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Abstract
The classical control approach to Linear Time-Invariant (LTI) systems is a mature sub­

ject, that is [ully treated in the control litterature and widely used in the industry. But

LTI systems can pretend ta he valid representations of real-life phenomena only within

strict operational restrictions, since aIl observable phenomena are inherently nonlinear and

nonautonomous. Renee, modern control theories are interested mainly in nonlinearity.

It is a known fact that perfect control cannat be obtained with a closed-Ioop structure.

while it is theorically achieved in an open-Ioop structure when the controller is the exact

inverse of the process. This is the main motivation for a .\tlocleJ-Based (MB) control ap­

proach, that relies on a more or less precise representation of the process or its inverse. The

problem of identification consists in finding that mode!.

An analytical approach is obviously practical only when we want to study nonlinear

systems of low complexity. An alternative for more complex processes that has raised a lot

of interest in recent years relies on .4rtificial Neural NetlVorks (ANNs). These are used in

conjunction with learning algorithm to acquire a knowledge on processes. But it is usually

difficult to use ANNs efficiently: as a consequence, a prion knowledge must be injected in

the original ANN design hy an experienced operator in arder ta obtain an efficient controller.

[n this work we will explore an alternative avenue ta the problems of control and

identification, where Cellular Automata (CAs) will be considered in place of ANNs. CAs not

only share ANNs' most valuable characteristics but they also have interesting characteristics

of their own, for a structurally simpler architecture. CAs applications so far have been

mainly restrained to simulating natural phenomena occuring in a finite homogeneous space.

Concepts relevant ta the problems of control and identification will he introduced in

the first part of our work. CAs will then be introduced, with a discussion of the issues

raised by their application in the context. A working prototype of a CA-based controller is

introduced in the last part of the work, that confirms the interest of using CAs ta address

the problem of nonlinear adaptive control.
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Résumé

L'approche classique du contrôle de Procédés Linéaires .I\utonomes (PLA) est un sujet

mature, abondemment traité dans [a littérature et utilisé dans l'industrie. Seulement, les

phénomènes observables étant tous non-linéaires et non-autonomes de façon inhérente. [es

PLA ne peuvent prétendre en ètre des représentations valides qu'à l'intérieur de certaines

limites opérationelles plus ou moins restrictives. Les recherches modernes en controle. qui

s'intéressent à tout le spectre de complexité que permet la non-linéarité. non-seulement

contribuent à ['avancement des connaissances mais répondent également aux besoins de

l'industrie.

n est établi que le contrôle pa..tfait d'un procédé quelconque est impossible à obtenir

en boucle-fermée, alors qu'en boucle-ouverte on obtient théoriquement le contrôle parfait

lorsque le contrôleur est l'inverse exact du procédé. Cette observation est il l'origine d'une

approche basée sur un modèle (model-based control), qui dépend d'un modèle plus ou moins

précis du procédé ou de son inverse. Le problème d'identification consiste à établir ce modèle.

Une approche analytique du procédé est évidemment exclue dès qu'on aborde un

procédé non-linéaire de complexité moyenne, qui deviendrait rapidement impénétrable. Une

alternative qui a soulevé beaucoup d'enthousiasme ces dernières années utilise des Réseaux

de Neurones A.rtificiels (RNA) couplés à des algorithmes d'apprentissage pour acquérir

une connaissance d'un système. Mais l'utilisation de RNA est habituellement délicate.

et l'expêrimentateur est souvent forcé d'avoir recours à des hypothèses simplificatrices et

d'établir une structure appropriée du réseau.

Dans ce travail nous explorons une alternative prometteuse aux problèmes d'iden­

tification et de controle basée sur les Automates Cellulaires (AC), qui ne présentent pas les

désavantages des RNA. Les AC ont jusqu'ici trouvé des applications essentiellement dans la

simulation de phénomènes naturels prenant place dans un espace homogène restreint .

Les concepts relatifs aus problèmes de contrôle et d'identification seront introduits en

première partie de ce travail, avant que les AC et leur utilisation dans ce contexte ne soient

ii



•

•

•

étudiés. Un prototype basé sur ces considérations est introduit en dernière partie, qui

confirmera la validité des AC dans un contexte de contràle non-linéaire adaptatif.
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Chapter 1

Introduction

1.1- Computer Science and Nonlinear Control

One can define the problem of control as the problem of determining what actions must

be applied to a given process so that it will respond with a desired behaviour. Although

simple, this definition does not reflect the tremendous complexity of the discipline. which

has been evolving on its own only since the beginning of the 40's.

Traditionally and historically, control is an engineering discipline since it was first de­

veloped to answer important engineering issues. The first sensors and actuators were orten

simple electrical or mechanical devices whose "simplicity"' was in agreement with that of

the problems addressed. As a matter of facto although every observable processes are inher­

ently nonlinear. the theory was concerned solely with simpler lineat or linearized systems.

as an early restriction. This was imputable to the lack of analytical tools ta study general

differential equations. Since a linearized system is really j ust an approximation valid only

under severe restrictions, the limitations of the approach are serious.

Since then, widespread use of digital computers has greatly modified the picture. The

creation of efficient numerical methods able ta solve general differential equations has made

it easier to assess nonlinearity, a main subject of interest for modern control theories. But

the step from linearity to nonlinearity rnight be greater than it seems at first: whereas

general techniques exist to construet linear controllers, no sueh method could be designed

for nonlinear systems sinee they share no universal characteristic. Furthermore. the study

of nonlinear control is motivated by the needs to control a process in a better way (i. f., in

an optimal way) and on a wider range of operation-otllerwise we would be quite happy

with linear approximations. This, in turn, requires a much more detailed knowledge of the

process ta be controlled. As a result, the design of an efficient nonlinear controller is a

costly, lengthy and error-prone process.

l
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As an answer to these issues, nonlinear control relies often on computer science paradigms:1

for instance, partial a priori knowledge and experimental information can be processed by

a learning technique to evolve a controlIer, whose performance can then be maintained by

online optimization techniques.

1.2- Overview of the Work

rn general terms, Cellular Automata (CAs) form a class of nonlinear dynamical systems

discrete in space and time, consisting of highly-interconnected finite-state automata. (n the

present work, our goal is to assess the possibility of using these as a basis for nonlinear control

design. Our approach is reminiscent of neurocontrol. where Artificial Neural Networks

(ANNs) are viewed as templates where knowledge can be stored and recursively updated

for future reference. A lot of literature is being devoted to ANN-based controllers. maybe

because of the popularity of the ANN paradigm. Although very interesting results have

been obtained with that approach, we must recognize that the use of ANNs is generally not

straightforward. This is the main mativatian to consider an alternative approach.

As a reason why to consider using CAs in particular, wc will simply note at this point

that while ANNs share their most valuable characteristics with CAs (universality, learning

capacities), the latter also have interesting characteristics of their own (self-organizational

capacity, inherent dynamics), and this for a structurally simplet architecture.

From these incentive arguments. we will attempt to demonstrate that CA-based. self­

adaptive nonlinear controllers are not ooly possible, but also present advantageous alterna­

tives to analogous ANN-based approaches.

Our work can be divided ioto two main parts: in the first one, that covers chapters 2

through 4, we will introduce concepts relevant to the representation and control of dynamical

systems, inc1uding an overview of dassicallinear techniques. Since these topics are usually

not well-known ta computer scientists, chapter 2 is intended as a general introduction to

the field and assumes no prior knowledge. Since CA-based controllers will essentially aim at

the same niche as ANN-based controllers, it is important to introduce and discuss the latter

2
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paradigm in order to evaluate alternative approaches. Chapter 3 is thus devoted to ANNs

and their applications in nonlinear control. Finally, chapter 4 forms the heart of the first

part and is entirely devoted ta CAs. Once again no prior knowledge is assumed, hence both

a general introduction and formal definition are given. From these, the main characteristics

of CAs are discussed, and generai considerations on control issues are deduced. An informaI

comparison of CAs versus ANNs is also provided.

Chapter 5 forms the second part of our work. [n this part we will present a prototypical

CA-based nonlinear controller, which was used in simulation to control both a regulatory

and a servo problem. For the control scheme adopted, which is stochastic in several respects.

the performance of the controUer cannot be easily analyzed. [n a final section. statisticai

tools are used to qualitatively evaluate the impacts of structural and learning parameters

on stability and repeatability of the experiments.

3
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Chapter 2

Nonlinear Processes
This chapter introduces concepts with which the computer scientist might not be familiar

but that are essential in the context of the present work. A brief overview of processes or

systems and their representation is given, followed by notions of control.

2.1-Processes and Systems

[n this \Vork we will interchangeably use the terms process and system ta designate an object

in which variables of different kinds interact and produce observable signais (LJ US7]. The

vagueness of this definition allows almost any evolving, observable phenomenon to fit in, be

it an ReL-circuit, the weather over North-America or a collection of many subsystems such

as the human body (consisting of interacting heart, lungs, liver... ).

2.1.1-The Black-Box Abstraction

While aIl pracesses one can possibly think of take place in the universal space-time contin­

uum, it is usually preferable in order to study a process of interest ta abstractly isalate it

from its environment and ta circumscribe it to a domain finite in both space and time. [n

this \Vay we can represent a system such as

p ={the weather over North-America for the nert 24 hours}

as a black-box isolated from the rest of the universe, whose configuration or state at any

given time t can be precîsely described by astate vector X(l) that could record, arnong

other things, the temperatures and wind vectors at each point in the atmosphere over the

continent. The qualitative behaviour of P over a time period corresponds ta an evolution

in X over the same interval, and this profoundly complex behaviour is clearly dependent on

outer factors such as the weather over the rest of the worId, or the solar activity. What is

more, a meteorological catastrophe over the North-American continent might have repercus­

sions over the rest of the world, and 50 it should be clear that variables external to it could

4



• in turn be affected by the evolution of the system. These continuous two-way interactions

between the black-box process and its environment are represented in the abstraction by

input- and output-channels (U and Y, respectively), as illustrated in fig. 2.1. By the sym-

metry of the figure, the environment can be viewed as a process with unknown state, and

both environment and process could indeed be interchanged. Tilis duality just emphasizes

the subjectivity of the process-environment frontier, that is freely set ta the convenience

and needs of the observer. [n our process P for example, one could ar~ue whether or not

parameters such as the terrain configuration and temperature of inland water masses are in

the process: in either case the behaviour of P will be the same, although the state vector

•

X might vary.

u

PROCESS
P

- X-
.......-

ENVIRONMENT

Fig 2.1: Black-Box abstraction

y

•

2.1.2-Processes Revisited

A system 's behaviour may be deseribed by a matl1ematical model that expresses relation-

ships among internal and external variables in terms of mathematical expressions like dif-

ference or differential equations. Mathematical models are essential for the formaI study of

systems, and one can find a review of possible approaches in [\VES95]. In the present work

we willlimit ourselves ta the state-space madel-aIso ealled Input-State-Output or ISO rep-

resentation. But before we introduce that model, we need ta bring the black-box concept

down ta more practical grounds. Considering again the above process P as an example,

it would indeed be very difficult in practic~if not impossible--to incorporate sueh large

vectors as X, U and Y in a workable mathematical modeL

5
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To maintain the state vector at a manageable size, we will usually work with simple

systems, or simplified versions of complex systems. For example, the state of a Turing

Machine Tl"! is fully described by the content of the tape, the position of the head and

the content of the memory. Similarly, the state vector of a pendulum D consists of the

pair x = {angular position, angular velocity}. But however small the state vector. the be-

haviour of a process can still be affected by a large number of external parameters. A

cornmon approach to simplify the input vector is to decompose it inta U = {u. v. w}

(LJU87L where the input vector u consists of the external signais that can be manipulated

by the observer. The other vectors are the disturbances and can be divided into those

that are directIy measurable (w) and those that are only observed through their influence

on the output (v). Examples of these signais in the case of the pendulum D could be

u = {torque applied bg erperimenter} t W = {wind} (assuming the observer can measure

this information) and v = {unmeasured vibrations}. This partition of U iota sub-vectars is

particularly convenient for the problems of identification and control introduced further be-

law, and is somehow biased to suit these problems. Encroaching again over future material.

we note that in these problems we are usually not interested in Y as it W8.i first introduced.

but rather in a finite output vector y consisting of observable signais that are relevant ta

the experimenter1 . The resulting process is depicted in fig. 2.2.

PROCESS
P

u

w x

1

v

y -

•
Fig 2.2: Pracess - revisited

l Typically, we would have y ç x~
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2.2-Mathematical Representation of Processes

In the present work we will be interested ooly in systems with no disturbances, i.e., systems

where both w and v are empty vectors. The reason for this is only to keep the models we

will work with at a Level where they will be easily encoded and where the performances of

our controller will be simpler to interpret. The presence of significant noise v in a system

is particularly difficult ta deai with precisely because it cannat be measured. and it is

thus preferable to neglect it until the- ~ontroller performs weIl in a noiseless en\·ironmcnt.

A possible approach ta include Doisy signaIs is suggested in [LJU87), where a probabilistic

framework is used in an attempt to characterize future disturbances v based on past history,

and where the output is redefined as yI = Y + v.

2.2.1-The ISO Model

The method of representing systems by vectar DifferentiaI Equations (DEs) is currently weil

established in systems theory, and applies to a fairly large class of systems [NAR90]. The

ISO moclel is such a method, and models a process by

x=~(x. u. t) (2.1-a)

(2.1-b)

the input vector and y = [Yl, Y2, Y3t ••• Ym]T the output vector of the system. ~ and \(1

are rnappings defined as ~ : Rn X ~RP X ~ - ~n and ~ ::Rn X :R - ~Rm [NAR90]2 . The

discrete counterpart of the above equations is usually preferred when working with discrete

machines. We will then replace the above equations by

(2.2-a)

•
(2.2-b)

2 Sorne authors would rather use y ='f(x, u, t) in place of equation 2.1-b [LE085a), al­
thaugh the two models are equivaient. This is reminiscent orthe computationally equivalent
Moore and Mealy machines, whose outputs are respectively function ofstate and transition.

7
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where Xt, Ut and Yt are the instant discrete values of the vectors at time t. The characteri­

zation of systems naturally stems from the properties of DEs: we will consider below three

of these different aspects.

2.2.2-Brief Characterization of Processes

First of aU, systems faU into two broad categories: a system is linear if equations 2.1 (or

2.2) are both linear, i.e., if no terms nonlinear in the dependent 'lariable x (or in xtl are

involved. A linear system can thus be reduced to

Xt+l = A(t)Xt + B(t)Ut

Yt =C(t)Xt,

where A(t), B(t) and C(t) are properly sized matrices of reals (SL091}. The differences

between linear and nonlinear processes could hardly be overstressed: while the formers have

simple properties that make them easy to study, the latter usually have extreme character­

istics, whereby no general method exists to tackle them. Section ~.2.3 below will present

sorne typical nonlinear behaviours to provide a feeling for the difficulty of the task. The

study of nonlinearity is however of premium importance since ail observable systems are

inherently nonlinear. The present work wiH hence focus on systems of that latter nature.

Another important characteristic of processes is based on the consistency of their be­

haviour through time. A system is said to be autonomous, or time-invariant. if mappings

~ and \[1 of the [Sa model do not depend expIicitly on time, that is we could rewrite

equations 2.2 as

(2.3-a)

(2.3-b)

•
Nonautonomy,just like nonlinearity, is a constant in the universe as pointed out in (5L09l}:

Strictly speaking, all pbysical systems are non-autonomous, because none of tbeir

dynamic characteristics is strictly time-invariant. The concept of an autonomous

system is an idealized notion, like tbe concept of a linear system. ln practice,

8



•

•

•

however, system properties often change very slOlvly, and \ve can neglect their time

variation without causing any practically meaningful error.

For these reasons t and for the reason that time-dependence j ust adds extra nonlinearities ta

a system, we will henceforth assume autonomy for all systems in the present work.

Finally, a system that is described by equations 2.3 is dynamic, in that the past history

of x and u are needed in arder to compute the current state vector Xt+l. In a static system

on the other hand, Xt+l is completely determined by knowing ooly the last input, and such

a process could be modeled by replacing equation 2.3-a, above by

XC+l =~(ud·

Static systems are of course of a lesser interest in the context of control and identification.

and they come more naturally in pattern recognition.

2.2.3-Nonlinear Behaviours

As stated above the behaviour of nonlinear processes is much more intricate than that of

linear ones. This section illustrates the main characteristics of nonlinearity, according to

[SL091]3 , and thus gives an idea of difficulties inherent to nonlinearity. 'Ne will illustrate

sorne of the behaviours on the phase space, which is just the graphical representation of the

evolution of the n-dimensional state vecto! in the n-dimensional state space-1 . Generating

the phase portrait of a system in that space--a family of phase space trajectories, or motion

trajectories corresponding ta various initial conditions-is a useful tool to gain qualitative

informations on a system's stability and other properties. These were introduced by Poincaré

before the turo of the century, and then refined by Andronov to perform Phase plane

analysis-a graphical study of second-arder systems [TON90].

3 Other typical nonlinear behaviour include bifurcations, jump phenomenon, deadband,
saturation and sa on...

-1 That cannat be used obviously when n = 1. ln those cases time t i8 explicitly given on
the horizontal a..<is, as in the first example below.

9



• Nonlinear Behaviours

1- Multiple Equilibrium Points: While linear systems can only have a single equilib-

rium or singular point, nonlinear systems frequently have many snch points. \Vhat is

more, those points can be partially or fully unstable, as illustrated by the first order

system

whose solution has a stable equilibrium point at x = a and an unstable equilibrium

point at x = l, as shown in fig. 2.3, that illustrates the evolution of the solution for

various initial conditions.

Unstable Point

• x 0.5

Stable Point

2 2.5 3
Time

3.5 4 4.5 5

•

Fig 2.3: Multiple equilibrium points

2- Limit Cycles: Nonlinear systems can display oscillations of fixed amplitude and fixed

period without extemal excitation. These are called limit cycles or self.excited oscilla-

tians, and as singular points they can be stable, half-stable or unstable. The famous

Van der Pol oscillator, described by

10



• and whose phase portrait, shown in fig. 2.4, provides a simple illustration of the phe-

nornenon: in that case the limit cycle is stable, sinee solutions developing from any

initial conditions placed either inside or outside the cycle will converge to that cycle

(initial values are marked "X").

32o
Xl

-1-2

~

-2

Ot--+---il---+-----.....--I------....---

-1

•
Fig 2.4: Limit cycle (stable)

3- Chaos: Small differences in initial conditions can cause ooly small differences in the

output of linear systems, \vhile they can result in large differences in nonlinear systems.

This sensitivity to initial conditions is termed chaos, and is illustrated in the phase

portrait of the Rossler system in fig. 2.5, where the heavy and thin lines shows how the

solution develop from two nearby initial conditions (Xt=o = [0.0. 0.6. O.O} and ~=o =

[0.0, 0.65, 0.0], respectively). The heavy dots emphasizes how the solutions are remote

after ooly 30 seconds.

•
11
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Xl

Fig 2.5: Chaos

2.3-The Problems of Control and Identification

2.3.1-Control

Control i5 an omnipresent problem in the industry where aIl kinds of processes must be

optimized, and at this point we can define what it means: The problem of control is ta

make the output of a system bebave in a desired fashion by properly seIecting the input

sequence [LJU87). InformaIly, a controller C îs thus a device that, knowing the desired

behaviour y d of a process P, computes the input vector u that must be applied ta P 50 that

it will respond properly, i.e., with y - Yd' Referring at fig. 2.6, we note that controHer

C is reaIly just another process whose inputs and outputs are y d and u, respectîvely. The

problems of control usually fall in one of two broad categories, based on the nature of the

desired behaviour Yd: in the stabiIity or regulatory problem the output must be held as

close as possible to a fixed value, while in the tracldng or servo problern the output must be

made to followas closely as possible a given trajectory in the y-space (VAN90). As a typîcal

exarnple of the former category one can think of the problem of maintaining a constant

temperature in a room, while the latter problem is illustrated by power steering control.

12
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Fig 2.6: Open-Ioop ~ontrol structure

The basic control structure illustrated in fig. 2.6, known as the open-Joop structure, is

an impractical moice in real-lire applications because ofits poor performance. As a matter of

fact a difference between the desired and actual behaviours, the error e =y d - y. is expected

ta develop in the control process due mainly ta unmeasured and unmeasurable disturbances

w and v acting on the system, and ta parameter variations of the system (VAN90]. These

are prime motivations for the use of the dosed-Jaap or {eedback structure such as illustrated

in fig. 2.7, where the controller. knowing not only the desired behaviour but aiso the current

actual bebaviour. can take corrective actions whenever the latter unexpectedIy deviates from

its target.

CONTROLLER PROCESS

•

d - u y-- -
~

C p

Fig 2.7: Closed-loop control structure

2.3.2-Identification

It is reasonable ta assume that the design of a controller C for a given process P requires the

knowledge of the model of P. Making the reasanable assumption that models for real-life

processes are unknewn initially, we would need, prier te control it, te find the model or a

suitable approximation of it for that process, in the ferm ef the ISO representation for exam-

pIe. This is precisely the goal of the forward identification problem. Identification, although

an important step in the control approach we adopt here, is nat limited ta that context: the
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problems of prediction and fault-detection for example also rely on well-identified models of

processes.

a..---

M
---'1:"

+u(t)

Fig 2.8: Spring-Mass-Damper system

An elegant approach ta identification consists in studying the process of interest using

conservative laws of physics ta obtain a DE of arbitrary order n. that can be transformed

into a set of n first-order DEs ta respect equation 2.3-a of the ISO mode!. For example•

by examining the forces acting on the ideal spring-mass-damper system of fig. 2.8. and by

making the usuai assumptions that the force of the spring is proportianal ta the deflection or

and that the force of the damper is proportional to the velocity .r. we find the second-order

(linenr) DE

ALi + cx + kx = u(t).

By letting .rl =x and X2 =.r, this reduces ta the two first-order DEs

.ri = X2

X2 =u(t) - ex:! - kJ:l

OC course, the analytical method is interesting only far simple systems such as in the example

above, and is usually not a practical option for complex, real-liCe processes. Further methods

of nonlinear identification are postponed until the next chapter.

2.4-Control in Practice

At this point we Ceel it would be llSeful for Many reasons to give a brief overview of classical

linear control theory: indeed, control theory is usually not known to computer scientists:

14
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although the linear approach cannot be extended to nonlinear problems, it is important

ta get acquainted with it. not only for historica! reasons, but mainly because it introduces

notions important ta the field of controL

2.4.1-Classical Feedhack Control

Classical control theory, developed in the 1940's by Bode, Nichols and Nyquist among

others, deaIs essentiaJly with Linear Time-Invariant (LTI) systems. Although it is true that

these simple systems are often used to simulate nonlinear processes. the approximations

always remain vaUd only under severe restrictions on the time-frame and range of operation

[LJU87).

Linear processes have a homogeneous behaviour over aU of their operating range, and

so the error signal e =y d - Y contains all the information the controller needs to decide

on corrective actions. For that reason. classicaJ control-loop structures are built in a \Vay

similar to fig. 2.9, where only the error signal enters the controller. rather than fig. 2.7.

where both desired and actual behaviours are fed ioto the controller.

CONTROLLER PROCESS

•

Yd(s) + E(s) U(s) _ Y(s) -.
. -

C P

Fig 2.9: Classical linear control structure

An essential tool in classical control theory is the Laplace transform: although the

whole theory is quite extensive, ooly a small part of it is actually needed for our purpose.

We will simply retaIl here that the Laplace transform F(s) of a function J(t) is defined by

F(s) = .c[J(t)] = [a f(t)e-" dt,

and changes a function of time t into a function of the Laplace complex variable s = tr +w i.

where the imaginary part w is a frequency expressed in rad/sec.

15



•

•

The advantage of this transformation is that it simplifies the symbolic manipulation of

DEs, since differentiation and integration are changed into algebraic operations. One can

refer to any textbook on differential equations such as [D ER87] to know more about Laplace

transforms, or to any introductory book on linear feedback control theory such as (VAN90]

for their applications in the field.

The transfer function of a linear (sub )system is defined as the ratio of the Laplace

transforms of its output and input si~nals (assuming zero initial conditions) (VA N90!. ft.

is a useful concept that describes the inner workings of a linear system as precisely as aoy

other mode!. Considering for instance the subsystem consisting of process P in in fig. 2.9.

we will define it~ transfer function as P(s) = b::: t where }'"(s) and U(s) are the Laplace

transforms of signais y( t) and u( t), respectively.

Once the transfer functions of aH sub-component of a system are known. one can find

the overall transfer function of the system such as the closed-Ioop control structure of fig. 2.9 .

By inspection we find that

Y(s) = P(s)U(s) U(s) =C(s)E(s)

from which the transfer function for the whole control loop easily follows:

Y(s) _ P(s)C(s)
}'d(S) - 1+ P(s)C(s)'

The goal in classical control theory is to find a controller transfer function C(s) that

satîsfies a desired closed-Ioop performance ~~:}), according to

(2.4)

•
(by isolating C(s) in previous equation). A commonly used heuristic toward that end is the

Proportional plus Integral plus Derivative (PID)5 control, where the controller's transfer

function is given by C(s) =Kt: +~ + [(dS, where Kel Ki and Kd are variables that must

5 The name PID is best understood when the control action U(s) =C(s)E(s) is trans­
formed back to the time domain: u(t) = Kee(t) + Ki Je dt + Kd~'

16
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be properly chosen to satisfy equation 2.4. Identification of the transfer function P{s) in

equation 2.4 is either obtained through linearization of the system's analytic mode!. or by

the bump test. The latter is an empirical method that determines the coefficients of a

standardized linear model (e.g., P(s) = K
T
:-';:-) from the analysis of the response of the

. (i) {O, t = 0system ta a step-mput, u = l, t:/; 0 .

Classical control theory is a mature subject: it counts with a variety of pawerful methods

and has a long histary af successful industrial applications. Unfortunately, the analysis

and design techniques developed far these kinds of problems. including the use of Laplace

transforms and transfer functions, are no longer valid when dealing with nonlinear systems.

Nevertheless, modern industry is strangly interested in nonlinear control. Severa! reasans

might be found for this [SL091], but one obvious argument is sufficient by itself. that is,

every process is inherently nonlinear.

2.4.2-Nonlinear Control

As pointed out in (SL091}, there is no general methad far designing nanlinear controllers.

~Vhat we have is a rich collection of alternative and camplementary techniques, each best

applicable ta particular classes of nonlinear control problems. Hawever. one can draw im-

portant conclusions from equation 2.4 above. even if it is derived from linear techniques and

for the particular control structure of fig. 2.9.

First this equation tells us that perfect control is impossible to achieve, since the right-

hand term goes to infinity as ~r(:)) goes ta 1. This physical impossibility cannat be avoided

no matter how the control-loop is built. Another important observation is that a controller's

performcUlce is closely related to the inverse of the process mode! p(13): actually, it is easy

to check that by letting the controller be the exact inverse of the process in an open-Ioop

structure (fig. 2.6) yields a unity transfer function, ~~:; = 1. We then talk about an

ideal controller, although the actual performance in cIosed-loop remains dependent on the

structure of control.

These observations on linear control apply as well to the non1inear domain, and they

17
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suggest a nonlinear control approach known as Model-Based (MB) control. This leads to

the problem of inverse identification, which consists in finding and building a suitable model

for the inverse of a process. lndeed the inverse of a process could be described as a system

that, given y as an input, computes n, which is quite close ta our definition of a controUer.

18
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Chapter 3

Artificial Neural Networks
A.rtificial Neural Networks (ANNs) are an important paradigm in artificial intelligence, and

have been round ta be a promising avenue in nonlinear control (see for instance [MIL90]

[IRW9S}). lf for instance we only limit ourselves to the MB approach introduced in the

previous section, their learning capabilities make ANNs useful tools for the identification

aspect of the approach. Even though ANNs are not the central topic of the present work,

we feel it is important to discuss them for two reasons:

1- Although AN Ns are generally well-known ta computer scientists, their application in

control is not.

2- CA controllers will essentiaJly aim at the same niche as ANN controUer: a discussion

on the pros and cons of the latter paradigm will hence be helpful as a basis to evaluate

and justify the alternative avenue.

We make clear at this point that our goal here is not to go beyond the introductary level

on ANNs t and we refer the reader ta [J AI96] for a tutorial, and ta [HAY94) far a detailed

introduction.

Basically, ANNs were develaped in the hope that an artificial structure similar ta that

of higher animais nervous systems could compute, behave or think in a manner reminiscent

of the natural models: one can argue today whether this goal has been reached or not.

3.1- Background

Neuron Model

The structural constituent of the brain is the neuron or nervous ceIl. Similarly, ANNs are

analogously based on an artificial implementation of the neuron. The typical neuron model,

named after McCulloch and Pitts in recognition of their pioneering work [MCC43), is a

nonlinear computing device that tries ta capture all of the principal known characteristics

of a biological neuron. The model is depicted in fig. 3.1 and consists of:

19



• 1- A set of p synapses, each characterized by its own synaptic weight or strength, where

the signal Xj received at synapse j of neuron k is scaled by the weight Wéj. Based on

physiological evidences, a synapse is either excitatory or inhibitory (Wkj > 0 or Wtej < O.

respectively).

2- An adder ~ that surns the input signais, scaled by the respective synaptic weights such

that
p

VA; = L Wkj ·Ej.

j=O

(3.1 )

:3- A squashing or activation (unction cp(.) for limiting the amplitude of the output Yte of

the neuron. such that

YA; = 'P(Vk).

Xa =·1

:<1• :<2 Yk

Fig 3.1: McCulloch·Pitts Neuron Model (neuron k)

(3.2)

•

Usually, the norrnalized output of a neuron is comprised in the interval [O,l} (extremes are

idle and firing states). The classical McCulloch-Pitts model uses as its activation function

the threshold function, described by

{
l if Vk ~ 0

<p( v.c:) = a if Ut < 0 '

but other activation functions are used, noteworthily the sigmoid function given by

l
rp(Vk) =1+ e-a'ult'

20
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where a is the slope parameter (slope at the origin equals a/4). The use of that continuous

function is biologically motivated, sinee it attempts to account for the refractory phase of

real neurons. However, both activation functions are nonlinear, which is found to be an

important property in ANNs. As a matter of fact, it has been shown that the input-output

relation of a whole neural net could otherwise be reduced ta that of a single-Iayer perceptron

(see below).

[nput signal .ra' WkO serv~ a particular purpose, that of thresbold (1;.:. The effcct of the

threshold is to slide the origin of the activation function ~(.) toward the negative or positive

u.c:-axis (Ok> 0 or 81:: < O. respectively). This is accomplished by fL'cing .ra to a value of -1.

and by letting WkO = 81:.

Network Model

An ANN can be viewed as a directed graph in which nodes correspond to artificial neurons

and directed edges to connections from a neuron output to a neuron input [J A196). Inputs are

fed to the ANN by means of special input neurons whose outputs are fixed to proper values,

and the results of a computation are obtained by cascadillg the information through the

network until it reaches a set of designated output neurons. Depending on the connectivity

pattern, ANN can be classified into two broad categories (fig. 3.2 ): the graphs of feedforward

networks are acyclic, while those of feedback or recurrent networks have at least one loop.

This taxonomy is not only topological, as the presence of feedhack dramatically affects the

network's behaviour: feedforward networks perform exclusively static mappings in that the

output at a given time is determined completely by the input at the corresponding time.

while feedhack networks are dynamic and will produce an output that reflects the whole

history of the network1 • This distinguishing property inherent ta dynamical systems is

often viewed as a built-in memary.

1 These concepts are the same that were introduced earlier in section 2.2.2.
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Fig 3.2: Network Topology
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3.2- i\.NNs as Learning Deviees

3.2.1- Knowledge Representation and Acquisition

An ANN is thus a device that maps, in either a dynamic or static manner, a set of inputs

to a set of outputs. We will be interested here in what is essentially the raison cl'itre of

ANNs. As summarized here by Haykin:

.4. neural network Îs a massively patallel distributed processar that has a natural propensity

far storiog experiential knowledge and making it available for use. lt resembles the brain in

twa respects:

1- Knowledge Îs acquired by the network through a learning process.

2- lnterneuron connection strengths known as synaptic weights are used ta store the knawl-

edge.

The degrees of freedom of a n-oeuroo network are its Cree variables W = {Wjj} l ~ i $ n,

l $ j ~ Pi, where Pi is the number of inputs for neuron Î. Different chaices of the Cree

parameters re~;ult in different mappiog fuoctions, and we say that the weight vector W

represents or has the knowledge of the corresponding function.

Given â. fixed network-i.e., a network that has a fixed topology-the problem offinding

which weight vector W will yield a desired mapping lvI is a frequent issue with ANNs known

as approximation. Just like other ANN tasks, such as association or pattern classification,

approximation is usually best assessed with the process of knowledge acquisition known as
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learning. Learning is tightly linked with the ANN paradigm, and can be described as a

process by wbich tbe free parameters ofa neural network are adapted tbrougb a continuing

process of stimulation by the environment in which the network is embedded. The type of

learning is determined by the manner in \vhich tbe parameter changes take place [HAY94}.

Learning, as an iterative exploration of the solution space ofW in search ofan operating

point that satisfies a predefined goal, i5 justified by the usualIy huge size of the space. To

illustrate this, one can consider an ANN consisting of n fully-interconnected neurons: each

neuron i having Pi =n weights ta be determined, the corresponding solution has a size of

O(n2 ). This is a conservative bound sinee it assumes that:

i) the number n of nodes necessary to represent a given mapping is known,

ii) the optimal activation functions are known as weIl.

In practice a third assumption i5 added to these two in order to reduce Curther the size of

the space and ta improve the learning rate:

Iii) the network topology is known a priori. i.e.. a set of weights Wij E W of the completely

connected network are fi..'Ced to O.

The three basic classes of learning paradigrns according to Haykin can be summarized

as:

1- Supervised learning, which is performed under the supervision of an external ·'teacher":

2- Reinforcement learning, that invalves the use of a "critie" that evolves through a trial­

and-error process;

3- Unsupervised learning, which is performed in a self-organized manner in that no exter-

nai teaeher or critie is required.

AlI of these approaches rely on heuristics or biologieal observations. Learning theory is a

very camplex subject in itself, to whieh a lot of literature is being devoted. This section

was ooly intended as a brief overview of the subjeet, and one can refer once again ta Haykin

[HAY94] ta read a full introduction on learning in the conte.~ of ANNs.
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3.2.2- Universality

As a historical note! we must mention the importance of the perceptron, which consists of

a single classical McCulloch-Pitts neuron. In a context of pattern classification, where the

perceptron is required to identify in which of two classes (0 or 1) an input pattern belongs,

Rosenblatt [ROS60] developed a simple learning algorithm that determines the weights and

threshold of the perceptron, given a set of training patterns. In his dassical perceptron

convergence tbeorem, he showed that \\'hen training patterns are drawn from two linearly

separable classes, the learning algorithm converges arter a finite number of steps. Aetual1y,

there was a general feeling in the 60's that ANNs composed of a single layer of perceptrons

could realize any arbitrary computation [HAY94]. That was until ~Iinsky and Papert"s book

[MIN69), who used elegant mathematics ta demonstrate fundamentallimits for these ANNs;

this somehow stalled the field of ANN for a 10 years perioù.

[t was assumed in the previous section that an ANN could learn a given mapping, but

nothing was said of the mapping-capabilities of ANNs. Actually, ANNs have been found

to have computationally intt!resting characteristics that make them attractive ta both the

theorist and the practitioner. and that allowed them to be rehabilitated after the episode

of ~linsky and Papert's book. A result of main interest for us is that it has been proved

that 2-layers feedforward (or higher topology) ANNs are computationally universal [PAR94],

whereby they can compute any arbitrary function with arbitrary accuracy. This makes them

tools as powerful as Turing machines.

3.3- ANNs in Nonlinear Control

3.3.1- Background

[t should be clear that the identification problem of section 2.4.2 is equivalent to the ap­

proximation task described in section 3.2.1. Whereas universality is a necessary condition to

perform adaptive control, learning capacity is aIso required: that is why ANNs are consid­

ered as important tools in non1inear control. Actually, neurocontrol is an active field where



• the ~IB approach presented in the first chapter is far from being the only possible avenue.

Other approaches include transfer ofcontrol, where the neural controller learns its task from

an existing controller (such as a human-operator), or parameter estimation where an ANN

is used to adjust the parameters of a known controller model through learning [ALE95].
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a) FonwardIdentification

Fig 3.3: ANN Model ldentification

b) Inverse Identification

•

The MB approach involves an ANN that is used to identify the model of an unknown

process to be controlled. A basic approach to forward identification is the supervised learning

method illustrated in fig. 3.3-a [ALE95]: both the ANN model and the system, whieh aets as

the teachertare subjeeted to the same input and the error between the current approximation

and the expected response is used ta update the free parameters of the ANN. until it matches

the process in sorne predefined way. From there, techniques exist to design the controller

from the forward model of the process. But an ANN cannot be reversed and it might be

preferred, as was originally 5uggested by the MB approach. to identify directly the inverse

of the process, wwch might facilitate the design of the controller. The general approach ta

inverse identification is illustrated in fig. 3.3-b [ALE95]: the neural net receives as its input

the system output, and is trained to issue a signal au (a function of the system's output)

50 that the input o.' =u - éu cancels the systems' response.
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Fig 3.4: Input-Output Madel

Either as a forward or inverse model, ANNs in neurocontrol must capture the behaviour

of dynamical systems. A recurrent ANN should then be used. as suggested in section :J.I.

Unfortunately, and as pointed out in [KOS92), one of the difficulties encountered in the use

of recurrent networks is the derivation of efficient learning algorithms that also guarantee

stability of the overall system. But even though training a recurrent network is not an easy

task. sorne authors tried to develop stable algorithms tôr special cases of feedhack network

[KOS92,95][NAR90). On the other hand, efficient learning methods-in terms of speed of

convergence-exist for feedforward networks. such as the backpropagation aigorithm which

is an extension of the perceptron learning algorithm. This is why the input-output model

of a dynamical system was developed. as in [LE085aJ(LE085b](LJU87] and [LEV95). It is

derived from the usuai ISO model, and is given by [PHA95]

wnere [Uk. Yk] is the input-output pair of the system at time k, and integers m and n are re­

spectively the number of past inputs and outputs ta consider (usually, m < n). Function f(·)

being static, it can be approximated by a feedforward ANN t and thus the whole dynamical

process can be modeled as in fig. 3.4 where =-1 is the delay operator. Still other approaches

have been developed ta represent dynamicaI systems in neural network-like structures, so

that diflicult recurrent learning algorithms could be avoided. Most important in that respect
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and of particular relevance to the field of control is the work of Sanner and Slotine [SAN92]

(also [SL09 1)) , where the convergence of networks of Gaussiao radial basis fuoctioos can be

guaranteed using Lyapunov theory. Yet another approach that has been adopted by sorne

authors consists in building dynamics or memory into the neurons themselves. [AY095]

for instance introduces adynamie elementary processor with which he builds a feedforward

dynamic multi-Iayered perceptron.

3.3.2- Neurocontrollers: Drawback

It should be emphasized that the approaches described in the previous section are ooly

crude oversimplifications of the complex techniques used in oeurocontrol. ~evertheless the

material above should be enough to give a feeling of the issues raised by the proper design,

training and use of ANN in the context of control.

Although ANNs offer an interestiog approach to nonlinear control and although many

efficient prototype exist, these tools are typically difficult to use. The reasoo for this can

be brought hack to the usually huge size of the solution space. and to the lack of an effi­

cient. universal learning algorithm. What is more, the nec~ity of a prion knowledge on

the process to he controlled in order to correctly design the underlying network structure

represents a further difficulty.

The cortex of an adult has an estimated number of 10 billion neurons and 60 trillion

synapses; so even though artificial neurons are faster than their biological counterparts

(operations in the nanosecand range, compared ta the millisecond rangeL these astronomie

numbers are too far from the reach of today's technology ta leave hope of implementing

brain-like machines. Even without this materiallimitation, we don't really know how ANNs

are remote from an actual mammal brains. The lack of knowledge on the brains self­

organization and learning strategies are particularly profound. From this we will conclude

that approaches derived from biological analogies might have their own limitations, and that

original ideas could be more successful than a blind imitation of badly-understood models.

We will be interested in the rest of this work in assessing, in the context of control,
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the applicability of another device with the same computat.ional and learning capacities as

ANNSt with the hope of obtaining comparable performances without the learning difticulties

and need (or a priori knowledge.
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Chapter 4

Cellular Automata
Cellular .t1utomata (CAs) form a class of highly parallel, nonlinear. dynamical systems

discrete in space and time. whose first farmaI models were introduced in the late forties.

At that time, the mathematician and physicist John Von Neumann had become interested

in the question of whether a machine can self-replicate. that is. produce autonamous copies

of itself. Interested as he was in investigating the lagic behind the replication mechanisms

instead of the actual implementation of a bio-chemical machine. he found that the simplicity

and rigor of the CA made it a perfect vehicle far his studies [VON66].

4.1- Background

[nfarmally, we could define the generic CA as a colony of a finite or infinite number N

of identically-programmed finite-state automata. each filling a tite of a regular tesselation

of an n-dimensional space. designated as the cellular- or CA-spa('e. A ('eU designates the

tile-automaton pair, and each cell communicates with a finite number r of ceIls in its neigh­

bourhood. which usually consists of the cell itself together with those cells within a small

fixed radius. We cali V the finite set of states a cell can take and configuration ct the

arrangement of states over the cellular-space at discrete time t. Transition to the next

configuration ct+1 i5 done by simultaneously updating every cell according to the unique

transition-rule 6 thnt maps the neighbourhood-configuration of a cell ta a new state.

The Game of LiCe

A good illustration of what a CA might look like i5 provîded by the Game of Life. which

i5 one of John H. Conway1s most interesting discoveries. ft was in the early seventies

that Martin Gardner brought that mathematical game to the grand public attention in the

pages of Scientilic American [GAR7D). Invented just a few years earlier, with the intention

of finding a CA-ruIe that could be both simple yet interesting, thi5 '"game" is played with

a colony of virtuai ~creatures" living on the plane, reproducing themselves and dying from
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time to time. Although the analogy with actual biological colonies is somewhat farfetched .

the Game is just fascinating to watch evolve, which is probably why it gained instant

popularity at the time.

The Game is actually a CA defined over the square tesselation of the 2-dirnensional

plane, where the neighbourhood of a cell includes the cell itself together with its 8 dosest

neighbours (this is usually referred to as the i"[oore neighbourhood). Each cell can take

on two distinct states, V = {D, 1} (or {dead, alive}). The transition-rule is summarized as

follows:

• A living cell with 2 or 3 alive neighbours survives;

• A living cell with more than 3 or less than 2 alive neighbours dies (of suffocation or

loneliness) ;

• A dead cell with exactly 3 alive neighbours becomes alive (reproduction);

• AlI other cells remain in their (dead, or quiescent) states.

Such a transition-rule qualifies as an outer totalistic rule [WOL85], in that the rule depends

separately (outer) on the value of the site itself and on the sum (totalistic) of the values of

neighbouring cells, instead of the actual neighbourhood-configuration.

Fig 4.1: Game of Lire: Glider

Fig 4.1 iHustrates a typical behaviour of the Garne on a smaU portion of the CA-space.

where a periodic pattern known as glider moves across the space. Although this particular

structure appears quite often in actual simulations, most patterns are not as stable, and a

random initial configuration quickly degenerates to a dynamic mosaic of great comple:<ity

and beauty.
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4.2- The Cellular Automaton Paradigm

In this section we will describe sorne of the main characteristics areAs. including universality

and self-reproduction capacity. Before we proceed, a formai definition for CA is necessary:

the definition we present is adapted from Edgar F. Codd (COD68}. with further review by

Moshe Sipper (SIP97]. Although this definitian concentrates on infinite 2-dimensional CAs,

it cao be generalized in a straightforward manner bath ta arbitrary dimensions ar ta fioite

N -cell cases.

4.2.1- Cellular Automata: Definition

To obtain a cellular-space represented by the 5-tuple (f x J, r. V, Ua, <5) (symbols will

be introduced on the way), we associate with the set 1 x f, where J denotes the integers:

1- The neigbbourbood function g : [ x f - 2/ xl. defined by

for ail ct E f x I, where Pi E J x [ (i = 1, 2•... , r), i5 fixed.

2- The finite automaton (V. Va, 6), where V is the set of cellular states, l'a is a distinguished

element of V called the quiescent state. and 0 is the local (unique) transition-function

from r-tuples of elements of V ioto V. The runction 0 is subject ta the restriction

Essentially, we think of the (2-dimeosionaI) CA as a plaoe assemblage of an infinite but

countable number of interconnected cells. Location of each cell is specified by its cartesian

coordinates with respect te sorne arbitrarily chosen erigin and set of axes, and each cell

contain an identical copy of the fioite automaton (V, Va, 6). The state vt (ct) E V of a cell Q

at time t is precisely the state of its associated automaton at time t. Each cell ct is connected

to the r neighbouring ceIls cr + /31, Q + {32, ... , Q + I3r. In ail that follows we assume that

one of the neighbours of Q is cr itself and we shaIl adopt the convention that /31 =(0, 0).
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The neighbourhood-state function ht : l x [ - {trr is defined by

Now we can relate the neighbourhood-state of a cell 0 at time t ta the cellular state of that

cell at time t + l by

The function fJ is the CA-rule and it. can be given in the form of a rule-table, specifying aIl

possible pairs of the farm (ht(o), V'+l(o)). Such a pair is termed a transition or rule-table

entry. When convenient, the time superscript can be omitted from h'.

A configuration c designates an allowable assignments of states to ail cells in the space,

and we thus have c : 1 x [ - V such that the set

{Q EIx l 1 c( Q) # vo}

is finite. Such a function is said te have finite support relative to vo, and this set is denoted

sup(c). This is in accordance with Von Neumann who restricted attention to the case in

which all except a finite number of cells are initially in the quiescent state. The restriction

on 6 above means that a cell whose neighbourhood is entirely quiescent remains quiescent

itself, and thus at every time step ail cells except a finite number are in the quiescent state.

The global transition-function ~ is a function from C to C. where C denotes the class

of ail configurations for a given CA. ~ is defined as

Given any initial configuration Co, the function â thus determines a sequence of configura­

tions cO t cl, ... , Ct, '" where Ct+l =A(c,) 'fi t. We will caU such a sequence a propagation

and denote it by < Co >.

We wiU end that definition by stressing that when a finite-sized space is considered for

a CA, spatially periodic boundary conditions are frequently appliedt resulting in a toroidal

configuration~
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Three notable CA features stem out of the above definition (5IP97]: massive paral­

lelism, locality of cellular interactions, and simplicity of basic components. The interesting

faet is that, despite their tremendous simplicity, CAs nevertheless display very interest­

iog features. Their emergent properties, a term that refers to the appearance of global

information-processing capabilities that are not explicitly represented in the system's ele­

mentary components or in their interconnections, include the capacity for CAs ta perform

universal computations, and self-reproduction abilities.

4.2.2- Universality

Von Neumann's CA, just as the Game of Life, is defined over the square tesselation of the

plane and uses a neighbourhood consisting of the cell itself together with its four closest

non-diagonal neighbours (the so called Von Neumann neigbbourhood. or simply 5-neighbour

pattern). Each cell can take one of 29 different states, of which the quiescent state has the

exclusive property to map to itself, as defined above. Von Neumann restricted attention to

the case in which all cells except a finite number are initiaUy in the quiescent state. and that

initial configuration cO together with the transition-rule uniquely determine the evolution

of the CA. Von Neumann posed 3 questions about this machine [COD68):

1- Can a universal Turing machine be embedded in the space'?

2- 1s it possible to embed in the space an automaton A with the property that, given the

specifications of any constructible automaton B (in embedable form), .-l can build B

and then set B free ta work independently of .4?

3- Can an automaton.4 be exhibited which satisfies the second requirement above and is

itself one of the automata which it can construct?

AU these questions were answered affirmatively. The last question conceming self-repro­

duction was the main motivation of the author, and will be addressed in the next section: as

an aside it is interesting to note that, years before science understood the role and structure

of DNA, the mechanisms Von Neumann proposed for aehieving self-reproducîng structures

within a cellular automaton bear strong resemblance ta those employed by biologicallife,
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yet to be discovered during the following decade (5IP97).

For now, we will he interested in Von Neumann 's first result that states that, just as

ANNs, CAs can be computationally universal. Although Von Neumann devised his CA

using 29 different cellular states. this is in no way an optimal number. In his classic work,

Codd actually redesigned Von Neumann's CA with only 8 states (COD68]. Codd aIso

proved that there does not exist computationaIly universai 2-state 5-neighbour CAs that

follows Von Neumann's restriction of a finite initial configuration! . Following that result.

universality was either achieved by using more states (see [BAN70] for a 3-state 5-neighbour

model) or larger neighbourhoods (see [BER82] for a proof that the Game of LiEe is actually

capable of universal computations). This discussion is valid only for 2-dimensional. generic

CAs: the reader is referred to [5IP9i) for a discussion on nonuniEorm universal CAs, and to

(SMI92] for I-dimensional implementations.

Basically, CAs can be viewed in two different ways, and accordingly two approaches

can he used to demonstrate universaJity [LAN90]: first. a CA can be seen as a computer

itself, where an initiai configuration constitutes the data chat the physical computer is

,vorking on, and the transition function implements the algorithm that is applied to the

data.. The alternative is to consider a CA as a logical universe within which computers

may be embedded. This latter approach, where the initial configuration itself constitutes

a computer, and the transition function is seen as the "physics" obeyed by the parts of

this embedded computer, is the simplest: a universality proof in that context reduces ta a

demonstration that a computer can be built in the CA-space using the following elements

(SIP97)=

l See [BAN70) for a description of a 2-state 5-neighbour universal CA with an infinite
initial configuration.
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Rule
(Central Cell) Designation

~~X
Right Propagation

CeIl

~

~~X
LeCt Propagation

CeIl

~

qp~x
Up Propagation

CeIl

~

~~X
Down Propagation

Cell

~

~~xy
NAND Cell

(plus 3 symmetric cules)

~

~~x~
XORCell

(plus 3 symmetric rules)

ES

~~X
No Change Cell

0
Table 4.1: Rules for a. Nonunirorm Universal CA

35



• 1- SignaIs and signais pathways (wires). [t must be shown that signais can be made to

turn corners! to cross, and to fan out.

2- A functionally-complete set of logic gates, where a set of operations is said to be func-

tionally complete iff every switching function can be expressed entirely by means of

operations from this set.

3- A dock that generates a stream of pulses at regular intervals.

4- Memory. Actually, I-bit memory units (flip-flop) can be constructcd from (ogie gates.

tY

•....... Il''''' x SI'"•• • X" ~ x .. . X
X •• •••• ~ ••• x -... -..
~ .. ~ .

.. .. .. . .. ... .. .. .. .. .. .

tx ty

t
Y

xl'" xI"......... . ......... .
.... ...-

..,... .

...... ..

NOT ti AND tXY

.. .

.D< ...

c) Signal Crossing

·9 .

.... :9' ..

OR tx+y

••••

b) Fan-Outa) Signal Propagation
and Corners

•
d) Logic Gates

e) Clock

Fig 4.2: Rule Distribution

•
Although simple, such proofs are usually long and tedious for generic CAs. However the

demonstration is greatly simplified if we let the CA-space be nonuniform, i.e., by allowing

different transition-rules ta exist on clifferent cells. For example it is easy ta build a universal
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binary, nonuniform CA using the 13 rules described in table 4.1 (rules are given in the form

of "'templates" rather than delineating the entire table), where -*, denotes the set of states

V ={D, i} and z, y E {D, i} denote specifie states. Figures 4.2-a through -e gives an idea

for the different transition-rule distribution that allow construction of above features: note

that all cells which are not part of the machine itself contain the "No Change" rule, whieh

simply preserves its initial state indefinitely. Note aIso that the XOR rule ia not absolutely

required, sinee the N A.ND rule comprises a functionally-eomplete set: it has been included

here solely ta simplify the wire-crassing implementation.

4.2.3- Self-reproduction

As we have seen, early CA studies were motivated by an interest in machines' self-repro­

duction capacities. Sînce the early days, CAs have been continuously associated with A.rti­

fidal Life (ALife), defined nowadays as the field of study devoted to understanding lire by

attempting ta abstract the fundamental dynamical principles underJ.ving biological phenom­

ena. and recreating these dynamics in other physical media, such as computers, making them

accessible to ne\v kinds of experimental manipulation and testing [SIP9i}. The very name

of Conways' Game reflects this biology-motivated origin of the CA (VIC84]. Moshe Sipper's

recent work (5IP9i] is artieulated around the question of knowing whether lVe can mimic

nature~s acbievement. creating artifidal machines that exhibit characteristics such as those

manifest by their natural counterparts.

Christopher Langton is an important figure in CA studies, and one of his many contri­

butions to the field concerns precisely self-reproducing capacities (LAN84]. He observed that

while Von NeumannTs and CoddTs self-reproducing automata are universal construetors, i.e.•

are capable of eonstructing any (embedded) machine given its description, naturally self­

reprodueing systems are not capable of universal construction, but ouly ta reproduee them­

selves. As he points out, it seems dear, that we should take the "self" of "self-reproduction n

seriously, and require ofa configuration that the construction of the copy should be actively

directed by the configuration itself.
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• Langton illustrated the latter self-reproducing nature in his classical wark (LAN84],

where a self-reproducing Joop (see fig. 4.3 ) is implemented on a uniform, 8-states, 2-

dimensional CA \Vith Von Neumann neighbourhood. The reproduction of his [oop does

not depend on any demonstrated capacity for universal construction, and from this \Ve can

conclude that universaLity is a sufficient but not necessary condition for self-reproduction.

Accordingly there are two extremes in self-reproducing CAs: at one end lie machines which

are capable of performing elaborate tasks, yet are too complex: to simulate (e.q.• Von Neu-

mann 's or Codd 's) 1 while at the other end we find simple machines which can be entirely

implemented, yet are only capable of self-reproduction (Langton 's) (P ER96].
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4.2.4- CAs as Dynamic Systems

AIl of the CAs presented sa far are defined over the 2-dimensional space, where only 3 regular

tesselations are possible, namely by using triangular, hexagonal or square tiles. Since aIl

tiles have the same neighbouring relations with one another in the case of the hexagonal

tesselation, this should be in sorne sense the most natural choice ta work with. In practice

however. the square tesselation is the most frequently used configuration. and the Moore and

Von Neumann neighbourhood-patterns are typical1y used. 3-dimensional CAs are sometimes

studied, while higher-dimensional cases are seldom encountered. But on the other hand, the

simplicity of l-dimensional CAs makes them prime tool to gain important knowledge on

CA behaviours. For instance, the simplest possible CA, tntroduced by Stefan \Volfram

[WOL84] as the elementary CA, tS a l-dimensional CA with a 3-cell neighbourhood and

binary states. It has only 23 :: 8 different neighbourhood-configurations. and the resulting

28 =256 possible transition-rules can easily be exhaustively explored. Wolfram suggested

the rule number as a useful notation to be used to express the rules of these CAs (see

table 4.2: the rule table is readily obtained from the binary representation of the rule

number). Fig 4.4 is provided to illustrate for a simple initial configuration, the usuaI way

to represent the evolution of 1-dimensional CAs.

Neighbourhood
Configuration 111 110 101 100 011 010 001 000

time t
State of Central

Cell 1 0 0 1 0 l 1 0
time t + 1

TABLE 4.2: Rule Table for Rule Number 150, where 15010 :: 100101102
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--+-~I-+-+-+-+-+-+- to =Initial Configuration•
Fig 4.4: Evolution of an Elementary CA. Rule Number 150

Wolfram's most important contribution to the field originates in his observations of

I-dimensional CA behaviours. By experimenting with these, he postulated that many, and

perhaps ail CA fall into one of four basic qualitative behavioural classes (\VOL84]:

Class [- evolution leads to a homogeneous state;

•
Class (1- evolution leads to a set of stable or periodic structures that are separated and

simple;

Class [1[- t!volution leads to a chaotic pattern;

Class [V- evolution leads to complex structures, sometimes long-Iived.

Fig 4.5 iIIustrates these four behaviours for binary CAs starting in random configurations

(CAs consist of 200 celis on a toroidal space, and simulations are conducted over 200 iter-

ations). Wolfram suggested further that one way to view CAs is as discrete idealizations

of the partial differential equations often used ta describe natural systems (WOL83]. [t is

actually possible to draw an analogy between the phenomenological characteristics of the

evolution ofeAs and sorne nonlinear dynamics (MCI90], where the classes would correspond

respectively to Iimit point (1) t limit cycle (II) and chaotic behaviour (III) (in the sense of

•
strange attractors). As for c1ass IV, consisting of very long transients, there is no apparent

anaIog in continuous dynamicaI systems [SIP97] t but it has been suggested that c1ass IV

CAs are probably capable of unÏversai computation, basicaIly since the properties of its

infinite tinte behaviour are undecidable [WOL84].
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CLASSI

R=136
À=-O.250

CLASsm

R=126
À-O.750

CLAssn

R=74
À=O.375

CLASSIV

R=110
À-O.625

•

Fig 4.5: Wolfram'8 Four Qualitative Classes

Langton supports this last hypothesîs, in a seminal work [LAN90] where he is interested

in the conditions under which the capacity ta support computation itself might emerge in

physical systems: as Von Neumann with the problem of self-reproduction, Langton chooses

CAs ta tackle the problem of universal computation as an emergent property. The À-

parameter is used as a formalism to describe the CA behaviour, and is defined as follows:
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Let !Jo E V be a unique quiescent state of the CA, and let m be the number of transitions

ta that state in the transition-rule 6. Then

l\-m
À:::~,

where K is the total number of transition-rules in 6. If m ::: l\ or À = 0, then ail of

the transitions in the rule table will be to 110, which represents the most homogeneous rule

possible. The most heterogeneous case happt:llti when m = l or À ::: l - k. A case where

m = 0 or À ::: 1 is impossible, since it contradicts the definition of quiescent state.

By progressively increasing the À-parameter while observing the effects on the CA,

Langton found out that behaviours indicative of c1ass l, II, IV and III of Wolfram's taxonomy

would alternatively he observed2 . For comparison, the values of the À-parameters are

indicated in fig. 4.53
. Class IV can thus be reinterpreted as transition between highly-

ordered (classes l, Il) and highly-disordered (class III) dynamics. where CAs exhibit their

most complex behaviours, characterized by localized structures with very long transients.

This transition zone is pertinently called edge ofchaos, and has been alternatively described

as the most creative state of a dynamical system, or as a permanent flickering between

arder and chaos where real life would only be possible. In aU cases, Langton daims that

CAs in the transition region have the greatest potential far the support of information

storage, transmission, and modification, and therefore for the emergence of computation.

i.e.• universality.

4.3- CAs in Control

As mentianed in [GUT91], the two types of problems concerning CAs are the forward and

inverse problems: this chapter has been concerned so far with the former problem. where

we try ta determine the properties of a CA given its description. Our interest in control.

:! The particular value of the À-parameter at which the transitions take place is dependent
on the CA.

3 The values are given oo1y for an illustrative purpose, as the À-parameter can be used ta
categorize oo1y large CA-rule spaces, as which the elementary CA surely does not qualify.
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thought, will inevitably confront us ta the latter problem, where we try to find a CA

description that meets sorne predefined requirements.

Industrial applications of CAs are still sparse, although a lot of efforts are being made

to take advantage of CAs interesting properties. Promising applications include image prcr

cessing, random number generation and cryptography. But whereas CAs can be viewed as

universal devices or as virtual testbeds to tame the logics behind life, the similarities be­

t.ween t.heir behaviours and that of many physical systems are aiso quite !i;uggestive [VIC84] 1

as was emphasized section 4.2.4. The question of using CAs ta simulate dynamitai processes

should then appear naturally. But surprisingly enough, the idea of translating differential

or difference equations into equivalent CA rules has not been a major concern in the study

of CAs (see [TOF77] and [FRE82)).

4.3.1- Simulations of Dynamical Processes

Primary discussions on the subject have been published in a special CA edition of Physica

D, where many authors such as [MAR84], [TOF84] and especial1y [VIC84} insist on the

radical novelty of the CA paradigm. whose role in modeling physics would not only be

analogous to that of differential equations but ta a certain extent complementary [TOF87},

if not obsoleting. According to Vkhniac, using CAs to simulate physics gives a stronger

meaning to the word "simulation", one of exact correspondence (as in "ReL circuits can

simulate mechanical oscillations") whereas in its weaker acceptation a simulation is usually

understood as a computer treatment or a. conceptual analogy. But as interesting as this idea

could be, we should nevertheless not forget that the great advantage ofdifferential equations

(... ) is that we have three centuries' experience with methods for tbeir symbolic integration

[TOF84].

Toffoli and Margolus [TOF81] have designed numerous CA rules that successfully sim­

ulate various natura! phenomena in fields as various as hydrodynamics, thermodynamics,

acoustics and optics. Their general approach is to consider the continuous, homogeneous

media that sustains the dynamics of the phenomenon of interest as a discrete collection of
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a finite number of particles. The rules are then engineered, using heuristics and a priori

knowledge on the dynamics sa that the particles interact in a proper way. For instance.

a gas-lattice model is obtained by designing a rule that mimics elastic collision between

particles, and a model for crystal growth is built from data 00 precipitation rate.

In other words, that strategy tries ta recover the large-scale (macroscopic) behaviour by

implemeoting the very simple short-range (microscopic) interactions. We must emphasize

the spatial nature of the simulated phenomena, as the physical space over which the actual

phenomenon is distributed is mapped in a trivial way onto the CA space, where the simu-

lation takes place. As a matter of fact, CAs find most natural applications ta those areas

of pbysics where the discretization of space, rather than being an artifact of a numerical

simulation, is a feature of the physical system itself (. .. ), or has already been made an

Integral part of an established theoretical model (... ) [VIC84].

Generally speaking, reversibility, which lS just the CA equivalent of the universal law

of conservation, has ta be respected when one wishes to simulate natural processes from

the microscopie level4 . Conservation in physics implies the bidirectionality of the arrow

of time, which might sound at first like an impossibility ta the non-physicist, since real-life

phenomena such as a non-laminar or turbulent flow cannot be reversed. The seemingly

impossibility is in fact due ta the macroscopic. nature of possible measurements (VIC84]. In

the context of CA, conservation-or reversibility-is achieved when every configuration has

only one possible previous configuration. i.e.,

Vct E Ct ct =~(ca) and ct =~(co) implies Ca =: Co,

or otherwise stated, global transition function d is an injective function5 • To give a feeling

of the qualitative difference between reversible CAs and irreversible, or dissipative ones.

consider first the Game oE LiEe rule starting from a tandem initial configuration of l 's and

0{ A well-known exception to that mIe is the Ising model for magnets and binary alloys
(VIC84J[TOF87).

5 ft was first believed reversibility could only be obtained at the cost of loosing other
properties such as computation- and construction-universality. lt has been shawn since
then that this is not the case.
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0'5. ACter an active period, this dissipative CA will be round in a configuration consisting of

uncoupled, short period osciUating structures. On the other hand, a reversible CA started

from a random configuration will be round, for aIl future time, in configurations that look

just as random as the initialoné . Intuitively, this behaviour makes sense, since a random

configuration corresponds to a maximum-entropy system, and sinee entropy cannot decrease.

The approach adopted in their work by Totroli and Margolus suffers from a serious

drawback, namely that the CA has ta be entirely designed from scratch based on heuristics

and on a priori knowledge of the micro-scale interactions. Even if in sorne cases the task

might be relatively easYt the technique applies exclusively to those phenomena that are

the obvious effects of such simple interactions. Ta overcome these difficulties. learning

strategies have been applied to evolve CA-mIes. Among these, Genetie Algarithms (GAs.

see section 4.3.2 beIow) have yielded very interesting results: Richards et al. [RIC90). far

instance, used a GA implementation to train a 2-dimensional CA to mimie a erystal-growth

process observed experimentally. [n a different cantext, Mitchell et al. [MIT94] used a GA

to evaive a I-dimensional, binary CA to perform the majority task.

4.3.2- Control Issues

Ta our knowiedge, very few attempts have been made to apply CAs in the context of

nonlinear adaptive control. However, the CA properties described so far-namely univer-

sality, inherent dynamicst self-reproduction and (although we didn't insist on it) learning

eapacity-are interesting enough 50 that we may seriously consider them as an alternative

control paradigm.

Of courset one might argue that the modelization of dynamica! processes with CAs

i5 limited ta the trivial simulation techniques of section 4.3.1, due to the spatially- and

homogeneously-distributed nature of the CA. These simulations are still remote from a

6 This is expected from a simple counting argument, since most configurations look ran­
dom. Only a very few random-Iooking initial configurations can be mapped by a given
number of invertible steps into the few 5imple-looking configurations, since the overall map­
ping is bijective [~IAR84].
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problem such as identification, and it would seem true, in the light of these considerations,

that if a problem does not have a spatial structure with homogeneous dynamics, a CA seems

like the wrong way to do it.

This section is intended as a discussion on the main issues concerning application of

CAs in the MB nonlinear control approach. The two main aspects with which one is being

confronted are data representation and data acquisition. We will start by considering the

latter one.

Data Acquisition

The dynamitaI behaviour of a CA Îs function of its design parameters: the set of cellular

states V 1 the neighbourhood function g(.), the local transition-function 6(·), and the number

of ceIls in the matrix. The idea behind data acquisition in CAs is exactly the same as that for

ANNa: whereas the latter ones can store knowledge in their free variables W t the former can

use a subset of their design parameters as degrees of freedom ta store a similar knowledge.

Wolfram conducted his experiments on L-dimensional. binary CAs by fi.'Cing aU pa­

rameters but the transition-function. Although he noticed that the percentage of CA-rules

falling within each qualitative dass varies with other design parameters (WOL90]. experi­

menting solely with the transition-function allowed him to explore aIl dynamical behaviours

in the CA-space. Similarly, the A-parameter introduced by Langton is computed from the

transition-rule, and experiments with that single parameter brought important informations

on CA dynarnics. [t would then seem that the local transition-rule 6(·) would be a natural

choice to store knowledge, just as ANNs synaptic weights, because it has a dramatic impact

on the CA behaviour.

At that point it could be argued that just as a priori knowledge is typically required

ta properly decide the topology of an ANN, the design of CA parameters requires a similar

knowledge. Although that cannot be denied, we can compare on a qualitative basis the

difficulties inherent to the choice of a right network topology (not tao simple, not too

complex) versus that implied by the choice of the right CA parameters (number of cellular
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states, neighbourhood mapping and number of cells). We can argue that while the design

of the network must be chosen among an important number of reasonable options, the

plausible CA designs are not as numerous. For instance, the design choices in the Game

of Life-use of binary states and simple neighbourhaod-function-are worthy choices for a

CA whose primary goal is to be simple, yet to display display an interesting behaviour.

But even by choosing the transition-functions to be our only Cree parameters, the so­

lution space is still typically huge: considering a design that specifies k =1 V ! possible

states and r neighbours, there are as much as ke possible rules to explore (kr +1 if we're

only interested in totalistic rules). As for ANNs, the only reasonable way to explore that

solution space is by means of a learning algorithm.

A very brief overview of learning theory \Vas presented in section 3.2.1. where it \Vas

emphasized that the theory is a rather complex subject that relies mainly on heuristics

and biological analogies. Encroaching a bit over our present concern, we introduced in the

previous section the Genetic Aigorithms (GAs), which are typical instances of biologically­

inspired learning paradigms (see for instance [SIP97},[MIT96] or [TOM96]). The idea behind

GAs is that the exploration of the solution-space is directed by the fitness of the current

approximation. Although their stochastic nature cannot guarantee convergence. they are

usually very efficient in practice.

Data Representation

As exposed above, the problem of data acquisition for CAs is a difficult but not impossible

task, that has been assessed in relatively successful ways: it is thus possible, through the

evolution of sorne of its free parameters, ta evolve a CA 50 that it behaves in respect with

sorne predefined criteria. The second issue in nonJinear control with CAs is that of data

representation. As we will illustrate, it is a much more serious issue.

In a feedback loop, a controller must be able to receive information from the controlled

process (its desired and actual behaviours), and ta send information back to it (the control

action). Bence the problem of data representation has in fact twa aspects:
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1- how are input vectors fed ioto the CA-space (encoding);

2- how are output vectors extracted from the CA-space (decoding).

In aIl instances of CA encountered 50 far, input and output abilities are inexistent.

What makes the simulations of section 4.3.150 trivial is not only the fact that the state of

the modelized processes can be projected directly onto the CA-space, but also the fact that

the processes are self-sustained, i.e., are not subjected to any external inputs: recalling the

ISO model introduced before, these processes are entirely described by

Xt+l =~(xd

In order to be able, like ANNs in section 3.3.1. ta identify either the forward or inverse

model of a process, it is thus compulsory ta extend the CA definition sa it can deal with

both inputs and outputs.

A trivial approach to encoding would be ta redefine the transition to be of the form

(5.1 )

where, once again, Ut is the input vector at time t. But this solution would be of no help

for the decoding problem, where the output Yt would mast likely be an unknown function

of the CA configuration Ct.

We will cancentrate here on the encoding problem. Considerations on the decoding

problem can be derived in a similar manner. Basical1y, it sounds reasonable ta expect the

encoding scheme:

i) to spread the information uniformly thraughout the CA-space,

ii) ta be deterministic 50 that every scalar corresponds ta a unique CA configuration,

iii) and finally to be injective 50 that every CA configuration corresponds to a unique

scalar.

For instance, let's consider a naïve encoding approach for al-input binary-CA, consisting

in randomly distributing the bits of the input's unary representation over the CA-space.

The problem with that encoding scheme is that it is obviously not deterministic. One could
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eliminate randomness by evenly distributing the bits over the space--but then again, the

encoding is not injective.

Ta further illustrate the difficulty of the task, let's consider a tiny binary 2-dimensional

25 x 25 CA, onto which we want to encode a scalar input. [t can be reasonably assumed

that, prior ta the CA-encoding, the scalar is internally represented using 32 bits (or even

64, 128... ): but a 625-bit encoding makes no sense at aIl, and hence the CA-encoding

scheme cannot be injective sinee not aU of the 26:!5 CA. configurations cao be associateJ

with a scalar: most of them will fall into oJogaps". Furthermore, even if 625 bits would be

used ta internally represent scalars, the resulting precision would then be far above the

precision of any measuring apparatus, and the "gaps" would be at the level of the internai

representatian.

[n other wards. a scalar does not contain enough information ta ··fill" a CA-space in a

deterministic way, or the other \Vay around, a typical CA configuration contains tao much

information to be summarized in an injective way into a scalar. Using a small CA cloes

not sound like a good solution to the problem sinee. by clefinition. emergent properties are

manifested only in colonies of considerable size. An appealing solution ta data representation

is that of dustering configurations (or error-correcting codes). [n this method. the scalars are

mapped ta a subset of reference CA-configurations, around which the extra configurations

are c1ustered. That way, a scalar can be extracted from each CA-configuration by looking

at the reference configuration of the cIuster. Of course, this method requires the injectivity

requirement on the encoding to be dropped, and is similar in that respect to the unary

encoding described above. This avenue should be explared further in future developments.

Data representation is thus a serious issue in CA application ta control, at least as

long as we find determinism and injectivity to be necessary encoding properties. A possible

avenue out of that problem would be to consider nonuniform CAs, in which the transition

rules may differ from cell to cell. This would allow, for e."<ample, to segregate the cells into

input, hidden and output types just like for ANN nodes. Although such nonuniform-CA
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designs provide an interesting option, we must point out that loosing homogeneity makes

designing CAs a much harder task. Dropping the injeetivity requirement

The implementation of a CA-controller we will present in the next chapter is based on

an encoding scheme reminiscent of the naïve unary stochastic approach. and on a stochastic-

CA, which resembles the nonuniform-CAs under sorne respects.

4.3.3- CAs versus ANNs

Until now, with the exception of the reversible CA of section ·1.3.1. it was only question of

generic CAs. '.f., CAs that are deterministic. uniform and autonomous. Nonuniform and

stochastic CAs, as weil as others. can be viewed as extended CAs. of which the generic

case is just a particular instance. Hence we must concluùe that aU extended CAs share

the same basic emergent characteristics of universality and self-replication. Alternative

implementations might be preferred in sorne situations, and for ail kinds of reasons. For

instance. Ratitch [RAT98] used some characteristics of fuzzy CA to devclop a gradient

descent learning algorithm. [SIP97] is more interested in nonuniform or quasi-uniform CAs

where. as mentioned before. many rules coexist on the lattice.

It has been suggested that an equivalence could be established between subclasses of

CAs and particular classes of ANNs [CAT96]. In our purely practica! approach to control.

though. we are not interested in characterizing the overlapping subclasses as much as in a

qualitative comparison between ANNs and CAs j
.

In an approach to nonlinear control that involves identification. ANNs and CAs pro-

vide two similar paradigms in that both are intended to be used as templates that acquire

knowledge about a system through a recursive process known as learning. Difficulties in-

herent to the task of exploring a solution space in an efficient way make learning theory the

actual bottleneck of both paradigms. On that particular point. ANNs seem to benefit from

more efficient learning algorithms (such as backpropagation), whereas the plausible option

7 As a historical note, it is interesting ta note that, while the motivation behind CAs is
ALife, that behind ANNs is AI.
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available 50 far for CAs is the GA, an algorithm that in the worst case is not better than a

random walk through space.

Although we have daimed ANNs to have the eapacity to be computationaly universal,

CAs are one of the simplest universal models available (SIP9i]. What is more, CAs have

very interesting emergent properties that distinguish them from ANNs. First of ail. CAs

can display self- or even universal-reproduction capabilities: although it is not clear how this

property can be applied to nonlinear control, it might suggest a self-organizational potential.

What is more, CAs are inherently of a dynamic nature, while simple feedforward ANNs

are statie. We have also seen that analogies are observed between the phenomenological

eharacteristics of CA behaviours and sorne nonlinear dynamics.

[t has been suggested in section 4.3.2 that the a priori knowledge requirements for the

CA would be less of a handicap than for ANNs. We will not discuss here the fact that

eomputer-implementation of ANNs require a discretization of the continuous model. while

CAs are inherently of a discrete nature. Our point lS that. if ANNs are a promising paradigm

in nonUnear control, there would seem to be few reasons aft.er the arguments presented here

why CAs should not be at least as interesting. Of course, in a field that is in its infancy, we

should not expect ta obtain as good results as in an older field, but we believe the rea.sons

we gave should provide a feeling of the potential of CAs in nonlinear control
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Chapter 5

CA-Based Nonlinear Controller
In this last chapter we will present our first attempts at nonlinear control using the CA-

paradigm. The core material for the implementation cornes from former papers by Qian et al.

[QIA90a)[QIA90b], where the control approach taken differs slightly from the one adopted in

the first part of our work l . Hence one might notice discrepancies between sorne of the ideas

introduced before and those in this chapter. and we will try to point out these differences

as we go along.

In this chapter we will first e.'<plain the details of our implementation of the MIsa

(Multiple-Input-Single-Output) CA-controller. 'Ne will then describe how we simulated

both a regulatory- and a servo-control problems without any prior assumptions on the

underlying dynamics. and expose the results of our experiments. [n the last section we will

try to evaluate the effects of our controller's design parameters on its performance using

statistical methods.

5.1- Controller Design

The cellular automaton at the heart of our MISO controller is a finite I-dimensional. binary

device consisting of N cells (0'0, al, .. .aN-d living on a toroidal space. i.e.. NEXT(ad =

O'Ci+l)modN and PREV(ad =QCi-llmodN' A most important feature of our CA is that it

is stocbastic, as will be explained below.

5.1.1- Stochastic Cellular Automaton

In its deterministic version the CA has a unique transition rule, obviously spreading homo-

geneously over the CA-space. On the other hand, the CA we consider here has (highly-)

nonuniform local interaction rules, in that each site or cell has its own local transition-

function 61<.) 0 $ i < N, drawn from sorne Probability Distribution Function (PDF).

l The reader might wish ta refer particuJarly to the first of these papers. although it is
no easy material, to get a complementary vision of CA in control.
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The statistical rule-space homogeneity is ensured by the fact that local rules are allowed to

randomly migrate in the lattice space, i.e.,

3 i, j E [0, N[ 1 6i(.) = 6}+1(.) 'Vt,

provided that the PDF remains constant through time. Such CA systems are said to have

extrinsic stochasticity [QIA90a].

As long as there is diversity in the mie population! random migration will inject un­

certainty into the CA dynamics. This stochastic behaviour is interesting when evolving a

solution in an adaptive manner since a large population of rules selected stochastically con­

tains more information. and thus results in a more efficient exploration of the solution space.

Also, maintaining a sufficiently large population of rules reduces sampling fluctuation, which

is a prerequisite for the adaptive evolution of the CA.

5.1.2- Rule-Table

1t was suggested in section 4.2.1 that the deterministic CA rule 6(·) could be expressed

in the form of a rule-table, where to each possible neighbourhood-state would correspond

the appropriate cellular state. Transition-rules in our implementation are stored in such

a lookup rule-table. But since in the case of the stochastic CA each cell has its own local

rule, the table must be multidimensional: while a first dimension is indexed by the transition

rule's parameter (i.e., typically by the neighbourhood-state), remaining dimensions are used

to index the location of the cells.

[n our particular 1-dimensional binary CA case, the rules are listed in a 2-dimensional

binary rule-table of size S x N, where the first dimension is indexed by the input-neighbour­

hood as we will see below, and where each column corresponds to a local rule, as in fig. 5.1.

Of course, would the columns of that rule-table be identical t or equivalently would the table

be row-wise homogeneous, the resulting stochastic CA would be equivalent to a deterministic

one. Random rule migration described above is trivially obtained by shufHing the columns

of the table.
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Fig 5.1: Structure of the Rule-Table

5.1.3- Data Representation

•
As argued in section 4.3.2~ data representation is a serious issue in the context of a C:\.~

based controUer because the natural CA definition do not readily include the concepts of

inputs and outputs~ as opposed ta ANN. No satisfactory solutions were brought up in our

discussions, hence we have ta concede to a compromise solution in our implementation. ~Ve

choose the one described in [QIA90b].

Input Encoding

Input encoding is realized in a manner quite similar ta the trivial approach suggested in

section 4.3.2 (see equation 4.5.1). The actual encoding is actually best expressed by rewriting

the transition function as

(5.1)

where Yt is the feedhack output from the controlled process. It might be surprising at first

that the sole parameter of the transition function depends solely on the controUer input

•
vectar Ytr as it seems ta be in contradiction with the basic CA definition, which states that

the CA configuration at any time depends on the previous configuration.

Actually~ we must not forget that the CA-controUer is embedded in a control-loop (de-
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scribed below, section 5.2.1): the process output vector Yt is determined by the CA control

action t which is itself dependent of the CA configuration at time t - 1. Renee transition

function 61(·) is indeed function of the previous CA configuration through feedback, as

expected.

Determining the input-neigbbourboods Hi(Yr) in equation 5.1 requîres first that each

of the p inputs (YL t Y"1 t ••• Yp) be discretized. This is done by means of a stochastic function

f(x) that discretizes2 the scalar ,z: into an N-bit string. where the number of I-hit.s tS giv~n

by

The bits are randomly distributed over the string ta ensure homogeneity, and .rma..'C and

xmin respectively denote the upper and lower bound of input .r. For instance. if ,z:ma..x =20.

,z:rnin =1 and N =St we would find for ,z: = 5 that 8 . L~ ~ 1.684 or 2 bits would need to

be randomly distributed over the 8-bit string.

Once inputs Yt have been discretized. the input-neighbourhaod Hi(Y,) far a particular

cell Qi is determined by eomputing (refer to fig. 5.2 ), for every input l ~ k ~ p. the sum of

the bits within a fixed radius-r/: neighbourhood from the ;th bit. [nput neighbourhood is

obtained from any isomorphic combination of these input-dependent values: sinee the sums

of every radius-rA: neighbourhood can take on 2(r/: + 1) different values (between 0 and r/:),

this results in a possibility of S =I1~=l 2( rI: + L) distinct input-configurations Hi(U,).

The next configuration ut+1(Q&) is then obtained by looking-up the rule-table entry

activated by this value together with index i.

The encoding scherne just described respects the uniformity and injectivity conditions

proposed in section 4.3.2. The deterministic condition, thought, is not respected since the

stochastic discretization function f(·) involved in it makes the encoding process stochastic

itself.

"1 This discretization scheme is sornewhat reminiscent of the BOXES system described in
[BAR83].
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Fig 5.2: The CA-Controller (p=2 inputs. rL =2. r:! =1)

Output Decoding

Most complications in the input encoding algorithrn are due to the fact that the controller

is intended ta deal with multiple inputs. The output decoding scheme. on the other hand .

is rather simple since we are working \Vith a single output.

It makes sense to expect the output signal Ur = Ur to be function of the CA-configu-

ration Cr. Actually, output Ur is simply obtained by applying the inverse of the discretization

function !(.), used in the encoding algorithm, to configuration cr. that is

(" ma..x min)_ f- L( r) _ rna..'C m u - u
Ur - C - U • •

N

where m is the number of I-bits in configuration c' .

5.2- Control Structure

(5.2)

•

The CA-controller C is embedded in the feedback control-Ioop depicted in fig. 5.3, where its

goal is ta learn to maintain the unknown process P around a desired setpoint y d' This task is

equivalent to the inverse identification process of the MB approach. and once the controller

has converged, i.e., when the critic sends no more signais, the CA-controUer should be the

inverse model of the process.
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Fig 5.3: Control Structure

Before we discuss the learning algorithm, we should make an important remark on the

control structure: by comparing fig. 5.3 to fig. 2.7, we note that the controUer C does not

receive as an input the signal y d. This pattern is valid only when we can assume the desired

behaviour to remain constant through time, or equivalently, when the nature of the control

is limited ta a stability problem. We would thus at first expect the coutroller to be inefficient

with a regulatory problem, since it would need to relearn a oew behaviour around each oew

setpoint.

[0 our implementatian learning is accomplished by evolving the CA-rules' PDF ta

madify the CA's dynamical behaviour. rather than by evalving a single rule as suggested

in chapter 4. Since we assume we have ooly a minimal knowledge on the process to be

controlled. we cannat rely on a "teacher~ ta supervise the learning process. and so we

choose a reinforcement learning-type algorithm. Not only are these learning algorithms

mare suitable far camplicated problems where 00 detailed knowledge is available, but they

also are more realistic madels in the sense of learning in biolagical systems.

5.2.1- Data Acquisition

Reinforcement learning usually takes the fOfm of reward and punisbment signaIs that modify

the learner's response probability in direct proportion ta the frequency at which they are

administered [QIA90a]. This is made possible by a. critic that cantinuously monitors the

performance of the cantraUer to decide on what signal ta send ta the learner: defining the
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caST function as the norm of the error e =Yd - Y (see fig. 5.3), we make the reasonable

assumption that an increase in the CaST reflects a poor performance of the controller-

deserving a punishment, while a constant or decreasing CaST is attributed to a satisfactory

performance--hence deserving a reward.

The controller reacts to a punish signal by fiipping the previously activated bits in its

rule-table with a uniform probability Pl, and ta a reward signal by doing nothing3 : this

decision ta reward or punish is based on the cstimatcd fitness of the CA-rules as dctermined

from environmental feedback, and by modifying the rules accordingly it is hoped to drive

the rule-population toward a satisfactory configuration. As might have been expected from

our former considerations on CA-Iearning, this approach shares sorne cammon grounds with

GAs, as bath use extensive bit-f1ipping operations ta converge ta a population of solutions,

and bath cannat be guaranteed ta converge.

This adaptive learning algorithm is expected ta make the stochastic CA converge ta a

deterministic one, according to Qian et al. [QIA90b]. The authors use this observation to

propose a heuristic. the majority ru/e. that is intended to enbance tbe COn\ferge rate. and is

based on the rad that a deterministic CA's rule-table is row-wise homogeneous. [n simple

terms, the majority rule states that instead of using the value and the activated bit for the

new state of a cell, we use the majority value of that bit 's row. As a further advantage. this

majority rule eliminates the need for column-shutHing in the rule-table.

As a final note on our data acquisition process, we must point out that our approach

is a rather simple one, and that it is expected to give good results only in fully-controlled

environments such as computer simulations. As a matter of fact, an optimal controller

could be destroyed in a. more realistic environment, where a process could be driven away

from its operating point by noise. Such an unwanted deviation would be perceived as a bad

performance by the critic, which would accordingly punish, and hence modify, the optimal

controller-1 . The same reason will j ustify the need for a deadzone, as explained later.

3 In that context, the reward would be more appropriately called the idle signal.
4 A possible fix ta that problem would be ta disconnect the critic-and hence stop
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5.2.2- Summary

We will summarize the whole control and learning processes by following the control loop,

starting with a control action Ut being sent by the controller:

1- The input signal Ut is applied to the process P for a period ~t, arter what the output

signais Y( t+At) == Yt+l are sampled;

2- The COST funetion is evaluated, and the critic decides on which signal ta send ta the

controller C:

3- The CA-rule table is adjusted accordingJy;

4- The CA computes the next control action Ut+L based on its new rule table and its last

feedhack input Yt+l'

It is assumed that the Last three steps take a. negligible amount of time, and 50 there

lS no delay between the time when the process outputs are sampled and the time when the

next control action is applied. As a consequence, the input signal Ut varies in a step-like

manner.

5.3- Experiments

[n this section we present the two experiments performed with our prototype CA-controUer.

The control structure components were aU encoded in ~UatLab v4.2. where both dynamical

processes were simuJated by solving their ISO models using second and third arder Runge­

Kutta formulas.

Whereas Qian et al. [QIA90bl tried their contra11er on bath the simple and double

inverted-pendulum problems (regulatory problems), we tested our implementation not only

with the simple inverted-pendulum (on an infinite track), but also on the more challenging

problem of CSTR (servo control problem). Both test problems are 2-inputs l-output pro­

cesses, and in both cases the controller consists of N = 64 autamata, with rI = 2 (law-arder

or raw input) and r2 = 1 (high-order or gradient input), hence the possibility of S =24

distinct input-configurations.

adaptation-once satisfactory performances are achieved.
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• 5.3.1- Inverted Pendulum: Regulatory Problem

Description

The simplest instance of a nonlinear dynamicai control problem is the stabilization or reg-

ulatory problem, where we want to maintain the state of a plant within a small (usually

unstable) region of state-space. A well-known instance of this is the inverted pendulum or

pole-balancing problem, which ls commonly used as a baseline for comparing control aIga-

rithms. The problem consists in learning to balance an upright pole which is attached at

one end by a pivot ta a cart that travels along a track (see fig. 5.4 ). AlI movements are

constrained ta the vertical plane, and the state of the system is gi,en by the pole's angle

and angular velocity (B,O), and the carfs horizontal position and velocity (z.x). The only

possible control action is a force F applied on the cart. and the system is fully described by

•
two second-order ditrerential equations [QIA90a]:

.. gsinO - COS 0 [(F + mIÔsinO)/(Al + m)]
o=------::-:---:..--------:--~

1 [~ - (m cos2 0)1(Al + m)1
F + ml(02 sin 0 - jj cos 0)

or=
~\t[ + m

(5.3-a)

(5.3-b)

where g is the gravitational acceleration, JI and mare respectively the cart's and pole's

masses and 1 ls the length of the pole. It i5 assumed no friction is present in the system.

F...... x
•

•
Fig 5.4: Inverted Pendulum

Since the Iearning algorithm as described before is essentially a stochastic walk through

solution-space, we might hope ta have a better chance of convergence if this space is smalL
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This is the motivation for working with a simplified version of the problem, where the cart

travels on an infinite track. The state of the system is then fully described by () and il, and

only equation 5.3-a above is relevant. The priee to pay for this simplification is internaI

instability, as the controller might keep the pole at an angle slightly greater than zero by

always pushing the cart in the same direction, thus resulting in an ever accelerating cart.

Experiment

Parameters for the pendulum were set to JVf =Lkg, m =O.1kg and 1= lm. and those for the

controller were chosen to be ,;lt =0.006s, Pl =0.3 and (JT =10°. where (}T is defined as the

deadzone of the system. The effect of the deadzone is to inhibit learning when ever the raw

variable is within its range, even if the caST function increases. The deadzone hence acts

as a toleranee on the solution, and was round ta be necessary due to the stochastic aspect of

the controller that acts as a disturbance: 5uch a noise, as explained in section 5.2.1 abave.

would prevent the controller from ever converging.

At the beginning of the first simulation, (J i5 chosen randomly in the deadzone while

il =0° /5, and the rule-table ls generated randomly. Failures are part of the learning aI-

gorithm, and will happen until the controller has acquired a reasonable knowledge on how

to accomplish the task. A failure occurs whenever one of the inputs exceeds its bounds

( Î. e., when to pole i5 too far from the vertical, or when it rotates too fast). The simulation

then proceeds with the next attempt, where the rule-table is preserved. Simulation results

indicate that in most situations the controller converges and succeeds at its task in less

then 10 attempts (see fig. 5.5 ). Good results were obtained by setting the bounds on the

inputs/output to OmQX =±45°, Om~:< =±3600 /s and Fm~:( =±50N.
mm mm mm

Comments

These results in themselves are interesting: the convergence rate is usually relatively fast,

and the controller succeeds at its task even if it starts with no a priori knowiedge on the

penduIum problem. In Qian et al. the authors tried to perform the more difficult tasks of
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• balancing a simple pendulum on an infinite track, and of double inverted pendulum control.

Although they daim success, few details are provided on the actual experiment parameters

and simulation conditions.
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Fig 5.S: Control of the Inverted Pendulum

5.3.2- CSTR: Serva-Control Problem

Description

We selected as our servo-control problem the control of a Continuous Stirred Tank Reactor

(eSTR). This task is more realistic than the previous one, in that it is doser to a typical

industrial control problem.

A chemical A is being consumed in an exothermic reaction which partially transforms it

into product B (see fig. 5.6 ). The reaction takes place in a reactor whose level is maintained

constant by Ietting the outdow be equal to the indow, and the goal orthe problem is to keep

the concentration of the unreacted feed A at the outlet (CA) as dose as possible ta a time-
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• varying desired concentration (C1es). This is achieved by manipulating the temperature

Tc of the reactor coolant, which flows through a cooling jacket. AIl other parameters in

the reactor remain constant, and we assume ideal mL'cing whereby the temperature T in

the tank is homogeneous. The state of the system LS given by C.ol and T, and the model LS

described by:

VC.ol = q(C~n - CA) - Vkoe -fi CA

IlpCpT =wCp(Tin - T) + (-~H)Vkoe;f.rLCA + F.4.(T..: - T)

A

(5A-a)

(5.4-b)

Tc

Fig 5.6: CSTR•

t
T

t

•

where V LS the volume of the tank, q is the volumetrie inflow rate with concentration

C~n and temperature Tin, p lS the density in the tank. Cp lS the heat capacity. w the mass

fiow, ~H is the heat of reaction, EA lS the activation energy, R the universal gas constant

constant and ko the pre-exponentiai factor, and finally U is the heat transfer coefficient at

the cooling interface of surface .4..

Since we actually want to maintain CA around c1es and are not interested in the tem­

perature in the tank, it is necessary to transform the state variable T by back-substituting

equation 5.4-b into equation 5.4-a ta obtain an appropriate state-space: this way, the inputs

ta the controller are CA and CA. The control structure is the same as usuai (fig 5.3), and

ta deaI with the time-varying nature of c1es we needed ta extend the concept of deadzone

sa that a tolerance lS aIlowed Dot only on the concentration, but aiso on how rapidly it is

reached. The idea is that the actual concentration CÂ is momentarily off-target when C~es
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• has just experienced an important variation: but since the controller has no way to predict

this behaviour, we don't want to punish it right away for this sudden deviation. E:<tending

the deadzone in time gives the controller a chance ta adapt to new situations. The dead-

zone is thus defined by a tolerance on concentration CT and a tolerance on time tT: an

ellipse with vertical axis 2CT and horizontal axis 2tT is dragged along the setpoint curve

to define the actual deadzone. This can be seen in fig. 5.7, which shows how our controller

performed on a sample problem arter only 2 attempts. In this particular situation, one can

see that no learning is performed over the simulation-the response is almost always within

the deadzone, and the CaST function decreases whenever it is outside. This means that

the controller acquired aIl of its knowledge in previous failed attempts.
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Fig 5.1: Control of the eSTR

Parameters for the controller were ~t = lmin, CT =0.05, PI =0.3 and tT =30mîn.

Values for the CSTR were fbced ta CT =0.5, Tin =5300
, q/V =w/Vp = 0.0139, ka =

1.18·l09, EA =15075.4, (-âH)/pCp =844.4 and UA =0.347. Good results were obtained

using CA max =0.5 and CA min =0.0, CA m~x =±O.OS and Te m~..'< = 560 ± 1000
• The

mIn mIn



• time of convergence varies with the complexity of the setpoint trajectory, and is in the order

of 5 attempts for the task illustrated in fig. 5.5.

Comments

Such nice results are somewhat surprising since, as pointed out in section 5.2.1, we expected

the controller structure to give paor results in a servo-control situation: the controller then

has to relearn ta operate around each new setpoint. It would be interesting to try the

controller with a smoother desired trajectory (e.g., a sinusoidal path), to verify whether we

wOllld obtain such impressive results with a continuously varying setpoint.

900 1000800700400 500 600
TIME (min)

300200100

0.5

0.45

0.4

0.35

Z• 0
j::: 0.3
c(
a:
~0.25
w
uzo 0.2
u

SETPOINT
-AESPONSE

0.1

Fig 5.8: ANN-Based Controller on CSTR Problem

We provide fig. 5.8 as a basis for comparison: the controUer used here is based on an

ANN with radial gaussian basis functions (SAN92]. Although the neural network has the

•
advantage that stability can be farrnal1y assessed using Lyapunov theory, the accuracy of

the tracking will be highly dependent on the spacing of nodes and the selection of the basis

functions. When compared ta this evolved model, our CA controller performs weil once it
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has converged near a solution-although stability is not easily proven-despite its simplicity

and the absence of a priori knowledge.

5.4- Impact of CA Parameters

It wouId be difficult to asses the performance of our prototype CA-controller using only

classical tools. As a matter of faet, Dot only the CA itself is stochastic, but the encoding

scheme as weIl as the learning algorithm are aiso probabilistic processes. [n this section,

we will try to use statistical tools to perform a more exhaustive analysis of our controller,

by assessing the quantitative importance of architectural and learning parameters on its

performance.

We chose to work for these tests with the eSTR problem as it is described above. The

controller is essentially the same as our former prototype, but for one thing that concerns

the lUle table: since a CA obviously takes most of its power from the neighbourhood in­

terconnections. we were curious to extend the neighbourhood concept to another level. and

the ruIe table seemed to be an appropriate vehide for that. We thus defined both a punish

and a reward neighbourhood Lp and LR, and adapted the learning algorithm to take these

into account: the controller thus react to a punish signal by independently flipping bits

within the neighbourhood Lp from the activated bits in the rule table according to a fixed

probability Pl t and to a reward signal by setting bits in the LR neighbourhood from an

activated bit ta the same vaJue as that central bit with the same probability Pl'

Ta allow ourselves to define richer punish/reward neighbourhoads, we also reconfigured

the rule table 50 that it is replaced by a 3-dimensionai rule black, of size 1 . (ri + 1) x 2 .

(T2 + 1) x N: this ruIe black is functionally equivaIent to the original ruIe table, and the

majority mIe is still used by the Iearning aJgorithm: where~ a column of the rule table used

to correspond to a local transition ruIe, a slice of the ruIe black now does the same thing.

Apart from the punish and reward neighbourhoods Lp and LR, the other learning

parameter we studied was the flipping probability PI, and the architectural parameters

were chosen to be the encoding neighbourhoods Tl and r:!. Other parameters such as
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the dimensions of the deadzone or the update time ~t obviously have an impact on the

performance, but they seemed less interesting to study in that they might correspond to

user-defined constraints on the desired response. [0 order to evaluate the effects of these

parameters we conducted a series of trials where the different parameter values were chosen

according to a well-established pattern.

5.4.1- Methodology and Experiments

Experimental conditions for each trial \Vere set in accordance with a Central Composite sta­

tisticaI Design (CCD) consisting of 32 trials. Five distinct evenly spaced target levels were

selected for each of the operating variables (L p, LR, PJ, ri, r',!). The CCD is constructed in

such way that the second order nonlinear effects of each process variable as weil as the syn­

ergistic or antagonistic interactions between these variables can be assessed quantitatively

from the resulting data set. The geometry of this design is illustrated in fig. 5.9 using only

3 variables instead of 5 for the sake of clarity.

This spherical distribution of experimentaI points is composed of a cube-shaped 2­

level factoriaI design (or fractionaI factorial design) augmented with 2 trials along each axis

conducted at extreme high and low conditions. At the center of the sphere. a number of

trials are repeated at mid-range conditions.

The ccn experimental plan used in this study was constructed using a half fraction

of the full factorial design in 5 variables, that is a 25- 1 fractional factoriaI design. The

extreme axial values of each operating variable were chosen sa that the precision of the

modeIs caIculated from the data set would be symmetrical in all directions for interpolation

to conditions away from the nominal center point combination. This design is therefore said

to be rotatable. [n addition, 10 replicate traiIs were performed at mid range conditions ta

provide an estimate of the e.'Cperimental error as well as ta ensure the orthogonality of the

design or the ability to assess the effects of the model terms îndependently. Details relating

ta the construction and use of the central composite design may he round in Khuri and

Cornel1 [KHU87!.
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AlI of the 32 distinct tests each consists of 20 consecutive simulations conducted over

a time history of 1000 min and a 2-step c1es as illustrated in fig. 5.ï. For each set of

conditions these simulations are consecutive in the sense tllat while the first trial starts with

a random rule black, all subsequent ones start with the rule block obtained at the end of

the previous simulation. The number of simulations was chosen so that it would provide

sufficient data ta allow us ta study both convergence and stability. The COST functian

used by the critic is a good indicator of the fitness of the solution, therefore results for

each set of repeat trials were summarized by recording bath the average values JlCOST

and standard deviations a'COST of the COST functian over aIl 20 simulations conducted

at a given cambination of design parameters. These values are reported in table 5.1. Other

values for bath the controller and the process were the same as usual.

X2

Xl

X3

Fig 5.9: Geometry of a Typical CCD Design
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Test no. LR Lp rL r2 Pl pr()~T CTrn~T

1 21 21 1 3 0.3 0.0235 0.013617
2 15 15 2 4 0.5 0.0267 0.011159
3 15 15 2 0 0.5 0.0244 0.008298
4 9 9 1 1 0.7 0.0193 0.010413
5 21 21 3 1 0.3 0.0148 0.005874
6 21 21 1 1 0.7 0.0293 0.014518
7 9 9 1 3 0.3 0.0395 0.013392
8 15 15 2 2 0.9 0.0206 0.008630
9 9 9 3 1 0.3 0.0134 0.007226
la 15 15 4 2 0.5 0.0192 0.008046
11 15 3 2 2 0.5 0.0200 U.U10964
12 15 15 2 2 0.5 0.0213 0.008931
13 21 21 3 3 0.7 0.0205 0.009364
14 9 21 1 1 0.3 0.0227 0.010610
15 9 9 3 3 0.7 0.0188 0.005024
16 27 15 -1 2 0.5 0.0230 0.014885
17 15 15 2 2 0.5 0.0212 0.010511
18 9 21 1 3 0.7 0.0321 0.007910
19 15 15 0 2 0.5 0.0264 0.007854
20 21 9 3 1 0.7 0.0207 0.009165
21 15 15 2 2 0.5 0.0183 0.008989
22 21 9 3 3 0.3 0.0196 0.008011
23 15 15 2 2 0.1 0.0216 0.007986
24 15 15 2 2 0.5 0.0223 0.007811
25 15 15 2 2 0.5 0.0284 0.018547
26 21 9 1 3 0.7 0.0205 0.007930
27 15 27 2 2 0.5 0.0198 0.007352
28 15 15 2 2 0.5 0.0244 0.007078
29 9 9 3 3 0.3 0.0178 0.009805
30 21 21 1 1 0.3 0.0206 0.012728
31 3 3 2 2 0.5 0.0234 0.008579
32 9 9 3 1 0.7 0.0134 0.006215

TABLE 5.1: Experiments and their Results

5.4.2- Regression Analysis

The impact of the process conditions on controller performance was assessed from the afore-

described tests by using Multiple Linear Regression (.MLR) analysis. The structure of the

experimental plan which used 5 distinct target levels for each process variables makes it

possible to fit a nonlinear madel to the data. A second arder polynomial of the farm

presented in equation 5.5, where Y indicates a measured performance result and }( a network

design variable, was used to provide response surface madels for bath the average and the
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• standard deviation of the CaST function. The values of the coeffidents 13 were calculated

using least squares estimation and the significant effects were identified and

k A:-l k

}" =130 + L J3i Xi +L L /iij }(i~\j +;
i-l i-lj-2,(i<j)

F = [SSEreduced - SSEaugmentedl!r

SSEaugmented/(N - p}

(5.5)

(5.6)

•

The adequacy of each model was evaluated using the adjusted R2 value, denoted R~ in

equation 5.ï, as a measure of the proportion of the total variance in the response variable

y which is represented by the regression mode!. The adjusted R2 is a more conservative

measure of model fit than the traditional R2 value since it penalizes large models containing

terms of marginal significance. Together with the partial F test, the adjusted R"! value was

used to identify the smallest subset of terms praviding the mast efficient fit.

However complex, a model cannat be expected ta fit the data with an accuracy ex-

ceeding that inherent to the testing procedures. A useful measure of the goodness of fit

of a model can be obtained by comparing this random experimental error \Vith the net

residual regression error. The net regression error represents that portion of the response

variability which remains unaccounted for hy the proposed model once measurement error

has been taken into consideration. A significant lack of fit (LÜF) is an indication that the

model structure may he inadequate. The level of significance of such lack of fit was assessed

in this study using the F test described in equation 5.8 where the experimental error is

estimated using SUffi of squares SSreplicates of the results from the no trials repeated at

mid-range conditions. Details concerning the use of these statistical tests may he obtained

from Rawlings [RAW88J.

Before performing regression calculations the raw process variables were first centered

and scaled to unit variance by subtracting from each regressor the mean values and dividing•

R2 =1- SSE/(iV - p)
A SST/(N -1)

(SSE - SSreplicates)/(N - p - no)
FLOF =--~---:.._-----­

SSreplicates/(no - 1)

(5.7)

(5.8)
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• by the respective standard deviations. This scaling eliminates the effect of engineering

units and guards against the possibility that a variable would be selected into the model

solely because of the magnitude of the units. Sealing of the variables aIso permits direct

comparison of the coefficients sinee the normalized coefficients have the same units as the

response variable and as such are a direct reBection of each term 's relative importance.

First-Order Approximation
R~ = 0.3903

TABLE 5.2: Average of CaST (JlCaST)

FrOF = 1.4875 < CRITFa.95.24.5 =4.53
Parameter Estimate T Test

r1 -0.582701 -4.155
r:! 0.300137 2.140

Second-Order Approximation
R2 = 0.4058A

Ff9IRT 5 =4.53Fr.OF = 1.4444 <
Parameter Estimate T Test

r1 -0.582701 -4.209
(r~)2 0.323371 2.336

•
First-Order Approximation

R;, = 0.1718
Fr. nr: =0.2798 < Ff9~~15 = 4.53

Parameter Estimate T Test
LR 0.290215 1.776
r1 -0.375515 -2.297

Second-Order Approximation
Ri = 0.2167

Fr OF =0.2533 < FP9~T 5 =4.53
Parameter Estimate T Test

0.318439 2.003
-0.406033 -2.554

TABLE 5.3: Standard Deviation of CaST (o-COST)

•
5.4.3- Analysis and Discussion

The regression models calculated for bath average and standard deviation of the excursions

from setpoint are presented in tables 5.2 and 5.3 (where the parameter estimates are nor-
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malized). The adjusted R2 values in table 5.2 indicate that the second order regression

model for PCOST represents roughly half the total variance in this response. In the case of

lTCOST' the best model in table 5.3 represents roughly a quarter of the total variability in

this response. Before assessing the adequacy of each of these response surface models, it is

important to determine if the variance which is not captured by the regression equation is

random error or a systematic variation. As discussed earlier, a mode! cannot he expected

to provide predictions which are more precise than the response measurements themselves.

The F values reported in table 5.2 for Lack Of Fit (LOF) indicate that the net prediction

error for JlCOST is of the same order of magnitude as the random replicate error. [n the case

of D'COST the lack of fit demonstrated by the regression model is even lower. Therefore.

we conclude that in both cases the second order polynomial models tabulated above are

reasonable representations of the variability in CA performance that is controllable through

a systematic adjustment of the parameters studied here. Empirical models for both the

CA network performance indicators used here have lack of fit values which are weIl below

the 95% confidence limit. Therefore. in both cases. changes to the mod~l form would not

provide a better fit and the remaining fluctuation can be described as random in nature.

Furthermore, the model terms selected into these expressions are all significant. having T

test values, or signal to noise ratios. greater than 2. It is interesting to note that even though

little more than half of the total variation was modeled. the magnitude of the random test

error is such that the models have captured almost aU of the variation introduced by the

systematic changes in CA design.
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Fig 5.10: Response Surface. IlCaST

The response surface shawn in fig. 5.10 summarizes our results for JlCaST: since by

definition. the CaST function can only assume positive values. the surface predicted by the

second-arder model has not been extended below the horizontal plane. These results suggest

that the final precision of the CA control model is independent of the training parameters

Lp. LR and PJ. This suggests that oscillations about the convergence point. which are more

likely related to CA learning t are relatively smaHer when compared to the offset Crom target

value. This offset between the predicted solution at convergence and the desired target

appears to he controlled by the design of the encoding layers. As a matter of fact, both the

encoding neighbourhoods rI and r:z are significant. Since the coefficient of ri is greater, the

slope toward that direction is steepest and hence the model is more responsive to variations

in that parameter. On the other hand, while an increase in ri resuIts in a proportional

convergence of IlCaST toward zero. an increase in r:! cloes Dot have an immediate impact,

only at high values of r:! will the model reaet with a noticeable increase in IlCOST' This

nonlinear sensitivity to the encoding of the gradient ëA is conceptually similar to that of a

73



• pro contraller. Althaugh reaction time is improved, the more the derivative term in such a

controller is brought inta play, the more the controller is susceptible ta becoming unstable.

Fig 5.11: Response Surface, O'COST

caST
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0.5a
~~~~~;-'4

1.5 2
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for Raw Input (r1)

Reward
Neighbourhood (LA)

•
The surface response for "'COST in fig. 5.11 has been canstrained to positive values in

a similar manner as the previous one to respect the definition ofstandard deviation. Results

indicate that the stability of the controller depends in part on the encoding and in part on

the training scheme. Encading parameter rI is once again an important contributor, and

it has the sarne qualitative impact on "'COST as it had on PCOST' I.e .• an increase in the

encoding neighbourhood rI will rapidly improve the repeatability of the CA. The opposite is

true when we apply the neighbourhood concept to the reward scheme. whereby an increase

in the pararneter LR distabilizes the system.

•
These results confirm the importance of neighbourhood interconnections at the "cod-

ing interface" in the CA-cantroller. From these response surfaces we can conclude t.hat the

parameter with the greatest impact on the CA performance is the encoding neighbourhood

rI appIied to the raw input CA' Basically, these results indicate that both precision and
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stability can be improved simultaneously by increasing ri- However, as mentioned previ­

ously, a relatively large part of the variability in performance is not related clirectly to CA

design changes. Noise inherent to the stochastic nature of the controller is responsible for

an important part of the variability which is not captured by the response surface mode!.

We can thus question the pertinence of a stochastic model in this specifie control appli­

cation. While the introduction of a permanent excitation might be an advantage under

sorne circumstances, it rnight also become a problem when the control model is expected

to respond ta changes in its design parameters. In light of these considerations. we suggest

that it might be preferable to use an hybrid CA, where for instance part of the cells would

be stochastic while other cells would be deterrninistic. This might prove more useful than a.

fully stochastic device, at least in control applications.
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Chapter 6

Conclusion

6.1- General Considerations

In this work we wanted to assess the possibility of using Cellular Automata (CAs) as basis for

the design of nonlinear controllers. Toward that end we introduced in chapter :2 the Model­

Based (MB) control as a general approach to nonlinear problems: we saw in the fol1owing

chapter that this approach has already been used in neurocontrol to give promising results.

Artificial Neural Networks (ANNs) were introduced at that point, as a hasis for future

comparison.

CAs were presented in chapter 4, where we discussed emergent properties and other

characteristics, namely:

• Universality, whereby CAs, like ANNs, can be designed so they are capable of comput­

ing any arbitrary function with arbitrary accuracy;

• Self-reproduction. whereby a machine can he embedded in the CA-space that has the

capacity ta construct any other embedded machine. [n the weaker acceptation proposed

by Langton, self-reproduction is limited to the capacity of a machine to produce only

identical machines, and from tbese considerations we observed that unÎversalÎty is a

sufficient but not necessary condition for self-reproduction;

• Inherent dynamics: while only recurrent ANNs can compute dynamic mappings. CA

inherently bave this property at no "extra-cost". Furthermore, an obvious parallel can

be traced between the phenomenological characteristics of the evolution of CAs and

nonlinear dynamics;

• Learning capacity, whereby a CA, like an ANN, can store knowledge for future use in

its structural parameters. We argued that an obvious choice toward that end was to

acquire knowledge by evolving transition-ruIes;

These characteristics, together with the observation that CAs are structurally simpler than
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ANNs led us to the daim that CAs can be advantageously compared with ANNs.

However, the bottleneck of the MB approach resides in the difficulty ofefficiently search­

ing the solution space, where learning algorithms typically rely on biologically-motivated

heuristics. On that particular point, ANNs seem to have an advantage over CAs~ as more

efficient, gradient-descent learning algorithms have been developed for them, while a first

analysis indicates that the simplest way to evolve CAs is through Genetic Aigerithms (GAs),

which in the worst case are not better than a random walk through space.

One of the main difficulty with using CAs in control. however, resides in the prob­

lem of efficient data representation, as usual definitions of CAs are not concerned with

input/output abilities. Regarding this particular issue, and despite diverse suggestions. no

entirely satisfactory answer was provided.

6.2- Experimental Results

[n the second part of our work we presented experimental results from a prototypical CA­

based controller. These experiments concentrnted on the feasability rather then on the

efficiency of a solution. As a matter of facto the objective of our controller \Vas ooly to

maintain the error e =y d - Y at a minimum value, regardless of the values of the control

actions necessary to achieve this. For a solution to be practical in a real-life situation. the

CaST function would in general inc1ude the manipulated variables as weil as the desired

and actual respanses, in an attempt te minimize both the errer and the amplitude of the

control actions.

The control scheme employed is stochastic under several respects, whereby the encoding

scheme, the learning algorithm and the underlying CA itself are all stochastic. Despite that

and the lack of a satisfactory solution ta the encoding problem, the results obtained were

shown to be very interesting. From our results we can conclude that:

• A seemingly simple model can achieve a reasonably good control without any a priori

knowledge on the dynamics of the controlled process,

• Our prototype is quite robust since, using only a basic stochastic reinforcement learn-
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ing scheme nonetheless allows us to converge rapidly ta within proximity of a viable

solution.

To qualitatively assess the impact of structural and learning parameters of the con­

troller on its performance, we relied on the regression analysis of a carefully designed set

of experiments. From this it was abserved that, whereas learning parameters have a neg­

ligible effect, both the encoding neighbourhoods have a determinant impact on stability

and repeatability of the controller. Improved performance is obtained either by increas­

ing the interconnected neighbourhood for the discretizatian of the raw input variable. or

by decreasing the neighbaurhoad far the gradient input variable. This obvious importance

of neighbourhaod interconnection at the "coding interrace~ confirms that CAs presumably

inherit mast of their power from dos~range intercommunications.

6.3- Future vVork

We have shown in this wark that CAs offer a mast interesting paradigm as a basis ta

nonlinear control. even when compared ta popular artificial network approaches. After this

first exploratory effort, a lot ofwork remains to be accomplished and numerous avenues cauld

be explored from here to improve CA-based controllers: integration of self-organizational

aspects in the model, implementation of a memory or experience-based decision processes.

integration of hierarchical concepts in the design of the controUer. But first things first. we

believe that a second-generation prototype should answer the data representation problem in

a fully satisfactory manner. In the same way, an exploration of alternative learning avenues

would be an important work, as more efficient, converging data acquisition scheme would

improve the prototype in a non-negligible manner. Of particular interest would be the idea

of letting the CA-network learo its own optimal neighbourhood.

As was already suggested in chapter 5, the use of an hybrid or nonhomogeneous CA

might prove to be preferable in control applications. However, choosing such an alternative

increases the size of the solution-space, hence making the learning probIem even harder.

An attractive way to deal with that would be to allow the CA network ta develop and
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adapt itself, starting from an initial1y small colony of cells. By adopting such a seedgrowth

strategy we would push the ALife analogy ta the limit. by adding an ontogenetic aspect to

the epigenetic one. The evolution of a CA contralier would then very roughly resembles the

evolution of an embryo from a single zygote.

FinaIly, this work was concerned solely with the application of CAs to the problems of

nonlinear control and identification. which are reputed ta be diflicult problems. Successes

obtained in that context can be interpreted as promises of successes in other contexts: just

like ANNs are being used in a wide variety of problems. notably pattern recognition and

artificial intelligence. CAs rnight as weIl be applied in other fields. Our personal interest

reside in the development of intelligent agents for decisional systems.
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