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Abstract

The ability to model phase transitions in complex (i.e. multi-component and multi-
phase) alloys, accurately, efficiently, and in an accessible manner, is important in
material science. This thesis derives a new model that extends the quantitative
model of polycrystalline solidification of Ofori-Opoku et al [3] to the case of multiple
components and alloy phases through a grand potential functional description. Here,
solidification is described by a set of order parameters describing solid phases and a
set chemical potentials describing solute components. Solidification of a solid phase
is driven by the grand potential difference between it and the liquid, expanded here
to quadratic order in the chemical potential difference (relative to equilibrium) of
each solute, i.e., its supersaturation. This allows us to model both near and far-
from equilibrium solidification conditions, and to easily make contact with previous
quantitative single-crystal phase field theories in the literature. Thermal fluctuations
in the theory are treated via stochastic noise, a feature important for modelling multi-
phase nucleation self-consistently.

Working in the grand canonical ensemble treats the evolution of order parameter
and chemical potential as a coupled process, unique compared to the traditional
methods. As a result, complete decoupling of all diffusion fields and order parameter
fields is achieved at equilibrium, making it possible to easily set solid-liquid or solid-
solid interface energy independently of solute distribution across an an interface,
an important feature for quantitative meso-scale calculations. Chemical diffusion
equations in the model are augmented by a non-variational, so-called anti-trapping
flux in each solute species. These fictitious fluxes are used in the literature in some
phase field theories to correct for spurious solute trapping effects caused by the use
of a diffuse interface, which is done solely for numerical expediency.

We demonstrate its workings of our model in the limit of a two-component eutec-
tic alloy system simulated with 2D dynamic adaptive mesh refinement. Benchmark
eutectic lamellar simulations and measurements are first performed. Following that,
two-phase homogenous nucleation and growth are examined. In the limit of near-
equilibrium interfaces (zero interface kinetics), we illustrate two-phase grain growth
scaling that is independent of nucleation barrier.

viii



Résumé

La capacité à modéliser des transitions de phase dans des alliages complexes (c’est-à-
dire multicouches et multiphases), de manière précise, efficace et accessible est impor-
tante dans la science des matériaux. Cette thèse dérive un nouveau modèle qui étend
le modèle quantitatif de solidification polycristalline d’Ofori-Opoku et al [3] au cas
de multiples composantes et phases d’alliage à travers une description fonctionnelle
de grand potentiel. Ici, la solidification est décrite par un ensemble de paramètres
d’ordre décrivant des phases solides et un ensemble de potentiels chimiques décrivant
des composantes de soluté. La solidification d’une phase solide est entraînée par la
grande différence de potentiel entre celle-ci et le liquide, étendue ici à l’ordre quadra-
tique dans la différence de potentiel chimique (par rapport à l’équilibre) de chaque
soluté, c’est-à-dire sa sursaturation. Ceci nous permet de modéliser à la fois des con-
ditions de solidification proches et lointaines et de faire facilement le contact avec des
théories de champ de phase monocristalline quantitatives précédentes dans la littéra-
ture. Les fluctuations thermiques de la théorie sont traitées par le bruit stochastique,
une caractéristique importante pour la modélisation de la nucléation multi-phase de
façon autonome.

Travailler dans le grand ensemble canonique traite l’évolution du paramètre d’ordre
et du potentiel chimique comme un processus couplé, unique par rapport aux méth-
odes traditionnelles. Le découplage complet de tous les champs de diffusion et de
paramètres d’ordre est ainsi obtenu à l’équilibre, ce qui permet de régler facilement
l’énergie d’interface solide-liquide ou solide-solide indépendamment de la distribu-
tion de soluté à travers une interface, Calculs à l’échelle. Les équations de diffusion
chimique dans le modèle sont augmentées par un flux non-variationnel, appelé anti-
piégeage dans chaque espèce de soluté. Ces flux fictifs sont utilisés dans la littérature
dans certaines théories de champ de phase pour corriger les effets parasites parasites
parasites causés par l’utilisation d’une interface diffuse, ce qui est fait uniquement
pour l’opportunité numérique.

Nous démontrons son fonctionnement de notre modèle dans la limite d’un sys-
tème d’alliage eutectique à deux composants simulé avec un raffinement en maillage
adaptatif dynamique 2D. Des simulations et des mesures lamellaires eutectiques de

ix
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référence sont d’abord effectuées. Ensuite, on examine la nucléation et la croissance
homogènes en deux phases. Dans la limite des interfaces de quasi-équilibre (cinétique
d’interface nulle), nous illustrons la mise à l’échelle en deux phases de la croissance
du grain qui est indépendante de la barrière de nucléation.



Statement of Originality

The Masters Thesis consists of the derivation and benchmarking of a new grand
potential phase field theory for multiple phase and multiple components, which builds
on the ideas of Refs. [3, 4, 1]. My contributions include:

• Contributed to the theory of the multi-phase and multi-component model and
verified all the theoretical derivations presented herein

• Computationally implemented and benchmarked two-phase properties of the
model. I then incorporated it into a new 3D MPI-parallel Adaptive Mesh Re-
finement (3D-AMR) algorithm that I helped test and validate. I will be a co-
author an upcoming publication in preparation by Greenwood et (2017), which
will feature my work on this 3D-AMR code.

• Did new simulations to show that the phase field equations with thermal fluctu-
ations can be used to self-consistently simulate two-phase nucleation and growth
for a robust range of alloy systems simply in terms of four physical parameters
in the system: interface energies, liquid-state diffusion coefficient, free energy
curvature of each phase near equilibrium, and nucleation barrier for solidifica-
tion.

• Development of post-simulation analysis codes to study simulation results. A
second paper that I will be primary author on will be written by expanding on
the results presented at the end of the thesis later in 2017.

xi



Acknowledgments

I would like to thank my supervisor Dr Nikolas Provatas for his patience, guidance,
and insight, and most of all, taking a chance on me and guiding me through this very
cool project. My thanks also goes to Tatu, Lei, and Sebastian, for their enjoyable
company, putting up with my millions of (silly) questions, and also showing me the
ropes. I would finally like to thank the ACSR group for our fun occasional outings
and antics.

xii



1
Introduction

In the past 2 decades or so, phase field models have seen an explosive growth in their

use for exploring non-equilibrium phase transformations and microstructure evolution

in materials science and engineering. Their connections with statistical thermody-

namics makes them a fundamental reference form which to describe complex phase

transformations once an appropriate set of order parameters and their symmetries

are identified for a particular system. Dynamical equations of motions for such order

parameter fields can be formulated based on free energy minimization principles and

conservation laws. They are very simple to code and require little overhead in terms

tracking moving, impinging and coalescing interfaces -the quintessential feature of

non-equilibrium microstructure processes. Phase field models have been applied to

a wide range of phenomena ranging from single-crystal solidification, directional and

polycrystalline solidification, grain growth, elasticity and precipitation. These days

they can also be used quantitatively for select phenomena in solidification and solid

state transformations, making them viable tools for materials science and engineering.

Quantitative calculations with phase field models requires detailed asymptotic bound-

ary layer analysis, which prescribes how to match their bahaviour with appropriate

sharp interface models in the limit when a suitable scale separation exists between the

length of diffusion of impurities (or heat) and phase coexistence boundaries (hereafter

called interfaces). The remainder of this section goes through a brief history of some

of the major milestones in phase field modelling in recent years.

1



2 1 Introduction

1.0.1 Single-order parameter phase field models

One of the first phase field models of solidification of a pure substance was by Kessler

and Levine [5], which used the "model C" of the Hohenberg and Halperin classifica-

tion [6] to demonstrate thermally-controlled solidification. Using matched asymptotic

boundary layer analysis, Karma and Rappel [7] later showed how a phase field model

of a pure material can quantitatively map onto the dynamics of the corresponding

Stefan model (hereafter sharp-interface model) of solidification of a pure material [8]

while operating with thin -rather than atomically sharp- order parameter interfaces.

Specifically, it decoupled the time scale of phase field simulations from the atomic

kinetics through the interface, a feature absent from so-called first order asymptotic

mapping of the phase field model onto the sharp-interface approach derived by Cagi-

nalp [9]. At around the same time, Provatas et. al developed a novel dynamic adaptive

mesh refinement algorithm [10, 11] for phase field models that dramatically reduced

the computational barrier of grid discretization that makes data management and

CPU times associated with large scale and long-time simulations of free boundary

problems intractable.

In the scope of alloy materials, the work of Warren and Boettinger [12] later devel-

oped a specialized two-phase alloy model that demonstrated many of the qualitative

features of casting could be modelled by coupling an order parameter to a solute

concentration field, instead of a temperature field. Karma and co-workers [13, 14]

adapted the thin-interface asymptotic analysis for a single-phase field model of so-

lidification of an ideal binary alloy. Attaining the sharp interface limit for alloy

solidification is made difficult by the large disparity in solute diffusion between the

solid and liquid. Specifically, spurious solute trapping and lateral diffusion effects are

generated through the interface. While physical in origin, these effects are negligible

at low rates of solidification since the interface width is on the scale of nm. However,

when employing diffuse interfaces for numerical expediency, these spurious kinetics

become undesirably exaggerated. To remedy this, Refs. [13, 14] introduced a so-
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called anti-trapping flux to correct for spurious solute trapping. They also employed

select interpolation functions to interpolate the free energy between solid and liquid,

which effectively transforms the driving force for solidification into the difference in

grand potential between phases, leading to complete decoupling of solute and order

parameter in equilibrium. This makes it possible to select the phase field interface

width arbitrarily wide, and independently of the solute field. Ramirez et al. [15] later

applied a thin interface analysis to the single-phase alloy model coupled to a ther-

mal transport. Their results confirmed that the thin interface asymptotic analysis of

Ref. [14] continue to hold for low cooling rates even for non-isothermal conditions.

Subsequent work by Tong et al. [4] adapted the thin interface asymptotic analysis

of Ref. [14] for the case of single-phase solidification of general binary alloys under

non-isothermal conditions. At the heart of this approach was the fitting the free

energy of the liquid or any solid near equilibrium using the mathematical form of an

ideal binary alloy, but with temperature-dependent coefficients. Ofori-Opoku et al [3]

later generalized the interpolation functions used in Ref. [14] to interpolate the free

energy between liquid and multiple crystal orientations, each represented by its own

order parameter. For the case of ideal alloys, this approach is effectively a multi-order

parameter variant of the model in Ref. [14]. By utilizing the approach of Tong et al

[4] to fit the liquid or solid free energy close to their equilibrium concentrations, the

model of Ref. [3] effectively provides a quantitative multi-order parameter phase field

theory for simulating poly-crystalline solidification of non-ideal binary alloys.

1.0.2 Multi-order parameter phase field models

Modelling of multiple ordered phases with phase field models goes back to the origi-

nal multiple-order parameter models models used by Khachaturyan [16] for the study

of ordered precipitates and other solid state phase transformations. These models

consider a phase field as physical order parameter that distinguish between ordered

phases and a matrix phase. The interface free energy is defined through gradients in



4 1 Introduction

the order parameters, and interactions between ordered phases through a polynomial

expansion in their corresponding order parameters 1. The multi-order parameter ap-

proach has been used by several groups to model grain growth in solid state systems

[21, 22]. Multi-component alloys have also also been studied using the the multi-order

parameter approach by adding a chemical free energy contribution that interpolates

between phases through the variation of the order parameter fields [23, 24, 25]; alter-

natively, Moelans recently introduced a phase fraction weighting of the free energy,

which is done through specialized interpolation functions defined solely in terms of

the order parameters [26]. For practical control of interface energies, the equilib-

rium interface energy is decoupled from the solute fields by employing the so-called

auxiliary concentration approach of Refs. [27, 28, 29] (more on this method below).

An exception to this is the multi-order parameter solidification model developed by

Ofori-Opoku et al [3], which, as mentioned above, uses vector-field variants of the

interpolation functions in Ref. [14]. The multi-order parameter approach has been

widely used to examine a variety of multi-phase solid state transformations and so-

lidification in pure materials and multi-component alloys [30, 24, 25, 31, 32, 3].

1.0.3 Phase field models with an orientation order parameter

A related line of research for form modelling polycrystalline solidification involves the

coupling an single order parameter to an orientational field. The first works in this

direction go back to Morin and Grant [33], who created a multi-well free energy based

on a complex order parameter that had minima at multiple orientations. While not

rotationally invariant, it was a first steps toward assigning multiple angles needed

to emulate polycrystalline orientations. A different approach was later developed by

the works of Kobayashi and Warren [34, 35, 36] to include a rotationally invariant

orientational field that is coupled to a scalar order parameter field. This approach

allows an arbitrary number of orientations to be simulated. Orientational phase field

1These resemble the form of complex amplitude equations that come out of coarse graining of PFC
models [17, 18, 19, 20]
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methods were first developed for pure materials and then extended to binary alloys by

Granasy and co-workers [37]. Attempts have been made recently to self-consistently

derive field theories that couple an orientational field to scalar order parameter field

directly from complex amplitude equations derived from PFC models of pure mate-

rials [38]. Key open questions hoped to be addressed by such approaches are: (1) the

self-consistent derivation of an analytic the free energy and (b) how such phase field

theories couple to microscopic properties emerging from the two-point correlation

function that enters PFC theories. When coupled with stochastic fluctuations, the

orientational field approach offers one of the most physically consistent approaches

for simulating nucleation in polycrystalline solidification. It is also quite practical as

it allows a significant reduction on computational overhead to model multiple orien-

tations. Multi-order parameter models (or multi-phase field models, discussed below)

without adaptive mesh refinement can typically handle on the order of ∼ 5−10 orien-

tations and phases before they become computationally inefficient. Another benefit of

the orientational field approach is that nucleation of multiple phases via noise is done

simultaneously through the orientational fields, thus avoiding inconsistencies with

nucleating multiple phases in the same location, as is the csse in multi-phase field ap-

proaches. To our knowledge, there is presently no variant of these orientation-phase

field models that deals with multiple phases in complex alloys.

1.0.4 Phase field models based on phase fraction fields

A fundamentally different avenue for modelling multiple phases in multi-component

alloys is the so-called multi-phase field models, developed by Steinbach and collab-

orators [39, 40, 41, 42, 43, 44, 45], which is applicable to both solidification and

solid state transformations. The phenomenology of these models assigns each phase

a phase-fraction field 2. The bulk free energy is interpolated across interfaces or

2This distinction between phase-fraction fields and order parameters is not practically important in
the sharp interface limit of solidification, but is fundamentally important when connecting phase
field models to order parameters arising from purely microscopic theories.
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n-junctions by a phase-fraction weighted superposition of each phase’s free energy,

each expressed in terms of auxiliary concentration fields (more on this below). In-

teractions between phases are implemented via so-called double obstacle potentials,

or other specialized polynomial interaction terms in the phase fractions. Interface

energy is modelled by various gradient operator forms acting on the phase fractions.

Dynamics of the phase fractions are evolved using non-conserved dynamics subject

to the constraint that the phase fractions sum to one, though the use of Lagrange

multipliers 3. Decoupling of surface energies from the solute profile across interfaces

is achieved, as with some multi-order parameter models, through the introduction of

multiple auxiliary (i.e. fictitious) concentration fields, one assigned to each ordered

phase [27, 28, 29].

1.0.5 Decoupling solute concentration from the order parameter through

the interface

The auxiliary concentration field method referred to above is used by various phase-

field models for decoupling solute and phase fields in equilibrium. This is a practical

stratagem for controlling of the interface energies that affect microstructure mor-

phology in alloy solidification. It was developed by Kim, Kim and Suzuki [28, 29]

for a single-phase binary alloy and Tiaden and co-workers [27] for multi-phase al-

loys. We explain this decoupling approach here for the simple case of a single-phase

binary alloy. The approach of Tiaden et. al [27] defines a phase fraction field for

each phase (e.g. one for solid, one for liquid). Physical solute is then defined as a

phase fraction-weighted superposition of fictitious (auxiliary) solute fields (one per

phase). The bulk free energy of a system is expanded as a phase fraction-weighted

sum of free energies, each expressed in terms of auxiliary concentrations. Ref. [28]

follows a similar approach, except the classic interpolation between phases using us-

ing an order parameter between solid and liquid is retained. The time evolution of

3Using Lagrange multipliers in the dynamics can lead to unphysical spurious non-local adsorption
effects, whereby unwanted phase fractions appear in triple-junctions.
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the solid/lquid phase fractions (or single order parameter in [28]) follows the usual

free energy minimization, constrained in the former case to sum to one through a

Lagrange multiplier. Auxiliary concentration fields follow the usual mass conserva-

tion dynamics, constrained, however, by the condition that the chemical potentials

defined for each auxiliary concentration are equal at each point in space. This effec-

tively amounts to maintaining a driving force in the phase field equation everywhere

equal to the local difference in local grand potential between the two phases [46].

This approach is numerically laborious but allows the equilibrium interface interface

energy in the model to decouple from the solute profile through the interface, for any

interface width. In effect, this methods trades the freedom afforded by the choice of

interpolation functions used in classical phase field models for the use of auxiliary

concentration fields, through which physical concentration are defined.

1.0.6 Dealing with spurious interface kinetics caused by numerically dif-

fuse interfaces

Despite the important benefit of decoupling solute and order parameter fields, early

multi-phase (i.e. phase-fraction) and multi-order parameter models were not immune

from solute trapping and spurious interface kinetic effects, which are exacerbated with

the use of diffuse phase field interfaces. This phenomenon can typically be neglected

to lowest order in solid-state transformations, where the rate of interface motion and

the disparity of diffusion between phases is small. However, failure to eliminate such

kinetics effects during the early stages of solidification can lead to incorrect interface

structure and impurity micro-segregation of the final solidified system. Most of the

early models based on phase fractions or order parameters described above suffered

from this deficiency as they only employed first order asymptotic interface analysis

to match model parameters to the sharp interface limit [40]. An exception to this

is the work of Folch and Plapp [47], which adapted the thin interface asymptotics

of Ref. [14] to work with a phase-fraction model for binary-eutectic solidification



8 1 Introduction

that approximated the free energy of each phase with a simple quadratic function in

concentration. Another exception was the multi-order parameter phase field model

of Ofori-Opoku and co-workers [3] mentioned above, which used an anti-trapping

currents for each order parameter) to quantitatively model sharp interface kinetics

across any [diffuse] solid-liquid interface.

1.0.7 Deriving phase field models in the grand canonical ensemble

Plapp [1] recently introduced an elegant re-formulation of the traditional single-phase

binary alloy phase field model starting from a grand potential energy (GP) rather

than the usual Helmholtz free energy approach. In this work, the phase field retains

its classic meaning as an order parameter. The driving force for its evolution during

solidification becomes the grand potential difference between the solid and liquid. The

evolution equation for the physical concentration (proportional to density) is replaced

in favour of its conjugate field, the chemical potential, an intensive and natural vari-

able of the grand potential ensemble. In this ensemble, the solute field is derivable

from the grand potential; it turns out to be an interpolation of two “auxiliary" solute

fields (one per phase), each derived from the grand potential function of that phase.

As such, this approach naturally interprets the un-physical "auxiliary fields" intro-

duced in Refs. [28, 29] in terms of a self-consistent classical field theory formulated

from a chemical potential and physical order parameter field. In the limit of a con-

stant diffusion coefficient, the mathematical description of single-phase binary alloy

solidification maps identically onto a thermal solidification model of a pure material

[8]. This makes it possible to re-cycle much of the asymptotic analysis machinery

developed for a pure material [7] to parameterize the sharp interface limit of a sim-

ple single-phase binary alloy. Moreover, by evolving the chemical potential directly,

phase field models formulated in the grand potential ensemble do not require the same

computational cost of having to locally match chemical potentials defined by fictitious

solute fields. Recently, Nestler and co-workers extended the grand potential phase

field approach to multi-component and multiple phase solidification by employing a
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a grand potential energy formulated in terms of phase fractions [48, 49] .

1.0.8 Model developed in this thesis

This work will have two thrusts. The first will derive a model for general multi-

component and multi-phase solidification through a grand potential functional for-

mulated in terms of physical order parameters fields to describe ordered phases. Such

model does not yet exist in the literature and will extend the previous work of Orofi-

Opoku and Provatas [3]. The second thrust is to derive a set of simple equations of

motion for the solidifying system that are cast in terms of local order parameters and

the local supersaturation fields of solute components; supersaturation is defined as

the chemical potential difference of a component relative to an equilibrium reference

chemical potential. An advantage of writing the evolution equations in this form is

that it allows us to model both near and [relatively] far-from equilibrium solidifica-

tion conditions in a robust range of complex alloy systems where the free energies can

be approximated parabolically. More importantly, it makes it easily make contact

with the sharp interface kinetics of the model by mapping into previously-developed

quantitative asymptotic analysis theories in the literature. Other advantages of de-

riving a multi-order parameter phase field model that operates in the grand potential

ensemble include: the use of specialized interpolation functions is no longer required

as in previous works, the extension to multiple components becomes straightforward,

and the fundamental interpretation of all fields remains physical.

Following the model derivation of the multi-order model for binary and multi-

ple components (latter shown in the appendix), we examine some of the equilibrium

properties of the model. We then benchmark its performance in predicting spacing se-

lection in classic eutectic lamellar growth. Finally, we use stochastic noise to simulate

homogeneous nucleation and multi-phase grain growth, demonstrating how to con-

trol and interpret primary/secondary solid nucleation as a function of the asymptotic

convergence parameter of the model.
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1.1 Paradigm of Two-Phase Solidification

Solidification typically occurs when one phase nucleates and grows from a liquid.

Much work has been done on this problem in relation to dendritic growth and direc-

tional solidification. Another, less well studied paradigm of solidification occurs when

multiple phase nucleate out of a melt. The multi-order parameter model derived

herein is designed specifically for multiple thermodynamic phases. However, to keep

the thesis within pages limits, I will demonstrate the model derived herein on the case

of binary two-phase eutectic structures. These are at the heart of multi component

alloy solidification. Such intricate two-phase structures are important for a variety

of material science applications such as bridge cables and high strength steels. Many

binary alloy systems have a eutectic region of solidification and thus it is of interest

to be able to accurately and efficiently model and study such structures.

Typically in a eutectic solidification process, two solid phases (usually denoted α,β)

emerge from a liquid phase below the eutectic line of the phase diagram and is of some

composition. These phases are characterized by different solute levels determined by

the equilibrium phase diagram. The type of structures that form generally depend

on process parameters such as alloy composition, alloy system, cooling rate, etc. One

hallmark structure that has been well studied are periodic lamellar eutectics [50, 2, 51].

This occurs when the concentration of the liquid is near the eutectic concentration.

For liquids higher or lower than the eutectic concentrations, called hypo-eutectic and

hyper-eutectic alloys, solidification proceeds in a two-step process, where the high-

temperature phase emerges first followed by a low temperature phase that fills the

remaining liquid that did not solidify at high temperatures. Figure 1.1 shows an

example of some eutectic microstructures, and and Fig. 1.2 a diagram to help better

visualize eutectic structures in relation to the phase diagram. These figures are both

taken from [51]
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Figure 1.1: Experimental micrographs of regular and irregular eutectics: (a) regular Al-Au eutectic
structure; (b) irregular Al-Si eutectic structure; (c) regular CBr4C2Cl6; (d) irregular borneol-SCN
eutectic

Figure 1.2: (a) Example eutectic phase diagram;(b) example eutectic microstructure form solidifi-
catoin; (c) a close up look at the lamellar structures showing coupled α− β growth
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1.2 Use of Adaptive Mesh Refinement in Phase Field mod-

elling

As previously mentioned, phase field methods are robust for solidification, but desiring

better quantitative treatments require more and more numerical and computational

efficiencies. My Masters thesis work has been part of a collaboration to benchmark

and improve a new 3D-MPI adaptive mesh refinement (AMR) code specifically de-

signed for phase field simulations with my model equations. The code’e primary

developer is Dr. Michael Greenwood, a former PhD student in the Provatas re-

search group who is presently working at NR-Can. AMR was originally developed by

Provatas et al [10] to increase the scalability for studying larger scale solidification

processes by adapting meshes dynamically around moving fronts, which represent

phase boundaries in microstructure evolution. My recent work to benchmark the this

new AMR using the model derived in this thesis will be shown in an upcoming pub-

lication; however, the details of the new 3D AMR algorithm itself will not be shown

in this thesis as that would greatly increase the length of this masters thesis and is

beyond the scope of this study.

1.3 Outline of thesis

The remainder of this thesis is organized as follows:

• Chapter 2 (Sections 2.1-2.8) is dedicated to the derivation of a multi-order pa-

rameter model of solidification in the grand potential ensemble. We begin with

a grand potential functional formulated in terms of multiple chemical potentials

and phases. We derive the dynamical evolution equations for the order param-

eters and chemical potential fields, followed by an examination of the model’s

equilibrium properties. For quantitative applications, anti-trapping fluxes are

added to the chemical potential equations in order to control the level of solute
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trapping for diffuse interfaces. Thermal fluctuations are also incorporated into

the theory and re-couched in dimensional form for each use. This “base" model

serves as a platform for modelling multi-component and multi-phase solidifica-

tion. The equations of motion of this base model are then specialized a multi-

phase binary alloys whose free energies can be approximated by a 3-parameter

quadratic form. This leads to an easy-to-use set of phase field equations that

are shown to be a more general case of the well known phase binary alloy models

that operate in the so called local supersaturation (near-to-equilibrium) limit of

Ref. [1]. In the local supersaturation limit, model derived herein also effectively

extends the model of Ref. [3] to multiple components.

• In Chapter 3 we benchmark our model and show some new results for two-phase

nucleation. First we demonstrate that it reproduces the well-known results of

Jackson and Hunt for predicting spacing of eutectic lamella. We also show the

model reproduces other well-known features of eutectic growth such as lamellar

instabilities during growth and “short circuit" diffusion between solid phases

[51]. Following this, we examine the use of noise to simulate homogeneous

nucleation to demonstrate two-phase nucleation in a Silver-Copper system. In

particular we show how the use of different nucleation barriers affects the length

scale and morphology of a two-phase grain growth. In quantitative phase field

modelling it has become typical to use the nucleation barrier (denoted as 1/λ)

as a convergence parameter to control the interface width (denoted by W and

given by W ∼ λdo, where do is the capillary length of the material) and the

diffusional time scale (denoted by τ and given by τ ∼ λW 2/D, where D is the

diffusion coefficient in the liquid); see [7, 13, 14, 46] for details. This is done

for numerical convenience, to accelerate time and expand length scales in the

numerical simulation of phase field models. This is possible because the capillary

length of an interface (do) scales like the ratio do ∼ W/λ. Here, we shown how λ

can be used on the one hand as a numerical convergence parameter, but through

appropriate scaling of time and length, we can still allow us to glean sensible
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results about certain metrics that depend on nucleation (controlled by λ). One

such metric we focus on here is the solidified fraction versus time independent

of λ in two-phase nucleation and growth simulations.

• The appendix contains the mathematical derivation that extend the the binary

multi-component theory described in the text to multiple solute components and

multiple phases. For interested readers, all the details of the mathematics of

the derivation are worked in this appendix. In another section of the appendix,

we discuss temperature incorporation into the model.
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Grand Potential Phase Field Model

2.1 Grand Potential Thermodynamics

We start off with grand potential thermodynamics, contrary to the more traditional

Helmholtz free energy typically used in PF modelling.In this ensemble, the tempera-

ture, volume and chemical potential are the dependent variable. It defined by

Ω = F −
∑
i

µiNi, (2.1)

where F is the Helmholtz free energy, µi is the chemical potential of species i and

Ni is the number of particles for the ith species. For each component, the chemical

potential is defined by

µi =
∂F

∂Ni

∣∣∣∣
T,V

, (2.2)

Equation (2.1) is a Legendre transformation on the Helmholtz free energy. As a result,

it is straightforward to derive the well-known relation

dΩ = −S dT − p dV −
∑
i

Ni dµi (2.3)

which implies that the natural variables of Ω are T , V and µi (whereas for the

Helmholtz free energy they are S, V , Ni). Thus, by expressing Ω in terms of its

15
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natural variables, we can immediately calculate the number of particles N as

Ni = − ∂Ω

∂µi

∣∣∣∣
T,V

(2.4)

The description of alloys typically uses the composition as a measure of the amount

of each species, instead of the number of particles of the species. We define compo-

sitions of the ith species in terms of mole fractions as ci = Ni/NA, where NA is

Avogadro’s number. Using this definition, we have

Ω = F −
∑
i

∂F

∂Ni

Ni

= νmf −
∑
i

νm
NA

∂f

∂ci
NAci

= νm

(
f −

∑
i

∂f

∂ci
ci

)
ω ≡ Ω

νm
= f −

∑
i

µici, (2.5)

where νm is the molar volume and where it is assumed implicitly that all phases

have the same molar volume. Here ω is the grand potential density, while f is the

Helmholtz free energy density. If there are n species in the system, there are only

n − 1 independent solute concentrations. To describe the system in terms of these

n − 1 independent concentration variables, we use mass conservation to write the

nth species as cn = 1 −
∑n−1

i ci. Using this relation, the grand potential density is

re-written as
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ω = f̃ −
n−1∑
i

µici − µn

(
1−

n−1∑
i

ci

)

ω + µn = f̃ −
n−1∑
i

(µi − µn) ci

ω̃ = f̃ −
n−1∑
i

µ̃ici, (2.6)

where we have defined ω̃ ≡ ω + µncn and µ̃i ≡ µi − µn, where µ̃ is called simply the

“chemical potential" of solute ci hereafter. Similarly, f̃ is the free energy of a phase

in terms of the c1, c2, · · · cn−1 independent concentrations. In these new variables,

Eq. (2.2) becomes

µ̃i =
∂f̃

∂ci

∣∣∣∣∣
T,V

(2.7)

while Eq. (2.4) becomes

ci = − ∂ω̃

∂µ̃i

∣∣∣∣
T,V

, (2.8)

and in all cases the index i scans over each of the n− 1 independent components For

simplicity of notation in what follows, we drop the tilde from ω̃, f̃ and µ̃, as well as

the |T,V .

2.2 Grand Potential Phase Field Functional

This section constructs the grand potential phase field functional for multiple order

parameters in the spirit of the approach developed by Ofori-Opoku et. al. [3]. To

proceed, we first clarify some notion and introduce some variables. Let N denote the

number of distinct ordered phases or orientations in the system. Define an order pa-

rameter vector, φ(~r) = (φ1(~r), φ2(~r), · · · , φN(~r)), the components of which vary from
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0 < φi < 1 (i = 1, 2, 3, · · ·N) and represent the order of one of N solid phases (or

orientations) at any location in space. Through their interactions, order parameters

will always satisfy φ1 + φ2 + · · · + φN ≤ 1. For an n-component mixture, we define

µ(~r) = (µ1(~r), µ2(~r), · · · , µn−1(~r)) and c(~r) = (c1(~r), c2(~r), · · · , cn−1(~r)), which are

vector fields representing, respectively, n − 1 chemical potentials and impurity con-

centration fields at any location in space. In what follows, we also define a set of

interpolation functions denoted by gα(φ) ≡ g(φα), whose specific form is specified

later, but their limits must satisfy g(φα) = 1 when φα = 1 (the component α of φ(~r)

is one) and g(φα) = 0 when φα = 0 (all components α of φ(~r) are zero).

In terms of these definitions, the following grand potential of a multi-phase and

multi-component system is proposed,

Ω[φ,µ] =

∫
V

{
ωint (φ,∇φ) +

N∑
α=1

gα(φ)ωα(µ) +

[
1−

N∑
α=1

gα(φ)

]
ω`(µ)

}
d3r (2.9)

In Eq. (2.9), the term ωint (φ,∇φ) tracks the free energy changes associated with

solid-liquid interface and grain boundaries. The index α denotes and runs over solid

phases, while l denotes the liquid. The function ωϑ(µ) (ϑ = α or ϑ = l) is the equilib-

rium grand potential density of phase ϑ written in terms of the n−1 non-equilibrium

chemical potentials of the vector field µ. The functions gα(φ) thus interpolate the

local grand potential density between phases via the order parameter components φα,

each of which becomes one (and the others zero) in the bulk of the respective phases

they represent.

Equation (2.9) assumes that each volume element is like a mini open system that

is connected to a thermal heat bath with which it can exchange particles, and which

does so subject to the local chemical potential µ. Consistent with density func-

tional theories, thermodynamic equilibrium is attained when µ = µeq, which is con-

stant throughout the system and uniquely defines the equilibrium concentration field

throughout the system.
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2.2.1 Interaction between order parameters

The first term in Eq. (2.9) is ωint is given by

ωint (φ,∇φ) =
N∑
α=1

σ2
α

2
|∇φα|2 +

∑
α=1

HαfDW(φα) +
∑
α,β 6=α

ωαβ Ψ(φα, φβ) (2.10)

where nominally σα are constants that set the solid-liquid interface energies, Hα de-

fines the nucleation energy between solid α and liquid and fDW is some double-well

potential (with minima at φα = 0, 1). The term Ψ(φα, φβ) ∝ φ2
α φ

2
β + · · · contains

polynomial order interaction terms between different order parameters. In what fol-

lows, we retain only the second order pair-wise term, although other forms can also

be added to all situations examined below. Following Refs. [22, 26], we can also make

the σα more general functions of all the order parameters. In this case, all interface

energies (solid-liquid and solid-solid) can be modelled by controlling σα, Hα and ωαβ.

The interaction term strength ωαβ assures that φ1 + φ2 + · · ·φN ≤ 1 everywhere in

space. Loosely speaking, interactions such as these assure that no two ordered states

overlap over the same point in space, save for grain boundaries. As such, the model

above does not require that sum of all order parameters to strictly be 1. The actual

value of φ1 + φ2 + · · ·φN ≤ 1 in an equilibrated grain boundary depends on the type

of grain boundary and its energy, which can be controlled through the polynomial

interaction term strength and temperature as explored to an extent in [3].

2.2.2 Properties of the single-phase grand potential ωϑ(µ)

The grand potential ωϑ(µ) of single phase ϑ (α, l) used in Eq. (2.9) is given by the

Legendre transform of the free energy of the phase ϑ,

ωϑ (µ) = fϑ (c1, · · · , cn−1)−
n−1∑
i=1

µici, (2.11)
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where fϑ is defined as the equilibrium Helmhotlz free energy function of phase ϑ and

where the µi = ∂fϑ/∂ci give the chemical potential of species i. Equation (2.11)

assumes that fϑ is a convex function of the concentrations (important for special case

discussed later), so that we can express the ci as a unique function of the chemical

potentials µi. The multi-component generalization of this is a mapping ~µ 7→ ci(~µ) that

maps the n− 1 chemical potentials of the system into the same number of chemical

potentials. Assuming such an invertible mapping exists, Eq. (2.11) can be written as

ωϑ (µ) = fϑ (c1 (µ1, · · · , µn−1) , · · · , cn−1 (µ1, · · · , µn−1))−
n−1∑
i=1

µici (µ1, · · · , µn−1) ,

(2.12)

which then makes the grand potential a function of the chemical potentials, its natural

variables. The analogue of Eq. (2.8) can be used to obtain concentration ci in phase

ϑ,

cϑi = −∂ω
ϑ(µ)

∂µi
(2.13)

In thermodynamic equilibrium, when µeq is substituted into Eq. (2.13), it yields the

equilibrium concentrations ci corresponding to phase ϑ, hereafter denoted by cϑ(eq)
i .

2.2.3 Concentration of a multi-phase system in the grand potential en-

semble

Consider, next, the case of multi-phase system equilibrium described by the grand

potential functional of Eq. (2.9). The concentration field of a species is now defined
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everywhere by the functional generalization of Eq. (2.8) applied to Eq. (2.9), namely,

ci (φ,µ) =− δΩ

δµi

=−
N∑
α

gα(φ)
∂ωα(µ)

∂µi
−

[
1−

N∑
α

gα(φ)

]
∂ω`(µ)

∂µi

=
N∑
α

gα(φ)cαi (µ) +

[
1−

N∑
α

gα(φ)

]
c`i(µ), (2.14)

It is recalled that ωϑ(µ) is the equilibrium grand potential function of phase ϑ(= α, l),

evaluated at the field value µ. The concentration field ci(φ,µ) becomes cϑi (µ) (i.e.

Eq. (2.13)) within the bulk of each phase ϑ, and interpolated between correspond-

ing values of cϑi (µ) across interfaces by φ. The explicit variation of Ω from which

ci(φ,µ) is derived is given by Eq. (2.17). It is noted that when µ→ µeq, Eq. (2.14)

expresses an interpolated equilibrium concentration profile between coexisting solid-

liquid phases, or solid-solid phases (depending on what equilibrium µeq defines). The

cϑi (µ) in Eq. (2.14) shall hereafter be referred to as auxiliary fields [29].

The strategy of the grand potential formalism is as follows: the form of ωϑ(µ) in

Eq. (2.12) is first found for all phases ϑ by inverting the system of chemical potentials

(if possible) to find the phase concentrations cϑi (µ). Once derived, the ωϑ(µ) are

substituted into Eq. (2.9) to describe the local grand potential density of a multi-

phase, multi-component system in terms of chemical potential. The procedure leading

to Eq. (2.12) is practical if the relations for µi(c) are invertible. For example, if µi(c)

is non-convex, the mapping from µi to cϑi is not unique. Alternatively, if µ(ci) depend

on gradients of the concentration, as in the case of spinodal decomposition, it is also

not possible to obtain an algebraic mapping. Numerical mappings is another story,

and may be doable. But once again, it is entirely dependent on the system in question.
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2.3 Phase Field Dynamics

In traditional phase field models, the dynamics of the fields φα are assumed to fol-

low dissipative dynamics that relax a free energy while coupled to the evolution of

conserved solute fields ci. Here, we will employ a different approach where we couple

the evolution of the order parameters φα to the evolution of the intensive variables µi

that enter Ω, and which implicitly also govern the flow of ci. This will prove to have

several practical features.

2.3.1 Traditional form

Order parameters are non-conserved internal degrees of freedom in the system. As

a result, the dynamics of each order parameter follows non-conserved gradient flow

(what is known as model A dynamics),

∂φα
∂t

= −Mφα

δΩ

δφα
+ ξφ, (2.15)

whereMφα define a suitable time scale for the relaxation of φα. The stochastic variable

ξφ accounts for thermal fluctuations and follows the standard fluctuation-dissipation

theorem [52].

The evolution of each solute species follows mass conservation dynamics driven by

a solute flux that formally coupes to the chemical potential of each species. This is

given by conserved (model B) dynamics,

∂ci
∂t

= −∇ · J ci + ξc

= ∇ ·
(
n−1∑
j

Mij(φ, c)∇µj

)
+∇ · ~ζ. (2.16)

Where the Mij(φ, c) are Osanger-type mobility coefficients for mass transport. Their

form depends on the phase fields and concentrations. Their detailed forms for select
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solid alloy phases has been worked out elsewhere [53]. The noise ~ζ is a conserved

noise flux governing fluctuations in concentration [52].

In what follows, we analyze the above equations of motion in the absence of noise,

and return to the incorporation of thermal fluctuations in Section 2.8.

2.3.2 Reformulation of phase field model dynamics in terms of φ and µ

In the grand potential ensemble, it is the order parameters φi and chemical potentials

µi that are evolved in time as these are the natural variables of the grand potential

that change in space and time. This requires that Eq. (2.16) be re-written with the

ci expressed in terms of the set {µi}. To proceed, the variation of Ω with respect to

each respective field φα (α = 1, 2, · · · , N) and µi (i = 1, 2, · · · , n) is required. This

becomes

δΩ =

∫
V

(
N∑
α

{
−σ2

α∇2φα +Hαf
′
DW(φα) +

∑
β 6=α

2ωαβφαφ
2
β + g′α(φ)

[
ωα(µ)− ω`(µ)

]}
δφα

+
∑
i

{
N∑
α

gα(φ)
∂ωα(µ)

∂µi
+

[
1−

N∑
α

gα(φ)

]
∂ω`(µ)

∂µi

}
δµi

)
d3r. (2.17)

where primes in Eq. (2.17) refers to differentiation with respect to the component

φα of φ, and so g′α(φ) ≡ g′(φα) throughout. Eq. (2.17) will be used as a generating

functional for the equations of motion in what follows.

2.3.3 Order parameter equaitons

The variational of Eq. (2.17) with respect to the order parameters φα gives the evo-

lution equation for each order parameter as



24 2 Grand Potential Phase Field Model

1

Mφα

∂φα
∂t

= σ2
α∇2φα −Hαf

′
DW(φα)−

∑
β 6=α

2ωαβφαφ
2
β −

[
ωα(µ)− ω`(µ)

]
g′α(φ)

(2.18)

The square brackets on the right hand side of Eq. (2.18) define the thermodynamic

driving force. At equilibrium, the chemical potentials µi (i = 1, 2, · · ·n−1) comprising

the vector µ become constant throughout the system (and the cϑi defined by Eq. (2.13)

attain their equilibrium values in each phase). The equilibrium chemical potentials

and concentrations are denoted, component-wise, by µi = µeq
i . It is also noted that at

equilibrium (stable or metastable), solid and liuid phases satisfy ωα(µeq
1 , · · · , µ

eq
n−1) =

ωl(µeq
1 , · · · , µ

eq
n−1). Thus, at equilibrium, the driving force for the evolution of the φα

goes to zero and the order parameters fields decouple from the chemical potential

fields (or concentration fields) completely.

2.3.4 Chemical potential equations

Noting from Eq. (2.14) that ci are functions of φα and µi the time derivative of ci

becomes

∂ci
∂t

=

(
N∑
α

∂ci
∂φα

∂φα
∂t

+
∑
j

∂ci
∂µj

∂µj
∂t

)
(2.19)

Generalizing the susceptibility parameter introduced in Refs. [1], we define a gener-

alized susceptibility matrix by

Xij ≡ χi(φ, µj) ≡
∂ci
∂µi

=
N∑
α

gα(φ)
∂cαi (µ)

∂µj
+

[
1−

N∑
α

gα(φ)

]
∂c`i(µ)

∂µj
, (2.20)
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From Eq. (2.14) it is found that

∂ci
∂φα

= g′α(φ)
[
cαi (µ)− c`i(µ)

]
(2.21)

Substituting Eqs. (2.20) and (2.21) into Eq. (2.19), the mass transport equations,

Eq. (2.16), becomes (dropping the noise term),

∂µi
∂t

=
n−1∑
j

(
X−1

)
ij

[
∇ ·

(
n−1∑
k

Mjk(φ, c)∇µk

)
−
∑
α

g′α(φ)
[
cαj (µ)− c`j(µ)

] ∂φα
∂t

]
(2.22)

where (X−1)ij denotes the (i, j) component of the inverse of the matrix Xij.

Eqs. (2.18) and (2.22), along with the cαi = ∂ωα(µ)/∂µi and the definitions for

ωϑ (µ) = fϑ
(
{cϑi }

)
−
∑n−1

i=1 µic
ϑ
i comprise a complete set of equations for N order

parameters (φα) and n− 1 chemical potential fields (µi). For one component (i = 1)

and constant mobility, these equations map onto a phase field model for thermal

solidification of a pure material (shown explicitly later).

2.4 Equilibrium Properties of Grand Potential Functional

One of the most important features of the so-called quantitative phase field mod-

els is that the equilibrium order parameter profiles decouple from concentration.

This makes it possible to specify interface energy independently of the solute profiles

through the interface, a practical feature for incorporating the results of microscopic

studies of surface energy [54, 55, 19, 56]. This decoupling also eliminates the cap

on the size of the diffuse interface that can be used, which is numerically expedient

[14, 47, 3].
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2.4.1 Equilibrium concentration field

The local concentration of each species in the multi-phase, multi-component system

defined by Eq. (2.14). In a multi-phase equilibrium, the concentration field is given

by

ceq
i (φ) =

N∑
α

gα(φ)c
α(eq)
i +

[
1−

N∑
α

gα(φ)

]
c
l(eq)
i , (2.23)

where the cϑ(eq)
i = cϑi (µ = µeq) denotes the bulk equilibrium concentration of phase

ϑ (i.e., when µi = µeq
i ∀ i). It is noted that the equilibrium concentration field ceq

i

is a function of space only through the order parameters, a manifestation of the

decoupling of order parameters and solute fields at equilibrium in the grand potential

formulation.

2.4.2 Equilibrium solid-liquid interfaces

To better appreciate how the above decoupling works, consider first solid-liquid co-

existence along a planar 1D front. This involves a single phase α and the liquid. In

equilibrium, all chemical potentials µi are everywhere constant throughout the sys-

tem. As a result, the grand potential density functions of solid and liquid must be

equal, i.e., ωα(µeq) = ω`(µeq). Under these conditions, the Euler-Lagrange equation

for the φα become

σ2
α∂

2
xφα −Hαf

′
DW(φα) = 0, (2.24)

For this case, the solid-liquid interface is determined entirely by the choice of σα,

Hα and fDW. For a simple φ-4 theory, Eq. (2.24) gives the usual hyperbolic tangent

profile, and the usual surface energy calculated in many places [14, 46].



2.4 Equilibrium Properties of Grand Potential Functional 27

2.4.3 Equilibrium solid-solid interfaces

To illustrate solid-solid coexistence,. For simplicity, we consider coexistence be-

tween two solids, α and β, in a eutectic alloy. Assign each phase with its own

order parameter φa and φβ. Consider a temperature T = Te − ∆T , where Te is

the eutectic temperature and ∆T = Te − T . Equilibrium phase coexistence requires

that ωα(µeq(T )) = ωβ(µeq(T )), while at this temperature ωl(µeq(T )) describes a

metastable liquid. Expanding ωα(µeq(T )), ωβ(µeq(T )) and ωl(µeq(T )) in a Taylor

series around Te in powers of ∆T gives

ωϑ(µeq(T )) = ωϑ(µeq(Te))−
n∑
i=1

(
∂ωϑ

∂µi

∣∣∣∣
µeqi (Te)

∂µeq
i

∂T

∣∣∣∣
Te

)
∆T (2.25)

where ϑ = α, β, l. Using Eq. (2.13) in Eq. (2.25) and noting that ωα(µeq(Te)) =

ωβ(µeq(Te)) = ωl(µeq(Te)) gives,

ωα(µeq(T ))− ωl(µeq(T )) =
n∑
i=1

{(
c
α(eq)
i (Te)− cl(eq)

i (Te)
) ∂µeq

i

∂T

∣∣∣∣
Te

}
∆T, (2.26)

and a similar expression for the β phase. We define a new constant Γs(Te) by

Γs(Te) ≡
n∑
i=1

{(
c
l(eq)
i (Te)− cs(eq)

i (Te)
) ∂µeq

i

∂T

∣∣∣∣
Te

}
, s = α, β (2.27)

The Euler-Lagrange equations for the steady state profiles (φoα, φ
o
β) for the α-β inter-

face profiles become,

σ2
α ∂

2
xφ

o
α −Hαf

′
DW(φoα)− 2ωαβφ

o
α

(
φoβ
)2

+ Γα(Te) ∆T g′(φoα) = 0

σ2
β ∂

2
xφ

o
β −Hβf

′
DW(φoβ)− 2ωαβ (φoα)2 φoβ + Γβ(Te) ∆T g′(φoβ) = 0, (2.28)

Eqs. (2.28) is solved numerically, subject to the boundary conditions φoα(x→ −∞) =

1, φoα(x → ∞) = 0 for α, and φoβ(x → −∞) = 0, φoβ(x → ∞) = 1 for β. It is note-

worthy that the determination and are completely decoupled from the equilibrium
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chemcial concentration fields ceq
i (x), and thus the interface energy of any two-phase

combination can be predetermined numerically as a function of temperature. The

temperature dependence in these equations allows control of the temperature de-

pendence of grain boundary energy, a physical effect [57] that can in principle be

controlled through the constants in Eqs. (2.28). As similar construction to the one

shown here can be used to define two-phase boundary energies of other two-phase

solid boundaries (e.g. polycrystalline or peritectics).

2.5 Non-Variational Dynamics for Diffuse Interfaces

For practical simulations of solidification it is crucial that phase field models reproduce

the results of “accepted" sharp interface models of solidification in the limit when

there is a clear separation of scales between the interface width (W ) and the solute

or thermal diffusion fields around a solidifying front. One way to do this in principle

is to make the interface width small (denote this W � do, where do is the capillary

length of the solid-liquid interface as shown by Caginalp [58, 59]). This is not practical

however, as the grid resolution required would be difficult. Another severe issue with

this limit is that it sets a microscopic small time scale for the phase field evolution,

which makes numerical simulations at low undercooling impractical. The only hope

for making phase field simulations involving solidification practical is to smear the

interfaces of the φα fields. Doing so, however, creates spurious kinetics at the interface,

excessive levels of solute trapping in bulk phases, and alters the flux conservation

across interfaces from its classic form due to lateral diffusion and interface stretching.

These effects are physically relevant at rapid rates of solidification where interface

kinetics across the microscopic interface control solidification. For slow to moderate

rates of solidification, however, these effects are negligible, and should be eliminated

when using diffuse interface models to simulate solidification in real materials. The

work of Refs. [60, 13, 14] has shown that these effects can be countered numerically

by special choices of the interpolation function for solute diffusion and the chemical
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potential, as well as the addition of a so-called anti-trapping flux in the mass transport

equations. We adopt analogous tricks here.

The first modification referred to above is made by making the replacement gα(φ)→

hα(φ) for the interpolation function in the concentration (Eq. (2.14)) and suscepti-

bility (Eq. (2.20)). Namely, we modify the concentration field to

ci =
N∑
α

hα(φ)cαi (µ) +

[
1−

N∑
α

hα(φ)

]
c`i(µ), (2.29)

from which the modified susceptibility matrix becomes

Xij ≡ χi(φ, µj) =
N∑
α

hα(φ)
∂cαi (µ)

∂µj
+

[
1−

N∑
α

hα(φ)

]
∂c`i(µ)

∂µj
, (2.30)

where hα(φ) ≡ h(φα) has the same boundary conditions as gα(φ) in bulk phases.

The second modification is to introduce an anti-trapping current

Jat
i = −

∑
α

a(φ)Wα

[
c`i(µ)− cαi (µ)

] ∂φα
∂t

∇φα
|∇φα|

, (2.31)

where a(φ) is a function to be determined later through matched asymptotic analy-

sis, Wα is the interface width, ∂tφα is the rate of the respective moving solid-liquid

interface and n̂α =−∇φα/|∇φα| is the unit normal vector pointing into the liquid.

The anti-trapping current modifies the mass conservation equation to

∂ci
∂t

= −∇ ·
(
J ci + Jat

i

)
, (2.32)
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Eqs. (2.29) and (2.32) thus modify Eq. (2.22) to

∂µi
∂t

=
n−1∑
j

(
X−1

)
ij

[
∇ ·

(
n−1∑
k

Mjk∇µk +
∑
α

a(φ)Wα

[
c`j(µ)− cαj (µ)

] ∂φα
∂t

∇φα
|∇φα|

)

−
∑
α

h′α(φ)
[
cαj (µ)− c`j(µ)

] ∂φα
∂t

]
(2.33)

Following Ref. [26] we hereafter express the mobility matrix Mjk as

Mjk =
N∑
α

qα(φ)Dα
jiX

α
ik +

(
1−

N∑
α

qα(φ)

)
Dl
jiX

l
ik, (2.34)

where Dϑ
ij is the diffusion matrix of phase ϑ, and the repeated indices denote implied

summation over the dummy index i = 1, 2, · · ·n− 1. The function qα(φ) ≡ q(φα) are

any convenient interpolation functions introduced to vary between 0 in the liquid (all

φα = 0) and 1 in the solid (any φα = 1) across any α grain. We have also defined two

new matrices,

Xα
ij ≡

∂cαi
∂µj

=
1

∂2fα/∂ci∂cj

X l
ij ≡

∂cli
∂µj

=
1

∂2fl/∂ci∂cj
, (2.35)

Equation (2.33) describes multi-component diffusion, and is coupled, for multi-

phase solidification, to the order parameter equations Eq. (2.18), re-written here for

convenience,

τα
∂φα
∂t

= W 2
α∇2φα − f ′DW(φα)− wobs φα

N∑
β 6=α

φ2
β − λ̂α

[
ωα(µ)− ω`(µ)

]
g′α(φ) (2.36)

where λ̂α ≡ 1/Hα, Wα = σ/
√
Hα and τα ≡ 1/(MφHα). Also, to simplify matterrs,

we will assume that the interaction term is a constant, i.e. ωαβ = ωo, for any φα and

φβ pair, and define a dimensionless interaction parameter, ωobs = 2ωo/Hα. We can

in general define ωαβ separately for any φα and φβ to control the free energy of an
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α-β interface.

2.6 Multi-Phase Binary Alloy with Parabolic Free Energies

This section specializes Eqs. (2.33) and (2.36) to the case of a binary alloy (i = 1)

of the case where the solid phases can be different, but whose free energies can be

modelled by the quadratic form

fϑ =
Aϑ(T )

2

(
c− cminϑ (T )

)2

+Bϑ(T ), ϑ = α, l, (2.37)

close to some reference concentration. This functional form will provide us with a

compact multi-phase binary model whose driving force is second order in supersat-

uration. This form makes it possible to fit a robust range of free energy curves of

different phases through control of the coefficients Aϑ, cminϑ and Bϑ, particularly if

these are also made different on split intervals of concentration (or chemical potential)

space. This is discussed again the end of this subsection.

2.6.1 Phase coexistence

It is instructive to begin by considering the equilibrium properties of a system of

phases described by Eq. (2.37). Since we’ll be concerned with multiphase solidifica-

tion, we begin by considering liquid in coexistence with multiple solids. In terms of

the above parabolic free energies, it is straightforward to seek a common tangent to

describe coexistence between bulk liquid (concentration ceql ) and any bulk solid phase

α (solid concentration ceqα ), as well as the chemical potential µeqα between these two
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phases. These are found by solving

∂fl
∂c

∣∣∣
ceql

= µeqα

∂fα
∂c

∣∣∣
ceqα

= µeqα

fl − fα
ceql − c

eq
α

= µeqα (2.38)

where

µ =
∂fϑ
∂c

= Aϑ(c− cminϑ ), ϑ = α, l (2.39)

is the chemical potential of each phase at concentration c. The solution of Eqs. (2.38)

gives

ceqϑ = cminϑ +
µeqα
Aϑ

, ϑ = l, s (2.40)

where the equilibrium α-liquid chemical potential is

µeqα =
∆cα

χl(eq) (1− kα(eff))

(√
1 + 2

χl(eq) (1− kα(eff))

∆cα

∆Bα

∆cα
− 1

)
(2.41)

where the following definitions are used,

∆cα ≡ cminl − cminα

∆Bα ≡ Bl −Bα

χl(eq) ≡ 1/Al

χα(eq) ≡ 1/Aα

kα(eff) ≡ χα(eq)/χl(eq) (2.42)

The notation in Eq. (2.42) will be used in the steps below. The special limit where

Al = Aα is found by expanding the radical in Eq. (2.41) to leading order in 1−kα(eff),
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yielding

µeq =
Bl −Bα

(cminl − cminα )
(2.43)

The parameters Aϑ, cϑmin and Bϑ can then be used to fit the free energy of each phase

and the phase diagram of the alloy.

2.6.2 Grand potential of a phase, and multi-phase concentration and

susceptibility

The grand potential density of phase ϑ is expressed in terms of µ by eliminating the

concentration using Eq. (2.39), namely,

ωϑ = fϑ(c)− µc

= − µ2

2Aϑ
− µcminϑ +Bϑ, ϑ = α, l, (2.44)

From Eq. (2.44) the concentration of phase ϑ) is derived,

cϑ = −∂ωϑ
∂µ

=
µ

Aϑ
+ cminϑ , ϑ = α, l (2.45)

In a multi-phase system Eq. (2.45) is used to interpolate the local concentration

via Eq. (2.29),

c(φ,µ) =
∑
α

hα(φ)cα(µ) +

[
1−

∑
α

hα(φ)

]
cl(µ)

=
∑
α

hα(φ)
( µ

Aα
+ cminα

)
+

[
1−

∑
α

hα(φ)

]( µ
Al

+ cminl

)
= χl(eq)

{
1−

∑
α

(
1− kα(eff)

)
hα(φ)

}
µ−

∑
α

∆cα hα(φ) + cminl , (2.46)
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The equilibrium concentration field between α and liquid is given by

ceq
α (φ) = χl(eq)

{
1−

∑
α

(
1− kα(eff)

)
hα(φ)

}
µeq
α −

∑
α

∆cα hα(φ) + cminl , (2.47)

Finally, from that last line of Eq. (2.46), the generalized susceptibility is derived via

the prescription in Eq. (2.30),

χ =
∂c

∂µ
= χl(eq)

{
1−

∑
α

(
1− kα(eff)

)
hα(φ)

}
, (2.48)

It is clear that from Eq. (2.48) that the definition χl(eq) = χ(φ = 0) and χα(eq) =

χ(φ = φα = 1).

2.6.3 Casting the phase field equations in terms of supersaturation

From Eq. (2.39), it is found that

cl(µ)− cα(µ) = ∆cα + χl(eq)
(
1− kα(eff)

)
µ (2.49)

Meanwhile, from Eq. (2.40) we find

∆cα = ∆ceq
α − χl(eq)

(
1− kα(eff)

)
µeq
α (2.50)

where ∆ceq
α = ceq

l − ceq
α . Substituting Eq. (2.50) into Eq. (2.49), reduces Eq. (2.33) to

χ(φ)
∂µ

∂t
=∇ ·

[
DLq(φ)∇µ+

∑
α

Wαa(φ) ∆ceq
α

{
1+
(
1− kα(eff)

)
Uα
} ∂φα

∂t

∇φα
|∇φα|

]
+

1

2

∑
α

∆ceq
α

{
1+
(
1− kα(eff)

)
Uα
} ∂φα
∂t

, (2.51)



2.7 Connection to Previous Models 35

where we have introduced the supersaturation fields Uα, defined by

Uα ≡
χl(eq)

∆ceq
α

(µ− µeq
α ) , (2.52)

and where it can be shown that the mobility in Eq. (2.34) can be re-shaped into

q(φ) ≡
N∑
α

qα(φ)
Dα

DL

χα(eq) +

(
1−

N∑
α

qα(φ)

)
χl(eq) → q̃(φ)χ(φ), (2.53)

where q̃(φ) has some general form that interpolates between 0 and 1 for φ = 1 and

φ = 0, respectively. Using the second line of Eq. (2.44) to write ωα(µeq
α )−ωl(µeq

α ) = 0,

gives

∆Bα =
χl(eq)

2

(
1− kα(eff)

)
(µeq

α )2 + ∆cαµ
eq
α (2.54)

Evaluating ωα(µ) − ωl(µ) using Eq. (2.44), and using Eq. (2.54), recasts the order

parameter equations Eq. (2.36) as

τα
∂φα
∂t

=W 2
α∇2φα−f ′DW(φα)− wobsφα

N∑
β 6=α

φ2
β − λα Uα

(
1 +

(1− kα(eff))

2
Uα

)
g′α(φ)

(2.55)

where

λα ≡
λ̂α (∆ceq

α )2

χl(eq)
(2.56)

In Eqs. (2.55), the definition λ̂α ≡ 1/Hα and τα ≡ 1/(Mφα Hα) continue to to hold.

2.7 Connection to Previous Models

This section shows how the general phase field model equations for multiple order

parameters and chemical potential derived in the previous section, driven as it they
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are in terms of supersaturations, can trivially be mapped to other previous models in

the literature by simply choosing different limits of its parameters.

2.7.1 Special case 1 : Pure material solidification

It is worth noting that this accessible form of the model dynamics reduces exactly

to the form describing solidification of a pure material. What is required is that one

phase (φα → φ) and thus dropping the interaction term, and to set the parabolic

curvatures for solid and liquid Aθ = 1. The order parameter dynamics become

τ
∂φ

∂t
=W 2∇2φ−f ′DW(φ)− λUg′(φ) (2.57)

where λ = 1/H is the inverse of the nucleation barrier of the single phase. Recasting

the chemical potential in terms of Uα → U and and allowing constant diffusion in the

solid and liquid phases (i.e. setting q(φ) = 1) gives

∂U

∂t
=∇ · (D∇U) +

1

2

∂φ

∂t
(2.58)

Of course we can drop the α subscripts at this point, and this is equivalent to the

dynamics for the solidification of a pure material, similar as to what is studied in [7]

2.7.2 Special case 2 : Polycrystalline dilute binary alloy solidification

We can also simplify the model in Eqs. (2.51) and (2.55) to the case of a single type

of phase, with multiple solid grains (denoted by φα, α = 1, 2, 3, · · · ) of a solidifying

in a dilute binary alloy. In this case, one must take the liquid curvature to be 1, then

select the solid phase curvature to any value such that kα(eff) → k, the equilibrium

partition coefficient of a dilute binary alloy. Assuming, as do previous dilute alloy

model in the literature, that we are weakly out of equilibrium, we can drop the second
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order super saturation term, yielding

τ
∂φα
∂t

=W 2∇2φα−f ′DW(φα)− wobsφα
N∑

α′6=α

φ2
α′ − λUg′α(φ) (2.59)

where α-specific components of Uα are the same for all α, and so the subscript is

dropped and Uα → U . Recasting the chemical potential in terms of a single compo-

nent supersaturation U gives{
1− (1− k)

∑
α

hα(φ)

}
∂U

∂t
=∇ ·

(
Dlq(φ)∇U

+ {1 + (1− k)U}
∑
α

Wαa(φ)
∂φα
∂t

∇φα
|∇φα|

)

+ {1 + (1− k)U}
∑
α

∂hα(φα)

∂t
(2.60)

The form of the dynamics now is equivalent to that studied in [3]. By dropping

the summands, we also recover the dynamics of the single crystal phase field model

studied in Ref. [14].

2.7.3 Recovering the Supersaturation Limit of [1]

The remainder of this thesis works with order parameters that range from−1 < φ < 1,

and uses the following convenient interpolations,

g(φα) =
15

16

(
φα −

2φ3
α

3
+
φ5
α

5

)
+

1

2

fDW (φα) = −φ
2
α

2
+
φ4
α

4∑
α

h(φα) =
∑
α

(φα + 1)

2

q(φ) =
(1− ψ)

2
, ψ = N −

{
1−

∑
α

φα

}
(2.61)
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In the case of a single-phase general binary alloy (with only a single order parameter

φα → φ), the multi-order parameter model derived in the previous section reduces

to Eqs. (2.59) and (2.60) with kα(eff) → keff . Thus is identical to the supersaturation

limit of Ref. [1] (see Eqs. (110)-(110)). As such it has been shown to obey the following

free-boundary problem

∂U

∂t
= DL∇2U (liquid)[

1 + (1− keff)Uint

]
Vn = −DL

∂U

∂n
,

Uint =− doκ− βBVn, (2.62)

In terms of the concentration field, Eqs. (2.62) reduces to the well-know Stephan

problem for solidification of a binary alloy,

∂c

∂t
= DL∇2c (liquid)

c|l(1− keff)vn = −D∂c|l
∂n

,

c|ϑ = ceqϑ −∆c
(
doκ+ βvn

)
, ϑ = s, l, (2.63)

where do represents the capillary length and β the interface attachments kinetics

coefficient. These coefficients are given in terms of the model parameters by the

relationships

do = a1
W

λ

β = a1
τ

λW

(
1− a2λ

W 2

τD

)
λ =

15∆c2

16HX l(eq)
, (2.64)

where the constants a1 = 0.8839 and a2 = 0.6267 for the choice of interpolations

functions in Eq. (2.61). What we will hereafter refer to the classic sharp interface

model will be the special case when β = 0, which occurs when D̄ = DLτ/W
2
φ = a2 λ.
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The supersaturation approach is almost exactly analogous to the original approach

of [4], and leads to identical form of equations, except they used keff → cs/cl. That

is because the Tong et al effectively expand the grand potential using the functional

form of the dilute alloy free energy, These sharp interface considerations lead us to

our next section.

2.8 Thermal fluctuations in the phase field equations

To capture nucleation and interface fluctuations, phase field equations must introduce

stochastic noise into each dynamical equation in order to emulate fast atomic-scale

fluctuations that are washed out when one considers dynamical equations driven from

a mean-field level free energy. In principle, this comes out formally from direct coarse

graining using the methods of statistical mechanics [61]. However, when starting

directly with PF models as mesoscale theories in their own right, noise must be added

as stochastic noise in the equations of motion, effectively making them Langevin type

equations [52]. This subsection studies how this is done for the phase field model

defined by Eqs. (2.36) and (2.33).

We reproduce here the phase field equations of motion with stochastic noise fields

added. For convenience, results are demonstrated for one order parameter and one

solute field, and the anti-trapping term is discarded as it will not affect the results

discussed in this sub-section. The order parameter and concentration equations be-

come

τ
∂φ

∂t
= W 2

φ∇2φ− f ′DW(φ)− λ̂
[
ωα(µ)− ω`(µ)

]
g′(φ) + τξ, (2.65)

∂ci
∂t

= ∇ · (M∇µ)−∇ · ~ζ (2.66)

The previously defined constants are λ̂ = 1/H and τ = 1/(MφH), where Mφ is the

mobility of the order parameter, M is the mobility of solute, and H is the nucleation

barrier. The variable ξ is a stochastic scalar field and ~ζ is a stochastic vector field.
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Noise sources satisfy the fluctuation dissipation theorem [52, 62], namely

〈ξ(~x, t)ξ(~x′, t′)〉 = 2kBTMφ δ(~x− ~x′)δ(t− t′) (2.67)

〈ζi(~x, t)ζj(~x′, t′)〉 = 2kBTMδ(~x− ~x′)δ(t− t′)δij (2.68)

where ζi is the ith component of ~ζ, and δij is the Kronecker delta.

2.8.1 Non-dimensional form of the phase field equations

It will be useful to work in dimensionless time and space variables. We thus recast

the above phase field equations and fluctuation dissipation relations in terms of di-

mensionless time (t̄ = t/τ) and space (x̄ = x/Wφ). With this rescaling, Eqs. (2.65)

and (2.66) become

∂φ

∂t̄
= ∇2φ− f ′DW(φ)− λ̂

[
ωα(µ)− ω`(µ)

]
g′(φ) + η, (2.69)

∂ci
∂t̄

= ∇ ·
(
M̄∇µ

)
−∇ · ~q, (2.70)

where the gradients are assumed in terms of x̄, and where η = τξ, ~q = (τ/Wφ)~ζ,

and M̄ ≡Mτ/W 2
φ . Applying these rescaling to the noise relations in Eqs. (2.67) and

(2.68) yields their corresponding dimensionless counterparts,

〈η(~̄x, t̄)η(~̄x′, t̄′)〉 = 2
kBT

HW d
φ

δ(~̄x− ~̄x′)δ(t̄− t̄′) (2.71)

〈qi(~̄x, t̄)qj(~̄x′, t̄′)〉 = 2
kBT

W d
φ

(
Mτ

W 2
φ

)
δ(~̄x− ~̄x′)δ(t̄− t̄′)δij, (2.72)

To arrive at Eqs. (2.71) and (2.72) the delta functiions were rescaled according to

δ(~x − ~x′) → δ(~̄x − ~̄x′)/W d
φ and δ(t − t′) → δ(t̄ − t̄′)/τ , where d is the dimension of

space.
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2.8.2 Simplification of the noise amplitude for the order parameter equa-

tion

To proceed, we first use RT/Ωo = kBT ρ̄, where Ωo is the molar volume of the alloy

(units of m3/mole, and assumed to be the same in both phases) and ρ̄ is its atomic

density (units #/m3). This is used to re-write Eq. (2.71) as

〈η(~x, t)η(~x′, t′)〉 = 2

[
RT

ΩoH

]
1

W d
φ ρ̄
δ(~̄x− ~̄x′)δ(t̄− t̄′), (2.73)

The expression in the square brackets has a special significance, it is related to the

dimensional constant, found in the preceding section:

λ =
15∆c2

eq

16χeql H
, (2.74)

where χeql is the inverse liquid free energy curvature with respect to concentration,

and in general is in units of RT/Ωo. We assume a diagonal susceptiblity and drop

the indices in χ. Equation (2.74) changes to Eq. (2.64) for a general alloy at low

supersaturation, whose form derived from Eqs. (2.33) and (2.36). It is intuitive to re-

cast the form of the noise correlations in Eqs. (2.71) in terms of λ, which represents the

inverse nucleation barrier, which also scales the thickness of the phase field interface

[13, 14, 46]. Using the first of Eq. (2.64) to eliminate Wφ in terms of do transforms,

using ∆c2
eq/χ̄

eq
l (where χ̄eql is a dimensionless inverse liquid free energy curvature) and

substituting in ρ̄ = NA/Ωo into Eq. (2.73) gives

〈η(~x, t)η(~x′, t′)〉 = 2(J ad1)

[
Fexp

λd−1

]
δ(~̄x− ~̄x′)δ(t̄− t̄′) (2.75)

where J = 16/15 and the dimensionless number Fexp is

Fexp =
Ωo χ̄

eq
l

NA ∆c2
eqd

d
o

(2.76)
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The constants in Eq. (2.76) are extractable material experimental parameters.

A similar approach is applicable to the solute equation [63, 64]. However that is

not explored in this thesis. This work focuses on nucleation of phases. The order

parameter dynamics for nuclei formation happen on a time and length scales much

shorter and smaller than the diffusion processes. The numerical amplitude of the

solute noise is significantly lower than the strength of the order parameter noise on

these length and time scales [63, 64].

2.8.3 Calculation of the capillary length

The capillary length, do, is an important physical quantity defining the physical length

scale of a material. Matched asymptotic boundary later analysis can be used to

show that physical quantity is mapped onto the phase field parameter according to

the relatioship λ = a1Wφ/do [46]. This is beyond the scope of this thesis. This is

done by mapping the phase field equations onto their corresponding sharp interface

model SIM.This model assumes that solidification is described by solute diffusion in

the bulk phases in tandem with flux conservation across moving interfaces and the

Gibbs Thomson condition controlling temperature or concentration value on either

side of a “sharp" interface. The derivation of the sharp interface model will not be

derived here. I quote here an expression from [65] where when one considers the

sharp-interface model of single phase solidification (from liquid to solid ), the Gibbs-

Thomson condition is given in general by

cL,s − ceq
L,s =

−2σΩo

∆ceqΛ±
κ (2.77)

where cL,s is the concentration in liquid or solid side of the interface, and ceq
L,s are

its corresponding equilibrium values. In 2.77, σ is the surface energy (which we can

equivalently take to be γ, the surface tension, for a liquid), Ωo the molar volume,

Λ± the inverse molar free energy curvature at equilibrium solid (+) or liquid (−),

and κ is the interface curvature. Dividing both sides by ∆ceq and isolating the factor
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multiplying κ, (and assuming a metric free energy density rather than a molar free

energy) gives the capillary length on the liquid side of the interface as

do =
2LfΓ

∆c2
eqTm

(
∂2f

∂c2

)−1

, (2.78)

where Γ is the Gibbs-Thomson coefficient, Lf the latent of fusion, and Tm the melting

temperature, these three terms come from rearranging Γ = γTm
Lf

. This derivation of

the capillary length only requires knowledge of the curvature from the free energy

curve. This is attractive for the parabolic free-energy phase field model derived in

this section, since free energy curvature are precisely what goes into the model and

are readily available. In this thesis, we assume that Γ is the same for both phases in

a eutectic phase diagram, which is reasonable as in practice they are usually in the

same order of magnitude.

2.9 Interpreting the role of λ in phase field modelling

As noted earlier, the λ, the inverse of the nucleation barrier, plays an important role

in quantitative phase field modelling in the literature. To understand the role of λ, we

consider in this section a simple case of a 1D interface evolving under generic Model

C [6] dynamics for a pure material, described by

τφ
∂φ

∂t
= W 2

φ

∂2φ

∂x2
− g′(φ)− λ∆T̄ θ P ′(φ)

∂θ

∂t
= D

∂2θ

∂x2
− ∂φ

∂t
(2.79)

where φ is the order parameter, θ is a reduced diffusion field (temperature difference

from the melting temperature), D a diffusion coefficient, ∆T̄ represents a dimen-

sionless undercooling of the liquid and λ a coupling constant. While this situation

describes solidification of a pure material. the discussion below is also valid for more

complex alloys in general.
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Consider next a steady state interface moving with some velocity V . We assume

that the fields can be described in this case as φ(x, t) = φ(x − V t) and θ(x, t) =

θ(x−V t). We can express the phase field time scale τφ and interface widthWφ in terms

of the material parameters of the SIM via the asymptotically derived relationships

of the form in Eq. (2.64), i.e. do = a1Wφ/λ, β = a1τφ/(Wφλ)
{

1− a2λ/D̄
}
, where

D̄ = Dτφ/W
2
φ . In the classic SIM, β = 0, and these relations give

τφ = (a2/a
2
1) d2

oλ
3/D

Wφ = doλ/a1 (2.80)

Substituting Eqs. (2.80) into Eqs. (2.79) after changing variables to co-moving co-

ordinates transforms Eqs. (2.79) to

(
d2
oλ

2

a2
1

)
∂2φ

∂η2
+

(
a2 d

2
oV

a1D
λ3

)
dφ

dη
− g′(φ)− λ∆T̄ θ P ′(φ) = 0

D
∂2θ

∂η2
+ V

dθ

dη
+ V

dφ

dη
= 0 (2.81)

where η = x− V t, and we used ∂x → ∂η and ∂t → −V ∂η. It is clear that the selected

speed V of the front (or local part of a front, such as a fat dendritic tip) described

by Eq. (2.81) must be a function of the form V = fPF(do, D,∆T̄ , λ).

It is known from the microscopic theory of solvability (ms) [66, 67, 68, 69, 70, 71,

72], an analytical theory that solves the classic SIM to predict the growth rate of

thermal dendrites, that the dendritic tip speed obeys Vms = (D/do)fms(∆T̄ ). Thus

Vc = D/do provides a natural characteristic solidification speed. Also, lc = do and

tc = d2
o/D provide, respectively, a characteristic length and time for the solidification.

These are thus also natural variables with which to scale the phase field equations,

which also obey SIM kinetics. Scaling space and time in Eqs. (2.81) by y = η/do and
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t̄ = t/(d2/D) gives

(
λ2

a2
1

)
∂2φ

∂y2
+

(
a2 λ

3

a2
1

)
V̄
dφ

dy
− g′(φ)− λ∆T̄ θ P ′(φ) = 0

∂2θ

∂y2
+ V̄

dθ

dy
+ V̄

dφ

dx
= 0 (2.82)

where V̄ = (do/D)V . By inspection of Eq. (2.82), the scaled velocity V̄ can only

depend on λ and ∆T̄ , i.e. be a function of the form V̄ = f̄PF(∆T̄ , λ). Thus, the

dimensional phase field velocity must be of the form V = (D/do)f̄PF(∆T̄ , λ).

It is clear that for the phase field and microscopic solvability (ms) theories to be

compared, the phase field velocity V must be scaled in some way by λ. This makes

sense since λ relates to the nucleation barrier, a degree of freedom that does not enter

the SIM. Guidance on how to scale out λ is found by considering the characteristic

speed implied by Eqs. (2.80), i.e.,

V PF
c = Wφ/τφ =

(
D

do

)
a1

a2

1

λ2
(2.83)

Equation (2.83) suggest that to make the PF and sharp interface model results agree

(in this case depend only on ∆T̄ ), we should divide phase field results by λ2, which

is what is done in quantitative demonstrations of PF modelling [7, 14, 46].

2.9.1 Interpreting the dual role of λ in the noise amplitude

As discussed above, the inverse nucleation energy, λ (inverse of a nucleation barrier)

does not enter the sharp interface model of solidification. It must thus be scaled out

of phase field results when comparing them to predictions of the SIM that depend on

driving force. As a result, λ is often treated as a “free" parameter in PF modelling,

typically chosen to smear the scale of the interface, such that λ-scaled PF results

converge onto corresponding SIM results. However, it is recalled from Section 2.8 that

λ also works its way into the amplitude of stochastic noise correlations in Eq. (2.75)
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The choice of λ must thus be consistent in its two roles.

In the order parameter noise, Equation (2.75) shows that noise strength of the

order parameter field (and temperature) decreases as λ increase. This makes sense

since increasing λ is the same as increasing Wφ. As a result, the noise strength in the

“coarse grained" volume, defined by expanding Wφ, must must decrease to maintain

the noise strength the smaller physical volume ddo independent of Wφ.

Theses results also imply that when using PF noise in the diffuse interface limit,

fluctuations will only be relevant on length scales larger than Wφ and time scales

larger than τφ, which typically scaled to meso-scale values when λ > 1 is used. Con-

versely, that implies that fluctuations will be non-physical on length and time scales

smaller than Wφ and τφ. A plausible fix to this problem may be to reduce λ during

the nucleation phase of a simulation, and then increasing λ again later on in the sim-

ulation when the driving force for nucleation has significantly decreased due to solute

segregation. Unfortunately, this will require an intractable number of numerical time

steps until nucleation actually occurs, since decreasing λ also reduces the time scale

of each numerical time step.

An alternate route is to scale up λ to values somewhat greater than one. In that

case, the PF “nuclei" that emerge represent, very loosely speaking, a collection of

nucleated solid that has emerged within a volume W d
φ , and over the time scale τφ. If

the actual time and length scales over which microstructure evolves is much larger

than Wφ and τφ, respectively, this should not pose a problem to the interpretation

of results seeded by nucleation and growth in the presence of diffuse-interfaces. This

will be explored in the last part of the thesis.
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Results

This section first benchmarks the multi-order parameter phase field model in Eqs. (2.51)

and (2.55) against some standard benchmark results for two-phase eutectic growth in

binary alloys, for which theoretical predictions of the lamellar spacing is known. It

then discusses the use of the model in examining the properties of two-phase homoge-

nous nucleation. It begins by showing how one can relatively easily map the param-

eters of the model’s parabolic free energies onto practical alloy system by matching

the model’s equilibrium properties to a desired phase diagram of a eutectic binary

alloy. All simulations were carried out using a standard finite-difference Euler time-

stepping algorithm, as described in [46, 3] (and many other papers and books), and

is implemented in the previously mentioned AMR code.

3.1 Phase Diagram and Free Energy Construction

3.1.1 Ideal binary eutectic alloy

In this thesis, two alloy systems, with two types of phase diagrams, are used for

some of the simulations shown. The first is an arbitrarily ideal symmetric binary

mixture phase diagram shown in Fig. 3.1. An equilibrium phase diagram such as

this is made by carrying our a common tangent construction 1 between free energies

of any two phases, at a given temperature. Three phase free energies are shown for

1This is exactly the same as the Maxwell equal area construction.

47
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Figure 3.1: Ideal symmetric phase diagram for a fictitious alloy. Horizontal axis is concentration
of solute and on the vertical axis is the temperature. Regions below the orange and purple lines
are single phase coexistence of two solids (α to the left and β to the right. Regions above the
blue and yellow lines corresponds to liquid phase. The region between the orange and blue denoted
coexistence between one α solid and the liquid and the region between the purple and yellow denote
coexistence between β solid and the liquid.

a specific temperature in Fig. 3.2. The phase diagram in Fig. 3.1 was constructed

by selecting a Tm = 1600K, liquidus slope of 700 K/wt. frac. and an equilibrium

partition coefficient of 0.15. The eutectic concentration is evident by the horizontal

line occurring at T = 1250. For this fictitious alloy, we can fit the coefficients of

the parabolic free energies at some temperatures by simply using the equilibrium

conditions provided in section 2.6. This procedure is greatly simplified by assuming

equal free energy curvatures (in this case, all were taken to be 1), and fixing the well

height of the liquid phase such that only the well heights of the solid αβ phases move

with temperature. An example of what the free energies of the α, β and liquid phases

look like at some temperature (above the eutectic) is given in Fig 3.2

3.1.2 Silver-copper alloy system

A more complex phase diagram comes from an approximate experimental free energy

for eutectic Ag-Cu. The expressions for the solid and liquid free energies are taken
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Figure 3.2: Parabolic free energies for fictitious alloy phases, at a specific temperature. Blue is α
solid, yellow is β solid and orange is liquid. A simultaneously common tangent line to the blue and
orange curves marks the concentrations of α solid (tangent to blue curve) and liquid (tangent to
orange curve. A simultaneously common tangent line to the yellow and orange curves marks the
concentrations of the β solid (tangent to yellow curve) and liquid (tangent to orange curve.

directly from [46]. Fig 3.3 shows the constructed phase diagram, the same book by

Provatas and Elder [46]. The expressions for the free energies are not quoted here

as they are quite long, and won’t be used directly here. Readers interested in the

full expression may refer to chapter 6 of the referenced book. The remainder of this

subsection briefly describes the procedure in extracting parabolic free energies from

such experimental free energies, that may come from a thermodynamic data base i.e.

such as CALPHAD.

In principle, there a number of ways one can parabolically fit their system. We use

a simple taylor series expansion to second order around the equilibrium composition

(as found by a common tangent construction), and rearrange the resulting taylor

series into the appropriate form as required for section 2.6. For example, consider

an arbitrary solid free energy for an solid phase α (here, Greek letters denote solid
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Figure 3.3: Silver-copper phase diagram

phased and l (or L) the liquid phase),

fαexp ≈ f(cαeq) +
∂f(cαeq)

∂c

(
c− cαeq

)
+

1

2

∂2f(cαeq)

∂c2

(
c− cαeq

)2 (3.1)

where cαeq and the derivatives could be calculated directly from the experimental free

energy curves. Equation 3.1 can simply be rearranged by completing the square into

the form

fαparabolic =
Aα
2

(c− cαmin)2 +Bα (3.2)

By comparing the effective coefficients in Eq. (3.2) with the coefficients in Eq. (2.37)

at each temperature, it is straightforward to define the coefficients in Eq. (2.42), which

enter directly into the phase equations 2. In practice it is often much more convenient

2It is noted that it is also possible to fitting the experimental free energy plots to second order in
concentration (c) in piecewise intervals on 0 < c < 1. This will then lead to coefficients in Eq. (2.42)
that change with temperature and concentration interval. In this case, the parabolic free energy
based parameterization of the phase field model proposed here can be arbitrarily accurate to model
complex solidification in nearly any engineering alloy.
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Figure 3.4: Experimental free energy (purple and dark purple) overlaied with fitted parabolic free
energies (other colours) At T = 1230 K.

to do such algebraic manipulations of the free energy in algebraic software packages

such as Maple or Mathematica, because in general the experimental free energies have

relatively complicated expressions. Numerical fitting is also completely viable as well.

The above procedure was applied to the experimental expressions provided to me for

Ag-Cu. Figure 3.4 shown an example of parabolic fits of the liquid and two solid free

energies to experimental liquid and solid free energies.

It is worth briefly noting now that parabolic fits may have short comings. For

example in Fig 3.5, it seems the parabolic fitting we did in this thesis is quite reason-

able for lower temperatures, below the eutectic temperature. At higher temperatures

it is evident the parabola curvatures are quite high despite correctly capturing the

correct equilibrium minima. Figure 3.6 shows the approximation of the Ag-Cu phase

diagram in Fig. 3.3 re-built from the parabolic free energies whose coefficients are

extracted by matching to the experimental free energies as shown in Fig. 3.4. (This

is also the temperature used in simulations in section 3.3 ) It is further clear here

that at higher temperature ranges the fitting scheme starts to break down. Another

short coming of the fitting scheme used for this particular system is that on the β

side of the phase diagram we restricted the range of available temperatures because,
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Figure 3.5: Comparison of how well the parabolic approximations are at two different temperatures.
T = 1050 K (left) and T = 1450 K (right)

Figure 3.6: Side by side comparison of experimental(right) and approximately reconstructed phase
diagram(left). Temperature reconstruction range was lowered to T=1500 as that is the higher limit
for the β side of the phase diagram. The liquidus lines in this (left) case are extended for their full
metastable projection

in the reconstruction process, Equation (2.41) returns imaginary numbers which is

unphysical. Despite this however, the reconstruction is quite reasonable, recovering

the correct eutectic temperature and seems to match quite well in the region studied

in this thesis.

One possible remedy to this, is to essentially split the liquid free energies into

a piece wise free energies such that you recover a seperate χeqliq for each side of the

phase. For this particular system, since the liquid free energy was quite symmetric,

we had reasonable approximations in the lower temperature regime. But in the higher

temperature regime we saw that the common tangent construction failed. Thus it

may be possible to capture the full landscape by using the above method.
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Figure 3.7: Keff vs Temperature curves. A look at the liquid to solid curvature ratios at different
temperatures. Note the inflection at the Eutectic temperature, which is when the system transition
from stable to metastable

Another interesting finding for this fitting scheme is in Fig 3.7. Recall that this is

the ratio of the liquid to solid parabolic curvatures. We find that there is an inflection

at the eutectic temperature for the Keff values. One could interpret this as a tran-

sition from a stable(right of inflection) to metastable(left) region, which makes sense

since eutectic solidification (or perhaps, more generally, multi-phase solidification) is

a metastable process until full equilibrium is reached.

3.2 Lamellar Eutectic Structures

3.2.1 qualitative features

Features of lamellar eutectics are explored here using the ideal binary phase diagram in

Fig 3.1. The theory of steady state lamellar growth has been studied quite extensively,

and could be found in sources such as. [2, 51]. One key topic explored theoretically has

been the spacing or two-phase lamella in a eutectic solid front growing at a constant

speed. It is well-known that a stable lamellar growth front will exhibit a sinusoidal
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Figure 3.8: Lamellar front comprised of α phase (red) and β phase growing into an undercooled
liquid. An elimination event of an α lamella due to instability is shown ∼ 3/4 up the vertical
direction.

profile in concentration. A typical example is shown in Fig. 3.8. This figure also

shows the elimination of one of the lamellar phases due to an instability at the front

(discussed further below). Under ideal conditions, the solute concentration across the

lamellar front follows a sinusoidal distribution. Figure 3.9 shows this for two typical

aligned lamella, such as this that appear in Fig. 3.8. Under such conditions, it

is well known that the growth speed is linear with respect to the inverse square of

the lamellar spacing. The latter result a hallmark result for eutectic solidification

first derived by Jackson and Hunt [2]. Fig 3.10 shows this linear scaling from our

simulations with the proposed model, and is in agreement with previous eutectic

studies using a different type of phase-fraction-based model [50].

Another important physical feature of eutectic lamellar growth is the minimum

undercooling concept. This principal states that stable eutectic growth will operate

at (or near) a lamellar spacing such that the undercooling is minimized [51]. Insta-

bilities form at arbitrarily large or small lamellar spacings. While a full quantitative

treatment of this concept is beyond the scope of this thesis. Here, I demonstrate

that these expected instabilities indeed arise in the model developed in this thesis.

As lamellar spacing decreases, lamellar elimination is known to occur experimentally.

This effect is also captured in our simulations, as shown in Fig 3.8. And for arbitrarily

large spacing, oscillatory states take over as in Fig 3.11.
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Figure 3.9: Example concentration profile across a lamellar front where high concentration is the β
solid phase (see text) and low concentration is the α solid phase

Figure 3.10: Linear scaling or inverse square distance 1/λ2 between two-phase lamella as a function
of eutectic front speed ν∗. This result is consistent with the celebrated Jackson and Hunt scaling
analysis [2]
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Figure 3.11: Oscillation modes of lamella due to instability due to the minimum undercooling concept

Figures 3.8, 3.11 and 3.12 also illustrate another well-known effect in eutectic

solidification called short circuit diffusion between solid phase at the lamella growth

front. This is a known process where the composition ahead of the α front is rich in

β composition (and vice-versa); this coupled growth process can thought of as being

symbiotic relationship where each phase contributes to the other’s growth.

The results presented above will also be appearing in an upcoming publication by

Greenwood et al that showcases and benchmarks the workings of a new 3D parallel

adaptive mesh refinement code. A snapshot of the AMR mesh in 2D is shown in

Fig. 3.12.

3.2.2 Numerical quantities used in simulations

The phase field parameters used for this particular simulation shown above were as

follows: wobs = 55, Wα = Wβ = 1, τα = τβ = 1, ∆x = 0.8, ∆t = 0.032, λ = 3.59,

D̄ = 2.25, and in weight fraction,ceq(α) = 0.0875, ceq(α,l) = 0.5833, ceq(β) = 0.9125,

ceq(β,l) = 0.4167, c∞ = 0.5. In addition, an anti-trapping coefficient of at = 1/2
√

2.

and a diagonal susceptibility tensor with an equal curvature parabolic model i.e.

keff = 1 for all phases. The dimensionless supersaturations was |Ω| ≈ 0.168 for both
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Figure 3.12: Stable 3D growth of lamellae growing in on an adaptive mesh. Zoom in of the total
system is shown.
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phases, in an isothermal quench. Initialization of the system is done initializing an

array of alternating alpha-beta lamella which are interpolated (via the phase field)

between their equilibrium chemical potential in the bulk and far-field liquid chemical

potential. The initial chemical potential fields are done using Eqs 2.39 and 2.43 In

the data of Fig. 3.10, similar parameters as above were used, except here several

dimensionless supersaturations and spacings were explored. In this case, we also

set at = 0 and set q(φ) = 1 and λ ≈ 48. These simulations were carried out at

several lamellar spacings and several dimensionless supersaturations and grown until

a steady-state velocity was measurable to display the resulting linear scaling law

behaviour. Care was taken to ensure lamellae followed a regular growth pattern as

explained in [51]

3.3 Homogeneous Two-Phase Nucleation

This section adds noise to the phase field model equations to study two-phase homo-

geneous nucleation and growth. Preliminary results are presented.

3.3.1 Implementation of order parameter noise

The implementation of the noise addition to each order parameter is done as follows:

first for each phase α, β, an auxiliary ’ghost’ order parameter field is set up for each

phase. The purpose of a ’ghost’ field is to fluctuate an ideal liquid devoid of any

solid until a nucleus of that solid emerges, after which it "assigns" this ghost field

(containing the nucleus) to an order parameter field that "lives" in the solidifying

domain being tracked by the simulation. Ghost fields interact with the real grains in

the physical system so that nucleated grains cannot overlap with existing grains, and

are rejected through the phase field model’s interaction potential terms. Conversely,

real grains in the physical domain have no “awareness" of the ghost field. The noise

for each phase’s ghost field follows Guassian distributed noise (using the standard
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Figure 3.13: Top left to right, to bottom left to right: homogeneous nucleation of α (blue) at temper-
atures above the eutectic temperature, followed by inter-phase nucleation of β(yellow). Parameter
λ = 8.03 and initial supersaturation of Uα ≈ −0.21. The dimensionless system size was (1862
x̄/d̄o)2 and the dimensionless time (scaled by D̄/d̄o

2 ) was ≈ 35000 (top left), 79000(top right),
114000(bottom left), 158000(bottom right). Overbars represent scaling of space with W and time
with τ

C++ library) and variance given by Equation (2.75). This noise term is added to

the end of Equation (2.55), and every few iterations, the code checks if a phase has

nucleated and assigns the phase to a new order parameter. This assignment frequency

was every 10 time steps for these simulations in this thesis. It is found that results

don’t change if we further reduce this inspection frequency.

3.3.2 Demonstration of homogeneous nucleation

In this subsection, two-phase homogeneous nucleation was investigated for hypo-

eutectic concentration of the Ag-Cu alloy system in Fig. 3.3. Figure 3.13 shows an

example of a typical nucleation process after an isothermal quench below the eutectic

temperature for an alloy of average concentration of c∞ = 0.5wt%Cu. Time and space

have been appropriately scaled to be dimensionless. For this system the following

numerical set up was used: ∆x = 0.8W , ∆t = 0.0006τ λ = 8.03, D̄ = 5.03, d̄o = 0.11,

χ̄eql = 3.99 (rescaled to be dimensionless), kα(eff) ≈ 0.18, kβ(eff)
β ≈ 0.40, cαmin = 0.018,
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cliqmin = 0.502, cβmin = 0.895, and a liquid phase far field composition, c∞ = 0.5. This

far field composition puts the system in an hypoeutectic-like set up, where Uα ≈-0.21

and Uβ ≈0.123. A phase requires U < 0 to be thermodynamically favourable to

grow. Here, we expect α to nucleate first and β will be unable to nucleate until the

liquid is saturated enough that the local Uβ is favourable for it. This expectation

is demonstrated in fig 3.13, which illustrates homogeneous two-phase nucleation and

growth at an isothermal quench below the eutectice. The model’s parabolic parameter

extractions were done for the isothermal quench temperature T = 1230 K in Ag-Cu

phase diagram in Fig 3.3. It is noted that for time varying temperature changes,

one would continuously feed pre-fitted parameters from the above procedure at each

temperature.

The noise amplitude parameter Fexp ≈ 0.5 in Eq. (2.76). To get this value we

use experimental parameters for Silver. Stricly, each phase should have its own noise

value, however we assume for simplicity that it is reasonable to use the same noise

amplitude for both phases as the order of magnitudes would still be roughly the

same. The following parameters were used to calculate Equation (2.78) and sub-

sequently Fexp : Γα = 2.4 × 10−7m · K, Lf = 11.3 × 103J/mol, Tm = 1600K,

∆c2
eq = 0.57wt.fraction, Ωo = 10.2cm3/mol. This value of the noise amplitude seems

to be in quantitative agreement with [73, 74, 75]

3.3.3 λ invariance in nucleation

Figure 3.14 measure the solid fraction versus scaled(right) and unscaled (left) times

for three values of the inverse nucleation barrier λ : 9.8, 8.8, and 8.0, and other

parameters as in the data of Fig 3.13 with one exception; ∆x = 0.4W was used

instead. Based on our theoretical discussions earlier in the thesis, λ parameter sets

the interface width, and also the diffusional time scale of phase field simulations.

This implies that in a simulation with a higher λ, the characteristic time step for

solidification will be larger for larger value of λ. Correspondingly, the characteristic
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spacial scale will also be larger in the simulation with the larger λ value. However,

we expect that upon non-dimensionalization of all results, the λ-controlled space and

time scale should make results independent of λ, i.e. independent of the materials

nucleation barrier. The right plot of Fig 3.14 shows evidence of this dimensionless

scaling as well as Fig 3.15 which shows, at approximately the same dimensionless

space and time scale, the systems with different λ look similar. It is also worth

noting the beginning region before the inflection - here the primary phase nucleates

rapidly and the system reaches a temporary ’saturation’ in solidification until the

local super saturation, in other words, the driving force, in the liquid phase is enough

to continue nucleating the secondary phase and so on.

Figure 3.16(left) shows results from 20 statistical runs from the simulation in

Fig. 3.13. The typical amount of stochastic variance from run-to-run varies enough

to require averaging over many ensembles to obtain meaningful results. Thus, this

figure provided evidence to perform and average over 20 ensembles for 3 different λ in

Fig 3.14. It goes without saying that further ensemble averaging would even further

improve the convergence.

It is noted that, physically, Uα ≈ −0.21, corresponds to a fairly high cooling rate.

This, coupled with large λ, would contribute to spurious non-zero kinetic effects that

emerge to the eventual breakdown of the asymptotic analysis that maps the proposed

phase field model onto the corresponding sharp interface model of alloy solidification

in Eqs. (2.63), which allows use of the relationships in Eqs. (2.64) in the first place.

That may be a possible reason why the solid fraction rate don’t completely collapse

on to eachother. Another possible explanation is that, similar to how large ∆x values

affect dimensionless tip velocity convergence (for example see [7]), it is possible that

convergence would be better with a lower ∆x than used in these simulations. A

potential follow up of this apparent convergence could be examining a variety of λ,

∆x, and undercoolings.
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Figure 3.14: Solid fraction comparison in unscaled (left) and scaled (right) time, indicating the
effect of λ as a convergence parameter, averaged over 20 runs for each λ

Figure 3.15: Left λ = 14.7, dimensionless time ≈ 47000, dimensionless space ≈ 18672. Right λ =
8.03, dimensionless time ≈ 45000, dimensionless space ≈ 18622. The higher λ’s concentration map
is essentially a ’zoom’ in of the lower λ because of the nature of λ’s spatial scaling

Figure 3.16: Typical variance in 20 solid fraction simulations.



4
Conclusions

This thesis was largely devoted to deriving and demonstrating a new multi-order

parameter based phase field model for multi-phase solidification of complex alloys with

multiple solute components. The derivation is novel in two ways. First, it is based

in the grand potential. In this ensemble, the dynamics of solidification are described

in terms of chemical potentials and not concentrations as is done customarily in

most order-parameter type phase field models. This feature allows easy control of

thermodynamic driving forces to experimental properties of material phases it also

allows complete de-coupling of the properties through the mesoscale interface (W )

from solute variation. Second, the modelling tool derived here is physically consistent

compared to some solidification models in the literature that replace order parameters

with phase fractions. The latter type of models add constraints to the dynamics and

can lead to artificial phase adsorption at inter-phase junctions. Finally, by fitting

the free energy of any phase to quadratic order in concentration, we showed that the

thermodynamic driving forces that drive changes in chemical potentials and order

can be compactly cast as a second order expansion in local supersaturations Uα; the

Uα are elegant variables to work in as it depends only the susceptibility of a phase α

and its equilibrium chemical potential with its melt. Our formulation in terms of Uα

(Eqs. (2.51) and (2.55)) allows simulations to deviate from equilibrium significantly.

It also has the very appealing feature of reducing the model to simpler (and lower-

order) phase field models in the literature for which the parameter mapping of various

materials properties has been well established.
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In addition to the mesoscale equations of motions, we also added noise in our

theory to account for fluctuations and nucleation phenomena -one of the main topics

that the model was created to investigate. We work throughout in units where space

scales like the interface width, where time scales like the time scale of order param-

eter fluctuations and where energy scale like kBT ρ̄ (ρ̄ is the average density of the

material). As such, we are able to non-dimensionalise the noise and parameterize it

in terms of the inverse [dimensionless] nucleation barrier hight, the same parameter

that also enters the coupling between supersaturation and any order parameter. In

fact, our dimensionless model has three types of parameters: dimensionless diffusion

coefficient, the inverse nucleation barrier (assumed the same for each solid phase) and

the equilibrium susceptibility (i.e. curvature of its free energy)and chemical poten-

tial(s) of each phase. Through dimensional analysis we illustrate in this work how

the effect of λ can be consistently scaled out of phase field simulation results. This

is important when comparing the role of mesoscale parameters on the kinetics of

solidification microstructure evolution.

Simulations are performed to demonstrate our model on two materials systems.

The first is an ideal binary eutectic alloy and the second a Ag-Cu alloy. In both cases

the parameters of our model equations were fit and simulations run to test two specific

situations in two-phase solidification. Briefly, the effectiveness and shortcomings of

the parabolic fitting scheme are highlighted as well. It is also found that there is

a unique inflection in the keff values (the ratio of liquid to solid curvatures) with

temperature, which describe an expected stable-metastable transition at the eutectic

temperature.

The first set of simulations was the spacing and morphology of eutectic lamellar

cells. Here we demonstrated such physical features such as short circuit diffusion

and lamellar instabilities that give rise to oscillation and elimination behaviours. We

also demonstrate a quantitative analysis namely the classic Jackson and Hunt linear

scaling law of inverse lamellar spacing with eutectic growth speed. This further
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validates our new model.

We next explored homogeneous nucleation of two-phases in the so-called hypo

eutectic region of the eutectic phase diagram. When we quench below the eutectic,

we observe first primary phase nucleation (α) followed later by secondary phase (β)

nucleation in the remaining liquid. This sequence is in accord with the thermodynamic

driving forces, which are larger for α grains than for β grains in the hypo-eutectic

part of the phase diagram. We tracked the solid fraction versus time of the two-phase

nucleation process for different values of λ (i.e., inverse nucleation barrier). From

the rate of solid fraction curves, we find evidence that suggests the noise-induced

nucleation does indeed work self consistently in the model. Moreover, when time and

space are scaled by physical length scales in the problem, that are here "tuneable"

through λ, it appears that there is apparent convergence in the behaviour of the

solid fraction versus time behaviour that is independent of λ; presumably, though

this type of scaling the kinetics of solid fraction versus time depend only on the

thermodynamic driving force (i.e. the supersaturation of the original liquid), and

other materials parameters.

Going forward, the accessible nature of the parabolic model described here is

readily extensible to complex multi-component alloys as long as the correct ther-

modynamic free energies of their possible phases are characterizable theoretically or

experimentally e.g. with databases such as CALPHAD. Such a model, mixed with

adaptive mesh refinement algorithms such as the one my model has been used to de-

velop, can lead to very practical and experimentally relevant applications of the model

developed herein. In addition, a heterogeneous nucleation model should incorporated

alongside the homogeneous nucleation mechanism incorporated here. This will alloy

more realistic simulations of multi-phase solidification at slower solidification rates

and lower temperature quenches. This will allow a more complete and self-consistent

study of emerging non-equilibrium processes associated with rapid solidification and

additive manufacturing to be studied.



A
Phase Field Dynamics for General Complex Alloy Systems

A.1 Multi-Phase, Multi-Component Alloys with Quadratic

Free Energy Forms

Here we generalize the Section (2.6) for (n− 1) components and N solid phases, in-

dexed with α solidifying from a melt, denoted here by L. Our starting point is again

Eqs. (2.33) and (2.36). A phase, in general, will be denoted by ϑ. It is assumed

that the free energy of a phase can be expanded to quadratic order near some refer-

ence concentrations. While real material typically has complex functional forms to

describe their free energy, much of the physics of multi-component solidification can

be captured with this order of approximation of the free energy [76].

Free energy and susceptibility of a single phase

We begin by expressing the free energy of a phase ϑ by the quadratic form

fϑ(c1, c2, · · · , cn−1) =
1

2

n−1∑
i=1

n−1∑
j=1

Aϑij
(
ci − c̄ϑi

) (
cj − c̄ϑj

)
+

n−1∑
j=1

Bϑ
j

(
cj − c̄ϑj

)
+Dϑ,

(A.1)

where ci denotes the concentration of component i and Aϑij, c̄ϑi , Bϑ
j and Dϑ

i are fitting

parameter that are possibly temperature dependent and in principle extractable from

thermodynamic databases like Thermocalc/CALPHAD, at least for select ranges of
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coexistence between some solid phases and liquid. This is a reasonable form to de-

scribe a wide range of solid alloy phases [26, 76]. From Eq. (A.1) the chemical potential

in each phase is given by

µϑm =
∂fϑ

∂cm
=

n−1∑
j=1

Aϑmj
(
cj − c̄ϑj

)
+Bϑ

m (A.2)

and thus

∂µϑm
∂cl

=
∂2fϑ

∂cl∂cm
= Aϑml (A.3)

for any concentration. From Eq. (A.3), we define the elements of the inverse suscep-

tibility matrix of a phase by

[χϑ]−1
ij ≡

∂µϑi
∂cj

= Aϑij, (A.4)

For quadratic forms, the matrix [Aϑ] is symmetric, which makes its inverse,

[χϑ] =


Aϑ22

Aϑ11 Aϑ22−(Aϑ12)
2 − Aϑ12

Aϑ11 Aϑ22−(Aϑ12)
2

− Aϑ12

Aϑ11 Aϑ22−(Aϑ12)
2

Aϑ11

Aϑ11 Aϑ22−(Aϑ12)
2

 (A.5)

also a symmetric matrix.

Vector notation and transformations between concentrations and chemical potentials

In what follows, bold letters between square braces will denote (n − 1) × (n − 1)

matrices and vector arrows will denotes (n − 1) × 1 column or row matrices. It is

noted for future reference that

Bϑ
m = µϑm(cj = c̄ϑj ) ≡ µ̄ϑm (A.6)
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It will prove very useful to couch the multi-order parameter model in matrix no-

tation rather than index notation. An (n− 1)× 1 vector is represented by a vertical

column of numbers and its transpose by a corresponding horizontal row of numbers.

Thus, the n− 1 concentrations can be equivalently expressed as

~c =


c1

c2

...

cn−1

 , ~cT = [c1, c− 2, · · · , cn−1] (A.7)

Following this notation, we further define the following vectors to be used below,

~µT = [µ1, µ2, · · · , µn−1] (A.8)

(~̄cϑ)T = [c̄ϑ1 , c̄
ϑ
2 , · · · , c̄ϑn−1] (A.9)

(~̄µϑ)T = [µ̄ϑ1 , µ̄
ϑ
2 , · · · , µ̄ϑn−1] (A.10)

∆~C T ≡ (~cT − (~̄cϑ)T ) = [c1 − c̄ϑ1 , c2 − c̄ϑ2 , · · · , cn−1 − c̄ϑn−1] (A.11)

∆~µT ≡ (~µT − (~̄µϑ)T ) = [µ1 − µ̄ϑ1 , µ2 − µ̄ϑ2 , · · · , µn−1 − µ̄ϑn−1] (A.12)

In terms of the above definitions, the free energy of phase ϑ (Eq. (A.1)) can be written

as

fϑ(~c) =
1

2
∆~C T [χϑ]−1∆~C + ~̄µϑ ·∆~C + ~Dϑ (A.13)

where [χϑ] is matrix notation for the susceptibility matrix in Eq. (A.4).

Equation (A.2) can be used to define a transformation for commuting between

concentration and chemical potential variables, given by

∆~µ = ~µ− ~̄µϑ = [χϑ]−1∆~C (A.14)

∆~C = ~c− ~̄cϑ = [χϑ] ∆~µ, (A.15)
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where it is recalled that the components of ~̄µϑ are defined by Eq. (A.6).

Grand potential and concentration of a single phase

The grand potential of phase ϑ is given by

ωϑ = fϑ(c1, c2, · · · , cn−1)−
n−1∑
j=1

µj cj = fϑ(~c)− ~µ · ~c (A.16)

Substituting Eq. (A.15) for ∆~C in Eq. (A.13), and using Eq. (A.15) to write ~µ · ~c =

~µT [χϑ]∆~µ+ ~µ · ~̄cϑ, tranforms Eq. (A.16) to

ωϑ(~µ) = −1

2
∆~µT [χϑ]∆~µ− (~̄cϑ)T ~µ+ ~Dϑ (A.17)

In arriving at Eq. (A.17), use was made of the fact that the scalar ~µ · ~̄cϑ satisfies

~µ · ~̄cϑ = ~µT ~̄cϑ = (~̄cϑ)T ~µ, (A.18)

and similarly for any other scalar forms. Equation (A.17) is the vector analougue of

Eq. (2.44). From Eq. (A.17) the concentration corresponding to phase ϑ is given by

~c ϑ(~µ) = −∂ω
ϑ

∂~µ
= [χϑ]∆~µ+ ~̄cϑ (A.19)

The reader can validate this result by writing Eq. (A.17) in index form and carrying

out the differentiation −∂ωϑ/∂µi, and similarly for any other equation written in

matrix form.

It will be convenient to define the minimum, ~c min
ϑ , of the quadratic form of

Eq. (A.1). Setting ∂fϑ/∂~c = 0 gives

~c min
ϑ = ~̄cϑ − [χϑ] ~̄µϑ (A.20)
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Substituting Eq. (A.20) in Eq. (A.19) gives an alternate form for the phase concen-

tration,

~c ϑ(~µ) = [χϑ]~µ+ ~c min
ϑ (A.21)

Multi-phase concentration, susceptibility and concentration difference

For the case of a multi-phase system, Eq. (2.29) can be used to find the phase-

interpolated form of the concentration of each component. This is expressed in vec-

torial form as

~c (~φ, ~µ) =
∑
α

hα(~φ)
(
[χα]~µ+ ~c min

α

)
+

{
1−

∑
α

hα(~φ)

}(
[χL]~µ+ ~c min

L

)
(A.22)

Equation (A.22) can be further simplified by defining

∆~Cα = ~c min
L − ~c min

α (A.23)

Rearranging Eq. (A.22) and using Eq. (A.23) gives

~c (~φ, ~µ) =

{
[χL]−

∑
α

(
[χL]− [χα]

)
hα(~φ)

}
~µ−

∑
α

∆~Cα hα(~φ) + ~c min
L (A.24)

Defining an effective partition matrix [Kα] by

[Kα] = [χL]−1 [χα], (A.25)

the multi-phase concentration can be written as

~c (~φ, ~µ) = [χL]

{
I−

∑
α

(
I− [Kα]

)
hα(~φ)

}
~µ−

∑
α

∆~Cα hα(~φ) + ~c min
L , (A.26)

where I denotes the identity matrix. Equation (A.26) is the matrix analogue of

Eq. (2.46).
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Through the concentration, the susceptibility of a multi-phase system is found by

Eq. (2.30), i.e., ∂ci/∂µj. In vector form, this becomes

[χ] =
∂~c

∂~µ
= [χL]

{
I−

∑
α

(
I− [Kα]

)
hα(~φ)

}
(A.27)

Using Eq. (A.21), and making use of Eq. (A.25), we can also compactly express

the concentration difference ~c L(~µ)− ~c α(~µ) between phases as

~c L(~µ)− ~c α(~µ) = ∆~Cα + [χL] {I− [Kα]} ~µ, (A.28)

which is the matrix analogue of Eq. (2.49). Equation (A.28) will be relevant to the

chemical potential diffusion equation.

It is instructive to re-cast Equation (A.28) into a more convenient form as follows.

Consider that we are in a range of temperature such that for each local chemical

potential ~µ (or nominal composition) the solid phase α can co-exist, stably or meta-

stably, with the liquid phase (L). As such, the µeq
n−1 can be deduced from local

conditions Evaluating the phase concentration in Eq. (A.21) at the set of µeq
α(i), i =

1, · · · , n − 1 defines the corresponding equilibrium concentrations of the coexisting

liquid (L) and solid (α), i.e.,

~c ϑeq = [χϑ]~µ eq
α + ~c min

ϑ , ϑ = L, α (A.29)

Writing Eq. (A.29) for liquid (L) and solid (α), and subtracting the two results gives

∆~Cα = ∆~Cα
eq − [χL] {I− [Kα]} ~µ eq

α , (A.30)

where

∆~Cα
eq ≡ ~c Leq − ~c αeq (A.31)
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Substituting Eq. (A.30) into Eq. (A.28) and re-arranging reduces ~c L(~µ)− ~c α(~µ) to

~c L(~µ)− ~c α(~µ) = ∆~Cα
eq + [χL] {I− [Kα]} (~µ− ~µ eq

α ) (A.32)

Grand potential driving force for multi-phase solidification

The final quantity we need to derive the phase field equations we seek in this subsec-

tion is the driving force for each order parameter (phase) i.e., ωL(~µ)− ωα(~µ). Using

Eq. (A.17) to evaluate the grand potential of each phase gives,

ωL(~µ)− ωα(~µ) =− 1

2
~µT[χL]~µ+

1

2
~µT[χL]~̄µL +

1

2
(~̄µL) T[χL]~µ− 1

2
(~̄µL) T[χL]~̄µL

+
1

2
~µT[χα]~µ− 1

2
~µT[χα]~̄µα − 1

2
(~̄µα) T[χα]~µ+

1

2
(~̄µα) T[χα]~̄µα

−
(
~̄cL − ~̄cα

)T
~µ+

(
~DL − ~Dα

)
(A.33)

Several tedious "clean-up" steps are required to simplify Eq. (A.33). The first is to

use Eq. (A.20) to write

(
~̄cL − ~̄cα

)T
~µ = (∆~Cα)T~µ+ (~̄µL) T[χL]~µ− (~̄µα) T[χα]~µ (A.34)

The second is to recall that, by definition, ωL(~µ eq
α ) = ωα(~µ eq

α ), which, using Eq. (A.17)

allows us to calculate ~DL − ~Dα, yielding

~DL − ~Dα =− 1

2
(~µ eq

α )T [χα]~µ eq
α +

1

2
(~µ eq

α )T [χα]~̄µα +
1

2
(~̄µα) T[χα]~µ eq

α −
1

2
(~̄µα) T[χα]~̄µα

+
1

2
(~µ eq

α )T [χL]~µ eq
α −

1

2
(~µ eq

α )T [χL]~̄µL − 1

2
(~̄µL)T[χL]~µ eq

α +
1

2
(~̄µL)T[χL]~̄µL

+
(
~̄cL − ~̄cα

)T
~µ eq
α (A.35)

When Eq. (A.34) and Eq. (A.35) are inserted in the last line of Eq. (A.33), the

expression
(
~̄cL − ~̄cα

)T
~µ eq
α − (∆~Cα)T~µ emerges, which we need to simplify further.

The second terms in this expression is derived directly from Eq. (A.29). The first
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term is found by equating the expression for ~c min
ϑ from Eq. (A.20) and Eq. (A.29).

Proceeding thus, this expression becomes,

(
~̄cL − ~̄cα

)T
~µ eq
α − (∆~Cα)T~µ = −(~µ eq

α )T
(
[χL]− [χα]

)
~µ eq
α

+(~µ eq
α )T

(
[χL]− [χα]

)
~µ

+(~̄µL)T [χL]~µ eq
α − (~̄µα)T [χα]~µ eq

α − (∆~Cα
eq)T (~µ− ~µ eq

α )

(A.36)

Substituting Eq. (A.34) and Eq. (A.35) into Eq. (A.33) and making use of Eq. (A.36),

finally gives, after tedious term-collecting,

ωL(~µ)− ωα(~µ) = −1

2
(~µ− ~µ eq

α )T
(
[χL]− [χα]

)
(~µ− ~µ eq

α )− (∆~Cα
eq)T (~µ− ~µ eq

α )

(A.37)

Casting the driving force in term of supersaturations

It is instructive to re-cast Eq. (A.37) in a form that is more easily comparable to the

form of the binary model in the previous section. We define a reduced supersaturation

vector ~Uα associated with each phase by

~Uα =
[χL]

|∆~Cα
eq|

(~µ− ~µ eq
α ) (A.38)

and a corresponding concentration normal vector n̂c by

n̂c =
∆~Cα

eq

|∆~Cα
eq|

(A.39)

where | | denotes the usual vector norm (and |n̂c| = 1). In terms of Eq. (A.38) and

Eq. (A.39), Eq. (A.37) can be written the more compact form

ωα(~µ)− ωL(~µ) = |∆~Cα
eq|2

{
~UT
α

(I − [Kα])

2
+ n̂Tc

}
[χL]−1 ~Uα (A.40)
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Equation (A.40) is exactly the matrix analogue of the driving force used in the binary

alloy phase field equations in previous sections, except that here it is applicable to

multiple components.

Final form of phase field equations in terms of supersaturation vector

We summarize here the various expressions from the previous sub-sections to compile

the final form of the phase field equations of motions. We state the equations first,

followed by a summary of the expression that are required to evaluate the various

expressions that go into the evolution equations.

The dynamical evolution equations for each order parameter and for the chemical

potential (corrected by anti-trapping) become,

τα
∂φα
∂t

=W 2
α∇2φα−f ′DW(φα)−wobsφα

N∑
β 6=α

φ2
β −

(
(I − [Kα])T

2
~Uα + n̂c

)T

[λα] ~Uα g
′
α(φ)

(A.41)

and

[χ]
∂~µ

∂t
=∇ ·

[
[M ]∇~µ+

∑
α

Wαa(φ) |∆~Cα
eq|
{
n̂c+(I − [Kα])T ~Uα

}∂φα
∂t

∇φα
|∇φα|

]
+

1

2

∑
α

|∆~Cα
eq|
{
n̂c+(I − [Kα])T ~Uα

} ∂φα
∂t

, (A.42)
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where

~Uα =
[χL]

|∆~Cα
eq|

(~µ− ~µ eq
α ) (A.43)

n̂c =
∆~Cα

eq

|∆~Cα
eq|

(A.44)

[Kα] = [χL]−1 [χα] (A.45)

[λα] = λ̂α|∆~Cα
eq|2[χL]−1 (A.46)

∆~Cα
eq = ~c Leq − ~c αeq (A.47)

[χ] = [χL]

{
I−

∑
α

(
I− [Kα]

)
hα(~φ)

}
(A.48)

[M ] =
N∑
α

qα(φ)[D]α [χα] +

(
1−

N∑
α

qα(φ)

)
[DL] [χL] (A.49)

The outer gradient operator in Eq. (A.42) contracts with the index of the inner

gradients for the first and second terms on the right hand side of Eq. (A.42). The

matrices [χL] and [χα] are given by Eq. (A.5). The other parameters, τα, Wα wobs,

as well as the interpolation functions are as defined in the previous sections. It is

clear that equations Eq. (A.41) and Eq. (A.42) are precisely the vector analogues of

Eq. (2.55) and Eq. (2.51), and in the special case of a single component and single

order parameter, these equations collapse back to equations Eq. (2.59) and Eq. (2.60).

It is noted that the evolution of each order parameter φα is driven by the entire

vector of reduced supersaturations in ~Uα. Also, the are there are as many ~Uα as there

are distinct solid phases, since they represent the differences in chemical potentials

relative to the equilibrium chemical potential of each phase (α).

In the above model, the susceptibility matrix [χ] and [M ] need to be evaluated at

each point in space, [χL]−1, [χα] and [Kα] need only be computed once. However, for

a more robust description of realistic alloys, the coefficient matrices in the equations

of motion should be made ~µ (or ~c) dependent, thus adopting changing values that
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can better capture the properties of liquid and solid over different broad ranges of

concentration space that can occur in the system.



B
Incorporating Temperature

The consideration of non-isothermal conditions can be readily described as well. In

order to do so, we re-write the grand potential functional to explicitly consider tem-

perature. We have

Ω[φ,µ, T ] =

∫
V

{
ωint (φ,∇φ) +

N∑
α

gα(φ)ωα(µ, T ) +

[
1−

N∑
α

gα(φ)

]
ω`(µ, T )

}
,

(B.1)

where we have neglected the temperature (T ) dependence on the interaction part of

the functional. Strictly speaking, the surface term, energy barrier height, and grain

interaction constants in ωint should include some temperature dependence. However,

these constants will be assumed for simplicity to be independent of temperature.

Temperature evolution is derived by considering the conservation the transport of

internal energy e, which written as,

∂e

∂t
= ∇ (k(φ, T )∇T ) , (B.2)

where k(φ, T ) is the transport coefficient, i.e., the heat conductivity. The energy can

be eliminated in favour of temperature through the generlized entropy density, which

is given by the variational of the grand potential with temperature,

s = −δΩ[φ,µ, T ]

δT
. (B.3)

77
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The variation of the functional becomes

δΩ =

∫
V

({
−σα∇2φα +Hαf

′
DW(φα) +

∑
β 6=α

Ψ′(φα,φβ) + g′α(φ)
[
ωα(µ, T )− ω`(µ, T )

]}
δφα

+
∑
i

{
N∑
α

gα(φ)
∂ωα(µ, T )

∂µi
+

[
1−

N∑
α

gα(φ)

]
∂ω`(µ, T )

∂µi

}
δµi

+

{
N∑
α

gα(φ)
∂ωα(µ, T )

∂T
+

[
1−

N∑
α

gα(φ)

]
∂ω`(µ, T )

∂T

}
δT

)
d3r (B.4)

Considering the temperature variation, we have

s(φ,µ, T ) = −

{
N∑
α

gα(φ)
∂ωα(µ, T )

∂T
+

[
1−

N∑
α

gα(φ)

]
∂ω`(µ, T )

∂T

}
, (B.5)

which can be cast into the form

s(φ,µ, T ) =
N∑
α

gα(φ)sα(µ, T ) +

[
1−

N∑
α

gα(φ)

]
s`(µ, T ), (B.6)

where we have used sϑ = −∂ωϑ/∂T , the entropy density for a particular phase. The sϑ

define auxiliary entropy fields in the same sense as the auxiliary concentration fields.

Using the thermodynamic relation de = Tds, which is valid at constant pressure, we

have

∂e

∂t
= T

∂s

∂t

= T

(
N∑
α

∂s

∂φα

∂φα
∂t

+
∑
i

∂s

∂µi

∂µi
∂t

+
∂s

∂T

∂T

∂t

)
. (B.7)

We readily identify the specific heat capacity, cp, from the above equation as being

cp(φ,µ, T ) =T
∂s

∂T

=
N∑
α

gα(φ)cαp (µ, T ) +

[
1−

N∑
α

gα(φ)

]
c`p(µ, T ), (B.8)
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while the other derivatives in the expression are

∂s(φ,µ, T )

∂µi
=

N∑
α

gα(φ)
∂sα(µ, T )

∂µi
+

[
1−

N∑
α

gα(φ)

]
∂s`(µ, T )

∂µi
, (B.9)

and

∂s(φ,µ, T )

∂φα
=

N∑
α

g′α(φ)
[
sα(µ, T )− s`(µ, T )

]
, (B.10)

The evolution equation for temperature now reads

∂T

∂t
=

1

cp(φ,µ, T )

[
∇ · k(φ, T )∇T − T

N∑
α

g′α(φ)
[
sα(µ, T )− s`(µ, T )

] ∂φα
∂t

−T
n−1∑
i

(
N∑
α

gα(φ)
∂sα(µ, T )

∂µi
+

[
1−

N∑
α

gα(φ)

]
∂s`(µ, T )

∂µi

)
∂µi
∂t

]
. (B.11)

The concept of anti-trapping current can also be considered for temperature as latent

heat can also be trapped. This effect was initially studied by Almgren for solidification

of a pure material [60] where different thermal diffusivities were considered. However,

since the time scale of solute diffusion is orders of magnitude slower than temperature

diffusion, we believe that this will not be necessary

The order parameter equation remains the same, aside from including some tem-

perature dependence, i.e.,

∂φα
∂t

= Mφα

[
σα∇2φα −Hαf

′
DW(φα)−

∑
β 6=α

Ψ′(φα,φβ)− g′α(φ)
[
ωα(µ, T )− ω`(µ, T )

]]
.

(B.12)
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The evolution of chemical potential, including anti-trapping, now reads

∂µi
∂t

=
1

χ(φ, µi, T )

{
∇ ·

[∑
j

Mij(φ, T )∇µi +
∑
α

a(φ)W
[
c`i(µ, T )− cαi (µ, T )

] ∂φα
∂t

∇φα
|∇φα|

]

−
∑
α

h′α(φ)
[
cαi (µ, T )− c`i(µ, T )

] ∂φα
∂t
−

(
N∑
α

hα(φ)
∂cαi (µ, T )

∂T
+

[
1−

N∑
α

hα(φ)

]
∂c`i(µ, T )

∂T

)
∂T

∂t

}
(B.13)

In the case of quadratic free energy fittings, i.e. like in section 2.6 and 3.1, if the

fitting scheme is well defined at each temperature, it is reasonable to assume one can

just interpolate between parabolic fitting parameters to induce a cooling rate in the

simulation. However, spurious kinetics may arise if the parameters change dramat-

ically between temperature indices and the interpolation scheme doesn’t accurately

capture this. In general, at low rates of solidification such effects negligible in theory,

but worth investigating.



Bibliography

[1] Mathis Plapp. Unified derivation of phase-field models for alloy solidification

from a grand-potential functional. Phys. Rev. E, 84:031601, 2011.

[2] KA Jackson and JD Hunt. Lamellar and rod eutectic growth. AIME Met Soc

Trans, 236:1129–1142, 1966.

[3] Nana Ofori-Opoku and Nikolas Provatas. A quantitative multi-phase field model

of polycrystalline alloy solidification. Acta Materialia, 58(6):2155 – 2164, 2010.

[4] C. Tong, M. Greenwood, and N. Provatas. Phys. Rev. E, 77:1, 2008.

[5] J. B. Collins and H. Levine. Phys. Rev. B, 31:6119, 1985.

[6] P. C. Hohenberg and B. I. Halperin. Rev. Mod. Phys., 49:435, 1977.

[7] A. Karma and W. .J Rappel. Quantitative phase-field modeling of dendritic

growth in two and three dimensions. Phys. Rev. E, 57:4323–4349, 1998.

[8] J.S. Langer. Rev. Mod. Phys., 52:1, 1980.

[9] G. Caginalp and E. Socolovsky. SIAM J. Sci. Comp., 15:106, 1991.

[10] N Provatas, N Goldenfeld, and J Dantzig. Efficient computation of dendritic

microstructures using adaptive mesh refinement. Phys. Rev. Lett., 80:3308–3311,

1998.

[11] N. Provatas, J. Dantzig, and N. Goldenfeld. J. Comp. Phys., 148:265, 1999.

[12] J. A. Warren and W. J. Boettinger. Acta Metall. Mater. A, 43:689, 1995.

[13] A. Karma. Phys. Rev. Lett, 87:115701, 2001.

81



82 BIBLIOGRAPHY

[14] B. Echebarria, R. Folch, A. Karma, and M. Plapp. Phys. Rev. E., 70:061604–1,

2004.

[15] J. C. Ramirez, C. Beckermann, A. Karma, and H. J. Diepers. Phys. Rev. E,

69:051607, 2004.

[16] A. G. Khachaturyan. Theory of structural transformations in solids. Wiley-

Interscience Publications (New York), 1983.

[17] K. R. Elder, Zhi-Feng Huang, and Nikolas Provatas. Amplitude expansion of the

binary phase-field-crystal model. Phys. Rev. E, 81:011602, Jan 2010.

[18] Zhi-Feng Huang, K. R. Elder, and Nikolas Provatas. Phase-field-crystal dynam-

ics for binary systems: Derivation from dynamical density functional theory,

amplitude equation formalism, and applications to alloy heterostructures. Phys.

Rev. E, 82:021605, Aug 2010.

[19] Kuo-An Wu, Ari Adland, and Alain Karma. Phase-field-crystal model for fcc

ordering. Phys. Rev. E, 81:061601, 2010.

[20] Nana Ofori-Opoku, Jonathan Stolle, Zhi-Feng Huang, and Nikolas Provatas.

Complex order parameter phase-field models derived from structural phase-field-

crystal models. Phys. Rev. B, 88:104106, Sep 2013.

[21] L. Q. Chen and W. Yang. Phy. Rev. B, 50:15752, 1994.

[22] A. Kazaryan, Y. Wang, S. A. Dregia, and B. R. Patton. Phys. Rev. B, 61:14275,

2000.

[23] D. Fan, S. P. Chen, L.-Q. Chen, and P. W. Voorhees. Acta Materialia, 50:1897,

2002.

[24] J. Z. Zhu, T. Wang, A. J. Ardell, S. H. Zhou, Z. K. Lui, and L. Q. Chen. Acta

Materialia, 52:2837, 2004.



BIBLIOGRAPHY 83

[25] J. Zhu, T. Wang, S. Zhou, Z. Liu, and L.-Q. Chen. Acta Materialia, 52:833,

2004.

[26] Nele Moelans. Acta materialia, 59:1077, 2011.

[27] J. Tiaden, B. Nestler, H. Diepers, and I. Steinbach. Physica D, 115:73, 1998.

[28] S. G. Kim, W. T. Kim, and T. Suzuki. Phys. Rev. E, 60:7186, 1999.

[29] S. G. Kim. Acta Materialia, 55:4391, 2007.

[30] C. Shen, Q. Chen, Y. H. Wen, J. P. Simmons, and Y. Wang. Scripta Materialia,

50(7):1023 – 1028, 2004.

[31] N. Moelans, B. Blanpain, and P. Wollants. Phys Rev Lett, 101(025502), 2008.

[32] N. Moelans, B. Blanpain, and P. Wollants. Phy. Rev. B, 78:024113, 2008.

[33] B. Morin, K.R. Elder, M. Sutton, and M. Grant. Phys. Rev. Lett., 75:2156, 1995.

[34] R. Kobayashi, J. A. Warren, and W. C. Carter. Physica D, 119:415, 1998.

[35] R. Kobayashi, J. A. Warren, and W. C. Carter. Physica D., 140:141, 2000.

[36] R. Kobayashi and J. A. Warren. Physica A, 356:127, 2005.

[37] L. Gránásy, T. Pusztai, and J. A. Warren. J. Phys.: Condens. Matter, 16:R1205,

2004.

[38] Badrinarayan P. Athreya, Nigel Goldenfeld, Jonathan A. Dantzig, Michael

Greenwood, and Nikolas Provatas. Adaptive mesh computation of polycrys-

talline pattern formation using a renormalization-group reduction of the phase-

field crystal model. Phys. Rev. E, 76:056706, Nov 2007.

[39] I. Steinbach, F. Pezzolla, B. Nestler M. Seebelberg, R. Prieler, and G. J. Schmitz.

Physica D, 94:135, 1999.

[40] H. Garcke, B. Nestler, and B. Stoth. SIAM J. Appl. Math, 60:295, 1999.



84 BIBLIOGRAPHY

[41] B. Nestler, H. Garcke, and B. Stinner. Phys. Rev. E, 71:041609–1, 2005.

[42] B. Bottger and I. Steinbach. Acta Materialia, 54:2697, 2006.

[43] I. Steinbach. Apel M. Physica D, 217:153, 2006.

[44] J. Eiken, B. Böttger, and I. Steinbach. Phys Rev E, 73:066122, 2006.

[45] I. Steinbach. Modelling Simul. Mater. Sci. Eng., 17:073001, 2009.

[46] Nikolas Provatas and Ken Elder. Phase-Field Methods in Materials Science and

Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

[47] R. Folch and M. Plapp. Phys. Rev. E., 72:011602, 2005.

[48] A. Choudhury and B. Nestler. Phys. Rev. E, 85:021602, 2012.

[49] Johannes Hotzer, Marcus Jainta, Philipp Steinmetz, Britta Nestler, Anne

Dennstedt, Amber Genau, Martin Bauer, Harald Kostlerc, and Ulrich Rudec.

Large scale phase-field simulations of directional ternary eutectic solidification.

Acta Materialia, 93:194, 2015.

[50] B Nestler and AA Wheeler. A multi-phase-field model of eutectic and peri-

tectic alloys: numerical simulation of growth structures. Physica D: Nonlinear

Phenomena, 138(1):114–133, 2000.

[51] Jonathan A Dantzig and Michel Rappaz. Solidification. EPFL press, 2009.

[52] Martin Grant. Dirty tricks for statistical mechanics: time dependent things.

Lecture Notes for Advanced Statistical Physics, Version 0.8, August 2005.

[53] Jan-Olof Andersson and John Agren. Models for numerical treatment of multi-

component diffusion in simple phases. J. Appl. Phys., 72(4):1350, 1992.

[54] Kuo-An Wu and Alain Karma. Phase-field crystal modeling of equilibrium bcc-

liquid interfaces. Phys. Rev. B, 76:184107, Nov 2007.



BIBLIOGRAPHY 85

[55] Sami Majaniemi and Nikolas Provatas. Deriving surface-energy anisotropy

for phenomenological phase-field models of solidification. Phys. Rev. E,

79(1):011607, 2009.

[56] Nikolas Provatas and Sami Majaniemi. Phase-field-crystal calculation of crystal-

melt surface tension in binary alloys. Phys. Rev. E, 82(4):041601, 2010.

[57] Hao Zhang, David J. Srolovitz, Jack F. Douglas, and James A. Warren. PNAS,

106(19):7735, 2009.

[58] G. Caginalp and P. C. Fife. Phys. Rev. B, 11:7792, 1986.

[59] G. Caginalp. Phys. Rev. A, 39:5887, 1989.

[60] R. Almgren. SIAM J. Appl. Math., 59:2086, 1999.

[61] Q. Bronchart, Y. Le Bouar, and A. Finel. Phys Rev Lett, 100:015702, 2008.

[62] Chakin and Lubensky. Principles of Condensed Matter Physics, page 629. North

Holland, Amsterdam, 1987.

[63] A. Karma and W.-J. Rappel. Phys. Rev. E, 60:3614, 1999.

[64] Blas Echebarria, Alain Karma, and Sebastian Gurevich. Phys. Rev. E, 81:021608,

2010.

[65] Chaohui Tong, Michael Greenwood, and Nikolas Provatas. Quantitative phase-

field modeling of solidification in binary alloys with nonlinear phase coexistence

curves. Physical Review B, 77(6):064112, 2008.

[66] R.C. Brower, D. Kessler, J. Koplik, and H. Levine. Phys. Rev. Lett., 51:1111,

1983.

[67] E. Ben-Jacob, N. Goldenfeld, J.S. Langer, and G. Schön. Phys. Rev. Lett.,

51:1930, 1983.



86 BIBLIOGRAPHY

[68] E. Ben-Jacob, N. Goldenfeld, B. G. Kotliar, and J. S. Langer. Phys. Rev. Lett.,

53:2110, 1984.

[69] D. Kessler J. Koplik and H. Levine. Phys. Rev. A, 30:3161, 1984.

[70] D. A. Kessler and H. Levine. Phys. Rev. A., 39:3041, 1989.

[71] E. Brener and V. I. Melnikov. Adv. Phys., 40:53, 1991.

[72] Y. Pomeau and M. Ben Amar. Solids far from equilibrium, page 365. edited by

by C. Godreche, (Cambridge Press), 1991.

[73] D Tourret and A Karma. Growth competition of columnar dendritic grains: A

phase-field study. Acta Materialia, 82:64–83, 2015.

[74] Jihene Ghmadh, Jean-Marc Debierre, Julien Deschamps, Marc Georgelin,

Rahma Guérin, and Alain Pocheau. Directional solidification of inclined struc-

tures in thin samples. Acta Materialia, 74:255–267, 2014.

[75] Alain Karma and Wouter-Jan Rappel. Phase-field model of dendritic sidebranch-

ing with thermal noise. Physical review E, 60(4):3614, 1999.

[76] J. Heulens, B. Blanpain, and N. Moelans. Acta materialia, 59:2156, 2011.


	 Abstract
	 Résumé
	 Statement of Originality
	 Acknowledgments
	 Introduction
	Single-order parameter phase field models
	Multi-order parameter phase field models
	Phase field models with an orientation order parameter 
	Phase field models based on phase fraction fields
	Decoupling solute concentration from the order parameter through the interface 
	Dealing with spurious interface kinetics caused by numerically diffuse interfaces
	Deriving phase field models in the grand canonical ensemble
	Model developed in this thesis

	Paradigm of Two-Phase Solidification
	Use of Adaptive Mesh Refinement in Phase Field modelling
	Outline of thesis

	 Grand Potential Phase Field Model
	Grand Potential Thermodynamics
	Grand Potential Phase Field Functional
	Interaction between order parameters
	Properties of the single-phase grand potential (bold0mu mumu )
	Concentration of a multi-phase system in the grand potential ensemble

	Phase Field Dynamics
	Traditional form
	Reformulation of phase field model dynamics in terms of  and 
	Order parameter equaitons
	Chemical potential equations

	Equilibrium Properties of Grand Potential Functional
	Equilibrium concentration field
	Equilibrium solid-liquid interfaces
	Equilibrium solid-solid interfaces

	Non-Variational Dynamics for Diffuse Interfaces
	Multi-Phase Binary Alloy with Parabolic Free Energies
	Phase coexistence
	Grand potential of a phase, and multi-phase concentration and susceptibility
	Casting the phase field equations in terms of supersaturation

	Connection to Previous Models
	Special case 1 : Pure material solidification
	Special case 2 : Polycrystalline dilute binary alloy solidification
	Recovering the Supersaturation Limit of Plapp11

	Thermal fluctuations in the phase field equations
	Non-dimensional form of the phase field equations
	Simplification of the noise amplitude for the order parameter equation
	Calculation of the capillary length

	Interpreting the role of  in phase field modelling
	Interpreting the dual role of  in the noise amplitude


	 Results
	Phase Diagram and Free Energy Construction
	Ideal binary eutectic alloy
	 Silver-copper alloy system

	Lamellar Eutectic Structures
	qualitative features
	Numerical quantities used in simulations

	Homogeneous Two-Phase Nucleation
	Implementation of order parameter noise
	Demonstration of homogeneous nucleation
	 invariance in nucleation


	  Conclusions
	 Phase Field Dynamics for General Complex Alloy Systems
	Multi-Phase, Multi-Component Alloys with Quadratic Free Energy Forms

	  Incorporating Temperature
	 References

