
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

SOYA Based on a Sectionalized Trellis of Linear
Block Codes

Sanja Kovacevic

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

J anuary 2004

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment
of the requirements for the degree of Master of Engineering.

© 2004 Sanja Kovacevic

2004/01126

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-612-98538-5
Our file Notre référence
ISBN: 0-612-98538-5

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

The use of block codes is a weIl known error-control technique for reliable transmission of digital

information over noisy communication channels. However, a practically implementable soft­

input soft-output (SISO) decoding algorithm for block codes is still a challenging problem.

This thesis examines a new decoding scheme based on the soft-output Viterbi algorithm

(SOVA) applied to a sectionalized trellis for linear block codes. The computational complex­

ities of the new SOYA decoder and of the conventional SOYA decoder based on the bit-level

trellis are theoretically analyzed and derived. These results are used to obtain the optimum sec­

tionalization of a trellis for SOV A. The optimum sectionalization of a trellis for Maximum A Pos­

teriori (MAP), Maximum Logarithm MAP (Max-Log-MAP), and Viterbi algorithms, and their

corresponding computational complexities are inc1uded for comparisons. The results confirm

that SOYA based on a sectionalized trellis is the most computationally efficient SISO decoder

examined in this thesis.

The simulation results of the bit error rate (BER) over additive white Gaussian noise (AWGN)

channel demonstrate that the BER performance of the new SOYA decoder is not degraded. The

BER performance of SOYA used in a serially concatenated block codes scheme reveals that the

soft outputs of the proposed decoder are the same as those of the conventional SOYA decoder.

Iterative decoding of serially concatenated block codes reveals that the quality of reliability esti­

mates of the proposed SOYA decoder is the same as that of the conventional SOYA decoder.

ii

Résumé

L'utilisation de codes linéaires en bloc est une technique bien connue qui permet la transmis­

sion numérique fiable dans des canaux de communication bruités. Cependant, il rest difficile

d'implémenter en pratique des décodeurs à entrées et sorties souples pour les codeurs en blocs,

du fait de leur complexité.

La présente thèse étudie un nouveau système de décodage des codes linéaires en bloc basé

sur l'algorithme de Viterbi à sorties souples (SOVA), appliqué à un treillis divisé en sections.

Les complexités algorithmiques associées à ce nouveau décodeur SOYA et au décodeur SOYA

conventionnel sont dérivés dans ce travail. Ces résultats sont exploités afin d'obtenir la division

en sections optimale des treillis considérés, pour l'application du SOYA. Des divisions optimales

pour l'application des algorithmes MAP, Max-Log-MAP et Viterbi sont incluses à des fins de

comparaison. Les résultats confirment que le SOYA basé sur un treillis en sections est le plus

économique du point de vue calculs de tous les algorithmes à entrées et sorties souples considérés.

Des simulations sur un canal BBGA démontrent que la division en sections ne dégrade pas la

performance du SOYA du point de vue du taux d'erreurs binaires. L'tude du taux d'erreur binaire

du SOYA utilis dans un shcma de correction d'erreur par codes concatns en srie dmontre que la

qualit des sorties douces gnres par notre algorithme est similaire celle du SOYA classique. La

mme conclusion peut tre tire d'une tude des performances dans un dcodage itratif.

iii

Acknowledgments

l would like to express my sincere gratitude to my supervisor, Professor Fabrice Labeau, for his

guidance, suggestions, and continuous support throughout my graduate studies. Special thanks

also goes to the Canadian Institute for Telecommunications Research (CITR) and to the Canadian

Space Agency (CSA) for sponsoring this research project.

l would also like to extend my thanks to fellow researchers and close friends: Tania, Karim,

Martin, Alex, Youssef, Ricky, Kamal, Dave, Fred, and Eric, for aU your useful suggestions, great

friendships, and the fun research environment you have created.

Special thanks to my parents and Bebo for aU their love and support.

Contents

1 Introduction

1.1 System Model .

1.2 Reed-Muller Codes

1.3 Trellis Decoding

1.4 Trellis Sectionalization

1.5 Maximum-Likelihood Decoding

1.5.1 Viterbi algorithm

1.6 Soft-Input Soft-Output Decoding .

1.6.1 Maximum A Posteriori Algorithm

1.6.2 Maximum Logarithm MAP Algorithm .

1.6.3 Soft-Output Viterbi Algorithm

1.7 Block Turbo Coding

1.8 Previous Related Work

1.9 Thesis Contribution .

1.10 Thesis Organization .

2 Bit-Level Trellis

2.1 Bit-Level Trellis Construction

2.1.1 Trellis Oriented Generator Matrix

2.1.2 Trellis Complexity

2.1.3 State Labelling and Transition

2.2 Computational Complexity

2.2.1 Assumptions.........

2.2.2 Computational Complexity of the Decoding Steps

iv

1

2

3

5

7

8

9

9

10

Il

Il

12

13

13

14

16

16

16

17

18

19

20

20

Contents

2.3 Summary ...

3 Sectionalized Trellis

3.1 Sectionalized Trellis Construction

3.1.1 Sectionalized Trellis Complexity .

3.1.2 State Labelling and Transition

3.1.3 Optimum Sectionalization ..

3.2 Computational Complexity

3.2.1 Computational Complexities of the Decoding Steps of Viterbi, Max-Log-

v

26

28

28

29

30

31

33

MAP and MAP Aigorithms . 33

3.2.2 Soft Output Viterbi Aigorithm

3.3 Summary ..

4 Simulation Results

4.1 Computational Complexity Evaluation

4.1.1 Bit-Level Trellis

4.1.2 Optimally Sectionalized Trellis for SOYA

4.1.3 Computational Comparisons of Decoders

4.2 BER Performance Evaluation.

4.2.1 Block Codes

4.2.2 Serially Concatenated Black Codes

4.2.3 Iterative Decoding of Serially Concatenated Block Codes.

4.3 Summary

5 Conclusion

5.1 Summary

5.2 Future Work .

A Comparisons with Results in the Literature

A.1 Bit-Level Trellis Comparisons

A.2 Optimally Sectionalized Trellis Comparisons

B BER Performance

References

42

46

49

49

50

52

52

60

60

61

65

67

69

69

70

72
72

80

83

86

List of Figures

1.1 System Model.

1.2 Trellis Representation of the Encoder. .

1.3 A Sectionalized Trellis Representation ..

2.1 Bit-level trellis for RM (8,4) code. . ..

3.1 Sectionalized trellis for RM (8,4) code with {0,4,8} section boundaries.

vi

3

6

7

19

31

4.1 Bit-error performance of SOYA decoding of the RM (8, 4) code. 61

4.2 Bit-error performance of MAP, Max-Log-MAP, SOYA, and Viterbi decoding

based on a uniform 2-section trellis of the RM (8, 4) code. 62

4.3 Bit-error performance of MAP, Max-Log-MAP, SOYA, and Viterbi decoding of

the RM (8, 4) code. .. 63

4.4 System Model for a Serially Concatenated Block Code Scheme. 63

4.5 Bit-error performance of using SOYA as the inner decoder in a concatenated

scheme formed from the RM (8, 4) code.. .. 64

4.6 Bit-error performance of using MAP, Max-Log-MAP, and SOYA as the inner

decoders in a concatenated scheme based on a uniform 2-section trellis for the

RM (8,4) code " 65

4.7 Bit-error performance of using MAP, Max-Log-MAP, and SOYA as the inner

decoders in a concatenated scheme based on a bit-Ievel trellis and on a uniform

2-section trellis for the RM (8, 4) code.. 66

4.8 System Model for Iterative Decoding of Serially Concatenated Block Codes. . 66

4.9 Iterative SOYA Decoding of Serially Concatenated Block Codes. . 68

B.l Bit-error performance of SOYA decoding of the (32,16) RM code. 84

List of Figures vii

B.2 Bit-error performance of SOYA decoding of the (32, 26) RM code. 84

B.3 Bit-error performance of MAP, Max-Log-MAP, SOYA, and Viterbi decoding of

the (32, 16) RM code. .. 85

B.4 Bit-error performance of MAP, Max-Log-MAP, SOYA, and Viterbi decoding of

the (32, 26) RM code. .. 85

viii

List of Tables

2.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and MAP algo-

rithms for decoding a unit section of a trellis. 27

3.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and MAP algo­

rithms for decoding a section of a trellis. .. 47

4.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and MAP algo-

rithms based on a bit-Ievel trellis ofRM codes. 51

4.2 Computational complexities of SOYA based on a bit-1evel trellis and on an opti-

mally sectionalized trellis of RM codes. .. 53

4.3 Optimum sectionalizations of RM codes and computation al complexities of Viterbi,

SOYA, Max-Log-MAP, and MAP algorithms. 55

A.l Computational complexities of Viterbi, Max-Log-MAP, and MAP decoding of

RM codes found in the literature. .. 73

1

Chapter 1

Introduction

Error control coding is essential for a reliable data transmission in all data communication sys­

tems. The use of block codes is a well known error-control technique. Many theorists have

investigated soft-input soft-output (SISO) decoding of block codes. However, a computation­

ally efficient and practically implementable SISO algorithm for block codes is still a challenging

problem.

The theoretical fundamentallimit on the transmission rates in the digital communication sys­

tems have been established by Shannon [1]. The recently discovered Block Turbo Codes (BTCs)

are able to achieve an error performance near this Shannon limit [2].

Motivated by the search for a computationally efficient decoding algorithm for the BTCs, the

objective of this thesis is to establish a low complexity near optimum SISO algorithm that can

be implemented in the component decoders of the BTC loop. This is accomplished through the

examination of the new decoding scheme based on the trellis-based soft-output Viterbi algorithm

(SOVA) applied to a sectionalized trellis for linear block codes.

The sectionalization method allows the decoder to output more code bits in one trellis section.

This can reduce the number of computations required by the decoder to process a received signal.

The computation-wise optimum sectionalization algorithm provides a sectionalized trellis for

which a minimum number of computations are required by a decoder. This algorithm has been

devised for Viterbi decoding in [3], and has been applied to MAP and Max-Log-MAP decoding

in [4].

This thesis pro vides the optimum sectionalizations for SOYA decoding of different linear

block codes and the corresponding computational complexity of the decoder. The computation al

1 Introduction 2

complexity measures only the number of operations required by the algorithm to decode a signal.

Storage and memory requirements, decoding delay and speed, and the addressing issues are not

taken into consideration. The performance of the proposed SOYA decoder, measured in terms of

its BER for additive white Gaussian noise (AWGN) environment, is also provided. The obtained

results are compared to those of the conventional SOYA decoder based on a bit-level trellis, as

well as to the already investigated sectionalized trellis-based MAP, Max-Log-MAP, and Viterbi

algorithms. Similar BER performance evaluations are provided for the concatenated scheme

using SOYA, MAP, and Max-Log-MAP as the inner decoders and Viterbi as the outer decoder.

Results of iterative SOYA decoding of concatenated block codes are also provided and discussed.

This chapter begins with the system model of the proposed decoding scheme. This is followed

by the review of linear Reed-Muller block codes, in Section 1.2. The purpose of Section 1.3 is

to give the reader an overview of trellis decoding. Next, in Section 1.4, the principal elements of

trellis sectionalization are explained. The subsequent two sections explain maximum-likelihood

(ML) and soft-input soft-output (SIS0) decoding. Block Turbo Coding, the motivation behind

this thesis, is described in Section 1.7. Section 1.8 presents sorne of the earlier work done related

to the complexity reduction methods. Section 1.9 states the contribution of this thesis made in

establishing a low-complexity near-optimum S1S0 algorithm. Section 1.10 gives the organization

of the rest of the thesis.

1.1 System Mode)

The system model built in this thesis is illustrated in Figure 1.1.

The encoder encodes an information sequence, m = {ml, m2, ... , m K }, of K bits into a

code sequence, C = {Cl, C2, ... ,CN}, of N bits. It is assumed that all information bits are equally

likely. Each code bit, formed and transmitted by the encoder, depends only on the CUITent state

of the encoder, defined by a finite set, and the CUITent input information bit. As such, the encoder

is modelled as a finite state Markov process. This encoder and its generated codewords are

graphically represented by a trellis, as discussed in Section 1.3.

The binary phase - shift keying (BPSK) modulator maps the code sequence, c, into a bipolar

sequence represented by u = {UI, U2, ... ,UN}, where Ui = 2Ci - 1 for 1 S; i S; N. Hence, the

components of the codewords are mapped from {O, 1} to {-l, + 1} in u.

The channel is the physical medium that connects the transmitter and the receiver. As the

signal is transmitted through the channel, it is distorted due to channel imperfections. Noise is

1 Introduction

Fig. 1.1 System Model.

1 n
u 1

.. 1 .. J*
AWGN
channel

3

added to the channel output, resulting in a corrupted version of the transmitted signal. In this

thesis, the additive white Gaussian noise (AWGN) channel is used as the transmission media.

The transmitted signal is distorted by an additive, stationary, white, Gaussian noise n, a sequence

of N Gaussian random variables of zero-mean and variance No/2.

At the receiving end, the demodulator passes the unquantized received signal sequence,

r = u + n, to a decoder for processing. A trellis is used to decode linear codes by applying

trellis-based Viterbi, SOYA, Max-Log-MAP, or MAP decoding algorithms. The estimate of the

transrnitted codeword, ê, based on the trellis-based decoding algorithm is provided. For aIl, but

Viterbi algorithm, the reliabilities of symbols in ê are also provided. The estimated informa­

tion sequence, m, is obtained from ê using the inverse mapping of the one used by the encoder,

between information sequences and the codewords.

1.2 Reed-Muller Codes

Reed-Muller (RM) codes, introduced by Muller in 1954 [5], are systematic linear block codes.

The first decoding algorithm for these codes was devised by Reed in the same year [6]. Their

trellises are easily constructed, enabling these codes to be decoded effectively with trellis-based

decoding algorithms.

The RM (r, m) code of order r, where 0 ::; r ::; m, can be defined by the generated vectors

represented by the Boolean polynomials of degree r or less in m variables, [7], with the following

1 Introduction 4

parameters:

Code Length: N=2m

Message Length: K = 1 + (7) + ... + (::)
Minimum Distance: d = 2m

-
r

The 2K possible codewords, corresponding to the 2K possible messages, form a block code of

length N, denoted as (N, K), generated by a K x N generator matrix. It is common to de scribe

the RM (r, m) code with the notation RM (N, K), as is do ne in this thesis.

A general generator matrix, GCN,N), for an RM codes with the same parameter m is the m­

fold Kronecker product of the base matrix G C2 ,2), where a Kronecker product of general matrices

A = [Aj] and B = [Bij] is defined as:

For RM codes of specifie order r, the generator matrix is formed from the rows of G(N,N) with

weights equal to or greater than the minimum distance, 2m -
r

, of the RM code. The encoding is

performed based on the reduced echelon form (REF) of this matrix.

For example, the general generator matrix, G(8,8), for RM codes of length eight, is the 3-fold

Kronecker product of the base matrix,G (2,2):

G(8,8) = [~ ~] 09 [~ ~] 09 [~ ~ 1
1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

1 Introduction 5

where the base matrix G(2,2) is:

G =[11] (2,2) 0 1 .
For the first order RM code of length eight, RM (8,4) code, the generator matrix is the REF

of the matrix obtained from the rows of G (8,8) with weights equal to or greater than 22 :

1 0 0 1 0 1 1 0

G=
0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

The 2K linear combinations of the K rows form the codewords. The codeword c

{Cl, C2, ... ,CN} for the message m = {ml, m2, ... ,mN} is given by

c=m·G

(1.1)

where gl, g2, ... , gK represent the row vectors of the generator matrix.

As RM codes are linear systematic block codes, the information bits received by the en­

coder are part of the generated codewords. Their positions in the codeword correspond to the K

columns of the IK identity matrix in G, with the same order of appearance.

1.3 Trellis Decoding

A trellis, introduced for linear block codes by Bahl et al. in [8], graphically represents the en­

coder by astate diagram expanded in time. AH the codewords of any linear block code can be

represented by a trellis.

A treHis T is composed of N + 1 time instants, numbered from 0 to N that represent one

encoding interval and that border N sections, numbered from 1 to N, corresponding to N bit

1 Introduction 6

intervals. It is defined as T = (S, A, B), where Sis the set of possible states of the encoder, A is

the set of possible encoder outputs represented by the code bits in branch labels, and B is the set

of branches in the trellis. An example of the trellis representation of encoder is shown in Figure

1.2.

state subsets:

branch subsets:

time instants:
bit intervals:

(j

o 2 N-2 N-1 N
2 N-1 N

Fig. 1.2 Trellis Representation of the Encoder.

The set S is partitioned into disjoint subsets Si, for each time instant i, containing a possible

state of encoder after transmitting the ith bit. The subsets So and SN, each consist of a single

state, (Jo and (J f' respectively. The set B is also partitioned into disjoint subsets Bi, for each

section i = 1 to N, containing branches (J, (JI, Œ) that connect states (J E Si-l to states (J' E Sil

with label Œ E A corresponding to the encoder output of that transition. For a bit level trellis that

represents binary codes, every state has at least one, but no more than two incoming and outgoing

branches, except for the initial state, (Jo, which has no incoming branches and for the final state,

(J f' which has no outgoing branches. Every path in the forward direction connecting (Jo to (J f

represents a codeword.

During each encoding interval, as the encoder transverses a sequence of states

((Jo, (JI, ... , (J" i, ... , (J f), by branches with a label sequence c = {Cl, C2, ... , Ci, ... , C N }, rep­

resenting a codeword, K information bits are encoded into N code bits, and shifted onto the

1 Introduction 7

channel in N bit intervals.

The first study of trellis construction and structure for linear block codes was presented by

Wolf in 1978 [9]. However, at that time, it was believed that block codes did not have simple

trellis structures and that ML decoding of linear block codes was practically impossible except

for very short block codes. There was not much research in the trellis structure of linear block

codes until Forney showed, in 1988, that sorne block codes, such as RM codes, have simple trellis

structures [10].

1.4 Trellis Sectionalization

It is possible to sectionalize a bit-Ievel trellis with section boundaries at selected instants in the

encoding interval, as is shown in Figure 1.3. The encoder can form and transmit more than one

code bit in the resulting intervals. Considering only a subset of time instants {ho, hl, h2 , ... , hv}

where 0 = ho < hl < ... < hv = N, the number of sections is reduced. The resulting trellis

consists of v sections, where 1 ::; v ::; N. Each section, Tj , is hj - hj - l bit intervals long.

state subsets: 8 a 8 2 8 N-2 8 N

" ((
1

" \ \\ /

(
\

(
\

{
\

tlme Instants: a 2 N-2 N

section Intervals: v

Fig. 1.3 A Sectionalized Trellis Representation.

1 Introduction 8

The sectionalization is achieved by:

1. deleting all states, belonging to the state subsets that are not at the new boundary locations,

and all their incoming and outgoing branches, and

2. connecting states at the adjacent new boundary locations by multiple branches correspond­

ing to the paths that connect these states in a bit-Ievel trellis. These branches, known as

parallel branches, are therefore labelled by an t'rtuple, where t'j = hj - hj - 1• A composite

branch represents the set of parallel branches between each pair of adjacent states.

A trellis representation makes it possible to implement maximum-likelihood and SISO de­

coding of a code with reduced decoding complexity.

1.5 Maximum-Likelihood Decoding

Maximum-likelihood (ML) sequence decoding minimizes the code sequence error probability,

P(E), for equally probable transmitted codewords. The decoding is achieved by finding the

most likely transmitted codeword given what was received.

If ê is the estimate of the transmitted codeword sequence c, a decoding error occurs if ê =1= c,

and is defined as

P(E) = L P(ê =1= clr)P(r) (1.2)
r

Minimizing P(E) is equivalent to minimizing P(ê =1= clr) or maximizing P(ê = clr), and

by Bayes theorem:

P(
1)

= P(rlc)P(c)
c r P(r) (1.3)

Since each codeword is equiprobable, P(c) is a constant and can be omitted from (1.3).

Hence, in order to minimize P(E) in (1.2), the decoder selects the estimate of the transmitted

code sequence, ê, that maximizes P(rlê).

This type of decoding outputs only estimated code bits, also called hard outputs, without

providing their reliability measures. The ML decoding can be implemented by applying the

Viterbi algorithm to the trellis.

1 Introduction 9

1.5.1 Viterbi algorithm

The Viterbi algorithm [11],[12],[13] computes P(rlc) for all code sequences entering each state

in a trellis and selects the maximum. This is done by first computing all the branch probabilities,

P(bi ((J, (J')), representing the probability of the transition of the encoder from state (J E Si-I to

state (J' E Si through the branch bi ((J, (J') associated with ri, in each trellis section, and expressed

as:
- 2
P(bi ((J, (J')) ex N/iui

Next, aIl the state probabilities in the forward recursion, ai((J'), for time instants i = 0 to

i = N, are ca1culated as:

At the final state, the code sequence that provides the maximum probability is the maximum

likelihood (ML) path. The decoder outputs the bits corresponding to the most likely transmitted

codeword that correspond to the branch labels of this ML path. The reliability measures of the

estimated code bits are not provided.

Since the Viterbi algorithm minimizes the sequence error probability, it is optimum in terms

of the word error rate (WER). However, it does not minimize the bit error probability, and is,

therefore, only suboptimum with respect to the bit error rate (BER).

1.6 Soft-Input Soft-Output Decoding

In many error-control coding schemes, it is desirable to provide estimated bits as weIl as their

reliabilities, also called soft outputs, for further processing. The soft outputs can be used as an

input to another decoder in a concatenated scheme or in iterative decoding, such as turbo coding.

SISO algorithms, such as MAP, Max-Log-MAP, and SOYA, provide the soft informa­

tion associated with the decision on each code bit Ci, based on the received sequence r

{rI, r2, ... , rN}, in the form of the log-likelihood ratio (LLR):

for 1 :::; i :::; N, (lA)

where P(Ci bl mathbfr), b E {I,O}, represents the a posteriori probability (APP) of the

1 Introduction 10

transmitted code bit.

The equations for generating this soft output information for MAP, Max-Log-MAP, and

SOYA decoders are defined in Section 2.2 for bit level trellises, and in Section 3.2 for sectional­

ized trellises.

The decoders output each estimated code bit, êi. by comparing its LLR value, L(êi), to a

threshold of zero:

~ = {~ ,
for L(êi) > 0,

for L(êi) :::; O.

1.6.1 Maximum A Posteriori Algorithm

The Maximum A Posteriori (MAP) algorithm was developed by Bahl et al. in 1974 [8]. MAP

algorithm computes all the branch probabilities in each trellis section as:

Next, the state probabilities in the forward recursion, Œi(a'), and in the backward recursion,

f3i-l(a), are calculated as:

Œi(a') = L P(bi(a, a'))Œi-l(a)
aEOi-l (a')

f3i-l(a) = L P(bi(a,a'))f3i(a')
a'E\{!i(a)

To ob tain the soft output, MAP considers all paths in each trellis section, and partitions them

into two sets corresponding to the two possible encoder outputs. The soft output of (l.4) for MAP

is defined as the ratio of the probabilities of these two sets in the logarithmic do main as:

Although optimal in terms of BER performance, the MAP algorithm requires a large number

of computations, and as such, is too complex for implementations in many communication sys-

1 Introduction 11 -----------_ __ .. _ _._. __ _ ... _._---- ._-----_ _- ... _ _-_ __ ... _ _ - - ... _-

tems. Approximations of the MAP algorithm, such as ML SOYA and Max-Log-MAP, have been

derived to reduce the number of operations, but are suboptimal in terms of BER.

1.6.2 Maximum Logarithm MAP Algorithm

The Maximum Logarithm MAP (Max-Log-MAP) algorithm [14] is an approximation of the

MAP algorithm that operates in the logarithmic domain. As such, its computational complex­

ity is much lower than that of MAP algorithm. However, due to its approximation of (l.4), it is

suboptimum in terms of BER.

First all the branch probabilities in each trellis section are computed as for the Viterbi algo­

rithm. Next, the state probabilities in the forward recursion, ëii(a'), and in the backward recur­

sion, !3i-l (a), are ca1culated as:

The Max-Log-MAP decoding algorithm obtains the soft output by considering two ML paths,

corresponding to the two possible encoder outputs, in each trellis section. The soft output is

approximated as the difference between the probabilities of these two paths as:

- max {ëii-l(a) + P(bi(a, a')) + !3i(a')}
(a,a')
Ci=O

1.6.3 Soft-Output Viterbi Algorithm

The soft-output Viterbi algorithm (SOVA) is a modified Viterbi algorithm that also provides the

approximate soft output for each estimated code bit [15],[16]. The version of SOYA examined in

this thesis is presented in [17]. The algorithm is based in the logarithmic domain providing only

the approximation of (l.4). As such, it is suboptimum with respect 10 BER.

AlI the branch probabilities, and the state probabilities in the forward and in the backward

recursions are computed the same way as for the Max-Log-MAP algorithm.

To ob tain the soft output, SOYA considers two paths in each trellis section: the ML path

associated with that section, and the most probable path that is complementary to the ML path.

1 Introduction 12 ----_ __ ._ .. _ _ _-_._ .. _ .. _ _ .. __ _.---_ __ ._---_ .. _._._-_._----

Unlike Max-Log-MAP algorithm, SOYA only guarantees to find one best path, the ML path. The

other path is not necessarily the best one in its set, due to the fact that the best path with the

complementary bit to the ML path may be discarded before it merges with the ML path. The soft

output is approximated as the difference between the probabilities of the se paths as:

where the most probable path whose label is complementary, x, to the ML estimate is obtained

as:

P(Ci = xlr) = marc {ai-l(a) + P(bi(a, a')) + ,8i(a/)}
(<7,<7)
Ci=X

1. 7 BIock Thrbo Coding

Turbo error-control coding was introduced in 1993 by Berrou et al. [18], [19]. The conventional

scheme consists of two recursive systematic convolutional codes concatenated in parallel, called

Convolutional Turbo Codes (CTC). In 1994, Block Turbo Codes (BTC) were presented by Pyn­

diah et al. [2], [20], [21]. They are constructed from product codes, introduced by Elias in 1954

[22], built using linear block codes. In both schemes, the component codes are decoded using

SISO decoding algorithms. It has been shown that CTCs and BTCs achieve performance close to

Shannon's theoreticallimit [1] on an AWGN channel. Due to such superior performance, CTCs

have been proposed for many communication systems, such as deep space, cellular mobile and

satellite communication networks [23], [24], [25]. They are especially useful for mobile wireless

applications to overcome channel fading and have been approved for the 3rd generation IMT2000

mobile systems, such as cdma2000 [26].

BTCs possess several advantages over CTCs. The results in [2] indicate that BTCs are the

most efficient known codes for high code rate applications. In [27], it is shown that BTCs are

more efficient than CTCs for small data blocks used in time-division multiple access (TOMA)

applications. For applications especially in cell-based transmission, BTCs are more suitable th an

CTCs because of the fixed cell size. They have been proposed for satellite asynchronous transfer

mode (ATM) applications [28]. For BTCs to be used in a wider range of applications, it is

desirable to have a practically implementable SISO decoder.

1 Introduction 13

1.8 Previous Related Work

For BTCs, several lower complexity decoders have been suggested. The Chase algorithm, pro­

posed in [29], was applied to BTCs by Pyndiah in [20], [2]. This algorithm is based on reviewing

only the most probable codewords located in the sphere of radius equal to the minimum distance

of the linear blocl\ codes. In [30], Kaneko's algorithm was applied. This algorithm is similar to

the Chase algorithm in the manner in which it generates the candidate codewords; the difference

is that the most likely codeword is definitely included in those codewords. SOYA based on a bit­

level trellis was applied to BTCs in [31]. AlI these algorithms were shown to offer a compromise

between BER performance and complexity of BTCs.

For CTCs, several complexity reduction schemes have also been presented. Luukkanen and

Zhang in [32], examined the performance and complexity of CTCs using Max-Log-MAP and

SOYA decoding schemes based on bit-leve1 trellises. Their simulation results show that although

the use of these decoders slightly degrades the performance of turbo codes, the computational

complexity is significantly reduced. SOYA based on a bit-Ievel trellis was also applied to CTCs

in [26] and [33] and was proven to have lower complexity than the conventional MAP decoder,

with suboptimal BER performance.

1.9 Thesis Contribution

The focus of this thesis is the new SOYA decoding scheme based on a sectionalized trellis. The

decoder's BER performance and its complexity, a measure of the number of required computa­

tional operations, are examined.

The techniques for computationally efficient implementation of Viterbi algorithm, presented

in [3], and of MAP and Max-Log-MAP algorithms, presented in [4], based on a bit-level trellis

and on a sectionalized trellis are reviewed. Using similar techniques, the computational complex­

ity of the proposed SOYA decoder and of the conventional SOYA decoder, based on a bit-level

trellis, are theoretically analyzed. The comparisons of these complexities for different linear

block codes show that the new SOYA decoder is significantly less computationally complicated

than the conventional one.

The computation-wise optimum sectionalization algorithm is applied to SOYA for different

linear block codes. The resulting optimum sectionalizations and the corresponding computational

complexities are compared to those of Viterbi, MAP, and Max-Log-MAP decoders. The results

1 Introduction 14

corroborate the fact that the proposed SOYA is the most computationally efficient S1S0 decoding

algorithm examined in this thesis .

The performance of the proposed SOYA decoder is obtained through BER simulations over

AWGN channel for different RM codes. The comparison with the performance of the conven­

tional SOYA decoder reveals that sectionalization does not degrade the algorithm's performance.

The performances of Viterbi, MAP, and Max-Log-MAP algorithms based on a sectionalized trel­

lis are also included for comparisons. The BER performance of using the new SOYA as the inner

decoder in the concatenated block code scheme is examined and compared to that obtained using

the conventional SOYA as the inner decoder. These are further compared to the BER perfor­

mances of using MAP and Max-Log-MAP as the inner decoders and Viterbi as the outer decoder

in a concatenated sc he me based on a bit-Ievel trellis and on a sectionalized trellis. The BER per­

formance of iterative decoding of concatenated block codes using the proposed SOYA is provided

and compared to that of applying the conventional SOYA to the component decoders.

1.10 Thesis Organization

Chapter 2 outlines the construction of the minimal bit-Ievel trellis for linear block codes. The fun­

damental concepts of the trellis construction are explained. These include: the formation of the

trellis oriented generator matrix; trellis complexity measures, such as state and branch complex­

ities; state labelling and transition. The chapter further presents the computational complexities

of the decoding algorithms applied to a bit-Ievel trellis. The assumptions employed are speci­

fied, and techniques for the computationally efficient implementation of the decoding steps of all

algorithms considered are explained.

Chapter 3 studies the sectionalization of a trellis. The sectionalized trellis complexity, in

terms of its structural properties, including state and branch complexities, is examined. Next, the

possible state transitions of the encoder and the corresponding generated code bits, are provided.

The following section provides the sectionalization algorithm that yields the optimum section

boundaries. The chapter next reviews the required computational complexities of the decoding

algorithms applied to a sectionalized trellis. The complexities of Viterbi, MAP, and Max-Log­

MAP algorithms are examined. U sing similar methods, the computational complexity of SOYA

applied to a sectionalized trellis is attained.

Chapter 4 presents the optimum trellis sectionalizations for the algorithms of interest for dif­

ferent RM codes. The computational complexities of SOYA are compared to the much larger

1 Introduction 15 ---_. __ ._._------_._ .. _-_._ __ ... _--_ ... _._----

ones required for the decoding of a bit-leve1 trellis. These results are further compared with those

obtained for MAP, Max-Log-MAP and Viterbi algorithms. The simulations of the BER perfor­

mances, over AWGN channel, for SOYA based on a bit-Ievel trellis and based on a sectionalized

trellis are discussed. The performances of Viterbi, MAP, and Max-Log-MAP algorithms ap­

plied to bit-Ievel trellises and to sectionalized trellises are inc1uded for comparisons. The chapter

further evaluates the BER performances of using SOYA, MAP, and Max-Log-MAP as the inner

decoders and Viterbi as the outer decoder in a concatenated scheme based on a bit-Ievel trellis and

on a sectionalized trellis. Aiso inc1uded, are the BER performances of using the proposed SOYA

and the conventional SOYA as the component decoders in an iterative decoding of concatenated

block codes scheme.

Chapter 5 presents a summary of the thesis contributions, the conc1uding remarks, along with

ideas for the potential future work.

Appendix A provides the discussion on the differences with the best results found in the

literature.

Appendix B provides more simulation results of the BER performances of SOYA, MAP,

Max-Log-MAP, and Viterbi algorithms based on a bit-Ievel trellis and on a sectionalized trellis

for different RM codes.

16

Chapter 2

Bit-Level Trellis

Every linear block code can be represented by a trellis, astate diagram expanded in time that is

used as a template for ML and soft decision decoding. McEliece in [34] constructed a trellis that

has minimum complexity measures, such as the number of states and branches. This trellis is

also known as a minimal trellis.

The first part of this chapter, Section 2.1, outlines the construction of the minimal bit-leve1

trellis using a special form of the generator matrix for linear block codes and its structural prop­

erties. The second part of this chapter, Section 2.2, reviews the computational complexity of

Viterbi, Max-Log-MAP, and MAP algorithms and obtains the complexity of SOYA for decoding

a bit-leve1 trellis. The chapter conc1udes with the summary of the results.

2.1 Bit-Level Trellis Construction

In this thesis, a minimal trellis for a linear block code was constructed, using a trellis oriented

generator matrix that is explained in the next section. The following section, Section 2.1.2,

explains how to ob tain the fundamentals of the minimal bit-Ievel trellis, such as its state and

branch complexities. These are necessary to determine the possible encoder outputs, represented

by the branch labels in a trellis, that are explained in Section 2.1.3.

2.1.1 Trellis Oriented Generator Matrix

The construction of a minimal trellis is accompli shed by using the generator matrix in a trellis

oriented form, called trellis oriente/d generator matrix (TOGM) [35]. This is done by employing

2 Bit-Level Trellis 17

the following two conditions on the generator matrix of the code:

1. The first nonzero component of each row appears in a column before that of any row below

it.

2. No two rows have their last nonzero component in the same column.

By applying elementary matrix operations, the generator matrix of RM (8,4) code from Sec-

tion 1.2, is put in the TOGM form:

1 1 1 1 0 0 0 0

G=
0 1 0 1 1 0 1 0

(2.1)
0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

Next, the complexity measures of the minimal trellis representation of the code are derived

from the TOGM. These are necessary in constructing the trellis and are useful in the computation

of the decoding complexity of a trellis.

2.1.2 Trellis Complexity

The complexity of a bit-level trellis for a linear block code is measured in terms of the state and

branch complexities [36], [37], [38]. These two measures are obtained from the TOGM for that

code.

In a minimal trellis, the ith section corresponds to the ith column of the TOGM, and the ith

time instant corresponds to the "space between" columns i and i + 1 of the TOGM. The smallest

interval of the columns containing all the nonzero bits of a row gi of the TOGM, denoted as

span(gi), represents the interval of the sections during which the information bit associated with

the row gi can affect the encoder output. The spans of the rows in the TOGM for RM (8,4) code,

of (2.1), are: span(gl)=[1,4], span(g2)=[2,7], span(g3)=[3,6], and span(g4)=[5,8]. The set of

time instants at which the information bit associated with the row gi can affect the encoder state

are contained in this interval.

State Complexity

The state space of the encoder at each time instant i is determined by the set of information bits,

denoted as Af, corresponding to the rows of the TOGM, denoted as Gf, that affect that time

2 Bit-Level Trellis 18

instant. The total number of states at each time instant i, denoted as ISil, is: ISil = 21Gil , where

IGil is the dimension of the set Gr For example, for the RM (8,4) code, the total number of

states at each time instant i is {1 ,2,4,8,4,8,4,2, 1 }.

The number of rows in the TOGM that affect a time instant i is always equal to the number

of rows that affect a time instant N - i, for aU RM codes [7]. This implies that the number of

states at these time instants is equal, and consequently the bit-Ievel treUis has a mirror symmetry

with respect to the N /2 time instant.

Branch Complexity

The total number of branches in each section i, denoted as 1 Bi l, is determined by the number of

rows that affect that section, in other words, by the rows whose spans contain i. The information

bits that correspond to these rows affect the encoder output during the interval associated with that

section. For the RM (8,4) code, the total number of branches in each section i is {2,4,8,8,8,8,4,2}.

2.1.3 State Labelling and Transition

The label of the current state of the encoder at time instant i is defined by the set Ai. Each state

is labeUed by a IAilmax-tuple, where IAilmax is the maximum dimension of the Ai sets. This is

sufficient, since the number of states at any level of the treUis is at most equal to 21 A i Imax. The first

lAi 1 components of the state label correspond to the specific combinations of the information bits

in Ai, and the remaining IAilmax - IAil components are set to O.

The encoder output, Ci+l, generated during the (i + 1) th bit interval, connects the current

state of the encoder, (J E Si, to a state (J' E Si+l, whose label contains the same combination

of bits that also define (J. The encoder output is determined by (J E Si and by the information

bit, denoted as a*, that only starts to affect the encoder during that interval, for which the first

nonzero component of its corresponding row is in the (i + 1)th column. It is defined as:

IGil

CHI = a* + L algl,HI
1=1

(2.2)

where a* is the current information bit, and the second term of (2.2) is the contribution of

the current state of the encoder defined by Ai = {al, a2, ... , alAi I} corresponding to Gi =
{glJ g2,"" glGil}, and gl,i+l is the (i + l)th component of g!. The current information bit a*,

2 Bit-Level Trellis 19

if it exists, starts to affect the encoder while cHI is being formed, and as such, its value is not

known to the encoder until after the code bit CHI is transmitted. For this reason, the code bit

CHI can have two possible values, depending on the value of a*, represented by two branches

diverging from each state (J E Si to two states in SHI. If there is no cUITent input information

bit, the code bit CHI has only one possible value, determined by the CUITent state of the encoder,

for each (J E Si. Hence, there is one branch diverging from each state (J E Si to one state in SHI.

Figure 2.1 shows the bit-Ievel trellis diagram for a RM (8,4) code.

~~~\~ \ 

'<,_oo~o~o~ .. 
1~~ 1~0/G--< ooo·~ 

(000 ) 

1~~--" )-!-(/~~ ~)_~_-{ 1 ~o y(' 

",OH1'~o/ . 
o (101 ( / 

o 

Fig. 2.1 Bit-level trellis for RM (8,4) code. 

2.2 Computational Complexity 

The computational complexity of an algorithm considered in this thesis, as mentioned in the 

Introduction, measures only the number of real operations required to decode a bit-1eve1 trellis. 



2 Bit-Level Trellis 20 

The storage and memory requirements, decoding delay and speed, and the addressing issues are 

not taken into account. 

In the next section, the assumptions made for computing the decoding complexity are stated. 

The computational complexity of the decoding steps for aIl algorithms considered is presented 

in the next section, using methods for the most computationally efficient implementation for the 

algorithms on a bit-1eve1 trellis. 

2.2.1 Assumptions 

The following assumptions were applied in this thesis to ease the calculation of the computational 

complexities of the decoding algorithms of interest: 

• No computations are necessary for expO and logO operations, as they are accompli shed by 

a table lookup. 

• No computations are necessary for a negation operation. 

• Comparison, subtraction, and addition operations are equivalent in terms of complexity. 

• In a digital signal processing chip, a multiplication is often a one-cycle operation, while a 

division requires many cycles. However, in this thesis, division and multiplication opera­

tions are assumed to be equivalent in terms of complexity. 

2.2.2 Computational Complexity of the Decoding Steps 

The computation al complexity of a trellis-based algorithm is essentially a function of the number 

of states, ISil, at each time instant, i, for 0 ::; i ::; N, and the number of branches, IBil, in each 

section, Ti, for 1 ::; i ::; N, of a trellis. The number of computations required by Viterbi, MAP, 

and Max-Log-MAP for each decoding step have been derived in [3] and [4]. The results are 

presented next along with the required complexity for each decoding step of SOYA in section Ti 

of a bit-Ievel trellis. The complexity of decoding an entire trellis for each algorithm is the sum of 

the required computations for each Ti, for 1 ::; i ::; N. 

For aIl the decoding algorithms examined in this thesis, it is necessary to compute aIl the 

branch probabilities, aIl the state probabilities in the forward recursion, and for the SISO algo­

rithms, also an the state probabilities in the backward recursion to be used in the calculation of 

the soft-output for the estimated code bits. 



2 Bit-Leve} Trellis 21 

The processing of Viterbi, Max-Log-MAP, and SOYA algorithms that consider ML paths is in 

the log domain. The notation of ?, a, and !3 is used to represent log P, log a, log (3, respectively, 

the probabilities that are computed by these algorithms in the log domain. 

Branch Probability 

The branch probability, P( bi ((J, (J')), representing the probability of the transition of the encoder 

from state (J E Si-l to state (J' E Si through the branch bi((J, (J') associated with ri, in Ti, is 

defined as: 

P(bi(Œ, (J')) = P((J', bi((J, (J'), ril(J) 

= P((J', bi((J, (J')I(J)P(ril((J, (J'), bi((J, (J')) 
(2.3) 

For equiprobable signalling, P((J', bi((J, (J')I(J) is constant in Ti' Therefore, for AWGN channel 

with zero mean and variance No/2, 

P(bi((J, (J')) ex: P(ril((J, (J'), bi((J, (J')) 

1 (ri - Ui)2 
ex: y!27f No/2 exp{ - 2No/2 } 

(2.4) 

where Ui = 2Ci - 1. The number of ca1culations required to compute P(bi((J, (J')) is reduced, 

without changing the code bit estimate, by factoring out the first term and expanding the expo-

nent: 

P(b .( ')) {_ (r; - 2riui + uT)} 
~ (J, (J ex: exp 2N

o
/2 (2.5) 

The first term in the numerator of the exponent, r;, is common for all branches in Ti, and the last 

term, uT, always equals 1. Therefore, P(bi((J, (J')) is simplified to: 

(2.6) 

For Viterbi, SOYA, and Max-Log-MAP, the branch probability is expressed as: 

(2.7) 

As these algorithms consider only branches with maximum ?(bi((J, (J')) for each state (J' E 



2 Bit-Level Trellis 22 

Si, and as the above expression is an increasing function of TiUi, it suffices to compute only that 

for these algorithms. This requires at most a negation operation, since Ui E {-l, + 1}. 

For the MAP algorithm that considers all branches, and taking into account that exponential 

operations are costless, computing (2.6) requires one multiplication in each Ti' 

Forward Recursion 

The probability of the encoder reaching astate 0-
1 E Si from astate 0- E Si-l, through the branch 

bi(o-, 0-
/
) in Ti, in the forward recursion for time instants i = 0 to i = N, is defined for Viterbi, 

SOYA, and Max-Log-MAP, as: 

(2.8) 

where Oi-l(o-/) denotes the set of states in Si-l that are adjacent to astate 0-
1 E Si. The initial 

state probability in the forward recursion is 0:0(0-0) = O. 

For each state 0-
1 E Si, an addition operation is required for each branch converging into that 

state, and the results are then compared to find the maximum value. For the first section, Ti, 

considering that 0:0(0-0) = 0, no additions are required. In summary, the following number of 

operations is required in the forward recursion for each Ti: 

comparisons : IBil- ISil, for 1 SiS N 

{ 0, 
for Tl, 

additions: 
IBil, for 1 < i S N. 

For MAP decoding, the state probabilities in the forward recursion are defined as: 

CYi(o-/) = L P(bi(o-,o-/))CYi-l(o-) (2.9) 
aEOi_l(a') 

with the initial state probability in the forward recursion CYo(o-o) = 1. 

Applying the analysis and consideration of (2.8), MAP algorithm requires the same number 

of operations, except that comparisons are replaced with additions, and additions are replaced 

with multiplications. 



2 Bit-Level Trellis 23 

Backward Recursion 

For aIl SISO algorithms, it is also necessary to calculate the state probabilities in the backward 

recursion for time instants i = N to i = O. For SOYA and Max-Log-MAP, the probability of 

the encoder, reaching astate 0- E Si-l from state 0-' E Si, through the branch bi (0-,0-' ) in Ti, is 

defined as: 

(2.10) 

where Wi(o-) denotes the set of states in Si that are adjacent to astate 0- E Si-l. The final state 

probability in the backward recursion is i3 N (0-f) = O. 

Similarly to ca1culating the forward state probabilities, an addition operation is required for 

each branch diverging from the state 0- E Si-l, and the results are then compared to find the 

maximum value. For the last section, considering that i3 N (0-f) = 0, no additions are required. In 

summary, the following number of operations is required in the backward recursion for each Ti: 

comparIsons : !Ei! -!Si-l!, for 1 ~ i ~ N 

{ 0, 
for TN , 

additions: 

!Ei !, for 1 ~ i < N. 

For MAP decoding, the state probabilities in the backward recursion are defined as: 

(3i-l (0-) = L P(bi (0-,0-' )) (3i (0-' ) (2.11 ) 
a'EWi(a) 

with the final state probability in the backward recursion (3 N (0-f) = l. 

MAP algorithm requires the same number of operations as SOYA and Max-Log-MAP, except 

that comparisons and additions are replaced with additions and multiplications, respectively. 

Soft Output 

The soft output for each estimated code bit is obtained for each SISO algorithm, using aIl the 

probabilities specified above, in the form of a LLR of the APP of the transmitted bits. The sign 

of this value determines the estimated code bits. 

For SOYA, the soft output for each decoded bit, L(êi ), is approximated as the difference 



2 Bit-Leve} Trellis 24 

between the probability of the ML path and the probability of the most probable path with the 

complementary label to the ML estimate in ~: 

(2.12) 

Depending on the ML estimate in Ti, the probability of the ML path, Œ N ( CY f ), is assigned to the 

appropriate path probability. The computations become necessary in finding the probability of 

the most probable path whose label is complementary, x, to the ML estimate êi : 

P(Ci = xlr) = ma,x {Œi-I(CY) +P(bi(CY,cy')) +,8i(CY')} 
(CT,CT ) 
Ci=X 

(2.13) 

Computing the above requires 2 additions for each branch with label x in each section of a trellis, 

other than in the first, Tl, and last, TN . For these sections, considering that ŒO(CYO) = 0 and 

,8 N (CY f) = 0, only 1 addition, for each branch with appropriate label, is required. These results 

are compared to find the maximum. The LLR of the estimated code is evaluated requiring only 

one subtraction. In summary, the following number of operations is required in computing the 

soft output for SOYA in each Ti: 

comparisons : IBil/2 - l, for 1 ~ i ~ N 

{ 1 ·IBil/2 + 1, for i = l,N, 
additions: 

2· IBil/2 + l, for 1 < i < N. 

For Max-Log-MAP, the soft output, L(êi ), for each decoded bit, êi , is approximated by the 

difference between the probabilities of the most probable path associated with bit one and the 

most probable path associated with bit zero: 

- max {Œi-l (CY) + P(bi (CY, cy')) + ,8i (cy')} 
(CT,CT') 
Ci=O 

(2.14) 

Computing each part of (2.14) requires 2 additions for each branch labelled appropriately in each 

section of a trellis, other than in the first, Tl, and last, T N. For these sections, considering that 

ŒO (CYo) = 0 and ,8 N (CY f) = 0, only 1 addition, for each branch with appropriate label, is required. 



2 Bit-Leve} Trellis 25 

These results are then compared to find the maximum. FinaIly, the soft output of the estimated 

code bit is evaluated, requiring one subtraction. In summary, the foIlowing number of operations 

is needed for computing the soft output for Max-Log-MAP in each Ti: 

comparisons : 2· (IBil/2 - 1), for 1 ~ i ~ N 

{ 2· (IB,I/2) + 1, for i = l,N, 
additions: 

2· (2· IBil/2) + 1, for 1 < i < N. 

MAP algorithm provides the soft output, L( êi ), for each estimated code bit, êi , by the ratio, 

in the logarithmic domain, of the probabilities of aIl paths in Ti associated with label 1, to the 

probabilities of aIl paths in Ti associated with label 0: 

(a,a') 
L(ê

i
) = log-'C'-'-i=--'-l ________ _ 

L ai-I(CJ)P(bi(CJ, CJ')){3i(CJ') 
(CT,a') 
Ci=O 

(2.15) 

Computing the numerator, requires 2 multiplications for aIl branches labelled with a positive bit 

in each section of a treIlis, other than in the first, Tl, and last, T N. For these sections, considering 

that 000 (CJo) = 1 and {3 N (CJ f) = 1, only 1 multiplication, for each branch with appropriate label, 

is required. These results are then added. The same number of operations is needed for the 

denominator. Finally, the soft output of the estimated code bit is evaluated, requiring one division 

since it is assumed that no computations are necessary for logO operation. In summary, the 

foIlowing number of operations is required for computing the soft output for MAP in each Ti: 

additions: 2· (IBil/2 - 1), for 1 ~ i ~ N 

{ 2· (IB,I/2) + L for i = l,N, 
multiplications: 

2· (2. IBil/2) + 1, for 1 < i < N. 



2 Bit-Level Trellis 26 

2.3 Summary 

A minimal trellis was constructed from the trellis oriented generator matrix. The computationally 

efficient methods were employed for the analysis of the computational complexities of Viterbi, 

SOYA, Max-Log-MAP, and MAP algorithms for decoding a bit-Ievel trellis. The total number 

of computations required by each algorithm for decoding a unit section of a bit-level trellis is 

presented in Table 2.1. In Chapter 4, these computational complexities are compared for different 

RM (N, K) codes. In the next chapter, the decoding complexities of these algorithms are reduced 

by means of sectionalizing a trellis. 



2 Bit-Level Trellis 27 

Table 2.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and 
MAP algorithms for decoding a unit section of a trellis. 

Decoding Steps Viterbi SOYA Max-Log-MAP MAP 

Branch 
Probabilities 

Comparisons 0 0 0 0 
Additions 0 0 0 0 
Multiplications 0 0 0 

Forward 

Recursion 

Comparisons IBil-ISil IBil-ISil IBil-ISil 0 
Additions 0, for i = 1 0, for i = 1 0, for i = 1 IBil- ISil 

IEil,for 1 < i :s: N IEil, for 1 < i :s: N 1 Bi l , for 1 < i :s: N 
Multiplications 0 0 0 0, for i = 1 

IBil,for 1 < i :s: N 

Backward 
Recursion NIA 

Comparisons IBil - ISi-ll IEil- ISi-ll 0 
Additions 0, for i = N 0, for i = N IBil-ISi-ll 

IBil,for 1 :s: i < N IEil,for 1 :s: i < N 
Multiplications 0 0 0, for i = N 

IBil, for 1 :s: i < N 

Soft Output NIA 

Comparisons IBil/2 - 1 IBil- 2 0 
Additions IBil/2 + 1, IEil + 1, IBil- 2 

fori=I,N for i = 1, N 

IBil + 1, 2 ·IBil + 1, 
for 1 < i < N for 1 < i < N 

Multiplications 0 0 IBil + 1, 
for i = 1, N 

2 ·IBil + 1, 
for 1 < i < N 



28 

Chapter 3 

Sectionalized Trellis 

This chapter investigates how sectionalization of a trellis diagram can reduce the computational 

complexity of the decoding algorithms. The first part of this chapter, Section 3.1, defines the 

sectionalized trellis complexities and explains the construction of the trellis for any set of section 

boundaries. The following section presents the computation-wise optimum sectionalization al­

gorithm, that was applied in this thesis to obtain the section boundaries that are optimal for the 

computational complexity of the algorithms considered. The second part of this chapter, Section 

3.2, analyzes the computational complexity of the decoding algorithms of interest applied to a 

sectionalized trellis. The methods used to analyze computational complexity of the Viterbi al­

gorithm [3], MAP and Max-Log-MAP algorithms [4] based on sectionalized trellis diagrams are 

considered and applied to obtain the computation al complexity for SOYA based on a sectional­

ized trellis. The chapter conc1udes with the summary of the results. 

3.1 Sectionalized Trellis Construction 

In this thesis, a trellis for a linear block code was sectionalized. The following sections define the 

complexity of the sectionalized trellis, in terms of the encoder states at the new section bound­

aries, and the number of composite and paraUe1 branches connecting these states. The expression 

for the possible state transitions of the encoder is also presented. 



3 Sectionalized Trellis 29 

3.1.1 Sectionalized Trellis Complexity 

The complexity of a sectionalized trellis for a linear block code is measured in terms of the state 

and branch complexities, both of which are obtained from the TOGM of that code. 

State Complexity 

The set of information bits, denoted as Ah.' corresponding to the rows of TOGM, denoted as 
J 

G hj , that affect the time instant hj determine the state space of the encoder at that instant. The 

total number of states at each time instant hj , denoted as IShj l, is IShj 1 = 21Gh j l, where IGhj 1 is 

the dimension of G h set. For example, for the RM (8,4) code, with section boundaries {0,4,8} 
J 

the total number of states at the three time instants is {1,4, 1 }. 

Branch Complexities 

The bran ch complexity of a sectionalized trellis is measured in terms of the number of com­

posite branches, distinct composite branches, and the number of branches contained within each 

composite branch, known as parallei branches. 

The set of composite branches, Ej+l' in the interval [hj , hj+l], belong to the subcode gener­

ated by the rows of the TOGM, denoted as G hH1 , that affect that interval as weIl as time instant 

hj+l. In other words, by the rows whose spans are [y, w], where hj :::; Y :::; hj+l and w > hj+l, 

and the subcode is denoted as C'. The number of composite branches diverging from each state 

(J E Shj' in a section Tj+l is IEji~VI = 2k(C
/
), where k(C') is the dimension of the code C'. The 

total number of composite branches in a section is then 1 Ej+l 1 = IShj 1 . IBji~vl. For example, 

for RM (8,4) code, with {0,4,8} section boundaries, there are 4 composite branches diverging 

from the state (Jo E So since g2, g3 E C' for the interval [0,4], In the interval [4,8], C' = {}, 
and therefore, there is one composite branch diverging from each of the four states, and the total 

number of composite branches in that section is 1 E'21 = 4 . 1 = 4. 

The set of distinct composite branches, EfH' is a subset of the set of composite branches, 

consisting of only those whose parallel branches are different. The set Ef+l is determined by 

the linearly independent combinations of the punctured rows, obtained by removing the tirst 

hj and the last N - hj+l components, of the subcode C'. The number of distinct composite 

branches in a section Tj+l is denoted as IEfHI. For the RM (8,4) code, the number of distinct 

branches in both intervals, [0,4] and [4,8], is equal to the number of composite branches, since the 



3 Sectionalized Trellis 30 

dimension of C' for the two sections is the same as the dimension of the punctured CI. Therefore, 

IBrl = IBgl = 4. 

The set of parallel branches, B%+l' in the interval [hj , hHl ], are generated by the subcode, 

Ch h ·+1' formed by the rows of TOGM, denoted as GPh ,that only affect that interval. In 
J' J j+1 

other words, by the rows who se spans are contained within that interval. The number of parallel 

branches within each composite branch in the THI section is then IB%+ll = 2k
(C

hj,hj+1), where 

k( Chj ,hj+1) is the dimension of the code Chj ,hj+1' For example, for RM (8,4) code, in the interval 

[0,4], gl E CO,4. Therefore, in that section, there are 2 parallel branches in each composite one. 

In the interval [4,8], g4 E C4,8, and hence, IB~I = 2. 

3.1.2 State Labelling and Transition 

The encoder output, generated during the interval [hj, hHl ], that connects the current state of the 

encoder at time instant h j , (5 E Shj' to astate (5' E Shj+1 at time instant hHl' is determined by 

the current encoder state and the current information bits. 

The CUITent state of the encoder is defined by the information bits corresponding to the rows 

in the set G h .. The state labelling of a sectionalized trellis corresponds to that of a bit-level trellis. 
J 

Each state is labelled by a 1 GU max-tuple, with the first 1 Gh.1 components corresponding to the 
J J 

combinations of the information bits Aj and the remaining components are set to zero. 

Since the information bits that define parallel branches B%+1 and the ones that define compos­

ite branches Bj+1 start to affect the encoder during [hj , hHl ] interval, they are considered current 

information bits. The encoder output in that interval, Chj+1' is defined as: 

IGhjl IGhj +11 IG~j+11 

L alPhj,hj+l(gt) + L atPhj,hj+l(gn + L ajPhj,hj+l(gj) (3.1) 
1=1 t=l j=l 

The first term is the contribution of the CUITent state of the encoder, defined by Ah
j 

= 
{al, a2,···, alAhl} cOITesponding to G hj = {gl, g2, .. ·, gIGhl}, and Ph j ,hj+1 (gl) is the punc-

J J 

tured gl row of G h , obtained by removing the first hj and the last N - hHI components of 
J 

that row. The second term is the contribution of the composite branches, defined by Ahj+l = 
{al, a2,"" aIAh +11} corresponding to G hj+1 = {gl, g2,"" gIGh +

1
1}, and Phj,hj+1 (gn is the 

J J 

punctured row of G hj+1' The third term is the contribution of the parallel branches, de-

fined by A~.+l = {al, a2,···, alAP I} corresponding to G~.+l = {gl' g2,"" glGP I}' and 
J h j +1 J h j +1 



3 Sectionalized Trellis 31 

Phj,hj+l (gj) is the punctured row of G~j+l' 

Figure 3.1 shows the sectionalized trellis for RM (8,4) code with {0,4,8} section boundaries. 

00 

E S 
01 

00 00 ~ .• 
10 1010 . 

11 
1001 

Fig. 3.1 Sectionalized trellis for RM (8,4) code with {0,4,8} section boundaries. 

3.1.3 Optimum Sectionalization 

There are 2N - 1 possible ways to select the section boundaries and each may substantiaHy affect 

the decoding complexity. In this thesis, the algorithm that obtains the optimal section boundaries, 

based on the optimality criterion of minimizing the total number of required computations for 

decoding a treHis of a linear block code is applied to the decoders of interest. The algorithm was 

devised for Viterbi decoding of block codes by Lafourcade and Vardy in [3], and was applied to 

MAP and Max-Log-MAP decoding by Liu, Lin, and Fossorier in [4]. 

In the foHowing algorithm, the expression {Ti * Ti+l * ... } represents the formation of one 

section from the adjacent unit sections, {Ti) Ti+1) ... }, by joining these sections together. Their 

shared boundaries are omitted from the sectionalized boundaries. The expression {Ti 0 TI~~iï} 



3 Sectionalized Trellis 32 

represents the addition of section Ti to the sectionalized trellis up to that point, TI~ir. Their 

shared boundary, hence, is one of the chosen section boundaries. The expression F(Ti*Ti+l * ... ) 
represents the total number of computations required by the decoder for the section formed from 

the unit sections within the parentheses. In Section 3.2, the number of computations required 

by Viterbi, SOYA, Max-Log-MAP and MAP algorithms for decoding a section in a trellis, are 

analyzed and are summarized in Table 3.1. 

The optimum sectionalization algorithm consists of the following three steps: 

1. Initialization: THin = TN and i = N - 1 

2. The minimum value among the following is selected: 

a) F(Ti) + F(TI~ir) 

b) F (Ti * Ti+ 1 * ... * Tj) + F (T}~f), for j = i + 1, i + 2, . .. , N - 1 

c) F(Ti*Ti+l *···*TN ) 

3. Corresponding to the expression selected above, Ttin is set to one of the following: 

a) Tmin - T· 0 Tmin 
i - t i+l 

b) Ttin 
= (Ti * Ti+l * ... * TjmiJ 0 Tfm:~+l' 

c) Timin = Ti * Ti+ 1 * ... * T N 

where jmin is the j value in (b) 

The value of i is decremented at the end of step 3, and steps 2 and 3 are repeated until Trin is 

obtained, representing the optimal sequence: 

corresponding to the optimal sectionalization of the trellis with section boundaries: 

that requires the minimal computational complexity of the decoder to which the above algorithm 

is applied to. In this thesis, this algorithm was applied to SOYA, Viterbi, Max-Log-MAP, and 

MAP decoders. The obtained optimal sectionalizations and the corresponding computational 

complexities of these decoders are presented in Section 4.1. 



3 Sectionalized Trellis 33 

3.2 Computational Complexity 

This section presents the computationally efficient methods, applied in this thesis, to obtain the 

computational complexity of decoding steps of Viterbi, Max-Log-MAP, and MAP algorithms 

based on a sectionalized trellis. In the following section, these methods are applied to determine 

the computational complexity of decoding a sectionalized trellis by SOV A. 

3.2.1 Computational Complexities of the Decoding Steps of Viterbi, Max-Log-MAP and 

MAP Algorithms 

This thesis applied the approaches suggested by Lafourcade and Vardy in [3] for efficient com­

putation of the branch and state probabilities in the forward recursion for a sectionalized trellis. 

These were employed to derive efficient computation of state probabilities in the backward re­

cursion and of soft output for SISO algorithms. 

This section presents the computational complexity of Viterbi, Max-Log-MAP and MAP 

decoding of one section Tj , from time hj - l to time hj, of length /!j = hj - hj-l' as a function 

of the number of states IShj l, the number of composite branches IBjl, the number of parallel 

branches 1 Br l, and the number of distinct composite branches 1 Btl, for a trellis sectionalized into 

v sections, with section boundaries {ho, hl, ... , hv}. The total complexity of the sectionalized 

trellis is the sum of the complexities for each Tj , for 1 ::; j ::; v. U sing similar methods, the 

application of SOYA on a sectionalized trellis and its computation al complexity is analyzed in 

the following section. 

The same assumptions are applied as in Section 2.2.1 where the decoding complexity of a 

bit-leve1 trellis was analyzed. The notation of P, Qi, and {J is used to represent the probabilities 

computed by Viterbi, Max-Log-MAP, and SOYA algorithms in the log domain. 

Branch Probability 

The branch probability, P(bhj (0", 0"')), representing the probability of the transition of the encoder 

from state 0" E Shj_1 to state 0"' E Shj through the branch bhj(O", 0"'), associated with the jth 

section of the received sequence, rj = {rhj_1+l, rhj_1+2,"" rhj}' in Tj , is defined as; 

P(bhj(O",O"')) = P(O"',bhj(O",O"'),rjIO") 

= P( 0"', bhj (0",0"') 10" )P(rj 1 (0",0"'), bhj (0",0"')) 
(3.2) 



3 Sectionalized Trellis 34 

As for computing the bran ch probabilities of the bit-Ievel trellis, in Section 2.2.2, simplifying 

P(bhj ((J, (JI)), and factoring out common terms in its exponent, for AWGN channel with zero 

mean and variance N o/2, 

where Ui = 2Ci - 1. (3.3) 

For Viterbi and Max-Log-MAP algorithms, the branch probability is expressed as: 

(3.4) 

As these algorithms are only interested in a branch with maximum P( bhj ((J, (JI)) for each compos­

ite branch for each state (J' E Shj , it suffices to compute only L~=hj_l +1 r mUm. Considering that 

no operations are required for computing the inside of the summation, obtaining P( bhj ((J, (JI)), 

requires Pj - 1 additions for each parallel branch, IBfl, within each distinct composite branch 

1 Bjl· Summarizing, the number of addition operations required for each Tj : 

additions: IBJI· IBfl . (Pj - 1), for 1::; j ::; v 

In sorne cases, this complexity can be further reduced by considering the following condi­

tions: 

• If the code generated by each section is self-complementary, only IBjl . IBfl/2 branch 

probabilities need to be computed. The remaining ones are obtained by negating the com­

puted ones. This is the case for RM codes. The number of addition operations, in this case, 

is reduced to: IBjl . IBfl . (Pj - 1)/2. 

• Gray code ordering may be applied to compute 21'j-1 dominant branch probabilities of 

2fj possible ones for a section of length Pj. This method requires Pj - 1 additions for 

computing the first branch probability, and only one addition for the remaining 21'j-1 - 1 

ones. Depending on the value of Pj, the number of addition operations may be reduced 

further to (Pj - 1) + (2I'j-1 - 1). 

• If the codewords in Tj are only of even weight and the length of the section is even, the 



3 Sectionalized Trellis 35 

number of required additions can be reduced further. Gray code ordering may be applied to 

compute 2fj/2-1 dominant branch probabilities corresponding to each half of the section. 

To obtain from these, the probabilities corresponding to the entire section, an addition 

operation is required for each of the 2f r 2 dominant branches of even weight. Again, 

depending on the value of I!j' the number of addition operations may be reduced even 

further to 2(2fj / 2- 1 + I!j/2 - 2) + 2 f j-2 = 2fj/2 + I!j - 4 + 2 f j-2. 

For MAP decoding, applying the analysis of the above and also considering that no computations 

are needed for the exponential operation, computing (3.3) requires also one multiplication for 

each of the I! j bits in Tj . 

Composite Branch Probability 

If there is more than one branch connecting astate (J E S hj -1 to a state (J' E S hj , it is necessary 

to compute the composite bran ch probability, P(Lh
j 
((J, (JI)). 

For the Viterbi and Max-Log-MAP algorithms, this probability is defined as the maximum 

P( bhj ((J, (JI)), among all the ones within that composite branch: 

(3.5) 

This requires all the parallel branch probabilities, within each distinct composite branch, to be 

compared in order to find the maximum one, hence, requiring: 

comparIsons: IB]I· (IBYI- 1), for 1 S j Sv 

Considering that the objective of these algorithms is to maximize the overall path probability, 

if the parallel branches are self-complementary, branches with negative L~=hj_1 +1 r mUm can 

be discarded, and only the remaining ones need to be compared. In this case, the number of 

comparisons for obtaining the composite branch probabilities for each T j is reduced to: 

comparisons: IB]I· (IBYI/2 - 1), for 1 S j Sv 



3 Sectionalized Trellis 36 

For the MAP algorithm, the composite branch probability, P( Lh
j 
(a, a')), is defined as: 

P(Lhj(a, a')) = P(Lt(a, a')) + P(L-;(a, a')), (3.6) 

computed for one value of t in the range of hj - l + 1 :::; t :::; hj . The composite bit probability 

P( Lt (a, a')) represents the probability of each possible encoder output for each bit Ut within a 

composite branch, Lh j (a, a') and is defined as: 

P(Lt(a, a')) = 
b(CT,CT')EL(CT,CT') 
Ut=±l 

The number of operations required to compute P(Lt(a, a')) is given in the Composite Bit Prob­

ability section. 

Computing the composite branch probability in (3.6), requires 1 addition for each distinct 

composite branch. 

Forward Recursion 

The probability of the encoder reaching a state a' E Shj from a state a E Shj_l in Tj in the 

forward recursion from time instant hj = 0 to hj = N, is defined for Viterbi and Max-Log-MAP 

as: 

with 6;o(ao) = O. (3.7) 

If there is only one branch connecting a state a E Shj_1 to a state a' E Shj' then P( Lhj (a, a')) 

is replaced with P(bhj (a, a')). 

An addition operation is required for each composite branch converging into a' E Shj' and 

the results are then compared to find the maximum value. For the first section, Tl, considering 

that 6;o(ao) = 0, no additions are required. In summary, the following number of operations is 

required in the forward recursion for each Tj : 

comparisons: IBjl - IShj l, 

additions: {o, for 

IBjl, for 

for 1:::; j :::; v 

1 < j :::; v. 



3 Sectionalized Trellis 37 

For MAP decoding, the state probabilities in the forward recursion are defined as: 

(3.8) 

MAP algorithm requires the same number of operations, for obtaining the forward state prob­

abilities, as Viterbi and Max-Log-MAP algorithms, except that comparisons and additions are 

replaced with additions and multiplications, respectively. 

Backward Recursion 

For all SISO algorithms, it is also necessary to ca1culate the state probabilities in the backward 

recursion from time instant hj = N to hj = O. 

For Max-Log-MAP algorithm, the probability of the encoder, reaching a state CT E Shj_l from 

state CT' E Shj is defined as: 

If there is only one branch connecting astate CT' E Shj to a state CT E Shj_l' then P( Lhj (CT, CT')) 

is replaced with P(bhj (CT, CT' )). 

Similarly to the ca1culations in a bit-level trellis, an addition operation is required for each 

branch diverging from the state CT E Shj_l' and the results are then compared to find the maximum 

value. For the last section, Tv, considering that /3v( CT f) = 0, no additions are required. In 

summary, the following number of operations is required in the backward recursion for each 

T{ 

comparisons : IBjl-IShj_11, for l::;j::;v 

{o for Tv, 
additions: 

IBjl, for 1 ::; j < v. 

For MAP decoding, the state probabilities in the backward recursion are defined as: 

!3hj-l = L P(Lhj(CT,CT'))!3h j (CT') with!3v(CTf) = 1. (3.10) 

cr'EWhj(cr) 



3 Sectionalized Trellis 38 

MAP algorithm requires the same number of operations as Max-Log-MAP algorithm, except 

that comparisons and additions are replaced with additions and multiplications, respectively. 

Composite Bit Probability 

For the composite branches that contain more than one branch, it is necessary to define the prob­

ability of each possible encoder output for each bit Ut for hj - 1 + 1 :::; t :::; hj, in Tj , within 

Lh
J 

(0-, 0-'), represented by a composite bit probability, P( Lt (0-, 0-')). 

For Max-Log-MAP, P(Ltk, 0-')) is defined as: 

P(Lt(o-, 0-')) = 1f1ax, {P(bhj(o-,o-'))}, for hj - 1 + 1 :::; t :::; hj' 
b(O",O" )EL(O",O" ) 
Ut=±l 

(3.11 ) 

Depending on the value of each bit of the composite branch, Lhj (0-,0-'), its probability, 

P(Lhj(o-, 0-')), defined in (3.5), is assigned to the appropriate P(Lt(o-, 0-')). This is a logic oper­

ation, requiring no computations. Obtaining P(Lt(o-, 0-')) corresponding ta the complementary 

label of Lhj (0-,0-'), requires that for each bit and for each distinct composite branch, the proba­

bilities of only the branches with the appropriate bits be compared to find the maximum value. 

In summary, the foUowing number of comparisons are required in each Tj : 

comparisons: (IBfl/2 - 1) . IBtl . ej , for 1:::; j :::; v 

For MAP, P( Lt (0-, 0-')) is defined as: 

P(Lt(o-, 0-')) = 

b(O",O"')EL(O",O"') 
Ut=±l 

(3.12) 

For the evaluation of each possible encoder output, in the above expression, it is necessary to 

add the probabilities of aU the branches corresponding to that encoder output for aU ej bits in each 

section, within each distinct composite branch. In summary, the following number of additions 

is required ta obtain P(Lt(o-, 0-')) for each T{ 

additions: 2· IBtl . (IBfl/2 - 1) . ej , for 1:::; j :::; v 



3 Sectionalized Trellis 39 

Soft Output 

The soft output for each estimated code bit is obtained for each SISO algorithm, using all the 

probabilities specified above, in the form of a LLR of the APP of the transmitted bits. The sign 

of this value determines the estimated code bits. 

For the Max-Log-MAP algorithm, the soft output, L(êt ), for each decoded bit, êt , for hj - l + 
1 ::; t ::; hj, in Tj is approximated by: 

(3.13) 

If there is only one branch connecting astate 0" E Shj _ 1 to astate 0"' E Shj , P( Lt (0",0"')) 

is replaced with the probability of the branches, P(bhj (0",0"')), corresponding to the appropriate 

bits. Evaluating each part of the LLR in (3.13), requires 2 additions for each branch labelled 

appropriately in each section of a trellis, other than in the first, Tl, and last, Tv. For these sections, 

considering that ŒO(O"O) = 0 and /3v(O"f) = 0, only 1 addition, for each bran ch with appropriate 

label, is required. Since the results are stored, there is no need for repeating the computations, 

and thus, this needs to be done for on1y 1 bit. However, these results need to be compared for each 

bit. Finally the LLR of the estimated code bits for a section of length Ej, requires Ej subtractions. 

In summary, to obtain the soft output for each bit in Tj in which only one branch connects astate 

0" E Shj_l to astate 0"' E Shj , the following number of operations is required: 

comparisons : 2· (IBjl/2 - 1) . Ej, for l::;j::;v 

{2. (IBjl/2) Hj, for j = l,v, 
additions: 

2· (2IBjl/2) + Ej, for 1 < j < v. 

However, if the size of the composite branch exceeds one, an efficient way to evaluate (3.13), 

is to first compute the following: 

(3.14) 

This requires 2 additions for each composite branch, in every section, Tj , other than in the 



3 Sectionalized Trellis 40 

fi.rst, Tl, and in the last, Tv. For these sections, 1 addition is required, considering that ŒO(O"O) = 0 

and f3v (0" f) = O. These results are then compared. In summary, for each Tj , the following number 

of operations is needed: 

comparIsons : Bjl-1, for 

{
IBjl' 

2 'IBjl, 

for j = l,v, 
additions: 

for 1 < j < v. 

The tirst part of the LLR in (3.13), corresponding to the + 1 bit, is evaluated for each bit in a 

section, using partial results of the previous step where the addition of Œhj_l (0") and f3hj (0"') was 

already computed. Renee, only one addition is needed for each composite branch, and the results 

are then compared. This needs to be done for each bit in Tj . In summary, the following number 

of operations is needed: 

comparisons : 

additions: 

(IBjl - 1) . ej , for 

IBjl . ej , for 

1::;j::;v 

1::;j::;v 

The second part of the LLR, corresponding to the -1 bit, is obtained by logic operations, 

requiring no computations. Finally, the LLR of the estimated code bits in each section for a 

section of length ej , requires ej subtractions. 

The MAP algorithm provides the soft output, L( êt ), for each estimated code bit, êt. for hj - l + 
1 ::; t ::; hj , in Tj in the form of the LLR: 

L CXhj_l (O")P(Lt(O", O"I))(3hj (O"') 
(a,a') L( ê

t
) = log _u::..c.t_=+.:...:l'--_________ _ 

L CXhj_1 (O")P(L-;(O", O"'))(3hj (0"') 
(a,a') 
Ut=-l 

(3.15) 

If the size of a composite branch in Tj does not exceed one, evaluating each part of the LLR 

in (3.15) requires 2 multiplications for each composite branch in a section other than the first and 

last in which 1 multiplication is required. This needs to be do ne for only 1 bit in a section, since 

the results are stored. Rowever, for each bit, these results need to be added. Finally the LLR of 

the estimated code bits for a section of length ej , requires ej divisions. In summary, to obtain 



3 Sectionalized Trellis 41 

the soft output for each bit in Tj in which only one branch connects astate 0' E Sh j _ 1 to astate 

0" E Shj' the following number of operations is required: 

additions: 2· (IBjl/2 - 1) . ej , for l::;j::;v 

{IBil + f j , 
for j = 1, v, 

multiplications : 

2· IBjl + ej , for 1 < j < v. 

Rowever, if the size of the composite branch exceeds one, an efficient way to evaluate (3.15), 

is to first compute the following: 

S = L CXhj_l (O')?(Lhj (0', O"))(3hj (0") 
(0-,0-') 

(3.16) 

This requires 2 multiplications for each composite branch, in every Tj , except in Tl and Tv, 

in which 1 multiplication is required, considering that cxo(O'o) = 1 and (3v(O'j) = 1. These results 

are then added. In summary, for each Tj , the following number of operations is needed: 

additions: IBjl-1, for l::;j::;v 

{IB!I' for j = l,v, 
multiplications: 

2 'IBjl, for 1 < j < v. 

The numerator of the LLR in (3.15), is evaluated for each bit in a section, using the results of 

the multiplication of CXhj_l (0') and (3hj (0") from the previous step. Renee, only one multiplication 

is needed for each composite branch, and the results are then added. In summary, the following 

number of additions and multiplications is needed: 

additions: (IBil - 1) . ej , for 1::; j ::; v 

multiplications: IBil' ej for 1::; j ::; v 

The denominator of the LLR is obtained by taking the difference between the results obtained 

from the evaluation of the numerator of the LLR and those obtained in (3.16) for each bit in T j , 

requiring ej subtractions in total. Finally, the LLR is evaluated for each bit in Tj , requiring ej 

divisions. 



3 Sectionalized Trellis 42 

The computations required by each algorithm examined for each decoding step in one sec­

tion, Tj , of a trellis are summarized at the end of the chapter in Table 3.1. The total number of 

computations required by each algorithm, F(Tj ), for each section is the sum of these. 

3.2.2 Soft Output Viterbi Algorithm 

This section investigates the computation al complexity of SOYA for decoding one section Tj , 

from time hj - l to time hj, of length fj = hj - hj-l, for a trellis sectionalized into v sections, 

with section boundaries {ho, hl, ... , hv}. The sum of the required computations for each Tj , for 

1 :::; j :::; v, determines the total computational complexity of SOYA based on a sectionalized 

trellis. 

The computational complexity of SOYA based on a sectionalized trellis, consists of obtain­

ing the probabilities of each branch and of each composite branch, forward and backward state 

probabilities, and the approximation of the soft output for each code bit. These probabilities are 

computed in the log domain, and are denoted as P, 0:, and!J. 

Branch Probability 

The branch probability, P(bhj (0",0"')), representing the probability of the encoder reaching astate 

0"' E Shj from astate 0" E Shj _ 1 through that branch in Tj , is defined in (3.4), as: 

As for Viterbi and Max-Log-MAP algorithms, for SOYA it also suffices to compute only 

L:~=hj_l +1 r mUm from the above expression. The methods described in Section 3.2.1 to compute 

branch probabilities are app1ied here to computeL:~=hj_l +1 r m U m efficiently. Hence, the same 

number of additions is required for SOYA as for Viterbi and Max-Log-MAP algorithms. 

Composite Branch Probability 

The composite branch probability, P(Lh
j 

(0", 0"')), is necessary to be computed if there is more 

than one branch connecting astate 0" E Shj_l to astate 0"' E Shr Its definition for SOYA is 



3 Sectionalized Trellis 43 --_ ..... "''''._ .. _ ............... _ ... _'''''' ..... _ ........... '''._ .. _ .................... _ .. _-_ ... __ ._ ........ "' ................. "'_ .... _ .................... _ ............................................................ . 

equivalent to that for Viterbi and Max-Log-MAP algorithms, as in (3.5), 

P(Lh·(a,(/)) = max {P(bh.(a,a/))} 
J b(a,crI)EL(a,cr') J 

Therefore, to compute the above expression for SOYA, the same number of operations is 

required as for Viterbi and Max-Log-MAP: IB;I . (IB%I - 1) comparisons. Since the objective 

of SOYA is also to maximize the overall path probability, as it is for Viterbi and Max-Log-MAP 

algorithms, if the parallel branches in each composite branch in Tj are self-complementary the 

number of comparisons may be reduced to: IB;I . (IB%I/2 - 1). 

Forward Recursion 

The state probabilities in the forward recursion from time instant hj = 0 to hj = N, are defined 

for SOYA, as for Viterbi and Max-Log-MAP algorithms in (3.7), as: 

with &0(0-0) = o. 

If the size of the composite branch does not exceed one, then P(bhj (a, al)) is used in place of 

P(Lhj(a,a')). 
Taking into account that &o(ao) = 0, for computing the above expression, the same number 

of operations is required for SOYA as for Viterbi and Max-Log-MAP algorithms. In summary, 

for each Tj : 

Backward Recursion 

comparisons: IBjl -IShj l, 

additions: {o, for 

IBjl, for 

for 1::; j ::; v 

1 < j ::; v. 

The state probabilities in the backward recursion from time instant hj = N to hj = 0 are defined 

for SOYA, as for Max-Log-MAP algorithm in (3.9), as: 

As for the forward recursion, if the size of the composite branch, in Tj , does not exceed one 



3 Sectionalized Trellis 44 

then P(Lhj((J, (JI)) is replaced with P(bhj((J, (JI)) in the above expression. 

Taking into account that fJv ((J f) = 0, the same number of operations is required for SOYA as 

for Max-Log-MAP algorithm. Summarizing for each T{ 

compansons : IBjl - IShj_ll, for 1:S j :S v 

{

o, for 

IBjl, for 

additions: 
1 :S j < v. 

Composite Bit Probability 

If the size of a composite branch exceeds one, it is necessary to find the composite bit probability, 

P(Lt((J, (JI)), representing the probability of each possible encoder output for each bit Ut within 

a composite branch, Lhj ((J, (JI): 

For SOYA, P(L~((J, (JI)) is defined, as for Max-Log-MAP, in (3.11), as: 

P(L~((J,(JI)) = r,nax, {P(bhj((J,(J'))}, forh j _ 1 + 1:S t:S hj . 
b(O',O' )EL(O',O' ) 
Ut=±l 

Same procedure is followed for obtaining P(L~((J, (JI)) for SOYA, as for Max-Log-MAP, 

hence, resulting in the following number of required comparisons: 

comparisons: (IBjl/2 - 1) . IBtl . f!j, for 1:S j :S v 

Soft Output 

For SOYA, the soft output, L(êt ), for each decoded bit, êt , for hj - 1 + 1 < t < hj , in Tj is 

approximated by: 

For each bit in Tj , the probability of the ML path, av ( (J f ), is assigned to the part of the above 

expression corresponding to the ML estimate for that bit, êt . The probability of the most probable 

path whose label is complementary, x, to the ML estimate êt is defined as: 

P(Ct = xlr) = max {ah._
l 
(rJ) + P(L:ign(x) ((J, (JI)) + fJh. ((JI)) 

(0',0") J J 
(3.18) 

Ct=X 



3 Sectionalized Trellis 45 

- ± 
If there is only one bran ch connecting astate (J E Shj _ 1 to a state (J' E Shj' P(L t ((J, (J')) 

is replaced with the prob ab ilit y of the branch, P(bhj ((J, (J')), whose label has value x for bit Ct. 

Evaluating (3.18) for each bit, 2 additions are necessary for aIl the branches, corresponding to the 

complement of the ML estimate, in a section other than in Tl and Tv. For the first bit, 2· IBjl/2 
additions are necessary. However, for the subsequent bits of that section, taking into account that 

aIl computations are stored and there is no need for repetition, only the branches, with comple­

ment bits to the ML estimate that have not yet been considered, require additions. Hence, for 

the en tire section, aIl the branches will need to be considered except the ones representing the 

ML estimate, resulting in IBjl - IBjl/IBffl branches. Sections Tl and Tv required one addition 

for the same number of branches. These results are compared for each bit ta find the maximum. 

Computing the LLR, in (3.17), of the estimated code bits for a section of length Rj, requires Rj 

subtractions. In summary, to ob tain the soft output for each bit in Tj in which only one bran ch 

connects astate (J E Shj _1 to a state (J' E Shj , the foIlowing number of operations is required: 

comparisons : (IBjl/2 - 1) . Rj, for l~j~v 

{ 1· (IBjl-IBjl/IBjll + e" for j = l,v, 
additions: 

2· (IBjl - IBjl/IBffl) + Rj, for 1 < j < v. 

However, if the size of the composite branch exceeds one, evaluating the part of the LLR in 

(3.18) corresponding to the complementary bit, for a section other than the first or last, requires 2 

additions for the first bit for each composite branch, and for the remaining Rj - 1 bits in Tj, only 

1, since the addition of Œhj_l ((J) and i3h j ((J') was already computed. For Tl and Tv, only one 

addition is needed for each composite branch for aIl Rj bits. These results are compared for each 

bit. FinaIly the LLR of the estimated code bits for a section of length Rj, requires Rj subtractions. 

In summary, the foIlowing number of operations is needed: 

comparisons : (IBjl - 1) . Rj, for l~j~v f Bjl' ej +Cj , 
for j = l,v, 

additions: 
2· IBjl + IBjl . (Rj - 1) + Rj, for 1 < j < v. 

The computations required by SOYA for each decoding step in one section, Tj , of a trellis are 

presented in Table 3.1. The sum of these, represents the total number of computations required 



3 Sectionalized Trellis 46 

by SOYA, F(Tj ), for decoding each section. 

3.3 Summary 

A minimal trellis was sectionalized using the section boundaries obtained from the optimum 

sectionalization algorithm. The computational complexities for the decoding steps of Viterbi, 

Max-Log-MAP, and MAP algorithms based on a sectionalized trellis were examined, and their 

computationally efficient methods were applied to determine the computational complexity of 

SOYA. 

Table 3.1 summarizes the computational operations required for each decoding step of the 

algorithms considered for decoding one section Tj of a sectionalized trellis for linear block code. 

The total number of computations, F(Tj ), required by each algorithm for decoding Tj is the sum 

of these. These F(Tj ) values are used in the implementation of the computation-wise optimum 

sectionalization algorithm, presented in Section 3.1.3. 

The computation-wise optimum sectionalizations for the algorithms of interest for different 

RM codes are presented in the next Chapter. Their decoding complexities are discussed and 

compared to the much larger computational complexities required for decoding of a bit-Ievel 

trellis. 



3 Sectionalized Trellis 47 

Table 3.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and 
MAP algorithms for decoding a section of a trellis. 

Decoding Viterbi SOYA Max-Log-MAP MAP 
Steps 

Branch 
Probabilities 

Comparisons 0 0 0 0 
Additions IBJIIB~I(Rj - 1) IBJIIB~I(Rj - 1) IBJIIB~I(Rj - 1) IBJIIB~I(Rj - 1) 

IBJIIB~I(Rj - 1)/2 IBJIIB~I(Rj - 1)/2 IBJIIB~I(Rj - 1)/2 IBJIIB~I(Rj - 1)/2 
l· 2Cj /2 + Rj - 4 + 2:j 2Cj /2 + R. _ 4 + 2lj 2Cj /2 + R. _ 4 + 2lj 2Cj /2+Rj-4+241 

J 4 J 4 
Rj + 2Cj-l - 2 Rj + 2Cj-l - 2 Rj + 2Cj-l - 2 Rj + 2Cj-l - 2 

Multiplications 0 0 0 Rj 
Composite 
Branch 
Probabilities 

Comparisons IBJI(lB~I- 1) IBJI(IB~I- 1) IBJI(IB~I - 1) 0 

IBJI(IB~I/2 - 1) IBJI(IB~I/2 - 1) IBJI(IB~I/2 - 1) 
IBJI Additions 0 0 0 

Multiplications 0 0 0 0 

Forward 
Recursion 

Comparisons IBjl-IShjl IBjl-IShjl IBjl-IShjl 0 
Additions 0, for j = 1 0, for j = 1 0, for j = 1 IBjl-IShjl 

IBjl, forl < j :s: v IBjl, for1 < j :s: v IBjl, forl < j :s: v 
Multiplications 0 0 0 0, for j = 1 

IBjl, forl < j :s: v 

Backward 
Recursion NIA 

Comparisons IBjl - IShj_11 IBjl - IShj_11 0 
Additions 0, for j = v 0, for j = v IBjl - IShj_11 

IBjl, for1 :s: j < v IBjl, for1 :s: j < v 
Multiplications 0 0 0, for j = v 

IBjl, for1 :s: j < v 

Composite Bit 
Probabililies NIA 

Comparisons IBJI(IB~I/2 - l)Rj IBJI(IB~I/2 - l)Rj 0 
Additions 0 0 IBJI(IB~I - 2)Rj 
Multiplications 0 0 0 



3 Sectionalized Trellis 48 

Table 3.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and MAP algorithms 
for decoding a section of a trellis. 

Decoding 
Steps 

Viterbi SOYA Max-Log-MAP 

Soft Output NIA 

If IB%I = 1 
Comparisons 

Additions 

Multiplications 

If IB%I > 1 
Comparisons 

Additions 

Multiplications 

(IBj1/2 - l)C j 

IBjl(l - l/lBfl) + Cj , 

Jorj = l,v 

21Bjl(1 - l/lBfl) + Cj , 

Jorl < j < v 
o 

(IBjl - l)C j 

(IBjl + l)Cj, 
Jorj = 1, v 

(IBjl + l)C j + IBjl, 
Jorl < j < v 
o 

(IBjl - 2)Cj 

IBjl + Cj , 

Jorj = l,v 

21Bjl + Cj , 

Jorl < j < v 
o 

(IBjl - l)(Cj + 1) 
(IBjl + l)Cj + IBjl, 
Jorj = l,v 

(IBjl + l)Cj + 21Bjl, 
Jorl < j < v 
o 

MAP 

o 
(IBjl - 2)Cj 

IBjl + Cj , 

Jorj = l,v 

21Bjl + Cj , 

Jorl < j < v 

o 
IBjlCj + IBjl - 1 

(IBjl + l)Cj + IBjl, 
Jorj = l,v 

(IBjl + l)Cj + 21Bjl, 
Jorl < j < v 



49 

Chapter 4 

Simulation Results 

The first part of this chapter, Section 4.1 presents, analyzes, and compares the computational 

complexities of SOYA based on the sectionalized trellises for different RM codes, with those 

required by SOYA for the decoding of bit-leve1 trellises. The obtained complexities of Viterbi, 

Max-Log-MAP, and MAP algorithms are included for comparisons. In the second part, Section 

4.2, the simulation results of BER performance over AWGN channel for SOYA based on a sec­

tionalized trellis are examined. These are compared with those attained for the bit-Ievel trellises 

and with the BER performances of Viterbi, Max-Log-MAP, and MAP algorithms. This section 

further analyzes the BER performances of the decoders, examined in this thesis, when applied to 

a concatenated block code scheme. Aiso included are the BER performances of using the pro­

posed SOYA and the conventional SOYA as the component decoders in an iterative decoding of 

concatenated block codes scheme. The chapter concludes with the summary of the results. 

4.1 Computational Complexity Evaluation 

The total number of computations required by the algorithms considered, to decode a bit-leve1 

trellis was obtained by applying the analysis of Section 2.2 to each unit section. Each bit­

level trellis was sectionalized using the optimum section boundaries obtained by applying the 

computation-wise optimum sectionalization algorithm outlined in Section 3.1.3. The computa­

tional complexities of SOYA for decoding sectionalized trellises of linear block codes are at­

tained by implementing the analysis of Section 3.2.2 to each section. The quantities are shown 

to be smaller than the corresponding ones of bit-Ievel trellises. These are compared to the total 

complexities of Viterbi, Max-Log-MAP, and MAP algorithms when applied to optimally section-



4 Simulation Results 50 

alized trellises of the same codes. 

Viterbi, SOYA, and Max-Log-MAP algorithms involve only comparisons and additions. 

These operations are considered equally complicated, and as such, were added to ob tain the 

total computational complexity of the algorithms. MAP algorithm, on the other hand, involves 

additions and multiplications. As a multiplication is more complex than an addition, these oper­

ations cannot be treated the same. Optimum trellis sectionalizations were obtained that minimize 

the number of required additions and weighted multiplications. The weighting factor depends on 

the specific chip implementation. In this thesis, it is assumed that the chip performs five times 

more operations for a multiplication than for an addition. As such, a weighting factor of 5 was 

used for a multiplication operation. The total computational complexity of the MAP algorithm is 

defined as the sum of additions and weighted multiplications. 

4.1.1 Bit-Level Trellis 

Table 4.1 lists the total computational complexities for decoding bit-level trellises using the al­

gorithms considered for the specified linear block codes. These were obtained by summing aU 

the computations required for the decoding of each section in a bit-Ievel treUis, specified in Sec­

tion 2.2. Normalized complexity represents the number of operations required to decode one 

information bit. 

As in [39], the more optimal the algorithms are, in terms of BER, the more computations 

they require. The computational complexity of SOYA, for the decoding of aU the specified linear 

block codes, exceeds the complexity of the Viterbi decoding of the same codes, by about 70%. 

However, Viterbi algorithm provides only hard outputs that are not sufficient in many error control 

schemes, including BTCs. SOYA is significantly less complicated than the MAP algorithm, 

requiring only up to 20% of the computations required by MAP. Requiring an extensive number 

of operations, MAP algorithm is unfit for implementations in many communication systems. 

Max-Log-MAP algorithm requires at least 25% more computations than SOYA. This certifies 

SOYA as the preferred algorithm of the ones examined in this thesis for bit-level trellis decoding. 

In the next section, it is shown that the computational complexity of SOYA is further reduced by 

means of sectionalizing a trellis. 



4 Simulation ResuUs 51 

Table 4.1 Computational complexities of Viterbi, SOYA, Max-Log-MAP, and 
MAP algorithms based on a bit-level trellis of RM codes. 

Computational Complexity (# of operations) 

(N, K) RM Codes Viterbi SOYA Max-Log-MAP MAP 

( 8, 4) 

Complexity 53 170 226 970 

Normalized Complexity 13.3 42.5 56.5 242.5 

(16, 5) 

Complexity 193 642 882 3,746 

Normalized Complexity 38.6 128.4 176.4 749.2 

(16,11) 

Complexity 353 1,082 1,442 5,586 

Normalized Complexity 32.1 98.4 131.1 507.8 

(32, 6) 

Complexity 729 2,482 3,474 14,674 

Normalized Complexity 121.5 413.7 579 2,445.7 

(32,16) 

Complexity 7,993 25,578 35,138 137,730 

Normalized Comp1exity 499.6 1,598.6 2,196.1 8,608.1 

(32,26) 

Complexity 1,721 5,210 6,946 26,082 

Normalized Complexity 66.2 200.4 267.2 1,003.2 

(64, 7) 

Complexity 2,825 9,746 13,778 58,034 

Normalized Complexity 403.6 1,392.3 1,968.3 8,290.6 

(64,22) 

Complexity 425,209 1,412,970 1,975,460 7,976,580 

Normalized Complexity 19,327.7 64,225.9 89,793.6 362,571.8 

(64,42) 

Complexity 773,881 2,371,820 3,195,810 11,986,300 

Normalized Complexity 18,425.7 56,471.9 76,090.7 285,388.1 

(64,57) 

Complexity 7,529 22,682 30,242 112,130 

Normalized Complexity 132.1 397.9 530.6 1,967.2 



4 Simulation Results 52 

4.1.2 Optimally Sectionalized Trellis for SOYA 

Table 4.2 compares the total computation al complexity required by SOYA to decode a bit-Ievel 

trellis and an optimally sectionalized one. 

It is observed from Table 4.2, that optimum sectionalization for SOYA always results in a mir­

ror symmetry of the trellis. Optimum sectionalization is also uniform for RM (8,4), RM (16,5), 

and RM (32,16) codes. 

As was expected, optimum sectionalization does reduce decoding complexity of SOYA. The 

greatest reduction, of 68%, is achieved for the RM (64,7) code. The SOYA decoding based on 

the optimum sectionalized trellis for (32,6) and (64,22) RM codes saves 60% and 54% of com­

putations, respectively, compared to decoding of the same codes based on the bit-level trellis. 

The total complexities of decoding (8,4), (16,5), and (32,16) RM codes, resulting from the op­

timum sectionalization with uniform boundary locations, are about 45%, 50%, and 34% less, 

respectively, than the complexity required for the decoding of the same codes based on a bit-Ievel 

trellis. For the remaining codes, RM (16,11), RM (32,26), RM (64,42), RM (64,57), savings of 

15%,6%, 12%, and 3%, respectively, are achieved. These results confirm that a SOYA decoder 

based on a sectionalized trellis is notably more computationally efficient than the decoder based 

on a bit-Ievel trellis. 

4.1.3 Computation al Comparisons of Decoders 

In this section, the results of optimum sectionalizations of the RM codes, specified in the pre­

vious section, for SOYA are compared to the optimum sectionalizations and the corresponding 

complexities for Viterbi, Max-Log-MAP, and MAP algorithms. 

The optimum section boundaries resulting from the computation-wise optimum sectionaliza­

tions of bit-Ievel trellises for the linear block codes considered, for the algorithms of interest, and 

their complexities, are illustrated in Table 4.3. 

It is noted that optimum sectionalizations, of RM codes considered, for Max-Log-MAP and 

MAP algorithms always results in a mirror symmetry. For MAP decoder, uniform sectionaliza­

tion is optimum for aIl of the RM codes considered except for (32,26), (64,42), and (64,57) RM 

codes. For Max-Log-MAP optimum sectionalization is also uniform for (8,4) and (16,5) RM 

codes. On the other hand, mirror symmetry for Viterbi decoder is obtained only for (8,4), (16, Il), 

(32,16), (32,26), (64,42), and (64,57) RM codes. For aIl these codes, except for RM (64,57), op­

timum sectionalization is also uniform. 



4 Simulation Results --_ ....... _ ............... __ .. _ ............... _ ... _ ........... .. 

Table 4.2 Computational complexities of SOYA based on a bit-Ievel trellis and on 
an optimally sectionalized trellis of RM codes. 

(N,K) RMCodes 

(8,4) 

Optimum Boundaries 
Complexity 
Normalized Complexity 

(16,5) 

Optimum Boundaries 
Complexity 
Normalized Complexity 

(16,11) 
Optimum Boundaries 
Complexity 
Normalized Complexity 

(32,6) 

Optimum Boundaries 
Complexity 

Normalized Complexity 

(32,16) 
Optimum Boundaries 

Complexity 
Normalized Complexity 

(32,26) 

Optimum Boundaries 
Complexity 
Normalized Complexity 

(64,7) 

Bit-level 

170 
42.5 

642 
128.4 

1,082 

98.4 

2,482 

413.7 

25,578 
1,598.6 

5,210 
200.4 

Computational Complexities 

Optimally Sectionalized 

{0,4,8} 
94 

23.5 

{0,4,8,12,16} 
324 

64.8 

{0,4,6,8, 10,12, 16} 

922 
83.8 

{0,4,8, 16,24,28,32} 

988 
164.7 

{0,4,8, 12, 16,20,24,28,32} 
16,948 

1,059.3 

{0,4,6,7 ,8,10, Il, 12, 13, 14, 16, 18, 19,20,21,22,24,25,26,28,32} 

4,910 
188.9 

{0,4,8, 16,32,48,56,60,64} Optimum Boundaries 
Complexity 9,746 3,092 
Normalized Complexity 1,392.3 441.7 

(64,22) 
Optimum Boundaries 
Complexity 
Normalized Complexity 

(64,42) 

Optimum Boundaries 

1,412,970 
64,225.9 

Complexity 2,371,820 
Normalized Complexity 56,471.9 

{0,5,9, 16, 17,24,31,32,33,40,4 7,48,55,59,64} 
654,340 

29,742.7 

{0,6,8, 1 0, 12, 14, 16, 18,20,22,24,26,28,30,32, 
34,36,38,40,42,44,46,48,50,52,54,56,58,64 } 
2,097,140 

49,931.9 

53 



4 Simulation Results 

Table 4.2 Computational complexities of SOYA based on a bit-Ievel trellis and on an optimally 
sectionalized trellis of RM codes. 

(N, K) RM Codes 

(64,57) 

Optimum Boundaries 

Complexity 
Normalized Complexity 

Computational Complexities 

Bit-level Optimally Sectionalized 

{0,4,6,7,8, 10, Il, 12, 13, 14, 15, 16, 18, 19,20,21,22,23,24,25,26, 
27,28,29,30,32,34,35,36,37,38,39,40,41,42,43,44,45,46,48, 
49,50,51,52,53,54,56,57,58,60,64 } 

22,682 22,098 

397.9 387.7 

54 

The optimum section boundaries obtained for SOYA decoding match those for Viterbi de­

coding of only RM (8,4) code, and those for MAP decoding of RM (32,16) code. While for 

Max-Log-MAP decoding they match the section boundaries of aU the codes considered except 

for (32,16), (64,22), and (64,42) RM codes. 

As was shown in existing literature, [3] and [4], sectionalization of a trellis for Viterbi, Max­

Log-MAP, and MAP decoding results in a reduced computational complexity. For example, for 

the decoding of (32,6) and (64,7) RM codes, the computational complexity required by MAP 

decoder is reduced by more than 80% and that required by Max-Log-MAP is reduced by more 

than 60%. For Viterbi decoding of (32,16), (64,7), and (64,22) RM codes, the computational 

complexity is reduced by more than 70%. 

It is observed that the algorithms studied remain in the same order of complexity for section­

alized trellis decoding as for bit-1evel treUis decoding. SOYA still requires more computations 

than Viterbi, but less than Max-Log-MAP, and MAP decoding is the most computationally com­

plicated one. 

Comparisons with Viterbi Algorithm 

The complexity of a SOYA decoder remains higher than that of a ML Viterbi decoder, based on a 

sectionalized treUis, by at least 71 %. The differences in their computational complexities are due 

to the calculations of backward state probabilities, composite bit probabilities, and soft output, 

an that are required by SOYA and not by Viterbi. 



4 Simulation Results 55 

Table 4.3 Optimum sectionalizations of RM codes and computational complexities 

of Viterbi, SOYA, Max-Log-MAP, and MAP algorithms. 

Optimum sectionalizations and computational complexities 

(N,K) RM Viterbi SOYA Max-Log-MAP MAP 

Codes 

(8,4) 

Boundaries {0,4,8} {0,4,8} {0,4,8} {0,8} 
Complexity 23 94 108 257 

Normalized 5.75 23.5 27 64.25 

(16,5) 

Boundaries {0,4,8, 12, 15, 16} {0,4,8,12,16} {0,4,8,12,16} {0,16} 

Complexity 94 324 414 897 
Normalized 18.8 64.8 82.8 179.4 

(16,11) 

Boundaries {0,4,8,12,16} {0,4,6,8, 10, 12, 16} {0,4,6,8, 10, 12, 16} {0,8,16} 

Complexity 167 922 1,136 3,092 

Normalized 15.2 83.8 103.3 281.1 

(32,6) 

Boundaries {0,4,8, 12, 16, {0,4,8,16, {0,4,8,16, {0,8,16, 
20,24,28,31,32 } 24,28,32} 24,28,32} 24,32} 

Complexity 278 988 1,326 2,942 

Normalized 46.3 164.7 221 490.3 

(32,16) 

Boundaries {0,8,16, {0,4,8,12,16, {0,3,5,8, 12, 16, {0,4,8,12,16, 

24,32} 20,24,28,32} 20,24,27,29,32} 20,24,28,32 } 

Complexity 2,383 16,948 21,870 59,278 

Normalized 148.9 1,059.3 1,366.9 3,704.9 

(32,26) 

Boundaries {0,4,8, {0,4,6,7,8, {0,4,6,7,8, {0,7,8,1O,11, 
12,16, 10,11,12,13,14,16, 10, Il,12,13,14,16, 12,13,14,16, 

20,24, 18,19,20,21,22,24, 18,19,20,21,22,24, 18,19,20,21, 
28,32} 25,26,28,32} 25,26,28,32 } 22,24,25,32} 

Complexity 1,255 4,910 6,356 22,154 
Normalized 48.27 188.9 244.5 852.1 

(64,7) 

Boundaries {0,4,8, 12, 16,24,32, {0,4,8,16,32, {0,4,8,16,32, {0,16,32, 
40,48,52,56,60,63,64 } 48,56,60,64 } 48,56,60,64 } 48,64} 

Complexity 806 3,092 4,430 7,934 

Normalized 115.1 441.7 632.9 1,133.4 



4 Simulation Results 56 

Table 4.3. Optimum sectionalizations of RM codes and computational complexities of Viterbi, SOYA, 
Max-Log-MAP, and MAP algorithms 

Optimum sectionalizations and computational complexities 

(N,K) RM Viterbi SOYA Max-Log-MAP MAP 

Codes 

(64,22) 

Boundaries {0,8,16,32, {0,5,9,16, 17,24,31,32, {0,3,5,8, 10, 16, 18,24,30,32, {0,8,16,24,32, 
48,56,61,63,64 } 33,40,47,48,55,59,64 } 34,40,46,48,54,56,59,61,64 } 40,48,56,64 } 

Complexity 104,370 654,340 903,562 2,055,840 
Normalized 4,744.1 29,742.7 41,071 93,447.3 

(64,42) 

Boundaries {0,8,16, {0,6,8,1O,12,14,16, {0,4,6,8, 10, 12, 14, 16, {0,4,8, 12, 14, 16, 
24,32, 18,20,22,24,26,28,30,32, 18,20,22,24,26,28,30,32, 20,22,24,26,28,32, 
40,48, 34,36,38,40,42,44,46,48, 34,36,38,40,42,44,46,48, 36,38,40,42,44,48, 

56,64} 50,52,54,56,58,64 } 50,52,54,56,58,60,64 } 50,52,56,60,64 } 
Complexity 538,799 2,097,140 2,646,470 8,261,180 
Normalized 12,828.5 49,931.9 63,011.2 196,694.8 

(64,57) 

Boundaries {0,4,8, {0,4,6,7,8, {0,4,6,7,8, {0,7,8, 
12,13,14,15,16, 10, Il,12,13,14,15,16, 10, Il, 12, 13, 14, 15, 16, 10,11,12,13,14,15,16, 
20,21,22,23,24, 18,19,20,21,22,23,24, 18,19,20,21,22,23,24, 18,19,20,21,22,23,24, 
25,26,27,28,32, 25,26,27 ,28,29 ,30,32, 25,26,27,28,29,30,32, 25,26,27 ,28,29,30,32, 
36,37,38,39,40, 34,35,36,37,38,39,40, 34,35,36,37,38,39,40, 34,35,36,37,38,39,40, 
41,42,43,44,48, 41,42,43,44,45,46,48, 41,42,43,44,45,46,48 41,42,43,44,45,46,48, 
49,50,51,52,56, 49,50,51,52,53,54,56, 49,50,51,52,53,54,56, 49,50,51,52,53,54,56, 
60,64} 57,58,60,64 } 57,58,60,64 } 57,64} 

Complexity 6,507 22,098 29,080 104,558 
Normalized 114.2 387.7 510.2 1,834.4 



4 Simulation Results 57 

Comparisons with Max-Log-MAP Algorithm 

Similarly, the application of a SOYA decoder, in place of a Max-Log-MAP decoder, to the op­

timum sectionalized trellises for the linear block codes specified, can save a notable number of 

computations, up to 30% for RM (64,7) code, and at least 13% for RM (8,4) code. For the re­

maining codes, the number of required computations is lowered by 28% for (64,22) RM code, 

by 24% for (32,6), (32,16), (32,26), and (64,57) RM codes, by 22% for (16,5) and (64,42) RM 

codes, and by 19% for RM (16,11) code with a SOYA decoder. 

The differences in computational complexities between Max-Log-MAP and SOYA can be 

explained from Table 3.1, where it is observed that Max-Log-MAP and SOYA require different 

number of operations for computing the soft output. As it is explained in Section 3.2.1, Max-Log­

MAP considers aIl branches corresponding to each possible encoder output when computing the 

LLR of the estimated bits, resulting in the consideration of aIl the branches for the decoding of 

one section. Whereas SOYA, for LLR of each bit, considers only branches that are opposite in 

sign to the ML estimate. Therefore, for the entire section, aIl of the branches but the ones with 

the ML label, are considered. 

From Table 3.1, it is observed that for aIl sections in which the size ofthe composite branch 

does not exceed one, Max-Log-MAP algorithm requires (IBj1/2 -1). €j more comparisons, and 

in sections other than Tl and Tv that require IBjl/lBfl additions, 2 'IBjI/IBfl more additions are 

needed than by SOYA. For sections in which there is more than one bran ch connecting two states, 

in comparison to SOYA, Max-Log-MAP requires IBjl - 1 more comparisons and IBjl more 

additions. The comparisons of computation al complexities required by SOYA and Max-Log­

MAP algorithms can be discussed for only those codes for which the optimum section boundaries 

are matching for the two decoders, including (8,4), (16,5), (16,11), (32,6), and (64,7) RM codes. 

Considering that optimal sectionalization for these decoders always results in mirror symmetry 

of the treIlis, only half of the treIlis needs to be analyzed. 

For RM (8,4) code, optimum sectionalization results in {0,4,8} section boundaries. In both 

sections, there are four composite branches with the size of each one being greater than one. 

Applying the analysis from above, for Max-Log-MAP, there are 4 - 1 = 3 more comparisons 

in each section, and 4 more additions, resulting in a total of 3 . 2 + 4 . 2 = 14 more operations 

than for SOYA. As is shown in Table 4.3, SOYA has a computational complexity of 94, and 

Max-Log-MAP of 94 + 14 = 108. 

For RM (16,5) code, optimum sectionalization results in {0,4,8,12,16} boundaries for both 



4 Simulation ResuUs 58 

decoders. In each of the 4 sections, there are 8 distinct composite branches, 8 composite branches 

in the tirst and last sections and 16 in the second and third sections, and in an sections the 

size of the composite branches does not exceed one. From the analysis above, the difference 

in the number of comparisons between SOYA and Max-Log-MAP for the tirst two sections are 

(8/2 - 1) ·4 = 12 and (16/2 - 1) ·4= 28. The difference in the number of additions for the 

same sections are 8/8 = 1 and 2 . 16/8 = 4. Therefore, for the Max-Log-MAP decoding of the 

entire trellis for RM (16,5) code, and considering that comparisons and additions have the same 

complexity, (12 + 28) . 2 + (1 + 4) . 2 = 90 more operations are needed than for SOYA. This 

is illustrated in Table 4.3 above, with SOYA having complexity of 324 and Max-Log-MAP of 

324 + 90 = 414. 

For RM (16,11) code, optimum sectionalization results in {0,4,6,8, 10,12, 16} section bound­

aries. In the six sections, the number of distinct composite branches are {8,4,4,4,4,8}, the number 

of composite branches are {8,32,32,32,32,8}, and the size of the composite branches exceeds one 

for only the tirst and last sections. For the tirst three sections, the number of more comparisons 

is {8 - 1 = 7, (32/2 - 1) . 2 = 30, (32/2 - 1) . 2 = 30}, and the number of more additions 

is {8, 2·32/4 = 16,2·32/4 = 16}. Max-Log-MAP decoding of the entire trellis will require 

(7 +30+30)·2+(8+ 16+ 16)·2 = 214 more operations than SOYA decoding, as is shown in Table 

4.3, with the comp1exity of SOYA being 922 and of Max-Log-MAP being 922 + 214 = 1136. 

Similarly, for the RM (32,6), the optimum section boundaries are {0,4,8,16,24,28,32}, the 

number of distinct branches in the six sections are {8,8,16,16,8,8}, the number of composite 

branches are {8, 16,32,32,16,8}, and the size of composite branches in an sections does not exceed 

one. The number of more additions required by Max-Log-MAP is (12 + 28 + 120) ·2, and the 

number of more comparisons is (1 + 4 + 4) . 2. This is shown in Table 4.3 with SOYA having a 

complexity of 988, and Max-Log-MAP of 988 + 338 = 1326. 

RM (64,7) code also has matching optimum section boundaries {0,4,8,16,32,48,56,60,64} 

for the two decoders. For the eight sections, the number of distinct composite branches are 

{8,8,16,32,32,16,8,8}, the number of composite branches are {8,16,32,64,64,32,16,8}, and the 

size of each composite branch in an sections does not exceed one. Therefore, there are {(8/2 -

1)·4 = 12, (16/2-1)·4 = 28, (32/2-1)·8 = 120, (64/2-1)·16 = 496} morecomparisonsand 

{8/8 = 1,2.16/8 = 4,2·32/16 = 4,2·64/32 = 4} more additions for Max-Log-MAP than for 

SOYA decoding of the tirst ha1f of the trellis. This reflects the results in Table 4.3, in which SOYA 

has acomplexity of 3092, and Max-Log-MAP of3092+(12+28+ 120+496+ 1+4+4+4)·2 = 

4430. 



4 Simulation Results 59 

Comparisons with MAP Algorithm 

When a SOYA decoder, instead of a MAP decoder, is applied to the optimum sectionalized trellis 

for the linear block codes considered, savings of up to 79%, for (32,26) and (64,57) RM codes, 

and of at least 64%, for RM (64,7) code, are achieved. The computation al operations are reduced 

by 75% for RM (64,42) code, and by 71 % for (16,11) and (32,16) RM codes. For (64,22) and 

(32,6) RM codes, the complexity is reduced by 68% and 66%, respectively, and for (8,4) and 

(16,5) RM codes, by 64% with the proposed decoder. 

The differences in computational complexities between MAP and SOYA is due to the de­

coders requiring different types and different number of operations in all of the decoding steps 

in Table 3.1. For the computation of the branch probabilities, MAP requires Rj multiplications, 

which is, with the weight factor of 5 for multiplications, 5 . Rj more operations than SOYA needs 

for that step. For MAP the composite branch probabilities are computed using the composite bit 

probabilities, unlike for SOYA, requiring 2 . IBil - IBil . IBrl more operations, or if the par­

allel branches are complementary, 2 . IBil - IBil . IBrl/2 more. In the forward and backward 

recursions, the required comparisons and additions of SOYA are replaced by additions and mul­

tiplications, respectively, for MAP. Renee, there are 5 times more operations required by MAP 

for these decoding steps. For SOYA, only composite bit probability of the complementary ML 

estimate needs to be computed for each bit, whereas MAP evaluates the composite bit probability 

corresponding to each encoder output. Therefore, MAP requires double the amount of operations 

that SOYA requires for this decoding step, which is (IBrl/2 - 1) . IBil . Rj more. For soft out­

put, MAP considers all branches in each section, whereas SOYA considers only branches that 

are opposite in sign to the ML estimate. It is observed from Table 3.1 that for aH sections in 

which the size of the composite branch does not exceed one, MAP requires additions that are 

double the amount of comparisons required by SOYA. AIso, in sections other than Tl and Tv that 

require IBjl/IBil more, MAP requires 2 . IBjl/IBil more multiplications than SOYA additions. 

Renee there are 5 . 1 Bj 1 / 1 Bi 1 for the first and last sections, and 5 . 2 . 1 Bj 1 / 1 Bi 1 for aH other 

sections, more operations needed by MAP. For the case when the size of the composite branch 

does exceed one, MAP requires IBjl- 1 + Rj more additions than SOYA comparisons. Aiso IBjl 
more multiplications are required by MAP than additions required by SOYA, hence, 5 'IBjl more 

operations. 

The results in this section establish that the SOYA decoder, introduced in this thesis, is the 

most computationaHy efficient SISO decoder examined in this thesis. 



4 Simulation Results 60 

Appendix A provides the discussion on the differences with the best results found in the 

literature. The obtained results of Viterbi are shown to be the same for most linear block codes 

considered, and the obtained results of Max-Log-MAP and MAP algorithms are shown to be 

better for alllinear block codes considered than those found in the existing literature. 

4.2 BER Performance Evaluation 

BER represents the ratio of the number of bits in the estimated information sequence that con­

tradict those of the transmitted one to the number of information bits transmitted. The mapping 

between information sequences and the codewords used by the encoder is obtained from the lo­

cations of the K columns of the identity matrix IK in the generator matrix G. For example, from 

the generator matrix G, in (1.1), for the RM (8,4) code, it is observed that the positions of the 

transmitted information bits {ml, m2, m3, m4} correspond to {1 ,2,3,8} positions in the estimated 

codeword. The BER performances of the algorithms are evaluated against SNR (Eb/ No) where 

Eb denotes the Energy per information bit and N o/2 is the variance of the noise, by simulations 

under AWGN channel environment with BPSK modulation. 

The following section analyzes the BER performances of the algorithms examined in this 

thesis for a system model shown in Figure 1.1. This is followed by the evaluation of the BER 

performances of the same a1gorithms used in a serially concatenated b10ck code scheme. The 

BER performances of using the proposed SOYA and the conventional SOYA as the component 

decoders in an iterative decoding of serially concatenated block codes is provided and discussed. 

4.2.1 Block Codes 

The algorithms are applied to a bit-1evel trellis and to a sectionalized trellis for the RM (8, 4) 

code with boundaries at {0,4,8}. Figure 4.1 shows the BER performances of SOYA applied to 

a bit-1evel trellis and to a uniform 2-section trellis for the RM (8,4) code. It is observed that 

sectionalization of a trellis does not change the error performance of SOYA decoding. The BER 

performances of MAP, Max-Log-MAP, SOYA, and Viterbi algorithms based on a uniform 2-

section trellis for the RM (8,4) code are shown in Figure 4.2. Figure 4.3 also includes the BER 

performances of the algorithms based on a bit-level trellis for the same code. 

From Figure 4.2, it is observed that the performance of SOYA is identical to that of Viterbi 

algorithm. The difference between Max-Log-MAP and SOYA algorithms is visible at BER above 



4 Simulation Results 

cr: 
W 
al 

100~~~~~~~~~~~~~~~~~~==~====~ 
.. . D· 2-section trellis 
.. -+- bit-Ievel trellis 

10-5 "------'--__ -----1.... ___ -'-___ -"--___ .1.....-__ -'111 

-6 -4 -2 o 
SNR (dB) 

2 4 6 

Fig. 4.1 Bit-error performance of SOYA decoding of the RM (8,4) code. 

61 

10-2
, at which Max-Log-MAP outperforms SOYA by 0.1 dB. MAP algorithm remains optimum 

in terms of BER performance. The difference in performance between MAP and ML decoders is 

more noticeable at high BER, such as above 10-3 . The difference between MAP and SOYA is the 

greatest at BER above 10-1 reaching a difference of 1 dB. At BER of 10-1, MAP outperforms 

SOYA by 0.3 dB, and at BER of 10-2 by 0.2 dB. At BER below 10-3 , SOYA gives an error per­

formance very close to that of the MAP algorithm. Figure 4.3 reveals that trellis sectionalization 

does not degrade the error performance of any algorithm examined here. 

The BER performances of SOYA, MAP, Max-Log-MAP, and Viterbi algorithms applied to a 

bit-Ievel trellis and to a sectionalized trellis for RM (32,16), and RM (32,26) codes are provided 

in the Appendix B. 

4.2.2 Serially Concatenated Block Codes 

The system model of serially concatenated block codes scheme implemented in this thesis is 

shown in Figure 4.4. 



4 Simulation Results 

, ' . . .. .. ....,. .., . 

10-
5 

r-:-' ',-,-,-,-,-,-,-,-,:,-,-,-,.;.:..'-'.-,-,-,-,-~,-,-,-,-,-,-,-,-,-'-'-', 
, ~, MAP 2-section trellis 
-t>- Max-Log-MAP 2-section trellis :::" 
d, SOYA 2-section trellis ' ,* Viterbi 2-section trellis 1O-6L':::::::==:'::::::::JE======--_----1 ___ ---L ___ ---L ___ ~ 

-6 -4 -2 o 
SNR (dB) 

2 4 6 

Fig.4.2 Bit-error performance ofMAP, Max-Log-MAP, SOYA, and Viterbi decod­
ing based on a uniform 2-section trellis of the RM (8, 4) code. 

62 

The outer encoder encodes an information sequence m into a code sequence cl and passes it 

to the inner encoder. The BPSK modulator maps the encoded sequence c2 from the inner encoder 

into a bipolar sequence u. This sequence is passed through the AWGN channel and is distorted 

by noise, n. At the receiving end, the demodulator passes the received signal sequence r to the 

inner decoder that outputs the LLR's of the outer code symbols, S (cl). These are passed to the 

outer decoder to ob tain an estimate of the information sequence rÎl. 

The BER performances of using SOYA, Max-Log-MAP, and MAP as the inner decoders 

and Viterbi as the outer decoder, obtained from simulations under AWGN channel environment 

with BPSK modulation, are analyzed next. The outer and inner codes are both formed from 

the RM (8,4) code. For comparisons, the algorithms are applied to a bit-Ievel trellis and to a 

sectionalized trellis with boundaries at {0,4,8}. 

Figure 4.5 shows the BER performances of using SOYA as the inner decoder and Viterbi as 

the outer decoder, both based on a bit-1eve1 trellis and on a uniform 2-section trellis. 

It is observed from Figure 4.5 that the BER performance curves are identical. As the BER 

measurement at the output of the outer decoder measures the quality of the reliability estimates 



4 Simulation ResuUs 

.:::::::::::::;:::;:;::::::::::::::: .. 

. . . . . . . . . . . . . . . . . , . . . .. ... . .........,.. 

· ~. MAP 2-section trellis 
-+- MAP bit-Ievel trellis 
-C>- Max-Log-MAP 2-section trellis 
-&- Max-Log-MAP bit-Ievel trellis 
· a· SOYA 2-section trellis 
-t- SOYA bit-Ievel trellis · "*. Viterbi 2-section trellis 
-v- Viterbi bit-Ievel trellis 1O-6L'====::i:::======'-__ -L ___ --.J'--___ -L ___ ~ 

-6 -4 -2 o 
SNR (dB) 

2 4 6 

Fig.4.3 Bit-error performance of MAP, Max-Log-MAP, SOYA, and Viterbi decod­
ing of the RM (8, 4) code. 

~ Outer cl Inner ~ BPSK u 
Encoder 

~ 

Encoder Modulator 
n 

Ir Ir 

AWGN 

1 channel 

A 
~( c1) ~ Outer Inner _r 

Demodulator 
Decoder Decoder 

Fig. 4.4 System Model for a Serially Concatenated Block Code Scheme. 

63 



4 Simulation Results 

cr: 
w 
CD 

-5 -4 -3 -2 -1 

SNR (dB) 

o 2 3 4 

Fig. 4.5 Bit-error performance of using SOYA as the inner decoder in a concate­
nated scheme formed from the RM (8, 4) code. 

64 

of the inner decoder, this observation implies that there is no difference in the quality of the 

soft outputs of the estimated code bits of the SOYA decoder based on a bit-1evel trellis and on a 

sectionalized trellis. 

Shown in Figure 4.6 are the BER performances of using MAP, Max-Log-MAP, and SOYA as 

the inner decoders and Viterbi as the outer decoder, aIl based on a uniform 2-section trellis for the 

RM (8,4) code. In Figure 4.7, the BER performances of the decoders based on a bit-Ievel trellis 

are also included. 

Figure 4.6 shows that an improvement in BER performance of using Max-Log-MAP instead 

of SOYA as the inner decoder, is visible only at BER above 10-1, at which the concatenated 

scheme with Max-Log-MAP inner decoder outperforms that of SOYA by 0.1 dB. This reveals 

that the soft outputs of SOYA and Max-Log-MAP algorithms are very similar. It is observed 

that using MAP as the inner decoder is optimum in terms of BER performance. The difference 

in performance when MAP is used instead of SOYA as the inner decoder is the greatest at BER 

above 10-1 reaching a difference of 0.5 dB. At BER of 10-1 , the concatenated sc he me with MAP 

as the inner decoder outperforms that of SOYA by 0.3 dB, and by 0.2 dB at BER of 10-2
. At 



4 Simulation Results 65 

cr: w ........ , .. 
c:l 

.. :' ... , 
.. \. 

10-5 '-----'-------'----'----''----'----'-----'-----'---'----.J 
-6 -5 -4 -3 -2 -1 0 2 3 4 

SNR (dB) 

Fig.4.6 Bit-error performance of using MAP, Max-Log-MAP, and SOYA as the 
inner decoders in a concatenated scheme based on a uniform 2-section trellis for the 
RM (8, 4) code. 

BER below 10-3 , SOYA gives an error performance very close to that of the MAP algorithm. At 

SNR ab ove 1 dB, the same BER performance is obtained using either as the inner decoder. 

From Figure 4.7, it is observed that the same BER performances are obtained using these 

decoders as the inner decoders in the concatenated scheme based on a bit-Ievel trellis. As these 

BER curves me as ure the quality of the reliability estimates of the inner decoder, the fact that 

trellis sectionalization does not degrade the performance of any decoder examined here in a con­

catenated scheme indicates that the quality of the soft outputs of the inner decoders based on a 

bit-level trellis and on a sectionalized trellis is the same. 

4.2.3 Iterative Decoding of Serially Concatenated Block Codes 

This section presents the performance of iterative SOYA decoding of serially concatenated block 

codes. The system model implemented in this thesis is shown in Figure 4.8. 

An information sequence, m, of pk bits is sent to the outer (N1 , k1 ) encoder in krbit blocks 

that generates an outer code sequence cl of pN1 bits, where p is an integer. The interleaver, used 



4 Simulation Results 

0: 
w 
al 

-5 -4 -3 -2 -1 0 2 3 
SNR (dB) 

Fig. 4.7 Bit-error performance of using MAP, Max-Log-MAP, and SOYA as the 
inner decoders in a concatenated scheme based on a bit-Ievel trellis and on a uniform 
2-section trellis for the RM (8, 4) code. 

~ Outer c1 c Inner ~ BPSK u 
Encoder 

Interleaver 
Encoder Modulator 

e-

n 

S(c1,out) 
S( c ,in) AWGN 

Interleaver channel 

h 
S(c1,in) S(c ,ou9 ~ Outer Deinterleaver 

Inner ~ Demodulator ~ Decoder Decoder 

Fig. 4.8 System Model for Iterative Decoding of Serially Concatenated Block 
Codes. 

66 



4 Simulation Results 67 

to separate bursts of errors produced by the inner decoder, receives this sequence, and outputs 

a sequence, c that consists of a different order of the code bits of cl, according to a random 

permutation performed by it. The inner (N2 , k2 ) encoder receives c in k2-bit blocks and encodes 

each block, generating an inner code sequence c2. In the receiver, the demodulator passes the 

received sequence r to the inner decoder that outputs the LLR's of the inner information symbols, 

S( c, out). These are passed through the deinterleaver, that uses the inverse mapping of the inter­

leaver, whose outputs correspond to the LLR's of the outer code symbols, S( cl, in). The outer 

decoder processes these and outputs the LLR's of its code symbols, S( cl, out) that are passed to 

the interleaver for another iteration. The symbols in the interleaved sequence, S ( c, in), replace 

the inner information symbols in the received sequence, that is then processed by the inner de­

coder. At the final iteration, the LLR's of the information symbols are used to ob tain an estimated 

information sequence, rÎl. 

Figure 4.9 depicts the BER performance of iterative SOYA decoding of seriaIly concatenated 

block codes formed from the RM (8, 4) code with interleaver of size 256 bits and with 7 iterations 

over AWGN channel with BPSK modulation. It is observed that the BER performance curves are 

identical. This observation implies no difference in the soft outputs of the estimated code bits of 

the SOYA decoder based on a bit-1eve1 trellis and on a sectionalized treUis. 

4.3 Summary 

For the decoding of a bit-Ievel treUis, the computational complexity of SOYA exceeds that of 

Viterbi, but is lower than that of Max-Log-MAP. MAP is the most computationaUy complicated 

decoder. 

TreUis sectionalization of aU linear block codes considered, significantly reduces the com­

putational complexity of aU algorithms presented in this thesis. Savings in computations of up 

to 79% are achieved when SOYA is used in place of MAP, and up to 30% when SOYA is used 

instead of Max-Log-MAP. The complexity of SOYA remains higher than that of Viterbi, by at 

least 71 %. Optimum sectionalization of aIl the SISO algorithms presented always results in the 

mirror symmetry of the treUis. 

The BER performance evaluation under AWGN channel environment reveals that treUis sec­

tionalization does not degrade the performance of the decoders. For the RM (8, 4) code, the BER 

performance of SOYA is very similar to that of Viterbi. Max-Log-MAP algorithm outperforms 

SOYA by only 0.1 dB at BER above 10-2
• MAP algorithm is optimum with respect to BER, 



4 Simulation ResuUs 

CI: 
W 
III 

........ .......... .•... ... ......... '. . .. '" D· SOYA 2-section trellis 
.................. , ............................ : -+- SOYA bit-Ievel trellis 

. . . . . . . . . .. ......,....... . ............. 

10-6 L--___ '--___ L-__ --1 ___ ---1 ___ ---1 ___ ---1 

-5 -4 -3 -2 
SNR (dB) 

-1 o 

Fig.4.9 Iterative SOYA Decoding of Serially Concatenated Black Codes. 

reaching a difference of 1 dB from SOYA at BER above 10-1 . 

68 

The BER performance curves obtained for the concatenated scheme based on a bit-1eve1 trellis 

and on a sectionalized one, formed from the RM (8, 4) code are identical for any SISO algorithm, 

examined in this thesis, used as the inner decoder and Viterbi as the outer decoder. This further 

indicates that the quality of the soft outputs of the inner decoders based on a bit-Ievel trellis and 

on a sectionalized trellis is the same. With Viterbi as the outer decoder, using Max-Log-MAP 

instead of SOYA as the inner decoder, shows a difference of only 0.1 dB at BER above 10-1
, 

indicating that the soft outputs of the two algorithms are very similar. Using MAP as the inner 

decoder gives the best BER performance. 

Iterative decoding of serially concatenated block codes reveals that the quality of reliability 

estimates of the proposed SOYA decoder is the same as that of the conventional SOYA decoder. 



69 

Chapter 5 

Conclusion 

5.1 Summary 

A low-complexity near-optimum soft-input soft-output (SISO) decoding scheme is established 

based on the soft-output Viterbi algorithm (SOVA) applied to a sectionalized trellis. A minimal 

bit-Ievel trellis was sectionalized using the section boundaries obtained from the application of the 

computation-wise optimum sectionalization algorithm for SOYA and other decoders considered, 

including Viterbi, Max-Log-MAP and MAP. 

The advantages of SOYA based on a sectionalized trellis over the conventional bit-level trel­

lis and over other algorithms studied are demonstrated by the analysis of the decoder's required 

computational complexity and simulation results of its BER performance assuming binary mod­

ulation and AWGN channel. 

The examination of the optimal sectionalizations obtained for different RM codes, in Section 

4.1, reveals: 

• The mirror symmetry of a trellis is always obtained for SOYA decoding. 

• Contrary to SOYA, for Viterbi decoding, the optimally sectionalized trellis is not always 

symmetric. 

• As for SOYA, mirror symmetry is always attained for MAP and Max-Log-MAP algorithms. 

• The required computational complexity of the new SOYA decoding scheme is significantly 

lower than that of the conventional decoder based on the bit-level trellis. 



5 Conclusion 70 

• In comparison to Viterbi, Max-Log-MAP and MAP algorithms, although maXlmum­

likelihood (ML) Viterbi requires the least amount of computational operations, the pro­

posed SOYA decoding approach is the most computationally efficient SISO algorithm. 

A comprehensive analysis of the simulations of the BER performances under AWGN channel 

environment, in Section 4.2, demonstrates: 

• No performance degradation of applying SOYA to a sectionalized trellis with respect to 

SOYA based on a bit-Ievel trellis. 

• The BER performances of Viterbi, Max-Log-MAP and MAP algorithms based on a sec­

tionalized trellis are identical to those obtained for a bit-Ievel trellis. 

• The differences in the BER performances of the algorithms are noticeable at low SNR, and 

become negligible at high SNR. 

• The quality of the soft outputs of the SISO decoders based on a bit-Ievel trellis and on a 

sectionalized trellis are the same. 

• The quality of the soft outputs of Max-Log-MAP and SOYA are very similar. 

• The optimality of the decoders based on a sectionalized trellis remains the same as for the 

decoders based on a bit-Ievel trellis. Renee, the new SOYA decoder remains suboptimum. 

The results of this thesis justify that the proposed SOYA decoder is sufficient for error control 

schemes that require a computationally efficient near-optimum SISO decoder. 

Sorne ideas for the potential future work are presented next. 

5.2 Future Work 

Applications to Block Turbo Codes 

In 2001, SOYA based on a bit-Ievel trellis was applied to Block Turbo Codes (BTCs) and proven 

to be more suitable for hardware implementation than the conventional MAP algorithm used in 

BTCs, due to its lower complexity [33]. The decoding scheme, studied in this thesis, consist­

ing of SOYA based on a sectionalized trellis for block codes, demonstrated that it requires less 

computational operations than SOYA based on a bit-level trellis. This would justify the new, 



5 Conclusion 71 

computationally efficient, and practically implementable decoding scheme, to be applied to de­

coders for block codes in turbo loop, enabling the use of turbo codes in an even wider range of 

applications. 

Storage Requirements 

The computational complexity and storage requirement of SOYA decoding depend on the sec­

tionalization of the trellis. A sectionalization that minimizes both, in general, does not exist. In 

this thesis, it is assumed that there is no severe constraint on the size of memory storage, and 

the focus is on the sectionalization that minimizes the computational complexity. It would be 

interesting to investigate how this optimally sectionalized trellis, derived here, affects the storage 

requirements of the decoder. 

Another idea for the potential future work involves deriving a sectionalized trellis for SOYA 

decoder, that is optimal with respect to the decoder's storage requirements. This topic would 

determine by how much SOYA decoding based on a sectionalized trellis reduces its storage re­

quirement, how memory efficient it is with comparisons to other trellis based decoders, and if it 

is adequate for systems with constraints on their memory storage size. 

Decoding Time 

Considering that optimal sectionalization of linear block codes considered for SOYA always re­

sults in a symmetric trellis, it would be interesting to investigate if this structural property can 

reduce the decoding time. 

This mirror symmetry allows bidirectional decoding, the use of two identical circuits for the 

computation of the forward and backward state probabilities, and hence, simplifying the inte­

grated circuit (IC) implementation. It was applied to MAP and Max-Log-MAP algorithms in [4]. 

This technique permutes the encoded sequence {Cl, C2,··· ,CN} to {Cl, CN, C2, CN-l,···, CNI2} 

before transmission. The corresponding received sequence {rI, r N, r2, r N -l, ... , r Nid is then 

permuted into rl = {rI, r2, ... , rN} and r2 = {rN, rN-l, ... ,rd and shifted from both ends of 

the sectionalized trellis. Because of the mirror symmetry, the forward and backward recursions 

are performed simultaneously and the branch probabilities are computed for the following order 

of sections {Thl , Thv ' Th2 , Thv _ ll .•. Thv/ 2 }. The computation of the soft outputs begins when the 

two recursions meet in the middle of the trellis. The results in [4] showed that this approach 

reduces the decoding time by half. 



72 

Appendix A 

Comparisons with Results in the Literature 

The best results of computational complexities for Viterbi, Max-Log-MAP, and MAP algorithms, 

found in the literature are provided in Table A.I. AlI the values found in the literature that are not 

the same as the ones obtained in this thesis are in boldface. 

A.1 Bit-Leve) Trellis Comparisons 

The same results were obtained in this thesis as in the referenced literature for Viterbi decoding 

based on a bit-Ievel trellis for alIlinear block codes considered, as it is shown in Table A.I. The 

satisfying results of this thesis for MAP and Max-Log-MAP decoders based on a bit-Ievel trellis 

were obtained by applying the methods for efficient computation, stated in Section 2.2. 

For the MAP decoder, taking into account that the forward and backward path metrics of the 

initial and final state, respectively, are set to one reduces the required number of multiplications. 

In the forward recursion, two multiplications are saved, one for each branch, in the first section, 

and also two multiplications are saved for the last section in the backward recursion. In the 

computation of the LLR of the first and of the last bit, two multiplications are saved for each 

computation. With the weight factor of five for a multiplication operation, the number of required 

multiplications is 5 . 8 = 40 less than that in the referenced literature, as it is shown in Table A.I. 

For the same reasons as for the MAP decoder, the number of computations is lower for the 

Max-Log-MAP decoder in this thesis than in the referenced literature. Analysis of the bit-level 

trellis decoding in this thesis, in comparison to [4], reveals that four less additions are required 

for the forward and backward recursions, one for each branch in the first and last sections. This 



A Comparisons with ResuUs in the Literature 

Table A.l Computational complexities of Viterbi, Max-Log-MAP, and MAP de­
coding of RM codes found in the literature. 

(N,K) RMCodes Obtained Results Best Known Reference 

(8,4) 

Viterbi [3], [40], [41] 

Bit-level 53 53 
Normalized Complexity 13.3 13.3 
Optimum Boundaries {0,4,8} {0,4,8} 
Complexity 23 23 
Normalized Complexity 5.8 5.8 

MAP [4] 

Bit-level 970 1,010 
Normalized Complexity 242.5 252.5 
Optimum Boundaries {0,8} {0,8} 
Complexity 257 370 
Normalized Complexity 64.3 92.5 

Max-Log-MAP [4] 

Bit-level 226 230 
Normalized Complexity 56.5 57.5 
Optimum Boundaries {0,4,8} {0,4,8} 
Complexity 108 156 
Normalized Complexity 27 39 

(16,5) 

Viterbi [3] 

Bit-1evel 193 193 
Normalized Complexity 38.6 38.6 
Optimum Boundaries {0,4,8, 12, 15, 16} {0,4,8, 12, 15, 16} 
Complexity 94 94 
Normalized Complexity 18.8 18.8 

MAP [4] 

Bit-level 3,746 3,786 
Normalized Complexity 749.2 757.2 
Optimum Boundaries {0,16} {0,16} 
Complexity 897 1,235 
Normalized Complexity 179.4 247 

Max-Log-MAP [4] 

Bit-level 882 886 
Normalized Complexity 176.4 177.2 
Optimum Boundaries {0,4,8,12,16} {0,2,4,8, 12,14, 16} 
Complexity 414 486 
Normalized Complexity 82.8 97.2 

73 



A Comparisons with Results in the Literature 74 

Table A.1 Computational complexities of Viterbi, Max-Log-MAP, and MAP decoding of RM codes 
found in the literature 

(N,K) RM Codes Obtained Results Best Known Reference 

(16,11) 

Viterbi [3] 

Bit-level 353 353 
Normalized Complexity 32.1 32.1 
Optimum Boundaries {0,4,8,12,16} {0,4,8,12,16} 

Complexity 167 167 

Normalized Complexity 15.2 15.2 

MAP [4] 

Bit-level 5,586 5,625 
Normalized Complexity 507.8 511.4 
Optimum Boundaries {0,8,16} {0,4,6,8,10,12, 16} 

Complexity 3,092 3,980 
Normalized Complexity 281.1 361.8 

Max-Log-MAP [4] 

Bit-level 1,442 1,446 
Normalized Complexity 131.1 131.5 
Optimum Boundaries {0,4,6,8, 10, 12, 16} {0,2,4,6,8, 10, 12,14, 16} 

Complexity 1,136 1,222 
Normalized Complexity 103.3 111.1 

(32,6) 

Viterbi [3] 

Bit-level 729 729 

Normalized Complexity 121.5 121.5 

Optimum Boundaries {0,4,8, 12, 16,20,24,28,31 ,32} {0,4,8, 12, 16,20,24,28,31 ,32} 

Complexity 278 278 
Normalized Complexity 46.3 46.3 

MAP [4] 

Bit-level 14,674 14,714 
Normalized Complexity 2,445.7 2,452.3 
Optimum Boundaries {0,8,16,24,32} {0,8,16,24,32} 

Complexity 2,942 3,485 
Normalized Complexity 490.3 580.8 

Max-Log-MAP [4] 

Bit-level 3,474 3,478 
Normalized Complexity 579 579.7 
Optimum Boundaries {0,4,8, 16,24,28,32} {0,2,4,8, 16,24,28,30,32} 

Complexity 1,326 1,510 
Normalized Complexity 221 251.7 



A Comparisons with Results in the Literature 75 

Table A.1 Computational complexities of Viterbi, Max-Log-MAP, and MAP decoding of RM codes 
found in the literature. 

(N,K) RM Codes Obtained Results Best Known Reference 

(32,16) 

Viterbi [3] 

Bit-level 7,993 7,993 
Normalized Complexity 499.6 499.6 
Optimum Boundaries {0,8,16,24,32} {0,8,16,24,32} 
Complexity 2,383 2,383 
Normalized Complexity 148.9 148.9 

MAP [4] 

Bit-level 137,730 137,770 
Normalized Complexity 8,608.1 8,610.6 
Optimum Boundaries {0,4,8, 12, 16,20,24,28,32} {0,3,8, 12, 16,20,24,29,32} 

Complexity 59,278 59,850 
Normalized Complexity 3,704.9 3,740.6 

Max-Log-MAP [4] 

Bit-level 35,138 35,142 
Normalized Complexity 2,196.1 2,196.4 
Optimum Boundaries {0,3,5,8, 12, 16,20,24,27,29,32} {0,1,3,5,8, 12, 16,20,24,27 ,29,31,32} 
Complexity 21,870 22,078 
Normalized Complexity 1,366.9 1,379.9 

(32,26) 

Viterbi [3] 

Bit-level 1,721 1,721 

Normalized Complexity 66.2 66.2 
Optimum Boundaries {0,4, 8,12,16,20,24,28,32} {0,4,8, 12, 16,20,24,28,32} 

Complexity 1,255 1,255 
Normalized Complexity 48.3 48.3 

MAP [4] 

Bit-level 26,082 26,120 
Normalized Complexity 1,003.2 1,004.6 
Optimum Boundaries {0,7 ,8,10, Il, 12, 13, 14, 16, {0,4,6,7,8,1O,11,12,13,14,16, 

18,19,20,21,22,24,25,32} 18,19,20,21,22,24,25,26,28,32 } 

Complexity 22,154 22,660 
Normalized Complexity 852.1 871.5 

Max-Log-MAP [4] 

Bit-level 6,946 6,950 
Normalized Complexity 267.2 267.3 
Optimum Boundaries {0,4,6,7,8,10,11,12,13,14,16, {0,2,4,6,7 ,8,10, Il,12,13,14,16, 

18,19,20,21,22,24,25,26,28,32 } 18,19,20,21,22,24,25,26,28,30,32 } 

Complexity 6,356 6,446 
Normalized Complexity 244.5 247.9 



A Comparisons with Results in the Literature 76 

Table A.1 Computational complexities of Viterbi, Max-Log-MAP, and MAP decoding of RM codes 
found in the literature. 

(N, K) RM Codes Obtained Results Best Known Reference 

(64,7) 

Viterbi [7], [3] 

Bit-Ievel 2,825 2,825 

Normalized Complexity 403.6 403.6 

Optimum Boundaries {0,4,8,12,16,24,32, {0,4,8, 12, 16,24,32, 

40,48,52,56,60,63,64 } 40,48,52,56,60,63,64 } 

Complexity 806 806 

Normalized Complexity 115.1 115.1 

MAP [4] 

Bit-Ievel 58,034 58,074 
Normalized Complexity 8,290.6 8,296.3 
Optimum Boundaries {O, 16,32,48,64} {0,8, 16,32,48,56,64} 

Complexity 7,934 9,405 
Normalized Complexity 1,133.4 1,343.6 

Max-Log-MAP [4] 

Bit-Ievel 13,778 13,782 
Normalized Complexity 1,968.3 1,968.9 
Optimum Boundaries {0,4,8,16,32, {0,2,4,8,16,24,32, 

48,56,60,64 } 40,48,56,60,62,64 } 

Complexity 4,430 5,094 
Normalized Complexity 632.9 727.7 



A Comparisons with Results in the Literature 77 

Table A.l Computation al complexities of Viterbi, Max-Log-MAP, and MAP decoding of RM codes 
found in the literature. 

(N, K) RM Codes Obtained Results Best Known Reference 

(64,22) 

Viterbi [3] 

Bit-level 425,209 425,209 

Normalized Complexity 19,327.7 19,327.7 

Optimum Boundaries {0,8, 16,32,48,56,61,63,64 } {0,8, 16,32,48,56,61 ,63,64} 

Complexity 104,370 101,786 
Normalized Complexity 4,744.1 4,626.6 

MAP [4] 

Bit-level 7,976,575 7,976,615 
Normalized Complexity 362,571.8 362,573.4 
Optimum Boundaries {0,8, 16,24,32,40,48,56,64} {0,3,8, 16,24,32,40,48,56,61,64} 

Complexity 2,055,840 2,062,990 
Normalized Complexity 93,447.3 93,772.3 

Max-Log-MAP [4] 

Bit-level 1,975,458 1,975,462 
Normalized Complexity 89,793.6 89,793.7 
Optimum Boundaries {0,3,5,8, 10, 16, 18,24,30,32, {0,1,3,5,8,1O, 16, 18,24,30,32, 

34,40,46,48,54,56,59,61,64 } 34,40,46,48,54,56,59,61,63,64 } 

Complexity 903,562 905,974 
Normalized Complexity 41,071 41,180.6 



A Comparisons with Results in the Literature 78 

Table A.1 Computational complexities of Viterbi, Max-Log-MAP, and MAP decoding of RM codes 
found in the literature. 

(N, K) RM Obtained Results Best Known Reference 

Codes 

(64,42) 

Viterbi 

Bit-level 

Normalized Complexity 

Optimum Boundaries 

Complexity 

Normalized Complexity 

MAP 

Bit-level 

Normalized Complexity 

Optimum Boundaries 

Complexity 

Normalized Complexity 

Max-Log-MAP 

Bit-level 

Normalized Complexity 

Optimum Boundaries 

Complexity 

Normalized Complexity 

773,881 

18,425.7 

{0,8, 16,24,32,40,48,56,64} 

538,799 

12,828.5 

Il,986,300 

285,388.1 

{0,4,8, 12, 14, 16, 

20,22,24,26,28,32, 

36,38,40,42,44,48, 

50,52,56,60,64 } 

8,261,180 

196,694.8 

3,195,810 

76,090.7 

{0,4,6,8, 10,12,14,16, 

18,20,22,24,26,28,30,32, 

34,36,38,40,42,44,46,48, 

50,52,54,56,58,60,64 } 

2,646,470 

63,011.2 

[3] 

773,881 

18,425.7 

{0,8, 16,24,32,40,48,56,64} 

538,799 

12,828.5 

[4] 

Il,986,345 

285,389.2 

{0,1,4,8, 12, 14, 16, 

20,22,24,26,28,32, 

36,38,40,42,44,48, 

50,52,56,60,63,64 } 

8,261,890 

196,711.7 

[4] 

3,195,814 

76,090.8 
{0,2,4,6,8, 10,12, 14, 16, 

18,20,22,24,26,28,30,32, 

34,36,38,40,42,44,46,48, 

50,52,54,56,58,60,62,64 } 

2,646,566 
63,013.5 



A Comparisons with Results in the Literature 79 

Table A.1 Computation al comp1exities of Viterbi, Max-Log-MAP, and MAP decoding of RM codes 
found in the 1iterature. 

(N, K) RM Obtained Resu1ts Best Known Reference 

Codes 

(64,57) 

Viterbi 

Bit-1eve1 

Norma1ized Comp1exity 

Optimum Boundaries 

Comp1exity 

Norma1ized Comp1exity 

MAP 

Bit-1eve1 

Norma1ized Comp1exity 

Optimum Boundaries 

Comp1exity 

Norma1ized Comp1exity 

Max-Log-MAP 

Bit-1eve1 

Norma1ized Comp1exity 

Optimum Boundaries 

Comp1exity 

Normalized Comp1exity 

7,529 

132.1 

{0,4,8,12,13,14,15,16, 

20,21,22,23,24,25,26, 

27,28,32,36,37,38,39, 

40,41,42,43,44,48,49, 

50,51,52,56,60,64 } 

6,507 

114.2 

112,130 

1,967.2 

{0,7,8, 

10, Il, 12, 13, 14, 15,16, 

18,19,20,21,22,23,24, 

25,26,27 ,28,29,30,32, 

34,35,36,37,38,39,40, 

41,42,43,44,45,46,48, 

49,50,51,52,53,54,56, 

57,64} 

104,558 

1,834.4 

30,242 

530.6 

{0,4,6,7,8, 

10, Il, 12, 13, 14,15,16, 

18,19,20,21,22,23,24, 

25,26,27,28,29,30,32, 

34,35,36,37,38,39,40, 

41,42,43,44,45,46,48, 

49,50,51,52,53,54,56, 

57,58,60,64 } 

29,080 

510.2 

[3] 

7,529 

132.1 

{0,4,8, 12, 13, 14, 15, 16, 

20,21,22,23,24,25,26, 

27,28,32,36,37,38,39, 

40,41,42,43,44,48,49, 

50,51,52,56,60,64 } 

6,507 

114.2 

[4] 

112,170 

1,967.9 
{0,4,6,7,8, 

10, Il, 12, 13, 14, 15,16, 

18,19,20,21,22,23,24, 

25,26,27,28,29,30,32, 

34,35,36,37,38,39,40, 

41,42,43,44,45,46,48, 

49,50,51,52,53,54,56, 

57,58,60,64 } 

105,065 

1,843.2 

[4] 

30,246 

530.6 

{0,2,4,6,7,8, 

10, Il, 12, 13, 14, 15,16, 

18,19,20,21,22,23,24, 

25,26,27,28,29,30,32, 

34,35,36,37,38,39,40, 

41,42,43,44,45,46,48, 

49,50,51,52,53,54,56, 

57,58,60,62,64 } 

29,174 

511.8 



A Comparisons with Results in the Literature 80 

is reflected in Table A.l. 

A.2 Optimally Sectionalized Trellis Comparisons 

For Viterbi decoding of a sectionalized trellis, the optimum section boundaries are the same 

for aH linear block codes considered, and the computational complexities are the same for 

aU, except for RM (64,22) code. The optimum sectionalization of this code results in 

{0,8,16,32,48,56,6l,63,64} section boundaries. However, the obtained computational complex­

ity in this thesis is 104,370, whereas it is 101,786 in [3]. The difference in the results is due to the 

different methods used for computing the branch probabilities in the third and fourth sections, in 

which the size of the composite branch is two. In this thesis, the expression IBffl'IBfl' ({i,j -1)/2 

was applied, considering that it provides the minimum number of additions. However, in [3], 

that expression was divided by 4, resulting in 2,584 less computations for the two sections, as is 

shown in Table A.I. 

Significantly higher computational complexities for Max-Log-MAP and MAP decoding of 

aH RM codes considered, and different optimum section boundaries of most RM codes, were 

attained in the referenced literature, as the methods for efficient computation of the decoding 

steps for a sectionalized trellis, stated in Section 3.2.1, were not applied. 

For MAP decoding, the number of required multiplications is reduced by taking into account 

that the forward and backward probabilities of the initial and final states, respectively, are set to 

one. The number of required additions for computing the branch probabilities is reduced by tak­

ing into account the foUowing: the possible encoder outputs in each section are complementary 

for RM codes, and therefore, only half of the branch probabilities need to be computed; if the 

code bits have even weight and the section length is even, the number of additions required could 

be saved even more; depending on the length of a section, gray code ordering of the code bits 

could also reduce the number of required additions. It is apparent that the number of multiplica­

tion and addition operations required depends on the number of parallel, distinct, and composite 

branches, the length of each section, and wh ether the branch labels have even weight. Because 

these values differ for each section, it is possible to analyze the difference in the computational 

complexities between the results in this thesis and in the referenced literature only for linear 

block codes that resulted with the same optimum section boundaries. These codes are: RM (8,4), 

RM (16,5), and RM (32,6). 



A Comparisons with Results in the Literature 81 

For RM (8,4) code, optimum section boundaries obtained in this thesis and in the referenced 

literature are {0,8}. The one section trellis has 16 parallel branches. For the computation of the 

branch probabilities, considering that only half of the branch probabilities need to be computed, 

the expression (f!j - 1) . IB;I . IBrl/2 was applied resulting in 56 additions. However, in [4], 

(f!j - 1) . IB;I . IBrl expression was used, resulting in 56 more additions. The computations of 

the forward and backward state probabilities, in this thesis, required no operations, because of 

the initialization of the state probabilities. However in [4], 1 multiplication was required in each 

recursion, resulting in 5 . 1 . 2 = 10 more operations. In the computation of the soft output, 

considering that there is only one section, no operations are necessary to compute (3.16) or the 

numerator of the LLR. Obtaining the denominator of the LLR, requires 8 subtractions, 1 for each 

bit. Final evaluation of the LLR requires 8 divisions, 1 for each bit. However in [4] additional 

computations resulted from the evaluation of (3.16), requiring 2 multiplications, and from the 

evaluation of the numerator of the LLR, requiring 8 multiplications. Therefore, computation of 

the soft output in [4], requires 5 . 10 = 50 additional operations. In total, the complexity of the 

MAP decoder for RM (8,4) code is by 56 + 10 + 50 = 116 operations higher than that of this 

thesis, as it is shown in Table A.1 with 0.8% error. 

The optimum sectionalization of RM (16,5) code, resulted in the {O, 16} section boundaries 

in this thesis and in the referenced literature. This one section trellis has 32 paralle1 branches. 

The same procedure was followed to compute the complexity for this code, as for RM (8,4) 

code analyzed above. Therefore, the computation of the branch probabilities, results in (16 -

1) . 32/2 = 240 additions, whereas in [4], 240 more additions are required. No operations are 

required for the computation of the forward and backward state probabilities, whereas in [4], one 

multiplication is required for each, resulting in 5 . 2 = 10 operations more. The computation 

of the soft output, requires 16 subtractions for obtaining the denominator of the LLR, and 16 

divisions for the evaluation of the LLR. However in [4], also 2 multiplications are required for 

the evaluation of (3.16), and also 16 multiplications are required for the evaluation of the LLR 

numerator, resulting in the total of 5 . 18 = 90 additional operations. Hence, the complexity of 

the MAP decoder being 897 in this thesis, should be 897 + (240 + 10 + 90) = 1237 in [4], as it 

is shown in Table A.1, with the percentage of error of 2/1237 = 0.16%. 

The optimum sectionalization of RM (32,6) code, in this thesis and in [4], resulted in 

{0,8, 16,24,32} section boundaries. With the examination of the TOGM for this code, it is ob­

served that in each of the four sections there are 16 distinct composite branches, 16 composite 

branches in the first and last sections and 32 in the second and third sections, and the size of each 



A Comparisons with ResuIts in the Literature 82 

is one. The same procedure was followed to compute the branch probabilities, the forward and the 

backward state probabilities, as for the RM codes analyzed above. Therefore, (8 -1) ,16/2 = 56 

additions are needed in each section for the computation of the branch probabilities, and no op­

erations are required for the computation of the forward and backward state probabilities in the 

first and last sections, respectively. However in [4], 56 . 4 = 224 more additions are needed for 

the branch probabilities, and 16 more multiplications are needed in each recursion, resulting in 

5 . 16 . 2 = 160 additional operations. In the computation of the soft output for the first and last 

sections, using expressions from the Table 3.1, 16 + 8 = 24 multiplications, and in the rest of 

the sections, 2 . 32 + 8 = 72 multiplications are required. In [4], as the first and last sections are 

treated the same way as the rest, 2 . 16 + 8 = 40 multiplications are required. The difference 

of 40 - 24 = 16 multiplications for each section, results in total of 16 . 2 . 5 = 160 addition al 

operations in [4]. Therefore, in total, the complexity of this thesis is 224 + 160 + 160 = 544 

operations lower, as it is shown in Table A.1 with 0.03% error. 

For Max-Log-MAP, the number of addition and comparison operations obtained in this thesis 

is less than the reported results of the referenced literature for the same reasons as for the MAP 

decoder, in addition to the method for computing the composite branch probabilities by which 

the number of comparisons is lowered if the parallel branches within each composite branch are 

complementary. 

For RM (8,4) code, optimum section boundaries obtained in this thesis and in the referenced 

literature are {0,4,8}. With the examination of the TOGM for this code, it is observed that in 

each section there are 4 distinct composite branches, 4 composite branches, and the size of each 

is two. For the computation of the branch probabilities, considering that the section lengths are 

even and that the weights of the generated codewords for each section is even, using the applicable 

expression from Table 3.1,24/2+4-4+24-2 = 8 addition operations are needed for each section. 

However, in [4], IBil . IB;I . (I!j - 1) expression was used, resulting in 16 additions more for 

each section. For the computation of the composite branch probabilities, taking into account that 

the parallel branches are self complementary in each section, from Table 3.1, 4 . (2/2 - 1) = 0 

additions are needed. However, in [4], that was not considered, and IBil . (IB.f1 - 1) expression 

was applied instead, resulting in 4 more additions for each section. For the forward and backward 

recursions, no additions are needed for the first and last sections, respectively, unlike in [4], 

resulting in the total of 8 more additions. In total, there are 16·2 + 4·2 + 8 = 48 more operations 

required for Max-Log-MAP decoding in [4] than in this thesis. This is illustrated in Table A.I. 



83 

Appendix B 

BER Performance 

The BER performances of SOYA, MAP, Max-Log-MAP, and Viterbi algorithms applied to a 

bit-1evel trellis and to a sectionalized trellis for RM (32,16) and RM (32,26) codes are ex­

amined in this section. For a sectionalized trellis for RM (32,16) code, the section bound­

aries used are {0,8,16,24,32}, and for RM (32,26) code, the section boundaries used are 

{0,4,8, 12, 16,20,24,28,32}. 

Figures B.1 and B.2 show BER performances of SOYA applied to a bit-1evel trellis and to a 

uniformly sectionalized trellis for RM (32,16) and RM (32,26) codes, respectively. From both 

figures, it is observed that the performance of SOYA applied to a sectionalized trellis does not 

change from its performance based on a bit-level trellis. 

Figures B.3 and B.4 depict bit-error performances of MAP, Max-Log-MAP, SOYA, and 

Viterbi algorithms based on a bit-1evel trellis and on a sectionalized trellis for the (32, 16) and 

(32, 26) RM codes. Both figures reveal that sectionalization does not degrade the performance 

of any algorithm. Viterbi gives an error performance very close to that of the SOYA algorithm. 

Max-Log-MAP algorithm yields better performance than SOYA at BER above 10-1, reaching a 

difference of 0.1 dB. At BER below 10-1
, the two algorithms become identical. It is observed 

from both figures that MAP algorithm is optimum in terms of BER. The difference between MAP 

and SOYA is the greatest at BER above 10-1 reaching a difference of 1 dB for RM (32,26) code, 

and of 0.5 dB for RM (32,16). From Figure B.3, MAP outperforms SOYA by 0.1 dB at BER of 

10-2 • At BER below 10-3 , the two algorithms perform similarly. Similarly, from Figure B.4, 

MAP outperforms SOYA by 0.20 dB at BER of 10-1 , and by 0.1 dB at BER of 10-2 . At BER 

below 10-2
, the difference in the performance curves of the two algorithms is negligible. 



B BER Performance 

cr: 
W 
III 

10° ~~~~~~~~T::~~~~~~~~~~==~~====~~=n ................................................. :.: . a· SOVA 4-section trellis 

. :: -+-- SOVA bit-Ievel trellis 

10-5~ __ ~ ____ ~ ____ ~ __ ~ ____ -L ____ ~ __ ~ ____ -L ____ ~ __ ~ 

-6 -5 -4 -3 -2 -1 0 2 3 4 
SNR (dB) 

Fig. B.l Bit-error performance of SOYA decoding of the (32, 16) RM code. 

cr: 
W 
III 

10° ~~~~~~~~~~~~~~~~~~~==~~~====~=n 
. a· SOVA 8-section trellis 

-4 -2 o 
SNR (dB) 

2 

-+-- SOVA bit-Ievel trellis 

4 6 

Fig. B.2 Bit-error performance of SOYA decoding of the (32, 26) RM code. 

84 



B BER Performance 

a: 
w 
en 

.::::::::;::" 

. ~. MAP 4-section trellis 
-+- MAP bit-Ievel trellis 
-t>- Max-Log-MAP 4-section trellis :::. 
-B- Max-Log-MAP bit-Ievel trellis .. 

D· SOV A 4-section trellis 
-t- SOYA bit-Ievel trellis 
*. Viterbi 4-section trellis 

-V- Viterbi bit-Ievel trellis 10-5L':::::=5.==I====::::::I __ ~ __ ...L __ L--_---l __ ---L_~ 
-6 -5 -4 -3 -2 -1 

SNR (dB) 
o 2 3 4 

Fig. B.3 Bit-error performance ofMAP, Max-Log-MAP, SOYA, and Viterbi decod­
ing of the (32, 16) RM code. 

a: 
w en 

~. MAP 8-section trellis 
-+- MAP bit-Ievel trellis 
-t>- Max-Log-MAP 8-section trellis ::. 
-B- Max-Log-MAP bit-Ievel trellis . 
G· SOYA 8-section trellis 
-t- SOYA bit-Ievel trellis . *. Viterbi 8-section trellis 
-v- Viterbi bit-Ievel trellis 10-5 L'====:::r:======= __ --L ____ -L-___ ---l ____ , 

-6 -4 -2 o 
SNR (dB) 

2 4 6 

Fig. B.4 Bit-error performance of MAP, Max-Log-MAP, SOYA, and Viterbi decod­
ing of the (32, 26) RM code. 

85 



86 

References 

[1] C. Shannon, "A mathematical theory of communication," Bell System Technical Journal, 
vol. 27, pp. 379-423, July 1949. 

[2] R. Pyndiah, "Near-optimum decoding of product codes: Block Turbo Codes," IEEE Trans. 
Communications, vol. 46, pp. 1003-1010, Aug. 1998. 

[3] A. Lafourcade and A. Vardy, "Optimal sectionalization of a trellis," IEEE Trans. Inform. 
Theory, vol. 42, pp. 689-703, May 1996. 

[4] Y. Liu, S. Lin, and M. Fossorier, "MAP algorithms for decoding linear block codes based 
on sectionalized trellis diagrams," IEEE Trans. Communications, vol. 48, pp. 577-587, Apr. 
2000. 

[5] D. Muller, "Application of Boolean algebra to switching circuit design and to error detec­
tion," IEEE Trans. Computers, vol. 3, pp. 6-12, 1954. 

[6] 1. Reed, "A class of multiple-error-correcting codes and the decoding scheme," IEEE Trans. 
Inform. Theory, vol. 4, pp. 38-49, Sept. 1954. 

[7] S. Lin, T. Kasami, T. Fujiwara, and M. Fossorier, Trellises and Trellis-Based Decoding 
Algorithms for Linear Block Codes. Boston, MA: Kluwer Academic Publishers, 1998. 

[8] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing 
symbol error rate," IEEE Trans. Inform. Theory, vol. 20, pp. 284-287, Mar. 1974. 

[9] J. Wolf, "Efficient maximum-likelihood decoding of linear block codes using a trellis," 
IEEE Trans. Inform. Theory, vol. 24, pp. 76-80, Jan. 1978. 

[10] G. Forney, "Coset Codes II: Binary lattices and related codes," IEEE Trans. Inform. Theory, 
vol. 34, pp. 1152-1187, Sept. 1988. 

[11] J. Omura, "On the Viterbi decoding algorithm," IEEE Trans. Inform. Theory, vol. 15, 
pp. 177-179,Jan. 1969. 

[12] G. Forney, "The Viterbi algorithm," in Proc. IEEE, vol. 61, pp. 268-278, Mar. 1973. 



References 87 

[13] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decod­
ing algorithm," IEEE Trans. Inform. Theory, vol. 13, pp. 260-269, Apr. 1967. 

[14] M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, "On the equivalence between SOYA and 
Max-Log-MAP decoding," IEEE Commun. Lett., vol. 2, pp. 137-139, May 1998. 

[15] 1. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its appli­
cations," in Proc. IEEE Globecom Conference, (Dallas, TX), pp. 1680-1686, Nov. 1989. 

[16] C. Berrou, P. Adde, E. Angui, and S. Faudeil, "A low complexity soft-output Viterbi decoder 
architecture," in Proc. IEEE Int. Conf Communications, pp. 737-740, May 1993. 

[17] B. Vucetic and 1. Yuan, Turbo Codes: Principles and Applications. Boston, MA: Kluwer 
Academie Publishers, 2000. 

[18] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting co ding 
and decoding: Turbo-Codes," in Proc. IEEE Int. Conf Communications, (Geneva, Switzer­
land), pp. 1064-1070, May 1993. 

[19] C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding: Turbo­
Codes," IEEE Trans. Communications, vol. 44, pp. 1261-1271, Oct. 1996. 

[20] R. Pyndiah, A. Glavieux, A. Pic art, and S. Jacq, "Near optimum decoding of product codes," 
in Proc. IEEE Globecom '94 Conference, vol. 1, (San Francisco, CA), pp. 339-343, Nov. 
1994. 

[21] P. Adde, R. Pyndiah, O. Raoul, and 1. Inisan, "Block turbo decoder design," in Proc. IEEE 
Int. Symposium on Turbo Codes, (Brest, France), pp. 166-169, Sept. 1997. 

[22] P. Elias, "Error-free coding," IRE Trans. Inform. Theory, vol. 4, pp. 29-37, Sept. 1954. 

[23] D. Divsalar and F. Pollara, "Turbo codes for deep-space communications," Tech. Rep. 42-
120, TDA, Feb. 1995. 

[24] C. Edwards, C. Steilzvied, L. Deutsch, and L.Swanson, "NASA's deep-space telecommu­
nications road map," Tech. Rep. 42-126, TMO, Feb. 1999. 

[25] S. Barbu1escu, W. Farrell, P. Gray, and M. Rice, "Bandwidth efficient turbo coding for high 
speed mobile satellite communications," in Proc. IEEE Int. Symposium on Turbo Codes, 
(Brest, France), pp. 119-126, Sept. 1997. 

[26] D. Wang, "High-performance SOYA decoding for Turbo Codes over cdma2000 mobile 
radio," IEEE Trans. Inform. Theory, vol. 42, pp. 189-193, May 2000. 

[27] R. Pyndiah, "Iterative decoding of product codes: Block Turbo-Codes," in Proc. IEEE Int. 
Symposium on Turbo Codes, (Brest, France), pp. 71-79, Sept. 1997. 



References 88 

[28] U. Vilaipornsawai and M. R. Soleymani, "Trellis-based iterative decoding of block codes 
for satellite ATM," IEEE Trans. Inform. Theory, vol. 42, pp. 2947-2951, May 2002. 

[29] D. Chase, "A c1ass of algorithms for decoding block codes with channel measurement in­
formation," IEEE Trans. Inform. Theory, vol. 18, pp. 170-182, Jan. 1972. 

[30] S. Dave, J. Kim, and S. Kwatra, "Turbo Block Codes using modified Kaneko's algorithm," 
IEEE Trans. Inform. Theory, pp. 181-183, Oct. 2000. 

[31] S. Shin, S. Lee, and S. Lee, "Evaluation of block turbo code performance with the re­
duced search trellis decoding method," in Proc. IEEE Int. Conf Communications, vol. 148, 
pp. 125-131, June 2001. 

[32] P. Luukkanen and P. Zhang, "Comparison of optimum and sub-optimum Turbo Decoding 
schemes in 3rd generation cdma2000 mobile system," IEEE Trans. Inform. Theory, vol. 42, 
pp. 437-441, May 1999. 

[33] L. Lin and R. Cheng, "Improvements in SOVA-based decoding for Turbo Codes," IEEE 
Trans. Inform. Theory, pp. 1473-1478, June 1997. 

[34] R. McEliece, "On the BCJR trellis for linear block codes," IEEE Trans. Inform. Theory, 
vol. 42, pp. 1072-1092, July 1996. 

[35] F. Kschischang and V. Sorokine, "On the trellis structure of block codes," IEEE Trans. 
Inform. Theory, vol. 41, pp. 1924-1937, Nov. 1995. 

[36] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, "On structural complexity of the L-section 
minimum trellis diagrams for binary linear block codes," IEICE Trans. Fundamentals, 
vol. 76, pp. 1411-1421, Sept. 1993. 

[37] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, "On complexity of trellis structure of linear 
block codes," IEEE Trans. Inform. Theory, vol. 39, pp. 1057-1064, May 1993. 

[38] A. Kiely, S. Dolinar, R. McEliece, L. Ekroot, and W. Lin, "Trellis decoding complexity of 
linear block codes," IEEE Trans. Inform. Theory, vol. 42, pp. 1687-1697, Nov. 1996. 

[39] P. Robertson, E. Villebrun, and P. Hoeher, "A comparison of optimal and sub-optimal MAP 
decoding algorithms operating in the log domain," in Proc. IEEE Int. Conf Communica­
tions, (Seattle), pp. 1009-1013, June 1995. 

[40] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, "On the optimum bit orders with respect to the 
state complexity of trellis diagrams for binary linear codes," IEEE Trans. Inform. Theory, 
vol. 39,pp. 242-245,Jan. 1993. 

[41] A. Vardy and Y. Be'ery, "Maximum-likelihood soft decision decoding ofBCH codes," IEEE 
Trans. Inform. Theory, vol. 40, pp. 546-554, Mar. 1994. 


