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Abstract 

This thesis aims to demonstrate surface plasmon polariton waveguides that can 

easily be end fire coupled to single mode fiber and provide high nonlinear phase 

shifts. Firstly, the theory of surface plasmons is developed and the existence of a 

propagating mode for a single and double interface structure is proven. Then the 

vector finite element method is introduced and used to reproduce results for a lossy 

dielectric waveguide. The ss0 mode of the finite width thin film waveguide is 

calculated and the convergence of the numerical method is shown. A waveguide 

with width 3 µm and thickness 10 nm is found to have the maximum nonlinear 

phase shift of 0.0012 rad·W-1. The fabrication process flow is explained as well as 

difficulties encountered. Finally, applications are discussed and suggestions are 

made for future work that could improve the performance of these waveguides. 
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Résumé 

Cette thèse rapporte l'étude du comportement de guides d’onde de plasmons de 

surface couplés avec des fibres optiques monomodes, et générant des déphasages 

non linéaire élevés. Premièrement, la théorie des plasmons de surface est examinée 

et l’existence d’un mode de surface pour des structures à interface simple et double 

est démontrée. Ensuite, la méthode vectorielle par éléments finis est introduite et 

utilisée afin de reproduire les résultats pour un guide d’onde diélectrique dissipatif. 

Le mode ss0 d’un guide d’onde doté d’un mince film métallique de largeur finie est 

calculé et la convergence de la méthode numérique est présentée. De plus, il est 

démontré qu’un guide d’onde avec une largeur de 3 µm et une épaisseur de 10 nm 

présente un déphasage non linéaire maximal de 0.0012 rad·W-1. Le procédé de 

fabrication et les difficultés encourues à la réalisation expérimentale d'un prototype 

sont expliqués. Finalement, différentes applications sont mentionnées et de 

nouvelles méthodes d’analyse et de travail permettant d’accroître la performance 

des guides d’onde sont proposées.  
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Chapter 1: Introduction 

The motivation for current research into nonlinear photonics lies in the ability to 

extend the flexibility of photonics beyond the already broad possibilities of linear 

optics. The overall goal is to create original devices that can be made to complement 

electronics [1]. A subset of nonlinear photonics based on third order nonlinearities, 

which is described by n2 (m
2/W), the nonlinear refractive index, has been used to 

create innovative devices such as frequency converters, frequency combs, mode-

locked lasers and supercontinuum generators [2]–[6]. Since the nonlinear response 

is usually quite low, nonlinear devices usually require large lengths and large field 

intensities. 

   

Using plasmonics to induce high electric field intensities for enhancing nonlinear 

phenomena has been researched for the last two decades. The main method has 

been implanting metal particles or colloids into highly nonlinear dielectrics [1], [7]–

[10]. The local field around the metal particles have high intensities for laser pulses 

with wavelengths close to the surface plasmon resonance of the individual particles 

[10]. This translates to an enhanced third order nonlinearity for the material. 

Another approach is based on the so-called long range surface plasmon polariton 

(LRSPP) [11]. The LRSPP is a propagating mode that exists for thin metal films 

encased in a dielectric. This mode is localized to the metal-dielectric interfaces and 

depending on the film thickness can be tailored to low loss or high field 

confinement [11]. Using a highly nonlinear dielectric as the cladding for such a 

waveguide can lead to an enhanced nonlinear response [12]. 

 

Another tool that researchers use to observe large nonlinear responses is to select 

dielectrics with high nonlinear refractive indices. One such group of materials 

extensively studied is the Chalcogenide glasses. These amorphous glass materials 

contain sulfur, selenium and/or tellurium as well as other elements like germanium 

or arsenic [13]. Many Chalcogenides have broad infrared transparency, 
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e.g.,Ge23Sb7S70 (1µm-10µm), and large nonlinear indices of refraction, e.g., As2Se3 

(500 times larger than silica) [13], [14]. They also have large linear indices of 

refraction that facilitate the concentration of photons, e.g., Ge23Sb7S70 (n = 2.15) 

and As2Se3 (n = 2.83) [14], [15].  

 

Maximizing the waveguide nonlinear coefficient, γ, while keeping losses low by 

designing different waveguide geometries with different materials has been studied 

extensively. Table 1 gives a few examples of these waveguide types and their 

nonlinear figure of merit (FOM). The figure of merit is a measure of a waveguide’s 

nonlinear response, which includes loss. The nonlinear coefficient includes the 

effects of waveguide effective area and the material’s nonlinear refractive index. 

This value multiplied by the effective length, which describes the loss, gives the 

waveguide’s figure of merit.  

 

Table 1: Comparison of waveguide types and their Kerr nonlinear responses. 

Waveguide type 

Nonlinear 

index 

n2 (m
2/W) 

Nonlinear 

coefficient  

γ (W–1·m–1) 

Loss  

α (dB/m) 

Effective 

length 

Leff (m) 

Nonlinear 

figure of merit 

(FOM) 

γ·Leff
 (W–1) 

Highly nonlinear 

silica fiber [16] 
2.2×10–20 0.021 0.2 21715 91.20 

Bismuth oxide 

fiber (Bi2O3) 

[17],[18] 

1.1×10–18 1.36 0.8 5.42 7.38 

As2S3 waveguide 

[5] 
3.0×10–18 9.9 60 0.072 0.72 

Silicon waveguide 

[19], [20] 
4.5×10–18 150 400 0.011 1.63 

As2Se3 microwires 

[14] 
1.1×10–17 187 <1 4.343 812.14 
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The objective of this thesis is to determine, through simulation and 

experimentation, if a large Kerr nonlinear response can be achieved by designing a 

gold strip surface plasmon waveguide with a suitable Chalcogenide glass as the 

cladding. The surface plasmon polariton’s ability to strongly confine electric fields, 

should enhance the already high Kerr nonlinearity of Chalcogenide and result in a 

waveguide with a large nonlinear coefficient. However, the surface plasmon 

polaritons losses are expected to be high, so the waveguides’ figure of merit, γ·Leff, 

will be calculated and compared to the results of Table 1. 

 

This thesis is organized into six chapters. The second chapter, Plasmon Polariton 

Waves, introduces the theory for solving propagating modes of infinitely wide 

metal-dielectric waveguides with one or two metal-dielectric interfaces and briefly 

explains the notation for modes of a finite width thin film structure. The third 

chapter, Nonlinearity of Waveguides, presents the necessary background 

information on the third order Kerr nonlinearities present in optical waveguides and 

their effect on signal propagation. The fourth chapter, Simulation of Finite Width 

Thin Film Gold Strip Waveguides, explains the numerical simulation of the 

waveguides, the vector finite element method, and provides simulation results for 

different structures. The fifth chapter, Fabrication and Experimentation of Gold 

Strip Waveguides, describes the fabrication process of the waveguides and the 

experimental setup for the loss characterization. The sixth and final chapter, Results 

and Conclusion, discusses the results and provides feedback for future research in 

this area. 
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Chapter 2: Plasmon Polariton Waves 

A surface plasmon polariton is defined as a surface oscillation of electrons coupled 

with a photon at the interface between a material that has a positive permittivity, 

usually a dielectric, and a material that has a negative permittivity, usually a metal 

[21]. There are other cases where surface plasmons may exist, such as interfaces 

that include materials with non-unity magnetic permeability. This thesis will 

consider only the case of an interface bounded by a dielectric and a metal with a 

relative magnetic permeability of 1, or non-magnetic media [21]. 

Two geometries will be considered: a single interface between dielectric and metal 

and a double interface between dielectric and metals. Figure 1 shows the structure 

of a single interface and double interface structure. 

 

These two-dimensional structures offer no confinement along the x axis and 

therefore have little practical interest, especially for nonlinear processes. However, 

the solutions offer a good approximation for the thin film finite width structure 

considered later in Chapter 4. 

 

The modes of these structures are rigorously derived so that the reader may better 

understand the modes of a finite width thin film structure studied in Chapter 4. The 

ss0 mode of the finite width thin film waveguide shares many characteristics with 

the symmetric mode of the double interface structure. The most important is the 

reliance of the loss and field confinement on the metal thickness. The single 

interface structure is solved because the modes of a double interface can be thought 

of as two single interface modes that are coupled together. Furthermore, the 

derivation is fairly simple and demonstrates the interesting ability of surface 

plasmons to be bound to a single interface unlike modes of a dielectric waveguide. 

Finally, the TM (Transverse Magnetic) nature of these slab guide modes is an 

important effect and is shared by the ss0 mode of the finite width thin film 

waveguide. 
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Figure 1: Schematic of a single a) and double b) interface structure. A propagating mode will propagate 

along z with constant β. 

 

2.1 Single Interface Plasmon Polaritons  

First a field description and mode solution will be developed for the single interface 

geometry for two polarizations: TE (Transverse Electric) and TM (Transverse 

Magnetic). Both polarizations have only three field components. 

 

Figure 2: Diagram of the two possible polarization configurations TE and TM. The propagation is in the z 

direction. 
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The TE mode has only a single electric field component along the x axis. The TM 

mode has only a single magnetic field component along the x axis as shown in 

Figure 2.  

 

It will be demonstrated that only one of these polarizations is able to excite a 

propagating mode. The electromagnetic fields are represented by monochromatic 

waves as in equations (2.1) and (2.2). 

 𝑬(𝒓, 𝑡) = 𝑅𝑒{𝑬(𝒓)𝑒𝑗𝜔𝑡} (2.1) 

 𝑯(𝒓, 𝑡) = 𝑅𝑒{𝑯(𝒓)𝑒𝑗𝜔𝑡} (2.2) 

The wave vectors are given by the following equations, where k0 = 2π/λ and δ, γ 

are the transverse normalized wavenumbers [21]. 

 𝛽 =
𝑘𝑧
𝑘0
⁄  (2.3) 

 𝛿2 = 𝛽2 − 𝜀𝑐𝜇𝑐 (2.4) 

 𝛾2 = 𝛽2 − 𝜀𝑔𝜇𝑔 (2.5) 

 

2.1.1 TE Single Interface 

For a TE mode, there is one electric field component Ex and two magnetic fields Hy 

and Hz. For a planar propagating wave, the Ex is given by equation (2.6) [21]. 

 𝐸𝑥 = 𝐸0𝑒
−𝑗(𝑘𝑦𝑦+𝑘0𝛽𝑧) (2.6) 

In this case, ky = –jk0δ or jk0γ depending on which material the field lies in. The 

fields must be evanescent along y for a propagating mode that forces ky to these 

values, assuming real positive values for δ and γ. This can be directly expressed by 

equation (2.7). 

 
𝐸𝑥 = 𝐸0𝑒

−𝑗𝑘0𝛽𝑧 (
𝑒−𝑘0𝛿𝑦       𝑦 > 0

𝑒𝑘0𝛾𝑦         𝑦 < 0
) (2.7) 

From Maxwell’s equations and the wave equation, the magnetic field can be written 

in terms of the electric field by equation (2.8). 

 𝐻𝑦 =
𝑗

𝜇0𝜇𝑟𝜔

𝜕

𝜕𝑧
𝐸𝑥  (2.8) 

Putting equation (2.14) into equation (2.8) results in an explicit form of the 

magnetic field 
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𝐻𝑦 = 𝐸0
𝑘0𝛽

𝜇0𝜔
𝑒−𝑗𝑘0𝛽𝑧 (

1

𝜇𝑐
𝑒−𝑘0𝛿𝑦       𝑦 > 0

1

𝜇𝑔
𝑒𝑘0𝛾𝑦         𝑦 < 0

).  (2.9) 

This same process can be repeated for the Hz component as shown by equation 

(2.10) and (2.11). 

 
𝐻𝑧 =

−𝑗

𝜇0𝜇𝑟𝜔

𝜕

𝜕𝑦
𝐸𝑥 (2.10) 

 

𝐻𝑧 = 𝐸0
𝑗𝑘0
𝜇0𝜔

𝑒−𝑗𝑘0𝛽𝑧

(

 

𝛿

𝜇𝑐
𝑒−𝑘0𝛿𝑦       𝑦 > 0

−𝛾

𝜇𝑔
𝑒𝑘0𝛾𝑦         𝑦 < 0

)

  (2.11) 

The boundary conditions dictate that the tangential components of the electric and 

magnetic fields must be continuous [21]. Continuity of Hz leads to the dispersion 

equation (2.12). 

 𝛿

𝜇𝑐
= −

𝛾

𝜇𝑔
  (2.12) 

Since the original assumption was that δ and γ are real and positive, the values for 

magnetic permeability must have opposite signs. These kinds of materials are 

possible but for our case of dielectric and metal that are non-magnetic, it is not. 

Thus, at such an interface there will not be a supported mode for TE fields. 

 

2.1.2 TM Single Interface 

The exact same approach can be taken for a TM mode for which there are Hx, Ey 

and Ez fields. The results are shown for the 3 fields in (2.13), (2.14) and (2.15). 

 
𝐻𝑥 = 𝐻0𝑒

−𝑗𝑘0𝛽𝑧 (
𝑒−𝑘0𝛿𝑦       𝑦 > 0

𝑒𝑘0𝛾𝑦         𝑦 < 0
)  (2.13) 

 

𝐸𝑦 =–𝐻0
𝑘0𝛽

𝜀0𝜔
𝑒−𝑗𝑘0𝛽𝑧 (

1

𝜀𝑐
𝑒−𝑘0𝛿𝑦       𝑦 > 0

1

𝜀𝑔
𝑒𝑘0𝛾𝑦         𝑦 < 0

)  (2.14) 

 

𝐸𝑧 = 𝐻0
𝑗𝑘0
𝜀0𝜔

𝑒−𝑗𝑘0𝛽𝑧

(

 
−
𝛿

𝜀𝑐
𝑒−𝑘0𝛿𝑦       𝑦 > 0

𝛾

𝜀𝑔
𝑒𝑘0𝛾𝑦         𝑦 < 0

)

  (2.15) 

The boundary conditions are the same, but now the condition is 
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 𝛿

𝜀𝑐
= −

𝛾

𝜀𝑔
  . (2.16) 

Similar to the TE case, the relative permittivities must have opposite signs. This 

will be possible since metals have a negative permittivity. Replacing (2.16) with 

expressions in terms of β yields 

 𝛽2−𝜀𝑐𝜇𝑐

𝜀𝑐2
=
𝛽2−𝜀𝑔𝜇𝑔

𝜀𝑔2
 . (2.17) 

Solving for β in (2.17) gives the solution for the propagation constant 

 
𝛽 = √

𝜇𝑐𝜀𝑐𝜀𝑔2−𝜇𝑔𝜀𝑔𝜀𝑐2

𝜀𝑔2−𝜀𝑐2
 . (2.18) 

For non-magnetic medium µg=µc=1, the solution simplifies to 

 
𝛽 = √

𝜀𝑐𝜀𝑔

𝜀𝑔+𝜀𝑐
 .  (2.19) 

This means that there exists a bound propagating mode for a single interface 

structure, which is not possible to achieve with a similar dielectric structure. 

Physically this is possible because the photons are coupling with plasmons or 

coherent groups of oscillating electrons [21]. The fields of this mode are TM and 

only have a single transverse electric field perpendicular to the interface. The field 

profile is exponential on both sides of the interface, but the electric and magnetic 

fields penetrate much farther into the dielectric. Since there is still a significant 

portion of the field inside the metal, the propagation losses are quite high. 

Propagation lengths are generally in the µm range. The wavenumber will be much 

larger than that of a photon with the same frequency travelling in a dielectric, so 

coupling light to a surface plasmon polariton is not easy with end fire techniques. 

 

The next section, Double Interface Surface Plasmon Polaritons, will explain how 

the propagation length can be orders of magnitude longer for thin metal films 

sandwiched between dielectrics. The symmetric mode of a double interface 

structure has the added benefit of a smaller wavenumber value and coupling by end 

firing can be much easier. 
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2.2 Double Interface Surface Plasmon Polaritons 

 

2.2.1 TE Double Interface 

For the double interface case, a guiding layer of relative permittivity εg is 

surrounded by a dielectric of εc. Assuming evanescent decay in the cladding for a 

propagating mode (2.28) gives the field description. Also by introducing a new 

component of the wave vector propagating in the guiding layer, given by (2.31), 

the complete description can be given by, 

 𝜅2 = 𝜀𝑔𝜇𝑔 − 𝛽
2 , (2.20) 

where κ is dominantly real and positive in a low loss medium. In a metal with 

negative εg, κ will be mainly imaginary, which suggests that hyperbolic basis 

functions would also be suitable for the core [22].  

𝐸𝑥  = 𝑒−𝑗𝑘0𝛽𝑧(

𝐴𝑒−𝑘0𝛿𝑦                                                                                      𝑦 ≥ 0

𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑦) + 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑦)                                  −𝑑𝑔 < 𝑦 < 0

(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) − 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔))𝑒
𝑘0𝛿(𝑑𝑔+𝑦)              𝑦 ≤ −𝑑𝑔

) (2.21) 

Using (2.8) the Hy field distribution can be written 

𝐻𝑦 = 
𝑘0𝛽

𝜇0𝜔
𝑒−𝑗𝑘0𝛽𝑧

(

 
 
 
 

1

𝜇𝑐
𝐴𝑒−𝑘0𝛿𝑦                                                                        𝑦 ≥ 0

1

𝜇𝑔
(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑦) + 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑦))                 −𝑑𝑔 < 𝑦 < 0

1

𝜇𝑐
(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) − 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔))𝑒

𝑘0𝛿(𝑑𝑔+𝑦) 𝑦 ≤ −𝑑𝑔)

 
 
 
 

. (2.22) 

Using (2.10) the Hz field distribution can be written 

𝐻𝑧  = 
−𝑗𝑘0
𝜇0𝜔

𝑒−𝑗𝑘0𝛽𝑧

(

 
 
 
 
−
𝛿

𝜇𝑐
𝐴𝑒−𝑘0𝛿𝑦                                                                                    𝑦 ≥ 0

𝜅

𝜇𝑔
(−𝐴 𝑠𝑖𝑛(𝑘0𝜅𝑦) + 𝐵 𝑐𝑜𝑠(𝑘0𝜅𝑦))                             −𝑑𝑔 < 𝑦 < 0

𝛿

𝜇𝑐
(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) − 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔))𝑒

𝑘0𝛿(𝑑𝑔+𝑦)                 𝑦 ≤ −𝑑𝑔)

 
 
 
 

. (2.23) 

The boundary conditions dictate that the tangential magnetic and electric fields are 

equal at the interfaces. For the Hz field at y = 0, an expression for A and B can be 

found. 

 
−
𝛿

𝜇𝑐

𝜇𝑔

𝜅
𝐴 = 𝐵 (2.24) 

Using this expression for B, the boundary condition at y = –dg can be written. 

 
𝜅

𝜇𝑔
( 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔) −

𝛿

𝜇𝑐

𝜇𝑔

𝜅
 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔)) =

𝛿

𝜇𝑐
( 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) +

𝛿

𝜇𝑐

𝜇𝑔

𝜅
 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔)) (2.25) 

Rearranging the terms and assuming µs=µc=1, the solution simplifies to 
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 𝑡𝑎𝑛(𝑘0𝜅𝑑𝑔) = 𝜅
2𝛿

𝜅2−𝛿2
 . (2.26) 

It is not easily seen from this formula, but if the two materials have opposite signs 

for the electric permittivity, then there is no solution to this equation. Thus, similar 

to the single interface case, no TE mode exists. 

 

2.2.2 TM Double Interface 

With only a few changes, all the previous algebra can be repeated to find the three 

field distributions for a TM mode. 

𝐻𝑥  = 𝑒−𝑗𝑘0𝛽𝑧 (

𝐴𝑒−𝑘0𝛿𝑦                                                                                    𝑦 ≥ 0

𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑦) + 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑦)                                −𝑑𝑔 < 𝑦 < 0

(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) − 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔))𝑒
𝑘0𝛿(𝑑𝑔+𝑦)            𝑦 ≤ −𝑑𝑔

) (2.27) 

𝐸𝑦  = 
−𝑘0𝛽

𝜀0𝜔
𝑒−𝑗𝑘0𝛽𝑧

(

 
 
 
 

1

𝜀𝑐
𝐴𝑒−𝑘0𝛿𝑦                                                                                       𝑦 ≥ 0

1

𝜀𝑔
(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑦) + 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑦))                                  −𝑑𝑔 < 𝑦 < 0

1

𝜀𝑐
(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) − 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔))𝑒

𝑘0𝛿(𝑑𝑔+𝑦)                𝑦 ≤ −𝑑𝑔 )

 
 
 
 

 (2.28) 

𝐸𝑧 = 
𝑗𝑘0
𝜀0𝜔

𝑒−𝑗𝑘0𝛽𝑧

(

 
 
 
 
−
𝛿

𝜀𝑐
𝐴𝑒−𝑘0𝛿𝑦                                                                                        𝑦 ≥ 0

𝜅

𝜀𝑔
(−𝐴 𝑠𝑖𝑛(𝑘0𝜅𝑦) + 𝐵 𝑐𝑜𝑠(𝑘0𝜅𝑦))                                  −𝑑𝑔 < 𝑦 < 0

𝛿

𝜀𝑐
(𝐴 𝑐𝑜𝑠(𝑘0𝜅𝑑𝑔) − 𝐵 𝑠𝑖𝑛(𝑘0𝜅𝑑𝑔))𝑒

𝑘0𝛿(𝑑𝑔+𝑦)                     𝑦 ≤ −𝑑𝑔)

 
 
 
 

 (2.29) 

Again using the same approach as for the TE case, solving both boundary 

conditions gives dispersion relation 

 𝑡𝑎𝑛(𝑘0𝜅𝑑𝑔) =
2𝜀𝑐𝜀𝑔𝛿𝜅

𝜀𝑐2𝜅2−𝜀𝑔2𝛿2
 . (2.30) 

 (2.30) can be further reduced to give even and odd solutions 

 𝑡𝑎𝑛(𝑘0𝜅𝑑𝑔/2) =
𝜀𝑔𝛿

𝜀𝑐𝜅
 , (2.31) 

 𝑡𝑎𝑛(𝑘0𝜅𝑑𝑔/2) = −
𝜀𝑐𝜅

𝜀𝑔𝛿
 , (2.32) 

where (2.31) is the even mode and (2.32) is the solution to the odd mode [21]. 

Similar to the single interface geometry, all the fields are evanescently decaying. 

The metal guiding layer is also exponential decaying since the transverse 

component of the wave vector is predominantly imaginary. For very thin films, 

the effective index evolves into that of a plane wave propagating in the surround 

dielectric. This property makes the symmetric mode a good candidate for end fire 

coupling. 
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2.3 Modes of a Chalcogenide Gold Slab Plasmon Polariton Waveguide  

Using Figure 1 as a reference, consider a symmetric structure composed of 

Ge23Sb7S70 as the dielectric layers and a thin gold film for the core layer. These 

materials, at an illumination wavelength of 1550 nm, have permittivities of εc = 

4.84 and εg = –131.95 – 12.65j [15], [23]. With these values the dispersion equation 

(2.30) can be solved as a function of thickness, as shown in Figure 3 and Figure 4. 

 

Figure 3: Effective index of the two supported modes (asymmetric and symmetric), simulated using MatLab. 
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Figure 4: Loss of the two supported modes (asymmetric and symmetric), simulated using MatLab. 

These are the well-known symmetric and asymmetric modes, and refer to the 

symmetry of the dominant field component, in this case Ey [11]. They are also 

called  the long range surface plasmon polariton (LRSPP) and the short range 

surface plasmon polariton (SRSPP) because of their attenuation characteristics 

[11]. The LRSPP attenuation decreases to zero for small thicknesses and the 

opposite is true for the SRSPP. For both modes, as the thickness increases the 

modes become degenerate and evolve into the single interface solution [11]. 

These solutions provide a good approximation of the two main types of bound 

modes that exist for a thin metal film of finite width [11]. The field distribution 

of the symmetric mode is useful to analyse as it is similar to the mode of interest 

for the finite width case. For a very thin waveguide, the symmetric mode extends 

deep into the dielectric and thus experiences less loss. An example is given by  
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Figure 5: Field components of symmetric mode for a 10 nm thick surface plasmon polariton waveguide. 

The focus is on the Ey component. Simulated with MatLab 

 

Figure 6: Field components of symmetric mode for a 10 nm thick surface plasmon polariton waveguide. 

The focus is on the Hx and Ez components. Simulated with Matlab 
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Figure 5 and Figure 6, which describe the symmetric mode of a 10 nm thick 

Chalcogenide and gold structure. For the symmetric mode, as the thickness 

becomes smaller the transverse electric field becomes larger when compared to the 

remaining two. On the other hand, the asymmetric mode penetrates farther into the 

metal for small thicknesses and has larger losses. As a consequence the electric 

field is confined tightly to the metal-dielectric interface.  

 

2.4 Modes of a Symmetric Finite Width Thin Metal Film 

Now that the symmetric and asymmetric modes of the slab type waveguides have 

been characterized, it is useful to classify the modes that exist for a finite width 

structure. It will be seen that the ss0 mode has characteristics that make it useful for 

coupling to optical fibers and propagating longer distances. 

 

The modes are characterized by their dominant transverse field component’s 

symmetry along the y and x axis [11]. The dominant field component is Ey for 

structures that are much wider than thick [11]. For example, a mode that is 

symmetric along the y axis but not along the x axis would be denoted as the sa 

mode. Furthermore, modes that share the same symmetry characteristics are 

differentiated by the number of extrema along the largest dimension, m, and the 

number of extrema along the remaining dimension, n [11]. For the previously 

defined mode with two extrema along the largest dimension and one extremum 

along the other, the notation would be 𝑠𝑎21.  

 

As will be shown in Chapter 4, the ss modes share the important characteristic of 

having lower losses for thinner waveguides [11]. In many ways the ss mode of a 

finite width waveguide is very similar to the symmetric mode of a slab type 

waveguide. The phase constant approaches the value for a plane wave propagating 

in the surrounding dielectric, which makes end fire coupling possible. This is a 

useful guess that can be used to initialize the finite element method used in Chapter 

4. This numbering maxima scheme was developed with thicker metal films in mind. 
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In a very thin film, the ss0 mode field profile encompasses the entire metal structure 

and so it does have a maximum along the horizontal and vertical directions. 
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Chapter 3: Third Order Nonlinearity of 

Waveguides 

Simply put, a nonlinear medium is a material where the polarization density and 

electric field relation (3.21) is not linear [24], [25]. 

 𝑷 = 𝜀0𝜒𝑬 (3.1) 

The tensor notation for χ (the electric susceptibility) is dropped and the medium is 

assumed to be isotropic. In fact most materials will have a nonlinear response when 

the applied electrical field is proportional to the interatomic electric fields and can 

be described by equation (3.2) [24]. 

 𝑷 = 𝜀0𝜒1𝑬 + 𝜀0𝜒2𝑬𝑬 + 𝜀0𝜒3𝑬𝑬𝑬 +⋯ (3.2) 

 

3.1 Nonlinear Index of Refraction 

The nonlinear electric susceptibility is a property of the material and in the case of 

Chalcogenide has a very low second order response. The higher order 

susceptibilities can be ignored and equation (3.2) can be simplified. 

 𝑷 = 𝜀0𝜒1𝑬 + 𝜀0𝜒3𝑬𝑬𝑬 (3.3) 

Focusing on the nonlinear half of equation (3.3) and substituting the expression for 

a harmonic field results in,  

 
𝑷𝑵𝑳 = 𝜀0𝜒3 (

3𝐸0
2𝐸0

∗

8
𝑒𝑗𝜔𝑡 +

𝐸0
3

8
𝑒𝑗3𝜔𝑡 + 𝑐. 𝑐. ), (3.4) 

where E0 is a complex amplitude and c.c. stands for the complex conjugate. The 

mechanism for third harmonic generation can be seen from this equation and is a 

direct result of third order nonlinearity. The other component is responsible for the 

Kerr effect. If the third harmonic generation is ignored for now and equation (3.4) 

is reordered, an expression for the Kerr effect can be realized [16]. 

 
𝑷 = 𝜀0𝜒1𝑬 +

3|𝐸0|
2

4
𝜀0𝜒3𝑬 (3.5) 
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Then using the relation between electric permittivity and index of refraction, the 

nonlinear index of refraction and absorption coefficient can be expressed by 

equation (3.6) and (3.7) [16]. 

 𝑛 = 𝑛0 + 𝑛2|𝐸0|
2 (3.6) 

 𝛼 = 𝛼0 + 𝛼2|𝐸0|
2 (3.7) 

Remembering to use the sign convention for harmonic waves expressed in equation 

(2.1), the nonlinear components of the index of refraction and absorption coefficient 

can be related to the electric susceptibility by equations (3.8) and (3.9) [16]. 

 
𝑛2 =

3

8𝑛0
𝑅𝑒{𝜒3} (3.8) 

 
𝛼2 = −

3

4
𝑘0𝐼𝑚{𝜒3} (3.9) 

The effect of the index of refraction depending on the incident intensity of light is 

the mechanism for self-phase modulation and cross-phase modulation. 

 

3.2 Self-Phase Modulation 

The phase of a travelling wave is given by [16] 

 𝜑 = 𝜔𝑡 − 𝛽𝑧 + 𝜑0, (3.10) 

where β is the propagation constant. Replacing its value in a nonlinear medium 

gives the intensity dependent phase shift [16]. 

 𝜑 = 𝜔𝑡 − 𝑘0(𝑛0 + 𝑛2|𝐸0|
2)𝑧 + 𝜑0 (3.11) 

This phase shift causes a chirp and change in instantaneous frequency, which can 

be described by equation (3.12) [16]. 

 
𝜔𝑖 = 𝜔 − 𝑘0𝑛2

𝑑|𝐸0|
2

𝑑𝑡
𝑧 (3.12) 

A useful metric for describing the amount of phase shift accumulated over 

propagation distance is the maximum phase shift given by equation (3.13) [16]. 

 ∆𝜑𝑚𝑎𝑥 = 𝑘0(𝑛2|𝐸0|
2)𝐿 (3.13) 

For an optical pulse, the middle or peak of the pulse experiences the maximum 

phase shift. If the expression in (3.13) is changed to incorporate intensity, then the 

maximum phase shift can be described by the peak pulse power. 
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∆𝜑𝑚𝑎𝑥 =

𝑘0(𝑛2
𝐼𝑃𝑀𝑎𝑥)𝐿

𝐴𝑒𝑓𝑓
 (3.14) 

The two new variables n2
I and Aeff are the nonlinear refractive index in power units 

and the effective mode area [16]. 

 𝑛2
𝐼 =

𝑛2
2𝑐𝑛0𝜀0

 (3.15) 

 
𝐴𝑒𝑓𝑓 =

(∬|𝐹(𝑥, 𝑦)|2𝑑𝑥𝑑𝑦)2

∬(|𝐹(𝑥, 𝑦)|4𝑑𝑥𝑑𝑦)
 (3.16) 

F(x, y) is the mode distribution. From these parameters, it is evident that decreasing 

the effective mode area and increasing the peak pulse power will increase the 

maximum phase shift. It is also possible to accumulate a larger phase shift by 

propagating over long distances. Another variable usually defined as  γ is the 

nonlinear parameter, which is useful for characterizing waveguides [16]. 

 
𝛾 =

𝑘0𝑛2
𝐼

𝐴𝑒𝑓𝑓
 (3.17) 

The nonlinear length, LNL, is an indication over what distances the phase shift has 

a noticeable impact on optical pulses [16]. 

 
𝐿𝑁𝐿 =

1

𝛾𝑃𝑀𝑎𝑥
 (3.18) 

More precisely LNL is the length at which the maximum phase shift is 1 radian. In 

lossy waveguides, attenuation plays an important role and must be considered. The 

equivalent propagation length through a lossless waveguide is used and replaces L 

[16]. 

 
𝐿𝑒𝑓𝑓 =

1 − 𝑒−𝛼𝐿

𝛼
 (3.19) 

Now the maximum phase shift can be stated in term of the effective length and the 

nonlinear length. 

 
∆𝜑𝑚𝑎𝑥 =

𝐿𝑒𝑓𝑓

𝐿𝑁𝐿
 (3.20) 

When losses are involved, a waveguide’s nonlinear response is usually described 

by the figure of merit (FOM), γ·Leff. The effective length is then calculated with the 
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length of the waveguide set to infinity. The figure of merit is then given by equation 

(3.21) [14]. 

 
𝑭𝑶𝑴 =

𝑘0𝑛2
𝐼

𝐴𝑒𝑓𝑓𝛼
 (3.21) 

 

3.3 Nonlinear Schrödinger Equation 

Since the Kerr effect is dependent on field intensity, it is important to determine its 

effect on optical pulses. The differential equation that describes the change in mode 

propagation is derived from first-order perturbation theory [16]. If the overall shape 

of the time pulse is given as A and is assumed to vary with z, the effect of dispersion, 

attenuation and the Kerr effect is given by the nonlinear Schrödinger equation 

(NLSE) [16]. 

 𝜕𝐴

𝜕𝑧
− 𝑗
𝛽2
2

𝜕2𝐴

𝜕𝑇2
+
𝛼

2
𝐴 + 𝑗𝛾|𝐴|2𝐴 = 0 (3.22) 

In the NLSE, β2 is related to chromatic dispersion and T is the time in a reference 

frame travelling with the pulse [16]. The difference of sign between equation (3.22) 

and the reference [16] comes from the different sign convention of time harmonic 

fields. 

 

The NLSE can be solved numerically by using the Split-step Fourier method. Since 

dispersion is easier to address in the frequency domain and the Kerr effect in the 

time domain, the propagation length is discretized. In each small discretization, the 

dispersion and Kerr effect are applied independently to the input signal, first by 

applying the dispersion in the frequency domain and then after an inverse Fourier 

transform, applying the Kerr effect [16]. 

 

The evolution of a Gaussian pulse with peak power 1 mW and waveguide nonlinear 

parameter 0.1 m-1W-1 is shown in Figure 7. Assuming the only effect is due to Kerr 

nonlinearity, the self-phase modulation causes the frequency spectrum to widen and 

form peaks. As the pulse accumulates larger phase shifts, the spectrum continually 

forms new peaks. However, the induced phase has no effect on the temporal signal. 
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In an experimental setting, a spectrum analyzer can measure the frequency 

broadening and the maximum phase shift can be extracted. 

This broadening of the pulse spectra is what supercontinuum generators and 

frequency combs exploit. 

 

Figure 7: The change in time domain and frequency domain of a Gaussian pulse with maximum phase shift, 

Phi, of 1.25 rad, 2.5 rad, 3.75 rad and 5 rad. Taken from [25]. 
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Chapter 4: Simulation of Finite Width Thin 

Film Gold Strip Waveguides 

In the preceding chapters, the theory behind surface plasmon polaritons and Kerr 

nonlinearity was introduced. This will be used later in this thesis to design the finite 

width gold strip waveguide, but for now the chosen method for simulating such a 

device will be discussed. The solution for a structure such as the one shown in 

Figure 8 cannot be found analytically, although there are plenty of numerical 

methods suitable for this problem, most notably the method of lines [11]. However, 

in this thesis the finite element method is implemented. The benefit of using a finite 

element method over the method of lines is that it can easily be adapted to complex 

geometries.  

 

Figure 8: The structure of a finite width thin gold strip waveguide. 

 

  4.1 The Vector Element Method 

For an open waveguide problem as in Figure 8, traditional node-based finite 

element methods can introduce spurious solutions [26]. Furthermore, imposing 

boundary conditions on dielectric interfaces can be difficult and nodal elements 

also cause problems at edges and corners by creating field singularities [26]. 
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Recently a new class of finite elements have emerged that do not introduce these 

difficulties; they are named vector elements [26]. Instead of using nodes, edges of 

elements are used as the degrees of freedom. Already it can be inferred that 

imposing boundary conditions should be much simpler. 

 

In the vector element method, each element’s edges are assigned a constant 

tangential field component. Then using proper basis functions, the vector field can 

be interpolated at any point inside the element. For a triangle element like the 

example in Figure 9, the vector field can be represented by three basis functions. 

Each basis function has a constant tangential field along its corresponding edge and 

vanishes at the opposite point. The normal field at each edge is not constant and so 

the vector field at each edge is not constant. This fact makes boundary conditions 

at dielectric and conducting interfaces trivial to enforce. At such interfaces the 

tangential field is continuous, whereas the normal fields are not.   

 

Figure 9: A typical triangular element with edges and points labelled counter clockwise. 

The basis functions are derived in reference [26] and the vector field inside the 

element is given by equation (4.4) [26]. Bolded values are considered vectors. 

 𝑵1 = (𝐿1𝛻𝐿2 − 𝐿2𝛻𝐿1)𝑙1 (4.1) 

 𝑵2 = (𝐿2𝛻𝐿3 − 𝐿3𝛻𝐿2)𝑙2 (4.2) 

 𝑵3 = (𝐿3𝛻𝐿1 − 𝐿1𝛻𝐿3)𝑙3 (4.3) 



31 

 

 

𝑬 =∑𝑵𝑖

3

𝑖=1

𝐸𝑖  (4.4) 

The basis functions contain, li, the side length and, Li, the corresponding area 

coordinate. The area coordinate, used in conventional nodal analysis, is defined by  

 
𝐿𝑖 =

1

𝑏1𝑐2 − 𝑏2𝑐1
(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦). (4.5) 

The area of the element, Δ, is given by (b1c2 – b2c1)/2. The other variables ai, bi, 

and ci are defined by the three points that make up the triangular element. 

 𝑎1 = 𝑥2𝑦3 − 𝑥3𝑦2 𝑏1 = 𝑦2 − 𝑦3 𝑐1 = 𝑥3 − 𝑥2 

𝑎2 = 𝑥3𝑦1 − 𝑥1𝑦3 𝑏2 = 𝑦3 − 𝑦1 𝑐2 = 𝑥1 − 𝑥3 

𝑎3 = 𝑥1𝑦2 − 𝑥2𝑦1 𝑏3 = 𝑦1 − 𝑦2 𝑐3 = 𝑥2 − 𝑥1 
 

(4.6) 

An example of the first edge’s corresponding basis function is given by Figure 10. 

Notice that the field is zero at the opposite corner and the field lacks tangential 

components along edge 2 and edge 3.  

 

Figure 10: The basis function corresponding to edge 1, with vector quantities represented by arrows. 

Now the electric field in a domain made up by these triangular elements can be 

approximated linearly by the basis functions.  

 

  4.2 The Variational Method Formulation 

The elements explained in the preceding section will be employed in the variational 

method for solving the propagation constants, β, of the waveguide in Figure 8. The 
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vector basis functions will be used to represent the transverse field on the simulation 

domain, whereas traditional node based elements will be implemented to represent 

the longitudinal field. Using [26] as a reference, the waveguide problem is 

described by the Helmholtz vector wave equation. The electric field is used here 

instead of the magnetic field because the boundary conditions are simpler to 

enforce. 

 𝛻 × (𝛻 × 𝑬) − 𝑘0
2𝜀𝑟𝑬 = 0  (4.7) 

Although this is an open waveguide problem, electric wall boundary conditions at 

sufficiently far finite distances are employed to simplify the derivation. For electric 

and magnetic wall boundaries, the conditions are as follows: 

 𝑛̂ × 𝑬 = 0 for electric wall (4.8) 

 𝑛̂ × (𝛻 × 𝑬) = 0 for magnetic wall. (4.9) 

Since the waveguide is lossy, the general variation principle is used to formulate 

the functional, and the inner product is defined as  

 ⟨𝜙|𝜓⟩ = ∫𝜙𝜓𝑑𝛺. (4.10) 

The functional describing this problem is then given by equation (4.11) [26]. 

 
𝐹(𝑬) =

1

2
∬[(𝛻 × 𝑬) ∙ (𝛻 × 𝑬) − 𝑘0

2𝜀𝑟𝑬 ∙ 𝑬] 𝑑𝛺 (4.11) 

The transverse and longitudinal components of the electric field are broken up and 

the functional is given by equation (4.12). The complex propagation constant is 

now defined as γ = α + jβ with the z dependence E ~ 𝑒−𝛾𝑧[27]. 

 
𝐹(𝑬) =

1

2
∬[(𝛻𝑡 × 𝑬𝑡) ∙ (𝛻𝑡 × 𝑬𝑡) − 𝑘0

2𝜀𝑟𝑬 ∙ 𝑬

+ (𝛻𝑡𝐸𝑧 + 𝛾𝑬𝑡) ∙ (𝛻𝑡𝐸𝑧 + 𝛾𝑬𝑡)] 𝑑𝛺 

(4.12) 

A change of variables is introduced to make solving for γ much easier [26]. 

 𝒆𝑡 = 𝛾𝑬𝑡 (4.13) 

 𝑒𝑧 = 𝐸𝑧 (4.14) 

The functional simplifies to equation (4.15) and agrees with reference [27]. 

 
𝐹(𝑬) =

1

2
∬[(𝛻𝑡 × 𝒆𝑡) ∙ (𝛻𝑡 × 𝒆𝑡) − 𝑘0

2𝜀𝑟𝒆𝑡 ∙ 𝒆𝑡

− 𝛾2[(𝛻𝑡𝑒𝑧 + 𝒆𝑡) ∙ (𝛻𝑡𝑒𝑧 + 𝒆𝑡) − 𝑘0
2𝜀𝑟𝑒𝑧

2]] 𝑑𝛺 

(4.15) 
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Now the transverse and longitudinal field can be approximated in each element by 

edge and nodal elements, respectively. The first order nodal basis functions, Ni, 

are well-known and similar to the first order vector basis functions [26]. 

  

𝒆𝑡
𝑒 =∑𝑵𝑖

𝑒

3

𝑖=1

𝑒𝑡𝑖
𝑒  (4.16) 

 

𝑒𝑧
𝑒 =∑𝑁𝑖

𝑒

3

𝑖=1

𝑒𝑧𝑖
𝑒  (4.17) 

The nodal basis functions are given by 

 
𝑁𝑖
𝑒 =

1

𝑏1𝑐2 − 𝑏2𝑐1
(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦); (4.18) 

in fact, they are equal to the area coordinates, Li, stated earlier. Now the 

functional in matrix form can be expressed in terms of the basis functions. The 

vectors {𝑒𝑡
𝑒} and {𝑒𝑧

𝑒} represent the three edge and nodal values of each element 

with M total elements.  

 

𝐹(𝑬) =
1

2
∑[{𝑒𝑡

𝑒}𝑇𝐴𝑡𝑡
𝑒 {𝑒𝑡

𝑒} − 𝛾2 {
𝑒𝑡
𝑒

𝑒𝑧
𝑒}
𝑇

[
𝐵𝑡𝑡
𝑒 𝐵𝑡𝑧

𝑒

𝐵𝑧𝑡
𝑒 𝐵𝑧𝑧

𝑒 ] {
𝑒𝑡
𝑒

𝑒𝑧
𝑒}]

𝑀

𝑒=1

 (4.19) 

Each element has five corresponding symmetric elemental matrices. Later these 

matrices are added to the global matrices and the eigenvalue equation can be 

solved for γ. 

 
𝐴𝑡𝑡 =∬[(𝛻𝑡 ×𝑵

𝑒) ∙ (𝛻𝑡 ×𝑵
𝑒)𝑇 − 𝑘0

2𝜀𝑟𝑵
𝑒 ∙ 𝑵𝑒𝑇] 𝑑𝛺 (4.20) 

 
𝐵𝑡𝑡 =∬[𝑵𝑒 ∙ 𝑵𝑒𝑇] 𝑑𝛺 (4.21) 

 
𝐵𝑡𝑧 =∬[𝑵𝑒 ∙ (𝛻𝑡𝑁

𝑒)𝑇] 𝑑𝛺 (4.22) 

 
𝐵𝑧𝑡 =∬[(𝛻𝑡𝑁

𝑒) ∙ 𝑵𝑒
𝑇
] 𝑑𝛺 (4.23) 

 
𝐵𝑧𝑧 =∬[(𝛻𝑡𝑁

𝑒) ∙ (𝛻𝑡𝑁
𝑒)𝑇 − 𝑘0

2𝜀𝑟(𝑁
𝑒)2] 𝑑𝛺 (4.24) 

Before progressing further, these integrals have to be solved. The reference [26] 

provides part of the solution for Att and Btt.  
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∬[(𝛻𝑡 × 𝑵𝑖

𝑒) ∙ (𝛻𝑡 ×𝑵𝑗
𝑒)] 𝑑𝛺 =

𝑙𝑖
𝑒𝑙𝑗
𝑒

∆𝑒
 (4.25) 

The solution for Btt and the remaining component of Att is a bit more complex so 

the solution is put into a different form [26]. 

 
∬[𝑵𝑖

𝑒 ∙ 𝑵𝑗
𝑒] 𝑑𝛺 = 𝐹𝑖𝑗

𝑒  (4.26) 

 𝑓𝑖𝑗 = 𝑏𝑖𝑏𝑗 + 𝑐𝑖𝑐𝑗 (4.27) 

 
𝐹11
𝑒 =

(𝑙1
𝑒)2

24∆𝑒
(𝑓22 − 𝑓12 + 𝑓11) (4.28) 

 
𝐹12
𝑒 =

𝑙1
𝑒𝑙2
𝑒

48∆𝑒
(𝑓23 − 𝑓22 − 2𝑓13 + 𝑓12) (4.29) 

 
𝐹13
𝑒 =

𝑙1
𝑒𝑙3
𝑒

48∆𝑒
(𝑓21 − 𝑓11 − 2𝑓23 + 𝑓13) (4.30) 

 
𝐹22
𝑒 =

(𝑙2
𝑒)2

24∆𝑒
(𝑓33 − 𝑓23 + 𝑓22) (4.31) 

 
𝐹23
𝑒 =

𝑙2
𝑒𝑙3
𝑒

48∆𝑒
(𝑓31 − 𝑓33 − 2𝑓21 + 𝑓23) (4.32) 

 
𝐹33
𝑒 =

(𝑙3
𝑒)2

24∆𝑒
(𝑓11 − 𝑓13 + 𝑓33) (4.33) 

Now the elemental matrices Att and Btt can be given numerical values if εr is 

assumed to be constant within each element. Contrary to the reference [26], µr is 

assumed to be unity for the entire simulation domain. 

 
𝐴𝑡𝑡 =

𝑙𝑖
𝑒𝑙𝑗
𝑒

∆𝑒
− 𝑘0

2𝑒𝑟𝐹𝑖𝑗
𝑒  (4.34) 

 𝐵𝑡𝑡 = 𝐹𝑖𝑗
𝑒  (4.35) 

The remaining three matrices can be solved by using the equations (4.30) and (4.33) 

from the reference [26]. For equation (4.36), i + 1 takes on the value of 1 when i = 

3. 

 
𝐵𝑡𝑧 =

𝑙𝑖
𝑒

12∆𝑒
(𝑏𝑖+1𝑏𝑗 + 𝑐𝑖+1𝑐𝑗 − 𝑏𝑖𝑏𝑗 − 𝑐𝑖𝑐𝑗) (4.36) 

From the symmetry of the elemental matrices, Bzt can be found by taking the 

transpose of Btz. 

 𝐵𝑧𝑡 = 𝐵𝑡𝑧
𝑇 (4.37) 

Finally Bzz is given by equation (4.38), where δij is the Kronecker delta. 
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𝐵𝑧𝑧 =

𝑓𝑖𝑗

4∆𝑒
− 𝑘0

2𝜀𝑟
∆𝑒

12
(1 + 𝛿𝑖𝑗) (4.38) 

Now that all of the elemental matrices have been defined, the functional problem 

can be rewritten using global notation. Since each edge is usually shared by 

adjacent elements, the direction of the edge element will be defined in opposite 

directions. When constructing the global matrix, it is important to choose a global 

direction so that the simulation program knows to either add or subtract the 

contribution of a different elemental matrix. This problem does not arise for the 

scalar nodal contributions and they are simply added. The functional problem is 

now expressed by equation (4.39). 

 
𝐹(𝑬) =

1

2
[{𝑒𝑡}

𝑇𝐴𝑡𝑡{𝑒𝑡} − 𝛾
2 {
𝑒𝑡
𝑒𝑧
}
𝑇

[
𝐵𝑡𝑡 𝐵𝑡𝑧
𝐵𝑧𝑡 𝐵𝑧𝑧

] {
𝑒𝑡
𝑒𝑧
}] (4.39) 

Finally the functional can be reduced to a generalized eigenvalue problem as seen 

in reference [26]. The only difference is the lack of a minus sign, which is a result 

of using the generalized variational principle and removal of the complex conjugate 

operators. 

 
[
𝐴𝑡𝑡 0
0 0

] {
𝑒𝑡
𝑒𝑧
} = 𝛾2 [

𝐵𝑡𝑡 𝐵𝑡𝑧
𝐵𝑧𝑡 𝐵𝑧𝑧

] {
𝑒𝑡
𝑒𝑧
} (4.40) 

These matrices are extremely sparse and symmetric. Built in functions for 

MATLAB can solve these problems easily with an initial guess. The dispersion 

equations from Chapter 2: Plasmon Polariton Waves can be used to supply the 

prerequisite initial guess, since the waveguides are much wider than they are thick. 

 

As an example and validation of this technique, results were reproduced from 

“Finite element analysis of lossy dielectric waveguides” [27]. The propagation 

constant of the metal-insulator-semiconductor transmission line in [27] was solved 

and Figure 5 and Figure 6 from [27] were reproduced. They are in good agreement 

with the reproduced results in Figure 11 and Figure 12. 
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Figure 11: Reproduction of loss results for MIS-CPW, simulated in MatLab. 
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Figure 12: Reproduction of phase constant results for MIS-CPW, simulated in MatLab 

 

4.3 Simulation of Chalcogenide Gold Strip Waveguides 

The simulation technique was tested by demonstrating its convergence as the 

number of triangular elements was increased, as shown in Figure 13. 
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Figure 13: Convergence of the phase constant as the number of elements is increased. Simulated in MatLab. 

Two methods of increasing the number of elements were used. First the number of 

triangles was increased along the edges of the gold film because the electric field 

varies very quickly near and inside metals. Then the maximum element size was 

also decreased in steps. The structure simulated was a 10 nm thick 3 µm wide gold 

film encased in Chalcogenide glass. To improve the accuracy of the simulation, the 

Chalcogenide glass was not assumed to be infinitely thick. Instead the glass was 

given a 4 µm thickness below the film and a 5 µm thickness above the gold film, 

an artifact of the fabrication process. The simulation domain then included both the 

soda lime substrate and surrounding air with εsub = 2.25 and  

εair = 1. 

 

Furthermore, the symmetry of the structure was used to halve the simulation 

domain, and electric wall boundary conditions were used for top, right and bottom 

simulation edges. The remaining left edge was given the magnetic wall boundary 

condition so that only symmetric modes would be calculated. 
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Figure 14: Mesh of simulation domain. Red represents the Chalcogenide glass, black represents the soda 

lime substrate and green represents the air. Simulated using MatLab. 

The gold film is hard to discern since it is very small compared to the mode size. 

However, the densely populated region at the center left gives away its position. 

The mode was found by giving an initial estimate slightly larger than the electric 

permittivity of the Chalcogenide glass. Then the next five modes with the largest 

values for the phase constant were compared. The lowest order ss mode was easily 

found by comparing the real part of the phase constant or loss. Modes that would 

be considered sa have much larger losses and field confinement than the ss modes. 

Finally, non-physical modes that appear due to the electric wall boundary 

conditions were removed because of their very low loss characteristics. The electric 

field profile can be calculated to confirm the presence of the ss mode. According to 

[11], the ss mode should have a very small Ex component. The Ey component should 

be symmetric and the dominant field. Furthermore, for very thin films, as in this 

case, the field should be similar to the fundamental mode of an optical fiber. The 

following figures give the spatial field distribution of the three electrical field 

components over half of the actual geometry at an illumination wavelength of 1550 
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nm. As expected, the Ey component is the dominant field and the Ex is zero 

everywhere except for the corners of the gold film. The phase constant, normalized 

by the wavenumber k0, was found to be 2.1995. The loss calculated from the 

propagation constant was 4.5354 dB/cm.  

 

 

Figure 15: Ey field of the lowest order ss mode of the gold film plasmon polariton waveguide. Simulated 

using MatLab 
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Figure 16: Ex field of the lowest order ss mode of the gold film plasmon polariton waveguide. Simulated 

using MatLab. 

 

Figure 17: Ez field of the lowest order ss mode of the gold film plasmon polariton waveguide. Simulated 

using MatLab. 
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  4.4 Optimization of Chalcogenide Gold Strip Waveguide Design  

There are two key parameters to consider when designing a waveguide that 

maximizes the amount of nonlinear phase shift of a pulse. They are the loss and the 

effective area of the mode. Increasing loss lowers the effective length in equation 

(3.20) and a larger effective area increases the nonlinear length, LNL, in the same 

equation.  

 

From the properties of the ss mode, the loss and effective area can be changed by 

increasing or decreasing the thickness and width of the gold film. For this design, 

the correct thickness and width of the gold film must be chosen carefully to 

minimize the loss and minimize the effective area. To this end, a couple of different 

simulations were run to compare the value of Leff and Aeff for different waveguide 

transverse dimensions. From equation (3.20), it is evident that having a large 

effective length and small nonlinear length increases the amount of phase shift. 

Thus, the optimized waveguide will have the largest figure of merit. The nonlinear 

phase shift can then be calculated with this ratio and using equation (4.41). The 

values reported in Table 2 are for waveguides with infinite lengths. 

 
∆𝜑𝑚𝑎𝑥 = 𝑘0𝑛2

𝐼𝑃𝑀𝑎𝑥
𝐿𝑒𝑓𝑓

𝐴𝑒𝑓𝑓
 (4.41) 

 

Table 2: Comparison of the figures of merit for waveguides with different width and thickness characteristics.   

 Width 2.5 µm Width 3 µm Width 3.5 µm Width 4 µm 

Thickness 8 nm 0.0029 W-1 0.0026 W-1 0.0024 W-1 0.0022 W-1 

Thickness 10 nm 0.0020 W-1 0.0019 W-1 0.0017 W-1 0.0016 W-1 

Thickness 12 nm 0.0015 W-1 0.0014 W-1 0.0013 W-1 0.0012 W-1 

Thickness 14 nm 0.0012 W-1 0.0011 W-1 0.0010 W-1 0.00094 W-1 

 

The figure of merit increases as the thickness and width decrease, this is a result of 

lowering losses of the waveguides. In this thesis, waveguides of 1 cm were 

fabricated, so the table is updated to reflect the different effective lengths. The 

results can be found in Table 3. 
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Table 3: Comparison of the figures of merit for waveguides with length of 1 cm. 

 Width 2.5 µm Width 3 µm Width 3.5 µm Width 4 µm 

Thickness 8 nm 0.0010 W-1 0.0011W-1 0.0012 W-1 0.0012 W-1 

Thickness 10 nm 0.0012 W-1 0.0012 W-1 0.0012 W-1 0.0012 W-1 

Thickness 12 nm 0.0012 W-1 0.0012 W-1 0.0011 W-1 0.0011 W-1 

Thickness 14 nm 0.0011 W-1 0.0010 W-1 0.00098 W-1 0.00092 W-1 

 

From Table 3, the waveguides with the highest figure of merit have a thickness of 

10 nm. The best candidate with a width of 3 µm and thickness 10 nm had an 

effective area of 36 µm2. Since this waveguide has a large effective area, it is better 

suited to butt coupling with a single mode optical fiber and is the better choice. 

However, during the process of fabrication, waveguides with widths 3 µm and up 

were fabricated and their loss characteristics were analyzed. 

 

Using these results, an estimate for the amount of nonlinear phase shift that a pulse 

accumulates over 1 cm of propagation can be calculated. Using an n2 of 1.7 × 10-6 

µm2/W provided by [28], the phase shift is calculated as 0.0012 radians · W-1. The 

value, n2,
 of Ge23Sb7S70 is given at the wavelength 1064 nm, whereas this thesis is 

interested in the wavelength regime of 1550 nm. According to [28], this value is 

different at 1550 nm but it at least gives an estimate for the correct value. For a 

pulse power of 1 kW, the phase shift of the pulse should be close to 1 radian. This 

phase shift is quite low for such a high pulse power and in fact, higher phase shifts 

can be achieved by using Chalcogenide micro wires as in [14]. It appears that the 

trade-off between field confinement and propagation loss for the ss mode is too 

restricting to achieve a good result. 

 

  4.5 Calculation of Coupling Coefficient Between SMF 28 and Plasmon 

Polariton Waveguide  

To test the loss characteristics of the gold strip waveguide, SMF 28 fiber was used 

to couple light in an end fire configuration. Since the spatial distribution of the ss 

mode is similar to the fundamental mode of the fiber, a good coupling efficiency 
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was expected. To get a clearer answer to the loss, the coupling efficiency was 

calculated by equation (4.42) [29], [30]. 

 
𝜂 = 𝑅𝑒 (

∫(𝑬𝑆𝑀𝐹 × 𝑯𝑆𝑃𝑊
∗ ) ∙ 𝑑𝑨∫(𝑬𝑆𝑃𝑊 × 𝑯𝑆𝑀𝐹

∗ ) ∙ 𝑑𝑨

∫(𝑬𝑆𝑀𝐹 × 𝑯𝑆𝑀𝐹
∗ ) ∙ 𝑑𝑨∫(𝑬𝑆𝑃𝑊 ×𝑯𝑆𝑃𝑊

∗ ) ∙ 𝑑𝑨
) (4.42) 

In the equation, SMF stands for the single mode fiber fundamental mode fields and 

SPW stands for the fields of the ss mode in the plasmon polariton waveguide. This 

equation does not take into account minor defections in the waveguide facets or 

translational and angular misalignment between waveguides.  

 

There is also a small difference between the effective indices of both the fiber and 

plasmon polariton waveguide. This is taken into account by equation (4.43). 

 
𝑇 =

4𝑛𝑆𝑀𝐹
𝑒𝑓𝑓
𝑛𝑆𝑃𝑊
𝑒𝑓𝑓

(𝑛𝑆𝑀𝐹
𝑒𝑓𝑓

+ 𝑛𝑆𝑃𝑊
𝑒𝑓𝑓

)
2 (4.43) 

The single mode fiber supports two polarizations and thus supports two modes. The 

gold strip waveguide however, only supports one of these polarizations. This causes 

the observed loss to increase by a factor of 2, since one of the polarizations will not 

couple to the ss mode of the plasmon polariton waveguide. The total estimated loss, 

Ltot, for a single coupling between single mode fiber and gold strip waveguide is 

then given by 

 
𝑳𝑡𝑜𝑡 =

1

2
𝑇𝜂. (4.44) 

Using the results obtained from the finite element method, the loss for the 3 µm 

wide and 10 nm thick waveguide was found to be Ltot = 0.42 or 3.7 dB. These 

simulation results show that this structure could be a good candidate for coupling 

light from single mode fibers.  
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Chapter 5: Fabrication and Experimentation 

of Gold Strip Waveguides 

5.1 Fabrication Process  

To construct a waveguide that can easily support the ss mode, the geometry must 

be symmetric on the x axis, or according to Figure 18, symmetric vertically. 

Theoretically, it is possible to support an ss mode on an asymmetric waveguide, but 

if not designed properly all the ss modes can be cut off [31]. Furthermore, the 

fabrication process made the use of some Chalcogenides impossible. As2Se3 has a 

very high nonlinear index of refraction, yet it could not be used because it is 

attacked by common photolithography developer solutions [32]. The fabrication 

process is explained by Figure 18. A similar fabrication example can found in [33].  

 

First a 4 µm film of Chalcogenide glass was deposited on a soda lime substrate. 

Soda lime with its low index of refraction was used so that light would not be guided 

out of the main waveguide. Then following [33], resist was deposited and patterned. 

To construct the gold strips, gold was first deposited and then a gold liftoff process 

was performed. 

 

Figure 18: Fabrication steps to construct gold strip plasmon polariton waveguides. The diagrams are given 

from the transverse plane. 
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Finally, the structure was completed with a 5 µm film of Chalcogenide. The 

photomask used in the patterning had many different dimensions for length and 

width. There was a 3 µm minimum feature size constraint on the width, but 

structures up to 20 µm wide were patterned. To better measure the loss 0.5 cm, 1 

cm and 2 cm were patterned as well.  

 

These fabrication steps, most notably the thermal evaporation of the Chalcogenide 

glass, were made possible by a collaboration with Prof. Juejun Hu at the University 

of Delaware. 

 

The last fabrication step remaining was to mechanically dice the soda lime substrate 

so that an optical fiber could be end fire coupled to the waveguides. Achieving a 

smooth end facet for the waveguide proved very difficult.  

 

Figure 19: Facets after mechanical dicing. The dicing was a distance away from the gold strips for a better 

result. A cleaved SMF is shown on the left. 

The results of the dicing are displayed in Figure 19. A cleaved single mode fiber is 

shown to the left of the soda lime substrate and the waveguides can be seen on the 

right with widths of approximately 5 µm. Significant chipping of the top layers of 

glass can easily be seen from this picture. When the dicing was moved closer to the 

gold strips, the facets were worse. It appears that the gold layers would strip away 

the thin films of Chalcogenide glass as seen in Figure 20. The soda lime substrate 
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however had a much straighter and smoother edge. In a similar type of structure, 

much smoother end facets were achieved, even before any polishing [34]. Thus, 

either the fabrication method or material system should be changed for a better 

dicing result. 

 

Figure 20: The dicing was moved closer to the waveguides and the results were much worse. The two layers 

of Chalcogenide glass can be seen chipped away at different positions. The gold layers are stripped much 

farther back from the edge. 

 

5.2 Loss Experimentation on Plasmon Polariton Waveguides  

Even though the results of the dicing were not perfect and large losses were 

expected, the waveguides’ loss characteristics were analyzed.  

 

Figure 21: Experimental setup of loss experiment. 

First, an erbium doped fiber amplifier (EDFA) was used as a broad band source, 

which was coupled to the samples by a single mode fiber. The signal was then 

coupled through another fiber to an optical spectrum analyzer (OSA) to determine 

the losses and its dependence on wavelength. Figure 22 shows the coupling setup 

between the single mode fibers and the sample. This setup along with the 
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microscope provided fine control of the lateral position. Without a camera to 

check the vertical position of the fibers, it was difficult to get a precise vertical 

position of the fibers. This was overcome by incrementally lowering both fibers 

until a signal was received.  

 

Figure 22: The setup for coupling light in and out of the plasmon polariton waveguides (center). 

Translational stages were used on the two fiber clamps and the microscope to have better control of the 

coupling. 
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Chapter 6: Results and Conclusion 

6.1 Results of Loss Experiment 

The waveguides with the cleanest end facets were used to calculate the loss from 

the coupling and propagation of the signal. There was significant glass chipping on 

the 5 µm and 6 µm wide waveguides and their results were not included. An input 

signal of 5 mW was launched into the fibers and collected at the output with the 

OSA, as shown in Figure 23. The resolution bandwidth was set to 0.1 nm to 

adequately distinguish power levels between wavelengths. The sensitivity of the 

OSA was set to 80 dBm and accounts for the noisy signal data in high loss 

wavelengths. 

 

Figure 23: Loss measurement of plasmon polariton waveguide. 
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The loss was much higher than theoretically predicted, assuming a perfectly flat 

facet for the waveguides. At 1550, after a fiber-waveguide coupling, 3.7 dB loss, 1 

cm of propagation, 4.54 dB of loss, and finally another fiber-waveguide coupling, 

3.7 dB loss, the total loss should have been 11.94 dB. Instead, the observed loss at 

1550 nm for a 3 µm wide waveguide was found to be approximately 75 dB. This 

high loss most likely resulted from the field not being coupled well with the 

waveguide. The chipped facets and the distance of the fibers from the waveguides 

increased the loss dramatically. It is difficult to interpret these results because of 

the high losses most likely caused by scattering at the facets. The origin of the dips 

in transmission are not well understood because it is difficult to know whether the 

light was successfully coupled to the waveguides or if it had simply radiated 

through the Chalcogenide glass layers. 

  

 6.2 Conclusion 

In this thesis, a method for increasing the nonlinear phase shift using surface 

plasmon polaritons was introduced. The tangential finite element method proved a 

strong and accurate tool for simulating and calculating the propagating modes of a 

finite width thin film structure. Using surface plasmon polariton modes of a finite 

width thin film waveguide, light can be confined to a smaller effective area. This is 

a useful tool in enhancing the nonlinear phase shift. Unfortunately, for this material 

structure and basic rectangular geometry, the trade-off between loss and field 

confinement of the ss0 mode is too stringent and the result of 0.0012 rad·W-1 for 1 

cm propagation is much lower than results obtained for Chalcogenide micro wires 

[14]. However, the coupling loss was calculated between an SMF fundamental 

mode and the ss mode and it had a low value of 3.7 dB. The figure of merit and 

waveguide nonlinear coefficient for this device is compared to other waveguide 

types in Table 4. The final figure of merit is quite low compared to the other 

waveguide types and is attributed to its loss characteristics. 
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Table 4: A comparison of the figure of merit for the surface plasmon polariton. 

Waveguide type 

Nonlinear 

index 

n2 (m
2/W) 

Nonlinear 

coefficient  

γ (W–1·m–1) 

Loss  

α (dB/m) 

Effective 

length 

Leff (m) 

Nonlinear 

figure of merit 

(FOM) 

γ·Leff
 (W–1) 

Highly nonlinear 

silica fiber [16] 
2.2×10–20 0.021 0.2 21715 91.20 

Bismuth oxide 

fiber (Bi2O3) 

[17],[18] 

1.1×10–18 1.36 0.8 5.42 7.38 

As2S3 waveguide 

[5] 
3.0×10–18 9.9 60 0.072 0.72 

Silicon waveguide 

[19], [20] 
4.5×10–18 150 400 0.011 1.63 

As2Se3 [14] 1.1×10–17 187 <1 4.343 812.14 

Ge23Sb7S70 surface 

plasmon polariton 

waveguide 

1.7×10-18 0.194 453.5 0.0096 0.0019 

 

Theoretically, this structure could be used in a future plasmon polariton setup as an 

intermediary between some plasmon polariton structure and a single mode fiber. 

This value for loss could be lowered even more by tailoring the width and thickness 

of the gold strip to produce a mode much more similar to the SMF fundamental 

mode.  

 

The loss experiment was conducted but without a cleaner end facet, the correct 

loss characteristics could not be determined. This might be due to an issue with 

the relatively thick thermally evaporated films chipping easily as the sample was 

diced.  
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6.3 Future Work 

In future projects with Chalcogenide surface plasmon polaritons, researchers 

should use a different dicing procedure or a different crystalline substrate that can 

be easily cleaved, such as Silicon. Another option is to attempt a different 

deposition technique for the Chalcogenide layers, as in [32], where the 

Chalcogenide is deposited by solution processing. This has the added benefit of 

including other Chalcogenides (e.g., As2Se3 that have a much higher nonlinear 

index. Solution processing also has the ability to deposit thick layers easily.  

 

Other geometries could be attempted to investigate their loss to field confinement 

characteristics as in [35]. It was also observed that introducing the lower refractive 

index layers above and below the Chalcogenide layers provided extra field 

confinement because the layers behaved like a slab dielectric waveguide. When 

investigating future geometries, a study of combining dielectric confinement with 

the surface plasmon polariton mode could be fruitful. Since the ss0 mode is very 

similar to the fundamental mode of an optical fiber, over short distances a fiber 

implanted with a metal strip could be made a true single mode fiber that supports 

only a single linear polarization.  
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