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ABSTRACT

In longitudinal observational studies, standard regression methods fail to con-

sistently estimate the causal e�ect of time-varying treatment due to the presence

of time-varying confounders. Causal models such as structural nested mean models

(SNMM) and marginal structural models (MSM) and methods of estimation such as

two-stage parametric regression and propensity score approaches (g-estimation, in-

verse probability weighted estimators) have been developed to address inconsistency

of standard methods. This thesis considers an alternate approach, speci�cally for

estimating the causal e�ect of time-varying treatment in longitudinal observational

studies with continuous outcomes. I relax the assumptions of two-stage parametric

regression methods by placing a Markov assumption on the time-varying counter-

factual outcomes. Then, by expressing the SNMM as a state space model, I esti-

mate its causal parameters with a modi�ed Kalman estimating equation approach

(keeSNMM). I establish the theoretical properties of the method and then conduct

extensive simulation studies to evaluate its performance, comparing it to other ap-

proaches in a variety of settings. I also develop diagnostics to assess the validity

of the critical Markov assumption. I then propose a new estimator which replaces

the working models for the doubly robust g-estimator with the Kalman smoother

under the same Markov assumption (dr-keeSNMM). The new estimator will be con-

sistent if either the propensity score or the Markov assumption is correctly speci�ed.

By using the sequential ignorability/exchangeability assumption given the longitudi-

nal propensity score, I next develop SNMM using the longitudinal propensity score
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(SNMM-LPS) and estimate its causal parameters via KEE (keeSNMM-LPS). In the

last chapter I study the behaviour of my proposed methods.
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ABRÉGÉ

Dans les études longitudinales, les methodes de la régression standard ne sont

pas bien-adaptées à éstimer l'e�et causal de la traitement/exposition dépendante du

temps à cause de la présence des facteurs du confusion. Des modèles causals, par

exemple les modèles moyens structurels emboîtés (Structural nested mean model:

SNMM) et les modéles structurels marginaux (marginal structural model: MSM),

et les méthodes d'estimation comme la régression paramétrique à deux étapes et

le score de propension (g-estimation, les estimateurs ponderés à la probabilité in-

verse) ont été dévelopées pour répondre à l'incohérence des méthodes standard. Je

me détends les hypothèses des méthodes de régression paramétrique à deux étapes

en plaçant une hypothèse de Markov pour les résultats contrafactuels dépendants

en temps. Ensuite, par un expression de SNMM comme une représentation d'état,

j'estime ses paramètres causals en adaptant l'approche d'estimation de l'équation

Kalman (Kalman estimating equation approach of SNMM: keeSNMM). J'établis

les propriétés théoriques de la méthode et puis j'e�ectue des études de simulation

vastes pour évaluer la performance du modèle en comparant à MSM et la régression

standard dans une variété de paramètres de la spéci�cation. Je dévelope aussi les

diagnostiques pour évaluer la validité de l'hypothèse Markov essentielle. Je propose

ensuite un nouvel estimateur qui remplace les modèles pratiques pour le g-estimateur

double-robuste avec un lisseur Kalman avec la même hypothèse (dr-keeSNMM) et

qui est cohérente si le score de propension ou l'hypothèse Markov est correctement

spéci�é. En utilisant l'hypothèse de l'ignorabilité/l'échangeabilité compte tenu du
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score de propension longitudinal, je dévelope ensuite le SNMM en utilisant le score

de propension longitudinal et je l'appelle le SNMM-LPS (SNMM with Longitudi-

nal propensity score: SNMM-LPS) et j'estime ses paramètres causals selon le KEE

(keeSNMM-LPS). Au chapitre �nal, je fais un étude des traits de nos méthodes

proposées en estimant l'e�et de l'allaitement maternel dans l'ensemble des données

PROBIT.
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CHAPTER 1
Introduction

In general, approaches for estimating e�ectiveness or e�cacy can be classi�ed as

either (a) controlled experiments where one uses randomization to form comparable

groups, or (b) observational studies, where group assignments are merely observed.

In a controlled experiment, random assignment ensures that observed di�erences in

outcomes after treatment re�ect the causal e�ects of the treatment on the outcome

under perfect compliance and blinding. However there are some situations where

controlled experiments are impractical. For instance, many studies have reported a

possible link between abortions and an increased risk of breast cancer (Russo et al.

[2, 3, 4]). To conduct a controlled experiment, one would need to divide the study

group into a treatment group which receive induced abortion and a control group

which did not and then do cancer screening for each group after a prescribed follow-up

period. Such an experiment would obviously be unethical and practically impossi-

ble to conduct, so an observational study would be the only option. In a typical

observational study, treatment assignment is beyond the control of the investigator.

In observational studies, one typically observes subjects in the treatment group and

retrospectively draw inference about the postulated link between treatment and the

outcome of interest. In recent years, such studies have become increasingly common

in medicine, public health, education, sociology and psychology and their objective

is to elucidate cause-and-e�ect relationships. A common mistake in such studies is

1
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interpreting the correlation between treatment and outcome as causation due to the

presence of confounding variables. Confounders are variables that cause both the

outcome and exposure, leading to a non-causal association between exposure and

outcome. Failure to account for confounding can result in biased estimation of the

causal association between the outcome and the independent variables. In controlled

experimentation, this problem can be diminished to a tolerable level by using ran-

domization and blocking and adjustment. In a cross-sectional observational study,

the critical assumption needed to adjust for confounding using standard methods is

that there are no unmeasured confounders (Cochran [5]). In a longitudinal study,

the assumption of no unmeasured confounding is that at the time of adminstration,

given past pre-treatment covariates, treatment is independent of all unmeasured

confounders. This assumption is called sequential randomization. In a longitudinal

setting, contrary to cross sectional observational studies, even when sequential ran-

domization holds, standard methods fail to account for confounding which induces

bias in estimating the causal e�ect of treatment (Robins [6]).

1.1 Thesis organization and contributions

Elucidating cause-and-e�ect relation using standard regression methods in lon-

gitudinal observational studies requires some additional assumptions: (i) correche

speci�cation of the parametric regression model, (ii) satisfaction of the assumption

of no unmeasured confounders, and (iii) past treatment history doesn't cause future

time varying confounders. However the latter assumption is impractical in many

applications. Thus causal methodologies have been developed to address the incon-

sistency of standard methods when the latter assumption doesn't hold. Structural
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nested models (SNMM) have been used to adjust for the confounding e�ect of time

varying covariates when standard methods fail. The main advantage of these models

is that one can estimate treatment modi�cation by other time varying confounders

at all time intervals. In this thesis, I adopt the causal frame work of SNMM and

implement the Kalman �ltering algorithm (Kalman [7]) to develop new estimation

methods for estimating the causal parameters of the SNMM. My thesis is organized

as follows.

I start with a broad review of SNMM and other approaches in causal inference

in Chapter 2. The purpose of Chapter 3 is to provide methods to estimate the

causal e�ect of a time-varying dichotomous treatment on a time-varying outcome

in the presence of measured time-varying confounding in observational data. I de-

velop a new semi-parametric approach which doesn't require the usual restriction on

the treatment model. Instead, I assume a Markov model for the counterfactual when

treatment is completely withheld over time and write the SNMM in the framework of

a state space model. The parameters of the counterfactual model are considered nui-

sance parameters. I adapt the Kalman estimating equation estimator (Jørgensen &

Song [8]) so that it can be used to estimate the parameters of the SNMM (keeSNMM).

I demonstrate by simulation that when the counterfactual model assumptions hold,

the proposed method of estimating causal parameters by modeling the counterfac-

tual directly is more e�cient than the standard G-estimation approach. I discuss

insensitivity of our methodology to the estimation of our nuisance parameters.
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The keeSNMM method places restrictions on the counterfactual when treatment

withheld. Drawing inference from keeSNMM requires satisfaction of these assump-

tions. Additional model checking criteria would then be desirable, in order to ensure

that the conclusion is reliable. Despite its importance, there has been relatively lit-

tle work published on how to build and check the basic assumptions of the causal

models. Some work has been done on model checking for DTRs. See Chakraborty

and Moodie's book (chapter 9) [9], Rich et al. [1], Henderson et al. [10] and Ertefaie

et al. [11]. Estimating parameters of SNMM by modeling the counterfactual when

treatment is withheld by keeSNMM not only is computationally e�cient, but it also

readily provides us with basic diagnostic tools, which are the focus of Chapter 4.

Residual diagnostic plots provide valuable insight into whether the model as-

sumptions are reasonable or not. These plots can be used to check model assumptions

for standard methods, for example as in multiple linear regression. In section 4.2, I

discuss how to adapt these tools for checking the model assumptions of keeSNMM. In

section 4.3, using simple examples, I illustrate a way to compare the performance of

keeSNMM, gSNMM and MSM via IPTW and linear standard regression models via

OLS. I also show the in�uence of di�erent model assumptions on the estimation of the

causal parameters. In section 4.4, using extensive simulation studies under di�erent

settings, I demonstrate the application of the residual diagnostic plots for evaluation

of the relative performance of these four methods and in detecting deviation from

the necessary causal model assumptions.

The SNMM require two di�erent models, a model for the blip function and a

model for either the propensity score when using gSNMM, or a Markov model for the
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counterfactual when using keeSNMM. Both gSNMM and keeSNMM are consistent

when their respective assumptions are correctly speci�ed. Thus, the next step is to

develop a solution for when the residuals demonstrate deviation from model assump-

tions. Doubly robust g-estimation of SNMM (dr-gSNMM) combines both modeling

of the propensity score and modeling of the mean of the counterfactual and it provides

consistent causal estimation if either the mean model or the propensity score model

is correctly speci�ed. Building models for the mean of counterfactual is generally

problematic with a large number of observation time points. In section 5.3 of Chap-

ter 5, I introduce an approach using g-estimation in conjunction with the Kalman

�ltering algorithm (dr-keeSNMM). I consider a Markov model for the counterfactual

when treatment is withheld to systematically model the mean of the counterfactuals

at all time points instead of using intermediate working models. Thus the additional

assumption that needs to be checked is the Markov assumption. The dr-keeSNMM

consistently estimates the parameters of the model if either the propensity score

model or the Markov assumption is correct.

In causal inference using SNMM, it is essential to adjust for the important mod-

i�ers of the treatment e�ect with other pre-treatment covariates. However, adjusting

for all covariates may the in�ate variance of the estimated parameters and can also

induce bias. As a result, dimension reduction can be bene�cial when using SNMM

to model modi�cation of the treatment e�ect. In section 5.4 of Chapter 5, under the

sequential ignorability assumption given history of observed treatment and the lon-

gitudinal propensity score, I derive SNMM using the longitudinal propensity score as

a time-varying covariate (SNMM-LPS) to reduce the large dimension of covariates,
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particularly with a large number of time points. I also discuss estimating the param-

eters of the model using keeSNMM-LPS and r-keeSNMM-LPS where r-keeSNMM-

LPS is formalized in the same way as dr-keeSNMM. However, r-keeSNMM-LPS is

only robust to violation of the Markov assumption when the propensity score model

is correctly speci�ed. The application of this method is suggested in two types of

studies, namely (i) studies requiring adjustment for large numbers of pretreatment

covariates, and (ii) when the propensity scores are known and only the propensity

scores are kept as summaries of the covariates.

A dynamic treatment regime is a sequence of decision rules where the treatment

decision at each time interval is tailored to the particular patient's characteristics

and history for the purpose of optimizing long-term e�ectiveness of the program. I

have found that there is no work in the literature on optimal dynamic treatment

regime when the outcome is time-varying except when considering the reward func-

tion for outcomes at the end of the study period. In Chapter 6, I extend the optimal

dynamic treatment regime SNMM (ODTR-SNMM) by modeling portion of the value

of treatment regime on outcome at di�erent time points. However, ODTR is still

determined using the outcome at the end of the study. I place a Markov assumption

on the optimal counterfactual and, by writing the problem as state space model,

use ODTR-keeSNMM and ODTR-dr-keeSNMM to estimate the parameters of the

model.

In the Promotion of Breastfeeding Intervention Trial (PROBIT), a program for

the promotion of breastfeeding to mothers was randomized in a group of hospitals in

Belarus. Maternal and infant characteristics were recorded over time. The decision to
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continue to breastfeed is correlated with several maternal characteristics, suggesting

that observational results may be confounded. In Chapter 7, I illustrate my proposed

statistical approaches by using the PROBIT dataset. The �rst substantive question

addressed in Chapter 7 is how estimates of the e�ect of breastfeeding di�er as a result

of changes in mothers' and infants' characteristics in the course of the study. The

question is addressed �rst by dr-keeSNMM and keeSNMM and then by keeSNMM-

LPS and r-keeSNMM-LPS. The second question of interest is the optimal time to

stop breastfeeding that achieves the optimal growth, which is answered by the new

ODTR-dr-keeSNMM and OdTR-keeSNMM approaches.

The �nal chapter contains some directions for future results and a short conclu-

sion.



CHAPTER 2
Literature review

2.1 Setting, notation, and de�nitions

Assume the longitudinal study records measurements at T time points {j1, . . . , jT}

for N subjects. As a result the study has T − 1 time intervals, {(jt−1, jt], j =

(2, . . . , T )}. For each time interval, {(jt−1, jt], t = (2, . . . , T )}, the outcome is de-

noted by Yt. The vector of all other measured potential observed covariates at the

end of the interval is denoted by Lt. I assume a binary treatmentAt at each time point

which remains constant till the end of next interval and is assigned after observing Yt

and Lt. I also use "overbar" to denote current and past observations and "underbar"

for current and future observations, as is common in the causal inference literature.

For instance At = (A1, A2, . . . , At), Lt = (L1, L2, . . . , Lt), Y t = (Yt, Yt+1, . . . , YT )

and At = (At, At+1, . . . , AT−1). The pretreatment history before At is denoted by

Ht = (At−1, Y t, Lt). The entire observed data record for each subject is denoted by

O = (Y1, L1, A1, . . . , AT−1, YT , LT ).

2.1.1 Dynamic and non-dynamic treatment regime

In managing chronic diseases, tailoring treatment initiation to a patient's charac-

teristics is essential for optimizing e�ectiveness of the program. A dynamic treatment

regime (DTR) is a sequence of decision rules that specify how treatment administra-

tion should be adjusted, changed, added or discontinued through time in response

8
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to progress, side e�ects and patient burden, Lei et al. [12]. For an example of DTR

on the treatment of schizophrenia see Stroup et al. [13] and Cain et al. [14].

Mathematically, a treatment regime is a function g = {g1, . . . , gT} where each

element maps the past history of confounders and treatment into a decision at ∈ At,

gt : {ht ∈ Ht → at ∈ At}. When g = a∗ for all {ht ∈ Ht} the treatment regime is

non-dynamic in that it does not depend on past treatment, outcome or covariates

history. Any treatment regime that depends on {ht ∈ Ht} will be called dynamic.

Robins [6, 15, 16] pioneered the �eld of dynamic treatment regime and for more

information on drawing causal inference in multi-interval trials see, Murphy [17],

Robins [18], Moodie et al. [19] and Chakraborty et al. [20].

2.1.2 Potential/Counterfactual outcome

One framework that has proven useful in the analysis of confounding is the

counterfactual or potential outcomes approach. For example, MacMahon & Pugh

[21] state that "... an association may be classed as presumptively causal when it is

believed that, had the cause been altered, the e�ect would have been changed, that

is, they are counterfactual". For simplicity, �rst assume a univariate setting, and also

assume outcome and binary treatment are denoted by Y and A respectively. Let the

outcome that would be observed for a speci�c subject receiving treatment be denoted

by Y a=1 and when treatment is withheld by Y a=0. The causal contrast, Y a=1−Y a=0

is thus de�ned to be the causal e�ect of receiving treatment on the subject's outcome.

However only one of these outcomes can be observed in practice, and so the other one

is considered to be counterfactual. The counterfactual/potential outcome idea was

introduced in the statistical literature by Neyman [22] to analyze the causal e�ect
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of time-independent treatments in randomized experiments and Rubin [23] extended

this idea to analyzing the causal e�ects of time-independent treatments in obser-

vational studies. Robins [6] applied this concept for developing the counterfactual

theory of causal inference that extended Neyman's theory to longitudinal studies

with sequential time-varying treatments and confounders. Some people prefer the

term potential outcomes to emphasize that, depending on the treatment that is re-

ceived, only one of these two outcomes can be actually observed although, prior to

treatment, either one could potentially be observed. Other authors prefer the term

counterfactual outcomes to emphasize that these outcomes represent situations that

may not actually occur.

2.2 Total, direct and joint causal e�ect

In this section we introduce the total, direct and joint causal e�ect and highlight

the di�erence between these e�ects using an example from Daniel et al. [24]. In order

to de�ne the total e�ect of a treatment, assume that the treatment is just measured

at baseline, A1 and later values are not measured and outcome Y is only measured

at the end of the study. A change in A1 leads to a change in A2 and so on. So the

total e�ect of A1 on Y is equal to the direct e�ect of A1 on Y and the e�ect of A1 on

Y through subsequent, but unmeasured, treatments. In this simple case, a change

in A1 may lead to serious changes in the distribution of Y a1 , a1 ∈ A1. Thus the

distribution of Y a1 for di�erent values of a1 ∈ A1 determine total e�ect of treatment

A1 for a particular subject. Now assume that treatment is measured over time, as is

more common in practice. Then the distribution of Y aT−1 could still be the same for

changes in a1 when the e�ect of A1 is mediated through later treatment. The direct
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causal e�ect of A1 is then de�ned to be the e�ect of A1 on Y after removing the e�ect

of later levels of treatment. The joint e�ect of AT−1 on Y is a collection of all direct

e�ects that includes the direct e�ect of A1 on Y unmediated by {A2, . . . , AT−1}, the

direct e�ect of A2 on Y unmediated by {A3, . . . , AT−1} and so on.

2.3 Causal DAG

An alternative causal structure for de�ning causal e�ects is given by Pearl [25].

The causal structure can be denoted by a directed acyclic graph (DAG) G in which

nodes are random variables V = (V1, ..., VM) linked by directed edges (arrows).

Links are acyclic because there are no arrows from descendents (e�ects) to ances-

tors (causes). According to Pearl's terminology, a connected path is any sequence of

nodes and edges that connects A to B ignoring the direction of the arrows and any

path that is not a connected path is considered to be blocked. A node C is a collider

on a path between nodes A and B if the edges on the path that meet at C both have

arrows pointing into C. Assume that a node C lies on a path from A to B. If C is

not a collider, then it does not block the path from A to B unless it is conditioned

on (in which case, it then does block the path from A to B). If C is a collider, then

it blocks the path from A to B unless it is conditioned on (in which case, it then

does not block the path from A to B). For more details on causal diagrams see Pearl

[25, 26] and Greenland et al. [27].

2.4 The impact of unmeasured confounding via DAGs

I start with an example which is adopted from Robins & Wasserman [16]. The

data is collected on (A1, L, A2, Y ) where A1 and A2 are the dose of zidovudine treat-

ment received by AIDS patients. Let L be the indicator of whether a patient is
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Figure 2�1: Causal diagram showing no causal arrow from treatment to outcome.

anemic or not. Let Y be the HIV viral load at the end of study and U be a hidden

variable such as patient's underlying health status. The unmeasured covariate U is

a risk factor for Y and L, and is independent of treatment. The null hypothesis

is that there is no causal e�ect of treatment on the response, i.e. that (A1, A2) is

independent of Y given L and U . The naive approach would test for the absence of

arrows from A1 to Y and from A2 to Y . The problem with the naive test is that,

if I assume the true DAG is 2�1, since U is not measured, blocking L is required to

make A2 independent of Y . However blocking L opens a path from A1 to Y and

causes association. As a consequence, the null hypothesis will be naively rejected.

For technical details, see Robins & Wasserman [16]. As a result, in a longitudinal

setting, standard methods are inconsistent for estimating causal e�ects when the

following two conditions hold, (a) a time varying confounder is a predictor of subse-

quent value of outcome and it also predicts subsequent value of treatment, and (b)

past treatment history is an independent predictor for the time varying confounder.

2.4.1 Examples of studies with time-varying confounding

Example 1: AIDS cohort study

Consider again the study of estimating the impact of zidovudine (AZT) ther-

apy on CD4 counts in patients with AIDS. In the Multicenter AIDS Cohort Study
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(MACS, Kaslow et al. [28]) patients were monitored by their doctors semi-annually.

In each visit, doctors recorded a list of health indicators for each patient and used the

information to determine patient AZT treatment. Past CD4 counts were naturally

assumed to have a causal e�ect on future CD4 counts. It was also an important

determinant of future therapy decisions. Similarly, past AZT therapy was an in-

dependent predictor for CD4 counts. The e�ect of AZT on future CD4 counts is

then confounded by past CD4 counts and would result in the failure of standard

estimation methods in estimating the causal e�ect of treatment.

Example 2: The promotion of breastfeeding intervention trial (PROBIT)

Breast milk is widely acknowledged as the most complete form of nutrition for

infants, with a range of bene�ts for infants' health, growth, immunity and develop-

ment [World Health Organization (WHO) [29, 30]]. In the Promotion of Breastfeed-

ing Intervention Trial (PROBIT), the promotion of breastfeeding was randomized to

hospitals in Belarus (Kramer et. al [31]). A total of 17,046 mother-infant pairs in

31 hospitals were studied, all of whom were initially breastfed. The dataset includes

both maternal and infant characteristics. Some women in the intervention group

stopped breastfeeding in the �rst month, while other women in the control group

continued to breastfeed for many months. The decision to continue to breastfeed

was correlated with several maternal characteristics, suggesting that observational

results on breastfeeding e�ect on infant growth may be confounded.

2.5 Estimation of e�ects of time-varying outcome by reparameterization

Continuing with the example from Robins and Wasserman discussed in section

2.4, the question is "can one characterize the null hypothesis of no treatment e�ect
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independent of U or not?" Robins [6] and Pearl & Robins [26] indicate that the

answer is yes. The authors showed that the null hypothesis, (A1, A2)
∐
Y |L,U holds

if and only if two conditions hold: (a) Y
∐
A2|A1, L, i.e. f(y|l, a1, a2) = f(y|l, a1),

and (b)
∑2

l=1 f(y|a1, l)f(l|a1) doesn't depend on a1 where,
∑2

l=1 f(y|a1, l)f(l|a1) is

the density function of y restricted to (a1, a2). Thus, even though U is not measured,

by checking (a) and (b) which are only based on observed variables, one can say if the

null hypothesis holds or not. The naive solution is to test (a) and (b) directly by using

association models, for example using multiple linear regression. However, standard

methods here can falsely reject the null hypothesis (Robins & Wasserman [16]). The

main problem with standard methods like linear regression is that there is not a

parameter ψ that takes the value zero if and only if there is a non-zero treatment

e�ect. Addressing this problem requires reparametrization of the model. Assume

that the vertices (random variables) of the causal DAG are O = {V1, V2, . . . , VM},

where under a Markov assumption on the DAG, f(v) =
∏M

i=1 f(vi|Pvi) where Pvi is

ancestor of vi. For O = (L1, A1, LT−1, AT−1, . . . , LT ), the standard parametrization

under the Markov assumption is,

f(O) = f(l1)f(a1|l1) . . . f(lT |lT−1, aT−1).

In the reparametrization it is assumed that f(at|lt, at−1) is replaced by the degenerate

function so that

fg(O) = f(l1) . . . f(lT |lT−1, aT−1)
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and so as a consequence,

fg(y) =

∫
fg(y|lT , aT−1)

T∏
j=1

f(lj|lj−1, aj−1)dµ(lj),

where fg(y) is the density function of Y restricted to treatment regime g. Similarly

the marginal distribution of Y under g, Fg(y) is

Fg(y) =

∫
P (Y < y|lT , aT−1)

T∏
j=1

f(lj|lj−1, aj−1)dµ(lj) (2.1)

and is referred to as the G-computation formula (Robins [6]). Robins [6] and Pearl

& Robins [26] proved that under certain conditions eq. 2.1 is the distribution of Y g

that would have been observed if the entire population had been treated according

to g. These conditions will be discussed in next section. In terms of this new

reparametrization, the null hypothesis (A1, A2)
∐
Y |L,U holds if and only if,

Fg(y) = Fg′(y), for all y & all g and g′ in G. (2.2)

They also showed that the "g"-null hypothesis 2.2 is true if and only if

Fg=a(y|lk) = Fg′=a′(y|lk), (2.3)

for all y, lk, a and a′ where a and a′ agree through time jk − 1.

2.6 Identi�ability of the causal e�ect of treatment

Identifying the causal e�ect of treatment using the counterfactuals requires a

number of assumptions which will be discussed in this section. Continuing with the

univariate example in section 2.1.2, evaluating the treatment e�ect at the individual
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subject level is generally impossible. Instead one can try to evaluate the average

population treatment e�ect by Eg(Y
a=1 − Y a=0), where the expectation is taken

with respect to fg(·) and where fg(·) is the density function of Y restricted to regime

g. In the longitudinal setting, the causal e�ect of treatment is then de�ned in terms

of a contrast of counterfactuals where deriving the causal e�ect from these contrasts

requires number of identi�ability assumptions.

The validity of the causal model requires that the counterfactual outcome of

one subject be una�ected by another subject's assigned or received treatment regime.

This assumption is called the stable unit treatment value assumption (SUTVA) (Cox

[32], Rubin [33]). In order to draw inference from causal adjustment methodologies

using the counterfactual, one needs to link the counterfactual with the observed

outcome. The consistency assumption states that the observed outcome is equal to

the counterfactual outcome when actual treatment is assigned. Consistency has a key

role for the counterfactual in causal adjustment methodologies. Since the focus of this

thesis is on dynamic, rather than static regimes, I need a strengthened version of the

sequential ignorability/exchangeability assumption. Assume that under treatment

regime g ∈ G, for a given subject, At = gt(Ht), t = {1, 2, . . . , T − 1} then Y gt−1

t = Yt

and L
gt−1

t = Lt for all t = {1, . . . , T}, where Lgt−1

t is the history of the counterfactual

through time t under regime g. Next, for any t = (1, . . . , T ), lt and regimen g, one

must have that,

Y
gm−1
m

∐
At|Lt, Ak = gk(Ak−1, Lk) for all k = {1, . . . , t− 1} and m > t. (2.4)
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That is, at a speci�c strata Ht = ht where ht = (at−1, lt, yt), aT−1 = gT−1(HT−1),

and gT−1(HT−1) = {g1(H1), g2(H2), . . . , gT−1(HT−1)}, one must have that treatment

is randomly assigned according to Pr(At = 1|Ht = ht). This assumption implies

exchangeability of Y at−1,0t
T and Y

at,0t+1

T given Ht. Under this conditional exchange-

ability/ignorability assumption for each stratum, Ht, causation is equivalent to asso-

ciation. Finally, I must make the standard positivity assumptions, that is one must

assume if fLt,Y t,At−1
(lt, yt, at−1) 6= 0 then fAt|Ht(at|ht) > 0. In other word, under

the positivity assumption, treatment is not deterministically assigned at each time

point t = {1, . . . , T − 1}. Under these assumptions, one can consistently estimate

the causal e�ect of treatment using the causal adjustment methodologies discussed

in this thesis.

2.7 Additive structural nested mean model

In longitudinal settings, the more practical question of interest is often "How

to estimate the modi�cation of treatment e�ects by time varying covariates at each

time interval?". Under an assumption of conditional exchangeability, for a speci�c

stratum (At−1 = at−1, Lt = Lt, Y t = yt), treatment is randomly assigned according to

Pr(At = 1|At−1 = at−1, Lt = Lt, Y t = yt) and the counterfactuals Y at−1
m and Y at−2,0

m ,

under non-dynamic regimes g = {at, 0t+1} and g′ = {at−1, 0t} are exchangeable.

Thus, under the sequential ignorability and consistency assumption one can create

comparable groups at each time interval where the di�erence in group means corre-

sponds to the e�ect of treatment and answer the question. The e�ect of treatment
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at interval (jt, jt+1] on outcome at time m, m = {1, . . . , T}, is de�ned by the coun-

terfactual contrast and is formalized as

E(Y
at,0t+1
m − Y at−1,0t

m |Y t, Lt, At−1;ψ) = Atγt,m(At−1, Lt, Y t;ψ) (2.5)

where Atγt,m(At−1, Lt, Y t, ψ) is a known function of past history through time t that

is parameterized by ψ and takes the value zero if and only if ψ = 0. This function

is called a blip function and estimates the modi�cation of treatment e�ects by time

varying covariates at interval (jt, jt+1] on outcome at time m. In what is referred to

as a blip down process, one remove the e�ect of Am−1 from Ym to get Y
am−2,0m−1
m ,

then remove the e�ect of Am−2 from Y
am−2,0m−1
m to get Y

am−3,0m−2
m and continues until

removing the e�ect of At+1 to get Y
at,0t+1
m . Using the blip down process and assuming

a deterministic relation known as rank preservation, one can link the observed values

with the counterfactual outcome,

Ym = Y (t)
m (ψ) +

m−1∑
k=t+1

Akγ(Hk;ψk,m).

where Y (t)
m (ψ) is the counterfactual outcome that would have been observed if the

subject received treatment at through time t and zero onward which is linked to the

observed value through blip down process. It is worth to note that, in the additive

SNMM, one chooses to model one aspect of Fg(yT ) and express the null hypothesis of

2.3 based on the expected value. The additive structural nested model is a particular

form of structural nested model, developed by Robins [6] and is the focus of our

thesis. For more information see, Robins [34, 35, 15]. The SNM is inappropriate

for estimating the direct e�ect of the treatment at speci�ed time. These models are
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more useful for testing the total e�ect of a treatment regime AT given the sequentially

ignorable assumption. For appropriate models for the estimation of direct e�ects,

refer to Robins [36, 37].

2.7.1 G-estimation: semiparametric inference in SNMMs

The sequential ignorability assumption, eq. 2.4, is a fundamental assumption

in causal inference which identi�es comparable groups when treatment is not ran-

domized. This assumption has an essential role in estimating causal parameters. A

semiparametric method driven by the utility of this assumption is g-estimation. In

the blip down process introduced by Robins [18], the counterfactual can be expressed

by

Ym = Y (t)
m (ψ) +

∑
k>t

Akγ(Hk;ψk,m). (2.6)

For binary treatment regimes, a pooled logistic model is often �tted to estimate the

parameter η,

logit [Pr{At = 1|Ht]] = ηTHt,

where for t = {1, . . . , T − 1}, Ht = (Y t, Lt, At−1) is a vector of pretreatment co-

variates. After estimating η under an assumption of no unmeasured confounding

(sequential ignorability assumption), the propensity score model is extended to

logit [Pr(At = 1|Ht, Y
(t)
m (ψ), {m > t})] = ηTHt + θTQt

∑
m>t

Y at
m (ψ),

where Qt = qt(Ht) is an arbitrary vector of pretreatment covariates that has the

same dimension as ψ and is chosen such that for the true value of η and ψ, θ = 0.

One also de�nes et = Pr(At = 1|Ht) as the probability of receiving treatment given



20

past pretreatment covariates which is modeled by prt(η) = Pr(At = 1|Ht; η). Note

that the choice of Qt doesn't a�ect the consistency of the point estimators, but it

does in�uence the e�ciency of the estimators. Let Sθ(η̃, 0, ψ) = ∂
∂θ
logL(ψ∗, θ, η) and

set U(ψ; η) = Sθ(η̃, 0, ψ), so that

U(ψ; η) = Pn

[
t=K∑
t=1

{At − prt(η̂)}Qt

∑
m>t

Y (t)
m (ψ)

]
(2.7)

where Qt is chosen by the analyst as a function of Ht = (At−1, Lt, Y t) and has the

same dimension as ψ and Pn(Z) = 1
n

∑n
i=1(Zi) is the expectation operation with

respect to empirical distribution. U(ψ; η) is an unbiased estimating equation, that is

E {U(ψ; η)} = 0. I assume for the remainder of the thesis that this condition holds.

Assume that ∂
∂ψ
U(ψ; η) exists and is invertible. Thus, under standard regularity con-

ditions, there is a consistent asymptotically normal (CAN) root ψ̂ of the estimating

function Pn {U(ψ; η)}. Thus
√
n(ψ̂− ψ†) is asymptotically normal distribution with

mean zero and variance Σ(ψ) = Pn

{
∂
∂ψ
U(ψ; η)

}−T
Pn
{
U(ψ; η)

⊗
2
}
Pn

{
∂
∂ψ
U(ψ; η)

}−1
where ψ† is the limiting value of ψ̂. I denote g-estimation of a structural nested mean

model by gSNMM. Chakraborty et al. [20] have shown that g-estimation is equiva-

lent to Q-learning, a model-free reinforcement learning technique, in some settings.

The Q-Learning algorithm was proposed by Watkins [38] as a way to optimize solu-

tions in Markov decision process problems. Thus it would be more accurate to say

that Q-learning is the most popular method of estimating parameters of an SNMM.

However during the course of this thesis I use g-estimation instead of Q-learning

which is introduced in the �eld of causal inference by Robins [6].
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2.7.2 Doubly robust g-estimating equations

Robins [18] improved the e�ciency of g-estimation by modeling the mean of

the counterfactual outcome, E(Y
(t)
m (ψ)|Ht). By including E(Y

(t)
m (ψ)|Ht; ζt,m) =

Dt,m(Ht; ζt,m) in g-estimation, Robins developed a more e�cient estimating equa-

tion,

U(ψ; η, ζ) = Pn

[
{At − prt(η̂)}Qt

∑
m>t

[Y (t)
m (ψ)−Dt,m(Ht; ζt,m)]

]
.

Robins [18] also showed that the method, which is referred to as doubly robust g-

estimation (dr-gSNMM) can consistently estimate the causal parameters if either

the propensity score or the model for E(Y
(t)
m (ψ)|Ht) is correctly speci�ed (the double

robustness property). Finding the correct model for the mean of counterfactual

requires knowing the functional relationship between outcome and past history and

is likely to be misspeci�ed. However Robins showed that even when it is misspeci�ed,

it is still more e�cient than gSNMM (Robins [18]). After specifying a working model

for E(Y
(t)
m (ψ)|Ht) for all m = {1, . . . , T} and t = {1, . . . , T − 1}, one can estimate ζ

from

Pn

[
∂Dt,m

∂ζ

{
Y (t)
m (ψ)−Dt,m(Ht; ζt,m)

}]
= 0.

2.7.3 Two-Stage parametric regression estimators

Almirall et al. [39] introduced the two-stage parametric regression estimator

(2SPRE) for estimating the causal parameters of SNMM. By considering a simple

example I clarify the method. In our longitudinal setting assume that one observes

just 2 intervals, (1, 2] and (2, 3]. For each subject, O = (L1, Y1, A1, L2, Y2, A2, L3, Y3)
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is observed where At is constant during interval (t, t+1], t = {1, 2}. For the outcome

at the end of study, the treatment e�ect at time interval one is A1γ1,3(H1, ψ1,2) and

the treatment e�ect at time interval two is A2γ2,3(H2, ψ2,3) where both γ1,2(·) and

γ2,2(·) are known linear functions of the interaction terms at their corresponding

intervals, that is

E(Y a2
3 |H2 = h2) = {E(Y a1,a2

3 |H2 = h2)− E(Y a1,0
3 |H2 = h2)}

+ {E(Y a1,0
3 |H2 = h2)− E(Y a1,0

3 |H1 = h1)}

+ {E(Y a1
3 |H1 = h1)− E(Y 0,0

3 |H1 = h1)}

+ {E(Y 0,0
3 |H1 = h1)− E(Y 0,0

3 )}+ E(Y 0,0
3 ),

where

E(Y a2
3 |H2 = h2) = A2γ2,3(H2, ψ2,3)

+ A1γ1,2(H1, ψ1,3) + ε2(H2, a1) + ε1(H1) + µ0.

Almirall et al. [39] developed a two-stage regression estimator using additional model

assumptions. They consider the following constraints for the nuisance functions

ε2(H2, a1) = E(Y a1,a2
3 |H2 = h2)− E(Y a1,0

3 |H1 = h1),

ε1(H1) = E(Y a1
3 |H1 = h1)− E(Y 0,0

3 ),

EH2|H1(ε2(H2, a1)) = 0, and EH1(εi,1(H1)) = 0, and

µ0 = E(Y 0,0
3 ).
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They parameterize nuisance functions and estimate the parameters by using OLS in

two stages. For more details see Almirall et al. [39, 40, 41] and Gri�n et al. [42].

2.8 Optimal structural nested mean model

Dynamic treatment regimes are common in the management of many diseases,

such as obesity, diabetes, or depression. The regimes attempt to provide more ef-

fective treatment for individual patients than what can be achieved with a static

regime (Lei et al. [12]). At the beginning of these studies, the medication of interest

is initiated and patients are monitored during the course of study and medication is

adjusted according to a list of their important health indicators. In this sequential

decision-making process, the goal is optimizing the patient's long-term clinical out-

come. Thus, the question of interest is "Can one use the observational data, where

treatment is received over time and results are recorded, to �nd the optimal regimes

which optimize the patient's long-term clinical outcome?". Most of the algorithms

for �nding the optimal regime are derived in the �eld of computer science which are

referred to reinforcement methods (Sutton& Barto [43]). Murphy [17] pioneered the

�eld of �nding optimal regime using a semiparametric approach which is equivalent

to g-estimation in some cases and Robins [18, 44] introduced semiparametric method

of optimal dynamic treatment regime SNMM (ODTR-SNMM) to estimate the opti-

mal regime by g-estimation. For application of optimal DTR in the �eld of causal

inference see Shepherd et al. [45] on HIV, Shortreed & Moodie [46] on schizophre-

nia, Moodie et al [47] and Rich et al. [1] on breastfeeding. Details regarding these

approaches are contained in Chapter 5.
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2.9 Single time propensity score regression

The propensity score is the probability of receiving treatment conditional on

the subject's past history. One particular advantage of a randomized experiment is

the exchangeability of covariates under di�erent treatment groups that is essential in

elucidating cause-and-e�ect. Rosenbaum & Rubin [48] de�ned the propensity score

as a balancing score and demonstrated that one can use to create comparable groups

in causal inference. Di�erent methods based on the propensity score appear in the

literature, including propensity score matching, strati�cation on the propensity score,

inverse probability of treatment weighting using the propensity score, and covariate

adjustment using the propensity score.

In a univariate setting, assume that treatment only takes on two possible values

{0, 1}. For a speci�c patient, two counterfactual values exist under the two levels

of treatment and is denoted by Y a, a = {0, 1}. The causal e�ect of treatment

on the patient is Y a=1 − Y a=0 but the problem is that only one counterfactual is

observed per subject so estimation of the e�ects requires certain assumptions. Let L

be the vector of pretreatment covariates for the patient. The propensity score, the

conditional probability of receiving treatment given past treatment history, is denoted

by e(l) = Pr(A = 1|L = l). To be able to consistently estimate E(Y a=1 − Y a=0),

three assumptions are required; (a) SUTVA, (b) the assumption of no unmeasured

confounders, that is, Y a=1, Y a=0
∐
A|L, and (c) positivity, i.e. that each patient has a

positive probability of being exposed to either treatment option, 0 < e(l) < 1. When

these three assumptions hold, one can estimate the causal e�ect of E(Y a=1 − Y a=0)

by using subclassi�cation on the covariate X, (Rubin [23]),
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E(Y z=1 − Y z=0) = EX{E(Y |Z = 1, X)} − EX{E(Y |Z = 0, X)}. (2.8)

In situations where one encounters high dimensional covariates, correct model speci�-

cation of EX{E(Y |Z = z,X)} will not be easy and one needs to reduce the dimension

of the covariate setX. Rosenbaum & Rubin [48] proved that the assumption of no un-

measured confounders holds given the propensity score where Y z=1, Y z=0
∐
Z|e(X).

As a result, estimating causal e�ects only requires building a parametric model for

Ee{E(Y |Z = z, e(X)) instead of EX{E(Y |Z = z,X).

2.10 Marginal structural models

Marginal structural models (MSM) place restrictions on the marginal distribu-

tion of the counterfactual, or on one aspect of the distribution such as its mean, see

Robins [49, 35]. In MSM, only baseline covariates and treatment are adjusted for

in the marginal model and adjustments for time varying confounders and covariates

are re�ected in the propensity score. In order to estimate the causal parameter ψ,

the Horvitz-Thompson estimator is generally used where the sampling weight is the

inverse of the probability of a subject receiving his observed treatment, see Horvitz

and Thompson [50]. Assume that E(Y aT−1|V ;ψ) = g(aT−1, V, ψ) and one estimates

the causal parameter ψ by the IPTW method. IPTW corrects for confounding

by creating a pseudo-population including w−1 copies of a speci�c subject. In the

pseudo-population, assuming a correct propensity score, the weighting ensures that

there is no confounding. By creating a population where treatment is exogenous

where treatment at each time point only depends on past treatment history. Despite
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removing confounding in the pseudo-population, the causal structure in the actual

population will still hold in the pseudo-population. Thus ordinary regression estima-

tors for the pseudo-population will estimate the causal e�ect of treatment. Under the

sequential ignorability assumption eq. 2.4, E(Y aT−1) is the unique function of aT−1,

C(aT−1) such that E(q(aT−1)(Y −C(aT−1))/W ) = 0 for all functions q(aT−1) where

the expectation exists (Robins [49]). The inverse of the probability of observed treat-

ment through time t for each subject is often referred to as the non-stabilized weight,

Wt =
∏t−1

m=1
1

f(Am|Hm)
, whereas the stabilized weight is SWt =

∏t−1
m=1

f(Am|Am−1)
f(Am|Hm)

.

A GEE estimator provides only the association between observed treatment and

observed outcome while MSM estimators target the causal relationship between the

possible treatment regime with its corresponding potential outcome. So the parame-

ters of a GEE model and MSM have di�erent interpretations. For example, consider

a cohort study on HIV-infected patients. Assume that analyst wants to measure the

e�ect of zidovudine therapy on mean CD4 count. Let the CD4 count for a speci�c

subject at timem be denoted by Ym, and let Am−1 be a binary treatment variable that

indicates whether the subject received zidovudine at time interval (m− 1,m] or not.

For instance, in the GEE model, one has E(Ym|Am−1) = γ0 + γ1Cum[Am−1] + γ2m

and for the MSM one has that E(Ym|Am−1) = β0 + β1Cum[Am−1] + β2m where

β1Cum[Am−1] = E(Y am−1
m ) − E(Y 0

m). Thus β1 represents the causal change in the

mean of CD4 count for a one unit increase in the number of treatment received. As-

sume that treatment administration to a new subject is based on this model in which

the optimal treatment regime is the one that maximizes the bene�t of treatment the

expected value of CD4 count at each time point t. In this case, zidovudine therapy
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should be withheld only when β1 is negative. In contrast to β1, γ1 has a di�erent

interpretation. Assume that there is no treatment e�ect i.e., β1 = 0. Assume that

the physician only gives zidovudine therapy to patients in poor conditions who have

a low CD4 count. Because the low CD4 count causes subsequent future low CD4

counts, �tting the usual GEE model would likely estimate a negative value for γ1

because it is confounded by the association between the previous CD4 count and

outcome. For other applications of MSMs, see Hernán et al. [51, 52] and Brumback

et al. [53].

Although MSMs are powerful statistical models for causal inference that address

the confounding due to time varying covariates, their application is limited. MSMs

via IPTW can be as ine�cient as standard methods for estimating parameters since

information on time-varying covariates is only adjusted for in the propensity score.

The problem with this innovative method is that it is restricted to the estimation

of e�ect modi�cation by baseline covariates. Van der Laan et al. [54], Petersen et

al. [55] have developed generalized MSMs called history-adjusted marginal struc-

tural models (HA-MSM). These variations on MSMs can be used to estimate the

modi�cation of treatment e�ects by time-varying covariates.

2.11 Kalman estimating equation

State space models have been widely used for analyzing time series for non-

normal data. The Kalman smoother is a useful tool for prediction and for estimation

of latent state processes, see for example, Durbin [56], Fahmier et al. [57, 58]. The

Kalman Estimating Equation is an e�cient regression method for estimating the pa-

rameters of a state space model using the Kalman smoothing algorithm (Jørgensen et
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al. [59, 60] and Jørgensen & Song [8]). For non-normal longitudinal data, Jørgensen

& Song [8] de�ne a class of state space models for stationary AR(1) state space pro-

cesses with exponential dispersion model margins. Using the Kalman smoother algo-

rithm, they introduced the Kalman estimating equation (KEE) approach. However,

KEE by Jørgensen & Song [8] requires some assumptions that are not compatible

for estimation of causal e�ects. In my thesis I will tailor the KEE introduced in

Jørgensen & Song [59] for causal inference in longitudinal observational studies.

2.11.1 Review of the Kalman smoother algorithm

The Kalman smoother algorithm has been used for a vast array of theoretical

and practical problems in communication and control theory, including prediction of

random signals, separation of random signals from random noise, and detection of

signals of known form in the presence of random noise. Wiener [61] showed these

problems can be addressed via the Wiener-Hopf integral equation. In the Wiener-

Hopf problem, a random signal f(m) is observed containing a message, g(m), and

random noise which is often written as,

f(m) = g(m) + [f(m)− g(m)].

Wiener in 1949 showed that the best linear predictor of g(m) is minimizer of the

Wiener-Hopf integral equation. One of the limitations of the Wiener-Hopf equation is

that this method is computationally di�cult to solve directly. Kalman [7] approached

the Wiener problem by using conditional expectation. First consider a simple state

space model,
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(Measurement equation) ym = φxm + dm + ξm and

(Transition Equation) xm = θxm−1 + cm + εm,
(2.9)

where

 ξm

εm

 ∼ N


 0

0

 ,

 Qm 0

0 Wm


 .

Assume that {εm : m ∈ T} is a sequence of uncorrelated disturbances with mean

zero and covariance matrix Wm, {xm : m ∈ T} is a latent vector generated by a �rst-

order Markov process, and {ξm : t ∈ T} is a sequence of uncorrelated disturbances

with mean zero and covariance matrix Qm. The Kalman �ltering algorithm is based

on the well known best linear unbiased predictor (BLUP). Let X and Y be two

random variables with µX = E(X), µY = E(Y ), ΣX = V ar(X), ΣY = V ar(Y ) and

ΣXY = Cov(X, Y ). The BLUP of X given Y is written as, µX|Y . Under the above

assumption, I have that

µX|Y = µX + ΣXY Σ−1Y (Y − µY ). (2.10)

An important property of the linear predictor is that the prediction error X−µX|Y is

uncorrelated with Y and Cov(X − µX|Y , Y ) = 0. The theorem listed below is taken

from Jørgensen et al. [59, 60].

Theorem 2.11.1. Let X, Y , Z be random vectors with �nite second moments. The

joint predictor of X, Y given Z is given by
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 X

Y

 |Z ∼

 µX|Z

µY |Z

 ;
CX|Z CXY |Z

CY X|Z CY |Z


where CXY |Z = ΣXY − ΣXZΣ−1Z ΣZY .

Using eq. 2.10 and theorem 2.11.1, the linear predictor of X given Y and Z is given

by

X|

 Y

Z

 ∼ [µX|Z + CXY |ZC
−1
Y |Z(Y − µY |Z);CX|Z − CXY |ZC−1Y |ZCY X|Z ]. (2.11)

Eq. 2.11 provides the foundation for the Kalman �ltering algorithm. By using the

above results, the Kalman Filtering Algorithm can be implemented in closed form

as follows:

am|m−1 = θam−1|m−1 + cm,

Σm|−1 = θ2Σm−1|m−1 +Qm,

µm|m−1 = φam|m−1 + dm,

Rm|m−1 = φ2Σm|m−1 +Wm,

Km = φΣm|m−1R
−1
m|m−1,

Σm|m = Σm|m−1 −K2
mFm|m−1, and

am|m = am|m−1 +Km(ym − ym|m−1),

where am|t = E(xm|yt), µm|t = E(ym|yt), Rm|t = V ar(ym|yt) and Σm|t = V ar(xm|yt).



CHAPTER 3
Causal inference via Kalman �ltering

3.1 Introduction

In this chapter, I will address the problem of estimating the total causal e�ect

of a time-varying dichotomous treatment on time-varying outcome in the presence of

measured confounding in non-randomized data. In longitudinal observational studies

when variables are (i) risk factors of subsequent value of outcome and treatment, and

also (ii) causally a�ected by treatment history, the issue of confounding will invariably

arise. One modern causal approach to estimating causal e�ects from non-randomized

data is using the structural nested mean model and estimating its parameters via

g-estimation (gSNMM). Basic g-estimators are derived using the likelihood of the

observed treatment process and are biased when this likelihood is misspeci�ed. I

introduce a semiparametric estimator which doesn't place any restriction on the

treatment process. Instead, the method requires a Markov model for the counter-

factual when treatment is completely is withheld over time. The parameters of this

Markov model are treated as nuisance parameters. I adapt the Kalman estimating

equation method introduced by Jørgensen & Song [8] for estimating the causal pa-

rameters of SNMM. I demonstrate that when the Markov model assumptions hold,

the method of estimating causal parameters by modeling the counterfactual when

treatment is withheld is more e�cient than g-estimation. I discuss insensitivity of

31
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my estimator to estimation of the nuisance parameters. At the end of the chapter, I

highlight the utility of this method via a four-interval simulation study.

3.2 Additive SNMM as state space models

As discussed in Chapter 2, methods commonly used for estimating the param-

eters of SNMM are Robins' g-estimation [6, 62, 16, 18] and the two-stage regression

estimators of Almirall et al. [39, 40, 41]. In a deterministic way, counterfactuals can

be connected to observed values where for m ≤ T ,

Y
at,0t+1
m = Ym −

m−1∑
j=t+1

Ajγj,m(Hj, ψj,m)

where ajγj,m(Hj, ψj,m) = E(Y
aj
m |Hj = hj)− E(Y

aj−1,0
m |Hm = hj) is the blip function

which measures the e�ect of receiving treatment for interval (ij, ij+1] on the outcome

at time m and no treatment there after and γj,m(Hj, ψj,m) takes the value zero if and

only if ψj,m = 0, see section 2.7. The deterministic relationship is not required by

g-estimation. In fact the described relationship need only hold in expectation. In the

general form of the two-stage regression estimator, the SNMM for the conditional
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mean of Y aT−1

T is expressed as

E(Y
aT−1

T |HT−1 = hT−1) (3.1)

= {E(Y
aT−1

T |HT−1 = hT−1)− E(Y
aT−2,0
T |HT−1 = hT−1)}

+ {E(Y
aT−2,0
T |HT−1 = hT−1)− E(Y

aT−2,0
T |HT−2 = hi,T−2)}

+ {E(Y
aT−2,0
T |HT−2 = hT−2)− E(Y

aT−3,0
T |HT−2 = hT−2)}

+ {E(Y
aT−3,0,0
T |HT−2 = hT−2)− E(Y

aT−3,0,0
T |HT−3 = hT−3)}

...

+ {E(Y
a1,02
T |H1 = h1)− E(Y 0

T |H1 = h1)}

+ {E(Y 0
T |H1 = h1)− E(Y 0

T )}+ E(Y 0
T ),

which requires building many nuisance functions and restrictions, particularly when

the outcome is time-varying, see section 2.7.3. I formulate the SNMM for the condi-

tional mean of Y aT−1

T − Y 0
T . My approach doesn't depend on the nuisance functions
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used by Almirall et al. [39] [eqs. 3.1], I instead de�ne the causal contrast as

E(Y
aT−1

T − Y 0
T |HT−1 = hT−1)

= {E(Y
aT−1

T − Y 0
T |HT−1 = hT−1)− E(Y

aT−2,0
T − Y 0

T |HT−1 = hT−1)}

+ {E(Y
aT−2,0
T − Y 0

T |HT−1 = hT−1)− E(Y
aT−2,0
T − Y 0

T |HT−2 = hT−2)}

+ {E(Y
aT−2,0
T − Y 0

T |HT−2 = hT−2)− E(Y
aT−3,0,0
T − Y 0

T |HT−2 = hT−2)}

+ {E(Y
aT−3,0,0
T − Y 0

T |HT−2 = hT−2)− E(Y
aT−3,0,0
T − Y 0

T |HT−3 = hT−3)}
...

+ {E(Y
a1,02
T − Y 0

T |H1 = h1)}.

In the next step, I assume that E(Y at
T − Y 0

T |Ht = ht) depends on pretreatment

covariates in the interval (t, t + 1] through their interaction with At, t < T . As a

result, using the sequential ignorability assumption, for all t < T ,

E(Y
at−1

T − Y 0
T |Ht = ht) = E(Y at

T − Y
0
T |Ht = ht, At = 0)

= E(Y
at−1

T − Y 0
T |Ht−1 = ht−1),

and thus,

E(Y am−1
m − Y 0

m|Hm−1 = hm−1) =
m−1∑
j=1

γj,m(Hj, ψj,m). (3.2)

From eq. 3.2, I de�ne the error terms εm

εm = Y am−1
m − Y 0

m − E(Y am−1
m − Y 0

m|Hm−1 = hm−1).
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In the next step, by placing a Markov assumption on the counterfactual, I can express

the SNMM for time-varying outcome in the framework of a state space model,

Y 0
m = βT0,mV + αmY

0
m−1 + ξm, and (3.3)

Y am−1
m = Y 0

m +
m−1∑
j=1

γj,m(Hj, ψj,m) + εm, (3.4)

where ξm and εm for m ∈ {1, . . . , T} are two independent i.i.d series of error terms

with mean zero and variances σ2 = (σ2
1, . . . , σ

2
T ) and ν2 = (ν21 , . . . , ν

2
T ) respectively.

Note that α = (α1, . . . , αT ) is the correlation parameter vector for the Markov coun-

terfactual process. γj,m(Hj, ψj,m) is the blip function which de�nes the treatment

e�ect for time interval (ij, ij+1] on outcome at time m.

3.2.1 Estimating causal parameters by the Kalman estimating equation

The Kalman estimating equation model which is introduced by Jørgensen &

Song [8], estimates the parameters of a stationary non-linear state space model. In

this section, I will show how to appropriately modify the Kalman estimating equa-

tion model for my causal problem by relaxing some model assumptions which are

not applicable in our setting. In a general state space model there exist two sets of

parameters: nuisance parameters (including parameters for the latent process and

parameters in the covariance matrix) and the parameters of interest in the measure-

ment model. First assume that the blip functions are linear and parameters are

not shared between intervals i.e., that the parameters are stationary. Under known

values of the nuisance parameters, one can use the following estimating equation to
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estimate the causal parameters of the blip functions for outcome at time m,

U [ψ; τ(ψ)] = Γm

{
Ym − Y 0

m −
m−1∑
j=1

ajγj,m(Hj, ψj,m)

}
, (3.5)

where Γm is a function of Hm−1 = (Am−1, Y m−1, Lm−1) and

τ(ψ) =
{
β0(ψ), α(ψ), σ2(ψ), ν2(ψ)

}
. τ is the vector of nuisance parameters for modeling the counterfactual process.

The most common choice of Γm is ∂
∂ψ

∑m−1
j=1 ajγj,m(Hj, ψj,m). The challenge then

becomes the estimation of ψ when the estimating equation depends on the unobserved

counterfactual, Y 0
m. Jørgensen & Song suggests approximating the counterfactual by

its conditional expectation given all observed values. Such approximation requires

independence between Ym and Y m−1 given Y 0
m which doesn't hold in my setting and

so instead of conditioning on all observed values, I propose to use E(Y 0
m|Hm−1).

Given the Markov assumption, it su�ces to implement recursive Kalman �ltering

algorithm to �nd a closed form for E(Y 0
m|Hm−1). Using theorem 2.11.1 of section

2.11.1 it is easy to show that:
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µm|m−1 = βT0,mV + αmµ
0
m−1|m−1 +

m−1∑
j=1

ajγj,m(Hj, ψj,m), (3.6)

µ0
m|m = αmµ

0
m−1|m−1 +Km(Ym − µm|m−1), (3.7)

Rm|m−1 = α2
mΣm−1|m−1 + ν2 + σ2, (3.8)

Σm|m = α2
mΣm−1|m−1 + ν2m −KmRm|m−1Km, and (3.9)

Km = (α2
mΣm−1|m−1 + ν2m)(α2

mΣm−1|m−1 + ν2m + ν2m)−1, (3.10)

where µ0
m|k = E(Y 0

m|Hk), µm|k = E(Ym|Hk), Rm|k = V ar(Ym|Hk) and Σm|k =

V ar(Y 0
m|Hk). Since

E

[
Γm

{
Ym − E(Y 0

m|Hm−1)−
m−1∑
j=1

ajγj,m(Hj, ψm,m)

}]
= 0,

estimating equation 3.5 consistently estimates ψ for known values of the nuisance

parameters.

3.2.2 Estimating nuisance parameters

In section 3.2.1, I showed how to estimate the causal parameter ψ when the

nuisance parameters are known. Note that the KEE depends on nuisance parameters

through E(Y 0
m|Hm−1). Following Jørgensen & Song [8], I show how to estimate the

nuisance parameters via moment estimators. I start by de�ning an estimator for β0 =

(β0,1, . . . , β0,T ). From eq. 3.7, we have that µ0
m|m = αmµ

0
m−1|m−1 +βT0,mV +Km(Ym−

µm|m−1) and since cov(Ym − µm|m−1, µ
0
m−1|m−1) = 0 and cov(Ym − µm|m−1, Ym+1 −

µm+1|m) = 0, β0 and α are estimable from modeling µ0
m|m on V and µ0

m|m−1. For the
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correlation parameter αm,

Cov(µ0
m|m, µ

0
m−1|m−1) = Cov(αµ0

m−1|m−1 +Km(Ym − µm|m−1), µ0
m−1|m−1)

= αmV ar(µ
0
i,m−1|m−1)

where Cov(Ym − µm|m−1, µ0
m−1|m−1) = 0. Thus

αm =
cov(µ0

m|m, µ
0
m|m−1)

var(µ0
m−1|m−1)

(3.11)

and at any speci�c time m, α̂m can be used to estimate αm where

α̂m =
Pn

{(
µ̂0
m|m − β̂T0 V

)(
µ̂0
m−1|m−1 − β̂T0 V

)}
Pn

{∑T
m=1(µ̂

0
m−1|m−1 − β̂T0 V )2

} . (3.12)

αm may be either estimated in practice by eq. 3.12 or by regressing µ0
m|m on V and

µ0
m|m−1. At this point, I have established estimators of β0 and α and it remains to �nd

estimators of the variances. Jørgensen estimated (ν2, σ2) under two assumptions: (i)

a stationary model for latent process and (ii) conditional independence of Ym and

Y m−1 given Y 0
m. When these assumptions hold, one can estimate (ν2, σ2) by moment

estimators based on the marginal means of the latent and observed series. Because

these two assumptions are not compatible the targeted setting, I instead momentarily

set σ2 = ν2, simply for mathematical convenience. Under this restriction, σ2
m and
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ν2m are estimated via

Rm|m−1 = var(Ym − µm|m−1) = α2
mΣm−1|m−1 + σ2

m + ν2m, and so (3.13)

ν2m = {var(Ym − µm|m−1)− α2
mΣm−1|m−1 − σ2

m}, and so

ν̂2m = σ̂2
m =

1

2
Pn

{Ym − Ê(Y 0
m|Y m−1)−

m−1∑
j=1

amγj,m(Hj, ψj,m)

}2
− α̂2

mΣ̂m−1|m−1.

(3.14)

If one instead assumes that σ2 = δν2, then the result holds, only replacing 2 by δ+ 1

in the denominator and the rest of algorithm is the same. Henceforth, I refer to an

analysis which assumes a SNMM and estimates parameters by KEE as keeSNMM.

3.3 Nuisance insensitivity of keeSNMM

Nuisance parameter insensitivity is an important feature of an estimating equa-

tion approach, which means that there is no loss of e�ciency when estimating param-

eters if the nuisance parameters are unknown. Under some regularity conditions, I

show that the Kalman estimating equation is nuisance insensitive if E {∂U [ψ, β0(ψ), τ(ψ)]/∂τi} =

0 which is equivalent to showing that E(Γm∂µ
0
m|m−1/∂τi) = 0 for all i = 1, 2, 3

where τ = (σ2, α, ν2). For the technical motivation, see Jorgensen & Knudsen

[63] and Tsiatis [64]. The best linear unbiased estimator, E(Y 0
m|Y m−1) is equal to

E(Y 0
m) + cov(Y 0

m, Y m)V ar(Y m)−1
{
Y m − E(Y m)

}
and the vector of nuisance param-

eters (τ) appear only in cov(Y 0
m, Y m)V ar(Y m)−1 so the expectation of the �rst order

derivative of µ0
m|m is zero since E[Y m − E(Y m)] = 0. As a result, when Γm does

not depend on Y m−1 our estimating equation is nuisance insensitive to nuisance
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parameters in the covariance matrix. Assume that U [ψ; β0(ψ), τ(ψ)] is di�eren-

tiable with respect to ψ and is invertible. Thus under regularity conditions there

is a consistent and asymptotically normal (CAN) root ψ̂ of the estimating function

Pn {U [ψ; β0(ψ), τ(ψ)]} and
√
n(ψ̂ − ψ†) is asymptotically normally distributed with

mean zero and variance Σ(ψ) = Pn
{
U [ψ; β0(ψ), τ ]⊗2

}
where Pn(Z) = 1

n

∑n
i=1 Zi. If

U [ψ; β0(ψ), τ(ψ)] is not nuisance insensitive, the variance of the causal parameter ψ̂

must be adjusted to account for estimating the nuisance parameters in the estimating

equation, which is discussed in Appendix A.

3.3.1 Average total treatment e�ect

Recall that the primary goal of this chapter was estimating E(Y
gm−1
m ) where

gm−1 = {g0, . . . , gm−1} is a dynamic treatment regime through time m−1 that maps

a past history of potential confounders into a decision aj ∈ Aj, gj : {hj ∈ Hj →

aj ∈ Aj}. I propose to use the following algorithm to estimate the average total

treatment e�ect in the population.

1. First, compute the sample average of Ê(Y 0
m|Hm−1) over all N subjects.

2. After specifying a parametric model for f(lm|lm−1, ym−1, am−1) and f(ym|lm−1, ym−1, am−1)

and estimating their parameters and by considering the speci�ed regime, g,

recursively generate K samples of (y0, l0, a0, y1, l1, a1, . . . , yT ). Let δκ,m,g =∑m−1
j=1 aκ,jγκ,j,m(Hκ,j, ψj,m) be the κth Mont Carlo estimate of Y

gm−1
m − Y 0

m.

3. Then Ê(Y
gm−1
m ) = Ê(Y 0

m) + 1
κ

∑κ
j=1 δj,m,g.

As a result, the average total treatment e�ect (ATTE) for an observed static treat-

ment regime on outcome at time m is Pj
(
δm,am−1

)
.
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3.4 Simulation study

In order to assess the performance of the keeSNMM approach, I implemented

the following simulation study. For this purpose, 500 datasets of N subjects are

generated from M3,1,

Y 0
i,m = 0.2 + 0.3Vi + 0.4Y 0

i,m−1 +
√

5ξi,m; ξi,m ∼ N(0, 1), and

Yi,m = Y 0
i,m +

m−1∑
j=1

Ai,j{ψ0,j,m + ψ1,j,mAi,j−1 + ψ2,j,mYi,m}+
√

5εi,m; εi,m ∼ N(0, 1),

where Ai,m is a binary treatment, generated from a logistic model

logit [Pr(Ai,t|Ai,t−1, Yi,t)] = 0.55 + 0.015Ai,t−1 + 0.02Yi,t.

and the counterfactual model is generated from a Markov model. For simplicity, the

only time-varying confounder is the outcome process itself. In this model Y1 is not

a�ected by A1, so that Y1 = Y 0
1 . Table 3�1 contains the values of the parameters

for the simulation scenario. Causal parameters are estimated by both keeSNMM

and gSNMM for three di�erent sample sizes: N = 200, N = 1000 and N = 5000.

True standard errors (SE) are estimated by the Monte Carlo simulation standard

deviation. Tables 3�2 to 3�4 summarize the results of the simulation study, in-

cluding average point estimates, observed standard errors and observed root mean

squared root errors (RMSE). The �rst panel of table 3�2 summarizes the estimated

parameters used in modeling the untreated counterfactual process, the second panel

reports the estimated causal parameters by keeSNMM and gSNMM and the third

panel shows the results for estimating the nuisance parameters. When there are no
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Table 3�1: Blip functions parameters of M3,1.

Outcome at the end of interval one
(ψ0,1,2, ψ1,1,2) = (−0.4,−0.2)

Outcome at the end of interval two
(ψ0,1,3, ψ1,1,3) = (−0.2,−0.4)

(ψ0,2,3, ψ1,2,3, ψ2,2,3) = (−0.1,−0.2, 0.3)
Outcome at the end of interval three

(ψ0,1,4, ψ1,1,4) = (0.1, 0.7)
(ψ0,2,4, ψ1,2,4, ψ2,2,4) = (0.3, 0.5, 0.6)
(ψ0,3,4, ψ1,3,4, ψ2,3,4) = (0.6, 0.3, 0.4)
Outcome at the end of interval four

(ψ0,1,5) = (0.8)
(ψ0,2,5, ψ1,2,5, ψ2,2,5) = (0.1, 0.6, 0.8)
(ψ0,3,5, ψ1,3,5, ψ2,3,5) = (0.6, 0.3, 0.4)
(ψ0,4,5, ψ1,4,5, ψ2,4,5) = (0.7, 0.4, 0.5)

violations from model assumptions, that is when (i) sequential ignorability assump-

tion holds, (ii) the blip function is correctly speci�ed, (iii) the Markovian assumption

holds, and (iv) the propensity score is correctly speci�ed, keeSNMM performs bet-

ter than gSNMM for all sample sizes, both in terms of variance and RMSE. The

behavior of SEs according to sample sizes is not clear, but for all sample sizes, the

SEs from keeSNMM are half the size as those from gSNMM. Figure 3�1 displays

the histograms of the 500 estimates by keeSNMM, with N = 5000 for the causal

parameters. It appears that the asymptotic normality for the causal estimators by

keeSNMM holds. Figure 3�2 displays the histograms for the nuisance parameters

which con�rms the asymptotic normality for the nuisance parameters.

3.5 Discussion

In this chapter, by placing (i) a Markov assumption on the counterfactual pro-

cess, and (ii) assuming the independence of the average total e�ect of the regime



43

g = (at, 0t+1) from the pretreatment covariates in interval (t + 1, t + 2] given pre-

treatment history through time t + 1, I express the SNMM with time-varying out-

come as a state space model. Then I adapt KEE for my causal problem by relaxing

its assumptions which are not compatible with our setting. The SNMM via KEE

(keeSNMM) is based on modeling (a) the blip function, and (b) the Markov model

for counterfactual process. The parameters of the Markov model are considered as

nuisance parameters and are estimated from moment estimating equations. Through

a simulation study I showed that keeSNMM is at least twice as e�cient as gSNMM,

i.e. to get the same e�ciency from gSNMM, the sample size need to be doubled.

I discussed the nuisance parameter insensitivity of the keeSNMM which holds

when the treatment e�ect at each speci�c time interval doesn't depend on past his-

tory of outcome. In Chapter 7, I will show that, in estimating the breastfeeding

e�ect on infant's weight by keeSNMM with non-stationary causal parameters, this

assumption holds and the breastfeeding e�ect at each interval only depends on in-

fant's weight at baseline. When nuisance parameter insensitivity doesn't hold, the

asymptotic variances of the causal parameters must be adjusted for the variation in

plug in estimators of our nuisance parameters as discussed by Robins [18]. Moodie

[65] developed a recursive algorithm for calculating the variances of the dr-gSNMM

when the causal parameters are non-stationary. In Appendix A, I discuss �nding

asymptotic variances by adjusting for plug in estimator variability and by Moodie's

algorithm.

The keeSNMM is computationally more e�cient than 2SPR and it also provides

us with graphical methofds for checking the model assumptions. In the next chapter
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Table 3�2: Estimated causal parameters from M3,1, N =5000. ψj,t,m is the j-th causal
parameter for estimating treatment e�ect at time interval (t, t+ 1] on outcome at the end
of interval (m− 1,m].

KEE G-estimation
par RMean S.D RMSE Mean S.D RMSE
α 0.198 0.045 0.002
β0 0.300 0.030 0.001
β01 0.400 0.016 0.000
σ2 5.002 0.102 0.010

Outcome at the end of interval (1, 2]
ψ0,1,2 -0.394 0.065 0.004 -0.396 0.103 0.011
ψ1,1,2 -0.201 0.029 0.001 -0.200 0.048 0.002

Outcome at the end of interval (2, 3]
ψ0,1,3 -0.193 0.098 0.010 -0.200 0.169 0.029
ψ1,1,3 -0.400 0.030 0.001 -0.398 0.047 0.002
ψ0,2,3 -0.099 0.102 0.010 -0.104 0.177 0.031
ψ1,2,3 -0.204 0.151 0.023 -0.199 0.215 0.046
ψ2,2,3 0.299 0.019 0.000 0.298 0.032 0.001

Outcome at the end of interval (3, 4]
ψ0,1,4 0.097 0.119 0.014 0.093 0.165 0.027
ψ1,1,4 0.700 0.027 0.001 0.701 0.045 0.002
ψ0,2,4 0.310 0.134 0.018 0.310 0.217 0.047
ψ1,2,4 0.504 0.168 0.028 0.506 0.207 0.043
ψ2,2,4 0.600 0.020 0.000 0.599 0.032 0.001
ψ0,3,4 0.608 0.123 0.015 0.608 0.156 0.024
ψ1,3,4 0.282 0.170 0.029 0.281 0.198 0.040
ψ2,3,4 0.399 0.020 0.000 0.400 0.029 0.001

Outcome at the end of interval (4, 5]
ψ0,1,5 0.801 0.027 0.001 0.802 0.048 0.002
ψ0,2,5 0.101 0.155 0.024 0.099 0.226 0.051
ψ1,2,5 0.597 0.128 0.016 0.604 0.223 0.050
ψ2,2,5 0.800 0.020 0.000 0.801 0.034 0.001
ψ0,3,5 0.602 0.125 0.016 0.601 0.213 0.045
ψ1,3,5 0.307 0.176 0.031 0.305 0.210 0.044
ψ2,3,5 0.399 0.019 0.000 0.399 0.029 0.001
ψ0,4,5 0.700 0.131 0.017 0.697 0.174 0.030
ψ1,4,5 0.395 0.169 0.029 0.401 0.208 0.043
ψ2,4,5 0.500 0.016 0.000 0.499 0.024 0.001
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Table 3�3: Estimated causal parameters from M3,1, for N=1000. ψj,t,m is the j-th causal
parameter for estimating treatment e�ect at time interval (it, it+1] on outcome at the end
of interval (im−1, im].

KEE G-estimation
par Mean S.D RMSE Mean S.D RMSE
α 0.206 0.091 0.008
β0 0.295 0.063 0.004
β01 0.399 0.040 0.002
σ2 4.967 0.235 0.056

Outcome at the end of interval (1, 2]
ψ0,1,2 -0.398 0.143 0.020 -0.398 0.212 0.045
ψ1,1,2 -0.198 0.069 0.005 -0.202 0.106 0.011

Outcome at the end of interval (2, 3]
ψ0,1,3 -0.203 0.219 0.048 -0.210 0.384 0.148
ψ1,1,3 -0.397 0.064 0.004 -0.396 0.103 0.011
ψ0,2,3 -0.077 0.214 0.046 -0.088 0.373 0.139
ψ1,2,3 -0.217 0.338 0.115 -0.209 0.470 0.221
ψ2,2,3 0.300 0.044 0.002 0.301 0.073 0.005

Outcome at the end of interval (3, 4]
ψ0,1,4 0.099 0.272 0.074 0.089 0.366 0.134
ψ1,1,4 0.702 0.062 0.004 0.704 0.100 0.010
ψ0,2,4 0.299 0.287 0.082 0.269 0.472 0.224
ψ1,2,4 0.490 0.376 0.141 0.500 0.462 0.213
ψ2,2,4 0.600 0.042 0.002 0.598 0.074 0.005
ψ0,3,4 0.614 0.301 0.091 0.588 0.401 0.161
ψ1,3,4 0.295 0.391 0.153 0.327 0.481 0.232
ψ2,3,4 0.400 0.043 0.002 0.399 0.069 0.005

Outcome at the end of interval (4, 5]
ψ0,1,5 0.801 0.065 0.004 0.802 0.115 0.013
ψ0,2,5 0.101 0.326 0.106 0.086 0.466 0.217
ψ1,2,5 0.597 0.277 0.077 0.587 0.485 0.235
ψ2,2,5 0.801 0.045 0.002 0.801 0.075 0.006
ψ0,3,5 0.598 0.291 0.085 0.577 0.505 0.256
ψ1,3,5 0.298 0.394 0.155 0.324 0.482 0.233
ψ2,3,5 0.399 0.043 0.002 0.404 0.067 0.005
ψ0,4,5 0.709 0.283 0.080 0.712 0.385 0.148
ψ1,4,5 0.413 0.407 0.166 0.413 0.518 0.268
ψ2,4,5 0.500 0.038 0.001 0.499 0.056 0.003
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Table 3�4: Estimated causal parameters from M3,1, for N=500. ψj,t,m is the j-th causal
parameter for estimating treatment e�ect at time interval (t, t+ 1] on outcome at the end
of interval (m− 1,m].

KEE G-estimation
par Mean S.D RMSE Mean S.D RMSE
α 0.185 0.147 0.022
β0 0.308 0.096 0.009
β01 0.398 0.054 0.003
σ2 4.933 0.324 0.109

Outcome at the end of interval (1, 2]
ψ0,1,2 -0.384 0.207 0.043 -0.387 0.298 0.089
ψ1,1,2 -0.200 0.094 0.009 -0.196 0.152 0.023

Outcome at the end of interval (2, 3]
ψ0,1,3 -0.190 0.342 0.117 -0.215 0.551 0.304
ψ1,1,3 -0.404 0.094 0.009 -0.395 0.155 0.024
ψ0,2,3 -0.094 0.314 0.099 -0.100 0.527 0.278
ψ1,2,3 -0.204 0.511 0.261 -0.186 0.669 0.448
ψ2,2,3 0.303 0.062 0.004 0.297 0.102 0.010

Outcome at the end of interval (3, 4]
ψ0,1,4 0.095 0.388 0.151 0.057 0.545 0.299
ψ1,1,4 0.701 0.084 0.007 0.701 0.151 0.023
ψ0,2,4 0.329 0.410 0.169 0.287 0.705 0.497
ψ1,2,4 0.480 0.529 0.280 0.516 0.681 0.464
ψ2,2,4 0.602 0.060 0.004 0.600 0.110 0.012
ψ0,3,4 0.631 0.406 0.166 0.611 0.532 0.283
ψ1,3,4 0.286 0.573 0.329 0.321 0.708 0.502
ψ2,3,4 0.396 0.063 0.004 0.398 0.092 0.008

Outcome at the end of interval (4, 5]
ψ0,1,5 0.798 0.090 0.008 0.804 0.164 0.027
ψ0,2,5 0.109 0.471 0.222 0.105 0.688 0.473
ψ1,2,5 0.595 0.398 0.158 0.611 0.703 0.494
ψ2,2,5 0.800 0.069 0.005 0.798 0.113 0.013
ψ0,3,5 0.637 0.422 0.179 0.643 0.700 0.492
ψ1,3,5 0.264 0.556 0.310 0.261 0.677 0.460
ψ2,3,5 0.392 0.061 0.004 0.393 0.099 0.010
ψ0,4,5 0.708 0.386 0.149 0.730 0.539 0.291
ψ1,4,5 0.397 0.553 0.306 0.401 0.679 0.461
ψ2,4,5 0.504 0.050 0.003 0.496 0.074 0.005



✹✽

❋✐❣✉❡✸✕✷✿❍✐♦❣❛♠♦❢✺✵✵❡✐♠❛❡✐♥❤❡ ✐♠✉❧❛✐♦♥ ✉❞②♦❢M3,1

4.99

ν̂2

5

ν̂3

4.99

ν̂4

4.99

ν̂5

0.2

β̂0

0.3

β̂0,1

0.4

α̂

❢♦ ❤❡♥✉✐❛♥❝❡
♣❛❛♠❡❡✳



CHAPTER 4
Graphical model checking methods for keeSNMM

4.1 Introduction

After �tting any model, it is always important to check whether the model

assumptions are reasonable before making statistical inference. Potential violations

can make inferential procedures unreliable and can result in false conclusions. The

keeSNMM method relies on placing restrictions on (a) the blip function, and (b) the

counterfactual when treatment is withheld. So deriving inference from the keeSNMM

requires satisfaction of these assumptions and additional model checking plots are

needed to be sure our inference is reliable. Henderson et al. [10] and Rich et al. [1]

developed the �rst model diagnostic methods in the �eld of causal inference.

In the �rst part of the chapter, I show that using the state space framework

and Markov assumption in the keeSNMM provides us with graphical methods for

checking model assumptions. In the second part of the chapter, by linking the

parameters of keeSNMM, gSNMM and MSM via IPTW with the parameters of

standard linear regression via OLS, I demonstrate how various model assumptions

can cause di�erences in the estimation results. Since each of the models employ

di�erent assumptions, the validity of the comparison procedure requires satisfaction

of their model assumptions, which demonstrates the usefulness of residual diagnostic

plots. In the �rst part of my simulation studies, I show application of these models

in a simple simulation example. In the second part of the simulation, I set up models

49
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that satisfy the sequential ignorability assumption and highlight the performance of

the proposed graphical methods in detecting a potentially misspeci�ed blip function

and violations of the Markov assumption.

4.2 Model diagnostics

Even if the state space model doesn't �t our causal setting correctly, then my

proposed keeSNMM approach shares the advantage of standard methods like lin-

ear regression in that potential misspeci�cation can be checked through diagnostic

plots. Using eq. 3.7, µ0
m|m = αmµ

0
m−1|m−1 + βT0,mV + Km(Ym − µm|m−1) where

cov(Ym−µm|m−1, µ0
m−1|m−1) = 0, de�ne the residual rm = µ0

m|m−αmµ0
m−1|t−1−βT0 V .

Note that rm ∝ (Ym − µm|m−1) so their standardized forms are identical. As a re-

sult for diagnostic purposes it is enough to apply standardized version of rm. The

standardized version of rm is rm = rm√
V ar(rm)

where V ar(rm) = K2
mRm|m−1. In both

the simulation section and the real data analysis, I will use this residual to test

plausibility of the modeling assumptions.

4.3 keeSNMM, gSNMM and MSM via IPTW versus linear regression
via OLS

In this section I demonstrate the inherent problem of using standard regression

in the presence of a time-varying confounder using a simple example. It has been seen

that gSNMM and MSM via IPTW, developed by Robins and keeSNMM, avoid this

problem if their speci�c model assumptions are satis�ed. I �rst consider a simple

example to clarify the purpose of this chapter and discuss the formulation of the

SNMM and MSM. Assume a study is conducted to measure the e�ect of a time-

varying binary treatment on an outcome measured over time for each subject. Let

the only time-varying confounder be the outcome process itself and the only baseline
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covariate be outcome at baseline. Am denotes a binary time-varying treatment that

is assigned after measuring Ym and Y1 is the measured outcome at baseline which is

not a�ected by A1. For clarity, I avoid allowing for interaction of Am−1 with Ym−1

in the �rst model M4,1,

Ym = β0 + β1Am−1 + β2Ym−1 + εm and

logit
[
Pr
(
Am = 1|Am−1, Y m; η

)]
= η0 + η1Am−1 + η2Ym,

where εm represents an i.i.d error term. To derive the correct form of the SNMM for

this model, I express the blip function in terms of the contrast of the counterfactual,

E
(
Y am−1
m − Y am−2,0

m |Hm−1
)

= β1Am−1,

E
(
Y am−2,0
m − Y am−3,0,0

m |Hm−2
)

= β1β2Am−2,

...

and E
(
Y a1,02
m − Y 0

m|H1

)
= β1β

m−2
2 A1.

Since there is no interaction between baseline and confounders with treatment in the

main model, I don't need to modify the treatment e�ect at each time interval with

other pretreatment covariates. For example, the e�ect of treatment at time interval

(t, t+ 1] on outcome Ym is β1β
m−t−1
2 . As a result,

E
(
Y am−1
m − Y 0

m|Hm−1

)
= β1Am−1 + β2β1Am−2 + β2

2β1Am−3 + ...+ βm−22 β1A1

=
m−1∑
j=1

ψjA(m− j),
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where A(m− j) is equal to Am−j for m > j and zero otherwise. The causal e�ect for

time interval (t, t+1] on Ym only depends on |m−t|, in the other words, ψj = β1β
j−1
2 .

In this example blip functions are linear and parameters are shared between intervals,

i.e. parameters are stationary. One common suggestion for the g-estimating equation

is,

U(ψ; η) = Pn

[
T−1∑
t=1

{At − prt(η̂)}Qt

∑
j>t

{
Yj −

∑
k>t−1

ψjA(j − k)

}]
.

where the �rst term of this estimating equation is:

{A1 − pr1(η̂)}Q1

∑
j>1

{
Yj −

j−1∑
k=1

ψjA(j − k)

}

= {A1 − pr1(η̂)}Q1

∑
j>1

{
Yj −

j−1∑
k=1

ψjA(j − k)

}

= {A1 − pr1(η̂)}Q1

{∑
j>1

Yj −
T−1∑
k=1

ψj
∑
j>1

A(j − k)

}
.

Even for this very simple example choosingQ1 can be problematic because the dimen-

sion of the linear span of all possible pretreatment covariates for A1 can be smaller

than the dimension of causal parameters in the �rst term. I will show in section 4.4

that this problem can in�uence the e�ciency of gSNMM. To avoid this problem, I

consider the blip function with non-stationary parameters, γt,m(Ht, ψt,m) = ψt,mAt

where ψt,m is the e�ect of treatment at time interval (t, t + 1] on outcome at time

m and estimate the causal parameters separately for outcome at each time point
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{m;m ≤ T}, by,

U(ψ; η) = Pn

[
m−1∑
t=1

{At − prt(η)}Qi,t

{
Ym −

m−1∑
j=1

ψj,mAj

}]
.

The marginal structural model for this case, i.e when there is no interaction between

treatment with other covariates, is quite similar to the SNMM with two slight dif-

ferences. In MSM, there exist an intercept and the main e�ect of baseline covariate

Y1 which varies by time. The MSM is formulated as follows,

Y am−1
m = β0(1 + β2 + β2

2 + . . .+ βm−12 ) + β1Am−1

+ β2β1Am−2 + β2
2β1Am−3 + ...+ β1β

m−1
2 A1 + β1β

m−1
2 Y1

Y am−1
m = β0(

1− β2m

1− β2
) + ωmY1 +

T∑
j=1

ψjA(j − t),

where ωm = ψm = β1β
m−1
2 . Finding the links between the parameters of the SNMM

and the MSM will be useful in comparing these models to demonstrate how these

causal models work. These relationships help us to understand the di�erences in

parameter interpretation of the three methods. An important and useful criteria

for identifying the role of various model assumptions in the di�erences between pa-

rameters estimation methods is the estimated average total treatment e�ect (ATTE)

from each method. When a subject doesn't receive any treatment over time, the

E(Y 0
T ) = β0

1−βT
2

1−β2 + β1β
T−1
2 Y1 so the averaged total treatment e�ect for outcome at

the end of study can be de�ned as E(Y
aT−1

T − Y 0
T ) which for M4,1 is

ATTE = Pn

[{
β̂0 + β̂1AT−1 + β̂2YT−1

}
− β0

1− βT2
1− β2

− β1βT−12 Y1

]
. (4.1)
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When β0 = 0, the ATTE for the observed treatment regime on the outcome at the

end of study based on the model M4,1, the SNMM and the MSM are

ATTEM4,1 = Pn

[
β̂1AT−1 + β̂2YT−1 − β̂1β̂T−12 Y1

]
, (4.2)

ATTEsnmm = Pn

[
T−1∑
j=1

ψ̂j,TAj

]
, and (4.3)

ATTEmsm = Pn

[
T−1∑
j=1

ψ̂j,TAj

]
. (4.4)

The next model, M4,2 illustrates the potential problem associated with using stan-

Figure 4�1: Causal diagrams showing time-varying confounders a�ected by a time-varying
unmeasured U .

dard linear regression in the presence of an unmeasured, time-varying confounder,

U , which corresponds to the DAG in �gure 4�1. For M4,2, one has

Ym = β0 + β2Ym−1 + β1Am−1 + βu1Um−1 + βu2Um−2 + εm,

logit {(Pr(Am|Am−1, Ym−1, Lm, Ym }) = η0 + η1Am−1 + η2Ym−1 + η3Ym, and

Um = βu0Um−1 + νm,
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The third model adds an interaction term to M4,1,

Ym = β0 + β1Am−1 + β2Ym−1 + β3Ym−1Am−1 + εm and

logit
[
Pr(Am = 1|Am−1, Y m)

]
= η0 + η1Am−1 + η2Ym,

and is called M4,3. By the same approach, the SNMM is derived as

E(Y am−1
m − Y am−2

t |Hm−1) = β1Am−1 + β3Am−1Ym−1,

E(Y am−2
m − Y am−3

t |Hm−2) = β1β2Am−2 + β3β2Am−2Ym−2,

...

and E(Y a1
m − Y 0

m|H1) = β1β
m−2
2 A1 + β3β

m−2
2 A1Y1,

where

E
(
Y am−1
m − Y 0

m|Hm−1
)

= Am−1(β1 + β3Ym−1)

+ β2Am−2(β1 + β3Ym−2)

+ ...+ βm2 A1(β1 + β3Y1)

=
m−1∑
j=1

Am−1−j(ψ0,j + ψ1,jYm−1−j).
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However, the MSM will not be the same as the SNMM because of the interaction

term and is formulated as:

Y2 = β1A1 + β2Y1 + β3A1Y1,

Y3 = β1A2 + β1β2A1 + β1β3A1A2

+ β2β3Y1A2 + β2
2Y1 + β2β3A1Y1 + β2

3A1A2Y1,

Y4 = β1A3 + β2β1A2 + β2
2β1A1 + β2β3β1A1A2

+ β1β3A2A3 + β3β2β1A1A3 + β2
3β1A1A2A3

+ β3
2Y1 + β2

2β3A1Y1 + β2
2β3Y1A2 + β2

3β2A1A2Y1

+ β3β
2
2A3Y1 + β2

3β2A3A1Y1 + β2β
2
3Y1A2A3 + β3

3A1A2A3Y1,

Y5 = β4
2Y1 +

T−1∑
i=1

β1β
T−1−i
2 Ai +

T−1∑
i=2

β2
2β3β1A1Ai +

T−1∑
i=3

β2β3β1A2Ai

+
∑

k 6=j∈{3,4,2}

β1β2β
2
3A1AkAj + β3

2β3Y1

T−1∑
i=1

Ai + β2
2β

2
3Y1
∑
i6=j

AiAjY1

+
∑
i6=j 6=k

β3
3β2AiAjAkY1 + β1β3A3A4 + β1β

2
3A2A3A4 + β1β

3
3

4∏
=1

Ak + β4
3Y1

4∏
=1

Ak.

Both the SNMM and the MSM for M4,3 have non-stationary parameters which need

to be estimated separately at each time point.

4.4 Simulation study

4.4.1 Part one: association models

Simulation results under M4,1

Two hundred datasets including 10,000 subjects at �ve time points are generated

from modelM4,1 where εm is generated from normal distribution with mean zero and



57

variance 0.5. The sample size and the number of iterations are chosen to be large in

order to minimize the Monte Carlo variation. The true values of model parameters

are in table 4�1, where, ψm = ωm = β1β
m−1
2 . Firstly, I assume that Y m−1

m (ψ) =

Table 4�1: True parameters values for the model, M4,1.

(β0, β1, β2)=(0,0.5,0.5)
(η0, η1, η2)=(0.5,0.15,0.1)

(ψ1, ψ2, ψ3, ψ4)=(0.5,0.25,0.125,0.625)
(ω1, ω2, ω3, ω4)=(0.5,0.25,0.125,0.0625)

Y 0
m +

∑m−1
j=1 γj,m(Aj−1, ψ) where γj,m(Aj−1, ψj,m) = Ajψj,m and has non-stationary

parameters. I estimate the causal parameters of the SNMM for outcome at each time

point separately by gSNMM and keeSNMM. The nuisance parameters are estimated

separately at each time interval. The simulation results are summarized in tables

4�3 and 4�2. Table 4�3 shows a summary of the estimated causal parameters by

keeSNMM, gSNMM and MSM via IPTW where ψj,m is the causal e�ect of treatment

at time interval (j, j + 1] on outcome at time m and the the last row summarizes

the ATTE from all the methods where its true value is calculated from the main

model. Table 4�2 displays the estimated nuisance parameters from keeSNMM and

the estimated parameter ω for MSM. All three methods give unbiased estimation of

the causal parameters. keeSNMM performs slightly better than the two others based

on their root mean square errors while MSM via IPTW and gSNMM are more e�cient

in estimating ATTE, which is likely due to larger correlation amongst parameter

estimates from keeSNMM. Residual plots, shown in �gure 4�2, for keeSNMM display

mild violation of the Markov assumption. Despite this modest violation, keeSNMM

still performs quite well in estimating the causal parameters.
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Table 4�2: Estimation of nuisance parameters from keeSNMM of the model M4,1 and
coe�cients of outcome at baseline for MSM via IPTW. Observed Standard errors appear
in parentheses.

α̂ = {0.500(0.009), 0.753(0.014), 0.706(0.013), 0.701(0.013)}
σ̂2 = {0.125(0.002), 0.111(0.002), 0.112(0.002), 0.113(0.002)}
β̂0 = {0.001(0.007),−0.002(0.009), 0.005(0.011), 0.006(0.014)}
ω̂ = {0.500(0.009), 0.252(0.011), 0.126(0.012), 0.063(0.011)}

Figure 4�2: Residual plots for keeSNMM onM4,1 for 200 datasets including 10000 subjects.
The causal parameters are assumed to be non-stationary. It includes plots of residuals
versus �tted values at corresponding interval and residuals versus residuals at previous
time intervals. Residuals have mean zero and are roughly between (−3, 3).
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Secondly, I �t the causal model, Yi,m = Y 0
i,m +

∑4
j=1 {ψjAi(t− j)} which has

stationary parameters and use all time points to estimate ψ. The estimated causal

parameters by the three methods are summarized in table 4�4. The three methods

consistently estimate causal parameters while gSNMM is less e�cient than the two

others and keeSNMM is the most e�cient one. Note that MSM via IPTW and

gSNMM would likely require twice the sample size needed by keeSNMM to achieve

the same level of e�ciency. The residual diagnostic plots (not shown) again show

slight violation of the Markov assumption, but keeSNMM still performs well. As

a consequence, based on these simulation examples, keeSNMM is performing much
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Table 4�3: Parameter estimation by keeSNMM and gSNMM for M4,1 for 200 datasets
including 10,000 subjects each. The causal parameters are assumed to be non-stationary
and are estimated separately at each time point. This table has 5 panels. The blip function
at each interval only includes the causal e�ect of treatment at that interval, i.e. ψj,m is the
causal e�ect of treatment at time interval (j, j + 1] on outcome at time m. The �rst panel
includes the estimation of the causal parameters for outcome at the end of interval (1, 2],
successively, the fourth panel includes the estimation for outcome at the end of interval
(4, 5]. Last panel shows average total treatment e�ect.

keeSNMM gSNMM MSM via IPTW
Mean SD RMSE Mean SD RMSE Mean SD RMSE

Outcome at the end of interval (1, 2]
ψ1,2 0.500 0.010 0.010 0.490 0.012 0.015 0.490 0.012 0.015

Outcome at the end of interval (2, 3]
ψ1,3 0.247 0.012 0.013 0.246 0.014 0.015 0.246 0.014 0.015
ψ2,3 0.503 0.011 0.012 0.502 0.012 0.013 0.502 0.012 0.013

Outcome at the end of interval (2, 4]
ψ1,4 0.122 0.012 0.012 0.124 0.015 0.127 0.124 0.015 0.127
ψ2,4 0.246 0.012 0.013 0.251 0.014 0.014 0.251 0.014 0.014
ψ3,4 0.502 0.011 0.011 0.503 0.012 0.013 0.503 0.012 0.013

Outcome at the end of interval (4, 5]
ψ1,5 0.060 0.011 0.011 0.062 0.018 0.018 0.062 0.018 0.018
ψ2,5 0.119 0.013 0.014 0.126 0.018 0.018 0.126 0.018 0.018
ψ3,5 0.245 0.012 0.013 0.252 0.013 0.013 0.252 0.013 0.013
ψ4,5 0.501 0.010 0.010 0.491 0.027 0.029 0.491 0.027 0.029

Average total treatment e�ect (ATTE)
ATE = 0.623(0.0061) 0.615 0.015 0.017 0.618 0.007 0.008 0.623 0.0006 0.005
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more e�ciently than gSNMM and MSM via IPTW when the causal parameters are

stationary. For the rest of the simulation I consider models with non-stationary

parameters.

Table 4�4: Parameter estimation by keeSNMM and gSNMM for M4,1 for 200 dataset in-
cluding 10000 subjects. The causal parameters are assumed stationary. Last row shows
average total treatment e�ect.

keeSNMM gSNMM MSM
Mean SD RMSE Mean SD RMSE Mean SD RMSE

ψ4 0.058 0.010 0.011 0.041 0.094 0.096 0.063 0.011 0.011
ψ3 0.120 0.007 0.009 0.125 0.071 0.071 0.126 0.011 0.011
ψ2 0.245 0.006 0.008 0.251 0.043 0.043 0.252 0.011 0.011
ψ1 0.501 0.005 0.005 0.502 0.017 0.017 0.500 0.009 0.009

Average total treatment e�ect (ATTE)
ATTE = 0.623(0.0061) 0.628 0.008 0.009 0.600 0.027 0.018 0.61 0.006 0.016

Simulation Results Under M4,2

Two hundred samples including 10,000 subjects each are generated from model,

M4,2, which corresponds to DAG 4�1. True values of parameters are set to be the

same as true values for model, M4,2, table 4�1. Additional parameters (uβ1, uβ2)

take values (0.4, 0.6). U is assumed to be unmeasured and OLS methods fail to con-

sistently estimate the model's parameters (see table 4�5). Estimation of the causal

parameters from �tting keeSNMM, gSNMM and MSM via IPTW are summarized

in table 4�6. The table demonstrates that gSNMM and MSM via IPTW can consis-

tently estimate the direct and indirect e�ect of the treatment on the outcome where

the indirect e�ect is de�ned as the e�ect of the treatment through other time-varying

covariates. keeSNMM can consistently estimate the direct e�ect of the treatment,

however violation of the Markov assumption because of the unmeasured U (see �gure
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Table 4�5: The parameters estimation for M4,2 for outcome at time 5 with and without
adjusting for the unmeasured variable U.

Adjusting for U Not Adjusting for U
Mean SD Mean SD

A4 0.503 0.006 0.432 0.008
Y4 0.500 0.004 0.639 0.004

ATTE 0.623 0.006 0.67 0.006

4�3) induces bias in estimating the indirect e�ect of the treatment which results in

biased estimation of the ATTE.

Figure 4�3: Residual plots for keeSNMM on M4,2 for 200 dataset including 10000 subjects.
Parameters are assumed to be non- stationary. It includes plots of residuals versus �tted
values at corresponding interval and residuals versus residuals at previous time intervals.
Residuals have mean zero and are roughly between (−3, 3).
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ŷ3

r̂ 3

ŷ4
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Simulation Results Under M4,3

In section 4.4.1, results are reported for the standard regression models where

the outcome at each time point only depends on the main e�ect of treatment and

the outcome at the previous time point. Here, adding an interaction e�ect gives

a more complex form of MSM. So for this more complex model, I only implement

keeSNMM and gSNMM for 200 samples including 10000 subjects from M4,3. The
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Table 4�6: Parameter estimation by keeSNMM and gSNMM for M4,2 for 200 datasets
including 10000 subjects each. The causal parameters are assumed non-stationary and are
estimated separately at each time point. This table has 5 panels. The blip function at
each interval only includes the causal e�ect of treatment at that interval, i.e. ψj,m is the
causal e�ect of treatment at time interval (j + 1, j] on outcome at time m. The �rst panel
includes the estimation of the causal parameters for outcome at the end of interval (1, 2],
successively, the fourth panel includes the estimation for outcome at the end of time interval
(4, 5]. Last panel shows average total treatment e�ect.

keeSNMM gSNMM MSM
Mean SD RMSE Mean SD RMSE Mean SD RMSE

Outcome at the end of interval (1, 2]
ψ1,2 0.50 0.02 0.02 0.50 0.03 0.03 0.50 0.02 0.02

Outcome at the end of interval (2, 3]
ψ1,3 0.22 0.03 0.04 0.25 0.03 0.03 0.29 0.02 0.05
ψ2,3 0.46 0.03 0.05 0.50 0.03 0.03 0.45 0.02 0.06

Outcome at the end of interval (3, 4]
ψ1,4 0.10 0.03 0.04 0.12 0.04 0.04 0.14 0.03 0.04
ψ2,4 0.16 0.04 0.09 0.25 0.04 0.04 0.23 0.03 0.04
ψ3,4 0.46 0.03 0.05 0.50 0.03 0.03 0.50 0.03 0.03

Outcome at the end of interval (4, 5]
ψ1,5 0.04 0.03 0.04 0.06 0.06 0.06 0.06 0.03 0.03
ψ2,5 0.04 0.04 0.09 0.13 0.05 0.05 0.11 0.04 0.04
ψ3,5 0.15 0.03 0.11 0.26 0.03 0.03 0.25 0.03 0.03
ψ4,5 0.45 0.03 0.06 0.42 0.08 0.11 0.51 0.03 0.04

Average total treatment e�ect (ATTE)
ATTE = 0.623(0.061) 0.447 0.038 0.180 0.577 0.019 0.050 0.620 0.017 0.046
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true values of the common parameters are set to be the same as the true values for

model (see table 4�1) M4,1 additionally setting β3 = 0.5. By considering the blip

function with non-stationary parameters, γj,m(Aj−1, ψj,m) = Aj(ψ0,j,m + ψ1,j,mYj),

parameter estimates are in table 4�7 which shows that both models can consistently

estimate the average total treatment e�ect and the direct e�ect of the treatment.

However keeSNMM provieds biased estimation of the indirect e�ect of the treatment

and the residual diagnostics show no violation of the Markov assumption, �gure 4�4.

Figure 4�4: Residual plots for keeSNMM onM4,3 for 200 datasets including 10000 subjects.
The causal parameters are assumed to be non-stationary. It includes plots of residuals
versus �tted values at corresponding interval and residuals versus residuals at previous
time intervals. Residuals have mean zero and are roughly between (−3, 3).
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4.4.2 Part two: causal models

M3,1 introduced in section 3.4 generates data under the sequential ignorability

assumption. A dataset including 5000 subjects is generated from this model. I

�t keeSNMM with a misspeci�ed blip function which has stationary parameters,

Ai,tγi,t,m(Hi,t, ψt,m) = Ai,t(ψ0 +ψ1Yi,t) and compare its residual plots with keeSNMM

for the correctly speci�ed model. I compare these results to a dataset with the same
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Table 4�7: Parameter estimation by keeSNMM and gSNMM for M4,3 for 200 datasets
including 10000 subjects each. The causal parameters are assumed non-stationary and are
estimated separately at each time point. This table has 5 panels. The blip function at
each interval only includes the causal e�ect of treatment at that interval, i.e. ψk,j,m is the
k-th causal parameter at time interval (j, j + 1] on outcome at time m. The �rst panel
includes the estimation of the causal parameters for outcome at the end of interval (1, 2],
successively, the fourth panel includes the estimation for outcome at the end of interval
(4, 5]. Last panel shows average total treatment e�ect.

keeSNMM gSNMM
Mean SD RMSE Mean SD RMSE

Outcome at the end of interval (1, 2]
ψ0,1,2 0.5000 0.0170 0.0003 0.5000 0.0200 0.0004
ψ1,1,2 0.5000 0.0220 0.0005 0.5010 0.0290 0.0008

Outcome at the end of interval (2, 3]
ψ0,1,3 0.2180 0.0200 0.0014 0.2510 0.0210 0.0004
ψ1,1,3 0.0620 0.0200 0.0357 0.2500 0.0250 0.0006
ψ0,2,3 0.4900 0.0180 0.0004 0.5000 0.0200 0.0004
ψ1,2,3 0.5540 0.0150 0.0031 0.4980 0.0210 0.0004

Outcome at the end of interval (3, 4]
ψ0,1,4 0.1330 0.0190 0.0004 0.1270 0.0190 0.0004
ψ1,1,4 -0.0120 0.0200 0.0192 0.1240 0.0270 0.0007
ψ0,2,4 0.2490 0.0210 0.0004 0.2490 0.0220 0.0005
ψ1,2,4 0.1710 0.0150 0.0065 0.2480 0.0210 0.0004
ψ0,3,4 0.4880 0.0190 0.0005 0.5010 0.0220 0.0005
ψ1,3,4 0.5300 0.0130 0.0011 0.5010 0.0190 0.0004

Outcome at the end of interval (4, 5]
ψ0,1,5 0.0900 0.0180 0.0011 0.0640 0.0190 0.0004
ψ1,1,5 -0.0250 0.0190 0.0080 0.0590 0.0260 0.0007
ψ0,2,5 0.1550 0.0220 0.0014 0.1240 0.0230 0.0005
ψ1,2,5 0.0690 0.0140 0.0033 0.1240 0.0180 0.0003
ψ0,3,5 0.2660 0.0210 0.0007 0.2500 0.0220 0.0005
ψ1,3,5 0.1660 0.0130 0.0072 0.2490 0.0180 0.0003
ψ0,4,5 0.4760 0.0190 0.0009 0.4970 0.0220 0.0005
ψ1,4,5 0.5340 0.0110 0.0013 0.5020 0.0160 0.0003

Average total treatment e�ect (ATTE)
ATTE = 1.141 1.137 0.026 0.261 1.14 0.027 0.271
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number of subjects from a model with the same blip function as M3,1 but with non-

Markovian counterfactual Y 0
i,m = β0 + β01Vi + 0.4Y 0

i,m−1 + 1.2Y 0
i,m−1 + ξi,m where ξi,m

is coming from standard normal with variance 5. Parameters are estimated using

keeSNMM. Residual diagnostic plots are shown in �gure 4�5. The �gure illustrates

that the plots perform well in detecting deviation from a misspeci�ed blip function

and the Markov assumption.

4.5 Discussion

An important feature of the keeSNMM is that it provides graphical methods for

checking model assumptions which is the focus of this chapter. The keeSNMM relies

on placing restriction on (i) the blip function, and (ii) the counterfactual process.

So methods for checking these restrictions are useful for assessing the validity of the

inference. In this chapter, I adapt residual diagnostic plots used to check the model

assumptions of standard methods for checking the model assumptions of keeSNMM.

In the second part of the chapter, by linking the parameters of SNMM and MSM

with the parameters of standard linear regression models and conducting extensive

simulation studies under variety of settings, I evaluated the performance of the four

methods relative to each other. I demonstrated how various model assumptions

can cause di�erences in estimation of direct and inderect e�ect of the time-varying

treatment. Then I showed the importance of the residual diagnostic plots for evalu-

ation since each of the models employ di�erent assumptions and the validity of the

comparison procedure requires satisfaction of their model assumptions.

In the simulation section, I �rst started by generating datasets from a simple

linear regression, in which the outcome is the only time-varying confounder and at



66

a given time point, the outcome is only a�ected by linear e�ect of the outcome and

treatment at previous time point. All the methods can consistently estimate the

direct e�ect of the treatment which goes directly to the outcome and indirect e�ect

which is the e�ect of treatment through other time varying covariates on the out-

come. In the second example I added an unmeasured U to the model and evaluated

the performance of MSM via IPTW, gSNMM and keeSNMM in removing the e�ect

of U in estimating the direct e�ect. While using OLS fails without adjusting for U ,

gSNMM and MSM via IPTW consistently estimate the direct and indirect e�ect of

treatment on the outcome. Despite violation of the Markov assumption, keeSNMM

can still consistently estimate the direct e�ect but violation from the assumption

induces bias in the indirect e�ect estimators. In the third example, adding an in-

teraction term gives a more complex form for the MSM, while the SNMM has still

a very simple form. I avoid �tting an MSM to the more complex datasets and only

apply keeSNMM and gSNMM. The result is that both methods can consistently

estimate the direct e�ects and average total treatment e�ect. In the second part

of our simulation studies, examples are under causal settings which illustrated the

power of our residual plots in detecting model misspeci�cation. The key point in

this chapter is that, under mild violation from the Markov assumption, keeSNMM

still performs well in adjusting for confounding e�ects in estimating the direct e�ect

of the treatment. However, serious violation results in failure of the method. In

the next chapter, I will incorporate KEE for estimating the parameters of the mean

model of counterfactual in dr-gSNMM and name the method dr-keeSNMM which is
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double robust if either of the Markov assumption or the propensity score is correct.

I also introduce SNMM with longitudinal propensity score.
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Figure 4�5: Residual diagnostic plots for M3,1, for 50 datsets each including 5000 subjects.
It has three panels each including 2 rows. Panel (a) is residual plots for keeSNMM with
the correctly speci�ed blip function. Panel (b) is residual plots for keeSNMM with the
misspeci�ed blip function. Panel (c) is residuals for keeSNMM under non-Markovian model
for the counterfactual process. The �rst row of each panel includes plots of residuals versus
�tted values at corresponding interval for intervals (3, 4] and (4, 5]. The second row of each
panel includes plots of residuals at interval (4, 5] versus residuals two previous time intervals
when blip function is correctly speci�ed. For panel (a), residuals have mean zero and are
roughly between (−3, 3).
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CHAPTER 5
Doubly robust g-estimation via the Kalman �ltering algorithm

5.1 Introduction

Time-varying treatment in presence of confounding variables can induce bias

in deriving causal inference from observational studies and traditional parametric

approaches often fail to consistently estimate causal parameters. The MSM is a

powerful method in estimating causal parameters in longitudinal observational stud-

ies. However, it can only address questions such as, "How does the e�ect of treatment

change between subjects with respect to variation in subjects' characteristics at base-

line? "it cannot address questions such as "How does the e�ect of treatment change

between subjects according to variation in subjects' characteristics over time?". As

discussed in previous chapters, the SNMM can be useful for estimating the modi�-

cation of treatment e�ect by time-varying covariates.

I have discussed two ways of estimating the causal parameters: gSNMM, which

requires correct modelling of the propensity score, and keeSNMM, which requires

correct modelling of the counterfactual. Both methods consistently estimate the

causal parameters when their respective model assumptions are satis�ed. A nat-

ural extension of the previous chapters would be to combine these two methods

and develop a new method that is consistent when either of these sets of assump-

tions holds. Doubly robust g-estimation is a semi-parametric method, introduced by

Robins [18], which combines a model for the counterfactual process with a model for

69
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the propensity score in order to gain e�ciency. Applying doubly robust g-estimation

for SNMM (dr-gSNMM), requires building models for the mean of the counterfactual

when the outcome is time varying. I show that, by using the Markov assumption of

keeSNMM, one can model the counterfactual using keeSNMM rather than building

arbitrary working models. The method is called dr-keeSNMM.

In section 5.4, I will introduce SNMM for the longitudinal propensity score which

helps mitigate the growing dimension of variables that predict treatment assignment

over time. This methodology is applicable in two types of studies: (i) studies which

contain high dimensional vectors of pretreatment covariates, and (ii) studies whose

propensity scores are known, and only those scores are kept as summaries of the

covariates. One advantage of these models is that the distance of the model from

the truth is easier to detect by model checking methods than models where one is

adjusting for the full set of covariates.

5.2 Doubly robust g-estimation for time-varying outcome

First, I start by clarifying the application of doubly robust g-estimating equation

for time-varying outcome. Assume that the parameters are stationary in our model,

so a general form of dr-gSNMM can be written as

U [ψ; η, ζ(ψ)] =
t=T∑
t=1

{At − E(St(At)|Ht; η)}× (5.1)

∑
m>t

{(
Y (t)
m (ψ)− E

[
Y (t)
m (ψ)|Ht; ζ

])}
,

where Y (t)
m (ψ) is the counterfactual outcome that would have been observed if the

subject received treatment at through time t and received no treatment at future
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time points, which is linked to the observed value of the treatment history through

the blip down process. Let Ht be past history which interacts with At and let St(At)

be a well de�ned function of past history which interacts with At. Robins [18] showed

that the e�cient way of de�ning St(At) is St(At) = {At − Pr(At|Ht; η)}Qt, where Qt

is a vector of Ht with dimension equal to that of ψ is then estimated as a solution to

Pn [U(ψ; η, ζ)] = 0. Commonly, at early time intervals, there is not enough history to

de�ne Qt, which reduces the e�ciency of the estimating equation which I discussed

previously in section 4.4. For the rest of the chapter, I focus on situations where the

causal parameters are non-stationary and separate speci�cation of the doubly robust

g-estimating equation is required at each time point m, which can be written as

U [ψ; η, ζ(ψ)] =
t=T∑
t=1

{St(at)− E [St(at)|Ht; η]}×{
Ym −

∑
j>t−1

Ajγj,m(Hj, ψj,m)− E
[
Y (t)
m (ψ)|Ht; ζ

]}
.

Here ψ is estimated using a backwards substitution procedure as a solution to

Pn {U(ψ; η, ζ)}. As I discussed before, under correct speci�cation of either E
[
Y

(t)
m (ψ)|Ht

]
or the propensity score, dr-gSNMM can consistently estimate parameters. Correct

speci�cation of E
[
Y

(t)
m (ψ)|Ht

]
requires knowing functional relation of outcome on

history, which can be problematic in this method, particularly in terms of speci�-

cation. However, even under a misspeci�ed model for E
[
Y

(t)
m (ψ)|Ht

]
and just by

using a naive working model, dr-gSNMM will generally be more e�cient than the

gSNMM.
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5.3 Doubly robust g-estimating equation via Kalman �ltering algorithm

In this section, I show the advantages of using the framework of the Kalman state

space model. First, it makes modeling E
[
Y

(t)
m (ψ)|Ht

]
more straightforward than

building working models for all possible values of (t,m) where m ∈ (1, . . . , T ) and t ∈

(1, . . . ,m− 1)}. Recall the previous setting of other chapters and express the model

as the following state space model,

Y 0
m = αmY

0
m−1 + βT0,mV + ξm and (5.2)

Ym = Y 0
m +

m−1∑
j=1

ajγj,m(Hj, ψj,m) + εm.

dr-keeSNMM at speci�c time m can be formulated as

U [ψ; η, ζ(ψ), τ(ψ)] =
T∑
t=1

{St(At)− Pr(St(At)|Ht; η)}× (5.3)(
Ym −

∑
j>t

Ajγj,m,(Hj, ψj,m)− E
{
Y (t)
m (ψ)|Ht; ζ

})

where τ(ψ) = {α(ψ), β0(ψ), σ2(ψ)} is the vector of nuisance parameters used in

modeling the counterfactual process, and

E
[
Y (t)
m (ψ)− Y 0

m|Ht; ζ
]

=
t∑

j=1

Ajγj,m(Hj, ζj,m).

By using the Kalman �ltering algorithm for m < t, one can write

E(Y 0
m|Ht) = βT0,mV +

m∑
j=t+1

m∏
k=j+1

αkβ
T
0,jV +

m∏
j=t+1

αjE(Y 0
i,t|Ht) (5.4)
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where ζ, β0, α and σ2 are nuisance parameters which are estimated using KEE and,

as will be discussed later, ψ is estimated in a backward procedure as a solution to

Pn
[
U
{
ψ; η, ζ(ψ), α(ψ), β0(ψ), σ2(ψ)

}]
= 0.

dr-keeSNMM can consistently estimate the causal parameters if either the Markov

assumption or the propensity score is correctly speci�ed. It is because under sequen-

tial ignorability assumption E [U {ψ; η, ζ(ψ), α(ψ), β0(ψ), σ2(ψ)}] = 0 if either the

Markov assumption or the propensity score is correctly speci�ed.

In order to illustrate dr-keeSNMM algorithm, consider the following exam-

ple. Assume that in a three-interval study, (1, 2], (2, 3], (3, 4], the observed out-

comes (Y ) and treatment history (A) for a speci�c subject is denoted by O =

(Y1, A1, Y2, A2, Y3, A3, Y4). Assume also that treatment at time interval (t, t + 1]

for the subject is initiated at the beginning of the interval and after observing Yt and

does not change till the end of interval. Assume that each observation is generated

according to model 5.2, where the blip function for treatment at time interval (t, t+1]

on outcome at time m is γt,m(Ht;ψt,m) = At(ψ0,t,m+ψ1,t,mYt). Let Uj,m(ψj,m, ψj+1,m
)

denote the component of U [ψ; η, ζ(ψ), τ(ψ)] used for speci�c time interval (j, j + 1]

for the outcome at time m where ψ
j+1,m

= (ψj+1,m . . . , ψm−1,m). The following algo-

rithm provides a procedure for estimating causal parameters by dr-keeSNMM.

1. Set initial values for all nuisance and causal parameters.
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2. Find the conditional mean and variance of the counterfactual when treatment is

withheld given past and current history from equations (3.6,3.7,3.9,3.10) where

E
[
Y 0
4

(
ψ{j−1}

)
|H3

]
= α

{j−1}
4 E

[
Y 0
3

(
ψj−1

)
|H3

]
+ β

{j−1}
0,4 , (5.5)

E
[
Y 0
4

(
ψ{j−1}

)
|H2

]
= α

{j−1}
4 α

{j−1}
5 E

[
Y 0
2

(
ψ{j−1}

)
|H2

]
+ β

{j−1}
0,4

+ α
{j−1}
3 β

{j−1}
0,3 , and (5.6)

E
[
Y 0
4

(
ψ{j−1}

)
|H1

]
= α

{j−1}
4 α

{j−1}
3 α

{j−1}
2 E

[
Y1
(
ψi−1

)
|H1

]
+ β

{j−1}
0,4

+ α
{j−1}
3 β

{j−1}
0,3 + α

{j−1}
4 α

{j−1}
3 β

{j−1}
0,2 . (5.7)

3. Estimate {ζ0,k,4, ζ1,k,4 : k = (1, 2, 3)} by regressing Y (2)
4

(
ψ{j−1}

)
−E

[
Y 0
4

(
ψ{j−1}

)
|H3

]
where

Y
(2)
4 (ψ{j−1}) = Y4 − ψ{j−1}0,3,4 A3 − ψ{j−1}1,3,4 Y3A3,

on X3 where X3 = (A1, Y1A1, A2, Y2A2),

4. Plug {ζ̂0,k,4, ζ̂1,k,4 : k = (1, 2, 3)} from step 3 and E
[
Y 0
4

(
ψ{j−1}

)
|H3

]
from eq.

5.5 in eq. 5.8 to update E
[
Y

(2)
4

(
ψ{j−1}

)
|H3; ζ

]
,

E
[
Y

(2)
4

(
ψ{j−1}

)
|H3; ζ

]
= E

[
Y 0
4

(
ψ{j−1}

)
|H3

]
+

2∑
k=1

(ζ0,k,4 + ζ1,k,4Yk)Ak.

(5.8)

5. Set Q3,4 = (1, Y3) and plug in the updated value E
[
Y

(2)
4

(
ψ{j−1}

)
|H3; ζ̂

]
from

step 4 in

U3,4(ψ3,4) = (A3 − Pr3)Q3,4× (5.9)(
Y4 − ψ0,3,4A3 − ψ1,3,4Y3A3 − E

[
Y

(2)
4

(
ψ{j−1}

)
|H3; ζ̂

])
,
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where U3,4(ψ3,4, ζ) is the part of the estimating equation used for estimating

ψ3,4 = (ψ0,3,4, ψ1,3,4).

6. Update (ψ
{j}
0,3,4, ψ

{j}
1,3,4) as the solution to Pn {U3,4 (ψ3,4)} = 0.

7. Estimate (ζ0,1,4, ζ1,1,4) by regressing Y
(1)
4 (ψ{j}) − E

[
Y 0
4

(
ψ{j−1}

)
|H2

]
on X2

where X2 = (A1, Y1A1) and

Y
(1)
4

(
ψ{j}

)
= Y4 − ψ{j}0,3,4A3 − ψ{j}1,3,4Y3A3 − ψ{j−1}0,2,4 A2 + ψ

{j−1}
1,2,4 Y2A2.

8. Plug in the estimated parameters from 7 and E
[
Y 0
4

(
ψ{j−1}

)
|H2

]
from eq. 5.6

to update E(Y
(1)
4 (ψ{j})|H2; ζ) according to

E
[
Y

(1)
4

(
ψ{j}

)
|H2; ζ

]
= E

[
Y 0
4

(
ψ{j−1}

)
|H2

]
+ ζ0,1,4A1 + ζ1,1,4Y1A1. (5.10)

9. Update (ψ
{j}
0,2,4, ψ

{j}
1,2,4) from the solution to Pn

{
U2,4

[
ψ2,4, ψ

{j}
3,4 ; ζ

]}
= 0, where

Q2,4 = (1, Y2) and

U2,4(ψ2,4; ζ̂) = (A2 − Pr2)Q2,4× (5.11)(
Y4 − ψ0,2,4A2 − ψ1,2,4Y2A2 − ψ{j}0,3,4A3 − ψ{j}1,3,4Y3A3 − E

[
Y

(1)
4

(
ψ{j}

)
|H2

])
.

10. Plug in E
[
Y 0
4

(
ψ{j}

)
|H1

]
from eq. 5.7 and update (ψ

{j}
0,1,4, ψ

{j}
1,1,4) from the

solution to Pn
{
U1,4

[
ψ1,4, ψ

(j)

2,4

]}
= 0, where

U1,4(ψ1,4, ψ2,4
) = (A1 − Pr1)Q1,4× (5.12)(

Y4 − ψ0,1,4A1 − ψ1,1,1Y1A1 −
3∑

k=2

(ψ
{j}
0,k,4Ak + ψ

{j}
1,k,4YkAk)− E

[
Y 0
4

(
ψ{j}

)
|H1; ζ

])
.

11. Estimate the causal parameters of the blip functions γm,3(.) for m = {1, 2} and

γ1,2(.) through the same procedure as for the outcome at the end of the study.
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12. Update α{j}m and β{j}0,m from regressingE
[
Y 0
m

(
ψ{j}

)
|Hm

]
on E

[
Y 0
m−1

(
ψ{j}

)
|Ht−1

]
for all values of m = {2, 3, 4}.

13. Update σ2{j}
m according to eq. 3.14 for all values of m = {2, 3, 4}.

14. Repeat the algorithm until it converges.

5.4 Estimating treatment e�ects of longitudinal studies by structural
nested mean model via the longitudinal propensity score

So far, I have approached the SNMM as a state space model by assuming a

Markov structure for the counterfactuals when treatment is withheld and I applied

the Kalman estimating equation algorithm to estimate causal parameters. I showed

that it is a propensity score independent method which is straightforward to imple-

ment and provides us with graphical evidence for checking the key model assump-

tions. However, adjusting for di�erences in confounders in the blip function can be

problematic for high dimensional pretreatment covariates and makes the approach

subject to model misspeci�cation that is di�cult to �x.

The inverse propensity score weighting approach (Horvitz and Thompson [50])

for marginal structural models (Robins et al. [66]) is the most widely used method-

ology for modelling of data from observational studies. Although under correct spec-

i�cation of the propensity score this model consistently estimates causal parameters,

it can be ine�cient, since it doesn't use information from the time varying covariates

except by adjusting for them in the weights. Achy-Breou et al. [67] �rst derived

regression estimators which use longitudinal propensity scores as covariates. They

express the distribution of counterfactual by replacing the covariate history in the

model with the longitudinal propensity score history in G-computation according to
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the G-computation formula (Robins [62]). In this section, I will introduce SNMM

with longitudinal propensity score and replace the pretreatment covariates history

in blip function by the longitudinal propensity score.

5.4.1 Assumptions and goals

Assume that treatment is assigned to patients at multiple time points, t =

{1, 2, . . . , T} and let the propensity score at time t be denoted by

et = Pr(At = 1|Ht).

Assume that the propensity scores are known and that they are the only summaries

of the covariates recorded. The identi�ability assumptions analogous to the assump-

tions for single time propensity score regression are (a) the SUTVA assumption, i.e.

that the outcome of patient i under treatment regime g is not a�ected by the treat-

ment regime assigned to patient j, (b) the sequential ignorability assumption, i.e.

that at each time point t, given the entire history on pretreatment covariates Ht,

treatment At is randomly assigned and is independent of the counterfactual process,

and (c) the positivity assumption, which states that at each time point t each pa-

tient has positive probability (et > 0) of being assigned to treatment. To estimate

the treatment e�ect by adjusting for the e�ect of confounding through the longitudi-

nal propensity score, these assumptions are essential. Achy-Brou et al. [67] showed

that the sequential ignorability assumption holds if the whole history of pretreat-

ment covariates is replaced by the history of propensity score values. For all values

of m > t, they showed that
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Y at,0
m

∏
At|e1, A1 = a1, . . . , et. (5.13)

Theorem 5.4.1. (Strong un-confoundedness given repeated measure propen-

sity score) Suppose that treatment at interval (t, t + 1] is randomly assigned given

past history of treatment predictors. Then,

At⊥Y at,0
m |e1, A1 = a1, . . . , At−1 = at−1, et. (5.14)

Proof: To prove this result it su�ces to show that, for m > t,

A:

f(At|Y at,0
m , e1, A1 = a1, . . . , At−1 = at−1, et) = et

and

B:

f(At|e1, A1 = a1, . . . , At−1 = at−1, et) = et

For part (A), note that

f(At|Y at,0
m , e1, A1 = a1, . . . , At−1 = at−1, et)

=

∫
dF (At, Ht|Y at,0

m , e1, A1 = a1, . . . , At−1 = at−1, et)

=

∫
f(At|Y at,0

m , Ht, e1, A1 = a1, . . . , At−1 = at−1, et)

× dF (Ht|Y at,0
m , e1, A1 = a1, . . . , At−1 = at−1, et),
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where by using sequential ignorability assumption and the fact that et is a function

of Ht,

f(At|Y at,0
m , e1, A1 = a1, . . . , At−1 = at−1, et)

= et

∫
dF (Ht|Y at,0

m , e1, A1 = a1, . . . , At−1 = at−1, et) = et

The proof of B is the same as proof of A.

So, replacing the pretreatment covariates history with the propensity score history

is followed by adjusting the SNMM in the following way for m > t,

E(Y at
m − Y at−1

m |e1, A1 = a1, . . . , At−1 = at−1, et) = Atγt,m(et, at−1, ψt,m),

where γt,k(et, at−1, ψt,k) is a blip function speci�c to time interval (t, t + 1] which

depends on past treatment history and past and current propensity history. So in

the same way as Chapter 3, I assume that E(Y at
m −Y 0

m|e1, A1 = a1, . . . , At−1 = at−1, et)

depends on the propensity score in interval [t, t+1) only through its interaction e�ect

with at for all m > t, which implies that

E(Y at−1
m − Y 0

m|e1, A1 = a1, . . . , At−1 = at−1, et−1)

− E(Y at−1
m − Y 0

m|e1, A1 = a1, . . . , At−2 = at−1, et) = 0



80

As a result, in a state space framework, the SNMM using the longitudinal propensity

score (SNMM-LPS) model can be written as,

Y 0
k = βT0 V + αY 0

k−1 + ξt and (5.15)

Yk = Y 0
k +

k−1∑
t=1

Atγt,k(e1, A1 = a1, . . . , et−1, ψk) + εt, (5.16)

where γt,m(et, at−1, ψt,m) is the blip function dependent on the longitudinal propensity

score speci�c to interval (t, t+ 1] for outcome at time m. Although there exist more

assumptions here than in Chapter 3 and Chapter 4, reducing the dimension makes

it easier to identify model misspeci�cation using the model diagnostics discussed in

Chapter 4. For a speci�c static regime, the joint average total treatment e�ect on

outcome at time m is estimated by

ATTE = Pn

[
m−1∑
t=1

Atγt,m(et, at−1, ψt,m)

]
. (5.17)

The SNMM-LPS approach provides a useful way to predict and compare patient out-

comes under di�erent static treatment levels by modeling only Pr(et,|et−1, at−1) for

t ∈ {1, . . . , T −1}. The SNMM approach discussed in Chapter 3 and 4 requires mod-

eling f(lt|lt−1, yt−1, at−1) and f(yt|lt−1, yt−1, at−1) for t ∈ {1, . . . , T − 1}, which can

be challenging for high dimensional data. So, the algorithm for estimating E(Y
aT−1

T )

for any particular treatment regime aT−1 = {a1, . . . , aT−1} and speci�c models for

Pr(et|et−1, at−1) for all values of t = {1, . . . , T} is as follows.

1. Take a sample average of Ê(Y 0
T |HT−1) over N subjects.
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2. After specifying a parametric model for Pr(et|et−1, at−1) and estimating its

parameters, the analyst recursively generates K samples where

δκ,T =
T−1∑
j=1

aκ,jγκ,j,k(ej, aj−1, ψj,T ).

δκ,T is the κ-th Mont Carlo estimate of E(Y
aT−1

T − Y 0
T ).

3. Finally, let Ê(Y
aT−1

T ) = Ê(Y 0
T ) + PK [δT ].

The keeSNMM-LPS can consistently estimate the causal parameters when both

the propensity score and the Markov assumption are correctly speci�ed while dr-

keeSNMM-LPS is consistent even under violation of the Markov assumption when the

propensity score is not misspeci�ed. Since dr-keeSNMM-LPS will not be doubly ro-

bust in this setting and from now on I will denote it by r-keeSNMM-LPS. Achy-Breou

et al. [67] introduced G-computation via the longitudinal propensity score in order to

replace the modelling of pretreatment covariates, which when estimating E
(
Y
aT−1

T

)
requires specifying models for Pr(YT |ea1 , a1, . . . , eaT ) and Pr(et|e1, a1, . . . , et−1) for

all values of t = {1, . . . , T}. The SNMM-LPS approach, in contrast, requires only

modeling the blip functions as a function of the longitudinal propensity score and

the treatment history. This particular application of SNMM-LPS will be illustrated

in Chapter 7.
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5.5 Simulation study

Fifty datasets, each including 5000 subjects are generated from the three-interval

example discussed in section 5.3 is simulated from the following model:

Y 0
1 = 450 + ξ1,

Y 0
2 = 400 + 0.7Y 0

1 + ξ2,

Y 0
3 = 300 + 0.5Y 0

2 + ξ3,

Y 0
4 = 200 + 0.3Y 0

3 + ξ4,

Y2 = Y 0
2 + (250− Y1)A1 + ε2,

Y3 = Y 0
3 + (250− Y1)A1 + (720− 2Y2)A2 + ε3,

Y4 = Y 0
4 + (150− Y1)A1 + (450− 2Y2)A2 + (900− 3Y3)A3 + ε4,

A1 ∼ Bernoulli(expit{2− 0.002Y1}),

A2 ∼ Bernoulli(expit{1− 0.001Y2 − 0.003Y1}), and

A3 ∼ Bernoulli(expit{0.2− 0.005Y3 − 0.004Y2}).

In the �rst model, M5,1, the counterfactuals are generated under a Markov assump-

tion where 20× εm ∼ N(0, 1) and the treatment process is generated under a logistic

model. The causal parameters of the model are estimated by both keeSNMM and dr-

keeSNMM under a misspeci�ed propensity score At ∼ Bernoulli(expit{η0 + η1Yt}).

The results for the causal parameters are in table 5�1 where (ψ0,t,m, ψ1,t,m) is the

causal parameters at interval (t, t + 1] on outcome at interval m and the last panel

of the table summarizes the nuisance parameters. As expected both keeSNMM and
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dr-keeSNMM consistently estimate the causal parameters of interest while keeSNMM

is slightly more e�cient when the propensity score is misspeci�ed and the Markov

assumption holds.

Table 5�1: Causal Parameter Estimation By keeSNMM and dr-keeSNMM From M5,1 with
Misspeci�ed Propensity Score.

keeSNMM dr-keeSNMM
parameter Mean S.D RMSE Mean S.D RMSE

Outcome at the end of interval (1, 2]
ψ0,1,2 = 250 253.180 18.311 18.585 253.187 18.319 18.594
ψ1,1,2 = −1 -1.007 0.041 0.042 -1.007 0.041 0.042

Outcome at the end of interval (2, 3]
ψ0,1,3 = 250 250.395 15.222 15.227 249.791 15.792 15.794
ψ1,1,3 = −1 -1.002 0.034 0.034 -1.0003 0.035 0.035
ψ0,2,3 = 720 720.674 6.191 6.227 720.745 6.255 6.299
ψ1,2,3 = −2 -2.001 0.011 0.011 -2.001 0.011 0.011

Outcome at the end of interval (3, 4]
ψ0,1,4 = 150 146.279 11.498 12.085 145.983 11.327 12.018
ψ1,1,4 = −1 -0.992 0.025 0.027 -0.991 0.025 0.026
ψ0,2,4 = 450 450.182 5.438 5.441 450.162 5.464 5.466
ψ1,2,4 = −2 -2.0001 0.0096 0.01 -2.0001 0.0096 0.01
ψ0,3,4 = 900 899.651 2.979 3.0009 899.658 3.158 3.176
ψ1,3,4 = −3 -2.998 0.012 0.012 -2.998 0.013 0.013

Nuisance Parameters
β0 = 400 397.746 16.425 16.579 397.741 16.429 16.584
β01 = 300 301.041 18.582 18.611 301.538 19.402 19.463
β02 = 200 204.919 14.639 15.444 204.964 14.807 15.617
α = 0.7 0.705 0.036 0.037 0.705 0.036 0.037
α1 = 0.5 0.499 0.026 0.026 0.498 0.027 0.027
α2 = 0.3 0.293 0.022 0.023 0.293 0.022 0.024

In the second model, M5,2, I consider a non-Markovian model for the counter-

factual where ξm = 0.7ξm−1 + 0.5ξm−2 + 20 × N(0, 1) and the treatment process is

generated from the same logistic model as in M5,1. The estimated parameters by

both keeSNMM and dr-keeSNMM using a correctly speci�ed propensity score and

a misspeci�ed propensity score At ∼ Bernoulli(expit{η0 + η1Yt}) is summarized in

table 5�2. Because the Markov assumption doesn't hold, both methods using the
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misspeci�ed propensity score fail to provide consistent estimates while dr-keeSnMM

with the correctly speci�ed propensity score performs consistently.

Table 5�2: Causal Parameter Estimation By keeSNMM and dr-keeSNMM From M5,2

dr-keeSNMM dr-keeSNMM
with misspeci�ed with correctly

keeSNMM prop speci�ed prop
parameter Mean S.D RMSE Mean S.D RMSE Mean S.D RMSE

Outcome at the end of interval (1, 2]
ψ0,1,2 = 250 249.149 22.422 22.438 243.556 20.298 7.863 249.101 22.416 22.434
ψ1,1,2 = −1 -0.998 0.049 0.050 -0.986 0.045 0.047 -0.998 0.049 0.050

Outcome at the end of interval (2, 3]
ψ0,1,3 = 250 68.473 23.061 182.986 156.419 19.0003 95.490 249.467 24.129 24.135
ψ1,1,3 = −1 -0.599 0.051 0.405 -0.794 0.042 0.210 -0.9990 0.054 0.054
ψ0,2,3 = 720 722.017 2.471 3.190 721.186 2.263 2.555 719.907 2.476 2.477
ψ1,2,3 = −2 -2.009 0.009 0.013 -2.003 0.009 0.009 -2.0004 0.0096 0.010

Outcome at the end of interval (3, 4]
ψ0,1,4 = 150 -58.536 25.147 210.047 -28.327 32.925 181.341 143.606 30.647 31.307
ψ1,1,4 = −1 -0.536 0.056 0.468 -0.686 0.076 0.324 -0.986 0.069 0.070
ψ0,2,4 = 450 446.609 3.962 5.214 418.506 4.120 31.762 449.976 3.919 3.919
ψ1,2,4 = −2 -1.987 0.016 0.020 -1.853 0.018 0.148 -2.0001 0.015 0.015
ψ0,3,4 = 900 900.230 2.785 2.794 888.608 2.770 11.724 900.125 2.826 2.829
ψ1,3,4 = −3 -3.003 0.012 0.013 -2.843 0.0212 0.158 -3.0003 0.013 0.013

Nuisance parameters
β0 = 400 86.914 18.136 313.611 90.156 17.557 310.341 86.950 18.096 313.573
β01 = 300 -37.388 12.007 337.601 -78.994 11.774 379.177 -121.588 13.594 421.807
β02 = 200 -98.011 7.405 298.102 -54.093 8.926 254.250 -98.347 6.803 298.425
α = 0.7 0.6958 0.0404 0.041 0.689 0.039 0.040 0.696 0.0403 0.041
α1 = 0.5 0.847 0.030 0.348 0.949 0.029 0.450 1.056 0.034 0.557
α2 = 0.3 0.988 0.025 0.689 0.927 0.032 0.627 0.993 0.023 0.709

The �rst panel of �gure 5�1 demonstrates residuals plots for keeSNMM on sim-

ulated data from the Markovian M5,1, with parameters estimated using the misspec-

i�ed propensity score. The second panel demonstrates residuals plots for simulated

data from M5,2 with the non-Markovian counterfactual. For model, M5,1, the resid-

ual plots do not show any deviation, con�rming that dr-keeSNMM can consistently

estimate the causal parameters when the propensity score is misspeci�ed and that

there is evidence that the Markov assumption holds. For model M5,2, the residual
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plots show clear violation of the Markov assumption while the residuals vs �tted

values at the corresponding intervals do not show any meaningful pattern.

5.6 Discussion

The standard dr-gSNMM method places restirictions on (i) blip function, (ii)

the mean of the counterfactual, and (iii) the propensity score. The method is con-

sistent if at least one of (ii) or (iii) is correctly speci�ed and it is more e�cient than

gSNMM. Having a correct model for the mean of the counterfactual outcome process

requires knowing the relationship between the outcome process and other covariates,

which is not plausible. However, even when using working models, dr-gSNMM per-

forms more e�ciently than gSNMM. The problem in applying dr-gSNMM is that it

requires using a working model for modeling the mean counterfactural at each time

point, which can be problematic. In this chapter, I showed how using SNMM in a

state space model framework and a Markov assumption can help to systematically

model the mean of the counterfactual. In this method, KEE is used to estimate the

parameters of the mean of the counterfactual and the additional nuisance parameters

are estimated by the moment estimators discussed in Chapter 3. The method (dr-

keeSNMM) is consistent if either of the propensity score or the Markov assumption

is correctly speci�ed. Similar to keeSNMM, the validity of this approach can be as-

sessed with residual diagnostic plots. In the simulation section, I showed that when

propensity score is misspeci�ed keeSNMM is more e�cient than dr-keeSNMM while

under correct speci�cation of model assumptions both methods have approximately

the same e�ciency.



86

Validity of causal inference from the SNMM depends on adjusting for the impor-

tant modi�ers of treatment e�ect with other pre-treatment covariates which makes

one tend to adjust for all the covariates. However adjusting for all the covariates

in�ate variances of the estimated parameters and can also induce bias. As a result,

dimension reduction can be bene�cial in using SNMM on modi�cation of treatment

e�ect. In the second part of chapter 4, I developed estimators for the SNMM via

the longitudinal propensity score (SNMM-LPS). Under the sequential ignorability

assumption, given history of the observed treatment process and the longitudinal

propensity score, I modeled blip functions on the observed history of treatment

and longitudinal propensity score and estimated the parameters of the model by

kee (keeSNMM-LPS). I also showed that one can estimate the parameters using r-

keeSNMM-LPS which, under correct speci�cation of the propensity score, is robust

to violations of the Markov assumption.
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Figure 5�1: Panel (a) includes the residual plots for drkeeSNMM on M5,1. Panel (b)
includes the residual plots on M5,2. Each panel has two rows. First row shows residual
plots versus �tted values at the corresponding interval. Second row shows residual plots vs
residual at previous time interval
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CHAPTER 6
Optimal dynamics treatment regime estimation via Kalman estimating

equations

6.1 Introduction

Providing meaningfully improved health outcomes for patients by assigning the

right drug at the right dose at the right time is an important research goal of clinical

medicine and epidemiology. In these kinds of studies, patients are monitored by

physicians over the course of their disease. A series of treatment decisions is made by

using all available information on a patient up to the point that the decision is made

to determine treatment level for the next interval. Estimation of the modi�cation of

treatment e�ects by the time-varying outcome process is essential for identifying an

individual patient's optimal treatment option (Murphy [17]).

Examining various treatment regimes to come up with the optimal one requires

conceptualizing a hypothetical population since information is available only under

a speci�c treatment regime for each subject. The hypothetical population under

treatment regime g belonging to class G is the population that would be observed if

everyone received treatment regime g. And for each of these hypothetical populations

the counterfactual outcome that would be observed at speci�c time t is denoted by

Y g
t where g = (g1, . . . , gt−1). Murphy [17] introduced the class of regret modeling

methods and developed estimators for optimal treatment regime estimation. Robins

[18] proposed the use of dr-gSNMM with some di�erences from Murphy's method

88
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([17]). In this chapter, I extend the optimal dynamic treatment regime SNMM

(ODTR-SNMM) to the case of time varying outcome and use the keeSNMM and

dr-keeSNMM methods to estimate the causal parameters of the model and highlight

our results in a simulated context.

6.2 Optimal dynamic treatment regime for time varying outcome

I �rst start by the mathematical clari�cation of the optimal dynamic regime

in the framework of causal inference (Murphy [17]) and de�ne the optimal rules

recursively. Consider a 3-interval study with the same setting as the example in

chapter 5 where the set of observed measurements for each subject is denoted by

O = (Y1, A1, Y2, A2, Y3, A3, Y4). The optimal dynamic treatment regime is de�ned

recursively as

J0(h3) = max
a3

E
[
Y a3
4 |H3 = h3

]
,

dopt3 (h3) = arg max
a3

E
[
Y a3
4 |H3

]
,

J1(h2) = max
a2

E [J0(H3)|H2 = h2] ,

dopt2 (h2) = arg max
a2

E [J0(H3)|H2 = h2] ,

J2(h1) = max
a1

E [J1(h2)|H1 = h1] , and

dopt1 (h1) = arg max
a1

E [J1(H2)|H1 = h1] ,

where these conditional expectations are taken with respect to the multivariate dis-

tribution of (Ht, Yt) indexed by decision at and d
opt
t (ht) is the optimal dynamic regime
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under restriction at−1. The optimal rules are then,

d
opt

3 = arg max
d3

E
[
E
{
E
[
Y a3
4 |h3, a3 = d3(h3)

]
|h2, a2 = d2(h2)

}
|h1, a1 = d1(h1)

]
.

Under the assumption of no-unmeasured confounders, which always holds under the

sequential ignorability assumption

E
[
E
{
E
[
Y a3
4 |h3, a3 = d3(h3)

]
|h2, a2 = d2(h2)

}
|h1, a1 = d1(h1)

]
,

is the G-computation formula from Robins [6] and is equal to E
(
Y a3
4

)
. When the

multivariate distribution of (Ht, Yt) indexed by decision at is unknown and only

longitudinal observations are available, one can build a semi-parametric model for

the optimal rule; that is, one can place restrictions on one aspect of the multivariate

distribution of (Ht, Yt), see Murphy [17]. Robin [18] used a blip function to model

the optimal rule and estimated the parameters of the model by dr-gSNMM which

is the focus of this chapter. So, under the sequential ignorability assumption, in

the subclass of patients with history Ht = (lt, yt, at−1) and who received optimal

treatment from time t+1 onward, the di�erence in outcome between the treated and

untreated patients at the end of interval interval (t, t + 1] is the e�ect of treatment

for that time interval,

γoptt,4 (Ht, ψt,4) = E

(
Y
at,d

opt
t+1

4 − Y at−1,0t,d
opt
t+1

4 |Ht = ht

)
. (6.1)

Note that in eq. 6.1 doptt+1 =
{
doptt+1(ht+1), . . . , d

opt
4−1(h4−1)

}
and γoptt,4 (Ht, ψt,4) is the blip

function for the e�ect of treatment in time interval (t, t + 1] on outcome at time

4. It is also called blip-to-reference function which takes the reference regime to be
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untreated at interval (t, t + 1]. In contrast, the regret function (Murphy [17]) is the

negative value of the blip-to-reference function when the reference is the optimal

treatment at interval (t, t+ 1],

µt,4(ht, d
opt
t (ht)) = E(Y

at−1,0,d
opt
t+1

4 − Y at−1,d
opt
t

4 |Ht = ht)

= −max
at

atγt,4(ht, ψt,4). (6.2)

The regret function is mathematically equivalent to the blip function. For the out-

come at the end of study, I then de�ned blip functions and regret functions

E
[
Y a3
4 − Y

a2,0
4 |H3 = h3

]
= a3γ

opt
3,4 (H3, ψ3,4),

E
[
Y a2,0
4 − Y a2,d

opt
3 (h2)

4 |H2 = h2

]
= −max

a3
a3γ

opt
3,4 (h3, ψ3,4),

E
[
Y
a2,d

opt
3 (h2)

4 − Y a1,0,d
opt
3 (h2)

T |H2 = h = 2
]

= a2γ
opt
2,4 (h2, ψ2,4),

E
[
Y
a1,0,d

opt
3 (h2)

4 − Y a1,d
opt
2 (h2),d

opt
3 (h2)

4 |H2 = h2

]
= −max

a2
a2γ

opt
2,4 (h2, ψ2,4),

E
[
Y
a1,d

opt
2 (h2),d

opt
3 (h3)

4 − Y 0,dopt2 (h2),d
opt
3 (h3)

4 |H1 = h1

]
= γopt1,4a1(h1, ψ1,4), and

E
[
Y

0,dopt2 (h2),d
opt
3 (h3)

4 − Y dopt1 (h1),d
opt
2 (h2),d

opt
3 (h3)

4 |H1 = h1

]
= −max

a1
a1γ

opt
1,4 (h1, ψ1,4).

With a parametric blip function, it is easy to identify the optimal regime such that,

doptt (ht, ψ) = arg maxat atγ
opt
t,4 (ht, ψt,4) for all subjects. Equivalently, d

opt
t (ht, ψ) is the

value where µt,T (ht, at) = 0. Thereby, the optimal dynamic treatment regime is a set

of restricted decisions such that the �rst component maximizes the blip function at

interval one, the second component maximizes the blip function at interval two and

so fourth, such that (T − 1)-th component maximizes the �nal blip function, which
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is a function of the entire past history. Up to this point, I have de�ned blip functions

for the outcome at the end of study and identi�ed an optimal dynamic regime which

maximizes the mean outcome at the end of study. Lavori [68] notes that an action

which is a component of the optimal dynamic regime is not necessarily optimal for

outcome at earlier time intervals. Consequently blip functions and regret functions

for the e�ect of treatment at time interval (t, t+ 1], on outcome at time m < 4 are,

E
[
Y a2
3 − Y

a1,0
3 |H2 = h2

]
= a2γ

opt
2,3 (H2, ψ2,3), (6.3)

E
[
Y a1,0
3 − Y a1,d

opt
2 (h2)

3 |H2 = h2

]
= −dopt2 (h2)γ

opt
2,3 (H2, ψ2,3), (6.4)

E
[
Y
a1,d

opt
2 (h2)

3 − Y 0,dopt2 (h2)
3 |H1 = h1

]
= a1γ

opt
1,3 (H1, ψ1,3), (6.5)

E
[
Y

0,dopt2 (h2)
3 − Y dopt1 (h1),d

opt
2 (h2)

3 |H1 = h1

]
= −dopt1 (h1)γ

opt
2,3 (H2, ψ2,3), and , (6.6)

where doptt (ht) for t = {1, 2} is an optimal action restricted to at−1 and is a component

of the optimal dynamic regime. Y opt
m is the counterfactual outcome process that

would have been observed under the optimal dynamic treatment regime. By placing

a Markov model on Y opt
m , I can write the problem in the framework of the state space

model,

Y opt
m =β0,mVm + αmY

opt
m−1 + ξm, (6.7)

YT =Y opt
T −

T−1∑
k=1

{
µk,T

[
hk, d

opt
k (hk);ψk,T

]
− akγk,T (hk, ψk,T )

}
+ εT , and (6.8)

Ym =Y opt
m −

t−1∑
k=1

{
doptk (hk)γk,T (hk, ψk,m)− akγk,m(hk, ψk,m)

}
+ εm, (6.9)
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where ξm and εm are independent and homoscedastic error terms. So,

E [Y m
T (ψ)|Hm] = E

[
Y opt
T |Hm

]
−

m∑
k=1

{
µk,T

[
hk, d

opt
k (hk);ψk,T

]
− akγk,T (hk;ψk,T )

}
,

which removes the optimal e�ect of treatment from t-th interval onward and adds

the e�ect of observed treatment at the corresponding interval.

6.3 Steps to �nding optimal dynamic treatment regime by KEE

A new way for estimating the causal parameters of ODTR-SNMM is to use

keeSNMM or dr-keeSNMM. Assume that the causal parameters are non-stationary.

For instance, in this example I set γt,m(Ht, ψt,m) = ψ0,t,m + ψ1,t,mYt where m =

{1, 2, 3, 4}. The backward algorithm for estimating the optimal treatment regime by

keeSNMM is as follows:

1. Set the initial values for all nuisance and causal parameters.

2. Find the conditional mean and variance of the counterfactual process when

treatment is withheld given past and current history from equations (3.6,3.7,3.9,3.10).

3. Regress Y4 − β{j−1}0,4 V − α{j−1}4 E(Y opt
3 |H3) on X3, where,

X3 = (A1 − I
[
ψ̂
{j−1}
0,1,4 − ψ̂

{j−1}
1,1,4 Y1 > 0

]
(1, Y1), (6.10)

A2 − I
[
ψ̂
{j−1}
0,2,4 − ψ̂

{j−1}
1,2,4 Y2 > 0

]
(1, Y2),

A3 − I
[
ψ̂
{j−1}
0,3,4 − ψ̂

{j−1}
1,3,4 Y3 > 0

]
(1, Y3))

and update
(
ψ̂
{j}
0,k,4, ψ̂

{j}
1,k,4 : k = (1, 2, 3)

)
.
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4. Regress Y3 − β{j−1}0,3 − α{j−1}3 E(Y opt
2 |H2) on X2, where

X2 = (A1 − I
[
ψ̂
{j}
0,1,4 − ψ̂

{j}
1,1,4Y1 > 0

]
(1, Y1)

A2 − I
[
ψ̂
{j}
0,2,4 − ψ̂

{j}
1,2,4Y2 > 0

]
(1, Y2)) (6.11)

and update
(
ψ̂
{j}
0,k,3, ψ̂

{j}
1,k,j : k = (1, 2)

)
.

5. Regress Y2 − β{j−1}0,2 − α{j−1}2 E(Y opt
2 |H2)) on X1, where

X1 = (A1 − I
[
ψ̂
{j}
0,1,4 − ψ̂

{j}
1,1,4Y1 > 0

]
(1, Y1)) (6.12)

and update
(
ψ̂
{j}
0,1,2, ψ̂

{j}
1,1,2

)
.

6. Update α{j}m and β{j}0,m by regressing E
[
Y opt
m (ψ{j})|Hm

]
on E

[
Y opt
m−1(ψ

{j})|Hm−1
]

for all values of m = {2, 3, 4}.

7. Update σ2{j}
m from eq. 3.14 for all values of m = {2, 3, 4}.

8. Repeat the algorithm until it converges.

6.4 Steps to �ndings optimal dynamic treatment regime by dr-keeSNMM

In the following algorithm, I show how to apply the dr-keeSNMM algorithm to

estimate the causal parameters of ODTR-SNMM:

1. Set initial values for all nuisance and causal parameters.
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2. Find the conditional mean and variance of the counterfactual process when

treatment withheld given past and current history from equations (3.6,3.7,3.9,3.10),

E
[
Y opt
4 (ψ{j−1})|H3

]
= α

{j−1}
4 E

[
Y opt
3 (ψj−1)|H3

]
+ β

{j−1}
0,4 , (6.13)

E
[
Y opt
4 (ψ{j−1})|H2

]
= α

{j−1}
4 α

{j−1}
3 E

[
Y opt
2 (ψi−1)|H2

]
+ β

{j−1}
0,4

+ α
{j−1}
3 β

{j−1}
0,3 , and (6.14)

E
[
Y opt
4 (ψ{j−1})|H1

]
= α

{j−1}
4 α

{j−1}
3 α

{j−1}
2 E

[
Y opt
1 (ψi−1)|H1

]
+ β

{j−1}
0,4

+ α
{j−1}
3 β

{j−1}
0,3 + α

{j−1}
4 α

{j−1}
3 β

{j−1}
0,2 . (6.15)

3. Estimate (ζ0,k,4, ζ1,k,4; k = {1, 2}) by regressing Y (2)
4

[
ψ{j−1}

]
−E

[
Y opt
4 (ψ{j−1})|H3

]
on the �rst 4 columns of X3 (eq. 6.10) where

Y
(2)
4 (ψ{j−1}) = Y4 −

(
ψ
{j−1}
0,3,4 + ψ

{j−1}
1,3,4 Y3

){
A3 − I(ψ

{j−1}
0,3,4 + ψ

{j−1}
1,3,4 Y3 > 0)

}
.

4. Plug in (ζ̂0,k,4, ζ̂1,k,4;K = {1, 2}) from step (3) and E
[
Y opt
4 (ψ{j−1})|H3

]
from

eq. 6.13 to update E
[
Y

(2)
4 (ψ{j})|H3

]
according to

E
[
Y

(2)
4 (ψ{j}|H3; ζ)

]
= E

[
Y opt
4 (ψ{j−1})|H3

]
+

2∑
k=1

(ζ0,k,4 + ζ1,k,4Yk)

×
{
Ak − I(ψ

{j−1}
0,k,4 + ψ

{j−1}
1,k,4 Yk > 0)

}
. (6.16)

5. Set Q3,4 = (1, Y3) and plug in the updated value E
[
Y

(2)
4 (ψ{j−1})|H3; ζ̂

]
from

step (4) in

U3,4(ψ3,4) = {A3 − pr3(η̂)}Q3,4× (6.17){
Y4 − (ψ0,3,4 + ψ1,3,4Y3)

(
A3 − I

[
ψ
{j−1}
0,3,4 + ψ

{j−1}
1,3,4 Y3 > 0

])
− E

[
Y

(2)
4

(
ψ{j−1}

)
|H3; ζ̂

]}
.
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6. Update
(
ψ
{j}
0,3,4, ψ

{j}
1,3,4

)
as the solution to Pn [U3,4(ψ3,4)] = 0 in eq. 6.17.

7. Estimate (ζ0,1,4, ζ1,1,4) by regressing Y
(1)
4 (ψ

{j}
3,4 , ψ

{j−1}
2,4 )−E

[
Y opt
4 (ψ{j})|H2; ζ

]
on

the �rst two columns of X3 (eq. 6.11),

Y
(1)
4 (ψ

{j}
3,4 , ψ

{j−1}
2,4 ) = Y4 −

{
ψ
{j}
0,3,4 + ψ

{j}
1,3,4Y3

}{
A3 − I

(
ψ
{j}
0,3,4 + ψ

{j}
1,3,4Y3 > 0

)}
−
{
ψ
{j−1}
0,2,4 + ψ

{j−1}
1,2,4 Y2

}{
A2 − I(ψ

{j−1}
0,2,4 + ψ

{j−1}
1,2,4 Y2 > 0)

}
.

8. Plug in (ζ̂0,1,4, ζ̂1,1,4) from step (7) and E
[
Y opt
4 (ψ{j−1})|H2

]
from eq. 6.14 in eq.

6.18 to update E
[
Y

(1)
4 (ψ{j})|H2; ζ

]
,

E
[
Y

(1)
4 (ψ{j})|H2

]
= E

[
Y opt
4 (ψ{j−1})|H2

]
+ (ζ0,1,4 + ζ1,1,4Yk)

×
{
Ak − I(ψ̂

{j−1}
0,1,4 + ψ̂

{j−1}
1,1,4 Yk > 0)

}
. (6.18)

9. Update (ψ
{j}
0,2,4, ψ

{j}
1,2,4) from Pn

[
U2,4

(
ψ2,4, ψ

{j}
3,4

)]
= 0 where and Q2,4 = (1, Y2)

and

U2,4(ψ2,4, ψ
{j}
3,4 ) = {A2 − pr2(η̂)}Q2,4×

(Y4 − {ψ0,2,4 − ψ1,2,4Y2}
{
A2 − I

[
ψ
{j−1}
0,2,4 + ψ

{j−1}
1,2,4 Y2 > 0

]}
−
{
ψ
{j}
0,3,4 − ψ

{j}
1,3,4Y3

}{
A3 − I

[
ψ
{j}
0,3,4 + ψ

{j}
1,3,4Y3 > 0

]}
− E

[
Y

(1)
4

(
ψ{j}

)
|H2)

]
.

(6.19)



97

10. Plug in E
[
Y opt
4

(
ψ{j−1}

)
|H1

]
from eq. 6.15 and update (ψ

{j}
0,1,4, ψ

{j}
1,1,4) as a

solution to Pn
[
U1,4

(
ψ1,4, ψ

{j}
2,4

)]
= 0, where

U1,4

(
ψ1,4, ψ

{j}
2,4

)
= {A1 − pr1(η̂)}Q1,4×

(Y4 − {ψ0,1,4 − ψ1,1,4Y2}
{
A1 − I

[
ψ
{j−1}
0,1,4 + ψ

{j−1}
1,1,4 Y1 > 0

]}
−

3∑
k=2

{
ψ
{j}
0,k,4 − ψ

{j}
1,k,4Yk

}{
Ak − I

[
ψ
{j}
0,k,4 + ψ

{j}
1,k,4Yk > 0

]}
− E

[
Y opt
4

(
ψ{j}

)
|H1

]
).

(6.20)

11. Update X1 [eq. 6.12], X2 [eq. 6.11] and X3 [eq. 6.10] by (ψ
{j}
0,k,4, ψ

{j}
1,k,4) where

k = {1, 2, 3}.

12. Estimate the causal parameters of the blip functions γt,3(.) for t = {1, 2} and

γ1,2(.) through the same procedure as for the outcome at the end of thestudy.

13. Update α{j}t and β{j}0,t by regressing E
[
Y opt
m (ψ{j})|Hm

]
on E

[
Y opt
m−1(ψ

{j})|Hm−1
]

for all values of m = {2, 3, 4}.

14. Update σ2{j}
m from eq. 3.14 for all values of m = {2, 3, 4}.

15. Repeat the algorithm until it converges.
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6.5 Simulation study

50 datasets including 5000 subjects each are simulated for the three interval

example, discussed in previous sections:

Y opt
t = 400 + 0.7Y opt

t−1 + 30ξt, ξt ∼ N(0, 1),

Y4 = Y opt
4 + (A1 − I [150− Y1 > 0])(150− Y1)

+ (A2 − I [450− 2Y2 > 0])(450− 2Y2)

+ (A3 − I [900− 3Y3 > 0])(900− 3Y3) + 30ε4, ε4 ∼ N(0, 1),

Y3 = Y opt
3 + (A1 − I [150− Y1 > 0])(250− Y1),

+ (A2 − I [450− 2Y2 > 0])(720− 2Y2) + 30ε3, ε3 ∼ N(0, 1), and

Y2 = Y opt
2 + (A1 − I [150− Y1 > 0])(250− Y1) + 30ε2, ε2 ∼ N(0, 1).

The structure of this simulation study is similar to simulation study by Moodie

et al. [19]. I will refer to this model as model M6,1. The estimation of causal

parameters by both keeSNMM and dr-keeSNMM are summarized in table 6�1. Both

models consistently estimate parameters while dr-keeSNMM is less e�cient when the

Markov assumption holds.

6.6 Discussion

In clinical research, the patients are monitored over time and treatment is tai-

lored based on accruing observations on the patient for the purpose of optimizing

long-term e�ectiveness of the program. By considering the potential e�ect of the

current treatment on the reward at later time, the optimal treatment regime is a
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Table 6�1: Estimation of causal parameters of model, M6,1 based on 50 datasets including
5000 subjects. The causal parameters are estimated by ODTR-dr-keeSNMM and ODTR-
keeSNMM.

ODTR-keeSNMM ODTR-dr-keeSNMM
parameter Mean S.D RMSE Mean S.D RMSE

Outcome at the end of interval (1, 2]
ψ0,1,2 = 250 249.474 13.564 13.574 251.755 17.866 17.952
ψ1,1,2 = −1 -0.9997 0.031 0.031 -1.004 0.040 0.040

Outcome at the end of interval (2, 3]
ψ0,1,3 = 250 248.153 14.392 14.510 251.023 20.924 20.949
ψ1,1,3 = −1 -0.998 0.032 0.032 -1.003 0.046 0.046
ψ0,2,3 = 720 732.215 11.507 16.781 719.292 11.505 11.526
ψ1,2,3 = −2 -2.019 0.0180 0.026 -1.999 0.018 0.018

Outcome at the end of interval (3, 4]
ψ0,1,4 = 150 145.921 14.518 15.080 155.174 57.379 57.612
ψ1,1,4 = −1 -0.991 0.032 0.034 -1.010 0.128 0.128
ψ0,2,4 = 450 455.574 9.926 11.384 446.663 10.746 11.252
ψ1,2,4 = −2 -2.007 0.016 0.018 -1.994 0.018 0.019
ψ0,3,4 = 900 900.581 2.897 2.955 900.817 3.082 3.188
ψ1,3,4 = −3 -3.0002 0.004 0.004 -3.001 0.004 0.004

regime which maximizes the reward at the end of study. In ODTR-SNMM, it is

common to only consider outcome at the end of study. In this chapter, by utility

of the framework of state space model, I extended the optimal dynamic treatment

regime SNMM (ODTR-SNMM) for time-varying outcome. The advantage of using

ODTR-dr-keeSNMM for �nding the optimal treatment regime beside having diag-

nostic plots and a systematic method of modeling the counterfactual is that modeling

the blip function for outcome at other time points provides also the immediate e�ect

of treatment additional to its long term e�ect.



CHAPTER 7
Application

7.1 Introduction

The Promotion of Breastfeeding Intervention Trial (PROBIT) was a cluster ran-

domized trial conducted in hospitals in Belarus from June 1996 to December 1997

with a one-year follow up. A total of 17,046 mother-infant pairs in 31 hospitals were

studied and all of the infants were initially breastfed. Intervention sites were ran-

domly assigned. Sixteen hospitals received an experimental intervention based on

the Baby-Friendly Hospital Initiative of the World Health Organization and United

Nations Children's Fund which encourage prolonged exclusive breastfeeding. Fifteen

hospitals received a control intervention based on usual infant feeding practices and

policies. The healthy infants were followed up at 1, 2, 3, 6, 9 and 12 months. The

dataset includes both maternal and infant characteristics: the randomization arm,

geographic region and rurality, mother's age, education, history of atopic pregnancy,

number of previous children, previous history of breastfeeding, smoking history and

current smoking status, current alcohol consumption, infant sex, gestational age, in-

fant weight at start of interval, hospitalizations, rashes and illness in previous interval

other than gastrointestinal and respiratory.

Observational studies have suggested that prolonged and exclusive breastfeed-

ing might reduce infant's growth while the intent-to-treat (ITT) analysis showed a

100
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statistically signi�cant, but slight positive e�ect of breastfeeding through 9 months

(Kramer et al. [69]). Some women in the intervention group stopped breastfeeding

during the �rst month, while some women in the control group continued to breast-

feed for many months after randomization. The decision to continue to breastfeed

correlates with several maternal characteristics, suggesting that observational re-

sults on e�ect breastfeeding on infant growth may be confounded (Kramer et al.

[31, 69, 70]).

Moodie et al. [47] analyzed the two randomized groups as if an observational

study were conducted and used optimal dynamic treatment regimes to �nd the op-

timal duration of exclusive breastfeeding. As I discussed before, ODTR-SNMM

requires modeling both the blip functions and the counterfactual outcome. Having

tools to help us to �x or detect misspeci�cation of these two models can be use-

ful in the area. Rich et al.[1] reanalyzed the PROBIT data and introduced model

diagnostic tools for checking the model assumptions.

Two challenges arise in applying SNMM to adjust for modi�ers of the treatment

e�ect with other pretreatment covariates: (a) building blip functions that incorporate

pretreatment covariate history, and (b) testing model assumptions. I reanalyze the

PROBIT data as an observational study and use three di�erent approaches in order

to estimate the e�ect of breastfeeding. First, I apply keeSNMM and dr-keeSNMM

to adjust for modi�ers of the treatment e�ect with other pretreatment covariates to

estimate the total causal e�ect of breastfeeding. Next I employ keeSNMM-ODTR

and drkeeSNMM-ODTR to �nd the optimal duration of exclusive breastfeeding.

Finally, I use keeSNMM-LPS and r-keeSNMM-LPS to adjust for confounding through
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the longitudinal propensity score. The ultimate goal of this chapter is to use the

PROBIT dataset to highlight the applications of the methods introduced in this

thesis for estimating the causal e�ect of treatment in a longitudinal study design.

7.2 Data structure

I begin by introducing some standard notation. I consider four intervals in our

analysis, (0, 3], (3, 6], (6, 9] and (9, 12] months. Let Am denotes breastfeeding status

at time interval (m − 3,m] for a speci�c subject which takes the value zero when

breastfeeding is stopped and the value one when breastfeeding is continued. Am is

measured at the end of interval (m−3,m] and only depends on whether the mother is

breastfeeding at that time or not. If the mother stops breastfeeding in the middle of

the interval, Am = 0 for the entire interval. Breastfeeding is not re-initiated after it

has been stopped. Lm is a vector of both �xed and time-varying covariates including

weight measured at the end of time interval (m − 3,m] for m = {3, 6, 9, 12}. The

observation vector for each subject is

Oi = (Li,0, Ai,3, Li,3, Ai,6, Li,6, Ai,9, Li,9, Ai,12, Li,12).

7.3 Longitudinal propensity score model

The propensity score is estimated by using logistic models with large numbers

of covariates for the probability of continuing breastfeeding based on hospital, ma-

ternal and infant characteristics: randomization arm, geographic region and rurality,

mother's age, education, history of atopic pregnancy, number of previous children,
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history of breastfeeding, smoking history and current smoking, current alcohol con-

sumption, infant sex, gestational age, infant weight at start of interval, hospital-

izations, rashes and illness in the previous interval other than gastrointestinal and

respiratory.

7.4 drkeeSNMM and keeSNMM on modi�ers of breastfeeding e�ect with
other covariates

I started by �tting a cumulative treatment model for the e�ect of all �xed

and time varying confounders. In a cumulative SNMM, γt,m = At(ψ0,m + ψT1,mLt)

is the blip function, where its parameters are stationary and determine the e�ect

of treatment during time interval (t − 3, t] on the outcome at time m. It is the

simplest form of blip function, but it does not perform well according to residual

diagnostic plots (not shown) which demonestrate misspeci�ed blip functions and

Markov assumption. I also tried γt,m = At(ψ0,m + ψT1,t,mLt), but it didn't perform

well either. At the end, the blip functions with non-stationary parameters performed

the best of all blip functions considered. In the model with non-stationary causal

parameters, not only the parameters in blip function but also the subset of treatment

e�ect modi�ers were allowed to vary between intervals. The model diagnostics using

the non-stationary form of the blip function indicated a much more reasonable �t.

Therefore, the �nal blip function, γt,m = At(ψ0,t,m + ψ1,t,mLt), models the mod-

i�cation of the e�ect of breastfeeding by other time varying confounders at interval

(t−3, t] on the outcome at timem, where Lt is a vector of baseline covariates and time

varying confounders at previous time intervals, t = {3, 6, 9, 12} and m = {3, 6, 9, 12}.

I started with a simple model including only the intercept and infant weights at the

previous interval. Examination of the residual diagnostic plots versus covariates
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Table 7�1: Modi�ers of treatment e�ect for SNMM on PROBIT dataset
Modi�ers at (0, 3] on outcome at month {3,6,9,12}

infant's baseline weight gender # previous children
mother's education gastrointestinal infection mother's smoking history
breastfeeding history

Modi�ers at (3, 6] on outcome at month {6,9,12}
infant's baseline weight gender gastrointestinal infection at month 6

Modi�ers at (6, 9] on outcome at month {9,12}
infant's baseline weight gender

Modi�ers at (9, 12] on outcome at month 12
infant's baseline weight

suggested adjusting for gastrointestinal infectious and gender for some of the blip

functions. Modi�ers of the treatment e�ect at interval one on outcome at month

{3, 6, 9, 12} are the infant's weight at baseline, gender, number of previous children,

mother's eduction, gastrointestinal infection within interval, mother's smoking his-

tory and breastfeeding history. Modi�ers of the treatment e�ect at interval two on

outcome at month {6, 9, 12} are the infant's weight at baseline, gender, gastroin-

testinal infection at month 6. Modi�ers of the treatment e�ect at interval three on

outcome at month {9, 12} are, infant's weight at baseline and gender and modi�ers

of treatment e�ect at interval three on outcome at month 12 are the infant's weight

at baseline, see table 7�1.

The expected counterfactual model is assumed to be a linear �rst order Markov

model. Under the Markovian model for Y 0
m the causal parameters are estimated

by dr-keeSNMM and keeSNMM and the SEs are estimated via the nonparametric

bootstrap method with 2500 replications (Efron & Tibshirani [71], Canty & Riplay

[72] and Davison & Hinkley [73]). Results are summarized in tables 7�3, 7�4, 7�5,

and 7�2. The tables 7�3 and 7�2 summarize estimation of the causal parameters via

drkeeSNMM and keeSNMM, respectively. From the residual plots in �gures 7�1 one

can clearly see violations of the Markov assumption, however plots of the residuals
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versus corresponding �tted values show no serious misspeci�cation for the blip func-

tions. It should be noted that because of the diagnosed violation from the Markov

assumption, inference from the keeSNMM model should be viewed with caution.

From tables 7�3 and 7�2, it is clear that from dr-keeSNMM most of the parameters

are not statistically signi�cantly di�erent from zero, even the infant weight at the

start of the interval, or the occurrence of gastrointestinal and respiratory infections

within the interval, which concurs with the result from Rich et al. [1]. However,

most of these non-signi�cant estimators are statistically signi�cantly di�erent from

zero according to keeSNMM, so I decided to keep them in the model. Adjusting

for modi�ers of the breastfeeding e�ect in blip functions make the comparison be-

tween parameter estimates from keeSNMM and dr-keeSNMM di�cult. Another way

to compare the estimators is to use the average total treatment e�ect (ATTE) and

the average treatment e�ect within interval (ATEWI), tables 7�4 and 7�5. In these

two tables, ATTEt,m is the average total breastfeeding e�ect during iterval (0, t] and

stopping afterward on infant's weight at the end of month m. ATEWIt,m is the

average breastfeeding e�ect within interval (t − 3, t] on the infant's weight at the

end of month m, assuming that the subject then stops breastfeeding after time t.

Breastfeeding within intervals (3, 6] and (6, 9] seemingly has a continuously negative

e�ect on infant's weight. The immediate e�ect of breastfeeding within interval (0, 3]

is positive, however past month 3, there is not a signi�cant di�erence between infants

who are breastfed through month 3 and those who are not. Within intervals (3, 6]

and (6, 9] the immediate e�ect and later e�ect are statistically signi�cantly negative.

In contrast, continuing breastfeeding after month 9 has no signi�cant e�ect, either
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positive or negative. As a result, based on this one-year follow up study breastfeeding

after month 3 through month 9 decreases the infants' weights.

7.5 Optimal SNMM on modi�ers of breastfeeding e�ect with other co-
variates

The World Health Organization (WHO) currently recommends that infants

should be exclusively breastfed for the �rst six months of life in order to achieve

optimal growth, development and health. Thereafter, infants should receive nutri-

tionally adequate and safe complementary foods, while continuing to breastfeed for

up to two years or more. Moodie et al. [47] and Rich et al. [1] using ODTR-SNMM

showed that the optimal time to stop breastfeeding is month 3. There has been

no work on ODTR-SNMM when outcome is time varying, but consider only the

outcome at the end of study. In this section, I use ODTR-dr-keeSNMM as was dis-

cussed in chapter 6. The estimation of causal parameters for ODTR-dr-keeSNMM

is summarized in table 7�6. These results are very similar to the results in table 7�2

and con�rm that the optimal time to stop breastfeeding is month 3. The identical

results from SNMM and optimal SNMM are because once breastfeeding is stopped

it cannot be re-initiated again. Although there seem to be violations of the Markov

assumption but my results from di�erent methodologies are not inconsistent with

the results obtained by Rich et al. [1] as can be seen from table 7�7. The previ-

ous authors assumed a constant e�ect at each time interval. The table 7�7 displays

the estimated ATTEt,12 for t = {3, 6, 9, 12} for each interval from Rich et al. [1],

and the ATEWI from dr-keeSNMM and ODTR-dr-keeSNMM. So based on the one

year follow up from the PROBIT data, the optimal time to stop breastfeeding is

month 3 and our analysis con�rms that breastfeeding has a small, but statistically
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signi�cant and negative e�ect, particularly between months 3 and 9, and continuing

breastfeeding after month 9 has no apparent e�ect.

7.6 dr-keeSNMM and keeSNMM with longitudinal propensity score

Despite modelling only four time intervals and a small number of time vary-

ing confounders, constructing blip functions and interpreting causal parameters re-

mains a challenge. In order to overcome the problem, I can instead construct the

blip functions by using the propensity score as dicuss in Chapter 5. Blip func-

tions using the longitudinal propensity score are parameterized as γt,m(Ht, ψt,m) =

At(ψ0,t,m + ψTt,mXt) where Xt is a subset of At−1 and et which adjusts for confound-

ing by conditioning on the propensity score. In the data analysis, I set Xt = et,

which assumes that the current propensity for treatment contains all the inorma-

tion about the past confounding history. The causal parameters are estimated by

r-keeSNMM-LPS and keeSNMM-LPS and results are summarized in tables 7�8, 7�

10, and 7�10. The results from dr-keeSNMM-LPS and keeSNMM-LPS are consistent

with our results in section 7.4 where breastfeeding past month 3 through month 9

continuously decrease infants's weights and has no positive e�ect at later timepoints.

Plots of residuals vs residuals at previous time intervals (�gure 7�2) shows mild vi-

olation of the Markov assumption, however plots of residuals versus �tted values at

the corresponding intervals don't show any signi�cant pattern.

7.7 Discussion

In this chapter, I re-analysed the promotion of breastfeeding intervention trial

(PROBIT) in Belarus to illustrate the application of the methods introduced in this

thesis. The contradiction amongst various studies on evaluating the prolonged and



108

exclusive breastfeeding e�ect on infant's growth can be a strong evidence of the

presence of confounding which is not adjusted for appropriately (Kramer et al. [69]).

It is a cluster-randomized trial study, however some women in the groups of studies

didn't follow the policies after randomization. As a result, continuing breastfeeding

can be considered as an sequential decision-making process (made by mothers) which

depends on both the mother's and the infant's characteristics. So, the analysis of the

long-term e�ect of breastfeeding requires appropriate causal methods. By combining

the two randomized groups as was done by past authors (Moodie et al.[47], Rich

et al. [1]), I re-analysed the dataset as if an observational study was conducted.

I applied both keeSNMM and dr-keeSNMM to adjust for modi�ers of the e�ect of

breastfeeding. I then used ODTR-keeSNMM and ODTR-drkeeSNMM to �nd the

optimal duration of exclusive breastfeeding. Finally, I implemented keeSNMM-LPS

and r-keeSNMM-LPS to adjust for confounding through the longitudinal propensity

score. Although there appears to be violation of the Markov assumption, according

to the residual plots, all the methods consistently con�rm that breastfeeding has a

statistically signi�cant positive immediate e�ect in interval (0, 3] and a statistically

signi�cant negative immediate and long term e�ect during months three to nine. As

a result, based on this one-year follow up study, my methods con�rmed the results

of past authors that breastfeeding after month 3 through month 9 negatively a�ect

infants's weights. It is worth to note that, the 95% con�dence intervals for ATEWIs

from keeSNMM and drkeeSNMM cover the ATEWIs from Rich's results. And since

the di�erences are in terms of grams of weight, it means that the di�erences are
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not only mostly not statistically signi�cant, but they are not practically meaningful

either.
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Table 7�2: The causal parameter estimation by dr-keeSNMM: ψk,t,m is the coe�cient of the
k-th modi�ers in blip function γk,t,m(Ht, ψt,m) for time interval (t−3, t] on outcome at month
m. The table has 4 panels. First panel includes the modi�cation of the causal parameters
of the �rst interval on outcome at month 3. Second panel includes the modi�cation of the
causal parameters within each interval on outcome at month 6. Third panel includes the
modi�cation of the causal parameters within each interval on outcome at month 9. Fourth
panel includes the modi�cation of the causal parameters within each interval on month 12.

Outcome at the end of interval (0, 3]
ψ0,3,3 ψ1,3,3 ψ2,3,3 ψ3,3,3 ψ4,3,3 ψ5,3,3 ψ6,3,3 ψ7,3,3 ψ8,3,3 ψ9,3,3 ATEWI3,3

ES 148.704 -0.015 -18.876 -58.501 -77.209 -62.832 -12.101 21.812 -152.265 106.454 36.959
SD 135.833 0.040 32.828 44.366 64.024 34.517 51.511 122.432 131.573 50.932 11.216
LB -117.529 -0.095 -83.220 -145.458 -202.696 -130.485 -113.062 -218.155 -410.149 6.627 14.975
UB 414.937 0.064 45.468 28.456 48.278 4.822 88.860 261.778 105.619 206.281 58.943

Outcome at the end of interval (3, 6]
ψ0,3,6 ψ1,3,6 ψ2,3,6 ψ3,3,6 ψ4,3,6 ψ5,3,6 ψ6,3,6 ψ7,3,6 ψ8,3,6 ψ9,3,6 ATEWI3,6

ES 137.687 -0.032 41.997 -74.999 -12.031 -46.126 -2.590 185.288 -132.418 99.248 19.157
SD 211.389 0.063 48.272 60.474 88.831 48.043 69.269 180.185 182.318 71.816 17.045
LB -276.635 -0.155 -52.617 -193.529 -186.140 -140.290 -138.357 -167.875 -489.761 -41.513 -14.251
UB 552.009 0.092 136.610 43.531 162.078 48.038 133.177 538.452 224.926 240.008 52.565

ψ0,6,6 ψ1,6,6 ψ2,6,6 ψ3,6,6 ATEWI6,6
ES 31.919 -0.025 -53.206 6.446 -36.245
SD 124.820 0.037 29.388 79.041 6.372
LB -212.729 -0.097 -110.806 -148.476 -48.735
UB 276.567 0.047 4.394 161.367 -23.756

Outcome at the end of interval (6, 9]
ψ0,3,9 ψ1,3,9 ψ2,3,9 ψ3,3,9 ψ4,3,9 ψ5,3,9 ψ6,3,9 ψ7,3,9 ψ8,3,9 ATEWI3,9

ES 77.587 -0.028 39.624 17.895 78.045 -72.009 17.251 283.062 -258.230 -14.681
SD 241.788 0.072 55.448 56.191 85.443 54.646 73.765 204.534 231.909 19.065
LB -396.318 -0.170 -69.053 -92.239 -89.423 -179.115 -127.327 -117.825 -712.771 -52.047
UB 551.492 0.113 148.302 128.029 245.513 35.097 161.830 683.949 196.311 22.686

ψ0,6,9 ψ1,6,9 ψ2,6,9 ψ3,6,9 ATEWI6,9
ES -176.243 0.025 47.541 109.668 -27.543
SD 177.904 0.052 44.134 90.119 9.535
LB -524.935 -0.078 -38.961 -66.966 -46.232
UB 172.448 0.128 134.044 286.302 -8.855

ψ0,9,9 ψ1,9,9 ψ2,9,9 ATEWI9,9
ES 74.311 -0.033 -70.093 -23.527
SD 143.613 0.042 33.575 5.288
LB -207.171 -0.115 -135.900 -33.892
UB 355.793 0.049 -4.286 -13.162

Outcome at the end of interval (9, 12]
ψ0,3,12 ψ1,3,12 ψ2,3,12 ψ3,3,12 ψ4,3,12 ψ5,3,12 ψ6,3,12 ψ7,3,12 ψ8,3,12 ATEWI3,12

ES 25.205 -0.004 16.729 0.796 9.189 -44.846 17.691 169.533 -363.368 -3.121
SD 247.494 0.074 59.917 59.038 94.076 58.366 83.089 255.189 250.699 20.568
LB -459.882 -0.149 -100.709 -114.919 -175.200 -159.243 -145.163 -330.637 -854.739 -43.434
UB 510.293 0.140 134.167 116.511 193.578 69.550 180.545 669.704 128.003 37.193

ψ0,6,12 ψ1,6,12 ψ2,6,12 ψ3,6,12 ATEWI6,12
ES -2.502 -0.023 29.551 25.210 -28.971
SD 213.028 0.062 50.672 117.823 10.979
LB -420.036 -0.145 -69.765 -205.723 -50.490
UB 415.033 0.099 128.867 256.143 -7.451

ψ0,9,12 ψ1,9,12 ψ2,9,12 ATEWI9,12
ES 23.974 -0.031 -24.831 -29.410
SD 205.379 0.060 44.041 7.325
LB -378.569 -0.148 -111.152 -43.767
UB 426.517 0.086 61.490 -15.053

ψ0,12,12 ψ1,12,12 ATEWI12,12
ES -243.110 0.061 -4.500
SD 164.029 0.047 2.615
LB -564.606 -0.032 -9.625
UB 78.386 0.153 0.625
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Table 7�3: The causal parameter estimation by keeSNMM: ψk,t,m is the coe�cient of the k-
th modi�ers in blip function γk,t,m(Ht, ψt,m) for time interval (t−3, t] on outcome at month
m. The table has 4 panels. First panel includes the modi�cation of the causal parameters
of the �rst interval on outcome at month 3. Second panel includes the modi�cation of the
causal parameters within each interval on outcome at month 6. Third panel includes the
modi�cation of the causal parameters within each interval on outcome at month 9. Fourth
panel includes the modi�cation of the causal parameters within each interval on month 12.

Outcome at the end of interval (0, 3]
ψ0,3,3 ψ1,3,3 ψ2,3,3 ψ3,3,3 ψ4,3,3 ψ5,3,3 ψ6,3,3 ψ7,3,3 ψ8,3,3 ψ9,3,3 ATEWI3,3

ES 70.630 -0.047 292.201 -35.960 -143.427 41.074 33.198 19.514 -15.912 34.958 48.046
SD 95.075 0.028 12.138 18.008 27.132 13.053 18.717 49.783 51.163 18.987 7.694
LB -115.718 -0.101 268.411 -71.256 -196.606 15.489 -3.488 -78.060 -116.190 -2.257 32.965
UB 256.978 0.007 315.991 -0.665 -90.247 66.658 69.884 117.089 84.367 72.173 63.126

Outcome at the end of interval (3, 6]
ψ0,3,6 ψ1,3,6 ψ2,3,6 ψ3,3,6 ψ4,3,6 ψ5,3,6 ψ6,3,6 ψ7,3,6 ψ8,3,6 ψ9,3,6 ATEWI3,6

ES 935.345 -0.336 415.939 -65.455 -171.007 83.536 61.011 118.334 -76.883 -17.008 1.504
SD 149.346 0.044 25.639 24.795 39.194 17.786 25.503 75.249 79.169 26.998 12.779
LB 642.628 -0.422 365.688 -114.052 -247.826 48.674 11.026 -29.154 -232.055 -69.924 -23.544
UB 1228.063 -0.250 466.191 -16.858 -94.187 118.397 110.996 265.821 78.288 35.909 26.551

ψ0,6,6 ψ1,6,6 ψ2,6,6 ψ3,6,6 ATEWI6,6
ES 31.930 -0.024 -57.433 -20.146 -35.809
SD 121.306 0.036 28.713 49.834 6.297
LB -205.829 -0.094 -113.710 -117.820 -48.151
UB 269.689 0.046 -1.155 77.529 -23.467

Outcome at the end of interval (6, 9]
ψ0,3,9 ψ1,3,9 ψ2,3,9 ψ3,3,9 ψ4,3,9 ψ5,3,9 ψ6,3,9 ψ7,3,9 ψ8,3,9 ATEWI3,9

ES 1262.439 -0.434 405.667 -77.961 -180.492 75.750 84.703 106.686 -125.256 -11.600
SD 166.453 0.049 30.527 19.626 36.311 20.480 28.784 87.799 97.434 14.526
LB 936.192 -0.529 345.833 -116.427 -251.662 35.609 28.286 -65.400 -316.226 -40.071
UB 1588.686 -0.339 465.501 -39.494 -109.323 115.891 141.121 278.772 65.715 16.870

ψ0,6,9 ψ1,6,9 ψ2,6,9 ψ3,6,9 ATEWI6,9
ES -193.507 0.031 43.695 33.364 -27.960
SD 174.831 0.051 43.458 72.056 9.497
LB -536.177 -0.070 -41.483 -107.865 -46.574
UB 149.163 0.132 128.873 174.593 -9.346

ψ0,9,9 ψ1,9,9 ψ2,9,9 ATEWI9,9
ES 35.100 -0.021 -75.034 -24.022
SD 141.599 0.041 32.943 5.314
LB -242.435 -0.102 -139.602 -34.438
UB 312.635 0.059 -10.466 -13.606

Outcome at the end of interval (9, 12]
ψ0,3,12 ψ1,3,12 ψ2,3,12 ψ3,3,12 ψ4,3,12 ψ5,3,12 ψ6,3,12 ψ7,3,12 ψ8,3,12 ATEWI3,12

ES 1189.362 -0.399 392.363 -78.645 -141.310 46.975 84.407 23.101 -180.773 7.918
SD 179.228 0.052 34.295 21.669 39.310 22.328 32.221 97.443 106.566 15.648
LB 838.075 -0.501 325.145 -121.115 -218.357 3.213 21.255 -167.887 -389.642 -22.751
UB 1540.649 -0.296 459.580 -36.175 -64.263 90.737 147.559 214.089 28.096 38.587

ψ0,6,12 ψ1,6,12 ψ2,6,12 ψ3,6,12 ATEWI6,12
ES -44.046 -0.010 24.019 -60.919 -29.072
SD 210.844 0.062 50.323 84.135 10.919
LB -457.299 -0.130 -74.614 -225.824 -50.473
UB 369.208 0.111 122.652 103.987 -7.671

ψ0,9,12 ψ1,9,12 ψ2,9,12 ATEWI9,12
ES 12.975 -0.028 -29.802 -30.959
SD 206.079 0.060 43.774 7.316
LB -390.940 -0.146 -115.600 -45.299
UB 416.889 0.089 55.996 -16.619

ψ0,12,12 ψ1,12,12 ATEWI12,12
ES -192.030 0.044 -5.276
SD 163.584 0.047 2.620
LB -512.653 -0.048 -10.411
UB 128.594 0.137 -0.141
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Table 7�4: Average treatment e�ect within intervals for keeSNMM and dr-keeSNMM.
ATEWIt,m is the average e�ect of breastfeeding within interval (t − 3, t] and stopping
onward, on the mean of outcome at the end of month m.

keeSNMM dr-keeSNMM
ATEWI3,3 ATEWI3,3

ES 48.046 36.959
SD 7.694 11.216
LB 32.965 14.975
UB 63.126 58.943

keeSNMM dr-keeSNMM
ATEWI3,6 ATEWI6,6 ATEWI3,6 ATEWI6,6

ES 1.504 -35.809 19.157 -36.245
SD 12.779 6.297 17.045 6.372
LB -23.544 -48.151 -14.251 -48.735
UB 26.551 -23.467 52.565 -23.756

keeSNMM dr-keeSNMM
ATEWI3,9 ATEWI6,9 ATEWI9,9 ATEWI3,9 ATEWI6,9 ATEWI9,9

ES -11.600 -27.960 -24.022 -14.681 -27.543 -23.527
SD 14.526 9.497 5.314 19.065 9.535 5.288
LB -40.071 -46.574 -34.438 -52.047 -46.232 -33.892
UB 16.870 -9.346 -13.606 22.686 -8.855 -13.162

keeSNMM dr-keeSNMM
ATEWI3,12 ATEWI6,12 ATEWI9,12 ATEWI12,12 ATEWI3,12 ATEWI6,12 ATEWI9,12 ATEWI12,12

ES 7.918 -29.072 -30.959 -5.276 -3.121 -28.971 -29.410 -4.500
SD 15.648 10.919 7.316 2.620 20.568 10.979 7.325 2.615
LB -22.751 -50.473 -45.299 -10.411 -43.434 -50.490 -43.767 -9.625
UB 38.587 -7.671 -16.619 -0.141 37.193 -7.451 -15.053 0.625

Table 7�5: Average total treatment e�ect for keeSNMM and dr-keeSNMM. ATTEt,m is the
average total e�ect of breastfeeding through month t and stopping onward, on the mean of
outcome at the end of month m.

keeSNMM dr-keeSNMM
ATTE3,3 ATTE3,3

ES 48.046 36.959
SD 7.694 11.216
LB 32.965 14.975
UB 63.126 58.943

keeSNMM dr-keeSNMM
ATTE3,6 ATTE6,6 ATTE3,6 ATTE6,6

ES 1.504 -34.305 19.157 -17.088
SD 12.779 10.633 17.045 15.535
LB -23.544 -55.146 -14.251 -47.537
UB 26.551 -13.465 52.565 13.361

keeSNMM dr-keeSNMM
ATTE3,9 ATTE6,9 ATTE9,9 ATTE3,9 ATTE6,9 ATTE9,9

ES -11.600 -39.560 -63.582 -14.681 -42.224 -65.751
SD 14.526 13.064 11.968 19.065 18.241 17.387
LB -40.071 -65.166 -87.040 -52.047 -77.977 -99.830
UB 16.870 -13.954 -40.124 22.686 -6.471 -31.671

keeSNMM dr-keeSNMM
ATTE3,12 ATTE6,12 ATTE9,12 ATTE12,12ATTE3,12 ATTE6,12 ATTE9,12 ATTE12,12

ES 7.918 -21.153 -52.113 -57.388 -3.121 -32.092 -61.502 -66.001
SD 15.648 14.436 13.024 12.744 20.568 19.789 18.838 18.684
LB -22.751 -49.447 -77.640 -82.367 -43.434 -70.877 -98.424 -102.621
UB 38.587 7.140 -26.585 -32.410 37.193 6.694 -24.579 -29.382
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Table 7�6: The causal parameter estimation by ODTR-dr-keeSNMM: ψk,t,m is the coef-
�cient of the k-th modi�ers in blip function γk,t,m(Ht, ψt,m) for time interval (t − 3, t] on
outcome at month m. The table has 4 panels. First panel includes the modi�cation of the
causal parameters of the �rst interval on outcome at month 3. Second panel includes the
modi�cation of the causal parameters within each interval on outcome at month 6. Third
panel includes the modi�cation of the causal parameters within each interval on outcome
at month 9. Fourth panel includes the modi�cation of the causal parameters within each
interval on month 12.

Outcome at the end of interval (0, 3]
ψ0,3,3 ψ1,3,3 ψ2,3,3 ψ3,3,3 ψ4,3,3 ψ5,3,3 ψ6,3,3 ψ7,3,3 ψ8,3,3 ψ9,3,3 ATEW3,3

ES 158.280 -0.016 -21.889 -60.643 -87.956 -67.005 -13.848 12.108 -149.971 105.863 37.521
SD 136.877 0.041 33.704 44.298 66.385 36.144 52.569 124.240 129.252 51.889 11.380
LB -110.000 -0.096 -87.947 -147.467 -218.071 -137.848 -116.883 -231.403 -403.305 4.160 15.217
UB 426.560 0.064 44.170 26.181 42.159 3.838 89.187 255.619 103.362 207.565 59.826

Outcome at the end of interval (3, 6]
ψ0,3,6 ψ1,3,6 ψ2,3,6 ψ3,3,6 ψ4,3,6 ψ5,3,6 ψ6,3,6 ψ7,3,6 ψ8,3,6 ψ9,3,6 ATEW3,6

ES 144.211 -0.033 38.780 -72.888 -19.735 -46.144 3.625 177.754 -130.053 94.561 19.917
SD 216.609 0.064 50.515 60.701 92.723 49.754 71.495 183.786 179.663 73.281 17.296
LB -280.344 -0.159 -60.230 -191.862 -201.472 -143.663 -136.505 -182.467 -482.194 -49.070 -13.983
UB 568.765 0.094 137.789 46.086 162.002 51.374 143.756 537.975 222.087 238.191 53.817

ψ0,6,6 ψ1,6,6 ψ2,6,6 ψ3,6,6 ATEW6,6

ES 20.748 -0.023 -47.018 -7.491 -37.004
SD 129.884 0.038 30.333 82.242 6.578
LB -233.825 -0.098 -106.471 -168.686 -49.897
UB 275.322 0.052 12.435 153.704 -24.110

Outcome at the end of interval (6, 9]
ψ0,3,9 ψ1,3,9 ψ2,3,9 ψ3,3,9 ψ4,3,9 ψ5,3,9 ψ6,3,9 ψ7,3,9 ψ8,3,9 ATEW3,9

ES 70.399 -0.026 38.400 19.710 71.655 -71.033 19.507 287.758 -255.962 -13.374
SD 245.973 0.074 57.568 56.941 86.840 55.714 75.352 204.126 230.857 19.298
LB -411.708 -0.170 -74.434 -91.894 -98.551 -180.233 -128.183 -112.330 -708.441 -51.197
UB 552.506 0.119 151.233 131.313 241.861 38.167 167.197 687.845 196.517 24.450

ψ0,6,9 ψ1,6,9 ψ2,6,9 ψ3,6,9 ATEW6,9

ES -182.202 0.025 55.760 89.452 -29.176
SD 186.444 0.055 45.007 93.216 9.901
LB -547.633 -0.084 -32.454 -93.252 -48.582
UB 183.228 0.133 143.974 272.155 -9.769

ψ0,9,9 ψ1,9,9 ψ2,9,9 ATEW9,9

ES 75.532 -0.033 -71.778 -23.441
SD 145.676 0.042 33.830 5.300
LB -209.993 -0.116 -138.084 -33.830
UB 361.057 0.050 -5.471 -13.053

Outcome at the end of interval (9, 12]
ψ0,3,12 ψ1,3,12 ψ2,3,12 ψ3,3,12 ψ4,3,12 ψ5,3,12 ψ6,3,12 ψ7,3,12 ψ8,3,12 ATEW3,12

ES 16.692 -0.001 15.976 1.401 3.529 -45.177 20.639 175.756 -362.105 -1.949
SD 250.350 0.075 62.056 59.802 96.962 59.877 85.207 257.619 249.794 20.633
LB -473.994 -0.148 -105.654 -115.812 -186.516 -162.536 -146.367 -329.176 -851.701 -42.390
UB 507.377 0.145 137.607 118.614 193.573 72.182 187.644 680.689 127.491 38.491

ψ0,6,12 ψ1,6,12 ψ2,6,12 ψ3,6,12 ATEW6,12

ES -3.451 -0.024 34.780 7.960 -29.890
SD 219.182 0.064 51.260 118.099 11.312
LB -433.049 -0.150 -65.689 -223.514 -52.061
UB 426.146 0.102 135.249 239.434 -7.719

ψ0,9,12 ψ1,9,12 ψ2,9,12 ATEW9,12

ES 29.140 -0.032 -25.979 -29.542
SD 210.251 0.061 44.297 7.368
LB -382.952 -0.152 -112.801 -43.983
UB 441.232 0.087 60.844 -15.100

ψ0,12,12 ψ1,12,12 ATEW12,12

ES -232.815 0.058 -4.442
SD 164.891 0.047 2.620
LB -556.001 -0.035 -9.578
UB 90.372 0.151 0.694
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Table 7�8: The causal parameter estimation by keeSNMM-LPS and dr-keeSNMM-LPS:
ψk,t,m is the coe�cient of the k-th modi�ers in blip function γk,t,m(Ht, ψt,m) for time in-
terval (t − 3, t] on outcome at month m. The table has 4 panels. First panel includes the
modi�cation of the causal parameters of the �rst interval on outcome at month 3. Second
panel includes the modi�cation of the causal parameters within each interval on outcome at
month 6. Third panel includes the modi�cation of the causal parameters within each inter-
val on outcome at month 9. Fourth panel includes the modi�cation of the causal parameters
within each interval on month 12.

Outcome at the end of interval (0, 3]
keeSNMM-LPS dr-keeSNMM-LPS

ψ0,3,3 ψ1,3,3 ATEWI3,3 ψ0,3,3 ψ1,3,3 ATEWI3,3
ES -173.782 141.385 48.533 -113.240 99.777 40.553
SD 30.579 16.546 7.677 69.510 41.590 11.296
LB -233.717 108.955 33.485 -249.481 18.261 18.413
UB -113.848 173.816 63.580 23.000 181.293 62.692

Outcome at the end of interval (3, 6]
keeSNMM-LPS dr-keeSNMM-LPS

ψ0,3,6 ψ1,3,6 ATEWI3,6 ψ0,3,6 ψ1,3,6 ATEWI3,6
ES -136.210 84.734 7.588 -13.829 24.317 19.117
SD 55.985 31.578 12.879 105.408 63.118 17.372
LB -245.940 22.841 -17.654 -220.428 -99.394 -14.933
UB -26.480 146.628 32.830 192.770 148.029 53.167

ψ0,6,6 ψ1,6,6 ATEWI6,6 ψ0,6,6 ψ1,6,6 ATEWI6,6
ES -53.204 -55.546 -39.491 -96.948 22.734 -35.993
SD 26.433 36.864 6.619 31.149 47.095 6.761
LB -105.012 -127.800 -52.465 -157.999 -69.572 -49.244
UB -1.396 16.708 -26.517 -35.897 115.041 -22.742

Outcome at the end of interval (6, 9]
keeSNMM-LPS dr-keeSNMM-LPS

ψ0,3,9 ψ1,3,9 ATEWI3,9 ψ0,3,9 ψ1,3,9 ATEWI3,9
ES -179.979 99.020 -5.083 -67.469 29.069 -11.305
SD 62.116 35.687 14.681 113.928 69.263 20.120
LB -301.727 29.074 -33.857 -290.768 -106.688 -50.739
UB -58.231 168.967 23.691 155.830 164.825 28.130

ψ0,6,9 ψ1,6,9 ATEWI6,9 ψ0,6,9 ψ1,6,9 ATEWI6,9
ES -28.368 -67.283 -31.986 -65.681 1.104 -28.534
SD 35.674 48.157 9.764 41.742 62.899 10.057
LB -98.289 -161.672 -51.123 -147.496 -122.178 -48.245
UB 41.553 27.105 -12.849 16.134 124.386 -8.823

ψ0,9,9 ψ1,9,9 ATEWI9,9 ψ0,9,9 ψ1,9,9 ATEWI9,9
ES 12.195 -105.214 -24.483 36.269 -137.573 -25.787
SD 37.213 39.565 5.253 48.602 57.072 5.459
LB -60.742 -182.761 -34.778 -58.990 -249.434 -36.487
UB 85.132 -27.667 -14.188 131.529 -25.713 -15.087

Outcome at the end of interval (9, 12]
keeSNMM-LPS dr-keeSNMM-LPS

ψ0,3,12 ψ1,3,12 ATEWI3,12 ψ0,3,12 ψ1,3,12 ATEWI3,12
ES -128.838 85.030 12.877 -103.904 60.913 1.441
SD 69.552 39.682 15.714 120.768 73.354 21.549
LB -265.160 7.254 -17.921 -340.609 -82.861 -40.795
UB 7.485 162.806 43.676 132.802 204.687 43.676

ψ0,6,12 ψ1,6,12 ATEWI6,12 ψ0,6,12 ψ1,6,12 ATEWI6,12
ES -28.704 -69.387 -32.744 -39.340 -48.340 -31.309
SD 41.224 55.896 11.205 47.976 70.932 11.379
LB -109.504 -178.944 -54.706 -133.373 -187.367 -53.613
UB 52.096 40.170 -10.783 54.693 90.688 -9.006

ψ0,9,12 ψ1,9,12 ATEWI9,12 ψ0,9,12 ψ1,9,12 ATEWI9,12
ES 15.846 -133.004 -30.818 34.181 -159.087 -32.196
SD 51.805 54.469 7.340 66.914 76.769 7.514
LB -85.692 -239.764 -45.204 -96.970 -309.554 -46.924
UB 117.383 -26.244 -16.431 165.333 -8.620 -17.469

ψ0,12,12 ψ1,12,12 ATEWI12,12 ψ0,12,12 ψ1,12,12 ATEWI12,12
ES -38.612 -41.515 -4.867 -23.581 73.330 -4.417
SD 19.657 66.470 2.605 21.645 93.778 2.628
LB -77.139 -171.796 -9.973 -66.004 -110.474 -9.568
UB -0.085 88.766 0.240 18.843 257.134 0.734
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Table 7�9: Average treatment e�ect within intervals for keeSNMM-LPS and dr-keeSNMM-
LPS. ATEWIt,m is the average e�ect of breastfeeding within interval (t−3, t] and stopping
onward, on the mean of outcome at the end of month m.

keeSNMM-LPS dr-keeSNMM-LPS
ATEWI3,3 ATEWI3,3

ES 48.533 40.553
SD 7.677 11.296
LB 33.485 18.413
UB 63.580 62.692

keeSNMM-LPS dr-keeSNMM-LPS
ATEWI3,6 ATEWI6,6 ATEWI3,6 ATEWI6,6

ES 7.588 -39.491 19.117 -35.993
SD 12.879 6.619 17.372 6.761
LB -17.654 -52.465 -14.933 -49.244
UB 32.830 -26.517 53.167 -22.742

keeSNMM-LPS dr-keeSNMM-LPS
ATEWI3,9 ATEWI6,9 ATEWI9,9 ATEWI3,9 ATEWI6,9 ATEWI9,9

ES -5.083 -31.986 -24.483 -11.305 -28.534 -25.787
SD 14.681 9.764 5.253 20.120 10.057 5.459
LB -33.857 -51.123 -34.778 -50.739 -48.245 -36.487
UB 23.691 -12.849 -14.188 28.130 -8.823 -15.087

keeSNMM-LPS dr-keeSNMM-LPS
ATEWI3,12 ATEWI6,12 ATEWI9,12 ATEWI12,12 ATEWI3,12 ATEWI6,12 ATEWI9,12 ATEWI12,12

ES 12.877 -32.744 -30.818 -4.867 1.441 -31.309 -32.196 -4.417
SD 15.714 11.205 7.340 2.605 21.549 11.379 7.514 2.628
LB -17.921 -54.706 -45.204 -9.973 -40.795 -53.613 -46.924 -9.568
UB 43.676 -10.783 -16.431 0.240 43.676 -9.006 -17.469 0.734

Table 7�10: Average total treatment e�ect for keeSNMM-LPS and dr-keeSNMM-LPS.
ATTEt,m is the average total e�ect of breastfeeding through month t and stopping on-
ward, on the mean of outcome at the end of month m.

keeSNMM-LPS dr-keeSNMM-LPS
ATTE3,3 ATTE3,3

ES 48.533 40.553
SD 7.677 11.296
LB 33.485 18.413
UB 63.580 62.692

keeSNMM-LPS dr-keeSNMM-LPS
ATTE3,6 ATTE6,6 ATTE3,6 ATTE6,6

ES 7.360 -32.027 18.944 -16.940
SD 12.879 10.513 17.372 15.752
LB -17.882 -52.634 -15.106 -47.814
UB 32.602 -11.421 52.994 13.934

keeSNMM-LPS dr-keeSNMM-LPS
ATTE3,9 ATTE6,9 ATTE9,9 ATTE3,9 ATTE6,9 ATTE9,9

ES -5.592 -37.262 -61.779 -12.009 -40.248 -66.063
SD 14.681 12.924 11.809 20.120 19.117 18.211
LB -34.366 -62.592 -84.925 -51.444 -77.717 -101.757
UB 23.182 -11.931 -38.634 27.425 -2.778 -30.370

keeSNMM-LPS dr-keeSNMM-LPS
ATTE3,12 ATTE6,12 ATTE9,12 ATTE12,12 ATTE3,12 ATTE6,12 ATTE9,12 ATTE12,12

ES 12.436 -19.866 -50.836 -55.653 0.752 -30.123 -62.452 -66.843
SD 15.714 14.276 12.875 12.596 21.549 20.710 19.722 19.569
LB -18.362 -47.847 -76.072 -80.340 -41.484 -70.714 -101.106 -105.198
UB 43.235 8.114 -25.600 -30.966 42.987 10.468 -23.798 -28.488
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Figure 7�1: Panel (a) includes residual plots for keeSNMM on the PROBIT dataset. Panel
(b) includes the residual plots for dr-keeSNMM on the PROBIT datset. Each panel shows
residual plots versus �tted values at the corresponding interval and residual plots versus
residuals at previous time intervals. Ŷm are �tted values for the weight at the end of month
m and r̂m is corresponding residual.
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ŷ12

r̂ 1
2

r̂3

r̂ 6

r̂6

r̂ 9

r̂9

r̂ 1
2

r̂3

r̂ 6

r̂6

r̂ 1
2

r̂3

r̂ 1
2

(b) drkeeSNMM on PROBIT dataset



118

Figure 7�2: Panel (a) includes residual plots for keeSNMM-LPS on the PROBIT dataset.
Panel (b) includes the residual plots for r-keeSNMM-LPS on the PROBIT datset. Each
panel shows residual plots versus �tted values at the corresponding interval and residual
plots versus residuals at previous time interval. Ŷm are �tted values for the weight at the
end of month m and r̂m is corresponding residual.
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ŷ6

r̂ 6

ŷ9
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CHAPTER 8
Concluding remarks

Elucidating cause-and-e�ect relationships in longitudinal observational studies

where treatment is received over time requires re-parameterization of the standard

regression model. Causal models such as the structural nested mean model (SNMM)

and marginal structural model (MSM), and methods like two-stage parametric re-

gression methods (2SPR) and propensity score regression (PSR) were developed to

address inconsistency of the traditional standard methods by adjusting for the con-

founding e�ect of time varying covariates. MSM is a powerful method for estimating

causal parameters in longitudinal observational studies. However, these models can-

not address questions like "How does the e�ect of treatment changes between subjects

variation amongst subjects?". Consequently in situations where one is interested in

estimating the modi�cation of the treatment e�ect by other pre-treatment covari-

ates, the class of MSM is impractical. In contrast, SNMM perform very well for

this purpose. SNMM are semi-parametric models which characterize only portions

of the value of treatment regime. G-estimation is the most popular method for es-

timating the causal parameters of SNMM (gSNMM). In this thesis I focus on the

use of SNMM to adjust for the confounding e�ect of pre-treatment covariates in

longitudinal studies with time-varying outcome.

After a broad review of causal methods in chapter 2, in chapter 3, by placing

a Markov assumption on the counterfactual I write SNMM as an state space model
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and estimate the parameters of the model by using the Kalman estimating equation

(KEE) and without modeling propensity score. By a simulation study I showed that,

keeSNMM is at least twice as e�cient as gSNMM, i.e. to get the same e�ciency from

gSNMM, the sample size would need to be doubled.

The keeSNMM method proposed in Chapter 3 places restrictions on the blip

function and the counterfactual process. So correct inference from the keeSNMM

approach requires satisfaction of these assumptions and additional model checking

plots are needed to be sure our inference is reliable. In chapter 4, I showed that

estimating the causal parameters by keeSNMM not only is computationally e�cient,

but it also provides us with important and useful graphical diagnostic methods. The

distinctive feature of these residual plots is that they can distinguish mis-speci�cation

of the blip from mis-speci�cation in the Markov model.

The key point is that, under mild violations of the Markov assumption, keeSNMM

still performs well in adjusting for confounding in estimating the direct e�ect of the

treatment. However, serious violations results in poor performance.

Doubly robust g-estimation is a semi-parametric method for estimating the

causal parameters of SNMM (dr-gSNMM) which combines a model for the mean

of counterfactual outcome with a model for the propensity score to gain e�ciency.

Having a correct model for the mean of counterfactual outcome requires knowing

the relationship between the outcome and other covariates. This is not plausible

in most contexts; nonetheless using working models, dr-gSNMM generally has lower

variance than gSNMM. The issue which arises in applying dr-gSNMM is building

models for the mean of counterfactual when outcome is time varying. In chapter
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5, I showed how one can systematically model the counterfactual via the Kalman

estimating equation approach. By combining doubly robust g-estimation with KEE,

I developed dr-keeSNMM, which will be consistent if either the Markov assumption

holds or the propensity score is correctly speci�ed. Through simulation studies, I

showed that dr-keeSNMM can be as e�cient as keeSNMM and more e�cient than

gSNMM in certain cases.

Dimension reduction can be bene�cial when using SNMM. In many situations,

it will not be easy or possible to use SNMM by adjusting for all possible confounding

histories. In the second part of chapter 4, I developed the SNMM with longitu-

dinal propensity score (SNMM-LPS) approaches. Under the sequential ignorabil-

ity assumption given history of observed treatment and the longitudinal propensity

score, I modeled blip functions on the observed history of treatment and longitudinal

propensity score and estimated the parameters of the model by kee (keeSNMM-LPS).

I also showed that one can estimate the parameters using r-keeSNMM-LPS where,

under correct speci�cation of the propensity score socre, estimation will be robust

to violation of the Markov assumption.

In the management of many diseases, clinicians monitor the patient over time

and sequentially adjust treatment based on multiple observations for the purpose

of optimizing the long-term e�ectiveness of the program, typically called a dynamic

treatment regime (DTR). In DTR studies, the goal is to �nd the optimal regime

which optimizes the patient's long-term clinical outcome. In this chapter I extended

the optimal dynamic treatment regime SNMM (ODTR-SNMM) by modeling the

treatment regime on the outcome at di�erent time points. However, ODTR is still



122

determined using the outcome at the end of the study. I place a Markov assumption

on the optimal counterfactual and, by writing the problem as a state space model,

ODTR-keeSNMM and ODTR-dr-keeSNMM to estimate the causal parameters of

interest.

Chapter 7 is motivated by the promotion of breastfeeding intervention trial

(PROBIT) in Belarus. I reanalyzed the PROBIT data in the framework of an ob-

servational study and used (a) keeSNMM and dr-keeSNMM to adjust for modi�ers

of the treatment e�ect with other pretreatment covariates to estimate breastfeeding

e�ect; (b) ODTR-keeSNMM and ODTR-drkeeSNMM to �nd the optimal duration of

exclusive breastfeeding; and (c) keeSNMM-LPS and dr-keeSNMM-LPS to adjust for

confounding through the longitudinal propensity score. All the methods consistently

con�rm that breastfeeding has signi�cant positive immediate e�ect in interval (0, 3]

and signi�cant negative immediate and long term e�ect during months (3, 9]. As a

result, based on this one-year follow up study, breastfeeding from month 3 through

month 9 negatively a�ects the weight of the infants.

8.1 Future direction

My future research will focus on the non-linear SNMM when the outcome is

time varying. The non-linear SNMM has been discussed for log-linear and logistic

SNMMs by Vansteelandt & Goetghebeur [74], Ten Have et al. [75] and Comte et al.

[76]. In keeSNMM, it is assumed that εm = Y am−1
m − Y 0

m −
∑m−1

j=1 Ajγj,m(Hj, ψj,m)

is independent of Hi,m−1 and its variance is independent of Y 0
m and Hm−1. In the

non-linear keeSNMM for time-varying outcome, in addition to considering a non-

linear blip function, I could also model the variance of the error terms as a function
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of the counterfactual and the past history, which to date has not been examined

in the literature. I discuss the outline of the method in Appendix B for the log

linear SNMM, although it is generalizable to any kind of non-linear SNMM. The

plausibility of the model's assumptions, evaluation of its performance and its clinical

application will be analyzed in future work.



Appendix A

Asymptotic Standard Errors

As it is discussed by Robins [18], the variances of the estimating equations used

for keeSNMM, dr-keeSNMM, ODTR-dr-keeSNMM and keeSNMM-LPS need to be

adjusted for the variability due to plug in estimators of the nuisance parameters. I

use pt(at|Ht; η) for modeling pt(at|Ht), E
[
Y

(t)
m (ψ)|Ht; ζ

]
for modeling E

[
Y

(t)
m (ψ)|Ht

]
where Y (t)

m (ψ) = Ym−
∑t

j=1Ajγj,m(Hj, ψj,m), E
[
Y 0
m|Y 0

m−1;α, β0

]
for modeling E

[
Y 0
m|Y 0

m−1

]
and Atγt,m(Ht, ψt,m) for modeling E(Y

at,0t+1
m − Y am−1,0m

m |Ht = ht). The variances of

our estimating equations can be adjusted by performing �rst order Taylor expansion

about the limiting values of η̂, ζ̂(ψ), β̂0(ψ), α̂(ψ) which are η∗, ζ∗, β∗0 , α
∗,

Uadj(ψ, η
∗, ζ∗, β∗0 , α

∗)

= U(ψ, η∗, ζ∗, β∗0 , α
∗)

+ E

[
∂

∂ηT
U {ψ, η∗, ζ∗, β∗0 , α∗}

]
E

[
∂

∂η∗
Sη {η∗}

]
+ E

[
∂

∂(β0, α)T
U {ψ, η∗, ζ∗, β∗0 , α∗}

]
E

[
∂

∂β∗0 , α
∗Sβ0,α {β∗0(ψ), α∗(ψ)}

]
+ E

[
∂

∂ζT
U {ψ, η∗, ζ∗, β∗0 , α∗}

]
E

[
∂

∂ζ
Sζ {ζ∗(ψ)}

]
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where

Sη(η) =
∂

∂η
log

T−1∏
t=0

pt [At|Ht; η] ,

Sβ0,α(β0, α) =
T∑
t=0

 V

µ0
t−1|t−1

 (µ0
t|t − αµ0

t−1|t−1 − βT0 V )Zt, and

Sζ(ζ) =
T∑

m=1

T∑
t=0

[
Y (t)
m (ψ)− α(ψ)µ0

m−1|m−1 − βT0 (ψ)V −
t∑

j=1

γj,m {Hj, ζj,t}

]
.

By Slutsky's theorem
√
n
−1
Pn [U {ψ, η∗, ζ∗, β∗0 , α∗}] is asymptotically normal with

mean zero and covariance E
[
Uadj {ψ, η∗, ζ∗, β∗0 , α∗}

⊗
2
]
. Thus, the causal parameters

√
n(ψ̂ − ψ†), where ψ† is the limiting value of ψ̂, has an asymptotically normal

distribution with mean zero and variance

Σψ = E

{( ∂

∂ψ
E [Uadj {ψ, η∗, ζ∗, β∗0 , α∗}]

)−1
Uadj (ψ, η∗, ζ∗, β∗0 , α

∗)

}⊗
2


Moodie [65] developed a recursive algorithm for calculating the variances of dr-

gSNMM when the causal parameters are not shared between intervals. For calculat-

ing the variance of ψ̂ recursively I require additional notation, similar to what appears

in Moodie [65]. Let ψj = (ψ0,j, . . . , ψpj ,j) be the causal parameters for interval (j, j+1]

and pj + 1 be the number of parameters. Uadj,j(ψj, ψ
†
j+1
, η∗, ζ∗, β∗0 , α

∗) is the part of

Uadj [(ψ, η∗, ζ∗, β∗0 , α
∗)] used for estimating the causal parameters at interval (j, j+1].

One needs to �nd a Taylor expansion of Uj
[
ψj, ψ̂j+1, η̂, β̂0(ψj), ζ̂(ψj), α̂(ψj)

]
about

125



the limiting values of
{
ψ̂j+1, η̂, β̂0(ψj), ζ̂(ψj), α̂(ψj)

}
, (ψ

j+1
, η∗, ζ∗, β∗0 , α

∗), which yields

U ε
adj(ψj, ψ

†
j+1
, η∗, β∗0 , ζ

∗, α∗)

= Uadj,j(ψj, ψj+1
, η∗, ζ∗, β∗0 , α

∗)

−
∑
k>j

E

[
∂

∂ψk
Uj

{
ψk, ψk+1

, η∗, ζ∗(ψ†k), β
∗
0(ψ†k), α

∗(ψ†k)
}]

×
[
E

{
∂

∂ψk
Uadj,k(ψk, ψk+1

, η∗, ζ∗, β∗0 , α
∗)

}]−1
× Uadj,k

{
ψk, ψk+1

, η∗, ζ∗(ψ†k), β
∗
0(ψ†k), α

∗(ψ†k)
}

+ op(1).

Then
√
n(ψ̂j − ψ†j) has asymptotically normal distribution with mean zero and vari-

ance

Σψ = E

{( ∂

∂ψ
E
[
U ε
adj

{
ψj, ψ

†
j+1
, η∗, ζ∗, β∗0 , α

∗
}])−1

U ε
adj(ψj, ψ

†
j+1
, η∗, ζ∗, β∗0 , α

∗)

}⊗
2
 .

This procedure can also be adapted to �nd the asymptotic standard errors of ODTR-

SNMM.
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Appendix B

Non-Linear SNMM By Modeling the Variance Of The Counterfactuals

Identifying the causal e�ects in terms of the counterfactual outcomes under the non-

linear SNMM requires additional assumptions in order to make reliable inference.

Assumptions discussed previously, are (a) the SUTVA assumption, which says the

outcome of patient i under treatment regime g is not a�ected by the treatment

regime assigned to patient j, (b) the sequential ignorability assumption, which states

that at each time point m, given the entire history of pretreatment covariates Hm,

treatment Am is randomly assigned and is independent of the counterfactual, and

(c) the positivity assumption, which states that at each time point m each patient

has positive probability (em > 0) of being assigned to treatment.

Log Linear SNMM As A State Space Model

The log linear blip function is de�ned as

E
(
Y
at,0t+
m |Ht, Y

0
m

)
E
(
Y
at−1,0t
m |Hi,t, Y 0

i,m

) = eatγt,m(Ht,ψt,m) (8.1)

where the assumptions above imply

E
(
Y
at,0t+
m |Ht

)
E
(
Y
at−1,0t
m |Ht

) = eatγm,t(Ht,ψt,m). (8.2)
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Similar to keeSNMM, I will formulate the SNMM for the conditional mean of Y
aT−1
T

Y 0
T

E

(
Y
aT−1

T

Y 0
T

|HT−1 = hT−1, Y
0
T

)

=


E

(
Y

aT−1
T

Y 0
T

|HT−1 = hT−1, Y
0
T

)
E

(
Y

aT−2,0

T

Y 0
T

|HT−1 = hT−1, Y 0
T

)
+


E

(
Y

aT−2,0

T

Y 0
T

|HT−1 = hT−1, Y
0
T

)
E

(
Y

aT−2,0

T

Y 0
T

|HT−2 = hT−2, Y 0
T

)


+


E

(
Y

aT−2,0

T

Y 0
T

|HT−2 = hT−2, Y
0
T

)
E

(
Y

aT−3,0,0

T

Y 0
T

|HT−2 = hT−2, Y 0
T

)
+


E

(
Y

aT−3,0,0

T

Y 0
T

|HT−2 = hT−2, Y
0
T

)
E

(
Y

aT−3,0,0

T

Y 0
T

|HT−3 = hT−3, Y 0
T

)


...

+

{
E

(
Y
a1,02
T

Y 0
T

|H1 = h1, Y
0
T

)}
.

Assume that E

(
Y

at,0t+
T

Y 0
T

|Ht = ht, Y
0
T

)
doesn't depend for pretreatment covariates on

the interval (t− 1, t] when At = 0 which implies,

E

(
Y
at−1,0t
T

Y 0
T

|Ht = ht, Y
0
T

)
= E

(
Y
at−1,0t
T

Y 0
T

|Ht−1 = ht−1, Y
0
T

)
.

Consequently,

E

(
Y am−1
m

Y 0
m

|Hm−1 = hm−1, Y
0
m

)
= e

∑m−1
j=1 Amjγj,m(Hj ,ψj,t). (8.3)

From eq. 8.3, I de�ne the error terms εm,

εm = Y am−1
m − E

(
Y am−1
m

Y 0
m

|Hm−1 = hm−1, Y
0
m

)
Y 0
m.
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so by placing a Markov assumption on the counterfactual, the log linear SNMM in

the framework of a state space model can be written as,

Y 0
m = eβ

T
0 V + αY 0

m−1 + ξm and (8.4)

Y am−1
m = Y 0

me
∑m−1

j=1 Ajγj,m(Hj ,ψj,m) + εm, (8.5)

where V ar (ξm) = σ2
m{eβ

T
mVi}p, V ar

(
εm|Hm−1, Y

0
m

)
= ν2m

{
e
∑m−1

j=1 Ajγj,m(Hj ,ψj,m)
}p
Y 0
m

and from eq. 8.1 and eq. 8.2, eγj,m(Hj ,ψj,m) is the blip function for the e�ect of aj and

takes the value one if and only if ψj,m = 0 for all m ≤ T and j < T .

Estimating the Parameters of Log-Linear keeSNMM

Similar to additive keeSNMM, by replacing Y 0
m with E

(
Y 0
m|Y m−1

)
, the causal pa-

rameters are estimated from

U [ψ; τ(ψ)] =
T∑

m=1

b−pm
∂bm
∂ψ

(
Ym − bmY 0

m

)
. (8.6)

where τ = (β0, α, ν2, σ2). The solution of Pn {U [ψ; τ(ψ)]} = 0 is obtained using the

iterative Newton scoring algorithm,

ψ(j+1) = ψ(j) − E
[
∂U(ψ)

∂ψT

]−1
U
[
ψ(j)

]
(8.7)

where the iterative estimation procedure proceeds by updating E(Y 0
m|Y m−1) and ψ

each in turn. E(Y 0
m|Y m−1) is updated using the Kalman �ltering algorithm, according
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to

µm|m−1 = bm
{
αmµ

0
m−1|t−1 + b0m

}
,

Rm|m−1 = b2mum−1 + bpmν
2
mb

0
m,

um−1 = α2
mΣm−1|m−1 + σ2

m

{
b0m
}p
,

µ0
m|m = αmµ

0
m−1|m−1 + b0m +

um−1 {bm}1−p

ν2mb
0
m

(
Ym − µm|m−1

)
,

Σm|m =
ν2mb

p
mb

0
mum−1

ν2mb
p
mb0m + b2muk−1

,

where bm = e
∑m

j=1 Ajγj,m(Hj ,ψj,m) and b0m = eβ
T
0 V , µ0

m|k = E
(
Y 0
m|Hk

)
, µm|k = E (Ym|Hk),

Rm|k = V ar(Ym|Hk) and Σm|k = V ar
(
Y 0
m|Hk

)
. The nuisance parameters β0,m and

αm are estimated from

Pn

[
T∑

m=1

V eβ
T
0,mV

{
µ0
m|m − αmµ0

m−1|m−1 − αmeβ
T
0,mV

}]
. (8.8)

For mathematical convenience, I assume ν2m = σm for all m ≤ T , so that

Rm|m−1 = b2m
[
α2
mΣm−1|m−1 + σ2

m{b0m}p
]

+ bpmν
2
mb

0
m and

ν2m =
{
Rm|m−1 − α2

mb
2
mΣm−1|m−1

}{
b2mb

0
m + bpmb

0
m

}−1
,

where Rm|m−1 is estimated by Pn
(
Ym − bmµ0

m|m−1

)
.
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