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Abstract 

This thesis studies the impacts of credit risk, or the risk of default, on the pricing 

of fixed income securities. It consists of three essays. The first essay extends the c1assical 

corporate debt pricing model in Merton (1974) to incorporate stochastic volatility (SV) in 

the underlying firm asset value and derive a c1osed-form solution for the price of 

corporate bond. Simulation results show that the SV specification for firm asset value 

greatly increases the resulting credit spread levels. Therefore, the SV model addresses 

one major deficiency of the Merton-type models: namely, at short maturities the Merton 

model is unable to generate credit spreads high enough to be compatible with those 

observed in the market. In the second essay, we develop a two-factor affine model for the 

credit spreads on corporate bonds. The first factor can be interpreted as the level of the 

spread, and the second factor is the volatility of the spread. Our empirical results show 

that the model is successful at fitting actual corporate bond credit spreads. In addition, 

key properties of actual credit spreads are better captured by the model. Finally, the third 

essay proposes a model of interest rate swap spreads. The model accommodates both the 

default risk inherent in swap contracts and the liquidity difference between the swap and 

Treasury markets. The default risk and liquidity components of swap spreads are found to 

behave very differently: first, the default risk component is positively related to the 

riskless interest rate, whereas the liquidity component is negatively correlated with the 

riskless interest rate; second, although default risk accounts for the largest share of the 

levels of swap spreads, the liquidity component is much more volatile; and finally, while 

the default risk component has been historically positive, the liquidity component was 

negative for much of the 1990s and has become positive since the financial market 

turmoil in 1998. 
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Résumé 

Cette thèse étudie les impacts du risqué de crédit ou le risqué de défaut sur 

l'évaluation des titres à revenus fixes. Elle consiste en trois essais. Le premier essai étend 

le modèle classique de l'évaluation de la dette corporative selon Merton (1974) pour 

inclure le cas de la volatilité stochastique (SV) sur la valeur de l'actif sous-jacent et 

dériver une solution fermée pour le prix des obligations corporatives. Les résultats de 

simulation montrent que la spécification SV pour la valeur de l'actif de la firme augmente 

grandement les niveaux des spreads résultants. Ainsi, le modèle SV soulève une 

déficience majeure des modèles du type Merton : Plus particulièrement, pour les courtes 

maturités, le modèle de Merton est incapable de générer des marges de crédit assez 

élevées pour être compatibles avec les données observées sur le marché. Dans le second 

essai, nous développons un modèle affiné à deux facteurs pour la marge de crédit des 

obligations corporatives. Le premier facteur peut être interprété comme le niveau du 

spread alors que le second, correspond à sa volatilité. Nos résultats empiriques montrent 

que le modèle explique les marges de crédit sur les obligations corporatives observées. 

De plus, les propriétés essentielles des marges de crédit sont mieux capturées par le 

modèle. Finalement, le troisième essai un modèle de marge de swap de taux d'intérêt. Il 

accommode le risque de défaut inhérent aux contrats swap et le différentiel de liquidité 

entre le marché des swaps et celui des bons du trésor. Les deux composantes que sont le 

risque de défaut et la liquidité des marges sur swap se comportent différemment. 

D'abord, le risque de défaut est relié positivement au taux d'intérêt sans risque, alors que 

la liquidité est corrélée négativement avec ce même taux sans risque. Ensuite, bien que le 

risque de défaut tienne compte de la grande part des niveaux des marges swap, la 

liquidité est beaucoup plus volatile; et finalement, alors que le risque de défaut a été 

historiquement positif, la composante liquidité a été négative pour la plus grande partie 

des années 1990 et est devenue positive depuis la crise financière de 1998. 
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Introduction 

Credit risk or default risk refers to the risk of the possible default of financial 

securities. Almost every financial contract and security is affected by certain types of 

credit risk. Therefore, both academics and practitioners have a keen interest in accurately 

measuring the credit risk embedded in financial securities. This thesis makes sorne 

contributions to the accurate measurement of credit risk. Specifically, we investigate the 

impacts of credit risk on the pricing of fixed income securities (e.g. corporate bonds and 

interest rate swaps etc.). The thesis concentrates on the following three fundamental 

questions in modeling credit risk: 

1) What are the implications of credit risk for the pricing of fixed mcome 

securities? 

2) Can we develop more satisfactory credit risk models that better capture the 

observed credit spreads on fixed income securities? 

3) Are the observed credit spreads on fixed income securities solely attributed to 

credit risk? Ifnot, what are the non-credit (default) components? 

Currently there are two broadly specified approaches to modeling credit risk: the 

structural approach and the reduced form approach. The first approach is based on the 

value of the firm. This approach specifies a default threshold and models the allocation of 

the firm' s residual value upon default. The structural approach was initiated by Merton 

(1974) and was subsequently extended by Longstaffand Schwartz (1995) and others. On 

the other hand, the reduced form approach treats default as an exogenous event and 

usually uses a Poisson process to modeling the occurrence of default. This approach was 

first introduced by Madan and Unal (1994) and Jarrow and Turnbull (1995). 

This thesis uses both structural and reduced form approaches. It proposes better 

models of credit risk and studies the individual components of the credit spreads. The 

models developed in this thesis are tractable and can be easily implemented in practice. 

In addition, the empirical results obtained in this thesis have important implications for 

not only the pricing of various types of fixed income securities, but also for the 

management of fixed income portfolios. 

1 



The thesis consists of three essays. The first and second essays address both the 

first and second aforementioned questions, but using different modeling approaches. In 

particular, in the first essay, "A Structural Model of Corporate Debt with Stochastic 

Volatility," we extend the structural corporate debt pricing model in Merton (1974) to 

incorporate stochastic volatility (SV) in the underlying firm asset value and derive a 

c1osed-form solution for the price of corporate bond. Simulation results show that for 

realistic parameter values, the SV specification for firm asset value greatly increases the 

resulting credit spread levels. Therefore, the SV model addresses one major deficiency of 

the Merton-type models: namely, at short maturities the Merton model is unable to 

generate credit spreads high enough to be compatible with those observed in the market. 

In the second essay, "Modeling the Dynamics of Credit Spreads with Stochastic 

Volatility" (co-authored with Prof. Kris Jacobs), we develop a two-factor reduced form 

model for the credit spreads on corporate bonds. The first factor can be interpreted as the 

level of the spread, and the second factor is the volatility of the spread. The riskless 

interest rate is modeled using a standard two-factor affine model, thus leading to a four­

factor model for corporate yields. This approach allows us to model the volatility of 

corporate credit spreads as stochastic, and also allows us to capture higher moments of 

credit spreads. We use an extended Kalman filter approach to estimate our model on 

corporate bond prices for 108 firms. The model is found to be successful at fitting actual 

corporate bond credit spreads, resulting in a significantly lower root mean square error 

(RMSE) than a standard alternative model in both in-sample and out-of-sample analyses. 

In addition, key properties of actual credit spreads are better captured by the model. 

Finally, the third essay, "Decomposing the Default Risk and Liquidity 

Components of Interest Rate Swap Spreads," addresses the third question mentioned 

earlier. To this end, we study the individual components of one of the most important 

credit spreads in the financial markets: interest rate swap spreads. We propose a reduced 

form model of interest rate swap spreads. The model accommodates both the default risk 

inherent in the swap contracts and the liquidity difference between the swap and Treasury 

markets. Empirical results show that the default risk and liquidity components of swap 

spreads behave very differently: first, the default risk component is positively related to 

the riskless interest rate, whereas the liquidity component is negatively correlated with 
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the riskless interest rate; second, although default risk accounts for the large st shares of 

the levels of swap spreads, the liquidity component is much more volatile; and finally, 

while the default risk component has been historically positive, the liquidity component 

was negative for much of the 1990s and has become positive since the financial market 

turmoil in 1998. 
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Literature Review 

Credit risk, or the risk of defau1t, has received a lot of attention in the finance 

1iterature since the early 1990s. Saunders and Allen (2002) identify at 1east seven reasons 

for this surge in interest. First, there has been a significant increase in bankruptcies 

worldwide. Second, the average credit qua1ity of borrowers in capital markets has 

dec1ined as more and more small and mid-sized firms have gained access to bank 10ans. 

Third, profit margins have become very thin. Therefore, the risk-retum trade-off from 

1ending has worsened. Fourth, rea1 asset values in many markets have decreased, thus 

eroding the value of collateral. Fifth, the explosive expansion of off-balance sheet 

derivative markets has introduced a significant credit exposure. Sixth, the advances in 

techno10gy have made accurate measurement of credit risk feasib1e. Finally, because of 

increasing scrutiny from regu1ators, especially the Bank for International Settlements 

(BIS), banks and financia1 institutions are under growing pressure to measure credit risk 

accurate1y. In response to this changing environment, academics and practitioners have 

been working together to deve10p newer and better credit risk mode1s since the 1ast 

decade. 

There are two types of credit risk. First, the issuer of a security cou1d default, even 

if the under1ying security itse1f is default-free. A typica1 examp1e of this type of credit 

risk will be an over-the-counter (OTC) call option written on Treasury bills. Second, the 

assets underlying a derivative security may be subject to default, paying 1ess than what 

has been promised. This is the case, for instance, with the imbedded option in corporate 

bond. Mode1s for accurate measurement of both types of credit risk are being active1y 

deve10ped. 

There are three key issues that credit risk mode1s have to address. First, credit risk 

mode1s are primarily used to price bank 10ans and corporate bonds. These types of 10ans 

serve as basic building blocks for modeling credit risk in much the same way that zero 

coupon bonds are used to set up a term structure of riskless interest rates from which 

various types of interest rate derivatives can be priced. At a more fundamenta1level, the 

valuation of corporate bonds is intimately related to the optimal capital structure choice 

of a firm. Second, credit risk models are employed to manage credit risky portfolios. The 
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difficult question here is not only describing the stochastic behavior of priees but also 

measuring correlation between priee movements. Third, as the credit derivative markets 

grow in both depth and breadth, using credit risk models to priee credit derivatives has 

become an indispensable part of banks and financial institutions' risk management 

practice. 

From a modeling perspective, the two quantities that determine the priees of 

credit risky securities and derivatives are default probability and recovery rate. The latter 

quantity refers to the fraction of the promised payments which the defaulting entities are 

able to pay. Accordingly, any credit risk model has to take three sources of risk into 

account: the riskless interest rate risk, default risk, and recovery rate risk. Different 

models are mainly characterized by different specifications for the latter two types of 

risk. 

Currently, there are two broadly specified approaches to modeling credit risk: 

models based on the value of the firm (where "firm" is used as a generic term for the 

issuer of the bond) and models based on the default intensity. The models used in these 

two approaches are called structural models and reduced form models, respectively. In 

structural models, default is assumed to occur when the underlying firm value process 

first passes a certain threshold. Therefore in this type of models default is endogenously 

determined. In contrast, in reduced form models default is taken as exogenous and is 

assumed to occur when an exogenous Poisson process jumps, capturing the idea that 

default time takes bondholders by surprise. 

Merton (1974) developed the first structural mode!. His model was subsequently 

extended by a number ofauthors. For example, Leland (1994), Anderson and Sundaresan 

(1996), Leland and Toft (1996), and Mella-Barral and Perraudin (1997) incorporate 

bankruptcy costs, taxes, and violations of the absolute priority rule in situations of 

financial distress. Likewise, Kim, Ramaswamy, and Sundaresan (1993), Shimko, Tejima, 

and Van Deventer (1993), Longstafff and Schwartz (1995), and Wang (1998) have 

modified the original Merton model to inc1ude a stochastic interest rate. Finally, Zhou 

(1997) substitutes a jump-diffusion process for the geometric Brownian motion process 

assumed in Merton (1974) to describe the dynamics of firm asset value. Reduced form 

models were first introduced by Madan and Unal (1994) and Jarrow and Turnbull (1995). 
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Much of the recent work on credit risk modeling is in this category, see, among others, 

Jarrow, Lando, and Turnbull (1997), Duffee (1999), and Duffie and Singleton (1999). 

Structural models provide very helpful insights into the qualitative aspects of 

credit risk modeling, whereas reduced form models can not. On the other hand, the 

structural approach has proven difficult to use for practical applications such as valuing 

individual corporate debt securities since firm value, which is the key modeling variable 

of this approach, is rarely observable. In contrast, the reduced form approach is easier to 

implement and has the advantage of being able to match the levels of credit spreads 

observed in the market. 

It should be noted that the distinction between the structural and reduced form 

models is not as c1ear-cut as it appears to be. For instance, a firm-value-based model can 

result in a default intensity that is similar to that in reduced form models if bondholders 

can not observe the firm's asset value directly and have to rely on equityholders' periodic 

and imperfect accounting reports (Duffie and Lando (2001)). In addition, structural 

models could be easily transformed into reduced form models if we model the value of 

the firm using a jump process; on the other hand, reduced form models can easily 

incorporate firm value by using it as a variable determining the default intensity.\ 

Roughly speaking, recovery rates can be modeled in two ways: we may either 

assume them to be a function of the firm value using the option features of corporate debt 

or model them as an essentially exogenous quantity that must be estimated from 

historical data or implied out from observed prices. As a rule ofthumb, structural models 

use one or both of these approaches to model recovery rates, whereas reduced form 

models normally specify recovery rates as exogenous. 

In recent years, important progresses have also been made in modeling credit risk 

at a portfolio leveL For example, currently there are three standard credit risk 

management approaches that are being widely used by the finance industry worldwide. 

They are: the KMV and Moody's, CreditMetrics, and Credit Risk Plus approaches. 

Among these three approaches, the KMV and Moody's method is based on the structural 

1 Jarrow (2001) makes the interesting point that, prior to his work, structural models used only equity 
priees, avoiding debt priees as too noisy, whereas redueed form models only relied on debt priees, 
esehewing equity priees altogether. The redueed form model in Jarrow (2001) is claimed to be the first 
model that uses both debt and equity priees to measure credit risk exposure. 
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model in Merton (1974). It deterrnines the empirical expected default frequency (EDF) 

by using KMV and Moody's extensive credit history database. The primary advantage of 

this approach is that it utilizes stock priee data that are highly indicative of the firrn's 

changing financial conditions. The CreditMetrics method was introduced by J.P. Morgan 

and is also based on the structural approach. This method utilizes credit rating transition 

matrices, which are publicly available, to compute the firrn's credit value at risk (VaR). 

This approach is characterized by: (1) it considers both an upside and downside to loan 

values; and (2) it takes into account the actual distribution of estimated future loan values 

when calculating a capital requirement on a loan. Lastly, the Credit Risk Plus approach 

was proposed by Credit Suisse Financial Products and is an actuarial method similar to 

those found in the property insurance literature. The major advantage of this approach is 

that its data input requirement is minimal, relative to e.g. the CreditMetrics approach. Its 

major disadvantage is that unlike the CreditMetrics approach, it only considers loss rates 

rather than loan value changes. Active research is also being conducted to refine the three 

aforementioned methods and to develop newer and finer methods to manage portfolio 

credit risk. 

There are several particularly interesting areas for future research. First, more 

work is needed on the implementation of credit risk models, especially on the 

implementation of structural models since the fundamental variable in these models, firrn 

asset value, is not observable. As a compromise, in order to implement these models, we 

need to use equity values as a proxy, since the equity of a levered firrn can be thought of 

as a call option written the underlying firrn value. This practiee will lead to multiple 

layers of measurement errors in estimation. 

Second, we have to develop models that explicitly capture the correlation between 

market risk and credit risk. Economic theories tell us that market risk and credit risk are 

not separable but related. Yet the present credit risk models usually treat these two 

sources of risk as if they are independent of each other. Therefore, a promising avenue 

for future research is to explicitly capture the correlation between market and credit risk. 

There are at least two reasons for so doing. First, risk management at financial 

institutions requires a unified framework that combines both types of risk "un der one 

umbrella," thus facilitating the calculation of the overall VaR for financial institutions. 
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Second, recent empirical evidence has shown that traditional credit risk models have 

great difficulties in fitting the changes of credit spreads on corporate bonds (see e.g. 

Collin-Dufresne, Goldstein, and Martin (2001)). A possible explanation for this failure of 

credit risk models is that the stock and bond markets might be segmented. This 

emphasizes the need for further research into the interaction between market risk and 

credit risk. The recent work of Jarrow and Tumbull (2000) contains such an attempt. 

Third, credit derivatives were one of the most important financial innovations in 

the past decade. Credit derivatives can be defined as contracts whose payoffs are 

contingent on certain underlying credit events or measures of credit risk quality such as 

credit spreads. For those investors whose portfolio values are highly sensitive to shifts in 

the credit spreads, these derivative contracts offer them a very valuable new tool for 

managing and hedging this type of risk. These derivative securities allow them to manage 

and transfer credit risk efficiently. Key credit derivatives include credit default swaps, 

total-retum swaps, and credit spread options etc. Credit default swaps pay the buyer of 

the credit protection a contracted contingent amount when a stipulated credit event 

occurs, such as default. The contingent amount is usually the difference between the face 

value of the corporate bond and its market price at the time of the credit event. In retum, 

the credit protection seller receives periodic premium payments from the protection buyer 

until the time of the credit event, or the maturity date of the default swap, whichever 

cornes first. Total-retum swaps pay the net retum of one asset class over another. If the 

two asset classes differ mainly in terms of credit risk, such as a Treasury bond vs. a 

corporate bond with matched maturity, then the total-retum swap can be considered as a 

credit derivative. Finally, credit spread options convey the right to trade bonds at given 

spreads over a reference yield, such as the Treasury yield curve. As our understanding of 

credit risk deepens, we need to know more about the pricing of credit derivatives. 

Finally, there is this issue of measuring the credit risk of off-balance sheet 

derivative securities. The current practice for so doing has two major problems. First, the 

present method uses models of the stochastic behavior of financial variables while 

ignoring their inherent oversimplifications and the uncertainty in the model parameters. 

Second, the current approach ignores the correlation between the exposure to different 

derivative instruments and the probability of counterparty default. Because of these two 
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problems, the present approach may cause large errors in the estimation of distributions 

ofboth future credit exposure and future credit losses. 
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The following essay develops a structural model of corporate debt with stochastic 

volatility. In contrast, the classical Merton's (1974) model and its existing extensions all 

assume constant volatility of the firm value. Simulation results show that for realistic 

parameter values, the stochastic volatility specification for firm asset value greatly 

increases the resulting credit spread levels. 
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A Structural Model of Corporate Debt with Stochastic 
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Xiaofei Li 
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Abstract 

This paper extends the corporate debt pricing model in Merton (1974) to incorpo­

rate stochastic volatility (SV) in the underlying firm asset value and derives a closed­

form solution for the price of corporate debt. Simulation results show that for realistic 

parameter values, the SV specification for firm asset value greatly increases the result­

ing credit spread levels. In particular, for debt maturities of less than or equal to five 

years, the average increase in credit spread levels is 33 basis points (or equivalently, 

32.35%) for a typical firm. Therefore, the SV model addresses one major deficiency 

of the Merton-type models: namely, at short maturities the Merton model is unable 

to generate credit spreads high enough to be compatible with those observed in the 

market. 

JEL Classifications: G12, G13, G33 

Keywords: credit risk; credit spreads; stochastic volatility; structural models. 
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1 Introduction 

The corporate debt market is among the largest financial markets. For example, accord­

ing to a recent estimate of the Bond Market Association, the total amount of U.S. corporate 

debt outstanding is more than US$ 3 trillion, and the U .S. corporate debt market has sur­

passed the U.S. Treasury market as the largest segment of the U.S. fixed income market 

(Ericsson and Reneby (2001)). Most corporate debt commands a sizeable spread over the 

yield of riskless debt (e.g. U .S. Treasury bills, notes etc.). This spread is called the yield 

spread. The components of this yield spread have long been a major research interest of 

financial economists. Academies generally agree that one of the main components of yield 

spreads is a credit spread that compensates for credit risk, i.e. the possible default and credit 

downgrade of corporate debt. Given the size of corporate debt market, the potential losses 

from corporate bond defaults are large. Therefore, both academics and practitioners have a 

keen interest in accurately measuring the credit risk embedded in corporate debts. 

This paper contributes to the fast-growing literature on modeling the credit spread of 

corporate debt. Currently there are two broadly specified approaches to modeling credit 

risk. The first approach is based on the value of the firm, where "firm" should be considered 

as a generic term for the issuer of the bond. This approach specifies a default threshold and 

models the allocation of residual value upon default exogenously. The models used in this 

approach are called structural models. Merton (1974) first developed structural models, and 

they were subsequently extended in Longstaff and Schwartz (1995) and others. 

The second approach considers default as exogenous and assumes that default will occur 

wh en an exogenous Poisson pro cess jumps. The models used in this approach are called 

reduced form models. Much of the recent work on credit risk modeling follows this approach 

(see e.g. Madan and Unal (1994) and Duffie and Singleton (1999)).1 

Structural models provide very helpful insights into the qualitative aspects of credit risk 

lSundaresan (2000) reviews the existing structural and reduced form models. 
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modeling, whereas reduced form models can not. On the other hand, the structural approach 

has proven to be quite difficult to use for practieal applications such as valuing individual 

corporate debt securities. In addition, it is often criticized for its inability to generate credit 

spreads high enough to be compatible with those observed in the market. In contrast, the 

reduced form approach has the advantage of being able to match the levels of credit spreads 

prevailing in the market. 

This paper presents a structural model of credit risk. It extends Merton's (1974) basic 

model to allow the volatility of the firm's asset value to be stochastic. In contrast, aIl existing 

structural models assume constant volatility of the firm value (see the extensions of the 

Merton model discussed in Section 2.1). Academies have ignored the presence of stochastie 

volatility (SV) in the underlying firm asset value and its potential impact on credit spread 

levels. However, the constant volatility of firm value assumption is clearly counterfactual: 

in reality, the volatility of firm asset value-measured as the sum of book value of firm debt 

and market value of firm equity-changes over time.2 Accordingly, in the present paper we 

directly model the volatility of firm value as stochastic using the setup developed by Merton 

(1974). This exercise is analogous to the approaches in the option pricing literature that 

modify the Black-Scholes model by incorporating SV in the underlying stock price to correct 

for the Black-Scholes model's wide-documented pricing biases. 

The discussion of the model's performance is organized around the following two ques­

tions: first, do es the incorporation of SV in firm value increase the levels of credit spreads 

generated by the Merton model? If so, to what extent? Second, do es the inclusion of SV 

of firm value alter the shape of the credit spread curve in the Merton model, especially at 

short maturities? (At short maturities, credit spreads in the Merton model are close to zero, 

whieh is contrary to reality). 

2It is worth pointing out that since firm value is unobservable, it is difficult, if not impossible, to measure 

the volatility of firm value precisely in practice. However, an indication of the time-varying volatility of firm 

value is the well- established fact that the volatility of market equity price is stochastic. 
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We demonstrate that for realistic parameter values the addition of SV to the process 

for firm value can greatly increase credit spread levels in the Merton model, on average by 

33 basis points (bps), or equivalently 32.35%, in the base case for debt maturities of less 

than or equal to five years. This finding is especially encouraging because it is precisely at 

short maturities that the Merton-type models are most vulnerable to the criticism that their 

resulting credit spread levels are too low to be realistic. Moreover, the framework developed 

is both flexible and practical in that it can be extended to allow for possible early default 

prior to debt maturity. It can also be applied to valuing various types of corporate debt 

securities and credit derivatives. 

The rest of this paper is organized as follows: we review the Merton model in Section 2, 

together with the empirical evidence on the model; the SV model and a closed-form solution 

for corporate discount bond value are given in Section 3; Section 4 reports and discusses 

the simulation results; Section 5 examines the effect of the relative location of the current 

variance of firm value; and finally, Section 6 concludes. 

2 A review of Merton's (1974) model 

In this section, we briefly review the Merton model (in Section 2.1) and discuss its 

empirical performance (in Section 2.2). 

2.1 The theoretical model 

In the seminal work of Black and Scholes (1973), it is pointed out that corporate secu­

rities can be regarded as contingent claims written on the firm's assets. The Merton model 

uses this insight to pricing corporate debt and serves as a classic example of contingent claim 

analysis (CCA). The Merton model remains an indispensable tool in credit risk modeling, 

and its framework has been applied to measure default risk in the swap markets (see Cooper 
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and Mello (1991)). 

Merton (1974) makes the following assumptions 

Assumption 1: Under the risk-neutral probability measure, the firm asset value at 

time t, vt, is assumed to follow the diffusion 

dvt = r vtdt + (j vtdzt , (1) 

where r is the instantaneous risk-free interest rate (see Assumption 4 below), (j2 is the 

instantaneous variance of the return on the firm asset value per unit of time, and Zt is a 

standard Wiener process. 

Assumption 2: A "perfect and frictionless" market. Trading takes place continu­

ously in time. Arbitrage opportunities are precluded. 

Assumption 3: The Modigliani-Miller theorem holds so that the firm value is 

invariant to the firm's capital structure choice. 

Assumption 4: A constant instantaneous riskless interest rate, r, for both borrow­

ing and lending. 

Assumption 5: The firm has both a single issue of zero-coupon (i.e. pure discount) 

bond with face value of D and maturity date T, and a non-dividend-paying equity. In the 

event that the promised payment D is not made at date T, the bondholders immediately 

take over the firm and the shareholders receive nothing. 

The geometric Brownian motion process in equation (1) is similar to that assumed 

for the stock price in Black and Scholes (1973). The absence of arbitrage opportunities 

in Assumption 2 is equivalent to the existence of an equivalent martingale measure (see 

Harrison and Kreps (1979)). This implies that we can readily apply standard derivative 

pricing approaches to value corporate debt in the present context. Assumption 3 is a standard 

assumption made in the literature and is actually proved as part of the analysis in Merton 

(1974). The constant riskless interest rate assumption is made to clearly distinguish the 

effect of credit risk on corporate debt value from the term structure of interest rate effect. 
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FinalIy, Assumption 5 implies that the equity functions as the residual daim on the firm's 

assets upon maturity of the debt. At the maturity date of the debt, the payoff to the equity 

is equivalent to that of a European calI option written on the firm's asset value with a 

strike price equal to the face value of the debt and the time to maturity coinciding with 

that of debt. Using a no-arbitrage argument, the equity must be of the same value as that 

of the calI option at the initiation date of the debt. It follows that the debt value is the 

difference between the firm value and the calI option value that can be calculated using the 

Black-Scholes formula. 

Many of the above assumptions have subsequently been relaxed in an attempt to bring 

the Merton model more in line with reality. For example, the "perfect market" assumption 

is relaxed by Leland (1994), Anderson and Sundaresan (1996), Leland and Toft (1996), and 

Mella-Barrai and Perraudin (1997) to incorporate bankruptcy costs, taxes, and violations 

of the absolute priority rule in situations of financial distress. Likewise, Kim, Ramaswamy, 

and Sundaresan (1993), Shimko, Tejima, and Van Deventer (1993), Longstafff and Schwartz 

(1995), and Wang (1998) have modified the basic model to indude a stochastic interest 

rate. FinalIy, Zhou (1997) substitutes a jump-diffusion pro cess for the geometric Brownian 

motion process assumed in equation (1).3 These efforts to modify the Merton model have 

3Zhou (1997) maintains the constant volatility of firm value assumption. His results show that inc1uding 

jumps in firm asset value increases the credit spread levels in the Merton model, particularly at short 

maturities. Allowing for jumps in firm asset value is attractive in that it addresses one deficiency of the 

Merton-type models: namely, all these models assume that firm value follows a diffusion process. Under a 

diffusion process, default can only be triggered by a graduaI decline in firm as set value over a longer time 

horizon, therefore in these models default can only occur expectedly. On the other hand, by incorporating 

jumps in firm asset value, Zhou (1997) can accommodate the empirical fact that in reality firms do sometimes 

default unexpectedly due to a sudden drop in firm value over a short period of time. However, it is important to 

realize that the SV and jump models are sim ply two different modeling approaches. They are not confiicting 

but complementary. When compared to jumps, a SV process is easier to estimate. Aiso SV can be linked 

more fundamentally to economic factors (e.g. leverage ratios) that drive the firm asset value process. 
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achieved sorne success empirically as evidenced in Anderson and Sundaresan (2000). These 

two authors test the models of Merton (1974), Leland (1994), and Anderson and Sundaresan 

(1996) on yield indices of U.S. investment grade corporate bonds and find that the latter 

two models outperform that of Merton since they better fit the observed yields and result 

in more plausible parameter estimates. 

The Merton model is used as a benchmark in this study. In this model the formulas for 

equity value and discount bond value are the following 

(2) 

where E(.) denotes the value of equity, <1>(-) is the cumulative standard normal distribution 

function, r = T - t is the time remaining until debt matures, and Xl == In(V/D)+$+~(}"2)T, 
(}" T 

X2 - Xl - aVi· Also recall that V is the firm asset value, D is the face value of the bond, 

and a is the volatility of the rate of return on firm asset value. 

The debt value can be written as 

B(V, r) V - E(V,r) 

De-TT {<I>[h2(d, a2r)] + ~<I>[hl(d, a2r)]}, (3) 

where B(.) denotes the value of debt, hl (d,a2r) = -[~(}";;'ln(d)l, h2(d,a2r) == -[~(}";;ln(d)l 

d = De~rr. The "d" parameter is the so-called "quasi" debt-firm value ratio (see Merton 

(1974, p. 455)). It is typically higher than the firm's market leverage ratio and lower than 

the firm's book debt-to-capitalization ratio. 

Equivalently, we may rewrite equation (3) in terms of the yield spread as 

(4) 

where R(r) is the yield-to-maturity on the risky debt provided that the firm does not default. 

Therefore, R( r) -r de fines a risk premium, and, overall, equation (4) defines the risk structure 

of interest rates (see Merton (1974, p. 454)). 
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2.2 The empirical performance of the Merton model 

Generally speaking, the Merton model has not done well in empirical tests. On the 

positive side, Sarig and Warga (1989) find that the term structure of credit spreads predicted 

by the Merton model is consistent with what they have observed in the data. On the negative 

side, numerous studies of the Merton model document that the model tends to underestimate 

credit spread levels, particularly at short maturities.4 

Perhaps the most widely cited empirical study of the Merton model to date is that of 

Jones, Mason, and Rosenfeld (1984). The model considered in that study is the Merton model 

for a single issue of non-convertible callable coupon bond with a sinking-fund feature. This 

study investigates a sam pIe of twenty-seven firms that were found to have a simple capital 

structure (i.e. one class of stock, no convertible bonds, a small number of debt issues, and 

no preferred stock) in January 1975. The sample consists of monthly data between January 

1975 and January 1981. When comparing prices predicted by the model with market priees, 

Jones et al. find that for the entire sample the average pricing error is 4.5 percent and 

the absolu te values of the errors average 8.5 percent. More importantly, they find that 

for investment-grade bonds the Merton model performs no better than a naive model that 

assumes no credit risk. However, the Merton model does exhibit sorne improvement over the 

naive model when applied to speculative-grade bonds. Overall, Jones et al. conclu de that 

the Merton model overprices corporate debt, or equivalently, underestimates credit spread 

levels. 

4The results in Elton, Gruber, Agrawal, and Mann (1999) indicate that state taxes are an important 

component of credit spreads. The reason is that although coupon payments on corporate bonds are subject 

to state taxes, coupon payments on government bonds are not. Investors of corporate bonds thus require 

higher yields on corporate bonds to compensate them for the difference in state taxes. However, state taxes 

have been absent from almost all existing models of credit risk (and credit spreads), including the Merton 

mode!. It then follows that the inability of the Merton model to generate high enough credit spreads may 

be partly due to the model's failure to account for the impact of state taxes. 
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The fin ding in Ogden (1987) echoes that of Jones et al. (1984). He examines a sample of 

fifty-seven bond offerings and their transaction priees during the years 1973-1985. In contrast 

to Jones et al. (1984), Ogden analyzes spreads, not bond prices. He reports that the average 

pricing error of the Merton model is minus 104 bps. Thus, the Merton model appears to 

undervalue credit spreads. Similarly, Franks and Torous (1989), in their empirieal study of 

U .S. firms in reorganization, document that for typieal parameter values the Merton model 

underestimates credit spread levels by 109 bps-however, their fin ding is not very surprising 

since they examine firms in financial distress. 

Similar evidence, for instance, can also be found in Kim et al. (1993). This study relies 

on numerical simulations, showing that even with excessive values for the "quasi" lever age 

ratio and firm value volatility, the maximum credit spread level produced by the Merton 

model for a ten-year corporate bond with an annual coupon rate of 9 percent is no higher 

than 120 bps. In contrast, over the 1926-1986 period, the yield spreads on AAA-rated bonds 

had a range of 15 to 215 bps with an average of 77 bps, while the yield spreads on BAA-rated 

bonds (also investment-graded) ranged from 51 to 787 bps and had a me an of 198 bps (see 

Kim et al.(1993)). 

More recent studies that use better quality bond data than the earlier ones reach the same 

conclusion. For instance, Eom, Helwege, and Huang (2000) find that the spreads predieted 

by the Merton model are significantly lower than the observed spreads, partieularly for 

bonds of high rating and shorter maturity, and bonds issued by firms with low volatility. 

According to the monthly Lehman Brothers Bond Index Data from 1973 to 1993, historically 

the average yield spreads of ten-year corporate bonds of various credit ratings over U .S. 

Treasury securities of similar maturities are: Aaa: 63 bps; Aa: 91 bps; A: 123 bps; Baa: 194 

bps; Ba: 299 bps; and B: 408 bps. Using numerieal simulations, Huang and Huang (2000) 

report that for the Merton model, the portion of spreads that is attribut able to credit risk 

is: Aaa: 8 bps; Aa: 10 bps; A: 14.3 bps; Baa: 32 bps; Ba: 137.9 bps; and B: 363.3 bps. 

Since credit risk is assumed to be the only source of yield spread in the Merton model, their 
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simulation results serve as indirect evidence that the Merton model underestimates spread 

levels, especially for high-rated bonds. However, it is apparent from Huang and Huang's 

(2000) findings that the Merton model does reasonably weIl for low-rated bonds. 

3 A stochastic volatility model of corporate debt 

In this section, we introduce a new structural model of credit risk with SV in firm asset 

value and present a closed-form solution for corporate debt value. Similar to aIl the existing 

extensions to the Merton model (see Section 2.1), we relax one of the basic assumptions 

made in Merton (1974). In particular, we maintain aIl the assumptions of Merton (1974) 

except allowing for SV in firm value. That is, we modify Assumption 1 of Merton (1974) to 

Assumption 1 ': Under the risk-neutral probability measure, firm asset value at time t, 

vt, is assumed to follow the diffusion 

(5) 

where Zlt is a standard Wiener process. The instantaneous variance of the return on firm 

value çt is given by a familiar Cox, Ingersoll, and Ross (1985)-type mean-reverting square­

root process 

(6) 

where K, is the mean-reversion speed of the instantaneous variance, () is the long-run mean 

level of variance, TJ is the "volatility of volatility" parameter, and Z2t is another standard 

Wiener pro cess which has an instantaneous correlation coefficient p with Zlt. The stochastic 

volatility model in equations (5) and (6) is inspired by Heston (1993), who uses similar 

dynamics to model stock price and its volatility. 

The present model can be regarded as a two-factor model of corporate debt, where the 

two factors are firm asset value and its instantaneous SV, respectively. In contrast, the 
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Merton model is a one-factor model where the only factor underpinning the credit risk is 

firm value. The SV model nests the Merton model for rJ equal to zero (see also Section 4.3). 

It can then be shown (see Scott (1987)) that the value of any contingent daim U(V, ç, t) 

must satisfy the following partial differential equation (PDE) 

A European call option with strike priee D and maturing at time T satisfies the above PDE 

subject to the following boundary conditions 

E(V,ç,T) = max(O, V - D), 

E(O, ç, t) = 0, 

aE(oo,ç,t) = 1 
av ' 

V aE(V, 0, t) eaE(V, 0, t) _ E(V 0) aE(V, 0, t) = a 
r av + K, aÇ r, ,t + at ' 

E(V, 00, t) = v. 

By analogy with the Black-Scholes formula, we guess a solution of the form 

E(V C t) = V P - De-r(T-t) P. ,':" l 2, 

(8) 

(9) 

where Pl and P2 can be interpreted as risk-neutral probabilities. In particular, P2 corresponds 

to the risk-neutral conditional probability that at maturity date T, firm asset value VT is 

no less than the faee value of the debt D, and firm is thus able to make its debt payment 

(Le. this European call option expires in-the-money). In terms of the logarithm of the 

spot firm as set value, x = ln[V], the characteristic functions corresponding to probabilities 

Pj(j = 1,2) are given by 

j ·(x C t· u) = eA(T-t;u)+B(T-t;u)(+iux 
J ,':", , (la) 

21 



where 

c 1 - noenr 

A(T; u) = ruiT + 2"{(dj - pryui + n)T - 21n[ ]}, 
ry 1-no 

B(T;U) = dj - pryui + n[ 1 - enT ], 
ry2 1 - noenT 

d· - pryui + n no = _J"-----'-'--__ 

d 
., 

j - pryU'l- n 

n = J(pryui - dj )2 - ry2(2cPjui - u2), 

1 1 
cPI = 2' cP2 = -2' C = ",e, dl = '" - pry, d2 = "', T = T - t. 

We can then obtain the risk-neutral probabilities Pj, j = 1,2, by inverting the charac­

teristic functions5 

(11) 

Together, equations (9), (10), and (11) give a closed-form solution for a European call option 

priee. 

In the present context, we know from Merton's (1974) analysis that equations (9), (10), 

and (11) also give the value of the firm's equity. By design, the value of the firm's debt is 

given by 

B(V,ç,t) = V - E(V,ç,t), 

and the risk structure of interest rates can be expressed as 

1 
R(T) - r = -(lnD -lnB(V,ç, t)) - r. 

T 

4 Simulation results 

(12) 

(13) 

This section discusses the simulation results. The results are further divided into three 

groups: results obtained in the base case, results on default probability and recovery rate, 

5Note that characteristic functions always exist, and in Kendall and Stuart (1977) it is demonstrated that 

the integral in equation (11) converges. 
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and those of the comparative staties. 

4.1 Results for the base case 

Table l contains the base case parameter values that used in the numerical simulations. 

The current an nuaI variance level of firm value is set at 0.1, which corresponds to an annual­

ized vol at ilit y (standard variation) of 0.316. This is consistent with Jones et al. (1984), who 

estimate that the individual firms in their sample have an annualized volatility of firm value 

ranging from 0.052 to 0.628. For the base case the current variance is set at its long-run 

mean level, because of the assumed mean-reversion in firm variance level (we will examine 

the robustness of this assumption in Section 5). An annualized riskless interest rate of 6 

percent is used, the same as in Longstaff and Schwartz (1995) and Zhou (1997). Finally, a 

negative correlation coefficient (p = -0.5) is chosen between the value of the firm and the 

SV of firm value. That is, we conjecture that firm asset value and its volatility are nega­

tively correlated. It must be noted that the validity of this conjecture and the relationship 

between firm value movement and its volatility are an open empirieal question. This paucity 

of evidence is partially due to the difficulty in measuring firm value accurately, since it is 

unobservable and in reality firms have very complex capital structures. The usual practiee 

of measuring firm value as the sum of a firm's book-value of debt and market-value of equity 

is only an approximation. In contrast, the "leverage effect" in stock priee volatility has been 

widely documented in the empiricalliterature (see among others, Black (1976) and Christie 

(1982)). We will examine the impact of alternative choiees for p in Section 5. 

Table II presents, for the base case parameters, the yield spreads generated by the SV 

model, those produced by the Merton model, and the difference between the two when d, 

the "quasi" debt-firm value ratio (or leverage ratio), is set at 0.2 or 0.5. The values of d are 

identieal to those used in Table 1 in Merton (1974, p. 457). In addition, we consider six 

debt maturities: 0.5, 1, 2, 5, 10, and 15 years. Figure 1 gives a graphie illustration of the 
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difference in yield spreads. 

Several findings are noteworthy. First, it is evident from both the table and the figure 

that the maximal increase in yield spread levels resulted from incorporating SV of firm value 

into the Merton model occurs at maturities of less than or equal to five years. At these short 

maturities, the SV specification for firm asset value increases the resulting credit spread 

levels by an average of 10 bps when d = 0.2 and 33 bps for d = 0.5. The significance of 

these increases is best illustrated in relative terms. For debts with maturities less than or 

equal to five years, the average yield spread generated by the Merton model is only 3.4 bps 

when d = 0.2 and is 102 bps when d = 0.5. Therefore, by incorporating SV of firm value, 

the yield spread levels increase compared to the Merton model on average by 294% for d 

= 0.2 and 32.35% for d = 0.5! In addition, when d = 0.5 the yield spread curve peaks at 

around 2.5 years. These results are particularly encouraging because, as suggested by the 

empirical evidence in Section 2.2, it is precisely at short maturities that the Merton-type 

models have greatest difficulty in mat ching the observed credit spread levels. This result 

also shows that the SV specification for firm value can substantially alter the shape of the 

credit spread curve predicted by the Merton model, especially at short maturities. 

Second, by incorporating SV of firm value into the Merton model, we can increase the 

resulting credit spread levels by a sizeable amount across all maturities: on average 16 bps 

when d = 0.2 and 12 bps for d = 0.5; or in relative terms, on average 48.48% for d = 0.2 and 

6.9% for d = 0.5. For instance, when d is set at 0.2, for a debt with maturity of 5 years, the 

Merton model generates a credit spread of merely 12 bps, whereas the SV model generates 

35 bps, almost triple that of Merton. Likewise, at 1 year of maturity, for a firm with d of 0.5, 

the SV model's credit spread (55 bps) is far more than twice as large as in the Merton model 

(22 bps). Recall that d is an upward biased estimate of the actual leverage ratios. Thus 

wh en we set d equal to 0.2 and 0.5, we are essentially examining firms with low and medium 

leverage ratios. Roughly speaking, bonds of these firms are of investment-grade: BBB or 

higher according to Standard & Poor's, or Baa or higher according to Moody's. (In fact, it 
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is reasonable to say that firms with d of 0.2 have bonds of highest ratings-for instance, AAA 

according to Standard & Poor's or Aaa according to Moody's-because the Aaa-rated firms 

had a historical average leverage ratio of 13.08% (Standard & Poor's (1999)).) Sinee it is clear 

from the empirical evidence in Section 2.2 that the Merton model tends to underestimate 

spread levels for high-rated bonds, our study shows that the specification for SV in firm 

value can help significantly increase Merton's yield spreads for firms with high-rated bonds.6 

Third, as time to maturity lengthens, the effect of SV in firm value diminishes and the 

yield spreads of the SV model converge with those of the Merton model. This is as expected 

since SV is mean reverting, and thus will be pulled back to its long-run mean level, e, as 

time to maturity increases. (In the base case, the firm value volatility is assumed to have a 

mean-reversion speed parameter, /'i" equal to 0.5, which implies a half-life of mean-reversion 

of about 1.4 years.) It then follows that in the long run, the impact of SV of firm value on 

credit spread levels will diminish. 7 

Finally, as Panel A of Table II indicates, for firms with very low leverage ratios (d = 

0.2 in the table), and for very short maturities (maturities of 0.5 and 1 year in the table), 

the SV model may generate credit spreads lower than those of the Merton model, which are 

essentially zero. The explanation for this finding is the following. At very short maturities, 

a marginally levered firm can be thought of as being weIl above its default boundary and the 

likelihood of it defaulting during the time remaining to maturity is very low, because of the 

6In this paper we focus on investment-grade bonds. The properties of credit spreads for speculative-grade 

bonds are studied in e.g. Sarig and Warga (1989), Fons (1994), and Helwege and Turner (1999). In general, 

the evidence on the credit spreads for speculative-grade bonds is inconclusive. 
7The Merton model generates counterfactual near-zero credit spreads at sufficiently long maturities. One 

possible explanation for this problem concerns the fact that in the Merton model the firm lever age ratios 

are non-stationary (Collin-Dufresne and Goldstein (2001)). Developing a structural model of corporate debt 

in which the firm's leverage ratio is assumed to be stationary (as in Collin-Dufresne and Goldstein (2001)), 

white at the same time allowing firm value volatitity to be stochastic, may be a fruitful path for future 

research. 
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assumed diffusion pro cess for the firm asset value (see also Footnote 3 in Section 2.1). This 

explains the almost zero credit spreads generated by the Merton model, since in the Merton 

model default risk is assumed to be the only source of credit spreads. On the other hand, 

the effects of SV on credit spreads take time to "materialize," due to the assumed stochastic 

pro cess for the volatility. It follows that the SV model may not be able to improve on the 

Merton's credit spread levels in this case.8 In contrast, for firms with medium leverage ratios 

(d = 0.5 in Panel B of Table II), the SV specification for firm asset value largely increases 

the Merton's credit spreads at every debt maturity except the longest two (10 and 15 years 

in the table). 

To verify whether the parameter values used in our simulations are realistie, we calculate 

in Table III the stock price volatility in the Merton model that is implied by the chosen 

parameter values. This volatility is calculated as follows 

V aE 
.-r -.-r av VE-vV E , (14) 

where (J'E and (J'v refer to the volatilities of stock price and firm value, respectively. The 

majority of stock priee volatility obtained in Table III are in the range of 38% to 60%, 

slightly higher than the value for the annualized actual stock price volatility of 20% to 40% 

documented in Hull (2000). Therefore, we conclu de that our parameter values are reasonable. 

Notice from Table III that for a given value of d, the implied stock priee volatilities also 

change as we vary debt maturities. This is due to the fact that in formula (14), both equity 

value E (equal to a calI option price in the present context) and ~~ (= <I>[Xl]) change as time 

to maturity changes. 

8In Panel A of Table II, when d = 0.2, for maturities of 0.5 and 1 year the SV model generates negative 

credit spreads. This result is counter-intuitive since it implies that default risky debts are more valuable 

than the corresponding default-free bonds. We believe that this result is due to the slight inaccuracy of the 

numerical algorithm used, which is unavoidable. However, the main conclusions of this paper still hold. 
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4.2 Results on default probabilities and recovery rates 

Given the results in Section 4.1, we only report the computational results obtained when 

the value of d is set at 0.5 throughout the rest of this paper to save space, unless otherwise 

stated.9 Sinee, by definition, d is always higher than market leverage ratios, a value of 0.5 

for dis consistent with the evidence in Huang and Huang (2000) that the historical average 

leverage ratio of Baa-rated firms was 43.28% (Standard & Poor's (1999)). 

Figure 2 reports the risk-neutral conditional cumulative default probability ca1culated 

for both the Merton and SV models. Three findings are noteworthy. First, the SV model 

generates a higher default probability than the Merton model for debts with maturities 

less than or equal to three years; however, the differenee between the two models' default 

probabilities is small (on average about 2% across maturities). (In the results not reported 

here, when d is set at 0.2, the cumulative default probability in the SV model is higher than 

that in the Merton model at almost every maturity, with the largest probability difference­

around 2.6%-occurring at a maturity of about 5 years.) On the other hand, we see from 

Panel B in Table II that the SV model produces significantly higher yield spreads than the 

Merton model for debts with maturities less than or equal to five years (on average 33 bps). 

Because this is an important result, we now offer the intuition for it. 

In both the SV and Merton models, credit risk affects yield spread in two forms: through 

the default probability and through the recovery rate of debt when default occurs. Obviously, 

when calculating credit spreads in reality, the recovery rate is as important as the default 

probability: a higher (resp. lower) default probability, coupled with a lower (resp. higher) 

recovery rate, naturally leads to a lower (resp. higher) debt priee (and a higher (resp. lower) 

yield spread), aIl else being equal; on the other hand, a higher default probability, but 

together with a sufficiently higher recovery rate, may actually result in a higher debt priee 

(and a lower yield spread) when compared to a case where both the default probability and 

9The results for the case where d = 0.2 are available upon request. 

27 



the recovery rate are sufficiently lower, all else being the same. In both the Merton and SV 

models, the recovery rate upon default depends on the firm's remaining asset value at that 

time. Sinee both models preclude early default prior to debt maturity (i.e. default can only 

occur when debt matures), the firm's asset value upon default is stochastic. It then follows 

that in both models the recovery rate of debt is also stochastic. As mentioned in Section 

3, the SV model has one more factor underlying credit risk-the SV of firm asset value­

when compared to the Merton model, which has only one factor-firm value. Therefore, it 

is reasonable to believe that the SV model can add more variations to credit risk, resulting 

not only in a more variable default probability, but also in a more volatile recovery rate 

compared to the Merton model. 

To verify the above intuition, we run some Monte Carlo simulations (with 1,000 replica­

tions) to compute the mean recovery rate in the SV and Merton models. lO The results are 

reprodueed graphically in Figure 3. Figure 4 contains the results obtained for debts with 

maturities less than or equal to fives years. Consistent with our intuition, both Figure 3 

and Figure 4 show that the SV model generates a lower me an recovery rate th an that in the 

Merton model for maturities less than or equal to five years; for maturities over five years, 

these two models pro duce almost indistinguishable mean recovery rates. In a parallel Monte 

Carlo simulation exercise, we find that the volatility of the recovery rate in the SV model is 

generally higher than that in the Merton model, again consistent with our intuition. (The 

results of the latter Monte Carlo exercise are available upon request.) Therefore a small 

difference in default probabilities (in Figure 2) can lead to a much larger differenee in credit 

spread levels (in Panel B of Table II). A numerical example helps to further illustrate this 

point. In the base case, a bond with a maturity of 2 years has a risk-neutral conditional 

cumulative default probability of 10.57% in the SV model and a probability of 9.24% in the 

Merton model. The differenee in probabilities is 1.33%. Monte Carlo simulations show that 

lOThe results obtained after 5,000 replications of Monte Carlo simulations (not reported) are virtually 

indistinguishable. 
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this bond has a recovery rate of 39.6% of par in the SV model and a recovery rate of 41.6% 

of par in the Merton modelY The difference in recovery rates is therefore -2%. Under the 

risk-neutral measure, we calculate the bond price as the expected payoff of the bond (in the 

event of default and in the event of no default) discounted at the risk free interest rate for 

the time to maturity. The corresponding yield spreads in the two models can then be readily 

computed. The difference in yield spreads is found to be 53 bps, only slightly higher than 

that reported in Panel B of Table II, which is 47 bps. 

Second, although the magnitudes of the reported default probabilities appear to be large, 

they are indeed consistent with those found in Jarrow, Lando, and Turnbull (1997). The 

estimates also correspond approximately to the Moody's weighted-average cumulative default 

rates (1970-1993) for Ba- and B-rated firms reported in Fons (1994). This result provides 

additional evidence that the parameter values used to generate Table II and Figure 1 are 

reasonable. Aiso notice that the default probabilities reported in Figure 2 are the risk-neutral 

ones, which are found to be much larger than the actual on es (see Duffee (1999)). 

Finally, notice that in Figure 2 over longer period of time (at maturities of more than five 

years), the Merton model actually pro duces a higher default probability than the SV model, 

though the difference is again not large. On the other hand, Figure 3 provides weak evidence 

that at maturities longer than eight years, the SV model generates a higher mean recovery 

rate than the Merton model. Together, these two facts partially explain the observations in 

Table II and Figure 1 that the impact of SV on credit spreads diminishes at long maturities. 

4.3 Comparative statics 

In Figure 5, we experiment with different values of "', the mean-reversion speed of the 

stochastic variance of firm value. A lower value of '" means that a longer time is needed for 

11 According to Moody's estimate, senior unsecured debts have an average recovery rate of 44% of par in 

the event of default. 
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the current variance to return to its long-run mean level once it deviates from the latter. 

Thus, we will expect the SV to have a larger impact on credit spread levels when K, is low. 

The opposite reasoning holds when K, is high. Figure 5 indicates that for maturities less than 

or equal to eight years the results confirm this reasoning. Figure 6 reports the results for d 

= 0.2. Across maturities the results obtained are consistent with our intuition. 

Next, we study the effect of the volatility of volatility parameter 'r/ in Figure 7 (where 

d = 0.5) and Figure 8 (where d = 0.2). If'r/ is zero, the volatility is deterministic, and the 

continuously compounded return on firm asset value is normally distributed, and the SV 

model nests that of Merton. Otherwise, an increase in 'r/ increases the kurtosis (or the fourth 

moment) of the underlying distribution of firm asset value. A higher value of'r/ thus implies 

a more volatile SV itself, creating a larger swing around the upward trend in firm value, 

r Vtdt (provided that r > 0, which is generally true since r denotes the nominal risk free 

interest rate). Intuitively, a higher value of 'r/ therefore leads to a larger increase in credit 

spread levels brought about by SV in firm value, all el se being the same. The pattern shown 

in Figure 7 and Figure 8 confirms this intuition. 

Finally, Figure 9 demonstrates the effect of the correlation coefficient p between SV and 

firm value. The correlation parameter p is positively correlated with the skewness (or the 

third moment) of the distribution of the returns on firm asset value. Specifically, a positive 

p (= 0.5) may render a SV credit spread lower than that of the Merton model, and the 

resulting term structure can be inverted humped-shaped. The opposite effect holds true for 

a negative p (= -0.5), Le., when p is negative, SV credit spreads are in general higher than 

those of the Merton model, and the resulting term structure is of humped-shape. When p 

is equal to zero, the resulting pattern will be a mixture of the two extremes just mentioned, 

but bears more "resemblance" to the pattern associated with a negative p. We can explain 

this finding using option pricing theory. Using the put-caU parity for European options, we 

may alternatively write the corporate debt value as the difference between the face value 

of debt (discounted at the risk free interest rate) and a European put option written on 
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firm value that shares aIl the characteristics of the calI option-the equity. When firm value 

goes down, a negative p will increase firm value volatility. Both of these effects will tend 

to raise the put price, driving down debt value, and increasing the credit spread. On the 

other hand, when p is positive, a decline in firm value also brings down volatility. The first 

force increases put price, while the second force works to depress put value. These two forces 

will tend to offset each other in such a way that the overall impact on put price (and thus 

on debt value and credit spread) becomes ambiguous. However, judging from the graph, it 

seems that in the latter case the decrease in volatility has a greater impact on put option 

value and subsequently on credit spread levels. 

The analysis above shows that we can conveniently explain the properties of credit spreads 

in terms of the first four moments-mean, variance, skewness, and kurtosis-of the underlying 

distribution of firm asset value un der the risk-neutral probability measure. 

5 The location of current variance relative to its long-

run me an 

In this section, we report an additional implication of SV in firm asset value. This 

implication is in a sense more subtle than that reported previously. In Figures 10, 11, and 

12, we investigate the influence of the location of the current variance çt relative to its long 

run mean e on credit spread levels for different values of p. In particular, we set p equal 

to -0.5, 0, and 0.5 in Figures 10, 11, and 12, respectively. We then conduct the following 

experiment: for each value of p, we set current variances evenly on both sides of its long run 

mean level. We know from the analysis in Merton (1974) that credit spreads monotonically 

increase in volatility for a fixed debt maturity. Therefore, if the effect of SV is not substantive, 

we will expect to observe that at a given maturity when çt is higher than e, SV increases 

credit spreads by an amount (almost) identical to the decrease in credit spreads wh en çt is 
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lower than (). On the other hand, if the effect of SV is substantive, we will expect to see 

that SV increases credit spreads in the case where Ç,t is higher than () by an amount (much) 

larger than the decrease in credit spreads when Ç,t is lower than (). 

A number of observations are important. First, we see from aIl these three figures that 

for a given correlation coefficient p, when current variance is lower than its long run mean, 

SV predicts a lower spread than that of Merton, and when current variance is above its long 

run mean, SV increases credit spread levels. This pattern in credit spreads is consistent with 

our intuition. Second, for comparison purpose we have defined the net increase in credit 

spreads as the increase in spreads minus the corresponding decrease (in absolute terms) in 

spreads. Notice from Figure 10 that when p is negative, the net increase in the generated 

credit spreads is both positive and significant, partieularly for maturities of less than two 

years: for instance the mean (averaged across aIl maturities) net increase in credit spreads 

in case when () = .1 and Ç,t = .15 over those in case where () = .1 and Ç,t = .05 is 25 bps. 

Similarly, in Figure 11 where p is set at zero the net increase in credit spreads is also positive 

for the most part. We assume a positive value for p in Figure 12. The same pattern in credit 

spreads exhibits in this figure: SV prediets a higher spread than the Merton model when 

the current variance is above its long run mean, and the opposite is true when the current 

variance is lower than its long run mean. However, in this case the net increase in credit 

spreads brought out by SV is negative. OveraIl, it is fair to say that the inclusion of SV of 

firm asset value can substantiaIly increase the resulting credit spread levels, although the 

net effect of SV depends critieaIly on the sign of the correlation coefficient p. 

6 Conel usion 

This paper extends the seminal work of Merton (1974) by developing a structural model 

of corporate debt that incorporates the stochastie volatility of firm asset value. We derive a 

closed-form solution for the resulting corporate debt priee. Computational experiments show 
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that for realistic parameter values incorporating SV can substantially increase the generated 

credit spread levels in both absolute and relative terms. The largest increase in spreads 

occurs for debts with maturities less than or equal to five years, even for firms with a low or 

medium leverage ratio: for a typical firm an increase on average of 33 bps, or equivalently, 

32.35% of the original credit spread levels in the Merton model. This result is encouraging 

since it is weIl known that contrary to observed credit spreads, the credit spreads predieted 

by the Merton model are not much higher than zero for short-maturity debts, especially for 

high-grade ones. 

When we implement the SV model in practiee, we need to estimate the parameters of the 

stochastie processes for firm asset value V and its variance ç. None of these two quantities 

are observable. One promising way to overcome this problem is the maximum likelihood 

estimation method suggested in Duan, Gauthier, Simonato, and Zaanoun (2002). Their 

approach utilizes the fact that in structural models (including the SV model) equity can 

be regarded as an option written on firm value. Since equity priees and their volatility are 

observable, we can apply a transformed data technique to write down the likelihood function 

in explicit forms. We refer the interested reader to Duan et al. (2002) for further details. 
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Table 1: 
Base case parameter values 

Under the risk-neutral probability measure, the firm asset value is assumed to follow the 

joint diffusion process below 

dVt rVtdt + #Vtdzlt , 

dçt K(B - çt)dt + Tl#dz2t , 

where dz1tdz2t = pdt. 

Parameter 

mean reversion speed 

long-mn mean of variance 

current variance 

correlation between Zlt and Z2t 

volatility of volatility 

annual riskless interest rate 

current firm asset value 
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Value 

K = 0.5 

B = 0.1 

çt = 0.1 

P = -0.5 

Tl = 0.225 

r = 0.06 

V = 100 



Table II: Base case results 
The following two tables contain the results obtained using the base case parameter 

values (given in Table 1) where d, the "quasi" debt-firm value ratio, is set at 0.2 and 0.5, 

respectively. The SV's YS is the yield spread generated by the SV model. The Merlon's YS 

is the yield spread generated by the Merton model. The YS difference is the yield spread of 

the SV model minus that of the Merton model. All the numbers have been rounded to the 

nearest decimal point. 

Panel A: d = 0.2 

Debt maturity SV's YS Merton's YS YS difference 

(in years) (in basis points) (in basis points) (in basis points) 

0.5 -4 0 -4 

1 -2 0 -2 

2 4 0 4 

5 35 12 23 

10 68 47 21 

15 86 75 11 

(Panel B is continued on the next page.) 
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Panel B: d = 0.5 

Debt maturity SV's YS Merton's YS YS difference 

(in years) (in basis points) (in basis points) (in basis points) 

0.5 9 2 7 

1 55 22 33 

2 129 82 47 

5 196 174 22 

10 211 211 0 

15 211 219 -8 
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Table III: Implied Merton volatilities 
The implied M erton volatility is the stock priee volatility in the Merton model that is 

implied by the parameter values chosen for the base case. AlI the numbers have been rounded 

to the nearest decimal point. 

Implied Merton volatility Implied Merton volatility 

Debt maturity (d = 0.2) 

(in years) (in percentage points) 

0.5 40 

1 40 

2 40 

5 39 

10 38 

15 37 

37 

(d = 0.5) 

(in percent age points) 

63 

63 

60 

53 

47 
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Figure 1: 

Yield spread of the SV model minus that of the Merton model where d, the "quasi" 

debt-firm value ratio, is set at 0.2 and 0.5, respectively. Base case parameters: K, = 0.5, çt 
= e = 0.1, f) = 0.225, p = -0.5, r = 0.06, V =100. 
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Maturity in years 

Figure 2: 

Risk-neutral conditional cumulative default probability of the SV model and the Merton 

model. The probability difference is the probability of the SV model minus that of the Merton 

model. Base case parameters: K, = 0.5, çt = () = 0.1, '1} = 0.225, P = -0.5, r = 0.06, d = 0.5, 

V =100. 
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Figure 3: 

Mean recovery rate in the SV and Merton models, which is calculated using Monte Carlo 

simulations (with 1,000 replications). Base case parameters: K, = 0.5, çt = e = 0.1, 'ri = 

0.225, p = -0.5, r = 0.06, d = 0.5, V = 100. 
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Figure 4: 

Mean recovery rate in the SV and Merton models for debts with maturities less than 

or equal to five years. The recovery rate is calculated using Monte Carlo simulations (with 

1,000 replications). Parameter values are the same as those used in Figure 3. 

41 



60~--------~----------~~~====~ 

50 

40 

2J 
.[ 30 

'" "iii 
E 
.5 

1 
'" "0 0 
Q; 
;;: 

-10 

-20 

-30 '--________ -......1 

o 5 
J
".-, . 

---._---.. 

10 15 
Maturity in years 

Figure 5: 

Yield spread of the SV model minus that of the Merton model for various values of l'L, 

the mean-reversion speed of firm value variance. Other parameter values: çt = () = 0.1, 'r/ = 

0.225, P = -0.5, r = 0.06, d = 0.5, V = 100. 
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Figure 6: 

Yield spread of the SV model minus that of the Merton model for various values of K,. 

Other parameter values are the same as those in Figure 5 except that d = 0.2. 
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Figure 7: 

Yield spread of the SV model minus that of the Merton model for various values of ry, 

the volatility of firm value volatility. Other parameter values: K, = 0.5, çt = () = 0.1, p = 

-0.5, r = 0.06, d = 0.5, V = 100. 
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Figure 8: 

Yield spread of the SV model minus that of the Merton model for various values of 7]. 

Other parameter values are the same as those in Figure 7 except that d = 0.2. 
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Figure 9: 

Yield spread of the SV model minus that of the Merton model for various values of p, 

the correlation coefficient between firm value and its volatility. Other parameter values: K, 

= 0.5, çt = e = 0.1, TJ = 0.225, r = 0.06, d = 0.5, V = 100. 
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Figure 10: 

Yield spread of the SV model minus that of the Merton model for various values of long 

run mean level of variance, e, and current variance level, çt. The correlation coefficient 

between firm value and its stochastic volatility, p, is set at -0.5. Other parameter values: /'i, 

= 0.5, 'fJ = 0.225, r = 0.06, d = 0.5, V = 100. 
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Figure 11: 

Yield spread of the SV model minus that of the Merton model for various values of long 

run mean level of variance, (), and current variance level, çt, The correlation coefficient 

between firm value and its stochastic volatility, p, is set at 0, Other parameter values: K, = 

0.5, TJ = 0.225, r = 0.06, d = 0,5, V = 100. 
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Figure 12: 

Yield spread of the SV model minus that of the Merton model for various values of long 

run mean level of variance, e, and current variance level, çt. The correlation coefficient 

between firm value and its stochastic volatility, p, is set at 0.5. Other parameter values: '" 

= 0.5, rJ = 0.225, r = 0.06, d = 0.5, V = 100. 
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The following essay develops a reduced form model of corporate credit spreads 

with stochastic volatility. In contrast, the immediately preceding essay uses the structural 

approach. The first factor of the model can be interpreted as the level of the spread, and 

the second factor of the model is the volatility of the spread. Empirical results show that 

the model is successful at fitting actual corporate bond credit spreads. In addition, key 

properties of actual credit spreads are better captured by the model. 
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Abstract 

This paper investigates a two-factor affine model for the credit spreads on corporate 

bonds. The first factor can be interpreted as the level of the spread, and the second 

factor is the volatility of the spread. The riskless interest rate is modeled using a 

standard two-factor affine model, thus leading to a four-factor model for corporate 

yields. This approach allows us to model the volatility of corporate credit spreads as 

stochastic, and also allows us to capture higher moments of credit spreads. We use 

an extended Kalman filter approach to estimate our model on corporate bond prices 

for 108 firms. The model is found to be successful at fitting actual corporate bond 

credit spreads, resulting in a significantly lower root mean square error (RMSE) than a 

standard alternative model in both in-sample and out-of-sample analyses. In addition, 

key properties of actual credit spreads are better captured by the model. 
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1 Introduction 

Understanding the pricing of default risk or credit risk is of critical importance since 

almost every financial security is affected by certain types of credit risk. Over the last decade, 

the financial industry has come under increasing pressure to understand and quant if y this 

risk, because of the growth in financial markets that trade credit sensitive products, and 

because of increasing scrutiny from regulators. As a result, the academic literature on 

modeling credit risk has been growing fast. Currently, there are two main approaches to 

modeling credit risk. The first approach is called the structural approach, first developed in 

Merton (1974). The models used in the structural approach are based on the value of the 

firm. In these models default is regarded as an endogenous decision usually made by the 

firm's equityholders. The second approach is called the reduced form approach. It considers 

default as both a surprise and an exogenous event. This approach uses stochastic processes 

similar to those used in the modeling of the riskless term structure to model the default 

probability (see e.g. Madan and Unal (1994) and Duffie and Singleton (1999)). The models 

used in this approach have proven to be relatively easier to use for practical applications. 

This paper presents a reduced form model of credit risk. In particular, we use a two-factor 

affine model to describe the joint dynamics of the instantaneous default probability and the 

volatility of the default probability. 

There are compelling reasons for incorporating stochastic volatility into models of default 

probability and credit spreads. According to the contingent claim analysis in Merton (1974), 

the corporate bond price is equal to the price difference between a riskless bond and a put 

option written on the as sets of the firm. Since volatility plays a crucial role in pricing options, 

it will also have a major impact on corporate bond prices and yields. It is therefore critically 

important to model volatility correctly. At the empirical level, academics and practitioners 

have long noted that the volatility of credit spreads changes through time. To illustrate this 

feature of credit spread data, consider Figures 1 and 2, which plot different time series of 
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credit spread indices for different ratings from Moody's and Standard & Poor's, respectively 

(these data are described in more detail below). Figure 3 also plots the relative changes 

for the credit spreads from Moody's. These figures clearly show that the volatility of credit 

spreads is time-varying. Relative changes in credit spreads were significantly larger during 

the first halves of the sample periods. In his analysis of credit spreads, Duffee (1999, p.198) 

finds "persistent fluctuations in the volatilities of yields (GARCH-like effects) that are not 

captured by the model." Miu (2001) reaches a similar conclusion and argues for introducing 

volatility as a second factor in the default probability process. Finally, the market for credit 

derivatives has been expanding dramatically since 1990s. Since volatility is fundamental to 

pricing derivative securities, a stochastic volatility model of credit spreads will help us to 

more accurately value credit derivatives such as credit spread options, and to more properly 

manage the credit risk of fixed-income portfolios. 

A stochastic volatility model can also capture the skewness naturally embedded in credit 

data. Because one component of the risky bond price is a put option, the Merton (1974) 

model also implies that its distribution is negatively skewed. Therefore we expect to find 

positive skewness for the distributions of risky yields and spreads. Tables 1 and 2 present 

summary statistics for the Moody's and Standard & Poor's credit spread indices. Table 1 

provides strong evidence of positive skewness in credit spreads. The evidence in Table 2 

is more mixed, with sorne series displaying (small) negative skewness and others displaying 

(relatively larger) positive skewness. The credit spread model in this paper can capture this 

skewness. 

The objectives of this paper are two-fold. First, we propose a new reduced form model 

of credit risk that explicitly accounts for stochastic volatility in default probability and the 

correlation between the riskless interest rate and default probability, and we estimate the 

model using prices of D.S. Treasury bonds and corporate bonds. Second, we compare the 

performance of our model to an alternative model that is developed in Duffee (1999), in 

which stochastic volatility in default probability is not explicitly taken into account. We 
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estimate our model and the alternative model on data of month-end corporate bond prices 

from January 1985 to March 1998. In total, the data consist of more than 44,000 bond­

price observations across 108 firms. These bonds are primarily investment-grade. For every 

firm, we divide the available data into two sub-periods: the last 12 months are used for 

out-of-sample forecasting, and the rest are used for in-sample estimation. 

Overall, the stochastic volatility model fits corporate yields much better than the alter­

native model. At the aggregate level, the median in-sample RMSE of our model is 9.30 basis 

points (bps), versus 11.99 bps for the alternative model; in the out-of-sample analysis, the 

stochastic volatility model achieves an median RMSE of 12.05 bps, relative to 13.89 bps for 

the alternative model. More importantly, at the individual firm level, the stochastic volatility 

model realizes a lower in-sample RMSE than the competing model for every single firm in 

the sample and a lower out-of-sample RMSE for slightly more than two-thirds of firms in the 

sample. The parameter estimates indicate that the probability of default is mean-reverting 

under the physical measure and can also be mean-reverting un der the risk-neutral measure in 

the stochastic volatility model, whereas the estimates of the benchmark model indicate that 

the probability of default is mean-reverting un der the physical measure but mean-averting 

under the risk-neutral measure. For the vast majority of the firms, the default probability 

and credit spreads are found to be strongly negatively correlated with the default-free inter­

est rate. This finding is consistent with many previous empirical studies. To investigate the 

robustness of our findings, we also repeat the estimation using credit spread indices. These 

estimation results confirm our findings obtained using individu al firm data. 

This paper is part of a growing list of articles that empirically test reduced form models 

of credit risk. 1 Madan and Unal (1994) examine yields on certificates of deposit issued by 

thrift institutions. Duffie and Singleton (1997), Liu, Longstaff, and Mandell (2000), Collin-

1 Recent empirical studies that estimate structural models of credit risk include Eom, Helwege, and Huang 

(2000) and Ericsson and Reneby (2001). In addition, using numerical simulations, Huang and Huang (2000) 

compare the performances of several well-known structural models of corporate debt. 
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Dufresne and Solnik (2001), and Grinblatt (2002) study interest rate swap yields. Nielsen 

and Ronn (1997) use data on both corporate bonds and interest rate swap yields. Duffee 

(1999), Bakshi, Madan, and Zhang (2001), and Miu (2001) analyze corporate bond priees 

of individu al firms. All of these applications, including ours, are special cases of the affine 

family of term structure models. However, our model specification is new in the context of 

credit spreads, and it is easy to implement. 

The rest of the paper is organized as follows. Section 2 introduces the two models used 

in the empirieal analysis. Section 3 discusses the data. The estimation method is discussed 

in Section 4. Section 5 reports the basie results. Section 6 further explores the empirieal 

results. Finally, Section 7 concludes the article. All technieal details can be found in the 

Appendix B. 

2 Models of eorporate bond priees 

This section consists of three parts. Section 2.1 describes the proposed stochastic volatil­

ity model of credit spreads. Section 2.2 briefly summarizes Duffee's (1999) model, whieh is 

used as a benchmark. In this model, stochastic volatility of credit spreads is not explicitly 

accounted for. In Section 2.3, we discuss the stochastie volatility model in more detail, in­

cluding the parameterization of the model, assumptions on the recovery rate, and the pricing 

of coupon bonds. 

2.1 A model of credit spreads with stochastic volatility 

First consider the default-free interest rate. Under the physieal (or actual) probability 

measure P, the instantaneous nominal riskless interest rate is denoted by i t , and is assumed 

to be equal to the sum of a constant, c, and two factors that follow independent square-root 
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diffusion pro cesses 

it = c + fIt + ht, 

dfit = CPi(/1i - fit)dt + O'i{f:tdWit, 

(1) 

(2) 

for i = 1, 2. In equation (2), CPi denotes the speed of mean reversion of factor fit, and /1i can 

be interpreted as the long-run mean of fit, i = 1, 2. The two standard Brownian motions 

Wlt and W2t are assumed to be independent. The specification in equations (1) and (2) has 

appeared in Cox, Ingersoll, and Ross (1985) and Pearson and Sun (1994), and the latter calls 

it a translated square-root model, due to the presence of the constant term c. This model 

belongs to the class of exponential affine (or simply affine) term structure of interest rate 

models.2 

Following Cox, Ingersoll, and Ross (1985), we write the pro cess in (2) under the risk­

neutral probability measure Q as 

(3) 

where 'Tri (i = 1, 2) are the risk premiums and iiht and iiht are two independent Brownian 

motions under the measure Q. Notice that in this model, 'Tri < 0 (i = 1, 2) implies that 

investors demand positive compensation for bearing interest rate risk. 

The choice of the ab ove riskless interest rate model was driven by three considerations. 

First, it is well known that the dynamics of riskless yield curves can not be adequately 

captured by a single factor. Instead, at least a two-factor model should be used. According to 

Litterman and Scheinkman (1991), the first two factors account for nearly 96% of variations 

in yield curves. Second, the above specification permits a well-known and simple closed­

form solution for zero-coupon bond priees (see e.g. Pearson and Sun (1994)), which greatly 

2Duffie and Kan (1996) characterize affine term structure of interest rate models. Dai and Singleton 

(2000) conduct a thorough specification analysis of various affine interest rate models. 
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facilitates estimation. Third, this interest rate model results in a reasonably good fit for the 

risk free term structure.3 

As is corn mon in aIl redueed form models, default is assumed to occur when an exogenous 

Poisson pro cess with intensity À jumps (see Lando (1997)). Under the equivalent martingale 

measure Q, the intensity of this Poisson proeess for firm j at time t is denoted by Àjt , which 

can be interpreted as follows. Consider a firm j that is not in default at time t. Under the 

measure Q, the probability that this firm defaults during a subsequent sufficiently small time 

interval (t, t+dt), conditioning on the information available at time t, is Àjtdt. Consequently, 

we may interpret Àjt as the instantaneous default probability. Different reduced form models 

are mainly characterized by different specifications for Àjt. 

Next, consider a zero-coupon bond issued by firm j, which promises to pay one dollar at 

the maturity date of T, unless the firm defaults before T. If default occurs, the bondholders 

recover nothing. We denote by Bj(t, T, 0, 0) the priee of this bond at time t, where the 

third argument in Bj(t, T, 0, 0) refers to the coupon rate, and the fourth argument denotes 

the recovery rate. We will relax the zero-recovery assumption and examine coupon bonds 

in Section 2.3. Under certain regularity conditions (see Duffie and Singleton (1999)), this 

corporate bond priee is given as 

T 

Bj(t,T,O,O) = E~{exp[- J(iu + Àju)du]}, (4) 
t 

where it + Àjt is the so-called "adjusted discount rate" for firm j at time t, and E~ (.) denotes 

the conditional expectation under the risk-neutral probability measure Q, relying on aIl the 

information available at time t. 

It is clear from equation (4) that for a near-maturity, zero-coupon, and zero-recovery 

corporate bond, the instantaneous default probability, À jt , can also be interpreted as the 

3This riskless interest rate model has one weakness: namely, in this model the nominal riskless interest 

rate, it, can become negative, which is contrary to reality. This model allows it to become negative since 

the constant term c may take negative values. 
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instantaneous credit spread on this bond. Consequently, we will use the terms "instantaneous 

default probability" and "credit spreads" interchangeably in this article; they both refer to 

Àjt. It should be pointed out that Àjt , the default probability, may be interpreted in a 

broader sense, since the spread between risky and riskless yields also results from factors 

other than default risk, such as the liquidity premium or state tax differences. 

In this paper, we model default probability as a two-factor affine process under the 

physical measure P 

Àjt = Cj + Àjt + 01j(fIt - flt) + o2j(ht - ht), 

dÀjt = a("X - Àjt)dt + -jV;tdz1j,t, 

d1)jt = "((TI - vjt)dt + f,-jV;tdz2j,t, 

(5) 

where Vjt is the instantaneous variance of the default probability of firm j at time t; "X and TI 

are the unconditional (or long-run) me ans of Àjt and Vjt, respectively; a and 'Y capture the 

mean-reversion of Àjt and Vjt, respectively; and f, is the "volatility of volatility" parameter, 

which determines the kurtosis of ÀJt. 
The two standard Brownian motions Zlj,t and Z2j,t are correlated with coefficient p, which 

is positively correlated with the skewness of credit spreads. This feature of the model enables 

us to capture the skewness exhibited by the distribution of credit spreads. Furthermore, we 

assume that Zlj,t and Z2j,t are independent of the two Brownian motions Wlt and W2t in 

the default-free interest rate process. Finally, flt and ht are the means of the smoothed 

estimates of the two riskless interest rate factors, fIt and ht, over the sample period of 

corporate bonds. 

Again using a standard assumption of prices of risk, the stochastic pro cesses followed by 

Àjt and Vjt under the risk-neutral measure Q are given by 

(6) 
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where again the two standard Brownian motions Zlj,t and Z2j,t have a correlation coefficient of 

p and they are independent of the Brownian motions Wlt and W2t in the default-free interest 

rate process. Also, 'r/i ( i = 1, 2) are the risk premium parameters. Note that in this model, 

'r/l > 0 and 'r/2 < 0 indicate a positive risk premium in Àjt and Vjt, respectively. 

The model for Àjt and Vjt in equation (5) is inspired by Fong and Vasicek (1991), who 

use similar dynamics to model the default-free interest rate. The model is a member of 

the affine family of interest rate models. Although the model has a closed-form solution for 

zero-coupon bond priees, the solution is quite complicated and involves complex algebra. We 

therefore use a series solution method suggested in Selby and Striekland (1995) to compute 

bond priees in this paper. The Selby and Striekland method has proven to be both accurate 

and fast. Appendix B.l.1 contains a brief introduction to their method. 

The specification in (5) and (6) captures, in a tractable way, three prominent empirical 

features of actual credit spreads. First, credit spreads (and default probability) appear to 

vary stochastically over time. The stochastie Àjt term within Àjt accounts for this feature. 

Second, the volatility of credit spreads is itself stochastie. This fact is modeled parsimo­

niously by a stochastic Vjt. Third, credit spreads on corporate bonds non-trivially depend 

on the movements of default-free interest rates. In the model, this dependence is solely cap­

tured by the 81j and 82j coefficients in Àjt , due to the assumed independence of the Brownian 

motions driving the riskless interest rate and the default probability. 

2.2 A benchmark model 

To evaluate the empirical performance of the stochastic volatility credit spread model, we 

also estimate a benchmark model. The benchmark model that we use is the model developed 

in Duffee (1999). The default-free interest rate component of his model is identieal to the 

specification in equations (1), (2), and (3). 

Under the P measure, Duffee (1999) models the default probability using a one-factor 
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translated square-root proeess with two components linked to the riskless term structure 

)..jt = Cj + )..jt + 81j (flt - flt) + 82j (ht - ht), 

d)..jt = /'i,j(Bj - )..jt)dt + aj/>ftdujt, 

(7) 

where the standard Brownian motion Ujt is independent of the two Brownian motions WH 

and W2t in the riskless interest rate proeess. 

Under the risk-neutral measure, the proeess for )..jt is given by 

(8) 

in which 7rj « 0) is the risk premium, and the Brownian motion Ûjt is independent of the 

Brownian motions WH and W2t in the riskless interest rate specification. 

Notice that in the Duffee model, the volatility of the credit spreads, aj;;:;;, is not 

constant but time-varying due to the stochastic nature of )..jt. However, instead of modeling 

the credit spread volatility as a separate diffusion process, in his model the volatility of the 

credit spreads is proportional to the level of the spreads itself and can not move independently 

of )..jt. 

Together, equations (1) through (3) and (7) through (8) constitute a three-factor affine 

model of corporate bond yields, and equations (7) and (8) alone result in a one-factor affine 

model of credit spreads. Heneeforth we will refer to this model as the Duffee model or the 

benchmark model. This modelleads to well-known closed-form solutions for corporate zero­

coupon bond priee. In contrast, the four-factor affine model of corporate yields in equations 

(1) through (3) and (5) through (6) has an additional factor that captures the stylized fact 

that the volatility of credit spreads is stochastic. Henceforth we will refer to this model as the 

stochastic volatility model of credit spreads, or for short the stochastic volatility model, even 

though the volatility of the riskless component of the risky yield is not formally modeled.4 

Notice that the four-factor model does not nest the three-factor benchmark model since in 

4It is worth pointing out that our model and the Duffee model share a common weakness: in both settings, 
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the special case where the Vjt process in equation (5) reduces to a constant, the process for 

Àjt in equation (5) becomes a so-called Ornstein-Uhlenbeck process, similar to the one used 

in Vasicek (1977), which is different from the square-root pro cess for Àjt in equation (7).5 

2.3 Further discussion of the stochastic volatility model 

Denote the "adjusted discount rate" for firm j at time t by R jt == it + ÀjtLjt, where 

Ljt is the expected loss rate of firm j's defaultable bond's value if default were to occur 

at time t, and the product term ÀjtLjt is called the mean loss rate (Duffie and Singleton 

(1999)). It follows that the recovery rate of firm j at time t is equal to 1- Ljt. For simplicity, 

in our discussion in Section 2.1, we have assumed no recovery upon default, Le., L jt = l. 

We now relax this no-recovery assumption. When the recovery rate is non-zero, i.e., when 

° :::; Ljt < 1, the price of a zero-coupon corporate bond with a recovery rate of 1 - Ljt , 

Bj(t, T, 0,1 - Ljt ), is given by 

T 

Bj(t,T,O,I-Ljt) - Ei'{exp[- j(iu+ÀjuLju)du]} 
t 

T 

- Ei'{exp[- j Rjudu]}. 
t 

(9) 

Wh en using the above pricing relationship, we may either parameterize Rjt directly, 

or parameterize the components of R jt , namely, it , Àjt , and L jt , individually. Duffie and 

Singleton (1997) and Dai and Singleton (2000) take the former approach to modeling the 

term structure of interest-rate swap yields. The latter approach is adopted by Duffee (1999) 

the default probability, À jt , can become negative, which is conceptually odd. In our model, À jt may become 

negative because the stochastic pro cess followed by Àjt allows Àjt to take negative values. On the other 

hand, in the Duffee model, Àjt may fall below zero if either Cj or l5ij (i = 1, 2) is negative. 
5We also estimated the nested three-factor affine model of corporate yields in which the process for Àjt 

is given by an Ornstein-Uhlenbeck process. The performance of this nested model is worse th an that of the 

benchmark mode!. 
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and Collin-Dufresne and Solnik (2001), where they parameterize it and the product term 

ÀjtLjt separately. In this paper, we choose to parameterize it and ÀjtLjt separately in order to 

extract information about the mean loss rate ÀjtLjt from historieal defaultable bond priees. 

This information can be used to value other defaultable claims, such as credit default swaps. 

In this paper, we assume that if default were to occur at 7d, t < 7d :::; T, the bondholders 

would receive, upon default, a fixed fraction of (1 - L) of the face value of the original 

corporate bond. In other words, in the event of default, the corporate bondholders are 

assumed to receive a fixed (1 - L) unit of an otherwise identical default-free bond for every 

one dollar of the face value of the original default-risky bond. Jarrow, Lando, and Turnbull 

(1997) and Duffee (1999) make a similar assumption on the recovery rate. 

The assumption of a constant recovery rate (1-L) can be justified by two findings. First, a 

recent empirical study in Skinner and Diaz (2001) discovers that for the purpose of accurately 

pricing defaultable bonds, a stochastic recovery rate is of only second-order importance, 

relative to e.g. a correct parameterization of default probability. Second, as pointed out in 

Duffie and Singleton (1999), since Àjt and L jt only appear in the pricing relationship (9) as 

a cross product term, it is impossible to identify them separately by using data on corporate 

bonds alone. Instead, data on credit derivatives, of which payoffs are nonlinearly dependent 

on À jt and L jt , are required. Since the main focus of this paper is on modeling default 

probability À jt , a constant recovery rate assumption makes identification of Àjt possible. It 

also permits a closed-form solution of bond prices, which significantly facilitates estimation. 

However, it should be kept in mind that the framework can be extended to accommodate a 

stochastic recovery rate without additional conceptual difficulty. 

We set the recovery rate at 44% of par in our empirical work. This is consistent with 

Moody's finding that the average recovery rate of senior unsecured bonds is approximately 

44% of the par value (of the original bond) if default occurs. A similar assumption is made 

in Duffee (1999), who fixes the recovery rate at 44% of par, and also in Duffie and Lando 

(2001), who assume a constant recovery rate of 43.3%. 
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Applying a standard no-arbitrage argument, we can write the before-default priee of a 

zero-coupon corporate bond with a constant recovery rate of (1 - L) as 

Bj(t, T, 0,1 - L) = (1 - L)G(t, T, 0) + LBj(t, T, 0, 0), (10) 

where G(t, T, 0) denotes the priee at time t of a default-free zero-coupon bond that matures 

at time T. 

The bulk of the corporate bond data consist of coupon bonds. We use the so-called 

"portfolio of zeros" approach to valuing corporate coupon bonds. In Appendix B.1.2, we 

define this approach and provide theoretieal justifications for its use in the present eontext. 

Appendix B.1.2 also contains the formulas for coupon bonds. 

3 Data 

3.1 Data on the risk free interest rate 

Month-end US Treasury prices (the averages of the reported bid and ask priees) from 

January 1985 to March 1998 are obtained from the CRSP US Treasury Cross-Sectional File. 

In each month, the most recently issued (or on-the-run) noneallable Treasury bills, notes or 

bonds with maturities closest to 3 and 6 months and 1, 2, 3, 5, la and 30 years are seleeted.o 

6Duffee (1999) uses data on the second most recently issued (or off-the-run) D.S. Treasury securities in 

order to avoid capturing any specialliquidity premium associated with the on-the-run Treasury securities. 

He reports no material difference between on-the-runs and off-the-runs. As a robustness check, we also 

estimate our riskless interest rate model using off-the-run data and the results are very similar to those 

obtained using on-the-runs. We therefore only report results on on-the-runs. Several other empirical studies, 

e.g. Duffie and Singleton (1997) and Miu (2001), also use the on-the-run D.S. Treasury data. 
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3.2 Data on corporate bonds 

Month-end corporate bond bid priees are collected from the Fixed Income Securities 

Database (also known as the Lehman Brothers Fixed Income Database or the Warga Data­

base) over the period beginning January 1985 and ending March 1998, encompassing a sample 

period of 159 months. Before 1985, firms rarely issued non-callable bonds. Renee we only 

use a sample period starting in January 1985. AIl priee observations included in the sam­

pIe are indicative trader-quoted priees. That is, priees that were calculated using a matrix 

algorithm are dropped. Only investment-grade, non-callable, non-putable, senior unsecured 

straight bonds with semi-annual coupons and no sinking fund provisions, having remaining 

maturities no longer than 35 years and no shorter than 1 year, are selected. Only those firms 

for whieh there are at least three bonds (not necessarily the same bonds) outstanding in a 

given month for at least 48 months (not necessarily consecutively) are considered. FinaIly, 

we only include bonds in the sam pIe that make up the Lehman Brothers bond index or are 

about to enter the index. There are 108 firms that satisfy aIl of the above requirements. 

Among these firms, 65 are indus trial firms, 28 are financial firms, and 15 are utility firms. 

The final data set consists of a total of 44,298 qualified bond priee observations. Appendix 

A contains a complete listing of the corporations included in the dataset. 

In sorne instances, we compare estimation results across credit ratings. To do so, we use 

the bond rating supplied by Moody's, which defines a firm's credit rating as the rating on 

its senior unsecured bonds. The credit rating assigned to a firm in the sample is the mean 

of the ratings of the firm's bonds used in estimation. This procedure results in 12 Aa-rated 

firms, 60 A-rated firms, and 36 Baa-rated firms. That is, the sample is dominated by A- and 

Baa-rated firms. 7 

71n our original sample, there were also 3 Aaa-rated firms. We have excluded them from our subsequent 

analyses for two reasons. First, the limited sam pIe size makes any inference from the results on these firms 

inconclusive. Second, in our sample, the average actual yield on these 3 Aaa-rated firms is higher th an those 

on the Aa-, A-, and Baa-rated firms, and the mean actual credit spread for these 3 firms is higher than that 
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Table 3 contains summary statistics for the corporate bond data. Panel A reports that 

the median firm has 73 months of valid bond price observations, while none of the firms in 

the sample has valid observations in every month. The second row of Panel A in Table 3 

reports the mean number of fitted bonds per month, which is calculated over those months 

in which a firm has at least three qualified bonds outstanding. The median number of fitted 

bonds is 4.4, and the maximum number is 12.36. Therefore, although across aIl the firms and 

the entire sample period this article uses 44,298 bond price observations, the credit spreads 

for the median firm are estimated using just 4 bonds per month. For sorne firms, certain 

parameters are therefore estimated imprecisely. The third, fourth, and fifth rows of Panel A 

report the remaining years to maturity of the bonds used in estimation. The me di an firm has 

a minimum maturity of 1.06 years, a mean maturity of 7.92 years, and a maximum maturity 

of 20.25 years. FinaIly, according to the last row of Panel A, the median firm has a mean 

annual coupon rate of 8.37%. For one firm (Allied Corp.), the data set exclusively contains 

zero-coupon bonds. 

Panels Band C present means (in bps), standard deviations (in %), skewness and kurtosis 

for yields and credit spreads in this sample. The credit spreads in Panel C are calculated as 

the differences between the yields (used in Panel B) and the riskless interest rates implied by 

the default-free term structure model. The median firm has a mean yield of 709.56 bps and 

a mean credit spread of 246.07 bps. Similar to the findings in Table 1 and Table 2, yields 

and credit spreads in this sample exhibit significant positive skewness. There is not much 

evidence of excess kurtosis in either the yield data or the credit spread data. 

To demonstrate the robustness of our results, we repeat the empirical exercise using 

credit spread indices. The advantage of this type of data is that they span a mu ch longer 

time horizon than the individu al firm data. We obtain Moody's 10-year and 30-year Aaa 

and Baa monthly credit spread indices from the Federal Reserve Board's G.13 release. The 

for the Aa-rated firms. This is an anomaly likely caused by the very limited sample size of the Aaa-rated 

firms. 
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sample periods are January 1960 to April 2003 for lO-year maturity spreads and February 

1977 to February 2002 for 30-year maturity spreads. We also obtain weekly credit spread 

index data for various maturities from Standard & Poor's for the sample period August 6, 

1996 to September 11, 2001. The time series plots of a subset of these data are in Figure 1 

and Figure 2, respectively, and Figure 3 presents the relative changes in the spreads for the 

Moody's data. Tables 1 and 2 present descriptive statistics for these data. As mentioned 

before, the Moody's data display positive skewness, while the Standard & Poor's data in 

sorne cases display small negative skewness, and large positive skewness in other cases. 

4 Estimation methodology 

These two models can be estimated using a number of different methods. We adopt the 

extended Kalman filter (EKF) approach to estimate the riskless interest rate and corporate 

bond models. This approach has been suceessfully used in, among others, Claessens and 

Pennacchi (1996), Babbs and Nowman (1999), de Jong (2000), Duan and Simonato (1999), 

Duffee (1999), Geyer and Pichler (1999), and Miu (2001). There are at least three major 

advantages associated with the EKF approach. First, it allows us to use both cross-sectional 

and time-series information contained in the riskless bond priees and corporate bond prices. 

Second, this approach correctly treats the underlying state variables (or factors) as unob­

servable, which is consistent with the theoretical models. Third, as a by-product of the EKF, 

estimates of the state variables are also generated, which is useful for our analysis in Section 

6.8 Appendix B.2.1 contains a brief summary of the EKF approach. 

8For nonlinear and non-Gaussian models, such as the two models considered here, the parameter estimates 

obtained from the EKF may be inconsistent. However, Monte Carlo evidence in Lund (1997), Duan and 

Simonato (1999), and de Jong (2000) suggests that this inconsistency is of fairly limited importance for the 

typical sample size encountered in term structure modeling. Duffee and Stanton (2004) advocate the use of 

the EKF instead of a more sophisticated method in a similar context. 

66 



Because of the assumed independence between the Brownian motions driving the riskless 

interest rate and those underpinning the default probability, we can follow the two-step 

estimation procedure proposed in Duffee (1999). In the first step, we estimate the default­

free term structure using V.S. 'Theasury prices alone. In the second step, we assume that 

the parameter estimates of the riskless interest rate obtained from stage one are the true 

parameters and use them to estimate the parameters of the default probability of each 

individual firm in the sample. That is, we run an EKF to estimate the riskless interest rate 

in the first step, and in step two we run an EKF for each individual firm to estimate its 

credit spread process. 

4.1 Estimation of the default-free interest rate 

At time t, we observe a cross-section of V.S. Treasury bond prices Gt = (G1,t, ... , Gs,t)'. 

We collect the two unobservable state variables in the vector Ft. For notational simplicity, 

we suppress the dependence of the model on the parameters to be estimated and write down 

the measurement equation and the transition equation of the Kalman filter as 

Gt = m(Ft) + Et, Et-1(EtE~) = A, 

Ft = a + bFt- 1 + çt, Et- 1(çtçD = V(Ft- 1). 

(11) 

(12) 

In the measurement equation (11), the function m(Ft) maps the two state variables in Ft to 

bond priees, and we know this mapping in closed-form; Et is the white noise measurement 

error at time t and has a constant conditional variance-covariance matrix given by A. In the 

transition equation (12), çt is also a white noise error term, of which the conditional variance­

covariance matrix is V(Ft- 1). This matrix depends on the values of the state variables at 

time t - 1. The explicit forms of components a, b, and V(Ft- 1 ) are presented in Appendix 

B.2.2. 

We assume that the default-free interest rate process is stationary. Therefore, we can use 

the unconditional means of factors fI and 12, /11 and /12, respectively, to initiate iterations 
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on the riskless interest rate. We write the measurement equation in terms of bond prices 

instead of yields for two reasons. First, for coupon bonds there is no linear mapping between 

the state variables of the model and the bond yields. As a result, we have to numerieally 

solve for the yields. We conjecture that the error occurred in this yield extraction proeess 

may be carried over to the subsequent estimation process. We emphasize that this is only 

a conjecture since we are unaware of any empirical study that addresses this issue. Second, 

writing the measurement equation in terms of prices allows us to analytically calculate the 

derivatives of the function m(·) with respect to parameters of the model, which facilitates 

estimation. 

Finally, the nonlinear mapping m(·) between the coupon bond priees and the state vari­

ables makes identification of all the risk premium parameters of the model possible. This 

point is made in Dai and Singleton (2000). 

4.2 Estimation of the default probability 

When estimating the default probability of an individual firm in the second step, we 

consider the parameter estimates obtained from phase one as the true parameters of the 

model. We also use the smoothed estimates (i.e., estimates based on information through 

the entire sample) of the two unobserved riskless factors from phase one. These smoothed 

estimates are produced by the Kalman filter and we denote them by Kt (i = 1, 2). We take 

the means of these estimates over those months in which a firm has valid corporate bond 

priee observations. These means are denoted by fit (i = 1, 2) and they appear in equations 

(5) and (7). 

Consider a given firm j. In month t, we observe a cross-section of Ujt corporate bond 

priees issued by this firm. We staek these bond priees into a veetor B jt = (Bj,l,t, ... , Bj,ujt,d. 

The last time that firm j's bond prices were observed was in month t-r, where due to missing 

observations, r is not neeessarily equal to one. The measurement and transition equations 
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are (we again ignore the dependence of the model on the parameters to be estimated) 

B jt = mj(2:,jt, Ft) + Ejt, Et-r(EjtE~t) = Ajt , 

2:,jt = aj + bj 2:,j,t-r + çjt, Et-r (çjtçjt) = r(2:,j,t-r). 

(13) 

(14) 

In the measurement equation (13), vector Ft = (Kt, k)'. The function mj(·) maps the 

default-risky state variables stored in 2:,jt and the smoothed estimates of the riskless factors 

in Ft into corporate bond priees Bjt. (For the stochastie volatility model, 2:,jt = (,x.jt, Vjt)'; 

for the benchmark model, 2:,jt = ,x.jt.) The terms Ejt, çjt, and r(2:,j,t-r) can be interpreted 

analogously to their counterparts in equations (11) and (12). The Ajt matrix is a Ujt x Ujt 

diagonal matrix with diagonal entry 5j , the common measurement error variance of the bond 

priees of firm j. We assume a common error variance since for a given firm, the number of 

bonds and the maturities of the bonds are time-varying. 

The functional forms of aj, bj , and r(2:,j,t-r) in the transition equation (14) are given 

in Appendix B.2.2. In addition, in Appendix B.3 we give, in closed-form, the first two 

conditional moments of the two state variables of the stochastic volatility model of credit 

spreads. These moments are used in the empirical work and to the best of our knowledge, 

they have not been presented anywhere before. 

Finally, unlike the assumption of stationarity made for the risk-free interest rate, we do 

not assume that the default probability of an individual firm is stationary. As a result, we 

can not use the unconditional means of the risky state variables in 2:,jt as starting points for 

estimating the default probability. Instead, we filter an estimate of the initial values of 2:,jt 

and the variance-covariance matrix associated with this estimate out of firm j's first month 

bond data. We refer the interested reader to Duffee (1999, p. 208) for further details. 
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5 Empirical results 

This section is divided into four parts. Section 5.1 summarizes the estimation results 

on the default-free interest rate. Section 5.2 discusses the in-sample estimation results for 

the credit spread models. Section 5.3 reports the out-of-sample results. Section 5.4 presents 

the estimation results on credit spread indices. 

5.1 Results on the riskless interest rate 

Table 4 reports the estimation results on the default-free interest rate model. The 

robust standard errors for the parameter estimates are calculated using the formulas in 

White (1982). The standard errors are generally very small, indicating that the riskless 

model parameters are estimated quite precisely. The parameter estimates imply that the 

first factor exhibits strong mean-reversion with a half-life of around 1.25 years. In contrast, 

the second factor exhibits little mean-reversion, with a half-life of more than 34 years. The 

estimates of the risk premia are both negative, which is consistent with the theoretical 

model, although the estimate of the second risk premium, 7r2, and the associated standard 

error indicate that 7r2 is of little economic significance and is not statistically different from 

zero. 

The first factor of the riskless model may be interpreted as the negative of the slope of the 

riskless term structure. The correlation between the smoothed estimates of this factor and 

the slope of the Treasury yield curve (defined as the difference between the 30-year Treasury 

bond yield and the 3-month Treasury bill yield) is -0.95, and the correlation between the first 

differences of these two series is -0.82. On the other hand, the second riskless factor moves 

closely with long-term Treasury bond yields since the correlation between the smoothed 

estimates of this factor and the yields on 30-year Treasury bonds is 0.98, and the first 

differences of these two series are strongly correlated with correlation coefficient 0.93. It is 

common practice in modeling the riskless term structure to interpret one risk-free factor as 
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the slope of the yield curve, while another factor as the level of the yield curve. 

The parameter estimates for the riskless term structure are generally consistent with 

those of, among others, Duan and Simonato (1999), Duffee (1999), and Geyer and Pichler 

(1999), although the sample periods in these studies are different. Our results are also 

similar to those in Pearson and Sun (1994), although both their estimation methodology 

and sample period differ. The fit of this two-factor model to the Treasury yield curves is 

overall comparable to the results in Duffee (1999). We achieve a much better fit for the 

short maturities but a slightly inferior fit for long-maturity bonds. Unlike Duffee (1999), 

who arbitrarily fixes the constant term c at -1, we estimate this constant along with other 

parameters of the model. An estimate of -0.48 for c, coupled with the estimates of /11 and 

/12, implies a long-run mean of the riskless short rate of around 9%, which is reasonable. 

Moreover, Duffee (1999) argues that in order for this riskless interest rate model to fit both 

a low, fiat term structure and a high, steep term structure, while at the same time without 

incurring unrealistically high volatility, we need a negative estimate of the constant term. 

Our results support his claim. 

5.2 In-sample results on credit spread models 

Table 5 summarizes the in-sample RMSE fit of the stochastic volatility model, and Table 

6 presents the corresponding RMSE for the benchmark model. Tables 5 and 6 also report 

the median and interquartile ranges for the parameter estimates. In Appendix A, we break 

down, firm by firm, the RMSE results for the two models. Notice that here the RMSE is 

calculated based on the contemporaneous predictions of the state variables in ~jt (Le., the 

estimates of ~jt using information available through time t). This is in contrast to Table 4, 

where the RMSE is computed using the smoothed estimates (based on information through 

the entire sample) of the state variables. Duffee (1999) computes the RMSEs similarly. 

Since for any given firm, its term structure of credit spreads is estimated using a relatively 
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small number of bonds, the resulting parameter estimates are sometimes not very precise. 

AIso, there are substantial interquartile variations in the parameter estimates, as reported in 

Table 5 and Table 6. Consequently, we will concentrate on the median parameter estimates 

and the median RMSEs in the remainder of this section. 

Table 5 indicates that in the stochastic volatility model, both the instantaneous default 

probability (and credit spread) and its volatility are mean-reverting un der the physical mea­

sure, because both estimates of a and 'Y are positive (see equation (5)). A related study 

by Prigent, Renault, and Scaillet (2001) also find strong mean-revers ion in Moody's credit 

spread series. Under the risk-neutral measure, we can rewrite equation (6) in a slightly 

different form as 

(15) 

Notice that the variance of credit spreads, Vjt, now appears in the drift term of Àjt. Therefore, 

a is not the mean-reversion parameter for Àjt under the Q measure. The parameter estimates 

in Table 5 suggest that the term 111;i
t is often positive. It then follows from equation (15) 

that when Àjt is below its unconditional mean ":\ so that (":\ - Àjt) is positive (and Àjt will 

increase towards its mean level of ":\), the variance of credit spreads Vjt may increase the 

mean-reversion of credit spreads by making the drift of Àjt bigger. The opposite effect 

holds when Àjt is above its unconditional mean ":\ so that (":\ - Àjt) is negative (and Àjt will 

decrease towards ":\). We conclude that in the stochastic volatility model, the default risk 

Àjt can exhibit mean-reversion un der the risk-neutral measure for reasonable combinations 

of parameter values. From Table 6 we see that although the default probability exhibits 

mean-reversion under the physical measure in the Duffee model, it displays mean-aversion 

(K,j + 7rj < 0, see equation (8)) under the Q measure. This finding is consistent with that in 

Duffee (1999). Finally, the mean-reversion parameter for Vjt is 'Y + Ç'r/2. The results in Table 

5 then show that the volatility of default probability is mean-averting (i.e. non-stationary) 
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for about 50% of the firms. 

In both models, parameters 81j and 82j capture the correlation between credit spreads 

and the default-free interest rate. Table 5 and Table 6 indicate that the estimates of 81j and 

82j are primarily negative and are larger (in absolute terms) than the estimates in Duffee 

(1999). To appreciate the economic significance of the estimates of 81j and 82j , suppose that 

the first riskless factor fIt drops by 100 bps. This increases Àjt by 0.00475 in the stochastie 

volatility model and by 0.00242 in the benchmark model, according to the median estimates 

of 81j in Table 5 and Table 6, respectively. Given a recovery rate of 44%, this increase in 

À jt translates into an increase of 26.6 bps and 13.6 bps in the credit spreads on a near­

maturity zero-coupon corporate bond in the stochastic volatility model and in the Duffee 

model, respectively. Similarly, the me di an estimates of 82j reported in Table 5 and Table 6 

imply that a 100 bps decline in the second riskless factor ht corresponds to an increase of 

7.5 bps and 3.7 bps in the credit spreads on a near-maturity zero-coupon corporate bond in 

the stochastic volatility model and in the Duffee model, respectively. A negative relationship 

between the riskless interest rate and credit spreads is consistent with the structural model 

in e.g. Longstaff and Schwartz (1995): an increase in the risk-free interest rate increases the 

drift of the pro cess for firm asset value under the measure Q. Other things being equal, this 

increase in firm value will pull the firm further away from the default threshold, increasing 

the bond priees of the firm, thus lowering the bond credit spreads. This finding of a negative 

relationship also confirms the results of many previous empirical studies, such as Duffee 

(1998) and Collin-Dufresne, Goldstein, and Martin (2001). On the other hand, Neal, Rolph, 

and Morris (2000) and David (2002) suggest that the relationship between credit spreads 

and the riskless interest rate is not constant, but depends on factors such as maturity and 

the state of the business cycle. 

In Table 5, the estimates of the first risk premium parameter, "71, are positive, while the 

estimates of the second risk premium parameter, "72, are negative. In Table 6 the estimates 

of the risk premium parameter, 'Trj, are negative. These results are consistent with the 
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theoretical models developed in Section 2 and imply that investors demand compensation 

for bearing not only the time-varying default risk but also the risk associated with the 

stochastic volatility of credit spreads. Finally, note that in Table 5 the estimates of 7Jl and 

7J2 are large numbers (in absolute value). This is due to the fact that in equation (15) 7Jl and 

7J2 appear in the product terms of 7Jl Vjt and Ç7J2, respectively, and the estimates of Vjt and ç 
are relatively small. 

Table 5 and Table 6 also report the interquartile ranges of the mean fitted values of the 

state variables of the two models. These fitted values are based on the contemporaneous 

predictions of the state variables of the models, consistent with the way in which the in­

sam pIe RMSE is computed. Table 5 shows that in the stochastic volatility model, the 

median firm has a me an instantaneous default probability Àjt of 1.8% per annum, while the 

corresponding value for the benchmark model in Table 6 is 1.4% per annum. Both estimates 

are fairly close to the estimate in Duffee (1999), which is 1.36% per annum, but of course 

the default probability in the data is much lower. AIso, it is worth noticing that although 

a negative estimate of Cj in the stochastic volatility model might raise the prospect of a 

negative default probability Àjt (see equation (5)), which is theoretically inconsistent, the 

mean estimates of Àjt are always positive, as reported in Table 5. Table 5 also shows that the 

median value of the mean instantaneous variance of credit spreads, Vjt, is 0.0000581, which 

translates into an instantaneous volatility of credit spreads of 0.0076. For the benchmark 

model, Table 6 reports that the median firm has a mean instantaneous volatility of credit 

spreads, Œj;>:ft, of 0.002, which is lower than the estimate in the stochastic volatility model. 

The stochastic volatility model fits the corporate bond prices better than the benchmark 

model. Table 5 and Table 6 show that the median in-sam pIe RMSE of the stochastic volatility 

model is 9.30 bps, versus 11.99 bps for the benchmark model. In addition, according to 

Appendix A, the stochastic volatility model generates a lower in-sample RMSE than the 

benchmark model for every single firm in the sample. As another indication of the better fit 

achieved by the stochastic volatility model, the median estimate of the measurement error 
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volatility, jB; (see equation (13)), in the stochastic volatility model is 0.369 dollars, while 

it is 0.611 dollars for the benchmark model (all corporate bonds in the sample have a face 

value of 100 dollars). The better in-sample fit of the stochastic volatility model should come 

as no great surprise because it has one more factor than the benchmark model. However, it 

must be noted that the stochastic volatility model does not nest the benchmark model (see 

Section 2.2). Therefore, the better in-sample fit achieved by the stochastic vol at ilit y model 

is encouraging. 

5.3 Out-of-sample results on credit spread models 

To evaluate a model's performance, a model's out-of-sample pricing performance is more 

important. A more richly parameterized model is expected to perform better in-sample than 

a more sparsely parameterized alternative model, but this may not be the case out-of-sample. 

The reason is that models with extra parameters may be penalized in an out-of-sample 

analysis because of the difficulty in identifying those extra parameters, given the limited 

sample size of available data. 

In this paper, we use as the out-of-sample period the last 12 months in which a firm has 

valid bond price observations. We conduct the out-of-sample test as follows. We use the 

in-sample parameter estimates from Table 5 and Table 6, together with the smoothed esti­

mates of the riskless factors in the out-of-sample period and the risk-free model parameters 

(estimated over the entire sample), to generate a sequence of estimates of the default risky 

state variables in each of the 12 months in the out-of-sample period. We then use these 

estimates, as well as the in-sample parameter estimates and information on the riskless term 

structure, to price corporate bonds in the out-of-sample period. Finally, we compute the 

corresponding RMSE to gauge the out-of-sample performance of the two models. 

The out-of-sample results on the stochastic volatility model are presented in the last 

row in Table 5. The bottom row of Table 6 reports the results on the benchmark model. 
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Again, Appendix A presents the out-of-sample performance of the models on a firm by firm 

basis. It is clear from Table 5 and Table 6 that the stochastic volatility model compares 

favorably with the benchmark model in out-of-sample forecasting: the median RMSE in the 

stochastic volatility model is 12.05 bps, down from 13.89 bps for the Duffee model. Appendix 

A also shows that in slightly more than two-thirds of the cases (for 75 firms out of the total 

108 firms) , the stochastic volatility model leads to a lower out-of-sample RMSE than the 

benchmark model. 

5.4 Results on credit spread indices 

To ensure that the estimation results are robust, we also estimate the stochastic volatility 

model and the benchmark model on credit spread index data from Standard and Poor's. The 

estimation results are reported in Table 7 A and Table 7B for the stochastic volatility model 

and the benchmark model, respectively. The stochastic volatility model achieves a lower 

RMSE than the benchmark model for every credit rating group. As to parameter estimates, 

they are generally consistent with those reported in Table 5 and Table 6. It is interesting to 

note that the estimates of the constant term Cj are negative for the majority of credit spread 

indices in the Duffee model, in contrast to the estimates presented in Table 6, where they 

are universally positive. 

6 Exploration of the empirical results 

In this section, we further explore the empirical results. This section is further divided 

into three subsections. In Section 6.1, we discuss the estimation results for the two credit 

spread models by credit rating. In Section 6.2, we examine the fit of the two models by 

credit rating and bond maturity. In Section 6.3, we analyze the role played by the constant 

term Cj in the two models. 
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6.1 Estimation results for credit spread models by credit rating 

Table 8 reports the median parameter estimates and the median mean fitted values of 

the state variables for the stochastic volatility model of credit spreads for firms rated Aa, A, 

and Baa in the sample. In Table 9 we conduct a similar analysis for the benchmark model. 

The first thing to notice from Table 8 and Table 9 is that there is substantial variation in the 

estimates across rating classes. While this could be a genuine feature of the data, it is also 

possible that this finding is due to the lack of precision in the estimates, which is caused by 

the relatively small number of bond priee observations available to estimate an individual 

firm's term structure of credit spreads. 

Table 8 indieates a modest positive relationship between credit spreads and their volatility 

since the median estimate of p for the A-rated group is 0.009, while the corresponding 

estimate for the Baa-rated group is 0.018. For the relatively small sample of Aa bonds, 

the estimate of p is much larger. Table 1 and Table 2 also report a positive relationship 

between credit spreads and their volatility. There we observe that as credit ratings drop, 

credit spread levels go up and at the same time the standard deviations of credit spreads 

generally increase, thus resulting in a positive relationship between credit spreads and their 

volatility. A positive median estimate of p for aIl the three rating groups also confirms the 

evidence of positive skewness of credit spreads reported in Table 1 and Table 2, since in 

the stochastic volatility model p captures the skewness of credit spreads. The "volatility 

of volatility" parameter ç also appears to increase as credit rating declines: the me di an 

estimates of ç for the A and Baa rated groups are higher than that for the Aa-rated group. 

In both Table 8 and Table 9, the estimates of 01j and 02j generally are more negative 

for lower credit ratings, even if the pattern is clearer in Table 8. For example, in Table 

8 the me di an estimate of 01j for the Aa-rated group is -0.365, which declines to -0.459 for 

the A-rated group, then further decreases to -0.558 for the Baa-rated group. Table 8 also 

reports that the median estimates of 02j are -0.097 for the Aa-rated firms and -0.141 for 
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the A-rated firms. This relationship can be explained intuitively using the Merton (1974) 

model: other things being equal, a lower-rated firm is closer to the default boundary. The 

firm value process of such a firm is more sensitive to changes in the riskless interest rate 

since an increase in the default-free interest rate translates into an increased drift of the firm 

value process un der the risk-neutral measure, which pulls the firm away from the default 

boundary, increases the firm's bond priees, and decreases its credit spreads (see also Section 

5.2). 

Table 8 and Table 9 also show that the risk premium parameter estimates for both models 

generally increase in (absolute) magnitude as firms' credit rating worsens. This pattern is 

consistent with intuition: it implies that investors require higher compensation for bearing 

the default risk and the volatility risk of credit spreads as firms' credit rating declines. 

Table 8 reports the median mean fitted values of À jt , Àjt, and Vjt, and Table 9 reports 

the median mean fitted values of Àjt, Àjt, and (Jj/fit (which measures the volatility of credit 

spreads in the benchmark model) for the three rating groups. These fitted values are based 

on the contemporaneous predictions of the state variables in the models, which is consistent 

with Table 5 and Table 6. 

The median estimates of Vjt and (Jj /fit reveal that the credit spreads of lower-rated 

firms are generally more volatile than the credit spreads of higher-rated firms. In Table 

8, the median value of Vjt, the credit spread variance, is 0.0000294 for the Aa-rated firms, 

and increases to 0.0000715 for the A-rated firms. Although for the Baa-rated firms the 

median estimate of Vjt is lower than that for the A-rated firms, in the results not reported, 

the 25% and 75% inter-quartile values of Vjt for the Baa-rated firms are higher than the 

corresponding values for the A-rated firms. These results also echo the evidence presented 

in Table 1 and Table 2, where we observe that the standard deviations of lower-rated credit 

spreads are in general higher than those of their higher-rated counterparts. The higher 

volatility associated with the credit spreads on lower-rated bonds implies that managers of 

bond portfolios consisting of mainly lower-rated bonds should pay more attention to hedging 
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their exposure to the volatility risk. 

According to the median estimates of Àjt reported in Table 8 and Table 9, the lower-rated 

firms have a higher default probability. For example, in Table 8 the median estimate of Àjt , 

the default probability, is 1.2% for the Aa-rated firms, which rises to 2.8% for the Baa-rated 

firms. These findings support the claim that the commonly used credit ratings are a good 

first indicator of a firm's creditworthiness. 

6.2 RMSEs of credit spread models by credit rating and maturity 

The last two rows in Table 8 and Table 9 tabulate the median in- and out-of-sample 

RMSEs for the stochastie volatility model and the benchmark model, respectively. These 

two tables reveal that the stochastic volatility model has a better fit than the benchmark 

model in both in- and out-of-sample analyses, resulting in a lower RMSE in both cases for 

aIl three rating groups. Also, it is interesting to note that the fit of both models worsens 

as credit ratings faIl; the in- and out-of-sample RMSEs for both models become bigger as 

credit ratings get worse. 

We now examine the fit of the two models from the perspective of individual bonds. In 

Panel A of Table lOA, we first divide aIl the qualified bond price observations in the in-sample 

periods into different maturity groups. We then report and compare the in-sample RMSEs 

for the stochastic volatility and benchmark models for these maturity groups. Again, the 

stochastie volatility model pro duces a lower in-sample RMSE than the benchmark model for 

bonds in every maturity group. Similarly, Panel A of Table lOB reports and compares the 

out-of-sample RMSEs for both models for bonds in various maturity groups. The stochastie 

volatility model achieves a lower out-of-sample RMSE than the benchmark model for every 

maturity group except for bonds with maturities ranging from 20 years to 25 years. In Panel 

B of Table IOA, we first divide aIl the valid bond priee observations in the in-sample periods 

into different credit rating classes. We then calculate and report the in-sample RMSEs for 
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both models for bonds within each credit rating class. In Panel B of Table lOB, we conduct 

a similar analysis on bonds in the out-of-sample periods. We observe from both these two 

panels that the stochastic volatility model performs better than the benchmark model in 

not only the in-sample but also the out-of-sample tests. Again, the fit of both models gets 

worse as bond ratings decline, sinee both the in-sample and out-of-sample RMSEs of the two 

models rise as bonds become less creditworthy. 

6.3 Role of the constant term Cj 

In Figure 4 and Figure 5, we plot the average credit spreads of the Aa-, A-, and Baa­

rated firms for the stochastic volatility model and the benchmark model, respectively. These 

figures are generated as follows. For every firm in each rating group, we take its parameter 

estimates and its mean fitted values of Àjt and Vjt. The parameter estimates for the riskless 

term structure model are taken from Table 4, and for simplicity, we have set the two riskless 

factors, fu and ht, to their sample means over the in-sample period used for estimation of 

the firm's credit spread term structure. Using aH these information, we calculate the credit 

spreads corresponding to the firm's parameter estimates. We then average across the credit 

spreads corresponding to aH the firms in each rating group and plot the resulting credit 

spread curves. 

In both Figure 4 and Figure 5, the credit spread curves of the lower-rated firms lie above 

those of the higher-rated firms. In addition, both figures show that the credit spread curves 

of the lower-rated firms are steeper than those of the higher-rated firms. The pattern of 

the credit spread term structures exhibited in Figure 4 and Figure 5 is consistent with the 

stylized facts about the investment-grade credit spreads (see e.g. Litterman and Iben (1991) 

and Fons (1994)). 

The median estimate of the constant term Cj in the stochastic volatility model is negative, 

while it is positive in the benchmark model. Duffee (1999) argues that the combinat ion of 
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Cj > 0 and "'j + 7rj < 0 is required for his model to fit both the level and slope of the credit 

spread curves in Figure 5. His reasoning can be briefiy summarized as follows. Because 

"'j +7rj < 0 un der measure Q, investors price the corporate bonds as if the embedded default 

risk is explosive. That is, theyexpect Àjt to rise through time. For a fixed value of "'j + 7rj, 

a rising Àjt implies a larger drift term in equation (8) and a upward-sloping credit spread 

curve. However, the slope of the resulting credit spread term structure for higher-rated firms 

may be too steep to match the slope of the credit spread curve. Therefore, a positive Cj is 

required in order to depress the overall steepness of the yield spread curves. Without the 

Cj parameter, for highly rated firms, the yield spread curves generated by the Duffee model 

would be too steep to be consistent with those found in the data. 

Similarly, the pair of Cj < 0 and a > 0 is necessary for the stochastic volatility model to 

fit both the level and slope of the credit spread curves in Figure 4. A positive estimate of a 

implies that the default risk is mean-reverting (i.e. stationary) under the physical measure 

and can be mean-reverting as well un der the risk-neutral measure (see Section 5.2). That 

is, investors do not expect Àjt to ri se through time. Instead they expect Àjt to likely return 

to its long-run mean level after a sufficient length of time. (The mean-reversion of Àjt in 

the stochastic volatility model is moderate sinee e.g. the median estimate of a for the A­

rated firms is 0.063, which implies a half-life of about 11 years.) As a result, the stochastic 

volatility model will not imply an overly steep credit spread curve for highly rated firms. 

Consequently, the role played by the constant term Cj in the stochastic volatility model is 

mainly to dilute the effect of Àjt through the sum of Cj and Àjt in equation (5), sinee the 

estimates of Àjt are comparatively large for the stochastic volatility model, in order to fit the 

levels of credit spreads. 
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7 Conclusion 

This paper presents a two-factor affine model of default probability and credit spreads. 

The first factor can be interpreted as the level of credit spreads, and the second factor is the 

volatility of credit spreads. This default risk model also allows for a close relationship between 

credit spreads and the riskless interest rate, a characteristic supported by the empirical 

findings. 

Using a large sample of corporate bond priee data, we compare the stochastic volatility 

model to a benchmark model in which the volatility of credit spreads is not recognized as a 

distinct state variable. The stochastic volatility model performs better than the benchmark 

model, resulting in a lower RMSE (in bps) in both in-sample and out-of-sample tests. The 

properties of actual credit spreads are better captured by the stochastic volatility model. 

Therefore, the empirical results demonstrate the importance of including the volatility of 

credit spreads as a second factor in default risk models. 

These results question the ability of a single-factor diffusion process to model adequately 

both the dynamics of credit spreads and the dynamics of credit spread volatility. We propose 

a multi-factor reduced form model instead. The model is tractable as well as flexible, and 

the empirical results show that it fits corporate yield curves reasonably weIl. 

In future work, it will be interesting to use the model to value various types of credit 

derivatives. The use of credit derivatives has been growing at a tremendous paee, reflecting 

an increase in both transaction volumes and market participants (J.P. Morgan (1999)). 

All major types of credit derivatives (such as credit default swaps, total return swaps and 

credit spread options) are significantly affected by changes in credit spreads and default 

probabilities (Das (1999)). Sinee the stochastic volatility model approximates the dynamics 

of credit spreads and default probabilities more realistically and more satisfactorily, it may 

lead to more accurate pricing of credit derivatives. 
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Appendix A: Empirical results (in basis points) firm by firm 
Firm number Firm name In-sample Out-of-

Duffee's Stoch. sample Stoch. 
model Volati. Duffee's Volati. 

model model model 

1 ALLIED - SIGNAL INC 8.308 6.608 12.194 12.562 
2 ALLIED CORP 12.180 8.876 13.053 11.412 
3 AMERICAN BRAN OS 13.401 12.163 16.451 13.047 
4 AMERICAN EXPRESS CREDIT 12.924 7.675 8.744 7.602 
5 AMERICAN GENERAL FIN CORP 17.617 15.544 8.590 9.320 
6 AMR CORPORATION 21.442 20.251 18.440 21.722 
7 AON CORP 4.709 3.419 8.767 8.122 
8 ARCHER·DANIELS-MIDLAND 11.484 10.997 12.237 12.450 
9 ARCO CHEMICAL CO 14.575 12.740 11.742 13.081 
10 ARISTARINC 9.725 7.508 18.517 14.254 
11 ATLANTIC RICHFIELD 15.834 14.169 18.007 17.407 
12 AVCO FINANCIAL SERVICES 9.787 7.761 12.190 11.161 
13 BAXTER INTERNATIONAL INC 11.678 8.668 7.919 7.158 
14 BEAR STEARNS CO, INC 5.591 5.009 12.831 8.884 
15 BELL TEL OF PENN 4.374 2.214 6.315 6.600 
16 BENEFICIAL CORP 13.408 10.804 31.981 17.600 
17 BOEINGCO 8.286 8.012 11.949 11.957 
18 BOSTON EDISON 9.506 9.252 11.617 11.063 
19 BOWATER 16.152 15.469 17.457 15.474 
20 BP AMERICA INC 5.483 3.100 8.796 8.617 
21 BURLINGTON RESOURCES INC 13.525 12.283 15.075 15.067 
22 CATERPILLAR INC 22.091 15.186 12.403 15.581 
23 CHRYSLER FINANCIAL 15.707 14.905 26.102 5.275 
24 CIGNA CORPORATION 8.837 6.699 19.790 12.935 
25 CIT GROUP HOLDINGS 12.332 10.610 6.137 6.620 
26 CITICORP 9.046 6.874 26.388 27.842 
27 COASTAL CORPORATION 12.007 10.213 16.492 9.154 
28 COCA - COLA ENTERPRISES INC. 16.922 15.078 15.533 16.210 
29 COCA-COLA CO 5.131 3.472 5.972 6.600 
30 COMMERCIAL CREDIT 12.582 8.225 12.645 7.604 
31 CONSOLIDATED ED OF NY 7.139 4.775 8.271 6.765 
32 CONSOLIDATED NATURAL GAS 10.325 8.015 11.310 7.671 
33 CSXCORP 10.857 10.573 14.396 13.994 
34 DAYTON HUDSON CORP 19.319 17.371 15.335 14.698 
35 DELTAAIRLlNES,INC. 17.991 17.383 17.105 15.273 
36 DILLARD DEPARTMENT STORES 13.566 13.167 14.395 21.448 
37 DOLE FOOD CO 10.610 3.716 11.779 9.319 
38 DOW CHEMICAL 15.694 14.549 16.077 17.043 
39 DOW CHEMICAL B.V. 8.557 7.432 10.971 8.971 
40 EATON CORP 12.535 11.147 14.780 14.192 
41 ENRON CORP 11.983 10.556 15.057 11.610 
42 FEDERAL EXPRESS CORP 14.949 7.032 24.252 8.513 
43 FIRST INTERSTATE BANCORP 13.512 10.584 7.670 9.032 
44 FORD CAPITAL B.V. 10.603 8.339 10.566 8.291 
45 FORD MOTOR 15.330 13.085 12.806 14.413 
46 GENERAL MOTORS 14.286 10.304 17.723 15.528 
47 GENERAL MOTORS ACPT CORP 12.365 9.081 7.936 10.114 
48 GEORGIA PACIFIC 22.804 17.164 18.000 15.724 
49 GREAT WESTERN FIN CORP 4.376 2.701 12.371 5.169 
50 GTECORP 10.818 8.257 16.667 14.151 
51 HELLER FINANCIAL, INC 9.833 7.584 11.518 10.079 
52 HERTZCORP 11.891 10.619 13.939 11.088 
53 HOUSEHOLD FINANCE 17.371 16.294 9.717 8.245 
54 INTERNATIONAL LEASE FINANCE 17.403 16.158 13.989 8.797 
55 INTERNATIONAL PAPER 17.729 12.896 13.036 14.940 
56 INTL BUSINESS MACHINES 14.617 14.131 13.089 14.310 
57 JAMES RIVER CORP 6.655 3.475 17.910 17.124 
58 LEHMAN BROTHERS HOLDINGS INC 5.784 5.678 16.706 12.493 
59 LlMITED, INC 8.002 4.624 13.133 8.236 
60 LORAL CORPORATION 16.406 15.514 17.253 17.754 
61 LOUISIANA LAND & EXPLORATION 12.912 10.940 11.294 12.841 
62 MARRIOTT CORPORATION 21.433 20.355 45.492 39.707 
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63 MARTIN MARIETTA 9.402 9.085 16.809 22.294 
64 MASCOCORP 10.832 7.479 7.861 6.707 
65 MAY DEPARTMENT STORES 16.221 14.658 14.948 12.438 
66 MAYTAG CORPORATION 7.352 4.245 11.687 11.230 
67 MERRILL LYNCH & CO. 11.160 9.508 14.765 7.428 
68 MOBILCORP 12.053 8.841 15.289 9.321 
69 MORGAN STANLEY GROUP INC 13.862 10.764 17.366 7.692 
70 NEW ENGLAND TEL + TEL 9.509 8.038 11.737 13.298 
71 NEW YORK TELEPHONE 10.705 10.559 11.531 9.620 
72 NORWEST FINANCIAL INC. 9.290 7.636 17.681 8.399 
73 OCCIDENTAL PETROLEUM 21.950 15.061 7.195 13.976 
74 PACIFIC BELL 7.331 5.624 11.095 9.597 
75 PAINE WEBBER INC 10.829 7.982 19.399 12.668 
76 PEPSICO INC 9.009 6.711 11.952 7.841 
77 PHILIP MORRIS COS. INC 8.003 7.951 15.983 9.632 
78 PROCTER + GAMBLE CO 9.516 9.341 8.495 5.824 
79 RALSTON PURINA CO 16.139 15.898 17.964 18.211 
80 ROCKWELL INTERNATIONAL 4.922 4.101 8.249 9.112 
81 SALOMON INC 6.814 4.605 13.530 9.948 
82 SCOTT PAPER 10.828 7.306 16.037 18.292 
83 SEAGRAM JOSEPH E + SONS 9.644 8.290 11.210 10.601 
84 SEARS ROEBUCK + CO 16.021 9.377 9.149 7.033 
85 SECURITY PACIFIC CORP 12.086 10.218 33.141 31.708 
86 SHOPKO STORES, INC 22.672 16.318 29.509 27.990 
87 SOUTHERN CALIF EDISON 4.125 3.776 6.954 5.638 
88 SOUTHWEST AIRLINES CO. 6.858 6.267 8.611 8.815 
89 SUNAMERICA INC 14.155 11.902 22.523 23.709 
90 TELE-COMMUNICATIONS 17.791 16.832 33.558 37.417 
91 TENNECO CREDIT CORP 11.260 7.154 17.046 15.091 
92 TENNECO INC 12.219 8.375 17.154 12.218 
93 TENNESSEE GAS PIPELINE CO 9.294 6.460 20.404 19.680 
94 TEXACO CAPITAL INC. 14.811 13.938 13.444 12.696 
95 TEXAS EASTERN TRANSMISSN 3.957 3.204 6.921 6.781 
96 TEXAS INSTRUMENTS 7.520 3.417 13.072 7.307 
97 TIME WARNER ENT 17.447 16.134 13.845 12.997 
98 TRANSAMERICA FINANCIAL 14.577 11.218 18.815 7.912 
99 UNION OIL OF CALIFORNIA 9.195 8.748 5.380 6.831 
100 UNITED AIR LlNES INC 19.939 18.421 22.845 13.736 
101 USXCORP 16.598 15.883 19.262 16.754 
102 WAL-MART STORES, INC 8.990 8.689 10.890 12.140 
103 WEYERHAEUSER CO 13.723 12.381 15.281 14.705 
104 WHIRLPOOL CORP 10.116 8.134 15.698 14.365 
105 WILLAMETTE IND 10.071 7.007 18.001 17.152 
106 WILLIAMS COS 17.444 16.007 26.410 20.446 
107 XEROXCORP 13.275 9.442 6.777 8.546 
108 XEROX CREDIT CORP 16.672 12.971 24.225 10.964 

25% 9.266 7.268 11.273 8.538 
Median 11.995 9.297 13.892 12.048 
15% 15.421 13.105 17.389 15.073 
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Appendix B: Technical appendices 

B.1 Bond pricing formulas 

B.1.1 Solving the Riccati equation using the method of Selby and Strickland (1995) 

The class of exponential-affine (or simply affine) term structure models is a class of models 

in which the yields to maturity are affine functions of sorne unobservable state variables X t , 

thedynamics of which are assumed to be 

(B.I) 

where Zt is a vector of independent Brownian motions and <I> is a vector of the model 

parameters. The generic form of bond pricing formula for this class of models is 

G(t, T, 0) = exp(A(<I>, T - t) + B(<I>, T - t)Xt), (B.2) 

where G(t, T, 0) denotes the time t price of a riskless zero-coupon bond that matures at time 

T. Let yt(Xt; <I>, T - t) denote the time t continuously compounded yield to maturity on this 

bond, then the formula of this yield is given by 

1 1 
yt(Xt; <I>, T - t) = - T _ t A(<I>, T - t) - T _ t B(<I>, T - t)Xt, (B.3) 

which is affine in the state variables X t . 

In the present context, the stochastic volatility model for À.jt in equation (5) leads to a 

closed-form solution to the price of a default-risky zero-coupon no-recovery bond issued by 

firm j with a face value of one dollar as 

Bj(t, T, 0, 0) = exp[-r(c + Cj - 81j!It - 82j!2t)] exp[-À.jtD(r) + vjtF(r) + K(r)IBA) 

.E~[exp( -lT 
Rudu)]· E~[exp( -lT 

f;udu)], 

where fi~ = fit(1 + 8ij ), i = 1, 2, and r = T - t. The first exponential component of the 

solution in equation (BA) is a constant, and the two conditional expectation terms in (BA) 

can be solved in simple closed-form (see e.g. Pearson and Sun (1994)). 
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In equation (B.4), the three functions D, F, and K have the time to maturity, T, as 

their only variable. They are the solutions to the following system of ordinary differential 

equations (ODEs) 

D' + aD - 1 = 0, D(O) = 0; 

1
1 22 ( 1 2 F = 2Ç F - "( + ç'r/2)F - pçDF - 'r/l D + 2D , 

K' = -a),D + "(vF, K(O) = O. 

F(O) = 0; 

(B.5) 

(B.6) 

(B.7) 

In the above system of ODEs, D' denotes ~~, F' and K' are defined analogously; and 

D(O) = 0, F(O) = 0, and G(O) = 0 are the initial conditions. 

The ODE in (B.5), which is for function D, can be solved in simple closed-form as 

D(T) = ~(1 - e-aT
), and function K can be found by direct integration once we know both 

D and F. The difficult part lies in finding the solution to the ODE for F in (B.6), which is a 

Riccati equation. A Riccati equation is one type of nonlinear first-order ODE. It is nonlinear 

due to the presence of quadratic terms in it, e.g. the F2 component in (B.6). In the current 

case, although function F can be found in closed-form, the solution is fairly complicated and 

contains complex algebra. 

To overcome this difficulty, Selby and Strickland (1995) make a simple substitution 

1 t H(s) = eXP[-2e it F(u)duJ. (B.8) 

This substitution transforms the nonlinear ODE in (B.6) into an equivalent linear second­

order ODE for H. Under this substitution, functions F and K can be rewritten as 

2 H'(T) 
F(T) = - ç2 H(T) , 

- 2"(v 
K(T) = À(D(T) -1') - ~lnH(T). 

(B.9) 

(B.IO) 

Therefore the solution to the bond pricing formula in (B.4) amounts to evaluating H(T) and 
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H'(r). A further substitution 

1 
r = - - ln( x ), 0 ~ x ~ 1; 

a 

H(r) = x{3Q(x) (B.11 ) 

reduces the ODE for H to a homogeneous linear ODE of second or der for Q, which can be 

solved by using a standard series solution method. Once we obtain the solution to Q, we 

can retrace, substituting Q back into (B.11) for H, and then substituting H back into (B.9) 

and (B.I0) for F and K, respectively. For computational details, please refer to Selby and 

Striekland (1995). 

B.l.2 The coupon bond pricing formula with non-zero recovery rate 

Using a no-arbitrage argument, we know that the priee of a default-free coupon bond 

is the sum of the values of individual daims to its remaining coupon payments and its 

principal, where each of these daims can be regarded as a zero-coupon bond. This is the 

so-called "portfolio of zeros" approach to valuing a riskless coupon bond. In contrast, when 

default is a factor, this "portfolio of zeros" approach needs sorne reconsideration sinee all 

remaining coupons now share the same default time if default occurs at or before time T. 

However, this approach is theoretieally justified in Duffie and Singleton (1999) provided that 

À jt and L jt are "exogenous," in that they do not depend on the value of the defaultable 

daim itself, as is the case when prieing corporate bonds. This exogenous assumption is valid 

in our framework since we are pricing corporate bonds and the recovery rate is assumed to 

be fixed. 

We denote by G(t, T, cp) the priee of a default-free coupon bond that pays cp dollars 

at date T and every six months (i.e. 0.5 years, see equation (B.12)) below) before T. In 

addition, at the maturity date T, the bond also pays its holder the principal value of one 

dollar. Similarly, we use Bj(t, T, cp, 0) to denote an otherwise equivalent corporate coupon 
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bond with zero recovery in the event of default. No-arbitrage arguments tell us that we can 

apply the "portfolio of zeros" approach to value these two coupon bonds as 
N 

G(t, T, cp) cp L G(t, t + 0.5k, 0) + G(t, T, 0), (B.12) 
k=l 
N 

Bj(t, T, cp, 0) = cp L Bj(t, t + 0.5k, 0, 0) + Bj(t, T, 0, 0), (B.13) 
k=l 

where in both equations (B.12) and (B.13), N is the total number of coupon payments and 

is equal to 2(T - t). The riskless zero-coupon bond priees that comprise equation (B.12) 

are given by a well-known closed-form formula (see, for example, Pearson and Sun (1994)). 

The zero-coupon corporate bond priees in (B.13), such as Bj(t, T, 0, 0), are also in analytical 

form, and can be derived using equation (4) and the Selby and Strickland method. 

Finally, we denote by Bj(t, T, cp, 1- L) the time t priee of a corporate coupon bond with 

a constant recovery rate of 1 - L. The assumption made on recovery rate in this paper 

implies that upon default at time "rd (t < "rd :::; T), the bondholder essentially reeeives a 

1 - L fraction of an otherwise equivalent riskless bond. As a result, beginning at "rd, the 

bondholder is going to receive cp(l- L) dollars of coupon payment every six months prior to 

T. At time T, she is going to reeeive a total of (1- L)(l + cp) dollars of final coupon payment 

plus principal. A modification of equation (10) shows that the value of Bj(t, T, cp, 1 - L) is 

equal to 

Bj(t, T, cp, 1 - L) = (1- L)G(t, T, cp) + LBj(t, T, cp, 0). (B.14) 

B.2 The Kalman fllter 

B.2.1 A brief summary of the Kalman filter 

Consider an n X 1 vector of variables observed at time t, Yt, and a r x 1 unobservable 

state vector, çt. The state-space representation of the dynamics of Yt is given by 
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where F and H are r x rand n x r matrices, respectively. The r x 1 vector Et and n x 1 

vector Wt are vectors of white noise, E(EtE~) = Q and E(WtW~) = R, for t =1= 7. Here, Q 

and R are of dimensions r x rand n x n, respectively. In addition, the disturbances Et and 

Wt are assumed to be uncorrelated at aIl lags. In the Kalman filter setup, equation (B.15) 

is called the transition equation (or the state equation) , and equation (B.16) is called the 

measurement equation (or the observation equation). 

The Kalman filter is an algorithm for calculating linear least squares forecasts of the state 

vector on the basis of data observed through date t, Çt+11t == E(Çt+1IYi), where Yi == (Y~, ... , yD 
and E(ÇtHIYi) denotes the linear projection of Çt+1 on Yi. It calculates these forecasts 

recursively, generating 610, 611, ... , ÇTIT-1 in succession. Associated with each of these 

forecasts is a variance-covariance matrix based on the one-step-ahead prediction error 

which will be used to evaluate the likelihood function. 

The key equations for the Kalman filter are 

çtit = Çtlt-1 + Pt1t-1H'(H Ptlt-1H' + R)-l(Yt - Hçtlt-1), 

Çt+11t = Fçtjt, 

Ptlt = Ptl t- 1 - Ptlt-1H'(H Ptlt-1H' + R)-l H Ptlt- 1, 

Pt+llt = F PtltF' + Q. 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

Among these four equations, equations (B.18) and (B.20) belong to the (one-step-ahead) 

prediction stage; equations (B.17) and (B.19) are for the updating stage, i.e., using the 

information available through date t to update the previous (one-step-ahead) estimate of çt. 

For a linear and Gaussian model, the method of maximum likelihood estimation (MLE) 

can be used to estimate parameters of the model. The sample likelihood is given by 

T 

LIn f(YtIYi-l), (B.21) 
t=l 
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where we have 

f(YtIYt-l) = 

(21l")-~IHPtlt-1H' + RI-! eXP[-~(Yt - Hçtlt-d'(HPtlt-1H' + R)-l(Yt - Hçtlt-l)]' 

(B.22) 

When the measurement equation is nonlinear 

(B.23) 

where H(·) is a nonlinear function, the extended Kalman fllter (EKF) can be used to obtain 

an approximate filter. In particular, we replace the H(çt) function in (B.23) with its first­

order Taylor's approximation around çt = Çtlt-l so that 

(B.24) 

The idea behind the EKF is that to treat equation (B.24), together with (B.15), as ifthey 

were the true model. It follows that equations (B.17) through (B.20) will have to be modified 

accordingly. For details, please refer to Hamilton (1994) and Harvey (1990). Also notice that 

the parameter estimates obtained from the EKF will be quasi-maximum likelihood estimates 

(QMLE), rather than MLE as in the linear model case. See also Footnote 8. 

B.2.2 Details of the transition equations used in estimation 

For estimation of the default-free interest rate model, the components a and b of the 

transition equation in (12) are given by 
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and V(Ft - 1) is a 2 x 2 diagonal matrix with elements 

li: .(F, ) = A-.-:-1(J"2[ +. 1(e-if>;j12 _ e-2if>;j12) + J.li (1 - e-if>;/12)2] for i = 1 2. 
Vi,t t-l 'f't t Jt,t- 2" 

For estimation of the stochastic volatility model of credit spreads, the components aj and 

bj of the transition equation in (14) are 

b· J 

and r(~j,t-T) is a 2 x 2 matrix with the two diagonal elements given by (Vj2~.::~V)(e-T'Y/12 -

e-2Ta/12)+ v (1_e-2m/ 12 ) and v· _ e(e-T'Y/12_e-2T'Y/12)+s:.v(1_e-T'Y/12)2 respectively and 2a J,t T 'Y 2'Y ' , 
the off-diagonal element is pçt'!'Y(l- e-T(a+'Y)/12) + (vilt~r-v)(e-T'Y/12 - e-T(a+'Y)/12)], where 

we recall that T indicates the number of months elapsed between successive observations of 

corporate bond prices of firm j. 

B.3 The conditional moments of the stochastic volatility model of credit 

spreads 

Assume that an n X 1 vector X t follows the stochastic differential equation (SDE) 

(B.25) 

where Wt is an n x 1 vector of independent standard Brownian motions. If U(Xt ; \IF) and 

~(Xt; \IF)~(Xt; 'l')' are affine functions of X t so that U(Xt; \IF) can be written in the form of 

G + K Xt, where Gand K are matrices of dimension n x 1 and n x n, respectively, then the 

mean and variance of X t+h , condition al on Xt, are also affine functions of X t as long as K is 

diagonable (Le., all of the eigenvalues of K are distinct). Here h denotes a sufficiently small 

length of time. 
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Denote the eigenvalue decomposition of K by QkQ-l, where Q = [QI Q2 ... Qn] and Qi, 

i = 1, 2, ... , n, are the 71, linearly independent eigenvectors of K, and k is a square diagonal 

matrix with elements along its main diagonal being the 71, distinct eigenvalues of K. Then 

Duan and Simonato (1999) show that the conditional mean of Xt+h, E(Xt+hIXt), is given 

by 

(B.26) 

which is clearly affine in Xt. Similarly, we can compute the conditional variance of Xt+h, 

Var(Xt+hIXt). The required formulas for which can be found in Appendix B in Duan and 

Simonato (1999). 

We can use the above result to derive the conditional moments of the stochastic volatility 

model of credit spreads. The model is 

(B.27) 

where corr(zlj,t, Z2j,t) = p. Using a change of variable technique, we can rewrite the above 

model as 

d>'jt = a("X - >'jt)dt + (J'fJ.jUjidz2j,t + .jUjidz3j,t, 

dUjt = '"'((TI - ujt)dt + 'fJ.jUjidz2j,t, 

(B.28) 

where Ujt == (1 - p2)Vjt, TI == (1 - p2)V, 'fJ == vr=fllf" and (J == h. The two Brownian 
11 I-p2 

motions Z2j,t and Z3j,t are now independent. We can rewrite the model in (B.28) in matrix 

form similar to equation (B.25) as 
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and 

~(Xt; w) = [OT/.;u;t .;u;t J. 
fJ.;u;t 0 

Notice that in the present model, the matrix K is diagonable if and only if a f. ,. 
Substituting the above matrices into the formulas in Duan and Simonato (1999), one 

obtains after sorne manipulation the conditional moments of this model in terms of the 

original state variables Àjt and Vjt and the model parameters. The conditional means are 

E(À~ IÀ~) = À~ e-a(s-t) + 'X(1 _ e-a(s-t)) 
JS Jt Jt , 

and the conditional variances and covariances are 

_e-(a+y)(s-t))], 

Var(vjslvjt) = 11jt e (e-')'(s-t) - e-2')'(s-t)) + 2e v(1- e-')'(s-t)?, for s ~ t. , , 

(B.29) 

(B.30) 

As s ---+ 00, the pro cesses for Àjt and Vjt have a steady-state (unconditional) distribution 

with mean given by 'X and v, and variance equal to 2~ and ~,respectively. In addition, the 

steady-state covariance between Àjs and Vjs is v~. Finally, the above conditional moments 

can be derived alternatively using the method of Fisher and Gilles (1996). 
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Table 1 

Summary statistics for Moody's credit spread indices 

Moody's 10-year and 30-year Aaa and Baa credit spreads (in basis points). The data are 

monthly for January 1960 - April 2003 (for 10-year spreads) and February 1977 - February 

2002 (for 30-year spreads). Source of data: Federal Reserve Board's G.13 release. 

Mean (in bps) Standard deviation (in %) Skewness Kurtosis 

10-year Aaa 80.44 0.50 0.72 3.37 

10-year Baa 179.73 0.70 0.37 2.71 

30-year Aaa 76.62 0.38 0.90 3.72 

30-year Baa 184.53 0.60 0.81 3.07 
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Table 2 

Summary statistics for Standard & Poor's credit spread indices 

Standard & Poor's AAA, AA, A, and BBB credit spreads (in basis points) for various 

maturities. The data are weekly and cover the sample period August 6, 1996 - September 

11, 2001. Source of data: Standard and Poor's. 

Panel A. AAA 1-year 5-year lO-year 15-year 20-year 25-year 

Mean (in bps) 36.97 69.31 83.01 97.76 96.50 109.28 

Standard deviation (in %) 0.24 0.28 0.32 0.40 0.35 0.38 

Skewness 0.42 -0.02 -0.01 0.22xlO-2 0.07 0.04 

Kurtosis 2.28 1.55 1.57 1.56 1.67 1.66 

Panel B: AA 

Mean (in bps) 43.45 84.18 101.39 118.17 118.35 132.29 

Standard deviation (in %) 0.25 0.33 0.39 0.48 0.44 0.47 

Skewness 0.27 -0.04 -0.06 -0.10 -0.04 -0.05 

Kurtosis 1.90 1.63 1.62 1.60 1.65 1.63 

Panel C: A 

Mean (in bps) 67.66 111.07 129.49 146.94 147.59 161.91 

Standard deviation (in %) 0.36 0.44 0.49 0.58 0.53 0.56 

Skewness 0.07 0.03 0.09 0.09 0.16 0.13 

Kurtosis 1.78 1.61 1.66 1.67 1.72 1.68 

Panel D: BBB 

Mean (in bps) 111.06 157.54 177.26 195.54 196.74 NA 

Standard deviation (in %) 0.58 0.62 0.65 0.73 0.68 NA 

Skewness 0.11 -0.05 -0.05 -0.04 -0.03 NA 

Kurtosis 1.79 1.52 1.51 1.53 1.50 NA 
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Table 3 
Summary statistics for corporate bond data 

Corporate bond data are extracted from the Lehman Brothers Fixed Income Database. Every firm ineluded in the sample must have at least 48 
months in whieh at least 3 qualified bond priee observations are available. There are in total 108 such firms over the sample period beginning 
January 1985 and ending March 1998. In Panel B, yields denote actual yields to maturity on firms' outstanding bonds. In Panel C, credit spreads 
are defined as the spreads offirms' aetual yields to maturity over the riskless interest rates implied by the default-free interest rate model. 

Across 108 firms 

Panel A: corporate bonds Minimum 1 st quartile Median 3rd quartile Maximum 

Months of data 48 60 73 88 157 

Mean number of bonds 3 3.55 4.40 5.77 12.36 

Mean years to maturity 2.46 5.42 7.92 15.12 27.79 

Minimum years to maturity 1.02 1.02 1.06 1.59 24.19 

Maximum years to maturity 5.03 12.02 20.25 30.39 33.44 

Mean annual coupon rate 0 7.69 8.37 9.03 11.74 

Panel B: yields 

Mean (in bps) 614.43 688.15 709.56 747.54 922.71 

Standard deviation (in %) 0.52 0.65 0.77 1.04 1.99 

Skewness -0.69 0.21 0.41 0.59 1.69 

Kurtosis 1.45 2.07 2.43 2.75 7.30 

Panel C: credit spreads 

Mean (in bps) 136.85 202.45 246.07 276.57 390.20 

Standard deviation (in %) 0.54 0.98 1.14 1.37 2 

Skewness -0.65 0.25 0.39 0.68 1.89 

Kurtosis 1.44 1.66 1.83 2.24 8.40 
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Table 4 

Estimation results for the default-free term structure 

The instantaneous default-free interest rate, it , is modeled as 

it = c + lIt + ht, 

dfit = CPi(J-li - fit)dt + O"iVkdwit, (under the P measure) 

dfit = (CPiJ-li - (CPi + 7fi)fit)dt + O"iVkdwit, (under the Q measure) 

for i = 1, 2. We use an extended Kalman filter approach to estimate the above riskless 

interest rate model. The data are selected from the CRSP and include month-end priee 

observations of the most reeently issued Treasury bonds with maturities closest to 3 and 

6 months and 1, 2, 3, 5, 10, and 30 years. The robust standard errors for the parameter 

estimates are calculated following White (1982) and are presented in parentheses. 

i CPi J-li O"i 7fi CPi + 7fi C 

1 0.56 0.47 0.02 -0.03 0.53 -0.48 

(0.0002) (0.00005) (0.00006) (0.00003) (0.00028) 

2 0.02 0.10 0.05 -0.00008 0.02 

(0.0005) (0.00011) (0.017) (0.059) 

Bond maturity RMSE (in bps) 

3 months 30.77 

6 months 17.15 

1 year 4.55 

2 year 10.50 

3 years 8.18 

5 years 4.77 

10 years 10.40 

30 years 18.40 
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Table 5 

Estimation results for the stochastic volatility model of credit spreads 

Under the physical measure P, firm j' s instantaneous default probability at time t, Àjt , 

is assumed to follow the dynamics 

Àjt = Cj + Àjt + 81j (fIt - fit) + 82j (ht - ht), 

dÀjt = a("X - Àjt)dt + .JVjtdz1j,t, 

dVjt = 'Y(v - vjt)dt + f,.JVjtdz2j,t, 

where corr(zlj,t, Z2j,t) = p, and fit and ht are the two riskless factors of the default­

free inter est rate model. Under the risk-neutral measure Q, the processes for Àjt and Vjt 

are 

dÀjt (a"X - aÀjt + T)l vjt)dt + .JVjtdz1j,t, 

dVjt (')'v - (')' + f,T)2)vjt)dt + f,.JVjtdz2j,t, 

where corr(Z1j,t, Z2j,t) = p. An extended Kalman filter approach is adopted to estimate 

the above stochastic volatility model of credit spreads. The data consist of month-end 

corporate coupon bond priees, which are assumed to be observed with rneasurement 

errors that are normally distributed with rnean zero and variance Sj. 

(Table 5 is continued on the next page.) 
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Table 5 (continued) 

Variable 1 st quartile Median 3rd quartile 

Cj -0.437 -0.061 -0.054 

Œ 0.035 0.056 0.093 

X 0.063 0.079 0.480 

, 0.006 0.077 0.179 

"fi 0.721x1O-s 0.531x1O-6 0.886x 10-6 

ç 0.004 0.006 0.007 

p -0.044 0.011 0.600 

81,j -0.766 -0.475 0.026 

82 . ,) -0.202 -0.134 -0.026 

;S; 0.271 0.369 0.727 

'f/1 6.379 9.956 15.770 

'f/2 -68.046 -19.365 -10.425 

,+Ç'f/2 -0.310 -0.009 0.106 

Mean fitted À jt 0.012 0.018 0.032 

Mean fitted Àjt 0.069 0.085 0.475 

Mean fitted Vjt 0.241 X 10-4 0.581x10-4 0.121 X 10-3 

In-sample RMSE (in bps) 7.27 9.30 13.11 

Out-of-sample RMSE (in bps) 8.54 12.05 15.07 
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Table 6 

Estimation results for the benchmark model of credit spreads 

In the benchmark model, under the physical measure P, firm j's instantaneous default 

probability at time t, À jt , is given by 

Àjt = Cj + Àjt + 81j(flt - fIt) + 82j (ht - ht), 

dÀjt = /'Lj(Bj - Àjt)dt + aj~dujt, 

where flt and ht are the two riskless factors of the default-free interest rate model. 

Under the risk-neutral measure Q, the process for Àjt becomes 

We use an extended Kalman filter approach to estimate the benchmark model. The data 

consist of month-end corporate coupon bond priees, which are assumed to be observed 

with measurement errors that are normally distributed with me an zero and variance Sj. 

(Table 6 is continued on the next page.) 
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Table 6 (continued) 

Variable 1 st quartile Median 3rd quartile 

Cj 0.006 0.011 0.015 

/'i,' J 0.301xlO-7 0.026 0.376 

Bj 0.905xlO-7 0.242x10-3 0.002 

(J'j 0.024 0.045 0.064 

01j -0.480 -0.242 -0.088 

02j -0.183 -0.066 0.037 

VS; 0.372 0.611 1.314 

1f' J -0.567 -0.326 -0.191 

/'i,j + 1fj -0.363 -0.223 -0.130 

Mean fitted ).,jt 0.010 0.014 0.019 

Mean fitted ).,jt 0.493xlO-3 0.003 0.006 

Mean fitted (J'j~ 0.615xlO-3 0.002 0.005 

In-sample RMSE (in bps) 9.27 Il.99 15.42 

Out-of-sample RMSE (in bps) 11.27 13.89 17.39 
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Table 7A 

Estimation results for the stochastic volatility model of credit spreads using 

Standard & Poor's credit spread indices 

Data used are described in Table 2. Parameters are defined in Table 5. 

Variable AAA AA A BBB 

Cj -0.059 -0.073 -0.159 -0.060 

a 0.031 0.043 0.037 0.040 

~ 0.065 0.087 0.170 0.075 

'Y 0.260 0.187 0.126 0.128 

TI 0.484 x 10-7 0.197x 10-5 0.373xlO-5 0.400xlO-5 

ç 0.005 0.013 0.004 0.005 

p 0.367 0.392 0.549 0.374 

81j -0.303 -0.113 -0.190 -0.370 

82j -0.163 0.072 -0.121 -0.100 

VS; 5.889x 10-4 5.515x 10-4 6.151 x 10-4 6.449 x 10-4 

rtl 20.493 17.974 11.430 9.748 

rt2 -35.003 -0.761 -30.454 -18.518 

'Y + Çrt2 0.085 0.177 0.004 0.035 

RMSE (in bps) 5.09 4.76 5.47 5.71 
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Table 7B 

Estimation results for the benchmark model of credit spreads using Standard 

& Poor's credit spread indices 

Data used are described in Table 2. Parameters are defined in Table 6. 

Variable AAA AA A BBB 

C· J -0.297x 10-3 -0.476x 10-3 -0.185x 10-3 0.292xlO-5 

Kj 0.170 0.157 0.080 0.019 

e· J 0.182xlO-2 0.226xlO-2 0.585x 10-2 0.033 

(J'j 0.070 0.072 0.065 0.064 

81j -0.085 -0.062 -0.080 -0.164 

82j 0.110 0.153 0.200 0.287 

;S; 8.784xlO-4 9.243x 10-4 8.433x 10-4 7.916x10-4 

7rj -0.266 -0.263 -0.158 -0.070 

Kj + 7rj -0.096 -0.106 -0.078 -0.051 

RMSE (in bps) 8.23 8.69 7.90 7.28 
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Table 8 

Median estimation results for the stochastic volatility model of credit spreads 

sorted by credit rating 

Parameters are defined in Table 5. A firm's credit rating is defined as the mean 

of the Moody's ratings on the firm's qualified bonds over the sample period used 

in the estimation of its term structure of credit spreads. 

Variable Aa A Baa 

Number of firms 12 60 36 

c· J -0.614x 10-1 -0.608 x 10-1 -0.612 X 10-1 

a 0.033 0.063 0.053 

~ 0.075 0.077 0.080 

, 0.144 0.100 0.034 

v 0.498 x 10-6 0.531x 10-6 0.510x 10-6 

ç 0.456 x 10-2 0.578x 10-2 0.558xlO-2 

P 0.375 0.009 0.018 

81j -0.365 -0.459 -0.558 

82j -0.097 -0.141 -0.134 

TJ1 10.059 9.385 10.870 

TJ2 -18.146 -15.185 -42.839 

,+ ÇTJ2 0.024 0.059 -0.195 

Mean fitted À jt 0.012 0.016 0.028 

Mean fitted Àjt 0.073 0.081 0.098 

Mean fitted Vjt 0.294xlO-4 0.715x 10-4 0.637xlO-4 

In-sample RMSE (in bps) 7.66 9.41 10.69 

Out-of-sample RMSE (in bps) 8.76 11.12 13.98 
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Table 9 

Median estimation results for the benchmark model of credit spreads sorted 

by credit rating 

Parameters are defined in Table 6. A firm's credit rating is defined as the mean 

of the Moody's ratings on the firm's qualified bonds over the sample period used 

in the estimation of its term structure of credit spreads. 

Variable Aa A Baa 

N umber of firms 12 60 36 

c, ' 
J 0.006 0.009 0.014 

/'i,j 0.590x 10-6 0.030 0.046 

Bj 0.512xlO-5 0.370x 10-3 0.508x 10-3 

aj 0.030 0.045 0.047 

81j -0.217 -0.191 -0.443 

82j -0.068 -0.040 -0.092 

1l"0 
J -0.274 -0.331 -0.326 

/'i,j + 1l"j -0.274 -0.226 -0.208 

Mean fitted ).,jt 0.007 0.013 0.021 

Mean fitted ).,jt 0.001 0.002 0.006 

Mean fitted ajt~ 0.152xlO-2 0.189x 10-2 0.004 

In-sample RMSE (in bps) 9.14 12.13 13.16 

Out-of-sample RMSE (in bps) 9.82 13.08 17.35 
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Table IDA 

In-sample RMSEs by maturity and credit rating 

Across aU 108 firms in the sample, there are in total 38,197 observations on bond priees 

in the in-sample periods. We report in-sample RMSEs (in bps) for these bonds by 

maturity and credit rating. The maturity of the bond (M) is measured in years. The 

credit rating classese are defined according to Moody's ratings on firms' individual 

bonds. 

Panel A: maturity 

1<M:S5 

5 <M:S 10 

10 <M:S 15 

15 <M:S 20 

20 <M:S 25 

25 <M:S 30 

30 <M:S 35 

Panel B: credit rating 

Aa 

A 

Baa 

Below Baa 

N umber of bonds 

16,412 

10,941 

3,038 

3,069 

674 

3,660 

403 

6,023 

21,517 

10,561 

96 

106 

SV model 

12.34 

8.12 

8.18 

15.14 

13.22 

14.79 

13.03 

8.30 

11.29 

13.53 

15.17 

Benchmark model 

15.39 

10.28 

9.79 

15.56 

13.57 

15.15 

14.22 

10.77 

13.19 

15.85 

17.07 



Table lOB 

Out-of-sample RMSEs by maturity and credit rating 

Across aU 108 firms in the sample, there are in total 6,101 observations on bond priees 

in the out-of-sample periods. We report out-of-sample RMSEs (in bps) for these bonds 

by maturity and credit rating. The maturity of the bond (M) is measured in years. The 

credit rating classes are defined according to Moody's ratings on firms' individu al 

bonds. 

Panel A: maturity 

1<MS5 

5 <MS 10 

10 <MS 15 

15 <MS 20 

20 <MS 25 

25 <MS 30 

30 <MS 35 

Panel B: credit rating 

Aa 

A 

Baa 

Below Baa 

Number of bonds 

1,858 

2,035 

734 

565 

119 

593 

197 

937 

3,561 

1,588 

15 

107 

SV model 

14.38 

14.82 

12.70 

15.05 

15.93 

18.48 

15.66 

11.81 

14.52 

17.31 

8.74 

Benchmark model 

17.39 

17.41 

13.88 

16.15 

15.02 

19.05 

16.40 

13.03 

16.94 

19.09 

13.50 



Moodys 10-Year Credit Spreads 
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Figure 1: Moody's 10-year and 30-year Aaa and Baa credit spreads (in bps). Data 
used are described in Table 1. 
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S&P AAA Credit Spreads 
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Figure 2: Standard and Poor's AAA and BBB credit spreads (in bps) for various 
maturities. Data used are described in Table 2. 
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Monthly Relative Changes in Moodys 10-Year Credit Spreads 
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Figure 3: Monthly relative changes in Moody's lO-year and 30-year Aaa and Baa 
credit spreads. Data used are described in Table 1. Relative change in 
credit spreads from month t to month t-l is defined as In(CSt/CSt_.), 
where CSt den otes credit spread in month t. 
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Figure 4: The average credit spreads of the Aa-, A-, and Baa-rated firms implied 
by the stochastic volatility model of credit spreads. 
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Figure 5: The average credit spreads of the Aa-, A-, and Baa-rated firms implied 
by the benchmark model of credit spreads. 
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The following essay proposes a reduced form model of interest rate swap spreads 

and studies the individual components of swap spreads. The model accommodates both 

the default risk inherent in swap contracts and the liquidity difference between the swap 

and Treasury markets. The default risk and liquidity components of swap spreads are 

found to behave very differently. The immediately preceding essay also uses the reduced 

form approach; on the other hand, the first essay uses the structural approach. 
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Decomposing the Default Risk and Liquidity 

Components of Interest Rate Swap Spreads 

Xiaofei Li 

This Version: April 2004 

Abstract 

This paper develops a reduced form model of interest rate swap spreads. The 

model accommodates both the default risk inherent in swap contracts and the liquidity 

difference between the swap and 'Ireasury markets. We use an extended Kalman 

filter approach to estimate the model parameters. The model fits the swap rates 

weIl. We then solve for the implied general collateral repo rates and use them to 

decompose the swap spreads into their default risk and liquidity components. This 

exercise shows that the default risk and liquidity components of swap spreads behave 

very differently: although default risk accounts for the largest share of the levels of swap 

spreads, the liquidity component is much more volatile. In addition, while the default 

risk component has been historically positive, the liquidity component was negative 

for much of the 1990s and has become positive since the financial market turmoils in 

1998. 

JEL Classification: G 12 

Keywords: default risk; general collateral repo rate; liquidity; reduced form models; 

swap spread. 
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1 Introduction 

A swap is an over-the-counter (OTe) derivative contract in which two parties agree to 

exchange cash flows in the future. The simplest example of a swap is a forward contract. 

The two most popular types of swaps are interest rate swaps and currency swaps. This paper 

focuses on interest rate swaps since they are the largest segment of the global swap markets. 

(Henceforth we will use the terms "interest rate swap(s)" and "swap(s)" interchangeably.) 

Normally there are two counterparties in a "plain-vanilla" fixed for floating interest rate 

swap, counterparty A and counterparty B. The swap contract stipulates that counterparty 

A pays counterparty B, usually through a swap dealer, cash flows equal to interest at a 

fixed rate decided a priori on a principal for the tenor (maturity) of the swap. At the same 

time, counterparty B pays counterparty A, again through a swap dealer, cash flows equal to 

interest at a floating rate on the same principal for the same period of time. The floating 

rates in swaps are most often set at the London Interbank Offer Rates (LIBOR). The fixed 

rate exchanged for floating rate in an interest rate swap is referred to as the swap rate. The 

swap rate is usually chosen so that the swap is worth (approximately) zero at its initiation 

date. The swap spread is defined as the difference between the swap rate and the risk-free 

interest rate for the same maturity as the swap. Finally, note that the principal used to 

calculate interest payments in an interest rate swap is never exchanged. Therefore it is 

called notional principal. 

The first swap contract was initiated in August 1981 (Litzenberger (1992)). Sinee then 

the interest rate swap markets have been growing tremendously and have become one of the 

most active and important derivative markets worldwide. A recent study by the Bank for 

International Settlements (BIS) estimates that the notional amount of outstanding interest 

rate swaps was US$ 79.161 trillion by the end of 2002, far exceeding the size of the U.S. 

Treasury debt market.1 The interest rate swap markets are also highly liquid: the average 

1 It should be noted that since market participants tend to close out a swap position by entering into a 
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bid-ask spreads in swap rates are merely 3-4 basis points (bps) (Hull (2000)). Besides the 

sheer size of the swap markets, swaps provide data that are of great importance. Many 

financial institutions use the swap rates to generate the benchmark rates for their derivative 

models (Grinblatt (2002)). And in the market place there is a growing trend that the Treasury 

yields are replaeed by the swap rates as the reference term structure (Duffie, Pedersen, and 

Singleton (2000) and Houweling and Vorst (2001)). An additional advantage of swaps is 

that the swap rates are highly correlated with yields on other fixed-income securities, even 

during turbulent times, thus making swaps a better hedging instrument than government 

bonds. Finally, the swap options (or swaptions) , which are options to initiate new swaps, 

or to terminate existing swaps, are one of the most-heavily-traded interest rate derivatives 

(Longstaff, Santa-Clara, and Schwartz (2000)). 

As the swap markets evolve and gain prominenee, the academic literature on modeling 

swap spreads has also been growing fast. Sinee the largest component of swap spreads is 

due to the default risk embedded in swap contract (as suggested by the empirical results 

of this paper), the literature on modeling swap spreads can be regarded as part of the 

academic studies of modeling default risk. Currently, there are two main approaches to 

modeling default risk: the structural approach, which is first developed in Merton (1974); 

and the reduced form approach, which is advocated in Duffie and Singleton (1999). (Lando 

(1997) contains an introduction to these two approaches.) This paper develops a reduced 

form model of swap spreads. In particular, we use a two-factor affine model to capture the 

dynamics of swap spreads. The two factors can be interpreted as the default risk and liquidity 

components of swap spreads, respectively. A notable feature of the model is that it allows 

us to study the individual relationships between the default risk and liquidity components of 

swap spreads and the risk-free interest rates. In contrast, previous models of swap spreads 

have all examined the relationship between the riskless interest rate and the swap spread as 

new offsetting swap contract (and therefore a swap position may still remain in the trading book even after it 

IS terminated), the notional amount of swaps outstanding may be exaggerated to a large extent (He (2000)). 
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a whole. 

We estimate the model on weekly data of the 6-month LIBOR rates and swap rates for a 

wide array of maturities for May 22, 1991 to April 30, 2003. We also supplement the swap rate 

data with data on the default risk and liquidity components of the implied 3-month LIBOR 

spread (these data are described in Section 5.2). The model fits swap rates well, resulting in 

an average root mean squared error (RMSE) of 5.1 basis points (bps) across the maturities 

of swap rates. The parameter estimates indicate that the default risk component of swap 

spreads is positively related to the risk-free interest rate, whereas the liquidity component of 

swap spreads is negatively related to the risk-free rate. Moreover, the default risk component 

exhibits much stronger mean reversion than the liquidity component. To further investigate 

the individu al components of swap spreads, we solve for the implied general collateral (GC) 

repo rates and use them to decompose the model-implied swap spreads into their default 

risk and liquidity components. This decomposition exercise serves the main objective of this 

paper. This exercise shows that the default risk component and the liquidity component of 

swap spreads behave quite differently: although the default risk component accounts for the 

largest share of the levels of swap spreads, the liquidity component adds disproportionately 

large variations to the movement of swap spreads. Recent events in the U.S. swap markets 

help to further illustrate this point. For example, in the fall of 1998, in the aftermath of 

Russian default and the collapse of LTCM, swap spreads widened substantially. Default 

risk could not explain this sudden increase in swap spreads since in the U .S. government 

bond markets, where default risk was not an issue, the slope of the Treasury yield curve 

also steepened dramatically. Instead, the event of 1998 can be mainly characterized as a 

liquidity event due to "fiight to quality" and concern of systematic failure in the financial 

industry. The decomposition exercise also reveals that although the default risk component 

of swap spreads has been historically positive and relatively stable, the liquidity component 

of swap spreads varied substantially through time and seemed to display two regimes: before 

1998, the li qui dit Y component was mainly negative and had a low volatility; after 1998, the 
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liquidity component has become both positive and more volatile. 

This paper makes two distinct contributions to the literature on modeling swap spreads. 

First, the model specification in this paper is new and consistent with many empirical fea­

tures of swap spreads. The model is also tractable and easy to implement. Second, the 

decomposition exercise enables us to "peek behind the curtain," i.e. to study the default 

risk and liquidity components of swap spreads, which are otherwise unobservable. 

The rest of the paper proceeds as follows. Section 2 briefly reviews the literature on swap 

spreads. Section 3 presents the swap spread model. Section 4 describes the data. Section 5 

discusses the estimation methodology. Section 6 reports and discusses the estimation results. 

FinalIy, Section 7 offers concluding remarks and directions for future research. AlI technical 

details can be found in Appendix A. 

2 The literature on interest rate swaps 

This section consists of two parts. Section 2.1 reviews the literature on valuing interest 

rate swaps. Section 2.2 examines the default risk and liquidity components of swap spreads. 

2.1 The pricing of interest rate swaps 

Most of the earlier theories on interest rate swaps focus on the economic benefits offered 

by swaps. Bicksler and Chen (1986) provide an argument suggesting that counterparties with 

asymmetric credit ratings could both bene fit from an interest rate swap if one of them enjoys 

a comparative advantage in the fixed-rate debt market, whereas the other has a comparative 

advantage in the floating-rate loan market. The papers of Arak, EstrelIa, Goodman, and 

Silver (1988), Wall and Pringle (1988), Titman (1992), and Li and Mao (2003) demonstrate 

that firms with private information about their future creditworthiness can benefit in terms 

of a reduction in borrowing cost and/or a mitigation in agency cost from rolling over short-
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term floating-rate loans. Although borrowing short-term floating-rate debts subjects firms 

to considerable interest rate risk, firms can hedge this risk by entering into a floating for 

fixed interest rate swap. Finally, Smith, Smithson, and Wakeman (1988) suggest several 

alternative reasons for the popularity of interest rate swaps. Their arguments are based on 

tax and regulatory arbitrage and market completion. 

The earlier empirical studies of interest rate swaps, such as those of Sun, Sundaresan, 

and Wang (1993), Brown, Harlow, and Smith (1994), Cossin and Pirotte (1997), Minton 

(1997), and Lang, Litzenberger, and Liu (1998), run linear regressions of swap rates or swap 

spreads on various economic variables, including the riskless interest rates and the proxies 

for default risk and hedging costs. These studies generally find that default risk is priced 

in swap spreads. However, other factors, such as hedging costs, can also exert significant 

influence on swap spreads. None of these studies develops a dynamic swap-pricing model. 

Recently developed models of swap spreads can be divided into two groups: the structural 

models and the reduced form models. Cooper and Mello (1991) and Li (1998) develop struc­

tural models using the insight of Merton (1974) to pricing interest rate and currency swaps. 

Reduced form models of swap spreads have been developed in, among others, Sundaresan 

(1991), Duffie and Huang (1996), Duffie and Singleton (1997), He (2000), Liu, Longstaff, 

and Mandell (2000), Collin-Dufresne and Solnik (2001), and Grinblatt (2002). Finally, Dai 

and Singleton (2000) and Jagannathan, Kaplin, and Sun (2003) evaluate several well-known 

affine term structure models on data of LIBOR and swap rates. 

In Sundaresan (1991), swap spread is assumed to result entirely from default risk. In 

contrast, Grinblatt (2002) assumes that swap contract is free of default risk and swap spreads 

exist due to the liquidity difference between the Treasury and swap markets. Duffie and 

Singleton (1997) present a model of swap rates. They find that both liquidity and default 

risk are required in order to explain the variations in swap spreads. However, the effects of 

the liquidity factor do not last long, whereas the impacts of the default risk factor become 

more important over longer time horizons. He (2000) and Liu, Longstaff, and Mandell (2000) 
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both conclude that default risk alone can not explain the volatility observed in recent swap 

markets. Instead, it is the liquidity component of swap spreads that adds most variations 

to swap spreads. Their finding is consistent with the results of the decomposition exercise 

in Section 6.3. Finally, Collin-Dufresne and Solnik (2001) examine the relationship between 

corporate bond yields and swap rates (the LIBOR-swap spread). 

2.2 The default risk and liquidity components of swap spreads 

A swap contract generally involves two types of default risk. First, the two counterpar­

ties to a swap may default on their future obligations. This is called connterparty defanlt 

risk. Second, because the underlying floating rate in a swap contract is usually set at the 

LIBOR rate, which is a default-risky interest rate, an interest rate swap is subject to default 

risk even if the two counterparties to the swap do not default. 

It can be shown that compared to a corporate bond with similar credit rating, the coun­

terparty default risk in a swap contract is much smaller. The reasons are the following. 

First, due to the nature of the swap contract, the counterparty default risk matters only 

wh en the swap has a positive value to the non-defaulting party and a negative value to the 

defaulting party. As a result, the default risk of swaps is reduced substantially. Second, 

unlike in the case of corporate bonds, the notion al principal of a swap is never exchanged, 

thus the amount "at stake" in a swap is only the net interest payment, which is much lower 

than the notion al principal of the swap. Third, the unusual treatment of swaps under default 

events also alleviates the losses from defaults to swap counterparties (Litzenberger (1992)). 

Fourth, the current industry practices of netting, imposing collateral, and marking to market 

to a great extent eliminate the risk of default by either counterparty (He (2000)). Moreover, 

parties who are less creditworthy are either not allowed to participate in the swap markets 

or required to place additional collateral. As a result, several studies including He (2000), 

Collin-Dufresne and Solnik (2001), and Grinblatt (2002) assume that swaps are free of COllll-
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terparty default risk. Fifth, results in e.g. Duffie and Huang (1996), Li (1998), and Huge and 

Lando (1999) show that swap spread is very insensitive to credit rating differences between 

counterparties. Lastly, Bomfim (2002) shows that counterparty default risk had minimal 

impact on swap spreads even during market turbulent times, such as the Russian default 

crisis of 1998. However, it is important to note that although the counterparty default risk 

inherent in swaps may have been minimized, by no means this implies that swaps are free 

of default risk. On the contrary, swaps are still default-risky. After aU, the reason that aU 

the above-mentioned mechanisms exist is to mitigate the counterparty default risk of swaps. 

Accordingly, in this paper we explicitly take the default risk inherent in swaps into account, 

without being precise a priori about the sources of this default risk. 

We now turn to the liquidity component of swap spreads. Academics generally agree 

that asset prices contain liquidity premium (Amihud and Mendelson (1988, 1991), Kamara 

(1994), Longstaff (1995a, 1995b, and 2001), and Ericsson and Renault (2001)). The liquidity 

component of swap spreads stems from the liquidity difference between the Treasury and 

swap markets. The Treasury market is considered more liquid than the swap market, not so 

much because it has lower bid-ask spreads as because Treasury bonds, especially the most 

recently issued (or on-the-run ) ones, are preferred collateral in the overnight repurchase 

agreement (repo) markets, whereas swaps are not. As a result, owners of on-the-run Treasury 

bonds can borrow at a special repo rate that is lower than the prevailing general collateral 

repo rate. 2 In effect, there are daily cash fiows (similar to sorne kinds of "dividends") to 

owners of Treasury bonds, equal to the difference between the special and general collateral 

repo rates.3 

20n sorne days, the special repo rates can be 500 bps lower than the corresponding general collateral repo 

rates (Sundaresan (1997, pp. 59-60)). 
3Duffie (1996) develops a theoretical model to explain the causes and effects of special repo rates. His 

analysis predicts that the liquidity premium associated with on-the-run issues is due to special repo rates. 

Jordan and Jordan (1997) confirm this prediction. 
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In this paper, we model the above li qui dit Y advantage of Treasury securities as a conve­

nienee yield that accrues to holders of Treasury securities but is lost to investors of swaps. 

A similar modeling approach is also adopted by He (2000), Cherian, Jacquier and Jarrow 

(2001), Janosi, Jarrow, and Yildirim (2001), Jarrow (2001), and Grinblatt (2002) in related 

contexts. 

3 Madel of the swap rates 

Sinee the swap spread is defined as the differenee between the swap rate and the corre­

sponding riskless interest rate, a model of swap rate (or equivalently swap spread) naturally 

begins with modeling the riskless interest rate. In Section 3.1, we first introduce a standard 

two-factor affine model of the riskless interest rate. Then in Section 3.2, we present a two­

factor affine model of swap spreads. Together, the models in Section 3.1 and Section 3.2 lead 

to a four-factor affine model for swap rates. 

3.1 Model of the default-free interest rate 

Under the physical probability measure P, the instantaneous nominal default-free in­

terest rate, rt, is modeled as the sum of a constant, CYr, and two independent factors flt and 

ht that follow square-root diffusion proeesses 

(1) 

(2) 

where in equation (2), the parameters CPi and /li can be interpreted as the mean reversion 

speeds and the unconditional means of factors fit, i = 1, 2, respectively. The two standard 

Brownian motions Zlt and Z2t are assumed to be independent. The model specified in equa­

tions (1) and (2) is called a translated square-root model and has appeared in Cox, Ingersoll, 
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and Ross (1985) and Pearson and Sun (1994). This model is a member of the family of 

exponential affine (or affine for short) models of the riskless interest rate. 

Making the same assumption of priees of risk as that in Cox, Ingersoll, and Ross (1985), 

we write the stochastic process in equation (2) as 

(3) 

under the risk-neutral probability measure Q. In equation (3), Zlt and Z2t are two independent 

standard Brownian motions under the Q measure, and 7ri « 0), i = 1, 2, are the risk 

premiums for bearing interest rate risk. 

The riskless interest rate model presented in equations (1) through (3) conforms to the 

corn mon practice that uses at least two factors to capture the dynamies of the riskless term 

structure (Litterman and Scheinkman (1991)). The time t priee of a default-free zero-coupon 

bond that matures at time T, G(t, T), is given by 

G(t,T) = E~[exP(-lT rsds)], (4) 

where E~[·l denotes the conditional expectation taken under the measure Q, utilizing aIl the 

information known at time t. Under this model, the conditional expectation in equation (4) 

can be solved in simple closed-form, the formulas for which are given in Appendix A.1.I. 

FinaIly, the constant maturity 'freasury (CMT) rates used in estimation of the riskless 

interest rate model are yields on par 'freasury bonds. The formula for the CMT rate with a 

remaining maturity of T - t years is given as 

GMT, - 2[ 1- G(t,T) 1 
t,T - ",~T G(t ·/2) , 

L..tJ=l ,J 
(5) 

where CMTt,T denotes the time t value of a CMT rate for a maturity of T - t years. (An 

informaI proof of the above formula is in Hull (2000, pp. 89-90).) 
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3.2 Model of the swap spreads 

The instantaneous credit spread, St, is modeled as 

(6) 

(Here the term "credit spread" should not be interpreted as a spread that is solely due to 

default risk. In fact, as the subsequent arguments will make clear, non-default features, such 

as liquidity, may also contribute to the spread sd In equation (6), the state variable ht 

can be interpreted as the default risk component of the credit spread St, whereas the state 

variable lt can be considered as the liquidity component (or more generally, the non-default­

risk component) of the spread St. As has been pointed out in Section 2.2, we model the 

factor lt as a convenience yield resulting from the liquidity advantage of on-the-run Treasury 

securities. Both ht and lt are unobservable. The main objective of this paper is to use the 

default risk and liquidity components of the implied 3-month LIBOR spread, which can be 

observed, to identify the factors ht and lt separately and to simulate the default risk and 

liquidity components of the swap spreads for longer maturities. 

To facilitate the main task of this study, which is to examine the empirical properties of 

swap spreads, we adopt a particularly tractable specification for the factors ht and lt. More 

elaborate model specifications can also be used without additional conceptual difficulty, 

although in that case the computations will become more involved. Under the physical 

measure P, the dynamics of the factors ht and lt are assumed to be 

ht = f3hrt + h;, 

dh; = /'i,h(Oh - h;)dt + O"h)hfdwlt; (7) 

lt = f3Lrt + l;, 
dl; = /'i,L(OL -l;)dt + O"Ldw2t; (8) 

where the two standard Brownian motions Wlt and W2t are independent, and both of them 

are independent of the Brownian motions Zlt and Z2t in the riskless interest rate process in 
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equation (2). In equation (7), the parameters Kh and ()h can be interpreted analogously to 

the parameters <Pi and fli in equation (2), respectively. Likewise for the parameters KL and 

()L in equation (8). 

Adopting a standard assumption of prices of risk, we write the dynamics of ht and lt 

under the risk-neutral measure Q as 

ht = (3hrt + h;, 

dh; = (Kh()h - (Kh + Àh)hndt + O"hVh;&wlt; 

lt = (3Lrt + l;, 

dl; = (KL()L - KLl; - ÀLO"L)dt + O"Ldiiht. 

(9) 

(la) 

Again, in equations (9) and (10) the two standard Brownian motions Wlt and W2t are inde­

pendent, and both of them are assumed to be independent of the Brownian motions zit and 

Z2t in equation (3). Furthermore, Àh ( < 0) and À L ( < 0) are the risk premiums for bearing 

default risk and liquidity risk, respectively. Together, the riskless interest rate model in 

equations (1) through (3) and the swap spread model in equations (6) through (10) consist 

of a four-factor affine model for swap rates. 

Our choice of a mean-reverting stochastic process for the liquidity-induced convenience 

yield lt is justified by the theoretical analysis in Brennan (1991) and the empirical evidence in 

Gibson and Schwartz (1990) and Schwartz (1997) on copper, oil, and gold futures contracts. 

Convenience yield is caused by the scarcity of the underlying commodities. As a result, 

arbitrage activities will make convenience yield to revert to its long-run mean level once it 

deviates from the latter. In the present example, this scarce "commodity" is the on-the-run 

Treasury securities that can be placed as collateral in the special repo market. 

The swap spread model in equations (6) through (la) captures four prominent properties 

of actual swap spreads. First, swap spreads are stochastic. The h; and l; terms in the above 

model account for this feature. Second, swap spreads are correlated with the riskless interest 

rates. An interesting feature of the present model is that it allows us to study the correlation 

125 



between the default risk factor ht and the riskless interest rate (as captured by the parameter 

f3h) separateiy from the correlation between the liquidity factor it and the riskless rate (as 

captured by the parameter f3d. In contrast, previous models of swap spreads have aIl studied 

the relationship between the riskless interest rate and the swap spread as a whole. Third, 

this specification allows the credit spread St to become negative since the processes assumed 

for it in equations (8) and (10), which are Gaussian processes, allow it to become negative. 

This feature of the model can be justified by the fact that although the swap spreads in V.S. 

have been historically positive, negative swap spreads did occur in other markets, such as in 

Japan (Eom, Subrahmanyam, and Vno (2000)). FinaIly, equation (6) indicates that in the 

extreme case where there is neither default risk in swaps nor li qui dit Y differenee between the 

'freasury and swap markets, the swap spread will decrease to zero, as we will expect. 

The swap rates used in this paper are valued as yields on par credit-risky bonds. That 

is, 

1 - P(t, T) 
swaptT = 2[ ] 

, ",~T P(t '/2) , 
L.....J=l ,J 

(11) 

where sWapt,T denotes the time t swap rate for a maturity of T - t years. (A proof of the 

above formula is in Duffie and Singleton (1997, p. 1290).) In equation (11), P(t, T) denotes 

the time t priee of a credit-risky zero-coupon bond that matures at time T and is valued as 

(12) 

In this model, the conditional expectation in equation (12) can be solved in simple closed­

form, as presented in Appendix A.1.2. FinaIly, by definition, the time t swap spread for a 

maturity of T - t years is valued as (swapt,T - C MTt,T). 

is 

Finallly, the formula for the time t LIBOR rate for a maturity of T( < 1) year, LI BORt,Hn 

360 1 
LIBORt,Hr = AD[P(t,t+T) -1], 
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where in equation (13), AD denotes the actual number of days in the r-year maturity. (A 

proof of equation (13) can be found in Sundaresan (1997, p. 526).) 

In writing equations (11) and (13), several important assumptions have implicitly been 

made. These assumptions include that the default risk in the swap contract is exogenous, 

that the credit qualities of the counterparties to swaps are periodically refreshed, that the 

counterparties to swaps have symmetric creditworthiness, and the LIB OR and swap markets 

are homogenous in terms of their credit qualities (Duffie and Singleton (1997, pp. 1292-

1294)). Duffie and Huang (1996) and Li (1998) provide sorne support for the validity of 

these assumptions. 

4 Data 

The main source of data for this paper is Datastream. The sample period is from May 

22, 1991 to April 30, 2003.4 For every week in this time period, the Wednesday observations 

of CMT rates for maturities of 3 and 6 months, 2, 3, 5, 7, and 10 years, the 3- and 6-month 

LIBOR rates, and swap rates for maturities of 2, 3, 5, 7, and 10 years are collected from 

Datastream. The data are then scrutinized to eliminate suspicious quotes. The final data 

set contains 607 weekly cross-sections of valid CMT, LIBOR, and swap rates. 

We use Wednesday quotes since holidays (and the resulting market close) are least likely 

to occur on Wednesdays, thus ensuring the continuity of the time series. The CMT rates are 

based on the yields on the on-the-run Treasury securities that are most likely to be placed as 

collateral in the special repo market and earn their owners special repo rates. Therefore, the 

CMT rates provide an accurate estimate of the liquidity advantage of on-the-run Treasury 

securities. The maturities of the swap rates selected are the most liquid and heavily-traded 

4The choice of this sample period was made to accommodate the availability of data on the 3-month GC 

repo rates, since the earliest date for which repo rates are available from Bloomberg is May 21, 1991. Data 

on the CMT rates, LIBOR rates, and swap rates over longer sample periods are certainly available. 

127 



maturities in the swap markets. We also take into account the difference in day count 

conventions between LIB OR and swap rates: LIBOR uses an actual/360 day count basis, 

whereas swap rates are quoted on a 30/360 basis. In counting the actual nllmbers of days 

in the maturities of LIBOR contracts, we follow the market practice and use the modified 

following business day convention (Hull (2000, p. 128)). 

In order to examine in detail the components of swap spreads, we also obtain weekly 

(Wednesday) data on the 3-month GC repo rate from Bloomberg for the same time period. 

Longstaff (2000) advocates the use of GC repo rates as an alternative measure of the riskless 

term structure. His main arguments can be summarized as the following. First, the repo 

rate is essentially a default-free rate due to the design of the repo contract. Second, unlike 

the yields on on-the-run Treasury securities, repo rates do not contain liquidity premiums. 

Table 1 presents the summary statistics for the CMT rate, LIBOR rate, swap rate, and 

GC repo rate data used in this paper and their respective first differences. In Table 1, the 

LIBOR and swap spreads are defined as the differences between the LIBOR and swap rates 

and the CMT rates with corresponding maturities. Several interesting findings are apparent. 

First, the LIBOR and swap rates are strongly negatively skewed, whereas the LIBOR and 

swap spreads are strongly positively skewed. In addition, there is only modest evidence of 

excess kurtosis in both series. Second, the first differences of LIBOR and swap rates and the 

first differences of LIBOR and swap spreads exhibit significant excess kurtosis. Third, both 

the 3-month GC repo rate and its first differences are strongly negatively skewed, and the 

first difference series also displays strong excess kurtosis. Fourth, the standard deviations of 

the CMT rates appear to decrease with maturities. The same thing can also be said about 

the standard deviations of the LIBOR and swap rates. Lastly, Figure 1 depicts the actual 2-

and lO-year swap rates in our sample. Plots of the swap rates of other maturities are very 

similar. It is clear from Figure 1 that swap rates have been declining since 2001. 
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5 Estimation methodology 

We use an extended Kalman filter (EKF) approach to estimate the riskless interest rate 

model and the swap spread model developed in Section 3.5 In the present context, using 

the EKF approach has at least three advantages. First, the EKF approach utilizes both the 

cross-sectional and time-series information contained in the CMT, LIBOR, and swap yield 

curves, thus increasing the efficiency of estimation. Second, consistent with the theoretical 

models, this approach correctly treats the underlying state variables as unobservable. Third, 

estimates of the state variables are generated in an iterative and efficient manner, which 

facilitates the analysis in Section 6. The EKF approach also compares favorably to the other 

estimation methods that have been used in the existing literature on swap spreads. For 

example, the studies of Duffie and Singleton (1997), Liu, Longstaff, and Mandell (2000), 

Collin-Dufresne and Solnik (2001), and Jagannathan, Kaplin, and Sun (2003) all adopt the 

maximum likelihood estimation method suggested in Chen and Scott (1993) and Pearson 

and Sun (1994). Although this method has sorne advantages, it is very time-consuming since 

an optimization routine has to be used to recover the values of the model state variables at 

every trial of parameter values. In contrast, the EKF approach is much easier to use. 

We follow the two-stage estimation procedure suggested in Duffee (1999) to estimate the 

riskless interest rate and swap spread models separately. In the first stage, we estimate 

the riskless term structure using data on the CMT rates alone. The parameter estimates 

obtained after the first stage are assumed to be the true parameters of the riskless model 

and are used in the second stage to estimate the parameters of the swap spread model. 

This two-stage estimation procedure is adopted for the following three reasons. First, this 

procedure helps the numerical algorithm to identify model parameters since the total number 

of the parameters for the riskless interest rate and swap spread models is quite large relative 

to data available. Second, this estimation procedure leads to reasonably good fit for both 

5Please see Harvey (1990) and Hamilton (1994) for an introduction to the EKF estimation method. 
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the riskless and swap yield curves. Third, the assumed independence between the Brownian 

motions driving the pro cess for the riskless interest rate and those driving the processes for 

the LIBOR and swap spreads makes this approach feasible. 

The rest of this section is organized as follows. Section 5.1 presents the measurement 

and transition equations used in estimation of the riskless interest rate model. Section 5.2 

explains in detail how we estimate the swap spread model. 

5.1 Estimation of the default-free term structure 

During every week t in the sample period, a cross-section of seven CMT rates is observed. 

These CMT rates are for maturities of 3 and 6 months, and 2, 3, 5, 7 and 10 years and are 

collected in the vector Ret. The measurement and transition equations of the Kalman filter 

are given by 

Ret = m(8t ) + Et, Et-l(EtE~) = A, 

8 t = a + b8t- 1 + Xt, Et-l(Xt~) = V(8 t- 1). 

(14) 

(15) 

In the measurement equation (14), the vector 8 t stores the two state variables in the riskless 

model, fIt and ht. The function m(8t ) maps the state variables in 8 t to the observed 

CMT rates in Ret. This mapping is known in closed-form. The measurement error in week 

t, Et, is assumed to be normal and independent both serially and cross-sectionally with a 

constant condition al variance-covariance matrix of A. In the transition equation (15), the 

white noise measurement error at time t, Xt, has a conditional variance-covariance matrix 

given by V(8 t - 1 ) that is time-varying. The details of the transition equation (15) are given 

in Appendix A.2.1. Finally, when estimating the riskless term structure, we assume that the 

pro cess for the default-free interest rate is stationary. This assumption allows us to use the 

unconditional moments of the state variables of the riskless model to initiate iterations on 

the riskless interest rates. 
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5.2 Estimation of the swap spread model 

Similarly, the measurement and transition equations of the Kalman filter used in esti­

mation of the swap spread model can be written as 

Rst = n(~t, ê t ) + et, Et-l(ete~) = 3, 

~t = P + q~t-l + CPt, Et-l(cptCP~) = r(~t-l). 

(16) 

(17) 

In the measurement equation (16), the vector Rst contains the data on the default risk and 

liquidity components of the implied 3-month LIBOR spread in week t and the observations 

of the 6-month LIBOR rate and 2-, 3-, 5-, 7-, and 10-year swap rates in week t. The implied 

3-month LIBOR spread is defined as the spread ofthe actual 3-month LIBOR rate over the 

implied 3-month riskless interest rate, which is computed using the estimation results for the 

risk-free interest rate model from phase one. The 3-month LIBOR spread is decomposed as 

follows. The default risk component of the spread is calculated as the difference between the 

3-month LIB OR rate and the actual 3-month GC repo rate. The liquidity component of the 

spread is computed as the difference between the 3-month GC repo rate and the 3-month 

riskless interest rate. This decomposition approach can be justified by the facts that: first, 

the GC repo rate is essentially a default-free rate and contains no liquidity premium; and 

second, the CMT rates used in estimation of the riskless interest rate model depend heavily 

on the on-the-run Treasury issues that are most likely to be placed as collateral in the special 

repo markets. Therefore the CMT rates contain substantial liquidity premium. It follows 

that the difference between the LIBOR and GC repo rates can be considered as a pure 

default-risk component of the LIB OR spread, whereas the difference between the GC repo 

rate and the implied riskless interest rate can be regarded as a pure liquidity component of 

the LIB OR spread. A similar decomposition approach is also used in Liu, Longstaff, and 

Mandell (2000). Table 3 reports the summary statistics for the implied 3-month LIBOR 

spread and its default and liquidity components. A graphical illustration of Table 3 is in 

Figure 2. According to Table 3, the 3-month LIBOR spread has a mean of 30.155 bps, of 
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which the vast majority is accounted for by the default risk component (26.538 bps out of 

30.155 bps), whereas the liquidity component only accounts for a small part of the spread 

(3.616 bps out of 30.155 bps). However, the variations of the LIBOR spread seem to mainly 

stem from the liquidity component: the liquidity component has a standard deviation of 

0.4 71 %, slightly higher than that of the spread, which is 0.438%, and is nearly four times 

that of the default risk component, which is 0.12%. Figure 2 supports this finding. In this 

figure, the default risk component appears to be more stable and is al ways positive. The 

liquidity component and the implied spread, on the other hand, are much more volatile and 

can become negative. As we will see in Section 6.3, the default risk and liquidity components 

of swap spreads for longer maturities behave similarly. 

In equation (16), the vector ê t stores the smoothed estimates (i.e. estimates based on 

information through the entire sample) of the two riskless factors fIt and ht in week t. These 

smoothed estimates are assumed to be equal to the true values of the riskless factors for the 

estimation of the swap spread model. In addition, the parameter estimates for the riskless 

model obtained from the first stage are assumed to be the true parameters of the riskless 

interest rate model. The vector ~t collects the two state variables of the swap spread model: 

ht and lt. Finally, the B matrix is a 8-by-8 diagonal matrix with elements 81 , 82 , 83 , 84 , 

... , 84 , where 81 , 82 , and 83 denote the measurement error volatilities associated with the 

default risk and liquidity components of the 3-month LIBOR spread and the 6-month LIBOR 

rate, respectively, and 84 indicates the common measurement error volatility for swap rates 

of stated maturities. We assume a common measurement error volatility for swap rates for 

two reasons. First, doing so further reduces the number of parameters to be identified, thus 

increasing the efficiency of estimation. Second, in the unreported estimation results where 

swap rates are allowed to have different measurement error volatilities, the resulted estimates 

of swap rate volatilities are very similar and are significantly lower than the measurement 

error volatility for the 6-month LIBOR rate. 

The rest of the terms in the measurement equation (16) and the transition equation (17) 
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can be interpreted analogously to their counterparts in equations (14) and (15), respectively. 

The details of equation (17) are presented in Appendix A.2.2. Lastly, similar to the assump­

tion of stationarity made for the default-free interest rates, we assume that the stochastic 

pro cesses in the swap spread model are stationary. The estimation results, however, are not 

very sensitive to this assumption. 

6 Empirical results 

This section reports the estimation results for both the riskless interest rate model and 

the swap spread model. The section is divided into three parts. Section 6.1 and Section 

6.2 discuss the results on the default-free model and the swap spread model, respectively. 

Section 6.3 further explores the components of swap spreads. 

6.1 Estimation results on the riskless interest rates 

Panel A in Table 2 presents the parameter estimates and the associated robust standard 

errors that are calculated following White (1982) for the riskless interest rate model. The 

standard errors are generally much smaller than their corresponding parameter estimates, 

indicating that the parameters have been estimated very precisely. The first state variable 

of the model, fIt, is found to exhibit much st ronger mean reversion than the second riskless 

factor, ht, which has almost no mean reversion and is therefore close to a martingale. 

The two risk premium parameters, 7fl and 7f2, are both of the desired signs, implying that 

investors demand positive compensations for bearing interest rate risk. However, the estimate 

of the second risk premium 7f2 and its associated standard error indicate that 7f2 is neither 

economically nor statistically significant. The constant term Œr is found to be negative and 

is statistically very significant. A negative constant term is required for the present riskless 

model to fit both a low, fiat yield curve and a high, steep yield curve with realistic volatility 
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levels (Duffee (1999)). Overall, the parameter estimates for the riskless model in this paper 

are generally consistent with the results in other recent studies such as Pearson and Sun 

(1994), Duan and Simonato (1999), and Duffee (1999). 

Panel B in Table 2 reports the fit of this riskless model for the GMT rates. As shown, 

although the model does not fit well for the 3- and 6-month GMT rates, it is quite successful 

in fitting the GMT rates with longer maturities.6 Using different data, Duffee (1999) achieves 

a similar fit for the riskless term structure. 

6.2 Estimation results on the swap spreads 

In any week t in our sample period, we observe the default risk and liquidity components 

of the 3-month LIBOR spread, the 6-month LIBOR rate, and the swap rates for maturities 

of 2, 3, 5, 7, and 10 years. We use all these data to estimate the swap spread model. We 

supplement the LIBOR and swap rate data with data on the individu al components of the 

LIBOR spread because the default risk and liquidity factors of the swap spread model are 

unobservable and are thus difficult to differentiate in practice. The default risk and liquidity 

components of the 3-month LIBOR spread, however, are observable (see Section 5.2) and are 

known to have different default or liquidity properties. Using these components, together 

with the LIBOR and swap rates, to estimate the swap spread model will therefore help us 

identify the default risk and liquidity components of the 6-month LIBOR rate and swap 

rates for longer maturities. 

For estimation of the swap spread model, we need the pricing formula for the GG repo 

rate for maturity less than 1 year. In this paper, we value the GG repo rate in a way very 

6The RMSE results presented in Table 2 and Table 4 are based on the contemporaneous estimates of 

the model state variables (i.e. estimates contingent on information available concurrently). We have also 

computed the root mean squared errors using the smoothed estimates of the state variables. The results are 

very similar and are therefore not reported. 
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similar to the LIBOR rate with the same maturity. That is, 

(18) 

where Repot,t+T denotes the time t value of a Ge repo rate with a maturity of T( < 1) year, 

AD denotes the actual number of days between time t and time t + T, and 

(19) 

denotes the priee of a "hypothetical" zero-coupon bond that is default-free but does not 

have the liquidity advantage of on-the-run Treasury securities. This zero-coupon bond is 

constructed to capture the notion that the Ge repo rate is a default-free rate and does not 

contain liquidity premium. The conditional expectation in equation (19) can be solved in 

simple closed-form, the formula for which is given in Appendix A.1.3. Finally, the pricing 

formula for the Ge repo rate in equation (18) can be justified by the fact that both the 

LIBOR and repo contracts are money market instruments and use an actualj360 day count 

basis and simple interest calculation. 

For the decomposition exercise in Section 6.3, we also need the pricing formula for the Ge 

repo rates with maturities longer than 1 year. Ge repo contracts with maturities longer than 

1 year rarely exist. However, the pricing formula for them is necessary for our decomposition 

exercise. In this paper, we price the Ge repo rate as the yield on a "hypothetical" par bond 

with the same maturity. That is, 

Re 0 = 2[ 1 - GC(t, T) 1 
P t,T ,,~T GC(t '/2) . 

L....J=l ,J 
(20) 

The pricing formula in equation (20) can be justified by the following. The borrower in the 

repo market, who is also the owner of the underlying collateral security, essentially issues a 

coupon bond that is priced at par to the lender. The repo rate is the coupon rate of this 

bond, which is also the yield to maturity on this bond since the bond sells at par. The bond is 

a par bond because the face value of the bond is the amount borrowed. The bond is a coupon 
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bond since the maturity of the repo contract goes beyond 1 year and the bond thereby has 

to pay coupons. (Duffie (1996) and Jordan and Jordan (1997) contain a description of the 

repo rates and the repo markets.) The pricing formula in equation (20) is also very similar 

to the formulas developed in Sun, Sundaresan, and Wang (1993) and Collin-Dufresne and 

Solnik (2001) for the yields on the LIBOR par bonds. 

The estimation results for the swap spread model are reported in Panel A in Table 4. 

Several findings are noteworthy. First, the parameter f3h, which captures the correlation 

between the riskless interest rate and the default risk factor ht , is positive and significant. 

On the other hand, the parameter f3L, which captures the correlation between the riskless 

rate and the liquidity factor lt, is negative and significant. Second, the default risk factor, ht , 

displays much st ronger me an reversion than the liquidity factor, lt. As we will see in Section 

6.3, this difference in mean reversion may partially explain the relatively stable behavior of 

the default risk component of swap spread, when compared to the liquidity component of 

swap spread. Third, the estimates of the risk premiums, Àh and ÀL' are both of the right 

signs, indicating that investors in swap markets demand compensations for bearing not only 

default risk but also the liquidity difference between the swap and Treasury markets. 

A positive correlation between the default risk component of swap spread and the riskless 

interest rate may appear to be surprising at first glance since many previous studies have 

documented a negative relationship between credit spread and the riskless interest rate. 

However, it should be noted that all these studies have treated credit spread as a whole 

and have not distinguished the individual components of credit spread and their respective 

relations with the riskless interest rate. Besides default risk, credit spreads usually contain 

sizeable non-default-risk components, due to e.g. liquidity. These non-default-risk compo­

nents can be negatively related to the riskless interest rate, as has been documented in this 

paper. It follows that a positive correlation between the default risk component of credit 

spread and the riskless interest rate does not necessarily contradict the possibly negative re­

lationship between the credit spread as a whole and the risk-free interest rate. Furthermore, 
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the negative correlation between credit spread and the riskless interest rate found in many 

previous studies is not a foregone conclusion. Neal, Rolph, and Morris (2000), for instance, 

find that the relationship between credit spread and the riskless interest rate is not constant 

but depends on the time horizon: although in the short-run higher riskless interest rates will 

cause credit spreads to decrease, the opposite effect will occur over the long-run and higher 

riskless rates will actually cause credit spreads to increase. Clearly, more research is needed 

on the exact relationship between credit spread and the risk-free interest rate. 

Finally, a negative relationship between the liquidity component of swap spread and the 

riskless interest rate can be best explained using the recent experience in the U.S. swap 

market. In early 2000, the U.S. Treasury Department announced buying back US$ 30 billion 

worth of U .S. government bonds. Consequently the swap spreads in the U .S. market exploded 

to their highest levels ever (He (2000)). A reduction in the supply of Treasury bonds caused 

Treasury bond priees to rise and the prevailing riskless interest rates to decline. (According 

to Schinasi, Kramer, and Smith (2001), the levels of U.S. Treasury yield curves did decline 

in 2000.) At the same time, there were less securities available for being used as collateral 

in the special repo market. As a result, the liquidity benefits that accrue to owners of 

such securities increased and the value of the liquidity component of swap spread therefore 

increased.7 

Panel B in Table 4 presents the fit of this swap spread model for the LIBOR and swap 

rates. This model achieves a good fit for swap rates with a resulting average RMSE of 5.1 

bps, whieh is fairly comparable to the prevailing average bid-ask spreads of 3-4 bps in the 

swap markets. On the other hand, the fit for the 6-month LIBOR rate is relatively inferior. 

7The repurchase of V.S. Treasury securities may have reduced liquidity in the V.S. Treasury markets, 

since the bid-ask spreads and the spread between yields on off-the-run and on-the-run Treasury securities in 

the V.S. Treasury markets had increased sharply in 2000 (Schinasi et al. (2001)). However, our conclusion 

should remain unchanged because as the supply of Treasuries declined, the scarcity of acceptable collateral 

in repo markets led to a widening spread between the Ge repo rate and special repo rate. 
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The relatively poor fit for the LIBOR rate is also indicated by the estimates of 83 and 84 , 

which are the measurement error volatilities associated with the LIBOR and swap rates, 

respectively: the estimate of 83 is substantially larger than the estimate of 84. 

6.3 The components of swap spreads 

Here we decompose the LIBOR and swap spreads into their respective default risk and 

liquidity components. The LIBOR and swap spreads are defined as the spreads of the LIBOR 

and swap rates over the corresponding CMT rates for the same maturities, which are implied 

by the parameter estimates for the riskless model and the contemporaneous estimates of the 

riskless model state variables. (The results of the decomposition exercise are very similar 

when we use the actual CMT rates instead.) The decomposition exercise is proceeded as 

follows. First, we simulate the GC repo rates for maturities of 6 months and 2, 3, 5, 7, and 

10 years using the pricing formulas in equations (18) and (20) and the estimation results for 

the swap spread model. The GC repo rates for these maturities have to be simulated since 

data on them are not available. Second, we compute the differences between the LIBOR and 

swap rates for stated maturities and the simulated GC repo rates for the same maturities. 

These differences can be interpreted as the default risk components of the LIBOR and swap 

spreads since the GC repo rate is a default-free rate and has no liquidity premium. Third, 

we calculate the differences between the simulated GC repo rates and the implied CMT rates 

for the same maturities. These differences can be interpreted as the liquidity components of 

the LIBOR and swap spreads (see also Section 5.2). 

We report the summary statistics for the resulted default risk and liquidity components 

in Table 5. Table 5 implies an upward-sloping term structure of swap spreads: as maturity 

goes up, the level of swap spread also increases. The means and standard deviations of the 

swap spreads and their default risk and liquidity components reported in Table 5 indicates 

that across maturities, default risk is the main source of the levels of swap spreads, whereas 
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li qui dit Y is the predominant source of the volatilities of swap spreads. (The only exception 

is the 6-month LIBOR spread, of which the default risk component has a larger standard 

deviation than the liquidity component.) However, the impacts of the liquidity component 

on the levels of swap spreads become larger as maturities increase. For example, at 2 years of 

maturity, the mean liquidity component is only 4.96 bps, or 14.16% of the mean swap spread 

of 35.02 bps; at 10 years of maturity, however, the mean liquidity component increases to 

21.92 bps, accounting for 39.74% of the mean swap spread of 55.16 bps. The impacts of 

the default risk component, on the other hand, exhibit a humped-shape, though a modest 

one: the mean level of the default risk component reaches a peak of 35.26 bps at 5 years of 

maturity, subsequently decreases to 33.72 bps at 7 years of maturity, and further decreases 

to 33.23 bps at 10 years of maturity. This finding is in contrast to the results in Duffie and 

Singleton (1997), where they find that the effects of liquidity diminish as maturities increase, 

whereas the impacts of default risk become more important over longer time horizons. 

The results in Table 5 are also graphically illustrated in Figure 3 through Figure 8, for 

maturities of 6 months, 2, 3, 5, 7, and 10 years, respectively. The figures are very similar. 

They show that the default risk component is more stable and stays within a narrower range, 

whereas the liquidity component and the swap spreads are much more volatile. The default 

risk component of swap spread is always positive, which is consistent with the stochastic 

pro cess assumed for the default risk factor ht in equation (7). On the other hand, consistent 

with the dynamics assumed for the liquidity factor lt in equation (8), the liquidity component 

of swap spread can become negative. A closer look at the figures reveals that both the swap 

spread and its liquidity component seem to display two distinct regimes. In particular, during 

the time period of 1992 to 1998, both swap spread and its liquidity component were low in 

both levels and volatilities (this was the period in which the liquidity component was mainly 

negative). On the contrary, during the later time period of 1998-2002, both the swap spread 

and the liquidity component were high in both levels and volatilities (this was the period 

in which the liquidity component was predominantly positive). In contrast, the default risk 
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component of swap spread has been quite stable throughout the entire sam pIe period and did 

not exhibit changes in regimes. To further verify this finding, we divide the sam pIe period 

into two sub-periods: from May 22, 1991 to December 31, 1997 and from January 7, 1998 to 

April 30, 2003. We then compute the summary statistics for the LIBOR and swap spreads 

and their components and report them in Table 6A for the first sub-period and in Table 6B 

for the second sub-period. Table 6A and Table 6B clearly show that as we move from the 

first sub-period to the second sub-period, both the levels and standard deviations of the swap 

spread and its li qui dit Y component significantly increase, whereas there are only marginal 

changes in the level and standard deviation of the default risk component. Therefore, an 

interesting topic for future research is to model the swap spread within a regime-switching 

framework. 8 Finally, the decomposition exercise is able to capture the recent increases in the 

swap spread and its liquidity component after the fall1998 financial market turmoils, during 

the second half of 1999 due to concerns over Y2K, and in 2000 because of the Treasury 

buyback mentioned earlier. 

7 Conclusion 

This paper develops a two-factor affine model of swap spreads. The two factors can be 

interpreted as the default risk and liquidity components inherent in swap spreads, respec­

tively. One notable feature of the model is that in contrast to the previous literature, it 

allows us to consider the relationships between the individual components of swap spreads 

and the riskless interest rates separately. 

This model fits the swap rate data weIl, resulting in an average RMSE that is comparable 

to the average bid-ask spreads in the swap markets. Parameter estimates indicate that the 

default risk and li qui dit Y components of swap spreads are related to the riskless interest rates 

8Chapman and Pearson (2001) and Dai and Singleton (2003) review the literature on modeling the term 

structure of interest rates with regime shift. 
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, 

in a differing way: while default risk is positively related to the riskIess interest rates, Iiquidity 

is found to be negatively related to the riskIess rate. A further study of the components of 

swap spreads reveals that although default risk accounts for the "lion's share" of the Ievels 

of swap spreads, the volatility of swap spreads is mainly attributed to changes in liquidity. 

One implication of this finding is that if swap spreads contain risk premiums, these risk 

premiums are more likely compensations for liquidity risk. Therefore, a fruit fuI direction for 

future research is to study the pricing of Iiquidity premium by swap market participants. 

Finally, the fact that the volatility of swap spreads is time-varying suggest that we need a 

stochastic volatility model to better capture the dynamics of swap spreads. The results of 

this paper further suggest that the stochastic vol atility of swap spreads mainly stem from 

the liquidity component of swap spreads. Developing such a model is another interesting 

avenue for future research. 
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Appendix A: Technical Appendices 

A.l Zero-coupon bond pricing formulas 

A.l.l The risk-free interest rate model 

The time t priee of a default-free zero-coupon bond that matures at time T, G(t, T), is 

given by 

(A.1) 

where fIt and ht denote the two risk-free factors at time t and r == T - t. The functions 

Ai(r) and Bi(T), i = 1, 2, are given as 

A.(r) - { 2Çi exP[(4)i+ 1ri+çi)r/2] p<PitL;/a; 
~ - (4)i + 1ri + çi)[exp(çir ) - 1] + 2Çi ' 

Bi(r) = { 2[exp(çir ) - 1] } 
(4)i + 1ri + çi)[exp(çir ) - 1] + 2Çi ' 

(A.2) 

with Çi == J (4)i + 1ri)2 + 20-;. 

A .1. 2 The swap spread model 

The time t price of a credit-risky zero-coupon bond that matures at time T, P(t, T), is 

given by 

P(t, T) = Ai (r)A2(r)Ah(r)Adr) exp[-(1 + f3h + f3L)cxrr - B~(r)f;t - B~(r)f;t 

(A.3) 

where fi~ = (1 + f3h + f3dfit for i = 1, 2 and r == T - t. In equation (A.3), the functions 

A:(r) and Bi(r), i = 1, 2, are the same as the functions Ai(r) and Bi(T), i = 1, 2, in 

equation (A.2) exeept that J.Li is replaced with J.L: == (1 + f3h + f3dJ.Li and ai is replaeed with 

ai - J(1 + (3h + f3d ai. On the other hand, the functions Ah(r) and Bh(r) are defined 
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analogously to the functions A(T) and Bi(T), i = 1, 2, in equation (A.2) with (Pi, /-Li, ai, and 

'Tri replaced with K,h, eh, ah, and Àh' respectively. Finally, the functions AdT) and BL(T) are 

0'2 B2(T) 
AL(T) = exp{,[BL(T) - Tl - L4 L }, 

K,L 
1 

BL(T) = -[1 - exp( -K,LT)], 
K,L 

(A.4) 

aLÀL ai 
with , eL -----. K,L 2K,E 

A.l.3 The Ge repo rate 

The pricing formula for GC(t, T) is 

GC(t, T) = A?C(T)A~C(T)AL(T) exp[-(1 + !h)arT - Bfc(T)fftc - Bfc(T)fgc - BL(T)l;], 

(A.5) 

where fgc _ (1 + f3L)fit for i = 1, 2 and T == T - t. In equation (A.5), the functions 

AfC(T) and BfC(T), i = 1, 2, are the same as the functions A(T) and Bi(T), i = 1, 2, in 

equation (A.2) except that /-Li is replaced with /-LfC = (1 + f3L)/-Li and ai is replaced with 

afC == J(1 + f3L)ai. In addition, the formulas for functions AL(T) and BdT) have been 

given in equation (A.4). 

A.2. Details of the transition equations 

A.2.1 The risk-free interest rate model 

The components a and b of the transition equation in equation (15) are 

(A.6) 

and 

b = [ exp ( - ~ ) 0 l. 
o exp ( -~) 

(A.7) 
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Finally, the term V(8 t - 1) in equation (15) is a 2 x 2 diagonal matrix with elements 

A.2.2 The swap spread model 

The components p and q of the transition equation in equation (17) are 

and 

p = [ Bh [l- eXP(-~)]l ' 
Bd1 - exp ( -~)] 

q = [ exp ( -~) 0 l. 
o exp(-~) 

Finally, the term r(~t-l) in equation (17) is a 2 x 2 diagonal matrix with elements 
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Table 1 
Summary statistics for the CMT rate, LIBOR rate, swap rate, and GC repo rate data 

Data are weekly (Wednesday) observations. The sample period is from 5/22/1991 to 4/30/2003. The CMT rate, LIBOR rate, and swap 
rate data are from Datastream. In the Table, CMT indicates the constant maturity Treasury rate; LIBOR spread and swap spread are 
defined as the spreads of the LIBOR and swap rates over the corresponding CMT rates, respectively; and GC repo denotes the 3-
month general collateral repo rate obtained from Bloomberg. 

Levels First differences 
Mean Standard deviation Skewness Kurtosis Mean Standard deviation Skewness Kurtosis 

(in bps) (in %) (in bps) (in %) 

3-MCMT 430.80 1.39 -0.78 2.55 -0.74 0.10 -1.72 18.94 
6-MCMT 446.44 1.44 -0.78 2.59 -0.79 0.10 -1.86 20.52 
2-YCMT 506.32 1.35 -0.80 3.13 -0.87 0.14 -0.43 6.99 
3-YCMT 528.91 1.26 -0.76 3.30 -0.85 0.14 -0.16 5.52 
5-YCMT 564.48 1.12 -0.54 3.21 -0.80 0.14 0.04 4.25 
7-YCMT 589.81 1.03 -0.37 3.02 -0.75 0.14 0.26 3.57 
10-Y CMT 602.08 1.00 -0.08 2.65 -0.69 0.13 0.23 3.44 
3-MLIBOR 471.33 1.51 -0.80 2.50 -0.78 0.10 -1.78 22.71 
6-M LIBOR 480.59 1.53 -0.79 2.56 -0.81 0.11 -1.86 18.79 
2-Y swap 541.35 1.39 -0.72 3.08 -0.91 0.15 -0.22 5.39 
3-Y swap 571.73 1.26 -0.69 3.31 -0.89 0.15 -0.08 4.60 
5-Y swap 611.73 1.11 -0.54 3.36 -0.85 0.15 0.00 4.09 
7-Y swap 635.98 1.04 -0.36 3.20 -0.80 0.14 0.03 3.86 
10-Y swap 659.20 0.98 -0.20 2.96 -0.74 0.14 0.08 3.81 
GC repo 444.79 1.48 -0.77 2.44 -0.77 0.11 -1.66 15.88 
3-M LIBOR spread 40.53 0.21 1.20 5.21 -0.04 0.09 0.39 7.83 
6-M LIB OR spread 34.15 0.17 1.18 4.48 -0.02 0.07 -0.01 7.00 
2-Y swap spread 35.03 0.18 0.76 2.78 -0.04 0.06 -0.30 7.60 
3-Y swap spread 42.82 0.20 0.58 2.31 -0.04 0.07 -0.33 7.93 
5-Y swap spread 47.26 0.23 0.83 2.67 -0.05 0.06 -0.01 4.80 
7-Y swap spread 46.16 0.21 1.09 3.58 -0.05 0.06 -0.18 4.53 
10-Y swap spread 57.12 0.26 1.23 3.70 -0.05 0.07 -0.49 8.40 
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Table 2 
Estimation results for the risk-free interest rate model 

The instantaneous risk-free interest rate, rt, is modeled as 
li = a r + fit + hl' 

where ar is a constant and the processes for the riskless factorsj}t and.fit are given in Section 3.1. We use an extended Kalman 
filter approach to estimate the above risk-free interest rate model on weekly data of the constant Maturity Treasury (CMT) 
rates for maturities of3 and 6 months, and 2,3,5, 7, and 10 years. The data used are described in Table 1. The robust standard 
errors for the parameter estimates are calculated following White (1982). The RMSE reported in Panel B is calculated using 
the contemporaneous estimates of the state variables of the model. 

Parameter 
Robust 

Panel A: Variable 
estimates 

standard 
errors 

Ur -0.654 0.027 

<1>1 0.346 0.007 

III 0.645 0.025 

cri 0.013 0.003 

1t1 -0.022 0.003 

<1>2 0.009 0.007 

112 0.109 0.006 

cr2 0.076 0.018 

1t2 -7.200E-07 0.008 

Panel B: 3-MCMT 6-MCMT 

RMSE (in basis points) 47.337 31.647 
2-YCMT 3-YCMT 5-YCMT 7-YCMT lO-YCMT 

RMSE (in basis points) 0.198 4.563 4.171 6.631 7.188 
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Table 3 
Summary statistics for the implied 3-month LIBOR spread and its components 

The implied 3-month LIBOR spread is calculated as the spread of the actual 3-month LIBOR rate over the 3-month riskless 
interest rate implied by the risk-free interest rate mode!. The default risk component of this implied spread is computed as the 
difference between the actual 3-month LIBOR rate and the actual 3-month general collateral repo rate. The liquidity 
component of this implied spread is defined as the difference between the actual 3-month general collateral repo rate and the 3-
month riskless interest rate implied by the risk-free interest rate mode!. 

Mean Standard deviation 
(in % 

Implied 3-month LIB OR spread 30.155 0.438 -92.940 29.438 150.291 

Default risk component 26.538 0.120 7.000 24.250 98.250 

Liauidity component 3.616 0.471 -170.984 3.971 128.385 
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Table 4 
Estimation results for the swap spread model 

The swap spread model is given in Section 3. We adopt an extended Kalman filter approach to estimate the swap spread model on 
weekly data of the default risk and liquidity components of the implied 3-month LIBOR spread, defined in Table 3, and weekly data 
of the 6-month LffiOR and 2-,3-, 5-, 7-, and lO-year swap rates, described in Table 1. We assume that the default risk and liquidity 
components (denoted 3-M default and 3-M liquidity, respectively, in Panel B) and the LIBOR and swap rates are observed with 
measurement errors that are normally distributed with mean zero and volatilities of SI, S2, S3, and S4, respectively. The robust standard 
errors for the parameter estimates are calculated following White (1982). The RMSE reported in Panel B is calculated using the 
contemporaneous estimates of the state variables of the model. 

Parameter 
Robust 

Panel A: Variable 
estimates 

standard 
errors 

~h 0.018 6. 121E-04 

Kh 5.575 0.002 

eh 0.002 0.001 

ah 0.157 0.001 

Âh -0.130 0.002 

~L -0.033 3.713E-04 

KL 3.106E-04 0.002 

eL 0.017 5.899E-04 

<h 0.004 0.002 

ÂL -0.154 0.003 

SI 5.965E-04 0.002 

S2 0.004 0.003 

S3 0.003 0.001 

S4 5.804E-04 0.002 
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Table 4 (continued) 
Estimation results for the swap spread model 

Panel B: L_ 3-M default 3-M liquidity 

RMSE (in basis points) 1 4.514 43.887 
6-MLIBOR 2-Y swap 3-Y swap 5-Y swap 7-Y swap 10-Y swap 

RMSE (in basis points) 31.045 6.255 4.806 4.048 3.692 6.670 
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Table 5 
Summary statistics for the implied LIBOR and swap spreads and their respective default risk and liquidity components 

Data used are described in Table 1. Details of the decomposition exercise are given in Section 6.3. In the Table, Implied spread refers 
to the LIBOR or swap spread for a given maturity, and Default risk and Liquidity indicate the default risk and liquidity components of 
the LIDOR or swap spread, respectively. 

6-M LIBOR 2-Y swa~ 
Implied spread Default risk Liquidity Implied spread Default risk Liquidity 

Mean (in bps) 28.93 27.79 1.14 35.02 30.06 4.96 
Median (in bps) 29.78 31.27 -2.59 31.00 29.82 -0.71 
Standard deviation (in %) 0.31 0.29 0.20 0.18 0.07 0.21 
Minimum (in bps) -52.21 -57.00 -31.20 1.00 10.51 -24.18 
Maximum (in bps) 122.68 93.03 60.27 91.50 57.55 61.84 

3-Y swa~ 5-Y swa~ 
Implied spread Default risk Liauiditv Implied spread Default risk Liquidity 

Mean (in bps) 41.08 34.05 7.03 46.60 35.26 Il.34 
Median (in bps) 35.59 33.97 1.32 39.15 34.37 5.54 
Standard deviation (in %) 0.21 0.06 0.21 0.23 0.04 0.21 
Minimum (in bps) 2.75 20.39 -21.77 Il.26 12.40 -16.93 
Maximum (in bps) 97.68 58.01 64.19 107.50 47.26 68.96 

7-Y swa~ lO-Y swa~ 

Implied spread Default risk Liquidity Implied spread Default risk Liquidity 

Mean (in bps) 49.41 33.72 15.69 55.16 33.23 21.92 
Median (in bps) 40.80 33.45 9.85 45.93 33.51 16.19 
Standard deviation (in %) 0.24 0.04 0.22 0.24 0.07 0.22 
Minimum (in bps) 12.70 14.66 -12.62 17.94 11.64 -7.37 
Maximum (in bps) 115.37 46.81 73.67 127.92 53.90 80.39 
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Table 6A 
Summary statistics for the implied LIB OR and swap spreads and their respective default risk and liquidity components: 

5/22/1991-12/31/1997 

Data used are described in Table 1. Details of the decomposition exercise are given in Section 6.3. In the Table, Implied spread refers 
to the LIBOR or swap spread for a given maturity, and Default risk and Liquidity indicate the default risk and liquidity components of 
the LIBOR or swap spread, respectively. 

6-MLIBOR 2-Y swa~ 

Implied spread DefauIt risk Liquidity Implied spread Default risk Liquidity 

Mean (in bps) 19.90 32.52 -12.62 23.69 33.19 -9.50 
Median (in bps) 20.96 33.46 -15.65 21.00 32.92 -12.07 
Standard deviation (in %) 0.26 0.26 0.10 0.11 0.07 0.09 
Minimum (in bps) -42.80 -40.14 -31.20 1.00 Il.32 -24.18 
Maximum (in bps) 76.05 87.39 20.92 69.00 57.55 23.45 

3-Y swa~ 5-Y swa~ 

Implied spread DefauIt risk Liquidity Implied spread DefauIt risk Liquidity 

Mean (in bps) 27.69 35.33 -7.65 31.95 35.54 -3.59 
Median (in bps) 25.33 35.06 -9.87 28.77 34.19 -5.94 
Standard deviation (in %) 0.l2 0.06 0.09 0.11 0.04 0.08 
Minimum (in bps) 2.75 22.55 -21.77 Il.26 27.48 -16.93 
Maximum (in bps) 70.82 53.28 24.93 69.69 47.26 28.36 

7-Y swa~ lO-Y swa~ 

Implied spread DefauIt risk Liquidity Implied spread Default risk L!quidity 

Mean (in bps) 33.78 33.16 0.62 40.44 33.66 6.78 
Median (in bps) 31.96 33.08 -1.40 39.44 33.82 5.00 
Standard deviation (in %) 0.10 0.03 0.08 0.09 0.06 0.08 
Minimum (in bps) 12.70 23.81 -12.62 17.94 18.20 -7.37 
Maximum(in bps) 74.60 44.38 32.05 78.30 53.90 37.56 
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Table 6B 
Summary statistics for the implied LIBOR and swap spreads and their respective default risk and liquidity components: 

1/7/1998 - 4/30/2003 

Data used are described in Table 1. Details of the decomposition exercise are given in Section 6.3. In the Table, Implied spread refers 
to the LIDOR or swap spread for a given maturity, and Default risk and Liquidity indicate the default risk and liquidity components of 
the LIDOR or swap spread, respectively. 

6-MLIBOR 2-Y swaI! 

Implied spread Default risk Liauidity Implied spread Default risk Liquidity 

Mean (in bps) 40.12 21.92 18.20 49.07 26.17 22.89 
Median (in bps) 41.53 25.33 17.14 47.50 25.51 21.70 
Standard deviation (in %) 0.33 0.31 0.17 0.16 0.06 0.17 
Minimum (in bps) -52.21 -57.00 -16.90 20.00 10.51 -5.85 
Maximum (in bps) 122.68 93.03 60.27 91.50 45.97 61.84 

3-Y swaI! 5-Y swaI! 

Implied spread Default risk Liauiditv Implied spread Default risk Liquidity 

Mean (in bps) 57.68 32.47 25.22 64.77 34.91 29.86 
Median (in bps) 57.32 32.88 24.05 64.30 34.59 28.45 
Standard deviation (in %) 0.17 0.05 0.17 0.19 0.04 0.18 
Minimum (in bps) 22.16 20.39 -3.06 29.97 12.40 2.11 
Maximum (in bps) 97.68 58.01 64.19 107.50 46.92 68.96 

7-Y swae lO-Y swae 

Implied spread Default risk Liquidity Implied spread Default risk Liquidity 

Mean (in bps) 68.78 34.41 34.37 73.40 32.70 40.70 
Median (in bps) 68.44 34.19 32.63 73.05 32.83 38.65 
Standard deviation (in %) 0.22 0.04 0.19 0.25 0.08 0.19 
Minimum (in bps) 34.13 14.66 5.51 31.71 11.64 10.45 
Maximum (in bps) 115.37 46.81 73.67 127.92 53.32 80.39 
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the Weekly 2- and 10-Year Swap Rates 
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Figure 1: 

The actual 2- and 10-year swap rates. Data used are weekly and are described in Table 

1. 
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Figure 2: 

2004 

The implied 3-month LIBOR spread and its default risk and liquidity components" Data 

used are weekly and are described in Table 1 and Table 3, 
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The implied 6-month LIBOR spread and its default risk and liquidity components. Data 

used are weekly and are described in Table 1. 
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Figure 4: 

The implied 2-year swap spread and its default risk and liquidity components, Data used 

are weekly and are described in Table 1. 
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are weekly and are described in Table 1. 
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Summary and Conclusion 

This thesis contributes to the fast growing literature on modeling credit risk, or the 

risk of default. In particular, it studies the impacts of credit risk on the pricing of fixed 

income securities. It concentrates on the following three fundamental questions in 

modeling credit risk: 

1) What are the implications of credit risk for the pncmg of fixed mcome 

securities? 

2) Can we develop more satisfactory credit risk models that better capture the 

observed credit spreads on fixed income securities? 

3) Are the observed credit spreads on fixed income securities solely due to credit 

risk? Ifnot, what are the non-credit (default) components? 

The first and second questions are addressed in both the first and second essays of 

this thesis. In both essays, we incorporate stochastic volatility into models for corporate 

bond priees. The first essay uses the structural approach, whereas the second essay relies 

on the reduced form approach. In both papers, the inclusion of stochastic volatility is 

shown to have significant impacts on credit spread levels and to improve on previous 

credit risk models in a number of aspects. Furthermore, properties of actual credit spreads 

are better captured by the models developed in these two essays. Finally, the third essay 

of this thesis addresses the third question mentioned above. Here we propose a reduced 

form model of interest rate swap spreads and uses this model to decompose the swap 

spreads into their default risk and liquidity components, which are otherwise 

unobservable. This decomposition exercise sheds new light on the composition of swap 

spreads, which are one of the most important credit risk spreads, and reveals that the 

default risk and liquidity components of swap spreads behave quite differently. 

The results presented in this thesis point to several interesting avenues for future 

researeh. First, the models developed in this thesis ean be used to priee various types of 

credit derivatives. Credit derivatives have been one of the most important financial 

innovations in the past decade and their use has been growing at a rapid pace. Since the 

models proposed in this thesis can approximate the dynamics of credit spreads 

satisfactorily, they wi11lead to more accurate valuation of credit derivatives. 
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Second, the finding of the third essay that although default risk accounts for the 

largest shares of the levels of interest rate swap spreads, the liquidity component of swap 

spreads is much more volatile suggests a need to study the pricing of liquidity premium 

in the swap markets. More specifically, if swap spreads contain risk premiums, these risk 

premiums are more likely compensations for liquidity risk. 

Third, the results of the first two essays question the ability of a single-factor 

diffusion process to model adequately the dynamics of credit spreads. We develop two 

multi-factor models instead. These models can fit the observed credit spreads reasonably 

weIL However, an important question still remains: how many factors are necessary to 

Jully capture the dynamics of corporate yield curves? If there are still factors to consider, 

what are they? And how to incorporate them into credit risk models in a tractable way? 

This and other questions are left for our future research. 
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