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Abstract

Early visual processing is seen as the search for certain kinds of abstract struc
ture within visual stimuli, and one of these—image curves—Is the focus of this work The
general context is early vision considered as a problem of mnferring locally consistent vector
fields from a (retinal) image Particular reference 1s made to articulating the necessary local
conditions for the existence of an image curve These conditions are mcorporated nto the
design of a local operator by formulating a non-linear decomposition of a standard hnear
one The output of this operator then provides the imtial estimates of confidence over a
discrete and extensive description of possible image curves A relaxation labelling system
serves as an inference procedure for discovering consistent patterns i the imtial estimates
by exploiting the geometric structure of piecewise smooth plane curves The calculation
of the relaxation compatibilities s formulated as a closest point problem. and it 1s shown
how the same logical conditions for the existence of an image curve can be incorporated

into them

The system develeoed is a highly parallel computational method {ts robustness
1s demonstrated in several realistic experiments and some implications for biological visual
processing are explored Finally, the ease of extending these rasults to other domains of

early vision is indicated as a future area of research



Résumé

La vision de bas nivesu consiste a rechercher certaines structures abstraites a
partir d'un stimulus visuel Ce travail s'attarde a une de celles-ci les courbes dans une
image Le contexte général est celur de vision de bas niveau. laquelle €tant vue comme
un probleme d'inférence de champs de vecteurs localement consistants obtenus a partir
d’'une image Un effort particulier 4 été {ait pour essayer de formuler les conditions locales
nécessaires a l'existence de telles courbes Ces conditions permettent alors de développer
un opérateur local obtenu a partir d'une décomposition non-hnéawre d'un opérateur Iinéaire
standard Les résultats produits par cet opérateur procureront alors une estimation ntiale
de la confiance accordée a une description discrete des courbes potentielles dans I'image
Un systeme de “relaxation d'étiquettes” sert de procédure d inférence afin de découvrir
une configuration consistante a partir des estimations initiales en exploitant la structure
géométrique de courbes planes lisses par morceaux Le calcul des compatibilités de relax-
ation est formulé comme un probleme de point le plus proche et nous mentionnons comment

les mémes conditions logiques pour I'éxistence d'une courbe peuvent y étre incorporées

Le systeme développé est hautement paralléle La robustesse du systéme est
eprouvée a travers plusieurs expériences réalistes et quelques implications au niveau du
processus visuel sont explorées Finalement, la facilité d'étendre ces résultats a d'autres

domaines de vision de bas niveau est présentée comme une future vole de recherche
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Chapter 1 Introduction

Vision 1s properly seen as a constructive search for structure in the world from
the visual stimuli which enter an eye or camera The earliest stage of such processing s
the transduction of these stimuli into z set of simple measurements \Vhat has been called
early vision 1s the attempt to take such crude measurements and begin to abstract from
them a set of assertions about the structure of the information contaned in this retinal
image Beyond this, so called later or high level visual prcoesses take these descriptions

and attempt to abstract from them a description of the world

My long-term research goal 1s to articulate a methodology for approaching prob-
lems in early wision In this thesis | focus on the inference of curves from grey-lrvel images,
one of the tasks that | believe i1s necessary for this larger theory My hope 1s that this emerg-
ing computational theory of early vision will. in addition to being a succesful engineering

achievement. have relevance to visual neurophysiology and psychology

1.1 Edge/Line Detection: The Description of Image Curves

The hterature on edge and line detection is incredibly varied and voluminous
(for a recent review see [Rosenfeld 84]). and 1s based on a single guiding principle. reliably
find the points in the image where an intensity edge or line exists. then describe such
points in terms of planar curves Such curves are formed as the loci of points which fulfill

certain logical conditions for the existence of a line or edge and are most appropriately




1 Introduction

described In terms of the local differential geometry of plane cuives  Detection 1s not
the sole 1ssue, the process must eventually provide an accurate description of the curves
discovered Does 1t make sense then to decompose this process into separate stages of
detection and description? | will show that this decomposition 1s unsuitable for descnbing

curves in Images

Two kinds of planar curves exist in intensity images-—those associated with
edges and those associated with hnes In this thesis | will take /lines to be those curves in
an image which would have been drawn by a ren or penal  Edges are mstead the curves
which separate between lighter and darker areas of the image- -the percerved discontinuities
in the intensity surface /mage curves are then either of these objects, the kinds of imapge

events whic’s can be described in the geometric language of planar curves

The initial problem in arriving at a robust method for selecting and describing,
only edges and lines from among all possible visual events i1s that these concepts must
be defined | propose that lines be considered as the piecewise continuous loct of laterally
extremal image intensities (the cross-section nermal to the curve 1s locally extremal) Pos
itive and negative contrast lines correspond to maxima and mimima respectively  Similarly.
edges are the loci of laterally maximal first derivatives of intensity, taken n a direction nor
mal to the curve | will develop these ideas first in principle then explain how they will be
used in practice Formally, for an analytic intensity surface { /{.r.y) .y [t} a smooth
segment of curve s 1s defined as a differentiable mapping s 7 = (tg.fy) - 1 given

by s; = (x(t).y{t)) with the normal vector n; a unit vector in the direction (r"(t),y" (1))

Three kinds of image curve are then defined”

s 15 a Positive Contrast Line < -= s smoothon T /\

Yt=T) Z(e >0 O~ b6 < ¢ »I{sy) s, +bny) (111)

* Note that the definition of a line 1s sign specific  whereas the edge 1s defined as a locus of
local maxima or mimma There 1s no quahtative difference between edges that go from hight to
dark moving towards therr ~entre of curvature and those of the opposite contrast these events
cannot be named differently
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s 15 a Negative Contrast Line -== s smooth on T /\
W Ty (¢ 00 o ¢ = Is) - I{sy — bny) (112

s s an Edge <+ > ssmoothon T /\

(T (¢ 0) 0 e = ‘”(s,) ::

in (sy +on.). . (11.3)

These definitions can be taken as the necessary logical conditions for the existence of an
image curve Clear from this formulation is the chicken-and-egg nature of the problem
Since the conditions for existence of the curve depend on its differential structure (specif-
ically the normal n), a candidate curve can only be tested after it 1s described Hence

separating the process into stages of detection followed by description 1s misguided

Fortunately in practice there 1s a way out of this alemma, based on the obser-
vatiors that all of the tests are defined locally By truncating and quantizing the continuous
formulation, the existence of a candidate curve can be tested everywhere in the image for
all local and finite differential structures This 1s combinatonally feasible and the tech-
niques for accomplishing it form the body of this thesis More specifically., my goal ts to
infer a quantized description of the local properties of curves—therr trace. tangent. and

curvature—from images This process is called orientation selection. after [Zucker 85]

1.2 Problem Definition

Referring back to the curve s. consider the projection of this curve into a pa-
rameter space .\ -} « © « KA representing local position. orentation and curvature. The
problem is to represent this curve in terms of a set of discrete points distributed throughout
this four-dimensional space—the hypergraph I = {1 =[X,,};.0,. A]! X,.}, € R.©, ¢
0.k, K} This description” 1s obtained by selecting only that subset of discrete points

§ 7 for which some pont s, - s exists whose description [z;.y,0;.k,] is closer to

In fact this 1s a description of a family of curves of which s is guaranteed to be a member
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Figure 1.1 Discrete representation of continuous curve in terms of
the set of pixels which the curve intersects In this two-dimensional analogy to
the real four-dimensional representation the set of grey pixels 1s a posiion-based
analog of the set § of equation {1 2] ecach pixel bemg, the Voronor cell I, around
pixel center .

[X,.Y,.0©,.K,] than any other discrete point, formally
S - {?6 J}E(tET)Z\/(j t]) [.t,,y,,0,.r{,] 3”2 - |HJ:,,y,,0,,K,] jH)} (12)

Considered as a labelling problem, the description must selest the label A(7} corresponding
to the discrete point i = I if and only if the point 7 fulfills the condition in (12) If M, 1
the convex Voronoi cell associated with the element i, then the description must set the
label

\i) = {TRUE. M (s I1,) #0. (13

FALSE. otherwise
This representation of a curve in terms of a set of discrete units of position. orientation
and curvature s related to the computer graphics representation of a plane curve as the
connected set of image pixels through which 1t passes (see Figure 11}  Furthermoie,
multiple image curves are represented as distinct connecied subsets of the hypergraph so

defined

The goal of the system developed in this thesis i1s to infer such a dcscription

from an image. For each curve which satisfies the logical conditions of one of the defimtions
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Figure 1.2 Block diagram of curve description system.

in (11). there must be a connected subset of the hypergraph I for which each label Is

TRUE by (1 3) Finally. no other nodes in the hypergraph should be selected

1.3 Methodology

Building on an approach previously described in [Zucker et. al. 77] and [Parent
& Zucker 85], there are two steps involved in inferring the local differential geometry of the

curves which comprnise the image scene

Chapter 2 A set of simple locai operators test for the existence of image curves at
every pomt in the image This 1s done for a set of discrete orientations and cur-
vatures. using a model of end-stopped and non-end-stopped simple cells in visual
cortex ([Dobbins et a/ 87] and [Dobbins et a/ 88]) To improve the selectivity of
these operators, | develop a non-hnear decomposition of their components that tests
5 set of necessary conditions for the existence of a curve at the specific position,
orientation and curvature

Chapter 3 A relaxation labelling system then refines these local estimates by testing for
continuity ana smoothness of the inferred local differential structure Each description
of the local differential structure of an image curve forms a hypothesis in this network,
and the compatibility between nearby hypotheses s based on an assumption of locally
constant curvature A computer \mplementation of this system 1s described

Chapter 4 The results of the system are shown and descrnbed.

] Chapter 5 | present a prehiminary analysis of some of the extensions of this work to
: other domains in early vision The way in which this class of models relates to
neurophysiological and psychophysical models and data 1s also explored.




1 Inttoduction
1.4 Contributions

e A logical decomposition of a linear operator 1s derived which allows testing of two
necessary conditions for the existence of an image hne a local extremum in cross
section and the continuity of the line through the operator center

e This line operator then forms the excitatory component ot a Dobbins ES operator
which matches local orientation and signed curvature of an image curve A method
for tuning such operators 1s described

The calculation of relaxation labeliing compatibilities for a two-label (TRUE/FALSE)
geometric hypothesis verification problem 1s formulated as a closest pomt problem
the geometric parameter space

The consistent labelling tor orientation selection 1s defined m terms of a connected
discrete description of an 1image curve in a differential space

The smoothing and locahization conditions for this consistent labelling are translated
into a hnear/logical support network for relaxation labelhng — The non-hnearities i
this network are based on the same existence conditions as the mitial operators. as
well as an argument from convergence

The general principles developed 1n the solution of orientation selection are outhned
and extensions of these principles to texture flow and optical flow are briefly described

6




Chapter 2 Initial Measurements

2.1 Introduction

The most important characteristic of a measuremenu system 1s the degree to
which 1t reflects the quantity it measures while remaining insensitive to other potentially
confounding influences In 1images, there are many different kinds of events, some of which
are irrelevant to the discovery of image curves It 1s the goal of this chapter to develop an
operator for measuring the local orientation and curvature of image curves while remaining
as insensitive to both noise and nearby curves as possible Two of the necessary logical
conditions for the existence of an 1image curve are used to develop a decomposition of a
standard linear line operator The resulting operator behaves 1dentically to the linear one
as long as all of the conditions are satisfied, however, 1t only responds positively when they
all are Thus the analysis which forms the body of this chapter constitutes a departure
from traditional operator designs—while other designs are based solely on guaranteeing
responses to charactenstic image structures, this operator is designed to not respond when
the characteristic image structure 1s not present Hence 1t is well-behaved when faced with

uncharacteristic input as well

The most damaging fallure of a measurement system I1s to systematically re-

spond to events or quantities unrelated to the quantity being measured. we refer to these
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kS
systematic false responses as alhasing ~ In particular. such aliasing can cause catastrophic
effects when fed into other systems which are unable to distinguish between ahases and
‘true’ responses In this chapter we will demonstrate that although standard lmear opera

tors have significant aliasing problems, 1t 1s possible to overcome them

Two different kinds of image events give rise to cutves hines and edges Both
linest and edges are plecewise continuous curves which can be defined n terms of the
shape of their cross-sections (see equations {11}) The necessary logical conditions on
the cross-section must be satisfied and in each case we will show that a linear operator
tests them incompletely This problem will be resolved by introducing a cross sectional

decomposition of the linear operator which allows testing of these nussing conditions

A second necessary condition for the existence of an mmage curve 15 continuity
By specifying that image curves are piecewise and not necessartly dosed the exastence of
discontinuities and end-points on the curve 1s expressly considered Such discontinuities
are fundamental to a description of curves since they are mnvanant under rotation and
translation and even under certian kinds of deformation A iinear operator falls to ensure
that local smoothness s satisfied before giving a positive response  Instead 1t smooths
over curve discontinuities and responds positively in many places which are beyond line
endings This s resolved by inttoducing a second decomposition of the linear operator
which allows for testing of local continuity and smoothness by testing logical conditions

for such continuity

A broad set of goals and constraints thus directs this analysis  The overall goal
1s to develop an operator that maps 1mages nto hypotheses about the existence of image

curves such that it

e estimates both positional location and local differential structure of the image curve.

Realize that while this use of the word aliasing is related to the use i samphing theory, it 1s not
the same This 15 a broader use of the term

 In this context a line 1s not necessarnly a straight line

X
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e avoids smoothing over discontinuities in image curves,

o exhibits a stable, well-localized response cut-off at the end-point of an image curve;

» operates stably in the presence of multiple 1mage curves,

e avoids «haracteristic responses to stimuli which do not belong to the desired class of
input stimuh,

e 1s mdependent of the tling or regulanty of the detector grid,

e degrades gracefully in the presence of noise. and

e 1s computable m parallel

2.2  The Operator

Referring back to the definition of image curves in §1 1, there are three qualita-
tively different kinds positive contrast hnes, negative contrast hines and edges There are
thus three distinct sets of logical conditions for the existence of image curves, the curve
description process should respect this distinction and prevent aliasing between them (see
Figure 12) 1 ensure that the individual conditions are satisfied by testing them, measuring
the existence or nor-existence of an image curve of the appropriate type passing through a
given image position The design will concentrate on lines and not edges (the reasons for

this will be made clear in «23.1)

We begin by adopting a standard oriented. linear line operator similar to one
arnved at m [Canny 86] Canny adopted the assumption of hinearity to facilitate noise
sensitivity analysis and optimization, and arrived at a line operator which 1s similar to
standard ones with a gaussian second-derivative cross-section Neurophysiologists have
adopted lincar models for the 1esponses of cells in the pnmary visual cortex [Hubel & Weisel
65. Orban 84], and such models seem to capture many of then functional properties These
models are attractive from a strictly functional point of view because they exhibit most of
the properties required of a measurement operator for image curves However, they suffer

greatly from ahasing effects (shown below in Figure 2 3)

In order to hmit this ahasing the assumption of linearity 1s dropped and the

necessary local conditions for an image curve are tested explicitly The resulting operator
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appears to be linear to many of the standard ‘probe stimuli’ used by wvisual neurophys
ologists, but it has the additional property that its response 1s only positive when these
conditions are fulfitled The tests are incorporated by decomposing the operator mnto com

ponents which represent the quantities needed for the logical tests

2.2.1 Decomposition

The decomposition must be conducted 1n a principled fashion so that no infor
mation s lost in the process. and the recomposition must take advantage of the mlormation
inherent in both the orniginal operator and in each of the components Given the optimalty
of the original operator in certam crrcumstances, 1t 15 also important that the non hinear
operaior reduce to the ongmal linear case if certain logical conditions are satisfied  Thus

two properties for the decomposition are essential

e The decomposition of the imitial inear operator kernel must create a set of kernels
whose sum is identical to the imtial kernel

e The combination of the component responses must exhibit both logical and hnear
properties, testing the necessary conditions for a local curve and producing a result
which 1s the sum cf the component responses when these tests succeed

The first condition suggests that this decomposition reseinbles a partition of
umty [Spwak 77] For a linear operator f(x) and a set of component functions ¢
{g1(x).g7(x).  .q.(x) } all defined over the range of values x . /7. the sel ¢ consititules
a partition of unuty if and only 1If

xR D alx) = f(x) (21)

1a<n

Many such partitions are clearly possible: | choose the partition such that the components

reflect the underlying logical features of the linear operator

Associating TRUE with positive values and FALSE with negative. “semi-linear”

analogs for A (and) and \/ (or} may be defined as
[r-{»g. fr. 07y -0

R fx 07ry-<0.

2.21
I, fzxz- 07y .0, ( )
r+y fx-0r7y<0.

Iry =

10
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z+y, fz_ 0y >0,
s r, lfI:O/\yio.
Ly v, fz-0/y -0, (2.2.2)

r+y fz- 0y 0

The propriety of these operators can be verified by examining their truth/addition tables

Truth/Addition Tables
for Semi-Linear Logical Operators

A oV

+1 1 | “1 -1
1 2 1 41 -2

e e et —.._+___.__.
11 2 C -1 +1 ] =2

{ — e

If only the sign of the result is taken as the output. then these are exactly equivalent to
the logical operators (assuming positive => TRUE and negative 1mplies FALSE) These

irear /logical combinators are examined more closely in Appendix A
2.2.7 The Cross-Section Condition: Lateral Maxima

Examination of the cross-sections of intensity lines in images reveals that a
necessary condition for the existence of such a hine 1s a local extremum in intensity At
an intensity edge, the cross-section exhibits an extremum in the directional derivative of
ntensity perpendicular to the orientation of the edge (refer to equations (1 1) and Figure 2 1,
a display of typical 1D cross-sections of these intensity phenomena) in addition, the second
(or third) directional dervative at these extremal points can be used as a measure of the

significance of the line (or edge)} strictly in terms of local contrast

A local extremum in a one-dimensional signal S(z)' exists only at those points

p where
S| 425!

p

° Assume S{r) s sufficiently differentiable

11
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(b)

Note

Cross sections of image lines and edges. A line n an
intensity 1mage {a) 1s located at the pcak of its cross-section

that this

comcides with a zero in the derivative (/) and a negative sccond denvative (({2.\‘}
An intensity edge {b) occurs at peaks in the denvatve (d5) of the cross-section

The derivatives shown are derived from convolution by dG and 426G operators with

=3

Estimating the location of zeroes in the presence of noise 1s normally achieved by locating

zero-crossings, or the pomnts p where

I

—éf -0 and

zl, _,

(this direction of change corresponds to an extremum at which

ds
dr ;

14-¢

428
dr?

r

(2.4)

0. a maximum)

An operator which can rehably restrict its responses to only those occasions when these

necessary conditions hold will only respond to local maxima in a one-dimensional signal

(b)

Figure 2.2 Approximation of d’G by two dG operators. (a) Shows

the hinear approxtmation of the 42G operator {solid line) from the sum of twe dG
operators (dotted lines) (b} Shows the approximation error for this sum which 1s

always less than 35 parts per thiousand
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A set of noise-insensitive linear dervative operators (or ‘fuzzy dervatives’ [Koen-

derink & van Doorn 86]) are the various derivatives of a Gaussian envelope

Golr) = -—— ¢ 27? (2.5.1)
\Vero
dCy(z) = - 25 Ga(z) (2.5.2)
(o)
.’L’Z—Uz
G () = —— Gol(x) (2.5.3)
o

When convolved over a one-dimensional signal *hese give noise-insensitive measures of the

dervatives of the signal Thus two convolutions will determmne S’(z) and S (z) where

(£) = dS(z)+ Ga(r) = S(z) - dGa{(I) (2.6.1)
d25(z) + Ga(z) = S(z) ~ d*Gy(z) (2.6.2)

I

S5 ()

Using these measures and equations (2 3) and (2.4) extrema can be located by simply
finding those points which satisfy the necessary and sufficent conditions for the existence

of an extremum
Si(r-¢) >0 and Si(r4+¢) -0 and S/(z) -0 (2.7)

The loct of points for which this condition holds are distinct segments along r with widths <

2¢ The parameter o determines the amount of smoothing used to reduce noise-sensitivity

Comparing the operators dG and d?G. it occurs that a hnear combmation of

two of the dG operators might give d2G In fact. using central imits, it 1s observed that.

g _ Sz te?) (=) 28)
dr c—0 €

Using the fuzzy derivative operators, one would therefore expect to find something like '

! (dGn/(I + 6) - dGol(I - 5)) (29)

a

den(.r) ~

* The 1, scaling factor can be derived by examining the respective d2G and dG scaling
coefficients

13
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If this holds. then all that is necessary to evaluate the conditions in equation (27) 1s the
derivative of the signal S (r)—the linear combination gives S%(r) Figure 2 2 shows that
an excellent approximation i1s in fact possible Forcing equality of the approximation at

r =o and r = 0 gives the system of equations

(=]
i

dG (o +0) dG. (0 &) (29)@r=o (210 1)
e = dG(6)  dG_4( &) (29) @ r =0 (210 2)

Solving imtially for ¢’ in (210 1) determines that

. 206

=\ foalio % 411 41 .

!
(4]

and substituting into (2 10.2) gives

) 22) blog ((o +6)/(c  4))
cellrra)le o \/ olog((o +¢),(c o)) P < 4o )
(2.12)

Since every expression in which & appears in this equation depends only on the ratio ¢ ‘o,

call this ratio b Then

T blog (1 +4)/(1 4)
\/ k—)g—((1+b)/(1 ) exp( - 4 = ) (2.13)

log ((1 +b)/(1 - b))

This 1s independent of ¢ and can be solved using Newton's method Substituting back

into (2.11) gives the result

o' 22 095443850 0 = ao
(2.14)

6 = 0.49816102 o

bo

Referring back to Figure 2.2, it can be seen that with this approxirnation, the sum of the
two dG kernels never strays from the true d2G  kernel by more than three parts in a

thousand

The use of these dG convolutions allows testing of all three conditions in (2 7)
simultaneously. for the constituent convolutions provide the two offset estimates of S, (r)

and their sum 1s the S”(z) With the linear/logical combinators of 22 2 1 we are thus able

14
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to define an operator which has a positive response only at local mimima (within a range

of o of the actual minimum)
Rs(S.r) = (S(z) + dGuo (z + bo)) & (S(z) » —dGyo(x - bo)) (2.15)
where a and b are the constants from (2 14) Likewise, for local maxima, use

Ra(S.z) = (S{z)+ —dGag(z + b)) 2 (S(x) + dGus (L — bO)) (2.16)

!
3
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(b) (c)

Figure 2.3 Responses of non-linear and linear operators near step.

Rectified responses of the 426 operator and divided dG operators are shown for
three step edges with va.ying slopes of the upper region It can be scen the the
non-linear operator blocks the unwanted response near a step which 1s not also a
local maximum (a & b) but that when it 1s a local maximum (c) it does respond

The d?G operator however responds in each of these cases exhibiting consistent
displacement of the peak response

It might be asked what has been gained by introducing this level of complexity
into what was a simple linear operator? The gain 1s considerable, and harkens back to the
mitial criteria for an acceptable measurement operator established in §21 The linear d?G

operator has the particularly undesirable characternstic of exhibiting consistent patterns of
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aliasing responses The simplest example of such an aliasing effect 1s the response near
a step (see Figure 23) The linear operator displays a characteristic peak in response
when the edge is centered over one of the zeroes in the operator profile  The non-lmear

operation blocks this response since both «G halves of the operator register derwatives
In the same direction and so do not fulfill the necessary conditions ot equation (2 4)
Examining the alternatives when the slope above the step 1s nen zero it s clear that only
when the slope 1s negative (thus making the transition pomnt a local maximum) will the

non-linear operator respond positively

In the displays of Figure 24 the responses from a hnear 4G operator are
contrasted with the responses from its non-linear derivative Notice that with the onginal
(noise-free) signal the new operator does a much better job of locating the peaks in the
signal, 1t does not falsely respond near step edges (including one caused by the negative
contrast hne at 32) It 1s not until a noise level of 08 (S/N ratio of 125 1} that an
appreciable number of false positives appear in the responses of the new operator An
important point to note 1s that the positive regions in the response are all less than 4
positions wide This 1s a design factor, related to the size of the operator, which ensures
that the peak position will always be localized to the resolution of the operator and not to

the width of the signal

2.2.3 The Tangential Condition: Continuity

So far only the structure of an image normal to the curve has been discussed
The second aspect of the definitions 1in (1 1) 1s smoothness  Without this. the Incal
orientation and thus the normal direction would not be defined An estimate of the local
orientation of the curve is thus required. and we must develop an oriented operator to
provide it Incorporating the preceding analysis a perpendicular cross-section as described

in equation (216) or (215) will be used

The tangential structure of the operator will be developed n the same stages

as the cross-sectional structure was above We begin with the assumption that the image
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Figure 2.4 Responses of non-linear and linear operators to noisy
cross-sections. Signal degraded with additive uniform noise with (3 e =100

and (b} 0 =02 Note that the a2G operator exhibits many more false positives for
each level of noise These can be attributed to reglons of negative local curvature
which do not comcide with zeroes in the first derivative

curve 1s everywhere smooth and corrupted by additive gaussian noise This suggests that
the response should be filtered along its length, and a gaussian envelope is the natural
choice for such a filter The first candidate operator 1s thus a pair of component operators

(referred to as the /ateral components of the operator) whose responses will be combined
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Figure 2.4 Responses of non-linear and linear operators to noisy
cross-sections. (Continued) Signal degraded with additive gaussian noise with
(cJo=04and (djo=08

by the /\ operation described above.
W”l (I, y) = GO'I(I) dGaay (y + bay)’ (2.17.1)

Wilz,y) = - Goy(z) dGuo,(y ~ boy) (2.17.2)

This candidate operator, which 1s similar to previous approaches (e.g [Canny

86]) except for the nonlinear cross-section. fulfills all of the criteria n §21 but two. 1t
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Figure 2.5 Responses of linear and split operators near end of
line. The signal 1s a parallel cross-section of an image hine Note that the semi-
linear split operator drops off suddenly as its center moves off of the end of the line,
while the lnear operator exhibits a smooth attenuation of response

(\
U

(a)

(b)

=

Figure 2.6 Schematic of the half-field decomposition and lire end-
ings. The elliptic regions in each figure represent the operator positions as the
operator moves beyond the end of an image line In (a) the operator 15 centered on
the image line and the Iine exists in both half-fields In {b) the operator 1s centered
on the end-point and whereas the hne only exists in one hali-field, the other half-field
contains the end-point In (c) the operator 1s centered off the line and the line only
exists in one half-field

testing of this prior condition

tends to smooth over discontinuities in the image curve, and has a smooth drop-off in
response as it passes over an end-point In a hne (see Figure 25) These undesirable
charactenistics are based on a single problem. the gaussian profile aiong the length of the
curve treats all areas indiscrinunately, smoothing over any discontinuities along the length.
This smoothing should only take place when the curve 1s known to be locally continuous.

A second decomposition into two tangential half-fields around the operator centre allows

19
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2 lmtiat Measurements

Notice that if an operator i1s centered over a continuous section of an image
curve, then the curve must be similar in both half-fields of the operator Moving beyond an
end-point, the curve will exist within only one of these half-tields (see Figure 26) Thus,
in order to verify that the operator 1s centered on a line and 1s not just experniencing, the
influence from a nearby hne, both half-fields must be similarly active  As long as there
Is some overlap between these two half-fields, there will be a partial response at a line-
ending (where only one half-field 1s actually contnibuting to the response} but none once
the operator ts centered off of the line Near a lme end point the half field that 1 not over
the line will be much more sensitive to noise and confounding stimuh than the halt field on
the line (1t will be match:ng something that does not exist where it 1s looking, as opposed
to something which does) It may therefore be essential to divide the oserator mto more

than just these two regions and test for consistent reponses from all of the regions

A mathematical response to this goal 1s to develop a partition of umty which &
vides the operator kernel into regions along its length. a partition which separates smoothly

and symmetrically around equally spaced points along a ine  Notice first that the sigmoid

1
, = . -- - 2.18
0p(7) 14e 7 ( )
can be used to partition a function into two regions around ¢ by 1he equation:
F7(z) = Flz)op(c- 1) (219 1)
F¥(z) = F(z)o.(z ¢ (2.19.2)

such that F~(z) + F*(z) = F(z) for all = (easy to venfy since o,(¢  r)+0,(r ) =1)

Thus F~ and F+ form a partition of umity of I around ¢ (see equation (2 1))

This can be generalized to n .- 2 regions by combining these sigmoid partitions
for a set of n — 1 partition points The condition in (21} 1s easily verified for the kernels

defined by (220) over the strictly increasing set of separation points {¢, 1+ n}

W) = | J] oule, 1) I ootz )} (2.20)

1<y« (3°n
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et T
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Position

Figure 2.7  Splitting of 1D gaussian operator into four linear com-
ponents using the basis functions of eauation 220 The centers of division (c, )
are equally spaced and centered around the operator center The degree of separa-
tion ;s 3

Each component I, of the partition 1s then specified by
F(z) = W,(z) F(x) (2.21)

The separation of a gaussian envelope into four equal width regions (which we will refer to

as the length components of the operator) by this method 1s shown in Figure 2 7.

The continuiuty condition above requires that one of the separation points be
the center ot the operator, and we opt for equal spacing on either side (see Figure 27)
What remains to be resolved 1s the appropriate combination of the regions to ensure end
line stabiity and a consistent line model over the length of the operator In [Davis et al.
73] a scheme similar to this one was proposed but the resulting operator gave a positive
response only when more than half of its length components were positive | propose a
combination which requires that all of ether half-field to be positive and any subregion
of the other half-field This replaces the threshold in the Dawvis operator with a more
structured form expressed in terms of the linear/logical operators Labelling the length
component responses as L = [ry. .r ,] and R = [r . 41.. .rn] (the left half-field

and nght half-field respectively), this condition becomes

W= (Al,\\yr)v(Arﬁ\Vl). (2.22)
lel r<R reR leb
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| have thus far left open the question of how to choose the parameters of these
operators. The size of the operator (determined by o, and a,}, its onentation specifiuity
(determined by o, ¢,). and the number of regions to divide into (the parameter n) These
parameters are determined by a priorr factors which anise from the specific structure of the
measurement problem the operators are to be used for, we conduct such an analysis m

§2.3 below

2.2.4 Curvature

The final stage in the development of our operator follows the work of Allan
Dcbbins [Dobbins et al. 87 and 88]. which described a computational model of end
stopped cells n the primary visual cortex His key observation was that end stopping
could be related to curvature, and that models of end-stopped neurons could be dernved
from taking differences between oriented linear operators  This model 1s easily extended to

incorporate the stable. non-aliasing vperators developed above

DIV A

Curvature

Figure 2.8 Curvature responses of simple cells of two different lengths
and therr difference The response protiles for the small operator {length = 10} and
the large operator {length = 20) do not coincide so when the difference of the two
response curves is taken (appropriately weighted) the aggregrate response shows a

peak response to a non-zero curvature
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Figure 2.9 Curvature responses of even- and odd-symmetric sim-
ple cells of two different lengths the longer having odd-symmetnc cross-section
Because the curvature reesponse of the large operator 1s asymmetric 1ts inhibitory

influence on the aggregate {difference) of the two responses effectively mhibits re-
sponses for one sign of curvature and not the other The combination s chus

band-pass tor both sign and magmtude of curvature

Given resporses from two similarly oriented line operators R. (short) and R,
(long) and weighting factors to compensate for the differences in their relative areas(cs and

;). the end-stopped (ES) operator 1s defined to respond as

(2.23)

Ris = ole. o(R.) - ¢; (R}))

where o(r) 1s a half-wave rectification If the excitatory and inhibitory components are

closely matched in both spatial frequency bandwidth (in the normal direction) and orierita-
tion bandwidth then the end-stopped operator will have a characteristic maximum response
to a curved line with some non-zero curvature Since this system depends on signed cur-
vature. | have adopted a model with the linear/logical hine operator described above as the
excitatory component and an operator with a dG cross-section as the inhibitory compo-

nent The odd-symmetnc nature of such an operator ensures that #t inhibits response for

one sign of curvature and not the other (see Figure 29) This allows us to develop an

end-stopped line operator which is tuned for both magnitude and sigrr of curvature

The analysis used to arrive at the current operator 1s based entirely on arguments

from analytic images and convolutions An operational computational system involves
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discretely sampled images and discrete convolutions, so we nmust transiate from one set
of terms to the other The use of the “fuzzy” denvatives i1s essential to this translation
with the specifics described in Appendix B For the purposes of simpheity, assume that the
continuous convolution kernel f(r y) s approximated by the two dimensional mask I'(:. )

such that
F(l._]) — {f(l/) it j("~/) Do (2.24)

0. otherwise

for some convenient threshold [, ,. typically 1% of the maximum
2.3 Tuning the Operator

The structure that we have established to this point defines a class of line op
erators which may or may not be tuned for curvature (we do. of course have to represent
straight lines) There 1s a small set of free parameters which must be fixed before the op
erator can be instantiated A particular choice of the representational parameters descnbed
in §1 2 should completely determine the model parameters for the operator However the
model parameters allow somewhat more flexibility than these representational constrants
require [n the following analysis, the desired output has an operator tuned to cach of 8
onientations and 5 curvatures The orientations are evenly spaced between (07 and 180°
O = {0.225.45.67 5.90.112 5.135.157 5} and the curvatures arc distributed around zero
as K=1 02, 01. 00. 0.1. 02} (positive curvature means curved to the right) Thus
there are 40 different operators However, since an operator at one orientation can be re
tuned to a different orientation by simply rotating around it center the 40 operators will be
based on only five sets of tuning parameters, one for each discrete curvature Furthermore.

there 1s symmetry around zero curvature so we need design only three tuned operators

The first matter to resolve 1s what the optimal line width of the operator should
be. For the combination of lateral components the optimal line width 1s 20 of the associated
d2G operator These operators can be scaled by simply varying the o, of the operator
but there 1s a refationship between the range of curvaturcs which can be represented and

the size of such an operator The length of the operator 1s lsmuted above by the radius
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of the maximum curvature represented. however the operator must be elongated in order
to achieve any orientation specificity at all thus hmiting its length below Finally, the
increased noise-sensitivity ol small operators must also be considered These factors force
the operator design in conflicting directions  Focussing our attention. for the moment, on
the smallest scale of image features, | choose an operator width of 2 pixels This 1s as

large as possible for adequately representing curves with curvature as high as 0 2 (radius

of 5 pixels)

The structure of the length components of the operators must still be resolved
as two parameters of this decomposition are still free. the degree of separation (p in equa-
tion (2 18)) and the number of components (n i equation (220)) It has been determined
experimentally that optimal end-hne stabibity in the presence of notse is achieved with p =
The number of length components 7 1s at least 2 and must be even (the overlap between
the two central components determines the amount of end-line stability) Furthermore. the
length of these components must not be too great (greater than two or three times the
width) or end-line stability becomes dependent on non-local events (eg a line that passes
nearby) Assuming as much simplcity as possible in this case. I divide the cells into four
regions unless this interferes with the orientation spectficity of the components, in which
case | use two With these criteria and a few simplifying assumptions the operators can

be tuned

For simphcity assume that the inhibitory component of the ES operator 1s twice
as long as the excitatory component (o, 1s twice the value), that both components have
the same width, and that the center of the inhibitory component 1s laterally displiced
by the same amount as the lateral shift of one of the lateral components of the excitatory
operator (this 1s to ensure that the excitatory region of the inhibitory component is centered
on the operator) Require further that the responses of each operator when presented with
its design stimulus be normailzed to 1 Q, thus fixing the overall weight of wuie operator
This reduces the number of parameters to tune for each cell to two o (the length of the

excitatory component), and the ratio of weights of the excitatory 2nd inhibitory components
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Figure 2.10 Response profiles of three end-stopped simple cells.
The celis are shown exploded {components arc separated) and are designed to
respond optimally for curves with tangent orentation of 0° at the cell s center
The response envelopes shown are for anti-aliased high-contrast lines of width 2
pixels Curvature and orientation dare simultancously vared over the ranges shown
The cell shown in (a) s designed for curvature 00 (straight lines) its response
profile shows excellent locality when varying both crientatien and cmivature The
cell shown 1n (b) 1s designed for curvature -01 (arcs with radius 10 pixels below
operator center) Note that for higher curvatures 1t becomes more difficult to obtain
the same degree of locality of respanse

(cs/¢; in equation (223)) The tuning 1s done manuall using anti-aliased curves as probe
stimuli. | plot tuning curves as the free parameters are varied and choose the parameters
which exhibit the greatest conformity to the desired response envelope In the future | hope

to develop a set of numerical optimality critena so that even this part of the procedure may
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(c) (Operator) (Responses)

Figure 2.10 Response profiles of three end-stopped simple cells
(contd.) The cell shown wn (c) 1s designed for curvature -02 (arcs with radius 5
pixels below operator center) Not~ the decrease in locality of response associated
with the higner curvature

be done automatically The cell parameters and response envelopes for the case we have

considered here are shown in Figure 210
2.3.1 Intensity Edges

While the method developed 1s specific to image hnes (especially the cross-
section analysis). it can be easlly used for image edges as well As was stated previously
(§11) an mage edge 1s the locus of points which are local extrema of the directional
derivative of image intensity As the line operator 1s specific to local maxima, all that
IS necessary to create a similarly robust edge operator 1s to do a directional derivative
perpendicular to the operator direction before using the line operator The line operator’s
responses to this new image will reflect the loci of maxima in this direction and thus the
image edges By taking the denvatives in opposite directions (or equivalently by using either
positive or negative contrast edge operators) the entire 360 ° range of orentation can be
represented with exactly the same set of line operators as used for the direct discovery of
lines
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To ensure that the dwectional derivatives used are appropriate to the line op

erators which follow it 1s only necessary to restrict thewr size in such a way that they

do not interfere with the localization behaviour of the line operator

Thus. the diectional

derivative operator used has the same width o, as one of the cross sectional components

of the line operator

width as the line operator

This gives a response region around a perfect step edge with the same

The operator 1s twice the length of a single length component

of the line operator and 1s decomposed into just two length components around the centre

In this way, it 1s as large (and thus noise-insensitive) as possible without intefenng with

lateral localization and maintains the end-line stability of the pure line operator

2.4 Results

For the following examples the three base operators are
Table 1: Parameters for initial operators

! ES? ES Component o, 0, # Regions
. k=00 No 225 10 4
j k =01 Yes Excitatory 15 10 4
Inhibitory 3.0 10 4
K =02 Yes Excitatory 10 10 4
Inhibitory 20 10 4
*Inhibitory displacement = 06
hS
)8
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1.33
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Figure 2.13 Line measurements on FPRINT (detail)
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(a) (b)

Figure 2.11 Test images are (a) FPRINT. a detal of a fingerprint image. (b)
FPRINT degraded by additive gaussian noise and (c) ROADS a satellite image of
logging roads

2.5 Discussion

The improvements in the non-linear operators over both the linear ine operators
and the Marr-Hildreth zero-crossings should be immediately obvious from an examination

of the examples

Comparing the non-linear operator responses (Figure 2 12) with the linear ver-
sion (Figure 2 14) is almost hke comparing apples and oranges Even though the repre-
sentation used for both outputs 1s identical. the non-linear operators are more specifically

tuned, don’t bridge the gaps between nearby lines, and don't run off the ends of the im-
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Figure 2.12 Line measurements on FPRINT asmall section of a finger
print image The hne endings bifurcations and nunmimal mter curve spaces provide
a serious test for the measurement operators

age hnes Considering the fact that the hnear operators were the starting pont for the
non-linear decompositions introduced in this chapter the Lnear/logical non hnearities have
clearly been effective in elminating all but the ‘best’ from among the ‘potential’ responses
The standard response to this problem {eg [Canny 86]) has been to adopt some kind
of thresholding, but that leaves open the essential question how can one choose the

threshold(s) in a principled manner, in advance?

The gains are similar for edges Compare the non-linear edge measurements
in Figure 217 with the Marr-Hildreth zero-crossings of Figure 2 19 (both processes are
run at exactly the same scale} Not only is the non-iinear edge operator more accurate, 1t
makes explicit a great deal of information which 1s simply unavailable in the zero crossing
image Take connectivity, for example—-how many arbitrary choices must be made in order
to define a means of following the curves mn the zero-crossing 1image? And again we dre

faced with the same question as with the line example discusseu above-—what threshold
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Figure 2.14 Linear line measurements on FPRINT using the linear
correlates of the non-linear operators Note the escessive amount of bridging across
gaps and the complete fack of specificity of response Prehaps it needs a threshold?

should one use?

While the alternatives considered dre clearly inadequate. an examination of the
detailed blow-ups (Figures 213 and 218) reveals both some of the strengths and nad-
equacies of these operators The obvious strengths (in both examples) are an accurate
estimate of the positions. orientations and curvatures of the image curves Discontinuities
and bifurcations i these curves are not smoothed over at all, instead they are represented
as muitiple tangents at the same point This 1s clearest in the edge image. where even
inferred edges can stably co-exist at the same 1mage position. However, it is clear that
these measurements are still somewhat sensitive to noise and local perturbations, and do

not always provide good estimates of local curvature
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Figure 2.15 Line measurements on noisy FPRINT with additive gaus-
stan nosse (0 = 5} The image 1s quantized to G4 intensities

2.5.1 Biological Implications

A number of observations regarding the relationships between this model and
natural visual systems are possible In general, there is nothing in the operator structure
which 1s biologically implausible. \n fact, some attempt was made (notably in Appendix B)
to demonstrate how such a model could be instantiated in neurclogical terms  The gross
similarities between these oriented, contrast-tuned operators and cortical simple cells have
already been noted The model of end-stopping which has been adopted to give these
operators curvature-sensitivity was motivated largely as a biclogical model A number of

more subtle cbservations can also be made

An indication that at least one of the non-linearities proposed may have a neu-
rological coirelate comes from the research of [Hammond & Mackay 83 & 85] In doing

single-cell recordings using illuminated bars as stimul, they observed that a small opposite
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Figure 2.16 Line measurements on ROADS. a smalil section of a satellste
image of logging roads m northern Québec More general then the fingerptint image.
it clearly contains features which are not lines

contrast region in the midst of a preferred stimulus was able to inhibit the response of a
simple cell much more effectively than would be predicted by a linear model The opposite
contrast region was. in effect able to turn the cell off This 1s exactly the behaviour caused

by the tangential partitioning of the operator

The reader may have noticed that in Figure 2.3(c) the response region 1s offset
from the actual peak of the 1D signal by a small amount In hght of the insistence that the
operator respond only at peaks. this offset may seem problematic until the significance of an
observation made in |Watt & Morgan 83] and [Whitaker & Walker 88] 1s recognized. It was
observed that when a discrimination task involved locating the position of dot clusters or
lines with non-constant intensity cross-section, the locations chosen were best described
as the centroids of the mtensity distributions The behaviour seen with this model is

consistent with this interpretation. as the centroid of the tnangular region 1s ~ 56 which is

33




Figure 2.17

i

s AW,

zdge measurements on ROADS using

7 Initial Measurements

+:

o S

. el o
- .

R atoal e

pipingei oty

PO L34

i
;

L
. ey

the techmique de-

scribed n 42 31 Note that the segments arc now directed (f the small crcle 1s
the tail of the vector then facing along the vector the edge goes from dark to light

from left to rnight)

Figure 2.18

Edge measurements on ROADS (detail)

definitely inside the region of positive response. To see why the model should exhibit this

behaviour. notice that the peak of a gaussian convolution with a positive signal approaches
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Figure 2.19 Marr-Hildreth zero-crossings on ROADS at exactly the
same scale as the non-hmcar operators above  The pixel intensities represent the
sigmficance of the zero-crossings

the centroid of the signal as the width of the gaussian increases As long as the gaussian
1s wide enough with respect to the signal, the peak of its response (as determined by the
peak detection property of the line operator) will be close to the centroid of the intensity

distnibution  This relationship should be investigated further

2.5.2 Conclusions

This chapter has outlined a simple, principled response to one of the major fail-
ings of linear operators in locating 1image curves By systematically responding to stimuli
which are not within the design parameters of the operator, linear approaches cause prob-
lems for higher level processes which must distinguish between ‘true’ and ‘false’ operator
responses By outhning two of the necessary conditions for the existence of an image curve,

and by demonstrating an operator decomposition which allows for the efficient testing of
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these conditions. this outstanding 1ssue has been neatly resolved Furthermore. 1t has been
demonstrated that this nonlinear operator can be used as a component i the Dobbins
ES operator The operator can thus be used as and efficient and robust mechamsm for
confirming the pointwise existence of image curves with an orientation and curvature as
determined by the operator tuning  Care has been taken throughout to keep the formulation
free of assumptions regarding the geometry or discreteness of the retinal detector gnd. and

a mechamism for generahizing these results to arbitrary gnds was outhined

In spite of these results. the goal of achieving the same combination of ro
bustness and sensitivity as found in a mammalian visual system 1s almost certamly not
obtainable with such a simple one-shot operator These operators can however. provide
the imtial estimates for a set of existence hypotheses which will be exanined and modified
by a highly parallel relaxation network Such a network will operate by sceking higher level
consistencies based on the local differenttal geometry of plane curves and not simply on
the patterns of hght falling on a retinal array This network s described in the proceeding

chapter
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Chapter 3 Relaxation

3.1 Introduction

Any simple, direct operator for measuring local image characteristics will exhibit
errors due to noise and imaging defects In a system subject to the same performance
requirements as the human wvisual system, however, even these errors are unacceptable
In Chapter 2 | developed an estimator for the local differential charactenstics of image
curves which limits such charactenstic errors It still suffers from errors due mostly to the
influence of noise Such measurement errors are therefore uncoordinated and local, and a
system which refines these measurements by seeking consistent patterns of response should
recognize and correct such errors and begin to exhibit the kind of robustness required The
same structural arguments can be made with respect to any other perceptive system seeking
charactenstic forms and structures in its impinging stimulus In the case of image curves,

the patterns represent consistent models of piecewise continuous planar curves

From a computational point of view it 1s important to discover a well-behaved
methodology which will discover these consistent structures It 1s similarly important
that this methodology 1s as parallel as possible, for speed 1s every bit as important as
accuracy Relaxation labe///ng‘ ts such a methodology A gradient ascent procedure, It is

an incremental, iterative parailel update formula for constraint satisfaction It 1s simple

' Spehing? Only in Canada you say? Pity
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yet powerful and has been used for a variety of problems which benefit from such a highly
parallel solution The only questions that remain once we adopt relaxation labelhing we
‘how to structure the network?’, and "how fast will it converge?” Previous approaches to
designing relaxation labelling sclutions to local curve description can be tound in | Zucker
et al T7] and {Patent & Zucker 85] The designs of each of these systems were speatic
to the curve description problem This thesis will demonstrate an approach to designing
such a network that rests frmly on the geometry of this problem winle stll retammmg,
enough generality to allow for its application to a range of simitarly constramed problems
It will also demonstrate a surprising answer to the question of convergence  As was stated
previously. the entire visual process (‘seemng ) must be completed m less than 100ms It
would make httle sense for a small subprocess in this pipeline to take more than a small
fraction of this time. in the brain however the pracessing clements, the neurons, have time
constants un the order of ~1ms Thus, even a very robust relaxation system which takes
as few as 50 iterations to converge 1s completely unrealistic as a neurological model  In
contrast, this process converges to stable structures within as few as 3 or 4 iterations
thus allowing implementation as a simple feed-forward network taking up no more than a

few layers of neural circuitry and a very small fraction of the available processing time

3.2 Relaxation Labelling

Relaxation labelling 1s a network model which has been in use since the carly
1970°'s Given a set of nodes /. a set of possible labels for each node A,. and a measure
of the compatibiity r, (A.A') between labels A ~ A, and A’ A, at nodes : + | and
7 € I 1espectively. relaxation labelling 1s a gradient ascent procedure for maximizing the
consistency between all labels By defining the nodes, labels and compatibilities to reflect
a given set of constramts between objects relaxation labelling will solve the constramt
satisfaction problen so defined Even though the basic methodological framework has
been in use since the early '70s the first formal statement of this generai problem and its

solution 1s due to [Hummel & Zucker 83|
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For the continuous relaxation labelling processes which they investigate there 1s
a confidence associated with each label. given as p,(A) These confidences are restricted

at each node such that

o= 1)(A A O pfr) 1 (3.1)
and
1) Y p(A) =1 (3.2)
Auh,

Thus each set of label confidences lies on a plane in the positive sector of an n-dimensional

space, where n = A, ., the number of labels at node :

With real valued compatibilities r,, the support of label X at node 11

s(0) = }_: Z T?]()")‘,) p](’\l) (3'3)

el M
J A _/\]

A labelling assignment 1s aset p = {p,(A) 1= 1)~ A, } such that the conditions of

(31) and (32) hold The subset of labelling assignments such that

plr) = { (1) :f{ :Zgg : ?oaezs nt;)t Iquae; ;\o label A (34)
thus forms a convex hull of p which unambiguously determines a one-to-one mapping from
node to label. an wnambiguous labelling assignment (p,(\) = 1) = (1 — A} Taking
an unambigous labelling assignment which maps nodes 1. .n to labels A,. .\,, a

consistent labelling assignment 1s then one that fulfills the condition that
o 1A S ) s, (A) 2 s(A) (35)

It 1s important to note that there may be many different consistent labellings for a given
set of nodes. labels and compatibilities These states correspond to local maxima in a
measure known as average local consistency Thus, the problem must be framed in such a
manner that every local mummum is a point of interest with respect to the problem being

solved The system then relaxes very quickly to a local minimum near the starting point

The entire algonthm for relaxation labelling 1s presented as
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Algorithm 1: Relaxation Labelling
1 Compute an mitial estimate of all p, (A} Call this ‘119(,\) (N B These values must
conform to the restnctions of (31) and (3 2))

2 Repeat starting with n = O until the labelling s unambiguous-
1 Repeat for all ++ [

1 Forall A A, compute ~ (A) from (3 3)

2 Compute p; = p”" + ¢s,

3 Project p' into the space of valid contidences This projection 1s the
n+1

i

updated vector p
2 Setn=n+1
3 Compute the mapping ¢+ - A, such that ' (A A) p (A,)  »,(A)

The projection in step 2 1 3 1s. in its general form too complicated to describe here fully

We will instead {1n 43 3 1) describe the projection for the specific case of two label systems

The primary concern in the design of the operators n Chapter 2 was the pre
vention of aliasing It now becomes clear why such effort was expended  The relaxation
labelling orocess uses gradient ascent to discover a consistent labelling near the nmitial
position If this initial position 1s derwved from a set of image operators which have consrs
tent patterns of aliasing responses, the relaxation process cannot recover from these mitial
errors It will simply incorporate these patterns into its solution If instead the operator
ahasing 1s imited so that the only spurious responses are due to noise and small local
perturbations then these events will not propagate through the relaxation but will mstead

be rejected as inconsistent with neighbouring hypotheses

One of the major advantages of relaxation labelling s that the update can
be computed entirely in parallel. The sums of equation (3 3) are independent of order
of evaluation and the supports for each of the labels could. therefore all be calculated
simultaneously Assuming n nodes, m labels at each node. and a support network of k
non-zero compatibilities for each label, this would allow a speedup of n - i » k for the
support calculations Because 1t 1s performed at the node level, this parallehsm would
reduce to n for the projection (step 21 3). but the lion's share of the computation 1< m

the support calculations. which i1s where we have the most to gain from parallelism  The
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entire relaxation system 1s thus highly amenable to parallelization or implementation in

specialized hardware
3.3 Representation

In instantiating a relaxation labelling system. one 1s faced with the definition
of factors the nodes labels and compatibilities The nodes and labels are determined by
the structure of the solution being sought, while the compatibilities depend on the nternal
constraints of the problem In this case, the geometric structure of planar curves first

determines the representation and then the compatibilities

In this case the labeis in the relaxation correspond to the discretization of the
differential space of the image as described n §12 Nodes in the relaxation thus cor-
respond to specific positions in the sensor array, and the node positions tile the area
covered by the sensors The labels at each node correspond to hypotheses regarding the
existence /non existence of image curves with a set of local differential properties (orenta-

tion and curvature) at that image position

The importance of bringing the local differential geometry of plane curves to
bear on this problem has already been stated—the operators of Chapter 2 reflect this
conviction  They provide an imtial measurement of the confidence m each of the labels 1n
the system The choice of how to orgamze these labels 1s more problematic The options
are outhined as follows

1 Each 1mage position could be a single node in the system. with the labels representing
each of the different choices as to orientation (and curvature) of the curve/s passing
through that 1mage position (the option taken by [Zucker. Hummel and Rosenfeld

)]

2 Each image position could have a set of nodes corresponding to the set of allowed
onientations, with the labels being assoctated with curvature values (or vice-versa with
curvature nodes and orientation labels, though this choice seems bizarre) Something
hke this option was used in [Parent & Zucker 86]

3 Each wmage position could have a set of nodes corresponding to pairs of orientation
and curvatute  There would be two labels at each .~de. which would reflect confir-
mation/rejecuon of the hypothesis that a curve passes through that position with
the given pair of differential characternistics This i1s the option chosen
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Each of these choices will adequately describe the curvature tangent field. but when con
sideration 1s given to the limitations of each possible representation and its imphcations

for relaxation. the reasons for the choice become clear

-

(a) (b)

Figure 3.1 Minimal pairs of intersecting image curves demonstrate
the need to allow (a) multiple curves passing through a single point which differ
only m orientation and (b) multiple curves passing through the same pomt which
differ only in curvature

In considering the properties of planar curves we have already mentioned the
importance of their local differential properties. but these are properties of curves consid
ered in 1solation The considerations which force a choice between our representational
options arise instead from consideration of the interactions between nearby image curves
Remember that i a relaxation labelling system, the final result 1S a one to one mapping,
from nodes to labels Therefore two labels for the same node cannot co exist I a consis
tent fabeling Consider the two configurations in Figure 3 1, each of which will anise 1n
natural images In Figure 3.1(a) two curves cross at a point thus revealing the necessity of
representing a situation in which differ minimally in orientation co-exist at the same image
position This immedately rules out option 1 Figure 3 1(b} simularly dlustrates the neces
sity of representing a situation in which two curves that differ mimimally only i curvature
co-exist at the same image position This simiarly obviates the use of Option 2 Neither
ortentation nor curvature can be considered primary. mimimal paws exist for variation in

both parameters We are left only with the third option
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There are a number of additional advantages to this representation which can
now be elucidated The first of these 1s that 1t removes the problem of deciding how to
handle the ‘no-curve’ label Relaxation labelling produces a consistent labelling as output,
and n every consistent labelhng exactly one of the labels at every node s selected Since
image curves do not exist at every point in an image there must be a label at each node
which represents the possibility that no curve with the required charactenstics exists In
the mmage It has never been clear how to incorporate such a 'no-curve’ label into a label
set which attempts to distinguish between another set of mutually exclusive possibilities
For example, with option 2 above, each label set would have to contain one label for each
discrete curvature value plus a label which represents the hypothesis that no curve exists
which passes through the image position with the appropnate tangent onientation  The enly
methods previously used rely on some sort of arbitrary thresholding (see {Zucker Hummel
& Rosenfeld 77] and [Parent & Zucker 85]) However, when the labels have TRUE/FALSE
semantics, the compatibilities need only confirm or deny a single hypothesis associated
with each node. a much «inpler problem and one not prone to so many potentially arbitrary
design decisions Another substantial design advantage of a representation with only yes/no
labels 1< that the projection operation (the least appealing aspect of the relaxation labelhng
framework because of its unfortunate sequentiality) can be reduced to a simple anthmetic

update rule

3.3.1 Projection with Two Labels

The projection operator upon which the theory of relaxation labelling depends
1s detailed in |Mohammed. Hummel & Zucker 83]. The operator determines an update
vector u with o 1 which maximizes s - u and leaves p' = p - u in the space of valid
p vectors The direction of s {the gradient of A(p)) thus determines the direction of the
update vector u as well as possible while still remaiming valid  This s accomplished for
general label sets by successively reducing the dimensionality of the update vector when the
update extends beyond a border However when the label vector 1s only two-dimensional,

then the successive reductions become unnecessary, the projection can be computed in a
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single operation

Refer to the two labels at a node as T(true) and F(false] Suppose the sup
port vector 1s's, = (~,(T).s, (F)) and the confidence vector is p, - (p, (T).p,(F)) Pro
Jecting s, onto the tangent plane (r. 1) gives <(T) ~ (~(T) o (F)) 2 and ~'(F)
(s, (F) = ~,{T)) 2. and the update direction depends only on the difference (T}~ (F)
This allows an enormous simphfication both mn storage and computation  Smce p (F)

1 - p,(T) we can save space by keeping track of only p {T). reducing the vector p, to the
scalar p,. and computing the projected sum as p’ = p'* 4 (s, (T) « (F}) 2 Ensunng
that p?”+1 = max(0.min(1.p"})) projects the result back nto the vahid confidence space
Assuming further that support will be positive when the label hypothesis 15 confirmed and
negative otherwise, we can safely assume that « (F) = - (T} {1 e a positive contirmation
implies a negative demial) and the update simplifies cven further We thus arrive at a very

simple update operation which combines steps 212 and 21 3 of the algonthm mto

pn-?—l = max(0.min(1,p" + bs,)) 36)

4

3.4 Compatibilities

The representation thus chosen maps retinotopic visual space onto a set of
labelled nodes Each node represents an independent hypothesis as to the existence of
a curve In the retinal 1image which passes through the associated position with a specific
orientation and curvature Given a grid of retinal positions R and a set of orientations © and
curvatures K. then ~uch node corresponds to a four-dimensional point (X.} ©. /') with
(X.Y)=R. © - ®and K- K Each node (hypothesis) ¢ has a confidence value  referred
to as either p, or p(X,.},.9,. K,) Assuming the same 8 ornientations and 5 curvatures
as in §2 3 the set of hypotheses which co exist at each position i the retinal image 15
shown in Figure 32 The operators of Chapter 2 are used to provide the imtial confidence
estimates, each hypothesis being paired with the approprniately tuned operator The task

of the reiaxation labelling is to discover certain consistent structures within the mtial
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measurements tn this four-dimensional space Such structures are connected subsets of

the discrete points which correspond to smooth segments of the image curves as described

n §12.

Orientation/Curvatures Pairs
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Figure 3.2 Orientation/curvature pairs for 8 discrete onentations (225°
spacing) and 5 curvatures {-02,-01, 0.0, 01, 0.2}

3.4.1 The Cocircularity Constraint

Image curves as defined in §1 1 are continuous and piecewise smooth. Rep-
resenting these curves in terms of a set of discrete labels, the operators of Chapter 2
measure the local structure of these curves in terms of trace (position), orientation and
curvature We have asserted however that these measurements are inadequate as they do
not necessanly fulfill the strict continuity and smoothness constraints, and therefore do not
necessarily represent actual image curves 7hese conditions are no longer phrased in terms
of the intensity disributions in the image, but as constraints describing the relationships
between nearby hypotheses as to the local differential properties of image curves Relax-
ation labelling, as described above. i1s the means by which these more abstract constraints
are satticfied In order to represent the constraints in a relaxation network it i1s necessary
to translate the natural relationships between the differential properties at different points
along a planar curve into measures of the compatibility between neighbouring discrete la-
bels We begin this d:velopment by describing the geomecric property of cocircularity. first

elucidated in [Parent & Zucker 85].

45

- T P



3 Relaxation

Figure 3.3 Geometric cocircularity constraint relates the orientation ¢,
and curvature K, at point 1 to H] and Ky the same measures at point ;7 Cocaculanty
of the two curved tangents depends on thair being tangent to the same crcle

Given two tangents in a tangent field at 7 and ). then these tangents are said
to be cocircular if and only f they share a common osculating circle (see Figure 33) Ina
curved tangent field, the requirement 1s even more specific, for the curved tangents must
share the same centre of curvature If the tangent vectors at 7 and ; have onentations ¢, and
0, and curvatures K, and K, respectively, this condition can be specified as a set of couphing
equations between these values Notice that cocirculanty does not depend on absolute
position, but only on the relative positions of the two curved tangznts IJ‘, .y, Y,
(in polar coordinates this 1s [d;;,605]) Beginning with the orientation at + and the relative
position (a tangent line and a point completely determine their oscuiating circle). one can

successively restrict parameters until the relaticnship is fully defined This procedure leads

to the coupling constraints!

0, =205 -0, (3.7.1)
K, = ZSIH(BH'— 02 )/dz‘j' (372)
K, =, (3.7.3)

t In these coupling equations. it 1s essential to remember the cyclic nature of orientation angles
Thus for two angles 64 = 6 15 equivalent to 44 mod 27 = 65 mod 2r

46



3  Relaxation

By making the relationshio between these parameters explicit in this way one can investigate

the geometry of the constraints themselves

3.4.2 From Constraints to Compatibilities

Given a set of problem-defined constraints, as defined in equations (3.7), these
must be translated into relaxation labelling compatibilities. For a given pair of labels and
their associated locations in the geometnc space, the compatibility of one with the other
1s derived directly from the geometric constraints of the problem Even though the current
analysis 1s specific to developing compatibilities for locally cocircular image curves, one of
the goals of this work s to establish a methodology which i1s independent of the specific
geometry of this case [t should be clear that the formulation developed below is free of

the sort of problem-specific factors that often plague these systems

In comparing two curved tangents, there are six free parameters (®,. K. 9,.
K, and relative position X', and }, ) which together form a six-dimensional parameter
space ) Each constraining equation m {37) reduces the dimensionality of the space
by one, so the space of parameter values which conform to the cocircularity constraints
(called ) forms a three-dimensional differentiable manifold n V' One of the difficulties
in translating these constraints nto compatibilities now becomes apparent Each pair of
relaxation fabelling hypotheses to be considered for compatibility corresponds to a distinct
point In V' Observe, however, that since the codimension of C in V 1s 3 the intersection
between the set of all hypothesis pairs (a set of dimension 0) and C has measure 0 This
might not be a problem If we were able to choose the hypotheses for maximum intersection,
instead we must allow for the case when the hypotheses are randomly distributed A test
for exact cocircularity must, therefore, be overruled. We must instead derive a simple.
general methodology for relating points in V to the manifold ( that provides a rmeasure of

cocirculanty
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3.4.3 Perpendicular Projection

Such a method i1s based on perpendicular projection A description of the re-
lationship between a point and a manifold can be obtamed by projecting the point onto
the manifold. perpendicular projection in particular, takes a point to the closest pomt on
the constraining manifold Conceptually then the perpendicular projection represents the
minimal perturbation ¢’ the point that makes it conform to the constraints embodied n
the manifold This is made clear by the following definition The fixed point n ¥V which
represents the relationship between two curved tangents 1s X = [Q, A, .0, A .\ .Y |

Considering a point X' = C. f X' mimmzes the distance

o= X Xi, (3.8)

then X' 1s the perpendicular projection of X onto { it should be clear that only when
X & ( do we have d = 0 and X = X’ Otherwise, intuition suggests that compatibihty

should be related to the distance D), with smaller distances giving larger compatibilities

x, i
X

RV

X5

Figure 3.4 Parallel projection of point onto constraint space is
shown In a three-dimensional parameter space The pomt X is projected onto the
manifold C The distance d 1s therefore minimal

As a first approximation this analysis 1s straightforward and simple The only

difficulty arises with what should be an obvious objection, the different parameter axes can
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not be compared in such an offhand manner How can one compare a difference of 0.1 n
curvature with a difference of 20°in orentation? It 1s not possible without reference to the
spacing of the discrete label values in the parameter space—a perturbation of one discrete
unit on each of the paramever axes 1s equivalent Thus if the spacing of the discrete vaiues
of the variable .r can be specfied with the wnvertible function z(:). then the normahzed

distance between any two values rq and ry is given by
Dzlry.rp) = 77zp) — 1 May) (3.9)
For constant spacing. expressed as r(1) = ¢ + 1Az, this smplifies to
Az(ry.r)) = (1 - x1)/Bzx (3.10)
The norm of equation (3 8) 1s then an L; norm of the difference vector made up of the set

of Ar(r,r') for each parameter r

The parallel projection above can thus be treated as the mimmization of the
normalized distance between the geometric values associated with the label pairs and the

constrained continuous values In this case. the distance D' is

o _ (8- (8, + 2am) e - K\
=\ ) T\ Tm

2 N\ 2
. 49J - (@J + 2b7) . K, — K, (3.11)
A0] Af{:]

2, -X\? [y =1 \?
+ ._:7____], + __'Z__—]
Az, Ay,

Details of this mimmization are described in Appendix C

3.4.4 Compatibilities from Projections: Localization

Even having determined the perpendicular projection. it remains a problem to

convert this description of the relationship between the parr of labels and geometric cocir-

Because the comparison of orientation values 1s modulo 27 the integral factors a and b are
introduced to allow differentiability They are otherwise arbitrary and thus the minimization of

D2 takes place for a and & varying over { 1 0 1}
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cularity into a measure of compatibility. It 1s essential to consider the desired behaviour of

the relaxation system in order to arrive at a satisfactory answer

Referring back to the representation described in 12 1t should be quite clear
that the path of an image curve through this four-dimensional space 1+ y «#  n 1s 0
curve {and not a surface or volume), the discovery of this curve, the goal of the relaxation
process. must therefore be constrained by the geometry of this curve In particular, a one
dimensional object in a tour-dimensional space has three dimensions i which it is localized
and one i which it has non-zero extent Tlus principle of focalization of the wferred curve

1s the most important in translating the geometry into compatibilities

b’ :
..w 0O
p [ ] .b .C ]
a'
» [ ] '. [ ] 4
a
| 1
. a - - -

Figure 3.5 Conmpatibilities in terms of labelled points in the continu-
ous parameter space The planc here represents the continuous space of parameter
values and each paint s a discrete labelled point in this space  For this regutar tiling
the Voronoi celis of the label ponts are gnd boxes The point « when constrained
by a cocircular refationsiip with some other point 7 (not shown) projects to the
point a’ which 1s still mside the Voronor cell defined around « The point « 1s thus
compatible with the other point not shown The perturbation of 4 to # however
takes & out of its own Voronor cell (/15 now closer to ¢} and thus t s i ompatible
with the pont

In general the compatibilities must. as shown in 433 1. confirm or deny the
local hypotheses which they are invoived in updating By considering the perpendic

ular projection described above In terms of local perturbations, the approach adopted
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below can be illustrated. Consider the description of the relationship between two la-
belled points in the parameter space X, ; = [0, .k, .@] \ K:..\'_, . )'] I The perpendicular
projection of this relationship onto the constraming manifold gives the projected point
X' = |o I\'/’.@;,I\'f._\';.)l'] Translating this projection back into the image curve
representation at + imphes that the mimmal perturbation of 7 = [©, .\, .\ .}, ] that s
coctrcular with a similarly perturbed 715 i = @ AN, + \;) - ):_’] (see Figure 35
for a two-dimensional illustration of these perturbations) The label indexed by j 1s thus
compatible (has positive r,,) with Tonly if the perturbed point i’ is still in the Voronou cell for
i The labels are ikewise incompatible (r,,  0) i all other cases In practice. a threshold
1s chosen and only those interactions with compatibiity (or mcompatibility) more signifi-
cant than the threshold are used in the support network Furthermore the shape of the
compatibilny cross-section must ensure that the relaxation converges on properly localized

subsets of the labels

Image curves have a unique position and set of derivatives at every point (ex-
cepting the rare singular points)—the connected set of Voronoi cells through which the
curve passes must, therefore, have a lateral extent of no greater than two? adjacent cells
at any point Referring back to the trace of the positive responses of the initial estimators,
no such condition is necessarily imposed Therefore, in addition to discriminating between
true and spurious responses in the mitial estimator oufputs, the relaxation must localize
the true responses on three parameter axes lateral position local orientation and local

curvature

Considering each of these three localization conditions as separate one-dimensional
locahization problems, Appendix localize-app explores a number of possible compatibility
cross-sections that could achieve the required localization through relaxation. It 1s demon-

strated by example that the task of arriving at such localization i a two-label system 1s

! Not one but two cells  This (s as a result of the fact that the set S 1s made up of surface-
connected and not corner-connected cells (analogous to the 4-connected/8-connected distinction
in pixel-based images) Restrnicting to one-cell widths nught destroy the connectedness of the

represcntation of a continuous curve
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non-trivial and depends on the addition of the same linear/logical non-linearities as were
developed for the cross-sections of the operators 'n Chapter 2 Since such operators only re
spond posttively within the local neighbourhood of a peak, the relaxation moves inexorably
to a stable. consistent labelling centered around such peaks in the confidences ~-cvery label
not 1n such a neloghbourhood 1s suppressed Since for ornentation selection, the local
1zation 1s required on three orthogonal axes. the compatibility structure developed below
involves such a non-hnear separation on three independent axes These partitions are done

independently

The only difficulty with the use of such an update rule 1s that the hneanty of the
support functional which Hummel & Zucker used to prove convergence of relaxation labelling
has been violated It will be necessary to follow up on this and prove that the process will
still reliably converge with this non-linear support function The experiments i this theses
indicate not only convergence but exceptionally fast convergence. and the analysis above
indicates why this 1s should be expected It remains to be proven experimentally that such

a functional 1s provably convergent

3.4.5 Orientation Selection Compatibilities

The generic design which has been developed is easilly applicable to the onenta
tion selection problem Since the perpendicular projection in this domain has already been
described (434 3), all that remains 1s to describe the translation of this projection nto
compatibilities which will localize the confidence laterally and stably break down near the

ends of curves (see 22 3)

The process of computing compatibilities when locahzation axes are considered
is made simpler when such axes are aligned with parameter axes In the case of the
cocirculanity constraint the local orientation of the hypothesis corresponds to O, and the
local curvature corresponds to A, A rotation by ©, around the ongin further ensures

that lateral position (1 e perpendicular to ©, ) aligns with the Y, axis Once this rotation
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1s performed, the localization constraint can be seen as being directly reflected in the cross-

section of compatibilities perpendicular to these three parameter axes.

Thus, of the six parameters which describe Lhe relationship between two curved
tangents. three (@, A, . and } ) must be locally maximal for a label to recewve positive
support  The other three parameters can simply be smoothly attenuated with increasing
perturbation m the projection Given the output of the perpendicu’ar projection X' =
[0 .+ ”l/ s r’,._:/,]. then the displacements from exact conformity with the cocircularity

i

constraint are described by
A, = (0: - 0,), 40,

Ak, (¢ K,),/OK,

b

/ )
20, = (0, - 9,),A0,

(312)
Ak, = (¢} - K}, 0K,
Az, = (2 - X,))/AX,
By =y N;)/AY,

(N B The form of these equations depends on each of the discrete parameter values be-
ing equally spaced in the parameter space Such s the case for a umiform gnid and the
label distributions chosen For non-umiform grids and/or parameter spacings refer back to

1343)

The attenuation on the non-localized parameter axes s modelled as a product

of perpendicular gaussians, or
: 1 2
G(a) = e | 5 Yoot (3.13)
t"tA

where A 1s the set of normalized perturbations on the non-localized axes (see equations
(3 12)) The locahization axes. however. must be dealt with independently since the cross-
section of compatibiiities on each of these axes must conform to the criteria described in

%34 4 Combining the attenuation due to variations in all of the other parameters with each
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- dG_; (A6, +6) G*(Ak, .00, . Ak, Az, Dy,)
dGU/(Ay]

Figure 3.6 Local sets of support for a curve

-01 The support sets shown are those which correspond to {a} r@

ard (d) rKt Posttive and negat.ve compatibilities are white and black

respectively {the degree of compatibility 1s not shown here)

(c) rK .

of these localization conditions, arrives at three pairs of compatibilities. one pair associated

with each localized vanable

Q,.hk))

,
7

ro” (©,.K, . X, .}

)

.
rK™ (0, .h,.X,.Y,.0,,K,)

.©,,}

Y,

] L}

ro*t (e, . K,. X

) = —dG_(Ax, +6) G (A0, A0, . Ok, Bry, By))

J

rKT(©, .K,.X,,}, .0, K

,]’

rY~(©,.K,.\

Y,.0,.K,) =

X,.),.09, K, =

YT (9, K,

The support associated with each of these localization sets i1s termed the localization
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Figure 3.6 Local sets of support (contd.) for acurve at 225° with a
curvature of 01 Shown are (¢) r}  and (f) r¥'T
support on the \ axis To demonstrate, below we show the localization support on the

O, axis for the i = (X, .}, .©, . K,) hypothesis

7O (i) = ) p()r07 (0,.K,.X, - X, .Y, - Y, ,0,.K,)
jol

kROT() = Y pli) 0t (©,.K,.X, - X,.Y, - Y, ,0,,K,) (319
j< 7

RO3) = RO (i), RO (i)
The final support for a hypothesis pair 1s the » of the localization support for each of the
three locahization axes The six support subsets for a given (@, . /) pair are shown In
Figure 36 Note that each support set can be seen as testing a particular condition (eg

Figure 36(a) tests whether the curve 1s more likely to be oriented at 225° than at 45° )

Note also that the negative compatibihties for the curvature eptions (Figures 3 6(c)

and (d)) are somewhat inadequate This is due largely to tradeoffs between the orienta-
tion and curvature spacing parameters Because of the discretization of space, higher order
derivatives are more and more coarsely measureable For curvature. a second crder measure.,
a discretization nto five local curvature classes 1s near the upper limit for inrual operators

of this size = Discretizing orientation more finely increases the number of hibitory in-

+
Seven curvature classes are also possible but for a set of imtial operators with optimal width
of only two pixels separating out mine curvature ranges reliably 1s already infeasible
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3 Relaxation

teractions in such a curvature component It should be pomnted out however, that this
apparent nadequacy 1s only apparent —the system performs extremely stably and does
not spread the curvature estimates wildly This 15 due to the fact that the local curvature
estimate determines the shape of the compatibithty held even when curvature locahization

is not included exnhicitly m the decomposition
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Figure 3.7 Compatibility subregions for a curve at 225" with a curvature
of -01 Each subregion 1s shown as a 7 combmation of the six components of
equation (3 14)

Achieving end-line stability 1s clearly just as important tn the relaxation phase of
processing as tt was in the imtial measurements The relationship between the relaxation
labelling support and a hnear convolution again to reveals a solution The compatibilities
are decomposed into a set of length components tangential to the curve. and the support

is calculated independently in each region This 1s made possible by calculating the pro
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Supporl
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ROT RRT RY] | [ROT RK; RYT | |Re] RKT RYT | |[RO7 RK; RY]

Rot rRk?T Rryt | [ROT RKY RYY | [RoY RKY RYY | [ROT RKY RY?

Figure 3.8 Support network used for calculating the support for a single
hypothesis The lowest level consists of support for the localization subsets in each
of four regions Each level above this 1s a semi-linear combination of the intermediate
supports below it

portional contribution of each r.\'* to the given region (see equation (2 20)) and weighting
the compatubihty accordingly Thus given a tangential distance d' between the two labels.
the length components partition the compatibiities into regions of equal length  Thus the

contribution of a label to one of the length components of the support network is given by
r (A = W (d) (AN (3 16)

As with the mitial measurement operators the weights W', (d) are attenuated by a gaus-
stan envelope The regions are then combined using the rule in equation (2.22) This

decomposition 1s shown in Figure 37

“ The distance « between (©, A, ) at (X, .Y, ) and any hypothesis at (X].Yj } is determined
by projecting (.\'7.)J ) onto the circle with tangent (©,, K, ) at (X, .}, ) The distance d 1s
then the distance along the circle from (X, .}, ) to the projection This 1s distance measure
1s identical to the tangential distance in the initial measurement operators except that it s

defined in a curved space
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With the combination of the two non-linearties described above. the support
calculation for an individual curved tangent hypothesis indexed as (. y.©. N) can be sum-
marized as

s = (R1 it Rz . (R3 N 1?4))‘ (1(‘4 \[1'3 .\“1)2 N Rl)) (317)

where each K, i1s the aggregate response of the localization sets in region 1.

R, = RO . RO :RK  ,RK™ RY RY™* (3.18)

!

A schematic of this support structure is shown in Figure 3.8

3.4.6 Compatibilities: Summary

We have thus developed a method for derwing the compatibilities of a relax
ation labelling network which reason about the continuity and locahty of curves i an
image plane The compatibilities were determined by projection of a description of the
relationship between a pair of curved tangents onto a smooth mamfold defined n terms
of local cocirculanity The compatibilities are thus based on a measure of the size of the
perturbation requited to make the label pairs cocircular In considering the requirements
of the refaxation 1t was discovered that image curves are localized along ccrtain of these
axes of perturbation. specttically lateral position, local orientation and local curvature A
semi-linear decomposition of the compatibthities was proposed to ensure that the relaxation
achieves such localization in its output The desirability of end-line stability was rerterated
and another linear /logical decomposition of the support network was proposed as a solution
to this problem The resulting support network for each hypothesis 1s a parallel, cascaded

summation of the component supports

In every case, the calculation of compatibilities has been based entirely on con-
siderations of the local differential geometry of plane curves and the properties of relaxation
labelling Every decision made in the design of the support network was based on a princi

pled analysis of alternatives No arbitrary design factors were employed It was necessary.

o
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3 Relaxation

however. to relax one of the conditions under which [Hummel & Zucker 83] proved con-
vergence of relaxation labelling It has been partially demonstrated (without proof) that
such convergence 15 retained with one of the non-lineanties used It will be demonstrated

experimentally that the overall convergence 1s stable

3.5 Conclusions

The goai of this chapter has been to develop a general methodology for refining
mtial measurements of local properties of image curves to reflect constraints which are
assumed as to continuity and curve interactions A standard for recognition of an image
curve was established which ensured that only locally twice-differentiable continuous curves
would be selected as consistent It was further established that any reasonable algornthm
for doing this must recogmize and represent the probability that image curves will cross,
bifurcate or otherwise interact, and a method was developed for dealing with such circum-
stances Fnally, relaxation labelling was introduced as a massively paraliel mechamism for

solving the consistency constraint problem formulated

Once such constraints were in place, a general methodology was proposed for
denving relaxation labelhing compatibilities from a szt of algebraicly defined geometric con-
straints  This scheme and the reasons for adopting it were illustrated using the restricted
domain of local coarculanty constraints for image curves, but we assert that it has much
wider apphcation than that in fact, each of the design principles used to resolve the
structure of the support network for this problem has a natural correlate in each of the
other domains covered by the early visual system We will describe in some detail how
such principles can be extracted from the geometry of these other problems in the sectior

devoted to indicating future directions for 1esearch (§5 2)
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Chapter 4 Results

The results which are presented in this chapter were computed starting from
the initial measurement operators described in §2 4 With these estimates of confidence in
each of 40 onientation/curvature pairs at each image position, the relaxation then proceeded
The compatibihities were decomposed tc provide localization for orientation curvature, and
lateral position In addition, they were attenuated tangentially by a gaussian with o - 2
pixels to a maximum arc distance of 5 pixels The support network was further decomposed
into 6 length components with a degree of separation p = 40 Only those nteractions

with positive compatibility 0.3 or with negative compatibility 007 were u.ed

It should be pointed out at this time that the three iterations used to demon
strate these results 1s not sufficient for strict convergence of the label confidences (in an
unambiguous labelling all labels have a confidence of either 0 ot 1) Instead. we sclect
those labels which received positive support in the previous iteration Thus 15 an excellent

predictor of the final convergence of the system

An important factor in evaluating these results is the evolving confidence of the
labels Unfortunately it is difficult to display the confidence, orientation and curvature of
a label simultaneously in black and white Instead. for display purposes only. the results

shown below are thresholded at a confidence of 10%

All experiments were conducted on a Symbolics 3650 Lisp Machine, running

Genera 7.1 software The system is programmed 1n Zetahisp, a dialect of Common Lisp
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Chapter 5 Conclusions

This work has established a general r.ethodology for solving the wmitial mea
surement processes which have come to be called early vision It has generahzed and
formalized some of the earlier work on relaxation labelling for curve descrniption n grey level
images. and has thus exposed the posstbility of treating a variety of pioblems n carly visual
processing as variations on a central theme, the discovery of consistent patterns i vector
helds By keeping in mind the real ime and computational constraints of 1 neurological
system. the system developed also forms a rich and useful theory of visual processing n

the visual cortex of cats. monkeys and humans

5.1 Future Directions: Early Vision

Edge and line detection, texture perception. wnage motion, stereo integration
and colour vision are all classed as problems in early vision Each involves the discov
ery/inference/detection of features or structures in the retinal image which are assumed to
correspond to properties of objects in the real world As a hirst stage in the eventual de
scription of physical objects, early visual processing 1s simply a description of the structure

of the retinal image

Consider then the ways in which such early processes are similar  Because the
coordinate systems are retinal. and not functions of real-world location there 15 a restricted

well-defined area over which they must operate The mapping from tetinal location to
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hardware (neutological or computational) can therefore be much simpler than when an
unbounded space must be represented Since the range of vanation for local structure
images 1s himited —both by imaging physics and the structure of the world we hve in—
the kind of adaptability to valdly unusual combinations of local features which 1s clearly
exhibited at the highest levels of visual processing are not necessary at these very early
stages  The umversality and perceptual constancy of many wvisual illusions demonstrates
this dichotomy well  The early visual systems can thus specialize greatly for the kinds
of universal structural quantities which are shared by all visual stimuli, no matter how

semantically novel or unusual they might be

At a more abstract level cach of the standard problems 1 early vision can
be formally described as the inference of a locally consistent vector field over the retinal
image For edge and line description, as has been shown. the vectors are the local tangents
of the nmage curves For stereo integration. they would be the stereo disparity vectors
For colour constancy, they would be vectors of colour description (e g intensity, hue, and
saturation) For motion, they would be the motion vectors for optical flow This principle
of similarity between all of these early visual processes has been explored elsewhere (e g
[Zucker 85]. |Zucker & Iverson 87]). some of the computational issues involved are the
ones addressed in this thesis In each of these cases, the same issues arse How to take
crude measurements of such quantities and abstract from these a description of the vector
fields so constituted? How to do this quickly enough that the computer or animal can react
appropriately? How to ensure that the sorts of abstract information necessary for higher

processes are made available?

It 1s the goal of this project to answer each of these questions in turn A
theoretical framework has been developed which exploits the similarities between these
problems 1n such a way as to allow for efficient solutions to all of them These solutions
are not only based on an understanding of what has been discovered by visual neurologists
and psychophysicists. but represent reasonable working models of visual processing in the

brain From a strictly engineering point-of-view, these models will work better and faster
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than other computational approaches

The present work demonstrates only a small facet of this larger goal In con-
centrating on the simplest of early vision problems. what has been called ‘edge detection”
this thests explicates in a simple. straightforward manner the theoretical underpinnings of
this body of research and thew computer implementation  The general applicability of the
approach 1s explained at each stage i this development, with references to the other sub
jects of early vision Finally. this work will demonstrate how well we achieve the goal of
a robust, accurate, real-time system for descrnibing image curves, and the pronuse for hke

succes in the other domains of early visual processing

Texture flow [Zucker & lverson 87]. the problem of inferring orientation patterns
in static texture images. ts most closely related to curve description and here the imphica
tions of the present work are clearest. Optical flow. the problem of describing the lateral

motion of patterns in the retinal image, 1s just a step beyond this

5.1.1 Texture Flow

The nature of texture flow 1s most clearly described with reference to random
dot Moiré patterns—also known as Glass patterns (after |Glass 69] and |Glass 73]) (see
Figure 51) In these patterns (and in hair patterns or any texture with a highly onented
structure) there are dense or sparse orientation cues which give an aggregate percept of an

oriented. static ‘flow” which exists everywhere in the image

The outline of a solution to this problem in the current framework has been
previously described mn [Zucker & lverson 87] and [lverson & Zucker 87] It 1s repeated
here to clanfy the relationship between the description of wnage curves and these flow
patterns  The most important differences between these two problems can be explained
in terms of the topology of thetr solutions A consistent curve 1s a one-dimensional object

while a consistent texture flow field 1s two-dimensional |Zucker 83] This imples two things
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Figure 5.1 Random dot Moiré pattern demonstrates the principle of texture
Hlow Even though the actual orientation cues are relatively sparse and ambiguous
the overall perception 1s of an unambiguous circular flow field

Figure 5.2 Geometric concentricity constraint relates the orientation 6,
and curvature , at point ¢ to H] and .. the same measures at point 3 Cocircularity
of the two curved tangents depends on their sharnng the same centre of curvature
O
e the manifold of geometrically consistent label pairs is four-dimensional instead of
three Consistency. now defined in terms of local concentricity (see Figure 52, 1s
thus expressed by only two coupling equations
e the mside/outside distinction so easlly resolved for a one-dimensional object (see
%22 3) 1s more problematic In this case. by assuming a locally straight border
between distinct texture flow regions. it can be shown that rather than demonstrating
y consistency for the left and night half-fields. the relaxation must do so for each of
four quadrants around the centre point

73




5 Conclusions

The coupling equations are as simple as before

sint), +n, y
6, = tan 1|7 te
cos 8 (R

A= 1\(smt), no=1,)2 F (cos @, v, )2

The decomposition of the support network must now proceed on the principle of localizing
around only 0, and +,. and of a region decomposition based on the quadrants around the
central point Each of these decompositions can proceed using the principles estabhshed

n §344 and 4345

The second non-lineanty in the support for the orientation selection problem was
introduced for end-hne stabibity For texture flow. nstead the problem v one of stability
near discontinuities in the flow field It might seem at first that these are truly separate
problems, but in the context of relaxation labelling they are simply topological vanants of
the same problem—to ensure that support is only gathered from the same consistent region
as the label being updated For the one-dimensional orientation selection problem this was
resolved by partitioning the support into left and nght haif fields  For two-dimensional
texture flow. one must partition the support into quadrants around the centre pont  The
principle extends just as naturally to higher dimensions a label’s support 1s positive only
if 1t 1s surrounded by regions which confirms its hypothesis  For 1 dimensional consistent
structures (independent of the embedding space) this surrounding must contain at least

2" regions (assuming that the border between consistent regions i1s locally planar)
5.1.2 Optical Flow

The importance of optical flow for the interpretation of visual motion has been
well-established (e g [Koenderink & van Doorn 75]. [Horn & Schunk 81]) and a great deal
of effort has been expended developing methods for calculating 1t (see [Barron 84| for o
recent review) The one overnding faillure with these methods s that they, do not recognize

the important geometric structure of a consistent set of optical flow measurements
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Figure 5.3 Dimenstonality of optical flow is shown for (1) a moving point,
{n) amoving curve and () a mowving region The structures traced out by these
motrons in spacc tinte are the objects which a system for deternuining optical flow
should discover

In |Zucker & lverson 87] we described the three topologically distinct classes
of optical flow Consider optical flow as defining smooth manifolds in the X' ~ YV » T
retinotopic space-time A moving poimnt then traces a curve in this space. a moving curve
traces a surface. and a moving region traces a volume (see Figure 5 3) Assuming piecewise
smooth motions, then the representations of these motions in space-time will also be
precewise smooth, so a stable relaxation labelling formulation in this space is every bit as
feasible as for orientation selection and texture flow The initial measurements would be
garnered from a set of directional space-time operators analogous to the ones developed
m Chapter 2 Relaxation labelling would then proceed along three separate paths. each

attempting to discover consistent response patterns ot different dimensionality. Al of

the techniques developed atwve, which were specifically formulated to be generalizable to
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arbitrary dimensions are applicable to this kind of a system

5.2 Biological Observations

Throughout the development of this work care has been taken to ensmie that
each description, each formulation and each solution was applicable to not only the standard
computational framework but to a neurophysiological substrate as well I can certamnly
be argued that the ourely spatial processes described herein are unrealistically simplistic
models of visual cortical processing, but they do represent a first (temporally nvarnant)

candidate model for some of the processing which may be taking place

In tact. many aspects of this system resemble neurological processes more
closely than traditional computational processes Appendix B demonstrates how the oper
ators developed in Chapter 2 can be represented in a summing dendritic tree with shunting,
inhibition [Rall 64]. thus suggesting a functional role for some of the dendro dendritic m
teractions observed The representation chosen 1s far ncher in 1its itial stages than most
computational model< and a companson with the structure of orientation hypercolumns in

visual cortex reveals many similarities [Hubel & Wiesel 65]

The relaxation stage of the model has similar neurological correlates  for the
linear/logical summation of the support calculation 15 again potentially implemented m a
single dendrnitic tree with shunting inhibition  Th~ entire three/four iteration relaxation
could thus be implemented in only three layers of cortical crcuitry {(assuming an entirely
feed-forward network) or even 1n one or two with some feedback A more telhing pomt
however, 1s combmatonal for with the current system fanins to ¢ single node on the
order of 1000-1500 are normal This places the system much more closely to neurological

parameters than those of traditional computational models

In addition to these similzrities. the model 15 rich enough to actually generate
a few simple predictions zbout the biology Dobbins has already done much of the work

to document the curvature selectivity of cortical neurons |Dobbins et al 87 88). but
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the other non-lineanties which have been added to the operator have not been verified
neurophysiologically  Within the relaxation structure 1s embedded a description of local
interactions between nearby orentation (and curvature) specific neurons Much of the
debate over whether cortical simple-cell interactions are primarily excitatory or mhibitory
seem superfluous now that the need for a balance of both has been revealed In fact. the
cocirculanity constraint and its translation to relaxation compatibilities can predict the kind

and degree of nteraction which should be observed between neighbouring tuned cortical

simple cells

5.3 Summation

It has become clear in executing this research that a deep understanding of the
constraints on the visual system and a principled application of such constraints to the
solution of the geometric problems faced by this system can lead to a straightforward,
robust solution It 1s hard to imagine how the insights gleaned from this work—which
i many ways depended fundamentally on the need to develop a working model—could
have come from an approcah with less rigid modelling requirements A neurophysiologist.,
without the demand to produce a system which works 1s free t¢ propose any plausible
solution to the actual computational problems with viston with only the requirement that 1t
explains something of and generates useful neurological predictions This 1s by no means
without use. but it 15 not often that 1t reveals deep truths about the inherent nature of visual
processing, In much the same way. a neural nets’ researcher who simply blindly wires up
a network and hopes that it will, when approprniately tratned, reveal to him these deep inner
truths may just as easily fail to understand why his model did or did not work The problem
of undetstanding vison 's so complicated and reflects on so many different fields that only
through a constructive synthests of mathematics, computational theory. neurophysiology
and psychology can one hope to provide a solution which has relevance to all fields It is

hoped that this current research will make just such a constructive contribution
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Appendix A. Linear/Logical Operators

As was described 1n 1221 a set of semt hnear logical operators have been
developed The logical structure of these operators 1s based on the principle that the sign
of a signal (positive o1 negative) can be associated with a truth value (true and lalse,
respectively) These operators then exhibit the property that if some logical condition on

the inputs holds the output will appear as a linear combmation of the mput values

The examples already outlined are the operators analogous to logical and and
or Since these are combinations of linear and logical principles a notation which reflects

this has been adopted

e linear/logical and of r and yi1s r = y.

e linear/logical orof rand yis.r y

The computation tables for these operations are shown below

Operation Tables for
Linear/Logical Operators

Y Ir+y r y 0 r-y Y
Y y I +vy y 0 . Ity

It 1s a simple matter to verify that the sign of these operations follows the asscuated logical

rule The symmetry and associativity of these operators are also easy to demonstrate

A more useful formulation of these operators 15 expressed in terms of the step

function o(r)

J 1. «fr O
= Al
o) | 0. otherwise (A1)

This function is a choice operator pivoting around zero, and as such it can be used to

directly define the two linear/logical operators above Consider that the operators can be
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(b1) (b g (b 3) (b 4)

Figure A.1 Linear/logical functions of r and y varying p. (a1) (2 2).
(a3) and {a4d) show r . u varying through 0 2 4 and o (b1} (b2) (b3). and
(b 4] show r w varying through 0 2 4 and oc

defined as.

r-y = (runlessr 0,y - 0,+ (yunlessy >0/ z <) (A.2.1)

roy = {runlessr 0~y 0)+ (yunlessy- 0~z >0) (A.2.2)

Expressing exactly the same logic using the identity

aunlessb >0 = a(l1 - o(b)) (A.3)

gives
riy =t ola)o(~y) + yv(l-oly) o(-7)) (A4 1)
ry =1 oy a(-2) + y(1-o(d) o(-v)) (A42)

These are derived based on the principle of selecting those cases in which either z or y
contributes hnearly to the output. The 1 — o(a) o(b) forms select all cases except when a
and b are both positive A check back with the operation table confirms the correctness of

these formulations

The key m arriving at an analytical form for these operators comes by taking

successive smooth approximations to o(z). A simple sigmoid approximating function is
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the logistic function

frased [, 159
o, (1) VT (A5)
This function 1s infinitely differentiable and
olr) = lm o,(r). (A 6)
e

t

Furthermore this approximation makes absolutely clear the relationship between the hnear
sum and these operators for og(r) =1 2 In this degenerate case. both of the operators

simplfy to addition
roy =1l ~oplr)ag( y)) = y(1 agly) ep( 1)) (A7)
=o(1-(172):(12) -~ y(1 (1.2):(12)
= 34 (r+y)
roy = z(l-0g(y) oo 1)) + y(1 aolr) og( u)) (AT72)
=zr(1- (172)(172)) -~ »(1 (1'2)+(12))
= 3/4 (r +y)

Thus. the approximating functions ., and *, form a continuous deformation from a hnear

sum to the linear/logical operation as p goes from O to o

Shunt
X

O-xAp

Y

Figure A.2 Network implementation of /) using a switching clement  The
shunts {smali circles) operate by passing their snput signal unchanged unless all of

3
the controf inputs are positive in which case the output of the shunt 1s zero’

A local network model of a J\ circut 1s shown in Figure A2 This model 15

based on a simple principie, the shunt switch Such a switch acts as a resistive element for

2
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its input signal with the resistance controlled by the control input When the control input
1s negative, then the shunt 1s on and has a very low resistance, 1t passes 1ts input through
cffectively unchanged When the control is positive the shunt is off and the resistance 1s
very high. the output 1s effectively zero For simpl.city. the shunts pictured allow multiple
control mputs all of which must be positive for the shunt to turn off This mechanism
ts stmilar to the functional charactenistics of a relay or transistor In neurological terms,
it could be related to shunting inhibition ([Fatt & Katz 53| and [Rall 64]) n the dendntic

tree of a single neuron The controls In this case would be realized as axo-dendritic or

dendro dendritic synapses
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Appendix B. Operators: From Continuous to Discrete

The operator designs in Chapter 2 are based entirely on analytic images and
continuous convolutions In order to instantiate such a model m practice however, 1t 1s
necessary to demonstrate that the model and the principles underlying the model can be
translated tnto a framework in which the image 1s a set of responses from a finte number
of discrete detectors This translation s straightforward since each of the continuous
aspects of the model have natural discrete counterparts Continuous convolutions map to
discrete convolutions and the continuous functions of the operator's components can be
approximated by sampling As trivial as 1t may seem. specfication of the parameters and

assumptions of this translation has often been ignored by researchers in computer vision

Assume that the image 1s represented by a set of discrete detectors which have
spatial transfer functions ¢, . . a set of hinear convolutions of the incident light intensity
/. Consider these detector outputs as a set of basis functions from which the operator will
be constructed Given a description of the linear operator as a continuous convolution with
the kernel f. then we must find the vector of weights W = {wq.wy.. .w,} such that

N w,, approximates [ This can be accomplished by minimizing

)

d = f S”“l‘:" (B.1)

=1

Using the inner product (f,¢) = [ fg dx this nimmization 1s accompiished by solving for

Won
(f;l”r:l) ('913992) ('Pl-‘rf‘n) 5 uy (f,’,:l)
(3‘:2“*:1) ((PZ,@Z) (‘P2~‘Pn) uiy _ (f,'{/?) . (BZ)
(Vﬁn”‘:l) ((rcTIs\OZ) N (Wﬂ'\f;ﬂ) Wy, (f,',:’n]

When the basis functions i, are orthonormal. then the matrix collapses to the identity

matnix and w, = (f.¢,)

The standard computational technique for converting from a continuous convo

lution kernel f(r,y) to a discrete convolution matrix F(z.;) 1s a specific instance of this
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framework For square pixels. the detector transfer function i1s most easily modelled as a

square box Defining the square region
S(t,) = oy (0 1/2<2- 24+1/2) (1-1/2 <y ,+1/2)} (B.3)

then
) _ 1 af(zoy) = S(e).
Figley) = 1 0. otherwise (B.4)

These functions are clearly orthonormal for integer » and ; (volume 1s 1 and they are non-
overlapping but complete) therefore the contnibution from pixel (:.7) 1s simply the inner
product (/,,, ,}. or
Fla.g) = / flz.y)dzdy. (B.5)
~(2g)

Assumung that f i1s planar within S(t,) allows the traditional simphfication to F(1,7) =

J{a)

We are not. however, limited to this instantiation This method explains how
to map from continuous functions to sums of a discrete set of basis functions for any tiling
of the detector plane The transfer functions ¢ can be round, can have square or smooth

profiles and could even have the center-surround structure of a V2G operator
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Appendix C. Perpendicular Projection by Functional Minimization

In §3.4 3 the computation of relaxation labelling compatibilitics was reduced to
the perpendicular projection of label fixed points onto a manifold describmg the geometric
constraints ot the structures to be discovered The <ix-dimensional pont representing

the relationship between two curved tangent labels is |, .~ .0, .~ ,..r, ] and the polar

!

description of the spatial relationship (), y, ) 1s expressed as (d,,,0,,) Forthe coarcularity

constraint of Figure 33, this manifold 1s described i terms of the parameter coupling

equatlonsf
0, =20, 0, (("11)
K, = 2sin(6, 0,)/d, (('1.2)
K, = K, {('1.3)

The perpendicular projection of the fixed pont [©, .K,.©, K, XY, j onto
the constrained manifold 1s then equivalent to minimizing the squared distance tetween the

fixed point and any constrained pont Thus we mimimize )2 i}

- 4, - (0, + 2ar) g (K, K, ?
-\ a0 + Aw,

2
0, -(©, -+ 2brm) IS K
*( Y ) +( "1’&;”]) (c2)

p
Equivalent to using {C12) 1s I, = (1/x%, )*(V 1 - (x, y, - cost, 2 s b, ) This equation

however has undefined regions and cases depending on the sign of the square root chosen so 1t
1s more difficult to minimize We thus opt for the other even though having the three locahzation
variables as the independent varniables is attractive for other reasons

-

The parameters o and ! vary over { 1 0 +1} in order to deal with the problem of respecting
the congruence of orientation instead of equaiity of angles



Appendix C  Perpendicular Projection by Functional Mimimization

The derivatives of this value with respect to the three independent vaniables 4,

7, and y, are’
dD? 2 (6, - (©, +~27a)) 2 (()J (©, + 27h)) 31
o, 1_\.0‘2 o _A_(Jf - (c3.4)
4 cos(f,, -0,) 'h'] K, & - K,
— - ___.2___, + - _2._
d,, Ax? Ak’
dD? 2 (z, - X]) 4y, (0] (©, +27b)) ,
= 5 - B (¢.3.2)
dz, Az A6 d
J J
4 (z,sin(6,, ~ 0,) + y,cos(0,, - 0,)) (fl;,f\ll_ N K, )
3 .2 v
dlj K AKIZ
dD? 2 (y,-Y,) 4z, (0, -(©, +2rb
= (;2] RN 2( > D (¢.33)
y] y] Aa] dz]
4 (z,cos(0,, -0,) - y,sin(8,, 0,)) [r, K, & K,
+ B I e
d?} Arcjz AK‘Z

The perpendicular projection is calculated using a standard numernical mimimiza
tion techmque from a starting point For reasons of speed and accuracy {remember that
this minimization must be performed for every pair of curved tangents in a local neighbour
hood) we test a number of different staring points and use the one for which the imitial 1’
1s smallest These potential staning points are chosen by projecting from the fixed point

onto the constraint space along eacu of the three independent variable axes
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Appendix D. Relaxation Labelling Profiles for Localization

In §3 2 4 the importance of the localization of the selected labels for orientation
selection is stressed For general labelling probiems the techniques outlined in [Zucker et.
al 81] are appropnate, but for the two label case used throughout this work achieving
such localization 1s more difficult By considering a one-dimensional labelling problem. it
will be demonstrated that hinear compatibihties do not achieve the localization required The
localization s achieved mstead by introducing a non-lii earity into the support calculation
Consistent labellings are shown to obey the localization constraints as intended. and the

convergence of the relaxation with such a support functional 1s experimentally verified.

n

(a) (b)

Figure D.1 Compatibility profiles for 1D relaxation labelling are (a)

(126(7(1) an {b) the box operator They both contorm to the necess=ry constraints
but differ in therr convergence properties [n particular (a) does not conveige while
(b) converges but to a seament width much wider than itself

In the geometric problems considered, the labellings which form meaningful
solutions are discrete representations of smooth manifolds in the labelling space of the
problem  The extent of such consistent labellings are therefore inherently localized on
certain axes (the axes on which this 1s true are determined by the problem) In ord.:
to understand how such localization can be achieved by relaxation labzalling in this multi-
dimensional space | will show how it can be achieved for a one-dimensional labelling space

and then rely on a generalization of this principle to higher dimensions
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Constder an arbitrary problem phrased in terms cf locating those solated points
along a hne which fulfill some condition As the condition 1s defined locally. the line 15
discretely sampled and a measurement process tests each individual pomnt along the hine
independently for conformance to the required conditions  The imitial measurement process
produces an estimate of its confidence that the conditions prescribed are satisfied at the
given point A relaxation labelling system is to be designed such that the regions over
which the initial measurement produces positive results are localized to mdwvidual points
The similarities of this generic description to the orientation selection problem as defined

in §1 2 should be obvious

Notice that each node in this system 1s a two-label TRUE/FALSE set as de
scribed in 43 31 with p, representing the confidence that position 1 satisties the conditions
being measured |f we adopt the notation [v] to represent the scalar v chipped to the range
[0. 1] then the relaxation labelling update of Algorithm 1 Step 2 1 can be described m terms

of the following equation

1 =
p:1+ = |pr+e ( }__‘ [)I'_H rr (D.1)

\-m<zx<-m

or. if p=[pg,p1-- spa]and r={r pr i1y - T o1aTm)
pn+1 - [p"-‘rb(p” ., l')] (D 2)

where r» 1s the compatibility between node : and node 1 + r {assume that the compatibihity
between any two nodes depends only on their relative distance) The poal of such a
relaxation labelling process is a consistent labelling with a set of solated reglons ecach
corresponding to a peak in the imtial measurements The problem 1s to find a compatibility
function 7, which wili achieve this goal, while mimimizing the convergence ttme, ignoring
noise. localizing the saturated regions as well as possible while allowing stable regions with
as small a separation as possible Whereas it would be extremely useful to be able to derive
the compatibility structure directly from a priorr constraints, at this point such a denvation
does not seem possible Instead, we will examine a number of possibilities and settle on

the only one which appears to satisfy these goals
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Appendix D Relaxation Labelling Profiles for Localization

A number of observations are iImmediately obvious The r;'s must be symmetric
atout rp—Iooking left or night should be equivalent when locating a peak Furthermore, it is
necessary to ensure that N~ r, = 0 since tne existence of a peak depends only on contrast
and not absolute magnitude The stationary points of the relaxation (consistent labellings)
are. as described above a set of constant vadth segments i which cach node has umit
confidence, all other nodes have zero confidence The response of the operator r must have
a par of seroes at w2 and u+ 2 when convolved with a saturated segment of width w,
it must also have non-negative responses between these zeroes and non-positive responses
outside these bounds Furthermore the zeroes of reponse to any saturated segment wider
than the deswed width « must be closer to the center of the segment than the present
boundanes (this 1s the gradient down which the relaxation will travel) The compatibility

vector r 1s thus considered as a linear operator which fulfills these conditions

Figure D.2 Convolution of saturated segment with box operator
of Figure D1 (b) The saturated segment 1s defined m equation {D 3) and has
width u+ The box operator hac size described as ¢ This convolution shape ts vahd
tor 20 . 3 and the examp.e shown is for u = 2 5.7

A close examination reveals that it may be impossible for a purely inear operator
to fulfill all of these constraints simultaneously Two potential candidates for the desired
operator are d°G. (1) and the box operator (see Figure D 1 (a) and (b)) For the d2G,(z)

compatibility function 1t 1s straightforward to demonstrate that there 1s no stationary point
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for the equation (D 1) when p 1s a saturated segment Such a solitary saturated segment
of width u'1s a stationary point Iff the zeroes of v+ pare at .2 and w.2 However, the
convolution ot d2G.(r) with

l 0. fr- w2

pul(r) = . w2 r w2 (D.3)
l 0. fw2-r
IS
1 2 2 2
den(I) +pel(r) = ) <(2.T w)e™ 7 2r - u-) o (27 w)®Be (D.4)
which 1s zero when )
2z _ 7 +1 (D.5)
u B ew:r/(r2 -1 ‘

Setting x = u, 2 for a stationary point gives
2 2 29,2
S R (D.6)

which 1s never true Therefore using de(.II) as a relaxation labelling operator with two-

label nodes is infeasible

The other possibility presented is the box operator of Figure D1 (b) The
convolution of this operator with (D 3) depends on the relative sizes of the segment and
the operator For the range 20 <+ w - 30, the zero 1s at

,2 . 2
_ 3u/” i M20u _480 (D7)
2 (5w 240)

Again, this 1s a stationary point only if r = w, 2 and therefore when

w = 3o (D 8)

The difficulties anse when considering the behaviour for v 30 In this case, the zero s
always at w2 and all segments with w . 3o are stationary points Because of (D 8) any
segments narrower than 3¢ will widen, and we have just shown that any wider than this

will remain the same This i1s hardly the localization process descnbed above

An approach which does work 1s to achieve localization by adopting exactly the

same cross-sectional operator structure as was used in the initial convolutions This time
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we develop a partition over the cross-section of the compatibiities With the operator
described 1n equation (2 16). the convolution (D 1) 1s decomposed into two convolutions

which are :ater combined The relaxation thern becomes

rn+1

p = [p" =+ o(p”"-L . p" RJ (D.9)

where L and R are the left- and nght-hand dG(x) operators of §222 Not only does this
operator localize the ncde responses as required, but it does so extremely guickly, using
only a small number of iterations As was pointed out previously. the region of positive
response 1s confined to within o of the actual peak In order to estimate the rate and
direction of convergence 1t 1s only necessary to examine the distance between the zero of

the response and the transition point at ww 2 The convolution for one component of the

operator 1s
’ 2 2 2 0 12
4G+ 0) v pule) = () 2 ) (el ) 27T ) 2 2e) !
(D.10)
which has a single zero at r = -6 (By symmetry. the other component has a zero at

r = &) Thus the stationary point of the relaxation 1s a saturated segment of width < 2¢

and the relaxation convergences extremely quickly

To demonstrate this result, we will compare the operations of these three com-
patibility profiles on an ideal input (Figure D 3(a)) and a degraded version of the same

(Figure D 3(b))

The three diagrams in Figure D 4 show the convergence of the three candidate
compatibility profiles when given the raw delta functions as imitial measurements A perfect
analysis should simply saturate those labels which correspond to the locations of the delta
functions With & = 3 (for noise suppression) the non-linear relaxation operator 1s clearly
superior to the others the regions are more localized, and they are more accurately placed
Not specifically the huge displacement of the peak at 60 for the '‘box’ operator The
operation of the relaxation on the degraded input i1s shown in Figure D5 Again the non-

inear reiaxation is clearly superior. for much the same reasons as before
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o U

a

(b)

Figure D.3 Input to one-dimensional relaxation whosc goal 1s to recover
the locations of the delta functions in (a) which the noisy measurements’ in (b)
were derived from

The extension of this result to higher dimensions 1s logical For a smooth
manifold of dimension n embedded in an ' dimensional space thcre are locally m n
orwnogonal directions in which the manifold 1s localized When such a space 1s discretized
for representation in terms of discrete labels, then for each of these local axes a e
decomposition can be introduced into the compatibihity network The support for a given
label 1s then the A\ of these component supports An apphcation of this approach to

orientation selection 1s described in §3 45
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0BG Fernel {(Sigma 5 0)
fterations (O 18 32) (< 0.29)

Hox Kernel (Sigma = 3 0)
Iterations (O 4 8 32) (x 0 2%)

- s 3 lL"L‘ |
Peak kernel {Sigma = 3 0)
iterations (O 4 8 32) (x 0.25)

(c)

Figure D.4 Results of relaxation on the perfect input of Figure D 3(a)

Three compatibility profiles are tested (a) de(z) (b} 'box’. and (c) non-linear
peak operator
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DG Kernet (Sagma v )
[terations (O 4 8 3.°) (< 0 Y)

pmmmm =

|
Box Kernel (Ligma - §0)
Iterations (0 4 8 32) (x U P9)

) P Litin
Peak Kernel (Sigma 3 0) !
Iterations (O 4 8 32) (x 0.2%)

()

Figure D.5 Results of relaxation on degraded input of Figure D 3(b)

Three compatibility profiles are tested (a) dZG(;) . {b) 'box and (c) non-linear
peak operator
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