
COMPUTER MODELS FOR SIMULA TING PESTICIDE FATE AND 

TRANSPORT IN SOIL 

by 

PUBALEE HERA 

Department of Agricultural & Biosystems Engineering 

Macdonald Campus ofMcGill University 

Montreal, Canada 

A thesis submitted to the Faculty of Graduate Studies and Research ofMcGill University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

AUGUST 2002 

© Pubalee Bem, 2002 



1+1 National Library 
of Canada 

Bibliothèque nationale 
du Canada 

Acquisitions and 
Bibliographie Services 

Acquisisitons et 
services bibliographiques 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

The author has granted a non­
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this dissertation. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
dissertation. 

Canada 

Your file Votre référence 
ISBN: 0-612-88342-6 
Our file Notre référence 
ISBN: 0-612-88342-6 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou aturement reproduits sans son 
autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de ce manuscrit. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



This thesis is dedicated to my parents 

Ibha and Nikhil Ranjan Bera 

for their love, care, understanding and support 

ami to my uncle, 

Manik Ranjan Rem 



ABSTRACT 

Two different modeling approaches to simulate pesticide fate and transport in soit were 

investigated in this study. First, a process-based mathematical model, DRAINMOD-P, 

was developed by combining the attractive features of DRAINMOD and PESTF ADE. 

While DRAINMOD formed the main component to perform hydrological predictions, 

PESTFADE's pesticide sub-model was used to simulate pesticide fate. The new model 

was validated against three years of independently collected field data from southem 

Ontario. Several statistical parameters were calculated to evaluate model performance. 

Results obtained from DRAINMOD showed acceptable model efficiencies, which ranged 

between 28-81%. The pesticide sub-model of PESTFADE accounts for intrapartic1e 

diffusion and both labile and non-labile sorption in a logical way. Calculations were 

performed using molar quantities to remain in accordance with standard stoichiometry. 

Results obtained from this study demonstrate that atrazine simulations were well within 

an order of magnitude of the observed data, which is in line with investigations done by 

other researchers. The root mean square error (RMSE) values were between 0.41 to 1.04 

and 0.37 to 1.25 for the conventional and GambIe approach, respectively, which supports 

the acceptability of the mode!. 

Second, an implicit mode!, Multivariate Adaptive Regression Splines, MARS, which is 

aiso a novel data mining tool, was used to assess pesticide transport. MARS was first 

vaHdated against the field data on three herbicides, namely, atrazine, metribuzin and 

metolachlor. The MARS models yielded modeling efficiencies between 42 to 99% for aH 

three herbicides at aH depths. The execution time was less than DRAINMOD-P and 

MARS predictions were generally good in spite of the very small data size. A 

comparison drawn between the DRAINMOD-P and MARS models for atrazine also 

proved that MARS performed better than the process-based model. However, 

DRAINMOD-P and MARS simulations, though impressive, need further validations 

before they can be recommended for actual real-world use. 



RÉSUMÉ 

Deux approches de modélisation ont été utilisées dans l'étude du devenir et du transport 

de pesticides dans les sols. En premier lieu, un modèle mathématique DRAINMOD-P a 

été développé en utilisant les points forts de DRAINMOD et de PESTF ADE. Le module 

DRAINMOD composait la majeure partie des prédictions hydrologiques, alors que le 

sous module PESTF ADE était utilisé pour la simulation du devenir des pesticides. Le 

nouveau modèle fut validé par trois années de données, recueillies dans le sud de 

l'Ontario. Plusieurs paramètres statistiques ont été calculés afin d'évaluer la performance 

du modèle. 

Les résultats obtenus par DRAINMOD ont démontré une efficacité acceptable du 

modèle, variant entre 28 et 81%. Le sous-module PESTF ADE prend en compte la 

diffusion des macropores et la sorption labile et non-labile. Les calculs ont été effectués 

en utilisant les quantités molaires en vertu de la stoéchiométrie standard. Les résultats 

obtenus lors de cette étude ont démontré que les simulations pour l'atrazine sont dans les 

limites des données observées, ce qui est le cas rapporté par d'autres chercheurs. Les 

valeurs d'erreur-type ont été entre 0.41 et 1.04 et 0.37 et 1.25 pour les méthodes 

traditionnelle et de Gambie respectivement, démontrant la validité du modèle. 

En second lieu, un modèle implicite, de régressions multi-dimensionnelles adaptatives 

des splines (MARS), connu comme outil d'exploration de données, fut utilisé pour 

déterminer le transport des pesticides dans les sols. MARS fut premièrement validé grâce 

à des données recueillies pour trois herbicides, dont l'atrazine, la métribuzine et le 

métolachlore. Les modèles MARS ont obtenu une efficacité de simulation variant de 42 

à 99%, pour les trois herbicides à toutes les profondeurs. Les temps d'exécution étaient 

considérablement réduits et les prédictions de MARS étaient généralement bonnes malgré 

la faible grosseur de l'échantillonnage. Une comparaison effectuée entre les modèles 

DRAINMOD-P et MARS pour les prédictions d'atrazine a démontré que MARS 

s'acquittait de la tâche avec plus de succès. Néanmoins, les simulations de DRAINMOD-
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P et de MARS, bien qu'impressionnantes, nécessitent des validations plus approfondies 

avant que leur utilisation puisse être recommandée pour un usage réelle. 
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CHAPTERl 

INTRODUCTION 

Currently, farmers across the globe are applying pesticides extensively to achieve higher 

yields and to maintain the quality of agricultural products. It has been predicted that the 

global agrochemical market will grow by 1.9% a year between 1995 and 2005, to $36.8 

billion US. It is reported that about 30 billion dollars (US) worth of chemical pesticides 

are soId annually (Marrone, 1999). Out of the 500,000 tons of pesticides used in the US, 

about 80% are used in agriculture. Herbicide sales accounted for 85% of total pesticide 

sales in 1997 in Canada and 70% in the USA (Shapir and Mandelbaum, 1997). There is a 

growing national and international concern about the environmentaI pollution caused by 

the extensive use of pesticides. About 25 million cases of acute occupational pesticide 

poisoning have been reported in developing countries and each year about one million 

people suffer from pesticide poisoning, leading to 20,000 deaths (WHO and UNEP, 

1989). Usual1y with an increase in awareness, pesticides that are less harmful are chosen. 

Numerous studies have been conducted to assess the leaching potential of these pesticides 

(CameÎra et al., 1998). 

A thorough understanding of interdependent and dynamic natural processes is necessary 

to understand pesticide fate and transport in soils (Wagenet et al., 1985). The behavior of 

pesticides is governed by soil properties, chemical composition of the pesticide, site 

conditions and management practices, incIuding the rate and method of pesticide 

application, and irrigation practices. After application, pesticides may be 10st through 

vaporizationlvolatilization, plant uptake, runoff, and leaching. Depending on soii 

conditions, pesticides may undergo degradation by microorganisms. Pesticide transport 

is also affected by temperature, soii water content, pore size distribution in the soiI, 

microbial populations, and organic matter content. 

l 



1.1 PROCESS-BASED MODELING 

Various research efforts dealing with pesticide fate and transport have been carried out in 

the past, both in field and controlled laboratory conditions (Melancon et al., 1986; 

Gaynor et al., 1995; Azevedo et aL, 1997; Li et al., 1999 and Gaynor et al., 2000). A 

field study can provide useful information for a given cHmate and soil type, whereas a 

soU column or lysimeter study permits isolation and detailed investigation of selected 

pro cesses or parameters. However, both field and laboratory studies are costly and tÎme­

consuming (Malone et al., 1999; Li et al., 1999) and yield largely site-specific 

information. Modeling can eliminate the numerous shortcomings of the experimental 

procedures. It is fast, accurate, and efficient. 

Process-based modeling is gaining wider acceptance as a tool for the evaluation of the 

environmental fate and transport of contaminants (Wagenet et al., 1997; Li et al., 1999; 

Chu et al., 2000; Celis et al., 1999 and Asare et al., 2001). Sorption, leaching, 

degradation and volatîlization are sorne of the processes being integrated through the use 

of simulation modeling techniques (Wagenet et al., 1985). Sorne of the CUITent pesticide 

models are the Leaching Estimation and Chemistry Model (LEACHM) (Wagenet and 

Hutson, 1989), Groundwater Loading Effects of Agriculturai Management Systems 

(GLEAMS) (Leonard et al., 1987), Pesticide Root Zone Model release-2 (PRZM2) 

(Mullins et al., 1993), and Pesticide Fate and Dynamics in the Environment 

(PESTFADE) (Clemente et al., 1993). 

LEACHM can simulate the fate and transport of chemicals in transient-flow field 

situations and in Iaboratory columns that are subjected to steady-state or interrupted flow 

situations. It is comprised of components that differ in the way they describe chemical 

equilibrium, transformation, and degradation processes. LEACHM is a deterministic 

model that is popular among researchers, regulatory personnel, and management 

personnel (Wagenet et al., 1997). GLEAMS is a field scale model for analyzing the 

chemistry of pesticide movement and changes with respect to soil properties and different 

climatic conditions. The mode! assumes homogeneous land use, soils, and precipitation 
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in the field, and it predicts the effect of pesticides on water quality based on different 

farm level management practices. Pesticide Root Zone Model-release-2 (PRZM2) 

(Mullins et al., 1993) is a deterministic mode! which is partly mechanistic and partIy 

functional. It deals with pesticide leaching, foliar interception, runoff losses, and plant 

uptake (Wagenet et al., 1997). Both GLEAMS and LEACHP do not consider macropore 

flow (VancIooster et al., 2000), which might result in lower pesticide predictions (Malone 

et al., 1999). These models either consider linear or non-linear sorption. GLEAMS does 

not include volatilization losses (VancIooster et al., 2000). PESTF ADE (Clemente et al., 

1993), a one-dimensional model, pays special attention to two-stage sorption kinetics, 

dispersion, volatilization, microbial degradation, and 10ss through runoff in its 

simulation; it can also handle macropore flow and has been tested and validated with 

field experiments (Clemente, 1991; Clemente et al., 1997; Kaluli et al., 1997; Li et al., 

1999; Tafazoli, 2002). 

CarefuI appraisal of these studies highlights issues that need wider attention. The 

inefficacy of current model predictions may be due to the inaccurate estimation of the 

sorption coefficient and the sorbed-phase degradation rate. Most of the studies overlook 

the differences that may exist in the degradation rates in the sorbed and dissolved phase 

(GambIe et al., 2000). The ca1culation of the partition coefficient is complex in itself 

(Schwarzenbach., 1993). Estimation of this transport parameter by means of 

simplification may yield incorrect results. The study by Seybold et al. (1996) of two 

Virginia soils, where the fate of atrazine and metolachlor and hs metabolites were 

investigated, found that both adsorption and desorption isotherms need to be studied in 

order to be able to develop simulation models giving accurate results. The simulation of 

atrazine yielded better results when intraparticle diffusion and sorption capacity were 

included as soil functions (Li et al., 1999). Therefore, modeling contaminant transport 

must incorporate more realistic parameters to yield more realistic estimates. The 

emphasis that PESTF ADE lays on sorption and its inclusion of microbial degradation and 

volatilization makes it an obvious choice for this study. The hydrology component of the 

model is based on Soil Water Actual Transpiration and Crop Production Simulation 
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Model (SW ACROP), a Dutch water flow model, which is not very user-friendly or easy 

to use. Yet it is a comprehensive process-based water flow simulation mode!. 

In this study, DRAINMOD (Skaggs, 1978), a water table management mode!, is used to 

simulate the water flow. This model is user-friendly and has been widely tested. It is 

renowned for its hydrological predictions in simulating water table depths, as weB as 

surface and subsurface drainage discharges under different pedoclimatic zones in North 

America (Skaggs, 1982~ Skaggs et al., 1981; Gayle et al., 1985; Fouss et al., 1987; 

Rogers, 1985; and Susanto et al., 1987). It allows the user to enter and edit input 

parameters with ease and portrays outputs graphically for easier interpretation. 

Simulations involving longer periods are executed within short periods of time. 

Therefore, it was decided to develop a new pesticide fate and transport model that 

employs DRAINMOD for hydrological simulations and subsequently use the water flow 

information with the pesticide simulation sub module of PESTF ADE. In addition, the 

new mode! was tested against independently collected field data of pesticides to study the 

fate and transport of pesticides under field conditions. 

1.2 MACHINE-LEARNING BASED MODELING 

Process-based models involve too many input parameters and require long simulation 

periods. In addition, a thorough understanding of aU the governing processes is a 

prerequisite in process-based modeling. Proper mathematical representation of the 

complex nature of these mechanisms is difficult without tms knowledge. Most models 

are unable to account for the spatial variability, wmle many more are unable to account 

for macropore flow, which often results in underestimations. Uncertainties aiso arise due 

to incorrect estimations of vital input parameters. Implicit modeling, on the other hand, 

requires less execution time, does not demand prior pro cess knowledge and still yields 

accurate results. This alternative approach was aiso attempted in this study because of 

these advantages. 
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Machine-based learning models, such as neural nets, mIe induction, case-based reasoning 

and decision trees, are known for their speed and accuracy in simulating real-world 

phenomena. These algorithms perform weH with limited inputs, need less computation 

time, and are user-friendly (Yang et al., 1996a; 1 997f). Studies conducted by previous 

researchers provide evidence of the popularity of this approach (Ocerin et al., 1996~ 

Altendorf et al., 1999; Yang et al., 1996a; 1997f; Lebron et al., 1999~ Salehi et al., 2000; 

Abraham et al., 2001a,b; Sephton, 2001; Haas and Kubin, 1998). Artificial Neural 

Networks (ANNs) have been used extensively in agricultural studies in predicting soil 

moi sture (Altendorf et al., 1999), soil temperature (Yang et al., 1997b,c), saturated 

hydraulic conductivity (Lebron et al., 1999), and annual nitrate-N losses in drain outflows 

(Salehi et al., 2000b). ANNs require a longer model development effort .. ANNs have 

been outperformed in their estimates of Mean Square Error (MSE) values by Multivariate 

Adaptive Regression Splines (MARS) in certain studies conducted by previous 

researchers (Abraham et al., 2001a,b). 

MARS, a new regression model is able to carry out a rigorous search to identify relations 

amongst the input variables with the aid of basis functions (Abraham et al., 2001a,b; 

Sephton, 2001; Attoh-Okine et aL, 2001). It assigns a significance factor to the input 

parameters thereby giving us an indication of those parameters which are essential to the 

performance of the mode! (Abraham et al., 2001a,b). The inclusion of Analysis of 

Variance (ANOVA) allows for the understanding of the interrelationships between 

variables (Attoh-Okine et al., 2001). Studies conducted by Abraham et al. (2001a,b) also 

concluded that MARS outperformed ANNs. ANNs have already been used for carrying 

out pesticide fate studies and have yielded good results (Yang et al., 1997f and Tafazoli, 

2002). An attempt was made to simulate pesticide movement with MARS models in this 

exploratory study. This approach eliminates the shortcomings of process-based 

modeling, where approximations of parameters affect model performance. 
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1.3 OBJECTIVES 

As a result of the above discussion, this research project addresses the foHowing 

objectives: 

a) to develop a new pesticide fate and transport model, DRAINMOD-P, for agricultural 

soils, 

b) to validate the model in assessing the fate and transport of atrazine, a broadleaf 

herbicide, based on independently collected field data, and 

c) to evaluate the use of MARS to simulate pesticide movement ln soil for three 

commonly used herbicides: atrazine, metribuzin, and metolachlor. 

1.4 THESIS ORGANIZATION 

This thesis contains SIX chapters. In Chapter l, an introduction is provided, while 

Chapter 2 deals with literature review. The focus of Chapter 3 is on the development and 

validation of the process-based model, DRAINMOD-P. ln Chapter 4, the use of MARS, 

an automated regression model to predict pesticide concentrations, is highlighted. A 

discussion, summary and conclusions are presented in Chapter 5. Chapter 6 includes the 

references. The appendix includes the input-output files, program files, data files and the 

field layout. 

1.5SCOPE 

This study mainly deals with the development and validation of a computer simulation 

model for atrazine transport with the help of independently collected data. However, the 

validation of the model is limited to atrazine measurements in one field in Southern 

Ontario. The performance of MARS is also restricted to data from three herbicides 

obtained over a period of three years. Further validations with larger databases using 

both models may increase the reliability ofDRAINMOD-P and MARS. 
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CHAPTER2 

LITERA TURE REVIEW 

The use of simulation models to assess pesticide fate has become a common practice. 

Such assessments are useful to determine a priori the severity and future threat of 

contamination problems, and the models also provide an economical means to evaluate 

new management practices. 

In this chapter, the environmental fate of three commonly used herbicides in eastem 

Canada are reviewed along with different modeling methods that can be used to foUow 

their fate and transport in the environment. This chapter is divided into 4 sections. The 

first section reviews the fate of atrazine, metribuzin and metolachlor in the soi! 

environment, the second reviews various pesticide transport processes, the third examines 

the role of water table management and pesticide movement, and the last section inc1udes 

two subsections; the first subsection reviews a few existing process-based models, the 

second reviews the use of machine-Iearning methods. 

2.1 ENVIRONMENTAL FATE OF ATRAZINE 

Atrazine [2-chloro-4-ethylamino-6-isopropylamino-l ,3, 5-triazine] IS a pre-emergent 

herbicide, commonly used to control broadleaf weeds in corn fields. It is considered a 

possible human carcinogen, and a maximum contaminant level (MCL) of 3 I-lgL-l in 

drinking water has been assigned by the EPA in the US. The interim maximum 

allowable concentration for atrazine and its metabo1Ïtes is 0.005 mg rI in Canada (2001). 

Fig. 2.1 Structural formula of atrazine 
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The structural formula of atrazine is shown in Fig. 2.1 and Its physical and chemical 

properties are represented in Table 2.1. 

Table 2.1 Physical an.d chemical properties of atrazÎne 

Chemical name 2-chloro-4-ethylamino-6-isopropylamino-l,3,5-triazine 

Molecular formula CgH14ClNs 

Molecular weight 215.68 

CAS No. 1912249 

Compound Class Triazine 

Form White, crystaUine powder 

Density 1.187 g cm-3 at 20ü C 

Melting point 171-174 Oc 
Odor Odorless 

Solubility 33 mg L-1 at 20u C 

Vapor pressure 4 x 10 -'::10 atm 

Henry's law constant 3 x 10 -9 atm m3 morl 

LogKow 2.68 

Atrazine is highly soluble in organic solvents, is sparingly soluble in water and possesses 

a high adsorption potential in organic matter. The products of microbial degradation are 

2-chloro-4-ethyl-amino-6-amino-s-triazine, 2-chloro-4-amino-6-isopropylamino-s-

triazine, 2-hydroxy-4-ethylamino-6-isopropyl-amino-s-triazine and 2-hydroxy-4-

ethylamino-6-amino-s-triazine. Atrazine forms a protonated species, owing to its 

basicity, thus acting as a cation in the soil. Ii undergoes hydrolysis under acidic, neutral, 

or basic conditions. While the rate of hydrolysis is slow under neutral conditions, this 

increases with either increasing alkalinity 

(http://www.uky.edu/WaterResources/works22.html dt. 8/112002). 

or acidity 

Movement of the sorbed atrazine molecules depends on the interactions between the 

atrazine molecules and the soil particles. These interactions may be compared to the 
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separation of components of an organic compound in a thin layer chromatography that 

depends on differential movements through the porous media. The three steps which 

chiefly constitute sorption are the movement of the atrazine molecules by diffUsion from 

aqueous to soil particles, adsorption, and diffusion into the soil interiors. 

Atrazine transport has been investigated by many researchers in the past (Clemente, 

1991; Gamble et al., 1992a; 1992b; Gaynor et al., 1995; 2000; Seybold et al., 1996; 

Azevedo et al., 1997; Shapir et al., 1997; JebeUie, 1997; Liaghat, 1997; Ma et al., 1997; 

2000; 2001; Levy et al., 1998; Li et al., 1999; Williams et al., 1999; Abdelhafid et al., 

2000; Azevedo et al., 2000; Pham et al., 2000; Spongberg et al., 2000; Accinelli et al., 

2001; Asare et al., 2001; Vinther et al., 2001). Atrazine degradation yielded metobolites 

. from both dealkylation and hydroxylation (Abdelhafid et al., 2000). In a study conducted 

in Israel by Shapir et al. (1997), it was revealed that haif of the atrazine degradation 

occurred in the upper layers of the soil to a depth of about 25 cm. They concluded that 

dealkylation was the major path in the degradation of atrazine. This was evident from the 

thin layer chromatography of the inoculated soil samples. 

Vinther et al. (2001) concluded that N-dealkylation or dehalogenation are the two 

probable reactions for the degradation of atrazine. The triazine ring seems to undergo a 

rapid mineralization by providing N to the microbial community. Atrazine serves as a 

good carbon source thereby making microbial degradation possible to a great extent. 

Depending on the nature of N, atrazine decomposition may be hindered or enhanced. 

The application of organic-N increased the atrazine degradation rate when added to dairy 

manure while mineraI N addition decreased the mineralization of atrazine in soi1. 

Retentivity is responsible for the formation of bound sites; the microorganisms play a 

significant mle in catering to the formation of sites available for the retention of 

pesticides. 

It was further confirmed in a study conducted by Levy et al. (1998) that atrazine 

dealkylation increased with the addition of glucose and mineraI N. Three chlorinated 
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atrazine metabolites formed primarily through desalkylation are desethylated atrazine, 

deisopropylated atrazine and 2-chloro-4, 6-diamino-s-triazine. 

The major metabolite of atrazine, des-ethyl atrazine, was found at aH depths in a study 

conducted by Gaynor et aL (1995, 2000). The concentration ofthis compound would be 

highest immediately after the application of atrazine. In a recent study by Ma et al. 

(2000), the predicted atrazine concentrations in runoff were within two orders of 

magnitude of the observed values. 

2.2 ENVIRONMENl'AL FAl'E OF MEl'RIBUZIN 

Metribuzin is used to control a large number of grass and broadleaf weeds infesting 

agricultural crops and is used as a pre- and post-emergence triazone herbicide. 

Metribuzin is a selective herbicide that inhibits photosynthesis, is highly soluble in water 

and has low solubility to adsorb in most soils. The maximum acceptable concentration 

(MAC) for metribuzin in drinking water is 80 IlgL-l. The structural formula of 

metribuzin is given in Fig. 2.2 and its physical and chemical properties are iIlustrated in 

Table 2.2. 

Fig. 2.2 Structural formula of metribuzin 

Metribuzin is one of the herbicides that have the highest potential to leach into and 

contaminate ground water, according to the EPAin the USA. Metribuzin can be 

removed from air via rainfall, and particulate phase metribuzin may be removed from air 

via dry deposition. If released to soil, biodegradation will be the primary fate process. 

Metribuzin is moderately adsorbed (Koc of 95) on soils with high clay and/or organic 
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content by an H-bonding mechanism, and adsorption decreases with an increase in soil 

pH. Little leaching oœurs on soils with high organic content, but metribuzin is readily 

leached in sandy soils. The soil half-life is in the range of 14-60 days. 

Table 2.2 Ph.ysical and dnemkal properties of metribuzin 

Chemical name 4-amino-6-(1, 1-dimethylethyl)-3-(methylthio )-1,2,4-triazin-

5(4H)-one 

Moleeular formula CsH14N40S 

Molecular weight 214.3 

CAS No. 21087649 

Compound Class Triazine 

Form Colorless crystals, white crystalline solid 

Density 1.28 at 20uC 

Melting point 12S-126.SuC 

Odour Mild chemical odor 

Solubility 1050 mg L- I at 20uC 

Vapor pressure 0.058 mPa at 20uC 

Henry' s law constant 3.55 x 10-6 Pa m3mor i 

LogKow 1.7 

The fate of metribuzin has not been studied extensively (Clemente et al., 1993; Jebellie, 

1997; Liaghat, 1997; Jebellie et al., 1999; Gaynor et al., 2000). Metribuzin and its 

metabolites were found in 18 out of the 20 wells sampled in Wisconsin by the Wisconsin 

Department of Natural Resources. The highest concentration of metribuzin was 10.2 

mgL-I, while those of its metabolites were 1.56 mgL-l for deaminated metribuzin, 0.54 

mgL-l for diketometribuzin, and 1.88 mgL- l for deaminated diketometribuzin 

(http://wri.wisc.edu/wgrmp/59dnr77.htm dt. 26/1212001). 

Field experiments conducted to ascertain the impact of moi sture content on the rapidity 

with which degradation of metribuzin may oecur revealed that the degradation of 
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metribuzin in sandy soils is faster in humid areas where the soil moi sture is high due to 

appropriate water table management practices in these regions. It was aiso concluded by 

JebeUie et al. (1999) that the leaching of metribuzin could be controHed with adequate 

water management techniques. Metribuzin gets released into the environment primarily 

during agricuItural spraying operations. If released into the atmosphere, there 1S 

significant degradation of the vapor phase metribuzin by reaction with photochemicaHy 

produced hydroxyl radicals (estimated half-life of Il h). 

In a farm-level evaluation study by Alphen et al. (2002) carried out in the Netherlands, 

metribuzin was found to have a high risk of leaching. High risk areas were found in nine 

out of ten fields. The spatial variation of simulated leaching was substantial and 

concentrations in percolating water exceeded 0.1 IlgL·l at the within-field, field, and 

farm-Ievels. 

Conn et al. (1996) studied the leaching of metribuzin in two subarctic silt loam soils. 

They found that the initial degradation rate of metribuzin was similar in both soils while 

5% of the applied metribuzin still remained after 468 days from the application date. 

Leaching was reduced due to its rapid degradation coupled with its sorption. Larger 

amounts of desaminometribuzin were found when compared to the diketometribuzin or 

desaminodiketoaminometribuzin in both soils. 

2.3 ENVIRONMENTAL FATE OF METOLACHLOR 

Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-( -2-methoxyl-l-methylethyl) 

acetamide] is a chloroacetamide compound. It is a pre-emergence herbicide belonging to 

the chloroacetanilide group used to impede the growth of weeds in the production of 

potatoes, sorghum, cassava, peanuts and corn. The high solubility of metolachlor makes 

it an easily leachable compound that can readily contaminate both groundwater and 

surface water. The interim maximum acceptable concentration (!MAC) for metolachlor 

is 50 ~LgL·l in drinking water. 
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Fig. 2.3 Structural formula of metoladdor 

The structural formula of metolachlor is given in Fig. 2.3 and its physical and chemical 

properties are shown in Table 2.3. 

Table 2.3 Physical and chemicai properties of metolachlor 

Chemical name 2-chloro-N-(2-ethyl-6-methylphenyl)-N-( -2-methoxyl-1-

methylethyl) acetamide 

Molecular formula C15H22CIN02 

Molecular weight 283.8 

CAS No. 51218-45-2 

Compound Class Chloracetamide 

Form Off-white to colorless liquid at room temperature 

Density 1.12 g cm-J at 20 Vc 
Odor Odorless 

Solubility 530 mg L-I at 20 Vc 

Vapor pressure 1.7mPa at 20 Vc 
Henry's law constant 9.2 xlO-~ atm m3 morI at 20 Vc 

LogKow 3.45 

Considerable efforts have been made to study the fate of metolachlor and its metabolites 

by several researchers (Clemente et al., 1993; Gaynor et al., 1995; 2000; Seybold et al., 

1996; Jebellie, 1997; Liaghat, 1997; Singh et al., 1997; Sanyal et aL, 1999; Ismail et a1., 

2000; Spongberg et al., 2000; Accinelli et al., 2001; Moore et al., 2001). The degradation 
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of metolachlor follows first order kinetics (Ma et al., 1997; Singh et al., 1997; Ismail et 

al., 2000). 

An inverse positive relationship between adsorption and persistence of the herbicide was 

observed by Ismail et aL (2000) in Malaysia. The persistence of the herbicide aIso 

changed drastically with a change in the texture of the soil. Bioactivity and adsorption 

seemed to have a direct relationship with the organic matter content. In soils with less 

organic matter, metolachlor seemed to move downward at a faster pace. The dissipation 

of metolachlor occurs in two phases. It was concluded in a study by Singh et al. (1997) 

on potato tubers in India that the initial reaction takes place at a slower pace. This may 

be due to the two dispersion processes, namely adsorption and degradation. The aqueous 

solubility of metolachlor makes it a potential contaminant. It is also found to leach faster 

than atrazine and a part of il is 10st as runoff, while sorne portion of it may find its way to 

the groundwater (Spongberg et al., 2000). 

The persistence of metolachlor was also studied along with atrazine under both field and 

laboratory conditions by Dinelli et al. (2000). The degradation rates of the herbicides 

were calculated by using equations that were temperature and soil moi sture dependent 

and were obtained from the laboratory experiments. These values were extrapolated for 

use under variable field conditions. It was found that laboratory studies conducted within 

a confined environment were representative of field mechanisms. 

The fate of several pesticides including metolachlor and atrazine were investigated in a 

study conducted in Brazil (Laabs et al., 2002). High concentrations of metolachlor were 

detected 60 days after its application in the lysimeter at the 35 cm depth, indicating a 

progressive vertical movement of polar herbicides. The leaching of both atrazine and 

metolachlor at the 95 cm depth indicates the potential risk these two herbicides pose to 

the groundwater resources in tropical regions. 
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2.4 PESTICIDE FATE AND TRANSPORT 

Properties of pesticide and soi! site conditions, including rainfaH and depth to 

groundwater, and management practices, including the method and the rate of 

application, are primary factors affecting pesticide movement (Werkheiser et al., 1996). 

The chief pro cesses that determine its ultimate fate are sorption, degradation, 

volatilization, plant uptake, runoff, and leaching (Wagenet et al., 1985; 1997). Sorption 

is defined as the bonding of solute to adsorption sites of soil mineraI and organic matter 

surfaces. It may be extractable or non-extractable. The extractable ones can be extracted 

with the conventional solvents whereas the non-extractable ones may only be studied by 

radio-Iabeling or super critical fluid extractions (Li et aL, 1996). The sorption 

phenomenon has a dramatie effect on the fate and transport of an organic compound in 

the environment (Sabatini et al., 1990; Levy et al., 1998; Wagenet et al., 1997). In a 

column study performed by Shinde et al. (2001) in South Florida using Perrine and 

Krome soils, it was revealed that the two-site non-equilibrium (TSNE) model was able to 

simulate the atrazine movement, thus proving the existence of chemical non-equilibrium 

in atrazine sorption kinetics. They also concluded that independent estimation of kinetic 

parameters were necessary to better represent atrazine sorption in the Chekika soil 

columns. 

In order to make realistic estimates of potentiaI contaminant s, studies distinguishing 

sorbed-phase degradation rates from those in the dissolved phase need to be conducted 

(Levy et al., 1998). Celis et al. (1999) modeled sorption of pesticides with the aid of an 

isotopie exchange method using I2C and 14C-Iabeled triadimefon [( 1-( 4-chlorophenoxy)-

3,3-dimethyl-l- (lH-l,2,4-triazol-l-yl)-1-butanone and imidac1oprid-guanidine [1-[(6-

chloro-3-pyridinyl)methyl]-4,5-dihydro-l H-imidazol-2-amine] under two remarkably 

different soi! conditions of sandy loam and silty clay loam soiIs. This experiment 

involved a direct in situ characterization of the irreversibility of the organic compounds. 

Results from the sandy loam soil revealed that 90% of the sorption occurred on reversible 

sites that underwent desorption with ease whereas 10% of the sorbed molecules were 

irreversibly sorbed on soil. 
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With the intention of differentiating labile surface sorption from total sorption, an online 

HPLC (high-performance liquid chromatography) extraction method was employed by 

GambIe et aL (2000a, 2000b) and Spongberg et aL (2000) to analyze the sorption 

behavior of chlorothalonil under quartz sandy soils. The labile sorption capacity of 

chlorothalonil was found to be high by several orders of magnitude. They reported that 

kinetic equilibrium values estimated during this process could be used in mathematical 

models to evaluate the degradation and leaching of pesticides. The phenomenon of 

intraparticle diffusion of pesticides has aIso been given due importance in this study. 

An increase in carbon and clay content had a directly proportional impact on adsorption, 

as revealed by studies conducted by Ismail et al. (2000) and Gaynor et al. (2000). An 

ascending order pattern ranging from metribuzin to metolachlor was observed when the 

Freundlich constant was measured in both the Ap and B horizons of the soil (Gaynor et 

al., 2000). 

Biological decomposition of the sorbed form of metolachlor is slower in solids than 

solutions. In biological degradation, microorganisms within the soii profile act like 

scavengers by degrading the agrochemicals from their complex forms into simpler 

compounds. Temperature and soil moi sture are crucial factors in this regard. Literature 

review reveals that the biological degradation of pesticides in soi1s follows first order 

kinetics (Singh et al., 1997; Gaynor et al., 2000; GambIe et al., 2000; Bending et al., 

2001). Degradation of 2,4-D, lindane and paraquat were observed to follow first order 

kinetics under aerobic sand and anaerobic muck soils in a study carried out in Malaysian 

50i1s by Cheah et al. (1998). Repeated application of the pesticide in the same site may 

result in enhanced degradation (Cheah et al., 1998). 

Degradation of pesticides may be either beneficial or inefficient. If degradation occurs, 

the pesticide residues that were formed would be transformed to inactive, less toxic, and 

harmless compounds. However, if the residues get degraded before serving their 

purpose, it would be a waste of resources. The extent to which a pesticide' s persistence 
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in the environment is estimated rests on the microbial transformation it undergoes. The 

rate of microbial degradation is determined by the size of the microbial population and 

that section of the microbial community that will actively participate in the degradation 

process (Soulas et al., 2001). If the pesticide itself serves to be a carbon source, then the 

rate of degradation will be directly proportional to the rate of application of pesticides. 

The rate may be further enhanced by the presence of organic amendments. Energy 

liberated during this pro cess will depend entirely on the pesticide that serves as a carbon 

and as an energy source. In microbial degradation, the factors determining the rate of 

degradation are moi sture, temperature, aeration, pH and organic matter content. Whereas 

these factors are dependent on the soil conditions, the frequency of application may be 

another detenninant factor that can affect the dissipation rate. The longevity of pesticides 

in the environment can be estÏmated with the help of degradation studies. Cheah et al. 

(1998) carried out research in Malaysian soils, showing that microbial degradation had a 

chief role to play in determining the fate of 2, 4-D. However, lindane, glyphosate and 

paraquat followed slow degradation, mainly due to their higher adsorptive capacity, as 

was observed in the same study. 

Previous work by Ma and Spalding (1997) revealed that the decomposition of atrazine to 

hydroxyatrazine was the major pathway taken by atrazine in the Recharge Lake in York, 

Nebraska. Degradation half-lives ofatrazine was 237 days in 1993 and 209 days in 1994 

respectively. In an experiment conducted by Loiseau et al. (2002) with four agricultural 

soils, each possessing different capacities to effect degradation of atrazine, each having 

different pH levels and different organic matter content, a few factors deserved 

recognition. The presence of microflora, which can mineralize the triazine ring, helped in 

the formation of highly degraded products, which contributed to the formation of bound 

residue. The presence of humîc acid in higher concentrations also enhanced the 

formation of bound residue. A soi1 pH of less than 6 promoted the formation and 

stabilization of hydroxylated derivatives of atrazine. Bound residue ranged from 10% to 

40% of the initial atrazine. 
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The factors that determine the 10ss of pesticide through runoff are slope, soi! texture, 

rnoisture content, precipitation, and the presence of vegetation or plant residues. Better 

water table management and tillage practices could be used to reduce 10ss through runoff. 

In a field study to investigate the loss of atrazine and metolachlor frorn three different 

tillage practices. Gaynor et al. (1995), the surface runoffwas an increase to about 42% 

when conservation tillage was used, while the discharge through tUes lowered by about 

15%. Maximum concentration and losses in the herbicides were attained after runoff 

events that immediately followed the application of herbicides. 

Runoff events and herbicide application were found to be directly proportional to the 

concentrations found in the runoff. In 1993, the runoff losses and the concentrations of 

atrazine in the Recharge Lake were higher when compared to 1994 figures. The 

concentrations of atrazine lost were 0.28% and 0.19% in 1993 and 1994 respectively (Ma 

and Spalding, 1997). 

Leaching and persistence of a herbicide is dependent upon hs adsorption characteristics. 

An increase in soil carbon and clay content increases adsorption (Gaynor et al., 2000). 

The ability with which the pesticide moves into and through the groundwater is referred 

to as leachability. The factors that determine leachability are precipitation events, air and 

soil temperature, and evaporation rates. The leachability of a herbicide increases with an 

increase in its persistence (Conn et al., 1996). Heavy precipitation, especially following 

the application of pesticide, promotes leaching of the compound (Gaynor et al., 1995; 

Azevedo et al., 2000). 

It was shown by Azevedo et al. (2000) that the physical properties of an alluvial soil did 

not prornote the mobility of atrazine to deeper soil depths. However, it was observed that 

a large amount of rainfall led to the leaching of atrazine to deeper depths. In 1996, a 

similar scene was observed for a coarse sandy soil, resulting in an increase in leaching 

with an increase in irrigation. Atrazine residues were not found to accumulate under both 

alluvial and sandy soil conditions. The maximum distance to which the transfer of 

atrazine took place was within 10 cm of the soil profile under different soil conditions. 
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Most studies overlook the uptake of herbicides by plants. However, this affects leaching 

and should be taken into account while devising a method to assess the fate of a herbicide 

(Wagenet et al., 1985). The extent of plant uptake is somewhat govemed by the 

solubility of the pesticide. The more soluble the pesticide, the higher the probability of 

its uptake by plants. Other factors that should be taken into consideration include rooting 

depth at different times of the year and root density distribution with respect to depth and 

time. 

2.5 WATER TABLE MANAGEMENT AND PESTICIDE MOVEMENT 

Water table management is the management, control, and regulation of soil-water 

conditions in agricultural soils. In order to provide better growing conditions for 

improved yields, the excess and/or deficit soiI-water needs to be managed; this is the crux 

of water table management. It can be done with conventional drainage, controlled 

drainage, and sub-irrigation, depending on the soil and water conditions. In controHed 

drainage, water control structures are put up which permit the water in the outlet to attain 

a set level. Conventional drainage usuaHy has equally spaced drains running parallel to 

each other with a free outlet. In sub-irrigation, water is pumped into the drainage oudet 

to maintain the outlet water level at a fixed point or at the weir level. Sub-irrigation is 

used in areas where the land is relatively fiat. This provides a uniform water table depth 

that can be maintained with ease. Soil, adequate water supply, drainage, and topography 

aH seem to govem sub-irrigation. 

Jebellie (1997) concluded from a lysimeter study that subirrigation is an acceptable 

management technique to control pollution from atrazine and metribuzin. It was found 

that a shallow water table enhanced the dissipation of both herbicides. However, similar 

conclusions could not be drawn in the case of metolachlor. 

Three different water table managements, namely, controHed drainage, subsurface 

irrigation, and subsurface drainage, were used to examine the transport of prometryn in 

an organic soil in southem Quebec by Arjoon et al. (1998). It was concluded that 
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pesticide fate was largely affected by the movement of water that led to high levels of 

contamination followed by high rainfall events. Subirrigation and controlled drainage 

were found to be helpful in minimizing herbicide transport and contributed in keeping the 

level of prometryn below drinking water quality. 

In Harrow, Ontario, Canada a study was conducted by Gaynor et al. (2000) with four 

different tillage practices and two different water table management practices to analyze 

the impact of herbicides. The impact on herbicide decay in the 0 to 10 cm depth was 

insignificant under the tillage practices while the controlled-drainage coupled with sub­

irrigation decreased the half-life in one of the two years of experimentation. Atrazine, 

des-ethyl atrazine and metolachlor were found to persist in the following year. It was 

concluded that rain, rather than management practices, had a more pronounced effect on 

the mobility ofthese organic chemicals. 

The effect of tillage practices were examined by Kanwar and Bakhsh (2001) to assess 

herbicide movement under field conditions with respect to preferential flow. Higher 

atrazine concentrations were found under no-tin and ridge tiH in tile flow when compared 

to chisel plow and moldboard plow. It was conc1uded that the no-till and ridge till had 

well-connected macropores which resulted in higher concentrations. 

2.6 MATHEMATICAL MODELING 

Computer models can be used to simulate pesticide fate and transport in agricultural soils. 

Both process-based and implicit models may be used for this purpose. 

2.6.1 Process-based Models 

To understand the basic transport mechanisms that pesticides undergo, several models 

have been developed (Wagenet et al., 1997). Among thern oniy LEACHP, PRZM3, 

GLEAMS and PESTF ADE are discussed in order to focus our attention on sorne of the 
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most widely used models. A summary of the modeling criteria used in these models is 

presented in Table 2A 

Table 2.4 A comparison in the modeUng criteria of a few pesticide modeis* 

Subjed LEACHP PRZM3 GLEAMS- RZWQM PESTFADE 

TC 

Reference Wagenet Ma et al., Leonard et Azevedo et Clemente et 

and Hutson, 2000; al., 1996; al., 1997; al., 1993; 

1989; Vandooster VancIooster Cameira et al., 1997 

Vanc100ster et al., 2000 et al., 2000 1998 

et al., 2000 

Governing Convection Convection Convection Partial piston Convection 

equation for dispersion displacement; dispersion 

solute equation Darcy flux equation 

transport and 

evaporation 

Sorption Freundlich Linear Two-stage Two-stage Two-stage 

sorption sorption sorption 

kinetics kinetics kinetics 

Macropore No No Yes Yes Yes 

flow 

Volatilization Yes No No No Yes 

Management No Yes Yes Yes Yes 

practices 

* Adapted from Vandooster et al. (2000) 
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2.6.1.1 The LEACHP Mode} 

LEACHP assumes a spatiaUy uniform and time-variable pesticide application over the 

land surface. Soil moisture in the root zone is ca1culated using Richard's equation, while 

pesticide movement is mode1ed using the convection-dispersion equation (CDE). 

LEACHP assumes that aH flow paths are vertically downward so the pesticide molecules 

that survive degradation will confront the same environment. It has the abiHty to pornay 

a range of subsurface activity in the vertical direction. This model 1S not able to analyze 

management practices (Clemente et al., 1993). In their review, Vanc100ster et al. (2000) 

pointed out that LEACHP considers preferential flow and volatilization. It uses the 

Freundlich equation for nonlinear sorption. Plant uptake and first-order degradation are 

also taken into account in LEACHP. 

Models, namely the pesticide module of the LEACHM Model (LEACHP) and Irrigation 

Scheduling Model (IRRSCHM), used to examine the leaching of atrazine with additional 

irrigation showed an increase in the rate of Ieaching. However, predictions using both the 

models were lower than the median. IRRSCHM predictions were doser to the observed 

data (As are et al., 2001). 

Both PRZM and LEACHMP models were used to determine the fate of atrazine in a soil 

column study conducted by Smith et al. (1991). The studies concluded that 

underestimation , in both models, was due to two factors. The first factor was the 

simplistic approach used in calculating the adsorption of the compound. The second 

factor was that the preferential flow was not considered. 

2.6.1.2 The PRZM Model 

PRZM is a well-known continuous simulation model, developed at the EP A Laboratory 

in Athens, Georgia, which has been tested using field data (Chu et al., 2000; Kaluli et al., 

1997; Ma et al., 1999; 2000; Vischetti et al., 1995). It is a one-dimensional finite­

difference model, which accounts for pesticide fate in the crop root zone. PRZM3 is a 
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culmination of two models, PRZM and the vadoze zone flow and transport model 

(V ADOFT) (Mullins et al., 1993). PRZM uses the method of characteristic algorithms to 

nuHify numerical dispersion. V ADOFT uses Richard's equation for flow in the 

unsaturated zone. It assumes that the flow fol1ows Darcy's law, is one-dimensional and 

is isothennal. It is able to simulate multiple zones, transport and transfonn the parent 

compound and as many as two daughter species within and immediately below the plant 

root zone. The advantage of PRZM is that it is able to handle more than one pesticide 

and make predictions. Soil temperature simulation, volatilization and vapo! phase 

transport in soils, irrigation simulation and microbial transformation are sorne of the 

novel features in PRZM3 (Malone et al., 1999). For sorne of the processes like runoff, 

erosion, and evaporation, smaller time steps have been conceived to make realistic 

predictions. Diffusion of the solute is not dealt with in this model. Average and 

approximated data are used to represent spatially-heterogeneous soils which is another 

drawback ofthis mode!. An over-simplification made in this model is the assumption of 

a first-order rate constant as a fixed value. Flow of solute in fractured porous media is 

not considered. PRZM2 does not consider preferential flow, two-site sorption kinetics 

and volatilization as observed by Vanclooster et al. (2000) in their review. 

The PRZM-2 model was used to predict the fate of napropamide and pendimethalin in 

soils in a tobacco field by Vischetti et al. (1995). The model simulations differed from 

the observed values. This may have been caused by the 40 cm deep plowing which 

allowed the displacement of the pesticide. Volatilization was another factor for the 

discrepancy in pendimethalin simulations. The mobility of aldicarb transport was 

compared using two models by Chu et al. (2000). While the first one comprised an 

analytical model to take care of the ID transport of pesticide, the 2D model was used to 

assess the advection and dispersion processes. The other model used for this study is a 

culmination of PRZM2, MODFLOW (modular three-dimensional finite difference 

ground-water flow model) and MT3D (three-dimensional numerical model) numerical 

models. It was evident from this study that the results obtained from both the models 

were similar. Complete mixing, which was considered in the first model but not in the 

second mode!, may be the reason for the attainment of peak concentrations in the second 
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model. After the pesticide was applied, the amount of water that infiltrated seemed to 

have a marked effect on the leaching of aldicarb. It was concIuded that both the models 

could be reliably used to make long-term predictions about pesticide contamination. 

However, the analytical model suffered from the drawback of not being able to handle 

the spatial variability of the flow and transport parameters and flow conditions in the soil 

and the aquifer. 

In a study conducted by Ma et al. (2000) in a corn field on a Tifty loamy sand using 

conventional tillage practices, atrazine losses were predicted using GLEAMS, Opus, 

PRZM2P, and PRZM3. While both GLEAMS and PRZM3 were able to simulate 

atrazine amounts in the runoff within two orders of magnitude of the observed 

concentrations, PRZM2p overestimated the atrazine concentrations. This may have been 

due to an unrealistic mixing model. 

Malone et al. (1999) studied the transport of metribuzin using both GLEAMS and 

PRZM-3 under three field conditions. Metribuzin was underestimated by both GLEAMS 

and PRZM-3 in runoff, sediment, pan lysimeter water at 75 cm and at the 15-75 cm soi! 

depth. While the simulations from GLEAMS were doser to accuracy in the sediment 

runoff, PRZM-3 gave doser predictions in the subsurface soil regions. The pesticide 

simulations in the percolate and the runoff were similar with both models. Both models 

performed satisfactorily in assessing the runoff volume and herbicide concentration 

immediately after their application, when the concentrations are highest. Malone et al. 

(1999) aiso concluded that the addition of a macropore component in both models would 

have resulted in an improvement in the model efficiencies. 

The movement of2,4-D from smaU turf plots, were assessed by Ma et al. (1999) by using 

GLEAMS and PRZM-2. Both models underestimated the transport of 2,4-D in surface 

runoff although the predictions of surface water runoff were quite close to measured 

values. The low estimates were attributed to the inaccurate calculations involved in the 

partitioning of the compound. 
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2.6.1.3 The GLEAMS Model 

GLEAMS is a one-dimensional field scale model (Knisel, 1993) which retains the ability 

of CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) 

to simulate sophisticated management practice scenarios. It adds detail to the 

transmission of water and chemicals to the bottom of the root zone. In GLEAMS, the 

Soi! Conservation Service Curve Nurnber method is employed to simulate both runoff 

and the water available for infiltration. It consists of four components, one each for 

hydrology, erosion/sediment yield, pesticide transport, and nutrients. A lumped parameter 

approach is applied in order to simulate moi sture movement in the soil profile. 

GLEAMS has been tested for pesticide transport by Zacharias et al. (1994), and in 

simulating the effects of tillage on nonpoint source pollution by Bakhsh et al. (2001). 

In a recent study by Ma et al. (2000), the predicted atrazine concentrations in runoffwere 

within two orders of magnitude of the observed values. The mode!, however, lacks a 

macropore flow component. Bakhsh et aL (2001) found GLEAMS (ver. 2.10) to perform 

weIl for chisel plow (CP) in simulating the subsurface drain water quality, while studying 

the non-point source pollution effects in a corn field over a three-year period for atrazine, 

nitrate-nitrogen and alachlor (1990-92). A substantial effect did not emerge when 

various management practices were tried, ranging from no-till, moldboard tiH and ridge 

till. The reasons were attributed to the absence of a macropore flow and lack of plowing 

in the faH of 1991 due to wet c1imatic conditions. 

The GLEAMS mode! was used by Connolly et al. (2001), in an attempt to study the 

effect of different management scenarios on the transport of endosulfan. Out of the 

conventional, improved irrigation, dry land, stubble retained and reduced spray 

management practices, the stubble retained was dec1ared the most effective management 

practice. They conc1uded that the transport of endosulfan in cotton farms was minimized 

due to an increase in infiltration, reduction in erosion, and neutra1Ïzation of endosulfan in 

the stubble region. A high rainfall event could result in endosulfan exceeding the 

environmental regulations. Leonard et al. (1995) used GLEAMS to assess its ability in 
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selecting between effective management techniques that are environmentaUy safe under 

different pedo-climatic conditions. 

Efforts have also been made by Leonard et al. (1996) to include a two-compartment 

pesticide transport model to GLEAMS, known as GLEAMS-TC, that links the labile and 

non-labile contributions of the pesticide with first-order chemical kinetics. This model 

performed better than the GLEAMS model in simulating pesticide sediment transport. 

The effects of different herbicide and tillage practices were tested in a 50-year simulation 

carried out using GLEAMS by Gorneau et al. (2001) in south central Nebraska. It was 

found that pre-emergent banded application with ridge-till, early pre-emergent with no­

till, incorporation application with disk tiH, and post-emergent application, were the best 

alternatives for rninimizing atrazine losses over prolonged periods. 

According to Bakhsh et al. (2001), the model considers a simple linear adsorption. In 

their review, Vanclooster et al. (2000) concluded that GLEAMS does not consider 

preferential flow, two-site sorption kinetics and volatilization, although plant uptake and 

first-order degradation are taken care of in this model. 

2.6.1.4 The RZWQM Model 

The RZWQM, version 2.5, is a process-based model that simulates the water and 

chemical transport processes in the soil-crop-atmosphere system (Azevedo et al., 1997). 

It is a one-dimensionaI model developed by USDA-ARS scientists (Ahuja et al., 1996). 

RZWQM comprises six sub modules, one each for hydrology, crop growth, chemistry, 

nutrients, pesticide and management. RZWQM uses a simplistic approach for the 

transport of solutes. Instead of the commonly used conversion and dispersion equation 

(CDE), it considers a partial-piston displacement, partial mixing approach at every 1 cm 

in the soil profile during infiltration and varies the increments during the second phase of 

redistribution of the chemical. In the second phase, Darcy flux and evaporation are 

considered for the solute movement. Instantaneous equilibrium and kinetic pools are 
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taken into account while estimating the amounts of the chemical in the solution and the 

soi! phases (Cameira et al., 1998). The RZWQM model considers the impact of different 

tillage practices, irrigation, pesticide applications and is thereby able to assess the effect 

of different management practices. It can also assess different crop combinations. In 

addition to daily rainfall amount, it also considers rainfall intensity (Azevedo et al., 

1997). 

Two tillage systems, namely no-till and moldboard plow, were evaluated by Azevedo et 

al. (1997) in a field study conducted in Iowa using the pesticide component of the 

RZWQM to simulate atrazine movement. Observed data and simulated data were found 

to have a significant difference as shown by the results of the statistical tests. 

Overestimates resulted at the end of the growing season, although the observed and 

simulated values were weIl within an order of magnitude. The prediction of the 

penetration of atrazine was very close to measured values. Impact of tillage practices 

was not pronounced. It emerged that there are three important factors that need to be 

considered while simulating pesticide fate, namely, macropore flow, variation in Koc and 

pesticide half-life with depth and interception of pesticide by surface residue during 

application. 

In a study conducted by Ahuja et al. (1996) to assess the movement of metribuzin and 

cyanazine, it was conc1uded that the two-stage sorption of pesticide movement was able 

to predict the persistence of pesticides better in comparison to an equilibrium adsorption 

mode!. In this model, the equilibrium sorption was considered as an instantaneous 

process foHowed by a rate-limited kinetic sorption reaction. It was also concluded that 

overestimation may result due to the hysteresis of adsorption and desorption as is the case 

in RZWQM. Non-availability of adequate data and site-specificity were considered to be 

other hindrances pointed out from this study. 
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2.6.1.5 The PESTFADE Model 

PESTF ADE is a one-dimensional non-point source mathematical model to predict the 

fate and dynamics of pesticides. It was deve10ped in Canada by Clemente et aL (1993). 

PESTFADE comprises five sub modules: RUNOFF, SWACROP, MOISTE, IlliAT, and 

CADD (an acronym for convection-adsorption-diffusion-degradation). The US Soil 

Conservation Service Curve Number Method and Universal Soil Loss Equation are used 

in the RUNOFF model to estimate pesticide partitioning in runoff water (Haith, 1980). 

The Darcy and continuity equations are used in SWACROP (Wesseling et aL, 1989) to 

determine the unsaturated water flow in heterogeneous soil-root systems. MOISTE 

estimates the soil moi sture at each nodal point as obtained from SWACROP. The sub 

module HEAT calculates soil temperature distribution and thermal conductivity of the 

soil, which is used in the CADD sub module to estimate the microbial degradation. Both 

moisture and flux values obtained from SW ACROP are used as inputs to the CADD sub 

module which ultimately determines the pesticide fate. 

PESTF ADE considers convection, adsorption, diffusion, degradation, volatilization, 

surface runoIT and heat flow in simulating the fate and transport of pesticides. The 

uniqueness of PESTF ADE lies in its consideration of macro pore flow, a factor which is 

usuaUy overlooked. It is able to operate under diITerent boundary conditions, analyze the 

impact of different tillage and water table management practices and is able to predict the 

movement of salt (Clemente et al., 1993~ 1997). PESTFADE is able to predict salt 

movement in soil with different salinity, irrigation water management and drainage 

conditions. This makes it a handy device in se1ecting a suitable water table management 

practice to minimize salinity problems in arid as well as semi-arid regions (Clemente et 

aL, 1997). PESTFADE has been tested against analytical solutions and laboratory and 

field experiments (Clemente et aL, 1993; Clemente et al., 1997; Kaluli et al., 1997; Li et 

al., 1999). However, it needs to be further vaHdated with data from different climatic and 

terrestrial zones before it can be recommended. 
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In a study conducted by KaluH et al. (1997), PRZM, GLEAMS and PESTF ADE were 

used to assess atrazine movement in the top 20 cm of a clay loam corn field in 

southwestern Quebec. PRZM was able to make the most accurate predictions when aH 

three models were used. However, a different scenario was observed when the 

macropore component and the two-stage sorption kinetics were incorporated in the 

PESTF ADE mode!. PESTF ADE results improved as judged by the lower standard errors 

obtained. This further confirms the need of a better and cIose-to-reality representation of 

sorption and the importance of a macropore component. 

In conclusion, PESTF ADE takes the macropore flow into account, which is unusual in 

aimost aIl models except for RZWQM (Malone et al., 2001). It deals with the two-site 

kinetic sorption approach that also includes the intrapartide diffusivity of the pesticide, 

which is doser to the real world phenomenon. These advantages make PESTF ADE an 

appropriate choice for pesticide simulations in the soit 

2.6.2 Machine Learning Models 

Process based models usually require a large number of inputs, which, in many cases, 

may not be readily available. An understanding of the physical and chemical phenomena 

that govern the pesticide movement is essential in order to be able to make correct 

estimations. Simulation models are also limited in their scope by the inherent 

assumptions made and the availability and uncertainty of the required inputs. For 

instance, they are unable to account for preferential flow, which plays a vital role in 

determining the route of the ponutant. Process-based models also require longer 

execution periods. In contrast to these models, alternative modeling approaches have 

emerged based on artificial intelligence (AI). These demand very few input parameters, 

learn from the available data, and are robust in determining interrelationships between 

variables. Prior knowledge of the manner in which the pro cesses and input parameters 

are inter-related is deemed unnecessary in tms modeling approach. 
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AI can solve problems in the physical world with very high efficiency. Among the many 

artificial intelligence tools that have been deveIoped, the most cornmon are the Artificial 

Output 

Hidden Layer 2 

Input· 

Fig. 2.4 Strudure of a Typical Artificial Neural Network 

Neural Networks (ANN), genetic algorithms (GA), case-based reasoning (CBR) and 

fuzzy logic. Artificial Neural Networks (ANNs) seem to work with greater accuracy 

when compared to Rule Induced methods or CBR. However, in the latter two, a better 

interaction with the user and higher transparency is observed. The diverse problems such 

as pattern recognition, prediction, or optimization that ANN can tackle by using either the 

static feedforward network or the dynamic recurrent network and its ability to learn from 

exarnples makes it a viable option. The structure of a typical ANN is given in Fig. 2.4. 

30 



Owing to its flexibility and utility, the back-propagation ANN has become the most 

popular (Haykin, 1994; Kartalopoulos, 1996; NeuralWare, 1993a, b, c, 1995). ANNs 

have been applied to simulate non-linear, implicit, complicated, and dynamic 

classification problems. They have aiso found application in areas in which 

mathematical and statistical algorithms conventionaUy fail, such as modelling, decision­

making and recognition (Haykin, 1994; Kasabov, 1996; NeuralWare, 1993a; Skapura, 

1996). ANNs emulate the function of a neuron in the human nervous system. The 

processing elements (PEs) are designed to simulate neurons, and transfer functions 

simulate the functions on biological neurons. The interconnections between PEs function 

similarly to those between dendrites and axons in the human nervous system. The 

learning rules simulate the learning procedure of a biological neural network (CaudiH, 

1987, 1988a,b,c; Haykin, 1994; Kartalopoulos, 1996; MathWorks, 1998; Wasserman, 

1993). 

In agriculture, ANNs have been applied to a variety of problems. Predicting the soil 

moisture (Altendorf et al., 1999), soil temperature (Yang et al., 1997b,c), saturated 

hydraulic conductivity (Lebron et al., 1999), the interaction between soils and tools, and 

soil behaviour (Zhang and Kushwaha, 1999) have been sorne of the areas where neural 

nets have proven to be useful. ANN simulations have also been performed to simulate 

the fate and transport of pesticides in soils (Yang et al., 1997f) and predict the annual 

nitrate-N losses in drain outflows (Salehi et al., 2000b). McClendon et al. (1996) applied 

ANNs to control and optimize irrigation management for peanut fields, while Emaruchi 

et al. (1997) have used it in the simulation of runoff index. ANNs were used to estimate 

missing rainfall data (Kuligowski and Barros, 1998), to simulate peak stream discharge 

(Muttiah et al., 1997), to predict the occurrence of frost (Robinson and Mort, 1997), and 

to determine daily pan evaporation (Bruton et al., 2000). The capability of ANNs to 

simulate real-time control of water-table management systems under subsurface drainage 

and subirrigation (Yang et al., 1996a,b, 1997d,e, 1998, 2000b) or underground water 

management (Coulibaly et al., 2001) has also been demonstrated. In addition, ANNs 

have been used to predict watershed runoff (Zhang and Govindaraju, 2000). The 
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numerous examples listed above make it evident that neural nets are a powerful tool to 

apply when large data sets are handy and a quick assessment is required. 

Although ANNs have been popular, a new regression tool, Multivariate Adaptive 

Regression Splines (MARS) is gaining importance as of late and has been found to 

outperform ANNs in time applications (Abraham et al., 2001a,b; Sephton, 2001; Attoh­

Okine et al., 2001). Unlike ANNs, MARS prevents over-fitting with the use of its 

backward deletion phase (Attoh-Okine et al., 2001). The power and flexibility of MARS 

lies in its intensive search mechanism with the aid of basis functions. It does a 

noteworthy job in fitting non-linear multivariate functions (Abraham et al., 200 1 a,b; 

Attoh-Okine et al., 2001). Its value also lies in the manner by which it prioritizes the 

occurrence of the various inputs fed into the model. This allows careful selection of 

parameters during model development (Attoh-Okine et al., 2001). Making assumptions 

at the beginning of the model creation is not essential, and MARS models are simple and 

easily comprehensible (Steinberg, 2001). Considering the many advantages MARS 

presents, an effort is made in this research project to assess its performance in predicting 

pesticide concentrations in the soi!. 

MARS, a non-parametric regresslOn tool, is a very recent technique developed by 

Friedman, 1991. To understand how a MARS technique works, we need to understand a 

few definitions. A spline is a func1Ïon defined on an interval. It is comprised of simple 

functions defined on subintervals and these are joined for smoothness. Splines are 

popular in the field of computer engineering and computer graphics. A knot is defined as 

the place where the behavior of the function changes. A large number of knots enables 

the approximation of any shape. For high-dimensional mathematics, basis functions are 

used to locate the knots (Abraham, 2001a,b). Salford Systems, San Deigo, CA has 

implemented the MARS procedure into a user-friendly computer software package, also 

called MARS. A special feature of this software lies in its dynamic selection of knots. 

The following segments decide the regions towards the right and left directions of the 

knot location, t which is identified by MARS: 

32 



b+ (x 1 t) = +(x - t)~ 2.1 

b- (x It) = -(x- t)~ 2.2 

where b +(x/t) and b'(x/t) represent the univariate spline basis functions for a variable x at 

knot location t. In equations (2.1) and (2.2), forx>-t,+(x-t)aH points located on the 

right of t win be positive and for x -< t, -(x - t) aU points located to the left of t will be 

positive (Attoh-Okine et al., 2001). The degree of smoothness is controUed with the 

index q. A linear estimate is calculated when q = 1 (Sekulic and Kowalski, 1992). 

MARS uses the following equation in mode} preparation: 

NI Km 

Î(X) = ao + L:amI1 Bkm(XV(k,m) 2.3 
m=J k=l 

where Xl, X2, ... Xp are predictor variables and (xv(k,m) labels the predictor in the kth of the 

mth product. Km decides the order of interactions. An additive mode! is created when Km 

= 1. Pairwise interactions are permitted when Km = 2. The order of interactions is fixed 

arbitrarily when Km is equal to the number of compounds (n). Equations (2.1) and (2.2) 

describe the basis functions Bkm which represent first-order truncated power splines 

(Attoh-Okine et al., 2001). MARS uses basis functions that are added incrementally and 

the effect of addition of each of the se basis functions is checked to determine whether 

they improve the model or deteriorate its performance. For this, MARS uses a forward 

step to over-fit the model and then prunes the unnecessary ones. The generalized cross 

validation (GCV), or the measure of goodness of fit adopted in MARS, is kept at the 

lowest possible limit. This is attained with the addition of basis functions and knots at 

every step. The process is repeated until the lowest GCV is attained. The GCV is 

expressed as follows: 

GCV = Generalized cross validation = Ax L (Yi - Î (x» / N 2.4 
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where A = (l-C(M)N)"2, and C(M)= 1+ trace(B(B"B)"IB,) is a complexity function 

(Friedman, 1991), with trace being the sum of the elements along the main diagonal ofa 

square matrix. B is the M x N "data" matrix of the M (nonconstant) basis functions 

represented by Bij = Bj(Xj). The GCV criterion is the average residual error multiplied by 

a penalty to adjust for the variability associated with the estimation of more parameters in 

the model (Leblanc and Tibshirani, 1994). 

Analysis of Variance (ANOVA) decomposition helps in understanding the underlying 

reIationship amongst the variables. The basis functions that influence one predictor are 

clubbed into one group, whiIe those that influence two predictors are put into a second 

group. This process goes on and is govemed by the following equation: 

Î(x) = ao + ~J;(x;)+ ~J;j(Xi'X)+ ... 2.5 
km =1 km=2 

Attoh-Okine et al. (200 1) studied the performance of MARS in pavement management 

under two different pavement types: asphalt concrete and surface treatment flexible 

pavements with three primary variables: pavement strength, annual traffic loading and 

environment. In the field of pavement performance modeling and management, it is 

difficult to ascertain the more influential factors. However, MARS was able to predict 

the most significant variable as the environmental factor in this study. It was concluded 

that MARS has the ability to capture strong relationships with its network of basis 

functions and knots aptly. This was reported as a boon to the field of pavement 

engineering wherein contributing factors can be rated and underlying relations can be 

well-understood, thus enabling engineers to focus only on those determining factors in 

their future endeavors. 

MARS was employed along with ANNs and neuro-fuzzy systems to study their 

performance in predicting the concentration of C02 for agas fumace by Abraham et al. 

(2001a,b). MARS excelled in its performance and proved better than ANNs (Abraham et 

al., 2001a,b). It required the lowest simulation period when compared to the other two 

34 



functional approximators. another effort to assess both ANN s and MARS, Abraham et 

al. (200b) studied its ability to predict rainfaH a month in advance based on rainfall data 

from Kerala, India. RainfaU 1S known to be a highly unpredictable factor and this study 

was focused to aid in long-term predictions. MARS had two clear advantages over 

ANN s: the execution time and Root Mean Square Error (RMSE) value were both lower. 

The lower RMSE indicated its higher prediction accuracy (Abraham et al., 2001a,b). 

Probit models are commonly used to mode} the probability of recessions by economists 

wherein the behavior of a model depends on two values taken by the dependent variable, 

zero for no recession or one for recession. Sephton (200 1), in his efforts to predict 

recession in the financial worId, applied MARS and found the MARS recession 

probability estimates to be more reliable than the probit model. For in-sample forecasts, 

the MARS RMSE was found to be the lowest for the three-month horizon and highest for 

the twelve-month horizon with a value of 24 %. However, MARS was not as good for 

out-of sample analyses (Sephton, 200 1). 

2.7 CONCLUDING REMARKS 

Pesticides have found applications in agriculture for their contributions in increasing the 

crop yield, but their extensive use is also contributing to environmental pollution. 

Awareness has increased the demand for conducting environmental impact assessment 

studies on pesticide use. These studies inc1ude field experiments, column studies, and 

mathematical or implicit modeling. Mathematical modeling is the most economical 

method to assess environmental risks, and to study the impact of different tillage 

practices and water table management techniques for research purposes. This approach 

is also ideal for use by regulatory bodies before declaring a ban on a particular pesticide. 

These models are time-saving, provide a quick assessment of damage, and are accurate. 

Inaccuracy may, however, result if the goveming processes are oversimplified or 

overlooked. Therefore, efforts are needed to study the pesticide fate, with special 

attention to the sorption phenomena that takes into account both labile and nonlabile 

contributions affecting contaminant transport. In addition, a reliable transport of 
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pesticides in soil cannot be achieved without accurate simulations of water flow in the 

unsaturated zones. DRAINMOD can be a good candidate for water flow modeling as it 

is fairly accurate. 

Implicit modeling, an alternative approach to evaluate pesticide movement, which has 

added advantages over mathematical simulation models, is another area that needs further 

exploration. Implicit models are not oruy faster in their execution but also work weIl 

with fewer inputs and limited data. Although numerous researchers have evaluated ANN 

models for a variety of tasks, it appears that the MARS approach may prove to be 

simpler, at least as accurate as ANNs and easy-to-use. Therefore, this project will 

include both mathematical and machine-Iearning algorithms in tracking the ultimate fate 

of pesticides. 
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PREFACE TO CHAPTER 3 

Use of pesticide models is a prudent approach to minimizing environmental pollution, 

assess environmental risks, and choose between different management practices. After 

extensive literature review, it was found that the lumping of parameters to 

mathematically represent the complex network of reactions going on in the soil 

environment leads to inaccurate estimates. Therefore, it was decided to develop a new 

model, DRAINMOD-P, that incorporates the best features of two successful models, 

DRAINMOD and PESTF ADE. This incIudes the former to perform water movement 

simulation and the latter to take care of pesticide fate and transport. A model that 

estimates hydrology correctly can accurately predict the movement of any solute since 

they follow aimost the same route. The unparalled success of DRAINMOD over several 

cIimatic zones and soil conditions throughout North America, its user-friendIiness and the 

advantage of shorter simulation periods made it an obvious choice to develop 

DRAINMOD-P. PESTFADE, on the other hand, simulates pesticide movement with 

special emphasis on the conventional and two-stage sorption phenomena, thereby 

accurately accounting for sorption, which is a predominant reaction affecting pesticide 

movement. Intraparticle diffusion is aiso considered in this model. Molar quantities are 

used keeping the conventional stoichiometry in mind. This chapter focuses on efforts 

that were made to analyze atrazine fate in an agricultural soi! in southern Ontario against 

field data collected over a period ofthree years. 

The role of the candidate, as the main author of the manuscript, was to develop and 

validate the mathematical model, DRAINMOD-P. The author was also responsible for 

performing statistical analyses to validate the model. 

Right from the onset of this project, Dr. Shiv Om Prasher, Prof essor, Agricultural & 

Biosystems Engineering, McGill University, and supervisor of the candidate, has offered 

his competent supervision to the author. Advice was also readily available from Dr. A. 

Madani, Professor of Nova Scotia Agricultural CoUege, Truro, Nova ScotÎa who was also 

the co-supervisor of the candidate. Drs. J D. Gaynor and C. S. Tan, Agriculture Canada, 

37 



Ontario, provided the main author with the field data and have offered their valuable 

opinions from time to time to the author. 

Research paper based on the chapter: 

Bera, P., S. O. Prasher, A Madani, J. D. Gaynor and C. S. Tan. Development and 

Validation of DRAINMOD-P for Southern Ontario Conditions. (Manusript to be 

submitted to the Transactions of the ASAE journal). 
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CHAPTER3 

DEVELOPMENT AND V ALIDATION OF DRAINMOD-P 

3.1 ABSTRACT 

This study was conducted to develop DRAINMOD-P, a new pesticide fate and transport 

model by combining the best features of DRAINMOD, a well-known water table 

management mode! and the pesticide component of PESTF ADE. The simulated 

hydrologie and pesticide concentrations were compared against independently collected 

data from a research site in Southem Ontario. The model performed well in predicting 

daily water table depths of the subsurface drained plots. The model efficiencies for 1992-

94 were 28%, 81% and 63%, which shows a high degree of accuracy for the last two 

years. The average absolute deviation and standard error obtained from the water table 

depth simulations using DRAINMOD-P were within 6.71 to 13.61 cm and 6.72 to 8.59 

cm, respectively, which are aiso in accordance with results obtained by previous 

researchers. The RMSE values for atrazine [2-chloro-4-ethylamino-6-isopropylamino-l, 

3, 5-triazine] concentrations, simulated by the conventional method, ranged from 0.41 to 

1.28 at the 10 cm depth while the ones from the Gamble method based on newer sorption 

kinetics, lay between 0.77 to 0.88 for the three-year period. At the 15 cm depth, RMSE 

values were within 0.55 to 0.92 and 0.37 to 0.93 for the conventional and Gamble 

methods respectively. The RMSE values ranged from 0.65 to 1.04 and 0.91 to 1.25 for 

the conventional and Gamble methods at the 20 cm depth. Thus, the results of this study 

did not reveal any marked improvement in the model predictions using new sorption 

mechanisms. This does not faU in line with the work done by Kaluli et al. (1997) and Li 

et aL (1999) where a greater improvement was achieved in pesticide simulations with 

Gamble sorption kinetics using PESTF ADE. However, the predictions for the movement 

of atrazine, were weIl within an order of magnitude of the measured values, which 1S in 

accordance with work done by previous researchers (Azevedo et al., 1997; Ma et al. 

2000). In spite of model validation with the three-year data set, we feel that more field 
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testing of the mode! is needed before any concrete conclusions can be drawn about its 

performance. 

3.2 INTRODUCTION 

Atrazine, a member of the s-triazine group, is used extensively as a post- and pre­

emergence herbicide in Canada. In North America, it is primarily used to control 

broadleafweeds in comfields. About 2 million kg active ingredient of atrazine were sold 

in 1988 in Canada. Out ofthis, about 70% was sold in Ontario (Environment Canada and 

Agriculture Canada, 1988). Approximately, 15.41 million kg of active ingredient of 

atrazine were applied on crops in 1988 in the United States (NoweH, 1999). Owing to its 

high efficiency and low cost, atrazine is the first choice of farmers for weed control in 

agriculture. According to the Ontario Ministry of Agriculture, atrazine application in 

1993 was 585, 000 kg active ingredient. 

Atrazine and its metabolites have been reported in soils, surface water and ground water 

(Koskinen et al., 1996: Solomon et al., 1996). It has also been detected in wells and tile 

drains (Masse et al., 1994). The Canadian Interim Maximum Acceptable Concentration 

(IMAC) for atrazine is 5 ~g L-1 in drinking water (Health Canada, 2001). Maximum 

admissible concentration of atrazine specified by the United States Environmental 

Protection Agency (USEP A) is 3 ~g L-1
. 

Numerous simulation models have been developed in the past two decades to assess 

pesticide fate (Wagenet et al., 1997). Among them, sorne noteworthy ones are LEACHM 

(Wagenet and Hutson, 1989), GLEAMS (Leonard et al., 1987), PRZM (Carsel et al., 

1985), RZWQM (Ahuja et al., 1996) and PESTFADE (Clemente et al., 1993). Although 

these models have been widely used and they provide a fair estimate of the ultimate fate 

of a pollutant, they have certain deficiencies. Both GLEAMS and LEACHP do not 

consider macropore flow (Malone et al., 2001). An underestimation of pesticide losses 

may result if macropore flow is not considered (Malone et al., 1999). In certain models 

(GLEAMS), volatilization goes unaccounted (Vanc1ooster et al., 2000). In LEACHP and 
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GLEAMS, the sorption estimates are limited to either a linear or a nonlinear approach 

(Bakhsh et aL, 2001). Sorption is one of the chiefmechanisms that determine the fate of 

a pesticide. The two stages of sorption consist of a relatively fast labile adsorption 

process and a second stage, which is characterized by slow diffusion into the non-labile 

sites. However, very few models deal with two stages of sorption and usually lump the 

parameters based on best available literature values (Li et ai., 1996; 1999). Sorne of 

these models are also incapable of predicting the effects of different tillage or water table 

management practices on herbicide carryover. 

PESTF ADE, a process-based model, was developed in Canada to simulate pesticide 

transport. It uses SWACROP (Soil Water Actual Transpiration and Crop Production 

Simulation Model), a soil and water flow model developed by Wesseling et al. (1989). 

Several processes that govem pesticide movement like convection, adsorption, diffusion, 

degradation, volatilization, surface runoff and soil heat flow are considered in the model. 

It ean be applied to both undrained and subsurface-drained farmlands in arid, semi-arid, 

or humid regions. The mode! can consider the effect of different agricultural 

management practices and water table managements on pesticide fate and transport 

(Clemente et al., 1997). 

PESTFADE has been verified against analytical solutions but has not been tested 

suffieiently against field data. Few field and column studies were conducted with 

PESTFADE (Clemente et al., 1993; 1997; Kaluli et al., 1997; Li et aL, 1999; Tafazoli, 

2002). The SWACROP mode! that it uses for hydrological predictions is not user­

friendly and thus somewhat difficult to use. Moreover, it do es not produce graphical 

output, which makes the interpretation of results rather difficult. AIso, SWACROP has 

undergone Iimited testing in North America (Prasher et al., 1995; 1996). 

A hydrologie model, called DRAINMOD, ean be a good candidate for simulating soil 

hydrologie phenomenon. It is a Windows-based user-friendly software, allowing the user 

to view water transport phenomena graphieally at any point of time after the simulations 

are performed. This provides a quick insight into the model performance. DRAlNMOD 
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simulations require shorter time intervals and are equal or higher in their accuracy as 

compared to SWACROP (Prasher et al., 1995~ 1996). DRAINMOD has been tested 

widely in North America (Skaggs, 1982), Ohio, USA (Skaggs et aL, 1981), Louisiana, 

USA (Gayle et a1., 1985; Fouss et al., 1987), Florida, USA (Rogers, 1985), Michigan, 

USA (Belcher et al., 1993), Virginia, USA (McMahon et al., 1988), Belgium, (Susanto et 

aL, 1987), southem Ontario, Canada (Singh et al., 1994) and Altantic Canada (prasher et 

al., 1996). 

Therefore, it was decided in this study to develop a new pesticide fate and transport 

model, called DRAINMOD-P, wruch would use DRAINMOD for hydrologie simulations 

and employ the pesticide sub mode! of PESTF ADE for solute transport. It was also 

decided that the sorption phenomena, one of the most important physico-chemical 

processes affecting pesticide movement, would be considered in the model in sufficient 

detail. More specifically, the objectives ofthis study were: 

1. to develop a new mathematical model, DRAINMOD-P, to simulate the fate of 

atrazine in agricultural soil, 

11. to validate the model against independently collected field data over a three-year 

period. 

3.3 MODEL DEVELOPMENT 

As stated ab ove, DRAINMOD-P utilizes DRAINMOD for its hydrological predictions 

since DRAINMOD has been tested and found accurate in many studies conducted in 

North America (Skaggs, 1982; Skaggs et al., 1981; Gayle et al., 1985; Fouss et al., 1987; 

Rogers, 1985; and Susanto et al., 1987). Its user-friendliness, ease of changing input 

parameters and visuaI presentation of outputs and short execution time make it very 

convenient for users. Hydrology transport forms the base of solute transport and 

therefore, a model that accurately estimates water movement will aid with pesticide fate. 

Pesticide fate is determined using the pesticide component of PESTF ADE, which has 

aiso been tested and vaHdated previously with field and laboratory experiments 
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(Clemente et al., 1993; 1997; Kaluli et al., 1997; Li et al., 1997). The novelty of 

DRAINMOD-P lies in its combining useful features within DRAINMOD and 

PESTF ADE. This section is subdivided into two, the fint dealing with the development 

of the model, DRAINMOD-P, and the second describing the experimental set up. 

In the soi! environment, pesticides undergo severa! transformations from the time of 

application. These include adsorption and desorption, biochemical degradation and 

volatilization. To account for the non-steady state of water and pollutant movement in an 

unsaturated porous medium, the following equation is used (Rao and Jessop, 1983): 

-(OC+pS+sKHC)=- BD--qC -<ft a a( oc ) 
at ax Ox 

(3.1) 

where a = a (x,t) = volumetrie soil moisture (cm3 cm-3
), C is the concentration of the 

chemical in the liquid phase (mg L-\ p dry soU bulk density(g cm-3
), S is mass of solute 

adsorbed or desorbed per unit mass of soi! (g g-} of soil), e is air-filled porosity, KH is 

Henry' s constant, D = D(a, q) = moisture and flux dependent dispersion coefficient (cm2 

h- l
), q = ev = water flux (cm h- l

), and <j> = <j>(x,t) sink term for biochemical degradation, 

volatilization and root uptake (g cm-3 hol
). 

By considering first-order degradation rate constants for the pesticide in the liquid and 

solid phases, equation 3.1 may be written as foHowing (Nofziger et al., 1985): 

---'.a(lt_lRc----"-.) = _a (BD(_OC _ QC)) - (aB + PpK x: + yB 
at az az 

(3.2) 

where R = 1 +pKJa is the retardation factor for the solute in the soH, C is the 

concentration of the chemical in the liquid phase (mg L- I
), D is the dispersion coefficient 

(cm2 h- l
), a is the volumetrie water content (cm3 cm-3

) , q is flux of water (cm h-l
), p is 

soil bulk density (g cm-3
), a is the first-order degradation rate constant in the liquid 

phase, P is the first-order degradation rate constant in the solid phase and y is the zero­

order rate constant in the liquid phase. 
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Most computer simulation models treat the sorption mechanism as a linear or a non-linear 

process. They are not able to distinguish between the labile, surface sorbed species and 

bound residues, which are chemicaHy sorbed or are an outcome of intraparticle diffusion 

(Li et al., 1999). In tms mode!, both the conventional and the Gamble kinetics sorption 

approach are adopted to assess pesticide movement. The conventional approach sim ply 

uses a constant value for the distribution coefficient, Kd while the GambIe kinetics 

employs a two-stage sorption mechanism to calculate~. This mechanism considers the 

intraparticle diffusion of a pesticide, sorption capacity of a soit and a variable pesticide 

distribution coefficient,~. The partitioning coefficient depends on the pesticide 

characteristics, including water solubility and soil organic carbon among other factors, 

and it may vary from site to site (Bakhsh et al., 2001). It is one of the fundamental 

processes in the subsurface environment that governs contaminant transport (Li et al., 

1996). Sorption is, however, dependent on factors like pesticide concentration in the 

solution phase, number of adsorption sites available and the texture of the soiI. Atrazine, 

being neutral in nature (Schwarzenbach, 1993), the pH dependence of sorption has not 

been dealt with in this study. 

Labile sorption is usually fast and can be represented by a first order reaction rate (Li et 

al., 1999). This is found to be in a pseudoequilibrium with respect to the nonlabile 

binding process. A second order rate law is generally used to account for the labile 

surface adsorption, and a first-order initial rate approximation is employed for the case of 

low coverage. The intrapartic1e diffusion process 1S treated with the labile sorbate 

coverage that serves as the driving force and can be described by first-order rate law. 

The Gamble kinetics approach considers two processes: an instantaneous labile 

adsorption process followed by a slow diffusion into the nonlabile sites. !ts novelty lies 

in assuming a complex formation model and another intraparticle diffusion model based 

on Crank's model (Crank, 1975). 

Labile surface adsorption: The foUowing equations are used in DRAINMOD-P to account 

for labile surface adsorption: 
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~ :::(~)~ 

Ka :::K;BJ1-X;) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where KI is the weighted average sorption equilibrium constant (Ml), 8L is the sorption sites 

occupied by pesticide (mol g-l of dry soil), 80 is the unoccupied sites (moles g-l of dry soil), 

MAT is the pesticide molarity in soil solution (mol L-I of soil solution), 8c is the labile 

sorption capacity (mol g-l of dry soi 1), Xl is the mole fraction of occupied sites 

(dimensionless), and KI is the distribution coefficient (L of soil solution g-l of dry soil). 

Equation 3.7 is the chief expression for calculating adsorptionldesorption rates, where ~l 

and ks2 are the rate constants for adsorption (L mor i dol) and desorption (d-l
), respectively, 

and the term (W/V) is a unit conversion factor (g L- l
). 

The above equations indicate that the distribution coefficient, KI, depends on site loading 

and will undergo changes depending on 1, 8c, and Xl (Equation 3.6). This equation is used 

to determine the mass transfer of atrazine by adsorption, thereby making it possible to 

estimate the pesticide concentration in the solution phase. 

To determine Kd in the two-stage sorption mechanism, the final equation is derived from 

equations 3.3 to 3.6, after making the necessary substitutions and is represented as: 

(3.8) 

To calculate KI, barring MAT, the solution phase concentration, the other two factors that are 

significant are the labile sorption capacity 8c and the sorption equilibrium constant KI. 
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Intrapartide diffusion: The following equations can be used for calculating intrapartic1e 

diffusion of pesticides from the particle surface into its interiOf (Li et al., 1999): 

(3.9) 

k =rlD /12 ) 
âl l.4 e (3.10) 

wher~ eD represents the nonlabile uptake by intraparticle diffusion (moles g-l of dry soil), kn 

is the first-order rate constant for inward intraparticle diffusion (d-1
), De is the diffusion 

coefficient (cm2 
S-I), 1 is the mean particle radius (cm), and Q is a factor for converting time 

units (86,400 s d-l). 

Studies by GambIe et al. (1992) and Li et al. (1996a) have shown that intraparticle diffusion 

may be considered the rate-limiting process in comparison to labile surface adsorption for 

longer equilibration time scales. Therefore, a temperature-dependent expression is used to 

calculate kil as per GambIe et al. (1992) and Li et al. (1996). The equations used in 

DRAINMOD-P are as follows: 

(3.11) 

(3.12) 

where bo and b l are empirical constants which may be determined with the help of kinetic 

experiments, and T is absolute temperature (K). The resulting kil is used in the model to 

calculate mass transfer via the intraparticle diffusion process. 

3.3.1 MODEL VALIDATION 

The model was validated with field data coUected at the Eugene F. Whelan Experimental 

Farm (Agriculture and Agri-Food Canada, Woodslee, Ontario). The experimental field 

consisted of 16 plots as illustrated in the Appendix. Each plot measured 15 m by 67 m. 
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Moldboard plow (MB), moldboard plow with rye grass (Lolium multiflorum Lam.) 

intercrop (MBIC), soil saver (SS) and soil saver with rye grass intercrop (SSIC) were the 

tillage practices applied to the research site. The water table techniques, munely, 

controlled drainage-subirrigation (W) and free drainage (D) were maintained during the 

entire experimental period. Plot numbers 1, 3, 7, 8, 10, 11, 13 and 15 were under 

controUed drainage-subirrigation while plot numbers 2, 4, 5, 6, 9, 12, 14, 16 had free 

drainage. While the distance between two drains was 7.5 m, the depth at which the 

drains were placed was 0.6 m. The soil is a poorly drained Brookston clay loam (fine­

loamy mixed, superactive, mesic Typic Argiaquoll). The soil is characterized by an Ap 

horizon comprised of dark brown clay loam, 30 cm deep with 2.5% organic matter. The 

B horizon is a clay texture to a depth of 1.5 m. At the 0-10 cm depth in the Ap horizon, 

the soil contains 30% silt and 39% clay while at the 10-30 cm depth it contains 28% silt 

and 41 % clay. In the B horizon, the silt content is 28% and the clay content is 48%. 

Two 104 mm diameter (ID) plastic corrugated drains parallel to the length in each plot 

were laid out for tile drainage. The slope in this field was less than 1 %. In order to 

prevent leakage and subsurface interaction between adjacent treatments, each plot was 

separated with a double layer 4 mm thick plastic sheet to a depth of 1.2 m. To avert cross 

contamination between plots, a 7.5 m wide and 67 m long buffer area was maintained. 

To store the surface runoff, surface ridges surrounding each plot were built. Risers were 

installed to control subsurface water levels at 30 cm below ground level during the 

growing season. When the water level dropped below 30 cm, subirrigation was initiated. 

Risers were reinstalled after harvest to control drainage at 30 cm in winter and spring and 

no subirrigation was practiced. Subirrigation began on days 161, 165 and 154 in 1992, 

1993 and 1994, respectively and continued untii days 259,244 and 243 in 1992, 1993 and 

1994, respectively. An overflow pipe removed excess rain when the water table was 

higher than the preset level (30 cm). 

Corn (Zea mays L., Pioneer 3573) was the only crop grown. The rate of application for 

atrazine was 1.1 kg ha- l
. The rate of application was the same for every year. Atrazine 

was applied on 14th May 1992, 17th May 1993 and 13th May 1994. For executing the 
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analyses on atrazine, sampHng was done seven to nine times during the growing season. 

The herbicide was applied in a 38 cm band over the seeded row so that 550 g ha- l 

atrazine would be applied to the treatments, representing a 50% reduction in the amount 

of herbicide applied to the area compared to broadcast application. 

Detailed weather data, comprising precipitation and potential evapotranspiration, was 

collected from an automated weather station in the vicinity for aH three years. The data 

included maximum and minimum air temperature, solar radiation, rainfaH intensity and 

amount, wind speed and direction, relative humidity and soi! temperature. Measurements 

were taken in the months of June, July, August and September. The herbicide data for 

atrazine, metribuzin and metolachlor were taken at depths of 0-10 cm, 10-15 cm and 15-

20 cm for aU three years. For each plot, measurements were taken on 14th May, 20th 

May, 30th May, llth June, 7tl1 July, 20th August and 28th October in 1992. In 1993, 

measurements were taken on 17th May, 21 st May, 26th May, 3rd June, ISth June, 13 th July, 

8th September, 6th October and 26th October. Sampling in 1994 was conducted on D
th 

May, 17111 May, 25th May, 1 st June, 23rd June, 2Sth July and 25ili November. Thus, eight 

measurements were taken in 1992 and 1994 while ten were taken in 1993. Attention was 

focused on data from plots 8 and Il, which were under controlled drainage subirrigation 

with conventional tillage. Atrazine data from 1992-1994 are used for validating the 

mode!. 

For each plot, sampling was carried out seven to ni ne times during the growing season for 

the herbicides. Soi! residues at each sampling date were determined from analysis of 21 

composited cores coHected from each plot with a 2.5 cm diameter probe with an acetate 

sleeve. Since herbicide persistence is directly correlated to soil water content, which 

differs from over the tiles to that between the tile, two-thirds of the samples were 

collected over the drain tiles in the corn row and the remaining 7 samples were coUected 

in the corn row midway between the two tiles. 

Each sample was collected at 0 to 10 cm, lOto 15 cm and 15 to 20 cm increments in the 

soil and stored at -10°C for up to 2 months before further analysis. Gas chromatography 
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was used to determine the herbicide concentration at zero time using a thermionic 

sensitive detector operating in N mode by placing six petri dishes in each plot and then 

removing spray residue with methano1. Soil samples were prepared by mixing 132 g wei 

weight of soil with 100 ml of methanol and water (95:5 v/v) for an hour. The samples 

were filtered through # 5 whatman filter paper and combined filtrates were reduced to 10 

ml at 40°C. Herbicide residues were further dissolved in 100 ml distiHed water and 

concentrated again on a preconditioned cydohexyl extraction column. After 10ading the 

herbicide, the column was dried and the herbicides were eluted with 1.5 ml methanol for 

injection into the gas chromatography. 

For a detailed description, the reader may refer to papers by Tan et al. (1993); Drury et al. 

(1996) and Gaynor et al. (1995; 2000; 2001). 

3.3.1.1 Statistical Analysis 

A few statistical parameters were computed to ascertrun the performance of the model. 

The standard error is a quantitative estimation of the dispersion that exists between the 

observed and predicted values. The equation used to caIculate the standard error is given 

below (Singh et al., 1994; Prasher et al., 1995; Clemente et al., 1997; Kaluli et al., 1997): 

(3.13) 

where Oi is the observed water table depth on any one day , Pi is the predicted water table 

depth for the same day, n is the number of days. The value of the standard error is best 

when it is lowest. 

The average absolute deviation (AAD) was also calculated to compare the dispersion in 

the observed and predicted values with the following equation (Singh et al., 1994; 

Prasher et al., 1995; Kaluli et al., 1997): 
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'Ç"'lo -pl 
AAD=L. 1 1 (3.14) 

n 

where Di is the measured water table depth, Pi is the predicted water table depth, n 1S the 

number of days. The value of average absolute deviation has an expectation of zero, 

which indicates that the mode! has done an excellent job in making predictions. The 

smaller the value of the average absolute deviation and standard error, the doser are the 

model predictions. 

Another important statistic is the root mean square error, RMSE. This was calculated 

based on the equation below (EI-Sadek et al., 2001): 

RlvfSE = 
a 

(3.15) 

where Pi is the predicted value, Oi is the observed values, ai is the mean observed value, 

i is the event and n is the number of observations. The value of RMSE varies between 0 

and 1. 

Modeling performance was also tested using the modeling efficiency equation as has 

been used by other researchers (Vanclooster et al., 2000 and El-Sadek et al., 2001): 

(3.16) 

where Oi is the observed value, Pi is the predicted value and ai is the mean observed 

value. The efficiency evaluates the error relative to the natural variation in the observed 

values. An efficiency of 1.0 indicates a correct estimate, while a zero shows the 

inefficiency of the mode!. In other words, the higher the efficiency, the better the model. 

A negative sign indicates the inability of the model in rnaking predictions. 
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3.3.2 MODEL EXECUTION 

In its current form, DRAINMOD-P is executed in a few steps. At the onset, a mnoff sub 

mode!, as per the PESTF ADE mode!, is executed ta calculate the pesticide remaining on 

the surface (Clemente et al., 1997). Following this, DRAINMOD is executed along with 

DRAINMOD-N. This is done in arder ta obtain the moi sture and flux contents that 

enable assessment of pesticide transport. These values are then fed as input to the 

pesticide sub model ofPESTFADE. It is necessary to mn DRAINMOD-N at tms point 

since DRAINMOD alone does not provide the temporal variation of sail moisture content 

and water flux for the soil profile. Efforts are being made by the developers of 

DRAINMOD to fix this step sa that the required information for solute transport would 

be available directly from DRAlNMOD. 

The hydrology component within DRAlNMOD is sub-divided into hydrology, soil, 

weather, crops, and nitrogen. Climatic data from 1992-1994 were first organized for use 

in DRAINMOD. The temperature data was first organized in a columnar format 

separated by year, day, maximum and minimum daily temperatures. A utility in 

DRAINMOD converted this data into an input file for temperature. For the rainfall file, a 

columnar input file with year, day, and rainfall in mm was prepared. In a similar manner, 

this file was processed with a utility to01 of DRAlNMOD to convert it into a suitable 

format. The rainfall data was thus converted to hourly amounts in hundredths of an inch. 

The soil component includes the soil water characteristics, drain volume-upflux and 

infiltration parameters. The soil water characteristic contains theta expressed in cm3 cm-3 

and head in cm. The water table and volume drained are expressed in cm wmle the 

upward flux is expressed in cm h- l
. The infiltration parameters contain the water table (in 

cm), A coefficient and B coefficient. 

The next step towards model development is calibration. The Harrow soil is known to 

crack considerably during hot and dry climatic conditions (Singh et al., 1994). Vertical 

seepage was used to calibrate DRAINMOD after discussions with the staff at the 

Researeh station Cc. S. Tan, November, 2001). The parameters included the piezometrie 
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head of aquifer, the thickness of the restrictive layer and the vertical conduetivity of the 

restricting layer. The values that were used for calibrating the model were 500 cm, 1000 

cm and 0.01 cm h- l respectively. DRAINMOD was ealibrated for water table simulations 

with data from 1993. After calibrating the model, the parameters were not changed at aH. 

The model was then tested with the data from 1992 and 1994. 

In 1992, the pesticide simulation began from day 135 and went on to day 305. In 1993, 

the mode! runs covered the entire growing season from day 137 to 300 while for 1994 the 

simulation ran for days 133-330. These simulation periods were chosen with a view to 

obtaining maximum points for comparison between the measured and simulated 

concentrations of the pesticide during the growing season. The depth of the soil profile 

for aU the simulations was 200 cm. 

Two approaches were used for the simulation of pesticide fate. The first one was 

performed using the eonventional method while the other one was performed using the 

GambIe kinetics that takes the sorption and intrapartide diffusion into account. The 

simulation results for both approaehes were compared against the average of measured 

concentrations ealculated from two samples at depths of 0-10 cm, 10-15 cm and 15-20 

cm from plots 8 and Il. 

3.4 RESULTS AND DISCUSSION 

Before a mode! can be recommended for further use, it has to be validated against field 

data. PESTF ADE has already been tested against field data and the mode! performed 

weIl in simulating pesticide movement in soil (Clemente et al., 1993; Clemente et al., 

1997 and Kaluli et al., 1997; Tafazoli, 2002). A column study was aiso performed to test 

PESTF ADE and the results obtained from Gamble kinetics were better when compared to 

the conventional approach (Li et al., 1999). In the present study, the ability of 

DRAINMOD-P was estimated quantitatively by comparing the simulated values against 

the observed ones. The hydrologie analysis 1S summarized first, foHowed by the 

pesticide transport. The results obtained from each year are dealt with separately. 

52 



Singh et al. (1994) used DRAINMOD with data for 1991 and 1992 from the same site in 

their study. However, they did not find a dose agreement between the simulated and 

observed values in the case of subirrigation in plots 8 and Il. Efforts were made in this 

study to calibrate DRAINMOD to arrive at doser predictions since it would not have 

been prudent to explore pesticide simulations if water flow simulations were not 

satisfactory. The model was calibrated using 1993 as the base year. Fig 3.2 shows the 

uncalibrated mode!. Subsequently, DRAINMOD was executed for 1992 and 1994. This 

was performed without changing any of the parameters after calibration. 

3.4.1 Hydrology Resnlts 

DRAINMOD was tested for predicting water table depth for the experimental plot Il in 

the present study. Using the model, the predicted water table depths were evaluated and 

are presented in Figs. 3.1, 3.3 and 3.4 for 1992, 1993 and 1994. It is observed from these 

figures that the predicted values followed a similar trend as those of the measured water 

table depths under subsurface drained plots. With an increase in precipitation, there is a 

corresponding increase in the water table throughout the season in 1992. In 1993, water 

table depths seem to be governed by the rainfall intensity and periodicity up to day 195, 

after which the model seems to overestimate the water table depth. The soil at the 

experimental site is known to develop cracks during the hot season (Singh et al., 1994). 

DRAINMOD does not consider macropore flow and the disparity in the simulated water 

depths during the latter half of the growing season in 1993 may be attributed to tms. The 

water table depth seems to respond weB to the rainfall intensity and is governed by its 

periodicity in 1994. 

The average absolute deviation (AAD), standard deviation (SD), standard error (SE), root 

mean square error (RMSE) and model efficiency were caIculated and the results for 1992, 

1993 and 1994 are presented in Table 3.1. The AAD, SD and SE for 1992 are 6.71,6.23 

and 6.72 cm, respectively. These low values, coupled with a low RMSE value of 0.15, 

indicate that the model has perforrned well. The EF value, on the other hand, is low at 
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28%. However, the EF is a stringent test to assess model efficiency. This ambiguity may 

also result from a sman data size ranging from 15-32 data points. In 1993, the AAD, sn 
and SE for 1993 are 14.45, 15.47 and 7.73 cm, respectively, while the RMSE is 0.20. 

The low values obtained from these statistical tools indicate a reasonable model 

prediction. An EF of 81 % further emphasizes the accuracy of hydrology simulations for 

1993. The results from the statistical tools in 1994 were 13.61, 13.57 and 8.59 cm for the 

AAD, SE and SD, respectively. The similarity of the values of AAD, SD and SE indicate 

that there is not much of a variation compared to the mean value. A low RMSE of 0.18 is 

indicative of the high efficiency of the mode!. The EF obtained is 63%, which further 

supports the accuracy in model predictions. 

These results are also in accordance with similar hydrology studies conducted in southern 

Ontario using SW ACROP where the AAD ranged from 6.1 to 38 cm and the SE ranged 

from 10.1 to 43.7 cm respectively (Prasher et al., 1995). 

3.4.2 Pesticide Simulation Results -1992 

Fig 3.5 demonstrates that both simulated and measured values exhibit a similar 

concentration distribution pattern across the whole season of 1992 at aH three depths. At 

the 0-10 cm depth, results obtained from the conventional approach were slightly higher 

than the measured values, but followed the same trend. The GambIe kinetics approach is 

similar, although the predictions were slightly lower than the observed. From day 150, 

the model predictions with both approaches are quite close to each other. Comparison of 

simulated and observed atrazine concentrations with 1: 1 line also showed that atrazine 

concentrations were overpredicted using the conventional method at the 0-10 cm depth in 

1992, as is evident from Fig 3.6. However, DRAINMOD-P seemed to underpredict 

atrazine concentrations when the Gamble kinetics was applied at the same depth. An 

underprediction, for the same degradation rate constant, means that more pesticide is 

getting sorbed onto the soil particles, while on the contrary, an overprediction implies 

less sorption. At the 10-15 cm depth, the conventional approach initially underpredicts 

the pesticide concentrations and then seems to overpredict the pesticide concentration 

54 



towards the end of the growing season. Both approaches seemed to underestimate 

atrazine concentrations, as is revealed from the 1: l Hne shown in Fig 3.7 for the 15 cm 

depth. At the 15-20 cm depth, the two methods give lower predictions when compared to 

the measured pesticide concentrations. The conventional method seems to underestimate 

atrazine concentrations on aH sampling dates while the Gamble approach overestimates 

slightly at the beginning of the season and underestimates at the 20 cm depth towards the 

end of the growing season as shown in Fig 3.8. 

The results from the statistical tests are compiled in Table 3.2 for the 1992 simulations. 

SD is higher in the conventional method at the 10 cm depth when compared to the 

Gamble method. The AAD is very high in the GambIe approach at 152.47 Ilg kg- l when 

compared to 96.31 !-tg kg-1 for the conventional way. Similarly, the SE in the GambIe 

approach is much more than that in the conventional method. Lower RMSE is obtained 

in the case of the conventional route at 0.64, showing a better performance over Gamble 

kinetics with an RMSE of 0.77. At the 15 cm depth, the AAD and SE from the GambIe 

approach are lower at 3.83 and 2.13 Ilg kg-l as compared to 14.13 and 17.07 !-tg kg-1 for 

the conventional approach. The RMSE in both routes are almost equivalent to each other 

and are approaching 1.0, thereby signifying the low performance ofboth approaches. At 

the 20 cm depth, the three statistical tools return similar values with either of the 

approaches, except for SE which is very low at 0.41 !-tg kg-1with the Gamble approach. 

3.4.3 Pesticide Simulation ResuUs -1993 

Fig 3.9 shows the simulated and measured concentration profiles of atrazine with respect 

to time at aH depths. A similar concentration distribution pattern across the whole season 

is exhibited between the simulated and measured values. Conventional approach 

simulations were higher than the measured values, while the GambIe approach 

underestimated the measured values. Further comparisons with al: l line to assess the 

performance ofDRAINMOD-P for 1993 revealed similar results, as shown in Fig 3.10. 

Gambie kinetics overpredicts over a very small range and is observed to underpredict 

during most parts of the growing season at the 15 cm depth. At the 15 cm depth, both 
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methods do not seem to predict values doser to the measured ones on aH sampling dates 

although a few lie doser to the 1: l line as shown in Fig 3.11. In 1993, the conventional 

predictions are much doser than the GambIe ones, as illustrated in Fig 3.9. The Gamble 

approach seems to overpredict during most parts of the season and underpredicts towards 

the end of the season at the 20 cm depth. However, a doser look into Fig 3.12 reveals the 

doseness of conventional method predictions to the observed values. It is also clear that 

at this depth the trends are foHowed by both approaches. 

The results from the statistical tests are compiled in Table 3.2. sn is higher in the 

conventional method at the 10 cm depth when compared to the Gamble method. The 

AAD is very high in the conventional approach at 292.58 Ilg kg-1 when compared to 

158.47 Ilg kg-1 for the GambIe kinetics. However, the SE in the conventional approach is 

very close to that obtained from the GambIe method. Lower RMSE is obtained in the 

case of the Gamble route at 0.88, showing a significant performance over the 

conventionai method for an RMSE of 1.28. A reverse situation is obtained in the 15 cm 

depth, where the RMSE is 0.55 from the conventional approach as compared to 0.72 for 

GambIe. The AAD, SE and sn in both routes are almost equal to each other. At the 20 

cm depth, once again, the SE test returns similar values with either of the approaches. 

RMSE, AAD and sn values for the conventionai model is lower at 0.65, 3.36 Ilg kg-1 

and 4.321!g kg-l, respectiveIy, while it is higher at 1.25, 7.17 Ilg kg-l and 8.06 Ilg kg-1 for 

the GambIe method, respectively. These values indicate that the GambIe kinetics gave 

doser predictions to the observed when compared to the conventional method at the 0-10 

cm depth while the conventional better results than the Gamble method at both 10-15 and 

15-20 cm depths. 

3.4.4. Pesticide Simulation ResuUs- 1994 

Fig 3.13 shows the simulated and measured concentration profiles of atrazine with 

respect to time at the 0-10 cm for 1994. Both simulated and measured values exhibit a 

similar concentration distribution pattern across the whole season at aH depths. At the 0-

10 cm depth, the conventional approach overestimates slightIy while the Gamble kinetics 
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approach underestimates the observed values. A comparison between the observed and 

simulated atrazine concentrations with al: 1 line further supports the accuracy obtained 

with the conventional approach as shown in Fig 3.14. On the other hand, the Gambie 

predictions are further away from the 1: 1 line and thus provide evidence of lower 

estimates. The comparison could not be made for the whole season as not enough 

measurements at the 15 cm depth were taken during the 1994 season. While the 

conventional approach seems doser at tbis depth, the GambIe approach aiso follows the 

same pattern. However, both approaches seem to underestimate the pesticide 

concentrations. As shown in Fig 3.15, the same situation is revealed when observed and 

simulated values are compared. In fact, the conventional predictions seem to be 

somewhat doser to the observed ones. In 1994, the simulated values are much lower 

than the measured ones irrespective of the approach used at the 15-20 cm depth. This is 

again supported when a comparison is drawn between the observed and the predicted 

values with a 1: 1 line as shown in Fig 3.16. 

The results from the statistical tests are compiled in Table 3.2. sn is higher in the 

conventional method at the 10 cm depth when compared to the GambIe method. The 

AAD is very high in the GambIe approach at 189.71 Ilg kg- l when compared to 58.33 Ilg 

kg -1 for the conventional way. Similarly, the SE in the GambIe approach is much more 

than that in the conventionaI method. A lower RMSE is obtained in the case of the 

conventional route at 0.41, proving higher accuracy when compared to an RMSE of 0.77 

for the GambIe kinetics. A reverse situation is obtained in the 15 cm depth, where the 

RMSE is 0.37 from the GambIe approach as compared to 0.81 for the conventional 

approach. The AAD, SE and sn in both routes are aImost equal to each other. At the 20 

cm depth, once again, the three statisticai tools return similar values with either of the 

approaches. R..l\1SE values for the conventional and GambIe approaches are aiso very 

dose to each other at 0.99 and 0.91, respectively, for the two methods. These values 

highlight the inefficiency of the model predictions since they are doser to 1.00. 

From the model performance assessments for aH three years, no cIear deduction can be 

made to state that the Gamble kinetics method is a better approach over the conventional 
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method. This varies from studies conducted by Kaluli et al. (1997) and Li et al. (1999) 

where a significant improvement was obtained using the two-stage sorption kinetics in 

PESTF ADE. However, this non-conformity may be attributed to the swelling and 

shrinking nature of the soil in question, which might have led to a misrepresentation of 

the actual phenomena (Singh et al., 1994). Furthermore, no consistency was found in 

either of the approaches at a particular depth. However, the predicted values still satisfy 

the criterion for model acceptance as set by the Exposure Assessment W orkshop 

(Hedden, 1986) which recommended that a model should be able to replicate observed 

data withln an order of magnitude. Azevedo et al. (1997) in their study with RZWQM 

under no-till and moldboard plow also obtained similar results. This is also in conformity 

wÏth results obtained by Ma et al. (2000). In a study performed with the same field data 

for the year 1993, Tafazoli et aL (2002) also concluded that the GambIe approach yielded 

better results at the 10 cm depth while the conventional method gave a good performance 

at both 15 and 20 cm depths. One problem with field data is the difficulty in obtaining 

representative values because of spatial variability (Kaluli et al., 1997). Since soi1 is 

known to be a highly variable medium, the measured chemical residues can also be 

expected to exhibit a higher degree ofvariability. 

3.5 CONCLUSIONS 

The DRAINMOD-P model has been developed in this study for simulating the fate and 

transport of pesticides in soils. The water flow in the model is simulated according to 

DRAINMOD, a popular model in the water table management field, and the pesticide 

movement 1S based on the mechanisms included in the PESTF ADE mode!. The results 

show that hydrology simulations are commendable for an three years of simulation. The 

AAD and SE lie between 6.71 to 13.61 cm and 6.72 to 8.59 cm, respectively. These are 

comparable to past studies on DRAINMOD where the AAD values ranged from 6.1 to 

38.1 cm and SE from 10.1 to 43.7 cm (Singh et al., 1994; Prasher et al., 1995). As far as 

the pesticide concentrations are concemed, the mode! results were within one order of 

magnitude, which is in accordance with work done by previous researchers (Azevedo et 

al., 1997; Ma et al. 2000; Tafazoli, 2002). 
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However, a clear deduction cannat be made from this study ta state that the application of 

Gamble kinetics brought a significant improvement in simulating the movement of 

pesticides. The swelling and shrinking nature of the soil used in this study may be one of 

the reasons for overshadowing the real phenomena governing the sorption mechanism. A 

consistency in performance over the three-year period at any particular depth was aiso 

not evident with the application of either the conventional or the GambIe approach. 

Further validations with larger datasets should be carried out ta make such an assessment. 

In this study, the model was not calibrated for simulating pesticide movement. Better 

results would have been obtained with mode! calibration. 
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Table 3.1 Results of statistical tests for water table simulations for 1992-94 

Statistical 1992 1993 1994 

Parameters 

AAD* 6.71 cm 14.45 cm 13.61 cm 

SD 6.23 cm 15.47 cm 13.57 cm 

SE 6.72 cm 7.73 cm 8.59 cm 

RMSE 0.15 0.20 0.18 

EF 28% 81% 63% 

* AAD, Average absolute deviation; SD, Standard deviation; SE, Standard error; RMSE, 

Root mean square error; EF, Mode! efficiency 
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Table 3.2 DRAINMOD-P Statistical ResuUs for 1992-94 

Statistical Conventional GambIe Conventional Gambie Conventional Gamble 
Parameters 0-10cm 0-10cm 10-15 cm 10-15 cm 15-20 cm 15-20 cm 
SD* 120.23 98.44 15.98 17.62 7.88 8.31 
(f.lg kg-1

) 

AAD 96.31 152.47 14.13 3.83 6.77 6.51 
(f.lg kg- l

) 

SE 66.76 81.08 17.07 2.13 8.58 0.41 
(f.lg kil) 
RMSE 0.64 0.77 0.92 0.93 1.04 0.95 
For 1993 
SD 186.57 182.57 9.04 11.95 4.32 8.06 
[(f.lg kg-1

) 

AAD 292.58 158.47 8.10 8.92 3.36 7.17 
(f.lg kg-l) 
SE 111.43 109.91 8.45 8.42 3.88 3.84 
(f.lg kg- l

) 

RMSE 1.28 0.88 0.55 0.72 0.65 1.25 
For 1994 

SD (f.lg kg-l) 102.47 88.15 8.29 8.90 5.57 4.90 

AAD 58.33 189.71 7.87 8.06 3.48 3.45 

(f.lg kg-1
) 

SE (f.lg kg-l) 37.46 78.42 3.68 3.5 0.41 0.42 

RMSE 0.41 0.77 0.81 0.37 0.99 0.91 

* SD, Standard deviation; AAD, Average absolute deviation; SE, Standard error; RMSE, 

Root mean square error 
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PREFACE TO CHAPTER 4 

DRAINMOD-P provided an insight into pesticide fate modeling, which is very complex 

as it encompasses many transformations that a pesticide undergoes in the soil 

environment. However, it requires too many input parameters and longer execution time. 

Out of the two approaches used in DRAINMOD-P, the conventional approach takes less 

than a minute for a single simulation and about eight hours for the GambIe method. 

Moreover, the accuracy is less than desirable. In this chapter, efforts were made to assess 

the success of an implicit modeling technique, MARS, to simulate pesticide transport of 

three herbicides from field data. Although ANNs have been used extensively for implicit 

modeling in the field of agriculture and are known to learn from examples, MARS was 

found to outperform ANNs (Abraham et al., 200 l a,b). MARS is aiso faster in its 

execution, able to learn from very limited data, and has the ability to rank variables 

according to their significance. This study was organized to explore the possibilities of 

simulating pesticide concentrations in agricultural soil with very limited data in a short 

period oftime without compromising the accuracy of the model output. 

The candidate, being the main author of the manuscript, was responsible for carrying out 

the study, performing the statistical analyses to ascertain the efficiency of MARS and 

compare its performance with the mathematical model, DRAINMOD-P. Dr. Shiv Om 

Prasher, Professor of Agricultural & Biosystems Engineering and supervisor of the 

candidate, has rendered his able guidance and has encouraged the author from the 

inception of this project. Dr. A. Madani, Prof essor of Engineering, Nova Scotia 

Agricultural College, Tmro, Nova Scotia, was the co-supervisor and advised the 

candidate on numerous occasions. Dr. R. Lacroix, Professor of Animal Science, McGiH 

University offered his valuable time in initiating and improving the project. Dr. J. D. 

Gaynor and Dr. C. S. Tan have provided the main author with the field data and have 

been available for discussions with the author and her supervisors. 
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Research paper based on the chapter: 

Bera, P., S. O. Prasher, A. Madani, R Lacroix, J. D. Gaynor, and C. S. Tan. Application 

of MARS for simulating pesticide movement in soiL (Manuscript to be submitted to the 

Transactions of the ASAE journal). 
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CHAPTER4 

APPLICATION OF MARS FOR SIMULA TING PESTICIDE 

CONCENTRA TIONS IN SOIL 

4.1 ABSTRACT 

In this study, efforts were made to predict pesticide concentrations ai three different 

depths in the soil profile, using models developed with Multivariate Adaptive Regression 

Splines (MARS), a regression analysis mode!. The models were developed with 

independently collected data from the Eugene F. Whelan Experimental Farm (Agriculture 

and Agri Food Canada, Woodslee, Ontario, Canada) from 1992 to 1994. Data from 

sixteen plots, subjected to four different tillage treatments and two different water table 

management practices, were used. The fate of three herbicides, namely atrazine, [2-

chloro-4-ethylamino-6-isopropylamino-l,3 ,5-triazine J, metribuzin, [4-amino-6-( 1,1-

dimethylethyl)-3 -( methylthio )-1,2, 4-triazin-5( 4H)-one], and metolachlor, [2-chloro-N-(2-

ethyl-6-methylphenyl)-N-( -2-methoxyl-l-methylethyl) acetamide J, at three different soil 

depths were studied. The input variables for the models included Julian day, days after 

application of pesticide, measured herbicide concentrations and cumulative figures for 

rainfall depth, air temperature, soil temperature and potential evapotranspiration. 

Considering the limited size of the data set, a ten-foid cross validation was performed to 

test and validate the model. Model predictions at the 0-10 cm depth were very close to 

the measured values, with model efficiencies varying from 78 to 99%. The predictions at 

the 10-15 cm depth varied from 51 to 77%, while the ones at the 15-20 cm were within 

42 to 95%. These results demonstrate that MARS was able to do a commendable job in 

simulating pesticide fate and transport in soil with limited data. A comparison between 

the performance of the mathematical modeI, DRAINMOD-P, and MARS in simulating 

atrazine at the same depths over the same period yielded better predictions with MARS as 

is evident from the higher efficiencies and lower RMSE values. Execution time with 

MARS models was significantly less than DRAINMOD-P simulations, lasting for a few 

seconds only. DRAINMOD-P simulations, on the other hand, require less than a minute 

using the conventional method and about eight hours using the GambIe kinetics 
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approach. Thus, MARS seems to outperform DRAINMOD-P, both in accuraey and 

execution time. However, the MARS modeling requires both input and output data a 

priori, like artificial neural networks, and generates site-specifie models only. 

4.2 INTRODUCTION 

ludicious and timely application of pesticides can not only increase food/agricultural 

produetivity but aiso improves the qua lit y of the produee (Gaynor et al., 1995). 

Perceived benefits from the use of pesticides have resulted in their extensive use across 

the world. Herbicide sales alone accounted for 85% of the total pesticide sales in Canada 

in 1997 (Gorse, 2000). However, the threat of increasing soil and water pollution has 

made the public very skeptical about their continued use on the farm. In a recent study, 

atrazine and metolachlor were detected in the St. Lawrence River, with most of the 

contamination coming from the Great Lakes (Cossa et al., 1998). The harmful effects of 

pesticide use are now weB known and this awareness has resulted in a decrease in its 

consumption. Herbicide usage for corn in the United States has aiso dropped from 

84,811 thousands kilograms, applied in 1996, to 68,433 thousands kilograms in 1999 

(Anonymous,2001). 

The fate and transport of pesticides can be investigated by column studies, field 

experiments and mathematical simulations (Melancon et al., 1986; Gaynor et al., 1995; 

Azevedo et al., 1997; Li et al., 1999 and Gaynor et al., 2000). Column studies and field 

experiments both involve vast expenditures and are time-consuming. Since column 

studies are conducted in isolated environments, they cannot provide an actual 

representation of the complexities involved in the field. Mathematicai modeling, on the 

other hand, is fast and accurate. However, most process-based models fail to account for 

spatial variability and preferential flow that might result in inaccurate estimations. 

Uncertainties may aiso arise due to approximations involved in calculating certain key 

parameters or while attempting to simulate the complex pro cesses that govern the 

movement of the solute in the soil environment. Sorne of the shortcomings of process­

based models are taken care of by machine leaming models. Machine leaming 
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algorithms, work efficiently with limited inputs. They are user-friendly and require less 

computation time. These artificial intelligent tools are capable of mimicking nature 

without compromising its complexities. 

Among the popular artificial intelligence tools are case-based reasoning, artificial neural 

networks (ANN), genetic algorithms, mIe induced systems and fuzzy logic. These tools 

have been used in agriculture extensively (Ocerin et al., 1996). Fuzzy logic has been 

employed to estimate evapotranspiration successfuUy (Odhiambo et al., 2001). ANNs 

have been widely used to make predictions about the soil moisture (Altendorf et al., 

1999), soil temperature (Yang et aL, 1996; 1997), saturated hydraulic conductivity 

(Lebron et al., 1999), and annual nitrate-N losses in drain outflows (Salehi et al., 2000b). 

ANNs have also been used to simulate pesticide movement in soil by researchers (Yang 

et aL, 1997; Tafazoli, 2002). ANNs are known for their ability to learn from examples, 

work efficiently with few input parameters, and are very popular. MARS, a novel data­

mining regression tool, is also gaining popularity of late due to its simple, easily 

comprehensible models and its extensive search mechanism, which makes it possible to 

identify interrelationships between parameters. Previous studies have shown MARS to 

have an edge over ANNs with respect to speed and RMSE values (Abraham et al., 

2001a,b). 

MARS segregates the training data into separate sectors with regression lines. The 

rapidity with which MARS captures the complexity involved in the relations between the 

parameters makes it a novel method. Previous studies reveal that MARS is a reliable 

software to use because ofits strong regression capabilities (Abraham et al., 2001a,b). In 

another review, the significance of the MARS model was highlighted in making close 

predictions for in-sample studies while making predictions for recessions in the financial 

world (Sephton, 200 1). However, its predictions for out-of sample forecasts for recession 

were less than desirable. These studies highlight the fact that MARS is a robust tool to 

detect patterns from training datasets. Therefore, an attempt was made, in this 

exploratory study to test the efficiency of MARS to predict pesticide concentrations. To 
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the best of our knowledge, MARS has so far not been used to simulate pesticide 

movement in the soil environment. The objectives of this study were: 

1. to apply MARS to simulate the concentrations of three herbicides, namely atrazine, 

metribuzin and metolachlor, in an agricultural soil at three specified depths, and 

u. to compare atrazine simulations obtained from DRAINMOD-P, a physicaUy-based 

mathematical model, with MARS. 

4.3 THE ORY 

MARS is a non-parametric adaptive regression technique (Friedman, 1991). It builds 

flexible regression models by fitting separate splines to distinct intervals of the predictor 

variables. A spline is a function that is defined on an interval and may be used to 

approximate another function. It consists of simple functions, defined on subintervals, 

and these are joined at their endpoints with a suitable degree of smoothness. A spline is 

built by dividing regions on the X-axis. The point where the behavior of the function 

changes is called a knot. In the case of a classical spline, the knots are determined 

beforehand and are spaced at regular intervals. However, in MARS, basis functions 

explore the possibility of a knot location. By employing basis functions to hunt for knots, 

certain regions of a particular variable are blocked, which enables MARS to highlight on 

the subsets of data. This mechanism allows MARS to identify strong relations amongst 

the variables. MARS can be employed without making any assumptions beforehand. 

The famous "hockey stick" function explains the way the basis functions work. The 

hockey stick basis function projects variable X to a new variable X* as under: 

max (0, X-c), or 

max (0, c-x) 

where X* is set to zero for all values of X up to sorne threshold value c, and X* is equal 

to X for all values of X greater th an c. X* is equal to the amount by which X exceeds 

threshold c. This kind of rigorous search takes place incremental1y to arrive at an 
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optimum generalized cross validation (GCV). The GCV criterion, introduced by Craven 

and Wahba (1979) 1S represented by the foHowing equation: 

4.1 

where C(M) is the cost-complexity measure of a model, containing M basis functions. In 

a linear regression model, C(M) = M. The measure of mean squared error, MSE, is 

calculated by dividing the sum of squared errors by N-M instead of by N. The GCV 

formula enables C(M) > M; which enables "charging" each basis function with more than 

one degree of freedom. The basis functions are similar in nature to the variable 

combinations, which are utilized in principal component analyses. After the selection of 

the number ofbasis functions and knots that best fit the model, a final regression equation 

is given based on the basis functions. 

The process of selecting significant factors is a two-stage process. The least important 

factors are removed from the initial model, created by a forward knot selection phase, in 

the second phase of model development. MARS detects the basis function, which affects 

the accuracy of the mode! with the residual sum of squares criterion. After the model is 

pruned, a second process begins in order to rem ove the redundant basis functions. 

Several iterations are conducted until aIl unimportant basis functions are eliminated from 

the model. Mean squared error (MSE) values are observed for the different models that 

may be prepared. With the addition of each basis function, the MSE value decreases. 

The upper limit of the number ofknots may be 3-4 times the number ofbasis functions of 

an optimal model (Abraham et al., 2001a). The degree of freedom has an impact on the 

final model performance. The higher the degrees of freedom, the smaHer the final modeI, 

and vice versa. There are three possible ways in which an optimal number of degrees of 

freedom may be determined. It can be done manually, or automatically, by selecting a 

portion of the data set, or by using a lO-fold cross validation. 
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MARS detects variable impact with analysis of variance (ANOV A), thereby aHowing us 

to choose the variables that affect model performance (Friedman, 1991; Sephton, 2001). 

Setting a higher limit for the number of knots is a standard practice. This enables the 

development of the best model. Rigorous search through basis functions helps identify 

transformations of the data that affect mode! performance (Abraham et al., 2001a). 

Irregular functions can be fitted automatically with the aid of regression splines (Courtois 

et al., 2000). These studies bring to light that MARS is a robust data-mining tool that can 

help identify patterns if provided with sufficient training data. In this exploratory study, 

the ability of MARS was examined to estimate pesticide concentrations at three depths in 

the soil profile. 

4.4 MATERIALS AND METHOD 

The reader is referred to the third chapter of tms thesis on DRAINMOD-P for details on 

this section. Only those portions, typical to this paper, have been included in this section 

to avoid repetition. 

4.4.1 Data Acquisition 

The inputs to the model were selected based on the work done by previous researchers 

(Yang et al., 1997f and Tafazoli, 2002). The input variables for the model included 

Julian day of the year, days after application of the pesticide, measured herbicide 

concentrations, cumulative figures for rainfall depth, air temperature, soil temperature 

and potential evapotranspiration. The weather data were taken every day for aIl three 

years, which included the precipitation and potential evapotranspiration. The data 

comprised 416 records, out of which 128 records were from 1992; 160 :trom 1993 and 

128 from 1994. 
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4.4.2 Herbicide Analysis 

The reader is referred to the third chapter on DRAINMOD-P for details on herbicide 

analysis. Metribuzin and metolachlor were sampled on the same dates as atrazine. For 

further details, the reader is referred to papers by Tan et al. (1993); Drury et aL(1996) and 

Gaynor et al. (1995; 2000;2001). 

4..4.3 Development of the MARS Model 

In this study, MARS ™ version 2.0 for Windows (Salford Systems, San Deigo, CA) was 

used in order to implement the multivariate adaptive regression splines to estimate the 

pesticide concentrations in the soit Building the model commenced with the selection of 

the predictor and target variables. Julian day, days after pesticide application, cumulative 

rainfall (mm), cumulative soil temperature (oC), cumulative air temperature (oC), 

cumulative potential evapotranspiration (mm dai1
) and pesticide concentration (~g kg-l) 

were selected as input variables, while pesticide concentration (~g kg-l) was the only 

output variable. MARS assigns a significance factor to the various input parameters used 

in model development. This provides a guideline for choosing more appropriate 

variables for modeling. Total interaction amongst the variables was aHowed during 

mode} development. Separate analyses were performed for the different water table 

management and tillage practices for aU the sixte en plots. To begin with, the default 

parameters such as testing up to three degrees of freedom, speed accuracy of four, etc., 

were used to develop the MARS models. This is in line with suggestions made by 

previous researchers while conducting similar implicit modeling studies (Salehi et al., 

1998 and Lacroix et al., 1997). Model refinement was accompli shed using sorne of the 

options provided by the MARS software. The number of basis functions was changed to 

two to four times the number of predictor variables, and the different options were 

checked to ensure that they were in accordance with the recommendations in the MARS 

manual (Salford Systems, San Deigo, CA). Sorne of the criteria employed in model 

refining was changing the number of basis functions, specifying a minimum distance 

between the knots, aUowing select interactions, and reducing the speed factor. The speed 
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factor was lowered to aUow more accuracy in model development. Maximum 

interactions were increased from one to six, to aHow an six predictor variables to interact. 

Interim results were observed while making changes to each of the parameters. No limit 

was attached while processing the number of records. The minimum observation 

between knots was increased from zero to three, to study their impact on the model. 

WhiIe testing, the default parameter for degree of freedom was kept at three. However, 

one can further explore by forbidding transformations between the selected variables or 

using a penalty on the number of distinct variables to achieve better resuIts. Model 

testing during development was performed by using the in-built ten-fold cross validation 

because of limited data size. This was in accordance to the CART suggestions (Salford 

Systems, San Deigo, CA; Salehi et al., 2000b). 

Another uniqueness of MARS is its power to assign a degree of importance to aU the 

variables being used in the development of the model. For instance, in the moldboard 

plow with drainage and sub-irrigation and controlled drainage, the order of importance of 

the variables, for the 0 to 10 cm depth for atrazine, was found to be as shown in Table 

4.1. The cumulative soil temperature was found to be the most important variable, 

whereas the cumulative potential evapotranspiration was the least effective one. Each 

model input is assigned a degree of importance and hence it is easier to determine the 

factors that had a major impact on the predictor variable. A 1ypical MARS model, 

developed in this study, is given in Table 4.2. This represents the equation based on the 

basis functions and can be modeled with ease. MARS models are simplistic in their 

approach, highly comprehensible and easy to execute in a personal computer. 

In order to compare the results obtained from MARS with those obtained from 

DRAINMOD-P, a process-based model, independently collected atrazine data over a 

period ofthree years was used. The next section briefly explains DRAINMOD-P. For 

additional details, the reader is referred to Chapter 3 on DRAINMOD-P. 
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4.4.4 DRAINMOD-P 

DRAINMOD-P was developed by using DRAINMOD (Skaggs, 1978) for hydrology and 

the pesticide component ofPESTFADE (Clemente, 1991) for pesticide simulations. The 

details ofDRAINMOD-P are given in the chapter on DRAINMOD-P. DRAINMOD is a 

well-known program used for the design and evaluation of water table management 

systems in North America and has been widely used in several regions in the United 

States and Canada. DRAINMOD was developed at North Carolina State University in 

the mid 1970's (Skaggs, 1978, 1980). DRAINMOD was chosen for its user-friendliness, 

fast execution times, and accuracy in hydrological estimations. The pesticide component 

of PESTF ADE is capable of dealing with sorption, a significant phenomenon in 

determining the ultimate fate of a solute, by taking into consideration both the 

conventional and GambIe kinetics (GambIe et al., 1992; Li et al., 1996) approaches. 

White the conventional approach adopts a fixed sorption coefficient, the Gambie 

approach actually calculates it, taking into consideration the labile and nonlabile 

contributions (Gamble et al., 1992; Li et al., 1996). Since the Gambie kinetics has only 

been developed for atrazine, the results obtained from DRAINMOD-P were compared 

with those from MARS for atrazine. This provides a further insight into the performance 

of both models. 

4.4.5 Statistical Analysis 

The performance of the model was checked by calculating three statistical parameters. 

The standard error is a quantitative estimation of the dispersion that exists between the 

observed and predicted values. The equation used to calculate the standard error is given 

by the foHowing equation (Singh et al., 1994): 
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SE= 4.2 
n 

where Oi is the measured water table depth, Pi is the predicted water table depth, n is the 

number of days. The value of standard error is best when it is lowest. 

The root mean square error, RMSE, a good indicator for model performance, was 

calculated as per El Sadek et al. (2001): 

RMSE= 4.3 
o 

where Pi is the predicted value, Oi is the observed values, i is the event and n is the 

number of observations. The value of RMSE varies between 0 and 1 signifying a better 

fit. 

The model efficiency evaluates the error relative to the natural variation in the observed 

values (Vanclooster et al., 2000 and El-Sadek et al., 2001). It can be calculated as: 

4.4 

An efficiency of 1.0 indicates a correct estimate, while a zero shows the inefficiency of 

the model. In other words, the higher the efficiency the better the model. A negative 

sign indicates the inability of the model in making predictions. 
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4.5 RESULTS AND DISCUSSION 

The estimated concentrations of the three herbicides, VIZ. atrazine, metribuzin and 

metolachlor, using the MARS model at three different depths were plotted against the 

measured field data. Figs. 4.1 to 4.8 represent the success of MARS in predicting the 

herbicide concentrations. MARS predictions were not very acceptable as is seen in Fig. 

4.9. To illustrate the capabilities of the MARS model, out of aU the four different tillage 

practices and two different water table treatments, only the case of moldboard plow with 

controlled drainage and sub-irrigation is discussed in more detail. The results obtained 

from the statistical too18 are displayed in Table 4.3 for aIl the other treatments. However, 

the results are not discussed at length for these treatments for the sake of brevity. 

Moldboard plow with controlled drainage and subirrigation was also chosen in order 

make comparisons with the results obtained from DRAlNMOD-P. Moreover, previous 

studies (Tafazoli, 2002) performed with ANN have been va!idated with the same field 

data and the performance of MARS over ANN could be easily adjudged. The 

predictability of the MARS mode! in simulating atrazine, metribuzin and metolachlor at 

three different soil depths is discussed in this chapter, followed by a comparison between 

the implicit model, MARS, and the process-based model, DRAINMOD-P, in simulating 

atrazine concentrations. 

4.5.1 Results at the 0-10 cm depth 

Figs. 4.1 to 4.3 contain the graphical representations of results obtained for the 

conventional tillage treatment with controlled drainage and sub-irrigation for 0-10 cm 

soil depth. It is observed from Fig. 4.1 that there is close agreement between the 

observed and predicted atrazine concentrations with sporadic minor variations. A 

standard error (SE), root mean square error (RMSE) and model efficiency (EF) of 28.79 

Jlg kg-\ 0.13, and 99% were obtained, respectively, which shows the closeness of the 

simulated values to the measured data. It is also reflected in Fig. 4.2 that there is no 

significant difference between the predicted and observed concentrations of metribuzin. 

The simulated data foHow the trend of the observed values throughout the period. A SE, 
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a RMSE, and EF of 46.18 !-tg kg-l, 0.50 and 85% were obtained, respectively. Moreover, 

it is also seen from Fig. 4.3 that the MARS model predicted weIl for metolachlor 

applications with prediction efficiency of 96%, RMSE of 0.15 and SE of 64.40 !-tg kg-1 
• 

For the rest of the treatments, the SE and the RMSE were calculated, as shown in Table 

4.3. The treatments are abbreviated as "MB" for moldboard plow, MBIC for moldboard 

plow with intercropping, "SS" for soil saver technique and "SSIC" for soÏl saver with 

intercropping. The letters "W" and "D" denote the free drainage and controlled drainage 

with sub-irrigation conditions. The SE, RMSE, and EF values for atrazine varied from 

32.43 to 89.16 !-tg kg-l, 0.15 to 0.32, and 89 to 99%, respectively. The SE and RMSE 

values for metribuzin varied from 19.85 to 49.13 !-tg kg-1 and 0.25 to 0.50, while the 

model efficiencies varied from 78 to 99%. The SE and RMSE values for metolachlor 

varied from 64.40 to 171.12 !-tg kil and 0.11 to 0.28, while the EF varied from 83% to 

96%. 

The high model efficiencies indicate the excellent perfonnance of MARS at the 0-10 cm 

depth in predicting pesticide concentrations. Similarly, the low values of SE and RMSE 

inrucate less variation over the magnitudes of the observed and predicted datasets. These 

results are also in close coordination with the results obtained by Tafazoli et al. (2002) 

with ANNs where the pesticide simulations were also very good. Higher values of SE 

and RMSE and lower efficiencies indicate the inability of MARS to learn from the 

measured data, as seen in Table 4.3 in a few cases. A close look at Table 4.5 also reveals 

that these are the instances where the standard deviation values for the measured data are 

high, indicating difficulty for the MARS model to learn weB from the measured data. 

4.5.2 Results ai the 10-15 cm depth 

As for the 10-15 cm depth, the results in Figs. 4.4 to 4.6 indicate the closeness in the 

pattern between the observed and predicted concentrations for atrazine, metribuzin and 

metolachlor for the moldboard plow and controlled drainage and sub-irrigation 

conditions. However, sporadic minor variations are also apparent on certain events, 
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while the SE was 8.33, 1.34, and 21.17 f.lg kg-l, the RMSE was 0.48, 0.59, and 0.51 for 

atrazine, metribuzin and metolachlor, respectively. The model efficiency was 71% for 

atrazine and 77% for both metribuzin and metolachlor. 

While the SE ranged from 3.52 to 10.19 f.lg kg-l, the RMSE values for atrazine varied 

between 0.36 to 0.63, and the mode! efficiencies ranged from 62 to 77%. For metribuzin, 

the SE and RMSE values for metribuzin varied from 0.61 to 2.15 f.lg kg"l and from 0.45 

to 1.04 respectively. The efficiencies varied from 51 to 77% indicating high model 

efficiencies. Only three cases were identified with zero and low efficiency in the case of 

metribuzin. There were three cases where the model efficiencies were either low or zero 

in the case of both atrazine and metribuzin. RMSE and SE in aIl these cases are high, 

which also explains the lower efficiency. These also happened to be the cases where the 

MARS model was not able to simulate at aIl. It appears that too much noise in the data 

made it very difficult for MARS to leam from h. The RMSE values for metolachlor 

varied from 0.33 to 1.03. The efficiencÏes varied from 49% to 83%, except for two 

occasions where the efficiency was either very low or zero. A high SE and RMSE 

indicates the reason for lower efficiency, as is seen from Table 4.3. From Table 4.5, it is 

also observed that the sn from the observed mean is also high in these two cases. 

The low SE and RMSE values certify the high dexterity with which MARS has 

succeeded in its simulations. High model efficiencies further ascertain the robustness of 

MARS, especially keeping in mind the stringency involved in this test. Similar results 

were also observed by Tafazoli et al. (2002) for ANNs. 

4.5.3 Results at the 15-20 cm depth 

Figs. 4.7 to 4.9 display the results for atrazine, metribuzin and metolachlor at the 15-20 

cm depth for the conventional tillage and controlled drainage with subirrigation 

treatment. The simulated values follow the same trend as the observed values, barring a 

few instances where the concentrations may be slightly underestimated. SE of 3.44 f.lg 

kil, 0.0 and 5.92 and RMSE of 0.45, 1.76 and 0.37 were obtained for atrazine, 
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metribuzin and metolachlor, respectively. The model efficiencies were 73, 86 and 0%, 

respectively. Fig. 4.9 shows the results for metolachlor at the 15-20 cm depth. The 

simulated values do not seem to follow the pattern of the observed values. The SE is as 

high as 5.92 !-tg kg-l, and the RMSE value obtained was 0.37. However, a closer look 

into the measured values of metolachlor brings to light the fact that the observed values 

also differed over a modest range of approximately 0-12 !-tg kg- l
. Higher variations in the 

observed concentrations may be one of the causes for discrepancy. This is further 

confirmed by the standard deviation, which is also high, as is seen in Table 4.5. 

For atrazine, the RMSE values varied from 0.45-1.15, while the SE ranged in between 

2.82 to 10.78 !-tg kg-l, and the mode! efficiencies varied from 41 to 73%. In the case of 

metribuzin, the SE and RMSE model efficiencÏes varied between 0.61 to 1.24 !-tg kg-l, 

0.27 to 1.81 and 53 to 88% for aH the other treatments. The SE, RMSE and EF for 

metolachlor lay in the range of 0.37 to 1.39 !-tg kg- l ,0.40-1.39 and 42 to 95% 

respectively. There were one, two and three cases where MARS did not seem to learn 

from the measured concentrations in the case of atrazine, metribuzin and metolachlor, 

respectively. These aIso appear to be the ones with high variations in the observed data, 

as is seen in Table 4.5. 

It can be concluded that MARS models have largely been able to capture the movement 

of aH three herbicides for the three measurement depths. Results obtained with ANNs to 

simulate pesticide transport by Tafazoli et al. (2002) reveal that ANNs were not able to 

perform efficiently at the 20 cm depth. On the contrary, this study indicates that MARS 

can perform weIl, even at lower depths with very limited data. 

4.5.4 Comparison with DRAINMOD-P 

Both visual comparison and statistical methods were used to compare the MARS results 

with those of DRAINMOD-P. First, a visual comparison was drawn with the results 

obtained from MARS with those ofDRAINMOD-P. Since DRAINMOD-P includes two 

mechanisms to simulate the sorption mechanism, MARS results are discussed for both 
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approaches. While the conventional approach assumes a constant partition coefficient for 

atrazine, the Gamble approach calculates it based on other parameters. Since the GambIe 

kinetics was developed for atrazine only, the discussion is confined to this herbicide. 

Fig. 4.10 shows a companson between the predictions made by the MARS and 

DRAINMOD-P models for atrazine at the 0-10 cm depth for 1992-94. In these graphs 

"con" refers to the conventional approach while "gam" refers to the GambIe approach, 

used in DRAINMOD-P, and "mea" represents the average of the measured values from 

plot numbers 8 and Il, which were the moldboard plow with controlled drainage sub­

irrigation treatment. The simulated concentration values by the process-based model and 

the implicit model seem to follow the path taken by the measured values, as is evident 

from the graph. The conventional approach seems to overestimate whilst the GambIe 

approach appears to underestimate the measured concentrations. MARS appeared to 

predict measured concentrations more accurately than either the conventional or the 

Gamble kinetics methods. 

The statistical analysis between DRAINMOD-P and MARS was perfonned using the SE, 

RMSE and EF tests (Table 4.4). SE at the 10 cm depth varied between 37.46 to 111.43 

J.lg kg-1 in the conventional approach using DRAINMOD-P, and 78.42 to 109.91 for the 

GambIe kinetics approach. The SE from the MARS simulations lies between 32.43 to 

89.16 J.lg kg- l
. The RMSE values at the 10 cm depth for the period 1992 to 1994 ranged 

between 0.15 to 0.32 when MARS was used, as against the high RMSE values from 0.41-

1.28 for the same period from DRAINMOD-P which used the conventional approach. 

The results from 1992 and 1994 better compare with lower RMSE values of 0.64 and 

0.41, respectively. With the Gamble kinetics approach, the RMSE values are within a 

lower range, between 0.77-0.88 when compared to the conventionaI approach and can 

therefore be said to perfonn closer to the MARS simulations and the observed values. EF 

from DRAINMOD-P at the 0-10 cm depth yielded positive values for the conventional 

approach in 1992 and the Gamble approach in 1993 with EF equal to 29% and 45% 

respectively. AIl other instances yielded negative resuIts for EF. MARS on the other 
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hand, has EF in the range of 89 to 99%, which signifies the accuracy with which MARS 

was able to simulate the pesticide fate, even with very limited data. 

Fig. 4.11 depicts the atrazine simulations results at the 10-15 cm depth for 1992-94. The 

simulations made by DRAINMOD-P and MARS follow the same trend as the observed 

values. The conventional and GambIe approaches are often observed to underestimate. 

MARS results are in doser agreement with those of the observed concentrations. 

At the 10-15 cm depth, the SE ranged between 3.5-17.07 J.l.g kg-1 for DRAlNMOD-P 

when compared to 3.52-10.19 for MARS. The SE in the case of the GambIe approach 1S 

lower than the conventional one. The RMSE values ranged between 0.37 to 0.93, while 

the RMSE values for MARS lie in the range 0.36-0.63. The RMSE values for both 

approaches yielded similar results for 1992, and the conventional approach appears to 

perform better in 1993, while the Gamble method appears to do better in 1994 at this 

depth. EF for the conventional method in 1993 is the only commendable value obtained 

from this test. AH the others are indications that DRAINMOD-P has not yielded 

satisfactory results at the 10-15 cm depth. On the contrary, EF figures from MARS lie 

between 62% to 77%, which shows greater predictability with MARS. 

The SE and RMSE values are in good agreement with each other when DRAINMOD-P 

and MARS results are compared. However, a stringent test, like the EF test, signifies the 

higher success rate of MARS in simulating pesticide concentrations at the 10-15 cm 

depth. 

Fig. 4.12 shows the results for atrazine obtained at the 15-20 cm depth for 1992-94. AlI 

the simulations foUow the track of the observed pesticide concentrations. White the 

GambIe predictions are much lower in 1992 and 1994, they seem to be higher in 1993. 

The conventional simulated values are slightly lower in 1992 and 1994, while they are 

higher in 1993. Once again, MARS 1S seen to make the dosest predictions. 
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A comparison is once again drawn with the statistical tests. The SE ranges from 0.41 to 

8.58 iJ.g kg-l, when compared to the SE values of2.82 to 10.78 iJ.g kg- l for MARS. The 

SE values are lower in the case of the Gambie kinetics approach when compared to the 

conventional ones. RMSE lies in between 0.65 to 1.25 for DRAINMOD-P simulations 

white the ones from MARS are in between 0.45 to 1.15. The conventional approach in 

1993 is the best performer from DRAINMOD-P results since it has the lowest RMSE of 

0.65. EF in DRAINMOD-P simulations are either negative or are highly positive thereby 

indicating that the model has not performed successfully. However, EF from MARS lies 

in the range of 43% to 73% with only one instance offailure. 

In conclusion, MARS has accompli shed better results when compared to DRAINMOD-P 

simulations at the 20 cm depth as is evident from the statistical analysis. It is even more 

impressive when one considers the limited amount of data that was used to develop the 

model and also a rather simplistic set of inputs was used with the MARS modeling. The 

execution times required for the MARS models were invariably less than one second, 

which provides good evidence of its fast operational speed. 

4.6 CONCLUSIONS 

Pesticide concentrations were modeled in this study through a new data-mining tool, 

caUed Multivariate Adaptive Regression Splines, MARS. The data consisted of pesticide 

concentrations during 1992-94, coUected at the Eugene F. Whelan Experimental Farm 

(Agriculture Canada, Woodslee, Ontario, Canada). The experiments consisted of four 

tillage and two water table management practices. The MARS model developed in this 

study simulated the pesticide concentrations with high accuracy. The prioritization of 

input parameters made the selection of inputs to the model an easy task. MARS models 

needed very few input parameters in comparison to the large number of parameters 

required in DRAINMOD. While DRAINMOD-P for the Gambie approach took about 

eight hours for a single simulation, the same simulation took less than a minute with the 

conventional approach. It can be safely declared that the execution time is admirably less 

in the case of MARS models since a one-year simulation lasted for a few seconds only. 
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MARS also yielded superior results when compared to the DRAINMOD-P simulations 

for atrazine. The results were doser to the observed values at the 0-10 cm and the 10-15 

cm depths for 1992-94 when compared to those obtained from DRAINMOD-P. At the 

15-20 cm depth, MARS outperformed the mathematical mode1. In a study, Tafazoli 

(2002) had concluded that ANNs estimated pesticide concentrations very weH at the 10 

cm and 15 cm depths but were not able to simulate pesticide movement at the 20 cm 

depth. The RMSE was less than 0.1 at the 0-10 cm and 10-15 cm depths (Tafazoli, 

2002). These results compare weil with those obtained in this study where, under the 

same field conditions, the RMSE was 0.15 at the 0-10 cm depth and 0.51 at the 10-15 cm 

depth. At the 15-20 cm depth, the RMSE obtained was 0.37. In fact, MARS has 

outperformed ANNs, even at the 20 cm depth. MARS can thus be regarded as an 

effective tool in modeling solute transport and it is likely that better predictions may be 

possible with larger data sets. However, like artificial neural networks, MARS models 

require both input and output data a priori, and generates site-specifie models only. 
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Table 4.1 Variable importa:m~e 

Significance attached to the variables in predicting the pesticide concentrations in the 

moldboard plow with drainage and sub-irrigation and controlled drainage, were as under 

for the 0 to 10 cm depth for atrazine: 

*Cumulative soil temperature 

Days after pesticide application 

Cumulative air temperature 

Julian day 

Cumulative rainfall 

Cumulative potential evapotranspiration 

* Units are in percentage. 

95 

100.000 

91.954 

76.782 

41.624 

29.327 

15.027 



Table 4.2 Basis fundion of a typical MARS mode! 

A set ofbasis functions (BFs) to predict pesticide concentrations in the soil at a depth of 

10 cm by a MARS model using the soi! saver and controlled drainage with subirrigation 

are shown below: 

BFl = max (0, CSOILTEM - 82.800) 

BF3 = max (0, DAYAFTER - 4.000) 

BF4 = max (0, 4.000 - DAYAFTER) 

BF5 max (0, CRAIN - 0.750) * BF4 

BF6 = max (0,0.750 - CRAIN) * BF4 

BF7 max (0, JDAY - 194.000) 

BF8 = max (0, 194.000 - JDAY) 

BFlO = max (0, 38.500 - CRAIN ) 

BFl1 = max (0, DAY AFTER - 6.000) * BFlO 

BF12 = max (0, 6.000-DAYAFTER) *BFlO 

BF13 = max (0, JDAY - 141.000) * BFIO 

BF15 = max (0, DAYAFTER - .372417E-06) * BF8 

BF16 = max (0, CSOILTEM - 15.610) * BF6 

Y = 473.453 - 0.218 * BFl - 1.911 * BF3 + 2.666 * BF5 

- 182.478 * BF6 + 4.537 * BF7 - 6.592 * BFlO 

+ 2.154 * BFll + 1.499 * BF12 -1.739 * BF13 

- 0.128 * BF15 + 5.152 * BF16; 

JDAY, Julian day 

DAY AFTER, days after pesticide application 

CRAIN, cumulative rainfall 

CAIRTEM, cumulative air temperature 

CSOILTEM, cumulative soil temperature 

CPET, cumulative potential evapotranspiration 

96 



Table 4.3 Statistical parameters for 1992-1994 as obtained from MARS 

Atrazine Metribuzin Metolachlor 

Treatment SE RMSE EF SE IRMSE EF SE IRMSE EF 
1 

0-10 cm (~g kg-l) (~g kg-l) ! (~g kg-l) t , 
MBD* 28.79 0.13 99.00 46.18 0.50 85.00 64.40 0.15 96.00 

MBW 40.44 0.18 99.00 46.23 0.49 78.00 93.55 0.22 92.00 

MBICD 89.16 0.32 89.00 44.13 0.41 88.00 171.12 0.11 83.00 

MBICW 83.69 0.31 94.00 35.58 0.32 92.00 134.00 0.28 89.00 

SSD 32.43 0.15 98.00 19.85 0.25 99.00 92.78 0.26 91.00 

SSW 32.80 0.15 98.00 22.89 0.27 96.00 73.32 0.20 95.00 

SSICD 37.63 0.16 97.00 35.74 0.37 90.00 80.16 0.19 95.00 

SSICW 47.73 0.19 96.00 49.13 0.50 84.00 99.06 0.23 93.00 

10-15 cm 

MBD 8.33 0.48 71.00 1.34 0.59 77.00 21.17 0.51 63.00 

MBW 10.19 0.63 33.00 1.02 0.45 73.00 21.33 0.55 83.00 

MBICD 0.00 0.80 0.00 2.15 0.77 51.00 19.63 0.55 49.00 

MBICW 4.88 0.36 69.00 1.02 0.45 76.00 10.35 0.33 83.00 

SSD 5.06 0.43 62.00 1.85 1.04 0.00 0.00 1.03 22.00 

SSW 3.52 0.36 77.00 0.61 0.55 0.00 0.00 0.87 79.00 

SSICD 5.22 0.49 68.00 1.30 0.76 69.00 9.17 0.45 73.00 

SSICW 0.00 0.90 0.00 0.00 35.00 18.81 0.88 0.00 

15-20 cm 

MBD 3.441 0.45 73.00 0.00 1.76 86.00 5.92 0.37 0.00 
1 

MBW 3.56 0.45 70.00 0.27 77.00 8.61 0.55 95.00 

MBICD 5.97 0.77 41.00 1.24 1.31 74.00 10.34 0.75 58.00 

MBICW 3.24 0.44 70.00 0.00 1.28 0.00 0.00 1.39 0.00 

SSD 10.78 1.15 43.00 0.96 1.08 88.00 4.67 0.40 58.00 

SSW 2.82 0.49 59.00 0.00 1.81 61.00 3.83 0.42 0.00 

SSICD 0.00 1.00 0.00 0.64 1 0.98 53.00 5.65 0.68 42.00 
1 

SSICW 3.62 0.58 61.00 0.61
1 

0.95 0.00 0.00 1.11 46.00 
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*MBD, moldboard plow with control1ed drainage subirrigation; MBW, moldboard plow 

with free drainage; MBICD, moldboard plow with intercropping and free drainage; 

MBICW, moldboard plow with intercropping and controlled drainage subirrigation; SSD, 

soil saver with controlled drainage subirrigation; SSW, soil saver with free drainage; 

SSICD, soil saver with intercropping and free drainage; SSICW, soil saver with 

intercropping and controlled drainage and subirrigation; RMSE, Root mean square error; 

SE, Standard error; EF, Model efficiency 

Table 4.4 DRAINMOD-P re~mlts for 1992-94 

0-10 cm deptb 
Conventional GambIe kinetics 
SE* RMSE EF SE RMSE EF 

1992 66.76 0.64 0.29 81.08 0.77 -0.04 
1993 111.43 1.28 -0.17 109.91 0.88 0.45 
1994 34.46 0.41 nii 78.42 0.77 nil 

10-15 cm deptb 
Conventional GambIe kinetics 
SE RMSE EF SE RMSE EF 

1992 17.07 0.92 -0.75 2.13 0.93 -0.76 
1993 8.45 0.55 0.51 8.42 0.72 -1.59 
1994 3.68 0.81 52.71 3.5 0.37 51.78 

15-20 cm depth 
Conventional GambIe kinetics 
SE RMSE EF SE RMSE EF 

1992 8.58 1.04 -0.88 0.41 0.95 -0.56 
1993 3.88 0.65 -0.39 3.84 1.25 -4.1 
1994 0.41 0.99 1.81 0.42 0.91 1.7 

*SE, Standard error; RMSE, Root mean square error; EF, Model efficiency 
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Table 4.5 Mean and standard deviation in observed values from 1992-1994 

Atrazine Metribuzin Metoladdor 

Treatment Mean sn Mean 1 sn Mean sn 
0-10 cm Ülg kg-!) (!tg kg-l) (!tg kg-l) 1 (!tg kil) (!tg kg"l) (!tg kg-1

) 

l\1BD* 222.66 28.50 89.94 45.73 408.30 63.79 

l\1BW 225.26 40.04 93.11 45.78 413.09 92.62 , 

MBICD 271.07 88.28 105.54 43.70 482.87 169.43 

MBICW 267.11 82.86 109.96 35.23 476.70 132.68 

SSD 208.29 32.11 79.19 19.66 353. 121 91.86 

SSW 215.25 32.48 83.87 22.66 366.63 72.60 

SSICD 239.22 37.74 95.64 35.39 421.49 79.37 

SSICW 241.47 47.26 96.56 48.64 418.81 98.09 
i 

10-15 cm 

MBD 17.03 8.23 40.61 20.93 2.23 1.32 

MBW 17.27 10.99 37.84 21.10 2.23 1.01 

MBICD 19.16 15.47 34.81 19.41 2.74 2.13 

MBICW 16.12 5.81 30.64 10.23 2.23 1.01 

SSD U.41 5.00 23.61 24.51 1.74 1.83 

SSW 9.68 3.48 20.22 17.88 1.08 0.60 

SSICD 10.43 5.16 19.76 9.07 1.68 1.29 

SSICW 10.96 9.96 20.96 18.60 ni1 nil 

15-20 cm 

MBD 7.41 3.40 15.83 5.85 1.21 2.16 

MBW 7.69 3.52 15.21 8.51 0.88 0.24 

MBICD 7.58 5.90 13.39 10.22 0.92 1.22 

MBICW 7.16 3.21 14.87 20.97 0.92 1.19 

SSD 9.20 10.66 11.38 4.62 0.86 0.95 

SSW 5.59 2.78 8.83 3.78 0.78 1.42 

SSICD 5.71 5.76 8.07 5.59 0.63 0.63 

SSICW 6.12 3.58 10.32 11.56 0.63 0.61 
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*MBD, moldboard plow with controlled drainage subirrigation; MBW, moldboard plow 

with free drainage; MBICD, moldboard plow with intercropping and free drainage; 

MBICW, moldboard plow with intercropping and controlled drainage subirrigation; SSD, 

soil saver with controHed drainage subirrigation; SSW, soil saver with free drainage; 

SSICD, soil saver with intercropping and free drainage; SSICW, soil saver with 

intercropping and controUed drainage and subirrigation; SD, Standard deviation 
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CHAPTERS 

SUMMARY AND CONCLUSIONS 

In this study, models for the simulation of pesticide fate and transport in agricultural soils 

were developed. The first was a process-based mode!, DRAINMOD-P, that was 

developed and validated against independently coUeeted data for simulating pesticide 

leaching from an agriculturaI field for herbicide atrazine at three different depths in the 

soil profile over a three-year period. The second was an implicit model, MARS, that was 

tested against data obtained from the same field for three herbicides, viz. atrazine, 

metribuzin and metolachlor, at three different soil depths over a three-year period. 

An extensive literature review was carried out to analyze the advantages and 

disadvantages of various pesticide fate and transport models. The models that performed 

best for each of the two essential components of pesticide modeling namely, water and 

solute transport, were chosen to formulate a new model, eaHed DRAINMOD-P. 

DRAINMOD was seleeted for hydrologie modeling, while the pesticide eomponent of 

PESTFADE was chosen for solute transport. DRAINMOD has excelled in predieting 

hydrology under different pedo-climatic conditions throughout North America, is well­

suited to the Windows environment, and 1s easy to use. The fact that it fUns fast on a 

personal computer and provides outputs graphically makes it more appealing. 

PESTF ADE, on the other hand, handles sorption of pesticides weIl. It was developed to 

incorporate both conventional and two-stage sorption kinetics (GambIe kinetics), which 

also inc1ude intraparticular diffusivity of pesticides. Thus, DRAINMOD-P allows better 

representation of the sorption mechanism affecting the pesticide fate. Accurate 

simulations of the water transport also contribute towards higher probability of success in 

pesticide simulations. Field validation was performed with independently collected field 

data from an agricultural field in southern Ontario that included a three-year period. 

DRAINMOD-P was validated for atrazine by employing various statistical tools to assess 

the mode! performance. As reported by previous researchers, atrazine concentrations 

were found to be within an order of magnitude of measured values. It cannot be 
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concluded from this study that one of the two approaches performed better than the other, 

at any particular depth. The results obtained from aH three years, however, do not 

support the GambIe kinetics to be a better approach. This is not in agreement with the 

work done by previous researchers (Kaluli et al., 1997 and Li et al., 1999). The non­

conformance in model predictions resulting in its inabil ity to model the preferential flow 

may be attributed to the nature of the soil which is known to crack. In 1993, however, 

Gamble kinetics yielded better results at the 10 cm depth, which is in accordance with 

results from previous studies performed using the same field data (Tafazoli, 2002). AIso, 

conventional predictions by DRAINMOD-P were better than the GambIe simulations at 

the 15 and 20 cm depths, which is in line with previous work do ne by Tafazoli (2002). 

Further studies may be performed using larger datasets in order to make assessments 

between the two sorption methods. AIso, the model should be tested at different 

locations to assess the accuracy of its simulation. 

As an alternative approach to mathematical modeling, implicit modeling was attempted 

with the aid of MARS. MARS is a data mining tool that distinguishes itself by its ability 

to detect the impact of one variable on the other by a rigorous search mechanism. It 

prioritizes the variables based on their impact, which aids in mode! development and 

pesticide predictions. MARS simulations require minimum execution time when 

compared to other artificial intelligence tools like ANN s. Lower root mean square values 

were obtained for the same set of data from MARS when compared to ANNs. Statistical 

analyses proved that MARS could successfuHy predict pesticide concentrations at 10, 15 

and 20 cm depths with very limited data for aH three herbicides. Lower RMSE values 

and higher efficiencies obtained at these depths provided evidence to this effect. Very 

few instances were detected where higher deviations in the observed values yielded lower 

efficiencies. MARS models were aiso found to be faster than DRAINMOD-P models. 

The execution tÎme was eight hours for DRAINMOD-P simulations using the GambIe 

kinetics while computations lasted less than a minute using the conventional method. 

MARS models, on the other hand, took only a few seconds for a single simulation. 

MARS has proven itself to be a valuable tool in environmental risk assessments because 

114 



it is quick, economical, and reliable. The final conclusions that were drawn are as 

follows: 

L DRAINMOD-P is robust in its hydrology predictions, which also forms the basis of 

pesticide fate. The predictions from DRAINMOD-P for atrazine were weU within 

one order of magnitude of the observed data. This is considered to be acceptable as 

concluded by previous researchers. Gamble kinetics did not bring about a. 

significant improvement in the model performance. Out of the two approaches, 

neither conventional nor GambIe performed consistently at any particular depth. 

Simulations carried out over a larger period with a larger dataset may be conducted 

to make a better assessment. The model should also be tested at different locations 

to estimate its performance. This inconsistency also lays emphasis on the fact that 

the transformations that a pesticide undergoes from its time of application is very 

complex in nature and is, difficult to model accurate!y with process-based models. 

This is the case despite the large number of input parameters that are needed to run 

this mode! and the long model execution times. 

H. MARS models performed weIl, even though the data was very limited. The 

simulations at aH depths yielded good results, as was evident from the high mode! 

efficiencies. There were very few cases where the noise in the data hindered its 

predictive abilities. MARS ha.d a clear advantage over the mathematical model, 

DRAINMOD-P. MARS models provided a significance factor to an input 

parameters that affected model performance. This enabled the correct selection of 

inputs. The execution time was also much less when compared to the mathematical 

mode!. 

5.1 RECOMMENDATIONS FOR FURTHER RESEARCH 

Future research work may be done by using a larger data set, comprising more than one 

pesticide from different climatic zones. A sensitivity analysis of DRAINMOD-P may be 

performed to determine the important inputs of the model. DRAINMOD-P may further 
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be expanded·by incorporating sub-modules for volatilization, degradation and macropore 

flow. A Iarger database may aiso lead to doser predictions in pesticide leaching studies. 

AIso, the performance of the MARS model can be further substantiated with data 

involving a longer time period. Both models, whether mathematical or implicit, may 

prove to be handy in assessments of pollution through different solutes in the soil 

environment. 
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APPENDIX-A 

The detai!s of the content of the CD-ROM are briefly given in the table below: 

DirectorylS@.bdirectory 

drainmod 

éH:J drainmod-p 

rB"U harrow data 
~··a mars -

rB··a runoff 

drainmod_ outputs 
éi··a drainmod-p 
~··a harrow data 

. -àa mars 
è·a runof! 

é;··O Appendix 
!il··a drainmod 

à·a 1111 i!~ 
ffi··a harrow data 
~··a mars - . 

!il··Ô lunoH 

The root direct ory 

called read_me.txt, 

field Jayout. pdf 

explanatory. 

contains three files 

file_description and 

which are self-

The root direct ory appendix, is divided into 

five directories, drainmod, drainmod-p, 

harrow _data, mars, and runoff. 

Drainmod directory is divided into two 

directories, drainmod _inputs and 

drainmod_outputs. The second directory 

contains three sub-folders, 1992, 1993, 

1994, which contain the DRAINMOD 

outputs required for DRAINMOD-P. 

Drainmod-p directory contains six sub­

directories, conventional_92, 

conventional_93, conventional_94, 

gamble _92, gamble _93, and gamble _94. 

Each of these sub-directories are further 

divided into three sub-directories, input, 

output, prograrnfiles, which are self­

explanatory. 

HarrOHJ _data directory contains three 

subdirectories, herbicide, water _table, and 

weather. The herbicide subdirectory 

contains the measured herbicide 
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è··{:J App~ndix 
é·n drainmod 
$ .. U drainmod-p . 

6-'0 ! ~ 
1··.. herbicide 
1 .... u water table 

, L.·a weath-;'r 
œ .. u mars 

Iii··u runoff 

éH:J Appendix 

1 è··u drainmod 

1 éJ.·LJ drainmod-p 
l @"U harrow data 
1 è·ofll-
1 1 @"U atrazine 
, è .. D metolachlor 

àa metribuzin 
éH:J runoff 

$J.!:J Appendix 

ŒH.:::J dr ainmod 
I±H:J dr ainmod-p 
ŒH..::J harrow_data 
ffi .. O mars 
6-·8_ 

r.tJ .. O runofC 92 
8:.H:J runofC 93 
IIH::::J lunolC 94 

concentrations for 1992-94 for atrazine, 

metribuzin and metolachlor. The sub­

directory, water_table contains three files 

for the water table measurements for 1992-

94, while the sub-directory, weather 

contains three subdirectories weather _xx, 
where "XX" stands for '92, '93, '94, 

respectively. 

The directory mars, contains three sub­

directories for atrazine, metolachlor and 

metribuzin, respectively. Each ofthese 

sub-directories are further divided into 0-

10, 10-15 and 15-20 to denote the levels. 

These subdirectories are further sub­

divided into two sub-directories caHed 

input and output. The names themselves 

suggest the contents of these sub­

directories. 

Runoff directory contains three sub­

directories, runoff_ XX, where "XX" stands 

for '92, '93, '94, respectively. These sub­

directories are further divided into input, 

output and program files. The titles of 

these sub-directories are self-explanatory. 
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