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Abstract

This thesis aims to demonstrate surface plasmon polariton waveguides that can
easily be end fire coupled to single mode fiber and provide high nonlinear phase
shifts. Firstly, the theory of surface plasmons is developed and the existence of a
propagating mode for a single and double interface structure is proven. Then the
vector finite element method is introduced and used to reproduce results for a lossy
dielectric waveguide. The ssO mode of the finite width thin film waveguide is
calculated and the convergence of the numerical method is shown. A waveguide
with width 3 um and thickness 10 nm is found to have the maximum nonlinear
phase shift of 0.0012 rad-W-!. The fabrication process flow is explained as well as
difficulties encountered. Finally, applications are discussed and suggestions are

made for future work that could improve the performance of these waveguides.
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Résumé

Cette thése rapporte 1'é¢tude du comportement de guides d’onde de plasmons de
surface couplés avec des fibres optiques monomodes, et générant des déphasages
non linéaire élevés. Premi¢rement, la théorie des plasmons de surface est examinée
et ’existence d’un mode de surface pour des structures a interface simple et double
est démontrée. Ensuite, la méthode vectorielle par éléments finis est introduite et
utilisée afin de reproduire les résultats pour un guide d’onde diélectrique dissipatif.
Le mode ss” d’un guide d’onde doté d’un mince film métallique de largeur finie est
calculé et la convergence de la méthode numérique est présentée. De plus, il est
démontré qu’un guide d’onde avec une largeur de 3 pm et une épaisseur de 10 nm
présente un déphasage non linéaire maximal de 0.0012 rad-W-!. Le procédé de
fabrication et les difficultés encourues a la réalisation expérimentale d'un prototype
sont expliqués. Finalement, différentes applications sont mentionnées et de
nouvelles méthodes d’analyse et de travail permettant d’accroitre la performance

des guides d’onde sont proposées.
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Chapter 1: Introduction

The motivation for current research into nonlinear photonics lies in the ability to
extend the flexibility of photonics beyond the already broad possibilities of linear
optics. The overall goal is to create original devices that can be made to complement
electronics [1]. A subset of nonlinear photonics based on third order nonlinearities,
which is described by n2 (m?/W), the nonlinear refractive index, has been used to
create innovative devices such as frequency converters, frequency combs, mode-
locked lasers and supercontinuum generators [2]-[6]. Since the nonlinear response
is usually quite low, nonlinear devices usually require large lengths and large field

intensities.

Using plasmonics to induce high electric field intensities for enhancing nonlinear
phenomena has been researched for the last two decades. The main method has
been implanting metal particles or colloids into highly nonlinear dielectrics [1], [7]—
[10]. The local field around the metal particles have high intensities for laser pulses
with wavelengths close to the surface plasmon resonance of the individual particles
[10]. This translates to an enhanced third order nonlinearity for the material.
Another approach is based on the so-called long range surface plasmon polariton
(LRSPP) [11]. The LRSPP is a propagating mode that exists for thin metal films
encased in a dielectric. This mode is localized to the metal-dielectric interfaces and
depending on the film thickness can be tailored to low loss or high field
confinement [11]. Using a highly nonlinear dielectric as the cladding for such a

waveguide can lead to an enhanced nonlinear response [12].

Another tool that researchers use to observe large nonlinear responses is to select
dielectrics with high nonlinear refractive indices. One such group of materials
extensively studied is the Chalcogenide glasses. These amorphous glass materials
contain sulfur, selenium and/or tellurium as well as other elements like germanium

or arsenic [13]. Many Chalcogenides have broad infrared transparency,



e.g.,Ge23Sb7S70 (1um-10um), and large nonlinear indices of refraction, e.g., As>Ses
(500 times larger than silica) [13], [14]. They also have large linear indices of
refraction that facilitate the concentration of photons, e.g., Ge23Sb7S7 (n = 2.15)

and As>Ses (n = 2.83) [14], [15].

Maximizing the waveguide nonlinear coefficient, y, while keeping losses low by
designing different waveguide geometries with different materials has been studied
extensively. Table 1 gives a few examples of these waveguide types and their
nonlinear figure of merit (FOM). The figure of merit is a measure of a waveguide’s
nonlinear response, which includes loss. The nonlinear coefficient includes the
effects of waveguide effective area and the material’s nonlinear refractive index.
This value multiplied by the effective length, which describes the loss, gives the

waveguide’s figure of merit.

Table 1: Comparison of waveguide types and their Kerr nonlinear responses.

Nonlinear
Nonlinear | Nonlinear Effective )
Loss figure of merit
Waveguide type index coefficient length
o (dB/m) (FOM)
n2 (mz/W) Y (W’1 -m’l) Letr (m) .
Y Letr (W)

Highly nonlinear

2.2x107% 0.021 0.2 21715 91.20
silica fiber [16]
Bismuth oxide
fiber (Bi203) 1.1x10°'® 1.36 0.8 542 7.38
[17],[18]
As2S3 waveguide

3.0x10°® 9.9 60 0.072 0.72
[5]
Silicon waveguide

4.5x10°18 150 400 0.011 1.63
[19], [20]
AszSe; microwires
4] 1.1x107"7 187 <1 4.343 812.14
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The objective of this thesis is to determine, through simulation and
experimentation, if a large Kerr nonlinear response can be achieved by designing a
gold strip surface plasmon waveguide with a suitable Chalcogenide glass as the
cladding. The surface plasmon polariton’s ability to strongly confine electric fields,
should enhance the already high Kerr nonlinearity of Chalcogenide and result in a
waveguide with a large nonlinear coefficient. However, the surface plasmon
polaritons losses are expected to be high, so the waveguides’ figure of merit, y-Letr,

will be calculated and compared to the results of Table 1.

This thesis is organized into six chapters. The second chapter, Plasmon Polariton
Waves, introduces the theory for solving propagating modes of infinitely wide
metal-dielectric waveguides with one or two metal-dielectric interfaces and briefly
explains the notation for modes of a finite width thin film structure. The third
chapter, Nonlinearity of Waveguides, presents the necessary background
information on the third order Kerr nonlinearities present in optical waveguides and
their effect on signal propagation. The fourth chapter, Simulation of Finite Width
Thin Film Gold Strip Waveguides, explains the numerical simulation of the
waveguides, the vector finite element method, and provides simulation results for
different structures. The fifth chapter, Fabrication and Experimentation of Gold
Strip Waveguides, describes the fabrication process of the waveguides and the
experimental setup for the loss characterization. The sixth and final chapter, Results
and Conclusion, discusses the results and provides feedback for future research in

this area.
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Chapter 2: Plasmon Polariton Waves

A surface plasmon polariton is defined as a surface oscillation of electrons coupled
with a photon at the interface between a material that has a positive permittivity,
usually a dielectric, and a material that has a negative permittivity, usually a metal
[21]. There are other cases where surface plasmons may exist, such as interfaces
that include materials with non-unity magnetic permeability. This thesis will
consider only the case of an interface bounded by a dielectric and a metal with a
relative magnetic permeability of 1, or non-magnetic media [21].

Two geometries will be considered: a single interface between dielectric and metal
and a double interface between dielectric and metals. Figure 1 shows the structure

of a single interface and double interface structure.

These two-dimensional structures offer no confinement along the x axis and
therefore have little practical interest, especially for nonlinear processes. However,
the solutions offer a good approximation for the thin film finite width structure

considered later in Chapter 4.

The modes of these structures are rigorously derived so that the reader may better
understand the modes of a finite width thin film structure studied in Chapter 4. The
ss® mode of the finite width thin film waveguide shares many characteristics with
the symmetric mode of the double interface structure. The most important is the
reliance of the loss and field confinement on the metal thickness. The single
interface structure is solved because the modes of a double interface can be thought
of as two single interface modes that are coupled together. Furthermore, the
derivation is fairly simple and demonstrates the interesting ability of surface
plasmons to be bound to a single interface unlike modes of a dielectric waveguide.
Finally, the TM (Transverse Magnetic) nature of these slab guide modes is an
important effect and is shared by the ss° mode of the finite width thin film

waveguide.
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y y
dielectric layer with e_ dielectric layer with & _
0 z 0 B
metal layer with g, guiding metal layer with g
_dg
dielectric layer with _
a) b)

Figure 1: Schematic of a single a) and double b) interface structure. A propagating mode will propagate
along z with constant f.

2.1 Single Interface Plasmon Polaritons
First a field description and mode solution will be developed for the single interface
geometry for two polarizations: TE (Transverse Electric) and TM (Transverse

Magnetic). Both polarizations have only three field components.

Figure 2: Diagram of the two possible polarization configurations TE and TM. The propagation is in the z
direction.
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The TE mode has only a single electric field component along the x axis. The TM
mode has only a single magnetic field component along the x axis as shown in

Figure 2.

It will be demonstrated that only one of these polarizations is able to excite a
propagating mode. The electromagnetic fields are represented by monochromatic
waves as in equations (2.1) and (2.2).
E(r,t) = Re{E(r)e/*t} 2.1
H(r,t) = Re{H(r)e/*t} (2.2)
The wave vectors are given by the following equations, where ko = 2n/A and 9, vy

are the transverse normalized wavenumbers [21].

="/, (2.3)
8% =% — ecpc (24)
VZ = ﬁz — Eglg (2.5)

2.1.1 TE Single Interface

For a TE mode, there is one electric field component Ey and two magnetic fields H,
and H.. For a planar propagating wave, the E, is given by equation (2.6) [21].

E, = Eje/(kyy+koB?) (2.6)
In this case, &k, = —jkoo or jkgy depending on which material the field lies in. The
fields must be evanescent along y for a propagating mode that forces &, to these
values, assuming real positive values for 6 and y. This can be directly expressed by

equation (2.7).

2.7)

—kob
Ey = Eqe™/koP? (e Y>> 0>

ekovy y <0
From Maxwell’s equations and the wave equation, the magnetic field can be written
in terms of the electric field by equation (2.8).
j @

Hy = ——2E, (2.8)

Putting equation (2.14) into equation (2.8) results in an explicit form of the

magnetic field
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ie—k(ﬁy y > 0
Hy, = EOMe_jkOBZ ”10 .
How Eekoyy y <0

(2.9)

This same process can be repeated for the H. component as shown by equation
(2.10) and (2.11).

—i 9

H, = /] 9

oy Oy

- ie‘k("sy y > 0\
H, = EOJ_Oe—jkoﬁZ He

Uow \__yeko)’y y < 0/
Hg

The boundary conditions dictate that the tangential components of the electric and

E, (2.10)

2.11)

magnetic fields must be continuous [21]. Continuity of H: leads to the dispersion
equation (2.12).

Z=-L 2.12)
Hc Hg
Since the original assumption was that 6 and y are real and positive, the values for
magnetic permeability must have opposite signs. These kinds of materials are
possible but for our case of dielectric and metal that are non-magnetic, it is not.

Thus, at such an interface there will not be a supported mode for TE fields.

2.1.2 TM Single Interface

The exact same approach can be taken for a TM mode for which there are H,, E,

and E- fields. The results are shown for the 3 fields in (2.13), (2.14) and (2.15).

. —koby 0
_ ikopz € y >
H, = Hye /%0 (ekoyy )< O> (2.13)
Zekody >0
_ koB —jkopz | Ec
E, =—H,——e /%0 2.14
y 0 Eowe lekoyy y < 0 ( )
€g
- —Ee"‘ﬂ‘sy y >0
E, = Hoi—;’)e-fkoﬁz e (2.15)
0 _ekoyy y < 0
&g

The boundary conditions are the same, but now the condition is

15



S=-L, (2.16)

£ &g

Similar to the TE case, the relative permittivities must have opposite signs. This
will be possible since metals have a negative permittivity. Replacing (2.16) with
expressions in terms of f§ yields

B2—eclic ﬁz_ggﬂg

2 = et (2.17)
Solving for B in (2.17) gives the solution for the propagation constant
cECE £gEc2
B = J g _‘S‘gzg . (2.18)
For non-magnetic medium ug=u.~1, the solution simplifies to
B= |22 (2.19)

ggtec

This means that there exists a bound propagating mode for a single interface
structure, which is not possible to achieve with a similar dielectric structure.
Physically this is possible because the photons are coupling with plasmons or
coherent groups of oscillating electrons [21]. The fields of this mode are TM and
only have a single transverse electric field perpendicular to the interface. The field
profile is exponential on both sides of the interface, but the electric and magnetic
fields penetrate much farther into the dielectric. Since there is still a significant
portion of the field inside the metal, the propagation losses are quite high.
Propagation lengths are generally in the um range. The wavenumber will be much
larger than that of a photon with the same frequency travelling in a dielectric, so

coupling light to a surface plasmon polariton is not easy with end fire techniques.

The next section, Double Interface Surface Plasmon Polaritons, will explain how
the propagation length can be orders of magnitude longer for thin metal films
sandwiched between dielectrics. The symmetric mode of a double interface
structure has the added benefit of a smaller wavenumber value and coupling by end

firing can be much easier.
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2.2 Double Interface Surface Plasmon Polaritons

2.2.1 TE Double Interface

For the double interface case, a guiding layer of relative permittivity &, is
surrounded by a dielectric of .. Assuming evanescent decay in the cladding for a
propagating mode (2.28) gives the field description. Also by introducing a new
component of the wave vector propagating in the guiding layer, given by (2.31),
the complete description can be given by,

K* = ¢ggug — B2, (2.20)
where k i1s dominantly real and positive in a low loss medium. In a metal with
negative &g, ¥ will be mainly imaginary, which suggests that hyperbolic basis
functions would also be suitable for the core [22].

Ae~ko8y y=0
E, = e—JkoBz | A cos(koky) + B sin(koky) —dy <y <0 (2.21)
((A cos(kokd,) — B sin(kokd, ))e*od(do+y) y< dg>

Using (2.8) the H, field distribution can be written

1
_Ae—k05y =0
He Y
koB . 1 .
H, = 0" eikoBz | — (A cos(koky) + B sin(koky)) —dy;<y<o0 | (2.22)
How Hg
1
M_(A cos(kokd,) — B sin(kokdy))eko?(d+?) y < —d,
(o
Using (2.10) the H-: field distribution can be written
)
——Ae oy >0
] He ¢ Y
H, = —Jko e~JkoBz x (—A sin(kqyxy) + B cos(kqky)) —d, <y <0 | (223)
How Hg
Hi(A cos(kokd,) — B sin(kokdg))ekos(dgﬂ’) y < —d,

The boundary conditions dictate that the tangential magnetic and electric fields are
equal at the interfaces. For the H: field at y = 0, an expression for 4 and B can be
found.

)
2l ,_p (2.24)
He K

Using this expression for B, the boundary condition at y = —d, can be written.
) o u 5 Sy .
i( sin(kokdy) — ZYQ cos(kordy)) = E( cos(kordy) + Ef sin(kokdy)) (2.25)

Rearranging the terms and assuming us=u.=1, the solution simplifies to

17



tan(kokdg) =22 (2.26)

K2-§2°
It is not easily seen from this formula, but if the two materials have opposite signs
for the electric permittivity, then there is no solution to this equation. Thus, similar

to the single interface case, no TE mode exists.

2.2.2 TM Double Interface

With only a few changes, all the previous algebra can be repeated to find the three

field distributions for a TM mode.

Ae~kody y=0
H, = e~JkoBz | A cos(koky) + B sin(kyky) —dg<y<0 (2.27)
(A cos(kokdy) — B sin(kokdg))eko‘s(dg'*y) y < —dg
1
 Aekoby
.. Ae y=0
—koB ko | 1 .
Ey = T’ JkoPz | S—(A cos(kyky) + B sin(kyky)) —dy;<y<0 (228)
0 )
1
G cos(kokd,) — B sin(kokd, ))e*o®(de*) y < —d,
— — Ae koby
( e y=0
E, = &e—jkoﬁz ;(—A sin(kyky) + B cos(kyky)) —dy <y <0 (229)
Eow g
)
E_C(A cos(kord,) — B sin(kokdg))ek°5(d9+y) y < —d,

Again using the same approach as for the TE case, solving both boundary

conditions gives dispersion relation

2ec€40K
tan(kokdg) = SCZTi_W . (230)
(2.30) can be further reduced to give even and odd solutions
tan(kordy/2) = 22 (2.31)
Egck
tan(kokd,/2) = — vl (2.32)

where (2.31) is the even mode and (2.32) is the solution to the odd mode [21].
Similar to the single interface geometry, all the fields are evanescently decaying.
The metal guiding layer is also exponential decaying since the transverse
component of the wave vector is predominantly imaginary. For very thin films,
the effective index evolves into that of a plane wave propagating in the surround
dielectric. This property makes the symmetric mode a good candidate for end fire

coupling.
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23 Modes of a Chalcogenide Gold Slab Plasmon Polariton Waveguide

Using Figure 1 as a reference, consider a symmetric structure composed of
Ge23Sb7S79 as the dielectric layers and a thin gold film for the core layer. These
materials, at an illumination wavelength of 1550 nm, have permittivities of & =
4.84 and e, =—131.95 — 12.65; [15], [23]. With these values the dispersion equation

(2.30) can be solved as a function of thickness, as shown in Figure 3 and Figure 4.

=b mode

2.4

Ab mode [

235

b
(N]
T

225F

Effective Index

[

o )

i (8]
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1 |
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o
T

1

205 I 1 1 ! ! 1 I I 1 E
] 0ol o002 QO3 o004 005 00 0O0OF 003 002 041
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Figure 3: Effective index of the two supported modes (asymmetric and symmetric), simulated using MatLab.
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Figure 4: Loss of the two supported modes (asymmetric and symmetric), simulated using MatLab.
These are the well-known symmetric and asymmetric modes, and refer to the
symmetry of the dominant field component, in this case Ey [11]. They are also
called the long range surface plasmon polariton (LRSPP) and the short range
surface plasmon polariton (SRSPP) because of their attenuation characteristics
[11]. The LRSPP attenuation decreases to zero for small thicknesses and the
opposite is true for the SRSPP. For both modes, as the thickness increases the
modes become degenerate and evolve into the single interface solution [11].
These solutions provide a good approximation of the two main types of bound
modes that exist for a thin metal film of finite width [11]. The field distribution
of the symmetric mode is useful to analyse as it is similar to the mode of interest
for the finite width case. For a very thin waveguide, the symmetric mode extends

deep into the dielectric and thus experiences less loss. An example is given by
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Fields as a Function of y

realH:x |

realEy

Mormalized Hx

Figure 5: Field components of symmetric mode for a 10 nm thick surface plasmon polariton waveguide.
The focus is on the Ey component. Simulated with MatLab

Fields as a Function of y
28— . — —_— —

realHx
realEy
realEz

Morralized Hx

Figure 6: Field components of symmetric mode for a 10 nm thick surface plasmon polariton waveguide.
The focus is on the Hy and E: components. Simulated with Matlab
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Figure 5 and Figure 6, which describe the symmetric mode of a 10 nm thick
Chalcogenide and gold structure. For the symmetric mode, as the thickness
becomes smaller the transverse electric field becomes larger when compared to the
remaining two. On the other hand, the asymmetric mode penetrates farther into the
metal for small thicknesses and has larger losses. As a consequence the electric

field is confined tightly to the metal-dielectric interface.

2.4  Modes of a Symmetric Finite Width Thin Metal Film

Now that the symmetric and asymmetric modes of the slab type waveguides have
been characterized, it is useful to classify the modes that exist for a finite width
structure. It will be seen that the ss° mode has characteristics that make it useful for

coupling to optical fibers and propagating longer distances.

The modes are characterized by their dominant transverse field component’s
symmetry along the y and x axis [11]. The dominant field component is E, for
structures that are much wider than thick [11]. For example, a mode that is
symmetric along the y axis but not along the x axis would be denoted as the sa
mode. Furthermore, modes that share the same symmetry characteristics are
differentiated by the number of extrema along the largest dimension, m, and the
number of extrema along the remaining dimension, n [11]. For the previously
defined mode with two extrema along the largest dimension and one extremum

along the other, the notation would be sa??.

As will be shown in Chapter 4, the ss modes share the important characteristic of
having lower losses for thinner waveguides [11]. In many ways the ss mode of a
finite width waveguide is very similar to the symmetric mode of a slab type
waveguide. The phase constant approaches the value for a plane wave propagating
in the surrounding dielectric, which makes end fire coupling possible. This is a
useful guess that can be used to initialize the finite element method used in Chapter

4. This numbering maxima scheme was developed with thicker metal films in mind.
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In a very thin film, the ss° mode field profile encompasses the entire metal structure

and so it does have a maximum along the horizontal and vertical directions.
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Chapter 3: Third Order Nonlinearity of

Waveguides

Simply put, a nonlinear medium is a material where the polarization density and
electric field relation (3.21) is not linear [24], [25].
P = gyxE 3.1

The tensor notation for y (the electric susceptibility) is dropped and the medium is
assumed to be isotropic. In fact most materials will have a nonlinear response when
the applied electrical field is proportional to the interatomic electric fields and can
be described by equation (3.2) [24].

P = g4y E + €ox2EE + €9 x3EEE + --- 3.2)

3.1 Nonlinear Index of Refraction
The nonlinear electric susceptibility is a property of the material and in the case of
Chalcogenide has a very low second order response. The higher order
susceptibilities can be ignored and equation (3.2) can be simplified.

P = gyy1E + o x3EEE (3.3)
Focusing on the nonlinear half of equation (3.3) and substituting the expression for

a harmonic field results in,

. O .
3 /Wt 4 —J30t 4 ¢ ¢,

3E2E! E3
00 ) (3.4)

Py = &3 (
where Ey is a complex amplitude and c.c. stands for the complex conjugate. The
mechanism for third harmonic generation can be seen from this equation and is a
direct result of third order nonlinearity. The other component is responsible for the
Kerr effect. If the third harmonic generation is ignored for now and equation (3.4)
is reordered, an expression for the Kerr effect can be realized [16].

3|E,|?
P =gy, E + %80X3E (3.5
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Then using the relation between electric permittivity and index of refraction, the
nonlinear index of refraction and absorption coefficient can be expressed by
equation (3.6) and (3.7) [16].
n = ng + ny|Ey|? (3.6)
a = ag + ay|Eg|? 3.7)
Remembering to use the sign convention for harmonic waves expressed in equation
(2.1), the nonlinear components of the index of refraction and absorption coefficient

can be related to the electric susceptibility by equations (3.8) and (3.9) [16].

3

n = 8—7101?6{)(3} (3.8)
3

a = _Zkolm{)(3} (3.9)

The effect of the index of refraction depending on the incident intensity of light is

the mechanism for self-phase modulation and cross-phase modulation.

3.2 Self-Phase Modulation
The phase of a travelling wave is given by [16]

@ = wt— Pz + @,, (3.10)
where £ is the propagation constant. Replacing its value in a nonlinear medium
gives the intensity dependent phase shift [16].

@ = wt — ko(ng + nz|Eo|*)z + @q (3.11)
This phase shift causes a chirp and change in instantaneous frequency, which can

be described by equation (3.12) [16].

(3.12)

A useful metric for describing the amount of phase shift accumulated over
propagation distance is the maximum phase shift given by equation (3.13) [16].
APmax = ko(nz|Eo|?)L (3.13)
For an optical pulse, the middle or peak of the pulse experiences the maximum
phase shift. If the expression in (3.13) is changed to incorporate intensity, then the

maximum phase shift can be described by the peak pulse power.
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_ kO (ngPMax)L

A(pmax -

(3.14)
Acrr

The two new variables 7.’ and 4. are the nonlinear refractive index in power units

and the effective mode area [16].

n
n; = Zaneo (.15
A (JS1F Cx, )12 dxdy)? (3.16)

IR G y)|*dxdy)
F(x, y) is the mode distribution. From these parameters, it is evident that decreasing
the effective mode area and increasing the peak pulse power will increase the
maximum phase shift. It is also possible to accumulate a larger phase shift by
propagating over long distances. Another variable usually defined as 7y is the
nonlinear parameter, which is useful for characterizing waveguides [16].

_ konj

y = (3.17)
Acrr

The nonlinear length, L, is an indication over what distances the phase shift has

a noticeable impact on optical pulses [16].
1

Y Prmax

LNL = (318)

More precisely Lnv is the length at which the maximum phase shift is 1 radian. In
lossy waveguides, attenuation plays an important role and must be considered. The
equivalent propagation length through a lossless waveguide is used and replaces L
[16].

1 — e—aL

a

Lojs = (3.19)

Now the maximum phase shift can be stated in term of the effective length and the
nonlinear length.

Lerr
LNL

APmax = (3.20)

When losses are involved, a waveguide’s nonlinear response is usually described

by the figure of merit (FOM), y-Lesr. The effective length is then calculated with the
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length of the waveguide set to infinity. The figure of merit is then given by equation
(3.21) [14].
kon

FOM =
Aeffa

(3.21)

33 Nonlinear Schrodinger Equation

Since the Kerr effect is dependent on field intensity, it is important to determine its
effect on optical pulses. The differential equation that describes the change in mode
propagation is derived from first-order perturbation theory [16]. If the overall shape
ofthe time pulse is given as 4 and is assumed to vary with z, the effect of dispersion,
attenuation and the Kerr effect is given by the nonlinear Schrédinger equation
(NLSE) [16].

JdA  B,0
0z ) 2 9T?

In the NLSE, > is related to chromatic dlspersion and T is the time in a reference

a
248 SA+jylAlPA=0 (3.22)

frame travelling with the pulse [16]. The difference of sign between equation (3.22)
and the reference [16] comes from the different sign convention of time harmonic

fields.

The NLSE can be solved numerically by using the Split-step Fourier method. Since
dispersion is easier to address in the frequency domain and the Kerr effect in the
time domain, the propagation length is discretized. In each small discretization, the
dispersion and Kerr effect are applied independently to the input signal, first by
applying the dispersion in the frequency domain and then after an inverse Fourier

transform, applying the Kerr effect [16].

The evolution of a Gaussian pulse with peak power 1 mW and waveguide nonlinear
parameter 0.1 m™'W-! is shown in Figure 7. Assuming the only effect is due to Kerr
nonlinearity, the self-phase modulation causes the frequency spectrum to widen and
form peaks. As the pulse accumulates larger phase shifts, the spectrum continually

forms new peaks. However, the induced phase has no effect on the temporal signal.
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In an experimental setting, a spectrum analyzer can measure the frequency
broadening and the maximum phase shift can be extracted.
This broadening of the pulse spectra is what supercontinuum generators and

frequency combs exploit.

10 Temporal signal
T T T T T T T T T T
10r —+—In Y
gl Out ||
S -
Tk -
Z of I
o sl 1
g 4
o
3+ -
2k -
1k =
] ;—
-F 1 1 1 1 1
g ] 6 8 10
w10
x 10"
—+—In
Ssl ~Phi=1.25 rad ||
Phi=2.5 rad
Fhi =375 rad
- 2F Fhi=arad |
<
< 15F .
O
I |
o
| 1 ! 1 I | 1 1 " 1 1

| |
-1 08 0B 04 02 0 02 04 06 08 1
Frequency [Hz] w10

Figure 7: The change in time domain and frequency domain of a Gaussian pulse with maximum phase shift,
Phi, of 1.25 rad, 2.5 rad, 3.75 rad and 5 rad. Taken from [25].
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Chapter 4: Simulation of Finite Width Thin
Film Gold Strip Waveguides

In the preceding chapters, the theory behind surface plasmon polaritons and Kerr
nonlinearity was introduced. This will be used later in this thesis to design the finite
width gold strip waveguide, but for now the chosen method for simulating such a
device will be discussed. The solution for a structure such as the one shown in
Figure 8 cannot be found analytically, although there are plenty of numerical
methods suitable for this problem, most notably the method of lines [11]. However,
in this thesis the finite element method is implemented. The benefit of using a finite
element method over the method of lines is that it can easily be adapted to complex

geometries.

dielectric layer with €_

guiding metal layer with e d X

- ]
wo|
g

dielectric layer with €
<

Figure 8: The structure of a finite width thin gold strip waveguide.

4.1 The Vector Element Method
For an open waveguide problem as in Figure 8, traditional node-based finite
element methods can introduce spurious solutions [26]. Furthermore, imposing
boundary conditions on dielectric interfaces can be difficult and nodal elements

also cause problems at edges and corners by creating field singularities [26].
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Recently a new class of finite elements have emerged that do not introduce these
difficulties; they are named vector elements [26]. Instead of using nodes, edges of
elements are used as the degrees of freedom. Already it can be inferred that

imposing boundary conditions should be much simpler.

In the vector element method, each element’s edges are assigned a constant
tangential field component. Then using proper basis functions, the vector field can
be interpolated at any point inside the element. For a triangle element like the
example in Figure 9, the vector field can be represented by three basis functions.
Each basis function has a constant tangential field along its corresponding edge and
vanishes at the opposite point. The normal field at each edge is not constant and so
the vector field at each edge is not constant. This fact makes boundary conditions
at dielectric and conducting interfaces trivial to enforce. At such interfaces the

tangential field is continuous, whereas the normal fields are not.

Point 3
Edge 3 .

o
R Y4

| S |
Point 1~ )

A _ Fd ?dge2

Point 2

e
Figure 9: A typical triangular element with edges and points labelled counter clockwise.
The basis functions are derived in reference [26] and the vector field inside the

element is given by equation (4.4) [26]. Bolded values are considered vectors.

N1 = (Ll VLZ - L2 VLl)ll (41)
NZ = (LZ VL3 - L3 VLz)lz (42)
N3 = (L3 VLl - L17L3)l3 (43)
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E= iNi E; (4.4)

i=1
The basis functions contain, /;, the side length and, L, the corresponding area

coordinate. The area coordinate, used in conventional nodal analysis, is defined by

P = bic, —bye, (a; + bix + ¢;y). (4.5)
The area of the element, A, is given by (bic2 — bac1)/2. The other variables a;, b;,
and ¢; are defined by the three points that make up the triangular element.
Ay =XY3—X3Y, b1 =Y2—Y3 €1 =X3—X
A =X3Y1—X1¥3 by =y3—Y1 =% —X3 (4.6)
A3 =X1Y2 = XY1 b3=y1—Y, CG3=%—Xx
An example of the first edge’s corresponding basis function is given by Figure 10.

Notice that the field is zero at the opposite corner and the field lacks tangential

components along edge 2 and edge 3.

X
Figure 10: The basis function corresponding to edge 1, with vector quantities represented by arrows.
Now the electric field in a domain made up by these triangular elements can be

approximated linearly by the basis functions.

4.2 The Variational Method Formulation
The elements explained in the preceding section will be employed in the variational

method for solving the propagation constants, f3, of the waveguide in Figure 8. The
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vector basis functions will be used to represent the transverse field on the simulation
domain, whereas traditional node based elements will be implemented to represent
the longitudinal field. Using [26] as a reference, the waveguide problem is
described by the Helmholtz vector wave equation. The electric field is used here
instead of the magnetic field because the boundary conditions are simpler to
enforce.

VX(VXE)—kic,E=0 (4.7
Although this is an open waveguide problem, electric wall boundary conditions at
sufficiently far finite distances are employed to simplify the derivation. For electric
and magnetic wall boundaries, the conditions are as follows:

71 X E = 0 for electric wall (4.8)

i X (V X E) = 0 for magnetic wall. (4.9)

Since the waveguide is lossy, the general variation principle is used to formulate
the functional, and the inner product is defined as

(Ply) = [ pypda. (4.10)
The functional describing this problem is then given by equation (4.11) [26].

1
F(E)=Eff[(|7><E)-(VxE)—kSer-E]dQ (4.11)

The transverse and longitudinal components of the electric field are broken up and
the functional is given by equation (4.12). The complex propagation constant is

now defined as y = a + jff with the z dependence E ~ e Y#[27].

1
P =5 [[10:x B - 7 x B) — Kgerk - B

+ (V.E, +YE,) - (V,E, + YE,)]dQ2

(4.12)

A change of variables is introduced to make solving for y much easier [26].
e =YvE, (4.13)
e, =E, (4.14)
The functional simplifies to equation (4.15) and agrees with reference [27].

F(E) = %ff[(vt xe) (V, xe)—kiee, e

- VZ[(Vtez +e) (Vie, +e)— kggrezz]] [eX0)

(4.15)
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Now the transverse and longitudinal field can be approximated in each element by
edge and nodal elements, respectively. The first order nodal basis functions, Vi,

are well-known and similar to the first order vector basis functions [26].

ef = Y Nfef (4.16)
i=1
3
ef = ) Nfef .17)
i=1
The nodal basis functions are given by
Nf = m (a; + bix + ¢;y); (4.18)

in fact, they are equal to the area coordinates, L;, stated earlier. Now the
functional in matrix form can be expressed in terms of the basis functions. The
vectors {ef } and {ef} represent the three edge and nodal values of each element

with M total elements.
exT e e e
— e\T ey _ .2 et Btt Btz]{et} 4.19
F(E) = [{et} Aidef} —vy {eze} B¢, Bglleg (4.19)

Each element has five corresponding symmetric elemental matrices. Later these
matrices are added to the global matrices and the eigenvalue equation can be

solved for y.

Ay = f f [(V, x N©) - (V, x N©)T — kZe,N¢ - N¢"]dQ (4.20)
By = H[Ne N1 dn (4.21)

J j - (V:N®)T] (4.22)

B, = f [(V,N¢)-N¢"]dQ (4.23)

o = [ 1) - @Y — Kooy do (424)

Before progressing further, these integrals have to be solved. The reference [26]

provides part of the solution for 4, and Bu.
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e e lfl](?
f (7, X N9 - (7, x Nf) d2 = +L (4.25)
The solution for B, and the remaining component of A is a bit more complex so

the solution is put into a different form [26].

f [N¢ - N¢]dQ = F (4.26)

fij = bibj + ci¢; (4.27)

Ff; = 2422 (f22 = frz + fir) (4.28)
Ff, = 418A (fa3 = foz = 2fi3 + f12) (4.29)
Ffy = 4;;(131 fir = 23 + fu3) (4.30)
Ff, = 2222(]%3 fas + f22) (4.31)
Fis = Lf;l;(fsl fs3 = 2fo1 + f23) (4.32)
F§; = ;:ii(fn fiz + f33) (4.33)

Now the elemental matrices A+ and B, can be given numerical values if & is
assumed to be constant within each element. Contrary to the reference [26], u, is

assumed to be unity for the entire simulation domain.

W o, e 434
Att = F - koerFl] ( . )
By = Ff (4.35)

The remaining three matrices can be solved by using the equations (4.30) and (4.33)
from the reference [26]. For equation (4.36), i + 1 takes on the value of 1 when i =

3.
e

Btz (bl+1b + Ci+16j — bibj - Cicj) (4'36)

12Ae

From the symmetry of the elemental matrices, B can be found by taking the
transpose of Bt.

B, = BtzT (4.37)
Finally B:: is given by equation (4.38), where d;; is the Kronecker delta.
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o=t 2. 2 ys (4.38)
zZZ — 4‘Ae - OETE( + lj) °

Now that all of the elemental matrices have been defined, the functional problem
can be rewritten using global notation. Since each edge is usually shared by
adjacent elements, the direction of the edge element will be defined in opposite
directions. When constructing the global matrix, it is important to choose a global
direction so that the simulation program knows to either add or subtract the
contribution of a different elemental matrix. This problem does not arise for the
scalar nodal contributions and they are simply added. The functional problem is

now expressed by equation (4.39).
1 eT B,y B;,] (e
— T _ 2yt tt tz t
FB) =5 acted - v o} [5 57|{e}] @
Finally the functional can be reduced to a generalized eigenvalue problem as seen
in reference [26]. The only difference is the lack of a minus sign, which is a result
of'using the generalized variational principle and removal of the complex conjugate
operators.
Ay 01(€e) _ 2 [Bu Btz] €t
(o ollet =715 soller) (440)
These matrices are extremely sparse and symmetric. Built in functions for
MATLAB can solve these problems easily with an initial guess. The dispersion

equations from Chapter 2: Plasmon Polariton Waves can be used to supply the

prerequisite initial guess, since the waveguides are much wider than they are thick.

As an example and validation of this technique, results were reproduced from
“Finite element analysis of lossy dielectric waveguides” [27]. The propagation
constant of the metal-insulator-semiconductor transmission line in [27] was solved
and Figure 5 and Figure 6 from [27] were reproduced. They are in good agreement

with the reproduced results in Figure 11 and Figure 12.
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AlphaldBimem)

Loss of metakinsulator semiconductor coplanar waveguide
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Figure 11: Reproduction of loss results for MIS-CPW, simulated in MatLab.
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Phase constant of metal-insulator semiconductar coplanar wavequide

BetaskO

| " PR (S L PR R | : P O e
10" 10° 10’ 10°
Frequency (GHz)

Figure 12: Reproduction of phase constant results for MIS-CPW, simulated in MatLab

4.3 Simulation of Chalcogenide Gold Strip Waveguides
The simulation technique was tested by demonstrating its convergence as the

number of triangular elements was increased, as shown in Figure 13.
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Phase constant covergence as number of elements is increased
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Figure 13: Convergence of the phase constant as the number of elements is increased. Simulated in MatLab.

Two methods of increasing the number of elements were used. First the number of
triangles was increased along the edges of the gold film because the electric field
varies very quickly near and inside metals. Then the maximum element size was
also decreased in steps. The structure simulated was a 10 nm thick 3 pm wide gold
film encased in Chalcogenide glass. To improve the accuracy of the simulation, the
Chalcogenide glass was not assumed to be infinitely thick. Instead the glass was
given a 4 um thickness below the film and a 5 um thickness above the gold film,
an artifact of the fabrication process. The simulation domain then included both the
soda lime substrate and surrounding air with &g, = 2.25 and

Eair = 1.

Furthermore, the symmetry of the structure was used to halve the simulation
domain, and electric wall boundary conditions were used for top, right and bottom
simulation edges. The remaining left edge was given the magnetic wall boundary

condition so that only symmetric modes would be calculated.
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Figure 14: Mesh of simulation domain. Red represents the Chalcogenide glass, black represents the soda
lime substrate and green represents the air. Simulated using MatLab.

The gold film is hard to discern since it is very small compared to the mode size.
However, the densely populated region at the center left gives away its position.
The mode was found by giving an initial estimate slightly larger than the electric
permittivity of the Chalcogenide glass. Then the next five modes with the largest
values for the phase constant were compared. The lowest order ss mode was easily
found by comparing the real part of the phase constant or loss. Modes that would
be considered sa have much larger losses and field confinement than the ss modes.
Finally, non-physical modes that appear due to the electric wall boundary
conditions were removed because of their very low loss characteristics. The electric
field profile can be calculated to confirm the presence of the ss mode. According to
[11], the ss mode should have a very small £x component. The E), component should
be symmetric and the dominant field. Furthermore, for very thin films, as in this
case, the field should be similar to the fundamental mode of an optical fiber. The
following figures give the spatial field distribution of the three electrical field

components over half of the actual geometry at an illumination wavelength of 1550
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nm. As expected, the E, component is the dominant field and the E, is zero
everywhere except for the corners of the gold film. The phase constant, normalized
by the wavenumber ky, was found to be 2.1995. The loss calculated from the

propagation constant was 4.5354 dB/cm.

Real part of Ey field

Y position (urm)

0 1 2 3 4 5
A position {um)

Figure 15: Ey field of the lowest order ss mode of the gold film plasmon polariton waveguide. Simulated
using MatLab
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Real part of Ex field

¥ position {um)

A position (urm)

Figure 16: Ex field of the lowest order ss mode of the gold film plasmon polariton waveguide. Simulated
using MatLab.

Imaginary pari of Ez field

i position {um)

# position (urm)

Figure 17: E- field of the lowest order ss mode of the gold film plasmon polariton waveguide. Simulated
using MatLab.
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4.4 Optimization of Chalcogenide Gold Strip Waveguide Design
There are two key parameters to consider when designing a waveguide that
maximizes the amount of nonlinear phase shift of a pulse. They are the loss and the
effective area of the mode. Increasing loss lowers the effective length in equation
(3.20) and a larger effective area increases the nonlinear length, Lyz, in the same

equation.

From the properties of the ss mode, the loss and effective area can be changed by
increasing or decreasing the thickness and width of the gold film. For this design,
the correct thickness and width of the gold film must be chosen carefully to
minimize the loss and minimize the effective area. To this end, a couple of different
simulations were run to compare the value of Leyand A4 for different waveguide
transverse dimensions. From equation (3.20), it is evident that having a large
effective length and small nonlinear length increases the amount of phase shift.
Thus, the optimized waveguide will have the largest figure of merit. The nonlinear
phase shift can then be calculated with this ratio and using equation (4.41). The

values reported in Table 2 are for waveguides with infinite lengths.

Lesy
APmax = konéPMax -

4.41
Aoy (4.41)

Table 2: Comparison of the figures of merit for waveguides with different width and thickness characteristics.

Width 2.5 um | Width 3 pm Width 3.5 pm Width 4 pm
Thickness 8 nm 0.0029 W-! 0.0026 W-! 0.0024 W-! 0.0022 W-!
Thickness 10 nm 0.0020 W-! 0.0019 W-! 0.0017 W-! 0.0016 W-!
Thickness 12 nm 0.0015 W-! 0.0014 W-! 0.0013 W! 0.0012 W!
Thickness 14 nm 0.0012 W-! 0.0011 W-! 0.0010 W-! 0.00094 W-!

The figure of merit increases as the thickness and width decrease, this is a result of
lowering losses of the waveguides. In this thesis, waveguides of 1 cm were
fabricated, so the table is updated to reflect the different effective lengths. The

results can be found in Table 3.
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Table 3: Comparison of the figures of merit for waveguides with length of 1 cm.

Width 2.5 pm | Width 3 pm Width 3.5 um | Width 4 pm
Thickness 8 nm 0.0010 W' 0.0011W! 0.0012 W™ 0.0012 W'
Thickness 10 nm 0.0012 W-! 0.0012 W-! 0.0012 W-! 0.0012 W-!
Thickness 12 nm 0.0012 W-! 0.0012 W-! 0.0011 W-! 0.0011 W-!
Thickness 14 nm 0.0011 W-! 0.0010 W-! 0.00098 W-! 0.00092 W-!

From Table 3, the waveguides with the highest figure of merit have a thickness of
10 nm. The best candidate with a width of 3 um and thickness 10 nm had an
effective area of 36 um?. Since this waveguide has a large effective area, it is better
suited to butt coupling with a single mode optical fiber and is the better choice.
However, during the process of fabrication, waveguides with widths 3 pm and up

were fabricated and their loss characteristics were analyzed.

Using these results, an estimate for the amount of nonlinear phase shift that a pulse
accumulates over 1 cm of propagation can be calculated. Using an n of 1.7 x 10
um?/W provided by [28], the phase shift is calculated as 0.0012 radians - W', The
value, n2, of Ge23Sb7S7¢ 1s given at the wavelength 1064 nm, whereas this thesis is
interested in the wavelength regime of 1550 nm. According to [28], this value is
different at 1550 nm but it at least gives an estimate for the correct value. For a
pulse power of 1 kW, the phase shift of the pulse should be close to 1 radian. This
phase shift is quite low for such a high pulse power and in fact, higher phase shifts
can be achieved by using Chalcogenide micro wires as in [14]. It appears that the
trade-off between field confinement and propagation loss for the ss mode is too

restricting to achieve a good result.

4.5 Calculation of Coupling Coefficient Between SMF 28 and Plasmon
Polariton Waveguide
To test the loss characteristics of the gold strip waveguide, SMF 28 fiber was used
to couple light in an end fire configuration. Since the spatial distribution of the ss

mode is similar to the fundamental mode of the fiber, a good coupling efficiency
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was expected. To get a clearer answer to the loss, the coupling efficiency was
calculated by equation (4.42) [29], [30].
n = Re <f(E5MF X Hgpy) - dA [(Espy X Hsyp) - dA>
J(Esup X Hsyp) - dA [(Espw X Hgpy) - dA
In the equation, SMF stands for the single mode fiber fundamental mode fields and

(4.42)

SPW stands for the fields of the ss mode in the plasmon polariton waveguide. This
equation does not take into account minor defections in the waveguide facets or

translational and angular misalignment between waveguides.

There is also a small difference between the effective indices of both the fiber and

plasmon polariton waveguide. This is taken into account by equation (4.43).
eff eff
T = AnsypNspiw

eff eff \?
(nSMF + Nepy,

(4.43)

The single mode fiber supports two polarizations and thus supports two modes. The
gold strip waveguide however, only supports one of these polarizations. This causes
the observed loss to increase by a factor of 2, since one of the polarizations will not
couple to the ss mode of the plasmon polariton waveguide. The total estimated loss,
Lo, for a single coupling between single mode fiber and gold strip waveguide is

then given by
1
Lo = ETTI- (4.44)

Using the results obtained from the finite element method, the loss for the 3 pm
wide and 10 nm thick waveguide was found to be L, = 0.42 or 3.7 dB. These
simulation results show that this structure could be a good candidate for coupling

light from single mode fibers.
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Chapter 5: Fabrication and Experimentation

of Gold Strip Waveguides

51 Fabrication Process

To construct a waveguide that can easily support the ss mode, the geometry must
be symmetric on the x axis, or according to Figure 18, symmetric vertically.
Theoretically, it is possible to support an ss mode on an asymmetric waveguide, but
if not designed properly all the ss modes can be cut off [31]. Furthermore, the
fabrication process made the use of some Chalcogenides impossible. As>Ses has a
very high nonlinear index of refraction, yet it could not be used because it is
attacked by common photolithography developer solutions [32]. The fabrication

process is explained by Figure 18. A similar fabrication example can found in [33].

First a 4 pm film of Chalcogenide glass was deposited on a soda lime substrate.
Soda lime with its low index of refraction was used so that light would not be guided
out of the main waveguide. Then following [33], resist was deposited and patterned.
To construct the gold strips, gold was first deposited and then a gold liftoff process

was performed.

Resist Resist
Ge,SbS, Ge,SbS, Ge,Sb S,

SodaLime Soda Lime Soda Lime

Thermal evaporation of ChG, Photoresist patterning Gold liftoff
layer thickness 4 um

Resist Resist
Ge, 6,5,

Resist Au Resist Au

GESSb7S?\'J GeJ:Sb ej?ﬂ

Soda Lime Soda Lime

Soda Lime

Photoresist coating Gold deposition Final thermal evaporation of
ChG, layer thickness 5 um

Figure 18: Fabrication steps to construct gold strip plasmon polariton waveguides. The diagrams are given
from the transverse plane.
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Finally, the structure was completed with a 5 pum film of Chalcogenide. The
photomask used in the patterning had many different dimensions for length and
width. There was a 3 pm minimum feature size constraint on the width, but
structures up to 20 um wide were patterned. To better measure the loss 0.5 cm, 1

cm and 2 cm were patterned as well.

These fabrication steps, most notably the thermal evaporation of the Chalcogenide
glass, were made possible by a collaboration with Prof. Juejun Hu at the University

of Delaware.

The last fabrication step remaining was to mechanically dice the soda lime substrate
so that an optical fiber could be end fire coupled to the waveguides. Achieving a

smooth end facet for the waveguide proved very difficult.

Figure 19: Facets after mechanical dicing. The dicing was a distance away from the gold strips for a better
result. A cleaved SMF is shown on the left.

The results of the dicing are displayed in Figure 19. A cleaved single mode fiber is
shown to the left of the soda lime substrate and the waveguides can be seen on the
right with widths of approximately 5 um. Significant chipping of the top layers of
glass can easily be seen from this picture. When the dicing was moved closer to the
gold strips, the facets were worse. It appears that the gold layers would strip away

the thin films of Chalcogenide glass as seen in Figure 20. The soda lime substrate
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however had a much straighter and smoother edge. In a similar type of structure,
much smoother end facets were achieved, even before any polishing [34]. Thus,

either the fabrication method or material system should be changed for a better

dicing result.

Figure 20: The dicing was moved closer to the waveguides and the results were much worse. The two layers
of Chalcogenide glass can be seen chipped away at different positions. The gold layers are stripped much
farther back from the edge.

5.2 Loss Experimentation on Plasmon Polariton Waveguides
Even though the results of the dicing were not perfect and large losses were

expected, the waveguides’ loss characteristics were analyzed.

EDFA O Coupiing s with O 0sA

microscope and trans-
SMF 28 lational stages SMF 28

Figure 21: Experimental setup of loss experiment.

First, an erbium doped fiber amplifier (EDFA) was used as a broad band source,
which was coupled to the samples by a single mode fiber. The signal was then
coupled through another fiber to an optical spectrum analyzer (OSA) to determine
the losses and its dependence on wavelength. Figure 22 shows the coupling setup

between the single mode fibers and the sample. This setup along with the
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microscope provided fine control of the lateral position. Without a camera to
check the vertical position of the fibers, it was difficult to get a precise vertical

position of the fibers. This was overcome by incrementally lowering both fibers

until a signal was received.

Figure 22: The setup for coupling light in and out of the plasmon polariton waveguides (center).
Translational stages were used on the two fiber clamps and the microscope to have better control of the
coupling.
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Chapter 6: Results and Conclusion

6.1

Results of Loss Experiment

The waveguides with the cleanest end facets were used to calculate the loss from

the coupling and propagation of the signal. There was significant glass chipping on

the 5 um and 6 pm wide waveguides and their results were not included. An input

signal of 5 mW was launched into the fibers and collected at the output with the

OSA, as shown in Figure 23. The resolution bandwidth was set to 0.1 nm to

adequately distinguish power levels between wavelengths. The sensitivity of the

OSA was set to 80 dBm and accounts for the noisy signal data in high loss

wavelengths.
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Figure 23: Loss measurement of plasmon polariton waveguide.
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The loss was much higher than theoretically predicted, assuming a perfectly flat
facet for the waveguides. At 1550, after a fiber-waveguide coupling, 3.7 dB loss, 1
cm of propagation, 4.54 dB of loss, and finally another fiber-waveguide coupling,
3.7 dB loss, the total loss should have been 11.94 dB. Instead, the observed loss at
1550 nm for a 3 um wide waveguide was found to be approximately 75 dB. This
high loss most likely resulted from the field not being coupled well with the
waveguide. The chipped facets and the distance of the fibers from the waveguides
increased the loss dramatically. It is difficult to interpret these results because of
the high losses most likely caused by scattering at the facets. The origin of the dips
in transmission are not well understood because it is difficult to know whether the
light was successfully coupled to the waveguides or if it had simply radiated

through the Chalcogenide glass layers.

6.2  Conclusion

In this thesis, a method for increasing the nonlinear phase shift using surface
plasmon polaritons was introduced. The tangential finite element method proved a
strong and accurate tool for simulating and calculating the propagating modes of a
finite width thin film structure. Using surface plasmon polariton modes of a finite
width thin film waveguide, light can be confined to a smaller effective area. This is
a useful tool in enhancing the nonlinear phase shift. Unfortunately, for this material
structure and basic rectangular geometry, the trade-off between loss and field
confinement of the ss° mode is too stringent and the result of 0.0012 rad-W-! for 1
cm propagation is much lower than results obtained for Chalcogenide micro wires
[14]. However, the coupling loss was calculated between an SMF fundamental
mode and the ss mode and it had a low value of 3.7 dB. The figure of merit and
waveguide nonlinear coefficient for this device is compared to other waveguide
types in Table 4. The final figure of merit is quite low compared to the other

waveguide types and is attributed to its loss characteristics.
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Table 4: A comparison of the figure of merit for the surface plasmon polariton.

Nonlinear
Nonlinear | Nonlinear Effective .
_ . ' Loss figure of merit
Waveguide type | index coefficient length
o (dB/m) (FOM)
na (m?/W) [y (W m™) Lefr (m) 1
Y Letr (W)
Highly nonlinear
B 2.2x107% 0.021 0.2 21715 91.20
silica fiber [16]
Bismuth oxide
fiber (Bi203) 1.1x10°18 1.36 0.8 5.42 7.38
[17],[18]
As2S; waveguide
3.0x10°8 9.9 60 0.072 0.72
[5]
Silicon waveguide
4.5x10°18 150 400 0.011 1.63
[19], [20]
AszSe; [14] 1.1x107"7 187 <1 4.343 812.14
Ge23Sb7S7o surface
plasmon polariton | 1.7x107'® 0.194 453.5 0.0096 0.0019

waveguide

Theoretically, this structure could be used in a future plasmon polariton setup as an

intermediary between some plasmon polariton structure and a single mode fiber.

This value for loss could be lowered even more by tailoring the width and thickness

of the gold strip to produce a mode much more similar to the SMF fundamental

mode.

The loss experiment was conducted but without a cleaner end facet, the correct

loss characteristics could not be determined. This might be due to an issue with

the relatively thick thermally evaporated films chipping easily as the sample was

diced.
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6.3 Future Work

In future projects with Chalcogenide surface plasmon polaritons, researchers
should use a different dicing procedure or a different crystalline substrate that can
be easily cleaved, such as Silicon. Another option is to attempt a different
deposition technique for the Chalcogenide layers, as in [32], where the
Chalcogenide is deposited by solution processing. This has the added benefit of
including other Chalcogenides (e.g., As2Ses that have a much higher nonlinear

index. Solution processing also has the ability to deposit thick layers easily.

Other geometries could be attempted to investigate their loss to field confinement
characteristics as in [35]. It was also observed that introducing the lower refractive
index layers above and below the Chalcogenide layers provided extra field
confinement because the layers behaved like a slab dielectric waveguide. When
investigating future geometries, a study of combining dielectric confinement with
the surface plasmon polariton mode could be fruitful. Since the ss° mode is very
similar to the fundamental mode of an optical fiber, over short distances a fiber
implanted with a metal strip could be made a true single mode fiber that supports

only a single linear polarization.
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