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Abstract 
The application of high-order numerical modeling to nonlinear ultrasonic wave 

propagation in fluids is discussed. This work is motivated by ongoing 

developments with Wave Phase Conjugating (WPC) transducers, which are able 

to greatly amplify and re-emit incident acoustic energy back to a source location. 

As a result of the high amplification factors, conjugate wave magnitudes may 

exceed linear acoustic thresholds, leading to progressive nonlinear distortion and 

shock wave formation. In this work, a numerical model is formulated and coded 

for the simulation of the high amplitude nonlinear wave-fields produced by WPC 

transducers. At ultrasonic frequencies (> 1 MHz) wavelengths are short relative to 

propagation distances, making accurate numerical methods a requirement. The 

implemented numerical scheme uses high-order Weighted Essentially Non-

Oscillatory (WENO) techniques. Novel analysis is presented on the WENO 

schemes‟ spectral accuracy and on their capability to model progressive wave 

distortion. Details on the integration of a WPC transducer model into the 

numerical framework are also provided. This combination of modeling 

capabilities offers a new advancement in the simulation of WPC transducers and 

the high amplitude sound fields they produce. Using a simplified one-dimensional 

representation, the numerical model is applied and preliminary results 

investigating the influence of nonlinear acoustic response in ultrasonic WPC are 

presented. 
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Résumé 
L'application de schémas numériques d'ordre supérieur à la propagation d'ondes 

ultrasonores non-linéaires dans les fluides sera discutée. Cette recherche est 

motivée par les développements continus relatifs à de la conjugaison de phase 

acoustique, procédé qui permet d'amplifier et de renvoyer l'énergie acoustique 

incidente vers son lieu d'émission. Pour cette raison, les amplitudes des ondes 

conjuguées peuvent dépasser les seuils de validité de l'acoustique linéaire, 

conduisant à une distorsion non-linéaire progressive et à la formation d'ondes de 

choc. Dans ce travail, un modèle numérique a été élaboré et codé pour simuler les 

champs induits par des ondes non-linéaires issues d'une  conjugaison de phase 

acoustique. A des fréquences ultrasonores (> 1 MHz) les longueurs d'ondes sont 

courtes devant la distance de propagation, ce qui rend nécessaire l'usage de 

méthodes numériques précises. La modélisation numérique implémentée dans 

cette recherche utilise une technique de schémas d'ordre supérieur  intitulée: 

“Weighted Essentially Non-Oscillatory”. Les analyses faites sur  la précision 

spectrale des schémas seront confrontées aux résultats des calculs de propagation 

d' ondes ultrasonores. Les détails de l'intégration du modèle de fluide non-linéaire 

avec celui d'un transducteur à conjugaison de phase acoustique seront présentés 

ainsi que les résultats préliminaires sur le comportement de la conjugaison de 

phase en milieu non linéaire. 

 

  



  VIII 

Acknowledgements 
Primary acknowledgment is given to thesis supervisors Prof. Evgeny Timofeev 

(McGill University) and Prof. David Frost (McGill University) for their guidance 

and contributions that have made this work possible. Acknowledgment is also 

given for the substantial assistance provided by Prof. Alain Merlen (University of 

Lille) throughout the course of this work. Additional acknowledgments are given 

to Prof. Andrew Higgins (McGill) for guidance during the preliminary stages of 

this work, and to Dr. Alireza Najafiyazdi (McGill) for several helpful discussions 

during the concluding months of this work. Financial support has been provided 

by Natural Science and Engineering Research Council of Canada (NSERC) 

through the Alexander Graham Bell Canada Graduate Scholarships (CGS) 

program. The French language abstract was prepared by Mr. Charles Brun and 

Ms. Laura Damecour. Finally, acknowledgment is given to Ms. Melissa Duffy, 

whose constant moral support has made it possible to overcome many challenges 

encountered during the preparation of this thesis.  



  1 

1 Introduction 

The development of the numerical model discussed in this thesis is primarily 

motivated by an emerging ultrasound imaging and measurement technique known 

as ultrasonic wave phase conjugation (WPC). Specifically, this work was 

conducted in collaboration with researchers, Merlen et al. [53], who are actively 

developing both physical WPC devices and numerical modeling capabilities. The 

primary attribute of ultrasonic WPC devices is their ability to greatly amplify and 

re-emit incident acoustic energy back to a source location [53]. This capability has 

the potential to improve aspects of conventional ultrasound imaging and 

microscopy [10], and has proposed applications for novel image generation 

methods [60]. Of particular interest is the development of ultrasonic WPC 

technology for use in diagnostic medical imaging. 

The second topic considered in this thesis is the modeling of high-amplitude 

acoustic phenomena, which is also referred to as nonlinear acoustic phenomena. 

In general, nonlinear effects in ultrasonic sound waves can result from high 

amplitude initial waves, strong beam focusing, or the accumulation of small 

distortions over long propagation distances. Due to the large amplification of 

waves produced by the ultrasonic WPC process, prominent nonlinear effects may 

occur in the conjugate sound beams [13]. In this context the current work seeks to 

develop a numerical model that can accurately represent the ultrasonic WPC 

process and the propagation of nonlinear waves. The objective of this effort is to 

further the numerical modeling capability available to ongoing ultrasonic WPC 

research and development.  

The developed numerical model uses a finite volume formulation to solve fluid 

mass and momentum conservation equations. Weighted-Essentially-Non-

Oscillatory (WENO) techniques [70] are employed in the numerical model, and 

the attributes of this numerical scheme are examined in detail. WENO techniques 

were selected based on their history of application to nonlinear fluid dynamic 

phenomena, including the propagation of shock waves. Alternative numerical 

techniques are also discussed in this thesis and recommendations are made for the 
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extension of the current model using more accurate, but more complex, hybrid 

numerical schemes. In this regard the detailed analysis provided for the 

implemented WENO techniques provides new insight into the numerical 

modeling nonlinear wave propagation, as many of the more advance schemes 

available include some aspects of a WENO formulation. 

Considering specifically the application of nonlinear sound beams in ultrasonic 

WPC, the model developed in this thesis differs from previous works in two main 

respects. Representative of the first group, the previous works [51, 52, 53, 76] 

have numerically modeled the physical WPC process but have opted to apply only 

linear acoustic models to the fluid domain. Representative of the second group, 

the previous works [12, 13, 14, 22 59, 60] have accounted for acoustic 

nonlinearity in fluid domain by using the Khokhlov-Zabolotskaya-Kuznetsov 

(KZK) beam equation [30, 42, 80], but have not modeled the physical process of 

ultrasonic WPC. Instead these works have relied upon prior knowledge from 

physical experiments to determine the amplitude of conjugate sound fields. In 

general, the KZK equation is a well established and efficient tool for high 

amplitude acoustic beam simulation, but it has limitations on allowable beam 

dispersion and is unable to easily accommodate material inclusions in the path of 

propagating waves.  In practice this means that KZK based numerical models 

cannot be readily applied to biomedical imaging problems, where the presence of 

different tissues can cause reflection of waves off the main beam axis, and where 

the tissue material properties vary throughout the domain. The numerical model 

developed in this thesis offers a framework that overcomes these limitations, 

which with can enhance the study of applied ultrasonic WPC. 

In the remainder of this introductory chapter some additional background is 

provided to give context to the discussions that follow. In Section 1.1 the relevant 

principles of nonlinear acoustic phenomena in biomedical ultrasound are 

introduced. In Section 1.2 an analytical solution to nonlinear plane wave 

propagation is presented to further illustrate key principles and to provide a 

benchmark solution against which the numerical model is evaluated. In Section 

1.3 and Section 1.4 ultrasonic WPC is further introduced to highlight the potential 
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applications that provide the motivation for this thesis work. Concluding this 

introductory chapter in Sections 1.5 and 1.6 are concise statements on the thesis 

objectives and known limitations. In Chapter 2 the governing physical equations 

for the linear and nonlinear acoustic model are detailed. In Chapter 3 a review of 

relevant numerical methods is provided and spectral analysis of the model is 

conducted to determine its accuracy limits for wave propagation. In Chapter 4 the 

numerical model is verified and applied to high-amplitude plane wave 

propagation to evaluate its potential for application to practical problems. The 

development and verification of the ultrasonic WPC model is discussed in 

Chapter 5. Discussed in Section 5.5 are novel calculation results that illustrate 

potential nonlinear acoustic influences in conjugate sound beams. Chapter 6 

concludes the thesis with a summary of findings and recommendations for future 

work. 

1.1 Nonlinear Acoustics in Biomedical Ultrasound 

It is now well known that nonlinear effects occur in almost all applications of 

biomedical ultrasound. These applications can be categorized as either diagnostic 

ultrasound for medical imaging, or therapeutic applications that use high intensity 

ultrasound to stimulate tissue healing, perform ultrasonic surgery, or to destroy 

internal stones using a process known as lithotripsy [15, 20]. 

In the context of ultrasound imaging, nonlinear effects are a byproduct of the 

intended linear acoustic behavior. Ultrasonic imaging is a process where high 

frequency sound beam is emitted and the intensity of received reflections caused 

by changes in acoustic impedance (z = ρc, where ρ is density and c is sound 

speed) is recorded. When the emitted sound beam is swept through a region, a 

map of the acoustic impedance distribution is produced. The resolution of the 

resulting image is closely related to the emitted wavelength, thus higher 

frequencies have the potential to provide higher resolution images. For example, a 

10 MHz wave in water has a wave length of 0.15 mm, and this is the best 

resolution that can be obtained in the resulting image. 

A prominent nonlinear effect in ultrasonic imaging is the progressive distortion of 
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the initial pressure wave profile. This type of distortion is caused by high 

amplitude effects in the propagating wave. When considering the frequency 

spectra of the propagating wave this distortion is evident as the addition of 

harmonic content. It is now well known that the harmonic content in the reflected 

sound-spectra can be used to improve the quality of ultrasonic images [23]. This 

result is a product of the shorter wavelength associated with the higher frequency 

harmonics. Additionally, including harmonic information in ultrasonic images 

provides benefits beyond the reduction in wavelength. An important feature of 

ultrasonic beams is the spatial pattern of sound beam intensity produced by the 

phase interference of waves originating from different locations on the ultrasonic 

transducer. Shown in Figure 1 is the acoustic beam pattern produced by a simple 2 

cm diameter flat circular piston radiating 1 MHz ultrasound into water. The 

analytical expression used to produce Figure 1 is provided in [40]. This example 

illustrates appearance of a main lobe of acoustic intensity along the piston axis, 

along with a series of smaller side lobes. In biomedical imaging it is the energy in 

the main lobe that is used to form the image, while reflections produced by side 

lobes cause image artifacts. In practical devices, curved transducer surfaces or 

multi-element beam forming arrays can be used to reduce the magnitude of side 

lobes, but their effect is qualitatively similar.  

 

Figure 1: Beam function for a 2 cm cylinder radiating at 1 MHz into water. Solid line denotes relative 

intensity as a function of offset angle, θ, from the transducer axis.  

When considering nonlinear effects for the beam shown in Figure 1 it can be 

stated that the main lobe, which features the highest intensity and a longest 

propagation path, produces a greater level of accumulated distortion than the side 

lobes. In practical devices with focused sound fields, nonlinear distortion and the 
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associated harmonics occur predominantly at the high intensity beam focus [23]. 

Elsewhere low levels of harmonic content are present, and the images produced 

from harmonics in the reflected pressure spectra have a corresponding reduction 

in side lobe artifacts. This phenomenon in conjunction with the shorter 

wavelengths of the harmonic frequencies allows for an overall increase in image 

quality. This improvement is well illustrated by a sample ultrasonic image of an in 

vivo human heart provided in [24] and reproduced here in Figure 2. 

 

Figure 2: Conventional and harmonic images of a human heart. Upper frame shows conventional pulse 

ultrasound image, while the lower frame shows the image with second harmonic information included. 

Reproduced from [24]. 

Other applications of nonlinear acoustics effects in biomedical ultrasound are 

therapeutic in nature. At moderate beam intensities, tissue heating caused by 

acoustic dissipation at the beam focal location can help tissue healing [20]. When 

the beam intensity is of higher amplitude and applied for a sufficient duration, the 

localized heating can be used surgically to achieve cell death at the beam focal 

location [18, 37] which may for example, contain tumor tissue [38]. A third direct 

application of nonlinear acoustics in biomedical ultrasound is a process known as 

lithotripsy. This procedure uses highly focused acoustic pulses to form shock 

waves of up to 100 MPa peak pressure at the focal location [15]. When kidney 

stones or gall bladder stones are located at the focal point the impact of the 

shockwave (and subsequent rarefaction within the stone) leads to the 
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disintegration of the stone into pieces small enough to be evacuated naturally 

without the need for surgery [15].  

The nonlinearity of a biological tissue is often quantified using the B/A parameter 

[7, 8]. Mathematical grounds for B/A stem from the Taylor series relating the 

acoustic values of perturbed pressure, p', to perturbed density, ρ': 
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where a reference state is defined by a density value, ρo, and a constant entropy, s 

= so, and the coefficients A, B, and C are magnitudes for each term in the Taylor 

expansion. For the first order linear coefficient, A, the general definition for sound 

speed, (∂p/∂ρ)s = co
2
, can be used to show that, A = ρo co

2
. The coefficients B and 

C apply to square and cubic terms in the expansion and represent nonlinearity in 

the fluid response. Values for A, B, and C can be determined experimentally using 

several techniques [8, 44, 64]. It is also possible to determine these values 

analytically when a suitable equation of state, such as the Tait-Kirkwood equation 

in Section 2.1, is known. 

For the majority of problems in nonlinear acoustics the first two terms of this 

expansion are sufficient to represent the range of pressure perturbations 

encountered [8]. By factoring A = ρo co
2
 from both terms in the truncated series 

the parameter B/A and its physical relevance become apparent: 
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This expression shows that the ratio B/A quantifies the relative influence of the 

first order linear acoustic response and the second order nonlinearity in the local 
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pressure perturbation for a given state, ρ' / ρo. Similarly, it can be shown that the 

parameter B/A quantifies the variation of local sound speed as a function of 

perturbed density according to [8]: 

 
       

 

 

 

 
 
  

  
   (1.3) 

In the context of biomedical ultrasound, the parameter B/A has particular 

significance as the range of values associated with different tissues is quite large. 

In general, fatty tissues have higher values of B/A than non-fatty tissues. Other 

factors include the tissues water content, cell to cell adhesive forces, and 

individual cellular structures [24]. Stemming from these principles, there now 

exists some research efforts on the use of B/A to characterize pathological changes 

in tissues [54].  As an illustrative example Table 1 compares the linear and 

nonlinear properties for water, liver tissue, and fat tissue. 

Table 1: Comparison of nonlinear acoustic properties for biological tissues.  

Material B/A Source 

Water 5 [8] 

Hemoglobin (20%) 6.5 [8] 

Liver 7.6 [64] 

Fat 9.9 [64] 

Collagen 4.3 [8] 

Motivated by this variation in tissue nonlinearity some techniques to produce 

images of B/A using conventional ultrasound technologies have been investigated. 

The most successful current approach uses two sound beams, one at lower 

frequency to modulate the compressed state of the tissue and a second higher 

frequency imaging beam. As further described in [24], the phase interaction 

between these two beams produces information that can be used to image B/A, 

although, as noted in [24], the resulting image quality is still relatively poor.  
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1.2 Analytical Solution to Nonlinear Plane Wave Propagation 

To more quantitatively introduce nonlinear wave phenomena, the case of an 

initially sinusoidal plane wave with velocity amplitude of uo and a fundamental 

angular frequency of ω is considered.  For the simple wave propagation, the 

resulting behavior can be described as a progressive wave [4], governed by the 

nonlinear differential equation: 

   

  
        

  

  
   (1.4) 

where u is the fluid velocity, t is the time variable, co is the fluid sound speed, β is 

the coefficient of nonlinearity, and x is the position variable. From characteristic 

analysis of the progressive wave equation it is known the wave apexes propagate 

with a velocity of approximately (co + βuo), while the equilibrium points 

propagate with a velocity of co. At some position,   , this progressive deformation 

results in the formation of an acoustic shock wave. In Figure 3 this progressive 

distortion is depicted along with associated characteristic wave speeds.  

 

Figure 3: Distortion of a progressive wave. 

 

Fourier analysis of the deformed wave reveals the presence of new spectral 

content with integer harmonics of the original frequency, ω. A classic solution to 

this harmonic profile is often termed the Fay-Fubini solution [3]. Details on this 

solution are given here to illustrate some relevant behavior of the progressive 
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wave, and to provide the analytical values used to evaluate the developed 

numerical model. For all regions of the domain, the wave solution is [25]: 
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 ,          (1.5 b) 

where n is the integer harmonic number, Bn is the amplitude coefficient for 

particular harmonic, and σ is the position variable normalized by the initial shock 

location. For brevity, only the simplified solutions for Bn(σ) are provided here. For 

regions before the initial shock location (σ < 1) the harmonic profile is [25]: 
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where Jn is the Bessel function of the first kind. For regions beyond the initial 

shock location (σ ≥ 1) the solution becomes more complex as it must include an 

implicit expression for the shock amplitude, Vs.  Including this consideration the 

harmonic profile becomes [25]: 

 
      

 

  
   

 

   
                

 

    

 (1.7 a) 

where: 

             ,            (1.7 b) 

For σ ≫ 1 the integral term becomes negligible and the expression simplifies to 

some degree. For intermediate regions the solution can be found by numerically 

evaluating the integral term. Examining both expressions for Bn it can be seen that 

the solution is self-similar for any particular value of σ. From this self-similarity it 

is evident that the coefficient of nonlinearity, β, has a direct influence on the rate 

of harmonic generation.  

It is this influence of β on the harmonic generation rate that is of particular interest 

in the current study. For many applications of nonlinear acoustics it is more 
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conventional to specify nonlinear properties using the previously discussed 

parameter of nonlinearity, B/A. The coefficient β is related to the parameter B/A 

by [8]: 

 
    

 

 

 

 
 (1.8) 

As it has been established that different tissues possess different values of B/A, 

this dependence illustrates that the measured harmonic content in an ultrasonic 

wave can be used to infer information about the value of B/A. Referring to Section 

1.1, it was discussed that the parameter B/A relates to tissue properties; therefore, 

measurements of harmonic content can indirectly provide additional information 

about tissue properties for biomedical diagnostic purposes.  

1.3 Acoustic Wave Phase Conjugation 

The development of ultrasonic WPC devices is of interest for two primary 

reasons: their ability to greatly amplify and re-emit incident wave energy, and 

their ability to retro-focus this energy as conjugate waves back to an initial source 

location according to the principles of time-reversed wave propagation [27]. In 

practice this effect is achieved using a cylindrical conjugating transducer that 

consists of a magnetostrictive material core wrapped in an electrical coil solenoid. 

Application of oscillating current to the solenoid results in oscillation of the 

internal magnetic field, which in turn produces a modulation of up to 4% in the 

materials bulk modulus and sound speed [52, 53]. When waves enter the 

magnetostrictive transducer, this modulation interacts with the stresses induced by 

the forward propagating wave to produce a backwards propagating conjugate 

wave. In general, conjugate waves are produced as a result of momentum 

conservation within the magnetostrictive transducer [52]. Furthermore, the 

production of conjugate waves is dependent on a resonant interaction where 

modulation in the transducer is double the frequency of the incident wave [52]. 

Importantly, the phase properties of the incident waves are maintained, thus the 

conjugate waves are able to propagate along their original path to the initial 

source location. In Chapter 5 this process is described in greater detail. 
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Practical ultrasonic WPC systems rely on both the magnetostrictive conjugator 

and a standard focusing ultrasound transducer to produce the incident wave pulse 

and to record the conjugate waves. Figure 4 shows a simplified schematic for an 

axially aligned focusing transducer and magnetostrictive conjugator, while Figure 

5 shows experimental images of incident and conjugate beams produced from this 

configuration.  

 

Figure 4: Schematic depiction of an acoustic WPC device. 

 

 

Figure 5: Experimental images of incident and conjugate 

ultrasound beams. Reproduced from [10]. 

 

Using this setup, WPC systems are readily applied to perform ultrasonic 

microscopy, where by shifting the focus of the incident beam relative to an object 

of interest, the intensity of received conjugate beam is used to produce an image 

[10]. By using a WPC system the image quality is improved by the conjugate 

waves ability to compensate for wave front distortions produced by 

inhomogeneities in the intermediate material [11, 13, 41, 59, 61]. 

Two important distinctions exist between magnetostrictive WPC and the more 

general acoustic time reversal mirror (TRM) principles described in [27]. First, 

magnetostrictive WPC devices produce conjugate beams that are amplified by up 
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to 80 dB [13], while acoustic TRM generally produces an equal amplitude 

conjugate beam. Secondly, magnetostrictive WPC devices are highly frequency 

selective [41], while acoustic TRM is used to produce broadband conjugate 

waveforms [22]. As will be further discussed in Chapter 5, these attributes of 

magnetostrictive WPC are a result of the physical amplification process within the 

conjugator.  

1.4 Nonlinearity in Conjugate Sound Fields 

Due to the large amplifications achieved by magnetostrictive conjugators it is 

fully possible to produce conjugate sound beams with sufficient magnitude for 

nonlinear effects to occur, including the formation of shockwaves in the conjugate 

beam. The consideration of nonlinear effects in conjugate beams falls into two 

general categories: applications where the incident beam is essentially a linear 

acoustic beam, and applications where the incident beam is strong enough to 

contain nonlinear harmonics. 

The first scenario of a relatively low amplitude and linear acoustic incident beam 

is primarily related to applications in acoustic microscopy [10]. As previously 

discussed in Section 1.3, in this application the primary benefit of ultrasonic WPC 

is the ability to compensate for wave front distortion caused by inhomogeneities 

of the linear acoustic parameters in the analysis domain [11, 13, 41, 59, 61]. As 

discussed in Section 1.1, it is well known from conventional ultrasound imaging 

that the inclusion of second harmonic information can improve image resolution 

by providing a narrower focal region and by reducing side lobes. There is now 

evidence to demonstrate that the harmonics generated in conjugate beams are 

phase coherent with the fundamental frequency, thus providing the benefit of 

wave front distortion compensation in addition to narrower focal resolution [13]. 

Some questions remain about imaging resolution at amplifications sufficient to 

form shock waves in the conjugate beam. In this case the acoustic beam is no 

longer lossless and the principles of time-reversed acoustics are violated [73]. 

However, some experimental and numerical work has shown that even in the 

presence of acoustic shocks the conjugate beam adequately reproduces the focal 
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properties of an initial beam [22]. It was found that the greatest limitation to the 

focal properties of acoustic WPC is not nonlinear irreversibility, but beam 

diffraction effects related to the aperture of the conjugator [22]. 

The second category of acoustic WPC applications involves incident beams of 

sufficient amplitude to generate harmonic content. Under these circumstances 

there are potential extensions of acoustic microscopy capabilities, and emerging 

applications in imaging the nonlinear parameter, B/A, through the analysis 

domain. With regard to microscopy, nonlinearity in the incident beam can be 

exploited by conjugating with the second (or higher) harmonic [12]. The 

motivation for this approach is the improved lateral resolution offered by the 

second harmonic in the incident beam. For homogeneous domains analytical and 

experimental works have shown that the conjugation of the second harmonic 

reproduces the focal qualities of the incident beam due to the coherent phase 

relation between the fundamental frequency and harmonics in the incident beam 

[12]. Furthermore, in homogeneous domains it has been found that this approach 

produces conjugate beams with better focal properties compared to the beams 

produced by conjugating at the fundamental frequency [14]. However, current 

results in applied microscopy do not report similar improvements in image 

quality, particularly when wave front distortion occurs in the incident beam [12]. 

In these circumstances the ability of the conjugate beam to account for phase 

aberration appears to be reduced, and images of similar or better quality may be 

obtained by conjugating the fundamental frequency and performing analysis on 

the received second harmonic. 

As discussed in Section 1.1, imaging of the nonlinear parameter B/A has the 

potential to identify pathological changes to tissues that may not be apparent in 

the linear acoustic properties [59]. This is still a relatively unsuccessful technique 

when using conventional ultrasound technologies [23], and the use of WPC 

systems may offers a viable alternative [60]. Consider the co-axial arrangement 

shown in Figure 4, where now the inclusion has similar linear acoustic properties 

but a different B/A parameter. In this configuration, the amount harmonic content 

incident on the magnetostrictive transducer changes when the focus of the initial 
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beam is coincident with the B/A inclusion. B/A images are produced by 

conjugating the second harmonic of the incident beams and by recording the 

magnitude of the conjugate beams for different focal locations. Theoretical 

analysis conducted in [60] using a technique known as nonlinear geometrical 

acoustics has shown that the amplitude of the conjugate beam varies on the same 

order as changes in the nonlinear parameter at the beam focus. Importantly, this 

result remains valid even when the size of the inclusion is small relative to the 

total beam path length. Furthermore, if the harmonic content of the conjugate 

beam is analyzed as well then this effect is substantially more pronounced. 

1.5 Thesis Objectives 

Considering the information presented in Sections 1.1 through 1.4, it becomes 

evident that there is substantial potential for the application of WPC systems in 

ultrasonic imaging and biomedical diagnostics. As previously stated, the general 

objective of the current work is to develop a numerical model that can accurately 

represent the physical WPC process as described in Merlen et al. [53], and that 

can model the propagation of nonlinear waves including shockwave formation. 

This objective has been selected with the intention to further the numerical 

modeling capability available to ongoing ultrasonic WPC research and 

development.  

More specifically, the model development has been guided by several practical 

requirements. The models governing equation set must be suitable for nonlinear 

wave propagation in fluids and should be consistent with established principles in 

the field of nonlinear acoustics. The model may assume that wave strengths are 

relatively low (fluid velocity is small compared to sound speed), but the physical 

equations should accurately represent the propagation of acoustic shocks. Finally, 

the governing equation set should be compatible with the WPC model developed 

by Merlen et al. [53] so that it can be included without substantial modification.  

There are additional guiding requirements in regard to the numerical aspects of 

the developed model. The selected numerical scheme should be known for 

attributes of low numerical error and for the stable representation of solution 
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discontinuities such as shock waves. Additionally, the numerical formulation 

should be capable of representing inhomogeneous domains, where the variation 

may occur in the linear or nonlinear properties of the material. By meeting these 

requirements the developed model offers a novel combination of capabilities that 

can be used to study applied ultrasonic WPC in more detail than was previously 

possible. 

In addition to the development work conducted for this thesis, several objectives 

were also set for practical findings. First, the developed model should be verified 

against analytical benchmarks so that additional results can be interpreted with 

confidence. Second, analysis and calculation results should be presented to 

quantify the accuracy of the developed numerical model and to make 

recommendations on the resolution required to represent ultrasonic WPC. Third, 

calculation results from the model should be used to quantify the influence of 

fluid nonlinearity on the amplification rates in magnetostrictive WPC transducers. 

1.6 Known Limitations 

In the current work there are two substantial effects which are not considered. The 

first of these is the dissipation or attenuation of sound beams by viscous losses 

and relaxation process. In the current work it has been assumed that these effects 

can be neglected. In general this assumption is not valid for biomedical 

ultrasound, and the exclusion is based largely on the complexity and challenges in 

numerical modeling of these dissipative process. For a simple approximation of 

attenuation many acoustic models use a thermoviscous dissipative term that is 

similar to the Navier-Stokes equations. This approach produces acoustic 

attenuation that increases with frequency squared, ω
2
. Many biological tissues 

exhibit a frequency dependence that is better described by ω
b
, where (1 < b < 2) 

[15, 45]. Therefore, if simple thermoviscous attenuation is applied to nonlinear 

waves in biological tissues, the absorption of higher harmonics is over predicted 

and the overall quality of the solution is degraded. Three techniques that 

overcome this limitation are empirically based multiple-relaxation models [19], 

time domain convolution to produce ω
b
 attenuation dependence for any vale of b 
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[45], and the use of fractional derivates in the governing equations [56]. These 

three approaches are not trivial to implement into a numerical model, so they are 

beyond the scope of this thesis.  

Despite this limitation, for sufficient beam strength or for a weakly attenuating 

tissue, the lossless assumption is entirely valid and the developed model can be 

safely applied. The balance between nonlinear wave steepening and dissipation is 

given by the Gol‟dberg number [4]: 

 
  

    

    
   

 (1.9) 

where po is the initial pressure amplitude, and αω is the attenuation coefficient at 

angular frequency ω. For Γ ≫ 1 nonlinear wave steepening dominates and 

attenuating process can be safely neglected. Importantly, as Γ is directly 

proportional to wave amplitude, the lossless assumption becomes more valid for 

increasing wave amplitudes. Considering that high amplitude conjugate waves are 

of primary interest in this thesis, the assumption of a non-attenuating fluid model 

is well justified.    

The second effect not included in the model is that of acoustic cavitation; 

however, some brief discussion on the topic is given here to aid with 

interpretation of certain numerical results. The analysis contained within this 

thesis typically considers fluid pressures in the range of 1 to 5 MPa, but in one 

instance reports results with pressure up to 80 MPa to illustrate a particular 

numerical phenomena. At these extreme pressures fluid cavitation during the 

negative phase of propagating waves is a strong possibility. Referring to [34], the 

limit to negative acoustic pressure sustained by purified degassed water is in the 

range of 20 MPa to 25 MPa. In practical applications this threshold is rarely 

realized as fluids or biological tissues are likely to contain small scale 

heterogeneities around which cavitation bubbles can form.  Under these 

circumstances analysis of cavitation threshold is highly material dependent, 

making generalizations challenging. For one example, the experimental work in 

[2] generally observed cavitation from pulsed ultrasound in the realm of 1.5 MPa, 
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with some variation depending on the pulse duration. With conventionally 

focused ultrasound beams negative phase pressures are regularly reported in the 

range of 4 MPa [14, 15]. In the context of acoustic WPC, focal pressure 

amplitudes of 8 MPa have been reported [14] without mentioning cavitation 

effects. Based on this finding the value of 8 MPa was considered as the threshold 

to safely assume a fluid response free of cavitation effects in the current work. 
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2 Governing Equations for Nonlinear Acoustic Waves 
in Fluids 
The governing equations used in this thesis are based on well established methods 

in linear and nonlinear acoustics. As the development of linear acoustic equations 

is quite simple and extremely well known, the discussion in this section is focused 

on giving context to the nonlinear governing equations. Historically, many 

equations have been developed for the representation of nonlinear acoustic wave 

propagation, where the term nonlinear encompasses both high amplitude and 

dissipative effects. Almost universally, the study of nonlinear acoustics has been 

conducted using second order wave equations, where the distinction second order 

is the result of applying a second order pressure density relation similar to 

Equation (1.2) given in Section 1.1. A general second order wave equation is 

given in [30], and well known form of this is the Kuznetsov equation [26, 42]. As 

summarized in [72], well known simplifications these general second order wave 

equations are the Westervelt equation [30, 72], Burgers‟ equation [26], and the 

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [30, 42, 80] previously 

discussed in Chapter 1.     

The governing equation set used in this thesis differs from the more widely known 

second order wave equations in several important regards. Most fundamentally, 

second order wave equations typically solve for a single unknown variable, such a 

pressure or acoustic potential, and are expressed using a single second order 

differential equation. As detailed in Section 2.1, the equations used in this thesis 

solve for perturbed density, ρ', and fluid velocity,   , in a system of first order 

differential equations. This approach allows for relatively straight forward 

integration of additional physics such as the ultrasonic WPC model described in 

Chapter 5. Furthermore, this approach lends itself well to the use of shockwave 

capturing numerical methods needed for the simulation of highly distorted 

ultrasound wave fields. The second important distinction between the equations 

sets is that most second order wave equations are based on the Navier-Stokes 

equations to include the thermoviscous dissipative terms, while the equations 

presented in this thesis are based on the inviscid Euler equations. 
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An equation set available in the literature that most closely matches those 

presented here is the full wave model described in [29]. Comparing the equations 

used in [29] and in this thesis there are several minor differences, but the 

formulations are fundamentally similar. 

2.1 Conservations Laws for Weakly Nonlinear Waves 

The governing equation set is derived from the inviscid Euler equations, 

excluding the energy equation as an isentropic and irrotational wave field is 

assumed. Justification for the use of an inviscid equation set is discussed in 

Section 1.6. Additionally, for the modeling of wave propagation in an initially 

static medium, such as biological tissues, there is no physical basis to include 

rotational fluid effects.  

In general, the linearization of the Euler equations to obtain an acoustic equation 

set in perturbed state variables is a well known procedure. For the nonlinear 

acoustic equations used in this work the reduction to acoustic variables is 

conducted in a similar manner; however, instead of linear approximations a 

second order Taylor expansion for the perturbed state values are used. In general, 

this approach is valid under the assumptions that ρ'/ρo ≪ 1 and        ≪  , 

which qualifies the wave as being weakly nonlinear. In an integral conservative 

form the governing equations for a control volume, V, bounded by surface, S, with 

normal vector,    , are: 
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 (2.1 d) 

where U is the conservative solution vector, F is the flux vector, ρ = ρo+ρ' is fluid 

density defined in terms of an ambient (ρo) and perturbed (ρ’) component,     is the 

velocity vector with subscripts x and y denoting Cartesian components, co is the 

ambient sound-speed. When using the linear flux vector (designated by the 

subscript linear) the governing equations are equivalent to the linear acoustic 

equations. When using the nonlinear flux vector (designated by the subscript 

nonlinear) the state perturbation values to the order of O(ρ' 
2
) are retained 

allowing for applications to weakly nonlinear wave problems. For additional 

reference the derivation used to produce Equation (2.1) is carried out in full in 

Appendix A.
 
 

To accomplish the closed form of the nonlinear equations the Tait-Kirkwood EOS 

is was used in the system derivation. The exact EOS expression is given by 

Equation (2.2 a), while the O(ρ' 
2
) representation used by the nonlinear system is 

given by Equation (2.2 b): 
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 (2.2 b) 

where po is a reference pressure and D is a material coefficient related to co and 

ρo. From the Tait-Kirkwood EOS the power coefficient, γ, in Equation (2.1) is 

related to the parameter B/A commonly used in nonlinear acoustics according to 

[8]: 

  

 
     (2.3) 

To further quantify the applicability of this equation set it is useful to consider the 

range validity inferred by the weakly nonlinear wave assumption. In [17] it was 
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found that second order wave equations tend to over predict the rate of wave 

distortion when used with inappropriately high Mach number waves,          . 

Fortunately, for all wave amplitudes of practical significance to this thesis the 

weakly nonlinear assumption is valid. In the discussions of [50] and [78], it is 

suggested that the Kuznetsov equation is valid for M < 0.1. Based on the similar 

properties of second order waves equations and the equations used in this thesis 

some preliminary conclusions can be drawn. First, in Section 1.6 on cavitation 

thresholds it was noted that 25 MPa is the upper bound of permissible wave 

amplitudes. Using the linear acoustic impedance of water as a rough estimate this 

pressure corresponds to only M = 0.01. When considering applications such as 

medical Lithroscopy peak positive pressures up to 100 MPa are also possible [15]. 

Once again, from the linear acoustic impedance of water this pressure corresponds 

to M = 0.04, for which second order wave equations can be safely applied.  

2.1.1 System Flux Jacobian 

As will be show in Chapter 3, high order evaluation of spatial operators in the 

governing equations requires a transformation of the governing equations into a 

characteristic form. As the first step in this procedure the flux Jacobian matrices 

A, are needed; the general forms of the linear and nonlinear Jacobians are as 

follows: 
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 (2.4 b) 



  22 

 

  

 
 
 
 
 
 

                        

  
 

  
         

  

  
           

  
 

  
         

  

  
           

 
 
 
 
 
 

         

 (2.4 c) 

As the decomposition to characteristic variables will always be for a specified 

normal direction, a simpler representation of the Jacobians can be used, where nx 

= 1 and ny = 0, is assumed. The simplified Jacobians are as follows: 

 

    

    

  
 

  
  

   

 

      

 (2.5 a) 

 

   

 
 
 
 

        

  
 

  
         

  

  
     

    
 
 
 

         

 (2.5 b) 

To apply these simplified relations to other normal orientations the fluid state 

must first be translated to a local coordinate system, (ρ’, vε, vϵ ), where nε = 1 and 

nϵ = 0.  

2.1.2 System Eigenvalues 

It is well known that the eigenvalues of the flux Jacobian are representative of 

physical wave speeds for the linear and nonlinear governing equations [43]. As 

this analysis is conducted using the simplified Jacobian, Ax, the resulting waves 

speeds are for the x-axially aligned normal direction. From the characteristic 

equation, |Ax – λI| = 0, the eigenvalues are:  

Linear System:        ,       ,        (2.6 a) 

Nonlinear 

System: 

        ,          ,       (2.6 b) 

             
  

  
       

  

  
 
 

  (2.6 c) 

For both the linear and nonlinear systems, the wave speed λ
0
 is a product of the 

two-dimensional system. It indicates that the associated characteristic variable, 
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which is simply transverse velocity, vy, is not propagated by wave motion. When a 

one-dimension system is considered only the two wave speeds, λ = ± co, or λ = vx 

± c*, are present.  

2.1.3 System Eigenvectors 

To transform the governing equations to characteristic form the operation α = LU 

is applied, where the aggregate left eigenvector matrix, L, is determined from the 

flux Jacobian according to: 

           

(2.7 a)  

   

   

   

   

  

and the resulting eigenvectors are: 
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 (2.7 c) 

To transform the reconstructed solution back to state variables, the operation U = 

Rα is applied, which requires a set of corresponding right eigenvectors, R = L
-1

. 

These were obtained analytically using Gaussian inversion of the left 

eigenvectors, with the end result being:  

 

   

   

   

   

 

 

 (2.8 a) 
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2.1.4 Simplification to One-Dimensional System 

To maintain generality for future development of the numerical model, the 

preceding governing equations were presented for domains with two spatial 

dimensions. In the present work only calculations in one spatial dimension are 

performed and the equation set can be reduced. When simplifying to a one-

dimensional system, vy can be neglected, the system eigenvalues no longer include 

λ
0
, and the third column and row can be eliminated from each of the flux Jacobian 

and aggregate eigenvector matrices. For completeness these equations are 

included in Appendix B. 
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3 Development of the Numerical Model 

The numerical methods used to evaluate the governing equations given in the 

preceding section are implemented using a reconstruction-evolution finite volume 

framework. This method is applied to solve the integral form conservation laws 

given in Equation (2.1). In the developed one-dimensional numerical model nodes 

are identified by index, i, while faces are identified by indices of, i ± ½. This 

spatial discretization is depicted in Figure 6. 

 

Figure 6: Schematic of one-dimensional finite volume 

discretization. Discrete points represent cell averaged 

values, dashed lines represent the true continuous values.  

 

At each stage of the solution continuous state values,   , are reconstructed and 

calculated at cell faces from the cell average node values. Numerical fluxes are 

evaluated at each face from the reconstructed face values. The fluxes are summed 

for each cell to give a discrete value of the flux surface integral in Equation (2.1). 

Using these discrete values the solution can be evolved using a variety of time-

discretization algorithms. This general technique is well known in computational 

fluid dynamics and is often termed as a Godunov-type method [43]. A simple first 

order, one-dimensional implementation of this method is as follows:  

              (3.1) 

 
  

 

  
                  (3.2) 

                 
 ,       

   (3.3) 

where    is the numerical flux that is a function of U
+
 and U

-
, which are the 

reconstructed state values at each side of face, i + ½. To accurately compute wave 

propagation over hundreds of wave-lengths both high-order spatial reconstruction 
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and high-order time integration are required. When insufficiently accurate 

methods are used computed solutions can contain excessive dissipative and 

dispersive error. Dissipative error leads to the attenuation of propagating waves. 

Dispersive error is a frequency dependent change in wave velocity that can lead to 

unphysical distortions in multi-frequency waveforms. 

In the following sections three aspects of the numerical method are discussed in 

detail: the high-order spatial reconstruction of state values to cell faces, the 

evaluations of fluxes from reconstructed the values, and the high-order time 

discretization algorithm.  

3.1 Spatial Reconstruction 

Spatial reconstruction of the solution from cell averages is accomplished using 

piecewise-polynomials. For each in the computational domain a polynomial fit is 

determined from the cell average values and from the average values of several 

neighboring cells. By increasing the number of neighbor cells included in the 

polynomial fit, the order of the polynomial increases and more accurate 

reconstructions can be obtained. However, a well-known limitation of high-order 

polynomial reconstruction is the Gibbs phenomena [43], which is the appearance 

of non-physical oscillations in the numerical solution near a discontinuity. To 

accommodate the need for high order reconstruction polynomials while also 

allowing for the oscillation-free representation of discontinuous acoustic shocks, 

the developed numerical model uses a Weighted Essentially Non-oscillatory 

(WENO) reconstruction technique [70]. WENO techniques were selected based 

on their established history of application to nonlinear fluid flows. In this section 

some historical developments of WENO methods are presented and the particular 

implementation is discussed in detail. At the conclusion of this chapter there is 

additional discussion on alternative methods, justifications for the implemented 

WENO scheme, and recommendations for future work. 
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3.1.1 Introduction to Essentially Non-Oscillatory Methods 

To concisely illustrate Gibb‟s phenomena, Figure 7 plots a 6
th

 order polynomial fit 

to data in a reconstruction stencil that includes a discrete jump in value, but is 

otherwise smooth. In Figure 7 the Reconstruction Region represents a single 

computational cell, while the other points used in the polynomial fit represent 

neighboring cells. 

 

 
Figure 7: Spatial oscillations in a high order reconstruction polynomial. 

 

As can be seen in Figure 7, the resulting polynomial contains spatial oscillations; 

when incorporated into a finite volume scheme this reconstruction produces 

similar oscillations in the computed solution. To overcome the problem of Gibb‟s 

phenomena a class of techniques referred to as Essentially Non Oscillatory (ENO) 

ones were established by Harten et al. [32] and subsequently underwent 

significant developments by Shu and Osher [69, 71]. The fundamental principle of 

ENO reconstructions is the selective use of several lower-order candidate 

polynomials contained within the original high-order stencil. Considering Figure 

8, which contains the same data and total stencil size as Figure 7, it can be seen 

that several lower-order polynomials can be placed within the original higher-

order stencil. By choosing a lower-order candidate that does not include the 

discontinuity (Candidate 1 in Figure 8) the resulting reconstruction would be free 

of oscillations.  
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As a result of choosing just once candidate stencil, the maximum order of the 

spatial reconstruction scheme is limited to O( x
r
), where r is the number of cells 

in a candidate polynomial (r = 4 in Figure 8). In smooth regions, where there is no 

need to exclude cells from the reconstruction polynomial, this solution is not ideal 

as there are 2r-1 points within the total stencil that can be used to produce a 

O( x
2r-1

) spatial reconstruction.  

 
Figure 8: Candidate stencil reconstruction polynomials. 

 
 

To address this limitation the Weighted Essentially Non Oscillatory (WENO) 

reconstruction technique was introduced by Liu et al. [48]. The guiding principle 

of WENO reconstruction is to combine all candidate stencils in such a way that 

each stencil is weighted according to a smoothness coefficient. This allows the 

contribution of non-smooth candidate stencils containing strong gradients or 

discontinuities to be minimized, thus reducing the incidence of non-physical 

numerical oscillations. At the same time, in smooth regions candidates can be 

weighted more ideally. This trait is the primary benefit of WENO reconstructions, 

as it allows for a higher order of accuracy throughout most of the domain.  

 

The seminal work by Liu et al. [48] applied WENO reconstructions to scalar 

equations and to characteristic variables in systems of equations using a finite 

volume framework. After this work a substantial development was made by Jiang 
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and Shu [36] who applied WENO techniques in a conservative finite-difference 

framework. In their finite-difference approach, fluxes are first decomposed into 

upwind components at the cell nodes, and then the WENO reconstruction is 

applied to these flux values. For one dimensional models, such as the one 

developed in this work, differences between the finite-volume and finite-

difference implementations of WENO methods are not substantial [70]. The 

differences become more substantial for multi-dimensional models. For multi-

dimensional finite volume schemes the determination of the multi-dimensional 

polynomials and the evaluation of polynomial smoothness becomes complicated. 

In comparison, multi-dimensional finite-difference WENO schemes can evaluate 

each dimension independently at a much lower computational cost. The greatest 

limitation of the finite-difference WENO schemes is the requirement for a 

uniform spatial discretization, which is required to guarantee a conservative 

solution [70].  

For the developed numerical model the use of a finite-difference WENO scheme 

would present additional difficulties related to nonlinear acoustic wave 

propagation in heterogeneous domains. In the finite-difference WENO schemes a 

combination of upwind fluxes is used to evolve the solution. As a result, this 

approach would not inherently accommodate wave reflections at material 

interfaces. As discussed in Section 3.2, a relatively intuitive solution to the 

problem of wave reflection at interfaces exists when using finite-volume WENO 

schemes, and it is for this reason the developed numerical model uses a finite 

volume formulation. If future development of the discussed numerical model 

should remain within the finite volume framework, some literature exists on 

simplifying the extension to multi-dimensional cases [68, 74]. Otherwise, if future 

development uses a finite-difference WENO scheme then additional methods for 

treating wave reflections at material interfaces would be required. One such 

technique based on the immersed boundary concept is developed for one 

dimensional domains in [55], and for two-dimensional domains in [49]. 
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3.1.2 Overview of the Implemented WENO Scheme 

Referring to the previous discussion on the evolution of ENO methods, the 

implemented scheme is consistent with the definition of a characteristic-wise 

finite volume reconstruction given in [70]. The reconstruction scheme can be 

broken down into three basic components: transformation to and from 

characteristic variables, evaluation of reconstruction polynomials, and evaluation 

of reconstruction smoothness. Throughout this section all necessary information is 

given for the implemented r = 2 (3
rd

 order) WENO scheme, the r = 3 (5
th

 order) 

WENO scheme, and the r = 4 (7
th

 order) WENO scheme, where r is the number of 

cells to the edge of the global stencil (including the reconstruction cell). For 

clarity, Figure 9 shows an example of the conventions used for indexing cells 

within the global and candidate stencils during the WENO reconstruction 

procedure. 

 

 

Figure 9: Stencil indexing conventions for the r = 3 WENO scheme. 

 

3.1.3 Transformation to Characteristic Variables 

The first stage in the finite volume WENO reconstruction is the transformation of 

state variables into their characteristic form. This transformation produces a 

system of independent scalar variables, and is required for stability of the high-

order numerical schemes [32]. In the characteristic reconstruction procedure used 

in [32, 44, 70], the values in each reconstruction stencil are transformed using a 

single representative eigenvector L. Each cell in internal regions of the numerical 
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domain belongs to 2r-1 different stencils. This approach causes the total number 

of transformations applied to increases with the order of the reconstruction.  

For the linearized acoustic equations the eigenvectors in matrix L are functions of 

only material properties and are constant throughout a homogeneous domain. As a 

result, each cells variables need to be transformed only once, and the resulting 

characteristic variables can be used in all applicable stencils. With the nonlinear 

acoustic equations the deviation from linearized eigenvectors is expected to be 

small. From this it has been assumed that the transformation to characteristic 

variables can be performed similarly, using just one inversion per computation 

cell using the local eigenvectors, Li. For the one-dimensional domain the 

characteristic variables are: 

 

         
  

  
 
 
 

 

 
 
     

       

  

     

       

  

 

 

 (3.4) 

where the subscript i designates the use of local node values. This simplified 

approach has produced stable results all of the calculations performed during this 

work; however, no formal comparison with the more rigorous transformation 

method was made. 

The right eigenvectors, R, are obtained by noting that the value of ρ’ can be 

uniquely identified using,         , and that          . Considering a one-

dimensional domain, the conservative variables are obtained using:  
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 where the index i ± ½ designates the use of local values at each face. 
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3.1.4 Adaptive Reconstruction Polynomials 

After transformation to characteristic variables, each component may be 

reconstructed as an independent scalar variable. This reconstruction procedure is 

described below for the one-dimensional reconstruction of       
 , which is the 

characteristic variable on the left  of cell face i + ½, as denoted by the „-‟ 

superscript. For reconstructing       
  the procedure is symmetric with respect to 

xi. For additional clarity on this notation convention refer to Figure 9. 

First, a group of lower order reconstruction polynomials,   
 , is calculated for the 

candidate stencils, Sk, to produce a series of O( x
r
) accurate approximations for 

      
  [36]: 

       
    

          ,  ,              (3.6) 

where r is the maximum stencil radius, k is the candidate stencil index, and in 

general k = [0, …, r-1]. As the node values, αi, represent integrated cell averages 

the candidate polynomials are found according to the following equation [48]: 

 
   

      
      

      

    (3.7) 

Evaluation of Equation (3.7) to produce the corresponding polynomials is well 

described in [43]; however, when evaluating reconstructed values at a particular 

location, such as i + ½, the high-order polynomial expression for   
  can be 

simplified to a linear combination of node values within the candidate stencil 

[36]: 

 

  
    ,  ,          

 

   

   

   (3.8) 

where the linear coefficients   
  are functions only of the grid geometry. For 

uniform grids the coefficients   
  are widely available in the literature. These 

values are summarized in Table 2 from [36] for the 3
rd

 order r = 2 scheme and for 

the 5
th

 order r = 3 scheme, and from [5] for the 7
th

 order r = 4 scheme: 
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Table 2: Summary of WENO reconstruction coefficients. 

      
   

k dk j = 0 j = 1 j = 2 j = 3 

r = 2           

0 1/3 -1/2 3/2 
  1 2/3 1/2 1/2 

  r = 3           

0 1/10 1/3 -7/6 11/6 
 1 6/10 -1/6 5/6 1/3 
 2 3/10 1/3 5/6 -1/6 
 r = 4           

0 1/35 -1/4 13/12 -23/12 25/12 

1 12/35 1/12 -5/12 13/12 3/12 

2 18/35 -1/12 7/12 7/12 -1/12 

3 4/35 1/4 13/12 -5/12 1/12 

 

For non-uniform grids the coefficients can be computed during solver 

initialization and stored for reuse using the algorithm provided in [70].  

From the lower-order candidate polynomials the higher order combination is 

made according to: 

 

            ,  ,             

   

   

  
          ,  ,       (3.9) 

     
  

   
,    

  

        
 (3.10) 

where     is the candidate weighting, ωk is the non-normalized candidate weight, 

dk is the optimal weight value, ISk is the candidate smoothness measure. 

Discussion on the evaluation of ISk is left to the next section. The variable ϵ is 

required to prevent division by zero and is taken to have a value of ϵ = 10
-40

. The 

parameter, p, affects the sensitivity of the WENO scheme to changes in 

smoothness. High values of p reduce the presence of numerical oscillations in the 

solution, but also tend to add dissipative error that attenuates propagating waves. 

Most often a value of p = 2 is recommended [5, 36, 70], and unless otherwise 

noted all calculations presented in this thesis follow this recommendation. The 

optimal values, dk, in Equation (3.10) are chosen to allow for a O( x
2r-1

) 
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reconstruction when all candidates are equally smooth: 

       
              ,  ,                   (3.11) 

Similar to the candidate stencil  coefficients   
 , values for dk are widely available 

in the literature for uniform grids. Table 2 provides the values from [36] for the 

3
rd

 order r = 2 scheme and the 5
th

 order r = 3 scheme, and from [5] for the 7
th

 

order r = 4 scheme. 

3.1.5 WENO Smoothness Measures 

An important aspect of the WENO reconstruction schemes is the measure used to 

evaluate the smoothness of each candidate stencil, ISk. In this context smoothness 

is essentially the severity of spatial gradients in the solution. The original WENO 

smoothness measure proposed in [48] has largely been superseded by more recent 

works. The most widely adopted smoothness measure was first described by Jiang 

and Shu [36]. This measure quantifies smoothness as the integrated L2 norm of all 

spatial derivatives produced by the reconstruction polynomials. The formal 

expression for this evaluation is given by: 

 

             
    

   
 

 

  
  

  

   

   

 (3.12) 

For uniform grids this smoothness measure integral can be evaluated, resulting in 

simplified algebraic expressions. This evaluation is carried out in the literature, 

and the results are presented here so that the formulation of the numerical model 

would be complete. 

Smoothness measure for the r = 2 WENO scheme [36]: 

 

             
  

             
  

(3.13) 
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Smoothness measure for the r = 3 WENO scheme [36]: 

     
  

  
               

  
 

 
                

  

(3.14)      
  

  
               

  
 

 
           

  

     
  

  
               

  
 

 
                

  

Smoothness measure for the r = 4 WENO scheme [5]: 

                                            

                                               

     𝑖        
   

(3.15) 

                                           

                                         

     𝑖           
   

                                           

                                           

     𝑖           
   

                                           

                                                 

                 
   

More recent works by Borges et al. [9] and Shen et al. [66] have proposed a 

modified smoothness measure to reduce the numerical dissipation incurred by 

WENO schemes. In their measure, which is termed WENO-Z, the smoothness 

value for each candidate stencil is normalized by the variation in the total stencil 

according to: 

 

            

   
  

     

       
 

(3.16) 

This normalization has the qualitative effect of slightly increasing the contribution 

of non-smooth stencils to reduce dissipation at discontinuities [9]. To implement 
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the modified smoothness measure Borges et al. [9] suggest applying the parameter 

τ directly to the weighting coefficient as follows: 

   
        

 

     
 
 

  (3.17) 

In this modified weighting the coefficient p is equal to 1 to minimize numerical 

dissipation. However, in [9] it is also noted that in order to guarantee 5
th

 order 

convergence the r = 3 WENO-Z scheme should use p = 2, while [66] notes that p 

> 4/3 is required to guarantee 7
th

 order convergence of the r = 4 WENO-Z 

scheme. During preliminary calculations for this work it was observed that the use 

of p < 2 was not sufficient damp all numerical oscillations in shock wave 

propagation. For this reason p = 2 is used even with the WENO-Z schemes.    

3.2 Flux Solvers and Riemann Solvers 

As depicted in Figure 10, after completion of the high-order reconstruction stage 

each face in the computational domain is assigned two values of conservative 

variables (left and right). To evaluate the fluxes across the face many general flux-

decomposition techniques are available to calculate a stable combination of 

upwind flux components [43]. Alternatively, the discontinuous jump in state 

values at each face can be approached as a classic Riemann problem from 

gasdynamics. As shown in Figure 10, a Riemann problem is the wave field and 

gas flow produced by two adjacent gas states with a discontinuous interface. With 

the Euler equations the Riemann problem has an exact but implicit solution that 

must be solved iteratively [43]. A more popular approach is to approximate the 

Riemann solution to avoid numerical iteration; this approach has successfully 

been used in many applications involving fluid flow and wave phenomena. As the 

linear and nonlinear acoustic equations provided in Chapter 2 are simplifications 

of the Euler equations, many of these existing approximate Riemann solvers are 

relevant to the developed numerical model. 
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Figure 10: Schematic depiction of the Riemann problem. 

For much of the computational domain material properties on the left and right of 

face, denoted ML and MR, are the same and solution of the Riemann problem 

becomes simpler. At locations where a material interface occurs this is not the 

case and it is shown below that a non-conservative application of fluxes is needed 

to allow for proper wave transmission from one material to another. 

It is also useful to note that the wave propagation problem scenarios applicable to 

the developed numerical model are of linear or weakly nonlinear wave 

propagation, where the wave strengths meet the requirements: (ρ’/ρo) ≪ 1 and 

(u/co) ≪ 1. Under these restrictions sonic or supersonic flow, where u/co ≥ 1, does 

not occur and only sub-sonic flux and Riemann solutions need to be considered. 

3.2.1 Conservative Solutions for Homogeneous Regions 

In general, the Riemann problem between two cells containing identical materials 

can be evaluated using any of the techniques presented within this thesis. 

Presented in this section is the HLL approximate Riemann solver by Harten et al. 

[31]. In the numerical model the HLL solver is applied at all cell faces that do not 

represent a material interface. This is done to improve computational efficiency as 

the HLL algorithm is simpler than those needed to treat material interfaces. 

Additionally, in Subsection 3.2.5 is illustrated that the HLL solver is equivalent to 

the other implemented solvers for the homogeneous material case.  

As depicted in Figure 11, the central idea to the HLL solver is to approximate the 

Riemann solution as a single averaged region bounded by the minimum and 

maximum wave speeds.  

UL = (ρ’, vx, vy)

ML = (co,L ,  ρo,L , γL)

n

MR = (co,R ,  ρo,R , γR)

UR = (ρ’, vx, vy)
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Figure 11: HLL approximation of the one-dimensional 

Riemann problem. 

 

As succinctly demonstrated by Toro et al. [75], the evaluation of the one-

dimensional conservation integral: 

 
             (3.18) 

 over the region ABCD in Figure 11, produces a direct expression for the averaged 

contact state,    , and the corresponding flux,   : 

 
   

               

     
 (3.19) 

 
   

                     

     
 (3.20) 

When solving for the homogeneous linear acoustic equations the wave speeds are 

constant values of SL = -co and SR = +co.  Where solving for the homogeneous 

nonlinear acoustic equations the wave speeds are no longer constant and an 

accurate estimate is needed. This topic is discussed in greater detail in Section 

3.2.6, and for now it is sufficient to give the initial estimates, which are chosen to 

be the eigenvalues from the left and right initial states,      
  and      

 . 

3.2.2 Non-Conservative Solutions for Material Interfaces 

When used with the Euler equations the primary limitation of the HLL solver is 

its inability to represent density or material interfaces [75]. In conventional 

gasdynamics where the HLL solver is more commonly applied, the problem 

scenarios may contain multiple gasses that flow and mix throughout the domain. 
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The mixing of these gasses governed by physically based models; however, when 

two neighboring cells contain a large difference in density or material content, 

mixing also occurs as result of numerical error. The HLL solver, which produces 

high levels of mixing error, is therefore an inappropriate choice for treating 

material interfaces.   

When considering acoustic equations the requirements for accommodating non-

homogeneous domains are somewhat different. Underlying both the linear and 

nonlinear governing equations is an assumption that the domain can be 

represented using piecewise-continuous materials. Essentially this means that 

changes in materials are represented by discrete interfaces and these interfaces do 

not allow mixing (mass transfer) of the materials. Under this assumption any 

solver that represents or admits mixing, such as the HLL solver, introduces an 

error into the solution and degrades wave transmission properties at the interface. 

For this reason a forced prevention of material mixing is seen as an acceptable 

compromise, as wave propagation and reflection is of primary interest. Indeed, the 

development of a scheme that admits fluid flow, material mixing, and proper 

wave reflections at material interfaces is a more challenging problem that the one 

currently addressed.  

After some review, the techniques developed by LeVeque [47] and furthered by 

Fogarty and LeVeque [28] were found to meet the requirement of producing 

correct wave transmission at material interfaces within the framework of a 

Godunov scheme. In the limit of acoustic wave strengths, it was found that 

Leveque‟s method is equivalent to a non-conservative application of the HLLC 

[75] approximate Riemann solution, which is the approach ultimately chosen for 

the developed numerical model. 

3.2.3 Flux-Difference Splitting for Wave Transmission Properties 

This subsection is presented to give relevant background and justification for the 

modified HLLC implementation that is used. Importantly, this subsection 

demonstrates an approximate Riemann solver that guarantees correct wave 

transmission properties, while is Subsection 3.2.3 and Subsection 3.2.5 the 
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modified HLLC solver is shown to posses these same properties. Although this 

flux-differencing solver is included in the developed model, all calculation results 

presented in this thesis have used the HLL and HLLC solvers.  

In LeVeque [47] and in Fogarty and LeVeque [28], a flux-differencing scheme is 

presented for multidimensional hyperbolic systems. This approach is centered on 

evaluation of the Riemann problem using a series of discrete compression, 

rarefaction, or contact waves. To introduce the scheme we will first consider the 

case of a one-dimensional homogeneous acoustic system. For a system containing 

Nw waves – each corresponding to a system eigenvalue – a jump across the each 

wave, W
p
, is defined so that: 

 

         

  

   

 (3.21 a) 

     
 
  

  (3.21 b) 

 
      

    
   

    
  (3.21 c) 

where q is the state vector, p is the pressure perturbation, and f  is the 

corresponding flux vector. As shown in Figure 12, the acoustic system produces 

just two waves at each face, one left-propagating and one right-propagating.  

 

Figure 12: Wave field solved by flux-differencing scheme. Reproduced from [28].  

For the one-dimensional system the jump across each wave leads to a consistent 

intermediate state, q*, which can be used to determine fluxes. Following a first-

order Godunov method, solutions in each control volume could be evolved 
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according to: 

 
  

       
  

  
         

           
    (3.22) 

In contrast, a flux-difference splitting technique is used in [47], where flux-

differences for the homogeneous acoustic system are defined as: 

             
   

           
         

(3.23) 
             

   
                 

   

Then the first order solution is updated according to: 

 
  

      
  

  

  
                      (3.24) 

The method is extended to non-conservative systems by using this flux-difference 

splitting approach. At a material interface the state q* remains consistent due to 

the choice of state variables; however, as flux is a function of both the state and 

material properties it is now the case that the total flux-difference is not equal to 

the net change in the flux vector from the left to the right state [47]: 

                           (3.25) 

It is important to note that A
±
 q are functions of the initial states and the local 

material properties, but they are not governed by an overall conservation 

requirement.  It is this set of principles that allow Leveque‟s flux-differencing 

techniques to produce the proper transmission of waves from one material to the 

next. 

In order to complete the solution it is necessary to solve the jump conditions W
±
. 

LeVeque [47] demonstrates the jump across each wave, defined by a system 

eigenvalue, is a scalar multiple, α, of the corresponding right eigenvector from the 

flux Jacobian. For the following equations provide these expressions in the 

context of the linear acoustic Riemann problem: 

 
     

   
   

 

  
 

 

 

,      ,    (3.26 a) 
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  ,    
      

    
   
    

 
 
 (3.26 b) 

      
   

  ,    
      

    
  

    
 
 

 (3.26 c) 

As a result the physical continuity conditions (q*)L = (q*)R, it is possible to equate 

the left and right intermediate state vectors to solve for the wave strengths, α
±
, by: 

   
             

        (3.27 a) 

and: 

      
   

       
   

  (3.27 b) 

After some algebraic manipulations it can be shown that a matrix form solution to 

the wave strengths is: 

          (3.28 a) 

where: 

 
    

  
 

  
   (3.28 b) 

          (3.28 c) 

 
     

   
    

   ,    , 
    ,     , 

  (3.28 d) 

To apply these techniques to the governing equations in Chapter 2, two additional 

steps are required. Firstly, as the state variables U = (ρ’, vx) differ from those in 

the preceding derivation, q = (p, vx), a transformation U = U(q) is needed. For the 

linear acoustic equations this transformation is straightforward: p’ = co
2
ρ'. 

Secondly, the solution produced by the flux-difference splitting method must be 

adapted to the discrete spatial operator used with Runge-Kutta time integration. 

This is done by allowing two flux vectors, FL and FR, to be assigned to each face, 

where each is a function of the respective initial state and jump condition: 

   
                 

   
    (3.29 a) 
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    (3.29 b) 

In one spatial dimension the discrete spatial operator from Equation (3.2) can then 

be evaluated according to: 

 
   

   

  
  

 

  
   ,     

    ,     
   (3.30) 

In general, the flux-difference splitting technique is extendable to nonlinear 

systems such as the Euler equations or the nonlinear acoustic equations. When 

solving these nonlinear systems a local linearization of the flux Jacobian and 

eigenvectors can be used and the solution may then proceed as previously 

described. For the Euler equations, Leveque [47] suggests the use of the Roe 

linearization [63] at each face. For the nonlinear acoustic equations presented in 

Chapter 2, the derivation of the Roe average Matrix has not been carried out (see 

the discussion in Subsection 3.2.7). Thus another method for capturing nonlinear 

wave reflections is required. To meet this requirement a modified HLLC 

approximate Riemann solver is presented in Subsection 3.2.4, while Subsection 

3.2.5 provides justification for this choice. 

3.2.4 HLLC Approximate Riemann Solver 

In the previous section the fundamental principles of an acoustic wave 

propagating Riemann solver were presented. This section now describes a 

modified HLLC solver that is consistent with these principles. For all calculations 

presented in this these, it is this HLLC solver that is applied at material interfaces.  

The HLLC approximate Riemann solver developed in [75] is an extension of the 

HLL technique that is capable of resolving the contact surface between the initial 

left and right states. When used with the Euler equations the HLLC solver is 

known to reduce numerical mixing of materials and to reduce degradation of 

contact surfaces. Similar to the principles of the HLL solver in Subsection 3.2.1, 

the HLLC solution is obtained by evaluating the one-dimensional conservation 

integrals given Equation (3.18) over the regions ABCE and EFGH  (Figure 13).  
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Figure 13: HLLC approximation of the one-dimensional 

Riemann problem. 

The results of this evaluation are as follows: 

     
    

         ,      ,    (3.31) 

Similar to the HLL solver, values of SL and SR are assumed to be known; for an 

initial estimate the eigenvalues from the left and right initial states,      
  and 

     
 can be used, and then for improved estimates refer to Subsection 3.2.6.  

To solve the Riemann problem it is necessary to determine the contact velocity, 

v*. For problems where nx = 1 and ny = 0, or alternatively when using a local 

coordinate system with nε = 1 and nϵ = 0 the contact velocity is equivalent to the 

x-normal velocity of the left and right intermediate states. For the Euler equations 

the contact velocity is solved by simultaneous evaluation of Equation (3.31) for 

the left and right states to give [6]:  

 
   

                               

                   
 (3.32 a) 

where the subscripts are dropped from ux or uε for convenience. Instead of 

carrying out a similar derivation for the linear acoustic and nonlinear acoustic 

equations, it is simpler to use the contact velocity from Equation (3.32 a), then 

retain only O(vx/co) terms for use with linear acoustic systems, and retain only 

O(vx/co)
2
 terms for use with nonlinear acoustic systems. Using this approach the 

resulting expressions for contact velocity are: 
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   ,     ,    ,     ,         

   ,   ,    ,   , 
 (3.32 b) 

 
          

  
   ,    

               ,    
                   

   ,    
             ,    

         
 (3.32 c) 

where p for the linear and nonlinear case are functions of ρ' defined in Chapter 2. 

To complete the HLLC solution intermediate state values for ρ’ are needed. These 

can be obtained directly from Equation (3.31). The resulting expressions are: 

 
  ,      

   
  ,   

    ,       
 

  
 (3.33 a) 

 
  ,         

   
  ,   

    ,     
       ,  

  
 (3.33 b) 

To allow for proper wave transmission, fluxes corresponding to these fluid states 

are applied using a method that is consistent with the discussed flux-difference 

splitting. When applied to the HLLC Riemann solution this gives the following 

fluxes:  

   
            ,    

   (3.34 a) 

   
            ,    

   (3.34 b) 

3.2.5 Equivalence of HLLC and Flux-Difference Splitting 

Before addressing flux solutions at a material interface the equivalence of HLL 

and HLLC solvers in homogeneous regions is considered. By applying the linear 

acoustic relation, p' = co
2
ρ’, to Equation (3.32 b) and by calculating the velocities, 

vx, from Equation (3.19), it can be shown that the HLL and HLLC solvers produce 

equivalent contact state velocities for a homogeneous linear acoustic system. 

Similarly, the two solvers can be shown to produce equivalent contact states for a 

homogeneous nonlinear system provided the choices for wave speeds are the 

same.  

Now let us consider the linear acoustic flux solution at a material interface. In 

Subsection 3.2.4 a method was given to apply HLLC fluxes in a manner 
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consistent with flux-difference method in Subsection 3.2.3. By comparing 

Equation (3.34) with Equation (3.29) it is evident that the solution produced by 

the non-conservative application of HLLC flux vectors is equivalent to flux-

difference splitting if both methods predict the same contact state, i.e., if 

  ,    
         

   
  . To demonstrate this property it is most convenient to 

start from the flux-difference result. From Equation (3.27) and Equation (3.28), 

the contact velocity predicted by the flux-difference splitting solver is: 

 
  

    ,  
  

 

  , 
 (3.35 a) 

 
  

  
 

   ,   ,     ,   ,   
 
     

  , 
   ,    ,    ,    (3.35 b) 

which simplifies to: 

 
  

  
                            

               
 (3.36) 

This form of the contact velocity is equivalent to Equation (3.32 b) from the 

linearized HLLC solver. As a result of these findings two useful conclusions have 

been drawn. First, in the limit of acoustic wave strength a non-conservative 

application of fluxes from the HLLC Riemann solver is guaranteed to produce the 

correct wave transmission properties at a non-mixing material interface. Second, 

as the HLLC solver is more readily extended to the nonlinear acoustic equations 

its use is preferable over that of the flux-difference splitting technique. 

A similar effort to show equivalence between the flux-difference solver and the 

HLLC solver was not carried out for the nonlinear acoustics equations. This is a 

result of the underlying difficulty in extending the flux-difference solver to the 

nonlinear acoustic equations. As previously discussed in Subsection 3.2.3, a Roe 

linearization is needed to extend the flux-difference solver. For the nonlinear 

acoustic equations determination of the Roe linearization is not straightforward. 

The causes of this difficulty are further discussed in Subsection 3.2.7. 
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3.2.6 Wave Speed Estimates for HLL and HLLC 

To improve solver accuracy high quality estimates for SL and SR are used in the 

HLL and HLLC Riemann solvers. For the linear acoustic equations the SL and SR 

wave speeds are constant values as defined by the system eigenvalues: 

   ,         
     ,  (3.37 a) 

   ,         
    ,  (3.37 b) 

For the nonlinear case Batten et al. [6] suggests wave speed selections as the 

minimum and maximum eigenvalues from the initial left, right, and Roe averaged 

contact state, U*Roe. 

   ,                    ,  
      

    (3.38 a) 

   ,                    ,  
      

    (3.38 b) 

For reasons discussed in Subsection 3.2.7, the Roe linearization algorithm has not 

been included in the numerical model, and an alternative method to estimate the 

contact state eigenvalues was required. For this purpose an earlier suggestion by 

Toro et al. [75] is used, where the intermediate state is initially estimated using 

the preliminary estimates of the wave speeds. To elaborate on this process, the 

preliminary wave speed estimates are: 

   
    

        (3.38 a) 

   
    

        (3.38 b) 

   
       

    ,   ,   
 ,   

   (3.38 c) 

Using these estimates the approximate solution to contact state is: 

          
    ,   ,   

 ,   
 ,   

   (3.39 a) 

   
     ,    

    
    (3.39 b) 

Using the approximate contact state solution updated values for wave speeds are 

determined according to: 
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                ,   
     

     (3.40 a) 

                ,   
     

     (3.40 b) 

This procedure essentially requires two evaluations of the HLL or HLLC 

algorithms, adding to the computational requirements of the overall flux solution. 

As the nonlinearity of the problems considered is expected to be small the 

difference between SK’ and SK is also expected to be small. In the present work 

this two stage solution has been used; however, if future applications are more 

computationally demanding it may be acceptable to use just the first stage wave 

speed estimates. 

3.2.7 Roe Linearization at Material Interfaces 

This subsection is presented as a brief discussion on the potential use of the Roe 

solver [63] for the nonlinear acoustic equations. After implementing the flux-

differencing scheme for the linear acoustic equations, some considerations were 

given to extending the method with a Roe linearization for the nonlinear 

equations. Ultimately, this approach was abandoned in favor of the HLLC 

methods shown in Subsections 3.2.4 and 3.2.6. Unlike the HLLC, Roe‟s 

expressions derived from the Euler equations are not intuitively transferable to the 

nonlinear acoustic equations. In general the derivation of a Roe linearized 

Jacobian can be carried out for equations sets other than the Euler equations, but 

the results may not as simple. By examining the nonlinear acoustic equations in 

Chapter 2 it can be seen that they are not homogeneous of order one, in the sense 

that            . As noted by Roe [63], much of the simplicity apparent in 

the linearization of the Euler equations stems from their homogeneous of order 

one property. For this reason, the Roe average Jacobian and eigenvectors may 

lack the simplicity to make Roe linearization an attractive option. 
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3.3 Spectral Properties of the Reconstruction and Flux Scheme 

To better appreciate the influence of the WENO reconstruction and the two 

smoothness measures on wave propagation properties, analysis using the 

approximate dispersion relation (ADR) developed by Pirozzoli [58] has been 

conducted. The ADR analysis is similar to the analytical concept of a modified 

wave number used by Lele [46], but is more general to include schemes that 

cannot be evaluated analytically. This technique has previously been applied to 

the standard WENO schemes [58], but new analysis for the WENO-Z schemes is 

reported here. To perform the ADR analysis a sinusoidal wave is initialized on the 

computational grid and then the solution is advanced for a very short time, τ ≪ 1. 

By choosing a suitably small value of τ, the solution contains errors 

predominantly produced by the reconstruction and flux schemes. For the analysis 

conducted in this section the HLL flux was used.  By comparing the Fourier 

coefficient of the initial wave,        , to the Fourier coefficient of the propagated 

wave,      ,   ,  dissipative and dispersive properties of schemes can be 

approximated. From [58] the ADR is defined as: 

 
      

𝑖

 
    

     ,   

       
  (3.41 a) 

 
   

  

 
 (3.41 b) 

         (3.41 c) 

Where i is the complex value     , Φ(ϕn) is the complex-valued ADR, ϕn is the 

numerical wave number, N is the number of points used to resolve the initial 

sinusoidal wave, and h is the spatial discretization increment. The real-valued 

component of the ADR is a measure of the dispersive (wave speed) error, while 

the imaginary-valued component is a measure of the dissipative error. As 

numerical error is cumulative over potentially hundreds of wave-lengths it is 

undesirable to have these error measures exceed a value of 0.005. 

This analysis was first conducted for a fundamental resolution of N = 24.25, and 

subsequently for several integer harmonics. Analyses for higher resolutions are 
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not shown, as all of the schemes considered are spectrally accurate for N > 25. It 

is also notable that the ADR analysis is conducted using non-integer value 

resolutions. This is done to reduce any influence that initial position of the wave 

profile relative to the gird nodes might have. For integer value resolutions the grid 

alignment is the same for each wavelength, while for non-integer resolutions the 

alignment varies. For this purpose a completely arbitrary resolution is ideal; 

however, to obtain accurate results from the Fourier transform used in Equation 

(3.41 a) an integer number of wavelengths is needed in the analysis region. As a 

result the resolution of 24.25, which contains exactly 97 nodes in four 

wavelengths, was used as an acceptable compromise. 

For all calculations the fluid properties were co = 1.0, ρo = 1.0. The grid resolution 

was  x = 0.01, and ϕn was modified by increasing the frequency of the initial 

wave profile:  

 
           

  

  
           (3.42) 

where xo is the left boundary of the analysis region and ζ = π/6. Figure 14 plots 

the real valued component of the ADR for the r =3 and r = 4 WENO schemes. 

Points that lie on the spectrally accurate line, Re[Φ(ϕ)] = ϕ, indicate the wave is 

well resolved and will propagate with the correct wave speed. Also included in 

Figure 14 for comparison is the analytically obtained ADR of a 7
th

 order 

polynomial fixed stencil scheme. As expected the WENO schemes are less 

accurate for high wave numbers (low resolutions) than their fixed stencil 

equivalent. In general it can also be seen the r = 4 schemes perform better than the 

r = 3 schemes. Importantly, Figure 14 shows the WENO-Z smoothness measure 

provides slightly better properties than the standard smoothness measure.  
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Figure 14: Wave speed as a function of frequency for several shock capturing numerical schemes. The 

schemes are denoted: WENO-S5 and S7 for the r =3 (5th order) and r = 4 (7th order) schemes using the 

smoothness measure from Jiang and Shu [36], WENO-Z5 and Z7 for the r =3 (5th order) and r = 4 (7th 

order) schemes using the modified smoothness measure of Borges and Carmona et al. [9]. 

 

While the results shown in Figure 14 give a good indication of general properties, 

it is the small deviations from spectral accuracy that are not visibly discernable 

that are most interesting. Table 3 summarizes the dispersive error of the WENO 

schemes, while Table 4 summarizes the dissipative error. Also included in this 

analysis for comparison are the ADR properties of a 2
nd

 order TVD scheme using 

the van-Leer gradient limiter [43]. 
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Table 3: Summarized wave speed error as a function of frequency for several shock capturing 

numerical schemes. Schemes designations are the same as in Figure 14, with the addition of U7 for the 

7th order fixed stencil scheme, and TVD for the 2nd order TVD scheme.  

    Re{Φ(ϕn)} – ϕn 
N ϕn TVD U7 WENO-S5 WENO-S7 WENO-Z5 WENO-Z7 

24.25 0.26 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 
12.13 0.52 0.0090 0.0000 -0.0004 0.0000 -0.0001 0.0000 
8.08 0.78 0.0189 -0.0001 -0.0048 -0.0010 -0.0012 -0.0003 
6.06 1.04 0.0104 -0.0016 -0.0274 -0.0092 -0.0081 -0.0069 
4.85 1.30 -0.0516 -0.0103 -0.1046 -0.0471 -0.0353 -0.0408 
4.04 1.55 -0.2050 -0.0434 -0.2402 -0.1550 -0.1844 -0.1381 
3.46 1.81 -0.4770 -0.1366 -0.5146 -0.3658 -0.4782 -0.3141 

3.03 2.07 -0.8732 -0.3442 -1.0022 -0.7880 -0.9703 -0.7212 
 

 
Table 4: Summarized dissipation error as a function of frequency for several shock capturing 

numerical schemes. 

    Im{Φ(ϕn)} 
N ϕn TVD U7 WENO S5 WENO S7 WENO Z5 WENO Z7 

24.25 0.26 -0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 
12.13 0.52 -0.0110 0.0000 -0.0015 -0.0001 -0.0003 0.0000 
8.08 0.78 -0.0555 -0.0004 -0.0124 -0.0027 -0.0035 -0.0009 
6.06 1.04 -0.1641 -0.0033 -0.0481 -0.0193 -0.0167 -0.0137 

4.85 1.30 -0.3560 -0.0161 -0.1345 -0.0730 -0.0559 -0.0617 
4.04 1.55 -0.6284 -0.0535 -0.3543 -0.1726 -0.2450 -0.1556 
3.46 1.81 -0.9541 -0.1353 -0.6819 -0.3327 -0.6071 -0.2945 
3.03 2.07 -1.2901 -0.2750 -1.0197 -0.6687 -0.9555 -0.5517 

 

From the reported ADR values it can be seen the 5
th

 order WENO-Z scheme 

provides better spectral accuracy than the 7
th

 order standard WENO-S scheme for 

resolutions greater than N = 5. As expected the TVD scheme is the most 

dissipative, while the 7
th

 order WENO-Z scheme is the least. When comparing the 

two smoothness measures, ADR properties produced by the WENO-Z schemes 

are at least a factor of three better for the first three harmonics analyzed. 

Specifying threshold of |Re{Φ(ϕn)} – ϕn| ≤ 0.005 for well resolved waves, it can 

be seen that all of the WENO schemes potentially allow for the accurate 

representation of three harmonics when the fundamental frequency is resolved 

with N = 24.25.  
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When interpreting these results it is also important to recognize limitations of the 

ADR analysis. As discussed by Pirozzoli [58], complex wave profiles may 

contain multiple harmonic components. For linear schemes this does not influence 

the underlying spectral accuracy; however, for the profile dependent WENO 

schemes this is not the case.  For this reason the ADR results provide an upper 

bound estimate on the performance capabilities of a particular scheme, and the 

achieved accuracy for nonlinear wave propagation is expected to be somewhat 

less. 

A few additional comments are now provided on issues encountered when 

conducting this analysis. In the procedure discussed by Pirozzoli [49] it is 

recommended to use τ ≪ 1 to minimize the influence of time discretization error, 

but particular values for σ are not given. As the ADR the analysis advances the 

solution using a single step, it is effectively using 1
st
 order time-integration. When 

this 1
st
 order time-stepping is used with the implemented high-order upwind 

schemes and σ = 10
-4

, the resulting numerical error includes small amounts of 

positive dissipation (amplification), indicating that the schemes may be unstable. 

It has been found that the dissipative error became negative for all evaluated 

schemes once time discretization error was further reduced by choosing σ = 10
-5

, 

or by using the high-order Runge-Kutta time integration discussed in Section 3.4. 

This indicates that the observed amplification of well resolved waves is a product 

of the 1
st
 order time-stepping, and that the implemented WENO schemes, when 

coupled with RK time integration, are both stable and dissipative. 
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3.4 Runge-Kutta Time Discretization 

For the r = 3 and r = 4 WENO schemes a classic 4
th

 order Runge-Kutta (RK) 

algorithm is used to evolve the solution. The particular RK implementation used 

applies an aggregate value, L
RK4

, to update the global solution according to: 

 

                

     
 

 
        

 

 
        

 

 
        

 

 
        

        
 

 
        

        
 

 
          

                  

(3.43) 

Similar to the spectral properties of the reconstruction schemes, there is an 

important distinction between formal order of accuracy and spectral accuracy of 

the RK time discretization. The discussion to follow is based on the work by Hu 

et al. [35], which is strongly recommended as additional reading.  Importantly, it 

is shown the allowable values for  t are considerably smaller when numerical 

dissipation and dispersion are to be kept to a negligible amount.  

Using a simplified notation, Runge-Kutta schemes can be formulated as [35]: 

                 
    

   

   

 (3.44) 

where p is the number of stages, and w = [
1
/6, 

1
/3, 

1
/3, 

1
/6] and p = 4 for the 

classical RK4 scheme. By applying a spatial Fourier transform to U
n
 and U

n+1
, the 

spectral properties of solution advanced in time can be compared to the initial one 

[35]: 

 

   
       

             
     

 

   

  

(3.45 a) 
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(3.45 b) 

             (3.45 c) 

where    
  is the k frequency of the Fourier transform of   , and the coefficients cj 

= [1, ½! , 
1
/3!, ¼! ] are related to wi in Equation (3.44). The value k* is the effective 

wave-number produced by the spatial discretization. For the adaptive WENO 

schemes this value cannot be analytically determined, but it can be estimated 

using the approximate dispersion relation (ADR) discussed in Section 3.3, where 

and relation between k
*
 and ϕn is simply: 

    
  

 

  
 (3.46) 

In Equation (3.45) the quantity r is the numerical amplification factor, as it 

represents the total change in amplitude or phase of a particular frequency in the 

solution. The exact amplification factor, re, includes only errors induced by the 

spatial discretization. To specify the spectral accuracy of a particular Runge-Kutta 

scheme, the ratio r/re, can be numerically evaluated to produce the aggregate 

values:  

  

  
         

(3.47 a) 

 
             

 
         

 
 

(3.47 b) 

 

      
        

        
  

(3.47 c) 

For accurate wave propagation the magnitude error, |r|, should be within a small 

tolerance of 1.0, and the phase error, δ, should be within a small tolerance of 0.0. 

Hu et al. [35] choose |δ| > 0.001 as the limit for accurate wave propagation. From 

Figure 15, which plots |r| and δ for the classic RK4 scheme, it can be seen that the 

phase error is only below this threshold for    
        . 
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Figure 15: Dissipation and phase error of the four-stage Runge-Kutta scheme. Reproduced from [35].  

From the analysis shown in Figure 15 it can be seen that the spectral resolution is 

related to both the time step,  t, and the effective wave number, k
*
. For a scheme 

with good spectral properties k* should be within close tolerance of the true wave 

number, k. For this tolerance Hu et at. [35] specify a deviation of less than 0.005. 

From the data presented in Table 3, it is estimated that the threshold, |Re{Φ(ϕn)} 

– ϕn| ≤ 0.005, is exceeded for ϕn > 1.0 with both the r =3 and r = 4 WENO 

schemes. By using Equation (3.46) to translate ϕn into equivalent k* values, the 

time steps needed for good spectral accuracy are determined according to: 

     
         (3.48) 

where   
      for the discussed WENO schemes. 

To produce a RK scheme with better spectral accuracy properties Hu et al. [35] 

optimize the values of cj in Equation (3.45) to increase the error thresholds shown 

in Figure 15. This procedure produces schemes that have higher accuracy limits 

but lower formal orders of accuracy. The spectrally optimized four-step algorithm 

has a better accuracy limit of, ck
*
 t < 0.85; however, the scheme has only second 

order formal accuracy. If 4
th

 order accuracy is to be maintained, the optimized six-

stage scheme can be used, which also allows for a much higher accuracy limit of 

ck
*
 t < 1.75. Unless otherwise noted, the classic four-step RK scheme has been 

used with suitably small values of  t for all calculations in this thesis. At present 

the six-step algorithm has not been implemented, as the calculations performed do 

not demonstrate the need for larger allowable time steps. In future works when the 
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model is applied to scenarios that are more computationally demanding, the six-

step procedure is worth considering as it may give a 40% reduction in the total 

number of required operations for similar spectral accuracy. 

3.5 Boundary Conditions 

For the one-dimensional wave propagation problems currently studied there is 

only one boundary condition of practical interest to discuss. This is the periodic 

driven boundary used to introduce sinusoidal waves into the domain for both the 

linear and non-linear models. As analytical solutions are primarily specified using 

fluid velocity, the numerical boundary condition is defined as: 

          
    

  
       (3.49) 

where the location xo is taken to be the boundary face of the domain, and unless 

otherwise noted xo = 0.0. This simple boundary condition is intended only to 

introduce incoming waves, and is not intended to interact with outgoing waves in 

a physically accurate manner. From the linear acoustic plane wave condition the 

fluid density is set according to: 

      

  

  
 (3.50) 

These conditions are applied to an external boundary cell and to the associated 

boundary face. Although no formal efforts to quantify the order of accuracy of 

this method are made here, it can be stated that the first internal cell can use at 

most the r = 2 WENO scheme for reconstruction. As the cumulative error of long 

propagation is of primary interest in this study, this simplified approach to the 

boundary condition is deemed an acceptable approximation.  

3.6 Discussion 

Having described in detail the use of finite volume WENO spatial reconstructions, 

it is worthwhile to note the use of WENO methods is not typical for many 

applications in acoustics.  As discussed, the WENO reconstruction scheme can be 
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categorized as an upwind method [70], and as a result the numerical error contains 

both dissipative and dispersive components [58]. In linear acoustics central finite 

difference schemes are more often used as they produce only dispersive errors 

[46]; thus adequately resolved waves can be propagated without dissipation over 

long distances. For nonlinear acoustic problems central finite difference methods 

are also popular when the physical solution is known a priori to not contain 

shocks or discontinuities.  

Centered finite-difference methods can also be used for nonlinear ultrasound, such 

as in the work by Ginter et al. [29], when used with spectral filtering and 

sufficient resolution to allow shock waves to be smoothly represented in the 

numerical domain. One of the primary challenges in the current work is to reduce 

the resolution required to propagate the shocked saw-tooth wave profile. 

Resolving waves with several hundred cells (allowing shocks to be approximated 

as steep but smooth gradients) is not a practical option when considering the 

eventual need for three-dimensional simulations containing hundreds or thousands 

of wavelengths in the domain. It is for this reason the present work is centered on 

the use of WENO methods which allow for the oscillation free inclusion of shock 

waves in the solution while using reasonably low spatial resolutions.  

A valid criticism on the use of explicit polynomial WENO methods in the current 

work is the availability of shock-capturing schemes based on the implicit 

polynomial methods made popular by Lele [46]. The implicit polynomials used in 

these methods are known to possess much better wave propagation properties than 

explicit polynomial of equivalent order. However, the simple implicit spatial 

schemes are not suitable for problems containing discontinuities, and extra 

considerations are needed to obtain shock-capturing capability. A brief review of 

shock-capturing implicit polynomial methods reveals that these schemes may rely 

on TVD limiters [21], or hybrid algorithms that incorporate ENO or WENO 

methods, [16, 57, 62, 65, 67], to achieve shock capturing capability. Implicit 

polynomial methods that use artificial viscosity to prevent numerical oscillations 

also exist, but were not further investigated. Referring to [58], it can be shown 

that the spectral properties of the compact scheme incorporating a TVD limiter 
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[21] are not better than those of the explicit WENO schemes. 

When considering hybrid schemes that include some aspects of ENO or WENO 

methodology, the algorithm complexity and development time are increased 

considerably over the use of a single methodology. Hybrid schemes typically 

included all aspects of both underlying schemes as well as additional algorithms 

to determine when each is applied. It is this added complexity of hybrid methods 

that primarily limits the current work‟s focus to the basic WENO schemes. It is 

likely the available hybrid methods offer improved wave propagation accuracy in 

smooth regions, and may also offer improved accuracy for the important post 

shock region. However, the thorough understanding of the WENO schemes 

resolving capabilities for nonlinear acoustic wave propagation provided by the 

current work, in particular the influence of different smoothness measures, is a 

valuable result that will remain relevant to possible hybrid scheme developments. 

Furthermore, as is shown later, the basic WENO scheme is capable of capturing 

many of the phenomena of interest at reasonably low resolutions, thus the added 

complexity and development may not be required. If future applications of the 

developed model would reveal limitations of its capabilities, a recommended 

starting point is to use the Conservative Hybrid Compact-WENO Scheme 

developed in [57], or to use the recent Generalized Finite Compact Difference 

Scheme by Shen and Zha [67] which incorporates a 5
th

 order WENO algorithm. 
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4 Verification of the Numerical Model 

In this chapter numerical results are presented to verify the implemented 

numerical model and to evaluate its accuracy. Calculations performed with the 

linear acoustic governing equations are used to verify the scheme by 

demonstrating grid convergence to an analytical wave propagation solution. 

Calculations with the linear acoustic equations are also used to verify that the 

modified HLLC Riemann solver discussed in Subsection 3.2.4 correctly 

represents wave transmission and reflection at material interfaces. Furthermore, 

performance of the numerical model is demonstrated using a series of nonlinear 

plane wave calculations. From these calculations the models accuracy is 

thoroughly evaluated with 25 and 50 point resolutions for the fundamental 

wavelength. The models accurately captures the fundamental and second 

harmonic propagation, but the model fails to capture third and higher harmonics 

for the resolutions considered. In all discussions to follow the r = 3 and r = 4 

schemes using the standard smoothness measure [36] are designated WENO-S5 

and WENO-S7, while the r = 3 and r = 4 schemes using the low-dissipation 

smoothness measure [9] are designated WENO-Z5 and WENO-Z7. 

4.1 Grid Convergence for the Linear Acoustic Model 

To verify grid convergence of the numerical model a simple linear wave 

propagation test has been used. For each calculation performed the initial 

condition and analytical solution are: 

              
 

  
  

(4.1) 

 
                 

 

  
   

(4.2) 

where f is the analysis frequency the fluid properties are co = 1.0, ρo = 1.0, and the 

perturbed density is set according to the linear relation ρ’ = uo ρo/co. In the 

calculations shown below f = 0.5 s
-1

 is used to give a wavelength of 1.0 on the 

computational domain, which contains twenty wavelengths in total. Analysis of 

the numerical solution is conducted using ten wavelengths from an internal region 
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of the domain to avoid boundary effects. Additionally, the analysis is conducted at 

time t = 1.0, which corresponds to a propagation distance of 1/π wavelengths.  

From the numerical models solution the L1 and Linf error norms are calculated as: 

 

   
 

 
                

 

   

 

(4.3) 

                         (4.4) 

The order of grid convergence for each increment in resolution is then defined 

according to: 

 
  

                

            
 

(4.5) 

where L(Na) and L(Nb) are the error norms at the resolutions Na and Nb, and  xa 

and  xa are the spatial discretization increments at the resolutions Na and Nb. 

When evaluating the convergence rate between two resolutions values are 

specified for Nb > Na. For all calculations a CFL condition of 0.5 is used to ensure 

good spectral accuracy with the RK4 time integration. For reference an additional 

calculation series is also conducted using the low-dispersion and low-dissipation 

RK algorithm introduced in Section 3.4.  

Results from all test series are plotted in Figure 16, while Table 5 through Table 9 

gives the numerical values. The following discussion focuses on the L1 error norm 

results but the Linf results are also available in the tables. In general, all of the 

schemes achieve 5
th

 order grid convergence, and the WENO-Z smoothness 

measure provides notably lower error magnitudes compared to the WENO-S 

results. Both the WENO-S5 and the WENO-Z5 schemes show consistent 5
th

 order 

convergence. As the RK time integration algorithm is only 4
th

 order accurate, the 

observed 5
th

 order convergence rates are possible due to the near spectral accuracy 

produced by the CFL = 0.5 condition. Results from the low-dissipation RK4 

algorithm show similar 5
th

 order convergence rates for low resolutions when 

spatial discretization error dominates. For higher resolutions spatial error is 

reduced and the underlying second order convergence of the time discretization 

becomes evident. 
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The lowest error magnitudes and highest convergence rates were achieved using 

the r = 4 WENO schemes (WENO-S7 and WENO-Z7). For the WENO-S7 

scheme a relatively consistent 6
th

 order grid convergence is observed. This gird 

convergence, which is less than the theoretical 7
th

 order permitted by the r = 4 

stencil, can be attributed to the weighting mechanism in the WENO-S7 scheme. 

The WENO-Z7 scheme initially displays 7
th

 convergence, and then displays 8
th

 

hyper-convergence between the resolutions 20 and 40 points per wave. The 

appearance of hyper-convergent behavior is not further investigated here, but 

some discussion on the topic is available in [9].  For high resolutions ( > 40 points 

per wavelength) the WENO-Z7 scheme is reduced to 4
th

 order accuracy as the 

time discretization error from the RK4 scheme begins to dominate. 

 
Figure 16: L1 error norms for schemes in the developed numerical model. 

Designations in the legend are consistent with those in the text, with the addition of 

LD to designate used of the low-dissipation RK4 algorithm from [35]. 

 
Table 5: Grid convergence for WENO-S5 

reconstruction with HLL flux and RK4 time 

integration. 

N L1 R1 Linf Rinf 

10 1.61E-02   2.51E-02   
20 7.44E-04 4.44 1.33E-03 4.24 
40 2.26E-05 5.04 4.77E-05 4.80 
80 6.98E-07 5.02 1.43E-06 5.06 

160 2.18E-08 5.00 4.41E-08 5.02 
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Table 6: Grid convergence for WENO-S5 

reconstruction with HLL flux and low-dispersion low-

dissipation RK4 time integration. 

 

N L1 R1 Linf Rinf 

10 1.62E-02   2.50E-02   
20 7.39E-04 4.45 1.38E-03 4.18 
40 2.42E-05 4.93 5.41E-05 4.67 
80 2.84E-06 3.09 4.53E-06 3.58 

160 7.07E-07 2.00 1.11E-06 2.03 
 

 

Table 7: Grid convergence for WENO-Z5 

reconstruction with HLL flux and RK4 time 

integration. 

N L1 R1 Linf Rinf 

10 4.51E-03   1.23E-02   
20 1.04E-04 5.44 1.56E-04 6.30 
40 3.18E-06 5.03 4.99E-06 4.96 
80 9.97E-08 4.99 1.57E-07 4.99 

160 3.31E-09 4.91 1.06E-08 3.89 
 

 
Table 8: Grid convergence for WENO-S7 

reconstruction with HLL flux and RK4 time 

integration. 

N L1 R1 Linf Rinf 

10 3.69E-03   1.17E-02   
20 5.47E-05 6.08 1.32E-04 6.47 
40 6.41E-07 6.41 3.13E-06 5.40 
80 1.04E-08 5.95 8.52E-08 5.20 

160 2.67E-10 5.29 2.38E-09 5.16 
 

 
Table 9: Grid convergence for WENO Z7 

reconstruction with HLL flux and RK4 time 

integration. 

N L1 R1 Linf Rinf 

10 1.53E-03   1.01E-02   
20 1.15E-05 7.06 9.80E-05 6.68 
40 4.85E-08 7.89 1.82E-07 9.08 
80 2.49E-09 4.28 3.91E-09 5.54 

160 1.55E-10 4.01 2.43E-10 4.01 
 

  



  64 

4.2 Verification of Acoustic Wave Reflection 

To demonstrate the ability of the HLLC scheme to correctly solve wave reflection 

and transmission at a material interface, a test calculation identical to the one used 

in [47] has been carried out. As shown in the upper plot of Figure 17 the problem 

uses an initially stationary pressure disturbance to generate both left-moving and 

right-moving waves. The initial profile is given by [47]: 

 

             
    

  
 
 

            

          

  (4.6) 

where xo = 0.4,         , and       . From this initial profile, the right 

propagating eventually interacts with a material discontinuity located at x = 0.6, 

producing a reflected and a transmitted wave. At the discontinuity the linear 

acoustic material properties changes from (co,L = 1.0, ρo,L = 1.0) to (co,R = 0.5, ρo,R 

= 4.0) for an impedance ratio of 2.0.  

Along with the modified HLLC flux solver the computational model uses WENO-

Z5 spatial reconstruction and the standard 4
th

 order Runge-Kutta time 

discretization with a CFL condition of 0.70. A computational grid resolution of 

 x = 0.05 is equivalent to that in the calculation [47]. 

The lower left and right plots of Figure 17 show the computational results 

(discrete points) against the analytical solution (solid lines). From the quality of 

agreement it is evident the wave reflection and transmission is properly 

reproduced by the implemented HLLC solver. 
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Figure 17: Verification of acoustic wave reflection. Analytical 

solution given by solid line, computed solution shown by discrete 

points. 

 

4.3 Harmonic Generation for Nonlinear Wave Propagation 

To evaluate the developed numerical models ability to accurately calculate the 

harmonic profiles of nonlinear ultrasonic beams a series of plane wave 

calculations are conducted. Although practical applications in biomedical 

ultrasound require two or three dimensional analysis, the fundamental resolving 

properties of the numerical model are well illustrated using this simplified 

approach. Importantly, the presented numerical results presented include regions 

of the domain before and after the initial shock formation. The accurate 

propagation of shock wave fronts is a more significant challenge than capturing of 

the early stage wave distortion, and accurate representation of this behavior is 

critically important for the simulation of WPC microscopy and harmonic imaging. 

This importance is best realized when considering the co-focal WPC scenario 

depicted in Figure 4. In this configuration shocks are most readily developed at 
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the focal location of the conjugate beam. Their distortion or excessive damping 

during propagation back to the initial transducer could diminish the predictive 

capability for harmonic content in conjugate beams.  

4.3.1 Acoustic Shock at 10 Wavelengths 

The first test scenario uses a relatively strong plane wave with the velocity 

amplitude chosen to achieve shock formation after ten wavelengths. The 

analytical solution to this scenario is obtained using the method of characteristics 

with the progressive wave equation given in Section 1.2. For simplicity, a driving 

frequency of ω = 10 is used with normalized fluid properties of, co = 1.0, ρo = 1.0. 

The quantity of γ = 6.0 was chosen to correspond to distilled water at 20
o
C [8]. 

For all calculations a CFL condition of 0.5 is specified. In the numerical model 

waves are introduced into the domain using the periodic boundary condition 

described in Section 3.5; otherwise the domain is initially at an ambient state.  

A spatial resolution of 50 points per wave is used. With this relatively high 

fundamental resolution applied to such a short propagation distance the model is 

expected to perform well. Accordingly, these results are presented primarily to 

demonstrate that the nonlinear numerical model is fully capable of producing 

results consistent with the analytical solution. 

As a point of reference, numerical results for standard 1
st
 and 2

nd
 order methods 

are also shown. The 2
nd

 order scheme utilizes a Van-Leer Non-Smooth gradient 

limiter for total variation diminishing (TVD) properties and 2
nd

 order Runge-

Kutta time integration. Figure 18 plots the results obtained using the described 

WENO-Z5 schemes against these points of reference. From these results it can be 

seen that the WENO-Z5 scheme resolves the distorted wave profile extremely 

well, while the lower-order schemes are too dissipative to produce accurate 

results. Although not shown, results for this test with the WENO-S5 scheme are 

slightly more dissipative, while results obtained with the WENO-S7 and WENO-

Z7 schemes have slightly improve accuracy. 
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Figure 18: Nonlinear wave profiles from three numerical 

schemes. Shock formation occurs at ten wavelengths, x/co = 1.0. 

4.3.2 Acoustic Shock at 50 Wavelengths 

The second test scenario represents a 1 MHz wave propagating into a fluid with 

the properties of distilled water at 20
o
C. This test scenario is used to evaluate the 

evolution of the harmonic profile over an intermediate propagation distance, 

where the initial wave amplitude is selected to achieve shock formation at 50 

wavelengths. At a frequency of 1 MHz this corresponds to a distance of 15 cm. If 

instead a frequency of 10 MHz is considered, such as is the case in many 

application of acoustic WPC, this distance would become 15 mm. While this 

distance is not representative of full analysis domains, it is consistent with the size 

of high intensity focal regions in conjugate beams [13], thus the numerical results 

are relevant to applied ultrasonic WPC.    

Calculations are performed at the resolutions of 50 and 25 cells per fundamental 

wavelength. At 50 cell fundamental resolution there are 25 points for the 2
nd

 

harmonic, 17 points for the 3
rd

 harmonic, 12.5 points per 4
th

 harmonic, and five 

points for the 5
th

 harmonic. Recalling that for well resolved waves the dispersive 
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error should be, |Re{Φ(ϕn)} – ϕn| ≤ 0.005, and the dissipative error should be, 

Im{Φ(ϕn)} ≤ 0.005, the ADR analysis shown in Table 3 gives estimates of which 

harmonics in a distorting wave profile will be resolved. In Table 3 it is shown that 

the WENO-S7, WENO-Z5 and WENO-Z7 schemes will resolve waves that have 

more than eight points of resolution. This value corresponds to four resolved 

harmonics when the fundamental resolution is 50 points. Similar consideration is 

given to waves with 25 cells in the fundamental wavelength to show that up to 

three resolved harmonics are possible in the second calculation series. 

Once again, a 2
nd

 order TVD scheme result is also presented as reference to 

evaluate the WENO schemes performance. Additionally, at the 25 cell resolution 

a fixed-stencil 7
th

 order spatial reconstruction scheme is used to provide a 

benchmark result for the performance of conventional high order schemes. To 

give a fair comparison in the post shock region, unsupported harmonics were 

dampened from the high order result using the spatial filter described in [29]. 

Analysis is conducted by comparing Fourier coefficients from numerical results 

against the analytical Fay-Fubini solution given in Chapter 1. Fourier analysis of 

the numerical results is performed using ten periods of time history data from 

each of the discrete locations shown in Figure 19 and Figure 20. Results for the 50 

cell resolution calculations are plotted Figure 19.  
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Figure 19: Harmonic profiles before and after acoustic shock formation. Shock 

formation at 50 wavelengths, grid resolution of 50 points per wave. 

At the 50 cell resolution all of the WENO schemes are capable of resolving the 

harmonic profile of the distorting wave. As expected the the 2
nd

 order TVD 

scheme produces results that are far more dissipative that the WENO schemes. 

Specifically shown in Figure 19 are the least accurate WENO-S5 result and the 

most accurate WENO-Z7 result. As the WENO-Z7 result does not appreciably 

improve the numerical results it is concluded the WENO-S5 or WENO-Z5 

schemes are sufficient when 50 cells per fundamental wavelength are used. 

In Figure 20, the results for the 25 cell per fundamental wavelength resolution are 

presented. The best numerical result in this scenario is obtained using the WENO-

S7 scheme. Although not shown, the WENO-Z7 scheme admitted slight 

numerical oscillation into the solution, and for this reason it is not preferable to 

the WENO-S7 scheme when a fundamental resolution of 25 points per wave is 

used. As also shown in Figure 20, the WENO-S5 scheme moderately under 

predicts the extent of waveform steepening, resulting in and under prediction of 

harmonic content. Similar results are obtained using the WENO-Z5 scheme. 

As expected, the 2
nd

 order TVD scheme is highly dissipative and does not produce 

suitable results. Examining the results from the fixed-stencil high-order scheme 
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with spectral filtering, it can be seen the quality of agreement to analytical values 

actually exceeds the WENO results prior to the shock formation. However, after 

the onset of the initial shock the second and third harmonics demonstrate 

unphysical growth as a result of numerical oscillations originating from the 

shocked wave fronts. This result serves as the best justification for the use of 

shock capturing WENO schemes, as the conventional high-order scheme is 

clearly insufficient even when unsupported wave numbers are filtered using 

numerical dissipation. 

 
Figure 20: Harmonic profiles before and after acoustic shock formation. 

Shock formation at 50 wavelengths, grid resolution of 25 points per wave. 

 

4.3.3 Acoustic Shock at 100 Wavelengths 

The third test scenario uses a setup similar to the second one, but considers only 

the 25 cells per wave resolution, and reduces the initial amplitude to achieve 

shock formation at 100 wavelengths. These conditions are intended to present a 

more severe test of the numerical model in order to identify its functional limits. 

Similar to the previous test case a benchmark result was obtained using a 7
th

 order 

fixed-stencil reconstruction polynomial with better ADR properties. 

Shown in Figure 21 are the best results, which are obtained using the WENO-S7 
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reconstruction scheme. Not shown are the results for the 5
th

 order WENO 

schemes, which proved to be too dissipative, and the WENO-Z7 scheme, which 

admitted some numerical oscillation into the solution. 

 

Figure 21: Harmonic profile before and after acoustic shock formation. Shock formation at 100 

wavelengths, grid resolution of 25 points per wave. 

From Figure 21 it can be seen the WENO-S7 scheme is able to give a reasonable 

representation of the fundamental frequency and the generated 2
nd

 harmonic, but 

becomes slightly dissipative for the generated 3
rd

 harmonic. It is also evident that 

this underrepresentation of the third harmonic produces slightly over represented 

fundamental and second harmonic component. Similar to the previous test case 

the fixed-stencil scheme outperforms the WENO-S7 scheme prior to the shock 

location. After the initial shock location numerical oscillations pollute the 

harmonic profile calculated by the fixed-stencil scheme, while the WENO-S7 

result remains oscillation free. This result further demonstrates the need for the 

high-order WENO schemes when calculating high-amplitude sound beams 

containing shock wave profiles. 
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5 Acoustic Wave Phase Conjugation 

For a general introduction to acoustic Wave Phase Conjugation (WPC) processes 

refer to Section 1.3. For a review of nonlinear effects in acoustic WPC refer to 

Section 1.4. In this chapter the physical process and governing equations of 

acoustic WPC are further explained. A simplified analytical solution to the 

conjugate wave amplification rate is also presented. Importantly, details are given 

on the integration of a WPC model into the developed nonlinear acoustic model. 

Numerical results are presented to verify the numerical implementation against 

the known analytical solution. Concluding the chapter is a brief investigation on 

the potential influence of nonlinearity in the conjugate sound beam.  

5.1 Governing Equations for Paraxial WPC Conjugators 

For a relatively narrow conjugator with normal incident waves the device can be 

modeled using a paraxial (one-dimensional) approximation. Under this 

assumption only longitudinal stress waves are permitted, and an analytical 

solution of the resonant response in the active region is available from Merlen et 

al. [52, 53]. The linear elastic equations within the WPC active region are: 

   

  
  

  

  
   (5.1) 

   

  
  

  

  
 

 

 

  

  
 (5.2) 

where v is the displacement velocity, ζ = -σxx/ρoc is a normalized stress variable, 

and c is the longitudinal linear elastic sound speed. The right hand side of 

Equation (5.2) gives the source term responsible for the WPC effect in the active 

region. From [53] modulation of c by the externally applied magnetic field takes 

the form of: 

      
                (5.3 a) 

        
 

 
                  (5.3 b) 

where   and ϕ are the radial frequency and phase of the magnetic field 
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oscillations. Equation (5.3a) most closely represents the physical process, while 

Equation (5.3b) is a first order approximation that can be used in the numerical 

model.  As demonstrated through the more thorough derivation given in Appendix 

C, Equation (5.3a) can be used to provide an approximate form of governing 

Equation (5.2). The resulting expression gives the form of the stress equation that 

is used in the analytical solution:  

   

  
  

  

  
  

  

 
          (5.4) 

To achieve conjugation and amplification of an incident wave, the pumping or 

oscillation frequency,  , must be double the incident wave frequency, ω [52, 53]. 

It is this property that allows ultrasonic WPC to be highly frequency selective. For 

example, by oscillating the magnetic field at a particular frequency it is possible 

to conjugate a particular harmonic of an incoming wave. 

5.2 Partial Review of Analytical Solutions 

The complete analytical solution to paraxial acoustic WPC is described in the 

work by Merlen and Zhang [52] and furthered by Merlen et al. [53]. The complete 

general solution to paraxial WPC is extensive as a variety of solution types exist 

depending on physical parameters and initial conditions. As a result an exhaustive 

presentation of the general solution is beyond the scope of this thesis. Instead, 

only aspects of the analytical solution relevant to calculations discussed in the 

present work are discusses, and the additional review of [53] is highly 

recommended. It is also important to note that the presented analytical solution 

assumes linear response in the conjugator and in the neighboring fluid. As a 

result, consideration of nonlinear response in the fluid is left for numerical 

analysis in subsequent sections. 

The large physical amplification of waves achieved by WPC processes is 

dependent on establishing a resonant condition within the WPC active region. 

Analytical solutions to the WPC process are applicable for this resonant 

condition. Furthermore, in the analytical solution this resonant condition is 

defined only when the active region length is an integer multiple of a quarter 
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wavelength of the amplified wave. It has however, been demonstrated 

experimentally and numerically that resonant amplification is possible at non-

integer active region lengths. With these caveats in mind, the solution variables 

are defined as follows: 
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        (5.6) 

where ζ is the normalized stress variable, and w1, w2  are characteristic variables 

representative of left and right moving waves. The key variables to be solved are 

α the standing wave length scale, and δ the standing wave phase variable. All 

other variable definitions are consistent with those given in Table 11 below.  

This general solution contains an exponential growth term, Ae
Γt

, a standing wave 

pattern, sin(¼kαx + δ1) and a travelling wave term, sin(-½kx + ½Ωt + ϕ1). The 

relative phases of the standing wave pattern and the travelling waves are given by 

δ and ϕ, respectively. The final term mf1(x, t) is of the order O(m), where m≪1, 

and may be neglected for approximate solutions.  

In general, solutions depend on the length of the active region relative to the 

wavelength of the amplified waves. Even solutions, as defined in [53], have an 

even number of quarter wavelengths in the active region. This is equivalent to 

stating that stress oscillations at the active region boundaries are in phase or 180
o 

out of phase. Odd solutions, as defined in [53], are specified to have an odd 

number of quarter wavelengths in the active region. This is equivalent to stating 

stress oscillations at the active region boundaries are 90
o
 or 270

o
 out of phase. 

Within the group of solutions belonging to the even type, additional distinctions 

are made according to the selection of: 

 
     

  

 
           (5.7 a) 
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           (5.7 b) 

In Equation (5.7), selection of -1 leads to a solution of the first kind, while the 

selection of +1 leads to a solution of the second kind. The relations stem from 

enforcing wave reflection conditions at the boundaries of the active region. In [53] 

it is shown that solutions of the first and second kind differ in their intermediate 

stages, but they produce equivalent physical solutions. For this reason, only the 

solution of the first kind is given here. First, the key parameter, α, is solved 

implicitly from the following equations:  
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(5.8 b) 

which also produces two solutions for α depending on the choice of + or – in 

Go(α), referred to as Go
+
(α) and Go

-
(α). The correct value of α is the minimum of 

the two solutions as this produces the dominant amplification rate. The phase of 

the standing waves, δ1 and δ2, depend on the previous selection of Go(α). The 

procedure for obtaining δ1 and δ2 is as follows: 

if the dominant solution stems from Go
+
(α):        

  

 
,      , π    (5.9 a) 

if the dominant solution stems from Go
-
(α):         

  

 
,     π,  π    (5.9 b) 

where γ is the difference between the two phases γ = δ2 – δ1. From this, δ1 can be 

solved using the boundary conditions of the active region, arranged to give: 

 
   

   

 
       

 

      
  

    
    

           (5.10 a) 

         (5.10 b) 

Referring to Equation (5.5), the remaining two aspects of the analytical solution 

are the amplitude scale, A, and the phases of the traveling waves, ϕ1 and ϕ2. Both 

of these variables depend on the initial conditions in the active region, thus a 
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single solution cannot be given. For the amplitude scale, A, no analytical solution 

is available, as for most practical applications the active region does not initially 

contain a resonant wave. Therefore, to obtain the amplitude scale an external 

reference – such as the result from a high resolution numerical simulation – must 

be used. Similarly, the travelling wave phases depend on the initial condition; 

however, once the active region resonant condition is achieved only four possible 

solutions are available [53], and these are given in Table 10: 

Table 10: Phases of the travelling waves in analytical WPC even solutions of the first kind. 

Type ϕ1 ϕ2 

(a) +1/4 π  +5/4 π  

(b) -1/4 π  +7/4 π  

(c) -3/4 π  +9/4 π  

(d) -5/4 π  +11/4 π  

As previously mentioned, the large amplification of conjugate waves is dependent 

on the establishment of a resonant condition. Physically, waves incident on an 

active region do not instantaneously produce conjugate waves, but instead an 

exponential growth process takes place where both forward propagating and 

conjugate waves are continuously amplified. The resonant condition is achieved 

only when modulation of co is greater than a value known as the super-critical 

threshold [52]: 

Super-critical threshold even case: 
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  (5.11 a) 

 

Super-critical threshold odd case: 
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  (5.11 b) 

Although the odd length analytical is not discussed in this section, the 

supercritical threshold for odd length active regions is give here for use with 

numerical calculations. In general the even and odd solutions are qualitatively 

similar, differing primarily in their amplitude growth rates. Importantly, odd 

length conjugators have higher supercritical threshold values, thus calculations 
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performed with odd length conjugators must use a larger modulation depths. In 

both cases these thresholds represent the balance between energy input to the 

system and wave energy propagating out of the active region; when the rate of 

energy input exceeds output exponential amplitude growth occurs.  

For additional clarity Figure 22 plots the WPC process from incidence of the 

original wave, to initial transient growth, and finally to establishment of the 

resonant amplification process. For modulation depths below the super-critical 

threshold the third state of resonant amplification does not occur. 
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Figure 22: Production of a one-dimensional conjugate wave. 

Frame 1 shows the incident wave, frame 2 shows initial growth of 

the conjugate wave, and frame 3 show the fully formed resonant 

condition and transmission of the conjugate wave back into the 

passive fluid. 
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5.3 Integration of WPC in the Nonlinear Fluid Model 

As discussed in Chapter 3 the developed numerical model uses a high order 

reconstruction-evolution finite volume scheme. Within the active region and 

throughout homogeneous regions of external fluid, the spatial reconstruction is 

performed according to Section 3.1, and fluxes are calculated using the HLL 

approximate Riemann solver described in Subsection 3.2.2. 

To produce the WPC effect in the active region of a numerical model it is only 

necessary to modulate co according to Equation (5.3 a) or (5.3 b). This simplicity 

is a result of choosing perturbed density as a conservative variable. In contrast, the 

previous numerical models [52, 53] that have chosen pressure as a conservative 

variable require an additional source term to produce the WPC effect. This 

difference is further illustrated by the derivation shown in Appendix C. 

To integrate a WPC processes into the numerical model the coupling of the active 

region to the neighboring fluid is also considered. First, a large jump in acoustic 

impedance τ = ρoco exists across the interface with most fluids. Conveniently, the 

modified HLLC Riemann solver described in Subsection 3.2.4 ensures the proper 

transmission of acoustic waves across the interface. Second, the applicable 

governing equations differ between the active region (linear) and the neighboring 

fluid (nonlinear). Under these circumstances the problem arises of how to further 

modify the HLLC Riemann solver and how to apply the numerical flux. To 

address these issues a mixed solution is presented here that is consistent with the 

HLLC conservation integral, Equation (3.31). From the general HLLC expression 

for contact velocity, Equation (3.32 a), the terms corresponding to the linear 

elastic active region are linearized, while the terms corresponding to the nonlinear 

fluid maintain nonlinearity to the second order. The following equations give 

results of this procedure when the nonlinear fluid is respectively on the left and 

right of the interface: 
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 (5.12 a) 
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 (5.12 b) 

 

In Equations (5.12) values for p are solved using the linear and nonlinear relations 

given in Chapter 1, and ρ' is solved using Equation (3.33). Numerical fluxes are 

then applied according to the respective definitions of Flinear and Fnonlinear. For 

sufficiently weak waves this modified HLLC solver reduces to the linear acoustic 

solution, while increasing wave strength causes the solution to deviate.  

5.4 Validation of the Linear Acoustic WPC Model  

The test case used for validation of the linear acoustic WPC model is identical to 

the one shown in Figure 4 of Merlen et al. [53]. For this test case an active region 

is bounded by two passive mediums of differing acoustic impedance as shown in 

Figure 23. The following equations define the initial conditions for the numerical 

model as three wavelengths of amplitude, Ao = 1000 Pa in the leftmost portion of 

the active region: 

                     ,     
  

    
 ,              (5.13) 

Sound speed modulation in the active region begins at the start of the calculation, 

t = 0, and has a duration of 19 μs, which corresponds to the physical pumping 

duration in current devices. All parameters used for the analytical and numerical 

models are given in Table 11, for additional information refer to [53]. 

 
Figure 23: Initial wave profile for WPC validation calculation. 

 
The numerical model uses the WENO-Z5 spatial reconstruction scheme in conjunction 

with RK4 time integration and a CFL number of 0.8. Calculations were performed with 

grid resolutions of 12.5, 25, 50, 100, and 200 computational cells per wavelength in the 

active region. 
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Table 11: WPC verification calculation parameters. 

Parameter Value Definition 

m 0.10 Sound speed modulation depth 

Ω 1.6 π 10
7 
(rad/s) Modulation frequency 

ω = Ω/2 8.0 π 10
6
 (rad/s) Wave frequency (rad/s) 

kΩ  = Ω/co 4000 π Pumping frequency wave number 

kω = ω/co 2000 π Standard wave number 

tmax 19 μs Active region modulation duration 

kΩL 80π Normalized active region length 

L 2.0 cm Length of active region 

co 4000 (m/s) Active region natural sound speed 

ρo 9000 (kg/m
3
) Active region density 

τl 0.3 Left acoustic impedance ratio 

co,l 2000 (m/s) Sound speed, left region 

ρl 5400 (kg/m
3
) Density, left region 

τr 0.1 Right acoustic impedance ratio 

co,r 2000 (m/s) Sound speed, right region 

ρr 1800 (kg/m
3
) Density, right region 

 

As previously noted the amplitude term, A, in the analytical solution does not 

have a known value for arbitrary initial conditions; therefore, to set the reference 

amplitude, a value was selected to match the maximum amplitude in the 

numerical solution at the 200 cells per wave resolution level. 

Figure 24 plots the pressure profile at 19 μs (end of the pumping duration) as 

calculated using the analytical solution and the numerical model with 25 cells per 

wavelength resolution. Agreement between the two solutions appears to be quite 

good, and this agreement improves with higher resolutions. Careful inspection of 

Figure 25, which plots the L1 norms of the deviation between the resonant 

analytical solution and the transient numerical solution, shows the numerical 

solution is fully resonant after 18 μs. This confirms the viability of using the 19 μs 

time profile as a basis for comparison to the analytical solution. 

Figure 26 plots the stress (pressure) at the left boundary of the active region and 

provides a visual measure for the exponential growth of the conjugate wave. 

Specifically, Figure 26 plots the analytical solution (Equation 5.6) against the 

numerical result obtained using 25 cells per wavelength resolution. Comparing 

these two stress histories it is evident very good agreement is achieved after the 

initial transient is overtaken by the resonant solution. Although not shown, the 
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agreement obtained at higher resolutions is consistent with the plotted data. 

 
Figure 24: Numerical and analytical wave profiles in the WPC active region at t = 19 μs. 

 

 

 
Figure 25: Numerical convergence to the analytical resonant 

WPC solution. Decreasing error is related to decreasing 

magnitude of transient waves originating from initial conditions 

in the numerical model. 

 



  83 

 
Figure 26: Maximum stress (pressure) at the left boundary of the WPC active region. 

 

More formal error analysis is given in Table 12 and Table 13, where L1 error 

norms are shown relative to the analytical solution and relative to the 200 cell per 

wave numerical solution.  Additionally, Figure 27 plots the L1 norms to illustrate 

the solution convergence behavior, from which several notable results are evident. 

First, the numerical solution does not continue to converge appreciably to the 

analytical solution when resolution is increased beyond 50 cells per wave. As 

shown in Table 13, this behavior is not consistent with the purely numerical 

results, where the solution continues to converge at a reasonably similar rate up to 

the 200 cell per wave reference. There are several possible causes for this 

discrepancy. First, there are slight underlying differences between the governing 

equation set used for the analytical solution and developed numerical model. This 

if further illustrated in the derivation shown in Appendix C. Second, in the 

analytical solutions used here the O(m) term, mf(x,t), was neglected. Finally, it is 

possible that improper intermediate solution times from the Rung-Kutta scheme 

where used when setting co(t). The susceptibility of Rung-Kutta type schemes to 

produce error with time dependent boundaries and source terms is a well known 

issue [1]. 

It is worthwhile to note that the error magnitude – as opposed to the order of 

convergence – is quite good. When normalized by the average wave amplitude, 
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the L1 error at the 25 cell resolution is 0.025, while the normalized L1 error at the 

50 and 100 cell resolutions are less than 0.01. While addressing issues identified 

as potential sources of discrepancy between the numerical and analytical solutions 

may improve this accuracy somewhat, the current results indicate that the 

numerical model is capable of reproducing the WPC effect and can be used for 

investigations into the fundamental behavior of the phenomena.  

Table 12: Solution convergence to analytical values in the WPC active region. 

Resolution in cells per wave, error norms calculated using fluid pressure. 

Resolution Δx (mm) L1 / (1.0E+05) L1 / L1,max L1/σrms  R1 

12.5 8.0E-05 5.005 1.000 0.212   

25.0 4.0E-05 0.589 0.118 0.025 3.09 

50.0 2.0E-05 0.205 0.041 0.009 1.52 

100.0 1.0E-05 0.130 0.026 0.006 0.66 

200.0 5.0E-06 0.121 0.024 0.005 0.10 

 
Table 13: Solution convergence to numerical reference (Δx = 0.5E-05) in the WPC active region. 

Resolution in cells per wave, error norms calculated using fluid pressure. 

Resolution Δx (mm) L1 / (1.0E+05) L1 / L1,max L1/σrms R1 

12.5 8.0E-05 2.879 1.000 0.122   

25.0 4.0E-05 0.334 0.116 0.014 3.11 

50.0 2.0E-05 0.084 0.029 0.004 1.99 

100.0 1.0E-05 0.015 0.005 0.001 2.47 

200.0 5.0E-06 
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Figure 27: Solution convergence to analytical values in the WPC active region (top), and solution 

convergence to numerical reference (Δx = 0.5E-05) in the WPC active region (bottom). L1 error norms 

calculated using fluid pressure. 

5.5 Effects of Nonlinear Fluid Response in Acoustic WPC 

Referring to the review of nonlinear effects in ultrasonic WPC provided in 

Section 1.4, it becomes evident that many of the applications of ultrasonic WPC 

are only sufficiently represented using a multi-dimensional numerical model. 

However, having now established the sufficient accuracy of the nonlinear wave 

propagation model and having verified the numerical implementation of the 

acoustic WPC model, some preliminary applications of the completed one-

dimensional numerical model can be considered.  

In previous works that have numerically investigated nonlinear ultrasonic WPC 

[12, 13, 14, 22, 59, 60] the conjugate beam is assumed to be a perfectly time-

reversed and instantaneously amplified copy of incident beam. This assumption 

neglects the possible influences of nonlinearity on the fluid-conjugator interface, 
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and potential nonlinear effects in the conjugate beam related to the transient 

exponential growth of wave amplitudes. Using the developed numerical model, 

which accounts for the nonlinear coupling and the physical growth process, these 

two phenomena can numerically investigated.  

5.5.1 Numerical Analysis of WPC Amplification Rates 

In Section 5.2 it is shown that the WPC amplification rates has a constant 

exponential value. This growth rate is related to the conjugator properties, the 

pumping frequency, and the impedance match between the conjugator and the 

neighboring fluid. As a first approximation it seems entirely reasonable to neglect 

nonlinearity at the fluid-conjugator interface as the prominent nonlinear effects 

are cumulative over many wavelengths. Despite this, the sensitivity of the WPC 

process to factors such as domain length and defects in the conjugator is also quite 

high [77]. Thus the small influence of a local nonlinearity in the fluid response 

may be sufficient to alter overall behavior.  

To investigate this possibility, the developed numerical model is used for 

scenarios corresponding to even and odd active region lengths as defined in 

Section 5.2. For all calculations an initial wave of 10 MHz is used with a pumping 

frequency of 20 MHz, and the active region length is either 20 (even) or 20.25 

(odd) wavelengths. Physical properties of the fluid medium are set to match those 

of human fat tissue as reported in [64]: ρo = 915 kg/m
3
, co = 1480 m/s, γ = 9.9. 

This is done to produce a greater nonlinear response, as the B/A parameter of fat 

tissue exceeds that of water. Acoustic properties of the active region are consistent 

with those from [52]: ρo = 9000 kg/m
3
 and co = 4000 m/s. The numerical model 

uses WENO-Z5 spatial reconstruction and RK4 time integration with a CFL 

condition of 0.7. Spatial discretization is  x = 8 μm for a resolution of 50 cells per 

wavelength in the active region and 18.75 cells in the fluid domain. This 

discrepancy is due to the use of a constant  x despite the higher sound speed in 

the active region. Initial conditions in the active region are identical to those given 

in Figure 23. Sound speed modulation depth is specified differently for the even 

and odd scenarios according to the super-critical thresholds given by Equation 
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(5.11). For all additional physical parameters refer to Table 14. 

Table 14: Summary of parameters for nonlinear WPC amplification rate calculations. 

Parameter Value Definition 

m 0.04, 0.06 Sound speed modulation depth 

Ω 40.0 π 10
6 
(rad/s) Modulation frequency 

ω = Ω/2 20.0 π 10
6
 (rad/s) Wave frequency (rad/s) 

tmax 25 μs Active region modulation duration 

kΩL 80π, 81π Normalized active region length 

L 0.80, 0.81 cm Length of active region 

co 4000 (m/s) Active region natural sound speed 

ρo 9000 (kg/m
3
) Active region density 

τl,r 0.04166667 Left acoustic impedance ratio 

co,l,r 1500 (m/s) Sound speed, left region 

ρo,l,r 1000 (kg/m
3
) Density, left region 

Calculation results for the even and odd cases are given in Figure 28 and Figure 

29 respectively. These plots give the maximum pressure in the fluid region at the 

active region boundary as a function of time. Thus they can be used to gauge the 

wave amplitude growth in the active region. From Figure 28 and Figure 29 it is 

evident that the presence of nonlinearity in the fluid does not appreciably 

influence the WPC active region response. Specifically, in the regime of 

physically realizable pressures, |P| < 8 MPa, differences between the linear and 

nonlinear response are nearly negligible. From the normalized values given in the 

lower plots of Figure 28 and Figure 29, it can be seen that for both the even and 

odd  active region lengths a fluid pressure of 6 MPa is required to produce a 1% 

difference between the linear and nonlinear calculations. At later times during the 

WPC amplification the differences between linear and nonlinear results become 

more substantial. For these extremely high fluid pressures at the conjugator 

boundary the fluid nonlinearity appears to increase the amplification rates over the 

expected linear response. When considering reported conjugate beam focal 

pressures are approximately 8 MPa [14], and that the corresponding pressures at 

the transducer interface would be substantially lower, the assumption of a linear 

coupling appears to be entirely justifiable.  
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Figure 28: Pressure comparison of linear and nonlinear acoustic WPC, 

even length conjugator. Calculation with even active region length (kL = 

80π ), m = 0.04. Upper frame gives absolute values, lower frames gives 

relative values.  

 

 
Figure 29: Pressure comparison of linear and nonlinear acoustic WPC, odd 

length conjugator. Calculation with odd active region length (kL = 81π ), m 

= 0.06. Upper frame gives absolute values, lower frames gives relative 

values. 
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5.5.2 Numerical Analysis of Nonlinear Conjugate Sound Field 

To evaluate possible nonlinear influences related to the exponential growth of 

conjugate wave amplitudes some additional calculations are performed of a 

physical scenario similar to that in Subsection 5.5.1. The only difference from the 

previously described setup is the use of full 2.0 cm active region length. Results 

from this calculation are compared at the transducer surface to a location 7 mm 

(approx. 50 wavelengths) downstream in the conjugate beam. Figure 30 plots 

these pressure histories with the surface gage given in the upper plot and the 

downstream gauge in the lower plot. To provide a benchmark result each frame 

also contains results from an equivalent calculation conducted using only the 

linear governing equations. 

As expected the nonlinear fluid response at the transducer surface does not 

deviate significantly from the linear response for the pressure range considered 

(|P| < 8 MPa). When examining fluid pressure further downstream, deviation from 

the linear acoustic solution becomes visible for |P| > 1.5 MPa. The most evident 

result is the reduction in fluid pressure and a corresponding reduction in the 

conjugate wave amplitude growth. This reduction in peak pressure is a result of 

shockwave formation and shockwave related dissipation in the conjugate beam. 

This inability to produce equivalent increases in downstream pressure is 

consistent with a phenomenon known as acoustic saturation, and certainly 

warrants further investigation when the present numerical model is extended to 

multiple spatial dimensions. 

Another interesting effect evident from Figure 30 is the non-symmetric nature of 

the pressure history. Specifically, the peak positive pressure values begin to 

exceed the peak negative pressure values.  This results in a net positive pressure 

phase that exceeds the negative pressure phase. Asymmetrical waveforms are an 

expected result in focused nonlinear ultrasound beams but their occurrence is 

related to diffraction effects in the beam [14]. In the current simulation of a 

nonlinear plane wave, diffraction effects are not possible, so another explanation 

for the asymmetry must exist. By considering the continuous growth of the 
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conjugate wave amplitude it becomes evident that the increasing strength of each 

subsequent shock produces a corresponding increase in shock velocity. As the 

faster travelling shocks overtake the preceding waves the observed asymmetrical 

wave pattern is produced. This result has potential ramifications for predicting 

increases in the mean radiation pressure in a nonlinear conjugate beam, and serves 

as an excellent starting point for future investigations with multi-dimensional 

simulations.  
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Figure 30: Acoustic saturation in acoustic WPC beams. Pressure history comparison is between gauges 

located at the WPC active region surface (upper) and located 50 wave lengths away (lower). 
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6 Summary and Conclusions 

In this thesis the numerical modeling of nonlinear acoustic phenomena and 

ultrasonic Wave Phase Conjugation (WPC) are thoroughly investigated in the 

context of biomedical ultrasound applications. The primary objective of the 

current work is to develop a numerical model that can accurately represent the 

physical WPC process as described in Merlen et al. [53], and that can model the 

propagation of nonlinear waves including shockwave formation. In this regard, 

the primary objective of the current work is substantially completed.  

The literature review presented in Sections 1.1, 1.2, 1.3, and 1.4 provides a 

cohesive reference for future works related to the simulation of high amplitude 

ultrasound beams produced by magnetostrictive WPC devices. Most importantly, 

the potential applications of this technology are discussed and a comprehensive 

summary of current experimental and numerical works on this topic is given.   

The governing equations for the numerical model are developed in Chapter 2 and 

in Appendix A. These governing equations are consistent with well established 

second order wave equations – such as Kuznetsov‟s equation and the KZK 

equation – that are commonly used in the study of nonlinear acoustics. In Chapter 

3 the numerical scheme that is applied to the governing equations is described in 

detail. The selected scheme uses high order Weighted Essentially Non-Oscillatory 

(WENO) techniques based on their history of application to nonlinear fluid 

phenomena. Presented in Chapter 3 is novel spectral analysis of the WENO 

schemes. This analysis shows that the resolution required with current WENO 

techniques is between six and eight points per wave when considering linear wave 

propagation. This analysis also shows that when modeling nonlinear wave 

propagation with a fundamental resolution of 25 points per wave, there is an 

underlying limit of four harmonics that can be represented. 

In Chapter 4 a series of nonlinear plane wave calculations are presented to 

identify the functional limit of WENO schemes when applied to high amplitude 

ultrasonic wave propagation. From this calculation series, the seven cell stencil (r 

= 4) formulation using classic smoothness measure from Jiang and Shu [36] 
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(WENO-S7) is identified as most consistently producing accurate numerical 

results. When higher levels of resolution are used the five cell stencil (r = 3) 

formulation using current smoothness measures from Borges et al. [9] (WENO-

Z5) is also shown to produce highly accurate results. With the WENO-S7 scheme 

a resolution of 25 cells per wavelength is sufficient when nonlinear distortions 

accumulate over distances of up to 100 wavelengths. In practical application this 

length scale is relevant to the focal length of an incident or conjugate ultrasound 

beam. Outside the focal region wave amplitudes are typically low and the wave 

propagates linearly, for which the WENO scheme is capable of accurate 

propagation over many hundreds of wavelengths.   

Most importantly, the developed numerical model has successfully integrated a 

physical representation of magnetostrictive WPC within the nonlinear acoustic 

framework. In Chapter 5 this model was verified against known analytical 

solutions and has been shown to produce highly accurate results. Importantly, this 

development offers a novel combination of capabilities that can be used to 

conduct analysis on high amplitude wave effects in ultrasonic WPC. In Chapter 5 

the model is applied to investigate the influence of fluid nonlinearity in WPC 

amplifications rates. The calculation results show the amplification rate is not 

sensitive to nonlinear acoustic response at the transducer surface. One additional 

calculation including the conjugate wave field is also presented in Chapter 5. 

Results from this calculation show interesting asymmetrical waveform distortion, 

which provides motivation for future numerical studies using a multi-dimensional 

model. 

Based on the current findings it is recommended to continue development of the 

presently one-dimensional numerical model. Most importantly, the model should 

be developed for application to practical problems requiring two and three spatial 

dimensions. When adding this capability it is further recommended to consider 

use of the hybrid numerical scheme [67] that contains implicit compact methods 

for superior wave propagation capabilities and WENO methods for the 

accommodation of acoustic shock waves. Finally, it is recommended to 

incorporate a model for realistic acoustic attenuation processes, such as the one 
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described in [45]. These developments would overcome the main limitations of 

the current study and would allow for application of the model to a broader range 

of nonlinear acoustic problems occurring in biological tissues. 
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Appendix A: Derivation of the Nonlinear Acoustic 
Equations 
Consider an arbitrary volume, V, bounded by a control surface, S, where at any 

point on the surface the normal direction can be defined by the unit vector,    . 

Then the conservation of mass and momentum equations are: 

  

  
    
 

            
 

 A1.1 

  

  
      
 

                       
 

 A1.2 

where t is the time variable, ρ is the fluid density,    is the Cartesian velocity 

vector, and p is the fluid pressure. The purpose of this appendix is to translate 

these fundamental equations into conservative form second order wave equations. 

 

Conservation of Mass 

From ρ = ρ' + ρo, the conservation of mass equation can be readily simplified by 

removing the ρo term  from the left hand side differential term to obtain: 

 

  

  
     
 

                  
 

 A1.3 

 

which is the conservative integral form equation for the acoustic perturbed 

density. As will become evident in subsequent stages of this derivation it is also 

convenient to have the differential form of the mass conservation equation 

available. The divergence theorem is applied to the surface integral to obtain:  
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which gives: 

 

  

  
   
 

                
 

   A1.5 

 

As the volume integral equality must be true for any arbitrary space the 

differential operators must also be true throughout the domain; therefore: 
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              A1.6 

 

gives the conservative differential form of the acoustic density equation. 

  

Conservation of Momentum 

For generality the conservation of momentum equations are presented in vector 

notation. The basic procedure of this derivation is to first expand all differential 

operators to include only individual variables of ρ, p, or   . From here it will be 

shown that many of these expanded terms cancel, leaving a relatively simple 

conservative form equation stated in acoustic variables. 

First consider the expansion of variables on the left hand side (LHS) of the 

momentum integral equation: 

 
    

 

  
    
 

  

    
 

  
     

 

  
    

 

 A1.7 

The time differential term containing ρ is replaced using the continuity equation to 

obtain:  

 
   

 

  
     

 

  
    

 

   
 

  
            

 

   A1.8 

Now, to illustrate simplification of the term,          , consider the two-

dimensional case, where: 
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With this operation the compete the expanded LHS is: 
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 A1.10 

Now consider the expansion of variables on the right hand side (RHS) of the 

momentum integral equation: 

 
                          

 

 A1.11 

As will become evident the derivation is most readily completed by working with 

differential form equations. Applying divergence identities obtains: 

 

  
       
 

      
 

 A1.12 

and by considering each velocity component in the RHS vector equation as a 

scalar field, denoted as vk, it the convective momentum term can be expanded as: 

 
              
 

                     
 

                             
 

                             
 

 A1.13 

Expressed again in a vector representation this equation becomes: 

 
              
 

                               
 

 A1.14 

To summarize the expanded RHS of the momentum equation is: 

 
                                      

 

 A1.15 
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Now consider combining the LHS and RHS terms of the momentum integral 

equation:  

 
  

 

  
                    

 

  

                                   
 

 

A1.16 

Noting that           and           are common to both sides and can be 

eliminated, the simplified momentum integral is: 

 
  

 

  
  

 

                 
 

   A1.17 

In the above expression the acoustic variable of interest,   , is not isolated. 

Removing the volume integrals that are common to both sides allows for 

normalizing by ρ
-1

 to provide: 

  

  
           

 

 
   A1.18 

where        is now isolated, but additional manipulations are needed to achieve 

a conservative form.  First consider the term,         , which can be expressed as: 

          
 

 
    ,           A1.19 

This transformation is based on a common vector identity [79], and includes the 

assumption of an irrotational flow. It is this assumption and simplification that 

allow the momentum equation to reach a fully conservative form. For a two-

dimensional flow field this condition is expressed as: 

    

  
 

   

  
 A1.20 

Now consider ρ
-1 p; the ρ

-1
 term is expanded using Taylor series and p' is 

represented using the 2
nd

 order Tait-Kirkwood Equation of State:  
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     A1.23 

The constant, po, can be removed from the gradient operator, and the remaining 

terms are multiplied to obtain: 
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and the two separate gradient terms can be combined by noting that: 

   

  
    

 
  

  
  

 

 
  
   

  

  
 
 

 A1.25 

then the expression for the pressure gradient then becomes: 
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The differential momentum equation can now be expressed in a fully conservative 

form as: 

  

  
      

 

 
     

 
  

  
   

 
   

 
 
  

  
 

 

  A1.27 

Integrating over the control volume, V, and by applying the divergence theorem to 

the RHS, the conservative form integral equation for acoustic fluid velocity is: 
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Appendix B: One Dimensional Governing Equations 

This appendix provides a concise summary of the simplified one-dimension 

governing equations. Throughout this appendix the variable definitions are 

consistent with those used in Chapter 2. 

Governing Equations 
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 A2.1d 

Flux Jacobians 
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 A2.2c 

System Eigenvalues 

 

Linear System:        ,        A2.3a 

Nonlinear System:         ,           A2.3b 
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System Eigenvectors 
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Appendix C: Derivation of Model Equations for 
Acoustic WPC 

To illustrate the underlying differences in between the governing equations of the 

analytical and numerical models the following derivation is presented In this 

derivation the governing linear acoustic fluid equations are used to obtain an 

equivalent set of elastodynamic equations. Starting from the linearized fluid 

equations: 
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   A3.2 

the variable ρ’ is changed to ζ using the linear relations, p’ = c
2
ρ‟, and the 

definition, ζ = p‟/ρoc: 
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and: 

   

  
 

 

  
  

  

   
    

 

   

  
  

  

  
   A3.4 

Applying the chain rule to Equation (A5.3) gives: 
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At this stage the modified fluid Equations (A5.4) and (A5.5) exactly match the 

elastodynamic governing equations (Equation (5.1) and (5.2) in Chapter 5) that 

the analytical solution is derived from. For this reason, small differences between 

the numerical results and analytical solution are thought to originate from an 

approximation that is used for the  
  

 

  

  
  term in the analytical solution. To 

illustrate this discrepancy the exact form of  
  

 

  

  
  can be expanded according 

from the exact expression for sound speed oscillation: 

                    

   

  
 

                  

               
  

               

  
 

 

   

  
 

  

              
                

 

and allowing ϕ = π: 

  

 

  

  
 

 

 

  
 

  
           A3.6 

where co is the sound speed for the unperturbed state, and c is the magnetically 

perturbed sound speed. Now considering the governing equation for ζ, the source 

term can be exactly represented as: 
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This equation exactly represents the WPC process when the sound speed 

modulation defined by Equation (5.3 a) is applied to the linear acoustic governing 

equations. Differing from this is Equation (5.4) that is used in the analytical 

solution, where it appears the approximation (co/c)
2
 ≅ 1 is used. It is this 

approximation that may contribute to differences between the analytical and 

numerical solutions, which persist even for very high numerical resolutions. 

 


