about the set of paths
that they represent is promising because for many 2D environments these classes
represent sufficiently many paths to cover the free space. They also allow planning
at a level of abstraction that is more robust to changing paths, or small changes in
the environment, than other representations such as occupancy grids.

We start by using the Voronoi diagram of the environment to find points that
are equidistant from at least two obstacles, and on top of that structure we build the

9In 3D, one can reason about persistent topological features [Bhattacharya et al., 2011b, Pokorny
et al., 2016b]

http://www.cim.mcgill.ca/~mrl/topological_pursuit

Chapter 5. MODEL-BASED PURSUIT 67

FIGURE 5.9: Three homotopically distinct paths found by applying
Yen’s 3-shortest paths on the GVG and then refining the paths to re-

duce their length.
Generalized Voronoi Graph. Its edges include points that are equidistant to exactly
two objects, while its nodes are at the remaining points of the Voronoi diagram,
either as meetpoints of at least three edges, or as endpoints of an edge into a dead-
end in the environment. These two structures provide a roadmap for navigation in
the environment on which graph-based path planning and navigation takes place.

One of the main advantages of using the structure of the GVG in order to fa-
cilitate topological queries is that its size is usually small enough for realistic envi-
ronments, which makes it suitable for real-time reasoning. The other advantage is
that shortest path queries on the GVG yield simple (no loops) paths which suit the
notion of progress to the destination that we mentioned above.

The path obtained from a shortest-path algorithm on the GVG is likely not plau-
sible for prediction in terms of length, curvature and appearance. Shortest paths on
the GVG are not globally optimal paths in the rest of the environment. We partially
address this issue by using an iterative refinement procedure, where we replace
parts of the path that are joinable by a straight line with the points on that line, until
little improvement is possible. Thus, we get plausible short paths from the GVG.

We use Yen’s K-shortest paths algorithm [Yen, 1971] on the GVG to compute
multiple paths to a given destination and then we iteratively refine each of the paths
to reduce their length. An example outcome of this process is depicted in Fig. 5.9,
which shows three topologically distinct short paths. While this heuristic does not
guarantee global optimality with respect to length, it produces plausible alterna-
tives for predictions in real time. For example, computing up to 50 distinct short
paths requires less than a second on a modern machine.

Chapter 5. MODEL-BASED PURSUIT 68

5.4.3 Computational Complexity

The computational complexity of Yen’s K-shortest path algorithm is O(K|V|S) where
|V| is the number of nodes of the GVG graph, and O(S) is the computational com-
plexity of the shortest path algorithm used as a subroutine for Yen’s. In our case
we use Dijkstra, which has complexity O(|E|+ |V|log|V|). GVG is a planar graph,
which implies according to Euler’s formula that |V| − |E|+ F = 2, where F is the
number of faces corresponding to the graph (regions enclosed by edges – in our case
obstacles – and the outer region). Since for any undirected graph ∑v∈V deg(v) =

2|E|we have 2F ≥ 2|E| − 2|V| = ∑v∈V deg(v)− 2|V|. We separate GVG nodes into
the set V1 of endpoints (degree 1) and the set V−V1 of meetpoints (degree≥ 3). We
conclude that 2F ≥ |V1|+ 3|V −V1| − 2|V| = |V|+ 2|V −V1| − 2|V| = |V| − 2|V1|,
or equivalently 2F + |V1| ≥ |V −V1|. This means that the number of meetpoints is
at most linear in the number of obstacles and the number of endpoints.

That said, we are counting on the fact that the reduced form of the GVG [Choset
and Burdick, 2000] is a roadmap of a smooth version of the environment, and thus
an efficient representation of the world, with a bounded number of endpoints per
obstacle. In particular, it is more efficient than occupancy grid or pointclouds. For
example, the cluttered world shown in Fig. 5.9 contains about 90 obstacles and is
represented by about 200 GVG nodes. In practice, the follower could get away with
generating fewer alternatives because physically searching all the route hypotheses
could require a lot of time, or very high speed. In the next few sections we describe
how to use these paths as hypotheses for prediction.

5.4.4 Ranking Topologically Distinct Paths

In order to induce some ranking between the available topologically distinct paths
γ we use their total length as their differentiating factor. l(γ) denotes the length of
that path. We use the softmin operator to turn these lengths into probabilities:

p(γ) = exp(−l(γ)/τ)/ ∑
γi

exp(−l(γi)/τ) (5.17)

where τ is the softmin temperature parameter. In the limit, when τ reaches 0 soft-
min becomes the hard minimum, in other words it assigns full probability to the
minimum length path. Higher values of τ encourage more exploration among
paths of nearby lengths.

Chapter 5. MODEL-BASED PURSUIT 69

5.5 Evaluation and Results

We validate the performance of our pursuit algorithm, as well as the benefit added
from involving topological information, in two ways: first, by comparing our al-
gorithm’s performance to pursuit policies of expert humans; second, by compar-
ing our algorithm to two other tracking algorithms, called NNs and NNr, that do
not reason about multiple homotopy classes when they predict the motion of the
target. Instead, they use the same pursuit algorithm as NNm. NNs stands for
“nearest-neighbor pursuit with target prediction along the shortest path to the des-
tination.” It predicts feasible and likely interception points along the shortest path
to the known destination. NNr stands for “nearest-neighbor pursuit with target
prediction along a short path in a randomly-chosen homotopy class.” The random
choice among available homotopy classes in NNr is done according to the softmin
rule in Eq. 5.17, which favors short paths.

5.5.1 Setup

In order to enable both of these types of comparisons we created a simulator which
includes two representations of omnidirectional robots, one of which is equipped
with a camera sensor, with a limited field of view (about 50 degrees) and a limited
viewing range (8 meters). These limits were set based on sensors like the Kinect.

Our simulator indicates that the target is in view with probability 1 if and only
if it is indeed, so it models only true positives and true negatives. At each point in
time the robot has access to its own pose, as well as the relative pose of the target,
provided it is visible. If not, then the follower does not get to see where the target
is on the map – it needs to make informed guesses. The only helpful information
it has is the eventual destination of the target. We selected worlds that are quite
complex, with many sharp turns across small distances, as is shown in Fig. 5.8, in
order to make it easier for visibility to be lost, and likely for early mistakes to be
penalized highly in terms of performance in the pursuit.

We set up 40 pursuit tasks in total, all with the same starting configuration for
the two robots, but with different destinations for the target, one per task. In all ini-
tial configurations the follower could see the target. The follower was controllable
by joystick for the human users, or by position and velocity control by our plan-
ners. We decided to cluster these 40 tasks into eight separate groups, each of which
consisted of 5 pursuit tasks at different destinations. Groups 1-4 were used for the
comparison between NNm and human pursuit policies, while groups 5-8 were used

Chapter 5. MODEL-BASED PURSUIT 70

for comparing algorithmic policies, namely NNm against NNr and NNs. The max-
imum speeds of the follower vs the target are shown here:

Group 1 2 3 4 5 6 7 8

Follower
Max Speed 2 2.1 3 4 3 3.4 3.8 4.2

Target
Max Speed 2 2 3 4 3 3 3 3

We found that allowing the target to be faster than the follower produced low suc-
cess rates both for humans and our algorithms, particularly in the range of high
speeds mentioned above, so we decided against further examining it as a viable
scenario. The 20 pursuit tasks in the comparison of humans vs NNm were done in
a single map, while the remaining 20 comparisons between algorithms were per-
formed in 5 different maps that presented various degrees of difficulty and chal-
lenges for pursuit.

Each of the 40 tasks lasted from 20 seconds up to about a minute. The trajectories
of the target were prerecorded offline from human users, and they were played
back for each task. These trajectories were chosen so that they took advantage of
the full speed of the target. While they do not account for evasive behaviors such
as hiding at a fixed place, moving backwards, or doing loops and self-intersections,
they can be characterized as efficient, goal-directed trajectories that do not always
go through the optimal route. This can easily be seen in Fig. 5.10, where we plot
how much the 20 target trajectories used for Groups 1-4 deviated from the optimal
paths. The fact that the target trajectories are not following optimal routes can even
better be demonstrated through the concept of homotopy signatures [Bhattacharya
et al., 2010b]. A homotopy signature is a vector of size equal to the number of
obstacles in the map. Each entry contains the winding angle of the trajectory with
respect to a point on an obstacle in the environment. In our case, since we are not
modelling targets that do loops, this signature simplifies to a binary vector. In this
case, an entry in the homotopy signature vector is true if the trajectory passes “to
the left” of the associated obstacle and false otherwise.

We used these concepts to compare how the signatures of each of the 20 target
trajectories compare to the signatures of their respective optimal paths. The results
are shown in Fig. 5.11, and they indicate that an intelligent follower will indeed
need to make decisions that involve more homotopy classes than that of the shortest
path.

Chapter 5. MODEL-BASED PURSUIT 71

0 5 10 15 20

Target trajectories

0

5

10

15

20

25
Pe

rc
en

td
ev

ia
tio

n
fro

m
th

e
le

ng
th

of
th

e
sh

or
te

st
pa

th

FIGURE 5.10: The percentage of deviation in length of the target’s tra-
jectories compared to the optimal path from the initial configuration to

the final destination.

0 5 10 15 20

Target trajectories

0

2

4

6

8

10

H
om

ot
op

ic
de

vi
at

io
n

fro
m

sh
or

te
st

pa
th

(in
bi

ts
)

FIGURE 5.11: Bit difference of homotopy signature vectors between
each target trajectory that was recorded for Groups 1-4 vs. the shortest
paths in each scenario. The median is 4, meaning that in half of the
pursuit tasks, if we were to deform the target’s trajectory to the shortest
path, we would hit 4 out of the approximately 90 obstacles present in

the map.

Chapter 5. MODEL-BASED PURSUIT 72

5.5.2 Human Baseline for Probabilistic Pursuit

We recruited 10 people, most of them expert roboticists in their late twenties, all of
them with prior experience in using joystick control, and one third of them report-
ing experience in First-Person Shooter games. We allowed each user to spend as
much time as necessary to familiarize themselves with the controls of the simulator
and the high speed behavior through practice sessions. Once each task began, the
simulator showed them their current score, namely in how many camera frames
they had visual contact with the target. It also showed them the time left for each
task through a countdown timer. All users reported paying minimal attention to
both of these numbers as they were focused on the game of pursuit. The results of
this user study are shown in Fig. 5.12.

Humans exhibit the largest standard deviation in their pursuit performance
compared to NNm. Our multi-homotopy exploring algorithm performs at least
as well as the human baseline in 14/20 pursuit tasks, especially the ones of Groups
3,4, which require fast reaction. Our algorithm does better, in some cases even by
10%. This advantage is dependent on and indicative of the environment’s complex-
ity, because any mistake made early on in the pursuit can have a large impact on
the user’s final score for the task. It is worth mentioning that human performance
on the closely related Traveling Salesman Problem is close to optimal for small size
problems (of 10 to 20 cities) [Macgregor and Ormerod, 1996]. The planning com-
ponent of some of these algorithms takes about a second to compute (when visual
contact is lost), depending on the number of hypotheses being considered. In that
time the target is allowed to move and might have disappeared. To account for
this need for planning during the pursuit, we perform the comparisons between
algorithms offline. NNm runs in real time if we allow lower resolution in the dis-
cretization of time during the planning step, and limit the number of hypotheses
generated. The input for both the human participants and the three algorithms was
identical: the same target trajectories were replayed to all agents in their respective
comparisons.

5.5.3 Benchmarking Algorithmic Performance

In order to precisely quantify what the added benefit of exploring multiple homo-
topy classes was, we compared our algorithm against two other algorithms, called
NNs and NNr, which use the same pursuit logic but differ in the way they pre-
dict the future motion of the target. NNs makes predictions in the homotopy class
along the shortest path to the known destination, while NNr makes predictions
along a randomly sampled homotopy class, according to the softmin distribution

Chapter 5. MODEL-BASED PURSUIT 73

1

5

10

15

20

T
ar

ge
t t

ra
je

ct
or

ie
s

0 10 20 30 40 50
Time

Total time
Humans
NNm

FIGURE 5.12: Comparison between average human performance and
the NNm pursuit algorithm (Nearest Neighbor with multi-homotopy
prediction). The top bar in each triple is the average total time required
for the completion of the trajectory. The middle is the average time hu-
mans managed to remain in visual contact with the target robot during
that time. The bottom is the average time that NNm maintained visual
contact. NNm performed at least as well as humans in 14/20 trajecto-

ries. (Seen better in color)

Chapter 5. MODEL-BASED PURSUIT 74

follower speed / target speed = 1

1 2 3 4 5

Maps

0

20

40

60

80

100

120
P

er
ce

nt
ag

e
of

 ti
m

e
ta

rg
et

 w
as

 in
 v

ie
w

NNs
NNr
NNm

follower speed / target speed = 1.4

1 2 3 4 5

Maps

0

20

40

60

80

100

120

P
er

ce
nt

ag
e

of
 ti

m
e

ta
rg

et
 w

as
 in

 v
ie

w

NNs
NNr
NNm

FIGURE 5.13: Average percentage of time that the target was in view
during pursuit in different maps. Higher is better. NNm is the third
column, and it does at least as well or outperforms the other two meth-

ods.

in Eq. 5.17, which favors short paths. We set the temperature for NNm and NNr to
τ = 2 for all the experiments shown above.

We compared these algorithms in 5 different maps under varying relative speed
settings for the follower and the target, as outlined in Groups 5-8. We found that in
challenging maps with small mean free path score, and obstacle layout that required
many turns, our algorithm NNm outperformed NNs and NNr. In less challenging
maps where the obstacle density is lower we found that the difference among the
three algorithms was insignificant. The high density of obstacles in the challenging
maps makes reasoning about multiple homotopies necessary because they can be
seen as plausible perturbations of the shortest path, which the target might consider
as valid routes to its destination. This effect was present across all relative speed
variations in Group 5-8. NNm did at least as well as NNs and NNr in all 20 tasks
and outperformed them in half.

5.6 Discussion

Although these results are promising in simulation scenarios, there are multiple
factors that complicate transfer to or scaling to real world pursuit scenarios. The
first obstacle is full knowledge of the 2D or 3D map. In many scenarios, build-
ing an accurate 3D map requires expensive sensors, such as LiDAR or multiple
well-calibrated cameras. In both cases we get a 3D pointcloud representation of
the map, which is not useful for visibility planning – a mesh representation of the

Chapter 5. MODEL-BASED PURSUIT 75

map would be required. Also, the assumption of having prior data to formulate a
behavior model of the subject is in many cases quite significant. Finally, the auto-
matic recognition of possible goals that the subject might be headed to is something
that we have taken for granted in these methods, but in reality it would be another
challenge that would need to be addressed.

76

6 MODEL-FREE PURSUIT

What happens in the case when we do not have a short term behavior model for the
subject of interest, and we do not know which destination it is planning to reach? In
this chapter we examine two example scenarios under this category: First, the worst
case scenario in which the subject is behaving adversarially and actively trying to
escape the pursuer’s field of view. Second, a typical convoying scenario in which
the pursuer wants to maintain a fixed distance to the subject. For the adversarial
case, we present in Appendix A a computational complexity analysis that shows
that finding the lowest speed advantage the pursuer needs to have in order to find
the subject is NP-hard. For the convoying case we present a vision-based robot
convoying system that is demonstrated in underwater scenarios.

6.1 Convoying Pursuit: A Case Study

Vision-based tracking solutions have been applied to robot convoying in a vari-
ety of contexts, including terrestrial driving [Schneiderman et al., 1995, Fries and
Wuensche, 2014], on-rails maintenance vehicles [Maire, 2007], and unmanned aerial
vehicles [Lugo et al., 2013]. Our work demonstrates robust tracking and detection
in underwater settings. This is achieved through tracking-by-detection, which com-
bines target detection and temporally filtered image-based position estimation. Our
solution is built upon several autonomous systems for enabling underwater tasks
for a hexapod robot [Sattar et al., 2008a, Sattar and Dudek, 2009b, Sattar and Dudek,
2009a, Girdhar and Dudek, 2014b, Meger et al., 2015], as well as recent advances in
real-time deep learning-based object detection frameworks [Redmon and Farhadi,
2016, Ren et al., 2015].

In the underwater realm, convoying tasks face great practical difficulties due to
highly varied lighting conditions, and hard-to-model currents on the robot. While
previous work in terrestrial and aerial systems used fiducial markers on the tar-
gets to aid tracking, we chose a more general tracking-by-detection approach that
is trained solely on the natural appearance of the object/robot of interest. While this
strategy increases the complexity of the tracking task, it also offers the potential for
greater robustness to changing pose variations of the target in which any attached

Chapter 6. MODEL-FREE PURSUIT 77

FIGURE 6.1: A sample image from our underwater convoying field
trial using Aqua hexapods [Sattar et al., 2008a]. Videos of our field
trials, datasets, code, as well as more information about the project are

available at http://www.cim.mcgill.ca/~mrl/robot_tracking

markers may not be visible. Other works have demonstrated successful tracking
methods using auxiliary devices for underwater localization, including mobile bea-
cons [Chandrasekhar et al., 2006], aerial drones [Erol et al., 2007], or acoustic sam-
pling [Corke et al., 2007]. While these alternative strategies can potentially be de-
ployed for multi-robot convoy tasks, they require additional costly hardware.

Our system learns visual features of the desired target from multiple views,
through an annotated dataset of underwater video of the Aqua family of hexa-
pod amphibious robots [Sattar et al., 2008a]. This dataset is collected from both
on-board cameras of a trailing robot as well as from diver-collected footage. In-
spired by recent general-purpose object detection solutions, such as [Redmon and
Farhadi, 2016], [Ren et al., 2015], [Iandola et al., 2016], we propose several efficient
neural network architectures for this specific robot tracking task, and compare their
performance when applied to underwater sceneries.

In particular, we compare methods using convolutional neural networks (CNNs),
recurrent methods stacked on top of CNN-based methods, and frequency-based
methods which track the gait frequency of the swimming robot. Furthermore, we
demonstrate in an open-water field trial that one of our proposed architectures,
based on YOLO [Redmon et al., 2016] and scaled down to run on-board the Aqua

http://www.cim.mcgill.ca/~mrl/robot_tracking

Chapter 6. MODEL-FREE PURSUIT 78

family of robots without GPU acceleration, is both efficient and does not sacrifice
performance and robustness in the underwater robot-tracking domain despite mo-
tion blur, lighting variations and scale changes.

6.1.1 Related Work

Several vision-based approaches have shown promise for convoying in constrained
settings. Some methods employ shared feature tracking to estimate all of the agents’
positions along the relative trajectory of the convoy, with map-sharing between the
agents. Avanzini et al. demonstrate this with a SLAM-based approach [Avanzini
et al., 2013]. However, these shared-feature methods require communication be-
tween the agents which is difficult without specialized equipment in underwater
robots. Using both visual feedback combined with explicit behavior cues to facili-
tate terrestrial robot convoys has also been considered [Dudek et al., 1995]. Tracking
was enhanced by both suitable engineered surface markings combined with action
sequences that cue upcoming behaviors. Unlike the present work, that work was
restricted to simple 2D motion and hand-crafted visual markings and tracking sys-
tems.

Other related works in vision-based convoying often employ template-based
methods with fiducial markers placed on the leading agent [Schneiderman et al.,
1995, Fries and Wuensche, 2014]. Such methods match the template to the image
to calculate the estimated pose of the leading robot. While these methods could be
used in our setting, we wish to avoid hand-crafted features or any external fiducial
markers due to the possibility that these markers turn out of view of the tracking
agent.

An example of a convoying method using visual features of the leading agent
without templates or fiducial markers is [Giesbrecht et al., 2009], which uses color-
tracking mixed with SIFT features to detect a leading vehicle in a convoy. While
we could attempt to employ such a method in an underwater scenario, color-based
methods may not work as well due to the variations in lighting and color provided
by underwater optics.

6.1.2 Detection Methods: Feedforward CNNs

VGG

The VGG architecture [Simonyan and Zisserman, 2014] has been shown to general-
ize well to several visual benchmark datasets in localization and classification tasks,
so we use it as a starting point for tracking a single object. In particular we started

Chapter 6. MODEL-FREE PURSUIT 79

from the VGG16 architecture, which consists of 16 layers, the first 13 of which are
convolutional or max-pooling layers, while the rest are fully connected layers1, the
output of which is the classification or localization prediction of the network.

In our case, we want to output the vector z = (x, y, w, h, p), where (x, y) are the
coordinates of the top left corner and (w, h) is the width and height of the predicted
bounding box. We normalize these coordinates to lie in [0, 1]. p is interpreted as the
probability that the robot is present in the image. The error function that we want to
minimize combines both the classification error, expressed as binary cross-entropy,
and the regression error for localization, which in our case is the mean absolute
error for true positives. More formally, the loss function that we used, shown here
for a single data point, is:

Ln = 1p̄=1

3

∑
i=0
|zi − z̄i| − (p̄log(p) + (1− p̄)log(1− p))

where symbols with bars denote ground truth annotations.
We evaluated the following variants of this architecture on our dataset:

• VGG16a: the first 13 convolutional layers from VGG16, followed by two FC-128 ReLU,

and a FC-5 sigmoid layer. We use batch normalization in this variant. The weights of

all convolutional layers are kept fixed from pre-training.

• VGG16b: the first 13 convolutional layers from VGG16, followed by two FC-128 Para-

metric ReLU, and a FC-5 sigmoid layer. We use Euclidean weight regularization for

the fully connected layers. The weights of all convolutional layers are kept fixed,

except the top one.

• VGG16c: the first 13 convolutional layers from VGG16, followed by two FC-228 ReLU,

and a FC-5 sigmoid layer. The weights of all convolutional layers are fixed, except the

top two.

• VGG15: the first 12 convolutional layers from VGG16, followed by two FC-128 ReLU,

and a FC-5 sigmoid layer. We use batch normalization, as well as Euclidean weight

regularization for the fully connected layers. The weights of all convolutional layers

are kept fixed.

• VGG8: the first 8 convolutional layers from VGG16, followed by two FC-128 ReLU,

and a FC-5 sigmoid layer. We use batch normalization in this variant, too. The

weights of all convolutional layers are kept fixed.

1Specifically, two fully connected layers of width 4096, followed by one fully connected layer of
width 1000, denoted FC-4096 and FC-1000 respectively.

Chapter 6. MODEL-FREE PURSUIT 80

In all of our variants, we pre-train the network on the ImageNet dataset as in [Si-
monyan and Zisserman, 2014] to drastically reduce training time and scale our
dataset images to (224, 224, 3) to match the ImageNet scaling.

YOLO

The YOLO detection system [Redmon et al., 2016] frames detection as a regression
problem, using a single network optimized end-to-end to predict bounding box
coordinates and object classes along with a confidence estimate. It enables faster
predictions than most detection systems that are based on sliding window or region
proposal approaches, while maintaining a relatively high level of accuracy.

We started with the TinyYOLOv2 architecture [Redmon and Farhadi, 2016], but
we found that inference was on our robot’s embedded platform (without GPU ac-
celeration) was not efficient enough for fast, closed-loop, vision-based, onboard
control. Inspired by lightweight architectures such as [Iandola et al., 2016], we con-
densed the TinyYOLOv2 architecture as shown in Table 6.1. This enabled inference
on embedded robot platforms at reasonable frame rates (13 fps). Following Ning 2

and [Iandola et al., 2016] we:

• replace some of the 3× 3 filters with 1× 1 filters, and

• decrease the depth of the input volume to 3× 3 filters.

Our ReducedYOLO architecture is described in Table 6.2. This architecture keeps
the same input resolution and approximately the same number of layers in the net-
work, yet drastically decreases the number of filters for each layer. Since we started
with a network which was designed for detection tasks of up to 9000 classes in the
case of TinyYOLOv2 [Redmon and Farhadi, 2016], we hypothesize that the reduced
capacity of the network would not significantly hurt the tracking performance for a
single object class. This is supported by our experimental results. Additionally, we
use structures of two 1× 1 filters followed by a single 3× 3 filter, similar to Squeeze
layers in SqueezeNet [Iandola et al., 2016], to compress the inputs to 3× 3 filters.
Similarly to VGG [Simonyan and Zisserman, 2014] and the original YOLO archi-
tecture [Redmon et al., 2016], we double the number of filters after every pooling
step.

As in the original TinyYOLOv2 configuration, both models employ batch nor-
malization and leaky rectified linear unit activation functions on all convolutional
layers.

2’YOLO CPU Running Time Reduction: Basic Knowledge and Strategies’ at https://goo.gl/
xaUWjL

https://goo.gl/xaUWjL
https://goo.gl/xaUWjL

Chapter 6. MODEL-FREE PURSUIT 81

Type Filters Size/Stride Output

Input 416× 416
Convolutional 16 3× 3/1 416× 416

Maxpool 2× 2/2 208× 208
Convolutional 32 3× 3/1 208× 208

Maxpool 2× 2/2 104× 104
Convolutional 64 3× 3/1 104× 104

Maxpool 2× 2/2 52× 52
Convolutional 128 3× 3/1 52× 52

Maxpool 2× 2/2 26× 26
Convolutional 256 3× 3/1 26× 26

Maxpool 2× 2/2 13× 13
Convolutional 512 3× 3/1 13× 13

Maxpool 2× 2/1 13× 13
Convolutional 1024 3× 3/1 13× 13
Convolutional 1024 3× 3/1 13× 13
Convolutional 30 1× 1/1 13× 13

Detection

TABLE 6.1: TinyYOLOv2 architecture

Type Filters Size/Stride Output

Input 416× 416
Convolutional 16 7× 7/2 208× 208

Maxpool 4× 4/4 52× 52
Convolutional 4 1× 1/1 52× 52
Convolutional 4 1× 1/1 52× 52
Convolutional 8 3× 3/1 52× 52

Maxpool 2× 2/2 26× 26
Convolutional 8 1× 1/1 26× 26
Convolutional 8 1× 1/1 26× 26
Convolutional 16 3× 3/1 26× 26

Maxpool 2× 2/2 13× 13
Convolutional 32 3× 3/1 13× 13

Maxpool 2× 2/2 6× 6
Convolutional 64 3× 3/1 6× 6
Convolutional 30 1× 1/1 6× 6

Detection

TABLE 6.2: Our ReducedYOLO architecture

Chapter 6. MODEL-FREE PURSUIT 82

6.1.3 Detection Methods: Recurrent CNNs

In vision-based convoying, the system may lose sight of the object momentarily
due to occlusion or lighting changes, and thus lose track of its leading agent. In
an attempt to address this problem, we use recurrent layers stacked on top of our
ReducedYOLO architecture, similarly to [Ning et al., 2016]. In their work, Ning et
al. use the last layer of features output by the YOLO network for n frames (con-
catenated with the YOLO bounding box prediction which has the highest IOU with
the ground truth) and feed them to single forward Long-Term Short-Term Memory
Network (LSTM).

While Ning et al. assume that objects of interest are always in the image (as
they test on the OTB-100 tracking dataset), we instead assume that the object may
not be in frame. Thus, we make several architectural modifications to improve on
their work and make it suitable for our purposes. First, Ning et al. use a sim-
ple mean squared error (MSE) loss between the output bounding box coordinates
and the ground truth in addition to a penalty which minimizes the MSE between
the feature vector output by the recurrent layers and the feature vector output of
the YOLO layers. We find that in a scenario where there can be images with no
bounding box predicted (as is the case in our system), this makes for an extremely
unstable objective function. Therefore we instead use a modified YOLO objective
for our single-bounding box single class case. This results in Recurrent ReducedY-
OLO (RROLO) having the following objective function, shown here for a single data
point:

I((
√

x̄−
√

x)2 + (
√

ȳ−√y)2)αcoord

+ I((
√

w̄−
√

w)2 + (
√

h̄−
√

h)2)αcoord

+ I(IOU− p)2αobj

+ (1− I)(IOU− p)2αno_obj (6.1)

where αcoord, αobj, αno_obj are tunable hyper-parameters (left at 5, 1, 0.5 respectively
based on the original YOLO objective), w̄, h̄, w, h are the width, height, predicted
width and predicted height, respectively, I ∈ {0, 1} indicates whether the object
exists in the image according to ground truth, p is the confidence value of the pre-
diction and IOU is the Intersection Over Union of the predicted bounding box with
the ground truth.

Furthermore, to select which bounding box prediction of YOLO to use as input
to our LSTM (in addition to features), we use the highest confidence bounding box
rather than the one which overlaps the most with the ground truth. We find that

Chapter 6. MODEL-FREE PURSUIT 83

the latter case is not a fair comparison or even possible for real-world use and thus
eliminate this assumption.

In order to drive the final output to a normalized space (ranging from 0 to
1), we add fully connected layers with sigmoidal activation functions on top of
the final LSTM output, similarly to YOLOv2 [Redmon and Farhadi, 2016]. Red-
mon and Farhadi posit that this helps stabilize the training due to the normaliza-
tion of the gradients at this layer. We choose three fully connected layers with
|YOLOoutput|, 256, 32 hidden units (respectively) and a final output of size 5. We
also apply dropout on the final dense layers at training time with a probability of .6
that the weight is kept.

We also include multi-layer LSTMs to our experimental evaluation as well as
bidirectional LSTMs which have been shown to perform better on longer sequences
of data [Graves, 2012]. A general diagram of our LSTM architecture can be seen in
Figure 6.2. Our recurrent detection implementation, based partially on code pro-

FIGURE 6.2: Overview of our Recurrent ReducedYOLO (RROLO) ar-
chitecture. The original ROLO work [Ning et al., 2016] did not use bidi-

rectional, dense layers, or multiple LSTM cells in their experiments.

vided by [Ning et al., 2016], is made publicly accessible.3

6.1.4 Detection Methods: Based on Frequency-Domain Analysis

Periodic motions have distinct frequency-domain signatures that can be used as
reliable and robust features for visual detection and tracking. Such features have
been used effectively [Sattar and Dudek, 2009c, Islam and Sattar, 2017] by under-
water robots to track scuba divers. Flippers of a human diver typically oscillate at
frequencies between 1 and 2 Hz, which produces periodic intensity variations in

3http://www.cim.mcgill.ca/~mrl/robot_tracking

http://www.cim.mcgill.ca/~mrl/robot_tracking

Chapter 6. MODEL-FREE PURSUIT 84

the image-space over time. These variations correspond to distinct signatures in
the frequency-domain (high-amplitude spectra at 1-2Hz), which can be used for re-
liable detection. While for convoying purposes, the lead robot’s flippers may not
have such smoothly periodic oscillations, the frequency of the flippers is a config-
urable parameter which would be known beforehand.

time

Intensity vector
along P motion
directions

DTFT
module

Image
sequence

Intensity vectors
along all-possible
motion directions

HMM-based
search-space
pruning

Spatio-temporal volume

Detection

Amplitude-spectra
on 1-3Hz

> threshold

FIGURE 6.3: Outline of mixed-domain periodic motion (MDPM)
tracker [Islam and Sattar, 2017]

We implement the mixed-domain motion (MDPM) tracker described by Islam et
al [Islam and Sattar, 2017]. An improved version of Sattar et al. [Sattar and Dudek,
2009c], the MDPM works as follows (illustrated in Figure 6.3):

• First, intensity values are captured along arbitrary motion directions; motion
directions are modeled as sequences of non-overlapping image sub-windows
over time.

• By exploiting the captured intensity values, a Hidden Markov Model (HMM)-
based pruning method discards motion directions that are unlikely to be di-
rections where the robot is swimming.

• A Discrete Time Fourier Transform (DTFT) converts the intensity values along
P most potential motion directions to frequency-domain amplitude values.
High amplitude spectra on 1-3Hz is an indicator of robot motion, which is
subsequently used to locate the robot in the image space.

6.1.5 Visual Servoing Controller

The Aqua family of underwater robots allows 5 degrees-of-freedom4 control, which
enables agile and fast motion in 3D. This characteristic makes vehicles of this family

4Yaw, pitch, and roll rate, as well as forward and vertical speed

Chapter 6. MODEL-FREE PURSUIT 85

ideal for use in tracking applications that involve following other robots as well as
divers [Sattar and Dudek, 2009c]. One desired attribute of controllers in this type of
setting is that the robot moves smoothly enough to avoid motion blur, which would
degrade the quality of visual feedback. To this end we have opted for an image-
based visual servoing controller that avoids explicitly estimating the 3D position
of the target robot in the follower’s camera coordinates, as this estimate typically
suffers from high variance along the optical axis. This is of particular relevance
in the underwater domain because performing camera calibration underwater is a
time-consuming and error-prone operation. Conversely, our tracking-by-detection
method and visual servoing controller do not require camera calibration. Our con-

FIGURE 6.4: Errors used by the robot’s feedback controller. δx is used
for yaw control, δy for depth control, and the error in bounding box

area, δA is used for forward speed control.

troller regulates the motion of the vehicle to bring the observed bounding boxes of
the target robot on the center of the follower’s image, and also to occupy a desired
fraction of the total area of the image. It uses a set of three error sources, as shown
in Fig. 6.4, namely the 2D translation error from the image center, and the difference
between the desired and the observed bounding box area.

The desired roll rate and vertical speed are set to zero and are handled by the
robot’s 3D autopilot [Meger et al., 2014]. The translation error on the x-axis, δx, is
converted to a yaw rate through a PID controller. Similarly, the translation error on
the y-axis, δy, is scaled to a desired depth change in 3D space. When the area of the
observed bounding box is bigger than desired, the robot’s forward velocity is set to
zero. We do not do a backup maneuver in this case, even though the robot supports
it, because rotating the legs 180o is not an instantaneous motion. The difference in

Chapter 6. MODEL-FREE PURSUIT 86

area of the observed versus the desired bounding box, namely δA, is scaled to a
forward speed. Our controller sends commands at a rate of 10Hz and assumes that
a bounding box is detected at least every 2 seconds, otherwise it stops the robot.

6.1.6 Experimental Results

We evaluate each of the implemented methods on the common test dataset using
the metrics described below, with nimages the total number of test images, nTP the
number of true positives, nTN the number of true negatives, nFN the number of false
negatives and nFP the number of false positives:

• Accuracy : nTP+nTN
nimages

• Precision : nTP
nTP+nFP

and recall: nTP
nTP+nFN

• Average Intersection Over Union (IOU) : Computed from the predicted and
ground-truth bounding boxes over all true positive detections (between 0 and
1, with 1 being perfect alignment)

• Localization failure rate (LFR): Percentage of true positive detections having
IOU under 0.5 [Cehovin et al., 2015]

• Frames per second (FPS) : Number of images processed/second

Each of the implemented methods outputs its confidence that the target is visible in
the image. We chose this threshold for each method by generating a precision-recall
curve and choosing the confidence bound which provides the best recall tradeoff for
more than 95% precision.

We present the evaluation results in Table 6.3 for each of the algorithms that we
considered. The FPS metric was measured across five runs on a CPU-only machine
with a 2.7GHz Intel i7 processor.

Non-Recurrent Methods

As we can see in Table 6.3, the original TinyYOLOv2 model is the best perform-
ing method in terms of IOU, precision, and failure rate. However our results show
that the ReducedYOLO model achieves a 14x speedup over TinyYOLOv2, without
significantly sacrificing accuracy. This is a noteworthy observation since ReducedY-
OLO uses 3.5 times fewer parameters compared to TinyYOLOv2. This speedup is
crucial for making the system usable on mobile robotic platforms which often lack
Graphical Processing Units, and are equipped with low-power processing units.
Additionally, note that the precision metric has not suffered while reducing the

Chapter 6. MODEL-FREE PURSUIT 87

Algorithm ACC IOU P R FPS LFR

VGG16a 0.80 0.47 0.78 0.79 1.68 47%

VGG16b 0.82 0.39 0.85 0.73 1.68 61%

VGG16c 0.80 0.35 0.88 0.64 1.68 70%

VGG15 0.71 0.38 0.65 0.75 1.83 62%

VGG8 0.61 0.35 0.55 0.69 2.58 65%

TinyYOLOv2 0.86 0.54 0.96 0.88 0.91 34%
ReducedYOLO 0.85 0.50 0.95 0.86 13.3 40%

RROLO (n=3,z=1) 0.68 0.53 0.95 0.64 12.69 15%
RROLO (n=3,z=2) 0.84 0.54 0.96 0.83 12.1 9%
RROLO (n=6,z=1) 0.81 0.53 0.95 0.80 12.1 11%
RROLO (n=6,z=2) 0.83 0.54 0.96 0.82 12.03 11%
RROLO (n=9,z=1) 0.81 0.53 0.95 0.80 11.53 9%
RROLO (n=9,z=2) 0.80 0.50 0.96 0.79 11.36 14%

MDPM Tracker 0.25 0.16 0.94 0.26 142 19.3%
TLD Tracker 0.57 0.12 1.00 0.47 66.04 97%

TABLE 6.3: Comparison of all tracking methods. Precision and recall
values based on an optimal confidence threshold.

model, which implies that the model rarely commits false positive errors, an im-
portant quality in convoying where a single misdetection could deviate the vehicle
off course.

In addition, we found that none of the VGG variants fared as well as the YOLO
variants, neither in terms of accuracy nor in terms of efficiency. The localization fail-
ure rate of the VGG variants was reduced with the use of batch normalization. In-
creasing the width of the fully connected layers and imposing regularization penal-
ties on their weights and biases did not lead to an improvement over VGG16a. Re-
ducing the total number of convolutional layers, resulting in the VGG8 model lead
to a drastic decrease in both classification and localization performance, which sug-
gests that even when trying to detect a single object, network depth is necessary for
VGG-type architectures.

Finally, the TLD tracker [Kalal et al., 2012] performed significantly worse than
any of the detection-based methods, mainly due to tracking drift. It is worth noting
that we did not reinitialize TLD after the target robot exited the field of view of
the follower robot, and TLD could not always recover. This illustrates why model-
free trackers are in general less suitable for convoying tasks than detection-based
trackers.

Chapter 6. MODEL-FREE PURSUIT 88

Recurrent Methods

All the recurrent methods were trained using features obtained from the ReducedY-
OLO model, precomputed on our training set. We limit our analysis to the recurrent
model using the ReducedYOLO model’s features, which we’ll refer to as Recurrent
ReducedYOLO (RROLO), since this model can run closest to real time on our em-
bedded robot system. Our results on the test set are shown in Table 6.3. For these
methods, z denotes the number of LSTM layers, n is the number of frames in a given
sequence. Note that the runtime presented here for RROLO methods includes the
ReducedYOLO inference time. Finally, while bidirectional recurrent architectures
were implemented and tested as well, we exclude results from those models in the
table as we found that in our case these architectures resulted in worse performance
overall across all experiments.

As can be seen in Table 6.3, we find that the failure rate and predicted confi-
dence can be tuned and improved significantly without impacting precision, recall,
accuracy, or IOU. More importantly, we find that the correlation between bounding
box IOU (with the ground truth) and the predicted confidence value of our recur-
rent methods is much greater than any of the other methods, which translates to a
more interpretable model with respect to the confidence threshold parameter while
also reducing the tracking failure rate. For our best configurations of VGG, YOLO,
ReducedYOLO, and RROLO, we take the Pearson correlation r-value and the mean
absolute difference between the ground truth IOU and the predicted confidence5.
We find that RROLO overall is the most correlated and has the least absolute differ-
ence between the predicted confidence and ground truth IOU.

Variations in layers and timesteps did not present a significant difference in
performance, while yielding a significant reduction in failure rate even with short
frame sequences (n = 3, z = 2). Furthermore, the frame rate impact is negligible
with a single layer LSTM and short time frames, so we posit that it is only beneficial
to use a recurrent layer on top of ReducedYOLO. While the best length of the frame
sequence to examine may vary based on characteristics of the dataset, in our case
n = 3, z = 2 provides the best balance of speed, accuracy, IOU, precision and recall,
since this model boosts all of the evaluation metrics while retaining IOU with the
ground truth and keeping a relatively high FPS value.

Increasing the number of LSTM layers can boost accuracy and recall further,
without impacting IOU or precision significantly, at the expense of higher runtime

5Pearson correlation r-value: VGG (.70), YOLO (.48), ReducedYOLO (.56), RROLO (.88). Mean
absolute difference between confidence predicted and IOU with ground truth: VGG (.37), YOLO
(.17), ReducedYOLO (.18), RROLO (.08).

Chapter 6. MODEL-FREE PURSUIT 89

and higher risk of overfitting. We attempted re-balancing and re-weighting the ob-
jective in our experiments and found that the presented settings worked best. We
suspect that no increase in IOU, precision and recall was observed as there may not
be enough information in the fixed last layers of the YOLO output to improve pre-
diction. Future work to improve the recurrent system would target end-to-end ex-
periments on both the convolutional and recurrent layers, along with experiments
investigating different objective functions to boost the IOU while making the confi-
dence even more correlated to IOU.

Frequency-Domain Detection

In our implementation of MDPM tracker, non-overlapping sub-windows of size
30× 30 pixels over 10 sequential frames are considered to infer periodic motion of
the robot. Peaks in the amplitude spectrum in the range 1-3Hz constitute an in-
dicator of the robot’s direction of motion. We found that the frequency responses
generated by the robot’s flippers are not strong and regular. This is due to lack of
regularity and periodicity in the robot’s flipping pattern (compared to that of hu-
man divers), but also due to the small size of the flippers compared to the image
size. Consequently, as Table 6.3 suggests, MDPM tracker exhibits poor performance
in terms of accuracy, recall, and IOU. The presence of high amplitude spectra at 1-
3Hz indicates the robot’s motion direction with high precision. However, these re-
sponses are not regular enough and therefore the algorithm fails to detect the robot’s
presence in a significant number of detection cycles. We can see however that the
failure rate for this method is one of the lowest among the studied methods, indi-
cating very precise bounding boxes when detections do occur. Additionally, this
method does not need training and is the fastest (and least computationally ex-
pensive) method, by a significant margin. Therefore given more consistent periodic
gait patterns it would perform quite well, as previously demonstrated in [Islam and
Sattar, 2017].

Field Trial: Setup

To demonstrate the practicality of our vision-based tracking system, we conducted
a set of in-ocean robot convoying field runs by deploying two Aqua robots at 5
meters depth from the sea surface. The appearance of the leading robot was altered
compared to images in our training dataset, due to the presence of an additional
sensor pack on its top plate. This modification allowed us to verify the general
robustness of our tracking-by-detection solution, and specifically to evaluate the
possibility of overfitting to our training environments.

Chapter 6. MODEL-FREE PURSUIT 90

0.0 0.1 0.2 0.3 0.4 0.5

Normalized area of annotated bounding box

0

500

1000

1500

2000

2500
N

um
be

r

True positives + false negatives
False negatives

FIGURE 6.5: Histogram of true positive and false negative detections
as a function of the area of annotated bounding boxes, as obtained from

in-ocean robot tracking runs.

We programmed the target robot to continuously execute a range of scripted
trajectories, including maneuvers such as in-place turning, changing depth, and
swimming forward at constant speed. We deployed the ReducedYOLO model on
the follower robot, which operated at 7 Hz onboard an Intel NUC i3 processor with-
out GPU acceleration or external data tethering. Moreover, the swimming speeds
of both robots were set to be identical in each run (0.5− 0.7 m/s), and they were
initialized at approximately two meters away from one another, but due to currents
and other factors the distance between them (and the scale of observed bounding
boxes) changed throughout the experiment runs.

Field Trial: Results

We configured the follower robot to try to track the leading robot at a fixed nominal
distance. This was achieved by setting the desired bounding box area to be 50% of
the total image area, as seen in Fig. 6.4.

The ReducedYOLO detector consistently over-estimated the small size of the
target. Nevertheless, Fig. 6.6 indicates that the bias error in bounding box centers
between detected versus ground truth was consistently low in each frame, regard-
less of the target size, on average within 10% of the image’s width to each other.

Chapter 6. MODEL-FREE PURSUIT 91

This is notable due to frequent occurrences where the robot’s size occupied less
than 50% of the total area of the image.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized area of annotated bounding box

0.00

0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

bi
as

es
of

bo
un

di
ng

bo
x

ce
nt

er
s

FIGURE 6.6: Histogram of average biases between detected vs. anno-
tated bounding box centers, as obtained from in-ocean robot tracking

runs. Bars indicate 1σ error.

We also evaluated the performance of our system in terms of the average “track
length”, defined as the length of a sequence of true positive detections with a max-
imum of 3 seconds of interruption. Across all field trial runs, the follower achieved
27 total tracks, with an average duration of 18.2 sec (σ = 21.9 sec) and a maximum
duration of 85 sec. As shown in Fig. 6.7, the vast majority of tracking interrup-
tions were short, specifically less than a second, which did not affect the tracking
performance, as the leading robot was re-detected. The majority of these tracking
interruptions were due to the fact that the annotated bounding box area of the lead-
ing robot was less than 20% of the total area of the follower’s image. Sustained
visual detection of the target, despite significant visual noise and external forces in
unconstrained natural environments, and without the use of engineered markers,
reflects successful and robust tracking performance in the field.

Chapter 6. MODEL-FREE PURSUIT 92

0 10 20 30 40 50

Duration of tracking interruptions (in sec)

0

20

40

60

80

100

N
um

be
r

True negatives + false negatives
False negatives

FIGURE 6.7: Histogram of true negative and false negative classifica-
tions in terms of their duration for our ReducedYOLO model, as ob-

tained from in-ocean robot tracking runs.

93

7 VISUAL LOCALIZATION AND
MAPPING FOR 3D NAVIGATION

In order to enable the robotic systems presented in the previous chapters navigate in
GPS-denied environments we have developed a sensor-based simultaneous local-
ization and mapping (SLAM) system, which estimates the 7DOF pose of the robot
and the 3D points of the map. We are interested in metric, true-scale SLAM due to
the fact that it can be used in a closed feedback loop for autonomous navigation by
most mobile robotic vehicles. This is particularly relevant for robots that operate in
GPS-denied environments, or that need higher accuracy than the one provided by
normal GPS.

7.1 Scale Drift In Visual Localization And Mapping

Monocular vision-based SLAM systems can provide feedback for position control,
however they typically are unable to maintain constant scale across time, meaning
the distance units change over time due to unobservability of the magnitude of
the translation vector. Maintaining constant scale can be difficult for monocular
systems, for instance when the camera rotates in-place [Strasdat et al., 2010, Hesch
et al., 2014, Jones and Soatto, 2011], with insufficient baseline to triangulate new
points in the map. Estimation error in the map feeds back into the localization
error, which creates a feedback loop which results in scale drift. This error creates
unnecessary difficulties for the controllers that have to act on estimated position,
resulting in degraded performance that might even expose the vehicle to risk. In
addition, another drawback of monocular SLAM systems is that the metric scale of
a map estimated with a single camera is going to be different than the true distance
units of the world. In other words, not only does the scale drift over time, but the
true scale is unobservable.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 94

7.2 Inertial And Multi-Camera Localization

We present a system that drastically reduces the risk of the drawbacks discussed
above in three ways:

• by using visual correspondences of keypoints from the motion of the second
camera in stereo pair, which usually has sufficient baseline to perform correct
triangulation of new 3D map points

• by using visual correspondences of keypoints from the synchronized stereo
pair, which has a fixed baseline and can provide a steady supply of new 3D
map points

• by using sensor measurements from an Inertial Measurement Unit

Our system, shown in Fig. 7.1, tightly integrates measurements obtained from an In-
ertial Measurement Unit (IMU) with stereo camera ego-motion estimation in a con-
tinuous optimization setting. Inertial and visual sensors are ubiquitous in robotics
systems, and they work in a wide range of challenging environments, including
underwater, in the air, and on the water surface.

IMU
Left

Camera

Right

Camera

FIGURE 7.1: Pelican quadrotor with mounted sensor module

We show that the combination of these two types of sensors results in more efficient,
more robust, and more accurate SLAM than what can otherwise be obtained via
any of the individual sensing modalities in this real-time context. It also has the
following related advantages:

• it has obvious connections to the human vestibular and visual system, whose
combination enables balance and spatial awareness

• it leads to desirable observability properties of the estimated pose and velocity
even in cases where monocular camera + IMU SLAM is challenging (i.e. in-
place rotations) [Martinelli, 2013, Hesch et al., 2014, Jones and Soatto, 2011]

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 95

• there is increased availability of cheap cameras and inertial sensors

• they can operate passively in a diverse set of challenging environments, such
as in space or underwater, assuming sufficient visibility but no external sup-
porting equipment

Our system is based on the well-established ORBSLAM [Mur-Artal et al., 2015],
which performs SLAM with a single monocular camera and, therefore, suffers from
scale drift problems as discussed above. Due to the richer availability of sensory in-
formation, we manage to overcome all of these limitations in most scenarios1. Our
system continuously optimizes the 3D points in the map, as well as the camera’s tra-
jectory from which said points were observed. In addition, it maintains uncertainty
information about each triangulated 3D map point, in the form of a marginalized
covariance matrix, which is updated whenever the point is re-observed. We cur-
rently use this information to reject triangulations that are almost ill-posed or have
unreasonably high uncertainty in the estimated depth, which improves the accu-
racy of our estimates and avoids potential instabilities.

Benefits Of IMU Measurements

In addition to these advantages, the inclusion of the IMU in the estimation process
provides a few other practical benefits to our system. First, it enables the prediction
of keypoint locations in the next image, thus reducing matching time and boost-
ing overall efficiency. Second, it increases the accuracy of the system by involving
its measurements tightly in the optimization. This means that the IMU measure-
ments can prevent the system from getting lost during sharp turns when the cam-
eras might suffer from motion blur. Third, and most importantly, the IMU increases
the robustness of the system because it enables effective recovery from loss of track-
ing, whenever that is possible. Whereas the only response of a monocular SLAM
system to loss of tracking is to indefinitely wait for an already visited place to be
seen again, our system can use the stereo pair to initialize a new sub-map and it can
then use the IMU to align the sub-map with the existing map. In fact, our system
can do this sub-map initialization from a single frame, without requiring any special
motions such as a swiping translation, which is commonly required by monocular
systems [Klein and Murray, 2007].

1There are still motions that result in unobservable scenarios [Tribou et al., 2015]

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 96

Related Work

This increased robustness is entirely due to the rich information offered by the
synchronized stereo + IMU sensor module. Our work is similar to other meth-
ods proposed such as PTAM [Klein and Murray, 2007], MCPTAM [Harmat et al.,
2012], SVO [Forster et al., 2014], and works by Shen [Shen et al., 2015] and oth-
ers [Leutenegger et al., 2015, Christian Forster, 2015]. All these methods perform
feature-based tracking to estimate pose and orientation with respect to a world-
fixed frame of reference. PTAM was initially meant for augmented reality appli-
cations but has been extended many times. For example in MCPTAM [Harmat
et al., 2012], which tries to overcome some limitations by enabling feature tracking
in multiple non-overlapping camera views. This method can work well, but does
not integrate IMU measurements, and is computationally intensive. SVO [Forster
et al., 2014] attempts to reduce the computational requirements by mixing direct
(feature based tracking) and semi-direct (photometric based tracking) methodolo-
gies to reduce the necessity to perform feature matching at every frame. Works by
Shen [Shen et al., 2015] propose methods for tightly coupling an IMU with mono
and stereo vision, however BRIEF descriptors are used when performing stereo cor-
respondences, which have been shown to be more computationally expensive than
ORB features. To our knowledge, none of these methods perform single-frame sub-
map initialization.

7.2.1 Frame Definitions

We define the following four frames for our estimator: W is the fixed world inertial
frame of reference in which all the quantities of interest are expressed, LC and RC
are the moving frames of the left and right cameras respectively, and I is the moving
IMU frame. The two camera frames and the IMU frame are fixed with respect to
each other, and we assume to know in advance the transformations that link them.
In fact we have done the calibration using Kalibr [Furgale et al., 2012]. In our par-
ticular case, the rotation of W is the local North-East-Down frame. The localization
state vector that we want to estimate is the following:

S =
[

LC
W q LCpW

WvI bg ba

]
(7.1)

where LC
W q is a unit quaternion that expresses the rotation from the fixed world

frame to the left camera frame, LCpW is the position of the world frame in the co-
ordinates of the left camera frame, WvI is the velocity vector of the IMU in world
frame, bg is the gyroscope bias, and ba is the accelerometer bias affecting the IMU

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 97

measurements. Upon every incoming pair of stereo images, we create a frame ob-
ject that has this instantaneous localisation information as its state vector. In our
system frames are created at the camera frame rate, which is 15Hz. We also store all
the IMU measurements since the last stereo image pair was received, which from
an IMU that runs at 100Hz means that on average each frame has about 7 IMU
messages that precede it.

Our system currently assumes that both cameras use the pinhole projection
model, are in-phase with the IMU measurements using hardware triggering, and
also that they share the same exposure times. The mapping state vector that we want
to estimate is a dynamic-size vector that comprises a list of selected map points and
a list of selected keyframes.

Keyframes are snapshots of frame objects along the trajectory that are dispersed
in a way that balances sufficient visual overlap to exploit for triangulation, and
enough visual differences to lead to potentially sufficient baseline for motion stereo.
Each keyframe contains its own copy of the pose of the left and right camera.
Keyframes also contain the list of keypoints that were detected in the pair of stereo
images, and their correspondences to existing triangulated 3D map points. Ensur-
ing that many of these correspondences from 2D pixel keypoints to 3D map points
are made correctly through triangulation of new map points or identification and
merging of identical ones is an essential ingredient to the success of the SLAM sys-
tem.

Each map point contains its 3D position in the world frame, an ORB descriptor
that best represents the descriptors of the keypoints that are currently associated
with it, an average viewing direction towards the optical centers of the keyframes
that observed it, and a minimum and maximum range from which a keyframe can
observe it, in order to limit spurious triangulations. In addition to that, we also store
a 3× 3 marginal covariance matrix that describes our uncertainty in the position of
the map point.

Just like in [Mur-Artal et al., 2015] our system simultaneously runs three inter-
acting threads: tracking, local mapping, and loop closing. This is shown in Fig. 7.2.
Our system builts upon theirs, and uses the g2o framework [Kümmerle et al., 2011]
for graph-based nonlinear optimization throughout the system. In the following
sections we describe each of the threads, but it is worth noting at this moment that
the tracking thread mainly deals with the correct state estimation of frames and
IMU data processing, while the other two threads deal exclusively with estimating
the pose of keyframes, without processing any IMU data. That is, we do not model
IMU measurements as factors in the connected graph of keyframes, but we rather
take a more filtering-type approach, which will be explained below.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 98

Local Mapping Thread

Create New 3D Map Points

Merge Map Points

Local Bundle Adjustment

Remove Outliers

Tracking Thread

Extract 2D Keypoints From Left
and Right Image

Compute Stereo Matches and
Triangulate New Map Points

Link 2D Keypoints to 3D Map
Points

Fix Map Points
Optimize Pose of Current Image

Initialize a New Sub-Map
and Merge With Existing Map

Lost?
NO YES

New Keyframe?

Map

3D Map Points

7D Keyframes

YES

Compute Bag of Words
Descriptor for Keyframe's Image

Optimize Neighboring
Keyframes

Loop Closure Thread

Compare With Bag of Words
Descriptors of Other Keyframes

Place Recognized?

Pause Local Mapping Thread

Merge Map Points

YES

Sensor

Stereo Camera

Inertial Measurement Unit

FIGURE 7.2: System Overview

7.2.2 Tracking Thread

The tracking thread is the one that receives each stereo image pair. It is responsible
for extracting Harris keypoints [Harris and Stephens, 1988, Shi and Tomasi, 1994]
and ORB descriptors [Rublee et al., 2011] on each image, and undistorting those
keypoints. This happens in parallel on two separate sub-threads in order to speed
up processing time. The tracking thread is also the one receiving the IMU measure-
ments. It initializes stereo frames and populates them with the IMU messages that
were received since the previous frame. The tracking thread also computes high-
quality stereo matches from the left descriptors to the right at 15Hz. These matches
satisfy strict thresholds over distances from the epipolar lines. The stereo keypoint
matches are going to be used for initializing the map for the first time, for sub-map
initialization, and also in the local mapping thread. These steps are illustrated in
Fig. 7.2 and they are going to be described in more detail in sections 7.2.2, 7.2.2
and 7.2.3 respectively.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION 99

After initializing the frame objects the tracking thread is responsible for asso-
ciating 2D keypoints to existing 3D map points. It doesn’t do this by brute force
matching over the entire map. Instead, it uses the previous frame’s state estimate
and integration of the IMU measurements that came after it to predict the rough
pose of the current frame (see section 7.2.2). It then projects the map points asso-
ciated with the previous frame to the current frame’s image plane, and searches in
very small local neighborhoods around those predicted pixels. If this association
fails the system transitions into the LOST state, as shown in Fig. 7.2.

The tracking thread refines the predicted state of the current frame, by minimiz-
ing the reprojection error of its associated keypoints while also not deviating from
the integrated IMU state. This step is the first part of “Current Pose Estimation” in
the flowchart of Fig. 7.2 and it is going to be described in more detail in section 7.2.2.
The second part does an additional refinement optimization on the pose of the cur-
rent frame. This optimization considers a limited number of keyframes that share
map point observations with the current frame. It then attempts to establish more
such associations in the current frame by projecting each keyframe’s map points
that are visible to the current frame, and refines its camera pose even further.

Finally, the tracking thread checks if the current frame is a good candidate for
being cloned into a keyframe. If so, it is dispatched to the local mapping thread for
processing, and the thread starts processing the next set of incoming measurements.

Single-Frame Map Initialization via Stereo Triangulation

One of the advantages of relying on a stereo camera is that it allows our system to
initalize a map from a single pair of images without requiring translational “swip-
ing” motion of the camera that is required to initialize monocular systems [Klein
and Murray, 2007]. As long as the observed scene is textured enough and is near
enough to the camera to perform accurate triangulation – that is at most 10-30 times
the baseline in practice – this step is going to be successful. Our system performs
stereo triangulation in two steps:

Linear Triangulation: In the first step, we use Hartley’s linear triangulation
method [R. Hartley, 1997], which sets up the following constrained least squares
problem: let X = [A B C D]> be the homogeneous coordinates of a 3D point in
the world frame W. Using the 3× 4 projection matrices Pleft and Pright of the two
cameras we get the equations that describe the projection of rays: [u v 1]> = PleftX
and [u′ v′ 1]> = PrightX. Note, that here we assume the poses of the two cameras
in the world frame are known and fixed. From these we get four linear equations
that constrain the homogeneous coordinates of the point, and since the equations
describe rays, we can constrain the variable artificially by requiring that ‖X‖ = 1.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION100

Then the problem formulation for linear triangulation becomes

QX = 0 (7.2)

subject to ‖X‖ = 1 (7.3)

with

Q =

uP>left,3 − P>left,1

vP>left,3 − P>left,2

u′P>right,3 − P>right,1

v′P>right,3 − P>right,2

4×4

(7.4)

where P>left,1 denotes the first row of the projection matrix of the left camera in the
stereo pair. This is a linear least squares problem with norm constraints. It is actu-
ally identical to the Rayleigh Quotient problem in physics:

argmin
X
‖QX‖ (7.5)

subject to ‖X‖ = 1 (7.6)

Its solution is given by the eigenvector that corresponds to the smallest eigenvalue
of the matrix Q>Q. We use SVD to compute this eigenvector and then we convert
from homogeneous coordinates to Euclidean coordinates inR3, which corresponds
to the initial estimate of the map point’s position.

Refining Triangulation: Our system further improves on the triangulation es-
timate above by doing a second round of optimization, which computes the 3D
position of the map point in world coordinates by minimizing a weighted-norm re-
projection error. This second optimization round weighs ORB keypoints detected
at closer scales higher than those detected at farther scales in the scale pyramid.
This is because keypoints that are better localized on the image will most likely be
better triangulated in 3D, so their error should be penalized more. These weights
are encoded by the diagonal matrix Σz. Then the second optimization for refining
the map point position is

argmin
Wf

∥∥∥[u v u′ v′]> − h(LC
W q, LCpW , RC

W q, RCpW , Wf)
∥∥∥2

Σz
(7.7)

which is an unconstrained nonlinear least squares problem. Its solution is obtained
iteratively, and it is initialized by the solution found in the first Rayleigh Quotient
optimization, described above. In addition, after this second optimization takes

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION101

place we compute the covariance of the nonlinear least squares estimator, which
describes the uncertainty of the triangulation, as follows:

cov(Wf) = (J>h Σ−1
z Jh)

−1 (7.8)

where Jh is the Jacobian of the stereo projection function h evaluated at the map
point estimate from the linear triangulation step. We assume a Gaussian distribu-
tion of the noise in the estimate of the map point position, and we note that whether
this covariance underestimates the real error (making this least squares estimator
inconsistent) strongly depends on whether the initial triangulation estimate is close
to the optimal solution, which in turn depends on the pixel noise characteristics of
the camera and the pixel localisation of the keypoint. We performed a Monte-Carlo
simulation which indicates that even for a keypoint localisation error of 3 pixels, the
probability that the covariance computed from the linearized least squares problem
leads to a consistent estimator quickly drops off as a function of the depth of the
real point. This is shown in Fig. 7.3

0 5 10 15 20 25 30
Depth of stereo observed landmark (meters)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
ro

ba
bi

lit
y

of
 e

rr
or

 b
ei

ng
 w

ith
in

 3
-s

ig
m

a
el

lip
se

FIGURE 7.3: The probability that the 3-sigma uncertainty ellipse
around the map point’s least squares estimator includes its true po-
sition quickly drops off as depth increases. This is for keypoint lo-
calisation error of 3 pixels. This empirical probability drops faster at
higher noise levels. This further supports the argument for not trust-
ing triangulation results that are too far away, given the camera’s and
the keypoint detector’s error characteristics, as they lead to inconsistent

estimators.

Outlier Rejection Criteria: Given these considerations we accept the triangulation
as successful if a series of outlier detection tests are passed. The tests include the
low-parallax test from [Mur-Artal et al., 2015], χ2 tests on the reprojection error
under the Huber loss, negative estimated depth, excessive depth variance from the
position covariance computed above, tests on the conditioning of the least-squares
problem itself, and also maximum/minimum cutoffs on the estimated depth. Even

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION102

TRACKING LOST RECOVERY

Satellite View

Estimated Position

FIGURE 7.4: Sub-map initialization following an occlusion: the green
points in the tracking phase correspond to 3D map points that are sta-
ble in the map. As the cyclist occludes those points, visual tracking
gets lost, but IMU integration maintains spatial continuity. When the
occlusion stops, a new map is initialized and merged with the previous

one.

though we employ this series of aggressive outlier rejection tests there are still a
few spurious points that pass into the pipeline, but each optimization step deals
with them separately. The end result of this 2-view/stereo triangulation scheme is
that it enables map initialization from a single pair of images, without requiring
translational motion, unlike monocular visual SLAM systems.

Sub-Map Initialization

Sub-map initialization is used to recover from events that cause few keypoint asso-
ciations and the system is unable to accurately estimate the state and is said to be
lost. These events include sudden occlusions such as moving objects entering the
field of view, motion blur, and very fast abrupt turns which relative to the frame
rate. When the system becomes lost, it enters the sub-map initialization process,
which simultaneously performs single-frame map initialization as described in the
previous section, while at the same time continually integrating the IMU angular
and linear velocities and computing a new pose estimate based on the previous
pose. Once initialization is successful, the sub-map containing a keyframe and map
points is merged with the existing map. This is better illustrated in Fig. 7.4.

Short-Term Feature Prediction Using Inertial Measurements

Upon reception of a new stereo image pair the tracking thread needs to compute a
rough estimate of the pose of the new image frame, given the pose of the previous
frame, so that it can perform predict where the map points of the previous frame

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION103

are going to be projected on the image plane of the current frame. In order to do this
our system performs IMU integration on the IMU measurements that have arrived
between the previous and the current images. Thus, it computes the relative motion
of the IMU from the previous frame, and by extension, the relative motion of the
stereo camera. Although this scheme is accurate for the rotational component, it is
noisy for the relative translation due to the double integration of the accelerometer.
So, during the step of keypoint prediction our system ignores the relative transla-
tion of the IMU integration, and instead uses the relative displacement of the two
previous frames. This method seems to work quite well even under heavy rota-
tions. In fact our system achieve average keypoint prediction errors in the order of
4-5 pixels.

Given IMU measurements ωm and αm for the angular velocity and linear accel-
eration of the IMU frame, respectively, we model the errors affecting the measure-
ments as follows, similarly to [Mourikis and Roumeliotis, 2007]:

ωm = Iω + bg + ng (7.9)

αm = R(I
Wq)(Wα−Wg) + ba + na (7.10)

where Wα and Iω are the true values, the noise is white Gaussian, and the biases
are modeled as Brownian motion processes with ḃg = 0, ḃa = 0, and R() de-
notes the rotation matrix resulting from the corresponding quaternion. The linear
acceleration and angular velocity estimates used in the IMU state integration are
α̂ = αm − b̂a and ω̂ = ωm − b̂g. With that in mind, we perform the Forward Euler
integration of the IMU state using the following equations:

W
I q̂tk+1

= W
I q̂tk

⊗
 ω̂
‖ω̂‖sin(‖ω̂‖ (tk+1−tk)

2)

cos(‖ω̂‖ (tk+1−tk)
2)

˙̂bg = 03×1 , W ˙̂vI = R(W

I q̂)α̂ + Wg (7.11)
˙̂ba = 03×1 , W ˙̂pI =

W v̂I (7.12)

Frame Pose Refinement & Tight IMU Coupling

After having assigned an initial estimate to the pose of the newly-created frame,
the tracking thread has established correspondences between the 2D keypoints of
said image frame and the existing map points of the previous image frame. It then
refines that estimate by optimizing over the poses of the two frames in order to
minimize two costs: the first is the reprojection error of those map points (denoted
by RE), and the second is a relative motion error from the IMU motion (denoted by

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION104

RME). During this optimization the map point positions are treated as fixed. Let S0

denote the localisation state vector of the previous frame, and S1 denote the local-
isation vector of the current frame, as explained in Eq. 7.1. Then the optimization
problem our system solves at this step is the following:

argmin
S0,S1

RE(S1) + RME(S0, S1) (7.13)

where the reprojection error is

RE(S) = ∑
Wf↔z f

∥∥∥z f − g(LC
W q, LCpW , f)

∥∥∥2

Σz
(7.14)

where g is the function that projects a point from the world frame to a pixel in the
camera’s image plane. If we denote the relative camera motion that is obtained
from the IMU motion, expressed in the previous frame’s coordinates, by ∆̄q0

1, ∆̄p0
1

and the same quantity obtained from the state vectors of the two frames as ∆̂q0
1, ∆̂p0

1.
In addition let the integrated IMU velocity starting from the state vector S0 until the
time of the current frame be W v̄I1 . Denote also the IMU velocity in the state vector
S1 as WvI1 Then the relative motion error is

RME(S0, S1) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∆̄q0
1 ⊗ ∆̂q1

0

∆̄p0
1 − ∆̂p0

1
W v̄I1 −WvI1

bg1 − bg0

ba1 − ba0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

ΣIMU

(7.15)

where ΣIMU expresses the uncertainty of the IMU propagation. This tight integra-
tion of the IMU in the tracking and optimization loop allows improved rotation es-
timates as well as accurate velocity estimates, which will be better shown in Fig. 7.6
in the Experiments Section.

7.2.3 Local Mapping Thread

The local mapping thread receives newly-created and initalized keyframes from the
tracking thread and it is responsible for using them in order to triangulate new map
points for the system. Therefore, the role of this thread is critical as it needs to sup-
ply the other two threads with a sufficient number of well-triangulated map points
so that their optimizations can produce meaningful results. This step is illustrated
in the system flowchart of Fig. 7.2.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION105

Upon receiving a new keyframe, it establishes links between the new arrival and
existing keyframes in the map. These connections signify visual overlap among the
keyframes, so in [Mur-Artal et al., 2015] this is called the Covisibility Graph. Connec-
tions are weighted according to the number of jointly-observed map points [Stras-
dat et al., 2011]. This enables the system to search in the visual vicinity of a keyframe,
without setting positional or time bounds or doing position-based nearest neigh-
bour search.

Once new map points have been created, the local mapping thread tries to merge
them with existing map points, to avoid duplicate representations. This is done in
the neighbourhood of the new keyframe, as described above, so it is done very
efficiently. This step is also depicted in the flowchart of Fig. 7.2. Once duplicate
map points have been merged, the system proceeds to its most computationally
demanding step: local bundle adjustment, which is going to be described in more
detail below.

Creating New Map Points

Monocular SLAM systems only have one option when it comes to triangulating new
map points: that is motion stereo, assuming there is sufficient baseline between
pairs of keyframes. When the baseline is too short, for instance during in-place
rotations, the system is in the risk of scale drift.

Since our system uses stereo images, it has a few more options in such patholog-
ical cases. For example, if the left camera is undergoing in-place rotation the right
camera is not. We exploit this property to enable as much as possible a steady sup-
ply of newly-triangulated map points. We have observed that our system needs at
least 200 new map points at each new keyframe in order to perform well. The local
mapping thread receives the stereo matches from the left image to the right image,
as computed in the tracking thread. It then uses the triangulation technique pre-
sented in the map initialization section 7.2.2, to generate 50-200 high quality map
points.

In addition to that, our system examines a selection of overlapping keyframes in
the visual neighbourhood of the newly-created one. For each neighboring keyframe
we do the triangulation of section 7.2.2 between its left image and the current keyframe’s
left image. This is usually harder than triangulating jointly observed points on
stereo images, because in this case pairs of keyframes can have very different view-
points towards the scene.

When the baseline is small, it does not, which is why our system also matches
keypoints from the current keyframe’s left image to the neighboring keyframes’
right image. It is worth repeating that all these matching processes are done via

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION106

projections of map points to the image plane, and not via brute force examination
of pairs of keypoints, which makes them very efficient. Thus, our system overcomes
the drawback of such pathological cases that plague monocular vision-based SLAM
systems.

Merging New Map Points With Existing Map

Once new map points get created they need to be integrated into the map. Therefore
duplicates need to be merged. Following [Mur-Artal et al., 2015] our system goes
through a selection of the co-visible keyframes of the current one. For each such
visual neighbor it projects the map points of the new keyframe to the neighbor, and
efficiently identifies matches using Hamming distances on the space of binary ORB
descriptors. Vice-versa, it goes through the visual neighbors and projects their Map
Points to the current one, also establishing matches.

The map points that are merged need to have their mean and covariance up-
dated, so two sources of information need to be combined into one. We could per-
form the uncertainty update of this operation using covariance intersection tech-
niques, but we have opted for treating this update in the same way one would do
it in an Extended Kalman Filter. We regard the act of merging as obtaining a new
pixel measurement for an existing map point, and we update its estimate so as to
minimize the minimum mean squared error criterion, given a prior estimate. This
is akin to maintaining an EKF for each map point, and updating it whenever new
observations are established.

More concretely, if the prior Gaussian estimate of the map point is given by
(Wft−1, Σt−1), and we merge it with an existing map point with pixel observation z
on a neighboring keyframe with pose LC

W q, LCpW , then the minimum mean squared
error update is as follows:

K = Σt−1J>g (JgΣt−1J>g + Σz)
−1

W∆f = K(z− g(LC
W q, LCpW , Wft−1))

Σt = Σt−1 −KJgΣt−1 (7.16)

where g is the same reprojection function introduced in Eq. 7.14, and Jg is its Jaco-
bian evaluated at the previous mean estimate Wft−1.

Local Bundle Adjustment

Local Bundle Adjustment takes the newly-created keyframe and its co-visible neigh-
bours, as well as all their map points, and it performs a fixed number of reprojection

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION107

error minimization steps. This is similar to Eq. 7.14, with the difference that local
bundle adjustment optimizes over the keyframe poses as well as over the map point
positions. Hence, there is usually a large number of variables involved in this step,
in the order of 50 keyframes and 1500 map points. On an i7 computer this step
usually takes in the order of 0.2-0.5 seconds, while executed in the background. It is
critical for refining the estimates of the localisation and mapping variables, but also
for the process of identifying spurious map points and badly-estimated keyframes
that need to be pruned out.

7.2.4 Loop Closing Thread

The loop closing thread is responsible for identifying scenes that have been vis-
ited before. It does this by comparing the Bag-of-Words descriptor [Galvez-López
and Tardos, 2012] that is stored in each keyframe before it is inserted in the map.
The system maintains an index from visual words to the keyframes that observed
them, so, querying this index for potential place recognition candidates that have
observed the words in the current keyframe is very efficient. The same index is used
by the tracking thread in order to search for local relocalisation candidate keyframes
that match the BoW descriptor of the newly-created frame. The loop closing error is
propagated to the visual neighbors using an incrementally updated spanning tree
of the co-visibility graph [Mur-Artal et al., 2015].

7.3 Experimental Results

In this section we describe the hardware used and the calibration done, prior to
running any of our experiments. In the following sections we describe several ex-
periments that validate the accuracy of our state estimator.

7.3.1 Synchronized Sensor Module

Our custom sensor module (as shown in Fig. 7.1) consists of two IDS Imaging uEye
LE cameras along with a VectorNav VN-100 IMU mounted to a rigid platform. The
cameras are mounted in a stereo fashion with a baseline of 30cm and capture 752 x
480 resolution images. The IMU runs at 100Hz and provides a synchronous trigger
to the cameras at ∼15Hz. A dual core 3.4 GHz Intel NUC5i7RY baseboard, with
16GB of RAM and a 512GB SSD, is used to acquire the images and perform state
estimation. The sensor module and computer together weigh ∼450 grams.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION108

-3 -2.5 -2 -1.5 -1
x(m)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

y(
m

)

moreslam (ours)
vicon

FIGURE 7.5: View of the estimated vs Vicon ground truth path pro-
jected on the xy plane.

Our experiments were performed on: (1) a hand-held unit used in experiments
described in sections 7.3.2 and 7.2.2, and (2) a submersible hand-held unit used in
the reconstruction of an underwater shipwreck described in section 7.3.3.

7.3.2 Validation From Vicon Ground Truth

To validate the accuracy of the state estimates, we used a Vicon motion capture
system which provides independent pose and orientation measurements - the plot
of the horizontal plane is shown in figure 7.5. Compared to the Vicon over a 120s
interval and a 4m x 4m area, the pose estimates of our system have the following
errors:

x̃ (mm) ỹ (mm) z̃ (mm) θ̃x (deg) θ̃y (deg) θ̃z (deg)
5.8 ±17.8 9.7 ±19.2 10.4 ±9.1 -0.2 ±0.51 -0.07 ±0.50 -0.11 ±1.03

TABLE 7.1: Estimation error compared to Vicon. Reported error is stan-
dard deviation.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION109

0 20 40 60 80 100 120
time (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

IM
U

 v
el

oc
ity

 x
 in

 w
or

ld
 fr

am
e

vx (ours)
dx/dt (vicon)
dx/dt (ours)

FIGURE 7.6: Estimated velocity in x of the IMU in world coordinates.
Our system’s velocity state estimate almost coincides with our sys-

tem’s and Vicon’s differentiated position estimates.

7.3.3 Reconstruction Of An Underwater Shipwreck

We also tested our system on stereo and IMU data that were collected using a wa-
terproof sensor box handheld by a diver. The camera intrinsics were calibrated
underwater, but their fixed transformation was computed on land. The trajectory
that the diver followed was able to perform visual coverage of the Helion ship-
wreck at the coast of Carlisle Bay in Barbados. The coverage was redundant with
multiple loops, different viewpoints, and numerous opportunities for loop closure.
The reason behind mapping a shipwreck was to test the performance of our system
in cases where features are guaranteed to be a few meters away from the camera,
in the presence of many moving objects such as fish, and also lack of visibility after
10 meters, which is common in underwater environments and one of the factors
that makes them challenging. The dataset includes multiple in-place rotations es-
pecially at the bow of the ship and multiple opportunities for losing tracking due
to abrupt turns. It also includes transitions from downward-looking coverage to
forward-looking. The general shape of the trajectories followed a figure 8, with the
intersection point being at the center of the ship. For rough ground truth, we mea-
sured the dimensions of the rectangular opening in the hull that dominates the front
part of the ship. It was measured underwater to be 4.5m× 9.7m.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION110

We used this dataset to compare our system with ORB-SLAM1 [Mur-Artal et al.,
2015], ORB-SLAM2 [Mur-Artal and Tardós, 2016], and SVO [Forster et al., 2014]. To
evaluate the tracking performance, we turned off the relocalisation and loop closing
modules, and we ran the four systems 10 times separately on the same single loop
at the front of the ship. The results are shown in Figs. 7.7. Of the four algorithms
the one that fared the worst was SVO, which did not complete a single loop during
these tests, as it got lost every four meters or so. This is shown on Table 7.2. ORB-
SLAM2, which was the most robust in terms of not getting lost during any of the 10
rounds, also misestimated the in-place rotation at the bow of the ship and its yaw
estimate drifted. Our system performed better than ORB-SLAM1, almost aligning
the rectangle at the front of the ship, and estimated the rectangular opening in the
hull to be 4.7m× 10.8m

TABLE 7.2: Number of times the estimator got lost while reconstruct-
ing the Helion shipwreck

Ours ORB-SLAM1 ORB-SLAM2 SVO
2 4 0 10

Relocalisation and loop closure are essential for the life-long operation of this sys-
tem, and we decided to test it in conjunction with this functionality by visually
mapping the entire shipwreck, seen in Fig. 7.8. We validated the end result by
comparing against the tape measurements of the front rectangle opening. The final
estimates of its dimensions were 4.7m× 10.9m, and the system was able to process
the entire 15-minute trajectory.

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION111

6

4

2

z

0

-2

181614121086

-4

420-2
y

-4

-2

0

x

2

4

6

-9-8-7-6-5-4-3-2-101
x

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y

-20-18-16-14-12-10-8-6-4-20
x

-8

-6

-4

-2

0

2

4

y

FIGURE 7.7: (a) Our system’s map in North-East-Down frame (b) ORB-
SLAM1’s map in the first camera’s frame (c) ORBSLAM2’s map in the

first camera’s frame

Chapter 7. VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION112

4
0z

15 -6
10

-45

-4

0 -2

y

-5
0-10

-15

x

2

4

6

8

FIGURE 7.8: Map of the Helion shipwreck, estimated by our system
with loop closure enabled. Color represents time. Blue points were

visited first.

113

8 FUTURE WORK

This thesis has touched upon multiple aspects of problems related to robot videog-
raphy based on human preferences and specifications, and how to make the interac-
tion between people who need data from challenging environments and the robots
that can get that data more efficient and seamless. That said, there are multiple
specific directions that need to be explored in depth:

8.1 Active Semi-Supervised Learning for Visual Rewards

Semi-supervised learning refers to learning from both labeled and unlabeled ex-
amples. It has been explored in multiple contexts [Zhu et al., 2003, Zhu, 2006],
including deep generative models [Kingma et al., 2014], and it has been shown that
learning about the distribution of the data can help inform discriminative models.
An implicit assumption in this techniques is that if two data points are “close”, ac-
cording to some definition, then their labels should be “close” as well. To the best of
our knowledge this idea has not been examined in depth for structured prediction
and semantic segmentation in particular. The main constraint is once again that
current methods, such as [Kingma et al., 2014], assume a small number of classes,
as is the case for example on MNIST or similar datasets. When the number of possi-
ble classes reaches CH×W then these methods break as they rely on marginalization
over all possible classes. Even less explored is the idea of semi-supervised learning
that is done in an active way, where the data to be labeled are deliberatively chosen
to provide the most information to a learner. Similar research directions are usually
found in the machine teaching literature [Zhu, 2015].

8.2 Predictive Topological Tracking in 3D

In this thesis we relied on the topology of 2D spaces to compress the possible pre-
dictions one can make about future paths and trajectories. The notion of homotopy
was sufficient to capture the possible ways of navigating around obstacles. Unfor-
tunately, this is not the case when we go to 3D. For example, imagine a finite-length
wall separating A to B, in an otherwise empty space. Paths from A to B in 2D must

Chapter 8. FUTURE WORK 114

choose whether to traverse on the left or the right of the wall, and thus belong to two
different classes. In 3D paths can jump over the wall in a continuous way, and there-
fore the notion of homotopy is not helpful. The notion of persistent homology within
topological data analysis is promising for this direction [Edelsbrunner and Harer,
, Pokorny et al., 2016c, Pokorny et al., 2016a, Pokorny and Kragic, 2015], as a way
to describe the shape of a high-dimensional pointcloud. The main idea in this area
is that high-dimensional pointclouds can be summarized by low-dimensional de-
scriptors, which are obtained by converting the pointcloud into (loosely speaking)
graphs whose neighbourhood relationships are determined by increasing spatial
distance1, leading to a graph description of connectivity at increasing scales. The
persistent features in this sequence of graphs determine the persistent homology,
from which we can define classes of topologically distinct trajectories. The utility
of these concepts for tracking will be if topological information can be combined
with generative models of trajectories, so that topologically distinct paths can be
sampled efficiently; a direction which at the moment is very much overlooked.

8.3 Combining Intermittent Tracking and Visual Explo-

ration

We demonstrated a system where a robot visually tracked a diver while at the same
time directed another camera towards interesting parts of the scene. The long-term
vision for this type of system is that the robot should be able to intermittently track
the diver, without having to be constantly fixated in their direction. This will allow
robots to explore collaboratively alongside humans, without constantly having to
see where the human is, but by making informed short-term and long term pre-
dictions of their location. After exploring on their own, robots will try to relocate
their human collaborators to redirect their attention towards any interesting obser-
vations they made in the meantime. In order to achieve this, many of the insights
we developed in our work on combining IRL with tracking will apply here.

1More formally: filtered simplicial complexes

Chapter 8. FUTURE WORK 115

8.4 Combining Model-Based Visual Attention with Surprise-

Based Exploration

In surprise- and curiosity-based exploration the robot is typically drawn to parts of
the scene where novel observations can be made [Girdhar and Dudek, 2011, Gird-
har and Dudek, 2012, Girdhar and Dudek, 2014a, Paul et al., 2014]. Often however,
the user is interested both in surprising observations and in specific types of antic-
ipated observations, and focusing on visual anomalies does not guarantee that the
user will find the recorded data useful at the end. We argue that these two types of
objectives need to be balanced in a similar way to exploration-exploitation in large-
scale MDP planning and reinforcement learning. Our work on active reward learn-
ing in this thesis focused exclusively on exploitation, while [Girdhar and Dudek,
2011, Girdhar and Dudek, 2012, Girdhar and Dudek, 2014a, Paul et al., 2014] looked
carefully at anomaly detection and exploration. Combining the two objectives in
a single visual search and exploration framework is an important direction, where
Upper Confidence Bounds for online learning could be a fruitful ingredient [Auer,
2000].

8.5 Interactive, Long-Term Visual Search and Exploration

It is a testament to the fragility, expense of execution, and engineering efforts re-
quired, that robotics experiments are typically limited to a few hours in duration
and a few hundred meters in spatial cover. Fortunately, this does not encapsulate
the entirety of the field, as robotic efforts from large oceanographic institutes span
months and kilometers of reach. We argue that as long experiments unfold and
data comes in in batches, users’ preferences about visual content will dynamically
change. It is important to be able to perform Bayesian updates of the visual re-
ward/attention model with as few interactions as possible.

116

9 CONCLUSIONS

Where should robots look? What type of data should they collect for us? What are
the best ways for us to communicate our needs and specifications to them? These
are some of the questions that have motivated the work presented in this thesis. We
have provided both algorithms and robotic systems that have been demonstrated
to work in challenging real-world scenarios, including underwater, on the ground,
and in the air, in collaboration with and to the service of human scientists. We
have performed some of the most unique and large scale multirobot experiments
in the field, and we have contributed several algorithmic advancements to an area
(robot videography) that for many justifiable reasons has typically been studied in
a compartmentalized way (tracking, human robot interaction, visual search and ex-
ploration, field robotics), due its sheer breadth. This thesis has been an attempt to
change that, and emphasize the fact that robot videographers are essential for as-
sisting humans to collect the data they need.

This thesis described the following contributions:

• An active supervised learning approach that tries to minimize the model un-
certainty of a distribution of pixel-level saliency maps. This method selects
batches of the most informative images to present next to the expert user for
pixel-level annotation of their regions of interest.

• Robot field trials involving cooperation between aerial, sea surface, and un-
derwater vehicles exploring environments in a semi-autonomous fashion, ac-
cording to the specifications of a human. These types of multi-robot systems
working in concert with humans are unique in the robotics literature and have
paved the way for novel environmental monitoring applications.

• A method that combines visual tracking, behavior prediction, planning and
control so as to be able to follow a known target with intermittent observa-
tions. Unlike many existing trackers, it is able to deal with the case where
visual contact with the subject is lost, by making informed predictions about
its subject’s behavior, which is learned through inverse reinforcement learn-
ing.

Chapter 9. CONCLUSIONS 117

• A method to topologically constrain the predictions of a pursuit algorithm in
order to condense the expanse of possibilities that the planner must consider,
which enables target tracking in large environments even in the absence of a
behavior model for the target of interest.

• We prove complexity theory results that show the NP-hardness of the pursuit
problem even when the follower has speed advantage over the target.

• A localization and mapping method that allows real-time visual navigation
based on sensory inputs from a stereo camera and an inertial measurement
unit. We have used this method for GPS-free navigation in many of the en-
vironments explored and the scenarios examined in the field trials mentioned
above. In particular we demonstrate the real-time 3D mapping of an entire
shipwreck by a lightweight, handheld sensor pack, which is one of the few
deployments of its kind.

We hope that the main messages conveyed through this work:

(A) That visual exploration should actively incorporate a model of the users’ pref-
erences, otherwise the data a robot collects through surprise-based navigation
is not guaranteed to be useful to them.

(B) That visual tracking should be intermittent and predictive, and combined
with exploration and navigation, otherwise robots are not going to be able
to robustly assist humans in real environments.

are considered non-controversial and useful to the development of the field. Robotics
is destined to become part of our lives. The ways and the extent to which it can ulti-
mately help our fellow humans in their daily work depends on what collectively we
adopt as research priorities. We hope that this thesis inspires much needed further
work in these two directions.

118

A Worst Case Computational
Complexity of Model-Free Pursuit

We first examine the complexity of computing the minimum speed advantage the
pursuer needs to have in order to clear the environment and thus find the evader.
To this end we assume a discretized model of the environment, which we represent
by a graph G = (V, E). We also discretize the time of the motion and we assume
that at the end of each time step both the pursuer and the evader will reside on a
node of the graph. In other words, we consider node search, where edges signify
transitions between nodes, without making it possible for the agents to reside on
an edge at the end of a time step. As such, the evader can traverse one edge in one
time step, while the pursuer can traverse sp ∈ {1, ..., 2|E|} edges 1, which is going
to denote his speed. Under these assumptions we let Sn be a star-shaped tree on n
nodes.

Definition 1. Let CLEAR(Sn, sp, t, v0) be the decision problem that returns ’yes’ iff Sn

can be cleared by a single pursuer with initial position v0 on the tree and speed sp in time
t ∈ Q∩ [0, ∞].

In order to classify the complexity of CLEAR and other related problems, we are
going to need the following problem:

Definition 2. Let 3PARTITION(x1, x2, ..., x3n) be the decision problem that returns ’yes’
iff the positive integers x1, x2, ..., x3n, whose sum is nB where B ∈ N, can be partitioned
into triples that have the same sum, B. 3PARTITION has been shown to be strongly NP-
complete [Garey and Johnson, 1979], in the sense that it remains NP-complete even if the
input numbers x1, x2, ..., x3n are bounded by a polynomial in n.

Theorem 1. CLEAR(Sn, sp, t, v0) is NP-complete.

Proof. We are going to construct a polynomial-time Turing reduction from 3PAR-
TITION to CLEAR. Given a set of positive integers x1, x2, ..., xn we construct a star-
shaped tree with 3n branches, as shown in Fig. A.1. The ith branch contains xi nodes,
including the root. We claim that a 3-partition exists iff this tree can be cleared by a

12|E| allows a tour of the graph in one time step

Appendix A. Worst Case Computational Complexity of Model-Free Pursuit 119

FIGURE A.1: An example of a tree construction used in the reductions.
In this example, (y1, y2, y3) = (2, 3, 4) and (y4, y5, y6) = (5, 6, 7) are two
triples of positive integers, some of the 3n numbers that are the input

of a 3PARTITION instance

single pursuer, having speed sp = 2(B− 3), in time t = n−max{xi− 1}/(2(B− 3)),
starting from the root.
(⇒) Assume a 3-partition exists, and consider an arbitrary triple. Its sum is B =

∑3n
i=1 xi/n. A pursuer with speed sp = 2(B − 3) can start from the root, clear the

three branches corresponding to the triple and return to the root in one time unit,
while the evader has crossed only one edge. The pursuer can thus clear the remain-
ing n− 1 triples in time n− 1. Since the last branch of the last triple does not require
going back to the root, we should only take it into account once. To minimize the
time it takes to clear the tree the pursuer must leave the longest branch for last. So,
the tree can be cleared in time t = n−max{xi − 1}/(2(B− 3)).
(⇐) Assume a 3-partition does not exist. Then for any partition of x1, x2, ..., x3n

into triples, we will be able to find two sets {y1, y2, y3} and {y4, y5, y6} such that
without loss of generality: y1 + y2 + y3 < B, y4 + y5 + y6 > B, none of the yi is
max{xi}, and no repartition of these six numbers into two triples would make both
sums B. We want to show that a pursuer with speed sp = 2(B − 3) cannot clear
these two branches in time t <= 2, while being able to clear the remaining n − 2
branches in time n − 2 −max{xi − 1}/(2(B − 3)). Suppose the pursuer decides
to clear y1, y2, y3 first, which will require a portion of the the first time unit. If he
spends the remaining of that portion at the root, to avoid possible recontamination
by the evader, then he will need more than one time unit to clear y4, y5, y6, so we
are done. If he decides to spend the remaining portion of the first unit clearing part
of y4, y5, y6, even if he arrives at the root at the end of the second time unit, y1, y2, y3

or some of the other triples will have been recontaminated. So, additional time will
be required to re-clear them.

Appendix A. Worst Case Computational Complexity of Model-Free Pursuit 120

This shows that CLEAR is NP-hard. The trajectory of the pursuer on the tree
is a polynomial-time-verifiable certificate for CLEAR(Sn, sp, t, v0) which makes it
NP-complete.

It is interesting to compare this result with the problem of computing the mini-
mum number of pursuers, each with speed equal to or less than that of the evader,
required to clear a graph. Even though that problem was shown to be NP-complete
for general graphs, it is tractable for the case of trees, where a linear-time algo-
rithm for computing the search number is available [Parsons, 1978, Megiddo et al.,
1988, Borie et al., 2009]. In our variant of the problem, even the case of star-shaped
trees is computationally hard for a single pursuer. This is due to the size of the
configuration space of the game, which for the case of star-shaped trees can be de-
noted by (c1, c2, ..., cb, p). ci is the number of nodes that are currently cleared on
the ith branch, and p is the current node at which the pursuer resides. ci ∈ Θ(n)
and p ∈ Θ(n) so the size of the configuration space is Θ(nb+1). If the number
of branches is also Θ(n) then the size of the configuration space becomes non-
polynomial. The goal of the pursuer is to find a simple path from (0, 0, ..., 0, root) to
any of the following configurations (maxc1, maxc2, ..., maxcb, ∗) in this state space.
The edges linking these configurations depend on the speed advantage sp that we
allow the pursuer, which can range from 1 to 2(n− 1). The more speed we allow,
the denser the connectivity of the state space. Therefore, given a certain pursuer
speed, a clearing strategy is possible when there is a path connecting the starting
state to one of the goal states. When sp = n− 1, for example, there are direct edges
connecting them, so the pursuer can clear the star in one time unit. If we restrict the
number of branches b to be fixed, the size of the state space becomes polynomial
and typical graph-searching algorithms can give us a clearing strategy.

Other variants of CLEAR are also computationally hard, even for the case of
stars. For instance, computing the minimum time in which a star is clearable by a
pursuer with speed sp, or computing the minimum speed at which a star is clearable
at a given time t. This is shown in the following theorems.

Definition 3. Let MINTIME-CLEAR(Sn, sp, v0) = t∗ be the optimization problem of
computing the minimum time t∗ at which a star-shaped tree Sn is clearable by a single
pursuer with speed sp who starts at node v0.

Definition 4. Let MINSPEED-CLEAR(Sn, t, v0) = s∗p be the optimization problem of
computing the minimum speed s∗p with which a single pursuer can clear a star-shaped tree
Sn in time t, starting at node v0.

Definition 5. Let RANGE-CLEAR(Sn, smax
p , tmax, v0) be the decision problem that returns

’yes’ iff the star Sn can be cleared within time tmax by a pursuer who has speed at most smax
p .

Appendix A. Worst Case Computational Complexity of Model-Free Pursuit 121

Theorem 2. MINTIME-CLEAR(Sn, sp, v0) = t∗ and MINSPEED-CLEAR(Sn, t, v0) =

s∗p are NP-hard.

Proof. The exact same reduction from 3PARTITION as presented in Theorem 1 can
be used in this case too. We observe that in that construction t∗ = n −max{xi −
1}/(2(B− 3)) is the minimum time at which the star can be cleared given the pur-
suer speed 2(B− 3), and conversely, the minimum speed at which the star is clear-
able in the given time n−max{xi − 1}/(2(B− 3)) is s∗p = 2(B− 3).

Theorem 3. RANGE-CLEAR(Sn, smax
p , tmax, v0) is NP-complete.

Proof. Via a reduction from the decision version of MINSPEED-CLEAR(Sn, t, v0) =

s∗p, which is NP-complete. To answer that decision problem we can apply RANGE-
CLEAR(Sn, s, t, root(Sn)) for all possible speeds s. The same polynomial-time-verifiable
certificate that was used in Theorem 1 is valid here, too.

Definition 6. Let MINSPEED-CLEAR(Sn, v0) = s∗p be the optimization problem of com-
puting the minimum speed s∗p with which a single pursuer can clear a star-shaped tree Sn,
starting at node v0.

Theorem 4. MINSPEED-CLEAR(Sn, v0) = s∗p is NP-hard.

Proof. The reduction presented in Theorem 1 shows that a 3-partition exists iff the
star can be cleared with a certain speed at a certain time. It does not guarantee
that 2(B− 3) is the minimum speed at which the star can be cleared. For example,
a speed of 2maxxi can also guarantee clearing of the star. We want to modify that
reduction so that sp = 2(B− 3) is indeed the minimum speed at which the modified
star can be cleared.

Consider the following modification to the star presented in the proof of Theo-
rem 1: we add s2

p new branches to that star, each containing B− 2 nodes, including
the root. A pursuer with speed sp = 2(B− 3) can clear each of these new branches,
starting and ending at the root, in exactly one time unit. The old portion of the tree
can also be cleared with that speed.

We claim that the new star cannot be cleared with speed less than sp. This is
because the first attempt to clear one of the branches of length B− 2 would allow
recontamination of the root. At the next time step 3n + s2

p − 1 branches will have
an a recontaminated edge. Re-clearing these edges will take time at least twice the
number of those edges, by which time the branch we started with is going to be
completely recontaminated.

Corollary 1. The complexity of all the above problems remains true when stars are replaced
with trees, and general graphs.

122

Bibliography

[Aghasadeghi and Bretl, 2011] Aghasadeghi, N. and Bretl, T. (2011). Maximum en-
tropy inverse reinforcement learning in continuous state spaces with path inte-
grals. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1561–1566.

[Ahuja and Orlin, 2001] Ahuja, R. K. and Orlin, J. B. (2001). Inverse optimization.
Operations Research, 49(5):771–783.

[Amin and Singh, 2016] Amin, K. and Singh, S. P. (2016). Towards resolving
unidentifiability in inverse reinforcement learning. CoRR, abs/1601.06569.

[Amodei et al., 2016] Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schul-
man, J., and Mané, D. (2016). Concrete problems in AI safety. CoRR,
abs/1606.06565.

[Aström, 1965] Aström, K. J. (1965). Optimal control of Markov decision processes
with incomplete state estimation. Journal of Mathematical Analysis and Applications,
10:174–205.

[Auer, 2000] Auer, P. (2000). Using upper confidence bounds for online learning.
In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages
270–279.

[Avanzini et al., 2013] Avanzini, P., Royer, E., Thuilot, B., and Derutin, J. P. (2013).
Using monocular visual SLAM to manually convoy a fleet of automatic urban
vehicles. In IEEE International Conference on Robotics and Automation, pages 3219–
3224.

[Bacchus et al., 1996] Bacchus, F., Boutilier, C., and Grove, A. (1996). Rewarding be-
haviors. In Proceedings of the Thirteenth National Conference on Artificial Intelligence
- Volume 2, AAAI’96, pages 1160–1167. AAAI Press.

BIBLIOGRAPHY 123

[Bacchus et al., 1997] Bacchus, F., Boutilier, C., and Grove, A. (1997). Structured so-
lution methods for non-markovian decision processes. In Proceedings of the Four-
teenth National Conference on Artificial Intelligence and Ninth Conference on Innova-
tive Applications of Artificial Intelligence, AAAI’97/IAAI’97, pages 112–117. AAAI
Press.

[Badrinarayanan et al., 2015] Badrinarayanan, V., Kendall, A., and Cipolla, R.
(2015). Segnet: A deep convolutional encoder-decoder architecture for image
segmentation. CoRR, abs/1511.00561.

[Baker et al., 2009] Baker, C. L., Saxe, R., and Tenenbaum, J. B. (2009). Action un-
derstanding as inverse planning. Cognition, 113(3):329 – 349.

[Balcan et al., 2007] Balcan, M.-F., Broder, A., and Zhang, T. (2007). Margin based
active learning. In Proceedings of the 20th Annual Conference on Learning Theory,
COLT’07, pages 35–50, Berlin, Heidelberg. Springer-Verlag.

[Basu et al., 2018] Basu, C., Singhal, M., and Dragan, A. D. (2018). Learning from
richer human guidance: Augmenting comparison-based learning with feature
queries. In ACM/IEEE International Conference on Human-Robot Interaction, HRI,
Chicago, USA, pages 132–140.

[Bellman, 1957] Bellman, R. (1957). A markovian decision process. Journal of Math-
ematics and Mechanics, 6(5):679–684.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-
Dynamic Programming. Athena Scientific, 1st edition.

[Bhattacharya and Hutchinson, 2009] Bhattacharya, S. and Hutchinson, S. (2009).
On the Existence of Nash Equilibrium for a Two-player Pursuit–Evasion Game
with Visibility Constraints. The International Journal of Robotics Research, 29(7):831–
839.

[Bhattacharya et al., 2010a] Bhattacharya, S., Kumar, V., and Likhachev, M. (2010a).
Search-based path planning with homotopy class constraints. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 1230–1237. AAAI
Press.

[Bhattacharya et al., 2010b] Bhattacharya, S., Kumar, V., and Likhachev, M. (2010b).
Search-Based Path Planning with Homotopy Class Constraints. In AAAI, pages
1230–1237.

BIBLIOGRAPHY 124

[Bhattacharya et al., 2011a] Bhattacharya, S., Likhachev, M., and Kumar, V. (2011a).
Identification and representation of homotopy classes of trajectories for search-
based path planning in 3d. In Proceedings of the Robotics: Science and Systems
Conference (RSS 2011), (Best Paper Award).

[Bhattacharya et al., 2011b] Bhattacharya, S., Likhachev, M., and Kumar, V. (2011b).
Identification and Representation of Homotopy Classes of Trajectories for Search-
based Path Planning in 3D. In Robotics: Science and Systems (RSS).

[Blum et al., 2003] Blum, A., Jackson, J. C., Sandholm, T., and Zinkevich, M. (2003).
Preference elicitation and query learning. In Schölkopf, B. and Warmuth, M. K.,
editors, Learning Theory and Kernel Machines, pages 13–25.

[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. (2015). Weight uncertainty in neural networks. In Proceedings of the 32Nd
International Conference on International Conference on Machine Learning - Volume
37, ICML’15, pages 1613–1622. JMLR.org.

[Bolme et al., 2010] Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M.
(2010). Visual object tracking using adaptive correlation filters. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 2544–2550.

[Borie et al., 2009] Borie, R., Tovey, C., and Koenig, S. (2009). Algorithms and com-
plexity results for pursuit-evasion problems. In International Joint Conference on
Artifical Intelligence, pages 59–66. Morgan Kaufmann Publishers Inc.

[Boularias et al., 2011] Boularias, A., Kober, J., and Peters, J. (2011). Relative en-
tropy inverse reinforcement learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Ma-
chine Learning Research, pages 182–189.

[Boutilier, 2002] Boutilier, C. (2002). A pomdp formulation of preference elicitation
problems. In Eighteenth National Conference on Artificial Intelligence, pages 239–246.

[Braziunas, 2006] Braziunas, D. (2006). Computational approaches to preference
elicitation. Technical report, University of Toronto.

[Braziunas and Boutilier, 2010] Braziunas, D. and Boutilier, C. (2010). Assessing
regret-based preference elicitation with the utpref recommendation system. In
Proceedings of the 11th ACM Conference on Electronic Commerce, pages 219–228.

[Breiman, 1996] Breiman, L. (1996). Bagging Predictors. Journal of Machine Learning,
24(2):123–140.

BIBLIOGRAPHY 125

[Brown and Niekum, 2017] Brown, D. S. and Niekum, S. (2017). Efficient prob-
abilistic performance bounds for inverse reinforcement learning. CoRR,
abs/1707.00724.

[Bruce and Tsotsos, 2008] Bruce, N. D. and Tsotsos, J. K. (2008). Attention in cogni-
tive systems. theories and systems from an interdisciplinary viewpoint. chapter
An Information Theoretic Model of Saliency and Visual Search, pages 171–183.
Springer-Verlag, Berlin, Heidelberg.

[Bruce et al., 2015] Bruce, N. D., Wloka, C., Frosst, N., Rahman, S., and Tsotsos, J. K.
(2015). On computational modeling of visual saliency: Examining what’s right,
and what’s left. Vision Research, 116:95 – 112. Computational Models of Visual
Attention.

[Burgard et al., 2000] Burgard, W., Moors, M., Fox, D., Simmons, R., and Thrun, S.
(2000). Collaborative multi-robot exploration.

[Cehovin et al., 2015] Cehovin, L., Leonardis, A., and Kristan, M. (2015). Visual
object tracking performance measures revisited. CoRR, abs/1502.05803.

[Chandrasekhar et al., 2006] Chandrasekhar, V., Seah, W. K., Choo, Y. S., and Ee,
H. V. (2006). Localization in underwater sensor networks: survey and challenges.
In 1st ACM international workshop on Underwater networks, pages 33–40.

[Chen et al.,] Chen, M., Frazzoli, E., Hsu, D., and Lee, W. S. POMDP-lite for Robust
Robot Planning under Uncertainty, journal = CoRR, volume = abs/1602.04875,
year = 2016, url = http://arxiv.org/abs/1602.04875,.

[Chen and Ziebart, 2015] Chen, X. and Ziebart, B. (2015). Predictive Inverse Opti-
mal Control for Linear-Quadratic-Gaussian Systems. In Proceedings of the Eigh-
teenth International Conference on Artificial Intelligence and Statistics, volume 38 of
Proceedings of Machine Learning Research, pages 165–173, San Diego, California,
USA. PMLR.

[Choi and eung Kim, 2012] Choi, J. and eung Kim, K. (2012). Nonparametric
bayesian inverse reinforcement learning for multiple reward functions. In Ad-
vances in Neural Information Processing Systems 25, pages 305–313.

[Choi and Kim, 2011] Choi, J. and Kim, K.-E. (2011). Inverse reinforcement learn-
ing in partially observable environments. Journal of Machine Learning Research,
12:691–730.

BIBLIOGRAPHY 126

[Choset, 1997] Choset, H. (1997). Incremental construction of the generalized
voronoi diagram, the generalized voronoi graph, and the hierarchical general-
ized voronoi graph. In CGC Workshop on Computational Geometry.

[Choset and Burdick, 2000] Choset, H. and Burdick, J. (2000). Sensor-Based Explo-
ration: The Hierarchical Generalized Voronoi Graph. The International Journal of
Robotics Research, 19(2):96–125.

[Christian Forster, 2015] Christian Forster, Luca Carlone, F. D. D. S. (2015). Imu
preintegration on manifold for efficient visual-inertial maximum-a-posteriori es-
timation. In Robotics Science and Systems (RSS).

[Christiano, 2018] Christiano, P. (2018). AI alignment blog. https://

ai-alignment.com/. Accessed: 2018-3-19.

[Cohn et al., 1996] Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active
learning with statistical models. J. Artif. Int. Res., 4(1):129–145.

[Comaniciu et al., 2003] Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-
based object tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):564–575.

[Corke et al., 2007] Corke, P., Detweiler, C., Dunbabin, M., Hamilton, M., Rus, D.,
and Vasilescu, I. (2007). Experiments with underwater robot localization and
tracking. In IEEE International Conference on Robotics and Automation, pages 4556–
4561.

[Dantam and Stilman, 2012] Dantam, N. and Stilman, M. (2012). The Motion Gram-
mar: Linguistic Perception, Planning, and Control, pages 49–56.

[Doerr et al., 2015] Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., and Schaal, S.
(2015). Direct loss minimization inverse optimal control. In Proceedings of Robotics:
Science and Systems, Rome, Italy.

[Doherty et al., 2018] Doherty, K., Flaspohler, G., Roy, N., and Girdhar, Y. (2018).
Approximate distributed spatiotemporal topic models for multi-robot terrain
characterization. In Intelligent Robots and Systems (IROS).

[Doshi-Velez and Konidaris, 2016] Doshi-Velez, F. and Konidaris, G. (2016). Hid-
den parameter markov decision processes: A semiparametric regression ap-
proach for discovering latent task parametrizations. In International Joint Con-
ference on Artificial Intelligence, pages 1432–1440. AAAI Press.

https://ai-alignment.com/
https://ai-alignment.com/

BIBLIOGRAPHY 127

[Dudek et al., 1995] Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1995). Ex-
periments in sensing and communication for robot convoy navigation. In IEEE
International Conference on Intelligent Robots and Systems (IROS), volume 2, pages
268–273.

[Edelsbrunner and Harer,] Edelsbrunner, H. and Harer, J. Persistent homology – a
survey.

[Edelsbrunner and Harer, 2010] Edelsbrunner, H. and Harer, J. (2010). Computa-
tional topology : an introduction. Providence, Rhode Island : American Mathe-
matical Society.

[Efrat et al., 2006] Efrat, A., Kobourov, S. G., and Lubiw, A. (2006). Computing ho-
motopic shortest paths efficiently. Computational Geometry Theory and Applications,
35(3):162–172.

[Efron and Stein, 1981] Efron, B. and Stein, C. (1981). The jackknife estimate of vari-
ance. Annals of Statistics, 9(3):586–596.

[Emerson, 1990] Emerson, E. A. (1990). Handbook of theoretical computer science
(vol. b). chapter Temporal and Modal Logic, pages 995–1072. MIT Press, Cam-
bridge, MA, USA.

[Englert et al., 2017] Englert, P., Vien, N. A., and Toussaint, M. (2017). Inverse kkt —
learning cost functions of manipulation tasks from demonstrations. International
Journal of Robotics Research, 36(13-14):1474–1488.

[Erol et al., 2007] Erol, M., Vieira, L. F. M., and Gerla, M. (2007). AUV-aided lo-
calization for underwater sensor networks. In IEEE International Conference on
Wireless Algorithms, Systems and Applications, pages 44–54.

[Evans et al., 2016] Evans, O., Stuhlmüller, A., and Goodman, N. D. (2016). Learn-
ing the preferences of ignorant, inconsistent agents. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, pages 323–329.

[Evans et al., 2017] Evans, O., Stuhlmüller, A., Salvatier, J., and Filan, D. (2017).
Modeling Agents with Probabilistic Programs. http://agentmodels.org. Ac-
cessed: 2018-3-19.

[Eysenbach et al., 2018] Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018).
Diversity is all you need: Learning skills without a reward function. CoRR,
abs/1802.06070.

http://agentmodels.org

BIBLIOGRAPHY 128

[Finn et al., 2016a] Finn, C., Christiano, P. F., Abbeel, P., and Levine, S. (2016a).
A connection between generative adversarial networks, inverse reinforcement
learning, and energy-based models. CoRR, abs/1611.03852.

[Finn et al., 2016b] Finn, C., Levine, S., and Abbeel, P. (2016b). Guided cost
learning: Deep inverse optimal control via policy optimization. CoRR,
abs/1603.00448.

[Forster et al., 2014] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). In Proc.
IEEE Intl. Conf. on Robotics

[Fries and Wuensche, 2014] Fries, C. and Wuensche, H.-J. (2014). Monocular
template-based vehicle tracking for autonomous convoy driving. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2727–2732.

[Frintrop et al., 2010] Frintrop, S., Rome, E., and Christensen, H. I. (2010). Compu-
tational visual attention systems and their cognitive foundations: A survey. ACM
Transactions Applied Perception, 7(1).

[Furgale et al., 2012] Furgale, P., Barfoot, T., and Sibley, G. (2012). Continuous-time
batch estimation using temporal basis functions. In IEEE International Conference
on Robotics and Automation (ICRA), pages 2088–2095.

[Furnkranz and Hullermeier, 2010] Furnkranz, J. and Hullermeier, E. (2010). Pref-
erence Learning. Springer-Verlag New York, Inc., New York, NY, USA, 1st edition.

[Gal and Ghahramani, 2016a] Gal, Y. and Ghahramani, Z. (2016a). Dropout as a
bayesian approximation: Representing model uncertainty in deep learning. In
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1050–1059, New York, New York,
USA. PMLR.

[Gal and Ghahramani, 2016b] Gal, Y. and Ghahramani, Z. (2016b). Dropout as a
bayesian approximation: Representing model uncertainty in deep learning. In
Proceedings of the 33rd International Conference on International Conference on Ma-
chine Learning - Volume 48, pages 1050–1059.

[Gal et al., 2017] Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep bayesian active
learning with image data. CoRR, abs/1703.02910.

[Galvez-López and Tardos, 2012] Galvez-López, D. and Tardos, J. D. (2012). Bags
of binary words for fast place recognition in image sequences. IEEE Transactions
on Robotics, 28(5):1188–1197.

BIBLIOGRAPHY 129

[Gao and Vasconcelos, 2005] Gao, D. and Vasconcelos, N. (2005). Discriminant
saliency for visual recognition from cluttered scenes. In Advances in Neural In-
formation Processing Systems 17, pages 481–488. MIT Press.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA.

[Geifman and El-Yaniv, 2017] Geifman, Y. and El-Yaniv, R. (2017). Deep active
learning over the long tail. CoRR, abs/1711.00941.

[Giesbrecht et al., 2009] Giesbrecht, J. L., Goi, H. K., Barfoot, T. D., and Francis, B. A.
(2009). A vision-based robotic follower vehicle. In SPIE Defense, Security, and
Sensing, page 73321O. International Society for Optics and Photonics.

[Giguere et al., 2006] Giguere, P., Dudek, G., and Prahacs, C. (2006). Characteri-
zation and modeling of rotational responses for an oscillating foil underwater
robot. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
3000–3005.

[Girdhar and Dudek, 2011] Girdhar, Y. and Dudek, G. (2011). A surprising problem
in navigation, chapter 11, pages 228–252.

[Girdhar and Dudek, 2012] Girdhar, Y. and Dudek, G. (2012). Efficient on-line data
summarization using extremum summaries. In 2012 IEEE International Conference
on Robotics and Automation, pages 3490–3496. IEEE.

[Girdhar and Dudek, 2014a] Girdhar, Y. and Dudek, G. (2014a). Exploring under-
water environments with curiosity. In Canadian Conference on Computer and Robot
Vision, pages 104–110. IEEE.

[Girdhar and Dudek, 2014b] Girdhar, Y. and Dudek, G. (2014b). Exploring under-
water environments with curiosity. In Computer and Robot Vision (CRV), 2014
Canadian Conference on, pages 104–110. IEEE.

[Girdhar et al., 2011] Girdhar, Y., Xu, A., Dey, B. B., Meghjani, M., Shkurti, F., Rek-
leitis, I., and Dudek, G. (2011). MARE: Marine Autonomous Robotic Explorer. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 5048–5053,
San Francisco, USA.

[Gottlieb et al., 2013] Gottlieb, J., Oudeyer, P.-Y., Lopes, M., and Baranes, A. (2013).
Information-seeking, curiosity, and attention: computational and neural mecha-
nisms. Trends in Cognitive Sciences, 17(11):585 – 593.

BIBLIOGRAPHY 130

[Graves, 2012] Graves, A. (2012). Supervised sequence labelling. In Supervised Se-
quence Labelling with Recurrent Neural Networks, pages 5–13. Springer.

[Guestrin et al., 2011] Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2011).
Efficient solution algorithms for factored mdps. abs/1106.1822.

[Hadfield-Menell et al., 2016] Hadfield-Menell, D., Dragan, A. D., Abbeel, P., and
Russell, S. J. (2016). Cooperative inverse reinforcement learning. CoRR,
abs/1606.03137.

[Hadfield-Menell et al., 2017] Hadfield-Menell, D., Milli, S., Abbeel, P., Russell,
S. J., and Dragan, A. (2017). Inverse reward design. In Advances in Neural In-
formation Processing Systems 30, pages 6765–6774.

[Harmat et al., 2012] Harmat, A., Sharf, I., and Trentini, M. (2012). Parallel tracking
and mapping with multiple cameras on an unmanned aerial vehicle. Intelligent
Robotics and Applications, pages 421–432.

[Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A combined corner
and edge detector. In In Proc. of Fourth Alvey Vision Conference, pages 147–151.

[Hatcher, 2000] Hatcher, A. (2000). Algebraic topology. Cambridge Univ. Press, Cam-
bridge.

[Heess et al., 2015] Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. (2015).
Memory-based control with recurrent neural networks. CoRR, abs/1512.04455.

[Hesch et al., 2014] Hesch, J. A., Kottas, D. G., Bowman, S. L., and Roumeliotis, S. I.
(2014). Camera-imu-based localization: Observability analysis and consistency
improvement. International Journal of Robotics Research, 33(1):182–201.

[Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2012). Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580.

[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016). Generative adversarial imitation
learning. CoRR, abs/1606.03476.

[Hodgson and Liebeler, 2002] Hodgson, G. and Liebeler, J. (2002). The Global Coral
Reef Crisis: Trends and Solutions. Reef Check Foundation.

[Houlsby et al., 2011] Houlsby, N., Huszar, F., Ghahramani, Z., and Lengyel, M.
(2011). Bayesian active learning for classification and preference learning. CoRR,
abs/1112.5745.

BIBLIOGRAPHY 131

[Houthooft et al., 2016] Houthooft, R., Chen, X., Duan, Y., Schulman, J., Turck, F. D.,
and Abbeel, P. (2016). Curiosity-driven exploration in deep reinforcement learn-
ing via bayesian neural networks. CoRR, abs/1605.09674.

[Hsu et al., 2008] Hsu, D., Lee, W. S., and Rong, N. (2008). A point-based POMDP
planner for target tracking. In IEEE International Conference on Robotics and Au-
tomation, pages 2644–2650.

[Iandola et al., 2016] Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally,
W. J., and Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size. CoRR, abs/1602.07360.

[Igl et al., 2018] Igl, M., Zintgraf, L., Le, T. A., Wood, F., and Whiteson, S. (2018).
Deep variational reinforcement learning for POMDPs. In Proceedings of the 35th
International Conference on Machine Learning, volume 80, pages 2117–2126. PMLR.

[Isaacs, 1969] Isaacs, R. (1969). Differential games: Their scope, nature, and future.
Journal of Optimization Theory and Applications, 3(5):283–295.

[Islam and Sattar, 2017] Islam, M. J. and Sattar, J. (2017). Mixed-domain biological
motion tracking for underwater human-robot interaction. In IEEE International
Conference on Robotics and Automation.

[Isler et al., 2005] Isler, V., Kannan, S., and Khanna, S. (2005). Randomized pursuit-
evasion in a polygonal environment. IEEE Transactions on Robotics, 21(5):875–884.

[Jones and Soatto, 2011] Jones, E. S. and Soatto, S. (2011). Visual-inertial navigation,
mapping and localization: A scalable real-time causal approach. The International
Journal of Robotics Research, 30(4):407–430.

[Kalal et al., 2012] Kalal, Z., Mikolajczyk, K., and Matas, J. (2012). Tracking-
learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(7):1409–1422.

[Kalman, 1964] Kalman, R. (1964). When Is a Linear Control System Optimal? In
Journal of Basic Engineering.

[Karasev et al., 2016] Karasev, V., Ayvaci, A., Heisele, B., and Soatto, S. (2016).
Intent-aware long-term prediction of pedestrian motion. Proceedings of the In-
ternational Conference on Robotics and Automation (ICRA).

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.

BIBLIOGRAPHY 132

[Kingma et al., 2014] Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
Welling, M. (2014). Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems 27, pages 3581–3589.

[Kitani et al., 2012] Kitani, K. M., Ziebart, B. D., Bagnell, J. A., and Hebert, M.
(2012). Activity Forecasting, pages 201–214. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel Tracking and
Mapping for Small AR Workspaces. 2007 6th IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality, pages 1–10.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit based
monte-carlo planning. In Proceedings of the 17th European Conference on Machine
Learning, ECML’06, pages 282–293.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit Based
Monte-Carlo Planning, pages 282–293. Springer Berlin Heidelberg.

[Krishnan et al., 2016] Krishnan, S., Garg, A., Liaw, R., Thananjeyan, B., Miller, L.,
Pokorny, F. T., and Goldberg, K. (2016). Swirl: A sequential windowed inverse
reinforcement learning algorithm for robot tasks with delayed rewards. In WAFR.

[Krishnan et al., 2017] Krishnan, S., Garg, A., Patil, S., Lea, C., Hager, G., Abbeel,
P., and Goldberg, K. (2017). Transition state clustering: Unsupervised surgical
trajectory segmentation for robot learning. The International Journal of Robotics
Research, 36(13-14):1595–1618.

[Kümmerle et al., 2011] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and
Burgard, W. (2011). g2o: A General Framework for Graph Optimization. In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China.

[Lakshminarayanan et al., 2017] Lakshminarayanan, B., Pritzel, A., and Blundell,
C. (2017). Simple and scalable predictive uncertainty estimation using deep en-
sembles. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R., editors, Advances in Neural Information Processing
Systems 30, pages 6402–6413. Curran Associates, Inc.

[LaValle, 2011] LaValle, S. M. (2011). Motion planning. IEEE Robotics Automation
Magazine, 18(1):79–89.

[Lavalle et al., 1997] Lavalle, S. M., Gonzalez-Banos, H., Becker, C., and Latombe,
J.-C. (1997). Motion Strategies for Maintaining Visibility of a Moving Target. In
IEEE ICRA, pages 731–736.

BIBLIOGRAPHY 133

[LeCun et al., 2006] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F.
(2006). A tutorial on energy-based learning. MIT Press.

[Leutenegger et al., 2015] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and
Furgale, P. (2015). Keyframe-based visual–inertial odometry using nonlinear op-
timization. IJRR, 34(3):314–334.

[Levine and Koltun, 2012] Levine, S. and Koltun, V. (2012). Continuous inverse op-
timal control with locally optimal examples. In ICML ’12: Proceedings of the 29th
International Conference on Machine Learning.

[Levine et al., 2011] Levine, S., Popovic, Z., and Koltun, V. (2011). Nonlinear in-
verse reinforcement learning with gaussian processes. In Shawe-Taylor, J., Zemel,
R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 24, pages 19–27.

[Lewis and Gale, 1994] Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm
for training text classifiers. In Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’94,
pages 3–12, New York, NY, USA. Springer-Verlag New York, Inc.

[Lipton et al., 2016] Lipton, Z. C., Gao, J., Li, L., Li, X., Ahmed, F., and Deng, L.
(2016). Efficient exploration for dialog policy learning with deep BBQ networks
\& replay buffer spiking. CoRR, abs/1608.05081.

[Lopes et al., 2009] Lopes, M., Melo, F., and Montesano, L. (2009). Active learning
for reward estimation in inverse reinforcement learning. In Buntine, W., Grobel-
nik, M., Mladenić, D., and Shawe-Taylor, J., editors, Machine Learning and Knowl-
edge Discovery in Databases, pages 31–46.

[Lugo et al., 2013] Lugo, J. J., Masselli, A., and Zell, A. (2013). Following a quadro-
tor with another quadrotor using onboard vision. In IEEE European Conference on
Mobile Robots (ECMR), pages 26–31.

[Luo et al., 2013] Luo, W., Schwing, A., and Urtasun, R. (2013). Latent structured
active learning. In Advances in Neural Information Processing Systems 26, pages
728–736. Curran Associates, Inc.

[Macgregor and Ormerod, 1996] Macgregor, J. N. and Ormerod, T. (1996). Hu-
man performance on the traveling salesman problem. Perception & Psychophysics,
58(4):527–539.

BIBLIOGRAPHY 134

[MacKay, 1992] MacKay, D. J. C. (1992). Information-based objective functions for
active data selection. Neural Comput., 4(4):590–604.

[Maire, 2007] Maire, F. (2007). Vision based anti-collision system for rail track main-
tenance vehicles. In IEEE Conference on Advanced Video and Signal Based Surveil-
lance, pages 170–175.

[Manderson et al., 2016] Manderson, T., Shkurti, F., and Dudek, G. (2016). Texture-
aware slam using stereo imagery and inertial information. In Conference on Com-
puter and Robot Vision (CRV), pages 465–463. IEEE Computer Society.

[Manz et al., 2011] Manz, M., Luettel, T., von Hundelshausen, F., and Wuensche,
H. J. (2011). Monocular model-based 3D vehicle tracking for autonomous vehi-
cles in unstructured environment. In IEEE International Conference on Robotics and
Automation, pages 2465–2471.

[Martinelli, 2013] Martinelli, A. (2013). Visual-inertial structure from motion: Ob-
servability and resolvability. pages 4235–4242.

[Meger et al., 2015] Meger, D., Higuera, J. C. G., Xu, A., Giguere, P., and Dudek,
G. (2015). Learning legged swimming gaits from experience. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages 2332–2338. IEEE.

[Meger et al., 2014] Meger, D., Shkurti, F., Poza, D. C., Giguère, P., and Dudek, G.
(2014). 3d trajectory synthesis and control for a legged swimming robot. In IEEE
International Conference on Robotics and Intelligent Systems.

[Megiddo et al., 1988] Megiddo, N., Hakimi, S. L., Garey, M. R., Johnson, D. S.,
and Papadimitriou, C. H. (1988). The complexity of searching a graph. J. ACM,
35(1):18–44.

[Metelli et al., 2017] Metelli, A. M., Pirotta, M., and Restelli, M. (2017). Compatible
reward inverse reinforcement learning. In Advances in Neural Information Process-
ing Systems 30, pages 2050–2059.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., and Riedmiller, M. A. (2013). Playing atari with deep reinforcement
learning. CoRR, abs/1312.5602.

[Mourikis and Roumeliotis, 2007] Mourikis, A. I. and Roumeliotis, S. I. (2007). A
multi-state constraint Kalman filter for vision-aided inertial navigation. In Proc.
of the IEEE Int. Conf. on Robotics and Automation, pages 3565–3572, Rome, Italy.

BIBLIOGRAPHY 135

[Mulhall, 2007] Mulhall, M. (2007). Saving the rainforests of the sea: An analysis
of international efforts to conserve coral reefs. Duke Environmental Law and Policy
Forum, 19:321–351.

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015).
ORB-SLAM: a Versatile and Accurate Monocular SLAM System. page 15.

[Mur-Artal and Tardós, 2016] Mur-Artal, R. and Tardós, J. D. (2016). ORB-SLAM2:
an open-source SLAM system for monocular, stereo and RGB-D cameras. CoRR,
abs/1610.06475.

[Murrieta-Cid et al., 2005] Murrieta-Cid, R., Tovar, B., and Hutchinson, S. (2005).
A Sampling-Based Motion Planning Approach to Maintain Visibility of Unpre-
dictable Targets. Autonomous Robots, 19(3):285–300.

[Mussmann and Liang, 2018] Mussmann, S. and Liang, P. (2018). On the rela-
tionship between data efficiency and error for uncertainty sampling. CoRR,
abs/1806.06123.

[Nam and Han, 2016] Nam, H. and Han, B. (2016). Learning multi-domain convo-
lutional neural networks for visual tracking. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Narayanan et al., 2013] Narayanan, V., Vernaza, P., Likhachev, M., and LaValle,
S. M. (2013). Planning under topological constraints using beam-graphs. In IEEE
International Conference on Robotics and Automation, pages 431–437.

[Ng and Jordan, 2000] Ng, A. Y. and Jordan, M. (2000). PEGASUS: A Policy Search
Method for Large MDPs and POMDPs. In Proceedings of 16th Conference on Un-
certainty in Artificial Intelligence, pages 406–415.

[Ng and Russell, 2000] Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse
reinforcement learning. In International Conference on Machine Learning, ICML
’00, pages 663–670.

[Niekum et al., 2013] Niekum, S., Chitta, S., Barto, A., Marthi, B., and Osentoski, S.
(2013). Incremental semantically grounded learning from demonstration. Berlin,
Germany.

[Niekum et al., 2015] Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi,
B., and Barto, A. G. (2015). Learning grounded finite-state representations
from unstructured demonstrations. The International Journal of Robotics Research,
34(2):131–157.

BIBLIOGRAPHY 136

[Ning et al., 2016] Ning, G., Zhang, Z., Huang, C., He, Z., Ren, X., and Wang, H.
(2016). Spatially supervised recurrent convolutional neural networks for visual
object tracking. arXiv:1607.05781.

[Oliva and Torralba, 2001] Oliva, A. and Torralba, A. (2001). Modeling the shape of
the scene: A holistic representation of the spatial envelope. International Journal
of Computer Vision, 42(3):145–175.

[Oliva et al., 2003] Oliva, A., Torralba, A., Castelhano, M. S., and Henderson, J. M.
(2003). Top-down control of visual attention in object detection. In Proceedings
2003 International Conference on Image Processing, volume 1.

[O’Rourke, 1987] O’Rourke, J. (1987). Art Gallery Theorems and Algorithms. Oxford
University Press.

[Osband et al., 2016] Osband, I., Blundell, C., Pritzel, A., and Roy, B. V. (2016). Deep
exploration via bootstrapped DQN. CoRR, abs/1602.04621.

[Parsons, 1978] Parsons, T. D. (1978). Pursuit-evasion in a graph. In Theory and
Applications of Graphs, pages 426–441. Springer Berlin Heidelberg.

[Paul et al., 2014] Paul, R., Feldman, D., Rus, D., and Newman, P. (2014). Visual
precis generation using coresets. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1304–1311.

[Pokorny et al., 2016a] Pokorny, F. T., Goldberg, K., and Kragic, D. (2016a). Topo-
logical trajectory clustering with relative persistent homology. In IEEE ICRA.

[Pokorny et al., 2016b] Pokorny, F. T., Hawasly, M., and Ramamoorthy, S. (2016b).
Topological trajectory classification with filtrations of simplicial complexes and
persistent homology. The International Journal of Robotics Research, 35(1-3):204–
223.

[Pokorny and Kragic, 2015] Pokorny, F. T. and Kragic, D. (2015). Data-driven topo-
logical motion planning with persistent cohomology. In Proceedings of Robotics:
Science and Systems, Rome, Italy.

[Pokorny et al., 2016c] Pokorny, F. T., Kragic, D., Kavraki, L. E., and Goldberg, K.
(2016c). High-dimensional winding-augmented motion planning with 2d topo-
logical task projections and persistent homology. In IEEE ICRA.

[Puterman, 1994] Puterman, M. L. (1994). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, USA,
1st edition.

BIBLIOGRAPHY 137

[Puydupin-Jamin et al., 2012] Puydupin-Jamin, A. S., Johnson, M., and Bretl, T.
(2012). A convex approach to inverse optimal control and its application to mod-
eling human locomotion. In IEEE International Conference on Robotics and Automa-
tion, pages 531–536.

[R. Hartley, 1997] R. Hartley, P. S. (1997). Triangulation. In CVIU, pages 146–157.

[Ramachandran and Amir, 2007] Ramachandran, D. and Amir, E. (2007). Bayesian
inverse reinforcement learning. In Proceedings of the 20th International Joint Con-
ference on Artifical Intelligence, IJCAI’07, pages 2586–2591.

[Ratliff et al., 2006] Ratliff, N., Bagnell, J. A. D., and Zinkevich, M. (2006). Maxi-
mum margin planning. In International Conference on Machine Learning.

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016).
You only look once: Unified, real-time object detection. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 779–788.

[Redmon and Farhadi, 2016] Redmon, J. and Farhadi, A. (2016). YOLO9000: Better,
Faster, Stronger. arXiv preprint arXiv:1612.08242.

[Reed and de Freitas, 2015] Reed, S. E. and de Freitas, N. (2015). Neural
programmer-interpreters. CoRR, abs/1511.06279.

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN:
Towards real-time object detection with region proposal networks. In Advances
in Neural Information Processing Systems (NIPS).

[Rogers et al., 1994] Rogers, C., Garrison, G., Grober, R., Hillis, Z., and Frankie, M.
(1994). Coral reef monitoring manual for the caribbean and western atlantic.
Virgin Islands National Park, 110 p. Ilus.

[Ross et al., 2014] Ross, S., Pineau, J., Paquet, S., and Chaib-draa, B. (2014). Online
planning algorithms for pomdps. CoRR, abs/1401.3436.

[Rothkopf and Dimitrakakis, 2011] Rothkopf, C. A. and Dimitrakakis, C. (2011).
Preference elicitation and inverse reinforcement learning. In Proceedings of the
2011 European Conference on Machine Learning and Knowledge Discovery in Databases
- Volume Part III, ECML PKDD’11, pages 34–48.

[Roy, 2017] Roy, D. (2017). Probabilistic Programming. http://www.

probabilistic-programming.org. Accessed: 2018-3-19.

http://www.probabilistic-programming.org
http://www.probabilistic-programming.org

BIBLIOGRAPHY 138

[Roy and McCallum, 2001] Roy, N. and McCallum, A. (2001). Toward optimal ac-
tive learning through sampling estimation of error reduction. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01, pages 441–448,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Rublee et al., 2011] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011).
Orb: An efficient alternative to sift or surf. In Proceedings of the 2011 International
Conference on Computer Vision, pages 2564–2571.

[Sadigh et al., 2017] Sadigh, D., Dragan, A. D., Sastry, S., and Seshia, S. A. (2017).
Active preference-based learning of reward functions. In Robotics: Science and
Systems XIII.

[Sandholm and Boutilier, 2006] Sandholm, T. and Boutilier, C. (2006). Preference
elicitation in combinatorial auctions. In Combinatorial Auctions, pages 233–264.
MIT Press.

[Sattar and Dudek, 2009a] Sattar, J. and Dudek, G. (2009a). A Boosting Approach to
Visual Servo-Control of an Underwater Robot, pages 417–428. Springer Berlin Hei-
delberg.

[Sattar and Dudek, 2009b] Sattar, J. and Dudek, G. (2009b). Robust servo-control
for underwater robots using banks of visual filters. In IEEE International Confer-
ence on Robotics and Automation, pages 3583–3588.

[Sattar and Dudek, 2009c] Sattar, J. and Dudek, G. (2009c). Underwater human-
robot interaction via biological motion identification. In Robotics: Science and Sys-
tems.

[Sattar et al., 2008a] Sattar, J., Dudek, G., Chiu, O., Rekleitis, I., Giguere, P., Mills,
A., Plamondon, N., Prahacs, C., Girdhar, Y., Nahon, M., et al. (2008a). Enabling
autonomous capabilities in underwater robotics. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3628–3634.

[Sattar et al., 2008b] Sattar, J., Dudek, G., Chiu, O., Rekleitis, I., Giguère, P., Mills,
A., Plamondon, N., Prahacs, C., Girdhar, Y., Nahon, M., and Lobos, J.-P. (2008b).
Enabling Autonomous Capabilities in Underwater Robotics. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS), pages
3628–3634, Nice, France.

[Sattar et al., 2009] Sattar, J., Giguere, P., and Dudek, G. (2009). Sensor-based be-
havior control for an autonomous underwater vehicle. Int. J. Robotic Research,
28(6):701–713.

BIBLIOGRAPHY 139

[Schein and Ungar, 2007] Schein, A. I. and Ungar, L. H. (2007). Active learning for
logistic regression: an evaluation. Machine Learning, 68(3):235–265.

[Schneiderman et al., 1995] Schneiderman, H., Nashman, M., Wavering, A. J., and
Lumia, R. (1995). Vision-based robotic convoy driving. Machine Vision and Appli-
cations, 8(6):359–364.

[Sermanet et al., 2017] Sermanet, P., Xu, K., and Levine, S. (2017). Unsupervised
perceptual rewards for imitation learning. In Proceedings of Robotics: Science and
Systems.

[Settles, 2010] Settles, B. (2010). Active learning literature survey. Technical report.

[Seung et al., 1992] Seung, H. S., Opper, M., and Sompolinsky, H. (1992). Query by
committee. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, pages 287–294, New York, NY, USA. ACM.

[Shani et al., 2013a] Shani, G., Pineau, J., and Kaplow, R. (2013a). A survey of point-
based POMDP solvers. AAMAS, 27(1):1–51.

[Shani et al., 2013b] Shani, G., Pineau, J., and Kaplow, R. (2013b). A survey of point-
based pomdp solvers. Autonomous Agents and Multi-Agent Systems, 27(1).

[Shen et al., 2015] Shen, S., Michael, N., and Kumar, V. (2015). Tightly-coupled
monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 5303–
5310. IEEE.

[Shi and Tomasi, 1994] Shi, J. and Tomasi, C. (1994). Good features to track. In 1994
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’94), pages 593
– 600.

[Shkurti et al., 2017] Shkurti, F., Chang, W., Henderson, P., Islam, M., Gamboa
Higuera, J., Li, J., Manderson, T., Xu, A., Dudek, G., and Sattar, J. (2017). Un-
derwater multi-robot convoying using visual tracking by detection. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4189–4196, Van-
couver, Canada.

[Shkurti and Dudek, 2013] Shkurti, F. and Dudek, G. (2013). On the complexity of
searching for an evader with a faster pursuer. In IEEE ICRA, pages 4047–4052.

[Shkurti and Dudek, 2017] Shkurti, F. and Dudek, G. (2017). Topologically distinct
trajectory predictions for probabilistic pursuit. IEEE International Conference on
Intelligent Robots and Systems.

BIBLIOGRAPHY 140

[Shkurti et al., 2018] Shkurti, F., Kakodkar, N., and Dudek, G. (2018). Model-Based
Probabilistic Pursuit via Inverse Reinforcement Learning. In IEEE International
Conference on Robotics and Automation (ICRA), Brisbane, Australia.

[Shkurti et al., 2012] Shkurti, F., Xu, A., Meghjani, M., Gamboa Higuera, J., Girdhar,
Y., Giguere, P., Dey, B., Li, J., Kalmbach, A., Prahacs, C., Turgeon, K., Rekleitis, I.,
and Dudek, G. (2012). Multi-Domain Monitoring of Marine Environments Using
a Heterogeneous Robot Team. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1747–1753, Algarve, Portugal.

[Silver and Veness, 2010] Silver, D. and Veness, J. (2010). Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information Processing Systems 23, pages
2164–2172.

[Sim et al., 2004] Sim, R., Dudek, G., and Roy, N. (2004). Online control policy op-
timization for minimizing map uncertainty during exploration. In IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004,
volume 2, pages 1758–1763.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networks for large-scale image recognition. CoRR,
abs/1409.1556.

[Sondik, 1978] Sondik, E. J. (1978). The optimal control of partially observable
markov processes over the infinite horizon: Discounted costs. Operations Re-
search, 26(2):282–304.

[Sourabh Bhattacharya, 2008] Sourabh Bhattacharya, S. H. (2008). Approximation
Schemes for Two-Player Pursuit Evasion Games with Visibility Constraints. In
Proceedings of Robotics: Science and Systems IV, Zurich, Switzerland.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research, 15:1929–1958.

[Steinhardt, 2018] Steinhardt, J. (2018). Model Mis-specification and In-
verse Reinforcement Learning. https://jsteinhardt.wordpress.com/2017/02/
07/model-mis-specification-and-inverse-reinforcement-learning/. Ac-
cessed: 2018-3-19.

[Stiffler and O’Kane, 2012] Stiffler, N. M. and O’Kane, J. M. (2012). Shortest paths
for visibility-based pursuit-evasion. IEEE ICRA, pages 3997–4002.

https://jsteinhardt.wordpress.com/2017/02/07/model-mis-specification-and-inverse-reinforcement-learning/
https://jsteinhardt.wordpress.com/2017/02/07/model-mis-specification-and-inverse-reinforcement-learning/

BIBLIOGRAPHY 141

[Strasdat et al., 2011] Strasdat, H., Davison, A. J., Montiel, J. M. M., and Konolige,
K. (2011). Double window optimisation for constant time visual slam. In Com-
puter Vision (ICCV), 2011 IEEE International Conference on, pages 2352–2359.

[Strasdat et al., 2010] Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2010). Scale
drift-aware large scale monocular slam. In In Proceedings of Robotics: Science and
Systems.

[Sun et al., 2019] Sun, S., Zhang, G., Shi, J., and Grosse, R. (2019). Functional varia-
tional bayesian neural networks. CoRR, abs/1903.05779.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Introduction to Rein-
forcement Learning. MIT Press, Cambridge, MA, USA, 1st edition.

[Sutton et al., 1999] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999).
Policy gradient methods for reinforcement learning with function approxima-
tion. In Proceedings of the 12th International Conference on Neural Information Pro-
cessing Systems, NIPS’99, pages 1057–1063, Cambridge, MA, USA. MIT Press.

[Szepesvari, 2010] Szepesvari, C. (2010). Algorithms for Reinforcement Learning. Mor-
gan and Claypool Publishers.

[Tamar et al., 2016] Tamar, A., Levine, S., and Abbeel, P. (2016). Value iteration net-
works. CoRR, abs/1602.02867.

[Theodorou et al., 2010] Theodorou, E., Buchli, J., and Schaal, S. (2010). A general-
ized path integral control approach to reinforcement learning. Journal of Machine
Learning Research, 11:3137–3181.

[Thiébaux et al., 2006] Thiébaux, S., Gretton, C., Slaney, J., Price, D., and Kabanza,
F. (2006). Decision-theoretic planning with non-markovian rewards. Journal of
Artificial Intelligence Research, 25(1):17–74.

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press.

[Tong and Koller, 2002] Tong, S. and Koller, D. (2002). Support vector machine ac-
tive learning with applications to text classification. Journal of Machine Learning
Research, 2:45–66.

[Torralba et al., 2006] Torralba, A., Castelhano, M. S., Oliva, A., and Henderson,
J. M. (2006). Contextual guidance of eye movements and attention in real-world
scenes: the role of global features in object search. Psychological Review, 113:2006.

BIBLIOGRAPHY 142

[Tribou et al., 2015] Tribou, M. J., Wang, D. W. L., and Waslander, S. L. (2015). De-
generate motions in multicamera cluster SLAM with non-overlapping fields of
view. CoRR, abs/1506.07597.

[Tsotsos, 1995] Tsotsos, J. (1995). Modeling visual attention via selective tuning.
Artificial Intelligence, 78(1):507 – 545.

[Tsotsos, 2011] Tsotsos, J. K. (2011). A Computational Perspective on Visual Attention.
The MIT Press, 1st edition.

[Underwood et al., 2006] Underwood, G., Foulsham, T., van Loon, E., Humphreys,
L., and Bloyce, J. (2006). Eye movements during scene inspection: A test of the
saliency map hypothesis. European Journal of Cognitive Psychology, 18(3):321–342.

[van den Oord et al., 2016a] van den Oord, A., Kalchbrenner, N., and
Kavukcuoglu, K. (2016a). Pixel recurrent neural networks. CoRR,
abs/1601.06759.

[van den Oord et al., 2016b] van den Oord, A., Kalchbrenner, N., Vinyals, O., Espe-
holt, L., Graves, A., and Kavukcuoglu, K. (2016b). Conditional image generation
with pixelcnn decoders. CoRR, abs/1606.05328.

[Vidal et al., 2002] Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., and Sastry, S.
(2002). Probabilistic pursuit-evasion games: theory, implementation, and exper-
imental evaluation. IEEE Transactions on Robotics and Automation, 18(5):662–669.

[Wierstra et al., 2010] Wierstra, D., Förster, A., Peters, J., and Schmidhuber, J. (2010).
Recurrent policy gradients. Logic Journal of the IGPL, 18:620–634.

[Wolfe, 1994] Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual
search. Psychonomic Bulletin & Review, 1(2):202–238.

[Wulfmeier et al., 2015] Wulfmeier, M., Ondruska, P., and Posner, I. (2015). Deep
inverse reinforcement learning. CoRR, abs/1507.04888.

[Wulfmeier et al., 2017] Wulfmeier, M., Rao, D., Wang, D. Z., Ondruska, P., and
Posner, I. (2017). Large-scale cost function learning for path planning using
deep inverse reinforcement learning. The International Journal of Robotics Research,
36(10):1073–1087.

[Xu et al., 2017] Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., and Savarese,
S. (2017). Neural task programming: Learning to generalize across hierarchical
tasks. CoRR, abs/1710.01813.

BIBLIOGRAPHY 143

[Yamauchi, 1997] Yamauchi, B. (1997). A frontier-based approach for autonomous
exploration. In Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. ’Towards New Computational Prin-
ciples for Robotics and Automation’, pages 146–151.

[Yang et al., 2009] Yang, M., Wu, Y., and Hua, G. (2009). Context-aware visual track-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7):1195–
1209.

[Yang and Loog, 2018] Yang, Y. and Loog, M. (2018). A benchmark and comparison
of active learning for logistic regression. Pattern Recognition, 83:401 – 415.

[Yen, 1971] Yen, J. Y. (1971). Finding the K-Shortest Loopless Paths in a Network.
Management Science, 17(11):712–716.

[Yu et al., 2018] Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., and Dar-
rell, T. (2018). BDD100K: A diverse driving video database with scalable annota-
tion tooling. abs/1805.04687.

[Yu et al., 2008] Yu, Q., Dinh, T. B., and Medioni, G. (2008). Online tracking and
reacquisition using co-trained generative and discriminative trackers. In 10th
European Conference on Computer Vision: Part II, pages 678–691.

[Zhang et al., 2017] Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. (2017). Noisy
natural gradient as variational inference. arXiv preprint arXiv:1712.02390.

[Zhaoping, 2014] Zhaoping, L. (2014). Understanding Vision: Theory, Models, and
Data. Oxford Press, 1st edition.

[Zhou et al., 2016] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and Torralba,
A. (2016). Semantic understanding of scenes through the ade20k dataset. arXiv
preprint arXiv:1608.05442.

[Zhou et al., 2017] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and Tor-
ralba, A. (2017). Scene parsing through ade20k dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[Zhu, 2006] Zhu, X. (2006). Semi-supervised learning literature survey.

[Zhu, 2015] Zhu, X. (2015). Machine teaching: An inverse problem to machine
learning and an approach toward optimal education. In AAAI.

[Zhu et al., 2003] Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised
learning using gaussian fields and harmonic functions. In Proceedings of the

BIBLIOGRAPHY 144

Twentieth International Conference on International Conference on Machine Learning,
ICML’03, pages 912–919. AAAI Press.

[Ziebart et al., 2008] Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey, A. K. (2008).
Maximum entropy inverse reinforcement learning. In 23rd National Conference on
Artificial Intelligence - Volume 3, pages 1433–1438. AAAI.

[Ziebart et al., 2009] Ziebart, B. D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K.,
Bagnell, J. A., Hebert, M., Dey, A. K., and Srinivasa, S. (2009). Planning-based pre-
diction for pedestrians. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3931–3936.

	Abstract
	Abrege
	Acknowledgements
	List of Figures
	List of Tables
	INTRODUCTION
	Visual Attention Models for Robotics via Human Specifications
	Collaborative Human-Robot Visual Exploration
	Contributions
	Statement of Originality
	Outline

	BACKGROUND
	Sequential Decision Making Under Uncertainty
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Non Markovian Reward Decision Processes

	Reward Learning
	Inverse Optimal Control
	Maximum Entropy Inverse Reinforcement Learning
	Bayesian Inverse Reinforcement Learning
	Task-Level Inverse Reinforcement Learning
	Query-Efficient Reward Learning
	Preference Elicitation

	Visual Attention and User Specifications
	Bottom-Up Attention Models
	Top-Down Attention Models

	Visual Exploration
	Why Should Robots Explore?
	What Should Robots Explore?

	Pursuit and Tracking
	Pursuit Evasion Games
	Vision-Based Tracking

	Robotic Platforms
	Aqua Amphibious Robot
	Unicorn Unmanned Aerial Vehicle
	MARE Autonomous Surface Vehicle

	COLLABORATIVE HUMAN-ROBOT ENVIRONMENTAL MONITORING
	Robot Team Explores On Behalf Of Scientists
	Heterogeneous Multi-Robot Team
	Aqua: Control and Porpoising Motion
	Interaction with Marine Scientists
	Coral Reef Monitoring Trials

	A Robot Videographer Explores in Tandem with Scientists
	Modeling Visual Rewards
	Field Trials

	Discussion

	ACTIVE LEARNING OF VISUAL REWARD FUNCTIONS
	Model Uncertainty vs Aleatoric Uncertainty
	Model Uncertainty via the Bootstrap vs Monte Carlo Dropout
	The Bootstrap Method
	Monte Carlo Dropout

	Active Learning of Visual Rewards
	Evaluation
	Discussion

	MODEL-BASED PURSUIT
	Modeling the Subject's Behavior via Inverse RL
	Maximum Entropy Inverse Reinforcement Learning
	Terrain-Based Prediction Model For Navigation

	Model-Based Single-Follower Probabilistic Pursuit
	Particle Filter and Bayesian Updates of the Belief
	Pursuer Navigation
	Pursuit Algorithm

	Evaluation and Results
	Setup
	Findings

	Modeling the Subject's Behavior via Topologically Distinct Trajectories
	Related Work
	Topologically Distinct Short Paths via the GVG
	Computational Complexity
	Ranking Topologically Distinct Paths

	Evaluation and Results
	Setup
	Human Baseline for Probabilistic Pursuit
	Benchmarking Algorithmic Performance

	Discussion

	MODEL-FREE PURSUIT
	Convoying Pursuit: A Case Study
	Related Work
	Detection Methods: Feedforward CNNs
	VGG
	YOLO

	Detection Methods: Recurrent CNNs
	Detection Methods: Based on Frequency-Domain Analysis
	Visual Servoing Controller
	Experimental Results
	Non-Recurrent Methods
	Recurrent Methods
	Frequency-Domain Detection
	Field Trial: Setup
	Field Trial: Results

	VISUAL LOCALIZATION AND MAPPING FOR 3D NAVIGATION
	Scale Drift In Visual Localization And Mapping
	Inertial And Multi-Camera Localization
	Benefits Of IMU Measurements
	Related Work

	Frame Definitions
	Tracking Thread
	Single-Frame Map Initialization via Stereo Triangulation
	Sub-Map Initialization
	Short-Term Feature Prediction Using Inertial Measurements
	Frame Pose Refinement & Tight IMU Coupling

	Local Mapping Thread
	Creating New Map Points
	Merging New Map Points With Existing Map
	Local Bundle Adjustment

	Loop Closing Thread

	Experimental Results
	Synchronized Sensor Module
	Validation From Vicon Ground Truth
	Reconstruction Of An Underwater Shipwreck

	FUTURE WORK
	Active Semi-Supervised Learning for Visual Rewards
	Predictive Topological Tracking in 3D
	Combining Intermittent Tracking and Visual Exploration
	Combining Model-Based Visual Attention with Surprise-Based Exploration
	Interactive, Long-Term Visual Search and Exploration

	CONCLUSIONS
	Worst Case Computational Complexity of Model-Free Pursuit

