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Almost Periodic PFunctions

on the Rotatlion Group

Introduction

The aim of this thesls is to exhibit the
bounded representations of the rotation group, L.,
by considering the almost periodic functions on f1/n.

By {1, 1is meant the rotation group in R _, or more

n?e
explicitly the group of all proper orthogonal n-matrices
where n > 3, The case n =3 will be given special

consideration,

The presentation can be divided roughly into
three parts, The first part i1s a brief description of
the theory of almost periodic functions on an arbitrary
group, as flrst developed by von Neumann, This section
serves only to display the properties of almost period-
ic functions and their relations to group represent-
ations which will be needed for the discussion of the
rotation group, The theorems and properties are only
stated in this paft and no attempt is made to be complete
or rigorous, For those less famlillar with the theory,
the exposition is 1llustrated by the famillar example

of the continuous periodic functions,
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The second part deals with the almost periodic
functions on Kln, end, corresponding to these, the al=-
most periodic functions on the sphere Sn. The properties
of spherical harmonics are investigated and it is shown
that the irreducible modules of almost periodic functions
on S are precisely the sets of harmonic functions of

degree s on Sn, for 8 =1,2, 3, eee o

In the last part, the irreducible represent-
etions of Sln are exhibited using the modules of almost
periodic functions on &}h found in the preceding section,
A slightly different approasch 1s adopted for Kl;, using
the representations of &IB by quaternions, This results
in the finding of representations of all dimensions, the
coefficients of the matrices being expressed as spherical

harmonics on the unit sphere in Rh'



I Almost Periodic PFunctions*

1. Definitlon

Let us begin by considering an arbitrary
group G with elements a, b, ..., X, ¥, «.., and
complex-valued functions f(x), g(x), ..., on these

elements, A function f(x) 1is called almost periodic

(a,p.) on G if for every €> O there exist finitely

many subsets A,, ..., A of G such that

n

Ay v Mpv,., wAyp =G, and |f(axb) - f(ayb)l <€ for
any x, ¥ belonging to any one of the subsets Ay,
i=1,2, 0., n, and for any a, b in the group G,
The set of subsets A1, ooy An will be called a

partition of G for f(x) and €,

As an example of almost periodic functions,
we may consider the continuous periodic functions on the
real line with period 2mn, In this case the group will
be the addltive group of real numbers mod 2m, and the
functions on the group will be the continuous functions
on [0, 2n] with f(x + 2n) = £(x), Since the functions
are uniformly continuous on the closed interval (O, 2@],
for any f(x) we may choose a § so that
If(x) - £(y)l < ¢ for all x, y such that Ix - yl < &
(mod 2m), Hence for a partition for f(x) and €, we

may take any division of the segment [p, 2n] 1into seg-

# (1): pp 24 - 65
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ments of length less than S o Then if x, y belong to
any one of these segments, If(x + a) - f(y + a)l < ¢

for all real s,

Returning to the general case, we mention

only that almost periodicity implies the following
properties:
1) if f(x) 1is a.,p. on G, then f(x) 1s bounded
on G
2) 1r f(x) eand g(x) are a,p, on G, then
f(x) + glx) and f(x) g(x) are also;
3) if f(x) 1s a.p.,, and P 1is a continuous complex
valued function defined on complex numbers, then ?[f(x)]
is a,p., on x ¢ G

- in particulgr f(x), If(x)], «f(x), and £(x=1)
are a,p, 1if f(x) 1is;
) 1f a sequence {fi(x)} of a,p., functions converges

uniformly to f(x), then f(x) 1is a,p. on x e G also,

2, The Mean Value

Because of the restricted range of values of
f(x) over each subset A; of a partition, one might
expect to find a "mean value" of f(x) by forming

1 ?_1 f(a;), where a; € Ay of some partition for
= £ i=

f(x) and €&, and then letting £—0, A unique limit

in the above process may be obtained by considering

minimal partitions - that is, a partition for f(x)
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and €, A1, evey Ay where M 1is the smallest number
of subsets a partition for f(x) and & may have,
The existence of the above mean value 1s asserted by the

Mean Value Theorem:

For each a.,p, function f(x), there exists
a number M_{f(x)}, cslled its mean velue, such that
for each &> 0, there can be found elements of the
group, 84, ..., 8,, such that uniformly for c¢ and

de6 ez} -1 Y9, fleasdll < 26,

The four important properties of the mean value
are as follows:
1) M fur(x) + Bg(x)} =« _{£(x)} + My {elx)]
2) M_{r(xa)] = Myi{f(x)} for any e ¢ G
3) M_{f(x)} < Mg{g(x)} if f, g are real and f(x) < g(x)
for all x

L) M {1} =1

In faét these four properties uniquely deter-
mine the mean value: that is, if M}{f(x)] 1s a number
associated with f(x) having the above four properties,
then M%{f(x)} = M, {f(x)}. A'fifth important property
of the mean value is this:

5) if {fi(x)} is a sequence of a,p. functions con-
verging uniformly to f(x), 1i.e, }EE,fi(x) = f(x)
then Hm Mify(x)} = M{r(x).
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The mean value of an a,p., function enables us
to define & scalar product of two a,p, functions, since
the product of a,p, functions is also almost periodic,
If f(x), g(x) are a.p., on G, then the scalar prod-
uct of f and g is defined as

(r, g) = ¥ {r(x) g=7J.

When one considers the properties of the mean
value, the following properties of the scalar product
become evident:

1) (Hermitian) (f, g) = (g, f)

2) (Linearity) (af + pg, h) = «(f, h) + B(g, h)

3) (Invariance) (f(axb), glaxd)) = (£(x), g(x))

) (Continuity) if £f;(x) converges uniformly to f(x),

then }iﬁn(fi, g) = (f,g).

With the help of the scglar product, we may

define the norm of an a,p, function:
N(f) = (f, £);
and the distance between two a.,p. functions:
D(f, g) = +N(f - g)

One may show, using the properties of the mean value,
that the usual properties of a norm and distance function
are satisfled by the norm and distance given in the
above definitions, Two functions f and g will be
said to be orthogonal to each other if (f, g) = O,
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Referring back to our example of a.,p. functions,
1,2, the continuous periodic functions on the real line,
one can easily see that the mean value Mx in this case
1s the mean value in the usual sense - that is

M {r(x)} = = Si" £(x) ax

3, Modules of Almost Periodic Functions

A non-empty set‘ R of almost periodic functlons
on a group G 1s called a right-invariant module (more
briefly invariant wmodule) when:

1) from f, g € R it follows that «f + Rg « R with
complex coefficients «, 8, and
2) from f(x) e R it follows that f(xc) € R where ¢

is any element of G,

The module is said to be closed if any uniform~
ly convergent sequence of a,p, functions in R has
its limit in R; 1.,e, 1if f;(x) e R and lim fy(x) =
{i»00
f(x) uniformly in x then f(x) ¢ R, If a module R

contains n functions f1, essy T such that for any

n
f(x) eR, f£(x) = x1f1(x) + eee + ¢ f (x) for suitable
complex coefficients d1, cses “n’ then the module is

said to be finite, If the n functions are linearly

independent, then the f1, esey I~ are said to form a

basis of R, and the dimension of R 18 n,
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If R and R, are both invariant modules

1
where R, ¢ R, then R is said to be a proper invar~

1 1
jant submodule of R 1if there exists an f(x) ¢ R such
that f(x) ¢ R,, and R, # {0} where {0} 1is the mod-
ule consisting only of the a,p, function g(x) = O,
A closed, invariant module R # {0} 1is said to be
irreducible when it contains no proper closed invariant
submodule, Note that if R 1is irreducible, and f(x)
is any function of R, then the set of functions
fai(x) = f(xa;), where a; ¢ G, for suitable a4,
span R, Otherwise the module spanned by the fa§X)

is an invariant submodule of R,

We shall make one final definition on modules
of a,p, functions, Suppose {Ry}, «ecA 1is a set
(not necessarily countable) of closed invariant modules
of a,p, functions on a group G, Consider the set of

n
1=1 Ta >
f‘i € R“i’ *y € A,\ and n takes on gll finite positive
integral values, Call this set M, Now form the closure

all functions of the form f(x) = where each

of M, R, by adding to "M the limit functions of all
uniformly conveegent sequences in M, Clearly, R 1is the
smallest closed invariant module containing all Ry,

R 1is sald to be the sum of the modules R,, and we

shall wrilte thils as ,R = Z&AR.‘.

In the followlng sections, we shall see that
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the finite irreducible Invariant modules of a.p.
functions play an lmportant role in the representations
of groups, With this and the above definitions in mind,
we state the principal theorem in the theory of a,p,

functions on groups:

THEQOREM: Every closed invariant module R of a,p.
functions on & group G 1s the sum of finite, irreducible,

invariant modules Ry: R = }EvRv.

In our example of the continuous periodic
functions, it turns out that the irreducible invaeriamt

modules are one dimensional and have as bases the functiéns

lvx

e ’ V= 11, _+_2, sesy in, cese o The module RV

spanned by e1VX 15 the set of functions ueivx, «

complex. It is invariant since oelVix+8) = «1oivx

deiva

where &' = and since it 1s finite dimensional

b

it is necessarily closed,

i, The Representations of Groups

As before, we let x, y, ..q bDe elements of
an:arbitrary group G, One speaks of a representation
of G when to each element x € G there exists a non-
singular s-rowed squere matrix D(x) such that
D(x) D(y) = D(xy)., The coefficients DF¢(X) of the

matrix are complex valued functions of the group elements,

#* (1): pp 9 - 18; pp L6; pp 119 - 128,
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Two representations D(x) and D'(x) will
be considered as being equivalent if there exists a
constant, non-singular matrix A such that

1

D(x) = A D' (x) A" for all x € G,

A representation of the group is called re-
ducible if there exists a representation of the form

D5(x)

0 D (x)
to which it is equivalent, The matrices Di(x) along

the diagonal are s, -rowed representations of G, and

i
there are zeros elsewhere, If a representation of the
above form to which D(x) 1s equivalent cannot be

found, then D(x) 1is said to be irreducible,

A representation D(x) = (DP‘(X)) is unitary
if for every x e G, D(x) D#(x) = E where
D#(x) = (Dgp(x)) and E is the unit matrix, D(x) 1is

normal if it is equivalent to a unitery representation,

D(x) is said to be bounded if each of its
coefficlents DP¢(x), considered as functions on G,
are bounded: 1i,e, |DP¢(X)| <M for all x e G and

all P and ¢,

Now bounded representations are important for

our purposes for the following reasons, Firstly, the
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coefficients DP¢(x) of a bounded representation of G
are almost periodic functions on G, Secondly, using
the existence of a mean value of a,p, functions, one
can prove that a representation 1s normal if and only

if it is bounded,

To each bounded lrreducible representation
D(x), then, corresponds an equivalent irreducible
unitary representation D(”)(x) (since it is normal),
The relation D(x) = D'(x) 4ff D(x) = A D'(x) A~"
is well known to be an equivalence relation, and hence
we may assume D(V)(x) to be the representative of its
equivalence class, Now 1f we consider all bounded ir-
reducible representations on G, and the system of all
representatives of their equivalence classes {D(u)(x)},
then this system 1s a complete system of bounded unitary
representations of G 1in the sense that to any bounded
irreducible representation of G corresponds a D(v)(x),
in the system to which it is equivelent; and only one
p{¥)(x), since the DY)(x) are all inequivalent,
Thus, any bounded representation of G may be written
as A C(x) A™! where

C(x) = C1(x) 0
Cz(X)

0 Cplx)
in which each Ci(x) is equivalent to some D(v)(x)
belonging to the complete system of unitary represent-

ations {D(¥)(x)},



To sum up then, from the representatlons in
the complete system of bounded irreducible inequivalent
representations, one is able to obtain a survey, up to
equivalence, of all bounded representations of G,
Throughout this thesis we shall consider only bounded

representations,

5. Modules of A,P, Functions as Representation Modules

We are now in a position to show the correspond-
ence between the finite, irreduclble, right-inveriant
modules of a,p, functions, and the irreducible repre=

sentations on the same group G,

Let 1N be a finite invariant (not necessar-
11y irreducible) module of a,p, functions on G, and
£4(x), eee, fu(x) Dbe 2 basis of M ., Since N 1is
right-invariant, f,(xc) ¢ G, where c¢ 1is any element
of G and fi(x) is any one of the basis functions,
Therefore we may write fi(xc) as a linear combination
of f£i(x), eee, £ (x) - 1.e,

£ylxe) = L g0y Dyjle) £,(x),
and similarly fi(XCd) = ‘23:1 Dij(Cd) fj(x). (1)

But f,(xcd) = Zj: Dyjle) £,(xd)

n n
= Z‘j=1 Dy 4(e) (Zk=1 Dyp(d) f(x))

= S § 250, Dijle) Dyla)) £(x). (2)
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Letting D(c) = (Dij(c)) represent the matrix
represented by the transformation fi(x) i fi(xc),

n
then Dy (ed) = 2, . y
or D(ed) = D(c) D(d), That is, the transformation

D(e) D(cl)jk from (1) and (2)
matrix D(c) associated with the transformation
f(x) — f(xc) in the above manner 1s a representation

of G,

If A 1s any non-singular nxn matrix,
then the equivalent representation AD(x)A-1 is the
transformation matrix associated with above transform-

n

ation for the new basls g,(x) = z:j=1 Aij fj(x) ,
i=1, ¢ee, n, That is, gi(xc) = 2§£21 (AD(c)A"1)ik gk(x).
Conversely for any new basis g;, ..., g,, We may
determine an nxn matrix A such that
gy(x) = 2{3:1 Ay, fj(x), so that 1f D(c) 1is the
matrix associated with the asbove transformation with
respect to the basis f,(x), ..., f (x), then
A D(c) A" 1is the matrix associated with the same trans=-
formation with respect to the basis g.(x), ..., g, (x).
Thus the representations resulting from a given invar=-
iant module N are equivalent; in fact the module

yields all the equivalent representations, each repre=-

sentation corresponding to a particular basis of M .

Clearly, irreducible modules give rise to
irreducible representations, and conversely, if a repre-

sentation associated with a module 7 is irreducible,
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then M 1is irreducible, For if D(x) is ‘reducible,
and associated with a module 7 , then it is equivalent

to a representation of the form C(x) = [Cy(x) 0
0 Co(x)

where C,(x) has r rows and columns, Then if

£(x), eeu, £ulx), oioy £ (x) 18 the basis assoclated
with C(x), one can see that f,(xc), 1 <r, is e
linear combination of f,(x), 1 =1, ..., v, for all c
so that the module 7n1 spenned by fq(x), ..., £.(x)

is an lnvariant submodule of 7n. Conversely, if m

is reducible, it is easy to show in a like manner that

7ﬂ gives rise to reducible representations,
If the basis f1, esey I of the invariant
n
module 77 1is taken to be orthonormal =~ . |,

1.0, (fy, fj) =4 then the representation associated

i3°
with this basis will be unitary,

Now the functions Dpgp(x) of a representation
D(x) = (Dpe(x)) associated with a module 7 form a
set of functions which span the module 7], One simply

writes f,(xc) = 2{521 Dy4le) £5(x), and putting

x =1, obtains

n

J=1 1]
The basis functions are thus linear combinations of the

£f;le) = £4(1) Dy le) for all c € G,
Dj4(x), and since any f(x)e 71 1is a linear combin-
ation of the basis functions f,(x), ..., £ (x), 1t

is therefore a linear combination of the Dij(x)‘
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It is evident from the above relations that the
functions Dij(x) are bounded, since the a,p, functions
are bounded, and hence the representations resulting from
& module 7n ars bounded representations. If we recall
now the complete system of Iinequlvalent irreducible
bounded representations {D(v)(x)}, then the represent-
ations to which M gives rise are represented in this
system, and we may choose a basis of M which gives
rise to the D(v)(x) which represents this set of equie~
valent representations, Restricting ourselves to these
unitary representations D(V)(x), we now state the
following theorem, one of the most important theorems

on a,p, functions:

THEOREM: The functions D(f,‘;-)(x), coefficlents of the
inequivalent, irreducible, bounded, unitary represent-
ations in the above complete system of representations
of G, form, in the space of all a,p, functions on
G an orthogonal, and in a certain sense, normal system

of functions:

-

(w) ~
: 1/8 when ¢ = e= T,
1.0, (D(;g(x), D(T“‘.),(x)) = { M= p

0O otherwise

S(v) is the number of rows in the matrix D(V)(x).

Now the set of all a.,p, functions on a
group & 1is & closed invariant module, R, and is
therefore the sum of irreducible finite invariant mod-

ules R,, 1i,e, R = ZR,, By the definition of the sum
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of modules, this means that any f € R can be uniform-

ly approximated by finite sums 2: r where fu

A'u t i i
belongs to some Rv o This £, in turn can be written
i Ve
as fv(x) =?§?<ré?l (x) where D( J(x) is the
1

representation in f (V)(x)} corresponding to the mod-

ule Ry, « Thus we have the Approximation Theorem:
i

Eech a,p, function f{(x) can be uniformly

approximated by finite series of the following form:

no v (895 ™) (y)
1= Ze‘,hq 2 s Dlps (%),

where the Dﬂw)(x) are coefficients of the unitary ir-

reducible representations of a complete system {D(V)(x)}

of representations,

We may illustrate these developments by re-
ferring to our example of the contlinuous periodic
functions, It turned out that all the irreducible mod~

ules in this case were one-dimensional, and spanned by

the functions elVX y= +1, +2, ¢ue o The complete set

of irreducible representations of the real numbers mod 27

iva

since elV(x+a) _ (elvey(elvxy,

are given by D(v)(a) = e
These coefficients are certainly orthonormal since
(elVX olpx) = S»ﬂ. Further, the general approximstion
theorem proved above reduces in thls case to the fam-

1liar Welerstrass Approximation Theorem:

Any continuous function on the interval [0, 2%

with f£(0) = £(2n) can be uniformly approximated by
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n ixy

finlte sums of the form Z; 1 &, ° .

y

Now if we consider any periodic continuous
function f(x), we may form its Fourier Coefficients
oy = (£(x), eivx), and associate with f(x) a Fourier
Series f(x) = V:L, d,eivx. One can then prove the
Bessel Inequality:

Do Myl < (£, £)
and using the Weierstrass Theorem, one can show that
the equality holds

l,e, Z,,:_,o 1.«,,12 = (f, ),

This relation is the well-known Parseval Equation or
Completeness Relation, From it follows that f(x)

can be approximated in the mesn by its Fourier Series -

i,e, N(f - E:v:—n xyeivx) - 0 &8s n — o=,

- Now these properties of Fourler Series may
be extended to similar results for a,p, functions in
general, Proceeding in a parallel fashion, we call

) :
d:&-: (f(x), D(::,.)(x)) the Fourier coefficient of f(x)

with respect to D(;f,), and assoclate with f(x) a
Fourlier Series:

flx) = Z:; SLV_O S_—‘.S:&\___" d(:;\ D(;’;)(x) .
It can be shown that at most a countable number of the
9&?'3 are different from O, so that the countable sum
in the Fourier Series is justified, As for the previous

case, we can state the Parseval Equation:
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Zy Se) Z(fgf;.l | (;’:'2 = (f, £) in its generalized
form, where the rm are the Fourler coefficlents with
respect to a complete system of lnequivalent unitary
representations of G, And from this follows the com=-
pleteness of the system éD(V)(x)} - i,e, that every

a,p. function can be approximated in the mean by its

Fourler Serles:

n Str) pl%)
neex) = 20 8y, ZP’ W ) b ) — o

88 n —» o9,

The Parseval relation 1s equivalent to the
completeness of the system of functions %g)(x) in the
following sense: if f(x) is any a,p. function such
that (f(x), I#;Q(x)) =0 for all p,qd, and v, then
f(x) = 0, Thus to show that a system of representations
is complete (or equivalently that a system of irreducible
modules of a,p, functions is complete - 1i,e, exhausts
the set of all a,p, functions on the group) then one
need only show that if (f(x), D hd(x)) is zero for all

f(x), a.p. on G, and for all p,a,v, then f(x) =

We shall make use of one more property of a,p.
functions, Using topological considerations on the space
of a,p., functions, one can show that the definition of
a,p, functions can be modified slightly., One can prove
the following theorem:



-17-

If f(x) 1is a function of the elements x of
a group G, and to every £ > O there exists a covering
A19 evey An of G - l,e, A1U AZU.,. \JAn=G
such that uniformly in d € G

If(xd) - £f(yd)l < € for x,y e &y

then f(x) 4is almost periodic,

This means that instead of requiring invariance
of the inequality under both left and right translation
of the elements x and y, it is sufflcient to consider

only right translations,

During the remainder of this thesls we shall
deal with the sa,p, functions and representations of
the rotation group in Rn, and 1n particular in RB.

By the rotation group we mean the group of distance pre-

serving transformations of the unit sphere, Sn, into
itself - i,e, the group of proper orthogonal nxn
matrices,

Before we consider the a,p, functions on the
rotation group, we shall conslder & slightly different
concept of almost periodicity, that of almost periodicity

on the sphere,
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II

\

1. Almost Periodlc Functions on the Sphere Sn

We denote by Sn, n>3%, the spheré of rad-
ius P in R® and by P, Q, ... points on s -
i, 1f P=1(x4, oo.y x,) and P e s®, then
25;:1 xiz = 02. J)n will denote the rotation group
in R® - 4i,e., the groﬁp of proper orthogonal

n-matrices, X, ¥, eee, V s Moy see denoting its elem-

ents, We shall denote by P,Q the scalar product of

»"»

the two points P = (x{, «us, X,), Q= (¥4, eue, V)
n

P.Q = 221=1 xiyi. We shall heve occasion to use the
fact that if w(P,, P;) 1is a function on 8", n > 3,
such that w(Pyv, P,y) = w(Py, P;) for all v e L,
then w 1s a function only of P1.P2. Notice that due
to the importance of right-invariance in modules of a,p,
functions, we are using matrix multiplication on the

right side of the point P,

Now SP is compact, If f(P) 4is a contin-
uous complex functlon on Sn, then to every ¢ there
corresponds & 4 such that if d(P, Q) < S, where
d( ) 1is the metric on S%, then |f£(P) = £(Q)l < ¢,

Thus we may choose finitely many é—spheres A1, coss A
such that A, v A2 Coeee v A =87, and If(P) - £(Q)] «¢

n
when P, Q € A; for any i, Since a S-Sphere is
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transformed into another S-sphere under a rotation of

n
’

S we have that If(Pv) - £(QV)l < € for P, Qe Ay
and any Vv e £, Such a function f 1is called almost

periodic on 8B,

Now the continuous a.,p, functions on st
form a closed right-invariasnt module M1 in the follow=
ing sense:

1) 1 £(P), g(P) ¢ M, «f(P) + Bg(P) ¢ M

2) 1f £(P) e« M, f£(Py) ¢ M for any V ¢ Ikl

3) it fi(P) is a uniformly convergent sequence of
functions f; € /M, then Hm £; = £(P) also belongs
to M, The above properties follow from the continuity
of the functions «f + fg, f(Py), and }iﬂLfi(P)‘

To each of the above &a,p, functions on st
we may assoclate an a,p, function on Iln in the
following obvious way, Let Po be a particular point
of s®, eand define F(x) on £ Dby the equation
F(x) = £(Pyx) = £(P) where Px =P, Ly may be div-
ided into subsets B1, eoes Bn in the following manner:

V e Bi ifr P°1/= PecA where Ai belongs to the set

i
of & -spheres for f(P) mentioned previously, Then
cleerly {B,} 1is a division of {2 for F(x) and e,
since [IF(xv) - F(yv)| = I£(Pyxv) - £f(P yv)l, so that
if x, y e By, then P.x, Py e A; eand therefore
If(Poxv) - f(P,yv)l < ¢ for any Vv e Jzn, Hence F(x)

is an a.,p., function on th.
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The set R of all such functions F(x) = f(Pyx)
for & particular Po forms a closed right-invarlant
module of a,p., functions on Q , @s may be seen by
considering the corresponding module 77 of a,p., func-
tions on 8", For example,

F(x) e R = (P x) ¢ M
> f£(Pyxy) € M for any v ¢ O

= F(xy) ¢« R for any v « ‘Q‘n

The other requirements follow In a similar manner,

Since R 1s a right-invariant c¢losed module
of a,p, Tfunctions, the principal theorem on modules
of a,p, functions asserts that it 1s the sum of
finite-dimensional inveriant irreducible modules R,

«L € A. By the correspondence F(x) «> f(Pox) = £(P)

where F(x)e R and f(P) < /1, one can see that ™

is the sum of finite~-dimensional invariant irreducible
modules of a.p. functions on S®. The modules M«

are defined by the relation {f(P) e 77, iff F(x) ¢ R_§{,
M= 2. 4, Mi 1n the sense that for every £, and

any f(P) e 777, there exist finitely meny xi's, such

that I£(P) = S® £ (P) | < ¢ where £ (P) < .
L “1 1

M, 1s inveriant in the sense that if f (P) e 7,

then f£,(Py) e N for sny v« an. And M, 1s ir-
reducible in the sense that { 0} 1is the only invariant
subgodule of 71, ., That is, if £, (P) 1is any function

of /M, , then thers exist V,,6 .,,, Vh such that
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TPV )y eesy f,(Py,) form a basis of WM,

Now the mean value of a function F(x) be-
longing to R reduces to the integral of the correspond-
ing function f(P) belonging to M over s®, That is,
if 4 S®™(P) 1s the element of volume of S” at P,

and w 1is the "volume" of SP, then

b

M (F(x)} = 1 J‘sn £(p) 4 s™(p),

where F(x) = f(P_x) = £(P), That this 1s so can be
seen by considering the following properties, which
uniquely determine the mean value Mx:

1) 1 Jn [«£(P) + Bg(P)] a sP(p) =
w S

w w

o J‘n £(P) a4 s%(P) + B f g(P) a s™(p)
S st

2) 1 5 £(Py) 4 SP(P) = 1 f £(P) 4 s®(py ")
w st w st

]}
-

fsn £(P) a SP(P)

since d S™(P) = 4 Sn(PﬂJ for any p e Kln.

3)1 |, £f(P) as™p) s 1 g(P) @ s"(p)
Js woJs?

]

if f, g are real snd f(P) < g(P) for all P,

's)

L) 1 14 s™(P) =1
w Jst
Then 1f M!{F(x)] =% o £(p) 4 s®(p),
M} satisfies the four conditions that determine M.,

so that M! = M ,
X b 4
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It is clear from the preceding discussion that
ore may form & mean value over th of an a,p, function
on the sphere - 1,6, of f(P)e M. For if F(x) =
£f{P,x) = £(P) for some particular P,, then F(x) 1is

a.p. oOn KLn, so that we may put gzn'if(P)} =

n
Mx{f(P1x)} = MX{F(X)}. One may extend this notion to the
mean value of a product of functions of ™, say r,(P),
£,(P'), Then F,(x) = £,(Pyx) = £,(P) and Fz(x) =
fa(sz) = £,(P'), vhere P;x =P, and P,x = P', are
a.p.‘ functions on Iln, so that their product is a,.p.
on [Zn‘ Let H(x) = F1(x) F2(x). Then we can find the
mean value of H(x) and call this the mean value over
fx, of f£y(Px) f,(P,x), Put wl(P,, P,) =

M, {f(P,x) £,(Px)t= M {H(x)}. The two functions f,(P),
fZ(P) e M are said to be orthogonal over Lu o if

w(P, P) = Mx{f1(Px) ?;T?ITS== O, We investigate now the

properties of this function w(P, Q) = Mx{f1(Px) fa(Qx)j.

Firstly w(P, Q), eas & function of P, keeping
Q fixed, is continuous, For, f1(P) being uniformly
continuous on 8", there exists a S = S(g) for every
£ such that If,(P,) - £,(P,)] < &M when 4(P,, P,) < $,

a(p

1» B,) Dbeing the metric on 5%, and M=1lub I£,(Q) 1.

Qe SH
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Then lw(P1, Q) - w(Pz, Q)

= IM,{f(Pyw) £,(Qv) = £;3(Byw) £r(Q)!

< MllIe (Py) ~ £, (P V)] 1f,(Q0) ]

<e if d(p,, By) <&,
Similarly w(P, Q) 1s a continuous function of Q,
keeping P fixed, Further, w(P, Q) may be written
as the limit of the sequence h (P, Q) =
% zz;:1 f1(Pui) f2(Qv1) where the vi are the elements
used in the corresponding sequence iH(vi)‘§ used to
find the mean value M,{H(v)}, Each term of the sequence
fhn}, considered as a function of P, 1s continuous
on 8%, 1In fact the sequence h (P, Q) 1s equicontin-
uous, For if S and £ are definedf:bove, then
If1.(P1vi) fa(Q"i) - £,(P¥) £,(Qy)] < € for all i

when d4(P Pa) <« §, Therefore

1°?
IH (P,, @) - H (P,, Q)| =
13,2 e (py,) fy(@y) -1 SR e (R £o(Qu)l
n iI=1 717171 2 i n i=1 "1'° 2% 2 1
<« ¢ for all n, Hence w(P, Q) 1is the continuous
limit of an equicontinuous sequence of functions on the

compact space S”, and the sequence is therefore uni-

formly convergent,

Now if f1(P) belongs to an invariant (not

necessarily irreducible) closed module 771, and f,

to another such module 7n2, then each of the terms
1 n

= zji=1 f1(Pvi) fz(Q)&) belongs to 7ﬂ1,
held constant, and since W(P, Q) 1is the limit to which

ifr Q 1is
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the sequence converges uniformly in P, w(P, Q) 1is an
a,p. function of P in 7n1, since h(1 is closed,
Similarly, if P 1is held constant w(P, Q) is an a,p.

function of Q, in 7n2.

w(P, Q) is invariant under J)n; i.e.
w(gﬂ, QP) = w(P, Q). This is a consequence of the
properties of the mean value, It follows that
w(P, Q) is a function only of P,Q, as mentioned at
the beginning of thlis section, And therefore

w(P, Q) = w(Q, P) since P,Q = Q,P ,

Now w(P, QO), for some particular value of
Q = Qo’ is & function of the invariant module 7ﬂ1,
since £, (P) e )n1. But w(P, Q,) = w(Q_, P), and the
latter is a function of the invariant module 7ﬂ2
since f,(P) € 7né. We may conclude then, that
w(P, Q) 1s a function of both 7n1 and 7%2, con-
sldered as & function of P, This same property holds
if w(P, Q) 1is considered as & function of Q. Hence
ir ﬂz1 and 7ﬂ2 have only the function O 1in common,
w(P, Q) = 0, In particular, if 7”1 and 7ﬁé are
irreducible invariant distinct modules of 7ﬂ, they can
have only the function O as thelir common element so

that My,ff (Pv) £,(Qv)} = 0 for a1l f e 7, and

f2 € ?ﬂa,
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As an example of an invariant module of con-
tinuous functions on Sn, consider the set of all
homogeneous polynomials of P e s of degree m,

: re T2 Tn
These are functions of the form 2{; n B Xy X7 eeeXy
r

A
where §E121 xi2 =102 and r, + r;, + ,,. %
8 . v complex, Being continuous, these functions belong
to MM, and the set of all such functions for some
particular m i1s certainly invariant under () . This
invariant module must contain at least one of the ir-
reducible invariant modules of /7], That each of the
irreducible modules consists of homogeneous polynomials
of some particulsr degree m will ®Be shown in the next
section, In fact we will show that the complete set
of irreducible modules of M 1is the set of systems
of harmonic functions on 8" of degree s =0, 1, 2, ...,

or if P =1, the systems of spherical harmonics of

degree s,

2. Spherical Harmonics in n - dimensions

We shall investigate the system of continuous

solutions of the equation (1) Af = O, where
A-..-Z.’-? 92 and f = £(P) = £{x,, ..., x ), Pe 8%,
1=1 3x;2 Pt mn

The operator is invariant under orthogonal transform-

ations of coordinates, That 1is

n 2 2
zzi=1 %;Egifl QE;— 3xif(P)
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where the transformation from the coordinates

(X4, aees xn) to (x;, cees xa) 'is sccomplished by

an orthogonal matrix, as can easily be verified by
making the substitution of new coordinates end simplify-
ing using the orthogonality relations, This implies
that if Af(P) = O, then Af(Pv) = 0 also, so that
a system of solutions of Af =0 1s invariant under
J)n. Also, 1f f, g are solutions of the equation,

«f + Pg ere also solutions, Hence if we restrict the
solutions to continuous functions on Sn, the resulting

system of solutions is an invariant submodule of W],

If we now require that a system of solutions

be homogeneous polynomials of degree s then the re-

2
sulting module will be an invariant submodule of the
module of all homogeneous polynomials of P ¢ SO of
degree s, To show that there are such solutions, we

actually find a solution of the form

_ $s/2 s-2r 2 2\r
f(x1, cees Xp) = E =0 r *n (x1 + oeee + X 4%)
=a x3 + a xs-z(x 2 + + x 2) +
o 1 1 L n-1 e0e

By straightforward calculations, one finds that Af =

2:5/3-1 [(s—ZP)(S-ZP-1)‘r + 2(r+1)(n+2r~1)a;§£;b4(x$+...+

and putting Af = 0, the above equation yields the
recursion formuls

'y = =(8=2r)(s-2r-1) a

v+ 2(r+1)(n+2r-1)

Putting a, = £(0, 0, ..., 1) =1, we call the resulting

function VS(P) = Vs(x1, eoey xn)‘

Xy

Z)r
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A homogeneous polynomial of degree s on st
which is a solution of (1) 1is called a harmonic
function on S” and denoted by f(p, P) where p 1is

the radius of S%, 1In particular the above function Vg

is & harmonic function and

s/2 o

- s=-2r 2
vs(P’ P) = §:r=0 r Xn (x, +

. o0 +x 2)r

n-1 .

To each harmonic function f(p, P) there
corresponds & function on the unit sphere W (1.e. f>= 1)s

£(1, P) = £(p, P) where s 1s the degree of f(r, P)

i

e
and Ps (E:? xiz)s/z. Putting gi = xi/P, then

n .2
Y so  £.5 =1, and £lp, P) = £lxq, eea, X ) = £84, veuy b))
i=1 >1% —Le'r— P -F-D n

if f(V’ P) = f(x,, ees, X,), Dbecause of the homogensity
of f, Thus f(1, P) may be regarded as a function on
wn. The functions f(1, P) are called sphericsl har-
monics of degree s, It 1s clear that the sphericsel har=
monics of degree s form an invariant finite dimensional
module ¢ M', where ™M!' 1is the module of continuous
functions on LA i,e. on s?  for P = 1, since

the set of corresponding harmonic functions f(p, P)

form an invariant submodule of the module of all homo=-
geneous polynomials of degree & on Sn, which 1is
certainly finite, This module of spherical harmonics

we call (Y ), and we denote its dimension by Ng. In

particular vs(1, P) = Vs(P) 1s a spherical harmonic, end
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—8/2
o %r gn

s/2 8-21 2
ZO a8 (1 -8 )7

§-2r 2
v_(P) (€, + ooe + 8

s - 2
gn +&1 gns 2(" ‘{n ) + Y

VS(P) is thus reduced to a polynomiel in {n which

we denote by xs(gn). It could be that 1-a4+ay+,,, = O
in which case the coefficient of § _° in = (£ )

would be zero, so that xg(gn) would have degree < s,

That this cannot be so follows from the next

THEOREM: Two modules of spherical harmonics of different
degrees s < s' have no functions in common,
Proof: Let f(P) be a function of both (¥ ) and
(¥ y) where s' =s+h, h>0, This implies that
?Sf 1s & harmonic function of degree s on s® and
that Ps'f is also a harmonic function of degree s!',
That is, 1f glp, P) = st, then g(pP, P) 1s a solutiom
of (1) as is ehg(e, P) = (E:? xiz)h/2 g(f, P).
Now if A g = 0 then A(;hg #0 for h >0 since
A((ahg) = (:hé\g + 2h(ah’2 in %_5_ + h(n+h-2)?h'2g .
X3

But Ag =0 and in Jdg_ = sg because of the homo=-

0Xy
geneity of g, so that A&Phg) = h(n + h + 2s - 2)g.
Then since h > O, Z\Phg # 0 so that Phg is not a

harmonic function, Hence it follows that if f belongs
to both (Y ) and (Yo1), £=0,
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Corollary: If f(P) e (Ys) and g(P) e (Ys,), then
M, {£(Py) (@)} = w(P, Q) = O,
Let f(p, P) = p°f(P) and glp, Q) =f>s'g(Q). Then
f(P’ P) and g(e, Q) are harmonic functions of deRree s
and s' respectively, and further, ETFT—QT belongs to
the same module as does S(P’ Q). But since (Y ) and
(Ys,) have no spherical function in common, the modules
containing f(P, P) and g(F, Q) have no e}ement in
common, so O = M,if(r, Py) ETET-QVTR = Ps+s My{r(Py) 2],
In psrticular, if P = Q,
M, §£(Py) Pyl | =1_ f £(P) g(P) d w (P) =0

¥n J¥n

where the integral is teken over the unit sphere, In
other words, two spherical harmonics of different degrees

sare orthogonal over the unit sphere,

It follows that the V_(P), s =0,1,2, ...,
belonging to (Ys) are orthogonal, That is, ns(gn)
is orthogonal to all ns,(gn), s! « s, Hence the degree
of xs(gn) is greater than the degree of all ns,(gn),
s' < s, Since the degree of m,(f) 1is one, it follows
by induction on s that the degree of = _({ ), which

we knew to be < s 1is actually s,

We may write gn = P,X, where X = (0, 0, see, 1)1

n
Then V(P) = ns(P.Xn), and we let this function be
Vs(P, X ) henceforth, VS(P, X ) 1s the only spherical

function of degree s involving only gn’ apart from



«30=

e constent factor, as may be seen by consldering the
corresponding harmonic function, ns(P.Xn) = ns(Pv.Xnu)
so that V(P, X ) = V_(Py, X y). V(Py, X)) also
belongs to (Ys) (pecause of the invarisnce of A

‘ -1
under <L), and we may put V_(Py, X)) = VS(P, X v )
= V (P, Q) where Qp= Xn’ ve 2. Then VS(P, Q) =
VS(Q, P), Vs(Pv, Q) =

ﬁs(P,Q), so that VS(P, Q)
Vg(P, Q), VS(P, P) = ﬂs(1)

1. From these properties
we may conclude that VS(P, Q) is the same function

considered either as & function of P, or of Q, and
1s the only spherical harmonic of degree s which is s

function only of P.Q .

We are now in a position to show that (Ys),
considered as a module of a,p., functions on the unit
sphere, is irreducible, Let y.(P) e (Ys). Then

w(P, Q) = M,{y (Py) T (aW }
is such that w(P, Q) 1is a function only of P.Q, and
and belongs to (Ys) (cf. pg..23). Therefore w(P, Q)
=c¢ V,(P, Q) where ¢ 1is a constant. Since w(P, Q) =
Mv{lys(Pv)lzi is > 0, and VS(P, P) = 1, we see that
¢ > 0, But yS(P) was any function in (Ys), so that
V.(P, Q) = (1/c) w(P, Q) belongs to sny invariant sub-
module of (Ys), since if ys(P) belongs to any such
submodule, w(P, Q) (consdiered as a function of P or

Q) also belongs to that submodule., Therefore v (P, Q)
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generates all the irreducible invariant modules belong-
ing to (Ys), so that they are identical, and colncide

with (Ys). In other words (Ys) is irreducible,

The irreducible modules (Ys) for s=0,1,2, ...

’

are the only irreducible modules of continuous functions
on W . We may prove this by showing that the system

of functions Y , Y e (Ys), s =0,1, 2, ... form

& complete syétem of functions with respect to W

That 1s, if f(P) 1is a continuous function on w then

n?
if M, {r(Py) T (Py]} = 0 for all Y e (Yy), and all

s=0,1,2, ... then f =0, Here M, {f(Pv) Y (PV)} =

1 ‘[ £(P) T (P) a w (P) vwhere d w,(P) is the
W, W
n n .

element of volume of wn st the point P,

Now the element of volume d w,(P) wmay be
reduced in the following way, Write P = ({ !, Nys eees Nn-q)

where § ', Mqs eess Np_q B8re new coordinates, and

fn = §n' = 7n’ 7?1 = §i/* 1'§i for, 1=1,2, ..., n-1,
Then Z?;: r(ia =1 so that S = (771, sy 77n-1) is a

point in the subsphere of w

which we call wp_q,

n?»

defined by § = 0, Then each point P of w, may be

written as (§_, S). If one assumes a system of curvi-

linear coordinates in wn 1 and one applies known form-

ulae to the element of volume d w,(P), one can obtain
= (1 -+ 2y(n-3)/2
the formula d wn(P) =(1-§.°) af, dw _,(8)

where d w, _.(S8) 1s the element of volume of w at

n-1
the point S.%

* (2): pp 233
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"
o

THEOREM: The system of functions (Yg), s y 1,2, eee
1s complete,

Proof: Suppose there exists a continuous function £(P)
on w orthogonal to all Y_e (Y.), for all s. That

n?

is, J‘ £(P) T,(F) d wy(P) =0
W
n

We may write f£(P) = £(§,, S), S e w and we may

n-1>»
take, in particular = (§, ) e (Y ). Then the above

equation becomes

1 2y(n-3)/2 =
5_1 af, (1-§ 2)n 3)/ n (§ ) jwn-1 £(€,, S) dawy(s) =0

Putting ?(gn) = \Jw 1 f(gn, s) da wn(S), we have that

1 2y(n-3)/2
J14 ?(fn) (1 - En (o 3/ n(§ ) =0 for all

s=0,1,2, ... .+ But ns(gn) was shown to be a poly-

nomial in §,  of degree s, A system of these polynom-
ials for s =0,1,2, ... 1is complete on the interval
[ -1, 1], because of the completeness on [a, b] of

1, x, xz, eee o Since ¢(§n) (1 - gnZ)(n-B)/Z is

orthogonal over [-1, 1] to all ns(gn), i1t must be

identically zero, Therefore P(§,) = 0 except perhaps
at { =1, But since ?(§,) 1is continuous, P ) = 0;

ioeo jwn_1 f(gn) s) d wn(S) = O. If }we pu‘t gn = 1’

that 1is, (0, 0, ..., 1) =X, then S=(0,0, ..., 0)

P =
so that ‘fwﬂ_1 f(Xn) d wn(S) = W £(X,) = 0, That is,

£(x) = o,
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_ Now YS(PV‘1), Ve Jln, also belongs to
(Ys)’ so that f£(P) 1is orthogonal to all YS(PV-1),
or in other words f(Py) 1is orthogonal to all Ys(P)‘

From the previous paragraph, we may conclude f(Xnu) =0

for any Vv € Iln. But X v =P for any Pe w , for
& suitable Vv, so that f(P) = O, Hence the system

(¥.), s=0,1,2, ... 1s complete,

In each (YS) we may choose NS functions
Ys1’ YSZ, cess YSNS(P) which constitute a basis of (Y.).
Then the completeness theorem implies that every f(P)
may be spproximeted in the mesn by a series of the form

N Ny 1,1 '
s :

2; =0 2Zi=1 &g Y (P)., And this implies that every
irreduclble module of the closed invariant module of all
continuous funetions on wn is to be found among the

(Y,), for some s (see pg. 16), But this module is

the sum of 1its irreducible modules, so that
N

If - 2 -0 Y¥alP)l < € for any ¢ and suitable ys(P) 3
(Y.), for any f continuous on w_ . ‘herefore, for
any continuous f(P), P ew , we have

[£(P) - sEO Zr1§$ asi Ysi(P)l < ¢ for any ¢t .

That is, f(P) may be uniformly approximated by spherical

functions,

Similar results may be obtained for a function
f(P’ P) on S®, by considering the complete system of

functions (esYs) for 8=0,1,2, +i. &
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1. Modules of Spherical Harmonics as Representation Modules

Let (Ys) be an irreducible modules of spher=-
ical harmonics of degree s, of dimension N , with an
orthonormal basis Y31(P), vees YSNE(P), Pew,. To each
YS(P) we may associate a function ys(y) on ILn by
the relation Y _(P) = Y (P y) =y_(v), for some fixed
P . Then, as stated before, y (yv) is an a.,p. function
on Jln and the set of all such functions, R,, for a
given (Ys) and a certain P_, forms an irreducible
right-invariant finite module of a.,p. functions, with the
orthonormal basis ysi(x) where ysi(x) = Ysi(Pox).

The ysi(x) are orthonormal since

(ysi(x), ysj(x)) Mx{ysi(x) ySJ(i)}
- w {yY L(p x) TP AT
1
jwn Y _*(P) YSJ(P5 d w,(P)

i ]

#

Hi1=

n

]
L=

1]

Ry 1s not left invariant since if f(x) ¢ Rs

’
then f(x) = F(Pyx) where F(Px) e (Y,), but
flyx) = F(POVX) = F(Qox) to which there need not corres-

pond a function f£'(x) = f(vx) in Ry

Since R, 1s invarient and irreducible, the

transformation ysi(xv) = ZZ}E? D§§)(v) ysj(x) yields
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an irreducible representation of f)n through the mat-
rices D(s)(v) = (Diﬁ)(v)). Since the basis ysi is
orthonormal, the representation D(s)(x) is unitary and
may be taken as the representation of its equivalence
class in the complete system {D(V)(x)} of irreducible

Inequlvalent representations, Thus the functions (3)

are orthonormal in the sense that

(D(i§), (s)) 1/s if 1=k, j=1
O otherwise
(s) (8) (s) (s)
h D D D o
where ( 13 9 ) = éﬂn{ i3 (x) Dyq (%)}
Since the ysi(x) are orthonormal, the (j)

may be given by the following relations

{30 = (3,1, ¥ Ix)),
From this it is clear that the representations are in-
depsndent of the point P, used to define R, For
suppose we have another module Rs' of e,p, functions
on Q. derived from (Ys) by the relation
ysi'(x) = Ysi(Po'x) where Po'x =P ¢ S©, Then if

y e = 50 0310 3, 91x) then

(s)
D1j (y)

(yg 1 (xy), v I1(x))
= (y M(pxw), y 31 (px))
= (3. =0, ¥ (x))
(S) '

Dy} (v)

where Po'r~= P so that ysi'qux) =Yg (POVux) Ysi(Pox).
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§§2(V) may be expressed in
terms of the ysi(v), in fact as a linear combination

The functions D

of ysi(xkv) for suitable x,, We may choose N_ el-

ements of Q2 , x,, k=1, .,., N; such that the

determinant det (y d(x,)) =1, ., N, k=1, .0\, N

s? s

is not zero., This follows from the linear independence
of the ysi(x). Then the N_ 1linesr equations in the

(s)
N, unknowns, Dij (v), =1, ..., N,

yollme) = Yom2 pi3'0) vty

may be solved for the D§§) in terms of the ysi(xk);

(8s) _ Ns i
i.e. Dij (v) = k=1 % Vg (xkv) for suitable constants

.
It has been shown that the dimension of (YS)

is given by N_ = (s+1)(s+%) 1 {s+n-3) (2s+n-2).%
n=-2)1!

For s =1, this becomes N1 = n, Hence the module

(Y1) has dimension n, and therefore the representation
of Lk for s =1 consists of n-matrices, In fact,

if the basis of (Y1) is teken as Y,(P) = x,, .us, Y (P) = x

n?*
then it 1s easy to see that the representation given in
this case is the group of proper orthogonal matrices

with which one started,

From the completeness of the modules of spher-

ical harmonics, (Y_), with respect to the continuous

* (2): pp., 222
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functions on v, follows the completeness of the
corresponding modules of a,p. functions {ys(v)}

with respect to the continuous ea.,p. functions on Kln.
Thus the representations above may be regarded as the

complete system of bounded irreducible "continuous"

representations of [Ln.

For n = 3, Ns = 2s+1, Thus the irreducible,
bounded, contlinuous representations of [13 are of

dimension 1, 3, ..., 28+1, ... .

It is well known that the special unitary

group given by matrices of the form

x1+ixh s -x2+ix3 _ « g

x2+ix5 ’ x1-ixu B 5 Y
where o, P, Y, & are the so-called "Cayley-Klein
Parameters" 1is a two valued representation of the rot-
ation group ()3. It is not included in the above set
of representations since it is of dimension 2, -
i,e, consists of 2-matrices, In order to find other
representations not given by the above set we shall adopt
& new approach for the rotation group [)3, which is

developed in the next section,

2. Rotation Group in Rz

Closely allied with the two valued represent-

ation of 513 by the special unitary group 1s the repre-

sentation of &L, Dby the quaternion group of quaternions

3

3%

of norm 1,
(%3): pp. 210 - 211; 2L2,
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We can represent this group by matrices of the

form q -q -q -q
1 2 3 b

q2 q -q q

q = h 5

q q q -q

3 L 1 2

q -q q q

L
2'= 1, These matrices are proper orthog-

where 2{;=1 qi
onal, and from a group - i,e, the product of two of
them is another matrix of the same form, Hence they are
8 proper subgroup of Ilu. They form a two-valued repre-
sentation of £l5 in the sense that to each element m
of .CL3 there exlist the two quaternions i+m, such that
if #m, 4n € Q and correspond to M,y of §L3 then

to pvy corresponds +(mn),

Clearly the quaternion

X1 'XZ "XB | "'XL‘.
X X -X X

x = 2 1 L 3
X X X =-X

3 I 1 2

is uniquely determined by its first row, and therefore
to x we may associate the point X = (x1,-x2,-x3,-xu)
2 2 2 2 .
on i + + + = T -
wu since x1 x2 x3 xh 1. his correspond
ence is 1 -1, To =xu corresponds the point given by

its first row, which is the point

u1 -u2 -u3 -uh
u _

Xu = (x1 -X, -x3 -xu) 2 1 uu u3
u3 uh u, -u,
u -u
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We may also multiply x on the left by u, and to ux
corresponds the point Ux where U = (u1,-u2,-u§,-uh).
This, however, may be written as right multiplication of

X by a matrix u - i,e. Xu where

uy -u, -u -uu
- u, u, uu --u5
u3 -uLL u, u2
uh u5 -u, u1 .

ﬁ, by inspection 1s orthogonal, and its determinant 1s

u12 + u22 + u32 + uh_2 which is 1, and hence ue {2

Each function f£(X), X = (x1,-

Le
5,-xh),

on W), then, may be considered as a function f(x) on

x2,-x
the quaternion determined by X. The converse of this
statement 1s true also, In particular the a.,p., functions
on the sphere wh may be taken as the a.p, functlons

on Q. The modules (YS) of sphericsal functions on w
are invarianf under fzu, and therefore invariant under

Q; 1.,e., if f£(X) (or f(x)) e (YS), then

f(Xq) e (Ys), q e Q, where X 1s the point determined
by x., In fact if f(x) e (Ys) then f(xv) € (Ys)

where v ¢ £, and so f(ux) € (Y ) 1if u ¢ Q, since
flux) = f(xu) where U 1is the mat:ix of (lu discussed
in the last parsgraph, The module (Ys) while irreducible
under right multiplication by [1h’ is not necessarily

irreducible under right multiplication by Q.
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(Ys) is in fact reducible under Q. For let
£f{x), ..., £ (x), n<N,, be abasis of an irreducible
right-invariant submodule of (Ys)° Then we can write

n
£,(xu) = ij=1 D, j(u) £,(x),
Since the fj(x) are linearly independent, we may choose
X, k= 1, 2, ¢eey, N so that the determinant

det (fj(xk)) # 0, Then, the (u) may be found in

D, ,
terms of fi(xku), k=1,2, ..., n - 1,e,

= n '
Dij(u) = :fk=1 a f,(xu) for suitable a 's, Since

f(xku) as a function of u belongs to (Y.), Dij(u)

1s also a function of (YS). The functions Dij(u)

may be taken to be orthogonal, so that (Yg) contains
the n2 orthogonal (and hence linearly independent)
functions Dij(X)’ i, =1, «.., n, so that Ns > n2,

Thersfore (Ys) is necessarily reducible,

It should be noted thet the orthogonality referred

to is orthogonality over WLL as well as that over Q.

The mean value over @ can be taken to be the
integral over w; , the points of wh representing the
elements of Q.

M, {f(x)] =1_ £(X) a w (%)
Xeq Wh wh

where X 1s the point (x1,-x2,-x3,-xu) corresponding
to the quaternion x, That this is actually the mean
value can be seen by considering the four determining

properties of M,{ | as was done in the similar case
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of the almost periodic functions on the sphere, However,
because of the 1 - 1 relation x ¢«> X, this mean value
is the mean vaslue of the function on the group as well as
the function on the sphere, Whereas in the case of a.p.
functions f(P) on the sphere and the corresponding
function F(x) = f(P x) for some particular P, = Px~1,
the mean value of F(x) over G heppened to have the
seme value as the mean value of the a,p., function f(P)

n

on S, for some particular Po.

We will now show that there is only one ir-
reducible inequivalent representation of Q associated
with each module (Ys)' That is, all irreducible sub-
modules of (YS)_ are of dimension n, each yielding
Dij(u)
mentioned in the preceding parsgraph span (Ys), and

therefore NS = n2.

equivalent representations of Q, so that the

First of all let us note that if f1,...,st
is a basis of (YS), then we can find a function £(x4),
where A 1is a varlable element of )}, such that

f(xAi) = fi(x) for suitable A For of the 16 co-

i.
efficients of the matrices of J]h, it is well known that

6 of them are independent - that is, each A e J]h

may be completely determined by six of its coefficients,
1

which we shall call i1ts parameters, labelled by a,

cee, aéi. If A e€Q then it is completely determined by

three of these which we may take to be a1i, azi, aai
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If a,, oo, @ are the parameters of a variable matrix

= i i_ i _
A, we put (a” - &) = (a1 - a1)(a2 a2) cee (aé aé).
We can find NS matrices AJ’ J=1, caey Ns’ such that

aij # aik for j # k. ‘hen the function

f(xA) = Z (T—I'}.#} Q(: : ;)fj(x)

is such that f(xAj) = fj(x).

N .o be th dul f X
ow let 7n4, cees Tﬂm e the modules of (Yg)
which are irreducible and invariant under Q, Then there
exists a function f(x) ¢ (¥,) such thet f(xA ) e My
for suitable A4 ¢ ELM' If n; 1s the dimension of 7ﬂ1,
there exist n; elements of Q, wuq, ..., uni, such

that f(xAiuj), J=1, ooy n form a basis of 7ﬂi.

i’
From the considerations of the lsst paragraph, one can
see that the f(xAiuj) maey be taken to be orthogonal:
i.,e, (f(XAiuj), f(xAiuk)) = éjk.
However, (f(xAiuj), f(xAju,)) = (f(xuj), £lxuy))

= (f(xAluj), f(xAluk)),
for any 1 =1, ..., m, One can easily see from this
that f(xAluj), J=1, ..., n, form an orthonormal
basis of 7ﬂl for any 1 so that ny =n for all 1,
Ir Dgé)(u) are the coefficients of the representations
corresponding to 7ﬂ1’ then

(l)

| £(xuyu,) 2% 1 Dij (w) £(xAjuy)
1

so Di})(u) = (flxubjuy), f(xAluj)).
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But (f(xubyuy), f(xAluj)) = (f(xud u,), f(xAu;)) for
all 1, k, so that Dgg)(u) = Dg?)(u), and consequently

all representations 'D(l)(u), 1=1, ..., m are equivalent,

But (Ys) is a closed invariant module of 8.D.
functions on Q, so that it 1s the sum of its irreducible
modules, All these modules are of dimension n and yield
equlvalent representations of Q, so that the n® functions
Dij(u) of the unitary representative of these represent-
ations form a basis of (Ys)‘ Hence Ny, = n2 for some n,
But N, = (s+1)% when the sphere W), is considered,
where 8 1s the degree of the homogeneous polynomials
comprising (Y¥g). Hence the irreducible modules belong-
ing to (Y,) are of dimension s+1, so that there are

irreducible representations of Q of all dimensions

1, 2, LI A S+1, [ 38 N ] [ ]

The irreducible modules of (Ys) may be found
in the following manner, First of all we find an orthogonal
normal basis f,, ..., f(s+1)2 of (Yg). ((¥Yg) 1is gen-
erated by the functions V (P, Qk) for sultable Qp.)
Then we find the (s+1)u functions 4%1
with the transformations fi(x) — £, (xu)

(u) associated

2
fi(xu) = Ez(izz) ‘Pij(u) fj(x)

so that 4)ij(u) = (fy(xu), fj(x))
1 - '
ﬁf"u £,(x) £70 a wy(x),
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Now we shall take s+1 functions of (Ys) of the form
(s+1)

gylx) = E;_ a4 fj(x), where the a;; are as yet

undetermined, and apply the condition that gi(x) € Yni,

where 7&1, 1i=1, ..., s+1, are the irreducible modules

of (Ys)’ This is equivalent to saying that

(gy(xu), gj(x)) =0 forall ue Q and i # j,

Applying these conditions to determine the 834, We find

2
(gy(xu), g5(x)) = (Z(S+1) ag Tlxw), Y5E0 gy £10x)

=2, I, ey Ty (felx), £1(x)

=Z 1 e T 2, (u) (£(x),£;(x))
=21 kT 2 Pt S

=21 %1k P a ).

Thus the problem of finding the functions gi(x) is re-
duced to the problem of finding (s+1)> coefficlents

2
8., K=1, 0., 841, 1=1, ..., (s+1)<, such that

12
Z;s;_) tp 8 Pl =0 forall weq 1r 143,

Now it will be remembered that (Ys) consists

of homogeneous polynomials in X1, Xo, L of degree s,

x3, b ¢
Thus the coefficients of the representations

Dij(x)

may be explicitly represented as homogeneous polynomials
in Xqs soes xh. The representations of Q are thus

at most one valued, and the corresponding representations
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of 113 are at most two-valued, In fact, since for

even s, the two points (or quaternions ) +x yileld

the same values of D, ,(x), the corresponding odd

1]
dimensional representations of fL3 consisting of

(s+1) - matrices, are at most one valued,

In particular, for s =1, we obtain the special
unitary group &s & two-valued representation of f25;

( u, + iu3 ,  =up + iy )

us + iuh s uy - iu3

This gives us nothing new, since the quaternion
group was in fact a representation of this group, The
representations by (2s)-matrices for s =2, 3, ,,, are

probably two-valued also,

For s =2, we obtaln the usual faithful re-

presentation of [13 by 3-matrices gliven by

2 2.u

u,y “Hu, -uu , -2(u1uu - u2u3) s 2(u uy + u uh)
-2(u1uh t ), u12-u22+u32-uh? »  =2lugu, - uBuu)
- - 2 2 2 2
2(u1u3 uzuh) . 2(u1u2 + u}“h) s S, -u, +uh

the coefficients of which may be expressed in terms of

the Cayley - Klein Parameters,
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